
Julius-Maximilians-Universität Würzburg
Wirtschaftswissenschaftliche Fakultät

From Small to Large Data: Leveraging
Synthetic Data for Inventory

Management

Inauguraldissertation
zur Erlangung des akademischen Grades
doctor rerum politicarum (Dr. rer. pol.)

vorgelegt von
Simone Linda de Graaf geb. Buttler, M.Sc.

geboren in Gütersloh

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):  
http://creativecommons.org/licenses/by-sa/4.0 This CC license does not apply to third party material (attributed to another source) in this publication.





Name und Anschrift: Simone Linda de Graaf
Kamper Str. 18
52064 Aachen

Erstgutachter: Prof. Dr. Richard Pibernik

Zweitgutachter: Prof. Dr. Christoph M. Flath

Datum der Einreichung: 24.05.2023





Acknowledgements

First and foremost, I would like to express my deepest gratitude to my
doctoral advisor, Prof. Dr. Richard Pibernik. Your relentless pursuit of
excellence and your insightful questions and comments have significantly
elevated the quality of my work. Your guidance has been invaluable, and I
am deeply appreciative of the high standards you set, which have challenged
me to push beyond my limits.

I would also like to thank my second advisor, Prof. Dr. Christoph Flath.
Your support and constructive feedback have been crucial throughout this
journey. Your expertise and encouragement have been greatly appreciated.

To my colleagues at the Chair of Logistics and Quantitative Methods in
Business Administration and the Chair of Information Systems and Business
Analytics, I highly appreciate the time we had together. Collaboration has
not always been easy due to the COVID-19 pandemic, but the camaraderie
and shared knowledge have been a source of inspiration and motivation.
The collaborative environment we fostered together has been instrumental
in the completion of this dissertation. I would like to express special thanks
to Nikolai Stein and Andreas Philippi for the collaboration on our research
papers and strong moral support. Christiane Kleespies for creating a loving
and caring environment. Pascal Notz, Felix Schmidt, Toni Greif, Matthias
Griebel, Kai Günder and Peter Wolf for all the fruitful discussions.

Finally, I would like to express my gratitude to my family and especially
to my husband, whose endless patience and unwavering support have been
my anchor through this process. Your encouragement and belief in me have
kept me going even in the most challenging times. This dissertation would
not have been possible without your love and support.

Thank you all for your contributions to this achievement.

v





Deutschsprachige
Zusammenfassung (Summary in
German Language)

In einer Welt des ständigen Wandels ist Unsicherheit zu einer alltäglichen
Herausforderung für Unternehmen geworden. Die Covid-19-Pandemie hat
deutlich gezeigt, wie schnell sich Marktumfelder verändern können und
wie wichtig es ist, flexibel auf unvorhersehbare Ereignisse zu reagieren. In
diesem komplexen Entscheidungsumfeld spielt das Operations Management
(OM) eine entscheidende Rolle. Das Ziel des OM besteht darin, die Ge-
schäftsprozesse von Unternehmen zu optimieren. Von der Standortplanung
über die Produktionssteuerung bis hin zum Bestandsmanagement —OM
befasst sich mit den strategischen und operativen Entscheidungen, die er-
forderlich sind, um den betrieblichen Erfolg sicherzustellen. Traditionell
haben Unternehmen bei der Entscheidungsfindung theoretische Modelle aus
Bereichen wie Mikroökonomie, Spieltheorie, Optimierung und Simulation
genutzt (Mišić und Perakis, 2020). Doch angesichts der Fortschritte im
Bereich des maschinellen Lernens und der mathematischen Optimierung der
letzten Jahre eröffnete sich ein neues Forschungsgebiet: das datengetriebene
OM.

Im datengetriebenen OM werden reale Daten, insbesondere Zeitreihen-
daten, herangezogen, um realistischere Modelle zu entwickeln, welche die
Komplexität der Entscheidungsfindung besser erfassen können. Diese Daten
können wertvolle Einblicke in vergangene Kundennachfrage und relevante
Einflussfaktoren, wie Wetterbedingungen oder Börsentrends, liefern. Durch
die Kombination von realen Daten mit Optimierungs- und maschinellen
Lernverfahren können Unternehmen fundiertere und präzisere Entscheidun-
gen treffen.
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Deutschsprachige Zusammenfassung

Jedoch besteht im Rahmen dieses neuen Forschungsgebiets eine Heraus-
forderung: Studien haben gezeigt, dass einige Modelle optimale Lösungen
liefern können, wenn diese eine umfangreiche Menge historischer Trainings-
daten zur Verfügung haben. Jedoch sieht die Realität häufig anders aus.
Insbesondere in Teildisziplinen des OM, wie dem Kapazitäts- oder Bestands-
management, existiert häufig nur eine begrenzte Anzahl von historischen
Beobachtungen, da Entscheidungen über den Einsatz von Ressourcen oder
die Auffüllung des Bestands hier nicht in Echtzeit getroffen werden, sondern
täglich, wöchentlich oder sogar nur monatlich stattfinden.

In anderen Anwendungsbereichen des maschinellen Lernens, in denen
die Verfügbarkeit von Daten zum Trainieren von Modellen ebenfalls ein
Problem darstellt, hat man damit begonnen, reale Daten durch synthetische
Daten zu ergänzen oder sogar zu ersetzen. Synthetische Daten sind künstlich
generierte Daten, die die Eigenschaften und Muster realer Daten nachah-
men. Neuste Ansätze zur Generierung synthetischer Daten haben zum Ziel,
den Entstehungsprozess echter Daten nachzuahmen. Das Verständnis des
Entstehungsprozesses von Daten ist auch deshalb so wichtig, weil er kausale
Zusammenhänge aufzeigen kann, die es ermöglichen, universellere Modelle
zu entwickeln. Verstehen wir beispielsweise den Entstehungsprozess von
Nachfragedaten für Bäckereiprodukte, kann dieses Wissen bei jeder Bäckerei
der Welt angewandt werden, um beispielsweise die Menge der zu backenden
Brötchen zu optimieren.

Diese Dissertation untersucht in drei inhaltlich abgeschlossenen Teilen,
wie synthetische Daten genutzt werden können, um Trainingsdaten im
Bereich des OM anzureichern und dadurch datengetriebene Modelle zur
Entscheidungsunterstützung zu verbessern. Der Fokus liegt dabei auf dem
Zeitungsjungenproblem, einem klassischen Problem der Bestandsplanung.
Hierbei handelt es sich um ein einperiodiges Planungsproblem, bei dem es
gilt, die optimale Bestellmenge zu ermitteln, sodass der Gewinn maximiert
wird. Dabei muss berücksichtigt werden, dass unverkaufte Produkte am Ende
des Tages einen Verlust bedeuten, aber auch ein zu schneller Ausverkauf
potenzielle Einnahmen verpassen lässt.

Der erste Artikel, „A Meta Analysis of Data-Driven Newsvendor Ap-
proaches“, Kapitel 2, dient als Vorstudie zur Verwendung synthetischer
Daten. Obwohl bisher in der Literatur mehrere datengetriebene, präskrip-
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tive Ansätze vorgeschlagen wurden, ist es unklar, wie diese im Vergleich
zueinander abschneiden. In dem Artikel wird ein reproduzierbares und ein-
heitliches Bewertungsverfahren für datengetriebene, präskriptive Ansätze
präsentiert. Das vorgestellte Bewertungsverfahren kann sowohl von Prakti-
kern zur Modellauswahl als auch von Forschern zum Benchmarking neuer
Ansätze verwendet werden. In diesem Artikel wird es in einer umfangrei-
chen numerischen Studie verwendet, die mit einem großen und heterogenen
Datensatz durchgeführt wird. Teil dieser Studie ist eine Robustheitsanalyse,
um den Einfluss verschiedener Problemparameter zu bewerten, die die Lei-
stung des Modells potenziell beeinflussen können, wie z.B. Eigenschaften des
Datensatzes oder des zu lösenden Planungsproblems. Die Ergebnisse deuten
darauf hin, dass die Leistung der evaluierten Modelle wenig robust ist und
das zu verwendende Modell auf der Grundlage eines standardisierten Evalu-
ierungsprozesses ausgewählt werden sollte, um bestmögliche Ergebnisse zu
gewährleisten.

Im zweiten Artikel, „Application of Generative Adversarial Networks
in Inventory Management“, Kapitel 3, wird die Verwendung synthetischer
Daten, die durch Generative Adversarial Networks (GANs) erzeugt wurden,
zur Lösung des Zeitungsjungenproblems untersucht. Der Einsatz daten-
getriebener, präskriptiver Verfahren hat zu einem wachsenden Bedarf an
relevanten Trainingsdaten geführt, insbesondere wenn zusätzliche Informa-
tionen (Features) eingebunden werden. Daraus ergibt sich ein Bedarf an
Techniken, die komplexe Beziehungen zwischen Nachfrage und Zusatzinfor-
mationen modellieren können und mit denen große Mengen synthetischer
Daten erzeugt werden können. In diesem Artikel wird gezeigt, wie solche
synthetischen Daten mit Hilfe von GANs - einem Ansatz des Deep Learning
- erzeugt werden können. Da die Leistung von GANs häufig instabil ist, wird
eine Selektionsstrategie als Vorstufe zur Anwendung der GAN-generierten
Daten im Planungsproblem entwickelt. In numerischen Experimenten wird
der vorgeschlagene Ansatz im Praxiskontext einer Bäckereikette angewandt
und unter Variation verschiedener Experimentparameter untersucht. Er
wird mit traditionelleren Ansätzen, wie dem Distribution Fitting und der
Sample Average Approximation (SAA), verglichen. Die Ergebnisse legen
nahe, dass die Anwendung von GANs eine vielversprechende Alternative zu
diesen traditionellen Ansätzen darstellt.
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Deutschsprachige Zusammenfassung

Im dritten Artikel, „Combining Synthetic Data and Transfer Learning
for Deep Reinforcement Learning in Inventory Management“, Kapitel 4,
wird ein neuartiges, auf Deep Reinforcement Learning (DRL) basierendes
Verfahren vorgeschlagen, das synthetische und reale Daten mittels Transfer
Learning kombiniert, um OM-Entscheidungsprobleme zu lösen. Die An-
wendung von DRL verspricht größere Flexibilität in der Problemdefinition
als traditionellere, präskriptive Ansätze. Allerdings erfordert es auch große
Mengen an Trainingsdaten. In diesem Artikel wird ein zweistufiges Verfah-
ren vorgeschlagen, um mit weniger echten Trainingsdaten auszukommen.
Zunächst wird ein generatives Modell trainiert, um die unbekannte gemein-
same Verteilung von Nachfrage und Features zu lernen. Dieses wird genutzt,
um zusätzliche synthetische Trainingsdaten zu generieren. In einem zweiten
Schritt wird ein DRL-Agent mit Hilfe des Transfer Learnings trainiert,
wobei der DRL-Agent zunächst auf den synthetischen Daten vortrainiert
wird und dann ein Feintuning auf der Grundlage eines kleineren realen
Datensatzes erfolgt. Dieser Artikel evaluiert das vorgeschlagene Verfahren
für ein Zeitungsjungenproblem in zwei verschiedenen numerischen Studien-
settings. In dem kontrollierten Studiensetting ist die Verteilung der Daten
bekannt, wodurch ein erster Schritt gemacht wird, zu verstehen, was die
Leistung des vorgeschlagenen Verfahrens beeinflusst, z.B. die Qualität der
generierten synthetischen Daten. Im Praxissetting, in dem die gemeinsame
Verteilung der Daten unbekannt ist, wird das vorgeschlagene Verfahren auf
Daten einer lokalen Bäckereikette angewandt. In beiden Fällen übertrifft
das vorgeschlagene Verfahren die traditionelle präskriptive Methode. Es
ist jedoch weitere Forschung erforderlich, um die Generalisierbarkeit dieser
Ergebnisse zu beweisen.

Insgesamt zeigen die Ergebnisse dieser Dissertation, dass der Einsatz von
synthetischen Daten Potential hat, Praxisanwendungen des maschinellen
Lernens zu unterstützen. Die untersuchte Methode der Datengenerierung
mit GANs ermöglicht die Modellierung komplexer Zusammenhänge in den
Daten und unterstützt damit selbst die Anwendung von datenhungrigen
Verfahren, wie DRL, zur Lösung von Planungsproblemen. Die Wahl eines
guten GAN-Modells ist jedoch mit hohem Aufwand verbunden, sodass
Kosten und Nutzen synthetischer Daten bei jeder Anwendung abgewogen
werden sollten. Weitere Forschung ist notwendig, um die Generalisierbarkeit
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der Ergebnisse zu gewährleisten.
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1 Introduction

In a world of constant change and unpredictability, the ability to navigate
uncertainty is a critical skill for organizations that want to succeed. Midst
the whirlwind of shifting market demands, supply chain disruptions, and
rapid technological advancements, businesses must remain agile and adap-
tive, which is where the concept of operations management (OM) comes
into play.

OM is a multidisciplinary field that focuses on the planning, organization,
and control of business processes to achieve optimal efficiency, productivity,
and customer satisfaction. For instance, operations managers in the retail
sector may need to determine when and how much inventory to restock to
balance product availability and stock costs, all while customer demand
remains uncertain and subject to fluctuation. Clearly, decision-making
under uncertainty is a significant aspect of OM.

Mišić and Perakis, 2020 observe that research in OM has a long history
of developing and applying theoretical models, typically leveraging microe-
conomic theory, game theory, optimization, or simulation techniques to
identify optimal decisions for operational problems. However, given method-
ological advances in machine learning and optimization, made possible by
greater computing resources, the need to complement theoretical models
with real-world data has grown (Mišić and Perakis, 2020), giving rise to a
new field of research: data-driven OM. Data-driven OM seeks to combine
real-world data, optimization, and machine learning techniques to derive
optimal decisions.

Real-world data can help researchers and decision-makers develop re-
alistic models that can capture the complexity of decision-making under
real-world conditions. Real-world data in OM usually takes the form of time
series data, often presented in tabular format, and is collected over time
with a fixed interval between each data point. Two types of data are usually
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1 Introduction

used: past observations of uncertain quantities of interest, which for many
OM problems is customer demand, and past observations of “features” like
weather or stock market developments that may influence these uncertain
quantities.

In an effort to integrate both data and machine learning into decision-
making, researchers follow one of two approaches.

The first, “predict-then-optimize”, involves using a two-step approach
to derive decisions from data, where a machine learning or statistical model
leverages features to predict the future value of uncertain quantities of
interest (e.g. demand for a certain product) before classical optimiza-
tion techniques are used to derive a decision based on the prediction and
uncertainty estimates. However, the separation between prediction and
optimization may result in the loss of valuable information, as prediction
approaches focus primarily on reducing prediction error, while optimization
requires good estimates of prediction uncertainty. As Bertsimas and Kallus
(2020) state, “it is not clear how to go from a good prediction to a good
decision” (p. 2).

In response to this shortcoming, the second approach, prescriptive
analytics, emerged to derive truly data-driven OM decisions. Prescriptive
analytics approaches combine prediction and optimization into a single
step, prescribing decisions directly from available data, often using methods
inspired by machine learning. Some proposed approaches are asymptotically
optimal when large amounts of data are available, but such is frequently
not the case in practical settings, as the field of OM suffers from a paradox:
While sensors, tracking devices, and business systems generate a plethora
of data every day, recordings of uncertain quantities of interest, such as
customer demand, are typically scarce, especially in disciplines like capacity
and inventory management, where decisions to deploy resources or replenish
inventory must be taken daily, weekly, or even monthly. Consequently,
even though the number of features used to explain customer demand
can increase, the length of the time series cannot be extended easily, as
observations from the distant past are often irrelevant to today’s decisions.

The need for data may be even more critical if OM wants to benefit from
the next wave of improvement that is expected to emerge from leveraging
deep learning models (Kraus et al., 2020). Traditional machine learning
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1.0 Introduction

methods (e.g. linear regression models, support vector machines, random
forests) that are widely used in prescriptive analytics require significant
human involvement (e.g. in selecting and constructing the features for
the model to learn from or designing a policy that has to be learned).
In contrast, the promise of deep learning is to have the machine work
more independently on raw data, alleviating the need for human feature
engineering (Goodfellow, Bengio, et al., 2016) and human formulations
of the optimization problem (in the case of deep reinforcement learning
(Boute et al., 2021)). However, these approaches are even more data-hungry,
currently limiting their application in real-world settings (Kraus et al.,
2020).

Other domains in which the availability of data to train machine learning
models is an issue have started to complement or even replace real-world
data with synthetic data that is artificially generated, rather than collected
from real-world observations. One well-known domain that has benefited
from the work on synthetic data is computer vision, where deep learning
models are at the core of many advances (Shorten and Khoshgoftaar, 2019).
Synthetic data can be generated using a variety of methods (Jordon et al.,
2022), the first of which exploited the structure/geometry of images. New
training samples were created by, for example, rotating, cropping, mixing,
or blurring existing training images (Shorten and Khoshgoftaar, 2019).
More sophisticated synthetic data generation methodologies have emerged
since, that do more than modify existing data points, as they learn the
joint distribution of all data variables to simulate how data is generated
in the real world (Kingma, 2019). This method allows new data points
to be created (e.g. in the case of computer vision, new image material).
Understanding the generative process of data is also powerful because it can
reveal causal relationships as they occur anywhere in the world (Kingma,
2019). For example, once we understand the generative process of demand
for bakery products, we can apply this knowledge to bakeries anywhere.

One method that is at the forefront of new image generation is generative
adversarial networks (GANs). In contrast to geometric approaches, GANs
promise not to alter existing images but to generate new images that
stem from the same distribution as the original images and cannot be
distinguished from them. The success of GANs has been translated to

3



1 Introduction

other domains, such as natural language processing (Shorten, Khoshgoftaar,
and Furht, 2021), time series (Wen et al., 2021), and tabular data (Jordon
et al., 2022). Advances in domains with structured data (e.g., time series
and tabular data), such as OM, are especially important in increasing the
application of artificial intelligence (Jordon et al., 2022). This dissertation
makes a first step toward investigating the application of synthetic data in
inventory management, a subfield of OM.

1.1 Synthetic Data for Data-driven Inventory
Management

Inventory management is an important part of OM, as having effective
inventory control policies in place is central to a business’s remaining com-
petitive in an unpredictable and constantly evolving business environment.
However, a lack of relevant data makes it challenging to utilize sophisticated
machine learning models for decision-making. For instance, the COVID-19
pandemic highlighted how rapidly customer behavior can change, rendering
past observations unrepresentative of the future. Additionally, obtaining
significant data to plan demand for newly introduced products can be
challenging. Even if a company has a wealth of data at the organizational
level, for example, due to many different products in its inventory, planning
decisions must be made at the product level drastically limiting the amount
of available data. In addition, replenishment decisions are typically made
daily, weekly, or monthly, depending on the product’s shelf life, which
further limits the amount of data available to train sophisticated machine
learning models, particularly when feature information is incorporated.

The generation of synthetic data promises to enrich inventory data sets
and improve decision-making, so this dissertation investigates this guiding
research question:

Guiding Research Question. How can synthetic data be leveraged to im-
prove decisions for data-driven inventory management?

Figure 1.1 offers a conceptual representation of where this dissertation’s
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1.1 Synthetic Data for Data-driven Inventory Management

Data-
driven
model

Real-world
data

RQ1

Decision

(a) Traditional data-driven approach

DecisionData-
driven
model

Real-world
data

Generative
model

Synthetic
data

RQ3

RQ2

(b) Synthetically enriched data-driven approach

Figure 1.1: Overview of Research Questions

work anchors to include synthetic data in data-driven decision-making. The
traditional approach to data-driven decision-making is shown in Figure 1.1a,
where real-world data is utilized to train a data-driven model to prescribe
a decision. Figure 1.1b, on the other hand, shows how synthetic data can
enrich the traditional data-driven approach, potentially leading to improved
decisions. In this case, a generative model is trained using real-world data
to create a synthetic dataset, and both synthetic and real-world data are
then used to train a data-driven model that prescribes a decision.

The work laid out in this dissertation focuses primarily on the single-
period newsvendor problem, which has been studied extensively in the OM
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1 Introduction

research community and has several benchmarks. The newsvendor problem
is a classic example of a stochastic optimization problem in inventory
management. Here, the decision-maker’s objective is to maximize profit
by determining the optimal order quantity for a perishable product with
uncertain demand. The expected profit is the difference between the revenue
earned from selling the product and the cost of ordering or producing it.
Any unsold inventory at the end of the selling period is a loss. Likewise,
stockouts result in lost sales, reducing the expected profit. The newsvendor
problem has served as a starting point for the development of data-driven
methods in inventory management (Ban and Rudin, 2019; Bertsimas and
Kallus, 2020; Oroojlooyjadid, Snyder, et al., 2020).

