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Abstract: The pathophysiology of tremor in Parkinson’s disease (PD) is evolving towards a complex
alteration to monoaminergic innervation, and increasing evidence suggests a key role of the locus
coeruleus noradrenergic system (LC-NA). However, the difficulties in imaging LC-NA in patients
challenge its direct investigation. To this end, we studied the development of tremor in a reserpinized
rat model of PD, with or without a selective lesioning of LC-NA innervation with the neurotoxin
DSP-4. Eight male rats (Sprague Dawley) received DSP-4 (50 mg/kg) two weeks prior to reserpine
injection (10 mg/kg) (DR-group), while seven male animals received only reserpine treatment (R-
group). Tremor, rigidity, hypokinesia, postural flexion and postural immobility were scored before
and after 20, 40, 60, 80, 120 and 180 min of reserpine injection. Tremor was assessed visually and
with accelerometers. The injection of DSP-4 induced a severe reduction in LC-NA terminal axons
(DR-group: 0.024 ± 0.01 vs. R-group: 0.27 ± 0.04 axons/um2, p < 0.001) and was associated with
significantly less tremor, as compared to the R-group (peak tremor score, DR-group: 0.5 ± 0.8 vs. R-
group: 1.6± 0.5; p < 0.01). Kinematic measurement confirmed the clinical data (tremor consistency (%
of tremor during 180 s recording), DR-group: 37.9 ± 35.8 vs. R-group: 69.3 ± 29.6; p < 0.05). Akinetic–
rigid symptoms did not differ between the DR- and R-groups. Our results provide preliminary causal
evidence for a critical role of LC-NA innervation in the development of PD tremor and foster the
development of targeted therapies for PD patients.

Keywords: Parkinson’s disease; tremor; locus coeruleus; noradrenaline; reserpinized rat model

1. Introduction

Tremor is a cardinal motor symptom of Parkinson’s disease (PD), present in up to 75%
of patients [1], and a severe cause of disability and social stigma [2]. The pathophysiol-
ogy of PD tremor remains largely unclear [3] and should account for several distinctive
features [3,4]. Unlike akinetic–rigid symptoms, PD tremor poorly correlates with stri-
atal dopaminergic loss, the hallmark of PD pathophysiology [5,6]; it can be resistant to
dopaminergic treatments [7,8], it may disappear along with disease progression [1], it
increases in amplitude or is triggered by psychological states of anxiety or stress [9,10] and
it ceases during sleep. These characteristics lead to the hypothesis that the pathophysi-
ology of PD tremor extends beyond dopamine denervation and comprises alterations in
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other monoaminergic neurotransmitters [3,4]. Recent findings suggested a role for acetyl-
choline, serotonin and noradrenalin in tremor development, with different neurotransmitter
interactions determining peculiar tremor characteristics, such as re-emergent and pure
postural tremor (see, for review [3,4]). With regard to tremor development, converging
evidence points to the noradrenergic system [4,11,12]. Pathological studies showed that
tremor-dominant PD patients have a relatively preserved locus coeruleus (LC) [13], which
represents the primary source of noradrenaline (NA) in the brain [14]. Accordingly, we
described a specific metabolic network in tremor-dominant PD patients that comprised the
cerebellum, the primary motor cortex, the putamen and an area in the dorsal pons, which
corresponds to the LC [15]. A subsequent molecular imaging study confirmed that LC-NA
innervation is relatively preserved in tremor-dominant PD patients [16]. In line with this,
intravenous injection of adrenaline was shown to increase tremor in patients with PD [17].
An EMG-fMRI study also recently showed that increased tremor in PD under cognitive
stress is associated with the activation of the ascending arousal system, which includes NA
terminals [10].

The study of LC-NA innervation in PD patients is still challenged by the many diffi-
culties in imaging LC activity in humans, and the current evidence remains correlative [4].
Longitudinal investigations are difficult because it is virtually impossible to control for the
degenerative process in PD, which likely affects the dopamine and LC-NA system differ-
ently [13]. The follow-up of subjects at risk of developing PD, such as subjects with REM
sleep behaviour disorder, is also limited by the alteration to LC-NA in these subjects [18].

