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Abstract

Since the prediction of the quantum spin Hall effect in graphene by Kane and Mele,
Z2-topology in hexagonal monolayers is indissociably linked to high-symmetric hon-
eycomb lattices. This thesis breaks with this paradigm by focusing on topological
phases in the fundamental two-dimensional hexagonal crystal, the triangular lattice.
In contrast to Kane-Mele-type systems, electrons on the triangular lattice profit from
a sizable, since local, spin-orbit coupling (SOC) and feature a non-trivial ground state
only in the presence of inversion symmetry breaking. This tends to displace the va-
lence charge form the atomic position. Therefore, all non-trivial phases are real-space
obstructed.

Inspired by the contemporary conception of topological classification of electronic
systems, a comprehensive lattice and band symmetry analysis of insulating phases
on the triangular lattice is presented. This reveals not only the mechanism at the
origin of band topology, the competition of SOC and symmetry breaking, but also the
electric polarization arising from a displacement of the valence charge centers from the
nuclei. The latter is defined as real-space obstruction and can stabilize in the bulk
gap fractionally filled zero-dimensional corner states. If the one-dimensional edges are
insulating, this constitutes a higher-order topological insulator (HOTI).

In particular, a p-shell (or l = 1 sub-shell) on the triangular lattice has symmetry
protected in-plane Dirac fermions at the valley momenta and can host a nodal line
resulting from the intersection of the pz and the in-plane bands. These features are
gapped by SOC and also by horizontal and vertical reflection symmetry breaking,
which gives rise to four topologically distinct insulating phases. The two disconnected
quantum spin Hall insulators (QSHIs) can be transformed into each other via two
different atomic limits, a high symmetric SOC-dominated and a strongly inversion
symmetry broken insulator. The Z2-trivial phases are distinguishable by their valence
charge localization as only the symmetry broken insulator is a real-space obstructed
HOTI: vertical mirror symmetry breaking discriminates between the two void sites in
the triangular unit cell (the honeycomb Wyckoff position) and displaces the electronic
charge to one of the them. However, such a classification is not available for Z2-
non-trivial bands, as they lack a proper Wannier representation by definition. Upon
releasing the protecting internal symmetry, time-reversal violating Wannier functions
are constructed for the two QSHIs, which extends the concept of real-space obstruction
to Z2-non-trivial systems: a dominant vertical reflection symmetry breaking enforces
a HOTI-like localization on only one of the voids of the triangular lattice. Instead the

I



Abstract

presence of vertical reflection symmetry yields Wannier centers on both void sites, i.e.,
a honeycomb lattice. This analogy to the Kane-Mele model is not coincidental as the
valence band representation is identical for both systems.

The thesis concludes with state-of-the-art first principles calculations and experi-
ments on trigonal monolayer adsorbate systems. This validates and complements the
preceding theoretical analysis by establishing the connection to real materials, paving
the way towards technological application. The chapter starts unveiling the funda-
mental interplay of SOC and inversion symmetry breaking in the binary honeycomb
compound AgTe on Ag(111). The symmetry breaking promotes orbital angular mo-
mentum polarization resulting in a sizable spin-splitting, the so-called orbital orbital-
driven Rashba effect and has been published in Ref. Ünzelmann et al. (2020). The
centerpiece of this thesis is the conception of indenene, a triangular monolayer of in-
dium atoms on silicon carbide. It is the first in literature reported real-space obstructed
QSHI. The material features a valence band symmetry identical to graphene, i.e., the
time-reversal violating Wannier centers localize in the void positions between the in-
dium sites, forming a honeycomb lattice, as shown by Eck et al. (2022). In contrast to
other QSHIs, its non-trivial Z2-topology has been determined by addressing the bulk
wave function symmetry instead of relying on transport experiments. In analogy to
the Kane-Mele model, the valence states of the valley Dirac cone display a honeycomb
charge localization indicative for a SOC opened gap as presented by Bauernfeind et al.
(2021). Upon reducing the SOC interaction, achieved in practice by considering light
Group 3 adsorbates (B, Al, Ga), a real-space obstructed HOTI phase can be stabilized.
The charge of the Z2-trivial bands localizes in one of the voids of the triangular lattice
and fractionally filled in-gap corner states have been predicted by Eck et al. (2023). As
an outlook beyond topology in the independent particle picture, triangular monolayers
of Group V elements on SiC are investigated. The doping by two electrons compared
to Group III shifts the chemical potential to the in-plane bands and gives rise to a
compensated Fermi surface. The orbital contribution of the associated electron and
hole pockets is dictated by the reflection mirror planes of the triangular lattice, which
in turn is also reflected in the orbital channels of the Lindhard function.
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Zusammenfassung

Seit der Vorhersage des Quanten-Spin-Hall-Effekts in Graphen von Kane und Mele
wird Z2-Topologie in hexagonalen Monolagen untrennbar mit hoch-symmetrischen
Honigwaben Gittern in Verbindung gebracht. Diese Doktorarbeit bricht mit diesem
Paradigma und rückt topologische Phasen im fundamentalen zweidimensionalen hexa-
gonalen Kristall, dem Dreiecksgitter, in den Fokus. Im Gegensatz zu Kane-Mele-
artigen Systemen profitieren Elektronen im Dreiecksgitter von einer lokalen, daher auch
starken, Spin-BahnWechselwirkung. Außerdem erfordert die Stabilisierung einer nicht-
trivialen Phase zwangsläufig die Abwesenheit von Inversionssymmetrie. Des Weiteren
führt der Symmetriebruch im Dreiecksgitter zu einer Verschiebung der Valenzladungs-
trägerdichte weg von der atomaren Position, alle nicht-trivialen Phasen sind ortsraum-
obstruiert.

Inspiriert vom gegenwärtigen Verständnis der topologischen Klassifizierung von elek-
tronischen Systemen präsentiert diese Arbeit eine fundierte Gitter- und Bandsymme-
trieanalyse von isolierenden Phasen auf dem Dreiecksgitter. Dies offenbart nicht nur
den Bandtopologie definierenden Mechanismus, nämlich die Konkurrenz von Spin-
Bahn Wechselwirkung und Symmetriebruch, sondern auch die elektronische Polar-
isierung, welche auf eine Verschiebung der Ladungszentren weg von den Atomrümpfen
zurückzuführen ist. Letzteres wird als Ortsraumobstruktion bezeichnet und kann in
der Volumenbandlücke null-dimensionale fraktional besetzte Eckzustände1 hervorrufen.
Sind die eindimensionalen Kanten ebenfalls isolierend, so handelt es sich um einen
topologischen Isolator höherer Ordnung.

Im speziellen wird in dieser Arbeit eine p-Schale (oder l = 1 Unterschale) auf dem
Dreiecksgitter behandelt. Dort bilden die horizontal orientierten Orbitale symme-
triegeschützte Dirac Fermionen an den Ecken der Brillouin Zone aus. Des Weiteren
führt die Überschneidung des pz-Bandes mit den Bändern der horizontal ausgerichteten
Orbitale zu einer nodalen Linie. Diese Bandschnittpunkte können entweder durch die
Spin-Bahn Kopplung oder durch horizontalen und vertikalen Symmetriebruch aufge-
hoben werden, sodass vier topologisch unterschiedliche isolierende Phasen existieren.
Die zwei voneinander getrennten Quanten-Spin-Hall Isolatoren sind über zwei unter-
schiedliche atomare Limes ineinander überführbar, entweder über einen Spin-Bahn do-
minierten oder einen stark inversionssymmetriegebrochenen Isolator. Die Z2-trivialen
Phasen unterscheiden sich anhand der Lokalisierung der Valenzelektronen. Der Sym-

1Die Namensgebung bezieht sich auf die Geometrische Anordnung, dem Schnittpunkt zweier Kanten.
Die glückliche Übereinstimmung mit dem Namen des Authoren ist zufälliger Natur.
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metriebruch führt zu einem ortsraumobstruierten topologischen Isolator höherer Ord-
nung: Durch den Bruch der vertikalen Spiegelsymmetrie werden die beiden Leerstellen
im Dreiecksgitter unterscheidbar (Honigwaben Wyckoffposition) und die elektronische
Ladung wird zu einer der beiden Leerstellen verschoben. Solch eine direkte Ortsraum
Klassifizierung fehlt hingegen für Z2-nicht-triviale Phasen, da sie definitionsgemäß
keine Wannierrepräsentation besitzen. Unter der Aufgabe der schützenden internen
Symmetrie können jedoch zeitumkehrbrechende Wannierfunktionen für die zwei ge-
nannten Quanten-Spin-Hall Isolatoren konstruiert werden. Dies erweitert das Konzept
der Ortsraumobstruktion um Z2-nicht-triviale Phasen: Ein dominierender vertikaler
Symmetriebruch erzwingt eine Ladungsträgerlokalisierung wie in der topologischen
Phase höherer Ordnung auf nur einer der Leerstellen im Dreiecksgitter. Der Erhalt der
vertikalen Spiegelebene resultiert hingegen in Wannierzentren auf beiden Leerstellen,
einem Honigwabengitter. Diese Analogie zum Kane-Mele Modell ist kein Zufall, beide
Systeme besitzen gleiche Valenzbandrepräsentationen.

Den Abschluss der Arbeit bilden hochmoderne ab initio Rechnungen und Expe-
rimente zu trigonalen einschichtigen Adsorbatsystemen. Diese betonen die Relevanz
der vorhergehenden theoretischen Betrachtung und etablieren eine Verbindung zu echten
Materialien, ein wichtiger Meilenstein hin zur technologischen Anwendung. Zu Beginn
des Kapitels wird auf das fundamentale Zusammenspiel von Spin-Bahn Kopplung und
Inversionssymmetriebruch in der binären Honigwabenstruktur AgTe auf Ag(111) einge-
gangen. Der Symmetriebruch erzeugt eine orbitale Drehimpulspolarisierung, welche
eine beträchtliche Spin-Aufspaltung zur Folge hat, der sogenannte orbitalgetriebene
Rashba Effekt, welcher in Ref. Ünzelmann et al. (2020) publiziert wurde. Ein zentraler
Aspekt dieser Dissertation ist die Konzeption von indenene, eine dreieckige Monolage
aus Indium Atomen auf Siliziumcarbid. Es ist der erste in der Literatur genannte
und experimentell nachgewiesene ortsraumobstruierte Quanten-Spin-Hall Isolator. Die
Valenzbandsymmetrie ist identisch zu Graphen, d.h., die zeitumkehrverletzenden Wan-
nierzentren lokalisieren auf den Leerstellen zwischen den Indium Atomen und bilden
dabei ein Honigwabengitter aus wie in Ref. Eck et al. (2022) gezeigt. Im Gegensatz
zu anderen Quanten-Spin-Hall Isolatoren wurde die nicht-triviale Z2-Topologie anhand
der Symmetrie der Volumenwellenfunktionen bestimmt, anstatt auf Transportexper-
imente zurückzugreifen. Dies ermöglicht die Analogie zum Kane-Mele Modell: Die
Valenzzustände des Dirac-Kegels weisen eine Honigwabengeometrie auf, welche einer
Spin-Bahn Kopplung geöffneten Bandlücke zuzuordnen ist und von Bauernfeind et al.
(2021) gezeigt wurde. Werden hingegen leichte Gruppe III Adsorbate (B, Al, Ga)
mit schwächerer Spin-Bahn Wechselwirkung betrachtet, so stellt sich eine ortsraum-
obstruierte Isolierende Phase höherer Ordnung ein. Die Ladungsträgerdichte der Z2-
trivialen Bänder lokalisiert auf nur einer der Leerstellen. Ausgehend hiervon wurden
fraktional gefüllte Eckzustände von Eck et al. (2023) vorhergesagt. Als Ausblick über
die Topologie im Einteilchenbild hinaus werden dreieckige Monolagen aus Gruppe V
Atomen untersucht. Im Vergleich zu Gruppe III verschieben die zwei zusätzlichen Elek-
tronen das chemische Potential zu den Energien der Bänder der horizontal orientierten
Orbitale, was eine kompensierte Fermi Fläche zur Folge hat. Die orbitalen Beiträge der
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Zusammenfassung

involvierten Elektronen- und Lochtaschen wird durch die Spiegelsymmetrie des Gitters
bestimmt. Dies drückt sich ebenfalls in den orbitalen Kanälen der Lindhard-Funktion
aus.
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1. Introduction

In the last century, progress in different fields of condensed matter such as in band
theory of solids [5–8] as well as in crystal growth [9–11] and characterization [12–14]
have paved the way for today’s semiconductor devices. They form the basis for modern
communication, encryption, simulation, controlling, etc., which have decisively shaped
present society and economics. Focusing on current advances, profound outcome from
the application of the mathematical concept of topology in the context of electronic
structure of crystalline solids may be expected. It revolutionizes the conception of band
structure theory as it comes with fundamental implications on electronic properties,
as recognized by the awarding of the Nobel Prize to Thouless, Haldane and Kosterlitz
in 2016. The concept introduces a topological classification, all systems which can be
adiabatically transformed into each other belong to the same class [15]. Consequently, a
topological phase transition occurs at interfaces between materials of different classes.
This guarantees for topologically protected interface states with exciting properties,
e.g., dissipationless transport and spin-momentum locking [16–20].

The thesis mainly focuses on band insulators, which are characterized by a global gap
separating the valence and the conduction states. However, only some of them have
trivial valence bands, which can be adiabatically connected to the energy spectrum of
an isolated atom, the atomic limit [21, 22]. As shown by Altland and Zirnbauer [23],
time-reversal symmetric insulators are classified by a Z2-invariant [18, 24, 25]. In
two dimensions (2D) the associated non-trivial phases are so-called quantum spin Hall
insulators (QSHI) [18, 26, 27]. They possess on their edges dissipationless metallic spin-
momentum locked helical edge states, potential candidates for spintronics and quantum
computing[18, 28–31]. The key ingredient is the interplay of spin-orbit coupling (SOC)
and spin-independent hybridizations. The presence of both can result in an inverted
bulk gap [27]: the symmetry of the valence bands varies in momentum space between
a SOC- and a hybridization-dominated atomic limit. Hence, these systems lack a
localized basis, which is capable of describing the bands in the full Brillouin zone
(BZ) [32–34]. The Wannier obstruction is a physical consequence of the non-trivial
geometric phase and the related Berry curvature [35, 36].

This highlights also the importance of spatial symmetries, which introduce side con-
ditions on band structure and momentum space Berryology. The presence of time-
reversal and inversion symmetry guarantees for spin-degenerate bands with total van-
ishing chirality [37]. An insulating state can be stabilized by gapping all low-energy
band crossings by SOC. Instead, inversion-symmetry breaking (ISB) promotes chiral
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1. Introduction

wave functions on the level of the orbital degrees of freedom, i.e., even in the absence of
SOC [38, 39]. Therefore, the low-energy states in non-inversion symmetric insulators
can be either gapped by SOC or ISB. Further, if ISB dominates in the whole BZ, the
valence bands can be adiabatically connected to a time-reversal symmetric spinless
model. Consequently, these bands must be necessarily Z2-trivial. Therefore ISB has
been historically anticipated as detrimental to Z2-topology and the focus was primarily
on high symmetric crystals with large SOC [24].

The importance of lattice symmetries is also reflected in the main driving forces
for the discovery of new QSHIs, which are (I) efficient classification schemes [40–47],
(II) theoretical models [18, 27, 48] and (III) material realizations [31, 49–52]. The
topological classification (I) can be either obtained by directly addressing the geo-
metrical phase emerging from Berry curvature sources [42, 43], i.e., (avoided) band
crossings such as Dirac and Weyl cones as well as nodal lines, or from a symmetry
analysis, which considers only states at certain momenta [40, 41, 44–47]. The latter
approach underlines further the notion that spatial symmetries, especially inversion
symmetry, are in support of the stabilization of QSHI phases. Recently, under the
name of topological quantum chemistry, a scheme relying on the wave function symme-
try at all high symmetry momenta has been established [44–47]. The classification is
based on the comparison of the valence band representation to band representations
of all atomic limits. Despite its efficiency and simplicity, it is important to note that
in low-symmetric space groups, non-trivial bands can be identified as false-trivial and
a fallback to a direct calculation of the geometrical phase is unavoidable.

From the model (II) and material side (III), in 2006 mercury telluride quantum wells
have been proposed and swiftly confirmed at ultra low temperature as QSHIs resulting
from a band inversion at the Γ point, which profits from atomic SOC [27, 49]. However,
historically, the search for topological models originated from a one-orbital basis on
the honeycomb lattice starting with the Chern insulator by Haldane in 1988 [53] and
the first QSHI model by Kane and Mele in 2005 [18, 24]. The non-trivial insulating
state is stabilized by a non-local SOC term, which renders the valley Dirac fermions
massive, and inversion symmetry breaking favors a trivial gap. Up to now, several
attempts of a material realization of the Kane-Mele model have been pursued. As the
SOC interaction in graphene is orders of magnitude to weak even for low-temperature
experiments [54], heavier Group IV derivatives have been considered [55]. They require
a supporting substrate, which breaks inversion symmetry [56, 57]. A seminal break-
through has been achieved by the discovery of the large-gap QSHI bismuthene [52], a
honeycomb lattice of bismuth atoms on a silicon carbide substrate in 2017. Its Dirac
fermions arise from the multi-orbital in-plane p-subspace and are rendered massive by
a sizable, since local, SOC. Furthermore, the substrate is indispensable as it not only
promotes structural stability, but it is also relevant for achieving the characteristic low-
energy band structure. Still, the relatively small flake sizes owing to the adsorption
geometry prevent the measurement of the quantized edge channel transport. Recently,
the research on topology in hexagonal crystals has been further stimulated as the

2



scientific community has been attracted by kagome systems [48, 58–60].

Taking up the intrinsic interest in hexagonal QSHIs, this thesis breaks with the
paradigm of inversion symmetric multi-site basis sets. It focuses instead on their ele-
mentary symmetry equivalent, namely the triangular lattice, which is the predominant
surface arrangement on technologically relevant trigonal substrate surfaces (see also
supplemental material to Ref. [3]). Furthermore, monoatomic basis sets come with the
advantage of a sizable atomic SOC interaction. Still, it remains to be seen how a tri-
angular basis can host metallic band crossings, such as Dirac fermions and nodal lines.
It is also worth mentioning that local SOC dominates when taking these systems to
their atomic limit. Hence, a non-local counterpart, which induces the phase winding,
is required for the stabilization of a QSHI ground state. This inevitably leads to the
task of determining the necessary conditions for non-trivial Z2-topology on the trian-
gular lattice. In particular, is spatial symmetry in support of or detrimental to the
QSHI phase? What are the consequences of horizontal and vertical mirror reflection
symmetry on electrons on the triangular lattice? As a well established phenomenon
in Rashba systems [1], ISB promotes chiral wave functions, i.e., by promoting orbital
angular momentum polarization. Can symmetry breaking serve as the desired comple-
mentary non-local antagonist to the atomic SOC? If so, how do triangular QSHI phases
compare to non-trivial phases on hexagonal multi-site basis sets, such as the honey-
comb? Are there fundamental differences and to which extent can they be regarded
as equivalent? Can symmetry indicators unambiguously identify the band topology in
these low-symmetric space groups, i.e., are their non-trivial phases lurking in a blind
spot of the high-throughput studies? Finally, are these considerations solely limited
to the theoretical discourse or can we propose non-trivial insulating phases in realistic
triangular material realizations?

Motivated by such an intriguing perspective, this thesis presents a thorough analysis
of symmetry-breaking stabilized topological insulating phases of p-electrons on the tri-
angular lattice. The main focus is on group theoretical aspects, minimal tight-binding
modeling including mirror reflection symmetry-breaking terms and the investigation of
material realizations based on ab initio methods, substantiated if possible, with com-
parison to experiments. This unveils the underlying physics of indenene [3, 61] and
its general key aspects such as the relation between inversion symmetry breaking and
chiral wave functions. The comparison of valley Dirac fermions from honeycomb and
from triangular multi-orbital basis sets is also discussed. Equipped with the minimal
p-shell model, the full topological phase space arising from the interplay of horizontal
and vertical reflection symmetry breaking and atomic SOC is explored. The analy-
sis of the wave function symmetry in terms of irreducible band representations and
OAM polarization demonstrates the intricate impact of real-space symmetry on band
symmetry and topology.

Beyond band topology, symmetry indicators have been recently also proposed for
a topological distinction of insulators with trivial bands on the level of their valence
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1. Introduction

charge localization. Considering also the positions of the atomic nuclei, these insulators
can be sub-classified as trivial atomic limits, if the valence charge centers are aligned
with the atomic lattice, and as real-space obstructed atomic limits, where at least one
electron is displaced from the nuclei position [44, 46, 47, 62–64]. The latter results in
finite electric multipoles. These have been put forward as a driving force for higher-
order topological insulators (HOTIs) in two dimensions, which are characterized by
insulating edges and fractionally filled in-gap corner states [65–72]. Hence this raises
the question of the relation between real-space obstruction and triangular lattice sym-
metries. Can we propose a higher-order topological insulator with insulating 1D edges
and fractionally filled in-gap corner states [4]. Obviously, it is compelling to extend
the concept of real-space obstruction to QSHIs. However, since these insulators lack
a Wannier representation, the definition of a charge center localization is not straight-
forward as symmetry indicators are not directly applicable. To tackle this challenge,
we follow the proposed time-reversal violating Wannier construction for Z2-non-trivial
bands by Soluyanov and Vanderbilt [73]. With this charge center locator, all QSHI
phases of the triangular model are examined and the importance of real-space obstruc-
tion as a discriminator between disconnected non-trivial phases is highlighted. This
addresses not only the relation between mirror symmetry breaking and the localization
of the non-Kramers degenerate Wannier centers, but elucidates also the full extent of
the equivalence and difference between a Kane-Mele and indenene-type QSHI.

The thesis concludes with a discussion on triangular monolayer adsorbates on trigonal
substrate surfaces, where horizontal and vertical mirror reflection symmetry breaking
is present. Combining adatom species and various substrates gives access to a rich
parameter space of symmetry breaking and SOC strength as well as electron filling.
This allows to inspect the fundamental physics of the minimal p-shell model in real
materials and validates the applicability of our theoretical edifice, including also the
discovery of indenene. The chapter profits substantially from experiments sensitive
to the wave function symmetry, such as linear polarized angle-resolved photoemission
measurements and spatially resolved scanning tunneling microscopy data. A prelimi-
nary discussion on the orbital-driven Rashba effect in the binary honeycomb AgTe on
Ag (111) illustrates the interplay of SOC and inversion symmetry breaking [1]. As a
central aspect, the first realized triangular QSHI indenene on SiC is analyzed in all its
facets [3]. Another crowning moment is the classification of its topology by the direct
probe of the bulk wave function symmetry, instead of relying on signatures in transport
experiments. Extending this analysis to the full Brillouin zone, we will assess whether
indenene constitutes also the first real-space obstructed QSHI [2]? By reducing the
SOC strength, i.e., considering the lighter Group III elements, a real-space obstructed
HOTI phase is proposed. The section is concluded by an outlook beyond single particle
physics focusing on Group V adsorbates on SiC. They possess a compensated Fermi
surface formed by the in-plane p bands The Lindhard function is investigated in the
light of band symmetry mediated long-range multi-orbital instabilities.

The thesis is structured as follows: chapter 2 is devoted to an introduction to the rel-
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evant theory and concepts applied in this thesis including the symmetry discussion of
triangular lattices in hexagonal and trigonal environments. In chapter 3 the symmetry
and real-space localization of valley Dirac fermions from multi-orbital basis sets on the
triangular lattice are analyzed, which comprises also the comparison to the honeycomb
basis set. The lattice-periodic tight-binding description is derived in Chapter 4. In
particular, horizontal reflection-symmetry breaking as well as the local SOC term are
introduced. For the full phase space of this model, the resulting Z2-topology and real-
space obstruction are discussed in Chapter 5. The thesis concludes with Chapter 6,
where the aforementioned phenomena are investigated in triangular monolayer adsor-
bates on trigonal substrate surfaces. The ab initio study is complemented by results
from collaborations with the experiment.
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2. Basic Theory and Concepts

2.1. Topological Insulators and Electric Polarization

This section provides a compact overview on topological insulators with the focus on
quantum spin Hall insulators (QSHI). Further, it gives a short introduction to higher-
order topology in 2D. The connection between the geometrical phase and the electric
polarization will be established. Lastly the Kane-Mele model is briefly discussed as the
paradigmatic hexagonal QSHI. The interested reader is referred to excellent Refs. [18–
20, 24, 74, 75].

2.1.1. Topological Insulators

The mathematical concept of topology introduces a classification scheme, all systems
that can be adiabatically transformed into each other belong to the same class [15].
As a result, a topological phase transition must occur at interfaces where materials of
different classes meet. In solid state physics, crystals can be distinguished at the level
of their band structure, which is either metallic, semi-metallic or insulating. The latter
is characterized by the absence of states at the Fermi energy, i.e., a global gap, which
divides the bands in the subsets of valence and conduction states. Considering all
possible types of valence bands, there exist indeed several topological classes ranging
from the ordinary insulator to exotic phases, which are still insulating in the bulk, but
possess metallic surface states [19, 20, 23]. The former group falls into the class of the
atomic limits. Their trivial valence bands can be adiabatically connected to the states
of an isolated atom [22]. The band structure remains insulating by taking slowly1

the lattice constant to infinity, which rescales the non-local terms of the Hamiltonian.
This does not hold for topological insulators [21]. The transformation into an atomic
limit involves necessarily a gap reopening under the exchange of valence and conduc-
tion states. Hence, metallic states must exist at interfaces of insulators belonging to
different topological classes and at surfaces2 of non-trivial insulators. Their existence
is topologically protected against all perturbations, which leave the bulk properties
invariant and explains the particular scientific interest in these exciting phases [19,
20].

1“slow” with respect to the energy scale of the gap.
2Interface to the topologically trivial vacuum.
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2. Basic Theory and Concepts

The first topological lattice model has been conceived by Haldane [53], which falls
into the class of Chern insulators in 2D [36]. A staggered magnetic field with vanishing
total flux breaks time-reversal symmetry. It results in a (anti-) clockwise propagating
1D helical edge state. This is called quantum anomalous Hall effect in analogy to the
quantum Hall effect [76], which arises from an external magnetic field. Time-reversal
symmetric systems are instead classified by a Z2-invariant with the QSHI as the non-
trivial phase in 2D [18, 23, 26, 27]. The presence of spin-orbit coupling (SOC) and
spin-independent orbital hybridizations defines two disconnected atomic limits: the
former interaction promotes a splitting with respect to the total angular momentum
J , the latter may be represented by a crystal field or covalent bonding. Hence, the
interplay of SOC and orbital hybridizations can stabilize an inverted bulk gap[18, 26,
27]: the variation of the valence band symmetry in momentum space results in at least
two momenta, of which one represents a SOC-dominated limit, while the states at the
other momentum are adiabatically connected to a hybridization-driven atomic limit.
As a result, the occupied bands in the whole BZ lack an atomic limit. The quantum
spin Hall effect occurs in finite size geometries of 2D Z2-non-trivial systems. Time-
reversal symmetry enforces the presence of two dissipationless counter-propagating
edge states with anti-parallel spin alignment[18, 26, 27]. As a pedagogical approach to
2D spin-diagonal QSHIs, their spin-blocks may be regarded as time-reversal partners of
Chern insulators. However, this oversimplifies drastically the situation in real crystals
and excludes non-trivial Z2-phases based on off-diagonal SOC terms, an example will
be given in Chap. 5. This fact is often swept under the rug in the contemporary
discussion of topological systems, when it comes to the comparison of condensed matter
realizations to the flourishing fields of ultra cold atoms [77] as well as bosonic [78, 79]
and classical analogues [80–84].

The formerly described d-dimensional topological insulators have d− 1-dimensional
surface states (codimension 1), i.e., they relate to first-order topology. Recently higher-
order topological phases have been discovered [65, 69]. A second-order topological
insulator in 2D is characterized by an insulating bulk and 1D edges, but 0D metal-
lic in-gap corner states. Therefore, such a phase must be Z2-trivial. A finite electric
quadrupole moment of the bulk has been put forward as a driving mechanism for corner
charge. Electric multipoles imply real-space obstruction, at least one of the Wannier
charge centers of the valence bands is located on a non-atomic lattice position. The
band structure of such an obstructed atomic limit is not adiabatically connected to
the ordinary atomic limit with charge centers only on the atomic sites if the lattice
symmetries are preserved. This introduces a topological classification scheme in the
class of Z2-trivial bands at the level of the electronic and atomic charge localization.
Further it raises the question, if these phases are comprised by the terminology “topo-
logical insulator”, which is historically exclusively reserved for isolated subsets of bands
lacking a Wannier representation. In this thesis, we follow the modern and inclusive
interpretation of Refs. [65, 85–93]. Further insights on the relation between real-space
obstruction, electronic multipoles and corner states on the triangular lattice are dis-
cussed in Secs. 5.5 and 5.7.
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2.1. Topological Insulators and Electric Polarization

2.1.2. Electric Polarization, Berry Phase and topological invariants

While the previous section has established the fundamental properties of topological
insulators, the origin of the exotic transport characteristics remains still elusive. Also
the connection to a mathematical geometric object carrying the topological invariant
is missing. Here we will discuss the relation between the geometric phase of the wave
function and the electronic polarization in the presence of time-reversal symmetry. As
will be shown in Sec. 2.3.2, the real-space representation of a cell-periodic Bloch wave
function un(k) of an isolated band n, i.e., its Wannier function, can be constructed in
the unit cell at Bravais vector R by

|wnR⟩ =
V

(2π)3

∫
dk3eik·(r−R) |un(k)⟩ . (2.1)

Invoking the definition of the Wannier center expectation value formulated in real and
momentum space in Eq. 2.59

⟨r⟩n = ⟨wn0|r|wn0⟩ = i
V

(2π)3

∫
dk ⟨un(k)|∇k|un(k)⟩ , (2.2)

highlights the connection between real-space localization and the geometric phase of
the cell-periodic Bloch wave function in momentum space. As will be discussed in
Sec. 2.3.2, the Wannier charge centers are gauge-dependent and must obey the lattice
periodicity. Therefore, a closed path s in parameter space λ leaves the charge center
position invariant up to a Bravais vector. The change in the electric polarization
P = −er is given by

∆P =

∮
s

dλ
∂P

∂λ

= −|e| 2

(2π)3
Im

∫
BZ

dk

∫ λf

λi

dλ
occ∑
n

〈
∂un(λ,k)

∂kα

∣∣∣∣∂un(λ,k)∂λ

〉
(2.3)

= −eR.

Hence the accumulated polarization is equivalent to the Berry phase γ and the inte-
grated Berry curvature flux Ω through the enclosed surface S

γ =

∮
dλ ⟨u(λ)|i∂λu(λ)⟩ =

∫
S

Ω(λ)dS, (2.4)

which can be of course generalized to a multi band formalism [75]. The adiabatic
pumping parameter λ will be in the following a closed path in momentum space for
determining the topology of an Hamiltonian of a periodic system. Non trivial bands are
characterized by an adiabatic charge pump of the Wannier centers by a lattice vector
R, i.e., a quantized Berry phase of multiples of 2π. Tracing the adiabatic evolution,
also called the Wilson-loop, is mathematically identical to the integration of the Berry
curvature. The former is numerically more stable.
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2. Basic Theory and Concepts

The topological invariant of Chern insulators C ∈ Z can be immediately identified
with this formalism. However, time-reversal symmetry impedes the direct calculation
of the Z2-invariant ν = {0, 1} [40]. The Bloch functions come in time-reversal partners,
which must carry an opposed phase. Hence, the total phase vanishes irrespective of
the invariant. On the other hand, time-reversal symmetry relates states at k and
−k. Therefore, sampling half of the BZ in combination with geometric arguments
is sufficient for determining the Z2-invariant [42, 43]. Albeit tremendous progress in
symmetry-based classification schemes, this is up to date the method of choice for a
flawless computation of the Z2-invariant of non-inversion symmetric systems.

Let us relate this discussion to our initial definition of topological bands: the absence
of a localized band representation is reflected in a charge center flow in momentum
space. The latter is a consequence of the non-trivial winding of the geometric phase,
the mathematical object which carries the topological information. This relation will
be briefly discussed for the Kane-Mele model in the next section.

2.1.3. Kane-Mele model

This section is devoted to a brief introduction of the the hexagonal QSHI model on the
honeycomb lattice [18, 24]. It will serve as a reference system for the proposed QSHIs on
the triangular lattice in Chaps. 5 and 6. The model was inspired by mapping symmetry-
derived Dirac cones onto a crystal lattice. This reveals illustratively the impact of
symmetry breaking and SOC on the low-energy states and the associated topology.
Here we will consider only spin-diagonal terms, which allows for the interpretation of
the QSHI phase as a time-reversal symmetric combination of Chern insulators defined
on the separated spin blocks.

As will be discussed in detail in Sec. 2.4, the presence of inversion symmetry in
a honeycomb lattice results in Dirac cones at the opposed corners K and K ′ in the
hexagonal BZ [18]3. Expressed in a spin-full honeycomb basis {A,B}⊗{↑, ↓}, the Dirac
Hamiltonian reads in the presence of SOC and inversion symmetry breaking (ISB) [18,
24]

HK/K′
(k) = vF (±kxτx + kyτy)⊗ 12,2 ± λSOCτz ⊗ σz + λISBτz ⊗ 12,2. (2.5)

The Pauli matrices τi and σi act on the orbital and spin degrees of freedom, respectively.
The group velocity is denoted by vF . The SOC and ISB interaction are diagonal in
orbital and spin space, they scale with λSOC and λISB, while the “±” discriminates K
and K ′. Hence, each spin block is described by an effective two band model

HK/K′,σ(k) = d(k) · τ = vF (±kxτx + kyτy) +m(K/K ′, σ)τz. (2.6)

3For illustrations of the UC and BZ see Figs. 2.4.2 and 3.2.1 (a).
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2.1. Topological Insulators and Electric Polarization

The d-vector covers either the upper or lower hemisphere depending on the sign of
m(K/K ′, σ). In 2D, its integrated Berry curvature accumulates to a Berry charge of
±π [74, 75]. If SOC dominates the mass term, the total Berry charge of both valley
momenta is ±2π, which results in a spin Chern number of C↑/↓ = ±1. In turn also the
Z2-invariant ν = |(C↑ −C↓)/2| = 14 is non-trivial. Instead, if ISB dominates, the total
Berry charge vanishes in each spin block and the Z2-invariant is trivial.

Upon embedding the continuous model given in Eq. 2.5 in a lattice Hamiltonian,
Kane and Mele unveiled that this results the low-energy description of the π electrons
in graphene [18, 24]

ĤKM = t
∑
⟨ij⟩

c†icj + i
λSOC

3
√
3

∑
⟨⟨ij⟩⟩

νijc
†
iσzcj + λISB

∑
i

ξi c
†
ici . (2.7)

The first term is the first neighbor hopping term, which promotes the lattice sym-
metry enforced Dirac Fermions at the valley momenta as shown in Fig. A.1.1. The
next-nearest neighbor spin-orbit interaction is given by the second term and preserves
the lattice symmetries. Its prefactor has been chosen such that the valley Hamiltonian
in Eq. 2.5 is retrieved and νij is the sign of z-component of the Dzyaloshinskii–Moriya
vector (2/

√
3)(d1×d2)z. It is defined by a two step hopping process along the connect-

ing first neighbor bonds [see also Sec. 4.2.2 and Fig. 4.2.1 (c)]. The last term breaks
inversion symmetry, as it introduces a staggered potential (ξ = ±1), which renders the
the two sublattices inequivalent [94]. A formulation of the Hamiltonian in momentum
space can be found in App. A.5.3.

The competition of ISB and SOC defines the symmetry character of the valence band
at K, which in turn is imperative for the topological phase as shown in Fig. 2.1.1 (a).
A dominant ISB term results in a strong localization of the valence bands on only
one of the sublattice sites in the whole BZ. This band structure is Z2trivial, as it
represents an atomic limit. In the ν = 1 phase, the sizable SOC promotes a sublattice
polarization which alternates between the two states of the valence doublet at K. This
band symmetry prohibits an adiabatic connection to an atomic limit.

In the following, we will analyze the impact of the gap at the valley momenta on the
geometric phase. This will also serve as an introduction to the method of choice for the
calculation of the Z2-invariant in this thesis: the analysis of the Wilson loop integral
given Eq. 2.3. The Z2-invariant is encoded in the Wannier charge center movement of
the two phases shown in Fig. 2.1.1 (b). The vertical axis denotes the Wannier center
position in units of the second Bravais vector and the horizontal axis is the pumping
momentum [parameter λ in Eqs. 2.3 and 2.4] in units of the first reciprocal vector5.
The WCCs of the trivial phase split gently during the pumping cycle and recombine

4Definition via spin-Chern numbers is only possible for spin-diagonal Hamiltonians [75].
5Time-reversal symmetry enforces a symmetric Wannier charge center flow with respect to the
time-reversal invariant pumping momenta 0 and 1/2. Therefore the pumping interval [0, 0.5]
is representative for the closed Wilson Loop [0, 1].
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Figure 2.1.1.: (a) Representative band structure for the ν = 0(1) phase of the Kane-
Mele model for λSOC = 0.1(0.2)t and λISB = 0.4(0.2)t. The orange-
green color code denotes the sublattice character and the red-blue color
scheme in the inset shows the ⟨Sz⟩ polarization at valley momentum K.
The BZ and the position of the high-symmetry points is illustrated in
Figs. 2.4.2 (b).
(b) Corresponding Wannier charge center (blue) movement and their
largest gap (red) to the band structures shown in (a).

without carrying a net polarization. This is qualitatively different for the ν = 1 bands,
the WCC of the two spin blocks traverse the UC in opposite direction, i.e., they acquire
a Berry phase of ±2π. As a consequence of the interplay of SOC and first neighbor
hybridizations, the WCCs and hence the valence band subspace cannot be localized in
real space. This insulating phase lacks an atomic limit.

In finite size geometries6, the reduced coordination at the surfaces enforces the con-
nection to an atomic limit. For ν = 1 bands, this can only be established by re-
opening the bulk gap under the exchange of valence and conduction bands, i.e., the
presence of helical edge states. As shown in Fig. A.1.2, only the ν = 1 bulk phase
possesses four metallic edge states connecting the valence and conduction bands. The
presence of time-reversal symmetry forbids back-scattering between two anti-parallel
spin-polarized and counter propagating states at each edge [19]. The edge localization
and interaction between opposed edges is mediated by the bulk gap [16]. Further, their
existence is topologically protected against any perturbation acting at the edges. The
ν = 0 phase of the Kane-Mele has instead insulating finite size geometries. In general,
they can be also rendered from insulating to metallic and vice versa by applying an
appropriate edge potential, which modifies the electronic polarization at the edges7.

To summarize, the Kane-Mele model describes a minimal one orbital basis on a

6See Fig. 5.6.1 for an illustration of the fundamental edge terminations and corresponding BZs.
7A bulk polarized insulator with ν = 0 bands will be discussed in Chap. 5. It has metallic edges and
their band structures can be found in Sec. 5.6.
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2.2. ab initio Theory

honeycomb lattice. This results in inversion symmetry protected Dirac cones at the
valley momenta. Upon including SOC, a QSHI phase is stabilized. It highlights the
detrimentality of ISB to non-trivial Z2-topology: a staggered potential is in favor
of a trivial insulator. Hence the Z2invariant of the Kane-Mele model is not only
encoded in the geometrical phase, it can be straightforwardly derived from the real-
space localization of the valley valence states. In this thesis, the comparison of the
Kane-Mele model with triangular systems will allow us to highlight intuitively their
similarities and fundamental differences. As a prerequisite, Dirac fermions expressed
in both basis sets will be discussed in Chap. 3.

2.2. ab initio Theory

This section is devoted to a short introduction to a self-consistent description of
electrons in solids within the framework of density functional theory (DFT). In the
context of this thesis, DFT will be applied for determining the topological character
of the insulating ground state. Hence a qualitative, but symmetry-correct description
of the band structure may be acceptable as long as the gapping of the low-energy
bands is properly described. This is however an intrinsic weakness of standard DFT
functionals, which can be either overcome by improved methods and, if applicable, the
comparison to the experiment, as highlighted in Chap. 6. In the following, fundamental
concepts and the applied DFT theory in this thesis will be introduced based on the
implementation in the Vienna ab initio simulation package (VASP) [95–98]. This is by
no means comprehensive, the interested reader is referred to standard literature such
as Refs. [99, 100].

2.2.1. The Many-Body Problem in Solid State Physics

In this thesis, the crystal structure formed by the atomic nuclei serves as an exter-
nal potential. It defines the electronic ground state via the imposed symmetries and
the properties of the involved atomic species. However, in the most general situation,
where the atomic nuclei are also treated as independent particles, the whole system is
described by the kinetic energy of the electrons and the nuclei as well as by the inter-
action between the charged particles via the Coulomb potential. The corresponding
Hamiltonian may be formulated as[100]:

Ĥ =− ℏ2

2me

∑
i

∇2
i −

∑
I

ℏ2

2MI

∇2
I (2.8)

+
1

4πϵ0

(
1

2

∑
i ̸=j

e2

|ri − rj|
+

1

2

∑
I ̸=J

ZIZJe
2

|RI −RJ |
−
∑
i,I

Zie
2

|ri −RJ |

)
. (2.9)
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2. Basic Theory and Concepts

Upper and lower case notation denotes nuclei and electrons, respectively. A theory
is called ab initio8, if it is defined self-consistently based on fundamental laws by
considering the natural constants. These are for Eq. 2.9 the electron mass me, the
reduced Planck constant ℏ and the vacuum permittivity ϵ0 as well as the mass MI

and charge ZI of the nuclei. A general mathematical and numerical solution to this
many-body problem is however challenging owed to the non-locality and locality of the
kinetic and Coulomb terms, respectively, and the large number of degrees of freedom.
This has stimulated the search for effective theories and reasonable approximations.
As sketched in the beginning and proposed by Born and Oppenheimer, the atomic
positions may be considered as fixed as their mass is three orders of magnitude larger
than the electron mass [101]. The fundamental description simplifies to:

Ĥ =− ℏ2

2me

∑
i

∇2
i +

1

8πϵ0

∑
i ̸=j

e2

|ri − rj|
+
∑
i,I

VI(|ri −RI |) + EII (2.10)

=T̂ + V̂int + V̂ext + EII . (2.11)

Hence, the electron-nuclei interaction enters as a single particle term. It considers
electrons in an “external” potential V̂ext and the nucleus-nucleus repulsion contributes
with a constant value EII [100]. The interacting nature of the electron system is instead
retained and the solution of the Schrödinger equation requires a fermionic many-body
ansatz.

2.2.2. Density Functional Theory (DFT)

The success of DFT relies on the proof of the existence of a unique functional which
relates the many-body ground state density n0(r) to the total energy, as derived by
Hohenberg and Kohn [7]. Hence, all properties of an interacting electron system can be
derived from the density. This functional is however unknown, but reasonable results
can be obtained from the Kohn-Sham ansatz, which maps the interacting system onto
a single-particle auxiliary model [8].

2.2.2.1. Hohenberg-Kohn Theorems

Starting from the Born-Oppenheimer approximation given in Eqs. 2.10 and 2.11,
Hohenberg and Kohn have proven that a system of electrons in an external potential
Vext(r) is uniquely defined by the ground state density n0(r). This manifests in two
theorems [7, 100]:

I For any system of electrons in an external potential Vext(r), that potential is de-
termined uniquely, except for a constant, by the ground state density n0(r).

8Latin: From the beginning, fig. from first principles.
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2.2. ab initio Theory

II A universal functional for the energy E[n(r)] of the density n(r) can be defined
for all electron systems. The exact ground state energy is the global minimum for
a given Vext(r), and the density n(r) which minimizes the functional is the exact
ground state density n0(r).

From the first theorem can be derived that the Hamiltonian is fully defined by Vext(r)
and the many-body wave function as well as all other properties are completely deter-
mined. The second theorem implies that the functional E[n(r)] is sufficient to obtain
the ground state energy and density via a variational principle [99, 100]. This consti-
tutes an exact and solvable many-body theory and the existence of such a functional
has been proven formally. However, its formulation remains elusive.

