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Abstract: Background: Monitoring the vital signs of delirious patients in an intensive care unit
(ICU) is challenging, as they might (un-)intentionally remove devices attached to their bodies. In
mock-up scenarios, we systematically assessed whether a motion detector (MD) attached to the
bed may help in identifying emergencies. Methods: We recruited 15 employees of the ICU and
equipped an ICU bed with an MD (IRON Software GmbH, Grünwald, Germany). Participants
were asked to replay 22 mock-up scenes of one-minute duration each: 12 scenes with movements
and 10 without movements, of which 5 were emergency scenes (“lying dead-still, with no or very
shallow breathing”). Blinded recordings were presented to an evaluation panel consisting of an
experienced ICU nurse and a physician, who was asked to assess and rate the presence of motions.
Results: Fifteen participants (nine women; 173 ± 7.0 cm; 78 ± 19 kg) joined the study. In total,
286 out of 330 scenes (86.7%) were rated correctly. Ratings were false negative (FN: “no move-
ments detected, but recorded”) in 7 out of 180 motion scenes (3.9%). Ratings were false positive
(FP: “movements detected, but not recorded”) in 37 out of 150 scenes (24.7%), more often in men
than women (26 out of 60 vs. 11 out of 90, respectively; p < 0.001). Of note, in 16 of these 37 FP-rated
scenes, a vibrating mobile phone was identified as a potential confounder. The emergency scenes
were correctly rated in 64 of the 75 runs (85.3%); 10 of the 11 FP-rated scenes occurred in male subjects.
Conclusions: The MD allowed for identifying motions of test subjects with high sensitivity (96%) and
acceptable specificity (75%). Accuracy might increase further if activities are recorded continuously
under real-world conditions.

Keywords: motion detector; noncontact monitoring; Internet of Things devices

1. Introduction

Intensive care units (ICU) enhance the survival of critically ill patients through constant
active monitoring of their vital signs. Heartbeat, blood pressure, respiratory rate, and
oxygen saturation are recorded continuously by default [1]. Setting upper and lower limits
per vital parameter can then trigger off alarms with different levels of urgency. If the
system registers pathological values, the medical staff is alerted by different alarm severity
levels. A red alarm signifies a potentially life-threatening situation, prompting the team
to respond to the alarm immediately [2]. Monitoring agitated or delirious patients at the
ICU is particularly challenging since the attached wires are often not tolerated and may be
(un-)intentionally removed by patients. Monitoring is even more difficult in acutely suicidal
patients, who deliberately lure for situations with reduced care attention to remove sensors
and hurt themselves, e.g., work breaks or shift changes of the responsible nurses [3,4].

If the standard monitoring system is no longer attached, “alarm notifications” are
triggered to remind the intensive care staff to check the sensor and reattach the cabling.
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Such alarms can reiterate multiple times per shift and lead to a phenomenon known as
“alarm fatigue”, i.e., the reaction time of the responsible nurse decreases [5,6]. During this
unobserved period, no adequate alarm can be triggered, even if medical emergencies occur,
such as life-threatening arrhythmias or cardiopulmonary arrest. Although relatively rare,
the consequences of these scenarios may be fatal for the patient and legal for the medical
staff. More often, these patients lie in their beds, palpate their surroundings with their
hands, or prepare to stand up—in other words, they move [7].

Accordingly, the simultaneous detection of patients’ motions could provide informa-
tion on the ability to move, thus filling an essential gap in the monitoring continuum until
the traditional monitoring system is reconnected.

Motion detectors have been repeatedly tested at the ICU for various indications as
measuring patients’ activity or mobility levels [8–10], assessing patients’ sleep quality [11],
or reducing the number of artefact alarms in vital sign monitoring [12]. To date, no study
has examined whether motion detectors can be used to identify emergencies. However,
detecting immobility following an agitation episode may be highly suspicious for an urgent,
vital threat requiring immediate alarm response.

In a proof-of-concept study, we aimed to evaluate whether ICU staff may reliably
detect the simulated emergency situation of “lying dead-still” with the help of a noncontact
motion detector. We hypothesized that “motionlessness” can be accurately identified,
thus enabling correct alerts of medical staff to alarm situations without the traditional
monitoring system.

2. Materials and Methods
2.1. Study Population

Between June 2022 and July 2022, 12 examined ICU nurses and three consultants of the
ICU (all aged above 18 years) with profound experiences in the care of delirious patients
were recruited as test subjects for this pilot study. Pregnant subjects were excluded as lying
on the back might not be tolerated.

2.2. Ethical Approval

This study was conducted in accordance with the guidelines for Good Clinical Practice
and the principles of the Declaration of Helsinki (2002). The responsible ethics committee of
the University Hospital Würzburg, Germany, approved the study (file number: 268/21-am).
All subjects provided written informed consent.

