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Abstract

In this thesis, a variety of Fokker–Planck (FP) optimal control problems are investigated. Main emphasis

is put on a first– and second–order analysis of different optimal control problems, characterizing optimal

controls, establishing regularity results for optimal controls, and providing a numerical analysis for a

Galerkin–based numerical scheme.

The Fokker–Planck equation is a partial differential equation (PDE) of linear parabolic type deeply con-

nected to the theory of stochastic processes and stochastic differential equations. In essence, it describes

the evolution over time of the probability distribution of the state of an object or system of objects under

the influence of both deterministic and stochastic forces. The FP equation is a cornerstone in under-

standing and modeling phenomena ranging from the diffusion and motion of molecules in a fluid to the

fluctuations in financial markets.

Two different types of optimal control problems are analyzed in this thesis. On the one hand, Fokker–

Planck ensemble optimal control problems are considered that have a wide range of applications in

controlling a system of multiple non–interacting objects. In this framework, the goal is to collectively

drive each object into a desired state. On the other hand, tracking–type control problems are investigated,

commonly used in parameter identification problems or stemming from the field of inverse problems. In

this framework, the aim is to determine certain parameters or functions of the FP equation, such that

the resulting probability distribution function takes a desired form, possibly observed by measurements.

In both cases, we consider FP models where the control functions are part of the drift, arising only from

the deterministic forces of the system. Therefore, the FP optimal control problem has a bilinear control

structure. Box constraints on the controls may be present, and the focus is on time–space dependent

controls for ensemble–type problems and on only time–dependent controls for tracking–type optimal

control problems.

In the first chapter of the thesis, a proof of the connection between the FP equation and stochastic

differential equations is provided. Additionally, stochastic optimal control problems, aiming to minimize

an expected cost value, are introduced, and the corresponding formulation within a deterministic FP

control framework is established. For the analysis of this PDE–constrained optimal control problem,

the existence, and regularity of solutions to the FP problem are investigated. New L∞–estimates for

solutions are established for low space dimensions under mild assumptions on the drift. Furthermore,

based on the theory of Bessel potential spaces, new smoothness properties are derived for solutions to

the FP problem in the case of only time–dependent controls. Due to these properties, the control–to–

state map, which associates the control functions with the corresponding solution of the FP problem,

is well–defined, Fréchet differentiable and compact for suitable Lebesgue spaces or Sobolev spaces. The

existence of optimal controls is proven under various assumptions on the space of admissible controls

and objective functionals. First–order optimality conditions are derived using the adjoint system. The

resulting characterization of optimal controls is exploited to achieve higher regularity of optimal controls,

as well as their state and co–state functions. Since the FP optimal control problem is non–convex due to its

bilinear structure, a first–order analysis should be complemented by a second–order analysis. Therefore,
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a second–order analysis for the ensemble–type control problem in the case of H1–controls in time and

space is performed, and sufficient second–order conditions are provided. Analogous results are obtained

for the tracking–type problem for only time–dependent controls.

The developed theory on the control problem and the first– and second–order optimality conditions is

applied to perform a numerical analysis for a Galerkin discretization of the FP optimal control problem.

The main focus is on tracking-type problems with only time–dependent controls. The idea of the pre-

sented Galerkin scheme is to first approximate the PDE–constrained optimization problem by a system

of ODE–constrained optimization problems. Then, conditions on the problem are presented such that

the convergence of optimal controls from one problem to the other can be guaranteed. For this purpose,

a class of bilinear ODE–constrained optimal control problems arising from the Galerkin discretization

of the FP problem is analyzed. First– and second–order optimality conditions are established, and a

numerical analysis is performed. A discretization with linear finite elements for the state and co–state

problem is investigated, while the control functions are approximated by piecewise constant or piecewise

quadratic continuous polynomials. The latter choice is motivated by the bilinear structure of the op-

timal control problem, allowing to overcome the discrepancies between a discretize–then–optimize and

optimize–then–discretize approach. Moreover, second–order accuracy results are shown using the space

of continuous, piecewise quadratic polynomials as the discrete space of controls. Lastly, the theoretical

results and the second–order convergence rates are numerically verified.
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Zusammenfassung

In dieser Dissertation werden verschiedene Fokker–Planck (FP) optimale Steuerungsprobleme untersucht.

Die Schwerpunkte liegen auf einer Analyse von Optimalitätsbedingungen erster und zweiter Ordnung, der

Charakterisierung optimaler Steuerungen, dem Herleiten höhere Regularität von optimalen Kontrollen

sowie einer theoretischen numerischen Analyse für ein numerisches Verfahren basierend auf einer Galerkin

Approximation.

Die Fokker–Planck Gleichung ist eine lineare, parabolische, partielle Differentialgleichung (PDE), die aus

dem Gebiet stochastischer Differentialgleichungen und stochastischer Prozesse stammt. Im Wesentlichen

beschreibt sie die zeitliche Entwicklung der Wahrscheinlichkeitsverteilung des Zustands eines Objekts bzw.

eines Systems von Objekten unter dem Einfluss sowohl deterministischer als auch stochastischer Kräfte.

Die Fokker–Planck Gleichung ist ein Eckpfeiler zum Verständnis und Modellieren von Phänomenen, die

von der Diffusion und Bewegung von Molekülen in einer Flüssigkeit bis hin zu den Schwankungen in

Finanzmärkten reichen.

Zwei verschiedene Arten von optimalen Kontrollproblemen werden in dieser Arbeit umfassend analysiert.

Einerseits werden Fokker–Planck Ensemble Steuerungsprobleme betrachtet, die in der Kontrolle von

Systemen mit mehreren nicht wechselwirkenden Objekten vielfältige Anwendungen haben. In diesem

Gebiet ist das Ziel, alle Objekte gemeinsam in einen gewünschten Zustand zu lenken. Andererseits wer-

den Tracking Kontrollprobleme untersucht, die häufig bei Parameteridentifikationsproblemen auftreten

oder aus dem Bereich inverser Probleme stammen. Hier besteht das Ziel darin, bestimmte Parameter

oder Funktionen der Fokker–Planck Gleichung derart zu bestimmen, dass die resultierende Wahrschein-

lichkeitsverteilung eine gewünschte Form annimmt, welche beispielsweise durch Messungen beobachtet

wurde. In beiden Fällen betrachten wir FP Modelle, bei denen die Kontrollfunktion Teil des sogenannten

Drifts ist, das heißt der Teil, der nur aus den deterministischen Kräften des Systems resultiert. Daher hat

das FP Kontrollproblem eine bilineare Struktur. Untere und obere Schranken für die Kontrollfunktionen

können vorhanden sein, und der Fokus liegt auf zeit– und raumabhängigen Steuerungen für Ensemble

Kontrollprobleme, sowie auf nur zeitlich abhängigen Steuerungen für Tracking Kontrollprobleme.

Am Anfang der Dissertation wird ein Beweis für den Zusammenhang zwischen der FP Gleichung

und stochastischen Differentialgleichungen dargelegt. Darüber hinaus werden stochastische optimale

Steuerungsprobleme eingeführt, deren Ziel es ist, einen erwarteten Kostenwert zu minimieren. Zusät-

zlich wird das Problem als ein deterministisches FP Kontrollproblem formuliert. Für die Analyse dieses

Kontrollproblems wird die Existenz und Regularität von Lösungen für die FP Differentialgleichung un-

tersucht. Neue L∞–Abschätzungen für Lösungen werden für niedrige Raumdimensionen unter schwachen

Annahmen an den Drift bewiesen. Zusätzlich werden, basierend auf der Theorie über Bessel Potential-

räume, neue Glattheitseigenschaften für Lösungen des FP–Problems im Falle zeitabhängiger Steuerun-

gen erarbeitet. Aufgrund dieser Eigenschaften ist die sogenannte control–to–state Abbildung, welche die

Kontrollfunktion mit der entsprechenden Lösung des FP Problems verknüpft, wohldefiniert, Fréchet–

differenzierbar und kompakt für geeignete Lebesgue–Räume oder Sobolev–Räume.

Die Existenz optimaler Steuerungen wird unter verschiedenen Annahmen an den Funktionenraum der
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Kontrollen und des Kostenfunktionals bewiesen. Optimalitätsbedingungen erster Ordnung werden unter

Verwendung des adjungierten Systems aufgestellt. Die daraus resultierende Charakterisierung optimaler

Steuerungen wird genutzt, um eine höhere Regularität optimaler Steuerungen sowie ihrer Zustandsfunk-

tion und des adjungierten Problems zu erhalten. Da das FP Kontrollproblem aufgrund der bilinearen

Struktur nicht konvex ist, sollte eine Analyse von Optimalitätsbedingungen erster Ordnung durch eine

Analyse von Optimalitätsbedingungen zweiter Ordnung ergänzt werden. Dies wird für das Ensemble

Kontrollproblem im Fall von zeit– und ortsabhängigen Steuerungen mit H1–Regularität durchgeführt,

und hinreichende Bedingungen für lokale Minimierer werden hergeleitet. Analoge Ergebnisse werden für

das Tracking–Problem für nur zeitabhängige Steuerungen bewiesen.

Die entwickelte Theorie zu diesem optimalen Steuerungsproblem und dessen Optimalitätsbedingungen

wird angewendet, um eine numerische Analyse für eine Galerkin–Diskretisierung des FP Kontrollproblems

durchzuführen. Der Schwerpunkt liegt auf Tracking–Problemen mit nur zeitabhängigen Steuerungen. Die

Idee des vorgestellten Galerkin–Verfahrens besteht darin, das PDE–Optimierungsproblem zunächst durch

ein System von Optimierungsproblemen mit gewöhnlichen Differentialgleichungen (ODE) als Nebenbedin-

gung zu approximieren. Dann werden Bedingungen an das Problem präsentiert, sodass die Konvergenz op-

timaler Steuerungen von einem Problem zum anderen garantiert werden kann. Zu diesem Zweck wird eine

Klasse bilinearer ODE–Kontrollprobleme analysiert, welche sich aus der Galerkin–Diskretisierung des FP

Problems ergeben. Optimalitätsbedingungen erster und zweiter Ordnung werden bewiesen, und eine nu-

merische Analyse wird durchgeführt. Eine Diskretisierung mit linearen Finiten–Elementen der Zustands–

und Adjungiertengleichung wird untersucht, während die Kontrollfunktionen durch stückweise konstante

oder stetige, stückweise quadratische Polynome approximiert werden. Diese Wahl wird durch die bilin-

eare Struktur des optimalen Kontrollproblems begründet, da sie es ermöglicht, die Diskrepanzen zwischen

einem Ansatz von
”
zuerst diskretisieren dann optimieren” und

”
zuerst optimieren dann diskretisieren” zu

überwinden. Durch die Verwendung stetiger, stückweise quadratischer Polynome als Diskretisierung der

Steuerungen kann außerdem quadratische Konvergenzordnung gezeigt werden. Abschließend werden die

theoretischen Ergebnisse und die Konvergenzraten zweiter Ordnung numerisch verifiziert.
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1
Introduction

The Fokker-Planck (FP) equation is a fundamental partial differential equation (PDE) that plays a central

role in the field of statistical physics, particularly in describing the dynamics of stochastic processes.

It finds widespread application in understanding the behavior of (partially) random systems and the

evolution of probability distributions associated with them.

Named after physicists Adriaan Fokker and Max Planck, this equation provides a mathematical framework

for modeling the probability density function of the motion of a particle or other relevant variables in the

presence of random or stochastic forces. Initially derived to analyze the Brownian motion problem, the

Fokker–Planck equation addresses scenarios where a small yet macroscopic particle is immersed in a fluid.

In this context, the fluid’s molecules exert unpredictable kicks on the particle, leading to fluctuations in

its velocity. The consequence is an inherent uncertainty regarding the particle’s exact dynamics, giving

rise to a probability distribution p = p(t, x), where the integral
∫
U
p(t, x) dx gives the probability of the

particle having a velocity x̄ ∈ U at time t. As the scientific landscape evolves, nowadays, the application

of the Fokker–Planck equation extends beyond its original association with Brownian motion. It has

seamlessly integrated into diverse fields within the natural sciences – from solid–state physics to quantum

optics, chemical physics, theoretical biology, and circuit theory – the Fokker–Planck equation stands as a

versatile tool to analyze complex systems under the influence of random fluctuations. The investigation

of the motion of particles has evolved into modelling collective motion of groups, such as the movement

of molecules and bacteria, and the motion of herds of animals like fishes and birds. Furthermore, the

applications of the Fokker–Planck equation are not limited to the case of probability distributions, or

where the state x in the probability distribution function (PDF) p = p(t, x) is the velocity or position of

the object. As an example, we mention the Black–Scholes equation as a special case of a FP equation.

This equation appears in mathematical finance to model the price evolution V = V (t, S) of derivatives

under the Black–Scholes model, and in that context, V is a function of time t and the stock price S and

it is not a PDF. Another relevant example stems from the field of stochastic epidemic models, where

it is the aim to model the spread of diseases among a population of size N , which is divided into k

different compartments x = (x1, . . . , xk). One individual belongs at one point in time t exactly to one
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compartment xi, and the individual will eventually transfers to other compartments due to the dynamic of

the disease. Typical example of compartments in epidemic models are, among others, the group of healthy

and susceptible individuals, the group of infectious individuals and the group of recovered individuals. In

that context, integrating the corresponding probability distribution function p, given by the FP equation,

over a region U ⊂ [0, N ]k at time t, yields the probability of (x1, . . . , xk) taking values in U .

A general concept in modelling complex systems in natural sciences is that once a suitable mathematical

framework is established, we are interested in controlling the possible outcomes. In terms of the FP

equation, this means the following. The FP equation answers the question, how the possibility of certain

outcomes evolve over time, under the assumption that the dynamics of the problem are known. The

question of controlling a process goes the other way around. Thus, we ask, how we have to adapt

the dynamics of the problem, such that certain desired outcomes are highly likely; or certain undesired

outcomes are very unlikely, respectively. If we go back to the Brownian motion problem formulated in a

Fokker–Planck control framework, we are no longer interested in the motion that the particle will most

likely have given its force field, but we want to determine a specific force field such that the particle has

(most likely) the desired motion. In the context of stochastic epidemiological models and the modelling

of infectious diseases, the typical controllable dynamics of the system are, among others, vaccination of

the individuals or reducing the contact rate between individuals. Therefore, a Fokker–Planck control

framework provides a robust mathematical tool to analyze which of these actions to take, in order to

reduce the likelihood of an outbreak of the disease.

In summary, the Fokker–Planck equation and the Fokker–Planck optimal control framework are powerful

tools providing a formalism to study and control the dynamics of systems subject to random influences.

Their application extends across various scientific disciplines, making it a key concept in the analysis and

the control of stochastic processes and their impact on the behavior of physical, financial and biological

systems.

The thesis is organized as follows. In Chapter 1, we introduce stochastic differential equations and recall

basic definitions such as the Itô integral and the Wiener processes. Then, we prove that the evolution of

probability distribution functions for certain stochastic processes is given by the solution of the Fokker–

Planck problem. Based on this, the connection of stochastic optimal control problems and Fokker–Planck

optimal control problems is established. In order to analyze the resulting PDE–constrained optimal

control problem, we consider optimization problems and useful optimality conditions in a general setting,

while main emphasis is put on problems formulated in infinite–dimensional Banach spaces.

The second chapter is devoted to the analysis of the (inhomogeneous) Fokker–Planck differential equation

with flux–zero boundary conditions and given initial data. We introduce the concept of weak solutions,

prove uniqueness and well–posedness of the problem, and derive higher regularity of solutions under

additional assumptions. Furthermore, a result on maximal Lp–regularity is given, based on the theory of

Besov spaces. Next, the control–to–state map is introduced and its well–posedness on a variety of sets

of admissible controls is discussed. We proceed by proving Fréchet differentiability, Lipschitz continuity

and compactness results. The second chapter is concluded by analyzing the linearized Fokker–Planck

problem.

In Chapter 3, a variety of ensemble FP optimal control problems are investigated. We prove existence

of optimal controls in different settings and also discuss under which conditions the ensemble optimal

control problem does not possess solutions. Afterward, we perform a first–order analysis by an adjoint–

based approach and provide implicit representations for optimal controls. The chapter is closed with a

second–order analysis, relying on the general theory of optimization problems in Banach spaces developed

in Section 1.3.

Chapter 4 is devoted to the FP tracking optimal control problem. We focus on only time–dependent,



13

vector valued controls, motivated by the ansatz u(t, x) = M(x)ũ(t). This ansatz is a reasonable trade–

off between complexity and accuracy of the problem, assuming that the space dependency of u can be

represented sufficiently well by the components of the (possibly high–dimensional) matrix–valued function

M =M(x). Similarly to the previous chapter, we perform a First– and second–order analysis. The results

are essential for the detailed numerical analysis performed in Chapters 5–7.

In Chapter 5, we formulate our discretization scheme in a general setting. The idea is to first approximate

the PDE optimal control problem by a semidiscrete Galerkin scheme, which yields a sequence of ODE–

constrained optimal control problems. Subsequently, we provide conditions on the problem such that

convergence of optimal controls from the ODE–optimal control problem to the PDE optimal control

holds. Then, we apply this method to our FP control problem and derive the corresponding ODE–

control problem. In Chapter 6, this problem is analyzed in depth, and a numerical analysis for a finite

element discretization is provided. Linear and quadratic convergence rates are proven, and a numerical

test is performed to validate the results.

In Chapter 7 of this thesis, the findings of Chapters 4–6 are combined, and convergence rates of numerical

solutions to the Fokker–Planck optimal control problem of tracking type are established.

The results of this thesis are based, in part, on research for the following scientific papers:

J. Körner and A. Borz̀ı, Second–order analysis of Fokker–Planck ensemble optimal control problems,

ESAIM: Control, Optimisation and Calculus of Variations, (2022).

J. Körner and A. Borz̀ı, Accuracy estimates for bilinear optimal control problems governed by ordinary

differential equations, Numerical Functional Analysis and Optimization, 44 (2023), p. 564–602.

J. Körner and A. Borz̀ı, Accuracy of semidiscrete Galerkin approximations to optimal control prob-

lems with an application to the Fokker–Planck problem, submitted to Journal of Dynamical and Control

Systems.

Notations

We use the following notations throughout this thesis. Let N = {1, 2, . . .} denote the set of natural

numbers without zero and N0 := N ∪ {0}. For n ∈ N and two vectors x, y ∈ Rn, we denote by

x · y := x⊤y =

n∑
i=1

xiyi, |x| :=
√
x · x

the Euclidean scalar product and the norm, where x⊤ is its transposed. An inequality between two

vectors x, y or between a vector and a number z ∈ R, is to be understood componentwisely, i.e., x ≤ y

iff xi ≤ yi for all i = 1, . . . , n, and x ≤ z iff xi ≤ z for all i = 1, . . . , n. When we write a > 0, this shall

always imply that a is a real number. Given any set M ⊂ Rn, we denote by C(M) = C0(M) the set of

continuous functions from M to R. For functions f :M → R, we define the sup norm as follows

∥f∥∞ = sup{|f(x)| : x ∈M}.

Let U be an open set and k ∈ N0 ∪ {∞}. We denote by Ck(U) the space of all k–times continuously

differentiable functions on U with norm

∥f∥Ck(U) :=
∑

|α|1≤k

∥Dαf∥∞, k ̸= ∞.

In that context, α ∈ Nn0 is a multi–index with |α|1 :=
∑n
i=1 αi and the corresponding derivative reads

Dαf =
∂|α|f

∂α1
x1 · · · ∂αn

xn

.



14 Introduction

For s ∈ ]0, 1[, we denote by Cs(U) = C0,s(U) the space of all Hölder continuous functions to the exponent

s with the semi–norm

∥f∥Cs(U) := sup

{
|f(x)− f(y)|

|x− y|s
: x, y ∈ U and x ̸= y

}
.

The Banach space Ck+s(U) = Ck,s(U) for 0 < s < 1 is the set of all functions which have Hölder

continuous k–th derivatives, and we introduce the corresponding norm

∥f∥Ck+s(U) :=
∑

|α|1≤k

(
∥Dαf∥∞ + ∥Dαf∥Cs(U)

)
.

We mention that we may abbreviate the following words throughout the thesis: subject to (s.t.), almost

everywhere (a.e.), for almost every (f.a.e.) and with respect to (w.r.t.).

For any measurable f : U → R, we denote by f+ := max{f, 0} and f− := min{f, 0} its positive and

negative part, respectively. Furthermore, we define the support of f as follows

supp f := U\
⋃{

U ′ ⊂ U open : f|U ′ = 0 a.e.
}
.

The symbol Ckc (U) denotes the space of functions from Ck(U) with compact support in U .

Next, we introduce the Lebesgue spaces for p ∈ [1,∞]

Lp(U) := {f : U → R measurable : ∥f∥Lp(U) <∞}.

As usual, two functions belonging to Lp(U) which agree almost everywhere are identified, and thus, we

may introduce the (full) norms

∥f∥Lq(U) :=

(∫
U

|f(x)|q dx
)1/q

, q ∈ [1,∞[,

∥f∥L∞(U) := inf
{
L ≥ 0 : |f(x)| ≤ L f.a.e. x ∈ U

}
.

If clear from the context, we will write ∥f∥p := ∥f∥Lp(U) for p ∈ [1,∞]; notice that the L∞–norm and

sup–norm coincide for pointwisely defined functions on U . We remark that pointwisely defined operations

for functions from Lebesgue spaces are, in general, not well–defined. Thus, throughout this thesis, we will

always mention it clearly if a pointwisely defined representative of some function f ∈ Lp(U) is chosen. If

such function f is known to be continuous (after possibly modifying f on a set of measure zero), we will

write f ∈ Lp(U) ∩ C(U) in order to choose the continuous representative. For k ∈ N0 and p ∈ [1,∞],

we introduce the Sobolev spaces W k,p(U) consisting of all functions f : U → R with weak derivatives

Dαf ∈ Lp(U), |α|1 ≤ k. The corresponding norms are given by

∥f∥Wk,q(U) :=

 ∑
|α|1≤k

∥Dαf∥qq

1/q

, 1 ≤ q <∞,

∥f∥Wk,∞(U) := max
|α|1≤k

∥Dαf∥∞.

For an open, non–empty interval ]a, b[, we write Lp(a, b) := Lp( ]a, b[ ) with analogous notations for

Sobolev spaces. Given any Banach space (X, ∥ · ∥X) and a subspace Y ⊂ X, we define

Y
X

:=
{
g ∈ X : there exists (gj)j∈N ⊂ Y such that ∥g − gj∥X → 0 as j → ∞

}
as the closure of Y w.r.t. X. In that context, we recall that W k,p

0 := C∞
c (U)

Wk,p(U)
. For the special case

p = 2, we use the common notation for the Hilbert space Hk(U) := W k,2(U) and Hk
0 (U) := W k,2

0 (U)
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with scalar product

⟨f, g⟩2 := ⟨f, g⟩L2(U) :=

∫
U

f(x)g(x) dx, ⟨f, g⟩Hk :=
∑

|α|1≤k

⟨Dαf,Dαg⟩2.

Throughout this thesis, the variable T > 0 denotes a final time horizon. Let (X, ∥·∥X) denote a separable

Banach space. Then, we introduce the Bochner space and corresponding norm

C([0, T ];X) := {u : [0, T ] → X : u is continuous }, ∥u∥C([0,T ];X) = max
t∈[0,T ]

∥u(t)∥X , (1.1)

with analogous definitions for Ck([0, T ];X), k ∈ N. For p ∈ [1,∞], we define the following Banach space

Lp(0, T ;X) := {u : [0, T ] → X : u measurable and ∥u(·)∥X ∈ Lp(0, T )}

with corresponding norms

∥u∥Lq(0,T ;X) :=

(∫ T

0

∥u(t)∥qX dt

)1/q

, q ∈ [1,∞[,

∥u∥L∞(0,T ;X) := ess sup
t∈[0,T ]

∥u(t)∥X .

Sobolev spaces with values in Banach spaces are defined as

W 1,p(0, T ;X) := {u ∈ Lp(0, T ;X) : ∂tu ∈ Lp(0, T ;X)}, p ∈ [1,∞]

with norms

∥u∥W 1,q(0,T ;X) :=
(
∥u∥qLq(0,T ;X) + ∥∂tu∥qLq(0,T ;X)

)1/q
, q ∈ [1,∞[,

∥u∥W 1,∞(0,T ;X) := max
{
∥u∥L∞(0,T ;X), ∥∂tu∥L∞(0,T ;X)

}
.

For any space X and n ∈ N, we say that f ∈ Xn if every component fi of f belongs to X for i =

1, . . . , n. In that sense, we remark that Lp(U ;Rn) = Lp(U)n with analogous definitions for Sobolev spaces.

Additionally, we define the Lp–norm of a vector valued function f ∈ Lp(Ω)m for later conveniences as

∥f∥Lq(Ω)m = ∥f∥q =

(
m∑
i=1

∥fi∥qq

)1/q

, 1 ≤ q <∞, ∥f∥L∞(Ω)m = ∥f∥∞ =

m∑
i=1

∥fi∥∞.

Notice that the norms ∥f∥p and ∥|f |∥p are equivalent on Lp(U) but have different values in general.

Throughout this thesis, when we consider the Fokker–Planck problem, we use d ∈ N as the spatial

dimension, and Ω ⊂ Rd denotes a convex domain that is polygonal or has sufficiently smooth boundary

∂Ω. The time–space cylinder is denoted by ΩT := ]0, T [×Ω. For functions defined on ΩT , we write ∂t for

the classical, weak or distributional time derivative, and ∂xi denotes the classical, weak or distributional

derivative w.r.t. xi for i = 1, . . . , d. Furthermore, we write for u : ΩT → R

u̇ = ∂tu, ∇u = ∇xu = (∂x1
, . . . , ∂xd

)u, Du = (∂t, ∂x1
, . . . , ∂xd

)u.

For m–dimensional vector valued functions u : ΩT → Rd, we may interpret for convenience ∇u or Du

as md or m(d + 1) dimensional vector, respectively. The divergence of a vector field u = (u1, . . . , ud)

is denoted by div u := ∇ · u =
∑d
i=1 ∂xiui. Lastly, integrals and the dependencies of functions can be

abbreviated if the dependencies are clear from the context. As an example, for f defined on ΩT , we

may write
∫
ΩT

f(t, x) dt dx =
∫
ΩT

f dt dx or
∫
Ω
f(t, x) dx =

∫
Ω
f(t) dx. In addition, we use the common

notation with dots to emphasize the dependence of functions or operators, for example the notation

f(t) = f(t, ·) interprets f : ΩT → R as a function defined on Ω for some fixed t ∈ ]0, T [ .
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1.1 Particles under uncertainty – a derivation of the Fokker–Planck

equation arising from stochastic differential equations

These motions were such as to satisfy me, after frequently repeated

observation, that they arose neither from currents in the fluid, nor

from its gradual evaporation, but belonged to the particle itself.

Robert Brown, 1773 – 1859

Consider a large particle with mass M suspended in a liquid or a gas medium consisting of smaller

particles with lighter mass m ≪ M . We assume the only force on the large particle is given by an

exterior force field. Our aim is to compute the motion of the large particle through the medium, taking

into account potential collisions with smaller particles that may affect its path and velocity.

In a deterministic setting, where the velocity and position of each small particle are known precisely at

each time, it is possible – at least theoretically in the framework of classical mechanics – to keep track

of each collision and calculate the trajectory of the large particle. However, when we consider the scale

of molecules, up to 1020 collisions can occur during one second, depending on the temperature of the

medium, and therefore, a statistical approach is necessary.

Many scientists have investigated this topic for a long time. The first one who discovered and described

this random motion of particles was the botanist Robert Brown in 1827 [17]. The first rigorous formulation

of it via stochastic processes and the concept of Brownian motion was derived in 1900 by Louis Jean–

Baptiste Alphonse Bachelier. About five years later, Albert Einstein [31] and Marian Smoluchowski [65]

studied this problem in the framework of statistical mechanics, which attracted a lot of interest from the

physics community. The list of famous physicists and mathematicians that were involved in the many

scientific breakthroughs is long and for a compelling overview on Brownian motion and its statistical

description, we refer to [32,54].

It is our aim to introduce the mathematical formalism of a motion of such Brownian particles in the

context of stochastic differential equations (SDEs). Furthermore, we investigate its path with a probability

distribution function (PDF) which yields a rigorous derivation of the FP equation. For this purpose, we

introduce some basic definitions and properties of probability theory, SDEs and stochastic processes; for

more details and the proofs we refer to the books [37,52].

Let (Ω,F , P ) be a complete probability space. With Bd we denote the Borel σ–algebra, that is, the σ–

algebra generated by the family of all open sets in Rd. We say that two random variables X,Y : Ω → Rd

are independent if for all A,B ∈ Bd

P{ω ∈ Ω | X(ω) ∈ A and Y (ω) ∈ B} = P{ω ∈ Ω | X(ω) ∈ A}P{ω ∈ Ω | Y (ω) ∈ B}.

We recall that any given random variable X : Ω → Rd induces another probability measure PX , the

distribution of X under P , given by

PX : Bd → [0, 1], PX(A) := P{ω ∈ Ω | X(ω) ∈ A}.

Further, any measurable function f : Rd → [0,∞] with normed (Lebesgue) integral
∫
Rd f(x) dx = 1

induces a probability measure, given by

Pf : Bd → [0, 1], Pf (A) :=

∫
A

f(x) dx, A ∈ Bd.

In this context, we say that a random variable X : Ω → Rd induces a (Lebesgue) density function or PDF

f : Rd → [0,∞] if PX = Pf . For any integrable random variable X : Ω → Rd, we denote by E[X] its
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expected value. The next lemma is an important tool to calculate the expected value of a (transformed)

random variable given its PDF.

Lemma 1.1.1. Let X : Ω → Rd be a random variable that has a PDF f and let φ : Rd → R be measurable.

Then, it holds that

φ(X) is integrable ⇐⇒
∫
Rd

|φ(x)|f(x) dx <∞.

In this case we obtain

E[φ(X)] =

∫
Rd

φ(x)f(x) dx.

Notice that the expected value and the variance Var[X] = E[X2]− (E[X])2 of a random variable X can

be calculated by its PDF using Lemma 1.1.1:

E
[
Xk
]
=

∫
Rd

xkf(x) dx, k ∈ N.

In the following, let {Ft}t≥0 be a filtration of F that satisfies the usual conditions, that is, {Ft}t≥0 is a

family of increasing sub–σ-algebras of F and Ft =
⋂
s>t Fs for all t ≥ 0.

On some interval I ⊂ R, a stochastic process is a family {X·(t)}t∈I of Rd–valued random variables.

Usually, we consider I = R, [0,∞[ or [0, T ] for some T > 0. For fixed outcome ω ∈ Ω, we introduce the

sample path of the process

t 7→ Xω(t) ∈ Rd.

Similarly, for fixed time t ∈ I, we recall that ω 7→ Xω(t) ∈ Rd is a random variable. Notice that in the

context of stochastic processes, we write the argument ω of the random variable ω 7→ Xω(t) as a lower

index. A stochastic process is sometimes also considered as a function of two variables from I × Ω to

Rd. We say that a stochastic process is continuous if for almost all ω ∈ Ω, t 7→ Xω(t) is continuous. It is

said to be adapted if for every t ∈ I the random variable X(t) is Ft measurable. A stochastic process is

integrable if for every t ∈ I, X(t) is an integrable random variable and hence X(t) ∈ L1(Ω).

Now, we can rigorously place the famous Brownian motion within the context of stochastic processes,

leading to the definition of a Wiener process.

Definition 1.1.2. Let W = {W·(t)}t∈I be a real–valued, continuous adapted stochastic process. We say

that W is a (standard one–dimensional) Wiener process or a Brownian motion if the following holds:

(i) W (0) = 0 almost surely;

(ii) for all 0 ≤ s, t <∞, the increment W (t+ s)−W (t) is normally distributed and

E[W (t+ s)−W (t)] = 0, Var[W (t+ s)−W (t)] = s;

(iii) for all 0 ≤ s < t <∞, 0 < τ < t, the increment W (t+ s)−W (t) is independent of W (τ).

We say W = (W 1, . . . ,W d) is a d–dimensional Wiener Process if each W i is a one–dimensional Wiener

process and W 1, . . . ,W d are independent.

With the notion of a Wiener process, we can introduce the Itô integral of a stochastic process X∫ b

a

X(s) dW (s),

defined on the space of all real–valued continuous adapted processes X such that

E

[∫ b

a

|X(t)|2 dt

]
<∞.
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We refer to [52, Chapter 1] for an introduction to Itô integrals. Next, we introduce the notation of

stochastic differentials for so–called Itô processes.

Definition 1.1.3. Let X be a continuous adapted stochastic process and let I = [0, T ]. Then X is said to

be a d–dimensional Itô process on the interval I if there exists b ∈ L1(I)d and g ∈ L2(I)d×d such that for

every t ∈ I

X(t) = X(0) +

∫ t

0

b(s) ds+

∫ t

0

g(s) dW (s).

In this case, we introduce the equivalent notation using stochastic differentials

dX(t) = b(t) dt+ g(t) dW (t), t ∈ I.

We have the following fundamental relation between derivative and integral.

Lemma 1.1.4. (Itô’s formula)

Let X be a d–dimensional Itô process, V ∈ C1,2(I × Rd), b ∈ L1(I)d and g ∈ L2(I)d×d with stochastic

differential

dX(t) = b(t) dt+ g(t) dW (t).

Then {V (t,X(t))}t∈I is also a d–dimensional Itô process with stochastic differential

dV (t,X(t)) =
(
∂tV (t,X(t)) +∇V (t,X(t))b(t) +

1

2
trace

(
g(t)⊤∇2

xV (t,X(t))g(t)
) )

dt

+∇V (t,X(t))g(t) dW (t),

or equivalently, for all 0 ≤ t0 < t ≤ T ,

V (t,X(t)) = V (t0, X(t0)) +

∫ t

t0

(
∂tV (s,X(s)) +∇V (s,X(s))⊤b(s)

)
ds

+

∫ t

t0

∇V (s,X(s))⊤g(s) dW (s) +
1

2

∫ t

t0

trace
(
g(s)⊤∇2V (s,X(s))g(s)

)
ds,

where ∇ = ∇x = (∂x1
, . . . , ∂xd

)⊤ denotes the gradient w.r.t. the second argument of V .

With the definition of Itô integrals and Itô processes, we are ready to study stochastic differential equa-

tions.

Definition 1.1.5. Let b : I × Rd → Rd, g : I × Rd → Rd×d be Borel–measurable. Let t0 ∈ I and x0 be an

integrable random variable with E[|x0|2] < ∞. We call the stochastic process X = {X·(t)}t∈I a solution

to the SDE

dX(t) = b(t,X(t)) dt+ g(t,X(t)) dW (t), X(t0) = x0 (1.2)

if the following holds:

i) X is continuous and adapted,

ii) t 7→ b(t,X(t)) ∈ L1(I)d and t 7→ g(t,X(t)) ∈ L2(I)d×d,

iii) for all t ∈ I it holds that

X(t) = x0 +

∫ t

t0

b(s,X(s)) ds+

∫ t

t0

g(s,X(s)) dW (s) P–almost surely.
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With the use of semicolons, we can include the dependencies of the initial value (t0, x0) to the notation

of a solution t 7→ X(t) = X(t; t0, x0). Analogously to ordinary differential equations, the mapping

X : [0, T ]× [0, T ]× Ω → L1(Ω)d is referred to as flow of (1.2).

It is our aim to show that given a solution X to the SDE (1.2), its Lebesgue density function solves a

partial differential equation. More precisely, for every t ∈ I, we know that X(t) is a random variable

and therefore yields a (time–dependent) PDF f(t, ·) : Rd → [0,∞]. Hence, we will show that this

PDF, considered as a function on [0, T ]×Rd, is a solution of the Fokker–Planck equation under suitable

regularity assumptions.

For this purpose, we need to establish the principle of stochastic characteristics, that is, we show that

solutions to a related adjoint problem are constant along solutions of (1.2). We fix the time interval to

I = [0, T ] and consider the elliptic operator

L∗ :=

d∑
i=1

bi(t, x)∂xi
+

1

2

d∑
i,j=1

aij(t, x)∂
2
xixj

. (1.3)

We impose the following regularity conditions:

(S1) The functions aij , bi are bounded on [0, T ]×Rd and uniformly Lipschitz continuous in (t, x) on any

compact subset of [0, T ]×Rd. The functions aij are Hölder continuous in x, uniformly with respect

to (t, x) on [0, T ]× Rd.

(S2) The functions aij are elliptic in the sense that there exists θ > 0 such that

d∑
i,j=1

ξi aij(t, x) ξj ≥ θ|ξ|2, (t, x) ∈ [0, T ]× Rd, ξ ∈ Rd.