2.2.2.2. Kohn-Sham Ansatz

Kohn and Sham proposed a mapping of the full many-body problem onto a non-
interacting auxiliary system with many-body corrections [8]. This allows the reformu-
lation of the functional E[n(r)] in the single-particle picture and has paved the way for
modern DFT functionals. They operate under the assumption, that the many-body
ground state density can be represented by the ground state density of an auxiliary
system of non-interacting particles, the so called Kohn-Sham wave orbitals ϕi(r) [100].
They are the eigenfunctions of a Schrödinger-like equation(

ĤKS(r)− ϵi

)
ϕi(r) = 0, (2.12)

with the eigenvalues ϵi of the effective Kohn-Sham Hamiltonian HKS. It is defined by
the kinetic energy of the auxiliary independent electrons and the Kohn-Sham potential

ĤKS(r) = − ℏ2

2me

∇2 + VKS(r). (2.13)

The subtle many-body correction is contained in the Kohn-Sham potential. It is de-
rived from the Kohn-Sham ground state functional EKS, which treats correctly the
Hartree contribution of the Coulomb interaction EHartree[n]. All other many-body ef-
fects are incorporated in the exchange-correlation functional Exc[n]

EKS[n] = T [n] + Eext[n] + EHartree[n] + Exc[n] + EII . (2.14)

The ground state energy is obtained by minimizing the functional with respect to the
density by a variational approach under the assumption of orthonormal Kohn-Sham
wave orbitals

δEKS

δϕ∗
i (r)

=
δT

δϕ∗
i (r)

+

[
δEext

δn(r)
+
δEHartree

δn(r)
+
δExc

δn(r)

]
δn(r)

δϕ∗
i (r)

. (2.15)
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The functional derivative acting on the kinetic functional yields immediately the free-
electron term. Similarly, the Kohn-Sham eigenvalues enter as Lagrange multipliers

δT

δϕ∗
i (r)

=
ℏ

2me

N∑
j

∫
d3r′

|∇ϕj(r′)|2
δϕ∗

i (r)
= − ℏ2

2me

∇2ϕi(r), (2.16)

δEKS

δϕ∗
i (r)

=
N∑
j

ϵj
δ|ϕj(r)|2
δϕ∗

i (r)
= ϵiϕi(r). (2.17)

With the functional derivative of the density

δn(r)

δϕ∗
i (r)

=
N∑
j=1

δ|ϕj(r)|2
δϕ∗

i (r)
= ϕi(r), (2.18)

the external and the Hartree potential are derived by [8]

δEext

δn(r)
=

∫
dr′Vext(r

′)
δn(r′)

δn(r)
= Vext(r), (2.19)

δEHartree

δn(r)
=

e2

8πϵ0

∫ ∫
dr′dr′′

1

|r′ − r′′|
δn(r′)n(r′′)

δn(r)

=
1

4πϵ0

∫
dr′

n(r′)

|r− r′| = VHartree(r), (2.20)

δExc

δn(r)
= Vxc(r), (2.21)

(2.22)

The last term denotes the exchange-correlation potential, which is the remaining unde-
termined parameter. Hence, the Kohn-Sham potential of the Kohn-Sham Hamiltonian
in Eq. 2.13 is given by:

VKS(r) = Vext(r) + VHartree(r) + Vxc(r). (2.23)

Before discussing parametrizations of the exchange-correlation functional, let us briefly
comment on the advantages of the Kohn-Sham ansatz and the interpretation of the
Kohn-Sham eigenvalues and orbitals. The many-body Hamiltonian was mapped onto
first-order differential equations which can be solved with standard minimization pro-
cedures and appropriate basis sets. In principal, if the correct exchange-correlation
functional is known and if the densities of the many-body ground state and of the
auxiliary single-particle system are identical, the solution will be exact. Vice versa,
the Kohn-Sham ansatz is obviously incapable of describing strongly correlated ground
states such as Mott phases, Kondo-physics and super conductivity. Further, the Kohn-
Sham eigenvalues ϵi are formally only Lagrange multipliers, which lack any physical
meaning, e.g., Koopmans’ theorem [102] does not hold [99]. Nevertheless, a good up
to an excellent agreement between the DFT and band structure with the experiment
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is often achieved upon an appropriate functional choice. Examples can be found in
Chap. 6. This however highlights also an important deficiency of DFT as standard
functionals tend to underestimate the hybridization gap in semiconductors and insula-
tors. This might even result in the prediction of a metallic ground state. In the context
of topological insulators, this can lead to a wrong band hierarchy, i.e., it favors a band
inversion and predicts false non-trivials [103–105]. A robust solution to this problem
is presented for the case of indenene in Sec. 6.2.2, which bases on the comparison of
the wave function symmetry in theory and experiment.

2.2.2.3. Exchange-Correlation Functionals

As pointed out in the previous section, the Kohn-Sham ansatz is under certain condi-
tions exact. However the delicate many-body contributions are to be embedded in the
exchange-correlation functional. As a first intuitive attempt, Kohn and Sham proposed
the local-density approximation (LDA) based on the exchange-correlation functional
of a uniform interacting electron gas [8]

ELDA
xc [n] =

∫
d3rϵxc[n(r)]n(r). (2.24)

It has been soon extended to spin-dependent systems under the name of local spin
density approximation [106–108],

ELSDA
xc [n↑, n↓] =

∫
d3rϵxc[n

↑(r), n↓(r)]n(r). (2.25)

These approximations have a tendency towards the underestimation of the gap, but are
justified in systems with reasonably slowly varying spatial electronic densities [99]. Fur-
ther improvement has been achieved by the generalized-gradient approximation (GGA)
by considering also derivatives of the density [100, 109, 110]

EGGA
xc [n↑, n↓] =

∫
d3rf [n↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|, ...]n(r), (2.26)

Within the framework of certain physical conditions [111], a broad spectrum of GGA
functional f parametrizations has been developed. In the context of electronic band
structures in crystals, the functional proposed by Perdew, Burke and Ernzerhof (PBE)
has proven its efficiency and reasonable accuracy, which qualifies it as the method of
choice in this thesis.

Still PBE tends to underestimate band gaps owed to the improper incorporation of
the Fock-exchange

EF
x = − e2

8πϵ0

N∑
i,j

∫
d3r′d3rϕ∗

j(r
′)ϕ∗

i (r)
1

|r− r′|ϕj(r)ϕi(r
′). (2.27)
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The calculation of the Fock potential comes at an significant increase of the compu-
tational cost as it scales with O(N3) compared to the Hartree-like Kohn-Sham ansatz
scaling O(N2). Substantial improvement in the DFT eigenvalues has been achieved
by hybrid functionals, where the exchange contribution Ex of a standard LDA/GGA
functional is corrected by the Fock-exchange [112]

Exc = ELDA/GGA
xc + a(EHF

x − ELDA/GGA
x ), a = (0, 1]. (2.28)

Again, various flavors exist. In this thesis an updated version of the Heyd-Scuseria-
Ernzerhof functional HSE06 is employed. It corrects the PBE exchange term by a
screened Coulomb interaction [113, 114].

An improved estimation of the screening can be obtained within the GW approxi-
mation. A comparison of PBE, HSE06 and GW results is shown in Sec. 6.2.4 for the
triangular QSHI indenene on SiC.

2.2.2.4. DFT Implementation in VASP

In this section, the remaining ingredients required for performing DFT calculations
are discussed based on their implementation in the Vienna ab initio simulation pack-
age (VASP). The most important technical details, which discriminate between various
DFT codes, are the chosen basis set for the Kohn-Sham wave functions and approxi-
mations made to the atomic potential. They influence greatly the performance as well
as the accuracy in energy and in the spatial distribution of the wave function.

VASP uses a plane wave basis set, the maximum wave vector G and the number of
coefficients is defined by the size of the unit cell and the plane wave cutoff

Ecut ≥
ℏ2

2me

|G+ k|2. (2.29)

This is a well-suited basis choice for weakly bound states. However deep atomic po-
tentials resulting in a strong wave function localization require an extensive plain wave
basis set, i.e., a large energy cutoff.

The high efficiency of VASP relies mainly on softened potentials, so-called pseudo
potentials. Inside the atomic spheres, the potential is smoothed with the boundary
condition, that the wave function at and beyond the boundary is identical to the one
of the initial potential. As a consequence, the number of nodes in the radial part of
the wave functions is reduced or vanishes. In this thesis, VASP’s projector augmented
wave pseudo potentials are used [98, 115]. The plane wave functions are mapped
inside the atomic spheres via a projector scheme on spherical Bessel functions centered
at the atomic sites. The pseudo potentials are further smoothed within the frozen core
approximation, where the core electrons have been integrated out. This softens the
core potential by Coulomb screening and reduces also the number of electrons in the
DFT calculation.
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Before concluding the section on ab initio theory, it should be noted that the here
presented concepts are also valid for non-collinear calculations, which are required for
the proper description of Z2-non-trivial phases. Relativistic terms such asSOC can be
included self-consistently based on the expansion of the Dirac equation. In particular,
the projector augmented wave basis allows for a straightforward formulation in terms
spherical harmonics [116, 117].

2.3. Tight-Binding and LCAO Basis Functions

This chapter is devoted to a short introduction to tight-binding methods. Based on
these, the triangular p-shell Hamiltonian is derived in Chap. 4. Further, the creation of
minimal models from ab initio simulations is introduced. All tight-binding calculations
in this thesis have been performed with the python library post wan [118], which has
been developed during my PhD project.

The fundamental problem of electrons on a crystal lattice can be addressed in two
basis function limits: in the case of weakly bound electrons, the nearly free electron
picture applies. This is the realm of the plane-wave expansion, as discussed in the
previous section for the DFT code VASP. However for tightly-bound electrons, Bloch
proposed a linear combination of atomic orbitals (LCAO) with finite hopping strengths
between neighboring sites [5]. The strength of tight-binding resides in the efficient and
symmetry-correct model description in small basis sets. This allows for a direct analysis
of the symmetry of the Bloch wave function. Further, it is the method of choice for
the simulation of large unit cells, e.g., for the calculation of surface states in finite
size geometries. As highlighted in the second section of this chapter, the construction
of Wannier-Hamiltonians from DFT-wave functions interfaces ab-initio methods and
tight-binding descriptions [34, 119]. This introduces also realistic single-electron basis
sets to all-electron methods.

The Hamiltonian of an independent electron reads in real space

Ĥ(r) =

(
− h2

2m
∇2

r + V (r)

)
, (2.30)

with the lattice periodic potential

V (r) =
∑
R,α

Vα(r− τα −R), (2.31)

where R denotes the lattice vector of the unit cell and α labels the atom-specific
potentials centered at the Wyckoff position τα.

Following the lines and adapting the notation of [75], we define the orthonormal
basis (ONB) set of local orbitals ϕjR obeying

⟨ϕiR|ϕjR′⟩ = δi,jδR,R′ . (2.32)
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It is noteworthy to mention, that the finite overlap of atomic orbitals on a lattice
excludes them of being a ONB. However, an atomic-like ONB can be obtained by
applying a Löwdin orthogonalization, which preserves the symmetries of the wave
functions [6, 34]. In the local basis, the elements of the Hamiltonian of Eq. 2.30 read

Hij(R) = ⟨ϕiR′ |Ĥ|ϕj,R′+R⟩ = ⟨ϕi0|Ĥ|ϕjR⟩ , (2.33)

where R is the relative distance between the orbitals i and j.

In the “Bloch-gauge”, i.e., assigning the same Bloch phase to all orbitals belonging
to the same unit cell, the trial Bloch basis reads

|ψj(k)⟩ =
∑
R

eik·R |ϕjR⟩ , (2.34)

with the Hamiltonian in momentum space

Hij(k) = ⟨ψi(k)|H|ψj(k)⟩ =
∑
R

eik·RHij(R). (2.35)

By solving the eigenvalue equation

H(k)Cn(k) = En(k)Cn(k), (2.36)

the coefficients of the Bloch wave eigenfunction

|Ψn(k)⟩ =
∑
Rj

eik·Rcnj(k) |ϕR,j⟩ , (2.37)

can be obtained. They are connected to the “lattice gauge” by a momentum-dependent
gauge transformation U(k)

cnj(k) = eik·τj c̃nj(k), (2.38)

where τj denotes the Wyckoff position of the orbital j. The Hamiltonian in momentum
space is given by

H̃ij(k) = ⟨ϕ̃i(k)|H|ϕ̃j(k)⟩ =
∑
R

eik·(R+τj−τi)Hij(R). (2.39)

The lattice gauge is often the natural choice for analytic tight-binding models. How-
ever, for multi-site basis sets, the fractional translations τj − τi result in a momentum
space Hamiltonian, which is not invariant under the translation of a reciprocal lattice
vector G [74]:

H̃k+G ̸= H̃(k). (2.40)

The Bloch gauge respects this translational invariance which expresses itself in the sim-
ple Fourier transformation in Eq. 2.35. This simplifies the numerical implementation
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and is the chosen gauge in wannier90 [120, 121] and in the post wan package [118].
The former has been used for obtaining minimal models from DFT for the systems pre-
sented in Chap. 6, while the latter was used for all tight-binding calculations presented
in this thesis.

This links the tight-binding wave function to the cell-periodic wave functions un(k)

Ψn(k) = eik·run(k), (2.41)

which play a decisive role in the modern theory of polarization introduced in Sec. 2.1.2.
The connection is given by

|Ψn(k)⟩ =
∑
R

∫
uc

d3run(k)e
ik·(R+r) |R+ r⟩ , (2.42)

=
∑
R

∑
j

c̃nj(k)e
ik·(R+τj) |ϕjR⟩ . (2.43)

In the following, an overview is given on the construction of tight-binding models
based on lattice symmetries (Slater-Koster) and from first-principles (Wannier func-
tions).

2.3.1. Slater-Koster Parametrization: Two center-approximation

Slater and Koster introduced an efficient formalism for calculating tight-binding hop-
ping elements by considering only one- and two-center transfer integrals [6]. This allows
for a simple qualitative model description, the discrete symmetries of the lattice enter
via the real-space interaction elements of the Hamiltonian.

Bloch’s initial proposal of the LCAO-method [5] is in principle an accurate single-
particle description. However, the Hamiltonian given in Eq. 2.33

Hij(R) =

∫
d3rϕ∗

i (r)Hϕj(r+R), (2.44)

involves complicated three-center integrals where electrons from two different sites
interact with the lattice potential (see Eq. 2.31) of a third site. By considering only
two-center contributions, Eq. 2.44 simplifies to the defining equation of the Slater-
Koster integrals

HSK
ij (R) =

∫
d3rϕ∗

i (r)H
2c
R,ijϕj(r+R). (2.45)

Here, H2c
R,ij is the Dimer-version of Eq. 2.30 or, if i = j, a mono-atomic on-site inte-

gral [122]9. As s, p-orbital tight-binding basis sets will be considered in this thesis, the

9Interestingly, the SK approximation is per construction incapable to generate crystal field splittings,
unless the ligand orbitals are explicitly included. This is addressed in [123, 124].
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geometric dependence of their Slater-Koster integrals is given hereinafter [6]:

Es,s = V σ
ss, (2.46)

Es,pi = niV
σ
sp, (2.47)

Epi,pi = n2
iV

σ
pp +

(
1− n2

i

)
V π
pp, (2.48)

Epi,pj = ninj
(
V σ
pp − V π

pp

)
. (2.49)

Here i, j ∈ {x, y, z} with i ̸= j denote the alignment of the p-orbitals with respect to
the cartesian coordinate axes. For a given dimer Hamiltonian H2c

R,ij, V
σ and V π denote

the Slater-Koster parameters for σ and π transmission, which depend on the distance
and the atomic species. ni and nj are direction cosines of the displacement vector and
reflect the relative alignment of the orbitals.

2.3.2. Wannier Functions

Driven by the vision of reconciling the plane-wave and localized wave function picture
in solids, Wannier proved that any Bloch wave function can be represented by localized
orbitals wRj full-filling Eq. 2.32 [125]. This decomposition is however not unique owed
to a gauge freedom. Hence, various Wannier construction approaches based on wave
function symmetries have been proposed [34, 126, 127]. Instead, Marzari and Vander-
bilt have put forward the concept of maximally localized Wannier functions (MLWF)
by minimizing their spread. This allows for the down-folding of ab-initio wave func-
tions onto minimal Wannier basis sets [119, 128] and provides realistic tight-binding
parameters for model calculations and advanced all-electron methods. Furthermore,
the localized Wannier functions allow for a rigorous definition of the position operator
in solids, the central property in the “modern theory of polarization” (MTP) [129,
130].

Here we review briefly the construction of Wannier functions and their gauge-freedom.
We introduce the definition of the position operator and give an overview on the con-
struction of MLWFs as implemented in wannier90. It is the applied software package
for the creation of Wannier models in this thesis.

According to Bloch’s theorem [5], the translational invariance in a solid implies

Ψn(r+ a,k) = T̂aΨn(r,k) = eik·aΨn(r,k). (2.50)

In analogy to Eq. 2.34 we can define the Bloch wave function in the continuous lattice
gauge

Ψn(r,k) = eik·ru(r), (2.51)

as the product of the Bloch phase and its cell-periodic function T̂Ru(r) = u(r). Wannier
functions |wnR⟩ located in the unit cell R can be constructed by an integration over
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the first BZ

|wnR⟩ =
V

(2π)3

∫
d3kT̂−R |Ψn(k)⟩

=
V

(2π)3

∫
d3ke−ik·R |Ψn(k)⟩ (2.52)

=
V

(2π)3

∫
d3keik·(r−R) |un(k)⟩ ,

with V being the volume of the unit cell and r denotes the position coordinate in
the home unit cell (R = 0). Further, the equations above make evidently clear, that
Wannier functions depend on the chosen gauge of the Bloch wave function

|Ψ̃n(k)⟩ = eiγ̃n(k) |Ψn(k)⟩ , |ũn(k)⟩ = eiγ̃n(k) |un(k)⟩ . (2.53)

The gauge phase γ̃n(k) is required to be smooth such that ∇k |un(k)⟩ is well-defined
and periodic in momentum space [34]:

γ̃n(k+G) = γ̃n(k) +G ·R = γ̃n(k) + 2πn, n ∈ N. (2.54)

This condition highlights two fundamental points:

• A given wave function may be expressed in different gauges, however phase dif-
ferences arising from shifts by a reciprocal lattice vector G are quantized to 2πn.

• The phase difference is directly related to a translation in real space by a Bravais
lattice vector R.

This is of great importance for wave functions obtained from numerical simulations.
Their gauge may depend on the implementation and diagonalization procedure.

To control the gauge-dependency, we can introduce a momentum-dependent unitary
transformation Umn(k) in Eq.2.52

|wnR⟩ =
V

(2π)3

∫
d3ke−ik·RUmn(k) |Ψn(k)⟩ . (2.55)

The initial gauge can be controlled by projecting onto a localized trial basis |gn⟩ [34,
119, 131]

|ϕn(k)⟩ =
∑
m

|Ψm(k)⟩ ⟨Ψm(k)|gn⟩ . (2.56)

A smooth gauge Umn(k) can be then obtained from the Löwdin orthogonalization of
the overlap matrix Smn(k) = ⟨ϕm(k)|ϕn(k)⟩

|Ψ̃n(k)⟩ =
∑
m

|ϕm(k)⟩ (S(k)−1/2)mn, (2.57)
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which can be used to generate Wannier functions following Eq. 2.55.

Another ansatz are MLWFs, which are obtained by minimizing the spread func-
tional [119]

Ω =
∑
n

[
⟨r2⟩n − ⟨r⟩2n

]
, (2.58)

By following Blount’s definition of the position operator for periodic functions [132], it
becomes evident that the localization of a Wannier function is directly related to the
phase gauge of the corresponding cell-periodic wave functions [119]

⟨r⟩n = ⟨wn0|r|wn0⟩ = i
V

(2π)3

∫
d3k ⟨un(k)|∇k|un(k)⟩ . (2.59)

Consequently, the second moment is given by

⟨r2⟩n =
V

(2π)3

∫
d3k ⟨un(k)|∇2

k|un(k)⟩
2
. (2.60)

As demonstrated by Marzari and Vanderbilt, the spread defined in Eq. 2.58 can be
decomposed into a gauge-independent and a gauge-dependent contribution. The min-
imization of the latter allows for the construction of a unique MLWF basis set [119]
by optimizing Umn(k).

The software package wannier90 combines the two aforementioned approaches in a
three-step procedure [119–121, 128]:

• The initial gauge is obtained via the projection onto an atomic-like trial basis
gn: → Umn(k)

g

• Disentanglement of non-isolated bands via minimization of the spread: → Umn(k)
dis

• Maximally localization of the disentangled subspace : → Umn(k)
loc

It is worth mentioning that the symmetries inherited from the trial basis projec-
tion (e.g., atomic s, p, d, f orbitals) of the Wannier functions and of the Wannier
Hamiltonian are not necessarily preserved throughout the disentanglement and the
localization procedure. Further, Umn(k)

dis and Umn(k)
loc optimize the spread by mix-

ing orbital- and, if SOC is included, spin-degrees of freedom. The constructed Wannier
functions may differ significantly from the initial trial basis. Especially for systems with
dominant atomic SOC, a L, S trial basis may be rotated into a J Wannier basis. As
the thesis focuses on symmetry-driven phenomena, the symmetries of the tight-binding
wave functions have to be well-defined. Therefore, the Wannier models are constructed
by avoiding the disentanglement and the localization procedure. For entangled bands,
this comes at the expense of enlarged trial and Wannier basis sets.

24



2.4. Group Theoretical Analysis of the Triangular Lattice

2.4. Group Theoretical Analysis of the Triangular
Lattice

The strength of group theory resides on its qualitative predictive power, based on
the symmetry analysis of the system. In this section, the basic concepts of group
theory applied to solid state physics will be reviewed. It is followed by a profound
symmetry analysis of hexagonal and trigonal layer groups, which will be of fundamental
importance for the understanding of the electronic properties of the discussed models
and materials in this thesis.

2.4.1. Group Theory in the context of Crystals

A crystal is defined by the combination of a Bravais lattice, spanned by the prim-
itive vectors {ai} and the unit cell (UC), i.e., the basis positions of the atoms. This
results in discrete crystal symmetries, which are reflected in the invariance under a
set of translations t and point group operations α, such as rotations Cn, reflections
σi, improper rotations Sn and inversion I. The combinations of all these symmetry
operations define the elements g

g = {α|t} , (2.61)

of the space group G [133]. They are defined as a point group operation followed by a
translation:

gr = {α|t} r = r′ = Rαr+ t, (2.62)

with the matrix representation Rα of α. Consequently, the Hamiltonian H commutes
with the elements of G and the Bloch wave function must be an irreducible represen-
tation of G and H.

Special symmetry operations are [133]:

• {ϵ|0}=identity

• {α|0}=pure point group operations

• {ϵ|t}=pure translations

The elements of the latter two constitute the point group of the crystal and the trans-
lation group which are both subgroups of G. In the following, we will briefly elaborate
on these two important groups establishing also fundamental concepts of group theory
based on references [133–136].
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2.4.1.1. Point Groups

Besides the identity, the elements of the point groups can be rotations Cn, reflections
σ, inversion I and roto-reflections. They can be grouped into classes and two elements
gi and gj belong to the same class if there exists another element g̃ in G fulfilling

gi = g̃ ◦ gj ◦ g̃−1. (2.63)

For instance, the Cn rotations of a group form a class, if there exists another point group
operation, that transforms the Cn rotations into each other. The identity operation ϵ
forms its own class. If all elements of a group commute (gi = g̃ ◦ gi ◦ g̃−1), the group is
abelian and has as many classes as elements and all irreducible representations (irreps)
are one-dimensional.

A representation T of a group G assigns to each element g ∈ G a linear operator
T (g) such that

g1 ◦ g2 = g3 ⇒ T (g1)T (g2) = T (g3), (2.64)

and characters χ of operations are defined as

χT (g) = trace(T (g)). (2.65)

Hence, we can define a scalar product of two representations Ti and Tj of group G
based on their characters

(χi, χj) =
1

N

∑
g∈G

χ∗
i (g)χj(g), (2.66)

with N being the total number of elements of G. This allows for the definition of
irreducible representations which we denote by τ . These are representations, whose
subspaces are (block-) diagonal with respect to their characters.

(χi, χj) = δij. (2.67)

Further the number of these elementary building blocks is equal to the number of classes
in a group. A character table lists the characters of the (irreducible) representations
under the symmetry operations (usually grouped in classes) for a given point group
and can be found in standard literature.

2.4.1.2. Translation Group

As the translations commute with each other, the translation group is abelian and
all irreducible representations are one dimensional. By defining the reciprocal lattice
vectors {bj} as the inverse of the primitive vectors {ai} [133],

ai · bj = 2πδij, (2.68)
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the translation by a lattice vector R can be represented by plane waves with lattice
momentum k

P̂{ϵ|R} = T k(R) = eik·R. (2.69)

The Bloch wave function can be written as

ψ(r,k) = eik·ru(r), (2.70)

with the cell-periodic wave function u(r) invariant under the lattice translations of the
crystal:

P̂{ϵ|R}ψ(r,k)
!
= ψ(r+R,k) = eik·(r+R)u(r+R)

= eik·R
[
eik·ru(r)

]
= eik·Rψ(r,k). (2.71)

Hence, the Bloch wave functions are the basis functions of the translation group in
solids. This periodicity implies, that translations by integer linear combinations of
reciprocal lattice vectors G

k+G ≡ k, G = nibi, ni ∈ Z, (2.72)

have the same representations. For a given crystal, we define the momenta k of the
first BZ as a set of non-equivalent irreducible representations of the translation group.
Further, we can directly relate real- and reciprocal-space symmetries as scalar products
must be invariant under the symmetry operations of the point group:

2πNα = (P̂αR) ·G P̂−1
α= R · (P̂−1

α )G, Nα ∈ Z. (2.73)

Therefore, the effect of a symmetry operator P̂α on a real space translation is equivalent
to the effect of the inverse symmetry operation in momentum space. This establishes
the connection between real space and reciprocal space symmetries. All crystal mo-
menta in the BZ transforming under

hk = {α|G}k = k, h ∈ Gk ⊂ G, (2.74)

form the star k∗ of momentum k. The elements h give rise to the little co-group Gk, and
k is a high-symmetry point, if Gk is not trivial (i.e., consists not only of the reciprocal
translations). Special points are the time-reversal invariant momenta (TRIM)

T k = −k = k mod G, (2.75)

which host in Kramers degenerate eigenstates in the presence of time-reversal symme-
try (see also Sec. 2.4.3).

The real space equivalents of the star are Wyckoff positions τ which are similarly
defined by the site-symmetry group by

gτ = {α|R}τ = τ , g ∈ Gr ⊂ G, (2.76)

and the set of the symmetry operations g define the orbit of position τ . The multiplicity
of a Wyckoff positions denotes the number of inequivalent positions in the primitive
UC, which transform into each other under symmetry operations of G [135]

gτi = τj, i ̸= j. (2.77)
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2.4.1.3. Band Representations and Topological Classification

Having established the fundamental concepts and definitions of group theory, we
will apply it to band structure theory. The one electron Hamiltonian in solids given in
Eq. 2.30 considers the electron’s free-motion in a periodic potential V (r) (see Eq. 2.31).
While the kinetic energy term preserves the continuous SO(3) symmetry, the crystal
potential introduces discrete symmetries and defines the space group. In turn, the
Hamiltonian has to commute with the symmetry operators of the space group. The
Bloch functions provide the representation of the eigenfunctions of the momentum
space Hamiltonian and can be decomposed into irreducible representations of the little
group at wave vector k.

Defining the basis Bloch wave functions ψj in a local orbital basis (see also Sec. 2.3)

|ψj⟩ =
∑
R

eik·R |ϕjR⟩ , (2.78)

allows for a straightforward group theoretical analysis profiting from the well-defined
symmetries of the local orbitals ϕj. The character of such a Bloch state under an
element h = {α|t} of the little group of the momentum Gk is given by

χψj
(h,k) = eik·tχϕj(α), (2.79)

where eik·t represents the translation eigenvalue. χϕj(α) is the character of the local
orbital under the symmetry operation, i.e., it is the point group character of ϕ under
α. Therefore, at k = 0, the Γ-point, the character of the Bloch wave basis function is
identical to the one of the local orbital ϕj.

Having established the character of a single Bloch wave function (e.g., from a one
band tight-binding model), we will consider a general multi-orbital tight-binding basis
in the following. As a space group is defined by the Bravais lattice and the point group
symmetries, a tight-binding basis for a given space group must obey:

• the point group symmetry of the basis position. The local orbital representations
T must be built from irreducible representations of the site-symmetry group. For
instance, a pair of p± = 1/

√
2(px ± ipy) orbital is an irreducible representation

of the point group C3ν . A single in-plane orbital would break the point group
symmetry, as it is not an irreducible representation of the point group (see also
Tab. 3.1.1).

• the UC symmetries, i.e., the local orbital sets of basis sites belonging to the
same Wyckoff position must be identical. To give an example, in an inversion
symmetric honeycomb lattice, both sublattice sites must have identical local basis
sets.

The character formula of a general Bloch wave function representation T formed by
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the local representation T reads [136]

χT (g,k) =
∑
i

∆i(g,k)θi(g)χT (g), (2.80)

where the index i labels all basis positions and ∆i denotes the Bloch phase difference.
θi(g) equals 1, if the basis site is invariant under g, 0 otherwise. This is important for
Wyckoff positions with higher multiplicity, as the symmetry operation may map on
different, but equivalent basis positions. This is for instance the case for the honey-
comb Wyckoff position in hexagonal space groups: vertical mirror reflections and C6

rotations result in a mapping onto the other sublattice10. The character of the local
representation at site i is given by χT (g). Therefore the character of the Bloch wave
function is given by the product of the character of the transformation of the basis site
and the local representation.

To express the Bloch wave function representation T in irreducible representations
τj of the little group Gk

T =
∑
j

mjτj, (2.81)

we can define scalar product of characters given in Eq. 2.66:

mj =
1

N

∑
g∈Gk

χ∗
T (g)χj(g), (2.82)

which allows for decomposition of the full Bloch wave function of a subset of bands
into irreducible representations.

Equipped with this basic, but powerful knowledge, profound qualitative properties
of the band structure of electronic orbitals on a lattice in a given space group can be
derived [137, 138]. (I) At each momentum, the Bloch wave function must be an irre-
ducible representation of the little group. Hence, the set of irreducible representations
and their dimensionality define all possible Bloch wave function symmetries and their
degeneracies, respectively. (II) Shared symmetries between high-symmetry momenta
impose connectivity relations between their irreps. The irreducible representation of a
band can change discontinuously, but must be compatible with the irreps at the sur-
rounding momenta. (III) Extending this concept to the full BZ, the qualitative band
structure induced by an orbital representation on a Wyckoff position is given, which
goes under the name elementary band representation (EBR). To give an example, the
band structure of the inversion symmetric Kane-Mele model shown in Fig. A.1.1 is
an EBR induced by the orbitals on the honeycomb Wyckoff positions. The two or-
bitals give rise to two bands, which are formed by two one-dimensional irreps at the
high-symmetry momenta Γ and M and one two-dimensional representation at K. As

10See also Figs. 2.4.2 and 3.2.1.
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will be discussed in the next chapter, the path Γ-K-M is located in a mirror plane.
This imposes a connectivity relation based on the mirror symmetry eigenvalue: at Γ
the one dimensional irreps in conduction and valence have different eigenvalues, which
remain preserved along Γ-K. At the valley, the two bands intersect and the symmetry
values in valence and conduction along K-M are reversed compared to Γ-K. Hence
the qualitative band structure and the symmetry of the Bloch wave functions can be
solely derived from group theory. However, the assignment of valence and conduc-
tion bands requires a Hamiltonian and a given fixed electron number. In the case of
the Kane-Mele model, the energy hierarchy of the bands is defined by the sign of the
hopping parameter t in Eq. 2.7.

Despite of symmetry protected degeneracies, accidental band crossings can occur in
more evolved models at non-high-symmetric momenta. These intersections happen
mostly for bands with different irreps living in separate Blocks of the Hamiltonian.
Instead, bands with identical irreps can hybridize which makes crossings of bands with
identical symmetry characters unlikely. Nevertheless, all of these degeneracies will
occur in the p-shell model introduced in Chap. 4 and are relevant for the topological
phase transitions in Chap. 5.

Particular interest in band representations has been stimulated by the development
of a criterion for the Z2 classification [44–47, 62, 135]: statements (I-III) allow for a
determination of all possible insulating band structures formed by EBRs, which are by
definition Z2-trivial atomic limits. Vice versa the non-trivial topology of any insulating
subset of bands can be determined with Eq. 2.82, i.e., testing if it can be decomposed
in EBRs. If not, the subset of bands is necessarily Z2-non-trivial. However the results
must be taken with care in low-symmetric space groups, as false-trivials can occur and
will be discussed in Chap. 5. Recently, the classification of Z2-trivial insulators has
been further refined based on the relative alignment of the EBRs and the atoms in real
space [44, 46, 47, 62–64]. In trivial atomic limits the positions of the charge centers
and the nuclei are in unison. However, for some crystals, at least one EBR of the
valence bands is displaced from the atomic lattice. This goes along with finite electric
bulk multipoles, which can stabilize charge at interfaces and surfaces of finite-size
geometries.

It should be appreciated, that up to this point, all implications on the crystal’s
electronic band structure have been drawn without solving the Hamiltonian [133]. Of
course, the quantitative band dispersion remains elusive. The partition into conduction
and valence states requires a minimal model or ab initio treatment.

2.4.2. Symmetry breaking in the Hexagonal Bravais Lattice

After having established theoretical framework of group theory, we will analyze in the
following the impact of symmetry breaking in the hexagonal lattice. It is the Bravais
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lattice of the tight-binding model in Chaps. 4 and 5 and of the adatom monolayers in
Chap. 6.

2.4.2.1. Hexagonal and Trigonal Layer Groups

The hexagonal Bravais lattice is shown in Fig. 2.4.1 (a) which has the inversion
symmetric wallpaper group11 p6mm. Its 2D point group 6mm comprises one C2, two
C6 and two C3 in-plane rotations, three in-plane reflection lines σv spanned by the
first neighbors of Bravais points and three in-plane reflection lines σd defined by the
connecting line spanned by second neighbors. The angle spanned by the Bravais vectors
is 2π/3 (or π/3 depending on the chosen convention), importantly the reciprocal lattice
is rotated by π/6 against the real space lattice as shown in Fig. 2.4.1 (b). This has the
consequence that a vertical reflection σv (σd) in real space translates into σd (σv) in
reciprocal space. If a crystal lacks one of the in-plane reflections, the real and reciprocal
layer groups differ, as their point groups are rotated by π/6 against each other.

(a) (b)

p /mmm6

p mm6 p m6 2

p m3 1

σh

σh

σv

σv

(c)

Figure 2.4.1.: Real (a) and reciprocal (b) hexagonal lattice and Wigner-Seitz primi-
tive UC and BZ. The in-plane reflection symmetry lines σv (red) and
σd (green) and the C6 symmetry of the hexagonal lattice generate the
2D point group 6mm. (c) Genealogical relation between the hexagonal
layer groups p6/mmm, p6mm and p6m2 and the trigonal layer group
p3m1. In the reading direction bottom to top, the introduced reflection
symmetry is written next to the connecting line.

Including the third spatial dimension, the hexagonal Bravais lattice is also invariant
under reflections at the horizontal mirror plane σh and under the three C ′

2 and the
three C ′′

2 rotations with rotation axes in the σd and σv planes, respectively. Its elements
comprise also two roto-reflections Si = σhCi, namely two S3 and two S6. The point
group is 6/mmm resulting in the layer group p6/mmm, where the ”/” indicates the
rotation axis perpendicular to the σh mirror plane. The presence of the out-of-plane

11Analogue of the space group in two dimensions.
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Hexagonal and trigonal point groups and their symmetry operations

6/mmm E 2C6 2C3 C2 3C ′
2 3C ′′

2 I 2S3 2S6 σh 3σd 3σv

6mm E 2C6 2C3 C2 3σd 3σv

6m2 E 2C3 3C ′
2 2S3 σh 3σd

3m1 E 2C3 3σd

Table 2.4.1.: Summary of the symmetry operations of the most important point groups
in this thesis.

symmetries distinguishes the irreducible representations with respect to their even or
odd symmetry under σh, e.g., orbitals with different reflection eigenvalues will live in
decoupled subspaces of the Hamiltonian.

We will turn now to the consequences of in-plane inversion symmetry breaking, i.e.,
(x, y)↛(−x,−y), which directly forbids C2 and C6. As there are pairs of orthogonal
σv and σd reflection lines [see again Fig. 2.4.1 (a,b)], an inversion can be also achieved
by the operation σvσd. Therefore one of the reflection symmetries must be broken.
For the systems of interest in this thesis, the absence of σv plays a decisive role and
reduces the point group from 6/mmm to 6m2. Further, the real and reciprocal space
are characterized by different layer groups as given in Tab. 2.4.2, which has important
consequences for the site-symmetry little co-groups discussed in Sec. 2.4.2.2.

Upon releasing inversion symmetry of layer group p6/mmm by breaking σv and/or
σh, three different layer groups can be stabilized as illustrated in Fig. 2.4.1 (c). In the
absence of σh, the layer group is p6mm. Further releasing σv results in the trigonal
layer group p3m1. If only σv is broken, the hexagonal layer group is p6m2. The
corresponding reciprocal layer groups can be found in Tab. 2.4.2. A full overview of
the point group elements of the aforementioned real space layer groups is given in
Tab. 2.4.1. The elements of 62m and 31m can be obtained by exchanging σv and σd.

2.4.2.2. Site-Symmetry and Little Co-Group Analysis

In the following, we will analyze the impact of in-plane inversion symmetry break-
ing on the site-symmetry groups in real space and the little co-groups in momentum
space. For the Wyckoff position 1a and the high-symmetry point Γ, i.e., the center
of the hexagonal lattice, the point group is the crystallographic point group (see also
Tab. 2.4.2). In this section we will focus on the corners and the centers of the sides of
the Wigner-Seitz cell of the UC and the BZ, namely the Wyckoff positions 2b and 3c
and the high-symmetry momenta K and M shown in Fig. 2.4.2.

In the inversion symmetric layer group (LG) p6/mmm, the multiplicity of Wyckoff
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(a) (b)

Figure 2.4.2.: Site-symmetry group (a) and little co-group (b) analysis of the Wyckoff
positions 2b and 3c and the high-symmetry points K and M , respec-
tively. The red and green dashed lines denote σv (σd) and σd (σv) in
real (reciprocal) space, respectively.

position 2b is protected by σv, as it maps the two inequivalent sites onto each other. If
σv and σd are both present, the point groups are identical in real and reciprocal space as
shown in Tab.2.4.2. Figure 2.4.2 illustrates the site-symmetry of the Wyckoff position
2b: the three-fold coordination of the 1a and the 3c position and the intersection with
one of the σd mirror planes results in the point group 6m. The absence of σv (red
dashed line in Fig. 2.4.2) in real space renders the former two sites belonging to 2b
inequivalent. In reciprocal space, this translates into the absence of σd, the point group
of the valley momenta K lacks the in-plane reflection as shown in Figs. 2.4.2 (b) and
2.4.1 (b). The remaining symmetry operations are the C3 rotation and, if present σh.
As they both commute, the point group is abelian. Hence, breaking σv in real space
has two important effects: it reduces the multiplicity of the Wyckoff position on 2b
in real space and lowers the symmetry of the little group of the valley momenta in
reciprocal space.

The multiplicity of the Wyckoff position 3c is insensitive to σv breaking as it is pro-
tected by the three-fold rotation around the 1a position of the trigonal and hexagonal
layer groups. However, only in the presence of σv and σd, its in-plane position is fixed
by the intersection point of the two reflections (see Fig. 2.4.2). In the presence of only
one reflection, its in-plane position is defined to be located along the remaining reflec-
tion line and must be C3 symmetric with respect to 1a. The point groups of 3c and
of the high-symmetry momentum M are identical with the subtle detail that σv and
σd exchange as shown in Tab. 2.4.2. Further, as a time-reversal invariant momentum,
the position in of the three M points remains symmetry protected by time reversal
symmetry, even in the absence of spatial reflections.

From the site-symmetry analysis, two important facts about the in-plane inversion
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Real Space

LG 1a 2b 3c

p6/mmm 6/mmm 6m2 mmm

p6mm 6mm 3m. 2mm

p6m2 6m2 6m2 mm2

p3m1 3m. 3m. .m.

Reciprocal Space

LG Γ K M

p6/mmm 6/mmm 6m2 mmm

p6mm 6mm 3m. 2mm

p62m 6m2 6.. m2m

p31m 3.m 3.. ..m

Table 2.4.2.: Site-symmetry groups of the Wyckoff positions 1a, 2b and 3c in real space
and little co-groups of the high-symmetry momenta of the corresponding
layer group. The real space Wyckoff positions are labeled following the
convention given in Fig. 2.4.2. It should be noted that the multiplicity
of b is reduced to 1, if the layer group lacks σv. The symmetry axes are
given with respect to the crystallographic point group orientation.

symmetry breaking driven by the absence of σv can be derived:

1. In real space, σv can be broken by either placing identical atoms on position 3c
followed by a translation along σd towards one of the 2b sites or by explicitly
rendering the positions of the 2b site inequivalent by placing different atoms on
the two sites (or only one atom at one site).

2. In momentum space, the little group of K becomes abelian which results in
one-dimensional irreducible representations. Former symmetry protected band
degeneracies will be lifted.

The first point gives a clear description for relevant material realizations. In this
thesis, systems will be considered where the positions of the 2b sites host different
atoms. However, this may be also achieved by weak distortions on atoms on 3c.
Further, we will see in Sec. 3.3, how σv-breaking will manifest itself in the real-space
localization of the Bloch wave function. The second point has profound implications for
the electronic band structure and the wave function symmetry as we will be discussed in
the following section. In Chap. 5, the mutual connection of real space lattice and Bloch
wave function symmetries will play the decisive role resulting in symmetry-breaking
stabilized topological phases.

2.4.3. Inversion Symmetry Breaking Induced Chiral Wave
Functions

This section concludes the chapter on the group theoretical analysis by elaborating
on direct physical consequences for the Bloch wave function arising from inversion
symmetry breaking. One of them is, that the Bloch wave function can become chiral.
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As speculated in the introduction, an angular momentum promoting mechanism may
act as the required non-local antagonist to the atomic SOC interaction on the triangular
lattice, indispensable for stabilizing topological phases.

To have a well-defined angular momentum operator for the Bloch wave function, we
recall from Sec.2.3, that the Bloch wave function at momentum k can be written as

|ψ(k)⟩ =
∑
R

eik·R |ϕR⟩ . (2.83)

ϕ shall be a local orbital, which can be described by a linear combination of Coulomb-
Sturmians (see also Sec. A.2). This allows the definition of a local angular momentum
operator and can be seen as a spectral decomposition of the Bloch wave function in
terms of local wave functions with well-defined angular momentum. If the center of
the Coulomb-Sturmians is chosen to be located at the 1a Wyckoff position, the “local
OAM” is equivalent to the angular momentum of the Bloch wave function which defines
its character under rotations in Eq. 2.79.

Being equipped with a proper angular momentum operator we can define its expec-
tation value

⟨L̂z(k)⟩ = ⟨ψ(k)|L̂z|ψ(k)⟩ . (2.84)

Applying the time-reversal operator T to the Bloch wave function takes k → −k and
the spherical harmonics transform as Y l

m → Y l
−m.

⟨L̂z(−k)⟩ = ⟨ψ(−k)|L̂z|ψ(−k)⟩ = ⟨T ψ(k)|L̂z|T ψ(k)⟩
= ⟨ψ(k)|T L̂zT |ψ(k)⟩ = −⟨L̂z⟩ (k). (2.85)

Spatial inversion Ir = −r and Ik = −k leaves the spherical harmonics invariant

⟨L̂z(−k)⟩ = ⟨ψ(−k)|L̂z|ψ(−k)⟩ = ⟨Iψ(k)|L̂z|Iψ(k)⟩
= ⟨ψ|IL̂zI|ψ⟩ = + ⟨L̂z⟩ , (2.86)

the OAM polarization is a pseudo vector. It is clear, that the combination T I implies

⟨L̂z(k)⟩ = ⟨T Iψ(k)|L̂z|T Iψ(k)⟩ = ⟨L̂z(−k)⟩ . (2.87)

Hence we find the following energy-momentum relation for crystals with time reversal
symmetry

ELz(k) = E−Lz(−k), (2.88)

with inversion symmetry

ELz(k) = ELz(−k), (2.89)
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and with inversion and time reversal symmetry

ELz(k) = E−Lz(k). (2.90)

In the presence of both symmetries, the spinless Bloch wave function of a non degen-
erate band must be non-chiral [37]. However 2n-degenerate bands can come in chiral
pairs with vanishing total chirality. If only time reversal symmetry is broken, the Bloch
wave functions at k and −k have the same chirality according to Eq. 2.89. In the ab-
sence of inversion symmetry, the chirality of the Bloch wave function is odd under
k → −k. From a physical perspective, chiral wave functions from broken time-reversal
symmetry can be expected. Instead, chiral wave functions from inversion symmetry
breaking (ISB) are more surprising, as the broken I does not necessarily imply a chi-
ral crystal structure. In fact, this is reconciled by a vanishing BZ-integrated OAM
polarization arising from the anti-symmetric structure of Eq.2.88. Further, it should
be noted, that time-reversal symmetry can be broken on the spin- and orbital-degrees
of freedom of the Bloch wave function, while ISB, as a spatial symmetry breaking. It
solely affects the orbital/spatial degrees of freedom of the wave function. Nevertheless,
ISB can also affect the spin-splitting via a strong SOC-interaction as it is the case in
the Rashba systems [1, 38, 39] and will be discussed in Sec. 6.1. Of course, it will also
play a fundamental role in the stabilization of the topological phases in Chaps. 5 and
6.
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Hexagonal Space Groups

Based on the symmetry analysis of the valley momenta in Sec. 2.4, the presence of
Dirac fermions in hexagonal and trigonal space groups will be discussed in the following.
These Dirac fermions become massive in the presence of spin-orbit coupling (SOC) and
inversion symmetry breaking (ISB) and their competition will determine the associated
Berry charge [18]. Historically, Dirac fermions in hexagonal and trigonal space groups
have been mainly investigated in Kane-Mele-type [24, 53] and in Kagome systems [48,
139], however they can also exist on the fundamental space group representative, the
triangular lattice [2–4]. As the thesis focuses on the latter, the Dirac Hamiltonian in a
triangular basis in the presence of SOC and ISB will be established based on group the-
oretical arguments as elaborated by Eck et al. in Ref. [2]. Further, the Dirac fermions
in the three aforementioned bases have identical irreps at the valley momenta. This is
related to the fact, that the representations of a given crystal momentum, i.e., the little
groups, are solely determined by the space group. Therefore a Bloch wave function
representation of a given space group may be expressed in multiple LCAO basis sets,
located on different Wyckoff positions. If so, there must be a transformation between
the basis sets. In the final part of this chapter, we will establish such a transformation
between triangular and honeycomb basis sets. This unveils fundamental differences on
the level of the locality of the SOC and ISB interaction: the mapping between both
basis sets transforms local terms into non-local terms and vice-versa [2]. It should be
noted, that the hereinafter drawn conclusions and the derived mapping consider only
the valley momenta. This allows for a systematic analysis of the Dirac fermions and
their impact on lattice systems. However, for a complete periodic model characteriza-
tion, the whole BZ must be examined to determine the topological properties and the
charge localization. This will be discussed in Chap. 5.

