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Introduction

Stochastic partial differential equations (SPDESs) form a powerful framework for modelling and analysing
systems that evolve in both time and space under the influence of random fluctuations. They provide
a mathematical description of processes that exhibit randomness, often arising in various fields such
as physics, finance, biology, and engineering. SPDEs extend the classical theory of partial differential
equations (PDEs) by incorporating stochastic terms, which account for the uncertainties present in the
system. Unlike deterministic PDEs, where the evolution of a system is fully determined by its initial
conditions and governing equations, SPDEs introduce randomness into the equations, capturing the
inherent variability and noise in the underlying phenomena. While PDEs have been extensively researched
over the past decades, research on SPDEs is comparatively still in its infancy.

To introduce stochastic partial differential equations, we begin by considering a separable Hilbert space

denoted as H. The mathematical expression for an SPDE takes on a general form:
dX, + (0A + B) X, dt = (M X, + o) AWZ,

where Xy = ¢ € H denotes the initial condition, A, B and M are operators, W< represents a Q-cylindrical
Brownian motion, and 6,0 are parameters. The operator A is linear, positive definite, and self-adjoint
in H, while B is a linear or nonlinear operator in H. Additionally, A and M are commonly differential
or pseudo-differential operators. For further readings on operators and other fundamental concepts of
functional analysis, we recommend consulting the work of Rudin (1987).

Similar to PDEs, various classes of SPDEs emerge based on the choice of the operators, each exhibiting

distinct properties and characteristics. Some notable classes of SPDEs include:

(1) Linear SPDEs: This class encompasses SPDEs, where the differential operator is linear, i.e., B = 0.
Linear SPDEs are often solvable analytically or numerically and have well-defined properties such
as existence, uniqueness, and regularity of solutions. They serve as a fundamental building block
for further SPDE models.

(2) Nonlinear SPDEs: Nonlinear SPDEs feature nonlinear terms in either the differential operator or
the drift term, characterized by B # 0, with B being a nonlinear operator. These equations are
commonly employed when modelling systems with nonlinearity or interactions between different
components. Solving nonlinear SPDEs often presents substantial challenges concerning the exis-
tence and uniqueness of solutions. As a result, their analysis frequently relies on numerical methods

or approximation techniques to explore their behaviour and properties.

(3) SPDEs with additive noise: This class of SPDEs involves a stochastic noise term that is additive,
meaning it is directly added to the deterministic part of the equation, i.e., M = 0. The noise

introduces randomness and captures the effects of unpredictable factors in the system. SPDEs with



Introduction

additive noise are widely used in various fields to model phenomena with inherent uncertainties and

fluctuations.

(4) SPDEs with multiplicative noise: In this class of SPDEs, the noise term is multiplicative, meaning
it interacts with the solution or the coefficients of the equation, i.e., M # 0. Multiplicative noise
can arise in various applications, such as models of financial markets, fluid dynamics, or biological
systems. SPDEs with multiplicative noise present additional challenges in terms of well-posedness,

stability, and numerical approximation.

Each class has its own mathematical properties, challenges, and applications. The study of SPDEs
involves a combination of analytical techniques, numerical methods, and probabilistic tools to understand
the behaviour of these complex systems and make predictions about their dynamics.

The relevance of statistical techniques for SPDEs is evident by the works of Hambly and Sgjmark
(2019), Fuglstad and Castruccio (2020), Altmeyer and Reifl (2021), and Altmeyer et al. (2022), which
provide calibration options for SPDEs in one space dimension. Although there has been significant re-
search on linear stochastic partial differential equations with additive noise, there are still open questions
that remain unresolved. Two particular areas that warrant further investigation are the statistical in-
ference on the model parameters and the extension of the SPDE model to higher dimensions. In terms
of statistical inference, understanding how to accurately estimate the parameters of linear SPDEs with
additive noise is a critical challenge. This includes determining the identifiability of the parameters,
devising efficient estimation methods, and assessing the associated statistical properties, such as consis-
tency and asymptotic normality. Addressing these questions is essential for reliable parameter estimation
and for making informed inferences about the underlying system motivating ongoing research efforts to
advance our understanding of linear SPDEs with additive noise. A first step was taken by the authors
Bibinger and Trabs (2020) and Hildebrandt and Trabs (2021), where they analysed the identifiability of
the parameters of a one-dimensional SPDE model and developed respective estimators. Thus, we aim to
link to their work and discuss remaining problems.

While research on linear SPDEs in one space dimension has garnered considerable interest in recent
decades, extending the model to multi-dimensional spaces is still in its early stages. This extension
introduces complexities in terms of the theoretical analysis, computational methods, and interpretation of
the results. Investigating the behaviour of linear SPDEs in higher dimensions can provide valuable insights
into the dynamics of multi-dimensional systems and pave the way for their application in diverse fields.
Addressing statistical inference and exploring the behaviour of these models in higher dimensions will
contribute to the development of more robust estimation techniques, improved model selection criteria,
and a deeper comprehension of complex systems across various scientific disciplines. The initial strides in
this emerging field were taken by Tonaki et al. (2023), where they delved into a linear SPDE model within
a two-dimensional spatial framework. Their work not only introduced pioneering estimation techniques
for model parameters but also shed light on the asymptotic properties underpinning these estimators.

In this thesis, our focus is on studying a linear SPDE with additive noise, both in one and multiple
space dimensions. We aim to derive statistical inference methods by observing data on a bounded discrete
space-time grid.

However, it is essential to acknowledge that SPDEs extend beyond the scope of linear models with
additive noise. For further readings on nonlinear SPDEs, we recommend referring to the work of Cialenco

and Glatt-Holtz (2011). Similarly, for insights into SPDEs with multiplicative noise, we suggest the works



Introduction

08

e
@

sumesadwal

sumesadwal
°
>

|
02 |

Figure 1.: The figure shows a comparison between the deterministic heat equation (left) and its stochastic counterpart (right). The
initial condition £(y) for both cases is set to £(y) = 4z(1 — x), and the volatility parameter is chosen to be o = 1/4.

of Chong (2020b) and Cialenco and Huang (2020). Additionally, for readings on semilinear SPDEs, we
refer to the works of Altmeyer et al. (2023) or Hildebrandt and Trabs (2023), which provide valuable
contributions in this area. For a comprehensive overview of statistical inference for SPDEs, along with
an introduction to the different classes of SPDEs and their statistical approaches, the work of Cialenco

(2018) serves as a valuable resource.

One of the most famous examples for linear SPDEs with additive noise is given by the stochastic heat
equation. The stochastic heat equation is a fundamental SPDE that models the diffusion of heat in a
medium with stochastic input. It combines the deterministic heat equation, which describes the evolution
of temperature over time, with a stochastic term that captures the random fluctuations or noise affecting

the system, transforming the PDE into a SPDE. Mathematically, the one-dimensional stochastic heat
equation can be represented as

32
dXi(y) = a—yQXt(y) dt + o dWy(y),

where the spatial domain of y is one-dimensional. Here, X;(y) represents the temperature at time ¢ and
spatial position y, and W; denotes the spatiotemporal white noise process. Referring back to the general
SPDE introduced earlier, we find that the operator A corresponds to the second partial derivative with
respect to y, i.e., A = 0%/(0y?), while both B and M are equal to zero. The stochastic heat equation has
been widely studied in the field of mathematical physics and stochastic analysis, cf. Khoshnevisan (2016)
or Cialenco and Kim (2022). It serves as a fundamental model for understanding diffusion processes in
various contexts, such as heat transfer, finance, and population dynamics. In finance, it finds application
in option pricing models and risk management, where random fluctuations in market prices are taken
into account. In physics, it is used to model heat diffusion in materials with random variations, such as in

heterogeneous media. As an example, consider the spatial domain as the one-dimensional unit interval,
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i.e., y € [0,1]. In this context, the deterministic heat equation

82

dX:(y) = o2

Xi(y)dt

can be interpreted as a physical description of the cooling process of a rod initially heated by a heat
source. The equation describes how the temperature of the rod changes over time and space due to
heat diffusion. To further analyse the model, we impose a Dirichlet boundary condition, specifying that
the temperature at both ends of the rod is fixed at zero, i.e., X;(0) = X¢(1) = 0, for all time points
t = 0. This boundary condition reflects the fact that the rod’s temperature dissipates at its boundaries,
resulting in a cooling process. To solve the deterministic heat equation, we use a Fourier decomposition,

where we define the functions
ex(y) := V2sin(rky),

which form an orthonormal basis of the Hilbert space H = L?([0,1]) with the associated inner product

1
(frgy = L F(w)g(y) dy,

for all f,g € H and k € N. Considering X;(y) € H to be a solution of the deterministic heat equation, we

can write
0 1
Xi(y) = 2 wp(t)ex(y),  where  xp(t) 1= (X, ex) = J Xi(y)ex(y) dy.
k=1 0

By examining the first derivative in time, we can obtain an explicit representation of the Fourier modes

z. This representation is given by

0 Lo Lo?
g0 = [ Sxweawman= [ (50 )ama

Using integration by parts and the Dirichlet boundary condition further yields
0 Lro 0 ! 02
—xg(t) = — —X — dy=1] X — d
Go == [ (5x00) (L) = [ xi)(5ze00)) an
1
= f Xe(y)(— k27r2\/§sin(7rky)) dy = —7m2k22p(t).
0
Therefore, variation of constants yields the following solution for the Fourier modes:
zi(t) = 2 (0)e ™ = (€ epye .

Consequently, X can be represented as

Xi(y) = 3 e UE epen(y).

k=1
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By introducing stochasticity into the heat equation, we can capture random fluctuations and uncertainties
in the cooling process, which is illustrated in Figure 1. This is particularly relevant in ecological modelling,
where population growth and migration are subject to various sources of randomness and environmental
variability. However, adding stochasticity to the heat equation requires more care than the presented
example for the deterministic heat equation. We will therefore revisit this procedure for a linear SPDE
model in one space dimension in the first chapter of this thesis and in Chapter 4 for a linear SPDE model

in multiple space dimensions.

Structure of the thesis

The focus of this thesis is on analysing a linear stochastic partial differential equation with a bounded
domain. The first part of the thesis (Part I) commences with an examination of a one-dimensional SPDE.
In this context, we are directing our attention towards a specific category of linear SPDEs; specifically, a
linear parabolic SPDE with one space dimension and an additive noise. Drawing on the work of Bibinger
and Trabs (2020), which focused on estimating the volatility of the random field X generated by a linear
parabolic SPDE in one spatial dimension, along with introducing estimators for the natural parameters
of the model, we first address the question of finding an estimator for the curvature parameter in this
model. Additionally, we analyse the task of improving the existing estimators for the natural parameters
of the one-dimensional SPDE model.

Chapter 1 serves as an introduction to the mentioned SPDE, providing a recap of its basic properties
and presenting initial results from Bibinger and Trabs (2020) and Hildebrandt and Trabs (2021). We
also conduct a heuristic discussion on the model parameters, emphasizing the curvature effect that some
parameters have on the random field X.

In Chapter 2, our focus shifts to the development of statistical inference for the curvature in the random
field. We consider a high-frequency observation scheme and derive two estimators based on a maximum
likelihood approach. One estimator relies on prior knowledge of the remaining model parameters, while
the other is independent of any such knowledge. We establish consistency and asymptotic normality for
both estimators. Additionally, we discuss numerical simulation methods for one-dimensional SPDEs and
provide simulation results for the estimators.

Moving forward, Chapter 3 tackles the problem of estimating both the so called normalized volatility
parameter and the curvature of the random field, which we refer to as the natural parameters of the
model. We draw parallels between existing statistics for estimating the volatility parameter and those
for a linear model. A key aspect of this procedure is the transformation of the realized volatility, a
concept well-known in various statistical models such as It6 processes, using the natural logarithm. We
develop estimators for the normalized volatility and curvature of X and demonstrate consistency and
asymptotic normality. We also establish a connection between the resulting curvature estimator from
the linear model approach and the estimator from Chapter 2. Hence, we introduce a novel method for
estimating the natural parameters of the model, significantly improving upon the M-estimator presented
by Bibinger and Trabs (2020), which is also discussed in Chapter 3. Simulation results for the estimator
resulting from the log-linear model approach are provided to conclude this chapter.

Overall, Part I delves into the statistical analysis of a linear parabolic SPDE in one spatial dimension.
It covers estimation of the normalized volatility, estimation of the curvature, and joint estimation of both

parameters. The development and analysis of estimators, along with simulation results, contribute to our
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understanding of the underlying model and provide practical insights into statistical inference for SPDEs.
Especially the connection between the log-linear model and our SPDE model offers a new link between
the two, enabling the application of efficient statistical methods to our SPDE model, which are well-
established in the linear model. Furthermore, the R-package ParabolicSPDEs! offers a valuable tool
for simulating and estimating the model parameters. This package provides convenient functionalities
to simulate data from the parabolic SPDE model and estimate the associated parameters using various
estimation techniques. For a concise overview of the key findings and contributions in Chapters 2 and
3, refer to the publication by Bibinger and Bossert (2023). This paper provides an efficient summary
of the main results, methodologies, and insights presented in these chapters, offering a comprehensive
understanding of the statistical inference and estimation procedures for the considered one-dimensional
SPDE model.

In the second part of this thesis (Part IT), we extend the existing research on linear, second-order SPDEs to
multiple spatial dimensions. A preliminary step was taken by Tonaki et al. (2023) when they extended the
SPDE model to two spatial dimensions. Building upon their work, we further explore the d-dimensional
space, thereby enabling the application of statistical methods to multi-dimensional systems. Moving
forward, we analyse the task of providing estimators for the model’s parameters and subsequently proving
asymptotic results. Specifically, we conduct the estimation of the volatility parameter, as well as the
natural parameters of the d-dimensional SPDE model. To the best of our knowledge, this extension to
higher spatial dimensions has not been previously studied.

To begin, Chapter 4 establishes the theoretical framework required for analysing SPDEs in multiple
space dimensions. This chapter addresses the absence of previous research on higher spatial dimensions
and covers the necessary mathematical foundations for statistical inference. Similar to Part I, we employ
the spectral decomposition technique, which allows us, under certain conditions, to decompose a solution
using discrete Fourier analysis. However, in higher spatial dimensions, accurately approximating the
resulting series from the Fourier transform necessitates advanced techniques, particularly in the context
of Riemann approximations. Once the theoretical framework is in place, we adopt the approach of
estimating model parameters using realized volatility. Initially, we investigate the identifiability of the
model parameters and construct a method of moments estimator for the volatility parameter in the
multi-dimensional SPDE. Notably, a significant difference between one-dimensional and multi-dimensional
settings is the introduction of a new parameter, which we refer to as the damping parameter. The
emergence of this parameter naturally occurs when transitioning from one space dimension to multiple
dimensions. Its inclusion is essential to guarantee that the solution process is square-integrable, i.e.,
IE[HXtHZ] < . The damping parameter influences the roughness of the temporal marginal processes
of the solution field and therefore fundamentally affects the underlying model structure. We conclude
this chapter by discussing two simulation methods for simulating the presented linear, second-order
SPDE model in multiple spatial dimensions. Of particular interest is the extension of a simulation
method introduced by Hildebrandt (2020) for one spatial dimension to higher dimensions. This extension
demonstrates the applicability and effectiveness of the method in handling complex multi-dimensional
SPDE models. Furthermore, to facilitate simulations, parameter estimations, and result visualizations,

we provide a useful tool, the R-package SecondOrderSPDEMulti?. This package offers convenient

Isee: https://github.com/pabolang/ParabolicSPDEs.
2see: https://github.com/pabolang/SecondOrderSPDEMulti.


https://github.com/pabolang/ParabolicSPDEs
https://github.com/pabolang/SecondOrderSPDEMulti
https://github.com/pabolang/ParabolicSPDEs
https://github.com/pabolang/SecondOrderSPDEMulti

Introduction

functionalities for simulating, estimating, and plotting multi-dimensional SPDEs, making the analysis of
such models more accessible and efficient.

In Chapter 5, our attention shifts towards the volatility estimator, and we delve into proving both its
consistency and a central limit theorem (CLT). To achieve this, we conduct an analysis that involves
the careful examination and appropriate bounding of temporal dependencies for quadratic increments in
higher spatial dimensions. To validate our theoretical findings and assess the performance of the volatility
estimator, we provide simulation results at the end of this chapter. These simulations underscore the
theoretical findings and provide valuable insights into its behaviour under various scenarios.

As we establish consistency and a central limit theorem for the volatility estimator in Chapter 5, we
simultaneously lay the foundation for extending the realized volatilities, used for estimating the volatility
of the random field, to a log-linear model. Building on the approach introduced in Chapter 3, Chapter
6 takes a step further and addresses the estimation of the natural parameters of the multi-dimensional
SPDE model. This involves a systematic and rigorous examination of the model’s natural parameters,
allowing us to gain deeper insights into their behaviour and impact on the overall model structure. To be
more precise, our findings will demonstrate that the realized volatilities exhibit asymptotic equivalence
to a log-linear model, which allows us to transfer statistical inference methods, well-known in the theory
of linear models.

Moreover, in Chapter 6, we introduce an estimator for the damping parameter, drawing inspiration
from a commonly used technique for estimating the Hurst parameter in fractional Brownian motions.
This estimator provides key information on the roughness of the temporal marginal processes and plays a
crucial role in understanding the behaviour of the SPDE model in multiple spatial dimensions. To support
our theoretical findings, we present simulation results for all the estimators introduced in Chapter 6.

In conclusion, Part II of this thesis delves into the theoretical and practical aspects of analysing
SPDEs in multiple spatial dimensions. The research conducted in Part II significantly contributes to
our understanding of SPDEs in higher dimensions, providing essential theoretical foundations, parameter
estimation techniques, and simulation methods. With practical applications in various fields, the findings
from Part IT offer valuable insights and open new avenues for future research in the field of SPDE analysis.
The research undertaken in the second part of this thesis is also accessible in the recent preprint Bossert

(2023). This paper serves as a concise and efficient summary of the substantial results within Part II.

The thesis concludes with Chapter 7, which summarizes the new findings of Part I and Part 1T and
situates them within the existing research landscape. Additionally, an outlook section discusses open

questions and offers some intuitive approaches for future exploration.

In Part IIT of the thesis, we present the thesis appendices. Within these appendices, we provide a
comprehensive overview of the notational conventions used in this thesis in Appendix A. Additionally,
Appendix B offers additional plots related to the simulation studies discussed in Part II. A reference for
the R-codes used for simulations and plotting of the theoretical results within this thesis can be found

on the webpage R-codes-Bossert-Ph.D.-thesis?.

3see: https://github.com/pabolang/R-codes-Bossert-Ph.D.-thesis.
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One-Dimensional Stochastic Partial

Differential Equation






1. HEssentials of one-dimensional SPDEs

In this chapter, we delve into the analysis of linear parabolic stochastic partial differential equations with
additive noise. Given their inherent complexity, understanding and studying SPDEs often necessitate a
combination of probabilistic techniques and functional analysis. Therefore, we begin by introducing the
spectral approach, a valuable tool for tackling SPDEs, and lay the theoretical groundwork for the first
part of this thesis. Linear SPDEs in one spatial dimension have been extensively studied in the past
few decades, and their insights prove to be crucial for deriving new understanding in this first part of
the thesis. Hence, we recall essential results from this research, particularly those presented by Bibinger
and Trabs (2020) and Hildebrandt and Trabs (2021), as they play a fundamental role in the upcoming

analysis and provide a strong foundation for the subsequent exploration of more complex SPDE models.

1.1. Introduction of the model and statistical assumptions

For the first part of this thesis we consider the following linear parabolic stochastic partial differential

equation:

aXi(y) = (22 Xew) + 01 &Ko) + 90Xe(y) ) At + 0 ABi(y), (8,y) € RY X [Ymins Y]
Xo(y) = g(y)v RS [ minvymaw] (1)
Xt(ymzn) = Xt(ymaz) = 07 t> 0

in one spatial dimension with deterministic parameters 9,9 € R and 95,0 > 0. We consider without
loss of generality (¢,y) € RT x [0, 1], where we set the spatial domain to be the unit interval. Nevertheless,
a generalization of the spatial domain to an arbitrary bounded domain can be concluded easily. Since
we need an entirely different theory for unbounded spatial domains, we will focus on bounded domains
throughout. For reference for a SPDE model with unbounded spatial domain consider Bibinger and
Trabs (2019) or Chong (2020a). The stochastic influence in this model is given by a cylindrical Brownian
motion B = (By(y)) in a Sobolev space on [Ymin, Ymax] = [0,1]. Furthermore, we consider a Dirichlet
boundary condition and we want the initial condition £ to be independent from the cylindrical Brownian
motion B. For a brief discussion on other choices of boundary conditions, refer to Bibinger and Trabs
(2020).

1.1.1. Probabilistic structure

Two main approaches have been established for statistical inference for SPDE models. An approach
commonly known as discrete sampling utilizes discrete observations in both time and space, leading to
the development of statistical inference methods. The core concept of this method bears resemblance

to the approach used for estimating the volatility coefficient in finite-dimensional diffusions, employing

11



1. Essentials of one-dimensional SPDEs

quadratic variation arguments or in general power variations. For references on this approach, we refer the
reader to Cialenco and Huang (2020), Pospisil and Tribe (2007), Kaino and Uchida (2021b) and Bibinger
and Trabs (2019). The spectral approach is a powerful and widely used method for analysing SPDEs.
This approach stands out as an effective technique for studying SPDEs due to its ability to decompose
solution processes using discrete Fourier analysis. By decomposing the solution processes of SPDEs using
Fourier analysis, we gain insights into the underlying dynamics and behaviour of the systems. One of
the key advantages of the spectral approach is its ability to handle both linear and nonlinear SPDEs.
To explore the spectral approach for nonlinear equations, refer to the work by Cialenco and Glatt-Holtz
(2011). This flexibility makes it applicable to a wide range of real-world problems. Moreover, the spectral
approach has shown great success in capturing the spatial and temporal characteristics of uncertainties in
a computationally efficient manner, cf. Section 2.5. In addition to its practical applicability, the spectral
approach has undergone significant advancements in recent years, leading to a deeper understanding of
SPDEs. Researchers have developed refined techniques, improved convergence properties, and extended
the approach to handle more complex scenarios. The origins of this approach can be traced back to the

works of Huebner et al. (1993) and Huebner and Rozovskii (1995), as referenced in the literature.

In this part of the first chapter, we will explore the spectral approach for SPDEs in detail. We will
delve into the mathematical foundations of Fourier analysis, its application to SPDEs, and the insights it
provides into the behaviour and properties of these systems. For details on discrete Fourier analysis see,
for instance, Stein and Shakarchi (2011). Additionally, we will conduct an examination of the most recent
advancements in the field, focusing on the research conducted by Bibinger and Trabs (2020). This work
has contributed significantly to the understanding and application of the spectral approach for SPDEs,
shedding light on novel techniques and insights that have emerged in recent times. By analysing and
discussing the findings of this research, we aim to stay at the forefront of the field’s progress and identify

potential avenues for further exploration and development in Chapters 2 and 3.

For understanding the core concept of the spectral approach we consider a Hilbert space

Hy :={f :[0,1] = R: |[flls <0, f(0) = f(1) = 0},

with an inner product (-, )y defined by

1 1

exp[thy/V2]f(y)g(y)dy and |[|flls :={f, f)w :L exp[¥1y/92] /% (y) dy.

f 90 ::J

0

The spectral approach operates under the key assumption that the SPDE model given by equation (1)
is diagonalizable. The diagonalizability property of the model pertains to the underlying differential
operator Ay defined as

0 0?
Ay = o,
9 190+191ay+1926y2,

where the SPDE model can be written as

dXt = A,,gXt dt + O'dBt.
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1.1. Introduction of the model and statistical assumptions

The eigenfunctions (eg)gen of Ay and the corresponding eigenvalues (—Ag)ren are given by
ex(y) = \/isin(wky) exp[—d1y/(2092)] and A= —Ug + 19?/(4192) + 9am2k2, (2)

where y € [0,1] and k € N. The functions (eg)ren represent a system of eigenfunctions that form a
complete orthonormal system in Hy. Indeed, through standard calculations it can be proved that (eg)ren
are the eigenvectors belonging to Ay and that (ep)reny define an orthonormal basis. To derive such a
solution, the Sturm-Liouville problem can be referenced, as demonstrated by Hartman (1982, p. 337 ff.).
At this juncture, it is important to highlight a few key points. First, the inner product (-, )y includes
a rescaling factor obtained from the exponential function which also hinges on the parameters ¥ /Js. It
is also possible to think of different choices of the inner product, cf. Bibinger and Trabs (2020, Remark
2.3.) or under more restrictive assumptions to the observations scheme see Section 2.5.1. Furthermore,
we obtained the differential operator Ay to be diagonalizable. When working with SPDEs involving a
differential operator as the corresponding operator to the model, it becomes necessary to consider bounded
domains when implementing the spectral approach. We choose the Hilbert space Hy as the state space
for the solutions in the SPDE model from equation (1) and suppose that the initial condition £ € Hy. In
addition, the differential operator is self-adjoint on Hy, which can be shown by standard calculations. The
spectral approach enables us to decompose a solution process of equation (1). To achieve this, we need
to define our understanding of a solution for the underlying SPDE model given by equation (1). In the
study of stochastic processes, one important concept is that of mild solutions. These solutions provide a
powerful framework for understanding the dynamics of various stochastic systems, ranging from ordinary
differential equations to partial differential equations driven by stochastic processes. Mild solutions offer
a flexible and tractable approach to analyse the behaviour of stochastic processes over time. Unlike
strong solutions, which require strong continuity and differentiability properties, mild solutions provide a
more relaxed notion of solutions that can handle a wider range of equations and noise structures. A mild
solution is based on the variations of constants and delivers a solution process X;, which is separated
into the initial condition and a time developing process driven by a cylindrical Brownian motion B. In
detail, a process (Xt):>0 is said to be a mild solution of equation (1) if it satisfies
t
X, =g+ f et=9)49 5 B, (3)
0

for all t > 0 almost surely. For details on existence and uniqueness of mild solutions, cf. Da Prato and

Zabczyk (2014, Thm. 7.7. ff.). The cylindrical Brownian motion B can be expressed via

(B, o = Y {frexyu W (4)
k=1

using the orthonormal system (eg)ren of the Hilbert space H from equation (2), where f € H and with
independent Brownian motions (W[F);>¢, for all k& > 1. For details on cylindrical Brownian motions,
see, for instance, Gawarecki and Mandrekar (2010). Combining the mild solution from equation (3) with

discrete Fourier transformation as used in the spectral approach, the random field X; can be represented

13



1. Essentials of one-dimensional SPDEs

as the infinite factor model

t

Xi(y) = Y, we(Bex(y),  with  ap(t) = e exy + afe—mt—S’ dwy, (5)
k=1 0

where the coordinate processes are xy, := (X, e )y, for any k € N. In addition, the coordinate processes

x, satisfy the Ornstein-Uhlenbeck dynamic, which is
day(t) = =Apar(t) dt + oy AWF,

with x(0) = (£, er)y, for all k € N. Furthermore, we can assume (t,y) — X;(y) to be continuous,
since there exists a stochastic convolution So et=9)49 5 dB,, which is continuous in time and space, cf.
Da Prato and Zabezyk (2014, Thm. 5.22.).

1.1.2. Statistical assumptions

Statistical assumptions play a crucial role in SPDE modelling, providing a framework to capture and
analyse the uncertainties inherent in these complex systems. Additionally, statistical assumptions are
often made regarding the spatial and temporal correlations within the SPDE model. Controlling these
correlations are crucial for statistical inference. Our primary focus lies in parameter estimation using
a discrete observation scheme of a solution process denoted as X = X;(y), (t;,y;) € [0,T] x [0,1], with
i=1,...,nand j =1,...,m, where T > 0 is a predetermined constant. Specifically, our analysis will
operate within a high-frequency framework, where we consider T = 1 and equidistant temporal points
t; = iA, =1i/n. As we expand upon the research conducted by Bibinger and Trabs (2020), we incorporate
the assumptions they have outlined in this section. The high-frequency observation scheme is recorded

in the following assumption.

Assumption 1.1.1 (Observation scheme)
Suppose we observe a mild solution X of the SPDE model from equation (1) on a discrete grid (¢;,y;) €
[0,1]?, with equidistant temporal observations t; = iA,, fori=1,...,nand § <y < ... < ym < 16,

where n,m € N and § € (0,1/2). We consider one of the following two asymptotic regimes, respectively:
(I) A, — 0, as n — o0, while nA,, = 1 and m < o0 is fixed,
(I1) A,, —» 0 and m = m,, — ©, as n — 00, while nA,, =1 and m = O(n”) for some p € (0,1/2).

Furthermore, we consider m - minj_s _ m |y; — yj—1| is bounded from below, uniformly in n for both

regimes.

Note that Assumption 1.1.1 especially implies m2A,, — 0 and m,, log;(mn)A}/2 — 0, as n — o0. Consid-
ering the presence of a Dirichlet boundary condition in the SPDE model from equation (1), it is expected
that the solution process X will converge towards zero near the spatial domain’s edge. This determin-
istic influence becomes increasingly pronounced in proximity to the spatial boundary. Consequently,
meaningful estimators for the parameters ¥ = (9J¢,91,92)" and o can only be obtained at a relative

distance § > 0 away from the boundary. To visually demonstrate this effect, Figure 1.1 illustrates the
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Figure 1.1.: Spatial sample paths of the SPDE model from equation (1) for 60 fixed time points and a possible choice of § € (0, 1)
indicated by the dashed lines. We simulated the SPDE model with M = 500 spatial points and N = 250.000 temporal
points and with an initial condition £ = 0. The three panels represent three different choices of the parameters
90,91,92,0. In the top panel we employed 99 = 0,91 = 0,92 = 1,0 = 1, middle: 99 = 0,91 = 1/2,92 = 1,0 =1,
bottom: 99 = 0,91 = 6,92 = 1,0 = 1.

impact of the boundary condition on 60 sample paths of X;,(y), where t; = (i — 1 + 10*)A,, € [0,1]
and ¢ = 1,...,60. The corresponding SPDE model was generated using different combinations of the
parameters vy, 1,92, 0. In each panel, the dashed line represents an exemplary choice of § and showcases

the deterministic influence of the Dirichlet condition within the range [0,d) and (4, 1].

The upcoming chapter will reveal the crucial role of the chosen parameter § in affecting the asymptotic
variances in the central limit theorems. Consequently, the selection of ¢ significantly impacts the quality
of the estimation process. When ¢ is approximately zero, we observe larger errors in the estimations.
This occurs because the asymptotically negligible error terms grow larger due to the deterministic in-
fluence, requiring a larger number of observations to minimize their impact effectively. Conversely, if §
is approximately equal to 1/2, we lose a substantial portion of the spatial grid points. Since the high-
frequency Assumption 1.1.1 necessitates a finer temporal resolution n compared to the spatial resolution
m = O(nf), we consequently require a significantly larger number of temporal grid points to capture an
adequate amount of spatial information. In either case, we require the boundary parameter § to remain

constant and independent of any potential indices.

Furthermore, we introduce the following mild regularity condition for the initial condition &.
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1. Essentials of one-dimensional SPDEs

Assumption 1.1.2 (Regularity)
For the SPDE in equation (1) we assume that

(i) either E[{({,expg] = 0 for all k > 1 and sup, ME[({,ex)2] < oo holds true
1/2
or E[||Ay¢(3] < o,

(ii) (€€, ep)9)r>1 are independent.

This assumption holds particularly true when the random variable £ follows the stationary distribution
of the SPDE model from equation (1). Stationarity assumptions are frequently employed in SPDE
modelling. Stationarity assumes that the statistical properties of the system remain invariant across
space or time, simplifying the analysis and estimation procedures. In this case, the inner products
(€, exyy are independently distributed as A'(0,02/(2\;)). When considering a stationary initial condition,
the random field becomes Gaussian. This is due to the independence of ((&, ex)9)k>1, and as a result,
the random field can be fully characterized by its covariance structure. Assuming independence of the
sequence ({, ex )9 )k>1 also provides a convenient condition for analysing the variance-covariance structure

of our upcoming estimators. To conclude, we note that ]E[||A119/2§H129] < oo implies supyey ME[(E, ex)3] =
1/2
supgen E[(A;/ %6, er)3] < o0.

1.2. Basic properties and essential theorems

We initiate this section by exploring the influence of the parameters (¢g,?1,92,0) on sample paths,
accompanied by graphical examples. However, we provide an argumentative insight into the effects
of these parameters on a solution process X. In the preceding section, we established the theoretical
framework by introducing an orthonormal system and subsequently a Fourier decomposition of a solution
process for the SPDE model given in equation (1). Within this factor model, a clear separation exists
between the temporal coordinates represented by the stochastic coordinate processes (x(t))ken and the
spatial coordinates determined by the deterministic eigenfunctions (e (y))ken. Therefore, we can leverage
this framework to examine the influence of the parameters (g, 91,192, 0) on a solution process X. To

enhance our argumentative insight, we present the following covariance structure:

7>\k|t75|

~ . e
Cov(Xs(y1), Xe(y2)) = Uz};N 20,

ex(y1)er(y2), (6)

where X denotes a mild solution with stationary initial condition and yq,y» € [0,1], s,t = 0. This

covariance structure can be observed by the following calculations:
Cov(Xa(y1): Xe(y2)) = > en(yr)en(y2)ElEx(s)Z(t)]
keNd
and

. - _ ge et 2 Ap(s+t) min(s?) Aks k)2
E[Z(s)Zx(t)] = o o toe E et dW
k 0
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1.2. Basic properties and essential theorems

= prnatarn (20D 2
2A 20k ’

where we used equation (5), Assumption 1.1.2 and It6 isometry.

The parameter 1 solely affects the eigenvalues within the coordinate processes. By considering the
structure of the coordinate processes and the eigenvalues, we observe that 9y seems to have a visually
minimal impact on the solution X, as it is not connected to the index k € N. In addition, the covari-
ance structure given in display (6) confirms this conjecture. Furthermore, classical theory in statistics
for stochastic processes indicates that a drift parameter, such as vy, cannot be consistently estimated
within a fixed time horizon. Similar conclusions hold true for the linear SPDE model in equation (1)
as also demonstrated in Hildebrandt and Trabs (2021, Prop. 2.3.). Consequently, the parameter 9y is
not identifiable within a fixed time horizon, leading us to set 9 = 0 in our simulations. For further
insights into the estimation of the parameter 9y, Kaino and Uchida (2021b) provides a valuable resource.
However, note that in the general form of an SPDE, the drift term is typically considered as a function
of the state variables and time. This drift term introduces a deterministic component that governs the
evolution of the stochastic process, in contrast to the random fluctuations represented by the noise term.
For comprehensive readings on the definition of SPDE models with such understanding of the drift term
and estimation methods for this context, Cialenco and Huang (2020) and Cialenco et al. (2020) offer
valuable references. These works delve into the mathematical foundations and practical implications of
drift modelling in SPDEs, shedding light on the complexities involved in estimating the drift parameters

in these dynamic systems.

In contrast, the parameter 97 exhibits a noticeable impact on the solution process. When ; # 0, we
observe an effect on both the noise level of the temporal process and the spatial process. Particularly,
the influence on the spatial process is visually discernible. In this case, 91 # 0 leads to varying levels
of fluctuations within the spatial dimension, resulting in lower fluctuations in one half of the spatial
domain [0, 1] compared to the other half. For the influence of ¥; # 0 on the noise level of the temporal
process, the author Hildebrandt (2021) pointed out, that by assuming a stationary initial condition, the
solution process X (y) approximately looks like e~¥71/(292) X/(y), where X solves the equation dX! =
920%/(0y?) X dt+o dB;. Consequently, when 9; = 0, the solution field does not exhibit any curvature. In
this scenario, the orthonormal system simplifies to a sine basis, and the inner product becomes unweighted.
Figure 1.2 presents a visual representation in the top panel, offering an impression of the observed data.
Note that a negative choice of ¥}, significantly scales up the solution process. This impact becomes evident
when examining the exponential term e~?1/72¥ present in the eigenfunctions (ex), where V5 > 0 is always

a positive parameter.

The parameters (3, ) significantly impact the noise level of the random field. Specifically, the para-
meter o directly governs the overall noise level of the solution field, which is evident from the covariance
structure in display (6). This becomes even more apparent when considering that ¢ is directly linked to
the additive noise in equation (1). Hence, we refer to the parameter o as the volatility. Conversely, as the
parameter 5 increases, it diminishes the impact of noise while simultaneously weakening the curvature
effect driven by ;. To provide a visual understanding of different choices of (J2,0), the middle and
bottom panels of Figure 1.2 showcase various scenarios. Notably, in the last panel, we observe that the

parameter 5 can counteract the curvature effect induced by the parameter ;.
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Figure 1.2.: The figure presented depicts sample paths of the SPDE model, as outlined in equation (1). The sample paths are
generated using an equidistant grid in both time and space, where N = 10%, M = 100, and & = 0. Each row of
the figure consists of four plots. The first two plots on the right showcase the spatial processes, y — X:(y), for
t=0.1+ k:/lO3 where k = 0,...,20. The last two plots exhibit the temporal processes, t — X;(y), with y = 1/10.
The specific parameter choices for each row are indicated in the title. In each row, the first spatial and temporal plots
correspond to the first parameter choice mentioned in the title, while the remaining plots correspond to the second
option. Note that only the top panel has a freely adjustable y-scale, whereas the other panels share a common y-scale.

The identifiability of parameters in a SPDE model is a crucial aspect in understanding and analysing the
underlying dynamics of the system. Identifiability refers to the ability to uniquely estimate the values of
model parameters based on observed data. In the context of SPDE models, it pertains to determining
whether the parameters governing the stochastic processes can be accurately estimated or distinguished
from each other using available information. Therefore, assume the parameters (1, U2, o) to be unknown.
In their study, Hildebrandt and Trabs (2021) demonstrated that consistent estimation is only possible
for the quantity 02 /e~"% when utilizing high frequency observations within a finite time horizon and on
a single spatial observation yo € [§,1 — §], which especially corresponds to Assumption 1.1.1. Here, the

parameters k and o3 are defined as follows:

7.91 0'2

k:=— and o0f:= —.
¥ 0 Vi,
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This result highlights the specific parameter combination that can be consistently estimated in the pres-
ence of high-frequency observations. Henceforth, our focus will be directed towards estimating two crucial
parameters: the curvature parameter k € R and the normalized volatility parameter o3 > 0. Note that
the orthonormal system (ex)xeny now exhibits a representation that is dependent on the parameter .
In the forthcoming chapters, specifically Chapters 2 and 3, we will present estimators for both of these
natural parameters, x and 03. Let X be a mild solution of the SPDE model from equation (1) with an
arbitrary initial condition and X be a mild solution with an stationary choice of the initial condition. The
identifiability of parameters in the SPDE model from equation (1) has been demonstrated by Hildebrandt
and Trabs (2021) through the use of Gaussian arguments, building upon the earlier work of Ibragimov
and Rozanov (2012, Chapter III). In their analysis, the researchers assumed that the initial condition
follows a stationary distribution. This assumption was facilitated by the regularity assumptions on &, as
outlined in Assumption 1.1.2. Consequently, any choice of £ could be replaced with a stationary initial
condition if the temporal observations n are sufficiently large, cf. Bibinger and Trabs (2020, Lemma 6.4.).

Furthermore, the authors Bibinger and Trabs (2020) showed that the identifiability of the two natural
parameters is sharp, where they used a summation over quadratic increments, also known as realized
volatility, in order to derive consistent estimators for o2 and a M-estimator based on realized volatility
for estimating both natural parameters. The realized volatility is defined as the sum of squared increments

over a specified time interval, given by

2

RV, (y) := > (AX)(y) := Y. (Xia, () = X(i-1)a, ()
i=1 i=1
where y € [§,1 — §]. Furthermore, the rescaled realized volatility is denoted as RV,,/4/n, where the

rescaling is only with respect to the factor 1/n. However, rescaling can also be understood as RV, -e¥*/y/n.

Consequently, the exponentially rescaled volatility is defined as

Voo, (y) ==

1 & .
(A X)*(y)e?™
A, 2 ’
where 1 < p < n. Note that the definition of V,, o, directly employs a mild solution with a stationary
initial condition. The incorporation of realized volatility and its rescaled version plays a pivotal role in
estimating and analysing the parameters of the SPDE model. Consequently, it is essential to establish
fundamental properties of these statistics, as demonstrated by Bibinger and Trabs (2020). We begin by

recalling the expected value of the rescaled realized volatility.

Proposition 1.2.1
On Assumptions 1.1.1 and 1.1.2, we have uniformly in y € [§,1 — §] that

2
ke O
]E[(AzX)Q(y)] = A}L/Qe Y 7% + T+ O(Ai/z),

for i =1,...,n, with terms r, ; that satisfy sup; _, [rn:| = O(A,ll/z), S T = O(A,ll/z), and become

negligible when summing all squared increments:

AN p—
IE[ NG ]f =+ O(8). (7)
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1. Essentials of one-dimensional SPDEs

The preceding proposition highlights an almost 1/4-Holder regularity in time, where Hildebrandt and
Trabs (2021, Prop. 3.3.) shows an almost 1/2-Hoélder regularity in space. This reveals that the paths in
time are considerably rougher compared to those in space as supported by the Kolmogorov continuity
theorem presented in Stroock and Varadhan (1997). This disparity in regularity justifies the rescaling
of the realized volatility by the quantity v/A,. Additionally, by rescaling the realized volatility and
under Assumption 1.1.1, consistent estimators can be constructed when m,, = O(n*), with p € (0,1/2).
This assumption especially controls the dependencies inherited by the SPDE model. However, even if
this condition is violated, consistent estimators with optimal rates can still be constructed using double
increments in both time and space, as shown by Hildebrandt and Trabs (2021). Based on equation

(7), Bibinger and Trabs (2020) developed a consistent estimator for the volatility parameter o2

using
the method of moments, relying on the first moment of the rescaled realized volatility. The resulting

estimator is given by

o2 = Bl oy,
and is derived under the assumption that ¢ = (¥g,91,92) is known. Note that this estimator is based
on the rescaled realized volatility at a single spatial point, such as m = 1. Moreover, Bibinger and Trabs
(2020) also constructed an estimator that incorporates multiple spatial points, leveraging the above
estimator by taking the average across different spatial coordinates.

The asymptotic theory concerning realized volatility and associated statistics, derived from high-
frequency observations of It6 diffusions that solve stochastic differential equations (SDEs), heavily relies
on the martingale structure inherent to these processes. This martingale structure, along with various
approximation steps, forms the foundation of the asymptotic analysis with general semimartingales, as
exemplified in Jacod and Protter (2011), for instance.

One of the primary distinctions between these well-established martingale techniques and our asymp-
totic analysis of the SPDE model lies in the correlation structure of their discrete increments. In the
context of SDE models, the discrete increments are uncorrelated. However, in the SPDE model, we
observe negatively correlated discrete-time increments. As a consequence, the proofs of central limit
theorems exhibit significant differences and bear more resemblance to asymptotic statistics for fractional
diffusions.

According to Bibinger and Trabs (2020, Prop. 3.2.), in the SPDE model, the autocorrelation of the
discrete increments decreases as the time gap between the increments increases. This indicates that while
the increments may not be perfectly uncorrelated, their correlation diminishes as the gap widens. As the
estimation of o2 relies on realized volatilities, the analysis of the variance-covariance structure of realized
volatility becomes vital for asymptotic results. This crucial aspect is exploited by the following result, as
presented in Bibinger and Trabs (2020, Prop. 6.5.).

Proposition 1.2.2
On Assumptions 1.1.1 and 1.1.2, the covariance of the exponentially rescaled realized volatility V), o, for

two spatial points y1,ys2 € [, 1 — 0] satisfies for any 7 € (0,1):

Cov(Vp,a, (1) Vp,a, (42)) = Ly, —yoyp” T (L+ O(L A (p~ A7)
+ O(p_lA}zQ(l{m#yz}wl - y2|_1 + 5_1))1

20



1.2. Basic properties and essential theorems

where T ~ 0.75 is a constant numerically given in equation (8). In particular, we have

Var(Vioa,) = S (14 O(VA,)).

Analogously, we can exploit the covariance structure of the rescaled realized volatility RV, (y)/4/n by a
simple transformation. Concerning the constant I' in the variance, we provide the analytical form which

is determined by a series of covariances given by

2

I':.= i I(’l")2 + —, with I(r) := QW_ Vrr2-— N (8)
r=0

3|

s

By establishing the variance and covariance structure of the exponentially rescaled realized volatility,

Bibinger and Trabs (2020) successfully demonstrated the applicability of a central limit theorem.

Proposition 1.2.3
On Assumptions 1.1.1 and 1.1.2, for any y € [§,1 — ] the estimator 65 obeys, as n — o0, the central

limit theorem

n'?(62 - o?) 4 N(0,7T0%).

The factor I'm ~ 2.357 appearing in the asymptotic variance of Proposition 1.2.3 is notably close to
the factor 2, which represents the Cramér-Rao lower bound for estimating ¢? from independent and
identically distributed (i.i.d.) standard normals. The difference (I'r — 2) precisely accounts for the
contribution of the non-negligible covariances of squared increments in the SPDE model from equation
(1).

Due to these temporal covariances, conventional methods are insufficient for proving the central limit
theorems in the forthcoming chapters. Therefore, it is necessary to employ non-standard approaches.
To address this, we conclude this section by introducing a central limit theorem for weakly dependent
triangular arrays, as provided by Peligrad et al. (1997). This theorem serves as a valuable tool for
establishing the central limit theorems in the subsequent chapters, accounting for the presence of temporal

covariances in the model.

Proposition 1.2.4

Let (Zk, i)1<i<k, be a centred triangular array, with a sequence (k,)nen. Then, it holds
kn
Z kai —d> N(O’U2)’
i=1

with v2 = limy, e Var(Z?ﬁl Zy,, i) < oo if the following conditions hold:

b b
(1) Var( > Z,W) <C Y Var(Zy, 1), forall 1 <a < b < ky,

i=a

kn
(1) limsup Y; E[Z7 ,] < oo,

n—o0 =1
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K2

k"L
() Y B[22 Az, poe | =50, forall € > 0,
=1

(IV) (Cov(eitzg:a Zkn i | eft Lizoru Z’“W) < pi(u) X Var(Zg, ), foralll <a<b<btu<c<k, and
teR, o

where C' > 0 is a universal constant and p;(u) = 0 denotes a function satisfying 23021 p:(27) < 0.

The first two conditions of the prior CLT are straightforward and require no further explanation.
The third condition represents the Lindeberg condition, which is well-known and can be established
by verifying a Lyapunov condition. The fourth condition is of particular importance as it governs the
covariance structure within the triangular array. Consequently, special attention needs to be given to
this condition.

Considering a scenario where we aim to prove a CLT of the form \/ﬁ(é - 0) RS N(0,v?), where
6 = Z?:1 0, represents an estimator for an unknown parameter ¢, and r,, denotes the convergence rate.
If we want to apply the CLT from Proposition 1.2.4 introduced by Peligrad et al. (1997), then the
appropriate choice for the corresponding triangular is given by Z,; = \/r, (él —0). In line with this
scheme, we will discuss the selection of triangular arrays for our respective estimators at the beginning of
Section 2.4. Nevertheless, alternative methods are available for deriving CLTs for SPDE models. One such
approach is the Malliavin-Stein’s method, employed by Cialenco and Kim (2022), to derive asymptotic
results. This powerful probabilistic technique combines ideas from Malliavin calculus and Stein’s method,
enabling researchers to obtain quantitative rates of convergence in CLTs. For reference on Stein’s method,
see, for instance, Diaconis and Holmes (2004), which provides a comprehensive overview of the method.
For an introduction to Malliavin calculus, refer to Viens et al. (2013), offering insights into its applications

and theory.
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2. Parametric estimation of the curvature parameter

The objective of this chapter is to develop a consistent estimator for the curvature parameter x € R, with
an optimal rate of convergence and a smaller asymptotic variance than that of the minimum contrast
estimator known from Bibinger and Trabs (2020, Chapter 4). To achieve this, we propose a new estimator,
denoted as &, based on realized volatilities of a mild solution and the knowledge of the normalized volatility
parameter o of the SPDE model from equation (1). We establish consistency of & and derive a central
limit theorem for this new curvature estimator. Furthermore, in the case where o3 is unknown, we present
a second estimator, denoted as 3, for .

To exploit the structure of both estimators, we begin the asymptotic analysis by considering the case
where m € N is fixed. In the latter part of this chapter, we extend our results to the more general
scenario where the temporal and spatial observations n and m tend to infinity. Additionally, we provide
statistical tests that allow us to assess whether « is a valid component of the SPDE model from equation
(1) model or not. Finally, we contextualize our new estimators within the existing literature, providing

a comprehensive overview of their significance and contributions to the field.

2.1. Motivation

In this chapter, we delve into the development of a new estimator for the curvature parameter x based
on high-frequency observations. Recalling the SPDE model from equation (1) introduced in Chapter 1,
the curvature parameter is represented by the quotient x = /95 € R. Despite some research using
the spectral approach for SPDEs, an efficient estimator that is both consistent and exhibits a preferably
small variance for x remains elusive.

To bridge this gap, we progress towards constructing a novel estimator for the curvature parameter,
leveraging the central limit theorem presented in Proposition 1.2.3. Under Assumptions 1.1.1 and 1.1.2,

and with a sufficiently large number n of temporal observations, we arrive at the following approximation:

R\inﬁgy)e“y\/wﬁg\/ﬁ ~ vno? + N (0,T'ro?). (9)

This leads to the subsequent expression:

RV, 2 T
RV (y) ~ew 20 4 N 0, —oge 2" |.
A/ T n

Furthermore, it becomes evident that
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2. Parametric estimation of the curvature parameter

Given that we know the parameter o2, we can estimate the parameter x using the following calculations:

RV,.(y) 1 r
111( n ~ —wy +In(of) +In ﬁ+ ﬁZ ,
where Z ~ N(0,1). Let y1,...,ym € [0,1 — 8] denote spatial points for a suitable § € (0,1/2), and
Zy,...,Zy iid. standard normal random variables. By using the first-order Taylor expansion of the

natural logarithm, we obtain that
RV, (y;) 1 I'r _ I'w
In (\/ﬁf ~ —ky; + In(og) +In NG L[ —=2Z; ) ) ~ —ry; + In(od) + In (77Y/2) + —Z
(10)

for j = 1,...,m. As the variance of n=% 2Zj decreases with increasing n € N, using the first-order Taylor
expansion appears sufficient. However, we will discuss this technical detail in Section 2.2. Reordering the

latter expression yields

K~ + —. —Zj. (11)

Thus, x can be regarded as the unknown expected value of a normal distribution with a variance that
depends on the respective spatial coordinates. In the upcoming example, we will briefly discuss the

maximum likelihood estimation in a related statistical model.

Example 2.1.1
Consider a model with independent random variables Y; ~ N (i, c?), where p is unknown, and ¢? > 0 is

known for ¢ = 1,...,m. The maximum likelihood estimator (MLE) with the likelihood function

- 1 (yi — p)?
Ln(py) = exp [ -
i=1 V27 27

is given by

Z;il Yigz‘_2

2211 §;2 . 12)

i=
If the random variables Y; have a common scaling parameter in the variance, i.e., Y; ~ N (i, ac?), where
a > 0, we still derive the same MLE since this parameter is part of the variance of every observation.

Furthermore, we can analyse the expected value and variance of the MLE /i in this model, where we

have
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2.1. Motivation

In the latter example, the term gi_Q can be viewed as Fisher information of observing Y;. Hence, efficiency
of the MLE in this model is implied by standard asymptotic statistics. Utilizing the weighted average
estimator within the model u = k and ¢? = y; 2 and incorporating the approximation from display (11)

for estimating k, we obtain the following estimator:

o

—In (Rvni\/%yj))+ln ( il

m N m RV, (y; m o2
R ) Zj:l ( v I)>y]2 _ijlln ( %fh))yj +Zj:11n (ﬁ)yj
K 1= RKnm ‘= ™ p) = m 2 . (13)
Zj:l Y Zj:l Yj

Hence, we have derived an oracle estimator for the curvature parameter, assuming that the normalized
volatility o3 is known. Note that we have neglected the expression \/W since it scales the variance
uniformly.

The notation of this estimator indicates the use of a spatial resolution with m € N coordinates, where
each spatial point y; € [§,1 — J] for some § € (0,1/2). However, the relation between the spatial and
temporal resolution is predetermined by Assumption 1.1.1. As the rescaled realized volatility is only
asymptotically normally distributed, we can anticipate that & is asymptotically unbiased. By referring
to Example 2.1.1, we can expect an asymptotic variance (AVAR) of FW(Z;’LI y?)fl for the rescaled
estimator n'/?%, when m remains finite. We will discuss the asymptotic variance for the case where

m = m, — 00 in Section 2.4.

During the construction of this first estimator for k, we capitalized on the natural logarithm of the
rescaled realized volatility. Furthermore, Example 2.1.1 demonstrated that we can anticipate the asymp-
totic variance to be a known constant. In particular, the asymptotic variance is independent of the
unknown parameter x or any other model parameter. This is because we employ a variance-stabilizing
transformation, which is achieved by using the natural logarithm. This fact is evident from the central
limit theorem presented in Proposition 1.2.3. Defining g,(x) = In(ze="¥ (m¥5)~/2). By employing the

delta method, we can show that

V(g (62) = g,(02)) = ﬁ(ln (W) 4Ry —In <i'/(2%)> —d>N<0,F7rU4(g;(G2))2) — N(0,T7).

As a result, we can construct confidence intervals without any dependence on the model parameters.

By utilizing the same ideas as before, it is possible to construct an estimator for k£ without any knowledge
of the normalized volatility parameter o2. To achieve this, we revisit the approximation (10). By lever-
aging the basic properties of the logarithm, we eliminate the unknown parameter o3 by subtracting two
logarithmized rescaled realized volatilities at different spatial points y; # yi. Performing this operation,

we obtain

. (M) =In (W) —In (RV\%yk)) ~ —k(y; — yk) + \/F:W(Zj — 7).

Consequently, we have
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2. Parametric estimation of the curvature parameter

Consider a random vector (Y1,...,Y,) ~ N(p, X), where g = {u1}™ € R™ is a vector with all elements
equal to p1, and X is a covariance matrix. In this multivariate normal distribution, we can derive the
same maximum likelihood estimator fi; for the parameter p; as illustrated in Example 2.1.1.

Hence, using equation (14), we can construct an estimator for x using every combination of different

spatial points:

RV, (y;
.. s In (Rvnglg)(yl —Y))
3= Sty 1= 3 ) (15)
Zj;&l(yj - Y1)

where {j # [} denotes the set {j,l = 1,...m : j # [}. We can also expect the estimator s to be
asymptotically unbiased. Albeit, the variance depends on the covariance structure ¥. Let Yj; be the
random variables corresponding to each combination of different spatial points from equation (14).

Assuming the random variables Y} ; to be independent for each combination of 5,k =1,...,m, j # k,
then the variance of ¢ has the same structure as the variance of the maximum likelihood estimator in
equation (12). However, let us assume Yj; := Y; — Y}, where (Y;) are independent centred normal
random variables with variances ¢? > 0, i.e., Y; ~ N(0,¢?). Then, (Y;;) are not independent, as
Cov(Yjk, Yj1) = gjz > 0, where j,k,l = 1,...,m, and all indices take different values. Nevertheless, we
will calculate the variance of a similar form in Proposition 2.3.5.

As this estimator also uses the logarithm of the rescaled realized volatility, we can infer that the
asymptotic variance is independent of the unknown parameters x and o2 due to the variance-stabilizing
transformation.

Our main goal will now be to prove consistency and demonstrate a central limit theorem for i, ,, with
a special interest in its asymptotic variance. Therefore, we will continue by highlighting technical details

for both estimators, Ay, ., and 3, ., respectively.

2.2. Methodology

As we have observed heuristically in the previous section, by utilizing the central limit theorem for the
estimator &5, we can create a new estimator for x using the method of weighted average. Now, we will
investigate a decomposition of the realized volatility with a specific focus on its remainder to lay the
groundwork for the first part of the asymptotic analysis for both estimators. Therefore, we introduce the

following lemma.

LEMMA 2.2.1
Let y1 <...<ym € [0,1 — 4] be in accordance with Assumption 1.1.1, where § € (0,1/2). Furthermore,
let §1,...,9m € [0,1] and Y7,...,Y,, € £2 square-integrable random variables. Then, it holds:

(i) For a € R and § > 0 we have (37, gf)”‘ = O(m*®),
(ii) Zj#l |yj - yl|_1 = O(m2 IOg(m))a
(iti) 23 (Y; = Y)(y —y;) = 22?1:1 V(X2 (y —y5)) and

var( D05 - ¥ - ) =4ji1 (lil@l —yj>)2Var<Yj> ro(m? ¥ cov, vi))

Gl J1#72
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2.2. Methodology

Proof. The first statement is evident since 0 < yf < 1 for every S > 0 and Z _1Y; = O(m). For the
second statement, we have min;_s |yj — yj,1| > C,,, where C,, > 0 and mC,, is a bounded constant
for all m € N. Therefore, it holds

JZM% ul Zﬂ”fLlelﬂ—ll (Zly—”) (i; )—0(m210g(m)),

where we know by the Maclaurin-Cauchy test that Zm 1/j = O(log(m)). For the last statement the
variance identity is trivial by using statement (i) if we can show the identity >, ,(Y; — Yi)(yi — y;) =
237 Y5 (X% (w1 — y;)). Here, we obtain that

DY =Y —yy) =22 (Y5 = YD) (i — vy)

J#l J<l
=2 YJ<Z Y —Y5) Z —yl>
j=1 I=j+1 =1
m m
—2 37 N-w)
j=1 =1

where we have rearranged the random variables in such a way that the respective random variables have

been combined. Note that we assign a value of zero to an empty sum. O

We start by employing the decomposition based on the CLT as stated in Proposition 1.2.3. Let y; €
[6,1— 4], with j = 1,...,m and a suitable § € (0,1/2). Then, for the rescaled realized volatility, we have

RVa() 08 T
= ® 1 Z; n,y; |»
v =R\ g R

where Z; ~ N(0,1), j = 1,...,m, denote standard normal random variables, and R, ,, represents
the remainder. In particular, the random variables Z; are independent and identically distributed, and
they are also independent of the remainder R, , . This is because the rescaled realized volatilities are
asymptotically Gaussian, and its autocovariances in different spatial points vanish asymptotically. The
remainders R, , contain all asymptotic negligible terms concerning the expected value and variance-
covariance structures of the rescaled realized volatilities. Therefore, we need to consider especially those
terms that depend on the spatial coordinates. Using Bibinger and Trabs (2020, Prop. 3.1. and 6.5.), we

can determine its asymptotic behaviour, which can be expressed as
Ry = Op(An + AGTD2 4 AY1NG) = Op(ALTD2 1 AV /VS), (16)

where 1 € (0,1) is an arbitrary constant. Note that we additionally used Bibinger and Trabs (2020, Prop.
6.4.). Hence, we can write R, , = Op(\/ﬁn). When summing the remainder over different spatial points,
we get that

m 1/2
Rzy _ 2 Ry, = Op <m1/2A£11+")/2 + Af’/‘*( Zﬂyﬂ' —yk|_1) +m25—1> )

j=1 j#k
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2. Parametric estimation of the curvature parameter

Using Lemma 2.2.1, we find that

Rzy = Z Ry .y, = Op (ml/zAS“’)/Q + Af’/‘lm(log(m) + (5_1)1/2). (17)
i—1

Therefore, we can particularly state ZTZI Ry, = Op(v/mA,). Since our estimators for  utilize the
natural logarithm to obtain information on k from the rescaling factor in the inner product, we need to

analyse the logarithm of the rescaled realized volatility. As a first step, we have

(B0) () ooy
e () via (10 Z2) vt (10 B ),

where Z ~ N(0,1). We can simplify further by using Taylor expansion:

ln<R\:;%(y)) /<cy+1n(\0/8%> \/ﬁZ+Op(An)+ln<1+1+R\/%ﬂz>.