Furthermore, aij = aji and we define g : [0, T ]× Rd → Rd×d as its square root, that is, aij(t, x) is

the ij–th entry of the matrix product g(t, x)⊤g(t, x).

(S3) The function ϕ, introduced below, is continuous on Rd and satisfies the following growth condition:

there exists α,C > 0 such that

|ϕ(x)| ≤ C(1 + |x|α), x ∈ Rd.

Lemma 1.1.6. Let q ∈ C1,2(I × Rd) be a solution of the Kolmogorov backward equation

∂tq = L∗q on [0, T ]× Rd, q(T ) = ϕ on Rd. (1.4)

Let X be the flow of the corresponding SDE, that is, for (t, x) ∈ [0, T [×Rd, the map s 7→ X(s; t, x) solves

dX(s; t, x) = b(s,X(s; t, x)) ds+ g(s,X(s; t, x)) dW (s), s ∈ [t, T [ , (1.5)

X(t; t, x) = x. (1.6)

Then for (t, x) ∈ [0, T ]× Rd it holds that

q(t, x) = E
[
ϕ(X(T ; t, x))].

Proof. Let (t, x) ∈ [0, T [×Rd be arbitrary but fix and let us write X(s) = X(s; t, x). By an application

of Itô’s formula (with V = q), we obtain for s ∈ ]t, T ]

q(s,X(s)) = q(t,X(t)) +

∫ s

t

(
∂tq(τ,X(τ)) +

d∑
i=1

bi(τ)∂xi
q(τ,X(τ))

)
dτ

+

∫ s

t

g(τ)∇q(τ,X(τ)) dW (τ) +
1

2

∫ s

t

d∑
i,j=1

aij(τ, x)∂
2
xixj

q(τ,X(τ)) dτ.
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Since q solves (1.4) and X(t) = X(t; t, x) = x, this equation can be simplified to

q(s,X(s)) = q(t, x) +

∫ s

t

g(τ)∇q(τ,X(τ)) dW (τ).

Next, we use the fact that the expected value of any Itô integral is zero. Thus, for s = T with q(T ) = ϕ

on Rd, we obtain

E
[
q(s,X(s; t, x))

]
= q(t, x), s ∈ ]t, T ]. (1.7)

The choice s = T and the fact that q(T ) = ϕ on Rd concludes the proof.

Remark: Notice that (1.7) implies that q is constant along stochastic characteristics in the following sense

d

ds
E
[
q(s,X(s; t, x))

]
= 0, (t, x) ∈ [0, T ]× Rd.

Furthermore, assuming that we can interchange d
ds and E[·], we can rewrite ∂tq = L∗q to

∂t

(
E
[
ϕ(X(T ; t, x))

])
= E

[
L∗ϕ(X(T ; t, x)

]
, (t, x) ∈ [0, T ]× Rd.

Due to the property

E
[
φ(X(s; t, x))

]
= φ(x) +

∫ s

t

E
[
L∗φ(X(τ ; t, x))

]
dτ, φ ∈ C2

c (Rd), (1.8)

which makes the connection between L∗ and X clear in a different way, L∗ is said to be the infinitesimal

generator of the stochastic process X. Equation (1.8), in a far more general setting, is also known as

Dynkin’s formula. In this context, the Fokker–Planck equation, also called Kolmogorov forward equation,

is given as the L2–adjoint. Hence, the elliptic operator from the forward equation L is given as the unique

operator that satisfies ∫
Rd

φ(x)(Lf)(x) dx =

∫
Rd

(L∗φ)(x)f(x) dx (1.9)

for all test functions f, φ ∈ C2
c (Rd). From (1.3) we consequently obtain

Lf(t, x) =
1

2

d∑
i,j=1

∂2xixj
(aij(t, x)f(t, x))−

d∑
i=1

∂xi
(bi(t, x)f(t, x)). (1.10)

Finally, we can state the main theorem of this section.

Theorem 1.1.7. Let x0 be a random variable with PDF f0 ∈ C2(Rd). Let X be the solution of the

corresponding SDE, that is, I ∋ t 7→ X(t) solves

dX(t) = b(t,X(t)) dt+ g(t,X(t)) dW (t), X(0) = x0. (1.11)

Furthermore, let X have a PDF f ∈ C1,2(I × Rd).
Then, f is the solution of the Fokker–Planck problem

∂tf = Lf on I × Rd, f(0) = f0 on Rd. (1.12)

Proof. Let φ ∈ C∞
c (Rd) be an arbitrary test function. First, we consider the Kolmogorov backward

problem. Since L∗ is the infinitesimal generator of X, we obtain

E[φ(X(t)] = E[φ(x0)] +
∫ t

0

E[L∗φ(X(s))] ds
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On the other hand, since f is the PDF of X, by Lemma 1.1.1 it holds that

E(φ[X(t))] =

∫
Rd

φ(x)f(t, x) dx, E[φ(x0)] =
∫
Rd

φ(x)f0(x) dx,∫ t

0

E
[
L∗φ(X(s))

]
ds =

∫ t

0

∫
Rd

L∗φ(x)f(s, x) dx ds.

We combine both results and since L∗ and L are adjoint to one–another, we conclude that∫
Rd

(
φ(x)f(t, x)− φ(x)f0(x)

)
dx =

∫ t

0

∫
Rd

L∗φ(x)f(s, x) dx ds

=

∫ t

0

∫
Rd

φ(x)Lf(s, x) dx ds.

By the continuity of Lf and f , and since φ was arbitrary, it follows that for all (t, x) ∈ I × Rd

f(t, x) = f0(x) +

∫ t

0

(Lf)(s, x) ds.

Lastly, taking ∂t on both sides and using the fundamental theorem of calculus, we have proven that

∂tf(t, x) = Lf(t, x), (t, x) ∈ I × Rd.

We close this section by a verification of Theorem 1.1.7 for the trivial case where the SDE is just a

Brownian motion with no force term:

Example 1.1.8. On R2 we want to derive the PDF of a Brownian motion of a large particle through

suspended medium with Theorem 1.1.7. For that purpose, we consider the following SDE

dX(t) = dW (t), t ∈ [0, T ], X(0) = x0.

It has the unique solution X(t) =W (t)+x0. In this example, we assume that the particle is with certainty

at the origin at t = 0, and hence, the PDF of the random variable x0 is a delta distribution δ0 at zero. A

ccording to Theorem 1.1.7, the corresponding PDE is the heat equation, delta distributed at t = 0

∂tf − 1

2
∆f = 0 on ]0, T ]× R2, f(0) = δ0.

It is well known that for t > 0, x ∈ R2, it holds that

f(t, x) :=
1

2πt
exp

(
−|x|2

2t

)
is a classical solution, and f(t, ·) → δ0 in the distributional sense as t → 0. On the other hand, f is

a Gaussian normal distribution with mean 0 and variance t. According to Definition 1.1.2, the Wiener

process, and hence X(t) for t > 0, is also normal distributed with the same mean and variance. Due to

uniqueness, the PDF of X(·) and the function f have to coincide. This concludes the example.

In this sense, one may say that a Brownian motion can be modelled with the heat equation, and we have

successfully verified Theorem 1.1.7.

We remark that we have not investigated the case of boundary conditions, that is, having constraints

on the motion of the particle t 7→ X(t). A typical example is that the particle cannot leave a certain

bounded domain Ω ⊂ Rd, and therefore, P (X(t) /∈ Ω) = 0, i.e., the probability of finding this particle

outside the domain is zero. For this purpose, one has to introduce τ := inf{t ≥ 0 | X(τ) /∈ Ω} which is the
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so–called stopping time or first exit time from Ω for the stochastic process X. This stopping time has to

be included into the definition of the adjoint problem from Lemma 1.1.6 and the flow of the corresponding

SDE. We omit the details due to the fact that the computation become very lengthy, and we refer the

reader to [50, Section 3]. The inclusion of a stopping time yields now Neumann boundary conditions for

the backward problem (1.4)

∇q(t, x) · n̂(x) = 0 on [0, T ]× ∂Ω,

and so–called reflecting boundary conditions for the Kolmogorov forward problem (1.12)

d∑
i,j=1

(
∂xi

(
aij(t, x) p(t, x)

)
−
(
bj(t, x) p(t, x)

)
n̂j(x)

)
= 0 on [0, T ]× ∂Ω,

where n̂ denotes the outward pointing unit normal at each point on the boundary ∂Ω.

1.2 The formulation of objective functionals for particles and their prob-

ability distribution functions

I can calculate the motion of heavenly bodies but not the madness

of people.

Isaac Newton, 1642 – 1727

In traditional optimal control problems, the goal is to find a control policy that minimizes a certain

cost function for a given deterministic system. However, in many real–world scenarios, uncertainties

play a significant role, and stochastic optimal control addresses this by considering systems with random

variables. To illustrate this, let us once again consider a large particle in a suspended medium of smaller

particles, introduced in Section 1.1. Now, we assume that the large particle is driven by a controlled force

field with the aim to follow a certain path and to reach a terminal position at time T . The force field

b[u](t, x) = F (t, x) + u(t, x)

now includes a control function u = u(t, x), that depends on the time t and position x and is an element

of a suitable set of admissible controls Uad. The function F denotes a given, exterior force field. Notice

that in this control problem, the evolution t 7→ X(t) is a stochastic process and thus putting X(t) into

an objective functional J results in a random variable. For this reason, in the framework of stochastic

optimal control, the following averaged objective is analyzed

J(X,u) := E

[∫ T

0

R(t,X(t), u(t)) dt+ T (X(T ))

]
(1.13)

for suitable functions R and T . Let us investigate, how the stochastic optimal control problem

min
u∈Uad

J(X,u) X subject to (1.14)

dX(t) = b[u](t,X(t)) dt+ g(t,X(t)) dW (t), X(t0) = x0 (1.15)

can be reformulated in a deterministic framework.

In the previous section, we have built the bridge from investigating stochastic processes X to investigating

its distribution function f . More precisely, we have shown that the stochastic processes X, given by the

SDE

X(t) = x0 +

∫ t

t0

b(s,X(s)) ds+

∫ t

t0

g(s,X(s)) dW (s), t ∈ [0, T ],
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can be described in a (mathematical) deterministic setting, that is, find its PDF f , given by the following

parabolic PDE initial value problem

∂tf = Lf on I × Rd, f(0) = f0 on Rd.

Furthermore, due to the averaged formulation of the cost functional J , we obtain, after exchanging the

integral
∫ T
0

and the expected value by Fubini and applying Lemma 1.1.1, the following

J(X,u) = E

[∫ T

0

R(t,X(t), u(t)) dt+ T (X(T ))

]

=

∫ T

0

∫
Rd

R(t, x, u(t))f(t, x) dx dt+

∫
Rd

T (x)f(x, T ) dx.

This yields a deterministic formulation of the objective, where J is now considered to be a function of f

instead of the stochastic process X

J(f, u) =

∫ T

0

∫
Rd

R(t, x, u(t))f(t, x) dx dt+

∫
Rd

T (x)f(x, T ) dx.

In conclusion, we have proven that under suitable integrability and regularity assumptions on the PDF f

and R, T , the stochastic optimal control problem (1.14) is equivalent to the PDE optimal control problem

min
u∈Uad

J(f, u) f subject to (1.16)

∂tf = Lf on I × Rd, f(0) = f0 on Rd. (1.17)

We remark that L = L[u], given in (1.10), depends on u. Furthermore, assuming the total force field b

takes the form b(t, x) = F (t, x) + u(t, x) for given F , we find that

L[u]f =
1

2

d∑
i,j=1

∂2xixj
(aijf)− div (F f)− div (u f)

belongs to the class of so–called bilinear problems in (f, u) due to the last term.

Before we conclude this section, we remark that in many cases, an optimal control problem (1.16)–(1.17)

can be written as a minimization problem of the form

min
u∈Uad

Ĵ(u). (1.18)

In that case, the PDE constraint (1.17) is built into the definition of the functional Ĵ . Assuming the

existence of a well–defined control–to–state map u 7→ G(u) = f , that maps a control u to the (unique)

solution f of (1.17), we may introduce the so–called reduced cost functional

Ĵ(u) := J(G(u), u), u ∈ Uad.

From a theoretical point of view, it is more suitable to study problems of this form rather than constrained

minimization problems of the form (1.16)–(1.17). With this in mind, we focus solely on minimization

problems of the form (1.18) in the next section.

1.3 Optimization in finite– and infinite–dimensional Banach spaces and

the importance of first– and second–order analysis

First– and second–order optimality conditions are important tools for solving minimization problems. In

this section, we recall the basic definitions and concepts for addressing infinite–dimensional optimization
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problems. Furthermore, we present a recent result from Tröltzsch and Casas [21] concerning sufficient

second-order optimality conditions, which will be crucial for the analysis of the bilinear optimal control

problems under consideration. Before delving deep into this theory, we motivate first– and second-order

analysis of optimization problems. Additionally, we highlight, with two examples, the pitfalls that can

arise in the transition from finite–dimensional optimization problems to infinite–dimensional ones.

Let us for the moment consider a finite–dimensional minimization problem, that is, we want to find local

minima of a smooth function f : Rn → R. It is well–known that a necessary condition for local minima

x̄ of f is ∇f(x̄) = 0. In other words, it is the aim of a first–order analysis to characterize the set of

critical points {x ∈ Rn | ∇f(x) = 0}, in which we can find all local minima of f . However, if the

minimization problem is non–convex, not all critical points are necessarily local minima and therefore,

we have to invoke second–order conditions to find the local minima among the set of critical points. In

the finite–dimensional framework, the positive definiteness of the Hessian ∇2f at a critical point x̄, that

is, y⊤∇2f(x̄)y > 0 for all y ∈ Rn\{0}, is a sufficient optimality condition. Moreover, this condition

is equivalent to the positivity of the smallest eigenvalue λ of the corresponding symmetric matrix, i.e.,

y⊤∇2f(x̄)y ≥ λ|y|2 for all y ∈ Rn.
Now let us consider the infinite–dimensional case J : U → R, where U is a Banach space and J is

differentiable. Typical examples of U that we consider throughout this thesis are the Lebesgue spaces

L2 and L∞ and the Sobolev space H1 on a bounded domain. At first, one needs to clarify the concept

of differentiation of J on a Banach space U , which leads us to the notion of Fréchet derivatives, given

below. Next, it turns out that the necessary first–order optimality conditions for the finite– and infinite–

dimensional case are remarkably similar, that is, once again all local minima ū ∈ U of J are found in the

set of critical points {u ∈ U | J ′(u) = 0}. When it comes to second–order conditions, however, there are

significant discrepancies, which are discussed next.

First, the positive definiteness J ′′(ū)(v, v) > 0 is in general not equivalent to the coercivity J ′′(ū)(v, v) ≥
Λ∥v∥2U for some constant Λ > 0. It is well–known that on the one hand, coercivity at a critical point ū –

in the correct setting – implies that ū is a unique local minimum of J ; the proof is essentially the same

as in the finite–dimensional case. On the other hand, positive definiteness is generally not a sufficient

condition for optimality, as demonstrated in the following example.

Example 1.3.1. Let U = L∞(0, 1) and

J(u) :=

∫ 1

0

u(t)2 (t− u(t)) dt. (1.19)

The zero–function ū(t) = 0 for t ∈]0, 1[ is a critical point of J and fulfills the positive definiteness since

for all v ∈ L∞(0, 1)\{0},

J ′(ū)v =

∫ 1

0

ū(t) (2t− 3ū(t)) v(t) dt = 0,

J ′′(ū)(v, v) =

∫ 1

0

(2t− 6ū(t)) v(t)2 dt =

∫ 1

0

2t v(t)2 dt > 0.

Therefore, if the second–order theory from the finite–dimensional setting was correct, one could conclude

that ū is a local minimizer of J in the L∞(0, 1)–norm. However, this is not true, and in order to disprove

the claim, let us consider the following sequence for n ∈ N

un(t) :=

2t for t ∈ ]0, 1/n[,

0 else.
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Consequently, J(un) = −1/n4 < 0 = J(ū) and ∥un − ū∥L∞(0,1) = 2/n. Hence, ū is not a local minimum

of J w.r.t. the L∞–norm. Notice that J ′′(ū) is also not coercive w.r.t. the L∞–norm, since there exists

no constant Λ > 0 such that∫ 1

0

2t v(t)2 dt ≥ Λ∥v∥2L∞(0,1), for all v ∈ L∞(0, 1).

The next example from [64] introduces the so called two–norm discrepancy. The example makes use of the

fact that two norms on an infinite–dimensional Banach space are in general not equivalent. Consequently,

if we speak about differentiability and coercivity of J or local uniqueness of minimizers, we need to be

precise and consistent which norm we use. Obviously, this situation cannot arise in finite–dimensional

problems since all norms are equivalent, however, it is well–known to appear in optimal control problems.

Example 1.3.2. Define for u ∈ L2(0, 1) the functional

J(u) := −
∫ 1

0

cos
(
u(t)

)
dt (1.20)

and notice that the zero–function ū(t) := 0 is a global minimizer. Furthermore, ū satisfies J ′(ū)v = 0

and is coercive w.r.t. the L2–norm

J ′′(ū)(v, v) =

∫ 1

0

cos(0)v(t)2 dt = ∥v∥2L2(0,1). (1.21)

However, ū is not a locally unique minimum in the L2–norm, that is, there are infinitely many different

global minimizers of J in any L2–neighborhood of ū. This can be seen by defining for 0 < ε < 1 the

function

uε(t) :=

0 for t ∈ ]0, ε[

2π for t ∈ [ε, 1[,

and observing that ∥uε − ū∥L2(0,1) = 2π
√
ε.

So, despite having coercivity around the local minimum, it is not isolated nor strict. Let us analyze

what went wrong. Even though we have used the same norm, L2(0, 1), for the formulation of coercivity

and uniqueness, strict local optimality is not obtained in this example. The problem is hidden in the

differentiability property of J , more precisely, J is not twice continuously Fréchet differentiable in the

space L2(0, 1), cf. [64]. Consequently, we cannot make a statement about coercivity in the L2–norm.

However, we can easily verify with the following definition that J is differentiable in the space L∞(0, T ),

and J ′′(ū) from (1.21) is the correct L∞–derivative:

Definition 1.3.3. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be two normed spaces, let M ⊂ X, x ∈M and F :M → Y .

The function F ′(x) : X → Y is said to be the Fréchet derivative of F at x if F ′(x) is a linear and bounded

operator from X to Y , i.e. F ′(x) ∈ Lin(X,Y ), and

∥F (x+ h)− F (x)− F ′(x)h∥Y
∥h∥X

−→ 0, as ∥h∥X → 0.

If this holds for every x ∈M such F is called Fréchet differentiable on M from (X, ∥ ·∥X) to (Y, ∥ ·∥Y ) or
is said to be of class C1 if the spaces and norms are clear from the context. Furthermore, such F is called

twice Fréchet differentiable on M from (X, ∥ · ∥X) to (Y, ∥ · ∥Y ) or of class C2 if F ′ :M → Lin(X,Y ) is

of class C1 on M . We write F ′′(x)(a, b) = F ′′(x)(a)(b) and notice that F ′′ : M → Lin(X; Lin(X,Y )),

that is, F ′′(x) ∈ Bilin(X,X) is a continuous bilinear mapping for any x ∈M .
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Let us remark that Fréchet differentiability may depend on the specific norms used for the spaces X and

Y . Let ∥ · ∥Xs
, ∥ · ∥Xw

and ∥ · ∥Ys
, ∥ · ∥Yw

denote two different norms on X and Y , respectively. Let the

subscript “s” denote the stronger norm and let “w” denote the weaker norm, that is, there exists some

C > 0 such that for all x ∈ X, y ∈ Y

∥x∥Xw ≤ C∥x∥Xs and ∥y∥Yw ≤ C∥y∥Ys .

Then, it is immediately apparent from the definition that Fréchet differentiability of F from (X, ∥ · ∥Xw)

to (Y, ∥ · ∥Ys) implies the Fréchet differentiability from (X, ∥ · ∥Xs) to (Y, ∥ · ∥Yw), however, the converse

is in general wrong. This is what happens in Example 1.3.2; notice that Xw = L2(0, 1) is a weaker norm

than Xs = L∞(0, 1). Therefore, even though J : L2(0, 1) → R is well–defined, twice Fréchet differentiable

from L∞(0, 1) to R and the formula for J ′′(u) makes sense for L2(0, 1) functions, J is not twice Fréchet

differentiable on L2(0, 1). Therefore, J cannot be coercive w.r.t. the L2–norm, and we cannot apply the

classical theory on second–order conditions.

Can we fix this issue by switching everywhere from the L2–norm to the L∞–norm? Unfortunately

not since J ′′(u) is not coercive w.r.t. the L∞–norm. This phenomenon often arises in optimal control

problems, where the reduced cost functional is twice Fréchet differentiable only in a stronger norm, e.g.,

L∞ but coercivity holds only for a weaker norm, such as L2.

This motivates the following essential theorem from [21] that allows to consider an optimization problem

with two different norms.

Let (U2, ∥ · ∥2) be a Hilbert space and (U∞, ∥ · ∥∞) be a Banach space with continuous embedding

U∞ ⊂ U2. Let ∅ ̸= Uad ⊂ U∞ be convex and let A ⊂ U∞ be an open set covering Uad. The objective

reads J : A→ R, and we consider the minimization problem

min
u∈Uad

J(u). (1.22)

For ε > 0, j ∈ {2,∞} and w ∈ Uj , we recall the following notation for the open ball around w

Bε(w;Uj) = {u ∈ Uj | ∥w − u∥j < ε}.

Definition 1.3.4. We say that ū is a local solution of (1.22) or a local minimizer of J in U∞, if there

exists some ε > 0 such that J(ū) ≤ J(u) holds for all u ∈ Uad ∩Bε(ū;U∞). If J(ū) < J(u) holds for this

set with u ̸= ū, we say that ū is a strict minimizer in U∞ and locally unique in U∞.

Notice that since U2 is a weaker norm, every local minimizer in U2 is also a local minimizer in U∞.

The next theorem gives a necessary first–order condition; the proof is essentially the same as in the

finite–dimensional case.

Theorem 1.3.5. Let ū be a local solution of (1.22) and let J be Fréchet differentiable in ū, both in the

sense of U∞. Then,

J ′(ū)(u− ū) ≥ 0, u ∈ Uad.

Next, we specify the conditions on the minimization problem (1.22) that involves a second–order analysis.

Let us fix ū ∈ Uad.

(C1) J : A→ R is of class C2 from (A, ∥·∥) to R and for every u ∈ Uad there exists continuous extensions

J ′(u) ∈ Lin (U2) , J ′′(u) ∈ Bilin (U2 × U2) . (C1)
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(C2) There exists Λ > 0 such that for all sequences (un)n∈N ⊂ Uad and (vn)n∈N ⊂ U2 with un → ū

strongly in U2 and vn ⇀ v weakly in U2:

J ′(ū)v = lim
n→∞

J ′(un)vn, (C2.1)

J ′′(ū)(v, v) ≤ lim inf
n→∞

J ′′(un)(vn, vn), (C2.2)

and if v = 0, then Λ lim inf
n→∞

∥vn∥22 ≤ lim inf
n→∞

J ′′(un)(vn, vn). (C2.3)

In addition to these conditions, we require the following standard first– and second–order assumptions

on ū

J ′(ū)(u− ū) ≥ 0, u ∈ Uad, (A1)

J ′′(ū)(v, v) > 0, v ∈ Cū\{0}. (A2)

with the sets

Sū := {λ(u− ū) : λ > 0 and u ∈ Uad}, (cone of feasible directions)

Cū := Sū
U2 ∩ {v ∈ U2 : J ′(ū)v = 0}, (critical cone).

Due to Theorem 1.3.5, assumption (A1) is called first–order necessary condition (FONC), and functions

ū satisfying (A1) are critical points of J .

Although proving these properties of J turns out to be very challenging, it is certainly rewarding in terms

of the statements about quadratic growth conditions, local uniqueness and coercivity of minimizers.

Theorem 1.3.6. Let ū ∈ Uad and J satisfy (A1)–(A2) and (C1)–(C2.3), respectively. Then there exists

ε, δ, ν, τ > 0 such that the following holds.

a) For all u ∈ Uad ∩Bε(ū;U2), it holds that

J(ū) +
δ

2
∥u− ū∥22 ≤ J(u).

b) For all critical points u∗ with u∗ ∈ Uad ∩Bε(ū;U2), it holds that

ū = u∗.

c) For all u ∈ Uad ∩Bε(ū;U2) and all v ∈ Eτū, it holds that

J ′′(u)(v, v) ≥ ν

2
∥v∥22,

where Eτū := {v ∈ Sū
U2

: |J ′(ū)v| ≤ τ∥v∥2}.

The proofs can be found in [21]. Before we conclude this section, let us discuss the meaning and ap-

plication of each statement. Part a) is called the quadratic growth condition and implies that ū is a

strict local minimizer. Hence, in this setting, (A2) may be referred to as sufficient second–order condition

(SSC). Furthermore, this estimate can be used as a starting point in order to derive accuracy or stability

estimates. We remark that the numerical verification of the SSC condition is generally challenging, and

we refer to [58] for the case of a semilinear elliptic optimal control problem. Assertion b) states that the

local minima ū is isolated, that is, there are no other critical points u∗ – with possibly different value

J(u∗) – close to it. This statement is of high relevance in the numerical calculation of local minima ū,

since in standard methods the zeros of J ′ are searched for, close to the presumed minimum. Thus, if there
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are infinitely many critical points close to ū, there is no chance for this procedure to be successful. There

cannot be any guarantee that the critical point one computes is the desired local minima ū, no matter

how close to ū one starts. Lastly, part c) is called a local coercivity condition on Ĵ on the extended cone

Eτu ; notice that Cū = E0
ū ⊂ Eτū . Coercivity is essential for the numerical analysis. In view of a Taylor

expansion of Ĵ around ū, we may say that coercivity implies local convexity of Ĵ .

1.4 Auxiliary results

Throughout this thesis, a few arguments or techniques will appear more frequently. Therefore, we have

collected important assertions in the following Lemma.

Lemma 1.4.1. (An Application of Egorov’s theorem)

Let M ⊂ Rd be open and bounded. Let (fk)k∈N ⊂ L∞(M) be non–negative a.e. on M with fk → f in

L1(M) and ∥fk∥L∞(M) < C for all k ∈ N. Furthermore, let (vk)k∈N ⊂ L2(M) with vk ⇀ v in L2(M).

Then, it holds that ∫
M

|v(x)|2f(x) dx ≤ lim inf
k→∞

∫
M

|vk(x)|2fk(x) dx.

Proof. A proof can be found in [21, Lemma 3.5].

Lemma 1.4.2. (Mazur’s lemma)

Let 1 < q <∞, let M ⊂ Rd be open and measurable, let (gj)j∈N ⊂ Lq(M) with gj ⇀ G in Lq(M). Then,

there exists a convex combination Gj of the functions g1, . . . , gj such that the sequence (Gj)j∈N converges

strongly to G in Lq(M).

Proof. We refer the reader to [49, Theorem 2.13] for a proof.

We recall that some f is a convex combination of g1, . . . , gj if there exists λi ∈ [0, 1], i = 1, . . . , j, such

that
∑j
i=1 λi = 1 and f =

∑j
i=1 λ

igi.

Lemma 1.4.3. (Extraction of a subsequence)

Let (X, ∥ · ∥X) be a normed space and (xk)k∈N ⊂ X. Then, (i) and (ii) are equivalent:

(i) There exists x ∈ X such that

xk → x in X as k → ∞.

(ii) There exists x ∈ X such that every subsequence
(
xk(n)

)
n∈N of (xk)k∈N has a convergent sub–

subsequence
(
xk(n(j))

)
j∈N such that

xk(n(j)) → x in X as j → ∞.

We remark that in (ii), the limit x may not depend on the selection of subsequence k(n).

Proof. The implication from (i) to (ii) is trivial. Now assume that the implication from (ii) to (i) is not

true. Hence, we find ϵ > 0 and a selection of subsequences n 7→ k(n) such that |x − xk(n)| ≥ ϵ for all

n ∈ N. Consequently, this subsequence (xk(n))n∈N has no converging sub–subsequence to x, however, this

is a contradiction to (ii).

The following special case of Grönwall’s inequality appears multiple times throughout this thesis.
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Lemma 1.4.4. (Grönwall’s inequality)

Let α ≥ 0 and 0 ≤ u, β ∈ C([0, T ]) with

u(t) ≤ α+

∫ t

0

β(s)u(s) ds, t ∈ [0, T ].

Then, u satisfies the explicit inequality

u(t) ≤ α exp

(∫ t

0

β(s) ds

)
), t ∈ [0, T ].

Proof. Let x ∈ C1([0, T ]) be the unique solution to the linear initial value problem x′(t) = β(t)x(t) with

x(0) = α. Hence, on the one hand, x(t) = α+
∫ t
0
β(s)x(s) ds, which implies u(t) ≤ x(t) for all t ∈ [0, T ].

On the other hand, x is given by x(t) = α exp
(∫ t

0
β(s) ds

)
. This proves the claim.

Lemma 1.4.5. (Higher regularity of elliptic problems)

Let M ⊂ Rd be a bounded domain. Let M have C2–boundary or let M be polygonal and convex. Let

2 ≤ q <∞, f ∈ Lq(M) and let u ∈ H1
0 (M) be a weak solution to the elliptic problem

−∆u = f in M, u = 0 in ∂M.

Then, u ∈W 2,q(M) and there exists C = C(Ω, q) such that

∥u∥W 2,q(M) ≤ C∥f∥Lq(M).

We remark that an analogous estimate holds if Ω ⊂ R is an open interval.

Proof. A proof is given in [38, Chapter 4] for the polygonal case, and in [34, Chapter 6] for the case of

smooth ∂M .

Notice that regularity results for the Poisson problem −∆u = f cover the regularity of all elliptic problems

−∆u+R(u) = f , where R(u) contains all lower order derivatives of u. To see this, simply apply Lemma

1.4.5 with r.h.s f −R(u) ∈ L2(M).

For the following lemma, let −∞ < a < 0 < b < ∞ and let Ω ⊂ Rd be a non–empty bounded domain.

Let us introduce the set of constrained test functions

Lba := {u ∈ L∞(Ω) | a ≤ u(x) ≤ b f.a.e. x ∈ Ω}.

Lemma 1.4.6. (Variational inequalities with constraints)

Let f ∈ L2(Ω) and u ∈ Lba with

⟨f, v − u⟩L2(Ω) ≥ 0 for all v ∈ Lba.

Then, for any measurable set M ⊂ Ω, it holds that
f(x) > 0 f.a.e. x ∈M =⇒ u(x) = a f.a.e. x ∈M,

f(x) < 0 f.a.e. x ∈M =⇒ u(x) = b f.a.e. x ∈M,

a < u(x) < b f.a.e. x ∈M =⇒ f(x) = 0 f.a.e. x ∈M.

Proof. Let us start with the first implication. We may assume that, after changing f on a set of measure

zero, M ⊂ Ω is either the empty set or has positive volume, and f is positive everywhere on M . Next,

define for a pointwise defined representant of u

v(x) :=

a if x ∈M,

u(x) if x ∈ Ω\M.
(1.23)
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By construction, we have that v ∈ Lba is a valid test function, and hence

0 ≤ ⟨f, v − u⟩L2(M) + ⟨f, v − u⟩L2(Ω\M).

The last term is zero, since v = u on Ω\M . Furthermore, notice that f > 0 on M and v− u = a− u ≤ 0

on M . Now we show that u = a on M almost everywhere. Assume that this is not true, i.e., there exists

a subset M ′ of M with vol(M ′) > 0 on which u ̸= a. Therefore, v − u < 0 on M ′. This, however, is an

immediate contradiction to

0 ≤ ⟨f, v − u⟩L2(M)

and we have proven that u = a on M .

The second implication can be shown analogously, where obviously a is replaced by b in the definition of

v, and the third implication follows from the first and the second one.
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2
The Fokker–Planck equation

Insight must precede application.

Max Planck, 1858 – 1947

Let us consider a drift–diffusion model given by the following SDE

dX(t) = B[u](t,X(t)) dt+ σ(t,X(t)) dW (t), X(0) = x0 (2.1)

for t ∈ [0, T ]. The function B[u] : [0, T ] × Ω → Rd denotes the drift including a control mechanism u,

and σ : [0, T ] × Ω → Rd×d represents a diffusion matrix. In Section 1.1, we have shown that the PDF

p : [0, T ]×Ω → R of this stochastic process X is given by the FP equation. Since Ω is a bounded domain,

we can additionally impose flux–zero boundary condition. Therefore, the FP problem under investigation

reads

∂tp =

d∑
i,j=1

∂2xixj

(
aij p

)
− div

(
B[u] p

)
on ΩT , (2.2)

p(0) = p0 on Ω, (2.3)

F · n̂ = 0 on [0, T ]× ∂Ω, (2.4)

with diffusion a = 1
2σ

⊤σ and probability density flux F = F [p], where for (t, x) ∈ ΩT := ]0, T [×Ω

F [p]j(t, x) :=

d∑
i=1

∂xi

(
aij(t, x) p(t, x)

)
−
(
B[u]j(t, x) p(t, x)

)
, j = 1, . . . , d.

We remark that (2.2) can be rewritten in flux form as follows

∂tp(t, x) = divF [p](t, x), (t, x) ∈ [0, T ]× Ω. (2.5)

We introduce the following assumptions:
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(F1) The drift B[u] is of the form

B[u](t, x) =M(t, x)u(t, x) + c(t, x), (t, x) ∈ ΩT

where c ∈ L∞(ΩT )
d, M ∈ L∞(ΩT )

d×m and u ∈ L∞(ΩT )
m.

(F2) The coefficients aij of a, given by the diffusion matrix a = 1
2σ

⊤σ, enjoy the regularity W 1,∞(ΩT ).

Furthermore, (aij) is elliptic in the sense that there exists θ > 0 such that

d∑
i,j=1

ξi aij(t, x) ξj ≥ θ|ξ|2, (t, x) ∈ ΩT , ξ ∈ Rd.

(F3) The initial distribution p0 is the PDF of x0 with regularity p0 ∈ L∞(Ω).

Moreover, if higher regularity of solutions to the FP problem is investigated, we may assume the following:

(F4) The initial state enjoys the higher regularity p0 ∈ H3(Ω).

(F5) M ∈ L∞(0, T ;W 1,∞(Ω))d×m and for every function u from the set of admissible controls, it holds(
M(t, x)u(t, x)

)
· n̂(x) = 0, f.a.e. x ∈ ∂Ω, f.a.e. t ∈ [0, T ].

(F6) It either holds that

(i) c ∈ L∞(0, T ;W 1,∞(Ω))d and f.a.e. t ∈ [0, T ] it holds that c(t, ·) · n̂ = 0 a.e. on ∂Ω; or

(ii) c has a potential −V ∈ C([0, T ];W 2,∞(Ω)) such that c = ∇V a.e. on ΩT .

(F7) The diffusion matrix (aij) is up to a positive constant – denoted with the same variable a > 0 – the

identity matrix.

We impose that throughout this chapter, the assumptions (F1)–(F3) hold. For certain statements, we

will additionally assume (F4)–(F7) but this will always be mentioned.

Throughout this thesis, we use CF > 0 as a generic constant that depends on given quantities in (F1)–(F3),

i.e., CF depends continuously on the real valued numbers

∥ci∥L∞(ΩT ), ∥Mij∥L∞(ΩT ), ∥aij∥W 1,∞(ΩT ), ∥p0∥∞, θ, T, i, j = 1, . . . , d (2.6)

and on certain embedding constants, depending only on Ω and its dimension d. Furthermore, the generic

constant CF∗ > 0 depends additionally on the quantities of (F4)–(F7), that is

∥V ∥L∞W 2,∞ or ∥ci∥L∞W 1,∞ and ∥Mij∥L∞W 1,∞ , ∥p0∥H2(Ω), , i, j = 1, . . . , d,

and Cu > 0 denotes a generic constant that depends continuously only on ∥u∥L∞(ΩT ) in the case of

time–space dependent controls, or on ∥u∥L∞(0,T ) in the case of only time–dependent controls. Lastly, let

us recall the abbreviations for norms of Lebesgue spaces for and Sobolev spaces

∥ · ∥q := ∥ · ∥Lq(M), q ∈ [1,∞], ∥ · ∥H1 := ∥ · ∥H1(M),

where it will be clear from the context what M ∈ {Ω, ]0, T [ ,ΩT } is.
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2.1 Existence and uniqueness of weak solutions

We start this section by deriving a weak formulation of the FP problem (2.2)–(2.5). Then, we show

existence of weak solutions in the space

W (0, T ) := H1(0, T ;H1(Ω)′) ∩ L2(0, T ;H1(Ω)),

and prove that weak solutions satisfy the typical properties of PDFs.