The first part of this dissertation is a pre-study of synthetic data for
decision-making. Work proposed until now has predominantly applied
data-driven approaches to small, often proprietary, real-world datasets and
has lacked comprehensive benchmarking of their proposed methods and
robust analyses of model performance across multiple real-world datasets.
Consequently, which method should be selected as the state of the art for
decision-making in inventory management remains uncertain. However,
knowing the state of the art is central to assessing how well approaches that
are enriched with synthetic data work.

Therefore, the first research question that this dissertation addresses is:

Research Question 1 (RQ1). What data-driven methods achieve the best
performance for a single-period inventory control problem and what factors
can influence the model selection?

Based on the findings from addressing Research Question 1, this disser-
tation examines how synthetic data can be employed to improve decision-
making further. As in Figure 1.1b, an adequate generative model is required
to generate synthetic data.

Prescriptive analytics methods use the joint distribution of demand and
features to prescribe decisions, so generative models that can capture the
complex relationship between demand and features are necessary. Generative
models have been developed for various types of data, including time
series and tabular data, but such models are not yet widely used in OM-
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type problem settings. Therefore, the second research question that this
dissertation addresses is::

Research Question 2 (RQ2). How can generative models be employed to
create synthetic data for OM-type problem settings, and how can such data
be evaluated?

Synthetic data are used to enrich the training data input of data-driven
models (Figure 1.1b). Enlarging the amount of training data opens the
possibility of applying data-hungry models that may work better than
traditional data-driven models. Traditional data-driven methods are highly
tailored to the problems they address, which requires an explicit formulation
of the optimization problem. In complex problem settings like multi-period
inventory management, formulating the optimization problem alone may
not be feasible, especially if features are involved. Therefore, it is worth
exploring deep reinforcement learning (DRL), a field of machine learning
that has recently had many successes in solving complex decision-making
problems, from learning to play games to performing robotic control tasks to
autonomous driving. DRL may be especially useful in solving OM problems
because it does not require an explicit formulation of the optimization
problem. Instead, DRL algorithms can learn directly from experience by
interacting with the environment and receiving feedback in the form of
rewards, that indicate the desirability of an action taken by the DRL agent.
DRL is even more data-hungry than classical supervised machine learning
methods are, so to apply DRL in an inventory management context, this
dissertation addresses a third research question:

Research Question 3 (RQ3). How can deep reinforcement learning be
used in combination with synthetic data to improve decision-making for a
single-period inventory control problem?

In summary, this dissertation investigates the application of synthetic
data in inventory management, a subfield of OM. The three research ques-
tions are designed to explore how synthetic data can be leveraged to improve
decision-making, including benchmarking of data-driven methods, using
generative models to create synthetic data, and applying DRL in combi-
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nation with synthetic data. By answering these research questions, this
dissertation contributes to the growing field of data-driven decision-making
in inventory management and provides insights into how synthetic data can
be used to improve decision-making.

1.2 Structure of the Dissertation
This dissertation is composed of three independent articles that explore the
guiding research question.

The first article, “A Meta Analysis of Data-Driven Newsvendor Ap-
proaches”1 (Chapter 2), proposes a reproducible and unified evaluation
procedure for data-driven approaches and conducts a large-scale numerical
study in the context of a newsvendor problem setting. This work addresses
research question 1. Although several data-driven approaches have been
proposed, it is unclear how their performances compare, as authors use
different benchmarks and various small and often proprietary data sets and
do not make available the code they used to implement the approaches. In
contrast, this article establishes a benchmarking setup that can be used by
practitioners to choose a model and by researchers to benchmark new ap-
proaches. This setup is used in a comprehensive numerical experiment that
is performed on a large and heterogeneous data set. A robustness analysis
is conducted to evaluate the influence of various problem parameters that
may affect model performance: properties of the data set, such as domain,
size, or features included, and properties of the OM problem to be solved,
such as parameters of the cost function. The study’s results suggest that
the models evaluated show little robustness and should be selected only
based on a standardized evaluation process to guarantee state-of-the-art
results.

The second article, “Application of Generative Adversarial Networks in
Inventory Management”2 (Chapter 3), investigates research question 2 by
exploring the use of synthetic data generated by GANs to solve a classic
inventory control problem, the newsvendor problem. The use of data-driven
OM approaches has created a growing need for rich data sources in the

1This article is co-authored by Andreas Philippi, Nikolai Stein and Richard Pibernik.
2This article is co-authored by Nikolai Stein.
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OM context. Although large amounts of auxiliary data, such as sensor
information, tracking devices, customer relationship management (CRM),
and enterprise resource planning (ERP) systems, are available, access to
data on customer demand is often limited. This limitation creates the need
for techniques that can model complex relationships between demand and
auxiliary information and can be used to generate large amounts of synthetic
data. Current approaches, such as distribution fitting and sample average
approximation, are not suited to modelling such complex, high-dimensional
relationships. This article shows how data can be generated synthetically
using GANs, a type of deep learning approach. Since GANs’ performance is
known to be unstable, a selection strategy is used before applying the GAN-
generated data to a data-driven OM context. In numerical experiments, the
approach is applied in a real-world setting of a bakery chain to solve the
newsvendor problem under various experiment parameters and compared to
more traditional approaches, such as distribution fitting and sample average
approximation. The results suggest that applying GANs is a promising
alternative to these traditional approaches.

The third article, “Combining Synthetic Data and Transfer Learning
for Deep Reinforcement Learning in Inventory Management”3 (Chapter 4),
proposes a novel DRL-based approach that combines synthetic and real
data by means of transfer learning to solve OM decision-making problems.
This work addresses research question 3. Although DRL promises a new
way of learning decision-making policies, especially in settings in which an
explicit policy cannot be defined, it requires large amounts of training data.
This article proposes a two-step approach to alleviating this need. First,
a generative model is trained to learn the unknown joint distribution of
demand and features, which enables large amounts of synthetic training data
to be created. Then a DRL agent is trained using transfer learning, where
the DRL agent is pre-trained on the synthetic data and then fine-tuned
based on a smaller real data set. The article evaluates the proposed approach
for a newsvendor problem setting in two numerical studies: a controlled
study, where the joint distribution is known, and a real-world study at a
local bakery chain, where the joint distribution is unknown. The controlled
setting makes a first step toward evaluating what drives the proposed
3This article is co-authored by Nikolai Stein and Richard Pibernik.
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approach’s performance, such as the quality of the synthetic data. In both
settings, our proposed approach outperforms more traditional approaches,
but more research is needed to establish the results’ generalizability.

Table 1.1 presents an overview of the three articles’ scientific contri-
butions. Chapter 5 provides a summary of the findings and a conclusion,
along with directions for future research.
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Table 1.1: Overview of scientific contributions

Article Model
focus

Methodological
contributions

Conceptual
findings

A Meta
Analysis of
Data-Driven
Newsvendor
Approaches
(Chapter 2)

Selected
data-
driven OM
approaches

• Development of a re-
producible, unified
evaluation procedure
for data-driven OM
approaches

• Structured compar-
ison of data-driven
OM approaches on
a large and heteroge-
neous data set

• The evaluated ap-
proaches appear to
have a low level of
robustness against
variations in prob-
lem parameters and
across data sets

• There is neither a
dominating model
nor a model that is
always dominated

Application of
Generative
Adversarial
Networks in
Inventory
Management
(Chapter 3)

GAN • Development of a
GAN selection proce-
dure tailored to OM
problems

• Structured evalua-
tion of GAN-based
wSAA approach

• The GAN-based
synthetic data
generation can
model complex
relationships be-
tween demand and
auxiliary features,
thus improving the
decision-making
made using tradi-
tional distribution
fitting approaches

• Computational
costs should be
considered

Combining
Synthetic
Data and
Transfer
Learning for
Deep Rein-
forcement
Learning in
Inventory
Management
(Chapter 4)

GAN
DRL

• Development of a
transfer learning ap-
proach that lever-
ages synthetic and
real data

• Evaluation of the
proposed approach
in settings with
known and unknown
data-generating
process

• The proposed
transfer learning
approach appears
to lead to better
performance than
using DRL on a
small, real data
sample alone
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2 A Meta Analysis of
Data-Driven Newsvendor
Approaches

Recently, a number of publications in leading operations management and
operations research journals proposed new models that combine machine
learning and mathematical optimization techniques to predict inventory
decisions directly from historical demand and additional feature information.
This paper presents the results of a meta analysis of recent machine learning-
based approaches for solving the most prominent problem in operations
management, the newsvendor problem. We find that the reproducibility
of existing studies is typically low because authors evaluate their new
approaches based on small and proprietary data sets, do not share data
and code, and use different benchmarks. We develop a reproducible, unified
evaluation procedure and apply various models to a large and heterogeneous
data set. Our results do not support the findings and claims of most of the
recent papers, and, in several cases, we even obtain contradictory results.
In general, the robustness of the newly proposed models appears to be
low. To support both researchers and practitioners in the development
and evaluation of new models, we provide extensive benchmark data and a
Python library that contains open source implementations of most existing
models.4

4This paper was published in ICLR 2022 ML Evaluation Standards Workshop Buttler
et al. (2022). It is co-authored by Andreas Philippi, Nikolai Stein and Richard Pibernik.
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2.1 Introduction
In today’s fast-paced world, companies face considerable uncertainty when
making important decisions in operations management, for example, when
deciding upon capacity, inventory levels, transportation, and production
schedules. However, with the rise of digitization, companies have gained
unprecedented access to data related to their particular decision problem,
offering the opportunity to reduce the degree of uncertainty. For example,
in inventory management, the decision maker may have access to historical
demand data as well as additional side information that may be predictive
of the uncertain demand, such as weather data, calendar information, and
data extracted from social media. Driven by the availability of such rich
data sources, a stream of literature in operations management research
has recently emerged called data-driven operations management (DDOM).
Newly proposed DDOM approaches depart from the traditional predict-then-
optimize (PO) paradigm that has been standard in operations management:
Instead of first predicting the uncertain variable of interest and then solving
a stochastic optimization problem, they integrate machine learning and
optimization techniques to directly predict a cost-optimal decision from
historical data.

As the classical single-period inventory management setting, the newsven-
dor problem naturally became a starting point for developing DDOM ap-
proaches. In the newsvendor problem, a decision-maker has to determine
the optimal inventory quantity for a single period and incurs costs when
demand is higher or lower than the inventory. The problem is different from
“standard” regression problems studied in machine learning research in two
ways: First, the loss function is non-symmetrical as over-predicting (i.e., hav-
ing too much stock at hand) may incur different costs than under-predicting
(i.e., not being able to fulfill all customers’ demands). Second, identical ab-
solute errors, in terms of units ordered, may not be of the same importance
for all instances, because different products make different contributions to
a company’s bottom line. Therefore, models have to be evaluated based
on the bottom-line impact and not on their predictiveness. Recently, a
number of new DDOM approaches for solving the newsvendor problem have
been published in leading operations management and operations research
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journals. The common denominator of these papers is that they propose
and analyze new DDOM approaches, and demonstrate that they outperform
some benchmark model(s). However, the reproducibility of these studies is
typically low because most authors only evaluate their approaches based on
small and proprietary data sets and do not share data and code. In addition,
they use a variety of different benchmarks. This renders a comprehensive
comparison of the different DDOM models impossible and creates problems
for researchers and practitioners: Researchers have no objective means to
benchmark against state-of-the-art approaches, and practitioners can hardly
identify the best approach for solving their real-life problems in a robust
fashion.

In this paper we perform a meta analysis of existing DDOM models
for solving the newsvendor problem on large and very heterogeneous data
using a standardized and reproducible procedure. In our study, we cannot
reproduce the results of most of the previous papers and, in a number of
cases, we even obtain contradictory results. We find that model robustness
is low and that model performance depends on the specific product for which
an inventory decision has to be taken, the parameters of the loss function,
and the available feature information. More specifically, we observe that
any one of the models under consideration can, under certain conditions, be
optimal for an individual product—there is no dominating approach that
can be established as state-of-the-art. Next to these important insights,
we make several other contributions that can enhance future research on
DDOM models: (1) We are the first in the field of DDOM to provide
extensive benchmark data for the newsvendor problem. (2) We developed
an open-source Python package that provides access to the most relevant
DDOM models to allow for easy and efficient performance comparison and
benchmarking. (3) We provide guidance on how to carry out an objective,
structured, and reproducible evaluation of DDOM approaches that can also
be applied to problems other than the newsvendor problem.
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2 A Meta Analysis of Data-Driven Newsvendor Approaches

2.2 The Newsvendor and Data-Driven Solution
Approaches

Among the many inventory control problems that have been addressed in
the OM literature, the newsvendor problem is the most basic single-period
inventory problem under demand uncertainty. As such, it became the
natural starting point for developing DDOM approaches (Qi et al., 2020).
In a newsvendor setting, the decision-maker decides upon the inventory of
a single product for a single selling season. Any leftover demand at the
end of the season leads to overage costs of co per unit. The decision-maker
incurs underage costs cu for each unit of demand that cannot be satisfied.
Consequently, the decision-maker seeks to determine the order quantity q
that minimizes the total expected costs. For a single product, the problem
can be stated as follows:

min
qě0

“ EDrcupD ´ qq`
` copq ´ Dq

`
s, (2.1)

where D is the random demand and p¨q` :“ maxt0, ¨u. If the demand
distribution F is known, the optimal solution to (2.1), denoted by q˚, is
given by the cu{pcu ` coq quantile:

q˚
“ F´1

ˆ

cu
cu ` co

˙

, (2.2)

where F´1 is the inverse cumulative density function (cdf) of D. In
practice, the decision-maker cannot directly solve Equation 2.2, because
he does not know the true distribution of D. However, historical demand
data d1, ..., dn is often available that can be used to solve the empirical
counterpart of Equation 2.1:

q˚
“ min

qě0

1
n

n
ÿ

i“1

“

cu pdi ´ qq`
` co pq ´ diq

`
‰

(2.3)

The literature refers to this approach as sample average approximation (SAA)
(Levi, Perakis, et al., 2015). In today’s data-rich environments, companies
not only have access to historical demand observations, but to potentially
large data sets Sn “ tpd1,x1q, . . . , pdn,xnqu that contain historical demand
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observations dt and corresponding feature vectors xtpt “ 1, ..., nq. The
elements of the feature vectors can be any type of information that may be
predictive of the uncertain demand. The new DDOM approaches addressed
in this paper learn a decision function from Sn that predicts an inventory
decision qpxq for each new observation x. The existing approaches can
be classified into function approximation approaches that are based on
the principle of empirical risk minimization (ERM), and approaches that
integrate empirical conditional density estimation and optimization.

2.2.1 Empirical Risk Minimization-based Approaches

The approaches contained in this first class seek to learn a function qp¨q :
X Ñ Q that maps directly from the feature space X to a decision space Q
by minimizing the empirical risk, which is defined as the average cost over
the training data Sn. More formally, the problem to be solved is given by:

min
qp¨qPF

RNpqp¨q;Snq :“ 1
n

n
ÿ

i“1

“

cupdi ´ qpxiqq
`

` copqpxiq ´ diq
`

‰

, (2.4)

where RN is the empirical risk of qp¨q and F is a function space. Given
the function qp¨q, one can directly determine a decision qpxq for each new
observation x. The solution to Equation 2.4 is equivalent to the solution of
a high-dimensional quantile regression. To learn qp¨q : X Ñ Q, a number of
different machine learning methods have been used in the literature. Beutel
and Minner (2012) and Ban and Rudin (2019) restrict F to the space of
linear functions. Oroojlooyjadid, Snyder, et al. (2020) and Huber et al.
(2019) allow for a non-linear function space and determine qp¨q by training
deep neural networks that minimize the empirical risk in Equation 2.4. In
the remainder of the paper, we use the acronyms LR to refer to the linear
models proposed by Beutel and Minner (2012) and Ban and Rudin (2019),
and DL to refer to the models proposed by Oroojlooyjadid, Snyder, et al.
(2020) and Huber et al. (2019).
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2.2.2 Conditional Density Estimation and Optimization

The approaches contained in this second class are based on the derivation
of some data-driven sample weights from features and the optimization of
SAA against a reweighting of the data, as expressed in Equation 2.5:

q˚
pxq “ arg min

qPQ

n
ÿ

i“1
wipxq

“

cupdi ´ qq`
` copq ´ diq

`
‰

, (2.5)

where x is the feature vector of a new instance and wip¨q is a function
that assigns a weight wi P r0, 1s to each sample pdi,xiq based on the
similarity between xi and x. We refer to this approach as conditional
density estimation and optimization (CDEO). The optimal solution to (2.5)
is

q˚
pxq “ inf

#

q :
řn
i“1 wipxq1pdi ď qq

řn
i“1 wipxq

ě
cu

cu ` co

+

. (2.6)

In contrast to the ERM-based approaches, CDEO approaches define qpxq

point-wise. Thus, one has to first determine the sample weights wi for each
new instance x, before solving the optimization problem in (2.5). Obviously,
the performance of CDEO is driven by the way the sample weights are
calculated. Multiple weight functions have been proposed in the literature,
in particular by Bertsimas and Kallus (2020), who construct a number of
different weight functions based on a variety of predictive machine learning
methods, including k-nearest-neighbors, decision tree, and random forest
regression. We refer to these approaches as KNNW, DTW, and RFW.
Moreover, both Bertsimas and Kallus (2020) and Ban and Rudin (2019)
propose to use kernel weight functions (KW).

2.2.3 Review of Competing Data-Driven Models

In Table 2.1 we give an overview of the relevant papers that proposed
DDOM approaches applicable to the newsvendor problem, including the
data sets and benchmarks that were used for evaluation purposes. While all
models have shown superior performance compared to some benchmarks,
under certain conditions, it still remains unclear how to compare their
performances. The reason for this is twofold: On the one hand, most
researchers use their own proprietary data set for evaluation. The data sets
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Table 2.1: Overview of relevant DDOM papers (* denotes the models
included in our evaluation)

Paper Model Benchmark Data

Beutel and Minner LR OLS, MM Proprietary retail chain data of 64
stores for 270 days; feature informa-
tion includes price, weather data, and
weekdays.

Ban and Rudin LR*, KW* PO, SAA Proprietary data for a nurse staffing
problem including demand for nurses
in a hospital for 2644 time periods;
feature information includes calendar
data as well as lags.

Bertsimas and
Kallus

KW,
KNNW*,
DTW*,
RFW*

SAA, PP Proprietary media vendor data in-
cluding demand for various items and
locations for 150 weeks; feature infor-
mation includes 91 features with in-
formation on items, locations, dates,
lags, as well as social media data.

Oroojlooyjadid,
Snyder, et al.

DL* KNNW, KW,
RFW, LR,
PO

Extract of Pentaho MySQL Food-
mart Database including retail data
from 24 different departments; fea-
ture information includes calendar
data.

Huber et al. DL PO, LR Proprietary bakery chain data of
eleven products for five stores for 528
days; feature information includes
calendar data, weather data, and lo-
cations of the stores.

vary in terms of the domain from which the data is drawn, the number and
type of features, and the length of the corresponding time series. On the
other hand, researchers use different models for benchmarking, making a
direct comparison of results impossible. For instance, Beutel and Minner
(2012) use retail chain data and benchmark their LR model against ordinary
least squares (OLS) regression and the method of moments (MM). Ban and
Rudin (2019) use empirical data from a nurse staffing problem to evaluate
their models and show that both LR and KW outperform traditional PO
approaches as well as SAA. Bertsimas and Kallus (2020) use data provided
by a big international media vendor for testing. As benchmarks, they use
random forest point predictions (PP) and SAA and show that their RFW
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model performs best. Building on the work of Bertsimas and Kallus (2020)
and Ban and Rudin (2019), Oroojlooyjadid, Snyder, et al. (2020) show that
their DL model outperforms not only traditional PO approaches, but also
existing data-driven models, including LR, KW, KNNW, and RFW, when
applied to their extract of the Pentaho MySQL Foodmart Database. Huber
et al. (2019) use proprietary data of a bakery chain to compare, among others,
an LR and a DL approach to their PO counterparts. Their results suggest
that for limited data availability the traditional PO approaches outperform
their DDOM counterparts. The performance of DDOM models increases
with data availability in terms of features and historical observations. They
do not find any DDOM model that consistently outperforms conventional
PO approaches.
In our study, we include the LR and the KW model of Ban and Rudin
(2019), because their paper is published in the highest-ranking journal of
the discipline and has been the first and most extensive paper on the “Big
Data Newsvendor”. We also include the KNNW, DTW, and RFW models
of Bertsimas and Kallus (2020), as they provide the most extensive analysis
and evaluation of CDEO methods. From the two similar papers that propose
DL approaches, we select Oroojlooyjadid, Snyder, et al. (2020), because
their implementation is similar to that of Huber et al. (2019), but in their
evaluation, their model outperformed all other DDOM models, including
those of Bertsimas and Kallus (2020) and Ban and Rudin (2019).