Since Z follows a standard normal distribution and +/A,I'rZ has a standard deviation of (’)(\/Zn), we

can rewrite the last term using Taylor expansion, considering only the first-order term:

(1 n Rn,y —In(1 + (Rn - Rn,y V AnFT(Z)
1+ /A I'nZ " 1++/AI'nZ

A2
=R,y — (1+ Op(VAL)) Ruy\/ALLTZ + Op (A}j’i + 5)

5/4 3/2
= Ry + 0o (A2 4 21 o, (AL 4 B
Y \/g 5 )

by utilizing equation (16). As we consider the asymptotic regime based on Assumption 1.1.1, the sum
of different spatial points becomes asymptotically negligible. Therefore, we can safely ignore the latter

term and arrive at the following conclusion:

R Y 1+n/2 A5/4
In(1 R =Rpy+Op| ALT2 4 = ).
n( +1+\/Anf7rZ) vt P( noo \/g)

As a result, we obtain that

RV, (y) 14n/2 | A5/4
In n = —ky+1In + A/ AITZ 4+ Op(Ay) + Ry + Op| A, W . (18)

To simplify notation, we introduce two random variables to represent the higher-order error terms, where

we rewrite the latter expression as follows:

ln( Jn >=—/@y+ln(\/> + A, F7rZ—|—Rny+rny ny,
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2.2. Methodology

where rl = Op (AHW 24 A5/ : / Vo ) is primarily influenced by the product v/A,, ApZ;R,, 4, whereas r2 y =
OP(A”) is mamly driven by A,LZJZ. Additionally, by utilizing Propositions 1.2.1 and 1.2.2, we can

determine the first moment, variance, and covariance of the remainder R, ,. We obtain
E[Rn,y] = O(An)7 COV(Rn,yan y2) O(]l{yl yz}An-H A?L/Q(]l{y1¢y2}|y1 - 3/2|_1 + 5_1))' (19)

Lastly, we examine the sum of the log-rescaled realized volatility over different spatial points:

;iln(}{\:%yj)):—ﬁ;prmln( >+m22 +RY ]i L+ i (20)

Using equation (17), we find that
ZL = Op(m'2ALT2 4 mg=12AYY),
since Z; and R, ,,; are independent. Additionally, we have
i 7oy = Op(vVmAy).

As the sum of the spatial points of the higher-order error terms vanishes faster than the sum of the spatial

points of R, ,,, we conclude

ln<R\:;%(y)) —ﬁy—|—1n( >+m2+Rny, (21)

gm(W) K;yﬁmln( >+\/ﬁ22 +RY (22)

With this decomposition, we can now express the oracle estimator from equation (13) as follows:

r 2y~ i hl(\f)y”Lmzj 1 Z3y; + 2o By + 25 1111(?)%

/%n.m = m
’ 251y
m -1 m m
=K+ (Z yf) (VA,LFW Z Zy; + Z Rmyjyj). (23)
Jj=1 j=1 j=1

We conclude the methodology by presenting a similar decomposition for the non-oracle estimator .

Using the same methods as in equation (20), we have

s (3205 (-(5) (%)

J#l J#l
=5 ) (W =) + VAT Y (Z— Z1) + D (R, — Buy)- (24)
J#l J#l J#l

1 .
.y and r2 ., vanish faster than R, ,, we can neglect

these remainders. Now, we analyse the Op order of the double sum of the remainder. Using Lemma

Again, considering that the higher-order error terms r
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2. Parametric estimation of the curvature parameter

2.2.1, we find that
Z(Rn,yj - Rn,yz)(yl - yj) =2 Z Rn,yj Z(yl - yj) = Op (mRE,y)»
j#l j=1 =1

where we have used that |y, — y;| < 1 for j # I. Additionally, we have

D (B, = Ruy) = Op(mBS,) = Op (m*2A02 4 A2 (1og(m) +671) 7). (25)
£l

Using the representation from display (24) for the estimator 3¢ from equation (15), we arrive at the

following expression:

. K2 = 3)? + VAT Y (Z5 = Z0) (i — y5) + 250 (R, — Ry) (91 — )

Fonm = 221U — )3
. (Z@j - yl>2) (\/Anrw SN2 — 20— )+ (R, — o)t — yj>). (26)
Al J#l J#l

2.3. Fixed spatial observations

In this section, we begin the investigation of properties for the estimators & and 7, respectively. This
analysis involves determining their expected values and covariance structures. To explore asymptotic
properties, we initially focus on the case where only the number of temporal observations goes to infinity,
hence, we assume m € N to be fixed throughout this section. By utilizing the technical details presented
in Section 2.2, we establish the first central limit theorems and lay the groundwork for investigating

asymptotic results concerning both temporal and spatial observations.

2.3.1. Analysis of the curvature parameter with known normalized volatility

In this section, we analyse # under the assumption that 03 = 2/4/95 is known, and the number of spatial
observations m € N is fixed, according to the asymptotic regime (I) on Assumption 1.1.1. To begin, we
determine the expected value of the log-rescaled realized volatilities. Next, we derive its covariance

structure, and finally, we establish a central limit theorem for the estimator &.

Proposition 2.3.1
On Assumptions 1.1.1 and 1.1.2, with y € [6,1 — §] for a § € (0,1/2), we have

]E[ln (R\:;ﬁ(y))] — —ky+1n (ﬁ) +O(Ay).

In particular, the expected value of the estimator &, ,,, from equation (13) satisfies:

E[fnm] =k + O(A,).
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2.3. Fixed spatial observations

Proof. Using the equations (21) and (19) yields the first statement. The second statement follows from
equation (23) and again equation (19). O

We continue with the calculation of the variance of the estimator # from equation (13).

Proposition 2.3.2
On Assumptions 1.1.1 and 1.1.2, we have

Var (i m) = < iy?)_leAn (1+0(an),

where " ~ 0.75 is a constant analytically given in equation (8).

Proof. Using Lemma 2.2.1, equations (23) and (17), we have

m —2 m m
Var(fn,m) = ( Z yjz) (Anfﬂ Z yJ2 + Var( Z Rn,yjyj>>
j=1 Jj=1

j=1
m _1 m .
j=1 j=1
Choosing n = 1/2 and having m € N fixed completes the proof. -

The last proposition reinforces the conjecture that we can expect an asymptotic variance of
(Z;":I yjz)_le with a convergence speed of +/A,,. Taking this proposition into account, we can rescale
the sum to take the form of a Riemann sum, preparing for subsequent asymptotic results. Since the
spatial points § < y1,...,ym < 1 — ¢ lie within the range from ¢ to 1 — 4, we rescale by the factor

(1 —26)/m, resulting in:

R A, Tl —26)
Var(inm) = T2 Ty — (1+0(aw).
m =177

To prove a central limit theorem and establish consistency when m is fixed, we first consider the case

where m = 1. In this situation, the estimator takes on the following form:

Rn,1 =

2 2
(o () on() (g
= =ln| ———"F—|—.
yi 1 VARV, (y1) ) v
As illustrated in Proposition 1.2.3, the following central limit theorem holds:

RV, (yl)

V(62 —o?) = \/ﬁ(\/ﬁTw N 02> 4 N(0,Tro?).
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2. Parametric estimation of the curvature parameter

Applying the delta method with the function

f(z) =In <( a: eylﬁ)_log)yfl =In(z 'e¥"0?)y; !
vV 19271' ﬁ

and the derivative f/(x) = —(y12)~!, we obtain that

Vi(f(63) = £(0%) = V(i = &) 5 f(0*)N(0,Tra) = N(0,y; °T'm),

which proves a central limit theorem in the simple case m = 1. Moreover, the assumption of an asymptotic
variance from Example 2.1.1 has been confirmed in this case. Next, we consider the case where m > 1
but fixed.

Proposition 2.3.3
Under Assumptions 1.1.1 and 1.1.2, for y1,...,¥Ym € [6,1 — ] with m € N fixed and ¢ € (0,1/2), we have

the following central limit theorem:

\/ﬁ(ﬁ:mmn)—d»/v@, mFﬂ(l—Qé) ))7

1-25 N\, 2
( m Zj:lyj

as n — 0.

Proof. We define

i) 1 2
( ) ln ((4/7’;:72#6 yjﬁ) %)y‘] ln (Ifley]‘I{O.Q)yj
g;\x) = =
! DY DYSE A

for j =1,...,m. Since g; is differentiable with g/(z) = —(x 32, 47)~'y;, we have by using Proposition
1.2.3 that

7ln<RV"(yj)>yj+1n (Lg)yj 2,
n(g:(62.) — g;(c?)) = vn vr m v - ’z'jfg
f(gj( yj) gj( )) \/7< Zl:l yl2 Zj:l y12

m -2
-, 95(c*)N(0,Tmo?) = /\/(O, Lry? ( Z y?) ) .

=1

2

v and

According to Bibinger and Trabs (2020, Prop. 3.2.), the covariance of the random variables &

&jl vanishes asymptotically for y; # y;. The asymptotic Gaussian structure of these random variables
implies that U7, := \/ﬁ(&gj —0?) and U/, are asymptotically independent, for j # [. Consequently, for

a continuous function g, the random variables

UJ!’],;U) = \/5(9(6;1, cee 6'§m) —g(c?,...,0%)
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2.3. Fixed spatial observations

and Ulgff) are also asymptotically independent. Defining the function g : R}* — R™ as

g1(1)
g(xlw"axm): 3

Im (xm)
we have the following multivariate convergence:
N N d
\/5(9(0517 s 70-5771) - 9(027 o ’0_2)) - N(Ov 2)7

where 0 = (0,...,0)" € R™ and

-2
Fwy%(Z?_l y]2> 0 0
—2
0 Fﬂyg(Z?_l y?) 0

c Rmxm

: : . : B
0 0 Fﬂyi<2£1y5>

Using Cramér-Wold, we have

2
=3 (Bl )y S (22 )y,
O‘T\/ﬁ(g(&;»w»&gm)—9(02,...,02))—\/ﬁ< i=t ( Vn ) J j=1 (f) j —n)

Z;'n:1 yjz
m —1
L N(0,0T%a) = N(o, < > yf) Fw),
j=1
where o = (1,...,1)T € R™. Rescaling the spatial sum completes the proof.

A direct consequence of Proposition 2.3.3 is the consistency of the curvature estimator &, ,, as confirmed

by Slutsky’s theorem, which concludes this section.

2.3.2. Analysis of the curvature estimator with unknown normalized volatility

In this section, we will focus on the non-oracle estimator 3, ,, from equation (15) for the parameter x,

with the number of spatial observations m € N fixed. Following a similar structure as seen in Section

2.3.1, we begin by examining the expected value of >, ,,,. Considering Proposition 2.3.1, we can readily

deduce the following corollary.

COROLLARY 2.3.4
On Assumptions 1.1.1 and 1.1.2, with y € [§,1 — §] for a § > 0, we have

]E[ln (M)] — Ry — ) + O(A,):

35



2. Parametric estimation of the curvature parameter

Furthermore, we have

E[/%nm] =k + O(m2A,).

Proof. The proof is completed by utilizing Proposition 2.3.1 and the equations (24), (19), (25). O

The preceding corollary demonstrates that the non-oracle estimator i is asymptotically unbiased. The
forthcoming examination of the variance structure of the estimator s is of special significance as a

conjecture regarding the estimator’s asymptotic variance remains unresolved.

Proposition 2.3.5
On Assumptions 1.1.1 and 1.1.2, we have

42?1:1 (Z;il(yl - Z/j))2

(30w —w)?)’
A, I'm

— m _ m 2 (
(e (52 57 v2) — e (520 w))

Var(3e,,m) = A, I'm (1 + O(\/Zn))

1+ O(WA,)).

Proof. Using equation (26) we get

Var(se, m) =
Z(yj _ yl)2> -2 (AanVar( Z(Zj - Z)(y — yj)> + Var(Z(Rn’yj — Ry )y — yj)))
j#l j#l L

First, we obtain by Lemma 2.2.1 that

Var(Z(Zj = Z1)(yi —yj)> = 4_751 (i

J#l Jj=1

(v —yj>>2.

Further calculations yields that
var( 22 - 20 - 1) = 4(m Y2 = X)) = am(m 2 - (L))
J#l j j j=1
and
2 m m 2\ 2
<Z(yj—yz)2> = (QWZZ/?—Q< yj) > —4<m
J#l j j j

Therefore, we conclude

—2

) m

Var(3e,,m) = A, I'w . pon 5 + (Z(y] - yz)Q) Var( Z(Rn,yj — R y) (g1 — yg))
my Yy — (XL 5) i #l
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2.3. Fixed spatial observations

It remains to analyse the remainder. By equation (25) we have

Var(Z(Rnyw = Ry (i — yj)) = O(mSAZH + m4A§L/2(1Og(m) n 571))'
Jj#l

We complete the proof by rescaling the leading term and by using Lemma 2.2.1 for the remainder, where

we have
AT
Var(Ge, m) = T e — T ; Py p— ~ + O(A?L*lmfl + A;O’L/z(log(m) + 5*1)),
m(1—25( ™ ijl y.) - (1—26)2( ™ ijl yj) )
with an arbitrary n € (0, 1). O

Note that we can can express the preceding variance in the following form:

ATrA, ATT A, 33500 0, (W — 95) (Wi — 5)
‘ o2 p)
23 = w0) (Zj;’:l(yj - yz)2)

(1+0(WA,)),

Var(Ge, m) =

where we have used that (Z;”:l aj)? = Z;’Ll a? + Zj# a;a;, for a sequence (an)nen. With this repre-
sentation, we can observe that the asymptotic variance can be decomposed into two distinct parts. The
first part arises from the variance of the log-quotient of the rescaled realized volatilities. The second
part arises from the covariance of two combinations of the log-quotients, where one rescaled volatility is
common to both log-quotients, while the other rescaled volatility is associated with two different spatial
points. Specifically, we will employ this identity in the proof of the following Proposition 2.3.6.
Following a similar approach as in Proposition 2.3.3, we can establish the following central limit theorem

and demonstrating consistency of the estimator.

Proposition 2.3.6
On Assumptions 1.1.1 and 1.1.2, we have for y1,...,ym € [§,1 — §], with 6 € (0,1/2) and m € N fixed
that

I'm
_ m _ m 2 '
m(1—126(% =1 yjz) - W(% D=1 Y5) ))

\/ﬁ(f{mm — /{) —d>N<0 ,

Proof. In accordance with the CLT as stated in Proposition 1.2.3, we have

(G- ) =0V )

by considering that 6§j and 631 are asymptotically independent if y; # y; and y;,y; € [0,1 — §]. Using
the delta method with the function g;; : R2 — R defined as

o(on ) = (Gre ) (- y) I (52) (e — ;) + mly; — w)?
j i\ L1, L2) = m = m )
! Zj;&l(yj —u)? Zj;&l(yj —yi)?
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2. Parametric estimation of the curvature parameter

we have

g#l y] yl) Zj;él(yj —y1)?

nlo? 0
N|[0,Vg;i(c%0%)T < 0 7TFJ4> ng’l(02702)>

|=

RV (yg yj) s — )2
\/ﬁ(gj,l(&ng};) gjl(o 2)) = \/> yz) _ Yi — Y

(y; —yl)2F7T
=N 0,2 ! 2>,
j# yj y1)? )

where
Vgji(e,m2) = | "N
w2 270 (Y5~ 1)
Note that

2
Vn(g1(6y,, 5 —g1j(02,0? —d>N(O,2 (yj —y)°I'm 2>.
(9.5(65,,55,) — g5 ) s

Consider the function g : R™ — R™(m=1)  with

.
g(x1,.. ., xm) = (gl,Q(xlva)v---7gl,m(xl7xm)vg2,l(1‘27m1)792,3($27333)7~~~792,m(m27$m)7---:gm—l,m(xm—l,xm)) .

Since the normal distribution is stable under linear transformations, we obtain that

Va(g(62,,...,62 ) —g(o%,....0%) -5 N(0,%),

where X denotes the corresponding covariance matrix. In order to examine its structure, we will analyse
the covariance structure between the different combinations of indices of the function g;;. Let l1,ls, j be
three distinct indices. Then, we observe the following covariance relationships:

~2 A2 A2 A2
(Cov(ngl (ij ) Uyll )7 gj1l2 (ij I’ Uylz ))

= (m(yj - yz)Q) _Q(yzl — Y)Y — yj)(COV(lIl (RV\’}(H%)) —1In (RV:/(ﬁyll))Jn (RV&(ﬁyj)) ' (RvnT(gb)D
= (J;(yj - yz)2) ‘2(y11 = ¥3) (W2 — y5) (Var(ln (RV"TSJ]))) n (’)(A3/2)>
=Co (gll i@ 3117 yj) 91,5 (6 iz 703]))

Analogously, we have
Cov(gjgll (65] ’ a—;h )7 ng,j (6512 ? é"i] ))

_ ( Sy - yl)2> ’Q(yll s — ) (Var(ln (W)) + O(Agm)

J#l
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2.4. Asymptotic analysis in time and space

= (Z(yj _ yl)z) 72(1”1 B yj)(yl2 i yj) (Var(ln (RVnnyj))> + O(Ai/Z))
J#l
= (COV(gllvj (&?311 ) &.73_7’)’ jilz (&?3.7’ ’ 6;2 ))

Additionally, equation (25) demonstrates that the covariances in the latter calculations vanish when

summing over every combination of different spatial points. Thus, by utilizing equation (18), we obtain

the following expression:

9 (yj*yl,)QFﬂ' .
(Zj#l (yj_yl)z)
(yll —Yjq )(yl2 —Yj, )2F7r
(Zj#l (v; 7yl)2)
Wiy —v51) Wip —y5, )T

,ifjl =j2 and ll :l2

,ifjl = Jo and l; # o

,ifjl =y and l; # jo

2
lim 0 Cov(gj, 1, (62,62 ), 950 (62, 52, ) = (Zp(vs—m)2) .
n—w = ' ! i1 — — T . . .
sy~ oy yll)zr ,if 11 = jo and j; # Iy
(Zj#l(yj_yl)2)
(Y5, =iy ) Wip —y1 )T . B . .
2 ,if Iy =1y and j; # js
(Zj#z(yj*ylp)
0 , else
Therefore, the covariance matrix ¥ is fully described. By employing Cramér-Wold, where v = (1,...,1) €

R™(m=1) e obtain

RV, (y;
20 (RVW,((gy;l)))(yl ~ ;) B
Zj;él(yj —u)?

\/ﬁ(aTg(&il, L0 ) - aTg(U2,02)) =4/n 4 N(0,0"Sa),

where
TS 2. Z 2(y; —y)*I'r iy 2211 leyélz (Y1, — i) (Wi, — Y5)
= 2 2
it (i = w)?) (Zj;él(yj - yz)Q)
m m 2
B 4Fﬂ_2j:1 (2% (e — )
= —
(205 —w)?)
Using Proposition 2.3.5 completes the proof. O

2.4. Asymptotic analysis in time and space

In the previous section, we established central limit theorems for the estimators & from equation (13) and
% from equation (15) in the case where the number of spatial observations m is fixed. In this section,
our aim is to prove a generalized CLT for both estimators, allowing for both the number of temporal and
spatial observations to go to infinity, while respecting the asymptotic regime (II) presented in Assumption
1.1.1. Since Cramér-Wold cannot be directly applied in this context, we will establish the central limit
theorems using the p-mixing CLT by Peligrad et al. (1997), as recalled in Proposition 1.2.4.
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2. Parametric estimation of the curvature parameter

2.4.1. Methodology

In order to establish central limit theorems for the estimators &, ., and %, ., , where the temporal
and spatial observation n, m, — 00, we need to consider the corresponding triangular arrays for these
estimators. The p-mixing central limit theorem by Peligrad et al. (1997) uses a covariance inequality to

bound potential dependencies in time and space.

Although a possible choice for the triangular arrays for the estimators &, ,,, and %, ,,, would be a
structure depending on the spatial coordinates, i.e., Z, ;, where j = 1,...,m, we know from Proposition
1.2.2 that the covariance structure between two different spatial points vanishes asymptotically. However,
the behaviour of the covariance structure in time is not clear yet, which is why we will define the triangular

arrays with a dependence on the temporal dimension, i.e., 5,1 =1,...,n.

The temporal dependency of these estimators is given by the logarithm of the rescaled realized volatility.
In order to access the temporal sum given in the realized volatilities, we utilize a suitable decomposition.
By applying the first-order Taylor expansion In(a + z) = In(a) + a~ 'z + O(a=222), where a is a constant

and z is a small number tending to zero, we obtain by using Proposition 1.2.1:

(50 - (e[ (5[5
—In <ey;§ + O(An)> 4 2o ((\/25 )2(?3); ;%ﬁj)?(y)])

col(5{52))

—ky + In ( M (14 0(A))

(
Vit

+In (14 0(A)) +

SIS

()

\F Z 1 (A X) ( )
S— 1 = e+ O(A Op(A 27
Ky + n<ﬁ)+ /ol +O(A,) + IP’( n), (27)
where Y := Y — E[Y] denotes the compensated random variable for all integrable random variables

and y € [4,1 — 6]. Here, we use a stationary mild solution X with a stationary initial condition, i.e.,
(& ey ~ N(0,02/(2)\k)). As the difference between a mild solution X and a stationary mild solution
X tends stochastically to zero, it is sufficient to analyse X, cf. Bibinger and Trabs (2020, Lemma 6.4.).
The Gaussian structure for the remainder in this decomposition allows us to observe a rate of at least

A,,. Utilizing this decomposition we obtain

M RV, (y; 7 m A 200
. _ZH(AMfﬁ%+meaﬁgw 55w S (A 2(0)
n, My — Zm” -

i=1 yl \/7 Zzn'i yz

i+ Op(Ay),  (28)

where we have used Lemma 2.2.1 to show that

Z;nnl y]

An Zmn 2
j=1Yj

= O(A,).
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2.4. Asymptotic analysis in time and space

As discussed in the remark on Proposition 1.2.4, the first triangular array is given by

=0 :=:‘Z°zi= E[¢f0 ;1 and e VT ZAX (y5)e" " y;, (29)

k g K 2N 2
" " JOZZ 1Yi j=1

where k,, = n. The decomposition in equation (28) also shows that it is sufficient to prove a CLT for the
chosen triangular array in order to prove a CLT for the estimator &, ,,, . Now, we focus on the triangular

array for the non-oracle estimator %, ,,,. By using equation (27), we can express the estimator as

pS B Zj,—ék (IH(RVJ%j)) _1D(Rvijyl)))(yl—yj)
- 2aYs —u)?
Dt Dy ((AGX)2(yy)em™s — (D X)2(y)e"™ ) (yi — ;)
\/ﬁﬁ Zj;él(yj —n)?

. + 0p(A), (30)

where it also holds by Lemma 2.2.1 that

Zj;él(yl —Y;)
An =0 An ’
S (An)

LAY Yi)
(yj - yl)2

since |y; — yi| <1 for all j # [. Therefore, we define the triangular array for the estimator 3, ,,, by

Ei=Ep =&k — El&k, il s Eknii=

57 2 ((AX)2(u)e"™ — (MK ()e™ ) (o = 7).
Z];él Yi — )

(31)

where k, = n and m, = O(n”), for p € (0,1/2). Once more, the decomposition in equation (30) demon-
strates that proving a CLT for the chosen triangular array is sufficient to establish a CLT for the estimator

AR

The triangular arrays 2°0 and = are naturally dependent on the statistics (A X)2(y), for y € [6,1 — d]
and 1 < ¢ < n, linked to some deterministic functions. In Bibinger and Trabs (2020, Corollary 6.7.) it
has been already proven that triangular arrays based on quadratic increments satisfy the general mixing
type Condition (IV) as well as Conditions (I) to (IIT) from Proposition 1.2.4. We will now proceed to
generalize these results by Bibinger and Trabs (2020). We define the sets F, and G, as follows:

={f9: N>R |3Cy>0: f2(m) < Cym~ @1} (32)
and
Go = {99 : N>R | 3Cy > 0: |gg(m)| < Cym®/? uniformly in m € N},

for a a = 0. Note that we allow the functions fy € F, and gy € G, to be dependent on some parameter

Y. With these definitions, we proceed to define the class of generalized triangular arrays H, as follows:

Ms

ch = {(Zn,i)1<i$n,n€N : Zn,i = Cn,i - E[Cn,z] and Cn i fﬂ( ) (A1X)2(y])gl9(])v where f19 € -Fa7gi9 € ga}7

1

J
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2. Parametric estimation of the curvature parameter

where o > 0. As a result of the definitions in F, and G,, we obtain the following properties:

B LS B0 =0m ) ad fmLy Y gG)en) = 0m) (33)

m2

for a fixed parameter ¥ and fy € Fy, gy € Go. We will now proceed to prove that the triangular arrays
Zn,i € Hq satisfy the conditions for the central limit theorem in Proposition 1.2.4, starting with the

mixing-type Condition (IV).

Proposition 2.4.1
Grant Assumptions 1.1.1 and 1.1.2 and suppose a triangular array Z,, ; € H,. If it holds that

My,

Z Z E AX y])]gﬁ() CAnpu»

j=li=b+u

forall1 <b<b+u<c<n, wherep, :=c—b—u+1,u>2and C:= Cy > 0, then the general mixing
type Condition (IV) of Proposition 1.2.4 holds, i.e.:

Ct2 b 1/2 c 1/2
< 3/4V I‘< Z Zn,z) Var( Z Zn,z) ’
u : .

.y b .
‘Cov(elt Zi:a Zini , elt Z$=b+u Z”:i)

foralll<a<b<b+u<c<n.

Proof. Let 1 <a<b<b+u<c<n. We define
b c
= Z Cn,i and Q§+u = Z Cn,z'-
i=a 1=b+u

Suppose there exists a decomposition of Qj, , = A1 + Az, with Ay independent of Q. According to
Bibinger and Trabs (2020, Prop. 6.6.), we have

[Cov(e2 1) < 2225[(Q1)2) [ 42] .

where X = X —[E[X] denotes the compensation of the random variable X. Since we build upon the proof
strategy as presented in Bibinger and Trabs (2020, Prop. 6.6.), we review the fundamental elements of

their proof. For this purpose, we define

(&

Qi = ), (AX)(y)

i=b+u

[l
WM“
/

2
D"ex(y) + D5 exly ))

lezeky))2+2i (ZDl er(y )(ZDQ erly ) Z (ZD2 er(y )2,

i=b+u i=b+u

I
.MQ
//~
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2.4. Asymptotic analysis in time and space

and
_ c o8] C
Ai(y) = (ZDllmeky> +22 (ZDl er(y )(ZDQ er(y )
i=b+u \ k=1 i=b+u \ k=1
c [ee] ) 2
Ay(y) = )] (Z D'z“@k(@/)) :
i=b+u \ k=1
as well as
rA,
D]f’i = f ge M ((i_l)A"_s) (e_AkA” — 1) dVVSk7 (34)
—00
(i—-1)A, i,
Dy = f ge M ((=D80=3) (=Mdn 1) qurk 4 J e MBS g qIWE, (35)
rA, (i-1)A,

where r < i. Since le’l and D§ " are independent, we have A, independent of Q°. Hence, we have

(&

D1 Gni = Z Z )(y5) 99 (5)

i=b+u =b+u

= fo(m) Y, (A1(y;) + Az(y;)) g0 (),

j=1

Qg+u

and we continue analysing

m

Aq = fo(m Z 1(Y5)90(j

Using results by Bibinger and Trabs (2020, Corollary 6.7.), we find that

UL ~ Co*c—b—u+1)A,m
Z Var(A4;(y;)) < (u—1)52 ,

Jj=1

where u > 2, y; € [§,1—4] and C > 0. Additionally, we have the following covariance structure for A; (y):

< ~ V2e—b—u
jZ#(COV(Al(ijAl(yl)) = O(An ((u _b1)3/2 i 1)m2 log(m)>7

where again v > 2 and y;,y; € [§,1 — 0] with y; # y;. Therefore, we conclude for p, := ¢ —b—wu+ 1 that

Var(A;) = (i j)Var A1 (y;)) 2919 (7)gs(l )(Cov(Al(yJ) Al(yl))>

=1 j#l

< Clm_(a+1)ma < Z (Al yj Z COV Al(yj) Al(yl))>

j=1 #l
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2. Parametric estimation of the curvature parameter

CquAn Ai/qu
< (w— 1) +0 -1 )3/2mnlog(mn) ,

where C7,Cy > 0 are suitable constants. Since it holds that
Var(Qf ) = CsE[(Q51.,)%] = Cafi(m Z 2 E[(AiX)"(49))]95(5) > Cspuls
j=1li=b+u

where C3, Cy, C5 > 0 are suitable constants, we conclude for u > 2. It remains to bound A; in the case

where u = 1. Here, we have by analysing the proof of Bibinger and Trabs (2020, Prop. 6.6.) that

Z Var(4:(y;)) < Co'prAnm,
j=1

where C' > 0. Therefore, we have with Cs > 0 that
Var(A;) < Cop1A, + O(A,pimlog(m)),
which completes the proof. O

Now that we have established the general mixing type condition on the generalized triangular arrays, we

are in a position to prove the following central limit theorem.

Proposition 2.4.2
Grant Assumptions 1.1.1 and 1.1.2 and suppose a triangular array Z, ; € Ho. Then, it holds that

zn] Zni 5 N(0,07),

i=1

as n — o0 and v? = lim,_,o, Var(},; | Z, ;) < oo, if it holds that

2o S S E[(A) (5:)]630) = CApa, (36)
j=1i=btu

foralll<b<b+u<c<n, wherep, :=c—b—u+1, u> 2 and a constant C := Cy > 0.

Proof. The Conditions (I), (II), and (III) remain to be verified, as indicated by Propositions 1.2.4 and
2.4.1.

(I) It is known that the centred random variables A; X (y) follow a normal distribution. Proposition
1.2.1 yields that E[(A;X)2(y)] = Var((Aif()(y))ocA}/2 uniformly in 7. Additionally, we can infer
from Proposition 1.2.2 that

g3 (NVar(VALVi A, (yj)e ")

MS

Var(Z,:) = f30m)( 3

1

<.
Il
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2.4. Asymptotic analysis in time and space

+ Z 99(5)99(NCov(VAL VI A, (yj)e ™ VAV A, (yl)6_5y1)>
il
<CimTtA, (Fogm(l +O0(1AAY)+ O(A}L/Qmi log(mn))>

= O(An) + O(AY?my, log(my)) = O(Ay).

2
Therefore, we can find a constant ¢ > 0, such that Z?:a Var(EZS’i) = c¢(b—a+1)A,. Furthermore,

in a similar manner, we also have

b
Var( Z Z,”>
i=a
My n—1

= f2(m) <(b —a+1)A,Top Z g3(5) <1 + (9(1 A b—AZ—i—l>) +0((b—a+ 1)A32mat? log(mn))>

—(b—a+1)O(A,).

Thus, the first condition has been established.

(IT) As demonstrated in the proof of the first condition, it is evident that
Z Var(Z,,;) = O(nA,) < oo,
i=1

and therefore the second condition is verified.

(I11) In order to establish the Lindeberg condition, we demonstrate a Lyapunov condition. Hence, we

need to show the existence of a & > 0 such that

n

: :02 2487 _
Jim > E[IE2%°] = 0.

i=1

Let 0 = 2. As mentioned in Condition (I), the centred random variables A; X (y) are normally dis-
tributed with E[(Aif()Q(y)]ocA;/z uniformly in i. Consequently, we can deduce that E[(A;X)8] =
A2, By applying the Cauchy-Schwarz inequality, we obtain the following result:

S1E[ZL] < 3l ]
N )Y g0li) e g E[AK) w52 - (AK)2(y5,)]
i= J1seenja=1

n
Q
D= "

mp 2 mze 3 E[(AK) ) - (A K) ()]

-
Il
—
<.
=
&
I
|
—

N
Q
[z

3
!
[
=
5
!
s

3 |l
—
<.
=
<.
N
Il
—
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2. Parametric estimation of the curvature parameter

which completes the proof. O

The preceding proposition demonstrated that we can consistently apply the central limit theorem to
triangular arrays utilizing quadratic increments, given that the associated deterministic functions satisfy
a specific order as described in equations (33) and (48). This observation will prove to be exceedingly
valuable in the subsequent two sections, where we will establish central limit theorems for both the oracle

estimator £ and its robustification .

2.4.2. CLT for the curvature estimator with known normalized volatility

In this section, we establish a central limit theorem for the estimator &, where the parameter m = m,,
satisfies m,, = O(n”), with p € (0,1/2). We will employ the central limit theorem from Proposition 2.4.2
to achieve this. According to Proposition 2.4.2, it is necessary to demonstrate that 290 e Ho, as well as

proving the condition given in equation (48).

Proposition 2.4.3
Grant Assumptions 1.1.1 and 1.1.2, with y4 = §, ¥, = 1—0 and m, min;—s ., |y; —y;j—1] is bounded

from above and below, then we have
N d 3w
n n,Myp Oa ’
Vg (R, H)—>N< (1—5)2+(5>

as n — o and m,, = O(n”), where p € (0,1/2).

Proof. To compute the asymptotic variance, we obtain by using Lemma 2.2.1:
- My
lim Var( B0 ) lim Var( £o ) lim ——— ( A X)2(y,)evit )
nmy, T &
7” ( 2 Z A; X (y;)e¥ " )
y?

]111

Il
g

™Mn

me ( 2 yiVar(Va, (4)) + X, ui9iCov (Vo a,, (1)), Vo, (:t/z))>

noe 061(21:1 yz J#l

m
nm, T <F00 2

[
?

4 01 a AY)

(s (S 2 +mie )

j#l
= Jm M(1 +0(A]) +0 A1/2<Z (%) n %)
n— 1 1-26 Zz L2 n ey maly; — yi )
. F?T( 26) m,
= Jim, gy (1 O(AD) + O 832 (mntogomn) + 722
Ir(1—26) 3I'rw

gy (10240
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2.4. Asymptotic analysis in time and space

Notably, the assumptions that y; = d, ym, = 1 — 9, and the upper bound on m, minj—s_ . m, |¥; — yj—1|
were solely necessary to ensure the convergence of the Riemann sum to an integral over the interval

2
, L= . OW, our Iocus 1S on demonstrating at = . € 0 anda proving equation . ere, we nave
5,1—46]. N f is on d trating that =" € Ho and i tion (48). H h

2 7T
o5 n yj
é"n,i - Zmn 2 Z A X e i y
UO i=1Yi j=1

Mn

= folmn) 3 (A X)% (y5)90(5),

=1
where

\/m

folmn) = ‘702 =1Y

and  gy(j) := e¥"y;.

By Lemma 2.2.1 we have f3(m,) = O(m;,') and |gy(j)| = O(1) uniformly in j and therefore = “ € Ho.
By Proposition 1.2.1 we have

My 4 Mn

2yjn C// MnT 2 2yjn —2yjk
- QZZEAX (y5)]e YT AEC ) SN
JO(Zlel) j=1i=btu o (X v7) j=1
- Apmppy C//p 7
Zz 1yz o
where py := ¢ — b —u + 1. The proof is completed by invoking Proposition 2.4.2. O

The asymptotic variance of the estimator &, ,,,, thanks to its variance-stabilizing transformation, is
independent of the unknown parameter k. Consequently, we conclude this section with the following

normalized central limit theorem, which directly follows by applying an elementary transformation.

COROLLARY 2.4.4
Grant Assumptions 1.1.1 and 1.1.2, then we have

I'r -1/2 ) d N
nmp| T—=m—5 Fn,m, —K) — 0,1),
(25 ) e

as n — o and m, = O(n”), where p € (0,1/2). Moreover, with y; = 0, ¥m, = 1 —3J and

My MiNj—2  m, |yj — yj,l\ bounded from above and below, we have

3I'r —1/2 . d
nmy, <(15)2+(5> (K}n,mn — K}) — N(O, 1),

as n — o0.
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2. Parametric estimation of the curvature parameter

2.4.3. CLT for the curvature estimator with unknown normalized volatility

In this section, we will establish a central limit theorem for the estimator 3, where the parameter m = m,,
satisfies m,, = O(n”?), with p € (0,1/2). Analogously to Section 2.4.2, this will be achieved by utilizing
the presented central limit theorem from Proposition 2.4.2.

To proceed, we make use of the triangular array defined as

((AX)2(yy)e™ — (A X)2(m)e™) (yi — y;),
) Zg;él Yi —u)? 32# ) !

En,z = gn,i - E[gn,z]a gn,i =
as introduced in Section 2.4.1.

Proposition 2.4.5
Grant Assumptions 1.1.1 and 1.1.2, with y3 = §, ¥, = 1—0 and m,, min;—s . |y; —yj—1] is bounded

from above and below, then we have
N d 12I'm
nmg, (3 m, — K) —— /\/’<07 a—207 25)2>,

as n — o and m, = O(n”), where p € (0,1/2).

Proof. To initiate this proof, we start by calculating the asymptotic variance. Utilizing Lemma 2.2.1, we

obtain

nh_r)rgo Var( Z :n,i> = nh—{r;o Var(;@w)
nmy, T

<
e

= lim " 5
e 00<2j;&l(yj - yl)Q)
dnm,, ™
n—oo ~4 2 2
JO(Zj;&l(yj — 1) )
dnm,,m
ja 2
e UE‘?(Z#I(%‘ - 91)2)

(Vi (403) — Vs, () (31— yj>)

SN A)

<.
s

<

®

2
§H

<
93
I~
3

<.
Il
—

<
&
Q
<.
~_

where G; := ;" (y; — y;). Additionally, considering G; = O(m) and using an analogous procedure as
in Proposition 2.3.5, we find

nlgréo Var( Zn] ET”)

i=1

. Inm,w

=nh_I)I;D 4(2 ( G2V3r nAn yj Z (COV nAn(Z/Jl)GJl’V An(yjz)sz)>

99 j#l y] J1#J2
dnm,m Lo}
- i, (2 G (1400w AD) + 3] GG Cov(Va (05): Vi 01))

0 jAINTT T J1#J2
AmpaD S G2 4 N G, G,

- lim 2 (14 0(AD)) +o< T %) +m;§51)>
(X0 —w)?) o (g vy —w)?)” Nz, Vi T Ve
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2.4. Asymptotic analysis in time and space

4m, G?
- TR, (1 o)+ o8l X (e )+ Al )
S (Zj;él Yj — ) G172 mn|yj1 - yj2|
— m,I'r Zj:l (2521(91 y])) (1 —&—(’)(AZ)) +O(A}/2mn log(mn) +A»}L/2mn6_1)

(3w — w)?)”

_ I (1+ O(AT)) + O(AY2m,, log(m.,) + AY2m,67Y).

(1125(1m362] 1Y _I) (1— 125)2(1111362] 1Y j) )

Finally, through elementary calculations, we obtain

n I'r(1 — 26) 12T'7
lim Var(Z E’”) = 1-5 1-5 2 = 2"
e i=1 s v dy— 2 (1 Cydy)” (1=20)

It remains to show =, ; € Hs and that the proof of the condition given in equation (48) holds. By

rearranging the triangular array = as defined in equation (31), we obtain that

Eni = S (AK)2 ()™ — (AK)2()e™ ) (g — y;)

Ug Zj;él(yj — ) 2l

= 2V 3 Z’j(AiX)Q(yj)@'{yj Z(yl - ),

o5 205215 — u1) Pt

where we have used Lemma 2.2.1. Hence, we have

2./ my,m . o e
. and  gy(j) = €™ > (n — y;)-

fﬁ(mn) = 0_(2) Z]#(y] I yl)2 =

Once more, we can employ Lemma 2.2.1 to deduce that f2(m,,) = O(m,?) and |gs(j)| < Cm,, uniformly

in j. Consequently, =, ; € H2. Using Proposition 1.2.1, we derive the following expression:

Mn

dm.,, T Mn c ~ )
n Az 4 j eQnyj —y
Ué(zj;él(yj - yz)2)2 JZ:H:;-“E[( X)H ()] (l_zl(yl Y ))

mMn

Anoimpmpy = 2
> Cr— 0 22 (2(%-%))
=1

WUO(Zj;&l(yj *yl) j=1

= C’2puA

where C1, Cy > 0 are suitable constants and p, := ¢ —b — u + 1. This concludes the proof. O

Since the asymptotic variance is independent of any unknown parameter, we conclude this section by
establishing a normalized version of the previous central limit theorem using an elementary transforma-

tion.
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2. Parametric estimation of the curvature parameter

COROLLARY 2.4.6
Grant Assumptions 1.1.1 and 1.1.2, then we have

—1/2
I'n(1l—20) . d
A/ MMy, ( 1_25 ~mn 2 1 (1725 Zmn y)2> (%n,mn - /i) — N(O, 1)3

m, 24j=1Y5 — 1-25 j=1

mMn

as n — o0 and m, = O(n”), where p € (0,1/2). Moreover, by setting y; = 6, Ym, = 1 — ¢ and having

My MNING=2 .. m,

Y;j — yYj—1| being bounded from above and below, we obtain

1orr O\ V%,
A/ MMy, <(1_27:5)2) (%n7mn — H) —d> N(O, 1),

as n — 0.

2.4.4. Curvature tests

In Sections 2.4.2 and 2.4.3, we have established the central limit theorems for the estimators & and 7,
respectively. The variance-stabilizing properties of these estimators render their asymptotic variances
independent of any unknown parameter. As a consequence, we can construct confidence intervals to test
for the unknown parameter k = ¥ /U2 € R in the context of the SPDE model given by equation (1).

In particular, if we want to determine whether 1J; is a part of the model, we can perform a test that

examines whether k = 0 or k # 0. To that end, we consider the following two-sided hypothesis test:
Hy: k= kg versus Hi : Kk # Ko,

for a k9 € R. Under the Assumptions 1.1.1 and 1.1.2, we proceed by defining the following two statistics:

) e —1/2
Ag?m = \/nm<17n> (/%n,mn - 50)7

Ezj‘:ni %2

—1/2
Apm = \/%< Lr(1 —29) )2)> (%n’m — ,‘{0).

—25 —25
1m2 Z;llyjz - 1j26(1n12 Z;'llyj

Using Corollaries 2.4.4 and 2.4.6, we establish the convergence of A‘,’:m A N(0,1) and Ay, < N(0,1).

Leveraging these results, we construct the following asymptotic tests:

2
s =1 2
Pram = AT s aqroaa)

Pnm = LA, l>a1_ap}-

Here, q, represents the a quantile of the standard normal distribution. By Corollaries 2.4.4 and 2.4.6,
both tests have an asymptotic Type I error probability of o € (0,1). Correctly choosing between test go"g
and test ¢ depends on whether the normalized volatility o3 is known or unknown. Specifically, since test

cp"g involves the statistic A% which incorporates the estimator &, it is appropriate to use this test when

50



2.4. Asymptotic analysis in time and space

the normalized volatility o2 is known. On the other hand, test ¢ should be utilized when the normalized
volatility oF is unknown.

One-sided asymptotic tests can be formulated in a manner akin to the conventional construction of the
z-test used to assess the mean of a normal distribution. An implementation of these tests can be found
in the R-function kappa_test within the package ParabolicSPDEs?.

We close this section by constructing asymptotic confidence intervals for the unknown parameter &,

with an asymptotic confidence level of 1 — . Here, we obtain:
(1) If o2 is known:

2

79 [A ( I'r )1/2 ) N ( I'm )1/2]
nym 1= | Knm — Ql—a/2\ —=mn 3 yhnm T Q—ape| w3 .
! n 2 / n 250y

(2) If 02 is unknown:
In,m = [%n,m — q1—a/2Yn,m; 2n,m + QIfa/Q'Yn,m]a
where

1/2
( (1 — 26) )
m nm - m 2 ’
n(1—29) Zj:l ygz ~1-25 (1m25 ijl yj) )

Yn,m

2.4.5. Comparison of the variances

In this section, our objective is to compare the performance of the estimators 4 and 7, which estimate
the parameter s, with the estimator 7T presented in Bibinger and Trabs (2020), which estimates the
parameter 1 = (02,x)" € (0,00) x R. To facilitate the comparison, we define the coordinate projections
m = og and 9 := k.

The M-estimation of Bibinger and Trabs (2020) is based on the parametric regression model

RVa(y;) _ oG,
vnoooom

with non-standard estimation errors (6, ;) satisfying

—RYi 4 5n,j7 (37)

E[6,,;] = O(An),
and
(COV((Sn,j,(Sn,k) = l{jzk}ATLFU§672Kyj + O(A?L/Q ((571 + ‘yj - yk|_1 ))v

where V,, A, (y;) = Zje ™i. The M-estimator 72T is implicitly obtained by minimizing the sum of

squares, given by

m 2
ABT .= ﬁf}j@ — ((&ET){%BT) = ((&(]?T)im’ﬁffn) = argr;ain Z (Zn,j — f&k(yj)) , (38)
s j=1

4see: https://github.com/pabolang/ParabolicSPDEs.
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2. Parametric estimation of the curvature parameter

where Z,, ; is defined as

1 ° 9
Zn,j = m;(AiX) (Yj) = foz x(Yj) + Onj,

and fsr(y) = se”k/\/m. Our aim is to compare the asymptotic variances derived from the central
limit theorems presented in Propositions 2.4.3 and 2.4.5 with the asymptotic variance of the estimator
AHBT from Bibinger and Trabs (2020, Prop. 4.2.). However, before proceeding with the comparison, some
preliminary work is required. We start by recalling the central limit theorem presented by Bibinger and
Trabs (2020).

Proposition 2.4.7
Grant Assumptions 1.1.1 and 1.1.2, with y; = ¢ and y,,,, = 1 — 9 and m, minj_s __ m, |y; — yj—1] is
uniformly bounded from above and from below. Let € E for some compact set = < (0,00) x [0, 00).

The the estimator fB7T satisfies for a sequence m,, — o, as n — o, the central limit theorem
. d
nmn((ns,’fn)—r - 77T) - N(07 EBT)a
where BT := ¥BT( §) = 047V (n,8) U (n,6)V (n,6)~! and the strictly positive definite matrices
1-46 1-46
f e~ 4% dy —o? f ye Y dy
s s

U(Uﬂs) = 1—§ 1-§ s
—o? j ye " Vdy o} f yle 4 dy
s 5

1— 1-46

J e 2% dy —o3 j ye 2" dy
Vi(n,0) := ° s 15

i f ye *dy o J yle W dy
4 )

Firstly, it is reasonable to expect that the asymptotic variance of the estimator & is uniformly smaller
than the asymptotic variance of the estimator 757, as #BT estimates both parameters o2 and k. Ad-
ditionally, the asymptotic variance of H2T is likely dependent on the unknown parameter 7, whereas
Propositions 2.4.3 and 2.4.5 demonstrate that the asymptotic variances of the estimators 4 and > are

independent of these parameters.

Indeed, the difference between the estimators & and 5 in terms of their asymptotic variances highlights

a crucial distinction between them. Comparing the asymptotic variances of the estimators & and 3, we

observe that the asymptotic variance of % significantly surpasses the asymptotic variance of the estimator
7, since

(1-0)24+0 (1—-20)2+3(6—6%) 4(1—26)2

= + (6 —6%)

. 2
_(1-25)
3 3 12

12 7
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2.4. Asymptotic analysis in time and space

for 6 € (0,1/2). This result holds true for all 6 values within the interval (0,1/2), which shows that the
asymptotic variance of k& consistently outperforms the asymptotic variance of the estimator 5 across this

entire range of § values.

Now, our focus is to explore whether there are scenarios where the asymptotic variance of /27T is smaller
than the asymptotic variance of the estimator 7. To achieve this, we require a representation of the
asymptotic variance of 75T, which does not have an integral representation. To proceed, we will present
an explicit representation of the inverse matrix V(n,§)~!. For ease of readability, we replace each entry

with a simplified notation:

V<n,6>=<‘; Z) and U(n,5)=<g ﬁ)

and have

_ 1 d b
V(n’d)l_ad—b?<_b )

Now, upon multiplying the matrices, we obtain the following expressions for the entries of the resulting

matrix

~ ~ 1 d2A — 2bdB + b2D —bdA + V2B + adB — abD
Vi(n,8) U (n,8)V(n,8) " = ( :

(ad —b%)? \ —~bdA + b*B + adB — abD b?A —2abB + a®D

where X85 = (bA — 2abB + a®D)/(ad — b®)? represents the asymptotic variance of 73" and ¥PT =
(d*A — 2bdB + v*>D)/(ad — b)? represents the asymptotic variance of #2T. Next, we proceed with the

calculation of the elementary integrals:

1

Je_cy dy = | — e_cy],
| ¢
[ 1

Jyefcy dy = | — cy—2|— ecy],
I c
[ +2) +2
Jy2€fcy dy N Cy(Cy = ) ecy:|7
c

where ¢ € R. In the case where x = 0, we obtain the following;:

4(1-5+47)

6
ot ((0(2)70)’5) = (1—;6)3 (1_2152)302 ’
(1—26)302 (1—26)301%

and therefore we have

47rI‘(1—6+62)08 6nTo?

S8T((02,0),8) = Gy 02
(1-20)3 (1-26)%
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2. Parametric estimation of the curvature parameter

Similarly, for k # 0, i.e., n2 # 0, we have

Are*?r T2 (207D (955 (R 4+1)+1)+e7°7 (2(6—1)r(—dr+r+1)—1))  4r2e2COTD" (27 (2(6—1)k—1)+€>" (20K+1))

V(’I? 5),1 _ 2722%45f+%g(1726)2H2+1)+e§5f{+€4~ 0[2)(—2e45’<+2'<(2 (1—26)2r2+1)+ed0r feir)
’ 4r2e?0t )N(e "(2(6—1)r—1)+e h(25'§+1)) 165340 +3)E sinh(k—20k)

Ug(7264‘5"+2”(2(172(5)2H2+1)+68‘5”"+64'€) 03(,264ém+2m(2(1 25)2H2+1)+685"'+64")

and therefore the asymptotic variance is given by

ail  ai2

BT ) )

Z2,2(7775) = )
ai2 a2

where
T re30TDRqE
11 = _2( 2e49r+2n (2(1 — 20)2K2 + 1) + €B0r 4 ein)?
(2e—2” _2(6_1)K<251€(5I€ +1) + 1) +e27(2(6 — 1)r(—6k + K +1) — 1))
x (e700% (205 + €*" 72 (2(5 — 1)k — 1) + 1) (40K + e*" 45 (4(6 — 1)k — 1) + 1)
+4e~2 ( 4E-1r _ 6_45“) (6—2@-1)'@(255(55 1)+ 1) + e2%(2(6 — 1)r(—0k + r + 1) — 1)) )
+e 2% (26K + M5 T2(2(0 — 1)k — 1) + 1)
x (26 (2055 (455 + 345 (4(5 — 1) — 1) + 1)
x (e*w DR (955 (8k + 1) + 1) + e25(2(6 — 1)r(—0k + K + 1) — 1))
— e 2042 (26K + eMR2R(2(5 — 1)k — 1) + 1)
X (e*4<5*1>~(45H(25n 1)+ 1) + X (A(8 — (1 — 2(5 — 1)k) — 1)) ))
4Ly = 21T K203 ;
T (—2e405426 (2(1 — 20)2Kk2 + 1) + €395 4 etn)
X (— (20 — 1)keBortin (8(1—26)*k* + 4k +9) + et (5§ — 1)k —1)
e (0K + 1) + (k + 2)e 05 (45 — 2)k — 1) + (k + 2)e2OFR) (46 — 2)k + 1)),
s 2T R3eA(0—1)r (ezn _ 64611)2 (4(25 — 1)keort2n _ o8k 4 64,1)

(7266(% (2(1 — 20)2k2 + 1) + €2(6+1)x 4 62(5571)}@)2

This yields the asymptotic variance of the estimator 2T, which is represented by the following expression:

(11_2;53 , formpe =0

EQBg =Im 5 2
2#FH3€4(071)N(62K—€4§N) (4(26_1)K645N+2m_685n+e4~

(,Qeeén(2(1,25)2,#+1)+62(5+1)~+62(5571)N)2 , formy #0

Additionally, it holds that lim,, o X83 ((11,72),0) = ¥83 ((11,0),6) , which ensures that the asymptotic
variance remains continuous as 7o = k € R. The preceding analysis also demonstrates that the asymptotic
variance of the M-estimator 72T for x is dependent on the unknown parameter  while being independent

of 0(2].
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2.4. Asymptotic analysis in time and space

-5.0 -2.5 0.0 25 5.0 -5.0 -2.5 0.0 25 5.0
K K

Figure 2.1.: We show the asymptotic variances of three estimators: 75 * (brown), 5 (blue), and & (yellow), where § = 0.05 and
Ug = 1 are fixed. In the left panel, we showcase the asymptotic variance as a function of k. The right panel displays
the quotient of the asymptotic variances AVAR(5c)/AVAR(757T).

Now, we further analyse the asymptotic variance to establish that it is always greater than or equal to

12'm/(1 — 26)?, which corresponds to the asymptotic variance of 3, ,,, .

When 7y = k = 0, the minimum asymptotic variance for both estimators 2% and 3 is given by

lim 253 ((n1,0), 6) = 1207 = lim %

Indeed, when 0 < § < 1/2, the asymptotic variance of the estimator /BT is greater than the asymptotic
variance of the non-oracle estimator 7, as (1 — 2§)% < (1 —24)2.

Next, consider the case where k > 0. We observe that EQBE(U, 0) is monotonically increasing in § while 7
remains arbitrary but fixed. Therefore, we can focus on analysing the case where § = 0. In this scenario,
the asymptotic variance ESE(T},O) is independent of 171 = 62 and monotonically increasing in 7y = &.
We find a minimum at x = 0 with an asymptotic variance of 12I'w, which coincides with the asymptotic
variance of the estimator 7, ,,.

Since the asymptotic variance of 5, ,,, is constant in 72, and the asymptotic variance of #2T is mono-
tonically increasing in 7, we can conclude that the asymptotic variance of 7, ,, is uniformly smaller or
equal to the asymptotic variance of #5871 for all values of x > 0. Analogous arguments hold for the case

where k < 0.

To conclude this section, we provide plots of the asymptotic variances for the estimators &y, m, %n.m
and 72T, As mentioned before, the asymptotic variance of each of these three estimators is independent
of the parameter o3. Figure 2.1 illustrates the asymptotic variances for 7o = x € [—5,5], § = 0.05, and

a fixed normalized volatility 02 = 1. The left panel in Figure 2.1 displays the asymptotic variances of
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2. Parametric estimation of the curvature parameter

the three estimators as given in the central limit theorems in Proposition 2.4.3, Proposition 2.4.5, and
Proposition 2.4.7. Here, we can observe that even for a moderate curvature, the asymptotic variance of
the estimator 7BT increases significantly, while the asymptotic variances of the other estimators remain
constant. Since both estimators 757 and i do not require any information about the rescaled volatility,
we provide a second plot in the right panel, which shows the quotient of the asymptotic variances of
these estimators, where the the asymptotic variance of J is given in the numerator. By observing the
right panel and considering the previous analysis, it is evident that the quotient is smaller than 1 for
§ € (0,1/2). Additionally, it is monotonically increasing for 7y € (—o0,0) and monotonically decreasing

for 9 € (0,00). As § — 0, the maximum value of the quotient is 1.

2.5. Simulation

This section initiates with a discussion on simulating samples of a mild solution X; from the SPDE
model given in equation (1) generated on a discrete grid. Two methods for simulating data will be
discussed: the truncation method and the replacement method, as introduced by Bibinger and Trabs
(2020) and Hildebrandt (2020), respectively. As we apply these concepts to simulate a SDPE model in

higher dimensions, which is discussed in Part IT of this thesis, we will closely examine these methods.

Subsequently, we will present a simulation study for the estimators derived in this chapter. A com-
parison of the curvature estimators from this chapter, as well as the curvature estimator presented in
Bibinger and Trabs (2020), will be conducted. This comparison aims to explore the relative performance

and accuracy of these estimators by conducting a Monte Carlo simulation study.

2.5.1. Simulation methods

The objective of this section is to introduce simulation methods for generating a SPDE model outlined
in equation (1). As discussed in Section 1.1.1, we can represent a mild solution X;(y) = >3- zx(t)er(y)
of the SPDE model given in equation (1) as an infinite factor model, where the coordinate processes
x, satisfy the Ornstein-Uhlenbeck dynamic with decay rates A\, for k € N. By using the Fourier series
for simulating a solution process X, we have the following options. Either we cut off the Fourier series
at a suitable large cut-off rate K € N which we call by the truncation method, or we take advantage
of the so-called replacement method, cf. Hildebrandt (2020). For both methods, an exact simulation of
the Ornstein-Uhlenbeck processes xj, is crucial for the quality of the simulation. Let N € N and M € N

denote the number of temporal and spatial observations, respectively.

As seen in Section 1.1.1, the coordinate processes xj for some solution X are given by zp(t) =
e (€ epdy + §e’>‘k(t’s)a dWk. Therefore, we can write the increments at times t = 0, Ay, ..., (N —
AN as followsO:

t+AN
Tp(t+ An) = 2(t)e AV 4o J e MTAN=S) qik,
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2.5. Simulation

Thus, we obtain the following recursive representation:

1-— — 2\ A
ot + Ax) = zp(t)e A 4o exp [ =20 An]
2\
where (M) denote i.i.d. standard normal random variables for ¢t = 0, Ay, ..., (N —1)Ay. The truncation

method involves considering the first K € N coordinate processes xj to approximate the mild solution
X. The effectiveness of this method is strongly influenced by the chosen cut-off rate K € N. Kaino and
Uchida (2021b) observed through empirical study that insufficiently large values of K lead to consider-
able biases in the simulations. Selecting an appropriate cut-off rate also appears to be dependent on the
number of spatial and temporal observations. Even for moderate sample sizes, a cut-off rate of K = 10°
is recommended, but it comes with a significant computational cost. For instance, simulating a single
realization of X on a grid with M = 100 spatial points and N = 10 temporal points, using a cut-off rate
K = 10°, takes approximately 6 hours when utilizing 64 cores. This computational challenge motivates
the adoption of the replacement method. Building on the work of Davie and Gaines (2001), the replace-
ment method takes a different approach by not merely truncating the Fourier series. Instead, it replaces
the higher Fourier modes of the Fourier series with a suitable set of independent random variables. This
alternative approach allows for an almost exact simulation of discrete samples of X, significantly reducing

the computational costs.

We describe the replacement method procedure for the case when £ = 0 and consider equidistant spa-
tial points, such as y; = j/M for j = 0,...,M. To simplify the Fourier representation of X,(y) =
S k(t)er(y), we utilize the following weighted inner product:

M
1 .

