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Abstract 

Background  Colorectal cancer is a leading cause of cancer-related deaths worldwide. The best method to prevent 
CRC is a colonoscopy. However, not all colon polyps have the risk of becoming cancerous. Therefore, polyps are clas-
sified using different classification systems. After the classification, further treatment and procedures are based on 
the classification of the polyp. Nevertheless, classification is not easy. Therefore, we suggest two novel automated clas-
sifications system assisting gastroenterologists in classifying polyps based on the NICE and Paris classification.

Methods  We build two classification systems. One is classifying polyps based on their shape (Paris). The other 
classifies polyps based on their texture and surface patterns (NICE). A two-step process for the Paris classification is 
introduced: First, detecting and cropping the polyp on the image, and secondly, classifying the polyp based on the 
cropped area with a transformer network. For the NICE classification, we design a few-shot learning algorithm based 
on the Deep Metric Learning approach. The algorithm creates an embedding space for polyps, which allows classifica-
tion from a few examples to account for the data scarcity of NICE annotated images in our database.

Results  For the Paris classification, we achieve an accuracy of 89.35 %, surpassing all papers in the literature and 
establishing a new state-of-the-art and baseline accuracy for other publications on a public data set. For the NICE 
classification, we achieve a competitive accuracy of 81.13 % and demonstrate thereby the viability of the few-shot 
learning paradigm in polyp classification in data-scarce environments. Additionally, we show different ablations of 
the algorithms. Finally, we further elaborate on the explainability of the system by showing heat maps of the neural 
network explaining neural activations.

Conclusion  Overall we introduce two polyp classification systems to assist gastroenterologists. We achieve state-of-
the-art performance in the Paris classification and demonstrate the viability of the few-shot learning paradigm in the 
NICE classification, addressing the prevalent data scarcity issues faced in medical machine learning.
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Background
Colorectal cancer (CRC) is the second leading cause of 
cancer-related deaths worldwide [1]. This cancer devel-
ops from lesions inside the colon called polyps. However, 
not all colon polyps have the risk of becoming cancerous. 
Therefore, polyps are classified using different classifica-
tion systems. After the classification, further treatment 
and procedures are based on the classification of the 
polyp. Since young physicians often do not have the nec-
essary experience to make the correct decision reliably, 
computer-assisted procedures are being developed that 
can assist with the classification [2].

In the field of automated gastroenterological assistance 
systems, a significant area of research involves the detec-
tion of polyps using deep learning. Polyps are mucosal 
growths in various body parts, such as the intestine or 
stomach [3]. In some cases, unusual skin changes can 
become dangerous and even cancerous. Deep Learning 
object recognition methods such as CNNs detect and 
classify polyps automatically during examinations to 
assist endoscopists [4–6]. This may be beneficial for the 
future, to detect polyps more accurately by automated 
methods and to simplify or confirm the prognosis for the 
proper polyp treatment.

The polyp classification is essential as it helps the 
endoscopist decide on further treatment methods. For 
classification, different approaches are used to categorize 

polyps, such as schemes based on the shape (PARIS) [7] 
or based on the surface structure (NICE) [8]. The clas-
sification of polyps can give first insights into their dan-
gerousness and the appropriate treatment options [7]. 
Furthermore, van Doorn et al. demonstrated a moderate 
interobserver agreement among Western international 
experts for the Paris classification system. Automated 
classification systems could help increase experts’ inter-
observer agreement on the Paris classification [9].

We consider the Paris  and the NICE classification 
for our automated classification algorithms as they are 
the most commonly used classification in Europe. Fur-
thermore, the Paris classification is recommended for 
documentation in the ESGE European Society of Gas-
trointestinal Endoscopy guidelines and it is also recom-
mended to use advanced endoscopic imaging like NBI 
[10].

This paper shows therefore two automated classifica-
tion networks. The first is classifying the polyp based on 
white light using the Paris  classification scheme [7]. A 
two-step process is introduced: first, detecting and crop-
ping the polyp on the image, and secondly classifying 
the polyp based on the cropped area with a transformer 
network. Figure  1 shows some example results of the 
Paris polyp classification system.

The second is the NICE classification, which is based 
on Narrow band imaging (NBI). NBI is a variation of 

Fig. 1  Automated Paris classification examples. This figure illustrated some classification examples of the polyp classification system on our data 
(EndoData) [11]. The percentage values show the confidence of the classification system
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endoscopy that uses blue and green light to enhance the 
visibility of surface patterns and texture of the mucosa. 
The presented NICE classification system is designed as a 
Deep Metric Learning based approach of few-shot learn-
ing to account for the data scarcity of NICE annotated 
images in our database.

In the following, the main contributions of the paper 
are shown: 

1.	 We introduce a Paris classification system with state-
of-art performance on clinical data.

2.	 We created a data set of polyp classification data to 
train and further enhance the models.

3.	 We present and validate a new approach for the auto-
mated NICE classification in data scarce scenarios 
leveraging few-shot learning.

Additionally, both polyp classification systems were pub-
licly funded and developed by computer scientists and 
endoscopists in the same workgroup to ensure the high 
quality of the polyp classifications. In the next subsec-
tion a summary of the medical classification methods of 
polyps will be given. Furthermore, to overview existing 
work and properly allocate our paper to the literature, we 
describe a brief history from general polyp detection to 
state-of-the-art polyp classification with deep learning 
techniques.

Medical backgroud
Polyps are small, fungal, or flat mucosal growths in vari-
ous body regions, such as the intestines, stomach, uterus, 
or nose. The different-looking skin lesions most com-
monly occur in the stomach or intestines and affect in 
particular older people. They often appear after inflam-
mation, leading to higher cell division in the mucosa. 
Additionally, polyps can become malignant or even 

cancerous due to unusual cell growth. Polyps can be 
divided into three types: hyperplastic, neoplastic, and 
inflammatory. While the hyperplastic and inflammatory 
types have no or lower risk of degeneration, the neoplas-
tic polyps represent the most dangerous type of polyp 
[12]. These can increase the risk of cancer, especially as 
they grow. In order to prevent a severe progression due to 
polyps, repeated examination by an endoscopist through 
endoscopy is necessary. In this process, hollow organs 
such as the intestine are examined with an endoscope, a 
flexible tube equipped with a camera, and light.

Paris classification In order to categorize polyps and to 
select appropriate treatment strategies, polyps are classi-
fied considering various aspects. One of the most widely 
used classifications is the Paris  classification. Based on 
a Japanese classification scheme, the Paris  classification 
characterizes the potentially high-risk polyps according 
to their shape [7]. Figure 2 visualizes the shapes of differ-
ent polyps:

Type I polyps are referred to as elevated or polypoid. 
A distinction is made between the following polyp types:

•	 Ip Pedunculated
•	 Isp Semipedunculated
•	 Is Sessile

Type II polyps are described as flat. In addition, the fol-
lowing distinctions are made:

•	 IIa Slightly elevated
•	 IIb Completely flat
•	 IIc Depressed

Furthermore, lastly, type III describes the excavated 
form. Unlike type I, type II and III are not considered 
polypoid. A prognosis can be obtained through the 

Fig. 2  Subdivision of polyps according to Paris classification. Adopted from [7]
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Paris  classification to conclude the type of polyp, and 
future treatment [7]. The Paris classification is sometimes 
given in the literature with a preceding 0 before the type. 
As the preceding is irrelevant to our approach, the lead-
ing zero is omitted for clarity.

Note, that the difference between the Paris classes Is 
and IIa is defined by the degree of elevation, with a pro-
trusion in excess of 2.5 mm being defined as a polyp of 
Paris class Is [13]. To discriminate between the Paris 
classes Is and IIa, endoscopist experts normally rely on 
their instruments (such as the forceps) to provide a size 
reference [13]. Our data set and the open source data 
does not support ulcers (Paris type 0-III). Thus, a restric-
tion towards non-ulcers lesions had to be made.

NICE classification The NICE classification is an estab-
lished diagnosis scheme classifying polyps into three cat-
egories, which specify the most likely pathology ranging 
from benign hyperplastic to cancerous polyps deeply 
invading the mucosa underneath the polyp.

The scheme hereby utilizes the Narrow-Band-Imag-
ing technology (NBI) to render the surface texture vis-
ible and to characterize the different polyp classes 
according to features such as the vessel patterns dis-
cernible on the polyp surface [14]. An overview of the 
different NICE  classes,1 their characteristics and most 
likely pathology can be seen in Table 1.

The NICE classification has been well established as an 
informative feature for the classification of polyps [15, 16] 
and the clinical performance of the scheme, as well as the 
classification performance of human experts using the 
scheme, have been subject to numerous studies [14, 16]. 
In the treatment assessment guideline of the European 
Society of Gastrointestinal Endoscopy, the degree of sub-
mucosal invasion is a decisive criterion for the require-
ment of surgical removal of neoplastic polyps [17].

A brief history of automated polyp classification
This section gives a brief overview of the current state of 
the art in automated polyp detection and classification 
research with respect to deep learning methods. Here, 
there are mainly two ways deep learning methods can be 
used to assist gasteroenterlogists with the assessment of 
polyps: For one, through the early detection of polyps in 
images or videos. For another, through the classification 
of polyps, in order to conduct a proper treatment anal-
ysis. Classifying polyps is based on various superficial 
features such as shape or structure. In this context, the 
detection and classification of polyps can be challenging 
due to numerous aspects.