3.1. Symmetry-Protected Dirac States

In the high symmetric layer group p6/mmm, the little group of the K/K ′ points is
given by D3h [140]. As illustrated in Sec. 2.4.2.2, this group comprises one threefold
vertical rotation axis, three twofold horizontal rotation axes, three vertical reflection
planes, and the horizontal reflection plane. Since the vertical reflections and the C3
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Two-dimensional representations of D3h

representation I 2C3 3C ′
2 σh 2S3 3σv orbital basis

E ′ 2 −1 0 2 −1 0 (p+, p−), (d+2, d−2), (f+, f−)

E ′′ 2 −1 0 −2 1 0 (d+, d−), (f+2, f−2)

Chiral one-dimensional representations of C3h

representation I C1
3 C2

3 σh S1
3 S5

3 orbital basis

E ′ 1 ω ω∗ 1 ω ω∗ p+, d−2, f+

1 ω∗ ω 1 ω∗ ω p−, d+2, f−

E ′′ 1 ω ω∗ −1 −ω −ω∗ d+, f−2

1 ω∗ ω −1 −ω∗ −ω d−, f+2

Table 3.1.1.: Character table of the two-dimensional representations of point groupD3h

and the corresponding complex-conjugate paired one-dimensional repre-
sentation of its subgroup C3h [141]. With ω = ei

2π
3 . The last column

shows the Bloch wave function symmetry expressed in atomic-like com-
plex spherical harmonics, the index denotes the magnetic quantum num-
ber m. Reprinted table with permission from Eck, P. et al. “Real-space
obstruction in quantum spin Hall insulators”. Physical Review B 106,
195143 (2022). © 2022 by the American Physical Society.

rotation do not commute, D3h is non-abelian and multi-dimensional representations
must exist. This results in the two two-dimensional representations E ′ and E ′′ which
are even and odd under σh, respectively, as shown in their character Tab. 3.1.1. The last
column denotes the resulting symmetry of the Bloch wave function expressed in pairs
of atomic-like complex spherical harmonics, which fall into the two representations.
Let us recall the character formula of the Bloch wave function given in Eq. 2.80 for a
single-site basis: since the Bloch phase remains invariant under local transformations,
the character of the Bloch wave is fully determined by the local representation. Hence,
the pairs of chiral orbitals of Tab. 3.1.1 can be seen as the building blocks for symmetry-
protected two-fold degenerate Dirac states on the triangular lattice.

In the following, we will discuss the impact of symmetry breaking on the Dirac
fermions. The absence of the vertical reflections σv results in the little group C3h [142] (see
also Sec. 2.4.2.2). As its symmetry operations commute, the group is abelian and has
only one-dimensional representations. The above-mentioned twofold representations
split up into pairs of chiral representations (see C3h in Tab. 3.1.1). This is a per-
fect example of chiral wave functions induced by ISB, as introduced in Sec. 2.4.3. The
group theoretical analysis indicates the Bloch wave as being an orbital angular momen-

38

http://dx.doi.org/10.1103/PhysRevB.106.195143
http://dx.doi.org/10.1103/PhysRevB.106.195143


3.1. Symmetry-Protected Dirac States

tum (OAM) eigenstate. Again, in the presence of time-reversal symmetry, the Bloch
wave function at K and K ′ has opposite OAM, the BZ-integrated OAM polarization
vanishes. Further, we can infer, that a σv-breaking interaction on the triangular lattice
couples to the L̂z-component of the atomic OAM operator. Hence, the low-energy
Hamiltonian is given by:

Ĥ ̸σv(K/K ′) = ±λ̸σv
L̂z. (3.1)

The ± sign in Eq. 3.1 is a consequence of K and K ′ being time-reversal partners and
λ̸σv

denotes the strength of the σv-breaking. Here, we have introduced a strike-out
notation for symmetry-breaking terms and their strength parameters. As it has been
shown by Haldane [53], Kane and Mele [18, 24] for honeycomb Dirac fermions, a gap
opened by inversion symmetry breaking at the valley momenta results in a total trivial
Berry charge: the monopoles at K and K ′ have opposite winding numbers.

The other important symmetry in this thesis is σh. If broken, the point group of the
valley momenta reduces to the non-abelian group C3v (see also Sec. 2.4.2.2). Hence,
the degeneracy of the Dirac fermions remains protected. However, as σh discriminates
between the representations E ′ and E ′′ of D3h, they become indistinguishable in the
absence of σh and collapse into the representation E of C3v. While this effect has
no consequences for the p-orbitals, it is relevant for d- and f -shells on the triangular
lattice. As shown in Tab. 2.4.2, each of the m = ±1 and m = ±2 chiral pairs gives rise
to a Dirac cone. If the horizontal reflection symmetry is released, all d- and f -type
Dirac cones have identical irreps, indicating that there will be a finite hybridization
and orbital mixing between the m = ±1 and ±2 subspaces. If σh and σv are broken,
the C3 symmetry of the valley momenta allows for the hybridization of orbitals with
commensurate m quantum numbers mimod(3) = mj mod(3) which are the, i.e., the
m = −2(−1) and m = 1(2) orbitals.

Having established the impact of symmetry breaking on the valley Bloch states, in the
following we introduce SOC. In this case, the little group of K/K ′ is the double group
DD

3h of D3h, which contains only two-dimensional spinor representations. Assuming

local atomic SOC
⃗̂
L · ⃗̂S acting on any pair of basis functions D3h (Tab. 3.1.1), the SOC

interaction becomes diagonal and the valley Hamiltonian is given by

ĤSOC = λSOC
⃗̂
L · ⃗̂S = λSOCL̂z ⊗ Ŝz, (3.2)

with
⃗̂
L and

⃗̂
S denoting the orbital and spin angular momentum operator, respectively.

The coupling of spin and orbital angular momenta results in states with total angular
momentum quantum number jz = m + ms and the twofold degenerate valence and
conduction eigenstates of Eq. 3.2 read for λSOC > 0

Ev : |Ψv⟩ =
∣∣∣∣jz = ∓|m| ± 1

2

〉
, (3.3)

Ec : |Ψc⟩ =
∣∣∣∣jz = ±|m| ± 1

2

〉
. (3.4)
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3. Dirac Fermions in Trigonal and Hexagonal Space Groups

As this term preserves time-reversal and inversion symmetry, the Dirac fermions are
non-trivially gapped indicating a finite total (=summed over both valley momenta)
spin-Berry charge [18, 24]. As the Hamiltonian is spin-diagonal, a Chern number
can be assigned to each spin-block. Similarly, the time-reversal-symmetry-violating
Haldane mass Hamiltonian can be formulated as

ĤChern = λChernL̂z. (3.5)

In the presence of time-reversal symmetry, the combined Hamiltonian of ̸σv-breaking
and SOC acting on a pair of chiral orbitals is given by

Ĥtriang(K/K ′) =ĤSOC + Ĥ ISB(K/K ′)

=L̂z ⊗
(
λSOCŜz ± λISBŜ0

)
, (3.6)

where S0 is the 2×2 identity matrix. The relative strength of λ̸σv
and λSOC dictates

the gap and, in turn also the total spin Berry charge of the valley momenta. This
competition is reminiscent of the Kane-Mele model, however with an on-site non-trivial
mass term and a k-dependent inversion symmetry-breaking term. This has important
consequences for material realizations, as the strong local SOC will help to stabilize
QSHI phases. This comparison will be further discussed in Sec. 3.4.

3.2. Equivalence of Honeycomb and Triangular Dirac
Fermions

The initial claim, that a certain Bloch wave function may be expressed in more than
one LCAO basis set, inevitably raises the question of the underlying mechanism and
the necessary prerequisites. From a pure group theoretical point of view, this can be
immediately answered by requiring that the character of the irreducible representation
of the Bloch wave function can be realized by more than one local orbital basis set.
As the character of the Bloch wave function is determined by the Bloch phase and the
character of the local orbitals (see Eq. 2.80). The contributions to the total character
can be transferred between the local orbital character and the Bloch phase by changing
the local orbital basis and shifting the basis position.

To illustrate this for hexagonal systems, we will consider in the following the paradig-
matic Dirac fermion system, namely the honeycomb lattice, and the triangular lattice
in the wallpaper group p6m. The former is bipartite with orbitals located at the Wyck-
off positions 2b = {A = (1/3, 2/3),B = (2/3, 1/3)}, while the site of the triangular
lattice is at 1a = (0, 0) [143]. Henceforth we use the Bravais and reciprocal lattice
vector convention

a1 = a0 (1, 0)
T , a2 = a0

(
−1/2,

√
3/2
)T

,
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3.2. Equivalence of Honeycomb and Triangular Dirac Fermions

ω = ei 2π
3

ω0 ωm±1

ωm±2ω2m±1

ω2m±2

ω0

(a) (b)

B
ω0

ω∓2 ω∓1

A

(0,0) (1,0)

(0,1) (1,1)

(−1, − 1)

(0,1)

(1,0)

(1,1)

(−1,0)

(0, − 1)

Figure 3.2.1.: (a) Wyckoff positions in the hexagonal unit cell giving rise to the triangu-
lar and honeycomb lattices. The former is made of the filled black circle
at 1a, while the latter by the orange “A” and green “B” open circles at
2b. A different Bloch phase ω = exp(ik ·R) (purple, yellow and cyan
colors) calculated at k=K or K ′ is assigned to each unit cell (diamond
shapes). The filled black circle in the center corresponds to R = (0, 0)
and represents the atom assigned to the purple unit cell). (b) Interfer-
ence between orbital and Bloch phases. The blue arrow shows how the
phase of the chiral orbitals sitting at the R positions of the triangular
lattice winds going around the A/B points. In red we denote instead
the contribution from the Bloch phases along the same path. For this
specific example, we have picked an orbital with m mod 3 = 1 at K.
Reprinted figure taken and adopted with permission from Eck, P. et al.
“Real-space obstruction in quantum spin Hall insulators”. Physical Re-
view B 106, 195143 (2022). © 2022 by the American Physical Society.

b1 =
2π

a0

(
1,
√
3
)T

, b2 =
2π

a0

(
0, 2/

√
3
)T

.

If not explicitly specified, we assume the lattice constant a0 to be the unit of length.

Here, we will be focusing on the following comparison: the 2b basis site of the
honeycomb with A and B sublattices [orange and green open circles in Fig. 3.2.1 (a)]
on the one hand and, on the other hand, the triangular lattice with its single site (filled
black circle) in the unit cell. The former has in analogy to the Kane-Mele model one
orbital with magnetic quantum number mhc = 0 per site [18], while the latter is
equipped with two chiral orbitals with mt = ±m, which have been introduced in the
previous section. The different dimension of the local orbital subspaces ensures the
same number of degrees of freedom between the two basis sets.

To understand the equivalence of the aforementioned basis sets at the valley mo-
menta, let us consider the Bloch wave functions in real space

ψ(k)(r) = ⟨r|ψ(k)⟩ =
∑
R

eik·R⟨r|mR⟩. (3.7)
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3. Dirac Fermions in Trigonal and Hexagonal Space Groups

Here |mR⟩ is an orbital with magnetic quantum number m located in the unit cell
corresponding to Bravais point R. The equivalence of different basis set choices is
proven for Eq. 3.7 at the valley momenta, if the corresponding Bloch wave functions
have identical characters under the symmetry classes of the little group (D3). Focusing
on the C3 rotation, we recall the character formula of the Bloch wave function given in
Eq. 2.80 and formulate it for a Bloch wave function of an orbital m at Wyckoff position
x [2]:

χ(C3,m,x,k) = ∆(C3,x,k)χm(C3). (3.8)

∆(C3,x,k) and χm(C3) denote, respectively, the characters of the Bloch phase and
of the orbital |m⟩ under a C3 rotation. As the triangular Wyckoff position 1a is
located at the origin (black filled dot in Fig. 3.2.1), its Bloch phase remains invariant.
Therefore, the character χ of the full Bloch wave function is given only by the orbital
part χm(C3) = ei

2π
3
m = ωm. For the honeycomb positions A/B (orange/green open

circles), instead, a C3 rotation around 1a translates A and B into the corresponding
ones in neighboring unit cells, as illustrated in Fig. 3.2.1 (a). This results for the valley
momenta K = −K = (1/3, 1/3) in a Bloch phase difference of [2]

∆(C3,x = A,k = {K/K ′}) = ω∓2 = ω±1, (3.9)

∆(C3,x = B, k = {K/K ′}) = ω∓1, (3.10)

where ±1 is determined by fixing the Wyckoff position and the valley momentum,
from the clock- or anticlockwise Bloch phase rotation under a C3 operation – see
sequence of colors in Fig. 3.2.1 (a). By taking into account this additional “Bloch
angular momentum” m̃x,k = ±1, we obtain the condition under which both Bloch
wave functions have the same C3 character [2]:

0 = (mt −mhc − m̃x,k) mod 3. (3.11)

This implies that any Bloch wave function of a chiral orbital mtmod 3 ̸= 0 on the
triangular lattice transforms identically as one of mhcmod 3 = 0 orbitals located at
the A/B honeycomb sites. Further, the comparison illustrates nicely the transferability
of contributions to the total character from the Bloch phase/real space position and
the local orbital representation. From a more general perspective, it highlights also the
chirality of Dirac states on hexagonal and trigonal lattices, which promote the helical
edge states in finite size geometries of non-trivial bulk systems. While this comes
naturally from the local chiral orbitals on the triangular lattice, it arises from the
Bloch phase for the non-chiral orbitals in a honeycomb geometry as will be discussed
and illustrated in the next section.
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3.3. Emergent Honeycomb Connectivity on the Triangular Lattice

3.3. Emergent Honeycomb Connectivity on the
Triangular Lattice

Having established the equivalence of the triangular and the honeycomb lattice on
the level of the Bloch wave function symmetry, it is instructive to inspect the real space
localization of the Dirac fermion Bloch wave functions. It is well established for the
honeycomb lattice, that the sublattice degree of freedom is a good quantum number
at the valley momenta. The wave function localizes on the sublattice sites and the
charge localization pattern is indicative for the topological phase [18, 24, 53, 57]. This
poses the question, if the Dirac fermions on the triangular lattice profit also from a
honeycomb charge connectivity that would localize on the void position between the
atoms. If so, it could be similarly used for addressing the topological phase [3] and
could promote real space obstruction [2, 4]. Indeed, this concept will be of fundamental
importance in Secs. 5.9, 5.10 and 6.2.2.

We investigate the charge localization at K/K ′ by inspecting the real space Bloch
wave function at the A/B void arising from a chiral orbitalm on a triangular lattice (1a
position). As illustrated in Fig. 3.2.1 (b), the Bloch wave at the A/B position depends
on the interference of the chiral orbitals of the neighboring 1a sites, which contribute
with their lattice and orbital phases. By exploiting the C3 symmetry of the A/B site-
symmetry group, all shells of neighbors must come in multiples of triplets and the
Bloch wave function can be written as [2]:

⟨r = {A,B}|ψ(k)⟩ ∝
∑
R

eik·R⟨r|mR⟩ (3.12)

=
∑
t

2∑
n=0

⟨r|Cn
3

(
eik·Rt |mRt⟩

)
. (3.13)

Here we have introduced the triplet index t in Eq. 3.13. All basis positions of a triplet
are generated by applying C3 rotations to one of the lattice vectors Rt of the triplet.
As shown in Fig. 3.2.1 (b), depending on the valley momentum and the A/B position,

the Cn
3 rotation promotes a Bloch phase difference of ωn = e±i

2π
3
n. Therefore, the

valley Bloch wave function at the A/B evaluates to [2]:

⟨r = {A,B}|ψ(k = {K/K ′})⟩ =
∑
t

eik·Rt⟨r|mRt⟩
2∑

n=0

[
ωm̃r,k · ωm

]n
(3.14)

= 3δ(m̃r,k+m)mod3,0

∑
t

eik·Rt⟨r|mRt⟩ (3.15)

∝ δ(m̃r,k+m)mod3,0, (3.16)

where m̃r,k reflects the Bloch angular momentum, i.e., the winding of the Bloch phase
around the considered A/B position at a given valley momentum. Assuming, that
the local orbitals are sufficiently localized, the main contribution to the Bloch wave
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3. Dirac Fermions in Trigonal and Hexagonal Space Groups

will arise from the nearest neighbor shell and the sum over all shells in Eq. 3.15 is
non-vanishing. Hence we can identify a constructive or destructive interference mech-
anism, which depends solely on the A/B position, the valley momentum and angular
momentum of the local chiral orbital. In particular, the total angular momentum
of the Bloch wave with respect to the A/B position M = m̃r,k + m is the decisive
property. Only if total invariance under C3 symmetry with respect to the A/B po-
sition is achieved (M mod3 = 0), the Bloch wave function and hence the charge is
non-vanishing [2]:

|ψ(r = {A,B},k = {K/K ′})|2
{
> 0, if M mod 3 = 0

= 0, if M mod 3 ̸= 0
. (3.17)

Extending this simple argument to pairs of chiral orbitals (as introduced in Sec. 3.1) on
the triangular site 1a, the presence of both chiralities ±m will result in a honeycomb
connectivity at the 2b position at K and K ′. To give an example, the p+(p−)-orbital
localizes at A(B) and B(A) for the valley momenta K and K ′, respectively.

To illustrate the localization, we compare the Bloch wave functions from p± orbitals
on the 1a triangular site with a s-orbital on the A position. We choose the following
non-normalized real-space parametrization for the local orbitals

sR(r) = e−
1
a
|r−R|, (3.18)

p±,R(r) = |r−R|e− 1
a
|r−R|e±iφ(R,r), (3.19)

with the Bohr radius a being 1/4 of a lattice constant and construct the Bloch wave
function according to Eq. 2.34. Figure 3.3.1 shows arg[ψ(k)] with the complex phase
plotted by rainbow colors and the color brightness scales with the absolute wave func-
tion value. For the crystal momentum Γ, i. e., constant Bloch phase in real-space,
the maximum of the s-type Bloch wave function centers at the honeycomb position A.
Instead, the p±-Bloch wave function centers around the triangular site 1a with nodes
at 1a and along the Wigner-Seitz cell boundary (hexagonal nodal line). At the valley
momentum K, the s-type wave function has nodes at the unoccupied honeycomb po-
sition B and at 1a. Importantly, the p+-orbital realizes a qualitatively similar Bloch
wave with a maximum at A and nodes at 1a and at B. However, it should be noted,
that the s- and the p+-type wave functions are not identical on the quantitative level.
The p− wave function has its maximum at B and a node at 1a and A. At K ′, the p−
Bloch wave is qualitatively equivalent to the s-type wave function and the p+ wave
function localizes at the B position.

The comparison illustrates nicely that,

• the equivalence of honeycomb and triangular basis sets is a momentum-dependent
concept,

• the equivalence is achieved on the level of the wave function symmetries, the
long-range behavior of the radial part is unimportant.
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Γ K K′ 

p+

p−

s

Figure 3.3.1.: Comparison of Bloch wave functions arising from an s-orbital on the
A and p±-orbitals on the 1a site (for the location of the Wyckoff posi-
tions see Fig. 3.2.1). The panels show arg[ψ(k)] with the complex phase
visualized by a rainbow color palette, the color brightness denotes the
amplitude. The x, y coordinates are given in units of the lattice constant.

The last point emphasizes further, that Bloch wave functions with identical symmetry
characters may differ on the quantitative level in real-space (apart from the symmetry
enforced nodes and local phase). For instance in an atomic-like picture where the
local orbitals are strongly localized, i.e., when the lattice constant is very large/the
Bohr radius is very short, the chiral orbitals on the triangular site will have a very
small amplitude at the A/B honeycomb positions. Hence, the maximum of the wave
function may still be located close to the triangular sites, even at the valley momenta.
Nevertheless, as the symmetry is unaffected, the interference mechanism is at play and
will promote a node or constructive interference at A/B at the valley momenta.

By recalling the symmetries of the eigenstates of the Dirac Hamiltonian in a trian-
gular chiral basis, as introduced in Sec. 3.1, we find that

• in the non-trivial, SOC-dominated case, both m-quantum numbers are present
in the valence (conduction) states. Therefore the valence (conduction) states
will localize on the A and the B sublattice position, resulting in a honeycomb
valence (conduction) charge distribution,
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3. Dirac Fermions in Trigonal and Hexagonal Space Groups

• in the trivial, σv-breaking dominated phase, the states of the valence (conduc-
tion) doublet have identical m-quantum numbers and will localize on the same
sublattice position, either A or B. The valence charge displays a triangular motif
centered at only one of the A/B position, while the conduction charge localizes
around the other sublattice position.

• both, the inversion symmetry-breaking term and the Bloch phase, are odd under
K 7→ K ′. Hence, the charge localization is independent of the valley. Therefore,
the charge motif is also present in k-integrated properties, such as the charge
density of Dirac fermions on the triangular lattice.

As a result, the charge localization of the triangular Dirac states is in analogy to
the Kane-Mele model [18, 24] and can be used as an unique identifier to determine
the topology of the gap at the valley momenta. Irrespective of the mass terms, Dirac
fermions arising from orbitals on the triangular lattice profit from an interference mech-
anism in the voids of the lattice, namely at the honeycomb sublattice Wyckoff position.
This will be of major importance for the topological real-space obstruction in triangu-
lar lattices discussed in Chaps 5 and 6. The mass terms dictate only the localization
pattern. In line with the group theoretical analysis in Sec. 2.4.2.2, only in the presence
of σv, the valence state is Kramers-degenerate and localizes symmetrically on A and
B.

3.4. Transformation between Triangular and
Honeycomb Dirac Fermions

After having established the equivalence of triangular and honeycomb Dirac fermions
on the level of the wave function symmetry and the real-space localization, a unitary
transformation between the two basis sets will be introduced in the following. As it
has been already touched upon in the previous section, the exact transformation of
the real-space representation of the local orbitals between the two basis sets is not
straightforward. A formal basis function transformation is derived in appendix A.3
based on Coulomb-Sturmians, which form a spherical-harmonics-type complete basis
set in R3 (see appendix A.2). For the sake of simplicity and in the light of a gen-
eral formulation, we will derive the mapping based on the wave function symmetries.
We consider chiral pairs of {+mt,−mt}mod 3 = {+1,−1} ≡ {−2,+2} orbitals on
the triangular site. On the honeycomb sites, we assume a {mA,mB} = {0, 0} ba-
sis. By requiring identical Bloch wave function symmetries under the C3 symmetry
at the valley momenta K and K ′ (see also Secs. 3.2 and 3.3), the transformation
{+mt,−mt} 7→ {mA,mB} reads

Û(K) =

(
1 0

0 1

)
⊗ Ŝ0, Û(K ′) =

(
0 1

1 0

)
⊗ Ŝ0. (3.20)
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3.5. Sublattice Polarization around the Valley Momenta

Here we assume, that the basis ordering at K remains invariant. As the localization of
the chiral orbitals switches between the A/B site under K 7→ K ′, the transformation at
K ′ must exchange the orbital order. The transformation maps the valley Hamiltonian
from the triangular basis given in Eq. 3.6 to the Kane-Mele-type honeycomb basis:

ĤKM(K/K ′) = Û(K/K ′)Ĥtriang(K/K ′)Û(K/K ′)† (3.21)

= Û(K/K ′)
(
ĤSOC + Ĥ ISB(K/K ′)

)
Û(K/K ′)† (3.22)

= Û(K/K ′)
(
L̂z ⊗

(
λSOCŜz ± λISBŜ0

))
Û(K/K ′)† (3.23)

= ±λSOCτz ⊗ Ŝz + λISBτz ⊗ Ŝ0, (3.24)

where τz denotes the third Pauli matrix representing the sublattice degree of freedom
in the honeycomb basis. As the L̂z-operator is also represented by the third Pauli
matrix in the triangular basis, the transformation at K ′ introduces a global “−”,
which switches the locality of the SOC and symmetry-breaking term: the local SOC
interaction on the triangular lattice is transformed into the k-dependent Kane-Mele
analogue. Instead, the non-local ̸σv-term transforms into a staggered potential in
the honeycomb basis. To put this into context of real materials, symmetry-identical
Dirac wave functions can be realized with crystals, which have either a honeycomb
or a triangular atomic basis. However the Kane-Mele SOC interaction in honeycomb
systems originates from an intrinsically weak second neighbor process [18, 24], while
the triangular basis profits from a sizable local atomic SOC [2, 3].

Before turning to an expansion of the sublattice polarization in the vicinity of the
valley momenta, let us briefly comment on the mapping of the local real-space rep-
resentations. In the presence of horizontal reflection symmetry, the character under
σh introduces a further discrimination criterion. To give specific examples, a triangu-
lar {p+, p−} basis is mapped onto an {mA,mB} basis, where the local orbitals on the
honeycomb sites will be a linear combination of s, d2z, ... wave functions (for details see
appendix A.3). On the other hand, a pair of {d+, d−} orbitals on 1a will be expanded
in p0, f−3, f0, f3, ...-orbitals on the honeycomb lattice.

3.5. Sublattice Polarization around the Valley
Momenta

We will conclude this chapter by extending the analysis of the triangular and honey-
comb Dirac fermions to the vicinity of the valley momenta. As discussed in the previous
sections and illustrated in Fig. 3.3.1, the wave functions arising from basis sets located
on the two aforementioned lattices have only identical symmetries at the valley mo-
menta, while their Bloch wave functions at Γ are qualitatively different. Hence there
must be a fundamental change in the wave function symmetry along the path spanned
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3. Dirac Fermions in Trigonal and Hexagonal Space Groups

by Γ-K. To investigate the evolution of the Bloch states and its localization at the
A/B sites, we consider a spinless Dirac Hamiltonian

H(k) = t|k|σx +mσz =

(
m tk

tk −m

)
. (3.25)

Without loss of generality, the term t|k|σx represents the in-plane-momentum-dependent
hybridization with strength t 1, while mσz denotes the mass term and σi are the Pauli
matrices. In the following, we will write |k| = k.

The Hamiltonian in Eq 3.25 has the eigenenergies E± = ±E = ±
√
m2 + (tk)2 with

eigenvectors

|v−⟩ =
1√

1 +
(

tk
m+E

)2
(
− tk
m+E

1

)
, |v+⟩ =

1√
1 +

(
tk

m+E

)2
(

1
tk

m+E

)
. (3.26)

Focusing first on the honeycomb basis {A,B} and defining the sublattice projectors
PA/B = |A/B⟩ ⟨A/B|, the sublattice character is given by

⟨v+|PA|v+⟩ = ⟨v−|PB|v−⟩ =
(m+ E)2

(m+ E)2 + (tk)2
=

2 + k̃2 + 2
√
1 + k̃2

2 + 2k̃2 + 2
√

1 + k̃2
, (3.27)

⟨v+|PB|v+⟩ = ⟨v−|PA|v−⟩ =
(tk)2

(m+ E)2 + (tk)2
=

k̃2

2 + 2k̃2 + 2
√

1 + k̃2
, (3.28)

⟨v+|PA|v+⟩
∣∣∣
k=0

= ⟨v−|PB|v−⟩
∣∣∣
k=0

= 1− (∆k̃)2

4
+

3(∆k̃)4

16
+O

(
(∆k̃)6

)
, (3.29)

⟨v+|PB|v+⟩
∣∣∣
k=0

= ⟨v−|PA|v−⟩
∣∣∣
k=0

=
(∆k̃)2

4
− 3(∆k̃)4

16
+O

(
(∆k̃)6

)
. (3.30)

where k̃ = tk
m
. Hence, the sublattice character scales quadratically near the valley

momenta with the generalized momentum k̃. Turning now to the basis of a pair of
chiral orbitals on the triangular lattice {+m,−m} we can interpret the previous result
as the orbital polarization in the vicinity of the valley momenta. In analogy to Eq. 3.12,
we can project the chiral orbitals located on the triangular site onto orbitals on the
honeycomb sites A/B with magnetic quantum number m = 0

P{A,B} |ψ(k)⟩ =
∑

s∈{A,B}

|s⟩ ⟨s|
∑
R

eik·R |m(r)⟩ (3.31)

≈ 1

3

∑
s∈{A,B}

|s⟩
2∑

n=0

ei(k·Rs,n+
2π
3
mn). (3.32)

1A general Dirac Hamiltonian in 2D momentum space (k1, k2) can be rotated at each momentum,
such that the full momentum-dependence is absorbed into one single Pauli matrix |k|σi.
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3.6. Summary

By going from Eq. 3.31 to 3.32, we consider only contributions from the three neigh-
boring sites of the honeycomb positions and require completeness for the projector at
k = K. Hence we can calculate the sublattice character ⟨ŝ(k,m)⟩ of a pure |m⟩-type
Bloch wave function

⟨ŝ(k,m)⟩ = 1

9

2∑
n=0

2∑
n′=0

e−i(k·Rs,n+
2π
3
mn)ei(k·Rs,n′+ 2π

3
mn′). (3.33)

To expand around the valley momentum, we insert k = K + ∆k and recall that
K · Ri,n = ±2π

3
n where the sign depends on the sublattice site A/B. In the case of

constructive interference, the sublattice character is given by

⟨ŝ(k,m)⟩ = 1

9

2∑
n=0

2∑
n′=0

ei∆k·Ri,n(n
′−n). (3.34)

Simplifying further by assuming ∆k · Ri,n = ±φn, i.e., evaluating the term for only
the ith in-plane momentum

⟨ŝ(φi)⟩ =
1

9

2∑
n=0

2∑
n′=0

e±iφi(n
′−n) (3.35)

=
1

9
(3 + 4 cos(φi) + 2 cos(2φi)) . (3.36)

⟨ŝ(φi)⟩
∣∣∣
φi=0

= 1− 2

3
(∆φi)

2 +O ((∆φi)
4). (3.37)

where the last equation denotes the expansion around φi = 0, while the series for
destructive interference reads at φi = ±4π

3

⟨ŝ(φi)⟩
∣∣∣
φi=± 4π

3

=
2

3
(∆φi)

2 +O
(
(∆φi)

4
)
. (3.38)

Compared to honeycomb Dirac fermions, we find that the sublattice polarization of
the triangular basis is further reduced by the phase decoherence which scales likewise
quadratic in the vicinity of the valley momenta. However for realistic lattice models,
non-linear effects in the band dispersion, e. g., the hybridization with other orbital
subspaces can profoundly change the sublattice localization, as it will be discussed in
Sec. 5.10.

3.6. Summary

A pair of chiral orbitals gives rise to Dirac fermions at the valley momenta of hexago-
nal and trigonal space groups. The wave functions of the Dirac fermions are symmetry-
identical to their honeycomb equivalents. This results in qualitatively identical physics,
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3. Dirac Fermions in Trigonal and Hexagonal Space Groups

however triangular basis sets profit from a sizable local SOC. Similar to the honeycomb
systems, triangular Dirac fermions possess a honeycomb localization in the voids of the
triangular lattice. Further the charge localization motif is driven by the competition
of spin-orbit coupling and inversion symmetry breaking, i.e., it is indicative of the as-
sociated Berry charge. As a concluding remark, it should be noted that the symmetry
equivalence of honeycomb and triangular Dirac fermions is only given at the valley
momenta. In the next chapter, we will develop a triangular lattice model. This will
allow to extend our analysis to the whole BZ.
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4. The p-Shell on the Triangular
Lattice

After having investigated the symmetries of Dirac fermions in hexagonal and trigonal
crystal layer groups, we will develop a lattice model for Dirac fermions in the most
fundamental hexagonal system, the triangular lattice. As the minimum requirement is
at least one pair of chiral orbitals, we will consider a p-shell in the presence of atomic
SOC as well as σv- and σh- breaking terms. The focus will be on the symmetry of
the eigenstates and the momentum-dependence of the symmetry-breaking terms. The
lattice formulation of the vertical-reflection symmetry-breaking term will be derived
from a group theoretical and a microscopic approach to gain a broad understanding
of the underlying physics of this inversion symmetry violating term. It should be
noted, that the presented methods can be applied to describe general spatial symmetry-
breaking phenomena in solids, hence the discussion of the σh-breaking term will be kept
compact.

4.1. p6/mmm Lattice Hamiltonian

Let us start with the lattice Hamiltonian ĤT in the maximally symmetric layer group
p6/mmm. We will derive the model for a {px, py, pz} basis on a triangular lattice
spanned by the Bravais vectors a1 = (1, 0) and a2 = (−1/2,

√
3/2), the reciprocal

lattice vectors read b1 = 2π(1, 1/
√
3) and b2 = (0, 4π/

√
3). Their overlap integrals can

be obtained by following the two-center approximation of Slater and Koster as given in
App. A.2. The Slater-Koster ansatz respects by construction the site symmetry (D6h)
of the triangular 1a Wyckoff position:

⟨pi(0)|ĤT |pi(R)⟩ = n2
iV

σ + (1− n2
i )V

π
i , (4.1)

⟨pi(0)|ĤT |pj(R)⟩ = −ninj(V π
ij − V σ

ij ). (4.2)

With i = x, y, z and i ̸= j, the coefficients ni incorporate the in-plane orientation
(nx = cos(φ) sin(θ), ny = sin(φ) sin(θ) and nz = cos(θ)) with the azimuthal angle φ
and polar angle θ. The general hopping Hamiltonian reads in momentum space:

Ĥ(k) =
∑
ij

c†i (k)Hij(k)cj(k), (4.3)
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4. The p-Shell on the Triangular Lattice

with the elements Hij = H∗
ji:

HT
xx(k) = 2V σ cos(k1) +

V σ + 3V π

2
(cos(k2) + cos(k1 + k2)) , (4.4)

HT
yy(k) = 2V π cos(k1) +

3V σ + V π

2
(cos(k2) + cos(k1 + k2)) , (4.5)

HT
zz(k) = Ez + 2V π

pz (cos(k1) + cos(k2) + cos(k1 + k2)) , (4.6)

HT
xy(k) = −

√
3

2
(V π − V σ) (− cos(k2) + cos(k1 + k2)) , (4.7)

(4.8)

The integrals V σ, V π and V π
pz are hopping strengths within the in-plane subspace and

the pz subspace, respectively. The local on-site shift of the pz-orbital with respect to
the in-plane subspace is given by Ez.

(a) (b) (c)

Figure 4.1.1.: Map plot of the matrix elements of the in-plane subspace in the {pr, pt}-
basis in the kxky plane, where red(blue) denotes positive(negative) val-
ues for 1 = V σ = −4V π. The plots show from (a-c) the elements
Hprpr , Hptpt , Hprpt and the black lines show the BZ boundaries. The di-
agonal elements are given with respect to the Dirac point energy at the
valley momenta. The corresponding band structure and orbital symme-
try is illustrated in Fig. 4.1.2.

As discussed in Secs. 2.4.2.1 and 2.4.2.2, the six vertical reflection planes (σv, σd)
of the layer group at p6/mmm intersect at Γ. The paths Γ-M , Γ-K and M -K are
located in the vertical reflection planes. As discussed in Sec. 2.4, the Hamiltonian
and the wave functions must be also (anti)-symmetric under the reflection symmetries
along the high-symmetry lines. In particular, the in-plane subspace will split into two
one-dimensional representations, where one representation is even (p-orbital alignment
parallel to the mirror plane) and the other one is odd (alignment normal to the mirror
plane) under the mirror reflection. Therefore, the intersecting mirror planes at Γ
promote a radial (even) and tangential (odd) in-plane band, where the alignment is
with respect to the distance vector to the nearest Γ-point. To unveil this symmetry, a
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4.1. p6/mmm Lattice Hamiltonian

K M Γ K ′
−2

0

2
E

n
er

gy
(t

)

pz
pr
pt

Γ

K ′

M
K

(a) (b)

Figure 4.1.2.: (a) Orbital character-resolved band structure obtained from a pr − pt
basis rotation with respect to Γ of the first BZ. The energy is given with
respect to the Dirac point. The outset illustrates the path along which
the band structure has been calculated. (b) Map plot of the nodal rings
formed by the pz-pr and pz-pr band crossings.

momentum-dependent basis rotation can be constructed, which transforms the in-plane
subspace {px, py} into a {pr, pt}-basis

U(φ(k)) =

(
cos(φ(k)) sin(φ(k))

− sin(φ(k)) cos(φ(k))

)
. (4.9)

The transformation depends on the momentum coordinate with respect to the nearest
Γ-point k = (k, φ(k)) and represents a continuous rotation symmetry. The rotated
Hamiltonian-elements are shown in Fig. 4.1.1 for 1 = V σ = −4V π. Indeed, the basis-
transformation unveils the C6-symmetry of the Hamiltonian: the off-diagonal elements
vanish along the high-symmetry lines Γ-M and Γ-K, which indicates the {pr, pt}-orbital
symmetry of the eigenstates. However, as the basis rotation assumes a continuous rota-
tion symmetry, it yields only the eigenfunctions of the Hamiltonian along the reflection
planes inside the BZ. Strong deviations can be seen at the BZ-boundary, the correct
parallel/tangential alignment is only obtained at M and K. This is reflected in the
small off-diagonal elements which increase with the distance to Γ. Nevertheless, as
the off-diagonal elements are much smaller than the diagonal elements, we can ap-
proximately assume, that the {pr, pt}-basis is an eigenbasis in the full BZ and the
diagonal elements can be directly related to the band energies, which reveal degen-
eracies at Γ and K. For the chosen tight-binding parameters, we find that the pr
band is located at lower energies than the pt band. The corresponding band struc-
ture including the pz-orbital is shown in Fig. 4.1.2 (a) with V σ = 4V π

pz = −Epz , which
displays all the aforementioned qualitative features. These tight-binding parameters
reflect qualitatively the models discussed in Chap. 5 and the triangular adsorbates on
SiC in Chap. 6. In the highly symmetric layer group, the model can host pz-pr and
pz-pt-type metallic band crossings. These give rise to nodal rings centered around Γ
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4. The p-Shell on the Triangular Lattice

and the valley momenta as illustrated in Fig. 4.1.2 (b). In Sec. 4.3, it will be shown
that the aforementioned orbital symmetry plays a significant role, when σh-breaking
is considered.

4.2. σv-Symmetry-Breaking

After having established the tight-binding Hamiltonian in the presence of vertical
reflection symmetry, we will discuss the lattice formulation of a σv violating term, which
breaks the in-plane inversion symmetry. First, we will derive it from a pure group-
theoretical ansatz (1), then from a hopping-process-bases argument (2), and finally
from down-folding (3). While the first allows a straightforward lattice formulation, the
latter two give intuitive insights into the microscopic mechanisms.

4.2.1. Group-Theoretical Derivation

As shown in Sec. 2.4.2.1, all layer groups with broken σv-symmetry are still symmetric
under C3z and σd. The absence of C2z symmetry allows for hoppings that are anti-
symmetric under spatial inversion. Further, as σh remains preserved, σv-breaking will
introduce new terms on the in-plane subspace only. Hence, by requiring C3 symmetry,
an odd behavior under C2 and vanishing matrix elements along the σd reflection planes,
the transfer matrix elements can be written as [4]

H ̸σv
yx (R) = ⟨py(0)|Ĥ ̸σv |px(R)⟩ = +

λ̸σv

3
√
3
cos(3φ), (4.10)

H ̸σv
xy (R) = ⟨px(0)|Ĥ ̸σv |py(R)⟩ = − λ̸σv

3
√
3
cos(3φ), (4.11)

where φ(R) is the azimuthal angle measured from e⃗x and λ̸σv
is the interaction strength.

The opposite sign in Eqs. 4.10 and 4.11 is a consequence of the broken C2 symmetry.
In momentum-space, this Hamiltonian reads in the {px, py}-subspace

H ̸σv
xy (k) =

2

3
√
3
λ̸σv

[sin (k1) + sin (k2)− sin (k1 + k2)] τy. (4.12)

Upon recognizing, that the second Pauli matrix τy is the representation of the L̂z op-
erator in the {px, py}-basis, this interaction promotes indeed chiral wave functions.
The momentum-dependence of this purely imaginary Hamiltonian is illustrated in
Fig. 4.2.1 (a), which shows a vanishing amplitude along the σd reflection lines and
an alternating behavior at K and K ′. The prefactors in Eqs. 4.10 and 4.11 have
been chosen such that the effective low-energy Hamiltonian at the valley momenta,
introduced in Eq. 3.1, is retrieved

Ĥ ̸σv
xy (K/K

′) = ±λ̸σv
L̂z. (4.13)
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4.2. σv-Symmetry-Breaking

The band structure in the presence of vertical reflection symmetry breaking with
λ̸σv

= 0.2V σ is shown in Fig. 4.2.1 (b). The Dirac bands at the valley momenta
are massive and OAM-polarized, hence they will localize only at the A or at the B site
as discussed in Sec. 3.3. The nodal-line crossings between the pz and in-plane bands
remain instead gapless. For the chosen set of tight-binding parameters, the pz-pr nodal-
line is located in a global gap near the Fermi-level, which will play an important role
for the topological phases discussed in Chap. 5.

(a)
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(b) (c)

Figure 4.2.1.: (a) Map plot of the matrix elements of ℑ[H ̸σv
xy (k)] in units of λ̸σv

, where
red(blue) denotes positive(negative) values. (b) Band structure with the
tight-binding parameters of Fig. 4.1.2 and λ̸σv

= 0.2V σ. The color code
indicates the atomic Lz polarization. (c) Sketch of the ISB px-py interac-
tion on the triangular lattice activated by a staggered potential peaking
at the A/B voids of the triangular lattice. First neighbor hoppings can be
decomposed into inequivalent second order processes via the A/B points
as indicated by the gray arrows d1 and d2. Reprinted figure in (c) with
permission from Eck, P. et al. “Real-space obstruction in quantum spin
Hall insulators”. Physical Review B 106, 195143 (2022). © 2022 by the
American Physical Society.

4.2.2. Microscopic Ansatz

The group-theoretical ansatz allows for a straightforward derivation of the interaction
term, however the underlying hybridization and hopping mechanisms remain elusive.
In the following, we will assume a σv-breaking potential in real space to investigate its
impact on the hopping processes in the in-plane subspace [2]. First we decompose the
nearest-neighbor interaction in a second-order hopping process from site i to A(B) and
from A(B) to site j. It is illustrated by the two unit vectors d1 and d2 pointing from
i to A(B) and from A(B) to j in Fig. 4.2.1 (c). This decomposition makes it evident,
that such a hopping process via the A(B) site involves an overlap of wave functions
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4. The p-Shell on the Triangular Lattice

with either same or different parity. Hence its amplitude will be either positive or
negative. The alternating behavior can be described by the directed angle spanned
by the vectors d1 and d2. By defining the differences between the hopping strengths

through the A/B sites as
λ̸σv

3
√
3
, i.e., considering only the hoppings through the preferred

void site, the interaction can be written as [2]:

Ĥ ̸σv
xy =

λ̸σv

3
√
3

∑
⟨ij⟩

νij(c
†
py ,i
cpx,j + h.c.). (4.14)

As a result, an electron traveling from site i to nearest neighbor j experiences a left-
right asymmetry, which is reversed when moving from j to i. This is described by
the orientation of the third component of the Dzyaloshinskii-Moriya vector νij =

(2/
√
3)(d̂1 × d̂2)z = ±1. This parametrization is reminiscent of that for the second-

nearest neighbor SOC interaction in the Kane-Mele model, which depends on whether
the other sublattice appears on the left or the right of the hopping process [18]. Upon
defining νij in Eq. 4.14 via the azimuthal angle φ, the initial real-space definition of
the σv-breaking term in Eqs. 4.10 and 4.11 is retrieved.

The microscopic derivation highlights explicitly the importance of:

• the parity of the involved orbitals, which promotes the direction-dependent al-
ternating amplitude,

• the σv-breaking potential, which renders the hopping strengths through the A/B
sites inequivalent.

4.2.3. Explicit Ansatz

In this section, we will incorporate the Ĥ ̸σv interaction by additionally considering
orbitals on only one of the A/B positions to explicitly break the vertical reflection
symmetry. This may be regarded as an explicit formulation of the σv-breaking po-
tential discussed in the previous section. A low-energy Hamiltonian, i.e., an effective
interaction defined in the subspace of orbitals located on the triangular lattice site can
be obtained via down-folding [55]. The here presented ansatz is in close analogy to the
DFT calculations in Secs. 6.2 and 6.3, where the symmetry breaking in the triangular
monolayers arises from atoms of the underlying substrate.