We begin with the derivation of a weak formulation. Let ψ ∈ H1(Ω) be a test function and consider some

smooth p that satisfies (2.4)–(2.5). An application of Green’s formula yields∫
Ω

∂tpψ dx = −
∫
Ω

d∑
i,j=1

∂xj (aijp)∂xiψ dx+

∫
Ω

pB[u] · ∇ψ dx

+

∫
∂Ω

d∑
i,j=1

∂xj
(aij p)ψ n̂i dS(x)−

∫
∂Ω

pB[u] · n̂ ψ dS(x)

= −
∫
Ω

 d∑
i,j=1

∂xj
(aijp)∂xi

ψ − pB[u] · ∇ψ

 dx

= −
∫
Ω

F [p] · ∇ψ dx,

a.e.on [0, T ]. Consequently, we obtain the following bilinear flux–operator

Ft : H1(Ω)×H1(Ω) → R f.a.e. t ∈ ]0, T [ ,

Ft(p, ψ) :=
∫
Ω

 d∑
i,j=1

∂xi

(
aij(t, x)p(x)

)
∂xj

ψ(x)− p(x)B[u](t, x) · ∇ψ(x)

 dx. (2.7)

It turns out to be convenient to rewrite F as follows

F(p, ψ) =

∫
Ω

 d∑
i,j=1

aij∂xjp ∂xiψ − p b · ∇ψ

 dx, p, ψ ∈ H1(Ω), (2.8)

with bi(t, x) := B[u]i(t, x)−
d∑
j=1

∂xjaij(t, x), (t, x) ∈ ΩT , i = 1, . . . , d. (2.9)

The well–definedness of F is shown in Lemma 2.1.2 below. Hence, given the initial distribution p0 on Ω,

we have the following weak solution concept for (2.2)–(2.4).

Definition 2.1.1. We call p ∈ W (0, T ) a weak solution to the FP problem with flux–zero boundary con-

ditions and initial state p0 if there exists some null set N ⊂ [0, T ] such that for all ψ ∈ H1(Ω) and all

t ∈ [0, T ]\N :

⟨ṗ(t), ψ⟩H1(Ω)′ + Ft(p(t), ψ) = 0, p(0) = p0 a.e. on Ω. (2.10)

We recall that H1(Ω)′ denotes the dual space of H1(Ω) with pivot space L2(Ω),

H1(Ω)′ := {f : H1(Ω) → R : ⟨f, ·⟩H′ := ⟨f, ·⟩H1(Ω)′ = f(·) is linear and continuous} (2.11)

and if f ∈ L2(Ω), then ⟨f, ·⟩H′ = ⟨f, ·⟩L2(Ω).

In the following, for similar definitions or in similar settings, we will sometimes just write “f.a.e. t ∈ [0, T ]”

instead of “for all t ∈ [0, T ]\N” with the meaning that the set of measure zero in [0, T ] is independent of

the test function ψ. For later convenience, we define for W (0, T )–functions

∥ · ∥W (0,T ) := ∥ · ∥L2(0,T ;H1(Ω)) + ∥∂t · ∥L2(0,T ;H1(Ω)′).
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Furthermore, we recall the continuous embedding

W (0, T ) ⊂ C([0, T ];L2(Ω)), (2.12)

which gives meaning to the expression p|t=0 = p(0) ∈ L2(Ω). We also remark that the first equation in

(2.10) is equivalent to the Bochner space formulation that is used frequently throughout this thesis

ṗ+ F(p, ·) = 0 in L2(0, T ;H1(Ω)′). (2.13)

Next, we establish some a–priori bounds.

Lemma 2.1.2. The flux–operator F is bounded and weakly coercive, i.e. there exists a null set N ⊂ [0, T ]

and constants CF , β, γ > 0 such that for all p, ψ ∈ H1(Ω), t ∈ [0, T ]\N

|Ft(p, ψ)| ≤ CF∥p∥H1∥ψ∥H1 (boundedness),

β∥p∥2H1 ≤ Ft(p, p) + γ∥p∥22 (weak coercivity).

Proof. In order to show boundedness, let p, ψ ∈ H1(Ω) and obtain

Ft(p, ψ) =
∫
Ω

(
d∑

i,j=1

aij(t, x)∂xip(x) ∂xjψ(x) + p(x) b(t, x) · ∇ψ(x)

)
dx

≤

(
d∑

i,j=1

∥aij∥L∞(ΩT ) +

d∑
i=1

∥bi∥L∞(ΩT )

)
∥p∥H1∥ψ∥H1 .

For the weak coercivity, we exploit the ellipticity (F2) of aij with ξ := ∇p. Consequently, we obtain f.a.e.

t ∈ [0, T ] that ∫
Ω

θ|∇p(x)|2 dx ≤
∫
Ω

d∑
i,j=1

aij(t, x)∂xip(x) ∂xjp(x) dx

≤ Ft(p, p) + ∥b∥L∞(ΩT )

∫
Ω

|p(x)||∇p(x)| dx.

Next, we use the ε–Young’s inequality c1c2 ≤ εc21 + c22/(4ε), which holds for any values c1, c2 ∈ R and

ε > 0 arbitrary, and choose c1 = |∇p|, c2 = |p| and ε = θ/(2∥b∥∞). Thus, we conclude

θ

2

∫
Ω

|∇p(x)|2 dx ≤ Ft(p, p) + ∥p∥22∥b∥∞/(4ε), f.a.e. t ∈ [0, T ]. (2.14)

Finally, adding θ
2

∫
Ω
|p(x)|2 dx to both sides of (2.14) yields the assertion with constants β := θ/2 and

γ := ∥b∥2∞/(2θ) + θ/2.

We have the following existence and uniqueness result for the weak FP problem for initial distributions

from L2(Ω).

Theorem 2.1.3. For every initial distribution p0 ∈ L2(Ω), the following holds.

a) There exists a weak solution p ∈ W (0, T ) of the Fokker–Planck problem with flux–zero boundary

conditions and p(0) = p0 in the sense of Definition 2.1.1.

b) There exists some constant CF > 0 independent of p0 such that

∥p∥L∞(0,T ;L2(Ω)) + ∥p∥L2(0,T ;H1(Ω)) + ∥∂tp∥L2(0,T ;H1(Ω)′) ≤ CFCu∥p0∥L2(Ω)
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c) p is unique in C([0, T ];L2(Ω)).

Proof. The existence of weak solutions can be shown with a standard Galerkin approach. Hence, it is

sufficient to show the a–priori estimates stated in b).

Let p denote a weak solution. Due to the continuous embedding (2.12), we can choose one representative

p ∈ C([0, T ];L2(Ω)), which is fixed from now on. This yields the following well–known identities that are

used frequently throughout this work

p(t) = p(s) +

∫ t

s

ṗ(τ) dτ and ∥p(t)∥22 = ∥p(s)∥22 + 2

∫ t

s

⟨ṗ(τ), p(τ)⟩H′ dτ, s, t ∈ [0, T ]. (2.15)

For a.e. τ ∈ [0, T ], we can choose p(τ) ∈ H1(Ω) as a test function to obtain with (2.15), Definition 2.1.1

and the weak coercivity of Ft the following estimate

∥p(t)∥22 = ∥p0∥22 − 2

∫ t

0

Fτ
(
p(τ), p(τ)

)
dτ ≤ ∥p0∥22 + 2

∫ t

0

γ∥p(τ)∥22 dτ.

Since t 7→ ∥p(t)∥2 is continuous, we have by Grönwall’s lemma

∥p(t)∥22 ⩽ e2γt ∥p0∥22, t ∈ [0, T ]. (2.16)

In order to verify the L2(0, T ;H1(Ω))–bound, we notice with Lemma 2.1.2, (2.15) and (2.16) that∫ T

0

β∥p(t)∥2H1(Ω) dt ≤
∫ T

0

(
γ∥p(t)∥22 − ⟨ṗ(t), p(t)⟩H′

)
dt

≤
∫ T

0

γe2γt ∥p0∥22 dt−
1

2

(
∥p(T )∥22 − ∥p0∥22

)
≤ 1

2
e2γT ∥p0∥22.

(2.17)

For a H1(Ω)′–bound, we only use that ⟨ṗ(t), ψ⟩H′ = −Ft(p(t), ψ) holds f.a.e. t ∈ [0, T ], and the bound-

edness of Ft to obtain

∥ṗ(t)∥H1(Ω)′ = sup
ψ∈H1(Ω)

|⟨ṗ(t), ψ⟩H′ |
∥ψ∥H1(Ω)

≤ C∥p(t)∥H1 , t ∈ [0, T ]\N. (2.18)

Consequently, the L2(0, T ;H1(Ω)′)–bound follows from the L2(0, T ;H1(Ω))–bound of p and the proof of

b) is complete.

In order to verify uniqueness, assume that p, p̃ ∈ C([0, T ];L2(Ω)) are both weak solutions to the same

initial state p0. Once again with (2.15) and Lemma 2.1.2 we have

∥p(t)− p̃(t)∥22 = −2

∫ t

0

Fτ
(
p(τ)− p̃(τ), p(τ)− p̃(τ)

)
dτ ≤ C

∫ t

0

∥p(τ)− p̃(τ)∥22 dτ.

Thus, applying Grönwall’s lemma gives the assertion and the proof is complete.

We remark that Theorem 2.1.3 remains valid if we consider controls from merely L2(0, T ;L∞(Ω))m instead

of L∞(ΩT ) by a density argument, and we refer to [5, Theorem 2.2] for a proof. In this case,

∥p∥W (0,T ) + ∥p∥L∞(0,T ;L2(Ω)) ≤ CF C(∥u∥L2(0,T ;L∞(Ω))). (2.19)

Next, we show that weak solutions of the Fokker–Planck problem satisfy the typical properties of a PDF.

This can be seen as the motivation for considering the flux–zero boundary condition. However, we remark

that these boundary conditions can be rigorously derived from the SDE (2.1) in the manner of Section

1.1.
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Corollary 2.1.4. Recall that, according to (F3), p0 is a probability distribution function, i.e.,

i)
∫
Ω
p0(x) dx = 1 and

ii) p0 ≥ 0 a.e. on Ω.

Let p be the unique weak solution in C([0, T ];L2(Ω)). Then, p(t) ∈ L2(Ω) does also have these prop-

erties for all t ∈ [0, T ]. We say that the Fokker–Planck problem with flux–zero boundary conditions is

conservative.

Proof. Due to the flux zero boundary condition, the test function appears only as a gradient in the

bilinear form F . Therefore, the conservation of the total probability follows from the definition of a weak

solution if we choose ψ = 1 ∈ H1(Ω) as a test function

0 = −
∫ t

s

Fτ (p(τ), ψ) dτ =

∫ t

s

⟨ṗ(τ), ψ⟩H′ dτ =

∫
Ω

p(t) dx−
∫
Ω

p(s) dx, 0 ≤ s, t ≤ T. (2.20)

However, since ṗ(t) is only an H1(Ω)′–function, and since the following argument appears multiple times

in this thesis, we carefully prove the last equal sign. First, recall the continuous embedding

C1([0, T ];H1(Ω)) ⊂W 1,2(0, T ;H1(Ω)′) ∩ L2(0, T ;H1(Ω)),

and the fundamental theorem of calculus for Banach space valued functions

φ(t)− φ(s) =

∫ t

s

φ̇(τ) dτ (2.21)

a.e.on Ω for all 0 ≤ s, t ≤ T, φ ∈ C1([0, T ];H1(Ω)). Hence, the last equal sign in (2.20) can be proven

with the following density argument. Let
(
pk
)
k∈N ⊂ C1([0, T ];H1(Ω)) with pk → p in W (0, T ). Now by

(2.11), Fubini and (2.21) we have∫ t

s

⟨ṗk(τ), 1⟩H′ dτ =

∫ t

s

⟨ṗk(τ), 1⟩L2(Ω) dτ =

∫
Ω

∫ t

s

ṗk(τ) dτ dx =

∫
Ω

pk(t) dx−
∫
Ω

pk(s) dx.

Taking the limit on both sides proves the conservation of the total probability.

In order to show the non–negativity of p, we consider its negative part

p− := min{p, 0} ∈ L2(0, T ;H1(0, T )) ∩ L∞(0, T ;L2(Ω)).

Note that in general p− does not belong to H1(0, T ;H1(Ω)′), nevertheless, an integration–by–parts for-

mula still holds, and we refer to [67] for a proof. This implies f.a.e. t ∈ ]0, T [

⟨ ˙p−(t), p−(t)⟩H′ = ⟨ṗ(t), p−(t)⟩H′ , and Ft(p(t), p−(t)) = Ft(p−(t), p−(t)).

This yields with p−(0) = 0 and the weak coercivity of F that for every t ∈ [0, T ]

1

2
∥p−(t)∥22 =

∫ t

0

⟨ ˙p−(τ), p−(τ)⟩H′ dτ = −
∫ t

0

Fτ (p−(τ), p−(τ)) dτ ≤ γ

∫ t

0

∥p−(τ)∥22 dτ.

Now, Grönwall’s inequality implies that ∥p−(t)∥22 ≤ 0 which in turn provides p(t) ≥ 0 a.e. on Ω.

Let us establish some standard regularity properties forW (0, T )–functions. For this purpose, let us recall

the following continuous Sobolev embeddings, cf. [1],

H1(Ω) ↪→


C1/2(Ω), if d = 1,

Lη(Ω), η ∈ [1,∞[ if d = 2,

Lq(Ω), q ∈ [1, 2d
d−2 [ if d ⩾ 3.

(2.22)
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Corollary 2.1.5. (Further regularity of W (0, T )–functions)

Let d ∈ N be the dimension of Ω. Then any function in W (0, T ) is also in L4/d+2(ΩT ) and the embedding

W (0, T ) ⋐ Lη(ΩT ), 1 ≤ η <
4

d
+ 2 (2.23)

is compact.

Proof. Due to the Gagliardo–Nirenberg interpolation inequality, we obtain the continuous embedding

W (0, T ) ↪→ L4/d+2(ΩT ). Next, let q = 2d
d−2 if d ≥ 3 and q = ∞ else. Let 1 ≤ p < q. Since the

Rellich–Kondrachov embedding H1(Ω) ⋐ Lp(Ω) is compact, we may apply Aubin–Lions Lemma on

H1(Ω) ⋐ Lp(Ω) ⊂ H1(Ω)′

to obtain the compact embedding W (0, T ) ⋐ L2(0, T ;Lp(Ω). Consequently, for any bounded sequence

(zk) ⊂W (0, T ), we have for a subsequence

zk → z in L2(0, T ;Lp(Ω)) and |zk − z| is uniformly bounded in L∞(0, T ;L2(Ω)).

With a standard interpolation estimate for Bochner spaces, we obtain

∥zk − z∥τ,r ≤ ∥zk − z∥1−α∞,2 ∥zk − z∥α2,p → 0,

where 1
τ = 1−α

∞ + α
2 and 1

r = 1−α
2 + α

p . Rearranging both equations to τ and r with τ = r yields the

assertion as p tends to q.

When we analyze FP optimal control problems, we have to consider the Fréchet derivatives of the control–

to–state map. This operator will be given implicitly by an inhomogeneous Fokker–Planck problem, and

therefore, we have to investigate existence and regularity in the following section.

2.2 The inhomogeneous Problem – obtaining uniform bounds with a De

Giorgi iteration

When you change the way you look at things, the things you look

at change.

Max Planck, 1858 – 1947

In preparation of our analysis of optimality conditions, we discuss an inhomogeneous FP equation with

a right–hand side belonging to the space L2(0, T ;H1(Ω)′). The main result of this section is the L∞–

estimate given in Theorem 2.2.3 below, which is essential for the upcoming analysis of the FP ensemble

optimal control problem in the case of time–space dependent controls. Furthermore, we present an L∞–

estimate for an inhomogeneous parabolic problem with right–hand side belonging to L∞(ΩT ), which is

needed for the adjoint problem.

Corollary 2.2.1. Let g ∈ L2(0, T ;H1(Ω)′), z0 ∈ L2(Ω) and u ∈ L2(0, T ;L∞(Ω))m. Then there exists a

unique weak solution z ∈ W (0, T ) of the inhomogeneous Fokker–Planck problem in the sense that there

exists a null set N ⊂ [0, T ] with

⟨ż(t), ψ⟩H′ + Ft(z(t), ψ) = ⟨g(t), ψ⟩H′ , t ∈ [0, T ]\N, ψ ∈ H1(Ω),

with initial condition z(0) = z0 a.e. on Ω. Additionally, there exists a constant C = CFCu, where Cu

depends continuously only on ∥u∥L2L∞ , such that

∥z∥L∞(0,T ;L2(Ω)) + ∥z∥L2(0,T ;H1(Ω)) + ∥ż∥L2(0,T ;H1(Ω)′) ≤ C
(
∥z0∥2L2 + ∥g∥L2(0,T ;H1(Ω)′)

)
.
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Proof. Due to the linearity of the Fokker–Planck equation, the proof can be easily deduced from the proof

of Theorem 2.1.3.

The following L∞–estimate is crucial for the second–order analysis and is shown with a De Giorgi iteration.

For the convenience of the reader, we state the so–called De Giorgi lemma; a proof can be found in [68,

Lemma 4.1.1].

Lemma 2.2.2. (De–Giorgi Iteration)

Let λ0 ≥ 0. Let φ : [λ0,∞ [→ [0,∞[ be a non–increasing function, satisfying for some constants M,α > 0,

β > 1 the estimate

φ(m) ≤
(

M

m− λ

)α
φ(λ)β

for all m > λ ≥ λ0. Then, there exists C > 0 such that for all λ ≥ λ0 + C

φ(λ) = 0.

Although new, the following result is known to be true for similar parabolic equations, and we were able

to use the available techniques of the proof to our case; see [14] and [68, Theorem 4.2.2]. We remark that

we impose u ∈ L∞(ΩT ) and to the best of our knowledge, merely u ∈ L2(0, T ;L∞(Ω)) is not sufficient

for an L∞–estimate.

Theorem 2.2.3. (L∞–estimates for the inhomogeneous Fokker–Planck problem)

Let z0 ∈ L∞(Ω), u ∈ L∞(ΩT ) and let z ∈ W (0, T ) ∩ C([0, T ];L2(Ω)) be the unique weak solution of the

inhomogeneous Fokker–Planck problem

⟨ż, ·⟩H′ + F(z, ·) = ⟨G, ·⟩H′ , in L2(0, T ;H1(Ω)′)

with z(0) = z0 a.e. on Ω. Let the source term be of the form

⟨Gt, ψ⟩H′ :=

∫
Ω

(
g1(t, x)ψ(x) + g2(t, x) · ∇ψ(x)

)
dx, t ∈ [0, T ], ψ ∈ H1(Ω), (2.24)

where g1 ∈ Lq(ΩT ) and g2 ∈ Lq(ΩT )
d with q > d+ 2. Furthermore, let z ∈ Lq(ΩT ). Then, z ∈ L∞(ΩT )

and there exist some constant C = CFCu > 0, where Cu depends continuously only on ∥u∥∞, such that

∥z(t)∥∞ ≤ eCt∥z0∥∞ + C (∥g1∥q + ∥g2∥q + ∥z∥q) , t ∈ [0, T ]. (2.25)

We remark that if d ∈ {1, 2}, then z ∈ Lq(ΩT ) due to Corollary 2.1.5.

Proof. For any γ > 0, λ > ∥z0∥∞, we define the C([0, T ];L2(Ω))–functions

f(t, x) := e−γtz(t, x), fλ(t, x) := max{f(t, x)− λ, 0}, (t, x) ∈ [0, T ]× Ω.

Notice that f ∈W (0, T ), hence, fλ is non–negative on ΩT , positive on the measurable set

Mλ := {(t, x) ∈ ΩT : f(t, x) > λ}

and an integration–by–parts formula holds, cf. [67]. We remark that the (d + 1)–dimensional volume of

Mλ does not depend on the choice of the pointwise defined representative of z. Furthermore, we can

assume that volMλ > 0 for all λ > ∥z0∥∞, otherwise the assertion is already shown.

Step 1: For a.e. t ∈ [0, T ], we observe that

1

2

d

dt

(
∥fλ(t)∥22

)
= ⟨ḟ(t), fλ(t)⟩ = −γ

∫
Ω

f(t)fλ(t) dx−Ft(f(t), fλ(t)) + Gt(fλ(t)), (2.26)
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since p solves ⟨p, ·⟩ = −Ft(p, ·) in L2(0, T ;H1(Ω)′) and fλ(t) ∈ H1(Ω). Due to (F2), we find that a.e. on

[0, T ] it holds that

−F(f, fλ) = −
∫
Ω

 d∑
i,j=1

aij∂xi
fλ∂xj

fλ − fb · ∇fλ

 dx

≤ −θ
∫
Ω

|∇fλ|2 dx+

∫
Ω

fb · ∇fλ dx.

(2.27)

In the first step, we have used the fact that fλ = 0 on ΩT \Mλ and ∇fλ = ∇f on Mλ.

Now, since λ > ∥z0∥∞, we have ∥fλ(0)∥2 = 0. Combining (2.26) and (2.27), and integrating with respect

to t yields

1

2
∥fλ(t)∥22 = −γ

∫ t

0

∫
Ω

f(s, x)fλ(s, x) ds dx−
∫ t

0

Fs(f(s), fλ(s)) ds+
∫ t

0

Gs(fλ(s)) ds

≤
∫ t

0

(
−γλ

∫
Ω

fλ dx− γ∥fλ∥22 − θ∥∇fλ∥22
)
ds

+

∫ t

0

∫
Ω

(g1fλ + (g2 + fb) · ∇fλ) dx ds,

(2.28)

where we suppress the arguments of the functions in the last step for the sake of clarity. We use the

ε-Young inequality to obtain on Mλ

(g2 + fb) · ∇fλ ≤ 4

ε

(
|fb|2 + |g2|2

)
+ 2ε|∇fλ|2, g1fλ ≤ 4

ε
g21 + εf2λ.

Since −γλ
∫
Ω
fλ(t, x) dx is non–positive, we obtain with (2.28) the following inequality

1

2
∥fλ(t)∥22 ≤

∫ t

0

(
(ε− γ) ∥fλ(s)∥22 + (2ε− θ) ∥∇fλ(s)∥22

)
ds

+
4

ε

(
∥g1∥2L2(Mλ)

+ ∥g2∥2L2(Mλ)
+ ∥b∥2∞∥f∥2L2(Mλ)

)
.

Next, the choice ε = θ/4, γ = θ/2 results in both (2ε− θ) and (ε− γ) being negative; thus we arrive at

∥fλ∥2∞,2 + ∥fλ∥22,H1 ≤ C
(
∥g1∥2L2(Mλ)

+ ∥g2∥2L2(Mλ)
+ ∥f∥2L2(Mλ)

)
. (2.29)

Step 2: Since fλ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), Corollary 2.1.5 yields fλ ∈ Lη(ΩT ) for all

1 ≤ η < 2 +
4

d
,

and we can bound

∥fλ∥η ≤ C∥fλ∥1−α∞,2 ∥fλ∥α2,H1 ≤ C
(
∥fλ∥2∞,2 + ∥fλ∥22,H1

)1/2
,

where we used Young’s inequality for the second estimate. Next, we apply Hölder’s inequality with the

indicator function and exponent κ′ := q/2 with dual κ to obtain for i = 1, 2∫
Mλ

|gi|2 dt dx ≤ ( volMλ)
1/κ

(∫
Mλ

|gi|2κ
′
dt dx

)1/κ′

,∫
Mλ

|f |2 dt dx ≤ ( volMλ)
1/κ

(∫
Mλ

|f |2κ
′
dt dx

)1/κ′

.

This implies with (2.29) and q = 2κ′ the estimate

∥fλ∥η ≤ C ( volMλ)
1/(2κ)

G, with G :=
(
∥g1∥Lq(ΩT ) + ∥g2∥Lq(ΩT ) + ∥f∥Lq(ΩT )

)
. (2.30)
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Step 3: In this step, we bring the previous results together and consider the well–defined, non–increasing

function φ(λ) := volMλ, defined for λ ∈ [ ∥f0∥∞,∞[ . Now let m > λ > ∥f0∥∞. Hence, Mm ⊂ Mλ and

on Mm, it holds that m− λ ≤ f − λ = fλ. Thus, by (2.30), we obtain

φ(m)(m− λ)η =

∫
Mm

(m− λ)η ≤
∫
Mλ

fηλ dt dx ≤ C (φ(λ))
η/(2κ)

Gη,

and therefore, it holds that φ(m) ≤ C (G/(m− λ))
η
(φ(λ))η/(2κ).

In order to apply the De–Giorgi Iteration, we must verify that the exponent η/(2κ), which is β in Lemma

2.2.2, is greater than 1.

We recall that κ = κ′

κ′−1 = q
q−2 and 1 ≤ η < 2 + 4

d , and consequently, we obtain the condition
(2+4/d)(q−2)

2q > 1. Rearranging for q, we obtain the condition q > d + 2. Thus, we may apply Lemma

2.2.2, which implies volMm = 0 for m ≥ ∥f0∥∞ + CG.

Analogously, we can show that the set M−
λ := {(t, x) ∈ ΩT : f(t, x) < −λ} has measure zero for

sufficiently large λ by considering f−λ := (f + λ)− instead of fλ, which yields the desired lower bound of

f . Combining both results, we have shown that

∥f∥∞ ≤ ∥f0∥∞ + C(∥g1∥q + ∥g2∥q + ∥f∥q).

Since f(t, x) := e−γtz(t, x) we have proven estimate (2.25) under the assumption that z ∈ Lq(ΩT ). Now,

for the case d ∈ {1, 2}, Corollary 2.1.5 states that W (0, T ) ⊂ Lq(ΩT ). This continuous embedding and

the fact that z ∈W (0, T ) concludes the proof.

We remark that the assumption on the exponent q can be weakened if g2 = 0. For the analysis of

optimality conditions for the FP control problem, we need L∞–bounds for the adjoint problem. The

existence of solutions in W (0, T ) is established in Section 3.4.

Theorem 2.2.4. (L∞–estimates for the adjoint problem)

Let y0 ∈ L∞(Ω), g, u ∈ L∞(ΩT ) and let y ∈W (0, T )∩C([0, T ];L2(Ω)) be the unique weak solution of the

following problem

⟨ẏ, ·⟩H′ + F(·, y) = ⟨g, ·⟩H′ , in L2(0, T ;H1(Ω)′)

with y(0) = y0 a.e. on Ω. Let q > d+ 2. If g ∈ Lq(ΩT ) and ∇y ∈ Lq(ΩT )
d, then y ∈ L∞(ΩT ) and there

exists some C = CFCu > 0 such that

∥y(t)∥∞ ≤ et∥y0∥∞ + C(∥g∥∞ + ∥∇y∥q), t ∈ [0, T ]. (2.31)

Proof. The proof can be done analogously to the one of Theorem 2.2.3; notice that the only change is y

appearing in the second argument of F(·, ·) instead in the first one as in the FP problem. Therefore, we

similarly define f(t, x) := e−γty(t, x) and fλ(t, x) := (f(t, x)−λ)+, and we see that equation (2.26)–(2.27)

changes to

1

2

d

dt

(
∥fλ(t)∥22

)
= ⟨ḟ(t), fλ(t)⟩ =

∫
Ω

(
g(t)fλ(t)− γf(t)fλ(t)

)
dx−Ft(fλ(t), f(t))

f.a.e. t ∈ [0, T ] and

−F(fλ, f) ≤ −θ
∫
Ω

|∇fλ|2 dx+

∫
Ω

fλb · ∇f dx, a.e. on [0, T ].
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Consequently, estimate (2.28) becomes f.a.e. t ∈ [0, T ]

1

2
∥fλ(t)∥22 ≤

∫ t

0

(
−γλ

∫
Ω

fλ(s, x) dx− γ∥fλ(s)∥22 − θ∥∇fλ(s)∥22
)
ds

+

∫ t

0

∫
Ω

fλ(s, x)(b(s, x) · ∇f(s, x) + g(s, x)) dx ds.

We apply the ε–Young inequality to estimate fλ(b · ∇f + g) ≤ εf2λ + 4
ε (b · ∇f + g)2 on Mλ, and since

γλ
∫
Ω
fλ dx ≥ 0, we obtain

1

2
∥fλ(t)∥22 ≤

∫ t

0

(
−γ∥fλ(s)∥22 − θ∥∇fλ(s)∥22

)
ds

+ ε

∫ t

0

∫
Ω

|fλ(s, x)|2 ds dx+
4

ε

∫ t

0

∫
Ω

(b(s, x) · ∇f(s, x) + g(s, x))2 dx ds

≤
∫ t

0

(
(ε− γ)∥fλ(s)∥22 − θ∥∇fλ(s)∥22

)
ds+

8

ε

(
∥b∥2∞∥∇f∥22 + ∥g∥22

)
.

We recall that we use the same notation ∥ · ∥p for the Lp–norm over Ω and ΩT . Once again, we choose

ε and γ such that (ε− γ) is negative – in contrast to the proof of Theorem 2.2.3, we may simply choose

γ = 1 and ε = 1/2 – and we arrive at

∥fλ∥2∞,2 + ∥fλ∥22,H1 ≤ C
(
∥g∥2L2(Mλ)

+ ∥∇f∥2L2(Mλ)

)
.

Next, we follow step 2 of the proof of Theorem 2.2.3 and obtain (2.30) with G := ∥g∥q + ∥∇f∥q. Step 3

can be done completely analogously, and we arrive at

∥f∥∞ ≤ ∥f0∥∞ + C(∥g∥q + ∥∇f∥q).

The assertion follows from the fact that f(t, x) = e−ty(t, x), which implies ∥f0∥∞ = ∥y0∥∞. This

concludes the proof.

Let us remark that the estimate (2.31) is not optimal, since the choice γ = 1 and ε = 1/2 in the proof

have not been optimal.

2.3 Higher regularity of solutions to parabolic problems

In this section, we establish higher regularity of weak solutions to the Fokker–Planck problem and related

parabolic problems under all assumptions (F1)–(F7). Let us state a well–known result from [34, Theorem

5] for a parabolic problem with Dirichlet boundary conditions. Let

y ∈ L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω))

be a weak solution to the inhomogeneous problem

∂ty + Ly = g on ΩT

with r.h.s. g, initial condition y(0) = y0 on Ω and Dirichlet boundary condition y(t, ·) = 0 in the trace

sense on ∂Ω for a.e. t ∈ [0, T ]. Then, if the coefficients of L are sufficiently smooth, y0 ∈ H1
0 (Ω) and

g ∈ L2(ΩT ), the weak solution y enjoys the higher regularity

y ∈ L2(0, T ;H2(Ω)) ∩ C([0, T ];H1
0 (Ω)), ∂ty ∈ L2(ΩT ).
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To the best of our knowledge, an analogous result does not exist in general for our FP problem with the

flux–zero boundary conditions (2.4). In [59, Section 3], it is claimed that higher regularity can be shown

by a classical bootstrap argument, but no proof is given, and it seems difficult to verify the claim in this

general setting. In the works of [5,13], the authors deduce higher regularity by a different approach, which

is discussed next. In both papers, the idea is that the Fokker–Planck problem with flux zero boundary

conditions can be rewritten as a heat equation with Neumann–boundary conditions under the condition

(F4) on M, c and u. This is demonstrated in the following lemma.

Lemma 2.3.1. Let the conditions (F1)–(F7) hold. Let p be a weak solution of the FP problem.

a) If (F6 i) holds, then p is a weak solution to the following linear heat problem

∂tp− a∆p = f1 on ΩT ,

p(0) = p0 on Ω,

∇p · n̂ = 0 on [0, T ]× ∂Ω,

where the r.h.s. f1 is defined as

f1(t, x) := div
(
p(t, x)B[u](t, x)

)
, (t, x) ∈ ΩT .

b) If (F6 ii) holds, i.e., c has a potential V , then w := eV/ap is a weak solution of

∂tw − a∆w = f2 on ΩT ,

w(0) = p0 on Ω,

∇w · n̂ = 0 on [0, T ]× ∂Ω,

where we have possibly changed V up to a constant such that V (0, ·) = 0 a.e. on Ω. The r.h.s. f2

is defined for (t, x) ∈ ΩT as

f2(t, x) := −c(t, x) · ∇w(t, x)− 1

a
w(t, x) c(t, x)⊤M(t, x)u(t, x) + div

(
w(t, x)M(t, x)u(t, x)

)
.

Proof. Let (F6 i) be fulfilled, that is, f.a.e. t ∈ [0, T ] we have c(t, ·) · n̂ = 0 a.e. on ∂Ω. Due to this and

(F5), we have (pB[u]) · n = 0 on [0, T ]× ∂Ω. Hence, for any test function ψ ∈ H1(Ω), it holds that∫
ΩT

pB[u] · ∇ψ dx = −
∫
Ω

div
(
pB[u]

)
ψ dx = −⟨f1, ψ⟩L2(Ω).

This proves the first claim.

Next, let (F6 ii) hold and define w := eV/ap; notice that p and w enjoy the same regularity, up to the

regularity of V . Obviously, w(0) = eV (0)/ap(0) = p0 a.e. on Ω. With the chain rule, we compute the

weak derivatives

∇p = e−V/a∇w − e−V/a∇V w

a
= e−V/a

(
∇w − cw

a

)
, a.e. on ΩT .

We insert the formulas for ∇p and p into the flux–zero boundary conditions to obtain

0 =
(
∇p+ pB[u]

)
· n̂ = a e−V/a∇w · n̂, a.e. on [0, T ]× ∂Ω.

Since a and e−V/a are positive, this implies

∇w · n̂ = 0 a.e. on [0, T ]× ∂Ω.
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Lastly, the formula for f2 is obtained by computing div (eV/a(∇p + cp/a)) and applying the boundary

conditions,

a

∫
Ω

∇w · ∇ψ dx = a

∫
Ω

eV/a
(
∇p+ cp

a

)
· ∇ψ dx = −⟨f2, ψ⟩L2(Ω).

This shows the second claim.

Higher regularity of p depends on the regularity of f1 and f2, which in turn depends on the set of

admissible controls under consideration. In general, if u is space dependent, derivatives of u appear in f1

and f2. Therefore, one would need a set of admissible controls such that the spatial derivatives of u are

essentially bounded, in order for f1 and f2 to be in L2(ΩT ). Therefore, the following Lemma is the key

for higher regularity but in our setting only applicable in the case of only time–dependent controls.

Lemma 2.3.2. Let the conditions (F1)–(F7) hold. Let the control u ∈ L∞(0, T )m be only time–dependent.

a) The functions f1 and f2 defined in Lemma 2.3.1 are in L2(ΩT ), and p satisfies (depending on the

case (F6 i) or (F6 ii) for j = 1, 2)

∥p∥W (0,T ) + ∥p∥C([0,T ];H1(Ω)) ≤ CF∗
(
∥fj∥L2(ΩT ) + ∥p0∥H1(Ω)

)
.

b) The mapping f 7→ p is also continuous from L2(ΩT ) to C1/2([0, T ];L2(Ω)) ∩ C([0, T ];H1(Ω)) and

compact from L2(ΩT ) to C([0, T ];L
2(Ω)), where p is a weak solution to

∂tp− a∆p = f on ΩT ,

p(0) = p0 on Ω,

∇p · n̂ = 0 on [0, T ]× ∂Ω.

Proof. The proof is given in the Appendix of [5].

Let us summarize the issue of higher regularity of solutions to the FP problem. When we consider

second–order conditions of an optimization problem constrained by the FP problem, it turns out that

solutions merely in W (0, T ) are not enough to prove certain statements.

In the case of space–dependent controls, we will see quickly that it is convenient to work with essentially

bounded solutions. For that purpose, we have established the L∞–estimate in the previous section;

however, this restricts us to dimensions d ∈ {1, 2, 3} of Ω.

In the case of only time–dependent controls, we have a second option and can avoid the necessity of

essentially bounded solutions. This is done by rewriting the FP problem as a linear heat equation with

a r.h.s. and then apply Lemma 2.3.2. This gives weak solutions in C([0, T ];H1(Ω)), a very useful

compactness result and holds in all dimensions d ∈ N of Ω. When we are interested in the numerical

analysis for the FP problem, we need to obtain even higher regularity than C([0, T ];H1(Ω)). For this

purpose, let us introduce Bessel potential spaces and Sobolev–Slobodeckij spaces, which allow a finer

classification of functions from Sobolev spaces.

Definition 2.3.3. (Bessel potential space and Sobolev–Slobodeckij space)

Let n ∈ N and let D ⊂ Rn be a bounded domain.

a) For f ∈ L2(Rn), we denote by

f̂(ξ) :=

∫
Rn

f(x)e−2πix·ξ dx, ξ ∈ Rn

the Fourier transform of f . The Fourier transform ·̂ is an isomorphism on L2(Rn), and its inverse

is denoted by f̌ .
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b) For q ∈ [1,∞[ and s ∈ R, we define the Bessel potential space

Hs
q (Rn) :=

{
f ∈ Lq(Rn) : ǧs ∈ Lq(Rn) with gs(ξ) := (1 + |ξ|2)s/2f̂(ξ), ξ ∈ Rn

}
with the norm

∥f∥Hs
q (Rn) := ∥ǧs∥Lq(Rn).