2.3. Motion Detector

The Internet of Things (IoT) device used for this study has the dimensions 7 × 9 × 6 cm
(length × width × height) and can easily be attached underneath the headboard of the
patient’s bed (Figure 1). The IoT device is equipped with a high-definition vibration
sensor. It periodically measures acceleration in linear and angular directions and sends the
measurement via Wi-Fi to the Orbit IIoT Cloud server. The reporting frequency can be set
variably, with the minimum frequency being 1 s, which was used for the current analysis.
The detector is provided by Orbit IIoT, a division of IRON Software GmbH (Grünwald bei
München, Germany), and has been used mainly in technical areas.

The sensor measures movements, including rotational movements, in all directions, as
illustrated in Figure 2 (X–Y–Z axes corresponding to pitch, roll, and yaw). Sensed move-
ments can be graphically displayed along one axis and combined as a mean square deviation
of all lateral accelerations’ sqrt(∂x/∂t2 + ∂y/∂t2 + ∂z/∂t2) or the deviation of angular veloc-
ities’ ω = dΘ/dt sqrt(∂ϕ/∂t2 + ∂ζ/∂t2 + ∂θ/∂t2). Further combining all acceleration and
rotational axes is possible using sqrt(∂x/∂t2 + ∂y/∂t2 + ∂z/∂t2 + ∂ϕ/∂t2 + ∂ζ/∂t2 + ∂θ/∂t2).
The mean square deviation, also known as the mean squared error (MSE), is commonly
used in the field of machine learning (ML), predictive algorithms, and optimization prob-
lems [13]. Due to the combination of all axis alignments, it highlights movements of any
direction and may be of interest as a potential additional line within the standard monitor.
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Figure 2. Illustration of pitch, roll, and yaw.

2.4. Test Procedure

All scenes were categorized beforehand as scenes with or without “motions” based
on whether the test subject physically moved during the scene (Table 1). As the impact
of the breathing intensity or a vibrating mobile phone on motion detection was unclear
and subject to the identification of potential confounders, these scenes were assigned to the
category “no motion”.

Before starting the test session, all 22 scenes were explained to each test subject
(Table 1). Each scene had a duration of 1 min and was recorded separately. Subjects were
asked to lie on a prepared ICU bed with the motion detector attached out of reach and
sight, underneath the bed’s headboard at shoulder height (Figure 1). Test subjects were
kept uninformed about where the motion detector was connected exactly. Recordings were
stopped between each scene to allow for a short break and to re-explain the subsequent
scene (complete list provided in Table 1).

In brief, the test started with the recording of an empty bed. The subject was then
asked to get into bed, and the noninvasive monitoring system was connected, including
recording of ECG, oxygen saturation, and blood pressure measurement. Afterward, the
subject was asked to remove all cables and to perform all other scenes described in Table 1.
The scene “lying motionless in bed, not breathing or keeping the breathing very shallow”
(defined as the “emergency scene”) was performed 5 times per subject and was used as the
primary endpoint. The test subject could improvise one scene (scene number 19, “Joker”),
whereby all test subjects chose motions of different intensities (Table 2).
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Table 1. Description, number, and order of scenes and motion intensities.

“No Motion” Scenes “Motion” Scenes
#1 Bed empty #2 Subject in bed, wires being attached for standard monitoring
#5

Subject lying in bed motionless,
breathing shallow *

#3 Subject in bed detaches wires
#9 #4 Subject in bed, lying uneasy and restless

#12 #6 Subject in bed, tossing and turning
#15 #8 Subject in bed, jumping up and down
#17 #10 Subject in bed with little and careful movements

#7 Subject lying in bed motionless,
breathing normal #13 Subject in bed attempting to leave the bed

#11 Subjects lying in bed motionless,
breathing strong #14 Subject in bed completing bed exit (twice or thrice, if possible)

#21 Subject lying in bed motionless,
vibrating mobile phone #16 Subject in bed, hitting the bed with the fist

#22
Bed empty,
vibrating mobile phone

#18 Subject in bed, exhibiting tremors
#19 Joker scene **
#20 Subject in bed, lying relaxed

Description of all scenes performed by each test subject, categorized into scenes with and without motions in
numerical order. * Scenes #5, #9, #12, #15, #17: “Emergency scenes” (in bold). ** The test subjects were free
to choose the type of movement. Motion intensity: 1—no motion (all no motion scenes); 2—weak motion (all
non-shadowed motion scenes); 3—strong motion (all shadowed motion scenes).

