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Introduction

Stochastic partial differential equations (SPDEs) form a powerful framework for modelling and analysing

systems that evolve in both time and space under the influence of random fluctuations. They provide

a mathematical description of processes that exhibit randomness, often arising in various fields such

as physics, finance, biology, and engineering. SPDEs extend the classical theory of partial differential

equations (PDEs) by incorporating stochastic terms, which account for the uncertainties present in the

system. Unlike deterministic PDEs, where the evolution of a system is fully determined by its initial

conditions and governing equations, SPDEs introduce randomness into the equations, capturing the

inherent variability and noise in the underlying phenomena. While PDEs have been extensively researched

over the past decades, research on SPDEs is comparatively still in its infancy.

To introduce stochastic partial differential equations, we begin by considering a separable Hilbert space

denoted as H. The mathematical expression for an SPDE takes on a general form:

dXt ` pθA`BqXt dt “ pMXt ` σqdWQ
t ,

where X0 “ ξ P H denotes the initial condition, A,B andM are operators,WQ represents a Q-cylindrical

Brownian motion, and θ, σ are parameters. The operator A is linear, positive definite, and self-adjoint

in H, while B is a linear or nonlinear operator in H. Additionally, A and M are commonly differential

or pseudo-differential operators. For further readings on operators and other fundamental concepts of

functional analysis, we recommend consulting the work of Rudin (1987).

Similar to PDEs, various classes of SPDEs emerge based on the choice of the operators, each exhibiting

distinct properties and characteristics. Some notable classes of SPDEs include:

(1) Linear SPDEs: This class encompasses SPDEs, where the differential operator is linear, i.e., B “ 0.

Linear SPDEs are often solvable analytically or numerically and have well-defined properties such

as existence, uniqueness, and regularity of solutions. They serve as a fundamental building block

for further SPDE models.

(2) Nonlinear SPDEs: Nonlinear SPDEs feature nonlinear terms in either the differential operator or

the drift term, characterized by B ‰ 0, with B being a nonlinear operator. These equations are

commonly employed when modelling systems with nonlinearity or interactions between different

components. Solving nonlinear SPDEs often presents substantial challenges concerning the exis-

tence and uniqueness of solutions. As a result, their analysis frequently relies on numerical methods

or approximation techniques to explore their behaviour and properties.

(3) SPDEs with additive noise: This class of SPDEs involves a stochastic noise term that is additive,

meaning it is directly added to the deterministic part of the equation, i.e., M “ 0. The noise

introduces randomness and captures the effects of unpredictable factors in the system. SPDEs with
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Introduction

additive noise are widely used in various fields to model phenomena with inherent uncertainties and

fluctuations.

(4) SPDEs with multiplicative noise: In this class of SPDEs, the noise term is multiplicative, meaning

it interacts with the solution or the coefficients of the equation, i.e., M ‰ 0. Multiplicative noise

can arise in various applications, such as models of financial markets, fluid dynamics, or biological

systems. SPDEs with multiplicative noise present additional challenges in terms of well-posedness,

stability, and numerical approximation.

Each class has its own mathematical properties, challenges, and applications. The study of SPDEs

involves a combination of analytical techniques, numerical methods, and probabilistic tools to understand

the behaviour of these complex systems and make predictions about their dynamics.

The relevance of statistical techniques for SPDEs is evident by the works of Hambly and Søjmark

(2019), Fuglstad and Castruccio (2020), Altmeyer and Reiß (2021), and Altmeyer et al. (2022), which

provide calibration options for SPDEs in one space dimension. Although there has been significant re-

search on linear stochastic partial differential equations with additive noise, there are still open questions

that remain unresolved. Two particular areas that warrant further investigation are the statistical in-

ference on the model parameters and the extension of the SPDE model to higher dimensions. In terms

of statistical inference, understanding how to accurately estimate the parameters of linear SPDEs with

additive noise is a critical challenge. This includes determining the identifiability of the parameters,

devising efficient estimation methods, and assessing the associated statistical properties, such as consis-

tency and asymptotic normality. Addressing these questions is essential for reliable parameter estimation

and for making informed inferences about the underlying system motivating ongoing research efforts to

advance our understanding of linear SPDEs with additive noise. A first step was taken by the authors

Bibinger and Trabs (2020) and Hildebrandt and Trabs (2021), where they analysed the identifiability of

the parameters of a one-dimensional SPDE model and developed respective estimators. Thus, we aim to

link to their work and discuss remaining problems.

While research on linear SPDEs in one space dimension has garnered considerable interest in recent

decades, extending the model to multi-dimensional spaces is still in its early stages. This extension

introduces complexities in terms of the theoretical analysis, computational methods, and interpretation of

the results. Investigating the behaviour of linear SPDEs in higher dimensions can provide valuable insights

into the dynamics of multi-dimensional systems and pave the way for their application in diverse fields.

Addressing statistical inference and exploring the behaviour of these models in higher dimensions will

contribute to the development of more robust estimation techniques, improved model selection criteria,

and a deeper comprehension of complex systems across various scientific disciplines. The initial strides in

this emerging field were taken by Tonaki et al. (2023), where they delved into a linear SPDE model within

a two-dimensional spatial framework. Their work not only introduced pioneering estimation techniques

for model parameters but also shed light on the asymptotic properties underpinning these estimators.

In this thesis, our focus is on studying a linear SPDE with additive noise, both in one and multiple

space dimensions. We aim to derive statistical inference methods by observing data on a bounded discrete

space-time grid.

However, it is essential to acknowledge that SPDEs extend beyond the scope of linear models with

additive noise. For further readings on nonlinear SPDEs, we recommend referring to the work of Cialenco

and Glatt-Holtz (2011). Similarly, for insights into SPDEs with multiplicative noise, we suggest the works

2



Introduction

Figure 1.: The figure shows a comparison between the deterministic heat equation (left) and its stochastic counterpart (right). The
initial condition ξpyq for both cases is set to ξpyq “ 4xp1 ´ xq, and the volatility parameter is chosen to be σ “ 1{4.

of Chong (2020b) and Cialenco and Huang (2020). Additionally, for readings on semilinear SPDEs, we

refer to the works of Altmeyer et al. (2023) or Hildebrandt and Trabs (2023), which provide valuable

contributions in this area. For a comprehensive overview of statistical inference for SPDEs, along with

an introduction to the different classes of SPDEs and their statistical approaches, the work of Cialenco

(2018) serves as a valuable resource.

One of the most famous examples for linear SPDEs with additive noise is given by the stochastic heat

equation. The stochastic heat equation is a fundamental SPDE that models the diffusion of heat in a

medium with stochastic input. It combines the deterministic heat equation, which describes the evolution

of temperature over time, with a stochastic term that captures the random fluctuations or noise affecting

the system, transforming the PDE into a SPDE. Mathematically, the one-dimensional stochastic heat

equation can be represented as

dXtpyq “
B2

By2
Xtpyqdt` σ dWtpyq,

where the spatial domain of y is one-dimensional. Here, Xtpyq represents the temperature at time t and

spatial position y, and Wt denotes the spatiotemporal white noise process. Referring back to the general

SPDE introduced earlier, we find that the operator A corresponds to the second partial derivative with

respect to y, i.e., A “ B2{pBy2q, while both B and M are equal to zero. The stochastic heat equation has

been widely studied in the field of mathematical physics and stochastic analysis, cf. Khoshnevisan (2016)

or Cialenco and Kim (2022). It serves as a fundamental model for understanding diffusion processes in

various contexts, such as heat transfer, finance, and population dynamics. In finance, it finds application

in option pricing models and risk management, where random fluctuations in market prices are taken

into account. In physics, it is used to model heat diffusion in materials with random variations, such as in

heterogeneous media. As an example, consider the spatial domain as the one-dimensional unit interval,

3



Introduction

i.e., y P r0, 1s. In this context, the deterministic heat equation

dXtpyq “
B2

By2
Xtpyqdt

can be interpreted as a physical description of the cooling process of a rod initially heated by a heat

source. The equation describes how the temperature of the rod changes over time and space due to

heat diffusion. To further analyse the model, we impose a Dirichlet boundary condition, specifying that

the temperature at both ends of the rod is fixed at zero, i.e., Xtp0q “ Xtp1q “ 0, for all time points

t ě 0. This boundary condition reflects the fact that the rod’s temperature dissipates at its boundaries,

resulting in a cooling process. To solve the deterministic heat equation, we use a Fourier decomposition,

where we define the functions

ekpyq :“
?
2 sinpπkyq,

which form an orthonormal basis of the Hilbert space H “ L2pr0, 1sq with the associated inner product

xf, gy :“

ż 1

0

fpyqgpyqdy,

for all f, g P H and k P N. Considering Xtpyq P H to be a solution of the deterministic heat equation, we

can write

Xtpyq “

8
ÿ

k“1

xkptqekpyq, where xkptq :“ xXt, eky “

ż 1

0

Xtpyqekpyqdy.

By examining the first derivative in time, we can obtain an explicit representation of the Fourier modes

xk. This representation is given by

B

Bt
xkptq “

ż 1

0

B

Bt
Xtpyqekpyqdy “

ż 1

0

ˆ

B2

By2
Xtpyq

˙

ekpyqdy.

Using integration by parts and the Dirichlet boundary condition further yields

B

Bt
xkptq “ ´

ż 1

0

ˆ

B

By
Xtpyq

˙ˆ

B

By
ekpyq

˙

dy “

ż 1

0

Xtpyq

ˆ

B2

By2
ekpyq

˙

dy

“

ż 1

0

Xtpyq
`

´ k2π2
?
2 sinpπkyq

˘

dy “ ´π2k2xkptq.

Therefore, variation of constants yields the following solution for the Fourier modes:

xkptq “ xkp0qe´π2k2t “ xξ, ekye´π2k2t.

Consequently, X can be represented as

Xtpyq “

8
ÿ

k“1

e´π2k2txξ, ekyekpyq.
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Introduction

By introducing stochasticity into the heat equation, we can capture random fluctuations and uncertainties

in the cooling process, which is illustrated in Figure 1. This is particularly relevant in ecological modelling,

where population growth and migration are subject to various sources of randomness and environmental

variability. However, adding stochasticity to the heat equation requires more care than the presented

example for the deterministic heat equation. We will therefore revisit this procedure for a linear SPDE

model in one space dimension in the first chapter of this thesis and in Chapter 4 for a linear SPDE model

in multiple space dimensions.

Structure of the thesis

The focus of this thesis is on analysing a linear stochastic partial differential equation with a bounded

domain. The first part of the thesis (Part I) commences with an examination of a one-dimensional SPDE.

In this context, we are directing our attention towards a specific category of linear SPDEs, specifically, a

linear parabolic SPDE with one space dimension and an additive noise. Drawing on the work of Bibinger

and Trabs (2020), which focused on estimating the volatility of the random field X generated by a linear

parabolic SPDE in one spatial dimension, along with introducing estimators for the natural parameters

of the model, we first address the question of finding an estimator for the curvature parameter in this

model. Additionally, we analyse the task of improving the existing estimators for the natural parameters

of the one-dimensional SPDE model.

Chapter 1 serves as an introduction to the mentioned SPDE, providing a recap of its basic properties

and presenting initial results from Bibinger and Trabs (2020) and Hildebrandt and Trabs (2021). We

also conduct a heuristic discussion on the model parameters, emphasizing the curvature effect that some

parameters have on the random field X.

In Chapter 2, our focus shifts to the development of statistical inference for the curvature in the random

field. We consider a high-frequency observation scheme and derive two estimators based on a maximum

likelihood approach. One estimator relies on prior knowledge of the remaining model parameters, while

the other is independent of any such knowledge. We establish consistency and asymptotic normality for

both estimators. Additionally, we discuss numerical simulation methods for one-dimensional SPDEs and

provide simulation results for the estimators.

Moving forward, Chapter 3 tackles the problem of estimating both the so called normalized volatility

parameter and the curvature of the random field, which we refer to as the natural parameters of the

model. We draw parallels between existing statistics for estimating the volatility parameter and those

for a linear model. A key aspect of this procedure is the transformation of the realized volatility, a

concept well-known in various statistical models such as Itô processes, using the natural logarithm. We

develop estimators for the normalized volatility and curvature of X and demonstrate consistency and

asymptotic normality. We also establish a connection between the resulting curvature estimator from

the linear model approach and the estimator from Chapter 2. Hence, we introduce a novel method for

estimating the natural parameters of the model, significantly improving upon the M-estimator presented

by Bibinger and Trabs (2020), which is also discussed in Chapter 3. Simulation results for the estimator

resulting from the log-linear model approach are provided to conclude this chapter.

Overall, Part I delves into the statistical analysis of a linear parabolic SPDE in one spatial dimension.

It covers estimation of the normalized volatility, estimation of the curvature, and joint estimation of both

parameters. The development and analysis of estimators, along with simulation results, contribute to our

5
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understanding of the underlying model and provide practical insights into statistical inference for SPDEs.

Especially the connection between the log-linear model and our SPDE model offers a new link between

the two, enabling the application of efficient statistical methods to our SPDE model, which are well-

established in the linear model. Furthermore, the R-package ParabolicSPDEs1 offers a valuable tool

for simulating and estimating the model parameters. This package provides convenient functionalities

to simulate data from the parabolic SPDE model and estimate the associated parameters using various

estimation techniques. For a concise overview of the key findings and contributions in Chapters 2 and

3, refer to the publication by Bibinger and Bossert (2023). This paper provides an efficient summary

of the main results, methodologies, and insights presented in these chapters, offering a comprehensive

understanding of the statistical inference and estimation procedures for the considered one-dimensional

SPDE model.

In the second part of this thesis (Part II), we extend the existing research on linear, second-order SPDEs to

multiple spatial dimensions. A preliminary step was taken by Tonaki et al. (2023) when they extended the

SPDE model to two spatial dimensions. Building upon their work, we further explore the d-dimensional

space, thereby enabling the application of statistical methods to multi-dimensional systems. Moving

forward, we analyse the task of providing estimators for the model’s parameters and subsequently proving

asymptotic results. Specifically, we conduct the estimation of the volatility parameter, as well as the

natural parameters of the d-dimensional SPDE model. To the best of our knowledge, this extension to

higher spatial dimensions has not been previously studied.

To begin, Chapter 4 establishes the theoretical framework required for analysing SPDEs in multiple

space dimensions. This chapter addresses the absence of previous research on higher spatial dimensions

and covers the necessary mathematical foundations for statistical inference. Similar to Part I, we employ

the spectral decomposition technique, which allows us, under certain conditions, to decompose a solution

using discrete Fourier analysis. However, in higher spatial dimensions, accurately approximating the

resulting series from the Fourier transform necessitates advanced techniques, particularly in the context

of Riemann approximations. Once the theoretical framework is in place, we adopt the approach of

estimating model parameters using realized volatility. Initially, we investigate the identifiability of the

model parameters and construct a method of moments estimator for the volatility parameter in the

multi-dimensional SPDE. Notably, a significant difference between one-dimensional and multi-dimensional

settings is the introduction of a new parameter, which we refer to as the damping parameter. The

emergence of this parameter naturally occurs when transitioning from one space dimension to multiple

dimensions. Its inclusion is essential to guarantee that the solution process is square-integrable, i.e.,

Er∥Xt∥2ϑs ă 8. The damping parameter influences the roughness of the temporal marginal processes

of the solution field and therefore fundamentally affects the underlying model structure. We conclude

this chapter by discussing two simulation methods for simulating the presented linear, second-order

SPDE model in multiple spatial dimensions. Of particular interest is the extension of a simulation

method introduced by Hildebrandt (2020) for one spatial dimension to higher dimensions. This extension

demonstrates the applicability and effectiveness of the method in handling complex multi-dimensional

SPDE models. Furthermore, to facilitate simulations, parameter estimations, and result visualizations,

we provide a useful tool, the R-package SecondOrderSPDEMulti2. This package offers convenient

1see: https://github.com/pabolang/ParabolicSPDEs.
2see: https://github.com/pabolang/SecondOrderSPDEMulti.
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functionalities for simulating, estimating, and plotting multi-dimensional SPDEs, making the analysis of

such models more accessible and efficient.

In Chapter 5, our attention shifts towards the volatility estimator, and we delve into proving both its

consistency and a central limit theorem (CLT). To achieve this, we conduct an analysis that involves

the careful examination and appropriate bounding of temporal dependencies for quadratic increments in

higher spatial dimensions. To validate our theoretical findings and assess the performance of the volatility

estimator, we provide simulation results at the end of this chapter. These simulations underscore the

theoretical findings and provide valuable insights into its behaviour under various scenarios.

As we establish consistency and a central limit theorem for the volatility estimator in Chapter 5, we

simultaneously lay the foundation for extending the realized volatilities, used for estimating the volatility

of the random field, to a log-linear model. Building on the approach introduced in Chapter 3, Chapter

6 takes a step further and addresses the estimation of the natural parameters of the multi-dimensional

SPDE model. This involves a systematic and rigorous examination of the model’s natural parameters,

allowing us to gain deeper insights into their behaviour and impact on the overall model structure. To be

more precise, our findings will demonstrate that the realized volatilities exhibit asymptotic equivalence

to a log-linear model, which allows us to transfer statistical inference methods, well-known in the theory

of linear models.

Moreover, in Chapter 6, we introduce an estimator for the damping parameter, drawing inspiration

from a commonly used technique for estimating the Hurst parameter in fractional Brownian motions.

This estimator provides key information on the roughness of the temporal marginal processes and plays a

crucial role in understanding the behaviour of the SPDE model in multiple spatial dimensions. To support

our theoretical findings, we present simulation results for all the estimators introduced in Chapter 6.

In conclusion, Part II of this thesis delves into the theoretical and practical aspects of analysing

SPDEs in multiple spatial dimensions. The research conducted in Part II significantly contributes to

our understanding of SPDEs in higher dimensions, providing essential theoretical foundations, parameter

estimation techniques, and simulation methods. With practical applications in various fields, the findings

from Part II offer valuable insights and open new avenues for future research in the field of SPDE analysis.

The research undertaken in the second part of this thesis is also accessible in the recent preprint Bossert

(2023). This paper serves as a concise and efficient summary of the substantial results within Part II.

The thesis concludes with Chapter 7, which summarizes the new findings of Part I and Part II and

situates them within the existing research landscape. Additionally, an outlook section discusses open

questions and offers some intuitive approaches for future exploration.

In Part III of the thesis, we present the thesis appendices. Within these appendices, we provide a

comprehensive overview of the notational conventions used in this thesis in Appendix A. Additionally,

Appendix B offers additional plots related to the simulation studies discussed in Part II. A reference for

the R-codes used for simulations and plotting of the theoretical results within this thesis can be found

on the webpage R-codes-Bossert-Ph.D.-thesis3.

3see: https://github.com/pabolang/R-codes-Bossert-Ph.D.-thesis.
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Part I.

One-Dimensional Stochastic Partial

Differential Equation





1. Essentials of one-dimensional SPDEs

In this chapter, we delve into the analysis of linear parabolic stochastic partial differential equations with

additive noise. Given their inherent complexity, understanding and studying SPDEs often necessitate a

combination of probabilistic techniques and functional analysis. Therefore, we begin by introducing the

spectral approach, a valuable tool for tackling SPDEs, and lay the theoretical groundwork for the first

part of this thesis. Linear SPDEs in one spatial dimension have been extensively studied in the past

few decades, and their insights prove to be crucial for deriving new understanding in this first part of

the thesis. Hence, we recall essential results from this research, particularly those presented by Bibinger

and Trabs (2020) and Hildebrandt and Trabs (2021), as they play a fundamental role in the upcoming

analysis and provide a strong foundation for the subsequent exploration of more complex SPDE models.

1.1. Introduction of the model and statistical assumptions

For the first part of this thesis we consider the following linear parabolic stochastic partial differential

equation:

»

—

—

–

dXtpyq “

´

ϑ2
B
2

By2Xtpyq ` ϑ1
B

ByXtpyq ` ϑ0Xtpyq

¯

dt` σ dBtpyq, pt, yq P R` ˆ rymin, ymaxs

X0pyq “ ξpyq, y P rymin, ymaxs

Xtpyminq “ Xtpymaxq “ 0, t ě 0

fi

ffi

ffi

fl

(1)

in one spatial dimension with deterministic parameters ϑ0, ϑ1 P R and ϑ2, σ ą 0. We consider without

loss of generality pt, yq P R` ˆr0, 1s, where we set the spatial domain to be the unit interval. Nevertheless,

a generalization of the spatial domain to an arbitrary bounded domain can be concluded easily. Since

we need an entirely different theory for unbounded spatial domains, we will focus on bounded domains

throughout. For reference for a SPDE model with unbounded spatial domain consider Bibinger and

Trabs (2019) or Chong (2020a). The stochastic influence in this model is given by a cylindrical Brownian

motion B “ pBtpyqq in a Sobolev space on rymin, ymaxs “ r0, 1s. Furthermore, we consider a Dirichlet

boundary condition and we want the initial condition ξ to be independent from the cylindrical Brownian

motion B. For a brief discussion on other choices of boundary conditions, refer to Bibinger and Trabs

(2020).

1.1.1. Probabilistic structure

Two main approaches have been established for statistical inference for SPDE models. An approach

commonly known as discrete sampling utilizes discrete observations in both time and space, leading to

the development of statistical inference methods. The core concept of this method bears resemblance

to the approach used for estimating the volatility coefficient in finite-dimensional diffusions, employing
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1. Essentials of one-dimensional SPDEs

quadratic variation arguments or in general power variations. For references on this approach, we refer the

reader to Cialenco and Huang (2020), Posṕı̌sil and Tribe (2007), Kaino and Uchida (2021b) and Bibinger

and Trabs (2019). The spectral approach is a powerful and widely used method for analysing SPDEs.

This approach stands out as an effective technique for studying SPDEs due to its ability to decompose

solution processes using discrete Fourier analysis. By decomposing the solution processes of SPDEs using

Fourier analysis, we gain insights into the underlying dynamics and behaviour of the systems. One of

the key advantages of the spectral approach is its ability to handle both linear and nonlinear SPDEs.

To explore the spectral approach for nonlinear equations, refer to the work by Cialenco and Glatt-Holtz

(2011). This flexibility makes it applicable to a wide range of real-world problems. Moreover, the spectral

approach has shown great success in capturing the spatial and temporal characteristics of uncertainties in

a computationally efficient manner, cf. Section 2.5. In addition to its practical applicability, the spectral

approach has undergone significant advancements in recent years, leading to a deeper understanding of

SPDEs. Researchers have developed refined techniques, improved convergence properties, and extended

the approach to handle more complex scenarios. The origins of this approach can be traced back to the

works of Huebner et al. (1993) and Huebner and Rozovskii (1995), as referenced in the literature.

In this part of the first chapter, we will explore the spectral approach for SPDEs in detail. We will

delve into the mathematical foundations of Fourier analysis, its application to SPDEs, and the insights it

provides into the behaviour and properties of these systems. For details on discrete Fourier analysis see,

for instance, Stein and Shakarchi (2011). Additionally, we will conduct an examination of the most recent

advancements in the field, focusing on the research conducted by Bibinger and Trabs (2020). This work

has contributed significantly to the understanding and application of the spectral approach for SPDEs,

shedding light on novel techniques and insights that have emerged in recent times. By analysing and

discussing the findings of this research, we aim to stay at the forefront of the field’s progress and identify

potential avenues for further exploration and development in Chapters 2 and 3.

For understanding the core concept of the spectral approach we consider a Hilbert space

Hϑ :“ tf : r0, 1s Ñ R : ∥f∥ϑ ă 8, fp0q “ fp1q “ 0u,

with an inner product x¨, ¨yH defined by

xf, gyϑ :“

ż 1

0

exprϑ1y{ϑ2sfpyqgpyqdy and ∥f∥ϑ :“ xf, fyϑ “

ż 1

0

exprϑ1y{ϑ2sf2pyqdy.

The spectral approach operates under the key assumption that the SPDE model given by equation (1)

is diagonalizable. The diagonalizability property of the model pertains to the underlying differential

operator Aϑ defined as

Aϑ :“ ϑ0 ` ϑ1
B

By
` ϑ2

B2

By2
,

where the SPDE model can be written as

dXt “ AϑXt dt` σ dBt.
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1.1. Introduction of the model and statistical assumptions

The eigenfunctions pekqkPN of Aϑ and the corresponding eigenvalues p´λkqkPN are given by

ekpyq “
?
2 sinpπkyq expr´ϑ1y{p2ϑ2qs and λk :“ ´ϑ0 ` ϑ21{p4ϑ2q ` ϑ2π

2k2, (2)

where y P r0, 1s and k P N. The functions pekqkPN represent a system of eigenfunctions that form a

complete orthonormal system in Hϑ. Indeed, through standard calculations it can be proved that pekqkPN

are the eigenvectors belonging to Aϑ and that pekqkPN define an orthonormal basis. To derive such a

solution, the Sturm-Liouville problem can be referenced, as demonstrated by Hartman (1982, p. 337 ff.).

At this juncture, it is important to highlight a few key points. First, the inner product x¨, ¨yϑ includes

a rescaling factor obtained from the exponential function which also hinges on the parameters ϑ1{ϑ2. It

is also possible to think of different choices of the inner product, cf. Bibinger and Trabs (2020, Remark

2.3.) or under more restrictive assumptions to the observations scheme see Section 2.5.1. Furthermore,

we obtained the differential operator Aϑ to be diagonalizable. When working with SPDEs involving a

differential operator as the corresponding operator to the model, it becomes necessary to consider bounded

domains when implementing the spectral approach. We choose the Hilbert space Hϑ as the state space

for the solutions in the SPDE model from equation (1) and suppose that the initial condition ξ P Hϑ. In

addition, the differential operator is self-adjoint onHϑ, which can be shown by standard calculations. The

spectral approach enables us to decompose a solution process of equation (1). To achieve this, we need

to define our understanding of a solution for the underlying SPDE model given by equation (1). In the

study of stochastic processes, one important concept is that of mild solutions. These solutions provide a

powerful framework for understanding the dynamics of various stochastic systems, ranging from ordinary

differential equations to partial differential equations driven by stochastic processes. Mild solutions offer

a flexible and tractable approach to analyse the behaviour of stochastic processes over time. Unlike

strong solutions, which require strong continuity and differentiability properties, mild solutions provide a

more relaxed notion of solutions that can handle a wider range of equations and noise structures. A mild

solution is based on the variations of constants and delivers a solution process Xt, which is separated

into the initial condition and a time developing process driven by a cylindrical Brownian motion B. In

detail, a process pXtqtě0 is said to be a mild solution of equation (1) if it satisfies

Xt “ etAϑξ `

ż t

0

ept´sqAϑσ dBs, (3)

for all t ě 0 almost surely. For details on existence and uniqueness of mild solutions, cf. Da Prato and

Zabczyk (2014, Thm. 7.7. ff.). The cylindrical Brownian motion B can be expressed via

xBt, fyH “

8
ÿ

k“1

xf, ekyHW
k
t (4)

using the orthonormal system pekqkPN of the Hilbert space H from equation (2), where f P H and with

independent Brownian motions pW k
t qtě0, for all k ě 1. For details on cylindrical Brownian motions,

see, for instance, Gawarecki and Mandrekar (2010). Combining the mild solution from equation (3) with

discrete Fourier transformation as used in the spectral approach, the random field Xt can be represented
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1. Essentials of one-dimensional SPDEs

as the infinite factor model

Xtpyq “

8
ÿ

k“1

xkptqekpyq, with xkptq “ e´λktxξ, ekyϑ ` σ

t
ż

0

e´λkpt´sq dW k
s , (5)

where the coordinate processes are xk :“ xXt, ekyϑ, for any k P N. In addition, the coordinate processes

xk satisfy the Ornstein-Uhlenbeck dynamic, which is

dxkptq “ ´λkxkptqdt` σt dW
k
t ,

with xkp0q “ xξ, ekyϑ, for all k P N. Furthermore, we can assume pt, yq ÞÑ Xtpyq to be continuous,

since there exists a stochastic convolution
ş¨

0
ep¨´sqAϑσs dBs, which is continuous in time and space, cf.

Da Prato and Zabczyk (2014, Thm. 5.22.).

1.1.2. Statistical assumptions

Statistical assumptions play a crucial role in SPDE modelling, providing a framework to capture and

analyse the uncertainties inherent in these complex systems. Additionally, statistical assumptions are

often made regarding the spatial and temporal correlations within the SPDE model. Controlling these

correlations are crucial for statistical inference. Our primary focus lies in parameter estimation using

a discrete observation scheme of a solution process denoted as X “ Xtpyq, pti, yjq P r0, T s ˆ r0, 1s, with

i “ 1, . . . , n and j “ 1, . . . ,m, where T ą 0 is a predetermined constant. Specifically, our analysis will

operate within a high-frequency framework, where we consider T “ 1 and equidistant temporal points

ti “ i∆n “ i{n. As we expand upon the research conducted by Bibinger and Trabs (2020), we incorporate

the assumptions they have outlined in this section. The high-frequency observation scheme is recorded

in the following assumption.

Assumption 1.1.1 (Observation scheme)

Suppose we observe a mild solution X of the SPDE model from equation (1) on a discrete grid pti, yjq P

r0, 1s2, with equidistant temporal observations ti “ i∆n, for i “ 1, . . . , n and δ ď y1 ă . . . ă ym ď 1´δ,

where n,m P N and δ P p0, 1{2q. We consider one of the following two asymptotic regimes, respectively:

(I) ∆n Ñ 0, as n Ñ 8, while n∆n “ 1 and m ă 8 is fixed,

(II) ∆n Ñ 0 and m “ mn Ñ 8, as n Ñ 8, while n∆n “ 1 and m “ Opnρq for some ρ P p0, 1{2q.

Furthermore, we consider m ¨ minj“2,...,m |yj ´ yj´1| is bounded from below, uniformly in n for both

regimes.

Note that Assumption 1.1.1 especially implies m2
n∆n Ñ 0 and mn logpmnq∆

1{2
n Ñ 0, as n Ñ 8. Consid-

ering the presence of a Dirichlet boundary condition in the SPDE model from equation (1), it is expected

that the solution process X will converge towards zero near the spatial domain’s edge. This determin-

istic influence becomes increasingly pronounced in proximity to the spatial boundary. Consequently,

meaningful estimators for the parameters ϑ “ pϑ0, ϑ1, ϑ2qJ and σ can only be obtained at a relative

distance δ ą 0 away from the boundary. To visually demonstrate this effect, Figure 1.1 illustrates the
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1.1. Introduction of the model and statistical assumptions
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Figure 1.1.: Spatial sample paths of the SPDE model from equation (1) for 60 fixed time points and a possible choice of δ P p0, 1q

indicated by the dashed lines. We simulated the SPDE model with M “ 500 spatial points and N “ 250.000 temporal
points and with an initial condition ξ ” 0. The three panels represent three different choices of the parameters
ϑ0, ϑ1, ϑ2, σ. In the top panel we employed ϑ0 “ 0, ϑ1 “ 0, ϑ2 “ 1, σ “ 1, middle: ϑ0 “ 0, ϑ1 “ 1{2, ϑ2 “ 1, σ “ 1,
bottom: ϑ0 “ 0, ϑ1 “ 6, ϑ2 “ 1, σ “ 1.

impact of the boundary condition on 60 sample paths of Xtipyq, where ti “ pi ´ 1 ` 104q∆n P r0, 1s

and i “ 1, . . . , 60. The corresponding SPDE model was generated using different combinations of the

parameters ϑ0, ϑ1, ϑ2, σ. In each panel, the dashed line represents an exemplary choice of δ and showcases

the deterministic influence of the Dirichlet condition within the range r0, δq and pδ, 1s.

The upcoming chapter will reveal the crucial role of the chosen parameter δ in affecting the asymptotic

variances in the central limit theorems. Consequently, the selection of δ significantly impacts the quality

of the estimation process. When δ is approximately zero, we observe larger errors in the estimations.

This occurs because the asymptotically negligible error terms grow larger due to the deterministic in-

fluence, requiring a larger number of observations to minimize their impact effectively. Conversely, if δ

is approximately equal to 1/2, we lose a substantial portion of the spatial grid points. Since the high-

frequency Assumption 1.1.1 necessitates a finer temporal resolution n compared to the spatial resolution

m “ Opnρq, we consequently require a significantly larger number of temporal grid points to capture an

adequate amount of spatial information. In either case, we require the boundary parameter δ to remain

constant and independent of any potential indices.

Furthermore, we introduce the following mild regularity condition for the initial condition ξ.
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1. Essentials of one-dimensional SPDEs

Assumption 1.1.2 (Regularity)

For the SPDE in equation (1) we assume that

(i) either Erxξ, ekyϑs “ 0 for all k ě 1 and supk λkErxξ, eky2ϑs ă 8 holds true

or Er∥A1{2
ϑ ξ∥2ϑs ă 8,

(ii) pxξ, ekyϑqkě1 are independent.

This assumption holds particularly true when the random variable ξ follows the stationary distribution

of the SPDE model from equation (1). Stationarity assumptions are frequently employed in SPDE

modelling. Stationarity assumes that the statistical properties of the system remain invariant across

space or time, simplifying the analysis and estimation procedures. In this case, the inner products

xξ, ekyϑ are independently distributed as N p0, σ2{p2λkqq. When considering a stationary initial condition,

the random field becomes Gaussian. This is due to the independence of pxξ, ekyϑqkě1, and as a result,

the random field can be fully characterized by its covariance structure. Assuming independence of the

sequence pxξ, ekyϑqkě1 also provides a convenient condition for analysing the variance-covariance structure

of our upcoming estimators. To conclude, we note that Er∥A1{2
ϑ ξ∥2ϑs ă 8 implies supkPN λkErxξ, eky2ϑs “

supkPN ErxA
1{2
ϑ ξ, eky2ϑs ă 8.

1.2. Basic properties and essential theorems

We initiate this section by exploring the influence of the parameters pϑ0, ϑ1, ϑ2, σq on sample paths,

accompanied by graphical examples. However, we provide an argumentative insight into the effects

of these parameters on a solution process X. In the preceding section, we established the theoretical

framework by introducing an orthonormal system and subsequently a Fourier decomposition of a solution

process for the SPDE model given in equation (1). Within this factor model, a clear separation exists

between the temporal coordinates represented by the stochastic coordinate processes pxkptqqkPN and the

spatial coordinates determined by the deterministic eigenfunctions pekpyqqkPN. Therefore, we can leverage

this framework to examine the influence of the parameters pϑ0, ϑ1, ϑ2, σq on a solution process X. To

enhance our argumentative insight, we present the following covariance structure:

Cov
`

X̃spy1q, X̃tpy2q
˘

“ σ2
ÿ

kPN

e´λk|t´s|

2λk
ekpy1qekpy2q, (6)

where X̃ denotes a mild solution with stationary initial condition and y1, y2 P r0, 1s, s, t ě 0. This

covariance structure can be observed by the following calculations:

Cov
`

X̃spy1q, X̃tpy2q
˘

“
ÿ

kPNd

ekpy1qekpy2qErx̃kpsqx̃kptqs

and

Erx̃kpsqx̃kptqs “ σ2 e
´λkps`tq

2λk
` σ2e´λkps`tqE

„

´

ż minps,tq

0

eλks dW k
s

¯2
ȷ
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1.2. Basic properties and essential theorems

“ σ2 e
´λkps`tq

2λk
` σ2e´λkps`tq

ˆ

e2λk minps,tq ´ 1

2λk

˙

,

where we used equation (5), Assumption 1.1.2 and Itô isometry.

The parameter ϑ0 solely affects the eigenvalues within the coordinate processes. By considering the

structure of the coordinate processes and the eigenvalues, we observe that ϑ0 seems to have a visually

minimal impact on the solution X, as it is not connected to the index k P N. In addition, the covari-

ance structure given in display (6) confirms this conjecture. Furthermore, classical theory in statistics

for stochastic processes indicates that a drift parameter, such as ϑ0, cannot be consistently estimated

within a fixed time horizon. Similar conclusions hold true for the linear SPDE model in equation (1)

as also demonstrated in Hildebrandt and Trabs (2021, Prop. 2.3.). Consequently, the parameter ϑ0 is

not identifiable within a fixed time horizon, leading us to set ϑ0 “ 0 in our simulations. For further

insights into the estimation of the parameter ϑ0, Kaino and Uchida (2021b) provides a valuable resource.

However, note that in the general form of an SPDE, the drift term is typically considered as a function

of the state variables and time. This drift term introduces a deterministic component that governs the

evolution of the stochastic process, in contrast to the random fluctuations represented by the noise term.

For comprehensive readings on the definition of SPDE models with such understanding of the drift term

and estimation methods for this context, Cialenco and Huang (2020) and Cialenco et al. (2020) offer

valuable references. These works delve into the mathematical foundations and practical implications of

drift modelling in SPDEs, shedding light on the complexities involved in estimating the drift parameters

in these dynamic systems.

In contrast, the parameter ϑ1 exhibits a noticeable impact on the solution process. When ϑ1 ‰ 0, we

observe an effect on both the noise level of the temporal process and the spatial process. Particularly,

the influence on the spatial process is visually discernible. In this case, ϑ1 ‰ 0 leads to varying levels

of fluctuations within the spatial dimension, resulting in lower fluctuations in one half of the spatial

domain r0, 1s compared to the other half. For the influence of ϑ1 ‰ 0 on the noise level of the temporal

process, the author Hildebrandt (2021) pointed out, that by assuming a stationary initial condition, the

solution process X̃tpyq approximately looks like e´yϑ1{p2ϑ2qX 1
tpyq, where X 1

t solves the equation dX 1
t “

ϑ2B2{pBy2qX 1
t dt`σ dBt. Consequently, when ϑ1 “ 0, the solution field does not exhibit any curvature. In

this scenario, the orthonormal system simplifies to a sine basis, and the inner product becomes unweighted.

Figure 1.2 presents a visual representation in the top panel, offering an impression of the observed data.

Note that a negative choice of ϑ1 significantly scales up the solution process. This impact becomes evident

when examining the exponential term e´ϑ1{ϑ2y present in the eigenfunctions pekq, where ϑ2 ą 0 is always

a positive parameter.

The parameters pϑ2, σq significantly impact the noise level of the random field. Specifically, the para-

meter σ directly governs the overall noise level of the solution field, which is evident from the covariance

structure in display (6). This becomes even more apparent when considering that σ is directly linked to

the additive noise in equation (1). Hence, we refer to the parameter σ as the volatility. Conversely, as the

parameter ϑ2 increases, it diminishes the impact of noise while simultaneously weakening the curvature

effect driven by ϑ1. To provide a visual understanding of different choices of pϑ2, σq, the middle and

bottom panels of Figure 1.2 showcase various scenarios. Notably, in the last panel, we observe that the

parameter ϑ2 can counteract the curvature effect induced by the parameter ϑ1.
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Figure 1.2.: The figure presented depicts sample paths of the SPDE model, as outlined in equation (1). The sample paths are
generated using an equidistant grid in both time and space, where N “ 104, M “ 100, and ξ ” 0. Each row of
the figure consists of four plots. The first two plots on the right showcase the spatial processes, y ÞÑ Xtpyq, for
t “ 0.1 ` k{103 where k “ 0, . . . , 20. The last two plots exhibit the temporal processes, t ÞÑ Xtpyq, with y “ 1{10.
The specific parameter choices for each row are indicated in the title. In each row, the first spatial and temporal plots
correspond to the first parameter choice mentioned in the title, while the remaining plots correspond to the second
option. Note that only the top panel has a freely adjustable y-scale, whereas the other panels share a common y-scale.

The identifiability of parameters in a SPDE model is a crucial aspect in understanding and analysing the

underlying dynamics of the system. Identifiability refers to the ability to uniquely estimate the values of

model parameters based on observed data. In the context of SPDE models, it pertains to determining

whether the parameters governing the stochastic processes can be accurately estimated or distinguished

from each other using available information. Therefore, assume the parameters pϑ1, ϑ2, σq to be unknown.

In their study, Hildebrandt and Trabs (2021) demonstrated that consistent estimation is only possible

for the quantity σ2
0{e´κy0 when utilizing high frequency observations within a finite time horizon and on

a single spatial observation y0 P rδ, 1 ´ δs, which especially corresponds to Assumption 1.1.1. Here, the

parameters κ and σ2
0 are defined as follows:

κ :“
ϑ1
ϑ2

and σ2
0 :“

σ2

?
ϑ2
.
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This result highlights the specific parameter combination that can be consistently estimated in the pres-

ence of high-frequency observations. Henceforth, our focus will be directed towards estimating two crucial

parameters: the curvature parameter κ P R and the normalized volatility parameter σ2
0 ą 0. Note that

the orthonormal system pekqkPN now exhibits a representation that is dependent on the parameter κ.

In the forthcoming chapters, specifically Chapters 2 and 3, we will present estimators for both of these

natural parameters, κ and σ2
0 . Let X be a mild solution of the SPDE model from equation (1) with an

arbitrary initial condition and X̃ be a mild solution with an stationary choice of the initial condition. The

identifiability of parameters in the SPDE model from equation (1) has been demonstrated by Hildebrandt

and Trabs (2021) through the use of Gaussian arguments, building upon the earlier work of Ibragimov

and Rozanov (2012, Chapter III). In their analysis, the researchers assumed that the initial condition

follows a stationary distribution. This assumption was facilitated by the regularity assumptions on ξ, as

outlined in Assumption 1.1.2. Consequently, any choice of ξ could be replaced with a stationary initial

condition if the temporal observations n are sufficiently large, cf. Bibinger and Trabs (2020, Lemma 6.4.).

Furthermore, the authors Bibinger and Trabs (2020) showed that the identifiability of the two natural

parameters is sharp, where they used a summation over quadratic increments, also known as realized

volatility, in order to derive consistent estimators for σ2 and a M-estimator based on realized volatility

for estimating both natural parameters. The realized volatility is defined as the sum of squared increments

over a specified time interval, given by

RVnpyq :“
n
ÿ

i“1

p∆iXq2pyq :“
n
ÿ

i“1

`

Xi∆n
pyq ´Xpi´1q∆n

pyq
˘2
,

where y P rδ, 1 ´ δs. Furthermore, the rescaled realized volatility is denoted as RVn{
?
n, where the

rescaling is only with respect to the factor
?
n. However, rescaling can also be understood as RVn ¨eyκ{

?
n.

Consequently, the exponentially rescaled volatility is defined as

Vp,∆npyq :“
1

p
?
∆n

p
ÿ

i“1

p∆iX̃q2pyqeyκ,

where 1 ď p ď n. Note that the definition of Vp,∆n
directly employs a mild solution with a stationary

initial condition. The incorporation of realized volatility and its rescaled version plays a pivotal role in

estimating and analysing the parameters of the SPDE model. Consequently, it is essential to establish

fundamental properties of these statistics, as demonstrated by Bibinger and Trabs (2020). We begin by

recalling the expected value of the rescaled realized volatility.

Proposition 1.2.1

On Assumptions 1.1.1 and 1.1.2, we have uniformly in y P rδ, 1 ´ δs that

E
“

p∆iXq2pyq
‰

“ ∆1{2
n e´yκ σ

2
0?
π

` rn,i ` Op∆3{2
n q,

for i “ 1, . . . , n, with terms rn,i that satisfy sup1,...,n |rn,i| “ Op∆
1{2
n q,

řn
i“1 rn,i “ Op∆

1{2
n q, and become

negligible when summing all squared increments:

E
„

RVnpyq
?
n

ȷ

“ e´yκ σ
2
0?
π

` Op∆nq. (7)
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1. Essentials of one-dimensional SPDEs

The preceding proposition highlights an almost 1{4-Hölder regularity in time, where Hildebrandt and

Trabs (2021, Prop. 3.3.) shows an almost 1{2-Hölder regularity in space. This reveals that the paths in

time are considerably rougher compared to those in space as supported by the Kolmogorov continuity

theorem presented in Stroock and Varadhan (1997). This disparity in regularity justifies the rescaling

of the realized volatility by the quantity
?
∆n. Additionally, by rescaling the realized volatility and

under Assumption 1.1.1, consistent estimators can be constructed when mn “ Opnρq, with ρ P p0, 1{2q.

This assumption especially controls the dependencies inherited by the SPDE model. However, even if

this condition is violated, consistent estimators with optimal rates can still be constructed using double

increments in both time and space, as shown by Hildebrandt and Trabs (2021). Based on equation

(7), Bibinger and Trabs (2020) developed a consistent estimator for the volatility parameter σ2 using

the method of moments, relying on the first moment of the rescaled realized volatility. The resulting

estimator is given by

σ̂2
y “

RVnpyq
?
n

eyκ
a

πϑ2,

and is derived under the assumption that ϑ “ pϑ0, ϑ1, ϑ2q is known. Note that this estimator is based

on the rescaled realized volatility at a single spatial point, such as m “ 1. Moreover, Bibinger and Trabs

(2020) also constructed an estimator that incorporates multiple spatial points, leveraging the above

estimator by taking the average across different spatial coordinates.

The asymptotic theory concerning realized volatility and associated statistics, derived from high-

frequency observations of Itô diffusions that solve stochastic differential equations (SDEs), heavily relies

on the martingale structure inherent to these processes. This martingale structure, along with various

approximation steps, forms the foundation of the asymptotic analysis with general semimartingales, as

exemplified in Jacod and Protter (2011), for instance.

One of the primary distinctions between these well-established martingale techniques and our asymp-

totic analysis of the SPDE model lies in the correlation structure of their discrete increments. In the

context of SDE models, the discrete increments are uncorrelated. However, in the SPDE model, we

observe negatively correlated discrete-time increments. As a consequence, the proofs of central limit

theorems exhibit significant differences and bear more resemblance to asymptotic statistics for fractional

diffusions.

According to Bibinger and Trabs (2020, Prop. 3.2.), in the SPDE model, the autocorrelation of the

discrete increments decreases as the time gap between the increments increases. This indicates that while

the increments may not be perfectly uncorrelated, their correlation diminishes as the gap widens. As the

estimation of σ2 relies on realized volatilities, the analysis of the variance-covariance structure of realized

volatility becomes vital for asymptotic results. This crucial aspect is exploited by the following result, as

presented in Bibinger and Trabs (2020, Prop. 6.5.).

Proposition 1.2.2

On Assumptions 1.1.1 and 1.1.2, the covariance of the exponentially rescaled realized volatility Vp,∆n for

two spatial points y1, y2 P rδ, 1 ´ δs satisfies for any η P p0, 1q:

Cov
`

Vp,∆n
py1q, Vp,∆n

py2q
˘

“ 1ty1“y2up
´1Γσ4

0

`

1 ` Op1 ^ pp´1∆η´1
n qq

˘

` O
`

p´1∆1{2
n p1ty1‰y2u|y1 ´ y2|´1 ` δ´1q

˘

,
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where Γ « 0.75 is a constant numerically given in equation (8). In particular, we have

Var
`

Vn,∆n

˘

“
Γσ4

0

n

`

1 ` Op
?
∆nq

˘

.

Analogously, we can exploit the covariance structure of the rescaled realized volatility RVnpyq{
?
n by a

simple transformation. Concerning the constant Γ in the variance, we provide the analytical form which

is determined by a series of covariances given by

Γ :“
1

π

8
ÿ

r“0

Iprq2 `
2

π
, with Iprq :“ 2

?
r ` 1 ´

?
r ` 2 ´

?
r. (8)

By establishing the variance and covariance structure of the exponentially rescaled realized volatility,

Bibinger and Trabs (2020) successfully demonstrated the applicability of a central limit theorem.

Proposition 1.2.3

On Assumptions 1.1.1 and 1.1.2, for any y P rδ, 1 ´ δs the estimator σ̂2
y obeys, as n Ñ 8, the central

limit theorem

n1{2
`

σ̂2
y ´ σ2

˘ d
Ñ N p0, πΓσ4q.

The factor Γπ « 2.357 appearing in the asymptotic variance of Proposition 1.2.3 is notably close to

the factor 2, which represents the Cramér-Rao lower bound for estimating σ2 from independent and

identically distributed (i.i.d.) standard normals. The difference pΓπ ´ 2q precisely accounts for the

contribution of the non-negligible covariances of squared increments in the SPDE model from equation

(1).

Due to these temporal covariances, conventional methods are insufficient for proving the central limit

theorems in the forthcoming chapters. Therefore, it is necessary to employ non-standard approaches.

To address this, we conclude this section by introducing a central limit theorem for weakly dependent

triangular arrays, as provided by Peligrad et al. (1997). This theorem serves as a valuable tool for

establishing the central limit theorems in the subsequent chapters, accounting for the presence of temporal

covariances in the model.

Proposition 1.2.4

Let pZkn,iq1ďiďkn
be a centred triangular array, with a sequence pknqnPN. Then, it holds

kn
ÿ

i“1

Zkn,i
d

ÝÑ N p0, υ2q,

with υ2 “ limnÑ8 Varp
řkn

i“1 Zkn,iq ă 8 if the following conditions hold:

(I) Var
´ b
ř

i“a

Zkn,i

¯

ď C
b
ř

i“a

VarpZkn,iq, for all 1 ď a ď b ď kn,

(II) lim sup
nÑ8

kn
ř

i“1

ErZ2
kn,i

s ă 8,
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1. Essentials of one-dimensional SPDEs

(III)
kn
ř

i“1

E
”

Z2
kn,i

1t|Zkn,i|ąεu

ı

nÑ8
ÝÑ 0, for all ε ą 0,

(IV) Cov
´

eit
řb

i“a Zkn,i , eit
řc

i“b`u Zkn,i

¯

ď ρtpuq
c
ř

i“a

VarpZkn,iq, for all 1 ď a ď b ă b ` u ď c ď kn and

t P R,

where C ą 0 is a universal constant and ρtpuq ě 0 denotes a function satisfying
ř8

j“1 ρtp2
jq ă 8.

The first two conditions of the prior CLT are straightforward and require no further explanation.

The third condition represents the Lindeberg condition, which is well-known and can be established

by verifying a Lyapunov condition. The fourth condition is of particular importance as it governs the

covariance structure within the triangular array. Consequently, special attention needs to be given to

this condition.

Considering a scenario where we aim to prove a CLT of the form
?
rnpθ̂ ´ θq

d
Ñ N p0, υ2q, where

θ̂ “
řn

i“1 θ̂i represents an estimator for an unknown parameter θ, and rn denotes the convergence rate.

If we want to apply the CLT from Proposition 1.2.4 introduced by Peligrad et al. (1997), then the

appropriate choice for the corresponding triangular is given by Zn,i “
?
rnpθ̂i ´ θq. In line with this

scheme, we will discuss the selection of triangular arrays for our respective estimators at the beginning of

Section 2.4. Nevertheless, alternative methods are available for deriving CLTs for SPDE models. One such

approach is the Malliavin-Stein’s method, employed by Cialenco and Kim (2022), to derive asymptotic

results. This powerful probabilistic technique combines ideas from Malliavin calculus and Stein’s method,

enabling researchers to obtain quantitative rates of convergence in CLTs. For reference on Stein’s method,

see, for instance, Diaconis and Holmes (2004), which provides a comprehensive overview of the method.

For an introduction to Malliavin calculus, refer to Viens et al. (2013), offering insights into its applications

and theory.
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2. Parametric estimation of the curvature parameter

The objective of this chapter is to develop a consistent estimator for the curvature parameter κ P R, with
an optimal rate of convergence and a smaller asymptotic variance than that of the minimum contrast

estimator known from Bibinger and Trabs (2020, Chapter 4). To achieve this, we propose a new estimator,

denoted as κ̂, based on realized volatilities of a mild solution and the knowledge of the normalized volatility

parameter σ2
0 of the SPDE model from equation (1). We establish consistency of κ̂ and derive a central

limit theorem for this new curvature estimator. Furthermore, in the case where σ2
0 is unknown, we present

a second estimator, denoted as κ̂, for κ.
To exploit the structure of both estimators, we begin the asymptotic analysis by considering the case

where m P N is fixed. In the latter part of this chapter, we extend our results to the more general

scenario where the temporal and spatial observations n and m tend to infinity. Additionally, we provide

statistical tests that allow us to assess whether κ is a valid component of the SPDE model from equation

(1) model or not. Finally, we contextualize our new estimators within the existing literature, providing

a comprehensive overview of their significance and contributions to the field.

2.1. Motivation

In this chapter, we delve into the development of a new estimator for the curvature parameter κ based

on high-frequency observations. Recalling the SPDE model from equation (1) introduced in Chapter 1,

the curvature parameter is represented by the quotient κ “ ϑ1{ϑ2 P R. Despite some research using

the spectral approach for SPDEs, an efficient estimator that is both consistent and exhibits a preferably

small variance for κ remains elusive.

To bridge this gap, we progress towards constructing a novel estimator for the curvature parameter,

leveraging the central limit theorem presented in Proposition 1.2.3. Under Assumptions 1.1.1 and 1.1.2,

and with a sufficiently large number n of temporal observations, we arrive at the following approximation:

RVnpyq
?
n

eκy
a

πϑ2
?
n «

?
nσ2 ` N

`

0,Γπσ4
˘

. (9)

This leads to the subsequent expression:

RVnpyq
?
n

« e´κy σ
2
0?
π

` N
ˆ

0,
Γ

n
σ4
0e

´2κy

˙

.

Furthermore, it becomes evident that

RVnpyq
?
n

« e´κyσ2
0 ¨ N

ˆ

1
?
π
,
Γ

n

˙

.
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2. Parametric estimation of the curvature parameter

Given that we know the parameter σ2
0 , we can estimate the parameter κ using the following calculations:

ln

ˆ

RVnpyq
?
n

˙

« ´κy ` lnpσ2
0q ` ln

ˆ

1
?
π

`

c

Γ

n
Z

˙

,

where Z „ N p0, 1q. Let y1, . . . , ym P rδ, 1 ´ δs denote spatial points for a suitable δ P p0, 1{2q, and

Z1, . . . , Zm i.i.d. standard normal random variables. By using the first-order Taylor expansion of the

natural logarithm, we obtain that

ln

ˆ

RVnpyjq
?
n

˙

« ´κyj ` lnpσ2
0q ` ln

ˆ

1
?
π

ˆ

1 `

c

Γπ

n
Zj

˙˙

« ´κyj ` lnpσ2
0q ` ln

`

π´1{2
˘

`

c

Γπ

n
Zj ,

(10)

for j “ 1, . . . ,m. As the variance of n´1{2Zj decreases with increasing n P N, using the first-order Taylor

expansion appears sufficient. However, we will discuss this technical detail in Section 2.2. Reordering the

latter expression yields

κ «
´ ln

´

RVnpyjq
?
n

¯

` ln
´

σ2
0?
π

¯

yj
`

1

yj
¨

c

Γπ

n
Zj . (11)

Thus, κ can be regarded as the unknown expected value of a normal distribution with a variance that

depends on the respective spatial coordinates. In the upcoming example, we will briefly discuss the

maximum likelihood estimation in a related statistical model.

Example 2.1.1

Consider a model with independent random variables Yi „ N pµ, ς2i q, where µ is unknown, and ς2i ą 0 is

known for i “ 1, . . . ,m. The maximum likelihood estimator (MLE) with the likelihood function

Lmpµ; yq “

m
ź

i“1

1
a

2πς2i
exp

„

´
pyi ´ µq2

2ς2i

ȷ

is given by

µ̂ “

řm
i“1 Yiς

´2
i

řm
i“1 ς

´2
i

. (12)

If the random variables Yi have a common scaling parameter in the variance, i.e., Yi „ N pµ, aς2q, where

a ą 0, we still derive the same MLE since this parameter is part of the variance of every observation.

Furthermore, we can analyse the expected value and variance of the MLE µ̂ in this model, where we

have

Erµ̂s “ µ and Varpµ̂q “

ˆ m
ÿ

i“1

ς´2
i

˙´1

.
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In the latter example, the term ς´2
i can be viewed as Fisher information of observing Yi. Hence, efficiency

of the MLE in this model is implied by standard asymptotic statistics. Utilizing the weighted average

estimator within the model µ “ κ and ς2i “ y´2
i , and incorporating the approximation from display (11)

for estimating κ, we obtain the following estimator:

κ̂ :“ κ̂n,m :“

řm
j“1

´

´ ln
`

RVnpyjq
?

n

˘

`ln
`

σ2
0?
π

˘

yj

¯

y2j
řm

j“1 y
2
j

“

´
řm

j“1 ln
´

RVnpyjq
?
n

¯

yj `
řm

j“1 ln
´

σ2
0?
π

¯

yj
řm

j“1 y
2
j

. (13)

Hence, we have derived an oracle estimator for the curvature parameter, assuming that the normalized

volatility σ2
0 is known. Note that we have neglected the expression

a

Γπ{n since it scales the variance

uniformly.

The notation of this estimator indicates the use of a spatial resolution with m P N coordinates, where

each spatial point yj P rδ, 1 ´ δs for some δ P p0, 1{2q. However, the relation between the spatial and

temporal resolution is predetermined by Assumption 1.1.1. As the rescaled realized volatility is only

asymptotically normally distributed, we can anticipate that κ̂ is asymptotically unbiased. By referring

to Example 2.1.1, we can expect an asymptotic variance (AVAR) of Γπ
`
řm

j“1 y
2
j

˘´1
for the rescaled

estimator n1{2κ̂, when m remains finite. We will discuss the asymptotic variance for the case where

m “ mn Ñ 8 in Section 2.4.

During the construction of this first estimator for κ, we capitalized on the natural logarithm of the

rescaled realized volatility. Furthermore, Example 2.1.1 demonstrated that we can anticipate the asymp-

totic variance to be a known constant. In particular, the asymptotic variance is independent of the

unknown parameter κ or any other model parameter. This is because we employ a variance-stabilizing

transformation, which is achieved by using the natural logarithm. This fact is evident from the central

limit theorem presented in Proposition 1.2.3. Defining gypxq “ lnpxe´κypπϑ2q´1{2q. By employing the

delta method, we can show that

?
n
`

gypσ̂2
yq ´ gypσ2q

˘

“
?
n

ˆ

ln

ˆ

RVnpyq
?
n

˙

` κy ´ ln

ˆ

σ2
0?
π

˙˙

d
ÝÑ N

´

0,Γπσ4
`

g1
ypσ2q

˘2
¯

“ N p0,Γπq.

As a result, we can construct confidence intervals without any dependence on the model parameters.

By utilizing the same ideas as before, it is possible to construct an estimator for κ without any knowledge

of the normalized volatility parameter σ2
0 . To achieve this, we revisit the approximation (10). By lever-

aging the basic properties of the logarithm, we eliminate the unknown parameter σ2
0 by subtracting two

logarithmized rescaled realized volatilities at different spatial points yj ‰ yk. Performing this operation,

we obtain

ln

ˆ

RVnpyjq

RVnpykq

˙

“ ln

ˆ

RVnpyjq
?
n

˙

´ ln

ˆ

RVnpykq
?
n

˙

« ´κpyj ´ ykq `

c

Γπ

n
pZj ´ Zkq.

Consequently, we have

κ «

´ ln
´

RVnpyjq

RVnpykq

¯

yj ´ yk
`

1

yj ´ yk
¨

c

Γπ

n
pZj ´ Zkq. (14)
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Consider a random vector pY1, . . . , Ymq „ N pµ,Σq, where µ “ tµ1um P Rm is a vector with all elements

equal to µ1, and Σ is a covariance matrix. In this multivariate normal distribution, we can derive the

same maximum likelihood estimator µ̂1 for the parameter µ1 as illustrated in Example 2.1.1.

Hence, using equation (14), we can construct an estimator for κ using every combination of different

spatial points:

κ̂ :“ κ̂n,m :“

ř

j‰l ln
´

RVnpyjq

RVnpylq

¯

pyl ´ yjq
ř

j‰lpyj ´ ylq2
, (15)

where tj ‰ lu denotes the set tj, l “ 1, . . .m : j ‰ lu. We can also expect the estimator κ̂ to be

asymptotically unbiased. Albeit, the variance depends on the covariance structure Σ. Let Yj,k be the

random variables corresponding to each combination of different spatial points from equation (14).

Assuming the random variables Yj,k to be independent for each combination of j, k “ 1, . . . ,m, j ‰ k,

then the variance of κ̂ has the same structure as the variance of the maximum likelihood estimator in

equation (12). However, let us assume Yj,k :“ Yj ´ Yk, where pYiq are independent centred normal

random variables with variances ς2i ą 0, i.e., Yi „ N p0, ς2i q. Then, pYj,kq are not independent, as

CovpYj,k, Yj,lq “ ς2j ą 0, where j, k, l “ 1, . . . ,m, and all indices take different values. Nevertheless, we

will calculate the variance of a similar form in Proposition 2.3.5.

As this estimator also uses the logarithm of the rescaled realized volatility, we can infer that the

asymptotic variance is independent of the unknown parameters κ and σ2
0 due to the variance-stabilizing

transformation.

Our main goal will now be to prove consistency and demonstrate a central limit theorem for κ̂n,m with

a special interest in its asymptotic variance. Therefore, we will continue by highlighting technical details

for both estimators, κ̂n,m and κ̂n,m, respectively.

2.2. Methodology

As we have observed heuristically in the previous section, by utilizing the central limit theorem for the

estimator σ̂2
y, we can create a new estimator for κ using the method of weighted average. Now, we will

investigate a decomposition of the realized volatility with a specific focus on its remainder to lay the

groundwork for the first part of the asymptotic analysis for both estimators. Therefore, we introduce the

following lemma.

Lemma 2.2.1

Let y1 ă . . . ă ym P rδ, 1 ´ δs be in accordance with Assumption 1.1.1, where δ P p0, 1{2q. Furthermore,

let ỹ1, . . . , ỹm P r0, 1s and Y1, . . . , Ym P L2 square-integrable random variables. Then, it holds:

(i) For α P R and β ą 0 we have
`
řm

j“1 ỹ
β
j

˘α
“ Opmαq,

(ii)
ř

j‰l |yj ´ yl|
´1 “ O

`

m2 logpmq
˘

,

(iii)
ř

j‰lpYj ´ Ylqpyl ´ yjq “ 2
řm

j“1 Yj
`
řm

l“1pyl ´ yjq
˘

and

Var
ˆ

ÿ

j‰l

pYj ´ Ylqpyl ´ yjq

˙

“ 4
m
ÿ

j“1

ˆ m
ÿ

l“1

pyl ´ yjq

˙2

VarpYjq ` O
ˆ

m2
ÿ

j1‰j2

CovpYj1 , Yj2q

˙

.
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Proof. The first statement is evident since 0 ď ỹβj ď 1 for every β ą 0 and
řm

j“1 yj “ Opmq. For the

second statement, we have minj“2,...,m |yj ´ yj´1| ě Cm, where Cm ą 0 and mCm is a bounded constant

for all m P N. Therefore, it holds

ÿ

j‰l

1

|yj ´ yl|
ď m

ÿ

j‰l

1

mCm|j ´ l|
“ O

ˆ

m
ÿ

j‰l

1

|y ´ l|

˙

“ O
ˆ

m
m
ÿ

j“1

1

j
pm´ jq

˙

“ O
`

m2 logpmq
˘

,

where we know by the Maclaurin-Cauchy test that
řm

j“1 1{j “ O
`

logpmq
˘

. For the last statement the

variance identity is trivial by using statement (i) if we can show the identity
ř

j‰lpYj ´ Ylqpyl ´ yjq “

2
řm

j“1 Yj
`
řm

l“1pyl ´ yjq
˘

. Here, we obtain that

ÿ

j‰l

pYj ´ Ylqpyl ´ yjq “ 2
ÿ

jăl

pYj ´ Ylqpyl ´ yjq

“ 2
m
ÿ

j“1

Yj

ˆ m
ÿ

l“j`1

pyl ´ yjq ´

j´1
ÿ

l“1

pyj ´ ylq

˙

“ 2
m
ÿ

j“1

Yj

ˆ m
ÿ

l“1

pyl ´ yjq

˙

,

where we have rearranged the random variables in such a way that the respective random variables have

been combined. Note that we assign a value of zero to an empty sum.

We start by employing the decomposition based on the CLT as stated in Proposition 1.2.3. Let yj P

rδ, 1 ´ δs, with j “ 1, . . . ,m and a suitable δ P p0, 1{2q. Then, for the rescaled realized volatility, we have

RVnpyjq
?
n

“ e´κyj
σ2
0?
π

ˆ

1 `

c

Γπ

n
Zj `Rn,yj

˙

,

where Zj „ N p0, 1q, j “ 1, . . . ,m, denote standard normal random variables, and Rn,yj
represents

the remainder. In particular, the random variables Zj are independent and identically distributed, and

they are also independent of the remainder Rn,yj
. This is because the rescaled realized volatilities are

asymptotically Gaussian, and its autocovariances in different spatial points vanish asymptotically. The

remainders Rn,yj
contain all asymptotic negligible terms concerning the expected value and variance-

covariance structures of the rescaled realized volatilities. Therefore, we need to consider especially those

terms that depend on the spatial coordinates. Using Bibinger and Trabs (2020, Prop. 3.1. and 6.5.), we

can determine its asymptotic behaviour, which can be expressed as

Rn,y “ OP
`

∆n ` ∆p1`ηq{2
n ` ∆3{4

n {
?
δ
˘

“ OP
`

∆p1`ηq{2
n ` ∆3{4

n {
?
δ
˘

, (16)

where η P p0, 1q is an arbitrary constant. Note that we additionally used Bibinger and Trabs (2020, Prop.

6.4.). Hence, we can write Rn,y “ OPp
?
∆nq. When summing the remainder over different spatial points,

we get that

RΣ
n,y :“

m
ÿ

j“1

Rn,yj
“ OP

˜

m1{2∆p1`ηq{2
n ` ∆3{4

n

ˆ

ÿ

j‰k

p|yj ´ yk|´1q `m2δ´1

˙1{2
¸

.
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Using Lemma 2.2.1, we find that

RΣ
n,y “

m
ÿ

j“1

Rn,yj “ OP

´

m1{2∆p1`ηq{2
n ` ∆3{4

n m
`

logpmq ` δ´1
˘1{2

¯

. (17)

Therefore, we can particularly state
řm

j“1Rn,yj
“ OPp

?
m∆nq. Since our estimators for κ utilize the

natural logarithm to obtain information on κ from the rescaling factor in the inner product, we need to

analyse the logarithm of the rescaled realized volatility. As a first step, we have

ln

ˆ

RVnpyq
?
n

˙

“ ´κy ` ln

ˆ

σ2
0?
π

˙

` ln

ˆ

1 `

c

Γπ

n
Z `Rn,y

˙

“ ´κy ` ln

ˆ

σ2
0?
π

˙

` ln

ˆ

1 `

c

Γπ

n
Z

˙

` ln

ˆ

1 `
Rn,y

1 `
?
∆nΓπZ

˙

,

where Z „ N p0, 1q. We can simplify further by using Taylor expansion:

ln

ˆ

RVnpyq
?
n

˙

“ ´κy ` ln

ˆ

σ2
0?
π

˙

`

c

Γπ

n
Z ` OPp∆nq ` ln

ˆ

1 `
Rn,y

1 `
?
∆nΓπZ

˙

.

Since Z follows a standard normal distribution and
?
∆nΓπZ has a standard deviation of Op

?
∆nq, we

can rewrite the last term using Taylor expansion, considering only the first-order term:

ln

ˆ

1 `
Rn,y

1 `
?
∆nΓπZ

˙

“ ln

ˆ

1 `

´

Rn,y ´
Rn,y

?
∆nΓπZ

1 `
?
∆nΓπZ

¯

˙

“ Rn,y ´
`

1 ` OPp
?
∆nq

˘

Rn,y

a

∆nΓπZ ` OP

ˆ

∆1`η
n `

∆
3{2
n

δ

˙

“ Rn,y ` OP

ˆ

∆1`η{2
n `

∆
5{4
n

?
δ

˙

` OP

ˆ

∆1`η
n `

∆
3{2
n

δ

˙

,

by utilizing equation (16). As we consider the asymptotic regime based on Assumption 1.1.1, the sum

of different spatial points becomes asymptotically negligible. Therefore, we can safely ignore the latter

term and arrive at the following conclusion:

ln

ˆ

1 `
Rn,y

1 `
?
∆nΓπZ

˙

“ Rn,y ` OP

ˆ

∆1`η{2
n `

∆
5{4
n

?
δ

˙

.

As a result, we obtain that

ln

ˆ

RVnpyq
?
n

˙

“ ´κy ` ln

ˆ

σ2
0?
π

˙

`
a

∆nΓπZ ` OPp∆nq `Rn,y ` OP

ˆ

∆1`η{2
n `

∆
5{4
n

?
δ

˙

. (18)

To simplify notation, we introduce two random variables to represent the higher-order error terms, where

we rewrite the latter expression as follows:

ln

ˆ

RVnpyq
?
n

˙

“ ´κy ` ln

ˆ

σ2
0?
π

˙

`
a

∆nΓπZ `Rn,y ` r1n,y ` r2n,y,
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where r1n,y “ OP
`

∆
1`η{2
n `∆

5{4
n {

?
δ
˘

is primarily influenced by the product
?
∆nZjRn,y, whereas r

2
n,y “

OPp∆nq is mainly driven by ∆nZ
2
j . Additionally, by utilizing Propositions 1.2.1 and 1.2.2, we can

determine the first moment, variance, and covariance of the remainder Rn,y. We obtain

ErRn,ys “ Op∆nq, CovpRn,y1
, Rn,y2

q “ O
`

1ty1“y2u∆
η`1
n ` ∆3{2

n p1ty1‰y2u|y1 ´ y2|´1 ` δ´1q
˘

. (19)

Lastly, we examine the sum of the log-rescaled realized volatility over different spatial points:

m
ÿ

j“1

ln

ˆ

RVnpyjq
?
n

˙

“ ´κ
m
ÿ

j“1

yj `m ln

ˆ

σ2
0?
π

˙

`
a

∆nΓπ
m
ÿ

j“1

Zj `RΣ
n,y `

m
ÿ

j“1

r1n,yj
`

m
ÿ

j“1

r2n,yj
. (20)

Using equation (17), we find that

m
ÿ

j“1

r1n,yj
“ OP

`

m1{2∆1`η{2
n `mδ´1{2∆5{4

n

˘

,

since Zj and Rn,yj are independent. Additionally, we have

m
ÿ

j“1

r2n,yj
“ OPp

?
m∆nq.

As the sum of the spatial points of the higher-order error terms vanishes faster than the sum of the spatial

points of Rn,y, we conclude

ln

ˆ

RVnpyq
?
n

˙

“ ´κy ` ln

ˆ

σ2
0?
π

˙

`
a

∆nΓπZ `Rn,y, (21)

m
ÿ

j“1

ln

ˆ

RVnpyjq
?
n

˙

“ ´κ
m
ÿ

j“1

yj `m ln

ˆ

σ2
0?
π

˙

`
a

∆nΓπ
m
ÿ

j“1

Zj `RΣ
n,y. (22)

With this decomposition, we can now express the oracle estimator from equation (13) as follows:

κ̂n,m “

κ
řm

j“1 y
2
j ´

řm
j“1 ln

´

σ2
0?
π

¯

yj `
?
∆nΓπ

řm
j“1 Zjyj `

řm
j“1Rn,yj

yj `
řm

j“1 ln
´

σ2
0?
π

¯

yj
řm

j“1 y
2
j

“ κ`

ˆ m
ÿ

j“1

y2j

˙´1ˆ
a

∆nΓπ
m
ÿ

j“1

Zjyj `

m
ÿ

j“1

Rn,yj
yj

˙

. (23)

We conclude the methodology by presenting a similar decomposition for the non-oracle estimator κ̂.
Using the same methods as in equation (20), we have

ÿ

j‰l

ln

ˆ

RVnpyjq

RVnpylq

˙

“
ÿ

j‰l

ˆ

ln

ˆ

RVnpyjq
?
n

˙

´ ln

ˆ

RVnpylq
?
n

˙˙

“ κ
ÿ

j‰l

pyl ´ yjq `
a

∆nΓπ
ÿ

j‰l

pZj ´ Zlq `
ÿ

j‰l

pRn,yj
´Rn,yl

q. (24)

Again, considering that the higher-order error terms r1n,y and r2n,y vanish faster than Rn,y, we can neglect

these remainders. Now, we analyse the OP order of the double sum of the remainder. Using Lemma
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2. Parametric estimation of the curvature parameter

2.2.1, we find that

ÿ

j‰l

pRn,yj ´Rn,yl
qpyl ´ yjq “ 2

m
ÿ

j“1

Rn,yj

m
ÿ

l“1

pyl ´ yjq “ OP
`

mRΣ
n,y

˘

,

where we have used that |yl ´ yj | ď 1 for j ‰ l. Additionally, we have

ÿ

j‰l

pRn,yj ´Rn,yl
q “ OP

`

mRΣ
n,y

˘

“ OP

´

m3{2∆p1`ηq{2
n ` ∆3{4

n m2
`

logpmq ` δ´1
˘1{2

¯

. (25)

Using the representation from display (24) for the estimator κ̂ from equation (15), we arrive at the

following expression:

κ̂n,m “
κ
ř

j‰lpyl ´ yjq2 `
?
∆nΓπ

ř

j‰lpZj ´ Zlqpyl ´ yjq `
ř

j‰lpRn,yj
´Rn,yl

qpyl ´ yjq
ř

j‰lpyj ´ ylq2

“ κ`

ˆ

ÿ

j‰l

pyj ´ ylq
2

˙´1ˆ
a

∆nΓπ
ÿ

j‰l

pZj ´ Zlqpyl ´ yjq `
ÿ

j‰l

pRn,yj
´Rn,yl

qpyl ´ yjq

˙

. (26)

2.3. Fixed spatial observations

In this section, we begin the investigation of properties for the estimators κ̂ and κ̂, respectively. This

analysis involves determining their expected values and covariance structures. To explore asymptotic

properties, we initially focus on the case where only the number of temporal observations goes to infinity,

hence, we assume m P N to be fixed throughout this section. By utilizing the technical details presented

in Section 2.2, we establish the first central limit theorems and lay the groundwork for investigating

asymptotic results concerning both temporal and spatial observations.

2.3.1. Analysis of the curvature parameter with known normalized volatility

In this section, we analyse κ̂ under the assumption that σ2
0 “ σ2{

?
ϑ2 is known, and the number of spatial

observations m P N is fixed, according to the asymptotic regime (I) on Assumption 1.1.1. To begin, we

determine the expected value of the log-rescaled realized volatilities. Next, we derive its covariance

structure, and finally, we establish a central limit theorem for the estimator κ̂.

Proposition 2.3.1

On Assumptions 1.1.1 and 1.1.2, with y P rδ, 1 ´ δs for a δ P p0, 1{2q, we have

E
„

ln

ˆ

RVnpyq
?
n

˙ȷ

“ ´κy ` ln

ˆ

σ2
0?
π

˙

` Op∆nq.

In particular, the expected value of the estimator κ̂n,m from equation (13) satisfies:

E
“

κ̂n,m
‰

“ κ` Op∆nq.
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2.3. Fixed spatial observations

Proof. Using the equations (21) and (19) yields the first statement. The second statement follows from

equation (23) and again equation (19).

We continue with the calculation of the variance of the estimator κ̂ from equation (13).

Proposition 2.3.2

On Assumptions 1.1.1 and 1.1.2, we have

Var
`

κ̂n,m
˘

“

ˆ m
ÿ

j“1

y2j

˙´1

Γπ∆n

´

1 ` O
`

?
∆n

˘

¯

,

where Γ « 0.75 is a constant analytically given in equation (8).

Proof. Using Lemma 2.2.1, equations (23) and (17), we have

Var
`

κ̂n,m
˘

“

ˆ m
ÿ

j“1

y2j

˙´2
˜

∆nΓπ
m
ÿ

j“1

y2j ` Var
ˆ m
ÿ

j“1

Rn,yj
yj

˙

¸

“

ˆ m
ÿ

j“1

y2j

˙´1

∆nΓπ ` O
ˆ

´

m
ÿ

j“1

y2j

¯´2´

m∆η`1
n ` ∆3{2

n m2
`

logpmq ` δ´1
˘

¯

˙

.

Choosing η “ 1{2 and having m P N fixed completes the proof.

The last proposition reinforces the conjecture that we can expect an asymptotic variance of
`
řm

j“1 y
2
j

˘´1
Γπ with a convergence speed of

?
∆n. Taking this proposition into account, we can rescale

the sum to take the form of a Riemann sum, preparing for subsequent asymptotic results. Since the

spatial points δ ď y1, . . . , ym ď 1 ´ δ lie within the range from δ to 1 ´ δ, we rescale by the factor

p1 ´ 2δq{m, resulting in:

Var
`

κ̂n,m
˘

“
∆n

m
¨

Γπp1 ´ 2δq

1´2δ
m

řm
j“1 y

2
j

´

1 ` O
`

?
∆n

˘

¯

.

To prove a central limit theorem and establish consistency when m is fixed, we first consider the case

where m “ 1. In this situation, the estimator takes on the following form:

κ̂n,1 “
´ ln

´

RVnpy1q
?
n

¯

y1 ` ln
´

σ2
0?
π

¯

y1

y21
“

´ ln
´

RVnpy1q
?
n

¯

` ln
´

σ2
0?
π

¯

y1
“ ln

ˆ ?
nσ2

0?
πRVnpy1q

˙

1

y1
.

As illustrated in Proposition 1.2.3, the following central limit theorem holds:

?
n
`

σ̂2
y1

´ σ2
˘

“
?
n

ˆ

a

ϑ2π
RVnpy1q

?
n

ey1κ ´ σ2

˙

d
Ñ N p0,Γπσ4q.

33



2. Parametric estimation of the curvature parameter

Applying the delta method with the function

fpxq “ ln

ˆ

´ x
?
ϑ2π

e´y1κ
¯´1 σ2

0?
π

˙

y´1
1 “ ln

`

x´1ey1κσ2
˘

y´1
1

and the derivative f 1pxq “ ´py1xq´1, we obtain that

?
n
`

fpσ̂2
y1

q ´ fpσ2q
˘

“
?
n
`

κ̂´ κ
˘ d

Ñ f 1pσ2qN p0,Γπσ4q “ N p0, y´2
1 Γπq,

which proves a central limit theorem in the simple casem “ 1. Moreover, the assumption of an asymptotic

variance from Example 2.1.1 has been confirmed in this case. Next, we consider the case where m ą 1

but fixed.

Proposition 2.3.3

Under Assumptions 1.1.1 and 1.1.2, for y1, . . . , ym P rδ, 1´ δs with m P N fixed and δ P p0, 1{2q, we have

the following central limit theorem:

?
n
`

κ̂n,m ´ κ
˘ d

ÝÑ N
ˆ

0 ,
Γπp1 ´ 2δq

m
`

1´2δ
m

řm
j“1 y

2
j

˘

˙

,

as n Ñ 8.

Proof. We define

gjpxq :“
ln
´

`

x?
ϑ2π

e´yjκ
˘´1 σ2

0?
π

¯

yj
řm

l“1 y
2
l

“
ln
`

x´1eyjκσ2
˘

yj
řm

l“1 y
2
l

,

for j “ 1, . . . ,m. Since gj is differentiable with g1
jpxq “ ´px

řm
l“1 y

2
l q´1yj , we have by using Proposition

1.2.3 that

?
n
`

gjpσ̂2
yj

q ´ gjpσ2q
˘

“
?
n

˜

´ ln
´

RVnpyjq
?
n

¯

yj ` ln
´

σ2
0?
π

¯

yj
řm

l“1 y
2
l

´
y2jκ

řm
j“l y

2
l

¸

d
ÝÑ g1

jpσ2qN p0,Γπσ4q “ N

˜

0,Γπy2j

ˆ m
ÿ

l“1

y2l

˙´2
¸

.