Furthermore, we define

Hs
q (D) :=

{
f|D : f ∈ Hs

q (Rn)
}

with the norm

∥f∥Hs
q (D) := inf

{
∥h∥Hs

q (Rn) : h ∈ Hs
q (Rn) and h|D = f

}
.

c) For q ∈ [1,∞[ and s ∈ ]0, 1[ , we define the Sobolev–Slobodeckij space

W s,q(D) :=

{
f ∈ Lq(D) :

∫
D

∫
D

|f(x)− f(y)|q

|x− y|n+sq
dx dy <∞

}
with the norm

∥f∥W s,q(D) :=

(∫
D

|u(x)|q dx+

∫
D

∫
D

|f(x)− f(y)|q

|x− y|n+sq
dx dy

)1/q

We remark that the Sobolev–Slobodeckij space can be seen as the extension of the Sobolev spaceW k,q(D),

k ∈ N for fractional derivatives. In view of that, the Sobolev–Slobodeckij spaceW k+s,q(D) can be defined

as the set of functions from W k,p(D) with weak k–th derivatives in W s,q(D). Moreover, the Bessel

potential space can be seen as the extension of the Hilbert space Hs(D), s ∈ R, for other exponents than
q = 2, and we notice that

W s,2(D) = Hs
2(D) = Hs(D).

Furthermore, we collect the following basic properties of the Bessel potential space and Sobolev–

Slobodeckij space. We refer the reader to [63, Remark 1.96] and [26, 55] for the well–definedness of

the Bessel spaces and Sobolev–Slobodeckij spaces and for the proof of the following lemma.

Lemma 2.3.4. Let n ∈ N and let D ⊂ Rn be a bounded domain.

a) For all s ∈ ]0, 1[ and q ∈ ]1, 2], it holds that

W s,q(D) ↪→ Hs
q (D).

b) For all s ∈ ]0, 1[ and q ∈ [2,∞[, it holds that

Hs
q (D) ↪→W s,q(D).

c) If sq < n, then for any q∗ ∈ [1, nq
n−sq ] it holds that

Hs
q (D) ↪→ Lq

∗
(D).

We remark that this is the extension of the Gagliardo–Nirenberg–embedding W k,q(D) ↪→ Lq
∗
(D) for

k ∈ N.

d) If sq > n and if l + α = s− n/q with α ∈ ]0, 1[ and l ∈ N0, it holds that

Hs
q (D) ↪→ Cl,α(D),

which is the extension of Morrey’s embedding into Hölder spaces W k,q(D) ↪→ Cl,α(D).
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The Bessel potential spaces play a crucial role for the analysis of the FP optimal control problem, due to

the following result on maximal regularity for parabolic problems from [57].

Theorem 2.3.5. (On maximal Lp–regularity)

Let 1 < q < ∞, q ̸= 3/2, q ̸= 3 and let p ∈ W (0, T ) be the unique weak solution of the inhomogeneous

heat equation with Neumann boundary conditions

∂tp(t, x)−∆p(t, x) = f(t, x) (t, x) ∈ [0, T ]× Ω, (2.32)

p(0, x) = p0(x) x ∈ Ω, (2.33)

∇p(t, x) · n̂(x) = 0 (t, x) ∈ [0, T ]× ∂Ω. (2.34)

Then, p has the higher regularity

p ∈ H1
q (0, T ;L

q(Ω)) ∩ Lq(0, T ;H2
q (Ω))

if and only if

f ∈ Lq(ΩT ), p0 ∈W 2−2/q
q (Ω),

and the compatibility condition ∇p0 · n̂ = 0 on ∂Ω holds if q > 3.

Furthermore, by standard interpolation arguments, we obtain that

H1
q (0, T ;L

q(Ω)) ∩ Lq(0, T ;H2
q (Ω)) ↪→ H1−θ

q (0, T ;H2θ
q (Ω)), θ ∈ ]0, 1[ .

In order to gain higher regularity for FP solutions with Theorem 2.3.5, we need to consider the regularity

of the r.h.s. f ; for simplicity, let us consider the case a) in Lemma 2.3.2 with f = div (pB[u]). Thus, the

regularity of f strongly depends on the space of admissible controls under investigation.

Let us consider the simple case of only time–dependent controls from L∞(0, T )m with (F1)–(F7). Since

B[u] =Mu+ c with

M ∈ L∞(0, T ;W 1,∞(Ω))d×m, c ∈ L∞(0, T ;W 1,∞(Ω))d

we obtain that divB[u] ∈ L∞(ΩT ). Thus, p ∈W (0, T ) implies

f = div (pB[u]) ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;Lp
∗
(Ω)) ↪→ Lη(ΩT ),

see Corollary 2.1.5 for the latter embedding and the definition of p∗ and η. Consequently, Theorem 2.3.5

lifts the regularity of p from W (0, T ) to H1
η (0, T ;L

η(Ω)) ∩ Lη(0, T ;H2
η (Ω)). Since p appears in f , we

may say that p lifted its regularity on its own, and we can repeat this argument – often referred to as

bootstrap argument – as long as we obtain improvement in the regularity of f .

2.4 The control–to–state map, Fréchet differentiability and the lin-

earized state equation

In this section, we introduce and analyze the mapping of a control u to its corresponding state p solving

our Fokker–Planck problem. Moreover, we prove compactness of this FP control–to–state map for time–

and time–space dependent controls. In the case of only time–dependent controls, we will exploit the

higher regularity of p, established in the previous section. For time–space dependent controls, we rely on

L∞–estimates given by Theorem 2.2.3, and therefore, we are restricted to d ∈ {1, 2, 3} in that case.
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Let the assumptions (F1)–(F3) from Chapter 2 hold and let −∞ < umin < umax < ∞, where Cad > 0

stands for a generic constant that depends continuously only on |umin| and |umax|. We define the set of

admissible controls for the time–space and time–dependent case as follows.

Uad :=
{
u ∈ L∞(ΩT )

m : umin ≤ ui ≤ umax, a.e. on ΩT , i = 1, . . . ,m
}
,

UTad :=
{
u ∈ L∞(0, T )m : umin ≤ ui ≤ umax, a.e. on [0, T ], i = 1, . . . ,m

}
.

(2.35)

(U1) For time–space dependent controls, we introduce the Hilbert spaces

Y1 := L2(ΩT )
m, Y2 := L2(0, T ;H1

0 (Ω))
m, Y3 := H1(ΩT )

m

and the admissible sets

U jad := Uad ∩ Yj , for j ∈ {1, 2, 3}.

(U2) For only time–dependent controls, we analogously define

YT := L2(0, T )m and YH := H1(0, T )m,

and admissible sets UTad and UT,Had := UTad ∩H1
0 (0, T )

m.

Throughout this chapter, we use the symbol U to represent any of these set of admissible controls and

the symbol Y for any Hilbert space from above. We remark that the admissible sets are convex, bounded

and closed w.r.t. the corresponding norm. Furthermore, we notice that the interior of U jad and UT,jad

with respect to the L∞–norms are non–empty, which gives meaning to Fréchet differentiability on the

admissible sets.

Obviously, one could generalize the constant box–constraints to vector valued functions umin, umax : ΩT →
Rm or umin, umax : [0, T ] → Rm that are measurable and bounded functions such that the interior of the

admissible set is non–empty. We are not pursuing that generalization, since we rather prefer to keep the

notations simple.

The control u is from here on added to the notation of the bilinear flux and F [u] is written instead of

just F . Due to Theorem 2.1.3 and the remark below, the following definition is well–posed for fixed p0.

Definition 2.4.1. There exists a unique, non–linear, continuous mapping

G : L2(0, T ;L∞(Ω))m →W (0, T ), u 7→ G(u), (2.36)

such that p = G(u) represents the weak solution of the Fokker–Planck problem (2.2)–(2.4):

⟨∂tp, ·⟩H′ + F [u](p, ·) = 0 in L2(0, T ;H1(Ω)′),

p(0) = p0 in L2(Ω).

The operator G maps any admissible control to the associated state and is therefore referred to as the

control–to–state operator. In the case of only time–dependent controls, we have an analogous definition

for G : L2(0, T )m →W (0, T ).

We remark that we prefer to use the same notation G in the case of time–space and only time–dependent

controls, i.e., we will write G : L2(0, T ;L∞(Ω))m →W (0, T ) and G : L2(0, T )m →W (0, T ).

Next, we discuss further properties of the control–to–state map G, that is, Fréchet differentiability,

Lipschitz continuity and compactness. We will start with a partial result on compactness in the L2(ΩT )–

norm and then derive differentiability and Lipschitz continuity. With these three properties, we can lastly

prove the compactness of G in the W (0, T )–norm.
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Throughout this chapter, we will often encounter the bilinearity of F in the control and state argument.

What we mean by this is the following. For u1, u2 ∈ L2(0, T ;L∞(Ω))m and p1 := G(u1), p2 := G(u2), we

have for all test functions ψ ∈ H1(Ω)

F [u1](p1, ψ)−F [u2](p2, ψ) = F [u1]((p1 − p2), ψ)− ⟨p2M(u1 − u2),∇ψ⟩L2(Ω)

= F [u2]((p1 − p2), ψ)− ⟨p1M(u1 − u2),∇ψ⟩L2(Ω).
(2.37)

Lemma 2.4.2. (Compactness of G on the set of admissible controls)

Let (uk)k∈N ⊂ U , where U denotes one of the admissible sets under consideration in this chapter, that is

U = U jad for j = 1, 2, 3, or U = UTad or UT,Had .

Then there exists u ∈ U such that for a subsequence

G(uk) → G(u) strongly in L2(ΩT ).

Proof. Obviously, it is enough to show the assertion for the case U = Uad since all the other set of

admissible controls can be seen as subset of Uad. Now let (uk)k∈N ⊂ Uad. Due to the box–constraints,

each component of uk is bounded in L∞(ΩT ) uniformly in k by a constant Cad. Hence, there exists

u ∈ Uad and a weakly* convergent subsequence such that, keeping the same index,

uk ⇀∗ u in L∞(ΩT )
m.

Notice that L∞(ΩT ) is the dual of L1(ΩT ), so we can identify uk as an element of L1(ΩT )
′ and obtain

that ∫
ΩT

uk(t, x)g(t, x) dt dx→
∫
ΩT

u(t, x)g(t, x) dt dx

for all g ∈ L1(ΩT ). Next, due to Theorem 2.1.3, we obtain that G(uk) is bounded inW (0, T ) uniformly in

k by a constant CFCad <∞. Hence, after possibly extracting a subsequence, G(uk) converges weakly in

W (0, T ) to some p, and an application of Corollary 2.1.5 yields that G(uk) → p strongly in L2(ΩT ) (even

strongly in Lτ ((0, T );L2(Ω)) for all τ ≥ 1). Lastly, we need to verify that p solves the FP problem with

control u since uniqueness then implies G(u) = p. Let us denote pk := G(uk) and recall that a = (aij) is

the diffusion matrix. Due to the weak convergence of (pk) in W (0, T ), we obtain for the linear terms∫ T

0

(
⟨ṗk(t), φ(t)⟩H′ +

∫
Ω

∇pk(t, x)⊤a(t, x)∇φ(t, x) dx
)
dt

−→
∫ T

0

(
⟨ṗ(t), φ(t)⟩H′ +

∫
Ω

∇p(t, x)⊤a(t, x)∇φ(t, x) dx
)
dt, as k → ∞,

for all φ ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) with φ(T, ·) = 0. The other linear terms, that is only pk

appears but no uk, are treated analogously. The interesting part is the convergence of the bilinear term∫
ΩT

pkMuk · ∇φ→
∫
ΩT

pMu · ∇φ. We include the mixed term pMuk · ∇φ and observe that∣∣∣ ∫
ΩT

(pk − p)(Muk) · ∇φ
∣∣∣ ≤ ∥pk − p∥L2(ΩT )∥M∥L∞(ΩT )Cad∥φ∥L2H1 → 0

due to the L2(ΩT )–strong convergence of pk → p. Furthermore, it holds that∫
ΩT

p(M(uk − u)) · ∇φ→ 0, as k → ∞

since p∇φ⊤M is in L1(ΩT )
m and uk ⇀∗ u in L∞(ΩT )

m. Consequently, passing to the limit, we conclude

that p is a weak solution, and therefore, it holds that p = G(u). This completes the proof.
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In the case of only time–dependent controls with controls from H1(0, T )m, no box–constraints need to

be imposed to obtain compactness of G. This is due to compact embedding L2(0, T ) ⋐ H1(0, T ) and the

a–priori estimate of p w.r.t. u in the L2(0, T )–norm (2.19). The control–to–state map G on L2(0, T )m is,

however, not compact.

We start with the Fréchet differentiability; notice that it is sufficient to prove this property for the largest

space L2(0, T ;L∞(Ω))m, see definition 1.3.3 and the remark below. We consider the functional

H :W (0, T )× L2(0, T ;L∞(Ω))m → L2(0, T ;H1(Ω)′)× L2(Ω),

H(p, u) :=
(
H1(p, u), H2(p(0))

)
:= (ṗ+ F [u](p, ·), p(0)− p0).

First, we see that both components of H are arbitrarily often continuously Fréchet differentiable on

W (0, T ) × L2(0, T ;L∞(Ω))m. Now, observe that H was defined such that H(p, u) = (0, 0) iff p is a

solution of the Fokker–Planck problem with drift u and initial PDF p0. Hence, H(G(u), u) = (0, 0) for

all u ∈ L2(0, T ;L∞(Ω))m. Next, we recall the implicit function theorem on Banach spaces. In order to

apply this theorem, we have to show that the mapping

W (0, T ) ∋ z 7→ DpH(p, u)(z) = (ż + F [u](z, ·), z(0)) ∈ L2(0, T ;H1(Ω)′)× L2(Ω) (2.38)

is an isomorphism. This follows immediately from Corollary 2.2.1, specifically, the injectivity follows by

the uniqueness and the surjectivity by the existence result.

Hence, the implicit function theorem is applicable for any starting points (p, u) ∈ W (0, T ) × L∞(ΩT )
m

with H(p, u) = (0, 0). Finally, we can deduce that G is continuously Fréchet differentiable in u ∈
L2(0, T ;L∞(Ω))m if we apply this theorem in (G(u), u). This yields a continuously Fréchet differentiable

function G̃ withH(G̃(u), u) = (0, 0) on an open neighborhood u ∈ Ũ ⊂ L2(0, T ;L∞(Ω))m. By uniqueness,

G̃ = G on Ũ , and since u was chosen arbitrarily, we obtain the differentiability of G on L∞(ΩT )
m.

Furthermore, differentiating H(G(u), u) = 0 with respect to u gives an implicit formula for G′(u), namely

DpH(G(u), u)G′(u)(v) +DuH(G(u), u)(v) = 0, u, v ∈ L2(0, T ;L∞(Ω))m. (2.39)

Notice that G maps to W (0, T ), and hence, for all u, v ∈ L2(0, T ;L∞(Ω))m, it holds that G′(u)v ∈
W (0, T ). Therefore, we may calculate the Fréchet derivative of H1 at (p, u) in direction v ∈
L2(0, T ;L∞(Ω))m. For any test function φ ∈W (0, T ), we have a.e. on [0, T ]

DuH1(p, u)(v)(φ) = lim
α→0

F [u+ αv](p, φ)−F [u](p, φ)

α
=

∫
Ω

p (Mv) · ∇φdx. (2.40)

Plugging (2.40) and (2.38) into (2.39) implies that z := G′(u)v solves the so–called linearized state

equation (in weak form) at (G(u), u) = (p, u) in direction v ∈ L∞(ΩT )
m

⟨ż, ·⟩H′ + F [u](z, ·) = ⟨f lin[u, v], ·⟩H′ in L2(0, T ;H1(Ω)′), (2.41)

z(0) = 0 a.e. on Ω.

where for ψ ∈ H1(Ω), t ∈ [0, T ], we define

⟨f lint [u, v], ψ⟩H′ := −
d∑
i=1

m∑
j=1

∫
Ω

p(t, x)Mij(t, x)vj(t, x) ∂xi
ψ(x) dx.

The key point is that we can verify that the r.h.s. ⟨f lin[u, v], ·⟩H′ is in L2(0, T ;H1(Ω)′). This follows

from the fact that

p ∈ L∞(0, T ;L2(Ω)), M ∈ L∞(ΩT )
d×m and v ∈ L2(0, T ;L∞(Ω))m.
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For the upcoming first– and second–order analysis, it is essential that (2.41) is an inhomogeneous Fokker–

Planck problem. Specifically, it is very defining and shaping for our bilinear problem that the source term

f lin[u, v] takes the form from above. Roughly speaking, it is the product of the state and the direction of

the derivative, i.e. f lin[u, v] ∼ G(u)v.

Now, let us summarize our previous and some further results with the following lemma. We recall the

abbreviations for the following Bochner spaces

∥ · ∥LpH1 := ∥ · ∥Lp(0,T ;H1(Ω)), ∥ · ∥LpLq := ∥ · ∥Lp(0,T ;Lq(Ω)).

Lemma 2.4.3. The control–to–state map G is of class C∞ in L2(0, T ;L∞(Ω))m. Furthermore, it has the

following properties:

a) Its derivative is the solution of the linearized state equation, i.e., z := G′(u)v ∈ W (0, T ) solves

(2.41) for u, v ∈ L2(0, T ;L∞(Ω))m and it holds that

∥z∥L∞L2 + ∥z∥W (0,T ) ≤ CF ∥v∥L2L∞∥G(u)∥L∞L2 . (2.42)

Furthermore, if u ∈ L∞(ΩT )
m and G(u) ∈ L∞(ΩT ), then the following estimate holds

∥z∥L∞L2 + ∥z∥W (0,T ) ≤ CF ∥v∥L2(ΩT )∥G(u)∥L∞(ΩT ). (2.43)

b) G is locally Lipschitz continuous in the following sense:

∥G(u)−G(w)∥W (0,T ) ≤ CFC1∥G(w)∥L∞L2∥u− w∥L2L∞ , u, w ∈ L2(0, T ;L∞(Ω))m, (2.44)

∥G(u)−G(w)∥W (0,T ) ≤ CFC2∥G(w)∥L∞(ΩT )∥u− w∥L2(ΩT ), u, w ∈ L∞(ΩT )
m (2.45)

with constants C1 = C(∥u∥L2L∞) and C2 = C(∥u∥L∞(ΩT )).

c) G is compact in the following sense: If

(uk)k∈N ⊂ L∞(ΩT )
m with uk ⇀∗ u in L∞(ΩT )

m

or

(uk)k∈N ⊂ H1(0, T )m with uk ⇀ u in H1(0, T )m,

then G(uk) → G(u) in W (0, T ) strongly.

d) If d ∈ {1, 2}, then G is also compact in L∞(ΩT ): For

(uk)k∈N ⊂ L∞(ΩT )
m with uk ⇀∗ u in L∞(ΩT )

m,

it holds that G(uk) → G(u) in L∞(ΩT ).

Proof. In order to prove estimate (2.42), we recall that z is a solution of the FP problem with initial state

zero and r.h.s. f lin[u, v]. Thus, we can apply Corollary 2.2.1 and observe for ψ ∈ H1(Ω)

∥f lin[u, v](ψ)∥L2(0,T ) ≤
∥∥∥ ∫

Ω

∣∣p(·, x)∇ψ(x)⊤M(·, x) v(·, x)
∣∣ dx∥∥∥

L2(0,T )

≤ ∥p∥L∞L2∥v∥L2L∞∥M∥∞∥ψ∥H1(Ω),

and respectively

∥f lin[u, v](ψ)∥L2(0,T ) ≤ ∥p∥L∞(ΩT )∥v∥L2(ΩT )∥M∥∞∥ψ∥H1(Ω).
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This proves the estimates (2.42) and (2.43). The case of only time–dependent controls, that is v = v(t) ∈
L2(0, T )m, is obviously a subproblem of the case v ∈ L2(0, T ;L∞(Ω)), and hence, a bound of p in the

L∞(0, T ;L2(Ω))–norm is sufficient. Therefore, no bounds of p in the L∞(ΩT ) are necessary in this case.

The bound for the derivative of G yields the Lipschitz continuity in the following way: Let u,w be in

L2(0, T ;L∞(Ω))m or L∞(ΩT )
m, and define z := G(u) − G(w) ∈ W (0, T ). Hence, z is a weak solution

of the inhomogeneous Fokker–Planck equation with drift u and r.h.s. f lin[w, u − w]. Consequently

z = G′(u)(w− u), which is the reason (2.41) is called the linearized state equation. Thus, part a) proves

the Lipschitz continuity for controls on L2(0, T ;L∞(Ω))m or L∞(ΩT )
m. We remark that the estimate

(2.45), where the difference |u − w| on the r.h.s. of the Lipschitz–estimate depends on the L2–norm,

turns out to be essential for the second–order analysis of the optimal control problem in the time–space

dependent case. This is only possible due to the L∞–bound of p.

Similarly, we show assertion c) and set zk := G(u)−G(uk) = G′(u)vk, vk := u−uk for k ∈ N. According

to (2.42), zk is uniformly bounded in W (0, T ), and therefore, there exists some z ∈ L2(0, T ;H1(ΩT )) and

ζ ∈ L2(0, T ;H1(Ω)′) such that for a subsequence

zk ⇀ z in L2(0, T ;H1(ΩT )), zk → z in L2(ΩT ), żk ⇀ ζ in L2(0, T ;H1(Ω)′). (2.46)

For convenience, we prove that ż = ζ. Let ϕ ∈ C∞
c ( ]0, T [ ) and ψ ∈ H1(Ω), and we interpret the

L2(0, T ;H1(Ω))–function z as L2(0, T ;H1(Ω)′)–function. On the one hand, we have by the weak conver-

gence in L2(0, T ;H1(Ω)′) that for a subsequence∫ T

0

ϕ(t)⟨żk(t), ψ⟩H′ dt→
∫ T

0

ϕ(t)⟨ζ(t), ψ⟩H′ dt and (2.47)∫ T

0

ϕ̇(t)⟨zk(t), ψ⟩H′ dt→
∫ T

0

ϕ̇(t)⟨z(t), ψ⟩H′ dt as k → ∞. (2.48)

On the other hand, we have for k ∈ N∫ T

0

ϕ(t)⟨żk(t), ψ⟩H′ dt = −
〈∫ T

0

ϕ̇(t)zk(t) dt, ψ
〉
H′

= −
∫ T

0

ϕ̇(t)⟨zk(t), ψ⟩H′ dt ; (2.49)

the fact that we can interchange the integral and the continuous function ⟨·, ψ⟩H′ can be shown straight

forwardly by an approximation with simple functions. Since ψ ∈ H1(Ω) was arbitrary, this implies with

(2.47) and (2.48) that ∫ T

0

ϕ(t)ζ(t) dt = −
∫ T

0

ϕ̇(t)z(t) dt, in H1(Ω)′. (2.50)

Finally, ż = ζ in L2(0, T ;H1(Ω)′) follows from the fact that (2.50) holds for every test function ϕ ∈
C∞
c ( ]0, T [ ).

Now, we can show that f lin[uk, vk] → 0 in L2(0, T ;H1(Ω)′), which yields zk → 0 in W (0, T ) according

to Corollary 2.2.1. Recall the fact that for any dual 1 < p, q <∞ and reflexiv Banach space X, we have

that Lp(0, T ;X ′) and Lq(0, T ;X)′ are isometric isomorph. Hence, for φ ∈ L2(0, T ;H1(Ω)), it holds that∫ T

0

f lint [uk, vk](φ(t)) dt =

∫
ΩT

G(uk)(t, x) (vk(t, x)⊤M(t, x)) · ∇φ(t, x) dt dx

≤
∫
ΩT

|G(uk)−G(u)||M ||vk||∇φ|+
∫
ΩT

G(u) (Mvk) · ∇φ,

where we have omitted the (t, x) argument in the second line. We start with the case u, uk ∈ Uad, where

the weak* convergence holds in L∞(ΩT )
m. Since ∥uk∥∞ ≤ C(1 + ∥u∥∞) for all k ∈ N due to the weak*

convergence, the first term can be estimated against

C∥u∥∞∥G(uk)−G(u)∥2L2(ΩT )∥φ∥
2
L2(0,T ;H1(Ω)),
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and therefore converges to zero (for a subsequence) due to the compactness result from Lemma 2.4.2.

The second term converges to zero since vk ⇀∗ 0 in (L1(ΩT )
m)′ and G(u)∇φ⊤M ∈ L1(ΩT )

m.

The case for the weak H1(0, T )–convergence is done analogously, since this implies weak* convergence

in L∞(0, T ). In conclusion, we have shown that f lin[uk, vk] → 0 in L2(0, T ;H1(Ω))′ after extracting a

subsequence.

For part d), we apply Theorem 2.2.3 for

zk = G(u)−G(uk), z0 = 0, and r.h.s. ⟨G, ·⟩H′ = ⟨f lin[u, v], ·⟩H′ .

Consequently, the estimate (2.25) with g1 = 0 and g2 = G(uk)M vk implies

∥G(uk)−G(u)∥L∞(ΩT ) ≤ C(∥G(uk)M vk∥Lq(ΩT ) + ∥G(uk)−G(u)∥Lq(ΩT )) (2.51)

for all q > 2 + d. Notice that we have already shown the strong convergence of G(uk) in W (0, T ). Due

to Corollary 2.1.5, we have strong convergence in Lη(ΩT ) for all η ≤ 4/d + 2. Since d ∈ {1, 2} we can

conclude that both Lq(ΩT )–norms in (2.51) tend to zero, and therefore, G(uk) converges to G(u) in

L∞(ΩT ) as desired.

Moreover, the above can be applied to any subsequence of the original sequence. Thus, every subsequence

of G(uk) has a sub–subsequence converging to the same limit G(u) since weak solutions to the inhomo-

geneous FP problem are unique. Consequently, in c) and d) we do not need a selection of a subsequence

after an application of Lemma 1.4.3. This concludes the proof.

With the same techniques, we obtain the weak formulation of the second–order Fréchet derivative of G.

Let u ∈ Uad and v1, v2 ∈ L∞(0, T )m. Then, the function w := G′′(u)(v1, v2) ∈W (0, T ) satisfies

⟨ẇ, ·⟩H′ + F [u](w, ·) = ⟨fquad, ·⟩H′ in L2(0, T ;H1(Ω)′), (2.52)

w(0) = 0 a.e. on Ω,

where for ψ ∈ H1(Ω), t ∈ [0, T ], we define the r.h.s

⟨fquadt [u, v1, v2], ψ⟩H′ := −
∫
Ω

(
z1(t, x) v2(t, x)

⊤M(x) + z2(t, x) v1(t, x)
⊤M(x)

)
· ∇ψ(x) dx.

Due to Corollary 2.2.1 on inhomogeneous FP problems, we obtain analogous estimates for w in the

W (0, T )–norm as in Lemma 2.4.3 a), that is

∥w∥L∞(0,T ;L2(Ω)) + ∥w∥L2(0,T ;H1(Ω)) + ∥ẇ∥L2(0,T ;H1(Ω)′) ≤ CFCad∥fquad[u, v1, v2]∥L2(0,T ;H1(Ω)′).

Moreover, we obtain similar results for the Fréchet derivatives of G. Since these results are only used for

the numerical analysis of the Galerkin discretization presented in Chapter 5 and 7, we prove it only for

time–dependent controls.

Lemma 2.4.4. G′ and G′′ are compact in the following sense: If v ∈ L2(0, T )m and (uk)k∈N ⊂ UTad with

uk ⇀∗ u in L∞(0, T )m as k → ∞, then

G′(uk)v → G′(u)v, G′′(uk)(v, v) → G′′(u)(v, v) in L∞(0, T ;L2(Ω)), as k → ∞.

Furthermore, G′ and G′′ are Lipschitz continuous, globally on UTad, in the sense that there exists a constant

C = CadCF > 0 such that for all u,w ∈ UTad, v ∈ L2(0, T )m

∥G′(u)v −G′(w)v∥L∞L2 ≤ C∥u− w∥2∥v∥2 (2.53)

∥G′′(u)(v, v)−G′′(w)(v, v)∥L∞L2 ≤ C∥u− w∥2∥v∥22. (2.54)
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Proof. First, we want to prove the compactness. Let p := G(u), pk := G(uk), zk := G′(uk)v and

z := G′(u)v, and define δz := z− zk, δp = p− pk, δu = u−uk. Notice that (zk)k∈N is uniformly bounded

inW (0, T ), and therefore, it possesses a subsequence (denoted in the same way) which converges strongly

in L2(ΩT ). We refer to (2.46) for the proof of this assertion. Next, due to the bilinear structure of F , see

(2.37), it holds that

F [u](z, ψ)−F [uk](zk, ψ) = F [u](δz, ψ) + ⟨zkMδu,∇ψ⟩L2(Ω), ψ ∈ H1(Ω).

Furthermore, we have f lin[u, v]− f lin[uk, v] = ⟨δpMv,∇·⟩L2(Ω) in the L2(0, T ;H1(Ω)′)–sense. Therefore,

δz solves the inhomogeneous problem a.e. on [0, T ]

⟨δ̇z, ψ⟩H′ + F [u](δz, ψ) = ⟨δpMv − zkMδu,∇ψ⟩L2(Ω), ψ ∈ H1(Ω),

δz(0) = 0 a.e. on Ω.

For all ψ ∈ H1(Ω), let us define

G(ψ) := ⟨δpMv − zkMδu,∇ψ⟩L2(Ω)

on [0, T ]. Then, G ∈ L2(0, T ;H1(Ω)′), and we can apply the estimate on inhomogeneous FP problems

from Corollary 2.2.1. Thus, we obtain the following bound

∥δz∥L∞L2 + ∥δz∥W (0,T ) ≤ CadCF∥G∥L2(0,T ;H1(Ω)′). (2.55)

Next, we show that ∥G∥L2(0,T ;H1(Ω)′) tends to zero as k tends to infinity. First, recall that L2(0, T ;H1(Ω)′)

and L2(0, T ;H1(Ω))′ are isometric isomorph. Next, we exploit the compactness of G to find that δp→ 0

strongly in L∞(0, T ;L2(Ω)). Thus, it holds for all φ ∈ L2(0, T ;H1(Ω)) that∫
ΩT

δp∇φ⊤M v dt dx ≤ ∥δp∥L∞L2∥v∥2∥M∥∞∥∇φ∥L2(ΩT ) ≤ CF∥δp∥L∞L2∥v∥2∥φ∥L2H1 → 0

as k → ∞. Let us consider the second term in G. Since δu ⇀∗ 0 in L∞(0, T )m, we observe that the

strong L2(ΩT )–convergence of zk (for a subsequence) yields the convergence∫
ΩT

zk∇φ⊤M δudt dx→ 0, φ ∈ L2(0, T ;H1(Ω))

as k → ∞ for a subsequence. For the same subsequence, this implies the convergence of the r.h.s.

∥G∥L2(0,T ;H1(Ω)′) → 0, as k → ∞,

and therefore, G′(uk)v converges to G′(u)v in the desired norm for a subsequence. Since G′(u)v is the

unique solution, an application of Lemma 1.4.3 implies that the convergence of G′(uk)v holds even without

selecting a subsequence, and we have proven the compactness of G′. Once this result is established, the

proof for the compactness of G′′ can be done analogously.

The proof for the Lipschitz continuity is done similarly, where obviously uk has to be replaced by w in the

definitions from above. Thus, we arrive at the same estimate (2.55) for δz. Now, we exploit the Lipschitz

continuity of G and estimate ∥δp∥L∞L2 ≤ CadCF∥u− w∥2, which implies∫
ΩT

δp∇φ⊤M v dt dx ≤ CadCF∥u− w∥2∥v∥2∥φ∥L2H1 , φ ∈ L2(0, T ;H1(Ω)).

Since ∥zk∥W (0,T ) ≤ CadCF∥v∥2, we observe that∫
ΩT

zk∇φ⊤M δudt dx ≤ CadCF∥u− w∥2∥v∥2∥φ∥L2H1 , φ ∈ L2(0, T ;H1(Ω)).
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Finally, combining both estimates for the two terms in G gives us the desired estimate

∥G∥L2(0,T ;H1(Ω)′) ≤ CadCF∥u− w∥2∥v∥2.

This concludes the proof of the Lipschitz continuity of G′. Once the Lipschitz continuity of G′ is shown,

the desired Lipschitz estimate for G′′ can be proven completely analogously.
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3
Ensemble optimal control problems governed by the

Fokker–Planck equation

Einstein had, for the first time connected new and measurable

consequences to statistical physics. That might sound like a largely

technical achievement, but on the contrary, it represented the

triumph of a great principle: that much of the order we perceive in

nature belies an invisible underlying disorder and hence can be

understood only through the rules of randomness.

Leonard Mlodinow in The Drunkard’s Walk: How Randomness

Rules Our Lives, 2008

In this chapter, we analyze the ensemble optimal problem that has been derived in Section 1.2. The

optimization problem under consideration, in its most general form, reads

min
u∈U

J(p, u) p subject to

∂tp+ F [u](p, ·) = 0 in L2(0, T ;H1(Ω)′),

p(0) = p0 a.e. on L2(Ω),

where

J(p, u) :=

∫
ΩT

R[u](t, x)p(t, x) dt dx+

∫
Ω

T (x) p(T, x) dx+
γ2
2
∥u∥2Y , (3.1)

and R[u](t, x) :=
γ1
2
|u(t, x)|2 + α(t, x) · u(t, x) + β(t, x). (3.2)

The bilinear form F [u](·, ·) can be found in (2.8). Using the control–to–state map and defining

Ĵ(u) := J(G(u), u) for all u from the admissible set U , the optimal control problem is reformulated
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as the minimization problem

min
u∈U

Ĵ(u). (3.3)

In this thesis, the main focus for U is put on box–constrained controls.

In the framework of ensemble control problems when multiplied with a density function, R[u] and T
are referred to as running cost and terminal cost, respectively. The third term in (3.1) is not subject to

averaging, and therefore, it does not belong to a typical formulation of an ensemble problem. However,

for the theoretical analysis of (3.3), it will be necessary in some cases to assume γ2 > 0, as it will imply

very useful properties to solutions ū of (3.3). One property will be that such ū has higher regularity than

one expects, and hence, this parameter γ2 is often referred to as regularization parameter. The parameter

γ1 has a similar effect on solutions ū under a strict positivity assumption on the PDF p and is referred

to as the quadratic cost term.

Throughout this chapter, we impose the following natural assumptions on these quantities:

(J1)

α ∈ L∞(ΩT )
m, β ∈ L∞(ΩT ), T ∈ L∞(Ω) ∩H1(Ω),

(J2)

γ1, γ2 ≥ 0.

We denote with CJ > 0 a generic constant that depends continuously on the quantities from (J1) in the

corresponding norms.

The choices for the set of admissible controls U and the norm of the regularizing term Y that we consider

are the following:

(U1) For time–space dependent controls, we recall

Y1 = L2(ΩT )
m, Y2 = L2(0, T ;H1

0 (Ω))
m, Y3 = H1(ΩT )

m

and the set of admissible controls U jad = Uad ∩ Yj for j ∈ {1, 2, 3}.

(U2) For only time–dependent controls we have

YT = L2(0, T )m and YH = H1
0 (0, T )

m,

where the sets Uad and UTad from (2.35) for given −∞ < umin < umax <∞ are as follows

Uad =
{
u ∈ L∞(ΩT )

m : umin ≤ ui ≤ umax, a.e. on ΩT , i = 1, . . . ,m
}
,

UTad =
{
u ∈ L∞(0, T )m : umin ≤ ui ≤ umax, a.e. on [0, T ], i = 1, . . . ,m

}
.

The questions about problem (3.3) that we mainly investigate are existence of optimal controls, the well–

posedness of the adjoint problem, implicit equations and higher regularity for local minima, uniqueness,

and coercivity. Obviously, different settings for the set of admissible controls and regularizing norm will

result in different outcomes and properties of the problem. In the next section, we want to give an

overview on this.
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3.1 Main results – an overview

The minimum requirement for the analysis of any optimal control problem is – obviously – that solutions

exist, and therefore, we start with this issue. In a nutshell, the bottleneck to derive existence of optimal

controls for our ensemble optimal control problem are the following two criteria: The boundedness of Ĵ

from below in the sense that

inf
u∈U

Ĵ(u) > −∞

and the weak lower semi–continuity (w.l.s.c) of Ĵ on U , where U denotes one of the set of admissible

controls from above. More precisely, the w.l.s.c. of Ĵ follows if the control–to–state map is compact in

the sense that the set {G(u) | u ∈ U} is relatively compact in L2(ΩT ). Therefore, the existence of optimal

controls depends on the choice of the admissible set U .
On the one hand, Lemma 2.4.3 gives us a criterion on U for the compactness of G. On the other hand,

finding a uniform lower bound of Ĵ is very troublesome due to the term α · uG(u), even if we put

restrictions to the function α. Since the Fokker–Planck problem is a bilinear problem in (G(u), u), a

bound of ∥G(u)∥L2(ΩT ) does, in general, depend non–linearly on u in an adequate norm. Therefore,

both terms α ·uG(u) and β G(u), possibly tending to −∞, cannot be compensated by the quadratic term

γ2∥u∥2Y , and one cannot find a lower bound of Ĵ on U without the presence of box–constraints, in general.