(fsg)o,m = i Z fi)g(y;)e™, (39)

j=0
for functions f, g : [0,1] — R. Using the orthonormal basis ey as defined in equation (2), we perform the
spectral approach. First, we find that the coefficient processes (ex)1<rk<m—1 define an orthonormal basis
with respect to the inner product (-, )y as. As described in Hildebrandt (2020), utilizing the properties
ey =0, exroipm = €k, and eaps_groin = —€j for e 1= (ek(yo), RN ék(yM)) e RM+1 yields the following

Fourier representation:

X)) = ) Untem(ys),

fort >0 and j =0,..., M. Here, the coordinate processes U,, can be written as

Um = <Xt7em>'z9,JW = Z Qfl(t) - Z .I‘[(t),

e, leZn,

where x; denotes the coordinate processes from equation (5) and the index sets are defined as

Ih={m+2M,1eNo}, T, ={2M—-m+2M1eNy} and T,:=T"0T,. (40)
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2. Parametric estimation of the curvature parameter

Thus, we obtain a finite Fourier representation of X on a discrete grid. To complete our understanding
of the replacement method, we need to address the simulation of the processes U,,. As discussed in
Hildebrandt and Trabs (2021) and Hildebrandt (2020), when & = 0, the coordinate processes xj are

centred Gaussian with the covariance function

2
COV((xk(ti)axk(t]‘)) = %eiAkl%]lAN (1 — e P mm(wm”),
k
where 1 < 4,7 < N. If A\yock? is large compared to 1/A, = N, the coordinate processes zj, effectively

behave like i.i.d. centred Gaussian random variables with variances
Var(z(t;)) ~ ——.

We select a bound L = Lj;ny € N, which represents multiples of M. Then, we can replace all x
with sufficiently large k¥ > LM by a vector of i.i.d. centred normal random variables with variances
02/(2\). As the normal distribution is stable with respect to summation, it is sufficient to generate one
set (RE (1)) of random variables with RZ (i) ~ N(0, s2,), where

€T, I>LM

1<i<N

for 1 < m < M — 1. This leads to the following approximation for U,,:

Up(0)=0 and ULt:) = > a(t:) + Ry(),
1€Tm I<LM

for 1 <i< N and 1 <m < M — 1. According to Hildebrandt (2020, Lemma 3.1.), the infinite series s2

m

has a closed form given by

2 _ L roy 3 o (41)
m — jar2Ym m 9y
M 1€ l<LM 2N

S

. . T
where by, := V2(sin(mmyo), ... ,sin(rmyn)) € RM T and X = (851)j1=0,...,m+1 = (0(¥5, Y1) j1=0,...,M+1 €
RM+Dx(M+1) "with the symmetric function p : [0,1]? — R, defined for z < y as

sin(To(1—y)) sin(Tox)

52 Tosin(lo) 7 <0
pz,y) = o= (1 —y) =0,
299
sinh(I'p(1—y)) sinh(I'ox) > 0

F(] Sinh(Fo)

with
92 9
= = — d Tg:=+/|7]
0 0y Uy an 0 17l

This method provides a finite spectral decomposition for a solution X, which significantly reduces the
runtime. For example, in the same setting as before, where M = 100 and N = 10*, one simulation takes

just about 30 seconds when using 64 cores instead of 6 hours. The associated algorithm for this method
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2.5. Simulation

n=1000,m=11, k=1, o2=1, 5=0.05 n=1000,m=11, k=1, 02=1, 5=0.05 n=1000, m=11, k=6, 02=1, 5=0.05 n=1000, m=11, k=6, 03=1, 5=0.05
0.15 0.15

-20 -10 0 10 20 -10 0 10 20 -50 0 50 100

n=1000, m=11, k=1, 05=0.25, 5=0.05 n=1000, m=11, k=6, 0;=0.25, 5=0.05

Figure 2.2.: Kernel-density plots for a equi-spaced grid with M = 10 and N = 10° using different constellations of the parameter
n = (0'3, k). Based on 1000 Monte Carlo repetitions each, orange denotes the kernel-density estimation of the results

of the estimator ﬁQBT. Similarly, the colors gray and yellow denote the results of the estimators ¢ and &, respectively.
In each case, the dotted lines represent the associated asymptotic distribution, respectively. A Gaussian kernel with
Silverman’s ‘rule of thumb’ was used for the kernel-density estimation.

is given in Hildebrandt (2020, Algorithm 3.2.), where the author also provided an algorithm for the case,
where £ # 0.

Finally, we present the total variation distance between the approximation X% and the mild solution
X of an SPDE from equation (1) to evaluate the power of the replacement method’s approximation. Let
X = (Xe(¥5)) 1sc Na<j<pr @nd its approximation X L. Hildebrandt (2020, Prop. 3.3.) showed that there
exist constants ¢ and C, dependent only on (02,4), such that the total variation between X and X Lis
bounded by

TV(X, X)) < CVMNe LM Ax
Furthermore, suppose A% — 0 for some @ > 0. If there exists a § > 1/2 such that M A’f\, — 00, then

TV(X,X!) - 0.

2.5.2. Simulation results for the curvature parameter

The purpose of this section is to visually compare the three different estimators: &, 7, and the curvature
estimator 75T proposed by Bibinger and Trabs (2020) in equation (38). To achieve this, we conduct

simulations for four distinct scenarios:

i)k=1land o =1, ii)k=6andof =1, iii))k=1andof=1/4, iv)r=06and o} =1/4,

59



2. Parametric estimation of the curvature parameter

n=10000, m=101, k=1, 05=1, 5=0.05 n=10000, m=101, k=1, 05=1, 3=0.05 n=10000, =101, k=6, 05=1, 5=0.05 n=10000, =101, k=6, 05=1, 5=0.05
0.15 0.15

-20 -10 0 10 20 -100 -50 0 50 100 -20 -10 0 10 20

n=10000, m=101, k=1, 05=0.25, 5=0.05 n=10000, m=101, k=6, 0;=0.25, 5=0.05 n=10000, m=101, k=6, 05=0.25, 5=0.05

-20 -10 0 10 20 30 -20 -10 0 10 20 -100 -50 0 50 100 -20 -10 0 10 20

Figure 2.3.: Kernel-density plots for a equi-spaced grid with M = 100 and N = 10* using different constellations of the parameter
n = (a'g, x). Based on 1000 Monte Carlo repetitions each, orange denotes the kernel-density estimation of the results
of the estimator ﬁ];’T‘ Similarly, the colors gray and yellow denote the results of the estimators 5r and &, respectively.
In each case, the dotted lines represent the associated asymptotic distribution, respectively. A Gaussian kernel with
Silverman’s ‘rule of thumb’ was used for the kernel-density estimation.

where we performed 1000 Monte Carlo repetitions using the R programming language. The simulations
are based on the replacement method with a replacement bound of L = 20 and a zero initial condition
& = 0. We consider an equidistant grid in time and space, where two different spatial and temporal
resolutions are used. The first grid has a spatial resolution of M = 10 and a temporal resolution of 103.
Note that the spatial resolution of this grid is much smaller than N'/2. Meanwhile, the second grid has
a spatial resolution of M = 100 and a temporal resolution of N = 10*, approximately satisfying the
relation between A,, and m as stated in Assumption 1.1.1. As the estimator #5T is only given implicitly,
we followed the instructions from Bibinger and Trabs (2020) on how to implement this estimator using
the R function nls. Figure 2.2 and Figure 2.3 show kernel density estimations with a Gaussian kernel
and Silverman’s ‘rule of thumb’ for \/W(ﬁ — k), where ] represents the estimators & in yellow, > in grey,
and A57T in orange, respectively. The dotted lines represent the asymptotic variance as proved in the
CLTs provided by the Propositions 2.4.3, 2.4.5, and 2.4.7, respectively. Figure 2.2 displays the simulation
results on the first equi-spaced grid with M = 10 and N = 103, whereas Figure 2.3 presents the results on
the second grid. For both grids, we can observe a good fit between the kernel density estimation and the
asymptotic normal distribution. There is no significant difference in the quality of the fit between the two
grids. As analysed in Section 2.4.5, for k &~ 0, the estimator 3 and the estimator 73 by Bibinger and Trabs
(2020) have about the same asymptotic variance. However, for larger (or smaller) s, the performance
of the estimator 3 significantly improves compared to the estimator #5T. For instance, when k = 6, a

noticeable difference in the asymptotic variance can be observed.
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Figure 2.4.: QQ-normal plots for normalized estimation errors for x from simulation with N = 103, M = 10, 0'[2) =1,k = 1 in the
left panels and k = 6 in the right panels. Brown (top) shows the estimator from equation (38), grey is for the estimator
in equation (15) and yellow (bottom) for the estimator in equation (13).

We conclude this section by providing QQ-plots. In these plots, we use the estimations of the respective

curvature estimators v, ,, and rescale them according to the respective central limit theorem, i.e.,

#(ﬁmm - H)?
AVAR (9. m)

where AVAR(§n7mn) = lim,, o0 Var(\/mﬁnymn) denotes the asymptotic variance of the estimator o).
For the estimator from equation (38) we use an estimated asymptotic variance based on plug-in, while
for our new estimators the asymptotic variances are known constants.

The QQ-plots shown in Figure 2.4 and Figure 2.5 offer a graphical comparison between the distributions
of the estimators and the asymptotic normal distribution predicted by the CLT. Through this rescaling
process, we can evaluate how closely the estimators align with the theoretical standard normal distribution
when dealing with large sample sizes. Notably, all the presented curvature estimators demonstrate a

strong fit, indicating a good agreement with the theoretical normal distribution.

2.6. Summary and Discussion

In this chapter, we have developed two new estimators for the curvature parameter x in the context of
linear parabolic SPDEs with additive noise. The first estimator & assumes a known normalized volatility,

while the second estimator 7 is a robustification and thus suitable for cases where the volatility o2
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2. Parametric estimation of the curvature parameter
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Figure 2.5.: QQ-normal plots for normalized estimation errors for x from simulation with N = 10%, M = 100, o'g =1,k =1 in the
left panels and k = 6 in the right panels. Brown (top) shows the estimator from equation (38), grey is for the estimator
in equation (15) and yellow (bottom) for the estimator in equation (13).

is unknown. We have proved central limit theorems for these estimators and compared them to the
existing estimator 7j; proposed by Bibinger and Trabs (2020). The key advantage of the new methods is
the usage of a variance-stabilizing transformation of the statistic RV,,, resulting in feasible CLTs where
the asymptotic variances are known constants and do not depend on any unknown parameters. On
the other hand, the M-estimator 7y relies on the unknown curvature parameter x. However, we have
demonstrated that the non-oracle estimator s uniformly dominates and significantly improves upon the
existing curvature estimator.

One important difference between the new estimators and 79 is in their formulations. Both of the new
estimators are explicitly given, making them easier to implement and understand. In contrast, 7, is only
provided implicitly. The fact that the M-estimator 7> has been widely adopted and utilized in various

prominent papers reflects its importance in the field of parameter estimation for SPDEs. For instance:

(1) In the paper by Hildebrandt and Trabs (2021), the M-estimator was employed for rate-optimal esti-
mation, catering to more general observation schemes. This indicates its versatility and usefulness

in handling different types of data and scenarios.

(2) Kaino and Uchida (2021a) utilized the M-estimator for generalized estimation approaches, par-
ticularly focusing on small noise asymptotics. This suggests that the estimator’s robustness and

performance remain relevant and beneficial even in situations involving low-noise environments.

(3) The work by Kaino and Uchida (2021b) delved into long-span asymptotics, where the M-estimator
was instrumental in capturing crucial features of the underlying SPDEs. This highlights its effec-
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tiveness in dealing with large temporal spans and long-term data.

(4) Tonaki et al. (2023) employed the M-estimator for parameter estimation in two spatial dimen-
sions. This indicates its suitability for higher-dimensional problems, which are often encountered

in practical applications.

Considering the extensive use of the M-estimator in these influential papers, it emphasizes the signif-
icance and relevance of our new methods, namely & and . The improvements and advantages of our
estimators, which were demonstrated in this chapter, show great potential for enhancing the accuracy
and efficiency of curvature parameter estimation in SPDEs. Therefore, we expect that substituting the
curvature estimation, provided by the M-estimator, with our novel ML-estimators will prove effective in

these extensions, yielding more efficient estimation techniques.
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3. Asymptotic log-linear model for realized volatilities

and least squares estimation

This chapter focusses on estimating the two-dimensional parameter 1 = (02, x) € (0,0) x R. To achieve
this, we utilize log-realized volatility statistics and establish a connection to the linear model. Our
objective is to demonstrate a bivariate central limit theorem for this novel approach and subsequently
compare it with the existing M-estimator developed by Bibinger and Trabs (2020). The comparison will

encompass both analytical and Monte Carlo simulation assessments.

3.1. Motivation and Methodology

In Chapter 2.2, we derived equation (21) and demonstrated that the remainders R, , become asymp-
totically negligible for the distribution of the estimators. Now, assuming the bivariate parameter n =

(02,k) € (0,00) x R is unknown, we can use equation (21) and represent the log-realized volatilities as

RV, (y; 2 /T
In <\/(ﬁyj)> = —RKY; + In (;%) + %ZJ + anyj, (42)

where y; € [§,1— 4] and with independent Z; ~ N'(0,1), for j = 1,...,m. By disregarding the remainders

follows:

in the latter display, the equivalence to a simple ordinary linear regression model with normal errors
becomes evident. In this analogy, the realized volatilities serve as response of the log-linear model with
spatial explanatory variable, where our objective is to estimate both, the slope parameter —x and the
intercept parameter p := 1n(03 /A/m). As we focus on estimating these two parameters, we introduce
the two-dimensional parameter v := (g,k)" € R2?. In this process, we estimate the strictly monotone
transformation ¢(03) = o € R of the normalized volatility o2, where ¢ : R, — R and ¢(z) := In(z/y/7).
We review the parameter estimation for the simple ordinary linear regression model within a related

statistical model.

Example 3.1.1

The simple ordinary linear regression model is given by
Y; = ay; + B+ ¢y,

where j = 1...,m, homoscedastic white noise errors ¢;, with Var(e;) = ¢2 and unknown parameters

(o, B) € R?. Least squares estimation yields the following estimators:

D R o)
" Z;'nzl(yj - 7)?
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3. Asymptotic log-linear model for realized volatilities and least squares estimation

Bm=}7—dj

where Y and § denote the sample averages and arithmetic mean, respectively, cf. Zimmerman (2020,

Example 7.1-1). By plug-in and standard calculations we additionally derive the following representation:

A (Z;nzl YJ)(Zznzl yj) _mZ;‘nﬂ Yy,
" (X7aw) —mY, v
B, = (23":1 yj)(Z;n:l Yjy;) — (Z;nzl Yj)(zzﬂzl y?)
(ZT:1 yj)2 _mZ;nzl yg2

bl

According to the well-known Gauss-Markov theorem, the estimators derived from the simple ordinary
linear regression model are BLUE (best linear unbiased estimators), meaning they have the minimum
variance among all linear and unbiased estimators. Now, for constructing estimators based on equation
(42), we consider an asymptotic log-linear model with homoscedastic normal errors. Referring to Example

3.1.1 and associating & = —k and 3 = g, we derive the following estimators:

Cm I (R, — (3 () ) (37 )

;f = %n m = m P} m 9 )
(Zj:l yj) *ij:1 Yj
oo (7 w3) (X (), ) — (X7, I (B202d) ) (27 42) ”

(Z;n:l yj)2 - mZTzl %2

where ¢ is an estimator for the transformation ¢(03) and > estimates the parameter k. Note that we
have used the estimator —& from Example 3.1.1 for estimating x. Estimating the natural parameter

o2 > 0 is given by the simple transformation of the estimator g, which is given by

[@;zlyj)(z;zlm (o)) — (S I (Rsl) ) (S g2
(Z;nzl yj>2 - ngnzl %2'

)1\/%_

It is well-established that maximum likelihood estimation for natural exponential families yields a unique
ML-estimator and aligns with the estimators of the simple ordinary linear regression model with normal
errors, as stated in Montgomery et al. (2021, Chapter 2.12). Moreover, least squares estimators in linear
models with normal errors demonstrate asymptotic efficiency. Thus, we can deduce that the non-oracle
estimator from equation (15) coincides with the estimator 2n7m. This identity can be easily established

using Lemma 2.2.1 and standard calculations, resulting in the following identity:

S (0 (M) () ) (4 - )
S = a0 — )2

_ 2357 In (vaff’”) (= wy)

- Sy (3 = 2y + y7)
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3.1. Motivation and Methodology

_2( I () ) (53725 ) — 2 X575 I ()
2my, Z;ﬂ"l yg ( Z;'n:l yj) ’

Il
?N”
3

Hence, we note that the curvature estimator 3¢ as defined in equation (15) aligns with the curvature
estimator > derived from the ordinary least squares model. As a result, we will use the notation 3 := nm
to denote the slope estimator > in the log-linear model. To establish a central limit theorem for the
two-dimensional estimators o := (g, f{)T and 7 := (62, #)7, we can determine the asymptotic variance-
covariance matrix by analysing the variances and covariance of the estimators in the ordinary linear

regression model from Example 3.1.1. It is well-known that these variances and covariance are given by

. 2(1—29)
Var(&,,) = i ;
m(SE S 0 - s (52 w))
Var(f,,) = ML)
m((52 50,98 - 2 (520 w)°)
2(1=26 yvm
Cov(@m, Bm) = — < 2 “14)

m(%Z;‘Zlyﬂ_%(l e e ) )

For a comprehensive overview of the linear model, we refer to Zimmerman (2020, Example 7.2-1). In
fact, we will see, that the remainders R, ,; in equation (42) are negligible for the asymptotic distribution
of the estimators ¢ and 7. Consequently, we derive an asymptotic variance-covariance matrix according

to the variance-covariance structure given in Example 3.1.1, where ¢2 = I'rr.

The estimator from equation (38) was shown to be rate-optimal and asymptotically normally distributed
in Bibinger and Trabs (2020, Prop. 4.2.). However, considering the analogy to an ordinary linear regression
model, it becomes clear that the estimation method by Bibinger and Trabs (2020) is inefficient, as ordinary
least squares is applied to a model with heteroscedastic errors.

In the model from equation (37), the variances of d,, ; depend on j via the factor e~2"i . This, moreover,

induces that the asymptotic variance-covariance matrix of the estimator from equation (38) depends on
the parameter (02,x). In line with the least squares estimator from Example 3.1.1, the asymptotic
distribution of our estimator will not depend on the parameter (o3, k).
In conclusion of this section, we lay the theoretical groundwork for the forthcoming multivariate central
limit theorem. To begin the methodology part, we introduce a modification of the one-dimensional
central limit theorem presented in Proposition 1.2.4. Utilizing the Cramér-Wold theorem, which asserts
that multivariate convergence is equivalent to the univariate convergence of every linear combination, we
can now present the following multivariate version of the central limit theorem, as proposed by Peligrad
et al. (1997).

COROLLARY 3.1.2
Let (Z, .i)1<i<k, a centred triangular array, with a sequence (ky)nen, where Z,, . € R are random
vectors. Then, it holds that

kn
3 Zni —5 N(0,3),

i=1
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3. Asymptotic log-linear model for realized volatilities and least squares estimation

as n — o0 and X denotes a variance-covariance matrix, which satisfies the equation
lim Var(Z 87, 1) =B8TY8 < w,
noe i=1

for any 8 € R?, if the following conditions hold for any 5 € R%:

4 b
(1) Var( > ;ﬁzm) < C Y Var(BTZn,), forall 1 < a < b < ky

kn
(IT) limsup Y, EWTZ?M'] < o,

n—o0 =1

(1) _ZlE[ﬁTzﬁn,z‘]1{\ﬂTan,i\>g}] =y 0, for all € > 0,

(IV) (Cov<eit2?:a fBTZ'rL.i7eitZg:b+u BTZ"vi> g pt( ) Z (5 Zn Z) fOI‘ all 1 < a < b < b +u < C g kn
and t € R, -

where C' > 0 is a universal constant and p¢(u) > 0 is a function with Z ., pt(27) < 0. In addition, if
d = 2 we can identify the asymptotic variance by

by b
fim Var(Z cy M> = Bi%11 + 26162812 + 5322, where ¥ = < b 1*2> ,

n—o0
= Y12 Xa2p

where 3 € R? is arbitrary.

In Section 2.4, we analysed the class H,, of triangular arrays and established a central limit theorem for
this class. By applying a Cramér-Wold argument in combination with Proposition 2.4.2, we can infer a
central limit theorem for a class H& of generalized triangular arrays in higher dimensions. Specifically,
we consider the set F, as defined in equation (32) and the set

={go : N =R | |87 gg(m)| < Cg||B|lewm®? uniformly in m € N, Cy > 0},

for a @ = 0, d € N and the maximum norm ||-||,. Then, we define the class of generalized multivariate

triangular arrays by

Hg ::{(Zn,i)lgign,neN : Zn,i = Cn,i - E[Cn,z] and Cn,i = Z yj 919(.7)
j=1

where fy € Fu, g9 € Qi}, (44)

where a > 0. Suppose 8 € R, then we have

m

(AX)2()8 90 (5) < CollBllam® fo(m) Y (A

1 =1

Ms

B Cni = fo(m)

J
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3.1. Motivation and Methodology

for (,,; € HY. Different definitions are possible for the classes F, and G,, encompassing triangular arrays
in higher dimensions. In such cases, it becomes essential to impose the univariate condition on both
classes’ respective components in the multivariate setting. Our definition is grounded in the fact that
the class H? incorporates triangular arrays with common scaling functions fy € F, and multivariate
functions gy € G¢. These components represent the structure of the respective estimator v = (9, 5) ",

which we establish in the following.

Following the procedure in Section 2.4.1, the remaining step is to define the triangular array for the

two-dimensional estimator . By utilizing equation (27), we have

(57 0) (S5 (52)) - (557 n (2 ) (557409)
(3 yg)iZ;”’a Y2
_1n(”3) o Y T (AX)2(y )Ny]((zl nu)ys — (S 1yl)>
v (Z;nnlyj) ngJ W

On,my =

+ OIP’(ATL)7

and

%n,mn

(Z;ﬂ 5 y]) — My Z;n N Y;
I"LZS Sy 2 (A X)2(yy)e™s (mny; — 33075 wi)

=K+ p— o 5 + O]}»(An)
(Zg =1 y]) - Mn Zj:l Y;

Hence, we can redefine the triangular array by

&)
En,i = gn,i - E[én,z] and gn,i = éh(né’)l ) (45)
n,t’
where
T Moy, _ My my,
57(32 = . Z(AiX)Z(yj)eﬁyj< Yy — yi >,
Ug((Z;ﬂ”1 y])2 My 350 1%) =1 <z—1 ) <z—1 )
@) _ mnT S o S
0 j—1 Yj Mnp 25=1Y5 ) i=1 =1
and have

£, m T "i (( )y — S 1y%> |
7 =1 21:1 Ui

2 _
(( j= ) ngj 1%) MY

Let 3 = (1, B2) € R?, then we obtain

m,
My, T 3 ~

BT = D, (K )
i (( ) = me S5 y]) ]
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3. Asymptotic log-linear model for realized volatilities and least squares estimation

x(ﬂl((im)yj’iymz(mnyj%m))

=1 =1 =1

mw ,8
Ry]G

where

M T

03((2?%1 yj)” = ma 37 yJQ)
Gl =G+ G = 61(<Z yl)ZJj - Z y?) + B2 <mnyj - Zw) (47)

=1 =1 =1

fo(my) ==

: (46)

Based on Lemma 2.2.1, we observe that fy(m,) = O(mgg/z) Gfl = O(m,) = G'Bz, and gy(j) =
ervi Gf < Cyl|Bllomn. Consequently, we can conclude that &, ; € H3, which enables us to establish a

central limit theorem for the estimator © in the forthcoming section.

3.2. Central limit theorem in time and space

To establish a central limit theorem for the estimator ©, we begin with the following corollary, which
directly follows from Proposition 2.4.2 and the Cramér-Wold device. Subsequently, by employing the

multivariate delta method, we will deduce a central limit theorem for the estimator 7.

COROLLARY 3.2.1
Under the Assumptions 1.1.1 and 1.1.2, let us consider a triangular array Z,, ; € H%, where H is defined
in equation (44). Then, it holds that

as n — o0, if it holds that

Z Z W] (87 99(1))” = 18l16CAnpus (48)

j=1li=b+u

forall<b<b4+u<c<n,wherep, :=c—b—u+1,u= 2, a constant C := Cy > 0 and ¥ is a

variance-covariance matrix satisfying the equation

@govar(Z B Z,. ) =8T88 < w,

i=1

for any 5 € R%.

By utilizing the previous corollary, we can derive the following central limit theorem for the estimator

.
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3.2. Central limit theorem in time and space

Proposition 3.2.2
Grant Assumptions 1.1.1 and 1.1.2, with y3 = 0, ¥, = 1 — 0 and m,, ming ., |y; — yj—1| is bounded

from above and below. Then, we have

nm, (0 —v) = v/nm, <<2n> B (i)) 4 N(0,%),

as n — o and m, = O(n”), where p € (0,1/2), and

40T (1-6+52) 67
Y ( (1—25)? (1—25)2> _

6w 12I'm
(1-20)2 (1—26)2

Proof. We initiate the proof by deriving the asymptotic variance. Let 8 € R? be arbitrary. Then, we
obtain that

n
ar ( Z BTEM>
i=1

ar(i BTSM) f2(my) Var( Ti i A; X eymGﬂ>
i=1 =1 iz1

nf:s’(mn)wr( S a, <yj>Gf)

j=1
= nf3(my,) (mz G’ﬁ *Var(V, Z Gﬁ Gﬁ Cov(V, ny(yjl),VmAn(ij)))
Jj=1 J1#J2
= nfi(my) (FZO(l +0(1 A A])) ni (Gf)z
j=1
GP? P
3/2 g 25-1
vo(s( 3 G i) o))
My, A1/2 1 )

_ 7 n L _
_fﬁ(mn)ro—o 1+OA JZ] (mn <j§j2<|yj1_yj2|>+5 )>

_ LAmr BB o) + o(al malogtm.)

n 2 n
7 ((Z;ﬂ 1 y]) —Mnp Zj:l %2)

m.Tr(l — 2 \"Mn By2
) WIr(1 = 20) 5 (GF) o)

m4(1 2523 " y? — (1 —26)71 (=20 2623 1Y J))

where fy and G? are defined in equations (46) and (47), respectively, and an arbitrary 7 € (0,1).

Furthermore, we have

=1 =1 =1

mny ) + 2152 mz ((%yz)yg —in:y?) (mnyj _Eyl)

j= =1 =1 j=1 =1 =1 =1
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j=1
_ 1-20 &3 1-20' &3 i /1-20E 2
— mi3(1 - 25) 2(( = Zy)( » j=f“2'_(1‘25) (o ) ))
1-25 T 1-25 % 120 T N2
+m 2ﬁ1ﬁ2(1—25) 2(( p— 2 )( 1—2(5 ( p— J;yj) >>
Mo, My 2
(1 2) %( 2N 25>—1< m%Zyj))
nooj=1 nooi

Therefore, we have

Sl -4 2
lim Var( a'=, Z) =TIr| p?
o Z ( T yrdy - (1-20) ( 5 ydy)”
15 dy
+ 251 B2 : -
5"y dy — (1 20)7 (§; " ydy)’

5 (1—20)
e 5 y2dy — (1 25)’1( . ydy)2>

5
AT (1 — 6 + 62) 12I'r
=g *

(1= 20)2 /81/62( ) 52( ST EN

Hence, the asymptotic variance is given by

A7 (1—6+62) 6
N < (1=268)2 (1—25)2> .

6w 12I'm
(1—26)2 (1—26)2

It remains to verify the condition given in equation (48) from Corollary 3.2.1. Having the following:

mpyT . )
fﬁ(mn) = Mn and ﬁTgﬁ(]) = eﬁyj Gﬁv
G%((Z] 1y]) ngJ 1y]) J

we derive that

Mn

2 M AnOA . My, . L

Fom) Dy D) E[(AK) )]e (G2 2 0y TR N o y2m2uin
j=1li=b+u o

> Anpullin (Gé’)z

((Z?:ﬁyj) ng;n'ﬁy]) j=1 !
= Hﬂ||:>OC2Anpu»

where C7,Cy > 0 are suitable constants. For the latter inequality we used Lemma 2.2.1 and obtained
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that
(GF)2oc BEm2y? + B1Bamiy? + Bim2y2,
O

which completes the proof.

Finally, we examine the estimator 7 for the unknown parameter n = (02,x) € (0,00) x R, where the

estimator of the parameter o3 is given by

l (3 ) (2

(%ﬁf’”)yj) _ (Z?ZH 1n(RV§%y")))(ZT="1 y?)lf
.
()" = ma S 2

~2
0g = exp

Utilizing the multivariate delta method yields the following corollary.

COROLLARY 3.2.3
Grant Assumptions 1.1.1 and 1.1.2, with y; = §, ¥, = 1 — ¢ and m|y; — y;j_1]| is bounded from above

and below, we have
0'(2) d ~
— = N(0,%),

nmy, (a:\g)nwmn
Xn,mp, K

O(n*), where p € (0,1/2) and

asn — oo and m = m,,
404Tm(1-6+6%) 6027
S (1-26)2

_ (1—-26)2
% 6oo'm 12I'm
(1—-29)2

Proof. Consider the function h : R? — (0,00) x R, defined as

(-0

Since each entry of h has a continuous partial derivative, the multivariate delta method yields

(22 () s

K
where J;, denotes the Jacobian matrix of h given by
o2 0
Ju(m) =7 .
n(n) ( 0 1

The proof is completed by having the variance-covariance matrix 3 from Proposition 3.2.2
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Figure 3.1.: The asymptotic variance of the estimator &2 (blue) is compared to the estimator 772" (brown) from equation (38).

From left to right, we observe the asymptotic variances for different values of k € {—5,—4,...,4,5}. The rightmost
panel displays the ratio AVAR(62)/AVAR(72T) of the asymptotic variances of both estimators for x € [—5, 5].

In Section 2.4.4, we discussed confidence intervals for the curvature parameter x. Proposition 3.2.2 enables
the derivation of asymptotic confidence intervals, with a confidence level of 1 — «, for the normalized

volatility o3. These intervals are given by

In,m = [exp [@n,m - Q1—a/27/\/%] ﬁ, exp [@n,m + QI—a/27/M] \/E],

where g, represents the a-quantile of the standard normal distribution. Here, 9y, ,, is the estimator from
equation (43) for the parameter ¢ = In(02/4/7), and v is defined as

_(4rr(1 -6+ 82\
”‘( (1-20)2 ) ‘

3.3. Simulation

In this section, we begin by providing a graphical comparison of the asymptotic variances of the estimators
AHBT from equation (38) as constructed by Bibinger and Trabs (2020) and the new estimator 7 for estimat-
ing n = (0, k). For the analysis of the asymptotic variance and simulations of the non-oracle estimator
2, we refer to the Sections 2.4.3 and 2.5, respectively. Here, our focus is on comparing the asymptotic
variances of the estimator 62 and 71T for the parameter 02, as well as conducting a comparison of both
estimators via Monte Carlo simulations.

The panels on the left in Figure 3.1 show the asymptotic variances of both estimators for fixed x €
{=5,—4,..., 4,5} and o € (0,2]. The blue line represents the asymptotic variance of the estimator 62,

while the brown line denotes the asymptotic variance of the estimator 72T by Bibinger and Trabs (2020).
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Figure 3.2.: Comparison of empirical distributions of normalized estimation errors for O'g from simulation with N = 10%, M = 10,
ag =1, and k = 1 in the left panel, and x = 6 in the right panel. Blue represents &g, and brown represents the estimator

ﬁf’T by Bibinger and Trabs (2020). The asymptotic distributions are denoted by the dotted lines, respectively.
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Figure 3.3.: Comparison of empirical distributions of normalized estimation errors for O'g from simulation with N = 10*, M = 100,
ag =1, and k = 1 in the left panel, and x = 6 in the right panel. Blue represents &3, and brown represents the estimator
ﬁ?T by Bibinger and Trabs (2020). The asymptotic distributions are denoted by the dotted lines, respectively.

As the asymptotic variance for our estimator 62 is independent of the unknown parameter x, we observe
the same behaviour in the first eleven plots. The rightmost panel in Figure 3.1 displays the quotient for
both estimators for x € [—5,5]. As this quotient is independent of the parameter 03, we show the ratio
between both asymptotic variances dependent on k € [—5,5] with fixed § = 0.05. We observe that the
quotient curve is not symmetrical around zero, indicating that the new estimator 62 performs even better

than the estimator 72T when x < 0. As discussed in Section 1.1, we observe much stronger activity of
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Figure 3.4.: QQ-normal plots for normalized estimation errors for 0'[2) from simulation with N = 10%, M = 10, 0'3 =1,and k =1 in

the left panel, and x = 6 in the right panel. Brown is for the new estimator 5’3, and grey is for the estimator defined
in equation (38).

the random field when the curvature k is negative compared to its positive equivalent. These structural
differences also affect the quality of the estimation, i.e., the asymptotic variance, leading to the curvature
observed in the rightmost panel. Even when the curvature is x = 0, our new estimator 2 outperforms
the M-estimator HPT.

Figures 3.2 and 3.3 compare the empirical distributions of normalized estimation errors for o2 for both
estimators. The empirical distributions are based on 1000 Monte Carlo iterations. While the empirical
distributions for x = 1 are almost similar, we witness a significant difference for a stronger curvature
k = 6. In fact, our new estimator 62 outperforms the existing one from Bibinger and Trabs (2020). Both
figures display the limit distributions denoted by the dotted lines, respectively. For the generation of
empirical distributions, we use a kernel density estimation with a Gaussian kernel and Silverman’s ‘rule
of thumb’ for the bandwidth. The QQ-normal plots in Figure 3.4 and Figure 3.5 compare standardized
estimation errors to the standard normal. The fit of the asymptotic normal distributions is reasonably

well for all estimators.

In Section 2.6, we discussed the extensive use of the M-estimator in influential works including Hildebrandt
and Trabs (2021), Kaino and Uchida (2021a) and Tonaki et al. (2023). Combining the results from the
Chapters 2 and 3 reveals that our novel estimator 7 outperforms the existing estimator 7®T presented
by Bibinger and Trabs (2020). Hence, we do not only expect that substituting the M-estimator with

the ML-estimators # and 3 from Chapter 2 for the curvature parameter s will yield for more efficient
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Figure 3.5.: QQ-normal plots for normalized estimation errors for 0'(2) from simulation with N = 10, M = 100, o'g =1l,and Kk =1
in the left panel, and k = 6 in the right panel. Brown is for the new estimator &g, and grey is for the estimator defined
in equation (38).

parameter estimation but also anticipate improved efficiency when substituting the M-estimator with the

novel least squares estimator 7.
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4. Essentials of multi-dimensional SPDEs

Multi-dimensional SPDEs extend the foundational concepts of one-dimensional SPDEs to handle situa-
tions in which multiple spatial dimensions are at play. These equations have broad utility across various
scientific disciplines, allowing for the examination of the interplay between deterministic dynamics and
stochastic variations in a wide range of systems, including those in the fields of physics, geophysics, biol-
ogy, finance, and environmental science. Multi-dimensional SPDE models offer a much larger variability
for modelling natural phenomena. Therefore, it is intuitive that applications of these SPDEs is of great
relevance, especially for two- and three-dimensional spaces. See, for instance, Mena and Pfurtscheller
(2019) for an application in connection with the climate phenomenon El Nino and references therein for
applications to sea temperature, Pereira et al. (2020) for an application in Geostatistics, and dealing with
seismic data and Fioravanti et al. (2023) for an application in climate science. For an overview with many
references to specific applications in various fields we refer to Lindgren et al. (2022).

While some research has been conducted on statistical inference for stochastic partial differential equa-
tions in one spatial dimension, the aim of this second part is to generalize the SPDE model to multiple
space dimensions. Although the authors Tonaki et al. (2023) have provided valuable insights into a SPDE
model in two spatial dimensions, this is the first work, which generalizes the theory to a d-dimensional
framework, where d > 2.

Emanating from the fact that research on multi-dimensional SPDEs is still in its early stages, we
begin this second part of the thesis by laying the foundations for the multi-dimensional model. Thus,
we introduce stochastic partial differential equations in d > 2 spatial dimensions and briefly discuss the
parameters of the model. A crucial difference between a SPDE model in one spatial dimension and
multi-dimensional SPDE models is that the random field in higher dimensions is not square integrable
when using a white noise structure as employed in the one-dimensional case. Consequently, introducing
a new parameter to the higher-dimensional model becomes necessary. This new parameter, which we
refer to as the damping parameter, ensures that we attain essential properties of the solution process,
such as the random field being square integrable. The structural change in the stochastic force, due to
the damping parameter, has a crucial impact on the model. In fact, we will observe that the damping
parameter influences key elements, such as the expected value of the quadratic temporal increments and
the autocovariance of temporal increments. We will also discuss the identifiability of the parameters in
the multi-dimensional SPDE model, particularly in relation to the damping parameter.

Moving forward, we will develop a representation of a solution process for the corresponding multi-
dimensional SPDE. Similar to the first part of this thesis, we choose the spectral approach for this purpose.
However, we need to extend the mathematical background of this approach from one to multiple spatial
dimensions. By obtaining a Fourier representation of a solution process, we provide technical tools
to analyse such solutions and begin to derive initial insights into some properties of multi-dimensional
SPDEs. These insights include investigating the structure of a d-dimensional random field in terms of

dependencies between distinct spatial points and the variance-covariance structure of realized volatilities.
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4. Essentials of multi-dimensional SPDEs

Statistical inference can be developed using these key insights. In concluding this introductory chapter, we
will focus on simulation methods for d-dimensional SPDEs, building upon the one-dimensional approaches
of cut-off and replacement method. Since higher dimensions naturally lead to more complex calculations,

we will defer specific proofs to the last Section 4.4 in this chapter to enhance readability.

4.1. SPDE model in multiple space dimension

We consider the following linear, second-order stochastic partial differential equation in d € N space

dimensions with additive noise:

dXy(y) = AgXi(y)dt + o dBi(y), (t,y)€[0,1] x [0,1]¢
o(y) = &(y), y € [0,1]¢ ; (49)
t(y) =0, (t,y) €[0,1] x [0,1]*

e

where y = (y1,...,5a4) € [0,1]%. The operator Ay from the SPDE model outlined in equation (49) is

given by
d A2 P
Aﬂiﬁé@*‘l;l/l@*—ﬂo, (50)
with fixed parameters ¢ = (Yo, v1,...,v4,n), where Jg,v1,...,vq € R and ,0 > 0. The temporal domain

is set as t € [0,1], which can be extended to ¢t € [0,7] for T > 0 throughout the second part of this
thesis. Likewise, the spatial domain is defined as the d-dimensional unit hypercube. Furthermore, B
denotes a cylindrical Q-Brownian motion on [0, 1]¢ as defined in equation (54), and the initial condition
€ :[0,1]¢ — R is independent from B. We impose a Dirichlet boundary condition to the model. As
in the one-dimensional case, we define the natural parameters in this model as the normalized volatility
o2 = o2 yl?
Note, that the identifiability of the model parameters is discussed in the remark after Proposition 4.2.7.

> 0 and the curvature parameter k = (k1,...,kq) € R?, where r; := yy/neR, [ =1,...,d.

Different to the situation with unbounded spatial support, the differential operator Ay from equation
(50) admits a discrete spectrum, hence enabling the use of the spectral approach. The spectral approach’s

corresponding Hilbert space is defined by
Hy :={f:[0,1]* > R,||flly < o0 and f(y) =0, for y € 2[0,1]%}, (51)

where 0[0, 1]¢ represents the boundary of the set [0,1]¢. The norm ||-||y is defined via the corresponding
inner product || f|lo := {f, )9 given by

d
{fy 90 —J f - ya)g(ys - -, ya) eXp[Zmyz]dyr--dyd,

=1

where f,g € Hy. The domain of the operator Ay is given by

D(Ag) = {f € Hy : || fllo,10/(0yn) fllo, 0%/ (@y7) flo < o0, forall I =1,...d}.
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4.1. SPDE model in multiple space dimension

Before introducing the spectral decomposition of the SPDE model in equation (49), we clarify some

notations for working in d > 2 space dimensions. We use the following abbreviated notation:

1 1
J[O’l]d fly)dy ::L L Fly, .. ya) dys - - dya,

for a function with || f|]s < c. Note that the Fubini theorem yields the possibility to change the order of

integration. Likewise, we use the notation

o0 o0
D= DL D) Ak
ki=1  kg=1

keNd

where ay : N — R denotes a sequence, for which the series converges absolutely. Bold letter indices and
variables are used throughout this second part of the thesis to denote multivariate indices and variables.

Furthermore, we introduce the following notations. Let x € R?, then

d

d 1/2

Ixllo := min {aa],..feall,  lxlhi=Dw, Iy o= (E x?) v Xl = max [,

i=1,...,d l=1,....d
x; 70 =1 =1

where we set min ¢ = 0. Note that the introduced notations ||-||2, |||« define a norm on R¢. However, the
notations ||-||op and |-}y do not define a norm, as they do not even map to the non-negative real numbers.
Nevertheless, we use a norm notation to indicate an operation across all the spatial dimensions. Moreover,

for a measurable function f : RY — R we define the £P-norm by

1/p
1 llero) = ( fD If(X)I”dx> 7

where D € R?. Finally, we define the point-wise product by
-:R? xR — R?
Xy = (T1Y1,- - axdyd)T-

We say for k,j € N that they are not alike, i.e., k # j, if there exists at least one index ly € {1,...,d}

with k;, # ji,- A concise overview of these and other notations can be found in the Appendix A.

Now that we have clarified these notations, we proceed with the spectral decomposition of the operator
Ay on the Hilbert space Hy. The eigenfunctions (ex)yxene and eigenvalues (—Ak)gene of the differential

operator Ay are given by

d
ex(y) == ex(yn, ..., ya) := 2%° HSin(Wklyl)efmyl/za (52)
=1

d 2

14
Ak = =0 S 53
k 0+121<4n+7f s (53)
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4. Essentials of multi-dimensional SPDEs

where k = (ki,...,kq)" € N©. When comparing the representation of the eigenfunctions and eigenvalues
in d-space dimensions to those in one space dimension as defined in display (2), we observe that we have
extended the eigenfunctions and eigenvalues in one dimension to each spatial dimension. Furthermore,
we demonstrate in Lemma 4.4.1 that the orthonormal property of the one-dimensional eigenfunctions
extends seamlessly to multiple space dimensions, effectively defining an orthonormal system (ex)yene-
This observation allows us to decompose each axis independently using the one-dimensional eigenfunc-
tions, which involve rescaling, sine functions, and exponential terms with dependencies on the respective
parameters k;. As a result, we obtain a powerful multivariate spectral decomposition by considering a

product model over each dimension.

Furthermore, a crucial property of the operator Ay is its self-adjoint nature on the Hilbert space Hy,
where we prove this property in Lemma 4.4.1. The self-adjoint nature of the operator is significant as it
ensures that the eigenfunctions form a complete and orthogonal basis in Hy, enabling us to effectively

represent solutions to the SPDE model in equation (49) using this spectral decomposition.

Given that we have developed the spectral framework, we address the Q-Wiener process Wi(y) in a
Sobolev space on the bounded domain [0, 1]¢. For comprehensive details on the Q-Wiener process, refer
to works such as Da Prato and Zabczyk (2014), Lord et al. (2014) or Lototsky et al. (2017). An essential
distinction when transitioning from one to higher space dimensions is that the solution process XtQ (y)
is not square integrable when considering a white noise, i.e., E[||X?H§] = o0, where @ = id denotes
the identity operator. The authors Tonaki et al. (2023) have demonstrated that this phenomenon arises
even in two space dimensions. To ensure that XtQ is square integrable, it becomes necessary to employ
a coloured cylindrical Wiener process instead of a white noise. This entails introducing an additional
parameter to the model, which “dampens” the Wiener process. By considering a coloured noise and in-
troducing different damping mechanisms, Tonaki et al. (2023) successfully developed statistical inference

based on high-frequency observations using a spectral approach in two space dimensions.

To specify the damping mechanism in our model, we adopt one natural approach by defining (By)¢=0

by its spectral decomposition, given by

Bi, o= 2, M eV, (54)

keNd

for f € Hy,t = 0 and with independent real-valued Brownian motions (Wtk)tzo, for all k € N4, To
ensure that the latter definition is well-defined, we assume that A; . 1) > 0. In the previous definition,
the cylindrical Brownian motion B undergoes a structural change through the introduction of the term
)\;a/ ? in its spectral decomposition. This alteration naturally brings about a complete shift in the
probabilistic structure of the random field. The parameter « holds particular significance as it essentially
governs the damping mechanism. Comparing this characterization of the @-cylindrical Brownian motion
to its one-dimensional counterpart in equation (4), we note that the noise’s colouring is determined by

the term A %2 When o = 0, we observe a white noise structure.

Currently, the required domain for the new parameter a remains uncertain. To ensure that the expected
value E[|| X} ||2] is finite and enable statistical inference in our model, the domain must be carefully chosen.

Nonetheless, it is reasonable to impose a > 0 initially.

In the forthcoming analysis, we will discover that an even more stringent restriction on this parameter
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4.1. SPDE model in multiple space dimension

is essential to guarantee that the QQ-Brownian motion is well-defined, which corresponds to the square
integrable property of the random field. Moreover, an even stronger limitation is required for the devel-

opment of statistical inference.

Prior to exploring this restriction, we begin with analysing the well-definedness of B and offer a
characterization for the operator () in our model. For this purpose, we denote the domain of the operator
A;l/Q as D(A;UQ). Then, Hy D(AEI/Q) and (€ )gene define an orthonormal system on D(A;UQ)7
where €y := ek/||A51/2ek||19 for all k € N¢. The covariance operator () on D(A;UZ) is then given by

Qex = A4, el Zex,

and the corresponding eigenvalues of @ are given by A\ _“[|A, Y 2ek\|§. Assume the parameter « is such
that
—(14a)/2 1 d
SA; T e 3 = ) T < kel (55)
keNd keNd

then the Q-Wiener process (B;) is well-defined in D(A, v 2) and the definition of the )-Wiener process,

as given in equation (54), follows by

(B, fyo = Y, A11?0‘/2||f451/2€k||19<fv_1/2> Wi
Ay “exlls

keNd

For a comprehensive overview of Wiener processes on Hilbert spaces, we refer to Da Prato and Zabczyk
(2014, Chapter 4). For readings on a different approaches for the choice of @ in two space dimensions we
refer to Tonaki et al. (2023).

To ensure the well-definedness of B, it is crucial to examine potential choices for « such that the se-

ries in equation (55) converges. Since the negative eigenvalues (Ax)gene are proportional to

d 2
Vi
A = — +l; (47]) + nlz;kloczkz = |3,

we can find constants C;, Cy > 0 such that C; Zld:l k2 <\ < Co 27:1 k? for all k > ko, where ko € N¢.
In this context, the inequality for the multi-index k is defined component-wise. By the integral test for

convergence we have

o 1
ZA 1+)<012 Z CE ”+k§)1+a<oo

keNd ki1=1 kqg= 1

(:L L (x%+...+x3)1+adx1...d;pd<oo. (56)

To evaluate this expression, we employ spherical coordinates in d-dimensions. As this technique will be
highly beneficial in the subsequent analysis, we recall this method. Consider a function f € £!(R) and

the integral SRd (|x|?) dx. The transformation to d-dimensional spherical coordinates is accomplished
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4. Essentials of multi-dimensional SPDEs

through the substitution

x1 =rcos(p1), x2=rsin(p1)cos(ps), x3=rsin(p;)sin(ps)cos(vs), ...,

Tg—1 = rsin(pr) - ... -sin(pg_2) cos(pa—1), xq=rsin(e1)-... sin(pqs_1), (57)

where r € [0,00),¢1 € [0,7],...,04—2 € [0,7] and @4_1 € [0,27). Note that integrating over the entire
d-dimensional space requires only one angle to be in the range of [0,27). Suppose we want to evaluate
SRd (|x|?) dx, then every angle ¢; € [0,7/2) is in the first quarter of the periodicity of sine and cosine,
Where I=1,...,(d —1). The associated Jacobian matrix of the d-dimensional spherical transformation

is denoted by Jy, and its determinant is given by

|Ja| = HTd Psin? ().

Let x € R%. Performing this substitution yields

||x||§ = r?(cos®(¢1) + sin®(p1) cos®(p2) + ... +sin? (1) - - cos®(pa—1) + sin® (1) - - - sin®(pa—1)) =17,
where we have used the identity cos?(z) = 1 — sin®(z). For further readings on spherical coordinates,
refer to Flanders (1963). Applying this transformation to the integral over the function f € L}(R), we

obtain the convenient representation

27

J £l dx—f i) d JWSIH (1) depy - JWSiH(SDdfz)dwqu dpd—1

0 0 0

Q0 s us
= 27rf rd=1f(r?) drf sin?=2 (1) depy - - f sin(@g—2) dgg—o.
0 0

0

Continuing the analysis of the integral from equation (56), we have

0 /2 w/2 /2 1
coday < =\ Jddoa - -dos d
J- J (22 + +xd)1+a dzy d fl L _[0 J;J T2(1+a)‘ al dea— prar
d 1

0 /2
= f 2ra) dTJ sin®%(p1) depy - - J sin(pa—2) d@d—2f dpa—1
1 T 0 0 0

o\ 1 @ d
< | = —— pd=2(l+40) <wea>——1.
2 d—21+a) 1 2

Hence we find, that the Q-Wiener process as defined in equation (54) is well-defined, if & > d/2 — 1. As
we delve into the analysis of multi-dimensional SPDE model, i.e., d = 2, it becomes evident that o > 0.
This observation confirms that a white noise is not suitable for any higher dimensional SPDE model
except the one-dimensional case.

Now that the theoretical framework for the random field is established, we can introduce a spectral
decomposition that forms the basis for the analysis of our multi-dimensional SPDE model. Therefore, we
consider a mild solution X; of the SPDE from equation (49), which satisfies the integral representation

t

Xy =eMéto f elt=)4 4B,
0
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4.1. SPDE model in multiple space dimension

for every t € [0, 1] almost surely. Then, the spectral decomposition of the random field X; is given by

Xi(y) = Y. m(t)ex(y), where ai(t) = (X1, ex)o- (58)
keNd

The coordinate processes (zx)yene follow the Ornstein-Uhlenbeck dynamics, governed by the equation
- _ —a/2 k
dxk(t) = /\kzk(t) dt + O’)\k th s

where (Wk);>¢ are independent real-valued Brownian motions for all k € N%. The Ornstein-Uhlenbeck
dynamics can be obtained by using that the operator Ay is self-adjoint and the eigenvalue equation. More

precisely, we have
t
2k (t) =Xy, exyg9 = <etA“’§ + JJ elt=9)4 4B, ek>
0 9

t
~ (e, + (o [ O apac)
9

¢
>\1<t<§,ek>19 + < OZ/QJ- e(t=5)As dW;i)ej7ek>
0

¢
= e_Akt<§, exyy + 0)\1:“/2 J e Mx(t=s) dVVSk7 (59)
0

jeNd 9

where we used that (e*4? f, e )y = e Mt f, ey )y, for a f € Hy. To conclude the probabilistic framework,
we show, that the random field, governed by the cylindrical Brownian motion, is square integrable for
each ¢t > 0. Therefore, suppose t > 0 as the case where ¢t = 0 is trivial. By employing the spectral

decomposition of a mild solution X;, we observe that

B3 - E|| ¥ oo = 3 3 Bllaoacol)
keNd keNd j eNd
= 2 llewll3E[zk(6)?]
keNd
t
<c ) ( SB[ 03] + oA ( f e Alt=) de)QD
keNd 0
t
=C Z 72)“‘tE <£, ek>19] + 02)\ f e Pk(t=s) ds)
keNd 0

(
( “DMR[(e, )] 4 oA e 2t (2wt 1))
(

2k
1 _ 672/\kt
— 72)\ktE e
ZNl <£, >19] 2)\11(+a )
e—ZAkt 1— e—QAkt
c’ ( — +0° — )
kéld At 2"
1
"
= ¢ Z )\1+a’
keNd "'k
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4. Essentials of multi-dimensional SPDEs

where we utilized It6 isometry for suitable constants C,C',C” > 0. We also used that
SUDyend /\]1(+O‘E[<£,ek>§] < 00, which is a part of Assumption 4.1.2, which is introduced at the end of

this section. Thus, we have for a suitable constant C' > 0 that

1
BIX 31 <C Y ks <0
keNd "k

if @ > d/2 — 1. As already mentioned and evidenced by the preceding calculation, the property of the
random field of being square-integrable is directly related to the well-definedness of B; from equation (54),
serving as a singular constraint that ensures both properties. Since the constraint for damping parameter

« is related to the dimension of the SPDE model from equation (49), we introduce the notation

a=—-—1+d,
2

where o/ > 0. As we assume the dimension d of the SPDE model from equation (49) to be known, the

parameter o/ enables us to analyse the “pure” damping rate.

Having established the probabilistic structure of our multi-dimensional SPDE model, we shift our focus
to the statistical assumptions. Similar to the one-dimensional case, we aim to develop statistical inference
using a high-frequency observation scheme. Assumption 1.1.1 illustrated that even in one space dimension,
it is essential to restrict the observations to bound the correlations of the SPDE model given in equation
(1). Intuitively, we will require similar restrictions to develop consistent estimators. The following

assumption outlines the high-frequency observation scheme.

Assumption 4.1.1 (Observation scheme)
Suppose we observe a mild solution X of the SPDE model from equation (49) on a discrete grid (¢;, y;) €
[0,1]x[0,1]?, with equidistant observations in time t; = iA,, fori = 1,...,nand yy,...,y,, € [6,1—6]%,

where n,m € N and § € (0,1/2). We counsider one of the following two asymptotic regimes, respectively:
(I) A,, = 0, as n — oo, while nA,, = 1 and m < o0 is fixed,

(I A, - 0 and m = m, — o, as n — o0, while nA, = 1 and m = O(n”) for some
pPE (Oa(l - O/)/(d+2))7

where o = d/2 — 1+ o' and ' € (0,1). Furthermore, we consider that

o jl,jggﬁl,r.l.,,mJ'yjl — Yl
jl?éjQ

is bounded from below, uniformly in n for both regimes.

For the spatial coordinates yl(j ), we use the subscript [ = 1,...,d for the respective dimension com-
ponent of y;, and the superscript (j) = 1,...,m for the respective j-th observation. As seen in this
Assumption, we have further restricted the damping parameter to « € (d/2 — 1,d/2). This limitation is

necessary to enable statistical inference.
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4.1. SPDE model in multiple space dimension

Similar to Assumption 1.1.1, we require fewer spatial observations than temporal ones. The damping
parameter also influences the relationship between the observation resolutions in temporal and spatial
dimensions. As the dimension increases, the spatial resolution decreases. Note that we specifically have
p < 1/2. Additionally, Assumption 1.1.1 states that

m- min |y; =y (60)
Jj=2,....m
is bounded from below, for y; < ... < y,, € [6,1 — 6]. Since this assumption primarily controls the

covariances of the realized volatilities in distinct one-dimensional spatial coordinates, it is crucial to
adapt equation (60) to multiple space dimensions.

A significant difference between SPDEs in one and multiple space dimensions is that the spatial co-
ordinates yq, ...,y in multiple space dimensions lack a directly feasible order as we have in the one-
dimensional case with 1 < ... < y,,. Suppose we have two distinct spatial points y,,y, € [d,1 — 6]%.
Then, there must exist only one index [ € 1,...,d, such that yl(l) # yl(Q), whereas the remaining coordi-
nates can be equal. Assuming the first (d — 1) coordinates of spatial observations yy,...,y, to be fixed
at 1/2, such that we can only observe the d-th coordinates yc(lj ) for 7 =1,...,m. Then, the observation
scheme reduces to one space dimension, which motivates the need for a similar structure of observations
in multiple space dimensions as we used in one space dimension, i.e., equation (60). The last example
also motivates the mapping |-|o. This mapping ignores those coordinates that remain the same and
measures only the smallest change on the axis on which y; —y,; moves, where j; # jo. Note that we
also measure the smallest distance between every combination of spatial points y, ...,y due to the lack
of order in R%. Since we also impose a Dirichlet boundary condition on the SPDE model from equation
(49) in multiple space dimensions, we transfer the boundary condition yy,...,y, € [6,1 — §]¢ for the

spatial observations to Assumption 4.1.1.

We also introduce a regularity assumption to our model.

Assumption 4.1.2 (Regularity)
For the SPDE model from equation (49) we assume that

(i) either E[(¢,exps] = 0 for all k € N? and supyye \oTOE[(€, ex)?] < oo holds true or
B[l 457 63] < o0, for ace (d/2 — 1,d/2),

(i) (€€, exy)kene are independent.
We observe that the coloured noise introduces more stringent regularity conditions on our model

compared to the white noise used in one space dimension, cf. Assumption 1.1.2. This added complexity

calls for more careful analysis and considerations when dealing with the multi-dimensional framework.

We conclude this section by examining how the parameters impact the solution process of our model.
Building upon our initial discussion in Section 1.2 regarding the one-dimensional case, our focus now

shifts to understanding the impact of parameters such as 7, v1,...,v4,0, and « on both the spatial and
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temporal marginal processes of the random field. To facilitate this exploration, we employ Figure 4.1 to
visually represent the effects of these parameters. In this visualization, we simulated a three-dimensional
SPDE model on a temporal grid with N = 10* time points and M = 10 spatial points, where the respec-
tive parameter combinations are provided in the plot titles. For readings on the simulation methods, we

refer to Section 4.3.

Analogously to the calculations leading to equation (6) in Section 1.2, we obtain the following covariance
structure:

7)\k|t75|

Cov(X(y1). Kely2) = 0* 3, e ex)ew(ya). (61)
keNd k

where X,(y) denotes a mild solution of the multi-dimensional SPDE model with a stationary initial
condition, i.e., (£, exyy ~ N(0,02/(2A.7*)). We will use this covariance structure in order to enhance

the following argumentative insights.

First, similar to the one-dimensional case, the parameter ¥y has no noticeable visual impact on the
random field, which is evident by utilizing equation (61) and analogous argumentation as in the one-
dimensional case. On the other hand, the parameter v plays a crucial role in controlling the curvature
effect within the spatial domain. Each component v; of v, where i = 1,...,d, corresponds to i-th spatial
axis on which a potential curvature on the solution field is applied. For instance, in the first row of
Figure 4.1, we observe sample paths of the spatial marginal processes with v = (10, —10,0). Here, we
notice a contrasting curvature effect on the first two spatial axes, while the third spatial axis exhibits
no observable curvature. As in the one-dimensional SPDE model, where the analogous parameter is
denoted as 11, the curvature effect can be mitigated by the parameter 7, which can be observed in the
second row of Figure 4.1. When 7 is relatively large compared to v;, the curvature in the spatial field
becomes less pronounced. In fact, the influence of these parameters on a solution field X;(y) from the
multi-dimensional SPDE model in equation (49) can be explained in a manner analogous to the one-
dimensional SPDE model. Since we decomposed X;(y) using an orthonormal basis, which is derived
from the respective one-dimensional orthonormal basis of each axis, the behaviour of the one-dimensional
equivalent parameters transfers directly, i.e., v; corresponds to ¥; and 71 to ¥5. Therefore, we refer to the

one-dimensional discussion on these model parameters.