To avoid these limitations and directly assess the role of LC-NA innervation in PD
tremor, we studied the development of tremor in the reserpinized rat model of PD [19–21],
with and without selective lesioning of the LC-NA terminals using N-(2-Chloroethyl)-N-
ethyl-2-bromobenzylamine (DSP-4) [22]. Comparing animals with and without LC-NA
denervation, we showed that LC-NA plays a pivotal role in the development of PD tremor.

2. Materials and Methods
2.1. Animals

We investigated 15 male Sprague Dawley rats (Charles River Laboratories, Sulzfeld,
Germany) constantly kept under standard conditions (21 ◦C, 12 h light/dark cycle). Food
and water were available ad libitum. At the time of the experiment, animals weighed
between 200 and 220 g. Experiments were carried out one week post-arrival at a fixed time
(between 3 pm and 5 pm; light was on at 8 am) and took place in a dedicated room in
the animal facility of the IBFM, CNR, Segrate (MI), Italy, after 30 min of acclimatization.
All animals investigated in this study were handled according to applicable international,
national and institutional guidelines for care and use of animals, and all efforts were made to
minimize animal suffering. The local institutional review board approved the experiments.

2.2. Drug Treatment Procedures and Dose Selection

We opted for the reserpinized rat model of PD, one of the very few that presents
tremor [19–21]. Reserpine is an irreversible inhibitor of vesicular monoamine transporter
2 (VMAT-2) [23]. The disruption of VMAT-2 depletes intracellular monoamine storage,
and the consequent reduction in monoamines in nerve terminals causes bradykinesia,
rigidity and tremor [19,24–26]. The additional inhibition of amine uptake further leads
to the accumulation of neurotoxic oxidation byproducts [27], which results in neuronal
damage [28,29].

The selective LC-NA damage was achieved via a pre-treatment with toxin DSP-4,
which was applied 14 days prior to reserpine injection in a group animal. The systemic
injection of DSP-4 causes a depletion in NA levels, in the release capacity and in the activity
of dopamine beta-hydroxylase (DBH) [30]. In the first two weeks after treatment, the
neurotoxin exclusively affects and destroys NA terminal axons arising from the LC [30,31]
because of the specific binding proprieties of the NA transporter in LC axon terminals that
maximize DSP-4 affinity and uptake, leading to local alkylation of vital proteins [32].
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According to treatment, animals were divided into two groups. The first group
of seven rats (R-group) received only one intraperitoneal injection of 10 mg/kg of re-
serpine [33]. Instead, the second group of eight rats (DR-group) was pre-treated with
intraperitoneal injection of 50 mg/kg of DSP-4. To ensure sufficient degeneration of LC-NA
axon terminals prior to experiment, the reserpine treatment was performed 14 days after
DSP-4 injection [34].

2.3. Behavioral Evaluations and Kinematic Analysis

Observations were carried out before the reserpine injection and for the following 3 h.
All animals were sacrificed just after the end of the experiments.

We used the visual 0–2 points scoring system [19]: score 2 was assigned when tremu-
lous movements were visible immediately and clearly, score 1 when tremulous movements
were intermittent and of modest amplitude and score 0 when no tremulous movements
could be observed. This scoring system was also used for rigidity, hypokinesia, postural
flexion of the back and postural immobility. Of note, we did not investigate DR animals
with tests specifically engaging the noradrenergic system (e.g., novelty seeking, learning,
etc.) as we focused our observations on PD motor symptoms.

All evaluations were carried out by a single examiner, who was unaware of treatment
conditions, before reserpine injection (0 min) and 20, 40, 60, 80, 120 and 180 min after
reserpine injection. Maneuvers were repeated three times in total, and the average score for
each animal was calculated.

We also assessed the kinematics of tremor with accelerometers attached to the back
limbs of the rat. Tremor was measured as the variation in the acceleration of the most
tremulous limb. We computed the consistency of tremor (T%) as the percentage of the total
time recorded (average of three sessions of ≈60 s at each time point following reserpine
injection). Recordings from all the animals but one (r4, R-group) were available and were
analyzed with Matlab-based (Mathworks) custom scripts. Kinematic data from r4 were
excluded due to the presence of artifacts, which were visually inspected for all recordings.

2.4. Tissue Preparation, Immunolabeling and Quantitative Analyses

Immediately after the end of the recordings, the rats were sacrificed by inducing a deep
anesthesia level using isoflurane in combination with a high-dosage injection of barbiturate
(pentobarbital). Once the death was ensured, transcardial perfusion with cold heparinized
saline solution was performed. Tissues were fixed through perfusion with 4% solution of
paraformaldehyde in phosphate-buffered saline (PBS). The brain was then removed and
preserved in 4% paraformaldehyde until the histological analyses were performed.

