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Introduction

Quasiconformal mappings of domains in the complex plain and the corresponding auto-
morphism groups formed by this particular class of mappings are at the very heart of the

matter this thesis is concerned with. This introductory chapter is devoted to establish general
notations and to give a brief overview of the historical development of quasiconformal mappings
and the corresponding automorphism groups in C.

Central object of investigation and general prerequisites
Henceforth, the following general prerequisites will be used throughout this thesis, unless the
contrary is explicitly stated.
If (X,T ) is a topological space and A ⊆ X any subset, then A will always be endowed with the
subspace topology inherited from X. All topological operations and notions of subsets of C will be
considered with respect to the standard topology induced by the Euclidean norm ∣ ⋅ ∣. A domain
in C is a non–empty, open and connected subset of the complex plain, usually denoted by G. The
class consisting of all bounded Jordan domains in C will be denoted by JD.
If (H,∗) is a group and U ⊆ H is a (normal) subgroup, this circumstance will be denoted by
U ≤H (U ⊴H). The subgroup generated by S ⊆H in H is denoted by ⟨S⟩. Let A,B be any two
sets and f ∶ A Ð→ B a mapping which extends to a mapping f̂ ∶ A′ Ð→ B′ on a superset A′ ⊇ A.
If no misunderstanding is possible, then the extension f̂ of f to A′ will usually be denoted by the
same letter. The identity mapping on A sending each element onto itself will be denoted by idA.
If (X,dX), (Y, dY ) are metric spaces and g ∶X Ð→ Y is a mapping, then for t ≥ 0 the expression

ωg(t) ∶= sup
dX(x,x′)≤t

dY (g(x), g(x′)) (0.1)

with x,x′ ∈X denotes the modulus of continuity of g.

The central object of investigation this work is concerned with is

Q(G) ∶= {f ∶ GÐ→ G ∣ f is a quasiconformal mapping of G onto itself } (0.2)

for a bounded, simply connected domain G ⫋ C, called the quasiconformal automorphism
group of G. These sets of mappings – surely being non–empty due to the easily verified fact that
the identity mapping idG ∶ G Ð→ G is always an element of Q(G) – allow for rich mathematical
structure, as on the one hand, Q(G) naturally carries the structure of a group by endowing it with
the canonical composition of mappings, denoted by ○, in which the identity mapping idG plays
the prominent role of the group’s neutral element. On the other hand, as a family of mappings,
Q(G) may be equipped with the supremum metric

dsup(f, g) ∶= sup
z∈G
∣f(z) − g(z)∣ (0.3)

1



INTRODUCTION

for f, g ∈ Q(G), thus turning Q(G) into a metric (and therefore topological) space1. When
speaking of Q(G), it is always referred to (at least) one of these mathematical structures – the
group (Q(G), ○) or the metric space (Q(G), dsup) – in which it will be clear from the respective
context which particular structure is to be meant. As is well–known, the supremum metric induces
a special topology, the topology of uniform convergence, also referred to as the uniform topology.
A particularly important subset of Q(G) is given by

Σ(G) ∶= {f ∈ Q(G) ∣ f is conformal } (0.4)

which turns out being not merely a subset, but also a subgroup, i.e. Σ(G) ≤ Q(G). More generally,
one can consider the subsets

QK(G) ∶= {f ∈ Q(G) ∣K(f) ≤K } (0.5)

for K ∈ [1,+∞), yielding the canonical decomposition

Q(G) = ⋃
K≥1

QK(G) (0.6)

with QK(G) ⊆ QK′(G) for K ≤K ′. In this notation, it is Σ(G) = Q1(G).
As there are, by definition, uncountably many different instances of Q(G), the question arises as
to which extent the properties of one quasiconformal automorphism group Q(G) carry over to
another object of this kind, say, Q(G′) for two bounded, simply connected domains G,G′ ⫋ C. The
classical Riemann Mapping Theorem assures the existence of a conformal mapping F ∶ G Ð→ G′

with corresponding inverse F −1 ∶ G′ Ð→ G. These two transition mappings now give rise for
considering the conjugation mapping

Φ ∶ Q(G)Ð→ Q(G′), f z→ Φ(f) ∶= F ○ f ○ F−1 (0.7)

A simple calculation shows that Φ is bijective with inverse mapping Φ−1(h) = F −1 ○ h ○ F for
h ∈ Q(G′). Hence, from a purely set–theoretical point of view, all quasiconformal automorphism
groups are identical. However, due to the various mathematical structures being present on
Q(G) as expounded above, the metric, topological and group–theoretical properties of these
sets of mappings may vary heavily depending on the underlying domain G. In particular, the
nature of the domain’s boundary has a major effect on the behaviour of the conformal transition
mappings F and F−1, respectively, and consequently to the mapping properties of the conjugation
mappings Φ and Φ−1. In this regard, especially the topological properties of the quasiconformal
automorphism groups are of great interest, since it turns out that the ability of the conjugation
mappings to transfer certain topological data depends intimately on the boundary regularity of
the involved domains. This, in turn, traces back to the boundary behaviour of the conformal
mappings F and F−1, which can be described by the sophisticated machinery of the theory of
prime ends, established at the beginning of the 20th century by Constantin Carathéodory (1873
– 1950) in [Car13]. An account of this theory can e.g. be found in [Pom75] and [Pom92]. Given
a bounded, simply connected domain G ⫋ C, the set of prime ends of G will be denoted by P(G),
while P1(G) will refer to the (sub)set of prime ends of the first kind according to the prime end
classification found by Carathéodory.

1Of course, also other topologies on Q(G) are reasonable, e.g. the topology of locally uniform convergence.
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HISTORICAL OVERVIEW

Historical overview

Quasiconformal mappings

The historical development of quasiconformal mappings is commonly considered to begin with
Herbert Grötzsch’s investigation of “most nearly conformal mappings” in 1928 (see [Ahl06, p.
5]), in which he considered two conformally inequivalent rectangles in the plane and asked for a
diffeomorphic mapping between these sets that behaves “as conformal as possible”. Consequently,
Grötzsch had to introduce a possibility to measure the deviation of a diffeomorphism f to a
conformal mapping, a task he solved by using a tool that turned out to be the dilatation quotient

Df =
maxα ∣∂αf ∣
minα ∣∂αf ∣

= ∣fz ∣ + ∣fz ∣∣fz ∣ − ∣fz ∣

where ∂αf denotes the directional derivative of f in the direction α (see [Leh87, p. 19]). The
term quasiconformal mapping was then coined by Lars V. Ahlfors in 1935, and numerous further
mathematicians studied the properties of this class of mappings and its versatile connections to
further areas of mathematics in the following year intensively, such as Bers, Beurling, Bojarski,
Gehring, Lavrentiev, Lehto and Teichmüller.
Starting in the late 1950s, the higher–dimensional setting was brought into focus, i.e. the de-
velopment of an analogous theory of quasiconformal mappings in spaces Rn with n ≥ 3. Among
others, driving forces behind this development were eminent names as Gehring, Martio, Reshet-
nyak, Rickman and Väisälä. Similar to the situation of holomorphic functions in one and several2
complex variables, many problems turned out to be significantly more delicate in the higher–
dimensional setting, among others due to the following two major reasons:

• There exists no direct counterpart to the classical Riemann Mapping Theorem in several
(complex) variables (see e.g. [RS07, Abschnitt 8.3.6, p. 186]);

• In comparison with the planar case, there are only “few” conformal mappings in Euclidean
spaces Rn with n ≥ 3 by a famous result of Liouville, stating that conformal mappings in
these spaces are exactly the higher–dimensional versions of (restrictions of) Möbius trans-
formations (see e.g. [GMP17, Section 3.8, pp. 64–75]).

These topics concerning the higher–dimensional setting of quasiconformal mappings and their
general theory are discussed in substantially more detail in [GMP17] and the classical monograph
[Väi71]. Moreover, see [IM01, Chapter 1, pp. 1–31] and [Leh84] as well as the references cited
therein for further information on the historical development of quasiconformal mapping theory.

Finally, a theory of quasiconformal mappings in an even more general setting was sought, such
as metric spaces. This goal – typical for the development in mathematical research – was, among
others, motivated by the fact that quasiconformal mappings in C (or more generally, in Euclidean
spaces Rn for n ≥ 2) can be equivalently defined in terms of the so–called linear dilatation of a
homeomorphism f , which is given by

Hf(x) = lim sup
r→0

Lf(x, r)
lf(x, r)

with Lf(x, r) = max
∣h∣=r
∣f(x + h) − f(x)∣ and lf(x, r) = min

∣h∣=r
∣f(x + h) − f(x)∣ for x in the domain of

f and r > 0 chosen sufficiently small; see [GMP17, Subsection 6.4.1, pp. 229–238] for details.
2For a good overview of these mentioned – often fundamental – differences between holomorphic functions in

one and several (possibly infinitely many) complex variables, see the numerous “Outlook”–sections in [RS07].
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INTRODUCTION

This definition of Hf can be generalized to homeomorphic mappings between appropriate metric
spaces (X,dX) and (Y, dY ) via

Hf(x) = lim sup
r→0

sup
dX(x,y)≤r

dY (f(x), f(y))

inf
dX(x,y)≥r

dY (f(x), f(y))

for x ∈ X and r > 0, as defined in [HK98, p. 1]. However, in order for this definition to create a
theory of quasiconformality in this general context that is “similar” to the quasiconformal theory
in C and Rn, respectively, certain constraints on the geometry of the spaces X and Y are to
be requested, as pointed out in [HK98, pp. 22–25] (see also the general assumptions made in
[HK98, Section 2]). Moreover, other generalizations of quasiconformal mapping theory in further
directions were introduced by Tukia–Väisälä (for arbitrary metric spaces, see also [AIM08, p. 50])
and Väisälä (for infinite–dimensional Banach spaces), as stated in [HK98, p. 2].

Conformal automorphism groups and groups of quasiconformal mappings

The investigation of Σ(G) and its properties, both as a group and a topological space (in which
the topology is induced by the supremum metric dsup), was initiated by Gaier in [Gai84]. In the
following years, a multitude of further research papers concerning this topic – especially with
emphasis on the topological structure of Σ(G) in connection with the boundary of the domain
G – were published, e.g. [Lau95], [Lau99], [Sch86], [Sch92], [Vol92] and [LSV00]. Moreover,
the Ph.D. thesis [Lau94] was concerned with topological properties of conformal automorphism
groups of simply connected domains in the plane, also containing a comprehensive overview of
the results obtained in the previously mentioned publications. In sharp contrast to the conformal
special case, however, the more general situation of groups of quasiconformal automorphisms and
their topological properties doesn’t seem to have drawn much attention yet. A few scattered
publications concerning or at least partially touching these groups or certain subsets of them are
to be mentioned, for example:

• Gehring and Palka studied K–quasiconformal groups of domains in extended Euclidean
spaces Rn for n ≥ 3 in [GP76], addressing the problem of quasiconformal homogeneity. A
K–quasiconformal group Γ is a subgroup of the quasiconformal automorphism group of a
domain with the property that every element of Γ is a K–quasiconformal mapping, and a
quasiconformal group is a K–quasiconformal group for some fixed K (see [GP76, p. 173]).
In this paper, Gehring and Palka also raise the question of whether every quasiconformal
group Γ is necessarily a quasiconformally conjugated group of conformal mappings (see
[GP76, p. 197]), i.e.

Γ = f ○ Γ0 ○ f−1

for some quasiconformal mapping f (with inverse mapping f−1) and a group Γ0 of conformal
mappings. This problem that remained unsolved for several years until Sullivan [Sul81] and
Tukia [Tuk80] answered this question affirmatively for the case n = 2 (i.e. for quasiconformal
mappings defined in subsets of C ≅ R2); see also [AIM08, Subsection 10.3.2, pp. 285–
287]. The higher–dimensional case for n ≥ 3, however, is to be answered negatively, as
demonstrated by Tukia in [Tuk81] (see also [GM87, p. 331]).

• In [GM87], Gehring and Martin consider discrete groups of quasiconformal mappings. In
this context, the term discrete refers to the topological notion of a discrete space, in which
the topology of compact convergence is used: A group of homeomorphisms of a domain in Rn
onto itself is called discrete if it contains no infinite sequence of distinct elements converging
compactly to a limit element which is itself a member of the group (see [GM87, p. 332]).

4



HISTORICAL OVERVIEW

Typical for research questions in Geometric Function Theory, the mode of convergence
considered by Gehring and Martin is the uniform convergence on compact subsets.

• The question for the Hilbert–Smith conjecture in the context of quasiconformal mappings
has been addressed increasingly in recent years. This conjecture, originally formulated by
David Hilbert as part of his famous list of Hilbert’s 23 Problems and extended by Paul A.
Smith, poses the following question (see e.g. [Mar99, p. 67]):

If a locally compact topological group acts effectively on a finite–dimensional topological
manifold, is this group necessarily a Lie group?

In 1999, Martin answered this question in the affirmative in the case that the group under
consideration consists of quasiconformal mappings acting on a Riemannian manifold, see
[Mar99, Theorem 1.2, p. 67]. A few years later, Gong solved this problem for the (more
elementary) situation that a group of K–quasiconformal automorphisms acts on a domain
in the extended Euclidean space Rn, see [Gon10, Theorem 3, p. 509]. As in the case of the
previously mentioned studies of Gehring and Martin on discrete quasiconformal groups, the
topological structure used in [Mar99] and [Gon10] is the topology of compact convergence.

• In [MNP98], the authors investigate the quasiconformal homogeneity of compact subsets of
the Riemann sphere C. In order to define this property, set

Q(C,E) ∶= {f ∈ Q(C) ∣ f(E) = E }

for a (not necessarily compact) set E ⊆ C. Consequently, E is called quasiconformally
homogeneous if the canonically induced group3 action of Q(C,E) on E via f ⋅ z = f(z) for
f ∈ Q(C,E), z ∈ E is transitive, i.e. for all a, b ∈ E there exists a mapping f ∈ Q(C,E)
such that f(a) = b. In particular, MacManus et. al. are concerned with and utilize the
group of all quasiconformal automorphisms of the Riemann sphere, Q(C). After defining
the notion of quasiconformal homogeneity, the authors derive several interesting results for
compact subsets of C in connection with this property. However, the group Q(C) and its
subsets/subgroups are merely tools in order to formulate and prove these results rather
than central objects of investigation in their own right.

• Finally, Yagasaki investigates in [Yag99] the topological structure of Q(S) in terms of
infinite–dimensional manifolds with respect to the topology of compact convergence, where
S is a connected Riemann surface4.

Common for all of the previously mentioned research work is the fact that – as soon as topological
questions are studied – the underlying topological structure is exclusively the topology induced
by compact convergence (i.e. locally uniform convergence, or the compact–open topology, which
agree in the special case of domains in C or Rn – see [Gon10, Corollary 1, p. 512] and also
[RS02, pp. 84–85]). The topology induced by uniform convergence in connection with groups
of quasiconformal automorphisms, however, seems as if it has not been considered so far in
Geometric Function Theory. This thesis tries to fill this apparent gap to a small and humble part
by studying quasiconformal automorphisms of bounded (simply and multiply connected) domains
in C and the induced automorphism groups endowed with the supremum metric dsup.

3It is clear and can easily be seen that Q(C, E) forms a subgroup of Q(C), thus the usage of the term “group
action” is justified.

4Naturally, in order to study the mentioned properties of Q(S), one needs to define the notion of a quasiconformal
mapping between Riemann surfaces. This is done in the usual “chart–wise” manner, see e.g. [BF14, p. 35] or
[GL00, p. 18].

5



INTRODUCTION

Outline and structure of this thesis
The aim and purpose of this thesis is to investigate topological and algebraic (i.e. group–theoretic)
properties of the quasiconformal automorphism groups of (bounded) simply and multiply con-
nected domains in C, in which the topology is canonically induced by the supremum metric
defined on the respective domains, and the group structure is impressed on quasiconformal map-
pings with common preimage domain and range by their fundamental mappings properties.
More precisely, questions for topological attributes such as compactness, path–connectedness,
separability or group–theoretic properties such as subgroups and generating sets are focused. Be-
sides this, by combining these two canonical structures on Q(G) – topological space and group
– the quasiconformal automorphisms groups are studied from the point of view of topological
groups. The content of Table 2 on page 7 summarizes the central topological properties of Q(G)
for bounded, simply connected domains studied in this thesis and compares it to the correspond-
ing situation with the conformal automorphism group Σ(G). Furthermore, in order to visualize
the geometric mapping behaviour of quasiconformal automorphisms of domains with sufficiently
controllable boundary structure, several concrete examples of such objects are constructed and
analyzed in detail.
In addition, on the basis of a recent publication, the thesis at hand introduces the principle idea
of applying quasiconformal unit disk automorphisms to a highly relevant topic in modern mathe-
matics and computer sciences, namely cryptographic algorithms and encryption schemes.

Chapter 1 introduces the most important terminology and results for quasiconformal mappings
in C required in the remainder of the thesis. Apart from existence, boundary extension and con-
vergence results for this distinguished class of homeomorphism, several known facts about Q(G)
and Σ(G) are presented.
In Chapter 2, one of the most important metric properties of Q(G) and some of its subspaces
is studied, namely completeness. As will be demonstrated, Q(G) is always incomplete. Conse-
quently, the question for the corresponding completion arises, which is also investigated. Also,
a new metric defined on quasiconformal automorphism groups, closely related to incompleteness
and Polish groups, is studied.
The topological structure of Q(G) for bounded, simply connected domains G ⫋ C is the central
object of investigation in Chapter 3. Many of the most important properties of topological spaces
are studied for Q(G), such as separability, local compactness and path–connectedness. Further-
more, the case of multiply connected domains in C is focused in terms of topological properties
of the corresponding quasiconformal automorphism groups.
Chapter 4 treats miscellaneous further topics in connection with Q(D), starting with harmonic
quasiconformal unit disk automorphisms. Furthermore, a rather unexpected construction method
related to classical Cesàro summation is studied, based on a particular class of quasiconformal
mappings of D. Finally, a potential future application of quasiconformal automorphisms in the
context of cryptographic systems and encryption algorithms is presented.

The thesis closes with a collection of the most important open questions that arose throughout
the development of this text.
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OUTLINE AND STRUCTURE OF THIS THESIS

Property Q(G) Σ(G)

Compactness
Never compact

(Proposition 1.3.1(i)) (Proposition 1.2.1(i))

Completeness
Always incomplete and

never completely metrizable
(Theorem 2.3.3 & Corollary 3.3.7)

Always complete
(Proposition 1.2.1(i))

Baire space Never a Baire space
(Theorem 3.3.4)

Always a Baire space
(Proposition 1.2.1(i))

Separability
Separable if and only if P(G) = P1(G)

(Theorems 3.1.2 & 3.1.4) (Proposition 1.2.1(iii))

Local
compactness

Never locally compact
(Theorem 3.3.6)

Local compactness depending on
∂G, e.g. locally compact if

P(G) = P1(G)
([Lau94, Tabelle II.2.1, p. 37])

Path–
connectedness

Path–connected if P(G) = P1(G)
(Theorem 3.4.1)

Converse statement unknown

Path–connected if and only if
P(G) = P1(G)

(Proposition 1.2.1(iv))

Discreteness Never discrete
(Corollary 3.2.6)

Discreteness depending on ∂G, e.g.
discrete for comb domains of the

first kind
([Gai84, Satz 9, p. 254])

Topological
group

Topological group if G ∈ JD
(Proposition 1.3.3(ii))

If Q(G) topological group, then
P(G) = P1(G) or Σ(G) discrete
(Lemma 1.3.4 & Remark 1.3.5)

Topological group if and only if
P(G) = P1(G) or if Σ(G) discrete

([Lau94, Satz I.1.1, p. 14])

Table 2: Similarities and differences between certain topological properties of Q(G) and Σ(G)
for bounded, simply connected domains G ⫋ C.
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Chapter 1

Preliminaries

This first chapter introduces in a moderate way the basic definitions and results which are needed
in the remainder of the thesis at hand.
The central term of this work is the notion of a quasiconformal mapping in C, to be defined
precisely in the first Section 1.1, together with the most important existence and representation
results. From the extensive research work on quasiconformal mappings carried out in the past,
several equivalent definitions are known for this class of mappings, whereas for this thesis, the
analytic definition is used (see Definition 1.1.1). A cornerstone in quasiconformal mapping theory
in the plane is the Measurable Riemann Mapping Theorem, to be presented in Proposition 1.1.2
together with further representation and regularity results. Many of the statements of this work
intimately depend on the boundary of the domains under consideration and the possibility to
extend quasiconformal mappings appropriately to these boundary curves, respectively. Therefore
certain boundary extension properties are required in order to formulate and prove the mentioned
statement. Finally, from the essential theory of quasiconformal mappings, several results on con-
vergent sequences of these mappings and the corresponding limit mappings are provided. This
convergence theory is presented due to the fact that the overall analytic situation of this thesis
– automorphism groups of quasiconformal mappings in the topology of uniform convergence – is
settled in the context of metric spaces.
As already mentioned in the introductory chapter, the investigation of Q(G) and its properties
was motivated by the initial work of Gaier on conformal automorphism groups, followed by nu-
merous further research activities. Thus it may seem reasonable to relate certain aspects of Q(G)
with the corresponding situation in Σ(G). Some of the relevant information about conformal
automorphism groups and their properties is therefore summarized in Section 1.2.
In a similar spirit as mentioned previously, the contents of the current chapter’s final Section 1.3
are organized as follows: Several seminal results on the properties of quasiconformal automor-
phism groups of domains in C, obtained in the Master Thesis [Bie17], are presented. In particular,
questions for Q(G) being a topological group, properties of the conjugation mapping Φ (see (0.7))
and relations to the subgroup Σ(G) are studied.
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CHAPTER 1. PRELIMINARIES

1.1 Quasiconformal mappings in C

1.1.1 Existence theory, factorization and dependence on parameters

Since this thesis is concerned with quasiconformal mappings in C, it is only natural to begin with
the definition of this particular class of mappings. Quasiconformal mappings admit various ways
for their precise definition, one of these given by (see e.g. [BF14, Definition 1.11, p. 24], [GL00,
Definition 2, p. 5] and [Leh87, pp. 20–23])

Definition 1.1.1 (Quasiconformal mapping, analytic definition).
A homeomorphism f = u+ iv ∶ GÐ→ G′ between domains G,G′ ⊆ C is called K–quasiconformal
if

(i) f is absolutely continuous on lines (ACL) on G, i.e. for each closed rectangle
{x + iy ∣ a ≤ x ≤ b, c ≤ y ≤ d} ⫋ G, the mapping x z→ u(x + iy) is absolutely continuous on
[a, b] for almost every y ∈ [c, d], and the mapping y z→ u(x + iy) is absolutely continuous
on [c, d] for almost every x ∈ [a, b]; likewise for the imaginary part v of f ;

(ii) the Wirtinger derivatives of f satisfy ∣fz ∣ ≤ k∣fz ∣ almost everywhere in G, where k ∶= K−1
K+1 .

The mapping f is called quasiconformal if it is K–quasiconformal for some K ∈ [1,+∞). The
smallest constant K such that (ii) holds is called the maximal dilatation1 of f , denoted by
K(f).

Definition 1.1.1(i) implies two important facts: On the one hand, it follows that a quasiconformal
mapping f ∶ GÐ→ G′ is differentiable almost everywhere in G. On the other hand, one concludes
that the Jacobian determinant Jf(z) = ∣fz(z)∣2 − ∣fz(z)∣2 of f is positive and fz(z) /= 0 for almost
every z ∈ G. In consequence, f is orientation–preserving2. Moreover, the expression

µf ∶=
fz
fz

(1.1)

can be considered almost everywhere in G, called the complex dilatation3 of f . This expression
defines a measurable function on G with

∣µf(z)∣ = ∣
fz(z)
fz(z)

∣ ≤ k = K − 1
K + 1

< 1

for almost every z ∈ G by Definition 1.1.1(ii). Passing to the essential supremum given by

∥µf∥L∞(G) ∶= ess sup
z∈G

∣µf(z)∣ = inf
N⊆G
λ(N)=0

sup
z∈G/N

∣µf(z)∣ (1.2)

(λ denoting the Lebesgue measure in C) in the previous inequality yields an element of the open
unit ball in the complex Banach space L∞(G) of all essentially bounded measurable functions4

1This admittedly slight abuse of language is due to the classical Geometric Definition of quasiconformal map-
pings, see for example [Leh87, p. 12] and also [SS11, Definition 2.3.1, p. 61], where the same naming convention
and notation is used.

2This is a small but important detail in the definition of quasiconformal mappings: The analytic definition of
quasiconformality as stated in Definition 1.1.1 implies that the homeomorphism is orientation–preserving. The
geometric definition, however, being based on the conformal modulus (see e.g. [LV73, Definition, p. 16]), needs
to require the mapping’s orientation–preservation in order to yield an equivalent notion; see also [BF14, p. 32]. A
simple, but nevertheless very illuminating example in this direction is given by the (orientation–reversing) mapping
z z→ z, which is clearly an ACL homeomorphism that fails to be quasiconformal by Definition 1.1.1(ii).

3More precisely, the quotient µf defined by (1.1) is called the first complex dilatation of f . Consequently, there
is a closely related expression, called the second complex dilatation, given by νf ∶= fz/fz, see [Dur04, p. 5].

4As usual, the members of L∞(G) will be considered as functions rather than equivalence classes of functions
with respect to the equivalence relation “f ∼ g ∶⇐⇒ f − g ≡ 0 almost everywhere”, see [RF10, pp. 394–395].
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1.1. QUASICONFORMAL MAPPINGS IN C

on G, i.e.

µf ∈ BL∞(G) ∶= {g ∈ L∞(G) ∣ ∥g∥L∞(G) < 1} ⫋ L∞(G) (1.3)

The elements of BL∞(G) are also called Beltrami coefficients on G. Equation (1.1) may also be
considered from a different point of view, namely written in the form

fz = µ ⋅ fz (1.4)

which can be considered as a partial differential equation with respect to z and z when given a
prescribed function µ ∈ BL∞(G). This differential equation (1.4) is known as the Beltrami equa-
tion, named for the Italian mathematician Eugenio Beltrami (1835 – 1900). Every quasiconformal
mapping f solves a Beltrami equation with µ = µf as Beltrami coefficient. One central aspect in
the theory of quasiconformal mappings is given by a certain counterpart of this statement, made
precise in (see e.g. [LV73, Existence/Mapping Theorem, p. 194])

Proposition 1.1.2 (Measurable Riemann Mapping Theorem).
(I) Existence Theorem: Let G ⊆ C be a domain and µ ∈ BL∞(G) be a Beltrami coefficient on

G. Then there exists a quasiconformal mapping on G whose complex dilatation coincides
with µ almost everywhere in G.

(II) Mapping Theorem: Let G,G′ ⊆ C be conformally equivalent simply connected domains and
µ ∈ BL∞(G) be a Beltrami coefficient on G. Then there exists a quasiconformal mapping
f ∶ G Ð→ G′ whose complex dilatation coincides with µ almost everywhere in G. Further-
more, f is uniquely determined by µ up to post–composition with a conformal automorphism
of G′.

Definition 1.1.3 (Normalized quasiconformal mapping, [BF14, pp. 42–43]).
Let G ⫋ C be a simply connected domain with z1, z2 ∈ G distinct. A quasiconformal mapping
f ∶ GÐ→ D is called normalized if f(z1) = 0 and f(z2) ∈ R+ = {x ∈ R ∣ x > 0}.

Combining with the classical Riemann Mapping Theorem, Proposition 1.1.2(II) implies that for
every Beltrami coefficient µ ∈ BL∞(G), there exists a unique normalized quasiconformal mapping
f ∶ G Ð→ D with µf = µ almost everywhere in G. It is therefore well–defined and reasonable to
speak of the normalized quasiconformal mapping for a given Beltrami coefficient, which will be
done henceforth. Among other results, the following factorization statement for quasiconformal
mappings may be deduced from Proposition 1.1.2 (see [AIM08, Theorem 5.6.2, p. 185] and
[Leh87, Section 4.7, pp. 29–30]):

Proposition 1.1.4 (Factorization with small dilatation).
Let f ∶ G Ð→ G′ be a K–quasiconformal mapping and let ϵ > 0. Then f can be written as
f = f1 ○ f2 ○ ⋅ ⋅ ⋅ ○ fn where each mapping fj ∶ Gj Ð→ G′j is an (1 + ϵ)–quasiconformal mapping
between intermediate domains Gj ,G′j ⊆ C for j = 1, . . . , n.

Moreover, one is often interested not only in the sheer existence, but also in the dependence of
solutions of the Beltrami equation if the corresponding Beltrami coefficients depend on a certain
parameter (see [BF14, Theorem 1.30(b), p. 43]):

Proposition 1.1.5 ((Pointwise) Continuous dependence on parameters).
Let Λ be an open subset of R, G ∈ JD and (µt)t∈Λ be a family in BL∞(G). Suppose tz→ µt(z) is
continuous for every fixed z ∈ G (whenever defined). Moreover, assume there exists k < 1 such that
∥µt∥L∞(G) ≤ k for all t ∈ Λ, and denote by ft ∶ G Ð→ D the normalized quasiconformal mapping
with µft = µt almost everywhere in G. Then tz→ ft(z) is continuous for every fixed z ∈ G.

In fact, Proposition 1.1.5 can be sharpened to differentiable, real–analytic and holomorphic de-
pendence, see e.g. [AIM08, pp. 185–189] and [BF14, pp. 42–43].
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1.1.2 Boundary extension of quasiconformal mappings

A well–known extension result for quasiconformal mappings is ([AIM08, Corollary 5.9.2, p. 193])
Proposition 1.1.6 (Homeomorphic boundary extension).
Let G,G′ ∈ JD be Jordan domains and f ∶ G Ð→ G′ a quasiconformal mapping. Then f extends
to a homeomorphism f̂ ∶ GÐ→ G′.
Proposition 1.1.6 states in particular that quasiconformal automorphisms of a Jordan domain
extend to homeomorphisms of the corresponding closure of the domain. Since many topics in
this thesis will be concerned with the possible boundary extension of quasiconformal mappings,
the following definition is reasonable and useful:
Definition 1.1.7.
For G ∈ JD, let

Q(G) ∶= {f ∈ C(G) ∣ f ∣
G
∈ Q(G)} (1.5)

denote the set of all homeomorphic extensions of the quasiconformal automorphisms of G to G.
Boundary extension of quasiconformal mappings was studied to a huge extent, in particular for
the case of higher–dimensional mappings, i.e. f ∶ D Ð→ D′ with D,D′ ⊆ Rn for n ≥ 3, see
[GMP17, Section 6.5, pp. 251–271] and [Väi71, Section 17, pp. 51–63]. Especially in the higher–
dimensional setting, the circumstances for extending quasiconformal mappings continuously or
even homeomorphically to the boundary are unequally more delicate than in the planar situation
(comparable to many major differences between complex analysis in one and several variables).
In the classical conformal case, the boundary extension problem was comprehensively solved by
Carathéodory using prime ends. A nearby idea was to extend the planar conformal prime end
theory to the higher–dimensional quasiconformal case, which has been carried out by Näkki in
[Näk72] and [Näk79] (see also [Väi71, Remark 17.24.5, p. 63]). The main results of Näkki’s work
for quasiconformal mappings in C are summarized in
Theorem 1.1.8.
Let G ⫋ C be a bounded, simply connected domain and f ∶ D Ð→ G a quasiconformal mapping.
Then the following statements are mutually equivalent:

(i) f can be extended to a continuous mapping f ∶ DÐ→ G.
(ii) G has only prime ends of the first kind, i.e. P(G) = P1(G).

(iii) G is finitely connected on the boundary, i.e. every boundary point has arbitrarily small
neighborhoods U such that U ∩G consists of a finite number of connected components.

Proof. By [Näk72, Lemma 2.5, p. 5] and Proposition 1.1.6, it is sufficient to consider D as the
preimage domain. The equivalence of (i) and (iii) is stated in [Näk72, Theorem 3.1, p. 6], and
the equivalence of (i) and (ii) is demonstrated in [Näk79, Section 8.1, p. 30].

1.1.3 Convergent sequences of quasiconformal mappings

Sequences of quasiconformal mappings and their limit mappings will play a crucial role in this
thesis. The first statement in this direction is similar to a well–known result on convergent
sequences of conformal mappings (see e.g. [LV73, Theorem 5.5, p. 78]):
Proposition 1.1.9 (Hurwitz–type Theorem for quasiconformal mappings).
Let G ⊆ C be a domain possessing at least two boundary points (in C) and (fn)n∈N be a sequence
of K–quasiconformal mappings of G onto a fixed domain G′ ⊆ C, i.e. for every n ∈ N it is
fn ∶ G Ð→ G′ and K(fn) ≤ K < +∞. If (fn)n converges in G to a limit mapping f , then f is
either a K–quasiconformal mapping of G onto G′ or a constant mapping of G onto a boundary
point of G′.
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1.2. RESULTS ON CONFORMAL AUTOMORPHISM GROUPS

Naturally, different types of convergence occur with sequences of continuous mappings, e.g. point-
wise or (locally) uniform convergence. Of course, uniform convergence implies pointwise conver-
gence, but the converse statement is false in general. However, there are certain situations in
which these notions are equivalent. These circumstances are also present in the context of quasi-
conformal mappings, as shown in (see [NP73, Corollary 4.4, p. 432])

Proposition 1.1.10 (Näkki–Palka).
Let G′ ⊆ C be a domain with finitely many boundary components which is finitely connected on the
boundary. Furthermore, let (fn)n∈N be a sequence of K–quasiconformal mappings of a domain G
onto G′ converging pointwise in G to a homeomorphism f . Then the sequence (fn)n converges
uniformly on G to f .