For the “mobile phone scene,” an iPhone XR 10 was placed below the pillow of
each test subject with an activated vibrating function. One study team colleague called
the number repeatedly to generate a constant vibration during the 1 min test period. In
total, 330 (15 × 22) scenes were anonymized, recorded, and stored live on the Orbit IIoT
Cloud-based platform time series database.

2.5. Panel

The graphical results (accelerometer raw x, y, z, and MSE) of each measured scene were
provided to the panel in random order (Figure 3 as an example; see also Supplementary file).

The panel consisted of one examined ICU nurse (TF) and one consultant of the ICU
(DS). The panel was trained beforehand by graphs recorded from pilot runs of a study team
member (GG; Supplementary file). Afterward, the panel reviewed all charts from the test
subjects on their own, without the involvement of the study team, and responded to the
following questions in the case report form:

Q1. Motions detected or not detected.
Q2. Level of certainty of the response (low, medium, high).
Q3. Intensity of motion (1—no motion, 2—weak motion, 3—strong motion).
Q4. The assumed number of the scene or a possible alternative (see Table 1; all scenes

with no motion were counted within one category, i.e., #1, #5, #7, #9, #11, #12, #15, #17,
#21, #22).
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Table 2. Characteristics of participants.

ID Sex Size
(cm)

Weight
(kg) Joker Scene Correct

Assignment
False

Assignment
False

Positives False Negatives

1 f 168 63 Teeth brushing 22 (100%) 0 (0%) 0 0
2 m 186 85 Foot stomping, shaking the bed 21 (95.5%) 1 (4.5%) 0 1
3 m 170 65 Small movements, lying comfortably 16 (72.7%) 6 (27.3%) 4 2
4 f 170 70 Foot stomping 20 (90.9%) 2 (9.1%) 2 0
5 f 165 87 Rampage, standing up 20 (90.9%) 2 (9.1%) 2 0
6 f 170 65 Knocking hands on the bed, drumming 22 (100%) 0 (0%) 0 0
7 f 170 95 Rampage 19 (86.4%) 3 (13.6%) 2 1
8 f 166 53 Rampage 20 (90.9%) 2 (9.1%) 0 2
9 f 176 73 Rough movements, attempted bed exit 21 (95.5%) 1 (4.5%) 1 0
10 m 182 70 Foot stomping, attempted bed exit 13 (59.1%) 9 (40.9%) 9 0
11 m 168 72 Cycling movements 16 (72.7%) 6 (27.3%) 6 0
12 m 175 115 Rampage for 30 s, then lying dead-still 17 (77.3%) 5 (22.7%) 5 0
13 m 187 98 Bouncing 20 (90.9%) 2 (9.1%) 2 0
14 f 178 102 Being restless 19 (86.4%) 3 (13.6%) 2 1
15 f 169 52 Shaking bed rails, bed exit 20 (90.9%) 2 (9.1%) 2 0

Characteristics of test subjects and description of the respectively chosen joker-scene. Further, a summary of correct and false assignments (“motion detected” by panel vs. “motion
recorded” as described in Table 1) per subject is provided, including false positive and false negative results.
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2.6. Power Analysis

The effectiveness of the motion detector in correctly sensing the above-described emer-
gency “test subject is lying motionless” was entirely unclear before the study. Therefore,
only hypothetical estimates were used to calculate case numbers. If the device were useless,
the panel’s prediction probability of correctly recognizing the above-described situation
would correspond to guessing the correct answer, i.e., the likelihood of 50%. Since using
the device at the ICU as a backup sensor would only be justified if the effect size is large, we
assumed a high accuracy of the panel decision, i.e., at least 85% for correctly recognizing
the emergency mentioned above (motion detection: yes vs. no). Thus, with an assumed
effect size of 0.35, an alpha error of 5%, a power of 80%, and using the exact binomial
proportion sign test, 13 subjects are required (G-Power statistics 3.1.9.7). With an estimated
failure rate of about 10%, 15 subjects were included in this study.
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2.7. Endpoints

For endpoint analysis, the panel results of each scene (motion detection: yes vs. no)
were compared with the respective motion assignments in Table 1 (motions recorded,
yes vs. no).

Primary endpoints: The primary endpoint was the correct identification of the con-
trived emergency scene by the panel, i.e., “subject is lying dead-still” (scenes #5, #9, #12, 15,
and #17).

Secondary endpoints: Detection of “motions” and “motionlessness” in general and
correct identification of all other scenes by the panel. We further investigated the influence
of potential confounding factors (body weight, height, sex, mobile phone vibration).