2.3 Experimental Setup
In the previous section, we briefly outlined that existing papers claim that
their models outperform one or more benchmark approaches but that these
claims can hardly be verified beyond individual data sets and particular
benchmarks. The main goal of our study is an objective and fair performance
comparison of the different models—we want to evaluate their robustness,
validate the claims made in previous papers, and ascertain whether there
is a model that can be recommended as state-of-the-art. To compare
the models we propose a reproducible, unified procedure that is based on
standards established in the machine learning community. We share code
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and data via our GitHub repository 5 to make our experiments transparent
and reproducible. We developed the open-source Python package ddop
(Philippi et al., 2021), to provide easy and efficient access to the data-driven
newsvendor models discussed in Section 2.2.

2.3.1 Data and Experiments

In our experiments, we use four heterogeneous data sets (Bakery, Restaurant,
subset of M5, Store Item Demand (SID)). An overview of the data sets is
provided in Table 2.2. More detailed information is included in section B.1.
As one important step towards reproducibility, we make all of the data sets
available 6. The data sets cover various domains, are of different sizes in
terms of the number of products and the length of the time series, and
include different features.

Table 2.2: Overview of data set

Data set Domain Products ˆ Shops N Features

Bakery Bakery 3 ˆ 5 1215 calendric, lag,

weather, holidays

Restaurant Restaurant 7 ˆ 1 765 calendric, lag,

weather, holidays, promotions

M5 (subset) Retail chain 10 ˆ 10 1942 calendric, lag, events

SID Retail chain 50 ˆ 10 1826 calendric, lag

To evaluate the robustness of the models in our numerical experiments,
we follow a fractional factorial design and vary two specific dimensions: loss
function and features.

Loss function: In most machine learning problems, a static loss
function is used to evaluate the performance of different predictive models,
e.g., the MSE or RMSE for regression problems. This is different in an

5https://github.com/opimwue/A-structured-evaluation-of-data-driven-newsvendor-
approaches

6While M5 and SID were published on Kaggle as part of a competition, the other two
data sets were provided by our industry partners and are accessible via our GitHub
repository
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operations management context. The loss function measures real-world
costs and, therefore, depends on parameters that influence these costs.
In our newsvendor setting, the loss function is determined by cu and co

as defined in Equation 2.1 and it may be asymmetric, depending on the
particular values of these parameters. The relationship between cu and co

is captured by the so-called service level (sl), defined as cu{pcu ` coq (see
Equation 2.2). Naturally, a good model should be robust across different
service levels.

Features: Feature availability may vary across practical problems.
Therefore, it is important to evaluate the robustness of different models
with respect to the feature information. In our evaluation, we define three
different feature categories: calendric, lag, and special features. Both
calendric and lag features are used to capture the characteristics of the
demand time series. Calendric features contain only the information that
can be extracted directly from the date of the time series (e.g., weekdays,
month, year). Lag features capture information from previous time periods,
such as past demand observations, allowing the models to learn properties
of the time series such as trend and seasonality7. In contrast to the first
two feature categories, the special features depend on the respective data
set and include domain knowledge, such as information about promotions,
special events, or weather conditions.

We define three different experiments (see Table 2.3). We begin with a
base case scenario that resembles a typical industry setting—90% service
level (sl) with only calendric and lag features. Then we vary sl reflecting
the ratio of the parameters cu and co of the loss function. Finally, we vary
the feature information to assess the models’ robustness towards different
levels of feature availability.

2.3.2 Evaluation Process

For each experiment, we first group each data set by product and store—we
call a single product-store combination an instance. Subsequently, we apply

7To generate lag features, we use the Python library tsfresh
(https://tsfresh.readthedocs.io/en/latest/index.html). More specifically, we
compute basic descriptive statistics (e.g., minimum, maximum, mean, variance) for
three different rolling windows of length 7, 14, and 28 days.
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Table 2.3: Overview of experiments

Loss Function Features Results

Base scenario sl = 0.9 X = [calendar, lag] Section 2.4.1

Loss function variation sl P {0.1, 0.25, X = [calendar, lag] Section 2.4.2

0.5, 0.75, 0.9}

Feature variation sl = 0.9 X P {[calendar], Section 2.4.2

[calendar, lag],

[calendar, lag, special]}

each of the following steps for each instance, service level, and feature
category.

Transformation: We apply one-hot encoding to transform all categor-
ical features into their binary representation.

Train-test split: We split the data into a train set containing 75% of
the data and a test set containing the remaining 25%. We do not apply
shuffling to preserve the structure of the time series.

Scaling: We apply standardization (removing the mean and scaling
to unit variance) to all continuous features using the scikit-learn standard
scaler (Pedregosa et al., 2011). More specifically, we fit the scaler to the
training data and then transform both the train and the test set.

Model training: For each model that provides hyperparameters, we
apply a grid search on the train set with 10-fold cross validation to find
the best parameters leading to the lowest average cross-validation cost.
Subsequently, we fit the model to the entire train set. We provide the
hyperparameter grids specific to each model in section B.3.

Model evaluation: To enable an objective comparison across data
sets, we require the metrics used to be relative measures that operate on a
universal scale. Therefore, we cannot use the empirical costs on the test set
directly but normalize them by the SAA costs. SAA is a natural baseline
as it does not include feature information. Given a model k, we compute
the cost delta to SAA ∆Ck as follows:

∆Ck “ 1 ´
RNtestpqk, Stestq

RNtestpqSAA, Stestq
(2.7)
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where RN is the empirical risk as defined in Equation 2.4.
Statistical significance test: In the course of our numerical evaluation,

we also want to test our findings for statistical significance. In particular,
differences in results obtained from model recommendation versus model
selection. We use the one-sided Wilcoxon signed-rank test (Wilcoxon, 1945)
that computes the paired differences between samples di “ ai ´ bi and tests
whether medianpdq ą 0. In our case, whether the difference in relative
performance improvement over SAA between model selection and model
recommendation is greater than zero. It does not assume data to be normally
distributed. We test for different levels of significance.

2.4 Results
This section presents the results of our numerical analysis, as described in
Table 2.3. We first evaluate and discuss the performance and robustness
of the models across the different data sets in the base case. Then, in
Section 2.4.2, we evaluate how robust the models are to variations in the
parameters of the loss function and feature availability. Finally, in Section
2.4.3, we evaluate how robust the models are relative to a model selection
approach—that is, to an approach that selects a priori the best model for
each instance, based on cross-validation.

2.4.1 Robustness Analysis across Data Sets

We first explore the performance and robustness of the different models
in the base case setting. Figure 2.1 presents the relative performance
improvement over SAA for all models by data set. The performances of
the different models and their rank order, based on the mean performance,
vary across data sets. RFW and LR lead to the highest mean performance
improvements in three out of the four data sets. In the Restaurant data
set, RFW leads to the highest mean performance, followed by DL. It is
surprising that, in most cases, the relatively simple LR model leads to a
better performance than models that can account for non-linear relationships
between features and the decision variable. The results are not in line with
those of Ban and Rudin (2019), where LR was inferior compared to KW,
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and they do not support the findings of Oroojlooyjadid, Snyder, et al. (2020)
where DL consistently outperformed all other models. Interestingly, in their
study, LR was the model with the worst performance, with an average cost
increase of 53% compared to DL. Our results are clearly contradicting these
findings. Based only on the rank order per data set, either RFW or LR
should be the models of choice. However, the overlapping error bars in
Figure 2.1 suggest that this conjecture may not hold for individual instances.
We carried out additional analysis at the instance level and found that in
none of the data sets there is a single model that dominates all others (see
the base case results in Figure 2.2); more importantly, we also observe that
there is no dominated model—that is, each of the models considered in our
study leads to the best performance for at least one instance. In Section
2.4.3 we address the performance impact of choosing the “optimal” model
for each instance.
The discussion of the results of our base case analysis reveals two interesting
insights: We are unable to reproduce the results obtained in previous studies
and there is no model with robust performance across all data sets and
instances.

2.4.2 Robustness Analysis depending on the Loss Function
and Feature Availability

We now assess the models’ robustness toward variations of the parameters
of the loss function (reflected by the service level (sl)) and the availability of
features X. To this end, we compare the breakdown of the optimal models
in the base case to the breakdown under different service levels and feature
categories. Selected results are displayed in Figure 2.2 and the detailed
results are provided in section B.2. The results in Figure 2.2 suggest that
the choice of the optimal model strongly depends on both the parameters
of the loss function and the features considered. In the restaurant data set,
for example, we see that the share of optimal models is strongly dependent
on the availability of features (compare Figure 2.2 BC, Var3, Var4). From
the results in the SID data set, we observe that the share of optimal models
strongly depends on the parameters of the loss function (compare Figure 2.2
BC, Var1, Var2). These results support our initial conjecture in Section 2.4.1
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Figure 2.1: Best model per instance for base case per data set

that there is no single model that is robust across all data sets and instances
under varying parameters of the loss function and feature availability. Of
course, in this section, we only consider the optimality of different models.
In the next section, we address the robustness of the different models in
terms of their cost performance.

2.4.3 Robustness Analysis of Models’ Cost Performance

To evaluate the robustness in terms of cost performance, we benchmark
the individual models against a model selection approach. In the model
selection approach, we identify the best model for each instance based on
cross-validation. The difference between the performance of the model
selection approach and the performance of an individual model serves
as a measure of the model’s performance robustness. In Figure 2.3, we
report the pairwise cost difference between the model selection approach
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(d) SID data set

Figure 2.2: Breakdown of optimal models
BC (base case): sl = 0.9, X = [calendar, lag]
Var1: sl = 0.75, X = [calendar, lag]
Var2: sl = 0.5, X = [calendar, lag]
Var3: sl = 0.9, X = [calendar]
Var4: sl = 0.9, X = [calendar, lag, special]

and the individual models for each instance. First of all, we see that in
many cases the model selection approach leads to a statistically significant
and substantial performance improvement compared to fixing one model
a priori. However, the results are strongly dependent on the individual
data sets. Although the results shown in Figure 2.2 suggest a high value
of model selection for M5 and SID, we see that we do not experience a
large performance impact from model selection. Choosing the LR approach
a priori only induces small performance losses that are not statistically
significant in the SID data set. On the contrary, in the other two data
sets, fixing LR a priori has a very strong and significant detrimental impact
on performance. Similarly, the RFW model performs well in the Bakery
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and Restaurant data set, but significantly worse than model selection in
M5 and SID. The results of this analysis displayed in Figure 2.3 support
our initial hypothesis that there is no model that can be recommended as
state-of-the-art and that the robustness of the individual models is low.
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Figure 2.3: Difference in relative performance improvement over SAA be-
tween model selection and a given model in the base case
Wilcoxon’s signed-rank test results: *: pă0.1, **: pă0.01, ***: pă0.001

2.5 Summary and Discussion
Recently, a number of papers have been published in leading operations man-
agement and operations research journals proposing new machine learning-
based approaches for solving the newsvendor problem, the most prominent
optimization problem in operations management. A key motivation of our
study is that the reproducibility of these studies is typically low: They use
proprietary data, different benchmarks, and do not share data and code.
We are the first to conduct an extensive meta-analysis of these approaches.
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Our evaluation is based on large and heterogeneous data and a unified
evaluation procedure. Our findings do not support a number of claims made
in previous papers with respect to the performance of the newly proposed
methods. In some cases, we even obtain results that strongly contradict the
conjectures made by the authors. Our results suggest that the performance
robustness of the new methods is low. There is neither a dominant model
nor a model that is always dominated. This indicates that an evaluation of
established and new methods requires a standardized evaluation procedure,
a large set of relevant benchmark data, and standards for sharing model
implementations that enable reproducible comparisons. We take a first step
in this direction by: (1) providing extensive benchmark data for the research
community, (2) outlining an evaluation procedure that allows for a fair
and objective comparison of alternative approaches, and (3) providing the
open source Python library ddop (https://github.com/opimwue/ddop)
that enables an easy and efficient comparison of different approaches.
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3 Application of Generative
Adversarial Networks in
Inventory Management

With machine learning methods entering the space of operations manage-
ment, a growing need for training data has emerged. Although big data
exists in terms of tracing and logging data, historical demand data, in
particular, are often highly irregular by their very nature. Furthermore,
there may be confidentiality issues that limit access to training data. One
way to alleviate this shortage is to augment training data by means of
representative synthetic observations. However, current methods to create
additional data samples such as distribution fitting suffer from the curse of
dimensionality; esp. if we take into account features. We propose the use of
generative adversarial networks to synthesize additional samples. In this
research, we explore the suitability of this type of data generation in the con-
text of the well-established and tractable newsvendor problem setting. We
benchmark our GAN solution approach against distribution fitting, as well
as sample average approximation on real data. The numerical evaluations
provide promising first results in favor of our GAN-based approach.8

3.1 Introduction
In recent years, machine learning techniques have been successfully applied
to solve important logistics problems, for example, in inventory management
to prescribe replenishment decisions (Bertsimas and Kallus, 2020), or in
supply chain management for demand forecasting (Carbonneau et al., 2008;

8This paper is co-authored by Nikolai Stein.
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Punia et al., 2020). Although logistics systems typically generate large
amounts of tracing and logging data (e.g., through sensors, tags, etc.) and
benefit from the interconnection of different systems and data sources (ERP,
CRM, etc.), the application of machine learning techniques is oftentimes
hindered by limited access or availability of transaction data. This is
particularly true for inventory and capacity management problems where
decisions are made on a daily, weekly, or monthly basis and where customer
demand is the random variable of interest that can potentially be explained
by many different features. In most problems from practice, one does
not have access to more than 1,000 historical demand observations and
corresponding features. The reasons for this are multiple. Older data
often becomes less relevant due to new products or changing customer
behavior. Furthermore, there may be privacy concerns regarding linking
data from different entities to establish larger data sets for machine learning.
Another challenge is the introduction of new products where there exists no
historical data at all, and one can only rely on historical data from similar
products if such a product exists. Such “small data” likely rule out the use
of data-intensive machine learning techniques. To overcome this problem,
we propose to generate additional synthetic data samples to support the
decision-making process. Therefore, synthetic data promises to be an
entry point into the world of complex machine learning techniques. Data
generation is done using a type of generative adversarial network (GAN).
To validate our approach, we reduce the complexity of our decision-making
task. We apply synthetic data generation to real-world data from a bakery
chain. Our goal is to use synthetic data to decide how much product the
bakery should produce the next day—the well-known newsvendor problem.
This decision setting can easily be transferred to other decision problems as
the data generation process is problem-agnostic. The contributions of our
research can be summarized as follows:

1. We show how GANs can be used to generate synthetic data and how
this data can be used to solve OM problems.

2. We apply the GAN-based weighted sample average approximation
(wSAA) in a real-world setting.

3. We compare our approach with two traditional solution methods:
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distribution fitting (DF) and sample average approximation (SAA).

In the following section, we provide an overview of related scientific work.
After formalizing our problem in section 3.3, we describe our decision-making
methodology in section 3.4. Hereafter, we present the setup of our numerical
experiments (section 3.5) and their results (section 3.6). We conclude by
summarizing our findings in section 3.7.

3.2 Related Work
Fundamentally, data should be the core of operations management (OM),
as most problems are motivated by real-world challenges. However, OM
research often avoids leveraging real data and instead resorts to data created
by the mere assumption of a generic demand distribution (Balugani et al.,
2019; Darwish et al., 2019; Yang et al., 2020; Çınar and Güllü, 2012) with a
very stylized relationship to real data samples. Especially, approaches that
require a lot of training data, such as deep reinforcement learning, resort
to parametric assumptions for the demand distribution (Gijsbrechts et al.,
2021). Others incorporate additional information in the form of features
in their demand forecasts (Punia et al., 2020) but do not use this feature
information in the decision-making process.

A recent branch of OM research—data-driven operations management—
is concerned with incorporating feature information into decisions. The most
promising work has been done by Bertsimas and Kallus (2020) by introducing
methods that prescribe a decision based on historical observations of demand
and related features. This creates the need for data sets that contain
both—demand and feature data. To the best of our knowledge, research
on synthetic data generation in an OM context has been restricted to
forecasting time series of demand (Gonçalves et al., 2021; Guo et al.,
2013; Seyedan and Mafakheri, 2020) or distribution fitting approaches
(Gijsbrechts et al., 2021; Turrini and Meissner, 2019; Levi, Perakis, et al.,
2015). Incorporating features into real-world approaches is not a trivial task
and has two main issues. One, when adding to the number of features, we
quickly suffer from the curse of dimensionality as we would have to model a
time series/distribution for every feature combination in our historical data.
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Two, there are only limited or even no samples in our training set for feature
vectors that occur in the future. We propose an approach using generative
adversarial networks that has the ability to learn an implicit representation
of the joint distribution of demand and features and that allows us to sample
from it. Originating in computer vision research, GANs have been shown
to be a powerful method for artificial data generation Zhang et al. (2017).
Goodfellow, Pouget-Abadie, et al. (2014) first proposed this concept of
two opposing neural networks—a generator G and a discriminator network
D. Since then, a wide range of models have been developed, focusing
on different tasks such as high-resolution image generation (Brock et al.,
2019; Karras et al., 2018), video (Vondrick et al., 2016) or even text-to-
image translation (Zhang et al., 2017). For these purposes, a large number
of network architectures and loss functions have been proposed that are
suitable for the specific task at hand (Goodfellow, Pouget-Abadie, et al.,
2014; Arjovsky et al., 2017; Gulrajani et al., 2017; Radford et al., 2016).
Most recently, they have been adapted to augment tabular data—that is,
data in the form of tables where each observation of the training data is
resembled by a row in the table, while the columns are different features
of the observation. This also makes them suitable for generating synthetic
OM data that contains historical demand observations and categorical
as well as continuous features such as the day of the week, temperature,
lagged demands, etc. Tabular GANs have been used to augment medical
patient data (Esteban et al., 2017), but to the best of our knowledge, they
have not yet been used in OM. The two most recent models developed for
tabular data are Tabular GAN (TGAN, Xu and Veeramachaneni (2018))
and its successor Conditional Tabular GAN (CTGAN, Xu, Skoularidou,
et al. (2019)) which is able to mitigate common GAN issues such as mode
collapse. A GAN model experiences mode collapse when, e.g., for categorical
features, either one or the other category is generated but no mix between
categories is achieved that reflects the natural appearance of categories
within the data. We use CTGAN for our numerical experiments.

What makes the application of GANs in an OM context special in
comparison to vision or language application is the existence of objective
metrics. Theis et al. (2016) have compared common metrics in the field
of image generation using GAN and concluded that they might yield dif-
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ferent results. Still, manual visual inspection is a commonly used method
to compare model results, and most articles include a report of samples
generated using different GAN models (Arjovsky et al., 2017; Gulrajani
et al., 2017; Karras et al., 2018; Brock et al., 2019). In OM, in most cases,
we cannot inspect the data manually e.g., due to the high dimensionality of
the features. However, the costs resulting from a decision derived based on
GAN data allow for comparison of different GAN models.

3.3 Problem Description
We study the application of synthetic data generation to support OM
decision-making. Many OM settings are concerned with the task of making
a quantity decision (e.g., order placement, production plans, staffing) q⃗ P Q⃗
to meet demand y⃗ P Y⃗ . This decision is taken under uncertainty, since
the demand is random following a joint distribution pX⃗ˆY⃗ of demand and
additional features X⃗. These feature variables x⃗ P X⃗ can be temporal (e.g.,
month, day of the week, public holiday), lagged target variables (e.g., past
demand realizations), or anything else that potentially helps explain demand
behavior (e.g., weather data, advertising spending, competition intensity).
We denote our feature-dependent decision as a function qp¨q : X Ñ Q that
maps from the feature space to the decision space.

Our goal is to minimize the expected cost C of our decision, which can
be formulated as

min
qp¨qPQ

EY⃗
”

Cpqpx⃗q, D⃗q | X⃗ “ x⃗
ı

, (3.1)

In practice, the joint distribution of demand Y⃗ and additional features X⃗ is
unknown, and only a few historical samples SN “ tpx⃗1, y⃗1q, . . . , px⃗N , y⃗Nqu

are available. Following the weighted SAA approach proposed by Bertsimas
and Kallus (2020) we can determine q˚ as:

q˚
P arg min

N
ÿ

i“1
wi Cpq˚, y⃗iq (3.2)

where wi are weights derived from historical data SN . The weights can be
seen as a measure of similarity between the given feature vector x⃗0 and the
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historical feature vectors x⃗i P SN . For selected weight functions, weighted
SAA has been shown to be asymptotically optimal for N Ñ 8. Other
methods, such as reinforcement learning, that could learn to prescribe an
optimal decision also require vast amounts of training data. However, in
most practical settings, we do not have access to unlimited amounts of
historical data. Alternatively, there may be restrictions on using raw data
that require privacy-preserving approaches. To address these issues, we
study the use of synthetic data that mimics the behavior of real data to
support OM decision-making.

3.4 Methodology
We propose the use of GANs for synthetic data generation. GANs learn
an implicit representation of the joint distribution pX⃗ˆY⃗ and sample from
it. GANs consist of two competing neural networks—a generator G and a
discriminator network D. The goal of the generator network is to create
realistic samples that cannot be distinguished from the real training data
by D. Both play a Minimax game with a joint loss function, as shown in
Figure 3.1. The generator G transforms a noise vector z into a synthetic
data sample. The discriminator D compares this generated sample with
real-world samples and gives feedback on whether the sample shown is real
or fake. The goal of D is to reject synthetic data samples as fake and to
confirm that real-world data samples are valid.