The question for the relationship between convergence of a sequence of quasiconformal mappings
(fn)n and the corresponding sequence of complex dilatations (µfn)n – initially without strict
attention to the particular mode of convergence – is a delicate one, see [Leh87, Section 4.6]. In
general, convergence of the mappings fn does not imply the convergence of the sequence µfn , as
shown in Example5 1.1.11 given below:

Example 1.1.11.
This example is based on a classical construction in plain quasiconformal mapping theory given
in [LV73]. Let

R = {z = x + iy ∈ C ∣ 0 < x, y < 1}

be the open unit square in C and let (ϵm)m∈N be the sequence of real numbers given by ϵm = 1
m+1 .

Then by [LV73, p. 186], for each m ∈ N, there exists a sequence6 (fm,n)n∈N of quasiconformal
automorphisms of R, i.e. fm,n ∈ Q(R) for all n ∈ N, with the properties dsup(fm,n, idR)

n→∞Ð→ 0
and

∣µfm,n(z)∣ = 1 − ϵm =
m

m + 1
for almost every z ∈ R. In other words, the sequence (fm,n)n converges uniformly on R to the
identity mapping, whereas the absolute values of the corresponding complex dilatations (when-
ever defined) remain constant with modulus m

m+1 . Consequently, by using a diagonal argument,
there exists a subsequence (nm)m∈N such that the resulting diagonal sequence (fm,nm)m converges
uniformly to idR as well by construction. However, the sequence of the corresponding complex
dilatations µfm,nm

converges almost everywhere in R to 1 in absolute value, thus the maximal
dilatation of the fm,nm in fact diverges. Accordingly, despite the fact that the diagonal sequence
(fm,nm)m converges in Q(R) to the identity which is even a conformal mapping, thus “very reg-
ular” from the point of view of Q(R), the complex dilatation diagonal sequence is not at all
convergent with regard to quasiconformal mapping theory.

1.2 Results on conformal automorphism groups

This section collects some results concerning conformal automorphism groups of bounded, simply
connected domains in C as obtained by Gaier, Schmieder and Volynec. Several important metric
and topological properties of Σ(G) are collected in

5The author would like to thank Ikkei Hotta and Ken–ichi Sakan for pointing out the idea of this example.
6The mappings fm,n are constructed using a composition of a conformal mapping and its inverse (provided

by the classical Riemann Mapping Theorem) together with a certain quasiconformal unit disk automorphism, a
so–called monomial–like radial stretching, to be introduced in (2.3) on page 22.
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Proposition 1.2.1 (Metric and topological properties of Σ(G)).
(i) The space Σ(G) is always complete, but never compact. ([Gai84, Satz 1, p. 229]). In

particular, Σ(G) is always a Baire space.
(ii) The space Σ(G) is locally compact if P(G) = P1(G). ([Gai84, Zusatz, p. 230])

(iii) The space Σ(G) is separable if and only if P(G) = P1(G). ([Vol92, Theorem 3, p. 201])
(iv) The space Σ(G) is path–connected if and only if P(G) = P1(G). ([Sch86, Corollary, p.

199])

In view of the structure of topological groups, the following characterization was shown in [Gai84,
Satz 5, p. 235] and [Vol92, Theorem 1, p. 196] (see also [Lau94, Satz I.1.1, p. 14]):

Proposition 1.2.2 (Topological group property).
Σ(G) is a topological group ⇐⇒ P(G) = P1(G) or Σ(G) is discrete.

There has been considerably more research on Σ(G): Lauf [Lau99] and Schmieder [Sch92] con-
structed explicit examples of domains having non–locally compact conformal automorphism
group. In [Lau95], Lauf succeeded in characterizing all locally compact spaces Σ(G). Related
investigations have been carried out by Rodin [Rod84], Pommerenke–Rodin [PR85] and Rogers
[Rog93] in terms of intrinsic rotations of simply connected domains in C, thereby partially study-
ing the famous Siegel Problem (see [PR85, p. 224] and the references therein as well as [Lau94,
p. 70]) in Complex Dynamics:

Is a Siegel disk of a rational function (of degree at least 2) always a Jordan domain?

Beyond that, in more recent years there has been research on conformal automorphism groups
of domains in Cn for n ≥ 1. The focus in these studies mainly was on Σ(G) endowed with the
topology of compact convergence. An overview of the planar case n = 1 can be found in [Kra06,
Chapter 12], the case n ≥ 2 is treated in [KK05], [IK99] and [SV18] (see also the references in the
cited literature).

1.3 Results on quasiconformal automorphism groups
In [Bie17], the investigation of Q(G) was initiated. Some of the obtained results are stated in the
following. Naturally, several properties of Q(G) and Σ(G), as presented in the previous Section
1.2, are intimately related. An example of this situation is shown in

Proposition 1.3.1 (Metric and topological properties).
(i) The space Q(G) is never compact. ([Bie17, Theorem 2.48, p. 77])

(ii) The subspace Σ(G) is always closed in Q(G). ([Bie17, Theorem 2.27, p. 64])

As for the algebraic structure of Q(G), the following results were obtained

Proposition 1.3.2 (Algebraic properties of Q(G)).
(i) The conjugation mapping Φ ∶ Q(G) Ð→ Q(G′) is a group isomorphism. ([Bie17, Theorem

2.8, p. 40])
(ii) Σ(G) is always a proper subgroup, but never a normal subgroup of Q(G). ([Bie17, Theorem

2.11/2.14, p. 43/48])

The question for Q(G) being a topological group has a characterizing answer, which at the same
time is the corresponding result to Gaier’s investigation concerning Σ(G) (see [Gai84, Satz 4, p.
235]):
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Proposition 1.3.3 (Topological Groups).
(i) Q(G) forms a topological group if and only if the following condition holds ([Bie17, Theorem

3.4, p. 88]):

∀f ∈ Q(G)∀(φn)n∈N ⊆ Q(G) ∶ (φn
n→∞Ð→ idG Ô⇒ f ○ φn

n→∞Ð→ f) (1.6)

(ii) Q(G) forms a topological group if G ∈ JD or if idG is isolated in Q(G). ([Bie17, Theorem
3.5/Corollary 3.7, p. 89/91])

Regarding the question under which circumstances Q(G) actually forms a topological group,
the characterizing answer of Gaier and Volynec for the corresponding situation in the conformal
special case, as stated in Proposition 1.2.2, yields the following necessary criterion:

Lemma 1.3.4.
If Q(G) is a topological group, then P(G) = P1(G) or Σ(G) is a discrete space.

Proof. Suppose Q(G) is a topological group. Then the subgroup Σ(G) is also a topological group
in the subspace topology ([Sin19, p. 276]). Now Proposition 1.2.2 yields the claim.

Remark 1.3.5.
The contraposition of Lemma 1.3.4 yields:

If G has not only prime ends of the first kind and Σ(G) is not discrete, then Q(G) is no
topological group.

By utilizing knowledge about the topology of Σ(G) for specialized domains G, one can for example
draw the following conclusion (see [Gai84, Satz 10, p. 256] and [Lau94, Tabelle II.2.1, p. 37]):

Q(G) is no topological group if G is a comb domain of the second kind.

A particularly useful property of Q(G) is stated in the following (see [Bie17, Lemma 2.5, p. 37])

Proposition 1.3.6 (dsup–isometry of right multiplication).
For each g ∈ Q(G), the right multiplication Rg ∶ Q(G)Ð→ Q(G), hz→ Rg(h) ∶= h○g is a bijective
isometry, i.e.

dsup(Rg(h1),Rg(h2)) = dsup(h1, h2) (1.7)

for every h1, h2 ∈ Q(G). In particular, dsup(f, h) = dsup(f○h−1, idG) and dsup(h, idG) = dsup(h−1, idG)
for f, h ∈ Q(G).

The left multiplication, however, is in fact never an isometric mapping, even in the case Σ(D) as
shown by Gaier in [Gai84, p. 234], not to mention in Q(G). Furthermore, Proposition 1.3.6 is
valid for every space Q(G), regardless of the particular boundary structure of G.
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Chapter 2

Incompleteness and completion of
Q(G)

A central property of metric spaces is completeness. This chapter is intended to study sev-
eral aspects of Q(G) concerning this metric attribute. Unless the contrary is explicitly stated,
G will always refer to a bounded and simply connected domain in C throughout the entire chapter.

As in the conformal special case and as a direct consequence of the Measurable Riemann Mapping
Theorem 1.1.2, the central reference object of investigation in this situation is given by Q(D).
Therefore, it is of particular interest whether the conjugation mapping Φ ∶ Q(D) Ð→ Q(G) and
its inverse transformation Φ−1 transport topological properties and to which extent Φ preserves
convergent sequences and Cauchy sequences. Section 2.1 is devoted to studying this question.
In Section 2.2, the subspaces QK(G) are investigated. Among others, it is shown in Theorem
2.2.1 that these subspaces are complete in the supremum metric, but – just as in the special case
Q1(G) = Σ(G) studied by Gaier – lack the compactness property. This allows for a conclusion on
Q(G) regarding its topological structure in the Banach space Cb(G), in which it is canonically
embedded (Corollary 2.2.2).
The major result presented in Section 2.3 is the incompleteness of the metric space (Q(G), dsup).
In order to prove this statement, formulated in Theorem 2.3.3, an extraordinary important and
useful class of quasiconformal automorphisms of the unit disk is introduced, the so–called (general)
radial stretchings of D. This class of quasiconformal mappings will be used throughout this
thesis for deriving numerous further results and to visualize the geometric mapping behaviour
of concrete quasiconformal automorphisms, respectively. As for the incompleteness of the space
Q(G), a sequence of radial stretchings is constructed that converges uniformly on G to a non–
injective limit mapping, thereby implying that Q(G) cannot be complete for it is not closed in
the ambient Banach space Cb(G).
As a direct consequence of the incompleteness of Q(G), the question for the completion of this
metric space arises. This topic is the central concern of Section 2.4. As an important step towards
the solution of this problem, the class of monotone mappings between metric spaces is introduced
in Definition 2.4.4. From convergence results for homeomorphisms, it will become apparent
that monotone mappings form an “upper bound” for all possible limit mappings of convergent
sequences of quasiconformal automorphisms. Approximation theorems for monotone mappings
in terms of homeomorphisms and statements on the algebraic structure of the set M(G) of all
monotone mappings on the closure of the domain G then lead to the formulation of the main
result in Theorem 2.4.18.
The incompleteness of the metric spaces Q(G) and Q(G) is focused once again in Section 2.5,
where the question is asked whether Q(G) is completely metrizable, i.e. if there exists a metric
that induces the uniform topology on Q(G) as well and at the same time turns it into a complete
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metric space. Furthermore, due to the fact that Q(G) forms a topological group for G ∈ JD
by Proposition 1.3.3(ii), one may consider this question from the point of view of Polish groups.
Therefore, a new metric is introduced that is closely related to dsup, the symmetric supremum,
and the resulting properties of Q(G) and Q(G) are studied.

2.1 Continuous mappings between quasiconformal automorphism
groups

By (0.7), for every domain G ⫋ C, the conjugation mapping

Φ ∶ Q(D)Ð→ Q(G), hz→ Φ(h) = F −1 ○ h ○ F

may be considered with conformal F ∶ G Ð→ D. Being a bijective mapping between metric
spaces, the question for continuity of Φ and Φ−1 arises. The restrictions of these mappings to the
corresponding subgroups of conformal automorphisms were already studied by Gaier in [Gai84,
Satz 2, p. 231]:

Proposition 2.1.1 (Gaier).
The mapping Φ−1∣Σ(G) is always continuous. The mapping Φ∣Σ(D) is continuous if and only if G
has only prime ends of the first kind, i.e. P(G) = P1(G).
Gaier’s proof of Proposition 2.1.1 is essentially based on two foundations:
(1) Algebraic transformations in the groups Σ(D) and Σ(G), or rather using the conjugation

mappings Φ and Φ−1: For σ ∈ Σ(D) and h ∈ Σ(G), it is h = F −1 ○ σ ○ F , and accordingly
σ = F ○ h ○ F−1;

(2) Convergence properties of sequences of conformal mappings and their boundary behaviour.
In view of (1), the algebraic transformations done by Gaier are immediately transferable to Q(G),
since the only requirement used is the group structure. Concerning (2), since quasiconformal
mappings in C possess very similar properties concerning convergence and boundary extension
as their conformal special cases, Gaier’s arguments may be transferred as follows (see also [BL23,
Theorem 1]):

Theorem 2.1.2.
The mapping Φ−1 ∶ Q(G)Ð→ Q(D) is continuous if G ∈ JD. The mapping Φ ∶ Q(D)Ð→ Q(G) is
continuous if and only if P(G) = P1(G).
Proof. As for the continuity of Φ−1, let (hn)n be a sequence in Q(G) converging to h ∈ Q(G),
and denote by gn = Φ−1(hn) and g = Φ−1(h) the respective images in Q(D). For arbitrary ϵ > 0
and all w ∈ D, it is

∣gn(w) − g(w)∣ = ∣(F ○ hn ○ F −1)(w) − (F ○ h ○ F −1)(w)∣ = ∣(F ○ hn)(z) − (F ○ h)(z)∣
≤ ωF (∣hn(z) − h(z)∣) ≤ ωF (dsup(hn, h))

(2.1)

where ωF denotes the modulus of continuity of F and z = F−1(w) ∈ G. Since G is a Jordan
domain, F is uniformly continuous on G by Proposition 1.1.6. Now this uniform continuity
implies ωF (dsup(hn, h)) < ϵ for sufficiently large n, since dsup(hn, h) becomes arbitrarily small for
these indices. Switching to the supremum over all w ∈ D in the above inequality chain yields the
continuity of Φ−1.
The second claim can be seen as follows: If Φ is a continuous mapping on Q(D), also its restriction
to the subspace Σ(D) is continuous. By Proposition 2.1.1, this is equivalent to P(G) = P1(G).
On the contrary, assume P(G) = P1(G), then F−1 extends continuously to D and is therefore
uniformly continuous on D by Theorem 1.1.8. Thus the analogous reasoning as in (2.1) applies
to F−1, showing the continuity of Φ.
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GROUPS

Remark 2.1.3.
(i) The continuity of the inverse conjugation mapping Φ−1 is shown in Theorem 2.1.2 for Jor-

dan domains. However, when restricting Φ−1 to QK(G) for a fixed K ∈ [1,∞), one arrives
in fact at a continuous mapping Φ−1 ∶ QK(G)Ð→ QK(D) for arbitrary domains:

Let (gn)n be a sequence in QK(G) converging uniformly on G to g ∈ QK(G) and w ∈ D.
Then

∣(F ○ gn ○ F −1)(w) − (F ○ g ○ F −1)(w)∣ = ∣(F ○ gn)(z) − (F ○ g)(z)∣

with z = F −1(w) ∈ G. Thus, by construction, it is (F ○gn)n a sequence of K–quasiconformal
mappings F ○ gn ∶ GÐ→ D with image domain D being a Jordan domain; in particular, D is
finitely connected on the boundary (see Theorem 1.1.8). This sequence converges pointwise
in G to the K–quasiconformal mapping F ○ g ∶ GÐ→ D, since gn Ð→ g uniformly, hence

∣(F ○ gn)(z) − (F ○ g)(z)∣
n→∞Ð→ 0

due to the continuity of F . Therefore, all assumptions are fulfilled in order to apply the
Näkki–Palka Theorem 1.1.10, yielding that in fact (F ○ gn)n converges uniformly to F ○ g
on G. This concludes in

dsup(Φ−1(gn),Φ−1(g)) = sup
z∈G
∣(F ○ gn)(z) − (F ○ g)(z)∣

n→∞Ð→ 0

(ii) By setting K = 1, part (i) of this remark yields a result of Gaier shown in [Gai84, Satz
2a, p. 231] as a special case due to Q1(G) = Σ(G). Nevertheless, it is unknown whether
the (unrestricted) inverse conjugation mapping Φ−1 ∶ Q(G) Ð→ Q(D) is in fact always
continuous, regardless of the boundary of the domain G.

In the development of mathematical analysis, different notions of continuity were introduced,
among them uniform continuity, which has the advantage of preserving Cauchy sequences. As
for the mapping Φ in connection with uniform continuity, one has the additional and pleasant

Theorem 2.1.4.
If P(G) = P1(G), the mapping Φ ∶ Q(D)Ð→ Q(G) is uniformly continuous.

Proof. The conformal mapping F−1 ∶ D Ð→ G is uniformly continuous on D, thus its modulus of
continuity ωF−1 ∶ R+0 Ð→ R+0 is a continuous, non–decreasing mapping with ωF−1(0) = 0 (see for
example [Bie17, Lemma 2.43, p. 74]). Let ϵ > 0, then there exists δ > 0 such that ωF−1(t) < ϵ if
0 ≤ t < δ. For arbitrary g, h ∈ Q(D) with dsup(g, h) < δ and z ∈ G, it is

∣Φ(g)(z) −Φ(h)(z)∣ = ∣(F −1 ○ g ○ F )(z) − (F −1 ○ h ○ F )(z)∣ = ∣(F−1 ○ g)(w) − (F −1 ○ h)(w)∣
≤ ωF−1 (∣g(w) − h(w)∣) ≤ ωF−1 (dsup(g, h)) < ϵ

Switching to the supremum over all z ∈ G yields that Φ is uniformly continuous on Q(D).

Remark 2.1.5.
(i) The converse statement of Theorem 2.1.4 is also valid, more precisely:

If the mapping Φ ∶ Q(D)Ð→ Q(G) is uniformly continuous, then P(G) = P1(G).

This follows from Theorem 2.1.2 and the fact that uniform continuity implies (ordinary)
continuity.

(ii) Even though the occurrence of uniform continuity of Φ ∶ Q(D)Ð→ Q(G) is clarified to the full
extent by Theorem 2.1.4 and part (i) of this remark, the question for the uniform continuity
of the inverse conjugation mapping Φ−1 ∶ Q(G)Ð→ Q(D) must be left unanswered.
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2.2 Completeness and generating set property of QK(G)
By (0.5) and (0.6), the quasiconformal automorphism groups can be written as

Q(G) = ⋃
K≥1

QK(G)

with the subspaces

QK(G) = {f ∈ Q(G) ∣K(f) ≤K}

The properties of these sets QK(G) are therefore of interest for the study of quasiconformal
automorphism groups. In this context, classical results for quasiconformal mappings yield

Theorem 2.2.1.
For each K ≥ 1, the subspace QK(G) is always complete, but never compact. In particular,
QK(G) is always closed in Q(G).

Proof. In view of completeness, it is sufficient to prove that QK(G) is closed in Cb(G). To this
end, let (hn)n∈N be a sequence in QK(G) uniformly converging to h ∈ Cb(G). Since K(hn) ≤ K
for all n ∈ N, the Hurwitz–type Theorem 1.1.9 implies that h is either a K–quasiconformal
automorphism of G or a constant mapping onto a boundary point z0 ∈ ∂G. The latter case would
lead to

∣hn(z) − h(z)∣ = ∣hn(z) − z0∣ < ϵ
for every z ∈ G and sufficiently large n, which is impossible since hn is bijective for all n ∈ N (see
also [Gai84, Proof of Satz 1b, p. 230]). Hence it is h ∈ QK(G), and QK(G) is complete.
As for the non–compactness of QK(G), it suffices to note that Σ(G) ⊆ QK(G) by definition, thus
Gaier’s non–compactness result for Σ(G) (Proposition 1.2.1(i)) yields the claim.

Due to Q1(G) = Σ(G), the first part of Theorem 2.2.1 is the direct generalization of Gaier’s
result for Σ(G) concerning completeness and compactness, see Proposition 1.2.1(i). The second
part concerning the closedness of QK(G) in Q(G) could as well be deduced directly from the
Hurwitz–type Theorem 1.1.9 for sequences of K–quasiconformal mappings, but also follows from
the completeness of QK(G) and the fact that complete metric subspaces of metric spaces are
closed (in the ambient space). Furthermore, the previous result allows for the deduction of the
following

Corollary 2.2.2.
The subset Q(G) is an Fσ–set in Cb(G), i.e. the countable union of closed subsets.

Proof. Clearly, Q(G) is the countable union of the sets QN(G) with N ∈ N. The proof of Theorem
2.2.1 shows that each set QN(G) is closed in Cb(G).

Since, by construction, it is QK(G) ⊆ QK′(G) for K ≤ K ′, Corollary 2.2.2 implies that Q(G) is
actually even an Fσ–set of increasing closed subsets of Cb(G).

In order to investigate an interesting group–theoretic property of QK(G), recall that in a group
(H,∗), a generating set of H is a subset E ⊆H such that every h ∈H can be written as a finite
product of elements of E and E−1 ∶= {ε−1 ∣ ε ∈ E}, i.e.

h = ε1 ∗ ε2 ∗ ⋅ ⋅ ⋅ ∗ εn

with n ∈ N0 and εj ∈ E ∪E−1 for all j = 1, . . . , n. A generating set E of H is called symmetric if
ε ∈ E ⇐⇒ ε−1 ∈ E. Now for K ∈ (1,+∞), the factorization property of quasiconformal mappings
(Proposition 1.1.4) states that every f ∈ Q(G) can be written as a finite composition f = f1○⋅ ⋅ ⋅○fn
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with “intermediate” mappings fj ∶ Gj Ð→ G′j and K(fj) ≤ K for j = 1, . . . , n. By applying the
Riemann Mapping Theorem iteratively, each fj can be composed with conformal mappings to a
mapping hj in order to map G onto itself without altering the maximal dilatations. Consequently,
it is hj ∈ QK(G) for all j, and due to K(g) =K(g−1) for every quasiconformal mapping, it follows
that QK(G) is closed under inversion, i.e. QK(G)−1 = QK(G). These considerations yield

Theorem 2.2.3.
For every K ∈ (1,+∞), the set QK(G) forms a symmetric generating set of the group Q(G).

Remark 2.2.4.
(i) The group Q(G), even though containing uncountably many generating systems as shown

above, can actually never be finitely generated. This is denied by the principal obstacle
in group theory given by the fact that a finitely generated group is necessarily (at most)
countable. However, Q(G) is clearly uncountable, as can be seen in numerous ways, for
example by checking that the function

dil ∶ Q(G)Ð→ BL∞(G), f z→ µf

is surjective (which in turn is essentially the statement of the Measurable Riemann Mapping
Theorem 1.1.2). Another possibility is related to an argument of Gaier: Σ(G) is always a
proper subgroup of Q(G) (Proposition 1.3.2(ii)), and from a purely set–theoretical point of
view, Σ(G) is equivalent to the torus D×∂D which is clearly an uncountable set, see [Gai84,
pp. 228–230]. Hence Σ(G) and therefore Q(G) is uncountable.

(ii) The statement of Theorem 2.2.3 obviously becomes wrong for K = 1, for in this situation, it
is Q1(G) = Σ(G), and Σ(G) is a subgroup of Q(G) (rather than merely a subset). Therefore
it is closed under composition, making it impossible to express any f ∈ Q(G) with K(f) > 1
as a (finite) composition of elements of Σ(G).

2.3 Incompleteness of Q(G)

Completeness is, in general, a desirable property of metric spaces, for example due to the fact
that in complete metric spaces the powerful machinery of Baire’s Category Theorem is at one’s
disposal, often allowing for elegant reasoning. Gaier’s completeness result for Σ(G) may lead
to the conjecture that Q(G) is also a complete metric space. However, this assumption will be
disproved in the following. To this end, the following mappings defined on and valued in D are
of central importance:

Definition 2.3.1.
Let ρ ∈ C([0,1]) be a strictly increasing function of the interval [0,1] onto itself. A mapping of
the form

fρ ∶ DÐ→ D, z = reiφ z→ fρ(z) ∶= ρ(r)eiφ (2.2)

is called a (general) radial stretching of D.

Note that radial stretchings may also be written in the form fρ(z) = ρ(∣z∣) z∣z∣ for z /= 0 and setting
fρ(0) ∶= 0, a convention that will be used tacitly in the following. The mapping ρ, which can be
thought of “controlling” the radial dilation of fρ, satisfies ρ(x) = x for x ∈ {0,1} by definition
and is differentiable almost everywhere on [0,1]. The importance of general radial stretchings is
given by the following result (see for example [IM08, p. 7] and [LV73, p. 220] as well as [AIM08,
Section 2.6, pp. 28–29]):
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Lemma 2.3.2.
For each mapping ρ ∈ C([0,1]) as in Definition 2.3.1 such that ρ is a piecewise C1–mapping on
[0,1], the corresponding general radial stretching fρ is a quasiconformal automorphism of D with
complex dilatation

µfρ(z) =
z

z
⋅ ∣z∣ρ

′(∣z∣) − ρ(∣z∣)
∣z∣ρ′(∣z∣) + ρ(∣z∣)

for almost every z ∈ D, where ρ′ denotes the (almost everywhere existing) derivative of ρ.

An example of a general radial stretching is visualized in Figure 2.1, in which the piecewise–

differentiable radial dilation mapping ρ(x) =
⎧⎪⎪⎨⎪⎪⎩

√
x
2 , x ∈ [0, 1

2)
2(x − 1

2)
2 + 1

2 , x ∈ [12 ,1]
is used.

Figure 2.1: Visualization of a general radial stretching on a Cartesian grid in D.

An important special case of radial stretchings is given by setting ρK(x) = xK for K ∈ R+, then
the resulting quasiconformal automorphism of D is

fK(z) = ρK(∣z∣)
z

∣z∣ = z∣z∣
K−1 (2.3)

The mappings fK are called monomial–like radial stretchings, due to the special form of
the radial mappings ρK , and represent in fact max{K, 1

K }–quasiconformal mappings of D onto
itself (see [AIM08, p. 29]). Figure 2.2 shows the monomial–like radial stretching f3 modeled on
a Cartesian mesh. An eye–catching attribute of the mapping behaviour of f3 is that it “pulls”
the Cartesian grid towards the origin in D, a fact shared by every mapping fK with K > 1 (this
particular effect is also examined in Section 4.2, see Figure 4.2). On the contrary, for K ∈ (0,1),
such a mapping fK would “push” the grid away from the origin and in the direction of ∂D.
As to return to the question for completeness of Q(G), the announced result can be deduced (see
also [BL23, Theorem 5]):

Theorem 2.3.3.
The space Q(G) is always incomplete.

Proof. First, the case G = D will be treated. For n ∈ N and x ∈ [0,1], consider the function

ρn(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2x, x ∈ [0, 1
4]

1
2 (

x
n + 1 − 1

4n) , x ∈ (1
4 ,

3
4]

(2 − 1
n
)x − 1 + 1

n , x ∈ (3
4 ,1]

(2.4)
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Figure 2.2: Visualization of the monomial–like radial stretching f3(z) = z∣z∣2 = z2z on a Cartesian
grid in the unit disk. The grid is deformed by f3 by “pulling” it towards the origin.

which is a strictly increasing, continuous and piecewise C1–mapping of the interval [0,1] onto
itself. It follows that the sequence (ρn)n∈N converges uniformly on [0,1] to the non–injective limit
mapping

ρ̃(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2x, x ∈ [0, 1
4]

1
2 , x ∈ (1

4 ,
3
4]

2x − 1, x ∈ (3
4 ,1]

Now this situation is lifted from [0,1] to the unit disk by defining the general radial stretching
fn(z) ∶= ρn(∣z∣) z∣z∣ for z ∈ D and n ∈ N, yielding a sequence of quasiconformal automorphisms
(fn)n∈N of D according to Lemma 2.3.2. Due to the uniform convergence of the sequence (ρn)n,
it is

dsup(fn, fρ̃) = sup
z∈D
∣fn(z) − fρ̃(z)∣ = sup

z∈D
∣ρn(∣z∣)

z

∣z∣ − ρ̃(∣z∣)
z

∣z∣ ∣ = sup
x∈[0,1)

∣ρn(x) − ρ̃(x)∣
n→∞Ð→ 0

with fρ̃(z) ∶= ρ̃(∣z∣) z∣z∣ and x = ∣z∣ ∈ [0,1). Hence, the sequence (fn)n converges with respect to dsup
and is therefore a Cauchy sequence in Q(D) whose non–injective limit fρ̃ is clearly not contained
in Q(D). Thus Q(D) is incomplete.

For a general domain G, let z0 ∈ G be a fixed inner point and let B ⫋ G be an open ball about z0
in G. Clearly the sequence (fn)n of the proof’s first part together with its limit function fρ̃ can
be transferred to B via conformal equivalence, denoted by gn and gρ, respectively. Then, define
quasiconformal automorphisms hn of G by

hn(z) =
⎧⎪⎪⎨⎪⎪⎩

gn(z), z ∈ B
idG(z), z ∈ G/B

and likewise for hρ and gρ. Now, the sequence (hn)n∈N converges uniformly to the non-injective
limit function hρ on G.

2.4 On the completion of Q(G)

Immediately following the incompleteness of Q(G) shown in Theorem 2.3.3, the question for the
completion of these spaces and the corresponding sets Q(G) arises, to be studied in the following.
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2.4.1 Completion of metric spaces and closure of Q(G) in C(G)

Since Q(G) is a proper subset of the Banach space Cb(G), the completion of Q(G) certainly is a
subset of Cb(G) (or of C(G), in case the extended mappings are considered). Furthermore, the
following partial result on convergent sequences of homeomorphisms on compact spaces holds:

Lemma 2.4.1.
Let (X,dX) be a compact metric space and (fn)n∈N be a sequence of self–homeomorphisms of X
converging uniformly to a mapping f ∶X Ð→X. Then f is continuous and surjective.

Proof. The fact that f is continuous is a standard result in analysis. In order to show the
surjectivity of f , let y ∈ X be given. Then for every n ∈ N, there exists a uniquely determined
xn ∈X such that fn(xn) = y, yielding a sequence (xn)n in X. By compactness of X, there exists
a convergent subsequence (xnj)j with limit x̃ ∈X. This concludes in

f(x̃) = lim
j→∞

fnj
(xnj
) = lim

j→∞
y = y

where in the first equality the fact has been used that uniform convergence implies continuous
convergence1 in the present situation. Hence f(x̃) = y, showing that f is surjective.

Remark 2.4.2.
In general, however, a uniformly convergent sequence of self–homeomorphisms is not injective.
An example for this situation is provided by the sequence (fn)n which was utilized in the proof of
Theorem 2.3.3 in order to show the incompleteness of Q(D).

Turning towards the completion of Q(G), in order to be able to use Lemma 2.4.1 it is required
to work in the context of compact spaces, i.e. compact preimage domains of sequences of (appro-
priately extended) quasiconformal mappings. This can be achieved by assuming the additional
requirement G ∈ JD and applying Proposition 1.1.6, thus embedding Q(G) into the Banach
space C(G) in form of the set Q(G) (see Definition 1.1.7). Then Lemma 2.4.1 implies that the
completion is quite restricted by the necessary requirement that it may only contain continuous,
surjective mapping of G onto itself. Therefore, in the following, Q(G) will be interpreted as a
subset of the space C(G) via Q(G) and vice versa, if necessary.

As a consequence of Theorem 2.3.3, the set Q(G) (or more precisely, the set Q(G)) is not closed in
the Banach space C(G), therefore its closure Q(G) in the ambient space C(G)may be considered.
Since the latter space is complete, the closed set Q(G) is complete as well and Q(G) is obviously
dense in Q(G). This leads to

Lemma 2.4.3.
Let G ∈ JD, then up to isometry, the closure Q(G) ⫋ C(G) is the completion of Q(G).

Hence, if one is to find the completion Q(G), by definition this means studying the set

{f ∶ GÐ→ C ∣ f is uniform limit of a sequence (fn)n∈N in Q(G)} ⫋ C(G) (2.5)

Consequently, this brings up the question which mappings can occur as uniform limits of sequences
in Q(G), to be studied in the following.

1A sequence of mappings fn ∶X Ð→ Y between metric spaces is called continuously convergent in X if for every
convergent sequence (xn)n in X with limit a ∈ X, the limit fn(xn) exists in Y ; in this situation, there is a limit
mapping f ∶X Ð→ Y and it is f(a) = lim

n→∞
fn(xn), see [RS02, pp. 87–89].
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2.4.2 Monotone mappings and locally connected spaces

The construction in the proof of Theorem 2.3.3 yields that the uniform limit of a sequence
of quasiconformal mappings is in general no bijective mapping, and in particular need not be a
homeomorphism. Put differently, the closure of Q(G) in C(G) is no subset of the homeomorphism
group

H(G) ∶= {h ∈ C(G) ∣ h is a homeomorphism of G onto itself } (2.6)

or the orientation–preserving homeomorphism (sub)group

H+(G) ∶= {h ∈H(G) ∣ h is orientation–preserving} ≤H(G) (2.7)

which of course properly contains Q(G). In turn, this raises the question for the class of mappings
that can actually occur as the mentioned limit mappings. In this regard, the following class of
mappings will be useful in this context (see [Why42, (4.1), p. 127]):

Definition 2.4.4 (Monotone mapping).
Let X,Y be metric spaces. A continuous surjective mapping f ∶X Ð→ Y is called monotone if for
each y ∈ Y , the preimage f−1({y}) is a continuum in X, i.e. a connected compact subset. Denote
by M(X,Y ) the class of all monotone mappings from X to Y , and set M(X) ∶=M(X,X).

Remark 2.4.5.
(i) In Definition 2.4.4, it is no loss of generality to assume that f is surjective, for if y ∈ Y is

not contained in f(X), then f−1({y}) = ∅, which by definition is a continuum in X.
(ii) The definition of a monotone mapping is not necessarily restricted to metric spaces and

could equivalently be formulated for topological spaces as well. In the same manner, the
mapping f needn’t be continuous in order for the definition to be reasonable. Due to this
situation, there are several slightly different definitions for monotone mappings to be found
in the literature (see e.g. [AIM08, Definition 20.1.2, p. 531]).

(iii) In particular, it follows immediately from Definition 2.4.4 that every homeomorphism bet-
ween metric spaces is a monotone mapping.

The notion of a monotone mapping was originally coined by C.B. Morrey in [Mor35]. In the case
of compact metric spaces, the following characterization was shown (see [Why42, (2.2), p. 138]):

Proposition 2.4.6.
A continuous surjective mapping f ∶ X Ð→ Y between compact metric spaces X,Y is monotone
if and only if f−1(C) is connected in X for every connected set C ⊆ Y .