Here we introduce a s-type orbital on site A= (1/3, 2/3) and allow for a finite inter-
action with the in-plane p-orbitals on the triangular lattice site 1a. The Hamiltonian
reads in the {px, py, s}-basis:

Hps(k) =

(
Hpxy(k) Vpxys(k)

Vspxy(k) Hs(k)

)
. (4.15)
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4.2. σv-Symmetry-Breaking

With the 2×2 Hamiltonian of the in-plane subspace Hpxy(k) as introduced in Sec. 4.1,
the one-dimensional Hamiltonian of the s-subspace Hs(k) = Es, which is given with
respect to the Dirac-point of the in-plane states, and the hybridization between the
two subspaces Vpxys(k). By recalling the Slater-Koster integral for a s-p-overlap (see
also Sec 2.3.1 and Eq. 2.47), the tight-binding interaction Vpxys(k) reads:

Vsx(k) =

√
3

2
V̸σv

(
e

i
3
(k1−k2) − e

i
3
(−2k1−k2)

)
, (4.16)

Vsy(k) =V̸σv

[
−1

2

(
e

i
3
(k1−k2) − e

i
3
(−2k1−k2)

)
+ e

i
3
(k1+2k2)

]
. (4.17)

Here we substitute directly V σ
sp = V̸σv

. By following the lines of [55], an effective

low-energy model Ĥeff for the in-plane Dirac states can obtained via downfolding:

Ĥeff ≈ Ĥpxy − V̂pxys · (Ĥs)
−1 · V̂spxy︸ ︷︷ ︸

Ĥdf

. (4.18)

This approximation considers corrections arising from second order hopping processes
between the triangular in-plane orbitals via the s orbital on the A position, i.e., it is
the explicit description of the microscopic ansatz given in the previous section. The
correction to the in-plane Hamiltonian reads:

Hdf
xx(k) =

3V 2
̸σv

2Es
[1− cos(k1)] , (4.19)

Hdf
yy(k) =

V 2
̸σv

2Es
[3 + cos(k1)− 2 cos(k2)2 cos (k1 + k2)] , (4.20)

Hdf
xy(k) =

√
3V 2

̸σv

2Es
[i{sin(k1) + sin(k2)− sin (k1 + k2)}

+cos(k2)− cos (k1 + k2)] . (4.21)

As Hpxy(k) vanishes at K/K
′, the effective Hamiltonian simplifies to the downfolded

σv-breaking interaction:

H ̸σv(K/K ′) := Heff (K/K ′) = −9

4

V 2
̸σv

Es
(τ0 ∓ τy) . (4.22)

The broken vertical reflection symmetry promotes not only orbital angular momentum
but gives also rise to a rigid band shift by τy and τ0, respectively. As the latter (even
with respect to k) does not reduce the spatial symmetries of the p-shell Hamiltonian1,
it is sufficient to consider only the off-diagonal term proportional to Lz. By comparing
Eqs. 4.13 and 4.22, the ad hoc introduced σv-breaking parameter is given at the valley

momenta by λ̸σv
≈ −9

4

V 2
̸σv

Es
.

1The even term can be absorbed in the pxy matrix element of the p6/mmm lattice Hamiltonian
given in Eq. 4.7.
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4. The p-Shell on the Triangular Lattice

Hence, we have gained a full understanding of the fundamental mechanism of vertical
reflection symmetry breaking in a realistic tight-binding picture. As already stated in
the previous section, it depends on the symmetries of the involved orbitals. It scales
approximately quadratically with the hybridization strength and inversely with the
energy separation of the triangular p and symmetry-breaking orbitals. Therefore, the
interaction strength in real materials is a priori hard to estimate and requires state-
of-the-art ab initio methods. Concrete examples can be found in Chap 6.

4.3. σh-Symmetry Breaking

Here we will derive the horizontal reflection symmetry-breaking term in real and
momentum space. As in the case of Ĥ ̸σv , this term can be similarly derived from
microscopic considerations and downfolding. This interaction is required to have com-
plete invariance under all continuous in-plane symmetry operations, which includes
the discrete in-plane symmetries of p6/mmm. However it violates σh (z ̸7→ − z) and
the C ′

2 and the C ′′
2 rotations around the main axes of the in-plane reflection planes.

This activates the overlap between the in-plane and the pz subspace and the effective
transfer elements are defined in a {px, py, pz}-basis:

H
̸σh
iz (R) = ⟨pi(0)|Ĥ ̸σh|pz(R)⟩ = −λ̸σh

ni, (4.23)

H
̸σh
zi (R) = ⟨pz(0)|Ĥ ̸σh|pi(R)⟩ = +λ̸σh

ni, (4.24)

This is in analogy to Eq. 4.2, where ni reflects the preserved in-plane symmetries
and the alternating sign in Eqs. 4.23 and 4.24 arises from the broken σh-symmetry.
Similarly, the real-space parametrization can be obtained from a Slater-Koster Ansatz,
where the symmetry-breaking is introduced by displacing the pz-orbital. Hence the
transfer integral between the in-plane and out-of-plane orbitals become finite as orbitals
on neighboring sites are no-longer orthogonal to each other. According to Eq. 4.2
the interaction strength is given by λ̸σh

= nz(θ)(V
σ
xy,z − V π

xy,z) with θ ̸= π/2. The
momentum-space formulation of the interaction read in the {px, pz}- and {py, pz}-
subspaces

H ̸σh
xz (k) = λ̸σh

[2 sin(k1)− sin(k2) + sin(k1 + k2)] τy, (4.25)

H ̸σh
yz (k) =

√
3λ̸σh

[sin(k2) + sin(k1 + k2)] τy. (4.26)

The components of the OAM operator are represented by the second Pauli matrix with
L̂x = τy and L̂y = −τy in the {py, pz}- and {px, pz}-subspace, respectively. Hence, we
recognize that both terms promote in-plane OAM-polarization. The Hamiltonian in
the vicinity of Γ reads

Ĥ ̸σh(k) = kx · L̂y − ky · L̂x = krL̂t, (4.27)
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4.3. σh-Symmetry Breaking

where the labels r and t denote radial and tangential components. Hence this interac-
tion promotes a rotating in-plane angular momentum structure around Γ. This OAM-
polarization arises by coupling the radial aligned in-plane orbital to the pz-orbital, as
shown for the Hamiltonian in the {pz, pr, pt}-basis (see also Sec. 4.1) in Fig. 4.3.1 (a,
b). The pr-pz matrix elements in (a) increase with the distance to Γ and vanish at the
BZ-boundary. The coupling between the pt-pz-orbitals in (b) vanishes in the vicinity
of Γ and along the vertical reflection lines, i.e., along momenta where the applied basis
transformation rotates the {px, py} basis into eigenstates of the Hamiltonian. As this
is in general not the case along the BZ-boundary, the rotated Hamiltonian yields finite
off-diagonal elements at these momenta.

(a) (b)
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Figure 4.3.1.: Matrix elements of ℑ[H ̸σv
zr (k)] (a) and ℑ[H ̸σv

zt (k)] (b) in the {pz, pr, pt}-
basis in units of λ̸σh

. The saturation of the color code denotes the ab-
solute strength. (c) Band structure with the tight-binding parameters
of Fig. 4.1.2 and λ̸σh

= 0.1V σ. The color code denotes the tangential
in-plane OAM-polarization, where the saturation is proportional to the
absolute value |L⃗t| and the sign is proportional to Ly. The path connects
momenta from K = (−kx, 0) to K ′ = (kx, 0).

The band structure in the presence of horizontal reflection-symmetry breaking with
strength λ̸σh

= 0.1V σ is shown in Fig. 4.3.1. This lifts the metallic crossing of the
pz-pr bands by promoting in-plane OAM. However, the Dirac crossings at the valley
momenta and the pz-pt along Γ-K are preserved. For a sufficiently large hybridization
gap, as it is the case for the considered tight-binding parameters and for a filling of two
electrons, the system is necessarily semimetallic with Dirac cones at the Fermi-level.
Hence, the topology of the full BZ will be solely dictated by the mass term of the Dirac
fermions as discussed in Chap 5. The valence band is symmetry-equivalent to the one
of the Kane-Mele model, a detailed discussion can be found in Sec. 5.10.

A band-decomposed analysis of the in-plane OAM-polarization in the full BZ is
illustrated in Fig. 4.3.2, which explicitly shows the chiral structure around Γ. As H ̸σh

gaps-out the pz-pt nodal line, the involved bands must be in-plane OAM eigenstates,
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Band: 1

(a)

Band: 2

(b)

Band: 3

(c)

Figure 4.3.2.: (a-c) Vector field plot of the in-plane OAM-polarization with the σh-
breaking strength of λ̸σh

= 0.1V σ. The dashed lines show the position of
the nodal lines in the p6/mmm-symmetric model (see also Fig. 4.1.2).

which is reflected in the maximum OAM-polarization at these momenta. The pt-band
carries instead vanishing OAM around Γ. It possesses a weak OAM polarization in the
vicinity of the valley momenta, except along Γ-K [see also Fig.4.3.1 (c)].

4.4. Atomic Spin-Orbit Coupling

In the last section of this chapter, the atomic SOC interaction will be derived. It is
given by

ĤSOC =λSOCL̂ · Ŝ. (4.28)

with the interaction strength λSOC, the atomic OAM-operator L̂ and the spin-operator
Ŝ. The components of the OAM-operator can be defined in terms of ladder operators

L̂x =
1

2

(
L̂+ + L̂−

)
, L̂y = − i

2

(
L̂+ − L̂−

)
. (4.29)

Hence, it is convenient to express the real spherical harmonics p-basis in spherical
harmonics eigenfunctions |l,m⟩ with angular momentum quantum number m

|px⟩ =
1√
2
(− |1, 1⟩+ |1,−1⟩) , (4.30)

|py⟩ =
i√
2
(|1, 1⟩+ |1,−1⟩) , (4.31)

|pz⟩ = |1, 0⟩ , (4.32)
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4.4. Atomic Spin-Orbit Coupling

where the Condon-Shortley phase convention has been applied [144, 145]. Therefore
the non-zero matrix elements of the OAM-operator read in the real spherical harmonics
basis

⟨py|L̂x|pz⟩ = −i, ⟨px|L̂y|pz⟩ = +i, ⟨px|L̂z|py⟩ = −i,
⟨pz|L̂x|py⟩ = +i, ⟨pz|L̂y|px⟩ = −i, ⟨py|L̂z|px⟩ = +i.

And the SOC Hamiltonian is given in the {px, py, pz}-basis

ĤSOC = λSOCL̂ · Ŝ =
λSOC

2


0 −iσz iσy

iσz 0 −iσx
−iσy iσx 0

 , (4.33)

where the spin operator is expressed by the Pauli matrices Ŝ = 1
2
(σx, σy, σz)

T . The
band structure of the p6/mmm-symmetric model with λSOC = 0.3V σ is shown in
Fig. 4.4.1. It is insulating as the atomic SOC gaps out the Dirac cone at the valley
momenta and the nodal ring formed by the crossing of the out-of-plane and radial
in-plane band. The low-energy features are gapped with respect to their total angular
momentum quantum number J = L+ S.
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E
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Figure 4.4.1.: (a) Band structure of the p6/mmm-symmetric model with λSOC =
0.3V σ. The color code denotes the J-character. (b) Map plot J-character
of the spin-degenerate valence bands with the same color code as in (a).
To improve visualization, the grayish region has been set to white. The
dashed lines indicate the position of the pz-pr-nodal-line in the absence
of SOC.

We close this section by a short discussion on the dimensionality scaling of the atomic
SOC. For an isolated atom in three dimension, the eigenvalue equation for the coupled
spin and OAM

L · S =
1

2

(
J2 − L2 − S2

)
. (4.34)
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yields for a p-shell the four-fold degenerate J = 3/2 states with eigenvalue 11/4 and
the J = 1/2 states with the two-fold degenerate eigenvalue 5/4. This results in an
energy splitting of 3/2λSOC for Eq. 4.33 and is 50% larger compared to the SOC-
gap in the isolated p±-Dirac model given in Eq. 3.2. The tight-binding model with
λSOC = 0.3V σ has a gap of ≈ 1.3λSOC, which is in between the two limits. This can be
explained by the lifted degeneracy of the p-shell via the lattice Hamiltonian H(k). It
splits the pz and the in-plane orbitals in energy at the valley momenta as shown in the
absence of SOC in Fig. 4.1.2 (a). It is interesting to note, that this may be regarded
as a dimensionality scaling of the SOC interaction: as derived in Ref. [146], the total
angular momentum expectation value J2 for a state with angular momentum j in a
d-dimensional space is given by

J2
d = j(j + d− 2), (4.35)

which yields the well-known relation in three dimensions

J2
3 = j(j + 1), (4.36)

and simplifies in two dimensions to

J2
2 = j2. (4.37)

Hence the lattice-induced orbital splitting effectively promotes a dimensional crossover
from three to two dimensions on the level of the SOC-interaction. Therefore, to max-
imize the SOC-opened gaps at the nodal lines and the Dirac points in our model, the
in-plane and the pz subspace should be close in energy at these momenta to converge
against the 3D SOC splitting.

4.5. Summary

In this chapter, we have set the stage for the discussion of the topological phases
on the triangular lattice in Chap. 5. Further it will be highlighted in Chap. 6 that it
provides also an excellent qualitative description for triangular monolayer adsorbates.
The important band structure features are the nodal lines and the Dirac points at
the valley momenta, which are protected by the lattice symmetries and the relative
alignment of the bands. In the absence of inversion symmetry, the pz-pr-type nodal
ring and the Dirac points can be gapped by breaking the horizontal and vertical re-
flection symmetry, respectively. As introduced in Sec. 2.4.3, this promotes chiral wave
functions. On the other hand, an insulating phase can be stabilized in the presence of
atomic SOC, which results in Kramers-degenerate chiral wave functions, as inversion
and time-reversal symmetry are preserved. As discussed in the next chapter, the in-
terplay of symmetry breaking and atomic SOC will determine the topology, which is
encoded in the OAM-polarization at the nodal-line and Dirac momenta.
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5. Symmetry-Breaking Stabilized
Topological Phases on the
Triangular Lattice

After having established a minimal model describing symmetry breaking and SOC in
a p-shell on the triangular lattice, this chapter is devoted to a thorough analysis of its
symmetry-breaking stabilized topological phases. Here we address one of the intrinsic
motivations of this work, i.e., elaborating on the question whether ISB can act as the
desired antagonist to the atomic SOC for stabilizing non-trivial phases. The focus will
be on the wave function symmetry, especially the OAM polarization. The chapter is
structured as follows, first an overview on the topological phases and the main results
will be given, followed by a detailed analysis on the level of the wave function symmetry
in the spirit of topological quantum chemistry [44], including real-space obstruction
and electric polarization [147]. In particular, we will extend the notion of real-space
obstruction to the Z2 non-trivial phases on the triangular lattice. Also a higher-order
topological insulator phase will be discussed in the Z2-trivial regime. The chapter
concludes with a comparison of the triangular indenene-like QSHI to the Kane-Mele
model with identical valence band symmetry.

5.1. Overview

This preliminary section compares the topological phases on the level of their qual-
itative band structure and on their electric polarization. This overview will guide
the reader through the derivation and main discussion of the results in the following
sections.

As it has been derived in Chap. 4, we will consider hereinafter the following Hamil-
tonian of a p-shell on a triangular lattice

Ĥ = ĤT + ĤSOC(λSOC) + Ĥ ̸σh(λ̸σh
) + Ĥ ̸σv(λ̸σv

), (5.1)

where ĤT describes the symmetry allowed nearest-neighbor hoppings in the inversion
symmetric layer group (LG) p6/mmm. The second term is the atomic SOC-interaction
and Ĥ ̸σh and Ĥ ̸σv are the horizontal- and vertical-reflection symmetry-breaking terms,
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phase λSOC λ̸σh
λ̸σv

SOC insulator 0.30 0.1/6 0.04/3

̸σh QSHI 0.30 0.1 0.04/3

̸σv QSHI 0.30 0.1/6 0.04·2
HOTI 0.30/2 0.1 0.04

Table 5.1.1.: Tight-binding parameters in units of t of representatives of the four topo-
logically distinct insulating phases in this section. The Slater-Koster pa-
rameters for HT are in all phases Ez = −0.7, V σ = 0.7, V π = −0.15 and
V π
pz = −0.25.

respectively, which violate both inversion symmetry. Further it should be noted, that
the last three terms scale linearly with their interaction strength λi and their compe-
tition can be discussed on the level of their relative strengths [4]. The chosen tight-
binding parameters for all model calculations are given in Tab. 5.1.1, unless explicitly
specified.

As illustrated in Fig. 5.1.1 this competition gives rise to four (I-IV) topologically
distinct insulating phases for a filling of two electrons. The unit cell symmetry is
schematically depicted in (a) and an exemplary band structure of the corresponding
phase is shown in (b). The topological distinct phases are separated by gap-closing
phase transitions either at the pz-pr-type nodal ring or at the valley Dirac states, as
indicated by the dashed-line arrows for neighboring phases. The color code in Fig. 5.1.1
denotes the J-character and highlights that states of predominantly J = 1/2 and
J = 3/2 are exchanged between valence and conduction bands at the phase transitions.
The four insulating and topologically distinct phases are:

I SOC Insulator

If SOC dominates over both symmetry-breaking terms, the band structure is adia-
batically connected to the p6/mmm-symmetric model. As shown in Sec. 4.4 and in
Fig. 5.1.1 (b), the nodal ring and valley Dirac fermions are gapped by the atomic SOC
and the valence bands can be described in terms of a J-basis. This phase must be
Z2-trivial, as it is related to an atomic limit, which is described by atomic SOC and lo-
cal crystal-field splitting. Hence its occupied bands can be represented by |jz = ±1/2⟩
Wannier functions on the 1a position. This phase is an atomic insulator.

II Indenene-like ̸σh QSHI

This insulating phase is stabilized, if horizontal reflection symmetry-breaking dom-
inates over SOC and vertical reflection-symmetry breaking is small. The layer group
with highest symmetry, which satisfies this condition is p6mm, e.g., as it is the case for
a triangular lattice on a homogeneous substrate as illustrated in Fig. 5.1.1. This phase
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Figure 5.1.1.: (a) Symbolic illustration of the maximal lattice symmetry of the four (I-
IV) topological distinct phases. The red dumbbells and the green dough-
nuts denote pz and p± orbitals, respectively, on a triangular lattice. A
schematically shown substrate breaks σh (II, IV) and σv (III, IV), which
renders the A/B sites inequivalent. (b) Exemplary insulating band struc-
tures of the unit cells shown in (a) with the associated Z2 topological
invariant ν and quadrupole moment Q12. The color code reflects the ⟨J⟩
character and the arrows indicate the relevant band inversion between
neighboring phases. ĤSOC, Ĥ ̸σh and Ĥ ̸σv are non-vanishing in all panels
to lift the Kramers-degeneracy. The labels in panel (I) of (b) refer to
the dominant orbital character of the valence bands. The tight-binding
parameters are given in Tab. 5.1.1. Reprinted and adopted figure in
(a) from Bauernfeind, M. et al. “Design and realization of topological
Dirac fermions on a triangular lattice”. Nature Communications 12,
5396 (2021). CC BY 4.0. Reprinted and adopted figure in (b) with
permission from Eck, P. et al. “Recipe for higher order topology on the
triangular lattice”. Phys. Rev. B 107, 115130 (2023). © 2023 by the
American Physical Society.

has been experimentally realized for a monolayer of indium on SiC (indenene), further
details can be found in Sec. 6.2 and Refs. [2, 3]. As shown in Sec. 4.2, a sufficiently
large σh-breaking pins the Dirac fermions to the Fermi level and the SOC-interaction
gaps them in a Z2-non-trivial fashion (see also Sec.3.1). This is reflected in the angu-
lar momentum polarization of the valence bands: they have common J-character and
identical tangential OAM-polarization at the valleys and at the nodal-line momenta,
respectively. In Sec. 5.9, we will show that the time-reversal symmetry-violating Wan-
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5. Symmetry-Breaking Stabilized Topological Phases on the Triangular Lattice

nier functions of the valence bands localize at the A and the B site. Therefore it may
be regarded as a real-space obstructed QSHI.

III ̸σv QSHI

The ̸σv QSHI is characterized by a strong vertical reflection symmetry-breaking,
intermediate SOC interaction and a weak horizontal reflection symmetry-breaking.
The highest layer group, which can host this phase, is p6m2. As sketched in Fig. 5.1.1,
this can be achieved by a staggered potential or inequivalent orbitals on the A/B
sites. The dominating σv-breaking gaps the valley momenta by promoting out-of-
plane OAM-polarization, while the gap at the nodal-line is opened by SOC. This real-
space obstructed QSHI has time-reversal symmetry-violating Wannier functions of the
valence bands which are either pinned to only the A or only the B site, depending on
the sign of λ̸σv

.

IV HOTI

In layer group p3m1, if both reflection symmetry-breaking terms dominate over SOC
or if SOC is absent, the resulting band structure is necessarily Z2-trivial. The OAM-
polarization is parallel for the valence bands doublets at the valleys and at the nodal
line momenta. However, the Wannier functions of the valence bands are not localizable
on the 1a position, but center at only one of the A/B sites. This promotes a finite
electronic dipole and quadrupole moment, which can stabilize zero-dimensional in-gap
corner states in finite-size geometries. This phase is a real-space obstructed atomic
insulator.

As summarized in Tab. 5.1.2, the interplay of SOC and symmetry-breaking terms
gives rise to two ν = 0 and ν = 1 phases. Phases with identical Z2-index can be
discriminated by their wave function chirality at the valley momenta and the local-
ization of the valence bands. A gap reopening involves necessarily a change in the
Z2-index, neighboring phases have different Z2-indices. In contrast to symmetry pro-
tected QSHIs, either the vertical or the horizontal reflection symmetry must be broken
to stabilize a QSHI-phase. Furthermore, the strongly symmetry broken layer group
can host a HOTI. In the following sections, the here presented results will be derived
and discussed in detail.

5.2. Z2-Topology and Wilson-Loops

Here we discuss the WCC movement, which reveals not only the Z2-invariant, but
provides also insight into the electric polarization and the underlying mechanisms.
Further details can be found in Sec. 2.1 and Refs. [42, 43]. The results are shown
in Fig. 5.2.1, the Wilson-Loop eigenvalues indicate the SOC-dominated (I) and the
strongly symmetry-broken phases (IV) as Z2-trivial. Instead, if only σh- (II) or σv-
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Phase Layer Group ν SOC vs ̸σh SOC vs ̸σv ξ(C3) at K P = (P1, P2) Q12

SOC insulator p6/mmm 0 λSOC ≫ λ̸σh
λSOC ≫ λ̸σv

{e+iπ/3, e−iπ/3} (0, 0) mod 2 0 mod 1

Indenene-like ̸σh QSHI p6mm 1 λSOC ≪ λ̸σh
λSOC ≫ λ̸σv

{e+iπ/3, e−iπ/3} - -

̸σv QSHI p6m2 1 λSOC ≫ λ̸σh
λSOC ≪ λ̸σv

{e±iπ/3,−1} - -

Triangular HOTI p3m1 0 λSOC ≪ λ̸σh
λSOC ≪ λ̸σv

{e±iπ/3,−1} (∓2
3 ,∓2

3) mod 2 2
3 mod 1

Table 5.1.2.: Classification of the four insulating phases in terms real-space symme-
try and topological properties. The indicated layer group is the highest
layer group that satisfies the inequalities in columns four and five. For
completeness, also the C3 rotation eigenvalues and the dipole/quadrupole
moments are given. The electric multipoles in the ν = 1 phases are ill
defined. The corresponding irreps can be found in Tab. 5.4.4. Reprinted
table with permission from Eck, P. et al. “Recipe for higher order topology
on the triangular lattice”. Phys. Rev. B 107, 115130 (2023). © 2023
by the American Physical Society.

breaking (III) exceeds the SOC-interaction, the topological invariant is ν = 1. By
recalling the definition of the electric polarization in the MTP

r =
i

2π

∮
BZ

dk⟨u(k)|∇k|u(k)⟩, (5.2)

the WCCs illustrated in Fig. 5.2.1 can be regarded as the real-space position in units of
the second Bravais vector a2 for a given pumping-momentum along the first reciprocal
vector b1. Hence, for the ν = 0 phases, the integrated value along the pumping axis
relates to the electric polarization1. In detail, the WCCs unveil for the four phases:

I SOC Insulator

The pair of WCCs is centered around the 1a position r ≈ (0, 0) and the small
asymmetry in the WCC flow arises from the weak symmetry-breaking terms. During
the pumping cycle the WCCs belonging to different spin eigenvalues propagate towards
the in-plane coordinates 1/3 and −1/3 ≡ 2/3, but return to their initial position after
the pumping momentum has passed the coordinate of the valley momentum. Hence
we can conclude that the Wannier functions of the valence bands localize at the 1a
position. The SOC-gapped nodal line, which has its main impact on the WCC positions
for pumping momenta close to the Γ, and the SOC-opened Dirac cones (see also vertical
dashed line and description of Fig. 5.2.1) dictate the accumulated Berry phase and the
WCC movement.

1The polarization in Eq. 5.2 is defined by the integral over the full BZ. However, as the considered
systems are time-reversal symmetric, it is sufficient to integrate over half of the BZ.

67

http://dx.doi.org/10.1103/PhysRevB.107.115130
http://dx.doi.org/10.1103/PhysRevB.107.115130


5. Symmetry-Breaking Stabilized Topological Phases on the Triangular Lattice

0 0.5
k(b1)

0.00

0.25

0.50

0.75

1.00

r(
a

2
)

(I)
ν=0

0 0.5
k(b1)

0.00

0.25

0.50

0.75

1.00

x

(II)
ν=1

0 0.5
k(b1)

0.00

0.25

0.50

0.75

1.00

x

(III)
ν=1

0 0.5
k(b1)

0.00

0.25

0.50

0.75

1.00

x

(IV)
ν=0

Figure 5.2.1.: WCC movement in units of the second Bravais vector of the four insulat-
ing models shown in Fig 5.1.1 (b) for pumping along the first reciprocal
lattice vector b1. The blue dots denote the WCCs of the valence bands
while the red line indicates the position of the largest gap. The verti-
cal dashed line highlights the pumping momentum which involves the
integration over the valley momentum K. The horizontal dashed lines
indicate r = {1/3, 2/3}. Based on the method of Soluyanov and Vander-
bilt [42], the number of crossings with an odd number of WCCs indicates
the Z2-invariant. Details can be found in Sec. 2.1 and Refs. [42, 43].This
analysis yields νI = νIV = 0 and νII = νIII = 1.

II Indenene-like ̸σh QSHI

The WCCs flow in a non-trivial fashion from the in-plane coordinate 1/2 to 0 ≡ 1.
The movement differs qualitatively from the one of the SOC insulator for b1 = [0, 1/3],
but are equivalent for larger pumping momenta. This is a consequence of the σh-gapped
nodal-line and the non-trivial WCC flow can be solely assigned to the SOC-opened
Dirac states (see also Sec. 3.1). As time-reversal symmetric WCCs are constructed
here, direct conclusions on the localization of the time-reversal symmetry-breaking
Wannier functions, already mentioned in Sec 5.1, cannot be drawn.

III ̸σv QSHI

The WCC flow has qualitative similarities with the SOC insulator until the pumping
momentum reaches 1/3, where the centers continue to approach each other indicating
a non-trivial Z2-invariant. This phase is characterized by the nodal line being gapped
by SOC and the Dirac points being opened by the σv-breaking term. Although the
valence bands cannot be described with time-reversal symmetric Wannier functions, the
comparison with the ndenene-like ̸σh QSHI unveils a clear difference in the k-dependent
polarization. A first hint towards differently located time-reversal symmetry-breaking
Wannier functions, as will be discussed in Sec. 5.9.

IV HOTI

The trivial WCC flow driven by σh- and σv-breaking is in qualitative agreement with
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the one of the ̸σh QSHI and the one of the ̸σv QSHI for pumping momenta much
smaller 1/3 and larger 1/3, respectively. Instead around the pumping momentum 1/3,
the WCCs remain close to each other in a trivial fashion. In contrast to the SOC
Insulator, the WCC pair centers around the 2/3 ≡ −1/3 position. The calculated
WCCs along a1 (not shown) center instead around 1/3. This suggests that the Wannier
functions of the valence bands are located at B = (1/3, 2/3) which is in support of a
real-space obstruction [66]. This will be thoroughly discussed in Secs. 5.4, 5.5 and 5.7.

In summary, the WCC flows of the four topological distinct phases show clear im-
prints of the gapping mechanisms of the low-energy band structure features: the dom-
inating interactions at the nodal line and the valleys determine the electronic charge
localization. Further, we can formulate a clear statement on the Z2-topology by con-
sidering separately the contributions of the low-energy states of the triangular model.
As it is well-established for the valley Dirac fermions in 2D, a time-reversal symmetry-
breaking mass term gives rise to a total Chern number of C = ±1 [53], while the
spin-diagonal SOC interaction can be regarded as (C↑, C↓) = (±1,∓1) and the associ-
ated Z2-invariant is ν = (C↑ − C↓)/2mod2 = 1 [18, 74]. In a similar fashion, we can
conclude that the nodal ring carries also a non-trivial Berry charge of C = ±1 for a
time-reversal symmetry-breaking mass term and ν = 1 if gapped by SOC. A detailed
discussion of the Berry charge of Dirac cones and nodal rings in 2D can be found in
App. A.4. Hence the topology of the system may be defined as the sum over invariants
of its low-energy building-blocks

ν =
(
νvalley + νnodal-ring

)
mod2, (5.3)

which depends only on the topological invariants of the low-energy Hamiltonians of
the valley momenta and of the pz-pr-type nodal-ring. These can be unambiguously
assigned in the limits of:

νvalley =

{
0, λSOC ≪ λ̸σv

1, λSOC ≫ λ̸σv

, (5.4)

νnodal-ring =

{
0, λSOC ≪ λ̸σh

1, λSOC ≫ λ̸σh

. (5.5)

It should be noted, that the topological invariants νvalley and νnodal-ring are only well-
defined in non-periodic low-energy models. They cannot be calculated from the full
lattice-periodic triangular model, which is solely characterized by the Z2-invariant
associated to the Bloch wave function in the full BZ. Nevertheless, the decomposition
into contributions of the low-energy states provides a clear and comprehensible picture
of the mechanism which defines the Z2-topology: the key interactions are SOC and
symmetry breaking.
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5.3. Orbital Angular Momentum Polarization

To enter the discussion of wave function symmetries, we will start with the investi-
gation of symmetry-breaking and atomic SOC induced chirality of the wave functions.
This is reflected in the local OAM in the full BZ. The analysis will allow us to rephrase
the argument on the Z2-topology given in Eq. 5.3 in OAM-polarization patterns. Fur-
ther, the C3 rotation eigenvalues of valley Dirac fermions will be determined. It is
worth mentioning, that this is the symmetry indicator which determines the real-space
obstruction as will be shown in Sec. 5.5, 5.7, 5.8 and 5.9.
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Figure 5.3.1.: Out-of plane (top row) and tangential in-plane (bottom row) OAM polar-
ization of the four topological phases. Green and orange colors indicate
positive and negative values, respectively. The tangential component of
the in-plane OAM is shown similarly to Fig. 4.3.1.

The generic atomic OAM polarization of the four distinct insulating phases is shown
in Fig 5.3.12. It displays a strong out-of-plane polarization at the valley momenta.
The valence states at K carry total angular momentum jz = lz + sz = {−1/2,+1/2}
if SOC dominates over σv-breaking (I,II) and jz = {−1/2,−3/2} in the strongly re-
flection symmetry-broken phases (III+IV) (see also Sec. 3.1 and Tab. 3.1.1). This
corresponds to the C3 rotation characters of (e+iπ/3, e−iπ/3) and (e−iπ/3,−1). However
determining the Z2-invariant requires also the inspection of the pz-pr-type nodal line.

2The OAM polarization of the valence bands in the full BZ is shown in Fig. A.6.1.

70



5.4. Band Representations and Real-Space Obstruction

Its gapping mechanisms provide in-plane OAM polarization, which is shown in the
bottom row of Fig 5.3.1. The nodal ring is sensitive to the competition between SOC
and horizontal reflection symmetry-breaking. Insulating phases with identical valley
wave functions but different Z2-indices can be indeed discriminated by their in-plane
OAM-polarization.

Hence, equivalently to the total angular momentum J shown in Fig. 5.1.1 (b) [4], the
OAM-polarization of the valence bands at the nodal-line and the valley momenta serves
a clear-cut indicator for the competition of SOC and symmetry-breaking terms, which
defines the Z2-topology of the system. Furthermore, the OAM-induced Bloch wave
function chirality and therefore the bulk topology can be addressed with experiments
sensitive to the initial state. An explicit example of the experimental detection of in-
plane OAM based on circular and linear dichroism ARPES techniques [148–152] will be
given in Sec. 6.1. However, it should be noted, that this wave function symmetry-based
Z2-classification is a result of a preceding analysis of the full electronic band structure.
This has revealed the importance of the nodal-line and its gapping mechanisms. As we
will discuss in the next section, symmetry-indicators at the high-symmetry momenta
are instead insufficient for the Z2-classification, as the topology of the nodal ring is not
captured.

5.4. Band Representations and Real-Space Obstruction

After having derived the Z2-invariants from a brute-force Wilson-Loop calculation
and from OAM-polarization patterns, we will analyze in the following the wave function
symmetries on the level of the irreps. Here we will apply the concept of symmetry
indicators in the light of Z2-topology and real-space obstruction [44–47]. On one hand,
this allows for a direct relation of real-space lattice and k-dependent wave function
symmetries to derive general ground state properties of the insulating phases. On the
other hand, the considered model serves as a perfect template to highlight the strengths
and weaknesses of symmetry indicators in the light of Z2-classification and real-space
obstruction in high- and low-symmetric space groups. This section builds up on the
concepts and lattice symmetry analysis presented in Sec. 2.4.

The building blocks of the model are the p-type local orbitals on the Wyckoff position
1a. Their spinless and double-group representations in the four relevant layer groups
are shown in Tab. 5.4.1. It is important to note, that the pz and the in-plane orbitals
are indistinguishable in terms of their spin-full representations: the coupling of OAM
and spin splits the representation of the in-plane orbitals into two two-dimensional
representations with jz = ±1

2
and jz = ±3

2
. However, also the spin-full pz-orbitals

have total angular momentum jz = ±1
2
. Hence, the orbital character can be exchanged

between the pz- and in-plane-type jz ± 1
2
representations based on the competition of

SOC and the on-site splitting. Further, also their band representations will be identical,
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5. Symmetry-Breaking Stabilized Topological Phases on the Triangular Lattice

with profound implications on the determination of the Z2-topology.

Orbital-basis pz (px, py) jz = (−1
2
, 1
2
) jz = (−3

2
, 3
2
)

p6/mmm A2u E1u E1u E3u

p6mm A1 E1 E1 E3

p6m2 A′′
2 E ′

1u E1 E3

p3m1 A1 E E1
1E2E

Table 5.4.1.: Spinless and double-group representations of the p-shell on Wyckoff po-
sition 1a in hexagonal and trigonal layer groups.

As introduced in Sec. 2.4.1.3, the band representation classification bases on con-
nectivity relations between the high-symmetry points. Therefore only the irreps at
the high symmetry momenta Γ, M and K have to be considered for the triangular
model. For completeness, we will also take into account the paths Γ-M represented by
Σ = (u, 0, 0) and Γ-K denoted by Λ = (u, u, 0). The irreps of the EBRs induced by
the local representations given in Tab. 5.4.1 of the p-shell on the triangular lattice are
shown in Tab. 5.4.2.

Starting with the spinless model, the graph theoretical analysis of the band structures
in the four relevant layer groups is shown in Fig. 5.4.1. It highlights the overall band
symmetries discussed in Chap. 4 (see also Fig. 4.1.1). In the maximum symmetric layer
group p6/mmm, the alternating ordering in energy of the irrep of the in-plane bands
and the one of the pz-band at Γ and K induces accidental band crossings between the
two orbital-subspaces. These are the two nodal-lines discussed in Sec. 4.1.

In the absence of σh (p6mm), the former pr-pz nodal ring is gapped as both bands
have identical irreps at Σ and Λ3. This pins the valley Dirac fermions to the Fermi
level, if Ĥ ̸σh is sufficiently strong. If instead only σv is broken (p3m2), the two-
dimensional representation of the Dirac states splits into two one-dimensional chiral
representations {p+, p−} and the Fermi energy is located close to the pr-pz nodal ring.
The only insulating phase can be stabilized, if both reflection symmetry-breaking terms
are sufficiently strong (p3m1).

Hence the graph-theoretical analysis has unveiled the presence of nodal lines arising
from accidental band crossings and two-fold in-plane degeneracies at Γ and K. By
allowing for horizontal-reflection symmetry breaking and assuming a filling of two
electrons, a semi-metallic band structure with Dirac fermions at the valley momenta
can be stabilized. A symmetry-protected Dirac semi-metal with a Γ-centered nodal
ring can be promoted by vertical-reflection symmetry breaking in LG p6mm.

A closer inspection of the isolated valence band in the p3m1 layer group unveils its

3The same mechanism gaps out the nodal line in conduction along M -K.
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p6/mmm

Orbital-Rep. pz (px, py) jz = ±1/2 jz = ±3/2

Band-Rep. A2u E1u E1u E3u

Γ Γ−
2 (1) Γ−

6 (2) Γ12(2) Γ10(2)

K K3(1) K5(2) K8(2) K7(2)

M M−
2 (1) M−

3 (1) ⊕ M−
4 (1) M6(2) M6(2)

Σ Σ3(1) Σ1(1) ⊕ Σ2(1) Σ5(2) Σ5(2)

Λ Λ3(1) Λ1(1) ⊕ Λ4(1) Λ5(2) Λ5(2)

p6mm

Orbital-Rep. pz (px, py) jz = ±1/2 jz = ±3/2

Band-Rep. A1 E1 E1 E3

Γ Γ1(1) Γ6(2) Γ9(2) Γ7(2)

K K1(1) K3(2) K6(2) K4(1) ⊕ K5(1)

M M1(1) M3(1) ⊕ M4(1) M5(2) M5(2)

Σ Σ1(1) Σ1(1) ⊕ Σ2(1) Σ3(1) ⊕ Σ4(1) Σ3(1) ⊕ Σ4(1)

Λ Λ1(1) Λ1(1) ⊕ Λ2(1) Λ3(1) ⊕ Λ4(1) Λ3(1) ⊕ Λ4(1)

p6m2

Orbital-Rep. pz (px, py) jz = ±1/2 jz = ±3/2

Band-Rep. A′′
2(1) E ′ E2 E3

Γ Γ3(1) Γ5(2) Γ8(2) Γ7(2)

K K2(1) K3(1) ⊕ K5(1) K9(1) ⊕ K12(1) K7(1) ⊕ K8(1)

M M3(1) M1(1) ⊕ M2(1) M5(2) M5(2)

Σ Σ3(1) Σ1(1) ⊕ Σ2(1) Σ5(2) Σ5(2)

Λ Λ2(1) 2 Λ1(1) Λ3(1) ⊕ Λ4(1) Λ3(1) ⊕ Λ4(1)

p3m1

Orbital-Rep. pz (px, py) jz = ±1/2 jz = ±3/2

Band-Rep. A1 E E1
1E2E

Γ Γ1(1) Γ3(2) Γ6(2) Γ4Γ5(2)

K K1(1) K2(1) ⊕ K3(1) K5(1) ⊕ K6(1) 2 K4(1)

M M1(1) M1(1) ⊕ M2(1) M3M4(2) M3M4(2)

Σ Σ1(1) Σ1(1) ⊕ Σ2(1) Σ3(1) ⊕ Σ4(1) Σ3(1) ⊕ Σ4(1)

Λ Λ1(1) 2 Λ1(1) 2 Λ2(1) 2 Λ2(1)

Table 5.4.2.: Elementary band representations and their irreducible representations at
the high symmetry momenta and at Σ = (u, 0, 0) and Λ = (u, u, 0). The
notation follows Ref. [153]. 73
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K5(2)K5(2)

Λ4(1)Λ4(1)

M−
4 (1)M−
4 (1)

Σ3(1)Σ3(1)

Γ−2 (1)Γ−2 (1)
Λ1(1)Λ1(1)

K5(2)K5(2)

Λ3(1)Λ3(1)

M−
2 (1)M−
2 (1)

Σ1(1)Σ1(1)
Λ3(1)Λ3(1)

K3(1)K3(1)
Λ1(1)Λ1(1)

M−
3 (1)M−
3 (1) Σ2(1)Σ2(1) Γ−6 (2)Γ−6 (2)

Λ4(1)Λ4(1)
K3(1)K3(1)

p6/mmm

K3(2)K3(2)

Λ2(1)Λ2(1)

M4(1)M4(1)

Σ1(1)Σ1(1)

Γ1(1)Γ1(1)

Λ1(1)Λ1(1)

K3(2)K3(2)
Λ1(1)Λ1(1)

M1(1)M1(1)
Σ1(1)Σ1(1) Λ1(1)Λ1(1)

K1(1)K1(1)
Λ1(1)Λ1(1)

M3(1)M3(1) Σ2(1)Σ2(1) Γ6(2)Γ6(2)

Λ2(1)Λ2(1) K1(1)K1(1)

p6mm

K5(1)K5(1)
Λ1(1)Λ1(1)

M1(1)M1(1)

Σ3(1)Σ3(1)

Γ3(1)Γ3(1)
Λ1(1)Λ1(1)

K5(1)K5(1)

K3(1)K3(1) Λ2(1)Λ2(1)

M3(1)M3(1)

Σ1(1)Σ1(1)
Λ2(1)Λ2(1)

K3(1)K3(1)

K2(1)K2(1)
Λ1(1)Λ1(1)

M2(1)M2(1) Σ2(1)Σ2(1) Γ5(2)Γ5(2)

Λ1(1)Λ1(1)
K2(1)K2(1)

p6m2

K3(1)K3(1)

Λ1(1)Λ1(1)

M1(1)M1(1)

Σ1(1)Σ1(1)

Γ1(1)Γ1(1)

Λ1(1)Λ1(1)

K3(1)K3(1)

K2(1)K2(1)

Λ1(1)Λ1(1)

M1(1)M1(1)
Σ1(1)Σ1(1) Λ1(1)Λ1(1) K2(1)K2(1)

K1(1)K1(1)
Λ1(1)Λ1(1)

M2(1)M2(1) Σ2(1)Σ2(1) Γ3(2)Γ3(2)

Λ1(1)Λ1(1) K1(1)K1(1)

p3m1

Figure 5.4.1.: Graph-symmetry analysis and irreps of the band structure of the spin-
less model. Red, green and grayish colors denote in-plane-, pz- and
mixed-orbital character, respectively. The dashed black line indicates
the position of the Fermi level for a filling of two electrons.

non-trivial topology in terms of real-space obstruction: as SOC is not considered and
time-reversal symmetry is preserved, the system is Z2-trivial. Therefore, its valence
bands are induced by a local representation, the corresponding irreps belong to an
EBR. However, it is not an EBR of the A1 representation on Wyckoff position 1a
given in Tab. 5.4.2 4. Therefore, its Wannier function cannot be located on the atomic
1a position indicating this phase as an obstructed-atomic limit. It is an EBR induced
by the A1 representation on WP B=1c(A=1b) as given in Tab 5.4.3. The localization
is driven by the global sign of λ̸σv

, which promotes either a K3(p−) or a K2(p+) valence
band irrep. Hence, strong vertical reflection symmetry-breaking localizes not only the
Bloch wave function at the valley momenta on one of the honeycomb sites (see also
Sec. 3.3), it induces in combination with the horizontal reflection symmetry breaking a
real-space obstruction: the valence band Wannier function is displaced from the atomic
site. The real-space obstruction and the consequences to the electric polarization will
be discussed in Secs. 5.5 and 5.7.

4For completeness, the valence band is not an EBR of any local representations on Wyckoff position
1a of layer group p3m1.
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LG p3m1 p6m2

WP 1b 1c 1b 1c

Rep. A1 E1 A1 E1 E2 E2

Γ Γ1(1) Γ6(2) Γ1(1) Γ6(2) Γ8(2) Γ8(2)

K K2(1) K4(1) ⊕ K6(1) K3(1) K4(1) ⊕ K5(1) K8(1) ⊕ K11(1) K7(1) ⊕ K10(1)

M M1(1) M3M4(2) M1(1) M3M4(2) M5(2) M5(2)

Σ Σ1(1) Σ3(1) ⊕ Σ4(1) Σ1(1) Σ3(1) ⊕ Σ4(1) Σ5(2) Σ5(2)

Λ Λ1(1) 2 Λ2(1) Λ1(1) 2 Λ2(1) Λ3(1) ⊕ Λ4(1) Λ3(1) ⊕ Λ4(1)

Table 5.4.3.: Selected EBRs of representations located on the Wyckoff positions A=1b
and B=1c of LGs p3m1 and p6m2.

We will turn now to the discussion of the band representations of the insulating
phases of the spin-full model. As SOC promotes isolated bands of Kramer’s pairs, a
flattened graph-analysis is shown in Fig 5.4.2. In the presence of symmetry-breaking
terms, the spin doublets can split at the non-TRIMs, which is indicated by the direct
sum of two 1D irreps. Further, as discussed earlier, a clear assignment of in-plane and
out-of plane bands as in the spinless case is impossible. Starting with the inversion
symmetric layer group p6/mmm, the bands are Kramers-degenerate in the whole BZ
and the pr-pz-derived valence band is an EBR of the E1u representation on WP 1a
as given in Tab 5.4.2. Hence, the SOC insulator is an atomic limit. In agreement
with the discussion on the spinless model, the p3m1-symmetric graph-analysis with
jz = (−1

2
,−3

2
) states in valence at K indicates the lowest band as an EBR of the E1

representation on WP 1b, which confirms the real-space obstruction.

The band representation analysis can not only unveil the position of the Wannier
centers, but allows also the determination of the Z2-invariant. This bases on the cri-
terion whether the valence band is an EBR, i.e., if it has a Wannier representation at
all [44–47]. However, in low-symmetric systems, this can result in false-negatives (false-
trivials) as we will discuss for p6mm: it can host Z2-non-trivial valence bands, if
horizontal reflection symmetry-breaking dominates over SOC. The topological phase
transition between the SOC insulator and the ̸σh QSHI involves the exchange of Σ4(1)
and Λ4(1) irreps at the pz-pr-type nodal line. However, the irreps at the high-symmetry
momenta (see Fig. 5.4.2) Γ, M and K, relevant for the band representation classifi-
cation, are identical in both topological phases. For weak ̸σh-breaking, the bands are
adiabatically connected to the p6/mmm-symmetric phase, i.e., the ν = 0 SOC insula-
tor with a valence band E1 EBR on WP 1a (see Tab. 5.4.2). Therefore, the symmetry
analysis of the bands of the ̸σh QSHI results in a false-trivial Z2-classification.