Since this decade, deep learning has been the lead-
ing technology in developing computer-aided polyp 
detection. Most methods do use Convolutional Neural 
Networks (CNNs) for the detection of polyps. E.g Zhu 
et  al. show a seven-CNN paired with a support vector 
machine (SVM) to detect anomalies in endoscopy images 
Zhu.2015. Another paper is the paper by Zhang et  al., 

Table 1  Overview of the NICE categories

Adopted from Endoscopy-Campus GmbH[1]

Typ 1 Typ 2 Typ 3

Color Same or
lighter than background

Browner
than background

Brown to
dark

Vessels None or isolated
lacy vessels

Brown vessels around
white structures

disrupted or
missing vessels

Surface Dark or white spots
or homogeneous

Oval, tubular or
branched white strucutres

amorphous or
absent patterns

Likely pathology hyperplastic Adenoma Deep submucosal
invasive cancer

Examples

1  https://​www.​endos​copy-​campus.​com/​en/​class​ifica​tions/​polyp-​class​ifica​tion-​
nice/.

https://www.endoscopy-campus.com/en/classifications/polyp-classification-nice/
https://www.endoscopy-campus.com/en/classifications/polyp-classification-nice/
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which presents a CNN for polyp detection and locali-
zation. They use a single-shot multibox detector that 
reused shifted information through max-pooling layers 
to achieve higher accuracy. They achieved a real-time 
detection speed of 50 frames per second (FPS) and an 
average accuracy of 90.4 [18]. Another idea from Bagh-
eri et  al. used sophisticated preprocessing involving the 
colors of the images to correlate the information to locate 
and segment polyps. In this way, their polyp detection 
achieved 97.7 % accuracy on the CVC-ColonDB dataset 
[19]. Another approach from Qadir et al. utilizes a two-
step method. In the first step, they used a CNN that gen-
erated multiple regions of interest (RoIs) that are then 
used for classification. These proposed RoIs were com-
pared with subsequent frames and their RoIs. The ration-
ale of this method is that the frame in a video should be 
similar to the next frame, and this is to reduce the per-
centage of false predictions.

Sornapudi et  al. also utilized region-based CNNs to 
localize polyps in colonoscopy images but in wireless 
capsule endoscopy (WCE) images. Therefore, the detec-
tion is not done in real-time. During localization, images 
were segmented and detected based on polyp-like pix-
els Sornapudi.2019. Currently, also transformer archi-
tectures are relevant for polyp detection. For example, 
a particular sparse autoencoder method called stacked 
sparse autoencoder with image manifold constraint has 
been used by Yuan and Meng [20] to detect polyps in 
WCE images. A sparse autoencoder is an artificial neu-
ral network commonly used for unsupervised learning 
methods [21]. Their approach achieved an accuracy of 98 
% in polyp detection [20]. Another approach used trans-
formers in combination with CNNs. Zhang et  al. used 
the ability to view global information of the whole image 
through the attention layers of transformers and the 
detailed local detection of CNNs to segment polyps effi-
ciently. They used a new fusion technique called BiFusion 
to connect the features obtained from the transformers 
and the CNNs. The method ran in real-time with 98.7 
FPS [22].

Not only the localization of polyps represents a goal 
of computer-specific polyp research, but also the classi-
fication according to specific characteristics. For exam-
ple, Ribeiro et  al. used the feature extraction capability 
of CNNs to classify polyps into “healthy” (average) and 
“abnormal” (adenoma) classes using Kudo’s pit-pattern 
classification. Pit-pattern classification is a variant of cat-
egorizing types of polyps based on their surface struc-
ture [23]. The authors achieved an accuracy of 90.96 % by 
their classification using the CNN [24].

Using pit-pattern classification, a deep learning 
model was presented in the paper [25] to classify polyps 
into,,Benign,”,,Malignant,” and,,Nonmalignant. Here, the 

model was trained with a private data set and achieved 
a reliability of 84 %. Another popular polyp classification 
method using a CNN is used in [26]. Here, the authors 
used the Narrow-Band Imaging International Colorectal 
Endoscopic Classification (NICE for short) [8], similar 
to pit-pattern classification using surface features. Here, 
however, the polyps were additionally categorized by 
color or vascular structure and classified as polyp type 
1 or 2. Thus, a preliminary prognosis can be determined 
whether the polyp is a hyperplastic or an adenoma tumor. 
For classification, the authors used a CNN with an SVM. 
The CNN was pre-trained on a non-medical data set to 
compensate for the lack of polyp data. They achieved an 
accuracy of nearly 86 % [26] with their proposed model.

Bryne et al. also used the NICE classification to char-
acterize polyps. They classified them as hyperplastic or 
adenoma polyps. The authors created a CNN model for 
real-time application, which was trained and validated 
using only narrow-band imaging (NBI) video frames. 
In doing so, they achieved an accurate prediction of 94 
% [27] on a sample of 125 testing polyps. Furthermore, 
Komeda et  al. presented a specific CNN model to clas-
sify polyps into “adenoma” and “non-adenoma” polyps 
based on NBI and white-lighted images [28]. In the paper 
by Lui et  al., another automatic classification model is 
presented to characterize polyps into endoscopically cur-
able lesions and noncurable lesions based on the NBI and 
white-lighted images. The division into curable and non-
curable is based on the types of polyps, such as hyper-
plastic or tubular. Lui et al. achieved an overall accuracy 
of 85.5 % with their model, with higher performance on 
NBI images [6]. In addition, Ozawa et  al. used a CNN 
based on a single-shot multibox detector to detect and 
classify polyps. They trained and validated the model 
with a non-public data set and achieved a true-positive 
rate of 92 % during detection and characterized the 
detected polyps with an accuracy of 83 % [5]. In 2021, 
Hsu et al. considered the classification of polyp pathology 
using gray scale images and a customly designed classifi-
cation network embedded into a detection and classifica-
tion pipeline. They achieved an accuracy in the decision 
between neoplastic or hyperplastic polyps of 82.8% using 
NBI and 72.2% using white light [29]. A recent work in 
[30] considered the discrimination between hyperplastic 
and adenomatous polyps with different deep computer 
vision models, as well as with features provided by clas-
sic feature extraction algorithms, such as the Gabor filter. 
Their best model AlexNet achieved an accuracy of 96.4 
%. An overview over the methods discussed here is pre-
sented in Table 2.

Regarding the NICE  classification, our work can 
be considered as a polyp classification system cat-
egorizing the polyps into the classes hyperplastic and 
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adenoma according the pathological interpretation of the 
NICE classes I and II. The same methodology has already 
been applied in the mentioned works in [26, 27], and we 
consider therefore the literature outlined in this section 
as the peer group of our work. But in contrast to most 
of the previous works, which learn a blackbox pathol-
ogy classification system, we aim to factorize the patho-
logical assessment by embedding the classifications into 
the previously introduced well-established classification 
schemes Paris and NICE  , in order to make the pathol-
ogy assessments more explainable. Instead of the direct 
prediction of the pathology, we make the prediction of 
the NICE and Paris class of a polyp to the subject of our 
study.

To the best of our knowledge, just one similar approach 
concerning the Paris classification has been published [4]. 
Bour et al. trained several well-known CNN architectures 
to classify polyps based on shape. The polyp images were 
divided into “Not Dangerous”, “Dangerous” and “Cancer” 
concerning the Paris classification. They labeled the Paris 
classes Is, Ip, Isp, IIa and IIb as “Not Dangerous”, class IIc 
as “Dangerous” and class III as “Cancer”. Their algorithms 
are trained on 785 images. They achieved an accuracy of 
87.1 % with ResNet50 as backbone [4].

Data and methods
The following chapter describes the methodology of 
this paper. The section starts with outlining the data 
sets used for the training process. Furthermore, the 

chapter involves one section for the methodology of the 
Paris  classification and one section for the NICE clas-
sification. For the Paris  classifcation, we use a two-step 
process involving first the detection of the polyp and the 
cropping of the image to the region of the detected polyp. 
In a second step, the cropped polyp is provided to a 
transformer architecture to classify it. For the NICE clas-
sification, we deploy a metric learning CNN pre-trained 
on a texture transfer learning and a self-supervision data 
set, which is subsequently fine-tuned on the extracted 
and cropped polyp images.

Data sets
The current chapter will outline the data sets involved in 
the training of the NICE and Paris classification systems, 
which were compiled from different sources.

Due to the data sets containing only a subset of the 
required annotation types (NICE  or Paris  ), the sources 
for the two classification tasks only partially overlapped.