The class of monotone mappings between certain metric spaces obeys a persistence property for
uniformly convergent sequences, similarly to continuous mappings (see [IO17, Theorem 3.3, p.
484]):

Proposition 2.4.7.
Let X,Y be compact Hausdorff spaces and Y be locally connected. Furthermore, let (fn)n∈N
in M(X,Y ) be a sequence of monotone mappings converging uniformly on X to a mapping
f ∶X Ð→ Y . Then f is monotone, i.e. f ∈M(X,Y ).

Since the topic at hand is concerned with the more concrete situation of domains in C rather
than abstract general topological spaces, the question for local connectedness of such domains
and their closures arises. A useful result in this situation is (see [Sin19, p. 75])

Proposition 2.4.8.
Let X be a locally connected topological space and A ⊆ X. If ∂A is locally connected, then A is
locally connected as well.
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Corollary 2.4.9.
Let G ∈ JD, then ∂G and G are locally connected.

Proof. The topological space X = C with its standard topology is clearly locally connected. Let
A = G ∈ JD, then ∂G is locally connected as the homeomorphic image of the locally connected
space ∂D (see [Sin19, Theorem 3.4.3, p. 70]). The claim follows from Proposition 2.4.8.

Corollary 2.4.10.
Let G ∈ JD and (fn)n∈N in H(G) a sequence of homeomorphisms of G onto itself converging
uniformly on G to a mapping f ∶ G Ð→ G. Then f ∈ M(G). In particular, this statement
applies if (fn)n is a uniformly convergent sequence of (the homeomorphic extensions to G of)
quasiconformal automorphisms of G.

Proof. By definition, a homeomorphism is a monotone mapping, see Remark 2.4.5(iii). Lemma
2.4.1 implies that the limit mapping f is continuous and surjective. The claim follows from
Proposition 2.4.7 and Corollary 2.4.9 by setting X = Y = G.

Corollary 2.4.10 yields in particular the following important partial result in view of the current
section’s central topic:

The completion of Q(G) is contained in M(G)

2.4.3 Uniform approximation of monotone mappings by homeomorphisms

In order to be able to properly formulate the statements required in the remainder of this section,
the following terminology is needed (see [Lee11, pp. 38–45]):

Definition 2.4.11.
Let n ∈ N. An n–manifold is a separable metric space M in which every point of M has an
open neighborhood homeomorphic to Rn. A separable metric space M in which every point has
an open neighborhood homeomorphic either to an open subset of Rn or to an open subset of the
closed n–dimensional upper half space

Hn ∶= {(x1, . . . , xn) ∈ Rn ∣ xn ≥ 0}

endowed with the subspace topology of Rn, is called an n–manifold with boundary. An n–
manifold is called compact if the corresponding metric space is compact.

For homeomorphic compact metric spaces X,Y (not necessarily n–manifolds), let

H(X,Y ) ∶= {f ∶X Ð→ Y ∣ f is homeomorphism} (2.8)

denote the set of all homeomorphic mappings between X and Y endowed with the supremum
metric dsup; consequently, H(X) = H(X,X) then yields the homeomorphism group of X. Ob-
viously, it is H(X,Y ) ⊆ M(X,Y ), see Remark 2.4.5(iii). Moreover, Proposition 2.4.7 implies
H(X,Y ) ⊆M(X,Y ) for compact metric spaces X,Y with Y being locally connected, i.e. the clo-
sure of H(X,Y ) in the uniform topology is a subspace ofM(X,Y ). The question raises whether
this subspace relation is in fact an equality of sets. This question has been studied intensively, and
the following affirmative answer for certain 2–manifolds has been given in [Rad45, Approximation
Theorem 2.17, p. 435] and [You48, Approximation Theorem, p. 92], as stated in (see also [IO15,
p. 490])

Proposition 2.4.12.
Let X,Y be homeomorphic compact 2–manifolds with boundary, ϵ > 0 and f ∈M(X,Y ). Then
there exists h ∈ H(X,Y ) with dsup(f, h) < ϵ. In particular, this statement holds if X and Y are
closures of Jordan domains in C.
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Consequently, in view of Corollary 2.4.10 and Proposition 2.4.12, the following central conclusion
can be drawn immediately:

Corollary 2.4.13.
Let G ∈ JD and f ∶ G Ð→ G a mapping. Then f is monotone if and only if it is the uniform
limit of homeomorphisms of G onto itself.

Remark 2.4.14.
(i) The notation in [You48] is somewhat confusing. In the introduction, his main result, i.e.

the Approximation Theorem, is announced in full generality for compact 2–manifolds with or
without boundary. However, in Section 3.9, Youngs formulates his result only for (compact)
closed 2–manifolds, i.e. 2–manifolds with empty manifold boundary. The important case
of non–empty manifold boundary is not proved until the very last Section 3.10, without
restating the corresponding version of the Approximation Theorem again.

(ii) The previously mentioned Corollary 2.4.13 is also stated in [IO16, pp. 160–163], even
though the authors formulate them in a slightly different manner in order to serve their
purposes; see also [IO15, p. 490].

2.4.4 Algebraic structure and continuous structure–preserving maps of M(G)

This subsection is concerned with the study of M(G) for G ∈ JD in terms of its algebraic
structure2. First of all, it is idG ∈ M(G), in particular this set is not empty. Moreover, the
following closedness property with respect to composition of mappings holds:

Lemma 2.4.15.
Let G ∈ JD and f, g ∈M(G), then (f ○ g) ∈M(G).

Proof. Clearly, h ∶= f ○ g is a surjective continuous mapping of G onto itself. In order to show
that h is monotone, let C ⊆ G be connected. Then it is

h−1(C) = (f ○ g)−1(C) = g−1(f−1(C))

Since f is monotone and G is compact, the set C ′ ∶= f−1(C) is connected by Proposition 2.4.6.
The same argument shows that g−1(C ′) is connected as well, thus h−1(C) is connected. Applying
Proposition 2.4.6 once again yields the claim.

Corollary 2.4.16.
Let G ∈ JD, then (M(G), ○) is a monoid with neutral element idG.

Proof. The identity mapping on G serves as the neutral element in M(G). Lemma 2.4.15 shows
that the composition of monotone mappings is again monotone.

Naturally, both, the homeomorphism group H(G) and the set Q(G) are submonoids of M(G).
Now, since M(G) carries algebraic structure, the persistence of this property under certain
mappings can be studied, especially when considering the before–mentioned submonoid Q(G)
and the corresponding conjugation mapping Φ (in which the involved conformal mappings are
homeomorphically extended to the closures of the respective domains). The nearby and pleasant
answer to this question is stated in

2Many of the results of this subsection hold in much greater generality. However, for the sake of readability and
simplicity, the case of Jordan domains and their closures in C is exclusively studied here.
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Theorem 2.4.17.
Let G,G′ ∈ JD and F ∶ G Ð→ G′ be conformal, its homeomorphic extension to G denoted by the
same letter. Then the conjugation mapping

Φ ∶M(G)Ð→M(G′), g z→ Φ(g) ∶= F ○ g ○ F−1 (2.9)

is a monoid isomorphism, i.e. bijective, homomorphic and maps the neutral element onto the
neutral element. Furthermore, if these sets are endowed with the supremum metric dsup, the
mapping Φ defined in (2.9) is a homeomorphism.

Proof. By Lemma 2.4.15, Φ is well–defined since F and F−1 are monotone, therefore Φ(g) ∈
M(G′) for every g ∈ M(G). It is obvious that Φ(idG) = idG′ , and also the bijectivity and
homomorphism property follow immediately. For proving the second claim, endow the monoids’
underlying sets with the corresponding supremum metrics, let (gn)n∈N be a sequence in M(G)
converging uniformly on G to g ∈ M(G) and ϵ > 0. Since F is uniformly continuous on G, it
follows that

∣F (gn(z)) − F (g(z))∣ < ϵ
for sufficiently large n ≥ N(ϵ), due to ∣gn(z) − g(z)∣ < δ for such indices n, all z ∈ G and a certain
δ > 0. Switching to the supremum of z = F−1(w) ∈ G in the previous inequality concludes in

dsup(Φ(gn),Φ(g)) = sup
w∈G′
∣Φ(gn)(w) −Φ(g)(w)∣ = sup

z∈G
∣F (gn(z)) − F (g(z))∣ ≤ ϵ

Thus Φ is continuous. The same reasoning provides the continuity of Φ−1.

In particular, Φ as in (2.9) maps convergent sequences in M(G) to convergent sequences in
M(G′) and Q(G) bijectively to Q(G′).

2.4.5 Proof and discussion of the main statement

This final subsection will now combine the previously established theory of the foregoing sub-
sections for G ∈ JD. First of all, the uniform limit of homeomorphisms of G onto itself is a
monotone mapping by Corollary 2.4.10. Conversely, every monotone mapping on G is uniform
limit of homeomorphisms on G by Corollary 2.4.13. Consequently, the set H(G) is dense in
M(G). Together with Q(G) ⊆H(G), one has the following inclusion chains of sets:

Q(G) ⊆H(G) ⊆M(G)

By Proposition 2.4.7, the setM(G) is closed in C(G,G), the space of continuous mappings of G
into itself. When switching to the closures, one arrives at

Q(G) ⊆H(G) =M(G) (2.10)

Since the overall goal of this section is to consider all possible limits of uniformly convergent
sequences of homeomorphically extended quasiconformal automorphisms and due to the fact that
these mappings are orientation–preserving (i.e. Q(G) ⊆H+(G)), it is beyond that reasonable and
necessary to take into account only those limits that arise from orientation–preserving mappings.
These arguments conclude in
Theorem 2.4.18.
Let G ∈ JD. Then the closure of Q(G) in C(G) is contained in

M ∶= {f ∈M(G) ∣ f is uniform limit of orientation–preserving homeomorphisms of G }

In other words, the completion of Q(G) is a subset of the class of monotone mappings of G onto
itself arising as uniform limits of sense–preserving homeomorphisms of G onto itself:

Q(G) ⊆M (2.11)
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Remark 2.4.19.
In the first place, the statement of Theorem 2.4.18 is non–trivial inasmuch as the general re-
striction to the class of monotone mappings, i.e. elements of M(G), is explicitly taken into
account. Furthermore, the argumentation before Theorem 2.4.18 show that each mapping in
M(G) can be generated as the uniform limit of homeomorphic mappings (see (2.10)), but the
orientation–preservation of the latter mappings is not necessarily guaranteed (since there exist
orientation–reversing homeomorphisms as well). Thus the additional limitation in the definition
of M is to be considered, since quasiconformal mappings are always orientation–preserving; This
situation becomes particularly obvious in the related one–dimensional case: For a compact interval
I = [a, b] in R, the set of monotone mappings of I onto itself basically consists of two subclasses of
surjective mappings, namely the increasing ones and the decreasing ones3. Clearly, the decreas-
ing monotone mappings are uniform limits of elements of H(I) as well4, but they can never be
realized as uniform limits of the one–dimensional counterparts of quasiconformal mappings, the
so–called quasisymmetric mappings on I (see [LV73, p. 88]), which are strictly increasing (=
orientation–preserving) by definition. Theorem 2.4.18 is formulated in the very same spirit: A
monotone mapping of G onto itself can arise as the uniform limit of homeomorphisms, but these
mappings are not necessarily orientation–preserving, thus may not necessarily be quasiconformal.
Furthermore, it follows from the discussion of the current section that the completion of Q(G)
basically consists of three “parts”:

• The homeomorphically extended quasiconformal automorphisms themselves;

• The homeomorphisms of G onto itself which are not quasiconformal (i.e. homeomorphisms
with unbounded maximal dilatation);

• The strict monotone mappings which are not injective on G.

Finally, the results of this section naturally lead to ask the

Question 2.4.20.
If G is no Jordan domain, is the corresponding metric space Q(G) incomplete as well? If so,
what is its completion?

2.5 Incompleteness revisited: The symmetric supremum on Q(G)

In the following, it will be shown that – beyond the incompleteness in the supremum metric –
the space Q(G) of homeomorphic extensions to G (see Definition 1.1.7) also possesses a certain
kind of incompleteness when endowed with a different, yet very similar metric structure, called
the symmetric supremum. To begin with, the required terminology is introduced in

Definition 2.5.1.
(i) A topological space (X,T ) is called metrizable if there exists a metric d on X such that T

is the topology of the metric space (X,d), i.e. the metric d induces the topology T . In this
case, the metric d is called compatible with T ; (see [Kec95, p. 3])

(ii) A topological space (X,T ) is called completely metrizable if there exists a compatible met-
ric d on X such that the metric space (X,d) is complete. A separable completely metrizable
space is called Polish; (see [Kec95, Definition 3.1, p. 13])

(iii) A topological group (X,T ,∗) is called a Polish group if the topological space (X,T ) is
Polish. (see [Kec95, Definition 9.2, p. 58])

3The probably most simple examples of such mappings are idI(x) = x and y(x) = −x + a + b for x ∈ I.
4In this regard, see also Radó’s remark on “closed linear intervals” in [Rad45, p. 437].
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In other words, a topological space is (completely) metrizable if and only if it is homeomorphic to
a (complete) metric space (see [Wil70, p. 176]). Occasionally, the term topologically complete is
used instead of completely metrizable, see e.g. [Sin19, Definition 10.1.3, p. 220]. A simple exam-
ple of a completely metrizable space is given by the interval (0,1): Endowed with the standard
Euclidean metric d of R, the space ((0,1), d) is obviously incomplete; However, via the mapping
x z→ tan(πx − π

2 ), the topological space ((0,1),Td∣(0,1)) is homeomorphic to the space (R,Td),
which is complete as a metric space (see [Wil70, p. 176]).
For the sake of readability, no exact distinction between a metrizable space and the corresponding
metric space is made if no misunderstanding is to be suspected.

In order to switch the focus to the situation of Q(G), is is trivial to observe that the topological
space Q(G) is metrizable due to the fact that the metric space (Q(G), dsup) is considered in this
thesis. Theorem 2.3.3 states that Q(G) is incomplete, thus the question raises whether Q(G)
is completely metrizable. Furthermore, due to the fact that for G ∈ JD, Q(G) is separable
(Theorem 3.1.4) and a topological group (Proposition 1.3.3(ii)), this question is equivalent to
asking for whether Q(G) is a Polish group. In view of this, consider the following mapping:

dsym ∶ Q(G) ×Q(G)Ð→ R, (f, g)z→ dsym(f, g) ∶= dsup(f, g) + dsup(f−1, g−1) (2.12)

The mapping dsym is easily seen to be a metric on Q(G) (see also [Kec95, p. 58]), called the
symmetric supremum5. Unlike the supremum metric dsup, the symmetric supremum is not
right–invariant anymore, i.e. dsym is no isometry with respect to right multiplication in Q(G).
However, dsym is isometric with respect to inversion, as follows immediately from (2.12). Obvi-
ously, the metric dsym can (and will in the following) be considered on the extended space Q(G)
as well. More generally, the metric dsym can be considered on any homeomorphism group H(X)
of a compact metric space (X,d), i.e.

dsym(f, g) = dsup(f, g) + dsup(f−1, g−1) for f, g ∈H(X)

where the supremum metric is of course induced by the given metric d, see e.g. [Mel16, p. 100]
or [Ros08, p. 350]. On Q(G), the metric dsym now gives rise to consider the space (Q(G), dsym).
A first important observation to be made in this regard is stated in

Lemma 2.5.2.
For G ∈ JD, the spaces (Q(G), dsup) and (Q(G), dsym) are homeomorphic.

Proof. Trivially, the claimed homeomorphism will be given by the identity mapping id = idQ(G).
Let (fn)n∈N be a sequence in Q(G) converging to f ∈ Q(G) with respect to the symmetric
supremum dsym. Then clearly

dsup(fn, f) ≤ dsym(fn, f)
n→+∞Ð→ 0

hence id is continuous in the one direction6. In the other direction, let (fn)n converge to f
with respect to dsup. Since Q(G) is a topological group due to G ∈ JD, inversion on Q(G) is
continuous, thus f−1

n converges to f−1 in the space (Q(G), dsup) as well. This concludes in

dsym(fn, f) = dsup(fn, f) + dsup(f−1
n , f−1) n→+∞Ð→ 0

showing that id−1 = id is also continuous, and the claim follows.
5This terminology was chosen by the author of this thesis due to the apparent symmetry in (2.12) regarding

the supremum metric together with the mappings f and g and their inverses. Apart from this, to the best of the
author’s knowledge, this name does not seem to have been used in the respective mathematical literature so far.

6This observation is even independent of the domain G, i.e. it is irrelevant that G is a Jordan domain.
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The proof of Lemma 2.5.2 shows that the metrics dsup and dsym induce the same topology onQ(G),
a property that is sometimes called (topological) equivalence of metrics (see [Sin19, Definition
1.4.7, p. 21]). Now turning the focus towards Q(G), the statement of the Lemma 2.5.2 is in fact
a special case of the following result concerning Polish group structure of certain homeomorphism
groups (see [Kec95, Example 8, p. 60] and [Mel16, p. 100]):

Proposition 2.5.3.
Let (X,d) be a compact metric space. Then its homeomorphism group H(X) is a Polish group in
the uniform topology with compatible metric dsym. In particular, H(X) is a separable topological
group whose topology is (equivalently) induced by the supremum metric dsup.

Hence, the statement of Proposition 2.5.3 clearly applies to X = G for G ∈ JD. Consequently, via
the subspace topology, the set Q(G) ≤H(G) becomes a topological group as well in the topology
of uniform convergence (see e.g. [Hus66, p. 54] or [Sin19, p. 276]). In view of subgroups, Polish
groups possess certain structural hereditary properties, as stated in (see [Mel16, Theorem 2.16,
p. 95])

Proposition 2.5.4.
Let X be a Polish group and U ≤X be a subgroup of X (in the algebraic sense). Then U , endowed
with the subspace topology, is a Polish group if and only if U is closed in X.

These preparatory steps are now used in order to derive the following statements:

Theorem 2.5.5.
For G ∈ JD, the space Q(G) is not closed in H(G).
Proof. In the first place, the case G = D is considered, for which Corollary7 4.1.25 provides exactly
the claimed statement. The general case G ∈ JD follows via the extended conjugation mapping
Φ ∶H(D)Ð→H(G); to be more precise, the conformal mappings F ∶ GÐ→ D and its inverse F −1

in
Φ(f) = F−1 ○ f ○ F, f ∈ Q(D),

are extended (via Proposition 1.1.6) to the closures of G and D, respectively, thus yielding a
homeomorphic mapping Φ (see Theorem 2.1.2) between Q(D) and Q(G). Furthermore, since
F and F−1 are homeomorphisms (on either preimage set), the mapping Φ extends to a homeo-
morphism between H(D) and H(G). Since Q(D) is not closed in H(D), the corresponding
homeomorphic image Q(G) = Φ(Q(D)) is not closed in H(G) as well.

Corollary 2.5.6.
For G ∈ JD, the topological group Q(G) is not Polish in the uniform topology induced by dsym.

Proof. Proposition 2.5.3 implies that H(G) is in fact a Polish group in the uniform topology
by means of the symmetric supremum dsym. By Propositions 2.5.4 and 2.5.5, the topological
(sub)group Q(G) ≤H(G) is not Polish in the uniform topology, since it is not closed in H(G).

Remark 2.5.7.
(i) The statement of Corollary 2.5.6 can be interpreted as follows: For G ∈ JD, the topological

group Q(G) is no Polish group in the subspace topology of H(G), which is the uniform
topology. Consequently, the topological space Q(G) in the uniform topology is not Polish by
Definition 2.5.1(ii). In turn, this means by definition that Q(G) is either not separable or
not completely metrizable (or both). But since Q(G) is a separable space – this follows from
the proof of Theorem 3.1.4 (and the fact that dsup and dsym both induce the same topology)
– the complete metrizability must be violated. Hence, every metric defined on Q(G) that
induces the uniform topology will inevitably result in an incomplete metric space.

7For reasons of readability and chapter arrangement of this thesis, the mentioned Corollary 4.1.25 is stated and
proved only after being used in the proof of Theorem 2.5.5.
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(ii) There exists a vast literature on Polish groups and related topics, see [Kec95, Chapter I,
Section 9], [Man16], [Mel16] and [Ros08] as well as the references contained therein. Among
many others, the following result – called the automatic continuity property – was shown
in this context by Rosendal (see [Ros08, Theorem 1.1, p. 351]):

Let M be a compact 2–manifold8 and π ∶H(M)Ð→H be a group homomorphism into a
separable topological group H. Then π is continuous when H(M) is endowed with the

topology of uniform9 convergence.

Furthermore, the cited statement of Rosendal was later shown by Mann to be valid for
compact manifolds of any (finite) dimension, possibly with boundary, see [Man16, Theorem
1.2, p. 3034]. This result combined with Proposition 2.5.3 yields for example that the
extended mapping Φ ∶H(D)Ð→H(G) – which is clearly a group isomorphism – in the proof
of Theorem 2.5.5 is automatically a homeomorphism without utilizing any further continuity
considerations.

8In this context, a manifold is always assumed to be a metric space, see [Man16, pp. 3035–3036] and [Ros08, p.
354].

9Actually, the cited statement is formulated for the compact–open topology, but consider the abstract and the
remark on p. 350 in [Ros08].
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Chapter 3

Topological properties of Q(G)

This chapter is concerned with various topological properties of the space Q(G) under the gen-
eral prerequisite that the underlying domain G ⫋ C is bounded and simply connected. Hence,
throughout the current chapter, G will always refer to a bounded and simply connected domain
in C, unless the contrary is explicitly stated.

Many of the results to be shown in this chapter are formulated for the class of domains G
possessing sufficiently well–behaved boundary structure, in particular for the “most regular” case
G ∈ JD, or – more generally – domains with solely prime ends of the first kind, i.e. P(G) = P1(G).
As will become clear, numerous of the presented results are similar or even equivalent to the case
of Σ(G) presented in Section 1.2, but also striking differences will become evident, e.g. regarding
local compactness of Q(G). Moreover, some of the results to be presented yield immediate
conclusions and applications for Σ(G), for example compactness criteria for certain subsets of
Q(G). In greater detail, the following topological properties of Q(G) will be treated in the current
chapter:

(1) Section 3.1 is concerned with the question for when the topological space Q(G) is separa-
ble. Using a helpful statement on the hereditary property of separability in the context of
metric spaces, one necessary and one sufficient condition is derived, thereby establishing the
analogous characterization of separability for Q(G) as it was found for the (sub)space Σ(G).

(2) Section 3.2 of the current chapter treats the question for the existence of dense subsets and
the discreteness of Q(G), providing an answer to this question in Theorem 3.2.5.

(3) The Baire space property and local compactness of the space Q(G) are the subjects of in-
vestigation in Section 3.3. Except for the “regular case” of G having only prime ends of
the first kind, local compactness used to be challenging to identify for the spaces Σ(G). By
examining the topological properties of the subsets QK(G) regarding their inner points, a
terminal answer can be given for local compactness and the Baire space property of Q(G).

(4) Utilizing the continuous dependence of solutions of the Beltrami equation on certain parame-
ter values stated in Proposition 1.1.5, the path–connectedness of the space Q(G) for P(G) =
P1(G) is established in Section 3.4. Moreover, a certain “transfer” of path–connectedness
from the subspaces QK(G) for K > 1 to the ambient space Q(G) is shown.

(5) The Section 3.5 is then concerned with compact subsets of Q(G) and the related concept of
σ–compactness. One necessary and one sufficient condition for M ⫋ Q(G) to be compact are
derived. Moreover, a compactification procedure related to the subsets QK(G) is shown, and
the σ–compactness of Q(G) is proved. All of these results are subject to the regularization
assumptions G ∈ JD or P(G) = P1(G).

(6) Finally, Section 3.6 focuses on multiply connected domains and several of the before–mentioned
topological properties of the corresponding quasiconformal automorphism groups.
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3.1 Separability
A separable space may be thought of being “small” from a certain topological point of view. One
particularly useful property in the context of separable metric spaces is that the space’s dense
subsets are passed through to subspaces (see e.g. [Wil70, p. 114]):

Proposition 3.1.1.
If (X,d) is a separable metric space and A ⊆X, then the subspace (A,d∣

A
) is separable as well.

Proposition 3.1.1 will be used several times throughout this thesis, therefore it is cited as a Propo-
sition in its own right for the sake of completeness, even though its statement is an elementary
result of General Topology.

3.1.1 Necessary condition

Proposition 1.2.1(iii) states that separability of the metric space Σ(G) is equivalent to G pos-
sessing solely prime ends of the first kind. This knowledge combined with Proposition 3.1.1
immediately yields (see also [BL23, Theorem 6])

Theorem 3.1.2.
If Q(G) is separable, then P(G) = P1(G).

3.1.2 Sufficient condition

In order to derive a sufficient condition for the separability of Q(G), the following result related
to Functional Analysis and General Topology will be helpful (see [Con90, Theorem 6.6, p. 140]):

Proposition 3.1.3.
Let X be a completely regular topological space and denote by Cb(X) the Banach space of all
bounded continuous (real– or complex–valued) functions endowed with the supremum norm ∥ ⋅∥sup.
Then Cb(X) is separable if and only if X is a compact metric space.

Here, a topological space X is called completely regular if it is a Hausdorff space with the addi-
tional property that for every closed set A ⊆X and every point x ∈X/A, there exists a continuous
function f ∶ X Ð→ R such that f(x) = 1 and f ∣

A
≡ 0 (see [Sin19, Definition 8.3.1, p. 196]); a

completely regular space is occasionally also called a Tychonoff space. Metric spaces are always
completely regular, thus Proposition 3.1.3 applies to domains in C. The Banach space Cb(G)
contains Q(G) as a subset, hence the statement of Proposition 3.1.3 in combination with Propo-
sition 3.1.1 paves the way for deriving the announced sufficient separability criterion for Q(G)
(see also [BL23, Theorem 6]):

Theorem 3.1.4.
If G has only prime ends of the first kind, then Q(G) is separable.

Proof. First, the case G = D will be treated. By Proposition 1.1.6, each f ∈ Q(D) extends
homeomorphically to D, therefore Q(D) embeds into C(D) via Q(D) (see Definition 1.1.7). Since
D is a compact metric space, Proposition 3.1.3 gives that C(D) = Cb(D) is separable. Due to
Q(D) ⫋ C(D), Proposition 3.1.1 implies that the metric subspace Q(D) is separable. Now the
separability of Q(D) can be concluded by restricting each extended mapping f ∈ Q(D) back to
D. In the general case for G with P(G) = P1(G), the separability of Q(G) follows from Theorem
2.1.2, since Q(G) is the continuous image under Φ of the separable space Q(D).

Remark 3.1.5.
The combination of the statements of Theorem 3.1.2 and Theorem 3.1.4 yields exactly the same
characterization for the separability of Q(G) as it was found for Σ(G) by Volynec in [Vol92], see
Proposition 1.2.1(iii).
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Since the theoretical question for the occurrence of separability of Q(G) is answered in its entirety
by Theorems 3.1.2 and 3.1.4, the more constructive question for concrete countable subsets lying
dense in the corresponding quasiconformal automorphism groups arises. In the conformal special
case, i.e. for Σ(G), this question can be answered fairly easily: The space Σ(D) is clearly separable
(see Proposition 1.2.1(iii)), and a concrete countable dense subset is given by

S = {D ∋ z z→ eiα
z − a
1 − az ∣ α ∈ [0,2π] ∩Q, a ∈ D ∩ (Q + iQ)} ⫋ Σ(D)

which is ultimately due to Proposition 1.1.10 combined with the fact that Q is countable and
dense in R. A countable dense subset for Σ(G) with P(G) = P1(G) is then given by the image of
S under the (restriction of the) conjugation mapping Φ ∶ Σ(D)Ð→ Σ(G) (see Proposition 2.1.1).
As for the situation of Q(G), this approach is not possible since no explicit countable dense subset
of Q(D) is known, leading to ask the

Question 3.1.6.
For G with solely prime ends of the first kind, what are the dense countable subsets of Q(G)?

3.2 Discreteness and dense subsets

This section is concerned with one of the central questions Gaier studied in his paper [Gai84]
for Σ(G), namely for discreteness of the spaces under consideration. In this regard, approxi-
mation results for quasiconformal mappings are applied and dense subsets of quasiconformal
automorphism groups will be studied.

3.2.1 Discreteness in Q(G)

The following result characterizes the discreteness of Q(G) by using its group structure (see
[Bie17, Theorem 2.52, p. 80]):

Proposition 3.2.1.
The space Q(G) is discrete if and only if idG is an isolated element in Q(G), i.e. there exists
ϵ > 0 such that Q(G) ∩Bϵ(idG) = {idG}, where Bϵ(idG) ∶= {f ∈ Q(G) ∣ dsup(idG, f) < ϵ} denotes
the open ϵ–ball about idG in Q(G).

The statement of Proposition 3.2.1 is of course also valid in the subspace Σ(G). The following
result is an first necessary condition for Q(G) in order to be discrete:

Lemma 3.2.2.
If Q(G) is a discrete space, then Σ(G) is also discrete.

Proof. By Proposition 3.2.1, the identity mapping is isolated in Q(G). In particular, there exists
an open ball around idG containing no non–identity conformal automorphisms. Hence, Σ(G) is
discrete as well.

Discreteness of Σ(G) was studied by several authors, see e.g. [Gai84, Satz 7b, p. 237] and [Sch86,
Corollary, p. 202], hence – similar to the situation concerning local compactness in Q(G), see
Theorem 3.3.1 – the statement of Lemma 3.2.2 provides a simple but effective tool in order to
decide whether Q(G) can be discrete. For example, it is immediately clear that Q(G) is not
discrete if P(G) = P1(G).
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3.2.2 Diffeomorphic approximation of quasiconformal mappings

In the remainder of the current section, the following classical notions will be utilized: Let
G,G′ ⊆ C be domains. A homeomorphism f ∶ G Ð→ G′ is called (continuously) differentiable at
z ∈ G if the real and imaginary parts of f are (continuously) differentiable at z in the common sense
(see [LV73, Section 1.6, p. 9]). A diffeomorphism is a (orientation–preserving) homeomorphism
f ∶ G Ð→ G′ such that both, f and its inverse mapping f−1, are continuously differentiable
throughout their respective domains (see [Leh87, Section 3.1, p. 18]). A diffeomorphism f is
called C∞–diffeomorphism if f and its inverse f−1 are differentiable infinitely often. Denote by

Diff∞(G) ∶= {f ∶ GÐ→ G ∣ f is a C∞–diffeomorphism of G onto itself } (3.1)

the set of all C∞–diffeomorphisms of G onto itself, i.e. the diffeomorphism group of G. The
following remarkable result of Kiikka is concerned with the approximation of quasiconformal
mappings by C∞–diffeomorphisms which are at the same time quasiconformal mappings (see
[Kii83, Theorem 1, p. 252]):

Proposition 3.2.3.
Let G,G′ ⊆ C be domains and let f ∶ G Ð→ G′ be a K–quasiconformal mapping. Furthermore,
suppose ϵ ∶ G Ð→ (0,+∞) is continuous. Then there exists K̃ ≥ 1 and a K̃–quasiconformal
C∞–diffeomorphism f̃ ∶ GÐ→ G′ such that ∣f(z) − f̃(z)∣ < ϵ(z) for every z ∈ G.

Remark 3.2.4.
The formulation of Proposition 3.2.3 is already adapted to the case of quasiconformal mappings
in C. The original statement in Kiikka’s paper [Kii83] deals with the situation of quasiconformal
mappings in the real Euclidean spaces R2 ≅ C and R3. In the case of R2, however, the defi-
nition of quasiconformality is equivalent to the usual definition for this class of mappings in C
given in Definition 1.1.1. Furthermore, the original statement in Kiikka’s paper uses a somewhat
strange “order” of prerequisites: First, she fixes a maximal dilatation K ≥ 1, and then claims
the existence of a corresponding number K̃ ≥ 1. Afterwards, she specifies the domains G,G′, the
K–quasiconformal mapping f ∶ G Ð→ G′ and the continuous mapping ϵ ∶ G Ð→ (0,+∞), and
not until then the existence of the quasiconformal C∞–mapping f̃ is announced. This type of
formulation is a bit misleading, since of course the domains G and G′ as well as the mapping ϵ
are by no means related to the fixture of a maximal dilatation K, the corresponding mapping f or
the existence of another maximal dilatation K̃. Therefore, the formulation given in Proposition
3.2.3 was chosen for this thesis.

3.2.3 Denseness of C∞Q(G) in Q(G) and application to quasiregular mappings

In view of Q(G), the following central result can be concluded from Kiikka’s above–mentioned
approximation statement in Proposition 3.2.3:

Theorem 3.2.5.
Let G ⊆ C be a bounded, simply connected domain. Then the set

C∞Q(G) ∶= Q(G) ∩Diff∞(G) (3.2)

is dense in the space Q(G).

Proof. Let f ∈ Q(G) and ϵ > 0. The constant mapping

ϵ̃ ∶ GÐ→ (0,+∞), z z→ ϵ̃(z) ∶= ϵ
2
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is clearly continuous. By Proposition 3.2.3, there exists a number K̃ ≥ 1 and a K̃–quasiconformal
homeomorphism f̃ ∈ Q(G) which is at the same time a C∞–diffeomorphism satisfying

∣f(z) − f̃(z)∣ < ϵ̃(z) = ϵ
2

for all z ∈ G. In particular, it is f̃ ∈ C∞Q(G). Switching to the supremum over all z ∈ G yields

sup
z∈G
∣f(z) − f̃(z)∣ = dsup(f, f̃) ≤

ϵ

2
< ϵ

This implies that the open ball Bϵ(f) about f in Q(G) contains an element of C∞Q(G), namely
f̃ , which is equivalent to the denseness of this set in the space Q(G).

This result now immediately implies (see also [BL23, Theorem 12])

Corollary 3.2.6 (Q(G) is never discrete).
The identity mapping idG is never isolated in Q(G). In particular, Q(G) is never discrete for
every bounded, simply connected domain G ⫋ C.