Furthermore, as in the one-dimensional SPDE model, the parameter o governs the overall volatility of
the solution field, as evident by equation (61). This effect is visually demonstrated in the third and fourth
row of Figure 4.1. In the one-dimensional case, we referred to this parameter as o3 and recognized that
the volatility level is also influenced by the parameter 7. With the same reasoning as for the parameter
v and 7, this effect can be elucidated by examining the one-dimensional case. Notably, the first and
second row of Figure 4.1 also showcase the impact of n on the volatility level. Note that the sample
paths of the temporal processes displayed in the first and second row do not share a common y-scale.
Consequently, we conclude that the parameter v controls the relative curvature of the solution field, while
o influences the relative volatility, with the observable curvature and volatility additionally depending
on the parameter 7. We will delve deeper into the relationships between these parameter combinations

in Proposition 4.2.7, where we examine the identifiability of the model parameters, effectively identifying
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Figure 4.1.:

The provided figure displays sample paths of a three-dimensional SPDE model described by equation (49). The sample

paths are generated using an equidistant grid in both time and space, where N = 10*, M = 10, and & = 0. Each
row in the figure consists of four plots. In each row, the first three plots from the left illustrate the spatial processes,
y — X¢(p(y)), for time points t = 0.1 + k/103, where k = 0,...,50. The first column displays the spatial processes for
the first spatial axis, while keeping the other axes fixed, i.e., ¢(y) = (y1,1/2,1/2). The second column shows the spatial
processes for the second spatial axis, with ¢(y) = (1/2, y2,1/2), and the third column illustrates the spatial processes
for the third spatial axis, with ¢(y) = (1/2,1/2,y3). The last column presents the temporal processes, t — X (y), with
vy = (1/10,1/10,1/10) " fixed. The titles indicate the different parameter scenarios under comparison, with the first
scenario depicted in the first row, and subsequent scenarios shown in the subsequent rows. Note that only the second
and third panels of the temporal processes share a common y-scale, whereas the other panels have a freely adjustable
y-scale.

the natural parameters of the model.

Concluding our heuristic exploration of multi-dimensional parameters, we analyse the behaviour of
the random field for various values of «, which we describe in terms of the corresponding parameter
o' € (0,1).
and deterministic basis (ex)xene are not influenced by the so-called damping parameter o and the pure

In equation (58), we decomposed X;(y) using a Fourier series. Here, the orthonormal
damping parameter o, whereas the coordinate processes (rx)yene depend on . Specifically, o’ governs
the influence of the eigenvalues (Ax)gene, signifying a fundamental impact of this damping parameter
on the multi-dimensional SPDE model. Furthermore, the damping effect of « is also identifiable when

considering the covariance structure in equation (61). As our upcoming analysis will reveal, o/ plays
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4. Essentials of multi-dimensional SPDEs

a role similar to the Hurst parameter for fractional Brownian motions, affecting the roughness of the
temporal paths, as evident in the last three rows of Figure 4.1. When the pure damping parameter o
is relatively small, the sample paths of the temporal marginal processes accelerate noticeably, whereas a
relatively large o’ slows down the sample paths of the temporal marginal processes. Since the parameter
o’ has no direct impact on the orthonormal basis (ex)ken, we do not observe a qualitative impact on
the sample paths of the spatial marginal processes, which is also explainable by the covariance structure

given in equation (61).

4.2. Analysis of the quadratic increments

In the preceding section, we laid the groundwork for our SPDE model in multiple space dimensions.
In this section, our objective is to conduct an initial analysis of the random field. Drawing from the
work of Bibinger and Trabs (2020) in the one-dimensional case, we will employ quadratic increments
and the method of moments to construct consistent estimators. To achieve this, we will delve into the
examination of the first moment of quadratic temporal increments and also investigate the covariance of
temporal increments.

To accomplish these tasks, we need to address some technical intricacies, including a Riemann ap-
proximation for sums on N?. Once we have successfully elaborated on the first moment for quadratic
increments and its extension to realized volatilities, we can leverage this information to construct a

primary estimator within this model.

Suppose we have a mild solution X;, then we can adopt the spectral approach and decompose an incre-

ment of X; as follows:

(AX)(y) :=Xia, (y) — Xi-na, (y) = Z Ajzrex(y), where Az = zx(iA,) — xk((z — 1)An).
keNd

Therefore, analysing the temporal increments of the coordinate processes is crucial for understanding the
structure of the increments A; X;. As we have observed in equation (59), the coordinate processes satisfy
the Ornstein-Uhlenbeck dynamics, and we can employ its representation to decompose the increments of

2k, for k € N4, as follows:

(4_1)An
Avrie = (€, ex0g (€80 — e Ml=DA0) 4 gy o2 j ' K80 =8) _ A=) A0 —s) gk
0
iAn _
+ O_)\l:a/2 f e Ak(iAn=s) dW:,‘
(i-1)An
=Ajx + Bix + Cix, (62)
where
Ai,k = <§’ ek>’l9 (e_AkiAn _ e_)‘k(i_l)An)’ (63)
(i-1)A, _
Bk := U/\l:a/zf e~ Me((=)An—s) (e — 1) AW, (64)
0
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iA,
Cix = U‘)\;a/z f e~ M1 =8) qik, (65)
(i—1A,
The latter decomposition involves the temporal origin represented by A;k, the evolution of the tem-
poral increments represented by B; x, and the youngest past, which contains the most recent temporal
increment, represented by C; x. Given that this decomposition (almost) aligns with the one-dimensional
case, as demonstrated by Bibinger and Trabs (2020), we can anticipate the term A; x to be negligible.
Consequently, the terms B; x and C; x will significantly impact the calculation of the first moment of the

realized volatility.

Given the alterations in the noise structure for the multi-dimensional SPDE model, it is expected that
these changes will influence the decomposition of the temporal increments. Specifically, the temporal
evolution parts B;i and C;x now incorporate the damping mechanism A af 2, whereas the term A, x

remains relatively similar to the one-dimensional case.

To introduce the technical part of this section, we begin with the following lemma, which serves as

a fundamental tool for the entire forthcoming analysis.

LEMMA 4.2.1
Let f : [0,00) — R be twice continuously differentiable with [|z%~! f(2?)[| £1(0,00)) 1% (@) 22([1,00))5
and [|z4T 7 (22)] 21([1,00)) < C, for some C > 0, then it holds:

1 0 d—1 )
0 ALY WA = g [ @ @) de - Y [ fanal})da
2T/ o P
~v€{0,1}¢
VA, 1 1
+0(J Py A [ e A, | rd+1|f”(r2)dr>,
0 VA, VA,

where B., defined in equation (82).

(ii) For {j1,...,5} < {1,...,d}, v € {0,1}%, where (v;1)i = Liegjy,..j,3> With i = 1,...,d and
l=1,...,(d—1), we have

AP YL F ) cos(2mky,yj,) - . cos(2mky,y;,) = (*1)1J f(x*n ||zll3) dz

keN¢ Bojn
k/24+1 1 k/241 A1
#0 e e [ e e S [ o)
A(l+1)/2 1
+0(”5l | rd_l|f’(r2)|dr).
NS

(iii) For {j1,..., 71} ={1,...,d}, i.e., I = d, we have

AYZ 1
AR N f()\kAn)cos(27rk1y1)._..-cos(ZWkdyd):O(Aﬁ/2|f(An)|)+(9( 5 LZ 7’|f’(r2)|dr)
keNd n

AR/ (1 AR+ 1
n d—k+1) g1 (, 2 n d—k—1| g2
* O(k(?,l..a.t,}é—l g+t J\/Zn ' FHr)ldr v P S B T L/Zn " [F ()l d’“)-
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In particular, it holds for a 7 € {0,1}¢, with || 7|y =l and 1 <1 < d — 1, that

1
f (w2 |z)2) dz = O(AZQJ rd=1-1) £(2)| dr>,
Bs N

n
and

d ) 1 VA,
3 [ sz -of ey a2 [ ey [ e ar).
1 VB - VA 0

=1,....d
lIvll=
ve{0,1}¢

n

The proof of the preceding lemma relies on standard Riemann approximation techniques. In addition
to these standard ideas, it is crucial to handle the remainder terms of the approximation carefully. In
order to analyse these remainders, we utilize a transformation into spherical coordinates, which offers
the advantage of tracing the order of the remainder terms back to the behaviour of the function being
approximated in a vicinity near zero. This procedure enables the use of the concept of regularly varying
functions. For readings on this topic we refer to Bingham et al. (1989) for a comprehensive discussion.

Statement (i) of the previous lemma provides the desired Riemann approximation of a series over
N?, which corresponds to the inherited structure resulting from the spectral decomposition. The first
remainder term in statement (i) is of particular interest. By considering the leading term in statement
(ii), we approximate a function f that satisfies the conditions of Lemma 4.2.1 in conjunction with cosine
functions.

The leading term of the Riemann approximation from (ii) can compensate for the remainder term from
(i). Depending on whether the number of cosine terms is even or odd, we observe an alternating sign in
the leading term from (ii). This behaviour results in the complete compensation of the first error term
from (i) when Lemma 4.2.1 is explicitly applied.

Comparing this lemma with the corresponding lemma from Bibinger and Trabs (2020, Lemma 6.2.)
and Tonaki et al. (2023, Lemma 5.1.), statement (ii) provides new insights regarding the compensation of
remainder terms in the main approximation from (i) in higher dimensions. In addition, this behaviour is
absent in one and two dimensions, respectively. The detailed proof of this lemma can be found in Section

4.4, see Proof of Lemma 4.2.1 on page 119, owing to its complexity and scope.

We now specify the application of regularly varying functions in our case. Our objective is to determine
the order of the error terms. In particular, we are not interested in finding exact constants. The previous
Lemma 4.2.1 demonstrates that, for this purpose, only the behaviour of the function and its first and
second derivatives in a vicinity near zero is relevant. Accordingly, we introduce the following class of

functions:

Qp = {f :[0,00) > R| [ is twice differentiable, [[** f(2)|| 210,000y 124 (%)l 21 ((1.00))

||xd+1f(2)(m2)||£1([1’00)) and limsup |f9)(22)/z%| < C < o, for j =0, 1,2}, (66)
z—0

where fU) denotes the j-th derivative and 8 = (8o, 1, 82) € (0,0)3. The first conditions ensure that a

function f € Qg satisfies the requirements of Lemma 4.2.1. The concept of regularly varying functions,
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as also utilized in extreme value theory, is thus incorporated in the last part of the latter definition. By

employing this class of functions, we can formulate the following corollary.

COROLLARY 4.2.2
Let f € Qg for 8 = (Bo, 81, 82) € (0,00), then it holds that

0 d—1
. Ad/2 A, :; d/2—1 do — 7_[_2 2 d
0 123 SO = g ), 4 w d 3 | ECRICEES
ve{0,1}¢

+O(A, v AF/2 Ad+2=R0/2 ) Ald+H4=F2)/2)
where B, is defined in equation (82).

(ii) For {ji,...,5} < {1,...,d}, v € {0,1}¢, where (v;1)i = Licgjy,..j,3> With i = 1,...,d and
l=1,...,(d—1), we have

A2 S Fn) cos(2mhy,ys,) - - cos(2mkg) = (—1)! J F (2 2]2) da

keNd By

+ O(é*“”An v 54A§f“)/2 v 57(1+1)A£1d+2761)/2 v 57(l+1)A;d+4762)/2).

(iii) For {j1,...,5} ={1,...,d}, i.e., Il = d, we have

A2 Z J(AAp) cos(2mkiyr) - . .. - cos(2mkaya)
keNd

= O3~ DA, v Ald=F0)/2 , §=dHD A(A42-81)/2 |, 5=(d+1) A (d+4=52)/2)

In particular, it holds for a 4 € {0,1}%, with |||l =l and 1 <1 <d — 1, that
| sl de = oAl v al#R)
B5

and

d
Y| swulal) da - ol v ag-e),
Illi=1 -5

1e10,1)°

Suppose we have a function f € Qg, where the parameter 8 = (o, 51, f2) is known. In this case, thanks
to the aforementioned corollary, the Riemann approximation and the corresponding remainders can be
readily obtained. For the proof of this corollary, see Proof of Corollary 4.2.2 on page 138. However,
as an approximation is only of use if the approximation error diminishes, the parameter § should be
upper-bounded by § € (0,d) x (0,d + 2) x (0,d + 4). To express this boundary on the parameter 8 in

terms of the damping parameter a, we find that

B = (Bo,B1,B2) € (0,2(a+1—0a')) x (0,2(a +2—0a')) x (0,2(a + 3 — o)),
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where we used the identity o = d/2 — 1 + o/, with o/ € (0,1). Consequently, the corollary is applicable in
a reasonable manner if the parameter ( satisfies the condition § € (0,2a] x (0,2(a + 1)] x (0,2(a + 2)].

The following two functions:

_1—6_””

_ ,—T)2
falz) = e and  gor(z) = (A —em)?

2plta e (67)

for a,7 > 0, play a crucial role in the forthcoming analysis, particularly in calculating the expected
value of the realized volatility. When comparing these functions to their one-dimensional counterpart,
as discussed in Bibinger and Trabs (2020, p. 18), we observe a dependency on the parameter a due to
the coloured noise in the multi-dimensional model. In order to apply Corollary 4.2.2 on these functions,
we need to verify them belonging to the class Qg and determine the corresponding parameter 5. The

following lemma serves this purpose.

LEmMMA 4.2.3
It holds: f, € Qp, and go,r € Qg,, Where

Br= (20,214 @),22+a)) and B2 = (20,2(1 + ), 2(1 + @)).

The proof of this lemma, being of technical nature, can be found in the last section of this chapter, see
Proof of Lemma 4.2.3 on page 138.

The preceding lemma demonstrates that we can apply the Riemann approximation from Corollary
4.2.2 to the functions f, and g, . from equation (67). Moreover, we observe that the error terms of the
first and second derivatives of g vanish at a faster rate in the Riemann approximation compared to the
function f. This is primarily due to the fact that the function (1 — e™*) converges to zero as * — 0,
whereas the function e™® does not. We will make use of this fact in the subsequent proofs.

The following lemma concludes the technical part of this section by applying the discussed Riemann

approximation on the functions f, and gq .

LEMMA 4.2.4
On Assumptions 4.1.1 and 4.1.2 it holds that

F(l — 0/) d=1 2 o
AN (M) = - > fa(w?n|lz]l3) dz + O(A,)
n « n d d/2 [e% 2 n 9
keNd 2 (7”7) / O/F(d/Z) lvlli=1 B,
ve{0,1}¢

where I' denotes the Gamma function. Furthermore, it holds that

I'il-da)
(=) P T (d2)

1 / / ,
AY2 Y aricn) = 5 (=7 +2(r + 1) = (7 +2)) =
keNd

d—1
_ f Gor (70 |2]12) dz + O(AL).
lylli=1 P
ve{0,1}¢
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In addition, we have

ra-do) B % , if d is even
d d/2 o —o . . ’
24(mn)?2a/T(d/2) 2<d+1>/2(dr—(zl)!!\/v)T(wn)d/2a' , if d is odd

The presence of the Gamma function appears natural due to the constraint o > 0 for d > 2. For the
proof of this lemma, refer Proof of Lemma 4.2.4 on page 140.

Now that we have addressed the technical details, we proceed with the analysis of the squared incre-
ments and, consequently, the realized volatility. As the upcoming proofs offer a deeper insight into the
structure of SPDEs in d space dimensions, we will not relegate them to the last section. The following
lemma initiates the analysis of the expected value of the temporal quadratic increments of X; based on

the spectral decomposition from display (62).

LeEmMMA 4.2.5
On Assumptions 4.1.1 and 4.1.2, we have

E[(A;X)%(y)] = o%2%e~Imvlh 2 D xesin®(mkiyr) - ... - sin®(7kaya) + T,
keNd

. . . ’
where 7, ; is a sequence satisfying >\ | 7, ; = O(A2 ) and

1 _ e—/\kAn (1 _ e_)\kAn)Q
MkAn) e 2(AA,) e

Di,k _ Ai/2+a/< e—ZAk(i—l)An>7 (68)

with o =1+ a—d/2€(0,1).

Proof. First, A;x, Bix, and C; are independent of each other, where i = 1,...,n and k € N?. Exploit-
ing the fact that (WX)ycya are independent Brownian motions, the Itdintegrals B; and C; i are also

independent and centred. Thus, we have

E[(AZX)2(Y)] = Z Z E[ekl (y)ekz (Y)AixklAixkz] = Z Z €k, (y>ek2 (y>E[Aixk1Aixk2]
kq1eNd koeNd k1eN9 kyeNd

Z Z €k, (Y)ekz (y) (E[Ai,kl Ai>k2] + E[Bi7k1 Bi7k2] + E[Ci,kl Ci,kz])
k1€Nd k2€Nd

Z eie(y) (E[Bi] + E[CPA]) + Tnsi,
keNd

where 1, 1= Y 1 ene €k (¥)ek, (Y)E[A; k, Aix, |- 1t6 isometry yields the following:

(i—-1)An,

2
E[B}\] = EK(;A;‘*/Z e Ne(-Da,—s) (e MeBn —1) dWSk) 1

(-1)n
_ f oA E[e (07080 5) (w17 s

97



4. Essentials of multi-dimensional SPDEs

e 1)2 |:1e—2/\k((i—1)An—s)

(i-1)An
|

0
1 — e=2Mcli—1)A,
_ 2 (1 _ —AkAn)z
g € 1+a ’
20.°
iA :
™ 1A, _
2 1_ 2 -a M (iBn—5) 10— 2y—a| L _oa(iAn—s) gl e
E[C; ] = 07X e ds = o“ A\ | e =0
’ 2k (i—1)A, 207
(i-1)A,

Additionally, we possess the following expression for the remainder r,, ;:
E[4; x, 4ix,| = (Q*AkliAn — e M (ifl)An) (e*AinAn _ eiAk?(iil)A”)EKf, ex, DolE, €k2>19]
(e_)‘kl (=1 An=Ai An _ p=Nig (i—l)An) (e—/\kz(i—l)An—)\kgAn e (i—l)An)

x E[{&, ex, o€, exy 0]
= (1= e Mabn) (1= e Mebn) e Qi PX)E-DAE (e e S(E, e, )]

Hence, we obtain the representation

“2(=DAn ] _ p=2MAn
2>\ll(+a + 2)\11(-&-04 ) + Tnyi

E[(AX)(y)] =0 ) ei<y>((1—e‘“A")21_e

keNd

= ()’22de*2?=1 KLyl Z <(1 . B*AkAn)Z 1—e

—2\(i—DA, 1 _ 62)\kAn>
keNd

+
2)\11(-&-04 2)\11(+a

x sin?(rkyy1) - ... - sin®(wkqyq) + Tri-

In addition, we define

D, R A1+a 1 —AkAn 2 1— e_QAk(i—l)An 1— e—QAkAn
i,k = n ( — € ) Q(AkAn)1+a + Q(AkAn)lJra

_ Alta (1 —e P 4 (1 — e Bn)2 (1 — e M2 —2/\k(i—1)An)

— (&

2(AkAp ) He 2(AkA, )1t

_ pdprar (Lo (e )2 o e,
n ()\kAn>1+oc Q(AkAn)lJ'_a ’

where o/ € (0,1). Then, we have

E[(A; X)?(y)] = o22de~IImvll Z D,y sin®(nkyyy) - - . . - sin®(7kgya) + T
keNd

The analysis of the remainder r,, ; remains to be conducted. Here, we have

Pni = D, € (Ve () (1— e Ma8n) (1 — e Mobn)em(a ) (DAEE e 9, ex, )0 ]
k1 ,koeNd

To demonstrate that Y7, 7, ; = O(A2"), we use Assumption 4.1.2. Under the conditions E[(£, ex)g] = 0
and supyena A\ TE[(E, ex)2] < o0, we can find a constant C' > 0 such that E[(¢, ex)3] < C/A* for all

98



4.2. Analysis of the quadratic increments

k € N¢, Consequently, given that (<§ , @k>r§)kENd are independent, we have

B A )

) 1 —e )
T = 2 (1 - e*)\kAn)2672)\k(171)An€i(y)E[<§,ek>19 2 )\1+a 672)\k(7«71)An€12((y).
d d
keN keN

Assuming the second alternative in Assumption 4.1.2, where ]E[||AE91+O‘)/2§||129] < 00, we can proceed with
the following steps. Exploiting the self-adjointness of Ay on Hy and employing the Cauchy-Schwarz

inequality, we obtain

2
—]E[ Z 1_6—)\kA ) —Ak(i— 1)An<§ evei(y )) ]
keNd
1— e Mxbn i a 2
_El /\(1+a e Ak(i-1)A, <A (1+ )/25,6k>196k(y)> 1
keNd
e~ An
Z )\1+o¢ ) e~ 2Muc(i=1)An [Z<A(l+a)/2§7 > ]
keNd keN

Applying Parseval’s identity yields

(1+0)/2 42 (1- e_AkAn)z e (i—1) A, 2
Tri <E[HA0 €||19] > e ¢ kDA R (y),
keNd k

Since we can uniformly bound the eigenfunctions (ex)yene, it is sufficient to bound the following expres-

sion:
n _)\kA) n
—22k(i—1)A,
Srecey LT S
i=1 keNd i=1
_ fAkAn)Q
_ _ ,—2XknlA,
C 2 )\1“1’04 _ e_QAkAn) (1 € )
keNd
EPpL G
keNd /\Ha (1 —e )
<C 1_e—>\kAn
Z )\1+a
keNd
Ak,
—onyrre S 12
n ()\ A )1+a’
keNd k=n

for both cases in Assumption 4.1.2, where we have used the partial sum formula of the geometric series

and a suitable constant C' > 0. Utilizing Lemma 4.2.4, we obtain

a/2 1— e whn d/2
A Z Owl)ire = Ay Z fa(AAp) = C +o(1),
keNd k= keNd
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4. Essentials of multi-dimensional SPDEs

with a suitable constant C' > 0. Hence, we have

inm=0@%,
i=1

which completes the proof.

The preceding proof reveals that the part of the decomposition from the temporal increments of X;, which
contains the initial condition A; y, is negligible. The order here, once again, depends on the damping

parameter a. By employing a trigonometric identity, we are now able to identify the expected value of

quadratic temporal increments, which is recorded in the following proposition.

Proposition 4.2.6
On Assumptions 4.1.1 and 4.1.2, we have uniformly in y € [§,1 — §]¢ that

’ _ F(l — O/)
E AAiA?2 =A% 2 Iyl n,i C)AAn
[( ) (Y)] n0 € 2d(7TT])d/20/F(d/2) +r s + ( )7
where o/ € (0,1) and a sequence r,; satisfying sup;<;,, [rn,i| = O(AY) and D Tni = O(AY).
Furthermore, rescaling yields that
n _ I'(l-—da) o
— 2o lryll Al-a
=g 2| = ey O

Proof. We begin by recalling Lemma 4.2.5:
E[(AiX)* ()] = o?e 1™V Ih T 4o,
where

T; :=2¢ Z sin2(7rk1y1) N -sin2(7rkdyd)Di’k
keNd
(2 1 — cos(2
_od Z — cos( 7T]€1y1) cos(2mkqyq)

D;
2 ok

keNd

d
— Z Dix + 2 2 (—1)! Z D; x cos(2mkj, yj,) - - -

keNd J1<...<ji<d keNd

keNd I=11<ji1<...<ji<d keNd

+(=1)¢ 2 D; x cos(2mk1yr) - - - cos(2mkqya),
keNd

for D; x defined in display (68). Furthermore, we define

%A@f<rwﬂ_a—aﬂgﬂO,

$1+O‘ 2x1+a
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4.2. Analysis of the quadratic increments

Note that ha r(2) = fo(z) — ga,-(x), where f, and g, . are defined in equation (67). By Lemma 4.2.3
we have hq ; € Qg, where 8 = (2a,2(1 + @),2(2 + «)). Hence, we obtain

AL Z Dix = Ay Z P 2(i—1) (McAn)

keNd keNd
1 0 d—1 )
_ d/2—1 2 1—a’
~ iy | 7 e @ = 3 [ sy sl da+ 0(AF),
24 (7n)4/2T(d/2) L (i-1) W= s, (i-1) 2 ( )
~ve{0,1}¢

and

d—1
A2 Z Z (—1)! Z ha 2(i—1)(Aln) cos(2mky, y5,) - - . . - cos(2mkj, y5,)

=1 1<ji1<...<ji<d keNd
d—1 ,
= 3| eswen (@l da + o).
lIylli=1 B
ve{0,1}¢

Thus, by using Corollary 4.2.2 we have

d—1
Z Dix + Z Z (-1)! Z D; x cos(2mk;, yj,) - ... - cos(2mk;,y;5,)

keNd I=11<j1<...<ji<d keNd
+ (=1 Z D; x cos(2mkyyy) - - - cos(2mkqyaq)
keNd
AY “
_ n /2_1h . d
T Jy * et
+ (=1 Z D; x cos(2mk1y1) - - - cos(2mkqya) + O(A,)
keNd
AY

e)
= ST ~a/omr 3o d/2—1h ) d O(A).
Qd(wn)d/21-‘(d/2) JO x a,2(171)($) T + ( n)

Utilizing Lemma 4.2.4 yields

_ F(I_O/) 1 - o/_ i e 1 i o
= T @3 (1 + 5(2(z D) —(1+26-1)" + 2(2+2( 1)) )

Therefore, we have with Lemma 4.2.5 that

E[(A; X)2(y)] = o2e—ln¥ls Qdéi)l;/(jajro(il)ﬂ) <1 + %(2(@ )Y - (1426 -1)" + %(2 +2(3i— 1))”")

+rni + O(A,)
v ole IYIhp(1 — o)

= A ~ni O An )
" A Rar(@gy) OB

where 7, ; includes r,, ; and the ¢ dependent term from the last display. For this i-dependent term we
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4. Essentials of multi-dimensional SPDEs

analyse the following expression:

’
(0

(=7 42+ 1) — (7 +2)Y) = T (= 120+ 1Y - L+ 2/7)Y).

N | =

As our objective is to ascertain the order of the preceding expression, we define

t(z) := %( — 14201+ 1/2) — (1 +2/2)~),

and have with y = 1/x for the inner term that
qly) == —1+2(1+ ) — (1 +2y)*.

Using Taylor expansion at yo — 0 we obtain

aly) = lim a(yo) +4d'(yo)(y — o) + %Q”(yo)(y —10)” + O(y*) = 2(1 — a")a'y” + O(y*),

where ¢(vo), ¢ (yo) %220, and therefore we conclude that

(1-d)a
22

+ 0(x3)> _ 2000 o3y — (e 2). (69)

ZC2_O‘I

t(z) = x“'(

Since 2 — o’ > 1, we have, with substituting = 2(i — 1), that
n 0 1
Dit(2(i—1)) = O(Z z2—a> = 0(1). (70)
i=1 i=0

Hence, we have by Lemma 4.2.5 that 37| 7, ; = O(A2"), which completes the proof. O

Regarding the preceding proposition, we can express the expectation value of the rescaled realized volatil-

ity as follows:

’

1 S . 2 _ 2 —|lkyl F(l — O/) . 1 jEeY
IE|:’I’LA%/ ;(Alx) (Y)] =0p¢ o 2d7rd/2F(d/2) + O(An )

Comparing this result to SPDEs in one space dimension, as stated in Proposition 1.2.1, where

E[R\/n(y)] = age_y"L + O(A,),
Vn VT

reveals some crucial differences concerning the structure of the random fields. In higher space dimensions,
we observe the appearance of the normalized volatility o3 and the curvature term =¥, which are trans-
posed from one space dimension. Furthermore, in higher dimensions, we obtain extra constants, among
others, depending on o’. However, the most significant distinction when working in higher dimensions is
that the parameter o/, resulting from the coloured noise in this model, influences the leading term on one
side and reduces the convergence speed of the error term on the other side. Note that the space dimension

d of the model primarily influences the constants within the leading term of the expected value, whereas
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4.2. Analysis of the quadratic increments

the order of the error term is exclusively determined by the parameter o’. This is because the spatial
dimension d solely serves as a multiplicative constant within the error term. Consequently, constructing
an estimator based on the method of moments will yield better results for small o’. Furthermore, setting
d = 2 yields the same result as shown by Tonaki et al. (2023). Additionally, the latter proposition re-
veals that the remainders 7, ; becomes negligible when summing over the squared increments. As these
remainders include the initial condition, we observe that the impact of the initial condition becomes

irrelevant when using the realized volatility statistic.

Assuming the parameters k € R, n > 0, and o/ € (0,1) to be known, an estimator based on the first

moment method of the rescaled realized volatility for the volatility parameter o2 is therefore given by

DN

2(1 d/2 /F 2 n
- (Z@F d/ ZAX Jellxyl, (71)

~2
y

introduce the following estimator:

Since the estimator 62 estimates the volatility parameter o2 based on a single spatial point, we also

1 & 24(mn) /T (d/2) Oy ¢
52 . 52 ._ 52 X)? uw I
7T o-n,"t - m j;lo.yj - nmAa F 1 - a ; ; A J 1 (72)
for spatial points y;,...,y,, € [0, 1—3]¢. We will investigate the asymptotic properties of these estimators

in the upcoming Chapter 5.

An important distinction between coloured and white noise is that coloured noise often leads to correlated
discrete increments, whereas we often find uncorrelated increments in white noise models. As demon-
strated in Bibinger and Trabs (2020), discrete temporal increments of a SPDE model in one spatial
dimension are already negatively correlated, despite the use of white noise. This circumstance implies
that we do not need to develop a fundamentally different theory, for instance, for proofs of central limit

theorems.
Nevertheless, by varying the structure of the cylindrical Brownian motion, we can expect a change

in the autocovariance structure, which now depends on o’. The following proposition investigates the

autocovariance structure of temporal increments for our multi-dimensional SPDE model.

Proposition 4.2.7
On Assumptions 4.1.1 and 4.1.2, it holds for the covariance of the increments (A;X)(y),1 < i < n
uniformly in y € [6,1 — 6]%, for all § € (0,1/2), that

Cov(AiX(y), A X(y)) =

- I'(l-da) a1 o
— glelIrylipc — 1% = (i — 4| —
ae Ay 20+1 () 420/ T (d/2) (2|z Jjl (li =34l =1)

—(li— 4]+ 1)"/) + 75+ O(A,),

where |¢ — j| > 1 and the remainders (r; ;); j—1,...» are negligible, i.e., ZZj:l ri; = O(1).
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4. Essentials of multi-dimensional SPDEs

Proof. We begin with the following expression:

Cov(A; X(y), A X(y)) = Z Cov(Airk,, Ajzk, ek, (¥)ex, (¥)
ki ,koeNE

Z COV(Ai,k +Bix +Cix,Ajx+ Bjx + C’7k)€i(Y)-
keNd

Since (<§, ek>19)k€Nd are independent by Assumption 4.1.2, we can use the independence of A; x and B; x

and analyse the covariance of the remaining terms. Here, we have, by the Itéisometry and i < j:

Efj’»k = (COV(Bi,ka Bj,k)

(i_l)An (j_l)An

P 1)26—Ak(i—1)Ane—Ak(j—l)An(Cov( J s dTk, J s dW})
0 0
(i—1)A, (i-1)A,
_ 0_2)\;04(1 o e—)\kAn)Qe_)\k(’H-j—Q)An(COV< f e)\ks dWSk, f e)\ks dWSk>
0 0
2y —a A2, A(i+i—2)A, DA s
=0\, (1—6 ) e " e ds
0

1 — e~ MxAn 2
= o2 (e~ MeAn =) _ = hu(i+i=2)An) (I-e )
- 2)\1+04

Kk

Therefore, it follows for 1 < 4,j < n that

(1— e xbdn)?

ZZ-B’-k = o2 (e—AkAnli—jl _ e—Ak(H’j—Q)An) - (73)
J 20,7
Next, we have Ef}k = Cov(Cik,Cjx) =0, for i # j, and we derive the following:
‘ iA, 2
Efj’k = ]].{j:i}(COV(CZ"k, Ci,k) = l{ji}02)\;a6_2)\k1An]El(J;-_1)A 6/\1‘5 dW;‘) 1
1— 6—2)\kAn
= ]l{j:”O‘ (74)

It remains to analyse the covariance of B;x and Cj k. Since Eff’k = Cov(B;x,Cjx) =0, for i <j, we

analyse the following:

Efjc’k = ]l{i>j}COV(Bi7k, Cj,k)
(jfl)A'n JAn
HJ(s) AW + J HE (s)dW¥
0 G-1)A,
(i-1)A, A,
+ f HE (s) AW,
A

= ]].{,L>J}COV<

H{\(s) de)
(G-1)A,
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; ; JAn AR
= Lo A (e7 8 — 1) e AT DA = A Bn Coy J s dW?ﬂJ NS Ik
(I—1)An (j—1)An
JAn
= ]l{i>j}0'2)\1:a (e—AkAn _ 1)€—Ak(i+j—1)An 62)\1‘5 ds
(i-1)An
22kiAn _ 22 (G—1)A,
2y—a(,—AkAp “Ae(itj—1)A, € €
= Ty jy0° A (6768 — 1) Ml =) -
i Akl _q
= 1jinjy02e A0 (Al _ o= Ak e 7 -

2)\11(+o¢

where ka and ka denote the corresponding integrands of B;x from equation (64) and C; i from
equation (65), respectively. Similarly, we have
S TAVIN |

BCk . CBXk . _ N T2 A ARG —) (AkAn o —AAn) €
Zj,i = Zi,j = (COV(CLk, Bj,k) = ]]-{z<g}0 e (6 e ) 2/\14—(1 .
k

For ¢ < j we obtain

Cov(AiX(y), A;X(y)) = Y. Cov(Aix + Bix + Cise, Ajxc + B + Cad)ei(y)
keNd
= D (B35 + 577 )ek(y) + iy,
keNd

where

Tij = Z COV(Ai,k,Aj,k)elzc(Y)
keNd

_ Z (efAkiA,L _ e*)\k(i*l)A”) (ef)“‘jA" o efAk(j*l)A")Var«f,ek>g)ei(y)
keNd

= T (e MAnl) e M) | MBI ) Var (€, ex0hg )R (y)
keNd

= Z e MkBn(i+5-2) (e‘”‘kA" — Qe MkAn 4 1)Var(<§,ek>19)ei(y)
keNd

_ Z e MBI+ =2) (o= NcAn _ 1)2Var(<£,ek>a9)€i(Y)~
keN¢

We use that the operator Ay is self-adjoint on Hy, such that —)\1((1+a)/2<§,ek> = <Af91+a)/2£,ek> and

derive the following inequality for the remainder:

w “Nedn _1)?
Ti7j < Z e*)\kAn(lJr]*Q)uE[(A£1+Q)/2<€76k>19)2:|6i(y)

keNd )\11(4-04
(1— e wdn)?

< CSHPE[<A1(91+Q)/2§,ek>?9] 2 o~ kB (i45-2) —
keN /\k

keNd

(76)
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Furthermore, for i < j we have

Cov(AiX(y), 0, X(y) = Y. (255 + 377" ek (y) + iy

keNd
AL i DAL (1— e MeAn)?
= o2 k§d ((6 MeBn (i) g Mu(i+i—2)An) DV

A G—) (Bn A € R — 1Y -
+e (e e ) STFa ex(y) +7ij
k
(11— kA, )2 MAn o= AAn) (= McAn _
e (et Y Gt it

keNd

2 2 Meliti2)A, (1= eﬂ\kA")Q
-0 Z ek(y)e— k(i+i—2)A, N i
keNd k

We define the second remainder as

2 2 Ae(i+i—2)A (1- eiAkA")2
Sij = T0 Z eie(y)e NelHIm2An oI+
keNd k

Using the identity sin?(z) = (1 — cos(22))/2, we arrive at

Cov(AiX(y), A;X(y))
(1 — e*)\kﬁﬂ)2 +1 — eMeBn — g7 2AkAn o= McAn

2 2 “AeAp (=i
-7 Z €ic(y)e A oNiFa + 805+ T
keNd k
L2 — e MAn Ak
kA, (G—
=0’ Z e (y)e ™ =) oI + 8ij + T
keNd k
B o 2~ MBn _ o220 _ ]
=o? Z el (y)e MeAnli=im1) oTFa + 855 +1ij
keNd k
L. —2AkAp _ 2 —AkAy + 1
_ _2Alta 2 (e~ MeAn(i—i-1) € € L
=—0°A ex(y)e + 8i5 + 1,
. keZN:d () 2(AcAp)tte I
o alta N 9 AkAn (—i—1) (1 _e_/\kA”)2
— o4 —AkLn Tl .. g
=—0 An k%(i ek(y)e Q(AkAn)1+a + Si,5 + Ti,5
(1A
= —og2elImylhi gL+ Z e~ MeAn(—i—1) H (1 — cos(2mkyy)) + sij + 74 -

keNd 2(McAn ) e =1

By defining the following expression:

(1— e xdn)?

Sip 1= e~ Nehnli=in1)
k=€ 2(AAp )1+

= ga,(jfifl)()‘kAn)a

we obtain that

(1— e Mwan)? d
«@

— eIyl A1+ —AlAn (j—i—1)
D T

(1 — cos(2mkyy;))
keNd 1

1=
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d
—o?e eyl A}L-HX 2 <Si,k + Sik Z (_1)l 2 COS(2ﬂkj1 y.jl) T 008(271-]6]1 yjl)) :
=1

keNd I<ii<...<jisn

Since we know by Lemma 4.2.3 that g, r € Qg, with 8 = (2a, 21+ «),2(1 + a)), we have with Lemma
4.2.4 and Corollary 4.2.2 that

N Z Ja,r(Mcly) = 5 ra—o) ( Lo +(1+ r)a/ - %(2 + r)“/>

d d/2
o () 2T (d/2) \ 2
- |, guralieiz) e+ 027,
lylla=1
~ve{0,1}¢
and
d
Af/ Z Z Z Ga,r (M) cos(2mkj, yj,) - - - cos(2mkj, y5,)
l= 1<ji<...<ji<n keNd
d
- j Gor (e [2]13) dz + O(AL™),
lvlla=1
~ve{0,1}¢

In line with Proposition 4.2.6 and with 7 = (j —¢ — 1), we have

Cov(AX(y), A; X (y))

B I'(l-—da) 1, . o RN
2 K, 1
—oteT A 24(7n)42a/T(d/2) (_ 5(] —i=1)T ()

+ Si5 + T+ O(An)

—;(j—i—i—l)a/)

It remains to show that > j=1(8i,j +1ij) = O(1). Therefore, we use display (76) and obtain

S S 2 A (i4i—2)A (1 - e_/\kAn)z
Z Sij+ 1) < Z oc°C Z e~ k(i+i—2)An NS
=1 Kk

i,j=1 keNd
L 1 — e kAn ?
n CsupE[<A1(91+a)/2§,ek>129] Z ef)\kAn(erij)( — )
keN keNd )\k

n — 2
<Clo® +su E[<A(1+a)/2£ e >2] ST e dwbali+i= (1— e hein)
h keIF\I) v Ok

)\1+a
i,j=1 keNd S

_ 2
1 —e AkAg, n .
)\1+a § e >\k(7’_1)An
keNd

> =1
]_ _ o= AAn = AknAg\ 2
_ C(a +sup]E[<A(Ha e e > e ) (1 ek )

=C (02 + supI|53[<14£91+0‘)/2£7
keN

14+ _ o= AA,
keNd >\ 1™
< C’<02 + supIE[(AgHaW{, e = 0).
keN keNd )\
Analogous computations for 7 > j complete the proof. O
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The previous proposition confirms that coloured noise alters the autocovariance structure. By compar-
ing Proposition 4.2.7 with the one-dimensional case, we observe that in multiple space dimensions, the
remainders vanish at a rate of A,,, instead of A;O’l/ % as observed in one space dimension, cf. Bibinger and
Trabs (2020, Prop. 3.2.). Furthermore, the autocovariance of the coloured noise process depends solely on
the spatial coordinate y € [6, 1 —6]¢ through the exponential term, which implies that the autocorrelation
is independent of the spatial coordinate. Consequently, the autocorrelation structure is determined by
the temporal distance or lag between increments rather than the specific temporal locations themselves.
Assume that n is sufficiently large, the autocorrelation of temporal increments can be approximated as
follows:

’
[e3%
)

. . . VAR AR . o 1, .
Py erlli— i) ~ —li= 31 + 5 (i =1 = 1) + 5 (i =31+ 1)
for ¢ # j. Using analogous steps as in equation (69), we obtain the following:

pax)ar (i = dl) = O(li = §1*72).

As o € (0,1), the autocorrelation diminishes as the lag |i — j| between observations increases. Further-
more, from the first derivative, we observe that the autocorrelation is monotonically decreasing. Thus,
the most substantial negative correlation is found at |i — j| = 1, where the autocorrelation takes the
value p(a, x),a (1) = 22'=1 _ 1. In the one-dimensional case with a white noise structure, corresponding
to o = 1/2, the authors Bibinger and Trabs (2020) demonstrated a similar behaviour. They found the
most significant (negative) autocorrelation occurred at consecutive increments, with a value of (v/2—2)/2.

Hence, this behaviour extends to multiple spatial dimensions.

Figure 4.2 showcases the autocorrelation of the temporal increments for a two-dimensional SPDE model
for a single sample dataset (left) and the sample mean computed across 20 generated datasets (right).
Notably, we observe a strong negative correlation between consecutive increments, corresponding to a lag
of one. Given that the pure damping parameter in the generated data is specified as o' = 1/2, we obtain
a negative correlation of p(a,x),a(1) = 212 1 ~ —3/10.

Assuming that the initial condition is a stationary normal distribution with (&, ex )9 ~ N (0, 52/(2A.7)),
the random field X; becomes a Gaussian random field. Proposition 4.2.7 provides valuable information
regarding the identifiability of parameters using temporal increments statistics such as realized volatility.
In a manner similar to one space dimension, it appears feasible to consistently estimate the normalized

/2 and the curvature parameter . In Chapter 6 we will demonstrate, that the

volatility o2 = o%/n
restrictions on the identifiability are sharp, which means that we can consistently estimate these natural

parameters.

However, when it comes to the damping parameter, which becomes significant in higher spatial di-
mensions, starting from two spatial dimensions in the model, Proposition 4.2.7 offers insights into its
identification. We observe that the pure damping parameter o appears in almost every component of

’
[0}

o, it is not evident how to extract information on

the leading term of the autocovariance. Except for A

o’ from the other terms. Therefore, the main approach for estimating o’ is to exploit the term A%l.

Moreover, by referring to Da Prato and Zabczyk (2014, Thm. 5.22), we can see that o’ governs the

regularity in time, which is reflected in the presence of Agl. Additionally, employing the Kolmogorov-
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2 4 6 8 10 12 14 2 4 6 8 10 12 14
Lags Lags

— Theoretical ACF — y=(0.3,0.3) — y=(0.7,0.7)
¥=(0.1,0.1) — y=(05,0.5) — y=(0.9,0.9)

Figure 4.2.: We show the theoretical and empirical autocorrelation of the temporal increments for a two-dimensional SPDE model
with the parameters 0y = 0, v = (6,0), n = 0 = 1, and o’ = 1/2. The samples were generated on an equidistant grid in
both time and space, with N = 10% and M = 10. In both panels, the coloured lines depict the empirical autocorrelation,
ranging from lags one to 15 in five spatial coordinates, while the theoretical autocorrelation is represented by the dotted
grey line. The left panel illustrates the autocorrelation of a single sample data, whereas the right panel displays the
sample mean of the autocorrelations derived from 20 sample datasets.

Chentsov theorem (Kolmogorov continuity theorem) and Proposition 4.2.6, we find that the temporal
marginal processes of X; are Holder-continuous of almost order /2. This property allows us to control
the roughness of the temporal marginal processes and, consequently, identify the pure damping parameter
o’ and hence, a.

Rougher paths of the temporal marginal processes are generally advantageous for parameter estimation,
implying that o' is likely to influence the asymptotic variance of the upcoming estimators. Hence, un-

derstanding and accounting for the value of o’ becomes crucial in obtaining reliable parameter estimates.

4.3. Simulation methods for multi-dimensional SPDESs

In Section 2.5, we discussed the simulation of one-dimensional SPDEs and introduced the truncation
method and the replacement method, as described by Bibinger and Trabs (2020) and Hildebrandt (2020),
respectively. In this section, we aim to extend these methods to the context of multi-dimensional SPDEs
given in equation (49).

We begin by discussing the truncation method for multi-dimensional SPDEs. Similar to the one-
dimensional case, the truncation method allows us to simulate an SPDE model in arbitrary spatial
coordinates, with any deterministic or normally distributed initial condition £&. However, it comes with
significant drawbacks, particularly in terms of runtime and the potential for introducing extra bias,
depending on the cut-off frequency K. These issues become even more pronounced when dealing with
multiple space dimensions. Despite these limitations, we explore this method due to its capability of
selecting spatial coordinates freely. The concept of the truncation method involves truncating the Fourier
series from equation (58) at a sufficiently large cut-off frequency K = (K1, ..., K4) € N, simulating only
the first K; Fourier modes, respectively, where [ = 1,...,d. Hence, it becomes necessary to simulate the

Fourier modes zy, for k € N, with k < K. As mentioned in equation (59), we can represent the Fourier
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modes using the following representation:
t
T (t) = e MUE ey dy + g/\]:a/zj e M(t=s) dVVSk,
0
where k € N. Assuming that (¢, exyg ~ N (g, 07) is normally distributed, we have
Elzw(t)] = e M p,
where t > 0, and for 0 < t; < to we obtain

Cov(xk(tl),xk(tg)) = E[zk(t1)xk(t2)] — eiA“(tﬁb)ug,

where
tl t2
El[z1(t1)zi(t2)] = e MBHIEE, e )3] + 02)\;“]}3[ J e~ Me(ti=s) gk J e~ Me(t2—9) dW,}‘] :
0 0

Hence, the covariance structure for the coordinate processes xy are given by

tq ta
Cov (zk(t1), zk(t2)) = e_)‘k(t1+t2)a§ + UQAkO‘IE[Je_Ak(tI_S) dWskfe_)‘k(tQ_s) dWSk]

0 0
ty

_ e*Ak(t1+t2)O—g + 02)\1:a€>\k(t1+tz)E[(Je>\ks dWSk)Q]

0
t1 ta
+ UzAkO‘E[ J e M(ti—9) dVVSk f e M(ti—s) dWsk]
0 t

ty
— 67Ak(tl+t2)o'g + 0'2/\120667)\1‘(“7%2) J€2)\ks dS
0
Meltr ) 0% [ Alta—t) _ Nltartn)
_ = Ak(ti+t2) 2 —Ax(ta—t1) _ —Ak(t2+t1
=e a€+2>\1+a(e e ),
k

where we have used the independence of ¢ and WX, for all k € N?. For arbitrary ¢,t; > 0 we conclude

2
Cov (aie(t), x(ta)) = e e+t g2 4 2)\01+a (e*)\kltzftl‘ _ 67,\k(t2+t1)), (77)
k
and
—2\t 2 o? —2)it
Var(mk(t)) =€ Uf + W (1 — e ) (78)
Kk

Thus, the coordinate processes are distributed as follows:

2
) < (e M, (1) ),
k
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4.3. Simulation methods for multi-dimensional SPDEs

where k € N?. Assuming that the initial condition is deterministic, we can deduce that xy is normally
distributed with a variance of o?(1 — e=2%) /(2\.**). Notably, the variance of the Fourier modes xy
is influenced by the damping parameter . A larger value of « implies a stronger damping and quicker
convergence of the variance towards zero, when k — o0. On the other hand, a smaller value of « indicates
a weaker damping and slower convergence of the variance. To simulate the Fourier modes xy, we have
fort =0,...,(n—1)A, that

t+A, ¢
Tic(t + A,) — mi(t)e B = 0)\1:@/2( J e~ Mt A=) gk _ o= McAn Je*)‘k(t*‘q) dW;‘)

t+A,
= cr)\l:a/2 f e et An=s) gk
¢

implying the following recursive representation:

1 — exp[—2XkA,]
207

N,

Tic(t + A) = zp(t)e MeAn 4 O'\/

with i.i.d. standard normals N; and xy(0) = (£, ex )y, where £ is either deterministic or normally dis-
tributed. Hence, the truncation method involves approximating the Fourier series of X;(y) using a cut-off
frequency K := {1,...,K}¢ where K € N, i.e.:

Xily ~ D ex(y)a(t).
kel

Note that we set K = (K, ..., K), since we want to approximate the SPDE model equally in each spa-
tial dimension. To simulate a solution of a one-dimensional SPDE, it is recommended to use a cut-off
frequency of at least K = 10°. This choice helps to prevent a significant bias in the generated data, cf.
Section 2.5.1. When simulating multi-dimensional SPDEs, it is reasonable to choose a cut-off frequency
of at least K = 10° as well, leading to (K + 1)¢ loop iterations. For example, in a two-dimensional case
(d = 2), Tonaki et al. (2023) performed simulations at 200 x 200 equi-spaced coordinates with a temporal
resolution of N = 103. With a cut-off rate of K = 10°, the simulation of one sample path took approxi-
mately 100 hours while using three personal computers. This highlights the computational challenge of
simulating multi-dimensional SPDEs with a large cut-off frequency K, as it requires a substantial amount
of computing power and time. However, the use of a sufficiently high cut-off frequency is crucial to ensure

accurate and unbiased simulations of the SPDEs.

This challenge motivates the development of alternative approaches, one of which is the replacement
method. The replacement method describes a simulation technique used to address the computational
burden caused by large cut-off frequencies. Instead of using the Fourier series with a large cut-off K,
the replacement method replaces the higher Fourier modes with some suitable approximations, cf. Sec-
tion 2.5.1 for the one-dimensional replacement method. Assume £ = 0 and equidistant spatial points
y € {0,1/M,... . (M —1)/M,1}¢ along each space dimension, i.e., y; =3/M = (ji/M,...,ja/M) and
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4. Essentials of multi-dimensional SPDEs

je{0,...,M}? =: 7. We define the inner product by

o = 12 Z Flyy)g(y;)elmilh,

jE€J

where f,g : [0,1]? — R. It holds that (ex)keas from equation (52) form an orthonormal system with
respect to the inner product (-, )y as, where M := {1,...,M — 1}¢. The clarity of this statement is
enhanced when considering the one-dimensional case, as demonstrated by Hildebrandt (2020), where it

is known that

2

M sin(mBk/M) sin(myk/M) = Lig_-y,

gMi

for 3,7 € Nand 1 < 3,7 < M. Therefore, with 3,y € {1,..., M — 1}¢ we obtain

M

2
(e, ey oM = i Z sin(rB1k1 /M) sin(my1k1 /M) - -
Jj1=0

% sin(mf ky /M) sin(mygka/ M)
0

HME

= L=y Lga=ya = Lip=m}:

Hence, we can express a solution X; as

Z U (t)em(y;), with  Un(t) = (Xt, em)o,m-

meM
Note that ey (y;) = 0, if m = (my,...,mq) contains at least one entry m;, which is either zero or M, i.e.,
my € {0, M}, for ale {1,...,d}. Using the Fourier representation, as given in equation (58), we have

Um(t) = D) zu(t)ew emdo.n-

keNd

Let k € N, then we can decompose the inner product by

2d
Cex em)o. M = 713 > nsm Tkyy;, ) sin(rmuy;, ) H<€kl7€ml>ﬂ M1

jeJg l=1

where é; and (-, )y a1 denote the respective one-dimensional orthonormal basis and inner product from

equations (2) and (39), respectively. As established in Section 2.5.1, we already know that

|<ék)7 e = 17

if k=m+2M or k=2M —m+2IM, for l e Ng, ke Nand m € {1,..., M — 1}. Therefore, the index
set Zp, is given by the following d-fold Cartesian product:

d
= >< Imzyl’

=1

where Z,, 1 denotes the one-dimensional index set from equation (40). Since z; 4 —x1, for all 1 e N4, we

112



4.3. Simulation methods for multi-dimensional SPDEs

have

Un(t) = Z zk(t){ex, em )9, M = Z z(t),

keNd 1€Zm

where z; denote the coordinate processes from equation (59). As calculated in equation (77), the covari-

ances of the coordinate processes, given by

2 2
Cov(zi(ts), mic(t;)) = 2)\Ul+oc (e—mz—mn _ e—xk(w)An) _ 2;1+a o~ Nicli—ilAn (1 — e mm(z,mn),
k k

are vanishing for A\goc ||k||§ being significantly larger than 1/Ay, due to the presence of the exponential
term. Therefore, the coordinate processes (zk(t;))1<i<n effectively behave like i.i.d. centred normal
random variables, with variances
2
o
Var(zk(t;)) ~ DYV
for a sufficiently large k € N%. Analogously to Hildebrandt (2020), we choose a bound L € N and replace
all coordinate processes (1 )xene, With k ¢ (0, LM)?, by a vector of independent normal random variables

(21)1ene with variance o2/(2079), i.e.:

Un(t)= Y, @@+ D>, al).

1€Zm 1€Zlm
1€(0,LM)? 1¢(0,LM)<

Since the normal distribution is stable with respect to summation, we can replace the sum of the normal

random variables with centred normal random variables Ry, ~ N(0, s2,), where

2

9 o
Sm = Z l1+a”
1€Zm 2>\1
1¢(0,LM)*
By performing analogous computations as in display (56), it is evident that the series in s2, converges.

In the one-dimensional case, as recalled in Section 2.5.1, a formula exists to precisely compute the one-
dimensional replacement variance, as shown in equation (41). One key advantage of this formula is its
closed form, which enables fast computation with minimal computational time.

However, in the multivariate case, the series becomes more intricate due to the additional exponent
1 + « and the squaring of the summation indices. This complexity renders direct application of related
series, such as the multiple zeta function or its extension, the multiple Lerch zeta function, impractical,
cf. Arakawa and Kaneko (1999) or Gun and Saha (2018).

Nonetheless, the outlook Section 7.2 proposes an approach for the exact computation of the variance
s2,. Consequently, we currently resort to numerical approximation methods to estimate the variance s,

given by

2

o .
Sm ~ 2 W =!Sm,
1€Zim 1
1€(0,K M)\ (0,LM)*
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Figure 4.3.: The figure shows a comparison between the theoretical expected values of the rescaled realized volatilities, as described
in Proposition 4.2.6, and their empirical counterparts (top row). The underlying two-dimensional SPDE model was
simulated on an equidistant grid in both time and space, with N = 10* and M = 10. The SPDE model parameters
are given by: Y9 = 0, v = (5,0), n = 1, 0 = 1, and &’ = 4/10, while the replacement bound was fixed at L = 10.
The results for different values of K are displayed in three columns: K = 20 (left), K = 100 (middle), and K = 1500
(right). The bottom row illustrates the deviation between the theoretical and empirical results.

where K > L, K € N denotes the cut-off of the approximation. The multi-dimensional replacement

method is then given by

Xi,(y;) = D) Um(ti)em(y;), where Um(ti)= >, a1(t:) + Run(i), (79)
meM 1€,y
1€(0,LM)<

where R (i) ~ N(0,3) denote the respective replacement random variables with the cut-off variance
Sm and t;41 —t; = 1/N, where ¢ = 1,..., N. In this numerical approach, the quality of the simulation is
highly dependent on the chosen variance cut-off K, as this cut-off effects the quality of the replacements
Rm. If K is selected to be too small, it will result in a negative bias in the simulations. Therefore,
it is essential to carefully select an appropriate value for K to ensure accurate and reliable simulations

without introducing any significant bias.

In Figure 4.3, we conducted a simulation of a two-dimensional SPDE model on a grid with N =
10* temporal points and M = 10 spatial points on each axis. The top row displays a comparison
between the theoretical expected values, as per Proposition 4.2.6, and the sample mean of the rescaled
realized volatility for three different cut-off values: K = 20,100,1500. The bottom row illustrates the
corresponding deviations between the theoretical predictions and the empirical outcomes. Notably, for
the case of K = 20, a significant negative bias is observed, while the bias diminishes as the cut-off

frequency increases.
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4.4. Proofs

To address the deterministic nature of the variance s, in equation (79), especially when calculating it
for a large K, we have implemented an option within the function simulateSPDEmodelMulti from
the R-package SecondOrderSPDEMulti®. This option allows for the utilization of the precomputed
variance sy, using the function variance_approx. This enhancement dramatically reduces runtime,
particularly in the context of Monte Carlo studies. Table 4.1 provides a summary of essential indicators,
including the minimum and maximum deviations, as well as the mean deviation, for three distinct cut-off
frequencies: K = 20, 100, 1500:

K 20 100 1500
min 0.0002015715 | 0.0001696648 | 0.0000496963
max 0.02098774 0.01734903 0.01579611

mean || 0.003906285 | 0.003148307 | 0.002716894

Table 4.1.: We present three indicators for quantifying the disparity between the theoretical and empirical results in Figure 4.3.
We illustrate the minimum deviation, maximum deviation, and mean deviation for each of the three cut-off frequencies:
K = 20,100, 1500.

While the bias decreases with larger values of K, there still exists a bias resulting from the approximation

of $m.

4.4. Proofs

In this section, we present the proofs for the spectral framework as introduced in Section 4.1. Additionally,
we include various other proofs from Section 4.2, one of which is the proof of the technical Riemann

approximation from Lemma 4.2.1

LEMMA 4.4.1
The eigenvalues and eigenvectors corresponding to the eigenvalue problem Agex = —Agek, for the

operator Ay from equation (50) are given by
d d V2
ex(y) = 292 1_[sin(WklyZ)e_"“””/2 and Mg = —vY + 2 <4i7 + 7r2k1217),
1=1 1=1
where k € N¢, Additionally, the following properties hold:
(i) Ay is self-adjoint on Hy,

(ii) ex form an orthonormal basis of the Hilbert space Hy from display (51).

Proof. We establish the eigenfunction and eigenvalue property of ex(y) and Ak, respectively, as defined
in equations (52) and (53). We begin by evaluating the action of the operator Ay on ex(y):

d d
0 0?

Aper(y) = Yoer(y) + O vim—ex(yrs - ya) +1 ) = ex(yi - - Ya)-

=1 ayl =1 5yl

5see: https://github.com/pabolang/SecondOrderSPDEMulti.
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4. Essentials of multi-dimensional SPDEs

Now, for a fixed Iy € 1,...,d, we obtain the following:
0
5, ek, ) = 29/ <COS(7T’€loyzo)7TkzoeM"y""/Q — sin(mhi,yi, e o o/? z0> [ [ sin(rhiyp)erv/
yzo
[ty
. d
— e~ FioVio/2 <cos(7rkloylo)7rklo - sin(ﬁk‘loylo);o> 21/2 H sin(mhyy;)e 92,
(s
and
0? . 1‘43120 ngﬂ—klo . 2,9 Iiloﬂ'klo
@ek(yl, ceyYd) = sm(wkloylo)T — cos(mki, 1, ) — sin(mki, yi, ) ki, — cos(mki, yi,) 5
0
d
« 6—510910/2211/2 H sin(wklyl)e_my’/2
(2o
Ki
= ¢ Flo¥io/2 (sin(wkloylo) (T‘) — 7r2k120) - cos(wkloylo)mowklo)
d
x 2%/2 1_[ sin(mkyy; e Fv2,
1=1
1#lo
Based on these calculations, we deduce the eigenvalue problem property as follows:
0 &2 Viy , Vig"
v, ——e€ Seee + e ey =e e o
gl ) el n) = )~ o2+ S it
d
+ e RioYio/2 <cos(7rk‘loylo)7rklo vy, — cos(mkiy yi, )7k, ’%77) 21/2 H sin(mkyy, e Fvi/?
(o
2
Vi 2,2
= ek(y)<— 47‘; - ]%77)7

which implies the eigenvalue equation Agex(y) = —Akex(y). Thus, we have established the eigenvalue

problem property as stated.