In p6m2, the valence bands of the ̸σv QSHI (shown in Fig. 5.4.2) are not identical to
an EBR of WP 1a (c.f. Tab. 5.4.2). The bands are also not induced by EBRs located
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K8(2)K8(2)

Λ5(2)Λ5(2)

M 5(2)M 5(2)

Σ5(2)Σ5(2)

Γ12(2)Γ12(2)

Λ5(2)Λ5(2)

K8(2)K8(2)

K7(2)K7(2)

Λ5(2)Λ5(2)

M 5(2)M 5(2)

Σ5(2)Σ5(2)

Γ12(2)Γ12(2)

Λ5(2)Λ5(2)

K7(2)K7(2)

K8(2)K8(2)

Λ5(2)Λ5(2)

M 5(2)M 5(2)

Σ5(2)Σ5(2)

Γ10(2)Γ10(2)

Λ5(2)Λ5(2)

K8(2)K8(2)

p6/mmm

K8(1)⊕K9(1)K8(1)⊕K9(1)

Λ3(1)⊕Λ4(1)Λ3(1)⊕Λ4(1)

M 5(2)M 5(2)

Σ5(2)Σ5(2)

Γ8(2)Γ8(2)

Λ3(1)⊕Λ4(1)Λ3(1)⊕Λ4(1)

K8(1)⊕K9(1)K8(1)⊕K9(1)

K7(1)⊕K12(1)K7(1)⊕K12(1)

Λ3(1)⊕Λ4(1)Λ3(1)⊕Λ4(1)

M 5(2)M 5(2)

Σ5(2)Σ5(2)

Γ8(2)Γ8(2)

Λ3(1)⊕Λ4(1)Λ3(1)⊕Λ4(1)

K7(1)⊕K12(1)K7(1)⊕K12(1)

K9(1)⊕K12(1)K9(1)⊕K12(1)

Λ3(1)⊕Λ4(1)Λ3(1)⊕Λ4(1)

M 5(2)M 5(2)

Σ5(2)Σ5(2)

Γ7(2)Γ7(2)

Λ3(1)⊕Λ4(1)Λ3(1)⊕Λ4(1)

K9(1)⊕K12(1)K9(1)⊕K12(1)

p6m2

Figure 5.4.2.: Flattened graph-symmetry analysis and irreps of the band structure of
the spin-full model. Red, green and grayish colors denote predominantly
in-plane-, pz- and mixed-orbital character, respectively. However, an
unambiguous orbital assignment is impossible, as SOC mixes the in-
plane and out-of plane orbital degrees of freedom (see text). The dashed
black line indicates the position of the Fermi level for a filling of two
electrons. The graphs for layer groups p6m2 and p3m1 illustrate the
model where Ĥ ̸σv dominates over ĤSOC with jz = (−1

2
,−3

2
) states in

valence at K. The orange arrows indicate the exchange of identical
irreps at the gap-reopening at the pz-pr-type nodal ring driven by the
competition of ĤSOC and Ĥ ̸σh .

on the A/B sublattice sites at WPs 1b and 1c which have the desired Γ8 irrep (c.f.
Tab. 5.4.3). For this layer group, the graph-analysis indicates correctly the non-trivial
Z2-invariant. If Ĥ

SOC dominates over Ĥ λ̸σv at the valley momenta, the valence bands
with jz = (−1

2
, 1
2
) transform as the irreps K9 and K12 and the lowest band is an EBR

of E2 on WP 1a, the system is in the SOC insulator phase.

The aforementioned results apply also to LG p3m1, where all four topologically
distinct phases can be realized, depending on the competition of SOC and symmetry-
breaking. Owed to the insensitivity of the irreps to the gapping at the nodal ring, the
Z2-invariant cannot be determined. However, the real-space localization in an a priori
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Phase Layer Group ν SOC vs ̸σh SOC vs ̸σv irreps Γ irreps K P = (P1, P2) Q12

SOC insulator p6/mmm 0 λSOC ≫ λ̸σh
λSOC ≫ λ̸σv

Γ12(2) K8(2) (0, 0) mod 2 0 mod 1

̸σh QSHI p6mm 1 λSOC ≪ λ̸σh
λSOC ≫ λ̸σv

Γ9(2) K6(2) - -

̸σv QSHI p6m2 1 λSOC ≫ λ̸σh
λSOC ≪ λ̸σv

Γ8(2) K8(1)⊕K9(1) - -

HOTI p3m1 0 λSOC ≪ λ̸σh
λSOC ≪ λ̸σv

Γ6(2) K4(1)⊕K5(1) (−2
3 ,−2

3) mod 2 2
3 mod 1

Table 5.4.4.: Classification of the four insulating phases in terms of their valence band
irreps and topological properties. The indicated layer group is the highest
symmetry group that satisfies the inequalities in columns four and five.
The last two columns denote the electronic dipole and quadrupole mo-
ment, which is only well-defined for ν = 0 phases. The corresponding C3

eigenvalues can be found in Tab. 5.1.2. Reprinted table has been taken
and adopted from supplemental material with permission from Eck, P.
et al. “Recipe for higher order topology on the triangular lattice”. Phys.
Rev. B 107, 115130 (2023). © 2023 by the American Physical Society.

identified ν = 0 insulator can be classified. This is summarized in Tab. 5.4.4, which
relates the irreps to the topological phases and the electronic polarization. This will
be the topic of the next section.

To conclude, the thorough graph theoretical analysis has unveiled the manifestation
of real-space symmetries in the electronic band structure properties. This includes sym-
metry driven degeneracies and band splittings as well as real-space obstruction. How-
ever, symmetry indicators fail to predict the Z2-topology flawlessly in non-inversion
symmetric layer groups, if gap-reopenings occur at non-high-symmetry momenta. This
makes the identification of the indenene-like ̸σh-QSHI in high-throughput studies chal-
lenging and the Wilson-loop calculation becomes unavoidable (see also Sec. 5.2).

5.5. Symmetry-Breaking Driven Electric Polarization

The analysis presented in the preceding sections has unveiled the presence of two
Z2-trivial insulating phases, which are topologically distinct on the level of the lo-
calization of the occupied bands. Here we will extend this discussion to the electric
polarization arising from the displacement of the electron’s charge from the lattice
positions by a symmetry indicator analysis. As will be derived in the following, reflec-
tion symmetry breaking is the fundamental driving force of the electric polarization.
The C3-symmetric trigonal Bravais lattice symmetry will guarantee for well-defined
quantized electric momenta.
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Before turning to the symmetry indicator analysis, let us briefly recall the impli-
cations of vertical-reflection symmetry breaking on the Wyckoff positions and on the
valley momenta as discussed in Sec. 2.4.2.2: the layer group is C6-symmetric in the
presence of both in-plane reflections σv and σd. Further, the only Wyckoff position
with multiplicity one is 1a. Hence, an isolated Z2-trivial spinless valence band of any
2D hexagonal system must be localized on 1a. However, upon releasing σv-reflection
symmetry, which maps the A and B positions onto each other and protects their mul-
tiplicity of two, A and B become inequivalent Wyckoff positions with multiplicity one.
As a result, the Wannier center of an isolated band can be either centered at 1a, A
or B. In addition, the point group of the valley momenta is rendered abelian, former
2D representations split-up into chiral 1D representations. They must be irreps of an
EBR centered on the three Wyckoff positions with multiplicity one. Therefore, there
is a direct relation between reflection symmetry breaking, momentum-dependent wave
function chirality and real-space localization.

This notion of real-space lattice and momentum-space wave function symmetry anal-
ysis induced charge localization has lead to the concept of symmetry indicators. As
shown by Benalcazar and others [147, 154–158], the wave function symmetries of oc-
cupied Z2-trivial bands at the high-symmetry momenta in Cn-symmetric systems are
sufficient to determine the electric bulk multipoles. In general, the dipole moment
induced by the displacement of the electron’s charge from the atomic lattice

P = piai, (5.6)

can be expressed in terms of the Bravais vectors ai and must obey the Cn-symmetry

Ci
nP = P+R. (5.7)

In particular this is the only defining symmetry relation of Wyckoff positions with mul-
tiplicity one in Cn-symmetric systems. For trigonal systems this relates to the afore-
mentioned 1a, A and B positions and the polarization forms hence a Z3-index [147].
Further it can be shown, that this invariant is obtained from symmetry characters of
the occupied bands at high symmetry momenta by counting the appearance of the
rotational eigenvalues. The eigenvalues of spinless systems (Altland-Zirnbauer class
AI [23]) are defined as [147, 158]

Π(n)
p = e2πi(p−1)/n, for p = 1, 2, ...n. (5.8)

For time-reversal symmetric spin-full systems (class AII) they are given by

Π(n)
p = e2πi(p−1)/neπi/n, for p = 1, 2, ...n. (5.9)

Integer topological rotational invariants for C3-symmetric systems can be defined as
the difference in the total number of the rotational eigenvalue Π

(n)
p at K = (1/3, 1/3)5

5Caution, for consistency in this thesis, the Bravais and reciprocal lattice vector convention given
in Sec. 4.1 is used. Most of the references use instead the following convention: a1 = (1, 0),
a2 = (1/2,

√
3/2) and b1 = 2π(1,−1/

√
3), b2 = (0, 4π/

√
3) and consider K=(2/3, 1/3), which

corresponds to K ′ in the here presented discussion.
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and Γ [
Kn
p

]
= #Kn

p −#Γnp . (5.10)

The components of the electric polarization for the atomic lattice site on 1a read for
class AI [4, 147]

p1 = −p2 =
2e

3

(
[K3

3 ]− [K3
2 ]
)
mod 2e =

2e

3

(
[#e−i2π/3]− [#ei2π/3]

)
mod 2e, (5.11)

and for class AII

p1 = −p2 =
2e

3

(
[K3

3 ]− [K3
1 ]
)
mod 2e =

2e

3

(
[#e−iπ/3]− [#eiπ/3]

)
mod 2e. (5.12)

Applying this criterion to the SOC insulator phase with jz = (−1/2, 1/2) valence states
at Γ and K [see again Tabs. 5.1.2 and 5.4.4 and Figs. 5.1.1 (b) and 5.3.1] yields P = 0.
For the HOTI, the total angular momentum at K is instead jz = (−1/2,−3/2) and the
bulk polarization is P = 2e(1/3, 2/3). This is consistent with our analysis in Sec. 5.4,
where the valence band localizes at B= (2/3, 1/3), as the dipole moment is the vector
pointing from the displaced electronic charge to the atomic cation (d = −B ≡ A).
Of course, this holds also in the spinless case, the valence bands with m = −1 at K
localize at B and induce P = 2e(1/3, 2/3).

Further the in-plane quadrupole moment Q12 of an isolated band can be calculated
from symmetry indicators, which is given for class AI by [158]

Q12 =
2e

3
[K3

1 ] mod e, (5.13)

and for class AII by

Q12 =
2e

3
[K3

2 ] mod e. (5.14)

Hence the HOTI phase has quadrupole moment of Q12 = 2
3
e for p±-type valence

bands at K. It should be noted, that the terminology quadrupole moment refers to
the second moment of the electric charge density expressed in terms of the Bravais
vectors. However in C3-symmetric systems, this is reflected by a hexapole pattern
with alternating charge density on the A and B sites [see for instance Fig. 3.2.1 (a)].
Further a finite dipole moment violates necessarily C2- and σv-symmetry, hence the
dipole moment must vanish in C6-symmetric geometries [147].

To conclude, the symmetry analysis of the valence bands of the Z2-trivial phases
has unveiled their fundamental topological distinction. It is encoded in the real-space
localization, which can promote quantized electric multipoles. We will discuss the bulk-
boundary correspondence promoted surface states for the minimal model in Secs. 5.6
and 5.7 and for an ab initio simulated triangular adsorbate in Sec. 6.3. As introduced
in Sec 3.3 and shown here, the relevant key ingredients for real-space obstruction on
the triangular lattice are vertical reflection symmetry breaking, which induces chiral
wave functions at the valley momenta.
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5.6. Finite-Size Geometries and Edge States

We will turn now to the analysis of 1D finite-size geometries, where the ν = 1-phases
are expected to host spin-momentum-locked helical edge states. Further, we will also
discuss the impact of the bulk polarization for the Z2-trivial phases.

Fig. 5.6.1 (a) shows the two canonical edge-terminations and the conventional unit-
cell of the triangular lattice. The sites at the edges are arranged in a flat-geometry for
terminations parallel to a primitive lattice vector. Thus we dub this termination the
flat edge, which has the bulk mirror reflection plane σd normal to the edge. However,
if the edge is defined by a vector through the diagonal of the unit cell, the edge is
terminated by two different triangular lattice sites which gives rise to a zigzag edge. As
illustrated by the orange and green empty circles on the A and B voids, respectively,
H ̸σv renders opposed edges of the flat termination inequivalent. This is different for
the zigzag edge, where the A and B sites contribute equally. Opposed zigzag edges can
be mapped onto each other by a σd mirror or a glide-mirror operation, depending on
the slab thickness. In addition, the red arrow in Fig. 5.6.1 (a) illustrates the electronic
charge displacement arising from an obstructed Wannier center on the B site, which
promotes an electric dipole moment normal to the flat and parallel to the zigzag edge.
Further, the sketched A/B bipartite honeycomb lattice denotes the edge orientation of
Kane-Mele-type systems. The honeycomb zigzag edge corresponds to the flat triangular
edge, while the arm-chair termination has the same Bravais lattice orientation as the
triangular zigzag edge.

Focusing on momentum-space, the reduced dimensionality of 1D slab geometries im-
plies the projection of the 2D high-symmetry points of the bulk onto the corresponding
1D BZ. This is shown in Fig. 5.6.1 (b) for the primitive, conventional, flat-edge and
zigzag-edge geometry. For the flat edge, the valley momenta are projected onto 2/3 of
Γ-X and M is projected onto X and Γ. Whereas for the zigzag edge, K and M are
projected onto Γ and Y , respectively. The presence of σd [see also dashed green lines in
Fig. 2.4.2 (b)] guarantees, that pairs of mirror symmetry-protected bulk momenta are
backfolded onto the same momenta of the BZ of the zigzag edge, hence all bands must
come in two-fold degenerate bands. For the flat edge, this holds if σv is preserved.

The band structures of representatives of the four insulating phases are shown in
Fig. 5.6.2 for the flat- and zigzag-termination in the top and bottom row, respectively.
The bands of the flat geometry are non-degenerate, owed to a small H ̸σv -interaction,
while the zigzag edge has σd-protected two-fold degenerate bands. Both canonical
terminations of the SOC insulator (I) have insulating edges. This is different for
the real-space obstructed HOTI (IV), where the bulk dipole moment [see red arrow
in Fig 5.6.2 (a)] is parallel to the zigzag and normal to the flat edge. The former
gives rise to insulating edge states, while the latter favors metallic edges. The bulk
dipole moment arising from the valence band WCC localized at the B-site promotes
negative charge at the B- and positive charge at the A-terminated edge, which is
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(a) (b)

Figure 5.6.1.: (a) Conventional unit cell (gray dashed lines) and fundamental edge ge-
ometries of the triangular lattice. The empty orange and green circles
represent the A and B sites, respectively, which render opposed flat edges
inequivalent. The red arrow indicates the displacement vector of the elec-
tronic charge for the real-space obstructed phase with the valence band
Wannier center on the B site. (b) 2D hexagonal and conventional (gray
dashed lines) BZ and back-folding of the high-symmetry momenta onto
the 1D BZs of the slab-geometries. Reprinted and adopted figures with
permission from Eck, P. et al. “Real-space obstruction in quantum spin
Hall insulators”. Physical Review B 106, 195143 (2022). © 2022 by the
American Physical Society.

reflected in the B-type valence edge-states. However, the degenerate (quadratic, in
the limit of vanishing SOC) touching point at Γ arising from spatially separated edge
states is not protected by a non-trivial Z2-invariant and can be gapped by a staggered
potential discriminating A/B terminations. This is indeed the case for realistic edge
potentials and will be discussed in Secs. 6.2.5 and 6.3.3. Instead the ν = 1 phases
possess topologically protected helical edge states on both fundamental terminations.
For the zigzag edge, the band structures of the ̸σh QSHI (II) and ̸σv QSHI (III) are
qualitatively identical with four-fold-degenerate edge-states at Γ. The flat termination
promotes instead only for the ̸σh QSHI an edge state-crossing at Γ, the ̸σv QSHI has
two linear crossings in the proximity of the projected valley momenta. Hence, both
non-trivial phases posses qualitatively different surface states for the flat termination
compared to the Kane-Mele model (see Fig. A.1.2). The corresponding zigzag edge
states of the honeycomb traverse the Fermi level at the BZ boundary.

For completeness, the spin and OAM polarization of the flat and the zigzag termi-
nations are shown in the appendix in Figs. A.7.1 and A.7.2. The interplay of OAM
induced by symmetry breaking and SOC results in spin and OAM canting of the edge
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Figure 5.6.2.: Band structures and edge localization of finite size calculations of repre-
sentatives of the phases illustrated in Fig. 5.1.1. The flat and the zigzag
termination is shown in the top and bottom row, respectively, for ribbons
of size of 30 conventional UCs. The color code denotes the edge local-
ization with orange and green colors for the A- and B-terminated edges,
respectively. The dashed red-blue bands show the alternating projection
onto the Kramers-degenerate states of the zigzag geometry. To enlarge
the bulk gap, the scaling factors of HSOC, H ̸σh and H ̸σv have been chosen
twice as large as in Tab. 5.1.1.

states with a total angular momentum perpendicular to the direction of propagation.
For the flat edge, the total angular momentum vector is located in the yz-plane, while
the symmetries of the zigzag edge confine the polarization to be along x.

5.7. Symmetry-Breaking stabilized HOTI phase

The analysis in the two preceding sections has highlighted the topological distinction
of the tow Z2-trivial insulating phases. They can be discriminated on the level of the
bulk polarization. Further, their edge states are insulating or can be gapped by intro-
ducing an appropriate edge potential. Here we will show for layer group p3m1, that a
strong vertical and horizontal reflection symmetry breaking can stabilize a second-order
topological insulator: a system with insulating 1D edges and metallic, i.e., fractionally-
filled, 0D in-gap corner states. However, a finite bulk dipole moment can promote edge
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charge, which has profound implications, as will be discussed below. These results have
been obtained in collaboration with Yuan Fang6 and Jennifer Cano7. This led to a
design principle for a HOTI phase in triangular adsorbates which will be presented in
Sec. 6.3 and has been published in Ref. [4].

An elegant approach towards higher-order topology in solid state Physics is the idea
of quantized electric multipole insulators : their bulk polarization stabilizes topologically
protected corner and hinge states, as introduced by Benalcazar and coworkers [65, 66].
The total corner charge is called filling anomaly η, i.e., the charge difference of the
finite system from being insulating [4, 147, 154, 156]. This may be regarded as the
electron filling of the corner states. For a Cn symmetric 0D flake it obeys

η = (#ions−#electrons) mod n. (5.15)

It is a consequence of the bulk quadrupole moment Q12, which is promoted by the
real-space obstruction

η = Q12 ·#sectors. (5.16)

Here we imagine to divide the finite size slab into sectors instead of corners, which
accounts for a subtle but important detail [147, 159]: generic 0D geometries can be cre-
ated from Cn-symmetric bulk unit cells with finite bulk quadrupole moment. However
corner charges are only well-defined in sectors which comply with the bulk rotational
symmetry. To give a concrete example, for a C3-symmetric HOTI phase, each corner
of a triangular flake forms a sector. Instead for a hexagonal flake, the C3 symmetry of
the bulk Hamiltonian reduces the symmetry of the flake to C3. Hence, it can only be
divided in three equivalent sectors and each sector must comprise two corners.

In the following, we will discuss the corner charge in the aforementioned flake ge-
ometries. Figure 5.7.1 shows the spectrum and the localization of the corner states of
the HOTI with zigzag termination. In the triangular geometry [panel (a)], the in-gap
states are six-fold degenerate with a total filling of two electrons. The filling anon-
maly η = 2 is in line with Q12 = 2

3
e obtained in previous section. The exponential

localization of the low-energy corner states is shown in Fig. 5.7.2 (a). The hexagonal
flake in (b) exhibits also six-fold degenerate corner states with a total filling of two
electrons. These states localize on every second corner, which reflects the C3-symmetry
of the bulk Hamiltonian. As shown in panel (b), the corners are constituted by two
triangular sites which give rise to a flat-edge geometry [see again Fig 5.6.1 (a)]. Hence
the corners are either terminated by an A or B triangle [see also Fig. 5.6.1 (a)]. These
systems show all characteristics associated to the bulk-boundary correspondence of a
second-order topological insulator: 0D metallic in-gap corner states located in a global
gap of the 2D bulk and 1D edges.

6Stonybrook university, New York, USA.
7Stonybrook university, New York, USA and Center for Computational Quantum Physics, Flatiron
Institute, New York, USA.
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Figure 5.7.1.: Spectrum and charge localization of zig-zag terminated triangular (a)
and hexagonal (b) flakes of the HOTI phase with an edge length of
N -conventional unit cells. Black empty and filled circles indicate con-
duction and valence states, respectively. The half-filled red circles denote
the six-fold degenerate metallic corner states with a total occupation of
two electrons at neutral filling. The inset shows the real-space charge
localization of the corner states shown by the size of the red points. To
increase the bulk gap, λ̸σh

has been chosen twice as large as in Tab. 5.1.1.
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Figure 5.7.2.: Edge localization of the low-energy states of the HOTI (a) and SOC
insulator (b) of the red marked states in Figs. 5.7.1 (a) and 5.7.3 (a),
respectively. The blue and orange plots illustrate the squared wave func-
tion amplitude on the outer and inner zigzag edge site on logarithmic
scale .
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Figure 5.7.3.: Spectrum and charge localization of zig-zag terminated triangular (a)
and flat terminated hexagonal (b) flakes of the SOC insulator with an
edge length of N -conventional unit cells. Empty and filled circles denote
conduction and valence states, respectively, at neutral filling. The inset
shows the real-space charge localization of the red-marked valence states.

For comparison, Fig. 5.7.3 illustrates the spectrum and low-energy charge localization
in the Z2-trivial SOC insulator phase for a triangular flake with zigzag- (a) and a
hexagonal flake with flat-termination (b). In both cases, the spectrum is insulating.
The first six valence states show a weak localization at the triangular corners and at
every second hexagon edge, a consequence of a small Ĥ ̸σv -interaction. However, the
low-energy states are not exponentially localized at the triangular corners. Instead
they favor the inner edge site and possess sizable weights along the edges as shown in
Fig. 5.7.2 (b). This and the insulating slab geometries are in perfect agreement with
the expected behavior for a trivial atomic limit, as it is the case for the SOC insulator.

We will turn now to the HOTI phase with flat-edge termination. As discussed in
Secs 5.5 and 5.6, the bulk dipole moment normal to the edges favors metallic surface
states. As the edge states are not protected by a non-trivial Z2-index they can be
gapped by a local potential with opposite sign at the A and B termination. Starting
with a triangular flake, as shown in Fig. 5.7.4, all three edges are either A- or B-type.
The total edge charge is given by the sum over the edge charge. It is related the dipole
moment normal to the edge pnormal = P · ênormal and reads for a triangular flake with
edge length of N conventional unit cells [91, 93, 147, 155, 156, 158]:

Qedge = pnormal ·#edge unit cells (5.17)

= sgn(pnormal) ·
2e

3
· 3(N − 1) (5.18)

= sgn(pnormal) · 2(N − 1)e. (5.19)

Fractionally in-gap states can be stabilized by accounting for the edge charge as shown
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in Fig. 5.7.4 (a). In this calculation, the system is doped by −Qedge and an edge
potential of 9λ̸σv

· sgn(pnormal) is applied. This results in a filling anomaly of η = 2
for the edge-charge corrected system. An intrinsic compensation of the edge charge
is accomplished in hexagonal geometries, as illustrated in panel (b), where opposed
edges have a complementary termination. Further, such a flake has C3v symmetry with
three vertical reflection planes normal to the flat edges (see also symmetry discussion
in Sec. 5.6). The mirror operation maps neighboring corners onto each other resulting
in a twelve-fold degenerate corner state with η = 2. Again, an edge potential8 of
9λ̸σv

· sgn(pnormal) has been applied to open a gap at the energies of the corner states.
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Figure 5.7.4.: Spectrum and charge localization of flat-terminated triangular (a) and
hexagonal (b) flakes of the HOTI phase with an edge length of N -
conventional unit cells. Black empty and filled circles indicate conduc-
tion and valence states, respectively. The half-filled red circles denote
the six- (a) and twelve-fold (b) degenerate metallic corner states with a
total occupation of two and four electrons, respectively. For the trian-
gular flake, the total occupation has been corrected by the edge charge,
the hexagonal flake has neutral filling. The inset shows the real-space
charge localization of the corner states. To increase the bulk gap, λ̸σh

has been chosen twice as large as in Tab. 5.1.1. A local edge potential of
size 9λ̸σv

has been applied for both geometries to remove the edge states
from the corner state energies.

To conclude, the analysis of the finite size geometries unveiled indeed the presence of
0D in-gap states in the real-space obstructed insulating phase of our model. It should
be recalled that both mirror symmetry-breaking terms dominate over SOC in the HOTI
phase, which necessarily requires layer group p3m1. In agreement with the condition
of the filling anomaly in Eq. 5.16, all triangular and hexagonal flakes have η = 2 with

8The alternating A/B termination of neighboring edges is taken into account by sgn(pnormal). The
edge charge of both terminations follows the relation pnormal(A) = −pnormal(B).
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a fractional corner charge of 2/3e per sector. Considering also the preceding analysis
in Secs. 5.4 and 5.5, this phase represents a second-order topological insulator, whose
non-trivial topology is encoded in the electric polarization. Importantly, the energy
region of the topologically promoted 0D corner states may be contaminated by edge
states arising from a finite dipole moment. Nevertheless, fractionally corner states can
be stabilized by choosing uncharged edge geometries or by edge charge compensation.
Further it should be noted, that fractionally filled 0D in-gap corner states are less
protected than metallic boundary states of QSHI, which traverse through the bulk gap
energies. Therefore they are robust against doping as long as the chemical potential
remains in the bulk gap. However, this “weakness” is intrinsic to the dimensionality
and the symmetry-promoted fractional-filled 0D corner states in 2D.

5.8. OAM-Driven Real-Space Obstruction

After having discussed the symmetry-breaking driven electric polarization based on
symmetry indicators, this section is devoted to motivate the real-space obstruction
from the wave function chirality in the whole BZ. It will serve as a preparatory work
to extend the concept of real-space obstruction to the QSHI phases.

For non-obstructed atomic insulators, there must exist a local basis τi centered at
the atomic sites, which has a positive definite overlap matrix Sij(k) in the whole BZ

Sij(k) = ⟨τi|P̂(k)|τj⟩ , (5.20)

with the Bloch wave function of the occupied bands

P̂(k) =
N∑
n

|Ψnk⟩ ⟨Ψnk| . (5.21)

We will argue for the triangular p-shell model, that symmetry-breaking promoted local
OAM results in vanishing overlap for projection basis sets on the triangular lattice site.
It can be regarded as the microscopic driving force of the real-space obstruction.

The OAM polarization of the valence band of the spinless HOTI model is illustrated
in Fig. 5.8.1 (a) (see also Fig. 5.3.1) It reveals a counter-clock-wise winding of its in-
plane component around the Γ-point with purely out-of plane polarization at the valley
momenta. Hence, one may be tempted to argue that the OAM vector visits all positions
of the unit sphere and carries a non-trivial Pontryagin index9, as it has been observed
for non-centrosymmetric Weyl semimetals [150]. In such a case, it would be obvious,
that there cannot exist a single local orbital on the atomic site with non-vanishing

9This can be excluded from topological arguments and the presence of time-reversal symmetry.
A non-trivial winding number would indicate the absence of a Wannier representation at all,
indicating a spinless Chern insulator.
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(a) (b) (c)

Figure 5.8.1.: OAM polarization of the valence band in the HOTI phase. (a) in-plane
and out-of plane polarization shown by a vector field and color plot,
respectively, where green (orange) denotes positive (negative) values.
(b) Curvature of the OAM-field (see also Eq. 5.22), where blue (red)
indicate positive (negative) values. (c) Polar plot of the OAM-field,
where the distance to the origin reflects the spherical polar angle in the
interval [0, π]. The color code visualizes the radial component, bright
colors indicate a strong OAM polarization, i.e., OAM eigenstates.

overlaps with all L-orientations. To investigate the OAM winding, we calculate the
Pontryagin index by integrating over the curvature

S =
1

4π

∫
BZ

n ·
[
∂n

∂x
× ∂n

∂y

]
dxdy, (5.22)

where n is the normalized OAM field and the integral is taken over the full BZ. The
curvature of the OAM is shown in Fig. 5.8.1 (b) with large values around the val-
ley momenta. However, time-reversal symmetry enforces antisymmetry with respect
to k 7→ −k and the Pontryagin index is S = 0. The trivial winding can be further
understood from the polar plot of the OAM vector field shown in Fig. 5.8.1 (c). It
unveils three important qualitative features: (1) the vector visits only half of the unit
sphere, (2) has maximum polarization, i.e., it is an OAM eigenstate at the two poles
and along a line wiggling around the equator and (3) a vanishing polarization at other
momenta. Combining the latter two, namely the presence of a full l = 1 OAM eigenba-
sis set m = {−1, 0, 1} with maximum in-plane and out-of plane polarization is a clear
indication for the real-space obstruction. Any local orbital choice cannot have finite
overlaps with all acquired OAM eigenstates of the Bloch wave function.

To extend this analysis to spinfull models, we will consider in the following the OAM
summed over the two valence bands as shown in Fig. 5.8.210. The OAM of the SOC
insulator in panel (a) possesses only a weak polarization, as HSOC promotes degenerate

10A map plot in the full BZ of the OAM polarization of the valence bands can be found in Fig. A.6.1.
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(a) (b) (c)

Figure 5.8.2.: Polar plot of the total OAM-field of the valence bands of the SOC in-
sulator (a), the ̸σh QSHI (b) and the ̸σv QSHI (c). The distance to
the origin denotes the spherical polar angle in the interval [0, π] and the
color code visualizes the radial component, bright colors indicate a strong
OAM polarization, i.e., OAM eigenstates. Only the ̸σh QSHI and the
̸σv QSHI posses OAM eigenstates with out-of and in-plane orientation,
respectively.

eigenstates with anti-parallel OAM polarization. This is qualitatively different for the
̸σh- and ̸σv-QSHI phases illustrated in panels (b) and (c), respectively. This results
for the former in a strong in-plane and for the latter in a dominating out-of plane
OAM polarization. Hence the simple obstruction argument derived for the HOTI can
not directly applied, as the OAM vector does not visit the poles and the equator for
both phases. However, by recalling that the local basis set τi must reflect the site-
symmetry group (see also Sec. 2.4.2.2), the rotational symmetry around the z-axis of
the triangular lattice defines also the OAM quantization axis of the projection basis.
Under this consideration, it is evident that the OAM eigenstates in the valence bands of
the aforementioned QSHIs enforce vanishing overlaps with basis functions that respect
the site-symmetry of the triangular lattice site. Hence this is a first indication of a
real-space obstruction for the two QSHI phases.

To conclude, the OAM polarization of the valence bands has been identified as the
microscopic origin of real-space obstruction in the triangular p-shell model. This is
also suggestive for an extension of real-space obstruction to Z2-non-trivial bands. Here
symmetry indicators do not exist as QSHI phases lack EBRs per se.

5.9. Real-Space Obstructed QSHIs

Motivated by the first hints towards real-space obstruction in the two triangular
QSHI phases in the previous section, we will construct Wannier basis sets to determine
the charge center localization. The local orbital symmetry will be chosen based on
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the valence band representations discussed in Sec. 5.4. However the wannierization
of a Z2 non-trivial subspace of bands can be only achieved upon releasing the funda-
mental protecting symmetry, i.e., time-reversal symmetry. This has been shown by A.
Soluyanov and D. Vanderbilt [73] for the Kane-Mele model, which is not real-space
obstructed. We will follow their concept to extend the notion of real-space obstruction
to QSHI phases.

phase trial basis T -symmetric real-space obstructed label

SOC insulator
|J, Jz⟩ = |1/2,+1/2⟩,
|J, Jz⟩ = |1/2,−1/2⟩

True False J1/2

̸σh QSHI
|A, ↑x⟩ = 1√

2
(|s⟩+ |pz⟩)⊗ |↑x⟩,

|B, ↓x⟩ = 1√
2
(|s⟩+ |pz⟩)⊗ |↓x⟩

False True ABT

̸σv QSHI
|B, ↑z⟩ = 1√

2
(|s⟩+ |pz⟩)⊗ |↑z⟩,

|B, ↓z⟩ = 1√
2
(|s⟩ − |pz⟩)⊗ |↓z⟩

False True BBT

HOTI
|B, ↑z⟩ = 1√

2
(|s⟩+ |pz⟩)⊗ |↑z⟩,

|B, ↓z⟩ = 1√
2
(|s⟩+ |pz⟩)⊗ |↓z⟩

True True BB

Table 5.9.1.: Overview on the trial basis sets. The first column denotes the model
from whose valence band symmetries the basis set has been derived. As
shown in Figs. 5.9.1 and A.8.1, the symmetry adopted one is indeed a
valid valence band representation of the corresponding model. The last
column specifies the labeling used in Figs. 5.9.1 and A.8.1.

To verify our approach, we will also consider the Z2-trivial phases. As the valence
band has pz and in-plane contributions in all four insulating regimes, any trial basis
must be a liner combination of σh symmetric and anti-symmetric orbitals. Further, as
derived in Sec. 3.4 the in-plane orbitals on the triangular site will transform into s-type
orbitals on the honeycomb site at the valley momenta. For the SOC insulator, the EBR
analysis suggests a J = 1/2 trial basis on the triangular site. The valence bands of
the HOTI can be described by a Jz = ±1/2 (or a m = 0 spinless) representation on
only one of the A or B sites, a spz-hybrid orbital will be considered. Focusing on the
QSHIs, A. Soluyanov and D. Vanderbilt proposed for the Kane-Mele model [73] the
following pair of time-reversal symmetry-breaking trial functions, which is indicated
by T in Tab 5.9.1,

|τi⟩ = {| A, ↑x⟩ , |B, ↓x⟩}. (5.23)

They are localized on the A/B honeycomb Wyckoff positions with an in-plane spin-
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alignment in x-direction11. Similarly, to account for the (almost) preserved σv symme-
try, we will choose for the ̸σh-QSHI the real-space obstructed trial basis:

|A, ↑x⟩ =
1√
2
(|s⟩+ |pz⟩)⊗ |↑x⟩ , |B, ↓x⟩ =

1√
2
(|s⟩+ |pz⟩)⊗ |↓x⟩ . (5.24)

This basis is appropriate for positive valued λ̸σh
, otherwise the antisymmetric hybrid-

orbital formulation must be chosen. Turning to the ̸σv QSHI, its valence band rep-
resentation is suggestive for Jz = ±1/2-type orbitals on the B site. To account for
the almost preserved σh symmetry, the trial basis must contain a symmetric and an
antisymmetric spz orbital:

|B, ↑z⟩ =
1√
2
(|s⟩+ |pz⟩)⊗ |↑z⟩ , |B, ↓z⟩ =

1√
2
(|s⟩ − |pz⟩)⊗ |↓z⟩ . (5.25)

Here, the spin polarization can be chosen in z-direction as the valence bands at both
valleys carry the same sublattice character. A summary of the four proposed trial
basis sets can be found in Tab. 5.9.1 and the details on the calculation of the non-local
overlap matrix are given in App. 5.9.

To test, whether the proposed trial basis sets can describe the valence bands of the
four topological phases in the full BZ, the overlap matrix given in Eq. 5.20 needs to
be inspected. Its determinant will unveil vanishing eigenvalues. This examination
is shown for the four proposed trial basis sets in Fig. 5.9.1, where solid and dashed
lines indicate basis sets with non-vanishing and vanishing overlaps, respectively. It
confirms the wannierizability of all four phases: for each model, only the trial basis
set, that complies with the valence band symmetry, has finite overlaps in the entire
BZ. Starting with the non obstructed SOC insulator, the determinant of the J1/2
basis peaks, as expected, at the SOC-opened pz-pr nodal-line and the valley Dirac
momenta. All other projection basis sets have a vanishing overlap at at least one of
the aforementioned momenta. The other Z2-trivial phase, the HOTI, has instead finite
overlaps with the spz time-reversal symmetric basis on the B site, which confirms the
real-space obstruction. Focusing on the Z2-non-trivial phases, the honeycomb-type
T -breaking orbitals describe the occupied bands of the ̸σh QSHI. This confirms not
only the real-space obstruction, but highlights also the equivalence with the Kane-Mele
model. For the ̸σv QSHI instead, the valence states can be wannierized by a triangular
basis located on the B site. A map plot of the determinants of all considered models
and projection basis sets can be found in Supp. A.8.1.

Before concluding this section, let us briefly discuss the unambiguousness of the
chosen trial basis sets and the derived real-space obstruction. All applied basis sets
comply on the level of the orbital degrees of freedom with the site-symmetry group

11The in-plane alignment is necessary, as the valence bands at K and K ′ acquire in both sublattice
orbitals maximum positive and negative out-of-plane spin polarization (see also Sec. 2.1.3). An
Sz-trial basis would have maximum overlap at one valley and vanishing overlap at the other.
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Figure 5.9.1.: Analysis of the overlap matrix S(k) of the trial basis sets given
in Tab. 5.9.1 for the four topologically different phases shown in
Fig. 5.1.1 (b). Dashed(solid) lines indicate (non-)vanishing overlap eigen-
values along the chosen path, which is representative for the whole
BZ (see also Fig. A.8.1). The vertical dashed lines indicate the mo-
menta of the avoided crossing at the pz-pr nodal ring.

of the triangular 1a and A/B Wyckoff position12. The symmetry constraints reduce
significantly the space of allowed basis sets. Nevertheless, a criterion indicating the
presented trial basis sets as the only valid choice is missing. However, in combination
with the inspection of the OAM-texture in Sec. 5.8, the real-space obstruction in the
QSHI phases is proven and the basis sets allow for a first interpretation of the localiza-
tion of the charge centers. Further it should be noted, that the overlap eigenvalues of
the presented basis sets can be optimized by constructing maximally localized Wannier

12For the T -breaking basis of symmetric and antisymmetric spz orbitals on the B site (BBT ), in-
variance under σh can be achieved by building s- and pz- orbitals from linear combinations of the
Wannier basis states.
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functions [34, 119–121, 128] (see also Sec. 2.3.2).

To conclude, by inspecting the overlap of the valence bands of the triangular p-shell
model with trial local basis sets, the two ν = 1 phases have been identified as being real-
space obstructed. This extends the concept of real-space obstruction to QSHIs, which
motivates for future research to investigate the presence of surface, hinge and corner
charges in finite size geometries or in Z2-non-trivial heterostructures. The here pre-
sented triangular phases, where one of them has been already realized in indenene [2–4,
61], in combination with the Kane-Mele model [18, 24] and bismuthene [52, 160, 161]
could serve as perfect candidates for theoretical and experimental studies.

5.10. Graphene-like QSHI on the Triangular Lattice

We will conclude the discussion on the topological phases by a direct comparison
of the ̸σh QSHI with the Kane-Mele model. Recent experiments have proven that
this phase can be indeed realized in a triangular monolayer of indium on SiC [2, 3,
61], where the underlying substrate results in a strong horizontal mirror reflection
breaking (λ̸σh

≫ λSOC). This puts forward the technological relevance and realizability
of the here conceived model. A closer inspection of the two systems unveils not only the
equivalence of their Dirac fermions (see also Chap. 3), but also of their valence bands
in the entire BZ as shown in the previous section. An even more rigorous equivalence
can be established on the level of the valence band representation: the valence bands
of the Kane-Mele transform either under Γ8,M5 and K4K5 or Γ9,M5 and K6 in layer
group p6mm (see also Fig. S4 in the supplemental material to Ref. [44]). The latter
is exactly the valence band representation of the ̸σh QSHI shown in Fig. 5.4.2, hence
the two models host valence bands with identical symmetries. However, away from the
high-symmetry momenta, qualitative differences can be expected and will be discussed
in the following.

To compare the two models, the nearest neighbor hopping amplitude, the second
nearest neighbor SOC strength and the vertical reflection breaking staggered potential
of the Kane-Mele model were extracted from the valley Hamiltonian of the correspond-
ing triangular p-shell model and the details can be found in App. A.5.3. Further, we
choose for the triangular model λ̸σh

= 0.3t to gap-out the nodal ring, which leaves
the Dirac fermions in a sizable global gap. The resulting band structures and the pro-
jected A/B sublattice DOS is shown in Fig. 5.10.1 for the ν = 0 and ν = 1 phase. As
discussed in Chap. 5 and Sec. 5.7, the Dirac cone of the trivial bands, i.e., the HOTI,
is gapped by a strong Ĥ ̸σv -interaction which promotes valence bands with identical
OAM polarization. This in turn results in a constructive interference at only one of
the honeycomb sites and promotes real-space obstruction. Upon reducing the vertical
reflection symmetry breaking or increasing the SOC interaction, a ν = 1 phase is sta-
bilized, where the presence of both sublattice flavors in the valence doublet indicates
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Figure 5.10.1.: Comparison between the triangular p-shell and the Kane-Mele model at
the level of the band structure and of the imbalance in the sublattice-
projected density of states, denoted as ∆ABDOS for the two different
Z2-phases. The solid lines/filled curve correspond to the triangular
lattice, whereas the dashed lines relate to the Kane-Mele model. The
blue-red color code in the insets indicates the OAM character, while
the green-orange one encodes the A/B sublattice localization. Left: σv-
breaking-dominated trivial insulator (HOTI): H ̸σv promotes the same
Lz-polarization and A/B localization for the valence bands. Right:
SOC-dominated topologically non-trivial phase: both OAM eigenstates
are present in valence and correspondingly, the occupied bands localize
at the A and B sites giving rise to the emergent honeycomb lattice. To
open a large hybridization gap at the pr-pz nodal line, the following
SOC and symmetry-breaking strengths have been chosen: λSOC = 0.2
and λ̸σh

= 0.3 and λ̸σv
= 0.03(0.01) in the ν = 0(1) phase. Details on

the calculation of the sublattice character in the triangular basis set can
be found in App. 5.9. The details on the construction of the Kane-Mele
model for the given triangular lattice tight-binding parameters is given
in App. A.5.3.

the non-adiabatic connectivity to the atomic limit13. In Sec. 6.2.2, we will exploit this
charge localization pattern to detect the non-trivial Z2-phase in a recently synthesized
QSHI [2, 3, 61]. The comparison with the “valley-equivalent” Kane-Mele models shows
a good agreement also in the vicinity of K. However significant differences can be seen
in valence along Γ-K, when the hybridization with the pz-bands becomes dominant.
Further it should be noticed, that particle-hole symmetry is inherently broken in the

13The Z2-invariant in the λ̸σh
≪ λSOC regime is solely determined by the gap at the valley momenta,

as the low-energy bands in the remaining BZ are gapped by pure orbital (spin-independent) hy-
bridizations. An adiabatic connection to the atomic limit can only be established, if the Dirac
cone is also gapped by H ̸σv instead of SOC.
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in-plane subspace of the triangular model14 [see also Fig. 4.1.2 (a) and Sec. 6.2.1],
which reduces the valence band velocity compared to the Kane-Mele model. This non-
linearity is further reflected in an enhanced sublattice DOS in the occupied states,
where the hybridization with the pz-band gives also rise to a van-Hove singularity.
Hence, the chosen tight-binding parameters are in support of a strong valence band
sublattice polarization exceeding the one of the Kane-Mele model. This helps to over-
come the phase decoherence of the triangular chiral wave functions at the honeycomb
sites, as discussed in Sec. 3.5.

Before concluding, we extend the comparison to finite size geometries by recalling
Sec. 5.6 to highlight the consequences of the interplay of atomic SOC and symmetry-
breaking terms: as shown in Figs. A.7.1 and A.7.2 their interplay results in a strong
OAM- and spin polarization of the edge states. In particular, the flat-termination
hosts edge states which experience a spin canting into the yz-plane owed to the σh-
breaking promoted in-plane OAM. For the zigzag edge instead, the OAM and spin
polarization is purely in-plane. Therefore, also the edge states of the triangular model
differ significantly from the ones of the spin-diagonal Kane-Mele model [18, 24].

In summary, although sharing identical valence band symmetries at the high sym-
metry momenta, the QSHI phase on the triangular and on the honeycomb lattice differ
qualitatively in their microscopic interactions, which in turn is reflected in the orbital
and spin polarization. The local multi-orbital basis on the triangular lattice profits
from an intrinsically strong SOC interaction, while the symmetry-breaking terms al-
low for a finite OAM polarization in all three spatial components. In these aspects,
the triangular QSHI exceeds the Kane-Mele model as its multi-orbital basis allows for
a larger tunability.

5.11. Summary

The here discussed triangular lattice Hamiltonian can host four topologically distinct
phases, which are stabilized by the interplay of atomic SOC and chiral wave functions
from reflection symmetry-breaking (see again Tab. 5.1.2). To be specific, the topology
is defined by the gapping nature of the low-energy Dirac fermions at the valleys and
the pr-pz nodal ring. Two disconnected atomically insulating phases can be found
either in high-symmetric or strongly mirror symmetry broken systems. However, the
valence band representation of the latter ones localizes on one of the void positions
in the triangular lattice indicating this phase as being real-space obstructed. The
associated bulk polarization gives rise to topologically-stabilized 0D fractionally filled
in-gap corner states. This phase is a higher-order topological insulator. Further we
have extended the concept of real-space obstruction to QSHIs. Both Z2-non-trivial

14Particle-hole symmetry in the in-plane subspace is achieved under the condition V σ = −V π, where
the degeneracy at Γ and the valley Dirac fermions are located at the same energy.
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phases have time-reversal violating Wannier representations, which localize either in
a Kane-Mele-type honeycomb geometry or on only one of the voids of the triangular
lattice. In particular, the real-space obstruction substantiates from the local OAM
polarization, which in turn is a consequence of the reflection symmetry breaking.