Proof. Let f ∈ Q(G). By Theorem 3.2.5 there exists a sequence (f̃n)n∈N ⊆ C∞Q(G) of quasi-
conformal C∞–diffeomorphisms of G converging uniformly on G to f ; without loss of generality,
assume that f itself is not a C∞–diffeomorphism, for otherwise the sequence (f̃n)n can be chosen
(eventually) constant. Thus the sequence (f̃n)n is not (eventually) constant. By the isometry of
right multiplication in Q(G) (see Proposition 1.3.6), the sequence (f̃n ○ f−1)n ⊆ Q(G) converges
uniformly on G to the identity mapping idG:

dsup(f̃n ○ f−1, idG) = dsup(f̃n, f)
n→∞Ð→ 0

Therefore idG is not isolated in Q(G). Proposition 3.2.1 yields that Q(G) is not discrete.

Remark 3.2.7.
(i) In the results of the current subsection, actually no restrictions were made concerning the

connectivity or the boundary of the domain G except for the proof of Corollary 3.2.6, where
the dsup–isometry of right multiplication in Q(G) was used – but this property does not
depend on the quasiconformality of the elements of Q(G), and is valid for arbitrary elements
of H(G), as can be seen as in [Gai84, Proof of Hilfssatz 4, p. 234]. Thus, the results of
the current subsection are not restricted to simply connected domains and their boundary
regularity. This is a somewhat unexpected discovery when considering the corresponding
situation in the conformal case. Among other results for Σ(G), it is known that

• Σ(G) is always finite if G has connectivity ≥ 3, and is therefore always discrete, see
[Gai84, § 4, Bemerkung 2];

• Σ(G) is discrete if G is a so–called “comb domain of the first kind”, see [Gai84, Satz
9, p. 254].

Thus, domains of the above–mentioned types give concrete examples for the situation that the
metric (sub)space Σ(G) is discrete, whereas the metric (super)space Q(G) is not discrete.
Furthermore, Corollary 3.2.6 states that the situation described in Lemma 3.2.2 can in fact
never occur – in other words, this necessary condition is actually no condition at all.

(ii) In a certain sense, Corollary 3.2.6 sets the final point to the problem possed by Gaier in
[Gai84, p. 227] of whether Σ(G) is always non–discrete. As already shown by Gaier himself,
the space Σ(G) can be discrete ([Gai84, Satz 9, p. 254]), therefore his original question
stated in the conformal setting is surely to be answered negatively. However, Corollary 3.2.6
demonstrates that in the quasiconformal setting, this situation cannot occur - the space Q(G)
is always capable of approximating idG arbitrarily well, regardless of the nature of ∂G.
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In order to give an application of the non–discreteness of Q(G) to quasiregular mappings in the
context of universality, a few notions and results are required:

(1) Denote by Hol(G) the set of all holomorphic functions on G. If Hol(G) is endowed with the
topology of locally uniform convergence, the setting in which it is usually studied in Complex
Analysis, it is a metrizable topological space.

(2) A mapping f ∈ C(G) is called quasiregular if it can be represented as f = g ○ ϕ with
g ∈ Hol(G), g /≡ const., and ϕ ∈ Q(G) (see [LV73, Definition, p. 239]1). Let QR(G) denote
the set of all quasiregular mappings on G.

(3) A function f ∈ Hol(G) is called universal if the set

{f ○ σ ∣ σ ∈ Σ(G)}

is dense in Hol(G) w.r.t. locally uniform convergence. For basic information on universal
functions in C, see [Poh19, pp. 9–11] and the references cited therein.

(4) Classical results show that there exists a universal function for every simply connected domain
G in C, i.e. there is a function g∗ ∈ Hol(G) such that for every g ∈ Hol(G) there exists a
sequence (σn)n in Σ(G) such that g∗ ○ σn

n→∞Ð→ g locally uniformly in G.

Now let f ∈ QR(G) be quasiregular with f = g ○ϕ. Due to Corollary 3.2.6, there exists a sequence
(ϕn)n in Q(G) such that dsup(ϕn, ϕ)

n→∞Ð→ 0, and thus, in particular, ϕn converges locally uniformly
to ϕ in G. By (4), there exists a sequence (σn)n in Σ(G) with g⋆ ○ σn

n→∞Ð→ g locally uniformly in
G, where g∗ ∈ Hol(G) refers to a universal function on G. Using [RS02, Kompositionssatz 3.1.5,
p. 88], it follows that

g∗ ○ σn ○ ϕn
n→∞Ð→ g ○ ϕ = f

locally uniformly in G as well (after possibly switching to a subsequence of (σn)n or (ϕn)n,
respectively). Clearly, it is ψn ∶= σn ○ ϕn ∈ Q(G) for each n ∈ N, therefore the sequence (g∗ ○ψn)n
in QR(G) converges to f locally uniformly. Hence, one finally arives at

Corollary 3.2.8.
For every bounded, simply connected domain G in C, there exists g∗ ∈ Hol(G) such that the set
{g∗ ○ ψ ∣ ψ ∈ Q(G)} is dense in QR(G) in the topology of locally uniform convergence.

3.3 Baire space property and local compactness
This section considers two interesting aspects concerning the topology of Q(G): The Baire space
property and local compactness. Local compactness is interesting to ask for Q(G) inasmuch as the
quasiconformal automorphism groups are never compact, independent of the underlying domain
G (Proposition 1.3.1(i)). When examining the corresponding situation in Σ(G) concerning local
compactness and the development of its characterization (see especially [Lau95] and [Lau99]),
one might be led to the thought that deriving according results for Q(G) may be a difficult task.
However, by studying the topological properties of the subspaces QK(G), a general answer for
the local compactness of the space Q(G) can be given – among other results to be presented
in this section. Asking for the Baire space property, i.e. whether Q(G) can be considered a
“thick” set from a certain topological point of view (see [Wil70, p. 185]), is interesting due to the
incompleteness of Q(G) as shown in the previous chapter.

Similar to the case of separability (see Theorem 3.1.2), one simple necessary condition for Q(G)
being locally compact may easily be derived by utilizing the knowledge on the corresponding
situation in Σ(G):

1Without loss of generality, one may assume ϕ ∈ Q(G).
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Theorem 3.3.1.
If Q(G) is locally compact, then Σ(G) is locally compact as well.

Proof. Assume Q(G) is locally compact. Proposition 1.3.1(ii) gives that Σ(G) is closed in Q(G).
By a well–known result of General Topology, a closed subspace of a locally compact topological
space is itself locally compact (see e.g. [Kel75, p. 146]).

3.3.1 Empty interior of the subsets QK(G) and meagerness of Q(G)

In order to draw conclusions on the topological structure of Q(G) concerning the Baire space
property, a certain knowledge about the subspaces QK(G) is required. Therefore, consider the
square

R ∶= {z = x + iy ∈ C ∣ 0 < x, y < 1} ,

and the diagonal sequence (fm,nm)m∈N from Q(R) as defined in Example 1.1.11. This sequence
has unbounded maximal dilatation, i.e. K(fm,nm)Ð→ +∞ for m→ +∞, even though it converges
uniformly on R to idR. Furthermore, it is fm,nm = id∂R on ∂R for all m ∈ N by construction, see
[LV73, p. 186]. Let G ⫋ C be an arbitrary bounded, simply connected domain in C with fixed
inner point z0 ∈ G. Via conformal equivalence, the square R corresponds to an (open) square
R̃ ⫋ G centered at z0 (with sides parallel to the coordinate axes) that is completely contained in
G. The mappings fm,nm ∈ Q(R) are consequently transferred to mappings vm ∈ Q(R̃),m ∈ N, as
well. For z ∈ G, consider the mappings

hm(z) ∶=
⎧⎪⎪⎨⎪⎪⎩

vm(z), z ∈ R̃,
idG(z), z ∈ G/R̃

which yields a sequence of quasiconformal automorphisms of G, i.e. hm ∈ Q(G) for all m ∈ N. By
construction2, the sequence hm converges uniformly to idG on G and K(hm) =K(fm,nm)Ð→ +∞
as m→ +∞ (see [BF14, Property P2, p. 31]).

Next, let g ∈ Q(G) be an arbitrary element of Q(G), then g ∈ QK(G) for some K ∈ [1,+∞) ∩N
by the countable representation

Q(G) =
∞
⋃
K=1

QK(G),

see (0.6). Due to the dsup–isometry of right multiplication in Q(G) (see Proposition 1.3.6), it
follows that

dsup(hm ○ g, g) = dsup(hm, idG) < ϵ (3.3)

for every ϵ > 0 and sufficiently large indices m ≥ N = N(ϵ) ∈ N. The maximal dilatation of the
composed mappings hm ○ g is also unbounded as m→ +∞, as can be seen by considering

K(hm) =K(hm ○ g ○ g−1) ≤K(hm ○ g)K(g)

and using K(g−1) =K(g) < +∞. This leads to the following result:

Lemma 3.3.2.
Let ϵ > 0 and g ∈ Q(G). Then the open ϵ–ball Bϵ(g) about g contains elements with arbitrarily
large maximal dilatations, i.e. Bϵ(g) /⊆ QK(G) for each fixed K ∈ N. In particular, the subsets
QK(G) have empty interior.

2This idea is similar to the construction used in the incompleteness proof of Q(G), see Theorem 2.3.3.
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Moreover, since each subset QK(G) is closed in Q(G) (see Theorem 2.2.1), the countable repre-
sentation of the space Q(G) by the subsets QK(G) yields
Corollary 3.3.3.
Each set QK(G) is nowhere dense in Q(G). In particular, the topological space Q(G) is meager,
i.e. of the first category (in itself).

By combining the statement of Corollary 3.3.3 with the fact that a Baire space is always a set of
the second category (see e.g. [Sin19, p. 231]), one arrives at the following result:
Theorem 3.3.4.
The topological space Q(G) is never a Baire space.

Remark 3.3.5.
(i) The first statement of Corollary 3.3.3 seems quite surprising at first glance when recalling

that an equivalent formulation for QK(G) being nowhere dense in Q(G) can be given by
considering its complement (see e.g. [Sin19, p. 230]):

QK(G) is nowhere dense in Q(G) ⇐⇒ Q(G)/QK(G) is dense in Q(G).
Hence, the complement set

QK(G)C = {f ∈ Q(G) ∣K(f) >K}

is dense and open in Q(G) for every fixed K ∈ [1,+∞). By analyzing the derivation of
Lemma 3.3.2, this result becomes more clear, since each open ϵ–ball about g ∈ Q(G) contains
infinitely many elements belonging to QK(G)C, see (3.3).

(ii) Furthermore, the reasoning in (i) provides:
• Another way of seeing that Q(G) is no Baire space: As seen above, each subset QK(G)C

is open and dense in Q(G). However, for K ∈ N, the countable intersection
∞
⋂
K=1

QK(G)C

is actually empty, since the maximal dilatation of an element of this intersection would
be larger than any finite natural number, thus would be infinite. But if Q(G) were a
Baire space, this intersection would necessarily have to be dense in Q(G);

• Another proof that Q(G) is never discrete (as already shown in Corollary 3.2.6), since
the subsets QK(G)C are dense in Q(G).

3.3.2 Conclusions on local compactness and complete metrizability of Q(G)

Due to the far–reaching consequences of the Baire space concept in topology, the statement of
Theorem 3.3.4 allows for deriving further, quite interesting properties: On the one hand, the space
Q(G) is Hausdorff, since its topology is induced by the dsup metric. A well–known statement
on Baire spaces is that a locally compact Hausdorff topological space is a Baire space (see e.g.
[Kec95, Theorem (8.4), p. 41]). The contraposition of this statement in combination with the
Hausdorff property of Q(G) yields
Theorem 3.3.6.
The topological space Q(G) is never locally compact.

On the other hand, another classical result on Baire spaces is that completely metrizable topo-
logical spaces are Baire. Considering the corresponding contraposition gives
Corollary 3.3.7.
The topological space Q(G) is not completely metrizable, i.e. there exists no metric that induces
the uniform topology on Q(G) and turns it into a complete metric space. In particular, the space
Q(G) is never Polish.
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3.4 Path–connectedness

3.4.1 Sufficient condition

This subsection is intended to provide a proof of the following statement (see also [BL23, Theorem
10]):

Theorem 3.4.1.
Let G be a domain having only prime ends of the first kind. Then Q(G) is path–connected.

This statement is the corresponding counterpart for Q(G) to a result of Schmieder3 concerning
the situation in Σ(G), see [Sch86] and Proposition 1.2.1(iv). For the proof of Theorem 3.4.1,
the following Lemma about paths in Q(G) between quasiconformal automorphisms and their
post–compositions with conformal mappings will be helpful (see also [BL23, Lemma 7]):

Lemma 3.4.2.
Let G be a domain having only prime ends of the first kind. Then for every f ∈ Q(G) and every
σ ∈ Σ(G), the mappings f and σ ○ f can be joined by a path in Q(G).

Proof. By Proposition 1.2.1(iv), Σ(G) is path–connected for P(G) = P1(G), therefore idG and σ
can be joined by a path in Σ(G), say γ ∶ [0,1]Ð→ Σ(G). Thus the mapping

γ̃ ∶ [0,1]Ð→ Q(G), tz→ γ̃(t) ∶= γ(t) ○ f

clearly connects f and σ ○ f in Q(G) and is continuous, for let tn Ð→ t in [0,1], then

dsup(γ̃(tn), γ̃(t)) = dsup(γ(tn) ○ f, γ(t) ○ f) = dsup(γ(tn), γ(t))Ð→ 0

as n Ð→ ∞ by the continuity of γ and the isometry property of right multiplication in Q(G)
(Proposition 1.3.6). Hence γ̃ is a path in Q(G) joining f and σ ○ f .

Proof of Theorem 3.4.1. The proof will be split in two parts: First, the case G = D will be con-
sidered. Afterwards the conjugation mapping Φ ∶ Q(D) Ð→ Q(G) will provide the proof of the
claimed statement.

Let f, g ∈ Q(D) with complex dilatations µf , µg ∈ BL∞(D). Without loss of generality, assume
that µf /= µg; otherwise, the claim follows from Lemma 3.4.2, since then g = σ ○ f for some
σ ∈ Σ(D) by the Measurable Riemann Mapping Theorem 1.1.2(II). For a fixed z∗ ∈ D, the
following normalization according to Definition 1.1.3 will be introduced: By the classical Riemann
Mapping Theorem, there exists a uniquely defined conformal automorphism σf ∈ Σ(D) such that
(σf ○ f)(0) = 0 and (σf ○ f)(z∗) ∈ R+, and the complex dilatation remains unchanged in this
normalization process, i.e. µσf○f = µf almost everywhere in D (the same normalization is applied
to g with σg ∈ Σ(D)). Lemma 3.4.2 provides paths in Q(D) joining f with σf ○f and g with σg ○g,
respectively, say γf ∶ [0,1]Ð→ Q(D) and γg ∶ [0,1]Ð→ Q(D). Next, let Λ ⊆ R be an open interval
containing [0,1], i.e. Λ = (−a,1 + a) for some fixed a > 0. In L∞(D), consider the straight line

γ ∶ [0,1]Ð→ L∞(D), tz→ γ(t) ∶= tµg + (1 − t)µf

which clearly is a path in BL∞(D) joining the complex dilatations of f and g (any open ball in a
normed vector space is convex, thus γ(t) ∈ BL∞(D) for every t ∈ [0,1]). Construct a new path Γ

3Actually, this result on the path–connectedness for Σ(G) in the case P(G) = P1(G) was already implicitly
stated in Gaier’s work in the proof of [Gai84, Satz 7a, p. 237], even though he did not mention it.
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in BL∞(D) as follows:

Γ ∶ ΛÐ→ BL∞(D), tz→ Γ(t) ∶= µt ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µf , t ∈ (−a,0)
γ(t), t ∈ [0,1]
µg, t ∈ (1,1 + a)

Hence Γ is a path in BL∞(D) joining µf and µg, consisting of two constant pieces and a non–
constant part which is γ. Since both complex dilatations are elements of BL∞(D), there exists
a number k < 1 such that ∥µt∥L∞(D) ≤ k for every t ∈ Λ. Consequently, the family (µt)t∈Λ
depends continuously on t and has uniformly bounded L∞–norm. Apply the Measurable Riemann
Mapping Theorem 1.1.2 in order to find for each t ∈ Λ the unique normalized ϕt ∈ Q(D) whose
complex dilatation coincides with µt almost everywhere in D. By construction of Γ, it is ϕt = σf ○f
for t ∈ (−a,0) and ϕt = σg ○ g for t ∈ (1,1 + a). This process induces a mapping

H ∶ ΛÐ→ Q(D), tz→H(t) ∶= ϕt

and (ϕt)t∈Λ ⊆ Q(D) is a family of K–quasiconformal automorphisms of D for some finite K due to
the uniform boundedness of ∥µt∥L∞(D) for all t ∈ Λ. Now, for each z ∈ D, consider the evaluation
of H(t) = ϕt at z, i.e. ϕt(z) ∈ D. By Proposition 1.1.5, this pointwise evaluation is continuous,
i.e. if tÐ→ t0 in Λ, then

∣H(t)(z) −H(t0)(z)∣ = ∣ϕt(z) − ϕt0(z)∣Ð→ 0

Since D is a Jordan domain, it is finitely connected on the boundary, and the limit mapping ϕt0
is a homeomorphism. Hence the Näkki–Palka Theorem 1.1.10 is applicable, implying that the
mapping H is continuous not only with respect to the topology of pointwise convergence, but
also with respect to the topology of uniform convergence on Q(D). This yields that H (when
restricted to [0,1]) is a path in Q(D) joining H(0) = σf ○ f and H(1) = σg ○ g. The construction
carried out and described above is schematically visualized in Figure 3.1.
Now the situation is as follows: The paths γf and γg join f and g with the corresponding
normalized mappings σf ○ f and σg ○ g in Q(D), respectively. Furthermore, as seen above, the
path H joins σf ○f and σg ○g in Q(D). Therefore, combining these three paths in an appropriate
manner yields the desired result: Reparametrize the preimage domains of γf and γg to, say,
[−a − 1,−a] and [1 + a,2 + a], respectively, and consider

[−a − 1,−a] ∪Λ ∪ [1 + a,2 + a] = [−a − 1,2 + a] ∋ tz→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γf(t), t ∈ [−a − 1,−a]
H(t), t ∈ Λ
γg(3 + 2a − t), t ∈ [1 + a,2 + a]

(3.4)

This is a path in Q(D) joining the mappings f and g (in (3.4), the path γg needs to be traversed
in opposite direction in order to start at the mapping σg ○ g and to end at g; thus the term
γg(3 + 2a − t) is to be used for t ∈ [1 + a,2 + a]). Hence Q(D) is path–connected.

For an arbitrary domain G having only prime ends of the first kind, the conjugation mapping
Φ ∶ Q(D)Ð→ Q(G) is continuous by Theorem 2.1.2. Thus Q(G) is path–connected as well.

Remark 3.4.3.
(i) The statement of Theorem 3.4.1 immediately implies

The space Q(G) is connected if G has only prime ends of the first kind.

which is the quasiconformal version of Gaier’s result stated in [Gai84, Satz 7a, p. 237].
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Figure 3.1: Schematic overview of the first part of the proof of Theorem 3.4.1.

(ii) As for the topological property of path–connectedness of Q(G), Theorem 3.4.1 provides a
significant sufficient criterion, which at the same time represents the quasiconformal coun-
terpart to Schmieder’s result for the conformal automorphism groups mentioned at the be-
ginning of this section. However, the question for a necessary criterion in order for Q(G) to
be path–connected must be left unanswered. One reason why no “easy” necessary criterion
in terms of

“Q(G) path–connected Ô⇒ Σ(G) path–connected”
seems to lie in reach is due to the special nature of path–connectedness, and more generally
of the topological notion of connectedness. Both of these properties are not hereditary, i.e.
they are in general not passed from a topological space to any of its subspaces, even if these
subspaces have additional properties such as being closed in the ambient space (see e.g.
[Sin19, p. 53]); this behaviour stands in sharp contrast to the corresponding situation of
separable metric space as stated in Proposition 3.1.1.

The statement of Theorem 3.4.1 and the discussion in the previous remark immediately lead to
ask the

Question 3.4.4.
Is the requirement of G having only prime ends of the first kind also necessary in order for Q(G)
to be path–connected? What can be said about necessary conditions for connectedness of Q(G)?
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3.4.2 Propagation of path–connectedness from QK(G) to Q(G)

As stated in Remark 3.4.3(ii), (path–)connectedness is no hereditary topological property, i.e.
it is in general neither passed from a topological space to any of its subspaces, nor does the
(path–)connectedness of a subspace imply the corresponding property of the ambient superspace.
However, the following statement shows that in the case of Q(G), path–connectedness can in fact
be propagated from the subspace QK(G) to Q(G) under certain circumstances:

Theorem 3.4.5.
Suppose the group operation of Q(G) is continuous. If a subspace QK(G) is path–connected for
some K ∈ (1,+∞), then Q(G) is also path–connected, and all f, g ∈ Q(G) can be connected by a
composition of finitely many paths in QK(G). In particular, this is true for G ∈ JD.

Proof. By the factorization property of quasiconformal mappings (Proposition 1.1.4), the elements
f, g ∈ Q(G) can be written as

f = f1 ○ f2 ○ ⋯ ○ fN1 , g = g1 ○ g2 ○ ⋯ ○ gN2

with fj , gp ∈ QK(G) for all j, p and certain indices N1 = N1(f,K),N2 = N2(g,K) ∈ N. Without
loss of generality, one may assume N1 = N2, for if N1 < N2 (otherwise, switch the roles of f and
g), it is

f = f1 ○ f2 ○ ⋯ ○ fN1 ○ f̃N1+1 ○ f̃N1+2 ○ ⋯ ○ f̃N2

with f̃N1+q ∶= idG for all q = 1, . . . ,N2 −N1. Hence, it is N ∶= N1 = N2 and fq, gq ∈ QK(G) for all
q = 1, . . . ,N . Due to the path–connectedness of QK(G), there exist paths

γq ∶ [0,1]Ð→ QK(G)

connecting fq and gq in QK(G) for all q = 1, . . . ,N . Define the mapping

Γ ∶ [0,1]Ð→ Q(G), tz→ Γ(t) ∶= γ1(t) ○ γ2(t) ○ ⋯ ○ γN(t),

which is continuous by the continuity of the group operation in Q(G). Furthermore, it is

Γ(0) = γ1(0) ○ γ2(0) ○ ⋯ ○ γN(0) = f1 ○ f2 ○ ⋯ ○ fN = f

by construction, and likewise Γ(1) = g. Hence, Γ is a path in Q(G) connecting f and g, and
consequently, Q(G) is path–connected. Finally, if G ∈ JD, then Q(G) is a topological group
(Proposition 1.3.3(ii)), therefore the continuity of the group operation is fulfilled.

3.5 Compactness criteria and σ–compactness
Compact subsets of metric (or topological) spaces naturally represent interesting mathematical
objects, and the vast amount of results and concepts evolving around compactness impressively
show the importance of this notion. In this section, the focus lies on compact subsets of Q(G)
and criteria in order to decide whether a non–empty subset ∅ /=M ⫋ Q(G) is compact; the space
Q(G) itself is never compact (see Proposition 1.3.1(i)), therefore it suffices to consider proper
non–empty subsets.

3.5.1 A necessary compactness criterion: Uniformly bounded dilatation

For a non–empty subset ∅ /=M ⊆ Q(G) let

K(M) ∶= sup
f∈M

K(f) (3.5)

denote the maximal dilatation of M . Obviously, it is K(M) ∈ [1,+∞]. For certain compact
subsets of Q(G), this number will be finite, as it is shown in
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Example 3.5.1.
Let G = D and A ⫋ [1,+∞) be a compact interval. Consider the family

M = {D ∋ z z→ z∣z∣K−1 ∣K ∈ A} ⫋ Q(D)

of monomial–like radial stretchings in D (as introduced in Definition 2.3.1 and (2.3), respectively).
From [Bie17, Lemma 2.22, p. 58], it follows that the convergence of a sequence of monomial–
like radial stretchings (z∣z∣Kn−1)n in Q(D) is equivalent to the convergence of the corresponding
sequence of exponents (Kn)n in R. In view of this result, the compactness of the interval A
implies the compactness of the family M (and vice versa). Moreover, it is

K(M) =max
K∈A
{K} < +∞

The previous example gives rise to the conjecture that the maximal dilatation of a (non–empty)
compact subset of Q(G) is necessarily uniformly bounded from above, at least if certain ad-
ditional structural properties are given. A clever argument in [MNP98, p. 230], in which the
authors present a proof of a similar statement as the mentioned conjecture concerning so–called
“quasiconformally homogeneous” subsets of C, uses the following variant of the Baire Category
Theorem (see e.g. [RF10, Corollary 4, p. 212]):

Proposition 3.5.2 (Baire Category Theorem).
Let X be a complete metric space and and (Xn)n∈N a countable collection of closed subsets of X
with X =

∞
⋃
n=1

Xn. Then at least one of the subsets Xn has non–empty interior.

Inspired by the arguments in [MNP98, p. 230], this statement is utilized in order to prove the
following result, yielding the affirmative answer for compact subgroups of Q(G) to the conjecture
mentioned above for the case G ∈ JD (see also [BL23, Theorem 13]):

Theorem 3.5.3.
Let G ∈ JD and ∅ /=M ⊆ Q(G) be a compact subgroup. Then K(M) < +∞.

Proof. For n ∈ N, set Mn = {f ∈M ∣K(f) ≤ n}, then obviously

M =
∞
⋃
n=1

Mn

First of all, each subset Mn is closed in M by the following reasoning: Let (fj)j∈N ⊆ Mn be
convergent to f ∈ M . By definition, it is K(fj) ≤ n, and due to the general requirement of G
being bounded and simply connected, the Hurwitz–type Theorem 1.1.9 is applicable. Hence, the
limit mapping f is either constant or n–quasiconformal, but the first case cannot occur due to
f ∈M , thus f ∈Mn.
Now the non–empty and compact, thus complete metric space M can be expressed as the count-
able union of closed subsets. The Baire Category Theorem 3.5.2 yields that there is an index
N ∈ N such that the subset MN has non–empty interior in the subspace topology of M . Hence
there exists ϵ > 0 and a point f̂ ∈MN (the interior point) such that the intersection of the open
ϵ–ball U ∶= Bϵ(f̂) in Q(G) with M is open in the subspace topology of M and is contained in
MN , i.e.

f̂ ∈ U ∩M ⊆MN

For further usage, note that U is open in the ambient space Q(G), and it is K(f̂) ≤ N . Next, for
g ∈M , consider the mapping

Lg ∶ Q(G)Ð→ Q(G), hz→ Lg(h) ∶= g ○ f̂−1 ○ h
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which is the left multiplication in Q(G) with the mapping g○f̂−1. By construction, it is Lg(f̂) = g.
Furthermore, Q(G) is a topological group due to G ∈ JD by Proposition 1.3.3(ii), thus the
mapping Lg is a homeomorphism of Q(G) onto itself – in particular, Lg is an open mapping.
Hence the image of U under Lg is again open in Q(G) and g ∈ Lg(U). The situation described
so far is depicted in Figure 3.2.

Figure 3.2: The compact set M ⫋ Q(G) (in red) with the subset MN (in blue) together with the
interior point f̂ and its open neighborhood U . Moreover, the green dashed line denotes the image
of U under the left multiplication Lg in the topological group Q(G).

Furthermore, Lg(U) ∩M is open in the subspace topology of M , and in consequence the family

(Lg(U) ∩M)g∈M
is an open cover (in the subspace topology of M) of the compact space M , which by definition
yields a finite subcover: There exist elements g1, . . . , gm ∈M such that

Lg1(U) ∩M, . . . , Lgm(U) ∩M

cover M , as visualized in Figure 3.3. Hence, every f ∈M is contained in some open set Lgj(U)∩M
(in the subspace topology of M) and thus can be written as f = gj ○ f̂−1 ○h with h ∈ U ∩M ⊆MN .
This implies that the maximal dilatation of each of these elements satisfies

K(f) ≤K(gj) ⋅K(f̂−1) ⋅K(h) ≤ ( max
j=1,...,m

K(gj)) ⋅K(f̂) ⋅N ≤ ( max
j=1,...,m

K(gj)) ⋅N2 < +∞

by construction of the mapping Lg, the property K(f̂−1) =K(f̂) of quasiconformal mappings (see
e.g. [BF14, Property P1, p. 31]) and due to K(U ∩M) ≤ N (which holds since U ∩M ⊆MN ).

Remark 3.5.4.
As Example 1.1.11 shows, the statement of Theorem 3.5.3 cannot be strengthened to arbitrary
compact subsets of Q(G): Using the terminology of Example 1.1.11, the set {idR}∪{fm,nm ∣m ∈ N}
yields a compact subset of Q(R), but by construction has unbounded maximal dilatation.

3.5.2 A sufficient compactness criterion: Arzelà–Ascoli for Q(G)

In order to formulate a sufficient criterion for compactness in Q(G), it is helpful to recall that
Q(G) can canonically be interpreted as a subset of the Banach space Cb(G). By assuming the
additional requirement G ∈ JD, Proposition 1.1.6 yields that each f ∈ Q(G) extends homeomor-
phically to G, thus becoming an element of C(G) by means of Q(G) (see Definition 1.1.7). In
this situation, the following versions of the Theorem of Arzelà–Ascoli are applicable (see [RF10,
Arzelà–Ascoli Theorem and Theorem 3, pp. 208–209]):
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Figure 3.3: The compact set M ⫋ Q(G) (in red) is covered by the finitely many open subsets
Lgj(U) (in blue).

Proposition 3.5.5 (Arzelà–Ascoli).
Let X be a compact metric space.

(i) Let (fn)n∈N be a uniformly bounded, equicontinuous sequence of complex–valued4 functions
on X. Then (fn)n has a subsequence that converges uniformly on X to a continuous function
f on X.

(ii) Let M ⊆ C(X). Then M is compact if and only if M is closed in C(X), uniformly bounded
and equicontinuous.

In this context, a family of complex–valued mappings M ⊆ C(X) of a compact metric space
(X,d) is called uniformly equicontinuous if for every ϵ > 0 there exists a δ > 0 such that

∣f(x) − f(y)∣ < ϵ

holds for all x, y ∈ X with d(x, y) < δ and all f ∈ M (see [NP73, Section 2.1, p. 428] for
the Euclidean case and [RF10, p. 208] for compact metric spaces); occasionally, by irregular
nomenclature in the literature, this property is sometimes simply called equicontinuity. In view
of the situation at hand, it is X = G and M ⊆ Q(G), implying that the uniform boundedness
conditions in Proposition 3.5.5 are then automatically fulfilled. Hence, the remaining decisive
equicontinuity condition of M is to be studied. Näkki and Palka studied (uniform) equicontinuity
of quasiconformal mappings defined on domains in n–dimensional Euclidean spaces Rn and Rn

for n ≥ 2 in [NP73]. One of their main results is the following statement, which is formulated for
this thesis’ primarily studied case of quasiconformal mappings defined on domains in C ≅ R2 (see
[NP73, Theorem 3.1 + Remark 3.6(1), pp. 428–431]):

Proposition 3.5.6.
Let M be a family of K–quasiconformal mappings of a domain C /= G ∈ JD onto a domain G′.
Then M is uniformly equicontinuous if and only if each f ∈M can be extended to a continuous
mapping of G onto G′ and the set M(z) ∶= {f(z) ∣ f ∈M} is contained in a compact subset of G′
for some point z ∈ G.

Remark 3.5.7.
In Proposition 3.5.6, the requirement “M(z) is contained in a compact subset of G′ for some
point z ∈ G” can be replaced by several other equivalent statements, see [NP73, Remark 3.6(1), p.
431].

4In the cited version of the Arzelà–Ascoli Theorem in [RF10], real–valued functions are considered. However,
the statement of this theorem remains the same when complex–valued functions are focused, basically due to the
completeness of C; see e.g. [Con90, pp. 175–176], where the complex–valued case is included.
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Combining these preparatory results and notions, the following sufficient criterion for relative
compactness in Q(G) with G ∈ JD can now be established:

Theorem 3.5.8.
Let G ∈ JD and M ⊆ QK(G). Then M is relatively compact (i.e. the closure M in Q(G) is
compact) if

M(z) ∶= {f(z) ∣ f ∈M}
is contained in a compact subset of G for some point z ∈ G.

Proof. Since M(z) is contained in a compact subset of G for some z ∈ G and Proposition 1.1.6 is
applicable, all requirements of Näkki–Palka’s Proposition 3.5.6 are satisfied, implying that M is
uniformly equicontinuous. Now let (fn)n∈N ⊆M be a sequence in M , then by Theorem 3.5.5(i),
there exists a uniformly convergent subsequence (fnj)j on G with limit mapping f ∈ C(G),
which is also uniformly convergent when restricted to G (with limit mapping f ∣G). Due to
M ⊆ QK(G), the Hurwitz–type Theorem formulated in Proposition 1.1.9 is applicable, yielding
that (the restriction of) f is either a K–quasiconformal automorphism of G or a constant with
f ≡ c ∈ ∂G. The latter case cannot occur, for each fnj is bijective, thus f ∈ QK(G) and M is
relatively compact.

The Näkki–Palka Theorem cited in Proposition 3.5.6 may now be used in order to formulate the
announced “Arzelà–Ascoli–type Theorem” for Q(G) in the case G ∈ JD:

Corollary 3.5.9 (Arzelà–Ascoli for Q(G)).
Let G ∈ JD and M ⊆ QK(G). Then M is compact if and only if M is closed5 in C(G) and
M(z) = {f(z) ∣ f ∈M} is contained in a compact subset of G for some point z ∈ G.

Proof. Suppose M is compact, then (the set of extended mappings of) M is closed in C(G) and
equicontinuous by Proposition 3.5.5(ii). Hence Proposition 3.5.6 yields the claim.
Otherwise, assume that (the set of extended mappings of) M is closed in C(G) and M(z) is
contained in a compact subset of G for some z ∈ G. By Theorem 3.5.8, M is relatively compact,
and thus compact due to being closed in C(G).