As described in Section 3.2, GANs have been predominantly applied
for high-resolution image generation. The tabular data that we want to
generate have properties different from images. While image pixels lie in
a fixed value range, tabular data is much more diverse; e.g., we have to
distinguish between continuous and categorical columns. Therefore, we
have to use a specialized GAN model. We selected the most recent model,
conditional tabular GAN (CTGAN) proposed by Xu, Skoularidou, et al.
(2019), for our evaluation. We describe CTGAN and its architecture in
Section 3.4.1. Although GANs are a powerful tool, it is common knowledge
that their training is a fairly challenging task. We describe the challenges
and explain how we mitigate low GAN performance in our decision problem
in Section 3.4.2.
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Figure 3.1: GAN concept

3.4.1 Conditional Tabular GAN

The selected model CTGAN is able to model continuous as well as categorical
feature variables and mitigates the neglect of underrepresented categories in
the training data. This is ensured by means of two methodological choices:

• The input data is preprocessed. Categorical columns are one-hot
encoded. For each continuous feature, a variational Gaussian mixture
model is fitted to encode the distribution modes and prevent mode
collapse (Xu, Skoularidou, et al., 2019), which is a common GAN
issue.

• Furthermore, during training, the generator is fed not only a noise
vector as in Section 3.2 but also a condition vector. This vector is
used to steer the attention of the generator as well as a filter for the
real data sample that is shown as a comparison to the discriminator
(also see Figure 3.1). This ensures that minority categories can also
be learned.

The network architecture for both generator and discriminator was not
changed from the original setup (Xu, Skoularidou, et al., 2019). A detailed
description can be found in C.1.

In addition to the architecture, there are a number of other parameters—
also called hyperparameters—that influence the GAN performance. The
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hyperparameters that we vary are the batch size, the number of training
epochs, the learning rates for the generator and the discriminator, and the
random seed for all random processes. The batch size regulates how many
training examples both networks see before a weight update is made. The
number of training epochs determines the number of passes through the
whole training set. Learning rates determine how quickly weights change in
the direction of the loss gradient. The random seed steers random processes
such as network weight initialization or weight dropout during training
and is varied to avoid unfavorable settings. We provide more details on
hyperparameter tuning in the following section.

3.4.2 Data Generation Strategy

In contrast to most deep learning techniques, the loss used to train the
GAN does not give a direct indication of the quality of the generated data,
and finding metrics to evaluate the performance of the GAN is a vivid field
of research (Theis et al., 2016; Lucic et al., 2018). Especially in computer
vision where GANs have been primarily used so far, synthetic data lacks an
objective performance measure, and results are often only judged by human
perception. This makes it difficult to objectively compare performance
between different variants of GAN. In contrast, applying GANs in an OM
setting has a clear advantage, as the quality of the data can be measured
directly by the cost incurred by the problem solution solved using the
synthetic data. However, solving the OM problem in each training step
is too costly. However, we can use this property when selecting a trained
GAN model.

The GAN training itself suffers from instability issues which make
it difficult to determine a good set of hyperparameters that will work
across several data sets. Instead, we have come up with a mitigation
strategy that provides a high-quality GAN model while avoiding manual
selection activities. We define a parameter grid that can be found in C.3.
In the training phase, we train each model with a fixed hyperparameter
configuration, resulting in m models in total (also see Figure 3.2—training
phase). From these m models, we select the best model based on the
performance in our selected decision task. As the goal of our GAN-based
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synthetic data generation is to generate synthetic data that will enable
better performance in the decision task at hand, we evaluated all m models
on a validation set in the selection phase (see figure 3.2).
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Figure 3.2: Schematic description of GAN selection procedure

This model selection is necessary to avoid unfavorable GAN perfor-
mance and because we did not see convergence to a certain pattern of
hyperparameters in our experiments. Figure 3.3 shows that our selection
approach achieves a performance on the test set that is within the first
quartile of all m models. In addition, the wide range of realizations in the
box plots highlights the importance of effective model pre-selection.
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Figure 3.3: Boxplot of newsvendor cost for all 180 GAN models on test set
Red mark indicates the performance of GAN model chosen during selection phase
on the validation set.

In the operational phase, this best pre-selected GAN model is then
used to generate data for the decision on a test set. Its performance in
this phase can then be benchmarked against other models and methods
which we describe in Section 3.5.2. This concept seems very simple at first,
but can become very complex even in a small problem setting such as the
newsvendor. The cost of the newsvendor’s solution is driven by the desired
service level. This entails that we have to select the optimal GAN model
for each service level—this can be arbitrarily granular—that we want to
evaluate. For other decision tasks where there are even more factors that
can influence the cost of a decision, this is even more severe.
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3.5 Experimental Setup
We apply GAN-based synthetic data generation in the real-world setting
of a bakery chain. In Section 3.5.1 we formulate the OM decision problem
and describe the data provided, including relevant features. Section 3.5.2
introduces two suitable benchmark methods for our decision problem, while
Section 3.5.3 describes how the evaluation is done in our specific real-world
setting.

3.5.1 Problem Setting

Our bakery chain’s decision problem is concerned with determining the
optimal order quantity q⃗px⃗q of bakery goods for sale the next day. This
problem is a variant of a well-known OM problem—the newsvendor problem.
We use this problem as a proxy for more complex decision-making problems.
We deliberately chose a problem that can be easily solved to focus on the
data generation methodology itself. The newsvendor has to decide how
many newspapers to order for the next day. Newspapers that are not
sold the following day have to be disposed of and generate overage cost co,
while unsatisfied demand generates underage cost cu as sales are lost and
customers might not come back. These assumptions are also true in the
setting of our bakery, as bakery goods are perishable and cannot be sold
the following day. Just as in the general case we described in Section 3.3,
demand y⃗ P Y⃗ is not stationary, but follows a joint distribution pX⃗ˆY⃗ of
demand and additional features X⃗. For every feature vector x⃗, our bakery
chain’s goal is to minimize the total expected cost

min
q⃗px⃗qPQ

EY⃗
”

Cpq⃗px⃗q, Y⃗ q

ı

, (3.3)

where

Cpq⃗px⃗q, Y⃗ q “ cupY⃗ ´ q⃗px⃗qq
`

` copq⃗px⃗q ´ Y⃗ q
`. (3.4)

p ¨ q` is the maxp0, ¨ q and q⃗px⃗q is a prescription of the order quantity q⃗px⃗q as
a function of features as well as the service level α which is given by cu

co`cu
.

Therefore, the cost function penalizes excess quantities with co and unmet
demand with cu. Given the feature vector x⃗ for the following day and the
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joint distribution pX⃗ˆY⃗ , the optimal order quantity q⃗ ˚ can be analytically
determined by solving

FY⃗ |X⃗pq⃗ ˚
| x⃗q “ α (3.5)

where F is the conditional cumulative distribution function (cdf). However,
in our practical setting this conditional cdf is unknown and we will resort
to a weighted SAA approach as described in Section 3.3 to prescribe an
optimal order quantity q⃗px⃗q. We determine the weights for the wSAA using
a random forest model that is fit to the synthetic data generated by the
GAN model. With the help of the random forest model, we can weigh our
synthetic samples based on each feature vector x⃗ in the validation set. The
weight wi of each synthetic sample si “ py⃗i, x⃗iq is calculated as follows:

wipx⃗q “
1
T

T
ÿ

t“1

1 rRtpx⃗q “ Rt px⃗iqs

|tj : Rt px⃗jq “ Rtpx⃗qu|
(3.6)

The fraction nominator in the sum indicates whether the feature vector x
of the validation set and a synthetic data sample xi land in the same leaf
node in the tree Rt. The denominator counts how many other synthetic
samples xj also end up in this leaf node. In other words, the higher the
weight assigned to a synthetic sample, the more frequently the random forest
would make the same prediction for validation data samples and synthetic
data samples. We used the scikit-learn random forest implementation with
standard settings (Pedregosa et al., 2011).

We received sales data from 2016/03/02 to 2019/04/30 for different
shops and products from the bakery chain. Examples of typical sales
patterns are shown in Figure 3.4.

Although everyday products such as bread rolls are sold throughout
the day, there are also products with more irregular sales patterns. Some
products are only sold on certain days of the week, such as the raisin roll,
while others seem to sell more in the first half of the day, such as the
sandwich. When inferring demand from sales data, we have to be careful, as
in most cases, the lost demand due to stockouts is not recorded. Sandwich
sales are a good example of this problem. We cannot know whether there
was really less demand for sandwiches in the afternoons or whether our
products were sold out at that point. Therefore, it is likely that the demand
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is censored in this case. If one has access to stock-out records, different
methods can be used to infer uncensored demand (Sachs and Minner, 2014;
Huber et al., 2019). However, since we do not have access to such data and in
order not to distort our results, we selected three products that are unlikely
to sell out and show similar behavior to bread rolls (3.4). Furthermore, we
selected the five best shops with respect to total sales within the observed
period. In terms of features, a detailed description can be found in C.2. We
extracted several additional features from the date/time of sales such as
month, day of week, and public holidays. Additionally, the bakery chain
provided information on the sales campaigns that took place, for example,
four for the price of three offers or general price reductions. We aggregated
this information into a Boolean feature that indicates if a campaign had
occurred in the current or previous week. As our chosen GAN model does
not understand our data as a time series, we added features that function
as a proxy for any trend in the data. Finally, we added information on the
weather on the day of sale.

3.5.2 Benchmarks

We choose to benchmark our GAN results against a traditional parametric
distribution fitting (DF) approach, as well as a data-driven sample average
approximation (SAA) approach. Both seek to approximate the true demand
distribution given a set of historical demand observations Y⃗N . DF seeks a
parametric distribution pθ P P9 that minimizes the sum of squared errors
between a selected distribution and a histogram fitted to Y⃗N such that

pθ P arg min
Nbin
ÿ

i“1

`

pθpiq ´ histpiq
˘2
, (3.7)

where Nbin is the number of histogram bins.
SAA replaces the parametric distribution pθ fitted by the empirical

distribution pemp that naturally arises from the training data. In both cases,
the optimal order quantity is given by:

9In our case P is the set of distributions implemented in Python’s scipy.stats package
(Virtanen et al., 2020)
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q⃗˚
“ F´1

pαq (3.8)

where F´1 is the cdf of the respective distribution.
The advantage of both approaches is their computational efficiency in

fitting the parametric or computing the empirical distribution, as well as
sampling from it. However, when incorporating features, they quickly suffer
from the curse of dimensionality as a distribution would have to be fit for
every possible feature combination, leaving not enough training samples to
learn from. Still, both are common approaches used within OM research—
DF, for example, when performing simulation studies (Law, 2011) where
most simulation software such as Tecnomatix Plant Simulation10, FlexSim11

or Risk Solver12 provide it. SAA has also been widely studied from a
theoretical perspective (Levi, Perakis, et al., 2015). For our experiments,
we fit a distribution for each combination of product and bakery in the
training set. Having an explicit representation of the demand distribution,
we can determine the optimal order quantity using equation (3.8).

3.5.3 Evaluation Procedure

To be able to compare our results in different experimental settings, we fix
the validation set used during the selection phase, as well as the test set used
in the test/operational phase (Figure 3.2). The validation set comprises
data from the period 2018/05/01 to 2018/10/31 and our test set from the
period 2018/11/01 to 2019/04/30, respectively. The remaining data is used
as training data. This data has three dimensions—time t, number of shops
s, number of products p—which we individually reduce in our experiments
to study the effect of small training data (see Figure 3.5). We evaluate
GAN and distribution fitting, each using the same training data to fit a
model.

For our evaluation in the bakery setting, we differentiate between de-
cisions taken at a bakery shop level and implications/incurred cost at a
bakery chain level. While the newsvendor problem has to be solved for every
10https://www.plm.automation.siemens.com/global/de/products/manufacturing-

planning/plant-simulation-throughput-optimization.html
11https://www.flexsim.com/expertfit/
12https://www.solver.com/simulation-fit-distributions
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We can divide our dataset along 3 categories

Chair of Logistics and Quantitative Methods | Prof. Richard Pibernik7

Time window

(3 years)

Bakery shop

(x 5)

Product

(x 3)

Training Validation Test

Figure 3.5: Data dimensions
Our training data can be reduced along 3 dimensions to evaluate the small data
effect (Full period of data: 2016/03/02 - 2019/04/30)

product and bakery shop individually, we only consider the aggregated cost
per product at the bakery chain level for our performance evaluation. This
KPI is more relevant from a managerial point of view.

3.6 Experimental Results and Discussion
The objective of our experiments is to assess whether GAN-synthesized
data is capable of guiding decision-making in an OM setting and how it
behaves in even smaller data settings. We study this by varying different
parameters, such as the service level α of our newsvendor problem or the
size of our training data. For the latter, we study the reduction of training
data along the three dimensions, time window t, bakery shop s, and product
p (see Figure 3.5). Another challenge we faced when applying GANs in this
applied setting was the question of the right number of samples necessary
to achieve good performance in our decision task. We start our evaluation
using the full-fledged training data set (two years, five bakery shops, three
products each). The number of synthetic GAN samples not only improves
the performance, but also increases the run time of our solution algorithm.
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We found that in our setting the performance of the GAN models does not
improve anymore once we sample more than 10,000 synthetic data samples
(see Figure 3.6). We conclude that this represents a good empirical estimate
of the implicit representation of our data distribution and will be used in
further experiments.
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Figure 3.6: Performance for different synthetic sample sizes

3.6.1 Implications of Service Level Variation

In the newsvendor problem, the service level has the greatest influence
on cost performance as it determines how product underage and overage
are priced. In a low service level setting, overage costs are high, which
in turn implies that stock-outs are preferred over leftover products and
vice versa in high service level settings. For a service level of 50%, the
decision-maker is indifferent. Here, the quality of our demand forecast
is of the greatest importance. Figure 3.7 shows that the GAN-based
approach outperforms the distribution fitting and SAA benchmarks across
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service levels. This indicates that GAN-based synthetic data generation
can substantially improve decision-making. In a practical setting, a desired
service level between 70-90% is most common. Therefore, we fix α to 80%
for the following experiments.
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Figure 3.7: Performance per product on test set across service levels

3.6.2 Implications of Varying the Time Window

To assess the behavior of GAN-based synthetic data generation in a small
data regime, we gradually reduce the number of training samples along
different dimensions (see Figure 3.5).

We start by reducing the time axis t while keeping the number of shops
s “ 5 and products p “ 3 fixed. In an OM setting, this dimension is often
the main reason behind limited data availability, as most companies will
have several products and even shops. We reduce the training data in two
steps—from two years (t “ 4) to one and a half years (t “ 3) and finally
to one year (t “ 2). Further reduction is not possible because the GAN
model can only learn the seasonal effects observed in the training data.
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Therefore, the minimum data necessary to include the month feature is one
year. Figure 3.8 shows that the relative order of the GAN-based approach
and the benchmarks remains the same when changing the time axis. The
GAN-based approach outperforms DF and SAA even in a small data setting
with only a single year of training data. Furthermore, the GAN performance
exhibits only minimal improvements as a result of the increase in data. This
demonstrates that the method is useful even for short periods of training
data.
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Figure 3.8: Performance impact of varying t with p=3, s=5, α=0.8 fixed

3.6.3 Implications of Varying the Product Dimension

Most businesses do not sell a single product only but will be able to access
data for multiple products, just like in our bakery setting where we consider
three different products. In this section, we study the effect of varying
the number of products p in our training data from three to two to one
product while keeping t “ 2 and s “ 5 fixed. We find that again the relative
order of the GAN-based approach and the two benchmark approaches
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remains the same when changing the product axis (see Figure 3.9). When
we take a closer look at the results of our GAN-based approach, we find
that for two out of three products, the results of our GAN-based approach
improve if we include more than one product in our training data. For the
other product, the results only improve if we combine the data from two
products in our training data. Performance deteriorates when adding a
third product. We believe that this is due to the different demand scale
of product 101. In general, the daily demand for product 101 is almost
ten times the daily demand for product 109 or 110. In the case where our
training data include all three products, our GAN might have learned a
slight bias toward lower demand, leading to a cost increase. We conclude
that the GAN-based approach is capable of using information from other
products in decision-making, especially when their demand is on a similar
scale.
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Figure 3.9: Performance impact of varying p with t=2, s=5, α=0.8 fixed
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3.6.4 Implications of Varying the Bakery Shop Dimension

Both from an academic and a practical standpoint, it is particularly in-
teresting to evaluate whether decisions can be improved using data from
other shops that sell the same products but might have a different demand
pattern due to their location or customer base. To study this effect, we fix
our training data to t “ 2 and p “ 1 and only vary the number of shops s
that we include in our training data from five to three to one. We consider
all possible permutations of shop combinations for the case of three shops.

Figure 3.10 shows that the relative order of the GAN-based approach
and the two benchmarks remains the same when changing the shop axis.
The DF approach stays constant as fitting happens at the product and
shop level. Hence, the training data differs only along the time axis. For
the GAN-based approach, learning across multiple shops turns out to be
beneficial. Performance improves when more shops are used as training
data.
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Figure 3.10: Performance impact of varying s with t=2, p=1, α=0.8 fixed

We conclude that our method is capable of extracting information
patterns across shops that can support OM decision-making. This is good
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news for multi-store chains, as it limits the cold start problem for AI-based
decision-making in new stores.

In summary, all of our results confirm that the GAN-based approach for
synthetic data generation is a promising alternative to traditional approaches
such as DF and SAA.

3.7 Conclusion
Operations management has seen a recent influx of research on data-driven
solutions for planning problems using machine learning. However, an often
neglected aspect of this research is that most of the suggested approaches
(e.g., reinforcement learning, deep learning) require large amounts of relevant
planning data, which may not be readily available for decision-making prob-
lems due to a limited number of transactions or for reasons of confidentiality.
To mitigate this problem, we propose to synthesize data samples using
generative adversarial networks originating in the field of computer vision.
Our approach leverages these networks to learn an implicit representation of
the joint distribution of features and the variable of interest (e.g., demand).
By sampling this joint distribution, we can use data-driven approaches
to find robust solutions to complex planning problems. We illustrate and
evaluate our model using a real-world data set from a bakery chain facing
a classical inventory management problem. In particular, we solve the
planning problem using synthetic data samples provided by a GAN trained
on the real data. By means of extensive numerical evaluations, we show
that our approach is capable of handling high-dimensional data and incor-
porating rich feature variables into the decision. This observation renders it
a promising alternative to existing methods such as DF and SAA. However,
replacing existing methods with GANs comes at the cost of computational
complexity. While existing approaches can be performed efficiently, training
and selecting a good performing GAN is not a straightforward process. We
have outlined best practices to overcome the instability issues associated
with GAN training and show how to select stable models that perform well.

Our research has proposed a novel usage of generative adversarial
networks for operations management problems. Consequently, there are
several opportunities for future research. We decided to focus on a relatively
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simple planning problem (newsvendor problem) to understand how GANs
should be trained and selected and how much data is needed to outperform
traditional models. In the future, the proposed approach should be evaluated
in more complex settings, such as multi-period inventory planning or pricing
problems. Furthermore, the numerical evaluation should be extended to
multiple data sets and feature settings. Furthermore, more research is
needed on stabilizing GAN training to allow for a more straightforward
selection procedure while simultaneously improving the robustness of the
suggested approach.
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4 Combining Synthetic Data and
Transfer Learning for Deep
Reinforcement Learning in
Inventory Management

Deep reinforcement learning (DRL) is a machine learning technique that
has been shown to be successful in resolving challenging decision-making
problems. However, the application in practice, in particular in operations
management (OM) contexts, is often hindered by a lack of large amounts of
training data. In this work, we propose a transfer learning-based approach
for solving OM planning problems that combines synthetically generated
and real data to train DRL agents. In particular, our method pre-trains
a DRL agent using synthetic data produced by a deep generative model,
in this case a generative adversarial network (GAN). The agent is then
fine-tuned using a small real data sample. In this way, in contrast to existing
DRL-based approaches for OM, we are able to include feature information in
the planning decision. We perform a numerical evaluation of our proposed
approach using a classical single-period inventory management problem in
two different settings. We obtain promising first results for our proposed
procedure.13

4.1 Introduction
Over the last decades, machine learning and especially the subfield of deep
reinforcement learning (DRL) have shown great successes in solving complex

13This paper is co-authored by Nikolai Stein and Richard Pibernik.
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problems ranging from learning to play games (most prominent examples
include chess and Go) to real-world applications (e.g., autonomous driving).
Inspired by the successes in the field of machine learning, operations manage-
ment (OM) researchers have started to use machine learning techniques to
develop new data-driven approaches for decision-making under uncertainty.
First approaches apply machine learning mainly to forecast the behavior of
uncertain quantities of interest (e.g., demand for different products) based
on additional information—so-called features. In a two-step “predict-then-
optimize” approach, the forecast is then used to solve the planning problem
with traditional optimization techniques. A different stream of research that
has gained growing attention aims to resolve this disconnection between
forecasting and optimization by developing prescriptive analytics approaches.
These approaches take advantage of machine learning to prescribe decisions
directly from available features. This incorporation of features is a key
benefit of these approaches. A downside of prescriptive analytics approaches
is that they often are highly problem-specific, e.g., they require an explicit
formalization of decision policies or the optimization problem to be solved.
For more complex problem settings, such as multi-period planning, this can
become infeasible, especially if features are involved.