Furthermore, we will prove that the operator Ay is self-adjoint on the Hilbert space Hy. To demonstrate

this, we consider arbitrary functions f, g € Hy. Then, we have
Lo a0 d, o
<A19f7g>19 = J J ﬁof(yla""yd) + Z Vlif(ylw"?yd) +772 jf(yla"'ayd)
0 0 Oy -1 y;
d
X g(y1, -+ ya) exp [Z zyz] dys -+ dya
B d
*<f71909>19+ZVlJ J ( y1>~--,yd)>9(y1,~--7yd GXP[ZMM] dyy -+~ dya
) =
+TIZJ f (ﬁygf y1,~--,yd))9(ylv---,yd eXp[Zfilyl]dyl dya-
=1

=1
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4.4. Proofs

By employing Fubini’s theorem for a fixed Iy € 1,...,d, we obtain

f f<ayl0f(y1,...,yd)>g(y1,...,yd exp[i o -+
+nf J<anyl,...7yd))g(y1,...,yd exp[é |y
_ylof f(f <5yzo (yl,...7yd))g<y1,...7yd [i lyl]dylo>dy1...dyd
+”f J(J( 2f(yl,...,yd)>g(y1,...,yd exp[imyl]dyle)dyl...dyd

:J J viglh + nladys -+ - dyg
0 0

Using integration by parts and taking the boundary property of f and ¢ into account, we get that

d

1
0
vy Iy =, L <§yz [y, - 7yd)>9(y1, -+ > Yd) exp [2 ﬁzyl] dys,

=1

d
= v, [f(y1, 2 Ya)9(Y1, - - -, Ya) exXp [2 myz]]
=1 Yi,=0
d

0
—Vlof f z/1,~-~71/d)(a g(yh.-.,yd)) eXp[Zmyz] dyi,
d
—Vzof fyrs- s ya)g(yrs - - ya) eXp[Z ]modyzo
0 - d
:7VZOJ\ fy17"'ayd)<a g(y17"'7yd >eXp[Zﬂlyl] dylo
b
J fr, - ya)g(ys - ya) eXp[Z zyz] dyi,

and

2 d
nla = f( 5 y17~.~7yd)>g(y1,~.~7yd eXp[E zyz]dyzo

l =1

[(52110 Yi,- .- 7yd))9(y17 .-+ 1 Yd) €xp [Zd: ffzyz]]yloo

=1

0 0
—nfo (ayl0f<y1a---ayd)><a gy1,---,yd>eXp[ myz]dyzo

! 0
—nf (aylof(yl,m,yd)>g(y1,-~-,yd)e><p

/ﬂyz] Kl AYi,

-~
Il

M =

1

0 d 1
n[f(yl,---,yd)(ayg(y1,~~-,yd Jexp [ Y szz]]

o =1
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1 62 d
+ nf flyrs-- - ya) <ay29(y1, - ,yd)> exp {Z myz] dyi,
0 lo

! 0
+nf f(yl,---,yd)<ayl g(y1,---,yd)> exp [Zﬁzyz]mo dyi,
0 0

d
n[f(yl,.--,yd)g(yl,-u,yd GXP[Z zyz]mo

1 d
0
+77L f(yl,...,yd)<ayl 9(y1, - va) >eXp[2myz]mo dyu,

1 d
+77J fs- - ya)g(yr, - - -, ya) exp [zmyz]ﬁ?@ dys,
0

1 02 d
:77J;) f(yla"'7yd)(ayl20.g(yl7"'7yd)exp[z
d

[
g
j=
Il
o

fﬂyl] dyi,

=1
! 0
+2Vzoff(y1,~--,yd)<ay 91, ya) exp[ szz]dyzo
0

l
+*°J fyrs- s ya)g(yss - ya) eXP[Zmyz] dyi, -

=1

Combining both terms yields
1 02 d
vighy +nly = nf [y, ,yd)(Wg(yl, s Yd )eXp [Z yz] dys,
0 1o

=1
p d
+V10J f y17~~,yd)<a 91+, Yd) ) eXp[Zﬁzyl] dyi, »

and therefore, we conclude
d 1
(Ao f, 90 = {f,Dog)o + Z J J d ~—fy1,- - ya) |9y, .-, ya) exp
) & 0 ay ) )

+77121J J (a = f( yhm,yd))g(yh.~7yd)eXp[Zmyz

=1

Hlyl] dy: -+ -dya

P d
—<f71909>19+21/lj J fy17-~-,yd)(a gyl,---7yd)eXp Zmyl]dyl“'dyd
d

0
+772f ffylw-wyd <ay g(yla'”vyd)exp[zl’ﬂyl
=1

=1
= {f, Avg)v,

1 /4
(oW
<
=
o
<
QL

which demonstrates that Ay is self-adjoint on Hy.
According to the spectral theorem, the eigenfunctions (ex)yene form an orthonormal system in the

Hilbert space Hgy. Moreover, the orthonormal property of (ex)yene can be verified through standard
calculations. Let k,j € N¢ with k # j. Then, there exists at least one index ly € 1,...,d, with k;, # j;,,

118



4.4. Proofs

and we have

(ex, €9 = ZdJ J n sin(wkyy;) sin(mjiy) dyp - - - dya
=1

— QdJ f <J sin( Wkloylo)Sln(ﬂ']loylo)dylo> H sin(mkyy;) sin(mjyy;) dyy - - - dya.

=1
l#lo

By evaluating the inner integral, we find

sin (7 (ki — Jio)yi,)  sin (w(ky, + jlo)ylo)]l _o
=0

1
(ke . dur —
J sin(mki, yi, ) sin(mii, yi, ) dyi, [ 27 (ke — o) 27 (ke + o)

0

which implies that the eigenfunctions are orthogonal. Now, consider k, j € N¢, with k = j. Then, we have

(ex, exyy = 24 f f HSIH Thy)? dys - - dya
0

=1

_ Qd( L sin(mky)? dy)d
(5 ) -

demonstrating the orthonormality of (e )xend- O

Next, we proceed with the proof of Lemma 4.2.1.

Proof of Lemma 4.2.1. We begin this proof by making the substitution 212 = k:len, such that

AA, = w%zd]z? +An(§d] (Vi) —19()).
4n

=1 =1

Subsequently, employing the Taylor expansion with the Lagrange remainder, we obtain that

F(AAr) ( 2 ) <>\kA -7 nZzl> = f(w%i zf) +0O(A).

=1 =1

For k € N we define
ax = (g, -5 ak,) € Ri’ with  a, = \/Zn(kl +1/2),
where [ =1,...,d and

(a1, a1 ] := [ar, 1, ap, ] X - X [ag,1,ax,] < (0,0)%
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Note that |ay, — ag,_1] = VA,, for I = 1,...,d and ag := A}/z/Z. Moreover, by defining
f(x) := f(72nx?), we observe that

AY2 S F(nA) — j f(x?n |12]2) da
keNd VA, /2,0)4

© 0 0 0 d
= Ag/Q Z 2 f()\(k-l,...,kd)An) —J\/Zn fﬂn f<7f277121212> dzy---dzg
2 2 =1

ki=1 ka=1

= A2 Z Z f<7r A, Zkl>

ki1=1 ka=1

Ky ak d
’ZZJ J ‘ f(7r27]2212>d21"'d2d+O(An)
k}d=1 Ay —1 a

k1=1 kg—1 =1
0 0 Ay ak, d d

= Z 2 J f <f<7f2nﬁnzkl2>f(ﬂ2n22z2))le"‘dzd+O(An)

k=1 kq=1Y0k; -1 Akg—1 =1 =1
=] F@nA, [K[3) = £(7*n ||z]3) dz + O(A,)

keNd ¥ -1
- FVAL[K,) = f(llz]ly) dz + O(A,) =: T1 + O(Ay),

keNd v k-1

where |||, denotes the euclidean norm. Define the function g : R — R, with g(x) = f(||x]|,). Since
VA, k represents the mid-point of the interval [ax-1, ax], for a k € N?, we can apply a Taylor expansion
at the point v/A,k, leading to the following expression:

.
9(VAK) = 9(z) = g(VAK) ~ (9(VALK) + Vg(VAK) (2~ VAK)
1 T
+ 5 (2~ VAK) Hy (6 (z - \/Enk)), (80)
where Vg denotes the gradient of g, Hy the Hessian-matrix of g and &k € [ak-1,ax|. We introduce the
shorthand notation g;(z) := dg(z)/(0z), which represents the partial derivative of g(z) with respect to

z;. Then, we have

ax d
Vo(VAK) (2 — VALK dz = 3 gl (VAK) J f (51— VAuk) dzs - dzg
ak-1 =1 Ay —1 Ak y—1
d
= AN gI(VALK) (21— VALk) dz
I=1 Gk -1

Since every term in the Taylor expansion from equation (80) vanishes, we proceed by redefining the term
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T as follows:

7= Y f - VAT H ()~ VA dz. (81)

keNd Y ak-1

Additionally, the order of the term T} is analysed in display (86). For now, our primary focus is on the

main term, which we can express by

o0 0
A2 Z Z Tk, k) D) an Jf (71' r]Zzl)dzl ~dzg + O(T1 v A,)
=

=1

f J (nnzzl>dz1 -dzg

. fRd\[\/z LA lzll2) dz + O(Ty v A).
+ n/2,0 d

Before delving into the analysis of the compensation integral, defined by

7= f f(x? |12)2) da
RE\[VA, /2,00)

and the error term 77, we first examine a transformation of the main integral. To facilitate our analysis,

we employ d-dimensional spherical coordinates, which are reviewed in equation (57). Here, we have

0 0 d 0 /2 /2
J f f(n7r22212) dzl~-~dzd=f J f F(m2nr)|Ja dgg_1 - - - dey dr
0 0 - 0o Jo 0

/2

0 /2 /2
= f rdt f(m?r?) dTJ sin? 2 (1) dey - - f sin(pa—2) d@dfzf dpg_1.
0

0 0 0

For [ € N it holds that

sin'(z) do =

. vl (45)
JO Car(1+ )’

where I'(z) denotes the Gamma function. Furthermore, we obtain that

dj2—1

d—2 m/2 l -
EL S (x)dx:m

Thus, we have

LOC..‘LOO ( 2 )dzl 2q = %—irlii‘/(il/Q)Lwlef(ﬁznTQ)d”

A last transformation yields the following:

*oa 2 2 _ 1 © a7 _ 1 2421
L ri=tf(n nr)dT_Qﬂ'QT]JO <7T277> f(z)dz—wf f(x)dz
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| =
e UEI y
) A i e, '~
,\(7‘4 VAn/2 ] VA2 ’0,1)

oY

Figure 4.4.: Exemplary sketch of the different combinations for the sets B, in the three-dimensional space. The red dashed lines

represent an excerpt of the set [v/A,/2,0)%. The remaining space Ri\[\/An/Q,oo)d is separated into the different
disjoint sets B., given by the different combinations of ; as shown in the figure, where i = 1,...,7.

Finally, we have

d/2 1 0
g T d/2—1
An/Q Z f(/\kAn) = 2d71]_—‘(d/2) . 27rd77d/2 L T / f(l‘) de —T + O(Tl v An)
keNd
e 1 OO d/2—1
B 2d(7m)d/2r(d/2)L 2P f(2)de — T+ O(T) v Ay).

To analyse the compensation term Z, we initiate the process by decomposing the set R%\[v/A,,/2, o0)?.
Let v € {0, 1}\{0}¢, where v = (71, ...,74) and let ¢ (z) = iy va, j2)(x). With these definitions, we can

introduce the following set:
By :={ze[0,0)z1 e (n),...,za € ¥ (va)} < [0,00)%. (82)

An exemplary presentation for different combinations of B in the three-dimensional space is provided
in Figure 4.4. Hence, we can decompose the set R4\[V/A,,/2,00)¢ using the following disjoint union:

R{\[VA,/2,00)¢ = CJ B, (83)

[[vll1=1
ve{0,1}¢
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4.4. Proofs

which enables the decomposition of the integral Z as follows:

d
[z de = S fB £ |2]2) dz.
[Ivlli=1 v
ve{0,1}¢

-]
RI\[VA,,/2,00)¢

We now focus on two cases. Firstly, the case where ||y||; < d, and secondly, the case where |v||; = d.

In the first case, we assume that ||y||; = I, where l € {1,...,d — 1}. This implies that there exist indices
{ir,...,4} < {1,...,d} and {1,...,d}\{i1,..., 4} = {j1,---,Ja—1}, With i, = 1 for k =1,...,[, and
Vi, = 0for k=1,...,d—1. Moreover, we assume that 7; < ... <i; and j; <... < jg—.

Although we are integrating over an area corresponding to an infinite hyperrectangle, transforming
into d-dimensional spherical coordinates provides a convenient representation, facilitating the analysis of
the integral’s order. During the transformation into d-dimensional spherical coordinates, we can always

ensure that the angles ¢1,...,p4—1 are bounded by (0, 7/2), and consequently, we have

| f(?r2n||Z||§)dZ—0( | rd-lfw)dr),
B, VA, /2

where we used that the radius r is always greater or equal than +/A,, /2. However, given that | dimensions
vanish when integrating and as n tends to infinity, we can determine the order more precisely. Therefore,

we can always consider the transformation

x4, =rcos(p1), x4, =rsin(pr)cos(ez), -, x4, =rsin(er) ... -sin(pi_1)cos(pr), ...,
! d—2 d—1
xTj, =T H sin(pg) cos(@it1), -+, Tjy,, =T 1_[ sin(pg) cos(pa—1), xj,, =T n sin(pg), (84)
k=1 k=1 k=1
which allows without loss of generality to set i1 = 1,...,9y =l and j; =1+ 1,...j4—; = d, such that we

use a spherical transformation as recalled in equation (57). As we aim to specify the order concerning

the vanishing dimensions, we can bound the angles ¢1, ..., ¢, as follows:

k=1
VA, VA,
0 <z = rcos(pg) H sin(y;) < — ® arccos(0) = ¢y, = arccos <k_1)
=1 2r [ [;=y sin(gr)

A
< arccos <k\f"> < o < E,
2r [11-, sin(g1) 2
where k =1,...,land 1 <! < (d—1). Now, by rearranging the integration order using Fubini’s theorem,
we have
) o0 ) VA, /2 VA, /2 d
[ sentatyan= [ [ [ [T (e Y ) s, s
By \/Zn/Q \/Zn/2 0 0 =1
0 /2 /2 /2 /2
[ st [T e deda s
VA, /2 0 0 arccos(by) arccos(b;)
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4. Essentials of multi-dimensional SPDEs

where

\/Zn

Er=TEs
2r Hk=11 sin(¢g)

Note that we can use the following inequality for the determinant |Jy|:

7bl:

|Ja| < r?Lsin(pr)! " sin(pe) 72 - - - sin(gr_1).

By utilizing the identity 7/2 — arccos(xz) = arcsin(x) and the inequality arcsin(x) < zw/2, for = € [0,1],
we deduce that

/2 /2
[

arccos(by) arccos(b;)

/2 /2 /2
< rd-t J . J f dey Sin(gol)lfl e esin(py—1) dpi—1 - - - der

arccos(by) arccos(b;—1) Jarccos(b;)

T
2 (b1) arccos(b;_1) 2r sin(cpl) T Sin(¢l—1)

dpi—1---dgy

arccos

,,,d72ﬂ, /2 /2 /2 . .
= \/ZnT f " J f dgi-1sin(p1)" "2 -sin(pr-2) dpra - - dg

arccos(by) arccos(b;—2) Jarccos(b;—1)

1/2,.d—1-1
< CAY2y .

Therefore, we have

o0 1
| el aa - o(&{?f rd_l_lf(rz)dr> _ O(Aﬁ{QJ
5, VA2 va

Note that this order applies to the derivatives as well, i.e.:

rd_l_lf(TZ) dr).

n

1
J h(wn||z]12) dz = O(AZQJ rd_l_lh(rz)dr>, (85)
B,y \/Zn

where h = f, f', f”. Now, we consider the last case, where ||y][1 = d. Since the radius is bounded by
I{VA,/2}|2 = VdA,, /2, we can perform a transformation into d-dimensional spherical coordinates and
obtain the following order:

\/Zn/Q J“/Kn/2

d
J‘Bw f(”277||z||3)dz:J0 f(wzn;z?) dzy - dzy

2 2
< J|\z||2<mn/2 f(m*n]|z])3) dz

0

z€[0,00)?
VdA,, /2 /2 /2
< J rdilf(wzmﬂ)f J dpy -+ -dpg_1 dr
0 0 0
VA,
= O(J rdlf(rQ)dr>.
0
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4.4. Proofs

Consequently, the order of the compensation integral Z is given by

Z J f(x2n |2l1%) dz+o(f dlf(rz)dr)

lIvlla=1
~ve{0,1}¢

1 VA,
= (’)(llmai% ) AZQJ rd= 1= () dr v f rd=1f(r?) dr).
== VA 0

n

Regarding the error term 7T from equation (81), we observe the following expression for z € [ay.1, ax]
and k € N

d d
32
T J—
(2= VAR Hy@)o = VAK) = 35 3} (o = VEku) (1 = Vahs) 7o)
An d d 52 ) )
<T 2 2 g g nlel)
1=1[2=1
d dA d
<c(An > £ (wnlal3) + ”f'<7r2n|z||§>+An2z?f"<vr2nnz||§>)
l1,lo=1 2 =1
l1#l2
d
=C( ST S s e lel) + f’(w2n2|§))
l1 1l2 1
A, dA
<C<z '(w*nlall3) Z Z R AR f(w%z%))
ll 1l2 1
< Cdis, (|23 (2 nll2l3) + 1 (w2 nll2I13)),

where C,C’ > 0 are suitable constants. Hence, we have

Tl—O(Anf 22/ (|12]2) dz v A, f ’<|z||§>dz).
[VA,,/2,00)4 VA, /2,00)4d

Once more, through the transformation into d-dimensional spherical coordinates, we can deduce the order

of the Lagrange remainder T} as follows:

o0 o0
|Ty| = O(Anf rd+1|f”(r2)|dr v A"J Td1|f'(r2)|dr>
VA VA,

n

1 1
— O(An J;F AL (D) dr v A, J\F a1 (r2)] dr), (86)
n Ay,

which completes the proof of the first assertion.

We begin the proof of (ii) by establishing the following identity:

- 1
Hcos(ml) =
=1 2"

where x = (71,...,2,)" and C,, := {1} x {~1,1}"! with |C,,| = 2"~ ! and n > 1. We demonstrate that

cos(u'x), (87)

ueC,
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4. Essentials of multi-dimensional SPDEs

this identity can be derived using induction. For n € {1,2}, the identity is readily observed by utilizing
the elementary trigonometric identity cos(z +y) = cos(x) cos(y) Fsin(x) sin(y). Now, we assume that the
advanced identity holds for an arbitrary n € N. For n + 1, we consider x = (y, z) € R"*!, where y € R"

and z € R. Then, we have

1 1
— Z cos(u'x) = — (cos(u'y +2) + cos(u'y — z))
n 277.
ueChpi1 ueCy,
1
= o1 Z cos(u'y) cos(z)
ueC,
n+1
= 1_[ cos(xy).
=1
By utilizing equation (87), we arrive at the following structure:
Ad/Q
Af/z Z F(AAy) cos(2mk;, y;,) - - .. - cos(2mk;,y;,) = 5T Z FOKAR) Z cos(2mu’ (y - k);i)
keNd keNd ueC,
Ay ST (K,
keNd ueC;

where (y+k);;:= (kj,yjp, .-, kjy;) and {j1,...,5i} < {1,...,d} and I = 1,...,(d — 1). Furthermore, it
holds with u; € {—1,1}, i € N, that

e akjl aka
J 1271'21 1u1yhzh dZ _ A 2 J 127ru1y]1z“A dzjl J 127ruly“znA dZ]l

ax-1 Ay -1 akj, -1
/2 !
_ A H 127rak , Wil nl/ _ei27rakj171uiyjiA;1/2)
i l
(i2) Hz 1 %ilji i=1
N l l
_ n eiQﬂ'Zizl wiky; yj, n (ei‘”uiyjq‘, _ e_iﬂuiyfi)
(27) [Ty way; :
i=1 Wilj; i=1
/2 !
Ay ; 1 L s
= €127 Limy wiki v, (i2sin(ru;y;,))
D) 1 l 19 ]i
(i2m) [ T;2q wiyy, i=1

d/2
_ Ay H =1 Sln(ﬂ-yjz) 1271' 22:1 uikj, yj, ]
m Hz 1 Y4

Defining y;; := (yj,,.--,¥;) and x := x;; : R' = R?, where the i-th component (x;(x)); of x;(x) is

zero if i € {1,...,d}\{j1,..., i} or else the coordinate z;,, leads to

A2 e
Re (anl Z g(VALK) Z glmu (y'k)j,z>

keNd ueC;

7 Hl'—1 Yji 2 A2
= Re VA, k J L 127 Xy wivj, 2, dz
a1 yeo, 217 [ Tizy sin(my;:)

- LR ( ™ LLiesti Zfak g (VA K2 oA ”2dz)
UGCL

21 H _qsin(my;,) iena Jaie
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> e ( i >f[29<@nk>1<ak_l,ak]](27rx<u-yj,l)An”2)>

—177! ; )
ueC; 2 Hz‘:l Sln<7ry.7i keNd

=:Ty + T3, (88)

where F denotes the Fourier transformation which is given by
—ix "
FIA) = | rwe™tas,
R

for a f € L1(R?). Since we analyse functions f : [0,00)? — R the Fourier transformation is given by

integrating over [0, 00)¢. Hence, we define Ty := Zuec, Ty, T := ZueCl T3 u, where the components are
given by

1 l
s s i _
T2,u = Re ( HZil Yi ]:|: E g( \ Ank)]l(ak-hak] - (_1)lg]lej,l] ( - 27TX(U- : yj,l>An 1/2)>7

=
271 [ [y sin(my;,) keNd

l
Tsu = (—1)lRe( s Fizlyﬁ Flgls, ](-%X(u.yjl)A;l/?)),
27 [Ty sin(my;.) |

with B, defined in equation (82) and v;; € {0,1}%, where (v;;); = 1 if i € {j1,..., i} or zero otherwise.
Beginning with the analysis of the term T3, we have for 1 <1 < (d — 1) that

1y,
COKIEDY Re( iz f[glle](—2nx(u-yj,l)An1/2))

21T, sin(my;,)

ueC;
m iy s, 1 .
St [ ) 3 e eostemutuey, ) Taa )
i=1 SI\TYj; i, ueCy
m! H{ Yjs 1/2 1/2
= Hl;—;zﬂ;) JB g(z) cos(2my;, zj, A, 2y cos(2my;, 25, A, /2)dz
i=1 Ji i

l |
_Mfw fo jﬂn/QCOS(QWy'Z'A_l/Q)'”
[T, sin(ny;,) Jva, /2 VA,/2J0 S

VA, /2
X J g(z) cos(2my;, 25, A;UQ) dzj, -+ -dzj, dz, - -dzy, -

0
To simplify the notation, we introduce g(z1,...,24) = §(2jy,---+ 25, Ziys-- - %y, ). Moreover, we can
apply integration by parts to obtain
111l o0 ) VA, /2
T 1 1izq Vi, _
%f J J COS(Zﬂ'ylelenl/z)"'
[icysin(my;,) Jva.2 - Jva,2Jo

VA, /2
x L g(2) cos(2my;, 25, A, V?) dzg, - dzy dz, - da,

A}l/2 -177 o 0 VA, /2
_ 7;- H’L=2 Yji J . J‘ J COS(27TijZjLA;1/2) .
2 Hi=2 Sln(ﬂ-yjz) \/Z,L/Q \/Z”/2 0

VAL /2
X Jo GOVAL)2, Zjs ooy Zits Zis - oo s Zig_y ) €OS(2TY5, 20 AT Y2) dzj, - - - dzj, A2y, - - dziy,
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4. Essentials of multi-dimensional SPDEs

!
_ M JOC .. JOO Jﬁn/Q COS(QWijZleglm) .
[Ty sin(ry;) Jva, 2 Jva.2do

B2 / Sin(27ryj1 “h1 A;I/Q)
x Zj1 (Z) —1/2
0 27Tyj1 An

del cee del dZi1 cee dZZ'd_L.

By induction, we have

Il .
ZRG< T Lima f[gﬂBw,-,l](—QﬂX<u-yj,z)A;1/2)>

R = e
ueC; 271 [ [i—y sin(my;,)
NG
n
where we infer by a simple transformation, that

A%’f—l)/Q I—k+1 77! o © VA, /2
I = L Lizy b5 J f j cos(2my;, 2;, A, 2) -
2 [ sin(my;,)  JvE.2 JVA,2do

\/E7l/2
X f (g’zjk(\/xn/l...,\/Zn/2,zjk,...7zj,,zi1,...,zid_,)

0

0 0 l
f f GVE2, o VB[220 iy )iy odzi = Y T (89)
VA, /2 VA, /2 k=1

" sin(27y;, 2, A;l/Q)
27Tyjk A:Ll/z

- ASLlJrl)/Qﬂ.l—k Hi=k+1 Yis o0 ) 1/2
= T e cos(2my;, z5,) - - -
2k [ [;—p sin(my;, ) VAL/2 VAL/2Jo

1/2
8 J (glz]'k (\/Z"/Qv B \/Zn/2’ ijAiz/{ LR ZjLA'}zp’ Zipy e Z’id—l)
C

)

> dek e del dzil e dzidfl

X sin(2wyjkzjk)) dz;, ---dzj, dzy - dzy, . (90)
In order to determine the order of the terms I we proceed by re-transforming the integral as follows:

A(l+1)/2 o 0 1/2
- D D
Y VA2 IEL2Jo

1/2
X f g/zjk (\/Zn/2, ey \/Kn/Q,ijAi/Q, .. .,ZleTlL/Q,Zil, .. ‘7Z7;d—l) dek "'del dZ,‘l "'dzid1>
0

Ak/Q o0 0 VA, /2
o VA2 VA2 Jo

VA, /2
X JO g;]k (\/Zn/Q,...,\/Z"/27ij,...,Zj”Zil,... ’Zid—l) dek "'del dZ,’1 ~~dzidl)

Aﬁ/2 o0 o0 VA, /2
e I
N, )2 VA, /2 Jo

VA2 ! d—1
X f zjkf’((k: - 1A, /4+ Z ij + Z zi) dzj, -~ dzj, dz;, "'dzidz>
i=k j=1

0
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Ak/2 ) o0 VA, /2 VA, /2 l d—1
LN NN VA2 Jo 0 " é 7 j; ’ o nem o

Analogously to the determination of the error term Z, we transform into (d —k + 1)-dimensional spherical

coordinates and obtain with 1 < k <1 < (d — 1) that

ALFD/2 1
Ik = O(aln—k-i—l J\/Z rd_lf/('r'2) d’r), (91)

which implies

l A(l+1)/2 1
Z.[k =O<%J lef/(r2)dr>.

VA,

Next, we have

A1/2 l
n
(%)
o0 o0 \/Zn/Z \/Zn/Q

f J J J §(\/Kn/2,...7\/Zn/2,zil,...7zid_,)dzjl...dzjldzil~-~dzid_,
VA2 VAL/2J0 0

= Jl.

00 0
J J- g(\/An/27~--7VAn/27Zi1,--~7Zid,l)dZi1"'dzid,l
VAL 2 VA, /2

Utilizing Taylor expansion, we can decompose g as follows:

9(21,--~7Zd) = (Zj17"'7Zjl7zi1""?zid—l)

= G(VAL2, . N2, 20 2 )) + VG &z iy ) T (E = a)

l
= g(\/An/Q,..., VAn/Q,Zi1,-~-’2id,l) + Z g/zj-k(fh"'?ghzil?""Zidfl)(zjk — \/An/2),
k=1

where

D

P25, \/Zn/Q Zj,

0 \/Zn/Q ~ . Zjl

e 0z e —
V= [ Zu |, a:= , Z:= ,
ld Z’Ll Z’il
id Zig_y Zig_y

and &, ...,& € [0,V/A,,/2]. Thus, it holds that

Jy — fB 9(z) dz

RFR

< f G(VAL/2, .  NAL2, 25 2y ,) — g(2)] dz
B

RER

l
= / 22 - 12 — A, .
0( 2 L 17, (2l3)] - 125, — VA /2d)
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-o(va, kﬁ J, s i)

1
_ O(Ag+l)/2 Jf rd_l|f/(r2)| dr)

Hence, we have

1
n=| swaro(agr [ ripearn),
By, VA,

and therefore, we derive the following:

A(l+1)/2 1
T3 = (1) f g(z)dz + (9(” ; J rE (r?) dr) .
By, o VA,

To analyse the order of the term T5, we begin by distinguishing between two cases: [ being an odd natural
number and [ being an even natural number. Considering that the term 7% ,, corresponds to the Fourier

transform of the function

21 IWVAK) L g, 0] — (-1)'gls,

keNd

we can analyse the order of this term by adding the following terms:

2 g(\/an)I]'(ak-laak] - (_1)lg]]-B

keNd

l
= 2 IVAI) Loy g — (D9 (T, + Ly, ooy — Lva, j2.00)-
keNd

’Yj‘l

If [ is odd, we have

/N l /N
Z IWVALK) L (g s ) — (—1) !IHBW = Z IVARK) L (g ] — g]l(\/Kn/Zoo)d + g]l(\/Zn/Q,oo)dqu’”
keNd keNd

since we have disjoint sets. For the case where [ is even, we find that
2 IVA) oy g — (“D)'gls, = 3, 9(VAK) Ly o] — 9L (WA, j2.0)0
keNd keNd
+9 (Lya,/2me — 15,,,)

< Z g(\/an)]l(ak-hak] - g]]‘(\/xn/Q,oo)d + g]]‘(\/Zn/Zoo)dqu .
keNd v

Therefore, we decompose 15 for general [ = 1,...,d — 1 into the following parts:
1
m [Tic1 v,
211 ]_[2:1 sin(7y;,

1 l
+ Re ( ™ Hizl yjz‘

2l-1 Hézl sin(my;,

Tom < Re ( )]:|: Z g(\/znkﬂl(ak-hak] - g]l(\/Zn/Q,OC)d] ( —2mx(u- Yj,l)Ar_Ll/Q))

keNd

)f[gﬂ(ﬂn/z,oo)dum,.l] (—2mx(u- ym)AZm))
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=: Sl,u + S27u.

Furthermore, we define S; := > Siu, for ¢ = 1,2. Starting with Sy, it holds for ¢ € {1,2} that

ueC;

04 04 04
v = |F|l <||l=— d |F < |z |5 ) 92
8 F1a100) = |7 70000 < ot 1Fl000 < 7| o] o)
where we use x; # 0 in the last inequality, for j = 1,...,d and x € R%. Hence, we have
A, =2 Hl m 02
SZu_O< n 1=2 JJi ‘gl y )
2l+1yj1 Hé:l Sin(ﬂ-yji) a2:]21 [V&n 20 B L1
To compute the £ norm, we first obtain the following:
62 82
e N Zola) dz
‘ azfl [\/Zn/Q,OO) B'Yy,l ol [\/Zn/Q,OO)duB»ij 82]21
82
-| 2 g(z)dz,
(VB /2,0)5(0.VE, /2)) x [V, /2,004t 0%,
where z = (2j,,...,2j,, Ziys- -, 2iy_,). At this point, it is possible that none of the integration variables

Zjy, -+, %j fall within the range (0, VA, /2), or one to all of them. Assume we have 0 < k < [ of these
integration variable within the range (0,4/A,/2), then there are (,i) possible combinations to choose k
variables from z;,,...,z;. As each choice results in the same order of the integral, which is evident by
the argumentation followed by display (84), it is sufficient to analyse the order of the integral, where we
set the first k integration variables z;,,..., 2, € (0,4/A,/2). Hence, we have

l

82
78212» 9]1[\/&1/2,00)%37“

62
= .2 9
Ly f([\/&,/Z,OO)O(O,\/Zn/%)’X[\/Zn/ZOO)dl 6232‘1

2 £ (2l13) + f'<||z||§>dz>

(z)dz

—O( max f
k=0,...,l (O,ﬂn/Q)kX[\/Zn/Q)@)d—k

oe]

1
= O( max Af/zf rA=R T (2 2) A v f rAHLF (r2) dr
k=1,...,1 VA, VA,

n

1 0
v max AF/2 J rd=R=1 () dr v f ra=1f (%) dr>.
k=1,..., l VA VA,

n

Thus, we infer the following:

AP d—k+1 2 Ak 1 d—k—1 pr/.2
Sy = Sg,u—(’)( max J pA=k T2 dr v max 7J A A (8 dr),
ueZ:Cl k=o0,..... O+ VA, ( ) k=0,....0 @&+ VA, ( )
(93)

where we have used that y € [6,1 — §]¢. We commence the analysis of the term S;. Here, we find that

l
7 Hizl Yji

|Sl,u| = i ,
271 [ [i, sin(mryj,

)‘Re (REZNL rk (9(VALK) — g(2)) exp [2mix(u-y;,) "2A, 1] dZ> '

ak-1
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4. Essentials of multi-dimensional SPDEs

By counsidering display (80), we deduce

)"

keNd V-1

|S1,ul <

QZ%WI?W ' ( VALK (2= VA K) exp [2mix(u -y, ) 20, V2] d )\

l l
i 1
" ™ ll_L=1,y]l Re( Z J 7(z7 \/E k)THg(E)
2=, _y sin(my;,) e Ytk 2

x (z — VALK) exp [27ix(u- ;. )TzA, 1/2]) z)

117!
< ™ [ iz ¥
x 1 X
21 iz, sin(my;,)

l l
[Timy 95 D f (2 — VAK) T Hy(€)(z — VALK)

2t=1 H _y sin(my;;,) keNd

Re (_ Z ax vg(\/an)T(z—\/Enk) exp [QWiX(u.yjl) ZA~ 1/2]d )‘

keNd ¥ Ok-1

dz.

We employ a similar approach as for the term T}, given in the equations (81) and (86), for the second

integral, leading to the term
ax

171l .
T ll_[’:l Yii Vg(VAK) (z — \/an) cos [27rx(u Y DTzA, 1/2] dz
2 [ [iy sin(my;,) |hina Jawa

A, (P A, (P
+(9( 51 J P S rd_1|f’(r2)|dr).
. Va,

Employing equation (87), we obtain

‘Sl,u| =

(23

IAmU )
|Sl‘ < m Hi:l Yji

1., sin(ry;,) Vg(VALK) T (z — VARK) cos(2my;, 2, A 1?) -+ cos(2my;, 25, A,1/%) dz
i=1 Ji

keNd * @k-1

A A
+O< 5 J rTH 7 (r?)| dr v a r 1f’(r2)|dr>.
VA VA,

n

Let k € N, then it holds that

Vg(VALK) (2 — VALK) cos(2my;, zj, A Y2) - - - cos(2my;, 2, A5 V) dz

Ak-1

Z f q., (VALK) (21 — VAL kp) cos(2my;, 2, AT Y?) - - cos(2my;, 25, A7 Y?) dz.
=1 Yax-1

Firstly, for [ ¢ {j1,..-, 1}, we have

akj akj akj_
f " cos(2my;, 2, A1) dzy, - f " cos(2my;, 2,8, 1%) dzy, f (2, — VAR, dzj, =0,
akjl—l alcjl—l akjl_—l
since it holds that
VA, (k+1/2) ~ VA, /2
f x — Ank)dxzf z =0,
VA, (k—1/2) —VAL/2
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for a k € N. Suppose [ € {71,-.-,Ji}, then we obtain

A ; Ak ;-
J ' cos(27ryjlzj1A;1/2) dzj, J ' (25, — \/anj ) cos(2my;25: A, 1/2 ) dz;j;
ap. —1

Ak . —
kJ11

Al .
B J ’ COS(QWyjz 2 A;1/2) dzjl'

Ak . —
k]ll

For ke N and § € [6,1 — 8], we have

VA, (k+1/2) A ik sin(ri
J cos(2mgz AL Y?) da = VA cos( 7r;~gk’) sin(mj) = 0(A2/5),
\/Zn(i;:_l/2) ﬂ-y
and by a linear transformation we obtain that
\/Z7L(]~€+1/2) ~ \/Zn/z ~
J (z — VALK) cos(2mgaATY?) da = J z cos(2mg(z + VALK)ALY?) da
VA, (k—1/2) VA, /2
A, (7rg] cos(my) — sin(ﬂgj)) ) -
= o2 sin(27wky). (94)
Hence, we get for 1 <1 < d—1 that
AlHD/2
|Sll = O( Z Z |gz cos(27ry]1k;]1) COS(27ryji—1kji—1) Sin(QTrkjiyji)

i=1keNd
1

1 An
x cos(2myj, . kjiry) -cos(27ryjlkj,)}> + O( 5 f AL () dr v 5 fﬂ rd=L ' (r2)] dr)7

where we set y;, = y;,, = 0. It remains to determine the order of the series. Therefore, we use the

following identity:

sin(z1) cos(xg) - ... - cos(z,) =

1 .
1 2 sin(u'x),
ueC,
where x = (z1,...,2,) € R” and C,, = {1} x {—1,1}"~!. This identity can be proven similarly to identity
in display (87). Without loss of generality, we set the coordinates of the sine term to be ji, leading to

the expression

Z gzn VALK) sin(27k;, y;,) cos(2my;, K, ) - - - cos(2my;, ki)
keNd

21 1 Z Z gzj VA, k) sin (27r( (y-k)jJ),

ueCy keNd

where (y+k);;:= (kj,Yj,, - -, kjy;). By following similar steps as in display (88), we find that

AN gL (VALK) sin(27k;, g5, ) cos(2my;, k) - - cos(2my;,kj,)
keNd

fZIm 1/“1‘[”%1 Z k)1 -2 ATV ) = U + U, — U
= ng (ak-1,ak] ( 7TX( Y]l) ) =:U1 + Uz 3

-1
ueC; 2 Hi:l sin(7y;, ) keNd
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4. Essentials of multi-dimensional SPDEs

where U, := ZuECl Ui fori=1,2,3 and

1/2 11l
n T |~= y_h ’ 1/2
Uiy :=Im L f > gl (VALK —g,, 1 ]%x VDA, />7
" <2l—1 [Tz sin(my;) - L™ (nand] 955, 1w, 20y | ( (u-y;.) )

Al Hl‘:l Y [ 1/2
9l—1 Hl SZiH(Tl'y,‘ )]: g;jl ]l(\/KH/Q,OO)duBWN] ( 27TX(U. y_] l)A / )) )
1 Ji -

1/2 ! H 1 Y5 [ o
Vo = Im( =——F 9., 1B, ] —2rx(u-y; A, )
) 2= Hz‘:1 sin(my;,) L7 ( (u-y;) )

U27u :=Im <

By employing the inequality ||F[f][lc <]z, we obtain, for a ue Ci:

1 2
/ le 1 Y35, Zg ( ]_g/ ]lf d
-1, )
2l— 1Hi:1 Sln(ﬂ'yjl ot Zjp k-1,0k 21 L(VA./2,00)

AVl Hlf Y,
< Al 2[1@yﬂ¢%¢gﬁmmm@m.
2071 Ty sin(myy, ) oo JRE

‘U17u| =

L1 (R%)

Applying Taylor’s expansion, we find that

Al2

Uy < 20T iy s ZJ Vgl (67 (z — VAK)|dz.

2l— 1]_[ _q8in(7my;,) yione Jawa

Following analogous steps as for the term T}, we have for k € [ay.1, ax| that

V., (2)" (2~ Z aZ] 359 = VAuk)
<c¢&(fwmm@w%AWﬂ@+fw%W@n

and therefore, it holds that

A, A,
Ol =05 | 35" (> nlal3) dz + = Fanlalf) da)
[VAL/2,00) (VA,/2,00)¢

Ay (7 ©
_0(5([ P+ | ﬁ*ﬁwmﬂ)
VAL/2 VA2

1 1
= O(Al"f rdtL (2 dr v A(;l L/Zn rd=Lf(r?) dr).

Note that U; is of the same order as Uy . Using display (92) with ¢ = 1 we have for Us ,, that

)

(72
o 9L VA, 200708,
1

AT, v,
|U2,u| _ O( ™ Hz 2yJL
2! H _, sin(my;,)

Utilizing the order of the term Sy yields the following:

k/2+1 1 k/2+1
_ n d—k+1| g1y, 2 n d—k—1| p1/,.2
|U2(’)(k£r(1)axl 5 J\/Knr [ (r )\drvk%axliél f\/} r |f(r )|d7").

=0,..., =0,...,

n
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2

For the last term Us we have with the equations (92) and (85) that
177!
U3 = O ( Anﬂ-l ! Hi=2 y]z

o )
2! Hi:l Sln(ﬂ-yji) Ly

A 1 1
= (’)(ln (Aﬁlp J rA= L () A+ AY2 J
0 VA

1
T

P () dr)>

n A\/ZTI,
A%%—l 1 51/2-5-1 1
- O( 5 L/Z rd=H L () dr v = 5 L/Z T A (3 dr).

Hence, we find

AR/ 1 s AR/2HL (1 o
= _n_ —k+1| g2 2n —k—1)pr,.2 _
1= 0 max S [0y e S [ i) - 15

and

AY? Z F(AkAy) cos(2mkj yj,) - ... - cos(2mkjy;,) = To + T3 + O(A,)

keNd
1 (1+1)/2 1
Ay,
= (—1)l JB 9(z)dz + (’)<A£f+1)/2 J\/E rd+1_l|f’(r2)\ dr v —5 J;/Z rd_lf’(rQ) dr>
i n n
k/241 k/2+1
+ O max Ln/ o rd7k+1|f”(r2)| dr v max 77/ o rd7k71|f'(r2)| dr
k=0,.0 6FL A k=00 Ol )R ’

which completes the proof of (ii).
For the proof of (iii), we proceed in a manner similar to the proof of (ii). Firstly, for a v € {0,1}¢, with
Ivllh = d — 1, we find that

A2 Z FOAy) cos(2mkyyr) - ... - cos(2mkayq) =: To + T35 — Ty + O(A,),
keNd

where we redefine T; := ZueCd T; u, with ¢ = 2, 3,4, by the following:

1, v [
Ty = Re( =2 F IVAK) L (4 ] — 91 ] —2m(u-y)A, 2 )
" Qdfll_[lesin(ﬂyi) _kEZN:d e [VAn/2,0) ( )

Wdl_[(,ily- B s
foui=fte ey (2 v ] —27r(u-y)A, )7
e e (s, | 2ot

m? H(‘i 1Y 1/2
Ty := Re =l Flgl —2n(u-y)A;, ,
B <2d—1 H;‘i:1 sin(7y;) _g BW] ( (u-3) ))

where y = (y1,...,va4) € [0,1 — 8]¢. For Ty, we apply the same procedure as for S; in statement (ii) to

obtain

AlD/2 d
|T| = (9(5 Z Z |g;l(\/an)| cos(2my1ky) - - - cos(2my;—1ki—1) sin(27k;y;)

i=1keNd

1 1
x cos(2myir1kiz1) - - - cos(2mygkq) | + O An f AL ()| dr v An f A= ()] dr
o4 N o4 VA,
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4. Essentials of multi-dimensional SPDEs

A(d+1)/2
= (9< Z 9., ( VALK)|sin(2my1 k1 ) cos(2mysks) - - cos(27rydkd)>
keNd

An ! d+1 An ! d 1 2
+O<5df¢z P ) dr v S f L )|dr).

n

Furthermore, it holds that

Ald+D/2 Z 9., (VAK) sin(2mk1y1) cos(2myaks) - - - cos(2myaka)
keNd

1/2 d
= 3 (AT S (VA | 2rt A0 ) =000

ueC, 2d-1 Hi:l sin(my;) keNd

where we redefine U; := ZueCz Ui, for i = 1,2, 3, by the following terms:

1/2 dH
Yi
Uiw:=1Im i=1 [ g \/an]lala —-g. 1 ] 27 uyAl/z),
1,u (2d 11—[ ' sin(my;) k%\;d 11( ) (ak-1,ax] i1 F (VA /2,0)d ( ( ) )

U27u _ Im( 1/2 dHl 1Yi ‘F|:glz ]]-(\/Z 20)AUB ]( o (11 y)A 1/2)>’
2d— 1HZ 1 sin(my;) - e "

AT T v
Uz = —Im( =1 f[g’z_ 137](—2w(u.y)A;1/2)).
24 1Hi:1 sin(my; ) "

For the term Uj, Us and Us we obtain the same order as in statement (ii), resulting in

A, (H A, (1 _
|U1| _O<5d f\/g Td+1|f”( )|d’/‘\/ (Sd J;/i d 1|f/(7‘2)d7‘>,

n n

k/2+1 Alc/2+1
— n d—k+1| pr¢,.2 n d—k—1) p1/..2
U2 O(;c_é???é_l 5 Lz rT OOl dr v max, — Lz reE )Idr),

n n

Agld+l)/2 1 ot on A’Ezd+l)/2 1 )
ol = 02— [ Armlary 22— [ irear).
VA VA,

n

Hence, we have

k/2+1 Ak:/2+1
T = n d—k+1| gm( .2 n J d—k—1) p1(,.2 )
|T2| O<k_g}§}’>§_l 5ai1 LGr [ dr v max = T |f/(r?)| dr

For T3 we infer the same order as for Sy in equation (93) and have T3 = O(Ty). For Ty we set without

loss of generality that v = {1,...,1,0} € {0,1}? and have

e .. o VAL/2
Ty = M J cos(27rydsz,_Ll/2) f cos(27ryd,1zd,1A;1/2) .
[ L= sin(mys) Jva, /2 0

VA, /2
X J 9(z) cos(27ry121A;1/2) dzy - -dzg_1 dzg.
0
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Using analogous steps as in equations (89) and (91), we have

A1/2 d—1 o 0
T4=< - ) - f GVAL/2, . VDL2, 2q) cos(2myaza, ?) dzg

2 sin(myq) VA2
N
+(’)<5d J ’I“f/(’I“Q)d’I“>.
VA,

Integration by parts yields

©
TYd J g(\/Zn/Q, R \/ZR/Q, 2d) cos(27rydsz;1/2) dzq

sin(myq) N
A1/2 0
L [‘E](\/ZH/Q7 VA2, 29) sin(27rydsz;1/2)]
2sin(myq) N
A ” 0 VA VA 1/2
— n —g(VAL/2, ... VA2, in(2 A9 d
eEa e B (L /2,2) sin(2ryzads;2) dzg
_ O(A;ﬁg(\/&ﬁ, L \/Z,L/z)) — I,
where
A1/2 0 a \/7 \/7 /2
Ij:= ——— —a(VAL/2, ... VA2 in(2 ASY2) dzy.
d QSiH(ﬂ'yd> J;/Zn/z ang( / ) ) / ,Zd) SIH( TYdZdA,, ) 2d

Furthermore, we have

Al/Q 0 Al/? 1
I, = (’)( ; J zaf'((d — 1)An/4+z§) dZd) = O( g J Tf/(TQ) d’“)
'\/Zn/2 \/Z"L/z

and therefore, we find that

Ad2 (1
Ty = O(AY?F(A,) + O((;; Lﬁn rf (r2) dr).

Finally, we obtain that

d/2
AN F(NAn) cos(2mkiyr) - .- cos(2mkaya) = O(AY? f(An)) + O(A" r r f’(r2)d7‘>

keNd

AR/2HL o1 A2+ (1
+(’)<kmax = f =R () dr v max ——— f rdk1|f’(r2)|d7‘>,

=0,...d—1 0t Jx k=0,...,d—1 §d+1

which completes the proof.

Next, we present the proof of Corollary 4.2.2.
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4. Essentials of multi-dimensional SPDEs

Proof of Corollary 4.2.2. Let m € N and 8 > 0, with lim, o |h(2?)/z7?] = C < oo, for a function h.
Then, it holds

fb xmh($2) = O([mm_ﬂﬂ ]b> = (’)(bm_’g‘H + am_’B‘H)7

a m — ﬂ + 1la
for real numbers a < b and 8 # m + 1. Therefore, we have

VA, 1
f ri ) dr = (AR A, f riT () dr = O(A, v AFT2AI2)
0 VA,

1
Anf ,r,d+1|f/l(7,2)| dr = O(An v A%d+4*ﬁ2)/2)_
VA,

The first assertion is concluded by utilizing Lemma 4.2.1. Similarly, for 1 <l <d—1and 0 < k <, we
get that

A(l+1)/2 Jl

5 rd*lf’(rz)dr _ O(aszgH)/z v 571A£ld+27ﬁ1)/2)’

VA,
AR+ 1
;Hl f PR (2 dr = O (5 (FD ARZHL 54D Ad+4-82)/2),
VA,
k/2+1 1
A;Hl f rd=E=1) £1(2)| dr = (’)(6_(”1)Aﬁ/2+1 y 5—(l+1)A$Ld+2—,81)/2).
\/Zn

The proof follows with the subsequent identity:

AL S (Bn) = O(AFTI). -

Next, we proceed to prove that fy,ga,- € Qs, where Qg is defined in display (66).

Proof of Lemma 4.2.3. First, it holds that

L emcx 1 @ c @®
f — dz = [lxlmecz] + T J i Mem % dp
0 xr —m 0 —m 0
m—1

1 * u e —u c m—1
7mJ0 (c) e *du= 1_mI‘(Q—m)fc 'l —m), (95)

for m < 1 and ¢ > 0, where I'(z) = {”t*"'e~*dt denotes the Gamma function for z € C and Re(z) ¢
{0,—1,—-2,...}. Note that I'(1 + z) = 2I'(z). By utilizing equation (95), we find

0 —ca? 0 —cx (m—1)/2 1
e (& Cc m
L o dx:L W‘”ZQF(zg)v (96)

where m < 1 and ¢ > 0 and

—ex? — o0 —
joo L dz = v " (1- e_cxz) - JOO 22 e dy = —Lm 1)/2F Lom <,
0 rm 1—m 0 1—m 0 2 2 2
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4.4. Proofs

for 1 <m < 3, ¢ > 0 and a constant 0 < C' < c0. We begin by examining the conditions of the class
Qg for the functions f, and g,,,. First and foremost, both functions f, and g - are evidently twice
continuously differentiable. Here, we find

e " 1—e "
f&(ﬂ?) = rlta - (1 + Q)Wa
e ® 27" 1—e™®
1+«

g(/)z,T(‘r) = e_m(T+l)fa($) z gom’(x) - Tga,T('r)>

1+ 1+
gh(x) = —(1+ D)e " f (@) + e =TI fL (2) + 7&9@,7(%) - S (x) — 7, ().
Furthermore, we obtain
© > 1 o1ye 1
f e dx = 5‘[ x(m_ )/ e T = §F((m + 1)/27 1) < C, (98)
1 1

and

0 m+1 0 9 0
f x™(1 — e*w2) dz = [$ (1- ewz)] — J ™2 4y

1 m+1 ;. m+1)
gmtl 2 1% 1
- ey - r 1) <
-] - (a2 <0 (99)

if m < —1. Here, I'(z,5) = S:O t*~le~% dz denotes the upper incomplete Gamma function. For the left

limit, we obtain in general

1—e 2e~
L Yy e R (100)
and
}Ciﬂ% g << m<fb. (101)

Concerning the integration criteria for fo, we have by equation (97) that ||z~ fo(2?) 21 ([0,:0)) Since
1 < 1+ 20’ < 3. The integration criteria for the first and second derivative, f’ and f”, are established
based on the equations (98) and (99), since it holds that d —4—2a = —2—a’ < —1 and (d+1)—6—2a =
—3 — 2d’ < —1. Therefore, it remains to determine the parameters (g, 81, 32, which are associated to
f, f" and f”, respectively. Using the displays (100) and (101), we have f € Qg, with

Bo=2a, pf1=2(1+a), and f2=202+a).

Starting with the analysis of the function g, -, we find that

xmga’T(xQ) =3 2

1 e—‘rw2 6—12(T+1) 6—12(T+2)
220+a)—m — “p2(1+a)-m + 22(1+a)—m

2 2 2
1/1—e 77 1—e 7 (741) 1—e % (t+2)
< ¢ ¢ ¢ ) (102)

5 r2(1+a)—-m - r2(1+a)—m + r2(1+a)—m
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4. Essentials of multi-dimensional SPDEs

By using equation (97), we infer that |\xd’1ga77(a¢2)||£1([0)OO)), since 1 < 1+2a’ < 3. As for the integration
criteria for the first and second derivatives of g, -, we observe that the displays (98) and (99) apply to
each term. Therefore, it remains to determine the parameter 3. Here, for x50 Ja.r (2%), we have By = 2«
due to the displays (102) and (100). For the first derivative, we find, using display (101), that

_—a? —z2(1+1) —z%(1+2)
B1 7m2(7+1) 2\ 711)2(7'4*1) 1 € _ € _ €
v Jala7) = T T ey T ey SR G

1
xﬁl%gaﬁ(aﬂ) <we b =221+ a),

xﬁngoM(ﬁ) < < f1 = 2a,

and therefore 81 = 2(1 + «). For the second derivative, we get, by using analogous argumentations, that
B2 = 2(1 + «), which completes the proof. O

We conclude this section by presenting the proof of Lemma 4.2.4.
Proof of Lemma 4.2.4. Given that Lemma 4.2.3 establishes f, € Qg, and g.,- € Qp,, with 81 = (204, 2(1+

@),2(2 4+ ) and B2 = (2a,2(1 + @),2(1 + «)), we can employ Corollary 4.2.2 on these functions. In

addition, by utilizing analogous steps as in equation (95), we find

Ool_e—cx C’m—l
- T(2 —m), 103
| = - a=gre-m (108)

for 1 <m < 2 and ¢ > 0. Considering o = d/2 — 1 + o/, where o € (0, 1), and equation (103), we obtain
the following:

1 * 1—e®
N 2 (AkA,) = —f d4/2-1 dz + R,
W 2 Jo ) = g by ¢ a4
1 P _e®
= dz + R,
A J, e 4
1 (1 —a)
= . Rn ,
2T (d2) o
where
d—1
Rn,l - _ Z J f(7T2n||Z||§)dZ+O(An v Agld—Qa)/2 v Agld+2—2(1+a))/2 v Agld+4—2(2+oz))/2)
Ivlli=1 7B~
76{071}(1
d—1 ) ,
—= 3 | reale) e oar).
Ivlli=1 7B~
76{071}d

For statement (ii), we have

AZ/Q Z gan’(AkAn) =
keNd

e ""dr + Ry

1 JOO (1—e )
24(am)42T(d)2) Jo 221t
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1 0 e~ 7% 0 e—x(l-‘rT) 0 e—m(2+7—)
) [ [ e
2d+1(7-r77)d/21“(d/2) o rlto 0 rlta 0 rlta )

By using equation (95), we find that

F(l — Oél) ’ ’ ’
d/2 _ _ o _ a
AN gor(AAn) 2dH(7”7)(1/20/“(1/2)( 7421+ 7)Y = (24 7)) + R,
keNd
where
-1
Rysi= — Z J S all?) dz + O(A, v AU/, Ad+2-2050))/2 |, Ad+4-2(1+a))/2)
lli=1 =B
ve{0,1}¢
d-1 , ,
—= X | sl s ol ).
Iyl =1 B~
ye{0,1}¢

The proof follows by utilizing the following identity for half-integer arguments:

T'(n/2) = ("2;%7)1')'/\2/%
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5. Asymptotic for the volatility estimators

In the beginning of Part II, we initiated an analysis of the temporal quadratic increments of the multi-
dimensional SPDE model as defined in equation (49). By employing the method of moments, we derived
two estimators for the volatility parameter o2. The first estimator is given by

24 ()42 /T (d)2) &

~2 ~92 K
%@z%:7ﬂ”q_a ZAX el =i,

which can be directly inferred from Proposition 4.2.6. The second estimator is the robustified version of

&f, and is given by

6'2

3N

Il
Q>

d d/2 mo n
_ 2%(mn)*2a'T(d/2) Z Z eyl
m = nmAYT(1 — o) =4

The objective of this chapter is to establish asymptotic properties for the volatility estimators &f, and
&2, particularly proving central limit theorems. To accomplish this, we begin with a preparatory part in
which we demonstrate that the initial condition can be substituted with a stationary initial condition to
prove asymptotic properties. In the subsequent section, Section 5.2, we determine the variance-covariance
structure of realized volatilities with an extra rescaling term. Proposition 4.2.7 has revealed dependen-
cies between the increments (A;X)(y) at two distinct temporal points, rendering standard methods for
proving central limit theorems inapplicable. The authors Bibinger and Trabs (2020) demonstrated the
applicability of a general central limit theorem based on p-mixing schemes in their one-dimensional SPDE
model. More precisely, they used Proposition 1.2.4 for proving the CLT given in Proposition 1.2.3. In ad-
dition, we used Proposition 1.2.4 for proving CLTs for our novel estimators in Part I. For its application,
it is essential to bound the temporal dependencies, which is formalized in Condition (IV) in Proposition
1.2.4. In the third section, we extend these results to multiple spatial dimensions and conclude by prov-
ing a central limit theorem for the robustified volatility estimator 6y, ,,,, which implies a CLT for 62 (y).
Throughout this chapter, we assume that the parameters n > 0, o’ € (0,1), and x € R? are known since

both estimators rely on information about these parameters in the model.

5.1. Preparations

We begin this section by decomposing a temporal increment of a mild solution X, with a stationary
initial condition (¢, exyy ~ N(0,02/(2A.7%)). For any initial condition, we can utilize the spectral

decomposition similarly to Section 4.1, and thus we have A; X (y) = ) .na AiZkex(y), where

Aty = (e_A“iA" - €_A"(i_1)A"’)<§7 ex) + Bix + Cik, (104)
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5. Asymptotic for the volatility estimators

and B; x and C; x are defined as in equations (64) and (65), respectively. Having decomposed an arbitrary
temporal increment of the coordinate processes A;xi by separating the initial condition A;y from the
evolution in time, i.e., B; x, C; k, it is intuitive that only the term A; x changes when A;Zy is decomposed.
Furthermore, we proceed to analyse the term containing the stationary initial condition in equation (104).