2.8. Statistical Analysis

Data are described by count (percent) or median (quartiles), as appropriate. Compar-
isons between groups were made with Fisher’s exact test, chi-square test, or Mann–Whitney
U-test. Diagnostic test performances (sensitivity, specificity, positive and negative predictive
values, and Cohen’s kappa statistics with 95% confidence intervals (CIs)) were calculated
by comparison of the panel results with the reference (Table 1). The level of concordance
was determined with the classification system proposed by Landis and Koch, where a
kappa of 0.61–0.80 is regarded as substantial, and a kappa of 0.81–1.00 indicates an almost
perfect agreement [14].

A multivariable logistic regression analysis using the forward and backward selection
methods included significant univariate predictors (with p-value < 0.05) of false assign-
ments. As the results were similar, only the backward selection results are shown.

A significant group difference was assumed for all test procedures at a (two-sided)
p-value of <0.05. Statistical analyses were performed using IBM SPSS Statistics for Windows
Version 28.

3. Results

In total, 330 scenes (22 scenes × 15 test subjects) were recorded. Of those, 180 (12 × 15)
were classified as “motion” scenes, and 150 (10 × 15) were classified as “no motion” scenes
(Table 1). Fifteen participants (nine women; mean body height 173.3 ± 7.0 cm; mean body
weight 77.7 ± 19 kg) joined the study. No participant terminated the study early, and no
adverse events occurred (Table 2). Subjects’ characteristics and the chosen joker scenes are
shown in Table 2, together with the correct and false panel assignments per subject.

The panel assessment converged on whether motions were detected in 319 of the
330 scenes but disagreed in 11 scenes. As any uncertainty would prompt checking the
patient’s condition under real-world conditions, they marked all of these 11 scenes as “no
motion” scenes. Therefore, those scenes and ratings were not excluded from the analysis.
In 10 of the 11 disagreement cases, no motions were recorded.

3.1. Diagnostic Test Performances

The expert panel correctly identified 286 of 330 scenes (86.7%; Tables 3 and 4). False pos-
itive (FP) assignments (motion detection in no motion scenes) occurred in 37 of 150 scenes
with no motions (FP rate 24.7%; specificity 75.3%). This finding occurred more often in men
than women: in total, 26/60 (43%) vs. 11/90 (12%), p < 0.001 (Table 4). Further, FP occurred
more often in scenes with than without a mobile phone: 6/30 (53%) vs. 21/120 (17.5%),
p < 0.001 (Table 5). The breathing intensity by contrast (shallow, normal, strong) showed no
reliable differences in the number of false assignments (number of FP: 2.2 vs. 2.0 vs. 3.0 FP).
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Table 3. Diagnostic test performances in the total cohort.

Motion Detected

M
ot

io
n

re
co

rd
ed Yes No

Yes
(Motion scenes)

173
(true positives)

7
(false negatives) 180

No
(No Motion scenes

37
(false positives)

113
(true negatives) 150

210 120 330
Scenes identified correctly by the panel (N) (motion assignments as referenced in Table 1). Sensitivity was 96%,
specificity 75%, positive predictive value 82%, negative predicted value 94.2%, and Cohen’s kappa (95% confidence
interval) 0.73 (0.65; 0.80).

Table 4. Sex differences in diagnostic test performance.

Correct
N (%)

Incorrect
N (%)

FP
N

FN
N p

All scenes (N = 330) 286 (86.7%) 44 (13.3%) 37 7 0.010

• in women (N = 198) 183 (92.4%) 15 (7.6%) 26 3

• in men (N = 132) 103 (78.0%) 29 (22.0%) 11 4

All “Motion” scenes (N = 180) 173 (96.1%) 7 (3.9%) 0 7 1.00

• in women (N = 108) 104 (96.3%) 4 (3.7%) 0 4

• in men (N = 72) 69 (95.8%) 3 (4.2%) 0 3

All “No motion” scenes (N = 150) 113 (75.3%) 37 (24.7) 37 0 <0.001

• in women (N = 90) 79 (87.8%) 11 (12.2%) 11 0

• in men (N = 60) 34 (56.7%) 26 (43.3%) 26 0

“No motion” scenes (without phone scenes; N = 120) 99 (82.5%) 21 (17.5%) 21 0 <0.001

• in women (N = 72) 68 (94.4%) 4 (5.6%) 4 0

• in men (N = 48) 31 (64.6%) 17 (35.4%) 17 0

Phone scenes (N = 30) 14 (46.7%) 16 (53.3%) 16 0 0.052

• in women (N = 18) 11 (61.1%) 7 (38.9%) 7 0

• in men (N = 12) 3 (25%) 9 (75%) 9 0

Emergency scenes (N = 75) 64 (85.3%) 11 (14.7%) 11 0 <0.001

• in women (N = 45) 44 (97.8%) 1 (2.2%) 1 0

• in men (N = 30) 20 (66.7%) 10 (33.3%) 10 0

Correct and incorrect panel results are shown for all scenes and different subgroups within the total cohort
and separately for women and men (motion assignments as referenced in Table 1). Sex differences were eval-
uated with the Fisher’s exact or chi-square test (p-value women vs. men); abbreviations: FP—false positive;
FN—false negative.