An application of this Arzelà–Ascoli–type Theorem for Q(G) for the special case G = D will be
given in Remark 3.5.11, yielding a classical compactness result for certain subsets of Q(D).

3.5.3 A compactification procedure for QK(G)

In this subsection, the subspaces

QK(G) = {f ∈ Q(G) ∣K(f) ≤K}

for K ≥ 1 are considered once more. Theorem 2.2.1 shows that these subsets are always complete,
but never compact. However, a certain compactification procedure actually transforms the sets
QK(G) into compact subspaces of Q(G) for G ∈ JD, as will be demonstrated in the following.
To this end, the below–mentioned classical result on K–quasiconformal automorphisms of the
unit disk D fixing the origin will prove valuable (see e.g. [Ahl06, Theorem 1, p. 32]):

Proposition 3.5.10.
The set

QK,fix(D) ∶= {f ∈ QK(D) ∣ f(0) = 0} (3.6)

consisting of all K–quasiconformal automorphisms of D fixing the origin forms a compact subspace
of Q(D).

5More precisely, the homeomorphic extensions of the elements of M to G, assured by Proposition 1.1.6, are
referred to in this statement.
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Remark 3.5.11.
As an application, the Arzelà–Ascoli Theorem for QK(G), formulated in Corollary 3.5.9, contains
the statement of Proposition 3.5.10 as a special case for G = D, since in this situation {0} is a
compact subset of D and the Hurwitz–type Theorem for sequences of quasiconformal mappings
(Proposition 1.1.9) yields the closedness in C(D).

In view of Proposition 3.5.10, let

Qfix(D) ∶= ⋃
K≥1

QK,fix(D) (3.7)

and for f ∈ Q(D), consider the conformal unit disk automorphism

σf(z) ∶=
z − f(0)
1 − f(0)z

(z ∈ D)

This mapping σf ∈ Σ(D) is now utilized in order to define the following function on Q(D):

C ∶ Q(D)Ð→ Qfix(D), f z→ C(f) ∶= σf ○ f (3.8)

By construction, it is C(f)(0) = (σf ○f)(0) = 0 and K(C(f)) =K(f) for every f ∈ Q(D). Further
properties of C are studied in

Lemma 3.5.12.
The mapping C defined in (3.8) is continuous, surjective and idempotent (i.e. C(C(f)) = C(f)
for all f ∈ Q(D)). In particular, C is not injective.

Proof. In order to show continuity, let (fn)n∈N converge in Q(D) to f ∈ Q(D). The corresponding
mappings

σfn(z) =
z − fn(0)
1 − fn(0)z

converge pointwise in D to σf as n tends to infinity. Due to σfn ∈ Σ(D), it is K(σfn) = 1 for
all n ∈ N, thus Proposition 1.1.10 of Näkki–Palka is applicable, implying that the convergence of
(σfn)n to σf ∈ Σ(D) is not merely pointwise, but in fact uniform on D, i.e. σfn

n→∞Ð→ σf in Q(D).
Hence the mapping f z→ σf is continuous on Q(D). Furthermore, Q(D) is a topological group
according to Proposition 1.3.3(ii), yielding that the group multiplication is continuous. Thus the
sequence (C(fn))n = (σfn ○fn)n converges to the element C(f) = σf ○f , establishing the continuity
of the mapping C.

As for the surjectivity: Let h ∈ Qfix(D), then by definition, it is h(0) = 0. Choose an element
f ∈ Q(D) with µf = µh a.e. in D (such an f surely exists, namely f = σ○h for arbitrary σ ∈ Σ(D)).
The Measurable Riemann Mapping Theorem 1.1.2(II) implies h = σ̃ ○ f for some σ̃ ∈ Σ(D). It
follows that

C(σ̃ ○ f)(z) = (σσ̃○f ○ (σ̃ ○ f))(z) =
(σ̃ ○ f)(z) − (σ̃ ○ f)(0)
1 − (σ̃ ○ f)(0)(σ̃ ○ f)(z)

= h(z) − h(0)
1 − h(0)h(z)

= h(z)

for every z ∈ D. Hence C(σ̃ ○f) = h, showing that C is a surjective mapping of Q(D) onto Qfix(D).

The claimed idempotence property can be seen as follows: Let f ∈ Q(D), then by construction it
is C(f)(0) = 0 and this yields

C(C(f))(z) = (σC(f) ○ C(f))(z) =
C(f)(z) − C(f)(0)
1 − C(f)(0)C(f)(z)

= C(f)(z)
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for every z ∈ D, hence C(C(f)) = C(f).
In particular, C cannot be injective, for let g ∈ Q(D) with g(0) /= 0, then the corresponding
mapping σg ∈ Σ(D) is not the identity on D, thus g /= C(g). However, it is C(C(g)) = C(g) by the
idempotence of C. Thus the elements g and C(g) /= g are both mapped to the same image C(g)
by C.

Remark 3.5.13.
In addition to the properties studied above, note that Qfix(D) < Q(D) (in a group–theoretic sense)
and that the mapping C satisfies the equation

C(eiα ⋅ f) = eiα ⋅ C(f)

since

C(eiα ⋅ f)(z) = (σeiα⋅f ○ eiα ⋅ f)(z) =
eiα ⋅ f(z) − eiα ⋅ f(0)

1 − eiα ⋅ f(0) ⋅ eiα ⋅ f(z)
= eiα ⋅ f(z) − f(0)

1 − f(0)f(z)
= eiα ⋅ C(f)(z)

for all α ∈ (−π,π], z ∈ D and all f ∈ Q(D) (the dot denoting the usual pointwise–defined multipli-
cation of complex–valued functions).

Now the announced compactness result can be formulated:

Theorem 3.5.14.
For every K ≥ 1, the set C(QK(D)) = QK,fix(D) ⊆ Qfix(D) is compact.

Proof. It follows from the definition of the mapping C that C(QK(D)) ⊆ QK,fix(D). By the
surjectivity of C, for every f ∈ QK,fix(D) there exists a corresponding element h ∈ QK(D) with
C(h) = f , thus C(QK(D)) = QK,fix(D). Proposition 3.5.10 then implies that QK,fix(D) is compact.

Naturally, this result transfers to domains G having only prime ends of the first kind as follows:
Let F ∶ G Ð→ D be a conformal mapping with F (z0) = 0 for a fixed z0 ∈ G. The corresponding
conjugation mapping Φ ∶ Q(D) Ð→ Q(G) is uniformly continuous by Theorem 2.1.4 in this
situation, thus the subspace

QK,fix(z0)(G) ∶= Φ(QK,fix(D)) ⊆ QK(G) (3.9)

is compact, and it is f(z0) = z0 for every f ∈ QK,fix(G) by construction. In turn, this reasoning
yields

Corollary 3.5.15.
Let G have only prime ends of the first kind and K ≥ 1, then the set QK,fix(z0)(G) is compact.

3.5.4 σ–compactness of Q(G) and the Lindelöf property

A topological space is called σ–compact if it can be written as the countable union of compact
subsets. In [Yag99, Lemma 3(i), p. 2730] Yagasaki shows among other results that the following
statement is valid:

Proposition 3.5.16.
The space Q(G) is σ–compact in the topology of compact convergence (i.e. in the compact–open
topology).

It is the aim of this subsection to show the corresponding result for G ∈ JD and the topology
primarily used in this thesis for Q(G), i.e. the uniform topology induced by the supremum metric.
This will be done by giving two different proofs for the following claim:
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Theorem 3.5.17.
The space Q(G) is σ–compact for G ∈ JD.

First Proof of Theorem 3.5.17. In view of the canonical decomposition

Q(G) =
∞
⋃
K=1

QK(G)

of Q(G) with K ∈ N, it is sufficient to show that each subspace QK(G) is σ–compact in order to
prove the claim, since a countable union of countable sets is countable. By Proposition 3.5.16,
Q(G) is σ–compact in the topology of compact convergence. More precisely, when analyzing
the proof in [Yag99], Yagasaki shows that the sets QK(G) are σ–compact in the compact–open
topology for each K ∈ N and then uses the above–mentioned countability reasoning. Thus, it is

QK(G) =
∞
⋃
j=1

Mj

with subsets Mj ⊆ QK(G), j ∈ N, being compact in the topology of compact convergence (in other
words, each Mj is a closed normal family in QK(G)). It suffices to show that the subsets Mj are
compact in the uniform topology as well. Therefore let (fn)n∈N be a sequence in Mj , then by
the compactness of Mj in the topology of locally uniform convergence, there exists a subsequence
(fnl
)l converging locally uniformly to a limit mapping f ∈ Mj . In particular, fnl

converges
pointwise in G to f . Since G is supposed to be a Jordan domain, Proposition 1.1.10 of Näkki–
Palka is applicable, implying that fnl

converges uniformly on G to f (recall that K(fnl
) ≤K due

to Mj ⊆ QK(G)). Thus Mj is compact in the uniform topology, and the claim follows.

As announced above, Theorem 3.5.17 will now be proved using a previously established result,
namely the Arzelà–Ascoli–type Theorem for Q(G) given in Corollary 3.5.9.

Second Proof of Theorem 3.5.17. Just as in the first proof given above, it suffices to show that
each QK(G) is σ–compact for K ∈ N. To this end, choose three fixed and pairwise distinct points
z1, z2, z3 ∈ G. Furthermore, let B = {Bj ∣ j ∈ N} be a countable basis of the topology of G6, which
surely exists due to the separability of G. For open disks D1,D2,D3 ⊆ G in G with pairwise
distinct closures, i.e. Dj ∩Dj′ = ∅ for j /= j′, define

F ∶= {f ∈ QK(G) ∣ f(zj) ∈Dj for j = 1,2,3}

Then QK(G) is the countable union of sets of the form F , since: Let f ∈ QK(G) and denote by
wj ∶= f(zj) the images of the points zj under f , then the wj are also pairwise disjoint. In turn,
there are open disks Bwj around each wj with pairwise disjoint closures, implying f ∈ F for some
F . Since B is a countable basis of the topology of G, the disks Bwj can be chosen to be contained
in B, thus countably many sets F cover QK(G). Hence, it is

QK(G) =
∞
⋃
n=1
Fn

with Fn = {f ∈ QK(G) ∣ f(zj) ∈ Bwj,n , j = 1,2,3 }. Thus the claim of Theorem 3.5.17 follows if one
can show that the sets Fn are compact. But this statement is implied by the Arzelà–Ascoli–type
Theorem 3.5.9 for Q(G), since
a) Fn is closed in C(G) by the Hurwitz–type Theorem 1.1.9 for sequences of quasiconformal

mappings and due to the fact that the sets Bwj,n are closed (in G) for j = 1,2,3;
6A countable basis of a topological space (X,T ) is a countable sequence (Uj)j∈N of open subsets Uj ∈ T such

that for each x ∈X and each neighborhood V of x, there exists j ∈ N such that x ∈ Uj ⊆ V .
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b) Fn(zj) = {f(zj) ∣ f ∈ Fn } is contained in the compact set Bwj,n for j = 1,2,3.
Hence Fn is compact, making QK(G) a σ–compact space for each K ∈ N, therefore Q(G) possesses
this property as well.

In the remainder of this subsection, the focus is now switched to the study of a related topo-
logical property, namely the Lindelöf property, and its close connection to σ–compactness and
separability of Q(G). A topological space is called a Lindelöf space if each open cover of the
space has a countable subcover, therefore obviously generalizing the notion of a compact space
(see [Kel75, p. 50]). The previously proved Theorem 3.5.17 shows that Q(G) is σ–compact for
G ∈ JD. In view of Lindelöf spaces and their connection to σ–compactness and separability, the
following two facts are well–known results from point–set topology:

(L1) Every σ–compact space is a Lindelöf space.7.
(L2) A metric space is a Lindelöf space if and only if it is separable.8

Thus, by combining the two statements (L1) and (L2), a σ–compact metric space is separable.
Moreover, separability of the metric space Q(G) occurs if and only if the domain G has only
prime ends of the first kind, as shown in Theorems 3.1.2 and 3.1.4. Putting these statements
together and applying them to Q(G), one finally arrives at
Corollary 3.5.18.

(i) The space Q(G) is a Lindelöf space if and only if P(G) = P1(G).
(ii) If G ∈ JD, the space Q(G) is σ–compact. Conversely, if Q(G) is σ–compact, then the

domain G has only prime ends of the first kind.
Consequently, the situation in Corollary 3.5.18(ii) immediately rises the
Question 3.5.19.
Is Q(G) a σ–compact space if G has only prime ends of the first kind?

3.6 The space Q(G) for multiply connected domains
The aim of this section is to change the point of view concerning quasiconformal automorphism
groups, to be more precise with the underlying domains of these objects, and to extend the
investigations of the current chapter to the case of multiply connected domains in C. Therefore,
in the following, G ⫋ C will always refer to a bounded domain in C with finite connectivity and
non–degenerate boundary (i.e. each boundary component of G is supposed to consist of at least
two points). Consequently, the definition given in (0.2) for the simply connected case is now
canonically transferred to multiply connected domains via

Q(G) ∶= {f ∶ GÐ→ G ∣ f is quasiconformal mapping of G onto G }

and will of course also be called the quasiconformal automorphism group of G, its elements
f ∈ Q(G) are called quasiconformal automorphisms of G as well. The subset

Σ(G) ∶= {f ∈ Q(G) ∣ f is conformal}

is called conformal automorphism group of G. As usual, the set Q(G) and its subspaces
(via the subspace topology) are always endowed with the supremum metric dsup if not stated
otherwise.

7See e.g. [Wil70, 17I.2, p. 126]; This can also be seen directly from the definitions, for let the topological space
X = ⋃

n∈N
An with compact An ⊆ X for each n ∈ N and (Uj)j be any open cover of X, then for every n ∈ N it is

An ⊆ ⋃j Uj , hence there exists a finite subcover Uj1,n, . . . , Ujm,n of An by compactness. Thus ⋃n⋃m
p=1 Ujp,n is a

countable subcover of X, since a countable union of finite sets is countable.
8See [Wil70, Theorem 16.11, p. 112] and [Sin19, p. 177].
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3.6.1 The space Σ(A) for doubly connected domains

Gaier mentions that studying Σ(G) for doubly connected domains G ⊆ C is the only interesting
case for quasiconformal automorphism groups besides the simply connected setting (see [Gai84, p.
256]), thus this subsection will be concerned with topological properties of these spaces. Initially,
the “regular case” is considered, i.e. domains bounded by Jordan curves. Such a domain is
conformally equivalent to an annulus

A ∶= Ar,R(0) ∶= {z ∈ C ∣ r < ∣z∣ < R}

for certain constants 0 < r < R < ∞ with uniquely determined ratio R
r (see e.g. [Dur04, p.

136]), putting the space Σ(A) into focus. However, the spaces Σ(A) have been studied quite
extensively for the topology of compact convergence, see for example [Kra04, Section 3.4], [Kra06,
Chapter 12] and [RS07, Kapitel 9] as well as [IK99] and [KK05] especially for information on
the higher–dimensional situation. Hence, one might expect that some results from the compact
convergence–setting carry over the the uniform convergence–setting. This is actually the case, as
will be shown in the following.

Structure and group property of Σ(A)

Obviously, Σ(A) forms a group with respect to composition of mappings and with neutral ele-
ment being the identity mapping idA. Moreover, just as for Σ(D), the conformal automorphisms
of A are known explicitly (see [Kra04, Example 2, pp. 122–123]):
Lemma 3.6.1. It is

Σ(A) = U1 ⊍ U2

with
U1 ∶= {A ∋ z z→ eiφz ∣φ ∈ [0,2π]} and U2 ∶= {A ∋ z z→ eiφ

Rr

z
∣φ ∈ [0,2π]}

Hence, Σ(A) is “just two copies of the circle” as stated in [Kra06, p. 260], the two sets U1 and
U2 obviously being disjoint. Moreover, U1 is itself a group and thus forms a subgroup of Σ(A),
whereas U2 is no (sub)group. Besides these elementary facts, from the point of view of group
theory, the following result is of importance (see [Mil06, Problem 2–g(3), p. 27]):
Proposition 3.6.2.
The conformal automorphism group Σ(A) is isomorphic to the orthogonal group

O2(R) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

cos(φ) − sin(φ)

sin(φ) cos(φ)

⎞
⎟⎟⎟
⎠
∣φ ∈ [0,2π]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⊍

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

cos(φ) sin(φ)

sin(φ) − cos(φ)

⎞
⎟⎟⎟
⎠
∣φ ∈ [0,2π]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(endowed with matrix multiplication) via the mapping

H ∶ Σ(A)Ð→ O2(R), f z→H(f) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝

cos(φ) − sin(φ)
sin(φ) cos(φ)

⎞
⎠
, f = eiφz ∈ U1

⎛
⎝

cos(φ) sin(φ)
sin(φ) − cos(φ)

⎞
⎠
, f = eiφ Rrz ∈ U2

In particular, Σ(A) is a non–abelian group, even though the subgroup U1 < Σ(A) is abelian.
By virtue of the group isomorphism H, the subgroup U1 < Σ(A) corresponds to the special
orthogonal group SO2(R) < O2(R) of all orthogonal matrices B ∈ O2(R) with determinant
det(B) = +1, whereas U2 corresponds to its complement O2(R)/SO2(R) (these matrices having
determinant −1). Moreover, the elements of U2 have the special property of involution, i.e.
h2 = h ○ h = idA for all h ∈ U2.
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Topological properties of Σ(A)

The orthogonal group O2(R) naturally carries the standard topology induced from the Euclidean
space R4 endowed with the canonical Euclidean ∥ ⋅∥2–norm. In this topology, it is a compact (thus
complete and locally compact) space consisting of exactly two (path)–connected components,
namely SO2(R) and its complement in O2(R); in particular, O2(R) is not (path)–connected.
Moreover, O2(R) is know to be a Lie group, thus in particular a topological group. The self–
evident goal is now to show that the group isomorphism H provided by Proposition 3.6.2 is also
a homeomorphism in order to transfer all relevant topological properties of O2(R) to Σ(A). In
view of this, the following lemma regarding the distance in the space Σ(A) measured in terms of
the supremum metric on A will be useful:
Lemma 3.6.3. For eiφz, eiαz ∈ U1, it is

dsup(eiφz, eiαz) = R ⋅ ∣eiφ − eiα∣

Likewise, for eiφ Rrz , e
iα Rr

z ∈ U2, it is

dsup (eiφ
Rr

z
, eiα

Rr

z
) = R ⋅ ∣eiφ − eiα∣

In the “mixed case” eiφz ∈ U1, e
iα Rr

z ∈ U2, it is

dsup (eiφz, eiα
Rr

z
) = R + r

Proof. The first case eiφz, eiαz ∈ U1, the claim follows from

dsup(eiφz, eiαz) = sup
z∈A
∣eiφz − eiαz∣ = ∣eiφ − eiα∣ ⋅ sup

z∈A
∣z∣ = R ⋅ ∣eiφ − eiα∣

Similarly, the second case eiφ Rrz , e
iα Rr

z ∈ U2 follows also by direct calculation as

dsup (eiφ
Rr

z
, eiα

Rr

z
) = sup

z∈A
∣eiφRr

z
− eiαRr

z
∣ = Rr ⋅ ∣eiφ − eiα∣ ⋅ sup

z∈A
∣1
z
∣ = R ⋅ ∣eiφ − eiα∣

The third case eiφz ∈ U1, e
iα Rr

z ∈ U2 can be seen by the following reasoning:

dsup (eiφz, eiα
Rr

z
) = sup

z∈A
∣eiφz − eiαRr

z
∣ = sup

z∈A

1
∣z∣ ∣z

2 − ei(α−φ)Rr∣

Let ψ = α −φ, then the mapping A ∋ z z→ 1
z (z

2 − eiψRr) is holomorphic on the bounded domain
A and continuous on its closure A, thus the (strong version of the) maximum modulus principle
applies (see e.g. [RS02, Satz 8.5.6, pp. 230–231]), yielding that the maximum distance in question
is located on the boundary ∂A. Assume first that the inner boundary component of the annulus
A contains this maximum, then setting z = reit ∈ ∂A with t ∈ [0,2π] concludes in

sup
z∈A

1
∣z∣
∣z2 − eiψRr∣ = max

t∈[0,2π]

1
r
∣r2e2it − eiψRr∣ = max

t∈[0,2π]
∣re2it −Reiψ ∣

Due to the compactness of the interval [0,2π] there exists a maximum and it is attained at
t∗ = 1

2(jπ +ψ) for j ∈ {−1,1} as a direct calculation shows (here, the value of the index j is to be
chosen in such a way that t∗ ∈ [0,2π] is fulfilled, which in turn only depends on ψ). This finally
yields

max
t∈[0,2π]

∣re2it −Reiψ ∣ = ∣re2it∗ −Reiψ∣ = ∣re±iπ −R∣ = R + r

If the outer boundary component of A contains the maximum, analogous reasoning as given above
with z = Reit ∈ ∂A and t ∈ [0,2π] applies due to

1
∣z∣
∣z2 − eiψRr∣ = 1

R
∣R2e2it − eiψRr∣ = ∣Re2it − reiψ ∣
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Remark 3.6.4.
(i) From a geometrical point of view, the third result on the “mixed” situation in Lemma 3.6.3 is

not surprising: A mapping eiφz ∈ U1 simply rotates the annulus A about the origin, whereas
a mapping eiαRr/z ∈ U2 also rotates A but also interchanges the boundary components
(see [Kra04, p. 123]). Hence, the maximal distance between these two mappings in the
supremum metric – due to the fact that it is located on the boundary by the maximum
modulus principle – will be attained at points on the inner (outer) boundary component
having maximal distance from the point Reiψ (reiψ). And this maximal distance is exactly
the value R + r, as illustrated in Figure 3.4.

Figure 3.4: Distance in the space Σ(A) between a conformal mapping eiφz ∈ U1 and a conformal
reflection eiα Rrz ∈ U2 which interchanges the boundary components of the annulus A.

(ii) In particular, Lemma 3.6.3 states that the two connected components U1 and U2 of Σ(A)
have constant dsup–distance from each other.

The previous result implies that whenever a sequence of conformal automorphisms of A converges
uniformly to an element of Um (with m ∈ {1,2}), then, from a certain index on, every element of
the sequence already lies in Um. This observation will be crucial in the proof of

Theorem 3.6.5. The mapping H defined in Proposition 3.6.2 is a homeomorphism between the
metric spaces (Σ(A), dsup) and (O2(R), ∥ ⋅ ∥2).

Proof. Let (fn)n∈N in Σ(A) be convergent with limit f ∈ Σ(A). Following the previous discussion,
two cases have to be considered:

(a) fn = eiφnz ∈ U1 for sufficiently large n: Then f = eiφz ∈ U1 since U1 is closed in Σ(A).
The convergence of fn to f implies ∣eiφn − eiφ∣ Ð→ 0, hence it is cos(φn) Ð→ cos(φ) and
sin(φn)Ð→ sin(φ) for nÐ→∞. By Proposition 3.6.2, it is H(fn),H(f) ∈ SO2(R), therefore

∥H(fn) −H(f)∥2 =

XXXXXXXXXXXXXXXXXXX

⎛
⎜⎜⎜
⎝

cos(φn) − cos(φ) − sin(φn) + sin(φ)

sin(φn) − sin(φ) cos(φn) − cos(φ)

⎞
⎟⎟⎟
⎠

XXXXXXXXXXXXXXXXXXX2

n→∞Ð→ 0

showing the continuity of H in the first case.
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(b) fn = eiφn Rr
z ∈ U2 for sufficiently large n: Then f = eiφ Rrz ∈ U2 since U2 is closed in Σ(A).

The convergence of fn to f implies ∣eiφn − eiφ∣ Ð→ 0, hence it is cos(φn) Ð→ cos(φ) and
sin(φn) Ð→ sin(φ) for n Ð→ ∞. By Proposition 3.6.2, it is H(fn),H(f) ∈ O2(R)/SO2(R),
therefore

∥H(fn) −H(f)∥2 =

XXXXXXXXXXXXXXXXXXX

⎛
⎜⎜⎜
⎝

cos(φn) − cos(φ) sin(φn) − sin(φ)

sin(φn) − sin(φ) − cos(φn) + cos(φ)

⎞
⎟⎟⎟
⎠

XXXXXXXXXXXXXXXXXXX2

n→∞Ð→ 0

showing the continuity of H in the second case.
Hence, the mapping H is continuous. In the same manner and using the same reasoning as above,
the continuity of the inverse mapping H−1 can be seen, establishing the homeomorphism property
of H.

Since the mapping H is both, a group isomorphism and a homeomorphism, all group–theoretical
and topological properties of O2(R) are transported to Σ(A), an important result that is sum-
marized in

Corollary 3.6.6 (Properties of Σ(A)).
The metric space (Σ(A), dsup) is compact and consists of exactly two (path)–connected compo-
nents, U1 and U2; in particular, the space is complete, locally compact, separable and disconnected,
but not totally disconnected and thus not discrete. The connected component U1 is a closed and
therefore compact subspace. Moreover, Σ(A) is a topological group, i.e. composition and inver-
sion in Σ(A) are continuous mappings, and U1 is the identity component (i.e. the connected
component of the identity idA); in particular, U1 ⊲ Σ(A).

Corollary 3.6.6 reveals substantial differences between the simply connected and the doubly con-
nected situation, as can be seen by comparison with Proposition 1.2.1. Moreover, due to the
previously mentioned fact that the orthogonal group O2(R) is in fact even a Lie group, the ques-
tion may be raised whether this special and rich mathematical structure is also transferred to
Σ(A) via the mapping H, i.e. whether composition and inversion are actually analytic mappings
in Σ(A). A classical result of H. Cartan is that Σ(G) is in fact always a Lie group when en-
dowed with the topology of locally uniform convergence for any bounded domain, independent
of the domain’s connectivity (see [RS07, p. 202]); this circumstance might lead to the conjecture
that Σ(A) is a Lie group in the topology of uniform convergence as well, especially in view of
Näkki–Palka’s Proposition 1.1.10 on convergent sequences of K–quasiconformal automorphisms
for uniformly bounded maximal dilatation K.

Another aspect to be considered is the behaviour of inversion as well as right and left multi-
plication in Σ(A) with respect to the notion of distance provided by the supremum metric. In
the simply connected setting, Gaier showed that right multiplication is always an isometry of
Σ(G) onto itself (for every bounded, simply connected domain G), but left multiplication is not
isometric in general (see [Gai84, p. 234]). These circumstances change completely for annulus
domains with non–degenerated boundary components, as shown in

Theorem 3.6.7 (Group operations in Σ(A) are isometric).
Inversion, left and right multiplication in Σ(A) are isometric self–mappings. In particular, it is
dsup(f, idA) = dsup(f−1, idA) for all f ∈ Σ(A).

Proof. The claim that right multiplication in Σ(A) is isometric is proved in the very same manner
as in the case of simply connected domains (see Proposition 1.3.6). For the left multiplication
Lg(f) ∶= g ○ f , the two cases g ∈ U1 and g ∈ U2 need to be treated:
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(a) g = eiφz ∈ U1: Let f, h ∈ Σ(A), then

dsup(Lg(f), Lg(h)) = dsup(g ○ f, g ○ h) = sup
z∈A
∣eiφf(z) − eiφh(z)∣ = dsup(f, h)

hence left multiplication with elements of U1 is isometric.
(b) g = eiφ Rrz ∈ U2: Three subcases will be considered:

(b.1) Let f = eiαz, h = eiψz ∈ U1, then

dsup(Lg(f), Lg(h)) = dsup(g ○ f, g ○ h) = sup
z∈A
∣eiφ Rr

eiαz
− eiφ Rr

eiψz
∣ = Rr ∣e−iα − e−iψ ∣ ⋅ sup

z∈A
∣1
z
∣

= R ∣eiα − eiψ ∣ = dsup(f, h)

hence left multiplication with elements of U2 is isometric on U1.
(b.2) Let f = eiα Rrz , h = e

iψ Rr
z ∈ U2, then

dsup(Lg(f), Lg(h)) = dsup(g ○ f, g ○ h) = sup
z∈A
∣eiφ Rr

eiαRr/z − e
iφ Rr

eiψRr/z ∣ = sup
z∈A
∣e−iαz − e−iψz∣

= R ∣e−iα − e−iψ ∣ = R ∣eiα − eiψ ∣ = dsup(f, h)

hence left multiplication with elements of U2 is isometric on U2.
(b.3) Let f = eiαz ∈ U1, h = eiψ Rrz ∈ U2, then

dsup(Lg(f), Lg(h)) = dsup(g ○ f, g ○ h) = sup
z∈A
∣eiφ Rr

eiαz
− eiφ Rr

eiψRr/z ∣ = sup
z∈A
∣e−iαRr

z
− e−iψz∣

= sup
z∈A
∣eiαeiψ ∣ ⋅ ∣e−iαRr

z
− e−iψz∣ = sup

z∈A
∣eiψRr

z
− eiαz∣ = dsup(f, h)

hence left multiplication with elements of U2 is isometric in the “mixed case”.

All in all, left multiplication is dsup–isometric on all of Σ(A). Now, the isometry of the inversion
in Σ(A) will be shown. Let f = eiφz, g = eiαz ∈ U1, then

dsup(f−1, g−1) = sup
z∈A
∣e−iφz − e−iαz∣ = R ∣e−iφ − e−iα∣ = R ∣eiφ − eiα∣ = dsup(f, g)

For f, g ∈ U2, one obtains dsup(f−1, g−1) = dsup(f, g) immediately due to the fact that the elements
of U2 satisfy the involution property f−1 = f . In the “mixed case” f = eiφz ∈ U1, g = eiα Rrz ∈ U2,
Lemma 3.6.3 yields dsup(f−1, g) = R + r = dsup(f, g), hence

dsup(f−1, g−1) = dsup(f−1, g) = R + r = dsup(f, g)

3.6.2 Doubly connected domains: Topological properties of Q(A)

General radial stretchings in the doubly–connected case

Now the quasiconformal automorphism group of the annulus A = Ar,R(0) will be considered. Nat-
urally, the set Q(A) forms a group with the group operation being the composition of mappings
and with neutral element idA, analogously to the situation for simply connected domains in C.
Furthermore, it is Σ(A) ≤ Q(A), but beside this, the set Q(A) contains proper quasiconformal
automorphisms f ∈ Q(A)/Σ(A), an example for such a mapping is presented in [Bie17, pp. 18–
20], see also (3.10). Moreover, an important and interesting subgroup in the simply connected
setting are general radial stretchings. In the unit disk case G = D, these mappings are defined in
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Definition 2.3.1. The crucial point now is that in this process, the interval [0,1] can obviously
and easily be replaced by [r,R], yielding a mapping

fρ(z) ∶= ρ(r)eiφ

for z = reiφ ∈ A which clearly is a bijective, continuous mapping of the annulus A onto itself.
This naturally leads to

Definition 3.6.8.
Let ρ ∶ [r,R]Ð→ [r,R] be continuous, bijective and strictly increasing. Then the mapping

fρ ∶ AÐ→ C, z = reiφ z→ fρ(z) ∶= ρ(r)eiφ

is called (general) radial stretching of A.

In turn, if the radial dilation mapping ρ is chosen appropriately in Definition 3.6.8, then fρ
represents a quasiconformal automorphism of A, i.e. fρ ∈ Q(A). Thus, in the same manner as in
the simply connected case (see Lemma 2.3.2), one arrives at

Lemma 3.6.9.
For each mapping ρ ∈ C([r,R]) as in Definition 3.6.8 such that ρ is a piecewise C1–mapping on
[r,R], the corresponding general radial stretching fρ is a quasiconformal automorphism of A.

Incompleteness and conjugation mapping for Q(A)

In the simply connected case, general radial stretchings were used in order to show the incom-
pleteness of the metric space Q(G), see Theorem 2.3.3. The very same construction may be used
in the annulus case as well, leading to

Theorem 3.6.10.
The metric space Q(A) is incomplete. In particular, this space is not compact.

Proof. The interval [0,1], corresponding to the “unit disk situation” in the proof of Theorem
2.3.3, is homeomorphic to the interval [r,R] in the present annulus case via the affine–linear
mapping

w(x) = (R − r)x + r

which is obviously a C1–mapping and thus uniformly continuous. Hence, the construction utilized
in the mentioned incompleteness proof for the simply connected case transfers to Q(A), yielding
that the sequence (w ○ ρn ○ w−1)n∈N of piecewise C1–mappings of the interval [r,R] converges
uniformly to a non–injective limit mapping on [r,R], the mappings ρn being defined by (2.4).
The corresponding general radial stretchings

fn(z) = (w ○ ρn ○w−1)(r)eiφ

for z = reiφ ∈ A are quasiconformal automorphisms of A according to Lemma 3.6.9, uniformly
converging to a non–injective limit mapping.

So far, only the “standard” domain in the doubly–connected case was treated, i.e. the annulus
A = Ar,R(0). Thus the question for the transmission of the group–theoretic and topological
properties to more general domains of this type arises naturally. This question is answered by
utilizing the well–known conjugation mapping between the automorphism groups Q(A) and Q(G)
for a “well–behaved” doubly–connected domain G in
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Lemma 3.6.11. Let G ⫋ C be a doubly–connected domain whose boundary components consist of
Jordan curves and F ∶ AÐ→ G be a conformal mapping. Then the induced conjugation mapping

Φ ∶ Q(A)Ð→ Q(G), g z→ Φ(g) ∶= F ○ g ○ F−1

is a homeomorphism and a group isomorphism. In particular, the conformal automorphism
(sub)groups Σ(A) and Σ(G) are homeomorphic.

Proof. Let ϵ > 0 and (gn)n be convergent in Q(A) to g ∈ Q(A). Then for w ∈ G:

∣Φ(gn)(w) −Φ(g)(w)∣ = ∣F (gn(z)) − F (g(z))∣ ≤ ωF (∣gn(z) − g(z)∣) ≤ ωF (dsup(gn, g))

where ωF denotes the modulus of continuity of F and z = F−1(w) ∈ A. Since F is uniformly
continuous on A, the last term becomes < ϵ for sufficiently large n. Applying the supremum
over w ∈ G to both sides of the resulting inequality shows that Φ is continuous. The same
arguments apply to Φ−1 due to the uniform continuity of F−1, concluding in the desired result.
The claim on the conformal automorphism (sub)groups follows from the facts that Φ is a group
isomorphism (which, in turn, can be seen in the very same manner as in the simply connected
case, see Proposition 1.3.2(i)) and that composition of conformal maps is conformal.