Paris 
For the training and evaluation of the Paris classification 
system, we used two data sets. The first is an open-source 
data set called SUN (Showa University and Nagoya Uni-
versity) colonoscopy video data set. The Sun Colonos-
copy Video data set consists of approximately 160,000 
images, of which approximately 50,000 images contain 
polyps. Other open source polyp data sets do mostly 
not attain the Paris classification type. The polyp images 

Table 2  Related methods occupied with the pathological assessment of colorectal polyps

Author Year Method Data Classification Accuracy

Ribeiro et al. [24] 2016 custom CNN Private Healthy
abnormal

90.96 %

Zhang et al. [26] 2016 CaffeNet Private and
[31]

hyperplastic
adenoma

85.9 %

Bryne et al. [27] 2017 InceptionNet Private Hyperplastic
adenoma

94 %

Komeda et al. [28] 2017 custom CNN Private Adenoma
non-adenoma

75.1 %

Lui et al. [6] 2019 custom CNN Private Curable
non-curable

85.5 %

Bour et al. [4] 2019 ResNet-50 Private Not dangerous
dangerous
cancer

87.1 %

Tanwar et al. [25] 2020 VGG-16 Private Benign
Malignant
Nonmalignant

84 %

Ozawa et al. [5] 2020 SSD private Hyperplastic
adenoma

83 %

Hsu et al. [29] 2021 custom CNN Private Hyperplastic
neoplastic

72.2 % (Weight light)
82.8 % (NBI light)

Chung-Ming et al. [30] 2022 AlexNet Private Hyperplastic
adenoma

96.4 %
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contain 100 different polyps annotated by experienced 
endoscopists from the Showa University. The distribu-
tion of the images among the polyp types can be found 
in the Table 3 [32]. Because only polyp images are needed 
for this work, polypless images were sorted out. Since the 
images in the data set are single video frames, images that 
were too small or blurred with unrecognizable content 
were removed manually to train the networks on recog-
nizable images.

The second data set is EndoData this was created by 
us at the University clinic of Würzbug [11]. In the next 
section the proccess of the data creation will be outlined 
briefly.

Own data creation
Previously we created a framework for faster endoscopic 
annotation. It involves a two-step process. First, a small 
expert annotation part and then a large non-expert anno-
tation part [33]. Thereby shifting most of the workload 
away from the expert to the non-expert while retaining 
high data quality. We combined both tasks using AI to 
increase the annotation speed further. To speed up is up 
to 20 times compared to a traditional annotation tool. 
Thereby the process is divided between at least two peo-
ple. First, an expert watches the video and labels some 
video frames to verify the object labeling. In the sec-
ond step, a non-expert receives a visual confirmation of 
the given object and can label all following and preced-
ing frames with AI support. In order to label individual 
frames, all of the frames have to be extracted from the 
video. Our system is then pre-selecting relevant frames 
automatically.

Thereby experts can focus on those keyframes. After 
the expert completes his annotations, the AI model gives 
the relevant frames. The AI is then detecting the polyps 
in the image and pre-labeling those. The non-expert can 
adjust and modify the AI predictions and use them for 
training the AI model.

In addition, the expert annotates the Paris and, if pos-
sible, the NICE  classification [7], the size of the polyp 

and its position, as well as the start and end image of the 
polyp and a box for the non-expert annotators. After-
ward, Endodata [11] is filtered and the relevant Paris and 
NICE classification parts are extracted to create the final 
data set used in this paper.

We assembled a team of experienced gastroenter-
ologists and medical assistants to create this data set. 
The EndoData data set contains 79,625 images with 
Paris  classification involving 364 polyp sequences. The 
polyp sequences were selected in high quality because 
we usually annotated only the first 1–3 s of polyp appear-
ance, which is critical for polyp detection in a real clinical 
scenario. We only used the NBI light images and videos 
from the Olympus processor for the NICE classification.

NICE
As the SUN database does not contain NICE  class 
annotations and little data with a direct NICE  annota-
tion is publicly available, only a very limited data set of 
NICE  annotated colorectal polyps was available for this 
study, comprising the images of not more than 61 differ-
ent polyps. The data set contained polyp images of two 
different sources, namely the examples provided for the 
different NICE classes curated on the Endoscopy Cam-
pus2 and images extracted from the closed source endo-
scopic data set of the University of Würzburg, which 
were annotated by an expert gastroenterologist. As the 
data from the Endoscopy Campus provides only a single 
image per polyp and the usable frames of a specific polyp 
in the closed source data were nearly identical, the data 
set has been constructed to contain only a single image 
for each polyp.

Due to a lack of data, the third category of the NICE 
classification scheme has been dropped and the study 
focuses on the prediction of the first two classes, cor-
responding in the canonical interpretation to the two 
classes of hyperplastic and adenomatous polyps. Simi-
lar restrictions have already been made in other studies, 
such as in [2], discussed in the related work of this study. 
The data set comprises overall 27 images of class NICE II 
polyps and 34 images of class NICE I.

Due to the data set containing only a single image per 
polyp, the splits of the data set were disjoint concerning 
the contained polyp specimens and did not introduce any 
immediate or latent correlations between training and 
testing data.

As preprocessing measures, the images were cropped 
to the polyp region and down- or upsampled to a 

Table 3  Distribution of the images in the SUN[
2] colonoscopy 

video data set [32]

http://sundatabase.org/

Type of polyp Number of polyps by 
type

Number of 
images by polyp 
type

Is 49 cases 23.154 images

Ip 8 cases 4.162 images

Isp 9 cases 4.684 images

IIa 34 cases 17.136 images

2  https://​www.​endos​copy-​campus.​com/​en/​class​ifica​tions/​polyp-​class​ifica​tion-​
nice/.

https://www.endoscopy-campus.com/en/classifications/polyp-classification-nice/
https://www.endoscopy-campus.com/en/classifications/polyp-classification-nice/
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common shape of 224 × 224 . The images have not been 
made subject to further preprocessing methods.

Paris classification
The first classification method will focus on the 
Paris classification using white light endoscopy. The fol-
lowing subsection will illustrate the automated NICE 
classification.

Reason for leaving out classes of the Paris classification
As explained earlier polyps are divided into polypoid 

and non-polypoid in the Paris classification. Type I pol-
yps are polypoid, and type II and III polyps are non-poly-
poid. Due to the composition of available data, only Is, 
IIa, Ip, and Isp forms were considered and used to classify 
polyps. Here, Is denotes the sessile type, IIa the flat raised 
polyps, Ip a pedunculated form, and Isp the semi-pedun-
culated polyps [7]. We do not have any data examples for 
the Paris  categories IIb, IIc, and III in our data and the 
open source SUN data set. This may be due to the acqui-
sition of most of the data from screening coloscopies 
where Paris types IIb, IIc and III are very rare. Therefore 
we had to remove those categories in our classification 
model. By classifying polyps into different types, it is 
also possible to make statements about the probability 
of a polyp being cancerous. In one study, it was shown 
that certain types in the Paris  classification can lead to 
an increase in submucosal invasion. This correlates with 
a greater risk of developing lymph node metastases from 
polyp disease in the stomach, which may lead to a poorer 
prognosis. This revealed that polypoid type I (57 %) and 
types IIc (37 %) and III (40 %) had a higher risk of submu-
cosal invasion. In comparison, forms IIa and IIb (29% and 
20%) showed a lower probability of [7, 34].

Since the images in the data set are single video frames, 
images that were too small or blurred with unrecogniza-
ble content were removed manually to train the networks 
on recognizable images. Finally, the obtained images 
were prepared for the models and examined with respect 
to resolution.

The problem of the Paris classification is to accurately 
categorize polyps in medical images into the different 
subtypes based on shape. This is important for effective 
diagnosis and treatment of colonic polyps, which can 
lead to colorectal cancer if not detected and managed 
early. Current methods for polyp classification face chal-
lenges in terms of accuracy and inter-observer variability, 
and there is a need for a more robust and reliable solu-
tion. The aim is to develop a system that can accurately 
classify polyps based on the Paris criteria, and provide 
consistent and reliable results for clinical use.

Figure 3 outlines the structure of our polyp classifica-
tion system. At the left site, you can see the photo taken 
from the endoscope processor, which was done after 

finding the polyp. This image is the input image to our 
system, and the next step is the polyp detection system. 
For the polyp detection system, we used ENDOMIND-
Adcanced [11], which is a polyp detection system. The 
system was developed by us using a post-processing 
technique based on video detection to work in real-
time with a stream of images. This allows leveraging the 
incoming stream context of the endoscope while main-
taining real-time performance. The system, therefore, 
can predict a bounding box surrounding the polyp. In 
the next step, the image is cropped at the box corners. 
The background, which is unnecessary for the classifi-
cation, is cropped so that the polyp is better processed 
by the following classification step. In the classifica-
tion step, the resulting polyp image is inserted into the 
Vision transformer (ViT) [35].

The use of transformers in computer vision is a rela-
tively new field but is a significant competitor to CNNs. 
The paper Vision Transformer (ViT) introduces the use 
of transformers in the image processing domain with-
out using a CNN. The Vision Transformer is based 
on a classical transformer for NLP, which has been 
adapted for the computer vision task. The input image 
is brought into fixed-size image sections, also called 
patches, as visualized in Fig. 3. Then, the image patches 
are passed to the transformer as a sequence, like a sen-
tence sequence. The image sections are converted into 
computable vectors for the transformer using the patch 
embedding layer. Furthermore, the positions of the 
image sections are marked by Positional Embedding, as 
in a classical Transformer. In addition, a learnable clas-
sification token is added. The prepared sequence is then 
passed to one or more standard Transformer encod-
ers. Unlike the classical transformer, the ViT model 
does not have a decoder, but a MLP head linked to the 
previous layers for classification [35, 36]. For pretrain-
ing the vision transformer, a large data set is used. For 
fine-tuning, the pre-trained classification part, the MLP 
Head, is then removed and replaced by a feed-forward 
layer specified for the desired task and adapted [35].