False negative (FN) assignments (no motion detection in motion scenes) occurred
mainly in low-intensity motion scenes (scenes #2, #10, #18, #20). In total, 7/180 motion
scenes were not recognized correctly (FN rate 3.9%; sensitivity 96%). There was no rel-
evant difference between men and women concerning the number of FN test results:
3/72 (4.2%) vs. 4/108 (3.7%), p = 0.88.

The overall Cohen’s kappa coefficient between the panel and the actual scene was 0.73
(95% confidence interval 0.65; 0.80), indicating substantial agreement. If scenes including a
mobile phone were excluded from the analysis, kappa increased to 0.80 (95% CI 0.73; 0.87).
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Table 5. Panel results according to different scenes.

Scenes Correct
N (%)

False
N (%)

FP
N

FN
N

Grade of Certainty
Median (Q1,3)

Motion Intensity
Median (Q1,3)

Assumed Scene Number
Median (Q1,3)

1. Bed empty 10 (67%) 5 (33%) 5 - 1 (1; 2) 1 (1; 2) 1 (1; 20)

2. Subject in bed, wires being attached for standard monitoring 12 (80%) 3 (20%) - 3 2 (1; 2) 2 (2; 2) 10 (2; 10)

3. Subject in bed detaches wires 15 (100%) 0 - - 3 (2; 3) 2 (2; 3) 4 (4; 16)

4. Subject in bed, lying uneasy and restless 15 (100%) 0 - - 3 (3; 3) 3 (2; 3) 6 (4; 13)

5. Subject lying in bed motionless, breathing shallow 12 (80%) 3 (20%) 3 1 (1; 2) 1 (1; 1) 1 (1; 1)

6. Subject in bed, tossing and turning 15 (100%) 0 - - 3 (3; 3) 3 (3; 3) 8 (6; 13)

7. Subject lying in bed motionless, breathing normal 13 (87%) 2 (13%) 2 1 (1; 3) 1 (1; 1) 1 (1; 1)

8. Subject in bed, jumping up and down 15 (100%) 0 - - 3 (3; 3) 3 (3; 3) 6 (6; 13)

9. Subject lying in bed motionless, breathing shallow 13 (87%) 2 (13%) 2 1 (1; 2) 1 (1; 1) 1 (1; 1)

10. Subject in bed with little and careful movements 14 (93%) 1 (6.7%) - 1 2 (1; 2) 2 (2; 2) 18 (10; 20)

11. Subjects lying in bed motionless, breathing strong 12 (80%) 3 (20%) 3 1 (1; 2) 1 (1; 1) 1 (1; 1)

12. Subject lying in bed motionless, breathing shallow 12 (80%) 3 (20%) 3 1 (1; 2) 1 (1; 2) 1 (1; 1)

13. Subject in bed attempting to leave the bed 15 (100%) 0 - - 3 (3; 3) 3 (2; 3) 6 (4; 13)

14. Subject in bed completing bed exit (twice or thrice) 15 (100%) 0 - - 3 (2; 3) 3 (2; 3) 13 (4; 14)

15. Subject lying in bed motionless, breathing shallow 14 (93%) 1 (6.7%) 1 1 (1; 3) 1 (1; 1) 1 (1; 1)

16. Subject in bed, hitting the bed with the fist 15 (100%) 0 - - 3 (3; 3) 3 (3; 3) 16 (6; 16)

17. Subject lying in bed motionless, breathing shallow 13 (87%) 2 (13%) 2 - 1 (1; 3) 1 (1; 1) 1 (1; 1)

18. Subject in bed, exhibiting tremor 13 (87%) 2 (13%) - 2 1 (1; 2) 2 (2; 2) 20 (16; 20)

19. Joker * 15 (100%) 0 - - 3 (3; 3) 3 (3; 3) 13 (6; 16)

20. Subject in bed, lying relaxed 14 (93%) 1 (6.7%) - 1 2 (1; 2) 2 (2; 2) 10 (3; 18)

21. Subject lying in bed motionless, vibrating mobile phone 6 (40%) 9 (60%) 9 - 2 (1; 2) 2 (1; 2) 4 (1; 20)

22. Bed empty, vibrating mobile phone 8 (53%) 7 (47%) 7 - 2 (1; 2) 1 (1; 2) 1 (1; 10)

Number of correct and false identified scenes for each scene (N; %), including false positive (FP) and false negative (FN) results. Further, the grade of certainty of the panel response, the
motion intensity, and the corresponding scene number anticipated by the panel are given (median and quartiles). Scenes with motions are marked in grey. Grade of certainty of panel
response: 1—low; 2—medium; 3—high. Motion intensity: 1—no motion; 2—weak motion; 3—strong motion. * Joker scene: The test subject could improvise one scene, whereby all test
subjects chose motions of different intensities (Table 2).