The following statement is a classical result on the conformal automorphism group of domains
in C having arbitrary, but finite connectivity and with respect to the topology of locally uniform
convergence (see [Kra06, Theorem 12.2.3, p. 263]):

Let Ω ⫋ C be a bounded domain with C1 boundary (i.e., the boundary consists of finitely many
simple, closed, continuously differentiable curves). If Ω has non–compact automorphism group

(w.r.t. locally uniform convergence), then Ω is conformally equivalent to the unit disk D.

Using the previously established observations, this result can be transferred to the situation of
uniform convergence as follows:

Theorem 3.6.12.
Let G ⫋ C be a bounded domain in C whose boundary consists of finitely many Jordan curves. If
the space Σ(Ω) is non–compact in the uniform topology, then G is conformally equivalent to D.

Proof. If G would be doubly connected, there would exist a conformal mapping F ∶ G Ð→ Ar,R
for certain radii 0 < r < R < ∞ which extends homeomorphically to the boundary. Lemma
3.6.11 implies that the induced conjugation mapping Φ ∶ Σ(G) Ð→ Σ(A) is a homeomorphism,
contradicting the compactness of Σ(A) (see Corollary 3.6.6). If G would be n–connected for some
n ∈ N, n ≥ 3, then the classical result of Koebe on the cardinality of conformal automorphism
groups (see e.g. [Gai84, p. 256] and [Kra06, p. 278]) yields that Σ(G) is a finite group, hence the
space Σ(G) would surely be compact in the topology induced by dsup, which is a contradiction.

A concrete example for an automorphism of A

In this subsection, let R > 1 be a fixed constant, A ∶= A1,R and define

f ∶ AÐ→ C, z z→ f(z) ∶= z∣z∣
2πi

ln(R) (3.10)

The mapping f is called a Full Dehn twist and was already investigated in [Bie17, pp. 18–20].
The mapping f can be written as f(z) = ze2πi ln(∣z∣)

ln(R) and in a certain sense reminds of a general
radial stretching via the function ρ(t) = t1+

2πi
ln(R) (however, f is not a radial stretching of A as

defined in Definition 3.6.8, for ρ does not map the interval [1,R] onto itself).
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Figure 3.5: The image of the annulus A1,6 under the corresponding Dehn twist f . The first figure
shows that the radial rays are mapped onto spirals winding around the inner boundary circle,
whereas the Euclidean grid is mapped onto a “spiral–like” grid as visualized by the second figure.

It turns out that f maps the annulus A homeomorphically onto itself, coincides with the identity
on ∂A and is in fact a quasiconformal automorphism of A, i.e. f ∈ Q(A) (see [GL00, p. 204]).
Thus, one may consider the iterated mapping

f [n] ∶= f ○ f ○ ⋅ ⋅ ⋅ ○ f (n times)

for every n ∈ N0 with f [0] ∶= idA, thereby defining a sequence (f [n])n∈N0 in Q(A). A simple
induction argument shows

Lemma 3.6.13.
For every n ∈ N0 and z ∈ A, it is

f [n](z) = z∣z∣n
2πi

ln(R) = z [e2πi ln(∣z∣)
ln(R) ]

n

(3.11)

Proof. The case n = 0 is obviously true. Assume that (3.11) is true for some n ∈ N0 and all z ∈ A,
and consider

f [n+1](z) = f [n](f(z)) = z∣z∣
2πi

ln(R) ⋅ ∣z∣z∣
2πi

ln(R) ∣
n 2πi

ln(R)
= z∣z∣

2πi
ln(R) ⋅ (∣z∣ ∣∣z∣

2πi
ln(R) ∣)

n 2πi
ln(R)

The second absolute value in the bracket evaluates to

∣∣z∣
2πi

ln(R) ∣ = ∣eln(∣z∣) 2πi
ln(R) ∣ = ∣ei⋅

2π ln(∣z∣)
ln(R) ∣ = 1

thus one arrives at
f [n+1](z) = z∣z∣

2πi
ln(R) ⋅ ∣z∣n

2πi
ln(R) = z∣z∣(n+1) 2πi

ln(R)
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Let α ∈ (0,1) ∩ (R/Q) be an irrational number, then tα ∶= Rα ∈ (1,R) ⊆ A and thus

f [n](tα) = tαe2πinα

by the previous Lemma 3.6.13. Hence, the resulting sequence of points (f [n](tα))n∈N0 ⊆ A clearly
has no convergent subsequence, yielding that the sequence of quasiconformal automorphisms
(f [n])n cannot possess a subsequence convergent inQ(A) to a quasiconformal limit mapping. This
shows again that the space Q(A) is non–compact, a result that was already stated in Theorem
3.6.10. Furthermore, since every bounded, doubly–connected domain in C having Jordan curves
as its boundary components is conformally equivalent to an annulus A, this insight in connection
with Lemma 3.6.11 implies

Corollary 3.6.14.
Let G ⫋ C be a doubly–connected domain whose boundary components consist of Jordan curves.
Then the space Q(G) is non–compact.

3.6.3 Topological characteristics of Q(GN) for finitely connected domains

In this subsection, GN will denote a bounded, N–connected domain in C for N > 1 with finitely
many boundary components, all of which are supposed to be non–degenerated.

If N ≥ 3, the classical result of Koebe states that every domain GN admits only finitely many
conformal automorphisms, i.e. the group Σ(GN) is finite (this was already stated in the proof
of Theorem 3.6.12). Consequently, the space Σ(GN) is compact and discrete, therefore a lot of
information about the topological structure of these spaces is known. In contrast to this situation,
it is shown in the following that the topology of Q(GN) differs from Σ(GN) in a versatile manner.
In fact, by embedding the “standard domain” D into GN via conformal equivalence, many of the
topological properties of Q(G) for bounded, simply connected domains G carry over to Q(GN).

Let z0 ∈ GN be a fixed inner point and ϵ > 0 such that the open ball U ∶= Bϵ(z0) is completely
contained in GN . Then by conformal equivalence9, the unit disk corresponds to U . Conse-
quently, every g ∈ Q(D) corresponds to an element g̃ ∈ Q(U), and the spaces Q(D) and Q(U)
are homeomorphic. In addition, if the continuous extension of g to D satisfies g ≡ id∂D on ∂D, a
quasiconformal automorphism h of GN can be constructed by

h(z) ∶=
⎧⎪⎪⎨⎪⎪⎩

g̃(z), z ∈ U
idGN

(z), z ∈ GN/U
(3.12)

for z ∈ GN . By utilizing this construction appropriately, the following information can be retrieved
for Q(GN):

• Incompleteness: The metric space (Q(GN), dsup) is incomplete, since the corresponding
space Q(U) is incomplete. Using the convergent sequence with non–injective limit mapping
from the proof of Theorem 2.3.3 shows the existence of an analogously defined sequence
in Q(GN) (via the construction (3.12)) that converges uniformly on GN to a non–injective
limit mapping. In particular, this shows that the space Q(GN) is non–compact.

• Uncountability: The set Q(GN) is always uncountable. This can be seen by taking into
account the set of monomial–like radial stretchings fK(z) = z∣z∣K−1 for K ∈ R+ (see (2.3))
and transferring them via (3.12) to Q(GN).

9Of course, this conformal equivalence can explicitly be specified by simply translating and scaling D.
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• Q(GN) is no Baire space and conclusions: The subsets QK(GN) as defined in (0.5)
can of course be analogously considered for the domains GN . Based on this, the following
conclusions can be drawn:

(i) The reasoning prior to Lemma 3.3.2, where it is derived that the subsets QK(G)
have empty interior for bounded, simply connected domains G, can be transferred to
the subsets QK(GN), since the used arguments are independent of the connectivity
of the underlying domains (in particular, the dsup–isometry of right multiplication
does neither depend on the particular domain, nor on the fact that the mappings are
quasiconformal). Hence, the subsets QK(GN) have empty interior.

(ii) Furthermore, the subsets QK(GN) are also closed in Q(GN) by means of the Hurwitz–
type Theorem (Proposition 1.1.9) for every K ∈ [1,+∞), thus QK(GN) is nowhere
dense in Q(GN). An immediate consequence of this is that the space Q(GN) is
meager, which in turn implies that Q(GN) is no Baire space.

(iii) Finally, the statements of Theorem 3.3.6 and Corollary 3.3.7 are also valid for the
domains GN : The topological space Q(GN) is not locally compact and not completely
metrizable.

Furthermore, regarding dense subsets of Q(GN), the statements of Theorem 3.2.5 and Remark
3.3.5(i) remain valid for multiply connected domains, which can be seen as follows:

• Concerning Theorem 3.2.5: The crucial part in the proof of this theorem is Kiikka’s result
on the approximation of quasiconformal mappings by C∞–diffeomorphisms which are also
quasiconformal, see Proposition 3.2.3. However, the connectivity of the underlying domain
plays no role in Kiikka’s theorem, thus this statement is also valid for GN (see also Remark
3.2.7(i)). This implies that the quasiconformal C∞–diffeomorphisms of GN are dense in
Q(GN).

• In view of Remark 3.3.5(i) regarding the denseness of the complement of QK(G) in Q(G):
Since the analogous reasoning was applied above for Q(GN), this result also holds in the
multiply connected case, i.e. the subset

Q(GN)/QK(GN) = {f ∈ Q(GN) ∣K(f) >K}

is dense and open in the space Q(GN) for every K ∈ [1,+∞). In particular, the space
Q(GN) is not discrete, since idGN

can be approximated arbitrarily well with respect to dsup
due to (3.3).

A summary of the previously established results for the space Q(GN) is given in

Theorem 3.6.15.
Let GN be a bounded, N–connected domain in C with N > 1 and finitely many, non–degenerated
boundary components. Then the quasiconformal automorphism group Q(GN) of GN is uncount-
able. Furthermore, the topological space Q(GN) has the following properties:

(i) Q(GN) is neither compact nor locally compact.
(ii) Q(GN) is incomplete and not completely metrizable.

(iii) Q(GN) is not discrete and contains the following dense subsets:
• The quasiconformal C∞–diffeomorphisms;
• The subsets Q(GN)/QK(GN) for every fixed K ∈ [1,+∞).

Several differences between confomal and quasiconformal automorphism groups of simply and
multiply connected (bounded) domains are described in the following tabulated comparison:
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Property Connectivity Q(G) Σ(G)

Compactness

N = 1 Not compact Not compact

N = 2 Not compact Depending on ∂G

N ≥ 3 Not compact Compact

Local
compactness

N = 1 Not locally compact Depending on ∂G

N = 2 Not locally compact Depending on ∂G

N ≥ 3 Not locally compact Locally compact

Completeness
N = 1 Incomplete Complete

N ≥ 2 Incomplete Complete

Discreteness

N = 1 Not discrete Depending on ∂G

N = 2 Not discrete Depending on ∂G

N ≥ 3 Not discrete Discrete

Cardinality
N ≤ 2 Uncountable Uncountable

N ≥ 3 Uncountable Finite

Table 3.1: Similarities and differences between Q(G) and Σ(G) for bounded, simply and multiply
connected domains G ⫋ C with finite connectivity and non–degenerated boundary components.

A concrete multiply connected domain and a corresponding quasiconformal automorphism are
presented in

Example 3.6.16.
Let the domain ΩN be defined as follows: Consider the unit disk D from which N − 1 mutually
disjoint, compact (proper) subsets of the closed annulus A1/3,2/3 are removed, i.e.

ΩN ∶= D /
N−1
⊍
j=1

Cj (3.13)

with
Cj ∶= {z ∈ D ∣

1
3
≤ ∣z∣ ≤ 2

3
, Arg(z) ∈ [θj−1, θj]}

and the angle intervals [θj−1, θj] are appropriately chosen subintervals of the canonical angle
interval (−π,π] for j = 1, . . . ,N − 1. An example of such a domain ΩN with N = 3 is shown in
Figure 3.6.
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Figure 3.6: A triply–connected domain Ω3 equipped with a Euclidean grid, outer boundary curve
∂D and inner boundary components ∂C1 and ∂C2 (in green) corresponding to the angle intervals
[−π4 ,

π
4 ] and [3π4 , π] ⊍ (−π,−

3π
4 ). The inner boundary components are clearly symmetric with

respect to both, the real and imaginary axis.

Now, an appropriately chosen subfamily of general radial stretchings introduced in Definition 3.6.8
will be considered, thereby defining a family of quasiconformal automorphisms of the domain ΩN

as follows: The radial dilation mapping ρ ∶ [0,1]Ð→ [0,1] is supposed to be a bijective, piecewise
C1–mapping having fixed points at r = 0, r = 1

3 , r =
2
3 and r = 1; such a mapping surely exists,

probably the most simple example is given by ρ = id[0,1], but of course there are many further
functions of this particular kind. Next, for z = reiφ ∈ ΩN define

f(z) = ρ(r)eiφ

which can be regarded as a “general radial stretching” of the domain ΩN . By construction, f is a
continuous injective mapping of ΩN onto itself (hence a homeomorphism by [LV73, Lemma 1.1,
p. 6]), and – basically due to Lemma 2.3.2 which is concerned with the simply connected case
in D and the special construction of the radial dilation mapping ρ – the mapping f turns out to
be a quasiconfomal automorphism of ΩN . An example for a radial dilation mapping fulfilling the
demanded requirements described above is given by the piecewise defined function

ρ∗(r) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

9r3, r ∈ [0, 1
3)

1
3 (

ln(3r)
ln(2) + 1) , r ∈ [1

3 ,
2
3)

1
3 (

1
15((3r − 1)4 + 14) + 1) , r ∈ [2

3 ,1]
(3.14)

which is clearly a piecewise C1–mapping on the interval [0,1]. The image of the domain Ω3 shown
in Figure 3.6 under this particular mapping f∗(z) ∶= ρ∗(r)eiφ (with z = reiφ ∈ G3) is depicted in
Figure 3.7.
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Figure 3.7: The image of the triply–connected domain Ω3 and the belonging Euclidean grid (see
Figure 3.6) under the general radial stretching f∗ using the radial dilation mapping ρ∗ in (3.14).

The mapping properties of the radial dilation mapping ρ∗ are clearly visible in the corresponding
graph of the “radial stretching” f∗: In the inner disk ∣z∣ ≤ 1

3 , the Euclidean grid is pulled towards
the origin due to the fact that the corresponding subfunction of ρ∗ satisfies 9r3 ≤ r for r ∈ [0, 1

3).
On the annulus 1

3 < ∣z∣ <
2
3 , the graph of the subfunction 1

3 (
ln(3r)
ln(2) + 1) of ρ∗ is very similar to the

identity id[ 1
3 ,

2
3 ]

, thus the Euclidean grid experiences virtually no deformation. In the last case,
i.e. the outer annulus 2

3 ≤ ∣z∣ ≤ 1, the grid is again pulled towards the origin by the mapping
behaviour of the third subfunction of ρ∗.

Remark 3.6.17.
Obviously, the definition of the domains ΩN in (3.13) only depends on the angle intervals [θj−1, θj]
and is therefore reasonable for any finite connectivity N with appropriately chosen angles. More-
over, the choice of the radii 1

3 and 2
3 is also of minor importance and could be changed to other

values.
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Chapter 4

Quasiconformal automorphisms of D:
Subspaces, constructions,
applications

This final chapter of the thesis at hand treats specialized topics intertwined with the quasicon-
formal automorphism group of the unit disk in several ways, ranging from a special subset of
Q(D) up to concrete examples of mappings of this kind and an outlook on an application based
on a recent research paper.
Section 4.1 introduces the class of harmonic quasiconformal automorphisms of D. This particular
class of mappings has drawn much attention in the past, as demonstrated by the vast number
of publications in connection with these objects. After introducing the set HQ(D) in Definition
4.1.1 and deriving some basic facts, topological properties of this subset are investigated. Further-
more, it is shown in Theorem 4.1.21 that HQ(D) forms a incomplete subspace of quasiconformal
unit disk automorphisms. This is achieved by means of a famous mapping in Real Analysis, the
Cantor function, which is often used as a counterexample for certain allegedly valid statements.
As a major tool in studying the harmonic quasiconformal unit disk automorphisms, the Theorem
of Radó–Kneser–Choquet on the representation of harmonic mappings is utilized.
Section 4.2 presents a novel and rather unexpected construction method for examples of quasi-
conformal automorphisms of D. Again, monomial–like radial stretchings will be of particular
importance as, on the one hand, they are studied in terms of additional algebraic structure,
namely commutative semirings. On the other hand, the mentioned construction principle related
to classical Cesàro summation in Real Analysis is applied to these mappings in order to generate
interesting examples of quasiconformal automorphisms of D.
Finally, Section 4.3 presents a possible construction of a Quasiconformal Cryptosystem, giving an
application–oriented ending of this thesis.
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4.1 Harmonic quasiconformal automorphisms of D

The aim of this section is to investigate certain properties of interest of a special class of mappings
which have drawn a huge amount of attention in recent years in the respective research area: The
harmonic quasiconformal mappings. Initiated by Martio in 1968 (see [Kal08, p. 238] and [Pav02,
p. 366]), this particular class of homeomorphisms attracted a huge amount of interest in the
recent past, see [BM10, Introduction], [Kal08], [KN99], [PS99], [Pav02], [Pav14, Section 10.3] and
the references therein, to name only a few. Especially Kalaj and Pavlović both worked intensively
in this area and achieved numerous results, among others several characterization statements for
harmonic quasiconformal automorphisms of the unit disk (see [Kal08, Theorem A, p. 239] and
Proposition 4.1.17 below). Due to the Theorem of Radó–Kneser–Choquet (Proposition 4.1.2),
the following discussion will focus on the case G = D, i.e. the class of harmonic quasiconformal
automorphisms of the unit disk.

4.1.1 Definition and basic properties

Definition 4.1.1.
HQ(D) ∶= {f ∈ Q(D) ∣ f is harmonic}

That is, the elements of HQ(D) are the harmonic quasiconformal automorphisms of D. Here and
henceforth, a complex–valued mapping f = u+ iv defined on a domain is called harmonic if both,
its real and imaginary parts, are real–valued harmonic mappings, which in turn are defined via
the Laplace equation

∆u = ∂
2u

∂x2 +
∂2u

∂y2 = 0,

in which the differential polynomial ∆ ∶= ∂2

∂x2 + ∂2

∂y2 is the Laplace operator. An immediate conclu-
sion to be drawn is Σ(D) ⊆ HQ(D); in particular, it is idD ∈ HQ(D) and therefore HQ(D) /= ∅.
An important fact about harmonic mappings in C and their representation is given by the fol-
lowing result due to Radó, Kneser and Choquet ([Dur04, pp. 33–34], [DS87, pp. 154–156] and
[Pav14, Theorem 1.1, p. 5]):

Proposition 4.1.2 (Radó–Kneser–Choquet, extended version).
Let G ⫋ C be a convex Jordan domain and γ ∶ ∂D Ð→ ∂G be a weak homeomorphism, i.e. a
continuous mapping of ∂D onto ∂G such that the preimage γ−1(ξ) of each ξ ∈ ∂G is either a point
or a closed subarc of ∂D. Then the harmonic extension

P[γ](z) ∶= 1
2π

2π

∫
0

1 − r2

1 − 2r cos(t − ϕ) + r2γ(e
it)dt, z = reiϕ ∈ D, (4.1)

defines an injective harmonic mapping of D onto G; moreover, P[γ] is unique. Conversely, if
G ⫋ C is a strictly1 convex Jordan domain and f ∶ D Ð→ G is an injective harmonic mapping,
then f has a continuous extension to D which defines a weak homeomorphism of ∂D onto ∂G.
Moreover, if f ∈ C(D) is harmonic in D, then f ∣D can be written in the form (4.1).

Let H∗(∂D, ∂G) denote the set of all weak homeomorphisms of ∂D onto ∂G and in the special
case G = D define H∗(∂D) ∶= H∗(∂D, ∂D). Consequently, let H+(∂D, ∂G) and H+(∂D) denote
the corresponding subsets of all orientation–preserving homeomorphisms, respectively.

1A set S ⊆ C is called strictly convex if every point on the line segment connecting x, y ∈ S other than the
endpoints is contained in the interior of S ([Dur04, p. 34]). For example, a circle is strictly convex (and in
particular convex), while a rectangle is not strictly convex (yet convex).
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Remark 4.1.3.
The harmonic extension P[γ] defined by (4.1) is also called the Poisson transformation of
γ ∈H∗(∂D, ∂G), and the corresponding integral kernel

1 − r2

1 − 2r cos(t) + r2

is called the Poisson kernel, see [Dur04, p. 12] and [Pav14, pp. 5–6] for further information.
Moreover, the Poisson transformation is intimately related to the Dirichlet problem, whose
solution is given explicitly by (4.1); see [ABR01, pp. 12–15] and [Dur04, Section 1.4].

From the Radó–Kneser–Choquet Theorem 4.1.2, one obtains the following (see also [KN99, pp.
337–338])

Corollary 4.1.4.

HQ(D) = Q(D) ⋂ {P[γ] ∣ γ ∈H+(∂D)}

Corollary 4.1.4 also makes sense when recalling that every quasiconformal automorphism of a
Jordan domain admits a homeomorphic boundary extension by Proposition 1.1.6. In particular,
the induced boundary mapping is injective, hence an element of H+(∂D). A concrete harmonic
automorphism of the unit disk is visualized in

Example 4.1.5.
For x ∈ [0,1], consider the piecewise–defined function

ϕ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2x, x ∈ [0, 1
3]

2
3 , x ∈ [13 ,

3
4]

4
3x −

1
3 , x ∈ [34 ,1]

which is easily seen to map the interval [0,1] continuously, but not injectively onto itself while
keeping the endpoints x = 0 and x = 1 fixed. Transferring ϕ to the interval [0,2π] by conjugating
it via the mapping x z→ t = 2πx yields a function φ̃ ∈ C([0,2π]) with the very same properties.
Consequently, the mapping

γ(eit) = eiφ̃(t) (4.2)

for eit ∈ ∂D defines a weak homeomorphism of ∂D onto itself, i.e. γ ∈H∗(∂D). The corresponding
harmonic extension provided by Proposition 4.1.2 therefore yields a harmonic homeomorphism
P[γ] of D onto itself. Figure 4.1 shows the (approximated) mapping behaviour of this harmonic
extension, visualized by concentric circles around the origin, radial rays and an Euclidean grid.
However, the mapping P[γ] is not quasiconformal due to the fact that its boundary function –
which equals γ by construction – is not injective, but this would be a necessary requirement by
Proposition 1.1.6.
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Figure 4.1: Preimage (left) and image (right) of concentric circles and radial rays (top) as well
as of an Euclidean grid (bottom) in D under the harmonic extension of γ defined by (4.2).

Remark 4.1.6.
In particular, the harmonic extension P[γ] discussed in Example 4.1.5, with γ given by (4.2),
provides a concrete example of a sense–preserving homeomorphism of the unit disk that is not
quasiconformal, i.e.

P[γ] ∈H+(D)/Q(D)
Another example of such a mapping will be presented in Proposition 4.1.23.

A basic fact in the theory of harmonic mappings is that the composition of two such mappings
is not necessarily harmonic again (see [Dur04, p. 2]). In the same manner, the inverse mapping
of an injective harmonic mapping is also not harmonic in general, except for special situations,
as stated in (see [Dur04, Theorem, pp. 145–148]2)

Proposition 4.1.7 (Choquet–Deny).
Suppose f is an orientation–preserving injective harmonic mapping defined on a simply connected
domain Ω ⊆ C, and suppose that f is neither analytic nor affine. Then the inverse mapping f−1

is harmonic if and only if f has the form

f(z) = α (βz + 2iArg(γ − e−βz)) + δ (4.3)

where α,β, γ, δ ∈ C are constants with αβγ /= 0 and ∣e−βz ∣ < ∣γ∣ for all z ∈ Ω.
2In the cited statement of Choquet–Deny’s Theorem in [Dur04], there is a small error in the formula of the

harmonic mapping f : In the argument function, Duren writes γ − eβz; however, as becomes clear from the book’s
proof of this Theorem as well, it should actually be γ − e−βz, i.e. the minus sign in the exponent is missing.
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This result and the previously stated basic facts immediately imply (see also [Pav14, Problem
10.1, p. 311])

Theorem 4.1.8.
HQ(D) is no semigroup with respect to composition of mappings. In particular, HQ(D) is no
subgroup of Q(D).

Furthermore, the Choquet–Deny Theorem 4.1.7 yields that HQ(D) is not closed under inversion.
In view of these circumstances, this raises the

Question 4.1.9.
Can a mapping of the form (4.3) be an automorphism of the unit disk D if the parameter values
are chosen appropriately? If yes, can such a mapping be quasiconformal?

4.1.2 Topological properties of HQ(D)

This subsection is intended to study certain important topological properties of HQ(D). To this
end, certain convergence results for uniformly convergent sequences of harmonic mappings will
prove valuable, to be stated in

Proposition 4.1.10.
Let (fn)n∈N be a sequence of harmonic mappings on a domain G ⊆ C.

(i) If (fn)n converges locally uniformly on G to some function f , then f is harmonic3 (Weier-
straß–type Theorem, see [ABR01, Theorem 1.23, p. 16]).

(ii) If all fn are injective and the sequence (fn)n converges locally uniformly on G to f , then
f is either injective, a constant mapping, or f(G) lies on a straight line (Hurwitz–type
Theorem, see [BH94, Theorem 1.5]).

The first result concerning certain topological aspects of HQ(D) is given in

Theorem 4.1.11.
(i) The space HQ(D) is separable and non–compact.

(ii) The set HQ(D) is closed in the space Q(D).

Proof.
(i) As for the separability of HQ(D), it suffices to observe that the ambient metric space Q(D)

is separable by [BL23, Theorem 6, p. 5]. The claimed separability of HQ(D) is then implied
by the fact that subspaces of separable metric spaces are also separable. In order to see that
HQ(D) is a non–compact space, suppose the contrary, i.e. HQ(D) is compact in the uniform
topology. Due to the completeness of Σ(D) (see [Gai84, Satz 1, p. 229]), the space Σ(D) is
closed in the ambient space HQ(D). However, this yields that Σ(D) would also be compact
as a closed subspace of the compact space HQ(D), contradicting the non–compactness of
Σ(D) (see [Gai84, Satz 1, p. 229]).

(ii) If (fn)n ⊆HQ(D) converges uniformly on D to f ∈ Q(D), then f is harmonic by Proposition
4.1.10(i), hence f ∈HQ(D). Therefore, HQ(D) is closed in Q(D).

An elementary persistence property in the interplay between harmonic and holomorphic mappings
is that the post–composition of a holomorphic function with a harmonic one remains harmonic
(see [Dur04, p. 2]). This basic fact is utilized in order to prove

3Actually, the cited version of the Weierstraß–type Theorem from [ABR01] is concerned only with the real
and imaginary parts of the harmonic functions fn, but this situation transfers immediately to the general case
considered in the current section, since by definition, fn is harmonic if and only if Re(fn) and Im(fn) satisfy the
Laplace equation.
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Theorem 4.1.12.
The space HQ(D) is dense–in–itself, i.e. it does not contain any isolated points.

Proof. The space Q(D) is a topological group (see Proposition 1.3.3(ii)) and not discrete (Corol-
lary 3.2.6); in particular, Σ(D) is not discrete (as already noticed in [Gai84, p. 230]). Hence, let
h ∈ HQ(D) be arbitrary and choose a sequence (fn)n∈N in Σ(D)/{idD} converging to idD. Then,
for each n ∈ N, the mapping gn ∶= h ○ fn is harmonic (by the mentioned persistence property) and
quasiconformal (since Q(D) is a group), thus (gn)n is a sequence in HQ(D). The continuity of
left multiplication in the topological group Q(D) yields dsup(gn, h) = dsup(h ○ fn, h)

n→∞Ð→ 0 due to
dsup(fn, idD)

n→∞Ð→ 0.

Combining Theorem 4.1.11 and Theorem 4.1.12 yields

Corollary 4.1.13.
The space HQ(D) is perfect, i.e. it is closed in Q(D) and contains no isolated points.

The last property to be studied in this subsection is the contractibility of HQ(D), i.e. whether
the identity map on HQ(D) is homotopic to some constant map c(f) = f0 from HQ(D) to an
element f0 ∈HQ(D) (see [Wil70, Definition 32.6, p. 224]). In this context, the following integral
operator will be of importance (see [Pav02, p. 367] and [Pav14, p. 305]):

Definition 4.1.14 (Hilbert transformation).
For periodic φ ∈ L1([0,2π]) and x ∈ R, the expression

H(φ)(x) ∶= − 1
π

lim
ϵ→0+

π

∫
ϵ

φ(x + t) − φ(x − t)
2 tan(t/2) d t (4.4)

is called the (periodic) Hilbert transformation of φ.

Remark 4.1.15.
(i) In Fourier theory and trigonometric series, the Hilbert transformation plays a prominent

role. However, the definition of the operator H is not completely consistent in the vast
literature about this topic. For example, a different formulation is given by

H(φ)(x) = − 1
π

lim
ϵ→0+

π

∫
ϵ

φ(x + t) − φ(x − t)
t

d t

which is – at least for existence questions – equivalent to (4.4) due to 2 tan(t/2) − t = 0 for
tÐ→ 0 (see [Pav14, p. 306] and [Zyg02, Vol. I, p. 52]).

(ii) The notion of “the Hilbert transformation” is also present in further mathematical areas, for
example in the theory of quasiconformal mappings in C (see [Leh87, p. 25] and [LV73, pp.
156–160]) and Teichmüller spaces (see [GL00, pp. 319–320]). However, the circumstance
that the definitions are in parts considerably different from each other is also present in
these contexts.

Due to the presence of the tangent function in the integrand’s denominator in (4.4), the question
for existence of H raises, partially answered in (see [Pav02, p. 367] and [Zyg02, Vol. I, p. 52])

Lemma 4.1.16.
For periodic φ ∈ L1([0,2π]), the Hilbert transformation H(φ)(x) exists for almost every x ∈ R.
Furthermore, H(φ)(x) exists if φ′(x) exists and is finite at x ∈ R.
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Now the announced connection between the Hilbert transformation H andHQ(D) will be clarified.
By the Radó–Kneser–Choquet Theorem 4.1.2, every mapping γ = eiφ ∈H+(∂D) defines a harmonic
automorphism of D by means of the Poisson transformation P[eiφ] (this statement remains true
even for γ ∈ H∗(∂D), see also [KN99, (1.3), p. 338]). The question for whether this harmonic
extension is quasiconformal has been answered in a characterizing manner by Pavlović in [Pav02],
and is stated in (see [Pav14, Theorem 10.18, p. 305])

Proposition 4.1.17.
Let f ∶ D Ð→ D be an orientation–preserving harmonic homeomorphism of the unit disk onto
itself. Then the following conditions are equivalent:

(i) f is quasiconformal, i.e. f ∈HQ(D);
(ii) f =P[eiφ], where the function φ has the following properties:

(a) φ(t + 2π) − φ(t) = 2π for all t ∈ R;
(b) φ is strictly increasing and bi–Lipschitz;
(c) the Hilbert transformation of φ′ is an element of L∞(R).

A mapping g ∶X Ð→ Y between metric spaces (X,dX) and (Y, dY ) is called bi–Lipschitz if there
exists a constant L ∈ [1,+∞) such that

1
L
dX(x1, x2) ≤ dY (g(x1), g(x2)) ≤ LdX(x1, x2)

for all x1, x2 ∈ X, thus sharpening the classical notion of a Lipschitz–continuous mapping. Now,
in view of Corollary 4.1.4 and Proposition 4.1.17, the following characterization for the elements
of the space HQ(D) is valid: A harmonic (orientation–preserving) homeomorphism P[eiφ] of D
onto itself is quasiconformal if and only if the corresponding mapping φ is an element of

H+qc ∶= {φ ∈ C([0,2π]) ∣ φ is strictly increasing and bi–Lipschitz, φ(2π) − φ(0) = 2π, H(φ̃′) ∈ L∞(R)}

Here, φ̃ denotes the canonical extension of φ ∈H+qc to all of R via

φ̃(t + 2kπ) ∶= φ(t) + 2kπ

for all t ∈ [0,2π] and every k ∈ Z. By the requirement of strict increasing monotonicity, every
mapping φ ∈H+qc is differentiable almost everywhere in (the interior of) [0,2π]. Consequently, each
extended mapping φ̃ ∈ C(R) is differentiable almost everywhere in R with φ̃′ being 2π–periodic
by construction. Furthermore, the assumption that φ is bi–Lipschitz yields φ′ ∈ L1([0,2π]) (see
[RF10, Theorem 10, p. 124]). Therefore, the condition H(φ̃′) ∈ L∞(R) is reasonable. In view of
the topic of the current subsection and the mentioned path–connectedness of HQ(D), the first
important observation to be made is

Lemma 4.1.18.
The subset H+qc ⫋ C([0,2π]) is convex. In particular, H+qc is contractible in the Banach space
C([0,2π]).

Proof. Let φ1, φ2 ∈H+qc, λ ∈ [0,1] and consider the mapping λφ1 + (1 − λ)φ2.
(i) Monotonicity: For t, t′ ∈ [0,2π] with t < t′, it is

λφ1(t) + (1 − λ)φ2(t) < λφ1(t′) + (1 − λ)φ2(t′)

due to λ, (1 − λ) ≥ 0, hence λφ1 + (1 − λ)φ2 is strictly increasing.