Especially, the strong interconnection of OM research with practice
created the need to investigate technologies that offer more flexibility and
can be customized more easily depending on the industry context. Recently,
OM researchers have started to apply a method from machine learning that
has been shown to be suitable for solving complex decision-making tasks:
deep reinforcement learning (DRL). In contrast to existing approaches,
the application of DRL does not require modeling policies for specific
problem settings (with underlying assumptions), but it requires modeling
environments. This is much closer to real-world settings, where environments
(auxiliary information + outcome) are modeled in standard software (e.g.,
ERP systems). Several OM researchers have shown that DRL is versatile and
can be applied to a number of problem settings (see Section 4.2). However,
there are some limitations to their work. Current work assumes that the
environment in which the DRL agent acts is known - this includes the
distribution of the random variable of interest. This is problematic because
“in many practical settings the distribution of the uncertainty is unknown and
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must be derived from historical samples.” (Gijsbrechts et al., 2021). Likely,
this is especially problematic if we want to incorporate feature information
(like prescriptive analytics approaches have done). We have already seen this
problem for traditional prescriptive analytics approaches—if the number of
samples n in Dreal goes to infinity Bertsimas and Kallus (2020) and Notz
and Pibernik (2022) have proposed prescriptive analytics approaches that
are asymptotically optimal. However, there are no performance guarantees
for n ăă 8. Notz and Pibernik (2022) further show that the convergence
rate decreases in the number of distinct features incorporated in the data.

Therefore, our work explores how features can be incorporated into
DRL in settings with limited training data available. We investigate how
the need for large amounts of real training data samples can be alleviated
by enriching the small training data set with synthetic data samples. These
synthetic samples are derived from a data-generating model whose goal is to
learn the true underlying distribution of the real data. In this way, in any
given environment we do not need assumptions of (parametric) distributions
but learn the conditional distribution of uncertain quantities of interest
(e.g., demand, lead time, prices, etc.) directly from data.

To formally describe our problem, let X and Y be random variables from
which the observed features x P X and the variables of interest y P Y stem.
We want to learn a synthetic data-generating model gθ with parameters θ.
To sample from the data-generating model we require a random variable
Z P Z with known prior distribution pZ such that we can define gθ as a
function gθ : Z Ñ X ˆY that takes instances from Z as inputs and generates
samples px, yq from our data space X ˆ Y as outputs. Our goal is to learn
a synthetic data-generating model gθ such that for every px, yq P X ˆ Y

pθpx, yq « pXˆY px, yq (4.1)

where pθ is the probability distribution of the samples generated from gθ.
We will discuss different approaches to modeling gθ in Section 4.3.1. To find
the optimal g˚

θ we solve the following learning problem:

g˚
θ P arg min

gθPG
D ppθ, pXˆY q (4.2)

with D a measure of distance of the distribution pθ to the original distribution
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pXˆY . As pXˆY is unknown, different empirical approximations for (4.2)
are used to find the optimal g˚

θ . We discuss this in more detail in Section
4.3.1. We explain how we train a DRL agent using synthetic data in Section
4.3.2. In Section 4.4 we present two numerical studies that we conducted
following our proposed approach—one in which the data-generating process
is known and one in which it is unknown. We conclude by summarizing our
findings and pointing out avenues for future research in Section 4.5.

4.2 Related Work in Operations Management
As highlighted in the introduction, our work is predominantly related to two
streams of research in OM: Prescriptive analytics and deep reinforcement
learning. Related work on generative models is introduced in Section 4.3.1.

4.2.1 Prescriptive Analytics

In recent years, many prescriptive analytics approaches have been developed
that, instead of making assumptions about demand distributions, work
with real data from practice directly and, most importantly, include feature
information to prescribe a decision. These prescriptive analytics approaches
seek to prescribe decisions for uncertain quantities of interest that we model
as a random variable Y P Y Ă RIy using a decision function that maps from
the feature space X Ă RIx to the decision space Q Ă RIq and minimizes
some cost function CpqpXq, Y q. Often Y represents demand for different
products and X contains additional information that can be temporal
(weekday, month, year), lagged (historic demand observations), weather-
related (temperature, hours of sunshine), or anything else that potentially
adds to the description of Y ’s behavior. The learning problem to derive the
optimal decision function can be formulated as follows:

min
qPF

EXˆY rCpqpXq, Y qs . (4.3)

We focus this literature review on approaches for inventory management
to reduce complexity, although the ideas in this paper can be applied
to operations management problems in general. Bertsimas and Kallus
coined the term “prescriptive analytics” with their seminal work “From

58



4.2 Related Work in Operations Management

predictive to prescriptive analytics” (Bertsimas and Kallus, 2020). The
classical single-period newsvendor problem provided a good starting point
for the development and evaluation of such approaches. We provide selected
examples in the following. Bertsimas and Kallus (2020) propose a reweighing
of past observations to solve a stochastic optimization problem and showcase
their approach for a replenishment problem related to a classical newsvendor
setting where the inherent optimization problem can be solved efficiently.
Here, the optimization step has to be repeated for each new decision
to be taken. Other proposed approaches aim at finding a continuous
function that prescribes a decision from a feature vector without the need
for re-optimization and hence reduces inference time drastically. In the
case of linear function spaces, Beutel and Minner (2012), as well as Ban
and Rudin (2019), use linear programming models to learn a decision
function. Oroojlooyjadid, Snyder, et al. (2020) use deep neural networks to
define the decision function for non-linear function spaces. The approaches
developed so far are highly tailored to the problem at hand and become
inherently complex as the complexity of the problem to be solved increases.
Qi et al. (2020) are the first to study prescriptive analytics in a more
complex inventory management setting. They aim to solve a multi-period
inventory problem with stochastic demand and vendor lead time. Similarly
to Oroojlooyjadid, Snyder, et al. (2020), they use a deep neural network
to predict optimal order quantities for each period in the planning horizon
considered. This reduces complexity in the inference/ decision-making step.
However, during training, their approach relies on the ability to compute ex
post optimal order quantities efficiently for a given training set. For many
different variants of multi-period inventory problems, a closed-form decision
policy is unknown (Boute et al., 2021) and, therefore, they are traditionally
solved by dynamic programming approaches, which become computationally
intractable especially if we consider feature information (see Levi, Pál, et al.
(2007) for a more detailed discussion). All of the approaches discussed have
in common that they require a very precise problem and policy definition.
This does not generalize well to other problem instances and even other
data sets. Therefore, it is important to explore approaches that promise
more flexibility in terms of addressing different classes of problems.
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4.2.2 Deep Reinforcement Learning

Deep reinforcement learning (DRL) offers a different approach to learning
complex decision policies. It has achieved great success, for example, from
learning to play Atari games (Mnih et al., 2013) to beating human players
in complex games such as chess and Go (Baxter et al., 2000; Silver et al.,
2017). DRL is inspired by the way humans learn. In many situations, we are
not told how to behave, but learn from trial and error. Similarly, in DRL an
agent learns to take actions, or in our case, make decisions by observing its
environment and acting accordingly. At each time step t, the agent observes
a state st that can include not only our features X, but also additional
information such as, for example, inventory levels or order pipelines. Based
on st, the agent takes an action at that results in taking the agent to the
next state st`1. The actions the agent takes are guided by a reward signal.
The agent’s goal is to maximize the reward. When choosing actions, the
agent has to balance exploration and exploitation (Sutton and Barto, 2018).
The agent tends to select actions that led to high rewards in the past, but it
also has to explore alternative actions to learn more about the environment.
The behavior of an agent is defined by a policy that tells the agent which
action to select given a state. This is similar to the decision function qp¨q

that we want to learn for our OM problem. Therefore, we will use the
same notation in the following. A huge benefit of DRL is that we need to
specify neither the optimization problem nor a policy explicitly. The DRL
agent learns through interaction with a problem environment that can be
defined more liberally. Recently, deep reinforcement learning has received
more and more attention from the operations management community. To
our knowledge, Gijsbrechts et al. (2021) were the first to apply DRL in
an operations management context. They apply DRL to three different
operations problems: lost sales inventory, dual sourcing, and multi-echelon
inventory. However, in contrast to the previously discussed prescriptive
analytics approaches, they do not study real data for the lost sales and multi-
echelon inventory problem. The practical case study for the dual-sourcing
problem is only found in the appendix. In addition, Gijsbrechts et al. (2021)
do not yet include feature information. Others have followed. Balaji et al.
(2019) use deep reinforcement learning to solve a multi-period inventory

60



4.3 Approach

problem with deterministic lead time and stochastic demand drawn from
a Poisson distribution. Gokhale et al. (2021) focus on a multi-warehouse
multi-product replenishment problem with deterministic lead times and
stochastic demand drawn from Poisson, normal, and gamma distributions.
Moor et al. (2021) solve a periodic review multi-period inventory problem
with deterministic lead time and stochastic demand drawn from a gamma
distribution. They apply reward shaping to transfer knowledge from existing
inventory policies to the deep reinforcement learning agent. Oroojlooyjadid,
Nazari, et al. (2021) use deep Q-learning to play the beer game where
demand is drawn from uniform as well as normal distributions. They also
study real-world data sets. Here, they use the empirical distribution of the
real data in order to be able to sample infinitely. They also include a small
experiment on the effect of training sample size on the performance of their
approach. They construct a “low-observation” setting by training on an
empirical distribution constituted by only 100 samples from a uniform as
well as a normal distribution in contrast to a “full-observation” setting where
during training they sample directly from a uniform or normal distribution.
They find that “the performance of two models [low-observation and full-
observation] is quite similar”. All of the DRL research discussed has in
common that it focuses on training based on a known distribution, which is
typically not transferable to practical settings. Real-world experiments are
yet scarce, and if they are available, they do not include feature information,
which has proven to be beneficial if we look at recently developed prescriptive
analytics approaches. Boute et al. (2021) also call for their inclusion in the
state space of DRL. However, incorporating features requires knowledge
of the joint distribution of demand and features, or probably even more
training real data. In practice, we do not know the joint distribution nor
have access to large amounts of training data. Therefore, our research aims
at closing this gap by proposing an approach that includes a synthetic data
model for enriching the DRL agent’s training process.

4.3 Approach
This section introduces our approach to train a flexible model for OM
decision-making that is able to include feature information using synthetic
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Figure 4.1: Leveraging synthetic data for decision-making

data. Our approach consists of two main elements (also see Figure 4.1):
Synthetic data generation and a prescriptive model that utilizes deep rein-
forcement learning (DRL). In the synthetic data generation step, we learn a
generative model gθ with parameters θ that can be used to create a large set
of synthetic data samples Dsynth “ pXsynth, Ysynthq P Xsynth ˆ Ysynth. In the
next step, we utilize a transfer learning approach to arrive at a prescriptive
model qs`r

ψ˚ that leverages both synthetic and real data.

4.3.1 Synthetic Data Generation

For synthetic data generation, given a set of historical observations Dreal “

tpx1, y1q, . . . , pxn, ynqu with pxi, yiq P X ˆ Y and n ă 8, our goal is to learn
a generative model gθ with parameters θ such that for every px, yq P X ˆ Y

pθpx, yq „ pXˆY px, yq (4.4)
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where pθ is the probability distribution of the samples generated from gθ.
Once we have the data-generating model, we can sample a synthetic data
set Dsynth of arbitrary size m from it. To find the optimal gθ˚ , one would
like to solve the following learning problem:

gθ˚ P arg min
gθPG

Lgen ppXˆY , pθq (4.5)

with Lgen a measure of the distance between the distribution pθ and
the original distribution pXˆY . As pXˆY is unknown, different empirical
approximations for (4.5) are used to optimize gθ. A common choice to
measure the distance is the Kullback-Leibler divergence LKL with

LKLppXˆY } pθq “ Epx,yq„pXˆY
rlog pXˆY ppx, yqq ´ log pθ ppx, yqqs. (4.6)

Optimizing the model parameters θ to minimize LKL is equivalent to
maximizing the log-likelihood that the original data Dreal was generated by
gθ (Goodfellow, 2016), so that:

θ˚
P arg max

θ
Epx,yq„pXˆY

rlog pθ ppx, yqqs. (4.7)

There are multiple ways to solve the learning problem (4.5). Tradi-
tionally, OM did not consider features when solving planning problems
and, absent of features, fitted some theoretical distribution to historical
observations of the uncertain variable of interest Y (e.g., demand). How-
ever, the application of such methods is limited if features are involved.
In most OM problems, we are concerned with real-world data, where we
do not know the effect that X has on Y a priori. Features can interact in
non-trivial ways not only with the uncertain variable of interest but also
among one another. Furthermore, the features X often contain a mixture
of continuous and discrete features. This makes it challenging to define a
parametric multivariate distribution that models and learns this behavior.
Therefore, we do not want to consider approaches that make assumptions
about the underlying multivariate distribution pXˆY , but rather we rely
on deep generative models for this task. Deep generative models use neu-
ral networks, which have been shown to be capable of learning complex
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relationships. Most of the research, development, and evaluation of deep
generative models focused on the generation of images (Alaa et al., 2022)
that pertain to data that is different from OM-related data. Image data
is made up of pixels that have continuous values. In addition, there is
positional information that can be exploited; e.g., pixels that are located
next to each other will assume similar values in order to visualize different
geometric forms. Typical OM data come in the form of tabular data, that
is, data that can be displayed as a table where the features are arranged as
the columns of the table and each line contains a specific instance of feature
information. In contrast to image data, it contains a mixture of continuous
and discrete values. In addition, lines close to each other in the table can,
but do not have to be related. In the same way, the order of columns in the
table is arbitrary. Therefore, we require specific generative models that are
tailored to these needs. Generative models can be broadly classified into
two categories (Goodfellow, 2016): models that define an explicit density
function pθ vs. models that define pθ implicitly. Many different models have
been proposed in both categories. The two models that have attracted the
most attention in recent years are variational autoencoders (VAE), which
fall into the category of explicit models, and generative adversarial networks
(GAN), which implicitly define the underlying distribution of gθ. Both
models have been appreciated for their flexible design (GM et al., 2020)
and dedicated architectures have been proposed for OM-type data (time
series and tabular data) (Esteban et al., 2017; Xu, Skoularidou, et al., 2019;
Piatkowski et al., 2021). We will explain both models below.

Variational Autoencoders

Variational autoencoders (VAEs) have first been proposed by Kingma and
Welling (2013) and Rezende et al. (2014). They use an encoding-decoding
scheme to learn a generative model. The architecture of a VAE, in general,
consists of two blocks—an encoder and a decoder—which both can be
modeled as neural networks. Given Dreal with underlying distribution pXˆY

and a random latent variable Z with a prior distribution, the encoder’s
goal is to learn the variational distribution pϕpz|px, yqq by optimizing the
parameters ϕ. The goal of the decoder D is to learn the distribution
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pθppx, yq|zq by optimizing the parameters θ. This makes the decoder suitable
as a generative model gθ˚ . As the prior distribution of Z is known, we can
sample from it and pass those samples through the decoder to generate
new data samples from pXˆY . It is common to choose ppzq “ N pz, µ, σ2q

as a Gaussian distribution (Kingma and Welling, 2013) so that the encoder
only has to learn to predict mean and variance. By introducing an auxiliary
variable ϵ P N p0, Iq, the reparameterization trick can be used to sample
z “ µϕ ` σϕϵ. This enables optimizing parameters of the encoder and
decoder jointly during training of the VAE via gradient descent (Piatkowski
et al., 2021). VAEs are trained by maximizing the evidence lower bound
(ELBO):

log pθppx, yqq ě ELBOpϕ, θ, px, yqq

“ Ez„pϕpz|px,yqq

»

—

–

log pθppx, yq|zq
looooooomooooooon

Reconstruction error

´ LKL

`

pϕpz|px, yq
›

› pθpzq
˘

loooooooooooooomoooooooooooooon

Regularization

fi

ffi

fl

where the first term is the expectation of the reconstruction error that
ensures that the original and decoded px, yq are close and the Kullback-
Leibler divergence LKL that measures the difference between the variational
distribution pψpz|px, yqq and the prior distribution ppzq. The latter serves
as a regularizer. We refer to Kingma (2019) for further technical details.

Generative Adversarial Networks

Generative adversarial networks (GANs) belong to the division of models
that implicitly define the density function. They consist of two opposing
networks that play a minimax game with the objective of optimizing a joint
loss function. The generator G : Z ÝÑ X ˆ Y acts as a data-generating
model that takes as input some noise vector z with distribution ppzq from
Z and maps it to a new data sample x from the data space X ˆ Y . Its goal
is to produce samples that are as realistic as possible. In fact, they need
to be so realistic that they can fool the second network—the discriminator
D : X ˆ Y ÝÑ t0, 1u—cannot distinguish them from samples from pXˆY .
The discriminator’s goal is to label samples that come from the real data set
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as real and samples that are produced by the generator as fake. It produces
the probability of a sample that originates from pXˆY . It is common to
model G and D as neural networks with network parameters θ for the
generator and parameters ϕ for the discriminator that are optimized during
training by playing a minimax game with joint loss function V pGθ, Dϕq:

min
θ

max
ϕ

V pGθ, Dϕq “ Epx,yq„pXˆY ppx,yqqrlog Dϕppx, yqqs

` Ez„ppzqrlogp1 ´ DϕpGθpzqqqs.
(4.8)

From the discriminator’s perspective, samples coming from pXˆY should
be assigned a probability of 1 and samples coming from pθ a probability
of 0. This will maximize V pGθ, Dϕq to a value of 0. The generator, on the
other hand, wants to minimize V pGθ, Dϕq. Therefore, from the generator’s
perspective, samples coming from pθ should be assigned a probability of 1
by Dϕ driving the second part of the equation towards ´8.

Given an optimal discriminator Dϕ˚ , Goodfellow, Pouget-Abadie, et al.
(2014) show that Equation 4.8 reduces to

Lgen :“ min
θ
V pGθ, Dϕ˚q

“ ´logp4q ` LKL

ˆ

pXˆY

›

›

›

›

pXˆY ` pθ
2

˙

` LKL

ˆ

pθ

›

›

›

›

pXˆY ` pθ
2

˙

,

which reaches its global optimum if and only if pθ “ pXˆY —that is, the
generator perfectly learned the true joint distribution pXˆY and thus serves
as a generative model gθ˚ .

To the best of our knowledge, research so far has not provided substantial
evidence on how best to model OM-type data. VAE use cases for tabular
data focus on learning the underlying data distribution to impute missing
data or detect anomalies in the data, while several GAN architectures have
been developed specifically to model tabular data in order to generate
synthetic data samples (Che et al., 2017; Xu, Skoularidou, et al., 2019; Yahi
et al., 2017). From these especially, the conditional tabular GAN (CTGAN)
architecture developed by Xu, Skoularidou, et al. (2019) stands out because
it is highly flexible (being able to model continuous and categorical features)
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and mitigates issues due to imbalance in training data by a conditional
“training-by-sampling” approach. For our numerical analysis, we adopted
the CTGAN architecture. However, we cannot rule out that there are more
suitable generative models for our purpose.