Appl. Sci. 2023, 13, 9319 10 of 15

Of note, if the eleven scenes with panel disagreements were excluded, the accuracy in
the total cohort would have been similar: correct identification in 276 of 319 scenes (86.5%);
37 FP; 6 FN; Cohen’s kappa 0.72 (95% CI 0.64; 0.80). Again, kappa was higher if the mobile
phone scenes were excluded (0.80 (95% CI 0.73; 0.87)).

3.2. Emergency Scene

The emergency scene was correctly identified in 64 out of 75 cases (85.3%; Table 4).
Motions were false-positively detected in the remaining 11 out of 75 (14.7%) scenes, whereby
10 of these 11 scenes occurred in male subjects (Table 4). Of note, if the eleven scenes with
panel disagreements were excluded, the associations would have been similar: correct
identification in 58 out of 69 scenes (84.1%; 11 FP). However, the primary efficacy endpoint
would have been missed (expected correct assignments > 85%).

3.3. Other Scenes

Table 5 summarizes the panel results of all 22 scenes performed by the 15 subjects. The
scenes with the highest and the second highest number of FP assignments were seen for the
vibrating mobile phone scenes (scenes #21 and #22: 9 out of 15 and 7 out of 15 scenes with
incorrect assignments), indicating that a vibrating phone is a crucial confounder mimicking
physical activity. The scene with the third highest number of FP assignments was found for
scene number 1 (no bed occupancy; 5 out of 15 scenes were false positive).

Overall, the median grade of certainty by which the panel detected “motionlessness”
was low, whereas the median grade of response certainty for all “motion scenes” was high
(p < 0.001). The correct assignment of motion intensity was similar between motion and
no motion scenes: 113/150 (75%) vs. 141/180 (78%), p = 0.60. The scene numbers were
more often correctly assigned within the no motion scenes: 113/150 (75%) vs. 41/180 (23%),
p < 0.001.

3.4. Determinants of False Test Results

In univariate and multivariable logistic regression, male sex and mobile phone scenes
were significant predictors of false test results (p < 0.001; Table 6).

Table 6. Determinants of false test results in logistic regression analysis.

Univariable Analysis
OR (95% CI), p

Multivariable Analysis
OR (95% CI), p

Height, per centimeter 1.01 (0.97; 1.06); p = 0.53

Weight, per kilogram 1.00 (0.99; 1.02); p = 0.75

Male sex, yes vs. no 3.43 (1.76; 6.7); p < 0.001 4.4 (2.06; 9.4); p < 0.001

Mobile phone scene, yes vs. no 11.1 (4.9; 25.1); p < 0.001 14.2 (5.8; 34.9); p < 0.001
Potential confounders of a false test result were tested in univariate logistic regression. Significant fac-
tors were included in the multivariable logistic regression analysis. Abbreviations: CI—confidence interval;
OR—odds ratio.

4. Discussion

This proof-of-concept study found that a motion detector, attached under the ICU
bed and not on the subject’s body, could help identify an emergency situation even if
the classical monitoring modalities are disconnected. Motions were detected with high
sensitivity (96%) and reasonable specificity (75%), with an error rate of 13.3% for incorrect
assignments. Associations were similar if solely the emergency scene (“motionlessness
with no or shallow breathing”) was tested (correct assignments 85.3%; error rate 14.7%).

False alarms of various origins are a constant challenge in the ICU. Alarm fatigue
is a consequence of inappropriate alarms, and many concepts have been proposed to
overcome false alarms and reduce alarm fatigue [6,15–18]. If the monitoring modalities are
disconnected, as often seen in delirious patients, no false alarms but alarm notifications are
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given. This reminds the medical staff that the monitoring modalities must be reattached.
However, if such alarms are triggered too often, alarm fatigue develops, and the reaction
times increase [19–21]. During the reaction time, patients are left unmonitored. If motion
detectors become part of the monitoring system, detection of patient motions could be used
as an indirect confirmation of patients’ vitality until the conventional alarm system has
been reattached. In particular, the reliable detection of motionlessness (“zero or near-zero
lines”) may indicate the patient’s unconsciousness and trigger immediate high-level alarms,
thereby bridging the observational gap created by the detachment of the conventional
monitoring system.