The developers of ViT provide three different trans-
former models for image classification: ViT-Base (12 
encoder layers), ViT-Large (24 encoder layers), and 
ViT-Huge (32 encoder layers), which are available in the 
following variants: ViT-B/16, Vit-B/32, Vit-L/16, ViT-
L/32 and Vit-H/14, the latter not being provided. The 
trailing number represents the number of image sec-
tions during processing. The models were pre-trained 
with the ImageNet-21k data set [35].

For our classification model, we used the ViT-L-16 
model. In the end, the transformer outputs a number 
between 0 and 3, corresponding the Paris classification.



Page 9 of 25Krenzer et al. BMC Medical Imaging           (2023) 23:59 	

Benchmark models
We used two CNN benchmark models to contest our 

Paris classification system:
The first is Big Transfer (BiT). It uses the principle of 

transfer learning, in which a convolutional neural net-
work is pre-trained on a huge data set. The pre-trained 
network is then selected and re-adapted to the relevant 

problem, also known as finetuning. The tranfer learning 
principle is used to compensate for deficiencies in train-
ing and testing examples in a data set for training a CNN. 
Transfer learning can be particularly relevant in the med-
ical classification domain, as many medical data sets con-
tain only a small number of data [37].

Fig. 3  Structure of the polyp classification system. Adopted from [35]. Polyp images are from our data (EndoData) [11]
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The second is Efficient Net. Convolutional Neural Net-
works have dominated the field of computer vision for 
years due to their good performance. However, CNNs are 
dependent on the resources available to build and scale 
the neural networks. Due to limited resources, scaling a 
neural network is one of the core problems that Google 
(Research) is trying to solve with its CNN models called 
EfficientNet [38]. Scaling a Convolutional Neural Net-
work refers to adjusting certain dimensions that can lead 
to higher accuracy. Common model scaling is performed 
on the depth, the width of a CNN, or the resolution of 
an input image. Here, the depth of a model refers to the 
number of layers in a Convolutional Neural Network. 
Width is the number of channels in a layer, while resolu-
tion refers to image ratios such as height and width [38].

NICE classification
The NICE classification is a widely used method for cat-
egorizing polyps based on their morphological features. 
However, there is a need for improvement in the reli-
ability and consistency of polyp classification using the 
NICE  system. The objective is to develop a robust and 
efficient NICE polyp classification system that can accu-
rately and consistently categorize polyps based on the 
NICE criteria.

The data situation faced in the NICE classification out-
lined in the preceding sections is frequently encountered 
in artificial intelligence, but is a particularly ubiquitous 
problem in the medical domain of machine learning: Few 
data sets are made publicly available, but retained as pri-
vate resources, the amount of data is limited, especially 
for rare conditions and cases, and the expertise requiring 
annotations are costly and time-consuming to acquire. 
This core issue of artificial intelligence has been subject 
to inquiry in recent years and the prolific branches of 
zero-shot and few-shot learning have emerged as poten-
tial remedies for the data scarcity issues in many machine 
learning domains [39]. The former refers to algorithms 
attempting classifications without having been trained on 
an example of the target classification task, while the lat-
ter refers to strategies in which the availability of a few 
training examples is leveraged for the fine-tuning of zero-
shot classification systems.

few-shot learning (FSL) is an active and promising 
research branch aiming to cross the chasm between the 
learning behavior of current machine learning systems 
and that of humans, who achieve high generalization 
capabilities from a few examples.

Given the data situation faced in the NICE  classifi-
cation of this study, we will explore the performance of 
FSL approaches in the context of polyp classification. The 
following section will provide a brief outline of the rel-
evant background of FSL.

Few‑shot learning
The FSL  literature comprises a large stock of different 
strategies and philosophies to approach the data scarcity 
issue. The approaches range from the intensive applica-
tion of data augmentation methods expanding the data 
set in order to enforce desired invariances in the clas-
sification model, transfer learning strategies and even 
complex meta-learning algorithms, which are trained to 
provide parameterizations for a model given a few, or 
even only single example of the target task [40].

A popular and well-established approach in the trans-
fer learning branch of FSL is embedding learning [41], in 
which an embedding model f : Rm → Rn , where n ≪ m , 
is trained, such that task-specific notions of similarity 
between inputs, manifest as trivially quantifiable simi-
larities between their latent representations generated by 
the model f. In the desired structure of the latent space, 
the samples of classes do not form a complex manifold 
but form clusters, allowing distance metrics, such as the 
euclidean or the cosine distance, to quantify the similar-
ity and class affiliations of samples. A latent space exhib-
iting such structural properties might then allow the 
construction of simple class discrimination hypotheses, 
which are within reach with little data available for the 
target task. Frequent choices for hypothesis are as simple 
as a k-nearest neighbour classification [39, 42].

The embedding model f can be learned through trans-
fer learning from a task-unrelated but extensive data set 
and might subsequently be fine-tuned to the target task 
data depending on the specific amount of data available.

There are many strategies for training the embedding 
model f, such as the Matching Networks [42] or the Pro-
totype Networks [43]. In this study, we selected concepts 
of Deep Metric Learning to enforce the desired structure 
on the latent embedding space.

Deep metric learning
The field of Deep Metric Learning is occupied with the 
training of encoder models, which enforce the previously 
discussed properties of the latent space in order to pro-
vide a semantic metric in conjunction with a specified 
distance measure [44].

In the field of metric learning, the approach of Sia-
mese networks is an established training paradigm for 
the encoder. The concept of Siamese networks has first 
been considered in the field of signature verification [45], 
but has since then been ported to CNNs and numerous 
applications including few-shot scenarios [46].

Conceptually, a siamese network comprises a neural net-
work and a weight-sharing clone, which are subsequently 
trained on pairs of data points, which might constitute a 
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positive pair, demonstrating semantic similarity or a nega-
tive pair demonstrating semantic dissimilarity. The neural 
network and its clone are then trained to produce embed-
dings with small in the former, respectively high distance 
in the latter case w.r.t. a selected distance metric.

Hoffer et  al., however, realized that the standard 
approach of the siamese neural network produces sub-
optimal results, if the metric is subsequently to be used 
for classification tasks, as the minimization and maximi-
zation of distances between positive and negative pairs 
does not necessarily lead to the intra-class distances being 
smaller than inter-class distances [47]. Hoffer et  al. pro-
posed to extend the siamese network to a triplet neural 
network, which comprises three weight-sharing clones of 
a neural network and is trained on triplets of data points 
consisting of an anchor instance x, a positive x+ and a 
negative instance x− exemplifying semantic similarity and 
dissimilarity to the anchor instance respectively [47].

The training of the network f is then designed 
to enforce a class-consistent distance metric 
�f (x), f (x+)�D < �f (x), f (x−)�D for a metric D and for 
all triplets (x, x+, x−).

A variety of losses for the triplet network has been pro-
posed for specific scenarios (such as in [48, 49]), but they 
are generally based on variations of the contrastive loss 
for siamese networks. For this study, an adaption of the 
contrastive triplet loss given in [50] is deployed:

where m is a margin parameter, which limits the total 
decrease in loss value achievable by high distances 
between the negative pair of the triplet and thus prevents 
network degeneration tendencies. The concept is illus-
trated in Fig. 4.

(1)
Ltriplet(x, x

−
, x+) = �f (x), f (x+)�D +max(0,m− �f (x), f (x−)�D)

Fig. 4  Illustration of the network architecture of a triplet network. According to equation 1, the distance between the vectors of the negative pair is 
increased to the selected margin
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Considered approaches and methodology
With the background regarding few-shot and deep metric 
learning outlined, this section will discuss the methods in 
more detail and provide technical aspects regarding the 
selected hyperparameters used.

Specifically, we will deploy the triplet neural network 
concept with the loss given in equation 1, with a margin 
of m = 20 and with the metric being the l2-norm.

For the encoder itself, a member of the ResNet-family, 
ResNet-18, has been selected as the feature extraction 
backbone, as no performance gains were achievable using 
the larger conspecifics such as ResNet-50. The down-
stream classification layer of the ResNet-18 has been 
truncated and substituted with a single feedforward 
encoding layer embedding the average pooled feature 
map of the backbone into a 64-dimensional latent space.

The encoder has been pre-trained on a transfer learn-
ing data set and has been fine-tuned with the available 
polyp data. Importantly, the fine-tuning did not operate 
on the classification performance directly, but improved 
the consistency of the learned metric w.r.t. to the 
NICE data set using again the triplet loss of equation 1. 
For the fine-tuning the triplets were formed according 
to the NICE class affiliation. The fine-tuning scenario is 
depicted in Fig. 4.

During the fine-tuning, the training data set, compris-
ing 75% of the available labeled polyp image, has been 
expanded using a data augmentation process.

As augmentations, random flips along all image axes, 
as well as random modifications of image hue, contrast, 
brightness and saturation, have been implemented. The 
fine-tuning and model selection were subject to an early 
stopping strategy facilitated by 25% of the train set held 
back for validation purposes. A single training epoch 
consisted here of 100 randomly generated triplets.