Hyperparameter Tuning and Selection of Generative Models

The generative models proposed in the previous section require extensive
hyperparameter tuning. Therefore, we need a metric that allows us to tune
individual models and to compare the performance of alternative models.
Unfortunately, we cannot use the log-likelihood (or the Kullback-Leibler
divergence) in Equation 4.7, because it is either computationally intractable
(in the case of VAEs, Jordon et al. (2022)) or not defined explicitly (in the
case of GANs, Goodfellow (2016)). Instead, we need a metric to evaluate the
quality of a sample Dsynth “ tg1, . . . , gmu generated by a generative model.
Theis et al. (2016) as well as Piatkowski et al. (2021) evaluate different
metrics, e.g., Parzen window estimates, nearest neighbors, maximum mean
discrepancy, or Hausdorff discrepancy. Both come to the conclusion that the
choice of metric has an influence on the kind of model that is selected. For
example, in Piatkowski et al. (2021)’s numerical experiments, the quality
of GAN-generated samples is higher than that of VAE-generated samples
when evaluated by the maximum mean discrepancy, while it is the opposite
way around when considering the Hausdorff discrepancy. Theis et al. (2016)
stress that “[...] for generative models there is no one-fits-all loss function,
but a proper assessment of model performance is only possible in the context
of an application”(p.8). In our case, the goal of our synthetic data is to
improve decision-making. A perfect generative model would lead to optimal
prescriptions in Equation 4.3 because we have methods to solve Equation 4.3
that are asymptotically optimal (Bertsimas and Kallus, 2020; Notz and
Pibernik, 2022). The greater the dissimilarity between distributions, the
greater the cost increase. Therefore, the costs incurred in Equation 4.3
can serve as a quality measure for Dsynth. However, depending on the
problem setting, finding q˚ can be computationally expensive, e.g., if it
involves solving mixed-integer programs in different feature settings. This
is especially problematic during hyperparameter tuning, where we have to
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evaluate a large number of models. Therefore, we introduce a surrogate that
is cheaper to compute—the pinball loss. For solving most OM problems,
we optimize over some conditional density distribution. The pinball loss
evaluates quantile forecasts and, therefore, transforms differences in the
conditional distributions into costs. In general, the quantile is induced by
the cost ratio between overestimating and underestimating demand in the
OM problem. Therefore, to evaluate a synthetic sample Dsynth we learn
a surrogate function qsur that, given a quantile u, maps from a feature
space X to a quantile forecast qsurpx, uq. We adapt the scaled pinball loss
that was used as a central metric in the M5 “Uncertainty” competition
(Makridakis et al., 2021) to evaluate the quantile forecast. We do not require
scaling because we do not need to compare multiple time series against each
other. Therefore, we only used the mean pinball loss and evaluated this on
a holdout validation set Dval

real “ tpx1, y1q, . . . , pxv, yvqu of real data samples.
Given a quantile u and a surrogate model qsurpx, uq, we define the mean
pinball loss as

meanPLpqsur, uq “
1
v

v
ÿ

i“1
upyi´q

sur
pxi, uqq

`
`p1´uqpqsurpxi, uq´yiq

` (4.9)

where p¨q` “ maxp0, ¨q. The pinball loss is often also termed newsvendor
loss.

In our numerical experiments, we investigate the question of how im-
portant the quality of our synthetic data Dsynth is. It is conceivable that
even poor data quality will suffice to learn the general problem structure,
which can then enable us to use such a pre-trained model in combination
with limited training data to achieve good results in real-world settings. We
will further detail this in the next section.

4.3.2 Transfer Learning

The generative model provides us with the means to generate a large amount
of synthetic data that can be used to train a DRL agent. However, we expect
that pθ˚ deviates from the true distribution pXˆY , and that this deviation
has a negative effect on the prescriptive quality of our model. We term this
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effect the “synthetic data gap”. We propose using transfer learning to reduce
this gap. The goal of transfer learning is to transfer knowledge gathered by
performing a source task in a source domain to a target task in a related
target domain. This is often done when the available data in the target
domain is limited (Weiss et al., 2016). In our case, the target task represents
the company-specific OM problem for which the decision-maker intends
to obtain a solution, e.g., an inventory or management problem, and for
which limited data, in the form of historical observations, is available in the
target domain. Instead of solving the target task in the target domain—as
done by traditional prescriptive analytics approaches, we propose to first
solve the same task in a source domain, which is given by the synthetic
data, and to then utilize the “knowledge”, gathered in the source domain to
better solve the (real) problem in the target domain. This form of transfer
learning, where the source task and the target task are the same, but the
source domain and the target domain differ, is referred to as transductive
transfer learning (Csurka, 2017). More specifically, we first solve problem
(4.3) in the source domain which is the synthetic data domain described by
pθ˚ . We seek the parameters ψ̂ such that

ψ̂ P arg min
ψ

Epxs,ysq„pθ˚ rCpqsψpxsq, ysqs. (4.10)

We learn qs
ψ̂

p¨q using deep reinforcement learning (DRL)—here qs
ψ̂

p¨q is
referred to as a policy that an agent learns and ψ are the weights of the
underlying neural network. The “knowledge gathered in the source domain”
is reflected in the weights ψ̂. Next, we want to transfer this knowledge
to the target domain—in our case the real data domain, where we have
a small sample Dreal from pXˆY . Therefore, our goal is to solve problem
(4.3) leveraging what we have learned from solving (4.10) to alleviate the
synthetic data gap caused by the deviation between pθ˚ and pXˆY . For this,
we fine-tune qs

ψ̂
p¨q based on Dreal to derive the final model qs`r

ψ˚ p¨q. More
formally, we search for the following:

ψ˚
P arg min

ψ
Epx,yqPDreal

rCpqs`r
ψ pxq, yqs ` λpψ, ψ̂q. (4.11)

We initialize ψ with ψ̂. To retain the knowledge gained in the source do-
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main (by solving Equation 4.10), we regularize the training on the real data
by λpψ, ψ̂q. This regularization term controls how strongly the knowledge
gained in the source domain, i.e. ψ̂, affects the parameters ψ˚ of the final
model. Depending on the selected model and training strategy, one can
choose from a multitude of regularization approaches, for example, limiting
the number of training iterations, limiting the learning rate, or freezing
layers of the underlying deep neural network. In our approach, λpψ, ψ̂q is
a hyperparameter that must be tuned on the validation data during the
training process. We detail this in Section 4.4.1.

4.3.3 Evaluation

From a practical point of view, the evaluation of our approach appears
to be relatively straightforward. The decision-maker would like to know
how our approach performs relative to a benchmark prescriptive model
q˚ applied to the real data Dreal. Ideally, q˚ is the optimal prescriptive
model for a known pXˆY . However, in a practice setting, we often cannot
compute the optimal model because pXˆY is unknown. In this case q˚ can
represent some other benchmark model, e.g. the best-known prescriptive
model, depending on the available data. Clearly, in many cases finding the
best-known prescriptive model already poses a challenge, because, as stated
before, the models’ performances are data-dependent and we do not know a
priori which prescriptive model performs best on a particular data set Dreal.
Therefore, identifying the best model to compute the expected costs of the
sample Cpq˚q may require a lot of effort for implementation, training, and
testing. More formally, we denote the performance difference between qs`r

ψ˚

and q˚ by ∆overall and define it as

∆overall “
Cpqs`r

ψ˚ q ´ Cpq˚q

Cpq˚q
, (4.12)

where Cpqs`r
ψ˚ q denotes the expected out-of-sample costs when applying

the model learned in (4.11), and Cpq˚q the expected out-of-sample costs
associated with the benchmark model.

The value of ∆overall is impacted by the performance of the generative
model and the models used to solve (4.10) and (4.11)—both determine
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Cpqs`r
ψ˚ q. We would like to divide ∆overall into individual components that

allow us to better understand the drivers that affect ∆overall. In addition,
we would like to evaluate whether our qs`r

ψ˚ can mitigate what we term the
“small data gap” that arises because we train a prescriptive model using
only limited data.

We first turn to the impact of the generative model gθ that is used to
generate the synthetic data Dsynth. We would like to measure what we
termed the “synthetic data gap” in the previous section. A perfect generative
model g˚

θ (with pθpx, yq “ pXˆY px, yq) will lead to a zero synthetic data
gap. With g˚

θ we can obtain N Ñ 8 samples from pXˆY and solve the
underlying OM problem to optimality if we apply an asymptotically optimal
prescriptive analytics model as proposed, for example, by Bertsimas and
Kallus (2020). Imperfect generative models gθ, for which pθ deviates from
pXˆY , will lead to a loss of optimality, because the optimal solution can be
obtained for a sample from pθ, but not for data generated from the true
joint distribution pXˆY . We denote by Cpqsq the expected out-of-sample
costs when applying an asymptotically optimal prescriptive analytics model
to Dsynth with N Ñ 8, and by Cpq˚q the expected out-of-sample costs
when applying an asymptotically optimal prescriptive model to D8

real which
contains N Ñ 8 samples from pXˆY . The model q˚ can now not only
be the best known model, but also must be asymptotically optimal. The
synthetic data gap can then be defined as follows:

∆synth “
Cpqsq ´ Cpq˚q

Cpq˚q
. (4.13)

Obviously, ∆synth is of limited practical relevance because, for real-world
problems, the true joint distribution pXˆY is unknown and one typically
does not have access to sufficiently large data sets D8

real—else, synthetic
data generation would not provide any value. However, as we show in the
next section, ∆synth is not only conceptually appealing but can provide
important information to evaluate the performance of a generative model
in controlled numerical experiments with known pXˆY .

Second, we want to capture the impact that the performance of the
models that are used to solve (4.10) and (4.11) has on ∆overall. In our case,
these are the DRL models with the weights ψ̂ and ψ˚ of the underlying
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neural networks. Although DRL has achieved successes in a variety of
application problems, there are no universal performance guarantees and it
cannot be proven that the models converge to a full information optimum
for N Ñ 8. The performance of the DRL models is data- and problem-
specific and depends on the choice of training algorithm and the training
environment. The extensive hyperparameter tuning to find the best DRL
model may be prohibitively expensive. Therefore, we cannot rule out the
possibility that ∆overall is negatively affected by a performance gap of the
(DRL) model, which leads to inferior results in terms of Cpqs`r

ψ˚ q. To estimate
such a potential “model gap”, we suggest the following measure:

∆model “
Cpqr8

ψ q ´ Cpq˚q

Cpq˚q
, (4.14)

where Cpqr8

ψ q denotes the expected out-of-sample costs associated with the
DRL model trained on D8

real that contains N Ñ 8 samples from pXˆY , and
Cpq˚q is defined in conjunction with (4.13). Similarly to ∆synth, we can only
compute ∆model in a setting where pXˆY is known or we have a potentially
infinite sample from pXˆY . In a practical setting, we could approximate
∆model by training both models on Dsynth. However, this would not allow
for a strict separation of the synthetic data gap and the model gap, because
we cannot assume that the DRL agent and the asymptotically optimal
prescriptive model are affected equally by ∆synth.

Finally, we want to assess how well qs`r
ψ˚ can mitigate performance

differences that are due to limited training data, which is often a problem in
practice. Even for asymptotically optimal models, the rate of convergence
can be low, and we cannot make any inference about the model performance
for N ăă 8 (see Notz and Pibernik (2022) discussion). We capture this
performance difference by defining

∆data “
Cpqrq ´ Cpq˚q

Cpq˚q
, (4.15)

where Cpqrq is an asymptotically optimal model trained on Dreal with
N ăă 8. Ideally, we can achieve lower out-of-sample costs with qs`r

ψ˚

compared to qr. Thus, ∆overall ăă ∆data.
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4.4 Numerical Experiments
In our numerical experiments, we study two different settings, inspired
by theory and practice. In the first controlled experiment, we assume
that we know the joint distribution pXˆY and hence the data-generating
process. Here, we want to understand how our approach“behaves”, what
performance gaps it produces, and how they can be explained along the
lines of our measures in Section 4.3.3. In particular, we want to understand
the quality of the generative model, the quality of a pure DRL model, and
the quality of our transfer learning approach relative to a known optimum.
Understanding this will help us interpret the results of a real-world analysis
that we conduct in the second half of this section.

We keep the OM problem that we study in our numerical experiments
simple to reduce the complexity induced by the problem setting itself. We
consider the data-driven newsvendor that has been well studied in the
domain of data-driven research, so that good benchmarks are available. We
formulate the data-driven newsvendor as follows:

min
qp¨qPF

EXˆY rCpq⃗pXq, Y qs “ min
qp¨qPF

EXˆY rcupY ´ qpXqq
`

` copqpXq ´ Y q
`

s

(4.16)

where p¨q` “ maxp0, ¨q. The ratio between overage and underage costs
is called the service level sl “ cu

cu`co
. We set sl “ 0.7.

4.4.1 Experimental Setup for Known Data-Generating
Process

In our first numerical experiment, we evaluated our approach for a known
joint distribution pXˆY . Figure 4.2 shows an overview of our experimental
setup. We detail our approach in the following. We start by generating
four different data sets that all come from a linear data-generating process
with known distribution pXˆY which we describe in Section 4.4.1. We use
the first two as training data sets, where D8

real with its 10,000 samples is
our proxy for an unlimited data setting, and Dreal is our proxy for a small
data setting. In addition, we sample a validation set Dval

real that is used for
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Figure 4.2: Experimental setup for known data-generating process
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model selection and a hold-out test set Dtest
real that is used to compute the

performance gaps. We use Dreal and Dval
real to train the generative model gθ.

We use gθ to compute a large synthetic data set Dsynth. We train different
prescriptive models using the described data sets. Because we know the
underlying distribution pXˆY we can compute an optimal prescriptive model
q˚. This is done by computing the feature-dependent demand and then
adding 70% quantile of the noise distribution as a safety buffer. This model
is the baseline to calculate the performance gaps described in Section 4.3.3
based on the hold-out test set Dtest

real. To compute ∆data we need to choose
a prescriptive model that we train using Dreal. We apply a model that
assumes that the prescription function q comes from a linear function space,
the empirical risk minimization-based approach proposed by Ban and Rudin
(2019). We term this the linear ERM model. In this setting, the linear
ERM model trained on Dreal is qr. Furthermore, we train a corresponding
DRL-based model qrψ. Details of the implementation of the DRL-based
models can be found in Section 4.4.1. Next, we use Dreal together with
Dsynth for our proposed transfer learning approach that results in qs`r

ψ˚ . This
model enables us to compute ∆overall. We evaluated ∆synth using a linear
ERM model qs that is trained only on the generated data Dsynth. Again,
we train a corresponding DRL-based model qs

ψ̂
that we can use to assess

how well the DRL agent can learn from the synthetic data. To evaluate
∆model, we train a DRL agent based on D8

real.

Data Set

We use the make-regression function of the standard Python package sklearn
(Pedregosa et al., 2011) to generate a data set in which the features X and
demand y have a linear relationship of the form

y “
ÿ

i

bixi ` b0 ` ϵ (4.17)

with b0 the intercept of the linear model, bi the scalar-valued coeffi-
cients14 and ϵ random noise. In our experiments, we use 10 features, of which
six are informative, that is, bi ‰ 0. We draw ϵ from a normal distribution
N p0, 0.2 ˚ yq with y the mean of y.
14The values of the coefficients bi can be found in the Appendix D.1

75



4 Combining Synthetic Data and Transfer Learning for Deep
Reinforcement Learning in Inventory Management

We use this data-generating process to generate the data sets shown
in Figure 4.2. To test the robustness of our approach, we performed 30
individual runs. In each run, we sample a new Dreal from pXˆY and evaluate
the performance of our approach on a fixed test set Dtest

real.

Generative Model

We use the conditional tabular GAN (CTGAN) architecture proposed by Xu,
Skoularidou, et al. (2019) for the generation of the synthetic data set Dsynth.
As highlighted in Section 4.3.1, CTGAN appears particularly suitable in
our context because it can generate tabular data with both continuous and
categorical features and can deal with imbalanced categorical feature values,
that is, certain values are over- or underrepresented. To tune and select a
generative model, we perform a grid search of 180 unique hyperparameter
combinations (see Appendix D.2) and select the model that achieves the
lowest meanPL on the evaluation data set Dval

real. For each trained GAN
model, we generate 10,000 samples and use the linear ERM model as a
surrogate model to compute meanPL, as described in Section 4.3.1. We use
the linear ERM implementation and the default hyperparameter settings
provided in the Python package ddop (Philippi et al., 2021). We use the
model with the lowest meanPL to generate Dsynth.

Deep Reinforcement Learning and Transfer Learning

To train the DRL agents, we apply the proximal policy optimization (PPO)
algorithm proposed by Schulman et al. (2017). PPO is a state-of-the-art
DRL algorithm that has shown superior performance in many control tasks
(Schulman et al., 2017) and promises stable training behavior (Schulman
et al., 2017; Vanvuchelen et al., 2020). It has previously been applied in the
context of OM (Balaji et al., 2019; Vanvuchelen et al., 2020). Our goal is
to use a pragmatic approach for training that can be applied in a practical
setting without requiring extensive computational effort, e.g., induced by
hyperparameter tuning. Therefore, we use standard implementations and a
rather straightforward training approach. We use the PPO implementation
from stable-baselines3 (Raffin et al., 2021) with standard hyperparameter
settings. We use OpenAI’s gym (Brockman et al., 2016) to implement the
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DRL environment. For implementation details, see Appendix D.3. The
training process for the models qs

ψ̂
, qrψ and qr8

ψ differs only in the training
data set: qs

ψ̂
trains on Dsynth and qrψ trains on Dreal. qr8

ψ trains on D8
real. All

models train 60,000 iterations without additional fine-tuning. In the transfer
learning approach, we first train a DRL agent on Dsynth for 60,000 iterations
and derive the weights ψ̂ of the underlying neural network. These weights
are used to initialize a model qs`r

ψ that is trained on Dreal to obtain the final
model qs`r

ψ˚ with weights ψ˚. We regularize how strongly the knowledge
gained in the source domain (qs

ψ̂
trained on Dsynth) affects the parameters

ψ˚ of our final model qs`r
ψ˚ by limiting the number of training iterations on

Dreal. In this regularization approach, the number of training iterations is
a hyperparameter that has to be tuned on the basis of the available data.
Figure 4.3 plots the average rewards on the validation set Dval

real for different
lengths of the training process, reflected by the number of training iterations.
We observe that updating the model on the data Dreal of the target domain
initially improves the overall model performance and that the maximum
model performance is achieved at 30,000 training iterations. Beyond this
value, overfitting on the target domain diminishes the performance of the
model. Therefore, we set the number of training iterations at 30,000 in the
rest of our experiments.
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Figure 4.3: Average reward on validation set across experiment runs under
variation of agent training length on Dreal. Error bars show the standard
deviation.

4.4.2 Results for Known Data-Generating Process

Figure 4.4 shows the percentage deviation from the average out-of-sample
cost incurred by q˚ for the different approaches across experiment runs along
with the corresponding performance gaps. First, we discuss the performance
gaps. We find that ∆overall is smaller than ∆data and ∆synth. However, there
is still a gap to ∆model that can be exploited by improving different parts of
the transfer learning approach.

We observe that the synthetic gap ∆synth is particularly large. Together
with the fact that the DRL-based model qs

ψ̂
also does not perform well, this

indicates a low quality of the generated synthetic data. ∆synth appears to
be mitigated by our transfer learning approach. In fact, transfer learning
with synthetic and real data qs`r

ψ˚ outperforms the DRL model trained with
only small data qrψ, i.e., there is value in transfer learning, although the
synthetic gap ∆synth appears to be large.

The performance gap due to the small available real data ∆data is greater
than ∆overall. Hence, in this setting, we seem to mitigate performance losses
due to scarce data using our transfer learning-based approach. However,

78



4.4 Numerical Experiments

there is only a small difference of 0.5 percentage points between ∆overall

and ∆data. However, the reason is not that DRL does not work well, as we
can see from ∆model. The linear ERM model qr —which is the theoretically
optimal model for our particular data—can “perfectly” learn the relationship
between features and the dependent variable and only suffers from the
limited amount of training data available. ∆data can be purely attributed
to the fact that we train linear ERM only on 1095 samples—the equivalent
of 3 years of training data. DRL on its own (see results of qrψ) is even less
sample efficient.

In summary, our transfer learning approach improves on pure DRL,
but suffers from the quality of the synthetic data expressed in ∆synth. In
this stylized setting, we can outperform qr with qs`r

ψ˚ . However, there is a
caveat to this stylized setting—here we know that linear ERM is the best
model because of the linear structure of our data-generating process. In
a practical setting, we will not know the best model a priori. In addition,
the problem setting might become too complex to apply “traditional” data-
driven approaches. Further investment in improving transfer learning could
help close the gap to qr8

ψ .
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Figure 4.4: Percentage deviation from average out-of-sample costs of q˚.
Error bars show standard deviation across 30 experiment runs. All ∆’s are
significant on a 99% confidence level under paired t-test

We start this investigation by evaluating the impact that the quality of
GAN-generated data has on our transfer learning approach. We selected
one experiment run and ranked the different GAN models trained in the
synthetic data generation phase of our approach based on the pinball
loss introduced in Section 4.3.1. For our evaluation, we chose GANs from
different quantiles of this distribution and our original Dsynth by the samples
generated from these GANs. This means, for example, that qs`r

ψ˚ now uses
samples that were generated from the GAN in the 10% quantile in the
pre-training phase. qs

ψ̂
and qs use only these samples for training. Figure 4.5

shows the distribution of out-of-sample costs normalized by the average
out-of-sample costs of q˚ for models trained on GAN samples of different
quality. To illustrate, the 0% quantile GAN is the GAN that performed
the best in our model selection and the 100% quantile GAN is the GAN
that performed the worst in our model selection. We observe that the
performance of the DRL model qs

ψ̂
and the linear ERM model qs depends

on the quality of the GAN. Performance increases as the quality of the
GAN increases. Especially for GAN data with lower quality (e.g., 90% and
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100% quantiles), performance deteriorates. However, we do not observe this
behavior for the transfer learning approach. Here, the performance appears
quite stable and even independent of the GAN quality measured by the
performance of qs (also see Figure D.3 in Appendix D.5 for a focus on mean
performance). For example, from the 10% quantile to the 25% quantile,
the performance of both qs

ψ̂
and qs deteriorates. This is also supported

by comparing the demand distributions (see Figure D.4 in Appendix D.5).
The distribution of the demand generated by the 0% and 10% quantile
GAN strongly resembles the real data distribution, whereas the demand
distribution of the 25% quantile GAN clearly looks different. Unexpectedly,
the performance of qs`r

ψ˚ improves when pre-trained on the 25% quantile
GAN compared to the 10% quantile GAN data.
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Figure 4.5: Percentage deviation from average out-of-sample costs of q˚ per
day in Dtest

real under variation of the GAN quality for a selected experiment
run. Outliers are omitted for better readability.