For spinless models, the analysis of the electronic band representations in the four rel-
evant layer groups allows for a comprehensive understanding of the symmetry promoted
gappings and bands degeneracies. However in the presence of SOC, the gapping-type
of the pr-pz nodal ring is not reflected in the irreps at the high-symmetry momenta.
Hence the Z2-invariant and the electric polarization cannot be solely determined from
symmetry indicators. This makes the Wilson-Loop analysis indispensable for space
groups lacking horizontal reflection symmetry.

From a more fundamental point of view, the here presented QSHIs are outstanding
as they require the absence of inversion symmetry. Indeed, the non-local ISB terms act
as the desired antagonist to the atomic SOC. This is a paradigm change in the haunt
for new material concepts for stabilizing ν = 1 phases. This deviates from symmetry
based approaches, which rely on the presence of inversion symmetry [41, 162, 163]
or on spatial symmetry indicators [44–47]. These schemes suggest for the search in
high-symmetric space groups. Furthermore, the inherently strong atomic SOC make
the material representatives of the triangular model potential candidates for room
temperature applications. To be precise, the valence band physics of the hexagonal
QSHI system, the Kane-Mele model, can be realized on the triangular lattice. However,
the Dirac fermion splitting arises from a weak, since non-local, symmetry-breaking and
a sizable atomic SOC term.

As a critical note, the stabilization of the four topologically distinct insulating ground
states requires well adjusted tight-binding parameters as the Dirac fermions and the pr-
pz nodal ring are not inherently located in a global energy gap. Nevertheless, the here
presented band structures are not only a theoretical edifice. Their occurrence in first
material proposals and experiments based on triangular adsorbates will be discussed
in the following chapter. Further, the simplicity of the triangular lattice and the vast
abundance of substrates is suggestive for the existence of a large plethora of suitable
material realizations.
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in Adatom Monolayers

This chapter is devoted to realistic studies of adsorbate monolayers on the surfaces
of technologically relevant zincblende- and diamond-type substrates. The layer group
of their (111) surface is p3m1 and any adatom on the three high-symmetric adsorbate
positions (Wyckoff positions 1a, 1b and 1c, site-symmetry group 3m) is exposed to a
horizontal and vertical reflection symmetry-breaking environment, an ideal situation to
validate the theoretical predictions made in Chaps. 3, 4 and 5. This chapter profits from
strong and inspiring collaborations between theory and experiment, which prove the
relevance of the proposed concepts and can be seen as a first step towards application.
In particular, the Angle-Resolved Photoemission Spectroscopy (ARPES) and Scanning
Tunneling Spectroscopy (STS) performed in the groups of EP IV and EP VII of the
physics department of the university of Würzburg have contributed to gain insights in
the wave function symmetry, e.g., symmetry breaking-induced chirality and real-space
localization.

The discussion is organized as follows: we will start from the binary honeycomb
lattice AgTe on Ag. The low-energy physics of the Te p-shell is governed by a strong
SOC and horizontal mirror reflection breaking, which gives rise to the orbital-driven
Rashba effect [1]. Then we will focus on Group III adsorbates on SiC (0001). We will
introduce the first real-space obstructed QSHI based on a triangular layer of indium
atoms, indenene, a realization of the ̸σh QSHI phase discussed in Chap. 5 and published
in Refs. [2, 3, 61]. Upon reducing the SOC strength by going to lighter adatoms such
as B, Al and Ga the HOTI phase introduced in Chap. 5 can be stabilized. This
will be proven on the level of symmetry indicators and finite size calculations [4].
As an outlook, beyond topology and symmetry-breaking effects, Sb on SiC will be
considered, which can be regarded as a n-doped version of the Group III adsorbates.
This yields pure pxy low-energy physics. Further, it hosts a compensated Fermi surface,
which might promote correlation driven electronic ordered phases mediated by orbital
symmetries.
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6.1. Orbital-Driven Rashba Effect in AgTe

The works of Dresselhaus [164] and Rashba and Bychkov [165] have inspired the
search for spin-polarized states, originating from the interplay of inversion-symmetry-
breaking and SOC even in non-magnetic, time-reversal symmetric systems. Besides
the intrinsic interest in these phenomena [166], with the beginning of the era of topo-
logical materials attention in ISB-driven spin-splittings arose. These mechanisms are
fundamentally present in non-centrosymmetric Weyl semi-metals [150, 167] and spin-
momentum locked surface states of topological materials [19, 49, 168]. This chapter will
elucidate on the fundamental interplay of orbital symmetries and symmetry breaking
at surfaces, which gives rise to sizable and band-dependent spin-splittings in materials
with strong SOC.

The Rashba-Bychkov model [165]

ĤR = αRσ (ez × k) , (6.1)

allows for a qualitative description by assuming an electron’s motion perpendicular
to a (surface) potential gradient αR ∝ ∂V/∂z, but the underlying microscopic nature
remains unspecified. Further, it cannot explain band-dependent splittings and the
sizable magnitude of experimentally observed Rashba parameters up-to the order of
O(eVÅ)1 [38]. Instead, the large interaction strength can be motivated upon the
formation of local orbital angular momentum arising from a mirror symmetry-breaking
interaction, which in turn couples to the atomic SOC ∝ λSOCL̂ · Ŝ [169–172]. Hence,
Rashba systems are perfectly suited for investigating the impact of the σh-breaking
term introduced in Chap. 4, which promotes in-plane OAM arising from states of the
form of |p±inp⟩ ∝ α |pr⟩ ± iβ |pz⟩ (α, β ∈ R+).

Here we will focus on the Rashba splitting in the Te p shell in the binary AgTe
honeycomb layer on Ag(111) [1]. The results emerged from a fruitful experiment-
theory collaboration with the group of EP VII. The joint study profits from the sample
preparation and ARPES experiments carried out by Maximilian Ünzelmann as well as
from minimal model calculations and ab initio theory. The structure is shown in
Fig. 6.1.1. Considering only the honeycomb layer on a homogeneous substrate, the
layer group is p3m1 and has the symmetries of the tight-binding model introduced
in Chap. 4. As illustrated in the left panel of Fig. 6.1.1, the Ag atoms of the binary
honeycomb break the σv. In addition, the first substrate layer breaks the remaining
vertical reflection σd with respect to the Te atom. This reduces the layer group down
to p3 and the Te site-symmetry group is reduced from 3m to 3. As we will see in
the following, the lowered symmetry to p3 has only a minor impact on the orbital
polarization of the Te bands, because the system is almost p3m1 symmetric.

1Realistic ab initio work function calculations suggest Rashba parameters of the order of
O(10−6eVÅ) [38].
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Figure 6.1.1.: Top (a) and side view (b) on the surface geometry of the binary hon-
eycomb compound AgTe on Ag(111). Te and Ag atoms are denoted by
golden and turquoise spheres, respectively. The Ag atom of the honey-
comb layer is illustrated by a dark blue color. The vertical and diagonal
reflection planes with respect to the Te lattice are given by black and
gray dashed lines, respectively.

6.1.1. Orbital Polarization and Band-Dependent Rashba-Splitting

The ab initio band structure is shown in Fig. 6.1.2 (a). It is characterized by the two
Te in-plane bands in valence (labeled by α and β), which are energetically separated by
SOC at Γ. The Ag-s-Te-pz-type conduction band is labeled by (γ) (see also Fig. S2 of
the supplement to Ref. [1]), which makes this compound a perfect template for a qual-
itative comparison with the p-shell tight-binding model. The Ag substrate contributes
metallic states at the BZ boundary and parabolic electron-type quantum well states
at Γ with minima at ≈ −1.5 eV and ≈ −0.2 eV. Despite of the underestimation of the
gap, the band structure is in excellent agreement with ARPES and two-photon pho-
toemission experiments in panel (b). The α- and β/γ-bands exhibit a negligible and
sizable spin-splitting, respectively. A detailed analysis of the momentum-dependence
of the splitting around Γ is illustrated in panel (c). Bands β and γ possess a linear
splitting with comparable splitting strength, α exhibits instead a cubic relation. This
qualitative difference is also reflected in the orbital symmetry [see Fig 6.1.2 (a)] as α
possesses tangential in-plane polarization, while β is radially aligned. The latter allows
for a hybridization with the Ag-s-Te-pz conduction band via Ĥ ̸σh under the formation
of in-plane OAM (see also Sec. 4.3). Further, this interaction scales linearly with mo-
mentum as derived in Eq. 4.27 explaining the observed momentum-dependence. In
turn the cubic scaling of the α-band indicates higher-order processes as the source of
its weak Rashba-splitting.
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Figure 6.1.2.: (a) DFT band structure of AgTe on seven layers of Ag(111). The color
code denotes the Te atom projected orbital contributions. (b) ARPES
and two-photon photoemission data and energy distribution curves taken
at momenta indicated by the dashed vertical lines. (c) DFT and exper-
imental spin-splittings in the vicinity of Γ in the top and bottom panel,
respectively, of the three features labeled in (a) and (b). Reprinted fig-
ures with permission from Ünzelmann, M. et al. “Orbital-Driven Rashba
Effect in a Binary Honeycomb Monolayer AgTe”. Physical Review Let-
ters 124 (2020). © 2020 by the American Physical Society.

6.1.2. Inversion Symmetry-Breaking Promoted OAM Polarization

Having established the band-dependent Rashba splitting in AgTe, we will confirm
in the following the initial hypothesis: symmetry-breaking promoted OAM formation
which in combination with SOC gives rise to the sizable spin-splittings. We turn first
to the discussion of the OAM polarization around Γ for a spinless calculation shown
in Fig. 6.1.3 (for the band structure see also Fig. 6.1.6) calculated from an atomic-
like Wannier projection: α has a vanishing in-plane OAM while γ and β posses a
clock and anti-clockwise in-plane polarization, respectively. However, the mainly p±-
derived bands α and β have also a C3-symmetric out-of-plane polarization. This is
indicative for Ĥ ̸σv , which is intrinsic to the bipartite AgTe honeycomb. Hence, the ab
initio calculation unveils AgTe as a perfect template for the investigation of a p-shell
in the presence of σh-(resulting from the out-of-plane ISB of the substrate) and σv-
breaking (mainly originating from the C3-symmetry of the binary honeycomb). They
promote a sizable in-plane and out-of-plane OAM polarization.

Upon considering SOC, a gap of size 0.3 eV is opened at the former p±-degeneracy
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Figure 6.1.3.: OAM texture of the low-energy AgTe bands around Γ in the absence of
SOC. The color code and the vector field denote the out-of plane and
in-plane components, respectively. The color range of the color scale is
[−0.5, 0.5] in units of ℏ (maximal coloring see Fig. 6.1.4).

at Γ, which splits-up into Jz = ±1/2 and ±3/2 Kramer’s pairs 2. The low-energy
physics at Γ is governed by ĤSOC and the symmetry-breaking terms can be regarded as
perturbative corrections. Instead at larger k, the non-local orbital hybridization terms
dominate and the interplay of OAM and SOC introduces the spin-splitting. A detailed
OAM and spin polarization analysis in the SOC-dominated vicinity of Γ is shown in
Fig. 6.1.4 and a comparison with a minimal p-shell model is presented in Figs. A.9.1
and A.9.2. The features α± (jz = ±3/2, Γ4Γ5 irrep assuming p3m1 symmetry, see
also Tab. 5.4.2) exhibit a dominant out-of-plane spin and OAM polarization. The
latter is enhanced by the SOC interaction compared to the values of the spinless
calculation in Fig. 6.1.3. In addition the C3-symmetric pattern can be associated to
Ĥ ̸σv (compare with Fig. 4.2.1). At larger distances to Γ, the bands accumulate a radial
OAM and spin polarization at the hybridization gaps with the substrate quantum well
states (see Figs. A.9.1 and A.9.2), which is absent in the p3m1 symmetric tight-binding
model. These features are hints of the σd-breaking via the first Ag(111) substrate layer.
The bands β± and γ± transform under the Γ6(2) irrep and a qualitatively similar
behavior for the two bands in the vicinity of Γ can be expected. Their tangential
OAM polarization increases with k, which in turn yields a dominant in-plane spin
orientation. However, the feature β− has a reduced in-plane OAM around Γ and
reaches only at large k a parallel alignment with β+ (see also Fig. A.9.1). This is
due to the dominant SOC driven mixing of the in-plane bands at Γ. Instead for the
energetically well separated features γ±, both bands have an almost identical OAM
polarization (the one of γ− is slightly reduced).

2See also Fig. 6.1.6 (a,d) and the absence of pr/pt polarization due to orbital mixing in Fig. 6.1.2 (a).
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Figure 6.1.4.: OAM and Spin texture of the low-energy bands of the Te p-shell around
Γ. The color code and the vector field denote the out-of plane and in-
plane components, respectively. The energetically higher (lower) spin-
band is labeled with a “+” (“-”) subscript [see also Fig. 6.1.2 (b)]. The
imperfect C3 symmetry (considerably visible for α±) arises from a small
asymmetry of the Wannier Hamiltonian which becomes dominant at
band degeneracies, at larger momentum distances to Γ the symmetry
is restored. The color range of both color scales is [−0.5, 0.5] in units of
ℏ.

6.1.3. Band Symmetries from Polarized Light ARPES

Having demonstrated the wave function symmetries from ab initio methods and from
theoretical concepts introduced in Chap. 4, we will establish in the following an exper-
imental detection of the OAM polarization based on linearly-polarized light ARPES.
The measurements have been performed by Maximilian Ünzelmann and coworkers at
the chair of EP VII of the University of Würzburg. A detailed discussion on the un-
derlying theory and the hereinafter presented experimental data can be found in the
dissertation of Maximilian Ünzelmann [173].

In the electric dipole approximation, the photoemission transition matrix element is
given by [174]

Ti 7→f = ⟨Ψf |E · r|Ψi⟩. (6.2)

Under the assumption of an even-parity final state Ψf , the matrix element is deter-
mined by the symmetry of the product of the dipole and the initial state. As shown
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in Fig. 6.1.5 (a) for p-orbitals and a light incidence in the xy plane, s-polarized light
described by an electric field vector Es = (0, Ey, 0) allows to address orbitals with odd
character under the mirror operation y 7→ −y. In particular along the cartesian mo-
mentum axes (kx, 0) and (0, ky) bands arising from the tangential and radial p-orbitals,
respectively, can be measured. Instead p-polarized light with Ep = (Ex, 0, Ez) interacts
with states odd under x 7→ −x, i.e., the pr- along kx- and the pt-band along ky-axis.
As the incident angle defines the ratio of Ex and Ez, the sensitivity to the pz-states
can be controlled. Maximum in-plane contributions can be achieved under normal
incidence [175]. A profound discussion can be found in Ref. [173].

Figure 6.1.5.: Orbital decomposition from linearly polarized light ARPES with a pho-
ton energy of hν = 25 eV for a light incidence in the xy plane and
azimuthal angle φk.(a) Schematic radial and tangential orbital response
for s- and p-polarized light.(b-d) Constant energy cuts taken at E−EF =
−950meV (b) and -1300meV (c) with s-polarized light and at -1300meV
with p-polarized light (d).Reprinted figures with permission from Ünzel-
mann, M. et al. “Orbital-Driven Rashba Effect in a Binary Honeycomb
Monolayer AgTe”. Physical Review Letters 124 (2020). © 2020 by the
American Physical Society.

At binding energies of 950meV [see also Fig. 6.1.2 (a)], only the band α appears in
the corresponding constant energy cut. The respective ARPES data set taken with
s-polarized light is shown in Fig.6.1.5 (b). The intensity is suppressed along ky, but
sizable along the kx-axis and indicates the tangential orbital alignment. This is further
confirmed at higher binding energies [1300meV, panel (c)]. Also the feature β is present
at this energy: it has predominantly spectral weight along the ky-axis, which signals
its radial symmetry. For p-polarized light instead [panel (d)], the features α and β
are suppressed along kx and ky, respectively. This is in agreement with the inferred
orbital symmetries. However the spectral weight associated to β has a strong left-right
asymmetry, which is less pronounced for α. We will come back to this point later on
when discussing the linear dichroism.

To quantify the momentum-dependent orbital character polarization from the ARPES
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measurement, the azimuthal asymmetry parameter has been proposed [175, 176]

λ(k∥) =
I0 − Iπ/2
I0 + Iπ/2

, (6.3)

for a wave vector k∥ (in the following k∥ = (kx, 0)) with azimuthal angles φk = 0 and
π/2 [see also Fig. 6.1.5 (a)]. For s-polarized light, this parameter is expected to be
positive for pt-derived bands and negative for pr-symmetric bands [175, 176]. The result
is shown in Fig. 6.1.6 (a), which is in perfect agreement with the orbital polarization of
the ab initio calculation in Fig. 6.1.2 (a). Both bands have a vanishing polarization at Γ,
which increases with momentum distance and saturates around ±0.2 Å, the overall sign
reflects the expected behavior. Hence, this analysis has also experimentally unveiled
the momentum-dependent orbital polarization formation in the low-energy bands of
AgTe, which includes also the important prerequisite for the orbital Rashba effect: the
presence of a radial in-plane band. However the confirmation of OAM-polarized wave
functions, which couple to SOC, is still missing.

Figure 6.1.6.: (a) Orbital polarization parameter λ(k∥) extracted from the s-polarized
ARPES data. (b) Linear Dichroism of the constant energy cut shown in
Fig. 6.1.5. (c) ⟨Ly⟩ polarization at the constant energy shown in (d).
(d) ⟨Ly⟩ polarization of a minimal Te p and Ag s Wannier model.
Reprinted figures with permission from Ünzelmann, M. et al. “Orbital-
Driven Rashba Effect in a Binary Honeycomb Monolayer AgTe”. Phys-
ical Review Letters 124 (2020). © 2020 by the American Physical So-
ciety.

The OAM polarization can be experimentally addressed with circularly polarized
light and results in a finite circular dichroism signal [39, 149, 170, 171, 177, 178].
Sensitivity to ⟨Ly⟩ is achieved by an electric field polarization of E± = (Ex, 0,±iEz).
The circular dichroism is proportional to

CD(kx, ky) = IR(kx, ky)− IL(kx, ky) ∝ ℑ (T ∗
x (kx, ky)Tz(kx, ky)) , (6.4)

where Ti is the contribution to the matrix element in Eq. 6.2 of component i of the
dipole operator. A direct connection can be drawn to the conducted p-polarized light
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measurements at an incident angle of 45◦ where the electric field reads E = (E , 0, E).
With the definition of the linear dichroism [1]

LD(kx, ky) = I(kx, ky)− I(−kx, ky) ∝ ℜ (Tx(kx, ky)T
∗
z (kx, ky)) , (6.5)

i.e., the difference in the intensities I at momenta, which are mapped onto each other
under kx 7→ −kx. This comparison makes evident that both, circular and linear dichro-
ism are sensitive to pz-pr hybrid states (here pr = px) for a light incidence in the xz-
plane as they correlate in-plane and out-of-plane orbital contributions. This analysis
is shown for the feature β in Fig. 6.1.6 (b), obtained from the data in Fig. 6.1.5 (d).
A careful analysis in Ref. [1] (see also supplemental material Sec. VII) allows us to
assign the dichroism to the initial state symmetry, which is in perfect agreement with
the calculated ⟨Ly⟩ polarization shown for the corresponding constant energy cuts in
Fig. 6.1.6 (c) and for the band structure in panel (d). It should be noted, that the sim-
ple dipole picture expressed in Eq. 6.2 yields a purely imaginary value of TxT

∗
z for an

Ly eigenstate and hence a vanishing LD signal. However, final state effects can intro-
duce relative phase shifts between Tx and Tz. Therefore it is reasonable to assume that
OAM eigenstates will promote finite LD signals. A detailed analysis combined with a
pedagogical explanation on the final state effects in AgTe can be found in Ref [179],
while an extensive study on various materials is given in Ref. [173].

6.1.4. Conclusion and Outlook

To conclude this first section, the binary honeycomb compound AgTe on Ag(111)
hosts Te p-type in-plane valence bands, which possess fundamentally different Rashba-
splittings. The band at lower energies inherits a radial symmetry from the trigonal
lattice structure. This, in the presence of horizontal mirror reflection breaking, results
in a predominant in-plane OAM polarization. In combination with SOC, this activates
the sizable orbital-driven Rashba-splitting whose order of magnitude can be directly
related to the SOC strength. Instead, for the upper valence band, its tangential orbital
symmetry prevents the formation of in-plane OAM and suppresses significantly the
spin-splitting. The joint ab initio and experimental investigation allows not only for
a profound quantitative analysis of the underlying mechanism, but also highlights
the importance of wave function symmetry-sensitive approaches in light of SOC- and
symmetry-breaking driven phenomena.

6.2. Indenene on SiC

Since the seminal prediction of the quantum spin Hall effect in graphene by Kane
and Mele [18, 24], Z2-topology in hexagonal and trigonal monolayers is indissociably
linked to the honeycomb geometry and its symmetry-promoted Dirac cones at the
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valley momenta. In practice, graphene and its heavier representatives suffer from an
inherently weak non-local SOC interaction, which can be increased via structural op-
timization up to the order of O(100)meV [55, 56, 180, 181]. Instead bismuthene on
SiC has proven that substrate-induced symmetry-breaking and atomic SOC of a local
multi orbital basis give rise to a sizable inverted band gap of 0.8 eV [52, 161]. However,
as discussed in Chap. 3, the Dirac physics is intrinsic to the space group symmetry.
Hence one may ask if a hexagonal QSHI with local SOC and similar complexity as
graphene, i.e., with a two orbital basis description, can exist. Here we propose the
triangular lattice, which is obtained by removing one of the sublattices of the honey-
comb. Indeed, in the presence of dominant σh-breaking, as elaborated in Chaps. 4 and
5, graphene-like low-energy Dirac bands from p-orbitals can be realized in an otherwise
globally gapped band structure. As illustrated in Fig. 6.2.1 (a) the Z2-invariant is en-
coded in the sublattice polarization of the Dirac states. Equivalently to the Kane-Mele
model, SOC favors a non-trivial phase and σv-breaking acts in the opposite direction.
While the sublattice polarization of the Dirac states can be easily understood from a
honeycomb basis, this arises on the triangular lattice from an interference effect driven
by the chirality of the p±-orbitals and the Bloch phase as shown in Fig. 6.2.1 (b) (see
also Chap. 3 for details). Upon extending the analysis to the whole BZ, the detach-
ment of the corresponding Wannier centers from the atomic basis positions indicates
the triangular QSHI phase as being real-space obstructed, which is in contrast to the
Kane-Mele model and, likely, to bismuthene3. Therefore, such a triangular QSHI would
not only constitute “another QSHI system”, though benefiting from the simple geom-
etry, but enriches also the scientific perspective, as it extends the concept of real-space
obstruction to Z2-non-trivial phases.

Such a QSHI has been designed in collaboration with the group of Experimentelle
Physik IV of the University of Würzburg, which we dubbed “indenene”: a triangular
monolayer of indium atoms on SiC. The results have been published in Refs. [2–4,
61]. Based on ab initio calculations as well as on ARPES and STM experiments
conducted by Maximilian Bauernfeind and Jonas Erhardt, theoretical aspects, such as
the emergent honeycomb localization at the valley momenta, the real-space obstruction
and its edge states introduced in Chaps. 3 and 5 will be discussed hereafter.

6.2.1. Unit Cell Characterization and Electronic Structure

The unit cell is illustrated in Fig. 6.2.2 (a,b), the indium atoms adsorb in a 1×1 geom-
etry on the T1 position, i.e., on top of the Si atom of the Si-terminated 4H-SiC(0001)
surface. Both experiment (X-ray standing wave photoemission) and DFT confirm the
In-Si distance being dIn−Si = 2.68 Å. The mere presence of the SiC substrate breaks the
horizontal reflection symmetry. In addition, the vertical reflection symmetry is also

3Currently under investigation by Markus Feld (AG Sangiovanni), preliminary results are in favor
of a non real-space obstructed QSHI phase for bismuthene. To appear in his master thesis.
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Figure 6.2.1.: (a) Schematic Z2-phase diagram of a triangular p-shell in the presence of
a dominant σh-breaking. The gap-topology and the sublattice polariza-
tion (A, B) of the valley Dirac states (insets) is dictated by the compe-
tition of SOC(λSOC) and vertical reflection symmetry-breaking (λ̸σv

) as
it was introduced in Chap. 3. (b) Sublattice localization of p±-derived
Bloch wave functions at the valley momenta. The interference of the
local orbital phase (tori on the triangular lattice) and the Bloch phase
results in a constructive and destructive interference at the A/B sites, as
indicated by the dark-bright color plot of the associated charge density.
The panel shows the specific example of a p+ orbital at K = (1/3, 1/3)
and the color of the tori and the arrows denotes the total phase (for
details see also Chap. 3 and Fig. 3.2.1). Reprinted figures have been
taken and adopted from Bauernfeind, M. et al. “Design and realization
of topological Dirac fermions on a triangular lattice”. Nature Communi-
cations 12, 5396 (2021). CC BY 4.0. For consistency, the A/B labeling
follows the notation introduced in Chap. 3.

broken, as the C-atom of the first SiC layer renders the A/B positions inequivalent [see
Fig. 6.2.2 (b) and c.f. Fig. 5.1.1 (a) for a schematic illustration of the symmetry
breaking via the substrate]. Hence the site-symmetry group of the In atom is C3v and
the layer group is p3m1, which in principle could host any of the four topologically
distinct phases discussed in Chap. 5. However, as the In atom is located on top of
the Si atom, a sizable Ĥ ̸σh term can be expected. The STM apparent height profile
shown in Fig. 6.2.2 (c) along the path through the diagonal of the unit cell displays a
clear inequivalence of the A and B sites, confirming the non-negligible Ĥ ̸σv breaking
interaction. The top panel confirms the 1× 1 surface reconstruction by comparing the
lattice constants measured on the initially hydrogen passivated and the In-terminated
SiC substrate.

Based on the symmetry analysis, indium on SiC is a potential candidate for the real-
ization of the ̸σh QSHI introduced in Chap. 5. Indeed, as shown by the ab initio band
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Figure 6.2.2.: Adsorption geometry of indenene on SiC(0001) and experimental indi-
cations of non-negligible vertical reflection symmetry breaking. (a) Side
view and In-Si bonding distance dIn−Si. (b) Top view and STM topog-
raphy image [constant current mode, Vset = 1.5V and Iset = 50pA, sen-
sitive to the In pz states, see also Figs. 6.2.3 (a) and 6.2.6 (a,b)] showing
the associated triangular lattice geometry. The vertical reflection sym-
metry breaking via the C-atom in the surface layer of the substrate is
schematically illustrated by the blue and orange coloring for one unit
cell on the left side of the panel. (c) STM line profiles along the paths
with the same color in (b). The comparison with the initially hydrogen
terminated SiC substrate (gray line, scale is on the right) confirms the
1× 1 construction (top panel). The inequivalent apparent heights at the
A and B site (bottom panel) indicate the impact of the vertical reflec-
tion symmetry breaking on the electronic structure of the In p-bands.
Reprinted figures have been taken and adopted from Bauernfeind, M.
et al. “Design and realization of topological Dirac fermions on a triangu-
lar lattice”. Nature Communications 12, 5396 (2021). CC BY 4.0. For
consistency, the A/B labeling follows the notation introduced in Chap. 3.

structure in Fig 6.2.3, the system is insulating with an In p-type valence band charac-
terized by a predominant pz character at Γ and an in-plane-derived Dirac cone at the
valley momenta, i.e., the band structure exhibits all relevant orbital symmetry features
introduced in Chap. 5. Further, the horizontal mirror reflection symmetry breaking
opens a sizable hybridization gap between the radial in-plane and the pz-orbital and
promotes Rashba-type spin-splittings along the paths Γ-M and Γ-K (see also Sec. 6.1).
Moreover the Kramers degeneracy is lifted at the valley momenta, a consequence of the
vertical reflection symmetry breaking. Nevertheless, SOC dominates, as indicated by
the presence of both Lz eigenvalues in valence (conduction) as shown in Fig 6.2.3 (b).
The Wilson-loop analysis in Ref. [3] confirms the non-trivial Z2-topology (ν = 1). Fur-
ther, the effective filling of two electrons in the In p derived bands can be understood
from the covalent bonding of the In pz-orbital to the spz-type dangling bond of the
SiC substrate, which shifts the Fermi energy into the global gap.

As illustrated in Fig. 6.2.4, the band structure of the ab initio simulation is in
excellent agreement with the ARPES experiment, which shows a Dirac feature at the
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Figure 6.2.3.: Orbital (a) and out-of plane OAM (b) polarization in indenene on SiC
calculated from a {s, p} Wannier projection on the In, Si and C sites
obtained from a HSE06 hybrid functional calculation. Reprinted figures
of the supplemental material from Bauernfeind, M. et al. “Design and
realization of topological Dirac fermions on a triangular lattice”. Nature
Communications 12, 5396 (2021). CC BY 4.0.

valley momenta. The overall band dispersion fits well with the In p valence band,
which hybridizes at Γ with the SiC substrate states. Along the paths Γ-M and Γ-
K the ARPES signal broadens in energy at momenta, where DFT predicts sizable
Rashba splittings. However the heavily n-doped SiC substrate shifts the chemical
potential by ≈ 250meV into the conduction states of the Dirac cone, the DFT bands
have been aligned upon introducing a rigid energy shift. First calculations with the
PBE functional yielded a reduced gap at M , because the pz-band was predicted to
be located at energies between the two conduction bands of the Dirac cone [see also
Fig. 6.2.7 (a)]. A better agreement with ARPES and STM can be obtained with the
HSE06 functional, which has been chosen for the bulk characterization. A detailed
discussion on the impact of the DFT-functional can be found in Sec. 6.2.4.

Focusing on the valley momenta, the energy distribution curve fits illustrated by
orange dots in Fig. 6.2.4 (b) indicate a gap of O(100)meV, which is in reasonable
agreement with the DFT calculation yielding a gap of 70meV. Panel (c) shows the
band velocities resulting in a Fermi velocity of the Dirac cone of ≈ 0.03 c, which is
comparable to graphene [182, 183]. Further, the valence-conduction asymmetry indi-
cates the broken particle-hole symmetry in this Dirac system. A similarity to graphene
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Figure 6.2.4.: (a) Comparison of ARPES (taken at ≈ 20K and hν = 21.2 eV) and DFT
band structure (red) and BZ schematics for the probed high symmetry
cuts. The inset highlights the band situation at the valley momenta and
shows a strong asymmetry in the spectral weight of the Dirac bands. (b)
Zoom-in of the data shown in (a) at the valley momentum K, the orange
dots indicate the maxima of the energy distribution curve fits (for details
see Ref. [3]). (c) Band velocity v in units of the speed of light c of the
Dirac states. Valence(conduction) bands are indicated by v(c), the index
starts counting the states from the Dirac point. Reprinted figures in (a)
and (b) from Bauernfeind, M. et al. “Design and realization of topological
Dirac fermions on a triangular lattice”. Nature Communications 12,
5396 (2021). CC BY 4.0.

may be seen in the ARPES intensity distribution4 shown in panel (b). The upwards
dispersing states give rise to a strong signal, while the other bands are suppressed.
Such an intensity modulation is well established in graphene and promotes a horse-
shoe-shaped intensity around the valley momenta [184–189]. The mirror reflection
planes intersecting at K [see again Fig. 2.4.1 (b)] enforce even and odd mirror reflec-
tion symmetry eigenvalues for the Dirac bands. In graphene, these symmetries are
promoted by a non-local sublattice interference of the Bloch phase. As a result, both
sublattices interfere destructively for the anti-symmetric state, which suppresses the
ARPES intensity for the odd band. In indenene, this translates into radial and tan-
gential polarization of the in-plane p-orbitals and the latter is suppressed. As a subtle
detail, the vertical reflection symmetry breaking and SOC interaction in indenene on
SiC mix radial and tangential orbital degrees of freedom. Hence, the radial-tangential
polarization vanishes at the valley momenta5. This effect is also expected to occur in

4Under current investigation by Jonas Erhardt and Simon Moser. Emerged from a discussion on the
orbital symmetry of the triangular in-plane bands discussed in Chaps. 4.1 and 6.1.

5See also the suppression of pr and pt polarization in the valence bands of AgTe in the presence of
SOC in Fig. 6.1.2 (a).
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transition-metal dichalcogenides, which profit from an even stronger inversion symme-
try breaking [152, 190]. At larger momentum distances from K, the wave function is
expected to recover the radial-tangential polarization, which will enforce the intensity
modulation. This is subject to current investigation.

6.2.2. Z2-classification

The excellent agreement between theory and experiment in the structural properties
and the band dispersion hints towards a non-trivial ground state. Nevertheless the
analysis presented so far still lacks a bullet-proof indication of the topology. However,
as introduced in Chap. 3 and illustrated in Fig. 6.2.1, chiral Dirac fermions on the tri-
angular lattice interfere constructively on one of the A/B honeycomb sublattice sites.
Upon embedding them in a global hybridization gap (see also Sec. 5.10), the Z2-index
is encoded in the sublattice-projected DOS. Therefore, this suggests an energy- and
real-space resolved analysis of the Dirac fermion charge density. Further, the lifted
Kramers degeneracy will allow to probe the individual spinor contributions by varying
the energy. While the analysis in Chaps. 3 and 5 focuses on a qualitative symmetry-
based description, the ab initio and STM constant height dI/dV data, presented in
the following, unveils also the quantitative real-space wave function localization. The
corresponding analysis is shown in Fig. 6.2.5. Addressing the pz-dominated conduction
states allows to determine the In atom lattice position [panel (a), 300mV]. An energy
sweep through the Dirac bands yields maxima at the A/B honeycomb positions: start-
ing at a STM bias voltage of -400(-150)mV, where only the first valence(conduction)
band contributes as illustrated in panel (b), the signal peaks at the A(B) site. At
a voltage of -550(190)mV the second valence(conduction) band is expected to dom-
inate [see again Fig. 6.2.4 (b)]. Indeed, at these energies, the charge maximum has
switched position to the other sublattice site indicating ν = 1. To confirm this sub-
lattice polarization over the full-energy range of the Dirac cone, the difference in the
local density of states at the A and B sites from DFT and STS measurement is shown
in 6.2.5 (c,d). It complements the perfect agreement between theory and experiment:
both possess a non-trivial localization pattern which switches with the onset of the sec-
ond valence(conduction) band. Small deviations can be seen at STS voltages between
-200 to 0 mV arising from a zero-bias anomaly, not present in the DFT calculations.
As this is in general related to the STS measurement [191], i.e., it is not an intrinsic
feature of the electronic ground state [192], it does not conflict with the assertions
drawn on the Z2-topology (for details see [3] and supplemental material to Ref. [3]).
Obviously, present Z2-classification depicts the topology of the subspace of bands in the
whole BZ below the Dirac point energy6. Owed to the shift of the chemical potential
to the Dirac cone conduction states induced by the SiC substrate, the experimental

6As the SiC substrate is a well-established trivial insulator and all other In-derived bands are either
deep in the valence or conduction states, they are expected to be trivial. Hence, the Z2-topology
of the low-energy bands determines the topology of the full system.
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Figure 6.2.5.: Z2-classification of indenene from the valley charge localization. (a)
Comparison of atomically resolved constant height dI/dV maps and
DFT charge density. The In lattice position is calibrated by addressing
the In pz states at a bias voltage of 300mV. At the Dirac cone energies,
the charge density exhibits a band dependent localization either at the A
or B site. The particular switching pattern is assigned to the non-trivial
Z2-topology. (b) Dirac cone band structure and conversion between DFT
energy (given with respect to the Fermi level at neutral filling) and the
applied STM bias voltage. Blue and orange colors denote the sublattice
polarization of the bands, the horizontal bars depict voltage modulation
ranges of the measurements shown in (a). (c) Total DOS (black line) and
difference in the LDOS (red line) at the A/B sites. The blue and orange
areas correspond to the dominant sublattice in the charge localization.
The arrows and the numbers indicate the energy spacing in eV of the
Dirac band maxima. (d) UC-integrated differential conductance (black
line) and normalized difference of the dI/dV spectra taken at the A/B
sites. The noisy behavior at small negative bias voltages is attributed to
the zero-bias anomaly (for details see supplemental material to Ref. [3]).
Reprinted figures have been taken and adopted from Bauernfeind, M. et
al. “Design and realization of topological Dirac fermions on a triangular
lattice”. Nature Communications 12, 5396 (2021). CC BY 4.0.
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6.2. Indenene on SiC

realization may be regarded as a degenerately n-doped QSHI.

6.2.3. Orbital Symmetry as an Indicator for Real-Space
Obstruction

As it has been discussed in Sec. 5.9 for a minimal indenene-like model (̸σh QSHI),
not only the valence Dirac states localize on the A/B sites, but also the time-reversal
symmetry-breaking Wannier functions of the occupied bands are located at the honey-
comb positions. Hence, it is interesting to investigate the real-space obstruction nature
of indenene. However as an experimental analogue to the time-reversal violating Wan-
nier construction (see Sec. 5.9) is missing, we will identify the real-space obstruction
based on the band symmetries. In Chap. 5 the following key requirements have been
identified: (I) a SOC opened in-plane Dirac cone at the valley momenta, (II) a pz-type
valence band around the BZ center and (III) a σh symmetry-breaking gapped nodal
line (see also Fig. 6.2.3).
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Figure 6.2.6.: (a) Comparison of the ARPES and G0W0 band structure, the sublattice
DOS has been calculated according to Eq. A.29 in App. A.5. (b) STS
spectra taken at tip-to-sample distances z0 and z1 = z0 − 7.8 Å (inset)
to tune the sensitivity to in-plane and out-of-plane wave functions. (c)
dI/dV spectrum measured at A (orange), B (green) and the T1 posi-
tion (black line). Reprinted figures with permission from Eck, P. et al.
“Real-space obstruction in quantum spin Hall insulators”. Physical Re-
view B 106, 195143 (2022). © 2022 by the American Physical Society.

To this aim, Fig. 6.2.6 (a-c) presents a combined ab initio, ARPES and STS study
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6. Symmetry-Breaking and Topology in Adatom Monolayers

with the focus on the band symmetries. Panel (a) shows the comparison of the band
structure and the ARPES results revealing a perfect agreement between theory and
experiment. As also the conduction states will be addressed in the following, G0W0 cal-
culations have been performed by Armando Consiglio7 for a more accurate description
of the hybridization gaps (for details see Ref. [2]). To tune the sensitivity of the STS
experiment to the in-plane and out-of plane orbitals the tip-to-sample distance was
varied. For large distances, the contribution of the in-plane bands to the STS signal
can be expected to decay faster than the one of the out-of plane orbitals [193]. Such a
result is shown in the main plot in (b), which shows a strongly suppressed signal at the
energies of the Dirac bands. Pronounced shoulders can be seen at the energies of the
valence band maximum along Γ-K and of the conduction band minimum at M . This
indicates the presence of out-of plane bands at these energies [see again Fig. 6.2.3 (a)]
and proves (II). Upon approaching the tip to the sample, the sensitivity to the in-plane
bands is increased [inset to (b)]. In this setup, STS reveals the presence of electronic
states in the pz-gap indicating the Dirac cone in the ARPES measurement as being of
in-plane type. Further, we can infer that the valence band character changes from pz-
to in-plane-type along Γ-K and Γ-M , which is indicative of a hybridization gap opened
by mirror symmetry breaking (III). As experiment and theory reveal this gap to be
significantly larger than the SOC-induced splitting, e.g., the Rashba splittings inside
the BZ and the splitting at the valley momenta, it is evident that the horizontal reflec-
tion symmetry breaking dominates over SOC (λ̸σh

≫ λSOC) (III). To further inspect
the symmetry of the Dirac states, LDOS measurements on the three high-symmetry
positions of the SiC surface are shown in Fig. 6.2.3 (c). At the Dirac band energies,
the charge localization alternates for each band onset/offset between the A or the B
site and indicates the SOC-opened gap (I), as discussed in the previous section. At
higher bias voltages > 0.2V, the spectral weight measured on the indium position T1
increases dominantly, which confirms the onset of the pz minimum at M . Hence this
analysis confirms the presence of all key features (I+II+III) of the ̸σh QSHI model,
i.e., it puts forward indenene as the first experimentally realized real-space obstructed
QSHI [2].

6.2.4. DFT-Functional and Structural Details

We will conclude the discussion on the bulk properties of indenene on SiC by quan-
tifying the impact of the DFT functional and the adsorption site on the electronic
band structure. The latter should not only be regarded as a confirmation of the struc-
tural model introduced in 6.2.1, but highlights also the qualitative differences of the
three high-symmetry sites of the (111) and (0001) surfaces for future studies. For
completeness, also C-terminated SiC will be considered.

The band structures for a generalized gradient approximation functional (PBE), a

7Theoretische Physik I, University of Würzburg.
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hybrid functional (HSE06) and the G0W0 approximation8 are shown in Fig. 6.2.7 (a)
for the unit cell relaxed with HSE06. Focusing on the In valence bands, PBE and G0W0

are in reasonable agreement, while HSE06 yields significantly lower eigenvalues at Γ. In
conduction, G0W0 and HSE06 are almost on top of each other and the PBE bands are
at lower energies along K-M in this energy range. The minimum nearby M is below
the second conduction band of the Dirac cone. At the valley momenta, the gap and
average spin-splittings in the valence and conduction bands are in meV for PBE (gap,
splitting)=(13, 248), HSE06 (70, 240) and G0W0 (73, 223). The Wilson loop reveals
ν = 1 for all calculations. Hence, the three functionals are in qualitative agreement,
however the quantitative band energies are strongly sensitive to the chosen functional.
Further, for a fixed reference unit cell, PBE results in the largest ̸σv-splitting and the
smallest valley gap. Based on the comparison with the experiment (see again Figs. 6.2.4
and 6.2.7), HSE06 and G0W0 result in the best description of indenene on SiC, which
indicates the importance of the electron screening via the substrate. To address the
edge states in finite size geometries in the next section, we will fall back to PBE due
to the extensive computational demand of the other two functionals. However the
results need to be interpreted in the light of the present discussion. Their quantitative
description may change significantly with more sophisticated methods.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

Γ K M Γ

(a)

E
n
e
rg
y
 (
e
V
)

PBE
HSE06
G0W0

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

K M Γ K'

(b)

-0.1

-0.05

 0

 0.05

 0.1

 2.5  2.6  2.7

ν=1

ν=0

(c)

Δ
 (
e
V
)

dIn-Si (Å)

Figure 6.2.7.: (a) Investigation of the dependency of the band structure on the DFT
functional. The HSE06-relaxed UC has been used for all functionals. (b)
Impact of the bonding distance on the spinless band structures obtained
with PBE. The blue and the red lines correspond to the equilibrium
bonding distance and a bonding distance reduced by−0.4 Å, respectively.
(c) Valley gap ∆ and Z2-invariant ν as a function of the distance of the
In atom to the Si atom at the SiC surface. The filled circle indicates the
equilibrium distance, empty circles depict further data points and the
black line illustrates a fit of the HSE06 obtained data set. The dashed
vertical line illustrates the critical distance dcrit = 2.57 Å. The positions
of the substrate sites have been kept fixed in all calculations shown in (b)
and (c).

8The gap at the valley momenta has been obtained upon extrapolating to an infinitely dense k-grid,
for details see Ref. [2].
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Continuing with the structural details, the In-substrate bonding distance is the cru-
cial parameter, as it mediates the horizontal and vertical reflection symmetry break-
ing. If both dominate over SOC, the considered subset of bands is Z2-trivial (see also
Chap. 5). Further it should be noted that the freestanding In layer is metallic. This
also explains the huge experimental and theoretical effort in the structural classifica-
tion, which is also of importance for the ongoing capping and intercalation studies at
the chair of EP IV. To this purpose Fig. 6.2.7 (b) shows the spinless band structure at
the equilibrium bonding distance (blue lines). Upon approaching In to the substrate
(red bands), the vertical reflection symmetry breaking opened gap of the in-plane Dirac
cone increases, which favors ν = 0. Further the pz-type band at K and around Γ is
pushed to higher energies. In addition, the gapping between the radial in-plane and
the pz-band via the horizontal reflection breaking is enhanced. Considering also SOC,
panel (c) shows the dependency of the valley gap on the bonding distance. For HSE06
the topological phase transition occurs at dcrit = 2.57 Å and the first derivative of the
gap function at the equilibrium distance yields a slope of −0.63 eVÅ−1.
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Figure 6.2.8.: Adsorption study of In on the Si-terminated 1×1 SiC(0001) surface cal-
culated with PBE. (a) Total energy with respect to its global minimum
for adsorption on the T1 site and normalized in-plane force (vector field
plot). (b) Vertical distance between indium and surface silicon, yielding
a maximum for indium adsorption at T1. The in-plane x and y coor-
dinate are given in units of the lattice constant. Reprinted figures of
the supplemental material from Bauernfeind, M. et al. “Design and re-
alization of topological Dirac fermions on a triangular lattice”. Nature
Communications 12, 5396 (2021). CC BY 4.0.

Considering adsorption not only on the T1 site, Fig. 6.2.8 shows an in-plane coordi-
nate dependent study of the total energy landscape and the in-plane forces as well as
the In-Si distance obtained with PBE. The total energy has a saddle point at H3 and
a global maximum at the T4 site with values of 245 and 340meV, respectively, larger
compared to the T1 position. This confirms from theory the adsorption of the indium
atom at the T1 site. Further the In-Si distance dIn−Si [see panel (b)] is largest for the
T1 site, which implies an increased vertical reflection symmetry breaking on the H3
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and T4 position owed to the reduced distance to the substrate surface.
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Figure 6.2.9.: Band structures of In adsorbed on the high symmetry positions of the
Si- and C-terminated SiC(0001) surface in the top and bottom row, re-
spectively. The point size denotes the total In character, while the color
code depicts the s + pz (red) and p± (green) orbital contribution. All
plots show spinless calculations obtained with the PBE functional.