The embeddings have finally been tested in conjunc-
tion with different classification strategies, namely near-
est-neighbour (referred to as 1-nn), the smallest average 
distance (referred to as centroid), or the Support Vector 
Machine (SVM) [51] equipped with the radial-basis-
function kernel. For the 1-nn and centroid approach, the 
embedded images of the training set served as the latent 
space population for the test data classification. In the 
case of the SVM, the embeddings of the training data 
were used to fit the Support Vector Machine.

In this study, we are particularly interested in the 
effects of the pretraining and the considered transfer 
learning data set. We will therefore consider the usage of 
an out-of-domain, labeled data set and a within-domain, 
self-supervision-based data set for the pretraining.

Supervised pretraining The challenge of transfer learn-
ing is to select a transfer learning data set where the 
learned notions of semantic similarity are to a large 

degree aligned with the similarity notions of the target 
domain, especially if the potential transfer learning data 
sets exhibit significant domain gaps to the target data 
regime (such as endoscopic videos).

As the NICE  classification scheme is largely based 
on surface patterns and the textures of polyps [8], we 
opted in this study for the texture classification data set 
Describable Texture Data set3 (DTD for short) [52].

The DTD  data set provides a texture database con-
taining 5640 images belonging to 47 different classes of 
human-distinguishable textures.

As the encoder model is trained with the loss given in 
equation  1, the construction of triplets is a mandatory 
preprocess. While the literature has discussed the use-
fulness of the mining of informative triplets both for the 
efficiency of training and quality of the discrimination 
capability (for instance [53]), for the study at hand, the 
triplets have been randomly mined with positive pairs 
originating from the same texture classes and negative 
image pairs from different. Since the DTD  data set is a 
multilabel data set, with some training instances display-
ing characteristics of different textures simultaneously, 
the triplet mining selected the negative instances x− as 
completely class-disjoint with the anchor instance x.

As a measure to reduce the domain gap between the 
DTD  data set and the polyp images and to provide the 
encoder with an organic invariance towards highlight 
corruptions, a preprocessing step has been implemented 
by grafting random specular highlights extracted from 
the SUN data set with the detection algorithm of Arnold 
et  al. [54] onto the DTD  images. The effect of this pre-
processing step will later be discussed in an ablation 
experiment.

Self-supervised pretraining An alternative approach for 
pretraining neural networks is the strategy of self-super-
vised learning. The advantage of self-supervised learn-
ing algorithms is their defining independence of labeled 
ground truth data resulting from their eponymous capa-
bility to produce their supervision signal.

A further advantage of the self-supervised approaches 
is the possibility of tapping into available domain-related 
data sets. While these data sets lack the relevant ground 
truth annotation, they might still allow for a pretraining 
of networks exhibiting smaller domain gaps concerning 
the target tasks.

Especially in the medical domain, the independence of 
labeled training data of self-supervised approaches can 
therefore enable the leveraging of as much of the avail-
able medical data as possible, which is often idiosyncratic 
(endoscopic images, X-ray scans, etc.).

3  https://​www.​robots.​ox.​ac.​uk/​~vgg/​data/​dtd/.

https://www.robots.ox.ac.uk/%7evgg/data/dtd/
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At a high level, the self-supervised approaches can be 
divided into generative and discriminative approaches 
[55], with the former category comprising strategies such 
as AutoEncoders [56] and the latter comprising again 
contrastive approaches [55].

The fundamental insight and rationale of using con-
trastive approaches in self-supervision is that the repre-
sentations of images and heavily augmented versions of 
them should be close in the latent space. In contrast, the 
distance to entirely unrelated images should be more sig-
nificant. Hence, the self-supervision is again formulated 
as a triplet metric learning application and the network is 
enticed to embed the images into representations, which 
encode features, which are for one invariant towards all 
applied augmentation methods and for another discrimi-
native towards other images. The concept of the self-
supervised training of the encoder is illustrated in Fig. 5.

This latter discriminative approach has been used 
as a self-supervised pretraining strategy for the study. 

The already introduced SUN data set has been used as 
a source of endoscopic images. For the training, only 
images containing polyps have been used, which were 
cropped to the polyp regions and scaled to a common 
shape of 224 × 224 . Only a fraction of the images in 
the SUN data set have been deployed for training. The 
roughly 50,000 polyp images have been condensed 
into a set of approximately 2500 images, which were 
extracted using an ORB-feature matching based tem-
poral downsampling of the video sequences proposed 
in [57]. Utilizing the feature matching, the videos were 
decomposed into a sequence of scenes, out of which 
the sharpest frames were automatically selected.

As augmentation steps, random flips along all image 
axes, histogram altering modifications of image hue, 
contrast, saturation and brightness, and a random 
gaussian noise have been applied to the images. To fur-
ther avoid encoding the prevalent specular highlights 
in the images as a kind of fingerprint, random specular 

Fig. 5  Illustration of the network architecture of a self-supervised triplet network. According to equation 1, the distance between the vectors of the 
negative pair is increased to the selected margin. The positive pair is built from an image and an augmented view of it
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highlights have been grafted onto the images, which 
have been again extracted from endoscopic images with 
the specular highlight detection algorithm of Arnold 
et al. [54].

Results
In this section, we present the results of our two polyp 
classification systems. We will consider the two sub-
systems for the Paris  and NICE  classification sepa-
rately, starting with the latter classification problem.

Nice classification
The evaluation of the NICE  classification system will 
consider the classification performances of both the 
full system, comprising the pre-trained encoder net-
work and the subsequent fine-tuning, as well as the 
stand-alone pre-trained encoder without subsequent 
fine-tuning.

Beyond that, a range of classification algorithms 
applied to the embedded polyp images will be 
considered.

Finally, some design choices will be revisited through 
ablation experiments.

The experimental design, which has been outlined in 
the preceding section, will here be briefly recapitulated 
concisely: Roughly 75% of the data has been used for 
the fitting of the classification algorithm and option-
ally for the fine-tuning of the encoder network. The 
test data comprised a class-balanced set of roughly 
25% of the polyp data. Due to the nature of the data 
set containing only one image per polyp specimen, the 
train and test set did not overlap concerning the con-
tained polyp specimens.

As the data split is not negligible in the case of small 
data sets, we report the average performance of the sys-
tem across 100 random train/test data splits and the 90% 
confidence intervals. We expected the confidence inter-
vals to be rather large, as the small data set was unlikely 
to support a completely split-robust decision boundary.

The same train/test splits were used for all experi-
ments. Note at this point, that due to the nonlinear-
ity of the also reported F1-score, the average F1-score 
is not necessarily equal to the F1-score of the average 
precision and average recall.

Classification without fine‑tuning
This section considers the classification results without 
a fine-tuning step of the encoder model. The not fine-
tuned models were considered to elucidate, how or if at 
all the differences in the pretraining strategy would mani-
fest in the direct classification performance. The results 
are given in Table 4.

While the Support Vector Machine is the most complex 
discriminator considered, it displays better performance 
by a large margin compared to the nearest neighbour and 
average distance classifier, which indicates, that the two 
NICE  classes are not completely separated in the latent 
space. Another point of view on this circumstance can be 
gained in Table  5, where the inter- and intra-class vari-
ances are reported for the embeddings of the differently 
pre-trained encoders. Table  5 shows, that the not fine-
tuned DTD encoder fails at producing a compact cluster 
for the NICE  II class. The encoder trained on the SUN 
images using self-supervision produces more consistent 
embeddings for the polyp images, which is also reflected 
in its better performance in the classification in Table 4. 
We attribute this difference in performance to the 
domain gap between the polyp images and the images in 
the DTD data set.

Table 4  Classification evaluation results not fine-tuned versions of the model pre-trained on the DTD  data set and an endoscopic 
data set using self-supervison

The table shows the average scores for 100 random training/test splits with 90% confidence intervals

Model Classification Acc Pre Rec F1

DTD  1-nn 68.13 (± 14.21) 69.48 (± 12.25) 68.13 (± 14.21) 68.8 (± 15.2)

centroid 67.69 (± 10.81) 72.55 (± 11.37) 67.69 (± 10.88) 70.0 (± 12.6)

SVM 68.64 (± 11.83) 71.93 (± 10.13) 68.64 (± 11.83) 70.1 (± 13.7)

self-sv. 1-nn 65.34 (± 10.50) 65.91 (± 11.43) 65.34 (± 10.50) 65.7 (± 12.9)

centroid 65.38 (± 15.32) 67.72 (± 14.71) 65.38 (± 15.32) 66.5 (± 15.9)

SVM 72.55 (± 13.82) 73.95 (± 12.61) 72.55 (± 13.82) 73.3 (± 14.7)

Table 5  Intra- and interclass variances of the non fine-tuned 
polyp image embeddings of the models trained on the DTD data 
set and endoscopic data set with self-supervision

The interclass variance is normalized to 1

Model Intra NICE I Intra NICE II Inter

DTD  0.62 1.27 1.0

self-supervision 0.88 0.85 1.0
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Classification with fine‑tuning
This section considers the performance of the two 
encoder systems with a fine-tuning step. To that end, the 
train data of the polyp images have been used to pro-
duce triplets with negative and positive triplet compo-
nents selected according to their NICE  class affiliation. 
Besides, a set of augmentations has been applied to the 
triplet images, encompassing random flipping along all 
image axes and heavy histogram modifying operations 
acting upon hue, contrast, brightness and saturation of 
the images. The training used early stopping facilitated 
by a held-out validation part of the train set. The results 
are reported in Table  6. Fine-tuning increased the top 
performance for both pretraining strategies, especially 
for the model trained on the DTD data set, which exhib-
its the overall top performance. We attribute this strong 
increase in performance of the DTD  trained model to 
closing the domain gap between the DTD  and polyp 
images. The results of the DTD trained encoder vis-á-vis 
the fine-tuned self-supervision system indicate however, 
that the pretraining on the texture data set bestowed the 
model with a superior and better generalizing feature 
extraction capability, which constituted a better initiali-
zation for the refinement of the representations.