Therefore, consider the following It integral:
0
H(t) := J)\;a/zf e Mk(t=9) (67/\“A" —1)dWk,
—0o0

where we extend the Brownian motions (W), cna to the whole real line for each k € N¢. We can directly
observe that E[H(t)] = 0. For two arbitrary time points ¢,u > 0, we find the following covariance

structure:
2 0 2
Cov(H(t), H(u)) = oA\ * (e A — 1) e/\k(”“)IE[( J eAdeW;‘) ]
—

0
_ _ 2 _
_ 0_2)\1(04(6 Ak, 1) e Ak(t+u)f €2>\ks dS
—00

o2

= 2/\11(4—(1

(e7AwbBn — 1)267)“‘“*“). (105)

Setting t = u = (i — 1)A,, we obtain

. o’ “AMeAn—Ak(i—1)A, “Ar(i—=1)A,\2 o’ —AkiA, “Ar(i—1)Ap\2
Var(H((z - 1)An)) = oA (e —e ) = oA (e —e )"

Therefore, it holds that
Ajse 1= (&, exdp (e M — e M=) — H((1—1)A,)

0
oA J ¢ M(=DB0=9) ((=MBn 1) gk,
—00

By comparing the term B, x from equation (64) with the integral representation for Ai7k, we deduce that

Ak = Aijx + Bix + Cix (106)
0
- 0/\1:a/2 J o Me((i=1) A —5) (e A — 1) dWk
—o0
(i—1)A,

+ oA’ J e MmN An=9) (o= Meln 1) AWK + O i

0
(i—1)A,

= a)\l:a/2 J e (=D An—s) (ef)“‘A" —1) dWE + C; x

—00

= Bix + Cix,
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where
(i—1)An
Bz‘,k — 0_)\1:04/2 J‘ e—kk((i—l)An-S) (e—)\kAn _ 1) dWSk, (107)
—0o0
AL |
Cix = oA\ ‘“/2f e~ Me(iBn =) ik, (108)
(i—-1)A,

Thus, (Aif( )(y) is centred, Gaussian and stationary. To prove a central limit theorem based on Propo-

sition 1.2.4 for the volatility estimator &va, we define the associated weakly dependent preliminary

triangular arrays as follows:

d d m
24(mn)2a/T(d/2) Z elwy;ln.

Eni 1= VnmAYT(1 - o)

In the following lemma, we prove that working with triangular arrays based on a mild solution with a

stationary initial condition, i.e.:

- 2d(7”7)d/2 'T(d/2) i Hﬁyg\ll

En,i i= JRmATT( — o) (109)

Jj=1

is sufficient.

LEMMA 5.1.1
On Assumptions 4.1.1 and 4.1.2, it holds that

fZ(AX y) — (AX)*y)) S0,

as n — o0.

Proof. We initiate the proof with the following:

(A (y) ~ (AXPE) = Y (Aidg Aidie, — A A, ) e, (Ven (v) = T = T,
kl,kQEN

where we define

T; := 2 (Ai,klfii,kg + Ao, (Bigs + Ciey) + Aises (Bige, + Ci,kl))ekl (¥)ex, (¥),
kl,kQENd

T, = Z (Ai,klAi,kg + Aix, (Bigo + Ciks) + Aieo (Bi, + Cz',kl))ekl (¥)ex, (¥)-
kl,kQENd

It remains to show that /m,, Z;;lTi RN 0, since this implies /m,, Z?=1Ti Eo. Here, we have the
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5. Asymptotic for the volatility estimators

following:

g i ( ] Ai,kek(y)>2 + 22 ( > Ai,kek(Y)>< > (Bi,k + Ci,k) ek(y)). (110)

keNd keNd keNd

Using Holder’s inequality, we obtain

; < Z Ai,kek(}’)> ] lz Z A7 kek ] +El2 Z Aix, Ai ko €Ky (y)ekQ(y)]

keNd i=1 keNd9 1=1k, koeN?
ki #ko

" n _ .
< CE Z Z Aik +E Z Z Ai,klAi,kQ(’/kl (y)€k2 (y)”
| i=1keNd a | li=1 kl,k2€Nd
ki #ko
[ n T [ n 9 1/2
gCE Z Z Aik +E Z Z Ai7k1Ai7k2ekl (Y)ekz(y) 1 ’
L i=1 keNd i L'i=1 kl,k2€Nd
ki #ko

where C' > 0 is a suitable constant. Let C¢ := supyena A “E[(€, ex)2]. With analogous steps as in

Lemma 4.2.5, we find

n

Z E[A127k] —i Z _Akm" — e M(imA ) [<§’€k>19]

i=1keNd

Z (e 1) e*2)\k(i71)AnE|:<€76k>129i|
KkeNd

Z )\1+a Z e Plimia
keNd
(1 e’
Ce a
2N e
1 — e kA ’
<Ce ). i~ o(an). (111)
keNd
Furthermore, we have
n 2
El 2 2 Ai»klAiquekl (y)ek2 (y) ]
t=1k, koeN?

ki #ka

Z D D aa e (y )eks(}')ek4(.Y)E[Ai,klAi,szj,ksAjm]-

1,J=1k; koeN? kg, kseN?
ki#ks  ks#ky

We assume that E[(, ex)y] = 0 from Assumption 4.1.2. Then, for k; = k3 and ko = k4, we have

n
“Ak; An)2 “Aky An)2
Z Z E[Aix, A, Ajio Ajie | = Z Z (1—e Mafn) (1 — e Matn)
4,j=1k; koeN? 4,j=1k; koeN?
kl#kz kl?&kZ
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5.1. Preparations

o oMy (145 -2)A A (i+ﬂ'*2)A"E[<§, ek, >129]E[<§, €xs >129]
_ 2 _ 2
co g Lo

- - Z ef()\kl +>\k2)(i+j72)An’
by +o¢)\ +a
kl,kQGNd k1 k2

1,j=1
ki #ko

where an analogous result holds for the case k; = k4 and ks = k3. By using the geometric series, we

obtain

n
S 6O ) 45280 1
(1— e—(AkIMkz)An)Q’
ig=1

and therefore, we have

(1-— e_)‘klA")Q(l — e_>“‘2A‘”)2

_ 2
NN (1= O P

YY) B AieAiaAiae] <C2 Y

3,j=1 ki ,koeN? ki koeNd
ki #ko
1— e Nadn) (1 — e M) )
2 ( _ 2«
< Cg Z )\1+a)\1+a - O(An )7
kl,kQENd kl k2

where we have used (1 — p)(1 —q)/(1 —pq) < 1 —p, for 0 < p,q < 1. For the second option in
Assumption 4.1.2, we use an analogous procedure as in Lemma 4.2.5. Here, we have with Cé =
Sren A TYE[(E, ex)?] < oo and Parseval’s identity that

Z"] D E[ALkIAi,szj,kSAj,M]g(g(}(;dE[Ai,k])Q)z

4,J=1k; koeN? kg, k,eN?
ki#ks  ks#ky

2 2
(ef)\kAn _ ]_)e*Ak(iil)A"E[Ké.v 6k>19‘:|> )

. 2
n (e Metn — 1)e (DA (L 1/2\ 2
) (Z ( NG NPE| 6 et )
i k

i=1 “keNd
. 2
1 — e~ MAn) 220 (i-1)A,
< (Z ( ALQ )( >, Ai*aE[<£,ek>%])
i=1 \keNd k keNd

(1 _ efAkAn)Q

2
< 0/2 — O AZO/ .
3 ( }: Ai+a(162AkA”)> ( n )

keNd

By using Markov’s inequality, we conclude with

g <kZN] Ai,kek(y))2 = 0p(AY).

We proceed to bound the following term:

2§n] ( > Ai,kek(y)>< > (Bl-,k +Ci,k)ek(y>>.

i=1 “keNd keNd
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5. Asymptotic for the volatility estimators

Utilizing the independence of A; i, Bix and Cy, we find that
l Zil (kEZN:d Ai,kek(Y)) (kEZN:d (Bi,k + Ci,k) ek(Y)) 2]
-y 1El( > Ai,k@k(Y)> ( > Aj,kek(Y))]]E[( > (Bi7k + CLk) €k(Y)> ( > (Bj,k + Cj,k) @k(Y))]

i,j= keNd keNd keNd keNd
= Z ( Z E[Ai,klAj,kz]elﬁ (Y)ekZ (y)> ( Z E[(Bi,kl + Ci,kl) (Bjyk2 + ijkz)]ek1 (Y)ekz (y)>
i,j=1 kl,kQGNd kl,kQENd
=) ( D E[Aik Ak e (¥)ew, ( )( > E[ k+Ci,k)(Bj,k+Cj,k)]€12<(Y)> = > Ri;Si;,
i,j=1 \ k; ,koeNd keNd ij=1
where
Riji= Y ElAik4k]en (¥)ee(y),
ki, koeNd
Si’j = Z E[(Bi,k + Ci,k) (BJ"k + C"k)]ei(y).
keNd

Assume the first option in Assumption 4.1.2 holds. Analogously to equation (111), we obtain that

2 (1 — e Pwin)? Alitj—2)A o
Rij= ), E[AixAjx]ei(y) < CCe )| B VeI " =0(A7),
k

keNd keNd
and therefore it holds that Z” R O(AY) and sup; i1 | Rijl = O(AY) as well as
SUDj 1, n 2y |Rij| = O(AY o'y For the second option in Assumption 4.1.2, we find

Ri;<C Z (L—eMafn)(l—eMatn) o~ (i (=DM, G-1) A

1+a)/2\ (14+a)/2
ki, koeNd )\l(<1+ / )\1((2+ i’

X ALTVE| K6 exdol [MLTPE 16 endol |
_ 7/\1(1 n — 7>‘k2A
—c Z (1—e J(1—e ')

1+a)/2\(14+«)/2
ki ,koeNd )‘fclJr / )\I(C;L /

L8] el | A8 6 el |

o (Mg (=142 (G=1) ) A

(1—e AklAn) G 1/2 (1 — e Me2tin)
_ (i—-1)A, (1+a)/2 2 - = )

=C Z 1+oz kl )\kl E[ ‘<£’ ek1>19| ] Z )\(1+a)/2

kieNd koeNd ko
_ N 1/2
e M (-1 AR )\Ej )/2E[ I3 €k2>19|2 ]
(1- e_/\klA”)2 “2, (i—1)A (1- e_)\k2An)2 “2, (F=1)A V2
< OCQ( Z B VETTEE ka (DA Z S VE T k2 (U1 ) )
kleNd kl k2ENd k2
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5.1. Preparations

and therefore, we have

1 — e McAn

/\11(+a = O(Ag )

n
Z R;; < CCé Z
1,j=1 keNd
Thus, we infer for both options in Assumption 4.1.2, that sup, ; [R; ;| = O(AY) and sup; Yoy |Rij| =
O(AY). For the term S; j, we obtain

Siyj = Z E[(Biyk + Ci,k) (Bj,k + Cjﬂk)]ei(y)
keN¢d

Y, (B4 sk Sl 27K ) ),
keNd

where we used the notation of the proof of Proposition 4.2.7, where
Efj’k = COV(Bi’k, Bj,k)7 ijC,k = (COV(BL](7 Cj’k), Efj’k = (COV(Ci’k, Cj,k).
Upon inserting the calculations of Proposition 4.2.7, we infer for ¢ < j that

S= Y (S5 55O y)

keNd
e o F<1 —a) 1, o N o
< —o2eImylipe ) P T (d)2) (— 5(] —i—1)" 4+ (j—19)" - 5(] —i+1) )
(1 — e Metn ?

L Og? Z e Mi(i+5=2)A,

1+a
keNd /\k

For ¢ = j we obtain

“AkAn)2 —2XkA —AKkA
_ Bk | vWOk\ 2 2 (1-e ) L—e ™ B\ o L —e 7 o
Si,i = Z (Zm +Zm )ek(y) < CU 2 < 2)\1+o¢ + 2/\1+a - CU Z /\1+a
keNd keNd k k keNd k
Utilizing equation (70), we find that
n n 1— —AkAn)2 L. , ’_
> RijSii<C ) < 2 Uoe ) T ) e_kk(m%m"’) (ﬂ{iij}Az ji—41"
i,5=1 i,j=1 \keNd >‘k
(1- e_)\kA")Q “A(i+i—2)A 1 — e xin
+ 2 (Te KA 1{i=j}W) +O(An))
keNd /\k /\k

0
= (’)(A?f" M Aff") = O(AZ),

j=1

where C' > 0 is a suitable constant. From the analysis above, we find that both terms in display (110)
are of order Op(A2"). Therefore, we conclude that /m, 37 T; % 0, which completes the proof. O
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5. Asymptotic for the volatility estimators

The preceding lemma demonstrated that
P
Vi, 2 ((A%)?%(y) - (AiX)W)) S0,
uniformly in y € [0,1]¢. Consequently, we deduce that

Z 571 [ gn 1 *) 7

as n — o0, which allows us to investigate a mild solution under a stationary condition from now on.

5.2. Variance-covariance structure

The purpose of this section is to explore the variance-covariance structure of the exponentially rescaled

realized volatilities, which are defined as follows:

Vyan (9) 1= — S(AZ)2 ()l (112)

for y € [6,1 — 6]%. Note that rescaling in V, o, (y) involves two terms. The term pA® rescales the
temporal intensity, while the exponential term el*¥ll' compensates the exponential term resulting from

the inner product (-, -)y.

Proposition 5.2.1
On the Assumptions 4.1.1 and 4.1.2, we have for the exponentially rescaled realized volatility in two

spacial coordinates y,,y, € [0,1 — 6]¢ that

’

Yo r'(l—a)o? 2 Al=o" Ao
COV(VP,An (Y1)7VP7A71 (YQ)) ]l{y1 =ya} <2d(7T77)d/2a/F(d/2)> 1+0 A'}L/Q v §d+1 vV

p p
Aifo/ a1 A:Loc'
+ O( D <l{y1¢y2}||Y1 y2||0( Y + 6+ ) v ])2>’

where Y, is a numerical constant depending on o’ € (0,1), given in equation (121). In particular we

have

Ta/ I'l—-d 0'2 2 —a
Var(Va,a, (v)) = =2 <2d(w;)d/2a/)r(d/2)> (1+O(A;L/2 v AL )).

Proof. 1t holds that

(COV(V A, (Y1) Vs <YQ))

2¢ellE(y1+y2)llh 2
- W Z Z €k, Y1)ek1 (y2)ek2 (yl)ekz(yQ)COV(A Ik1A T,, A; xklA xkz))

i,j=1 “kj,koeNd
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5.2. Variance-covariance structure

2¢ellr(y1+y2)lh
= T A200 Z €k, (yl)ek1 (yQ)ekz (yl)ekz <y2)Dk1,k27

pA%O/ k1 ,kQENd
where
1 & ~ ~ ~ ~
Dy, x, = , > COV((Bi,kl +Cig) (Bik, + Cisa)s (Bjsa + Cixy) (B, + Cj,kg))-
i=1

Consider (Zx)gene as independent standard normally distributed random variables, which are independent
of B;x. Utilizing equation (105), we can express B,hk as

Bix = Bix +

)

g kA, A (i—1)A,
e (¢ e A

Hence, we derive the following covariance structures:
5 BCk
COV(.Bl"k7 Cj’k) = (COV(BZ"k, Cj’k> = Ei,j y

COV(BLk, Bj7k) = (COV(B,;’k, Bj7k) + #(BiAkA" — 1)267)\k(i+j72)A"VaI‘(Zk)
k

_)\kAn 2 2
20 ~AkAnli—j Ar(iti—2)A, (e - 1) 4 “AkA, 2 Ak(i+j—2)A,
=0 (6 ) il - € K(472) ) 2)\1+a + 2)\1+a (6 ) - 1) € k(47 =2)
k Kk
_ - (e MeBn — 1)% e NeAnlizil —; 535k (113)
- 14+ = S
2L

where we applied equation (73). As Bi,k + C x is centred normally distributed, we can use Isserlis’

theorem to deduce that

p
Di s = = ), (E[(Bi,kl + Ciget) (Bjses + Cj,kl)]E[(Bi,kz + Cie) (Bjgeo + Cj,kQ)]
ij=1

D=

+ E[(Bi,kl +Cix,) (Bj, + Cj,kz)]E[(Bi’kZ +Cix,) (Bje, + Cj,kl)D.

For further reading on the Isserlis theorem, we recommend referring to Isserlis (1918). Assume k; # ko,

then we have

Dkl,kQ = E[(Bi,kl + Ci,kl) (Bj,kl + Cj,kl)]EI:(Bi,kg + Ci,kg) (Bj,kQ + Cj,kQ)]

S

<
Il
—

D=
=

D=

:M“

(if]’.kl + ROk pPOh ij’.“1> (if}kz + ROk pitke 4 Efj’.kz). (114)

S

<
Il
-

We proceed by calculating each combination separately. First, we use the following identity:

s Pl 1+
3 gliil =94 4, ,-14 (115)

i,j=1 (1 - q)2 1- q’
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5. Asymptotic for the volatility estimators

for ¢ # 1. Then, we have

D An N2 (=M An _1)2 P
1 Z ZB klZB ky _ 4 (e “ 4p)\11)+0(¢)\1+l;2 1) Z o= sy Ak ) A i

4,j=1 4,5=1

, (e Madn — 1)2(6—Ak2m _ 1)2 14 e (g i) A
4)\11(+a)\11(+a "1~ e O A AL
1 2

p!
X (1 + (9(1 A - e—(z\k1+/\k2)An))'

By utilizing equation (74), we obtain

=0

72/\1( An *2)\1( An
Ck Ck J(L—e?hafn) (1 — e Phadn)
- Z = Z Ig— 1}0 /\1+a/\1+a
4,j=1 i,5=1
(1= e P dn) (1 = =P An)
=0 :
DA
Using equation (75) and the identity
p _ . p+1
i—j pq q—q
Z Lisjq ™ = + 2’
o l—q (1-q)

yields that

1 Z 5Bk pBCk: _ 1 i 10! (e~ Madn 1) (e~ Madn 1)
=]

1+ay 14+«
pi,j:l 4)‘k1 >\k2

x e*(Akl kg ) A (i—7) (e)\kl A e~ k1 An) (eAszn _ e*Aszn)
—Ak;An ] Ak B _ 1
s (e i ) (e i 2 ) (Meadn =M An) (Mo Bn _ g Nan)
A\ +a)\ +a
—(Ak; FAky)A —1
e 1 2 p
X - e—(Ak1+Ak2)An (1 + (’)(1 AT o= Oy i) A ))

B ot ) Y e e e )
=0 JalFayl+a : 1 — o~ O thig) A
ki, ko

—1
p
X (1 + (’)(1 A - 6(>\k1+>\k2)An))'

BC ki ZBC ko

i,j=1

=0

The same calculations apply to X . As for the cross-terms, we obtain

- 2 EBkl EBCkQ+EBCk2)

i,g=1
1 & o? _ 2 _ . _ . _ e Mz Bn ]
_ = 2 —_— (6 Ay Dn 1) e~ Mk Anli—jl ]l{i>j}026 kg A (4 J)(ekszn —e /\kZAn) -
2/\ +a 2/\ +a
1] 1

2 ey A (=) { Ay A Ny Ay € 2B — 1

L —Ak nlJ—? k n __ p Ak n

+ Lyjsiy0e” "x2 (e 2 e k2 ) oITa
ko
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P

—Ak; An 20 A, Ay
4(6 Tt 1) (e 2t 1) Ao A, e, Ay L —(iey Ay ) A (i—5)
=0 e 2 n__e 2 n\| _ IL . ae k1 ko n J
4)\11(<1i>a)\11<<2i>a ( )p iél {7'>.7}
“Ak; An 2(o=AkgAn P
e Mt — 1) (em MBS — 1] _ 1 _ -
+J4( 4)\1+)a§\1+a )(emA” —¢ Asz%); Z Lyjuiye” M) n(G=0)
ki ke ij=1
—Ak, An 2 Ak, An — e FARDA,
— 0.4 (6 ki — 1) (6 ko — 1) (e)‘szW B e_)‘szn> e (A +Aky)
4)\1(1 /\k2 1 — e~ iy Ay ) An
-1
p
x(1+wOQJ\1_6_QM+MJAn))
N ) Clctmetet) PN S I
2 LCp— 2 n
o D (e e s,

pl
X (1 + (9(1 A - e—(/\k1+/\k2)An))

(7B 1) (et 1)
1+a (6 — ) —e(
201, “ Ak L—e

p—l
X (1 + O(l A 1 — o~ Oy i) A ))

N An )2 (e~ Mo Bn — 7Py B -
(el Y (e hel —1) A, 1P 1+O<1 A 2 ) ’
1 _ e—()\kl +)\k2)An

e_()\kl +)\k2 )An,

Akl +Ak2 )An

=0
2)\11(+a)\11(+a 1 — e~ Ay +Aky)An
1 2
and
p p 2 —2Ak, An
1 &BkivwCoka 1 g Ak Ap 2 e Ay li—j] 21—6 ko &2n
Y R A e L TP
P J J P 2/\ +a 2)\ +a
1,j=1 i,j=1 “"'k1 s
G 1>2(1 — e )
=0 .
1+ay 1+«
AT

Furthermore, the following cross-terms vanish:

1 & BOkwCk 1 & BOK Ok 1 & BOK wBOK

— E Ei’712‘7’2:7 E Dt bl e R— E Y oMY TR — (),
] ] J,t ] ,] J,

P55 =1 P5o

Inserting the auxiliary calculations into equation (114) results in

1 « <B.k BC,k BC.k C.k B,k BC.k BC.,k C.k
_ s K1 K1 s K1 K1 s K2 s K2 s K2 K2
D =~ ), (Em‘ LR T i W P )(Em R R M s I )
Pi=1
1 g < B,k B,k < B,k BCk BCk < B,k C.k BC,k BCk1\ B,k
_ = k1 k2 k1 ko k2 ki1 k2 k1 k1 k2
o > (Em' S T (B D) A RN+ (B ) S
=1
BC,k1 «BC,ks BC,k1 «BC,ks C.k1 & B ko C.k1wC ks
R R Y SRR R I T B M/ i s M )
4 (67)‘1‘1 An 1)2(67)“‘2A" - 1)2 1 4+ e~ Quy +Aip)An 0 p_l
=0 . 1 1A
4)\11(+a)\11(+o¢ 1 — ¢~ kg FAxy)An + ( 1— e—()\k1+)\k2)An>
1 2
Ay An 1) (o= AkpAn —22e, A
(P b e
2)\11(-1&-(1)\11{-2&-(1 1 — e~ kg +Aky)An
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pil
X (1 + (9(1 A 1 — o~y Ay A ))

(e M1 dn — 1)2(1 — e Pl

+
1+ay14+a
ANT NG
2
(e_>\k2An — 1) (e_kkl JAVN 1) 1— 672)\1(1 Ay
+ e*Akz Ay
2)\11("!‘0()\11(“-0( 1— e—(kkl +Ak2)An
1 2

Jr

(1+O(1/\

) (e—)\kl Ayn 1) (€_>\k2An _ 1) (1 — e 2 An)(l _ 672)\k2An)

4)\11(-1*—01 )\11(2-0 1 — e~ kg +Aky)An

pl
X (1 + (9(1 A - e—(/\k1+/\k2)An>)

(e—Ak2An - 1)2(1 . 6—2/\k1An)

+

p

-1

1 — e~ iy Ay ) An

N
(1 _ e—2>\k1An) (1 _ e—2>\k2An)
)
L (et - 1)2(6—/\1‘2% _ 1)2 1+ e~ +Aiy)An
-7 ( 4)\11Ja)\11$a (1 — = Oy kg ) An
efkklAn (1 o 672/\“2A") ) ef)‘sz"(l _ 672)‘1‘1 An) 9
+ 1 — =g FAip)An R Y N + 1 — =g +hip) A T M An g
(1 _ 672)“‘1A")(1 . 672>‘k2A") 9

1 — e~ Ay FAky)An

(e—,\klAn . 1)2(1 . 6—2/\sz“)

' (e M8 —1) (e Mo B —

(e—,\k2An . 1)2<1 . e—2kk1An)

+ +
ANTONTe ANTFONTe
(1— e 2w dn) (1 — =2 ) p!
+ Aoz ) (1 + 0(1 N o= ) An
1 2

Using the identity (e2* —1)/(e* — 1) = e® + 1, we have

)

Dk17k2 =0 4)\1+o¢)\1+a
ki “k2

— 92— Ak Bn (e—Aszn + 1) — 2 Ak An (e—)\kl An 1))

1—e(

Ak +Akqy VA,

+ 1 — e~ Qg +Aky)An
. (67/\k1An o 1)2(1 . 672)\k2An) . (67/\k2An o 1)2(1 . @*ZAMA")
BYONE DN
(1— e n) (1 — e=2Ma )
+ 4/\11(+a)\11(+a ) X <1 + (9(1 A 1 — e 0w i) A, ))
1 2
. (e_xklAn _ 1)2(€—Ak2An _ 1)2 3 o= (g +Aiy) An
-7 ( 4)\11;‘1)\1:’0‘ ' 1 — e~ Qg FAi) Ay
(e~ M dn — 1)2(1 — e Paln) (e Mabn 1)2(1 — e )
+ [e% [e3% + [e% [e3%
g N g “Ne
(1— e ln) (1 — e=2Maldn)
e M)
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s ( (el — 1) (e MaBn — 1) 3 o= (i thia)
fr—t 0’ .

4)\11<<1i>a)\11(<2i>a 1— e—(>\k1 +>\k2)An
(1= e Made) (1 e M)

l+ay1+a
AN AN

+ (L= e M) (14 e M) 4 (1 + e Matn) (14 e*sz")))

pl
X (1 + (9(1 A - e_(>\k1+>\k2)An>)

4 (6_>‘k1An — 1)2(6_’\1‘2An - 1)2 4 — 2e= M H i) An
(1 _ e—)\klAn) (1 _ e—)\szn)
ANTFONF
+ (1 . e*)\kQAn) (1 + efx\klAn) + (1 + e*)\klﬁn) (1 + e*AkQAn)

-1

_ " Ay An D
7(1*6 Ak A )(176 Ak, A ))) X <1+O(1/\ 1—6_(/\k1+)\k2)An)>
4 (eiAkl A, 1)2(67/\k2An _ 1)2 4 _ 26—()\k1 +)\k2)An (1 _ 67)\1‘1 A,,L) (1 _ 6—/\k2An)
-7 < 4/\l+a)\l+o¢ . 1-— 67()‘1‘1 +Aky)Ap + 4)\1+a>\1+a
k; ko X, ko

+ (1= ety (14 M)

=0

+

(et (1 eete)

1
y 2<2 _ (1 . e—)\klAn)(l — €_>\k2An))) (1 + (9(1 A T e(fk1+>\k2)An>>

L (1= efAklAn)2(1 — eﬂszn)z ] (1= e Mdn) (1 — e Man)
=0 2)\11{+a)\11(+a . = e_()\kl +>\k2)An + )\11(+a)\11(+a
1 2 1 5

p—l
x (1 +0(1 — e(AkIsz)An)).

Recalling the calculations of the covariance yields

Cov(Vp,a, (1), Vpoa, (v2))

2€H"€'(Y1+YQ)H1O-4 ~ p—l
N Z ek (Y1) ek (Vo) e, (V1) ek, (¥2) Dy ks (1 + (’)<1 A ! T vy )>
Pan ki koeN? — e~ iy Ay
ki #ks
2¢ellr(y1+y2)llh
o 2 k)ek(v2) Dicke
p=n keNd
where we define
_ (1- e—AklAn)2(1 - e—Ak,,An>2 1 (1 — e Maln)(1 — e Maln)
Prates = Itay 1+ ' Moy T hig) A Tra\1+ (116)
2)\k1 a)\kza 1 — e= (Mg +Asp)An )\kla/\kza

Regarding the remainder, we utilize the inequality (1 — e~ @*¥))=1 < (1 —e=*)"Y2(1 — e7¥)~ /2. For a

sufficiently large p, we deduce that

1 Z Dk17k2
2A20z' 1— —(Aky F Ak )An
e 1 2
p n kl,kQENd
ki #ka
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5. Asymptotic for the volatility estimators

1 (1 _ e—AklAn) (1 _ e—/\kZAn) ) (1 _ e_/\klAn)l/Q(l _ €_>‘k2An)1/2
prAZ kkze N 20N " 20 A
ki #ko
3 (1 — e=hetn) /2N 2

Thanks to Lemma 4.2.1 and Akoc ||k\|§, we obtain the convergence of the series, such that

1 Z Dy, x, _ (’)( (A1+d/2 1+a//2 Z V1— e Miln )2)
PRAG ey Jogenvd 1T e (it i) AR o AT A TR
ki #ko
A V1= e B 1 \2
Ad/2 Z )

p2 n kENd AkA )1+d/271+04//2 ||k||g/

o( (
(5 s 5, )
(5

S}

2 L, ()12

. ( L ) ) _o(azp),

O

&)

p

where we used o = d/2 — 1 + o/, for o/ € (0,1). For small p we always obtain a bound of order O(p~1!),
such that

1 _ p*l 1 Aga’
pAZ ) kZNd ek, (Y1)ex, (Ya2)ex, (Y1) ex, (¥2) D, ks - 0<1 AT e_(Ak1+>\k2)An’> = O(p (1 A= ))
1,K2€
ki #ko
Thus, we find
2€‘|H'(Y1+3’2)H104 -
COV(VPA" (¥1): Voa, (Y2)) = T pA Z ek, (Y1)ex, (Y2)ex, (¥1)ex, (¥2) Dk, ke
" kl,k2ENd
ki #ko
2@””'()’1+YQ)H1 9 ) 1 A:la,
B I GO CL O(p(l = )).

keNd

For k; = ky = k, we have

7D

=

(E[( i+ Cix) (Bjx + Cj, )] [( id + Cix) (Bjx + Cj, )]

I
"=

.

TR ¥ LR ITEeR))

B[ (Buac + Cua) (Brac + G|

{Sa M

2
Bk , «BCk , wBCk | «Ck
(Em MR R R PR )

B

<
Il
-

VI TBIw TBIN

2 2 2 2
&B.k BC,k BC.k C.k SBk [(«BCk BC.k & B kwC,k
(zm.) +(2m. ) +(zj_¢. ) +(2m) + 257 (zm + 50 )+22m. =G

:M“

B

<
Il
—
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5.2. Variance-covariance structure

4 & a2 BCk)?2 BCk)? cx\?
<= (Em? ) + (Em’ ) + (Em' ) + (Em’,)
P
4 & ek BCk\ 2 cx\ 2
S (zm. ) Q(Em- ) +(zm.) .
P

Calculating the covariance terms results in

p 1 — e MxAn 4 1 —2Xk A, -1
Zsz $B.k 04( ) lte <1+O<1A p ))’

4)\2(14-04) 1— 6_2)\"A" 1— e_QAkAn
k

’BM—‘

— 2 _ _
i BCk BCk ot (1—eMAn) (1T P2 1—1—(9(1 N p )
4)\2(1+a) 1 — e 2XkAn 1 — e—2M\cAn ’
=1 k

i ECk Ck_0,4 (1- _QAkA”)Q

1
p 4/\ (14a)

where we used analogous steps as for k; # ky. For k; = ko = k we derive that

_ 4
Dk . - 0-4 (1 —e AkAn) 1 + 6_2)\kAn
) Ak

2(1+a) ] — g2 kln

(1- e—)\kAn>2 - (1- e—2>\kAn)2 pl
R e al G B R (e (1 +0(1n = emAn)>’
k k

where we define

o (1- ef}\kAn)4 1+ e~ 2wl (1- e—,\kAn)Q - i (1- 672)\1(An)2
D := \2(1+a) 1 — e—2X\An +2 \2(1+a) (1 —e s ) + 2\2(1+a)
k k k

We demonstrate that Dy x is negligible, which is evident by the following calculation:

=22k A, 2 kA4 —22kA, o —AkAn)2
1 Zﬁk,k_ 10/2(1 e Nk )((1 ek )(1+e k )+2(1 e "k )+1>

pA%a/ Z, - pA% s )\12((1+a) (1 . 6—2/\kAn)3 1 — e—2XkAn
_ 4 5 (1 — e 2wdn)?
= 2a/ 2(14+
pA” keNd )‘k( )
4 1+al— e~ 2Achn 2
- pA2Y Z <An (A, )+
™ keNd n
N 1— e~ 2Mchn\ 2 ,
= ——AY? <> = O(p A, (117)
D k%{l ()\kAn)lJra

where we can use analogous steps as in Lemma 4.2.3 to show that

2z 2
(1_e> = f2(z) € Qg, with = (4a, 1+ 4,2 + 4a).

1‘1+0‘
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5. Asymptotic for the volatility estimators

Hence, we have

20dellr(y1+y2)ll _
(COV(‘/P»An (YI>7 ‘/177An (YZ)) = W Z €k, (yl)ekl (YZ)ekz (Y1)ek2 (YZ)Dkl ko

kl ,k2 GNd
ki #ko

’
—

+ O(; (Ai“*“') + % A 1))

We can represent the term Dy, x, from equation (116) as

(L m) (1= ) & (1= ) (1= i)

77‘()\1( + Ak )An
2)\1-&-0&)\1-&-0& Z e b 2 +
ki1 ko r=0

Dk17k2 = )\14—04)\14—04 )
k k-

and decompose as follows:

O (L—eMadn) (1 — e M) A,

N1 -
thkz T Z )\1+a)\1+a e ’
r=0 ki ko
— _)\k A 3 _ _>\k A
s (el (1 —ehedn)
ki,ke T 1+ayl4+a :
AFaNL

Assume y,; # y,, then we have

d
ex(y1)ex(ys) = e Iwoiy2)lod [Tsin(nkyy ) sin(nkiy,™)
=1

d
= e Imtya)ln T (cos (rki(y ) —4?)) — cos (mki(y," + yl(z)))> (118)
=1
Let 2", 2(? € {(y" —57)/2, (" + y*))/2}, then we find

Z Dy, x, HCOS 27Tk( (1)) COS(27rk‘l(2)xl(2))

2 /
pA * k1 kgENd
2 < M, : @) ()
= R Z <A}L+O‘ 2 Gar (A, A ncos (27k; )> (AHa Z Jo,r(Aky n)HCOS(QWkl Z ))
(O K, eNd 1= koeNd 1=1
2
= - Z (Aﬁ/Q Z Gar( Ak, An)l—[cos(%rkl(l)xl(l))) (AZ/Q Z Gar (A, Ay Hcos (27K, (2) (2 ))
p r=0 kieNd =1 koeNd

Note that y; # y, only implies that one coordinate yl( ) # yl ) differs. To analyse the order of the latter

display, we utilize Corollary 4.2.2 (ii) and (iii) on the function g € Q2a,2(14a)2(14a)) from display
(67), which gives the following;:

1—a’ 1-o
d/2 (2) () Ay A,
A 2 a,r Az A HCOS 2rk) ) = O<”y1 |1 * i )

ko€Nd Yol

Here, we considered the case when y; # y, differing in every component, i.e., we used the order from
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5.2. Variance-covariance structure

Lemma 4.2.2 (iii) and took into account that z; can exceed or fall below the limit of 1 — ¢ and 0,

respectively, by inserting the bounds ||y; — ys|lo and . Hence, we have

% i <A‘f/2 Z Gour (e, A HCOS 27Tk )> (Ad/2 Z Ga,r( A, A HCOS 21k, () (2)))

r=0 kieNd koeNd

_ 0( Y gy Y g 3 |ga,r<AkAn>|)
r=0 keNd
Al- o (d+1) 1— e_)\kAn
-0 n _ + 6—(d+1) AZ/Z - = )
(225 s - vl (&2 ¥ i)
1
-o(=2" s - yally @ + ). (119)

Analogous considerations hold for the second term D?, where we can employ the function f,, from equation

(67), yielding the following:

/ ’

(d+1) (d+1) 17 aa-ay | AR°
(s =3l 0 +5-7) ) 4 03 (A2 4 225 1 1) )

11—«

Cov(Vya, (1) Vo, (92)) = O(A

Alfa' Afoz
=0< S Iy - yallg @ 570 v S )

for y, # y,. Thus, it remains to compute the variance, where y; =y, =y € [§,1 — §]¢. Again, utilizing

d
ex(y)ewly) = e 21 T ((cos(0) = cos(2mhuy) ).
=1

1)

and having z,”’, 1(2) € {0, y;}, we infer analogously to display (119) that

d
1 _
YN Z Dllc1 Ko 1_[ cos(27rkl(1)xl(1)) cos(27rkl(2)xl(2))
D ,

" kg koeNd 1=1
_ 25 (pae ), a/2 : (2),,(2)
=— Z AL Z Goor (A Ay ncos 27k, ) AY 2 Goor (Aks n)HCOS(27Tk’l ;7).
P Ky end =1 Kaend =1

Now assume, without loss of generality, that Z?=1 1 = [, for 1 <1 < d. Then, by Corollary 4.2.2

af) 20}
(ii) and (iii), we have

d A
Al [
AY2 S gor(MeAn) [ cos(2rkPaf®)) = O<Ai{2 v ST )
kQENd =1
Hence, we conclude that

1 A}I*O/
a2 D H ko) costanof?) - 0 3 (a2 G ) )

™ kg ,kpeNd
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5. Asymptotic for the volatility estimators

and it follows that

204e2lrylih _ 1 o A;a’
Var(v},An (Y)) =T A2 Z eil (y)ei2 (y)Dx, k, + (9( (Ai(l )y 2, 1))
P ki, koeN? p p
ki #ko
204 _ 1 Al—a A
= NS Z Dy, x, + O( (A}lﬂ v 5ZL+1 L 20, 1)) (120)
PR lend p p
ki #ko

For the leading term we obtain

2q4 B 4 ; © (1_ 7)\](A7L)2 A, 2 1 — e MAn\2
w B o= (3 (a0 3 Grisiere ) 2ol ¥ o))

ki, koeN? r=0 keNd keNd
ki #ko
ot (& d/2 2 d/2 2
=2 (2 (2892 Y gar i) +2(A82 3 faludn) ),
P\ keNd keNd
and by Lemma 4.2.4 we have
1 I(1—a)o? & , , "2
Var(V, =— —r% +2 ne — 2)¢ 2
ar(Vp,a, (¥)) p<2d(7rn)d/2a’F(d/2) ;0( r 2+ 1) — (r+2)%)" +
Lics ALY ALY
+(9<p(An/ V a7 + » /\1) .
Defining the constant
& ’ ’ N\ 2
Ty = ( (=r* +2(r+ 1% — (r+2)*) +2) (121)
r=0
completes the proof. O

Comparing the volatility estimators from the equations (71) and (72), with the exponentially rescaled
realized volatility from display (112), we gain valuable insights into the asymptotic behaviour of both
estimators, as revealed in the preceding proposition. In Chapter 4, we explored the impact of the damping
parameter on the model, particularly on the temporal covariance structure. In Section 4.2, we discussed
how the pure damping parameter o’ governs the roughness of the temporal marginal processes. The
previous proposition confirmed the conjecture that, due to this roughness property, o’ is a crucial factor
contributing to the asymptotic variance, denoted by Y,/. Note that we assume the pure damping parame-
ter o’ to be known within this section. The behaviour of the covariances is also of significant interest. We
observe that the covariance structures vanish when we apply an appropriate relationship between spatial
observations and temporal resolution. This relationship is already incorporated in Assumption 4.1.1 as
a sufficient condition. However, a similar restriction is already evident in the one-dimension case, as
discussed in Bibinger and Trabs (2020, Assumption 1). Nonetheless, we have tightened the intuitive ex-
tension of the one-dimensional case for the proportion p, which would be given by 0 < p < (1—a’)/(d+1).
The adjustment 0 < p < (1 — &')/(d + 2) is necessary due to the differing orders in the Riemann ap-
proximation from Lemma 4.2.1 when compared to the one-dimensional case. As the number of spatial

dimensions increases, the restrictive nature of Assumption 4.1.1 becomes more pronounced.
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5.3. Controlling temporal dependencies of the quadratic increments

5.3. Controlling temporal dependencies of the quadratic increments

Our aim in the upcoming section is to demonstrate central limit theorems for the estimator 62 (y) from
equation (71) and its robustification &i,m from equation (72). Hence, the objective of this section is to
establish the proof that the dependencies of temporal quadratic increments can be appropriately bounded
following the Condition (III) outlined in Proposition 1.2.4 by Peligrad et al. (1997). To achieve this, we
control the temporal dependencies in two steps. In a first step, we bound the covariance of empirical
characteristic functions in a single spatial coordinate. In a second step, we extend this result to encompass
multiple spatial coordinates. In the case of multiple spatial coordinates, we observe that the dependencies
are manageable only when the relationship between spatial and temporal observations is suitably chosen,

as specified in Assumption 4.1.1.

Proposition 5.3.1
Grant the Assumptions 4.1.1 and 4.1.2. Let y € [0,1 — 6] fora d >0, 1 <7 < r + u < v < n natural

numbers and

P= Y (AX)(y), L= D (AX(y),
=1 1=r4+u

then there exists a constant C', where 0 < C' < o0, such that it holds for all t € R that

C HQT-E[QT])  (it(Qr . —ElQr1.]) || < ct \Y% 19\ f
ovye ) € S a2 ar(Q)Var(Qy,,)-

Proof. Assume Q7 = Ai + Ay, with some Ay which is independent of Q7. Then, we know by Bibinger
and Trabs (2020, Prop. 6.6.) that

Cov(eitQI, eitQ:Jru) < 2t2E[(Q{)2]1/2E[(A1)2] 1/27

where X = X — E[X]. For r < i — 1 we obtain

rAy,

keNd —o0
(i-1)A,
+ ) <0>\ka/2 f ¢~ (=120 =) (7S —1) aw
keNd rA,
Ay
oA f e—Ak(iAn_s)dWsk>€k(Y)
(i—1)A,
= D) Difen(y) + D] D5'ex(y),
keNd keNd
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5. Asymptotic for the volatility estimators

where
rA,
D i g2 J o (=D)AL —s) (e NBn 1) awk, (122)
—00
(i—-1)A, iAp
DY = oA f M (=D80=) (=N 1) Qi 4 oA o2 f e w8 qwk (123)
rAg, (i-1)An

Note that Di"i and D]; " are independent, thus we have

fm 3 (3 oFawm) +2 3 (3 pam)( X obam) s 3 (3] o)

i=r+u >~ keNd i=r+u keNd keNd

which implies the following decomposition:

Ay - Z; (kENJ D‘f’iek<y>)2 ; 212 u (kzN] Dy )) (kzN] Dé"”ek<y>),
ai= 3 (8 ptaw)

i=r+u > keNd

where As is independent of Q7. Hence, our focus shifts to bounding the term E[A?], which is equivalent

to computing Var(A;). We begin with the following considerations:

E[A}] < E[A7]

E(j(gga)tgi(zaﬁ)(z%%)f

i=r+u keNd i=r+u keNd keNd

2
E[( 1 ek ) ( Z Dl ek > ]
i,j=r+u keNd keNd

S E[( > o) (3 piam)( 3 Dé"jekm)]

i,j=r+u keNd keNd keNd
iq Y E[( 3 pam) (X o) (3 o) ( 3 D;"jeuy))},
t,j=r+u keNd keNd keNd keNd

where the cross-term between le’i, D;‘ " vanishes as both terms are centred normally distributed. There-
fore, we use E[A2] < T} + 4T%, where we define

fi= 3 B[ X b)) (3 o) (120

,J=r+u keNd keNd
i % B|(F D) X oaw)( X oiam)( X oam)]. )
i,j=r+tu keNd keNd keNd keNd

To bound the term Ti, we can utilize the expression D]f’i = e~ Mk(i=r=1)An BTH,k, where BLk is defined
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5.3. Controlling temporal dependencies of the quadratic increments

in equation (107), leading to the following calculation:

v

T = Z 2 ]E[e_/\kl (=r=DA B 1k ere (y)e M008B e, (3)

i:j:T+u k17k27k37k4ENd

e—)\kg(j—’r‘—l)Aﬂ,B —)\k4(j—r—1)A

r+1,ks ks (Y)e " Brit ks €k (Y)]-

Note that any combination of indices results in a value of zero, unless, exactly two indices are equal, or
all four indices are equal. Thus, we obtain for k; = ... = k4 = k that

Z Z ~Rulii—2ro2)a ”E[Brﬂ k]ek( )-

,j=r+u keNd

For k; = ko and k3 = k4, with k; # ks we find that

Y, Y e POTTA e UM B B2 e ()6, ()

1,j=r+u Kk, koeN?
ki #ko

Y e Pmlr A eU o 0ag B2 TR B2 R, ()6, ().

i,j=r+u kl,kQEN
ki #ko

The remaining combinations yield the following:

SN emen et 52, 22 ] )6 )

1,j=r+u ki, kzeN
kﬁﬁkz

-y emmwinaglge 5[5 T (e, (),

B,j=r+u kq, koeN?
k1¢k2

and we observe

Z Z o= 22k, (i—r=1)Ap =2k, (j—r—1)A ”E[BTHkl]E[B§+17k2]€il(Y)eiZ(Y)

t,j=r+u Kk, koeN?
ki #ko

+2 Z Z —(Ak1+>\k2)(z+3 —2r— Z)AnE[B . kI]E[Bg+1,k2]el2q (Y)eiz(Y)

4,j=r+u Kk, koeN?
ki #ko

+ Z 37 e 2liti2r- Q)A"E[Bru k]ekm

i,j=r+u keNd

_ Z Z (e—QAkl(i—r—l)An—Q)\kz(j—r—l)An+26—(Ak1+>\k2)(i+j—2r—2)An>

k1,koeN? ©,j=r+u
ki #ko

XE[Bz-H,kl]E[B?ﬁ-l,kz]ekl ¥)ei, (v Z 2 e~ Pwliri—2r=2)4 ”E[BTH k]ek(}’)
keNd i, j=r+u
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_ 2 _ 2 v v
_ 0_4 2 (1 —e AklAzla(llzae )\kgAn) ( Z 672)\1(1 (irl)A"> < Z 672/\1(z j—r—1)A, >
4)‘1:1 )‘k2 it

ki, koeN? i=r+u e
ki #ko

x e, (¥)er, ()

2
T T SN
+ot Z Traylta 2 Z e” ki) 1 én eil()’)eiz(Y)
AN N

ki, koeN? i=r+u
ki #kso
2
(1- e_/\kA ) S W (i—r—1)A 4
4 — i—7r— n
vt 2 S (3 e ).
keNd i=r+u

Here, we used equation (113), which implies

2
52 o —AkAn)2
E[BTHJ(] = 72/\11:(1 (1 —e Nk ) .

Let p=v—r—u+1and u > 2. First, we can bound the eigenfunctions (ex)yxene with a suitable constant
C > 0. Furthermore, we have

v v—r—u
Z e—ZAk(i—r—l)An _ Z 6—2/\k(i+U—1)An
i=r+u =0
=2k A, (v—r—u+1)

_ e ww-na, LT e
1 _ e_QAkAn
2N\ Anp

e~ w(u-1)A, L — el

1 —e —2 kA,

1— 6_()\1‘1 +)\k2 )Anp

v
Z e_(Akl +)‘k2)(i_r_1)An — e_()‘kl +)\k2)(u_1)An

1 — e~ Ay T Ay )An
i=r+u

Thus, we obtain

v v
< Z 6—2)\k1(i—7*—1)An>< Z 6—2)\k2(j—r—1)An>
i=r+u Jj=r+u

— o200 i) (u—1)A, (1 — e72MaBnP) (1 — g7 2Nua BnP)
(1= e Pwbn) (1= e b
1 — 672)‘1(2 Anp
(1 — e 2N An) (1 _ e—2>\k2A")

—2(Aky + Ak, ) (u—1)A,, D
<e 1 2 J—
<
(1 672)‘1‘1 An) 4

< 672(>\k1 +>\k2)(U71)A"

as well as

v 2 = (Mg FAg ) Anp \ 2
2 o Qi Fhieg) (=D An | =200 Thig)(u-1)A,, (L= € (e FXicg ) AP
. 1 — e~ Qg FAky)An
1=7r+u

1 _ e_(>\k1 +>\k2)Anﬁ

(1 — 67(/\1‘1 J”\kz)An)z

< e—2(>\k1 +>\k2)(u—1)A”
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< e~ 200 Hhig) (u=1) A, p ’
1 — e_(Akl +Ak2)An

2
v o —22kALD N 2
Z —nelimr—1)An | [ —2ncu—1)a, L €T TR
e = e
1_6_2>\kAT”
u

i=r+

1 — e 22Anp

(1- 672>\kAn)2
—Ae(u—1)A, D

< k

S € 1— -2l

< 674/\1( (U,*l)A”

Finally, we conclude with the following calculations:

A A2 (1 Ak, An) 2 _
T < 040,4 2 (1 — e k1 ) (]_ e k2 ) 6_2()\1(1 +)\k2)(u—1)An p
1= g\ItoI+a (1 — e—2>\k1An)
ki, koeN¢ ki “ko
ki #ko
S VN S T N —
n 2 (1—ehafn) (1 —ehedn) o~ 20, F Ak ) (u—1)A, 2p
l+ay 14+ —(Ak; +Ak, ) A
ki,koeN? 4)\kl Akz I—e ( 1 kz)
ki #ka

_ 4 _
(1 — e Metn) e~ Pr(u-1)A, D )

2(1t+a — 20 A,
keN¢ 4)‘1(( ) L—em™h
iy An ~AkyAn )2
4 _af - (1—eMafn)(1—eteb)” ) A —1)A,
< C o <p Z 4/\1+aAl+a € ( kl k2)(u )
k;,koeN? ki ko
ki #ko
—Aie; An ~Aky An )2
+2p (1—eadn)(1—e M) o200, i) (u-1)A,
4)\1+a)\1+a
k1 koeN ki Tko
ki #ko
O (1 — e*)‘kA")S
_ —dhc(u—1)A,
+3p Z —)\2(1+a) ek )
keN¢ k
Ak, A —AkpAn )2
< Choi3p Z (1—e M )e—QAkl(u—l)An Z (1— e Pwettn) o2y (u=1)A,,
2)\1+a 2)\1+a
kieNd k1 koeNd ko
' 1-— e_)‘klAn) (1 _ e—)\kQAn)g
_ 040,431—)A$a <Ad/2 ( 672)\1(1 (ul)An) (Ad/Q 672)\1(2 (ul)An>
Y n kg\ld 2()\k1An)1+a n k;\]d 2()\k2An)1+a
o] —x 0 —x\2
! 4 A2a d/2—1 (1—e™") —2z(u—1) d/2—1 (1-e™) —2z(u—1)
< C'o™pAy, (Jo x “ggira © dz . x o ira € dz ).

Utilizing analogous steps as for Lemma 4.2.4, we obtain for both integrals that

o] _ 0 — e ’ ’
J xd/Q_li(l ¢ )6_2” dx = J 7(1 © )6_2” do = L( — 27" + (1 +27)” )F(l —a),

0 2I1+0‘ 0 2xl+a’ 20/
0 —x\2 0 —x\2
2421 (1—e™) o207 Qg — (1—e ,) o207
o 2$1+(x 0 2x1+a
1 ’ ’ ’
= 55 (= @)Y +201+20)7 = 2+20)")I(1 - ).
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5. Asymptotic for the volatility estimators

Hence, by equation (69) it holds for [ = 1,2:

o0 —x\l
d/2 1 (1 € ) —2xT _ 1
J;] Qplta € dz = O Tlfo/ ’

and we conclude

PAY

T < CotPBn__
1 7 u—1)32

for a suitable C' > 0. For the term Ty, according to equation (125), we obtain the following:

r= 3 E[(( 3 paw)( T piaw)( T pawm)( S o))
1,j=r+u keNd keNd keNd
S [(2D1 ex(y )(an exly )] [(ZDQ ) ( 3 DSy )]
i, j=r+u keNd keNd
- % (X EnEDdw)( X B0 D))
i,j=r+u keNd keNd
For the first expected value, we find that
. ) o Ay
E[Dllc,lelc,j] _ 0_2)\1:a<1 _ e—)\kAn)Qe—)\k(z-&-]—Q)An J 62)\ks ds
—00
2 AAr2 A (i4j—2)A 2N in
—« - n - T - n
=0 N M (1 — e NS ) T ARl .
(L e A2 (i —2r—2)An
=0 1+o € '
2
The second expected value calculates for ¢ < j as follows:
(i—1)A,
Dy Dy) =g (o [ el ey awe s o)
rA,
(G-1)An
% (0)\1:@/2 J ef)\k((jfl)An,s) (eiAkAn — 1) dW;( + Cj,k)]
(AN
(i_l)An
= 02N (1 — e B )2 Mu(i+5=2) A0 f e ds + Efiak + Efj’-k
rAy

o (1 — e etn)2

“A(G—1)An _ = Ak(i+i—2r—2)A, BCk C.k
oaFa (e "-e ")+ X5 X
k

=0
As discussed in Proposition 4.2.7, we find that nBOK

particular, for the case when 7 < j, we find that

(1 — e_AkAn)2

E[Dy'DY’] = o® oV (e MeU=DAn _ o= Auliti=2r=2)An)
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5.3. Controlling temporal dependencies of the quadratic increments

SN
4 o2eMeARG—i) (eAkAn _ e—/\kAn> e n—1
1+
%
o 1 — e~ xAn )
_ 0’267)\1‘(J71)A" 2)\1+a (1 o ef)\kA")(l _ 672)\k(zfr71)An) _ (eAkA” _ e*AkAn))
k
—AkAn
2, Neli—)a, LT €T 0 e,
< o‘e oITa 1—e ) < 0.
k

Using this calculations along with equation (74), we derive the following:

T < Cto? N (1 — e )2 2 (i—r—1)An,
< Clot D) (X oo ©

i=r+u > keNd
1 _ 7>\kAn 2 X
keNd k
S (1 — e ?whn)? “Ak(i+j—2r—2)A, 2 ki pk,j1,2
+2 2 Z e ¢ eic(y) Z E[Dy" D37 |ex(y)
i,j=r+u keN< k keN¢
1<j
v 1— —AkAp )2 o
< Ot Z ( Z ( ;}\Ha ) e—gxk(z—T—nAn)
i=r+u > keNd k
x ( Z (1- BZikA"')2 (1— e=2Mlimr=DAn) 4 1- elTkAn>
20, 7¢ 20,7
keNd k k
v —AkAn )2 —AkAn\2 —2Xk Ay,
4 4 (I—e ) on(i—r—1)An (1—e ) +1—e
<0l ) ( 2 IO o >( 2 22
i=r+u ~keNd keNd
, L 1— e*AkAn)Q . 1 — e 2xlBn
_ C40'4A$La (Az/Q ( 62)\k(zr1)An) <A:lz/2 )
2\ % ma & AT
, 1 _ e_AkAn)2 1 — e_)\kAn
< 04 4A2o¢ — Ad/Q ( —2Xk(u—1)A,, Ad/2 )
o n P n Z Q(AikAn)lJro‘ € n Z ()\kAn)lJra
keNd keNd

By utilizing analogous steps as for the term 77, we obtain for the term 75 that

PAZ

47
Co 1)

T

N

where C' > 0 denotes a suitable constant. Thereby, we conclude for u > 2 that

pAZY

72 4
E[A7] < Co 7@ e

(126)

Finally, using Proposition 4.2.6, we find that

(2 (Am?(y))Q

i=r+u

>C Z E[(Aif()‘*(y)] > C"o*pA2

1=r+u

Var(Qi.) > CE|(Qiy.)"| = CE

which completes the proof for v > 2. The case v = 1 can be demonstrated similarly to the univariate

case in Proposition 2.4.1. O
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5. Asymptotic for the volatility estimators

We directly build upon Proposition 5.3.1 and present the following corollary, which extends Proposition

5.3.1 to multiple space coordinates.

COROLLARY 5.3.2
On the assumptions of Proposition 5.3.1, it holds for 1 <r <r +u < v <n and

T
Qf =) &nis Vi = Z Enis
=1

1=r+u

that there is a constant C, with 0 < C' < o and &, ; from equation (109), such that for all ¢ € R it holds

Cov(gt(@;m;]), GiH@L, L Lm)‘ < a//z \/Var (@DVar(L,,).

Proof. We present the proof analogously to Proposition 5.3.1 and begin by decomposing the term QTT’ tu
as follows:

27(mn)?2a'T(d/2) < sy Il
Y fm—rmmf ; Aiy;) + As(y;)) el

i=r+u

where

Ay = Y (3 le’iek(y)>2+2i=iu< 5 pba ) (3 o)

i=r+u ~keNd keNd keNd

3 (ZDM{ )2,

i=r+u > keNd

As(y) :

and an analogous definition of D' and DX as in the equations (122) and (123). Thereby, we need to

bound the following expression:

K2 =
H'€ villi ) — ) p2llEy ;i
( AO‘/ 2 A1 ) nmA%a’ ;Var(Al (yj))e

K2 =
nmA2e’ Z Cov (Al (¥,), Ay, ))e“m(y“ il

Ji1,J2=1
J1#J2

+

where

24 (7)) 42/ T (d/2) .

K=—Ta"w)

Let p=v—r —u+1 and u > 2. Thanks to Proposition 5.3.1, we obtain that

K2

2a/
nmA

PE*A,

Z Var(Al (},.j))eQHH.yjH1 < 004 (u _ 1)270{1 ’

j=1

where we used the bound for E[A2] from display (126). For the covariance, we exploit the independence
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5.3. Controlling temporal dependencies of the quadratic increments

of le’i and DIQ‘ ot along with both terms being centred normals. This allows us to derive the following;:

Cov(Ai(yy), Ai(y2)) = Z E[( 2 le’iek(w)z( 2 Dll(’jek(yz))Q]

B,j=r+u keNd keNd

a3 (3 oraw) (T o)

i,j=r+u keNd keNd

(X et ( X tad)|

keNd keNd

2 2

5 (5 o) e[ (3 )|
i,j=r+u keNd keNd

Since we can bound the eigenfunctions (ex)xene by a suitable constant C' > 0, for all k € N% we

observe that the covariance includes the terms 77 and T from the displays (124) and (125), respectively.

Therefore, we can repeat the calculations from Proposition 5.3.1 concerning the eigenfunctions, leading

to the following:

v

[ Ak, (G—r=1)Ap 3 Ak, (i—r=1)Apn 3
=) 2 E[e k(DA B e (y)e M2 UTTTVA B g e (7))
i,j=r+u ki ko ks kseNd

e*Aks(jfol)A 7)\](4(.]‘77'71)A

"By 1k ek (Y2)e "By k4 €k (Y2)]a

for y; # y, and
2 2
- K.j
T = Z [(Z D1 6k Y1) (2 D1]€k(}’2)> ]
t,j=r+u keNd keNd
Assume k; = ... = k4 = k, then we have
Z Z e Phelirymar Q)A"]E[Bm-l k]ek(Y1)ek(Y2)
i,j=r+u keNd
For k1 = kg, k3 = k4, with k1 # k3, we obtain

Z Z o=y (=7 = 1) A =2\, (j—r—1)A "E[Brﬂkl]E[BEH,kz]eil(Y1)€12<2(Y2)7
4,J=r+U Kk, kyeN?

ki #ko
as well as the following expression for the remaining combinations:

2 Z _()\kl+)\k2)(l+j 2 2)AnE[Br+l kl]E[Berl,kg]ekl(yl)ekl(y2)ek2(y1)ek2(Y2>'

i, j=r+u ki,ko eN?
ki #ko
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5. Asymptotic for the volatility estimators

Thus, we derive

- 2 A2 [ w v
Ty — o Z (l—e AklAila(llzae Ay A ) ( Z €—2Ak1(i—r—1)An>< Z 6—2)\k2(j—r—1)An>
AT N ;

ki ,koeN? i=r4u T
ki #ko

x e, (y1)ek, (Ya)

_ 2 _ 2 » 2
+O‘4 Z (1—@ AklAn) (1—@ Asz") 2( Z e(Alir)\kZ)(irl)An)

4)\1-5—0()\1-&-04
k17k26Nd {31 ko
ki #ko

1=r+u

X €, (Y1)ex, (¥2) ek (yl)ekz (y2)

4 v (L=t _2x DA 2
+ 30 Z 1+a) Z e CACA LAY

keNd4 i=r+u
l—e_’\kl 1 — e Moln)? _
<o (p Z ( 4)\1-265)\1-&-01 ) e 2 Ty ) (= 1)A"@k (Y1)ei2()’2)
ki ,koeN? ki “ke
k) e,
1—e M 1 — e~ Mabn)? _ B
oo ( »35 e L a0 0080y (3 e, (v (1)1 572)
ki, koeN ki “kz
ki #ko
7>\kA") 4x DA,
+3p Z 1+a) e Y (.Y1)€k(YQ))
keNd
1 — e Man) (1 — e M2Bn)® _
:OA <p Z ( 4)\1-20(5)\1#-01 ) € 2y e ) o 1)A"€i1(y1)€i2(y2)
ki, koeNd ki ko
1— e Mabn)(1— e Medn)? -
+2p 2 ( 4,\1425/\1+a ) e 2P e ) (v 1)A"ek1(Y1)ek1(Y2)ek2(}’1)ekz(Y2>>
kl,kQGNd kl k2

(1— e MeAn)?