While the idea of using motion detectors to monitor ICU patients is not new [8–12,22–25],
their application to monitor potential emergencies has not been investigated so far. Importantly,
motion detectors have not been approved medically for this indication and are, therefore,
unsuitable as a solitary monitoring solution.

One of the most frequent indications of testing motion detectors at the adult ICU was
to measure activity levels, especially in patients with mobility constraints [8–10]. As many
ICU patients may develop severe critical illness neuropathy due to sedation and immobility,
monitoring of the activity level is of prognostic importance [26]. The most common tech-
niques utilized for activity monitoring at the ICU have been wearable accelerometers [10]
and imaging techniques [8,9,27]. As wearable devices would probably not be tolerated in
patients, who intentionally remove their standard monitoring system, imaging salutation
appears more attractive. Reiter et al. tested a noninvasive mobility sensor using an RBG-D
(red–blue–green–depth) camera in patients at the ICU [8,9]. Different activities such as
lying in bed, sitting and exercising in bed, out-of-bed activities, and walking in an ICU
patient room were tested. Automated prediction analysis showed high agreement between
the motions detected by the sensor and the expert assessment [8]. Inaccurate estimations
occurred mainly in the “lying in bed” and “sitting or exercising in bed” categories. Al-
though the mobility intensity and scene durations were not described, results were fairly
comparable to our data, indicating that other motion detectors can also accurately identify
motionlessness [8]. Although the information on mobility constraints and exercise capacity
of patients at the ICU has prognostic value, measuring their exact activity levels may
not be essential during their stay at the ICU, and could also be performed later during
rehabilitation. Most importantly, motion detectors are not regularly used for this indication
at the ICU.

As motions are a relevant source for the inaccurate reading of vital signs, motion
detectors were further tested to reduce the number of false alarms for the conventional
monitoring system [12].

In recent years, newer noncontact techniques have been developed and practices
introduced to replace the traditional contact-based monitoring systems that concentrate on
estimating heart and respiratory rate via, for instance, video-based photoplethysmography
or mid-wave infrared (MWIR) thermography [28–30]. The detection of motions in this area
was performed primarily to reduce or blank out motion artefacts [30]. These techniques
were primarily tested and applied in pediatric cohorts, as the significance of contactless
monitoring is more meaningful here [31–33]. Noncontact monitoring using imaging tech-
niques was also introduced in adult patients with dementia, but the procedure was still
susceptible to errors, and safety was not regarded high enough to justify substituting the
current standard in clinical practice [34,35].

Imaging techniques have another major disadvantage: continuous video surveillance
or video recording with commonly accessible visualization of highly private patient am-
bience is difficult to justify from an ethical and privacy rights perspective, especially in
delirious patients. There are legal concerns from the medical staff regarding video record-
ings at the ICU, as videotapes could be used to monitor and evaluate the daily work of
the co-recorded employees [36]. Although privacy-observing imaging techniques such as
thermal imaging or 3D depth cameras are primarily used to detect body movements [22,23],
the difference to a real camera might not be detectable for the monitored subject. Thus,
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noncontact monitoring systems without privacy breaching potential should be the pre-
ferred modality in the ICU. Radar measurements to detect patient motions might be an
alternative method compliant with data protection regulations [23]. However, the roll-out
of stationary radars in an ICU room would imply larger-scale construction modifications,
which may limit their use for cost and feasibility reasons.

Any new device comes with the risk of inducing false alarms [37]. According to
our concept, motion detector alarms should only be triggered if the traditional system is
detached and motionlessness is detected. If motions do not trigger the alarm, the number of
false alarms should be low in agitated patients who constantly move around. Accordingly,
the number of false negative test results (“motions not detected but recorded”) in our
study was very low (3.9%), signifying high sensitivity for detecting motions. Clinically,
a false negative test result (as observed in patients falling asleep) indicates that a “false”
alarm was activated without an actual emergency. Thus, the walk to check the patient’s
condition would have been unnecessary, which again may provoke alarm fatigue with all
its consequences [6]. A suitable way to reduce false negative results triggered by motion
detectors could be achieved with another promising sensor type.

Noncontact intrinsic optical fiber sensors can be easily installed underneath a patient’s
pillow, enabling monitoring of heart rate and breathing frequency [24,25]. They also
have a motion-detecting function, primarily used to recognize disruptive effects and
blank out “false alarms” [28]. As mentioned, noncontact monitoring of vital signs is
not established at the adult ICU and is not in clinical use for legal reasons; especially in
moving subjects the error rate is estimated to be high [24,25]. However, when used as a
backup monitor, programmed to measure vital signs and motions in patients who detached
their conventional monitoring system and are no longer moving, its use could be justified
and may exceed the accuracy of our device. With the added ability to monitor heart and
respiration rates, the measurement of normal vital signs ranges could be used to block false
negative alarms triggered by the motion detector feature.