The SVM classification performed well for both pre-
training strategies in relative terms, with the smallest 
average distance producing even slightly better results on 
the DTD pre-trained model.

In summary of the results of the preceding two 
experiments and following the methodology of [27], 
who base their pathology assessment of polyps on the 
classes I and II of NICE , we conclude, that the here pre-
sented FSL  model displays performances comparable 
to the results reported in the literature reviewed in the 
related work section of this study, despite the very lim-
ited amount of data available and the partially subopti-
mal acquisition of the images (without the NBI mode 
activated).

Moreover, we conclude that in the case of sufficient 
fine-tuning data being available, it is advantageous to 
conduct the pretraining on transfer learning data sets, in 
which the alignment of the presumed feature extraction 
capabilities learned from the data set, and the required 
capabilities for the target task is easier to foresee, as it 
has been the case with the texture DTD data set. While 
a smaller domain gap proved advantageous in our experi-
ments (refer back to Table 4), when fine-tuning was not 
conducted, the self-supervision primed the encoder 
model in a way that allowed only for a minor refinement 
of the embeddings, which could be converted only into a 
small gain in performance, before the overfitting to the 
training data set in. Furthermore, the fine-tuning con-
solidated the confidence intervals significantly across the 
considered data splits.

Table 6  Classification evaluation results in fine-tuned model versions pre-trained on the DTD data set and an endoscopic data set 
using self-supervision

The table shows the average scores for 100 random training/test splits with 90% confidence interval

Model Classification Acc Pre Rec F1

DTD  1-nn 75.31 (± 9.41) 75.94 (± 8.63) 75.31 (± 9.41) 75.7 (± 9.8)

centroid 81.39 (± 8.53) 82.05 (± 8.61) 81.39 (± 8.53) 81.7 (± 8.4)

SVM 81.34 (± 8.74) 81.52 (± 8.39) 81.34 (± 8.74) 81.0 (± 8.6)

self-sv. 1-nn 71.59 (± 8.74) 75.09 (± 8.13) 71.59 (± 8.74) 73.3 (± 9.5)

centroid 68.88 (± 8.45) 70.30 (± 8.82) 68.88 (± 8.45) 69.6 (± 9.7)

SVM 75.04 (± 8.59) 75.24 (± 8.38) 75.04 (± 8.59) 75.1 (± 8.3)

Table 7  Effect of augmentation during fine-tuning for differently pre-trained embedding models

The classification was performed using a Support Vector Machine. The table shows the average scores for 100 random training/test splits with 90% confidence 
interval. Bold values are indicating the highest value of a column

Model Augm. Acc Pre Rec F1

DTD  N 80.73 (± 8.48) 82.05 (± 8.74) 80.73 (± 8.48) 80.5 (± 8.2)

Y 81.34 (± 8.74) 81.52 (± 8.39) 81.34 (± 8.74) 81.0 (± 8.6)

self-sv. N 74.03 (± 8.97) 76.13 (± 8.49) 74.03 (± 8.97) 75.0 (± 8.1)

Y 75.04 (± 8.59) 75.24 (± 8.38) 75.04 (± 8.59) 75.1 (± 8.3)
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Ablation considerations
This section will discuss the effect and influence of a few 
design choices made throughout the description of the 
NICE classification model. The average results of the 100 
considered random train/test splits are reported.

First, we consider the influence of the data augmen-
tation applied on the training data during fine-tuning. 
The results are presented in Table  7. While the aug-
mentation yields for both pretraining strategies the 
best models concerning the F1-score, the performance 
difference is only small. The main incentive for intro-
ducing the training augmentation in the first place was 
to ensure that the classification was not based on spu-
rious correlations in the small data set. But as the not 
augmented runs did not produce better results, even 
slightly worse, it is concluded that this worry was not 
justified, to begin with.

Finally, we consider the effect of the augmentation 
strategy of grafting random specular highlights on the 
images of the DTD  data set during the pretraining of 
the encoder. In this experiment, we analyze whether 
accounting for the invariance towards these image cor-
ruptions can be fully substituted through fine-tuning and 
how it affects the not fine-tuned models. To that end, we 

considered an encoder trained on the DTD data set with-
out the highlight augmentation grafting vis-á-vis the pre-
vious encoder in both the fine-tuning and no fine-tuning 
setting. The results are reported in Table 8. As the results 
indicate, the effects of the highlight-grafting operation 
depend heavily on the subsequent fine-tuning. While the 
augmentation increases the performance in all cases, the 
fine-tuning can catch up with the invariance towards the 
specular highlights. However, the non-finetuned model 
without the augmented pretraining suffers to a larger 
extent from interferences of the image corruptions.

Error analysis
This section will conclude the NICE  classification with 
a short error analysis of the developed classification 
system.

Table 8  Effect on the specular highlight grafting augmentation during pretraining of the encoder with the DTD data set

The average performance on 100 random train/test splits is reported. Bold values are indicating the highest value of a column

Model finetuning highlight grafting Acc Pre Rec F1

DTD  Y N 80.44 80.51 80.44 80.3

Y Y 81.34 81.52 81.34 81.0
N N 65.81 63.86 65.81 64.7

N Y 68.61 71.92 68.61 70.1

Fig. 6  t-SNE embeddings [58] into 2D of the polyp images using the 
DTD trained encoder. The highlighted data points will be subject of a 
discussion

Fig. 7  Samples of misclassified polyps of our system. The images A 
and C belong to the class NICE II. The images B and D appertain to 
class NICE I
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The overall quality of the learned embedding can be 
seen in Fig. 6, which displays the t-SNE projections [58] 
into 2D of the embeddings generated by the DTD  pre-
trained encoder model. The projections reveal that the 
different NICE  classes form two distinct clusters in the 
latent space, which possess however an overlapping zone, 
which reflects the classification performances given in 
Table 6.

We will now consider two kinds of problematic embed-
dings to gain further insights into the performance. 
Firstly, we consider two data points embedded well into 
the clusters of the wrong NICE  class. The data points 
are denoted with A and B in Fig. 6 and in Fig. 7, where 
they are depicted in the upper row. As shown in Fig. 7, 
the image A is heavily blurred, such that its surface 
appears feature less. Note, that image A has also not been 
taken with the NBI-light activated. With the surface pat-
terns not discernible, the homogeneous polyp has been 
embedded into the NICE  I cluster of the latent space. 
Similarly, polyp B’s surface exhibits discernible tubu-
lar structures, which have likely been picked up by the 
encoder and led to an embedding into the NICE II cluster 
of the latent space.

Secondly, we will consider two polyps that populate 
the overlapping zone of the two latent clusters. The pol-
yps concerned are denoted C and D in both Figs. 6 and 
7. Both polyps display a pronounced surface texture and 
rich patterns. While in both cases, the features of their 
correct NICE  class dominate the patterns (tubular in 
case of polyp C and spotted in D), both polyps display at 
close inspection also structures of the respective other 
NICE class.

We conclude from the presented error analysis that the 
NICE classification system facilitated by the polyp encod-
ing neural network presented in this paper succeeds at 
generating semantically viable representations of polyps 
and embedding the polyps into a well-structured latent 
space apt for downstream usage in classification.

Paris classification
For the Paris  classification we compare two additional 
state-of-the-art algorithms to our approach for a fair 
comparison. For the comparison, we are using BiT-
R152x4, and EfficientNet-B7. BiT-R152x4 and Effi-
cientNet-B7 are both CNN architectures. Our model 
(ViT-L-16) with different learning rates, data augmenta-
tion methods, and dropout rates. This will help decide 
which hyperparameters and settings are needed for each 
model to train the best possible polyp classifiers.

Experimental design
For the evaluation of the Paris  classification the images 
were divided into training, validation, and testing data 

sets based on the number of different polyps, with 
approximately 70 % of the polyp images from the SUN 
Colonoscopy Video data set being used for training, 15 
% for validation, and 15 % for testing. The sun data set 
was thereby split in cases so that there is no polyp train-
ing data in which the same case would also be in the test 
data. The final test data consist of the 15% of polyps in 
the SUN data set split in cases and 15% of our own data 
set also split in individual cases.

Transfer learning models were used for training, pre-
trained on existing data sets and refined for the polyp 
classification task. BiT-R152x4 and ViT-L-16 are used 
with the weights pre-trained on ImageNet-21k. ViT-L-
16 was also finetuned on the ILSVRC-2012 data set [35, 
37, 38]. In addition, EfficientNet has the special case that 
training can proceed in two phases. First, all weights 
in the network are frozen and only the last layers are 
adjusted. The second phase is optional and offers training 
in the deeper layers. For this work, both methods were 
used and the best results were presented.