Tissue preparation, sectioning and immunofluorescence labeling were carried out as
previously described [35,36]. Briefly, tissue blocks containing upper pons and cerebellum
were washed in 0.01 M PBS (pH 7.4), successively infiltrated with 10 and 20% sucrose
in PBS, frozen in liquid-nitrogen-cooled isopentane and stored at −80 ◦C. Serial 40 µm
frontal vibratome sections were prepared after thawing the tissue to room temperature (RT).
Preincubation of free-floating sections in 5% normal goat serum (NGS; Sigma, Deisenhofen,
Germany) and 1% Triton X-100 (TX100; Sigma) in PBS for 2 h at RT was followed by
incubation in the primary antibody solution for 48–72 h at 4 ◦C. Antibodies used were
polyclonal rabbit-anti-tyrosine hydroxylase (TH; Millipore, Schwalbach, Germany) and
polyclonal rabbit-anti-dopamine-β-hydroxylase (DBH, Abcam, Cambridge, UK), diluted
1:500 in 1% NGS, 0.5% TX100 and 0.05% NaN3 in PBS. After washing in PBS, sections were
incubated in Cy3-labeled goat-anti-rabbit secondary antibody (Dianova, Eiching, Germany,
1:600) in 0.5% TX100 in PBS for 2 h at RT, washed in PBS, mounted on SuperfrostTM

microscopic slides and coverslipped with Fluorogel (Electron Microscopy Sciences, Munich,
Germany). Microphotographs for images were taken with a Keyence BZ 9000 microscope.
Control sections subjected to the reaction sequence without primary antibodies did not
show specific labeling.
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Quantification of TH and DBH neurons and axon densities was carried out with a Zeiss
Axiophot2 microscope using digital images acquired via CCD camera and ImagePro 4.0
software. We focused on the LC and the stratum granulosum (SG) and stratum moleculare
(SM) of cerebellar vermal cortical areas, due to the accessibility of the region and the
documented role of the cerebellum in tremor [37–39]. For axon density assessment, six
images in the region showing the locus coeruleus were analyzed in two sections per animal.
Each structure within the molecular layer of the first lobule of the upper portion of the
cerebellar vermis that demonstrated a continuous TH+ immunoreactive fiber profile was
counted as one axon. For the neuron count, cell profiles displaying TH+ reactivity within
the LC were quantified on two sections per animal. Axonal and neuronal densities per µm2

were then calculated after determination of the analyzed cortical area and the area of the
LC, respectively, with ImageJ2.

3. Statistical Analysis

Statistical analyses were performed with the JMP statistical package (version 13, SAS
Institute, Inc., Cary, NC, USA). Data are presented as mean ± standard deviation (SD).
After testing for normality distribution of the data, we assessed statistical significance by
means of sample t-test for the assessment of noradrenergic denervation between DR- and
R-groups. Due to the ordinal variables of the behavioral data, these were assessed by means
of Mann–Whitney U test. Finally, differences in tremor consistency over time between
groups were studied by means of two-way mixed model ANOVA and Wilcoxon sign-rank
test. The threshold level of statistical significance was set for every analysis at p < 0.05.

4. Results
4.1. Assessment of DSP-4-Induced Noradrenergic Denervation

We showed a marked reduction in LC-NA axon terminals in the DR-group as com-
pared to the R-group. Reserpine treatment alone did not affect noradrenergic axons reaching
the cerebellar cortex, as shown by the TH (Figure 1A) and DBH immunolabeling (Figure 1B)
of one R animal. In contrast, the pre-treatment with DSP-4 led to a profound loss of TH-
and DBH-immunolabeled axonal profiles in the cerebellar cortex (Figure 1C,D).

Quantitative analyses confirmed a ~90% reduction in the density of TH+ noradren-
ergic axon profiles in the DR-group (0.024 ± 0.01 axons/µm2) compared to the R-group
(0.270 ± 0.04 axons/µm2; sample t-test, p < 0.001), providing evidence that DSP-4 caused
a significant LC-NA denervation. On the contrary, the cell density of TH+ noradrenergic
perikarya of the LC did not differ between the groups, with an average cell density of
1.37 neurons/µm2 in DR animals and 1.33 neurons/µm2 in R animals (p > 0.05), thus sup-
porting a selective effect of DSP-4 on LC-NA axon terminals [30]. The results are displayed
in Figure 2.