It is possible to obtain existence of optimal controls with no box–constraints if γ2 > 0 and α = 0, β ≥ 0,

since this obviously implies that Ĵ is non–negative; notice that p is a PDF and therefore non–negative

a.e. on ΩT .

In conclusion, in the case of an ensemble optimal control problem, we can only prove existence of optimal

controls when box constraints are present, or when a lower box–constraint umin ≥ 0 is active with

additional assumption α, β ≥ 0 on ΩT .

Let us mention that when considering any stronger regularizing norm, say Y = L2(0, T ;Hs(Ω)) where

s > d/2, one would still need box constraints for the existence of optimal controls for the same reasoning.

The embedding L∞(Ω) ⊂ Hs(Ω) would yield sufficient compactness of G; however, it is in general not

possible to prove

inf
u∈L2(0,T ;Hs(Ω))

Ĵ(u) > −∞.

Next, we consider the adjoint problem that will be derived in Section 3.3 below. The approach via the

adjoint will be our essential tool for a first– and second–order analysis of (3.3), and hence, existence

of sufficient regular solutions is necessary. The classical formulation of the adjoint problem for q with

corresponding control u reads

∂tq + L∗q = −R[u] on ΩT ,

q(T ) = T on Ω,

∇q · n̂ = 0 on ]0, T [×∂Ω.

We remark that the PDF p = G(u) does not appear in the adjoint formulation, since J is affine linear in

p.

In general, we are only able to prove that u ∈ L2(0, T ;L∞(Ω)) implies the existence of distributional

solutions q merely in L2(0, T ;H1(Ω))∩L∞(0, T ;L2(Ω)), whereas u ∈ L∞(ΩT ) is sufficient for the existence

of weak solutions q ∈ W (0, T ). In this case, any L2–local minimizer ū satisfies the following variational

inequality

⟨(γ1ū+ α−M∇q̄)p̄, v − ū⟩L2(ΩT ) + γ2⟨ū, v − ū⟩Y ≥ 0, v ∈ U ,

where p̄ and q̄ are the state and adjoint corresponding to the control ū. This inequality is also referred

to as the optimality condition, and (ū, p̄, q̄) is the optimality triplet.
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Let us illustrate how to obtain higher regularity from the optimality condition. We take γ1 = 0, γ2 > 0

and U = Uad, Y = L2(ΩT ) as an example. Then, the variational inequality becomes

⟨(α−M∇q)p+ γ2u, v − u⟩L2(ΩT ) ≥ 0, v ∈ Uad,

which implies the implicit representation

ū =
1

γ2
min

{
umax,max

{
umin, (α−M∇q̄)p̄

}}
a.e. on ΩT .

Assuming α and M are smooth, this implies that ū obtains (up to a certain degree) the regularity of ∇q̄
and p̄. On the other hand, higher regularity of ū may yield higher regularity of p̄ and q̄. Consequently,

this bootstrap argument leads in some cases to higher regularity of the triplet (ū, p̄, q̄). In conclusion,

investigating the adjoint problem, the first derivative of Ĵ , the optimality condition and deriving higher

regularity of optimal controls is mostly what is considered to be a first–order analysis of the optimization

problem (3.3).

The next step is a second–order analysis of this optimal control problem. Since the control–to–state map

is non–linear, the functional to be minimized Ĵ is non–convex. Therefore, a second–order analysis has to

be added to a first–order analysis to investigate the following questions:

• If a triplet (ū, p̄, q̄) satisfies the optimality condition, under which further condition is ū a local and

strict minimum of Ĵ?

• Under what conditions are minimizers isolated, i.e., there are no critical points nearby?

• Are local minimizers ū stable, in the sense that small changes of functions in Ĵ only lead to small

changes of ū?

Furthermore, a second–order analysis for non–convex problems is essential for its numerical analysis.

For instance, the convergence analysis of numerical methods are usually based on second–order sufficient

optimality conditions. We will see that these questions can be answered by Theorem 1.3.5, and therefore,

it will be our main concern to prove that the reduced cost functional Ĵ satisfies the conditions (C1) and

(C2).

From here on, regarding a second–order analysis with the theory presented in Section 1.3, we will restrict

ourselves further to the case U = U2
ad and regularizing norm Y = H1(ΩT ) with γ2 > 0. More precisely, it

seems difficult to verify condition (C2) in a more general setting. Particularly, in order to prove (C2.2), it

seems necessary to consider controls with the additional H1–regularity and the choice of the regularizing

term ∥ · ∥Y has to include these derivatives. Therefore, we want to apply Theorem 1.3.5 with the space

U2 = H1(ΩT )
m instead of the canonical space U2 = L2(ΩT )

m.

Next, we give an overview for the case of only time–dependent controls u = u(t). Obviously, this is

the easier problem in the sense that all the results from the time–space dependent case hold true in an

analogous setting for time–dependent controls. In some cases, we have additional freedom in the choice

of (U , Y ) to obtain similar results for a first– and second–order analysis.

Firstly, notice that the quadratic cost term becomes obsolete in the case of only time–dependent controls,

since p is a PDF due to assumption (F3) and Corollary 2.1.4. Thus, it holds that

γ1
2

∫
ΩT

|u(t)|2p(t, x) dt dx =
γ1
2

∫ T

0

|u(t)|2
∫
Ω

p(t, x) dx dt =
γ1
2
∥u∥2L2(0,T ),

and we may assume that γ1 = 0. The different settings for U and γ2 that we consider, and in which the

existence of optimal controls is ensured, are the following

U = UTad if γ2 ≥ 0,

or U = H1(0, T )m or H1
0 (0, T )

m if γ2 > 0,
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and Y = L2(0, T )m or H1(0, T )m.

We obtain an analogous adjoint problem that has weak solutions in W (0, T ) if

U = UTad, H
1(0, T )m or H1

0 (0, T )
m.

For these admissible sets U , we obtain for any L2–local minimizer ū the following optimality condition

for the triplet (ū, p̄, q̄)

⟨Φ[ū], v − ū⟩L2(0,T ) + γ2⟨ū, v − ū⟩Y ≥ 0, v ∈ U ,

where we define for t ∈ [0, T ]

Φ[ū](t) :=

∫
Ω

(
α(t, x)−M(t, x)∇q̄(t, x)

)
p̄(t, x) dx.

3.2 Existence of optimal controls

In this section, we prove existence of optimal controls of (3.3) under the different settings for (U , Y )

from (U1) and (U2). A fundamental property to derive existence of minimizers is the weak lower semi–

continuity of Ĵ . This property follows, more or less, from the weak lower semi–continuity of J(p, ·) for

fixed p ∈ W (0, T ) in the second argument, and from the compactness of G. We recall that throughout

this chapter, the assumptions (F1)–(F3) and (J1)–(J2) hold.

Lemma 3.2.1. The reduced cost functional Ĵ : U → R is w.l.s.c. for U = L∞(ΩT ) in the case of time–

space dependent controls, or U = L∞(0, T )m, H1(0, T )m or H1
0 (0, T )

m in the case of only time–dependent

controls.

Proof. By the same reasoning as in the proof of Lemma 2.4.2, it is enough to consider the case U =

L∞(ΩT )
m. Let (uk) ⊂ L∞(ΩT )

m and u ∈ L∞(ΩT )
m with uk ⇀∗ u in L∞(ΩT ). Let pk := G(uk) and

p := G(u). Recall that

Ĵ(uk) =

∫
ΩT

(γ1
2
|uk(t, x)|2 + α(t, x) · uk(t, x) + β(t, x)

)
pk(t, x) dt dx

+

∫
Ω

T (x)pk(T, x) dx+
γ2
2
∥uk∥2Y .

Let us go through the convergence of each term in Ĵ(uk): For any choice of Y

Y = L2(ΩT ), L
2(0, T ;H1

0 (Ω)) or H
1(ΩT )

we know that the Y –norm is w.l.s.c., that is, ∥u∥Y ≤ lim infk→∞ ∥uk∥Y . Next, we apply Lemma 2.4.3 c)

to derive that pk → p in W (0, T ) strongly. For the linear terms, we obviously have∫
Ω

T (x)pk(T, x) dx→
∫
Ω

T (x)p(T, x) dx and

∫
ΩT

β(t, x)pk(t, x) →
∫
ΩT

β(t, x)p(t, x),

due to the convergence in L∞(0, T ;L2(Ω)) and L1(ΩT ). We can conclude the convergence of the bilinear

term after adding a mixed term, that is,∫
ΩT

α · (ukpk − up) =

∫
ΩT

α · uk(pk − p) +

∫
ΩT

α · (uk − u)p→ 0.

Lastly, the convergence ∫
ΩT

|u|2p ≤ lim inf
k→∞

∫
ΩT

|uk|2pk

follows from an application of Lemma 1.4.1. For that purpose, we exploit the non–negativity of pk and p,

the strong convergence pk → p in L1(ΩT ) and the weak* convergence of uk in L∞(ΩT ). This concludes

the proof.
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Theorem 3.2.2. (Existence of optimal controls)

Let the conditions (F1)–(F3) and (J1)–(J2) hold. The optimal control problem

min
u∈U

Ĵ(u) (3.4)

possesses at least one solution ū for U from (U1) or (U2).

Proof. We only consider the case of time–space dependent controls, the case of only time–dependent

controls is shown analogously. The first step is to show that Ĵ is bounded from below on the set U . Due

to the box–constraints, every control u ∈ U is bounded in the L∞(ΩT )–norm by Cad > 0. This fact,

together with Theorem 2.1.3 b), implies that the set of corresponding states {G(u) | u ∈ U} is bounded

in W (0, T ). Consequently, we obtain the boundedness of Ĵ from below, that is, for every u ∈ U it holds

that

Ĵ(u) =

∫
ΩT

(γ1
2
|u(t, x)|2 + α(t, x) · u(t, x) + β(t, x)

)
p(t, x) dt dx

+

∫
Ω

T (x)p(T, x) dx+
γ2
2
∥u∥2Y

≥− CFCJCad > −∞.

Hence, there exists a minimizing sequence denoted by (uk) ⊂ U such that

Ĵ(uk) → I := inf
u∈U

Ĵ(u).

This sequence of minimizers converges (after extracting a subsequence) weakly* to some ū ∈ U in

L∞(ΩT )
m, and hence, Lemma 3.2.1 implies that

I ≤ Ĵ(ū) ≤ lim inf
k→∞

Ĵ(uk) = I.

This implies that ū is a minimizer of Ĵ .

We can conclude this section by recalling the definition of a local minimizer of (3.4); compare this to

Definition 1.3.4.

Definition 3.2.3. (Local minimizers)

Let ū ∈ Uad and let

∥ · ∥Y = ∥ · ∥L2(ΩT ), ∥ · ∥L2(0,T ;H1(Ω)) or ∥ · ∥H1(ΩT ).

We say that ū is a Y –local solution of (1.22) or a local minimizer of J in Y (or w.r.t. the Y –norm),

if there exists some ε > 0 such that J(ū) ≤ J(u) holds for all u ∈ Uad ∩ Bε(ū;Y ). If J(ū) < J(u)

holds for this set with u ̸= ū, we say that ū is a strict minimizer in Y and locally unique in Y (or w.r.t.

the Y –norm). If we state that ū is a local minimizer, this means that it is a local minimizer w.r.t. the

L∞(ΩT )–norm.

Obviously, we have an analogous definition for only time–dependent controls. Notice that the following

implications hold: If ū is a L2(ΩT )–local solution, then it is a local solution, and if ū is a L2(0, T ;H1(ΩT ))–

local solution, then it is a H1(ΩT )–local solution.

Furthermore, every Y –local solution ū is characterized by the following first–order necessary optimality

condition

Ĵ ′(ū)(u− ū) ≥ 0, u ∈ Uad ∩ Y.

It turns out that Ĵ ′(ū) can be represented in a very useful way by the following adjoint problem that is

discussed next.
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3.3 The adjoint problem

In order to motivate the need of an adjoint problem, let us calculate the Fréchet derivative of Ĵ . Let

(U , Y ) = (U jad, Yj) for j = 1, 2, 3 denote the set of admissible controls with corresponding regularizing

norm ∥ · ∥Y , where we focus only on time–space dependent controls. By an application of the chain rule

for Ĵ(·) = J(G(·), ·), we obtain for any u, v ∈ U with p := G(u) and z := G′(u)v the following equation

J ′(u)v =

∫
ΩT

p (γ1u+ α) · v dt dx+

∫
ΩT

R[u]z dt dx+

∫
Ω

T z(T ) dx+ γ2⟨u, v⟩Y .

First, we see that the terms are well–defined for v ∈ Y . Furthermore, excluding the last term for the

moment, v 7→ Ĵ ′(u)v is a linear and bounded mapping on L2(ΩT )
m, and consequently there has to exist

some function Φ ∈ L2(ΩT ) such that Ĵ ′(ū) = Φ[ū] + γ2ū in the sense that

Ĵ ′(ū)v = ⟨Φ[ū], v⟩L2(ΩT ) + γ2⟨ū, v⟩Y , v ∈ U .

Obviously, such a representation allows us to obtain an implicit formula for ū, and it is our goal to

determine the function Φ. For that purpose, we will rewrite the terms
∫
ΩT

R[u]z and
∫
Ω
T z(T ) by using

the adjoint state q, defined next.

Definition 3.3.1. For any control u ∈ L∞(ΩT )
m, we say that q ∈ W (0, T ) is the weak solution of the

adjoint problem, or q is the adjoint, if f.a.e. t ∈ [0, T ] and for all ψ ∈ H1(Ω) it holds that

−⟨q̇(t), ψ⟩H′ + Ft[u](ψ, q(t)) = ⟨R[u](t), ψ⟩L2(Ω), (3.5)

q(T ) = T , a.e. on Ω. (3.6)

We recall that the assumptions (F1)–(F3) and (J1)–(J2) hold, and the adjoint of the FP operator, see

(2.5), reads

L∗q =

d∑
i,j=1

aij(t, x)∂
2
xixj

q +

d∑
i=1

bi(t, x)∂xiq.

The classical formulation for the adjoint problem is the following backward problem

−∂tq − L∗q = R[u] on ΩT ,

q(T ) = T on Ω,

∇q · n̂ = 0 on ]0, T [×∂Ω.

Theorem 3.3.2. a) For every u ∈ L∞(ΩT )
m, there exists a unique solution q ∈W (0, T ) of (3.5)–(3.6),

and it satisfies the estimate

∥q∥W (0,T ) ≤ CFCu
(
∥T ∥2 + ∥R[u]∥L2(0,T ;H1(Ω)′)

)
≤ CFCuCJ , (3.7)

where Cu > 0 depends continuously on ∥u∥L∞(ΩT ). The mapping

Θ : L∞(ΩT )
m →W (0, T ), u 7→ Θ(u) = q

is well–defined and referred to as control–to–adjoint map.

b) If additionally (F5)–(F7) holds, then q is bounded in L2(0, T ;H2(Ω)) ∩ H1(0, T ;L2(0, T )) by a

constant C = CadCF∗CJCu

∥q∥L2(0,T ;H2(Ω)) + ∥q∥H1(0,T ;L2(Ω)) < C. (3.8)
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c) If d ∈ {1, 2} additionally to b), then q is also essentially bounded and there exists a constant

C = CadCF∗CJCu such that

q∥L∞(ΩT ) < C,

where Cu depends continuously only on ∥u∥∞.

Proof. The existence of weak solutions in W (0, T ) follows similarly as the a priori estimates for the

Fokker–Planck problem after the time transformation t 7→ T − t; notice that we have for the r.h.s.

∥R[u]∥2L2(0,T ;H1(Ω)′) ≤
∫ T

0

∥∥∥γ1
2
|u(t)|2 + α(t) · u(t) + β(t)

∥∥∥2
L2(Ω)

dt ≤ CJCu.

This proves part a). Next, we see that T is from H1(Ω) and f := b ·∇q ∈ L2(ΩT )+R[u] ∈ L2(ΩT ). After

the time transformation t 7→ a(T − t), we can bring the adjoint equation into the form of ∂tq̃−∆q̃ = 1
af ,

and hence, the adjoint problem has the form from Theorem 2.3.5 on maximal Lp–regularity of parabolic

problems. This yields the higher regularity q ∈ L2(0, T ;H2(Ω)) ∩ H1(0, T ;L2(0, T )) which proves the

claim b). Next, with this improved regularity, we may deduce essential boundedness with an application

of Theorem 2.2.4. For that purpose we observe that ∇q ∈W (0, T )d, and now Corollary 2.1.5 implies that

∇q ∈ L2+4/d(ΩT )
d.

Under the additional regularity assumptions (F5)–(F7), we can prove (global) Lipschitz continuity for

the control–to–adjoint map on the set of admissible controls U2
ad; an analogous assertion can be shown

for U3
ad.

Lemma 3.3.3. (Lipschitz continuity of Θ|U2
ad

for d ∈ {1, 2})
Let u1, u2 ∈ Uad ∩ L2(0, T ;H1(Ω)) and let (F1)–(F3), (F5)–(F7) and (J1)–(J2) hold. Let d ∈ {1, 2}.
Then, the following estimate holds

∥Θ(u1)−Θ(u2)∥W (0,T ) ≤ CF∗CJCad∥u1 − u2∥L2(0,T ;H1(Ω)).

Proof. For q1 := Θ(u1), q2 := Θ(u2), define δu := u1 − u2 and δq := q1 − q2. A quick computation shows

that δq ∈W (0, T ) solves the following inhomogeneous parabolic problem

⟨∂tδq, ·⟩H′ = F [u1](·, δq) = F [δu] in L2(0, T ;H1(Ω)′),

δq(T ) = 0 a.e. on Ω,

where the r.h.s. is defined f.a.e. t ∈ [0, T ] as

Ft[δu](ψ) := ⟨(∇q2(t)⊤M(t) +
γ1
2
(u1 + u2) + α(t)⊤)δu(t), ψ⟩L2(Ω), ψ ∈ H1(Ω).

Hence, in view of Theorem 3.3.2, the following estimate holds

∥δq∥W (0,T ) ≤ CFC1∥F [u]∥L2(0,T ;H1(Ω)′),

where C1 > 0 depends continuously only on ∥u1∥L∞(ΩT ). The critical term in F [δu] is ∇q⊤2 M δuψ

since ∇q2(t, ·) is in general not in L∞(Ω). We partially integrate and use that q2 fulfills zero Neumann

boundary conditions to obtain∫
Ω

∇q2(t, x)⊤M(t, x)δu(t, x)ψ(x) dx = −
∫
Ω

q2(t, x) div
(
M(t, x) δu(t, x)ψ(x)

)
dx. (3.9)

Consequently, we can estimate

∥F [u]∥L2(0,T ;H1(Ω)′) ≤∥δu∥L2H1∥q2∥L∞(ΩT )∥M∥L∞W 1,∞

+ ∥δu∥L2(ΩT ))

(γ1
2
∥u1 + u2∥L∞(ΩT ) + ∥α∥L∞(ΩT )

)
.
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Since u1, u2 ∈ Uad, we can estimate ∥u1 + u2∥L∞(ΩT ) against a constant Cad. Due to the estimate (3.8),

we can bound q2 in the L∞–norm. The values ∥M∥L∞W 1,∞ and ∥α∥L∞(ΩT ) are contained in the constants

CF∗ and CJ , and obviously ∥δu∥L2(ΩT )) ≤ ∥δu∥L2H1 . Thus, we obtain

∥F [u]∥L2(0,T ;H1(Ω)′) ≤∥δu∥L2H1CadCF∗,

which concludes the proof.

It can be seen in (3.9) that in the case of only time dependent controls a bound of q2 in the L∞(0, T ;L2(Ω))

norm is sufficient (instead of the L∞(ΩT ) norm.

We continue with our plan to rewrite the terms
∫
ΩT

R[u]z,
∫
Ω
T z(T ) from Ĵ ′(u)v in terms of the adjoint

state q. For that purpose, recall that z := G′(u)v for u, v ∈ L∞(ΩT )
m solves

ż + F [u](z, ·) = f lin[u, v], in L2(0, T ;H1(Ω)′)

z(0) = 0, a.e. on Ω,

where the r.h.s. of the linearized equation is for t ∈ [0, T ]

f lint [u, v](ψ) = −
∫
Ω

G(u)(t, x) (M(t, x)v(t, x)) · ∇ψ(x) dx, ψ ∈ H1(Ω).

Comparing this to the weak formulation of the adjoint (3.5), the connection becomes clear. We have∫
ΩT

R[u](t, x)z(t, x) dt dx+

∫
Ω

T (x)z(T, x) dx =

∫ T

0

f lint [u, v](q(t)) dt, (3.10)

which follows by testing the weak formulations of z and q, with the H1(Ω)–functions q(t) and z(t). We

remark that, due to the regularity z, q ∈W (0, T ), it holds that∫ T

0

⟨q̇(t), z(t)⟩H′ dt = −
∫ T

0

⟨q(t), ż(t)⟩H′ dt+ z(T )q(T ).

In conclusion, the sought function Φ[ū] is obtained from f lin[u, v] and we have proven the following lemma.

Lemma 3.3.4. For u ∈ L∞(ΩT )
m, we define the vector–valued function

Φ[u] := (γ1u+ α−M∇q) p on ΩT , (3.11)

where p = G(u) is the state and q = Θ(u) the adjoint. Then, Φ ∈ L2(ΩT ) and the Fréchet derivative of

Ĵ at u is given by

Ĵ ′(u)v =

∫
ΩT

Φ[u] · v dt dx+ γ2⟨u, v⟩Y , v ∈ U . (3.12)

When we write Ĵ ′(u) = Φ[u] + γ2u in the following, we obviously mean it in the sense of (3.12). This

fundamental representation allows a detailed first–order analysis.

3.4 Characterization of minimizers – first–order analysis

It is the aim of this section to derive an implicit formula, and prove further regularity properties of local

minimizers. Throughout this section, ū denotes a Yj–local solution of

min
u∈Uj

ad

Ĵ(u).
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For such ū, the following first–order necessary condition (FONC) holds∫
ΩT

Φ[ū] · (v − ū) dt dx+ γ2⟨ū, v − ū⟩Uj ≥ 0, v ∈ U jad. (3.13)

We say that there are inactive constraints if “≥” can be replaced by “=” in (3.13). The following repre-

sentations of ū are a direct consequence of this variational inequality; for that purpose recall that

Y1 = L2(ΩT ), Y2 = L2(0, T ;H1
0 (Ω)), Y3 = H1(ΩT )

and the admissible sets U jad = Uad ∩ Yj for j ∈ {1, 2, 3}.

Corollary 3.4.1. (The case (U1
ad, Y1))

Let ū ∈ Uad be a L2(ΩT )
m–local solution.

a) For all i = 1, . . . ,m and a.e. (t, x) ∈ ΩT , it holds that
Φi[ū](t, x) + γ2ūi(t, x) > 0 =⇒ ūi(t, x) = umin,

Φi[ū](t, x) + γ2ūi(t, x) < 0 =⇒ ūi(t, x) = umax,

umin < ūi(t, x) < umax =⇒ Φi[ū](t, x) + γ2ūi(t, x) = 0.

In particular, if γ2 > 0 we have the following implicit representation

ū(t, x) = min

{
umax,max

{
− 1

γ2
Φ[ū](t, x), umin

}}
. (3.14)

b) In the case of inactive constraints, the following implicit equation holds

γ2ū = − (γ1ū+ α−M∇q̄) p̄, a.e. on ΩT .

c) Let γ2 = 0 and γ1 > 0. In the case of inactive constraints, and if p̄ is positive a.e. on ΩT , we obtain

the feedback–like control law

γ1ū = α−M∇q̄, a.e. on ΩT . (3.15)

Proof. Since ū ∈ U1
ad is a U1–local solution, each component of the FONC reads

⟨Φi[ū] + γ2ūi, vi − ūi⟩L2(ΩT ) ≥ 0, v ∈ U1
ad.

Thus, we can apply Lemma 1.4.6 with f := Φi[ū] + γ2ūi ∈ L2(ΩT ) and the first claim follows. If γ2 > 0,

the equation Φ[ū] + γ2ū = 0 can be solved for ū, and we obtain (3.14). Part b) follows trivially by our

definition of inactive constraints, that is, umin < ūi(t, x) < umax. Now if p̄ is positive, we can divide this

implicit equation by p̄ and the claim of part c) follows.

Notice that in part c), ū is independent of the distribution p̄ or initial state p0 and depends only on

functions given by the objective J . This is due to the fact that plugging the formula for ū into the adjoint

problem, we arrive at the following non–linear backward problem for q

∂tq + L∗q = −R[α−M∇q] on ΩT ,

q(T ) = T on Ω,

∇q · n̂ = 0 on ]0, T [×∂Ω,
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where the r.h.s. reads

R[α−M∇q] = γ1
2
|α(t, x)−M∇q|2 + α(t, x) ·

(
α(t, x)−M(t, x)∇q(t, x)

)
+ β(t, x).

Therefore, solving this non–linear problem for q and calculating the optimal control via (3.15) yields a

robust, feedback–like control mechanism in the sense that possible perturbations of p(t, ·) or p0(·) do not

result in (possibly) suboptimal controls.

A similar minmax–representation for optimal controls in the Y2 or Y3 case cannot be expected to hold,

since derivatives of the optimal control appear in the FONC. However, if no box constraints are present

and ū ∈ L2(0, T ;H1
0 (Ω)), boundary conditions on the control are implemented, and in that case, ū is

connected to an elliptic Dirichlet problem.

Corollary 3.4.2. (The case L2(0, T ;H1
0 (Ω)))

Let γ2 > 0, d ∈ {1, 2, 3} and let ū ∈ L2(0, T ;H1
0 (Ω))

m ∩ L∞(ΩT )
m be a Y2–local solution of the mini-

mization problem min{Ĵ(u) | u ∈ L2(0, T ;H1
0 (Ω))}. Then, ū has the higher regularity L2(0, T ;H2(Ω))m

and solves the elliptic problem

−∆ūi(t, x) + ūi(t, x) = − 1

γ2
Φi[ū](t, x), f.a.e. (t, x) ∈ ΩT , i = 1, . . . ,m

and f.a.e. t ∈ [0, T ], u(t, ·) = 0 a.e. on ∂Ω.

We remark that we make no statement on the existence of such minimizer ū in general.

Proof. Let i ∈ {1, . . . ,m}. Since ūi ∈ L∞(ΩT ) ∩ L2(0, T ;H1
0 (Ω)), it holds that p̄ := G(ū), q̄ := Θ(ū) ∈

W (0, T ). By an application of Lemma 3.3.4, we can rewrite the the FONC for the Y2 case as follows∫
ΩT

(Φi[ū] + γ2ūi) · v dt dx+ γ2

∫
ΩT

∇ūi · v dt dx = 0, v ∈ L2(0, T ;H1
0 (Ω)).

Now notice that if v1 ∈ L2(0, T ), v2 ∈ H1
0 (Ω), then the product v1v2 is in L2(0, T ;H1

0 (Ω)). Therefore,

this variational equation can be rewritten as follows∫ T

0

(∫
Ω

(Φi[ū] + γ2ūi) · v2 dx+ γ2

∫
Ω

∇ūi · ∇v2 dx
)
v1 dt = 0, v1 ∈ L2(0, T ), v2 ∈ H1

0 (Ω).

Consequently, an application of the fundamental lemma of the calculus of variations on [0, T ] implies that

f.a.e. t ∈ [0, T ] ∫
Ω

(Φi[ū](t) + γ2ūi(t)) · v2 dx+ γ2

∫
Ω

∇ūi(t) · v2 dx = 0, v2 ∈ H1
0 (Ω).

Hence, ū(t) ∈ H1
0 (Ω) is a weak solution to the elliptic equation −∆ū(t, ·) + ū(t, ·) = −1/γ2Φi[ū](t, ·) on

Ω. Let p̄ = G(ū) ∈ and q̄ = Θ(ū). Since p̄ ∈ L∞(0, T ), ∇q̄ ∈ L2(ΩT ) and Φ[ū] = (γ1ū+ α−M∇q) p a.e.

on ΩT , it holds that Φi[ū](t, ·) ∈ L2(Ω). An application of the regularity result for elliptic problems, see

Lemma 1.4.5, yields the claim.

In the case of box–constrained controls from Y3 = H1(ΩT ), we cannot expect to deduce an implicit

representation for minimizers from the FONC given by (3.13), and hence we perform a second–order

analysis for this case in the next section.
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3.5 Local uniqueness and coercivity – second–order analysis

We start this section by computing the second–order derivatives of the control–to–state map G from

Definition 2.4.1 and the reduced cost functional Ĵ from (3.1).

Recall from Section 2.4 that z = G′(u)v for u, v ∈ L∞(ΩT )
m solves the linearized equation

ż + F [u](z, ·) = f lin[u, v], in L2(0, T ;H1(Ω)′)

z(0) = 0, a.e. on Ω.

with r.h.s. for t ∈ [0, T ] and p := G(u)

f lint [u, v](ψ) = −
∫
Ω

p(t, x) (M(t, x)v(t, x)) · ∇ψ(x) dx, ψ ∈ H1(Ω).

We differentiate both equations with respect to u in directions v1, v2 ∈ L∞(ΩT )
m and obtain the following

problem for determining the second–order derivative w := G′′(u)(v1, v2) ∈W (0, T )

ẇ + F [u](w, ·) = fquad[u, v1, v2], in L2(0, T ;H1(Ω)′)

w(0) = 0, a.e. on Ω,

where for zi := G′(u)vi for i = 1, 2 the right–hand side reads for t ∈ [0, T ] and ψ ∈ H1(Ω)

fquadt [u, v1, v2](ψ) := −
∫
ΩT

(
z1(t, x)M(t, x)v2(t, x) + z2(t, x)M(t, x)v1(t, x)

)
· ∇ψ(x) dx.

We remark that G′′(u)(v1, v2) = G′′(u)(v2, v1) and if v = v1 = v2, we simply write fquad[u, v].

By an application of the chain rule, we can compute the second–order derivative of the reduced cost

functional. We have for u, v1, v2 ∈ Uad, for j = 1, 2, 3, and p := G(u), z1 := G′(u)v1, z2 := G′(u)v2,

w := G′′(u)(v1, v2)

Ĵ ′′(u)(v1, v2) =γ1

∫
ΩT

p v1 · v2 dt dx+

∫
ΩT

(γ1u+ α) · (z2v1 + z1v2) dt dx+

∫
ΩT

R[u]w dt dx

+

∫
Ω

T w(T ) + γ2∥v∥2Yj
.

Analogously to Lemma 3.3.4, we can express Ĵ ′′(ū)(v, v) via the adjoint q := Θ(u) due to∫
ΩT

R[u]w dt dx+

∫
Ω

T w(T ) dt =
∫ T

0

fquadt [u, v](q(t)) dt = −2

∫
ΩT

zMv · ∇q dx dt.

The main part of this section is to derive the second–order properties of Ĵ which have been discussed in

Section 1.3. More precisely, we want to apply a theorem like Theorem 1.3.5, and for that purpose, let us

discuss our possible choices of U2 and U∞.

We start the discussion with the case of a L2 regularizing norm, i.e., the case Y1 = L2(ΩT )
m. We want

to point out why it does not seem to be possible to apply Theorem 1.3.5 in that setting. The first and

canonical choice is U∞ = L∞(ΩT )
m or U∞ = U2 = L2(ΩT )

m. According to assumption (A1), we need

to be able to extend Ĵ ′′(u) for some u ∈ Uad to a continuous bilinear mapping defined on U2 × U2. We

will see that in this case, this is in general not possible by considering the term∫ T

0

fquadt [u, v](q(t)) dt = −2

∫
ΩT

zMv · ∇q dx dt.

Notice that z := G′(u)v, q ∈ W (0, T ), v ∈ L2(ΩT )
m and M ∈ L∞(ΩT ). In order for the integral to be

finite, z or ∇q need to have higher regularity, but this does, to the best of our knowledge, not hold in

general in our setting. We remark that this issue is different in the case of only time–dependent controls.
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Since ∇q ∈ L2(ΩT ), the integral exists if z ∈ L∞(ΩT ) and Theorem 2.2.3 reveals under which conditions

this is the case. The r.h.s. f lin[u, v] of the equation for z contains the term v which corresponds – more

or less – to the function g2 in Theorem 2.2.3. Therefore, we obtain z ∈ L∞(ΩT ) if v ∈ L2+4/d(ΩT ) where

d denotes the dimension of Ω. This is the reason to consider Sobolev spaces as control spaces and use

the continuous embedding to higher Lebesgue spaces. Thus, we focus in this section on the third case,

where U3
ad is space for the controls and Y3 = H1(ΩT ) is the norm for the regularizing term. Due to the

continuous embeddings (2.22), we obtain that for the dimensions d ∈ {1, 2}, any function v ∈ H1(ΩT ) is

also in L2+4/d(ΩT ). We summarize this and further results in the following lemma.

We repeat that throughout this section, we assume d = dim(Ω) ∈ {1, 2}.

Lemma 3.5.1. Let u ∈ L∞ ∩H1(ΩT )
m and v1, v2 ∈ H1(ΩT )

m. Then it holds that

a) zi := G′(u)vi ∈ L∞(ΩT ) for i = 1, 2;

b) w := G′′(u)(v1, v2) ∈ L∞(ΩT );

c) the second–order derivative Ĵ ′′(u)(v1, v2) exists and there exist continuous extensions such that

Ĵ ′(u) ∈ Lin(H1(ΩT )
m) and Ĵ ′′(u) ∈ Bilin(H1(ΩT )

m ×H1(ΩT )
m).

Proof. From the discussion above, it is clear that vi ∈ H1(ΩT )
m implies zi ∈ L∞(ΩT ). Similarly, we

obtain essential bounds for w by considering the r.h.s. of the governing equation

fquad[u, v1, v2](ψ) = −
∫
Ω

(z1Mv2 + z2Mv1) · ∇ψ dx ψ ∈ H1(Ω).

We want to apply Theorem 2.2.3, and since vi ∈ H1(ΩT ), zi ∈ L∞(ΩT ), i = 1, 2, we obtain that

g1 = 0, g2 = z1Mv2 + z2Mv1 ∈ L2+4/d(ΩT ).

Since p, zi, w ∈ L∞(ΩT ) ∩ W (0, T ), all the terms of Ĵ ′(u)v1 and Ĵ ′′(u)(v1, v2) are well–defined and

(bi)linear in v1 and (v1, v2), respectively. This concludes the proof.

Next, we need to verify that condition (C2) holds for Ĵ . For that purpose, we need to establish the

Lipschitz continuity of G′ and G′′ . This is done similarly to Lemma 2.4.3, based on the fact that z1 − z2

or w1 − w2 solves again an inhomogeneous Fokker–Planck equation with some right–hand side. Then,

according to Corollary 2.2.1 and Theorem 2.2.3, the Lipschitz continuity follows from the convergence to

zero of the right–hand side.

Lemma 3.5.2. (Lipschitz continuity)

Let u1, u2 ∈ Uad ∩H1(ΩT )
m and v ∈ H1(ΩT )

m. Define the W (0, T ) ∩ L∞(ΩT )–functions

z1 := G′(u1)v, z2 := G′(u2)v, w1 := G′′(u1)(v, v), w2 := G′′(u2)(v, v).

Then, it holds that

∥z1 − z2∥W (0,T ) ≤ CFCad∥v∥H1(ΩT )∥u1 − u2∥L2(ΩT ),

∥z1 − z2∥L∞(ΩT ) ≤ CFCad∥v∥H1(ΩT )∥u1 − u2∥H1(ΩT ),

∥w1 − w2∥W (0,T ) ≤ CFCad∥v∥2H1(ΩT )∥u1 − u2∥H1(ΩT ),

∥w1 − w2∥L∞(ΩT ) ≤ CFCad∥v∥2H1(ΩT )∥u1 − u2∥H1(ΩT ),

where Cad > 0 is a constant that depends continuously only on the box constraints |umin| and |umax|.
Furthermore, Ĵ ′ and Ĵ ′′ are Lipschitz continuous in the sense that

|Ĵ ′(u1)v − Ĵ ′(u2)v| ≤ CJCFCad∥v∥H1(ΩT )∥u1 − u2∥H1(ΩT ).

|Ĵ ′′(u1)(v, v)− Ĵ ′′(u2)(v, v)| ≤ CJCFCad∥v∥2H1(ΩT )∥u1 − u2∥H1(ΩT ).
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Proof. Define δz := z1 − z2 ∈ W (0, T ), and observe that δz solves the inhomogeneous Fokker–Planck

equation with control u1 and r.h.s. f linδ , that is,

∂tδz + F [u1](δz, ·) = f linδ in L2(0, T ;H1(Ω′))

where we define on [0, T ] for ψ ∈ H1(Ω)

f linδ (ψ) := f lin[u1, v](ψ)− f lin[u2, v](ψ) +

∫
Ω

z2M(u1 − u2) · ∇ψ dx.