According to Bibinger and Trabs (2020, Prop. 3.2.), the covariance of the random variables σ̂2
yj

and

σ̂2
yl

vanishes asymptotically for yj ‰ yl. The asymptotic Gaussian structure of these random variables

implies that Uσ
j,n :“

?
npσ̂2

yj
´ σ2q and Uσ

l,n are asymptotically independent, for j ‰ l. Consequently, for

a continuous function g, the random variables

U
gpσq

j,n :“
?
n
`

gpσ̂2
y1
, . . . , σ̂2

ym
q ´ gpσ2, . . . , σ2q

˘

j
,

34



2.3. Fixed spatial observations

and U
gpσq

l,n are also asymptotically independent. Defining the function g : Rm
` Ñ Rm as

gpx1, . . . , xmq “

¨

˚

˚

˝

g1px1q

...

gmpxmq

˛

‹

‹

‚

,

we have the following multivariate convergence:

?
n
`

gpσ̂2
y1
, . . . , σ̂2

ym
q ´ gpσ2, . . . , σ2q

˘ d
ÝÑ N p0,Σq,

where 0 “ p0, . . . , 0qJ P Rm and

Σ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Γπy21

ˆ

řm
j“1 y

2
j

˙´2

0 . . . 0

0 Γπy22

ˆ

řm
j“1 y

2
j

˙´2

. . . 0

...
...

. . .
...

0 0 . . . Γπy2m

ˆ

řm
j“1 y

2
j

˙´2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P Rmˆm.

Using Cramér-Wold, we have

αJ
?
n
`

gpσ̂2
y1
, . . . , σ̂2

ym
q ´ gpσ2, . . . , σ2q

˘

“
?
n

˜

´
řm

j“1 ln
´

RVnpyj?
n

¯

yj `
řm

j“1 ln
´

σ2
0?
π

¯

yj
řm

j“1 y
2
j

´ κ

¸

d
ÝÑ N

`

0, αJΣα
˘

“ N

˜

0,

ˆ m
ÿ

j“1

y2j

˙´1

Γπ

¸

,

where α “ p1, . . . , 1qJ P Rm. Rescaling the spatial sum completes the proof.

A direct consequence of Proposition 2.3.3 is the consistency of the curvature estimator κ̂n,m as confirmed

by Slutsky’s theorem, which concludes this section.

2.3.2. Analysis of the curvature estimator with unknown normalized volatility

In this section, we will focus on the non-oracle estimator κ̂n,m from equation (15) for the parameter κ,

with the number of spatial observations m P N fixed. Following a similar structure as seen in Section

2.3.1, we begin by examining the expected value of κ̂n,m. Considering Proposition 2.3.1, we can readily

deduce the following corollary.

Corollary 2.3.4

On Assumptions 1.1.1 and 1.1.2, with y P rδ, 1 ´ δs for a δ ą 0, we have

E
„

ln

ˆ

RVnpyjq

RVnpykq

˙ȷ

“ κpyk ´ yjq ` Op∆nq.
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Furthermore, we have

E
“

κ̂n,m

ı

“ κ` Opm2∆nq.

Proof. The proof is completed by utilizing Proposition 2.3.1 and the equations (24), (19), (25).

The preceding corollary demonstrates that the non-oracle estimator κ̂ is asymptotically unbiased. The

forthcoming examination of the variance structure of the estimator κ̂ is of special significance as a

conjecture regarding the estimator’s asymptotic variance remains unresolved.

Proposition 2.3.5

On Assumptions 1.1.1 and 1.1.2, we have

Varpκ̂n,mq “ ∆nΓπ
4
řm

j“1

`
řm

l“1pyl ´ yjq
˘2

`
ř

j‰lpyj ´ ylq2
˘2

`

1 ` Op
?
∆nq

˘

“
∆nΓπ

m
´

1
1´2δ

`

1´2δ
m

řm
j“1 y

2
j

˘

´ 1
p1´2δq2

`

1´2δ
m

řm
j“1 yj

˘2
¯

`

1 ` Op
?
∆nq

˘

.

Proof. Using equation (26) we get

Varpκ̂n,mq “

ˆ

ÿ

j‰l

pyj ´ ylq
2

˙´2ˆ

∆nΓπVar
´

ÿ

j‰l

pZj ´ Zlqpyl ´ yjq

¯

` Var
´

ÿ

j‰l

pRn,yj
´Rn,yl

qpyl ´ yjq

¯

˙

.

First, we obtain by Lemma 2.2.1 that

Var
´

ÿ

j‰l

pZj ´ Zlqpyl ´ yjq

¯

“ 4
m
ÿ

j“1

ˆ m
ÿ

l“1

pyl ´ yjq

˙2

.

Further calculations yields that

Var
´

ÿ

j‰l

pZj ´ Zlqpyl ´ yjq

¯

“ 4

ˆ

m2
m
ÿ

j“1

y2j ´m
´

m
ÿ

j“1

yj

¯2
˙

“ 4m

ˆ

m
m
ÿ

j“1

y2j ´

´

m
ÿ

j“1

yj

¯2
˙

and

ˆ

ÿ

j‰l

pyj ´ ylq
2

˙2

“

ˆ

2m
m
ÿ

j“1

y2j ´ 2
´

m
ÿ

j“1

yj

¯2
˙2

“ 4

ˆ

m
m
ÿ

j“1

y2j ´

´

m
ÿ

j“1

yj

¯2
˙2

.

Therefore, we conclude

Varpκ̂n,mq “ ∆nΓπ
m

m
řm

j“1 y
2
j ´

`
řm

j“1 yj
˘2 `

ˆ

ÿ

j‰l

pyj ´ ylq
2

˙´2

Var
´

ÿ

j‰l

pRn,yj
´Rn,yl

qpyl ´ yjq

¯

.
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It remains to analyse the remainder. By equation (25) we have

Var
´

ÿ

j‰l

pRn,yj
´Rn,yl

qpyl ´ yjq

¯

“ O
´

m3∆η`1
n `m4∆3{2

n

`

logpmq ` δ´1
˘

¯

.

We complete the proof by rescaling the leading term and by using Lemma 2.2.1 for the remainder, where

we have

Varpκ̂n,mq “
∆nΓπ

m
´

1
1´2δ

`

1´2δ
m

řm
j“1 y

2
j

˘

´ 1
p1´2δq2

`

1´2δ
m

řm
j“1 yj

˘2
¯ ` O

´

∆η`1
n m´1 ` ∆3{2

n

`

logpmq ` δ´1
˘

¯

,

with an arbitrary η P p0, 1q.

Note that we can can express the preceding variance in the following form:

Varpκ̂n,mq “
4Γπ∆n

ř

j‰lpyj ´ ylq2
`

4Γπ∆n

řm
j“1

ř

l1‰l2
pyl1 ´ yjqpyl2 ´ yjq

´

ř

j‰lpyj ´ ylq2
¯2

`

1 ` Op
?
∆nq

˘

,

where we have used that p
řm

j“1 ajq2 “
řm

j“1 a
2
j `

ř

j‰l ajal, for a sequence panqnPN. With this repre-

sentation, we can observe that the asymptotic variance can be decomposed into two distinct parts. The

first part arises from the variance of the log-quotient of the rescaled realized volatilities. The second

part arises from the covariance of two combinations of the log-quotients, where one rescaled volatility is

common to both log-quotients, while the other rescaled volatility is associated with two different spatial

points. Specifically, we will employ this identity in the proof of the following Proposition 2.3.6.

Following a similar approach as in Proposition 2.3.3, we can establish the following central limit theorem

and demonstrating consistency of the estimator.

Proposition 2.3.6

On Assumptions 1.1.1 and 1.1.2, we have for y1, . . . , ym P rδ, 1 ´ δs, with δ P p0, 1{2q and m P N fixed

that

?
n
`

κ̂n,m ´ κ
˘ d

ÝÑ N

˜

0 ,
Γπ

m
`

1
1´2δ

`

1´2δ
m

řm
j“1 y

2
j

˘

´ 1
p1´2δq2

`

1´2δ
m

řm
j“1 yj

˘2˘

¸

.

Proof. In accordance with the CLT as stated in Proposition 1.2.3, we have

?
n

˜˜

σ̂2
yj

σ̂2
yl

¸

´

˜

σ2

σ2

¸¸

d
ÝÑ N

˜˜

0

0

¸

,

˜

πΓσ4 0

0 πΓσ4

¸¸

,

by considering that σ̂2
yj

and σ̂2
yl

are asymptotically independent if yj ‰ yl and yj , yl P rδ, 1 ´ δs. Using

the delta method with the function gj,l : R2
` Ñ R defined as

gj,lpx1, x2q :“
ln
`

x1

x2
e´κpyj´ylq

˘

pyl ´ yjq
řm

j‰lpyj ´ ylq2
“

ln
`

x1

x2

˘

pyl ´ yjq ` κpyj ´ ylq
2

řm
j‰lpyj ´ ylq2

,
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we have

?
n
`

gj,lpσ̂
2
yj
, σ̂2

yl
q ´ gj,lpσ

2, σ2q
˘

“
?
n

¨

˝

ln
`RVnpyjq

RVnpylq

˘

pyl ´ yjq
ř

j‰lpyj ´ ylq2
´

κpyj ´ ylq
2

ř

j‰lpyj ´ ylq2

˛

‚

d
ÝÑ N

˜

0,∇gj,lpσ2, σ2qJ

˜

πΓσ4 0

0 πΓσ4

¸

∇gj,lpσ2, σ2q

¸

“ N

˜

0 , 2
pyj ´ ylq

2Γπ
`
ř

j‰lpyj ´ ylq2
˘2

¸

,

where

∇gj,lpx1, x2q “

¨

˝

pyl´yjq

x1
řm

j‰lpyj´ylq2

´
pyl´yjq

x2
řm

j‰lpyj´ylq2

˛

‚.

Note that

?
n
`

gl,jpσ̂2
yl
, σ̂2

yj
q ´ gl,jpσ2, σ2q

˘ d
ÝÑ N

˜

0 , 2
pyj ´ ylq

2Γπ
`
ř

j‰lpyj ´ ylq2
˘2

¸

.

Consider the function g : Rm Ñ Rmpm´1q, with

gpx1, . . . , xmq “

´

g1,2px1, x2q, . . . , g1,mpx1, xmq, g2,1px2, x1q, g2,3px2, x3q, . . . , g2,mpx2, xmq, . . . , gm´1,mpxm´1, xmq

¯J

.

Since the normal distribution is stable under linear transformations, we obtain that

?
n
`

gpσ̂2
y1
, . . . , σ̂2

ym
q ´ gpσ2, . . . , σ2q

˘ d
ÝÑ N p0,Σq,

where Σ denotes the corresponding covariance matrix. In order to examine its structure, we will analyse

the covariance structure between the different combinations of indices of the function gj,l. Let l1, l2, j be

three distinct indices. Then, we observe the following covariance relationships:

Cov
`

gj,l1pσ̂2
yj , σ̂

2
yl1

q, gj,l2pσ̂2
yj , σ̂

2
yl2

q
˘

“

ˆ

ÿ

j‰l

pyj ´ ylq
2

˙´2

pyl1 ´ yjqpyl2 ´ yjqCov
ˆ

ln
´RVnpyjq

?
n

¯

´ ln
´RVnpyl1q

?
n

¯

, ln
´RVnpyjq

?
n

¯

´ ln
´RVnpyl2q

?
n

¯

˙

“

ˆ

ÿ

j‰l

pyj ´ ylq
2

˙´2

pyl1 ´ yjqpyl2 ´ yjq

˜

Var
ˆ

ln
´RVnpyjq

?
n

¯

˙

` O
`

∆3{2
n

˘

¸

“ Cov
`

gl1,jpσ̂2
yl1

, σ̂2
yj q, gl2,jpσ̂2

yl2
, σ̂2

yj q
˘

.

Analogously, we have

Cov
`

gj,l1pσ̂2
yj
, σ̂2

yl1
q, gl2,jpσ̂2

yl2
, σ̂2

yj
q
˘

“ ´

ˆ

ÿ

j‰l

pyj ´ ylq
2

˙´2

pyl1 ´ yjqpyj ´ yl2q

˜

Var
ˆ

ln
´RVnpyjq

?
n

¯

˙

` O
`

∆3{2
n

˘

¸

38



2.4. Asymptotic analysis in time and space

“

ˆ

ÿ

j‰l

pyj ´ ylq
2

˙´2

pyl1 ´ yjqpyl2 ´ yjq

˜

Var
ˆ

ln
´RVnpyjq

?
n

¯

˙

` O
`

∆3{2
n

˘

¸

“ Cov
`

gl1,jpσ̂2
yl1
, σ̂2

yj
q, gj,l2pσ̂2

yj
, σ̂2

yl2
q
˘

.

Additionally, equation (25) demonstrates that the covariances in the latter calculations vanish when

summing over every combination of different spatial points. Thus, by utilizing equation (18), we obtain

the following expression:

lim
nÑ8

nCov
`

gj1,l1pσ̂2
yj1
, σ̂2

yl1
q, gj2,l2pσ̂2

yj2
, σ̂2

yl2
q
˘

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

2
pyj´ylq

2Γπ
`

ř

j‰lpyj´ylq2
˘2 , if j1 “ j2 and l1 “ l2

pyl1
´yj1

qpyl2
´yj1

qΓπ
`

ř

j‰lpyj´ylq2
˘2 , if j1 “ j2 and l1 ‰ l2

pyl1
´yj1

qpyj2
´yj1

qΓπ
`

ř

j‰lpyj´ylq2
˘2 , if j1 “ l2 and l1 ‰ j2

pyj1
´yl1

qpyl2
´yl1

qΓπ
`

ř

j‰lpyj´ylq2
˘2 , if l1 “ j2 and j1 ‰ l2

pyj1
´yl1

qpyj2
´yl1

qΓπ
`

ř

j‰lpyj´ylq2
˘2 , if l1 “ l2 and j1 ‰ j2

0 , else

.

Therefore, the covariance matrix Σ is fully described. By employing Cramér-Wold, where α “ p1, . . . , 1q P

Rmpm´1q, we obtain

?
n
´

αJgpσ̂2
y1
, . . . , σ̂2

ym
q ´ αJgpσ2, σ2q

¯

“
?
n

¨

˝

ř

j‰l ln
`RVnpyjq

RVnpylq

˘

pyl ´ yjq
ř

j‰lpyj ´ ylq2
´ κ

˛

‚

d
ÝÑ N p0, αJΣαq,

where

αJΣα “ 2 ¨
ÿ

j‰l

2pyj ´ ylq
2Γπ

`
ř

j‰lpyj ´ ylq2
˘2 `

4Γπ
řm

j“1

ř

l1‰l2
pyl1 ´ yjqpyl2 ´ yjq

´

ř

j‰lpyj ´ ylq2
¯2

“ 4Γπ

řm
j“1

`
řm

l“1pyl ´ yjq
˘2

`
ř

j‰lpyj ´ ylq2
˘2 .

Using Proposition 2.3.5 completes the proof.

2.4. Asymptotic analysis in time and space

In the previous section, we established central limit theorems for the estimators κ̂ from equation (13) and

κ̂ from equation (15) in the case where the number of spatial observations m is fixed. In this section,

our aim is to prove a generalized CLT for both estimators, allowing for both the number of temporal and

spatial observations to go to infinity, while respecting the asymptotic regime (II) presented in Assumption

1.1.1. Since Cramér-Wold cannot be directly applied in this context, we will establish the central limit

theorems using the ρ-mixing CLT by Peligrad et al. (1997), as recalled in Proposition 1.2.4.
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2. Parametric estimation of the curvature parameter

2.4.1. Methodology

In order to establish central limit theorems for the estimators κ̂n,mn
and κ̂n,mn

, where the temporal

and spatial observation n,mn Ñ 8, we need to consider the corresponding triangular arrays for these

estimators. The ρ-mixing central limit theorem by Peligrad et al. (1997) uses a covariance inequality to

bound potential dependencies in time and space.

Although a possible choice for the triangular arrays for the estimators κ̂n,mn
and κ̂n,mn

would be a

structure depending on the spatial coordinates, i.e., Ξn,j , where j “ 1, . . . ,m, we know from Proposition

1.2.2 that the covariance structure between two different spatial points vanishes asymptotically. However,

the behaviour of the covariance structure in time is not clear yet, which is why we will define the triangular

arrays with a dependence on the temporal dimension, i.e., Ξn,i, i “ 1, . . . , n.

The temporal dependency of these estimators is given by the logarithm of the rescaled realized volatility.

In order to access the temporal sum given in the realized volatilities, we utilize a suitable decomposition.

By applying the first-order Taylor expansion lnpa` xq “ lnpaq ` a´1x`Opa´2x2q, where a is a constant

and x is a small number tending to zero, we obtain by using Proposition 1.2.1:

ln

ˆ

RVnpyq
?
n

˙

“ ln

ˆ

E
„

RVnpyq
?
n

ȷ

`

ˆ

RVnpyq
?
n

´ E
„

RVnpyq
?
n

ȷ˙˙

“ ln

ˆ

e´κy σ
2
0?
π

` Op∆nq

˙

`

řn
i“1

`

p∆iX̃q2pyq ´ Erp∆iX̃q2pyqs
˘

?
n
`

e´κy σ2
0?
π

` Op∆nq
˘

` OP

ˆˆ

RVnpyq
?
n

´ E
„

RVnpyq
?
n

ȷ˙2˙

“ ´κy ` ln

ˆ

σ2
0?
π

˙

` ln
`

1 ` Op∆nq
˘

`

řn
i“1 p∆iX̃q2pyq

?
n

σ2
0?
π

eκy
`

1 ` Op∆nq
˘

` OP

ˆˆ

RVnpyq
?
n

˙2˙

“ ´κy ` ln

ˆ

σ2
0?
π

˙

`

?
π
řn

i“1 p∆iX̃q2pyq
?
nσ2

0

eκy ` Op∆nq ` OP
`

∆n

˘

, (27)

where Y :“ Y ´ ErY s denotes the compensated random variable for all integrable random variables

and y P rδ, 1 ´ δs. Here, we use a stationary mild solution X̃ with a stationary initial condition, i.e.,

xξ, ekyϑ „ N p0, σ2{p2λkqq. As the difference between a mild solution X and a stationary mild solution

X̃ tends stochastically to zero, it is sufficient to analyse X̃, cf. Bibinger and Trabs (2020, Lemma 6.4.).

The Gaussian structure for the remainder in this decomposition allows us to observe a rate of at least

∆n. Utilizing this decomposition we obtain

κ̂n,mn
“

řmn

j“1

´

´ ln
`RVnpyjq

?
n

˘

` ln
` σ2

0?
π

˘

¯

yj
řmn

i“1 y
2
i

“ κ´

řmn

j“1 yj
řn

i“1 p∆iX̃q2pyjq

?
n

σ2
0?
π

řmn

i“1 y
2
i

eκyj ` OPp∆nq, (28)

where we have used Lemma 2.2.1 to show that

∆n

řmn

j“1 yj
řmn

j“1 y
2
j

“ Op∆nq.
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2.4. Asymptotic analysis in time and space

As discussed in the remark on Proposition 1.2.4, the first triangular array is given by

Ξσ2
0 :“ Ξ

σ2
0

kn,i
:“ ξ

σ2
0

kn,j
´ Erξ

σ2
0

kn,j
s and ξ

σ2
0

kn,i
:“ ´

?
mnπ

σ2
0

řmn

i“1 y
2
i

mn
ÿ

j“1

p∆iX̃q2pyjqeyjκyj , (29)

where kn “ n. The decomposition in equation (28) also shows that it is sufficient to prove a CLT for the

chosen triangular array in order to prove a CLT for the estimator κ̂n,mn . Now, we focus on the triangular

array for the non-oracle estimator κ̂n,mn . By using equation (27), we can express the estimator as

κ̂n,mn “

ř

j‰k

`

ln
`RVnpyjq

?
n

˘

´ ln
`RVnpylq

?
n

˘˘

pyl ´ yjq
ř

j‰lpyj ´ ylq2

“ κ`

ř

j‰l

řn
i“1

`

p∆iX̃q2pyjqeκyj ´ p∆iX̃q2pylqe
κyl

˘

pyl ´ yjq

?
n

σ2
0?
π

ř

j‰lpyj ´ ylq2
` OPp∆nq, (30)

where it also holds by Lemma 2.2.1 that

∆n

ř

j‰lpyl ´ yjq
ř

j‰lpyj ´ ylq2
“ Op∆nq,

since |yj ´ yl| ď 1 for all j ‰ l. Therefore, we define the triangular array for the estimator κ̂n,mn
by

Ξ :“ Ξkn,i :“ ξkn,i ´ Erξkn,is , ξkn,i :“

?
mnπ

σ2
0

ř

j‰lpyj ´ ylq2

ÿ

j‰l

`

p∆iX̃q2pyjqeκyj ´ p∆iX̃q2pylqe
κyl

˘

pyl ´ yjq,

(31)

where kn “ n and mn “ Opnρq, for ρ P p0, 1{2q. Once more, the decomposition in equation (30) demon-

strates that proving a CLT for the chosen triangular array is sufficient to establish a CLT for the estimator

κ̂n,mn
.

The triangular arrays Ξσ2
0 and Ξ are naturally dependent on the statistics p∆iX̃q2pyq, for y P rδ, 1 ´ δs

and 1 ď i ď n, linked to some deterministic functions. In Bibinger and Trabs (2020, Corollary 6.7.) it

has been already proven that triangular arrays based on quadratic increments satisfy the general mixing

type Condition (IV) as well as Conditions (I) to (III) from Proposition 1.2.4. We will now proceed to

generalize these results by Bibinger and Trabs (2020). We define the sets Fα and Gα as follows:

Fα “ tfϑ : N Ñ R | DCϑ ą 0 : f2ϑpmq ď Cϑm
´pα`1qu (32)

and

Gα “ tgϑ : N Ñ R | DCϑ ą 0 : |gϑpmq| ď Cϑm
α{2 uniformly in m P Nu,

for a α ě 0. Note that we allow the functions fϑ P Fα and gϑ P Gα to be dependent on some parameter

ϑ. With these definitions, we proceed to define the class of generalized triangular arrays Hα as follows:

Hα “

"

pZn,iq1ďiďn,nPN : Zn,i “ ζn,i ´ Erζn,is and ζn,i “ fϑpmq

m
ÿ

j“1

p∆iX̃q2pyjqgϑpjq, where fϑ P Fα, gϑ P Gα

*

,
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2. Parametric estimation of the curvature parameter

where α ě 0. As a result of the definitions in Fα and Gα, we obtain the following properties:

f2ϑpmq
1

m

m
ÿ

j“1

g2ϑpjq “ Opm´1q and f2ϑpmq
1

m2

m
ÿ

j,l“1

gϑpjqgϑplq “ Opm´1q, (33)

for a fixed parameter ϑ and fϑ P Fα, gϑ P Gα. We will now proceed to prove that the triangular arrays

Zn,i P Hα satisfy the conditions for the central limit theorem in Proposition 1.2.4, starting with the

mixing-type Condition (IV).

Proposition 2.4.1

Grant Assumptions 1.1.1 and 1.1.2 and suppose a triangular array Zn,i P Hα. If it holds that

f2ϑpmq

mn
ÿ

j“1

c
ÿ

i“b`u

E
“

p∆iX̃q4pyjq
‰

g2ϑpjq ě C̃∆npu,

for all 1 ď b ă b`u ď c ď n, where pu :“ c´ b´u` 1, u ě 2 and C̃ :“ C̃ϑ ą 0, then the general mixing

type Condition (IV) of Proposition 1.2.4 holds, i.e.:

ˇ

ˇ

ˇ
Cov

`

eit
řb

i“a Zn,i , eit
řc

i“b`u Zn,i
˘

ˇ

ˇ

ˇ
ď
Ct2

u3{4
Var

ˆ b
ÿ

i“a

Zn,i

˙1{2

Var
ˆ c

ÿ

i“b`u

Zn,i

˙1{2

,

for all 1 ď a ď b ă b` u ď c ď n.

Proof. Let 1 ď a ď b ă b` u ď c ď n. We define

Qb
a :“

b
ÿ

i“a

ζn,i and Qc
b`u :“

c
ÿ

i“b`u

ζn,i.

Suppose there exists a decomposition of Qc
b`u “ A1 ` A2, with A2 independent of Qb

a. According to

Bibinger and Trabs (2020, Prop. 6.6.), we have

ˇ

ˇ

ˇ
Cov

`

eitQ̄
b
a , eitQ̄

c
b`u

˘

ˇ

ˇ

ˇ
ď 2t2E

“

pQ̄b
aq2

‰1{2E
“

Ā2
1

‰1{2
,

where X̄ “ X´ErXs denotes the compensation of the random variable X. Since we build upon the proof

strategy as presented in Bibinger and Trabs (2020, Prop. 6.6.), we review the fundamental elements of

their proof. For this purpose, we define

Q̃c
b`u :“

c
ÿ

i“b`u

p∆iX̃q2pyq

“

c
ÿ

i“b`u

˜

8
ÿ

k“1

Dk,i
1 ekpyq `Dk,i

2 ekpyq

¸2

“

c
ÿ

i“b`u

˜

8
ÿ

k“1

Dk,i
1 ekpyq

¸2

` 2
c
ÿ

i“b`u

˜

8
ÿ

k“1

Dk,i
1 ekpyq

¸˜

8
ÿ

k“1

Dk,i
2 ekpyq

¸

`

c
ÿ

i“b`u

˜

8
ÿ

k“1

Dk,i
2 ekpyq

¸2

,
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and

Ã1pyq :“
c
ÿ

i“b`u

˜

8
ÿ

k“1

Dk,i
1 ekpyq

¸2

` 2
c
ÿ

i“b`u

˜

8
ÿ

k“1

Dk,i
1 ekpyq

¸˜

8
ÿ

k“1

Dk,i
2 ekpyq

¸

,

Ã2pyq :“
c
ÿ

i“b`u

˜

8
ÿ

k“1

Dk,i
2 ekpyq

¸2

,

as well as

Dk,i
1 :“

r∆n
ż

´8

σe´λk

`

pi´1q∆n´s
˘

`

e´λk∆n ´ 1
˘

dW k
s , (34)

Dk,i
2 :“

pi´1q∆n
ż

r∆n

σe´λk

`

pi´1q∆n´s
˘

`

e´λk∆n ´ 1
˘

dW k
s `

i∆n
ż

pi´1q∆n

e´λkpi∆n´sqσ dW k
s , (35)

where r ă i. Since Dk,i
1 and Dk,i

2 are independent, we have Ã2 independent of Q̃b
a. Hence, we have

Qc
b`u “

c
ÿ

i“b`u

ζn,i “ fϑpmq

m
ÿ

j“1

c
ÿ

i“b`u

p∆iX̃q2pyjqgϑpjq

“ fϑpmq

m
ÿ

j“1

`

Ã1pyjq ` Ã2pyjq
˘

gϑpjq,

and we continue analysing

A1 :“ fϑpmq

m
ÿ

j“1

Ã1pyjqgϑpjq.

Using results by Bibinger and Trabs (2020, Corollary 6.7.), we find that

m
ÿ

j“1

Var
`

Ã1pyjq
˘

ď
Cσ4pc´ b´ u` 1q∆nm

pu´ 1q3{2
,

where u ě 2, yj P rδ, 1´δs and C ą 0. Additionally, we have the following covariance structure for Ã1pyq:

ÿ

j‰l

Cov
`

Ã1pyjq, Ã1pylq
˘

“ O
ˆ

∆
3{2
n pc´ b´ u` 1q

pu´ 1q3{2
m2 logpmq

˙

,

where again u ě 2 and yj , yl P rδ, 1 ´ δs with yj ‰ yl. Therefore, we conclude for pu :“ c´ b´ u` 1 that

VarpA1q “ f2ϑpmq

ˆ m
ÿ

j“1

g2ϑpjqVar
`

Ã1pyjq
˘

`
ÿ

j‰l

gϑpjqgϑplqCov
`

Ã1pyjq, Ã1pylq
˘

˙

ď C1m
´pα`1qmα

ˆ m
ÿ

j“1

Var
`

Ã1pyjq
˘

`
ÿ

j‰l

Cov
`

Ã1pyjq, Ã1pylq
˘

˙
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ď
C2pu∆n

pu´ 1q3{2
` O

ˆ

∆
3{2
n pu

pu´ 1q3{2
mn logpmnq

˙

,

where C1, C2 ą 0 are suitable constants. Since it holds that

VarpQc
b`uq ě C3E

“

pQc
b`uq2

‰

ě C4f
2
ϑpmq

mn
ÿ

j“1

c
ÿ

i“b`u

E
“

p∆iX̃q4pyjq
‰

g2ϑpjq ě C5pu∆n,

where C3, C4, C5 ą 0 are suitable constants, we conclude for u ě 2. It remains to bound A1 in the case

where u “ 1. Here, we have by analysing the proof of Bibinger and Trabs (2020, Prop. 6.6.) that

m
ÿ

j“1

Var
`

Ã1pyjq
˘

ď Cσ4p1∆nm,

where C ą 0. Therefore, we have with C6 ą 0 that

VarpA1q ď C6p1∆n ` O
`

∆np1m logpmq
˘

,

which completes the proof.

Now that we have established the general mixing type condition on the generalized triangular arrays, we

are in a position to prove the following central limit theorem.

Proposition 2.4.2

Grant Assumptions 1.1.1 and 1.1.2 and suppose a triangular array Zn,i P Hα. Then, it holds that

n
ÿ

i“1

Zn,i
d

Ñ N p0, ν2q,

as n Ñ 8 and ν2 “ limnÑ8 Varp
řn

i“1 Zn,iq ă 8, if it holds that

f2ϑpmq

mn
ÿ

j“1

c
ÿ

i“b`u

E
“

p∆iX̃q4pyjq
‰

g2ϑpjq ě C̃∆npu, (36)

for all 1 ď b ă b` u ď c ď n, where pu :“ c´ b´ u` 1, u ě 2 and a constant C̃ :“ C̃ϑ ą 0.

Proof. The Conditions (I), (II), and (III) remain to be verified, as indicated by Propositions 1.2.4 and

2.4.1.

(I) It is known that the centred random variables ∆iX̃pyq follow a normal distribution. Proposition

1.2.1 yields that Erp∆iX̃q2pyqs “ Var
`

p∆iX̃qpyq
˘

9∆
1{2
n uniformly in i. Additionally, we can infer

from Proposition 1.2.2 that

VarpZn,iq “ f2ϑpmq

ˆ mn
ÿ

j“1

g2ϑpjqVarp
?
∆nV1,∆npyjqe´κyj q
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`
ÿ

j‰l

gϑpjqgϑplqCovp
?
∆nV1,∆n

pyjqe´κyj ,
?
∆nV1,∆n

pylqe
´κylq

˙

ď C1m
´1∆n

´

Γσ4
0m

`

1 ` Op1 ^ ∆η´1
n q

˘

` O
`

∆1{2
n m2

n logpmnq
˘

¯

“ Op∆nq ` O
`

∆3{2
n mn logpmnq

˘

“ Op∆nq.

Therefore, we can find a constant c ą 0, such that
řb

i“a VarpΞ
σ2
0

m,iq ě cpb´ a` 1q∆n. Furthermore,

in a similar manner, we also have

Var
ˆ b
ÿ

i“a

Zn,i

˙

“ f2ϑpmq

ˆ

pb´ a` 1q∆nΓσ
4
0

mn
ÿ

j“1

g2ϑpjq

ˆ

1 ` O
´

1 ^
∆η´1

n

b´ a` 1

¯

˙

` O
`

pb´ a` 1q∆3{2
n mα`2

n logpmnq
˘

˙

“ pb´ a` 1qOp∆nq.

Thus, the first condition has been established.

(II) As demonstrated in the proof of the first condition, it is evident that

n
ÿ

i“1

VarpZn,iq “ Opn∆nq ă 8,

and therefore the second condition is verified.

(III) In order to establish the Lindeberg condition, we demonstrate a Lyapunov condition. Hence, we

need to show the existence of a δ̃ ą 0 such that

lim
nÑ8

n
ÿ

i“1

E
“

|Ξ
σ2
0

n,i|
2`δ̃

‰

“ 0.

Let δ̃ “ 2. As mentioned in Condition (I), the centred random variables ∆iX̃pyq are normally dis-

tributed with Erp∆iX̃q2pyqs9∆
1{2
n uniformly in i. Consequently, we can deduce that Erp∆iX̃q8s “

∆2
n. By applying the Cauchy-Schwarz inequality, we obtain the following result:

n
ÿ

i“1

E
“

Z4
n,i

‰

ď

n
ÿ

i“1

E
“

ζ4n,i
‰

“

n
ÿ

i“1

f4ϑpmnq

mn
ÿ

j1,...,j4“1

gϑpyj1q ¨ . . . ¨ gϑpyj4qE
“

p∆iX̃qpyj1q2 ¨ . . . ¨ p∆iX̃q2pyj4q
‰

ď C
n
ÿ

i“1

m´2p1`αq
n m2α

n

mn
ÿ

j1,...,j4“1

E
“

p∆iX̃q2pyj1q ¨ . . . ¨ p∆iX̃q2pyj4q
‰

ď C
n
ÿ

i“1

m´2
n

mn
ÿ

j1,...,j4“1

E
“

p∆iX̃q8pyj1q
‰1{4

¨ . . . ¨ E
“

p∆iX̃q8pyj4q
‰1{4

ď C
n
ÿ

i“1

m2
n max

yPty1,...,ymnu
E
“

p∆iX̃q8pyq
‰

“ O
`

∆nm
2
n

˘

“ Op1q,
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which completes the proof.

The preceding proposition demonstrated that we can consistently apply the central limit theorem to

triangular arrays utilizing quadratic increments, given that the associated deterministic functions satisfy

a specific order as described in equations (33) and (48). This observation will prove to be exceedingly

valuable in the subsequent two sections, where we will establish central limit theorems for both the oracle

estimator κ̂ and its robustification κ̂.

2.4.2. CLT for the curvature estimator with known normalized volatility

In this section, we establish a central limit theorem for the estimator κ̂, where the parameter m “ mn

satisfies mn “ Opnρq, with ρ P p0, 1{2q. We will employ the central limit theorem from Proposition 2.4.2

to achieve this. According to Proposition 2.4.2, it is necessary to demonstrate that Ξσ2
0 P H0, as well as

proving the condition given in equation (48).

Proposition 2.4.3

Grant Assumptions 1.1.1 and 1.1.2, with y1 “ δ, ymn “ 1´ δ and mn minj“2,...,mn |yj ´yj´1| is bounded

from above and below, then we have

?
nmn

`

κ̂n,mn
´ κ

˘ d
ÝÑ N

ˆ

0,
3Γπ

p1 ´ δq2 ` δ

˙

,

as n Ñ 8 and mn “ Opnρq, where ρ P p0, 1{2q.

Proof. To compute the asymptotic variance, we obtain by using Lemma 2.2.1:

lim
nÑ8

Var
ˆ n
ÿ

i“1

Ξ
σ2
0

n,i

˙

“ lim
nÑ8

Var
ˆ n
ÿ

i“1

ξ
σ2
0

n,i

˙

“ lim
nÑ8

mnπ

σ4
0

`
řmn

i“1 y
2
i

˘2Var
ˆ n
ÿ

i“1

mn
ÿ

j“1

p∆iX̃q2pyjqeyjκyj

˙

“ lim
nÑ8

nmnπ

σ4
0

`
řmn

i“1 y
2
i

˘2Var
ˆ

1
?
n

mn
ÿ

j“1

n
ÿ

i“1

p∆iX̃q2pyjqeyjκyj

˙

“ lim
nÑ8

nmnπ

σ4
0

`
řmn

i“1 y
2
i

˘2

ˆ mn
ÿ

j“1

y2jVar
`

Vn,∆n
pyjq

˘

`

mn
ÿ

j‰l

yjylCov
`

Vn,∆n
pyjq, Vn,∆n

pylq
˘

˙

“ lim
nÑ8

nmnπ

σ4
0

`
řmn

i“1 y
2
i

˘2

˜

Γσ4
0

řmn

j“1 y
2
j

n

`

1 ` Op1 ^ ∆η
nq
˘

` O
ˆ

∆3{2
n

´

mn
ÿ

j‰l

´ yjyl
|yj ´ yl|

¯

`m2
nδ

´1
¯

˙

¸

“ lim
nÑ8

Γπp1 ´ 2δq

1´2δ
mn

řmn

i“1 y
2
i

`

1 ` Op∆η
nq
˘

` O
ˆ

∆1{2
n

´

mn
ÿ

j‰l

´ yjyl
mn|yj ´ yl|

¯

`
mn

δ

¯

˙

“ lim
nÑ8

Γπp1 ´ 2δq

1´2δ
mn

řmn

i“1 y
2
i

`

1 ` Op∆η
nq
˘

` O
ˆ

∆1{2
n

´

mn logpmnq `
mn

δ

¯

˙

“
Γπp1 ´ 2δq
ş1´δ

δ
y2 dy

“
3Γπ

p1 ´ δq2 ` δ
.
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Notably, the assumptions that y1 “ δ, ymn “ 1 ´ δ, and the upper bound on mn minj“2,...,mn |yj ´ yj´1|

were solely necessary to ensure the convergence of the Riemann sum to an integral over the interval

rδ, 1 ´ δs. Now, our focus is on demonstrating that Ξ
σ2
0

n,i P H0 and proving equation (48). Here, we have

ξ
σ2
0

n,i “ ´

?
mnπ

σ2
0

řmn

i“1 y
2
i

mn
ÿ

j“1

p∆iX̃q2pyjqeyjκyj

“ fϑpmnq

mn
ÿ

j“1

p∆iX̃q2pyjqgϑpjq,

where

fϑpmnq :“ ´

?
mnπ

σ2
0

řmn

i“1 y
2
i

and gϑpjq :“ eyjκyj .

By Lemma 2.2.1 we have f2ϑpmnq “ Opm´1
n q and |gϑpjq| “ Op1q uniformly in j and therefore Ξ

σ2
0

n,i P H0.

By Proposition 1.2.1 we have

mnπ

σ4
0

`
řmn

i“1 y
2
i

˘2

mn
ÿ

j“1

c
ÿ

i“b`u

E
“

p∆iX̃q4pyjq
‰

e2yjκy2j ě C2 mnπ

σ4
0

`
řmn

i“1 y
2
i

˘2 pu∆n
σ4
0

π

mn
ÿ

j“1

y2j e
2yjκe´2yjκ

“ C2 ∆nmnpu
řmn

i“1 y
2
i

ě C2pu∆n,

where p2 :“ c´ b´ u` 1. The proof is completed by invoking Proposition 2.4.2.

The asymptotic variance of the estimator κ̂n,mn , thanks to its variance-stabilizing transformation, is

independent of the unknown parameter κ. Consequently, we conclude this section with the following

normalized central limit theorem, which directly follows by applying an elementary transformation.

Corollary 2.4.4

Grant Assumptions 1.1.1 and 1.1.2, then we have

?
nmn

ˆ

Γπ
1

mn

řmn

j“1 y
2
j

˙´1{2
`

κ̂n,mn
´ κ

˘ d
ÝÑ N

`

0, 1
˘

,

as n Ñ 8 and mn “ Opnρq, where ρ P p0, 1{2q. Moreover, with y1 “ δ, ymn
“ 1 ´ δ and

mn minj“2,...,mn
|yj ´ yj´1| bounded from above and below, we have

?
nmn

ˆ

3Γπ

p1 ´ δq2 ` δ

˙´1{2
`

κ̂n,mn ´ κ
˘ d

ÝÑ N
`

0, 1
˘

,

as n Ñ 8.
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2.4.3. CLT for the curvature estimator with unknown normalized volatility

In this section, we will establish a central limit theorem for the estimator κ̂, where the parameterm “ mn

satisfies mn “ Opnρq, with ρ P p0, 1{2q. Analogously to Section 2.4.2, this will be achieved by utilizing

the presented central limit theorem from Proposition 2.4.2.

To proceed, we make use of the triangular array defined as

Ξn,i “ ξn,i ´ Erξn,is, ξn,i “

?
mnπ

σ2
0

ř

j‰lpyj ´ ylq2

ÿ

j‰l

`

p∆iX̃q2pyjqeκyj ´ p∆iX̃q2pylqe
κyl

˘

pyl ´ yjq,

as introduced in Section 2.4.1.

Proposition 2.4.5

Grant Assumptions 1.1.1 and 1.1.2, with y1 “ δ, ymn
“ 1´ δ and mn minj“2,...,mn

|yj ´yj´1| is bounded

from above and below, then we have

?
nmn

`

κ̂n,mn ´ κ
˘ d

ÝÑ N
ˆ

0,
12Γπ

p1 ´ 2δq2

˙

,

as n Ñ 8 and mn “ Opnρq, where ρ P p0, 1{2q.

Proof. To initiate this proof, we start by calculating the asymptotic variance. Utilizing Lemma 2.2.1, we

obtain

lim
nÑ8

Var
ˆ n
ÿ

i“1

Ξn,i

˙

“ lim
nÑ8

Var
ˆ n
ÿ

i“1

ξn,i

˙

“ lim
nÑ8

nmnπ

σ4
0

`
ř

j‰lpyj ´ ylq2
˘2Var

ˆ

ÿ

j‰l

`

Vn,∆n
pyjq ´ Vn,∆n

pylq
˘

pyl ´ yjq

˙

“ lim
nÑ8

4nmnπ

σ4
0

`
ř

j‰lpyj ´ ylq2
˘2Var

ˆ mn
ÿ

j“1

Vn,∆n

´

mn
ÿ

l“1

pyl ´ yjq

¯

˙

“ lim
nÑ8

4nmnπ

σ4
0

`
ř

j‰lpyj ´ ylq2
˘2Var

ˆ mn
ÿ

j“1

Vn,∆n
pyjqGj

˙

,

where Gj :“
řmn

l“1pyl ´ yjq. Additionally, considering Gj “ Opmq and using an analogous procedure as

in Proposition 2.3.5, we find

lim
nÑ8

Var
ˆ n
ÿ

i“1

Ξn,i

˙

“ lim
nÑ8

4nmnπ

σ4
0

`
ř

j‰lpyj ´ ylq2
˘2

ˆ mn
ÿ

j“1

G2
jVar

`

Vn,∆n
pyjq

˘

`
ÿ

j1‰j2

Cov
`

Vn,∆n
pyj1qGj1 , Vn,∆n

pyj2qGj2

˘

˙

“ lim
nÑ8

4nmnπ

σ4
0

`
ř

j‰lpyj ´ ylq2
˘2

ˆ mn
ÿ

j“1

G2
j

Γσ4
0

n

`

1 ` Op1 ^ ∆η
nq
˘

`
ÿ

j1‰j2

Gj1Gj2Cov
`

Vn,∆npyj1q, Vn,∆npyj2q
˘

˙

“ lim
nÑ8

4mnπΓ
řmn

j“1G
2
j

`
ř

j‰lpyj ´ ylq2
˘2

`

1 ` Op∆η
nq
˘

` O
ˆ

4nmnπ∆
3{2
n

σ4
0

`
ř

j‰lpyj ´ ylq2
˘2

´

ÿ

j1‰j2

´ Gj1Gj2

|yj1 ´ yj2 |

¯

`m4
nδ

´1
¯

˙
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“ lim
nÑ8

4mnπΓ
řmn

j“1G
2
j

`
ř

j‰lpyj ´ ylq2
˘2

`

1 ` Op∆η
nq
˘

` O
ˆ

∆1{2
n

ÿ

j1‰j2

´ 1

mn|yj1 ´ yj2 |

¯

` ∆1{2
n mnδ

´1

˙

“ mnΓπ
4
řmn

j“1

`
řmn

l“1pyl ´ yjq
˘2

`
ř

j‰lpyj ´ ylq2
˘2

`

1 ` Op∆η
nq
˘

` O
`

∆1{2
n mn logpmnq ` ∆1{2

n mnδ
´1

˘

“
Γπ

´

1
1´2δ

`

1´2δ
mn

řmn

j“1 y
2
j

˘

´ 1
p1´2δq2

`

1´2δ
mn

řmn

j“1 yj
˘2
¯

`

1 ` Op∆η
nq
˘

` O
`

∆1{2
n mn logpmnq ` ∆1{2

n mnδ
´1

˘

.

Finally, through elementary calculations, we obtain

lim
nÑ8

Var
ˆ n
ÿ

i“1

Ξn,i

˙

“
Γπp1 ´ 2δq

ş1´δ

δ
y2 dy ´ 1

1´2δ

` ş1´δ

δ
y dy

˘2 “
12Γπ

p1 ´ 2δq2
.

It remains to show Ξn,i P H2 and that the proof of the condition given in equation (48) holds. By

rearranging the triangular array Ξ as defined in equation (31), we obtain that

ξn,i “

?
mnπ

σ2
0

ř

j‰lpyj ´ ylq2

ÿ

j‰l

`

p∆iX̃q2pyjqeκyj ´ p∆iX̃q2pylqe
κyl

˘

pyl ´ yjq

“
2

?
mnπ

σ2
0

ř

j‰lpyj ´ ylq2

mn
ÿ

j“1

p∆iX̃q2pyjqeκyj

mn
ÿ

l“1

pyl ´ yjq,

where we have used Lemma 2.2.1. Hence, we have

fϑpmnq :“
2

?
mnπ

σ2
0

ř

j‰lpyj ´ ylq2
and gϑpjq “ eκyj

mn
ÿ

l“1

pyl ´ yjq.

Once more, we can employ Lemma 2.2.1 to deduce that f2ϑpmnq “ Opm´3
n q and |gϑpjq| ď Cmn uniformly

in j. Consequently, Ξn,i P H2. Using Proposition 1.2.1, we derive the following expression:

4mnπ

σ4
0

`
ř

j‰lpyj ´ ylq2
˘2

mn
ÿ

j“1

c
ÿ

i“b`u

E
“

p∆iX̃q4pyjq
‰

e2κyj

ˆmn
ÿ

l“1

pyl ´ yjq

˙2

ě C1
∆nσ

4
0mnπpu

πσ4
0

`
ř

j‰lpyj ´ ylq2
˘2

mn
ÿ

j“1

ˆmn
ÿ

l“1

pyl ´ yjq

˙2

ě C2pu∆n,

where C1, C2 ą 0 are suitable constants and pu :“ c´ b´ u` 1. This concludes the proof.

Since the asymptotic variance is independent of any unknown parameter, we conclude this section by

establishing a normalized version of the previous central limit theorem using an elementary transforma-

tion.
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Corollary 2.4.6

Grant Assumptions 1.1.1 and 1.1.2, then we have

?
nmn

˜

Γπp1 ´ 2δq

1´2δ
mn

řmn

j“1 y
2
j ´ 1

1´2δ

`

1´2δ
mn

řmn

j“1 yj
˘2

¸´1{2
`

κ̂n,mn
´ κ

˘ d
ÝÑ N

`

0, 1
˘

,

as n Ñ 8 and mn “ Opnρq, where ρ P p0, 1{2q. Moreover, by setting y1 “ δ, ymn
“ 1 ´ δ and having

mn minj“2,...,mn
|yj ´ yj´1| being bounded from above and below, we obtain

?
nmn

ˆ

12Γπ

p1 ´ 2δq2

˙´1{2
`

κ̂n,mn
´ κ

˘ d
ÝÑ N

`

0, 1
˘

,

as n Ñ 8.

2.4.4. Curvature tests

In Sections 2.4.2 and 2.4.3, we have established the central limit theorems for the estimators κ̂ and κ̂,
respectively. The variance-stabilizing properties of these estimators render their asymptotic variances

independent of any unknown parameter. As a consequence, we can construct confidence intervals to test

for the unknown parameter κ “ ϑ1{ϑ2 P R in the context of the SPDE model given by equation (1).

In particular, if we want to determine whether ϑ1 is a part of the model, we can perform a test that

examines whether κ “ 0 or κ ‰ 0. To that end, we consider the following two-sided hypothesis test:

H0 : κ “ κ0 versus H1 : κ ‰ κ0,

for a κ0 P R. Under the Assumptions 1.1.1 and 1.1.2, we proceed by defining the following two statistics:

Λ
σ2
0

n,m :“
?
nm

ˆ

Γπ
1
m

řmn

j“1 y
2
j

˙´1{2
`

κ̂n,mn
´ κ0

˘

,

Λn,m :“
?
nm

˜

Γπp1 ´ 2δq

1´2δ
m

řm
j“1 y

2
j ´ 1

1´2δ

`

1´2δ
m

řm
j“1 yj

˘2˘

¸´1{2
`

κ̂n,m ´ κ0
˘

.

Using Corollaries 2.4.4 and 2.4.6, we establish the convergence of Λσ2

n,m
d

Ñ N p0, 1q and Λn,m
d

Ñ N p0, 1q.

Leveraging these results, we construct the following asymptotic tests:

φσ2

n,m :“ 1
t|Λ

σ2
0

n,m|ąq1´α{2u
,

φn,m :“ 1t|Λn,m|ąq1´α{2u.

Here, qα represents the α quantile of the standard normal distribution. By Corollaries 2.4.4 and 2.4.6,

both tests have an asymptotic Type I error probability of α P p0, 1q. Correctly choosing between test φσ2
0

and test φ depends on whether the normalized volatility σ2
0 is known or unknown. Specifically, since test

φσ2
0 involves the statistic Λσ2

0 which incorporates the estimator κ̂, it is appropriate to use this test when
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2.4. Asymptotic analysis in time and space

the normalized volatility σ2
0 is known. On the other hand, test φ should be utilized when the normalized

volatility σ2
0 is unknown.

One-sided asymptotic tests can be formulated in a manner akin to the conventional construction of the

z-test used to assess the mean of a normal distribution. An implementation of these tests can be found

in the R-function kappa test within the package ParabolicSPDEs4.

We close this section by constructing asymptotic confidence intervals for the unknown parameter κ,

with an asymptotic confidence level of 1 ´ α. Here, we obtain:

(1) If σ2
0 is known:

I
σ2
0

n,m :“

„

κ̂n,m ´ q1´α{2

´ Γπ

n
řmn

j“1 y
2
j

¯1{2

, κ̂n,m ` q1´α{2

´ Γπ

n
řmn

j“1 y
2
j

¯1{2
ȷ

.

(2) If σ2
0 is unknown:

In,m :“
“

κ̂n,m ´ q1´α{2γn,m, κ̂n,m ` q1´α{2γn,m
‰

,

where

γn,m “

˜

Γπp1 ´ 2δq

np1 ´ 2δq
řm

j“1 y
2
j ´ nm

1´2δ

`

1´2δ
m

řm
j“1 yj

˘2˘

¸1{2

.

2.4.5. Comparison of the variances

In this section, our objective is to compare the performance of the estimators κ̂ and κ̂, which estimate

the parameter κ, with the estimator η̂BT presented in Bibinger and Trabs (2020), which estimates the

parameter η “ pσ2
0 , κqJ P p0,8q ˆ R. To facilitate the comparison, we define the coordinate projections

η1 :“ σ2
0 and η2 :“ κ.

The M-estimation of Bibinger and Trabs (2020) is based on the parametric regression model

RVnpyjq
?
n

“
σ2
0?
π
e´κyj ` δn,j , (37)

with non-standard estimation errors pδn,jq satisfying

Erδn,js “ Op∆nq,

and

Covpδn,j , δn,kq “ 1tj“ku∆nΓσ
4
0e

´2κyj ` O
´

∆3{2
n

`

δ´1 ` |yj ´ yk|
´1 ˘

¯

,

where Vn,∆n
pyjq “ Zje

´κyj . The M-estimator η̂BT is implicitly obtained by minimizing the sum of

squares, given by

η̂BT :“ η̂BT
n,m :“

`

pσ̂BT
0 q2, κ̂BT

˘

:“
`

pσ̂BT
0 q2n,m, κ̂BT

n,m

˘

:“ argmin
s,k

m
ÿ

j“1

´

Zn,j ´ fs,kpyjq

¯2

, (38)

4see: https://github.com/pabolang/ParabolicSPDEs.
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where Zn,j is defined as

Zn,j :“
1

n
?
∆n

n
ÿ

i“1

p∆iXq2pyjq “ fσ2
0 ,κ

pyjq ` δn,j ,

and fs,kpyq :“ se´ky{
?
π. Our aim is to compare the asymptotic variances derived from the central

limit theorems presented in Propositions 2.4.3 and 2.4.5 with the asymptotic variance of the estimator

η̂BT from Bibinger and Trabs (2020, Prop. 4.2.). However, before proceeding with the comparison, some

preliminary work is required. We start by recalling the central limit theorem presented by Bibinger and

Trabs (2020).

Proposition 2.4.7

Grant Assumptions 1.1.1 and 1.1.2, with y1 “ δ and ymn
“ 1 ´ δ and mn minj“2,...,mn

|yj ´ yj´1| is

uniformly bounded from above and from below. Let η P Ξ for some compact set Ξ Ă p0,8q ˆ r0,8q.

The the estimator η̂BT satisfies for a sequence mn Ñ 8, as n Ñ 8, the central limit theorem

?
nmn

`

pη̂BT
n,mqJ ´ ηJ

˘ d
ÝÑ N p0,ΣBTq,

where ΣBT :“ ΣBTpη, δq “ σ4
0ΓπV pη, δq´1Upη, δqV pη, δq´1 and the strictly positive definite matrices

Upη, δq :“

¨

˚

˚

˚

˚

˚

˚

˝

1´δ
ż

δ

e´4κy dy ´σ2
0

1´δ
ż

δ

ye´4κy dy

´σ2
0

1´δ
ż

δ

ye´4κy dy σ4
0

1´δ
ż

δ

y2e´4κy dy

˛

‹

‹

‹

‹

‹

‹

‚

,

V pη, δq :“

¨

˚

˚

˚

˚

˚

˚

˝

1´δ
ż

δ

e´2κy dy ´σ2
0

1´δ
ż

δ

ye´2κy dy

´σ2
0

1´δ
ż

δ

ye´2κy dy σ4
0

1´δ
ż

δ

y2e´2κy dy

˛

‹

‹

‹

‹

‹

‹

‚

.

Firstly, it is reasonable to expect that the asymptotic variance of the estimator κ̂ is uniformly smaller

than the asymptotic variance of the estimator η̂BT
2 , as η̂BT estimates both parameters σ2

0 and κ. Ad-

ditionally, the asymptotic variance of η̂BT
2 is likely dependent on the unknown parameter η, whereas

Propositions 2.4.3 and 2.4.5 demonstrate that the asymptotic variances of the estimators κ̂ and κ̂ are

independent of these parameters.

Indeed, the difference between the estimators κ̂ and κ̂ in terms of their asymptotic variances highlights

a crucial distinction between them. Comparing the asymptotic variances of the estimators κ̂ and κ̂, we
observe that the asymptotic variance of κ̂ significantly surpasses the asymptotic variance of the estimator

κ̂, since

p1 ´ δq2 ` δ

3
“

p1 ´ 2δq2 ` 3pδ ´ δ2q

3
“

4p1 ´ 2δq2

12
` pδ ´ δ2q ą

p1 ´ 2δq2

12
,
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2.4. Asymptotic analysis in time and space

for δ P p0, 1{2q. This result holds true for all δ values within the interval p0, 1{2q, which shows that the

asymptotic variance of κ̂ consistently outperforms the asymptotic variance of the estimator κ̂ across this

entire range of δ values.

Now, our focus is to explore whether there are scenarios where the asymptotic variance of η̂BT
2 is smaller

than the asymptotic variance of the estimator κ̂. To achieve this, we require a representation of the

asymptotic variance of η̂BT
2 , which does not have an integral representation. To proceed, we will present

an explicit representation of the inverse matrix V pη, δq´1. For ease of readability, we replace each entry

with a simplified notation:

V pη, δq “

˜

a b

b d

¸

and Upη, δq “

˜

A B

B D

¸

,

and have

V pη, δq´1 “
1

ad´ b2

˜

d ´b

´b a

¸

.

Now, upon multiplying the matrices, we obtain the following expressions for the entries of the resulting

matrix

V pη, δq´1Upη, δqV pη, δq´1 “
1

pad´ b2q2

˜

d2A´ 2bdB ` b2D ´bdA` b2B ` adB ´ abD

´bdA` b2B ` adB ´ abD b2A´ 2abB ` a2D

¸

,

where ΣBT
2,2 “ pb2A ´ 2abB ` a2Dq{pad ´ b2q2 represents the asymptotic variance of η̂BT

2 and ΣBT
1,1 “

pd2A ´ 2bdB ` b2Dq{pad ´ b2q2 represents the asymptotic variance of η̂BT
1 . Next, we proceed with the

calculation of the elementary integrals:

ż

e´cy dy “

„

´
1

c
e´cy

ȷ

,

ż

ye´cy dy “

„

´
cy ` 1

c2
e´cy

ȷ

,

ż

y2e´cy dy “

„

´
cypcy ` 2q ` 2

c3
e´cy

ȷ

,

where c P R. In the case where κ “ 0, we obtain the following:

V ´1
`

pσ2
0 , 0q, δ

˘

“

¨

˝

4p1´δ`δ2q
p1´2δq3

6
p1´2δq3σ2

6
p1´2δq3σ2

12
p1´2δq3σ4

˛

‚,

and therefore we have

ΣBT
2,2 ppσ2

0 , 0q, δq “

¨

˝

4πΓp1´δ`δ2qσ4
0

p1´2δq3
6πΓσ2

0

p1´2δq3

6πΓσ2
0

p1´2δq3
12πΓ

p1´2δq3

˛

‚.
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2. Parametric estimation of the curvature parameter

Similarly, for κ ‰ 0, i.e., η2 ‰ 0, we have

V pη, δq´1 “

¨

˝

4κe4δκ`2κpe´2pδ´1qκ
p2δκpδκ`1q`1q`e2δκp2pδ´1qκp´δκ`κ`1q´1qq

´2e4δκ`2κp2p1´2δq2κ2`1q`e8δκ`e4κ
4κ2e2pδ`1qκpe4δκp2pδ´1qκ´1q`e2κp2δκ`1qq
σ2
0p´2e4δκ`2κp2p1´2δq2κ2`1q`e8δκ`e4κq

4κ2e2pδ`1qκpe4δκp2pδ´1qκ´1q`e2κp2δκ`1qq
σ2
0p´2e4δκ`2κp2p1´2δq2κ2`1q`e8δκ`e4κq

16κ3ep4δ`3qκ sinhpκ´2δκq

σ4
0p´2e4δκ`2κp2p1´2δq2κ2`1q`e8δκ`e4κq

˛

‚,

and therefore the asymptotic variance is given by

ΣBT
2,2 pη, δq “

˜

a1,1 a1,2

a1,2 a2,2

¸

,

where

a1,1 “ ´
πΓκe8pδ`1qκσ4

0

2 p´2e4δκ`2κ p2p1 ´ 2δq2κ2 ` 1q ` e8δκ ` e4κq
2

ˆ

ˆ

2e´2κ
´

e´2pδ´1qκp2δκpδκ` 1q ` 1q ` e2δκp2pδ ´ 1qκp´δκ` κ` 1q ´ 1q

¯

ˆ

´

e´6δκ
`

2δκ` e4δκ´2κp2pδ ´ 1qκ´ 1q ` 1
˘ `

4δκ` e8δκ´4κp4pδ ´ 1qκ´ 1q ` 1
˘

` 4e´2κ
´

e4pδ´1qκ ´ e´4δκ
¯´

e´2pδ´1qκp2δκpδκ` 1q ` 1q ` e2δκp2pδ ´ 1qκp´δκ` κ` 1q ´ 1q

¯¯

` e´2δκ
`

2δκ` e4δκ´2κp2pδ ´ 1qκ´ 1q ` 1
˘

ˆ

´

2e´2p2δκ`κq
`

4δκ` e8δκ´4κp4pδ ´ 1qκ´ 1q ` 1
˘

ˆ

´

e´2pδ´1qκp2δκpδκ` 1q ` 1q ` e2δκp2pδ ´ 1qκp´δκ` κ` 1q ´ 1q

¯

´ e´2pδ`2qκ
`

2δκ` e4δκ´2κp2pδ ´ 1qκ´ 1q ` 1
˘

ˆ

´

e´4pδ´1qκp4δκp2δκ` 1q ` 1q ` e4δκp4pδ ´ 1qκp1 ´ 2pδ ´ 1qκq ´ 1q

¯¯

˙

,

a1,2 “
2πΓκ2σ2

0

p´2e4δκ`2κ p2p1 ´ 2δq2κ2 ` 1q ` e8δκ ` e4κq
2

ˆ

´

´ p2δ ´ 1qκe8δκ`4κ
`

8p1 ´ 2δq2κ2 ` 4κ` 9
˘

` e16δκppδ ´ 1qκ´ 1q

` e8κpδκ` 1q ` pκ` 2qe4δκ`6κpp4δ ´ 2qκ´ 1q ` pκ` 2qe2p6δκ`κqpp4δ ´ 2qκ` 1q

¯

,

a2,2 “
2πΓκ3e4pδ´1qκ

`

e2κ ´ e4δκ
˘2 `

4p2δ ´ 1qκe4δκ`2κ ´ e8δκ ` e4κ
˘

`

´2e6δκ p2p1 ´ 2δq2κ2 ` 1q ` e2pδ`1qκ ` e2p5δ´1qκ
˘2 .

This yields the asymptotic variance of the estimator η̂BT
2 , which is represented by the following expression:

ΣBT
2,2 “ Γπ

$

’

’

&

’

’

%

12πΓ
p1´2δq3

, for η2 “ 0

2πΓκ3e4pδ´1qκpe2κ´e4δκq
2
p4p2δ´1qκe4δκ`2κ

´e8δκ`e4κq

p´2e6δκp2p1´2δq2κ2`1q`e2pδ`1qκ`e2p5δ´1qκq
2 , for η2 ‰ 0

.

Additionally, it holds that limη2Ñ0 Σ
BT
2,2 ppη1, η2q, δq “ ΣBT

2,2 ppη1, 0q, δq , which ensures that the asymptotic

variance remains continuous as η2 “ κ P R. The preceding analysis also demonstrates that the asymptotic

variance of the M-estimator η̂BT
2 for κ is dependent on the unknown parameter κ while being independent

of σ2
0 .
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Figure 2.1.: We show the asymptotic variances of three estimators: η̂BT
2 (brown), κ̂ (blue), and κ̂ (yellow), where δ “ 0.05 and

σ2
0 “ 1 are fixed. In the left panel, we showcase the asymptotic variance as a function of κ. The right panel displays

the quotient of the asymptotic variances AVARpκ̂q{AVARpη̂BT
2 q.

Now, we further analyse the asymptotic variance to establish that it is always greater than or equal to

12Γπ{p1 ´ 2δq2, which corresponds to the asymptotic variance of κ̂n,mn .

When η2 “ κ “ 0, the minimum asymptotic variance for both estimators η̂BT and κ̂ is given by

lim
δÑ0

ΣBT
2,2 ppη1, 0q, δq “ 12Γπ “ lim

δÑ0

12Γπ

p1 ´ 2δq2
.

Indeed, when 0 ă δ ă 1{2, the asymptotic variance of the estimator η̂BT is greater than the asymptotic

variance of the non-oracle estimator κ̂, as p1 ´ 2δq3 ă p1 ´ 2δq2.

Next, consider the case where κ ą 0. We observe that ΣBT
2,2 pη, δq is monotonically increasing in δ while η

remains arbitrary but fixed. Therefore, we can focus on analysing the case where δ “ 0. In this scenario,

the asymptotic variance ΣBT
2,2 pη, 0q is independent of η1 “ σ2

0 and monotonically increasing in η2 “ κ.

We find a minimum at κ “ 0 with an asymptotic variance of 12Γπ, which coincides with the asymptotic

variance of the estimator κ̂n,m.

Since the asymptotic variance of κ̂n,m is constant in η2, and the asymptotic variance of η̂BT
2 is mono-

tonically increasing in η2, we can conclude that the asymptotic variance of κ̂n,m is uniformly smaller or

equal to the asymptotic variance of η̂BT
2 for all values of κ ą 0. Analogous arguments hold for the case

where κ ă 0.

To conclude this section, we provide plots of the asymptotic variances for the estimators κ̂n,m, κ̂n,m

and η̂BT
2 . As mentioned before, the asymptotic variance of each of these three estimators is independent

of the parameter σ2
0 . Figure 2.1 illustrates the asymptotic variances for η2 “ κ P r´5, 5s, δ “ 0.05, and

a fixed normalized volatility σ2
0 “ 1. The left panel in Figure 2.1 displays the asymptotic variances of
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2. Parametric estimation of the curvature parameter

the three estimators as given in the central limit theorems in Proposition 2.4.3, Proposition 2.4.5, and

Proposition 2.4.7. Here, we can observe that even for a moderate curvature, the asymptotic variance of

the estimator η̂BT increases significantly, while the asymptotic variances of the other estimators remain

constant. Since both estimators η̂BT and κ̂ do not require any information about the rescaled volatility,

we provide a second plot in the right panel, which shows the quotient of the asymptotic variances of

these estimators, where the the asymptotic variance of κ̂ is given in the numerator. By observing the

right panel and considering the previous analysis, it is evident that the quotient is smaller than 1 for

δ P p0, 1{2q. Additionally, it is monotonically increasing for η2 P p´8, 0q and monotonically decreasing

for η2 P p0,8q. As δ Ñ 0, the maximum value of the quotient is 1.

2.5. Simulation

This section initiates with a discussion on simulating samples of a mild solution Xt from the SPDE

model given in equation (1) generated on a discrete grid. Two methods for simulating data will be

discussed: the truncation method and the replacement method, as introduced by Bibinger and Trabs

(2020) and Hildebrandt (2020), respectively. As we apply these concepts to simulate a SDPE model in

higher dimensions, which is discussed in Part II of this thesis, we will closely examine these methods.

Subsequently, we will present a simulation study for the estimators derived in this chapter. A com-

parison of the curvature estimators from this chapter, as well as the curvature estimator presented in

Bibinger and Trabs (2020), will be conducted. This comparison aims to explore the relative performance

and accuracy of these estimators by conducting a Monte Carlo simulation study.

2.5.1. Simulation methods

The objective of this section is to introduce simulation methods for generating a SPDE model outlined

in equation (1). As discussed in Section 1.1.1, we can represent a mild solution Xtpyq “
ř

kě1 xkptqekpyq

of the SPDE model given in equation (1) as an infinite factor model, where the coordinate processes

xk satisfy the Ornstein-Uhlenbeck dynamic with decay rates λk, for k P N. By using the Fourier series

for simulating a solution process X, we have the following options. Either we cut off the Fourier series

at a suitable large cut-off rate K P N which we call by the truncation method, or we take advantage

of the so-called replacement method, cf. Hildebrandt (2020). For both methods, an exact simulation of

the Ornstein-Uhlenbeck processes xk is crucial for the quality of the simulation. Let N P N and M P N
denote the number of temporal and spatial observations, respectively.

As seen in Section 1.1.1, the coordinate processes xk for some solution X are given by xkptq “

e´tλkxξ, ekyϑ `
t
ş

0

e´λkpt´sqσ dW k
s . Therefore, we can write the increments at times t “ 0,∆N , . . . , pN ´

1q∆N as follows:

xkpt` ∆N q “ xkptqe´λk∆N ` σ

t`∆N
ż

t

e´λkpt`∆N´sq dW k
s .
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2.5. Simulation

Thus, we obtain the following recursive representation:

xkpt` ∆N q “ xkptqe´λk∆N ` σ

d

1 ´ exp
“

´ 2λk∆N

‰

2λk
Nt,

where pNtq denote i.i.d. standard normal random variables for t “ 0,∆N , . . . , pN´1q∆N . The truncation

method involves considering the first K P N coordinate processes xk to approximate the mild solution

X. The effectiveness of this method is strongly influenced by the chosen cut-off rate K P N. Kaino and

Uchida (2021b) observed through empirical study that insufficiently large values of K lead to consider-

able biases in the simulations. Selecting an appropriate cut-off rate also appears to be dependent on the

number of spatial and temporal observations. Even for moderate sample sizes, a cut-off rate of K “ 105

is recommended, but it comes with a significant computational cost. For instance, simulating a single

realization of X on a grid with M “ 100 spatial points and N “ 104 temporal points, using a cut-off rate

K “ 105, takes approximately 6 hours when utilizing 64 cores. This computational challenge motivates

the adoption of the replacement method. Building on the work of Davie and Gaines (2001), the replace-

ment method takes a different approach by not merely truncating the Fourier series. Instead, it replaces

the higher Fourier modes of the Fourier series with a suitable set of independent random variables. This

alternative approach allows for an almost exact simulation of discrete samples of X, significantly reducing

the computational costs.

We describe the replacement method procedure for the case when ξ “ 0 and consider equidistant spa-

tial points, such as yj “ j{M for j “ 0, . . . ,M . To simplify the Fourier representation of Xtpyq “
ř8

k“1 xkptqekpyq, we utilize the following weighted inner product:

xf, gyϑ,M :“
1

M

M
ÿ

j“0

fpyjqgpyjqeκyj , (39)

for functions f, g : r0, 1s Ñ R. Using the orthonormal basis ek as defined in equation (2), we perform the

spectral approach. First, we find that the coefficient processes pekq1ďkďM´1 define an orthonormal basis

with respect to the inner product x¨, ¨yϑ,M . As described in Hildebrandt (2020), utilizing the properties

ēM “ 0, ēk`2lM “ ēk, and ē2M´k`2lM “ ´ēk for ēk :“
`

ekpy0q, . . . , ēkpyM q
˘

P RM`1 yields the following

Fourier representation:

Xtpyjq “

M´1
ÿ

m“1

Umptqempyjq,

for t ě 0 and j “ 0, . . . ,M . Here, the coordinate processes Um can be written as

Um “ xXt, emyϑ,M “
ÿ

lPI`
m

xlptq ´
ÿ

lPI´
m

xlptq,

where xl denotes the coordinate processes from equation (5) and the index sets are defined as

I`
m “ tm` 2lM, l P N0u, I´

m “ t2M ´m` 2lM, l P N0u and Im :“ I`
m Y I´

m. (40)
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2. Parametric estimation of the curvature parameter

Thus, we obtain a finite Fourier representation of X on a discrete grid. To complete our understanding

of the replacement method, we need to address the simulation of the processes Um. As discussed in

Hildebrandt and Trabs (2021) and Hildebrandt (2020), when ξ “ 0, the coordinate processes xk are

centred Gaussian with the covariance function

Cov
`

pxkptiq, xkptjq
˘

“
σ2

2λk
e´λk|i´j|∆N

`

1 ´ e´2λk minpi,jq∆N
˘

,

where 1 ď i, j ď N . If λk9k2 is large compared to 1{∆n “ N , the coordinate processes xk effectively

behave like i.i.d. centred Gaussian random variables with variances

Var
`

xkptiq
˘

«
σ2

2λk
.

We select a bound L “ LM,N P N, which represents multiples of M . Then, we can replace all xk

with sufficiently large k ě LM by a vector of i.i.d. centred normal random variables with variances

σ2{p2λkq. As the normal distribution is stable with respect to summation, it is sufficient to generate one

set
`

RL
mpiq

˘

1ďiďN
of random variables with RL

mpiq „ N p0, s2mq, where

s2m “
ÿ

lPIm,lěLM

σ2

2λl
,

for 1 ď m ď M ´ 1. This leads to the following approximation for Um:

UL
mp0q “ 0 and UL

mptiq “
ÿ

lPIm,lăLM

xlptiq `RL
mpiq,

for 1 ď i ď N and 1 ď m ď M ´ 1. According to Hildebrandt (2020, Lemma 3.1.), the infinite series s2m

has a closed form given by

s2m “
1

M2
bJ
mΣbm ´

ÿ

lPIm,lăLM

σ2

2λl
, (41)

where bm :“
?
2
`

sinpπmy0q, . . . , sinpπmyM q
˘J

P RM`1 and Σ “ pΣj,lqj,l“0,...,M`1 “ pρpyj , ylqqj,l“0,...,M`1 P

RpM`1qˆpM`1q, with the symmetric function ρ : r0, 1s2 Ñ R, defined for x ď y as

ρpx, yq “
σ2

2ϑ2
¨

$

’

’

’

&

’

’

’

%

sinpΓ0p1´yqq sinpΓ0xq

Γ0 sinpΓ0q
, γ ă 0

xp1 ´ yq , γ “ 0

sinhpΓ0p1´yqq sinhpΓ0xq

Γ0 sinhpΓ0q
, γ ą 0

,

with

γ :“
ϑ21
4ϑ2

´
ϑ0
ϑ2

and Γ0 :“
a

|γ|.

This method provides a finite spectral decomposition for a solution X, which significantly reduces the

runtime. For example, in the same setting as before, where M “ 100 and N “ 104, one simulation takes

just about 30 seconds when using 64 cores instead of 6 hours. The associated algorithm for this method
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Figure 2.2.: Kernel-density plots for a equi-spaced grid with M “ 10 and N “ 103 using different constellations of the parameter
η “ pσ2

0 , κq. Based on 1000 Monte Carlo repetitions each, orange denotes the kernel-density estimation of the results

of the estimator η̂BT
2 . Similarly, the colors gray and yellow denote the results of the estimators κ̂ and κ̂, respectively.

In each case, the dotted lines represent the associated asymptotic distribution, respectively. A Gaussian kernel with
Silverman’s ‘rule of thumb’ was used for the kernel-density estimation.

is given in Hildebrandt (2020, Algorithm 3.2.), where the author also provided an algorithm for the case,

where ξ ‰ 0.

Finally, we present the total variation distance between the approximation XL and the mild solution

X of an SPDE from equation (1) to evaluate the power of the replacement method’s approximation. Let

X “ pXtpyjq
˘

1ďiďN,1ďjďM
and its approximation XL. Hildebrandt (2020, Prop. 3.3.) showed that there

exist constants c and C, dependent only on pσ2, ϑq, such that the total variation between X and XL is

bounded by

TVpX ,XLq ď C
?
MNe´cL2M2∆N .

Furthermore, suppose ∆α
N Ñ 0 for some α ą 0. If there exists a β ą 1{2 such that M∆β

N Ñ 8, then

TVpX ,X 1q Ñ 0.

2.5.2. Simulation results for the curvature parameter

The purpose of this section is to visually compare the three different estimators: κ̂, κ̂, and the curvature

estimator η̂BT
2 proposed by Bibinger and Trabs (2020) in equation (38). To achieve this, we conduct

simulations for four distinct scenarios:

i) κ “ 1 and σ2
0 “ 1, ii) κ “ 6 and σ2

0 “ 1, iii) κ “ 1 and σ2
0 “ 1{4, iv) κ “ 6 and σ2

0 “ 1{4,
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Figure 2.3.: Kernel-density plots for a equi-spaced grid with M “ 100 and N “ 104 using different constellations of the parameter
η “ pσ2

0 , κq. Based on 1000 Monte Carlo repetitions each, orange denotes the kernel-density estimation of the results

of the estimator η̂BT
2 . Similarly, the colors gray and yellow denote the results of the estimators κ̂ and κ̂, respectively.

In each case, the dotted lines represent the associated asymptotic distribution, respectively. A Gaussian kernel with
Silverman’s ‘rule of thumb’ was used for the kernel-density estimation.

where we performed 1000 Monte Carlo repetitions using the R programming language. The simulations

are based on the replacement method with a replacement bound of L “ 20 and a zero initial condition

ξ “ 0. We consider an equidistant grid in time and space, where two different spatial and temporal

resolutions are used. The first grid has a spatial resolution of M “ 10 and a temporal resolution of 103.

Note that the spatial resolution of this grid is much smaller than N1{2. Meanwhile, the second grid has

a spatial resolution of M “ 100 and a temporal resolution of N “ 104, approximately satisfying the

relation between ∆n and m as stated in Assumption 1.1.1. As the estimator η̂BT
2 is only given implicitly,

we followed the instructions from Bibinger and Trabs (2020) on how to implement this estimator using

the R function nls. Figure 2.2 and Figure 2.3 show kernel density estimations with a Gaussian kernel

and Silverman’s ‘rule of thumb’ for
?
nmpϑ̂´κq, where ϑ̂ represents the estimators κ̂ in yellow, κ̂ in grey,

and η̂BT
2 in orange, respectively. The dotted lines represent the asymptotic variance as proved in the

CLTs provided by the Propositions 2.4.3, 2.4.5, and 2.4.7, respectively. Figure 2.2 displays the simulation

results on the first equi-spaced grid withM “ 10 and N “ 103, whereas Figure 2.3 presents the results on

the second grid. For both grids, we can observe a good fit between the kernel density estimation and the

asymptotic normal distribution. There is no significant difference in the quality of the fit between the two

grids. As analysed in Section 2.4.5, for κ « 0, the estimator κ̂ and the estimator η̂2 by Bibinger and Trabs

(2020) have about the same asymptotic variance. However, for larger (or smaller) κ, the performance

of the estimator κ̂ significantly improves compared to the estimator η̂BT
2 . For instance, when κ “ 6, a

noticeable difference in the asymptotic variance can be observed.
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Figure 2.4.: QQ-normal plots for normalized estimation errors for κ from simulation with N “ 103,M “ 10, σ2
0 “ 1, κ “ 1 in the

left panels and κ “ 6 in the right panels. Brown (top) shows the estimator from equation (38), grey is for the estimator
in equation (15) and yellow (bottom) for the estimator in equation (13).

We conclude this section by providing QQ-plots. In these plots, we use the estimations of the respective

curvature estimators ϑ̂n,m and rescale them according to the respective central limit theorem, i.e.,

?
nm

b

AVARpϑ̂n,mq

pϑ̂n,m ´ κq,

where AVARpϑ̂n,mn
q :“ limnÑ8 Varp?

nmnϑ̂n,mn
q denotes the asymptotic variance of the estimator ϑ̂.

For the estimator from equation (38) we use an estimated asymptotic variance based on plug-in, while

for our new estimators the asymptotic variances are known constants.

The QQ-plots shown in Figure 2.4 and Figure 2.5 offer a graphical comparison between the distributions

of the estimators and the asymptotic normal distribution predicted by the CLT. Through this rescaling

process, we can evaluate how closely the estimators align with the theoretical standard normal distribution

when dealing with large sample sizes. Notably, all the presented curvature estimators demonstrate a

strong fit, indicating a good agreement with the theoretical normal distribution.

2.6. Summary and Discussion

In this chapter, we have developed two new estimators for the curvature parameter κ in the context of

linear parabolic SPDEs with additive noise. The first estimator κ̂ assumes a known normalized volatility,

while the second estimator κ̂ is a robustification and thus suitable for cases where the volatility σ2
0
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Figure 2.5.: QQ-normal plots for normalized estimation errors for κ from simulation with N “ 104,M “ 100, σ2
0 “ 1, κ “ 1 in the

left panels and κ “ 6 in the right panels. Brown (top) shows the estimator from equation (38), grey is for the estimator
in equation (15) and yellow (bottom) for the estimator in equation (13).

is unknown. We have proved central limit theorems for these estimators and compared them to the

existing estimator η̂2 proposed by Bibinger and Trabs (2020). The key advantage of the new methods is

the usage of a variance-stabilizing transformation of the statistic RVn, resulting in feasible CLTs where

the asymptotic variances are known constants and do not depend on any unknown parameters. On

the other hand, the M-estimator η̂2 relies on the unknown curvature parameter κ. However, we have

demonstrated that the non-oracle estimator κ̂ uniformly dominates and significantly improves upon the

existing curvature estimator.

One important difference between the new estimators and η̂2 is in their formulations. Both of the new

estimators are explicitly given, making them easier to implement and understand. In contrast, η̂2 is only

provided implicitly. The fact that the M-estimator η̂2 has been widely adopted and utilized in various

prominent papers reflects its importance in the field of parameter estimation for SPDEs. For instance:

(1) In the paper by Hildebrandt and Trabs (2021), the M-estimator was employed for rate-optimal esti-

mation, catering to more general observation schemes. This indicates its versatility and usefulness

in handling different types of data and scenarios.

(2) Kaino and Uchida (2021a) utilized the M-estimator for generalized estimation approaches, par-

ticularly focusing on small noise asymptotics. This suggests that the estimator’s robustness and

performance remain relevant and beneficial even in situations involving low-noise environments.