Even more important could be the prevention of false positives since the (false) detec-
tion of motions in an unconscious patient can suppress the alarm function of the detector
and thus impede early detection of an emergency. Our study’s amount of false positive re-
sults within the no motion scenes was 25% (N = 37/150). However, we identified a vibrating
phone as a relevant confounder responsible for 43% (N = 16) of the false positive assign-
ments. As most mobile phones cease the call automatically after 20–30 s, this confounder
should not be of major concern in real-world situations. After excluding the vibrating mo-
bile scene, the number of false positives was 14% (21/150). False positive assignments were
more frequent in male test subjects. The reason for the sex difference is unclear but might
indicate that the sensor susceptibility to triggering alarms has to be adapted individually.
Alternatively, some physical characteristics, such as a broader torso or a larger head in men,
may impede simulating the “lying dead-still scene” realistically. As the sensor was attached
at shoulder height below the ICU bed, minimal breathing-dependent movements may have
been transferred more easily to the sensor. In real-world situations in which patients have
a true emergency, such as a cardiopulmonary arrest, sex differences are most probably less
apparent. False positive assignments were also found for scene #1, i.e., the scene with the
bed left empty, indicating that the sensor might detect motions differently if the bed is not
occupied and that, so far, unidentified external interference factors might trigger minimal
sensor activation. Continuous monitoring under real-world conditions should, however,
minimize the error rates. In patients with a life-threatening emergency, the overall activity
level may be lower than in the mock-up emergency scenes of our test subjects. Further,
an actual emergency lasts longer than the predefined experimental period of 1 min. If
the sensor could be programmed to sound alarms after detecting “zero or near-zero lines”
for a specific period (e.g., 20–30 s) and after detecting longer episodes of minimal motion
intensities, the probability of missing true emergencies may likely reduce.

Other clinical situations in which motion detectors might be helpful are attempted
or succeeded bed exits. In our study, the bed exit pattern was very characteristic. This
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scene was the second most often recognized of all motion scenes (after hitting the bed with
fists). There are already motion-sensing mattresses with multiple implemented pressure
sensors that are in use for the detection of bed exits and—depending on the added technical
features—with multiple other functions such as measurements of respiration, heart rate,
sleep pattern, sleep quality, etc. [38]. These mattresses are mainly used for geriatric or
nursing home patients. Although smart mattresses may also have other indications at the
ICU, such as preventing pressure ulcers [39,40], feasibility and cost issues may limit their
use in the ICU. As many patients are not delirious at admission but develop delirium at
the ICU [41], affected individuals would need a bed or mattress change, which may be
more labor-intensive in an uncooperative patient than the attachment of a portable motion
detector underneath the bed or pillow. Further, the robustness and longevity of smart
mattresses at ICUs are unclear, as recurrent resuscitations may damage the sensors.

A motion detector that can be attached underneath an ICU bed and solitarily records
patients’ motions via acceleration or pressure changes constitutes an approach that is very
easy to implement and will be received more readily by medical staff. It further would
not change the current care standard but expand it for another monitoring line. Lastly, the
additional monitoring of motions in selective patients should neither replace the standard
nor discourage the ICU staff from reacting promptly to the alarm notification. However,
it has the potential to reliably inform the user whether a particular alarm necessitates a
quick response.

5. Limitations

Several limitations of our study need to be considered. First, the current study eval-
uated only test subjects in mock-up scenarios using a sensor not attached to the routine
monitoring system and had not previously been tested for this indication. In addition,
motions were detected during some scenes, although the bed remained empty. Therefore,
accuracy and the need to adapt the sensor features must be reassessed in actual patients un-
der real-world conditions. All scenes lasted one minute and were recorded and evaluated
retrospectively by the panel. However, continuous monitoring lasting longer than 1 min
should rather improve the test results, as automated alarming could be further adapted
to the needs. Finally, for reasons of practicality, we chose a single-vibration sensor as the
test object. Multiple motion sensors combining different (ICU-compatible) functions could
further increase diagnostic test accuracy.

6. Conclusions

In conclusion, without direct contact with the test subject, a high-definition vibration
sensor detected both motions and motionlessness during mock-up scenarios typical for
delirious ICU patients with encouraging accuracy. Thus, assessing patients’ movements
with a motion detector as a backup monitor in patients disconnecting their traditional
monitoring system can allow for uninterrupted surveillance of an individual’s vitality in
the ICU. Since the results are promising, a trial in delirious ICU patients appears feasible
and justified.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/app13169319/s1, Supplementary file with graphical mo-
tion recordings of all scenes (#1-22) captured in all directions (x-, y-, and z-axis, summarized with the
mean squared error; MS).
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