Finding the correct hyperparameters for the models is 
essential for the accuracy of the models. Therefore, dif-
ferent parameters and settings were trained and tested 
for each model. The related results are presented in the 
ablation study subsection. For this purpose, this paper 
tested and selected different learning and dropout rates. 
Furthermore, different data augmentation methods 
were additionally tested to boost the performance of the 
models.

In addition to the different dropout rates and data 
augmentation, the early stopping method was used 
to avoid overfitting and long training times. For Big 
Transfer, training was stopped after seven epochs with-
out improvement, while for EfficientNet, training was 
stopped after 20 epochs without improvement. For our 
model, the training was stopped after 11 epochs.

Evaluation
The evaluation is done via the F1-score and the accuracy. 
The F1-score describes the harmonic mean of precision 
and recall. The F1-score, the accuracy, the recall and pre-
cision are shown in following equations:

We count an annotation as true positive (TP) if the classi-
fication of our prediction and GT do have the same label. 
If a polyp is predicted in a wrong class but the polyp is 

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall
=

2 ∗ TP

2 ∗ TP + FP + FN

Accuracy =
TP + TN

TP + TN + FP + FN
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another class we count it as a false positive (FP). We cal-
culate the TP, FP, true negatives (TN), false negatives 
(FN) for every class and calculate the scores according to 
the equations above.

For the testing BiT-R152x4 from Big Transfer, our 
model using ViT-L-16 from Vision Transformer, and B7 
from EfficientNet were tested. The results are illustrated 
in the table below:

Table  9 shows that our approach using a trans-
former architecture outperforms the two other CNN 
approaches in nearly all metrics. Especially on the 
harder-to-classify EndoData [11]. The improvement 
from BiT-R152x4 to our model shows an accuracy of 
76.31% to 87.42 %. A significant approvement consid-
ering our approach compared to the CNN approach. 
Nevertheless, the EfficientNet-B7 algorithm achieves 
a minimal improvement considering the recall on the 
SUN data set with an increase from 79.10 % to 80.27 
% compared to our approach. As shown in Table  2, 
comparing these algorithms to the published literature 
in the domain is challenging because the algorithms 
are evaluated on different data sets and using differ-
ent classes. Nevertheless, Bour et al., which is the best 
approach using three classes, achieved an accuracy of 
87.1 % [4] on their test data set. With our model, we are 
surpassing this accuracy by 2.04 %. Nevertheless, in the 
paper of Bour et  al. [4], 785 different polyps are used 
for training and validation, and the authors did not 
specify the amount and composition of the test data. 
Therefore, it is hard to make a fair comparison between 
the algorithms.

To further elaborate on the results of our model we 
computed the accuracy, precision, recall and F1-score for 
every Paris class individually. The results are shown in 
Table 10. For the accuracy the results indicate that classes 
Is and Ip are best classified by the model.

Ablation study
In this section, we present the results of the BiT-R152x4, 
EfficientNet-B7, and our model with different learning 
rates, data augmentation methods, and dropout rates. 
This will help decide which hyperparameters and settings 

Table 9  Test results of each model on two different test data 
sets, the SUN Colonoscopy Video data set and our own data set 
(EndoData) [11]

All values are given in %. Bold values are indicating the highest value of a 
column on the given data set

Model Data set Acc Pre Rec F1

BiT-R152x4 SUN 80.45 69.57 77.25 73.21

EndoData 76.31 76.24 72.28 74.20

EfficientNet-B7 SUN 84.25 72.82 80.27 76.36

EndoData 73.94 72.11 71.01 71.46

Ours SUN 89.35 84.76 79.10 81.28
EndoData 87.42 80.09 78.83 79.45

Table 10  In this figure, the test results of our model on the 
SUN Colonoscopy Video data set are shown for each Paris class 
individually. All values are given in %

Paris class Acc Pre Rec F1

Is 92.97 91.87 93.27 92.56

Ip 94.30 90.66 55.64 68.96

Isp 85.94 68.84 42.41 52.49

IIa 84.43 78.90 76.27 77.56

Mean 89.35 84.76 79.10 81.28

Table 11  Results on the validation data set considering different learning rates

Bold values are indicating the highest value of a column for the given model

Model Learning rate Val-acc Training speed

0.01 0.001 0.0001 0.00016 Min/Epoch #Epochs

BiT-R152x4 � 0.7890 ≈ 30 4

� 0.8213 ≈ 30 8

� 0.8140 ≈ 30 10

� 0.8156 ≈ 30 10

EfficientNet-B7 � 0.7903 ≈ 5.7 6

� 0.8212 ≈ 5.7 10

� 0.7924 ≈ 5.7 30

� 0.7969 ≈ 5.7 28

Ours � 0.4668 ≈ 3 19

� 0.5938 ≈ 3 23

� 0.8242 ≈ 3 10

� 0.8950 ≈3 8
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are needed for each model to train the best possible 
polyp classifiers.

Learning rate To find a suitable learning rate for each 
model, the models were trained and tested with different 
learning rates. All models have, if applicable, a dropout 
rate of 0.5. For the data augmentation, our model and 
BiT-R152x4 were set to random flipping, while the Effi-
cientNet-B7 results were computed with the combination 
of random flip, random rotation and random contrast. 
Table  11 shows the results for each model considering 
different learning rates. In addition, the time of one train-
ing epoch per minute and the required number (#) of 
epochs until reaching the best accuracy on the validation 
data set are given.

Thereby, the results provide the first indications that 
for the CNN models BiT-R152x4 and EfficientNet-B7, 
the best results are obtained with the learning rate of 
10−3 . Our model achieved better results with a lower 
learning rate. In addition, this required less time for one 
training epoch since the computational effort is lower for 
the Vision Transformer compared to the CNN models 
[35]. Another interesting aspect of the results in Table 11 
is that for the CNN methods, the number of epochs 
increases when decreasing the learning rate, but for our 
transformer model, considering the first two learning 
rates of 0.01 and 0.001, the number of epochs is decreas-
ing. This is contradictory and could be attributed to the 
fact that it is hard to learn for the transformer model 
with these learning rates and therefore, the training goes 

longer than it should. For the subsequent analysis to 
investigate data augmentation and dropout, the learn-
ing rate that provided the best validation accuracy in 
Table 11 was used for each model.

Data augmentation
In the second step of this analysis, various data aug-

mentation methods were explored to adjust the models 
to best fit the polyp classification. Data augmentation 
helps combat overfitting and can create critical diver-
sity in a data set. The increased diversity in the training 
data set improved the performance. The data augmen-
tation methods used for this training are random flip-
ping (random flip) or rotating the images (random 
rotation), and changing the contrast (random contrast). 
Table 12 presents the obtained training results consid-
ering different augmentation techniques.

The table shows that all models benefit from data 
augmentation. Training runs without data augmenta-
tion gave much worse results. This indicates that data 
augmentation is important for polyp classification. 
Especially the random horizontal and vertical flipping 
of the images seems to have a great effect for polyp 
classification. For the subsequent analysis to investi-
gate dropout, the data augmentation that provided the 
best validation accuracy in Table 12 was used for each 
model. Random flipping and changing the contrast had 
different effects on the models. EfficientNet provided 
improved performance to 82.12 %. The other options in 
combination with flipping caused deterioration of the 
results for our model and BiT-R152x4. Nevertheless, 
their results achieved increased validation accuracy by 
random flipping alone. 89.50 % for our model and 82.13 
% for BiT-R152x4.

Dropout Dropout is a regularization technique to 
avoid overfitting on the data set. As a further step, this 
section experiments with different dropout rates to 
make the models less susceptible to overfitting and thus 
achieve better values on the validation data set. With 

Table 12  Results on the validation data set considering different 
data augmentation methods

Bold values are indicating the highest value of a column for the given model

Model Data augmentation Acc

random flip random 
rotation

random 
contrast

BiT-R152x4 0.8155

� 0.8213
� � 0.4543

� � 0.7968

� � � 0.4469

EfficientNet-B7 0.7551

� 0.7903

� � 0.7936

� � 0.8091

� � � 0.8212
Ours 0.7930

� 0.8950
� � 0.8210

� � 0.8242

� � � 0.6016

Table 13  Results on the validation data set considering different 
dropout rates

Bold values are indicating the highest value of a column for the given model

BiT-R152x4 did not use dropout and is therefore not included in this table

Model Dropout rate Val-acc
0.4 0.5 0.6

EfficientNet-B7 � 0.8094

� 0.8212
� 0.7908

Ours � 0.8593

� 0.8950
� 0.8513



Page 20 of 25Krenzer et al. BMC Medical Imaging           (2023) 23:59 

one exception for BiT-R152x4, dropout rates of 0.4, 
0.5, and 0.6 were tested on the remaining models. The 
authors of BiT-R152x4 did not use dropout to avoid 
overfitting, but attempted to train stable models using 
the learning rate schedule method [37]. In the learn-
ing rate schedule method, no fixed learning rate is set 
for training, but varying learning rates are used. For 
example, at the beginning of the training, a large learn-
ing rate is used to move the gradient faster towards the 
minimum. Then the learning rate is decreased during 
training so that at the end the gradient does not skip 
the minimum. This results in reaching the minimum 
faster and the model gains higher accuracy.