(3) The work by Kaino and Uchida (2021b) delved into long-span asymptotics, where the M-estimator

was instrumental in capturing crucial features of the underlying SPDEs. This highlights its effec-
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tiveness in dealing with large temporal spans and long-term data.

(4) Tonaki et al. (2023) employed the M-estimator for parameter estimation in two spatial dimen-

sions. This indicates its suitability for higher-dimensional problems, which are often encountered

in practical applications.

Considering the extensive use of the M-estimator in these influential papers, it emphasizes the signif-

icance and relevance of our new methods, namely κ̂ and κ̂. The improvements and advantages of our

estimators, which were demonstrated in this chapter, show great potential for enhancing the accuracy

and efficiency of curvature parameter estimation in SPDEs. Therefore, we expect that substituting the

curvature estimation, provided by the M-estimator, with our novel ML-estimators will prove effective in

these extensions, yielding more efficient estimation techniques.
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3. Asymptotic log-linear model for realized volatilities

and least squares estimation

This chapter focusses on estimating the two-dimensional parameter η “ pσ2
0 , κq P p0,8q ˆ R. To achieve

this, we utilize log-realized volatility statistics and establish a connection to the linear model. Our

objective is to demonstrate a bivariate central limit theorem for this novel approach and subsequently

compare it with the existing M-estimator developed by Bibinger and Trabs (2020). The comparison will

encompass both analytical and Monte Carlo simulation assessments.

3.1. Motivation and Methodology

In Chapter 2.2, we derived equation (21) and demonstrated that the remainders Rn,y become asymp-

totically negligible for the distribution of the estimators. Now, assuming the bivariate parameter η “

pσ2
0 , κq P p0,8q ˆ R is unknown, we can use equation (21) and represent the log-realized volatilities as

follows:

ln

ˆ

RVnpyjq
?
n

˙

“ ´κyj ` ln

ˆ

σ2
0?
π

˙

`

c

Γπ

n
Zj `Rn,yj

, (42)

where yj P rδ, 1´δs and with independent Zj „ N p0, 1q, for j “ 1, . . . ,m. By disregarding the remainders

in the latter display, the equivalence to a simple ordinary linear regression model with normal errors

becomes evident. In this analogy, the realized volatilities serve as response of the log-linear model with

spatial explanatory variable, where our objective is to estimate both, the slope parameter ´κ and the

intercept parameter ϱ :“ lnpσ2
0{

?
πq. As we focus on estimating these two parameters, we introduce

the two-dimensional parameter ν :“ pϱ, κqJ P R2. In this process, we estimate the strictly monotone

transformation φpσ2
0q “ ϱ P R of the normalized volatility σ2

0 , where φ : R` Ñ R and φpxq :“ lnpx{
?
πq.

We review the parameter estimation for the simple ordinary linear regression model within a related

statistical model.

Example 3.1.1

The simple ordinary linear regression model is given by

Yj “ αyj ` β ` εj ,

where j “ 1 . . . ,m, homoscedastic white noise errors εj , with Varpεjq “ ς2 and unknown parameters

pα, βq P R2. Least squares estimation yields the following estimators:

α̂m “

řm
j“1pYj ´ Ȳ qpyj ´ ȳq
řm

j“1pyj ´ ȳq2
,
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3. Asymptotic log-linear model for realized volatilities and least squares estimation

β̂m “ Ȳ ´ α̂ȳ,

where Ȳ and ȳ denote the sample averages and arithmetic mean, respectively, cf. Zimmerman (2020,

Example 7.1-1). By plug-in and standard calculations we additionally derive the following representation:

α̂m “

`
řm

j“1 Yj
˘`

řm
j“1 yj

˘

´m
řm

j“1 Yjyj
`
řm

j“1 yj
˘2

´m
řm

j“1 y
2
j

,

β̂m “

`
řm

j“1 yj
˘`

řm
j“1 Yjyj

˘

´
`
řm

j“1 Yj
˘`

řm
j“1 y

2
j

˘

`
řm

j“1 yj
˘2

´m
řm

j“1 y
2
j

.

According to the well-known Gauss-Markov theorem, the estimators derived from the simple ordinary

linear regression model are BLUE (best linear unbiased estimators), meaning they have the minimum

variance among all linear and unbiased estimators. Now, for constructing estimators based on equation

(42), we consider an asymptotic log-linear model with homoscedastic normal errors. Referring to Example

3.1.1 and associating α “ ´κ and β “ ϱ, we derive the following estimators:

ˆ̃κ :“ ˆ̃κn,m :“
m
řm

j“1 ln
`RVnpyjq

?
n

˘

yj ´

´

řm
j“1 ln

`RVnpyjq
?
n

˘

¯

`
řm

j“1 yj
˘

`
řm

j“1 yj
˘2

´m
řm

j“1 y
2
j

,

ϱ̂ :“ ϱ̂n,m :“

`
řm

j“1 yj
˘

´

řm
j“1 ln

`RVnpyjq
?
n

˘

yj

¯

´

´

řm
j“1 ln

`RVnpyjq
?
n

˘

¯

`
řm

j“1 y
2
j

˘

`
řm

j“1 yj
˘2

´m
řm

j“1 y
2
j

, (43)

where ϱ̂ is an estimator for the transformation φpσ2
0q and ˆ̃κ estimates the parameter κ. Note that we

have used the estimator ´α̂ from Example 3.1.1 for estimating κ. Estimating the natural parameter

σ2
0 ą 0 is given by the simple transformation of the estimator ϱ̂, which is given by

σ̂2
0 :“ pσ̂2

0qn,m :“ exp

«

`
řm

j“1 yj
˘

´

řm
j“1 ln

`RVnpyjq
?
n

˘

yj

¯

´

´

řm
j“1 ln

`RVnpyjq
?
n

˘

¯

`
řm

j“1 y
2
j

˘

`
řm

j“1 yj
˘2

´m
řm

j“1 y
2
j

ff

?
π.

It is well-established that maximum likelihood estimation for natural exponential families yields a unique

ML-estimator and aligns with the estimators of the simple ordinary linear regression model with normal

errors, as stated in Montgomery et al. (2021, Chapter 2.12). Moreover, least squares estimators in linear

models with normal errors demonstrate asymptotic efficiency. Thus, we can deduce that the non-oracle

estimator from equation (15) coincides with the estimator ˆ̃κn,m. This identity can be easily established

using Lemma 2.2.1 and standard calculations, resulting in the following identity:

κ̂n,mn
“

ř

j‰l

´

ln
`RVnpyjq

?
n

˘

´ ln
`RVnpylq

?
n

˘

¯

pyl ´ yjq
ř

j‰lpyj ´ ylq2

“
2
řmn

j“1 ln
`RVnpyjq

?
n

˘
řmn

l“1pyl ´ yjq
řmn

j,l“1

`

y2j ´ 2yjyl ` y2l
˘
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“

2
´

řmn

j“1 ln
`RVnpyjq

?
n

˘

¯

`
řmn

l“1 yl
˘

´ 2mn

řmn

j“1 ln
`RVnpyjq

?
n

˘

yj

2mn

řmn

j“1 y
2
j ´ 2

`
řmn

j“1 yj
˘2 “ ˆ̃κn,m.

Hence, we note that the curvature estimator κ̂ as defined in equation (15) aligns with the curvature

estimator ˆ̃κ derived from the ordinary least squares model. As a result, we will use the notation κ̂ :“ κ̂n,m

to denote the slope estimator ˆ̃κ in the log-linear model. To establish a central limit theorem for the

two-dimensional estimators ν̂ :“ pϱ̂, κ̂qJ and η̂ :“ pσ̂2
0 , κ̂qJ, we can determine the asymptotic variance-

covariance matrix by analysing the variances and covariance of the estimators in the ordinary linear

regression model from Example 3.1.1. It is well-known that these variances and covariance are given by

Varpα̂mq “
ς2p1 ´ 2δq

m
´

1´2δ
m

řm
j“1 y

2
j ´ 1

1´2δ

`

1´2δ
m

řm
j“1 yj

˘2
¯ ,

Varpβ̂mq “
ς2
`

1´2δ
m

řm
j“1 y

2
j

˘

m
´

`

1´2δ
m

řm
j“1 y

2
j

˘

´ 1
1´2δ

`

1´2δ
m

řm
j“1 yj

˘2
¯ ,

Covpα̂m, β̂mq “ ´
ς2
`

1´2δ
m

řm
j“1 yj

˘

m
´

1´2δ
m

řm
j“1 y

2
j ´ 1

1´2δ

`

1´2δ
m

řm
j“1 yj

˘2
¯ .

For a comprehensive overview of the linear model, we refer to Zimmerman (2020, Example 7.2-1). In

fact, we will see, that the remainders Rn,yj
in equation (42) are negligible for the asymptotic distribution

of the estimators ϱ̂ and κ̂. Consequently, we derive an asymptotic variance-covariance matrix according

to the variance-covariance structure given in Example 3.1.1, where ς2 “ Γπ.

The estimator from equation (38) was shown to be rate-optimal and asymptotically normally distributed

in Bibinger and Trabs (2020, Prop. 4.2.). However, considering the analogy to an ordinary linear regression

model, it becomes clear that the estimation method by Bibinger and Trabs (2020) is inefficient, as ordinary

least squares is applied to a model with heteroscedastic errors.

In the model from equation (37), the variances of δn,j depend on j via the factor e´2κyj . This, moreover,

induces that the asymptotic variance-covariance matrix of the estimator from equation (38) depends on

the parameter pσ2
0 , κq. In line with the least squares estimator from Example 3.1.1, the asymptotic

distribution of our estimator will not depend on the parameter pσ2
0 , κq.

In conclusion of this section, we lay the theoretical groundwork for the forthcoming multivariate central

limit theorem. To begin the methodology part, we introduce a modification of the one-dimensional

central limit theorem presented in Proposition 1.2.4. Utilizing the Cramér-Wold theorem, which asserts

that multivariate convergence is equivalent to the univariate convergence of every linear combination, we

can now present the following multivariate version of the central limit theorem, as proposed by Peligrad

et al. (1997).

Corollary 3.1.2

Let pZkn,iq1ďiďkn
a centred triangular array, with a sequence pknqnPN, where Zn,kn

P Rd are random

vectors. Then, it holds that

kn
ÿ

i“1

Zn,i
d

ÝÑ N p0,Σq,
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3. Asymptotic log-linear model for realized volatilities and least squares estimation

as n Ñ 8 and Σ denotes a variance-covariance matrix, which satisfies the equation

lim
nÑ8

Var
ˆ kn
ÿ

i“1

βJZn,i

˙

“ βJΣβ ă 8,

for any β P Rd, if the following conditions hold for any β P Rd:

(I) Var
´ b
ř

i“a

βJZn,i

¯

ď C
b
ř

i“a

VarpβJZn,iq, for all 1 ď a ď b ď kn ,

(II) lim sup
nÑ8

kn
ř

i“1

ErβJZ2
n,is ă 8,

(III)
kn
ř

i“1

E
”

βJZ2
kn,i

1t|βJZkn,i|ąεu

ı

nÑ8
ÝÑ 0, for all ε ą 0,

(IV) Cov
´

eit
řb

i“a βJZn,i , eit
řc

i“b`u βJZn,i

¯

ď ρtpuq
c
ř

i“a

VarpβJZn,iq, for all 1 ď a ď b ď b ` u ď c ď kn

and t P R,

where C ą 0 is a universal constant and ρtpuq ě 0 is a function with
ř8

j“1 ρtp2
jq ă 8. In addition, if

d “ 2 we can identify the asymptotic variance by

lim
nÑ8

Var
ˆ kn
ÿ

i“1

βJZn,i

˙

“ β2
1Σ1,1 ` 2β1β2Σ1,2 ` β2

2Σ2,2, where Σ “

˜

Σ1,1 Σ1,2

Σ1,2 Σ2,2

¸

,

where β P R2 is arbitrary.

In Section 2.4, we analysed the class Hα of triangular arrays and established a central limit theorem for

this class. By applying a Cramér-Wold argument in combination with Proposition 2.4.2, we can infer a

central limit theorem for a class Hd
α of generalized triangular arrays in higher dimensions. Specifically,

we consider the set Fα as defined in equation (32) and the set

Gd
α :“ tgϑ : N Ñ Rd | |βJgϑpmq| ď Cϑ∥β∥8m

α{2 uniformly in m P N, Cϑ ą 0u,

for a α ě 0, d P N and the maximum norm ∥¨∥8. Then, we define the class of generalized multivariate

triangular arrays by

Hd
α :“

"

pZn,iq1ďiďn,nPN : Zn,i “ ζn,i ´ Erζn,is and ζn,i “ fϑpmq

m
ÿ

j“1

p∆iX̃q2pyjqgϑpjq,

where fϑ P Fα, gϑ P Gd
α

*

, (44)

where α ě 0. Suppose β P Rd, then we have

βJζn,i “ fϑpmq

m
ÿ

j“1

p∆iX̃q2pyjqβJgϑpjq ď Cϑ∥β∥8m
α{2fϑpmq

m
ÿ

j“1

p∆iX̃q2pyjq,
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for ζn,i P Hd
α. Different definitions are possible for the classes Fα and Gα, encompassing triangular arrays

in higher dimensions. In such cases, it becomes essential to impose the univariate condition on both

classes’ respective components in the multivariate setting. Our definition is grounded in the fact that

the class Hd
α incorporates triangular arrays with common scaling functions fϑ P Fα and multivariate

functions gϑ P Gd
α. These components represent the structure of the respective estimator ν̂ “ pϱ̂, κ̂qJ,

which we establish in the following.

Following the procedure in Section 2.4.1, the remaining step is to define the triangular array for the

two-dimensional estimator ν̂. By utilizing equation (27), we have

ϱ̂n,mn “

`
řmn

j“1 yj
˘

´

řmn

j“1 ln
`RVnpyjq

?
n

˘

yj

¯

´

´

řmn

j“1 ln
`RVnpyjq

?
n

˘

¯

`
řmn

j“1 y
2
j

˘

`
řmn

j“1 yj
˘2

´mn

řmn

j“1 y
2
j

“ ln

ˆ

σ2
0?
π

˙

`

?
π

?
nσ2

0

řn
i“1

řmn

j“1 p∆iX̃q2pyjqeκyj

´

`
řmn

l“1 yl
˘

yj ´
`
řmn

l“1 y
2
l

˘

¯

`
řmn

j“1 yj
˘2

´mn

řmn

j“1 y
2
j

` OPp∆nq,

and

κ̂n,mn
“
mn

řmn

j“1 ln
`RVnpyjq

?
n

˘

yj ´

´

řmn

j“1 ln
`RVnpyjq

?
n

˘

¯

`
řmn

j“1 yj
˘

`
řmn

j“1 yj
˘2

´mn

řmn

j“1 y
2
j

“ κ`

?
π

?
nσ2

0

řn
i“1

řmn

j“1 p∆iX̃q2pyjqeκyj
`

mnyj ´
řmn

l“1 yl
˘

`
řmn

j“1 yj
˘2

´mn

řm
j“1 y

2
j

` OPp∆nq.

Hence, we can redefine the triangular array by

Ξn,i :“ ξn,i ´ Erξn,is and ξn,i :“

˜

ξ
p1q

n,i

ξ
p2q

n,i ,

¸

, (45)

where

ξ
p1q

n,i :“

?
mnπ

σ2
0

´

`
řmn

j“1 yj
˘2

´mn

řmn

j“1 y
2
j

¯

mn
ÿ

j“1

p∆iX̃q2pyjqeκyj

ˆ

´

mn
ÿ

l“1

yl

¯

yj ´

´

mn
ÿ

l“1

y2l

¯

˙

,

ξ
p2q

n,i :“

?
mnπ

σ2
0

´

`
řmn

j“1 yj
˘2

´mn

řmn

j“1 y
2
j

¯

mn
ÿ

j“1

p∆iX̃q2pyjqeκyj

ˆ

mnyj ´

mn
ÿ

l“1

yl

˙

,

and have

ξn,i :“

?
mnπ

σ2
0

´

`
řmn

j“1 yj
˘2

´mn

řmn

j“1 y
2
j

¯

mn
ÿ

j“1

p∆iX̃q2pyjqeκyj

˜

`
řmn

l“1 yl
˘

yj ´
řmn

l“1 y
2
l

mnyj ´
řmn

l“1 yl

¸

.

Let β “ pβ1, β2q P R2, then we obtain

βJξn,i “

?
mnπ

σ2
0

´

`
řmn

j“1 yj
˘2

´mn

řmn

j“1 y
2
j

¯

mn
ÿ

j“1

p∆iX̃q2pyjqeκyj
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ˆ

˜

β1

ˆ

´

mn
ÿ

l“1

yl

¯

yj ´

mn
ÿ

l“1

y2l

˙

` β2

ˆ

mnyj ´

mn
ÿ

l“1

yl

˙

¸

“ fϑpmnq

mn
ÿ

j“1

p∆iX̃q2pyjqeκyjGβ
j ,

where

fϑpmnq :“

?
mnπ

σ2
0

´

`
řmn

j“1 yj
˘2

´mn

řmn

j“1 y
2
j

¯ , (46)

Gβ
j :“ Gβ1

j `Gβ2

j :“ β1

ˆ

´

mn
ÿ

l“1

yl

¯

yj ´

mn
ÿ

l“1

y2l

˙

` β2

ˆ

mnyj ´

mn
ÿ

l“1

yl

˙

. (47)

Based on Lemma 2.2.1, we observe that fϑpmnq “ Opm
´3{2
n q, Gβ1

j “ Opmnq “ Gβ2

j , and gϑpjq :“

eκyjGβ
j ď Cκ∥β∥8mn. Consequently, we can conclude that ξn,i P H2

2, which enables us to establish a

central limit theorem for the estimator ν̂ in the forthcoming section.

3.2. Central limit theorem in time and space

To establish a central limit theorem for the estimator ν̂, we begin with the following corollary, which

directly follows from Proposition 2.4.2 and the Cramér-Wold device. Subsequently, by employing the

multivariate delta method, we will deduce a central limit theorem for the estimator η̂.

Corollary 3.2.1

Under the Assumptions 1.1.1 and 1.1.2, let us consider a triangular array Zn,i P Hd
α, where Hd

α is defined

in equation (44). Then, it holds that

n
ÿ

i“1

Zn,i
d

Ñ N p0,Σq,

as n Ñ 8, if it holds that

f2ϑpmq

mn
ÿ

j“1

c
ÿ

i“b`u

E
“

p∆iX̃q4pyjq
‰`

βJgϑpjq
˘2

ě ∥β∥8C̃∆npu, (48)

for all 1 ď b ă b ` u ď c ď n, where pu :“ c ´ b ´ u ` 1, u ě 2, a constant C̃ :“ C̃ϑ ą 0 and Σ is a

variance-covariance matrix satisfying the equation

lim
nÑ8

Var
ˆ kn
ÿ

i“1

βJZn,i

˙

“ βJΣβ ă 8,

for any β P Rd.

By utilizing the previous corollary, we can derive the following central limit theorem for the estimator

ν̂.
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Proposition 3.2.2

Grant Assumptions 1.1.1 and 1.1.2, with y1 “ δ, ymn “ 1 ´ δ and mn min2,...,mn |yj ´ yj´1| is bounded

from above and below. Then, we have

?
nmn

`

ν̂ ´ ν
˘

“
?
nmn

˜˜

ϱ̂n,mn

κ̂n,mn

¸

´

˜

ϱ

κ

¸¸

d
ÝÑ N p0,Σq ,

as n Ñ 8 and mn “ Opnρq, where ρ P p0, 1{2q, and

Σ “

˜

4Γπp1´δ`δ2q

p1´2δq2
6Γπ

p1´2δq2

6Γπ
p1´2δq2

12Γπ
p1´2δq2

¸

.

Proof. We initiate the proof by deriving the asymptotic variance. Let β P R2 be arbitrary. Then, we

obtain that

Var
ˆ n
ÿ

i“1

βJΞn,i

˙

“ Var
ˆ n
ÿ

i“1

βJξn,i

˙

“ f2ϑpmnqVar
ˆ

?
n

mn
ÿ

j“1

?
∆n

n
ÿ

i“1

p∆iX̃q2pyjqeyjκGβ
j

˙

“ nf2ϑpmnqVar
ˆ mn
ÿ

j“1

Vn,∆n
pyjqGβ

j

˙

“ nf2ϑpmnq

ˆ mn
ÿ

j“1

pGβ
j q2Var

`

Vn,∆npyjq
˘

`
ÿ

j1‰j2

Gβ
j1
Gβ

j2
Cov

`

Vn,∆npyj1q, Vn,∆npyj2q
˘

˙

“ nf2ϑpmnq

˜

Γσ4
0

n

`

1 ` Op1 ^ ∆η̃
nq
˘

mn
ÿ

j“1

pGβ
j q2

` O
ˆ

∆3{2
n

´

ÿ

j1‰j2

´ Gβ
j1
Gβ

j2

|yj1 ´ yj2 |

¯

`m2
nδ

´1
¯

˙

¸

“ f2ϑpmnqΓσ4
0

`

1 ` Op∆η̃
nq
˘

mn
ÿ

j“1

pGβ
j q2 ` O

ˆ

∆
1{2
n

mn

´

ÿ

j1‰j2

´ 1

|yj1 ´ yj2 |

¯

` δ´1
¯

˙

“
Γσ4

0mnπ
řmn

j“1pGβ
j q2

σ4
0

´

`
řmn

j“1 yj
˘2

´mn

řmn

j“1 y
2
j

¯2

`

1 ` Op∆η̃
nq
˘

` O
`

∆1{2
n mn logpmnq

˘

“
mnΓπp1 ´ 2δq2

řmn

j“1pGβ
j q2

m4
n

´

1´2δ
mn

řmn

j“1 y
2
j ´ p1 ´ 2δq´1

`

1´2δ
mn

řmn

j“1 yj
˘2
¯2 ` Op1q,

where fϑ and Gβ
j are defined in equations (46) and (47), respectively, and an arbitrary η̃ P p0, 1q.

Furthermore, we have

mn
ÿ

j“1

pGβ
j q2 “

mn
ÿ

j“1

˜

β1

ˆ

´

mn
ÿ

l“1

yl

¯

yj ´

mn
ÿ

l“1

y2l

˙

` β2

ˆ

mnyj ´

mn
ÿ

l“1

yl

˙

¸2

“ β2
1

mn
ÿ

j“1

ˆ

´

mn
ÿ

l“1

yl

¯

yj ´

mn
ÿ

l“1

y2l

˙2

` 2β1β2

mn
ÿ

j“1

ˆ

´

mn
ÿ

l“1

yl

¯

yj ´

mn
ÿ

l“1

y2l

˙ˆ

mnyj ´

mn
ÿ

l“1

yl

˙
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` β2
2

mn
ÿ

j“1

ˆ

mnyj ´

mn
ÿ

l“1

yl

˙2

“ β2
1

˜

mn

ˆ mn
ÿ

j“1

y2j

˙2

´

ˆ mn
ÿ

j“1

y2j

˙ˆ mn
ÿ

j“1

yj

˙2
¸

` 2β1β2

˜

mn

ˆ mn
ÿ

j“1

yj

˙ˆ mn
ÿ

j“1

y2j

˙

´

ˆ mn
ÿ

j“1

yj

˙3
¸

` β2
2

˜

m2
n

mn
ÿ

j“1

y2j ´mn

ˆ mn
ÿ

j“1

yj

˙2
¸

“ m3
nβ

2
1p1 ´ 2δq´2

˜

´1 ´ 2δ

mn

mn
ÿ

j“1

y2j

¯

ˆ

1 ´ 2δ

mn

mn
ÿ

j“1

y2j ´ p1 ´ 2δq´1
´1 ´ 2δ

mn

mn
ÿ

j“1

yj

¯2
˙

¸

`m3
n2β1β2p1 ´ 2δq´2

˜

´1 ´ 2δ

mn

mn
ÿ

j“1

yj

¯

ˆ

1 ´ 2δ

mn

mn
ÿ

j“1

y2j ´ p1 ´ 2δq´1
´1 ´ 2δ

mn

mn
ÿ

j“1

yj

¯2
˙

¸

`m3
np1 ´ 2δq´1β2

2

˜

1 ´ 2δ

mn

mn
ÿ

j“1

y2j ´ p1 ´ 2δq´1

ˆ

1 ´ 2δ

mn

mn
ÿ

j“1

yj

˙2
¸

.

Therefore, we have

lim
nÑ8

Var
ˆ n
ÿ

i“1

αJΞn,i

˙

“ Γπ

˜

β2
1

ş1´δ

δ
y2 dy

ş1´δ

δ
y2 dy ´ p1 ´ 2δq´1

` ş1´δ

δ
y dy

˘2

` 2β1β2

ş1´δ

δ
y dy

ş1´δ

δ
y2 dy ´ p1 ´ 2δq´1

` ş1´δ

δ
y dy

˘2

` β2
2

p1 ´ 2δq
ş1´δ

δ
y2 dy ´ p1 ´ 2δq´1

` ş1´δ

δ
y dy

˘2

¸

“ β2
1

4Γπp1 ´ δ ` δ2q

p1 ´ 2δq2
` 2β1β2

6Γπ

p1 ´ 2δq2
` β2

2

12Γπ

p1 ´ 2δq2
.

Hence, the asymptotic variance is given by

Σ “

˜

4Γπp1´δ`δ2q

p1´2δq2
6Γπ

p1´2δq2

6Γπ
p1´2δq2

12Γπ
p1´2δq2

¸

.

It remains to verify the condition given in equation (48) from Corollary 3.2.1. Having the following:

fϑpmnq “

?
mnπ

σ2
0

`

p
řmn

j“1 yjq2 ´mn

řmn

j“1 y
2
j

˘ and βJgϑpjq “ eκyjGβ
j ,

we derive that

f2ϑpmnq

mn
ÿ

j“1

c
ÿ

i“b`u

E
“

p∆iX̃q4pyjq
‰

e2yjκpGβ
j q2 ě C1

f2ϑpmnq∆nσ
4
0pu

π

mn
ÿ

j“1

e2yjκpGβ
j q2e´2yjκ

ě C1
∆npumn

`

p
řmn

j“1 yjq2 ´mn

řmn

j“1 y
2
j

˘2

mn
ÿ

j“1

pGβ
j q2

ě ∥β∥8C2∆npu,

where C1, C2 ą 0 are suitable constants. For the latter inequality we used Lemma 2.2.1 and obtained
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that

pGβ
j q29β2

1m
2
ny

2
j ` β1β2m

2
ny

2
j ` β2

2m
2
ny

2
j ,

which completes the proof.

Finally, we examine the estimator η̂ for the unknown parameter η “ pσ2
0 , κq P p0,8q ˆ R, where the

estimator of the parameter σ2
0 is given by

σ̂2
0 “ exp

«

`
řmn

j“1 yj
˘

´

řmn

j“1 ln
`RVnpyjq

?
n

˘

yj

¯

´

´

řmn

j“1 ln
`RVnpyjq

?
n

˘

¯

`
řmn

j“1 y
2
j

˘

`
řmn

j“1 yj
˘2

´mn

řmn

j“1 y
2
j

ff

?
π.

Utilizing the multivariate delta method yields the following corollary.

Corollary 3.2.3

Grant Assumptions 1.1.1 and 1.1.2, with y1 “ δ, ym “ 1 ´ δ and m|yj ´ yj´1| is bounded from above

and below, we have

?
nmn

˜˜

pσ̂2
0qn,mn

κ̂n,mn

¸

´

˜

σ2
0

κ

¸¸

d
ÝÑ N

`

0, Σ̃
˘

,

as n Ñ 8 and m “ mn “ Opnρq, where ρ P p0, 1{2q and

Σ̃ “

˜

4σ4
0Γπp1´δ`δ2q

p1´2δq2
6σ2

0Γπ
p1´2δq2

6σ2
0Γπ

p1´2δq2
12Γπ

p1´2δq2

¸

.

Proof. Consider the function h : R2 Ñ p0,8q ˆ R, defined as

h

˜˜

x1

x2

¸¸

“

˜

φ´1px1q

x2

¸

“

˜

ex1
?
π

x2

¸

.

Since each entry of h has a continuous partial derivative, the multivariate delta method yields

?
nmn

˜

h

˜˜

ϱ̂n,mn

κ̂n,mn

¸¸

´ h

˜˜

φpσ2
0q

κ

¸¸¸

d
ÝÑ N

`

0, JhpηqΣJhpηqJ
˘

,

where Jh denotes the Jacobian matrix of h given by

Jhpηq “

˜

σ2
0 0

0 1

¸

.

The proof is completed by having the variance-covariance matrix Σ from Proposition 3.2.2.
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Figure 3.1.: The asymptotic variance of the estimator σ̂2
0 (blue) is compared to the estimator η̂BT

1 (brown) from equation (38).
From left to right, we observe the asymptotic variances for different values of κ P t´5, ´4, . . . , 4, 5u. The rightmost

panel displays the ratio AVARpσ̂2
0q{AVARpη̂BT

1 q of the asymptotic variances of both estimators for κ P r´5, 5s.

In Section 2.4.4, we discussed confidence intervals for the curvature parameter κ. Proposition 3.2.2 enables

the derivation of asymptotic confidence intervals, with a confidence level of 1 ´ α, for the normalized

volatility σ2
0 . These intervals are given by

In,m :“

„

exp
”

ϱ̂n,m ´ q1´α{2γ{
?
nm

ı?
π, exp

”

ϱ̂n,m ` q1´α{2γ{
?
nm

ı?
π

ȷ

,

where qα represents the α-quantile of the standard normal distribution. Here, ϱ̂n,m is the estimator from

equation (43) for the parameter ϱ “ lnpσ2
0{

?
πq, and γ is defined as

γ :“

ˆ

4Γπp1 ´ δ ` δ2q

p1 ´ 2δq2

˙1{2

.

3.3. Simulation

In this section, we begin by providing a graphical comparison of the asymptotic variances of the estimators

η̂BT from equation (38) as constructed by Bibinger and Trabs (2020) and the new estimator η̂ for estimat-

ing η “ pσ2
0 , κq. For the analysis of the asymptotic variance and simulations of the non-oracle estimator

κ̂, we refer to the Sections 2.4.3 and 2.5, respectively. Here, our focus is on comparing the asymptotic

variances of the estimator σ̂2
0 and η̂BT

1 for the parameter σ2
0 , as well as conducting a comparison of both

estimators via Monte Carlo simulations.

The panels on the left in Figure 3.1 show the asymptotic variances of both estimators for fixed κ P

t´5,´4, . . . , 4, 5u and σ P p0, 2s. The blue line represents the asymptotic variance of the estimator σ̂2
0 ,

while the brown line denotes the asymptotic variance of the estimator η̂BT
1 by Bibinger and Trabs (2020).
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Figure 3.2.: Comparison of empirical distributions of normalized estimation errors for σ2
0 from simulation with N “ 103, M “ 10,

σ2
0 “ 1, and κ “ 1 in the left panel, and κ “ 6 in the right panel. Blue represents σ̂2

0 , and brown represents the estimator

η̂BT
1 by Bibinger and Trabs (2020). The asymptotic distributions are denoted by the dotted lines, respectively.
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Figure 3.3.: Comparison of empirical distributions of normalized estimation errors for σ2
0 from simulation with N “ 104, M “ 100,

σ2
0 “ 1, and κ “ 1 in the left panel, and κ “ 6 in the right panel. Blue represents σ̂2

0 , and brown represents the estimator

η̂BT
1 by Bibinger and Trabs (2020). The asymptotic distributions are denoted by the dotted lines, respectively.

As the asymptotic variance for our estimator σ̂2
0 is independent of the unknown parameter κ, we observe

the same behaviour in the first eleven plots. The rightmost panel in Figure 3.1 displays the quotient for

both estimators for κ P r´5, 5s. As this quotient is independent of the parameter σ2
0 , we show the ratio

between both asymptotic variances dependent on κ P r´5, 5s with fixed δ “ 0.05. We observe that the

quotient curve is not symmetrical around zero, indicating that the new estimator σ̂2
0 performs even better

than the estimator η̂BT
1 when κ ă 0. As discussed in Section 1.1, we observe much stronger activity of
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Figure 3.4.: QQ-normal plots for normalized estimation errors for σ2
0 from simulation with N “ 103, M “ 10, σ2

0 “ 1, and κ “ 1 in

the left panel, and κ “ 6 in the right panel. Brown is for the new estimator σ̂2
0 , and grey is for the estimator defined

in equation (38).

the random field when the curvature κ is negative compared to its positive equivalent. These structural

differences also affect the quality of the estimation, i.e., the asymptotic variance, leading to the curvature

observed in the rightmost panel. Even when the curvature is κ “ 0, our new estimator σ̂2
0 outperforms

the M-estimator η̂BT
1 .

Figures 3.2 and 3.3 compare the empirical distributions of normalized estimation errors for σ2
0 for both

estimators. The empirical distributions are based on 1000 Monte Carlo iterations. While the empirical

distributions for κ “ 1 are almost similar, we witness a significant difference for a stronger curvature

κ “ 6. In fact, our new estimator σ̂2
0 outperforms the existing one from Bibinger and Trabs (2020). Both

figures display the limit distributions denoted by the dotted lines, respectively. For the generation of

empirical distributions, we use a kernel density estimation with a Gaussian kernel and Silverman’s ‘rule

of thumb’ for the bandwidth. The QQ-normal plots in Figure 3.4 and Figure 3.5 compare standardized

estimation errors to the standard normal. The fit of the asymptotic normal distributions is reasonably

well for all estimators.

In Section 2.6, we discussed the extensive use of the M-estimator in influential works including Hildebrandt

and Trabs (2021), Kaino and Uchida (2021a) and Tonaki et al. (2023). Combining the results from the

Chapters 2 and 3 reveals that our novel estimator η̂ outperforms the existing estimator η̂BT presented

by Bibinger and Trabs (2020). Hence, we do not only expect that substituting the M-estimator with

the ML-estimators κ̂ and κ̂ from Chapter 2 for the curvature parameter κ will yield for more efficient
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Figure 3.5.: QQ-normal plots for normalized estimation errors for σ2
0 from simulation with N “ 104, M “ 100, σ2

0 “ 1, and κ “ 1

in the left panel, and κ “ 6 in the right panel. Brown is for the new estimator σ̂2
0 , and grey is for the estimator defined

in equation (38).

parameter estimation but also anticipate improved efficiency when substituting the M-estimator with the

novel least squares estimator η̂.
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Part II.

Multi-Dimensional Stochastic Partial

Differential Equation





4. Essentials of multi-dimensional SPDEs

Multi-dimensional SPDEs extend the foundational concepts of one-dimensional SPDEs to handle situa-

tions in which multiple spatial dimensions are at play. These equations have broad utility across various

scientific disciplines, allowing for the examination of the interplay between deterministic dynamics and

stochastic variations in a wide range of systems, including those in the fields of physics, geophysics, biol-

ogy, finance, and environmental science. Multi-dimensional SPDE models offer a much larger variability

for modelling natural phenomena. Therefore, it is intuitive that applications of these SPDEs is of great

relevance, especially for two- and three-dimensional spaces. See, for instance, Mena and Pfurtscheller

(2019) for an application in connection with the climate phenomenon El Niño and references therein for

applications to sea temperature, Pereira et al. (2020) for an application in Geostatistics, and dealing with

seismic data and Fioravanti et al. (2023) for an application in climate science. For an overview with many

references to specific applications in various fields we refer to Lindgren et al. (2022).

While some research has been conducted on statistical inference for stochastic partial differential equa-

tions in one spatial dimension, the aim of this second part is to generalize the SPDE model to multiple

space dimensions. Although the authors Tonaki et al. (2023) have provided valuable insights into a SPDE

model in two spatial dimensions, this is the first work, which generalizes the theory to a d-dimensional

framework, where d ě 2.

Emanating from the fact that research on multi-dimensional SPDEs is still in its early stages, we

begin this second part of the thesis by laying the foundations for the multi-dimensional model. Thus,

we introduce stochastic partial differential equations in d ě 2 spatial dimensions and briefly discuss the

parameters of the model. A crucial difference between a SPDE model in one spatial dimension and

multi-dimensional SPDE models is that the random field in higher dimensions is not square integrable

when using a white noise structure as employed in the one-dimensional case. Consequently, introducing

a new parameter to the higher-dimensional model becomes necessary. This new parameter, which we

refer to as the damping parameter, ensures that we attain essential properties of the solution process,

such as the random field being square integrable. The structural change in the stochastic force, due to

the damping parameter, has a crucial impact on the model. In fact, we will observe that the damping

parameter influences key elements, such as the expected value of the quadratic temporal increments and

the autocovariance of temporal increments. We will also discuss the identifiability of the parameters in

the multi-dimensional SPDE model, particularly in relation to the damping parameter.

Moving forward, we will develop a representation of a solution process for the corresponding multi-

dimensional SPDE. Similar to the first part of this thesis, we choose the spectral approach for this purpose.

However, we need to extend the mathematical background of this approach from one to multiple spatial

dimensions. By obtaining a Fourier representation of a solution process, we provide technical tools

to analyse such solutions and begin to derive initial insights into some properties of multi-dimensional

SPDEs. These insights include investigating the structure of a d-dimensional random field in terms of

dependencies between distinct spatial points and the variance-covariance structure of realized volatilities.
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4. Essentials of multi-dimensional SPDEs

Statistical inference can be developed using these key insights. In concluding this introductory chapter, we

will focus on simulation methods for d-dimensional SPDEs, building upon the one-dimensional approaches

of cut-off and replacement method. Since higher dimensions naturally lead to more complex calculations,

we will defer specific proofs to the last Section 4.4 in this chapter to enhance readability.

4.1. SPDE model in multiple space dimension

We consider the following linear, second-order stochastic partial differential equation in d P N space

dimensions with additive noise:

»

—

–

dXtpyq “ AϑXtpyqdt` σ dBtpyq, pt,yq P r0, 1s ˆ r0, 1sd

X0pyq “ ξpyq, y P r0, 1sd

Xtpyq “ 0, pt,yq P r0, 1s ˆ B r0, 1sd

fi

ffi

fl

, (49)

where y “ py1, . . . , ydq P r0, 1sd. The operator Aϑ from the SPDE model outlined in equation (49) is

given by

Aϑ “ η
d
ÿ

l“1

B2

By2l
`

d
ÿ

l“1

νl
B

Byl
` ϑ0, (50)

with fixed parameters ϑ “ pϑ0, ν1, . . . , νd, ηq, where ϑ0, ν1, . . . , νd P R and η, σ ą 0. The temporal domain

is set as t P r0, 1s, which can be extended to t P r0, T s for T ą 0 throughout the second part of this

thesis. Likewise, the spatial domain is defined as the d-dimensional unit hypercube. Furthermore, B

denotes a cylindrical Q-Brownian motion on r0, 1sd as defined in equation (54), and the initial condition

ξ : r0, 1sd Ñ R is independent from B. We impose a Dirichlet boundary condition to the model. As

in the one-dimensional case, we define the natural parameters in this model as the normalized volatility

σ2
0 :“ σ2{ηd{2 ą 0 and the curvature parameter κ “ pκ1, . . . , κdq P Rd, where κl :“ νl{η P R, l “ 1, . . . , d.

Note, that the identifiability of the model parameters is discussed in the remark after Proposition 4.2.7.

Different to the situation with unbounded spatial support, the differential operator Aϑ from equation

(50) admits a discrete spectrum, hence enabling the use of the spectral approach. The spectral approach’s

corresponding Hilbert space is defined by

Hϑ :“ tf : r0, 1sd Ñ R, ∥f∥ϑ ă 8 and fpyq “ 0, for y P B r0, 1sdu, (51)

where Br0, 1sd represents the boundary of the set r0, 1sd. The norm ∥¨∥ϑ is defined via the corresponding

inner product ∥f∥ϑ :“ xf, fyϑ given by

xf, gyϑ :“

ż 1

0

¨ ¨ ¨

ż 1

0

fpy1, . . . , ydqgpy1, . . . , ydq exp

„ d
ÿ

l“1

κlyl

ȷ

dy1 ¨ ¨ ¨ dyd,

where f, g P Hϑ. The domain of the operator Aϑ is given by

DpAϑq “ tf P Hϑ : ∥f∥ϑ, ∥B{pBylqf∥ϑ, ∥B2{pBy2l qf∥ϑ ă 8, for all l “ 1, . . . , du.
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4.1. SPDE model in multiple space dimension

Before introducing the spectral decomposition of the SPDE model in equation (49), we clarify some

notations for working in d ě 2 space dimensions. We use the following abbreviated notation:

ż

r0,1sd
fpyqdy :“

ż 1

0

¨ ¨ ¨

ż 1

0

fpy1, . . . , ydqdy1 ¨ ¨ ¨ dyd,

for a function with ∥f∥ϑ ă 8. Note that the Fubini theorem yields the possibility to change the order of

integration. Likewise, we use the notation

ÿ

kPNd

ak “

8
ÿ

k1“1

¨ ¨ ¨

8
ÿ

kd“1

apk1,...,kdq,

where ak : Nd Ñ R denotes a sequence, for which the series converges absolutely. Bold letter indices and

variables are used throughout this second part of the thesis to denote multivariate indices and variables.

Furthermore, we introduce the following notations. Let x P Rd, then

∥x∥0 :“ min
i“1,...,d
xi‰0

t|x1|, . . . , |xd|u, ∥x∥1 :“
d
ÿ

l“1

xl, ∥x∥2 :“

ˆ d
ÿ

l“1

x2l

˙1{2

, ∥x∥8 :“ max
l“1,...,d

|xl|,

where we set minH “ 0. Note that the introduced notations ∥¨∥2, ∥¨∥8 define a norm on Rd. However, the

notations ∥¨∥0 and ∥¨∥1 do not define a norm, as they do not even map to the non-negative real numbers.

Nevertheless, we use a norm notation to indicate an operation across all the spatial dimensions. Moreover,

for a measurable function f : Rd Ñ R we define the Lp-norm by

∥f∥LppDq :“

ˆ
ż

D

|fpxq|p dx

˙1{p

,

where D Ď Rd. Finally, we define the point-wise product by

‚ : Rd ˆ Rd Ñ Rd

x ‚ y ÞÑ px1y1, . . . , xdydqJ.

We say for k, j P Nd that they are not alike, i.e., k ‰ j, if there exists at least one index l0 P t1, . . . , du

with kl0 ‰ jl0 . A concise overview of these and other notations can be found in the Appendix A.

Now that we have clarified these notations, we proceed with the spectral decomposition of the operator

Aϑ on the Hilbert space Hϑ. The eigenfunctions pekqkPNd and eigenvalues p´λkqkPNd of the differential

operator Aϑ are given by

ekpyq :“ ekpy1, . . . , ydq :“ 2d{2
d
ź

l“1

sinpπklylqe
´κlyl{2, (52)

λk :“ ´ϑ0 `

d
ÿ

l“1

ˆ

ν2l
4η

` π2k2l η

˙

, (53)
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4. Essentials of multi-dimensional SPDEs

where k “ pk1, . . . , kdqJ P Nd. When comparing the representation of the eigenfunctions and eigenvalues

in d-space dimensions to those in one space dimension as defined in display (2), we observe that we have

extended the eigenfunctions and eigenvalues in one dimension to each spatial dimension. Furthermore,

we demonstrate in Lemma 4.4.1 that the orthonormal property of the one-dimensional eigenfunctions

extends seamlessly to multiple space dimensions, effectively defining an orthonormal system pekqkPNd .

This observation allows us to decompose each axis independently using the one-dimensional eigenfunc-

tions, which involve rescaling, sine functions, and exponential terms with dependencies on the respective

parameters κl. As a result, we obtain a powerful multivariate spectral decomposition by considering a

product model over each dimension.

Furthermore, a crucial property of the operator Aϑ is its self-adjoint nature on the Hilbert space Hϑ,

where we prove this property in Lemma 4.4.1. The self-adjoint nature of the operator is significant as it

ensures that the eigenfunctions form a complete and orthogonal basis in Hϑ, enabling us to effectively

represent solutions to the SPDE model in equation (49) using this spectral decomposition.

Given that we have developed the spectral framework, we address the Q-Wiener process Wtpyq in a

Sobolev space on the bounded domain r0, 1sd. For comprehensive details on the Q-Wiener process, refer

to works such as Da Prato and Zabczyk (2014), Lord et al. (2014) or Lototsky et al. (2017). An essential

distinction when transitioning from one to higher space dimensions is that the solution process XQ
t pyq

is not square integrable when considering a white noise, i.e., Er∥XQ
t ∥2ϑs “ 8, where Q “ id denotes

the identity operator. The authors Tonaki et al. (2023) have demonstrated that this phenomenon arises

even in two space dimensions. To ensure that XQ
t is square integrable, it becomes necessary to employ

a coloured cylindrical Wiener process instead of a white noise. This entails introducing an additional

parameter to the model, which “dampens” the Wiener process. By considering a coloured noise and in-

troducing different damping mechanisms, Tonaki et al. (2023) successfully developed statistical inference

based on high-frequency observations using a spectral approach in two space dimensions.

To specify the damping mechanism in our model, we adopt one natural approach by defining pBtqtě0

by its spectral decomposition, given by

xBt, fyϑ :“
ÿ

kPNd

λ
´α{2
k xf, ekyϑW

k
t , (54)

for f P Hϑ, t ě 0 and with independent real-valued Brownian motions pWk
t qtě0, for all k P Nd. To

ensure that the latter definition is well-defined, we assume that λp1,...,1q ą 0. In the previous definition,

the cylindrical Brownian motion B undergoes a structural change through the introduction of the term

λ
´α{2
k in its spectral decomposition. This alteration naturally brings about a complete shift in the

probabilistic structure of the random field. The parameter α holds particular significance as it essentially

governs the damping mechanism. Comparing this characterization of the Q-cylindrical Brownian motion

to its one-dimensional counterpart in equation (4), we note that the noise’s colouring is determined by

the term λ
´α{2
k . When α “ 0, we observe a white noise structure.

Currently, the required domain for the new parameter α remains uncertain. To ensure that the expected

value Er∥XI
t ∥2ϑs is finite and enable statistical inference in our model, the domain must be carefully chosen.

Nonetheless, it is reasonable to impose α ě 0 initially.

In the forthcoming analysis, we will discover that an even more stringent restriction on this parameter
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4.1. SPDE model in multiple space dimension

is essential to guarantee that the Q-Brownian motion is well-defined, which corresponds to the square

integrable property of the random field. Moreover, an even stronger limitation is required for the devel-

opment of statistical inference.

Prior to exploring this restriction, we begin with analysing the well-definedness of B and offer a

characterization for the operator Q in our model. For this purpose, we denote the domain of the operator

A
´1{2
ϑ as DpA

´1{2
ϑ q. Then, Hϑ Ă DpA

´1{2
ϑ q and pẽkqkPNd define an orthonormal system on DpA

´1{2
ϑ q,

where ẽk :“ ek{∥A´1{2
ϑ ek∥ϑ for all k P Nd. The covariance operator Q on DpA

´1{2
ϑ q is then given by

Qek “ λ´α
k ∥A´1{2

ϑ ek∥2ϑek,

and the corresponding eigenvalues of Q are given by λ´α
k ∥A´1{2

ϑ ek∥2ϑ. Assume the parameter α is such

that

ÿ

kPNd

∥A´p1`αq{2
ϑ ek∥2ϑ “

ÿ

kPNd

1

λ1`α
k

ă 8, k P Nd, (55)

then the Q-Wiener process pBtq is well-defined in DpA
´1{2
ϑ q and the definition of the Q-Wiener process,

as given in equation (54), follows by

xBt, fyϑ “
ÿ

kPNd

λ
´α{2
k ∥A´1{2

ϑ ek∥ϑ
B

f,
ek

∥A´1{2
ϑ ek∥ϑ

F

ϑ

Wk
t .

For a comprehensive overview of Wiener processes on Hilbert spaces, we refer to Da Prato and Zabczyk

(2014, Chapter 4). For readings on a different approaches for the choice of Q in two space dimensions we

refer to Tonaki et al. (2023).

To ensure the well-definedness of B, it is crucial to examine potential choices for α such that the se-

ries in equation (55) converges. Since the negative eigenvalues pλkqkPNd are proportional to

λk “ ´ϑ0 `

d
ÿ

l“1

ˆ

ν2l
4η

˙

` π2η
d
ÿ

l“1

k2l 9

d
ÿ

l“1

k2l “ ∥k∥22,

we can find constants C1, C2 ą 0 such that C1

řd
l“1 k

2
l ď λk ď C2

řd
l“1 k

2
l for all k ě k0, where k0 P Nd.

In this context, the inequality for the multi-index k is defined component-wise. By the integral test for

convergence we have

ÿ

kPNd

λ
´p1`αq

k ď C1

8
ÿ

k1“1

¨ ¨ ¨

8
ÿ

kd“1

1

pk21 ` . . .` k2dq1`α
ă 8

ô

ż 8

1

¨ ¨ ¨

ż 8

1

1

px21 ` . . .` x2dq1`α
dx1 ¨ ¨ ¨ dxd ă 8. (56)

To evaluate this expression, we employ spherical coordinates in d-dimensions. As this technique will be

highly beneficial in the subsequent analysis, we recall this method. Consider a function f P L1pRq and

the integral
ş

Rd fp|x|2qdx. The transformation to d-dimensional spherical coordinates is accomplished

85



4. Essentials of multi-dimensional SPDEs

through the substitution

x1 “ r cospφ1q, x2 “ r sinpφ1q cospφ2q, x3 “ r sinpφ1q sinpφ2q cospφ3q, . . . ,

xd´1 “ r sinpφ1q ¨ . . . ¨ sinpφd´2q cospφd´1q, xd “ r sinpφ1q ¨ . . . ¨ sinpφd´1q, (57)

where r P r0,8q, φ1 P r0, πs, . . . , φd´2 P r0, πs and φd´1 P r0, 2πq. Note that integrating over the entire

d-dimensional space requires only one angle to be in the range of r0, 2πq. Suppose we want to evaluate
ş

Rd
`

fp|x|2qdx, then every angle φl P r0, π{2q is in the first quarter of the periodicity of sine and cosine,

where l “ 1, . . . , pd ´ 1q. The associated Jacobian matrix of the d-dimensional spherical transformation

is denoted by Jd, and its determinant is given by

|Jd| “

d´2
ź

l“1

rd´1 sind´1´l
pφlq.

Let x P Rd. Performing this substitution yields

∥x∥22 “ r2
`

cos2pφ1q ` sin2pφ1q cos2pφ2q ` . . .` sin2pφ1q ¨ ¨ ¨ cos2pφd´1q ` sin2pφ1q ¨ ¨ ¨ sin2pφd´1q
˘

“ r2,

where we have used the identity cos2pxq “ 1 ´ sin2pxq. For further readings on spherical coordinates,

refer to Flanders (1963). Applying this transformation to the integral over the function f P L1pRq, we

obtain the convenient representation

ż

Rd

fp∥x∥22qdx “

ż 8

0

rd´1fpr2qdr

ż π

0

sind´2
pφ1qdφ1 ¨ ¨ ¨

ż π

0

sinpφd´2qdφd´2

ż 2π

0

dφd´1

“ 2π

ż 8

0

rd´1fpr2qdr

ż π

0

sind´2
pφ1qdφ1 ¨ ¨ ¨

ż π

0

sinpφd´2qdφd´2.

Continuing the analysis of the integral from equation (56), we have

ż 8

1

¨ ¨ ¨

ż 8

1

1

px21 ` . . .` x2dq1`α
dx1 ¨ ¨ ¨ dxd ď

ż 8

1

ż π{2

0

¨ ¨ ¨

ż π{2

0

ż π{2

0

1

r2p1`αq
|Jd|dφd´1 ¨ ¨ ¨ dφ1 dr

“

ż 8

1

rd´1

r2p1`αq
dr

ż π{2

0

sind´2
pφ1qdφ1 ¨ ¨ ¨

ż π{2

0

sinpφd´2qdφd´2

ż π{2

0

dφd´1

ď

ˆ

π

2

˙d´1„
1

d´ 2p1 ` αq
rd´2p1`αq

ȷ8

1

ă 8 ô α ą
d

2
´ 1.

Hence we find, that the Q-Wiener process as defined in equation (54) is well-defined, if α ą d{2 ´ 1. As

we delve into the analysis of multi-dimensional SPDE model, i.e., d ě 2, it becomes evident that α ą 0.

This observation confirms that a white noise is not suitable for any higher dimensional SPDE model

except the one-dimensional case.

Now that the theoretical framework for the random field is established, we can introduce a spectral

decomposition that forms the basis for the analysis of our multi-dimensional SPDE model. Therefore, we

consider a mild solution Xt of the SPDE from equation (49), which satisfies the integral representation

Xt “ etAϑξ ` σ

ż t

0

ept´sqAϑ dBs,
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4.1. SPDE model in multiple space dimension

for every t P r0, 1s almost surely. Then, the spectral decomposition of the random field Xt is given by

Xtpyq “
ÿ

kPNd

xkptqekpyq, where xkptq :“ xXt, ekyϑ. (58)

The coordinate processes pxkqkPNd follow the Ornstein-Uhlenbeck dynamics, governed by the equation

dxkptq “ ´λkxkptqdt` σλ
´α{2
k dWk

t ,

where pWk
t qtě0 are independent real-valued Brownian motions for all k P Nd. The Ornstein-Uhlenbeck

dynamics can be obtained by using that the operator Aϑ is self-adjoint and the eigenvalue equation. More

precisely, we have

xkptq “ xXt, ekyϑ “

B

etAϑξ ` σ

ż t

0

ept´sqAϑ dBs, ek

F

ϑ

“
@

etAϑξ, ek
D

ϑ
`

B

σ

ż t

0

ept´sqAϑ dBs, ek

F

ϑ

“ e´λktxξ, ekyϑ `

B

σ
ÿ

jPNd

´

λ
´α{2
j

ż t

0

ept´sqAϑ dW j
s

¯

ej, ek

F

ϑ

“ e´λktxξ, ekyϑ ` σλ
´α{2
k

ż t

0

e´λkpt´sq dWk
s , (59)

where we used that xetAϑf, ekyϑ “ e´λktxf, ekyϑ, for a f P Hϑ. To conclude the probabilistic framework,

we show, that the random field, governed by the cylindrical Brownian motion, is square integrable for

each t ě 0. Therefore, suppose t ą 0 as the case where t “ 0 is trivial. By employing the spectral

decomposition of a mild solution Xt, we observe that

Er∥Xt∥2ϑs “ E
„

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPNd

xkptqek

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

ϑ

ȷ

“
ÿ

kPNd

ÿ

jPNd

E
“

∥xkptqekxjptqej∥ϑ
‰

“
ÿ

kPNd

∥ek∥2ϑE
“

xkptq2
‰

ď C
ÿ

kPNd

ˆ

e´2λktE
“

xξ, eky2ϑ

‰

` σ2λ´α
k E

”´

ż t

0

e´λkpt´sq dWk
s

¯2ı
˙

“ C
ÿ

kPNd

ˆ

e´2λktE
“

xξ, eky2ϑ

‰

` σ2λ´α
k

ż t

0

e´2λkpt´sq ds

˙

“ C
ÿ

kPNd

ˆ

e´2λktE
“

xξ, eky2ϑ

‰

` σ2λ´α
k

e´2λkt
`

e2λkt ´ 1
˘

2λk

˙

“ C
ÿ

kPNd

ˆ

e´2λktE
“

xξ, eky2ϑ

‰

` σ2 1 ´ e´2λkt

2λ1`α
k

˙

ď C 1
ÿ

kPNd

ˆ

e´2λkt

λ1`α
k

` σ2 1 ´ e´2λkt

2λ1`α
k

˙

ď C2
ÿ

kPNd

1

λ1`α
k

,
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where we utilized Itô isometry for suitable constants C,C 1, C2 ą 0. We also used that

supkPNd λ1`α
k Erxξ, eky2ϑs ă 8, which is a part of Assumption 4.1.2, which is introduced at the end of

this section. Thus, we have for a suitable constant C ą 0 that

Er∥Xt∥2ϑs ď C
ÿ

kPNd

1

λ1`α
k

ă 8,

if α ą d{2 ´ 1. As already mentioned and evidenced by the preceding calculation, the property of the

random field of being square-integrable is directly related to the well-definedness of Bt from equation (54),

serving as a singular constraint that ensures both properties. Since the constraint for damping parameter

α is related to the dimension of the SPDE model from equation (49), we introduce the notation

α “
d

2
´ 1 ` α1,

where α1 ą 0. As we assume the dimension d of the SPDE model from equation (49) to be known, the

parameter α1 enables us to analyse the “pure” damping rate.

Having established the probabilistic structure of our multi-dimensional SPDE model, we shift our focus

to the statistical assumptions. Similar to the one-dimensional case, we aim to develop statistical inference

using a high-frequency observation scheme. Assumption 1.1.1 illustrated that even in one space dimension,

it is essential to restrict the observations to bound the correlations of the SPDE model given in equation

(1). Intuitively, we will require similar restrictions to develop consistent estimators. The following

assumption outlines the high-frequency observation scheme.

Assumption 4.1.1 (Observation scheme)

Suppose we observe a mild solution X of the SPDE model from equation (49) on a discrete grid pti,yjq P

r0, 1sˆr0, 1sd, with equidistant observations in time ti “ i∆n for i “ 1, . . . , n and y1, . . . ,ym P rδ, 1´δsd,

where n,m P N and δ P p0, 1{2q. We consider one of the following two asymptotic regimes, respectively:

(I) ∆n Ñ 0, as n Ñ 8, while n∆n “ 1 and m ă 8 is fixed,

(II) ∆n Ñ 0 and m “ mn Ñ 8, as n Ñ 8, while n∆n “ 1 and m “ Opnρq for some

ρ P
`

0, p1 ´ α1q{pd` 2q
˘

,

where α “ d{2 ´ 1 ` α1 and α1 P p0, 1q. Furthermore, we consider that

mn ¨ min
j1,j2“1,...,mn

j1‰j2

∥yj1 ´ yj2∥0

is bounded from below, uniformly in n for both regimes.

For the spatial coordinates y
pjq

l , we use the subscript l “ 1, . . . , d for the respective dimension com-

ponent of yj , and the superscript pjq “ 1, . . . ,m for the respective j-th observation. As seen in this

Assumption, we have further restricted the damping parameter to α P pd{2 ´ 1, d{2q. This limitation is

necessary to enable statistical inference.
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4.1. SPDE model in multiple space dimension

Similar to Assumption 1.1.1, we require fewer spatial observations than temporal ones. The damping

parameter also influences the relationship between the observation resolutions in temporal and spatial

dimensions. As the dimension increases, the spatial resolution decreases. Note that we specifically have

ρ ă 1{2. Additionally, Assumption 1.1.1 states that

m ¨ min
j“2,...,m

|yj ´ yj´1| (60)

is bounded from below, for y1 ă . . . ă ym P rδ, 1 ´ δs. Since this assumption primarily controls the

covariances of the realized volatilities in distinct one-dimensional spatial coordinates, it is crucial to

adapt equation (60) to multiple space dimensions.

A significant difference between SPDEs in one and multiple space dimensions is that the spatial co-

ordinates y1, . . . ,yd in multiple space dimensions lack a directly feasible order as we have in the one-

dimensional case with y1 ă . . . ă ym. Suppose we have two distinct spatial points y1,y2 P rδ, 1 ´ δsd.

Then, there must exist only one index l P 1, . . . , d, such that y
p1q

l ‰ y
p2q

l , whereas the remaining coordi-

nates can be equal. Assuming the first pd ´ 1q coordinates of spatial observations y1, . . . ,yd to be fixed

at 1{2, such that we can only observe the d-th coordinates y
pjq

d for j “ 1, . . . ,m. Then, the observation

scheme reduces to one space dimension, which motivates the need for a similar structure of observations

in multiple space dimensions as we used in one space dimension, i.e., equation (60). The last example

also motivates the mapping ∥¨∥0. This mapping ignores those coordinates that remain the same and

measures only the smallest change on the axis on which yj1 ´ yj2 moves, where j1 ‰ j2. Note that we

also measure the smallest distance between every combination of spatial points y1, . . . ,yd due to the lack

of order in Rd. Since we also impose a Dirichlet boundary condition on the SPDE model from equation

(49) in multiple space dimensions, we transfer the boundary condition y1, . . . ,yd P rδ, 1 ´ δsd for the

spatial observations to Assumption 4.1.1.

We also introduce a regularity assumption to our model.

Assumption 4.1.2 (Regularity)

For the SPDE model from equation (49) we assume that

(i) either Erxξ, ekyϑs “ 0 for all k P Nd and supkPNd λ1`α
k Erxξ, eky2ϑs ă 8 holds true or

Er∥Ap1`αq{2
ϑ ξ∥2ϑs ă 8, for α P pd{2 ´ 1, d{2q,

(ii) pxξ, ekyϑqkPNd are independent.

We observe that the coloured noise introduces more stringent regularity conditions on our model

compared to the white noise used in one space dimension, cf. Assumption 1.1.2. This added complexity

calls for more careful analysis and considerations when dealing with the multi-dimensional framework.

We conclude this section by examining how the parameters impact the solution process of our model.

Building upon our initial discussion in Section 1.2 regarding the one-dimensional case, our focus now

shifts to understanding the impact of parameters such as η, ν1, . . . , νd, σ, and α on both the spatial and
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temporal marginal processes of the random field. To facilitate this exploration, we employ Figure 4.1 to

visually represent the effects of these parameters. In this visualization, we simulated a three-dimensional

SPDE model on a temporal grid with N “ 104 time points and M “ 10 spatial points, where the respec-

tive parameter combinations are provided in the plot titles. For readings on the simulation methods, we

refer to Section 4.3.

Analogously to the calculations leading to equation (6) in Section 1.2, we obtain the following covariance

structure:

Cov
`

X̃spy1q, X̃tpy2q
˘

“ σ2
ÿ

kPNd

e´λk|t´s|

2λ1`α
k

ekpy1qekpy2q, (61)

where X̃tpyq denotes a mild solution of the multi-dimensional SPDE model with a stationary initial

condition, i.e., xξ, ekyϑ „ N p0, σ2{p2λ1`α
k qq. We will use this covariance structure in order to enhance

the following argumentative insights.

First, similar to the one-dimensional case, the parameter ϑ0 has no noticeable visual impact on the

random field, which is evident by utilizing equation (61) and analogous argumentation as in the one-

dimensional case. On the other hand, the parameter ν plays a crucial role in controlling the curvature

effect within the spatial domain. Each component νi of ν, where i “ 1, . . . , d, corresponds to i-th spatial

axis on which a potential curvature on the solution field is applied. For instance, in the first row of

Figure 4.1, we observe sample paths of the spatial marginal processes with ν “ p10,´10, 0q. Here, we

notice a contrasting curvature effect on the first two spatial axes, while the third spatial axis exhibits

no observable curvature. As in the one-dimensional SPDE model, where the analogous parameter is

denoted as ϑ1, the curvature effect can be mitigated by the parameter η, which can be observed in the

second row of Figure 4.1. When η is relatively large compared to νi, the curvature in the spatial field

becomes less pronounced. In fact, the influence of these parameters on a solution field Xtpyq from the

multi-dimensional SPDE model in equation (49) can be explained in a manner analogous to the one-

dimensional SPDE model. Since we decomposed Xtpyq using an orthonormal basis, which is derived

from the respective one-dimensional orthonormal basis of each axis, the behaviour of the one-dimensional

equivalent parameters transfers directly, i.e., νi corresponds to ϑ1 and η to ϑ2. Therefore, we refer to the

one-dimensional discussion on these model parameters.

Furthermore, as in the one-dimensional SPDE model, the parameter σ2 governs the overall volatility of

the solution field, as evident by equation (61). This effect is visually demonstrated in the third and fourth

row of Figure 4.1. In the one-dimensional case, we referred to this parameter as σ2
0 and recognized that

the volatility level is also influenced by the parameter η. With the same reasoning as for the parameter

ν and η, this effect can be elucidated by examining the one-dimensional case. Notably, the first and

second row of Figure 4.1 also showcase the impact of η on the volatility level. Note that the sample

paths of the temporal processes displayed in the first and second row do not share a common y-scale.

Consequently, we conclude that the parameter ν controls the relative curvature of the solution field, while

σ influences the relative volatility, with the observable curvature and volatility additionally depending

on the parameter η. We will delve deeper into the relationships between these parameter combinations

in Proposition 4.2.7, where we examine the identifiability of the model parameters, effectively identifying
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Figure 4.1.: The provided figure displays sample paths of a three-dimensional SPDE model described by equation (49). The sample
paths are generated using an equidistant grid in both time and space, where N “ 104, M “ 10, and ξ ” 0. Each
row in the figure consists of four plots. In each row, the first three plots from the left illustrate the spatial processes,
y ÞÑ Xtpφpyqq, for time points t “ 0.1`k{103, where k “ 0, . . . , 50. The first column displays the spatial processes for
the first spatial axis, while keeping the other axes fixed, i.e., φpyq “ py1, 1{2, 1{2q. The second column shows the spatial
processes for the second spatial axis, with φpyq “ p1{2, y2, 1{2q, and the third column illustrates the spatial processes
for the third spatial axis, with φpyq “ p1{2, 1{2, y3q. The last column presents the temporal processes, t ÞÑ Xtpyq, with

y “ p1{10, 1{10, 1{10q
J fixed. The titles indicate the different parameter scenarios under comparison, with the first

scenario depicted in the first row, and subsequent scenarios shown in the subsequent rows. Note that only the second
and third panels of the temporal processes share a common y-scale, whereas the other panels have a freely adjustable
y-scale.

the natural parameters of the model.

Concluding our heuristic exploration of multi-dimensional parameters, we analyse the behaviour of

the random field for various values of α, which we describe in terms of the corresponding parameter

α1 P p0, 1q. In equation (58), we decomposed Xtpyq using a Fourier series. Here, the orthonormal

and deterministic basis pekqkPNd are not influenced by the so-called damping parameter α and the pure

damping parameter α1, whereas the coordinate processes pxkqkPNd depend on α1. Specifically, α1 governs

the influence of the eigenvalues pλkqkPNd , signifying a fundamental impact of this damping parameter

on the multi-dimensional SPDE model. Furthermore, the damping effect of α is also identifiable when

considering the covariance structure in equation (61). As our upcoming analysis will reveal, α1 plays
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4. Essentials of multi-dimensional SPDEs

a role similar to the Hurst parameter for fractional Brownian motions, affecting the roughness of the

temporal paths, as evident in the last three rows of Figure 4.1. When the pure damping parameter α1

is relatively small, the sample paths of the temporal marginal processes accelerate noticeably, whereas a

relatively large α1 slows down the sample paths of the temporal marginal processes. Since the parameter

α1 has no direct impact on the orthonormal basis pekqkPN, we do not observe a qualitative impact on

the sample paths of the spatial marginal processes, which is also explainable by the covariance structure

given in equation (61).

4.2. Analysis of the quadratic increments

In the preceding section, we laid the groundwork for our SPDE model in multiple space dimensions.

In this section, our objective is to conduct an initial analysis of the random field. Drawing from the

work of Bibinger and Trabs (2020) in the one-dimensional case, we will employ quadratic increments

and the method of moments to construct consistent estimators. To achieve this, we will delve into the

examination of the first moment of quadratic temporal increments and also investigate the covariance of

temporal increments.

To accomplish these tasks, we need to address some technical intricacies, including a Riemann ap-

proximation for sums on Nd. Once we have successfully elaborated on the first moment for quadratic

increments and its extension to realized volatilities, we can leverage this information to construct a

primary estimator within this model.

Suppose we have a mild solution Xt, then we can adopt the spectral approach and decompose an incre-

ment of Xt as follows:

p∆iXqpyq :“ Xi∆n
pyq ´Xpi´1q∆n

pyq “
ÿ

kPNd

∆ixkekpyq, where ∆ixk :“ xkpi∆nq ´ xk
`

pi´ 1q∆n

˘

.

Therefore, analysing the temporal increments of the coordinate processes is crucial for understanding the

structure of the increments ∆iXt. As we have observed in equation (59), the coordinate processes satisfy

the Ornstein-Uhlenbeck dynamics, and we can employ its representation to decompose the increments of

xk, for k P Nd, as follows:

∆ixk “ xξ, ekyϑ
`

e´λki∆n ´ e´λkpi´1q∆n
˘

` σλ
´α{2
k

ż pi´1q∆n

0

e´λkpi∆n´sq ´ e´λkppi´1q∆n´sq dWk
s

` σλ
´α{2
k

ż i∆n

pi´1q∆n

e´λkpi∆n´sq dWk
s

“ Ai,k `Bi,k ` Ci,k, (62)

where

Ai,k :“ xξ, ekyϑ
`

e´λki∆n ´ e´λkpi´1q∆n
˘

, (63)

Bi,k :“ σλ
´α{2
k

ż pi´1q∆n

0

e´λkppi´1q∆n´sq
`

e´λk∆n ´ 1
˘

dWk
s , (64)
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Ci,k :“ σλ
´α{2
k

ż i∆n

pi´1q∆n

e´λkpi∆n´sq dWk
s . (65)

The latter decomposition involves the temporal origin represented by Ai,k, the evolution of the tem-

poral increments represented by Bi,k, and the youngest past, which contains the most recent temporal

increment, represented by Ci,k. Given that this decomposition (almost) aligns with the one-dimensional

case, as demonstrated by Bibinger and Trabs (2020), we can anticipate the term Ai,k to be negligible.

Consequently, the terms Bi,k and Ci,k will significantly impact the calculation of the first moment of the

realized volatility.

Given the alterations in the noise structure for the multi-dimensional SPDE model, it is expected that

these changes will influence the decomposition of the temporal increments. Specifically, the temporal

evolution parts Bi,k and Ci,k now incorporate the damping mechanism λ
´α{2
k , whereas the term Ai,k

remains relatively similar to the one-dimensional case.

To introduce the technical part of this section, we begin with the following lemma, which serves as

a fundamental tool for the entire forthcoming analysis.

Lemma 4.2.1

Let f : r0,8q Ñ R be twice continuously differentiable with ∥xd´1fpx2q∥L1pr0,8qq, ∥xdf 1px2q∥L1pr1,8qq,

and ∥xd`1f2px2q∥L1pr1,8qq ď C, for some C ą 0, then it holds:

(i) ∆d{2
n

ÿ

kPNd

fpλk∆nq “
1

2dpπηqd{2Γpd{2q

ż 8

0

xd{2´1fpxqdx´

d´1
ÿ

∥γ∥1“1

γPt0,1u
d

ż

Bγ

fpπ2η ∥z∥22qdz

`O
ˆ
ż

?
∆n

0

rd´1|fpr2q| dr _ ∆n

ż 1

?
∆n

rd´1|f 1pr2q|dr _ ∆n

ż 1

?
∆n

rd`1|f2pr2q| dr

˙

,

where Bγ defined in equation (82).

(ii) For tj1, . . . , jlu Ă t1, . . . , du, γj,l P t0, 1ud, where pγj,lqi “ 1iPtj1,...,jlu, with i “ 1, . . . , d and

l “ 1, . . . , pd´ 1q, we have

∆d{2
n

ÿ

kPNd

fpλk∆nq cosp2πkj1yj1q ¨ . . . ¨ cosp2πkjlyjlq “ p´1ql
ż

Bγj,l

fpπ2η ∥z∥22qdz

` O
ˆ

max
k“0,...,l

∆
k{2`1
n

δl`1

ż 1

?
∆n

rd´k`1|f2pr2q| dr _ max
k“0,...,l

∆
k{2`1
n

δl`1

ż 1

?
∆n

rd´k´1|f 1pr2q|dr

˙

` O
ˆ

∆
pl`1q{2
n

δl

ż 1

?
∆n

rd´l|f 1pr2q|dr

˙

.

(iii) For tj1, . . . , jlu “ t1, . . . , du, i.e., l “ d, we have

∆d{2
n

ÿ

kPNd

fpλk∆nq cosp2πk1y1q ¨ . . . ¨ cosp2πkdydq “ O
`

∆d{2
n |fp∆nq|

˘

` O
ˆ

∆
d{2
n

δd

ż 1

?
∆n

r|f 1pr2q| dr

˙

` O
ˆ

max
k“0,...,d´1

∆
k{2`1
n

δd`1

ż 1

?
∆n

rd´k`1|f2pr2q| dr _ max
k“0,...,d´1

∆
k{2`1
n

δd`1

ż 1

?
∆n

rd´k´1|f 1pr2q| dr

˙

.
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In particular, it holds for a γ̃ P t0, 1ud, with ∥γ̃∥1 “ l and 1 ď l ď d´ 1, that

ż

Bγ̃

fpπ2η ∥z∥22qdz “ O
ˆ

∆l{2
n

ż 1

?
∆n

rd´1´l|fpr2q| dr

˙

,

and

d
ÿ

∥γ∥1“1

γPt0,1u
d

ż

Bγ

fpπ2η ∥z∥22qdz “ O
ˆ

max
l“1,...,d´1

∆l{2
n

ż 1

?
∆n

rd´1´l|fpr2q|dr _

ż

?
∆n

0

rd´1|fpr2q|dr

˙

.

The proof of the preceding lemma relies on standard Riemann approximation techniques. In addition

to these standard ideas, it is crucial to handle the remainder terms of the approximation carefully. In

order to analyse these remainders, we utilize a transformation into spherical coordinates, which offers

the advantage of tracing the order of the remainder terms back to the behaviour of the function being

approximated in a vicinity near zero. This procedure enables the use of the concept of regularly varying

functions. For readings on this topic we refer to Bingham et al. (1989) for a comprehensive discussion.

Statement (i) of the previous lemma provides the desired Riemann approximation of a series over

Nd, which corresponds to the inherited structure resulting from the spectral decomposition. The first

remainder term in statement (i) is of particular interest. By considering the leading term in statement

(ii), we approximate a function f that satisfies the conditions of Lemma 4.2.1 in conjunction with cosine

functions.

The leading term of the Riemann approximation from (ii) can compensate for the remainder term from

(i). Depending on whether the number of cosine terms is even or odd, we observe an alternating sign in

the leading term from (ii). This behaviour results in the complete compensation of the first error term

from (i) when Lemma 4.2.1 is explicitly applied.

Comparing this lemma with the corresponding lemma from Bibinger and Trabs (2020, Lemma 6.2.)

and Tonaki et al. (2023, Lemma 5.1.), statement (ii) provides new insights regarding the compensation of

remainder terms in the main approximation from (i) in higher dimensions. In addition, this behaviour is

absent in one and two dimensions, respectively. The detailed proof of this lemma can be found in Section

4.4, see Proof of Lemma 4.2.1 on page 119, owing to its complexity and scope.

We now specify the application of regularly varying functions in our case. Our objective is to determine

the order of the error terms. In particular, we are not interested in finding exact constants. The previous

Lemma 4.2.1 demonstrates that, for this purpose, only the behaviour of the function and its first and

second derivatives in a vicinity near zero is relevant. Accordingly, we introduce the following class of

functions:

Qβ :“
!

f : r0,8q Ñ R| f is twice differentiable, ∥xd´1fpx2q∥L1pr0,8qq, ∥xdf p1qpx2q∥L1pr1,8qq,

∥xd`1f p2qpx2q∥L1pr1,8qq and lim sup
xÑ0

|f pjqpx2q{x´βj | ď C ă 8, for j “ 0, 1, 2
)

, (66)

where f pjq denotes the j-th derivative and β “ pβ0, β1, β2q P p0,8q3. The first conditions ensure that a

function f P Qβ satisfies the requirements of Lemma 4.2.1. The concept of regularly varying functions,
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as also utilized in extreme value theory, is thus incorporated in the last part of the latter definition. By

employing this class of functions, we can formulate the following corollary.

Corollary 4.2.2

Let f P Qβ for β “ pβ0, β1, β2q P p0,8q, then it holds that

(i) ∆d{2
n

ÿ

kPNd

fpλk∆nq “
1

2dpπηqd{2Γpd{2q

ż 8

0

xd{2´1fpxqdx´

d´1
ÿ

∥γ∥1“1

γPt0,1u
d

ż

Bγ

fpπ2η ∥z∥22qdz

`O
`

∆n _ ∆pd´β0q{2
n _ ∆pd`2´β1q{2

n _ ∆pd`4´β2q{2
n

˘

,

where Bγ is defined in equation (82).

(ii) For tj1, . . . , jlu Ă t1, . . . , du, γj,l P t0, 1ud, where pγj,lqi “ 1iPtj1,...,jlu, with i “ 1, . . . , d and

l “ 1, . . . , pd´ 1q, we have

∆d{2
n

ÿ

kPNd

fpλk∆nq cosp2πkj1yj1q ¨ . . . ¨ cosp2πkjlyjlq “ p´1ql
ż

Bγj,l

fpπ2η ∥z∥22qdz

` O
`

δ´pl`1q∆n _ δ´l∆pl`1q{2
n _ δ´pl`1q∆pd`2´β1q{2

n _ δ´pl`1q∆pd`4´β2q{2
n

˘

.

(iii) For tj1, . . . , jlu “ t1, . . . , du, i.e., l “ d, we have

∆d{2
n

ÿ

kPNd

fpλk∆nq cosp2πk1y1q ¨ . . . ¨ cosp2πkdydq

“ O
`

δ´pd`1q∆n _ ∆pd´β0q{2
n _ δ´pd`1q∆pd`2´β1q{2

n _ δ´pd`1q∆pd`4´β2q{2
n

˘

.

In particular, it holds for a γ̃ P t0, 1ud, with ∥γ̃∥1 “ l and 1 ď l ď d´ 1, that

ż

Bγ̃

fpπ2η ∥z∥22qdz “ O
`

∆l{2
n _ ∆pd´β0q{2

n

˘

and

d
ÿ

∥γ∥1“1

γPt0,1u
d

ż

Bγ

fpπ2η ∥z∥22qdz “ O
`

∆1{2
n _ ∆pd´β0q{2

n

˘

.

Suppose we have a function f P Qβ , where the parameter β “ pβ0, β1, β2q is known. In this case, thanks

to the aforementioned corollary, the Riemann approximation and the corresponding remainders can be

readily obtained. For the proof of this corollary, see Proof of Corollary 4.2.2 on page 138. However,

as an approximation is only of use if the approximation error diminishes, the parameter β should be

upper-bounded by β P p0, dq ˆ p0, d ` 2q ˆ p0, d ` 4q. To express this boundary on the parameter β in

terms of the damping parameter α, we find that

β “ pβ0, β1, β2q P
`

0, 2pα ` 1 ´ α1q
˘

ˆ
`

0, 2pα ` 2 ´ α1q
˘

ˆ
`

0, 2pα ` 3 ´ α1q
˘

,
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where we used the identity α “ d{2´ 1`α1, with α1 P p0, 1q. Consequently, the corollary is applicable in

a reasonable manner if the parameter β satisfies the condition β P p0, 2αs ˆ p0, 2pα` 1qs ˆ p0, 2pα` 2qs.

The following two functions:

fαpxq :“
1 ´ e´x

x1`α
and gα,τ pxq “

p1 ´ e´xq2

2x1`α
e´τx, (67)

for α, τ ą 0, play a crucial role in the forthcoming analysis, particularly in calculating the expected

value of the realized volatility. When comparing these functions to their one-dimensional counterpart,

as discussed in Bibinger and Trabs (2020, p. 18), we observe a dependency on the parameter α due to

the coloured noise in the multi-dimensional model. In order to apply Corollary 4.2.2 on these functions,

we need to verify them belonging to the class Qβ and determine the corresponding parameter β. The

following lemma serves this purpose.

Lemma 4.2.3

It holds: fα P Qβ1
and gα,τ P Qβ2

, where

β1 “
`

2α, 2p1 ` αq, 2p2 ` αq
˘

and β2 “
`

2α, 2p1 ` αq, 2p1 ` αq
˘

.

The proof of this lemma, being of technical nature, can be found in the last section of this chapter, see

Proof of Lemma 4.2.3 on page 138.