4.2. Visual Scores

Behavioral evaluations prior to reserpine injection did not show any motor symptoms
in either group. After the injection of reserpine, DR animals had significantly less tremor
compared with R animals (score at 40 min: 0.50 ± 0.76 vs. 1.57 ± 0.53, respectively,
Mann–Whitney U test, p < 0.01; score at 60 min: 0.12 ± 0.35 vs. 1.14 ± 0.90, p < 0.01)
(Figure 3). Instead, sustained rigidity, hypokinesia, postural flexion of the back and postural
immobility were documented in both groups (Figure 3). These akinetic–rigid symptoms did
not differ at any time point between the DR- and R-groups (Figure 3). Tremor peaked early
(i.e., 40 min) and decreased over time, vanishing after 120 min in all animals. Akinetic–rigid
symptoms peaked late (i.e., 60–80 min) and did not diminish (Figure 3).
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4.3. Accelerometer Tremor Measurements

Kinematic measurement mirrored the visual scoring and showed a significant dif-
ference in the consistency of tremor between the DR- and R-groups at all time points
(Figure 3). Tremor was marginally present in the DR-group as compared to the R-group,
with an average T% of 23.98 ± 28.45 s vs. 45.46 ± 35.66 s, respectively (Wilcoxon sign-rank
test, p = 0.01). Measurements before and after 40, 60 or 80 min from reserpine injection did
not record any tremor.
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Figure 1. Effects of DSP-4 on noradrenergic locus coeruleus neurons and their terminal axons in the
cerebellum. TH and DBH fluorescence immunolabeling of the pontine brainstem and cerebellum of
one R-group animal (R13; (A,B)) and one DR-group (R2; (C,D)) in the top and bottom row, respec-
tively. The top-left images in each panel show higher magnifications of the left LCs; the top-right
images show higher magnifications of the stratum granulosum (SG) and stratum moleculare (SM) of
cerebellar vermal cortical areas indicated by white boxes in the overviews. In the reserpinized rat
(top row), TH (A) and DBH immunoreactions (B) label noradrenergic neurons in the LC and numer-
ous noradrenergic terminal axons in the cerebellar cortex. In the DSP-4-treated animal (bottom row),
TH (C) and DBH immunoreactions (D) document a severe loss of cerebellar noradrenergic terminal
axons, while the LC neuronal cell bodies appear relatively spared. Bars: 100 µm. DBH, dopamine
beta-hydroxylase; LC, locus coeruleus; TH, tyrosine hydroxylase.
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tyrosine hydroxylase. * p < 0.05.
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Figure 3. Time course of the motor signs induced by 10 mg/kg of reserpine in rats. Data are shown
as mean (±standard error of mean, SEM) of seven reserpinized-only animals (R-group) and eight
animals pre-treated with DSP-4 two weeks before reserpine (DR-group). For these animals only, the
motor effects of DSP-4 are reported at 14 and 7 days before reserpine injection. Asterisks indicate
statistical significance. Tremor severity and consistency (T%, i.e., the percentage of the total time
with tremor as recorded with an accelerometer placed on the most tremulous limb) differed between
groups, being more represented in the R-group. This difference was not mirrored by akinetic–rigid
symptoms, which were equally present and severe in the R- and DR-groups.
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5. Discussion

In this study, we showed that depletion in cerebellar noradrenergic innervation re-
duced the development of tremor in the reserpinized rat model of PD (Figure 3). This
finding provides preliminary causal evidence for the role of LC-NA in the development of
PD tremor.

In PD, dopamine depletion can cause the entrainment of the cerebellar–thalamic–
cortical loop in pathological rhythms [37,40], and preserved LC-NA activity could facilitate
the emergence of tremor via cerebellar excitatory (glutamatergic) output to the motor
thalamic nuclei [4,41]. The LC receives multiple varied inputs that can increase LC-NA
firing to differing extents [42] and, therefore, account for the different life conditions
inducing or enhancing PD tremor [9], such as challenging cognitive tasks [10].