The results in the 13 table show that the models pro-
duce solid results at all dropout rates, but show the best 
results at a dropout of 0.5 on the validation data set.

Few-shot learning As a last ablation, we want to 
briefly revisit the overall selection of the classification 
model and compare the performances of the Vision 
Transformer with the model underlying the few-shot 
learning system presented in the NICE  classification 
section of this paper.

We deployed the outlined self-supervision approach, as 
the texture dataset DTD is inadequate for pretraining of 
a shape-centric classification task. As an augmentation 
engine facilitating the self-supervised pretraining, we 
deployed the style-transfer algorithm of [59], which pro-
vides a model capable of applying the style of arbitrary 

images to the content of another image. We selected 
the style-transfer as an augmentation step, as it allows 
the suppressing of most of the texture and style-related 
information of the original image and retains the struc-
ture and shape information as the main source of dis-
criminative features. For the training, we selected pencil 
drawing styles, which we found to introduce almost no 
artificial texture to the images and highlight the struc-
ture and shape of the polyps in a very pronounced way. 
An overview of the deployed triplet generation is given 
in Fig.  8. The pretraining was again followed by a fine-
tuning phase during which the triplets were constructed 
according to Paris class affiliation.

The configurations and parameters of the model and 
training remained identical to the setting described in the 
NICE classification sections of this paper.

Fig. 8  Triplet generation during the self-supervised pretraining for the Paris classification. The same style was used for the images of the negative 
pair, while different styles were used for the images of the positive pair

Table 14  Results of the few-shot model in the SUN 
Colonoscopy Video data for each Paris class individually

All values are given in %

Paris class Acc Pre Rec F1

Is 74.85 66.39 95.42 78.26

Ip 95.43 88.66 39.81 54.92

Isp 90.76 92.08 19.47 32.05

IIa 87.93 92.44 70.68 80.04

Mean 82.97 79.75 75.69 73.19
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Especially, the ResNet-18 has been retained as a feature 
extraction backbone and the SVM was used for the sub-
sequent classification of the embeddings generated by the 
encoder.

The SUN data and the identical split of the 100 cases 
used in the preceding experiments involving the trans-
former were used to train and evaluate the model. 
Similarly to the pretraining of the self-supervised 
NICE  classification system, we used a fully automated 
key frame selection pipeline to condense the training 
data down to 1081 images.

The system results are given in Table 14. As can be seen 
in the table, the system achieves high precision in the Paris 
class IIa and the minority classes Ip and Isp. However, the 
downside of the high precision is a weak recall, especially 
in the classes Ip and Isp, where all misclassified images were 
confused with the class Is or with Is and Ip in case of class 
Isp. The high precisions in the pedunculated classes allow 
the model to determine the presence of a pedunculation (Ip 
or Isp) with a 96.56% precision. The low recall however is 
also reflected in the precision of the class Is under which 
many images showing protrusions are subsumed.

The proposed transformer displayed therefore the over-
all best results in the discussed task, albeit the metric-
based system displays performances comparable to those 
of the other considered models, such as the EfficientNet, 
despite of the again considered scenario of little available 
data. Nevertheless, the approach using a state-of-the-art 
vision model above shows superior results considering 
the Paris classification.

Discussion
In this chapter, we discuss the limitations and the 
explainability of the system. We primarily focus on wrong 
detections of the polyp classification system and discuss 

those system failures on the data sets. Additionally, we 
create heat maps showing the networks neural activation 
to gain deeper insight into the reasons for the classifica-
tion results of the network. In this paper, two pre-trained 
CNN models as well as a pre-trained special transformer 
were used for the Paris classification. Especially the use of 
different data augmentation methods strongly improved 
the results of the models. Specifically, random image 
flipping seems to play an essential role in polyp charac-
terization and should be looked at more closely in future 
research. This could be due to the reason that the Vision 
Transformer can understand and learn information about 
the whole image in the first layers of the model through 
the Attention layers. This presumably allows the model 
to better recognize the polyp features. CNNs, in turn, try 
to classify based on the locally recognized features [35], 
which profit from different augmentations.

Limitations
First, assessing the test results, the distribution of images 
on the test data sets was unbalanced. Looking at the two 
test data sets, it is noticeable that the images with polyp 
types Is and IIa are particularly strongly represented, 
while the other classes are less represented. This may 
weaken the significance of the test results. However, the 
proportion of classes Ip and Isp in the training and vali-
dation data set is also low, and this may cause the mod-
els to classify these two classes moderately. This is due to 
the lack of labeled data sets for the polyp domain, which 
leads to the following limitation.

The lack of data is a significant problem, specifically 
in computational medical research, as a large amount 
of training data is required to build and train stable and 
accurate deep learning models. However, the number of 
annotated data sets, specially labeled polyp data sets for 

Fig. 9  Model detection problems due to (a) difficult to detect polyps due to poor resolution and due to (b) the high similarity of the mixed form 
Isp class to Is. Images are taken from the SUN data set [32]
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Paris  classification, are severely limited. In addition, the 
existing polyp data sets still contain few polyp images 
for a deep learning task. For, e.g., the SUN Colonoscopy 
video data set [32], the data set consists of just 100 dif-
ferent polyps, of which nearly 70 are different polyps for 
training. This number tends to be too small to train a sta-
ble classifier. Therefore the diversity of polyps is missing. 
Moreover, the individual polyp cases of the data set con-
sist of image frames of colonoscopy videos. This leads to 
the next problem, which may further impact the trained 
object recognition models. First, a colonoscopy video is 
many image sequences of one polyp. If we exclude the 
possible blur and distortion in the frames, the sequences 
consist of barely or slightly distinguishable images of 
polyps that are used to train the network. On the other 
hand, the videos are occasionally based on distant images 
of polyps, which were cropped and used again in this 
work based on the annotations. Thus, the data set used 

contains mostly small images, making them difficult to 
recognize, as shown by image section (a) in Fig. 9.

An additional obstacle in training the classifiers relates 
to the Paris  classification. Since the SUN Colonoscopy 
Video data set contains polyp images for classes Ip, Isp, 
Is, and IIa, the object recognition models were examined 
to classify these four types. Here, it was noticeable that 
class Isp, the mixed form of Is and Ip, is difficult to iden-
tify for the classification models. Here, tests have shown 
that the mixed form is usually classified as one of the 
two primary forms due to the high similarity, as shown 
in an image section (b) in Fig. 9. Another reason for the 
confusion is the angle at which the image is acquired. 
Because a polyp is imaged from multiple sides during a 
colonoscopy, images of polyps are produced that cannot 
lead to a definite conclusion about the shape. For exam-
ple, an image above of a pedunculated polyp (Ip) does not 
provide any information about the shape because, most 

Fig. 10  Heat maps for polyp classification. This figure illustrates the classifications of the model using the GRAD-CAM algorithm [60]. Thereby, pixels 
most relevant for the classification are marked in warm colors like red, and pixels less relevant for the neural network in cold colors like blue. Images 
are taken from the SUN data set [32]
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likely, no pedicle can be seen. This problem mainly affects 
the classes Ip and Isp.

Lastly, extending the classification to all Paris classes 
would be very important. Since classes are missing and 
there is no “other” class, inherent errors are made when 
a polyp has a non-modeled class. To create a system 
with all classes, it would be necessary to construct big-
ger data sets in which those uncommon classes are highly 
represented.

Heat maps for the Paris classification
In this section, we demonstrate the use of GradCAM to 
see what areas are essential for the network to classify a 
polyp. For this, we used GradCAM with Eigen smooth, 
a method to remove much noise in the heatmap. We 
picked three examples for each class to demonstrate the 
results (see Fig. 10). This paragraph presents a method-
ology to generate visual explanations for deriving insight 
into our polyp classification systems decisions using the 
Grad-CAM algorithm [60]. We follow the Checklist for 
Artificial Intelligence in Medical Imaging (CLAIM) [61].

Analyzing Fig.  10, throughout the examples, the net-
work mostly looks at the polyp’s surface and not the back-
ground. Furthermore, there are gaps in the heat maps at 
areas of light reflections, which shows that the network 
can filter unnecessary information. Especially, for exam-
ple, Isp with images c1) and c2) shows the AI ignores the 
background and the light reflections and only considers 
the structure of the polyp for the classification. In the Ip 
class, in image a1), we can see a red mark on the polyp. 
Even that mark is excluded and is not considered by the 
network, see image a2).

Conclusion
In this paper, we show two novel automated classifica-
tions system assisting gastroenterologists in classifying 
polyps based on the NICE  and Paris  classification. We 
introduce a two-step process for the Paris classification: 
first, detecting and cropping the polyp on the image, and 
subsequently classifying the polyp with a transformer 
network. For the NICE classification, we designed a few-
shot learning algorithm based on the Deep Metric Learn-
ing approach. The algorithm creates an embedding space 
for polyps, which allows classification from a few exam-
ples to account for the data scarcity of NICE annotated 
images in our database. Overall, our Paris classification 
system shows state-of-the-art results on a publicly avail-
able data set with an accuracy of 89.35 %, surpassing all 
papers in the literature. For the NICE classification, we 
achieve a competitive accuracy of 81.34 % demonstrating 
thereby the viability of the FSL  approach in data-scarce 
environments in the endoscopic domain.
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