The preceding lemma demonstrates that we can apply the Riemann approximation from Corollary

4.2.2 to the functions fα and gα,τ from equation (67). Moreover, we observe that the error terms of the

first and second derivatives of g vanish at a faster rate in the Riemann approximation compared to the

function f . This is primarily due to the fact that the function p1 ´ e´xq converges to zero as x Ñ 0,

whereas the function e´x does not. We will make use of this fact in the subsequent proofs.

The following lemma concludes the technical part of this section by applying the discussed Riemann

approximation on the functions fα and gα,τ .

Lemma 4.2.4

On Assumptions 4.1.1 and 4.1.2 it holds that

∆d{2
n

ÿ

kPNd

fαpλk∆nq “
Γp1 ´ α1q

2dpπηqd{2α1Γpd{2q
´

d´1
ÿ

∥γ∥1“1

γPt0,1u
d

ż

Bγ

fαpπ2η ∥z∥22qdz ` O
`

∆1´α1

n

˘

,

where Γ denotes the Gamma function. Furthermore, it holds that

∆d{2
n

ÿ

kPNd

gα,τ pλk∆nq “
1

2

´

´τα
1

` 2pτ ` 1qα
1

´ pτ ` 2qα
1
¯ Γp1 ´ α1q

2dpπηqd{2α1Γpd{2q

´

d´1
ÿ

∥γ∥1“1

γPt0,1u
d

ż

Bγ

gα,τ pπ2η ∥z∥22qdz ` O
`

∆1´α1

n

˘

.
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In addition, we have

Γp1 ´ α1q

2dpπηqd{2α1Γpd{2q
“

$

&

%

Γp1´α1
q

pd´1q!2dpπηqd{2α1 , if d is even

Γp1´α1
q

2pd`1q{2pd´2q!!
?
πpπηqd{2α1 , if d is odd

.

The presence of the Gamma function appears natural due to the constraint α ą 0 for d ě 2. For the

proof of this lemma, refer Proof of Lemma 4.2.4 on page 140.

Now that we have addressed the technical details, we proceed with the analysis of the squared incre-

ments and, consequently, the realized volatility. As the upcoming proofs offer a deeper insight into the

structure of SPDEs in d space dimensions, we will not relegate them to the last section. The following

lemma initiates the analysis of the expected value of the temporal quadratic increments of Xt based on

the spectral decomposition from display (62).

Lemma 4.2.5

On Assumptions 4.1.1 and 4.1.2, we have

Erp∆iXq2pyqs “ σ22de´∥κ‚y∥1

ÿ

kPNd

Di,k sin
2
pπk1y1q ¨ . . . ¨ sin2pπkdydq ` rn,i,

where rn,i is a sequence satisfying
řn

i“1 rn,i “ Op∆α1

n q and

Di,k “ ∆d{2`α1

n

ˆ

1 ´ e´λk∆n

pλk∆nq1`α
´

p1 ´ e´λk∆nq2

2pλk∆nq1`α
e´2λkpi´1q∆n

˙

, (68)

with α1 “ 1 ` α ´ d{2 P p0, 1q.

Proof. First, Ai,k, Bi,k, and Ci,k are independent of each other, where i “ 1, . . . , n and k P Nd. Exploit-

ing the fact that pWkqkPNd are independent Brownian motions, the Itôintegrals Bi,k and Ci,k are also

independent and centred. Thus, we have

Erp∆iXq2pyqs “
ÿ

k1PNd

ÿ

k2PNd

Erek1pyqek2pyq∆ixk1∆ixk2s “
ÿ

k1PNd

ÿ

k2PNd

ek1pyqek2pyqEr∆ixk1∆ixk2s

“
ÿ

k1PNd

ÿ

k2PNd

ek1
pyqek2

pyq
`

ErAi,k1
Ai,k2

s ` ErBi,k1
Bi,k2

s ` ErCi,k1
Ci,k2

s
˘

“
ÿ

kPNd

e2kpyq
`

ErB2
i,ks ` ErC2

i,ks
˘

` rn,i,

where rn,i :“
ř

k1,k2PNd ek1pyqek2pyqErAi,k1Ai,k2s. Itô isometry yields the following:

ErB2
i,ks “ E

«

ˆ

σλ
´α{2
k

pi´1q∆n
ż

0

e´λk

`

pi´1q∆n´s
˘

`

e´λk∆n ´ 1
˘

dWk
s

˙2
ff

“

pi´1q∆n
ż

0

σ2λ´α
k E

”

e´2λk

`

pi´1q∆n´s
˘

`

e´λk∆n ´ 1
˘2
ı

ds

97



4. Essentials of multi-dimensional SPDEs

“ σ2λ´α
k

`

e´λk∆n ´ 1
˘2
„

1

2λk
e´2λk

`

pi´1q∆n´s
˘

ȷpi´1q∆n

0

“ σ2
`

1 ´ e´λk∆n
˘2 1 ´ e´2λkpi´1q∆n

2λ1`α
k

,

ErC2
i,ks “ σ2λ´α

k

i∆n
ż

pi´1q∆n

e´2λkpi∆n´sq ds “ σ2λ´α
k

„

1

2λk
e´2λkpi∆n´sq

ȷi∆n

pi´1q∆n

“ σ2 1 ´ e´2λk∆n

2λ1`α
k

.

Additionally, we possess the following expression for the remainder rn,i:

ErAi,k1Ai,k2s “
`

e´λk1
i∆n ´ e´λk1

pi´1q∆n
˘`

e´λk2
i∆n ´ e´λk2

pi´1q∆n
˘

E
“

xξ, ek1yϑxξ, ek2yϑ
‰

“
`

e´λk1
pi´1q∆n´λk1

∆n ´ e´λk1
pi´1q∆n

˘`

e´λk2
pi´1q∆n´λk2

∆n ´ e´λk2
pi´1q∆n

˘

ˆ E
“

xξ, ek1
yϑxξ, ek2

yϑ
‰

“
`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘

e´pλk1
`λk2

qpi´1q∆nE
“

xξ, ek1
yϑxξ, ek2

yϑ
‰

.

Hence, we obtain the representation

Erp∆iXq2pyqs “ σ2
ÿ

kPNd

e2kpyq

ˆ

`

1 ´ e´λk∆n
˘2 1 ´ e´2λkpi´1q∆n

2λ1`α
k

`
1 ´ e´2λk∆n

2λ1`α
k

˙

` rn,i

“ σ22de´
řd

l“1 κlyl

ÿ

kPNd

ˆ

`

1 ´ e´λk∆n
˘2 1 ´ e´2λkpi´1q∆n

2λ1`α
k

`
1 ´ e´2λk∆n

2λ1`α
k

˙

ˆ sin2pπk1y1q ¨ . . . ¨ sin2pπkdydq ` rn,i.

In addition, we define

Di,k :“ ∆1`α
n

ˆ

`

1 ´ e´λk∆n
˘2 1 ´ e´2λkpi´1q∆n

2pλk∆nq1`α
`

1 ´ e´2λk∆n

2pλk∆nq1`α

˙

“ ∆1`α
n

ˆ

1 ´ e´2λk∆n ` p1 ´ e´λk∆nq2

2pλk∆nq1`α
´

p1 ´ e´λk∆nq2

2pλk∆nq1`α
e´2λkpi´1q∆n

˙

“ ∆d{2`α1

n

ˆ

1 ´ e´λk∆n

pλk∆nq1`α
´

p1 ´ e´λk∆nq2

2pλk∆nq1`α
e´2λkpi´1q∆n

˙

,

where α1 P p0, 1q. Then, we have

Erp∆iXq2pyqs “ σ22de´∥κ‚y∥1

ÿ

kPNd

Di,k sin
2
pπk1y1q ¨ . . . ¨ sin2pπkdydq ` rn,i.

The analysis of the remainder rn,i remains to be conducted. Here, we have

rn,i “
ÿ

k1,k2PNd

ek1
pyqek2

pyq
`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘

e´pλk1
`λk2

qpi´1q∆nE
“

xξ, ek1
yϑxξ, ek2

yϑ
‰

.

To demonstrate that
řn

i“1 rn,i “ Op∆α1

n q, we use Assumption 4.1.2. Under the conditions Erxξ, ekyϑs “ 0

and supkPNd λ1`α
k Erxξ, eky2ϑs ă 8, we can find a constant C ą 0 such that Erxξ, eky2ϑs ď C{λ1`α

k for all
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k P Nd. Consequently, given that
`

xξ, ekyϑ
˘

kPNd are independent, we have

rn,i “
ÿ

kPNd

`

1 ´ e´λk∆n
˘2
e´2λkpi´1q∆ne2kpyqErxξ, eky2ϑs ď C

ÿ

kPNd

`

1 ´ e´λk∆n
˘2

λ1`α
k

e´2λkpi´1q∆ne2kpyq.

Assuming the second alternative in Assumption 4.1.2, where E
“

∥Ap1`αq{2
ϑ ξ∥2ϑ

‰

ă 8, we can proceed with

the following steps. Exploiting the self-adjointness of Aϑ on Hϑ and employing the Cauchy-Schwarz

inequality, we obtain

rn,i “ E
„

´

ÿ

kPNd

`

1 ´ e´λk∆n
˘

e´λkpi´1q∆nxξ, ekyϑekpyq

¯2
ȷ

“ E

«

ˆ

ÿ

kPNd

1 ´ e´λk∆n

λ
p1`αq{2
k

e´λkpi´1q∆nxA
p1`αq{2
ϑ ξ, ekyϑekpyq

˙2
ff

ď
ÿ

kPNd

`

1 ´ e´λk∆n
˘2

λ1`α
k

e´2λkpi´1q∆ne2kpyqE
”

8
ÿ

kPN
xA

p1`αq{2
ϑ ξ, eky2ϑ

ı

.

Applying Parseval’s identity yields

rn,i ď E
”

∥Ap1`αq{2
ϑ ξ∥2ϑ

ı

ÿ

kPNd

`

1 ´ e´λk∆n
˘2

λ1`α
k

e´2λkpi´1q∆ne2kpyq.

Since we can uniformly bound the eigenfunctions pekqkPNd , it is sufficient to bound the following expres-

sion:

n
ÿ

i“1

rn,i ď C
ÿ

kPNd

`

1 ´ e´λk∆n
˘2

λ1`α
k

n
ÿ

i“1

e´2λkpi´1q∆n

“ C
ÿ

kPNd

`

1 ´ e´λk∆n
˘2

λ1`α
k

`

1 ´ e´2λk∆n

˘

`

1 ´ e´2λkn∆n
˘

ď C
ÿ

kPNd

`

1 ´ e´λk∆n
˘2

λ1`α
k

`

1 ´ e´2λk∆n

˘

ď C
ÿ

kPNd

1 ´ e´λk∆n

λ1`α
k

“ C∆d{2`α1

n

ÿ

kPNd

1 ´ e´λk∆n

pλk∆nq1`α
,

for both cases in Assumption 4.1.2, where we have used the partial sum formula of the geometric series

and a suitable constant C ą 0. Utilizing Lemma 4.2.4, we obtain

∆d{2
n

ÿ

kPNd

1 ´ e´λk∆n

pλk∆nq1`α
“ ∆d{2

n

ÿ

kPNd

fαpλk∆nq “ C ` Op1q,
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with a suitable constant C ą 0. Hence, we have

n
ÿ

i“1

rn,i “ Op∆α1

n q,

which completes the proof.

The preceding proof reveals that the part of the decomposition from the temporal increments of Xt, which

contains the initial condition Ai,k, is negligible. The order here, once again, depends on the damping

parameter α. By employing a trigonometric identity, we are now able to identify the expected value of

quadratic temporal increments, which is recorded in the following proposition.

Proposition 4.2.6

On Assumptions 4.1.1 and 4.1.2, we have uniformly in y P rδ, 1 ´ δsd that

Erp∆iXq2pyqs “ ∆α1

n σ
2e´∥κ‚y∥1

Γp1 ´ α1q

2dpπηqd{2α1Γpd{2q
` rn,i ` Op∆nq,

where α1 P p0, 1q and a sequence rn,i satisfying sup1ďiďn |rn,i| “ Op∆α1

n q and
řn

i“1 rn,i “ Op∆α1

n q.

Furthermore, rescaling yields that

E
„

1

n∆α1

n

n
ÿ

i“1

p∆iXq2pyq

ȷ

“ σ2e´∥κ‚y∥1
Γp1 ´ α1q

2dpπηqd{2α1Γpd{2q
` Op∆1´α1

n q.

Proof. We begin by recalling Lemma 4.2.5:

Erp∆iXq2pyqs “ σ2e´∥κ‚y∥1Ti ` rn,i,

where

Ti :“2d
ÿ

kPNd

sin2pπk1y1q ¨ . . . ¨ sin2pπkdydqDi,k

“ 2d
ÿ

kPNd

1 ´ cosp2πk1y1q

2
¨ . . . ¨

1 ´ cosp2πkdydq

2
Di,k

“
ÿ

kPNd

Di,k `

d
ÿ

l“1

ÿ

1ďj1ă...ăjlďd

p´1ql
ÿ

kPNd

Di,k cosp2πkj1yj1q ¨ . . . ¨ cosp2πkjlyjlq

“
ÿ

kPNd

Di,k `

d´1
ÿ

l“1

ÿ

1ďj1ă...ăjlďd

p´1ql
ÿ

kPNd

Di,k cosp2πkj1yj1q ¨ . . . ¨ cosp2πkjlyjlq

` p´1qd
ÿ

kPNd

Di,k cosp2πk1y1q ¨ ¨ ¨ cosp2πkdydq,

for Di,k defined in display (68). Furthermore, we define

hα,τ pxq :“

ˆ

1 ´ e´x

x1`α
´

p1 ´ e´xq2

2x1`α
e´xτ

˙

.
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Note that hα,τ pxq “ fαpxq ´ gα,τ pxq, where fα and gα,τ are defined in equation (67). By Lemma 4.2.3

we have hα,τ P Qβ , where β “
`

2α, 2p1 ` αq, 2p2 ` αq
˘

. Hence, we obtain

∆´α1

n

ÿ

kPNd

Di,k “ ∆d{2
n

ÿ

kPNd

hα,2pi´1qpλk∆nq

“
1

2dpπηqd{2Γpd{2q

ż 8

0

xd{2´1hα,2pi´1qpxqdx´

d´1
ÿ

∥γ∥1“1

γPt0,1u
d

ż

Bγ

hα,2pi´1qpπ2η ∥z∥22qdz ` O
`

∆1´α1

n

˘

,

and

∆d{2
n

d´1
ÿ

l“1

ÿ

1ďj1ă...ăjlďd

p´1ql
ÿ

kPNd

hα,2pi´1qpλk∆nq cosp2πkj1yj1q ¨ . . . ¨ cosp2πkjlyjlq

“

d´1
ÿ

∥γ∥1“1

γPt0,1u
d

ż

Bγ̃l

hα,2pi´1qpπ2η∥z∥22qdz ` Op∆1´α1

n q.

Thus, by using Corollary 4.2.2 we have

ÿ

kPNd

Di,k `

d´1
ÿ

l“1

ÿ

1ďj1ă...ăjlďd

p´1ql
ÿ

kPNd

Di,k cosp2πkj1yj1q ¨ . . . ¨ cosp2πkjlyjlq

` p´1qd
ÿ

kPNd

Di,k cosp2πk1y1q ¨ ¨ ¨ cosp2πkdydq

“
∆α1

n

2dpπηqd{2Γpd{2q

ż 8

0

xd{2´1hα,i´1pxqdx

` p´1qd
ÿ

kPNd

Di,k cosp2πk1y1q ¨ ¨ ¨ cosp2πkdydq ` Op∆nq

“
∆α1

n

2dpπηqd{2Γpd{2q

ż 8

0

xd{2´1hα,2pi´1qpxqdx` Op∆nq.

Utilizing Lemma 4.2.4 yields

1

2dpπηqd{2Γpd{2q

ˆ
ż 8

0

fα1 pxqdx´

ż 8

0

gα1,2pi´1qpxqdx

˙

“
Γp1 ´ α1q

2dpπηqd{2α1Γpd{2q

ˆ

1 `
1

2

`

2pi´ 1q
˘α1

´
`

1 ` 2pi´ 1q
˘α1

`
1

2

`

2 ` 2pi´ 1q
˘α1

˙

.

Therefore, we have with Lemma 4.2.5 that

Erp∆iXq2pyqs “ σ2e´∥κy∥1
∆α1

n Γp1 ´ α1q

2dpπηqd{2α1Γpd{2q

ˆ

1 `
1

2

`

2pi´ 1q
˘α1

´
`

1 ` 2pi´ 1q
˘α1

`
1

2

`

2 ` 2pi´ 1q
˘α1

˙

` rn,i ` Op∆nq

“ ∆α1

n

σ2e´∥κy∥1Γp1 ´ α1q

2dpπηqd{2α1Γpd{2q
` r̃n,i ` Op∆nq,

where r̃n,i includes rn,i and the i dependent term from the last display. For this i-dependent term we
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analyse the following expression:

1

2

`

´ τα
1

` 2pτ ` 1qα
1

´ pτ ` 2qα
1˘

“
τα

1

2

`

´ 1 ` 2p1 ` 1{τqα
1

´ p1 ` 2{τqα
1˘

.

As our objective is to ascertain the order of the preceding expression, we define

tpxq :“
xα

1

2

`

´ 1 ` 2p1 ` 1{xqα
1

´ p1 ` 2{xqα
1˘

,

and have with y “ 1{x for the inner term that

qpyq :“ ´1 ` 2p1 ` yqα
1

´ p1 ` 2yqα
1

.

Using Taylor expansion at y0 Ñ 0 we obtain

qpyq “ lim
y0Ñ0

qpy0q ` q1py0qpy ´ y0q `
1

2
q2py0qpy ´ y0q2 ` Opy3q “ 2p1 ´ α1qα1y2 ` Opy3q,

where qpy0q, q1py0q
y0Ñ0
ÝÑ 0, and therefore we conclude that

tpxq “ xα
1

ˆ

p1 ´ α1qα

x2
` O

`

x´3
˘

˙

“
2p1 ´ α1qα

x2´α1 ` O
`

xα
1
´3

˘

“ O
`

xα
1
´2

˘

. (69)

Since 2 ´ α1 ą 1, we have, with substituting x “ 2pi´ 1q, that

n
ÿ

i“1

t
`

2pi´ 1q
˘

“ O
ˆ 8
ÿ

i“0

1

i2´α1

˙

“ Op1q. (70)

Hence, we have by Lemma 4.2.5 that
řn

i“1 r̃n,i “ Op∆α1

n q, which completes the proof.

Regarding the preceding proposition, we can express the expectation value of the rescaled realized volatil-

ity as follows:

E
„

1

n∆α1

n

n
ÿ

i“1

p∆iXq2pyq

ȷ

“ σ2
0e

´∥κ‚y∥1
Γp1 ´ α1q

α1
¨

1

2dπd{2Γpd{2q
` Op∆1´α1

n q.

Comparing this result to SPDEs in one space dimension, as stated in Proposition 1.2.1, where

E
„

RVnpyq
?
n

ȷ

“ σ2
0e

´yκ 1
?
π

` Op∆nq,

reveals some crucial differences concerning the structure of the random fields. In higher space dimensions,

we observe the appearance of the normalized volatility σ2
0 and the curvature term e´yκ, which are trans-

posed from one space dimension. Furthermore, in higher dimensions, we obtain extra constants, among

others, depending on α1. However, the most significant distinction when working in higher dimensions is

that the parameter α1, resulting from the coloured noise in this model, influences the leading term on one

side and reduces the convergence speed of the error term on the other side. Note that the space dimension

d of the model primarily influences the constants within the leading term of the expected value, whereas
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the order of the error term is exclusively determined by the parameter α1. This is because the spatial

dimension d solely serves as a multiplicative constant within the error term. Consequently, constructing

an estimator based on the method of moments will yield better results for small α1. Furthermore, setting

d “ 2 yields the same result as shown by Tonaki et al. (2023). Additionally, the latter proposition re-

veals that the remainders rn,i becomes negligible when summing over the squared increments. As these

remainders include the initial condition, we observe that the impact of the initial condition becomes

irrelevant when using the realized volatility statistic.

Assuming the parameters κ P Rd, η ą 0, and α1 P p0, 1q to be known, an estimator based on the first

moment method of the rescaled realized volatility for the volatility parameter σ2 is therefore given by

σ̂2
y :“

2dpπηqd{2α1Γpd{2q

n∆α1

n Γp1 ´ α1q

n
ÿ

i“1

p∆iXq2pyqe∥κ
‚y∥1 . (71)

Since the estimator σ̂2
y estimates the volatility parameter σ2 based on a single spatial point, we also

introduce the following estimator:

σ̂2 :“ σ̂2
n,m :“

1

m

m
ÿ

j“1

σ̂2
yj

“
2dpπηqd{2α1Γpd{2q

nm∆α1

n Γp1 ´ α1q

m
ÿ

j“1

n
ÿ

i“1

p∆iXq2pyjqe∥κ
‚yj∥1 , (72)

for spatial points y1, . . . ,ym P rδ, 1´δsd. We will investigate the asymptotic properties of these estimators

in the upcoming Chapter 5.

An important distinction between coloured and white noise is that coloured noise often leads to correlated

discrete increments, whereas we often find uncorrelated increments in white noise models. As demon-

strated in Bibinger and Trabs (2020), discrete temporal increments of a SPDE model in one spatial

dimension are already negatively correlated, despite the use of white noise. This circumstance implies

that we do not need to develop a fundamentally different theory, for instance, for proofs of central limit

theorems.

Nevertheless, by varying the structure of the cylindrical Brownian motion, we can expect a change

in the autocovariance structure, which now depends on α1. The following proposition investigates the

autocovariance structure of temporal increments for our multi-dimensional SPDE model.

Proposition 4.2.7

On Assumptions 4.1.1 and 4.1.2, it holds for the covariance of the increments p∆iXqpyq, 1 ď i ď n

uniformly in y P rδ, 1 ´ δsd, for all δ P p0, 1{2q, that

Covp∆iXpyq,∆jXpyqq “

´ σ2e´∥κ‚y∥1∆α1

n

Γp1 ´ α1q

2d`1pπηqd{2α1Γpd{2q

´

2|i´ j|α
1

´
`

|i´ j| ´ 1
˘α1

´
`

|i´ j| ` 1
˘α1¯

` ri,j ` Op∆nq,

where |i´ j| ě 1 and the remainders pri,jqi,j“1,...,n are negligible, i.e.,
řn

i,j“1 ri,j “ Op1q.
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Proof. We begin with the following expression:

Covp∆iXpyq,∆jXpyqq “
ÿ

k1,k2PNd

Covp∆ixk1
,∆jxk2

qek1
pyqek2

pyq

“
ÿ

kPNd

CovpAi,k `Bi,k ` Ci,k, Aj,k `Bj,k ` Cj,kqe2kpyq.

Since
`

xξ, ekyϑ
˘

kPNd are independent by Assumption 4.1.2, we can use the independence of Ai,k and Bi,k

and analyse the covariance of the remaining terms. Here, we have, by the Itôisometry and i ă j:

ΣB,k
i,j :“ CovpBi,k, Bj,kq

“ σ2λ´α
k

`

e´λk∆n ´ 1
˘2
e´λkpi´1q∆ne´λkpj´1q∆nCov

˜ pi´1q∆n
ż

0

eλks dWk
s ,

pj´1q∆n
ż

0

eλks dWk
s

¸

“ σ2λ´α
k

`

1 ´ e´λk∆n
˘2
e´λkpi`j´2q∆nCov

˜ pi´1q∆n
ż

0

eλks dWk
s ,

pi´1q∆n
ż

0

eλks dWk
s

¸

“ σ2λ´α
k

`

1 ´ e´λk∆n
˘2
e´λkpi`j´2q∆n

ż pi´1q∆n

0

e2λks ds

“ σ2
`

e´λk∆npj´iq ´ e´λkpi`j´2q∆n
˘

`

1 ´ e´λk∆n
˘2

2λ1`α
k

.

Therefore, it follows for 1 ď i, j ď n that

ΣB,k
i,j “ σ2

`

e´λk∆n|i´j| ´ e´λkpi`j´2q∆n
˘

`

1 ´ e´λk∆n
˘2

2λ1`α
k

. (73)

Next, we have ΣC,k
i,j “ CovpCi,k, Cj,kq “ 0, for i ‰ j, and we derive the following:

ΣC,k
i,j “ 1tj“iuCovpCi,k, Ci,kq “ 1tj“iuσ

2λ´α
k e´2λki∆nE

«

ˆ
ż i∆n

pi´1q∆n

eλks dWk
s

˙2
ff

“ 1tj“iuσ
2 1 ´ e´2λk∆n

2λ1`α
k

. (74)

It remains to analyse the covariance of Bi,k and Cj,k. Since ΣBC,k
i,j :“ CovpBi,k, Cj,kq “ 0, for i ď j, we

analyse the following:

ΣBC,k
i,j “ 1tiąjuCovpBi,k, Cj,kq

“ 1tiąjuCov

˜ pj´1q∆n
ż

0

HB
i,kpsqdWk

s `

j∆n
ż

pj´1q∆n

HB
i,kpsqdWk

s

`

pi´1q∆n
ż

j∆n

HB
i,kpsqdWk

s ,

j∆n
ż

pj´1q∆n

HC
j,kpsqdWk

s

¸
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“ 1tiąjuσ
2λ´α

k

`

e´λk∆n ´ 1
˘

e´λkpi´1q∆ne´λkj∆nCov

˜

ż j∆n

pj´1q∆n

eλks dWk
s ,

ż j∆n

pj´1q∆n

eλks dWk
s

¸

“ 1tiąjuσ
2λ´α

k

`

e´λk∆n ´ 1
˘

e´λkpi`j´1q∆n

j∆n
ż

pj´1q∆n

e2λks ds

“ 1tiąjuσ
2λ´α

k

`

e´λk∆n ´ 1
˘

e´λkpi`j´1q∆n
e2λkj∆n ´ e2λkpj´1q∆n

2λk

“ 1tiąjuσ
2e´λk∆npi´jq

`

eλk∆n ´ e´λk∆n
˘e´λk∆n ´ 1

2λ1`α
k

, (75)

where HB
i,k and HC

j,k denote the corresponding integrands of Bi,k from equation (64) and Ci,k from

equation (65), respectively. Similarly, we have

ΣBC,k
j,i :“ ΣCB,k

i,j :“ CovpCi,k, Bj,kq “ 1tiăjuσ
2e´λk∆npj´iq

`

eλk∆n ´ e´λk∆n
˘e´λk∆n ´ 1

2λ1`α
k

.

For i ă j we obtain

Covp∆iXpyq,∆jXpyqq “
ÿ

kPNd

CovpAi,k `Bi,k ` Ci,k, Aj,k `Bj,k ` Cj,kqe2kpyq

“
ÿ

kPNd

`

ΣB,k
i,j ` ΣCB,k

i,j

˘

e2kpyq ` ri,j ,

where

ri,j :“
ÿ

kPNd

CovpAi,k, Aj,kqe2kpyq

“
ÿ

kPNd

`

e´λki∆n ´ e´λkpi´1q∆n
˘`

e´λkj∆n ´ e´λkpj´1q∆n
˘

Var
`

xξ, ekyϑ
˘

e2kpyq

“
ÿ

kPNd

`

e´λk∆npi`jq ´ 2e´λk∆npi`j´1q ` e´λk∆npi`j´2q
˘

Var
`

xξ, ekyϑ
˘

e2kpyq

“
ÿ

kPNd

e´λk∆npi`j´2q
`

e´2λk∆n ´ 2e´λk∆n ` 1
˘

Var
`

xξ, ekyϑ
˘

e2kpyq

“
ÿ

kPNd

e´λk∆npi`j´2q
`

e´λk∆n ´ 1
˘2Var

`

xξ, ekyϑ
˘

e2kpyq.

We use that the operator Aϑ is self-adjoint on Hϑ, such that ´λ
p1`αq{2
k xξ, eky “ xA

p1`αq{2
ϑ ξ, eky and

derive the following inequality for the remainder:

ri,j ď
ÿ

kPNd

e´λk∆npi`j´2q

`

e´λk∆n ´ 1
˘2

λ1`α
k

E
”

`

λ
p1`αq{2
k xξ, ekyϑ

˘2
ı

e2kpyq

ď C sup
kPN

E
”

xA
p1`αq{2
ϑ ξ, eky2ϑ

ı

ÿ

kPNd

e´λk∆npi`j´2q

`

1 ´ e´λk∆n
˘2

λ1`α
k

. (76)

105



4. Essentials of multi-dimensional SPDEs

Furthermore, for i ă j we have

Covp∆iXpyq,∆jXpyqq “
ÿ

kPNd

`

ΣB,k
i,j ` ΣCB,k

i,j

˘

e2kpyq ` ri,j

“ σ2
ÿ

kPNd

ˆ

`

e´λk∆npj´iq ´ e´λkpi`j´2q∆n
˘

`

1 ´ e´λk∆n
˘2

2λ1`α
k

` e´λk∆npj´iq
`

eλk∆n ´ e´λk∆n
˘e´λk∆n ´ 1

2λ1`α
k

˙

e2kpyq ` ri,j

“ σ2
ÿ

kPNd

e2kpyqe´λk∆npj´iq

`

1 ´ e´λk∆n
˘2

`
`

eλk∆n ´ e´λk∆n
˘`

e´λk∆n ´ 1
˘

2λ1`α
k

´ σ2
ÿ

kPNd

e2kpyqe´λkpi`j´2q∆n

`

1 ´ e´λk∆n
˘2

2λ1`α
k

` ri,j .

We define the second remainder as

si,j :“ ´σ2
ÿ

kPNd

e2kpyqe´λkpi`j´2q∆n

`

1 ´ e´λk∆n
˘2

2λ1`α
k

.

Using the identity sin2pxq “ p1 ´ cosp2xqq{2, we arrive at

Covp∆iXpyq,∆jXpyqq

“ σ2
ÿ

kPNd

e2kpyqe´λk∆npj´iq

`

1 ´ e´λk∆n
˘2

` 1 ´ eλk∆n ´ e´2λk∆n ` e´λk∆n

2λ1`α
k

` si,j ` ri,j

“ σ2
ÿ

kPNd

e2kpyqe´λk∆npj´iq 2 ´ e´λk∆n ´ eλk∆n

2λ1`α
k

` si,j ` ri,j

“ σ2
ÿ

kPNd

e2kpyqe´λk∆npj´i´1q 2e
´λk∆n ´ e´2λk∆n ´ 1

2λ1`α
k

` si,j ` ri,j

“ ´σ2∆1`α
n

ÿ

kPNd

e2kpyqe´λk∆npj´i´1q e
´2λk∆n ´ 2e´λk∆n ` 1

2pλk∆nq1`α
` si,j ` ri,j

“ ´σ2∆1`α
n

8
ÿ

kPNd

e2kpyqe´λk∆npj´i´1q

`

1 ´ e´λk∆n
˘2

2pλk∆nq1`α
` si,j ` ri,j

“ ´σ2e´∥κ‚y∥1∆1`α
n

ÿ

kPNd

e´λk∆npj´i´1q

`

1 ´ e´λk∆n
˘2

2pλk∆nq1`α

d
ź

l“1

`

1 ´ cosp2πklylq
˘

` si,j ` ri,j .

By defining the following expression:

Si,k :“ e´λk∆npj´i´1q

`

1 ´ e´λk∆n
˘2

2pλk∆nq1`α
“ gα,pj´i´1qpλk∆nq,

we obtain that

´ σ2e´∥κ‚y∥1∆1`α
n

ÿ

kPNd

e´λk∆npj´i´1q

`

1 ´ e´λk∆n
˘2

2pλk∆nq1`α

d
ź

l“1

`

1 ´ cosp2πklylq
˘
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“ ´σ2e´∥κ‚y∥1∆1`α
n

ÿ

kPNd

ˆ

Si,k ` Si,k

d
ÿ

l“1

p´1ql
ÿ

1ďj1ă...ăjlďn

cosp2πkj1yj1q ¨ ¨ ¨ cosp2πkjlyjlq

˙

.

Since we know by Lemma 4.2.3 that gα,τ P Qβ , with β “
`

2α, 2p1 ` αq, 2p1 ` αq
˘

, we have with Lemma

4.2.4 and Corollary 4.2.2 that

∆d{2
n

ÿ

kPNd

gα,τ pλk∆nq “
Γp1 ´ α1q

2dpπηqd{2α1Γpd{2q

ˆ

´
1

2
τα

1

`
`

1 ` τ
˘α1

´
1

2

`

2 ` τ
˘α1

˙

´

d´1
ÿ

∥γ∥1“1

γPt0,1u
d

ż

Bγ

gα,τ pπ2η∥z∥22qdz ` Op∆1´α1

n q,

and

∆d{2
n

d
ÿ

l“1

p´1ql
ÿ

1ďj1ă...ăjlďn

ÿ

kPNd

gα,τ pλk∆nq cosp2πkj1yj1q ¨ ¨ ¨ cosp2πkjlyjlq

“

d´1
ÿ

∥γ∥1“1

γPt0,1u
d

ż

Bγ

gα,τ pπ2η∥z∥22qdz ` Op∆1´α1

n q.

In line with Proposition 4.2.6 and with τ “ pj ´ i´ 1q, we have

Covp∆iXpyq,∆jXpyqq

“ ´σ2e´∥κ‚y∥1∆α1

n

Γp1 ´ α1q

2dpπηqd{2α1Γpd{2q

ˆ

´
1

2

`

j ´ i´ 1
˘α1

`
`

j ´ i
˘α1

´
1

2

`

j ´ i` 1
˘α1

˙

` si,j ` ri,j ` Op∆nq.

It remains to show that
řn

i,j“1psi,j ` ri,jq “ Op1q. Therefore, we use display (76) and obtain

n
ÿ

i,j“1

psi,j ` ri,jq ď

n
ÿ

i,j“1

˜

σ2C
ÿ

kPNd

e´λkpi`j´2q∆n

`

1 ´ e´λk∆n
˘2

2λ1`α
k

` C sup
kPN

E
”

xA
p1`αq{2
ϑ ξ, eky2ϑ

ı

ÿ

kPNd

e´λk∆npi`j´2q

`

1 ´ e´λk∆n
˘2

λ1`α
k

¸

ď C

ˆ

σ2 ` sup
kPN

E
”

xA
p1`αq{2
ϑ ξ, eky2ϑ

ı

˙ n
ÿ

i,j“1

ÿ

kPNd

e´λk∆npi`j´2q

`

1 ´ e´λk∆n
˘2

λ1`α
k

“ C

ˆ

σ2 ` sup
kPN

E
”

xA
p1`αq{2
ϑ ξ, eky2ϑ

ı

˙

ÿ

kPNd

`

1 ´ e´λk∆n
˘2

λ1`α
k

ˆ n
ÿ

i“1

e´λkpi´1q∆n

˙2

“ C

ˆ

σ2 ` sup
kPN

E
”

xA
p1`αq{2
ϑ ξ, eky2ϑ

ı

˙

ÿ

kPNd

`

1 ´ e´λk∆n
˘2

λ1`α
k

ˆ

1 ´ e´λkn∆n

1 ´ e´λk∆n

˙2

ď C

ˆ

σ2 ` sup
kPN

E
”

xA
p1`αq{2
ϑ ξ, eky2ϑ

ı

˙

ÿ

kPNd

1

λ1`α
k

“ Op1q.

Analogous computations for i ą j complete the proof.
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The previous proposition confirms that coloured noise alters the autocovariance structure. By compar-

ing Proposition 4.2.7 with the one-dimensional case, we observe that in multiple space dimensions, the

remainders vanish at a rate of ∆n, instead of ∆
3{2
n as observed in one space dimension, cf. Bibinger and

Trabs (2020, Prop. 3.2.). Furthermore, the autocovariance of the coloured noise process depends solely on

the spatial coordinate y P rδ, 1´δsd through the exponential term, which implies that the autocorrelation

is independent of the spatial coordinate. Consequently, the autocorrelation structure is determined by

the temporal distance or lag between increments rather than the specific temporal locations themselves.

Assume that n is sufficiently large, the autocorrelation of temporal increments can be approximated as

follows:

ρp∆iXq,α1 p|i´ j|q « ´|i´ j|α
1

`
1

2

`

|i´ j| ´ 1
˘α1

`
1

2

`

|i´ j| ` 1
˘α1

,

for i ‰ j. Using analogous steps as in equation (69), we obtain the following:

ρp∆iXq,α1 p|i´ j|q “ Op|i´ j|α
1
´2q.

As α1 P p0, 1q, the autocorrelation diminishes as the lag |i ´ j| between observations increases. Further-

more, from the first derivative, we observe that the autocorrelation is monotonically decreasing. Thus,

the most substantial negative correlation is found at |i ´ j| “ 1, where the autocorrelation takes the

value ρp∆iXq,α1 p1q “ 2α
1
´1 ´ 1. In the one-dimensional case with a white noise structure, corresponding

to α1 “ 1{2, the authors Bibinger and Trabs (2020) demonstrated a similar behaviour. They found the

most significant (negative) autocorrelation occurred at consecutive increments, with a value of p
?
2´2q{2.

Hence, this behaviour extends to multiple spatial dimensions.

Figure 4.2 showcases the autocorrelation of the temporal increments for a two-dimensional SPDE model

for a single sample dataset (left) and the sample mean computed across 20 generated datasets (right).

Notably, we observe a strong negative correlation between consecutive increments, corresponding to a lag

of one. Given that the pure damping parameter in the generated data is specified as α1 “ 1{2, we obtain

a negative correlation of ρp∆iXq,α1 p1q “ 2´1{2 ´ 1 « ´3{10.

Assuming that the initial condition is a stationary normal distribution with xξ, ekyϑ „ N p0, σ2{p2λ1`α
k qq,

the random field Xt becomes a Gaussian random field. Proposition 4.2.7 provides valuable information

regarding the identifiability of parameters using temporal increments statistics such as realized volatility.

In a manner similar to one space dimension, it appears feasible to consistently estimate the normalized

volatility σ2
0 “ σ2{ηd{2 and the curvature parameter κ. In Chapter 6 we will demonstrate, that the

restrictions on the identifiability are sharp, which means that we can consistently estimate these natural

parameters.

However, when it comes to the damping parameter, which becomes significant in higher spatial di-

mensions, starting from two spatial dimensions in the model, Proposition 4.2.7 offers insights into its

identification. We observe that the pure damping parameter α1 appears in almost every component of

the leading term of the autocovariance. Except for ∆α1

n , it is not evident how to extract information on

α1 from the other terms. Therefore, the main approach for estimating α1 is to exploit the term ∆α1

n .

Moreover, by referring to Da Prato and Zabczyk (2014, Thm. 5.22), we can see that α1 governs the

regularity in time, which is reflected in the presence of ∆α1

n . Additionally, employing the Kolmogorov-
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Figure 4.2.: We show the theoretical and empirical autocorrelation of the temporal increments for a two-dimensional SPDE model
with the parameters θ0 “ 0, ν “ p6, 0q, η “ σ “ 1, and α1

“ 1{2. The samples were generated on an equidistant grid in
both time and space, with N “ 104 and M “ 10. In both panels, the coloured lines depict the empirical autocorrelation,
ranging from lags one to 15 in five spatial coordinates, while the theoretical autocorrelation is represented by the dotted
grey line. The left panel illustrates the autocorrelation of a single sample data, whereas the right panel displays the
sample mean of the autocorrelations derived from 20 sample datasets.

Chentsov theorem (Kolmogorov continuity theorem) and Proposition 4.2.6, we find that the temporal

marginal processes of Xt are Hölder-continuous of almost order α1{2. This property allows us to control

the roughness of the temporal marginal processes and, consequently, identify the pure damping parameter

α1 and hence, α.

Rougher paths of the temporal marginal processes are generally advantageous for parameter estimation,

implying that α1 is likely to influence the asymptotic variance of the upcoming estimators. Hence, un-

derstanding and accounting for the value of α1 becomes crucial in obtaining reliable parameter estimates.

4.3. Simulation methods for multi-dimensional SPDEs

In Section 2.5, we discussed the simulation of one-dimensional SPDEs and introduced the truncation

method and the replacement method, as described by Bibinger and Trabs (2020) and Hildebrandt (2020),

respectively. In this section, we aim to extend these methods to the context of multi-dimensional SPDEs

given in equation (49).

We begin by discussing the truncation method for multi-dimensional SPDEs. Similar to the one-

dimensional case, the truncation method allows us to simulate an SPDE model in arbitrary spatial

coordinates, with any deterministic or normally distributed initial condition ξ. However, it comes with

significant drawbacks, particularly in terms of runtime and the potential for introducing extra bias,

depending on the cut-off frequency K. These issues become even more pronounced when dealing with

multiple space dimensions. Despite these limitations, we explore this method due to its capability of

selecting spatial coordinates freely. The concept of the truncation method involves truncating the Fourier

series from equation (58) at a sufficiently large cut-off frequency K “ pK1, . . . ,Kdq P Nd, simulating only

the first Kl Fourier modes, respectively, where l “ 1, . . . , d. Hence, it becomes necessary to simulate the

Fourier modes xk, for k P N, with k ď K. As mentioned in equation (59), we can represent the Fourier
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modes using the following representation:

xkptq “ e´λktxξ, ekyϑ ` σλ
´α{2
k

ż t

0

e´λkpt´sq dWk
s ,

where k P N. Assuming that xξ, ekyϑ „ N pµξ, σ
2
ξ q is normally distributed, we have

Erxkptqs “ e´λktµξ,

where t ą 0, and for 0 ă t1 ď t2 we obtain

Cov
`

xkpt1q, xkpt2q
˘

“ Erxkpt1qxkpt2qs ´ e´λkpt1`t2qµ2
ξ ,

where

Erxkpt1qxkpt2qs “ e´λkpt1`t2qErxξ, eky2ϑs ` σ2λ´α
k E

„

t1
ż

0

e´λkpt1´sq dWk
s

t2
ż

0

e´λkpt2´sq dWk
s

ȷ

.

Hence, the covariance structure for the coordinate processes xk are given by

Cov
`

xkpt1q, xkpt2q
˘

“ e´λkpt1`t2qσ2
ξ ` σ2λ´α

k E
„

t1
ż

0

e´λkpt1´sq dWk
s

t2
ż

0

e´λkpt2´sq dWk
s

ȷ

“ e´λkpt1`t2qσ2
ξ ` σ2λ´α

k e´λkpt1`t2qE
„

´

t1
ż

0

eλks dWk
s

¯2
ȷ

` σ2λ´α
k E

„

t1
ż

0

e´λkpt1´sq dWk
s

t2
ż

t1

e´λkpt1´sq dWk
s

ȷ

“ e´λkpt1`t2qσ2
ξ ` σ2λ´α

k e´λkpt1`t2q

t1
ż

0

e2λks ds

“ e´λkpt1`t2qσ2
ξ `

σ2

2λ1`α
k

´

e´λkpt2´t1q ´ e´λkpt2`t1q
¯

,

where we have used the independence of ξ and Wk
s , for all k P Nd. For arbitrary t1, t2 ą 0 we conclude

Cov
`

xkpt1q, xkpt2q
˘

“ e´λkpt1`t2qσ2
ξ `

σ2

2λ1`α
k

´

e´λk|t2´t1| ´ e´λkpt2`t1q
¯

, (77)

and

Var
`

xkptq
˘

“ e´2λktσ2
ξ `

σ2

2λ1`α
k

´

1 ´ e´2λkt
¯

. (78)

Thus, the coordinate processes are distributed as follows:

xkptq „ N
ˆ

e´λktµξ,
σ2

2λ1`α
k

´

1 ´ e´2λkt
¯

` e´2λktσ2
ξ

˙

,
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where k P Nd. Assuming that the initial condition is deterministic, we can deduce that xk is normally

distributed with a variance of σ2p1 ´ e´2λktq{p2λ1`α
k q. Notably, the variance of the Fourier modes xk

is influenced by the damping parameter α. A larger value of α implies a stronger damping and quicker

convergence of the variance towards zero, when k Ñ 8. On the other hand, a smaller value of α indicates

a weaker damping and slower convergence of the variance. To simulate the Fourier modes xk, we have

for t “ 0, . . . , pn´ 1q∆n that

xkpt` ∆nq ´ xkptqe´λk∆n “ σλ
´α{2
k

ˆ

t`∆n
ż

0

e´λkpt`∆n´sq dWk
s ´ e´λk∆n

t
ż

0

e´λkpt´sq dWk
s

˙

“ σλ
´α{2
k

ż t`∆n

t

e´λkpt`∆n´sq dWk
s ,

implying the following recursive representation:

xkpt` ∆nq “ xkptqe´λk∆n ` σ

d

1 ´ expr´2λk∆ns

2λ1`α
k

Nt,

with i.i.d. standard normals Nt and xkp0q “ xξ, ekyϑ, where ξ is either deterministic or normally dis-

tributed. Hence, the truncation method involves approximating the Fourier series of Xtpyq using a cut-off

frequency K :“ t1, . . . ,Kud, where K P N, i.e.:

Xtpy «
ÿ

kPK
ekpyqxkptq.

Note that we set K “ pK, . . . ,Kq, since we want to approximate the SPDE model equally in each spa-

tial dimension. To simulate a solution of a one-dimensional SPDE, it is recommended to use a cut-off

frequency of at least K “ 105. This choice helps to prevent a significant bias in the generated data, cf.

Section 2.5.1. When simulating multi-dimensional SPDEs, it is reasonable to choose a cut-off frequency

of at least K “ 105 as well, leading to pK ` 1qd loop iterations. For example, in a two-dimensional case

pd “ 2q, Tonaki et al. (2023) performed simulations at 200ˆ200 equi-spaced coordinates with a temporal

resolution of N “ 103. With a cut-off rate of K “ 105, the simulation of one sample path took approxi-

mately 100 hours while using three personal computers. This highlights the computational challenge of

simulating multi-dimensional SPDEs with a large cut-off frequency K, as it requires a substantial amount

of computing power and time. However, the use of a sufficiently high cut-off frequency is crucial to ensure

accurate and unbiased simulations of the SPDEs.

This challenge motivates the development of alternative approaches, one of which is the replacement

method. The replacement method describes a simulation technique used to address the computational

burden caused by large cut-off frequencies. Instead of using the Fourier series with a large cut-off K,

the replacement method replaces the higher Fourier modes with some suitable approximations, cf. Sec-

tion 2.5.1 for the one-dimensional replacement method. Assume ξ “ 0 and equidistant spatial points

y P t0, 1{M, . . . , pM ´ 1q{M, 1ud along each space dimension, i.e., yj “ j{M “ pj1{M, . . . , jd{Mq and
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j P t0, . . . ,Mud “: J . We define the inner product by

xf, gyϑ,M :“
1

Md

ÿ

jPJ
fpyjqgpyjqe

∥κ‚yj∥1 ,

where f, g : r0, 1sd Ñ R. It holds that pekqkPM from equation (52) form an orthonormal system with

respect to the inner product x¨, ¨yϑ,M , where M :“ t1, . . . ,M ´ 1ud. The clarity of this statement is

enhanced when considering the one-dimensional case, as demonstrated by Hildebrandt (2020), where it

is known that

2

M

M
ÿ

k“0

sinpπβk{Mq sinpπγk{Mq “ 1tβ“γu,

for β, γ P N and 1 ď β, γ ă M . Therefore, with β, γ P t1, . . . ,M ´ 1ud we obtain

xeβ , eγyϑ,M “
2

M

M
ÿ

j1“0

sinpπβ1k1{Mq sinpπγ1k1{Mq ¨ ¨ ¨
2

M

M
ÿ

jd“0

sinpπβ1k1{Mq sinpπγdkd{Mq

“ 1tβ1“γ1u ¨ ¨ ¨1tβd“γdu “ 1tβ“γu.

Hence, we can express a solution Xt as

Xtpyjq “
ÿ

mPM
Umptqempyjq, with Umptq “ xXt, emyϑ,M .

Note that empyjq “ 0, if m “ pm1, . . . ,mdq contains at least one entry ml, which is either zero or M , i.e.,

ml P t0,Mu, for a l P t1, . . . , du. Using the Fourier representation, as given in equation (58), we have

Umptq “
ÿ

kPNd

xkptqxek, emyϑ,M .

Let k P Nd, then we can decompose the inner product by

xek, emyϑ,M “
2d

Md

ÿ

jPJ

d
ź

l“1

sinpπklyjl
q sinpπmlyjl

q “

d
ź

l“1

xẽkl
, ẽml

yϑ,M,1,

where ẽk and x¨, ¨yϑ,M,1 denote the respective one-dimensional orthonormal basis and inner product from

equations (2) and (39), respectively. As established in Section 2.5.1, we already know that

|xẽk, ẽmyϑ,M,1| “ 1,

if k “ m ` 2lM or k “ 2M ´ m ` 2lM , for l P N0, k P N and m P t1, . . . ,M ´ 1u. Therefore, the index

set Im is given by the following d-fold Cartesian product:

Im :“
d

ą

l“1

Iml,1,

where Im,1 denotes the one-dimensional index set from equation (40). Since xl
d
“ ´xl, for all l P Nd, we
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have

Umptq “
ÿ

kPNd

xkptqxek, emyϑ,M “
ÿ

lPIm

xlptq,

where xl denote the coordinate processes from equation (59). As calculated in equation (77), the covari-

ances of the coordinate processes, given by

Cov
`

xkptiq, xkptjq
˘

“
σ2

2λ1`α
k

´

e´λk|i´j|∆n ´ e´λkpi`jq∆n

¯

“
σ2

2λ1`α
k

e´λk|i´j|∆n

´

1 ´ e´2λk minpi,jq∆n

¯

,

are vanishing for λk9 ∥k∥22 being significantly larger than 1{∆N , due to the presence of the exponential

term. Therefore, the coordinate processes pxkptiqq1ďiďN effectively behave like i.i.d. centred normal

random variables, with variances

Var
`

xkptiq
˘

«
σ2

2λ1`α
k

.

for a sufficiently large k P Nd. Analogously to Hildebrandt (2020), we choose a bound L P N and replace

all coordinate processes pxkqkPNd , with k R p0, LMqd, by a vector of independent normal random variables

pzlqlPNd with variance σ2{p2λ1`α
l q, i.e.:

Umptq “
ÿ

lPIm

lPp0,LMq
d

xlptq `
ÿ

lPIm

lRp0,LMq
d

zlptq.

Since the normal distribution is stable with respect to summation, we can replace the sum of the normal

random variables with centred normal random variables Rm „ N p0, s2mq, where

s2m “
ÿ

lPIm

lRp0,LMq
d

σ2

2λ1`α
l

.

By performing analogous computations as in display (56), it is evident that the series in s2m converges.

In the one-dimensional case, as recalled in Section 2.5.1, a formula exists to precisely compute the one-

dimensional replacement variance, as shown in equation (41). One key advantage of this formula is its

closed form, which enables fast computation with minimal computational time.

However, in the multivariate case, the series becomes more intricate due to the additional exponent

1 ` α and the squaring of the summation indices. This complexity renders direct application of related

series, such as the multiple zeta function or its extension, the multiple Lerch zeta function, impractical,

cf. Arakawa and Kaneko (1999) or Gun and Saha (2018).

Nonetheless, the outlook Section 7.2 proposes an approach for the exact computation of the variance

s2m. Consequently, we currently resort to numerical approximation methods to estimate the variance s2m,

given by

s2m «
ÿ

lPIm

lPp0,KMq
d

zp0,LMq
d

σ2

2λ1`α
l

“: s̃m,
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Figure 4.3.: The figure shows a comparison between the theoretical expected values of the rescaled realized volatilities, as described
in Proposition 4.2.6, and their empirical counterparts (top row). The underlying two-dimensional SPDE model was
simulated on an equidistant grid in both time and space, with N “ 104 and M “ 10. The SPDE model parameters
are given by: ϑ0 “ 0, ν “ p5, 0q, η “ 1, σ “ 1, and α1

“ 4{10, while the replacement bound was fixed at L “ 10.
The results for different values of K are displayed in three columns: K “ 20 (left), K “ 100 (middle), and K “ 1500
(right). The bottom row illustrates the deviation between the theoretical and empirical results.

where K ą L, K P N denotes the cut-off of the approximation. The multi-dimensional replacement

method is then given by

Xtipyjq “
ÿ

mPM
Umptiqempyjq, where Umptiq “

ÿ

lPIm

lPp0,LMq
d

xlptiq ` R̃mpiq, (79)

where R̃mpiq „ N p0, s̃mq denote the respective replacement random variables with the cut-off variance

s̃m and ti`1 ´ ti “ 1{N , where i “ 1, . . . , N . In this numerical approach, the quality of the simulation is

highly dependent on the chosen variance cut-off K, as this cut-off effects the quality of the replacements

R̃m. If K is selected to be too small, it will result in a negative bias in the simulations. Therefore,

it is essential to carefully select an appropriate value for K to ensure accurate and reliable simulations

without introducing any significant bias.

In Figure 4.3, we conducted a simulation of a two-dimensional SPDE model on a grid with N “

104 temporal points and M “ 10 spatial points on each axis. The top row displays a comparison

between the theoretical expected values, as per Proposition 4.2.6, and the sample mean of the rescaled

realized volatility for three different cut-off values: K “ 20, 100, 1500. The bottom row illustrates the

corresponding deviations between the theoretical predictions and the empirical outcomes. Notably, for

the case of K “ 20, a significant negative bias is observed, while the bias diminishes as the cut-off

frequency increases.
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To address the deterministic nature of the variance sm in equation (79), especially when calculating it

for a large K, we have implemented an option within the function simulateSPDEmodelMulti from

the R-package SecondOrderSPDEMulti5. This option allows for the utilization of the precomputed

variance sm using the function variance approx. This enhancement dramatically reduces runtime,

particularly in the context of Monte Carlo studies. Table 4.1 provides a summary of essential indicators,

including the minimum and maximum deviations, as well as the mean deviation, for three distinct cut-off

frequencies: K “ 20, 100, 1500:

K 20 100 1500
min 0.0002015715 0.0001696648 0.0000496963
max 0.02098774 0.01734903 0.01579611
mean 0.003906285 0.003148307 0.002716894

Table 4.1.: We present three indicators for quantifying the disparity between the theoretical and empirical results in Figure 4.3.
We illustrate the minimum deviation, maximum deviation, and mean deviation for each of the three cut-off frequencies:
K “ 20, 100, 1500.

While the bias decreases with larger values of K, there still exists a bias resulting from the approximation

of sm.

4.4. Proofs

In this section, we present the proofs for the spectral framework as introduced in Section 4.1. Additionally,

we include various other proofs from Section 4.2, one of which is the proof of the technical Riemann

approximation from Lemma 4.2.1

Lemma 4.4.1

The eigenvalues and eigenvectors corresponding to the eigenvalue problem Aϑek “ ´λkek, for the

operator Aϑ from equation (50) are given by

ekpyq “ 2d{2
d
ź

l“1

sinpπklylqe
´κlyl{2 and λk :“ ´ϑ0 `

d
ÿ

l“1

ˆ

ν2l
4η

` π2k2l η

˙

,

where k P Nd. Additionally, the following properties hold:

(i) Aϑ is self-adjoint on Hϑ,

(ii) ek form an orthonormal basis of the Hilbert space Hϑ from display (51).

Proof. We establish the eigenfunction and eigenvalue property of ekpyq and λk, respectively, as defined

in equations (52) and (53). We begin by evaluating the action of the operator Aϑ on ekpyq:

Aϑekpyq “ ϑ0ekpyq `

d
ÿ

l“1

νl
B

Byl
ekpy1, . . . , ydq ` η

d
ÿ

l“1

B2

By2l
ekpy1, . . . , ydq.

5see: https://github.com/pabolang/SecondOrderSPDEMulti.
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Now, for a fixed l0 P 1, . . . , d, we obtain the following:

B

Byl0
ekpy1, . . . , ydq “ 2d{2

ˆ

cospπkl0yl0qπkl0e
´κl0

yl0
{2 ´ sinpπkl0yl0qe´κl0

yl0
{2κl0

2

˙ d
ź

l“1
l‰l0

sinpπklylqe
´κlyl{2

“ e´κl0
yl0

{2

ˆ

cospπkl0yl0qπkl0 ´ sinpπkl0yl0q
κl0
2

˙

2d{2
d
ź

l“1
l‰l0

sinpπklylqe
´κlyl{2,

and

B2

By2l0
ekpy1, . . . , ydq “

ˆ

sinpπkl0yl0q
κ2l0
4

´ cospπkl0yl0q
κl0πkl0

2
´ sinpπkl0yl0qπ2k2l0 ´ cospπkl0yl0q

κl0πkl0
2

˙

ˆ e´κl0
yl0

{22d{2
d
ź

l“1
l‰l0

sinpπklylqe
´κlyl{2

“ e´κl0
yl0

{2

ˆ

sinpπkl0yl0q

´κ2l0
4

´ π2k2l0

¯

´ cospπkl0yl0qκl0πkl0

˙

ˆ 2d{2
d
ź

l“1
l‰l0

sinpπklylqe
´κlyl{2.

Based on these calculations, we deduce the eigenvalue problem property as follows:

νl0
B

Byl0
ekpy1, . . . , ydq ` η

B2

By2l0
ekpy1, . . . , ydq “ ekpyq

ˆ

´
ν2l0
2η

`
ν2l0η

4η2
´ π2k2l0η

˙

` e´κl0
yl0

{2

ˆ

cospπkl0yl0qπkl0νl0 ´ cospπkl0yl0qπkl0κl0η

˙

2d{2
d
ź

l“1
l‰l0

sinpπklylqe
´κlyl{2

“ ekpyq

ˆ

´
ν2l0
4η

´ π2k2l0η

˙

,

which implies the eigenvalue equation Aϑekpyq “ ´λkekpyq. Thus, we have established the eigenvalue

problem property as stated.

Furthermore, we will prove that the operator Aϑ is self-adjoint on the Hilbert space Hϑ. To demonstrate

this, we consider arbitrary functions f, g P Hϑ. Then, we have

xAϑf, gyϑ “

ż 1

0

¨ ¨ ¨

ż 1

0

ˆ

ϑ0fpy1, . . . , ydq `

d
ÿ

l“1

νl
B

Byl
fpy1, . . . , ydq ` η

d
ÿ

l“1

B2

By2l
fpy1, . . . , ydq

˙

ˆ gpy1, . . . , ydq exp

„ d
ÿ

l“1

κlyl

ȷ

dy1 ¨ ¨ ¨ dyd

“ xf, ϑ0gyϑ `

d
ÿ

l“1

νl

ż 1

0

¨ ¨ ¨

ż 1

0

ˆ

B

Byl
fpy1, . . . , ydq

˙

gpy1, . . . , ydq exp

„ d
ÿ

l“1

κlyl

ȷ

dy1 ¨ ¨ ¨ dyd

` η
d
ÿ

l“1

ż 1

0

¨ ¨ ¨

ż 1

0

ˆ

B2

By2l
fpy1, . . . , ydq

˙

gpy1, . . . , ydq exp

„ d
ÿ

l“1

κlyl

ȷ

dy1 ¨ ¨ ¨ dyd.
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By employing Fubini’s theorem for a fixed l0 P 1, . . . , d, we obtain

νl0

ż 1

0

¨ ¨ ¨

ż 1

0

ˆ

B

Byl0
fpy1, . . . , ydq

˙

gpy1, . . . , ydq exp

„ d
ÿ

l“1

κlyl

ȷ

dy1 ¨ ¨ ¨ dyd

` η

ż 1

0

¨ ¨ ¨

ż 1

0

ˆ

B2

By2l0
fpy1, . . . , ydq

˙

gpy1, . . . , ydq exp

„ d
ÿ

l“1

κlyl

ȷ

dy1 ¨ ¨ ¨ dyd

“ νl0

ż 1

0

¨ ¨ ¨

ż 1

0

˜

ż 1

0

ˆ

B

Byl0
fpy1, . . . , ydq

˙

gpy1, . . . , ydq exp

„ d
ÿ

l“1

κlyl

ȷ

dyl0

¸

dy1 ¨ ¨ ¨ dyd

` η

ż 1

0

¨ ¨ ¨

ż 1

0

˜

ż 1

0

ˆ

B2

By2l0
fpy1, . . . , ydq

˙

gpy1, . . . , ydq exp

„ d
ÿ

l“1

κlyl

ȷ

dyl0

¸

dy1 ¨ ¨ ¨ dyd

“

ż 1

0

¨ ¨ ¨

ż 1

0

νl0I1 ` ηI2 dy1 ¨ ¨ ¨ dyd.

Using integration by parts and taking the boundary property of f and g into account, we get that

νl0I1 :“ νl0

ż 1

0

ˆ

B

Byl0
fpy1, . . . , ydq

˙

gpy1, . . . , ydq exp

„ d
ÿ

l“1

κlyl

ȷ

dyl0

“ νl0

„

fpy1, . . . , ydqgpy1, . . . , ydq exp
”

d
ÿ

l“1

κlyl

ı

ȷ1

yl0
“0

´ νl0

ż 1

0

fpy1, . . . , ydq

ˆ

B

Byl0
gpy1, . . . , ydq

˙

exp

„ d
ÿ

l“1

κlyl

ȷ

dyl0

´ νl0

ż 1

0

fpy1, . . . , ydqgpy1, . . . , ydq exp

„ d
ÿ

l“1

κlyl

ȷ

κl0 dyl0

“ ´νl0

ż 1

0

fpy1, . . . , ydq

ˆ

B

Byl0
gpy1, . . . , ydq

˙

exp

„ d
ÿ

l“1

κlyl

ȷ

dyl0

´
ν2l0
η

ż 1

0

fpy1, . . . , ydqgpy1, . . . , ydq exp

„ d
ÿ

l“1

κlyl

ȷ

dyl0 ,

and

ηI2 :“ η

ż 1

0

ˆ

B2

By2l0
fpy1, . . . , ydq

˙

gpy1, . . . , ydq exp

„ d
ÿ

l“1

κlyl

ȷ

dyl0

“ η

„

´

B

Byl0
fpy1, . . . , ydq

¯

gpy1, . . . , ydq exp
”

d
ÿ

l“1

κlyl

ı

ȷ1

yl0
“0

´ η

ż 1

0

ˆ

B

Byl0
fpy1, . . . , ydq

˙ˆ

B

Byl0
gpy1, . . . , ydq

˙

exp

„ d
ÿ

l“1

κlyl

ȷ

dyl0

´ η

ż 1

0

ˆ

B

Byl0
fpy1, . . . , ydq

˙

gpy1, . . . , ydq exp

„ d
ÿ

l“1

κlyl

ȷ

κl0 dyl0

“ ´η

„

fpy1, . . . , ydq

´

B

Byl0
gpy1, . . . , ydq

¯

exp
”

d
ÿ

l“1

κlyl

ı

ȷ1

yl0
“0
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` η

ż 1

0

fpy1, . . . , ydq

ˆ

B2

By2l0
gpy1, . . . , ydq

˙

exp

„ d
ÿ

l“1

κlyl

ȷ

dyl0

` η

ż 1

0

fpy1, . . . , ydq

ˆ

B

Byl0
gpy1, . . . , ydq

˙

exp

„ d
ÿ

l“1

κlyl

ȷ

κl0 dyl0

´ η

„

fpy1, . . . , ydqgpy1, . . . , ydq exp
”

d
ÿ

l“1

κlyl

ı

κl0

ȷ1

yl0
“0

` η

ż 1

0

fpy1, . . . , ydq

ˆ

B

Byl0
gpy1, . . . , ydq

˙

exp

„ d
ÿ

l“1

κlyl

ȷ

κl0 dyl0

` η

ż 1

0

fpy1, . . . , ydqgpy1, . . . , ydq exp

„ d
ÿ

l“1

κlyl

ȷ

κ2l0 dyl0

“ η

ż 1

0

fpy1, . . . , ydq

ˆ

B2

By2l0
gpy1, . . . , ydq

˙

exp

„ d
ÿ

l“1

κlyl

ȷ

dyl0

` 2νl0

ż 1

0

fpy1, . . . , ydq

ˆ

B

Byl0
gpy1, . . . , ydq

˙

exp

„ d
ÿ

l“1

κlyl

ȷ

dyl0

`
ν2l0
η

ż 1

0

fpy1, . . . , ydqgpy1, . . . , ydq exp

„ d
ÿ

l“1

κlyl

ȷ

dyl0 .

Combining both terms yields

νl0I1 ` ηI2 “ η

ż 1

0

fpy1, . . . , ydq

ˆ

B2

By2l0
gpy1, . . . , ydq

˙

exp

„ d
ÿ

l“1

κlyl

ȷ

dyl0

` νl0

ż 1

0

fpy1, . . . , ydq

ˆ

B

Byl0
gpy1, . . . , ydq

˙

exp

„ d
ÿ

l“1

κlyl

ȷ

dyl0 ,

and therefore, we conclude

xAϑf, gyϑ “ xf, ϑ0gyϑ `

d
ÿ

l“1

νl

ż 1

0

¨ ¨ ¨

ż 1

0

ˆ

B

Byl
fpy1, . . . , ydq

˙

gpy1, . . . , ydq exp

„ d
ÿ

l“1

κlyl

ȷ

dy1 ¨ ¨ ¨ dyd

` η
d
ÿ

l“1

ż 1

0

¨ ¨ ¨

ż 1

0

ˆ

B2

By2l
fpy1, . . . , ydq

˙

gpy1, . . . , ydq exp

„ d
ÿ

l“1

κlyl

ȷ

dy1 ¨ ¨ ¨ dyd

“ xf, ϑ0gyϑ `

d
ÿ

l“1

νl

ż 1

0

¨ ¨ ¨

ż 1

0

fpy1, . . . , ydq

ˆ

B

Byl
gpy1, . . . , ydq

˙

exp

„ d
ÿ

l“1

κlyl

ȷ

dy1 ¨ ¨ ¨ dyd

` η
d
ÿ

l“1

ż 1

0

¨ ¨ ¨

ż 1

0

fpy1, . . . , ydq

ˆ

B2

By2l
gpy1, . . . , ydq

˙

exp

„ d
ÿ

l“1

κlyl

ȷ

dy1 ¨ ¨ ¨ dyd

“ xf,Aϑgyϑ,

which demonstrates that Aϑ is self-adjoint on Hϑ.

According to the spectral theorem, the eigenfunctions pekqkPNd form an orthonormal system in the

Hilbert space Hϑ. Moreover, the orthonormal property of pekqkPNd can be verified through standard

calculations. Let k, j P Nd, with k ‰ j. Then, there exists at least one index l0 P 1, . . . , d, with kl0 ‰ jl0 ,
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and we have

xek, ejyϑ “ 2d
ż 1

0

¨ ¨ ¨

ż 1

0

d
ź

l“1

sinpπklylq sinpπjlylqdy1 ¨ ¨ ¨ dyd

“ 2d
ż 1

0

¨ ¨ ¨

ż 1

0

ˆ
ż 1

0

sinpπkl0yl0q sinpπjl0yl0qdyl0

˙ d
ź

l“1
l‰l0

sinpπklylq sinpπjlylqdy1 ¨ ¨ ¨ dyd.

By evaluating the inner integral, we find

ż 1

0

sinpπkl0yl0q sinpπjl0yl0qdyl0 “

„

sin
`

πpkl0 ´ jl0qyl0
˘

2πpkl0 ´ jl0q
´

sin
`

πpkl0 ` jl0qyl0
˘

2πpkl0 ` jl0q

ȷ1

yl0
“0

“ 0,

which implies that the eigenfunctions are orthogonal. Now, consider k, j P Nd, with k “ j. Then, we have

xek, ekyϑ “ 2d
ż 1

0

¨ ¨ ¨

ż 1

0

d
ź

l“1

sinpπklylq
2 dy1 ¨ ¨ ¨ dyd

“ 2d
ˆ
ż 1

0

sinpπkyq2 dy

˙d

“ 2d
ˆ

”y

2
´

sinp2πkyq

4πk

ı1

0

˙d

“ 1,

demonstrating the orthonormality of pekqkPNd .

Next, we proceed with the proof of Lemma 4.2.1.

Proof of Lemma 4.2.1. We begin this proof by making the substitution z2l “ k2l ∆n, such that

λk∆n “ π2η
d
ÿ

l“1

z2l ` ∆n

ˆ d
ÿ

l“1

´ν2l
4η

¯

´ ϑ0

˙

.

Subsequently, employing the Taylor expansion with the Lagrange remainder, we obtain that

fpλk∆nq “ f

ˆ

π2η
d
ÿ

l“1

z2l

˙

` f 1pξq

ˆ

λk∆n ´ π2η
d
ÿ

l“1

z2l

˙

“ f

ˆ

π2η
d
ÿ

l“1

z2l

˙

` Op∆nq.

For k P Nd we define

ak :“ pak1
, . . . , akd

q P Rd
`, with akl

:“
?
∆npkl ` 1{2q,

where l “ 1, . . . , d and

rak-1, aks :“ rak1´1, ak1s ˆ . . .ˆ rakd´1, akd
s Ă p0,8qd.

119



4. Essentials of multi-dimensional SPDEs

Note that |akl
´ akl´1| “

?
∆n, for l “ 1, . . . , d and a0 :“ ∆

1{2
n {2. Moreover, by defining

f̃pxq :“ fpπ2ηx2q, we observe that

∆d{2
n

ÿ

kPNd

fpλk∆nq ´

ż

r
?
∆n{2,8qd

fpπ2η ∥z∥22qdz

“ ∆d{2
n

8
ÿ

k1“1

¨ ¨ ¨

8
ÿ

kd“1

fpλpk1,...,kdq∆nq ´

ż 8

?
∆n
2

¨ ¨ ¨

ż 8

?
∆n
2

f

ˆ

π2η
d
ÿ

l“1

z2l

˙

dz1 ¨ ¨ ¨ dzd

“ ∆d{2
n

8
ÿ

k1“1

¨ ¨ ¨

8
ÿ

kd“1

f

ˆ

π2η∆n

d
ÿ

l“1

k2l

˙

´

8
ÿ

k1“1

¨ ¨ ¨

8
ÿ

kd“1

ż ak1

ak1´1

¨ ¨ ¨

ż akd

akd´1

f

ˆ

π2η
d
ÿ

l“1

z2l

˙

dz1 ¨ ¨ ¨ dzd ` Op∆nq

“

8
ÿ

k1“1

¨ ¨ ¨

8
ÿ

kd“1

ż ak1

ak1´1

¨ ¨ ¨

ż akd

akd´1

ˆ

f
´

π2η∆n

d
ÿ

l“1

k2l

¯

´ f
´

π2η
d
ÿ

l“1

z2l

¯

˙

dz1 ¨ ¨ ¨ dzd ` Op∆nq

“
ÿ

kPNd

ż ak

ak-1

fpπ2η∆n ∥k∥22q ´ fpπ2η ∥z∥22qdz ` Op∆nq

“
ÿ

kPNd

ż ak

ak-1

f̃p
?
∆n ∥k∥2q ´ f̃p∥z∥2qdz ` Op∆nq “: T1 ` Op∆nq,

where ∥¨∥2 denotes the euclidean norm. Define the function g : Rd
` Ñ R`, with gpxq “ f̃p∥x∥2q. Since

?
∆nk represents the mid-point of the interval rak-1, aks, for a k P Nd, we can apply a Taylor expansion

at the point
?
∆nk, leading to the following expression:

g
`

?
∆nk

˘

´ gpzq “ g
`

?
∆nk

˘

´

´

g
`

?
∆nk

˘

` ∇g
`

?
∆nk

˘J`

z ´
?
∆nk

˘

`
1

2

`

z ´
?
∆nk

˘J
Hgpξkq

`

z ´
?
∆nk

˘

¯

, (80)

where ∇g denotes the gradient of g, Hg the Hessian-matrix of g and ξk P rak-1, aks. We introduce the

shorthand notation g1
lpzq :“ Bgpzq{pBzlq, which represents the partial derivative of gpzq with respect to

zl. Then, we have

ż ak

ak-1

∇gp
?
∆nkqJpz ´

?
∆nkqdz “

d
ÿ

l“1

g1
lp

?
∆nkq

ż ak1

ak1´1

¨ ¨ ¨

ż akd

akd´1

`

zl ´
?
∆nkl

˘

dz1 ¨ ¨ ¨ dzd

“ ∆pd´1q{2
n

d
ÿ

l“1

g1
lp

?
∆nkq

ż akl

akl´1

`

zl ´
?
∆nkl

˘

dzl

“ ∆pd´1q{2
n

d
ÿ

l“1

g1
lp

?
∆nkq

„

z2l
2

´
?
∆nklzl

ȷakl

akl
´1

“ ∆pd´1q{2
n

d
ÿ

l“1

g1
lp

?
∆nkq

ˆ

a2kl
´ a2kl´1

2
´

?
∆nklpakl

´ akl´1q

˙

“ 0.

Since every term in the Taylor expansion from equation (80) vanishes, we proceed by redefining the term
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T1 as follows:

T1 :“ ´
ÿ

kPNd

ż ak

ak-1

1

2
pz ´

?
∆nkqJHgpξkqpz ´

?
∆nkqdz. (81)

Additionally, the order of the term T1 is analysed in display (86). For now, our primary focus is on the

main term, which we can express by

∆d{2
n

8
ÿ

k1“1

¨ ¨ ¨

8
ÿ

kd“1

fpλpk1,...,kdq∆nq “

ż 8

?
∆n
2

¨ ¨ ¨

ż 8

?
∆n
2

f

ˆ

π2η
d
ÿ

l“1

z2l

˙

dz1 ¨ ¨ ¨ dzd ` OpT1 _ ∆nq

“

ż 8

0

¨ ¨ ¨

ż 8

0

f

ˆ

π2η
d
ÿ

l“1

z2l

˙

dz1 ¨ ¨ ¨ dzd

´

ż

Rd
`

zr
?
∆n{2,8qd

fpπ2η ∥z∥22qdz ` OpT1 _ ∆nq.

Before delving into the analysis of the compensation integral, defined by

I :“

ż

Rd
`

zr
?
∆n{2,8qd

fpπ2η ∥z∥22qdz,

and the error term T1, we first examine a transformation of the main integral. To facilitate our analysis,

we employ d-dimensional spherical coordinates, which are reviewed in equation (57). Here, we have

ż 8

0

¨ ¨ ¨

ż 8

0

f

ˆ

ηπ2
d
ÿ

l“1

z2l

˙

dz1 ¨ ¨ ¨ dzd “

ż 8

0

ż π{2

0

¨ ¨ ¨

ż π{2

0

fpπ2ηr2q|Jd|dφd´1 ¨ ¨ ¨ dφ1 dr

“

ż 8

0

rd´1fpπ2ηr2qdr

ż π{2

0

sind´2
pφ1qdφ1 ¨ ¨ ¨

ż π{2

0

sinpφd´2qdφd´2

ż π{2

0

dφd´1.

For l P N it holds that

ż π{2

0

sinlpxqdx “

?
πΓ

`

1`l
2

˘

2Γ
`

1 ` l
2

˘ ,

where Γpxq denotes the Gamma function. Furthermore, we obtain that

d´2
ź

l“1

ż π{2

0

sinlpxqdx “
πd{2´1

2d´2Γpd{2q
.

Thus, we have

ż 8

0

¨ ¨ ¨

ż 8

0

f

ˆ

ηπ2
d
ÿ

l“1

z2l

˙

dz1 ¨ ¨ ¨ dzd “
πd{2

2d´1Γpd{2q

ż 8

0

rd´1fpπ2ηr2qdr.

A last transformation yields the following:

ż 8

0

rd´1fpπ2ηr2qdr “
1

2π2η

ż 8

0

ˆ

x

π2η

˙d{2´1

fpxqdx “
1

2pπ2ηqd{2

ż 8

0

xd{2´1fpxqdx.
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Figure 4.4.: Exemplary sketch of the different combinations for the sets Bγ in the three-dimensional space. The red dashed lines

represent an excerpt of the set r
?
∆n{2, 8q

d. The remaining space Rd
`zr

?
∆n{2, 8q

d is separated into the different
disjoint sets Bγi

given by the different combinations of γi as shown in the figure, where i “ 1, . . . , 7.

Finally, we have

∆d{2
n

ÿ

kPNd

fpλk∆nq “
πd{2

2d´1Γpd{2q
¨

1

2πdηd{2

ż 8

0

xd{2´1fpxqdx´ I ` OpT1 _ ∆nq

“
1

2dpπηqd{2Γpd{2q

ż 8

0

xd{2´1fpxqdx´ I ` OpT1 _ ∆nq.

To analyse the compensation term I, we initiate the process by decomposing the set Rd
`zr

?
∆n{2,8qd.

Let γ P t0, 1udzt0ud, where γ “ pγ1, . . . , γdq and let ψpxq “ 1
r0,

?
∆n{2q

pxq. With these definitions, we can

introduce the following set:

Bγ :“ tx P r0,8qd|x1 P ψ´1pγ1q, . . . , xd P ψ´1pγdqu Ă r0,8qd. (82)

An exemplary presentation for different combinations of Bγ in the three-dimensional space is provided

in Figure 4.4. Hence, we can decompose the set Rd
`zr

?
∆n{2,8qd using the following disjoint union:

Rd
`zr

?
∆n{2,8qd “

d
ď

∥γ∥1“1

γPt0,1u
d

Bγ , (83)
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which enables the decomposition of the integral I as follows:

I “

ż

Rd
`

zr
?
∆n{2,8qd

fpπ2η ∥z∥22qdz “

d
ÿ

∥γ∥1“1

γPt0,1u
d

ż

Bγ

fpπ2η ∥z∥22qdz.

We now focus on two cases. Firstly, the case where ∥γ∥1 ă d, and secondly, the case where ∥γ∥1 “ d.

In the first case, we assume that ∥γ∥1 “ l, where l P t1, . . . , d ´ 1u. This implies that there exist indices

ti1, . . . , ilu Ă t1, . . . , du and t1, . . . , duzti1, . . . , ilu “ tj1, . . . , jd´lu, with γik “ 1 for k “ 1, . . . , l, and

γjk “ 0 for k “ 1, . . . , d´ l. Moreover, we assume that i1 ă . . . ă il and j1 ă . . . ă jd´l.

Although we are integrating over an area corresponding to an infinite hyperrectangle, transforming

into d-dimensional spherical coordinates provides a convenient representation, facilitating the analysis of

the integral’s order. During the transformation into d-dimensional spherical coordinates, we can always

ensure that the angles φ1, . . . , φd´1 are bounded by p0, π{2q, and consequently, we have

ż

Bγ

fpπ2η ∥z∥22qdz “ O
ˆ
ż 8

?
∆n{2

rd´1fpr2qdr

˙

,

where we used that the radius r is always greater or equal than
?
∆n{2. However, given that l dimensions

vanish when integrating and as n tends to infinity, we can determine the order more precisely. Therefore,

we can always consider the transformation

xi1 “ r cospφ1q, xi2 “ r sinpφ1q cospφ2q, ¨ ¨ ¨ , xil “ r sinpφ1q ¨ . . . ¨ sinpφl´1q cospφlq, . . . ,

xj1 “ r
l
ź

k“1

sinpφkq cospφl`1q, ¨ ¨ ¨ , xjd´l´1
“ r

d´2
ź

k“1

sinpφkq cospφd´1q, xjd´l
“ r

d´1
ź

k“1

sinpφkq, (84)

which allows without loss of generality to set i1 “ 1, . . . , il “ l and j1 “ l ` 1, . . . jd´l “ d, such that we

use a spherical transformation as recalled in equation (57). As we aim to specify the order concerning

the vanishing dimensions, we can bound the angles φ1, . . . , φl as follows:

0 ď xk “ r cospφkq

k´1
ź

l“1

sinpφlq ď

?
∆n

2
ô arccosp0q ě φk ě arccos

ˆ

?
∆n

2r
śk´1

l“1 sinpφlq

˙

ô arccos

ˆ

?
∆n

2r
śk´1

l“1 sinpφlq

˙

ď φk ď
π

2
,

where k “ 1, . . . , l and 1 ď l ď pd´1q. Now, by rearranging the integration order using Fubini’s theorem,

we have

ż

Bγ

fpπ2η ∥z∥22qdz “

ż 8

?
∆n{2

¨ ¨ ¨

ż 8

?
∆n{2

ż

?
∆n{2

0

¨ ¨ ¨

ż

?
∆n{2

0

f

ˆ

π2η
d
ÿ

l“1

z2l

˙

dzil ¨ ¨ ¨ dzi1 dzj1 ¨ ¨ ¨ dzjd´l

ď

ż 8

?
∆n{2

fpπ2ηr2q

ż π{2

0

¨ ¨ ¨

ż π{2

0

ż π{2

arccospb1q

¨ ¨ ¨

ż π{2

arccospblq

|Jd|dφl ¨ ¨ ¨ dφ1 dφl`1 ¨ ¨ ¨ dφd´1 dr,
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4. Essentials of multi-dimensional SPDEs

where

b1 :“

?
∆n

2r
, ¨ ¨ ¨ , bl :“

?
∆n

2r
śl´1

k“1 sinpφkq
.