73



CHAPTER 4. QUASICONFORMAL AUTOMORPHISMS OF D

(ii) Bi–Lipschitz property: Let t, t′ ∈ [0,2π] and L ∶= max{L1, L2} with Lj denoting the bi–
Lipschitz constant of φj , j = 1,2. Then on the one hand, by means of the triangle inequality,
it is

∣λφ1(t) + (1 − λ)φ2(t) − λφ1(t′) − (1 − λ)φ2(t′)∣ ≤ λ ∣φ1(t) − φ1(t′)∣ + (1 − λ) ∣φ2(t) − φ2(t′)∣
≤ λL∣t − t′∣ + (1 − λ)L∣t − t′∣ = L∣t − t′∣

Hence λφ1 + (1 − λ)φ2 is Lipschitz–continuous with Lipschitz constant L. Without loss of
generality, assume t > t′, then on the other hand, it is (recall that λφ1 + (1−λ)φ2 is strictly
increasing by (i))

λφ1(t) + (1 − λ)φ2(t) − λφ1(t′) − (1 − λ)φ2(t′) = λ(φ1(t) − φ1(t′)) + (1 − λ)(φ2(t) − φ2(t′))

≥ λ 1
L
(t − t′) + (1 − λ) 1

L
(t − t′) = 1

L
(t − t′)

Finally, switching the roles of t and t′ shows that λφ1 + (1−λ)φ2 is bi–Lipschitz continuous
on [0,2π] with bi–Lipschitz constant L.

(iii) Image interval has length 2π: It is

λφ1(2π) + (1 − λ)φ2(2π) − (λφ1(0) + (1 − λ)φ2(0))
= λ(φ1(2π) − φ1(0)) + (1 − λ)(φ2(2π) − φ2(0))
= λ2π + (1 − λ)2π = 2π

(iv) Hilbert transformation: First of all, λφ̃1 + (1 − λ)φ̃2 is differentiable almost everywhere
in R by (i) with

(λφ̃1 + (1 − λ)φ̃2)′ = λφ̃1
′ + (1 − λ)φ̃2

′

The function λφ′1 + (1 − λ)φ′2 is contained in L1([0,2π]) as the linear combination of such
elements. Following Definition 4.1.14, the Hilbert transformation of λφ̃1

′+(1−λ)φ̃1
′ is given

by

H(λφ̃1
′ + (1 − λ)φ̃2

′)(x) = − 1
π

π

∫
0+

λφ̃1
′(x + t) + (1 − λ)φ̃2

′(x + t) − λφ̃1
′(x − t) − (1 − λ)φ̃2

′(x − t)
2 tan(t/2) dt

= − 1
π

π

∫
0+

λ(φ̃1
′(x + t) − φ̃1

′(x − t)) + (1 − λ)(φ̃2
′(x + t) − φ̃2

′(x − t))
2 tan(t/2) dt

Since φ1, φ2 ∈H+qc, it is H(φ̃1
′),H(φ̃2

′) ∈ L∞(R) by definition of the set H+qc, thus using the
linearity of (improper) integrals the previous equation can be rewritten as

H(λφ̃1
′ + (1 − λ)φ̃2

′)(x) = −λ
π

π

∫
0+

φ̃1
′(x + t) − φ̃2

′(x − t)
2 tan(t/2) dt − 1 − λ

π

π

∫
0+

φ̃2
′(x + t) − φ̃2

′(x − t)
2 tan(t/2) dt

= λH(φ̃1
′)(x) + (1 − λ)H(φ̃2

′)(x)

Since L∞(R) is a R–vector space, the previous equation yields H(λφ̃1
′+(1−λ)φ̃2

′) ∈ L∞(R).
All in all, the mapping λφ1+(1−λ)φ2 is contained in H+qc for every λ, hence H+qc is convex. Thus,
as a subset of the normed vector space C([0,2π]), H+qc is also contractible.

Continuing the investigation, the set H+qc now gives rise to consider the mapping

Λ ∶H+qc Ð→HQ(D), φz→ (D ∋ z z→ Λ(φ)(z) ∶=P[eiφ](z)) (4.5)

By Corollary 4.1.4 and Pavlović’s Proposition 4.1.17, the mapping Λ is surjective. Endowing the
involved sets in (4.5) with the respective metric structures concludes in the pleasant
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Theorem 4.1.19.
The mapping Λ ∶ (H+qc, dsup)Ð→ (HQ(D), dsup) as defined in (4.5) is continuous and surjective.

Proof. The fact that Λ is surjective was already mentioned above. Hence, let (φn)n∈N converge in
H+qc to φ ∈ H+qc. The characterization of elements in HQ(D) stated in Proposition 4.1.17 implies
that (Λ(φn))n∈N is a sequence in HQ(D) and Λ(φ) ∈HQ(D). In particular, Λ(φn) and Λ(φ) are
harmonic quasiconformal automorphisms of D, continuous on D and coincide with eiφn and eiφ

on ∂D, respectively (see also [Dur04, p. 12]). Therefore, since Λ(φn) −Λ(φ) is harmonic as well,
the maximum principle for harmonic mappings applies (see [ABR01, pp. 7–9]), concluding in

sup
z∈D
∣Λ(φn)(z) −Λ(φ)(z)∣ = sup

z∈∂D
∣Λ(φn)(z) −Λ(φ)(z)∣

= sup
t∈[0,2π]

∣eiφn(t) − eiφ(t)∣

≤ sup
t∈[0,2π]

∣φn(t) − φ(t)∣ = dsup(φn, φ)

In the estimate, the basic inequality ∣eix − eiy ∣ ≤ ∣x − y∣ for x, y ∈ R was used. The last expression
tends to zero for n→∞, proving the continuity of Λ.

Finally, combining the statements of Lemma 4.1.18 and Theorem 4.1.19 yields the announced

Theorem 4.1.20.
The space HQ(D) is contractible. In particular, the space HQ(D) is path–connected.

4.1.3 Incompleteness of HQ(D): Statement, auxiliary results and proof

This subsection is concerned with the proof of the following statement:

Theorem 4.1.21.
The space HQ(D) is incomplete.

In order to prove this claim, some helpful results are collected in the following. The principal
idea of the proof of Theorem 4.1.21 is to construct a sequence of homeomorphic mappings of the
interval [0,1] onto itself converging uniformly to the Cantor function C ∶ [0,1] Ð→ [0,1]; for
basic information on this function, see [DMRV06] and [RF10, Section 2.7, pp. 49–53]. A result
of Božin and Mateljević shows that, via the Poisson transformation, an appropriately modified
variant of the mapping C induces a harmonic homeomorphism of the unit disk D onto itself which
is not quasiconformal (see Proposition 4.1.23). However, this harmonic homeomorphism will be
seen to arise as the uniform limit of harmonic quasiconformal automorphisms of D, thus implying
that HQ(D) cannot be complete.

First of all, an approximation procedure for the Cantor function C in terms of a certain recursively
defined sequence is stated (see [DMRV06, Proposition 4.2, p. 9]):

Lemma 4.1.22.
Let B([0,1]) denote the Banach space of bounded real–valued functions on [0,1]. The Cantor
function C is the unique element of B([0,1]) for which

C(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2C(3x), 0 ≤ x ≤ 1

3
1
2 ,

1
3 < x <

2
3

1
2 +

1
2C(3x − 2), 2

3 ≤ x ≤ 1
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Moreover, for arbitrary ψ0 ∈ B([0,1]), the sequence (ψn)n∈N0 defined by

ψn+1(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2ψn(3x), 0 ≤ x ≤ 1

3
1
2 ,

1
3 < x <

2
3

1
2 +

1
2ψn(3x − 2), 2

3 ≤ x ≤ 1
(4.6)

for n ∈ N0 converges uniformly on [0,1] to C.

The principal idea of the approximation procedure and the mappings ψn is that the initial mapping
ψ0 is “copied” and gets “duplicated in a scaled fashion”, being added to the graph of ψn more and
more times as the index increases. From this, it is clear that all continuity and differentiability
questions regarding ψn depend solely on the behaviour of the initial mapping ψ0 (and eventually
existing derivatives) at the boundary points x = 0 and x = 1 of the starting interval. Furthermore,
in Lemma 4.1.22, the stated approximation part and the related uniqueness of C is based on
Banach’s Contraction Principle (see [RF10, p. 216]). The following proposition contains the
mentioned result of Božin/Mateljević concerning a harmonic homeomorphism of D which fails to
be quasiconformal (see [BM10, Example 3.2, pp. 29–30]):

Proposition 4.1.23.
For t ∈ [0,2π], define φC(t) ∶= π(C( t2π ) +

t
2π ) and γC(t) ∶= eiφC(t). Then the function hC ∶= P[γC]

is a harmonic homeomorphism of D onto itself that is not quasiconformal.

Remark 4.1.24. The Cantor function C, named for the German mathematician Georg Can-
tor who introduced it in 1883, is an often utilized counterexample to many situations in real
(one–dimensional) analysis, especially concerning delicate subtleties of integration and continuity
questions. The main obstacle in Proposition 4.1.23 that denies hC to be quasiconformal is thereby
the fact that the Cantor function is continuous and increasing (thus φC is strictly increasing by
construction), but not absolutely continuous (see [DMRV06, Proposition 2.1, p. 3] and [RF10,
Example, p. 120]), as pointed out in [BM10, p. 29].

Now all preparations are made in order to prove the claim of Theorem 4.1.21:

Proof of Theorem 4.1.21. Consider the polynomial function

ψ0 ∶ [0,1]Ð→ R, xz→ ψ0(x) ∶= 6x5 − 15x4 + 10x3

whose first and second derivatives satisfy

ψ′0(0) = ψ′0(1) = 0 = ψ′′0 (0) = ψ′′0 (1) (4.7)

Furthermore, ψ0 is strictly increasing on (0,1) and leaves the boundary points fixed – in other
words, ψ0 maps [0,1] homeomorphically onto itself. Lemma 4.1.22 implies that the corresponding
sequence (ψn)n∈N0 defined via (4.6) converges uniformly on [0,1] to the Cantor function C, and
by construction, it is ψn ∈ C2([0,1]) for every n ∈ N0 due to (4.7). Transferring the ψn to the
interval [0,2π] via

φn(t) ∶= π (ψn (
t

2π
) + t

2π
) , t ∈ [0,2π], (4.8)

yields a sequence (φn)n of C2–homeomorphism of [0,2π] onto itself. Accordingly, this sequence
(φn)n clearly converges uniformly on [0,2π] to the mapping φC defined in Proposition 4.1.23. As
a next step, the mappings φn and φC are extended to all of R by setting

φn(t + 2kπ) ∶= φn(t) + 2kπ (4.9)
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for k ∈ Z and t ∈ [0,2π], yielding a sequence (φn)n∈N0 ⊆ C2(R); likewise, the mappings ψn and C
are extended in the same manner (the extended mappings are denoted by the same letter). In
particular, the φn are differentiable with φ′n(t + 2kπ) = φ′n(t) for all t ∈ R by construction, i.e.
the φ′n (and thus the φ′′n as well) are continuous 2π–periodic mappings. Lifting these mappings
to the unit circle by

γn(eit) ∶= eiφn(t)

for t ∈ [0,2π] and each n ∈ N yields orientation–preserving homeomorphisms of ∂D onto itself,
hence the harmonic extensions P[γn] by means of the Radó–Kneser–Choquet Theorem 4.1.2 are
(orientation–preserving) harmonic homeomorphisms of D onto itself. Moreover, by Pavlović’s
characterization result stated in Proposition 4.1.17, the mappings P[γn] in fact define quasicon-
formal automorphisms of D, which can be seen as follows:

It is φn ∈ C2(R) strictly increasing with φn(t + 2π) = φn(t) + 2π for all t ∈ R by construction, see
(4.8) and (4.9). Furthermore, as C2–homeomorphisms, each mapping φn is Lipschitz–continuous,
and the corresponding inverse mappings φ−1

n are also C2 by construction due to (4.7), thus also
Lipschitz–continuous. In consequence, the mappings φn are bi–Lipschitz. Hence, in view of
Proposition 4.1.17(ii), the Hilbert transformation condition (c) needs to be verified. Therefore,
let x ∈ R, then it is

∣φ′n(x + t) − φ′n(x − t)∣ ≤ Ln ⋅ ∣x + t − (x − t)∣ = 2Ln∣t∣

since φn ∈ C2(R), thus φ′n is Lipschitz–continuous on R with Lipschitz constant Ln ∈ R+. This
yields

RRRRRRRRRRRRR

π

∫
0+

φ′n(x + t) − φ′n(x − t)
t

dt
RRRRRRRRRRRRR
≤

π

∫
0+

∣φ′n(x + t) − φ′n(x − t)∣
t

dt ≤
π

∫
0+

2Lnt
t

dt = 2πLn < +∞

and now Remark 4.1.15(i) implies that H(φ′n) is (essentially) bounded for φn, n ∈ N0 (note that
the conclusion could also have been drawn from Lemma 4.1.16 since φ′n and φ′′n are periodic and
continuous on R). Thus Proposition 4.1.17 shows that the mappings P[γn] are quasiconformal
automorphisms of D.

Finally, it will be shown that the mappings P[γn] converge uniformly on D to the non–quasiconformal
mapping hC in question (from Proposition 4.1.23), which is essentially based on the same idea
as the proof of Theorem 4.1.19: Applying the maximum principle for harmonic functions to
P[γn] − hC yields

sup
z∈D
∣P[γn](z) − hC(z)∣ =max

z∈∂D
∣P[γn](z) −P[γC](z)∣ = max

t∈[0,2π]
∣eiφn(t) − eiφC(t)∣ ≤ max

t∈[0,2π]
∣φn(t) − φC(t)∣

Since φn converges uniformly on [0,2π] to φ (this, in turn, follows from the fact that ψn converges
uniformly on [0,1] to the Cantor function C), the claim follows: The sequence (P[γn])n∈N0 in
HQ(D) converges uniformly to hC /∈HQ(D), showing that the space HQ(D) is incomplete.

In particular, by considering the homeomorphically extended mappings on D, the proof of Theo-
rem 4.1.21 immediately implies the following statement, which is used in Theorem 2.5.5:

Corollary 4.1.25.
The subspace Q(D) is not closed in the homeomorphism group H(D).

Proof. The homeomorphic extensions to D of the mappings P[γn], n ∈ N, in HQ(D) ⫋ Q(D)
converge uniformly on D to (the extension of) hC ∈H(D)/Q(D), and the claim follows.
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Furthermore, as an addition to the results in Theorem 4.1.11, the proof of Theorem 4.1.21 implies
as a direct consequence:

Corollary 4.1.26.
The set HQ(D) is not closed in the space (Har+(D), dsup), where Har+(D) denotes the class of
all orientation–preserving harmonic homeomorphisms of D onto itself.

4.2 Radial stretchings revisited: Semirings and a Cesàro–type
construction

In the progress of the thesis at hand hitherto, a couple of examples of quasiconformal automor-
phisms have already been presented on several occasions:

(i) For the case G = D: The class of general radial stretchings given by fρ(z) = ρ(∣z∣)eiArg(z)

for z ∈ D with appropriate ρ ∈ C([0,1]), see Definition 2.3.1, containing the monomial–like
radial stretchings fK(z) = z∣z∣K−1 for K ∈ R+ as a special case. More concrete examples of
quasiconformal unit disk automorphisms are given by the principal encryption mappings in
(4.25) and the actual encryption mappings (4.26) utilized in Subsection 16.

(ii) Furthermore, in the case of the unit disk, a sequence of harmonic quasiconformal automor-
phisms of D is utilized in the proof of Theorem 4.1.21.

(iii) In the multiply connected setting treated in Chapter 3.6: The Full Dehn twist f(z) = z∣z∣
2πi

ln(R)

as defined in (3.10).

The class of monomial–like radial stretchings, as defined by (2.3), are mappings of the form

fK(z) = z∣z∣K−1

for z ∈ D andK ∈ R+ = (0,+∞), thereby constituting a useful set of quasiconformal automorphisms
of the unit disk (Lemma 2.3.2). This subsection is concerned with further investigation of these
mappings regarding algebraic structure and a construction related to classical Cesàro summation
from real analysis. To this end, denote by R(D) the set of all monomial–like radial stretchings
of D and consider the mapping

T ∶ R+ Ð→R(D), K z→ T (K) ∶= (D ∋ z z→ z∣z∣K−1)

Obviously, T constitutes a bijective mapping. Furthermore, the mapping T defines a group
isomorphism between the abelian group (R+, ⋅) and the group4 (R(D), ○), i.e.

T (K ⋅L) = z∣z∣K ⋅L−1 = z∣z∣K−1 ○ z∣z∣L−1 = T (K) ○ T (L)

for all K,L ∈ R+ (see [Bie17, (2.12), p. 43]). In particular, (R(D), ○) forms a commutative semi-
group (even a monoid), a fact that will be utilized in the remainder of this section. Furthermore,
examination of the basic fact that R+ also carries the algebraic structure of a commutative semi-
group with respect to addition of real numbers (i.e. addition is an associative binary operation
on R+) gives rise to introduce the mapping

⊕ ∶R(D) ×R(D)Ð→R(D), (z∣z∣K−1, z∣z∣L−1)z→ z∣z∣K−1 ⊕ z∣z∣L−1 ∶= z∣z∣K+L−1

which might be called addition in R(D). Consequently, by construction, the mapping T defined
above also behaves in a pleasant way with respect to this operation ⊕ on R(D):

T (K +L) = z∣z∣K+L−1 = z∣z∣K−1 ⊕ z∣z∣L−1 = T (K)⊕ T (L)
4The fact that R(D) forms a group is easily verified, see e.g. [Bie17, Theorem 2.11, p. 43].
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In other words, T defines a homomorphism between the commutative semigroup (R+,+) and
the tuple (R(D),⊕), hence – since the set–theoretic mapping properties of T remain unchanged
– a semigroup isomorphism. In particular, (R(D),⊕) is itself a commutative semigroup. The
self–evident consequence now is to introduce the triple (R(D),⊕, ○) and to confirm the following

Lemma 4.2.1.
The triple (R(D),⊕, ○) forms a commutative semiring5, i.e. both (R(D),⊕) and (R(D), ○) are
commutative semigroups, and the binary operations ⊕ and ○ satisfy the distributive law

• z∣z∣K−1 ○ (z∣z∣L−1 ⊕ z∣z∣L′−1) = z∣z∣K−1 ○ z∣z∣L−1 ⊕ z∣z∣K−1 ○ z∣z∣L′−1 and

• (z∣z∣L−1 ⊕ z∣z∣L′−1) ○ z∣z∣K−1 = z∣z∣L−1 ○ z∣z∣K−1 ⊕ z∣z∣L′−1 ○ z∣z∣K−1

Proof. The facts that (R(D),⊕) and (R(D), ○) form commutative semigroups were already estab-
lished previously. In order to verify the distributive laws, the homomorphic mapping properties
of T are utilized:

z∣z∣K−1 ○ (z∣z∣L−1 ⊕ z∣z∣L′−1) = T (K) ○ (T (L)⊕ T (L′)) = T (K) ○ T (L +L′) = T (K ⋅ (L +L′))
= T (K ⋅L +K ⋅L′) = T (K ⋅L)⊕ T (K ⋅L′)
= T (K) ○ T (L)⊕ T (K) ○ T (L′)
= z∣z∣K−1 ○ z∣z∣L−1 ⊕ z∣z∣K−1 ○ z∣z∣L′−1

This proves the first claim. The second equation follows in the very same manner.

Finally, the announced Cesàro–type construction will be briefly presented: For a given (not
necessarily convergent) sequence (z∣z∣Kj−1)

j∈N of monomial–like radial stretchings in R(D) and
n ∈ N, define the Cesàro–type mapping

sn ∶ DÐ→ C, z ∈ Dz→ sn(z) ∶=
1
n

n

∑
j=1

z∣z∣Kj−1 (4.10)

which, by means of z = reiφ ∈ D, can be rewritten as

sn(z) =
eiφ

n

n

∑
j=1

rKj

Due to z∣z∣Kj−1 ∈ Q(D) for all j ∈ N, it follows immediately that sn ∈ C(D) with homeomorphic
extension to ∂D and the extended mapping satisfies sn∣∂D ≡ id∂D. In particular, sn maps the
unit disk continuously onto itself and keeps both, the boundary and the origin, pointwise fixed.
Furthermore, by considering the real–valued mapping

g(r) ∶= 1
n

n

∑
j=1

rKj

for r ∈ [0,1], one sees that g is a continuous mapping of the interval [0,1] onto itself with g(0) = 0
and g(1) = 1. On the open interval (0,1), the corresponding derivative

d
dr
g(r) = 1

n

n

∑
j=1

Kjr
Kj−1

5The notion of a semiring is not consistently used in the mathematical literature, thus the definition used in
this thesis is stated in Lemma 4.2.1.
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is positive due to Kj ∈ R+, thus g is strictly increasing, and in particular injective. Consequently,
the mapping sn is continuous and injective on the open plane set D, hence a homeomorphism
by a classical result (see [LV73, Lemma 1.1, p. 6]). Next, since every summand z∣z∣Kj−1 in
(4.10) is an ACL mapping (due to z∣z∣Kj−1 ∈ Q(D) by Definition 1.1.1), so is the finite sum sn as
linear combination of such mappings (see [RF10, p. 120], using the basic fact that finite unions
of measurable sets of measure zero remain having measure zero). In the same spirit, one may
consider the Wirtinger derivatives of sn, which compute as (see [AIM08, p. 28])

(sn)z(z) =
1

2n
n

∑
j=1
(Kj + 1)∣z∣Kj−1

(sn)z(z) =
z

z

1
2n

n

∑
j=1
(Kj − 1)∣z∣Kj−1

Therefore, by utilizing the elementary strict inequality ∣x − 1∣ < x + 1 for all x ∈ R+, the following
estimate can be deduced:

∣(sn)z(z)∣ ≤
1

2n
n

∑
j=1
∣Kj − 1∣ ∣z∣Kj−1 < 1

2n
n

∑
j=1
(Kj + 1) ∣z∣Kj−1 = ∣(sn)z(z)∣

Consequently, this concludes in the fact that the Wirtinger derivatives of the mapping sn satisfy

∣(sn)z ∣ ≤ k ∣(sn)z ∣

for some constant k < 1. Finally, in view of Definition 1.1.1, these arguments yield the

Lemma 4.2.2.
The mappings defined via (4.10) are quasiconformal automorphisms of D, i.e. sn ∈ Q(D) for
every n ∈ N.

Figure 4.2: Left: Plot of a Cesàro–type mapping with 35 summand functions, visualized in terms
of a numerically computed deformed Euclidean grid in D.
Right: Magnified region in D of the left–hand side plot, highlighting the special mapping proper-
ties.

The geometric behaviour of the mappings sn in (4.10) – which is rather unusual due to the
naturally present “non– additivity” of quasiconformal mappings, see Remark 4.2.3(i) – is visu-
alized in Figure 4.2 by showing a (numerically approximated) plot of the following mapping of
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this particular type: For j ∈ N, denote by pj ∈ N the j–th prime number (thus, for example,
p1 = 2, p2 = 3, p3 = 5, etc.) and let

Kj = p(−1)j
j + 1 =

⎧⎪⎪⎨⎪⎪⎩

1
pj
+ 1, j = 2m + 1 odd

pj + 1, j = 2m even
(4.11)

Then the corresponding Cesàro–type mappings are given by

sn(z) =
1
n

n

∑
j=1

z∣z∣p
(−1)j
j = z

n
(∣z∣

1
2 + ∣z∣3 + ∣z∣

1
5 + ∣z∣7 + ⋅ ⋅ ⋅ + ∣z∣p

(−1)n
n )

for z ∈ D and n ∈ N. The concrete mapping shown in the left–hand side plot of Figure 4.2 consists
of n = 35 summands, i.e. the first 35 values of the numbers Kj according to (4.11) are used. In a
certain sense, the geometric behaviour of the depicted mapping s35 is controlled by two “opposed
forces”:

• On the one hand, the summands having the exponents 1
p2m−1

+ 1 are close to the identity
mapping idD (in either sense of the word “close”), since the values of the reciprocal prime
number tend to zero rapidly, thus leaving the Euclidean grid more or less unaltered;

• On the other hand, the summands belonging to the exponents p2m + 1 with even index
values show the effect of “pulling” the grid towards the origin, as can also be seen in Figure
2.2.

This concludes in the interesting pictures shown in Figure 4.2, in which both mapping effects
are visible: In the center of the unit disk, close to the origin, the Euclidean grid is virtually
unchanged, whereas in the outer regions near ∂D, the grid shows strong signs of distortion. This
effect becomes especially apparent in the right–hand side plot of Figure 4.2, depicting a magnified
region inside D of the Euclidean grid’s image under the described mapping s35.

Remark 4.2.3.
As already mentioned previously, the particular construction of the Cesàro–type mappings sn
in (4.10) is remarkable inasmuch as automorphic mappings, thus in particular (quasi)conformal
mappings, are not preserved by linear combinations in general (under the fundamental assumption
that operations similar to “addition” and “scalar multiplication” can be reasonably defined). This
can easily be seen by considering a simple counterexample, e.g.

D ∋ z z→ 1
2
(−z +

z − 1
2

1 − 1
2z
) = 1 − z2

2(z − 2)

which is not even an injective6 mapping, even though each summand inside the bracket is a
conformal unit disk automorphism.

Since the Cesàro–type mappings sn define a sequence in D, the question for the convergence in
Q(D) arises naturally. In particular, it is interesting to ask whether the sequence (sn)n can be
convergent, even though the “basic functions” z∣z∣Kj−1 are divergent. The following Example
4.2.4 is concerned with these questions, demonstrating two concrete prototypical situations:

6For example, the specified mapping assumes the value w = − 1
4 twice in D, namely for z = 0 and z = 1

2 , as a
simple calculation shows.
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Example 4.2.4.
(i) Let Kj = 1 + 1

j for j ∈ N, thus the basic functions are given by

z∣z∣Kj−1 = z∣z∣
1
j

for z ∈ D. The corresponding sequence of monomial–like radial stretchings (D ∋ z ↦ z∣z∣
1
j )j

clearly consists of 2–quasiconformal mappings and converges uniformly on D to the identity
mapping idD, as the following reasoning shows: Let z = reiφ ∈ D, then

∣z∣z∣
1
j − z∣ = r (1 − r

1
j )

The supremum of this expression, i.e. the maximal distance in D, occurs for rj = ( j
j+1)

j, as
can be seen by a simple extreme value calculation, yielding

dsup(z∣z∣
1
j , idD) = rj(1 − r

1
j

j ) = rj
1

j + 1
Ð→ 0

due to the well–known7 limit rj Ð→ e−1 for j → +∞. In equivalence with the classical result
of Cauchy concerning the limits of arithmetic means of convergent sequences of (real or
complex) numbers (see [Heu09, Satz 27.1, p. 177] and also [Zyg02, Vol. I, p. 75]), the
corresponding Cesàro–type sequence

sn(z) =
z

n

n

∑
j=1
∣z∣

1
j

also converges in Q(D) to the identity mapping. This claim can be proved in the classical
manner (see e.g. [Heu09, pp. 176–177]):
Let ϵ > 0 and choose N ∈ N sufficiently large such that dsup(z∣z∣

1
j , idD) < ϵ

2 for j ≥ N .

Moreover, due to lim
n→∞

1
n

N

∑
j=1

dsup(z∣z∣
1
j , idD) = 0 (since N is independent of n), there exists

M ∈ N with 1
n

N

∑
j=1

dsup(z∣z∣
1
j , idD) < ϵ

2 for each n ≥M . Hence, for n ≥max(N,M), consider

∣sn(z) − z∣ =
RRRRRRRRRRR

1
n

n

∑
j=1

z∣z∣
1
j − z
RRRRRRRRRRR
= 1
n

RRRRRRRRRRR

n

∑
j=1
(z∣z∣

1
j − z)

RRRRRRRRRRR
= 1
n

RRRRRRRRRRR

N

∑
j=1
(z∣z∣

1
j − z) +

n

∑
j=N+1

(z∣z∣
1
j − z)

RRRRRRRRRRR

≤ 1
n

N

∑
j=1
∣z∣z∣

1
j − z∣ + 1

n

n

∑
j=N+1

∣z∣z∣
1
j − z∣ ≤ 1

n

N

∑
j=1

dsup(z∣z∣
1
j , idD) +

1
n

n

∑
j=N+1

dsup(z∣z∣
1
j , idD)

The left–hand sum is smaller than ϵ
2 by construction, and each summand of the right–hand

sum is smaller than ϵ
2 by the choice of N . Thus, continuing the inequality chain above,

these estimates yield
∣sn(z) − z∣ <

ϵ

2
+ (n −N)ϵ

2n
≤ ϵ

Switching to the supremum over all z ∈ D finally concludes in dsup(sn, idD) ≤ ϵ, hence the
Cesàro–type mappings sn converge to the identity in Q(D).

(ii) For this second example, let

Kj = (−1)j + 2 =
⎧⎪⎪⎨⎪⎪⎩

1, j = 2t + 1 odd
3, j = 2t even

7For example, this limit can be seen immediately by writing r−1
j = (1 + 1

j
)j j→+∞Ð→ e; see [Heu09, Beispiel 9, p.

149].
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for j ∈ N, which is clearly a divergent sequence of real numbers. Consequently, the corre-
sponding sequence of monomial–like radial stetchings of D given by (z∣z∣(−1)j+1))j cannot
converge in Q(D) either. However, it will be shown in the following that the respective
Cesàro–type mappings

sn(z) =
1
n

n

∑
j=1

z∣z∣Kj−1 = z∣z∣
n

n

∑
j=1
∣z∣(−1)j = z∣z∣

n
(∣z∣−1 + ∣z∣ + ∣z∣−1 + ⋅ ⋅ ⋅ + ∣z∣(−1)j)

in fact converge to the limit mapping

f(z) ∶= 1
2
z(1 + ∣z∣2)

which is also a quasiconformal unit disk automorphism. To this end, distinguish two cases:

• For even n = 2m ∈ N, it is

sn(z) =
z∣z∣
n
(m∣z∣−1 +m∣z∣) = z

2
(1 + ∣z∣2) = f(z)

since the terms ∣z∣−1 and ∣z∣ both occur m times in the finite sum, respectively;

• On the contrary, for odd n = 2m + 1 ∈ N, one finds

sn(z) =
z∣z∣
n
((m + 1)∣z∣−1 +m∣z∣) = z

n
(1 +m(1 + ∣z∣2)) = z

n
+n − 1

n

z

2
(1+∣z∣2) = z

n
+n − 1

n
f(z)

due to the fact that the term ∣z∣−1 occurs m + 1 times in the finite sum.

From this, it is only a small step towards the announced result. For even index values n, it
is already sn ≡ f . And for odd index values n, it is

dsup(sn, f) = sup
z∈D
∣ z
n
+ n − 1

n
f(z) − f(z)∣ = 1

n
sup
z∈D
∣z − f(z)∣ = 1

2n
sup
z∈D
∣z(1 − ∣z∣2)∣

Since the function z(1− ∣z∣2) is obviously continuous on the compact set D, this supremum is
finite8, concluding in the desired result: sn converges in Q(D) to the limit mapping f , which
is clearly (and also necessarily) continuous. Moreover, f is certainly an ACL mapping due
to f = u + iv with u(x, y) = 1

2(x
3 + xy2 + x) and v(x, y) = 1

2(y
3 + x2y + y). The Wirtinger

derivatives of f are given by

fz(z) =
1
2
(1 + 2∣z∣2)

fz(z) =
1
2
z2

which yields ∣fz ∣ = 1
2 ∣z∣

2 < 1
2 + ∣z∣

2 = ∣fz ∣. Hence, the mapping f fulfills the requirements of
quasiconformality on D of the Analytic Definition 1.1.1. Finally, by writing

f(reiφ) = 1
2
r(1 + r2)eiφ

one sees that f maps the unit disk bijectively onto itself, yielding f ∈ Q(D).
8This supremum can of course be explicitly computed by means of a simple extreme value calculation and setting

z = reiφ ∈ D: It is dsup(sn, f) = 2
3
√

3 , attained for r = 1√
3 .
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4.3 A view towards applications: Quasiconformal Cryptosystems

This section is concerned with obtaining a glimpse of application for the theory of Q(G), to be
more precise, towards a theory of cryptosystems based on quasiconformal automorphisms. First
of all, the primordial idea in order to focus this topic will be amplified: The motivation for consid-
ering Quasiconformal Cryptosystems was laid by the article “Biholomorphic Cryptosystems” by
N.J. Daras, recently published in the scientific compendium Advancements in Complex Analysis
– From Theory to Practice, see [Dar20]. In this paper, Daras presents “. . . a physical adaption of
classical cryptological discrete structures within the environment of complex variables” ([Dar20,
p. 51]). More precisely, he proposes two aspects of classical cryptological research in an complex–
analytical framework: On the one hand, Daras presents an encoding–/decoding scheme based
on biholomorphic (conformal) mappings, i.e. an algorithm for translating characters used in hu-
man language into objects that can be handled by the specific mappings investigated in Complex
Analysis. More explicitly, he proposes a method to embed a human–readable set of characters
“into an initial simpl[y] connected domain of the complex plane C, which is then transformed
successively to other connected domains of C” ([Dar20, pp. 51–52]). Obviously, such a procedure
is demanded in a quasiconformal setting as well, therefore a certain encoding–/decoding scheme
adapted to this section’s setting is presented in Subsection 4.3.1. On the other hand, Daras
describes a cryptosystem based on biholomorphic mappings, i.e. algorithms to transform plain-
text characters (which were properly encoded before) into corresponding ciphertext characters
by means of biholomorphic mappings: This is realized with the aid of mappings from domains
in Cn into Cn with n ≥ 2, hence in the multi–dimensional situation, justifying the usage of the
word “biholomorphic” rather than “conformal”9. Here, the number n refers to the length of the
plaintext message to be encrypted, i.e. Daras’ encryption scheme is designed as a so–called block
cipher, i.e. the plaintext is divided into blocks of constant length and each block is encrypted
individually using the corresponding encryption key (see [MvOV01, p. 224]). The quasiconformal
cryptosystem to be introduced in Subsection 4.3.2 will be based on the very same concept, altered
by the fact that both, the plaintext and ciphertext space, are modeled as a subset of the complex
plain rather than being contained in some higher–dimensional unitary space Cn.