In line with this, we previously showed that LC-NA reuptake is up-regulated in early
PD patients [43], and a recent molecular imaging study with 11C-MeNER, a reboxetine
analogue that binds specifically to LC-NA terminals, found a relatively preserved LC-NA
innervation in tremor-dominant PD patients, as compared to akinetic–rigid PD patients [16].
The uptake of 11C-MeNER in the LC of tremor-dominant PD patients was comparable
to healthy controls and positively correlated with tremor severity [16]. By combining
11C-MeNER imaging and neuromelanin-sensitive MRI, which is sensitive to the loss of
LC neurons, it was also shown that LC-NA axonal damage exceeded somatic damage in
PD [44]. These findings closely mirror the degeneration pattern that we achieved with
DSP4, which induced an extensive reduction in LC-NA terminals while largely sparing
the LC cell bodies (Figure 1), as assessed with TH-immunoreactivity analysis (Figure 2).
This peculiar degeneration pattern is likely related to the extremely large arborization of
NA neurons [45], which makes them particularly vulnerable to toxic insults. This may be
responsible for a relatively rapid degeneration of LC-NA innervation that may, in turn,
explain the reduction in tremor along with PD progression [41].

In our study, we also showed that in reserpinized animals, tremor peaks early and van-
ishes over time (Figure 3), while akinetic–rigid symptoms progressively increase [5,6]. These
distinctive patterns closely resemble the natural evolution of PD [5,6], thus supporting the
translational values of our findings and the idea of different mechanisms for PD tremor
and akinetic–rigid symptoms, with the former being triggered by LC-NA activity and the
latter correlating with dopamine depletion [4–6]. The selective reduction in tremor over
time also follows the mechanism of reserpine neural damage [19,24–26] and reflects the
depletion of intracellular NA storage.

Our study has some limitations. First, we used a toxic animal model of PD [19–21],
not reflecting the chronic progressive neurodegeneration of this neurological disorder.
However, this model was the best suited for investigating tremor. Despite being an acute
model, the reserpinized rat is one of the very few showing tremor along with akinetic–rigid
symptoms [19–21]. The widespread effect of reserpine represents a second limitation in
that it affects all monoamines, also resulting in serotonin depletion. A reduction in raphe
serotonin was shown to correlate with tremor severity in a recent molecular imaging study
from the Parkinson’s progression markers initiative [46]. While we cannot rule out an effect
of serotonin depletion on tremor, the striking difference induced by the selective lesioning of
NA-LC with DSP-4 neurotoxin supports a pivotal role for LC-NA. Of note, studies on DSP-4
injections in rats showed that this neurotoxin is highly selective for LC-NA terminals and
induces only a marginal reduction in serotoninergic levels [47]. Yet, we must acknowledge
that we limited the quantification of noradrenergic innervation to the analysis of TH and
DBH neurons and axon densities under fluorescence microscopy. Although this was easily
achieved because of the clear differentiation of the fibers on visual examination, the lack of
immunohistochemistry with DAB (3, 3′-diaminobenzidine) and of nuclear counterstaining
with DAPI blue (4′,6-diamidino-2-phenylindole) limits the precision in quantifying cell
bodies and axons. Furthermore, we did not include a control group with DSP4 treatment
only; thus, our findings must be interpreted with caution. The third limitation is the
selective investigation of cerebellar noradrenergic innervation, which further limits our
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reasoning on the relevance of other structures of the cerebellar–thalamic–cortical loop in
the development of PD tremor. This choice was made because of the well-established role
of the cerebellum in the origin of tremor [48]. Future studies will need to describe the
noradrenergic impact on each structure of the cerebellar–thalamic–cortical loop and the
basal ganglia for PD tremor and for other motor and non-motor symptoms of PD. With
converging evidence pointing to a combined alteration in noradrenergic, acetylcholinergic
and serotoninergic transmission at the origin of tremor subtypes (e.g., resting and postural
components) [3,7,8,11], future investigation might lead to the development of targeted
treatments.

6. Conclusions

Our findings support a pivotal role of brain noradrenergic transmission in the de-
velopment of PD tremor. The involvement of the LC-NA system may also explain many
of its clinical features, such as the intermittent course, worsening under cognitive stress
and suboptimal response to dopaminergic replacement therapy. The development of new
therapeutic approaches also targeting the noradrenergic system is necessary for better
tremor control in patients with PD.
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