Note that we can use the following inequality for the determinant |Jd|:

|Jd| ď rd´1 sinpφ1ql´1 sinpφ2ql´2 ¨ ¨ ¨ sinpφl´1q.

By utilizing the identity π{2 ´ arccospxq “ arcsinpxq and the inequality arcsinpxq ď xπ{2, for x P r0, 1s,

we deduce that

ż π{2

arccospb1q

¨ ¨ ¨

ż π{2

arccospblq

|Jd|dφl ¨ ¨ ¨ dφ1

ď rd´1

ż π{2

arccospb1q

¨ ¨ ¨

ż π{2

arccospbl´1q

ż π{2

arccospblq

dφl sinpφ1ql´1 ¨ ¨ ¨ sinpφl´1qdφl´1 ¨ ¨ ¨ dφ1

ď
rd´1π

2

ż π{2

arccospb1q

¨ ¨ ¨

ż π{2

arccospbl´1q

sinpφ1ql´1 ¨ ¨ ¨ sinpφl´1q
?
∆n

2r sinpφ1q ¨ ¨ ¨ sinpφl´1q
dφl´1 ¨ ¨ ¨ dφ1

“
?
∆n

rd´2π

4

ż π{2

arccospb1q

¨ ¨ ¨

ż π{2

arccospbl´2q

ż π{2

arccospbl´1q

dφl´1 sinpφ1ql´2 ¨ ¨ ¨ sinpφl´2qdφl´2 ¨ ¨ ¨ dφ1

ď C∆l{2
n rd´1´l.

Therefore, we have

ż

Bγ

fpπ2η ∥z∥22qdz “ O
ˆ

∆l{2
n

ż 8

?
∆n{2

rd´1´lfpr2qdr

˙

“ O
ˆ

∆l{2
n

ż 1

?
∆n

rd´1´lfpr2qdr

˙

.

Note that this order applies to the derivatives as well, i.e.:

ż

Bγ

hpπ2η ∥z∥22qdz “ O
ˆ

∆l{2
n

ż 1

?
∆n

rd´1´lhpr2qdr

˙

, (85)

where h “ f, f 1, f2. Now, we consider the last case, where ∥γ∥1 “ d. Since the radius is bounded by

∥t
?
∆n{2ud∥2 “

?
d∆n{2, we can perform a transformation into d-dimensional spherical coordinates and

obtain the following order:

ż

Bγ

fpπ2η ∥z∥22qdz “

ż

?
∆n{2

0

¨ ¨ ¨

ż

?
∆n{2

0

f

ˆ

π2η
d
ÿ

l“1

z2l

˙

dz1 ¨ ¨ ¨ dzd

ď

ż

∥z∥2ď
?
d∆n{2

zPr0,8q
d

fpπ2η∥z∥22qdz

ď

ż

?
d∆n{2

0

rd´1fpπ2ηr2q

ż π{2

0

¨ ¨ ¨

ż π{2

0

dφ1 ¨ ¨ ¨ dφd´1 dr

“ O
ˆ
ż

?
∆n

0

rd´1fpr2qdr

˙

.
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Consequently, the order of the compensation integral I is given by

I “

d´1
ÿ

∥γ∥1“1

γPt0,1u
d

ż

Bγ

fpπ2η ∥z∥22qdz ` O
ˆ
ż

?
∆n

0

rd´1fpr2qdr

˙

“ O
ˆ

max
l“1,...,d´1

∆l{2
n

ż 1

?
∆n

rd´1´lfpr2qdr _

ż

?
∆n

0

rd´1fpr2qdr

˙

.

Regarding the error term T1 from equation (81), we observe the following expression for z P rak-1, aks

and k P Nd:

pz ´
?
∆nkqJHgpzqpz ´

?
∆nkq “

d
ÿ

l1“1

d
ÿ

l2“1

`

zl1 ´
?
∆nkl1

˘`

zl2 ´
?
∆nkl2

˘ B2

Bzl1Bzl2
gpzq

ď
∆n

4

d
ÿ

l1“1

d
ÿ

l2“1

B2

Bzl1Bzl2
fpπ2η∥z∥22q

ď C

ˆ

∆n

d
ÿ

l1,l2“1
l1‰l2

zl1zl2f
2pπ2η∥z∥22q `

d∆n

2
f 1pπ2η∥z∥22q ` ∆n

d
ÿ

l“1

z2l f
2pπ2η∥z∥22q

˙

“ C

ˆ

∆n

d
ÿ

l1“1

d
ÿ

l2“1

zl1zl2f
2pπ2η∥z∥22q `

d∆n

2
f 1pπ2η∥z∥22q

˙

ď C

ˆ

∆n

2
f2pπ2η∥z∥22q

d
ÿ

l1“1

d
ÿ

l2“1

pz2l1 ` z2l2q `
d∆n

2
f 1pπ2η∥z∥22q

˙

ď C 1d∆n

´

∥z∥22f2pπ2η∥z∥22q ` f 1pπ2η∥z∥22q

¯

,

where C,C 1 ą 0 are suitable constants. Hence, we have

T1 “ O
ˆ

∆n

ż

r
?
∆n{2,8qd

∥z∥22f2p∥z∥22qdz _ ∆n

ż

r
?
∆n{2,8qd

f 1p∥z∥22qdz

˙

.

Once more, through the transformation into d-dimensional spherical coordinates, we can deduce the order

of the Lagrange remainder T1 as follows:

|T1| “ O
ˆ

∆n

ż 8

?
∆n

rd`1|f2pr2q| dr _ ∆n

ż 8

?
∆n

rd´1|f 1pr2q|dr

˙

“ O
ˆ

∆n

ż 1

?
∆n

rd`1|f2pr2q| dr _ ∆n

ż 1

?
∆n

rd´1|f 1pr2q|dr

˙

, (86)

which completes the proof of the first assertion.

We begin the proof of (ii) by establishing the following identity:

n
ź

l“1

cospxlq “
1

2n´1

ÿ

uPCn

cospuJxq, (87)

where x “ px1, . . . , xnqJ and Cn :“ t1u ˆ t´1, 1un´1, with |Cn| “ 2n´1 and n ě 1. We demonstrate that
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this identity can be derived using induction. For n P t1, 2u, the identity is readily observed by utilizing

the elementary trigonometric identity cospx˘yq “ cospxq cospyq ¯ sinpxq sinpyq. Now, we assume that the

advanced identity holds for an arbitrary n P N. For n ` 1, we consider x “ py, zq P Rn`1, where y P Rn

and z P R. Then, we have

1

2n

ÿ

uPCn`1

cospuJxq “
1

2n

ÿ

uPCn

`

cospuJy ` zq ` cospuJy ´ zq
˘

“
1

2n´1

ÿ

uPCn

cospuJyq cospzq

“

n`1
ź

l“1

cospxlq.

By utilizing equation (87), we arrive at the following structure:

∆d{2
n

ÿ

kPNd

fpλk∆nq cosp2πkj1yj1q ¨ . . . ¨ cosp2πkjlyjlq “
∆

d{2
n

2l´1

ÿ

kPNd

fpλk∆nq
ÿ

uPCl

cosp2πuJpy ‚ kqj,lq

“ Re

ˆ

∆
d{2
n

2l´1

ÿ

kPNd

gp
?
∆nkq

ÿ

uPCl

ei2πu
J

py‚kqj,l

˙

` Op∆nq,

where py ‚ kqj,l :“ pkj1yj1 , . . . , kjlyjlq and tj1, . . . , jlu Ă t1, . . . , du and l “ 1, . . . , pd´ 1q. Furthermore, it

holds with ui P t´1, 1u, i P N, that
ż ak

ak-1

ei2π
řl

i“1 uiyji
zji∆

´1{2
n dz “ ∆

d´l
2

n

ż akj1

akj1
´1

ei2πu1yj1zj1∆
´1{2
n dzj1 ¨ ¨ ¨

ż akjl

akjl
´1

ei2πulyjl
zjl∆

´1{2
n dzjl

“
∆

d{2
n

pi2πql
śl

i“1 uiyji

l
ź

i“1

`

e
i2πakji

uiyji
∆´1{2

n ´ e
i2πakji

´1uiyji
∆´1{2

n
˘

“
∆

d{2
n

pi2πql
śl

i“1 uiyji
ei2π

řl
i“1 uikji

yji

l
ź

i“1

`

eiπuiyji ´ e´iπuiyji

˘

“
∆

d{2
n

pi2πql
śl

i“1 uiyji
ei2π

řl
i“1 uikji

yji

l
ź

i“1

`

i2 sinpπuiyjiq
˘

“
∆

d{2
n

śl
i“1 sinpπyjiq

πl
śl

i“1 yji
ei2π

řl
i“1 uikji

yji .

Defining yj,l :“ pyj1 , . . . , yjlq and χ :“ χj,l : Rl Ñ Rd, where the i-th component pχj,lpxqqi of χj,lpxq is

zero if i P t1, . . . , duztj1, . . . , jlu or else the coordinate xji , leads to

Re

ˆ

∆
d{2
n

2l´1

ÿ

kPNd

gp
?
∆nkq

ÿ

uPCl

ei2πu
J

py‚kqj,l

˙

“ Re

ˆ

ÿ

kPNd

gp
?
∆nkq

ż ak

ak-1

ÿ

uPCl

πl
śl

i“1 yji

2l´1
śl

i“1 sinpπyjiq
ei2π

řl
i“1 uiyji

zji∆
´1{2
n dz

˙

“
ÿ

uPCl

Re

ˆ

πl
śl

i“1 yji

2l´1
śl

i“1 sinpπyjiq

ÿ

kPNd

ż ak

ak-1

gp
?
∆nkqei2πχpu‚yj,lq

Jz∆´1{2
n dz

˙
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“
ÿ

uPCl

Re

ˆ

πl
śl

i“1 yji

2l´1
śl

i“1 sinpπyjiq
F
„

ÿ

kPNd

gp
?
∆nkq1pak-1,aks

ȷ

`

´ 2πχpu ‚ yj,lq∆
´1{2
n

˘

˙

“: T2 ` T3, (88)

where F denotes the Fourier transformation which is given by

Frf spxq :“

ż

Rd

fptqe´ixJt dt,

for a f P L1pRdq. Since we analyse functions f : r0,8qd Ñ R the Fourier transformation is given by

integrating over r0,8qd. Hence, we define T2 :“
ř

uPCl
T2,u, T3 :“

ř

uPCl
T3,u, where the components are

given by

T2,u :“ Re

ˆ

πl
śl

i“1 yji

2l´1
śl

i“1 sinpπyjiq
F
„

ÿ

kPNd

gp
?
∆nkq1pak-1,aks ´ p´1qlg1Bγj,l

ȷ

`

´ 2πχpu ‚ yj,lq∆
´1{2
n

˘

˙

,

T3,u :“ p´1ql Re

ˆ

πl
śl

i“1 yji

2l´1
śl

i“1 sinpπyjiq
F
“

g1Bγj,l

‰`

´ 2πχpu ‚ yj,lq∆
´1{2
n

˘

˙

,

with Bγ defined in equation (82) and γj,l P t0, 1ud, where pγj,lqi “ 1 if i P tj1, . . . , jlu or zero otherwise.

Beginning with the analysis of the term T3, we have for 1 ď l ď pd´ 1q that

p´1qlT3 “
ÿ

uPCl

Re

ˆ

πl
śl

i“1 yji

2l´1
śl

i“1 sinpπyjiq
F
“

g1Bγj,l

‰`

´ 2πχpu ‚ yj,lq∆
´1{2
n

˘

˙

“
πl

śl
i“1 yji

śl
i“1 sinpπyjiq

ż

Bγj,l

gpzq
ÿ

uPCl

1

2l´1
cosp2πχpu ‚ yj,lq

Jz∆´1{2
n qdz

“
πl

śl
i“1 yji

śl
i“1 sinpπyjiq

ż

Bγj,l

gpzq cosp2πyj1zj1∆
´1{2
n q ¨ . . . ¨ cosp2πyjlzjl∆

´1{2
n qdz

“
πl

śl
i“1 yji

śl
i“1 sinpπyjiq

ż 8

?
∆n{2

¨ ¨ ¨

ż 8

?
∆n{2

ż

?
∆n{2

0

cosp2πyjlzjl∆
´1{2
n q ¨ ¨ ¨

ˆ

ż

?
∆n{2

0

gpzq cosp2πyj1zj1∆
´1{2
n qdzj1 ¨ ¨ ¨ dzjl dzi1 ¨ ¨ ¨ dzid´l

.

To simplify the notation, we introduce gpz1, . . . , zdq “ g̃pzj1 , . . . , zjl , zi1 , . . . , zid´l
q. Moreover, we can

apply integration by parts to obtain

πl
śl

i“1 yji
śl

i“1 sinpπyjiq

ż 8

?
∆n{2

¨ ¨ ¨

ż 8

?
∆n{2

ż

?
∆n{2

0

cosp2πyjlzjl∆
´1{2
n q ¨ ¨ ¨

ˆ

ż

?
∆n{2

0

gpzq cosp2πyj1zj1∆
´1{2
n qdzj1 ¨ ¨ ¨ dzjl dzi1 ¨ ¨ ¨ dzid´l

“
∆

1{2
n πl´1

śl
i“2 yji

2
śl

i“2 sinpπyjiq

ż 8

?
∆n{2

¨ ¨ ¨

ż 8

?
∆n{2

ż

?
∆n{2

0

cosp2πyjlzjl∆
´1{2
n q ¨ ¨ ¨

ˆ

ż

?
∆n{2

0

g̃p
?
∆n{2, zj2 , . . . , zjl , zi1 , . . . , zid´l

q cosp2πyj2zj2∆
´1{2
n qdzj2 ¨ ¨ ¨ dzjl dzi1 ¨ ¨ ¨ dzid´l
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´
πl

śl
i“1 yji

śl
i“1 sinpπyjiq

ż 8

?
∆n{2

¨ ¨ ¨

ż 8

?
∆n{2

ż

?
∆n{2

0

cosp2πyjlzjl∆
´1{2
n q ¨ ¨ ¨

ˆ

ż

?
∆n{2

0

g1
zj1

pzq
sinp2πyj1zj1∆

´1{2
n q

2πyj1∆
´1{2
n

dzj1 ¨ ¨ ¨ dzjl dzi1 ¨ ¨ ¨ dzid´l
.

By induction, we have

ÿ

uPCl

Re

ˆ

πl
śl

i“1 yji

2l´1
śl

i“1 sinpπyjiq
F
“

g1Bγj,l

‰`

´ 2πχpu ‚ yj,lq∆
´1{2
n

˘

˙

“

ˆ

∆
1{2
n

2

˙l ż 8

?
∆n{2

¨ ¨ ¨

ż 8

?
∆n{2

g̃p
?
∆n{2, . . . ,

?
∆n{2, zi1 , . . . , zid´l

qdzi1 ¨ ¨ ¨ dzid´l
´

l
ÿ

k“1

Ik, (89)

where we infer by a simple transformation, that

Ik :“
∆

pk´1q{2
n πl´k`1

śl
i“k yji

2k´1
śl

i“k sinpπyjiq

ż 8

?
∆n{2

¨ ¨ ¨

ż 8

?
∆n{2

ż

?
∆n{2

0

cosp2πyjlzjl∆
´1{2
n q ¨ ¨ ¨

ˆ

ż

?
∆n{2

0

ˆ

g̃1
zjk

p
?
∆n{2, . . . ,

?
∆n{2, zjk , . . . , zjl , zi1 , . . . , zid´l

q

ˆ
sinp2πyjkzjk∆

´1{2
n q

2πyjk∆
´1{2
n

˙

dzjk ¨ ¨ ¨ dzjl dzi1 ¨ ¨ ¨ dzid´l

“
∆

pl`1q{2
n πl´k

śl
i“k`1 yji

2k
śl

i“k sinpπyjiq

ż 8

?
∆n{2

¨ ¨ ¨

ż 8

?
∆n{2

ż 1{2

0

cosp2πyjlzjlq ¨ ¨ ¨

ˆ

ż 1{2

0

ˆ

g̃1
zjk

p
?
∆n{2, . . . ,

?
∆n{2, zjk∆

1{2
n , . . . , zjl∆

1{2
n , zi1 , . . . , zid´l

q

ˆ sinp2πyjkzjkq

˙

dzjk ¨ ¨ ¨ dzjl dzi1 ¨ ¨ ¨ dzid´l
. (90)

In order to determine the order of the terms Ik we proceed by re-transforming the integral as follows:

Ik “ O
ˆ

∆
pl`1q{2
n

δl´k`1

ż 8

?
∆n{2

¨ ¨ ¨

ż 8

?
∆n{2

ż 1{2

0

¨ ¨ ¨

ˆ

ż 1{2

0

g̃1
zjk

p
?
∆n{2, . . . ,

?
∆n{2, zjk∆

1{2
n , . . . , zjl∆

1{2
n , zi1 , . . . , zid´l

qdzjk ¨ ¨ ¨ dzjl dzi1 ¨ ¨ ¨ dzid´l

˙

“ O
ˆ

∆
k{2
n

δl´k`1

ż 8

?
∆n{2

¨ ¨ ¨

ż 8

?
∆n{2

ż

?
∆n{2

0

¨ ¨ ¨

ˆ

ż

?
∆n{2

0

g̃1
zjk

`

?
∆n{2, . . . ,

?
∆n{2, zjk , . . . , zjl , zi1 , . . . , zid´l

˘

dzjk ¨ ¨ ¨ dzjl dzi1 ¨ ¨ ¨ dzid´l

˙

“ O
ˆ

∆
k{2
n

δl´k`1

ż 8

?
∆n{2

¨ ¨ ¨

ż 8

?
∆n{2

ż

?
∆n{2

0

¨ ¨ ¨

ˆ

ż

?
∆n{2

0

zjkf
1

ˆ

pk ´ 1q∆n{4 `

l
ÿ

i“k

z2ji `

d´l
ÿ

j“1

z2ij

˙

dzjk ¨ ¨ ¨ dzjl dzi1 ¨ ¨ ¨ dzid´l

˙
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“ O
ˆ

∆
k{2
n

δl´k`1

ż 8

?
∆n{2

¨ ¨ ¨

ż 8

?
∆n{2

ż

?
∆n{2

0

¨ ¨ ¨

ż

?
∆n{2

0

zjkf
1

ˆ l
ÿ

i“k

z2ji `

d´l
ÿ

j“1

z2ij

˙

dzjk ¨ ¨ ¨ dzjl dzi1 ¨ ¨ ¨ dzid´l

˙

.

Analogously to the determination of the error term I, we transform into pd´k`1q-dimensional spherical

coordinates and obtain with 1 ď k ď l ď pd´ 1q that

Ik “ O
ˆ

∆
pl`1q{2
n

δl´k`1

ż 1

?
∆n

rd´lf 1pr2qdr

˙

, (91)

which implies

l
ÿ

k“1

Ik “ O
ˆ

∆
pl`1q{2
n

δl

ż 1

?
∆n

rd´lf 1pr2qdr

˙

.

Next, we have

ˆ

∆
1{2
n

2

˙l ż 8

?
∆n{2

¨ ¨ ¨

ż 8

?
∆n{2

g̃p
?
∆n{2, . . . ,

?
∆n{2, zi1 , . . . , zid´l

qdzi1 ¨ ¨ ¨ dzid´l

“

ż 8

?
∆n{2

¨ ¨ ¨

ż 8

?
∆n{2

ż

?
∆n{2

0

¨ ¨ ¨

ż

?
∆n{2

0

g̃p
?
∆n{2, . . . ,

?
∆n{2, zi1 , . . . , zid´l

qdzj1 . . . dzjl dzi1 ¨ ¨ ¨ dzid´l

“: J1.

Utilizing Taylor expansion, we can decompose g as follows:

gpz1, . . . , zdq “ g̃pzj1 , . . . , zjl , zi1 , . . . , zid´l
q

“ g̃p
?
∆n{2, . . . ,

?
∆n{2, zi1 , . . . , zid´l

q ` ∇lg̃pξ1, . . . , ξl, zi1 , . . . , zid´l
qJpz̃ ´ aq

“ g̃p
?
∆n{2, . . . ,

?
∆n{2, zi1 , . . . , zid´l

q `

l
ÿ

k“1

g̃1
zjk

pξ1, . . . , ξl, zi1 , . . . , zid´l
q
`

zjk ´
?
∆n{2

˘

,

where

∇l :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

B
Bzj1
...
B

Bzjl

id
...

id

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, a :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

?
∆n{2
...

?
∆n{2

zi1
...

zid´l

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, z̃ :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

zj1
...

zjl
zi1
...

zid´l

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

and ξ1, . . . , ξl P r0,
?
∆n{2s. Thus, it holds that

ˇ

ˇ

ˇ

ˇ

J1 ´

ż

Bγj,l

gpzqdz

ˇ

ˇ

ˇ

ˇ

ď

ż

Bγj,l

|g̃p
?
∆n{2, . . . ,

?
∆n{2, zi1 , . . . , zid´l

q ´ gpzq|dz

“ O
ˆ l

ÿ

k“1

ż

Bγj,l

|f 1
zjk

p∥z∥22q| ¨ |zjk ´
?
∆n{2|dz

˙
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“ O
ˆ

?
∆n

l
ÿ

k“1

ż

Bγj,l

zjk |f 1p∥z∥22q| dz

˙

“ O
ˆ

∆pl`1q{2
n

ż 1

?
∆n

rd´l|f 1pr2q| dr

˙

.

Hence, we have

J1 “

ż

Bγj,l

gpzqdz ` O
ˆ

∆pl`1q{2
n

ż 1

?
∆n

rd´l|f 1pr2q|dr

˙

,

and therefore, we derive the following:

T3 “ p´1ql
ż

Bγj,l

gpzqdz ` O
ˆ

∆
pl`1q{2
n

δl

ż 1

?
∆n

rd´lf 1pr2qdr

˙

.

To analyse the order of the term T2, we begin by distinguishing between two cases: l being an odd natural

number and l being an even natural number. Considering that the term T2,u corresponds to the Fourier

transform of the function

ÿ

kPNd

gp
?
∆nkq1pak-1,aks ´ p´1qlg1Bγj,l

,

we can analyse the order of this term by adding the following terms:

ÿ

kPNd

gp
?
∆nkq1pak-1,aks ´ p´1qlg1Bγj,l

“
ÿ

kPNd

gp
?
∆nkq1pak-1,aks ´ p´1qlg ¨

`

1Bγj,l
` 1

p
?
∆n{2,8qd

´ 1
p
?
∆n{2,8qd

˘

.

If l is odd, we have

ÿ

kPNd

gp
?
∆nkq1pak-1,aks ´ p´1qlg1Bγj,l

“
ÿ

kPNd

gp
?
∆nkq1pak-1,aks ´ g1

p
?
∆n{2,8qd

` g1
p
?
∆n{2,8qdYBγj,l

,

since we have disjoint sets. For the case where l is even, we find that

ÿ

kPNd

gp
?
∆nkq1pak-1,aks ´ p´1qlg1Bγj,l

“
ÿ

kPNd

gp
?
∆nkq1pak-1,aks ´ g1

p
?
∆n{2,8qd

` g ¨
`

1
p
?
∆n{2,8qd

´ 1Bγj,l

˘

ď
ÿ

kPNd

gp
?
∆nkq1pak-1,aks ´ g1

p
?
∆n{2,8qd

` g1
p
?
∆n{2,8qdYBγj,l

.

Therefore, we decompose T2 for general l “ 1, . . . , d´ 1 into the following parts:

T2,u ď Re

ˆ

πl
śl

i“1 yji

2l´1
śl

i“1 sinpπyjiq
F
„

ÿ

kPNd

gp
?
∆nkq1pak-1,aks ´ g1

p
?
∆n{2,8qd

ȷ

`

´ 2πχpu ‚ yj,lq∆
´1{2
n

˘

˙

` Re

ˆ

πl
śl

i“1 yji

2l´1
śl

i“1 sinpπyjiq
F
„

g1
p
?
∆n{2,8qdYBγj,l

ȷ

`

´ 2πχpu ‚ yj,lq∆
´1{2
n

˘

˙
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“: S1,u ` S2,u.

Furthermore, we define Si :“
ř

uPCl
Si,u, for i “ 1, 2. Starting with S2, it holds for q P t1, 2u that

|xqjFrgspxq| “

ˇ

ˇ

ˇ

ˇ

F
„

Bq

Bxqj
g

ȷ

pxq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bq

Bxqj
gpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L1

and |Frgspxq| ď |x´q
j |

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bq

Bxqj
gpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L1

, (92)

where we use xj ‰ 0 in the last inequality, for j “ 1, . . . , d and x P Rd. Hence, we have

S2,u “ O
ˆ

∆nπ
l´2

śl
i“2 yji

2l`1yj1
śl

i“1 sinpπyjiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B2

Bz2j1
g1

r
?
∆n{2,8qdYBγj,l

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L1

˙

.

To compute the L1 norm, we first obtain the following:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B2

Bz2j1
g1

r
?
∆n{2,8qdYBγj,l

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L1

“

ż

r
?
∆n{2,8qdYBγj,l

B2

Bz2j1
gpzqdz

“

ż

pr
?
∆n{2,8q 9Yp0,

?
∆n{2qqlˆr

?
∆n{2,8qd´l

B2

Bz2j1
gpzqdz̃,

where z̃ “ pzj1 , . . . , zjl , zi1 , . . . , zid´l
q. At this point, it is possible that none of the integration variables

zj1 , . . . , zjl fall within the range p0,
?
∆n{2q, or one to all of them. Assume we have 0 ď k ď l of these

integration variable within the range p0,
?
∆n{2q, then there are

`

l
k

˘

possible combinations to choose k

variables from zj1 , . . . , zjl . As each choice results in the same order of the integral, which is evident by

the argumentation followed by display (84), it is sufficient to analyse the order of the integral, where we

set the first k integration variables zj1 , . . . , zjk P p0,
?
∆n{2q. Hence, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B2

Bz2j1
g1

r
?
∆n{2,8qdYBγj,l

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L1

“

ż

pr
?
∆n{2,8q 9Yp0,

?
∆n{2qqlˆr

?
∆n{2,8qd´l

B2

Bz2j1
gpzqdz̃

“ O
ˆ

max
k“0,...,l

ż

p0,
?
∆n{2qkˆr

?
∆n{2,8qd´k

z2j1f
2p∥z∥22q ` f 1p∥z∥22qdz̃

˙

“ O
ˆ

max
k“1,...,l

∆k{2
n

ż 1

?
∆n

rd´k`1f2pr2qdr _

ż 8

?
∆n

rd`1f2pr2qdr

_ max
k“1,...,l

∆k{2
n

ż 1

?
∆n

rd´k´1f 1pr2qdr _

ż 8

?
∆n

rd´1f 1pr2qdr

˙

.

Thus, we infer the following:

S2 “
ÿ

uPCl

S2,u “ O
ˆ

max
k“0,...,l

∆
k{2`1
n

δl`1

ż 1

?
∆n

rd´k`1f2pr2qdr _ max
k“0,...,l

∆
k{2`1
n

δl`1

ż 1

?
∆n

rd´k´1f 1pr2qdr

˙

,

(93)

where we have used that y P rδ, 1 ´ δsd. We commence the analysis of the term S1. Here, we find that

|S1,u| “
πl

śl
i“1 yji

2l´1
śl

i“1 sinpπyjiq

ˇ

ˇ

ˇ

ˇ

Re

ˆ

ÿ

kPNd

ż ak

ak-1

`

gp
?
∆nkq ´ gpzq

˘

exp
“

2πiχpu ‚ yj,lq
Jz∆´1{2

n

‰

dz

˙
ˇ

ˇ

ˇ

ˇ

.
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By considering display (80), we deduce

|S1,u| ď
πl

śl
i“1 yji

2l´1
śl

i“1 sinpπyjiq

ˇ

ˇ

ˇ

ˇ

Re

ˆ

´
ÿ

kPNd

ż ak

ak-1

∇gp
?
∆nkqJpz ´

?
∆nkq exp

“

2πiχpu ‚ yj,lq
Jz∆´1{2

n

‰

dz

˙
ˇ

ˇ

ˇ

ˇ

`
πl

śl
i“1 yji

2l´1
śl

i“1 sinpπyjiq
Re

ˆ

ÿ

kPNd

ż ak

ak-1

ˇ

ˇ

ˇ

1

2
pz ´

?
∆nkqJHgpξq

ˆ pz ´
?
∆nkq exp

“

2πiχpu ‚ yj,lq
Jz∆´1{2

n

‰

ˇ

ˇ

ˇ
dz

˙

ď
πl

śl
i“1 yji

2l´1
śl

i“1 sinpπyjiq

ˇ

ˇ

ˇ

ˇ

Re

ˆ

´
ÿ

kPNd

ż ak

ak-1

∇gp
?
∆nkqJpz ´

?
∆nkq exp

“

2πiχpu ‚ yj,lq
Jz∆´1{2

n

‰

dz

˙
ˇ

ˇ

ˇ

ˇ

`
πl

śl
i“1 yji

2l´1
śl

i“1 sinpπyjiq

ÿ

kPNd

ż ak

ak-1

ˇ

ˇ

ˇ

1

2
pz ´

?
∆nkqJHgpξqpz ´

?
∆nkq

ˇ

ˇ

ˇ
dz.

We employ a similar approach as for the term T1, given in the equations (81) and (86), for the second

integral, leading to the term

|S1,u| ď
πl

śl
i“1 yji

2l´1
śl

i“1 sinpπyjiq

ˇ

ˇ

ˇ

ˇ

ÿ

kPNd

ż ak

ak-1

∇gp
?
∆nkqJpz ´

?
∆nkq cos

“

2πχpu ‚ yj,lq
Jz∆´1{2

n

‰

dz

ˇ

ˇ

ˇ

ˇ

` O
ˆ

∆n

δl

ż 1

?
∆n

rd`1|f2pr2q|dr _
∆n

δl

ż 1

?
∆n

rd´1|f 1pr2q| dr

˙

.

Employing equation (87), we obtain

|S1| ď
πl

śl
i“1 yji

śl
i“1 sinpπyjiq

ˇ

ˇ

ˇ

ˇ

ÿ

kPNd

ż ak

ak-1

∇gp
?
∆nkqJpz ´

?
∆nkq cosp2πyj1zj1∆

´1{2
n q ¨ ¨ ¨ cosp2πyjlzjl∆

´1{2
n qdz

ˇ

ˇ

ˇ

ˇ

` O
ˆ

∆n

δl

ż 1

?
∆n

rd`1|f2pr2q| dr _
∆n

δl

ż 1

?
∆n

rd´1|f 1pr2q|dr

˙

.

Let k P Nd, then it holds that

ż ak

ak-1

∇gp
?
∆nkqJpz ´

?
∆nkq cosp2πyj1zj1∆

´1{2
n q ¨ ¨ ¨ cosp2πyjlzjl∆

´1{2
n qdz

“

d
ÿ

l“1

ż ak

ak-1

g1
zl

p
?
∆nkqpzl ´

?
∆nklq cosp2πyj1zj1∆

´1{2
n q ¨ ¨ ¨ cosp2πyjlzjl∆

´1{2
n qdz.

Firstly, for l̃ R tj1, . . . , jlu, we have

ż akj1

akj1
´1

cosp2πyj1zj1∆
´1{2
n qdzj1 ¨ ¨ ¨

ż akjl

akjl
´1

cosp2πyjlzjl∆
´1{2
n qdzjl

ż akj
l̃

akj
l̃

´1

pzjl̃ ´
?
∆nkjl̃qdzjl̃ “ 0,

since it holds that

ż

?
∆npk̃`1{2q

?
∆npk̃´1{2q

px´
?
∆nk̃qdx “

ż

?
∆n{2

´
?
∆n{2

x “ 0,
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for a k̃ P N. Suppose l̃ P tj1, . . . , jlu, then we obtain

ż akj1

akj1
´1

cosp2πyj1zj1∆
´1{2
n qdzj1 ¨ ¨ ¨

ż akj
l̃

akj
l̃

´1

pzjl̃ ´
?
∆nkjl̃q cosp2πyjl̃zjl̃∆

´1{2
n qdzjl̃

¨ ¨ ¨

ż akjl

akjl
´1

cosp2πyjlzjl∆
´1{2
n qdzjl .

For k̃ P N and ỹ P rδ, 1 ´ δs, we have

ż

?
∆npk̃`1{2q

?
∆npk̃´1{2q

cosp2πỹx∆´1{2
n qdx “

?
∆n cosp2πỹk̃q sinpπỹq

πỹ
“ Op∆1{2

n {δq,

and by a linear transformation we obtain that

ż

?
∆npk̃`1{2q

?
∆npk̃´1{2q

px´
?
∆nk̃q cosp2πỹx∆´1{2

n qdx “

ż

?
∆n{2

´
?
∆n{2

x cosp2πỹpx`
?
∆nk̃q∆´1{2

n qdx

“
∆n

`

πỹ cospπỹq ´ sinpπỹq
˘

2π2ỹ2
sinp2πk̃ỹq. (94)

Hence, we get for 1 ď l ď d´ 1 that

|S1| “ O
ˆ

∆
pd`1q{2
n

δ

l
ÿ

i“1

ÿ

kPNd

ˇ

ˇg1
zji

p
?
∆nkq cosp2πyj1kj1q ¨ ¨ ¨ cosp2πyji´1kji´1q sinp2πkjiyjiq

ˆ cosp2πyji`1
kji`1

q ¨ ¨ ¨ cosp2πyjlkjlq
ˇ

ˇ

˙

` O
ˆ

∆n

δl

ż 1

?
∆n

rd`1|f2pr2q| dr _
∆n

δl

ż 1

?
∆n

rd´1|f 1pr2q|dr

˙

,

where we set yj0 “ yjl`1
“ 0. It remains to determine the order of the series. Therefore, we use the

following identity:

sinpx1q cospx2q ¨ . . . ¨ cospxnq “
1

2n´1

ÿ

uPCn

sinpuJxq,

where x “ px1, . . . , xnq P Rn and Cn “ t1uˆt´1, 1un´1. This identity can be proven similarly to identity

in display (87). Without loss of generality, we set the coordinates of the sine term to be j1, leading to

the expression

ÿ

kPNd

g1
zj1

p
?
∆nkq sinp2πkj1yj1q cosp2πyj2kj2q ¨ ¨ ¨ cosp2πyjlkjlq

“
1

2l´1

ÿ

uPCl

ÿ

kPNd

g1
zj1

p
?
∆nkq sin

`

2πpuJpy ‚ kqj,l
˘

,

where py ‚ kqj,l :“ pkj1yj1 , . . . , kjlyjlq. By following similar steps as in display (88), we find that

∆pd`1q{2
n

ÿ

kPNd

g1
zj1

p
?
∆nkq sinp2πkj1yj1q cosp2πyj2kj2q ¨ ¨ ¨ cosp2πyjlkjlq

“
ÿ

uPCl

Im

ˆ

∆
1{2
n πl

śl
i“1 yji

2l´1
śl

i“1 sinpπyjiq
F
„

ÿ

kPNd

g1
zj1

p
?
∆nkq1pak-1,aks

ȷ

`

´ 2πχpu ‚ yj,lq∆
´1{2
n

˘

˙

“: U1 ` U2 ´ U3,
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where Ui :“
ř

uPCl
Ui,u for i “ 1, 2, 3 and

U1,u :“ Im

ˆ

∆
1{2
n πl

śl
i“1 yji

2l´1
śl

i“1 sinpπyjiq
F
„

ÿ

kPNd

g1
zj1

p
?
∆nkq1pak-1,aks ´ g1

zj1
1

p
?
∆n{2,8qd

ȷ

`

´ 2πχpu ‚ yj,lq∆
´1{2
n

˘

˙

,

U2,u :“ Im

ˆ

∆
1{2
n πl

śl
i“1 yji

2l´1
śl

i“1 sinpπyjiq
F
„

g1
zj1
1

p
?
∆n{2,8qdYBγj,l

ȷ

`

´ 2πχpu ‚ yj,lq∆
´1{2
n

˘

˙

,

U3,u :“ Im

ˆ

∆
1{2
n πl

śl
i“1 yji

2l´1
śl

i“1 sinpπyjiq
F
„

g1
zj1
1Bγj,l

ȷ

`

´ 2πχpu ‚ yj,lq∆
´1{2
n

˘

˙

.

By employing the inequality ∥Frf s∥8 ď ∥f∥L1
, we obtain, for a u P Cl:

|U1,u| ď
∆

1{2
n πl

śl
i“1 yji

2l´1
śl

i“1 sinpπyjiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

kPNd

g1
zj1

p
?
∆nkq1pak-1,aks ´ g1

zj1
1

p
?
∆n{2,8qd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L1pRdq

ď
∆

1{2
n πl

śl
i“1 yji

2l´1
śl

i“1 sinpπyjiq

ÿ

kPNd

ż

Rd

ˇ

ˇg1
zj1

p
?
∆nkq ´ g1

zj1
pzq

ˇ

ˇ1pak-1,akspzqdz.

Applying Taylor’s expansion, we find that

|U1,u| ď
∆

1{2
n πl

śl
i“1 yji

2l´1
śl

i“1 sinpπyjiq

ÿ

kPNd

ż ak

ak-1

ˇ

ˇ∇g1
zj1

pξkqJpz ´
?
∆nkq

ˇ

ˇdz.

Following analogous steps as for the term T1, we have for k P rak-1, aks that

∇g1
zj1

pzqJpz ´
?
∆nkq “

d
ÿ

l“1

B2

Bzj1Bzl
gpzqpzl ´

?
∆nklq

ď C
?
∆n

´

f2pπ2η∥z∥22qpdz2j1 ` ∥z∥22q ` f 1pπ2η∥z∥22q

¯

,

and therefore, it holds that

|U1,u| “ O
ˆ

∆n

δl

ż

r
?
∆n{2,8qd

∥z∥22f2pπ2η∥z∥22qdz `
∆n

δl

ż

r
?
∆n{2,8qd

f 1pπ2η∥z∥22qdz

˙

“ O
ˆ

∆n

δl

´

ż 8

?
∆n{2

rd`1f2pr2qdr `

ż 8

?
∆n{2

rd´1f 1pr2qdr
¯

˙

“ O
ˆ

∆n

δl

ż 1

?
∆n

rd`1f2pr2qdr _
∆n

δl

ż 1

?
∆n

rd´1f 1pr2qdr

˙

.

Note that U1 is of the same order as U1,u. Using display (92) with q “ 1 we have for U2,u that

|U2,u| “ O
ˆ

∆nπ
l´1

śl
i“2 yji

2l
śl

i“1 sinpπyjiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B2

Bz2j1
g1

p
?
∆n{2,8qdYBγj,l

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L1

˙

.

Utilizing the order of the term S2 yields the following:

|U2| “ O
ˆ

max
k“0,...,l

∆
k{2`1
n

δl

ż 1

?
∆n

rd´k`1|f2pr2q| dr _ max
k“0,...,l

∆
k{2`1
n

δl

ż 1

?
∆n

rd´k´1|f 1pr2q|dr

˙

.
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For the last term U3 we have with the equations (92) and (85) that

U3,u “ O
ˆ

∆nπ
l´1

śl
i“2 yji

2l
śl

i“1 sinpπyjiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B2

By2j1
g1Bγj,l

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L1

˙

“ O
ˆ

∆n

δl

´

∆l{2
n

ż 1

?
∆n

rd´l`1f2prqdr ` ∆l{2
n

ż 1

?
∆n

rd´l´1f 1prqdr
¯

˙

“ O
ˆ

∆
l{2`1
n

δl

ż 1

?
∆n

rd´l`1f2prqdr _
∆

l{2`1
n

δl

ż 1

?
∆n

rd´l´1f 1prqdr

˙

.

Hence, we find

|S1| “ O
ˆ

max
k“0,...,l

∆
k{2`1
n

δl`1

ż 1

?
∆n

rd´k`1|f2pr2q| dr _ max
k“0,...,l

∆
k{2`1
n

δl`1

ż 1

?
∆n

rd´k´1|f 1pr2q|dr

˙

“ |S2|

and

∆d{2
n

ÿ

kPNd

fpλk∆nq cosp2πkj1yj1q ¨ . . . ¨ cosp2πkjlyjlq “ T2 ` T3 ` Op∆nq

“ p´1ql
ż

Bγj,l

gpzqdz ` O
ˆ

∆pl`1q{2
n

ż 1

?
∆n

rd`1´l|f 1pr2q| dr _
∆

pl`1q{2
n

δl

ż 1

?
∆n

rd´lf 1pr2qdr

˙

` O
ˆ

max
k“0,...,l

∆
k{2`1
n

δl`1

ż 1

?
∆n

rd´k`1|f2pr2q|dr _ max
k“0,...,l

∆
k{2`1
n

δl`1

ż 1

?
∆n

rd´k´1|f 1pr2q| dr

˙

,

which completes the proof of (ii).

For the proof of (iii), we proceed in a manner similar to the proof of (ii). Firstly, for a γ P t0, 1ud, with

∥γ∥1 “ d´ 1, we find that

∆d{2
n

ÿ

kPNd

fpλk∆nq cosp2πk1y1q ¨ . . . ¨ cosp2πkdydq “: T2 ` T3 ´ T4 ` Op∆nq,

where we redefine Ti :“
ř

uPCd
Ti,u, with i “ 2, 3, 4, by the following:

T2,u :“ Re

ˆ

πd
śd

i“1 yi

2d´1
śd

i“1 sinpπyiq
F
„

ÿ

kPNd

gp
?
∆nkq1pak-1,aks ´ g1

r
?
∆n{2,8qd

ȷ

`

´ 2πpu ‚ yq∆´1{2
n

˘

˙

,

T3,u :“ Re

ˆ

πd
śd

i“1 yi

2d´1
śd

i“1 sinpπyiq
F
„

g1
r
?
∆n{2,8qdYBγ

ȷ

`

´ 2πpu ‚ yq∆´1{2
n

˘

˙

,

T4,u :“ Re

ˆ

πd
śd

i“1 yi

2d´1
śd

i“1 sinpπyiq
F
„

g1Bγ

ȷ

`

´ 2πpu ‚ yq∆´1{2
n

˘

˙

,

where y “ py1, . . . , ydq P rδ, 1 ´ δsd. For T2, we apply the same procedure as for S1 in statement (ii) to

obtain

|T2| “ O
ˆ

∆
pd`1q{2
n

δ

d
ÿ

i“1

ÿ

kPNd

|g1
zip

?
∆nkq| cosp2πy1k1q ¨ ¨ ¨ cosp2πyi´1ki´1q sinp2πkiyiq

ˆ cosp2πyi`1ki`1q ¨ ¨ ¨ cosp2πydkdq

˙

` O
ˆ

∆n

δd

ż 1

?
∆n

rd`1|f2pr2q| dr _
∆n

δd

ż 1

?
∆n

rd´1|f 1pr2q| dr

˙
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“ O
ˆ

∆
pd`1q{2
n

δ

ÿ

kPNd

|g1
z1p

?
∆nkq| sinp2πy1k1q cosp2πy2k2q ¨ ¨ ¨ cosp2πydkdq

˙

` O
ˆ

∆n

δd

ż 1

?
∆n

rd`1|f2pr2q| dr _
∆n

δd

ż 1

?
∆n

rd´1|f 1pr2q|dr

˙

.

Furthermore, it holds that

∆pd`1q{2
n

ÿ

kPNd

g1
z1p

?
∆nkq sinp2πk1y1q cosp2πy2k2q ¨ ¨ ¨ cosp2πydkdq

“
ÿ

uPCl

Im

ˆ

∆
1{2
n πd

śd
i“1 yi

2d´1
śd

i“1 sinpπyiq
F
„

ÿ

kPNd

g1
z1p

?
∆nkq1pak-1,aks

ȷ

`

´ 2πpu ‚ yq∆´1{2
n

˘

˙

“: U1 ` U2 ´ U3,

where we redefine Ui :“
ř

uPCl
Ui,u, for i “ 1, 2, 3, by the following terms:

U1,u :“ Im

ˆ

∆
1{2
n πd

śd
i“1 yi

2d´1
śd

i“1 sinpπyiq
F
„

ÿ

kPNd

g1
zj1

p
?
∆nkq1pak-1,aks ´ g1

zj1
1

p
?
∆n{2,8qd

ȷ

`

´ 2πpu ‚ yq∆´1{2
n

˘

˙

,

U2,u :“ Im

ˆ

∆
1{2
n πd

śd
i“1 yi

2d´1
śd

i“1 sinpπyiq
F
„

g1
zj1
1

p
?
∆n{2,8qdYBγ

ȷ

`

´ 2πpu ‚ yq∆´1{2
n

˘

˙

,

U3,u :“ ´ Im

ˆ

∆
1{2
n πd

śd
i“1 yi

2d´1
śd

i“1 sinpπyiq
F
„

g1
zj1
1Bγ

ȷ

`

´ 2πpu ‚ yq∆´1{2
n

˘

˙

.

For the term U1, U2 and U3 we obtain the same order as in statement (ii), resulting in

|U1| “ O
ˆ

∆n

δd

ż 1

?
∆n

rd`1|f2pr2q|dr _
∆n

δd

ż 1

?
∆n

rd´1|f 1pr2q| dr

˙

,

|U2| “ O
ˆ

max
k“0,...,d´1

∆
k{2`1
n

δd

ż 1

?
∆n

rd´k`1|f2pr2q| dr _ max
k“0,...,d´1

∆
k{2`1
n

δd

ż 1

?
∆n

rd´k´1|f 1pr2q|dr

˙

,

|U3| “ O
ˆ

∆
pd`1q{2
n

δd

ż 1

?
∆n

r2|f2prq| dr _
∆

pd`1q{2
n

δd

ż 1

?
∆n

|f 1prq|dr

˙

.

Hence, we have

|T2| “ O
ˆ

max
k“0,...,d´1

∆
k{2`1
n

δd`1

ż 1

?
∆n

rd´k`1|f2pr2q| dr _ max
k“0,...,d´1

∆
k{2`1
n

δd`1

ż 1

?
∆n

rd´k´1|f 1pr2q|dr

˙

.

For T3 we infer the same order as for S2 in equation (93) and have T3 “ OpT2q. For T4 we set without

loss of generality that γ “ t1, . . . , 1, 0u P t0, 1ud and have

T4 “
πd

śd
i“1 yi

śd
i“1 sinpπyiq

ż 8

?
∆n{2

cosp2πydzd∆
´1{2
n q

ż

?
∆n{2

0

cosp2πyd´1zd´1∆
´1{2
n q ¨ ¨ ¨

ˆ

ż

?
∆n{2

0

gpzq cosp2πy1z1∆
´1{2
n qdz1 ¨ ¨ ¨ dzd´1 dzd.
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Using analogous steps as in equations (89) and (91), we have

T4 “

ˆ

∆
1{2
n

2

˙d´1
πyd

sinpπydq

ż 8

?
∆n{2

g̃p
?
∆n{2, . . . ,

?
∆n{2, zdq cosp2πydzd∆

´1{2
n qdzd

` O
ˆ

∆
d{2
n

δd

ż 1

?
∆n

rf 1pr2qdr

˙

.

Integration by parts yields

πyd
sinpπydq

ż 8

?
∆n{2

g̃p
?
∆n{2, . . . ,

?
∆n{2, zdq cosp2πydzd∆

´1{2
n qdzd

“
∆

1{2
n

2 sinpπydq

„

g̃p
?
∆n{2, . . . ,

?
∆n{2, zdq sinp2πydzd∆

´1{2
n q

ȷ8

?
∆n{2

´
∆

1{2
n

2 sinpπydq

ż 8

?
∆n{2

B

Bzd
g̃p

?
∆n{2, . . . ,

?
∆n{2, zdq sinp2πydzd∆

´1{2
n qdzd

“ O
´

∆1{2
n gp

?
∆n{2, . . . ,

?
∆n{2q

¯

´ Id,

where

Id :“
∆

1{2
n

2 sinpπydq

ż 8

?
∆n{2

B

Bzd
g̃p

?
∆n{2, . . . ,

?
∆n{2, zdq sinp2πydzd∆

´1{2
n qdzd.

Furthermore, we have

Id “ O
ˆ

∆
1{2
n

δ

ż 8

?
∆n{2

zdf
1
`

pd´ 1q∆n{4 ` z2d
˘

dzd

˙

“ O
ˆ

∆
1{2
n

δ

ż 1

?
∆n{2

rf 1
`

r2
˘

dr

˙

and therefore, we find that

T4 “ O
`

∆d{2
n fp∆nq

˘

` O
ˆ

∆
d{2
n

δd

ż 1

?
∆n

rf 1pr2qdr

˙

.

Finally, we obtain that

∆d{2
n

ÿ

kPNd

fpλk∆nq cosp2πk1y1q ¨ . . . ¨ cosp2πkdydq “ O
`

∆d{2
n fp∆nq

˘

` O
ˆ

∆
d{2
n

δd

ż 1

?
∆n

rf 1pr2qdr

˙

` O
ˆ

max
k“0,...,d´1

∆
k{2`1
n

δd`1

ż 1

?
∆n

rd´k`1|f2pr2q|dr _ max
k“0,...,d´1

∆
k{2`1
n

δd`1

ż 1

?
∆n

rd´k´1|f 1pr2q|dr

˙

,

which completes the proof.

Next, we present the proof of Corollary 4.2.2.
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Proof of Corollary 4.2.2. Let m P N and β ą 0, with limxÑ0 |hpx2q{x´β | “ C ă 8, for a function h.

Then, it holds

ż b

a

xmhpx2q “ O
ˆ

” xm´β`1

m´ β ` 1

ıb

a

˙

“ O
`

bm´β`1 ` am´β`1
˘

,

for real numbers a ă b and β ‰ m` 1. Therefore, we have

ż

?
∆n

0

rd´1fpr2qdr “ O
`

∆pd´β0q{2
n

˘

, ∆n

ż 1

?
∆n

rd´1|f 1pr2q| dr “ O
`

∆n _ ∆pd`2´β1q{2
n

˘

∆n

ż 1

?
∆n

rd`1|f2pr2q|dr “ O
`

∆n _ ∆pd`4´β2q{2
n

˘

.

The first assertion is concluded by utilizing Lemma 4.2.1. Similarly, for 1 ď l ď d ´ 1 and 0 ď k ď l, we

get that

∆
pl`1q{2
n

δl

ż 1

?
∆n

rd´lf 1pr2qdr “ O
`

δ´l∆pl`1q{2
n _ δ´l∆pd`2´β1q{2

n

˘

,

∆
k{2`1
n

δl`1

ż 1

?
∆n

rd´k`1|f2pr2q|dr “ O
`

δ´pl`1q∆k{2`1
n _ δ´pl`1q∆pd`4´β2q{2

n

˘

,

∆
k{2`1
n

δl`1

ż 1

?
∆n

rd´k´1|f 1pr2q|dr “ O
`

δ´pl`1q∆k{2`1
n _ δ´pl`1q∆pd`2´β1q{2

n

˘

.

The proof follows with the subsequent identity:

∆d{2
n fp∆nq “ O

`

∆pd´β0q{2
n

˘

.

Next, we proceed to prove that fα, gα,τ P Qβ , where Qβ is defined in display (66).

Proof of Lemma 4.2.3. First, it holds that

ż 8

0

e´cx

xm
dx “

„

1

1 ´m
x1´me´cx

ȷ8

0

`
c

1 ´m

ż 8

0

x1´me´cx dx

“
1

1 ´m

ż 8

0

ˆ

u

c

˙1´m

e´u du “
cm´1

1 ´m
Γp2 ´mq “ cm´1Γp1 ´mq, (95)

for m ă 1 and c ą 0, where Γpzq “
ş8

0
tz´1e´t dt denotes the Gamma function for z P C and Repzq R

t0,´1,´2, . . .u. Note that Γp1 ` zq “ zΓpzq. By utilizing equation (95), we find

ż 8

0

e´cx2

xm
dx “

ż 8

0

e´cx

2xpm`1q{2
dx “

cpm´1q{2

2
Γ

ˆ

1

2
´
m

2

˙

, (96)

where m ă 1 and c ą 0 and

ż 8

0

1 ´ e´cx2

xm
dx “

„

x1´m

1 ´m

`

1 ´ e´cx2˘
ȷ8

0

´
2c

1 ´m

ż 8

0

x2´me´cx2

dx “ ´
cpm´1q{2

2
Γ

ˆ

1

2
´
m

2

˙

ă C,

(97)
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for 1 ă m ă 3, c ą 0 and a constant 0 ă C ă 8. We begin by examining the conditions of the class

Qβ for the functions fα and gα,τ . First and foremost, both functions fα and gα,τ are evidently twice

continuously differentiable. Here, we find

f 1
αpxq “

e´x

x1`α
´ p1 ` αq

1 ´ e´x

x2`α
,

f2
αpxq “ ´

e´x

x1`α
´ p1 ` αq

2e´x

x2`α
` p1 ` αqp2 ` αq

1 ´ e´x

x3`α
,

g1
α,τ pxq “ e´xpτ`1qfαpxq ´

1 ` α

x
gα,τ pxq ´ τgα,τ pxq,

g2
α,τ pxq “ ´pτ ` 1qe´xpτ`1qfαpxq ` e´xpτ`1qf 1

αpxq `
1 ` α

x2
gα,τ pxq ´

1 ` α

x
g1
α,τ pxq ´ τg1

α,τ pxq.

Furthermore, we obtain

ż 8

1

xme´x2

dx “
1

2

ż 8

1

xpm´1q{2e´x “
1

2
Γ
`

pm` 1q{2, 1
˘

ď C, (98)

and

ż 8

1

xmp1 ´ e´x2

qdx “

„

xm`1

m` 1
p1 ´ e´x2

q

ȷ8

1

´
2

m` 1

ż 8

1

xm`2e´x2

dx

“

„

xm`1

m` 1
p1 ´ e´x2

q

ȷ8

1

´
1

m` 1
Γ
`

pm` 3q{2, 1
˘

ď C, (99)

if m ă ´1. Here, Γpz, sq “
ş8

s
tz´1e´z dz denotes the upper incomplete Gamma function. For the left

limit, we obtain in general

lim
xÑ0

1 ´ e´x2

xm´β
“ lim

xÑ0

2e´x2

pm´ βqxm´β´2
ă 8 ô m´ 2 ď β, (100)

and

lim
xÑ0

e´x2

xm´β
ă 8 ô m ď β. (101)

Concerning the integration criteria for fα, we have by equation (97) that ∥xd´1fαpx2q∥L1pr0,8qq since

1 ă 1 ` 2α1 ă 3. The integration criteria for the first and second derivative, f 1 and f2, are established

based on the equations (98) and (99), since it holds that d´4´2α “ ´2´α1 ă ´1 and pd`1q´6´2α “

´3 ´ 2α1 ă ´1. Therefore, it remains to determine the parameters β0, β1, β2, which are associated to

f, f 1 and f2, respectively. Using the displays (100) and (101), we have f P Qβ , with

β0 “ 2α, β1 “ 2p1 ` αq, and β2 “ 2p2 ` αq.

Starting with the analysis of the function gα,τ , we find that

xmgα,τ px2q “
1

2

ˆ

e´τx2

x2p1`αq´m
´ 2

e´x2
pτ`1q

x2p1`αq´m
`

e´x2
pτ`2q

x2p1`αq´m

˙

“ ´
1

2

ˆ

1 ´ e´τx2

x2p1`αq´m
´ 2

1 ´ e´x2
pτ`1q

x2p1`αq´m
`

1 ´ e´x2
pτ`2q

x2p1`αq´m

˙

. (102)
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By using equation (97), we infer that ∥xd´1gα,τ px2q∥L1pr0,8qq, since 1 ă 1`2α1 ă 3. As for the integration

criteria for the first and second derivatives of gα,τ , we observe that the displays (98) and (99) apply to

each term. Therefore, it remains to determine the parameter β. Here, for xβ0gα,τ px2q, we have β0 “ 2α

due to the displays (102) and (100). For the first derivative, we find, using display (101), that

xβ1e´x2
pτ`1qfαpx2q “ e´x2

pτ`1q 1 ´ e´x2

x2p1`αq´β1
“

e´x2
pτ`1q

x2p1`αq´β1
´

e´x2
pτ`2q

x2p1`αq´β1
ă 8 ô β1 ě 2α,

xβ1
1 ` α

x2
gα,τ px2q ă 8 ô β1 ě 2p1 ` αq,

xβ1τgα,τ px2q ă 8 ô β1 ě 2α,

and therefore β1 “ 2p1 ` αq. For the second derivative, we get, by using analogous argumentations, that

β2 “ 2p1 ` αq, which completes the proof.

We conclude this section by presenting the proof of Lemma 4.2.4.

Proof of Lemma 4.2.4. Given that Lemma 4.2.3 establishes fα P Qβ1
and gα,τ P Qβ2

, with β1 “
`

2α, 2p1`

αq, 2p2 ` αq
˘

and β2 “
`

2α, 2p1 ` αq, 2p1 ` αq
˘

, we can employ Corollary 4.2.2 on these functions. In

addition, by utilizing analogous steps as in equation (95), we find

ż 8

0

1 ´ e´cx

xm
“

cm´1

m´ 1
Γp2 ´mq, (103)

for 1 ă m ă 2 and c ą 0. Considering α “ d{2 ´ 1 ` α1, where α1 P p0, 1q, and equation (103), we obtain

the following:

∆d{2
n

ÿ

kPNd

fαpλk∆nq “
1

2dpπηqd{2Γpd{2q

ż 8

0

xd{2´1 1 ´ e´x

x1`α
dx`Rn,1

“
1

2dpπηqd{2Γpd{2q

ż 8

0

1 ´ e´x

x1`α1 dx`Rn,1

“
1

2dpπηqd{2Γpd{2q
¨
Γp1 ´ α1q

α1
`Rn,1,

where

Rn,1 :“ ´

d´1
ÿ

∥γ∥1“1

γPt0,1u
d

ż

Bγ

fpπ2η ∥z∥22qdz ` O
`

∆n _ ∆pd´2αq{2
n _ ∆pd`2´2p1`αqq{2

n _ ∆pd`4´2p2`αqq{2
n

˘

“ ´

d´1
ÿ

∥γ∥1“1

γPt0,1u
d

ż

Bγ

fpπ2η ∥z∥22qdz ` O
`

∆1´α1

n

˘

.

For statement (ii), we have

∆d{2
n

ÿ

kPNd

gα,τ pλk∆nq “
1

2dpπηqd{2Γpd{2q

ż 8

0

p1 ´ e´xq2

2x1`α1 e´τx dx`Rn,2
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“
1

2d`1pπηqd{2Γpd{2q

ˆ
ż 8

0

e´τx

x1`α1 ´ 2

ż 8

0

e´xp1`τq

x1`α1 `

ż 8

0

e´xp2`τq

x1`α

˙

`Rn,2.

By using equation (95), we find that

∆d{2
n

ÿ

kPNd

gα,τ pλk∆nq “
Γp1 ´ α1q

2d`1pπηqd{2α1Γpd{2q

`

´ τα
1

` 2p1 ` τqα
1

´ p2 ` τqα
1˘

`Rn,2,

where

Rn,2 :“ ´

d´1
ÿ

∥γ∥1“1

γPt0,1u
d

ż

Bγ

fpπ2η ∥z∥22qdz ` O
`

∆n _ ∆pd´2αq{2
n _ ∆pd`2´2p1`αqq{2

n _ ∆pd`4´2p1`αqq{2
n

˘

“ ´

d´1
ÿ

∥γ∥1“1

γPt0,1u
d

ż

Bγ

fpπ2η ∥z∥22qdz ` O
`

∆1´α1

n

˘

.

The proof follows by utilizing the following identity for half-integer arguments:

Γpn{2q “
pn´ 2q!!

?
π

2pn´1q{2
.

141





5. Asymptotic for the volatility estimators

In the beginning of Part II, we initiated an analysis of the temporal quadratic increments of the multi-

dimensional SPDE model as defined in equation (49). By employing the method of moments, we derived

two estimators for the volatility parameter σ2. The first estimator is given by

σ̂2
npyq “ σ̂2

y “
2dpπηqd{2α1Γpd{2q

n∆α1

n Γp1 ´ α1q

n
ÿ

i“1

p∆iXq2pyqe∥κ
‚y∥1 ,

which can be directly inferred from Proposition 4.2.6. The second estimator is the robustified version of

σ̂2
y and is given by

σ̂2 “ σ̂2
n,m “

2dpπηqd{2α1Γpd{2q

nm∆α1

n Γp1 ´ α1q

m
ÿ

j“1

n
ÿ

i“1

p∆iXq2pyjqe∥κ
‚yj∥1 .

The objective of this chapter is to establish asymptotic properties for the volatility estimators σ̂2
y and

σ̂2, particularly proving central limit theorems. To accomplish this, we begin with a preparatory part in

which we demonstrate that the initial condition can be substituted with a stationary initial condition to

prove asymptotic properties. In the subsequent section, Section 5.2, we determine the variance-covariance

structure of realized volatilities with an extra rescaling term. Proposition 4.2.7 has revealed dependen-

cies between the increments p∆iXqpyq at two distinct temporal points, rendering standard methods for

proving central limit theorems inapplicable. The authors Bibinger and Trabs (2020) demonstrated the

applicability of a general central limit theorem based on ρ-mixing schemes in their one-dimensional SPDE

model. More precisely, they used Proposition 1.2.4 for proving the CLT given in Proposition 1.2.3. In ad-

dition, we used Proposition 1.2.4 for proving CLTs for our novel estimators in Part I. For its application,

it is essential to bound the temporal dependencies, which is formalized in Condition (IV) in Proposition

1.2.4. In the third section, we extend these results to multiple spatial dimensions and conclude by prov-

ing a central limit theorem for the robustified volatility estimator σ̂n,m, which implies a CLT for σ̂2
npyq.

Throughout this chapter, we assume that the parameters η ą 0, α1 P p0, 1q, and κ P Rd are known since

both estimators rely on information about these parameters in the model.

5.1. Preparations

We begin this section by decomposing a temporal increment of a mild solution X̃t with a stationary

initial condition xξ, ekyϑ „ N p0, σ2{p2λ1`α
k qq. For any initial condition, we can utilize the spectral

decomposition similarly to Section 4.1, and thus we have ∆iX̃pyq “
ř

kPNd ∆ix̃kekpyq, where

∆ix̃k “

´

e´λki∆n ´ e´λkpi´1q∆n

¯

xξ, eky `Bi,k ` Ci,k, (104)
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and Bi,k and Ci,k are defined as in equations (64) and (65), respectively. Having decomposed an arbitrary

temporal increment of the coordinate processes ∆ixk by separating the initial condition Ai,k from the

evolution in time, i.e., Bi,k, Ci,k, it is intuitive that only the term Ai,k changes when ∆ix̃k is decomposed.

Furthermore, we proceed to analyse the term containing the stationary initial condition in equation (104).

Therefore, consider the following Itô integral:

Hptq :“ σλ
´α{2
k

ż 0

´8

e´λkpt´sq
`

e´λk∆n ´ 1
˘

dWk
s ,

where we extend the Brownian motions pWkqkPNd to the whole real line for each k P Nd. We can directly

observe that ErHptqs “ 0. For two arbitrary time points t, u ą 0, we find the following covariance

structure:

Cov
`

Hptq, Hpuq
˘

“ σ2λ´α
k

`

e´λk∆n ´ 1
˘2
e´λkpt`uqE

„

´

ż 0

´8

eλks dWk
s

¯2
ȷ

“ σ2λ´α
k

`

e´λk∆n ´ 1
˘2
e´λkpt`uq

ż 0

´8

e2λks ds

“
σ2

2λ1`α
k

`

e´λk∆n ´ 1
˘2
e´λkpt`uq. (105)

Setting t “ u “ pi´ 1q∆n, we obtain

Var
´

H
`

pi´ 1q∆n

˘

¯

“
σ2

2λ1`α
k

`

e´λk∆n´λkpi´1q∆n ´ e´λkpi´1q∆n
˘2

“
σ2

2λ1`α
k

`

e´λki∆n ´ e´λkpi´1q∆n
˘2
.

Therefore, it holds that

Ãi,k :“ xξ, ekyϑ
`

e´λki∆n ´ e´λkpi´1q∆n
˘

“ H
`

pi´ 1q∆n

˘

“ σλ
´α{2
k

0
ż

´8

e´λkppi´1q∆n´sq
`

e´λk∆n ´ 1
˘

dWk
s .

By comparing the term Bi,k from equation (64) with the integral representation for Ãi,k, we deduce that

∆ix̃k “ Ãi,k `Bi,k ` Ci,k (106)

“ σλ
´α{2
k

0
ż

´8

e´λkppi´1q∆n´sq
`

e´λk∆n ´ 1
˘

dWk
s

` σλ
´α{2
k

pi´1q∆n
ż

0

e´λkppi´1q∆n´sq
`

e´λk∆n ´ 1
˘

dWk
s ` Ci,k

“ σλ
´α{2
k

pi´1q∆n
ż

´8

e´λkppi´1q∆n´sq
`

e´λk∆n ´ 1
˘

dWk
s ` Ci,k

“ B̃i,k ` Ci,k,
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where

B̃i,k :“ σλ
´α{2
k

pi´1q∆n
ż

´8

e´λk

`

pi´1q∆n´s
˘

`

e´λk∆n ´ 1
˘

dWk
s , (107)

Ci,k “ σλ
´α{2
k

ż i∆n

pi´1q∆n

e´λkpi∆n´sq dWk
s . (108)

Thus, p∆iX̃qpyq is centred, Gaussian and stationary. To prove a central limit theorem based on Propo-

sition 1.2.4 for the volatility estimator σ̂2
n,m, we define the associated weakly dependent preliminary

triangular arrays as follows:

ξn,i :“
2dpπηqd{2α1Γpd{2q
?
nm∆α1

n Γp1 ´ α1q

m
ÿ

j“1

p∆iXq2pyjqe∥κ
‚yj∥1 .

In the following lemma, we prove that working with triangular arrays based on a mild solution with a

stationary initial condition, i.e.:

ξ̃n,i :“
2dpπηqd{2α1Γpd{2q
?
nm∆α1

n Γp1 ´ α1q

m
ÿ

j“1

p∆iX̃q2pyjqe∥κ
‚yj∥1 , (109)

is sufficient.

Lemma 5.1.1

On Assumptions 4.1.1 and 4.1.2, it holds that

?
mn

n
ÿ

i“1

´

p∆iX̃q2pyq ´ p∆iXq2pyq

¯

P
Ñ 0,

as n Ñ 8.

Proof. We initiate the proof with the following:

p∆iX̃q2pyq ´ p∆iXq2pyq “
ÿ

k1,k2PN

´

∆ix̃k1
∆ix̃k2

´ ∆ixk1
∆ixk2

¯

ek1
pyqek2

pyq “ T̃i ´ Ti,

where we define

T̃i :“
ÿ

k1,k2PNd

´

Ãi,k1Ãi,k2 ` Ãi,k1

`

Bi,k2 ` Ci,k2

˘

` Ãi,k2

`

Bi,k1 ` Ci,k1

˘

¯

ek1pyqek2pyq,

Ti :“
ÿ

k1,k2PNd

´

Ai,k1Ai,k2 `Ai,k1

`

Bi,k2 ` Ci,k2

˘

`Ai,k2

`

Bi,k1 ` Ci,k1

˘

¯

ek1pyqek2pyq.

It remains to show that
?
mn

řn
i“1 Ti

P
Ñ 0, since this implies

?
mn

řn
i“1 T̃i

P
Ñ 0. Here, we have the
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following:

n
ÿ

i“1

Ti “

n
ÿ

i“1

ˆ

ÿ

kPNd

Ai,kekpyq

˙2

` 2
n
ÿ

i“1

ˆ

ÿ

kPNd

Ai,kekpyq

˙ˆ

ÿ

kPNd

´

Bi,k ` Ci,k

¯

ekpyq

˙

. (110)

Using Hölder’s inequality, we obtain

E

«

n
ÿ

i“1

ˆ

ÿ

kPNd

Ai,kekpyq

˙2
ff

“ E

«

n
ÿ

i“1

ÿ

kPNd

A2
i,ke

2
kpyq

ff

` E

«

n
ÿ

i“1

ÿ

k1,k2PNd

k1‰k2

Ai,k1
Ai,k2

ek1
pyqek2

pyq

ff

ď CE

«

n
ÿ

i“1

ÿ

kPNd

A2
i,k

ff

` E

«

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

ÿ

k1,k2PNd

k1‰k2

Ai,k1
Ai,k2

ek1
pyqek2

pyq

ˇ

ˇ

ˇ

ˇ

ff

ď CE

«

n
ÿ

i“1

ÿ

kPNd

A2
i,k

ff

` E

«

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

ÿ

k1,k2PNd

k1‰k2

Ai,k1Ai,k2ek1pyqek2pyq

ˇ

ˇ

ˇ

ˇ

2
ff1{2

,

where C ą 0 is a suitable constant. Let Cξ :“ supkPNd λ1`α
k Erxξ, eky2ϑs. With analogous steps as in

Lemma 4.2.5, we find

n
ÿ

i“1

ÿ

kPNd

E
“

A2
i,k

‰

“

n
ÿ

i“1

ÿ

kPNd

`

e´λki∆n ´ e´λkpi´1q∆n
˘2E

”

xξ, eky2ϑ

ı

“

n
ÿ

i“1

ÿ

kPNd

`

e´λk∆n ´ 1
˘2
e´2λkpi´1q∆nE

”

xξ, eky2ϑ

ı

ď Cξ

ÿ

kPNd

`

1 ´ e´λk∆n
˘2

λ1`α
k

n
ÿ

i“1

e´2λkpi´1q∆n

ď Cξ

ÿ

kPNd

`

1 ´ e´λk∆n
˘2

λ1`α
k p1 ´ e´2λk∆nq

ď Cξ

ÿ

kPNd

1 ´ e´λk∆n

λ1`α
k

“ O
`

∆α1

n

˘

. (111)

Furthermore, we have

E

«

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

ÿ

k1,k2PNd

k1‰k2

Ai,k1
Ai,k2

ek1
pyqek2

pyq

ˇ

ˇ

ˇ

ˇ

2
ff

“

n
ÿ

i,j“1

ÿ

k1,k2PNd

k1‰k2

ÿ

k3,k4PNd

k3‰k4

ek1
pyqek2

pyqek3
pyqek4

pyqE
”

Ai,k1
Ai,k2

Aj,k3
Aj,k4

ı

.

We assume that Erxξ, ekyϑs “ 0 from Assumption 4.1.2. Then, for k1 “ k3 and k2 “ k4, we have

n
ÿ

i,j“1

ÿ

k1,k2PNd

k1‰k2

E
“

Ai,k1
Ai,k2

Aj,k1
Aj,k2

‰

“

n
ÿ

i,j“1

ÿ

k1,k2PNd

k1‰k2

`

1 ´ e´λk1
∆n

˘2`
1 ´ e´λk2

∆n
˘2
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ˆ e´λk1
pi`j´2q∆n´λk2

pi`j´2q∆nE
”

xξ, ek1
y2ϑ

ı

E
”

xξ, ek2
y2ϑ

ı

ď C2
ξ

ÿ

k1,k2PNd

k1‰k2

`

1 ´ e´λk1
∆n

˘2`
1 ´ e´λk2

∆n
˘2

λ1`α
k1

λ1`α
k2

n
ÿ

i,j“1

e´pλk1
`λk2

qpi`j´2q∆n ,

where an analogous result holds for the case k1 “ k4 and k2 “ k3. By using the geometric series, we

obtain

n
ÿ

i,j“1

e´pλk1
`λk2

qpi`j´2q∆n ď
1

p1 ´ e´pλk1
`λk2

q∆nq2
,

and therefore, we have

n
ÿ

i,j“1

ÿ

k1,k2PNd

k1‰k2

E
“

Ai,k1
Ai,k2

Aj,k1
Aj,k2

‰

ď C2
ξ

ÿ

k1,k2PNd

`

1 ´ e´λk1
∆n

˘2`
1 ´ e´λk2

∆n
˘2

λ1`α
k1

λ1`α
k2

`

1 ´ e´pλk1
`λk2

q∆n
˘2

ď C2
ξ

ÿ

k1,k2PNd

`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘

λ1`α
k1

λ1`α
k2

“ Op∆2α1

n q,

where we have used p1 ´ pqp1 ´ qq{p1 ´ pqq ď 1 ´ p, for 0 ď p, q ă 1. For the second option in

Assumption 4.1.2, we use an analogous procedure as in Lemma 4.2.5. Here, we have with C 1
ξ :“

ř

kPN λ
1`α
k Erxξ, eky2ϑs ă 8 and Parseval’s identity that

n
ÿ

i,j“1

ÿ

k1,k2PNd

k1‰k2

ÿ

k3,k4PNd

k3‰k4

E
“

Ai,k1
Ai,k2

Aj,k3
Aj,k4

‰

ď

˜

n
ÿ

i“1

ˆ

ÿ

kPNd

ErAi,ks

˙2
¸2

ď

˜

n
ÿ

i“1

ˆ

ÿ

kPNd

`

e´λk∆n ´ 1
˘

e´λkpi´1q∆nE
”

ˇ

ˇxξ, ekyϑ
ˇ

ˇ

ı

˙2
¸2

ď

˜

n
ÿ

i“1

ˆ

ÿ

kPNd

`

e´λk∆n ´ 1
˘

e´λkpi´1q∆n

λ
p1`αq{2
k

λ
p1`αq{2
k E

”

xξ, eky2ϑ

ı1{2
˙2

¸2

ď

˜

n
ÿ

i“1

ˆ

ÿ

kPNd

`

1 ´ e´λk∆n
˘2
e´2λkpi´1q∆n

λ1`α
k

˙ˆ

ÿ

kPNd

λ1`α
k E

”

xξ, eky2ϑ

ı

˙

¸2

ď C 12
ξ

˜

ÿ

kPNd

p1 ´ e´λk∆nq2

λ1`α
k p1 ´ e´2λk∆nq

¸2

“ Op∆2α1

n q.

By using Markov’s inequality, we conclude with

n
ÿ

i“1

ˆ

ÿ

kPNd

Ai,kekpyq

˙2

“ OP
`

∆α1

n

˘

.

We proceed to bound the following term:

2
n
ÿ

i“1

ˆ

ÿ

kPNd

Ai,kekpyq

˙ˆ

ÿ

kPNd

´

Bi,k ` Ci,k

¯

ekpyq

˙

.
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Utilizing the independence of Ai,k, Bi,k and Ci,k, we find that

E

«

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

ˆ

ÿ

kPNd

Ai,kekpyq

˙ˆ

ÿ

kPNd

´

Bi,k ` Ci,k

¯

ekpyq

˙ˇ

ˇ

ˇ

ˇ

2
ff

“

n
ÿ

i,j“1

E

«

ˆ

ÿ

kPNd

Ai,kekpyq

˙ˆ

ÿ

kPNd

Aj,kekpyq

˙

ff

E

«

ˆ

ÿ

kPNd

´

Bi,k ` Ci,k

¯

ekpyq

˙ˆ

ÿ

kPNd

´

Bj,k ` Cj,k

¯

ekpyq

˙

ff

“

n
ÿ

i,j“1

˜

ÿ

k1,k2PNd

E
“

Ai,k1Aj,k2

‰

ek1pyqek2pyq

¸˜

ÿ

k1,k2PNd

E
”

`

Bi,k1 ` Ci,k1

˘`

Bj,k2 ` Cj,k2

˘

ı

ek1pyqek2pyq

¸

“

n
ÿ

i,j“1

˜

ÿ

k1,k2PNd

E
“

Ai,k1
Aj,k2

‰

ek1
pyqek2

pyq

¸˜

ÿ

kPNd

E
”

`

Bi,k ` Ci,k

˘`

Bj,k ` Cj,k

˘

ı

e2kpyq

¸

“:
n
ÿ

i,j“1

Ri,jSi,j ,

where

Ri,j :“
ÿ

k1,k2PNd

E
“

Ai,k1
Aj,k2

‰

ek1
pyqek2

pyq,

Si,j :“
ÿ

kPNd

E
”

`

Bi,k ` Ci,k

˘`

Bj,k ` Cj,k

˘

ı

e2kpyq.

Assume the first option in Assumption 4.1.2 holds. Analogously to equation (111), we obtain that

Ri,j “
ÿ

kPNd

E
“

Ai,kAj,k

‰

e2kpyq ď CCξ

ÿ

kPNd

p1 ´ e´λk∆nq2

λ1`α
k

e´λkpi`j´2q∆n “ O
`

∆α1

n

˘

,

and therefore it holds that
řn

i,j“1Ri,j “ Op∆α1

n q and supi,j“1,...,n |Ri,j | “ Op∆α1

n q as well as

supj“1,...,n

řn
i“1 |Ri,j | “ Op∆α1

n q. For the second option in Assumption 4.1.2, we find

Ri,j ď C
ÿ

k1,k2PNd

`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘

λ
p1`αq{2
k1

λ
p1`αq{2
k2

e´

`

λk1
pi´1q`λk2

pj´1q

˘

∆n

ˆ λ
p1`αq{2
k1

E
”

|xξ, ek1yϑ|

ı

λ
p1`αq{2
k2

E
”

|xξ, ek2yϑ|

ı

ď C
ÿ

k1,k2PNd

`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘

λ
p1`αq{2
k1

λ
p1`αq{2
k2

e´

`

λk1
pi´1q`λk2

pj´1q

˘

∆n

ˆ λ
p1`αq{2
k1

E
”

|xξ, ek1yϑ|
2
ı1{2

λ
p1`αq{2
k2

E
”

|xξ, ek2yϑ|
2
ı1{2

“ C
ÿ

k1PNd

`

1 ´ e´λk1
∆n

˘

λ
p1`αq{2
k1

e´λk1
pi´1q∆nλ

p1`αq{2
k1

E
”

|xξ, ek1
yϑ|

2
ı1{2 ÿ

k2PNd

`

1 ´ e´λk2
∆n

˘

λ
p1`αq{2
k2

ˆ e´λk2
pj´1q∆nλ

p1`αq{2
k2

E
”

|xξ, ek2yϑ|
2
ı1{2

ď CC 1
ξ

˜

ÿ

k1PNd

`

1 ´ e´λk1
∆n

˘2

λ1`α
k1

e´2λk1
pi´1q∆n

ÿ

k2PNd

`

1 ´ e´λk2
∆n

˘2

λ1`α
k2

e´2λk2
pj´1q∆n

˙1{2

,
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and therefore, we have

n
ÿ

i,j“1

Ri,j ď CC 1
ξ

ÿ

kPNd

1 ´ e´λk∆n

λ1`α
k

“ O
`

∆α1

n

˘

.