4~ (1—e ) o (u1)A, —e(u—1)A, 2
=0p 2 We ci(y1) Z WG €ic(¥2)

keNd keNd
_ 1— e Mln) ——
+cr42p< 2 (2)\14—04)6 2l 1)An€k(}’1)ek(}’2))
keNd k
(1—e ™) e
x < X e ¢ 2l 1)Anek(}’1)€k(y2)>'
keNd k

Furthermore, we have

- 5 (g H(m )]

i,j=r+u keNd keNd

4o (1—e i) — 2 (u—1)A (1- e_)\kAn)Q — 2 (u—1)A
o°2p Z PINE e e (y1)ex(yz) Z oxITa e "ex(y1)ex(ys) |-
k k

keNd keNd

Hence, we can bound the latter term by using display (118) and Lemma 4.2.1. Similar to Proposition
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5.3. Controlling temporal dependencies of the quadratic increments

5.2.1, we find that

v 2 2
fi- Y Bl 3 o) [B|( D 0ad) |
i,j=r+u keNd keNd
90 Al —(d+1 (1—e B2 o\ e
—0(04PA31 Avll HY1—Y2H0( * )(Aiﬂ Z ()\kA )1+a € 2l DA")
keNd n

oA PAY i —(d+1)
—O(U mAn ly1—allo ) (127)

where we used analogous steps as in display (119). For the last term in the covariance, we redefine

T := i E[( > le’i@k(h))( > Dg’iek(h))

i,j=r+u keNd keNd

X ( Z le’jek(}’z)>< Z Dlg(’jek(}b))]

keNd keNd

= 2 < 2 E[le’ile’j]ek(Y1)€k(YQ)>( 2 E[Dg’iDg’j]ek(yl)ek(y2)>.

t,j=r+u > keNd keNd

With similar steps as in Proposition 5.2.1, we obtain

N

e Y (3 EDFD et ) (3 EDEDE Tl exlys))

i=r+u ~keNd keNd

RN (L—eM8)? o r(i—r—1)A
o Z (Z e 2= DB ey (v )ex(ys)

1+«
i=r+u N keNd 2)‘k

(L—eB)? a-1a —2A(i—r—1)A 1 — e Akt
x o (el A 2 Alimr A o ) ex(y1)ex(y2)
<k€ZN:d ( 22" 22" )
< U4A2°‘l i A2 Z (1- €_>\kAn)2e_QAk(i—T—l)Anek(y Yex(ys)
h ! i=r+u "’ keN¢ 2(AAp) e ' ?
1 — e~ xAn
X <AZ/2 Z Wek(}’ﬂ@k(h))
keNd "
, 1 _ e_AkAn)Q 1 — e_>\kAn
< 4A2a — Ad/2 ( —2Ak (u—1)A,, Ad/2
o AL p< ey OwA )T e(y)ex(ys) ) (AY? ) 7(>\kAn)1+aek(YI)ek(YQ)

keNd

90 Al —(d+1 (1—e B2 o\ e =
= (9<04PA31 AL lyy =y llg )(Aiﬂ Zd TR Zhucl DA") = O(Ty).
keNd

Hence, we have

K? i PA Al-o' 2 1
— e Cov(Ai(y;,), Aily;,)) = O<U4 il )
nmA%a j1JZ2:1 " ” (u - 1)2 “ m Ji,j2=1 ||y.71 ~ Y. ||g+1
J1#J2 J1#J2

According to Assumption 4.1.1, the distance between any two arbitrary spatial coordinates is bounded
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5. Asymptotic for the volatility estimators

from below, leading to the following order:

m 1 )d+l ( m 1 d+1
L) o B () ™) —owe). )
j1JZ2=1 (llyjl _y.szO j1,j22=1 m‘lyjl _yJQHO

J1#J2 J1#J2

Thus, we conclude that

B o e
nmA%al J1,J2=1 PNl ARl 7 (u_1)27a’ no M .
J1#J2

Using the following display:

v N KZp S > _
E[(QF )] = Z ]E[f?z,i] A 2 E[(AiX)4(yj)] > C'o* A, p,
i=r+u no o5=1
completes the proof. O

The previous proof demonstrated that the temporal dependencies can be controlled, if A,ll_"‘lmf;r2 tends
to zero. In the one-dimensional case, the authors Bibinger and Trabs (2020) fixed o/ = 1/2, which led to

1/2 n—0
n_ —

the restriction m2 A 0. However, in higher dimensions, we cannot directly transfer the relationship

between spatial and temporal observations, i.e., A,md*! "% 0 is not sufficient. As discussed at the
end of Section 5.2, the discrepancy arises from the different rates of the Riemann approximation. For a
comparison between the Riemann approximations in one and multiple spatial dimensions, see Bibinger

and Trabs (2020, Lemma 6.2.) and Lemma 4.2.1, respectively.

5.4. Central limit theorem and simulation results

The objective of this section is to establish a central limit theorem for the volatility estimator 67, ,, from
equation (72), which, in turn, implies a central limit theorem for 62 (y), given in equation (71). To achieve
this, we will employ the general central limit theorem given in Proposition 1.2.4.

With the assistance of Proposition 5.2.1 in Section 5.2, we will determine the asymptotic variance of the

volatility estimator &%,m. This proposition furthermore reveals an optimal rate of convergence of /nm.

2

Subsequently, we will present simulation results for the volatility estimator &7, ,,,

thereby concluding this
chapter.

Proposition 5.4.1
On Assumptions 4.1.1 and 4.1.2, we have

Vg (62, — %) ~5 N(0, Tara®),

as n — o, T, defined in equation (121) and m,, = O(n), with p€ (0, (1 —’)/(d + 2)).
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5.4. Central limit theorem and simulation results

Proof. To prove this central limit theorem, we employ Proposition 1.2.4. Therefore, we define

= gn,i - E[gn,l]a
where éw- is defined in equation (109), and we set

- 24mn)2a/T(d)2)
K= ri—-o)

The asymptotic variance is given by

ar<iEn,i) =Var<i§~n,i) = JW <“i i A, X |f{y]|1)

K2 2A2a Mn Mn
_an <2 Var (Vo,a, (y;)) + Z Cov(Va,a, (¥j,): Vaa, (ng))

20/
nmy, A2 ‘ .~
" j=1 Ji,ja=1
J1#J2

o2 4 o 2 ,
2% Mnlwo <2d( ) ) (1+0A)2 v AL)

my, n 7n)42a/T(d/2)
K2n A= n - _
+0(m = 3 Iy =yl 46 <d+1>))
n L~
J1,j2=1
J1#J2

= Yool (1+ O(AY2 v A7) + O(md+2AL) 23 10t

where we used Proposition 5.2.1 and equation (128). It remains to verify the Conditions (I)-(IV) from
Proposition 1.2.4.

(I) By Proposition 5.2.1 we have

b b B K2A2a b
Z Var(E,,,;) = Z Var(&,,:) = AM' Z Var( Z Aa’ (A X ) ll 5wy ; |I1)

KQ b My My

= Z(ZVar(vl,An(yj)w )y Cov(vl,mwl),vl,&L(ij)))
"i=a Nj=1 J1,j2=1
J1#J2

— O(An(b —a+1)+A,(b—a+ 1)A};@/mz+2) =O0(An(b—a+1)).

We utilize the calculations for the asymptotic variance as shown in this proof and thus conclude

Var( Zbl Em) = Var (iénz)
(

i=a

_o 2(b—a+ 1) mp, N (b—a+1)2 Al-¢'mdts
- nmny (b—a+1)K? nmy (b—a+1)
=O0(An(b—a+1)),

which shows the first condition.

(II) Since =, ; is a centred random variable, it is sufficient to consider the variance in order to prove
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5. Asymptotic for the volatility estimators

the second condition. According to Condition (I), we obtain
Y Var(Z,,:) = O(nA,) < o,

which verifies Condition (II).

(ITII) We prove that a Lyapunov condition is satisfied. By utilizing the Cauchy-Schwarz inequality, we

have
: K1 B ey . . .
E[éiﬂ] = o G Z el (y’l+"'+y'74)HIE[(Az‘X)Q(yjl) . (AiX)Q(yﬂ)]

n Jiyenja=1
K1 G ey _ .

S w2y OOt MR (AKX (y )1 BI(AK) (v,
T g, da=1

K* .
< m2etlFl max  E[(AX)3(y)].

IAde Mn
n2Ae YE{Y 10 Ym, }

Since (A, X)(y) is a centred Gaussian random variable, we can infer that E[(A;X)3(y)] = O(A%)
by using Proposition 4.2.6. Thus, we have

E[¢, ] = O(Am®) = o(1),

Mz

~.
Il
—

which shows the third condition.

(IV) The last condition is verified by Corollary 5.3.2, which completes the proof. O

The preceding proposition establishes that a central limit theorem holds for both volatility estimators,
62(y) from equation (71) and 62 ,, from equation (72), under both regimes from Assumption 4.1.1, with
an asymptotic variance of Y, 0*. Comparing this result to a SPDE model in one space dimension, as
presented in Bibinger and Trabs (2020), where o/ = 1/2; reveals that the same asymptotic behaviour
is achieved. Hence, this asymptotic behaviour extends to multiple space dimensions. Thanks to the
condition AL~ md+2 "5 ( in Assumption 4.1.1, the covariances Cov(52 G350y, ) vanish asymptotically,
where y;,y, € [6,1 — 6] represents two distinct spatial points.

In the standard model with i.i.d. random variables X7,..., X, ~ N(u,0?), where p is known, the
Cramér-Rao lower bound for estimating the variance is 20*. The difference (Y, — 2) of the asymptotic

variances in this model compared to the standard model is given by the following term:
0 Lo
Z —r 4 2(r + 1) — (r +2)%)7, (129)

which arises due to the non-negligible temporal covariances of the squared increments in this model.
Table 5.1 shows numerical values of this deviation for different values of /.

As observed, the deviation shrinks as the parameter «’ increases. Consequently, the underlying process
behaves more like i.i.d. normals from the standard model. On the other hand, if o’ approaches 1, the

error terms become more pronounced, necessitating the use of fewer spatial coordinates or significantly
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5.4. Central limit theorem and simulation results

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
(Yor —2) | 0.8626 | 0.7283 | 0.5984 | 0.4742 | 0.3575 | 0.2504 | 0.1558 | 0.0776 | 0.0222

Table 5.1.: The table shows the deviation between the variance resulting from the standard model with i.i.d. normals and the
asymptotic variance in the SPDE model from equation (49) for various values of the pure damping parameter a’. The
results are rounded to four decimal places, and the series in equation (129) was calculated with a cut-off K = 10°.

increasing the number of temporal observations to reliably estimate the volatility. This behaviour aligns
intuitively with the fact that o’ controls the roughness of the temporal marginal processes. Moreover,

the simulation results also confirm that the error term becomes more significant as o’ approaches 1.

Since the asymptotic variance in Proposition 5.4.1 relies on the unknown parameter o, we are un-

able to directly observe asymptotic confidence intervals. To address this, we introduce the following

quarticity estimator:

d . d/20/ 2 m n
(2 ( g)(l - arl)(d/Q)) 3mn1A2a’ D D (AX) (y el

j=1li=1

for estimating the quarticity parameter o*. Assume we can establish consistency for this estimator 64,
then asymptotic confidence intervals can be constructed using Slutsky’s theorem. With this, we conclude

the theoretical part of this chapter with the following proposition.

Proposition 5.4.2
Suppose that supyene AT E[(€, ex)y] < oo, for I = 4,8. On Assumptions 4.1.1 and 4.1.2 it holds for the

quarticity estimator that

~d4 P 4
Un,mn g,

as n — o0. In addition, we obtain for n — oo that

R —1/2, . d
\/m(’ralo';t,mn) (O-Ez,mn - 02) - N(Oa 1)

Proof. It remains to show the consistency of the estimator 6*. Therefore, we prove that

~d 452 ~d4 ~d 47\2 n—w

]E[(Un,nL -0 ) ] = Var(gn,m) + (]E[Unﬂnn, -0 ]) - O’
implying consistency. As we assume that supycya )\EO‘]E[@,ek}g] < oo, for I = 4,8, we can replace
the initial condition by a stationary initial condition, which is evident by analogous considerations as in

Proposition 5.1.1. For the bias term, we have

2e2leyllh » \ 2e2lmeyllh »
377,A$L0‘/ ZE[(AZX) (y7)] = HA%O‘/

i=1

E[(A:X)2(y,)]* (1 + o(1))

o*(1+o(1)),
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for an arbitrary y € [6,1 — §]¢ and

o 2 a2
T(1— o)

Hence, we obtain E[6; ,,] = 0* + 0(1). For the variance term we use that £2; = 572”(1 + o(1)) from

equation (109) and observe for iy < i1:

f(4€HH'(yh +~~~+y]'4)H1

(COV( ~72z,i17£721,i2) = _ Z ' n2m2Ado’ COV((AilXV)Q(le)(Ai1X)2(Yj2)7 (AizX)2(yj3)(AizX)z(yj4))
Jiseenja n
R4m26‘|'€”1 ~ ~ ~ ~
< SO . [Cov((8 X)2(v,,) (80, K0°(7,,), (A0 K23, (8 XP(y,)|

Cm? S Bk BCk *
n2 Ao’ ( Z (Ei1:i2 + Eihi; ))
n

<
keNd
2 Ada’ —AkAn )2
_o(™ Ay <Ad/2 Z (1 —e M) e—/\k(il—ig—l)An)4
RQA%O/ n ot ()\kAn)l+a

= O<Aim2(i —j—1)t 8),
where if J’-k and fo’k are defined in the equations (113) and (75), respectively. We additionally used
Lemma 4.2.4 in the latter display. Using these calculations and E[¢}} ;] = O(A2m?), we obtain that

var(36) < Dl - Nowee)
=1

7 i£]

O(AimQ +AIM? Y i - 146“’—8) = 0(A2m?) = o(1),
i£j

i=1

which completes the proof. O

To illustrate the central limit theorem described in Proposition 5.4.1, we conduct a Monte Carlo study.
In this study, we simulated a two-dimensional SPDE model given in equation (49). Each simulation was
performed on an equidistant grid in both time and space, where N = 10* and M = 10, resulting in a total
of 121 spatial points. The simulation employed the following parameter values: 9o = 0, v = (6,0), n = 1,
o =1, and ¢ taking on values from the set {4/10,1/2,6/10}, corresponding to three distinct damping
scenarios. In each scenario, we performed 1000 Monte Carlo iterations. We utilized the replacement
method, as described in Section 4.3, with L = 103, and for o/ = 4/10 and o/ = 1/2, we set a cut-off
frequency of K = 103, while for o/ = 6/10, we used K = 1500.

Figure 5.1 presents a comparison between the empirical distribution of each scenario and the asymptotic
normal distribution as stipulated in Proposition 5.4.1. To estimate the kernel density, we employed a
Gaussian kernel with Silverman’s ’rule of thumb’. As discussed in Section 4.3, the replacement method
introduced a notable negative bias due to the cut-off frequency K. To address this bias, we centred the
data by utilizing the sample mean of the volatility estimations. This approach provides a clear visual

comparison of the empirical and theoretical distributions. All three scenarios exhibit a substantial fit,
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0.2

0.1

0.0
-3 0 3 6 -3 0 3 6 -3 0 3 6
Ela=04[ a=05Fa=06
Figure 5.1.: Comparison of the empirical distributions of normalized estimation errors for o2 obtained through simulation with
N = 10* M = 10, and § = 0.05 is presented. The kernel-density estimation utilized a Gaussian kernel with Silverman’s
’rule of thumb’ and was performed over 1000 Monte Carlo iterations. The specific parameter values for simulation are
given as follows: d = 2,99 =0, v = (6,0), 7 =1, 0 = 1, L = 10. Three scenarios were considered, with different values

of o't o = 4/10, K = 10% (left), o’ = 1/2, K = 10 (middle), and o’ = 6/10, K = 1300 (right). The corresponding
asymptotic distributions are represented by the dotted lines.

with the volatility estimator employing a spatial boundary of § = 0.05, resulting in 81 spatial points for
estimation. The sample mean of the volatility estimations were found to be 0.986 for o = 4/10, 0.975
for o/ =1/2, and 0.988 for o/ = 6/10.

Furthermore, following the same methodology as described in Part I, we illustrate the corresponding

QQ-plots in Figure B.2, which can be found in Appendix B.
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6. Parametric estimation based on a log-linear model

The objective of this chapter is to extend the concepts presented in Chapters 2 and 3 to encompass
multiple spatial dimensions. In one spatial dimension, we have already demonstrated the construction
of efficient estimators for the parameters x and o3 based on ordinary least squares, when considering
statistics involving realized volatilities. By asymptotically linking log-realized volatilities to a log-linear
model featuring a spatial explanatory variable, we obtained estimators with optimal rates of convergence
and minimal variances. Importantly, the construction of the estimators for x and o3 does not necessitate
any knowledge regarding the parameters within the differential operator Ay.

However, in higher spatial dimensions, particularly starting from two dimensions, an additional pa-
rameter o needs to be incorporated into the random field. As a result, we divide this chapter into two
distinct sections. The initial section will introduce the log-linear model for multiple spatial dimensions,
assuming the damping parameter a to be known. Subsequently, the second section will concentrate on

the estimation of the damping parameter o without any prior information on the model parameters.

6.1. Asymptotic for the normalized volatility and the curvature

estimators

Within this section, our primary objective is to formulate estimators for both the multi-dimensional
curvature parameter k = (k1,...,/q) and the normalized volatility o2, utilizing a log-linear model. To
achieve this, we draw upon the concepts elucidated in Chapters 2 and 3, and extend them to multiple
spatial dimensions. Commencing this section, a preliminary segment provides a motivation part, focusing
on the development of estimators for the aforementioned curvature parameter and normalized volatility.
Therefore, we will introduce another assumption into our observation scheme, essential to ensure the
well-defined nature of these estimators.

In the subsequent part of this section we delve into the methodology part, particularly examining the
corresponding triangular array related to the constructed estimators. This will be followed by preparatory
steps aimed to prove a central limit theorem. For proving a central limit theorem for the constructed
estimators, we utilize the general multi-dimensional central limit theorem, as presented in Corollary 3.1.2.
We close this section by providing simulation results for our new estimators.

Throughout this entire section we assume the damping parameter a € (d/2 — 1,d/2) to be a known

constant.

6.1.1. Motivation and methodology

In Chapter 4, Proposition 4.2.7 analyses the autocovariance structure of temporal increments. This

/2

proposition effectively demonstrated that we can consistently estimate the parameters o3 = o2/n%? and

Kk = (K1,...,Kq), where k; = v/n for | = 1,...,d, by utilizing realized volatilities. Consequently, these
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6. Parametric estimation based on a log-linear model

parameters are labelled as the natural parameters within the SPDE model described by equation (49).
Hence, our current aim is to construct consistent estimators for these parameters. This endeavour begins
with the employment of a log-linear model, much akin to the framework outlined in equation (9).
Building upon the foundation laid by Proposition 5.4.1, it becomes apparent that rescaled realized volatili-
ties exhibit qualitative resemblance to normal random variables when the number of temporal observations
is sufficiently large. Thus, we observe, for n sufficiently large, that

Vn (62 —0%) ~ N(0, Too?),

y

where the estimator for the volatility parameter o2 is given by

G

24(7n)Y2a/T(d/2)
2 _ (A; X elleyli
Y nAYT(1 - o) ;1

Rearranging this approximation results in

' 24 ()42 /T (d/2)
nAYT(1— )

el*YIi RV, (y) ~ o2 (Vn+VYuZ),

where Z ~ N(0,1). The latter display also implies

RVn(y) —llweyll1 F(l - Oé’)O'2 1
nAe € e e U VYaZ)
_ F(]. — a/)02 1 Y.,
= ¢~ eyl 0. 1 7). 1
¢ o T2\ N (130)

As our focus lies in estimating the natural parameters 02 and , we apply the strategy of converting this

approximation into a log-linear model, namely:

RV, (y) ,T(1— o) 1 Y.,
10g< WA )~ I y||1+10g<00 o T (d/2)20 +log 1+ TZ :

As the number of temporal observations n increases, the variance of the normal random variable in

the preceding expression decreases. Utilizing the approximation log(l + z) ~ « for small  ~ 0, the

resemblance to a linear model becomes clear through

RV, Y,
log ( (},’)> ~ —|k-yl1 +log (65 K) + 14/ —Z, (131)
nAg

n

where

. ) 132
o 2d7d/21(d/2) (132)
To be more precise, display (131) suggests the link to a multiple linear regression model. Considering
that the covariance of the realized volatilities in two distinct spatial points asymptotically vanishes, we
can establish a linear model with homoscedastic normal errors by examining log(RV,,(y;)/ (nA2")), for

j=1....,m
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6.1. Asymptotic for the normalized volatility and the curvature estimators

To illustrate parameter estimation within a multiple linear regression model, we present the following

example.

Example 6.1.1

An ordinary multiple linear regression model is given by

Y =X8+¢,
where
1 1 Bo
Y1 1 Zlg b yl(i )
B
Y= 1| X=]: : A B = )
Y 1 y(m) y(m) '
1 d B,
and homoscedastic errors € = (e1,...,6m) ", with E[g;] = 0, Var(e;) = 02 > 0, for i = 1,...,m and
Cov(es,e5) =0, for all 4,5 = 1,...,m, with ¢ # j. In addition, the variance-covariance matrix of ¢ is

given by ¥ := Cov(e) = 02E,,. We call the parameter 3, intercept and the parameters 3; as slope,
where ¢ = 1,...,d. Suppose that m = (d + 1), and the matrix X possesses a full rank of (d + 1). Under
these assumptions, the least squares estimator for the unobservable parameter § within this model is

given by
B=(XTX)"'XxTy.
Substituting the representation of Y into the estimator 3 results in the following identity:
B=(X"TX)'XTY =+ (XTX)'X e, (133)

which shows that the estimator B is unbiased. In particular, the inverse of (X TX)~! exists due to the

full rank condition on the design matrix X.

The component-wise estimators highlighted in Example 6.1.1 are commonly referred to as Gauss-Markov
estimators, exhibiting favourable characteristics. The Gauss-Markov theorem states that the correspond-
ing estimators qualify as BLUE (best linear unbiased estimators), implying that they possess minimum
variance among all linear and unbiased estimators. However, we acknowledge that the number of ob-
servations (Y;)i<j<m is intrinsically linked to the dimensionality, specifically requiring m > (d + 1), as
stated in the preceding example. Consequently, we introduce the ensuing Assumption to formalize this

connection.
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6. Parametric estimation based on a log-linear model

Assumption 6.1.2
Let yy,...,¥,, € [6,1 —6]%, where m > d such that the linear span

Span(Ym) :Rd+1a where Ym = {(1»Y1)7"'a(17ym)}a

is a spanning set of RI*1,

The stipulation outlined in the preceding Assumption is equivalent with requiring that the matrix X
possesses full rank. This equivalence thus establishes the presence of the estimator B as well-defined.
Assumption 6.1.2 also holds intuitive significance. Consider a scenario, where we observe the vector Y =
Mi(y1),-- - Y (ym))T within the spatial points y; and y,,...,y,,, following the framework described

in Example 6.1.1. Here, we set the spatial coordinates y; as

yj =y + €5€1,

where €; > 0, for j = 1,...,m, and ¢; representing the /-th unit vector, for I = 1,...,d. While, by
definition, these spatial points are distinct from one another, from a statistical perspective, it is likely
that we obtain multiple pieces of information for estimating the parameter §;, while the information

content for estimating the remaining parameters is limited.

In accordance with Assumption 4.1.1, it is established that the discretization of the random field is
more refined in time than in space, denoted by m = O(n”), where p € (0,(1 —a/)/(d + 2)). Addition-
ally, Assumption 6.1.2 imposes the requirement that a minimum of (d + 1) observations is necessary to
construct an estimator for the natural parameters. Collectively, these assumptions enforce a minimal
number of temporal points, indicated by

d+2
1—of

n>(d+1) (134)

Asymptotically, this restriction is evidently satisfied since the spatial dimensions d is assumed to be fixed.
However, the restrictive nature becomes significant in a simulation scenario. The latter display implies
that n grows exponentially with the spatial dimensions. Moreover, if o/ is close to one, the growth of n
becomes particularly pronounced. Therefore, estimating the natural parameters using this least squares
approach based on realized volatilities might only be accurate for lower dimensions, such as d = 2,3,
or when a large number of temporal observations is available. To demonstrate this effect, we provide

numerical values for the dimension d = 2, 3. For the case of d = 2, the relationship in display (134) yields

o [T01]702]037] 04 [ 05 0.6 0.7 0.8 0.9
n= || 132 | 243 | 533 | 1517 | 6561 | 59049 | 2.3 x 10° | 3.49 x 10° | 1.22 x 109

Table 6.1.: The table demonstrates the minimal number of temporal observations in two space dimensions depending on the pure
damping parameter o’ according to Assumptions 4.1.1 and 6.1.2.
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6.1. Asymptotic for the normalized volatility and the curvature estimators

and for d = 3 we find

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
n= || 2212 | 5793 | 19973 | 104032 | 1.1 x 10% | 3.4 x 107 | 1.1 x 10™ | 1.13 x 10 | 1.3 x 107

Table 6.2.: The table demonstrates the minimal number of temporal observations in three space dimensions depending on the pure
damping parameter o’ according to Assumptions 4.1.1 and 6.1.2.

As the temporal marginal processes become progressively rougher with decreasing values of o’ € (0,1), it
becomes apparent that we require a reduced amount of data for estimating the natural model parameters.

Conversely, if a &~ 1, a substantial number of temporal observations will be required.

With the groundwork laid, we can now establish the estimators for the natural parameters o2, K1, ..., kg
within the context of the SPDE model from equation (49). Leveraging the approximation (131) and
referencing Example 6.1.1, we proceed by defining the following multi-dimensional parameter and its

corresponding estimator:

log(03 K)
—k1 A -
U= ) eRM™  and U=V, := X' X)'XTY e R (135)
—Ky
where
1 1 RVa(yy)
1 yg) yé) IOg(Tg’l>
X:=1: ot |eR™@HD and Y = : e R™.
1 ygm) . yc(lm) log (L;TLA(Z'M)
To effectively estimate the natural parameters 03, k1, . . ., k4, we introduce the parameter v € (0, 00) x R?

along with its associated estimator v, defined as follows:

2
- .
5(1) hit ()
vi= | and 0= O = hH(¥) = : , (136)
: hol (0
. a1 (Pag1)

where U = (U, ..., Uy1)T and h: (0,00) x RY — R p=1 R+ 5 (0, 00) x RY, with

log(z1 K) e’ /K
—x2 —T2
h(x) = ) and A l(x) = ) . (137)
—Tg41 —Td+1

Since ¥ represents a strictly monotonic transformation of the parameter v, i.e., h(v) = ¥, we restrict our

analysis to the determination of asymptotic properties for the estimator 0. Subsequently, by utilizing
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6. Parametric estimation based on a log-linear model

the multivariate delta method, we can infer these asymptotic properties for the estimator ©.

Concluding the motivation segment, we now shift our focus towards the variance-covariance matrix of
the estimator B introduced in Example 6.1.1, which can be derived through standard calculus, resulting

in

Var(8) = (XTX)_IXTVM(Y)((XTX)_IXT)T = (XTX)' X TVar(e) X (X TX)!
=2(XTX)TIXTX(XTX) " =02(XTX)!

where we employed the fact that the matrix X ' X is a symmetric matrix. Assuming that we are observing
spatial coordinates yy,...,y,, € [a,b]?, where ¢ := |a — b|. When considering a central limit theorem,

one concern is on determining the asymptotic variance of:
. -1
Var(yvm(B — B)) = Var(fﬂ) =0 c( XTX> [ O Y

where we assume that ¢/m(X T X) converges to a symmetric positive-definite variance-covariance matrix
¥ e RUE+Dx(d+1)  This assumption consequently entails that ! is also symmetric and positive-definite.
In our model, we observe spatial coordinates yy,...,y,, € [0,1 — 6]%, signifying that these spatial ob-
servations are situated at least 6 > 0 distance away from the boundaries of the unit hypercube. We
can examine the structure of the matrix X "X by utilizing the explicitly provided expression of X from
Example 6.1.1. With ¢ = 1 — 24, we have the following:

LD e LD 0 LT W) &
9 = DIV YA (7LD LID AN 7 L NPRD il 1y§ Yy
S 0XTx - NIRRT LD Wil 1y§”y§” DI D N 3 lyéﬂy;” moe s
m m . ) )
DIV Wil 1y§”y§” pIia 1y§])y§) X E)?
where ¥ = (3;;)1<i,i<d+1, With
1—26 Jifi=1=1,
limy o 122 7 ) Jifi=1,2<l<d+1,
Tig = { limpo 2 3 ) Jif2<i<d+1,1=1, . (138)

lim,, o —T%ijl W) Lif2<i=l<d+1,
litm o0 1528 P yZ({)ly;{)l ,if2<i,l<d+1, withi#1

The convergence of the Riemann sums is guaranteed by the straightforward bounds

1-26 &
0<s—=— Y <1,
m
Jj=1

for all m € N, where the sequence (a;) corresponds to the respective sequence within the Riemann sums

in equation (138).
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6.1. Asymptotic for the normalized volatility and the curvature estimators

Contrasting this assumption regarding the asymptotic variance with the analogous one-dimensional log-
linear model. In Chapter 3, we employed a simple linear regression model to estimate the natural
parameters of the one-dimensional SPDE model from equation (1). Within this simple linear regression

model, the design matrix X was given by

where d =y < ... < y;, = 1 —4. The estimator provided in matrix notation for the unknown parameters
within Example 6.1.1 readily translates into the estimators outlined in Example 3.1.1. Proposition 3.2.2

presented an asymptotic variance of

47 (1—6+62) 6l
_ (1—20)2 (1—26)2
X= ( 60 120w > ) (139)
(1—-26)2 (1—25)2
which is also implied by
—1 2
19§ 1-5.4 4(1-6+48%) 6
I'r(l —20)2~! = T'e(1 — 26) ( s 9 5 y2 y) =Im ( (1-20)° -2,
s ydy §5 Tytdy “{=207 (i-20)2

Note that the signs in the covariance entries within Proposition 3.2.2 are reversed due to the correspond-
ing estimator in the simple linear regression model being directed towards estimating the parameter
—k. However, when transitioning to a multiple linear regression model, involving spatial coordinates in
multiple dimensions, establishing a feasible ordering for the spatial vectors yy,...,¥,, becomes challeng-
ing. Furthermore, there is no guarantee that coordinates won’t be duplicated along a particular axis.
Consequently, representing the multi-dimensional case similarly to display (139) becomes impractical.
Therefore, the derivation of the asymptotic variance matrix must be tailored to the specific observation
scheme in use. Given our focus on the asymptotic properties of the estimator \if, it is reasonable to
anticipate this estimator to be asymptotically unbiased, with an asymptotic variance of Yo/ (1 — 2§)X71,

where ¥ is defined in equation (138).

We proceed to tackle the methodology section for the estimator ¥ by deriving the corresponding multi-
dimensional triangular array. To construct the multi-dimensional triangular array, we leverage the Taylor
expansion for log(a + x), which is given in equation (27). With the incorporation of Proposition 4.2.6,

we observe that

RV,,(y) 2 S (AX)2(Y) . o RV,(y) )
1 InV ) K) — k- =1 \ 7)) ) eyl Al—a InJ)
og (52 = tostaf ) ~ -yl + H LG Iy o(al) v op (T2) ).

n n

where the constant K is defined in equation (132). Utilizing Proposition 5.2.1, we conclude that

o (Rvn(y) it AXPY) i, O(AL™) 4 Op(A,).  (140)

) = tog(aB )~ -yl +
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6. Parametric estimation based on a log-linear model

The previous expression simplifies the analysis by allowing us to focus on the term

ZLl(A—mel\ﬂ-y\h’

log (oK) — eyl + =S
n 20

since the last components in equation (140) represent the negligible model errors. Our goal is to establish
a central limit theorem in the form of /nm(¥ — ¥). To achieve this, we develop the triangular array
associated with the estimator ¥ by employing the equations (133) and (140). The triangular array is
thus defined as 2, ; := &,,; — E[&,], where

QX (y1) olmey:

’
nA%¥ o

-1
Ens = /- 1-26 (1 — 25XTX> T

2
(BiXP () ey,
nAg USK

QiX)*(y1) |y, I
!
nAg

VRl =20) (1-25 ¢+ \7' ¢ :
- vmKo? m Y : : . "
QX (v) llrey,, s
Ay

n

With the triangular array =, ; in place, we can now proceed to the preparations for a CLT.

6.1.2. Preparations for the central limit theorem

In the preceding section, we established a triangular array =, ; = &, ; — E[&,;] corresponding to the
estimator ¥ presented in equation (135). The objective of this section is to provide the technical details

required to prove a central limit theorem for the estimator 0.

In Chapter 3, we utilized Corollary 3.2.1 to establish a central limit theorem for multi-dimensional
triangular arrays, a simplified version of the central limit theorem from Proposition 1.2.4. This corollary
exploited a special structure of triangular arrays, based on temporal quadratic increments, which enabled
us to leverage pre-existing results. While the triangular array Z,, ; from equation (141) similarly employs
quadratic increments, the extension to higher dimensions prevents the direct applicability of Corollary
3.2.1. Nonetheless, we can adapt the essential ideas of Corollary 3.2.1 combined with results from Chapter
5 to establish a central limit theorem for =, ;. This involves employing the Cramer-Wold device and
Corollary 3.1.2. For the application of Corollary 3.1.2, we will analyse the following one-dimensional

triangular array:

Y Eni =" (bnyi — Elénsi]) = 7" &ni — 7 Elénsil,

where v € R4 is arbitrary but fixed. The upcoming discussion will derive the asymptotic variance of

the triangular array 'yTEn,i and verify the conditions stated in Corollary 3.1.2.
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6.1. Asymptotic for the normalized volatility and the curvature estimators

LEMMA 6.1.3
On the Assumptions 4.1.1, 4.1.2 and 6.1.2, we have

. Te Y 1o ATyl
nlgroloVar(Zv unﬂ) (1—26)Yuy S,

i=1

where =, ; is defined in equation (141), Y, defined in equation (121), £=! from equation (138), § €
(0,1/2) and v € R¥*! arbitrary but fixed.

Proof. Consider an arbitrary but fixed vector v € R%*!. We initiate this proof by performing the following

calculations:

Var( i 'YTEn,i) = VTVar( i fn,i)W
-1 -1

_ 2 _ —1 B _ —1
_ ’}/T TL(]. 25) <1 25XTX> XTVar(Yn)X <125XTX> v,

mK?204 m m
where
(DX (y1) |
Xy =gyl Vi, (1)
Y, = : = : eR™.
2
> (Alﬁu(,ym)eun.ym\ll Via, (¥m)
We determine the entries of the variance-covariance matrix V,, ,, = Var(f/n) of }7}” with Proposition
5.2.1 and have
Vb = Lot K264 (1 + A v AL Lif1<ji=jo<m
n,mjji,j2 — O A270‘, —(d+1) 57(d+1) f . . f . L
(A2 (ly;, = ¥j.llo + ) if 1< ji1, 2 < m, for j1 # jo

for 1 < j1,j2 < m. Hence, we have

no 1-262/1-25 -1 n 1-26 -1
Var<ZVT:”’i> N VT( m ) ( m XTX) X <K24V"’M>X<XTX> ”
i=1 90 m

where we define

n

KQUé an,m = VYn,m,l + Vn,m,27

with

Vi = Yo (1+ A2 v AL B,
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where FE,, denotes the m x m dimensional identity matrix and

O ,1f1<]1:]2<m

Vnmg = Alfa' (d+1) 5 (d+1) " ; .
0( n (||yj1 y]g)”O + )) y 1 1 <]17]2 m, 10r .71 7&.72

FLLLS)

We conclude that

n N 2 o — —1
ar( > Jam) =T < (1-2) <1 25XTX> XV X (%XTX>
izl m m m

_ 2 _ -1 o -1
4 (1 —20) (1 25XTX> XTVn_mQX(l 28 ) )7
m ’ m

m

1/2 l1-a 1-26 T -
(1725) a/(1+A v A ) —X ' X
m
-1
% <2§XTX) (26XTX>
m m

() () () )

-1
<(1 —20) Yo (1 + AY2 v AL <126XTX)
m

-1
+(1—25)<m26XTX> <m25XTVnm2X> <m25XTX> )'y.

Let m = m,, be in accordance with Assumption 4.1.1. As the convergence of (1 — 28)/m,, - X X is

established for n — o0, the focus shifts on demonstrating the convergence of m; (X TV, ., 2X) towards
the zero matrix, denoted by 0. Consider matrices A € R**?, B € R®*® and C € R**¢, where (B);, i, = 0
and (A);;,(C)iq € [0,1] for all 1 <4,41,42 < b,1 <! < a. Here, we obtain

(ABC)iy < (1apB1ya)iy,

for each 1 < 4,1l < a, where 1, = {1}2*? denotes the matrix with each entry being one. Thus, we find
1 T 1
EX me,QX ) < El(d+l),mvn,m,21m,(d+1) Z_l7

for each 1 < i, < (d+1). It holds for 1 <i < (d+ 1) and 1 <! < m that

ll(d-ﬁ-l) Vnm2 =0 A}n_a/ ( i Hy _yl||0—(d+l) + (m_ 1)5—(d+1)> ,
m LT il m J1

Ji=1
J1#l

and therefore, we have for 1 <i,l < (d + 1) that

1
(m1(d+1),mVn7m,21m,(d+1)> y = (

(83 I vals ) mm - e

Jj2=1 j1=1
J1#J2
Al—o/
= (’)(” (m+3 + m?)
m
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6.1. Asymptotic for the normalized volatility and the curvature estimators

=0 (A};a’mtﬂz) .

Utilizing Assumption 4.1.1, we can establish that

<1XTVn,msz> = O(AL¥'md*?) =% 0,
Mn il

for all 1 < 4,1 < (d+1). This, in turn, implies

n—ao0

1
— X"V, 2X 250,
My,

The conclusion follows accordingly.

The preceding lemma confirms that the estimator U for the parameter ¥ possesses an asymptotic variance
of (1 —26)Y,X~t. The following lemma verifies the Conditions (I) and (II) in Corollary 3.1.2.

LEMMA 6.1.4
On the Assumptions 4.1.1, 4.1.2 and 6.1.2, we have

b b
Var( 2, VTEn,i) <C ), Var(y'En),
i=a i=a

forall 1 < a < b<n,=,; defined in equation (141), an universal constant C' > 0 and € R4*! arbitrary

but fixed.

Proof. For an arbitrary but fixed vector v € R4, we can establish, analogously to Lemma 6.1.3, that

b b
Var( > 'YTEn,i) = 'yTVar< > fm) ¥

b—a—+1)2(1—28)2/1—-26 -1 - 1-26 -1
_rlbzat )7 29) XTX) XTVar(V,,)X(—2XTX)
nmK?2o] m
where
b A X)? e
S ﬁe” vl
)7@71, = e R™.
b (A (5 ey
Zi:a me“ Y Hl
For the variance Var(ffa’b) = Vabnm = Vabnmi + Vabnme we find

et K20 (1 AP v ALY i1 <ji=ja<m
, if 1< g1, 52 <mfor 51 # j2

(Va,b,n,m,l)jl,jg = 0
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v ) . 0 yifl<ji=ga<m
a,b,n,m,2)j1,j2 += ) —(d _ . L. . L0
O(ﬁA}z “ (||Yj1 - Yj2||o( R MH))) , if 1< g1, 2 <m, for j1 # jo
and thus, we have
b
Var Z’YTEnz>
_o(b-at1)’(1-2) K0iYy 7(1-20 ! 120 1\ (1220 7 !
B nK?2o} b—a+1) m m m 7
b—a+1)(1-26)2 (1-20 b—a+1 1-26 -1
+ ( a + l( ; ) 7T< XTX) <[HXTV(L,I7JL,TIL,2X> <XTX) 7.
nkK?o; m m m

Similar to the proof of Lemma 6.1.3, we observe that

b— 1 /
<:):l—’_XTVa,b,n,m,2X> = O(A}«L_a md+2)a
il

)

where we used that ((1—26)/m,-X'X)™t - %71 asn — o, and y"S7 'y = O(||7|lx). Hence, it holds
b ’
Var( Z WTEW) = O(|YllwAn(b—a+1) + [[Vl0An(d — a+ )AL m™2) = O(|7]|An(b — a + 1)).

Applying a similar approach to Var(y"Z,, ;) yields

_ 2 _ -1 _ . -1
Var(yTEn,i)=7T(1 20) <1 26XTX> XTVar(Y;)X<1 26XTX) 7,

nmK?2o§ m m
where

QiX)*(y) llkey, [
A
Y, = : €R™.

AiX)?(¥n) eyl
A

Defining Var(ffi) = Vinm = Vinm1 + Vinmze, where

Yo K20 (1+ A v ALY if1<ji=jo<m
(Vinm,1)jr e 1= . : ’
0 ) lf1<j15j2<ma fOI']l 5&]2

0 yifl1<ji=ja<m

(Vinm,2)jrgs = , _ )
O(AL (lys, —y;)llo @™ +6=@HD)  if 1< i, jo < m, for j1 # jo

yields
Var(y En) = O([7l0ln + Ml An Ay m™*2) = O(|[7]|wAn).

Consequently, we obtain Z?:a Var(v'Z,,) = O(|[7]l0An (b — a + 1)), which concludes the proof. O
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6.1. Asymptotic for the normalized volatility and the curvature estimators

The subsequent lemma establishes the proof for the third condition of Corollary 3.1.2. The proof of this
lemma employs the approach of relating the triangular array from equation (109) to the triangular array
presented in equation (141), since we have already proved a CLT for the triangular array from equation
(109).

LEMMA 6.1.5
On the Assumptions 4.1.1, 4.1.2 and 6.1.2, it holds that

2 Bl Eai) '] = O(Inll5Anm?),

i=1

where Z,, ; defined in equation (141) and v € R4*! is arbitrary but fixed.

Proof. We initiate the proof by examining
To 4] _ T 4
E[(y"En)*] = O(E[(r )] )-

Thus, we proceed by analysing the term E[(y"&, ;)*]. Utilizing the Cauchy-Schwarz inequality, we obtain

d+1

E[(’YTgn,i)ﬂ = E[ Z iy (gn,i)h N (gn,i)lz;]
liyela=1
d+1
= > B[ o (€]
1, ,la=1
& 471/4 471/4
< Z B[ ] B[ (i)
1, la=1
<k + 1t _max E[€0)

We exploit the fact that X < 1,, 441, where 1, € R%*? represents the matrix of ones, which leads to

(A X)?(yy )ellmyal

(1-20) (1-26 + .\ ot
= X'X X
Smi VnmAY Ko2 \ m

(AP (y el

(A:X)*(yy)

(1—28)elsl 1125 o+ \7' ,
< m N

VnmAY Ko? m XX L+, o (142)
(A X)*(Yom)

1 Z;n=1 (AiX)Q(Yj)

(=28l i1 —25 N\
C VnmAYKaR\ m XX

Z;'nzl(AiX)z(Yj))
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6. Parametric estimation based on a log-linear model

Thus, we find that

4

m 4
T, 4 4 (1 —28)%etlslh (g 4 1) e 1-20 1\ "L
E[(v &) "] < I7ll5 N RAGS o, P ;(AZX) (¥;) ( ——X X) Lavin )

=l L2 Ul (S r) | s, (52270 i)

n?m2ALY Kio§ =1,...d+1 m ;

Given that the matrix ((1 — 25)771;1(XTX))71 is converging to £ 71, as n — 00, we can constrain

1-26 -1 : eyt
max (( XTX> 1d+1,1> ) < 00,
1=1,...,d+1 m 0

l
for all n € N and especially for n — o0. As a result, employing the Cauchy-Schwarz inequality yields

< ((d + 1)H(1ﬂ_%25XTX)

n?m?2AiY K4o§

_ o8)Aedlnl 4 p,m 4
L0600 < Ol B (D (a2) |

— 25)4¢4lInllh 4 i )
i % ElAXP ) (AXP ()]

J1seerda

=Cll%

m2(1 — 25)Aelslh (g 1 1) .
E (1—29) (d+1) max E[(A:X)%(y;)]

<C
<l n2Ate’ K4g8 j=1,...,m

Similarly to the demonstration of Condition (IIT) in Proposition 5.4.1, we have E[(A;X)3(y)] = O(A%).

Thus, we obtain

E[('YTfn,iyl] = 0(”7||30Anm2)7

n
=1

7

which completes the proof. O

We conclude this section by establishing that the temporal dependencies within the triangular array, as
outlined in Condition (IV) of Corollary 3.1.2, can be bounded suitably.

COROLLARY 6.1.6
On the Assumptions 4.1.1, 4.1.2 and 6.1.2, it holds for 1 <r <r +u < v < n and

v

-
Qq = Z 'YTfn,ia :+u = Z 7T§n,i7
=1

i=r+u

where &, ; is defined in equation (141), that there is a constant C, with 0 < C < oo, such that for all
t € R it holds

Cov [ Gt@-E1QT) i@, -5(0v.) )| < COF \Var(@)) Var(Q)
ovl| e , € ' ' S ar(Q7)Var(Qy,.,)-
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6.1. Asymptotic for the normalized volatility and the curvature estimators

Proof. We follow a similar approach as in display (142), resulting in

QiX)’ (1) lmey, llx
nAe’

n

V(1 — 26) T<1_25

1
T
\/%KO'% Y m X X) 1(d+1),m

VTfn,i <

2
BP(,) eyl
nAg

Y (A2 (y el T (L2203 )
= ez 2 (AX)2(y el il T(=—=XTX ) )

With reference to Corollary 5.3.2, it is evident that the statement holds for

d/2 m
_n Z(A,j(f( [y s
o i y;)el il
A/mAS Kj:1 J

since we can establish a connection between the triangular array &, ; from equation (141) and fnz from

equation (109). Thus, the conclusion follows. O

6.1.3. Central limit theorems and simulation results

In this section, our objective is to present a central limit theorem for both estimators, ¥ and ©. Similar
to the one-dimensional case, the asymptotic variance within the central limit theorem for the estimator
U will solely rely on the known pure damping parameter o’. By applying the multivariate delta method,
we will also present a central limit theorem for the estimator ¥, which serves to estimate the natural
parameters of the SPDE model from equation (49). To conclude this section, we will present simulation

results for the estimator 0.

Thanks to the developments in Section 6.1.2, we are now equipped to establish the initial central limit

theorem for the estimator ¥ as outlined in equation (135).

Proposition 6.1.7
On Assumptions 4.1.1, 4.1.2 and 6.1.2, we have

1 (U, — U) =2 N(0, Yo (1 - 26)71),

asn — o, d€e(0,1/2),0=(0,...,0)" e R T, defined in equation (121) and ¥ defined in equation
(138).

Proof. To prove this proposition, we leverage Corollary 3.1.2. The asymptotic variance is provided by
Lemma 6.1.3. Condition (I) is verified by Lemma 6.1.4. In order to establish Condition (II), it suffices to
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6. Parametric estimation based on a log-linear model

consider the Var(Z, ;), as Z is centred. Revisiting Lemma 6.1.4 confirms Condition (II). The Conditions
(III) and (IV) are validated by Lemma 6.1.5 and Corollary 6.1.6, respectively, which concludes the proof.
O

The previous central limit theorem demonstrates the capability to extend the outcomes from Chapter
3 directly into the multi-dimensional context. Additionally, we observe the variance-stabilizing nature
of utilizing log-realized volatilities, wherein the asymptotic variances are constant and only relying on
5,0/, and the provided spatial observation scheme, as indicated by ¥~!'. As we assume the damping
parameter to be known, we can leverage Proposition 6.1.7 to derive asymptotic confidence intervals, with
a confidence level of 1 — «, for the components of the multi-dimensional parameter v from equation (136).

For the parameter v; = 03, we have

Inm = [GXP [\i/n,m - QIfa/271/\/ nm]K717 exp [\i'n,m + QIfa/271/\/ nm] Kl]a

where ¢, represents the a-quantile of the standard normal distribution, K is defined in equation (132),

and
1= (Yar (1 = 20)27 1)
For the parameter v;. 1 = k;, where [ = 1,...,d, we obtain the following asymptotic confidence intervals:
Iy m = [ - \ilmm — Qi—a2V41/V/nm, —‘i’n,m + Q1—a/271+1/\/%],
where

_ 1/2
Yis1 = (Tar (1= 25)214}1,z+1) o

The following corollary introduces a central limit theorem for estimating the natural parameters of the

multi-dimensional SPDE model, given in equation (49).

COROLLARY 6.1.8
On Assumptions 4.1.1, 4.1.2 and 6.1.2, we have

V0T (O, = 0) =5 N0, Tor (1 28)J,2571 T 12),

asn — 00, 0 € (0,1/2), 0 = (0,...,0)" € R¥*1 T, defined in equation (121), X! defined in equation
(138) and J,2 defined in equation (143).

Proof. Utilizing the multivariate delta method on the central limit theorem presented in Proposition 6.1.7

and employing the function h=1(x) = (e®1 /K, —xa,...,—411), as defined in equation (137), yields

iy (6 — v) = amy, (B () — BH(®)) —5 NV(0, Yo (1 = 26) 1 (W) Z 1T, (9)T),
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6.1. Asymptotic for the normalized volatility and the curvature estimators

where .J,-1 denotes the Jacobian matrix of h~!, given by

e /K 0 0 ... 0

0 -1 0 ... 0

Jp1(x) = 0 o -1 ... 0
0 0 0 -1

We complete the proof by defining the following matrix:

o2 0 0 0

-1 0 0
Jozi= (@)= [0 0 =1 ... 0| (143)
. . . . D

0 0 0o ... -1

We illustrate the preceding corollary by presenting simulation results for the estimator vy, ,, from equation
(136), derived from the Monte Carlo study as discussed in Section 5.4. This study involved simulating
three scenarios of a two-dimensional SPDE model based on equation (49), with 1000 Monte Carlo itera-
tions each. In all three cases, simulations were conducted on an equidistant grid in both time and space,
with N = 10* and M = 10, using the parameters Jg = 0, v = (6,0), n = 1, and o = 1. The simulations
employed the replacement method outlined in Section 4.3, with L = 10. For the first case we used a pure
damping rate of o = 4/10, the second case used o’ = 1/2, and the third case used o’ = 6/10.

Figure 6.1 depicts a comparison between the empirical distribution of each case and the asymptotic
normal distribution as described in Corollary 6.1.8. The top row shows the simulation results for o =
4/10, the middle row displays the results for o/ = 1/2, and the bottom row presents the results for
o’ = 6/10. Each row consists of three plots, which assess the goodness of fit between the kernel density
estimation and the centred normal distribution, as outlined in Corollary 6.1.8. In these plots, grey
represents the results for estimating the normalized volatility parameter o2, while the other panels in
each row (yellow and brown) represent the results for the curvature parameters k1 and kg, respectively.
To estimate the kernel density, we employed a Gaussian kernel with Silverman’s 'rule of thumb’. As
discussed in Section 5.4, we observe a negative bias in the simulated data due to the cut-off solution
applied in the replacement method. To address this bias, we centred the data by utilizing the sample
mean of the respective estimations. This adjustment enables a visual comparison between the empirical
and theoretical distributions.

In this simulation study, where N = 10%, we must adhere to the following restriction, as outlined in

Assumption 4.1.1:

3.98  ifa/ =4/10
M < NO=eD/@+2) — L1396 if o/ = 1/2
251 , ifa/ =6/10

As Assumption 6.1.2 necessitates a minimum of three observations for the application of the estimator
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Figure 6.1.: The figure provides a comparison of empirical distributions for centred estimation errors of the parameter vector
v o= (0(2),/@1,/@2), which are obtained through simulations on an equidistant grid in both, time and space, where
N = 10%* and M = 10, and their empirical counterparts. The kernel-density estimation employed a Gaussian kernel
with Silverman’s 'rule of thumb’ and was conducted over 1000 Monte Carlo iterations. The specific parameter values
used for the simulations are as follows: d = 2, 99 = 0, v = (6,0), n = 1, ¢ = 1, and L = 10. Three different
scenarios were considered, each with a distinct value of the pure damping parameter o’: o’ = 4/10, K = 10® (top row),
o' =1/2, K = 10® (middle row), and o’ = 6/10, K = 1300 (bottom row). The corresponding asymptotic distributions
are represented by dotted lines. The results for the normalized volatility parameter 03 are depicted in grey lines, while
the estimates for ki are shown in yellow lines, and those for ko are represented by brown lines. For estimation of
v = (03, k1, k2), we utilized the set of spatial points S, as defined in equation (144).

0, we have chosen the following observation scheme:
83 := {(1/10, 3/10), (4/10,2/10), (7/10,5/10)}. (144)

Indeed, this observation scheme satisfies the Assumption 6.1.2, as evident by the following calculation:

1 1/10 3/10
1 4/10 2/10[=0.12 #0,
1 7/10 5/10

where |A| denotes the determinant of a matrix A € RP*P, p € N. For the cases o € {4/10,1/2}, we
obtain that |Ss| < N1=)/(@+2) whereas the Assumption 4.1.1 is (slightly) violated for v = 6/10, since
|S3] > N (1-a")/(d+2) Nevertheless, we present the simulation results in Figure 6.1 for all three cases of
the pure damping parameter o/ and observe that all three scenarios exhibit a substantial fit. The sample

means of the respective estimations are summarized in the following table:
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6.2. Asymptotic for the damping parameter

o mean 57(2) mean K1 | mean Ao
4/10 0.985 5.986 0.011
5/10 0.972 5.979 0.028
6/10 0.987 5.941 0.038
Table 6.3.: The table presents the sample means of the estimations for the natural parameters 0'3 and kK = (k1,kKk2) in a two-

dimensional SPDE model. The estimations are derived from a dataset with parameters set at 99 = 0, v = (6,0), n = 1,
and o = 1, based on 1000 Monte Carlo iterations. Each row in the table corresponds to the outcomes for three selections
of the pure damping parameter, where o’ € {4/10,1/2,6/10}.

Additionally, we provide corresponding QQ-plots in Figure B.3, which can be found in Appendix B.

6.2. Asymptotic for the damping parameter

When transferring SPDE models from one to multiple dimensions, the appearance of a damping parameter
is inevitable. In this section, we discuss how to consistently estimate the pure damping parameter
o =a+1-d/2€(0,1) in the SPDE model from equation (49) and we will prove a central limit theorem

for such an estimator &'.

6.2.1. Motivation and methodology

We start this section by recalling Proposition 4.2.7. This proposition analysed the autocovariance struc-

ture of temporal increments and stated

Cov(A:X(y), A; X (y)) = —c%e Im¥llh A r—ao)
i ) =g n 2d+1(7r77)d/2alr(d/2)

f(iajv (1/) + i, + O(An)a

where r; ; is a remainder defined in Proposition 4.2.7 and f a function, representing covariance behaviour
for the temporal lags. As mentioned before, it is not clear how to extract information on o’ through
a transformation of the temporal increments, since the damping parameter nearly affects all constants.
Therefore, we follow an approach, often used for estimating the Hurst parameter H < 3/4 in fractional
Brownian motions, which focuses on the roughness property. In this context we also refer to the work
of Chong (2020a), who also investigated potential estimators for estimating the parameter «’ in one
space dimension, which the paper refers to as “spatial correlation parameter”. Here, we obtain that o’

’
[e3%

®, which suggests the idea of comparing two different temporal resolution.

also appears in the term A
As the estimators from the previous chapters are dependent on information on o', we do not assume
any knowledge on the other parameters in the SPDE model from equation (49), i.e., on the differential

operator Ay.

We start the motivation part by considering equation (130) from Section 6.1. Here, we have

RVa(y) _ pofe=limyln L= @)o3 ! \/f
R o wEraeE\ PN W ?)
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6. Parametric estimation based on a log-linear model

and obtain by the transition to a log-linear model that

RVn Ta’
log <n(y)> ~ o' log(Ay) — ||k -yl + log (05 Kor) + - Z,
where we used analogous steps as in equation (131) and K, := K defined in equation (132). We consider

a mild solution X;(y) of the SPDE model from equation (49). Assume we obtain X on a grid with 2n
temporal and m spatial points according to Assumption 4.1.1. As we follow the approach of constructing
an estimator for o’ using realized volatilities on two distinct temporal resolutions, we need to specify
how we understand this new grid with a lower temporal resolution. First, we want the new grid to
be equidistant in time with 7 = O(2n), 7 < 2n temporal points, such that it satisfies the observation
scheme as outlined in Assumption 4.1.1. Furthermore, Proposition 5.2.1 suggests to filter the original
grid such that the new grid contains the maximum amount of temporal points. Intuitively, having the
most possible temporal points, while respecting an equidistant order of these, should shrink the variance
of the estimator. Hence, we set . = n. As we need to distinguish between both temporal resolutions we

introduce the following notations. The temporal increments for both grids are denoted by
(AQ”’LJlX)(Y) = XilAzn - X(ilfl)A2n and (A"ﬂ/zX)(y) = Xi2An - X(Z‘271)An7

where 1 <47 < 2n and 1 < 45 < n. The increments of the filtered temporal grid can be rewritten by

(A i X)(y) = X2ing, — Xo(i—1)A,, = (X2iA2n - X(Qi—l)A%) + (X(Qi—l)A2n - X2(i—1)A2")
= (A2n2i X)(y) + (A2n2i1X)(y),

where 4 = 1,...,n. Furthermore, by using an index transformation, we can write
(AniX)(¥) = Lon(i) (D20, X)(¥) + (A2n,i-1X)(¥)), (145)
fori =1,...,2n, where 2N denotes the set of all even and non-negative integers, i.e.: 2N = {0,2,4,...}.