According to Corollary 2.2.1, we need to bound f linδ in L2(0, T ;H1(Ω)′) for theW (0, T )–estimate. Almost

everywhere on [0, T ], we obtain the following estimate, where p1 := G(u1), p2 := G(u2).

|f linδ (ψ)| ≤
∫
Ω

|(p1Mv − p2Mv) · ∇ψ| dx+

∫
Ω

|z2M(u1 − u2) · ∇ψ| dx

≤ ∥M∥∞∥∇ψ∥2
(
∥p1 − p2∥∞∥v∥2 + ∥z2∥∞∥u1 − u2∥2

)
.

Since we have the estimates ∥p1 − p2∥L∞(ΩT ) ≤ CFC1C2∥u1 − u2∥L2(ΩT ) by Lemma 2.4.3 d) and

∥z2∥L∞(ΩT ) ≤ CFC2∥v∥H1(ΩT ) by Lemma 3.5.1, where Ci > 0 depends continuously only on ∥ui∥L∞(ΩT )

for i ∈ {1, 2}, we deduce that

∥f linδ (ψ)∥L2(0,T ;H1(Ω)′) ≤ CFC1C2∥v∥H1(ΩT )∥u1 − u2∥L2(ΩT ).

This gives, according to Corollary 2.2.1, the Lipschitz bound in the W (0, T )–norm. The L∞–estimate is

obtained with Theorem 2.2.3 if we bound the term g2 := (p1 − p2)Mv + z2M(u1 − u2) of the r.h.s, i.e.

f linδ (ψ) =
∫
Ω
g2 · ∇ψ, in the Lq(ΩT )–norm for q = d+ 2 as follows

∥g2∥Lq(ΩT ) = ∥(p1 − p2)Mv + z2M(u1 − u2)∥Lq(ΩT )

≤ CF

(
∥p1 − p2∥L∞(ΩT )∥v∥Lq(ΩT ) + ∥z2∥L∞(ΩT )∥u1 − u2∥Lq(ΩT )

)
.

The claim follows from the continuous embedding from H1(ΩT ) into L
q(ΩT ).

Once we have established the Lipschitz continuity for G′ in the W (0, T ) and L∞(ΩT )–norm, the same

procedure can be done with δw := w1 − w2 ∈W (0, T ) in order to obtain the Lipschitz estimates for G′′.

For any ψ ∈ H1(Ω) and a.e. on [0, T ], we find that

⟨∂t(δw), ψ⟩H′+F [u1](δw, ψ)

= fquad[u1, v1](ψ)− fquad[u2, v2](ψ) +

∫
Ω

w2M(u1 − u2) · ∇ψ dx =: fquadδ (ψ),

where fquadδ ∈ L2(0, T ;H1(Ω)′) can be bound analogously to f linδ from above. Thus, we have shown the

first claim. This immediately yields the Lipschitz continuity of Ĵ ′ and Ĵ ′′; we will only prove it for the

latter case. We have

|Ĵ ′′(u1)(v, v)− Ĵ ′′(u2)(v, v)| =
∣∣∣γ1 ∫

ΩT

(p1 − p2)|v|2dt dx+ 2

∫
ΩT

((γ1u1 + α)z1 − (γ1u2 + α)z2) · v dt dx

+

∫
ΩT

(R[u1]w1 −R[u2]w2) dt dx+

∫
Ω

(T w1(T )− T w2(T ))
∣∣∣

≤γ1∥p1 − p2∥L∞(ΩT )∥v∥L2(ΩT )

+ 2
(
∥α∥L∞(ΩT )∥z1 − z2∥L∞(ΩT ) + γ1∥u1z1 − u2z2∥L2(ΩT )

)
∥v∥L2(ΩT )

+ ∥R[u1]∥L1(ΩT )∥w1 − w2∥L∞(ΩT ) + ∥w2∥L∞(ΩT )∥R[u1]−R[u2]∥L1(ΩT )

+ ∥T ∥L2(Ω)∥w1(T )− w2(T )∥L2(Ω).
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In order to treat the bilinear term, we just observe that

∥u1z1 − u2z2∥L2(ΩT ) ≤ ∥u1∥L2(ΩT )∥z1 − z2∥L∞(ΩT ) + ∥z2∥L∞(ΩT )∥u1 − u2∥L2(ΩT )

and estimate ∥z1 − z2∥L∞(ΩT ) ≤ C∥u1 − u2∥H1(ΩT ). This concludes the proof.

Next, we can verify condition (C2) in order to apply Theorem 1.3.6. The choice for the spaces are

U2 = U∞ = H1(ΩT )
m, A = L∞ ∩H1(ΩT )

m,

and U3
ad is the set of admissible controls.

Lemma 3.5.3. The reduced objective Ĵ fulfills condition (C2).

Proof. First, we notice that due to the Lipschitz continuity it is enough to verify (C2) for a fixed control

u instead of a sequence (uk) as in Theorem 1.3.5. Thus, let u ∈ L∞∩H1(ΩT )
m and (vk)k∈N ⊂ H1(ΩT )

m

with vk ⇀ v weakly in H1(ΩT )
m.

Condition (C2.1), that is

Ĵ ′(u)vk =

∫
ΩT

Φ[u] · vk dt dx+ γ2⟨u, vk⟩H1(ΩT ) → Ĵ ′(u)v, k → ∞,

follows immediately from the representation given in Lemma 3.12, since Φ[u] ∈ L2(ΩT )
m, u ∈ H1(ΩT )

m

and due to the weak convergence of (vk).

Next let zk := G′(u)vk and consider the second–order derivative of Ĵ

Ĵ ′′(u)(vk, vk) =γ1

∫
ΩT

p |vk|2 dt dx+ 2

∫
ΩT

(γ1u+ α)zk · vk dt dx− 2

∫
ΩT

zk(Mvk) · ∇q dx dt+ γ2∥vk∥2Y3
.

For the first term, the weak convergence vk ⇀ v in L2(ΩT )
m is sufficient. This can be seen by an

application of Lemma 1.4.1 with p ∈ L∞(ΩT ); we therefore obtain

γ1

∫
ΩT

p |v|2 dt dx ≤ lim inf
k→∞

γ1

∫
ΩT

p |vk|2 dt dx. (3.16)

In view of the second–term, notice that zk → z = G′(u)v strongly in L2(ΩT ) and (γ1u+α) ∈ L∞(ΩT )
m.

Hence, the weak convergence of vk ⇀ v in L2(ΩT ) is again sufficient to deduce

lim
k→∞

∫
ΩT

(γ1u+ α)zk · vk dt dx =

∫
ΩT

(γ1u+ α)z · v dt dx.

The third term is obviously the critical one. Since (∇q)⊤M ∈ L2(ΩT )
m and vk ⇀ v in H1(ΩT )

m, we

need at least that zk → z in Lr(ΩT ), where the exponent r satisfies 1/r + 1/q + 1/2 = 1 and q satisfies

H1(ΩT ) ⊂ Lq(ΩT ). Since we assume the dimension of Ω to be in {1, 2}, we can simply choose r = ∞
and apply Lemma 2.4.2. This yields

lim
k→∞

∫
ΩT

zk∇q⊤Mvk dx dt =

∫
ΩT

z∇q⊤Mv dxdt.

Lastly for the fourth term, we exploit the weak lower semicontinuity to obtain

γ2∥vk∥2H1(ΩT ) ≤ lim inf
k→∞

γ2∥v∥2H1(ΩT ).

Therefore, we have verified the conditions (C1)–(C2.2) for our optimal control problem in the H1(ΩT )
m–

setting. In order for condition (C2.3) to be satisfied, it appears that γ2 must be positive (but may be

arbitrarily small). In that case, we have vk ⇀ 0 in H1(ΩT )
m and therefore zk → 0 in L∞(ΩT ). Due to
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the Lipschitz continuity of Ĵ ′′, we are again allowed to consider the stationary sequence u for the controls

in (C2.3). Applying the estimate (3.16), we obtain for Λ := γ2

Λ lim inf
k→∞

∥vk∥2H1(ΩT ) ≤ lim inf
k→∞

Ĵ ′′(u)(vk, vk).

This concludes the proof.

Now we can state the main result on the second–order analysis of the optimal control problem. For that

purpose, let ū be a local minimizer of

min
u∈U3

ad

Ĵ(u), (3.17)

and recall for τ > 0 the sets

Sū =
{
λ(u− ū) : λ > 0 and u ∈ U3

ad

}
, (cone of feasible directions)

Cū = Sū
H1(ΩT )m ∩

{
v ∈ H1(ΩT )

m : Ĵ ′(ū)v = 0
}
, (critical cone)

Eτū =

{
v ∈ Sū

H1(ΩT )m

: |Ĵ ′(ū)v| ≤ τ∥v∥2
}

(extended cone).

Furthermore, we repeat that the assumptions (J1)–(J2) on J , defined in (3.1), are given in the beginning

of this chapter. The assumptions of (F1)–(F3) on the Fokker–Planck problem, see Definition 2.1.1, is

formulated at the beginning of Chapter 2. The sets of admissible controls under consideration are defined

in (2.35) and in the beginning of Section 2.4.

Theorem 3.5.4. (Main result on second–order sufficient conditions)

Let (F1)–(F3) and (J1)–(J2) hold. Let ū satisfy (A1) and (A2) from Theorem 1.3.6. Then, there exists

ε, δ, ν, τ > 0 such that the following holds.

a) For all u ∈ U3
ad ∩Bε(ū;H1(ΩT )

m), it holds that

Ĵ(ū) +
δ

2
∥u− ū∥2H1(ΩT ) ≤ Ĵ(u).

b) For all critical points u∗ ∈ Uad ∩Bε(ū;H1(ΩT )
m), it holds that

ū = u∗.

c) For all u ∈ Uad ∩Bε(ū;H1(ΩT )
m) and all v ∈ Eτū, it holds that

Ĵ ′′(u)(v, v) ≥ ν

2
∥v∥2H1(ΩT ).

Proof. We only have to combine our previous results in order to prove the claim: Let us consider Theorem

1.3.6 and choose

U2 = U∞ = H1(ΩT )
m, A = L∞ ∩H1(ΩT )

m.

Hence, (C1) and (C2) are fulfilled according to Lemma 3.5.1 and 3.5.3. Consequently, we may apply

Theorem 1.3.6 which concludes the proof.
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4
Fokker–Planck optimal control problems of tracking

type

Classification of mathematical problems as linear and non–linear is

like classification of the Universe as bananas and non–bananas.

Source unknown

This chapter is devoted to a first– and second–order analysis of a Fokker–Planck optimal control problem

min
u∈U

J(p, u) (4.1)

∂tp+ F [u](p, ·) = 0 in L2(0, T ;H1(Ω)′), (4.2)

p(0) = p0 in L2(Ω), (4.3)

where the cost functional is of tracking type

J(p, u) =
β

2
∥p− pd∥2L2(ΩT ) +

α

2
∥p(T )− pT ∥2L2(Ω) +

γ

2
∥u∥2Y . (4.4)

We assume the diffusion a > 0 to be constant, and we recall the bilinear flux–operator

Ft : H1(Ω)×H1(Ω) → R f.a.e. t ∈ ]0, T [ ,

Ft(p, ψ) :=
∫
Ω

(
a∇p(x) · ∇ψ(x)− p(x)B[u](t, x) · ∇ψ(x)

)
dx.

We focus only on time–dependent controls from the spaces L2(0, T )m and from H1
0 (0, T )

m. For this

chapter, we consider the following two box–constrained sets

UTad and UT,Had := UTad ∩H1
0 (0, T )

m.

Furthermore, in this setting, the optimal control problem (4.1) is also well–posed in the absence of box

constraints, and therefore, the possible choices of the set of admissible controls U , and regularizing norms
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are

U ∈
{
H1

0 (0, T )
m, UTad, U

T,H
ad

}
and ∥ · ∥Y = ∥ · ∥2 or ∥ · ∥H1 .

In a tracking type formulation of the objective, the aim is to drive the PDF p to a desired distribution pd

defined on ΩT with terminal distribution pT defined on Ω. Another application of problem 4.1–4.4 stems

from the field of inverse problems. In this setting, it is the aim to find (or identify) the drift (or parts of

the drift) knowing pd and pT from measurements. The weights α, β are assumed to be non–negative, and

the regularizing term γ is assumed to be positive. We impose the following regularity conditions on J

pd ∈ H2(ΩT ), pT ∈ H2(Ω). (J1)

For most results, L2–regularity of pd and pT would be sufficient, however, for the second–order analysis

and for sufficient accuracy rates of the Galerkin discretization presented in the following chapters, the

higher regularity (J1) is necessary. We denote with CJ > 0 a constant that depends continuously on

α, β, ∥pd∥H2(Q) and ∥pT ∥H2(Ω). We remark that CF and CF ∗ are constants that depend continuously

on the quantities given in (F1)–(F3) and (F1)–(F7), respectively, and refer the reader to Chapter 2. We

recall the box–constraint constant Cad > 0 depending continuously only on |umin|, |umax|. It is the aim

of this chapter to show the existence of optimal controls, derive the optimality system and analyze the

adjoint problem. Furthermore, we derive an implicit representation of local minimizer and show higher

regularity of optimal controls and the corresponding states. Then, we show second–order results by an

application of Theorem 1.3.6.

We remark that an analogous first– and second–order analysis of the control problem with a tracking

type objective can be performed for time–space dependent controls with the techniques from the previous

chapter. The main difficulties are more or less the same, and most proofs can be done analogously.

However, we prefer to keep this chapter clear and compact, and thus, we focus only on time–dependent

controls. Further, we have chosen to split this chapter in a section of results and a section of proofs for

a better overview and due to the fact that some results have already been established in [5].

4.1 Main results

Throughout this chapter, the assumptions (F1)–(F7) hold for the FP problem, given in the beginning of

Chapter 2. The spatial domain Ω is convex and is polygonal or has sufficiently smooth boundary and

may have arbitrary dimension d ∈ N. We assume that M, c are only space–dependent, hence the drift is

of the form

B[u](t, x) =M(x)u(t) + c(x), (t, x) ∈ ΩT .

This ansatz can be seen as an m–dimensional approximation to a time–space dependent control mecha-

nism, where the space dependency is chosen a–priori with M and c, and the m–dimensional control u is

a regulating function. The classical Fokker–Planck equation for p with a constant diffusion a > 0 reads

∂tp− a∆p+ div
(
B[u]p

)
= 0 on ]0, T [×Ω

with flux–zero boundary conditions

(a∇p−B[u]p) · n̂ = 0 on ]0, T [×∂Ω.

In Section 2.1 and 2.3, we have shown that the control–to–state map G, under the assumptions from

above, satisfies

G : L2(0, T )m →W (0, T ) and G : L∞(0, T )m → H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)).
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Due to Lemma 2.3.2, it holds that G : L∞(0, T )m → C([0, T ];L2(Ω)) is compact. The Fréchet differentia-

bility ofG on L∞(0, T )m has been established in Section 2.4. Recall that z := G′(u)v and w := G′′(u)(v, v)

are solutions to

⟨ż, ·⟩H′ + F [u](z, ·) = ⟨f lin[u, v], ·⟩H′ in L2(0, T ;H1(Ω)′), (4.5)

z(0) = 0 a.e. on Ω.

and

⟨ẇ, ·⟩H′ + F [u](w, ·) = ⟨fquad[u, v], ·⟩H′ in L2(0, T ;H1(Ω)′), (4.6)

w(0) = 0 a.e. on Ω,

where for ψ ∈ H1(Ω), t ∈ [0, T ], the right–hand sides read

⟨f lint [u, v], ψ⟩H′ = −
∫
Ω

p(t, x) v(t)⊤M(x)∇ψ(x) dx. (4.7)

⟨fquadt [u, v], ψ⟩H′ = −2

∫
Ω

z(t, x) v(t)⊤M(x)∇ψ(x) dx. (4.8)

Since controls are now only time–dependent and M,p, z fulfill the Neumann boundary condition on ∂Ω,

we can partially integrate (4.7) and (4.8). Thus, we deduce that the right–hand sides can be represented

by L2–functions which are denoted in the same way

f lin[u, v], fquad[u, v] ∈ L2(ΩT ).

Consequently, we obtain improved regularity of the Fréchet derivatives, and the following result will be

useful for the analysis of the Galerkin discretization of the optimal control problem.

Theorem 4.1.1. (Improved regularity of z and w)

Let u ∈ UTad, v ∈ L2(0, T )m, p := G(u). Then, z := G′(u)v and w := G′′(u)(v, v) satisfy the estimate

∥z∥L2H2 + ∥w∥L2H2 + ∥z∥H1L2 + ∥w∥H1L2 ≤ CadCF∗Cv, (4.9)

where Cv > 0 depends continuously only on ∥v∥L2(0,T ).

Next, we investigate the existence of optimal controls for Ĵ(·) := J(G(·), ·).

Theorem 4.1.2. The optimal control problem

min
u∈U

Ĵ(u)

possesses a global minimizer u∗ ∈ U for U ∈
{
H1

0 (0, T )
m, UTad, U

T,H
ad

}
.

The Fréchet differentiability of G from L∞(0, T ) to W (0, T ) implies that Ĵ is arbitrarily often Fréchet

differentiable on L∞(0, T )m. Since H1
0 (0, T )

m ⊂ L∞(0, T )m, we obtain the following result.

Theorem 4.1.3. The reduced objective Ĵ is of class C2 on L∞(0, T )m and H1
0 (0, T )

m with derivatives

Ĵ ′(u)v = β

∫
ΩT

(p− pd)z dx dt+ α

∫
Ω

(p(T )− pT ) dx+ γ⟨u, v⟩Y ,

Ĵ ′′(u)(v, v) = β∥z∥2L2(ΩT ) + β

∫
ΩT

(p− pd)w dxdt

+ α∥z(T )∥2L2(Ω) + α

∫
Ω

(p(T )− pT )w(T ) dx+ γ∥v∥2Y ,

where p = G(u), z = G′(u)v, w = G′′(u)(v, v) and Y = L2(0, T )m or H1(0, T )m, respectively.
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We can represent the reduced gradient v 7→ Ĵ ′(u)v at u with the adjoint function q at u given by the

following backward problem

Definition 4.1.4. The function q ∈W (0, T ) is a solution to the adjoint problem with control u ∈ L∞(0, T )m

and state p = G(u) if

−∂tq + F [u](·, q) = β(p− pd) in L2(0, T ;H1(Ω)′)

q(T ) = α(p(T )− pT ) a.e. on Ω.

In that case, q is called the adjoint state associated with (p, u). We notice that there are different sign

conventions for q.

The control–to–adjoint map Θ : L∞(0, T )m →W (0, T ) is well–posed and Lipschitz continuous inW (0, T ),

uniformly on UTad. Furthermore, we have the higher regularity

Θ : L∞(0, T )m → H1(0, T ;L2(Ω)) ∩ C([0, T ];H1(Ω)) (4.10)

and the compactness of Θ : L∞(0, T )m → C([0, T ];L2(Ω)).

With the adjoint, we can rewrite the reduced gradient, using the fact that∫
ΩT

p∇q⊤Mv dxdt = −β
∫
ΩT

(p− pd)z dx dt− α

∫
Ω

(p(T )− pT )z(T ) dx dt,

as follows

Ĵ ′(u)v = −
∫
ΩT

p∇q⊤Mv dxdt+ γ⟨u, v⟩Y .

Analogously to Chapter 3, for u ∈ L∞(0, T )m, we introduce the function Φ[u] : [0, T ] → Rm,

Φ[u](t) := −
∫
Ω

p(t, x)∇q(t, x)⊤M(x) dx, (4.11)

where p = G(u) and q = Θ(u). Due to the regularity p ∈ C([0, T ];H1(0, T )) and ∇q ∈ C([0, T ];L2(Ω))d,

it holds that (after modification on a set of measure zero)

Φ[u] ∈ C([0, T ])m.

Furthermore, for the case Y = L2(0, T )m and u ∈ L∞(0, T )m, we obtain the pointwise representation of

the Fréchet derivative

Ĵ ′(u)(t) = Φ[u](t) + γu(t), f.a.e. t ∈ [0, T ].

The optimality system for the triplet (u, p, q) in a classical formulation reads

∂tp− a∆p+ div
(
B[u]p

)
= 0 on [0, T ]× Ω,

p(0) = p0 on Ω,

(a∇p−B[u]p) · n̂ = 0 on [0, T ]× ∂Ω,

−∂tq − a∆q +B[u] · ∇q = β(p− pd) on [0, T ]× Ω,

q(T ) = α(p(T )− pT ) on Ω,

∇q · n̂ = 0 on [0, T ]× ∂Ω,

and for all v ∈ U it holds thatĴ ′(u)(v − u) ≥ 0, if U = UTad or UT,Had ,

Ĵ ′(u)v = 0, if U = H1
0 (0, T )

m.

Next, we can state the implicit representation for a local minimizer
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Theorem 4.1.5. (Implicit formula for local minimizer and higher regularity)

a) Let ū be a local minimizer of the problem

min
u∈UT

ad

Ĵ(u)

with ∥ · ∥Y = ∥ · ∥2. Then it holds for i = 1, . . . ,m
Φi[ū](t) + γūi(t) > 0 =⇒ ūi(t) = umin,

Φi[ū](t) + γūi(t) < 0 =⇒ ūi(t) = umax,

umin < ūi(t) < umax =⇒ Φi[ū](t) + γūi(t) = 0.

and ū is continuous with the following representation

ū(t) = min

{
umax,max

{
− 1

γ
Φ[ū](t), umin

}}
. (4.12)

Furthermore, in the case of inactive constraints, this becomes

ū(t) =
1

γ

∫
Ω

p̄(t, x)∇q̄(t, x)⊤M(x) dx, t ∈ [0, T ].

b) Let ū be a local minimizer of the problem

min
u∈H1

0 (0,T )m
Ĵ(u)

with ∥ · ∥Y = ∥ · ∥H1 . Then ū has the higher regularity C2(0, T )m ∩ H1
0 (0, T )

m and satisfies for

t ∈ [0, T ] the boundary value problem (or elliptic Dirichlet problem)

ū′′(t) = ū(t) +
1

γ
Φ[ū](t), ū(0) = 0 = ū(T ).

Next, we analyze the second–order conditions for the case UTad, which was done in [5].

Theorem 4.1.6. The reduced objective Ĵ satisfies the conditions (C1)–(C2) of Theorem 1.3.6 for

the admissible set UTad and U2 = U∞ = A = L2(0, T )m.

Let ū satisfy (A1)–(A2). Hence, there exists ε, δ, ν, τ > 0 such that

a) for all u ∈ UTad ∩Bε(ū;L2(0, T )) it holds that

Ĵ(ū) +
δ

2
∥u− ū∥22 ≤ J(u),

b) for all critical points u∗ with u∗ ∈ Uad ∩Bε(ū;L2(0, T )) it holds that

ū = u∗,

c) for all u ∈ Uad ∩Bε(ū;L2(0, T )) and all v ∈ Eτū it holds that

Ĵ ′′(u)(v, v) ≥ ν

2
∥v∥22,

where Eτū =
{
v ∈ Sū

L2(0,T )
: |J ′(ū)v| ≤ τ∥v∥2

}
.
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4.2 Proofs

We start with the higher regularity of z and w.

Proof of Theorem 4.1.1. Recall that (F1)–(F7) hold, and therefore, f lin[u, v] and fquad[u, v] can be rep-

resented as L2(ΩT )–functions. Thus, we can bring the equations for z and w into the form of Theorem

2.3.5 on maximal Lp–regularity of parabolic problems. After estimating ∥f lin[u, v]∥2 ≤ CadCF∗∥v∥2 and

∥fquad[u, v]∥2 ≤ CadCF∗∥v∥22, an application of this theorem yields the claim.

Next, we prove the existence of optimal controls.

Proof of Theorem 4.1.2. Let us begin with the box–constrained cases U = UTad or UT,Had . Since Ĵ is non–

negative, it is bounded from below by zero, and we can pick a minimizing sequence (uk)k∈N from the set

of admissible controls U with

Ĵ(uk) → I := inf
u∈U

Ĵ(u), as k → ∞.

Due to the box–constraints, (uk) is bounded uniformly in L∞(0, T ) and has a weak*–limit ū ∈ U .
Therefore, by the compactness of G : L∞(0, T )m → C([0, T ];L2(Ω)), we have for a subsequence

G(uk) → G(u) in L∞(0, T ;L2(Ω)),

which immediately implies

∥G(uk)− pd∥2L2(ΩT ) → ∥G(u)− pd∥2L2(ΩT ) and ∥G(uk)(T )− pT ∥2L2(Ω) → ∥G(u)− pT ∥2L2(Ω).

If the regularizing norm Y is H1, then we additionally make use of the lower boundedness of
(
Ĵ(uk)

)
k∈N

which yields the weak convergence of (uk)k∈N in H1 in that case (after possibly extracting a subsequence).

All in all, this implies the weak lower semicontinuity of Ĵ , and therefore, it holds that

I ≤ Ĵ(ū) ≤ lim inf
k→∞

Ĵ(uk) = I.

Thus, ū is a minimizer of Ĵ .

The unconstrained case, i.e., the set of admissible controls is H1
0 (0, T )

m, follows completely analogously,

except the proof of the boundedness of the minimizing sequence. In this case, we obtain it due to the

positivity of γ and the non–negativity of Ĵ , as follows. Without loss of generality, we may assume that

the uncontrolled case u = 0 is not optimal, i.e. Ĵ(0) > I. Thus, for sufficiently large k, it holds that

Ĵ(0) ≥ Ĵ(uk), which implies that γ
2 ∥u

k∥2H1 is uniformly bounded by a function of the uncontrolled state

G(0). Then, due to the continuous embedding H1
0 (0, T )

m ↪→ L∞(0, T )m, we can estimate

γ

2
∥uk∥2∞ ≤ CT

(
β

2
∥G(0)− pd∥2L2(ΩT ) +

α

2
∥G(0)(T )− pT ∥2L2(Ω)

)
≤ (α+ β)CFCJ ,

where the constant CF > 0 was introduced at the beginning of Chapter 2. This concludes the proof.

Next, we need to verify the higher regularity of the adjoint stated in (4.10).

Proof of (4.10). After time transformation t 7→ T − t, that is q := Θ(u)(T − t), we see that the adjoint

problem can be transformed in a forward heat problem with Neumann–boundary conditions

∂tq − a∆q = f on [0, T ]× Ω,

q(0) = q0 on Ω,

∇q · n̂ = 0 on [0, T ]× ∂Ω,
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with the following initial data and right–hand side

q0 := α(p(T )− pT ), f := β(p− pd)−B[u] · ∇q.

Since we have already established higher regularity for the Fokker–Planck problem p ∈ C([0, T ];H1(Ω))

and due to q ∈W (0, T ), we obtain the regularity

q0 ∈ H1(Ω) and f ∈ L2(ΩT ).

Hence, we can apply the regularity Lemma 2.3.1 to deduce that q ∈ C([0, T ];H1(Ω)) ∩H1(0, T ;L2(Ω)).

The claim of (4.10) is therefore proven. The Lipschitz continuity of Θ follows analogously to the proof

of Lemma 2.4.4 and using the fact that G is Lipschitz continuous.

We can now prove the implicit representation of minimizer.

Proof of Theorem 4.1.5. The claim a) is a direct consequence of Lemma 1.4.6, which we apply in our case

with Ω = ]0, T [ and f = Φi[ū] + γūi for i = 1, . . . ,m.

The claim b) is proven in a different manner, since no box–constraints are present. Thus, the first–order

optimality conditions reads for i = 1, . . . ,m

⟨Φi[ū] + γūi, v⟩2 + ⟨γū′i, v′⟩2 = 0, v ∈ H1
0 (0, T ).

This is exactly the weak formulation of the following one–dimensional elliptic Dirichlet problem for w

with right–hand–side f = 1
γΦi[ū] in strong form

w′′ = w + f on [0, T ], w(0) = 0 = w(T ). (4.13)

Obviously, Φ[ū] ∈ L2(0, T )m, therefore by standard elliptic theory, the problem (4.13) possesses a unique

strong solution H2(0, T ) ∩H1
0 (0, T ). Consequently, f.a.e. t ∈ [0, T ] it holds that

ū′′(t) = ū(t) +
1

γ
Φ[ū](t).

Since the r.h.s. is continuous, it must hold that u′′ is continuous as well and the claim u ∈ C2([0, T ])m

follows.

For the proof of Theorem 4.1.6, we refer the reader to [5] and Theorem 1.3.6. This concludes the chapter,

and we continue with a numerical analysis of this optimal control problem by a Galerkin discretization.
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5
Numerical analysis for a class of optimal control

problems with time–dependent controls

Calculus succeeds by breaking complicated problems down into

simpler parts. That strategy, of course, is not unique to calculus.

All good problem–solvers know that hard problems become easier

when they’re split into chunks. The truly radical and distinctive

move of calculus is that it takes this divide-and-conquer strategy to

its utmost extreme – all the way out to infinity.

Steven H. Strogatz in Infinite Powers: How Calculus Reveals

the Secrets of the Universe, 2019

It is the aim of Chapter 5–7 to establish accuracy estimates for the Fokker–Planck problem with a tracking

type cost functional and only time–dependent control. This is a very challenging and complex task, which

is why we have split it into three steps, and each step is performed in one chapter. First, we show under

which condition a PDE optimal control problem can be approximated by an ODE–constrained optimal

control problem, governed by a semidiscrete Galerkin approach. Secondly, we analyze this so–called

semidiscrete optimization problem and establish accuracy estimates in Chapter 6. In the third step,

performed in Chapter 7, we apply these results on our Fokker–Planck problem, which concludes the

numerical analysis.

In this chapter, we perform the first step and present a framework for reducing the complexity of opti-

mization problems of the following form

min
u∈Uad

J(f, u) s.t. ∂tf + L[u](f) = 0, f(0) = f0, (5.1)

where f = f(t, x) represents the real–valued state function of space and time, and ∂tf denotes its partial

time derivative. Furthermore, f 7→ L[u](f) denotes a differential operator with respect to x, acting only

on its first argument f and including a control mechanism with the time–dependent control u = u(t).
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The optimal control problem (5.1) is defined on the spacetime cylinder ΩT = ]0, T [×Ω, where Ω ⊂ R2 or

R3 is convex, bounded, and is polygonal or has C2–boundary, and T > 0 denotes the final time horizon

as usual. We assume that appropriate boundary conditions are given on ∂Ω, which are included in the

definition of L. Additionally, f0 represents the initial conditions. The set of admissible controls and the

objective functional are denoted with Uad and J , respectively. The control–to–state map u 7→ G(u) = f

is assumed to be well–defined, and further properties for G and Ĵ := J(G(·), ·) are given in the next

section.

We remark that optimal control problems with only time–dependent control functions occur in many

applications and research papers [6, 7, 16, 44, 51]. In many cases, the function u plays the role of a

modulating function of a given space–depending potential.

Our main assumptions on (5.1) are second–order optimality results of u 7→ J(G(u), u) and convergence

results of a semidiscrete Galerkin approximation of the PDE

∂tf + L[u](f) = 0, f(0) = f0 (5.2)

for fixed u. We show then that establishing error estimates of (5.1) can be reduced to finding error

estimates of an ODE–constrained optimization problem, where in many cases error estimates are available

in the literature: In [30,62], Galerkin discretizations are presented for semilinear parabolic and hyperbolic

PDEs. Second–order analysis for several optimal control problems can be found in [5, 21, 22, 46, 48, 64],

and accuracy estimates for optimal control problems constrained by a system of (non)linear ODEs and

their numerical approximation are analyzed in [3, 19, 23, 27, 29, 47, 60]. However, there are fewer results

for accuracy estimates for PDE–constrained minimization problems, and with the theory presented in

this chapter we would like to contribute to the research work on this field. For this purpose, we present

a general approach that is based on the above–mentioned results and techniques in order to analyze

PDE–constrained optimal control problems of the form given in (5.1).

Our approach is then applied in Chapter 7 to the Fokker–Planck optimal control problem with bilinear

control mechanism of the form

∂tf − a∆f + div
(
B[u]f

)
= 0,

where B[u](t, x) = M(x)u(t) + c(x). To the best of the authors’ knowledge, for this problem, no error

analysis has been presented before. However, first– and second–order optimality conditions for this and

similar bilinear problems have been established in [5,45,46], and accuracy estimates of the corresponding

bilinear ODE–constrained problem can be found in [47] and are presented in Chapter 6.

This chapter is organized as follows. In the next section, we discuss the spatial finite element setting

in detail. Furthermore, for a better understanding of our approach, the time discretization scheme that

will be used in Chapter 7 for the semidiscrete problem is also introduced. Next, in Section 5.2, we

formulate our approach for deriving accuracy estimates in a general framework. Section 5.3 is devoted to

the numerical analysis of the Galerkin approximation of our Fokker–Planck problem.

5.1 The spatial discretization and the semidiscrete optimal control

problem

We start this section by introducing our finite element setting for the spatial discretization. Let Ω ⊂ R2

or R3 be bounded and convex, and for simplicity in the notation of the discretization, we assume that Ω

is a polygonal domain. Let h > 0 denote the discretization parameter and we introduce a quasi–uniform
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triangulation {Th}h>0 of Ω with

Ω̄ =
⋃
S∈Th

S̄ and h = max{diam(S) : S ∈ Th}.

Next, we introduce the N = N(h)–dimensional space of linear finite elements for H1(Ω)–functions given

by

PNΩ :=
{
ψ ∈ C(Ω̄) : ψ is linear on each S ∈ Th

}
.

The canonical basis is denoted by {ψi : i = 1, . . . , N} of PNΩ , where ψj is the typical pyramid function,

see [15, Chapter 3]. Next, notice that for H1– and H2–functions in Ω and for the triangulation {Th}h>0,

the following accuracy result holds

inf
ψ∈PN

Ω

{
∥f − ψ∥L2(Ω)

}
≤ CΩh∥f∥H1(Ω), f ∈ H1(Ω),

inf
ψ∈PN

Ω

{
∥f − ψ∥L2(Ω)

}
+ h inf

ψ∈PN
Ω

{
∥f − ψ∥H1(Ω)

}
≤ CΩh

2∥f∥H2(Ω), f ∈ H2(Ω).
(5.3)

We recall the L2–orthogonal projections ProjNL2(Ω) : L
2(Ω) → PNΩ defined by

⟨ProjNL2(Ω)(f), ψ⟩L2(Ω) = ⟨f, ψ⟩L2(Ω), ψ ∈ PNΩ . (5.4)

Moreover, we introduce the Riesz–projection (or ∇–orthogonal projection) ProjN∇ : H1(Ω) → PNΩ defined

by

⟨∇ProjN∇(f),∇ψ⟩L2(Ω) = ⟨∇f,∇ψ⟩L2(Ω), ψ ∈ PNΩ . (5.5)

We recall important accuracy rates in the following Lemma; in view of (5.3), we see that these rates are

optimal.

Lemma 5.1.1. The following estimates hold for the L2– and Riesz–projection. There exists CΩ > 0 such

that for all mesh sizes 0 < h < 1 and all g ∈ H1(Ω), f ∈ H2(Ω) we have

∥g − ProjNL2(Ω)(g)∥H1(Ω)′) + h∥g − ProjNL2(Ω)(g)∥L2(Ω) ≤ CΩh
2∥g∥H1(Ω), (5.6)

∥f − ProjNL2(Ω)(f)∥L2(Ω) + h∥∇(f − ProjNL2(Ω)(f))∥L2(Ω) ≤ CΩh
2∥f∥H2(Ω), (5.7)

∥f − ProjN∇(f)∥L2(Ω) + h∥∇(f − ProjN∇(f))∥L2(Ω) ≤ CΩh
2∥f∥H2(Ω), (5.8)

Additionally, the following convergences hold for g ∈ L2(Ω), f ∈ H1(Ω)

∥ProjNL2(Ω)(g)− g∥L2(Ω) + ∥ProjN∇(f)− f∥H1(Ω) → 0, h→ 0. (5.9)

Proof. A proof is given in [24], [62, Chapter 1] and in [33, Prop. 1.134] (where l = 1, k = 1), and we refer

the reader to [15, Thm. 4.4.4] for analogous approximation properties in a more general setting.