Thus, we infer for both options in Assumption 4.1.2, that supi,j |Ri,j | “ Op∆α1

n q and supj
řn

i“1 |Ri,j | “

Op∆α1

n q. For the term Si,j , we obtain

Si,j “
ÿ

kPNd

E
”

`

Bi,k ` Ci,k

˘`

Bj,k ` Cj,k

˘

ı

e2kpyq

“
ÿ

kPNd

´

ΣB,k
i,j ` ΣBC,k

i,j ` ΣBC,k
j,i ` ΣC,k

i,j

¯

e2kpyq,

where we used the notation of the proof of Proposition 4.2.7, where

ΣB,k
i,j :“ CovpBi,k, Bj,kq, ΣBC,k

i,j :“ CovpBi,k, Cj,kq, ΣC,k
i,j :“ CovpCi,k, Cj,kq.

Upon inserting the calculations of Proposition 4.2.7, we infer for i ă j that

Si,j “
ÿ

kPNd

´

ΣB,k
i,j ` ΣBC,k

j,i

¯

e2kpyq

ď ´σ2e´∥κ‚y∥1∆α1

n

Γp1 ´ α1q

2dpπηqd{2α1Γpd{2q

ˆ

´
1

2

`

j ´ i´ 1
˘α1

`
`

j ´ i
˘α1

´
1

2

`

j ´ i` 1
˘α1

˙

` Cσ2
ÿ

kPNd

e´λkpi`j´2q∆n

`

1 ´ e´λk∆n
˘2

λ1`α
k

` Op∆nq.

For i “ j we obtain

Si,i “
ÿ

kPNd

´

ΣB,k
ii ` ΣC,k

ii

¯

e2kpyq ď Cσ2
ÿ

kPNd

ˆ

`

1 ´ e´λk∆n
˘2

2λ1`α
k

`
1 ´ e´2λk∆n

2λ1`α
k

˙

“ Cσ2
ÿ

kPNd

1 ´ e´λk∆n

λ1`α
k

.

Utilizing equation (70), we find that

n
ÿ

i,j“1

Ri,jSi,j ď C
n
ÿ

i,j“1

ˆ

ÿ

kPNd

p1 ´ e´λk∆nq2

λ1`α
k

e´λkpi`j´2q∆n

˙ˆ

1ti‰ju∆
α1

n |i´ j|
α1

´2

`
ÿ

kPNd

´

`

1 ´ e´λk∆n
˘2

λ1`α
k

e´λkpi`j´2q∆n ` 1ti“ju

1 ´ e´λk∆n

λ1`α
k

¯

` Op∆nq

˙

“ O
ˆ

∆2α1

n

8
ÿ

j“1

jα
1
´2 ` ∆2α1

n

˙

“ Op∆2α1

n q,

where C ą 0 is a suitable constant. From the analysis above, we find that both terms in display (110)

are of order OPp∆α1

n q. Therefore, we conclude that
?
mn

řn
i“1 Ti

P
Ñ 0, which completes the proof.
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5. Asymptotic for the volatility estimators

The preceding lemma demonstrated that

?
mn

n
ÿ

i“1

´

p∆iX̃q2pyq ´ p∆iXq2pyq

¯

P
Ñ 0,

uniformly in y P r0, 1sd. Consequently, we deduce that

n
ÿ

i“1

`

ξ̃n,i ´ ξn,i
˘ P

Ñ 0,

as n Ñ 8, which allows us to investigate a mild solution under a stationary condition from now on.

5.2. Variance-covariance structure

The purpose of this section is to explore the variance-covariance structure of the exponentially rescaled

realized volatilities, which are defined as follows:

Vp,∆npyq :“
1

p∆α1

n

p
ÿ

i“1

p∆iX̃q2pyqe∥κ
‚y∥1 , (112)

for y P rδ, 1 ´ δsd. Note that rescaling in Vp,∆npyq involves two terms. The term p∆α1

n rescales the

temporal intensity, while the exponential term e∥κ‚y∥1 compensates the exponential term resulting from

the inner product x¨, ¨yϑ.

Proposition 5.2.1

On the Assumptions 4.1.1 and 4.1.2, we have for the exponentially rescaled realized volatility in two

spacial coordinates y1,y2 P rδ, 1 ´ δsd that

Cov
`

Vp,∆n
py1q, Vp,∆n

py2q
˘

“ 1ty1“y2u

Υα1

p

ˆ

Γp1 ´ α1qσ2

2dpπηqd{2α1Γpd{2q

˙2ˆ

1 ` O
ˆ

∆1{2
n _

∆1´α1

n

δd`1
_

∆´α1

n

p

˙˙

` O
ˆ

∆1´α1

n

p

´

1ty1‰y2u∥y1 ´ y2∥
´pd`1q

0 ` δ´pd`1q
¯

_
∆´α1

n

p2

˙

,

where Υα1 is a numerical constant depending on α1 P p0, 1q, given in equation (121). In particular we

have

Var
`

Vn,∆n
pyq

˘

“
Υα1

n

ˆ

Γp1 ´ α1qσ2

2dpπηqd{2α1Γpd{2q

˙2
´

1 ` O
`

∆1{2
n _ ∆1´α1

n

˘

¯

.

Proof. It holds that

Cov
`

Vp,∆npy1q, Vp,∆npy2q
˘

“
2e∥κ‚py1`y2q∥1

p2∆2α1

n

p
ÿ

i,j“1

ˆ

ÿ

k1,k2PNd

ek1
py1qek1

py2qek2
py1qek2

py2qCov
´

∆ix̃k1
∆ix̃k2

, ∆j x̃k1
∆j x̃k2

¯

˙
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“
2e∥κ‚py1`y2q∥1

p∆2α1

n

ÿ

k1,k2PNd

ek1py1qek1py2qek2py1qek2py2qDk1,k2 ,

where

Dk1,k2 :“
1

p

p
ÿ

i,j“1

Cov
´

`

B̃i,k1 ` Ci,k1

˘`

B̃i,k2 ` Ci,k2

˘

,
`

B̃j,k1 ` Cj,k1

˘`

B̃j,k2 ` Cj,k2

˘

¯

.

Consider pZkqkPNd as independent standard normally distributed random variables, which are independent

of Bi,k. Utilizing equation (105), we can express B̃i,k as

B̃i,k “ Bi,k `
σ

p2λ1`α
k q1{2

`

e´λk∆n ´ 1
˘

e´λkpi´1q∆nZk.

Hence, we derive the following covariance structures:

Cov
´

B̃i,k, Cj,k

¯

“ CovpBi,k, Cj,kq “ ΣBC,k
i,j ,

Cov
´

B̃i,k, B̃j,k

¯

“ CovpBi,k, Bj,kq `
σ2

2λ1`α
k

`

e´λk∆n ´ 1
˘2
e´λkpi`j´2q∆nVarpZkq

“ σ2
`

e´λk∆n|i´j| ´ e´λkpi`j´2q∆n
˘

`

e´λk∆n ´ 1
˘2

2λ1`α
k

`
σ2

2λ1`α
k

`

e´λk∆n ´ 1
˘2
e´λkpi`j´2q∆n

“
σ2

2λ1`α
k

`

e´λk∆n ´ 1
˘2
e´λk∆n|i´j| “: Σ̃B,k

i,j , (113)

where we applied equation (73). As B̃i,k ` Ci,k is centred normally distributed, we can use Isserlis’

theorem to deduce that

Dk1,k2 “
1

p

p
ÿ

i,j“1

ˆ

E
”

`

B̃i,k1 ` Ci,k1

˘`

B̃j,k1 ` Cj,k1

˘

ı

E
”

`

B̃i,k2 ` Ci,k2

˘`

B̃j,k2 ` Cj,k2

˘

ı

` E
”

`

B̃i,k1
` Ci,k1

˘`

B̃j,k2
` Cj,k2

˘

ı

E
”

`

B̃i,k2
` Ci,k2

˘`

B̃j,k1
` Cj,k1

˘

ı

˙

.

For further reading on the Isserlis theorem, we recommend referring to Isserlis (1918). Assume k1 ‰ k2,

then we have

Dk1,k2 “
1

p

p
ÿ

i,j“1

E
”

`

B̃i,k1 ` Ci,k1

˘`

B̃j,k1 ` Cj,k1

˘

ı

E
”

`

B̃i,k2 ` Ci,k2

˘`

B̃j,k2 ` Cj,k2

˘

ı

“
1

p

p
ÿ

i,j“1

´

Σ̃B,k1

i,j ` ΣBC,k1

i,j ` ΣBC,k1

j,i ` ΣC,k1

i,j

¯´

Σ̃B,k2

i,j ` ΣBC,k2

i,j ` ΣBC,k2

j,i ` ΣC,k2

i,j

¯

. (114)

We proceed by calculating each combination separately. First, we use the following identity:

p
ÿ

i,j“1

q|i´j| “ 2
qp`1 ´ q

p1 ´ qq2
` p

1 ` q

1 ´ q
, (115)
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for q ‰ 1. Then, we have

1

p

p
ÿ

i,j“1

Σ̃B,k1

i,j Σ̃B,k2

i,j “ σ4

`

e´λk1
∆n ´ 1

˘2`
e´λk2

∆n ´ 1
˘2

4pλ1`α
k1

λ1`α
k2

p
ÿ

i,j“1

e´pλk1
`λk2

q∆n|i´j|

“ σ4

`

e´λk1
∆n ´ 1

˘2`
e´λk2

∆n ´ 1
˘2

4λ1`α
k1

λ1`α
k2

¨
1 ` e´pλk1

`λk2
q∆n

1 ´ e´pλk1
`λk2

q∆n

ˆ

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙

.

By utilizing equation (74), we obtain

1

p

p
ÿ

i,j“1

ΣC,k1

i,j ΣC,k2

i,j “
1

p

p
ÿ

i,j“1

1tj“iuσ
4

`

1 ´ e´2λk1
∆n

˘`

1 ´ e´2λk2
∆n

˘

4λ1`α
k1

λ1`α
k2

“ σ4

`

1 ´ e´2λk1
∆n

˘`

1 ´ e´2λk2
∆n

˘

4λ1`α
k1

λ1`α
k2

.

Using equation (75) and the identity

p
ÿ

i,j“1

1tiąjuq
i´j “

pq

1 ´ q
`
q ´ qp`1

p1 ´ qq2
,

yields that

1

p

p
ÿ

i,j“1

ΣBC,k1

i,j ΣBC,k2

i,j “
1

p

p
ÿ

i,j“1

1tiąjuσ
4

`

e´λk1
∆n ´ 1

˘`

e´λk2
∆n ´ 1

˘

4λ1`α
k1

λ1`α
k2

ˆ e´pλk1
`λk2

q∆npi´jq
`

eλk1
∆n ´ e´λk1

∆n
˘`

eλk2
∆n ´ e´λk2

∆n
˘

“ σ4

`

e´λk1
∆n ´ 1

˘`

e´λk2
∆n ´ 1

˘

4λ1`α
k1

λ1`α
k2

`

eλk1
∆n ´ e´λk1

∆n
˘`

eλk2
∆n ´ e´λk2

∆n
˘

ˆ
e´pλk1

`λk2
q∆n

1 ´ e´pλk1
`λk2

q∆n

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙

“ σ4

`

e´λk1
∆n ´ 1

˘`

e´λk2
∆n ´ 1

˘

4λ1`α
k1

λ1`α
k2

¨
p1 ´ e´2λk1

∆nqp1 ´ e´2λk2
∆nq

1 ´ e´pλk1
`λk2

q∆n

ˆ

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙

.

The same calculations apply to ΣBC,k1

j,i ΣBC,k2

j,i . As for the cross-terms, we obtain

1

p

p
ÿ

i,j“1

Σ̃B,k1

i,j

`

ΣBC,k2

i,j ` ΣBC,k2

j,i

˘

“
1

p

p
ÿ

i,j“1

σ2

2λ1`α
k1

`

e´λk1
∆n ´ 1

˘2
e´λk1

∆n|i´j|

ˆ

1tiąjuσ
2e´λk2

∆npi´jq
`

eλk2
∆n ´ e´λk2

∆n
˘e´λk2

∆n ´ 1

2λ1`α
k2

` 1tjąiuσ
2e´λk2

∆npj´iq
`

eλk2
∆n ´ e´λk2

∆n
˘e´λk2

∆n ´ 1

2λ1`α
k2

˙
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“ σ4

`

e´λk1
∆n ´ 1

˘2`
e´λk2

∆n ´ 1
˘

4λ1`α
k1

λ1`α
k2

`

eλk2
∆n ´ e´λk2

∆n
˘1

p

p
ÿ

i,j“1

1tiąjue
´pλk1

`λk2
q∆npi´jq

` σ4

`

e´λk1
∆n ´ 1

˘2`
e´λk2

∆n ´ 1
˘

4λ1`α
k1

λ1`α
k2

`

eλk2
∆n ´ e´λk2

∆n
˘1

p

p
ÿ

i,j“1

1tjąiue
´pλk1

`λk2
q∆npj´iq

“ σ4

`

e´λk1
∆n ´ 1

˘2`
e´λk2

∆n ´ 1
˘

4λk1
λk2

`

eλk2
∆n ´ e´λk2

∆n
˘ e´pλk1

`λk2
q∆n

1 ´ e´pλk1
`λk2

q∆n

ˆ

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙

` σ4

`

e´λk1
∆n ´ 1

˘2`
e´λk2

∆n ´ 1
˘

4λ1`α
k1

λ1`α
k2

`

eλk2
∆n ´ e´λk2

∆n
˘ e´pλk1

`λk2
q∆n

1 ´ e´pλk1
`λk2

q∆n

ˆ

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙

“ σ4

`

e´λk1
∆n ´ 1

˘2`
e´λk2

∆n ´ 1
˘

2λ1`α
k1

λk2

`

eλk2
∆n ´ e´λk2

∆n
˘ e´pλk1

`λk2
q∆n

1 ´ e´pλk1
`λk2

q∆n

ˆ

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙

“ σ4

`

e´λk1
∆n ´ 1

˘2`
e´λk2

∆n ´ 1
˘

2λ1`α
k1

λ1`α
k2

e´λk1
∆n

1 ´ e´2λk2
∆n

1 ´ e´pλk1
`λk2

q∆n

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙

,

and

1

p

p
ÿ

i,j“1

Σ̃B,k1

i,j ΣC,k2

i,j “
1

p

p
ÿ

i,j“1

σ2

2λ1`α
k1

`

e´λk1
∆n ´ 1

˘2
e´λk1

∆n|i´j|
1ti“juσ

2 1 ´ e´2λk2
∆n

2λ1`α
k2

“ σ4

`

e´λk1
∆n ´ 1

˘2`
1 ´ e´2λk2

∆n
˘

4λ1`α
k1

λ1`α
k2

.

Furthermore, the following cross-terms vanish:

1

p

p
ÿ

i,j“1

ΣBC,k1

i,j ΣC,k2

i,j “
1

p

p
ÿ

i,j“1

ΣBC,k1

j,i ΣC,k2

i,j “
1

p

p
ÿ

i,j“1

ΣBC,k1

i,j ΣBC,k2

j,i “ 0.

Inserting the auxiliary calculations into equation (114) results in

Dk1,k2
“

1

p

p
ÿ

i,j“1

´

Σ̃B,k1

i,j ` ΣBC,k1

i,j ` ΣBC,k1

j,i ` ΣC,k1

i,j

¯´

Σ̃B,k2

i,j ` ΣBC,k2

i,j ` ΣBC,k2

j,i ` ΣC,k2

i,j

¯

“
1

p

p
ÿ

i,j“1

´

Σ̃B,k1

i,j Σ̃B,k2

i,j ` Σ̃B,k1

i,j

`

ΣBC,k2

i,j ` ΣBC,k2

j,i

˘

` Σ̃B,k1

i,j ΣC,k2

i,j `
`

ΣBC,k1

i,j ` ΣBC,k1

j,i

˘

Σ̃B,k2

i,j

` ΣBC,k1

i,j ΣBC,k2

i,j ` ΣBC,k1

j,i ΣBC,k2

j,i ` ΣC,k1

i,j Σ̃B,k2

i,j ` ΣC,k1

i,j ΣC,k2

i,j

¯

“ σ4

ˆ

`

e´λk1
∆n ´ 1

˘2`
e´λk2

∆n ´ 1
˘2

4λ1`α
k1

λ1`α
k2

¨
1 ` e´pλk1

`λk2
q∆n

1 ´ e´pλk1
`λk2

q∆n

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙

`

`

e´λk1
∆n ´ 1

˘2`
e´λk2

∆n ´ 1
˘

2λ1`α
k1

λ1`α
k2

e´λk1
∆n

1 ´ e´2λk2
∆n

1 ´ e´pλk1
`λk2

q∆n
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ˆ

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙

`

`

e´λk1
∆n ´ 1

˘2`
1 ´ e´2λk2

∆n
˘

4λ1`α
k1

λ1`α
k2

`

`

e´λk2
∆n ´ 1

˘2`
e´λk1

∆n ´ 1
˘

2λ1`α
k1

λ1`α
k2

e´λk2
∆n

1 ´ e´2λk1
∆n

1 ´ e´pλk1
`λk2

q∆n

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙

` 2

`

e´λk1
∆n ´ 1

˘`

e´λk2
∆n ´ 1

˘

4λ1`α
k1

λ1`α
k2

¨
p1 ´ e´2λk1

∆nqp1 ´ e´2λk2
∆nq

1 ´ e´pλk1
`λk2

q∆n

ˆ

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙

`

`

e´λk2
∆n ´ 1

˘2`
1 ´ e´2λk1

∆n
˘

4λ1`α
k1

λ1`α
k2

`

`

1 ´ e´2λk1
∆n

˘`

1 ´ e´2λk2
∆n

˘

4λ1`α
k1

λ1`α
k2

˙

“ σ4

ˆ

`

e´λk1
∆n ´ 1

˘2`
e´λk2

∆n ´ 1
˘2

4λ1`α
k1

λ1`α
k2

´1 ` e´pλk1
`λk2

q∆n

1 ´ e´pλk1
`λk2

q∆n

`
e´λk1

∆np1 ´ e´2λk2
∆nq

1 ´ e´pλk1
`λk2

q∆n
¨

2

e´λk2
∆n ´ 1

`
e´λk2

∆np1 ´ e´2λk1
∆nq

1 ´ e´pλk1
`λk2

q∆n
¨

2

e´λk1
∆n ´ 1

`
p1 ´ e´2λk1

∆nqp1 ´ e´2λk2
∆nq

1 ´ e´pλk1
`λk2

q∆n
¨

2
`

e´λk1
∆n ´ 1

˘`

e´λk2
∆n ´ 1

˘

¯

`

`

e´λk1
∆n ´ 1

˘2`
1 ´ e´2λk2

∆n
˘

4λ1`α
k1

λ1`α
k2

`

`

e´λk2
∆n ´ 1

˘2`
1 ´ e´2λk1

∆n
˘

4λ1`α
k1

λ1`α
k2

`

`

1 ´ e´2λk1
∆n

˘`

1 ´ e´2λk2
∆n

˘

4λ1`α
k1

λ1`α
k2

˙ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙

.

Using the identity pe2x ´ 1q{pex ´ 1q “ ex ` 1, we have

Dk1,k2
“ σ4

ˆ

`

e´λk1
∆n ´ 1

˘2`
e´λk2

∆n ´ 1
˘2

4λ1`α
k1

λ1`α
k2

´1 ` e´pλk1
`λk2

q∆n ` 2pe´λk1
∆n ` 1qpe´λk2

∆n ` 1q

1 ´ e´pλk1
`λk2

q∆n

`
´2e´λk1

∆npe´λk2
∆n ` 1q ´ 2e´λk2

∆npe´λk1
∆n ` 1q

1 ´ e´pλk1
`λk2

q∆n

¯

`

`

e´λk1
∆n ´ 1

˘2`
1 ´ e´2λk2

∆n
˘

4λ1`α
k1

λ1`α
k2

`

`

e´λk2
∆n ´ 1

˘2`
1 ´ e´2λk1

∆n
˘

4λ1`α
k1

λ1`α
k2

`

`

1 ´ e´2λk1
∆n

˘`

1 ´ e´2λk2
∆n

˘

4λ1`α
k1

λ1`α
k2

˙

ˆ

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙

“ σ4

ˆ

`

e´λk1
∆n ´ 1

˘2`
e´λk2

∆n ´ 1
˘2

4λ1`α
k1

λ1`α
k2

¨
3 ´ e´pλk1

`λk2
q∆n

1 ´ e´pλk1
`λk2

q∆n

`

`

e´λk1
∆n ´ 1

˘2`
1 ´ e´2λk2

∆n
˘

4λ1`α
k1

λ1`α
k2

`

`

e´λk2
∆n ´ 1

˘2`
1 ´ e´2λk1

∆n
˘

4λ1`α
k1

λ1`α
k2

`

`

1 ´ e´2λk1
∆n

˘`

1 ´ e´2λk2
∆n

˘

4λ1`α
k1

λ1`α
k2

˙

ˆ

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙
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“ σ4

ˆ

`

e´λk1
∆n ´ 1

˘2`
e´λk2

∆n ´ 1
˘2

4λ1`α
k1

λ1`α
k2

¨
3 ´ e´pλk1

`λk2
q∆n

1 ´ e´pλk1
`λk2

q∆n

`

`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘

4λ1`α
k1

λ1`α
k2

´

`

1 ´ e´λk1
∆n

˘`

1 ` e´λk2
∆n

˘

`
`

1 ´ e´λk2
∆n

˘`

1 ` e´λk1
∆n

˘

`
`

1 ` e´λk1
∆n

˘`

1 ` e´λk2
∆n

˘

¯

˙

ˆ

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙

“ σ4

ˆ

`

e´λk1
∆n ´ 1

˘2`
e´λk2

∆n ´ 1
˘2

4λ1`α
k1

λ1`α
k2

¨
4 ´ 2e´pλk1

`λk2
q∆n

1 ´ e´pλk1
`λk2

q∆n

`

`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘

4λ1`α
k1

λ1`α
k2

´

`

1 ´ e´λk1
∆n

˘`

1 ` e´λk2
∆n

˘

`
`

1 ´ e´λk2
∆n

˘`

1 ` e´λk1
∆n

˘

`
`

1 ` e´λk1
∆n

˘`

1 ` e´λk2
∆n

˘

´
`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘

¯

˙

ˆ

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙

“ σ4

ˆ

`

e´λk1
∆n ´ 1

˘2`
e´λk2

∆n ´ 1
˘2

4λ1`α
k1

λ1`α
k2

¨
4 ´ 2e´pλk1

`λk2
q∆n

1 ´ e´pλk1
`λk2

q∆n
`

`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘

4λ1`α
k1

λ1`α
k2

ˆ 2
´

2 ´
`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘

¯

˙ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙

“ σ4

ˆ

`

1 ´ e´λk1
∆n

˘2`
1 ´ e´λk2

∆n
˘2

2λ1`α
k1

λ1`α
k2

¨
1

1 ´ e´pλk1
`λk2

q∆n
`

`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘

λ1`α
k1

λ1`α
k2

˙

ˆ

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙

.

Recalling the calculations of the covariance yields

Cov
`

Vp,∆n
py1q, Vp,∆n

py2q
˘

“
2e∥κ‚py1`y2q∥1σ4

p∆2α1

n

ÿ

k1,k2PNd

k1‰k2

ek1py1qek1py2qek2py1qek2py2qD̄k1,k2

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

¯

˙

`
2e∥κ‚py1`y2q∥1

p∆2α1

n

ÿ

kPNd

e2kpy1qe2kpy2qDk,k,

where we define

D̄k1,k2
:“

`

1 ´ e´λk1
∆n

˘2`
1 ´ e´λk2

∆n
˘2

2λ1`α
k1

λ1`α
k2

¨
1

1 ´ e´pλk1
`λk2

q∆n
`

`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘

λ1`α
k1

λ1`α
k2

. (116)

Regarding the remainder, we utilize the inequality p1 ´ e´px`yqq´1 ď p1 ´ e´xq´1{2p1 ´ e´yq´1{2. For a

sufficiently large p, we deduce that

1

p2∆2α1

n

ÿ

k1,k2PNd

k1‰k2

Dk1,k2

1 ´ e´pλk1
`λk2

q∆n
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ď
1

p2∆2α1

n

ÿ

k1,k2PNd

k1‰k2

`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘

2λ1`α
k1

λ1`α
k2

` 2

`

1 ´ e´λk1
∆n

˘1{2`
1 ´ e´λk2

∆n
˘1{2

2λ1`α
k1

λ1`α
k2

ď
3

p2∆2α1

n

ˆ

ÿ

kPNd

`

1 ´ e´λk∆n
˘1{2

2λ1`α
k

˙2

.

Thanks to Lemma 4.2.1 and λk9 ∥k∥22, we obtain the convergence of the series, such that

1

p2∆2α1

n

ÿ

k1,k2PNd

k1‰k2

Dk1,k2

1 ´ e´pλk1
`λk2

q∆n
“ O

ˆ

1

p2∆2α1

n

´

∆1`d{2´1`α1
{2

n

ÿ

kPNd

?
1 ´ e´λk∆n

λ1`α
k ∆

1`d{2´1`α1{2
n

¯2
˙

“ O
ˆ

∆´α1

n

p2

´

∆d{2
n

ÿ

kPNd

?
1 ´ e´λk∆n

pλk∆nq1`d{2´1`α1{2
¨

1

∥k∥α
1

2

¯2
˙

“ O
ˆ

∆´α1

n

p2

´

∆d{2
n

ÿ

kPNd

?
1 ´ e´λk∆n

pλk∆nq1`d{2´1`α1{2

¯2
˙

“ O
ˆ

∆´α1

n

p2

´

ż 8

0

?
1 ´ e´x

x1`α1{2
dx

¯2
˙

“ O
`

∆´α1

n p´2
˘

,

where we used α “ d{2 ´ 1 ` α1, for α1 P p0, 1q. For small p we always obtain a bound of order Opp´1q,

such that

1

p∆2α1

n

ÿ

k1,k2PNd

k1‰k2

ek1py1qek1py2qek2py1qek2py2qD̄k1,k2 ¨ O
ˆ

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆n

˙

“ O
ˆ

1

p

´

1 ^
∆´α1

n

p

¯

˙

.

Thus, we find

Cov
`

Vp,∆n
py1q, Vp,∆n

py2q
˘

“
2e∥κ‚py1`y2q∥1σ4

p∆2α1

n

ÿ

k1,k2PNd

k1‰k2

ek1
py1qek1

py2qek2
py1qek2

py2qD̄k1,k2

`
2e∥κ‚py1`y2q∥1

p∆2α1

n

ÿ

kPNd

e2kpy1qe2kpy2qDk,k ` O
ˆ

1

p

´

1 ^
∆´α1

n

p

¯

˙

.

For k1 “ k2 “ k, we have

Dk,k “
1

p

p
ÿ

i,j“1

ˆ

E
”

`

B̃i,k ` Ci,k

˘`

B̃j,k ` Cj,k

˘

ı

E
”

`

B̃i,k ` Ci,k

˘`

B̃j,k ` Cj,k

˘

ı

` E
”

`

B̃i,k ` Ci,k

˘`

B̃j,k ` Cj,k

˘

ȷ

E
„

`

B̃i,k ` Ci,k

˘`

B̃j,k ` Cj,k

˘

ı

˙

“
2

p

p
ÿ

i,j“1

E
”

`

B̃i,k ` Ci,k

˘`

B̃j,k ` Cj,k

˘

ı2

“
2

p

p
ÿ

i,j“1

´

Σ̃B,k
i,j ` ΣBC,k

i,j ` ΣBC,k
j,i ` ΣC,k

i,j

¯2

“
2

p

p
ÿ

i,j“1

´

Σ̃B,k
i,j

¯2

`

´

ΣBC,k
i,j

¯2

`

´

ΣBC,k
j,i

¯2

`

´

ΣC,k
i,j

¯2

` 2Σ̃B,k
i,j

´

ΣBC,k
i,j ` ΣBC,k

j,i

¯

` 2Σ̃B,k
i,j ΣC,k

i,j
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ď
4

p

p
ÿ

i,j“1

´

Σ̃B,k
i,j

¯2

`

´

ΣBC,k
i,j

¯2

`

´

ΣBC,k
j,i

¯2

`

´

ΣC,k
i,j

¯2

“
4

p

p
ÿ

i,j“1

´

Σ̃B,k
i,j

¯2

` 2
´

ΣBC,k
i,j

¯2

`

´

ΣC,k
i,j

¯2

.

Calculating the covariance terms results in

1

p

p
ÿ

i,j“1

Σ̃B,k
i,j Σ̃B,k

i,j “ σ4

`

1 ´ e´λk∆n
˘4

4λ
2p1`αq

k

1 ` e´2λk∆n

1 ´ e´2λk∆n

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´2λk∆n

¯

˙

,

1

p

p
ÿ

i,j“1

ΣBC,k
i,j ΣBC,k

i,j “ σ4

`

1 ´ e´λk∆n
˘2

4λ
2p1`αq

k

¨
p1 ´ e´2λk∆nq2

1 ´ e´2λk∆n

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´2λk∆n

¯

˙

,

1

p

p
ÿ

i,j“1

ΣC,k
i,j ΣC,k

i,j “ σ4

`

1 ´ e´2λk∆n
˘2

4λ
2p1`αq

k

,

where we used analogous steps as for k1 ‰ k2. For k1 “ k2 “ k we derive that

Dk,k ď σ4

˜

`

1 ´ e´λk∆n
˘4

λ
2p1`αq

k

1 ` e´2λk∆n

1 ´ e´2λk∆n

` 2

`

1 ´ e´λk∆n
˘2

λ
2p1`αq

k

`

1 ´ e´2λk∆n
˘

`

`

1 ´ e´2λk∆n
˘2

λ
2p1`αq

k

¸

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´2λk∆n

¯

˙

,

where we define

Dk,k :“

`

1 ´ e´λk∆n
˘4

λ
2p1`αq

k

1 ` e´2λk∆n

1 ´ e´2λk∆n
` 2

`

1 ´ e´λk∆n
˘2

λ
2p1`αq

k

`

1 ´ e´2λk∆n
˘

`

`

1 ´ e´2λk∆n
˘2

λ
2p1`αq

k

.

We demonstrate that Dk,k is negligible, which is evident by the following calculation:

1

p∆2α1

n

ÿ

kPNd

Dk,k “
1

p∆2α1

n

ÿ

kPNd

`

1 ´ e´2λk∆n
˘2

λ
2p1`αq

k

ˆ

`

1 ´ e´λk∆n
˘4`

1 ` e´2λk∆n
˘

`

1 ´ e´2λk∆n

˘3 ` 2

`

1 ´ e´λk∆n
˘2

1 ´ e´2λk∆n
` 1

˙

ď
4

p∆2α1

n

ÿ

kPNd

`

1 ´ e´2λk∆n
˘2

λ
2p1`αq

k

“
4

p∆2α1

n

ÿ

kPNd

ˆ

∆1`α
n

1 ´ e´2λk∆n

pλk∆nq1`α

˙2

“
4∆

d{2
n

p
∆d{2

n

ÿ

kPNd

ˆ

1 ´ e´2λk∆n

pλk∆nq1`α

˙2

“ Opp´1∆2p1´α1
q

n q, (117)

where we can use analogous steps as in Lemma 4.2.3 to show that

ˆ

1 ´ e´2x

x1`α

˙2

“ f2αpxq P Qβ , with β “
`

4α, 1 ` 4α, 2 ` 4α
˘

.
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Hence, we have

Cov
`

Vp,∆n
py1q, Vp,∆n

py2q
˘

“
2σ4e∥κ‚py1`y2q∥1

p∆2α1

n

ÿ

k1,k2PNd

k1‰k2

ek1
py1qek1

py2qek2
py1qek2

py2qD̄k1,k2

` O
ˆ

1

p

´

∆2p1´α1
q

n `
∆´α1

n

p
^ 1

¯

˙

.

We can represent the term D̄k1,k2 from equation (116) as

D̄k1,k2 “

`

1 ´ e´λk1
∆n

˘2`
1 ´ e´λk2

∆n
˘2

2λ1`α
k1

λ1`α
k2

8
ÿ

r“0

e´rpλk1
`λk2

q∆n `

`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘

λ1`α
k1

λ1`α
k2

,

and decompose as follows:

D̄1
k1,k2

:“
8
ÿ

r“0

`

1 ´ e´λk1
∆n

˘2`
1 ´ e´λk2

∆n
˘2

2λ1`α
k1

λ1`α
k2

e´rpλk1
`λk2

q∆n ,

D̄2
k1,k2

:“

`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘

λ1`α
k1

λ1`α
k2

.

Assume y1 ‰ y2, then we have

ekpy1qekpy2q “ e´∥κ‚py1`y2q∥12d
d
ź

l“1

sinpπkly
p1q

l q sinpπkly
p2q

l q

“ e´∥κ‚py1`y2q∥1

d
ź

l“1

´

cos
`

πklpy
p1q

l ´ y
p2q

l q
˘

´ cos
`

πklpy
p1q

l ` y
p2q

l q
˘

¯

. (118)

Let x
p1q

l , x
p2q

l P tpy
p1q

l ´ y
p2q

l q{2, py
p1q

l ` y
p2q

l q{2u, then we find

1

p∆2α1

n

ÿ

k1,k2PNd

D̄1
k1,k2

d
ź

l“1

cosp2πk
p1q

l x
p1q

l q cosp2πk
p2q

l x
p2q

l q

“
2

p∆2α1

n

8
ÿ

r“0

ˆ

∆1`α
n

ÿ

k1PNd

gα,rpλk1∆nq

d
ź

l“1

cosp2πk
p1q

l x
p1q

l q

˙ˆ

∆1`α
n

ÿ

k2PNd

gα,rpλk2∆nq

d
ź

l“1

cosp2πk
p2q

l x
p2q

l q

˙

“
2

p

8
ÿ

r“0

ˆ

∆d{2
n

ÿ

k1PNd

gα,rpλk1
∆nq

d
ź

l“1

cosp2πk
p1q

l x
p1q

l q

˙ˆ

∆d{2
n

ÿ

k2PNd

gα,rpλk2
∆nq

d
ź

l“1

cosp2πk
p2q

l x
p2q

l q

˙

.

Note that y1 ‰ y2 only implies that one coordinate y
p1q

l ‰ y
p2q

l differs. To analyse the order of the latter

display, we utilize Corollary 4.2.2 (ii) and (iii) on the function gα,τ P Qp2α,2p1`αq,2p1`αqq from display

(67), which gives the following:

∆d{2
n

ÿ

k2PNd

gα,rpλk2
∆nq

d
ź

l“1

cosp2πk
p2q

l x
p2q

l q “ O
ˆ

∆1´α1

n

∥y1 ´ y2∥d`1
0

`
∆1´α1

n

δd`1

˙

.

Here, we considered the case when y1 ‰ y2 differing in every component, i.e., we used the order from
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Lemma 4.2.2 (iii) and took into account that xl can exceed or fall below the limit of 1 ´ δ and δ,

respectively, by inserting the bounds ∥y1 ´ y2∥0 and δ. Hence, we have

2

p

8
ÿ

r“0

ˆ

∆d{2
n

ÿ

k1PNd

gα,rpλk1
∆nq

d
ź

l“1

cosp2πk
p1q

l x
p1q

l q

˙ˆ

∆d{2
n

ÿ

k2PNd

gα,rpλk2
∆nq

d
ź

l“1

cosp2πk
p2q

l x
p2q

l q

˙

“ O
ˆ

∆1´α1

n

p

`

∥y1 ´ y2∥
´pd`1q

0 ` δ´pd`1q
˘

8
ÿ

r“0

∆d{2
n

ÿ

kPNd

|gα,rpλk∆nq|

˙

“ O
ˆ

∆1´α1

n

p

`

∥y1 ´ y2∥
´pd`1q

0 ` δ´pd`1q
˘

´

∆d{2
n

ÿ

kPNd

1 ´ e´λk∆n

pλk∆nq1`α

¯

˙

“ O
ˆ

∆1´α1

n

p

`

∥y1 ´ y2∥
´pd`1q

0 ` δ´pd`1q
˘

˙

. (119)

Analogous considerations hold for the second term D̄2, where we can employ the function fα from equation

(67), yielding the following:

Cov
`

Vp,∆npy1q, Vp,∆npy2q
˘

“ O
ˆ

∆1´α1

n

p

`

∥y1 ´ y2∥
´pd`1q

0 ` δ´pd`1q
˘

˙

` O
ˆ

1

p

´

∆2p1´α1
q

n `
∆´α1

n

p
^ 1

¯

˙

“ O
ˆ

∆1´α1

n

p

`

∥y1 ´ y2∥
´pd`1q

0 ` δ´pd`1q
˘

_
∆´α1

n

p2

˙

,

for y1 ‰ y2. Thus, it remains to compute the variance, where y1 “ y2 “ y P rδ, 1 ´ δsd. Again, utilizing

ekpyqekpyq “ e´2∥κ‚y∥1

d
ź

l“1

´

cosp0q ´ cosp2πklylq
¯

,

and having x
p1q

l , x
p2q

l P t0, ylu, we infer analogously to display (119) that

1

p∆2α1

n

ÿ

k1,k2PNd

D̄1
k1,k2

d
ź

l“1

cosp2πk
p1q

l x
p1q

l q cosp2πk
p2q

l x
p2q

l q

“
2

p

8
ÿ

r“0

ˆ

∆d{2
n

ÿ

k1PNd

gα,rpλk1
∆nq

d
ź

l“1

cosp2πk
p1q

l x
p1q

l q

˙ˆ

∆d{2
n

ÿ

k2PNd

gα,rpλk2
∆nq

d
ź

l“1

cosp2πk
p2q

l x
p2q

l q

˙

.

Now assume, without loss of generality, that
řd

j“1 1tx
p1q

j ‰0u
“ l, for 1 ď l ď d. Then, by Corollary 4.2.2

(ii) and (iii), we have

∆d{2
n

ÿ

k2PNd

gα,rpλk2∆nq

d
ź

l“1

cosp2πk
p2q

l x
p2q

l q “ O
ˆ

∆l{2
n _

∆1´α1

n

δd`1

˙

.

Hence, we conclude that

1

p∆2α1

n

ÿ

k1,k2PNd

D̄1
k1,k2

d
ź

l“1

cosp2πk
p1q

l x
p1q

l q cosp2πk
p2q

l x
p2q

l q “ O
ˆ

1

p

´

∆1{2
n _

∆1´α1

n

δd`1

¯

˙

,

159



5. Asymptotic for the volatility estimators

and it follows that

Var
`

Vp,∆npyq
˘

“
2σ4e2∥κ‚y∥1

p∆2α1

n

ÿ

k1,k2PNd

k1‰k2

e2k1
pyqe2k2

pyqD̄k1,k2 ` O
ˆ

1

p

´

∆2p1´α1
q

n `
∆´α1

n

p
^ 1

¯

˙

“
2σ4

p∆2α1

n

ÿ

k1,k2PNd

k1‰k2

D̄k1,k2
` O

ˆ

1

p

´

∆1{2
n _

∆1´α1

n

δd`1
`

∆´α1

n

p
^ 1

¯

˙

. (120)

For the leading term we obtain

2σ4

p∆2α1

n

ÿ

k1,k2PNd

k1‰k2

D̄k1,k2
“
σ4

p

ˆ 8
ÿ

r“0

´

2∆d{2
n

ÿ

kPNd

p1 ´ e´λk∆nq2

2pλk∆nq1`α
e´rλk∆n

¯2

` 2
´

∆d{2
n

ÿ

kPNd

1 ´ e´λk∆n

pλk∆nq1`α

¯2
˙

“
σ4

p

ˆ 8
ÿ

r“0

´

2∆d{2
n

ÿ

kPNd

gα,rpλk∆nq

¯2

` 2
´

∆d{2
n

ÿ

kPNd

fαpλk∆nq

¯2
˙

,

and by Lemma 4.2.4 we have

Var
`

Vp,∆n
pyq

˘

“
1

p

ˆ

Γp1 ´ α1qσ2

2dpπηqd{2α1Γpd{2q

˙2ˆ 8
ÿ

r“0

`

´ rα
1

` 2pr ` 1qα
1

´ pr ` 2qα
1˘2

` 2

˙

` O
ˆ

1

p

´

∆1{2
n _

∆1´α1

n

δd`1
`

∆´α1

n

p
^ 1

¯

˙

.

Defining the constant

Υα1 :“

ˆ 8
ÿ

r“0

`

´ rα
1

` 2pr ` 1qα
1

´ pr ` 2qα
1˘2

` 2

˙

(121)

completes the proof.

Comparing the volatility estimators from the equations (71) and (72), with the exponentially rescaled

realized volatility from display (112), we gain valuable insights into the asymptotic behaviour of both

estimators, as revealed in the preceding proposition. In Chapter 4, we explored the impact of the damping

parameter on the model, particularly on the temporal covariance structure. In Section 4.2, we discussed

how the pure damping parameter α1 governs the roughness of the temporal marginal processes. The

previous proposition confirmed the conjecture that, due to this roughness property, α1 is a crucial factor

contributing to the asymptotic variance, denoted by Υα1 . Note that we assume the pure damping parame-

ter α1 to be known within this section. The behaviour of the covariances is also of significant interest. We

observe that the covariance structures vanish when we apply an appropriate relationship between spatial

observations and temporal resolution. This relationship is already incorporated in Assumption 4.1.1 as

a sufficient condition. However, a similar restriction is already evident in the one-dimension case, as

discussed in Bibinger and Trabs (2020, Assumption 1). Nonetheless, we have tightened the intuitive ex-

tension of the one-dimensional case for the proportion ρ, which would be given by 0 ă ρ ă p1´α1q{pd`1q.

The adjustment 0 ă ρ ă p1 ´ α1q{pd ` 2q is necessary due to the differing orders in the Riemann ap-

proximation from Lemma 4.2.1 when compared to the one-dimensional case. As the number of spatial

dimensions increases, the restrictive nature of Assumption 4.1.1 becomes more pronounced.
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5.3. Controlling temporal dependencies of the quadratic increments

Our aim in the upcoming section is to demonstrate central limit theorems for the estimator σ̂2
npyq from

equation (71) and its robustification σ̂2
n,m from equation (72). Hence, the objective of this section is to

establish the proof that the dependencies of temporal quadratic increments can be appropriately bounded

following the Condition (III) outlined in Proposition 1.2.4 by Peligrad et al. (1997). To achieve this, we

control the temporal dependencies in two steps. In a first step, we bound the covariance of empirical

characteristic functions in a single spatial coordinate. In a second step, we extend this result to encompass

multiple spatial coordinates. In the case of multiple spatial coordinates, we observe that the dependencies

are manageable only when the relationship between spatial and temporal observations is suitably chosen,

as specified in Assumption 4.1.1.

Proposition 5.3.1

Grant the Assumptions 4.1.1 and 4.1.2. Let y P rδ, 1 ´ δsd for a δ ą 0, 1 ď r ă r ` u ď v ď n natural

numbers and

Qr
1 “

r
ÿ

i“1

p∆iX̃q2pyq, Qv
r`u “

v
ÿ

i“r`u

p∆iX̃q2pyq,

then there exists a constant C, where 0 ă C ă 8, such that it holds for all t P R that

ˇ

ˇ

ˇ

ˇ

Cov
ˆ

eitpQ
r
1´ErQr

1sq, eitpQ
v
r`u´ErQv

r`usq

˙
ˇ

ˇ

ˇ

ˇ

ď
Ct2

u1´α1{2

b

VarpQr
1qVarpQv

r`uq.

Proof. Assume Qv
r`u “ A1 `A2, with some A2 which is independent of Qr

1. Then, we know by Bibinger

and Trabs (2020, Prop. 6.6.) that

Cov
´

eitQ̄
r
1 , eitQ̄

v
r`u

¯

ď 2t2E
”

`

Q̄r
1

˘2
ı1{2

E
”

`

Ā1

˘2
ı1{2

,

where X̄ “ X ´ ErXs. For r ď i´ 1 we obtain

∆iX̃pyq “
ÿ

kPNd

ˆ

σλ
´α{2
k

r∆n
ż

´8

e´λk

`

pi´1q∆n´s
˘

`

e´λk∆n ´ 1
˘

dWk
s

˙

ekpyq

`
ÿ

kPNd

ˆ

σλ
´α{2
k

pi´1q∆n
ż

r∆n

e´λk

`

pi´1q∆n´s
˘

`

e´λk∆n ´ 1
˘

dWk
s

` σλ
´α{2
k

i∆n
ż

pi´1q∆n

e´λkpi∆n´sq dWk
s

¸

ekpyq

“
ÿ

kPNd

Dk,i
1 ekpyq `

ÿ

kPNd

Dk,i
2 ekpyq,
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where

Dk,i
1 :“ σλ

´α{2
k

r∆n
ż

´8

e´λk

`

pi´1q∆n´s
˘

`

e´λk∆n ´ 1
˘

dWk
s , (122)

Dk,i
2 :“ σλ

´α{2
k

pi´1q∆n
ż

r∆n

e´λk

`

pi´1q∆n´s
˘

`

e´λk∆n ´ 1
˘

dWk
s ` σλ

´α{2
k

i∆n
ż

pi´1q∆n

e´λkpi∆n´sq dWk
s . (123)

Note that Dk,i
1 and Dk,i

2 are independent, thus we have

Qv
r`u “

v
ÿ

i“r`u

ˆ

ÿ

kPNd

Dk,i
1 ekpyq

˙2

` 2
v
ÿ

i“r`u

ˆ

ÿ

kPNd

Dk,i
1 ekpyq

˙ˆ

ÿ

kPNd

Dk,i
2 ekpyq

˙

`

v
ÿ

i“r`u

ˆ

ÿ

kPNd

Dk,i
2 ekpyq

˙2

,

which implies the following decomposition:

A1 :“
v
ÿ

i“r`u

ˆ

ÿ

kPNd

Dk,i
1 ekpyq

˙2

` 2
v
ÿ

i“r`u

ˆ

ÿ

kPNd

Dk,i
1 ekpyq

˙ˆ

ÿ

kPNd

Dk,i
2 ekpyq

˙

,

A2 :“
v
ÿ

i“r`u

ˆ

ÿ

kPNd

Dk,i
2 ekpyq

˙2

,

where A2 is independent of Qr
1. Hence, our focus shifts to bounding the term ErĀ2

1s, which is equivalent

to computing VarpA1q. We begin with the following considerations:

ErĀ2
1s ď ErA2

1s

“ E

»

–

˜

v
ÿ

i“r`u

ˆ

ÿ

kPNd

Dk,i
1 ekpyq

˙2

` 2
v
ÿ

i“r`u

ˆ

ÿ

kPNd

Dk,i
1 ekpyq

˙ˆ

ÿ

kPNd

Dk,i
2 ekpyq

˙

¸2
fi

fl

“

v
ÿ

i,j“r`u

E

«

ˆ

ÿ

kPNd

Dk,i
1 ekpyq

˙2ˆ
ÿ

kPNd

Dk,j
1 ekpyq

˙2
ff

` 4
v
ÿ

i,j“r`u

E

«

ˆ

ÿ

kPNd

Dk,i
1 ekpyq

˙2ˆ
ÿ

kPNd

Dk,j
1 ekpyq

˙ˆ

ÿ

kPNd

Dk,j
2 ekpyq

˙

ff

` 4
v
ÿ

i,j“r`u

E

«

ˆ

ÿ

kPNd

Dk,i
1 ekpyq

˙ˆ

ÿ

kPNd

Dk,i
2 ekpyq

˙ˆ

ÿ

kPNd

Dk,j
1 ekpyq

˙ˆ

ÿ

kPNd

Dk,j
2 ekpyq

˙

ff

,

where the cross-term between Dk,i
1 , Dk,i

2 vanishes as both terms are centred normally distributed. There-

fore, we use ErĀ2
1s ď T1 ` 4T2, where we define

T1 :“
v
ÿ

i,j“r`u

E
„

´

ÿ

kPNd

Dk,i
1 ekpyq

¯2´ ÿ

kPNd

Dk,j
1 ekpyq

¯2
ȷ

, (124)

T2 :“
v
ÿ

i,j“r`u

E
„

´

ÿ

kPNd

Dk,i
1 ekpyq

¯´

ÿ

kPNd

Dk,i
2 ekpyq

¯´

ÿ

kPNd

Dk,j
1 ekpyq

¯´

ÿ

kPNd

Dk,j
2 ekpyq

¯

ȷ

. (125)

To bound the term T1, we can utilize the expression Dk,i
1 “ e´λkpi´r´1q∆nB̃r`1,k, where B̃i,k is defined
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in equation (107), leading to the following calculation:

T1 “

v
ÿ

i,j“r`u

ÿ

k1,k2,k3,k4PNd

E
”

e´λk1
pi´r´1q∆nB̃r`1,k1

ek1
pyqe´λk2

pi´r´1q∆nB̃r`1,k2
ek2

pyq

ˆ e´λk3
pj´r´1q∆nB̃r`1,k3

ek3
pyqe´λk4

pj´r´1q∆nB̃r`1,k4
ek4

pyq

ı

.

Note that any combination of indices results in a value of zero, unless, exactly two indices are equal, or

all four indices are equal. Thus, we obtain for k1 “ . . . “ k4 “ k that

v
ÿ

i,j“r`u

ÿ

kPNd

e´2λkpi`j´2r´2q∆nE
”

B̃4
r`1,k

ı

e4kpyq.

For k1 “ k2 and k3 “ k4, with k1 ‰ k3 we find that

v
ÿ

i,j“r`u

ÿ

k1,k2PNd

k1‰k2

e´2λk1
pi´r´1q∆ne´2λk2

pj´r´1q∆nE
”

B̃2
r`1,k1

B̃2
r`1,k2

ı

e2k1
pyqe2k2

pyq

“

v
ÿ

i,j“r`u

ÿ

k1,k2PNd

k1‰k2

e´2λk1
pi´r´1q∆n´2λk2

pj´r´1q∆nE
”

B̃2
r`1,k1

ı

E
”

B̃2
r`1,k2

ı

e2k1
pyqe2k2

pyq.

The remaining combinations yield the following:

v
ÿ

i,j“r`u

ÿ

k1,k2PNd

k1‰k2

e´λk1
pi`j´2r´2q∆ne´λk2

pi`j´2r´2q∆nE
”

B̃2
r`1,k1

B̃2
r`1,k2

ı

e2k1
pyqe2k2

pyq

“

v
ÿ

i,j“r`u

ÿ

k1,k2PNd

k1‰k2

e´pλk1
`λk2

qpi`j´2r´2q∆nE
”

B̃2
r`1,k1

ı

E
”

B̃2
r`1,k2

ı

e2k1
pyqe2k2

pyq,

and we observe

T1 “

v
ÿ

i,j“r`u

ÿ

k1,k2PNd

k1‰k2

e´2λk1
pi´r´1q∆n´2λk2

pj´r´1q∆nE
”

B̃2
r`1,k1

ı

E
”

B̃2
r`1,k2

ı

e2k1
pyqe2k2

pyq

` 2
v
ÿ

i,j“r`u

ÿ

k1,k2PNd

k1‰k2

e´pλk1
`λk2

qpi`j´2r´2q∆nE
”

B̃2
r`1,k1

ı

E
”

B̃2
r`1,k2

ı

e2k1
pyqe2k2

pyq

`

v
ÿ

i,j“r`u

ÿ

kPNd

e´2λkpi`j´2r´2q∆nE
”

B̃4
r`1,k

ı

e4kpyq

“
ÿ

k1,k2PNd

k1‰k2

v
ÿ

i,j“r`u

´

e´2λk1
pi´r´1q∆n´2λk2

pj´r´1q∆n ` 2e´pλk1
`λk2

qpi`j´2r´2q∆n

¯

ˆ E
”

B̃2
r`1,k1

ı

E
”

B̃2
r`1,k2

ı

e2k1
pyqe2k2

pyq `
ÿ

kPNd

v
ÿ

i,j“r`u

e´2λkpi`j´2r´2q∆nE
”

B̃4
r`1,k

ı

e4kpyq
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“ σ4
ÿ

k1,k2PNd

k1‰k2

`

1 ´ e´λk1
∆n

˘2`
1 ´ e´λk2

∆n
˘2

4λ1`α
k1

λ1`α
k2

˜

v
ÿ

i“r`u

e´2λk1
pi´r´1q∆n

¸˜

v
ÿ

j“r`u

e´2λk2
pj´r´1q∆n

¸

ˆ e2k1
pyqe2k2

pyq

` σ4
ÿ

k1,k2PNd

k1‰k2

`

1 ´ e´λk1
∆n

˘2`
1 ´ e´λk2

∆n
˘2

4λ1`α
k1

λ1`α
k2

2

˜

v
ÿ

i“r`u

e´pλk1
`λk2

qpi´r´1q∆n

¸2

e2k1
pyqe2k2

pyq

` 3σ4
ÿ

kPNd

`

1 ´ e´λk∆n
˘4

4λ
2p1`αq

k

˜

v
ÿ

i“r`u

e´2λkpi´r´1q∆n

¸2

e4kpyq.

Here, we used equation (113), which implies

E
”

B̃2
r`1,k

ı

“
σ2

2λ1`α
k

`

1 ´ e´λk∆n
˘2
.

Let p̄ “ v´r´u`1 and u ě 2. First, we can bound the eigenfunctions pekqkPNd with a suitable constant

C ą 0. Furthermore, we have

v
ÿ

i“r`u

e´2λkpi´r´1q∆n “

v´r´u
ÿ

i“0

e´2λkpi`u´1q∆n

“ e´2λkpu´1q∆n
1 ´ e´2λk∆npv´r´u`1q

1 ´ e´2λk∆n

“ e´2λkpu´1q∆n
1 ´ e´2λk∆np̄

1 ´ e´2λk∆n
,

v
ÿ

i“r`u

e´pλk1
`λk2

qpi´r´1q∆n “ e´pλk1
`λk2

qpu´1q∆n
1 ´ e´pλk1

`λk2
q∆np̄

1 ´ e´pλk1
`λk2

q∆n
.

Thus, we obtain

˜

v
ÿ

i“r`u

e´2λk1
pi´r´1q∆n

¸˜

v
ÿ

j“r`u

e´2λk2
pj´r´1q∆n

¸

“ e´2pλk1
`λk2

qpu´1q∆n

`

1 ´ e´2λk1
∆np̄

˘`

1 ´ e´2λk2
∆np̄

˘

`

1 ´ e´2λk1
∆n

˘`

1 ´ e´2λk2
∆n

˘

ď e´2pλk1
`λk2

qpu´1q∆n
1 ´ e´2λk2

∆np̄

`

1 ´ e´2λk1
∆n

˘`

1 ´ e´2λk2
∆n

˘

ď e´2pλk1
`λk2

qpu´1q∆n
p̄

`

1 ´ e´2λk1
∆n

˘ ,

as well as

˜

v
ÿ

i“r`u

e´pλk1
`λk2

qpi´r´1q∆n

¸2

“ e´2pλk1
`λk2

qpu´1q∆n

ˆ

1 ´ e´pλk1
`λk2

q∆np̄

1 ´ e´pλk1
`λk2

q∆n

˙2

ď e´2pλk1
`λk2

qpu´1q∆n
1 ´ e´pλk1

`λk2
q∆np̄

`

1 ´ e´pλk1
`λk2

q∆n
˘2
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ď e´2pλk1
`λk2

qpu´1q∆n
p̄

1 ´ e´pλk1
`λk2

q∆n
,

˜

v
ÿ

i“r`u

e´2λkpi´r´1q∆n

¸2

“

ˆ

e´2λkpu´1q∆n
1 ´ e´2λk∆np̄

1 ´ e´2λk∆n

˙2

ď e´4λkpu´1q∆n
1 ´ e´2λk∆np̄

`

1 ´ e´2λk∆n

˘2

ď e´4λkpu´1q∆n
p̄

1 ´ e´2λk∆n
.

Finally, we conclude with the following calculations:

T1 ď C4σ4

ˆ

ÿ

k1,k2PNd

k1‰k2

`

1 ´ e´λk1
∆n

˘2`
1 ´ e´λk2

∆n
˘2

4λ1`α
k1

λ1`α
k2

e´2pλk1
`λk2

qpu´1q∆n
p̄

`

1 ´ e´2λk1
∆n

˘

`
ÿ

k1,k2PNd

k1‰k2

`

1 ´ e´λk1
∆n

˘2`
1 ´ e´λk2

∆n
˘2

4λ1`α
k1

λ1`α
k2

e´2pλk1
`λk2

qpu´1q∆n
2p̄

1 ´ e´pλk1
`λk2

q∆n

` 3
ÿ

kPNd

`

1 ´ e´λk∆n
˘4

4λ
2p1`αq

k

e´4λkpu´1q∆n
p̄

1 ´ e´2λk∆n

˙

ď C4σ4

ˆ

p̄
ÿ

k1,k2PNd

k1‰k2

`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘2

4λ1`α
k1

λ1`α
k2

e´2pλk1
`λk2

qpu´1q∆n

` 2p̄
ÿ

k1,k2PNd

k1‰k2

`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘2

4λ1`α
k1

λ1`α
k2

e´2pλk1
`λk2

qpu´1q∆n

` 3p̄
8
ÿ

kPNd

`

1 ´ e´λk∆n
˘3

4λ
2p1`αq

k

e´4λkpu´1q∆n

˙

ď C4σ43p̄

ˆ

ÿ

k1PNd

`

1 ´ e´λk1
∆n

˘

2λ1`α
k1

e´2λk1
pu´1q∆n

˙ˆ

ÿ

k2PNd

`

1 ´ e´λk2
∆n

˘2

2λ1`α
k2

e´2λk2
pu´1q∆n

˙

“ C4σ43p̄∆2α1

n

ˆ

∆d{2
n

ÿ

k1PNd

`

1 ´ e´λk1
∆n

˘

2pλk1
∆nq1`α

e´2λk1
pu´1q∆n

˙ˆ

∆d{2
n

ÿ

k2PNd

`

1 ´ e´λk2
∆n

˘2

2pλk2
∆nq1`α

e´2λk2
pu´1q∆n

˙

ď C 1σ4p̄∆2α1

n

ˆ
ż 8

0

xd{2´1 p1 ´ e´xq

2x1`α
e´2xpu´1q dx

˙ˆ
ż 8

0

xd{2´1 p1 ´ e´xq2

2x1`α
e´2xpu´1q dx

˙

.

Utilizing analogous steps as for Lemma 4.2.4, we obtain for both integrals that

ż 8

0

xd{2´1 p1 ´ e´xq

2x1`α
e´2xτ dx “

ż 8

0

p1 ´ e´xq

2x1`α1 e´2xτ dx “
1

2α1

`

´ p2τqα
1

` p1 ` 2τqα
1˘

Γp1 ´ α1q,

ż 8

0

xd{2´1 p1 ´ e´xq2

2x1`α
e´2xτ dx “

ż 8

0

p1 ´ e´xq2

2x1`α1 e´2xτ dx

“
1

2α1

`

´ p2τqα
1

` 2p1 ` 2τqα
1

´ p2 ` 2τqα
1˘

Γp1 ´ α1q.
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Hence, by equation (69) it holds for l “ 1, 2:

ż 8

0

xd{2´1 p1 ´ e´xql

2x1`α
e´2xτ dx “ O

ˆ

1

τ l´α1

˙

,

and we conclude

T1 ď Cσ4 p̄∆2α1

n

pu´ 1q3´2α1 ,

for a suitable C ą 0. For the term T2, according to equation (125), we obtain the following:

T2 “

v
ÿ

i,j“r`u

E
„

´

ÿ

kPNd

Dk,i
1 ekpyq

¯´

ÿ

kPNd

Dk,i
2 ekpyq

¯´

ÿ

kPNd

Dk,j
1 ekpyq

¯´

ÿ

kPNd

Dk,j
2 ekpyq

¯

ȷ

“

v
ÿ

i,j“r`u

E
„

´

ÿ

kPNd

Dk,i
1 ekpyq

¯´

ÿ

kPNd

Dk,j
1 ekpyq

¯

ȷ

E
„

´

ÿ

kPNd

Dk,i
2 ekpyq

¯´

ÿ

kPNd

Dk,j
2 ekpyq

¯

ȷ

“

v
ÿ

i,j“r`u

ˆ

ÿ

kPNd

E
“

Dk,i
1 Dk,j

1

‰

e2kpyq

˙ˆ

ÿ

kPNd

E
“

Dk,i
2 Dk,j

2

‰

e2kpyq

˙

.

For the first expected value, we find that

E
“

Dk,i
1 Dk,j

1

‰

“ σ2λ´α
k p1 ´ e´λk∆nq2e´λkpi`j´2q∆n

ż r∆n

´8

e2λks ds

“ σ2λ´α
k p1 ´ e´λk∆nq2e´λkpi`j´2q∆n

e2λkr∆n

2λk

“ σ2 p1 ´ e´λk∆nq2

2λ1`α
k

e´λkpi`j´2r´2q∆n .

The second expected value calculates for i ď j as follows:

E
“

Dk,i
2 Dk,j

2

‰

“ E
„

´

σλ
´α{2
k

pi´1q∆n
ż

r∆n

e´λk

`

pi´1q∆n´s
˘

`

e´λk∆n ´ 1
˘

dWk
s ` Ci,k

¯

ˆ

´

σλ
´α{2
k

pj´1q∆n
ż

r∆n

e´λk

`

pj´1q∆n´s
˘

`

e´λk∆n ´ 1
˘

dWk
s ` Cj,k

¯

ȷ

“ σ2λ´α
k p1 ´ e´λk∆nq2e´λkpi`j´2q∆n

ż pi´1q∆n

r∆n

e2λks ds` ΣBC,k
j,i ` ΣC,k

i,j

“ σ2 p1 ´ e´λk∆nq2

2λ1`α
k

`

e´λkpj´iq∆n ´ e´λkpi`j´2r´2q∆n
˘

` ΣBC,k
j,i ` ΣC,k

i,j .

As discussed in Proposition 4.2.7, we find that ΣBC,k
j,i “ 0, when i “ j, and ΣC,k

i,j “ 0, when i ‰ j. In

particular, for the case when i ă j, we find that

E
“

Dk,i
2 Dk,j

2

‰

“ σ2 p1 ´ e´λk∆nq2

2λ1`α
k

`

e´λkpj´iq∆n ´ e´λkpi`j´2r´2q∆n
˘

166



5.3. Controlling temporal dependencies of the quadratic increments

` σ2e´λk∆npj´iq
´

eλk∆n ´ e´λk∆n

¯e´λk∆n ´ 1

2λ1`α
k

“ σ2e´λkpj´iq∆n
1 ´ e´λk∆n

2λ1`α
k

`

p1 ´ e´λk∆nqp1 ´ e´2λkpi´r´1q∆nq ´ peλk∆n ´ e´λk∆nq
˘

ď σ2e´λkpj´iq∆n
1 ´ e´λk∆n

2λ1`α
k

`

1 ´ eλk∆n
˘

ď 0.

Using this calculations along with equation (74), we derive the following:

T2 ď C4σ4
v
ÿ

i“r`u

ˆ

ÿ

kPNd

p1 ´ e´λk∆nq2

2λ1`α
k

e´2λkpi´r´1q∆n

˙

ˆ

ˆ

ÿ

kPNd

p1 ´ e´λk∆nq2

2λ1`α
k

`

1 ´ e´2λkpi´r´1q∆n
˘

` σ´2ΣC,k
i,i

˙

` 2
v
ÿ

i,j“r`u
iăj

ˆ

ÿ

kPNd

p1 ´ e´λk∆nq2

2λ1`α
k

e´λkpi`j´2r´2q∆ne2kpyq

˙ˆ

ÿ

kPNd

E
“

Dk,i
2 Dk,j

2

‰

e2kpyq

˙

ď C4σ4
v
ÿ

i“r`u

ˆ

ÿ

kPNd

p1 ´ e´λk∆nq2

2λ1`α
k

e´2λkpi´r´1q∆n

˙

ˆ

ˆ

ÿ

kPNd

p1 ´ e´λk∆nq2

2λ1`α
k

`

1 ´ e´2λkpi´r´1q∆n
˘

`
1 ´ e´2λk∆n

2λ1`α
k

˙

ď C4σ4
v
ÿ

i“r`u

ˆ

ÿ

kPNd

p1 ´ e´λk∆nq2

2λ1`α
k

e´2λkpi´r´1q∆n

˙ˆ

ÿ

kPNd

p1 ´ e´λk∆nq2 ` 1 ´ e´2λk∆n

2λ1`α
k

˙

“ C4σ4∆2α1

n

v
ÿ

i“r`u

ˆ

∆d{2
n

ÿ

kPNd

p1 ´ e´λk∆nq2

2pλk∆nq1`α
e´2λkpi´r´1q∆n

˙ˆ

∆d{2
n

ÿ

kPNd

1 ´ e´λk∆n

pλk∆nq1`α

˙

ď C4σ4∆2α1

n p̄

ˆ

∆d{2
n

ÿ

kPNd

p1 ´ e´λk∆nq2

2pλk∆nq1`α
e´2λkpu´1q∆n

˙ˆ

∆d{2
n

ÿ

kPNd

1 ´ e´λk∆n

pλk∆nq1`α

˙

.

By utilizing analogous steps as for the term T1, we obtain for the term T2 that

T2 ď Cσ4 p̄∆2α1

n

pu´ 1q2´α1 ,

where C ą 0 denotes a suitable constant. Thereby, we conclude for u ě 2 that

ErĀ2
1s ď Cσ4 p̄∆2α1

n

pu´ 1q2´α1 . (126)

Finally, using Proposition 4.2.6, we find that

Var
`

Qv
r`u

˘

ě CE
”

`

Qv
r`u

˘2
ı

“ CE

«

ˆ v
ÿ

i“r`u

p∆iX̃q2pyq

˙2
ff

ě C
v
ÿ

i“r`u

E
”

p∆iX̃q4pyq

ı

ě C2σ4p̄∆2α1

n ,

which completes the proof for u ě 2. The case u “ 1 can be demonstrated similarly to the univariate

case in Proposition 2.4.1.
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We directly build upon Proposition 5.3.1 and present the following corollary, which extends Proposition

5.3.1 to multiple space coordinates.

Corollary 5.3.2

On the assumptions of Proposition 5.3.1, it holds for 1 ď r ă r ` u ď v ď n and

Q̃r
1 “

r
ÿ

i“1

ξ̃n,i, Q̃v
r`u “

v
ÿ

i“r`u

ξ̃n,i,

that there is a constant C, with 0 ă C ă 8 and ξ̃n,i from equation (109), such that for all t P R it holds

ˇ

ˇ

ˇ

ˇ

Cov
ˆ

eitpQ̃
r
1´ErQ̃r

1sq, eitpQ̃
v
r`u´ErQ̃v

r`usq

˙
ˇ

ˇ

ˇ

ˇ

ď
Ct2

u1´α1{2

b

VarpQ̃r
1qVarpQ̃v

r`uq.

Proof. We present the proof analogously to Proposition 5.3.1 and begin by decomposing the term Q̃v
r`u

as follows:

Q̃v
r`u “

v
ÿ

i“r`u

ξ̃n,i “
2dpπηqd{2α1Γpd{2q
?
nm∆α1

n Γp1 ´ α1q

m
ÿ

j“1

`

A1pyjq `A2pyjq
˘

e∥κ
‚yj∥1 ,

where

A1pyq :“
v
ÿ

i“r`u

ˆ

ÿ

kPNd

Dk,i
1 ekpyq

˙2

` 2
v
ÿ

i“r`u

ˆ

ÿ

kPNd

Dk,i
1 ekpyq

˙ˆ

ÿ

kPNd

Dk,i
2 ekpyq

˙

,

A2pyq :“
v
ÿ

i“r`u

ˆ

ÿ

kPNd

Dk,i
2 ekpyq

˙2

,

and an analogous definition of Dk,i
1 and Dk,i

2 as in the equations (122) and (123). Thereby, we need to

bound the following expression:

Var
ˆ

K
?
nm∆α1

n

m
ÿ

j“1

A1pyjqe∥κ
‚yj∥1

˙

“
K2

nm∆2α1

n

m
ÿ

j“1

Var
`

A1pyjq
˘

e2∥κ
‚yj∥1

`
K2

nm∆2α1

n

m
ÿ

j1,j2“1
j1‰j2

Cov
`

A1pyj1q, A1pyj2q
˘

e∥κ
‚pyj1

`yj2
q∥1 ,

where

K :“
2dpπηqd{2α1Γpd{2q

Γp1 ´ α1q
.

Let p̄ “ v ´ r ´ u` 1 and u ě 2. Thanks to Proposition 5.3.1, we obtain that

K2

nm∆2α1

n

m
ÿ

j“1

Var
`

A1pyjq
˘

e2∥κ
‚yj∥1 ď Cσ4 p̄K2∆n

pu´ 1q2´α1 ,

where we used the bound for ErĀ2
1s from display (126). For the covariance, we exploit the independence
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of Dk,i
1 and Dk,i

2 , along with both terms being centred normals. This allows us to derive the following:

Cov
`

A1py1q, A1py2q
˘

“

v
ÿ

i,j“r`u

E
„ˆ

ÿ

kPNd

Dk,i
1 ekpy1q

˙2ˆ
ÿ

kPNd

Dk,j
1 ekpy2q

˙2ȷ

` 4
v
ÿ

i,j“r`u

E
„ˆ

ÿ

kPNd

Dk,i
1 ekpy1q

˙ˆ

ÿ

kPNd

Dk,i
2 ekpy1q

˙

ˆ

ˆ

ÿ

kPNd

Dk,j
1 ekpy2q

˙ˆ

ÿ

kPNd

Dk,j
2 ekpy2q

˙ȷ

´

v
ÿ

i,j“r`u

E
„ˆ

ÿ

kPNd

Dk,i
1 ekpy1q

˙2ȷ

E
„ˆ

ÿ

kPNd

Dk,j
1 ekpy2q

˙2ȷ

.

Since we can bound the eigenfunctions pekqkPNd by a suitable constant C ą 0, for all k P Nd, we

observe that the covariance includes the terms T1 and T2 from the displays (124) and (125), respectively.

Therefore, we can repeat the calculations from Proposition 5.3.1 concerning the eigenfunctions, leading

to the following:

T̃1 “

v
ÿ

i,j“r`u

ÿ

k1,k2,k3,k4PNd

E
”

e´λk1
pi´r´1q∆nB̃r`1,k1

ek1
py1qe´λk2

pi´r´1q∆nB̃r`1,k2
ek2

py1q

ˆ e´λk3
pj´r´1q∆nB̃r`1,k3

ek3
py2qe´λk4

pj´r´1q∆nB̃r`1,k4
ek4

py2q

ı

,

for y1 ‰ y2 and

T̃1 :“
v
ÿ

i,j“r`u

E
„ˆ

ÿ

kPNd

Dk,i
1 ekpy1q

˙2ˆ
ÿ

kPNd

Dk,j
1 ekpy2q

˙2ȷ

.

Assume k1 “ . . . “ k4 “ k, then we have

v
ÿ

i,j“r`u

ÿ

kPNd

e´2λkpi`j´2r´2q∆nE
”

B̃4
r`1,k

ı

e2kpy1qe2kpy2q.

For k1 “ k2, k3 “ k4, with k1 ‰ k3, we obtain

v
ÿ

i,j“r`u

ÿ

k1,k2PNd

k1‰k2

e´2λk1
pi´r´1q∆n´2λk2

pj´r´1q∆nE
”

B̃2
r`1,k1

ı

E
”

B̃2
r`1,k2

ı

e2k1
py1qe2k2

py2q,

as well as the following expression for the remaining combinations:

v
ÿ

i,j“r`u

ÿ

k1,k2PNd

k1‰k2

e´pλk1
`λk2

qpi`j´2r´2q∆nE
”

B̃2
r`1,k1

ı

E
”

B̃2
r`1,k2

ı

ek1
py1qek1

py2qek2
py1qek2

py2q.
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Thus, we derive

T̃1 “ σ4
ÿ

k1,k2PNd

k1‰k2

`

1 ´ e´λk1
∆n

˘2`
1 ´ e´λk2

∆n
˘2

4λ1`α
k1

λ1`α
k2

˜

v
ÿ

i“r`u

e´2λk1
pi´r´1q∆n

¸˜

v
ÿ

j“r`u

e´2λk2
pj´r´1q∆n

¸

ˆ e2k1
py1qe2k2

py2q

` σ4
ÿ

k1,k2PNd

k1‰k2

`

1 ´ e´λk1
∆n

˘2`
1 ´ e´λk2

∆n
˘2

4λ1`α
k1

λ1`α
k2

2

˜

v
ÿ

i“r`u

e´pλk1
`λk2

qpi´r´1q∆n

¸2

ˆ ek1py1qek1py2qek2py1qek2py2q

` 3σ4
8
ÿ

kPNd

`

1 ´ e´λk∆n
˘4

4λ
2p1`αq

k

˜

v
ÿ

i“r`u

e´2λkpi´r´1q∆n

¸2

e2kpy1qe2kpy2q

ď σ4

ˆ

p̄
ÿ

k1,k2PNd

k1‰k2

`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘2

4λ1`α
k1

λ1`α
k2

e´2pλk1
`λk2

qpu´1q∆ne2k1
py1qe2k2

py2q

` 2p̄
ÿ

k1,k2PNd

k1‰k2

`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘2

4λ1`α
k1

λ1`α
k2

e´2pλk1
`λk2

qpu´1q∆nek1
py1qek1

py2qek2
py1qek2

py2q

` 3p̄
8
ÿ

kPNd

`

1 ´ e´λk∆n
˘3

4λ
2p1`αq

k

e´4λkpu´1q∆ne2kpy1qe2kpy2q

˙

“ σ4

ˆ

p̄
ÿ

k1,k2PNd

`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘2

4λ1`α
k1

λ1`α
k2

e´2pλk1
`λk2

qpu´1q∆ne2k1
py1qe2k2

py2q

` 2p̄
ÿ

k1,k2PNd

`

1 ´ e´λk1
∆n

˘`

1 ´ e´λk2
∆n

˘2

4λ1`α
k1

λ1`α
k2

e´2pλk1
`λk2

qpu´1q∆nek1py1qek1py2qek2py1qek2py2q

˙

“ σ4p̄

ˆ

ÿ

kPNd

`

1 ´ e´λk∆n
˘

2λ1`α
k

e´2λkpu´1q∆ne2kpy1q

˙ˆ

ÿ

kPNd

`

1 ´ e´λk∆n
˘2

2λ1`α
k

e´2λkpu´1q∆ne2kpy2q

˙

` σ42p̄

ˆ

ÿ

kPNd

`

1 ´ e´λk∆n
˘

2λ1`α
k

e´2λkpu´1q∆nekpy1qekpy2q

˙

ˆ

ˆ

ÿ

kPNd

`

1 ´ e´λk∆n
˘2

2λ1`α
k

e´2λkpu´1q∆nekpy1qekpy2q

˙

.

Furthermore, we have

T̃1 ´

v
ÿ

i,j“r`u

E
„ˆ

ÿ

kPNd

Dk,i
1 ekpy1q

˙2ȷ

E
„ˆ

ÿ

kPNd

Dk,j
1 ekpy2q

˙2ȷ

ď σ42p̄

ˆ

ÿ

kPNd

`

1 ´ e´λk∆n
˘

2λ1`α
k

e´2λkpu´1q∆nekpy1qekpy2q

˙ˆ

ÿ

kPNd

`

1 ´ e´λk∆n
˘2

2λ1`α
k

e´2λkpu´1q∆nekpy1qekpy2q

˙

.

Hence, we can bound the latter term by using display (118) and Lemma 4.2.1. Similar to Proposition
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5.2.1, we find that

T̃1 ´

v
ÿ

i,j“r`u

E
„ˆ

ÿ

kPNd

Dk,i
1 ekpy1q

˙2ȷ

E
„ˆ

ÿ

kPNd

Dk,j
1 ekpy2q

˙2ȷ

“ O
ˆ

σ4p̄∆2α1

n ∆1´α1

n ∥y1 ´ y2∥
´pd`1q

0

´

∆d{2
n

ÿ

kPNd

p1 ´ e´λk∆nq2

pλk∆nq1`α
e´2λkpu´1q∆n

¯

˙

“ O
ˆ

σ4 p̄∆2α1

n

pu´ 1q2´α1 ∆
1´α1

n ∥y1 ´ y2∥
´pd`1q

0

˙

, (127)

where we used analogous steps as in display (119). For the last term in the covariance, we redefine

T̃2 :“
v
ÿ

i,j“r`u

E
„ˆ

ÿ

kPNd

Dk,i
1 ekpy1q

˙ˆ

ÿ

kPNd

Dk,i
2 ekpy1q

˙

ˆ

ˆ

ÿ

kPNd

Dk,j
1 ekpy2q

˙ˆ

ÿ

kPNd

Dk,j
2 ekpy2q

˙ȷ

“

v
ÿ

i,j“r`u

ˆ

ÿ

kPNd

E
“

Dk,i
1 Dk,j

1

‰

ekpy1qekpy2q

˙ˆ

ÿ

kPNd

E
“

Dk,i
2 Dk,j

2

‰

ekpy1qekpy2q

˙

.

With similar steps as in Proposition 5.2.1, we obtain

T̃2 ď

v
ÿ

i“r`u

ˆ

ÿ

kPNd

E
“

Dk,i
1 Dk,i

1

‰

ekpy1qekpy2q

˙ˆ

ÿ

kPNd

E
“

Dk,i
2 Dk,i

2

‰

ekpy1qekpy2q

˙

“ σ4
v
ÿ

i“r`u

ˆ

ÿ

kPNd

p1 ´ e´λk∆nq2

2λ1`α
k

e´2λkpi´r´1q∆nekpy1qekpy2q

ˆ

ˆ

ÿ

kPNd

´

p1 ´ e´λk∆nq2

2λ1`α
k

`

e´λkpi´1q∆n ´ e´2λkpi´r´1q∆n
˘

`
1 ´ e´2λk∆n

2λ1`α
k

¯

ekpy1qekpy2q

˙

ď σ4∆2α1

n

v
ÿ

i“r`u

ˆ

∆d{2
n

ÿ

kPNd

p1 ´ e´λk∆nq2

2pλk∆nq1`α
e´2λkpi´r´1q∆nekpy1qekpy2q

˙

ˆ

ˆ

∆d{2
n

ÿ

kPNd

1 ´ e´λk∆n

pλk∆nq1`α
ekpy1qekpy2q

˙

ď σ4∆2α1

n p̄

ˆ

∆d{2
n

ÿ

kPNd

p1 ´ e´λk∆nq2

2pλk∆nq1`α
e´2λkpu´1q∆nekpy1qekpy2q

˙ˆ

∆d{2
n

ÿ

kPNd

1 ´ e´λk∆n

pλk∆nq1`α
ekpy1qekpy2q

˙

“ O
ˆ

σ4p̄∆2α1

n ∆1´α1

n ∥y1 ´ y2∥
´pd`1q

0

´

∆d{2
n

ÿ

kPNd

p1 ´ e´λk∆nq2

pλk∆nq1`α
e´2λkpu´1q∆n

¯

˙

“ OpT̃1q.

Hence, we have

K2

nm∆2α1

n

m
ÿ

j1,j2“1
j1‰j2

Cov
`

A1pyj1q, A1pyj2q
˘

“ O
ˆ

σ4 p̄∆n

pu´ 1q2´α1 ¨
∆1´α1

n

m

m
ÿ

j1,j2“1
j1‰j2

1

∥yj1 ´ yj2∥
d`1
0

˙

.

According to Assumption 4.1.1, the distance between any two arbitrary spatial coordinates is bounded
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5. Asymptotic for the volatility estimators

from below, leading to the following order:

m
ÿ

j1,j2“1
j1‰j2

ˆ

1

∥yj1 ´ yj2∥0

˙d`1

“ O
ˆ

md`1
m
ÿ

j1,j2“1
j1‰j2

´ 1

m∥yj1 ´ yj2∥0

¯d`1
˙

“ O
`

md`3
˘

. (128)

Thus, we conclude that

K2

nm∆2α1

n

m
ÿ

j1,j2“1
j1‰j2

Cov
`

A1pyj1q, A1pyj2q
˘

“ O
ˆ

σ4 p̄∆n

pu´ 1q2´α1 ∆
1´α1

n md`2

˙

.