This motivates us to investigate how our transfer learning approach
behaves in cases with more “extreme” synthetic data. We construct two
different synthetic data sets independent of the GAN data. One with
presumably lower quality than the GAN data and one with high quality.
For low-quality synthetic data, we create a synthetic data sample that has
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the same size as the GAN-generated Dsynth but contains only constant
demand values. The constant demand value is set to the mean demand of
Dreal. The features of this constructed synthetic sample all follow normal
distributions that are fitted to the individual features of Dreal. Hence, there
is no connection between features and demand to be learned in this data.

In the second case, we use D8
real to pre-train qs`r

ψ˚ . As D8
real is drawn

from the true data-generating process, it resembles a perfect synthetic data
sample.

Figure 4.6 shows the distribution of the out-of-sample costs normalized
by the average out-of-sample costs of q˚ for models trained on the best GAN
samples, the synthetic data with constant demand, and the large real data
sample. Similarly to the previous setting, qs`r

ψ˚ pre-trains on the given data
and is fine-tuned on Dreal, whereas qs

ψ̂
and qs use only the given data for

training. As an additional benchmark, we also plot the results for qr—the
linear ERM model trained on Dreal. The results are rather disappointing.
Even these “extreme” synthetic data cases appear to have little influence on
the performance of qs`r

ψ˚ . However, the performance of the other models is
influenced by the quality of the data. We observe that for the two models
qs
ψ̂

and qs the performance on GAN as well as constant demand data is
very similar. Especially if we consider mean performance. The interquartile
range of the boxplots is slightly larger for the models trained on constant
demand data. This indicates that in this quite simple make-regression
setting, training a GAN model to generate synthetic data only generates
small performance gains in comparison to generating synthetic data with a
much simpler model. The mean percentage deviation from the out-of-sample
costs of q˚ is 1.6% for qs`r

ψ˚ pre-trained on the best GAN data vs. 2.7%
for qs`r

ψ˚ pre-trained on the constant demand data. It is striking that even
the model pre-trained on the constant demand data outperforms qr. It is
not clear which information the DRL agent can extract from the constant
demand data during pre-training. When conducting this experiment, our
initial hypothesis was that the performance of qr should be a lower bound
to the performance of the model pre-trained on the constant demand data.
It is possible, however, that the DRL agent learns something about the
general reward structure from the constant demand data.

In the large real data setting, we observe that although the boxplots
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for the transfer learning approach qs`r
ψ˚ and qs

ψ̂
—the DRL model that only

trains on the large real data—appear to be very similar, in terms of mean
performance qs`r

ψ˚ does not reach the performance of qs
ψ̂

(2.6% vs 0.4%).
This provides an indication that additional effort might be necessary to tune
the hyperparameters of the transfer learning approach. Still, all transfer
learning approaches outperform qr, which has a mean performance of 8.1%.
Therefore, there appears to be a benefit of the pre-training that differentiates
the transfer learning approach.
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Figure 4.6: Percentage deviation from average out-of-sample costs of q˚ per
day in Dtest

real under variation of the synthetic data used during training for
a selected experiment run. Outliers are omitted for better readability.

4.4.3 Experimental Setup for Unknown Data-Generating
Process

In a second analysis, we evaluate our approach based on real-world data
from a bakery chain, where the data-generating process is unknown. In this
setting, we do not know the optimal model q˚ because we do not know the
true underlying distribution pXˆY or have access to an infinitely large sample
from it. Hence, we cannot calculate performance gaps anymore. However,
we can still receive an indication of the magnitude of the performance
gaps by benchmarking our approach in a small sample setting with other
DRL-based or other data-driven approaches.
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Figure 4.7: Experimental setup for unknown data-generating process
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Our experimental setup is very similar to the setup in Section 4.4.1—an
overview of the experimental setup is shown in Figure 4.7. In the following,
we only point out the differences. Regarding the data sets, as we do not
know pXˆY , we can only divide the available data into a small training data
set Dreal, a validation data set Dval

real and a test data set Dtest
real. Regarding

prescriptive models, we cannot train any model neither based on pXˆY nor
on a large sample from pXˆY . In addition, we exchange the asymptotically
optimal “traditional” prescriptive model that we use to benchmark DRL-
based approaches. In general, Buttler et al. (2022) found that the right
prescriptive model strongly depends on the data set used and that model
selection is important if we do not know the nature of our data. This can
be a time-consuming process. However, since we use the same data set that
Buttler et al. (2022) used in their analyses, we can rely on their results.
Their study revealed that an approach proposed by Bertsimas and Kallus
(2020) performed best. Their approach uses conditional density estimation
and a random forest weight function that is used to re-weigh historical
observations. We term this the weighted sample average approximation
(wSAA) model. We use the random forest wSAA implementation and the
default hyperparameter settings of ddop (Philippi et al., 2021).

Data Set

In our real-world setting, we use a data set from a local bakery chain.
The data set contains sales data along with the corresponding features of
five different bakery shops and three different products (bread rolls, grain
rolls, and pretzels) from 05/01/2017 through 04/30/2019. Features capture
information on sales time series, promotions, and weather. More detailed
information can be found in Appendix D.6. The bakery needs to decide how
many products to prepare for the next day. Unsold products are discarded
at the end of the day. To apply our approach, we split the data into 1 year
of training data Dreal, half a year of validation data Dval

real and half a year of
test data Dtest

real. An individual prescriptive model is trained for each unique
combination of product and store.
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Generative Model

We choose the same specification for the generative model as in Section
4.4.1. However, we change the surrogate model that is used to select the
best GAN model for the same reasons as described previously; we apply a
wSAA model with a random forest weight function.

4.4.4 Results for Unknown Data-Generating Process

Figure 4.8 shows the percentage deviation from the out-of-sample costs of
qr per product (averaged across stores) for the different models. Although
we cannot compute the performance gaps anymore due to the lack of an
optimal model, we can still compare the performance of our pipeline to the
“best known model”, in this case qr. We find that our transfer learning-based
model qs`r

ψ˚ outperforms qr and all other approaches for all products. On
average, the costs incurred by qs`r

ψ˚ are between 4% and 16% (depending
on the product) lower than the costs incurred by qr. Furthermore, in line
with the results in the previous section, we find that only leveraging Dreal

or Dsynth for DRL is not enough to outperform the traditional data-driven
model qr. We find a cost increase of between 4% and 23% when using qrψ
instead of qr. The performance gap between qr and qrψ is an indicator that
DRL in this setting requires more samples for training—it is less sample
efficient than wSAA—or, in other words, suffers more from small data.
However, the performance difference between the two models is small (at
least for grain rolls and pretzels), which we see as an indicator that the
model gap is small. The performance gap between qr and qs is an indicator
of the synthetic data gap and, therefore, of the insufficient quality of the
synthetic data Dsynth. It is interesting to see that on more complex data
structures than in the one in Section 4.4.1 the DRL-based approach qs

ψ̂

seems to generalize better when trained on Dsynth than qs. The results are
consistent on a shop level (see Appendix D.7).

To generate more granular insights, we vary the service level for a
selected product in a single bakery shop. Figure 4.9 plots the scaled out-
of-sample cost distribution of the models for different service levels. The
performance of qs`r

ψ˚ and qr appears to be quite stable across service levels
and qs`r

ψ˚ consistently outperforms qr. Interestingly, we observe that the
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Figure 4.8: Percentage deviation from average out-of-sample costs of qr.

performance of the DRL-based model qrψ that is only trained on Dreal

deteriorates with increasing service level. There are two hypotheses that
can potentially explain this behavior. One, based on the small data set,
the model qrψ is only able to learn a good demand forecast but fails to
calibrate the safety buffer correctly. The synthetic data in the transfer
learning approach qs`r

ψ˚ is then used to learn the safety buffer. Two, qrψ is
not properly tuned and is overfitting on the small training data set. This
would entail that the synthetic data in the transfer learning approach qs`r

ψ˚

is used for regularization.
In an effort to shed some light on these hypotheses, we conduct the

same experiment as in the previous section and vary the synthetic data that
the models use for (pre-)training. Again, we rank the GAN models trained
during the model selection phase of the data generation and select GANs
from different quantiles to generate synthetic data samples. In addition,
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Figure 4.9: Percentage deviation from average out-of-sample costs of qr
per day in Dtest

real under variation of service level for a selected product and
bakery shop. Outliers are omitted for better readability.

we construct a synthetic data sample with constant demand. The constant
demand value is set to the mean demand of Dreal. To construct the features,
we fit a normal distribution for each continuous feature of Dreal and a
uniform distribution for each categorical feature. Figure 4.10 shows the
scaled out-of-sample cost distribution of qs`r

ψ˚ , qs
ψ̂

and qs under variation of
the synthetic data quality for a selected product in a single bakery shop.

Surprisingly, the DRL model qs
ψ̂

that trained only on the constant
demand data outperforms all other qs

ψ̂
models that are trained on GAN

data except for the data from the 10% quantile GAN. When using a
traditional prescriptive model—in this case wSAA with a random forest
weight function—the model trained on constant demand outperforms even
all other traditional prescriptive models. This could indicate that, in this
real-world setting, the GANs fail to learn a good estimate of the true
underlying distribution pXˆY . The positive deviation from the average
out-of-sample costs of qr by qs

ψ̂
and qs trained on the constant demand data

indicates that there is information in the features to be exploited to make
better decisions. Therefore, this discrepancy does not stem from the lack of
predictive power of the features in the real data.
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In addition, contrary to expectations, we observe that in this setting our
proposed GAN model selection procedure does not appear to have worked
well. If we compare mean performance, especially qs

ψ̂
trained on the 0%

quantile GAN data, i.e. the best GAN data per our selection procedure,
is outperformed by a number of models that train on worse data per our
selection procedure, for example, qs

ψ̂
trained on the 10%, 25%, 50% and 75%

quantile GAN data. The same is true if we compare the mean performance
of the transfer learning models qs`r

ψ˚ . Here the transfer learning model
pre-trained on the best GAN data is outperformed by all other transfer
learning models that are pre-trained on GAN data. The best GAN data (0%
quantile) transfer learning model has a mean performance of -14.6%, while
the best of the other GAN data-based transfer learning models has a mean
performance of -34.4%. However, the best GAN data transfer learning model
still outperforms the transfer learning model pre-trained on the constant
demand data which has a mean performance of -13.8%. In general, models
based on transfer learning qs`r

ψ˚ again show stable performance compared to
models that train solely on synthetic data and consistently outperform qr if
we consider mean performance.

Finally, we cannot conclusively answer what drives the performance
of our proposed transfer learning approach. The transfer learning model
pre-trained on constant demand data outperforms qr even though the model
can only learn the mean demand in this setting, which it should also be
able to learn from Dreal alone. It is possible, therefore, that the pre-training
acts as a way of regularizing the training of the DRL agent. However, the
increase in performance of the transfer learning approaches when pre-trained
on GAN data suggests that there is more information to be extracted from
the GAN data than from the constant demand data that helps during
pre-training.

However, only considering a selected product in a single bakery shop,
caution must be applied to these conclusions, as the findings might not be
representative of all products and bakery shops.

We conclude that our proposed approach also brings value in a prac-
tical setting. In all experiments, we see the same effect as before: Based
solely on synthetic data, the reinforcement learning approach qrψ does not
perform well compared to qr. We can remedy this through fine-tuning—in
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Figure 4.10: Percentage deviation from average out-of-sample costs of qr
per day in Dtest

real under variation of the synthetic data quality for a selected
product and bakery shop. Outliers are omitted for better readability.

fact, the combination of synthetic data and fine-tuning again renders the
transfer learning approach superior. However, more research is necessary to
investigate the driving forces behind this behavior.

4.5 Conclusion and Future Research
Opportunities

This work proposes a transfer learning-based approach that combines syn-
thetically generated and real data to train DRL agents in an OM context.
In particular, our approach uses synthetic data that was generated by a
deep generative model—in this case a GAN—to pre-train a DRL agent.
Then, this agent is fine-tuned using a small sample of real data.

We illustrate and evaluate our proposed approach using a classical single-
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period inventory management problem in two different settings. Using a
controlled setting with known data-generating process, we make an effort
to shed light on the performance drivers of our proposed approach. Using a
real-world setting with data from a local bakery chain, we investigate the
practical relevance of the proposed procedure.

Using extensive numerical evaluations, we demonstrate that our pro-
posed approach is capable of improving the performance of DRL agents.
However, we cannot conclusively derive what drives the performance of our
proposed approach. Even though we observe that models trained on the
GAN-generated data alone perform worse than models purely trained on
small real data, a combination of both leveraging our proposed approach
renders a positive performance impact independent of the data quality.

Our work has several limitations that should be addressed in future
research.

First, it is difficult to obtain theoretical results for methods based on
deep learning. Therefore, we resorted to a thorough numerical evaluation
of our approach. However, this naturally limits our ability to draw general
conclusions that go beyond the problem and data sets studied in this work.

Additionally, we chose to evaluate our approach on a relatively simple
planning problem. This choice was driven by the availability of good
benchmarks that include features as well as the approachable structure of
the cost function. Even though DRL can be adapted more flexibly to solve
different planning problems than traditional prescriptive approaches, the
environment in which the DRL agent learns still has to be adapted if we want
to consider different problem classes. Therefore, we leave the evaluation
of our approach in more complex problem settings such as multi-period
inventory control to future research.

Furthermore, in our approach, we mostly relied on the standard hyper-
parameter settings of the DRL libraries used for our evaluation in line with
Vanvuchelen et al. (2020) in order to limit the computational effort. Future
work should consider in-depth approaches to tuning different hyperparame-
ters using sophisticated hyperparameter tuning frameworks (e.g., Optuna
or Tune).

On a similar note, finding the right transfer learning approach is an
ongoing field of research and we do not claim that we have exhausted the
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performance of qs`r
DRL with the transfer learning approach that we applied,

but leave this for future research.
Another limitation of our work is that we focused our evaluation on

synthetic data that was generated using GANs. Although they have been
successfully applied to generate tabular data (Xu, Skoularidou, et al., 2019;
Esteban et al., 2017), there is no substantial evidence that they are the
best deep generative model for OM data. Future work should explore
the application of other sophisticated deep generative models to generate
synthetic data.

Such deep generative models can have many benefits. They promise to
learn complex relationships between demand and features. Some guarantee
privacy, allowing us to train models without ever sharing real data. However,
it is difficult to understand which interaction effects are actually present in
the generated data. We made a first step towards isolating these effects with
our case study of constant demand data. To further study the effect of the
synthetic data used, other synthetic data sets with different characteristics
should be created and evaluated, e.g. data with step changes in the demand
due to categorical features or different correlations between demand and
continuous features.

Our work is exploratory in nature, and we view it as a starting point
for a thorough and in-depth evaluation of how to make DRL accessible in
practical OM contexts. The potential to extend our work continues to be
large.

The use of synthetic data is only one way to increase the size of the
available training data. In many practical settings—even in our small
bakery case study—there is data available for multiple products or multiple
locations. Future work should consider whether pre-training on data from
other products or locations is beneficial for guiding the learning process of
DRL agents.

A second extension to our approach, but also to pure DRL-based
approaches, is the consideration of feature uncertainty. Our current approach
assumes that the features of the planning period are known. This is a
reasonable assumption for part of the features, such as calendrical features
(e.g., month or weekday) or features that describe product characteristics.
However, in real-world settings, there are also many features for which only
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forecasts are available. The most prominent example of this are weather-
related features. A potential avenue for future research is how to include
this additional level of uncertainty in decision-making approaches.
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5 Summary and Conclusion

The development of data-driven OM approaches has increased the need
for training data in OM. Although many rich data sources are available,
recordings of variables of interest, which are demand observations in most
OM cases, are scarce. Research on synthetic data generation offers the
possibility to enrich or augment small amounts of real training data, thus
promising to improve OM decision-making.

The goal of this dissertation is to address the guiding research question
presented in Chapter 1:

Guiding Research Question. How can synthetic data be leveraged to im-
prove decisions for data-driven inventory management?

Chapter 2 of this dissertation addresses research question 1, presented
in Chapter 1, by performing a meta-analysis of selected data-driven OM
approaches. The chapter starts by reviewing the papers in the field that
are most relevant to the topic and comparing the data and benchmarks
they use to evaluate newly proposed methods. The review reveals that
the evaluations are highly heterogeneous and lack reproducibility, so the
article presented in Chapter 2 establishes a reproducible, unified evaluation
procedure. To shed light on the robustness of data-driven OM approaches
under exogenous problem parameters like the service level or the available
feature information, the proposed procedure is applied to a large and
heterogeneous data set in a comprehensive numerical experiment in the
context of a newsvendor problem setting15. The selected data-driven OM
approaches are deployed in the form of the Python package ddop (Philippi
et al., 2021)16.

15The data set is made available to the research community for future evaluation studies.
16Also see Appendix A.
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The results suggest that the evaluated approaches have a low level of
robustness and that no model can be recommended as a state-of-the-art
model, even in a low-complexity problem setting like the newsvendor, as
no model consistently outperforms all others across problem parameters.
Therefore, objective evaluation procedures and a consistent approach to
identifying state-of-the-art models are needed. The work presented in
Chapter 2 is a first step towards more reproducible research in OM, but
more work is needed to understand the drivers behind model performance
before the best model to use in which setting can be determined.

Chapter 3 of this dissertation addresses research question 2, presented
in Chapter 1, by applying GANs to generate a large synthetic data set
for model training purposes in the context of a single-period newsvendor
problem setting. Using GANs enables complex relationships between de-
mand and auxiliary features to be modelled, but GANs can be difficult to
train and evaluate. The chapter’s main methodological contribution is the
development of a novel GAN selection procedure that is tailored to OM, as
it provides an operational cost-based evaluation. The selected GAN model
can then be used to generate data that can be used to train data-driven OM
approaches. A wSAA approach is trained using data generated by a selected
GAN and then applied to solve a newsvendor problem for a local bakery
chain. This procedure is benchmarked against more traditional approaches,
such as distribution fitting and SAA. The findings show that using GANs
is a promising alternative to such conventional methods.

Chapter 4 of this dissertation addresses research question 2, presented
in Chapter 1, by proposing a transfer learning approach for training DRL
agents. The main motivation for this approach is the large training data
requirement of DRL approaches. . This chapter’s main methodological
contribution is the proposed approach, which leverages a combination of
synthetic and real training data. In addition, the work sheds light on the
performance impact of various parts of the approach. In numerical experi-
ments, the approach is applied to solve the newsvendor problem in two data
settings: a controlled setting, where the underlying real data distribution
is known, and a real-world setting from a bakery chain, where the real
data distribution is unknown. The results show that, in both settings, the
approach outperforms traditional prescriptive analytics approaches. This
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research also finds that the DRL agent does not outperform traditional
prescriptive analytics approaches when it is trained solely on synthetic data
or when it is trained solely on a small amount of real data. Therefore, what
the agent learns during the pre-training phase of the transfer learning ap-
proach cannot be determined conclusively. However, the proposed approach
provides a foundation for connecting the worlds of synthetic data and real
data.

In conclusion, the application of synthetic data for inventory manage-
ment is a promising avenue for research. The results presented in this
dissertation show that novel approaches to generating synthetic data are
suitable for modelling complex interactions of features and demand in an
inventory context. Their application supports the use of sophisticated ma-
chine learning and deep learning models like DRL in guiding and improving
decision-making. However, the application also comes at the cost of high
computational complexity that may not always be outweighed by its benefits.
Clearly, several avenues for future research remain.

Among these is research that expands the application of the developed
approaches to more complex problem settings. While this dissertation
considers a range of data sets, many from practice, the problem class
it considers is limited to the single-period newsvendor problem. Future
research should expand the use of synthetic data in decision-making to more
complex problem settings, such as multi-period inventory problems or even
beyond the domain of inventory management. The developed DRL-based
approach provides a natural starting point for expansion to other problem
settings, as Gijsbrechts et al. (2021) showed in explaining that DRL can be
applied to a variety of problem classes, albeit without considering feature
information.

A second avenue for future research is to investigate the methods of
synthetic data generation that can model joint distributions of demand and
feature information. While GAN-based approaches like those applied in this
dissertation have shown promising results, they also require considerable
training effort and can be unstable during training. Therefore, GANs should
be benchmarked against other sophisticated generative approaches, such as
variational autoencoders, Bayesian networks, or normalizing flows.