This is also reflected in the band structure (without SOC) shown in Fig. 6.2.9, where
the splitting of the in-plane bands at the valley momenta is orders of magnitude larger
compared to the T1 position. These unit cells lack a narrow-gap Dirac cone feature. For
T4, the In s-type valence band is located in the in-plane gap at the valley momenta and
the pz-band is pushed into the conduction states, the overall band structure is metallic.
H3 yields instead an insulating band structure, which is rendered metallic if SOC is
considered (see also supplementary material to Ref. [3], Fig. 10). As the hybridization
gaps, opened by symmetry breaking, are much larger than the SOC interaction, these
systems are Z2-trivial. The strong vertical reflection symmetry breaking might stabilize
a finite quadrupole moment (assuming a global gap), however as these configurations
are metallic in the presence of SOC and as they have not been realized in experiment,
this analysis has not been pursued further.
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Although having the same layer group, adsorption on the C-terminated surface is
expected to yield quantitatively different results owed to the large electronegativity of
carbon. This is also reflected in the reduced vertical bonding distances between the In
atom and the C atom of the surface layer, which are 2.28, 2.20 and 2.08 Å for the T1, T4
and H3 position, respectively. Similarly to the Si-terminated surface, the total energy
is minimized on T1 and increased by 495meV on T4 and by 325meV on H3. The
corresponding band structures are shown in the lower row of Fig. 6.2.9. Adsorption on
T1 promotes a band ordering and orbital character similar to the one obtained on the
Si-terminated surface, albeit being metallic. T4 and H3 are instead insulating with a
predominant spz-type band in valence, which hints towards a Z2-trivial ground state
with vanishing bulk quadrupole moment.

6.2.5. Edge States

Having established the bulk properties of indenene on SiC, we will discuss in the fol-
lowing its topologically protected edge states in finite size geometries. As this requires
large lateral UCs, we will reduce the substrate to one layer of SiC and employ the PBE
functional, to keep the numerical effort within controllable limits. Hence, the results
have to be interpreted by considering also the discussion of the previous section, e.g.,
the underestimation of the hybridization gaps. On the other hand, the ab initio treat-
ment takes into account the edge potential self-consistently, in contrast to finite-size
calculations based on the bulk tight-binding parameters as analyzed in Sec. 5.6. We ac-
count for this by considering a 2D SiC substrate with 1D indenene structures as shown
in Figs. 6.2.10 and 6.2.12. To avoid metallic dangling bonds, hydrogen passivation is
applied to the non-indium occupied Si sites.

Starting with the flat edge as shown in Fig. 6.2.10, a UC with eleven In sites is con-
sidered which corresponds to a terrace width of 26.6 Å. The in-plane spacing between
periodic indenene slab replicas is 16.0 Å. Its band structure possesses four metallic
exponentially localized edge states connecting the insulating valence and conduction
bulk states, a consequence of the non-trivial topology. The vertical mirror reflection
parallel to the edge is broken via the presence of the C atom, which renders the left
and the right edge inequivalent. This lifts the degeneracy of the edge states located
on opposed terminations. The associated charge density at Γ shows that the edge
state is not solely in-plane derived, but has also a sizable pz contribution. Albeit the
low-energy Dirac physics in the bulk arises from the in-plane orbitals, the pz-orbital
is at play in the edge state. As discussed in Sec. 5.6, this allows for the formation of
in-plane OAM which cants also the spin alignment from out-of plane towards in-plane.

A detailed analysis of the localization and spin-alignment of the edge states is pre-
sented in Fig. 6.2.11. Panel (a) shows the squared amplitude of the wave function over
the slab |Ψ(y)|2 at Γ in the plane of the indium atoms. Additionally, an exponential
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fit for determining the bulk penetration length is presented:

F (y) = f(y) · sin(b · y + c)2, f(y) = A2 · exp(−2R · y). (6.6)
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Assuming a massive Dirac system with mass m and Fermi velocity vF [16, 19], the
wave function has the real space parametrization in the non-periodic direction

Ψ(y) ∝ exp

(
−
∫ y

0

dy′m(y′)/vF

)
. (6.7)

This allows an estimation of the bulk gap, which damps the decay into the bulk. The
edge states have a decay constant of |R| ≈ 0.2 Å−1 and a Fermi velocity of vF ≈ 1 eVÅ
for a linearized dispersion throughout the whole gap. Assuming a constant mass pa-
rameter yields m ≈ 0.2 eV, which is twice as large as the bulk gap at the valley
momenta. However this is not the relevant energy scale, as the exponential damping of
the edge states is mediated by the bulk gap at the given slab crystal momentum [74].
At Γ the projected bulk gap onto the 1D BZ is much larger than the global gap, since
it is defined by the hybridization gap of the back-folded bulk states along Γ-M , which
is 0.85 eV in PBE. Further, this approximation neglects spatial variations of the mass
parameter. Therefore it cannot account for sizable hybridization gaps at the edges
opened by the broken lattice periodicity and the edge potential. However, due to the
relatively small slab width, separate fits for the edge and the bulk region are out of
reach.

The non-zero components of the spin polarization are shown in Fig. 6.2.11 (b). The
Sy and Sz components are almost of similar size and remain constant until the edge
state approaches the projected valley momentum. Sy deviates from this behavior
around 0.4 Å−1, where two edge states cross. Close to K, the Sy component switches
for bands with predominant Sz-down character [see description to Fig. 6.2.11 (b)].
At K all states possess a dominant Sz polarization. The spin canting from out-of
plane towards in-plane is a clear indicator of the formation of in-plane OAM, which
arises from the horizontal reflection symmetry breaking. Away from the projected
valley momenta, mirror symmetry breaking dominates over SOC. This results in a
dominant OAM polarization for states located at the same edge. SOC acts as a weak
perturbation and promotes an anti-parallel spin-alignment. Approaching K, the SOC-
opened gap in the in-plane subspace takes over, which is reflected in the abandonment
of the anti-parallel spin alignment until out-of plane polarization is reached.

We will turn now to the other fundamental termination of the triangular lattice,
namely the zigzag edge. As shown in Fig. 6.2.12, we consider a 35.3 Å wide ter-
race (corresponding to twelve repetitions of the conventional bulk unit cell), periodic
in-plane replicas are separated by a distance of 10.8 Å. The presence of the C atom
in the substrate breaks reflections on a plane normal to the edge. Further, as the UC
contains an integer repetition of the conventional unit cell, it is not inversion symmet-
ric and lacks a diagonal reflection σd parallel to the edge9. Its band structure and the
charge localization of the low-energy valence state at Y are shown in Fig. 6.2.12. This
geometry is insulating with strongly edge localized low-energy states at the BZ bound-

9Inversion and σd is only preserved in n+1/2 repetitions of the bulk UC, i.e., upon adding/removing
one vertical line of In atoms at the edge.
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Figure 6.2.12.: Band structure and charge localization of the edge states at Y (indicated
by the empty circles in the band structure plot). The red and blue color
denotes the projection onto the left and the right edge, respectively. For
an improved visualization, the edge character is plotted by projecting
alternatingly on the opposed edges.

ary. They are almost degenerate, but spin-splittings are visible in valence along Γ-Y ,
owed to the absence of inversion. Instead referring to Sec. 5.6, a Dirac-type edge state
crossing at Γ is expected in the thick slab limit. In the shown geometry, the weights
obtained from projection onto the edge sites declines around Γ, which indicates an
increased localization across the indenene flake (see also Fig. 6.2.13). This opens a
hybridization gap between the edge states, the flake width is insufficient to disentangle
states located at opposed edges. A similar behavior is observed for graphene [182, 194],
whose arm-chair edge corresponds to the zigzag termination of the triangular lattice.
This behavior can be understood from the mapping of 2D bulk momenta onto the 1D
slab BZ (see also Fig. 5.6.1). For the flat termination, the edge states occur at momenta
where the projected bulk band structure has a wide gap, i.e., it can be interpreted as
a SSH model [17] in its dimerizing phase [74]. Instead for the zigzag edge, the narrow
gapped Dirac fermions at K and K ′ are mapped onto Γ. Hence, the edge states live in
a very small bulk gap, which allows them to deeply penetrate into the bulk. In turn,
the intra-bulk hybridization of the edge states is sizable and promotes a gapped edge
states. In agreement with the minimal model calculations (see also Fig. A.7.1) and in
contrast to the flat edge, the spin polarization is solely in-plane oriented as the out-of
plane component vanishes as shown in Fig. 6.2.13.

Focusing on the charge distribution of the four-fold degenerate valence state at the
TRIM Y , as shown in Fig. 6.2.12, its wave function is heavily edge localized. The
in-plane charge distribution unveils the absence of inversion symmetry: the vertical
reflection symmetry breaking driven by the C atom promotes a strong asymmetry
with respect to reflection planes normal to the edge (y 7→ −y). Further, the edge

121



6. Symmetry-Breaking and Topology in Adatom Monolayers

-1

-0.5

 0

 0.5

 1

Y 
—

 Γ 
—

Y 
—

E
ne
rg
y 
(e
V
)

Figure 6.2.13.: Tangential spin polarization (Sx) in the left panel. Positive and negative
values are denoted by blue and red colors, respectively. The empty circle
highlights the state, for which the charge localization is shown at the
right.

charge density is invariant under a diagonal reflection onto the other edge followed by
a fractional translation of half a lattice constant parallel to the edge. Again, the side
view unveils the importance of the pz-orbital in indenene, as the edge state exhibits also
a strong out-of plane character. The hybridization of the edge states via the bulk at Γ
is shown in Fig. 6.2.13. This gives rise to a

√
3×

√
3 reconstruction, which has been also

reported and attributed to the inter-valley coupling in graphene supercells [195]. For a
quantitative comparison of the edge localization, the squared wave function amplitude
over the slab at Y and Γ is shown in Fig. 6.2.14. The edge state decays fast into the
bulk at Y in (a). A wave packet fit introduced in Eq. 6.6 yields |R| ≈ 0.1 Å−1. At
Γ [panel (b)], the periodicity of the edge state changes when penetrating into the bulk.
This makes a fit with the aforementioned parametrization challenging. Nonetheless,
the enveloping function f(x) describes reasonably well the maxima of the squared wave
function, the decay constant is |R| ≈ 0.04 Å−1. This value is one order of magnitude
smaller compared to the flat-edge geometry. It reflects on a quantitative level the
weak damping of the edge state penetration due to the small projected bulk gap at Γ.
While this ab initio-derived trend is expected to be robust on the qualitative level, the
absolute numbers need to be conceived with care owed to the fitting procedure, the
relatively small flake widths, the thin single layer substrate and the treatment within
the PBE functional (see also Sec. 6.2.4).

The comparison of the two fundamental edge geometries has unveiled qualitative
differences in the edge localization and spin polarization of the edge states. Similar to
other trigonal and hexagonal systems, the edge states penetrate deeply into the bulk
if they happen to occur at the projected bulk Dirac momenta. In contrast to graphene
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Figure 6.2.14.: Exponentially localized wave package fit of the edge state at Y and
Γ in (a) and (b), respectively. The corresponding illustration of the
associated charge density can be found in Figs. 6.2.12 and 6.2.13. The
fitting details are given in the text and the fit functions are defined in
Eq. 6.6.

and bismuthene, in-plane and out-of-plane orbital degrees of freedom participate in
the edge states, which tilts the spin polarization from out-of-plane towards in-plane
for the flat edge. Instead for the zigzag edge, the spin alignment is purely in-plane.

6.2.6. Conclusion and Outlook

In close collaboration with the experiment, indenene on SiC has been put forward as
the first real-space obstructed triangular monolayer QSHI. Its trigonal (almost hexag-
onal) symmetry promotes a SOC-gapped Dirac cone. It is located in a sizable hy-
bridization gap in the p-bands, opened by the horizontal reflection symmetry breaking
via the substrate. Indenene has been unambiguously classified as Z2-non-trivial upon
addressing the real-space localization of the bulk Dirac bands, i.e., without searching
for the topology-promoted quantized features in its transport properties.

A detailed analysis of the wave function symmetry in the whole BZ from theory
and experiment has classified indenene as being real-space obstructed. The time-
reversal symmetry-breaking valence band Wannier centers localize on the honeycomb
positions in the voids of the triangular lattice. This extends the concept of real-space
obstruction to the ν = 1 regime and calls immediately for the investigation of edge
and corner states in heterostructures involving no or differently obstructed QSHIs.
In particular, interfacing indenene with the other large gap QSHI on the same SiC
substrate, bismuthene, could be highly promising.

Indenene’s edge states are qualitatively comparable to graphene’s, as the flat edge
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hosts strongly localized states, while the zigzag edge (corresponds to the honeycomb’s
armchair edge) allows for a sizable bulk penetration length. However a fundamental
difference can be seen in the orbital composition, as the full p shell is involved in
the formation of the edge states. In the flat geometry this promotes in-plane and
out-of plane spin and OAM polarization, which makes them particularly interesting
for transport applications relying on electrons with strongly coupled orbital and spin
degrees of freedom.

6.3. HOTIs on SiC, the Lightweight Siblings of
Indenene

Inspired by the discovery of indenene on SiC and based on the profound symmetry
analysis presented in Sec. 2.4 and Chap. 5, a design principle for higher-order topology
in triangular monolayer adsorbates will be conceived. The results have been obtained
in a highly enjoyable and productive collaboration with with Yuan Fang10 and Jennifer
Cano11. As highlighted in Chap. 5, a HOTI phase can be stabilized by a p-shell on
the triangular lattice, if vertical and horizontal reflection symmetry breaking dominate
over SOC, especially if SOC vanishes. As discussed for indenene on SiC (see again
Sec. 6.2.1), adsorption on the high symmetry sites of the (111) surfaces of zinc-blende-
and diamond-type insulating substrates, such as SiC, Si, GaAs, InSb, etc., results in
layer group p3m1, which is exactly the symmetry, where the HOTI phase is expected
to occur (see also Sec. 5.7). However the sizable SOC renders indenene a real-space ob-
structed QSHI, which forbids a time-reversal symmetric Wannier construction. Hence,
to achieve a Z2-trivial ground state with insulating edges it is instructive to inspect
lighter Group III atoms on the T1 position on SiC(0001). In the following, we will pro-
pose triangular adatom layers of boron, aluminum and gallium as potential candidates
for the experimental realization of the triangular HOTI phase [4]. As a paradigmatic
example for corner states in Group III adsorbates, the bulk and finite size properties
of the Al adsorbate will be discussed in detail.

6.3.1. Unit Cell and Bulk Electronic Structure

Equivalently to indenene on SiC, we will consider in the following adsorption on
the T1 position as shown in Fig. 6.3.2 [see also Fig. 6.2.2 (a,b)]. This provides three
important key ingredients: (I) structural stabilization of a triangular adsorbate mono-
layer; (II) symmetry breaking across the horizontal mirror plane to open a hybridization
gap (Ĥ ̸σh) between the in-plane and out-of-plane orbitals; and (III) symmetry breaking

10Stonybrook university, New York, USA.
11Stonybrook university, New York, USA and Center for Computational Quantum Physics, Flatiron

Institute, New York, USA.
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LG ν SOC vs ̸σh SOC vs ̸σv IRREPs Γ IRREPs K P = (P1, P2) Q12

p3m1 0 λSOC ≪ λ̸σh
λSOC ≪ λ̸σv

Γ6(2) K4(1)⊕K6(1) (2
3
, 1
3
) mod 2 2

3
mod 1

Table 6.3.1.: Summary of the triangular HOTI phase of the Group III adsorbates on
SiC(0001). The UC symmetries stabilize a Z2-trivial band structure with
finite dipole and quadrupole moment, which is determined by the irreps
of the valence bands at Γ and K. Reprinted table of the supplemental
material with permission from Eck, P. et al. “Recipe for higher order
topology on the triangular lattice”. Phys. Rev. B 107, 115130 (2023).
© 2022 by the American Physical Society.

across the vertical mirror planes (Ĥ ̸σv) via the presence of the C atom in the SiC surface
layer to gap the Dirac states by inducing a finite bulk quadrupole moment12 [4] (see
also Tab. 6.3.1). A relaxation of B, Al, and Ga with the PBE functional yields bonding
distances to the Si-atom of the size of dB = 2.03 Å, dAl = 2.53 Å and dGa = 2.51 Å.

As shown in Fig. 6.3.1, all three adsorbates give rise to an insulating band structure.
The valence bands have a predominant pz character around Γ and in-plane character
at the BZ boundary. The impact of the horizontal reflection symmetry breaking can
be seen along Γ-M and Γ-K. The change in the valence band orbital character from
pz to radial in-plane alignment is accompanied by a large hybridization gap around
the Fermi energy [see Fig. 6.3.2 (a,c) for orbital symmetry]. Further, the vertical
reflection symmetry breaking gaps the in-plane Dirac cones at the valley momenta by
∆B = 0.49 eV, ∆Al = 0.24 eV and ∆Ga = 0.22 eV. The spin splitting resulting from
the SOC interaction is 1, 12 and 81meV for B, Al and Ga, respectively. Focusing on
characteristic differences, the pz state is strongly bound to the adatom in the case of
B. This results in a small bandwidth and a weak hybridization with the SiC quantum
well states at Γ. For Al and Ga, the pz state is more dispersive and hybridizes strongly
with the SiC states [see also Fig. 6.3.2 (a)]. However for Ga and B, the pz state at M
is located in the Dirac cone gap, which results in global indirect band gaps of 0.18 and
0.27 eV, respectively. As it has been discussed for indenene in Sec. 6.2.4, the relative
alignment of the low-energy band extrema is expected to be highly DFT-functional
dependent.

12Further details can be found in Secs. 5.5 and 5.7.
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Figure 6.3.1.: Bulk band structure of the three triangular adsorbates on the T1 position
of four layers SiC(0001). The green and orange color code denotes the
s+pz- and the p±-character, respectively. The empty circles in (b) depict
the states for which the real-space squared amplitude is illustrated in
Fig. 6.3.2. Reprinted figure taken and adopted from the supplemental
material with permission from Eck, P. et al. “Recipe for higher order
topology on the triangular lattice”. Phys. Rev. B 107, 115130 (2023).
© 2022 by the American Physical Society.

6.3.2. Band Symmetry Driven Electronic Multipoles

All band structures are insulating and Z2-trivial as the valence band doublet localizes
on the same sublattice positions [see Fig. 6.3.2 (b) and Sec. 6.2.2 for argumentation].
Therefore the position of the bulk Wannier centers and the resulting electronic bulk
multipoles can be calculated from symmetry indicators. For all three configurations,
the highest adsorbate valence band transforms under the Γ6(2),M3M4(2) and K4(1)⊕
K6(1) irreps. This is an elementary band representation of Wyckoff position 1b, which
corresponds to the H3= (1/3, 2/3) position [A site in Fig. 6.2.2 (b), see also panel (d) of
Fig. 6.3.2]. Hence the electronic dipole moment is P = 2e(2/3, 1/3) and the quadrupole
moment is Q12 = 2e/3 (see also Tab. 6.3.1). Similarly, this can be also derived from
the C3 rotation eigenvalues at Γ and K which arise from the total angular momentum
jz = {−1/2, 1/2} and jz = {1/2, 3/2}, respectively, and recalling Eqs. 5.12 and 5.14.
The real-space obstruction is illustrated in Fig. 6.3.2 by showing the squared wave
function amplitude at the high symmetry momenta. At Γ (a) the adatom centered
pz-type wave function penetrates deep into the substrate and has maxima along the
vertical bonds. This is different for K (b) and M (c), where the wave function has a
node on the triangular lattice site and its maximum is located in the void space. The
high-symmetry momenta integrated wave function (d), which may be qualitatively
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regarded as the valence band Wannier function13, is centered on the H3 site. This
illustrates the finite electronic dipole and qadrupole moment of the unit cell. However
it should be noted, that this quantitative analysis depends strongly on the radial scaling
of the wave function, because its maximum is not necessarily centered on H3. Boron for
instance has a strongly bound 2p states, which result in maxima centered in between
the H3 and the adatom position. Nevertheless, as the localization argument is solely
band symmetry based, the corresponding valence band Wannier function is centered
at H3.

Figure 6.3.2.: Qualitative construction of a Wannier function for Al on SiC(0001). Pan-
els (a-c) show the squared wave function of the Al-derived valence band
at Γ (a), K (b) and M = (0, ky) (c). The corresponding states are high-
lighted by empty circles in Fig. 6.3.1 (b). (d) presents the over all six
high symmetry momenta (Γ, K, K ′ and 3M) summed squared ampli-
tude, which can be regarded as a qualitative representation of the valence
band Wannier function. The isosurface value in (d) is four times larger
than in (a-c). The color scheme of the atoms follows Fig. 6.2.2, Al is
depicted by light-blue colors.

6.3.3. Edge States of Al

To observe metallic in-gap states at the corners, it is important to stabilize an insu-
lating gap at the 1D edges. Here, we will briefly discuss the edge states of Al on SiC,
which can be regarded as the Z2-trivial analogues of the indenene edge states presented

13This is only a qualitative argument as the construction of the Wannier function requires the in-
tegration over the full BZ (see Eq. 2.52). The high-symmetry momenta do not constitute an
appropriate sampling grid.
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in Sec. 6.2.5. As it has been demonstrated for the minimal model in Sec. 5.6, the finite
bulk dipole results in polar flat edges, which favor metallicity. The DFT calculation
shown in Fig. 6.3.3 (a) shows that this also the case for Al. For the tight-binding
model [see again Fig. 5.6.2 (IV)] states living on opposite edges are degenerate at Γ.
Instead, the realistic treatment of the edge potential in the ab initio calculation gaps
the edge states at Γ resulting in metallic edge state crossings along Γ-K, i.e. it enforces
a metallic slab band structure. The lifted degeneracy at can be understood from an
inspection of the edge geometry (see again Fig. 6.2.10): the C-atom renders opposite
edges inequivalent. However the determination of the sign and, of course, the absolute
strength of this mass term requires ab initio methods. Hence, 0D geometries with flat
edge terminations are unsuitable for the direct observation of in-gap corner states and
a passivation to compensate the edge charge and the edge potential is required (see
again Sec. 5.7). By contrast the zigzag edge offers perfect conditions as it has an
insulating band structure as shown in Fig. 6.3.3 (b). Similar to indenene, the bulk
penetration increases as the edge states approach Γ. However, as the bulk gap is triv-
ial, it is reasonable to assume that the chosen slab width yields a valid gap even though
the hybridization via the bulk is still at play. Further, σd (+glide-shift) maps opposed
edges onto each other [see again Fig. 5.6.1 (a)]. Hence their edge potentials must be
of same strength and a metallic tendency, as for the flat edge, can be excluded. The
qualitative band structure is also supported by tight-binding models with a size of 30
conventional UC repetitions, where the edge states possess a similar localization [see
again Fig. 5.6.2 (IV)]. Further it should be noted, that in corner regions, where two
edges meet, the inter edge hybridization via the bulk will be relevant.

6.3.4. Quadrupole Promoted Corner Charge

Having understood the formation of the electronic bulk polarization and being equipped
with the knowledge of the presence of insulating 1D edges allows us to predict poten-
tial hosts of in-gap corner states: the touching points of zigzag edges. However, as the
system lacks chiral symmetry, the in-gap position of the corner states is not symmetry
protected and will hence depend on a proper edge potential [147, 196–199].

For a triangular flake with zigzag termination, the UC and the corresponding elec-
tronic spectrum and charge localization of the zero-energy states is shown in Fig. 6.3.4.
To correctly incorporate the edge potential, a 2D SiC substrate is considered with H-
passivated surface and bottom dangling bonds (b, c). At neutral filling, its electronic
spectrum possesses a six-fold degenerate14 state located in the bulk gap (a). This state
localizes at the corners and has a total filling of 2 electrons. Hence, it exhibits the fill-
ing anomaly associated to the quadrupole moment given in Eq. 5.16. Focusing on its
real-space symmetries (b, c), out-of plane and in-plane degrees of freedom participate

14The sixfold degeneracy is slightly lifted as the rectangular substrate UC of the calculation does not
comply with the C3 symmetry of the triangular flake.
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Figure 6.3.3.: Band structures with SOC and edge projection of flat- (a) and zigzag-
edge (b) terminated Al slabs with terrace widths of 39.9Å (7 conventional
UCs) and 36.9Å (11.5 conventional UCs), respectively. The color code
follows the schemes of Figs. 6.2.10 and 6.2.12. Reprinted figure in (b)
is taken and adopted from the supplemental material with permission
from Eck, P. et al. “Recipe for higher order topology on the triangular
lattice”. Phys. Rev. B 107, 115130 (2023). © 2022 by the American
Physical Society.

in the formation of the tightly bound corner state. Furthermore, it is almost perfectly
symmetric with respect to the three vertical mirror reflections σd of the bulk, even
though these symmetries are broken at the edges of the flake [4]. It is also interesting
to note that the local symmetry of the corner state [see Fig 6.3.4 (b)] has strong sim-
ilarity with the indenene edge states shown in Figs 6.2.10 and 6.2.12, namely a pz-pt
symmetry which forms a bonding state with the neighboring pz state. This highlights
again the importance of the hybridization of the in-plane and out-of-plane subspaces
via horizontal reflection symmetry breaking.

Having established the existence of fractionally filled in-gap corner states in zigzag
terminated flakes, we will turn now to the flat edge termination. This is also of impor-
tance for future experimental investigations, as for indenene [3, 61] the flake termi-
nation can be controlled via the SiC substrate terrace geometry. We will address this
in the following in a qualitative study for a freestanding triangular flake. At neutral
filling, the chemical potential is located in the bulk continuum Fig. 6.3.5 (a). However,
the energy spectrum possesses a gap of size 0.25 eV at 0.7 eV. The first six “valence”
states15 of this gap are strongly corner localized. As explained in Sec. 5.7 and 6.3.3
the metallicity16 of this geometry can be expected from its polar edges. Upon compen-
sating the edge charge for a dipole moment of pedge = 2/3e according to Eq. 5.19, the

15The quadratic DFT UC breaks the C3 symmetry, which lifts the six-fold degeneracy of the states.
16The chemical potential is in a gap of the spectrum shown in Fig. 6.3.5, which is expected to vanish

or at least to exponentially seize with increasing flake size.
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Figure 6.3.4.: (a) Energy spectrum of a zigzag terminated triangular flake of Al on SiC,
truncated as shown in (b, c). The red color code denotes the corner char-
acter of the state: the six-fold degenerate in-gap states are completely
localized on the corners. Top and side view of the in-gap state are shown
in panels (b) and (c), respectively. To improve visualization in (b), the
illustration of the H-passivation of the pristine region of the top SiC sur-
face is omitted. The color scheme of the atoms follows Fig. 6.2.2, Al is
depicted by light-blue colors. Reprinted figures in (a) and (b) are taken
and adopted with permission from Eck, P. et al. “Recipe for higher order
topology on the triangular lattice”. Phys. Rev. B 107, 115130 (2023).
© 2022 by the American Physical Society.

corrected chemical potential promotes indeed a filling of two electrons in the corner
state, as shown by the dashed line in panel (a). Focusing on the real-space symme-
tries (b, c), the edge state and the flake are symmetric with respect to the vertical
reflection σd. The side view unveils again the presence of in-plane and out-of plane
degrees of freedom, the overall charge distribution is similar to states living on corners,
where two zigzag edges meet.

6.3.5. Conclusion and Outlook

Based on symmetry considerations combined with the experience gained on indenene
on SiC, the “light” Group III elements B, Al and Ga have been identified as real-space
obstructed 2D HOTI candidates which can host fractionally filled in-gap corner states.
As they have not only a finite quadrupole, but also a non-vanishing dipole moment,
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Figure 6.3.5.: (a) Energy spectrum of a flat terminated triangular flake of Al on SiC,
with N = 15 sites per edge as shown in (b,c). The red color code
denotes the corner character of the state, which unveils a strongly corner
localized sixfold degenerate state in conduction. The dashed line shows
the chemical potential for a doping by Qedge = 28e, which compensates
the edge charge. The edge charge is a consequence of the dipole moment
pedge = 2/3e normal to the edge (see Eq. 5.19). Top and side view of
the corner state are shown in panels (b) and (c), respectively. The color
scheme of the atoms follows Fig. 6.2.2, Al is depicted by light-blue colors.

insulating edges, a necessary prerequisite for the observation of in-gap states, exist only
for the zigzag termination. For this geometry, the ab initio calculations reveal for a
triangular flake a sixfold degenerate corner state with a total occupation of 2 electrons.
For the chosen flat edge geometry instead, the dipole moment promotes an edge charge
that pushes the corner state to conduction. If the edge charge is compensated, the
fractional filling of 2/3e per corner is restored. Hence, in-gap states at neutral filling
might be achieved by a suitable passivation. On a more general perspective, the results
of the ab initio calculations for Al are highly promising, as they highlight also, that
the self-consistently obtained corner potential is of appropriate magnitude to stabilize
the corner state in the bulk gap. This is an important detail, as the bulk quadrupole
moment guarantees only for the presence of corner charge. However the in-gap energy
position of the corner state in the considered unit cells is not protected owed to the
absence of chiral symmetry [147, 196–199].
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6.4. The Generically Compensated Fermi Surface of
Group V Adsorbates on SiC

We will conclude the chapter on triangular adsorbates by giving a perspective beyond
spatial symmetry breaking. Namely by investigating the compensated Fermi surface
of antimony on SiC in the light of nesting properties, which may give rise to electron-
electron- and electron-phonon-coupling driven phases. This work has been inspired
by experiments of Tim Wagner and Bing Liu (both EP IV, university of Würzburg),
who have found structural indications for a triangular antimony monolayer on a 1× 1
SiC(0001) substrate, while STM measurements hint towards a 2× 2 electronic recon-
struction. We will consider the 1 × 1 UC where moving to Group V adatoms can be
regarded as the +2e−-doped versions of indenene. In particular, this section will be
devoted to the discussion of the low-energy band structure of Sb on SiC, which can
be however regarded as generical to Group V adsorbates. Their compensated Fermi
surface consists of a Γ-centered hole pocket and electron pockets at the valley mo-
menta. The orbital symmetries of these features are dictated by the mirror reflection
symmetries of the triangular lattice. Further, a minimal tight-binding Hamiltonian
based on a {px, py} basis is developed. This model serves as an ab initio derived start-
ing point for obtaining the Lindhard function and functional renormalization group
calculations. The latter are currently performed by Lennart Klebl (Universität Ham-
burg), with the aim to address multi-orbital long-range correlation physics. Finally, by
considering also phosphorus and bismuth, ab initio theory unveils that this particular
Fermi surface topography is not specific to antimony, but instead generic to Group V
adsorbates.

6.4.1. Unit Cell and Electronic Structure

Similarly to Secs. 6.2 and 6.3, we will consider in the following the Sb atom on the
T1 position [see Figs. 6.2.2 (a,b) and 6.3.2]. Hence this UC belongs to layer group
p3m1 and the site symmetry group of the Sb site is 3m. An ab initio treatment with
PBE yields a bonding distance of dSb−Si = 3.27 Å. The corresponding spinless band
structure is shown in Fig. 6.4.1, the bands at the Fermi level have strong Sb in-plane
p character and develop a momentum-dependent radial and tangential alignment with
respect to the nearest Γ point. Their valley Dirac cone is located at −3.7 eV, which is
gapped by 0.26 eV, a signature of the vertical reflection symmetry breaking. This gap
is reopened in the presence of SOC by 68meV (the band structure with SOC can be
found in Fig. 6.4.5). However, as it is deep in valence and the overall band structure is
metallic, a profound discussion on Z2-topological properties is inappropriate. Another
distinction to the Group III adsorbates is also reflected in the out-of-plane degree of
freedom, because the Sb pz state is in valence in the whole BZ. It hybridizes strongly
with the substrate quantum well states at Γ and forms a relatively flat band around
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−2 eV at the BZ boundary, e.g., along M -K in Fig. 6.4.1 (a).
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Figure 6.4.1.: (a) Spinless band structure of Sb on four layers of SiC(0001). The blue
and red color code denotes the radial and the tangential character, re-
spectively, of the Sb in-plane bands. The vertical dashed lines highlight
the boundary and the corner of the 2 × 2 BZ. (b) Corresponding or-
bital projected Fermi surface to (a). The dashed orange hexagon illus-
trates the 2 × 2 BZ and the dashed green circle corresponds to a free

electron parabola with |kFermi| = 1.76 Å
−1

centered at Γ of the first BZ.
The empty black circles in (a) and (b) depict representatives of the mo-
menta, for which the Fermi velocity and the effective mass have been
determined (see text for details). The orbital character has been calcu-
lated from a k-dependent basis rotation of a Wannier Hamiltonian into
a radial (blue) and tangential (red) in-plane basis as introduced for the
minimal p shell model in Chap. 4 in Eq. 4.9 and shown in Fig. 4.1.1. It
should be noted, that the {px, py} orbital character changes continuously
along the Fermi surface features.

As shown in Fig. 6.4.1 (b), the filling of two electrons in the in-plane bands gives
rise to a compensated Fermi surface formed by a hole and two electron pockets of
compensating area: the radial polarized band (even under vertical reflections) forms a
hexagonal hole pocket centered around Γ. It coincides well with the 2× 2 BZ as indi-
cated by the dashed orange line. This constitutes ideal nesting conditions as momenta
along opposed sites are connected by half of a reciprocal lattice vector. Instead the
tangential in-plane band promotes a triangular shaped electron pocket at the valley
momenta. As their sides are parallel to the next nearest triangles, this may result in
an enhanced scattering between the valley momenta states. The metallic band struc-
ture of the in-plane orbitals can be understood from the 5p3 valence configuration of
antimony. However, the formation of a Fermi surface with parallel aligned features
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that favor nesting is surprising and will be subject of the next section. The important
key ingredient is already illustrated in Fig. 6.4.1 (b) by the comparison with the Fermi
surface of a free-electron parabola assigned to the first BZ (green dashed circle). It
describes well the Fermi surface of the in-plane bands in the second BZ. As expected,
deviations can be seen at gaps between the electron and hole pockets. The symmetry
character of the free electron state with respect to Γ of the first BZ is even under ver-
tical reflections, which is supported by the alternating radial and tangential character
given with respect to the nearest Γ point. A quantitative analysis of the corresponding
free electron state yields for the momenta depicted by empty circles in Fig. 6.4.1 with
|kFermi| = 1.74 and 1.78 Å−1 a Fermi velocity of ≈ 0.006 c and an effective band mass
of ≈ 0.11mel.

6.4.2. Minimal Tight-Binding Hamiltonian

As the low-energy bands have predominantly in-plane character, we will proceed
with the construction of a minimal {px, py} model. This serves not only as an ab ini-
tio derived starting point for ongoing functional renormalization group calculations,
but unveils also the importance of long-range hoppings for the Fermi surface features
discussed in the previous section. From a VASP+Wannier90 {px, py} model, created
by Domenico Di Sante, the V σ and V π Slater-Koster integrals up to third nearest
neighbors can be immediately extracted along x and y direction from the diagonal el-
ements of H(R) (see also Sec. 2.3), with their values given in Tab. 6.4.1. Interestingly,
the σ-bonding contribution is larger for third than for second nearest neighbors. Fi-
nally, n-th order tight-binding models can be constructed from these parameters17 (for
details see Sec. 2.3.1). They are inherently p6/mmm symmetric, vertical reflection
symmetry breaking will be neglected in the following as its impact is negligible at the
Fermi level (see again Fig. 6.4.1), though it could be extracted from the off-diagonal
elements of the Hamiltonian or by fitting the gap at the valley momenta.

V σ′ V π′ V σ′′ V π′′ V σ′′′ V π′′′

1.721 0.195 -0.179 0.044 0.294 -0.031

Table 6.4.1.: First, second and third neighbor Slater-Koster parameters in eV of a
minimal {px, py} Hamiltonian for Sb on SiC.

17This approach may appear cumbersome at first glance, however the creation of tight-binding Hamil-
tonians from extracted Slater-Koster integral values guarantees for the correct incorporation of the
lattice symmetries. They can be spoiled in VASP+Wannier90 generated Hamiltonians as the op-
timization bases solely on the Wannier function spread irrespective of the lattice symmetry [200].
Hence, the truncation of such a Wannier Hamiltonian may result in inaccurate eigenstate sym-
metries. See also Fig. 6.1.4 for an example of weak symmetry breaking in a VASP+Wannier90
created Hamiltonian.
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The band structures of the initial Wannier model and of the n-th order tight-binding
Hamiltonians are shown in Fig. 6.4.2 (a). While the band dispersion and the inter-
section points with the Fermi energy along the high symmetry lines are already well
described by a first neighbor Hamiltonian, the agreement at the TRIMs Γ and M
requires long-range hoppings. In particular, the van Hove singularities at the band
minimum and saddle point at M require third-nearest neighbor interactions. The cor-
responding constant energy cuts at the Fermi level are shown in Fig. 6.4.2 (b). A
reasonable description along the edges and the corners of the hexagonal and triangular
features requires long-range hoppings. This is consistent with the previous paragraph,
where the Fermi surface topography has been assigned to a free electron alike disper-
sion.
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Figure 6.4.2.: (a) Band structures of the ab initio derived Wannier model (tfull) and
the constructed p6/mmm symmetric n-th order tight-binding Hamil-
tonians (see text for details). (b) Corresponding Fermi surfaces to the
models shown in (a). The line style and coloring follows the legend in (a),
while the dashed orange and green line denote the 2×2 BZ and the fitted
free electron parabola, respectively, similarly to Fig. 6.4.1 (b).

6.4.3. Static Electronic Susceptibility

Having established a minimal third-order tight-binding model, which describes well
the Fermi surface of Sb on SiC, we will address in the following the nesting prerequisites
by inspecting the static electronic susceptibility χij for a momentum transfer of q

χij(q) =

− 1

Nk

∑
kµν

aµi(k)a
∗
µi(k)aνj(k+ q)a∗νj(k+ q)

nF (Eµ(k))− nF (Eν(k+ q))

Eµ(k)− Eν(k+ q)
. (6.8)
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Latin and Greek indices denote the orbital degrees of freedom18 and the band index,
respectively, and nF (E) is the Fermi distribution (here for T = 0). A detailed analysis is
illustrated in Fig. 6.4.3. To assign the main features to the Fermi surface characteristics,
we will focus at first on the band resolved susceptibility shown in panels (a-c). The
lower band (a), which is associated to the hexagonal Fermi surface centered around
Γ, has an enhanced susceptibility at M favoring a 2 × 2 reconstruction. The upper
band (b), responsible for the triangular Fermi surface feature around K and K ′ gives
rise to a triangular shaped feature around the valley momenta of the scattering BZ.
It is particularly sizable at the intersection points of neighboring triangles. Inter-
band scattering is shown in (c) and peaks around the valley momenta, i.e., when the
scattering vector q aligns parallel sides of the hexagonal and triangular Fermi surface
feature.

The {px, py} orbital resolved susceptibility is shown in panels (d-f) of Fig. 6.4.3.
The feature at M can be clearly assigned to a scattering between states even under
a vertical reflection normal to the momentum transfer q as it is present in the px-px
channel (d) for momenta with qx ̸= 0 and in the py-py channel (e) at qx = 0. The same
holds also for the enhanced susceptibility arising from the triangular feature around
the valley momenta. It is pronounced for px-px scattering along qy = 0. The inter-band
response (triangular shaped enlarged susceptibility at the valley momenta) is instead
odd under vertical reflections normal to the momentum transfer. It is predominant in
the py-py (e) and suppressed in the px-px susceptibility (d) along qy = 0. The inter-
orbital px-py susceptibility is shown in panel (f), which is in support of our analysis. It
peaks for the triangular feature around K at momenta, where the previously discussed
pairing symmetry requires a linear combination of both in-plane basis states. However,
it does not show new features, which would indicate an enhanced susceptibility for
initial and final states with different in-plane symmetry.

Based on this analysis, the Fermi surface and the corresponding electronic response of
the low energy bands of Sb on SiC hint towards the emergence of non-local correlation
effects mediated by the orbital symmetries. The existence of such phases requires
however still theoretical confirmation from many-body theory as well as a profound
experimental investigation.

Before concluding this section, we will briefly analyze the susceptibilities for a doping
to the van Hove singularities at theM points [see Fig. 6.4.2 (a)]. They are under current
investigation in kagome systems [201–205], which are spanned by a three site atomic
basis on a hexagonal lattice. Following the argumentation given in Chap. 3 the Kagome
and the triangular lattice belong to the same space group and have identical irreps.
Hence, there must be a mapping between the Bloch wave functions derived from the
two different local basis sets. Further we can infer that the mirror planes σv and σd [see
again Fig. 2.4.2 (b)] will dictate the wave function symmetry. Therefore the associated

18For the sake of simplicity, only orbital diagonal elements at k and k+q are considered. This reduces
the number of independent orbital indices from four to two.
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Figure 6.4.3.: (a-c) Contributions to the static susceptibilities from the first (a) and
second (b) band and inter-band (c) response. (d-f) Orbital resolved
susceptibility χpxpx (d), χpypy (e) and χpxpy (f). The dashed green line
depicts the first BZ.

van Hove singularities at M of the two lattices may be regarded as equivalent partners
in the single-particle picture. However, in contrast to the topological arguments given
for the Dirac fermion mapping, strong differences may arise at the many-body level, as
the wave function symmetry in the remaining BZ and the Coulomb repulsion tensor are
expected to live in completely different parameter regimes for multi-orbital monopartite
and single orbital tripartite systems.

Turning to the electronic susceptibility, it is important to note, that the broken
particle-hole symmetry renders the two van Hove singularities inequivalent [see again
Fig. 6.4.2 (a)]. The one in conduction constitutes a saddle point and transforms under
theM−

3 irrep19, while the lower one (M−
4 ) represents the band minimum with the Dirac

cone at the valley momenta nearby in energy. This is also reflected in the response
functions shown in Fig 6.4.4, which possess a larger background for the Fermi level at
the energy of the van Hove in conduction (d-f). For a Fermi energy at the van Hove
in valence (a-c), the electronic response peaks around Γ and possesses slightly weaker
features at M (scattering between states from neighboring M points). They result

19For irrep classification in the presence of vertical and horizontal reflection symmetry breaking see
Sec. 5.4 and Fig. 5.4.1.
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from a scattering of states odd under a mirror reflection at the momentum transfer
plane (only px-px along qx = 0, while the py-py contribution vanishes). This analysis is
less clear in conduction (d-f) owed to the sizable background. Nevertheless, the intense
features along qx = 0 for the py-py channel and the suppressed response in px-px along
the same scattering momenta indicate an even symmetry under a mirror reflection
normal to q. In contrast to the Fermi level at the van Hove in valence, the px-py
susceptibility is enhanced along the whole BZ boundary and displays sharp line-shape
features connecting Γ with the BZ boundary. This can be attributed to the plethora
of states in this energy region.

Figure 6.4.4.: Static electronic susceptibilities for the chemical potential at the en-
ergy of the van Hove singularities at M in valence (a-c) and in conduc-
tion (d-f). The χpx−px ,χpy−py and χpx−py channel are shown in (a,d), (b,e)
and (c,f), respectively. The dashed green line depicts the first BZ.

To summarize, the analysis of the electronic response function has unveiled a ten-
dency towards orbital symmetry mediated long-range ordering at neutral filling, where
the compensated Fermi surface is at play. Upon doping to the van Hove singularities
at M , the susceptibility has its maximum at Γ. Non-local contributions are sizable,
especially in the case of the van Hove in conduction. The strength of the Lindhard
function in the orbital channels can be controlled via the symmetry of the initial state,
i.e., by the mirror symmetry character of the corresponding irrep at M . In contrast to
honeycomb systems, which often have the tendency to be more particle-hole symmet-
ric, the calculations presented in Chap. 6 reveal a strong asymmetry. This is in favor
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of tuning the chemical potential towards the van Hove singularities at M , e.g., making
them accessible via degenerate doping and strain. As also shown in this section, this
may activate further response channels.

6.4.4. Robustness of the Compensated Fermi Surface

We will conclude this section upon testing the low-energy band structure against
different Group V adatoms and a DFT hybrid functional approach. Relaxing also
phosphorus and bismuth on the T1 position of the SiC(0001) surface results in bonding
distances of 2.29 Å (P) and 2.73 Å (Bi) with PBE. As shown in Fig. 6.4.5, their overall
band structure is qualitatively similar to that of Sb. Minor differences can be observed
with increasing adatom size: the enhanced SOC promotes a significant Rashba splitting
of the pz-band and a non-trivial gapping of the Dirac cone. In addition, both the pz-
band and the Dirac cone are shifted to lower energies. For all three adatom species,
the in-plane bands cross the Fermi energy at similar momenta along Γ-M and Γ-K.
Hence, the Fermi surface discussed for Sb may be regarded as intrinsic to Group V
adatoms on T1 position on SiC(0001).

The robustness of the Fermi surface is further investigated by a HSE06 calculation for
Sb shown by dashed orange lines in Fig. 6.4.5. Compared to PBE, the band width and
gaps are slightly increased and the pz-band is shifted to lower energies. Nevertheless,
the intersection points with the Fermi energy are DFT functional invariant. This
confirms not only the preceding Fermi surface discussion on the level of the functional
choice, but highlights also its robustness against variations in the electron-electron
screening.