Note that we incorporate zero into the set 2N. Moreover, the realized volatilities are redefined as

RVan(y) i= (8203 X)*(y)  and  RVa(y) = D, (AniX)*(y).

By using equation (145), we can link the filtered realized volatilities with the original grid and obtain

= Z Ton (i) (D20, X)) (y) + (AQn,ile)(Y»Q

= Z Ton(9)(Agp i X )+ Z Ton (i) (Agni—1.X)*(y) + 2 2 Lon(2)(A2n,i X ) (¥)(A2n,i—1X)(y)
= Z Lon(i)(A2n,: X)?(y) + Z 1 anye (1) (A2p,: X) " (y) + 2 Z Lon(2) (A2n,i X ) (¥) (Agn,i—1X)(¥)
= RVy,(y) + 22 Ton (i) (Agp i X) (y) (Aanio1 X)(y). (146)
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6.2. Asymptotic for the damping parameter

Note that the approximation as used in the Chapters 4 and 5 for the log-realized volatilities, i.e.:

RV, —
log (TL(Y)> ~ o' log(An) — ||k -yl +log (05 Ku) + "7,

where Z ~ AN(0,1), still holds, since the grid with a low temporal resolution still satisfies Assumption

4.1.1. Therefore, we follow up with considering the following statistic:
RV, RVa,
log (n(y)) — log (2()’)) ~ o/ (log(An) —log(Az,)) +

2n
= o/ log(2 ey 21 A/ “'ZQ, (147)

where Zy,Zy ~ N(0,1) and y € [§,1 — §]¢. Hence, by equation (147) we obtain a simple linear model

T
7~

TI
> 7
om 2

X = ay;+B+¢;, with centred errors and a known slope of zero. Hence, the intercept estimator estimates

the parameter o' log(2), which yields the following estimator:

Vimar e L S (2BValy)
& 1= B = o Zlg( > (148)

For recalling details on the ordinary simple linear model, cf. Example 3.1.1.

We start the methodology part by linking to equation (140), where we rescale the realized volatility by

the term A,. Thus, we obtain the following decompositions:

RV..(y) , S B XP W) el
o (270 ) —log(03) — -yl + o log(A,) + Z=L TGO 4 0(a,) + 0n(A,)

(149)

as well as

RVzn (y) / 33 (820 X)2(Y) eyl
log(gn = log(o§K) — lln-yllx + o’ log(Bon) + =55 er 7 el 1 O(Az,) + Op(Aan).

(150)

For the latter decomposition we used the Propositions 4.2.6 and 5.2.1, since both grids satisfy the As-

sumption 4.1.1. By utilizing the equations (149) and (150) we can decompose the estimator as follows:

A7 - Rvn( j) RV2n( j)
Yonm = log(l) Z <10g (Ty> ~log (2ny>)

1 m , eHN'y,'Hl n (An,zX)Q(y]) 2n (Agn,iX)2(yj)
B log(2)m et <a (log(An) —log(Azn)) + 02K (; nAg’ a Z; 2nAg, )>
+0(An) + Op(An)
R — 2 Vian (97) = Ve (v;)) + O(An) + Op(A,,),
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6. Parametric estimation based on a log-linear model

where

Va0 1= = D ALK and Vi, () = o 2 (Aani X p)el =,

nog=1

1 P1 1 P2

ellsylh INAY 2ellrylli 27 - -
Vn :7\771 :72/” n A A 1 An'LX AnzfX
A, (y) DA RV, (y) nAe Von, Ao, (¥) + Ay & o (1) (A2n,i X) (¥) (A2n,i—1X) (y)
o 4nAO‘;L
= 21 ‘/Q’n,Azn (Y) + TLA;/ WQTL,AQna
where we define for 1 < p < 2n:
1 & - -
Wp.a,, (y) = DAY D Lo (8) (A2 i X) (y) (Azn i1 X) (y)ellFIln. (151)
2n =1
Note that we have
‘/p,An (y) = 2170"‘/2177A2n (y) + 227&/W2p,A2n (y)7 (152)

for a 1 < p < n. Hence, we obtain the following representation:

, 1

A1 _ 1-o _ 1\~ (v 2= T~ (v )
G = 0+ e 2 (27 = DV, )+ 22 WMo, 7)) + O(A0) + Os(A0).

j=1
The corresponding triangular array is then given by Za, ; := £25; — E[&2p,,:], where
m oIyl

Sani 1= Z log(2)v2nmAS, 02 K

Jj=1

((2“’ 1) (Ban i X)) + 22“’nzN@)<A2n,zX><yj><A2n,i_1X><yj>)
(153)

1 2
=&mni T Eonis

with

217("/ -1 m .
Aoy i X)2(y)ellFyilln

log(Z)\/%Ag;ngK;< 2niX)(¥5)

22—a

1 —
£2n,i T

m

ATL’LX ; Ani,X . ”K'yjl‘l_
oz vammag ok 2480 Bania D)(y)e

€5, i= lon(i)

For the asymptotic variance of the estimator &', it remains to analyse the covariance of Vo, a,, and

W2TL,A2" .
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6.2. Asymptotic for the damping parameter

6.2.2. Covariance structure and dependencies of temporal increments on distinct

temporal grids

The aim of this section is to present necessary results to establish a central limit theorem for the estimator
&' defined in equation (148). As discussed in the previous section, our focus now shifts to analysing the
term Wa,, a,, as defined in equation (151). Specifically, we will commence by investigating the covariance
relationship between the rescaled realized volatilities V2, a,, of the original grid and the mixed term
Wan, A, - This mixed term arises when utilizing realized volatilities on two temporal grids with differing
resolutions. Subsequently, we will demonstrate that the mixing-type condition, as outlined in Proposition

1.2.4, is applicable to the structure of our damping estimator.

Proposition 6.2.1
On Assumptions 4.1.1 and 4.1.2, we have for the covariance structure of the two temporal resolutions

A, and A, that

Ay I'(l—a)o? 2 1/2 ALY AR
(COV( pAgn(yl) WP,A2n(y2)) {Y1 Yol o 2p <2d(7T7’])d/20/F(d/2) 1+0 AQn Vv 5L2i+1 Vv ;

Al;a d 1 A—no/
+O< 2p <]l{y1#yz}HY1 y2H0(+ +0- (d+1)) ;2 )7

where y,,y, € [0,1—3]%, Ay is a numerical constant depending on o/ € (0,1), defined in equation (166)
and 2 < p < 2n.

Proof. Analogously to Proposition 5.2.1, we first obtain that

2¢llr(y1+y2)lla

(COV( jNACTS (YI) WP,Azn (Y2)) = pAga/ Z €k, (YI)ekl (YQ)ekz (YI)ekz (YQ>Dk1,k2’
2n

kl ,k2 eNd

where we redefine

Dy, x, = (COV(( ik + Ciky) (Bi,k2 +Cixs), (Bj,kl +Cixy) (qu,k2 + ijl,kz))

%\'—‘

p
PIRE
i,j=1
1 p
; Z ( [szl +C7,k1)( Jk1+CJk1)] [(sz2+czk2)( Jj— 1k2+Cg lkz)]
+E[(Bi7k1 + Ci7k1)(éj_17k2 + C’j_Lkz)]]E[(B ko T Cz kg)( ki T OJ kl):l)

Assume ki # ko, then we have

LanG)E| (Bige + Cie) By + Craed) [E] (Bies + Crea) (Bi-1ges + C1) |
1

Dk17k2 =

-
&
I

A
=

SRR

N (&B.k BC,k BC,k Ck Bk BC,k BC,k Ck
nG) (BB + S50k £ BP0 w0k ) (355 + w02 + 3Pk + 308,

D=
=
[ V)

-
<
I

ful
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6. Parametric estimation based on a log-linear model

For the covariance terms we have by Proposition 5.2.1, that

1 — e~ Mg A20)2 (1 —AkQAZn
> Z Lon ()20 B = o 4)\13-01()\14-(1 Z Ton(j)e e Banlimile = Aanlimg 11,
’Lj 1 k1 ko i,7=1
For the geometric sum in the latter display, we obtain
1 1
Z q\z 7l |Z J+ |]1 Z qu Jl ‘1 J+ |12N( )(]l{jgz} +]1{2<j})
5,j=1 t,j=1
p j—1
—QQZ Z 0g2) () + a3 " Y, Z 0192)” " Lan(j)
1=2j=2 j=21i=1
P S J j2 ' j—1 .
=@ ) (@52)" Y (q1g2) 7 Ian(i) + a5 " ). (01¢2) Lan(h) D (qr1g2) ™
i=2 j=2 j=2 =1

where g1, g2 # 0. Furthermore, for a ¢ # 1 it holds by analogous computations as for the partial sum of

the geometric series, that

1— n+2 . .
5 ) 713(12 , if n is even
Yaln(i) =4 Ur T ;
; 13q2 , if n is odd

where we consider zero as an even integer. Hence, we get

=l gli=i+1l a2 C i Y Lo
;1(1 Tan(d) = (q192)*(1 = (q192)7?) (;(qup) (1 (02) )]IQN()

+ Z(qwz)i(l - (Q1Q2)(i1))1(2N)B(i)>

=2

q1a2(1 iE(Qulz)_l) Z (@192) (1 = (q192)~ Y™ ) Tan ().

Now, using that |¢1], |g2] < 1 and that it holds for the floor function by the Fourier representation that

1 c ,ifepeZ
sin(2wkcep) . ’
p c—f—l—kali , ifcpéZ,

for ¢ # 0 and p € N, we observe the following;:

-1 —1

p
li—jl li—j+1] N 2 (p p ) 0z p )( ( P ))
q q 1 =—F—(z+ 192 ) + —— - =q1¢q 1+O0(—
Z ! 2 an(d) <1_(Q1Q2)2 2 2t 1—qq 277 1—qig0

1,5=1
o+ g pt
= — 1+ O()) 154
2(1 — q1q2) ( 1—qige (154)
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Therefore, we have

N dan)2(1 e

—AkQAzn)2

P 5Bk _ e

2,7—1

*Z]lzN

zjl

e Mg B2n | o= Ak Azn

4)\1+a>\1+a

X
2(1 —

Furthermore, we have

e~ (Mg +Aiy )Azn)

(155)

(1+0(n )

p —2Ak, Aon —2Ak, A2n
C.k152Crk ot —€ t )(1—e 2 .
- Z Lon(5)%;, ;oY= ; Z JalFaylta Lij—iy 1=y lon(j) = 0,
i,j=1 =1 ki ko

as well as

1 — e M1B2n) (] — g~ Ak A2n
1 Z L (j) BT £ ECK: =U4( e ;)\Hl()\lme > )(e,\klAzn — e dan) (M Ban o= Ban)

1,j=1
1 & . .
XZ; Z 1{i>j}]12N(j)€_Ak1A2"(1_J)€_Ak2A2"(Z_JH)-
ij=1

For the sum structure in the latter display we obtain

P
1 S Lgin iy Lo (G)e o B2 (=) =Ny B (=i +1) €
P

Assume |¢q| < 1, then we have

1 &2 R T At
- Z Lgisjplon(j)e" ™ = = Z q" > Lon(j)g™
Pz Pim =
1 & 1—gq
= —5 2, Lan(i)¢’
2 Z N
L 1

=—mquﬂ'@“+@@+oqiﬁ>

Ak, Aoy, P .
: Lpis gy Lon(f)e” M A Ban (=),
p ij=1
—(i— 1) 1 & 1—q (i—2)
= 2 Z 1 2N)C —2

q p
=L (1+0( )) (156)
2(1-q) ( 1—q
where we used analogous steps as for equation (154). Hence, we get
1 — e~ 1820 (] — e~ Ak A2n B 3
- Z ]12N ZBC ki ElBJC 11(2 = 0'4( 4)\1+21<>\1+a ) (ekklAzn —e Ak Azn) (e/\szzn —e >\k2A2n)
1,j=1 ki “ka
—(Aieg F Ay ) A2 1
—Aky A2n € ! 2 p )
e ’ 2(1 — e_(Akl +Ak2)A2n) <1 + O(l A 1— e_(/\k1+/\k2)A2n >
_ (1 — ek Ajn)(]_l_ e~ Mk Azn) (1 g Azn) (1 B 672/\k2A2n)
NN
—Aky A2n -1
e 2 D
8 2(1 — 670‘1‘1 +>‘k2)A2n) (1 + O(l A 1-— e*(/\kl +Aky ) Don )) (157)
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Moreover, we have

_ oAk Aon _ oAk, Aop
1 Z 1 BCklZBCkg =U4(1 e Mt ) (] —em M Bm) Aoy, _e—AklAzn)(e,\k2A2n_e—Ak2A2n)
2N j—1,i 4)\1+a>\1+a
1] 1 k k
1 & o o o
0 Z Liicj—1plan(d)e Moy Ban (5=0) g Mg Ban(§=14)
1,7=1

Using the results for the following geometric series:

1 2 1 2 =2
=3 Loy Lan()@ ™ = = D Lan()g’ Y. g7
pi,j=1 pj=4 =1
1 1—q G2
=— > Ton(j)g
Pq j;l 2 ( ) 1— q—l
14
Lon(j)(¢* — ¢
1 —q) ;1 )

1_q( (=) 9

yields that

1 2 on(j ZBc kigBCks _ 4 (1 —eMafon)(] — e MeaBon) (exklAM

_ oAk Aoy Ay D2n = AkyDan
J—1,3 4)\1+a>\1+a € ! )(6 2 € 2 )
k k

zj 1
—2(Ak; HAky)Azp -1
Ay Ao, € e ( p )
e 2(1 — e_()\kl +)\k2)A2n) <1 +0(1A 1— e_(>‘k1+>‘k2)A2n

4 (]_ — e My Azn)(]_ _ e*Aszzn)

= (1 _ 672)\1(1 Azn) (1 _ 672)\1(2 AQn)
N "Ny
—Ak; Az2n 1
e 1 p
8 2(1 — 67(>‘k1 +>\k2)A2n) (1 + 0(1 A 1— 67(/\1‘1 +/\k2)A2n )) . (159)

For the cross-terms, we obtain that

P Ak Dan\2( oAk Aan
1 2 ]l2N( )EB ka (ZBCkz +EBCk2) :(7_4(1—6 k82 ) (e ko 822 —1) (ekszzn _e_>‘k2A2n)

p A i,7—1 j—1,i 4A]1chraA11(;ra
1 & . - o
x = 3 Tan(g)e MBI (1 e MBIt 1y e e Ben(G7170)
P55
B 04 (1 _ 7)\k1A2n)2(67)\k2A2n — 1) (6Ak2A2" B 67)\1(2A2")
- 4)\1-&-0&)\1-&-0&
ky ko
— Ak AQn p Ak A2w
(& 2 . _ _ 2 o
% < 5 ]12N(j)]1{i>j—1}e ()‘kl +)\k2)A2n(l ]) + Z ]12N ]l{Z<J 1}6 (>\k1 +>\k2)A2n(] 1)))
i,j=1 ,j=1

Analogous to equation (156), we have

1 & o 1 p
- Lo nlon()¢™7 = —— (1
, E (i=j—1312n(j)q 30— q) < + (9<1 — q))

1,j=1
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which yields in combination with equation (158) that

1< (B ki (s BO K BCk s (L= B2 (e Nalon 1)\
I 2 Lon()S; ;" (B 00 +25507) =0 AtoyIta (ewaen
Pii=1 ki ks
—Aky Ao2p -1
—2Xk Agn € 2 ( p )
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4)\k1 )\kz
1 _2>\k Agn —1
s (1 0(1 8 ) ).
2(1 _ 67( Ky TAky) 2n) 1— 67( Ky kg ) A2

Moreover, it holds that

4 (]_ _ e*Ak2A2n)2(e*>\k1A2n _ ]_)
l+ay 14+
4)\1{41' /\kj

1 & -
5 2 (IS (B0 + 270) =0
1 & o o .
* 9 D Don(j)e M B imUTDI (1 e M BonGm0) 1 e M Bon(0))

ij=1

4 (1 _ e—)\k2A2n)2(e—>\k1A2n _ 1)

-0 DlFa (ehafer —eTnte)
X (e_Al;A% y 12N(j)11{i>j}6_(’\“1+’\k2)A2"(i_j) + 6/\";A2n y Lon(j)Lgj>iye™
i,j=1 1,5=1
_ (1 _ e—)\k2A2n)2(e—>\k1A2n _ 1) (eAkIAzn B e—AklAzn)
DO
—(Aieq iy ) Az —1
(Pt g ) 2o ()) (1 T P — ))

4 (1 _ €—>\k2A2n)2(€—>\k1 Aon

I+ay1+a
Y

1) (1 _ 6_2>\k1 Agn)

_ e_AkQ A2n )

(160)

(e)\kl Aoy 67/\k1 A2'rL)

(g + ey ) Az (j—i))

1 pt
—2Ak, A2p
x (1 t+e 2 )2(1 o ef()\kl +)\k2)A2n) <1 + O<1 A 1— e*()‘kl +Aky ) A2n ))7 <161)
where we used equation (156) and
1IN i q p!
- Z Ty lon(f)g’ " = (1 + 0( ) .
P52 2(1—q) l—gq
We also observe that
1IN B k1 s2Cok L (1= e MaBen)2(] — g7 2Mh2n) 1 & NN
D Z ]IQN(‘])Ei Y=o 1+ay1+o D Z Lon(j)e” %ll_Jl]l{j—l:i}
Pz ! ! AN A, Pz
7)\1( AQn 2 *2)\1( A2n
4 g A, et ) (1 —e 2 )( 71)
= ole P 1+0 , 162
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as well as

— e 2N AQn)(l _ €_>\k2A2n)2 1 &

1
1 Z Ton(j Bk220k1:0_4(

’L 1 1+ay1l4+a
zg 1 . 4)‘k1 >‘kz i,5=1
B (1 _ 672)\1(1 Azn)(l _ e*)\k2A2n)2 B
ANy A e (1+06™). (163)
ki ks

In comparison to Proposition 5.2.1, the following structures do not vanish and we get

4 (]_ — 6_2/\k2A2n)(e_)\k1 Aoy _ 1)

- Z ]]-2N EBCklzckQ — (eAklAZH —e_)‘klA2">

i,j—1 1+a 1+«
P AN N
1 P o
— Z ]l{j 1—4 }e AZn(J_Z)
p =1
e 2 k; Dan —Ak; Az2n
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—Ak; Dan
e M _
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1 — e 22k B2n ) (p— Ak  B2n _ ]
= 04( : 2)\1+(34()\€1+a ) (1 - eizAklA%) (1 + O(pfl))’ (164)
as well as
(1 —ePhaden)(e—Maon — 1) 1y o Ay A
" Z Lon()Z; S001 = o o) (e kgfan o= Ak 2n)
P J ANTON
p
Sty

—2Ak, Ao —Aky Aoy

4(1*6 kaB2n) (e M B2 — 1) Ao Ban =My Ao
)\1-&-0&)\1-&-(1

k, ko

=0

Aky Aoy

1+ o)

o (1 — em2MaBen) (em Mo B2n 1) (1 _ 6_2)\k2A2") (1 + O(p—l))7 (165)

1+ay 14
Ay N

whereas the following terms still vanish:

1 ¢ BC.ki y2BC k 1 ¢ BC ki s2C.k
LS it o LS s, o
i,j=1 i,j=1

1 < 1 $BCkiBCk: _ 1 < 1 ZCklzBCkzio
72 QN(j) 7,0 i,j—1 — 72 () j—1,4 = ¥
pi,j:l pi,j:l

Combining the calculations form the displays (155),(157),(159),(160),(161),(162),(163),(164) and (165),
yields for k; # ko that

1 ¢ -\ (B )k BC,k BC .k C.k Bk BC,k BC ,k C.k
Dijee =5 2, Lan(G) (S5 + 2% 4 2P0k 4 w0k ) (S50 4 w52% 4+ 2P 1 20

j—1,%
i,j=1
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ki ko
oA (1 — e Mg A2n)2(1 _ e—2>\k2A2n)
e n
8>\ll(+a>\ll(+a
1 2
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1 _ oAk A2p)2 1_ —AkyA2n )2 —Ak; Azn + —Aky A2p
(o ey ity bt

8)\11Ja)\11(;ra 1 — e~ iy +Aky)A2n
Ay Aan (1 _ oAy Aan -1
B 2(1 —e ki j )(11 e k 2 )(1 o 6—(/\1(1 +/\k2)A2n) 1 + O(l A p ) .
SHpNE e e

Recalling the calculations of the covariance yields

26”’@'(3’1‘5‘}’2)”1 0-4

Cov(Vp, a0, (¥1): Wy 20, (¥2)) = = D ew (71)er (¥2)ers (¥1)ers (v2) Dicy ko
P n k17k2ENd
ki #ko
1 Dy, x
+ O(/ 1,ka )
PAS klsgeNd 1 — e~ (i +hi ) Aan
ki #ko
2l (yi+y2)lh
e 2 )eR(v2) Dk,
P=an keNd

where
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- 1+ 1+
BTN

(1 _ e_(Akl +>\k2)A2n).

First, we obtain for sufficiently large p that

1 Dk k _ )

(g e L

P*Ag k17k§2:ENd 1 — e~ (rr HAk)Azn n
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where we used Lemma 4.2.4 and analogous steps as in Proposition 5.2.1. Hence, we obtain

1 thkz _ 1 AQ:;)/
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2n Kk, 7k26Nd
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Furthermore, we have for k; = ko = k that
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Defining the following term:

(1 _ e—AkA2n)4

B WA —AkAzp )2
e kT2 ) (1_6 ko2 ) (1_6—2)\kA2n)

==  J(_949 _
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GO Dy = 0(2" Ay, AV S ) =0(p~'A5, "),
) y 2 (e ) ) =07 857)

where we used analogous steps as in display (117). We decompose the leading term thkz as follows:

B _ Nl 2 3 4
Dk17k2 - Dkl,k2 + Dk17k2 + Dk17k2 + Dkl,kz’

where

“Aie; Aon\2 —Ak, Aon )2 2(1+a)
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D2 3 (1 _ e—/\klAzn)2(1 _ e—AkQAzn)2 . e~ M Ban 4 o=y Aon

kiks ™ ] /\ifo‘ A};“ 1 — e~ Mg HAxg ) A2p
2(1+a)
_ B A, A A, A A, A DYDY
2 (gl,a,r+l( k1 2n)gl,a,r( ko 2n)+gl,a,r+1( ko 2n)gl,a,r( k1 2n))7
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_ (1 — e Mg A2n)(1 _ e*)\szQn) A21(11+0‘)
Dy gy = — ATl =— 24 J1,0(Aky A2n) f1,0( Ak, A2p),
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_ 1 — e MaBen)(] — g Ak B2n) o
Dicvies = ( 4/\1+)a(,\1+a ) o Oy ) B A5 g3 01 (M A2 92,01 (Miey Az ).
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Here, we use the following functions defined by

1—e" (1 _ e—m)2
fra(@) = fal@) = —5— faale) = g™,
(1 — 6—15)2 —TT 1 — e_’” T
91,(1,7(96) = ga’T(x) = We ) g2,a,‘r(x) = We

By Lemma 4.2.3, we know that f1, € Qg, and g1, € Qp,, where 1 = (204,2(1 +a),2(2 + 2a)) and
Ba = (20,2(1 + @),2(1 + 2c)). By analogous computations as used in Lemma 4.2.3, we obtain that
fo.a € Qp, and g2 o,r € Qp,. Assume y; #y,. We can repeat the calculations leading to equation (119)
and have

’ ’
11—« -«

A . } 1/ aay A
Cov (V. (). W, (7)) = O 25 Iy, = yally 4+ 57900) ) o 2 (83070 4 S 1))

’

AIT_La/ a1 B A—noz
=0( 2 (llys = yallg T+ 67D v 2 )

Therefore, it remains to analyse the case where y; = y,. Again, by utilizing the fact that the functions
fi.as fo,a, and go o - belong to the same class Qg, as the function f, defined in equation (67), and

additionally that ¢1,4.r = ga,r, we can conclude, analogous to equation (120) from Proposition 5.2.1,
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that
20 Az, A AT
Cov(Vp, a0, (¥1)s Wp,25, (¥2)) = CAZa 2 Dy, x, + O ( on v ST + A 1) .
P2on 1, Jgena p

First, we obtain that
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Using Corollary 4.2.2 and analogous steps as in Lemma 4.2.4 yields
I, — 1 1 2 (2 — 2a’)7r 2 B _1 F(]. _ O/) 2(20/ - 2)2
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1 Il —«o)
I3‘4<2d< NPT (]2 >>

1 I'(l-a) 2
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Hence, we obtain for y; = y, that

I'(l—a)o? 2 , 5 o )
Cv (¥ an (92): W (92) = o1 it amentrary ) (2 1P = @ =27 =1

[ee]

+ 3 (~r+ DY w2+ 2 (r+3)Y) (< 200+ )Y - (4 2)) )
r=0
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Defining the following constant:

Ay = Z ( ( r+ D) +20r+2)* — (r + 3)0") (—r‘l/ +20r+ 1) = (r+ 2)“’) >

(166)

completes the proof. O
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The prior proposition demonstrates that the covariance structure of the rescaled realized volatility Va,a,,,
and the mix-term Waya,, exhibits an analogous asymptotic behaviour as the variance-covariance struc-
ture of the rescaled realized volatilities outlined in Proposition 5.2.1. This observation simplifies the proof
of the central limit theorem presented in Proposition 6.2.3. Note that we consider the case where p > 2
since the covariances mentioned in Proposition 6.2.1 become zero when p = 1.

Upon comparing the constant A/, defined in equation (166), with the constant Y, from equation
(121), we observe that A,  contains non-negligible covariances. Notably, when comparing the structures
of the series in A, and Y,/, it becomes apparent that the structure of non-negligible quadratic increments
is transmitted to the product of consecutive temporal increments. The factor of 1/2 arises due to the

thinned temporal grid, which retains half the number of temporal data points from the original grid.

We conclude this section by proving the general mixing-type condition from Proposition 1.2.4.

COROLLARY 6.2.2
Grant the Assumptions 4.1.1 and 4.1.2. For 1 <r <r+u < v < 2n and

T
Q"{ = Z 627’7/,7;) r+u - Z 5271 73
i=1 i=r+u

it holds that there is a constant C, with 0 < C' < o0 and 527” from equation (153), such that for all

t € R we have

i AT _ AT i Av _ v Ct2 g X
‘Cov<et(Q1 E[Q7]) | ¢it(@ .~ m]))‘ < m\/Var(Qg)Var(Q;fﬂ).

Proof. Recalling the triangular array &,,, ; from equation (153) shows, that we can bound &, ; as follows:

’
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Z(Azm 1 X)2(y e eyl

Applying Corollary 5.3.2 completes the proof. O

6.2.3. Central limit theorem and simulation results

To end this chapter, we prove that a central limit theorem holds for the damping estimator &' from
equation (148). Subsequently, we will discuss the case, where every parameter from the multi-dimensional
SPDE model, outlined in equation (49), is unknown and close the research part of this thesis by providing

a Monte Carlo simulation study for our novel estimator &'.
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6. Parametric estimation based on a log-linear model

Proposition 6.2.3
On Assumptions 4.1.1 and 4.1.2 we have

\% 2nmn(d/2nmn - O/) _d) N(O’ 10g(2)_2 (STO/ - 22_0/(TD/ + Ao/)>)7

as n — o0, where m,, = O((2n)*) with p € (0,(1 — /)/(d + 2)), Yo defined in equation (121) and Ay
defined in equation (166).

Proof. We determine the asymptotic variance:

or( 3 2ns) = (3 ) = (o ﬁﬂ(z Vs )0,) = Vi, (7))

= o (& 70, 320+ 2 Vor(Vina, )

-2 Z COV(Vn,A2n (Yj1)7 ‘/QH,AmL (yjz))) + 0(1)7

J1,j2=1

where &3, ; is defined in equation (153). For the covariance structure of both temporal resolutions we

have by using equation (152) that

(COV(Vn,Amz (yj1 )7 ‘/2n,A2n (yjz )) = 217QICOV(V27L>A2” (yjl )’ VQn’AQ" (yj2 ))
+ 22_Q/COV(‘/27L,A271 (yjl )7 WQn,Azn (yj2 )) .

Note that the covariances vanish for y; # y,. Hence, by utilizing the Propositions 5.2.1 and 6.2.1 we

conclude that

2n
2TL T ’ T ’ ’ T ’
V. Eopil|l = n— 4 2 n— 42 92—« y— 4 2
ar(; 2 ) log(2)2m, 05 K2 <m p Jot Mg % o 70

. Ay
—25"%m,, 4UOK2> o(1)
1

—a n—0o0
= fogra BTer =277 (o A0)) + 0(1) =2

gy (30 = 27 (Tor 4 ).

It remains to verify the Conditions (I)-(IV) from Proposition 1.2.4.

(I) Let 1 < a < b < 2n, then we obtain for the first condition that

b b b b b
Z Var(‘EQn,i) = Z Var(§2n,i) = Z Var(&%n,i) + Z Var(&%n,i) + Z ]l{iZQ}(COV(é-%n,ivégn,i)'

i=a

For the variance structure of §%m we have analogously to Proposition 5.4.1 that

b b
D Var(boni) = Y| Var(é, ;) = O((b—a+ 1)Ag,).

i=a i=a
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6.2. Asymptotic for the damping parameter

For the variance structure of §§n)i, we obtain the same order through analogous considerations as
in the proof of Corollary 6.2.2. Hence, it remains to analyse the covariance term. Upon compar-
ing Proposition 6.2.1 with Proposition 5.2.1, we observe that both statements differ only in the

constants, whereas the asymptotic behaviour is identical. Therefore, we conclude that
b
Z Var(Egn,i) = O((b —a+ I)Agn)
1=a

The same argumentation holds for the following term:
b
Var( Z Egmq;) = O((b —a+ I)Agn),
which proves the first condition as well as Condition (II).

(ITI) For the third condition we have

For &3, ; we use analogous steps as in Proposition 5.4.1 and have

2n

2 El(6,0)'] = O(Agum?).

For f%nz we obtain by using the Cauchy-Schwarz inequality that

92—a’ 1

4
10g(2)U%K> A3 (2n)2m2 i

E[(£§n71)4] < ]IQN(i)< Z (6Hfi'(yj1 +”'+yj4)HE[(A2n,iX)8(yjl )]1/8
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m4 ’
o A,
(st

Hence, we conclude

Z E[(f%nzyl] = O(Azan) = o(1),

and the proof of the third condition follows.

(IV) The last condition is given by Corollary 6.2.2, which completes the proof. O

The preceding central limit theorem reveals, that the asymptotic variance of the damping estimator &’
contains the non-negligible covariances of the rescaled realized volatilities, as well as additional non-
negligible covariance structures resulting from using temporal grids with distinct resolutions, given by
—22*0‘/(Ta/ + Aa/)). We also witness, that the asymptotic variance hinges on the unknown pure damping

parameter o/. To classify the magnitude of the asymptotic variance, we provide Table 6.4. This table
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6. Parametric estimation based on a log-linear model
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Figure 6.2.: The figure provides a comparison of empirical distributions for centred estimation errors of o', which are obtained
through simulations on an equidistant grid in both, time and space, where N = 10* and M = 10 and § = 0.05. The
kernel-density estimation employed a Gaussian kernel with Silverman’s ’rule of thumb’ and was conducted over 1000
Monte Carlo iterations. The specific parameter values used for the simulations are given as follows: d = 2, 99 = 0,
v =(6,0),n=1,0 =1, and L = 10. Three different scenarios were considered, each with a distinct value of the pure
damping parameter o’: o’ = 4/10K = 10° (left), o’ = 1/2, K = 10° (middle), and o/ = 6/10, K = 1300 (right). The
corresponding asymptotic distributions are represented by dotted lines.

presents numerical values of the asymptotic variance for different values of the pure damping parameter

o

o 0.1 02 1] 03| 04| 05| 06 [07] 08 ] 09
AVAR(&') || 4.74 | 4.45 | 4.16 | 3.85 | 3.53 | 3.22 | 2.9 | 2.59 | 2.29

Table 6.4.: The table shows the asymptotic variance as given in Proposition 6.2.3 for distinct values of the parameter a’. The
values of the asymptotic variance are rounded to 2 decimal places.

Before turning to the simulation study for estimating the damping parameter, we discuss the case of
estimating the natural parameters from the multi-dimensional SPDE model from equation (49). Here, we
assume that the damping parameter and the parameters from the differential operator Ay are unknown.
As we have shown central limit theorems for the estimators 62, ¥ and © in the Propositions 5.4.1, 6.1.7
and Corollary 6.1.8, respectively, we especially proved consistency for those estimators. Since Proposition
6.2.3 also establishes the consistency of the estimator &', we can deduce that the estimators &3, and &2
from Section 4, along with ¥ and © from Section 6, remain consistent when replacing the parameter o
by the estimator &'. We can also preserve the original CLTs for the estimators &2, ¥ and 0 from the
Propositions 5.4.1, 6.1.7 and Corollary 6.1.8, by accepting a slightly slower rate than n'/2.

We close this chapter by providing density plots for estimating the parameter o’. Figure 6.2 shows a
comparison between the empirical distribution of each case and the asymptotic normal distribution as
described in Proposition 6.2.3. The left panel shows the simulation results for a true pure damping
parameter of o = 4/10, the middle panel displays the results for o/ = 1/2, and the right panel presents
the results for o’ = 6/10. To account for structural bias in the data, we centred the data by employing the

sample mean of the corresponding estimates. To estimate the damping parameter, we adopted a spatial
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6.2. Asymptotic for the damping parameter

threshold of § = 0.05, resulting in the usage of 81 spatial coordinates for estimation. The parameter
choices employed for the two-dimensional SPDE model are consistent with the simulation study presented
earlier for the previous estimators, cf. Sections 5.4 and 6.1.3. All three scenarios exhibit a significant fit,
where we observe a qualitative difference between lower and higher values for o € (0,1). This distinction
can be attributed to the fact that a governs the Holder regularity of the temporal marginal processes.
Lower values of « result in rougher paths, thereby yielding a more accurate fit. The sample means of the
estimates are given by 0.393 for o/ = 4/10, 0.484 for o/ = 1/2 and 0.554 for o/ = 6/10. Additionally, we
provide the corresponding QQ-plots in Figure B.4, which can be found in Appendix B.
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7. Conclusion and outlook

We conclude this thesis by providing a summary of the research conducted in both parts of the thesis.
We will integrate the outcomes into the pre-existing body of knowledge concerning SPDEs, and identify

potential areas for further exploration in both sections.

7.1. One-Dimensional Stochastic Partial Differential Equation

The research undertaken in the first part of the thesis centres on SPDEs within a one-dimensional space,
with a primary focus on refining established estimation techniques for the natural parameters of the
model from equation (1), namely the curvature parameter £ and the normalized volatility parameter 3.

Addressing the lack of comprehensive exploration into efficient estimators for the curvature parameter,
we devised an oracle estimator denoted as /& using the maximum likelihood method. To address estimation
of both natural parameters, we established a bridge between realized volatility as the foundation for our
estimation challenges and the framework of the linear model. This connection allowed us to successfully
apply statistical methodologies rooted in the linear model to SPDE models by incorporating log-realized
volatilities. Consequently, central limit theorems were established for our novel estimators: &, jr, and UAg,
all of which displayed optimal rates of convergence.

Although existing M-estimators, as introduced by Bibinger and Trabs (2020), were employed by many
researchers to estimate the parameter = (02, %), our findings revealed the substantial advancements
offered by our novel estimators. These estimators notably exhibit smaller asymptotic variances and
the added benefit of explicit functional representation. Additionally, we demonstrated the feasibility of
deriving asymptotic confidence intervals for the parameter k as the asymptotic variances are given by
known constants. The use of a variance-stabilizing transformation of the realized volatilities also allowed
us to construct asymptotic confidence intervals for the parameter 08.

Furthermore, the extensively studied and well-understood linear model framework offers a wide range
of statistical methods, such as x?-tests and F-tests. These methods provide an avenue to establish deeper
connections between SPDE models and linear models. Future research has the potential to strengthen

these linkages, where the foundations for proving such connections are laid out in this thesis.
In conclusion, this research advances the understanding and application of estimation techniques for

SPDEs within a one-dimensional space and contributes to the existing literature by not only offering

enhanced estimation techniques but also by establishing connections between disparate statistical fields.
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7. Conclusion and outlook

7.2. Multi-Dimensional Stochastic Partial Differential Equation

While extensive research has been conducted on one-dimensional SPDE models over the past decades,
the exploration of SPDEs in multiple spatial dimensions remains considerably limited. Our contribution
to this emerging field involves establishing a theoretical framework for a general d-dimensional space and

pioneering initial estimators for the natural parameters: o2, k1, ..., k4, and o/.

Our approach is based on the notion of linking multi-dimensional SPDE models to multiple linear
regression models. We demonstrated the practicality of this idea by central limit theorems for the re-
spective estimators and constructed asymptotic confidence intervals for the natural parameters of the
multi-dimensional model. Furthermore, we embarked on investigating the identifiability of the damp-
ing parameter «, a concept that arises in multi-dimensional contexts, and successfully derived a corre-
sponding central limit theorem. Hence, we have successfully demonstrated that key concepts from the
one-dimensional space can be transferred to multiple space dimensions, thereby providing the basis for

extending these linkages in future research.

Although we have laid the foundational groundwork, the field of multi-dimensional SPDEs offers ample
avenues for further exploration and investigation. One intriguing technical question that remains unre-
solved surfaced during our analysis of the replacement method for multi-dimensional SPDEs in Section
4.3. In this context, we proposed a numerical approximation for the variance sy, of replacement centred
normal random variables. While this approach introduced a bias into the simulations, we outlined a

method to derive an exact determination of the variance sy, in this outlook section.

We continue with the notations and the equidistant observation scheme in time and space, as introduced
in Section 4.3. Let X}' denote a solution of the random field from equation (49) with a stationary
initial condition, i.e., (£, exyy ~ N (0, 02/(2)\11(“‘)). Furthermore, let z5' be the corresponding coordinate

processes for k € N%. According to equation (78), it holds that

o2

Var(zi (1)) = Jirva-
k

Thus, we have

02 S 1 S K
3 s = Varlxit emoan) = Va3 3 X em(y)el 0l )
1€Zm ©71 jeg

1 KoY Ky S S
= 2 Z em(yjl)em(yh)eu iy 1 ell szHl(COV(Xtt(Y_h)aXtt(Yj2))a

J1,J2€T

where y; = j/M. The covariance of X?* in two different spatial points can be represented as follows:

(Cov(Xft(yl), XtSt(Y2)) = Z 6k(Y1)€k(YQ)Var(zit(t))

keNd
1
=o? Z ek(Yl)ek(YQ)W
keNd k

d
1
= 2l 31 [ Tsin(rkiji /M) sin(mkyjl> /).
keNd Tk (=1

218



7.2. Multi-Dimensional Stochastic Partial Differential Equation

Defining the constant
2 v-1 (V]2 (1), 42
A= (7%n) i I and ;= (5, +4,7)/M,

results in analysing the following term:

].—I;i_l eiﬂ'klal
I = .
m< Z (B + ...+ k% + A)tte

keNd

Exploring a “closed” expression for this latter series could become the focus of forthcoming inquiries.
Achieving such a closed form, as demonstrated by Hildebrandt (2020) for one-dimensional space, would
not only significantly accelerate simulation runtimes and potentially yield nearly unbiased results, but
opens up a novel avenue for investigating SPDEs in multiple spatial dimensions.

In Part II, we developed statistical methods under the assumption of observing the solution of the
SPDE model from equation (49) through a high-frequency observation scheme. The understanding of
the covariance structure of a mild solution X; at two distinct spatial points introduces opportunities for
exploring statistical inferences with deviating statistical assumptions. In the work by Hildebrandt and

Trabs (2021), the investigation of SPDEs in one spatial dimension utilized space-time increments

(6/€X)(tl> = Xy, (yk) — X, (yk71>7

offering novel statistical methodologies for estimating parameters of the one-dimensional SPDE model.
The transferability of these ideas to higher spatial dimensions is conceivable, requiring the exploration of

appropriate spatial coordinate selections.

As observed, the linkage between the linear model and multiple spatial dimensions establishes an oppor-
tunity to extend well-established techniques from linear models to SPDE models in this multi-dimensional
context. One avenue involves the estimation of the damping parameter in combination with the log-linear
model, akin to the approach highlighted in Section 6.2.1. Here, we can explore a statistic, represented by

the equation

RV, (y1) RV2,,(y») Yo Yo
log (n —log| —5 7|~ o' (log(A,) —log(Agn)) — ||k« (y1 — ya2)ll1 + 2Bk Vw2
Y. .
= o 1og(1/2) — [I5- (v — )l + ) 21—\,

where y; and y, represent distinct spatial points, and Z; and Z5 denote normal random variables. This

approach not only enables the estimation of the pure damping parameter o’ but also enables simultaneous
estimation of the curvature parameter k = (k1,...,kq). Conversely, employing this approach necessitates

a full-rank assumption akin to Assumption 6.1.2.

Nevertheless, numerous other intriguing research areas await exploration in this nascent field. While
constructing an oracle estimator for the volatility parameter o2, our findings showcased a connection to
the one-dimensional case. Thus, it is plausible that estimation methods like those presented by Bibinger

and Trabs (2020) could be applicable to estimate the integrated volatility S(l) 02 ds for a time-dependent
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volatility o, within a semi-parametric framework.

In conclusion, Part II of this thesis accomplishes the objective to extend the exploration of SPDEs to
multiple spatial dimensions. As the field advances and more complex models are needed to capture real-
world phenomena, our work provides a bridge between theory and application in this area. By developing
a comprehensive statistical framework within the context of linear, second-order SPDEs with additive
noise, we addressed the challenges and complexities that emerge in multiple dimensions. We proved
that the statistical theory for one-dimensional SPDEs can be successfully extended to multiple space
dimensions and provided a link to the linear model, enabling a wide range of statistical methods to multi-
dimensional SPDEs. We anticipate that the groundwork established in this second part of the thesis will
make a valuable contribution to future research extending beyond linear parabolic SPDE models with

additive noise.
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Appendix A. Notations

A.1. General Notations

In this thesis, we adopt the standard symbols for the sets of natural and real numbers, represented as
N ={1,2,...} and R, respectively. The set of all positive real numbers is denoted by R* = (0, o), where
the set of non-negative real numbers is denoted as R = [0,0). Similarly, we refer to the non-negative
integers as Ng = N U {0}. The set of all even natural numbers is given by 2N = {0,2,4, ...}, while the
set of all odd natural numbers is represented as (2N)°. Moreover, we employ R? to represent the set of
real numbers in d-dimensions, and R™*™ to denote the set of all real-valued matrices with dimension
n x m, where d,n,m € N. Additionally, we define A x B = {(a,b)|a € A,b € B} for any sets A and B.

For x € R?, we use the notation x' to denote the transpose of the vector x.

For real numbers a,b € R we denote the minimum and maximum operator as a A b := min(a,b) and
a v b := max(a,b), respectively. The expression (a,) = a signifies that a sequence (a,)nen is identical to
a certain real number a € R, for all n € N. We employ the notation 14 to denote the indicator function
associated with a set A. Furthermore, when dealing with sums and products where the lower limit is
greater than the upper limit, we employ the empty sum and empty product convention, i.e., Zzza cp =0
and sza ¢ = 1, where a,b € N, with a > b and a sequence (cg)gen. Improper integrals are indicated as
SZO f(z) dz or alternatively as [f]¢° if the function f is integrable on the interval (a, ). Furthermore, we
state that f € LP(A), if the expression ({, | f(z)|” dz)'/? < o0 is finite, where p € R*. Consider a function
f: D — R, with D < R. In this context, the first and second derivatives are represented as f’ and f”,
respectively. Moreover, we employ the notation f(™ to indicate the n-th derivative. We consider a set
D c R?% and a function f : D — R. In this context, V f represents the gradient of function f and Hy the
Hessian matrix.

For two sequences a, and b,, the notation a,ocbh, is employed, when |a,/b,| =% O, for a constant
0 < C < . Moreover, we utilize the notation 4,, = O(B,,), when a constant C' > 0 and a natural
number ng € N exist, such that |4,| < CB, holds for all n > ng. The constant C in this definition
remains unaffected by the spatial and temporal resolutions m and n, cf. Assumptions 1.1.1 and 4.1.1,

and is in particular independent of potential indices 1 <i<mnand 1 <j < m.

The abbreviation i.i.d., used in conjunction with random variables X;,..., X, ~ X, signifies that the
random variables (X;);er, for a index set I, are independent and identically distributed with a distribution
corresponding to the distribution of the random variable X. The normal distribution is represented as
N (i, ¥), where € R? is referred to as the expected value, and ¥ € R%*? is a symmetric positive definite
covariance matrix, for d € N. In the case where d = 1, we consider a univariate normal distribution,
with ¥ = 02 > 0 representing the variance. Moreover, we state that X € £P if the random variable X is
measurable and it holds that ( {, [X|? dP) P~ % remains finite. For a random variable X € £ that is
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integrable, we define the compensated random variable as X := X — E[X].

We use the symbols L and % to represent convergence in probability and convergence in distribution,
respectively. Consider two random variables X and Y defined on the same probability space (2, A,P).
We express X = Y almost surely (X =Y a.s.) when the probability P(X = Y) = 1. The symbol Op
denotes the stochastic equivalent of the Landau notation. Let (X, ),en be a sequence of random variables
defined on a probability space (€2, A4,P). The notation X,, = Op(a,) holds, when considering a positive
sequence (ap)nen and for all € > 0, there exists a C' > 0 and a ng € N such that P(|X,,/a,| = C) < ¢ for
all n = ng. Similarly, we use the notation X,, = op(a,) to convey that the ratio X, /a, LA 0, as n — o0.

Consistently, we will use the notation ¥ to refer to an estimator for an unknown parameter ¢. While
constructing estimators based on discrete spatiotemporal data, we employ both notations @nm and 9 for
the same estimator. Assume an estimator 19, for which a central limit theorem applies, i.e., an(ﬁn — ) 4,
N(0,0%), as n — o0 and a sequence (a,)nen. In this context, we represent the asymptotic variance as
AVAR(Q%) = lim,_ Var(anﬁn) =02,

The subsequent sections address more detailed notations, distinguishing between those utilized in Part I
and Part II of this thesis, as well as notations that are specifically employed within a particular chapter
of this thesis.

A.2. Notational conventions in Part |

9 (99,01,92) T € R? x (0, 0)

o Volatility parameter, o € (0, o0)

Ay Differential operator, 9o + 1910% + 19209—;2

Hy Hilbert space, {f : [0,1] = R : ||f|ls < o0, f(0) = f(1) = 0}

{900 Inner product, §, exp [21y]f(y)g(y) dy, for f,g e Hy

I1£1lo Norm, {f, f>g, for f € Hy

ex(y) Eigenfunctions, v/2 sin(rky) exp [ - %y]

Ak Eigenvalues, —tg + % + 9om2k?, for ke N

2 (t) Coordinate processes, e~ **x(& ;. g + S(t) e~ M(t=3)g dBF, for ke N
Xi(y) Mild solution of equation (1), Y37 | xx(t)ex(y)

X, (y) Mild solution with stationary initial condition, (¢, ex)y ~ N(0,02/(2)\1)), k€ N
By Cylindrical Brownian motion, (B, )y = ZZO:l(f, eryoWk

wk Independent Brownian motions for each k € N
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(AiX)(y)

RV,.(y)

T

—
i

Vp,An (y)

Chapter 2

Rn,m

Pnm

2
o
fn ?72

fn,i

Nn,m

Initial condition of equation (1), £ € Hy

Spatial boundary, ¢ € (0,1/2)

Temporal resolution, A, = 1/n, ne N

Relationship of temporal and spatial observations, p € (0,1/2)
Curvature parameter of equation (1), k = ¥/

Normalized volatility parameter of equation (1), 0 = 02/v/Js

Temporal increment, X;a, (y) — Xi—1)a,, (%)

Realized volatility, ;" | (A;X)?(y)
Constant of covariances, I' ~ 0.75
Triangular array of a respective estimator, 2, ; = &,; — E[¢,]

Exponentially rescaled realized volatility, pﬁ Zf=1(Ai)~( )2 (y)ev™

RV (y;) a3
. =2t In )y +30 In (2 )y,

Oracle curvature estimator, =1 ( N ) i (\F)

DIERRT
RVnp (y;)
. Z Lln RV z (yl_yj)

Non-oracle curvature estimator, == ( 7‘<_y’))2
Zj#z(yjfyl)

_erZL@ T (AX)2 (yg)e y;

T S (A X)2 (g)ems — (AX)2 (y)e™) (w1 — ;)

08 X1 (Wi —w)?

{fs N>R |[3ICy >0: f2(m) < Cym~ (@t}

{g9 : N>R [3ICy > 0:|gg(m)| < Cym®/? uniformly in m e N}
{(Zni) : Zni = Cnyi — ElCnsil,s Cnyi = fo(m) Z;,”:l(AiX)z(yj)gﬁ ),
with f19 € -/T"avg’ﬂ € ga}

Parameter, (02, )"

M-Estimator for 7, argmin, , 7" (z; - fs’k(yj))2
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Chapter 3
4 In(cf /)
v Parameter, (o, )"
gg {g9 : N — R4 | ‘BTQﬂ(m)\ < Cﬁ||5||ooma/2 uniformly in m € N, Cy > 0}
H {(Zn,i)1<i<nmen : Zni = Cnyi — El¢n,i] and Gy = fo(m) 27=1(Az‘)~()2(1/j)919(j),
where fg € Fu, g9 € gg}
; (25 ) (25t (P2 o) - (70 (F22)) (852, 45)
(S, wy) —myr 2
& e?/\/m
v (8,7)"
Sni AT sy D (B X)? (g )er <( ZZEZ)%E?EZ? vi )
G; G+ G = By (S w0y — X4 vR) + Ba(may; — i)

A.3. Notational conventions in Part II

d Spatial dimension, d € N, with d > 2

9 (9,11, .. va,m) | € RIFL % (0, 00)

o Volatility parameter, o € (0, 00)

a, o Damping and pure damping parameter, « = d/2 — 1+ o/ and o’ € (0,1)
i . d o d 5

Ay Differential operator, n>}_; % + > Vig, + Yo

Hy Hilbert space, {f : [0,1]? — R, ||f|ls < o0 and f(y) = 0, for y € 8]0, 1]¢}

{900 Inner product, §o---§o f(y1-- - 4a) (W1, ya) exp [ S0, kayi] dys - -~ dya, for

fa g€ Hﬁ

11 Norm, {f, f)s, for f e Hy

ex(y) Eigenfunctions, 2%/2 [T1, sin(rkyy;)e~"v1/2, for k € N*
. d V2

Ak Eigenvalues, =y + >},_; (ﬁ + m2k}n), for k € N
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xx(t) Coordinate processes, e <&, ey g + 0)\1:0‘/2 Sé e~ M(t=9) Wk for k e N?
Xi(y) Mild solution of equation equation (49), >}, e Tk (t)ex(y)

X, (y) As X, with stationary initial condition, (&, ex)y ~ N(0,02/(2\."%))

B; Cylindrical Brownian motion, (By, f)g := Y ey A;a/2<f, exyoWg

wk Independent Brownian motions for each k € N¢

& Initial condition of from equation (49), £ € Hy

4] Spatial boundary, ¢ € (0,1/2)

A, Temporal resolution, A, = 1/n, ne N

p Relationship of temporal and spatial observations, p € (0, (1 — /)/(d + 2))
K Curvature parameter, k = (k1,...,kq), where k; = v;/n, 1l =1,...,d

o8 Normalized volatility parameter, 03 = 02 /v/05

0A Boundary of the set A c R?

§4 f(x)dx d-dimensional Integral, A = R?

ZkeNd ax d-dimensional series, ax : N4 - R

I%/lo Function, rrlirlz»:17,,(,),d{|x1|7 ooy |zal}, x e RY

lI%||1 Function Zle x;, x € R?

lIx]|2 Norm, (27:1 1312)1/2, x e R?

l1%|| oo Norm, max;—1,__q|7|, x € R?

1£1lz»(o) Norm, ({, [f(x)/" dz)"”", D < R

Xy Component-wise product, x+y = (191, ...,24¥d), X,y € R¢

yl(j ) [-th component of the j-th observation

|J4] Determinant, [ /=7 r@~sin?1~! ()

I'(z) Gamma function, SSO t*~le~tdt, Re(z) ¢ {0,—1,-2,...}

Y. Constant of covariances, (Y~ (— r £ 2(r 4+ 1) = (r + 2)‘3“,)2 +2), o’ €(0,1)
K Constant, 2 ()Pl T(d/2)

I'(l1—a’)
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Appendix A. Notations

C.k
,J

BC,k
X

Chapter 4

B

fa(z)

ga,'r(x)

oF;

Di x

Chapter 5

Increment decomposition, (&, ex )y (e”\km" — e*Ak(i’l)A")

Increment decomposition, 0’)\1:&/2 SO_OC e~ M((i=1)An—s) (e‘AkA” — 1) dwk

Increment decomposition, a)\;a/2 Séiil)A" e~ M=) A=) (e=Achn — 1) WK
Increment decomposition, oA, a/2S 1001)A e (=D An=s) (e‘AkA" — 1) dwk

Increment decomposition, oA, o/2 SZZA”U e~ Me(i8n=s) qIyk

~AkAnli—j] _ e—Ak(i+j—2)An)w

Covariance, o2 (e T
k

. _ 2 o
Covariance (e7MBn — 1) Ak [i—j]

0_2
7 ooplte
k
. _ —2)\kAn
Covariance, 1,_o2l=e <"
=i T+
» H{j=i} 2XL o
—)\kAn) e MkAn_1

: 2 =MDy (F—1) ( pAKA
Covariance, 1;jyo%e™ "k n(J ’)(e kBn e e
k

{ze0,00)z1 e~ (m), ..., za € ¥~ (ya)} = [0,00)7

1—e™*
ZIFa

(1—e~®)? e T
2xlte

{f :[0,00) — R|f twice differentiable, ||a:d_1f(x2)|\£1([0’oo)), ||J;df(1)(x2)H£1([1’oo)),
x4 F@ (22)|| 21([1,00) and limsup,_q [fU)(2?)/s7P| < C < o0, j = 0,1,2},

where 8 = (B0, 1, 82) € (0,2a] x (0,2(a + 1)] x (0,2(cx + 2)]

Ad/z+a’(1_E—AkAn _ (1—e kAn)2 e—2Me(i-1)A )
n (AkA7L)1+a Q(AkA )1+a

dan)¥2a'T(d keyll1
%Zz L(AX)2(y)ellmyl

d(r d/zo/Fd m n KoV -
2%(mn) /2) Py Zi=1(AiX)2(yj)€“ il

nmAa I'(l—o

2 (rn)¥2a/T(d/2 Koy
R S (X2 el

2¢(xn)¥2a'T(d/2 1
e 5 (8,
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Chapter 6

WP,A2n (Y)
§2n,i

1
§2n,i

Parameter, (log(02K), —k1,...,—kq)' € R
Natural Parameter, v := (03, K1,...,/q)! € (0,00) x R?
Transformation h : (0,00) x R — R4 h(x) = (log(Kz1), =2, ..., —Ta11)
Loy
L |ermx@m
1oy™ g

(bg@%ﬁ?Qw.wbg@%%?ﬁDTeRm
(XTX)"1XTY e R™
h(¥)

AiX)*(y1) [l mey, [l
nA%/
1 B -1
T (X TX) T XT '
AiX)?(y,0) 5wy,
nAe’

n

m x m identity matrix

Matrix of ones, 1,; = {1}2*?

Temporal increments, X;a,, — X(i—1)Asn> 1 <1< 2n

Temporal increments on thinned grid, X;a, — X—1)a,, 1 <i<n
Realized volatility, 32", (Ag,.: X)2(y)

Realized volatility on thinned grid, >;" ; (A, X)?(y)

Estimator for the pure damping parameter o, m Z;nzl log (%)

Rescaled realized volatility, ﬁ 3P (Ao i X)2(y)ellmyll 1< p<2n
2n

Rescaled realized volatility on thinned grid, ﬁ 3P (A X)2(y)ellmyii,
1<p<n

ﬁ S 1on(8) (D20, X)(¥) (Azpim1 X) (y)el™¥ 1 < p < 2n

1 2
Soni t&mi

2170/_1 m A X 9 ”K.y“1
1 i : J
log(2) Qn'mAg:LO'SK Z]=1( 2n,1 ) (YJ)e
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’
22—a

Ean.i Lon ()i ag i 2yet (BoniX) () (Do ia X) (y;)el=vsln
Ay 202 —2) + 3%, (( —(r+ 1Y +2(r +2)% — (r+3)*)

x (=1 420+ )Y = (r+2)7))
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Appendix B. Additional Plots

This appendix provides additional plots for Part IT of this thesis. We start by providing a plot for a
three-dimensional SPDE model from equation (49) with parameters 99 = 0, v = (—10,10,0), n = 1,
o =1and o/ =1/2 on an equidistant grid in time and space, where N = 10* and M = 10.

&
Space & 0

0, |
S

S
Sbace

K
Space

Figure B.1.: The figure depicts a three-dimensional SPDE on an equidistant grid in both time and space, where N = 10% and
M = 10. The simulation utilizes the following parameter values: 99 = 0, v = (—10,10,0), n =1, 0 = 1, and o’ = 1/2.
The visual representation consists of three panels: the left panel displays the random field for the first spatial axis, the
middle panel showcases the second spatial axis, and the right panel presents the third spatial axis. For each spatial
axis displayed, the coordinates of the remaining axes are held fixed at (1/2,1/2).

The QQ-plots for the volatility estimations are given by the following figure.

-2 0 2 -2 0 2

< a=04 + a=05 = a=0.6

Figure B.2.: QQ-normal plots for normalized estimation errors for the parameter ¢ from simulations with N = 10*, M = 10,99 =
0,v = (6,0),n = 1,0 = 1,&’ = 4/10 in the left panel (grey), o’ = 1/2 in the middle panel (yellow) and o’ = 6/10 in
the right panel (brown).
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The QQ-plots for estimating the natural parameters o2 and k = (k1, k2) as well as the damping parameter

o’ are given by the following two figures.

a=04
10 .
0 /
-10
-2 0 2 -2 0 2
a=05
10
5
0 /
-5
-10
2 0 2 2 0 2
a=0.6
10
0 /
-10
-2 0 2 -2 0 2 -2 0 2
~ ot ki ke

Figure B.3.: QQ-normal plots for normalized estimation errors for the parameter v from simulations with N = 10%, M = 10,99 =
0,v = (6,0),n = 1,0 = 1,a’ = 4/10 in the top panel, o’ = 1/2 in the middle panel and o’ = 6/10 in the bottom panel.
The results for the estimator &g is given by the grey color, the results for &1 is given by the yellow color and for Ao

by the brown color.

-2 0 2 -2 0 2 -2 0 2

- a=04 a=05 -+ a=06

Figure B.4.: QQ-normal plots for normalized estimation errors for the parameter o’ from simulations with N = 10, M = 10,9 =
0,v = (6,0),n = 1,0 = 1,&’ = 4/10 in the left panel (grey), o’ = 1/2 in the middle panel (yellow) and ' = 6/10 in
the right panel (brown).
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