A third avenue for future research is to incorporate the properties of
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generative models into decision-making models to improve sample efficiency,
that is, the model’s ability to learn from limited data. The shift from
predictive to prescriptive analytics eliminates the need for a forecasting
model, which enables more information to be extracted from the real data
in the decision-making model than is possible when the information is
aggregated into a forecast before being given to the decision-making model.
Similarly, more research should explore how to incorporate into the final
decision-making model the knowledge the generative model has learned
about the real data distribution without the detour of creating training
samples. This step is similar to the step from predictive to prescriptive
analytics, where the forecasting model already contains information that is
lost if only the forecast is used for decision-making. Incorporating into the
final decision-making model the knowledge the generative model has learned
about the real data distribution promises to result in a single, flexible, and
data-efficient prescriptive model.
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A ddop: A Python Package for
Data-Driven Operations
Management

In today’s fast-paced world, companies face considerable uncertainty when
making important decisions in operations management, for example, when
deciding upon capacity, inventory levels, transportation, and production
schedules. However, with the rise of digitization, companies have gained
unprecedented access to data related to their particular decision problem,
offering the opportunity to reduce the degree of uncertainty. For example,
in inventory management, the decision maker may have access to historical
demand data as well as additional side information, such as social media
data, customer behavior, weather forecasts or calendar data. Driven by the
availability of such rich data sources there has recently emerged a stream of
literature in operations management research called “data-driven operations
management” (DDOM). The focus of DDOM is to combine machine learning
and traditional optimization techniques to prescribe cost-optimal decisions
directly from data. Various models have been developed and shown great
performance on the dataset used. However, what is missing is efficient access
to open-source code and datasets. With ddop, we provide a Python library
that integrates well-established algorithms from the field of data-driven
operations management, as well as standard benchmark datasets. Thus,
ddop helps researchers in two ways:

• Researchers can efficiently apply and compare well-established DDOM
models.

• Researchers can test newly developed models on benchmark datasets
provided in the package.
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The application programming interface (API) of ddop is designed to
be consistent, easy-to-use, and accessible even for non-experts. With only
a few lines of code, one can build and compare various models. In ddop
all models are offered as objects implementing the estimator interface from
scikit-learn (Buitinck et al., 2013). We thus not only provide a uniform API
for our models, but also ensure that they safely interact with scikit-learn
pipelines, model evaluation and selection tools.

The library is distributed under the 3-Clause BSD license, encouraging
its use in both academic and commercial settings. The full source code
is available at https://github.com/opimwue/ddop. The package can be
installed via the Python Package Index using pip install ddop. A detailed
documentation providing all information required to work with the API
can be found at https://opimwue.github.io/ddop/.17

A.1 Statement of Need
With the growing number of publications in the field of data-driven opera-
tions management, comparability is becoming increasingly difficult. The
reasons for this are twofold: One, most scientists work with proprietary
company data which cannot be shared. Two, it is not yet standard that
researchers share the code used to implement their models. Consequently,
results are not directly reproducible and models have to be re-implemented
every time a researcher wants to benchmark a new approach. This not only
takes a lot of time but can also be a demanding process since such com-
plex models are often challenging to implement. Against this background,
there has recently been a call to take inspiration from the machine learning
community, where great APIs like scikit-learn (Buitinck et al., 2013), fastai
(Howard and Gugger, 2020), or Hugging Face (Wolf et al., 2019) have been
developed that allow previous developed ML models to be effectively applied
on different datasets. Following up on this, ddop is the first of its kind to
integrate well-established data-driven models for operations management
tasks. At the current state, this includes various approaches to solve the
data-driven newsvendor problem, such as weighted sample average approxi-

17This paper was published in The Journal of Open Source Software Philippi et al. (2021).
It is co-authored by Andreas Philippi and Nikolai Stein.
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A.2 Usage

mation (Bertsimas.2020)), empirical risk minimization (Ban and Rudin,
2019), and a deep learning-based approach (Oroojlooyjadid, Snyder, et al.,
2020). In addition, the library provides different real-world datasets that
can be used to quickly illustrate the behavior of the available models or as
a benchmark for testing new models. ddop’s aim is to make data-driven
operations management accessible and reproducible.

A.2 Usage
Since all models in ddop implement the estimator interface from scikit-learn
consisting of a fit, predict, and score method, usage follows the standard
procedure of a scikit-learn regressor. First, a model is initialized by calling
the class constructor from a given set of constant hyperparameter values,
each describing the model or the optimization problem the estimator tries
to solve. Note that for ease of use, all estimators use reasonable default
values. It is therefore not necessary to pass any parameter to the constructor.
However, it is recommended to tune them for the respective application,
since this can often improve decision quality. After the model has been
initialized, the fit method is used to learn a decision model from the training
data (Xtrain, ytrain). Once the training process is completed, the function
returns the fitted model, which can then be used to make decisions for new
data (Xtest) by using the predict method. Finally, the score method can
be used to access the decision quality of a model. The method takes as
an input Xtest as well as the corresponding true values ytest and computes
the average costs between ytest and predict(Xtest). Because all estimators
follow the same interface, using a different model is as simple as replacing
the constructor.

A.3 Future Work
There are several directions that the ddop project aims to focus on in future
development. While at the current state there are only algorithms available
to solve the newsvendor problem, the goal is to include models to solve
other operations management tasks like multi-period inventory management
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or capacity management. In addition, we aim to extend the library in terms
of available datasets and tutorials.
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B.1 Data Sets
Bakery: This data set is provided by a local bakery chain. The data set
contains sales data for three different products at 35 different stores over
a period of 1215 days. Every evening, each store must order the products
from a central factory that are delivered the next morning. Reordering
during the day is not possible. Unsold goods have to be disposed of at the
end of the day. Thus, the problem at hand can be considered a newsvendor
problem. All products are everyday items with typically high stock levels
making censored demand unlikely. We exclude 10 unique product-store
combinations due to demand intermittency. Next to calendric and lag
features, the data set contains information on weather, promotions, and
holidays.

Restaurant: This data set contains daily sales data from a restaurant for 7
different main ingredients on 765 days. To prepare the meals, the restaurant
must decide how much of the ingredients to defrost overnight. The defrosted
ingredients must then be sold within the next day. Leftovers are disposed
of. Thus, the problem at hand can be considered a newsvendor problem.
During data recording, the store manager’s strategy was to maintain a
service level of almost 100%, which is why we consider censored demand
not to be an issue. Next to calendric and lag features, this data set contains
weather as well as special features.

M5: The M5 data set18 contains daily sales from Walmart stores and was
made available as part of the well known forecasting competition M5. The
original data set contains sales records for 3,049 products across 3 product
18https://www.kaggle.com/c/m5-forecasting-accuracy
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categories, 7 departments, and 10 stores on 1942 days. For our analysis,
we select only data that belongs to the product category “Foods” as this
is most relevant in a newsvendor setting. To avoid intermittent demand,
we select only the top 10 products which exhibit the least intermittency.
This leads us to 100 unique product store combinations selected for the
numerical evaluation. Next to calendric and lag features, this data set
contains features that indicate special events such as sporting events or
payout days.

SID: The store item demand data set was made available as part of the
Kaggle Store Item Demand Forecasting Challenge19. It contains sales data
from 50 different products in 10 different stores for 1826 days. It is our
largest data set in terms of unique product store combinations but contains
only calendric and lag features derived from the time series.

19https://www.kaggle.com/c/demand-forecasting-kernels-only
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B.2 Relative Performance Improvement over
SAA under Variation of Service Levels and
Features
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(a) Bakery data set
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(b) M5 data set
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(c) Restaurant data set
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(d) SID data set

Figure B.1: Average relative performance improvement over SAA across
service levels and data sets
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(a) Bakery data set (b) M5 data set

(c) Restaurant data set (d) SID data set

Figure B.2: Average relative performance improvement dependent on feature
availability
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B.3 Hyperparameter Grids
The section states the list of hyperparameters tuned including their search
spaces. If a model is not listed here, it has no hyperparameters to tune.

• DTW:

– Maximum depth of the tree: [None, 2, 4, 6, 8, 10]

– Minimum number of samples required to split an internal node:
[2, 4, 6, 8, 16, 32, 64]

• RFW:

– Maximum depth of a tree: [None, 2, 4, 6, 8, 10]

– Minimum number of samples required to split an internal node:
[2, 4, 6, 8, 16, 32, 64]

– Number of trees in the forest: [10, 20, 50, 100]

• KNNW:

– Number of neighbors to use: [1, 2, 4, 8, 16, 32, 64, 128]

• KW:

– Kernel bandwidth: [0.5, 0.75, 1, . . . , r
a

nfeatures{2s ` 0.25]

• DL:

– Optimizer: [“adam”]

– Network architecture (number of neurons in each layer):

˛ pr0.5 ¨ nfeaturess, r0.5 ¨ 0.5 ¨ nfeaturessq

˛ pr0.5 ¨ nfeaturess, r0.5 ¨ 1 ¨ nfeaturessq

˛ p1 ¨ nfeatures, r0.5 ¨ 1 ¨ nfeaturessq

˛ p1 ¨ nfeatures, 1 ¨ 1 ¨ nfeaturesq

˛ p2 ¨ nfeatures, r2 ¨ 0.5 ¨ nfeaturessq

˛ p2 ¨ nfeatures, 2 ¨ 1 ¨ nfeaturesq

˛ p3 ¨ nfeatures, r3 ¨ 0.5 ¨ nfeaturessq

˛ p3 ¨ nfeatures, 3 ¨ 1 ¨ nfeaturesq

– Epochs: [10, 100, 200]
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C.1 CTGAN Architecture
CTGAN was implemented using the code provided along with Xu, Skoular-
idou, et al. (2019)’s paper and we refer to the original paper for details on
the notation below.

Generator G network architecture:
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h0 “ z b cond

h1 “ h0 b ReLupBNpFC|cond|`|z|Ñ256ph0qqq

h2 “ h1 b ReLupBNpFC|cond|`|z|`256Ñ256ph1qqq

α̂i “ tanhpFC|cond|`|z|`512Ñ1ph2qq 1 ď i ď Nc

β̂i “ gumbel0.2pFC|cond|`|z|`512Ñmi
ph2qq 1 ď i ď Nc

d̂i “ gumbel0.2pFC|cond|`|z|`512Ñ|Di|ph2qq 1 ď i ď Nd

Discriminator D network architecture:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

h0 “ r1 b ¨ ¨ ¨ b r10 b cond1 b ¨ ¨ ¨ b cond10

h1 “ droppleaky0.2pFC10|r|`10|cond|Ñ256ph0qqq

h2 “ droppleaky0.2pFC256Ñ256ph1qqq

C p¨q “ FC256Ñ1ph2q

Loss function: WGAN loss with gradient penalty (Gulrajani et al., 2017)
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C.2 Detailed Description of Features
In this section, we give additional information about the features described
in Section 3.5.1.

˝ demand: Daily sales for a bakery shop and product

˝ shop_no: Bakery shop identifier

˝ product_no: Product identifier

˝ shop_rank: Target encoding of shop_no

˝ product_rank: Target encoding of product_no

˝ isoweek: calendar week number

˝ weekday: day of week

˝ month: month

˝ is_schoolholiday: Boolean whether the day is a school holiday

˝ is_holiday: Boolean whether the day is a holiday

˝ is_holiday_next2days: Boolean whether the day is a holiday in the
next two days

˝ promotion_currentweek: Boolean whether there is a sales campaign
in the current week

˝ promotion_lastweek: Boolean whether there was a sales campaign in
the previous week

˝ forecast_weekly: Forecast of Holt-Winter’s exponential smoothing
with 7 day trend

˝ forecast_monthly: Forecast of Holt-Winter’s exponential smoothing
with 30 day trend

˝ temp_avg_celsius: Average temperature on day of sales

˝ rain_mm: Total rainfall in mm on day of sales
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C.3 Hyperparameter Grid

Hyperparameter Values

Batch size {n/100, n/50, n/25}

Number of training epochs {100, 200, 300}

Learning rate G {2e´04, 4e´04}

Learning rate D {2e´04, 4e´04}

Random seed {1-5}

Table C.1: Hyperparameter grid used for GAN training
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D.1 Coefficients of the regression model
Below we report the coefficients of the regression model used to create the
controlled data setting in Section 4.4.3.

Coefficient Value

b0 482.6932146

b1 21.6926114

b2 46.47708831

b3 49.31993817

b4 9.4032502

b5 0.

b6 48.84516845

b7 0.

b8 53.89646799

b9 0.

b10 0.

Table D.1: Overview of regression coefficients
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D.2 GAN hyperparameter grid
In the following, we report the search space of GAN hyperparameters for
which we performed a grid search based on the pinball loss introduced in
Section 4.3.1.

Hyperparameter Values

Batch size {n/100, n/50, n/25}

Number of training epochs {100, 200, 300}

Learning rate G {2e´04, 4e´04}

Learning rate D {2e´04, 4e´04}

Random seed {1-5}

Table D.2: Hyperparameter grid used for GAN training

D.3 DRL training environment
The training environment defines the world of the DRL agent. We use
OpenAI’s gym (Brockman et al., 2016) to implement the environment. The
action space of our agent is continuous. However, we cap the action space
such that the highest quantity that the agent can order is 20% above the
maximal demand observed in the training set. Respectively, we set the
minimum order quantity to 20% below the minimum demand observed. The
state space is equal to our feature space such that every state st consists
of a single feature vector xt. After the agent has chosen an action/ order
quantity, the agent receives a reward. We define the reward equivalent to
Equation 4.16 but use a profit formulation:

rewardpqψpxtq, ytq “ minpqψpxtq, ytq˚sales_price´qψpxtq˚purchase_cost
(D.1)

where yt is the demand that corresponds to feature vector xt. We
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set sales_price “ 1
1´sl

with sl “ 0.7 and purchase_cost “ 1. We scale
rewards, actions, and states to r´1, 1s to improve training.

D.4 Paired t-test results for known
data-generating process

Below we report the paired T-test results for the different performance gaps
computed.

Table D.3: Paired t-test results for known data-generating process

H0 Mean Std CI95% T p-value cohen-d

∆model ă 0 0.007 0.005 [0.01, inf] 7.573 1.193e-08 1.955

∆overall ă 0 0.063 0.031 [0.05, inf] 10.789 5.730e-12 2.786

∆data ă 0 0.068 0.028 [0.06, inf] 12.942 7.070e-14 3.342

∆synth ă 0 0.386 0.113 [0.35, inf] 18.459 7.126e-18 4.766

Table D.4: Paired t-test results - ∆overall versus ∆data

H0 Mean Std CI95% T p-value cohen-d

∆data ă ∆overall 0.504 4.007 [-inf, 0.76] -0.677 0.252 0.166
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D.5 Evaluation of the influence of the synthetic
data quality on the transfer learning
approach for known data-generating process

In the following we report the results of supporting analysis that were
performed to evaluate the influence of the synthetic data quality on our
proposed approach

Figure D.1 shows the tuning results of the number of training iterations
in the fine-tuning phase of our approach for different GAN qualities. We
observe that the training iteration optimum ranges between 20,000 and
40,000. There is no strong correlation between the GAN quality and the
duration of fine-tuning observable.
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Figure D.2 is the same as Figure 4.5 but additionally shows outliers.
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Figure D.3 focuses on the mean performance of qs`r
ψ˚ , qs

ψ̂
and qs under

variation of the GAN quality. In addition, it shows the standard deviation
on Dtest

real. We observe that the data quality has a strong influence on the
models purely trained on synthetic data—performance deteriorates between
126 and 282 percentage points. However, the effect on qs`r

ψ˚ is very limited—8
percentage points difference between best and worst mean performance.
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Figure D.3: Mean percentage deviation with standard deviation from average
out-of-sample costs of q˚ per day in Dtest

real under variation of the GAN quality
for a selected experiment run.
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D.5 Evaluation of the influence of the synthetic data quality on the
transfer learning approach for known data-generating process

Figure D.4 shows the demand distribution of the real data and of
samples generated by GANs of different quality. It does not include any
feature dimensions. The figure validates that the demand distributions that
the GANs have learned are different from one another.
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Figure D.4: Distribution of real demand vs. GAN generated demand
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D Appendix of Chapter 4

Figure D.5 is the same as Figure 4.6 but additionally shows outliers.
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Figure D.5: Percentage deviation from average out-of-sample costs of q˚ per
day in Dtest

real under variation of the synthetic data used during training for
a selected experiment run.

D.6 Overview of bakery data feature information
In this section, we list the features contained in the bakery data set used in
Section 4.4.3.

˝ shop_no: Bakery shop identifier

˝ product_no: Product identifier

˝ shop_rank: Target encoding of shop_no

˝ product_rank: Target encoding of product_no

˝ isoweek: Calendar week number

˝ weekday: Day of the week

˝ month: Month

˝ is_schoolholiday: Boolean whether the day is a school holiday

˝ is_holiday: Boolean whether the day is a holiday
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D.6 Overview of bakery data feature information

˝ is_holiday_next2days: Boolean whether the day is a holiday in the
next two days

˝ promotion_currentweek: Boolean whether there is a sales campaign
in the current week

˝ promotion_lastweek: Boolean whether there was a sales campaign in
the previous week

˝ forecast_weekly: Forecast of Holt-Winter’s exponential smoothing
with 7-day trend

˝ forecast_monthly: Forecast of Holt-Winter’s exponential smoothing
with 30-day trend

˝ temp_avg_celsius: Average temperature on day of sales

˝ rain_mm: Total rain in mm on day of sales
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D Appendix of Chapter 4

D.7 Evaluation of the transfer learning approach
for unknown data-generating process

In Figure D.6 we plot the average costs of the DRL-based models qs`r
ψ˚ ,

qrψ and qs
ψ̂

versus the average costs of qr on the bakery shop level. Dots
left from the diagonal line indicate better performance than qr and dots
right from the diagonal the opposite. We observe that even though the
performance of qs

ψ̂
fluctuates and is at the right half of the plot, applying

our transfer learning approach to derive qs`r
ψ˚ brings us to the left side of

the plot or at least close to the diagonal for all bakery shops.
In addition, Table D.5 provides the corresponding results of a paired

t-test that tests whether the improvement of qs`r
ψ˚ over qr is significant.

0 200 400 600 800
Average costs of models

0

100

200

300

400

500

600

700

800

Av
er

ag
e 

co
st

 o
f q

r

C(qr) > C(qmodel)

C(qr) < C(qmodel)

Bread roll
qr

r

qs

qs + r
*

(a) Bread roll

0 20 40 60 80 100 120
Average costs of models

0

20

40

60

80

100

120

Av
er

ag
e 

co
st

 o
f q

r

C(qr) > C(qmodel)

C(qr) < C(qmodel)

Grain roll
qr

r

qs

qs + r
*

(b) Grain roll

0 20 40 60 80
Average costs of models

0

20

40

60

80

Av
er

ag
e 

co
st

 o
f q

r

C(qr) > C(qmodel)

C(qr) < C(qmodel)

Pretzel
qr

r

qs

qs + r
*

(c) Pretzel

Figure D.6: Average out-of-sample costs of DRL models per product on a
shop level compared to qr
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D.7 Evaluation of the transfer learning approach for unknown
data-generating process

Product Shop Mean Std CI95% T p-value cohen-d

Bread roll 1 0.048 0.597 [-inf, 0.12] 1.078 0.859 0.068

Bread roll 2 -0.146 1.210 [-inf, 0.0] -1.623 0.053 0.161

Bread roll 3 -0.288 1.219 [-inf, -0.14] -3.173 0.001 0.295

Bread roll 4 -0.154 1.215 [-inf, -0.0] -1.703 0.045 0.147

Bread roll 5 -0.249 1.007 [-inf, -0.13] -3.321 0.001 0.279

Grain roll 1 -0.111 0.846 [-inf, -0.01] -1.762 0.040 0.120

Grain roll 2 -0.122 1.412 [-inf, 0.05] -1.156 0.125 0.111

Grain roll 3 -0.039 1.687 [-inf, 0.17] -0.311 0.378 0.031

Grain roll 4 -0.186 0.894 [-inf, -0.08] -2.795 0.003 0.201

Grain roll 5 -0.197 0.827 [-inf, -0.1] -3.201 0.001 0.198

Pretzel 1 -0.046 0.718 [-inf, 0.04] -0.853 0.197 0.051

Pretzel 2 0.050 0.763 [-inf, 0.14] 0.871 0.808 0.043

Pretzel 3 0.076 1.363 [-inf, 0.24] 0.753 0.774 0.066

Pretzel 4 -0.057 0.872 [-inf, 0.05] -0.884 0.189 0.062

Pretzel 5 -0.215 0.899 [-inf, -0.1] -3.207 0.001 0.244

Table D.5: Paired t-test results on bakery shop level with H0: Cpqs`r
ψ˚ q ă

Cpqrq.
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D Appendix of Chapter 4

Figure D.7 is the same as Figure 4.9 and Figure D.8 is the same as
Figure 4.10 but both additionally show outliers.
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Figure D.7: Percentage deviation from average out-of-sample costs of qr
per day in Dtest

real under variation of service level for a selected product and
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