This very special and promising situation – complex–analytic topics applied to application–
oriented real–world problems – paved the way for the idea to study this field of interdisciplinary
mathematics and to transfer Daras’ proposed framework to the more general situation of Quasi-
conformal Cryptosystems, which are based on quasiconformal automorphisms of domains in C.
In view of this situation, the first two subsections of the current section primarily focus on the
definition of quasiconformal cryptosystems, therefore the following general assumptions are made
and will be used henceforth:

(1) All messages, plaintext and ciphertext, are assumed to have a fixed length, say n, for some
natural number n ∈ N with n > 1. If an encoded plaintext P is to be encrypted, the single
characters of P are divided into blocks of length n and each of those blocks is encrypted one
after another; if necessary, some appropriate padding10 scheme is used in order to arrive at a
message with overall length being an integer multiple of the block length n.

(2) The encryption scheme to be proposed in the following is based on quasiconformal automor-
phisms of a certain (bounded) domain G ⊆ C. Due to this circumstance and for the sake of
simplicity, one may take G = D without loss of generality due to the (Measurable) Riemann
Mapping Theorem (see Proposition 1.1.2 and e.g. [RS07, p. 173]).

9See e.g. [Kra04, p. 162] for further information on the difference between the notions of conformal and
biholomorphic mappings, especially in the case of several complex variables.

10In this context, padding means to add certain prescribed data to a plaintext in order to arrive at a integer
multiple of the block length used in the corresponding block cipher.
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4.3.1 Preliminaries and basics of symmetric cryptography

Symmetric cryptosystems

In order to be able to establish an algorithm that is capable of defining a process for encrypting
and decrypting certain information, the following definition of such a cryptosystem is required
(see [KL20, pp. 4–5] and [MvOV01, pp. 11–12]):

Definition 4.3.1.
A (symmetric) private–key cryptosystem is a tuple (M,C,K,E,D) consisting of

(i) The plaintext space M consisting of all possible messages, called plaintext messages
or simply plaintexts;

(ii) The ciphertext space C consisting of all possible ciphertexts, called ciphertext messages
or ciphertexts;

(iii) The key space K consisting of all possible keys;
(iv) An encryption function

E ∶M ×K Ð→ C, (m,k)z→ E(m,k) ∶= Ek(m)

such that E(⋅, k) is injective for each fixed key k ∈ K;
(v) A decryption function

D ∶ C ×K Ð→M, (c, k)z→D(c, k) ∶=Dk(c)

such that D(⋅, k) is injective for each fixed key k ∈ K,

and with the additional property that the following correctness condition is fulfilled:

∀k ∈ K ∃!k′ ∈ K ∀m ∈M ∶ Dk′(Ek(m)) =m (4.12)

In almost every cryptographic algorithm, it is k′ = k in the correctness condition (4.12), see
[MvOV01, p. 12 / p. 15], i.e. encryption and decryption process are executed using the same
key element. The historical development of symmetric cryptosystems is a interesting and ample
science in its own right, including important characters such as Caesar and Alan Turing; see
[KL20, Section 1.3] and [MvOV01, Section 1.14] as well as the sources mentioned therein for more
information. Furthermore, due to the limited dimensions available in real–world applications
imposed by a physically limited universe (e.g. computational power of CPUs, main memory
[RAM] and disk storage space [HDD], transmission rate, computation time), the sets involved
in Definition 4.3.1 – the plaintext space M, the ciphertext space C and the key space K – are
all finite sets. In sharp contrast to this intuitively plausible constraint, the cryptosystem to be
proposed in the following is not bounded to this finiteness condition. In fact, all involved sets
will have uncountably many elements. In view of the classical paradigm

“A necessary, but usually not sufficient, condition for an encryption scheme to be secure is that
the key space be large enough to preclude exhaustive search”

in cryptography (see [MvOV01, Fact 1.40, p. 21]), the uncountability of the key space guarantees
that the cryptosystem to be proposed satisfies the cited paradigm.

Remark 4.3.2.
(i) In the corresponding literature, there is no completely unified definition of a symmetric

cryptosystem. For example, some sources demand an additional item given by a so–called
key–generation function (algorithm) KeyGen that serves as the source for retrieving
a key from the key space K (see [Buc16, Definition 3.1, p. 73] and [KL20, p. 4]). More-
over, some authors define a cryptosystem to be based on probabilistic algorithms, e.g. the
encryption function is sometimes supposed to be probabilistic, i.e. depending on stochastic
principles and phenomena ([Buc16, p. 73]).
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(ii) In contrast to symmetric cryptosystems which are based on a single key in order to encrypt
and decrypt information, there exists another extremely important and successful encryption
scheme, so–called public–key systems. Public–key cryptography was invented in the 1970s
and has ever since been applied in a vast manner to basically every aspect of telecommuni-
cation infrastructure and beyond; see e.g. [Buc16, pp. 165–166] for more details.

(iii) The usage of the symbol k for a key element k ∈ K in this section is not related to the previous
usage of this letter in this thesis so far, connected to the maximal dilatation of quasiconformal
mappings (see Definition 1.1.1(ii)). Since there won’t be any risk of misunderstanding in
the remainder of the current section, this naming convention for key elements – widely used
in literature about cryptography – will be used tacitly.

Encoding a character set into D

In elementary terms, the process of encoding is simply the translation of some human–readable
(finite) alphabet (a character set) into another format that can be handled appropriately by some
algorithm. A standard example is given by the ASCII11 code, which is a widely used encoding
scheme in electronic communication systems (see [Buc16, Beispiel 3.8, p. 83]). In the situation
at hand, this means that the standard alphabet

A ∶= {a, b, c, . . . , x, y, z, A, B, C, . . . , X, Y, Z, 0,1,2, . . . ,7,8,9} (4.13)

is to be embedded into the open unit disk D in a reasonable manner. Obviously, this task is
solvable in numerous different ways, and further characters may be added to the alphabet A,
e.g. special symbols like @ or &. However, due to the fact that the concrete encoding scheme
to be used is not of crucial importance for the topic to follow – and for the sake of simplicity –,
the character set A given by (4.13) will be used throughout this section. The proposed encoding
scheme to be presented in the current subsection is one of those mentioned possibilities: First,
the set A is divided into three distinct subsets via

A1 ∶= {a, b, c, . . . , x, y, z}
A2 ∶= {A, B, C, . . . , X, Y, Z}
A3 ∶= {0,1,2, . . . ,7,8,9}

Thus, clearly, it is A = A1 ⊍ A2 ⊍ A3. Then, for each j = 1,2,3, every element m ∈ Aj is
assigned the uniquely defined natural number o = o(m) ∈ N at which the character m occurs in
the corresponding subalphabet Aj when adapting the canonical ordering of letters and digits as
shown above; in order to clarify this described assignment, consider the following

Example 4.3.3.
1. In the subalphabet A1, choose m = c, then it is o(c) = 3 since the letter c occurs at the third

position in A1. Likewise, it is o(z) = 26.
2. In the subalphabet A2, choose m = X, then it is o(X) = 24 since the letter X occurs at the

corresponding twenty–fourth position in A2.
3. In the subalphabet A3, choose m = 5, then it is o(5) = 6 since the digit 5 occurs at the sixth

position in A3.

Consequently, these assignments give rise to the mappings

ηj ∶ Aj Ð→ N, mz→ ηj(m) ∶= o(m)

for j = 1,2,3. Now the following encoding mapping can be defined:
11American Standard Code for Information Interchange
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Definition 4.3.4.
Fix three numbers 0 < r1 < r2 < r3 < 1. The mapping

Enc ∶ AÐ→ D, mz→ Enc(m) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

r1 exp (2πiη1(m)
∣A1∣ ) , m ∈ A1

r2 exp (2πiη2(m)
∣A2∣ ) , m ∈ A2

r3 exp (2πiη3(m)
∣A3∣ ) , m ∈ A3

(4.14)

is called the canonical encoding mapping of D.
Clearly, the canonical encoding mapping proposed above embeds the standard alphabet A as
defined by (4.13) into the unit disk D. Figure 4.3 depicts a concrete example of a canonical
encoding mapping of D with the characters used in Example 4.3.3.
As already stated before, it is obvious that there are numerous further possibilities for defining
such an encoding mapping, as can be seen, among others, in the free choice of the radii rj .
Consequently, other encoding mappings are possible and probably reasonable. For example, one
may post–compose the mapping Enc with one (or several) injective self–maps of D in order
to arrive at different encoded character sets. However, in the remainder of this section, the
canonical encoding mapping (4.14) will be utilized in order to define a cryptosystem based on
quasiconformal automorphisms of D.

Figure 4.3: The unit disk (with boundary ∂D in black) with three inscribed smaller circles (dashed
red lines), each with radius rj = j

4 for j = 1,2,3. The blue dots are the (approximated values
of the) characters c ∈ A1, X ∈ A2 and 5 ∈ A3 as outlined in Example 4.3.3, located on their
corresponding inner circles.

4.3.2 Symmetric quasiconformal cryptosystems modeled on Q(D)

In this subsection, the central idea for defining a symmetric encryption scheme using quasicon-
formal automorphisms of D is presented and described precisely step by step. Since the cryp-
tosystem is supposed to operate on message blocks of block length n, each character of which is
an element of the unit disk, the definition of the plaintext M is immediately obvious: It is

M = Dn
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The ciphertext space C, however, needs to have a slightly different form, namely by excluding the
origin from the base set D and instead including the point z = 1:

C = ((D ∪ {1})/{0})n

This special construction is due to a necessary distinction of cases which will become clear in the
following (see (4.22)).

The key space K and the key–generation process

In the following, the cryptographic configuration of the key space K is explained. Choose and
fix non–trivial, pairwise distinct mappings f1, . . . , fn ∈ Q(D)/{idD}, which represent the basic
encryption functions; here, as stated at the beginning of the current section, the number n
denotes the block length of the messages to be en–/decrypted. Without loss of generality, one
may assume that f−1

j /= fj′ for j, j′ ∈ {1, . . . , n}, i.e. a quasiconformal automorphism of D and its
inverse element in Q(D) do not occur simultaneously in the chosen listing. For the next step, the
following data sets are to be determined:

• An n–tuple t ∶= (t1, . . . , tn) ∈ (Z/{0})n consisting of non–zero integers, which will serve as
exponents of the basic encryption functions fj ;

• Three non–trivial permutations of the set {1, . . . , n}, i.e. non–identity elements of the
symmetric group Sn (see [KM17, Beispiel 2.1, p. 20]), as follows:

– A permutation σf which will operate on the encryption functions;
– A permutation σp operating on the plaintext p, permuting the order of the plaintext

characters;
– A permutation σc operating on intermediate ciphertexts c, permuting the order of

previously encrypted characters.

These elements constitute the encryption key

k = ((t1, . . . , tn), (σf , σp, σc)) ∈ (Z/{0})n × (Sn)3 (4.15)

such that the key space K is given by

K = (Z/{0})n × (Sn)3 (4.16)

Remark 4.3.5 (Key–generation process).
In the previously described construction of the key space K, there was no reference on how to
explicitly “choose” the involved parameters, for example the exponent tuple t ∈ (Z/{0})n. In
cryptography, this parameter selection process is a special question, interesting and important in
its own right. In most situations, in particular in real–world applications, the selection of key
para-meter values is given by the discrete uniform probability distribution on the corresponding
(finite) sets (see [Buc16, p. 74] and [KL20, p. 25]). In the current situation, however, this
scenario is not applicable due to the fact that parts of the key space K defined by (4.16) contain
infinitely many elements (the Cartesian product (Z/{0})n). A possible way to bypass this principal
obstacle could be the following workaround for approximately choosing a uniformly distributed key
from K:
Instead of using the whole Cartesian product (Z/{0})n, use a sufficiently large natural number
N , use the discrete uniform distribution on ({−N, . . . ,N}/{0})n and apply the n–fold product
measure. On the finite set (Sn)3, the product measure of the discrete uniform distribution can be
used without any altering.
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This yields an approximation procedure for generating a uniformly distributed key from the key
space K. Nevertheless, as already mentioned, key generation and key management are important
topics in cryptography in their own right. Therefore, the key–generation process will not be pursued
any further in this section.

The encryption mapping and the encryption algorithm

As the next important construction step, the central part of the quasiconformal cryptosystem
will be introduced, namely the symmetric encryption mapping E and its mode of operation. Let

k = ((t1, . . . , tn), (σf , σp, σc)) ∈ K

be a given encryption key as presented in (4.15). As a first preparatory step, consider for the
index values j = 1, . . . , n the mappings

f̂j ∶= (fσf (j))
tj = fσf (j) ○ fσf (j) ○ ⋯ ○ fσf (j)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

tj times

(4.17)

These mappings f̂j ∈ Q(D) will serve as the actual encryption functions. In (4.17), the usage of
the permutation σf ∈ Sn has the effect of interchanging the position of the original mappings fj
in the encryption process, whereas the exponents tj alter the (previously interchanged) mappings
within the group Q(D) (here and in the remainder of this section, the group operation of Q(D),
i.e. composition of mappings, is written multiplicatively as in (4.17)).

Remark 4.3.6.
The construction of the mappings f̂j in (4.17) shows that the order of applying the permutation
σf and the exponentiation using the integers tj is not interchangeable, i.e. it is crucial to keep the
arrangement of these operations fixed in order to arrive at a well–defined cryptographic algorithm.
In a formula–like notation, this statement reads as

(fσf (j))
tj /= (f tj)

σf (j)
(4.18)

Of course, the right–hand side of (4.18) could also be used for the proposed encryption scheme;
in the first instance, it is of no deeper meaning that the encryption mappings f̂j are defined via
(4.17), even though – from a cryptological point of view – there might be “good” reasons to change
the definition of the encryption mappings f̂j accordingly.

In order to describe the encryption process defined by the encryption mapping E, let P = P1⋯PV
be a given plaintext message consisting of V ∈ N message blocks Pv = pv,1⋯pv,n ∈ M for all
v = 1, . . . , V , each12 of which has block length n. Consider the first message block P1 and permute
the order of the corresponding plaintext characters using the plaintext permutation σp via

p̂1,j ∶= p1,σp(j)

for j = 1, . . . , n, yielding an intermediate plaintext P̂1 ∶= p̂1,1⋯p̂1,n.
Now the central encryption part will be explained. The intermediate plaintext P̂ is now encrypted
characterwise in the following recursive way: First of all, set ĉ1,0 ∶= 1 for reasons that will become
clear in an instant. Next, choose an initialization vector

IV1 ∶= (w1,1, . . . ,w1,n) ∈ (D/{0})n (4.19)
12Without loss of generality, one may assume that each block has block length n by applying an appropriate

padding scheme, as already stated in the beginning of this section.
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using an appropriate generation scheme. Then, for every index value j = 1, . . . , n successively,
the value p̂1,j is multiplied13 with the corresponding element w1,j of IV1 and the (j − 1)–th
intermediate ciphertext character:

χ1,j ∶= w1,j ⋅ ĉ1,j−1 ⋅ p̂1,j ∈ D (4.20)

Afterwards, the resulting number χ1,j is encrypted using the j–th encryption mapping f̂j , i.e. the
value

f̂j(χ1,j) ∈ D (4.21)

is computed. In order to establish a well–defined encryption/decryption scheme, the following
distinction is necessary: In case f̂j(χ1,j) = 0, define ĉ1,j ∶= 1 (which serves as a “wildcard value”,
to be explained below), otherwise set ĉ1,j ∶= f̂j(χ1,j). This procedure yields the corresponding
intermediate ciphertext character ĉ1,j , which can be summarized as

ĉ1,j ∶=
⎧⎪⎪⎨⎪⎪⎩

1, if f̂j(χ1,j) = 0
f̂j(χ1,j), otherwise

(4.22)

The distinction of the two cases in (4.22) is necessary since in the decryption process – which is
basically “just the inversion” of the encryption mapping –, one needs to divide by ĉ1,j , and of
course this cannot be done if one of the corresponding ciphertext characters is zero. The fact that
the “wildcard value” 1 is used in (4.22) is of minor importance; actually, any other value z0 ∈ C/D
could be used equally well, since each mapping f̂j is a quasiconformal automorphism of the unit
disk. The described encryption process so far is well–defined due to the following elementary

Lemma 4.3.7.
The set D/{0} forms a semigroup with respect to multiplication of complex numbers.

Proof. Multiplication of complex numbers is an associative binary operation, and the product of
two non-zero complex numbers of modulus less than one yields another object of this kind.

Consequently, one arrives at the intermediate ciphertext block ĉ1,1 . . . ĉ1,n. The final step is to
apply one last permutation, σc, to this intermediate ciphertext block according to

c1,j ∶= ĉ1,σc(j)

for all j = 1, . . . , n, yielding the final encrypted first ciphertext block C1 ∶= c1,1⋯c1,n ∈ C. This is
the encryption process of the first message block P1.

Now the remaining V − 1 message blocks Pv with v = 2, . . . , V are encrypted in the same manner,
with one central alteration: Instead of using the original initialization vector IV1 in (4.19) in the
encryption process, the vector IV1 is replaced as

IVv ∶= Cv−1 (4.23)

i.e. in the encryption process of message block Pv, the previously encrypted ciphertext block Cv−1
is utilized as the initialization vector.

Finally, in the encryption process of the last block PV , it is possibly necessary to add a padding
character tpad /∈ A sufficiently often at the end of PV in order to arrive at the required block length
n (see also the introductory remarks at the beginning of the current Section 4.3). If this situation

13This multiplication is simply the common multiplication of complex numbers.
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occurs, the encryption process is to be adjusted appropriately in its last step, i.e. for v = V ,
by inserting an encoded wildcard value zpad ∈ C with ∣zpad∣ > 1 at the corresponding ciphertext
character positions:

If p̂V,j = Enc(tpad) Ô⇒ ĉV,j ∶= zpad

for the respective index values j. In this regard, the canonical encoding mapping Enc (see Defini-
tion 4.3.4) has to assign a reasonable value to the padding character tpad by extending its domain
of definition suitably. Consequently, the value of ĉV,j−1 in (4.20) is to be replaced by the neutral
element of multiplication z = 1 in the subsequent iteration.

The proposed encryption scheme (without the special padding treatment in the last block PV ) is
schematically summarized in Algorithm 1 below:

Algorithm 1: Encryption process (without padding)
Data: Plaintext message P = P1⋯PV with Pv = pv,1⋯pv,n ∈M for v = 1, . . . , V

Encryption key k = ((t1, . . . , tn), (σf , σp, σc)) ∈ K
Encryption mappings f̂j = (fσf (j))tj for j = 1, . . . , n
Initialization vector IV1 = (w1,1, . . . ,w1,n) ∈ (D/{0})n

Result: The encrypted ciphertext C = C1⋯CV
1 for v = 1 to V do
2 Define ĉv,0 ∶= 1;
3 for j = 1 to n do
4 Compute intermediate plaintext character p̂v,j ∶= pv,σp(j); // Permutation
5 Compute χv,j ∶= wv,j ⋅ ĉv,j−1 ⋅ p̂v,j ; // Substitution
6 Compute f̂j(χv,j); // Substitution
7 if f̂j(χv,j) = 0 then
8 Define ĉv,j ∶= 1
9 else

10 Define ĉv,j ∶= f̂j(χv,j)
11 end
12 Compute cv,j ∶= ĉv,σc(j); // Permutation
13 end
14 Set Cv ∶= cv,1⋯cv,n;
15 Update initialization vector IVv+1 ∶= Cv;
16 end

Remark 4.3.8 (Encryption scheme).
As can be seen in (4.20)–(4.22), the j–th intermediate ciphertext character ĉv,j depends on the
previous (j−1)–th ciphertext character in general. Moreover, due to the alteration of the initializa-
tion vector according to (4.23), each ciphertext block Cv depends on the previous ciphertext block
Cv−1. These steps ensure to a large part the adherence of the cryptographic primitives confusion
and diffusion:
a) Confusion is the idea of “. . . mak[ing] the relationship between the key and the ciphertext as

complex as possible” (see [MvOV01, Remark 1.36, p. 20]). More concrete, it is for example
intended to obscure the letter frequency of a given plaintext in the corresponding ciphertext: If
a plaintext M contains a double letter, e.g. M = KEEP, then it is desirable that the encryption
algorithm does not map both (encoded) characters E to the same ciphertext character, but to
different ciphertexts. In view of line 12 in Algorithm 1, one sees that the ciphertext character
cv,j depends on every part of the chosen encryption key k (except, as the case may be, for the
exponents tv+1, . . . , tn), thus obscuring the relationship between key and ciphertext.
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b) Diffusion means to “[rearrange] or [spread] out the [information] in the message so that any
redundancy in the plaintext is spread out over the ciphertext” (see [MvOV01, Remark 1.36,
p. 20]). More concrete, changing a character of the plaintext is intended to affect as many
characters of the ciphertext as possible, thus obscuring the relationship between plaintext and
ciphertext. In view of Algorithm 1, this cryptographic paradigm is assured by the usage of the
permutations σp and σc which operate on the corresponding message blocks.

The mode of operation of the proposed quasiconformal encryption scheme is related to and at
the same time inspired by a widely used design pattern for classical block ciphers, the so–called
chained Cipher–Block–Chaining Mode (cCBC Mode). This particular encryption mode
also uses an initialization vector and successively chains the previous ciphertext block with the
next plaintext block to be encrypted; see [Buc16, Subsection 3.10.2] and [KL20, pp. 90–91] for
further information.

In addition, the design of the encryption algorithm explained above is – to a certain extent
– motivated by an important paradigm of modern cryptography, namely so–called Substitution–
Permutation networks (SP networks) which form the basis for numerous cryptographic algorithms
used in real–world applications such as the Advanced Encryption Standard (AES) (see [KL20, p.
220–224] and [MvOV01, Definition 7.79, p. 251]). As the name suggests, a SP network consists of
a combination of (one or several) substitutions and permutations. In the proposed quasiconformal
encryption scheme, explained in Algorithm 1, these operations are indicated by the comments on
the right–hand side in the lines 4, 5, 6 and 12.

A central part in Algorithm 1 is played by the choice of the initialization vector in (4.19). In
principle, there are multiple ways for the primary determination of IV1. Depending on whether
the initialization vector is chosen in a deterministic or a probabilistic way, the corresponding
encryption scheme is called context–dependent or randomized, respectively. For example, it is
possible to use a (hardware–based) counter as the initialization vector, resulting in a context–
dependent scheme. Another possibility is given by choosing an appropriately encoded timestamp,
which yields a randomized encryption scheme in general ([Buc16, p. 90]). The randomized
approach offers the advantage of allowing for the implementation of so–called rolling codes due to
the possibility of introducing certain parameter values in the encryption scheme (see also [Dar20,
Remark 5, p. 69] for another different potential approach).

Remark 4.3.9 (Extensibility of the encryption scheme).
The encryption scheme proposed above is only one of numerous possible ideas for defining a
cryptographic algorithm based on quasiconformal automorphisms of D. For example, in (4.17),
one could easily change the order of the permutation σf and the exponentiation using the integers
tj, resulting in completely different encryption mappings f̂j for j = 1, . . . , n (see also Remark
4.3.6). Similarly, several other modifications are conceivable and possibly reasonable in order
to achieve a secure cryptographic algorithm, for example by choosing the initialization vectors
IVv (pseudo)–randomly in (4.23) instead of using the previously encrypted ciphertext blocks (see
[KL20, p. 91]). Moreover, Algorithm 1 is constructed in such a manner that it can easily be
extended by one or several consecutive encryption steps, e.g. by introducing repeated round
functions based on (parts of) the encryption key k, so–called round keys. This flexibility is
permitted by the fact that the proposed encryption scheme is based on/related to the SP network
design, which was already mentioned previously.

A concrete example

The proposed quasiconformal encryption scheme will now be applied to a concrete plaintext
message in order to exemplify the underlying algorithm. Suppose the plaintext message is given
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as
M = ATESTMESSAGE

and the corresponding block length is n = 3. Thus, according to the assumptions mentioned in
the previous subsections, divide the plaintext in blocks of 3 characters:

|ATE|STM|ESS|AGE|

with M1 = ATE, M2 = STM, M3 = ESS and M4 = AGE, i.e. V = 4. Hence, for example in the first
block, it is M1 = m1,1m1,2m1,3 = ATE. In order to apply the quasiconformal encryption scheme
to the plaintext message M , use the following canonical encoding mapping (see Definition 4.3.4):

Enc ∶ A Ð→ D, mz→ Enc(m) ∶= 1
2

exp(πiη2(m)
13
)

in which only the subalphabet A2 is involved due to the particular form of the plaintext message
M , and it is r2 = 1

2 . Encoding M via the mapping Enc yields the following data set written in
matrix form, in which the encoded characters pv,j of the v–th plaintext block Mv are contained
in the v–th row:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

P1

P2

P3

P4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 1
2
⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

eπi
1

13 eπi
20
13 eπi

5
13

eπi
19
13 eπi

20
13 eπi

eπi
5

13 eπi
19
13 eπi

19
13

eπi
1

13 eπi
7

13 eπi
5

13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.4855 + 0.1197i 0.0603 − 0.4964i 0.1773 + 0.4675i

−0.0603 − 0.4964i 0.0603 − 0.4964i −0.5

0.1773 + 0.4675i −0.0603 − 0.4964i −0.0603 − 0.4964i

0.4855 + 0.1197i −0.0603 + 0.4964i 0.1773 + 0.4675i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4.24)

In the second matrix, numerically approximated values are displayed. For example, the first
plaintext character m1,1 = A is encoded to p1,1 = Enc(m1,1) = 1

2e
πi 1

13 ≈ 0.4855 + 0.1197i.

Now the initial data for Algorithm 1 is defined: For the encryption key k ∈ K, the following data
will be used:

(i) The exponents for the encryption mappings are t1 = 2, t2 = 1, t3 = 2;
(ii) The permutation for the encryption functions will be σf = (1↦ 3,2↦ 1,3↦ 2);
(iii) The plaintext permutation is given by σp = (1↦ 3,2↦ 2,3↦ 1);
(iv) The ciphertext permutation is given by σc = (1↦ 3,2↦ 1,3↦ 2);

The primary encryption mappings are defined as

f1(z) = z∣z∣, f2(z) =
z − 1

3
1 − 1

3z
, f3(z) =

√
∣z∣ z∣z∣ (4.25)

That is, the mapping f1 is given as a monomial–like radial stretching with coefficient K = 2 (see
(2.3)). The mapping f2 represents a conformal unit disk automorphism (see e.g. [Kra06, p. 260]),
whereas the third mapping f3 is a general radial stretching with radial dilation mapping xz→√x
subject to Definition 2.3.1. Consequently, the actual encryption mappings are given by

f̂1(z) = (f3)2 (z) = 4
√
∣z∣ z∣z∣ , f̂2(z) = (f1)1 (z) = z∣z∣, f̂3(z) = (f2)2 (z) =

z − 3
5

1 − 3
5z

(4.26)
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for z ∈ D. Finally, for the initialization vector, choose

IV1 = (w1,1,w1,2,w1,3) = (−
i

4
,
i

2
,−1

3
)

according to the required input data of Algorithm 1. Now the required data is defined in order
to begin with the encryption process. First of all, by applying the plaintext permutation σp, the
original message becomes

|ETA|MTS|SSE|EGA|
e.g. the first block M1 is transformed into ETA, and for the encoded plaintext, this yields

P̂1 = (p̂1,1, p̂1,2, p̂1,3) = (p1,3, p1,2, p1,1) =
1
2
(eπi

5
13 , eπi

20
13 , eπi

1
13 )

Following the algorithm for P̂1, the first intermediate ciphertext character ĉ1,1 computes to

χ1,1 = w1,1ĉ1,0p̂1,1 = −
i

4
⋅ 1 ⋅ 1

2
eπi

5
13 = − i

8
eπi

5
13

ĉ1,1 = f̂1(χ1,1) = f2
3 (−

i

8
eπi

5
13) = − i

4√8
eπi

5
13 ≈ 0.5560 − 0.2108i

and consequently

χ1,2 = w1,2ĉ1,1p̂1,2 =
i

2
⋅ −i4√8

eπi
5

13 ⋅ 1
2
eπi

20
13 = 1

4√211
eπi

25
13

ĉ1,2 = f̂2(χ1,2) = f1 (
1

4√211
eπi

25
13) = 1√

211
eπi

25
13 ≈ 0.0215 − 0.0053i

as well as

χ1,3 = w1,3ĉ1,2p̂1,3 = −
1
3
⋅ 1√

211
eπi

25
13 ⋅ 1

2
eπi

1
13 = − 1

3
√

213

ĉ1,3 = f̂3(χ1,3) = f2
2 (−

1
3
√

213
) = −368635 − 1024

√
2

614397
≈ −0.60235

Finally, permuting the computed intermediate ciphertext characters using the permutation σc
yields the first ciphertext block

C1 = (c1,1, c1,2, c1,3) = (ĉ1,3, ĉ1,1, ĉ1,2) = (
−368635 − 1024

√
2

614397
, − i

4√8
eπi

5
13 ,

1√
211

eπi
25
13)

≈ (−0.60235, 0.5560 − 0.2108i, 0.0215 − 0.0053i)

This first encrypted block will be used in the next iteration step (v = 2) of Algorithm 1 as the
initialization vector in the proposed “cCBC–like” encryption mode (see also Remark 4.3.8), i.e.

IV2 = (w2,1, w2,2, w2,3) = (c1,1, c1,2, c1,3)

The further process of the encryption scheme for computing the remaining ciphertext blocks
C2,C3 and C4 is executed analogously as depicted above. The numerically approximated values
of the final result is contained in the following matrix–like scheme:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C2

C3

C4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−0.6003 + 0.0002i 0.7408 −0.0116 − 0.0471i

−0.5992 − 0.0009i 0.0895 + 0.7347i 0.0730 − 0.0180i

−0.5994 + 0.0017i −0.2613 − 0.6921i 0.0265 + 0.0701i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4.27)
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Noteworthy in this context is the following interesting observation with regard to cryptographic
security: The plaintext blocks M1 = ATE and M4 = AGE are very similar, as they differ only in
the second character. However, the quasiconformal cryptosystem encrypts these two blocks to
the ciphertext messages

C1 ≈ (−0.60235, 0.5560 − 0.2108i, 0.0215 − 0.0053i)

and
C4 ≈ (−0.5994 + 0.0017i, −0.2613 − 0.6921i, 0.0265 + 0.0701i)

as seen above. These ciphertext blocks show a large deviation from each other, especially in the
second character. This fact indicates a strong crytographic property of the proposed quasicon-
formal encryption scheme.

Remark 4.3.10.
The calculations used in the example above were executed using the numerical computation soft-
ware MATLAB in the version R2018b. In particular, the numerically approximated values, espe-
cially in (4.24) and (4.27), were obtained from it. In order to efficiently compute the described
algorithm, a MATLAB script “QCryptosystem.m” was developed containing all previously de-
scribed steps, from the definition of the required data and encoding the message into D to the
actual encryption algorithm. For computing the values of the iterated encryption mappings f̂j
(see (4.17)), an appropriate MATLAB function “IterateMapping.m” was implemented.
Moreover and for the sake of completeness, the MATLAB script “QCryptosystem.m” also contains
the corresponding decryption part of the proposed quasiconformal cryptosystem, not least in order
to verify for the correct implementation of Algorithm 1. Due to the sophisticated computations,
the irregular values involved in the corresponding formulas (e.g. the transcendental14 number π)
and the complicated function terms (e.g. the mapping f̂3 = f2

2 in the example above), some minor
numerical errors occur during the execution of the MATLAB file. To make this statement more
precise, one may consider the (formal) difference matrix between the original (encoded) plaintext
values P and the decrypted ciphertext characters D, i.e.

P −D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

P1

P2

P3

P4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

D1

D2

D3

D4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

In this formal matrix, the absolute values of the resulting entries are in the magnitude of 10−12 and
below, i.e. the encryption/decryption computations are executed correctly. The main reason for
these negligible minor inaccuracies is given by the extremely small absolute values of the involved
complex numbers, resulting in binary objects beyond the capable computational accuracy.

14The fact that π is a transcendental number was proved by Lindemann in 1882, see [KM17, p. 277].
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Open questions

This final part of the thesis at hand summarizes the most important open questions about the
topological and group–theoretic nature of the quasiconformal automorphism groups Q(G) that
arose throughout the text:

1. Is the inverse conjugation mapping Φ−1 ∶ Q(G) Ð→ Q(D) always continuous, not only for
domains G ∈ JD? (see Remark 2.1.3(ii))
What can be said about the uniform continuity of Φ−1? (see Remark 2.1.5(ii))

2. Is Q(G) also incomplete if G /∈ JD? If so, what is its completion? (see Question 2.4.20)

3. If Q(G) is separable, what subsets are countable and dense? (see Question 3.1.6)

4. Is Q(G) path–connected only if the domain G has solely prime ends of the first kind? What
necessary conditions for the connectedness of Q(G) can be derived? (see Question 3.4.4)

5. Is the necessary compactness criterion K(M) < +∞ with M < Q(G) also fulfilled for general
domains G and/or general subsets M (rather than subgroups)? (see Theorem 3.5.3)

6. Are the sufficient compactness criterion and the Arzelà–Ascoli Theorem for Q(G) also valid
for general domains G? (see Theorem 3.5.8 and Corollary 3.5.9)

7. Is Q(G) a σ–compact space if the domain G satisfies P(G) = P1(G)? (see Question 3.5.19)

Clearly, this list of open questions allows for the addition of further items when studying Q(G)
with more refined and elaborated tools, e.g. from Geometric Group Theory, Descriptive Set
Theory, Representation Theory, Teichmüller Theory or also (co)homological methods. Among
others, the following questions are conceivably in range:

• Is Q(G) a simple group, i.e. containing no non–trivial proper normal subgroup?15

• For which domains G does Q(G) carry the structure of a (possibly infinite–dimensional)
Lie group?

15In fact, certain results in this direction have been found. For example, it was shown by Fisher that if M is a
closed n–manifold with n = 2, 3, then the identity component of H(M) is simple; see [Fis60, Theorems 7 and 9, pp.
201–205].
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