6.4.5. Conclusion and Outlook

The ab initio study has unveiled a compensated Fermi surface arising from the in-
plane bands of Group V adatoms on the T1 position of SiC(0001). It is formed by a
hexagonal Γ-centered hole pocket of the size of the 2× 2 BZ and a triangular shaped
electron pocket at the valley momenta. The overall topography can be understood
from an almost free-electron-like dispersion at the Fermi energy. A minimal p6/mmm
symmetric tight-binding model has been constructed for antimony, which is currently
used as input for functional renormalization group calculations. A first analysis high-
lights indeed an elevated electronic susceptibility at scattering momenta, which favor
a 2 × 2 reconstruction, but unveils also sizable features nearby the valley momenta
of the momentum transfer BZ. Further, the susceptibility has been investigated for a
doping to the van Hove singularities at M . For such a doping, the response function is
highly influenced by the symmetry of the predominantly contributing irreducible band
representation at M. In addition, the the relative positions in energy of the Dirac cone
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Figure 6.4.5.: Orbital resolved PBE band structures with SOC for Group V adatoms
on T1 position on four layers of SiC(0001). The unit cell is illustrated in
Fig. 6.2.2 (a,b). In addition, the band structure obtained with HSE06
is shown by dashed orange lines for Sb. The vertical dashed lines depict
the boundary and the corner of the 2× 2 BZ.

and of the two-fold band degeneracy at Γ are important. Upon switching to phospho-
rus or bismuth, a qualitatively similar compensated Fermi surface can be stabilized by
varying the SOC parameter. Albeit the work presented here constitutes only a prelim-
inary theory study towards multi orbital correlation physics in triangular monolayer
adatom systems, the robustness of the Fermi surface across all considered Group V
elements raises significantly the chance for the structural realization and experiments
on its low-energy physics. On a broader scale, the combination of various adatom
species and trigonal substrate surfaces gives rise to a huge tunability of the electronic
properties by controlling the Coulomb interaction, SOC, the band width and band
symmetries (also by symmetry breaking), electron filling and the involved orbital de-
grees of freedom (d-shell of transition metals and f -orbitals in rare earths). Of course,
it remains to be seen, if similar compensated Fermi surfaces can be stabilized in other
adatom-substrate combinations. On the other hand, the contemporary scientific focus
on correlation physics arising from van Hove singularities in kagome lattices [201–205]
may also profit from the investigation of their symmetry equivalent representations on
the fundamental hexagonal lattice.

6.5. Summary and Outlook

The here presented work on triangular adsorbate systems on (111) surfaces of diamond-
and zincblende-type substrates has unveiled a rich plethora of interesting physical
phenomena driven by the interplay of lattice symmetries, mirror reflection symmetry
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breaking and SOC. All fundamental effects discussed in Chaps. 3, 4 and 5 have been
addressed with ab initio methods in appropriate surface geometries: (I) chiral wave
functions promoted by inversion symmetry breaking and their Rashba-splitting in the
presence of SOC. (II) The honeycomb connectivity of Dirac fermions on the triangular
lattice. (III) Real-space obstruction in ν = 0 and ν = 1 insulating phases. (IV) Lattice
symmetry imposed wave function symmetry and its effect on the Lindhard function.
Further it should be noted that all presented systems have been either inspired by or
jointly investigated in close collaboration with the experiment, which underlines their
realizability.

As a paradigmatic Rashba system, AgTe on Ag(111) shows a sizable band-dependent
Rashba splitting in the low-energy Te p in-plane bands. This can be clearly associated
from theory and experiment to an orbital-symmetry-dependent OAM formation. The
chiral wave functions promoted by inversion symmetry breaking are split by the SOC
interaction. This gives rise to the orbital-driven Rashba effect [1]. From the method-
ological point of view, the combination of an ab initio band symmetry analysis and
polarized light dichroism in ARPES measurements has allowed to identify the impact
of mirror reflection symmetry breaking and the formation of chiral wave functions. In
the context of classifying experimentally topological materials, this approach has been
theoretically suggested to probe the Berry curvature [149, 206], recently also the local
OAM has been identified with circular dichroism as the winding property at the Weyl
points in the non-centrosymmetric Weyl semimetal TaAs [150].

The formation of chiral wave functions promoted by symmetry-breaking plays also a
decisive role in one of the main findings of this work, in the triangular QSHI indenene on
SiC [3]. The stabilization of the non-trivial ground state requires dominant horizontal
mirror reflection symmetry breaking to open a global gap at the energy of the in-plane
Dirac bands at the valley momenta. The presence of a weak vertical mirror reflection
breaking lifts their Kramers degeneracy and allows for a band-resolved measurement
of the associated charge localization: the two valence bands of the Dirac cone establish
a honeycomb connectivity as their charges center in the voids of the triangular lattice.
This real-space symmetry classifies the bulk wave functions of indenene unambigu-
ously as Z2-non-trivial without relying on transport experiments. Upon addressing
indenene’s wave function symmetries in the whole BZ, it has been identified as a real-
space obstructed because its valence bands are symmetry equivalent to graphene: the
occupied bands localize not only at the valley momenta on the honeycomb positions,
but also the time-reversal symmetry breaking Wannier functions of the valence bands
are centered in the void positions [2]. This has extended the concept of real-space ob-
struction to QSHI phases and the consequences resulting from the bulk polarization are
subject for future research, e.g., in indenene-bismuthene heterostructures. Similarly
to AgTe [1], circular polarized light ARPES measurements could unveil the particular
OAM polarization (see also Fig. A.6.1), which serves also an unambiguous identifier
of the Z2-topology. Further its importance for the real-space obstruction has been
highlighted in Sec. 5.8.
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Stimulated by the success of indenene and based on dominant inversion symme-
try breaking, a recipe for higher-order topology in triangular adsorbate systems has
been developed and verified for lightweight Group III elements (B, Al, Ga) on 4H-
SiC (0001) [4]. A detailed study of aluminum has revealed the real-space obstruction
and the associated electronic dipole and quadrupole moment. DFT calculations con-
firm insulating zigzag and metallic flat edges as predicted from the minimal model in
Sec. 5.6. Upon considering triangular flakes, the zigzag termination hosts a fraction-
ally filled in-gap state, whose filling-anomaly is in agreement with the bulk quadrupole
moment. It should be noted, that the in-gap energy position of the corner state is not
symmetry protected, still ab initio theory yields an edge and corner potential which is
appropriate for the stabilization of in-gap states. Even for flat-edge terminated flakes,
an energetically isolated corner state has been observed. By compensating the edge
charge, the fractional filling of the corner state driven by the quadrupole moment is
restored. As boron and gallium have identical bulk valence band symmetries as alu-
minum, they are also potential candidates for realizing a HOTI state. Further, as
their bands are Z2-trivial since the Dirac cone is gapped by a strong vertical reflection
symmetry-breaking, they allow for a direct comparison with indenene, e.g., on the level
of the charge localization (STM) and wave function chirality (CD ARPES).

We conclude the chapter with an outlook beyond topology in triangular adsorbates
by discussing the compensated Fermi surface in Group V adsorbates (P, Sb, Bi) on
4H-SiC (0001) in the light of possible multi-orbital correlation driven phenomena on
the triangular lattice. The doping by +2e− compared to Group III shifts the chemical
potential deep into the in-plane bands. They disperse at these energies like nearly free
electron states, which gives rise to a compensated Fermi surface. Based on a minimal
{px, py} model for antimony, the static susceptibility reveals indeed a tendency towards
long-range instabilities. By tuning the Fermi energy to the van Hove singularities at
the M -point, the vertical mirror reflection symmetry of the involved states is decisive
for the susceptibility. These results should be regarded as inspiration and motivation
for further theoretical studies involving full many-body approaches and experimental
investigations. As this particular Fermi surface is generic for the considered Group V
elements, the chance of its experimental realization is high and the variation of the
adsorbate atom allows for a tuning of Coulomb and SOC interaction. In a broader per-
spective, triangular systems constitute the fundamental hexagonal lattice realization of
the van Hove singularities in kagome systems [201–205]. Hence the mutual comparison
may substantially stimulate the research in this intensely investigated field of research.

142



7. Conclusion and Outlook

Let us conclude by taking up the general motivation pointed out in the introduction,
i.e., the intrinsic scientific interest in the topology of electronic band structures and
the potential long-term implications of its application in electronic devices. Focusing
on a multi-orbital basis on the triangular lattice, this work has revealed a plethora
of topological insulating phases. They are driven by the intricate interplay of lattice
symmetry, mirror symmetry-breaking and SOC. In particular, ISB has been identified
as the desired non-local antagonist to the atomic SOC: the presence of both interac-
tions can induce a non-trivial geometrical phase stabilizing a QSHI. Based on a broad
spectrum of methods ranging from symmetry considerations over minimal modeling to
ab initio simulations, a profound knowledge on the underlying mechanisms has been
gained. This constitutes a first step towards technological relevance, which is under-
lined by the realization of the first triangular QSHI indenene [2, 3, 61] as well as by the
proposal for a higher-order topological insulating state in light Group III adsorbates
on SiC [4]. Fundamental insights on the impact of non-local mirror-symmetry break-
ing and atomic SOC on band symmetry [1] and topology of the triangular lattice has
been gained from the inspection of the local OAM polarization and the application of
symmetry indicators. The latter highlights also the equivalence and difference to the
“drosophila” of topological phases in hexagonal and trigonal space groups, the honey-
comb lattice, i.e., it puts forward the triangular lattice as an equally important setup.
Further, by invoking the approach of Soluyanov and Vanderbilt [73], the concept of
real-space obstruction has been extended to Z2-non-trivial insulators, and indenene
has been classified as the first real-space obstructed QSHI [2].

In preparation for the discussion of the topological phases on the triangular lattice,
a group theoretical analysis has unveiled the impact of vertical reflection symmetry
breaking which reduces the rotational symmetry from six- to three-fold. It lifts the
symmetry protection of the honeycomb Wyckoff position, i.e., the void sites in the
triangular lattice are rendered inequivalent. This is an indispensable key mechanism
for stabilizing the real-space obstructed HOTI phase [4], as the Wannier center of the
valence band can dissociate from the triangular lattice position, which allows it to shift
to the void sites. At the valley momenta, vertical reflection symmetry breaking gaps
the Dirac fermions by promoting chiral wave functions. This mass term counteracts
SOC, which favors a valence charge localization on both void sites. A formal mapping
between bipartite honeycomb and multi-orbital triangular basis sets unveils also a
change in the locality of the mass terms: the non-local Kane-Mele SOC transforms into
a local SOC in the triangular basis [2, 18, 24]. By contrast, the reflection symmetry-
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breaking term, local on the honeycomb, is momentum-dependent for a multi-orbital
basis on the triangular lattice. The sizable local SOC and the weak symmetry-breaking
term, because of its non-locality, represents a first but decisive result in favor of QSHIs
based on triangular Dirac fermions. The SOC interaction is commonly the gap-limiting
factor in material realizations.

Upon considering a full p-shell, a lattice periodic tight-binding Hamiltonian has been
derived. The low-energy features of the valence band comprise in-plane Dirac fermions
at the valley momenta and a nodal ring centered around the Γ-point, which is formed
by the intersection of an in-plane and the out-of-plane band. These metallic crossings
can be either gapped by atomic SOC or by mirror symmetry breaking via the forma-
tion of chiral wave functions. This gives rise to four topologically distinct insulating
phases as summarized in Fig. 5.1.1. Trivial bands are realized in the presence of inver-
sion symmetry breaking and in the highly symmetric regime dominated by SOC. They
can be discriminated at the level of their valence charge localization: only the phase
dominated by ISB is indeed real-space obstructed with a valence band charge center
on one of the void positions of the triangular lattice. Its finite electric quadrupole
moment can stabilize in-gap corner states, however only the zigzag edge geometry is
insulating thanks to a finite dipole moment. QSHI phases are realized if exactly one
of the reflection symmetry-breaking terms dominates over SOC. For an indenene-type
QSHI with a SOC-opened gap at the valley momenta, the nodal ring must be rendered
insulating by a sizable horizontal reflection symmetry breaking. The other QSHI is
obtained if SOC dominates at the nodal line and vertical reflection symmetry breaking
opens a gap at the valley momenta. Hence, these QSHI phases can only be stabi-
lized in the absence of inversion symmetry and under the condition that one of the
mirror reflections is (almost) preserved. Further, the absence of the horizontal reflec-
tion symmetry impedes the classification within the framework of topological quantum
chemistry [44]: Non-trivial bands are mistakenly indicated as trivial (false-trivials), if
band inversions occur at non-high symmetry momenta. Nevertheless, it gives profound
insights on the relation between real-space and band symmetry. In combination with
a Wilson-loop analysis, the electric polarization can be determined. In particular, the
atomic OAM polarization at the nodal ring and at the valley momenta is a sufficient
indicator for Z2-topology as well as for the real-space obstruction of the considered
triangular systems.

Inspired by the discrimination of the two disconnected Z2-trivial phases at the level
of their charge localization, the concept of real-space obstruction has been extended
to QSHIs. This intriguing step is conceptually not straightforward, as their non-trivial
bands lack a time-reversal-symmetric Wannier representation by definition. Based on
non-Kramers degenerate Wannier constructions [73], both Z2-non-trivial phases are
classified as real-space obstructed. Again, the vertical reflection symmetry defines the
charge localization, a strong symmetry-breaking term shifts the Wannier centers to
only one of the void positions, while the indenene-type QSHI possesses charge centers
on both honeycomb sites. In combination with the symmetry analysis, this eluci-
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dates the full extent of the similarities and differences of this system with respect to a
Kane-Mele-type QSHI. Both QSHI phases are classified by an identical valence band
representation, i.e., their wave functions are equivalent at the level of their symme-
tries. However, the SOC and vertical reflection symmetry breaking interaction have
a different locality in both systems and the triangular basis set promotes a real-space
obstructed ground state.

The relevance of these theoretical findings is corroborated by state-of-the-art first
principles calculations and experiments on trigonal monolayer adsorbate systems. In
the spirit of this thesis, the focus is on wave function symmetry, SOC, reflection
symmetry-breaking and topology. As a perfect example for the interplay of band
symmetry, inversion symmetry breaking and SOC, the orbital-driven Rashba effect in
AgTe on Ag(111) is discussed based on DFT simulations and LD in ARPES measure-
ments. The vertical mirror reflections of the triangular lattice promote an even and
an odd Te in-plane p-band. In combination with the horizontal reflection-symmetry
breaking due to the presence of the substrate, only the even band hybridizes with pz
state by forming in-plane OAM-polarized states. In turn, the local OAM couples to
SOC, which gives rise to a band-dependent Rashba splitting in the Te bands at the
Γ point. Key to these results is the joint theory-experiment wave function symme-
try analysis, which has been also proven to be a particularly powerful tool for the
investigation of topological states such as the Fermi arcs and the Weyl points in the
TaP/TaAs Weyl semi-metal family [150, 168].

The deep understanding of the interplay of symmetry-breaking and SOC in triangu-
lar adsorbates has lead to the the major result of this work: the design of a triangular
QSHI, indenene on SiC [2, 3, 61], where the low-energy physics of the In 5p bands
is well-described by the p-shell Hamiltonian established in Chaps. 4 and 5. A strong
horizontal reflection symmetry breaking gaps out the nodal ring formed by the in-plane
and pz-band inducing a pinning of the Dirac point to the Fermi level. Its mass term de-
termines the band topology. The substrate, however, breaks also the vertical reflection
symmetry, which would favor a trivial ground state. A thorough analysis of the val-
ley states by DFT and STM reveals a valence charge localization on both honeycomb
sublattice sites [3]. As discussed in the general theory part, this is indicative of a SOC-
opened gap and classifies indenene as Z2-non-trivial. Remarkably, our theory analysis
allows us to base these conclusions on the topological character of indenene, analyzing
its bulk wave function symmetries rather than transport features. Upon extending the
valence band symmetry analysis to the full BZ, indenene is put forward as the first
real-space obstructed QSHI, with non-Kramers-degenerate Wannier charge centers on
the honeycomb Wyckoff positions [2]. Its valence bands constitute a realization of a
Kane-Mele-type QSHI on the triangular lattice. Furthermore the surface states for
both fundamental edge terminations of the triangular lattice have been investigated.
For the “flat” termination, the edge states are located in a sizable bulk gap, which
results in a strong edge localization. Instead, for the “zigzag” termination (equiva-
lent to the graphene’s armchair edge) the bulk Dirac cone is projected onto the edge
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state. In turn, the relatively small bulk gap at these momenta allows for a deep bulk
penetration of the surface state, which may impede its detectability in experiment.

Motivated by the discovery of indenene, another topological triangular adsorbate
monolayer has been predicted upon lowering the SOC strength by considering lightweight
Group III adsorbates (B, Al, Ga) on SiC. The gapping of the Dirac cone is opened by
a sizable vertical reflection symmetry-breaking term and the Z2-trivial valence bands
localize on only one of the honeycomb Wyckoff positions. This real-space obstructed
atomic limit possesses a finite quadrupole moment and DFT predicts for triangular
flakes with zigzag termination a HOTI state with insulating 1D edges and fractionally
filled in-gap corner states [4]. As it has been shown for the minimal p-shell model, the
band topology and the real-space obstruction is encoded in the OAM-texture in the
full BZ. Hence, in combination with the QSHI indenene, these systems offer a perfect
platform for conducting experiments sensitive to the wave function chirality, e.g., cir-
cularly polarized light ARPES. This has been put forward as a potential measurement
for addressing the Berry curvature and the orbital magnetization [149]. In the spirit of
topological quantum chemistry [44], the band topology may be derived by measuring
the band symmetries at all avoided band crossings. These are the nodal ring and the
Dirac fermions for the triangular p-shell model.

As an outlook towards multi-orbital long-range electronic correlations on the trian-
gular lattice, the Lindhard function of the compensated Fermi surface of Group V
adsorbates (P, Sb, Bi) on SiC has been investigated. The additional valence charge
of 2e− with respect to the Group III elements shifts the Fermi energy to the in-plane
bands. Their free electron-type dispersion gives rise to two characteristic Fermi sur-
face features of compensating size: a hexagonal hole pocket centered around Γ, which
favors a 2× 2 reconstruction, and a triangular electron pocket at the valley momenta.
Similar to AgTe, the vertical reflection symmetry of the triangular lattice dictates the
orbital character of the Fermi surface features. In turn, the band symmetry mediates
the contributions of the orbital channels to the Lindhard function, possible electronic
instabilities are subject of current investigation.

From a general perspective, the analysis presented on lattice symmetry and symmetry-
breaking induced wave functions, topology and possible correlation effects may induce
a paradigm shift from hexagonal and trigonal multi-site systems, such as the honey-
comb and the kagome lattice, to multi-orbital basis sets on the triangular lattice. The
investigation of a p-shell basis has revealed four topological distinct insulating phases,
one of which has already been observed in indenene, while the HOTI phase has been
proposed by DFT. Their existence relativizes also an intrinsic weakness of the trian-
gular lattice Hamiltonian, compared to the Kane-Mele model: the non-particle-hole
symmetric band structure, which requires fine-tuned parameters for the stabilization
of a global gap. The other triangular QSHI phase, which is characterized by a domi-
nant vertical reflection symmetry breaking, might occur in crystal systems similar to
the non-inversion symmetric H-phase of monolayer transition-metal dichalcogenides.
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Considering higher angular momentum shells, e. g., d- and f -orbitals would also con-
stitute an intriguing but complex further step, as it would introduce multiple Dirac
cones at the valley momenta. Additional sources of Berry curvature like nodal lines
can occur. Hence, higher angular momentum shells might host HOTI phases with van-
ishing dipole moment resulting in an insulating band structure on all fundamental edge
terminations. Due to the strong localization of the higher angular momentum shells,
small bandwidths, sizable SOC and dominant Coulomb interactions are expected.

Additionally, the role of the substrate for topological monolayers has been conceptu-
ally broadened. For Kane-Mele-type QSHIs, a weak interaction with the substrate is
desirable [57]. Instead, the strong bonding of bismuthene to the SiC substrate filters
out the pz degree of freedom from the low-energy physics [52]. However, the sys-
tems presented in this thesis profit from an intermediate substrate interaction: the full
p-shell participates in the valence band structure and the symmetry breaking opens
intermediate-sized hybridization gaps compared to the bandwidth. Inversion symme-
try breaking is indispensable for the discussed Z2-non-trivial insulators, a requirement
which impedes their detection with symmetry indicators in high-throughput studies.
Hence, a sizable number of hitherto undiscovered QSHIs is expected to exist in the
almost infinite phase space spanned by the combination of triangular adatom species
and insulating trigonal substrate surfaces. These systems may be straightforwardly
applicable for transport measurements and functionalization. The limiting factor of
the flake size of indenene on SiC is the terrace width of the substrate, thanks to the
particularly simple 1× 1 reconstruction. Also stability under air exposure seems to be
at reach via graphene intercalation [207–209].

More fundamentally, the extension of the concept of real-space obstruction to QSHIs
raises conceptional questions, which require further investigation. How does the real-
space obstruction manifest in finite size-geometries? Will there be metallic states at the
interface of two differently real-space obstructed QSHIs? In particular, do fractionally
filled in-gap corner states exist in an inverted gap? How does the electronic multipole
moment from time-reversal violating Wannier centers translate into the properties
of the corner states? To address these questions, heterostructures of indenene and
bismuthene on SiC may serve as perfect material templates. Also the other triangular
QSHI phase, which is characterized by a strong vertical reflection breaking, should be
considered.
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A. Appendix

A.1. Kane-Mele model

Figure A.1.1.: Band structure of the Kane-Mele model in
the absence of SOC and ISB. The lattice
symmetry promotes massless Dirac cones at
the valley momenta.
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Figure A.1.2.: (a) Edge localization (top row) and ⟨Sz⟩ polarization (bottom row) in
zigzag and armchair terminated ribbons shown in (a) and (b), respec-
tively, for slab sizes of 40 conventional UCs. For an improved visualiza-
tion in (b), the expectation values are shown by projecting alternatingly
onto Kramers partners. The corresponding bulk band structures and pa-
rameters can be found in Fig. 2.1.1. An illustration of the conventional
UC and the slab BZs is given in Fig. 5.6.1.
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A. Appendix

A.2. Coulomb-Sturmians

Here we introduce briefly the Coulomb-Sturmians as they form a complete basis set
in R3 with atomic-like spherical-symmetries. They have been studied in the context
of atomic and molecule spectra [146, 210–214]. In the following, they will be used to
prove the existence of a complete basis set transformation for the valley Bloch wave
function on the hexagonal lattice in Sec. 3.4.

The Coulomb Sturmians are defined as the isoenergetic solutions for a weighted
potential. Starting from the Schrödinger equation in atomic units for a particle in a
radial symmetric potential V (r) [146][

−1

2
∇2 − E

]
Ψ(r) = V (r)Ψ(r), (A.1)

and defining E = −k2/2 and V (r) = nk/r, we arrive at the generating equation of the
Coulomb-Sturmians χnlm(r):[

−1

2
∇2 +

1

2
k2
]
χnlm(r) =

nk

r
χnlm(r), (A.2)

where {n, l,m} are atomic-like quantum numbers and k defines the isoenergy of the
basis set. Upon replacing k → Z/n, the hydrogen-like solutions for the Schrödinger
equation are obtained [146, 213]. Similarly to the hydrogen-like solutions, the Coulomb-
Sturmians can be written as

χnlm(r) = Rnl(r)Ylm(θ, φ). (A.3)

With the spherical harmonic Ylm(θ, φ) and the radial wave function Rnl

Rnl(r) = Nnl(2kr)
le−krF (l + 1− n|2l + 2|2kr), (A.4)

where Nnl is a normalizing factor and F (a|b|c) is a confluent hypergeometric function.
For details, the interested reader is referred to references [146, 213]

Further, the Coulomb-Sturmians obey the potential-weighted orthonormality rela-
tion ∫

d3rχ∗
n′l′m′(r)

1

r
χnlm(r) =

k

n
δn′nδl′lδm′m, (A.5)

and form a full basis in R3. This allows us to represent any localized “tight-binding”
orbital basis sets in Coulomb-Sturmians

|ϕ⟩ =
∑
nlm

|χnlm⟩ ⟨χnlm|ϕ⟩ (A.6)

=
∑
nlm

αnlm |χnlm⟩ . (A.7)
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A.3. Coulomb-Sturmians based Transformation between Honeycomb and Triangular Lattice Basis Set

It will be proven in Chap. 3 by symmetry arguments, that certain Bloch wave functions
can be represented in more than one local basis set on different basis positions τ . We
will use the Coulomb-Sturmians to derive a formal mapping between equivalent local
basis sets in App. A.3.

|ψnk⟩ =
∑
R

eik·(R+τ ) |ϕn⟩ =
∑
R

eik·(R+τ̃ ) |ϕ̃n⟩ . (A.8)

This basis transformation ϕn → ϕ̃n involves orbitals, which are located at differ-
ent Wyckoff positions separated by the displacement vector x. Hence, this involves
complicated overlap-integrals. As we only intend to prove the existence of such a ba-
sis mapping, we will refrain from their explicit evaluation. For completeness, these
so-called Shibuya-Wulfman integrals are defined as [210]

k2Sn′l′m′,nlm(x) =

∫
d3rχ∗

n′l′m′(r− x)

[
−1

2
∇2 +

1

2
k2
]
χnlm(r). (A.9)

Equation A.9 is obtained by plugging Eq. A.2 into A.5. As the evaluation of the inte-
grals is challenging, a Fock mapping onto the 4-D hypersphere has been proposed [210].

A.3. Coulomb-Sturmians based Transformation
between Honeycomb and Triangular Lattice Basis
Set

The following is a direct citation of APPENDIX A to Ref. [2]. It describes a formal
derivation of a complete basis transformation of the valley Bloch wave function between
triangular and honeycomb basis sets.

Here we demonstrate the equivalence of a pair of chiral orbitals on the
triangular lattice and a bipartite basis on the honeycomb lattice by deriv-
ing a complete basis transformation at the valley momenta. Its existence
can be proven by projecting the Bloch wave function onto Coulomb Stur-
mians [215], a full basis in the R3 which are given by

χτ (x) = Rnl(r)Y
m
l (θ, φ), (A.10)

defined by a set of atomic-like quantum numbers τ = [n, l,m] centered
around r0 with the distance vector r = x − r0. For the sake of simplic-
ity, we will neglect in the following the radial part Rnl and consider only
the spherical harmonics Y m

l . First, we express the initial orbital at r0 in
Coulomb Sturmians |wRn⟩ =

∑
τ cτ |χτ ⟩. The transformed orbital |wn′⟩ cen-

tered at site r′0 is given by the projection of the Bloch wave function onto
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the Coulomb Sturmian basis |χτ ′⟩ in the home unit cell.

|wn′⟩ =
∑
τ ′

|χτ ′⟩⟨χτ ′ |Ψ⟩ (A.11)

=
∑
R,τ,τ ′

cτe
ik·R|χτ ′⟩⟨χτ ′ |χτ (R)⟩ (A.12)

∝
∑
R,τ,τ ′

eik·Rcτ |Yτ ′⟩⟨Yτ ′|Yτ (R)⟩. (A.13)

The spherical harmonics are parameterized by Y m
l = Pm

l (θ)eimφ with the
Legendre polynomial Pm

l and the spherical coordinates (θ, φ). When trans-
forming from position 1a to one of the A/B sites, all neighbors of the same
order come in triangular triplets t, the complex phase transforms as

1

3

∑
R∈t,

eik·R⟨Yτ ′|Yτ (R)⟩ (A.14)

k=K/K′

∝ 1

3

3∑
n

ei
2π
3
n(m̃K/K′−m′+m) (A.15)

=δ(m′−m)mod(3),m̃K/K′ , (A.16)

where the Bloch lattice phase enters at K/K ′ with m̃K/K′ = {±1,∓1} at
{A,B}. Akin to the Bloch localization in Eq. 3.17, this relates m and −m:

A:

{
k = K, if (m′ −m) mod 3 = −1

k = K ′, if (m′ −m) mod 3 = +1
,

B:

{
k = K, if (m′ −m) mod 3 = +1

k = K ′, if (m′ −m) mod 3 = −1
.

A further constraint arises from the symmetry of the Legendre polynomials
requiring that P l

m and P l′

m′ are both even or odd with respect to horizontal
reflection

|⟨P l′

m′ |P l
m(R)⟩|

{
> 0, if (l −m+ l′ −m′)mod 2 = 0

= 0, if (l −m+ l′ −m′)mod 2 = 1
.

This shows indeed, that the valley Bloch function of a chiral triangu-
lar doublet | ± m⟩ with m mod 3 ̸= 0 can be mapped onto a bipartite
honeycomb basis whose magnetic quantum numbers are constrained to
m′ mod 3 = 0. For example a {p+, p−} basis can be mapped onto a
{sA, sB}-like honeycomb basis located on the sublattice sites A and B.
Consequently, a triangular {d+, d−} basis (odd under reflections at the
horizontal reflection plane) transforms into a pz-like graphene basis. The
concrete basis transformation involves the elaborate evaluation of the over-
lap of Coulomb-Sturmians, so-called Shibuya-Wulfman integrals [213].
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A.4. Berry curvature of Dirac Fermions and Nodal lines
in 2D

Here, we derive the Berry charge of the low-energy features of the triangular lattice
model discussed in Chaps. 4 and 5. A spin-diagonal basis can be chosen locally in mo-
mentum space, which allows for a comprehensive analysis in terms of Berry curvature
instead of spin-Berry curvature.

Without loss of generality, any avoided band crossing in 2D can be approximated
locally in momentum space by the generic Hamiltonian

H(k) = dx(k)σx + dy(k)σy +mσz, (A.17)

with mass parameter m. With the gauge-invariant definition of the Berry curva-
ture [74],

Ωn
k(k) = −ℑ

∑
m ̸=n

ϵijk⟨n(k)|∂kiH(k)|m(k)⟩⟨m(k)|∂kjH(k)|n(k)⟩
(Em(k)− En(k))2

, (A.18)

its calculation from the eigenstates and eigenenergies of Eq. A.17 is straightforward,
also the derivative of the Hamiltonian is well-defined. Further, only Ωn

z (k) is non-
vanishing in 2D. Hence the Berry charge of an avoided low-energy crossing is given
by

γ =

∫
d2kΩn

z (k). (A.19)

A.4.1. Berry Charge of a Dirac Cone

Upon considering a rotationally-symmetric Dirac dispersion, as it is the case at the
valley momenta of the hexagonal BZ, Eq. A.17 reads1

H(k) = kxσx + kyσy +mσz. (A.20)

Hence the radial momentum dependence of the Berry curvature can be directly calcu-
lated from the eigenstates given in Sec. 3.5 in Eq. 3.26

Ω±
z (kr) = ± m

2(k2r +m2)3/2
, (A.21)

and the associated Berry charge is

γ =

∫ 2π

0

∫ ∞

0

krdφdkrΩ
±
z (kr) = ±π. (A.22)

1The group velocity has been set to 1 for simplicity.
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The Berry charge of a single Dirac cone in 2D violates obviously the Chern theorem
2πC = γ. This is however reconciled by the fact, that Dirac cones must come in
multiples of two in 2D. The total Berry charge of a pair of Dirac cones obeys the
Chern theorem.

A.4.2. Berry Charge of a Nodal Ring

A low-energy description of the nodal ring formed by the pr-pz crossing is more subtle,
as the mass term, i.e., the orientation of the OAM polarization, varies. However, the
nodal ring may be considered as being generated from a continuous rotation of a Dirac
cone around the center of the ring. Hence the Berry charge is given by

γ = lim
r→∞

∫ 2π

0

∫ ∞

−r
krdφdkrΩ

±
z (kr) = ±2π, (A.23)

where the integral over the radial momentum is evaluated from the center of the ring
with radius r over the Dirac point at kr = 0 to ∞. Upon taking the radius of the nodal
ring to ∞, the integral yields a quantized Berry charge of ±2π. Again, as mentioned in
Sec. 5.2, in a periodic lattice model, higher-order terms in the dispersion will guarantee
for a quantization of the Berry charge in a BZ with finite size.

As a concluding remark, it should be noted that the pr-pz nodal ring collapses to
a quadratic band touching at Γ, if the in-plane and out-of plane bands are shifted in
energy against each other (see for instance Fig. 4.1.2). Hence such a massive quadratic
band touching must also possess a Berry charge of ±2π. Consequently, this applies also
to the SOC gapped in-plane bands at Γ. This feature is in conduction for the discussed
models, therefore it is not relevant for their Z2-topology. It may be considered in future
investigations with different tight-binding parameters and an adjusted electron filling.

A.5. Sublattice Polarization and Non-Local Overlap
Matrix

Let us recall the definition of the Bloch wave function given in Eq. 2.34 for an
atomic-like orbital |ϕjR⟩,

|ψj(k)⟩ =
∑
R

eik·R |ϕjR⟩ . (A.24)

In the following, we assume that the orbital is located on the triangular basis position
(0,0,0) of the UC at Bravais vector R.
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A.5.1. Honeycomb Sublattice Polarization

Hence, the real-space representation of the Bloch wave function reads at the honey-
comb sublattice sites A=(1/3,2/3) and B=(2/3,1/3)

⟨r = {A,B}|ψj(k)⟩ =
∑
R

eik·R ⟨r|ϕjR⟩ . (A.25)

Despite of the summation over all triangular lattice sites R, its calculation requires
also a real-space parametrization of the local orbital φj. Under the assumption2, that
the orbital is sufficiently localized, we consider only the three nearest neighbor lattice
sites Ri shown in Fig. 3.2.1

⟨r = {A,B}|ψj(k)⟩ =
2∑

n=0

eik·Ri ⟨r|ϕjRi
⟩ . (A.26)

Further, we neglect the radial part of φj and take only its spherical contribution into
account

⟨r|ϕj⟩ ≡ ⟨r = (r, φ)|Ylm⟩ = eiφm, (A.27)

where l and m are the total and the magnetic quantum number of ϕj, respectively. For
a given Bloch state of the Hamiltonian

|Ψ(k)⟩ =
∑
Rj

eik·Rckj |ϕR,j⟩ , (A.28)

we define the sublattice polarization [2]

XA,B(k) = | ⟨r|Ψ(k)⟩ |2 =
∣∣∣∣∣13

2∑
i=0

eik·Ri

∑
j

ckje
i 2π

3
nL̂z |ϕj⟩

∣∣∣∣∣
2

. (A.29)

Here, we exploit that all three nearest neighbors can be mapped onto each other
by Cn

3 = ei
2π
3
nL̂z . Hence the main prerequisite for the calculation of the sublattice

polarization is a proper definition of L̂z in the tight-binding basis φj.

A.5.2. Non-Local Overlap Matrix

In Sec. 5.9, the overlap matrix from a projection onto atomic-like orbitals τj

Sij(k) = ⟨τi|P̂(k)|τj⟩ , (A.30)

2Further arguments in support of this approximation can be found in Chap. 3.3.
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is calculated with the projection operator of the occupied states

P̂(k) =
N∑
n

|Ψnk⟩ ⟨Ψnk| . (A.31)

In cases, where the trial basis is displaced from the atomic lattice position, non local
contributions must be taken into account. Similarly to the sublattice polarization, we
consider only overlaps with orbitals on the three nearest neighbor triangular sites.

⟨ϕi(r = (r, φ))|τj⟩ = ⟨Yl′m′(r, ϕ)|Ylm⟩ = eiφ(m−m′)δ(l−l′)mod 2,(m−m′)mod 2, (A.32)

The symmetry of the local orbitals with respect to horizontal mirror reflection symme-
try σh is incorporated by taking into account the angular quantum number l and the
magnetic quantum number m also. Hence, the overlap matrix reads

Sij(k) =
1

9

∑
RiRj

eik(Ri−Rj)
∑
α

|ckα|2 ⟨τi|ϕα(Ri)⟩ ⟨ϕα(Rj)|τj⟩ . (A.33)

While the relative phases between the A and B site can be neglected in the sublattice
polarization in Eq. A.29, they are relevant for the off-diagonal elements of Sij.

A.5.3. Valley Expansion of the Triangular and the Kane-Mele
Model

In Sec. 5.10 the p-shell triangular lattice and the Kane-Mele model with identical
valley Hamiltonians are compared. Here we will derive their Dirac Hamiltonians. This
allows for a direct relation between the tight-binding parameters of the two models.
In the following, the lattice constant will be the unit of length and the scaling factor
of 2π between real and reciprocal space is set to 1.

The Hamiltonian of the {px, py} subspace on the triangular lattice reads

H(k) =(V σ + V π) · [cos(k1) + cos(k2) + cos(k1 + k2)] τ0 ⊗ σ0

+

√
3

2
(V σ − V π) · [− cos(k2) + cos(k1 + k2)] τx ⊗ σ0

+
λ̸σv

3
√
3
· [sin(k1) + sin(k2)− sin(k1 + k2)] τy ⊗ σ0 (A.34)

+
1

2
(V σ − V π) · [2 cos(k1)− cos(k2)− cos(k1 + k2)] τz ⊗ σ0

+
λSOC

2
· τy ⊗ σz,

where τi and σi are Pauli matrices acting on the orbital and spin degrees of freedom, re-
spectively. The expansion of the Hamiltonian up to first order around K = (2/3,−1/3)
with k = k′ −K is given by

Htriang
K (k) =H(K) +∇k′H(k′)

∣∣
k′=K

· k+O(k2)
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≈− 3

2
(V σ + V π) · τ0 ⊗ σ0 + τy ⊗

(
λ̸σv

σ0 +
λSOC

2
σz

)
+ (V σ − V π)

[
−3

4
(k1 + 2k2) τx +

3
√
3

4
k1τz

]
⊗ σ0 (A.35)

≈− 3

2
(V σ + V π) · τ0 ⊗ σ0 + τy ⊗

(
λ̸σv

σ0 +
λSOC

2
σz

)
+

3
√
3

4
(V σ − V π) (−kyτx + kxτz)⊗ σ0. (A.36)

The Hamiltonian of the Kane-Mele model in the {A,B} basis given in Eq. 2.7 reads in
momentum space in Bloch-gauge

HKM(k) =t [(1 + cos(k1) + cos(k2)) τx + (sin(k1)− sin(k2)) τy]

+
λKM
SOC

3
√
3
· [sin(k1) + sin(k2)− sin(k1 + k2)] τz ⊗ σz (A.37)

+ λISBτz ⊗ σ0.

Its expansion up to first order at K = (2/3,−1/3) yields

HKM
K (k) ≈t

[√
3

2
(k1 + k2) τx +

1

2
(k1 − k2) τy

]
⊗ σ0 + τz ⊗

(
λKM
SOCσz + λISBσ0

)
(A.38)

≈
√
3

2
t

[(
1

2
kx +

√
3

2
ky

)
τx +

(√
3

2
kx −

1

2
ky

)
τy

]
⊗ σ0 + τz

(
λKM
SOCσz + λISBσ0

)
.

Hence we find the relations 2t = 3(V σ−V π), λISB = λ̸σv
and 2λKM

SOC = λSOC. The factor
of 2 in the SOC strength arises from the different definitions in the two models. In the
triangular lattice Hamiltonian, it corresponds to the atomic SOC parameter, while it
reflects directly the mass parameter of the Dirac fermions in the Kane-Mele model. As
discussed in Sec. 4.4, the energy splitting between the in-plane bands and the pz-state
will rescale the effective SOC splitting of the Dirac cone. For the Kane-Mele model
shown in Fig. 5.10.1 this is taken into account by fitting its SOC parameter to the
splitting of the Dirac bands of the triangular model.
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A.6. Bulk OAM Polarization

Figure A.6.1.: OAM polarization of the valence bands of the models shown in Fig. 4.3.1.
The in-plane component is illustrated by a vector field plot and the color
plot denotes the out-of-plane polarization. Green and orange colors
denote positive and negative values, respectively.
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A.7. OAM and Spin Polarization in Finite Size
Geometries

XK ′ Γ KX
−1.0

−0.5

0.0

0.5

1.0

E
n

er
gy

(t
)

(I)
ν=0

XK ′ Γ KX
−1.0

−0.5

0.0

0.5

1.0

E
n

er
gy

(t
)

(II)
ν=1

XK ′ Γ KX
−1.0

−0.5

0.0

0.5

1.0

E
n

er
gy

(t
)

(III)
ν=1

XK ′ Γ KX
−1.0

−0.5

0.0

0.5

1.0

E
n

er
gy

(t
)

(IV)
ν=0

XK ′ Γ KX
−1.0

−0.5

0.0

0.5

1.0

E
n

er
gy

(t
)

(I)
ν=0

XK ′ Γ KX
−1.0

−0.5

0.0

0.5

1.0

E
n

er
gy

(t
)

(II)
ν=1

XK ′ Γ KX
−1.0

−0.5

0.0

0.5

1.0

E
n

er
gy

(t
)

(III)
ν=1

XK ′ Γ KX
−1.0

−0.5

0.0

0.5

1.0

E
n

er
gy

(t
)

(IV)
ν=0

XK ′ Γ KX
−1.0

−0.5

0.0

0.5

1.0

E
n

er
gy

(t
)

(I)
ν=0

XK ′ Γ KX
−1.0

−0.5

0.0

0.5

1.0

E
n

er
gy

(t
)

(II)
ν=1

XK ′ Γ KX
−1.0

−0.5

0.0

0.5

1.0

E
n

er
gy

(t
)

(III)
ν=1

XK ′ Γ KX
−1.0

−0.5

0.0

0.5

1.0

E
n

er
gy

(t
)

(IV)
ν=0

XK ′ Γ KX
−1.0

−0.5

0.0

0.5

1.0

E
n

er
gy

(t
)

(I)
ν=0

XK ′ Γ KX
−1.0

−0.5

0.0

0.5

1.0

E
n

er
gy

(t
)

(II)
ν=1

XK ′ Γ KX
−1.0

−0.5

0.0

0.5

1.0

E
n

er
gy

(t
)

(III)
ν=1

XK ′ Γ KX
−1.0

−0.5

0.0

0.5

1.0

E
n

er
gy

(t
)

(IV)
ν=0

Figure A.7.1.: OAM and Spin polarization in ribbon geometries with flat termination
for ribbons constituted of 30 conventional UCs for representatives of
the models shown in Fig. 4.3.1. The rows show from top to bottom
⟨Lz⟩ , ⟨Ly⟩ , ⟨Sz⟩ and ⟨Sy⟩. Green/blue and orange/red denote positive
and negative values, respectively. To enlarge the bulk gap, the scaling
factors of HSOC, H ̸σh and H ̸σv have been chosen twice as large as in
Tab. 5.1.1.
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Figure A.7.2.: OAM and Spin polarization in ribbon geometries with zigzag termina-
tion for ribbons constituted of 30 conventional UCs for representatives
of the models shown in Fig. 4.3.1. The rows show from top to bottom
⟨Lz⟩ , ⟨Lx⟩ , ⟨Sz⟩ and ⟨Sx⟩. In contrast to the flat edge (see Fig. A.7.1),
both z-components are vanishing, the total angular momentum polariza-
tion is purely in x-direction Green/blue and orange/red denote positive
and negative values, respectively. As the bands are two-fold degener-
ate, the plots show alternatingly the projection onto one of the Kramers
partners. To enlarge the bulk gap, the scaling factors of HSOC, H ̸σh

and H ̸σv have been chosen twice as large as in Tab. 5.1.1. A small
Ŝz = O(10−5)-term has been added to make the spin a good quantum
number. This promotes a weak ⟨Lz⟩- and ⟨Sz⟩-polarization around Γ.
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A.8. Trial Basis Overlaps

Figure A.8.1.: Logarithmic plot of det[S(k)] for the valence bands of representatives
of the four topologically distinct phases and the trial basis sets given
in Tab 5.9.1. The range of the color code is identical in all panels and
dark colors denote vanishing overlap eigenvalues. The green dashed lines
indicate the first BZ. The diagonal of the figure denotes the tuple of the
model and projection basis, for which the overlap is finite in the full BZ,
i.e. the valence states are a band representation of that trial basis. The
tight-binding parameters of the models can be found in Tab. 5.1.1.

161



A. Appendix

A.9. AgTe: Comparison of the Minimal Tight-Binding
Model and DFT

To obtain a qualitative model description of the low-energy in-plane Te p-physics on
Ag (111), we invoke the minimal triangular Hamiltonian introduced in Chap. 4 with
the tight-binding parameters given in Tab. A.9.1. The band structure with OAM and
spin polarization is shown in the top rows of Figs. A.9.1 and A.9.2, respectively. To
describe the Ag s band, the triangular pz-orbital (on the Te site) is borrowed, which
results in a reasonable qualitative agreement. However, a closer inspection reveals a
deviation in the β± feature: while the DFT model possesses a weak OAM polarization
in β− (lower β band), β+ has a reduced polarization for the minimal model. The correct
pattern is reproduced, if the pz-band is shifted below the in-plane bands at Γ. This is
in fact also the case in the DFT calculations, where the Te pz-band hybridizes with the
Ag-substrate quantum well states in valence [see also Fig. S2(d) of the supplemental
material of Ref. [1]].

Ez V σ V π V π
pz λ̸σh

λ̸σv
λSOC

5.7 0.45 0.15 -0.5 0.2 0.1 0.3

Table A.9.1.: Parameters for the qualitative tight-binding model in units of the hopping
parameter t (the unit set to eV in Figs. A.9.1 and A.9.2).
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Figure A.9.1.: OAM polarization in the minimal p-shell model and the AgTe-projected
one of the ab initio-derived Wannier model in the top and bottom row,
respectively.
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−1

]

−2

−1

0

1

E
n

er
gy

[e
V

]

〈Stan〉

M← -0.2 Γ 0.2 →K

k[Å
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−1

]

−2

−1

0

1

E
n

er
gy

[e
V

]

〈Srad〉

M← -0.2 Γ 0.2 →K

k[Å
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Figure A.9.2.: Spin polarization in the minimal p-shell model and the AgTe-projected
one of the ab initio-derived Wannier model in the top and bottom row,
respectively.
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