Using the following display:

ErpQv
r`uq2s ě

v
ÿ

i“r`u

Erξ2n,is ě C
K2p̄

nm∆2α1

n

m
ÿ

j“1

E
“

p∆iX̃q4pyjq
‰

ě C 1σ4∆np̄,

completes the proof.

The previous proof demonstrated that the temporal dependencies can be controlled, if ∆1´α1

n md`2
n tends

to zero. In the one-dimensional case, the authors Bibinger and Trabs (2020) fixed α1 “ 1{2, which led to

the restrictionm2
n∆

1{2
n

nÑ8
ÝÑ 0. However, in higher dimensions, we cannot directly transfer the relationship

between spatial and temporal observations, i.e., ∆nm
d`1
n

nÑ8
ÝÑ 0 is not sufficient. As discussed at the

end of Section 5.2, the discrepancy arises from the different rates of the Riemann approximation. For a

comparison between the Riemann approximations in one and multiple spatial dimensions, see Bibinger

and Trabs (2020, Lemma 6.2.) and Lemma 4.2.1, respectively.

5.4. Central limit theorem and simulation results

The objective of this section is to establish a central limit theorem for the volatility estimator σ̂2
n,m from

equation (72), which, in turn, implies a central limit theorem for σ̂2
npyq, given in equation (71). To achieve

this, we will employ the general central limit theorem given in Proposition 1.2.4.

With the assistance of Proposition 5.2.1 in Section 5.2, we will determine the asymptotic variance of the

volatility estimator σ̂2
n,m. This proposition furthermore reveals an optimal rate of convergence of

?
nm.

Subsequently, we will present simulation results for the volatility estimator σ̂2
n,m, thereby concluding this

chapter.

Proposition 5.4.1

On Assumptions 4.1.1 and 4.1.2, we have

?
nmnpσ̂2

n,mn
´ σ2q

d
ÝÑ N p0,Υα1σ4q,

as n Ñ 8, Υα1 defined in equation (121) and mn “ Opnρq, with ρ P
`

0, p1 ´ α1q{pd` 2q
˘

.
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Proof. To prove this central limit theorem, we employ Proposition 1.2.4. Therefore, we define

Ξn,i :“ ξ̃n,i ´ Erξ̃n,is,

where ξ̃n,i is defined in equation (109), and we set

K̃ “
2dpπηqd{2α1Γpd{2q

Γp1 ´ α1q
.

The asymptotic variance is given by

Var
ˆ n
ÿ

i“1

Ξn,i

˙

“ Var
ˆ n
ÿ

i“1

ξ̃n,i

˙

“
K̃2

nmn∆2α1

n

Var
ˆ mn
ÿ

j“1

n
ÿ

i“1

p∆iX̃q2pyjqe∥κ
‚yj∥1

˙

“
K̃2n2∆2α1

n

nmn∆2α1

n

ˆ mn
ÿ

j“1

Var
`

Vn,∆n
pyjq

˘

`

mn
ÿ

j1,j2“1
j1‰j2

Cov
`

Vn,∆n
pyj1q, Vn,∆n

pyj2

˘

˙

“
K̃2n

mn
¨
mnΥα1σ4

n

ˆ

Γp1 ´ α1q

2dpπηqd{2α1Γpd{2q

˙2
`

1 ` Op∆1{2
n _ ∆1´α1

n q
˘

` O
ˆ

K̃2n

mn
¨
∆1´α1

n

n

mn
ÿ

j1,j2“1
j1‰j2

´

∥y1 ´ y2∥
´pd`1q

0 ` δ´pd`1q
¯

˙

“ Υα1σ4
`

1 ` Op∆1{2
n _ ∆1´α1

n q
˘

` Opmd`2
n ∆1´α1

n q
nÑ8
ÝÑ Υα1σ4,

where we used Proposition 5.2.1 and equation (128). It remains to verify the Conditions (I)-(IV) from

Proposition 1.2.4.

(I) By Proposition 5.2.1 we have

b
ÿ

i“a

VarpΞn,iq “

b
ÿ

i“a

Varpξ̃n,iq “
K̃2∆2α1

n

nmn∆2α1

n

b
ÿ

i“a

Var
ˆ mn
ÿ

j“1

1

∆α1

n

p∆iX̃q2pyjqe∥κ
‚yj∥1

˙

“
K̃2

nmn

b
ÿ

i“a

ˆ mn
ÿ

j“1

Var
`

V1,∆npyjq
˘

`

mn
ÿ

j1,j2“1
j1‰j2

Cov
`

V1,∆npyj1q, V1,∆npyj2q
˘

˙

“ O
ˆ

∆npb´ a` 1q ` ∆npb´ a` 1q∆1´α1

n md`2
n

˙

“ O
`

∆npb´ a` 1q
˘

.

We utilize the calculations for the asymptotic variance as shown in this proof and thus conclude

Var
ˆ b
ÿ

i“a

Ξn,i

˙

“ Var
ˆ b
ÿ

i“a

ξ̃n,i

˙

“ O
ˆ

K̃2pb´ a` 1q2

nmn
¨

mn

pb´ a` 1qK̃2
`

pb´ a` 1q2

nmn
¨
∆1´α1

n md`3
n

pb´ a` 1q

˙

“ O
`

∆npb´ a` 1q
˘

,

which shows the first condition.

(II) Since Ξn,i is a centred random variable, it is sufficient to consider the variance in order to prove
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the second condition. According to Condition (I), we obtain

n
ÿ

i“1

VarpΞn,iq “ Opn∆nq ă 8,

which verifies Condition (II).

(III) We prove that a Lyapunov condition is satisfied. By utilizing the Cauchy-Schwarz inequality, we

have

Erξ̃4n,is “
K̃4

n2m2
n∆

4α1

n

mn
ÿ

j1,...,j4“1

e∥κ
‚pyj1

`...`yj4
q∥1Erp∆iX̃q2pyj1q ¨ ¨ ¨ p∆iX̃q2pyj4qs

ď
K̃4

n2m2
n∆

4α1

n

mn
ÿ

j1,...,j4“1

e∥κ
‚pyj1

`...`yj4
q∥1Erp∆iX̃q8pyj1qs1{4 ¨ ¨ ¨Erp∆iX̃q8pyj4qs1{4

ď
K̃4

n2∆4α1

n

m2
ne

4∥κ∥1 max
yPty1,...ymn

u
Erp∆iX̃q8pyqs.

Since p∆nX̃qpyq is a centred Gaussian random variable, we can infer that Erp∆iX̃q8pyqs “ Op∆4α1

n q

by using Proposition 4.2.6. Thus, we have

n
ÿ

i“1

Erξ̃4n,is “ Op∆nm
2q “ Op1q,

which shows the third condition.

(IV) The last condition is verified by Corollary 5.3.2, which completes the proof.

The preceding proposition establishes that a central limit theorem holds for both volatility estimators,

σ̂2
npyq from equation (71) and σ̂2

n,m from equation (72), under both regimes from Assumption 4.1.1, with

an asymptotic variance of Υα1σ4. Comparing this result to a SPDE model in one space dimension, as

presented in Bibinger and Trabs (2020), where α1 “ 1{2, reveals that the same asymptotic behaviour

is achieved. Hence, this asymptotic behaviour extends to multiple space dimensions. Thanks to the

condition ∆1´α1

n md`2 nÑ8
ÝÑ 0 in Assumption 4.1.1, the covariances Covpσ̂2

y1
, σ̂2

y2
q vanish asymptotically,

where y1,y2 P rδ, 1 ´ δsd represents two distinct spatial points.

In the standard model with i.i.d. random variables X1, . . . , Xn „ N pµ, σ2q, where µ is known, the

Cramér-Rao lower bound for estimating the variance is 2σ4. The difference pΥα1 ´ 2q of the asymptotic

variances in this model compared to the standard model is given by the following term:

8
ÿ

r“0

`

´ rα
1

` 2pr ` 1qα
1

´ pr ` 2qα
1˘2
, (129)

which arises due to the non-negligible temporal covariances of the squared increments in this model.

Table 5.1 shows numerical values of this deviation for different values of α1.

As observed, the deviation shrinks as the parameter α1 increases. Consequently, the underlying process

behaves more like i.i.d. normals from the standard model. On the other hand, if α1 approaches 1, the

error terms become more pronounced, necessitating the use of fewer spatial coordinates or significantly
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5.4. Central limit theorem and simulation results

α1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
pΥα1 ´ 2q 0.8626 0.7283 0.5984 0.4742 0.3575 0.2504 0.1558 0.0776 0.0222

Table 5.1.: The table shows the deviation between the variance resulting from the standard model with i.i.d. normals and the
asymptotic variance in the SPDE model from equation (49) for various values of the pure damping parameter α1. The
results are rounded to four decimal places, and the series in equation (129) was calculated with a cut-off K “ 105.

increasing the number of temporal observations to reliably estimate the volatility. This behaviour aligns

intuitively with the fact that α1 controls the roughness of the temporal marginal processes. Moreover,

the simulation results also confirm that the error term becomes more significant as α1 approaches 1.

Since the asymptotic variance in Proposition 5.4.1 relies on the unknown parameter σ4, we are un-

able to directly observe asymptotic confidence intervals. To address this, we introduce the following

quarticity estimator:

σ̂4 :“ σ̂4
n,m :“

ˆ

2dpπηqd{2α1Γpd{2q

Γp1 ´ α1q

˙2
1

3mn∆2α1

n

m
ÿ

j“1

n
ÿ

i“1

p∆iXq4pyjqe2∥κ
‚yj∥1 ,

for estimating the quarticity parameter σ4. Assume we can establish consistency for this estimator σ̂4,

then asymptotic confidence intervals can be constructed using Slutsky’s theorem. With this, we conclude

the theoretical part of this chapter with the following proposition.

Proposition 5.4.2

Suppose that supkPNd λ1`α
k Erxξ, ekylϑs ă 8, for l “ 4, 8. On Assumptions 4.1.1 and 4.1.2 it holds for the

quarticity estimator that

σ̂4
n,mn

P
ÝÑ σ4,

as n Ñ 8. In addition, we obtain for n Ñ 8 that

?
nmn

`

Υα1 σ̂4
n,mn

˘´1{2
pσ̂2

n,mn
´ σ2q

d
ÝÑ N p0, 1q.

Proof. It remains to show the consistency of the estimator σ̂4. Therefore, we prove that

E
“

pσ̂4
n,m ´ σ4q2

‰

“ Varpσ̂4
n,mq `

`

Erσ̂4
n,mn

´ σ4s
˘2 nÑ8

ÝÑ 0,

implying consistency. As we assume that supkPNd λ1`α
k Erxξ, ekylϑs ă 8, for l “ 4, 8, we can replace

the initial condition by a stationary initial condition, which is evident by analogous considerations as in

Proposition 5.1.1. For the bias term, we have

K̃2e2∥κ‚y∥1

3n∆2α1

n

n
ÿ

i“1

E
“

p∆iXq4pyjq
‰

“
K̃2e2∥κ‚y∥1

n∆2α1

n

n
ÿ

i“1

E
“

p∆iX̃q2pyjq
‰2`

1 ` Op1q
˘

“ σ4
`

1 ` Op1q
˘

,
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5. Asymptotic for the volatility estimators

for an arbitrary y P rδ, 1 ´ δsd and

K̃ :“
2dpπηqd{2α1Γpd{2q

Γp1 ´ α1q
.

Hence, we obtain Erσ̂4
n,ms “ σ4 ` Op1q. For the variance term we use that ξ2n,i “ ξ̃2n,i

`

1 ` Op1q
˘

from

equation (109) and observe for i2 ă i1:

Covpξ̃2n,i1 , ξ̃
2
n,i2q “

ÿ

j1,...,j4

K̃4e∥κ
‚pyj1

`...`yj4
q∥1

n2m2∆4α1

n

Cov
`

p∆i1X̃q2pyj1qp∆i1X̃q2pyj2q, p∆i2X̃q2pyj3qp∆i2X̃q2pyj4q
˘

ď
K̃4m2e∥κ∥1

n2∆4α1

n

max
j1,...,j4

ˇ

ˇ

ˇ
Cov

`

p∆i1X̃q2pyj1qp∆i1X̃q2pyj2q, p∆i2X̃q2pyj3qp∆i2X̃q2pyj4q
˘

ˇ

ˇ

ˇ

ď
Cm2

n2∆4α1

n

ˆ

ÿ

kPNd

pΣ̃B,k
i1,i2

` ΣBC,k
i1,i2

q

˙4

“ O
ˆ

m2∆4α1

n

n2∆4α1

n

´

∆d{2
n

ÿ

kPNd

p1 ´ e´λk∆nq2

pλk∆nq1`α
e´λkpi1´i2´1q∆n

¯4
˙

“ O
ˆ

∆2
nm

2pi´ j ´ 1q4α
1
´8

˙

,

where Σ̃B,k
i,j and ΣBC,k

i,j are defined in the equations (113) and (75), respectively. We additionally used

Lemma 4.2.4 in the latter display. Using these calculations and Erξ4n,is “ Op∆2
nm

2q, we obtain that

Var
ˆ n
ÿ

i“1

ξ2n,i

˙

ď

n
ÿ

i“1

E
“

ξ4n,i
‰

`
ÿ

i‰j

Cov
`

ξ2n,i, ξ
2
n,j

˘

“ O
ˆ

∆2
nm

2 ` ∆2
nm

2
ÿ

i‰j

|i´ j ´ 1|
4α1

´8

˙

“ O
`

∆2
nm

2
˘

“ Op1q,

which completes the proof.

To illustrate the central limit theorem described in Proposition 5.4.1, we conduct a Monte Carlo study.

In this study, we simulated a two-dimensional SPDE model given in equation (49). Each simulation was

performed on an equidistant grid in both time and space, where N “ 104 andM “ 10, resulting in a total

of 121 spatial points. The simulation employed the following parameter values: ϑ0 “ 0, ν “ p6, 0q, η “ 1,

σ “ 1, and α1 taking on values from the set t4{10, 1{2, 6{10u, corresponding to three distinct damping

scenarios. In each scenario, we performed 1000 Monte Carlo iterations. We utilized the replacement

method, as described in Section 4.3, with L “ 103, and for α1 “ 4{10 and α1 “ 1{2, we set a cut-off

frequency of K “ 103, while for α1 “ 6{10, we used K “ 1500.

Figure 5.1 presents a comparison between the empirical distribution of each scenario and the asymptotic

normal distribution as stipulated in Proposition 5.4.1. To estimate the kernel density, we employed a

Gaussian kernel with Silverman’s ’rule of thumb’. As discussed in Section 4.3, the replacement method

introduced a notable negative bias due to the cut-off frequency K. To address this bias, we centred the

data by utilizing the sample mean of the volatility estimations. This approach provides a clear visual

comparison of the empirical and theoretical distributions. All three scenarios exhibit a substantial fit,
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−3 0 3 6 −3 0 3 6 −3 0 3 6

0.0

0.1
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α = 0.4 α = 0.5 α = 0.6

Figure 5.1.: Comparison of the empirical distributions of normalized estimation errors for σ2 obtained through simulation with
N “ 104, M “ 10, and δ “ 0.05 is presented. The kernel-density estimation utilized a Gaussian kernel with Silverman’s
’rule of thumb’ and was performed over 1000 Monte Carlo iterations. The specific parameter values for simulation are
given as follows: d “ 2, ϑ0 “ 0, ν “ p6, 0q, η “ 1, σ “ 1, L “ 10. Three scenarios were considered, with different values
of α1: α1

“ 4{10, K “ 103 (left), α1
“ 1{2, K “ 103 (middle), and α1

“ 6{10, K “ 1300 (right). The corresponding
asymptotic distributions are represented by the dotted lines.

with the volatility estimator employing a spatial boundary of δ “ 0.05, resulting in 81 spatial points for

estimation. The sample mean of the volatility estimations were found to be 0.986 for α1 “ 4{10, 0.975

for α1 “ 1{2, and 0.988 for α1 “ 6{10.

Furthermore, following the same methodology as described in Part I, we illustrate the corresponding

QQ-plots in Figure B.2, which can be found in Appendix B.
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6. Parametric estimation based on a log-linear model

The objective of this chapter is to extend the concepts presented in Chapters 2 and 3 to encompass

multiple spatial dimensions. In one spatial dimension, we have already demonstrated the construction

of efficient estimators for the parameters κ and σ2
0 based on ordinary least squares, when considering

statistics involving realized volatilities. By asymptotically linking log-realized volatilities to a log-linear

model featuring a spatial explanatory variable, we obtained estimators with optimal rates of convergence

and minimal variances. Importantly, the construction of the estimators for κ and σ2
0 does not necessitate

any knowledge regarding the parameters within the differential operator Aϑ.

However, in higher spatial dimensions, particularly starting from two dimensions, an additional pa-

rameter α needs to be incorporated into the random field. As a result, we divide this chapter into two

distinct sections. The initial section will introduce the log-linear model for multiple spatial dimensions,

assuming the damping parameter α to be known. Subsequently, the second section will concentrate on

the estimation of the damping parameter α without any prior information on the model parameters.

6.1. Asymptotic for the normalized volatility and the curvature

estimators

Within this section, our primary objective is to formulate estimators for both the multi-dimensional

curvature parameter κ “ pκ1, . . . , κdq and the normalized volatility σ2
0 , utilizing a log-linear model. To

achieve this, we draw upon the concepts elucidated in Chapters 2 and 3, and extend them to multiple

spatial dimensions. Commencing this section, a preliminary segment provides a motivation part, focusing

on the development of estimators for the aforementioned curvature parameter and normalized volatility.

Therefore, we will introduce another assumption into our observation scheme, essential to ensure the

well-defined nature of these estimators.

In the subsequent part of this section we delve into the methodology part, particularly examining the

corresponding triangular array related to the constructed estimators. This will be followed by preparatory

steps aimed to prove a central limit theorem. For proving a central limit theorem for the constructed

estimators, we utilize the general multi-dimensional central limit theorem, as presented in Corollary 3.1.2.

We close this section by providing simulation results for our new estimators.

Throughout this entire section we assume the damping parameter α P pd{2 ´ 1, d{2q to be a known

constant.

6.1.1. Motivation and methodology

In Chapter 4, Proposition 4.2.7 analyses the autocovariance structure of temporal increments. This

proposition effectively demonstrated that we can consistently estimate the parameters σ2
0 “ σ2{ηd{2 and

κ “ pκ1, . . . , κdq, where κl “ νl{η for l “ 1, . . . , d, by utilizing realized volatilities. Consequently, these
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6. Parametric estimation based on a log-linear model

parameters are labelled as the natural parameters within the SPDE model described by equation (49).

Hence, our current aim is to construct consistent estimators for these parameters. This endeavour begins

with the employment of a log-linear model, much akin to the framework outlined in equation (9).

Building upon the foundation laid by Proposition 5.4.1, it becomes apparent that rescaled realized volatili-

ties exhibit qualitative resemblance to normal random variables when the number of temporal observations

is sufficiently large. Thus, we observe, for n sufficiently large, that

?
n
`

σ̂2
y ´ σ2

˘

« N p0,Υα1σ4q,

where the estimator for the volatility parameter σ2 is given by

σ̂2
y “

2dpπηqd{2α1Γpd{2q

n∆α1

n Γp1 ´ α1q

n
ÿ

i“1

p∆iXq2pyqe∥κ
‚y∥1 .

Rearranging this approximation results in

?
n ¨

2dpπηqd{2α1Γpd{2q

n∆α1

n Γp1 ´ α1q
e∥κ

‚y∥1RVnpyq « σ2
`?
n`

?
Υα1Z

˘

,

where Z „ N p0, 1q. The latter display also implies

RVnpyq

n∆α1

n

« e´∥κ‚y∥1
Γp1 ´ α1qσ2

ηd{2α1
¨

1

πd{2Γpd{2q2d
?
n

`?
n`

?
Υα1Z

˘

“ e´∥κ‚y∥1
Γp1 ´ α1qσ2

0

α1
¨

1

πd{2Γpd{2q2d

ˆ

1 `

c

Υα1

n
Z

˙

. (130)

As our focus lies in estimating the natural parameters σ2
0 and κ, we apply the strategy of converting this

approximation into a log-linear model, namely:

log

ˆ

RVnpyq

n∆α1

n

˙

« ´∥κ ‚ y∥1 ` log

ˆ

σ2
0

Γp1 ´ α1q

α1
¨

1

πd{2Γpd{2q2d

˙

` log

ˆ

1 `

c

Υα1

n
Z

˙

.

As the number of temporal observations n increases, the variance of the normal random variable in

the preceding expression decreases. Utilizing the approximation logp1 ` xq « x for small x « 0, the

resemblance to a linear model becomes clear through

log

ˆ

RVnpyq

n∆α1

n

˙

« ´∥κ ‚ y∥1 ` log
`

σ2
0K

˘

`

c

Υα1

n
Z, (131)

where

K :“
Γp1 ´ α1q

α1
¨

1

2dπd{2Γpd{2q
. (132)

To be more precise, display (131) suggests the link to a multiple linear regression model. Considering

that the covariance of the realized volatilities in two distinct spatial points asymptotically vanishes, we

can establish a linear model with homoscedastic normal errors by examining logpRVnpyjq{pn∆α1

n qq, for

j “ 1, . . . ,m.
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To illustrate parameter estimation within a multiple linear regression model, we present the following

example.

Example 6.1.1

An ordinary multiple linear regression model is given by

Y “ Xβ ` ε,

where

Y “

¨

˚

˚

˝

Y1
...

Ym

˛

‹

‹

‚

, X “

¨

˚

˚

˝

1 y
p1q

1 . . . y
p1q

d
...

...
. . .

...

1 y
pmq

1 . . . y
pmq

d

˛

‹

‹

‚

, β “

¨

˚

˚

˚

˚

˝

β0

β1
...

βd

˛

‹

‹

‹

‹

‚

,

and homoscedastic errors ε “ pε1, . . . , εmqJ, with Erεis “ 0, Varpεiq “ σ2 ą 0, for i “ 1, . . . ,m and

Covpεi, εjq “ 0, for all i, j “ 1, . . . ,m, with i ‰ j. In addition, the variance-covariance matrix of ε is

given by Σ :“ Covpεq “ σ2Em. We call the parameter β0 intercept and the parameters βi as slope,

where i “ 1, . . . , d. Suppose that m ě pd` 1q, and the matrix X possesses a full rank of pd` 1q. Under

these assumptions, the least squares estimator for the unobservable parameter β within this model is

given by

β̂ “ pXJXq´1XJY.

Substituting the representation of Y into the estimator β̂ results in the following identity:

β̂ “ pXJXq´1XJY “ β ` pXJXq´1XJε, (133)

which shows that the estimator β̂ is unbiased. In particular, the inverse of pXJXq´1 exists due to the

full rank condition on the design matrix X.

The component-wise estimators highlighted in Example 6.1.1 are commonly referred to as Gauss-Markov

estimators, exhibiting favourable characteristics. The Gauss-Markov theorem states that the correspond-

ing estimators qualify as BLUE (best linear unbiased estimators), implying that they possess minimum

variance among all linear and unbiased estimators. However, we acknowledge that the number of ob-

servations pYjq1ďjďm is intrinsically linked to the dimensionality, specifically requiring m ě pd ` 1q, as

stated in the preceding example. Consequently, we introduce the ensuing Assumption to formalize this

connection.
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Assumption 6.1.2

Let y1, . . . ,ym P rδ, 1 ´ δsd, where m ě d such that the linear span

spanpYmq “ Rd`1, where Ym :“
␣

p1,y1q, . . . , p1,ymq
(

,

is a spanning set of Rd`1.

The stipulation outlined in the preceding Assumption is equivalent with requiring that the matrix X

possesses full rank. This equivalence thus establishes the presence of the estimator β̂ as well-defined.

Assumption 6.1.2 also holds intuitive significance. Consider a scenario, where we observe the vector Y “
`

Y1py1q, . . . , Ympymq
˘J

within the spatial points y1 and y2, . . . ,ym, following the framework described

in Example 6.1.1. Here, we set the spatial coordinates yj as

yj “ y1 ` ϵjel,

where ϵj ą 0, for j “ 1, . . . ,m, and el representing the l-th unit vector, for l “ 1, . . . , d. While, by

definition, these spatial points are distinct from one another, from a statistical perspective, it is likely

that we obtain multiple pieces of information for estimating the parameter βl, while the information

content for estimating the remaining parameters is limited.

In accordance with Assumption 4.1.1, it is established that the discretization of the random field is

more refined in time than in space, denoted by m “ Opnρq, where ρ P
`

0, p1 ´ α1q{pd ` 2q
˘

. Addition-

ally, Assumption 6.1.2 imposes the requirement that a minimum of pd ` 1q observations is necessary to

construct an estimator for the natural parameters. Collectively, these assumptions enforce a minimal

number of temporal points, indicated by

n ą pd` 1q
d`2
1´α1 . (134)

Asymptotically, this restriction is evidently satisfied since the spatial dimensions d is assumed to be fixed.

However, the restrictive nature becomes significant in a simulation scenario. The latter display implies

that n grows exponentially with the spatial dimensions. Moreover, if α1 is close to one, the growth of n

becomes particularly pronounced. Therefore, estimating the natural parameters using this least squares

approach based on realized volatilities might only be accurate for lower dimensions, such as d “ 2, 3,

or when a large number of temporal observations is available. To demonstrate this effect, we provide

numerical values for the dimension d “ 2, 3. For the case of d “ 2, the relationship in display (134) yields

α1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
n Á 132 243 533 1517 6561 59049 2.3 ˆ 106 3.49 ˆ 109 1.22 ˆ 1019

Table 6.1.: The table demonstrates the minimal number of temporal observations in two space dimensions depending on the pure
damping parameter α1 according to Assumptions 4.1.1 and 6.1.2.
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6.1. Asymptotic for the normalized volatility and the curvature estimators

and for d “ 3 we find

α1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
n Á 2212 5793 19973 104032 1.1 ˆ 106 3.4 ˆ 107 1.1 ˆ 1010 1.13 ˆ 1015 1.3 ˆ 1030

Table 6.2.: The table demonstrates the minimal number of temporal observations in three space dimensions depending on the pure
damping parameter α1 according to Assumptions 4.1.1 and 6.1.2.

As the temporal marginal processes become progressively rougher with decreasing values of α1 P p0, 1q, it

becomes apparent that we require a reduced amount of data for estimating the natural model parameters.

Conversely, if α « 1, a substantial number of temporal observations will be required.

With the groundwork laid, we can now establish the estimators for the natural parameters σ2
0 , κ1, . . . , κd

within the context of the SPDE model from equation (49). Leveraging the approximation (131) and

referencing Example 6.1.1, we proceed by defining the following multi-dimensional parameter and its

corresponding estimator:

Ψ :“

¨

˚

˚

˚

˚

˝

logpσ2
0Kq

´κ1
...

´κd

˛

‹

‹

‹

‹

‚

P Rd`1 and Ψ̂ :“ Ψ̂n,m :“ pXJXq´1XJY P Rd`1, (135)

where

X :“

¨

˚

˚

˝

1 y
p1q

1 . . . y
p1q

d
...

...
. . .

...

1 y
pmq

1 . . . y
pmq

d

˛

‹

‹

‚

P Rmˆpd`1q and Y :“

¨

˚

˚

˚

˝

log
´

RVnpy1q

n∆α1
n

¯

...

log
´

RVnpymq

n∆α1
n

¯

˛

‹

‹

‹

‚

P Rm.

To effectively estimate the natural parameters σ2
0 , κ1, . . . , κd, we introduce the parameter υ P p0,8q ˆRd

along with its associated estimator υ̂, defined as follows:

υ :“

¨

˚

˚

˚

˚

˝

σ2
0

κ1
...

κd

˛

‹

‹

‹

‹

‚

and υ̂ :“ υ̂n,m :“ h´1pΨ̂q :“

¨

˚

˚

˝

h´1
1 pΨ̂1q

...

h´1
d`1pΨ̂d`1q

˛

‹

‹

‚

, (136)

where Ψ̂ “ pΨ̂1, . . . , Ψ̂d`1qJ and h : p0,8q ˆ Rd Ñ Rd`1, h´1 : Rd`1 Ñ p0,8q ˆ Rd, with

hpxq “

¨

˚

˚

˚

˚

˝

logpx1Kq

´x2
...

´xd`1

˛

‹

‹

‹

‹

‚

and h´1pxq “

¨

˚

˚

˚

˚

˝

ex1{K

´x2
...

´xd`1

˛

‹

‹

‹

‹

‚

. (137)

Since Ψ represents a strictly monotonic transformation of the parameter υ, i.e., hpυq “ Ψ, we restrict our

analysis to the determination of asymptotic properties for the estimator Ψ̂. Subsequently, by utilizing
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the multivariate delta method, we can infer these asymptotic properties for the estimator υ̂.

Concluding the motivation segment, we now shift our focus towards the variance-covariance matrix of

the estimator β̂ introduced in Example 6.1.1, which can be derived through standard calculus, resulting

in

Varpβ̂q “ pXJXq´1XJVarpY q
`

pXJXq´1XJ
˘J

“ pXJXq´1XJVarpεqXpXJXq´1

“ σ2pXJXq´1XJXpXJXq´1 “ σ2pXJXq´1,

where we employed the fact that the matrix XJX is a symmetric matrix. Assuming that we are observing

spatial coordinates y1, . . . ,ym P ra, bsd, where c :“ |a ´ b|. When considering a central limit theorem,

one concern is on determining the asymptotic variance of:

Var
`?
mpβ̂ ´ βq

˘

“ Var
`?
mβ̂

˘

“ σ2c

ˆ

c

m
XJX

˙´1
nÑ8
ÝÑ σ2cΣ´1,

where we assume that c{mpXJXq converges to a symmetric positive-definite variance-covariance matrix

Σ P Rpd`1qˆpd`1q. This assumption consequently entails that Σ´1 is also symmetric and positive-definite.

In our model, we observe spatial coordinates y1, . . . ,ym P rδ, 1 ´ δsd, signifying that these spatial ob-

servations are situated at least δ ą 0 distance away from the boundaries of the unit hypercube. We

can examine the structure of the matrix XJX by utilizing the explicitly provided expression of X from

Example 6.1.1. With c “ 1 ´ 2δ, we have the following:

1 ´ 2δ

m
XJX “

1 ´ 2δ

m

¨

˚

˚

˚

˚

˚

˚

˚

˝

m
řm

j“1 y
pjq

1

řm
j“1 y

pjq

2 . . .
řm

j“1 y
pjq

d
řm

j“1 y
pjq

1

řm
j“1py

pjq

1 q2
řm

j“1 y
pjq

1 y
pjq

2 . . .
řm

j“1 y
pjq

1 y
pjq

d
řm

j“1 y
pjq

2

řm
j“1 y

pjq

2 y
pjq

1

řm
j“1py

pjq

2 q2 . . .
řm

j“1 y
pjq

2 y
pjq

d
...

...
...

. . .
...

řm
j“1 y

pjq

d

řm
j“1 y

pjq

d y
pjq

1

řm
j“1 y

pjq

d y
pjq

2 . . .
řm

j“1py
pjq

d q2

˛

‹

‹

‹

‹

‹

‹

‹

‚

mÑ8
ÝÑ Σ,

where Σ “ pΣi,lq1ďi,lďd`1, with

Σi,l :“

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

1 ´ 2δ , if i “ l “ 1,

limmÑ8
1´2δ
m

řm
j“1 y

pjq

l´1 , if i “ 1, 2 ď l ď d` 1,

limmÑ8
1´2δ
m

řm
j“1 y

pjq

i´1 , if 2 ď i ď d` 1, l “ 1,

limmÑ8
1´2δ
m

řm
j“1

`

y
pjq

i´1

˘2
, if 2 ď i “ l ď d` 1,

limmÑ8
1´2δ
m

řm
j“1 y

pjq

i´1y
pjq

l´1 , if 2 ď i, l ď d` 1, with i ‰ l

. (138)

The convergence of the Riemann sums is guaranteed by the straightforward bounds

0 ď
1 ´ 2δ

m

m
ÿ

j“1

aj ď 1,

for all m P N, where the sequence pajq corresponds to the respective sequence within the Riemann sums

in equation (138).

184



6.1. Asymptotic for the normalized volatility and the curvature estimators

Contrasting this assumption regarding the asymptotic variance with the analogous one-dimensional log-

linear model. In Chapter 3, we employed a simple linear regression model to estimate the natural

parameters of the one-dimensional SPDE model from equation (1). Within this simple linear regression

model, the design matrix X was given by

X “

¨

˚

˚

˝

1 y1
...

...

1 ym

˛

‹

‹

‚

,

where δ “ y1 ă . . . ă ym “ 1´δ. The estimator provided in matrix notation for the unknown parameters

within Example 6.1.1 readily translates into the estimators outlined in Example 3.1.1. Proposition 3.2.2

presented an asymptotic variance of

Σ “

˜

4Γπp1´δ`δ2q

p1´2δq2
6Γπ

p1´2δq2

6Γπ
p1´2δq2

12Γπ
p1´2δq2

¸

, (139)

which is also implied by

Γπp1 ´ 2δqΣ´1 “ Γπp1 ´ 2δq

˜

1 ´ 2δ
ş1´δ

δ
y dy

ş1´δ

δ
y dy

ş1´δ

δ
y2 dy

¸´1

“ Γπ

˜

4p1´δ`δ2q

p1´2δq2
´ 6

p1´2δq2

´ 6
p1´2δq2

12
p1´2δq2

¸

.

Note that the signs in the covariance entries within Proposition 3.2.2 are reversed due to the correspond-

ing estimator in the simple linear regression model being directed towards estimating the parameter

´κ. However, when transitioning to a multiple linear regression model, involving spatial coordinates in

multiple dimensions, establishing a feasible ordering for the spatial vectors y1, . . . ,ym becomes challeng-

ing. Furthermore, there is no guarantee that coordinates won’t be duplicated along a particular axis.

Consequently, representing the multi-dimensional case similarly to display (139) becomes impractical.

Therefore, the derivation of the asymptotic variance matrix must be tailored to the specific observation

scheme in use. Given our focus on the asymptotic properties of the estimator Ψ̂, it is reasonable to

anticipate this estimator to be asymptotically unbiased, with an asymptotic variance of Υα1 p1 ´ 2δqΣ´1,

where Σ is defined in equation (138).

We proceed to tackle the methodology section for the estimator Ψ̂ by deriving the corresponding multi-

dimensional triangular array. To construct the multi-dimensional triangular array, we leverage the Taylor

expansion for logpa ` xq, which is given in equation (27). With the incorporation of Proposition 4.2.6,

we observe that

log

ˆ

RVnpyq

n∆α1

n

˙

“ logpσ2
0Kq ´ ∥κ ‚ y∥1 `

řn
i“1 p∆iX̃q2pyq

n∆α1

n σ
2
0K

e∥κ
‚y∥1 ` O

`

∆1´α1

n

˘

` OP

˜

ˆ

RVnpyq

n∆α1

n

˙2
¸

,

where the constant K is defined in equation (132). Utilizing Proposition 5.2.1, we conclude that

log

ˆ

RVnpyq

n∆α1

n

˙

“ logpσ2
0Kq ´ ∥κ ‚ y∥1 `

řn
i“1 p∆iX̃q2pyq

n∆α1

n σ
2
0K

e∥κ
‚y∥1 ` O

`

∆1´α1

n

˘

` OPp∆nq. (140)
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The previous expression simplifies the analysis by allowing us to focus on the term

logpσ2
0Kq ´ ∥κ ‚ y∥1 `

řn
i“1 p∆iX̃q2pyq

n∆α1

n σ
2
0K

e∥κ
‚y∥1 ,

since the last components in equation (140) represent the negligible model errors. Our goal is to establish

a central limit theorem in the form of
?
nmpΨ̂ ´ Ψq. To achieve this, we develop the triangular array

associated with the estimator Ψ̂ by employing the equations (133) and (140). The triangular array is

thus defined as Ξn,i :“ ξn,i ´ Erξn,is, where

ξn,i :“
?
nm ¨

1 ´ 2δ

m

ˆ

1 ´ 2δ

m
XJX

˙´1

XJ

¨

˚

˚

˚

˝

p∆iX̃q
2

py1q

n∆α1
n σ2

0K
e∥κ‚y1∥1

...
p∆iX̃q

2
pymq

n∆α1
n σ2

0K
e∥κ‚ym∥1

˛

‹

‹

‹

‚

“

?
np1 ´ 2δq
?
mKσ2

0

ˆ

1 ´ 2δ

m
XJX

˙´1

XJ

¨

˚

˚

˚

˝

p∆iX̃q
2

py1q

n∆α1
n

e∥κ‚y1∥1

...
p∆iX̃q

2
pymq

n∆α1
n

e∥κ‚ym∥1

˛

‹

‹

‹

‚

. (141)

With the triangular array Ξn,i in place, we can now proceed to the preparations for a CLT.

6.1.2. Preparations for the central limit theorem

In the preceding section, we established a triangular array Ξn,i “ ξn,i ´ Erξn,is corresponding to the

estimator Ψ̂ presented in equation (135). The objective of this section is to provide the technical details

required to prove a central limit theorem for the estimator Ψ̂.

In Chapter 3, we utilized Corollary 3.2.1 to establish a central limit theorem for multi-dimensional

triangular arrays, a simplified version of the central limit theorem from Proposition 1.2.4. This corollary

exploited a special structure of triangular arrays, based on temporal quadratic increments, which enabled

us to leverage pre-existing results. While the triangular array Ξn,i from equation (141) similarly employs

quadratic increments, the extension to higher dimensions prevents the direct applicability of Corollary

3.2.1. Nonetheless, we can adapt the essential ideas of Corollary 3.2.1 combined with results from Chapter

5 to establish a central limit theorem for Ξn,i. This involves employing the Crámer-Wold device and

Corollary 3.1.2. For the application of Corollary 3.1.2, we will analyse the following one-dimensional

triangular array:

γJΞn,i “ γJ
`

ξn,i ´ Erξn,is
˘

“ γJξn,i ´ γJErξn,is,

where γ P Rd`1 is arbitrary but fixed. The upcoming discussion will derive the asymptotic variance of

the triangular array γJΞn,i and verify the conditions stated in Corollary 3.1.2.
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Lemma 6.1.3

On the Assumptions 4.1.1, 4.1.2 and 6.1.2, we have

lim
nÑ8

Var
ˆ n
ÿ

i“1

γJΞn,i

˙

“ p1 ´ 2δqΥα1γJΣ´1γ,

where Ξn,i is defined in equation (141), Υα1 defined in equation (121), Σ´1 from equation (138), δ P

p0, 1{2q and γ P Rd`1 arbitrary but fixed.

Proof. Consider an arbitrary but fixed vector γ P Rd`1. We initiate this proof by performing the following

calculations:

Var
ˆ n
ÿ

i“1

γJΞn,i

˙

“ γJVar
ˆ n
ÿ

i“1

ξn,i

˙

γ

“ γJnp1 ´ 2δq2

mK2σ4
0

ˆ

1 ´ 2δ

m
XJX

˙´1

XJVar
`

Ỹn
˘

X

ˆ

1 ´ 2δ

m
XJX

˙´1

γ,

where

Ỹn :“

¨

˚

˚

˚

˝

řn
i“1

p∆iX̃q
2

py1q

n∆α1
n

e∥κ‚y1∥1

...
řn

i“1
p∆iX̃q

2
pymq

n∆α1
n

e∥κ‚ym∥1

˛

‹

‹

‹

‚

“

¨

˚

˚

˝

Vn,∆n
py1q

...

Vn,∆n
pymq

˛

‹

‹

‚

P Rm.

We determine the entries of the variance-covariance matrix Vn,m :“ VarpỸnq of Ỹn,i with Proposition

5.2.1 and have

pVn,mqj1,j2 “

$

&

%

Υα1

n K2σ4
0

`

1 ` ∆
1{2
n _ ∆1´α1

n

˘

, if 1 ď j1 “ j2 ď m

O
`

∆2´α1

n p∥yj1 ´ yj2∥
´pd`1q

0 ` δ´pd`1qq
˘

, if 1 ď j1, j2 ď m, for j1 ‰ j2
,

for 1 ď j1, j2 ď m. Hence, we have

Var
ˆ n
ÿ

i“1

γJΞn,i

˙

“ γJ p1 ´ 2δq2

m

ˆ

1 ´ 2δ

m
XJX

˙´1

XJ

ˆ

n

K2σ4
0

Vn,m

˙

X

ˆ

1 ´ 2δ

m
XJX

˙´1

γ,

where we define

n

K2σ4
0

Vn,m “: Vn,m,1 ` Vn,m,2,

with

Vn,m,1 :“ Υα1

`

1 ` ∆1{2
n _ ∆1´α1

n

˘

Em,
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where Em denotes the mˆm dimensional identity matrix and

Vn,m,2 :“

$

&

%

0 , if 1 ď j1 “ j2 ď m

O
`

∆1´α1

n p∥yj1 ´ yj2q∥´pd`1q

0 ` δ´pd`1qq
˘

, if 1 ď j1, j2 ď m, for j1 ‰ j2
.

We conclude that

Var
ˆ n
ÿ

i“1

γJΞn,i

˙

“ γJ

ˆ

p1 ´ 2δq2

m

ˆ

1 ´ 2δ

m
XJX

˙´1

XJVn,m,1X

ˆ

1 ´ 2δ

m
XJX

˙´1

`
p1 ´ 2δq2

m

ˆ

1 ´ 2δ

m
XJX

˙´1

XJVn,m,2X

ˆ

1 ´ 2δ

m
XJX

˙´1˙

γ

“ γJ

ˆ

p1 ´ 2δqΥα1

`

1 ` ∆1{2
n _ ∆1´α1

n

˘

ˆ

1 ´ 2δ

m
XJX

˙´1

ˆ

ˆ

1 ´ 2δ

m
XJX

˙ˆ

1 ´ 2δ

m
XJX

˙´1

` p1 ´ 2δq

ˆ

1 ´ 2δ

m
XJX

˙´1ˆ
1 ´ 2δ

m
XJVn,m,2X

˙ˆ

1 ´ 2δ

m
XJX

˙´1˙

γ

“ γJ

ˆ

p1 ´ 2δqΥα1

`

1 ` ∆1{2
n _ ∆1´α1

n

˘

ˆ

1 ´ 2δ

m
XJX

˙´1

` p1 ´ 2δq

ˆ

1 ´ 2δ

m
XJX

˙´1ˆ
1 ´ 2δ

m
XJVn,m,2X

˙ˆ

1 ´ 2δ

m
XJX

˙´1˙

γ.

Let m “ mn be in accordance with Assumption 4.1.1. As the convergence of p1 ´ 2δq{mn ¨ XJX is

established for n Ñ 8, the focus shifts on demonstrating the convergence of m´1
n pXJVn,mn,2Xq towards

the zero matrix, denoted by 0. Consider matrices A P Raˆb, B P Rbˆb and C P Rbˆa, where pBqi1,i2 ě 0

and pAql,i, pCqi,l P r0, 1s for all 1 ď i, i1, i2 ď b, 1 ď l ď a. Here, we obtain

pABCqi,l ď p1a,bB1b,aqi,l,

for each 1 ď i, l ď a, where 1a,b “ t1uaˆb denotes the matrix with each entry being one. Thus, we find

ˆ

1

m
XJVn,m,2X

˙

i,l

ď

ˆ

1

m
1pd`1q,mVn,m,21m,pd`1q

˙

i,l

,

for each 1 ď i, l ď pd` 1q. It holds for 1 ď i ď pd` 1q and 1 ď l ď m that

ˆ

1

m
1pd`1q,mVn,m,2

˙

i,l

“ O
ˆ

∆1´α1

m

m

´

m
ÿ

j1“1
j1‰l

∥yj1 ´ yl∥
´pd`1q

0 ` pm´ 1qδ´pd`1q
¯

˙

,

and therefore, we have for 1 ď i, l ď pd` 1q that

ˆ

1

m
1pd`1q,mVn,m,21m,pd`1q

˙

i,l

“ O
ˆ

∆1´α1

m

m

´

m
ÿ

j2“1

m
ÿ

j1“1
j1‰j2

∥yj1 ´ yj2∥
´pd`1q

0 `mpm´ 1qδ´pd`1q
¯

˙

“ O
ˆ

∆1´α1

n

m
pmd`3 `m2q

˙
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“ O
`

∆1´α1

n md`2
˘

.

Utilizing Assumption 4.1.1, we can establish that

ˆ

1

mn
XJVn,mn,2X

˙

i,l

“ O
`

∆1´α1

n md`2
n

˘ nÑ8
ÝÑ 0,

for all 1 ď i, l ď pd` 1q. This, in turn, implies

1

mn
XJVn,mn,2X

nÑ8
ÝÑ 0.

The conclusion follows accordingly.

The preceding lemma confirms that the estimator Ψ̂ for the parameter Ψ possesses an asymptotic variance

of p1 ´ 2δqΥα1Σ´1. The following lemma verifies the Conditions (I) and (II) in Corollary 3.1.2.

Lemma 6.1.4

On the Assumptions 4.1.1, 4.1.2 and 6.1.2, we have

Var
ˆ b
ÿ

i“a

γJΞn,i

˙

ď C
b
ÿ

i“a

VarpγJΞn,iq,

for all 1 ď a ď b ď n, Ξn,i defined in equation (141), an universal constant C ą 0 and γ P Rd`1 arbitrary

but fixed.

Proof. For an arbitrary but fixed vector γ P Rd`1, we can establish, analogously to Lemma 6.1.3, that

Var
ˆ b
ÿ

i“a

γJΞn,i

˙

“ γJVar
ˆ b
ÿ

i“a

ξn,i

˙

γ

“ γJ pb´ a` 1q2p1 ´ 2δq2

nmK2σ4
0

ˆ

1 ´ 2δ

m
XJX

˙´1

XJVar
`

Ỹa,b
˘

X

ˆ

1 ´ 2δ

m
XJX

˙´1

γ,

where

Ỹa,b :“

¨

˚

˚

˚

˝

řb
i“a

p∆iX̃q
2

py1q

pb´a`1q∆α1
n

e∥κ‚y1∥1

...
řb

i“a
p∆iX̃q

2
pymq

pb´a`1q∆α1
n

e∥κ‚ym∥1

˛

‹

‹

‹

‚

P Rm.

For the variance VarpỸa,bq :“ Va,b,n,m :“ Va,b,n,m,1 ` Va,b,n,m,2 we find

pVa,b,n,m,1qj1,j2 :“

$

&

%

Υα1

pb´a`1q
K2σ4

0

`

1 ` ∆
1{2
n _ ∆1´α1

n

˘

, if 1 ď j1 “ j2 ď m

0 , if 1 ď j1, j2 ď m for j1 ‰ j2
,
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pVa,b,n,m,2qj1,j2 :“

$

&

%

0 , if 1 ď j1 “ j2 ď m

O
`

1
b´a`1∆

1´α1

n p∥yj1 ´ yj2∥
´pd`1q

0 ` δ´pd`1qq
˘

, if 1 ď j1, j2 ď m, for j1 ‰ j2
,

and thus, we have

Var
ˆ b
ÿ

i“a

γJΞn,i

˙

“ O
ˆ

pb´ a` 1q2p1 ´ 2δq

nK2σ4
0

¨
K2σ4

0Υα1

b´ a` 1
γJ

ˆ

1 ´ 2δ

m
XJX

˙´1ˆ
1 ´ 2δ

m
XJX

˙ˆ

1 ´ 2δ

m
XJX

˙´1

γ

˙

`
pb´ a` 1qp1 ´ 2δq2

nK2σ4
0

γJ

ˆ

1 ´ 2δ

m
XJX

˙´1ˆ
b´ a` 1

m
XJVa,b,n,m,2X

˙ˆ

1 ´ 2δ

m
XJX

˙´1

γ.

Similar to the proof of Lemma 6.1.3, we observe that

ˆ

b´ a` 1

m
XJVa,b,n,m,2X

˙

i,l

“ Op∆1´α1

n md`2q,

where we used that pp1´ 2δq{mn ¨XJXq´1 Ñ Σ´1, as n Ñ 8, and γJΣ´1γ “ Op∥γ∥8q. Hence, it holds

Var
ˆ b
ÿ

i“a

γJΞn,i

˙

“ O
`

∥γ∥8∆npb´ a` 1q ` ∥γ∥8∆npb´ a` 1q∆1´α1

n md`2
˘

“ O
`

∥γ∥8∆npb´ a` 1q
˘

.

Applying a similar approach to VarpγJΞn,iq yields

VarpγJΞn,iq “ γJ p1 ´ 2δq2

nmK2σ4
0

ˆ

1 ´ 2δ

m
XJX

˙´1

XJVar
`

Ỹi
˘

X

ˆ

1 ´ 2δ

m
XJX

˙´1

γ,

where

Ỹi :“

¨

˚

˚

˚

˝

p∆iX̃q
2

py1q

∆α1
n

e∥κ‚y1∥1

...
p∆iX̃q

2
pymq

∆α1
n

e∥κ‚ym∥1

˛

‹

‹

‹

‚

P Rm.

Defining VarpỸiq :“ Vi,n,m :“ Vi,n,m,1 ` Vi,n,m,2, where

pVi,n,m,1qj1,j2 :“

$

&

%

Υα1K2σ4
0

`

1 ` ∆
1{2
n _ ∆1´α1

n

˘

, if 1 ď j1 “ j2 ď m

0 , if 1 ď j1, j2 ď m, for j1 ‰ j2
,

pVi,n,m,2qj1,j2 :“

$

&

%

0 , if 1 ď j1 “ j2 ď m

O
`

∆1´α1

n p∥yj1 ´ yj2q∥´pd`1q

0 ` δ´pd`1q
˘

, if 1 ď j1, j2 ď m, for j1 ‰ j2
,

yields

VarpγJΞn,iq “ Op∥γ∥8∆n ` ∥γ∥8∆n∆
1´α1

n md`2q “ Op∥γ∥8∆nq.

Consequently, we obtain
řb

i“a VarpγJΞn,iq “ O
`

∥γ∥8∆npb´ a` 1q
˘

, which concludes the proof.

190



6.1. Asymptotic for the normalized volatility and the curvature estimators

The subsequent lemma establishes the proof for the third condition of Corollary 3.1.2. The proof of this

lemma employs the approach of relating the triangular array from equation (109) to the triangular array

presented in equation (141), since we have already proved a CLT for the triangular array from equation

(109).

Lemma 6.1.5

On the Assumptions 4.1.1, 4.1.2 and 6.1.2, it holds that

n
ÿ

i“1

ErpγJΞn,iq
4s “ O

`

∥γ∥48∆nm
2
˘

,

where Ξn,i defined in equation (141) and γ P Rd`1 is arbitrary but fixed.

Proof. We initiate the proof by examining

ErpγJΞn,iq
4s “ O

´

E
“

pγJξn,iq
4
‰

¯

.

Thus, we proceed by analysing the term ErpγJξn,iq
4s. Utilizing the Cauchy-Schwarz inequality, we obtain

ErpγJξn,iq
4s “ E

„ d`1
ÿ

l1,...,l4“1

γl1pξn,iql1 ¨ ¨ ¨ γl4pξn,iql4

ȷ

“

d`1
ÿ

l1,...,l4“1

γl1 ¨ ¨ ¨ γl4E
“

pξn,iql1 ¨ ¨ ¨ pξn,iql4
‰

ď

d`1
ÿ

l1,...,l4“1

γl1 ¨ ¨ ¨ γl4E
“

pξn,iq
4
l1

‰1{4
¨ ¨ ¨E

“

pξn,iq
4
l4

‰1{4

ď ∥γ∥48pd` 1q4 max
l“1,...,d`1

E
“

pξn,iq
4
l

‰

.

We exploit the fact that X ď 1m,d`1, where 1a,b P Raˆb represents the matrix of ones, which leads to

ξn,i “
p1 ´ 2δq

?
nm∆α1

n Kσ
2
0

ˆ

1 ´ 2δ

m
XJX

˙´1

XJ

¨

˚

˚

˝

p∆iX̃q2py1qe∥κ‚y1∥1

...

p∆iX̃q2pymqe∥κ‚ym∥1

˛

‹

‹

‚

ď
p1 ´ 2δqe∥κ∥1

?
nm∆α1

n Kσ
2
0

ˆ

1 ´ 2δ

m
XJX

˙´1

1pd`1q,m

¨

˚

˚

˝

p∆iX̃q2py1q

...

p∆iX̃q2pymq

˛

‹

‹

‚

(142)

“
p1 ´ 2δqe∥κ∥1

?
nm∆α1

n Kσ
2
0

ˆ

1 ´ 2δ

m
XJX

˙´1

¨

˚

˚

˝

řm
j“1p∆iX̃q2pyjq

...
řm

j“1p∆iX̃q2pyjqq

˛

‹

‹

‚

.
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Thus, we find that

ErpγJξn,iq
4s ď ∥γ∥48

p1 ´ 2δq4e4∥κ∥1pd` 1q4

n2m2∆4α1

n K4σ8
0

max
l“1,...,d`1

E
„ˆ m

ÿ

j“1

p∆iX̃q2pyjq

˙4ˆ
´1 ´ 2δ

m
XJX

¯´1

1d`1,1

˙4

l

ȷ

“ ∥γ∥48
p1 ´ 2δq4e4∥κ∥1pd` 1q4

n2m2∆4α1

n K4σ8
0

E
„

´

m
ÿ

j“1

p∆iX̃q2pyjq

¯4
ȷ

max
l“1,...,d`1

ˆ

´1 ´ 2δ

m
XJX

¯´1

1d`1,1

˙4

l

.

Given that the matrix
`

p1 ´ 2δqm´1
n pXJXq

˘´1
is converging to Σ´1, as n Ñ 8, we can constrain

max
l“1,...,d`1

ˆ

´1 ´ 2δ

m
XJX

¯´1

1d`1,1

˙4

l

ď

ˆ

pd` 1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´1 ´ 2δ

mn
XJX

¯´1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

˙4

ă 8,

for all n P N and especially for n Ñ 8. As a result, employing the Cauchy-Schwarz inequality yields

ErpγJξn,iq
4s ď C∥γ∥48

p1 ´ 2δq4e4∥κ∥1pd` 1q4

n2m2∆4α1

n K4σ8
0

E
„

´

m
ÿ

j“1

p∆iX̃q2pyjq

¯4
ȷ

“ C∥γ∥48
p1 ´ 2δq4e4∥κ∥1pd` 1q4

n2m2∆4α1

n K4σ8
0

ÿ

j1,...,j4

E
“

p∆iX̃q2pyj1q ¨ ¨ ¨ p∆iX̃q2pyj4q
‰

ď C∥γ∥48
m2p1 ´ 2δq4e4∥κ∥1pd` 1q4

n2∆4α1

n K4σ8
0

max
j“1,...,m

E
“

p∆iX̃q8pyjq
‰

.

Similarly to the demonstration of Condition (III) in Proposition 5.4.1, we have Erp∆iX̃q8pyqs “ Op∆4α1

n q.

Thus, we obtain

n
ÿ

i“1

ErpγJξn,iq
4s “ O

`

∥γ∥48∆nm
2
˘

,

which completes the proof.

We conclude this section by establishing that the temporal dependencies within the triangular array, as

outlined in Condition (IV) of Corollary 3.1.2, can be bounded suitably.

Corollary 6.1.6

On the Assumptions 4.1.1, 4.1.2 and 6.1.2, it holds for 1 ď r ă r ` u ď v ď n and

Q̃r
1 “

r
ÿ

i“1

γJξn,i, Q̃v
r`u “

v
ÿ

i“r`u

γJξn,i,

where ξn,i is defined in equation (141), that there is a constant C, with 0 ă C ă 8, such that for all

t P R it holds

ˇ

ˇ

ˇ

ˇ

Cov
ˆ

eitpQ̃
r
1´ErQ̃r

1sq, eitpQ̃
v
r`u´ErQ̃v

r`usq

˙
ˇ

ˇ

ˇ

ˇ

ď
Ct2

u3{4

b

VarpQ̃r
1qVarpQ̃v

r`uq.
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6.1. Asymptotic for the normalized volatility and the curvature estimators

Proof. We follow a similar approach as in display (142), resulting in

γJξn,i ď

?
np1 ´ 2δq
?
mKσ2

0

γJ

ˆ

1 ´ 2δ

m
XJX

˙´1

1pd`1q,m

¨

˚

˚

˚

˝

p∆iX̃q
2

py1q

n∆α1
n

e∥κ‚y1∥1

...
p∆iX̃q

2
pymq

n∆α1
n

e∥κ‚ym∥1

˛

‹

‹

‹

‚

“
1 ´ 2δ

?
nm∆α1

n Kσ
2
0

m
ÿ

j“1

p∆iX̃q2pyjqe∥κ
‚yj∥1γJ

ˆ

1 ´ 2δ

m
XJX

˙´1

1pd`1q,1

ď C∥γ∥8

1
?
nm∆α1

n Kσ
2
0

m
ÿ

j“1

p∆iX̃q2pyjqe∥κ
‚yj∥1

“ C∥γ∥8σ
2 ηd{2

?
nm∆α1

n K

m
ÿ

j“1

p∆iX̃q2pyjqe∥κ
‚yj∥1 .

With reference to Corollary 5.3.2, it is evident that the statement holds for

ηd{2

?
nm∆α1

n K

m
ÿ

j“1

p∆iX̃q2pyjqe∥κ
‚yj∥1 ,

since we can establish a connection between the triangular array ξn,i from equation (141) and ξ̃n,i from

equation (109). Thus, the conclusion follows.

6.1.3. Central limit theorems and simulation results

In this section, our objective is to present a central limit theorem for both estimators, Ψ̂ and υ̂. Similar

to the one-dimensional case, the asymptotic variance within the central limit theorem for the estimator

Ψ̂ will solely rely on the known pure damping parameter α1. By applying the multivariate delta method,

we will also present a central limit theorem for the estimator υ̂, which serves to estimate the natural

parameters of the SPDE model from equation (49). To conclude this section, we will present simulation

results for the estimator υ̂.

Thanks to the developments in Section 6.1.2, we are now equipped to establish the initial central limit

theorem for the estimator Ψ̂ as outlined in equation (135).

Proposition 6.1.7

On Assumptions 4.1.1, 4.1.2 and 6.1.2, we have

?
nmnpΨ̂n,mn ´ Ψq

d
ÝÑ N

`

0,Υα1 p1 ´ 2δqΣ´1
˘

,

as n Ñ 8, δ P p0, 1{2q, 0 “ p0, . . . , 0qJ P Rd`1, Υα1 defined in equation (121) and Σ defined in equation

(138).

Proof. To prove this proposition, we leverage Corollary 3.1.2. The asymptotic variance is provided by

Lemma 6.1.3. Condition (I) is verified by Lemma 6.1.4. In order to establish Condition (II), it suffices to
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6. Parametric estimation based on a log-linear model

consider the VarpΞn,iq, as Ξ is centred. Revisiting Lemma 6.1.4 confirms Condition (II). The Conditions

(III) and (IV) are validated by Lemma 6.1.5 and Corollary 6.1.6, respectively, which concludes the proof.

The previous central limit theorem demonstrates the capability to extend the outcomes from Chapter

3 directly into the multi-dimensional context. Additionally, we observe the variance-stabilizing nature

of utilizing log-realized volatilities, wherein the asymptotic variances are constant and only relying on

δ, α1, and the provided spatial observation scheme, as indicated by Σ´1. As we assume the damping

parameter to be known, we can leverage Proposition 6.1.7 to derive asymptotic confidence intervals, with

a confidence level of 1´α, for the components of the multi-dimensional parameter υ from equation (136).

For the parameter υ1 “ σ2
0 , we have

In,m :“

„

exp
”

Ψ̂n,m ´ q1´α{2γ1{
?
nm

ı

K´1, exp
”

Ψ̂n,m ` q1´α{2γ1{
?
nm

ı

K´1

ȷ

,

where qα represents the α-quantile of the standard normal distribution, K is defined in equation (132),

and

γ1 :“
`

Υα1 p1 ´ 2δqΣ´1
1,1

˘1{2
.

For the parameter υl`1 “ κl, where l “ 1, . . . , d, we obtain the following asymptotic confidence intervals:

In,m :“
”

´ Ψ̂n,m ´ q1´α{2γl`1{
?
nm, ´Ψ̂n,m ` q1´α{2γl`1{

?
nm

ı

,

where

γl`1 :“
`

Υα1 p1 ´ 2δqΣ´1
l`1,l`1

˘1{2
.

The following corollary introduces a central limit theorem for estimating the natural parameters of the

multi-dimensional SPDE model, given in equation (49).

Corollary 6.1.8

On Assumptions 4.1.1, 4.1.2 and 6.1.2, we have

?
nmnpυ̂n,mn

´ υq
d

ÝÑ N
`

0,Υα1 p1 ´ 2δqJσ2
0
Σ´1Jσ2

0

˘

,

as n Ñ 8, δ P p0, 1{2q, 0 “ p0, . . . , 0qJ P Rd`1, Υα1 defined in equation (121), Σ´1 defined in equation

(138) and Jσ2
0
defined in equation (143).

Proof. Utilizing the multivariate delta method on the central limit theorem presented in Proposition 6.1.7

and employing the function h´1pxq “ pex1{K,´x2, . . . ,´xd`1q, as defined in equation (137), yields

?
nmnpυ̂ ´ υq “

?
nmn

`

h´1pΨ̂q ´ h´1pΨq
˘ d

ÝÑ N
`

0,Υα1 p1 ´ 2δqJh´1pΨqΣ´1Jh´1pΨqJ
˘

,
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6.1. Asymptotic for the normalized volatility and the curvature estimators

where Jh´1 denotes the Jacobian matrix of h´1, given by

Jh´1pxq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

ex1{K 0 0 . . . 0

0 ´1 0 . . . 0

0 0 ´1 . . . 0
...

...
...

. . .
...

0 0 0 . . . ´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

We complete the proof by defining the following matrix:

Jσ2
0
:“ Jh´1pΨq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

σ2
0 0 0 . . . 0

0 ´1 0 . . . 0

0 0 ´1 . . . 0
...

...
...

. . .
...

0 0 0 . . . ´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

. (143)

We illustrate the preceding corollary by presenting simulation results for the estimator υ̂n,m from equation

(136), derived from the Monte Carlo study as discussed in Section 5.4. This study involved simulating

three scenarios of a two-dimensional SPDE model based on equation (49), with 1000 Monte Carlo itera-

tions each. In all three cases, simulations were conducted on an equidistant grid in both time and space,

with N “ 104 and M “ 10, using the parameters ϑ0 “ 0, ν “ p6, 0q, η “ 1, and σ “ 1. The simulations

employed the replacement method outlined in Section 4.3, with L “ 10. For the first case we used a pure

damping rate of α1 “ 4{10, the second case used α1 “ 1{2, and the third case used α1 “ 6{10.

Figure 6.1 depicts a comparison between the empirical distribution of each case and the asymptotic

normal distribution as described in Corollary 6.1.8. The top row shows the simulation results for α1 “

4{10, the middle row displays the results for α1 “ 1{2, and the bottom row presents the results for

α1 “ 6{10. Each row consists of three plots, which assess the goodness of fit between the kernel density

estimation and the centred normal distribution, as outlined in Corollary 6.1.8. In these plots, grey

represents the results for estimating the normalized volatility parameter σ2
0 , while the other panels in

each row (yellow and brown) represent the results for the curvature parameters κ1 and κ2, respectively.

To estimate the kernel density, we employed a Gaussian kernel with Silverman’s ’rule of thumb’. As

discussed in Section 5.4, we observe a negative bias in the simulated data due to the cut-off solution

applied in the replacement method. To address this bias, we centred the data by utilizing the sample

mean of the respective estimations. This adjustment enables a visual comparison between the empirical

and theoretical distributions.

In this simulation study, where N “ 104, we must adhere to the following restriction, as outlined in

Assumption 4.1.1:

M ă N p1´α1
q{pd`2q “

$

’

’

’

&

’

’

’

%

3.98 , if α1 “ 4{10

3.16 , if α1 “ 1{2

2.51 , if α1 “ 6{10

.

As Assumption 6.1.2 necessitates a minimum of three observations for the application of the estimator
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Figure 6.1.: The figure provides a comparison of empirical distributions for centred estimation errors of the parameter vector
υ “ pσ2

0 , κ1, κ2q, which are obtained through simulations on an equidistant grid in both, time and space, where

N “ 104 and M “ 10, and their empirical counterparts. The kernel-density estimation employed a Gaussian kernel
with Silverman’s ’rule of thumb’ and was conducted over 1000 Monte Carlo iterations. The specific parameter values
used for the simulations are as follows: d “ 2, ϑ0 “ 0, ν “ p6, 0q, η “ 1, σ “ 1, and L “ 10. Three different
scenarios were considered, each with a distinct value of the pure damping parameter α1: α1

“ 4{10, K “ 103 (top row),
α1

“ 1{2, K “ 103 (middle row), and α1
“ 6{10, K “ 1300 (bottom row). The corresponding asymptotic distributions

are represented by dotted lines. The results for the normalized volatility parameter σ2
0 are depicted in grey lines, while

the estimates for κ1 are shown in yellow lines, and those for κ2 are represented by brown lines. For estimation of
υ “ pσ2

0 , κ1, κ2q, we utilized the set of spatial points S3, as defined in equation (144).

υ̂, we have chosen the following observation scheme:

S3 :“
␣

p1{10, 3{10q, p4{10, 2{10q, p7{10, 5{10q
(

. (144)

Indeed, this observation scheme satisfies the Assumption 6.1.2, as evident by the following calculation:∣∣∣∣∣∣∣
1 1{10 3{10

1 4{10 2{10

1 7{10 5{10

∣∣∣∣∣∣∣ “ 0.12 ‰ 0,

where |A| denotes the determinant of a matrix A P Rpˆp, p P N. For the cases α1 P t4{10, 1{2u, we

obtain that |S3| ă N p1´α1
q{pd`2q, whereas the Assumption 4.1.1 is (slightly) violated for α “ 6{10, since

|S3| ą N p1´α1
q{pd`2q. Nevertheless, we present the simulation results in Figure 6.1 for all three cases of

the pure damping parameter α1 and observe that all three scenarios exhibit a substantial fit. The sample

means of the respective estimations are summarized in the following table:
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6.2. Asymptotic for the damping parameter

α1 mean σ̂2
0 mean κ̂1 mean κ̂2

4/10 0.985 5.986 0.011
5/10 0.972 5.979 0.028
6/10 0.987 5.941 0.038

Table 6.3.: The table presents the sample means of the estimations for the natural parameters σ2
0 and κ “ pκ1, κ2q in a two-

dimensional SPDE model. The estimations are derived from a dataset with parameters set at ϑ0 “ 0, ν “ p6, 0q, η “ 1,
and σ “ 1, based on 1000 Monte Carlo iterations. Each row in the table corresponds to the outcomes for three selections
of the pure damping parameter, where α1

P t4{10, 1{2, 6{10u.

Additionally, we provide corresponding QQ-plots in Figure B.3, which can be found in Appendix B.

6.2. Asymptotic for the damping parameter

When transferring SPDE models from one to multiple dimensions, the appearance of a damping parameter

is inevitable. In this section, we discuss how to consistently estimate the pure damping parameter

α1 “ α`1´d{2 P p0, 1q in the SPDE model from equation (49) and we will prove a central limit theorem

for such an estimator α̂1.

6.2.1. Motivation and methodology

We start this section by recalling Proposition 4.2.7. This proposition analysed the autocovariance struc-

ture of temporal increments and stated

Covp∆iXpyq,∆jXpyqq “ ´σ2e´∥κ‚y∥1∆α1

n

Γp1 ´ α1q

2d`1pπηqd{2α1Γpd{2q
fpi, j, α1q ` ri,j ` Op∆nq,

where ri,j is a remainder defined in Proposition 4.2.7 and f a function, representing covariance behaviour

for the temporal lags. As mentioned before, it is not clear how to extract information on α1 through

a transformation of the temporal increments, since the damping parameter nearly affects all constants.

Therefore, we follow an approach, often used for estimating the Hurst parameter H ă 3{4 in fractional

Brownian motions, which focuses on the roughness property. In this context we also refer to the work

of Chong (2020a), who also investigated potential estimators for estimating the parameter α1 in one

space dimension, which the paper refers to as “spatial correlation parameter”. Here, we obtain that α1

also appears in the term ∆α1

n , which suggests the idea of comparing two different temporal resolution.

As the estimators from the previous chapters are dependent on information on α1, we do not assume

any knowledge on the other parameters in the SPDE model from equation (49), i.e., on the differential

operator Aϑ.

We start the motivation part by considering equation (130) from Section 6.1. Here, we have

RVnpyq

n
« ∆α1

n e
´||κ‚y||1

Γp1 ´ α1qσ2
0

α1
¨

1

πd{2Γpd{2q2d

ˆ

1 `

c

Υα1

n
Z

˙

,
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and obtain by the transition to a log-linear model that

log

ˆ

RVnpyq

n

˙

« α1 logp∆nq ´ ||κ ‚ y||1 ` log
`

σ2
0Kα1

˘

`

c

Υα1

n
Z,

where we used analogous steps as in equation (131) and Kα1 :“ K defined in equation (132). We consider

a mild solution Xtpyq of the SPDE model from equation (49). Assume we obtain X on a grid with 2n

temporal and m spatial points according to Assumption 4.1.1. As we follow the approach of constructing

an estimator for α1 using realized volatilities on two distinct temporal resolutions, we need to specify

how we understand this new grid with a lower temporal resolution. First, we want the new grid to

be equidistant in time with ñ “ Op2nq, ñ ă 2n temporal points, such that it satisfies the observation

scheme as outlined in Assumption 4.1.1. Furthermore, Proposition 5.2.1 suggests to filter the original

grid such that the new grid contains the maximum amount of temporal points. Intuitively, having the

most possible temporal points, while respecting an equidistant order of these, should shrink the variance

of the estimator. Hence, we set ñ “ n. As we need to distinguish between both temporal resolutions we

introduce the following notations. The temporal increments for both grids are denoted by

p∆2n,i1Xqpyq :“ Xi1∆2n
´Xpi1´1q∆2n

and p∆n,i2Xqpyq :“ Xi2∆n
´Xpi2´1q∆n

,

where 1 ď i1 ď 2n and 1 ď i2 ď n. The increments of the filtered temporal grid can be rewritten by

p∆n,iXqpyq “ X2i∆2n
´X2pi´1q∆2n

“

´

X2i∆2n
´Xp2i´1q∆2n

¯

`

´

Xp2i´1q∆2n
´X2pi´1q∆2n

¯

“ p∆2n,2iXqpyq ` p∆2n,2i´1Xqpyq,

where i “ 1, . . . , n. Furthermore, by using an index transformation, we can write

p∆n,iXqpyq “ 12Npiq
`

p∆2n,iXqpyq ` p∆2n,i´1Xqpyq
˘

, (145)

for i “ 1, . . . , 2n, where 2N denotes the set of all even and non-negative integers, i.e.: 2N “ t0, 2, 4, . . .u.

Note that we incorporate zero into the set 2N. Moreover, the realized volatilities are redefined as

RV2npyq :“
2n
ÿ

i“1

p∆2n,iXq2pyq and RVnpyq :“
n
ÿ

i“1

p∆n,iXq2pyq.

By using equation (145), we can link the filtered realized volatilities with the original grid and obtain

RVnpyq “

2n
ÿ

i“2

12Npiq
`

p∆2n,iXqpyq ` p∆2n,i´1Xqpyq
˘2

“

2n
ÿ

i“2

12Npiqp∆2n,iXq2pyq `

2n
ÿ

i“2

12Npiqp∆2n,i´1Xq2pyq ` 2
2n
ÿ

i“2

12Npiqp∆2n,iXqpyqp∆2n,i´1Xqpyq

“

2n
ÿ

i“2

12Npiqp∆2n,iXq2pyq `

2n´1
ÿ

i“1

1p2NqA piqp∆2n,iXq2pyq ` 2
2n
ÿ

i“2

12Npiqp∆2n,iXqpyqp∆2n,i´1Xqpyq

“ RV2npyq ` 2
2n
ÿ

i“2

12Npiqp∆2n,iXqpyqp∆2n,i´1Xqpyq. (146)
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Note that the approximation as used in the Chapters 4 and 5 for the log-realized volatilities, i.e.:

log

ˆ

RVnpyq

n

˙

« α1 logp∆nq ´ ||κ ‚ y||1 ` log
`

σ2
0Kα1

˘

`

c

Υα1

n
Z,

where Z „ N p0, 1q, still holds, since the grid with a low temporal resolution still satisfies Assumption

4.1.1. Therefore, we follow up with considering the following statistic:

log

ˆ

RVnpyq

n

˙

´ log

ˆ

RV2npyq

2n

˙

« α1
`

logp∆nq ´ logp∆2nq
˘

`

c

Υα1

n
Z1 ´

c

Υα1

2n
Z2

“ α1 logp2q `

c

Υα1

n
Z1 ´

c

Υα1

2n
Z2, (147)

where Z1, Z2 „ N p0, 1q and y P rδ, 1 ´ δsd. Hence, by equation (147) we obtain a simple linear model

Xj “ αyj `β`εj , with centred errors and a known slope of zero. Hence, the intercept estimator estimates

the parameter α1 logp2q, which yields the following estimator:

α̂1 :“ α̂1
2n,m :“

1

logp2qm

m
ÿ

j“1

log

ˆ

2RVnpyjq

RV2npyjq

˙

. (148)

For recalling details on the ordinary simple linear model, cf. Example 3.1.1.

We start the methodology part by linking to equation (140), where we rescale the realized volatility by

the term ∆n. Thus, we obtain the following decompositions:

log

ˆ

RVnpyq

n

˙

“ logpσ2
0Kq ´ ∥κ ‚ y∥1 ` α1 logp∆nq `

řn
i“1 p∆n,iX̃q2pyq

n∆α1

n σ
2
0K

e∥κ
‚y∥1 ` Op∆nq ` OPp∆nq,

(149)

as well as

log

ˆ

RV2npyq

2n

˙

“ logpσ2
0Kq ´ ∥κ ‚ y∥1 ` α1 logp∆2nq `

ř2n
i“1 p∆2n,iX̃q2pyq

2n∆α1

2nσ
2
0K

e∥κ
‚y∥1 ` Op∆2nq ` OPp∆2nq.

(150)

For the latter decomposition we used the Propositions 4.2.6 and 5.2.1, since both grids satisfy the As-

sumption 4.1.1. By utilizing the equations (149) and (150) we can decompose the estimator as follows:

α̂1
2n,m “

1

logp2qm

m
ÿ

j“1

ˆ

log
´RVnpyjq

n

¯

´ log
´RV2npyjq

2n

¯

˙

“
1

logp2qm

m
ÿ

j“1

ˆ

α1
`

logp∆nq ´ logp∆2nq
˘

`
e∥κ‚yj∥1

σ2
0K

´

n
ÿ

i“1

p∆n,iX̃q2pyjq

n∆α1

n

´

2n
ÿ

i“1

p∆2n,iX̃q2pyjq

2n∆α1

2n

¯

˙

` Op∆nq ` OPp∆nq

“ α1 `
1

logp2qmσ2
0K

m
ÿ

j“1

`

Vn,∆n
pyjq ´ V2n,∆2n

pyjq
˘

` Op∆nq ` OPp∆nq,
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where

Vp1,∆n
pyq :“

1

p1∆α1

n

p1
ÿ

i“1

p∆n,iX̃q2pyqe||κ‚y||1 and Vp2,∆2npyq :“
1

p2∆α1

2n

p2
ÿ

i“1

p∆2n,iX̃q2pyqe||κ‚y||1 ,

with 1 ď p1 ď n and 1 ď p2 ď 2n. Furthermore, utilizing equation (146) yields that

Vn,∆n
pyq “

e||κ‚y||1

n∆α1

n

RVnpyq “
2n∆α1

2n

n∆α1

n

V2n,∆2n
pyq `

2e||κ‚y||1

n∆α1

n

2n
ÿ

i“2

12Npiqp∆2n,iX̃qpyqp∆2n,i´1X̃qpyq

“ 21´α1

V2n,∆2n
pyq `

4n∆α1

2n

n∆α1

n

W2n,∆2n
,

where we define for 1 ď p ď 2n:

Wp,∆2n
pyq :“

1

p∆α1

2n

p
ÿ

i“1

12Npiqp∆2n,iX̃qpyqp∆2n,i´1X̃qpyqe||κ‚y||1 . (151)

Note that we have

Vp,∆n
pyq “ 21´α1

V2p,∆2n
pyq ` 22´α1

W2p,∆2n
pyq, (152)

for a 1 ď p ď n. Hence, we obtain the following representation:

α̂1
2n,m “ α1 `

1

logp2qmσ2
0K

m
ÿ

j“1

´

p21´α1

´ 1qV2n,∆2n
pyjq ` 22´α1

pW2n,∆2n
pyjq

¯

` Op∆nq ` OPp∆nq.

The corresponding triangular array is then given by Ξ2n,i :“ ξ2n,i ´ Erξ2n,is, where

ξ2n,i :“
m
ÿ

j“1

e∥κ‚yj∥1

logp2q
?
2nm∆α1

2nσ
2
0K

ˆ

p21´α1

´ 1qp∆2n,iX̃q2pyjq ` 22´α1

12Npiqp∆2n,iX̃qpyjqp∆2n,i´1X̃qpyjq

˙

(153)

“ ξ12n,i ` ξ22n,i,

with

ξ12n,i :“
21´α1

´ 1

logp2q
?
2nm∆α1

2nσ
2
0K

m
ÿ

j“1

p∆2n,iX̃q2pyjqe∥κ
‚yj∥1 ,

ξ22n,i :“ 12Npiq
22´α1

logp2q
?
2nm∆α1

2nσ
2
0K

m
ÿ

j“1

p∆2n,iX̃qpyjqp∆2n,i´1X̃qpyjqe∥κ
‚yj∥1 .

For the asymptotic variance of the estimator α̂1, it remains to analyse the covariance of V2n,∆2n
and

W2n,∆2n
.
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6.2.2. Covariance structure and dependencies of temporal increments on distinct

temporal grids

The aim of this section is to present necessary results to establish a central limit theorem for the estimator

α̂1 defined in equation (148). As discussed in the previous section, our focus now shifts to analysing the

termW2n,∆2n
as defined in equation (151). Specifically, we will commence by investigating the covariance

relationship between the rescaled realized volatilities V2n,∆2n
of the original grid and the mixed term

W2n,∆2n
. This mixed term arises when utilizing realized volatilities on two temporal grids with differing

resolutions. Subsequently, we will demonstrate that the mixing-type condition, as outlined in Proposition

1.2.4, is applicable to the structure of our damping estimator.

Proposition 6.2.1

On Assumptions 4.1.1 and 4.1.2, we have for the covariance structure of the two temporal resolutions

∆n and ∆2n that

Cov
`

Vp,∆2n
py1q,Wp,∆2n

py2q
˘

“ 1ty1“y2u

Λα1

2p

ˆ

Γp1 ´ α1qσ2

2dpπηqd{2α1Γpd{2q

˙2ˆ

1 ` O
ˆ

∆
1{2
2n _

∆1´α1

2n

δd`1
_

∆´α1

2n

p

˙˙

` O
ˆ

∆1´α1

2n

p

´

1ty1‰y2u∥y1 ´ y2∥
´pd`1q

0 ` δ´pd`1q
¯

_
∆´α1

2n

p2

˙

,

where y1,y2 P rδ, 1´ δsd, Λα1 is a numerical constant depending on α1 P p0, 1q, defined in equation (166)

and 2 ď p ď 2n.