Let us sketch our strategy to discretize the optimal control problem (5.1) with the just presented finite

element method. First, let L[u](f, ·) denote a weak formulation of L[u](f) such that the classical solutions

f satisfies for all test functions ψ : Ω → R the following

⟨∂tf, ψ⟩L2(Ω) + L[u](f, ψ) = 0,

⟨f0 − f(0, ·), ψ⟩L2(Ω) = 0.
(5.10)

In a finite element approach, the ansatz is to seek semidiscrete solutions fh ∈ H1(0, T ;PNΩ ) of the form

fh(t, x) =

N∑
j=1

yj(t)ψj(x).
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Inserting this ansatz into the weak formulation (5.10) of f and replacing the space of test functions with

the finite element space PNΩ , we obtain the following system of equations for j = 1, . . . , N

⟨∂tfh, ψj⟩L2(Ω) + L[u](fh, ψj) = 0, (5.11)

⟨f0 − fh(0, ·), ψj⟩L2(Ω) = 0. (5.12)

Assuming the control u to be only time–dependent, we can carry out all integrations over x. Therefore,

(5.11) becomes a system of ODEs for y with initial value given by (5.12). This justifies the terminology

of finding fh as a semidiscrete problem, since it is a discrete problem in x but still a Cauchy problem in

t.

We proceed analogously for the semidiscretization of the objective J , and for a better illustration of our

approach, we assume J(f, u) to be of the form

J(f, u) =

∫
ΩT

ℓ
(
t, x, f(t, x), u(t)

)
dx dt+

∫
Ω

κ
(
x, f(T, x)

)
dx. (5.13)

We replace all space dependent functions with its projections ProjNL2(Ω)(·) to the finite element space,

carry out the integrations over x and obtain a semidiscrete objective, that involves only time–integration

of the form

Jh(y, u) =

∫ T

0

ℓh
(
t, y(t), u(t)

)
dt+ κh

(
y(T )

)
.

In conclusion, we have – at least formally – obtained the ODE–constrained optimal control problem

min
u∈Uad

Jh(y, u) y given by (5.11)–(5.12). (5.14)

Under certain assumptions on the PDE (5.2) and the objective (5.13), one can expect that fh → f

in a suitable sense and Jh(y, u) → J(f, u) as the mesh size h tends to zero. Thus, we call (5.14) the

semidiscrete optimal control problem, and we remark that both optimization problems are defined on the

same set of admissible controls Uad.

The idea of this splitting procedure is that, on one hand, we need to verify that this is a good approxi-

mation in the sense that the minimizers ūh of (5.14) converge to minimizers ū of (5.1). In other words,

we address the following question: If a sequence of cost functionals Ĵh converges to Ĵ with a certain rate,

under which further conditions can we make a statement on the convergence rates of the local minimizers

ūh to ū? This question will be answered in the next section.

On the other hand, we hope to have simplified the problem in the sense that (5.14) is a simple problem

compared to (5.1) from a theoretical and numerical point of view. The simplified problem is analyzed in

Chapter 6. Let us introduce its time discretization with uniform mesh size k := T/K, where K ∈ N is the

number of grid points and ti := ik for i = 0, . . . ,K. Let (Uad)k be the corresponding finite–dimensional

space to Uad and let Ĵh,k be the finite–dimensional objective corresponding to Ĵh. The corresponding

finite–dimensional optimization problem reads

min
u∈(Uad)k

Ĵh,k(u)

with solution ūh,k ∈ (Uad)k. For a suitable projection Pk : (Uad)k → Uad, we have split the problem of

establishing error estimates into

∥ū− Pk(ūh,k)∥2 ≤ ∥ū− ūh∥2 + ∥ūh − Pk(ūh,k)∥2. (5.15)

Let us put it in concrete terms for our Fokker–Planck problem. In that case, the semidiscrete problem

for Ĵh is discretized in time with a finite element method, i.e., (Uad)k is the space of piecewise constant
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or piecewise quadratic polynomials and no projection is needed. Due to (5.15), we are able to prove first–

or second–order accuracy, that is, minimizers ūh,k of Ĵh,k converge to ū in L2(0, T ) with rate kr + hr,

where r = 1 or r = 2 depends on certain regularity assumptions.

The first term of (5.15) is treated in Section 5.2 and the second term is estimated in Chapter 6.

5.2 Accuracy estimates of optimization problems in an abstract frame-

work

In this section, we formulate the conditions for the abstract minimization problem (5.1), that are based

on second–order results from Section 1.3 and the splitting idea (5.15). We completely adopt the notation

from Theorem 1.3.6. The set of admissible controls ∅ ̸= Uad ⊂ L2(0, T )m, m ∈ N, is convex and closed,

and U is a Hilbert–space with scalar product ⟨·, ·⟩U and norm ∥ · ∥U = ⟨·, ·⟩1/2U that covers Uad. Let U∞

be a Banach space with norm ∥ · ∥∞ and continuous embedding U∞ ⊂ U . Possible choices of U and U∞

are, for example, L2(0, T ), H1
0 (0, T ) or Hk(0, T ) and L∞(0, T ), respectively; also the choice U = U∞ is

possible.

Furthermore, we assume the existence of a control–to–state map u 7→ G(u), and introduce the reduced cost

functional Ĵ : U → R, Ĵ(u) := J(G(u), u). In this section, the minimization problem under consideration

reads

min
u∈Uad

Ĵ(u). (5.16)

We recall that u∗ ∈ Uad is a minimizer of Ĵ (or a solution of (5.16)) if Ĵ(u∗) ≤ Ĵ(u) for all u ∈ Uad.

Furthermore, some ū ∈ Uad is a local minimum of Ĵ (or a local solution of (5.16)) if there exists r > 0

such that Ĵ(ū) ≤ Ĵ(u) for all u ∈ Uad ∩Br(ū;U∞).

Let h > 0 denote the spatial mesh size for the space approximation. Let us fix ū ∈ Uad and recall the

following conditions on Ĵ from Theorem 1.3.6:

(C1) Ĵ , Ĵh is of class C2 in U∞ and for every u ∈ Uad, there exists continuous extensions

Ĵ ′(u), Ĵ ′
h(u) ∈ Lin (U) , Ĵ ′′(u), Ĵ ′′

h (u) ∈ Bilin (U × U) . (C1)

(C2) There exists Λ > 0 such that for all sequences (un)n∈N ⊂ Uad and (vn)n∈N ⊂ U with un → ū

strongly in U and vn ⇀ v weakly in U it holds that

Ĵ ′(ū)v = lim
n→∞

Ĵ ′(un)vn, (C2.1)

Ĵ ′′(ū)(v, v) ≤ lim inf
n→∞

Ĵ ′′(un)(vn, vn), (C2.2)

and if v = 0, then Λ lim inf
n→∞

∥vn∥2U ≤ lim inf
n→∞

Ĵ ′′(un)(vn, vn). (C2.3)

Furthermore, we state the following conditions for the semidiscrete problem.

(C3) The semidiscrete functional Ĵh : Uad → R is well–defined and

Ĵh(u) → Ĵ(u) (C3)

as h→ 0, uniformly for u ∈ Uad.

(C4) The sequence (ūh) of local minima of Ĵh exists and

ūh → ū in U as h→ 0. (C4)
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(C5) For all δ > 0 there exists ε, h0 > 0 such that for all v ∈ U , 0 < h < h0 and u ∈ Uad ∩ Bε(ū;U) it

holds that

|Ĵ ′′
h (u)(v, v)− Ĵ ′′(u)(v, v)| ≤ δ∥v∥2U . (C5)

(C6) Let τ > 0. There exists some h0 > 0 and rate r > 0 such that for (ūh) and ū from (C4) it holds

that ∣∣∣Ĵ ′(ūh)v − Ĵ ′
h(ūh)v

∣∣∣ ≤ Chr∥v∥U , v ∈ Uad, (C6)

for all 0 < h < h0, where C > 0 is independent of ūh and h. Additionally, ūh − ū ∈ Eτū , where

Eτū = {v ∈ Sū
U

: |Ĵ ′(ū)v| ≤ τ∥v∥2}.

In addition to these conditions, we require the following first– and second–order assumptions on ū

Ĵ ′(ū)(u− ū) ⩾ 0, u ∈ Uad, (A1)

Ĵ ′′(ū)(v, v) > 0, v ∈ Cū\{0}. (A2)

where Cū denotes the critical cone defined in Section 1.3.

We present the main result of our abstract approach in the following theorem. It specifies how the

auxiliary term ∥ū − ūh∥U can be estimated. Therefore, it allows for the reduction of the complexity of

the problem minu∈Uad
Ĵ(u) to that of minu∈Uad

Ĵh(u).

Theorem 5.2.1. Let ū ∈ Uad satisfy (A1)–(A2) from above, and let the conditions (C1)–(C4) and (C6)

hold for the reduced objective functionals Ĵ , Ĵh : U → R at ū.

Then, for sufficiently small h, it holds that

∥ū− ūh∥U ≤ Chr,

for some C > 0 independent of ūh and h.

Proof. We see that Theorem 1.3.6 implies local coercivity of Ĵ around ū in the sense that there exists

ν, τ, ε > 0 such that for all u ∈ Uad ∩Bε(ū;U2) and all v ∈ Eτū , it holds that

Ĵ ′′(u)(v, v) ≥ ν

2
∥v∥2U .

Since ūh − ū ∈ Eτū by (C6), we have for all h > 0 and w ∈ Uad ∩Bε(ū;U2) that

ν

2
∥ū− ūh∥2U ≤ J ′′(w)(ū− ūh, ū− ūh). (5.17)

Due to the mean value theorem, for all h > 0 there exists λ ∈ [0, 1] such that

Ĵ ′′(wh)(ū− ūh, ū− ūh) =
(
Ĵ ′(ūh)− Ĵ ′(ū)

)
(ūh − ū),

where wh := λū + (1 − λ)ūh. Due to the strong convergence ūh → ū in U , we find h0 > 0 such that for

all 0 < h < h0 we have wh ∈ Bε(ū;U). Since −Ĵ ′(ū)(ūh − ū) ≤ 0 ≤ −Ĵ ′
h(ūh)(ūh − ū) due to the FONC,

it holds that

ν

2
∥ū− ūh∥2U ≤ Ĵ ′′(wh)(ū− ūh, ū− ūh)

=
(
Ĵ ′(ūh)− Ĵ ′(ū)

)
(ūh − ū)

≤
(
Ĵ ′(ūh)− Ĵ ′

h(ūh)
)
(ūh − ū)

≤ Chr∥ūh − ū∥U ,

where the last estimate is from (C6). Dividing by ∥ūh − ū∥U yields the claim b).



5.2 Accuracy estimates of optimization problems in an abstract framework 85

Concerning (C4), in many applications a first–order necessary condition yields an implicit formula for ūh

and ū, which can be exploited to derive the convergence of the norms ∥ūh∥U → ∥ū∥U . Another, more

direct approach is shown in the following lemma, where a sequence of minima is constructed on a small

closed ball (ūh) that converges strongly to ū.

Lemma 5.2.2. Let Ĵ , Ĵh be w.l.s.c on Uad and fulfill (C1)–(C3). Let (A1)–(A2) hold for ū ∈ Uad and let

ε > 0 be given by Theorem 5.2.1. Furthermore, let the objective Ĵ and the semidiscrete objective Ĵh be of

the form

Ĵ(u) = F (u) +
γ

2
∥u∥2U , Ĵh(u) = Fh(u) +

γ

2
∥u∥2U

for γ > 0 and functions F, Fh : U → R, and if wh ⇀ w in U then Fh(wh) → F (W ). Then, the following

holds:

a) There exists a sequence (ūh)h>0 ⊂ Uad of solutions to

min
{
Ĵh(u) | u ∈ Uad ∩Bε/2

U
(ū;U)

}
, Bε/2

U
(ū;U) := {u ∈ U | ∥u− ū∥U ≤ ε/2}, (5.18)

with ūh ⇀ ū in U as h→ 0.

b) If ∥ūh∥U → ∥ū∥U , then (ūh)h>0 is a sequence of local minima of Ĵh, and condition (C4) is satisfied.

c) The convergence of the norms ∥ūh∥U → ∥ū∥U hold.

Proof. We start by showing the existence of solutions wh to (5.18). Due to (C3), Ĵh is bounded from

below, and we can pick a minimizing sequence (wnh)n∈N ⊂ Uad ∩Bε/2
U
(ū;U) with

lim
n→∞

Ĵh(w
n
h) = inf

{
Ĵh(u) | u ∈ Uad ∩Bε/2

U
(ū;U)

}
.

By construction, for every h > 0, the sequence (wnh)n∈N is uniformly bounded in U by ∥ū∥U + ε, and

hence, there exists a weak limit wh in U (after selecting a subsequence). Due to the convexity and

closedness of Uad ∩ Bε/2
U
(ū;U), we deduce by an application of Mazur’s lemma, see Lemma 1.4.2, that

wh ∈ Uad ∩Bε/2
U
(ū;U). Thus, the weak lower semicontinuity of Ĵh implies that wh is a local minimizer.

Next, we show that the sequence of minimizers (wh)h>0 converges weakly to ū in U as h → 0. Since

∥wh∥U ≤ ∥ū∥U + ε, there exists a weak limit w ∈ Uad ∩ Bε/2
U
(ū;U). Indeed, we can prove w = ū as

follows. First, notice that the assumption on Fh, F implies Fh(wh) → F (ū). Hence, we obtain that

Ĵ(w) ≤ lim inf
h→0

Ĵh(wh) and Ĵh(wh) ≤ Ĵh(ū)

due to (5.18). Consequently, it holds that

Ĵ(w) ≤ lim inf
h→0

Ĵh(wh) ≤ lim
h→0

Ĵh(ū) = Ĵ(ū) ≤ Ĵ(w). (5.19)

Now recall the quadratic growth condition at ū which implies that ū is a strict local minimum, that is,

Ĵ(ū) < Ĵ(u), u ∈ Uad ∩Bε(ū;U).

Since Ĵ(ū) = Ĵ(w) and w ∈ Uad ∩Bε(ū;U), it follows that w = ū.

In conclusion, we have shown that a subsequence of (wh) – let us redefine it as (ūh) – converges weakly

to ū in U as h → 0, thereby proving part (a). Furthermore, if ∥ūh∥U → ∥ū∥U , this would imply strong

convergence in U since U is a Hilbert space. Consequently, for sufficiently small h, every ūh has to be in

the interior of the closed ball. Therefore, it is a local minimum of Ĵh. This proves part b).
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In order to verify assertion c), notice that in (5.19), we have proven that Ĵ(ū) = lim infh→0 Ĵh(ūh), and

hence,

lim inf
h→0

γ

2
∥ūh∥2U = lim inf

h→0

(
Ĵh(ūh)− Fh(ūh)

)
= Ĵ(ū)− F (ū) =

γ

2
∥ū∥2U .

Due to the weak convergence, it holds that ūh → ū strongly in U for a subsequence. Since the limit ū is

unique for every subsequence, the entire sequence converges without the need for selecting a subsequence,

see Lemma 1.4.3. This concludes the proof.

Let us emphasize that, in general, for non–convex minimization problems, one cannot simply construct

an auxiliary problem Ĵh and assume that (C3) implies that its minimizers ūh converge to the minimizer

ū of Ĵ . This is due to the fact that minimizers need not be unique, and local minima need not be strict.

However, Lemma 5.2.2 ensures that for given ū, one picks the “correct” sequence of local minimizers ūh

of Ĵh, and this is where the second–order assumption (A2) for ū enters in our approach.

Furthermore, second–order conditions on local minimizers are important for the numerical analysis of the

auxiliary problem and for establishing accuracy estimates. Since the minimizers ūh are given by Lemma

5.2.2, one has to verify that the second–order condition of ū will be passed on to ūh. This can be done

as follows. In the case of no box constraints on the controls, that is Uad = U , the critical cone from

(A2) becomes Cū = U . Hence, if additionally condition (C5) holds, we can ensure that also ūh fulfills a

second–order condition for Ĵh.

In the case of Uad ⊊ U , the situation becomes more delicate, since we have to compare the critical cones

of Ĵ and Ĵh. In Section 7.2, where we investigate the non–convex Fokker–Planck problem, we solve this

problem by defining two extended critical cones. This allows us with (C5) to deduce local coercivity of

Ĵh around ūh from the given local coercivity of Ĵ around ū.

This concludes our discussion of the abstract minimization problem, and we focus on our Fokker–Planck

optimal control problem of tracking type.

5.3 Convergence of the semidiscrete Galerkin approximation for the

Fokker–Planck problem

In the following, we analyze the spatial Galerkin approximation to the FP problem. One difficulty is

that the objective functional J contains the term p(T, ·), and consequently, we need to analyze accuracy

additionally in the L∞(0, T ;L2(Ω))–norm. In order to obtain convergence of the semidiscrete Galerkin

scheme, the H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω))–regularity of solutions to the FP problem and its adjoint

are sufficient. However, in order to derive quadratic accuracy of the semidiscrete Galerkin scheme, we

have to assume a L2(0, T ;H3(Ω))∩C([0, T ];H2(Ω))–regularity, at least for solutions of the form p̄ = G(ū),

ϱ̄ = Θ(ū), where ū ∈ UTad is a local minimum on Ĵ or Ĵh. Let us comment on why it is reasonable to

assume that such regular solutions p̄, ϱ̄ exist. The aim is to derive accuracy results for local minimizer ū of

Ĵ . As we have seen in Theorem 4.1.5 a), the implicit representation of ū allows obtaining higher regularity

for local minimizer; in this case we have improved ū from L∞(0, T ) to H1/2(0, T ). Since ū appears on the

r.h.s. of the inhomogeneous heat equation for p̄, see Lemma 2.3.2, possibly, p̄ has now higher regularity

than H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)), and we can repeat this argument. This bootstrap argument is

known to work well for linear optimal control problems, however, since the FP problem is a bilinear

problem, it is still ongoing work to rigorously verify this argument.

Next, recall the linear finite element setting on H1(Ω) introduced in Section 5.1, where the set of pyramid

functions {ψi : i = 1, . . . , N} is the basis of PNΩ . The mass matrix is denoted by M ∈ RN×N and has



5.3 Convergence of the semidiscrete Galerkin approximation for the Fokker–Planck problem 87

ij–th entry

Mij := ⟨ψi, ψj⟩L2(Ω). (5.20)

We notice that M is symmetric positive definite and has full rank, and therefore, we can define the two

equivalent norms on L2(0, T )N and RN , respectively,

∥y∥2,M :=

(∫ T

0

y(t)⊤My(t) dt

)1/2

for y ∈ L2(0, T )N , |a|M :=
(
a⊤Ma

)1/2
for a ∈ RN .

We are interested in solutions P = PN ∈ H1(0, T ;H1(Ω)) of the form

PN (t, x) =

N∑
i=1

yi(t)ψi(x), (5.21)

such that f.a.e. t ∈ ]0, T [ and for i = 1, . . . , N it holds

⟨ṖN (t), ψi⟩L2(Ω) + Ft(PN (t), ψi) = 0, (5.22)

⟨PN (0), ψi⟩L2(Ω) = ⟨p0, ψi⟩L2(Ω). (5.23)

This is equivalent to y ∈ H1(0, T )N solving the linear system of differential equations given by

M y′(t) =
(
Ã+ u(t)B̃

)
y(t), t ∈ [0, T ] (5.24)

with initial condition yi(0) = ⟨p0, ψi⟩2 for i = 1, . . . , N . This is due to the fact that for the ij–th

components, we have
(
Ã + u(t)B̃

)
ij

= −Ft[u](ψj , ψi) for u ∈ L2(0, T )m, and hence, the entries for

i, j = 1, . . . , N are given by

Ãij = −
∫
Ω

(
a∇ψj(x)− ψj(x)c(x)

)
· ∇ψi(x) dx,

(u(t)B̃)ij = −
∫
Ω

ψj(x)∇ψi(x)⊤M(x)u(t) dx.

Since M is invertible, we can bring this problem in a standard ODE form by applying M−1 from the

left on the equation. If m = 1, we define A := M−1Ã and B := M−1B̃, and thus, (5.24) becomes

y′ = (A+ uB)y.

By the Carathéodory theorem, there exists a unique solution y ∈ H1(0, T )N to (5.24) and we refer to

Chapter 6 for more details. For every N ∈ N, this gives rise to the following unique semidiscretized

control–to–state map

YN : L2(0, T ) → H1(0, T )N , u 7→ y, or equivalently (5.25)

GN : L2(0, T ) → H1(0, T ;PNΩ ), u 7→ PN =

N∑
i=1

yi ψi. (5.26)

Now, we can state the main result of this section. For that purpose, we recall the following notations for

the norms of Banach valued Lebesgue spaces:

∥ · ∥LpLq := ∥ · ∥Lp(0,T ;Lq(Ω)), ∥ · ∥LpHq := ∥ · ∥Lp(0,T ;Hq(Ω)), for p, q ∈ [1,∞].

Furthermore, let us recall the set of admissible controls under consideration

UTad = {u ∈ L∞(0, T )m | umin ≤ ui(t) ≤ umax f.a.e. t ∈ [0, T ], i = 1, . . . ,m}.
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Theorem 5.3.1. Let u ∈ UTad, p = G(u) ∈ H1(0, T ;L2(Ω))∩C([0, T ];H1(Ω)) and P = PN ∈ H1(0, T ;PNΩ )

be solutions to the FP problems (2.10) and (5.22), respectively. Then, for any Φ ∈ H1(0, T ;PNΩ ) of the

form (5.21), there exists a constant C = CadCF∗ > 0 such that

∥p− P∥L∞L2 + ∥p− P∥L2H1 ≤ C
(
∥ṗ− Φ̇∥L2(ΩT ) + ∥p− Φ∥L∞L2 + ∥p− Φ∥L2H1

)
. (5.27)

Proof. Let us define w := p − P ∈ C([0, T ];H1(Ω)). Note that by the Galerkin–orthogonality, w(t) ∈
H1(Ω) is a valid test function for the FP equation (2.10) but not for the semidiscretized one (5.22) since

p(t) /∈ PNΩ in general. Thus, we obtain for any Φ ∈ H1(0, T ;PNΩ ) of the form (5.21) the additional terms

⟨ẇ(t), w(t)⟩L2(Ω) + Ft(w(t), w(t)) = ⟨ẇ(t), p(t)− Φ(t)⟩L2(Ω) + Ft(w(t), p(t)− Φ(t)), f.a.e. t ∈ ]0, T [ .

Next, we recall Lemma 2.1.2 and deduce the existence of constants β, γ̃ > 0 such that

−Ft(φ,φ) ≤ γ̃∥φ∥2L2(Ω) − β∥φ∥2H1(Ω)

for all φ ∈ H1(Ω). Thus, integrating with respect to t yields

1

2
∥w(t)∥2L2(Ω) ≤

1

2
∥w(0)∥2L2(Ω) +

∫ t

0

(
γ̃∥w(s)∥2L2 − β∥w(s)∥2H1

)
ds (5.28)

+

∫ t

0

⟨ẇ(s), p(s)− Φ(s)⟩L2(Ω) ds+

∫ t

0

Fs(w(s), p(s)− Φ(s)) ds. (5.29)

We estimate the first term in line (5.29) by partial integration, L2–Hölder–inequality and the ε–Young–

inequality to obtain f.a.e. t ∈ ]0, T [ and every small ε > 0 the following estimate∫ t

0

⟨ẇ(s), p(s)− Φ(s)⟩L2(Ω) ds

≤
∫ t

0

∥w(s)∥L2(Ω)∥∂t(p− Φ)(s)∥L2(Ω) ds

+ ∥w(t)∥L2(Ω)∥p(t)− Φ(t)∥L2(Ω) + ∥w(0)∥L2(Ω)∥p(0)− Φ(0)∥L2(Ω)

≤ 1

2

∫ t

0

∥w(s)∥2L2(Ω) ds+
1

2
∥∂t(p− Φ)∥2L2(ΩT )

+ ε∥w(t)∥2L2(Ω) + Cε∥p(t)− Φ(t)∥2L2(Ω) +
1

2
∥w(0)∥2L2(Ω) +

1

2
∥p(0)− Φ(0)∥2L2(Ω).

(5.30)

For the last integral in (5.29), the boundedness from Lemma 2.1.2 of the flux F similarly yields∫ t

0

Fs(w(s), p(s)− Φ(s)) ds ≤ ε∥w∥2L2(0,t;H1(Ω)) + Cε∥p− Φ∥2L2H1 .

Combining both estimates, we find that(
1

2
− ε

)
∥w(t)∥2L2(Ω) ≤ ∥w(0)∥2L2(Ω) + Cε∥p− Φ∥2L∞L2 − (β − ε)∥w∥2L2(0,t;H1(Ω))

+ Cε∥p− Φ∥2L2H1 +
1

2
∥∂t(p− Φ)∥2L2(ΩT ) +

∫ t

0

(
γ +

1

2

)
∥w(s)∥2L2(Ω) ds.

(5.31)

In conclusion, Grönwall’s lemma now implies that

∥w(t)∥2L2(Ω) + ∥w∥2L2H1 ≤ C
(
∥w(0)∥2L2(Ω) + ∥p− Φ∥2L∞L2 + ∥p− Φ∥2L2H1 + ∥∂t(p− Φ)∥2L2(ΩT )

)
Lastly, we can estimate w(0) due to (5.23) as follows

∥w(0)∥L2(Ω) ≤ ∥p0 − Φ(0)∥L2(Ω) ≤ ∥p− Φ∥L∞L2 .

This concludes the proof.
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We will see in Theorem 5.3.3 below that under further assumptions on Φ, the first term in (5.30) can be

estimated in another way. As a consequence of Theorem 5.3.1, we get the following error estimate.

Corollary 5.3.2. (Linear and quadratic error estimates for the semidiscrete Galerkin approximation)

Let r ∈ {1, 2} and assume that p = G(u) ∈ L2(0, T ;H1+r(Ω)) ∩ H1(0, T ;Hr(Ω)). Then, there exists a

constant C = CadCF∗ such that

∥p− P∥W ≤ Chr
(
∥p∥L2H1+r + ∥p∥L∞Hr + ∥∂tp∥L2Hr

)
. (5.32)

Proof. Let us consider the case r = 1. Since p ∈ L2(0, T ;H2(Ω)) ∩ H1(0, T ;H1(Ω)), we can define

Φ(t) := ProjN∇(p(t)) ∈ PNΩ for t ∈ [0, T ], and due to the accuracy results from Lemma 5.1.1, it holds that

∥p(t)− Φ(t)∥L2(Ω) ≤ Ch∥p(t)∥H1 ≤ Ch∥p∥L∞H1 ,

∥p− Φ∥L2H1 =

(∫ T

0

∥p(t)− Φ(t)∥2H1 dt

)1/2

≤ Ch∥p∥L2H2 ,

∥∂t(p− Φ)∥L2(ΩT ) ≤ Ch∥∂tp∥L2H1 ≤ Ch∥p∥H1H1 .

Notice that for the last estimate, we used that ∂tΦ(t) = ProjN∇(∂tp(t)) f.a.e. t ∈ [0, T ]. An application

of Theorem 5.3.1 yields the desired linear accuracy rate. This proves the claim for the linear accuracy

estimate r = 1.

If r = 2, we need the regularity p ∈ H1(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)), and the assertion follows analo-

gously.

As mentioned before, let us go through the proof of Theorem 5.3.1 in a different way and exploit the

L2–orthogonality of the L2–projection ProjNL2(Ω). Compared to Corollary 5.3.2, lower regularity of p is

necessary for linear error estimates.

Theorem 5.3.3. (Improved linear error estimates)

Let u ∈ UTad, p = G(u) ∈ H1(0, T ;L2(Ω)) ∩ L2(0;H2(Ω)) and P = PN ∈ H1(0, T ;PNΩ ) be solutions to

the FP problems (2.10) and (5.22), respectively, where h > 0 denotes the mesh size, and N = N(h) is

the dimension of the finite element space.

a) Then, there exists C = CadCF∗ such that

∥p− P∥L∞L2 + ∥p− P∥L2H1 ≤ Ch(∥p∥L2H2 + ∥p∥H1L2).

b) Let f ∈ L2(ΩT ). Let z ∈ H1(0, T ;L2(Ω)) ∩ L2(0;H2(Ω)) and Z = ZN ∈ H1(0, T ;PNΩ ) be solutions

to the inhomogeneous FP problems f.a.e. t ∈ [0, T ]

⟨ż(t), ψ⟩L2(Ω) + Ft(z(t), ψ) = ⟨f, ψ⟩L2(Ω), ψ ∈ H1(ΩT ) (5.33)

⟨ŻN (t), ψi⟩L2(Ω) + Ft(ZN (t), ψi) = ⟨f, ψi⟩L2(Ω), i = 1, . . . , N, (5.34)

with initial condition z(0, ·) = 0 and ZN (0, ·) = 0 a.e. on Ω. Then, the same linear accuracy

estimate holds for C = CadCF∗

∥z − Z∥L∞L2 + ∥z − Z∥L2H1 ≤ Ch(∥z∥L2H2 + ∥z∥H1L2).

c) Let ϱ = Θ(u) be the adjoint from Definition 4.1.4 and let ϱN ∈ H1(0, T ;PNΩ ) denote its Galerkin

approximation, i.e. it satisfies

−⟨ϱ̇N (t), ψi⟩L2(Ω) + Ft[u](ψi, ϱN (t)) = β⟨p(t)− pd(t), ψi⟩L2(Ω)

⟨ϱN (T ), ψi⟩L2(Ω) = α⟨p(T )− pT , ψi⟩L2(Ω)
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f.a.e. t ∈ [0, T ] and i = 1, . . . , N . Then, a linear accuracy estimate holds with C = CadCF∗CJ

∥ϱ− ϱN∥L∞L2 + ∥ϱ− ϱN∥L2H1 ≤ Ch(∥ϱ∥L2H2 + ∥ϱ∥H1L2).

d) If the norms for p, z, ϱ on the r.h.s of the above estimates ∥ · ∥L2H2 and ∥ · ∥H1L2 are replaced by

∥ · ∥L2H3 and ∥ · ∥H1H1 , then the linear rate h can be replaced by the quadratic rate h2.

e) The Galerkin scheme converges weakly in H1(0, T ;L2(Ω)) and weakly* in C([0, T ];H1(Ω)), uni-

formly on UTad, i.e.,

PN ⇀∗ p, ϱN ⇀∗ ϱ in C([0, T ];H1(Ω)) as N → ∞,

PN ⇀ p, ϱN ⇀ ϱ in H1(0, T ;L2(Ω)) as N → ∞,

Proof. Let us start with assertion a). We repeat the proof of Theorem 5.3.1 with w := p − P until we

arrive at (5.30). This time, we choose the L2–projection Φ(t) := ProjNL2(Ω)(p(t)) ∈ PNΩ f.a.e. t ∈ [0, T ]

which implies the regularity

Φ ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)).

We exploit the L2–orthogonality (5.4) and obtain f.a.e. s ∈ [0, T ] the following identity

⟨ẇ(s), p(s)− Φ(s)⟩L2(Ω) = ⟨ṗ(s), p(s)− Φ(s)⟩L2(Ω)

= ⟨ṗ(s)− Φ̇(s), p(s)− Φ(s)⟩L2(Ω)

=
1

2

d

ds

(
∥p(s)− Φ(s)∥2L2(Ω)

)
.

Consequently, (5.30) becomes f.a.e. t ∈ [0, T ]∫ t

0

⟨ẇ(s), p(s)− Φ(s)⟩L2(Ω) ds =
1

2

(
∥p(t)− Φ(t)∥2L2(Ω) − ∥p(0)− Φ(0)∥2L2(Ω)

)
.

We estimate the second term in (5.29) as before. Next, we insert our estimates in (5.28)–(5.29) and

obtain that

1

2
∥w(t)∥2L2(Ω) ≤

1

2
∥w(0)∥2L2(Ω) +

∫ t

0

(
γ̃∥w(s)∥2L2 − β∥w(s)∥2H1

)
ds

+
1

2
∥p(t)− Φ(t)∥2L2(Ω) −

1

2
∥p(0)− Φ(0)∥2L2(Ω)

+ ε∥w∥2L2(0,t;H1(Ω)) + Cε∥p− Φ∥2L2H1 .

Taking ε = β and applying Grönwall’s lemma yields the desired estimate for supt∈[0,T ] ∥w(t)∥L2(Ω).

Furthermore, taking ε < β, rearranging the estimate and estimating ∥w(0)∥L2(Ω) ≤ C∥p − Φ∥L∞L2

implies the desired estimate for w in the L2(0, T ;H1(Ω))–norm, and we arrive at

∥w∥2L∞L2 + ∥w∥2L2H1 ≤ C
(
∥p− Φ∥2L∞L2 + ∥p− Φ∥2L2H1

)
. (5.35)

Lastly, we apply the accuracy estimates from Lemma 5.1.1 to obtain the linear rates

∥p− Φ∥L∞L2 = ∥p− Φ∥C([0,T ];L2(Ω)) ≤ CΩh∥p∥C([0,T ];H1(Ω))

∥p− Φ∥L2H1 ≤ CΩh∥p∥L2H2 .
(5.36)

This concludes the proof of a).

Assertion b) is proven analogously for w := z − Z, since we observe that in the first step the r.h.s. f

cancels.
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In order to show claim c), we define w := ϱ− ϱN and Φ(t) := ProjNL2(Ω)(ϱ(t)) ∈ PNΩ . We notice that this

problem is similar to problem b), where the bilinear flux operator F is replaced with its adjoint operator.

We may repeat the proof of a) and obtain with (2.1.2) the estimate

1

2
∥w(t)∥2L2(Ω) ≤

1

2
∥w(T )∥2L2(Ω) +

∫ T

t

(
γ̃∥w(s)∥2L2(Ω) − β∥w(s)∥2H1(Ω)

)
ds

+

∫ T

t

Fs(ϱ(s)− Φ(s), w(s)) ds.

The last term is estimated again with Lemma 2.1.2 and the ε-Young inequality∫ T

t

Fs(ϱ(s)− Φ(s), w(s)) ds. ≤ ε

∫ T

t

∥w(s)∥2H1(Ω) ds+ Cε∥ϱ− Φ∥2L2H1 .

The other terms are treated as in part a). This completes the proof of c).

In order to prove part d), consider the estimate (5.35). This time, we apply estimate (5.7) from Lemma

5.1.1 to obtain the quadratic rates. For that purpose, let f = p, z or ϱ satisfy the higher regularity, and

replace (5.36) by

∥f − Φ∥L∞L2 ≤ CΩh
2∥f∥L∞H2 ,

∥f − Φ∥L2H1 ≤ CΩh
2∥f∥L2H3 .

This concludes the proof of d). In order to prove e) for the FP problem, we test the finite element

formulation with Ṗ ∈ L2(0, T ;PNΩ ) (instead of P ) to obtain a.e. on [0, T ]

⟨Ṗ , Ṗ ⟩L2(Ω) + F(P, Ṗ ) = 0. (5.37)

Furthermore, it holds a.e. on [0, T ]

F(P, Ṗ ) = a⟨∇P,∇Ṗ ⟩L2(Ω) + ⟨P,B[u]∇Ṗ ⟩L2(Ω)

=
a

2

d

dt
∥∇P∥2L2(Ω) + ⟨div (P B[u]), Ṗ ⟩L2(Ω).

(5.38)

Integrating (5.37) w.r.t. the time variable and inserting (5.38) yields f.a.e. t ∈ [0, T ]

0 =

∫ t

0

(
∥Ṗ (s)∥2L2(Ω) + ⟨div (P (s)B[u]), Ṗ (s)⟩L2(Ω)

)
ds+

a

2

(
∥∇P (t)∥2L2(Ω) − ∥∇P (0)∥2L2(Ω)

)
.

Rearranging this equation, applying Cauchy-Schwarz inequality and then an ε-Young inequality implies

the estimate

a

2
∥∇P (t)∥2L2(Ω) +

∫ t

0

∥Ṗ (s)∥2L2(Ω) ds

≤ ∥∇P (0)∥2L2(Ω) +

∫ t

0

∥P (s)∥H1(Ω)∥B[u](s)∥W 1,∞(Ω)∥Ṗ (s)∥L2(Ω) ds

≤ ∥∇P (0)∥2L2(Ω) + Cε

∫ t

0

∥P (s)∥2H1(Ω) ds+ ∥B[u]∥2L∞(0,T ;W 1,∞(Ω)) ε

∫ t

0

∥Ṗ (s)∥2L2(Ω) ds.