Proof. Analogously to Proposition 5.2.1, we first obtain that

Cov
`

Vp,∆2n
py1q,Wp,∆2n

py2q
˘

“
2e∥κ‚py1`y2q∥1

p∆2α1

2n

ÿ

k1,k2PNd

ek1
py1qek1

py2qek2
py1qek2

py2qDk1,k2
,

where we redefine

Dk1,k2
:“

1

p

p
ÿ

i,j“1

12NpjqCov
´

`

B̃i,k1
` Ci,k1

˘`

B̃i,k2
` Ci,k2

˘

,
`

B̃j,k1
` Cj,k1

˘`

B̃j´1,k2
` Cj´1,k2

˘

¯

“
1

p

p
ÿ

i,j“1

12Npjq

ˆ

E
”

`

B̃i,k1
` Ci,k1

˘`

B̃j,k1
` Cj,k1

˘

ı

E
”

`

B̃i,k2
` Ci,k2

˘`

B̃j´1,k2
` Cj´1,k2

˘

ı

` E
”

`

B̃i,k1
` Ci,k1

˘`

B̃j´1,k2
` Cj´1,k2

˘

ı

E
”

`

B̃i,k2
` Ci,k2

˘`

B̃j,k1
` Cj,k1

˘

ı

˙

.

Assume k1 ‰ k2, then we have

Dk1,k2
“

1

p

p
ÿ

i,j“1

12NpjqE
”

`

B̃i,k1
` Ci,k1

˘`

B̃j,k1
` Cj,k1

˘

ı

E
”

`

B̃i,k2
` Ci,k2

˘`

B̃j´1,k2
` Cj´1,k2

˘

ı

“
1

p

p
ÿ

i,j“1

12Npjq
´

Σ̃B,k1

i,j ` ΣBC,k1

i,j ` ΣBC,k1

j,i ` ΣC,k1

i,j

¯´

Σ̃B,k2

i,j´1 ` ΣBC,k2

i,j´1 ` ΣBC,k2

j´1,i ` ΣC,k2

i,j´1

¯

.

201



6. Parametric estimation based on a log-linear model

For the covariance terms we have by Proposition 5.2.1, that

1

p

p
ÿ

i,j“1

12NpjqΣ̃B,k1

i,j Σ̃B,k2

i,j´1 “ σ4

`

1 ´ e´λk1
∆2n

˘2`
1 ´ e´λk2

∆2n
˘2

4λ1`α
k1

λ1`α
k2

1

p

p
ÿ

i,j“1

12Npjqe´λk1
∆2n|i´j|e´λk2

∆2n|i´j`1|.

For the geometric sum in the latter display, we obtain

p
ÿ

i,j“1

q
|i´j|

1 q
|i´j`1|

2 12Npjq “

p
ÿ

i,j“1

q
|i´j|

1 q
|i´j`1|

2 12Npjq
`

1tjďiu ` 1tiăju

˘

“ q2

p
ÿ

i“2

i
ÿ

j“2

pq1q2qi´j
12Npjq ` q´1

2

p
ÿ

j“2

j´1
ÿ

i“1

pq1q2qj´i
12Npjq

“ q2

p
ÿ

i“2

pq1q2qi
i
ÿ

j“2

pq1q2q´j
12Npjq ` q´1

2

p
ÿ

j“2

pq1q2qj12Npjq
j´1
ÿ

i“1

pq1q2q´i,

where q1, q2 ‰ 0. Furthermore, for a q ‰ 1 it holds by analogous computations as for the partial sum of

the geometric series, that

n
ÿ

i“0

qi12Npiq “

$

&

%

1´qn`2

1´q2 , if n is even

1´qn`1

1´q2 , if n is odd
,

where we consider zero as an even integer. Hence, we get

p
ÿ

i,j“1

q
|i´j|

1 q
|i´j`1|

2 12Npjq “
q2

pq1q2q2p1 ´ pq1q2q´2q

ˆ p
ÿ

i“2

pq1q2qi
`

1 ´ pq1q2q´i
˘

12Npiq

`

p
ÿ

i“2

pq1q2qi
`

1 ´ pq1q2q´pi´1q
˘

1p2NqA piq

˙

`
q´1
2

q1q2p1 ´ pq1q2q´1q

p
ÿ

j“2

pq1q2qj
`

1 ´ pq1q2q´pj´1q
˘

12Npjq.

Now, using that |q1| , |q2| ă 1 and that it holds for the floor function by the Fourier representation that

1

p
tcpu “

$

&

%

c , if cp P Z

c´ 1
2p ` 1

pπ

ř8

k“1
sinp2πkcpq

k , if cp R Z,
,

for c ‰ 0 and p P N, we observe the following:

p
ÿ

i,j“1

q
|i´j|

1 q
|i´j`1|

2 12Npjq “

ˆ

q2
1 ´ pq1q2q2

´p

2
`
p

2
q1q2

¯

`
q´1
2

1 ´ q1q2
¨
p

2
q1q2

˙ˆ

1 ` O
´ p´1

1 ´ q1q2

¯

˙

“
q1 ` q2

2p1 ´ q1q2q

ˆ

1 ` O
´ p´1

1 ´ q1q2

¯

˙

. (154)
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6.2. Asymptotic for the damping parameter

Therefore, we have

1

p

p
ÿ

i,j“1

12NpjqΣ̃B,k1

i,j Σ̃B,k2

i,j´1 “ σ4

`

1 ´ e´λk1
∆2n

˘2`
1 ´ e´λk2

∆2n
˘2

4λ1`α
k1

λ1`α
k2

ˆ
e´λk1

∆2n ` e´λk2
∆2n

2p1 ´ e´pλk1
`λk1

q∆2nq

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q

¯

˙

. (155)

Furthermore, we have

1

p

p
ÿ

i,j“1

12NpjqΣC,k1

i,j ΣC,k2

i,j´1 “
σ4

p

p
ÿ

i,j“1

p1 ´ e´2λk1
∆2nqp1 ´ e´2λk2

∆2nq

4λ1`α
k1

λ1`α
k2

1tj“iu1tj´1“iu12Npjq “ 0,

as well as

1

p

p
ÿ

i,j“1

12NpjqΣBC,k1

i,j ΣBC,k2

i,j´1 “ σ4 p1 ´ e´λk1
∆2nqp1 ´ e´λk2

∆2nq

4λ1`α
k1

λ1`α
k2

`

eλk1
∆2n ´ e´λk1

∆2n
˘`

eλk2
∆2n ´ e´λk2

∆2n
˘

ˆ
1

p

p
ÿ

i,j“1

1tiąju12Npjqe´λk1
∆2npi´jqe´λk2

∆2npi´j`1q.

For the sum structure in the latter display we obtain

1

p

p
ÿ

i,j“1

1tiąju12Npjqe´λk1
∆2npi´jqe´λk2

∆2npi´j`1q “
e´λk2

∆2n

p

p
ÿ

i,j“1

1tiąju12Npjqe´pλk1
`λk2

q∆2npi´jq.

Assume |q| ă 1, then we have

1

p

p
ÿ

i,j“1

1tiąju12Npjqqi´j “
1

p

p
ÿ

i“3

qi
i´1
ÿ

j“2

12Npjqq´j

“
1

pq2

p
ÿ

i“3

12Npiqqi
1 ´ q´pi´1q

1 ´ q´2
`

1

pq2

p
ÿ

i“3

1p2NqA piqqi
1 ´ q´pi´2q

1 ´ q´2

“ ´
1

pq2p1 ´ q´2q
¨
p

2
qp1 ` qq

ˆ

1 ` O
´ p´1

1 ´ q

¯

˙

“
q

2p1 ´ qq

ˆ

1 ` O
´ p´1

1 ´ q

¯

˙

, (156)

where we used analogous steps as for equation (154). Hence, we get

1

p

p
ÿ

i,j“1

12NpjqΣBC,k1

i,j ΣBC,k2

i,j´1 “ σ4 p1 ´ e´λk1
∆2nqp1 ´ e´λk2

∆2nq

4λ1`α
k1

λ1`α
k2

`

eλk1
∆2n ´ e´λk1

∆2n
˘`

eλk2
∆2n ´ e´λk2

∆2n
˘

ˆ e´λk2
∆2n

e´pλk1
`λk2

q∆2n

2p1 ´ e´pλk1
`λk2

q∆2nq

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆2n

¯

˙

“ σ4 p1 ´ e´λk1
∆2nqp1 ´ e´λk2

∆2nq

4λ1`α
k1

λ1`α
k2

`

1 ´ e´2λk1
∆2n

˘`

1 ´ e´2λk2
∆2n

˘

ˆ
e´λk2

∆2n

2p1 ´ e´pλk1
`λk2

q∆2nq

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆2n

¯

˙

. (157)
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Moreover, we have

1

p

p
ÿ

i,j“1

12NpjqΣBC,k1

j,i ΣBC,k2

j´1,i “ σ4 p1 ´ e´λk1
∆2nqp1 ´ e´λk2

∆2nq

4λ1`α
k1

λ1`α
k2

`

eλk1
∆2n ´ e´λk1

∆2n
˘`

eλk2
∆2n ´ e´λk2

∆2n
˘

ˆ
1

p

p
ÿ

i,j“1

1tiăj´1u12Npjqe´λk1
∆2npj´iqe´λk2

∆2npj´1´iq.

Using the results for the following geometric series:

1

p

p
ÿ

i,j“1

1tiăj´1u12Npjqqj´i “
1

p

p
ÿ

j“4

12Npjqqj
j´2
ÿ

i“1

q´i

“
1

pq

p
ÿ

j“4

12Npjqqj ¨
1 ´ q´pj´2q

1 ´ q´1

“
1

pp1 ´ qq

p
ÿ

j“4

12Npjq
`

q2 ´ qj
˘

“
q2

2p1 ´ qq

ˆ

1 ` O
´ p´1

1 ´ q

¯

˙

, (158)

yields that

1

p

p
ÿ

i,j“1

12NpjqΣBC,k1

j,i ΣBC,k2

j´1,i “ σ4 p1 ´ e´λk1
∆2nqp1 ´ e´λk2

∆2nq

4λ1`α
k1

λ1`α
k2

`

eλk1
∆2n ´ e´λk1

∆2n
˘`

eλk2
∆2n ´ e´λk2

∆2n
˘

ˆ eλk2
∆2n

e´2pλk1
`λk2

q∆2n

2p1 ´ e´pλk1
`λk2

q∆2nq

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆2n

¯

˙

“ σ4 p1 ´ e´λk1
∆2nqp1 ´ e´λk2

∆2nq

4λ1`α
k1

λ1`α
k2

`

1 ´ e´2λk1
∆2n

˘`

1 ´ e´2λk2
∆2n

˘

ˆ
e´λk1

∆2n

2p1 ´ e´pλk1
`λk2

q∆2nq

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆2n

¯

˙

. (159)

For the cross-terms, we obtain that

1

p

p
ÿ

i,j“1

12NpjqΣ̃B,k1

i,j

`

ΣBC,k2

i,j´1 ` ΣBC,k2

j´1,i

˘

“ σ4 p1 ´ e´λk1
∆2nq2pe´λk2

∆2n ´ 1q

4λ1`α
k1

λ1`α
k2

`

eλk2
∆2n ´ e´λk2

∆2n
˘

ˆ
1

p

p
ÿ

i,j“1

12Npjqe´λk1
∆2n|i´j|

`

1tiąj´1ue
´λk2

∆2npi´j`1q ` 1tiăj´1ue
´λk2

∆2npj´1´iq
˘

“ σ4 p1 ´ e´λk1
∆2nq2pe´λk2

∆2n ´ 1q

4λ1`α
k1

λ1`α
k2

`

eλk2
∆2n ´ e´λk2

∆2n
˘

ˆ

ˆ

e´λk2
∆2n

p

p
ÿ

i,j“1

12Npjq1tiąj´1ue
´pλk1

`λk2
q∆2npi´jq `

eλk2
∆2n

p

p
ÿ

i,j“1

12Npjq1tiăj´1ue
´pλk1

`λk2
q∆2npj´iq

˘

˙

.

Analogous to equation (156), we have

1

p

p
ÿ

i,j“1

1tiąj´1u12Npjqqi´j “
1

2p1 ´ qq

ˆ

1 ` O
´ p´1

1 ´ q

¯

˙

,
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which yields in combination with equation (158) that

1

p

p
ÿ

i,j“1

12NpjqΣ̃B,k1

i,j

`

ΣBC,k2

i,j´1 ` ΣBC,k2

j´1,i

˘

“ σ4 p1 ´ e´λk1
∆2nq2pe´λk2

∆2n ´ 1q

4λ1`α
k1

λ1`α
k2

`

eλk2
∆2n ´ e´λk2

∆2n
˘

ˆ
`

1 ` e´2λk1
∆2n

˘ e´λk2
∆2n

2p1 ´ e´pλk1
`λk2

q∆2nq

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆2n

¯

˙

“ σ4 p1 ´ e´λk1
∆2nq2pe´λk2

∆2n ´ 1q

4λ1`α
k1

λ1`α
k2

`

1 ´ e´2λk2
∆2n

˘

ˆ
1 ` e´2λk1

∆2n

2p1 ´ e´pλk1
`λk2

q∆2nq

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆2n

¯

˙

. (160)

Moreover, it holds that

1

p

p
ÿ

i,j“1

12NpjqΣ̃B,k2

i,j´1

`

ΣBC,k1

i,j ` ΣBC,k1

j,i

˘

“ σ4 p1 ´ e´λk2
∆2nq2pe´λk1

∆2n ´ 1q

4λ1`α
k1

λ1`α
k2

`

eλk1
∆2n ´ e´λk1

∆2n
˘

ˆ
1

p

p
ÿ

i,j“1

12Npjqe´λk2
∆2n|i´pj´1q|

`

1tiąjue
´λk1

∆2npi´jq ` 1tjąiue
´λk1

∆2npj´iq
˘

“ σ4 p1 ´ e´λk2
∆2nq2pe´λk1

∆2n ´ 1q

4λ1`α
k1

λ1`α
k2

`

eλk1
∆2n ´ e´λk1

∆2n
˘

ˆ

ˆ

e´λk2
∆2n

p

p
ÿ

i,j“1

12Npjq1tiąjue
´pλk1

`λk2
q∆2npi´jq `

eλk2
∆2n

p

p
ÿ

i,j“1

12Npjq1tjąiue
´pλk1

`λk2
q∆2npj´iq

˙

“ σ4 p1 ´ e´λk2
∆2nq2pe´λk1

∆2n ´ 1q

4λ1`α
k1

λ1`α
k2

`

eλk1
∆2n ´ e´λk1

∆2n
˘

ˆ
`

e´λk2
∆2n ` eλk2

∆2n
˘ e´pλk1

`λk2
q∆2n

2p1 ´ e´pλk1
`λk2

q∆2nq

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆2n

¯

˙

“ σ4 p1 ´ e´λk2
∆2nq2pe´λk1

∆2n ´ 1q

4λ1`α
k1

λ1`α
k2

`

1 ´ e´2λk1
∆2n

˘

ˆ
`

1 ` e´2λk2
∆2n

˘ 1

2p1 ´ e´pλk1
`λk2

q∆2nq

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆2n

¯

˙

, (161)

where we used equation (156) and

1

p

p
ÿ

i,j“1

1tiăju12Npjqqj´i “
q

2p1 ´ qq

ˆ

1 ` O
´ p´1

1 ´ q

¯

˙

.

We also observe that

1

p

p
ÿ

i,j“1

12NpjqΣ̃B,k1

i,j ΣC,k2

i,j´1 “ σ4 p1 ´ e´λk1
∆2nq2p1 ´ e´2λk2

∆2nq

4λ1`α
k1

λ1`α
k2

1

p

p
ÿ

i,j“1

12Npjqe´λk1
∆2n|i´j|

1tj´1“iu

“ σ4e´λk1
∆2n

p1 ´ e´λk1
∆2nq2p1 ´ e´2λk2

∆2nq

8λ1`α
k1

λ1`α
k2

´

1 ` O
`

p´1
˘

¯

, (162)
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as well as

1

p

p
ÿ

i,j“1

12NpjqΣ̃B,k2

i,j´1Σ
C,k1

i,j “ σ4 p1 ´ e´2λk1
∆2nqp1 ´ e´λk2

∆2nq2

4λ1`α
k1

λ1`α
k2

1

p

p
ÿ

i,j“1

12Npjq1tj“iue
´λk2

∆2n|i´j`1|

“ σ4e´λk2
∆2n

p1 ´ e´2λk1
∆2nqp1 ´ e´λk2

∆2nq2

8λ1`α
k1

λ1`α
k2

´

1 ` O
`

p´1
˘

¯

. (163)

In comparison to Proposition 5.2.1, the following structures do not vanish and we get

1

p

p
ÿ

i,j“1

12NpjqΣBC,k1

j,i ΣC,k2

i,j´1 “ σ4 p1 ´ e´2λk2
∆2nqpe´λk1

∆2n ´ 1q

4λ1`α
k1

λ1`α
k2

´

eλk1
∆2n ´ e´λk1

∆2n

¯

ˆ
1

p

p
ÿ

i,j“1

12Npjq1tj´1“iue
´λk1

∆2npj´iq

“ σ4 p1 ´ e´2λk2
∆2nqpe´λk1

∆2n ´ 1q

4λ1`α
k1

λ1`α
k2

´

eλk1
∆2n ´ e´λk1

∆2n

¯

ˆ
e´λk1

∆2n

2

´

1 ` O
`

p´1
˘

¯

“ σ4 p1 ´ e´2λk2
∆2nqpe´λk1

∆2n ´ 1q

8λ1`α
k1

λ1`α
k2

´

1 ´ e´2λk1
∆2n

¯´

1 ` O
`

p´1
˘

¯

, (164)

as well as

1

p

p
ÿ

i,j“1

12NpjqΣC,k1

i,j ΣBC,k2

i,j´1 “ σ4 p1 ´ e´2λk1
∆2nqpe´λk2

∆2n ´ 1q

4λ1`α
k1

λ1`α
k2

´

eλk2
∆2n ´ e´λk2

∆2n

¯

ˆ
1

p

p
ÿ

i,j“1

12Npjq1tj“iue
´λk2

∆2npi´j`1q

“ σ4 p1 ´ e´2λk1
∆2nqpe´λk2

∆2n ´ 1q

4λ1`α
k1

λ1`α
k2

´

eλk2
∆2n ´ e´λk2

∆2n

¯

ˆ
e´λk2

∆2n

2

´

1 ` O
`

p´1
˘

¯

“ σ4 p1 ´ e´2λk1
∆2nqpe´λk2

∆2n ´ 1q

8λ1`α
k1

λ1`α
k2

´

1 ´ e´2λk2
∆2n

¯´

1 ` O
`

p´1
˘

¯

, (165)

whereas the following terms still vanish:

1

p

p
ÿ

i,j“1

12NpjqΣBC,k1

i,j ΣBC,k2

j´1,i “ 0,
1

p

p
ÿ

i,j“1

12NpjqΣBC,k1

i,j ΣC,k2

i,j´1 “ 0,

1

p

p
ÿ

i,j“1

12NpjqΣBC,k1

j,i ΣBC,k2

i,j´1 “ 0,
1

p

p
ÿ

i,j“1

12NpjqΣC,k1

i,j ΣBC,k2

j´1,i “ 0.

Combining the calculations form the displays (155),(157),(159),(160),(161),(162),(163),(164) and (165),

yields for k1 ‰ k2 that

Dk1,k2
“

1

p

p
ÿ

i,j“1

12Npjq
´

Σ̃B,k1

i,j ` ΣBC,k1

i,j ` ΣBC,k1

j,i ` ΣC,k1

i,j

¯´

Σ̃B,k2

i,j´1 ` ΣBC,k2

i,j´1 ` ΣBC,k2

j´1,i ` ΣC,k2

i,j´1

¯
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“
1

p

p
ÿ

i,j“1

12Npjq
´

Σ̃B,k1

i,j Σ̃B,k2

i,j´1 ` Σ̃B,k1

i,j pΣ̃BC,k2

i,j´1 ` Σ̃B,k2

j´1,iq ` Σ̃B,k1

i,j Σ̃C,k2

i,j´1 ` Σ̃B,k2

i,j´1pΣBC,k1

i,j ` ΣBC,k1

j,i q

` ΣBC,k1

i,j ΣBC,k2

i,j´1 ` ΣBC,k1

j,i ΣBC,k2

j´1,i ` ΣBC,k1

j,i ΣC,k2

i,j´1 ` ΣC,k1

i,j Σ̃B,k2

i,j´1 ` ΣC,k1

i,j ΣBC,k2

i,j´1

¯

“ σ4

ˆ

`

1 ´ e´λk1
∆2n

˘2`
1 ´ e´λk2

∆2n
˘2

4λ1`α
k1

λ1`α
k2

¨
e´λk1

∆2n ` e´λk2
∆2n

2p1 ´ e´pλk1
`λk1

q∆2nq

`
p1 ´ e´λk1

∆2nq2pe´λk2
∆2n ´ 1q

4λ1`α
k1

λ1`α
k2

`

1 ´ e´2λk2
∆2n

˘`

1 ` e´2λk1
∆2n

˘ 1

2p1 ´ e´pλk1
`λk2

q∆2nq

` e´λk1
∆2n

p1 ´ e´λk1
∆2nq2p1 ´ e´2λk2

∆2nq

8λ1`α
k1

λ1`α
k2

`
p1 ´ e´λk2

∆2nq2pe´λk1
∆2n ´ 1q

4λ1`α
k1

λ1`α
k2

`

1 ´ e´2λk1
∆2n

˘`

1 ` e´2λk2
∆2n

˘ 1

2p1 ´ e´pλk1
`λk2

q∆2nq

`
p1 ´ e´λk1

∆2nqp1 ´ e´λk2
∆2nq

4λ1`α
k1

λ1`α
k2

`

1 ´ e´2λk1
∆2n

˘`

1 ´ e´2λk2
∆2n

˘ e´λk2
∆2n

2p1 ´ e´pλk1
`λk2

q∆2nq

`
p1 ´ e´λk1

∆2nqp1 ´ e´λk2
∆2nq

4λ1`α
k1

λ1`α
k2

`

1 ´ e´2λk1
∆2n

˘`

1 ´ e´2λk2
∆2n

˘ e´λk1
∆2n

2p1 ´ e´pλk1
`λk2

q∆2nq

`
p1 ´ e´2λk2

∆2nqpe´λk1
∆2n ´ 1q

8λ1`α
k1

λ1`α
k2

´

1 ´ e´2λk1
∆2n

¯

` e´λk2
∆2n

p1 ´ e´2λk1
∆2nqp1 ´ e´λk2

∆2nq2

8λ1`α
k1

λ1`α
k2

`
p1 ´ e´2λk1

∆2nqpe´λk2
∆2n ´ 1q

8λ1`α
k1

λ1`α
k2

´

1 ´ e´2λk2
∆2n

¯

˙ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆2n

¯

˙

“ σ4

ˆ

p1 ´ e´λk1
∆2nq2p1 ´ e´λk2

∆2nq2

8λ1`α
k1

λ1`α
k2

´e´λk1
∆2n ` e´λk2

∆2n

1 ´ e´pλk1
`λk1

q∆2n
´

p1 ´ e´2λk2
∆2nqp1 ` e´2λk1

∆2nq

p1 ´ e´pλk1
`λk2

q∆2nqp1 ´ e´λk2
∆2nq

´
p1 ´ e´2λk1

∆2nqp1 ` e´2λk2
∆2nq

p1 ´ e´λk1
∆2nqp1 ´ e´pλk1

`λk2
q∆2nq

`
pe´λk1

∆2n ` e´λk2
∆2nqp1 ´ e´2λk1

∆2nqp1 ´ e´2λk2
∆2nq

p1 ´ e´λk1
∆2nqp1 ´ e´λk2

∆2nqp1 ´ e´pλk1
`λk2

q∆2nq

¯

`
p1 ´ e´λk1

∆2nqp1 ´ e´λk2
∆2nq

8λ1`α
k1

λ1`α
k2

´e´λk1
∆2np1 ´ e´λk1

∆2nqp1 ´ e´2λk2
∆2nq

p1 ´ e´λk2
∆2nq

`
e´λk2

∆2np1 ´ e´λk2
∆2nqp1 ´ e´2λk1

∆2nq

p1 ´ e´λk1
∆2nq

´
p1 ´ e´2λk1

∆2nqp1 ´ e´2λk2
∆2nq

p1 ´ e´λk2
∆2nq

´
p1 ´ e´2λk1

∆2nqp1 ´ e´2λk2
∆2nq

p1 ´ e´λk1
∆2nq

¯

˙ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆2n

¯

˙

“ σ4

ˆ

p1 ´ e´λk1
∆2nq2p1 ´ e´λk2

∆2nq2

8λ1`α
k1

λ1`α
k2

´e´λk1
∆2n ` e´λk2

∆2n

1 ´ e´pλk1
`λk1

q∆2n
´

p1 ` e´λk2
∆2nqp1 ` e´2λk1

∆2nq

p1 ´ e´pλk1
`λk2

q∆2nq

´
p1 ` e´λk1

∆2nqp1 ` e´2λk2
∆2nq

p1 ´ e´pλk1
`λk2

q∆2nq
`

pe´λk1
∆2n ` e´λk2

∆2nqp1 ` e´λk1
∆2nqp1 ` e´λk2

∆2nq

p1 ´ e´pλk1
`λk2

q∆2nq

¯

`
p1 ´ e´λk1

∆2nqp1 ´ e´λk2
∆2nq

8λ1`α
k1

λ1`α
k2

´

e´λk1
∆2np1 ´ e´λk1

∆2nqp1 ` e´λk2
∆2nq

` e´λk2
∆2np1 ´ e´λk2

∆2nqp1 ` e´λk1
∆2nq ´ p1 ´ e´2λk1

∆2nqp1 ` e´λk2
∆2nq

´ p1 ´ e´2λk2
∆2nqp1 ` e´λk1

∆2nq

¯

˙ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆2n

¯

˙
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“ σ4

ˆ

p1 ´ e´λk1
∆2nq2p1 ´ e´λk2

∆2nq2

8λ1`α
k1

λ1`α
k2

´

´ 2 `
e´λk1

∆2n ` e´λk2
∆2n

1 ´ e´pλk1
`λk2

q∆2n

¯

´ 2
p1 ´ e´λk1

∆2nqp1 ´ e´λk2
∆2nq

8λ1`α
k1

λ1`α
k2

p1 ´ e´pλk1
`λk2

q∆2nq

˙ˆ

1 ` O
´

1 ^
p´1

1 ´ e´pλk1
`λk2

q∆2n

¯

˙

.

Recalling the calculations of the covariance yields

Cov
`

Vp,∆2n
py1q,Wp,∆2n

py2q
˘

“
2e∥κ‚py1`y2q∥1σ4

p∆2α1

2n

ÿ

k1,k2PNd

k1‰k2

ek1
py1qek1

py2qek2
py1qek2

py2qD̄k1,k2

` O
ˆ

1

p2∆2α1

2n

ÿ

k1,k2PNd

k1‰k2

D̄k1,k2

1 ´ e´pλk1
`λk2

q∆2n

˙

`
2e∥κ‚py1`y2q∥1

p∆2α1

2n

ÿ

kPNd

e2kpy1qe2kpy2qDk,k,

where

D̄k1,k2
“

p1 ´ e´λk1
∆2nq2p1 ´ e´λk2

∆2nq2

8λ1`α
k1

λ1`α
k2

´

´ 2 `
e´λk1

∆2n ` e´λk2
∆2n

1 ´ e´pλk1
`λk2

q∆2n

¯

´ 2
p1 ´ e´λk1

∆2nqp1 ´ e´λk2
∆2nq

8λ1`α
k1

λ1`α
k2

p1 ´ e´pλk1
`λk2

q∆2nq.

First, we obtain for sufficiently large p that

O
ˆ

1

p2∆2α1

2n

ÿ

k1,k2PNd

k1‰k2

D̄k1,k2

1 ´ e´pλk1
`λk2

q∆2n

˙

“ Opp´2∆´α1

2n q,

where we used Lemma 4.2.4 and analogous steps as in Proposition 5.2.1. Hence, we obtain

O
ˆ

1

p2∆2α1

2n

ÿ

k1,k2PNd

k1‰k2

D̄k1,k2

1 ´ e´pλk1
`λk2

q∆2n

˙

“ O
ˆ

1

p

´

1 ^
∆´α1

2n

p

¯

˙

.

Furthermore, we have for k1 “ k2 “ k that

Dk,k “
2

p

p
ÿ

i,j“1

12NpjqE
”

`

B̃i,k ` Ci,k

˘`

B̃j,k ` Cj,k

˘

ı

E
”

`

B̃i,k ` Ci,k

˘`

B̃j´1,k ` Cj´1,k

˘

ı

“ σ4

ˆ

p1 ´ e´λk∆2nq4

8λ
2p1`αq

k

´

´ 2 ` 2
e´λk∆2n

1 ´ e´2λk∆2n

¯

´ 2
p1 ´ e´λk∆2nq2

8λ
2p1`αq

k

p1 ´ e´2λk∆2nq

˙

ˆ

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´2λk∆2n

¯

˙

“ ´
p1 ´ e´λk∆2nq2

4λ
2p1`αq

k

ˆ

p1 ´ e´λk∆2nq2 ´
e´λk∆2np1 ´ e´λk∆2nq2

1 ´ e´2λk∆2n
` 1 ´ e´2λk∆2n

˙

ˆ

ˆ

1 ` O
´

1 ^
p´1

1 ´ e´2λk∆2n

¯

˙

.
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Defining the following term:

D̄k,k :“
p1 ´ e´λk∆2nq4

8λ
2p1`αq

k

´

´ 2 ` 2
e´λk∆2n

1 ´ e´2λk∆2n

¯

´ 2
p1 ´ e´λk∆2nq2

8λ
2p1`αq

k

p1 ´ e´2λk∆2nq,

yields

1

∆2α1

2n p

ÿ

kPNd

D̄k,k “ O
ˆ

∆
d{2
2n

p
∆

d{2
2n

ÿ

kPNd

´

p1 ´ e´λk∆2nq

2pλk∆2nq1`α

¯2
˙

“ O
`

p´1∆
2p1´α1

q

2n

˘

,

where we used analogous steps as in display (117). We decompose the leading term D̄k1,k2 as follows:

D̄k1,k2
“ D̄1

k1,k2
` D̄2

k1,k2
` D̄3

k1,k2
` D̄4

k1,k2
,

where

D̄1
k1,k2

“ ´
p1 ´ e´λk1

∆2nq2p1 ´ e´λk2
∆2nq2

4λ1`α
k1

λ1`α
k2

“ ´
∆

2p1`αq

2n

4
f2,αpλk1∆2nqf2,αpλk2∆2nq,

D̄2
k1,k2

“
p1 ´ e´λk1

∆2nq2p1 ´ e´λk2
∆2nq2

8λ1`α
k1

λ1`α
k2

¨
e´λk1

∆2n ` e´λk2
∆2n

1 ´ e´pλk1
`λk2

q∆2n

“
∆

2p1`αq

2n

2

8
ÿ

r“0

`

g1,α,r`1pλk1
∆2nqg1,α,rpλk2

∆2nq ` g1,α,r`1pλk2
∆2nqg1,α,rpλk1

∆2nq
˘

,

D̄3
k1,k2

“ ´
p1 ´ e´λk1

∆2nqp1 ´ e´λk2
∆2nq

4λ1`α
k1

λ1`α
k2

“ ´
∆

2p1`αq

2n

4
f1,αpλk1∆2nqf1,αpλk2∆2nq,

D̄4
k1,k2

“
p1 ´ e´λk1

∆2nqp1 ´ e´λk2
∆2nq

4λ1`α
k1

λ1`α
k2

e´pλk1
`λk2

q∆2n “ ∆
2p1`αq

2n g2,α,1pλk1
∆2nqg2,α,1pλk2

∆2nq.

Here, we use the following functions defined by

f1,αpxq :“ fαpxq “
1 ´ e´x

x1`α
, f2,αpxq :“

p1 ´ e´xq2

x1`α
,

g1,α,τ pxq :“ gα,τ pxq “
p1 ´ e´xq2

2x1`α
e´τx, g2,α,τ pxq :“

1 ´ e´x

2x1`α
e´τx.

By Lemma 4.2.3, we know that f1,α P Qβ1
and g1,α,τ P Qβ2

, where β1 “
`

2α, 2p1 ` αq, 2p2 ` 2αq
˘

and

β2 “
`

2α, 2p1 ` αq, 2p1 ` 2αq
˘

. By analogous computations as used in Lemma 4.2.3, we obtain that

f2,α P Qβ1
and g2,α,τ P Qβ1

. Assume y1 ‰ y2. We can repeat the calculations leading to equation (119)

and have

Cov
`

Vp,∆2n
py1q,Wp,∆2n

py2q
˘

“ O
ˆ

∆1´α1

2n

p

`

∥y1 ´ y2∥
´pd`1q

0 ` δ´pd`1q
˘

˙

` O
ˆ

1

p

´

∆
2p1´α1

q

2n `
∆´α1

2n

p
^ 1

¯

˙

“ O
ˆ

∆1´α1

2n

p

`

∥y1 ´ y2∥
´pd`1q

0 ` δ´pd`1q
˘

_
∆´α1

2n

p2

˙

.

Therefore, it remains to analyse the case where y1 “ y2. Again, by utilizing the fact that the functions

f1,α, f2,α, and g2,α,τ belong to the same class Qβ1 as the function fα defined in equation (67), and

additionally that g1,α,τ “ gα,τ , we can conclude, analogous to equation (120) from Proposition 5.2.1,
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6. Parametric estimation based on a log-linear model

that

Cov
`

Vp,∆2npy1q,Wp,∆2npy2q
˘

“
2σ4

p∆2α1

2n

ÿ

k1,k2PNd

D̄k1,k2 ` O
ˆ

1

p

´

∆
1{2
2n _

∆1´α1

2n

δd`1
`

∆´α1

2n

p
^ 1

¯

˙

.

First, we obtain that

1

∆2α1

2n

ÿ

k1,k2PNd

D̄1
k1,k2

“ ´
1

4

ˆ

∆
d{2
2n

ÿ

kPNd

f2,αpλk∆2nq

˙2

“: I1,

1

∆2α1

2n

ÿ

k1,k2PNd

D̄2
k1,k2

“

8
ÿ

r“0

ˆ

∆
d{2
2n

ÿ

kPNd

g1,α,r`1pλk∆2nq

˙ˆ

∆
d{2
2n

ÿ

kPNd

g1,α,rpλk∆2nq

˙

“: I2,

1

∆2α1

2n

ÿ

k1,k2PNd

D̄3
k1,k2

“ ´
1

4

ˆ

∆
d{2
2n

ÿ

kPNd

f1,αpλk∆2nq

˙2

“: I3,

1

∆2α1

2n

ÿ

k1,k2PNd

D̄3
k1,k2

“

ˆ

∆
d{2
2n

ÿ

kPNd

g2,α,1pλk∆2nq

˙2

“: I4.

Using Corollary 4.2.2 and analogous steps as in Lemma 4.2.4 yields

I1 “ ´
1

4

ˆ

1

2dpπηqd{2Γpd{2q

˙2ˆ
p2 ´ 2α

1

qπ

Γp1 ` α1q sinpπα1q

˙2

“ ´
1

4

ˆ

Γp1 ´ α1q

2dpπηqd{2α1Γpd{2q

˙2

p2α
1

´ 2q2,

I2 “
1

4

ˆ

Γp1 ´ α1q

2dpπηqd{2α1Γpd{2q

˙2 8
ÿ

r“0

´

´pr ` 1qα
1

` 2pr ` 2qα
1

´ pr ` 3qα
1
¯´

´rα
1

` 2pr ` 1qα
1

´ pr ` 2qα
1
¯

,

I3 “ ´
1

4

ˆ

Γp1 ´ α1q

2dpπηqd{2α1Γpd{2q

˙2

,

I4 “
1

4

ˆ

Γp1 ´ α1q

2dpπηqd{2α1Γpd{2q

˙2

p2α
1

´ 1q2.

Hence, we obtain for y1 “ y2 that

Cov
`

Vp,∆2n
py1q,Wp,∆2n

py2q
˘

“
1

2p

ˆ

Γp1 ´ α1qσ2

2dpπηqd{2α1Γpd{2q

˙2ˆ

p2α
1

´ 1q2 ´ p2α
1

´ 2q2 ´ 1

`

8
ÿ

r“0

´

´pr ` 1qα
1

` 2pr ` 2qα
1

´ pr ` 3qα
1
¯´

´rα
1

` 2pr ` 1qα
1

´ pr ` 2qα
1
¯

˙

` O
ˆ

1

p

´

∆
1{2
2n _

∆1´α1

2n

δd`1
`

∆´α1

2n

p
^ 1

¯

˙

.

Defining the following constant:

Λα1 :“ 2p2α
1

´ 2q `

8
ÿ

r“0

ˆ

´

´pr ` 1qα
1

` 2pr ` 2qα
1

´ pr ` 3qα
1
¯´

´rα
1

` 2pr ` 1qα
1

´ pr ` 2qα
1
¯

˙

,

(166)

completes the proof.

210



6.2. Asymptotic for the damping parameter

The prior proposition demonstrates that the covariance structure of the rescaled realized volatility V2n∆2n

and the mix-term W2n∆2n exhibits an analogous asymptotic behaviour as the variance-covariance struc-

ture of the rescaled realized volatilities outlined in Proposition 5.2.1. This observation simplifies the proof

of the central limit theorem presented in Proposition 6.2.3. Note that we consider the case where p ě 2

since the covariances mentioned in Proposition 6.2.1 become zero when p “ 1.

Upon comparing the constant Λα1 , defined in equation (166), with the constant Υα1 from equation

(121), we observe that Λα1 contains non-negligible covariances. Notably, when comparing the structures

of the series in Λα1 and Υα1 , it becomes apparent that the structure of non-negligible quadratic increments

is transmitted to the product of consecutive temporal increments. The factor of 1{2 arises due to the

thinned temporal grid, which retains half the number of temporal data points from the original grid.

We conclude this section by proving the general mixing-type condition from Proposition 1.2.4.

Corollary 6.2.2

Grant the Assumptions 4.1.1 and 4.1.2. For 1 ď r ă r ` u ď v ď 2n and

Q̃r
1 “

r
ÿ

i“1

ξ̃2n,i, Q̃v
r`u “

v
ÿ

i“r`u

ξ̃2n,i,

it holds that there is a constant C, with 0 ă C ă 8 and ξ̃2n,i from equation (153), such that for all

t P R we have

ˇ

ˇ

ˇ

ˇ

Cov
ˆ

eitpQ̃
r
1´ErQ̃r

1sq, eitpQ̃
v
r`u´ErQ̃v

r`usq

˙
ˇ

ˇ

ˇ

ˇ

ď
Ct2

u1´α1{2

b

VarpQ̃r
1qVarpQ̃v

r`uq.

Proof. Recalling the triangular array ξ2n,i from equation (153) shows, that we can bound ξ2n,i as follows:

ξ2n,i “ ξ12n,i ` 12Npiq
21´α1

logp2q
?
2nm∆α1

2nσ
2
0K

m
ÿ

j“1

2p∆2n,iX̃qpyjqp∆2n,i´1X̃qpyjqe∥κ
‚yj∥1

ď ξ12n,i ` 12Npiq
21´α1

logp2q
?
2nm∆α1

2nσ
2
0K

m
ÿ

j“1

`

p∆2n,iX̃q2pyjq ` p∆2n,i´1X̃q2pyjq
˘

e∥κ
‚yj∥1

ď
22´α1

´ 1

logp2q
?
2nm∆α1

2nσ
2
0K

m
ÿ

j“1

p∆2n,iX̃q2pyjqe∥κ
‚yj∥1

`
21´α1

1tiě2u

logp2q
?
2nm∆α1

2nσ
2
0K

m
ÿ

j“1

p∆2n,i´1X̃q2pyjqe∥κ
‚yj∥1 .

Applying Corollary 5.3.2 completes the proof.

6.2.3. Central limit theorem and simulation results

To end this chapter, we prove that a central limit theorem holds for the damping estimator α̂1 from

equation (148). Subsequently, we will discuss the case, where every parameter from the multi-dimensional

SPDE model, outlined in equation (49), is unknown and close the research part of this thesis by providing

a Monte Carlo simulation study for our novel estimator α̂1.
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6. Parametric estimation based on a log-linear model

Proposition 6.2.3

On Assumptions 4.1.1 and 4.1.2 we have

?
2nmnpα̂1

2n,mn
´ α1q

d
ÝÑ N

´

0, logp2q´2
`

3Υα1 ´ 22´α1

pΥα1 ` Λα1 q
˘

¯

,

as n Ñ 8, where mn “ O
`

p2nqρ
˘

with ρ P
`

0, p1 ´ α1q{pd ` 2q
˘

, Υα1 defined in equation (121) and Λα1

defined in equation (166).

Proof. We determine the asymptotic variance:

Var
ˆ 2n
ÿ

i“1

Ξ2n,i

˙

“ Var
ˆ n
ÿ

i“1

ξ2n,i

˙

“ Var
ˆ

?
2n

logp2q
?
mσ2

0K

m
ÿ

j“1

`

Vn,∆nqpyjq ´ V2n,∆2npyjq
˘

˙

“
2n

logp2q2mσ4
0K

2

ˆ m
ÿ

j“1

Var
`

Vn,∆npyjq
˘

`

m
ÿ

j“1

Var
`

V2n,∆2npyjq
˘

´ 2
m
ÿ

j1,j2“1

Cov
`

Vn,∆2n
pyj1q, V2n,∆2n

pyj2q
˘

˙

` Op1q,

where ξ2n,i is defined in equation (153). For the covariance structure of both temporal resolutions we

have by using equation (152) that

Cov
`

Vn,∆2n
pyj1q, V2n,∆2n

pyj2q
˘

“ 21´α1

Cov
`

V2n,∆2n
pyj1q, V2n,∆2n

pyj2q
˘

` 22´α1

Cov
`

V2n,∆2npyj1q,W2n,∆2npyj2q
˘

.

Note that the covariances vanish for y1 ‰ y2. Hence, by utilizing the Propositions 5.2.1 and 6.2.1 we

conclude that

Var
ˆ 2n
ÿ

i“1

Ξ2n,i

˙

“
2n

logp2q2mnσ4
0K

2

ˆ

mn
Υα1

n
σ4
0K

2 `mn
Υα1

2n
σ4
0K

2 ´ 22´α1

mn
Υα1

2n
σ4
0K

2

´ 23´α1

mn
Λα1

4n
σ4
0K

2

˙

` Op1q

“
1

logp2q2

`

3Υα1 ´ 22´α1

pΥα1 ` Λα1 q
˘

` Op1q
nÑ8
ÝÑ

1

logp2q2

`

3Υα1 ´ 22´α1

pΥα1 ` Λα1 q
˘

.

It remains to verify the Conditions (I)-(IV) from Proposition 1.2.4.

(I) Let 1 ď a ď b ď 2n, then we obtain for the first condition that

b
ÿ

i“a

VarpΞ2n,iq “

b
ÿ

i“a

Varpξ2n,iq “

b
ÿ

i“a

Varpξ12n,iq `

b
ÿ

i“a

Varpξ22n,iq `

b
ÿ

i“a

1tiě2uCovpξ12n,i, ξ
2
2n,iq.

For the variance structure of ξ12n,i we have analogously to Proposition 5.4.1 that

b
ÿ

i“a

Varpξ2n,iq “

b
ÿ

i“a

Varpξ12n,iq “ O
`

pb´ a` 1q∆2n

˘

.
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6.2. Asymptotic for the damping parameter

For the variance structure of ξ22n,i, we obtain the same order through analogous considerations as

in the proof of Corollary 6.2.2. Hence, it remains to analyse the covariance term. Upon compar-

ing Proposition 6.2.1 with Proposition 5.2.1, we observe that both statements differ only in the

constants, whereas the asymptotic behaviour is identical. Therefore, we conclude that

b
ÿ

i“a

VarpΞ2n,iq “ O
`

pb´ a` 1q∆2n

˘

.

The same argumentation holds for the following term:

Var
ˆ b
ÿ

i“a

Ξ2n,i

˙

“ O
`

pb´ a` 1q∆2n

˘

,

which proves the first condition as well as Condition (II).

(III) For the third condition we have

Erξ42n,is ď 8
´

E
“

pξ12n,iq
4
‰

` E
“

pξ22n,iq
4
‰

¯

.

For ξ12n,i we use analogous steps as in Proposition 5.4.1 and have

2n
ÿ

i“1

Erpξ12n,iq
4s “ Op∆2nm

2q.

For ξ22n,i we obtain by using the Cauchy-Schwarz inequality that

Erpξ22n,iq
4s ď 12Npiq

ˆ

22´α1

logp2qσ2
0K

˙4
1

∆4α1

2n p2nq2m2

ÿ

j1,...,j4

´

e∥κ
‚pyj1

`...`yj4
q∥E

“

p∆2n,iX̃q8pyj1q
‰1{8

ˆ E
“

p∆2n,i´1X̃q8pyj1q
‰1{8

¨ . . . ¨ E
“

p∆2n,iX̃q8pyj4q
‰1{8E

“

p∆2n,i´1X̃q8pyj4q
‰1{8

¯

“ O
ˆ

m4

∆4α1

2n p2nq2m2
∆4α1

2n

˙

.

Hence, we conclude

2n
ÿ

i“1

Erpξ22n,iq
4s “ Op∆2nm

2q “ Op1q,

and the proof of the third condition follows.

(IV) The last condition is given by Corollary 6.2.2, which completes the proof.

The preceding central limit theorem reveals, that the asymptotic variance of the damping estimator α̂1

contains the non-negligible covariances of the rescaled realized volatilities, as well as additional non-

negligible covariance structures resulting from using temporal grids with distinct resolutions, given by

´22´α1

pΥα1 `Λα1 q
˘

. We also witness, that the asymptotic variance hinges on the unknown pure damping

parameter α1. To classify the magnitude of the asymptotic variance, we provide Table 6.4. This table
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Figure 6.2.: The figure provides a comparison of empirical distributions for centred estimation errors of α1, which are obtained
through simulations on an equidistant grid in both, time and space, where N “ 104 and M “ 10 and δ “ 0.05. The
kernel-density estimation employed a Gaussian kernel with Silverman’s ’rule of thumb’ and was conducted over 1000
Monte Carlo iterations. The specific parameter values used for the simulations are given as follows: d “ 2, ϑ0 “ 0,
ν “ p6, 0q, η “ 1, σ “ 1, and L “ 10. Three different scenarios were considered, each with a distinct value of the pure
damping parameter α1: α1

“ 4{10K “ 103 (left), α1
“ 1{2, K “ 103 (middle), and α1

“ 6{10, K “ 1300 (right). The
corresponding asymptotic distributions are represented by dotted lines.

presents numerical values of the asymptotic variance for different values of the pure damping parameter

α1.

α1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AVARpα̂1q 4.74 4.45 4.16 3.85 3.53 3.22 2.9 2.59 2.29

Table 6.4.: The table shows the asymptotic variance as given in Proposition 6.2.3 for distinct values of the parameter α1. The
values of the asymptotic variance are rounded to 2 decimal places.

Before turning to the simulation study for estimating the damping parameter, we discuss the case of

estimating the natural parameters from the multi-dimensional SPDE model from equation (49). Here, we

assume that the damping parameter and the parameters from the differential operator Aϑ are unknown.

As we have shown central limit theorems for the estimators σ̂2, Ψ̂ and υ̂ in the Propositions 5.4.1, 6.1.7

and Corollary 6.1.8, respectively, we especially proved consistency for those estimators. Since Proposition

6.2.3 also establishes the consistency of the estimator α̂1, we can deduce that the estimators σ̂2
y and σ̂2

from Section 4, along with Ψ̂ and υ̂ from Section 6, remain consistent when replacing the parameter α1

by the estimator α̂1. We can also preserve the original CLTs for the estimators σ̂2, Ψ̂ and υ̂ from the

Propositions 5.4.1, 6.1.7 and Corollary 6.1.8, by accepting a slightly slower rate than n1{2.

We close this chapter by providing density plots for estimating the parameter α1. Figure 6.2 shows a

comparison between the empirical distribution of each case and the asymptotic normal distribution as

described in Proposition 6.2.3. The left panel shows the simulation results for a true pure damping

parameter of α1 “ 4{10, the middle panel displays the results for α1 “ 1{2, and the right panel presents

the results for α1 “ 6{10. To account for structural bias in the data, we centred the data by employing the

sample mean of the corresponding estimates. To estimate the damping parameter, we adopted a spatial
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6.2. Asymptotic for the damping parameter

threshold of δ “ 0.05, resulting in the usage of 81 spatial coordinates for estimation. The parameter

choices employed for the two-dimensional SPDE model are consistent with the simulation study presented

earlier for the previous estimators, cf. Sections 5.4 and 6.1.3. All three scenarios exhibit a significant fit,

where we observe a qualitative difference between lower and higher values for α1 P p0, 1q. This distinction

can be attributed to the fact that α governs the Hölder regularity of the temporal marginal processes.

Lower values of α result in rougher paths, thereby yielding a more accurate fit. The sample means of the

estimates are given by 0.393 for α1 “ 4{10, 0.484 for α1 “ 1{2 and 0.554 for α1 “ 6{10. Additionally, we

provide the corresponding QQ-plots in Figure B.4, which can be found in Appendix B.
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7. Conclusion and outlook

We conclude this thesis by providing a summary of the research conducted in both parts of the thesis.

We will integrate the outcomes into the pre-existing body of knowledge concerning SPDEs, and identify

potential areas for further exploration in both sections.

7.1. One-Dimensional Stochastic Partial Differential Equation

The research undertaken in the first part of the thesis centres on SPDEs within a one-dimensional space,

with a primary focus on refining established estimation techniques for the natural parameters of the

model from equation (1), namely the curvature parameter κ and the normalized volatility parameter σ2
0 .

Addressing the lack of comprehensive exploration into efficient estimators for the curvature parameter,

we devised an oracle estimator denoted as κ̂ using the maximum likelihood method. To address estimation

of both natural parameters, we established a bridge between realized volatility as the foundation for our

estimation challenges and the framework of the linear model. This connection allowed us to successfully

apply statistical methodologies rooted in the linear model to SPDE models by incorporating log-realized

volatilities. Consequently, central limit theorems were established for our novel estimators: κ̂, κ̂, and σ̂2
0 ,

all of which displayed optimal rates of convergence.

Although existing M-estimators, as introduced by Bibinger and Trabs (2020), were employed by many

researchers to estimate the parameter η “ pσ2
0 , κq, our findings revealed the substantial advancements

offered by our novel estimators. These estimators notably exhibit smaller asymptotic variances and

the added benefit of explicit functional representation. Additionally, we demonstrated the feasibility of

deriving asymptotic confidence intervals for the parameter κ as the asymptotic variances are given by

known constants. The use of a variance-stabilizing transformation of the realized volatilities also allowed

us to construct asymptotic confidence intervals for the parameter σ2
0 .

Furthermore, the extensively studied and well-understood linear model framework offers a wide range

of statistical methods, such as χ2-tests and F -tests. These methods provide an avenue to establish deeper

connections between SPDE models and linear models. Future research has the potential to strengthen

these linkages, where the foundations for proving such connections are laid out in this thesis.

In conclusion, this research advances the understanding and application of estimation techniques for

SPDEs within a one-dimensional space and contributes to the existing literature by not only offering

enhanced estimation techniques but also by establishing connections between disparate statistical fields.
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7.2. Multi-Dimensional Stochastic Partial Differential Equation

While extensive research has been conducted on one-dimensional SPDE models over the past decades,

the exploration of SPDEs in multiple spatial dimensions remains considerably limited. Our contribution

to this emerging field involves establishing a theoretical framework for a general d-dimensional space and

pioneering initial estimators for the natural parameters: σ2
0 , κ1, . . . , κd, and α

1.

Our approach is based on the notion of linking multi-dimensional SPDE models to multiple linear

regression models. We demonstrated the practicality of this idea by central limit theorems for the re-

spective estimators and constructed asymptotic confidence intervals for the natural parameters of the

multi-dimensional model. Furthermore, we embarked on investigating the identifiability of the damp-

ing parameter α, a concept that arises in multi-dimensional contexts, and successfully derived a corre-

sponding central limit theorem. Hence, we have successfully demonstrated that key concepts from the

one-dimensional space can be transferred to multiple space dimensions, thereby providing the basis for

extending these linkages in future research.

Although we have laid the foundational groundwork, the field of multi-dimensional SPDEs offers ample

avenues for further exploration and investigation. One intriguing technical question that remains unre-

solved surfaced during our analysis of the replacement method for multi-dimensional SPDEs in Section

4.3. In this context, we proposed a numerical approximation for the variance sm of replacement centred

normal random variables. While this approach introduced a bias into the simulations, we outlined a

method to derive an exact determination of the variance sm in this outlook section.

We continue with the notations and the equidistant observation scheme in time and space, as introduced

in Section 4.3. Let Xst
t denote a solution of the random field from equation (49) with a stationary

initial condition, i.e., xξ, ekyϑ „ N p0, σ2{p2λ1`α
k qq. Furthermore, let xstk be the corresponding coordinate

processes for k P Nd. According to equation (78), it holds that

Var
`

xstk ptq
˘

“
σ2

2λ1`α
k

.

Thus, we have

ÿ

lPIm

σ2

2λ1`α
l

“ VarpxXst
t , emyϑ,M q “ Var

ˆ

1

Md

ÿ

jPJ
Xst

t pyjqempyjqe
||κ‚yj||1

˙

“
1

M2d

ÿ

j1,j2PJ
empyj1

qempyj2
qe||κ‚yj1

||1e||κ‚yj2
||1Cov

`

Xst
t pyj1

q, Xst
t pyj2

q
˘

,

where yj “ j{M . The covariance of Xst
t in two different spatial points can be represented as follows:

Cov
`

Xst
t py1q, Xst

t py2q
˘

“
ÿ

kPNd

ekpy1qekpy2qVar
`

xstk ptq
˘

“ σ2
ÿ

kPNd

ekpy1qekpy2q
1

2λ1`α
k

“ 2d´1σ2e´||κ‚py1`y2q||1{2
ÿ

kPNd

1

λ1`α
k

d
ź

l“1

sinpπklj
p1q

l {Mq sinpπklj
p2q

l {Mq.
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Defining the constant

Λ :“ pπ2ηq´1

ˆ

||ν||22

4η
´ ϑ0

˙

and al :“ pj
p1q

l ` j
p2q

l q{M,

results in analysing the following term:

Im

ˆ

ÿ

kPNd

śd
l“1 e

iπklal

pk21 ` . . .` k2d ` Λq1`α

˙

.

Exploring a “closed” expression for this latter series could become the focus of forthcoming inquiries.

Achieving such a closed form, as demonstrated by Hildebrandt (2020) for one-dimensional space, would

not only significantly accelerate simulation runtimes and potentially yield nearly unbiased results, but

opens up a novel avenue for investigating SPDEs in multiple spatial dimensions.

In Part II, we developed statistical methods under the assumption of observing the solution of the

SPDE model from equation (49) through a high-frequency observation scheme. The understanding of

the covariance structure of a mild solution Xt at two distinct spatial points introduces opportunities for

exploring statistical inferences with deviating statistical assumptions. In the work by Hildebrandt and

Trabs (2021), the investigation of SPDEs in one spatial dimension utilized space-time increments

pδkXqptiq :“ Xtipykq ´Xtipyk´1q,

offering novel statistical methodologies for estimating parameters of the one-dimensional SPDE model.

The transferability of these ideas to higher spatial dimensions is conceivable, requiring the exploration of

appropriate spatial coordinate selections.

As observed, the linkage between the linear model and multiple spatial dimensions establishes an oppor-

tunity to extend well-established techniques from linear models to SPDE models in this multi-dimensional

context. One avenue involves the estimation of the damping parameter in combination with the log-linear

model, akin to the approach highlighted in Section 6.2.1. Here, we can explore a statistic, represented by

the equation

log

ˆ

RVnpy1q

n

˙

´ log

ˆ

RV2npy2q

2n

˙

« α1
`

logp∆nq ´ logp∆2nq
˘

´ ||κ ‚ py1 ´ y2q||1 `

c

Υα1

n
Z1 ´

c

Υα1

2n
Z2

“ α1 logp1{2q ´ ||κ ‚ py1 ´ y2q||1 `

c

Υα1

n
Z1 ´

c

Υα1

2n
Z2,

where y1 and y2 represent distinct spatial points, and Z1 and Z2 denote normal random variables. This

approach not only enables the estimation of the pure damping parameter α1 but also enables simultaneous

estimation of the curvature parameter κ “ pκ1, . . . , κdq. Conversely, employing this approach necessitates

a full-rank assumption akin to Assumption 6.1.2.

Nevertheless, numerous other intriguing research areas await exploration in this nascent field. While

constructing an oracle estimator for the volatility parameter σ2, our findings showcased a connection to

the one-dimensional case. Thus, it is plausible that estimation methods like those presented by Bibinger

and Trabs (2020) could be applicable to estimate the integrated volatility
ş1

0
σ2
s ds for a time-dependent
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volatility σs within a semi-parametric framework.

In conclusion, Part II of this thesis accomplishes the objective to extend the exploration of SPDEs to

multiple spatial dimensions. As the field advances and more complex models are needed to capture real-

world phenomena, our work provides a bridge between theory and application in this area. By developing

a comprehensive statistical framework within the context of linear, second-order SPDEs with additive

noise, we addressed the challenges and complexities that emerge in multiple dimensions. We proved

that the statistical theory for one-dimensional SPDEs can be successfully extended to multiple space

dimensions and provided a link to the linear model, enabling a wide range of statistical methods to multi-

dimensional SPDEs. We anticipate that the groundwork established in this second part of the thesis will

make a valuable contribution to future research extending beyond linear parabolic SPDE models with

additive noise.
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Appendices





Appendix A. Notations

A.1. General Notations

In this thesis, we adopt the standard symbols for the sets of natural and real numbers, represented as

N “ t1, 2, . . .u and R, respectively. The set of all positive real numbers is denoted by R` “ p0,8q, where

the set of non-negative real numbers is denoted as R`
0 “ r0,8q. Similarly, we refer to the non-negative

integers as N0 “ N Y t0u. The set of all even natural numbers is given by 2N “ t0, 2, 4, . . .u, while the

set of all odd natural numbers is represented as p2NqA. Moreover, we employ Rd to represent the set of

real numbers in d-dimensions, and Rnˆm to denote the set of all real-valued matrices with dimension

n ˆ m, where d, n,m P N. Additionally, we define A ˆ B “ tpa, bq|a P A, b P Bu for any sets A and B.

For x P Rd, we use the notation xJ to denote the transpose of the vector x.

For real numbers a, b P R we denote the minimum and maximum operator as a ^ b :“ minpa, bq and

a_ b :“ maxpa, bq, respectively. The expression panq ” a signifies that a sequence panqnPN is identical to

a certain real number a P R, for all n P N. We employ the notation 1A to denote the indicator function

associated with a set A. Furthermore, when dealing with sums and products where the lower limit is

greater than the upper limit, we employ the empty sum and empty product convention, i.e.,
řb

k“a ck “ 0

and
śb

k“a ck “ 1, where a, b P N, with a ą b and a sequence pckqkPN. Improper integrals are indicated as
ş8

a
fpxqdx or alternatively as rf s8

0 if the function f is integrable on the interval pa,8q. Furthermore, we

state that f P LppAq, if the expression p
ş

A
|fpxq|

p
dxq1{p ă 8 is finite, where p P R`. Consider a function

f : D Ñ R, with D Ă R. In this context, the first and second derivatives are represented as f 1 and f2,

respectively. Moreover, we employ the notation f pnq to indicate the n-th derivative. We consider a set

D Ă Rd and a function f : D Ñ R. In this context, ∇f represents the gradient of function f and Hf the

Hessian matrix.

For two sequences an and bn, the notation an9bn is employed, when |an{bn|
nÑ8
ÝÑ C, for a constant

0 ă C ă 8. Moreover, we utilize the notation An “ OpBnq, when a constant C ą 0 and a natural

number n0 P N exist, such that |An| ď CBn holds for all n ě n0. The constant C in this definition

remains unaffected by the spatial and temporal resolutions m and n, cf. Assumptions 1.1.1 and 4.1.1,

and is in particular independent of potential indices 1 ď i ď n and 1 ď j ď m.

The abbreviation i.i.d., used in conjunction with random variables X1, . . . , Xn „ X, signifies that the

random variables pXiqiPI , for a index set I, are independent and identically distributed with a distribution

corresponding to the distribution of the random variable X. The normal distribution is represented as

N pµ,Σq, where µ P Rd is referred to as the expected value, and Σ P Rdˆd is a symmetric positive definite

covariance matrix, for d P N. In the case where d “ 1, we consider a univariate normal distribution,

with Σ “ σ2 ą 0 representing the variance. Moreover, we state that X P Lp if the random variable X is

measurable and it holds that
` ş

Ω
|X|p dP

˘1{p
ă 8 remains finite. For a random variable X P L that is
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integrable, we define the compensated random variable as X̄ :“ X ´ ErXs.

We use the symbols
P

Ñ and
d

Ñ to represent convergence in probability and convergence in distribution,

respectively. Consider two random variables X and Y defined on the same probability space pΩ,A,Pq.

We express X “ Y almost surely (X “ Y a.s.) when the probability PpX “ Y q “ 1. The symbol OP

denotes the stochastic equivalent of the Landau notation. Let pXnqnPN be a sequence of random variables

defined on a probability space pΩ,A,Pq. The notation Xn “ OPpanq holds, when considering a positive

sequence panqnPN and for all ε ą 0, there exists a C ą 0 and a n0 P N such that Pp|Xn{an| ě Cq ď ε for

all n ě n0. Similarly, we use the notation Xn “ OPpanq to convey that the ratio Xn{an
P

Ñ 0, as n Ñ 8.

Consistently, we will use the notation ϑ̂ to refer to an estimator for an unknown parameter ϑ. While

constructing estimators based on discrete spatiotemporal data, we employ both notations ϑ̂n,m and ϑ̂ for

the same estimator. Assume an estimator ϑ̂, for which a central limit theorem applies, i.e., anpϑ̂n ´ϑq
d

Ñ

N p0, σ2q, as n Ñ 8 and a sequence panqnPN. In this context, we represent the asymptotic variance as

AVARpϑ̂nq “ limnÑ8 Varpanϑ̂nq “ σ2.

The subsequent sections address more detailed notations, distinguishing between those utilized in Part I

and Part II of this thesis, as well as notations that are specifically employed within a particular chapter

of this thesis.

A.2. Notational conventions in Part I

ϑ

σ

Aϑ

Hϑ

pϑ0, ϑ1, ϑ2qJ P R2 ˆ p0,8q

Volatility parameter, σ P p0,8q

Differential operator, ϑ0 ` ϑ1
B

By ` ϑ2
B
2

By2

Hilbert space, tf : r0, 1s Ñ R : ||f ||ϑ ă 8, fp0q “ fp1q “ 0u

xf, gyϑ

∥f∥ϑ

ekpyq

λk

Inner product,
ş1

0
exp

“

ϑ1

ϑ2
y
‰

fpyqgpyqdy, for f, g P Hϑ

Norm, xf, fyϑ, for f P Hϑ

Eigenfunctions,
?
2 sinpπkyq exp

“

´ ϑ1

2ϑ2
y
‰

Eigenvalues, ´ϑ0 `
ϑ2
1

4ϑ2
` ϑ2π

2k2, for k P N

xkptq

Xtpyq

X̃tpyq

Bt

W k
t

Coordinate processes, e´tλkxξ, ekyϑ `
şt

0
e´λkpt´sqσs dB

k
s , for k P N

Mild solution of equation (1),
ř8

k“1 xkptqekpyq

Mild solution with stationary initial condition, xξ, ekyϑ „ N p0, σ2{p2λkqq, k P N

Cylindrical Brownian motion, xBt, fyϑ “
ř8

k“1xf, ekyϑW
k
t

Independent Brownian motions for each k P N
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ξ

δ

Initial condition of equation (1), ξ P Hϑ

Spatial boundary, δ P p0, 1{2q

∆n

ρ

κ

σ2
0

Temporal resolution, ∆n “ 1{n, n P N

Relationship of temporal and spatial observations, ρ P p0, 1{2q

Curvature parameter of equation (1), κ “ ϑ1{ϑ2

Normalized volatility parameter of equation (1), σ2
0 “ σ2{

?
ϑ2

p∆iXqpyq

RVnpyq

Temporal increment, Xi∆n
pyq ´Xpi´1q∆n

pyq

Realized volatility,
řn

i“1p∆iXq2pyq

Γ

Ξ

Vp,∆n
pyq

Constant of covariances, Γ « 0.75

Triangular array of a respective estimator, Ξn,i “ ξn,i ´ Erξn,is

Exponentially rescaled realized volatility, 1
p

?
∆n

řp
i“1p∆iX̃q2pyqeyκ

Chapter 2

κ̂n,m Oracle curvature estimator,
´

řm
j“1 ln

`

RVnpyjq
?

n

˘

yj`
řm

j“1 ln
`

σ2
0?
π

˘

yj
řm

j“1 y2
j

κ̂n,m Non-oracle curvature estimator,

ř

j‰l ln
`

RVnpyjq

RVnpylq

˘

pyl´yjq
ř

j‰lpyj´ylq2

ξ
σ2
0

n,i
´

?
mnπ

σ2
0

řmn
i“1 y2

i

řmn

j“1p∆iX̃q2pyjqeyjκyj

ξn,i
?
mnπ

σ2
0

ř

j‰lpyj´ylq2

ř

j‰l

`

p∆iX̃q2pyjqeκyj ´ p∆iX̃q2pylqe
κyl

˘

pyl ´ yjq

Fα

Gα

tfϑ : N Ñ R | DCϑ ą 0 : f2ϑpmq ď Cϑm
´pα`1qu

tgϑ : N Ñ R | DCϑ ą 0 : |gϑpmq| ď Cϑm
α{2 uniformly in m P Nu

Hα

␣

pZn,iq : Zn,i “ ζn,i ´ Erζn,is, ζn,i “ fϑpmq
řm

j“1p∆iX̃q2pyjqgϑpjq,

with fϑ P Fα, gϑ P Gα

(

η Parameter, pσ2
0 , κqJ

η̂n,m M-Estimator for η, argmins,k
řm

j“1

`

Zj ´ fs,kpyjq
˘2
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Chapter 3

ϱ

ν

lnpσ2
0{πq

Parameter, pϱ, κqJ

Gd
α tgϑ : N Ñ Rd | |βJgϑpmq| ď Cϑ∥β∥8m

α{2 uniformly in m P N, Cϑ ą 0u

Hd
α

␣

pZn,iq1ďiďn,nPN : Zn,i “ ζn,i ´ Erζn,is and ζn,i “ fϑpmq
řm

j“1p∆iX̃q2pyjqgϑpjq,

where fϑ P Fα, gϑ P Gd
α

(

ϱ̂

`

řm
j“1 yj

˘`

řm
j“1 ln

`

RVnpyjq
?

n

˘

yj

˘

´

`

řm
j“1 ln

`

RVnpyjq
?

n

˘˘`

řm
j“1 y2

j

˘

`

řm
j“1 yj

˘2
´m

řm
j“1 y2

j

σ̂2
0

ν̂

eϱ̂{
?
π

pϱ̂, κ̂qJ

ξn,i
?
mnπ

σ2
0pp

řmn
j“1 yjq2´mn

řmn
j“1 y2

j q

řmn

j“1p∆iX̃q2pyjqeκyj

˜

`
řmn

l“1 yl
˘

yj ´
řmn

l“1 y
2
l

mnyj ´
řmn

l“1 yl

¸

Gβ
j Gβ1

j `Gβ2

j :“ β1
`

p
řmn

l“1 ylqyj ´
řmn

l“1 y
2
l

˘

` β2
`

mnyj ´
řmn

l“1 yl
˘

A.3. Notational conventions in Part II

d

ϑ

σ

α, α1

Spatial dimension, d P N, with d ě 2

pϑ0, ν1, . . . , νd, ηqJ P Rd`1 ˆ p0,8q

Volatility parameter, σ P p0,8q

Damping and pure damping parameter, α “ d{2 ´ 1 ` α1 and α1 P p0, 1q

Aϑ Differential operator, η
řd

l“1
B

By2
l

`
řd

l“1 νl
B

Byl
` ϑ0

Hϑ Hilbert space, tf : r0, 1sd Ñ R, ∥f∥ϑ ă 8 and fpyq “ 0, for y P B r0, 1sdu

xf, gyϑ Inner product,
ş1

0
¨ ¨ ¨

ş1

0
fpy1, . . . , ydqgpy1, . . . , ydq exp

“
řd

l“1 κlyl
‰

dy1 ¨ ¨ ¨ dyd, for

f, g P Hϑ

∥f∥ϑ

ekpyq

Norm, xf, fyϑ, for f P Hϑ

Eigenfunctions, 2d{2
śd

l“1 sinpπklylqe
´κlyl{2, for k P Nd

λk Eigenvalues, ´ϑ0 `
řd

l“1

`ν2
l

4η ` π2k2l η
˘

, for k P Nd
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xkptq Coordinate processes, e´λktxξ, ekyϑ ` σλ
´α{2
k

şt

0
e´λkpt´sq dWk

s , for k P Nd

Xtpyq

X̃tpyq

Bt

Mild solution of equation equation (49),
ř

kPNd xkptqekpyq

As Xt with stationary initial condition, xξ, ekyϑ „ N p0, σ2{p2λ1`α
k qq

Cylindrical Brownian motion, xBt, fyϑ :“
ř

kPNd λ
´α{2
k xf, ekyϑW

k
t

W k
t

ξ

δ

∆n

ρ

Independent Brownian motions for each k P Nd

Initial condition of from equation (49), ξ P Hϑ

Spatial boundary, δ P p0, 1{2q

Temporal resolution, ∆n “ 1{n, n P N

Relationship of temporal and spatial observations, ρ P
`

0, p1 ´ α1q{pd` 2q
˘

κ

σ2
0

BA

Curvature parameter, κ “ pκ1, . . . , κdq, where κl “ νl{η, l “ 1, . . . , d

Normalized volatility parameter, σ2
0 “ σ2{

?
ϑ2

Boundary of the set A Ă Rd

ş

A
fpxqdx

ř

kPNd ak

d-dimensional Integral, A Ă Rd

d-dimensional series, ak : Nd Ñ R

∥x∥0 Function, mini“1,...,d
xi‰0

t|x1|, . . . , |xd|u, x P Rd

∥x∥1

∥x∥2

∥x∥8

∥f∥LppDq

x ‚ y

y
pjq

l

Function
řd

l“1 xl, x P Rd

Norm,
`
řd

l“1 x
2
l

˘1{2
, x P Rd

Norm, maxl“1,...,d |xl|, x P Rd

Norm,
` ş

D
|fpxq|

p
dx

˘1{p
, D Ă R

Component-wise product, x ‚ y “ px1y1, . . . , xdydq, x,y P Rd

l-th component of the j-th observation

|Jd|

Γpzq

Υα1

K

Determinant,
śd´2

l“1 r
d´1 sind´1´l

pφlq

Gamma function,
ş8

0
tz´1e´t dt, Repzq R t0,´1,´2, . . .u

Constant of covariances,
`
ř8

r“0

`

´ rα
1

` 2pr ` 1qα
1

´ pr ` 2qα
1˘2

` 2
˘

, α1 P p0, 1q

Constant, 2dpπηq
d{2α1Γpd{2q

Γp1´α1q
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Ai,k

Ãi,k

Increment decomposition, xξ, ekyϑ
`

e´λki∆n ´ e´λkpi´1q∆n
˘

Increment decomposition, σλ
´α{2
k

ş0

´8
e´λkppi´1q∆n´sq

`

e´λk∆n ´ 1
˘

dWk
s

Bi,k

B̃i,k

Ci,k

Increment decomposition, σλ
´α{2
k

şpi´1q∆n

0
e´λkppi´1q∆n´sq

`

e´λk∆n ´ 1
˘

dWk
s

Increment decomposition, σλ
´α{2
k

şpi´1q∆n

´8
e´λkppi´1q∆n´sq

`

e´λk∆n ´ 1
˘

dWk
s

Increment decomposition, σλ
´α{2
k

şi∆n

pi´1q∆n
e´λkpi∆n´sq dWk

s

ΣB,k
i,j Covariance, σ2

`

e´λk∆n|i´j| ´ e´λkpi`j´2q∆n
˘

p1´e´λk∆n q
2

2λ1`α
k

Σ̃B,k
i,j

ΣC,k
i,j

ΣBC,k
i,j

Covariance, σ2

2λ1`α
k

`

e´λk∆n ´ 1
˘2
e´λk∆n|i´j|

Covariance, 1tj“iuσ
2 1´e´2λk∆n

2λ1`α
k

Covariance, 1tiăjuσ
2e´λk∆npj´iq

`

eλk∆n ´ e´λk∆n
˘

e´λk∆n´1
2λ1`α

k

Chapter 4

Bγ

fαpxq

gα,τ pxq

tx P r0,8qd|x1 P ψ´1pγ1q, . . . , xd P ψ´1pγdqu Ă r0,8qd

1´e´x

x1`α

p1´e´x
q
2

2x1`α e´τx

Qβ

Di,k

␣

f : r0,8q Ñ R|f twice differentiable, ∥xd´1fpx2q∥L1pr0,8qq, ∥xdf p1qpx2q∥L1pr1,8qq,

∥xd`1f p2qpx2q∥L1pr1,8qq and lim supxÑ0 |f pjqpx2q{s´βj | ď C ă 8, j “ 0, 1, 2
(

,

where β “ pβ0, β1, β2q P p0, 2αs ˆ p0, 2pα ` 1qs ˆ p0, 2pα ` 2qs

∆
d{2`α1

n

`

1´e´λk∆n

pλk∆nq1`α ´
p1´e´λk∆n q

2

2pλk∆nq1`α e
´2λkpi´1q∆n

˘

Chapter 5

σ̂2
y

σ̂2
n,m

ξn,i

ξ̃n,i

2dpπηq
d{2α1Γpd{2q

n∆α1
n Γp1´α1q

řn
i“1p∆iXq2pyqe∥κ‚y∥1

2dpπηq
d{2α1Γpd{2q

nm∆α1
n Γp1´α1q

řm
j“1

řn
i“1p∆iXq2pyjqe∥κ‚yj∥1

2dpπηq
d{2α1Γpd{2q

?
nm∆α1

n Γp1´α1q

řm
j“1p∆iXq2pyjqe∥κ‚yj∥1

2dpπηq
d{2α1Γpd{2q

?
nm∆α1

n Γp1´α1q

řm
j“1p∆iX̃q2pyjqe∥κ‚yj∥1
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Chapter 6

Ψ

υ

hpxq

Parameter, plogpσ2
0Kq,´κ1, . . . ,´κdqJ P Rd`1

Natural Parameter, υ :“ pσ2
0 , κ1, . . . , κdqJ P p0,8q ˆ Rd

Transformation h : p0,8q ˆ Rd Ñ Rd`1, hpxq “ plogpKx1q,´x2, . . . ,´xd`1q

X

¨

˚

˚

˝

1 y
p1q

1 . . . y
p1q

d
...

...
. . .

...

1 y
pmq

1 . . . y
pmq

d

˛

‹

‹

‚

P Rmˆpd`1q

Y

Ψ̂

υ̂

`

log
`RVnpy1q

n∆α1
n

˘

, . . . , log
`RVnpymq

n∆α1
n

˘˘J
P Rm

pXJXq´1XJY P Rm

hpΨ̂q

ξn,i
?
np1´2δq

?
mKσ2

0

`

1´2δ
m XJX

˘´1
XJ

¨

˚

˚

˚

˝

p∆iX̃q
2

py1q

n∆α1
n

e∥κ‚y1∥1

...
p∆iX̃q

2
pymq

n∆α1
n

e∥κ‚ym∥1

˛

‹

‹

‹

‚

Em mˆm identity matrix

1a,b

p∆2n,iXqpyq

p∆n,iXqpyq

RV2npyq

RVnpyq

Matrix of ones, 1a,b “ t1uaˆb

Temporal increments, Xi∆2n
´Xpi´1q∆2n

, 1 ď i ď 2n

Temporal increments on thinned grid, Xi∆n
´Xpi´1q∆n

, 1 ď i ď n

Realized volatility,
ř2n

i“1p∆2n,iXq2pyq

Realized volatility on thinned grid,
řn

i“1p∆n,iXq2pyq

α̂1
2n,m Estimator for the pure damping parameter α1, 1

logp2qm

řm
j“1 log

´

2RVnpyjq

RV2npyjq

¯

Vp,∆2n
pyq

Vp,∆n
pyq

Rescaled realized volatility, 1
p∆α1

2n

řp
i“1p∆2n,iX̃q2pyqe||κ‚y||1 , 1 ď p ď 2n

Rescaled realized volatility on thinned grid, 1
p∆α1

n

řp
i“1p∆n,iX̃q2pyqe||κ‚y||1 ,

1 ď p ď n

Wp,∆2n
pyq 1

p∆α1

2n

řp
i“1 12Npiqp∆2n,iX̃qpyqp∆2n,i´1X̃qpyqe||κ‚y||, 1 ď p ď 2n

ξ2n,i ξ12n,i ` ξ22n,i

ξ12n,i
21´α1

´1
logp2q

?
2nm∆α1

2nσ
2
0K

řm
j“1p∆2n,iX̃q2pyjqe∥κ‚yj∥1
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ξ22n,i 12Npiq 22´α1

logp2q
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2nσ
2
0K
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j“1p∆2n,iX̃qpyjqp∆2n,i´1X̃qpyjqe∥κ‚yj∥1

Λα1 2p2α
1

´ 2q `
ř8

r“0

´

`

´ pr ` 1qα
1

` 2pr ` 2qα
1

´ pr ` 3qα
1˘

ˆ
`

´ rα
1

` 2pr ` 1qα
1

´ pr ` 2qα
1˘
¯
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Appendix B. Additional Plots

This appendix provides additional plots for Part II of this thesis. We start by providing a plot for a

three-dimensional SPDE model from equation (49) with parameters ϑ0 “ 0, ν “ p´10, 10, 0q, η “ 1,

σ “ 1 and α1 “ 1{2 on an equidistant grid in time and space, where N “ 104 and M “ 10.

Figure B.1.: The figure depicts a three-dimensional SPDE on an equidistant grid in both time and space, where N “ 104 and
M “ 10. The simulation utilizes the following parameter values: ϑ0 “ 0, ν “ p´10, 10, 0q, η “ 1, σ “ 1, and α1

“ 1{2.
The visual representation consists of three panels: the left panel displays the random field for the first spatial axis, the
middle panel showcases the second spatial axis, and the right panel presents the third spatial axis. For each spatial
axis displayed, the coordinates of the remaining axes are held fixed at p1{2, 1{2q.

The QQ-plots for the volatility estimations are given by the following figure.
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Figure B.2.: QQ-normal plots for normalized estimation errors for the parameter σ from simulations with N “ 104,M “ 10, ϑ0 “

0, ν “ p6, 0q, η “ 1, σ “ 1, α1
“ 4{10 in the left panel (grey), α1

“ 1{2 in the middle panel (yellow) and α1
“ 6{10 in

the right panel (brown).
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The QQ-plots for estimating the natural parameters σ2
0 and κ “ pκ1, κ2q as well as the damping parameter

α1 are given by the following two figures.
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Figure B.3.: QQ-normal plots for normalized estimation errors for the parameter υ from simulations with N “ 104,M “ 10, ϑ0 “

0, ν “ p6, 0q, η “ 1, σ “ 1, α1
“ 4{10 in the top panel, α1

“ 1{2 in the middle panel and α1
“ 6{10 in the bottom panel.

The results for the estimator σ̂2
0 is given by the grey color, the results for κ̂1 is given by the yellow color and for κ̂2

by the brown color.
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Figure B.4.: QQ-normal plots for normalized estimation errors for the parameter α1 from simulations with N “ 104,M “ 10, ϑ0 “

0, ν “ p6, 0q, η “ 1, σ “ 1, α1
“ 4{10 in the left panel (grey), α1

“ 1{2 in the middle panel (yellow) and α1
“ 6{10 in

the right panel (brown).
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