Next, we exploit the uniform boundedness ∥B[u]∥2L∞(0,T ;W 1,∞(Ω)) ≤ CadCF∗, and therefore, we can choose

ε > 0 sufficiently small such that

a

2
∥∇P (t)∥2L2(Ω) +

1

2

∫ t

0

∥Ṗ (s)∥2L2(Ω) ds ≤ ∥∇P (0)∥2L2(Ω) + Cε

∫ t

0

∥P (s)∥2H1(Ω) ds.
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Since this estimate holds f.a.e. t ∈ [0, T ], we can take the supremum over [0, T ]. Furthermore, we estimate

P in the L2(0, T ;H1(Ω))–norm by part a), and due to the equation (5.23) for P (0), it holds that

∥∇P (0)∥2L2(Ω) =
∥∥∥∇(ProjNL2(Ω)(p(0))

)∥∥∥2
L2(Ω)

≤ C∥p0∥H1(Ω).

This implies

sup
t∈[0,T ]

a

2
∥∇P (t)∥2L2(Ω) +

1

2
∥Ṗ∥L2(0,T ;L2(Ω)) ≤ C(∥p0∥H1(Ω)∥P∥L2(0,T ;H1(Ω)) ≤ CadCF∗.

Hence, the semidiscrete solutions P are bounded in C([0, T ];H1(Ω)) and H1(0, T ;L2(Ω)), uniformly in

N . Since the L2–limit of P is p, the corresponding weak (or weak*) convergence holds without a selection

of a subsequence and its limit has to be p which can be shown by a standard argument as in (2.46). The

case for the adjoint is done analogously.

Let us mention, that similarly to e) and a), we can derive the strong convergence in C([0, T ];H1(Ω)) and

H1(0, T ;L2(Ω)) by testing with ẇ instead of w. Let Φ(t) := ProjNL2(Ω)(ϱ(t)) ∈ PNΩ and observe that f.a.e.

t ∈ [0, T ]

⟨ẇ(t), ẇ(t)⟩L2(Ω) + Ft(w(t), ẇ(t)) = ⟨ẇ(t), ṗ(t)− Φ̇(t)⟩L2(Ω) + Ft(w(t), ṗ(t)− Φ̇(t)), (5.39)

Due to the L2–orthogonality, we have this time f.a.e. s ∈ [0, T ]

⟨ẇ(s), ṗ(s)− Φ̇(s)⟩L2(Ω) = ⟨ṗ(s)− Φ̇(s), ṗ(s)− Φ̇(s)⟩L2(Ω)

= ∥ṗ(s)− Φ̇(s)∥2L2(Ω).
(5.40)

Next, integrating equation (5.39) from 0 to t, and then inserting (5.40) and (5.38) yields∫ t

0

(
∥ẇ(s)∥2L2(Ω) + ⟨div (w(s)M), ẇ(s)⟩L2(Ω)

)
ds+

a

2

(
∥∇w(t)∥2L2(Ω) − ∥∇w(0)∥2L2(Ω)

)
=

∫ t

0

(
∥ṗ(s)− Φ̇(s)∥2L2(Ω) + Fs(w(s), ṗ(s)− Φ̇(s))

)
ds.

Now proceeding as in a) and e), we obtain linear rates under the additional H1-H1 regularity of p.

Weak solutions to our Fokker–Planck problem are known to preserve the total probability. We conclude

this section by proving that this also the case for the semidiscrete solution P .

Lemma 5.3.4. Let P = PN ∈ H1(0, T ;PNΩ ) denote the unique solution of (5.22)–(5.23). Then, for every

t ∈ [0, T ], it holds ∫
Ω

P (x, t) dx =

∫
Ω

P (x, 0) dx =

N∑
i=1

⟨p0, ψi⟩L2(Ω).

Proof. We test (5.22) by (x 7→ 1) ∈ PNΩ and obtain

⟨Ṗ (t), 1⟩L2(Ω) = 0, t ∈ [0, T ].

Since P has regularity H1(0, T ;H1(Ω)), integrating with respect to t yields∫
Ω

P (x, t) dx =

∫
Ω

P (x, s) dx, s, t ∈ [0, T ].

This concludes the analysis of the semidiscrete Galerkin scheme for FP problem with the state p = G(u).

We are now prepared to consider the corresponding semidiscretized cost functional JN in the next section.
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5.4 The semidiscrete cost functional for the Fokker–Planck optimal con-

trol problem

In this section, we formulate the semidiscretized cost functionals of Ĵ . Furthermore, we verify the accuracy

assumption (C3) from Theorem 5.2.1 using the Galerkin accuracy presented in the previous section. Let

h > 0 be the spatial mesh size and N = N(h) the dimension of PNΩ .

We introduce the auxiliary semidiscrete problem

min
u∈UT

ad

Ĵh(u), (5.41)

with Ĵh(u) := JN (YN (u), u) from (5.25) and auxiliary cost functional

JN (y, u) :=
β

2
∥y − yd∥22,M +

α

2
|y(T )− yT |2M +

γ

2
∥u∥22.

The components of the target states yd ∈ H1(0, T )N and yT ∈ RN are again defined as the coefficients

finite element approximation ProjNL2(Ω) of p
d and pT from (5.4), that is,

pdN (t, x) :=

N∑
i=1

ydi (t)ψi(x) and ∥pdN − pd∥L2(ΩT ) ≤ CΩh
2∥pd∥L2H2 , (5.42)

pTN (x) :=

N∑
i=1

yTi ψi(x) and ∥pTN − pT ∥L2(Ω) ≤ CΩh
2∥pT ∥H2(Ω). (5.43)

A quick computation shows that ∥P − pdN∥2L2(ΩT ) = ∥y− yd∥22,M and ∥P (T )− pTN∥2L2(Ω) = |y(T )− yT |2M,

where P = GN (u) is the Galerkin approximation of p = G(u) from the previous section. Due to the

definition of M and ∥ · ∥2,M, it holds that

∥P − pdN∥2L2(ΩT ) =

∫
Ω

∫ T

0

(
N∑
i=1

(
yi(t)− ydi (t)

)
ψi(x)

)2

dt dx

=

N∑
i=1

N∑
j=1

∫
Ω

∫ T

0

ψi(x)ψj(x)
(
yi(t)− ydi (t)

)⊤ (
yj(t)− ydj (t)

)
dt dx

=

N∑
i,j=1

∫ T

0

(
yi(t)− ydi (t)

)⊤ Mij

(
yj(t)− ydj (t)

)
dt = ∥y − yd∥22,M.

The second equality is shown analogously. Hence, we also have the following representation of Ĵh:

Ĵh(u) =
β

2
∥P − pdN∥2L2(ΩT ) +

α

2
∥P (T )− pTN∥2L2(Ω) +

γ

2
∥u∥2L2(0,T )

The next step is to analyze the semidiscrete optimal control problem. For better readability, we consider

in the following chapter the special case, where the dimension m of the control is one and M is the

identity matrix. We remark that since M is a positive definite matrix, the norms ∥ · ∥2,M and ∥ · ∥2 are

equivalent norms on L2(0, T ), and therefore, all the results hold in an analogous way for the mass matrix

M from (5.20).
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6
Accuracy estimates for bilinear ODE–constrained

optimization problems

Everything should be made as simple as possible, but not simpler.

Albert Einstein, 1879 – 1955

In this chapter, we continue the numerical analysis of the Fokker–Planck optimal control problem from

the previous chapter. For this purpose, it is the aim to establish accuracy estimates of a finite element

approximation to the optimal control problem

min
u∈L2(0,T )

J(y, u), (6.1)

with a scalar control u ∈ L2(0, T ) and y ∈ H1(0, T )N solution to the following linear Cauchy problem

with bilinear control mechanism

y′(t) =
(
A+ u(t)B

)
y(t), t ∈ [0, T ], y(0) = y0 ∈ RN . (6.2)

We assume that the matrices A,B ∈ RN×N are constant, and we refer the reader to Section 5.3 on the

connection of (6.2) to the Fokker–Planck problem. The cost functional J : H1(0, T )×L2(0, T ) → R is of

the quadratic form

J(y, u) :=
β

2

∫ T

0

|y(t)− yd(t)|2 dt+
γ

2

∫ T

0

|u(t)|2 dt+ α

2
|y(T )− yT |2 (6.3)

for γ > 0 and α, β ≥ 0. We recall Section 5.4, where the objective (6.3) is derived from the Fokker–Planck

optimal control problem considered in Chapter 5. The first and last integral quantify the deviation of

y and y(T ) from a desired state yd ∈ H2(0, T )N and target configuration yT ∈ RN , respectively. The

second integral term represents a L2–cost of the control and has a strong regularizing effect for solutions

to (6.1). The case of additional bilateral box constraints is addressed in the Section 6.8.
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It is the aim to define a finite element discretization of problem (6.1)–(6.3) with optimal control ūK given

on the K points of a uniform grid on [0, T ], and to establish a second–order accuracy estimate of the form

∥ū− ūK∥L2(0,T ) ≤ CK−2, as K → ∞.

In the previous chapter, the optimal control problem (6.1) has already been motivated by a semidis-

cretization of the Fokker–Planck problem with a Galerkin approach. In general, the ordinary differential

equation (6.2) arises in many semidiscrete Galerkin schemes to approximate time–dependent partial dif-

ferential equations with a bilinear control mechanism; see, e.g., [11, 46, 59]. Furthermore, the bilinear

structure of the control mechanism in (6.2) appears in, e.g., models of quantum optimal control problems

and linearized models of neural networks, c.f. [8–10, 25, 43, 47], and in many application systems [12, 56].

Nevertheless, the numerical approximation of this class of optimal control problems has been less in-

vestigated. For this reason, we would like to contribute to this field of research with the development

of a numerical analysis framework that is centered, with the aim of large applicability, on first– and

second–order optimality conditions. In view of the specific bilinear structure of our problem, we focus on

time–discretization of the state and control function by finite elements.

Although there is extensive literature on error estimates of ODE optimization problems, it seems difficult

to find results for the problem (6.1)–(6.3) under the given assumptions. This is due to the fact that while

most contributions cover a rich variety in the structure of the ODEs, the set of controls, the structure

of the cost functional and time discretization schemes, they assume certain coercivity conditions on the

optimization problem that are hard to be directly verified in our case. We refer to [29, 39] for a detailed

survey of error estimates of non–linear optimal control problems with Runge–Kutta discretizations. The

paper [28] examines a wide class of numerical schemes and analyzes the convergence of the first–order

optimality system of a non–linear optimal control problem under suitable second–order assumptions on

the reduced cost functional. Euler discretizations for an optimal control problem with strong second–order

conditions are covered in detail in [2,27]. The case of linear control mechanisms where this condition may

not be fulfilled, as it is the case with a bang–bang control problems, is extensively studied in [3, 53].

However, our approach, based on second–order results from Theorem 1.3.6 and a variational discretization

concept [42], is more direct and fits well to the case of bilinear optimal control problems but differs from

the classical ones [28,29, 39]. Furthermore, the use of finite element discretization with the correct finite

element spaces allows us to overcome the discrepancy between the discrete optimality system and the

discretized optimality system. In general, for traditional time–stepping methods, the discretize–then–

optimize (direct) approach and the optimize–then–discretize (indirect) approach do not coincide and

therefore complicate the numerical analysis and numerical computations, see [66]. We refer to [41] for a

detailed analysis on the difference between the direct and indirect approach for our problem (6.1)–(6.2)

with Crank–Nicolson time stepping.

In this chapter, a continuous, piecewise linear finite element discretization is used for the state and

adjoint equation. Exploiting the bilinear structure of our problem and due to the concept of variational

discretization, we use continuous, piecewise quadratic polynomials to approximate the time–dependent

controls. In the framework of finite element discretization, accuracy results for elliptic control problems

have been presented in [20,45]. Furthermore, in [45], a bilinear elliptic control problem is considered, and

error estimates of order one for piecewise constant controls and of order 3/2 for continuous, piecewise

linear controls are given. Similar results are obtained in [4, 20], where a semilinear elliptic equation is

considered with the control term entering linearly.

We remark that our main effort is to analyze problems where the controls are not subject to box con-

straints. However, in Section 6.8 we discuss extension of our results to the control constrained case.

This chapter is organized as follows. In the next section, we recall basic properties of solutions to (6.2)
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and analyze the control–to–state map and its Fréchet derivatives. The existence of optimal controls is

proven in Section 6.2, and the first–order optimality system is derived. Further, in Section 6.3, we analyze

the second–order derivatives of the reduced cost functional and state second–order sufficient conditions

for optimality. In Section 6.4, we introduce a finite element discretization scheme of the forward and

backward problem. Subsequently, we discuss a variational discretization scheme and derive the discrete

optimal control problem in Section 6.5. Section 6.6 is devoted to the convergence of the discrete controls

to the corresponding optimal control by using the first– and second–order analysis of the optimization

problem and the finite element discretization. With this preparation, we state our main results in Section

6.7, where we derive quadratic error estimates. In Section 6.8, we discuss the case where additional box

constraints on the control are present. A numerical algorithm for the computation of optimal controls

with our framework is developed in Section 6.9 and results are discussed which support the theoretical

findings.

6.1 Analysis of the governing model

In this section, we analyze the Cauchy problem (6.2) for controls u ∈ L2(0, T ) and fixed initial value

y(0) = y0 ∈ RN . By means of the Carathéodory theorem, we say that y is a solution to (6.2) if

y : [0, T ] → RN is absolutely continuous on [0, T ] and satisfies the following equation

y(t) = y0 +

∫ t

0

(
A+ u(s)B

)
y(s) ds, t ∈ [0, T ]. (6.4)

Let us recall some notation that is used throughout this chapter. We use the abbreviations for the

following norms of only time–dependent Lebesgue spaces

∥ · ∥2 := ∥ · ∥L2(0,T ), ∥ · ∥∞ := ∥ · ∥L∞(0,T ), ∥ · ∥H1 := ∥ · ∥H1(0,T ).

For u, v ∈ L2(0, T ), we denote with ⟨u, v⟩2 :=
∫ T
0
u(t)v(t) dt the canonical scalar product on L2(0, T ).

Furthermore, we frequently use the continuous embedding H1(0, T ) ↪→ C([0, T ]), cf. [1]. We use | · | for
the Euclidean norm and matricesM ∈ Rm×n are sometimes interpreted as vectorsM ∈ Rmn, which gives

meaning to |M |. In this chapter, all constants C may depend (continuously) on the fixed data T, |A|, |B|
and |y0| from (6.4); any additional dependencies are, if not clear from the context, denoted by subscripts.

The following theorem states existence of global solutions of regularity H1(0, T ).

Theorem 6.1.1. For every u ∈ L2(0, T ), there exists a unique solution y ∈ H1(0, T )N to (6.4). Further-

more, it holds that

∥y∥∞ + ∥y∥H1 ≤ CT,|y0|,|A|,|B|,∥u∥2
,

i.e., the constant C depends continuously only on the real valued numbers T, |y0|, |A|, |B| and ∥u∥2. If

u ∈ H1(0, T ) ∩ C([0, T ]), then y ∈ C1([0, T ])N and

∥y∥H2 ≤ C∥u∥H1 ,∥y∥H1
.

Proof. Due to its linear structure, the right–hand side of (6.2) satisfies the Carathéodory condition

and is locally Lipschitz continuous in y. Thus, there exists an absolutely continuous, unique solution

y : [0, T ] → RN with y′ ∈ L1(0, T )N which has the representation

y(t) = exp

(
A t+B

∫ t

0

u(s) ds

)
y0, t ∈ [0, T ]. (6.5)
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This yields the bound for ∥y∥∞. Since y satisfies (6.2) almost everywhere, we obtain the H1–bound∫ T

0

|y′(t)|2 dt =
∫ T

0

∣∣(A+ u(s)B)y(s)
∣∣2 ds ≤ C∥y∥22 + C∥y∥2∞∥u∥22.

Now let u ∈ H1(0, T ) be continuous. By standard ODE theory, y from (6.5) is in C1([0, T ]) and taking

the derivative of (6.2) yields

∥y′′∥2 ≤ |B|∥u′∥2∥y∥∞ + ∥A+ uB∥∞∥y′∥2 ≤ C
(
1 + ∥u∥H1

)
∥y∥H1 .

This concludes the proof.

Notice that, if A and B are skew-symmetric, then the Euclidean norm |y(t)| = |y0| is preserved for every

t ∈ [0, T ], and we refer to [25] for further details on the problem (6.4).

An immediate consequence of Theorem 6.1.1 is the well–definedness of the control–to–state map

G : L2(0, T ) → H1(0, T )N , u 7→ y, y solution to (6.4) with control u.

Next, we state some properties of the map G.

Lemma 6.1.2. G is compact in the sense that for every weakly convergent sequence (uk)⇀ u in L2(0, T ),

the strong convergence G(uk) → G(u) in L2 ∩ L∞(0, T )N holds.

Proof. Since (uk) ⇀ u in L2(0, T ), the sequence (∥uk∥2) is bounded and Theorem 6.1.1 implies the

boundedness of G(uk) in H
1(0, T ) uniformly in k. Thus, there exists a limit y ∈ H1(0, T )N ∩ C([0, T ])N

with G(uk) ⇀ y in H1(0, T )N and due to the compact Sobolev embedding H(0, T ) ⋐ C([0, T ]), it holds

that G(uk) → y uniformly on [0, T ] for a subsequence. Lastly, one has to prove that y = G(u). Since

solutions to (6.4) are unique and given by the exponential formula (6.5), it is sufficient to show that y

fulfills this formula. This is an immediate consequence of the weak L2(0, T )–convergence of the controls,

and we obtain

y(t) = lim
k→∞

G(uk) = lim
k→∞

exp

(
A t+B

∫ t

0

uk(s) ds

)
y0 = exp

(
A t+B

∫ t

0

u(s) ds

)
y0 = G(u).

By the standard argument from Lemma 1.4.3, one can verify a posteriori that this convergence also holds

without selecting a subsequence. This completes the proof.

Lemma 6.1.3. G is arbitrarily often Fréchet differentiable as a mapping from L2(0, T ) to H1(0, T )N .

Furthermore, it holds that

a) the first– and second–order derivatives at u ∈ L2(0, T ) in direction v ∈ L2(0, T ) are implicitly given

by the following systems of ODEs on [0, T ]:

ξ := G′(u)v solves ξ′(t) = (A+ u(t)B)ξ(t) + v(t)BG(u)(t), ξ(0) = 0,

χ := G′′(u)(v, v) solves χ′(t) = (A+ u(t)B)χ(t) + 2v(t)B ξ(t), χ(0) = 0,

b) the solutions ξ, χ ∈ H1(0, T )N are bounded in H1(0, T )N by C∥u∥L2
∥v∥2 and C∥u∥L2

∥v∥22, respec-
tively.

c) G is locally Lipschitz continuous, i.e., for every u1, u2 ∈ L2(0, T ) it holds that

∥G(u1)−G(u2)∥∞ + ∥G(u1)−G(u2)∥H1 ≤ C∥u1∥2,∥u2∥2
∥u1 − u2∥2.
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Proof. The differentiability follows by a standard argument with the implicit function theorem on Banach

spaces. We define the mapping

F : H1(0, T )N × L2(0, T ) → C([0, T ])N × RN ,

F (y, u) :=

(
t 7→

(
y(t)− y0 −

∫ t

0

(A+ u(s)B)y(s) ds
)
, y(0)− y0

)
,

where both components are arbitrarily often Fréchet differentiable. Due to Theorem 6.1.1, F (y, u) = (0, 0)

iff y = G(u), i.e., F (G(u), u) = (0, 0) for all u ∈ L2(0, T ). Due to the linear structure of F in y, it follows

by the Carathéodory theorem that the mapping

H1(0, T )N ∋ ξ 7→ DyF (y, u)ξ =

(
t 7→

(
ξ(t)−

∫ t

0

(A+ u(s)B)ξ(s) ds
)
, ξ(0)

)
∈ C([0, T ])N × RN

is an isomorphism. Hence, the implicit function theorem states that G is Fréchet differentiable, and

differentiating u 7→ F (G(u), u) with respect to u gives the desired formula for G′(u). An analogous

procedure can be done to verify higher-order differentiability and the formula for χ.

Let us mention that one could prove this claim directly by calculating the Fréchet derivative of

L2(0, T ) ∋ u 7→ G(u), G(u)(t) = y0 +

∫ t

0

(
A+ u(s)B

)
y(s) ds.

Next, let us show Statement b). Since ξ and χ are solutions to affine linear differential equations, we find

H1(0, T )–bounds similarly to the proof of Theorem 6.1.1. Let us define the fundamental solution to the

homogeneous part

Y (t) := exp

(
A t+B

∫ t

0

u(s) ds

)
∈ Rn×n, t ∈ [0, T ].

Since Y (0) is the identity matrix, ξ(0) = 0 and G(u)(t) = Y (t)y0, the solution ξ can be stated as

ξ(t) = Y (t)

∫ t

0

Y (s)−1
(
v(s)B Y (s)y0

)
ds, t ∈ [0, T ]. (6.6)

Furthermore, we can estimate the exponential matrix

|Y (t)| ≤ exp

(∣∣∣A t+B

∫ t

0

u(s) ds
∣∣∣) ≤ C exp

(∫ t

0

|u(s)| ds
)

≤ C∥u∥L2(0,t)
,

and an analogous estimate holds for Y (t)−1 for t ∈ [0, T ]. Therefore, the L∞(0, T )–bound of ξ follows

from the pointwise estimate

|ξ(t)| ≤ |Y (t)||B|
∫ t

0

|v(s)||Y −1(s)|Y (s)||y0| ds ≤ C∥u∥L2(0,t)

∫ t

0

|v(s)| ds.

This yields with y := G(u) the H1–bound∫ T

0

|ξ′(t)|2 dt =
∫ T

0

∣∣(A+ u(t)B)ξ(s) + v(s)B y(s)
∣∣2 dt

≤ C∥ξ∥22 + C∥ξ∥2∞∥u∥22 + ∥v∥22|B|∥y∥2∞.

Consequently, due to the L∞–bound of y given by Theorem 6.1.1, we obtain ∥ξ∥H1 ≤ C∥u∥2
∥v∥2. We can

argue similarly for the second Fréchet derivative χ, which completes the proof of b).

In order to prove the Lipschitz continuity, let u1, u2 ∈ L2(0, T ). Define y1 := G(u1), y2 := G(u2) and

δu := u1 − u2, δy := y1 − y2. A straight forward calculation shows that δy ∈ H1(0, T )N solves

δy′ = (A+ u1B)δy + δuBy2 a.e. on [0, T ], δy(0) = 0.
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This is equivalent to the equation for ξ where δy = ξ and δu = v. Thus, we can repeat the estimates

from above and obtain the desired Lipschitz estimates

|y1(t)− y2(t)| ≤ C∥u1∥L2(0,t)
C∥u2∥L2(0,t)

∫ t

0

|u1(s)− u2(s)| ds,

∥y1 − y2∥∞ + ∥y1 − y2∥H1 ≤ C∥u1∥2
C∥u2∥2

∥u1 − u2∥2.
(6.7)

This concludes the proof.

6.2 Analysis of the optimal control problem

In this section, we analyze the optimal control problem (6.1)–(6.3). With the control–to–state map G, we

can introduce the reduced cost functional Ĵ(u) := J(G(u), u) for u ∈ L2(0, T ), and henceforth, consider

the unconstrained minimization problem (P )

min
u∈L2(0,T )

Ĵ(u), (P )

where yd ∈ H2(0, T ), yT ∈ RN , α, β ≥ 0 and γ > 0 is given, and

Ĵ(u) =
β

2
∥G(u)− yd∥22 +

γ

2
∥u∥22 +

α

2
|G(u)(T )− yT |2.

In this chapter, the subscript J in a constant CJ means that CJ depends continuously on

∥yd∥H2 , |yT |, T, α, β, γ and |A|, |B|.

Before we perform first– and second–order analysis, let us ensure the well–posedness of the minimization

problem (P ).

Theorem 6.2.1. Problem (P ) admits at least one solution in the sense that there exists ū ∈ L2(0, T ) such

that

Ĵ(ū) = inf
u∈L2(0,T )

Ĵ(u) =: I.

Proof. The proof is standard due to the compactness of G and the quadratic form of J . Obviously,

Ĵ is bounded from below, and therefore, there exists a minimizing sequence (uk) ⊂ L2(0, T ) with

limk→∞ Ĵ(uk) = I ≥ 0. Since γ > 0, we obtain the boundedness

lim sup
k→∞

γ

2
∥uk∥22 ≤ lim sup

k→∞
Ĵ(uk) = I.

Thus, after selecting a subsequence, there exists a weak limit ū ∈ L2(0, T ), and due to Lemma 6.1.2, it

holds that G(uk) → G(ū) in L2(0, T ). Taking both facts into account, we obtain that Ĵ is weakly lower

semicontinuous, i.e., Ĵ(ū) ≤ lim infk→∞ Ĵ(uk). This shows that ū is indeed a minimizer of Ĵ due to the

estimates I ≤ Ĵ(ū) ≤ lim infk→∞ Ĵ(uk) = I. This concludes the proof.

In order to derive a characterization of solutions to (P ), we need to analyze the derivatives of Ĵ . By

an application of the chain rule, Ĵ is as often Fréchet differentiable on L2(0, T ) as G, and therefore, we

obtain for u, v ∈ L2(0, T ) and y := G(u), ξ := G′(u)v, χ := G′′(u)(v, v) the following

Ĵ ′(u)v = β

∫ T

0

(y(t)− yd(t)) · ξ(t) dt+ α(y(T )− yT ) · ξ(T ) + γ⟨u, v⟩2, (6.8)

Ĵ ′′(u)(v, v) = β∥ξ∥22 + β

∫ T

0

(y(t)− yd(t)) · χ(t) dt+ α(y(T )− yT ) · χ(T ) + α|ξ(T )|2 + γ∥v∥22. (6.9)
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Furthermore, since Ĵ is of class C∞ in L2(0, T ), its derivatives are locally Lipschitz, and for u1, u2 ∈
L2(0, T ) there exists C = CJ,∥u1∥2,∥u1∥2

such that for all v ∈ L2(0, T ) it holds that

|Ĵ ′(u1)v − Ĵ ′(u2)v| ≤ C∥u1 − u2∥2∥v∥2, |Ĵ ′′(u1)(v, v)− Ĵ ′′(u2)(v, v)| ≤ C∥u1 − u2∥2∥v∥22. (6.10)

Next, we need to define the concept of a (local) minimum.

Definition 6.2.2. Let ū ∈ L2(0, T ), and for ε > 0, we recall the following notation for the open L2–ball

Bε(ū;L
2) = {u ∈ L2(0, T ) | ∥u− ū∥2 < ε}.

We say that ū is a

i) local minimum of Ĵ or the local solution of problem (P ) if there exists ε > 0 such that for all

u ∈ Bε(ū;L
2) it holds that Ĵ(ū) ≤ Ĵ(u), and it is a strict local minimum if Ĵ(ū) < Ĵ(u) for all

u ∈ Bε(ū;L
2)\{ū}.

ii) minimum of Ĵ or the solution of problem (P ) if Ĵ(ū) = I.

Next, we recall a standard assertion for unconstrained minimization problems with smooth reduced cost

functionals. If ū is a local minimum of Ĵ , then

Ĵ ′(ū)v = 0, v ∈ L2(0, T ).

Further, for given (y, u) ∈ H1(0, T )N ×L2(0, T ), we introduce the adjoint variable q ∈ H1(0, T )N defined

as the solution to the following Cauchy problem with terminal condition

−q′(t) = β(y(t)− yd(t)) + (A+ u(t)B)⊤q(t), q(T ) = α(y(T )− yT ). (6.11)

We remark that this differential equation is affine linear in q, and one can show analogously to Section 6.2

that the adjoint problem is well–posed. We also refer to q as backward solution or co–state. Moreover,

the following lemma holds.

Lemma 6.2.3. The control–to–adjoint map

Q : L2(0, T ) → H1(0, T )N ∩ C([0, T ])N , u 7→ q solution to (6.11) with y = G(u)

is well-defined, compact (from L2(0, T ) to L∞(0, T )N ) and locally Lipschitz continuous. Specifically, the

following estimates hold for all u, v ∈ L2(0, T ), t ∈ [0, T ]

∥Q(u)∥∞ + ∥Q(u)∥H1 ≤ Cα,β,yT ,∥yd∥2,∥u∥2

|Q(u)(t)−Q(v)(t)| ≤ C∥u∥2,∥v∥2
∥u− v∥2.

Furthermore, if u ∈ H1(0, T ) ∩ C([0, T ]), there exists a constant CJ (depending on the given quantities

of the state equation and the cost functional J) such that the adjoint Q(u) ∈ C1([0, T ]) satisfies

∥Q(u)∥H2 ≤ CJC∥u∥H1

Proof. The backward problem for q (for given y) can be transformed into an initial value problem by

considering the function q̃(t) := q(T−t). Thus, existence and uniqueness of absolutely continuous solutions

q = Q(u) to (6.11) for u ∈ L2(0, T ) are again a direct consequence of Carathéodory’s existence theorem.

Since y and yd are continuous, and since (6.11) is an affine linear problem, the proof of Lemma 6.1.3 b)

and c) can be repeated to obtain the bound in the L∞–and H1–norm and the Lipschitz continuity of Q

from L2(0, T ) to L∞(0, T ).
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Lastly, we prove compactness. For this purpose, let u ∈ L2(0, T ) and uk ⇀ u in L2(0, T ) as k → ∞
be arbitrary but fixed. Due to the boundedness of ∥uk∥2 uniformly in k, the sequence (∥Q(uk)∥H1)k∈N

is uniformly bounded in k, and there exists a weak H1 limit q ∈ C([0, T ])N . The compact embedding

H1(0, T ) ⋐ C([0, T ]) implies that for a subsequence denoted by I ⊂ N, it holds that Q(uk) → q uniformly

in [0, T ] and strongly in L2(0, T ) as I ∋ k → ∞. It is left to show that q = Q(u). Now let I∗ be any

countably infinite subset of I and simply observe that for every k ∈ N

Q(uk)(t) = α
(
G(uk)(T )− yT

)
+

∫ T

t

(
(A+ uk(s)B)⊤Q(uk)(s) + β(G(uk)(s)− yd(s))

)
ds.

The left–hand side converges to q(t) as I∗ ∋ k → ∞. Due to the compactness of G proven in Lemma

6.1.2 and the strong L2 convergence of Q(uk), the right–hand side converges to the desired limit as

I∗ ∋ k → ∞, that is,

q(t) = α
(
G(u)(T )− yT

)
+

∫ T

t

(
(A+ u(s)B)⊤q(s) + β(G(u)(s)− yd(s))

)
ds.

This proves q = Q(u) by uniqueness. Since the set for the sub–subsequence I∗ was arbitrary, the

convergence Q(uk) → Q(u) holds without selection of a subsequence, see Lemma 1.4.3. This concludes

the proof of the compactness. Now let u ∈ H1(0, T ) and q := Q(u), y := G(u). The H2–bound of q

follows by differentiating (6.11), taking the L2–norm and applying the H1–estimate of y from Theorem

6.1.1

∥q′′∥2 ≤ β∥y′ − y′d∥2 + ∥A+ uB∥∞∥q′∥2 + ∥u′∥2|B|∥q∥∞
≤ β

(
∥y∥H1 + ∥yd∥H1

)
+ C

(
1 + ∥u∥H1

)
∥q∥H1 .

This concludes the proof.

In the following lemma, the optimality system is introduced which characterizes local minima.

Lemma 6.2.4. Let ū be a local minimum of Ĵ and define ȳ := G(ū), q̄ := Q(ū). Then, the triple (ū, ȳ, p̄)

satisfies for t ∈ [0, T ] the following optimality system

ȳ′(t) = (A+ ū(t)B)ȳ(t), ȳ(0) = y0, (6.12)

−q̄′(t) = (A+ ū(t)B)⊤q̄(t) + β(ȳ(t)− yd(t)), q̄(T ) = α(ȳ(T )− yT ), (6.13)

0 = γū(t) + q̄(t)⊤B ȳ(t). (6.14)

Proof. Equations (6.12) and (6.13) hold due to the definition of the G and Q. Now recall the fact that

Ĵ ′(ū)v = 0 for all v ∈ L2(0, T ), where Ĵ ′ is given by (6.8). Consequently, (6.14) follows directly by testing

the equation for the adjoint (6.13) with ξ = G′(ū)v ∈ H1(0, T ) from Lemma 6.1.3 and then integrating

by parts as this implies

β⟨ȳ − yd, ξ⟩2 = ⟨q̄, vBȳ⟩2 + q̄(T )ξ(T ),

and thus, Ĵ ′(ū)v = γ⟨ū, v⟩2 + ⟨q̄⊤B ȳ, v⟩2. From this variational formulation, we obtain equation (6.14)

a.e. on [0, T ] by the fundamental lemma of calculus of variations.

Due to the optimality system (6.12)–(6.14), we deduce higher regularity of a local minimum of Ĵ as

follows.

Corollary 6.2.5. Let ū be a local minimum of Ĵ . Then, the functions ū, ȳ := G(ū) and q̄ := Q(ū) have

the higher regularity C2([0, T ]), and the following implicit equation holds for t ∈ [0, T ]

ū(t) = − 1

γ
q̄(t)⊤B ȳ(t). (6.15)
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Furthermore, we have the following estimate

∥ū∥H1 ≤ Cγ∥q̄∥H1∥ȳ∥H1 .

Proof. The first claim follows by a bootstrap argument. Since ū ∈ L2(0, T ), the functions G(ū) and

Q(ū) are at least in H1(0, T )N . Now, the assumption γ > 0 together with equation (6.14) and the

fundamental lemma of the calculus of variations yield ū = − 1
γ q̄

⊤B ȳ almost everywhere on [0, T ]. This

implies ū ∈ W 1,1(0, T ) ∩ C([0, T ]) after (possibly) changing ū on a set of measure zero; note that this

procedure has no effect on G(ū), Q(ū) or Ĵ(ū). Therefore, all coefficients of the affine linear system

(6.12)–(6.13) are continuous, and thus, by standard ODE theory, we obtain that ȳ, q̄ ∈ C1([0, T ])N . Once

again, we make use of the above representation of ū which yields C1–regularity. Since the target state

yd has H2–regularity, we can repeat this procedure one more time to conclude ȳ, q̄ ∈ C2([0, T ])N , and

therefore, we deduce that ū ∈ C2([0, T ]).

The bound on ū in the H1–norm is obtained by taking the derivative of its implicit representation

γ∥ū′∥2 ≤
(
∥q′⊤y∥2 + ∥q⊤y′∥2

)
|B| ≤

(
∥q′∥2∥y∥∞ + ∥q∥∞∥y′∥2

)
|B|. (6.16)

This concludes the proof.

Notice that Corollary 6.2.5 allows us to differentiate ū with respect to t, and hence we obtain with (6.12)

and (6.13)

−γ d
dt
ū(t) = q̄′(t)⊤B ȳ(t) + q̄(t)⊤B ȳ′(t)

= −
(
(A+ ū(t)B)⊤q̄(t) + β(ȳ(t)− yd(t))

)⊤
B ȳ(t) + q̄(t)⊤B

(
A+ ū(t)B

)
ȳ(t)

= −q̄(t)⊤(A+ ū(t)B)B ȳ(t)− β(ȳ(t)− yd(t))
⊤B ȳ(t) + q̄(t)⊤B

(
A+ ū(t)B

)
ȳ(t).

which implies, if AB = BA, the following representation

ū′(t) =
β

γ
(ȳ(t)− yd(t))

⊤B ȳ(t), t ∈ [0, T ].

The right–hand side is independent of the adjoint, and therefore, it can be interpreted as an (infinitesimal)

feedback–mechanism for an optimal control. Similarly, at the final time we have

ū(T ) = −α
γ
(ȳ(T )− yT )

⊤B ȳ(T ),

and if β = 0, then every optimal control is constant (with this value). Another consequence of the

implicit equation is a (standard) uniqueness result for optimal controls if γ is sufficiently large compared

to the data A,B, T, yd, yT . Furthermore, we have proven the following integro–differential equation for

minimizers.

Corollary 6.2.6. Consider the set U0 := {u ∈ C1([0, T ]) | u solves (6.17)–(6.18)}, where

u′(t) =
β

γ

(
eAt exp

(
B

∫ t

0

u(s) ds

)
y0 − yd(t)

)⊤

BeAt exp

(
B

∫ t

0

u(s) ds

)
y0, (6.17)

u(T ) = −α
γ

(
eAT exp

(
B

∫ T

0

u(s) ds

)
y0 − yT

)⊤

BeAT exp

(
B

∫ T

0

u(s) ds

)
y0. (6.18)

If A,B commute, then every local minimizer ū lies in U0 and U0 = ker(Ĵ ′).



104 Accuracy estimates for bilinear ODE–constrained optimization problems

Corollary 6.2.5 can be quite useful if one considers the case α = 0 or β = 0. If β = 0 and α ̸= 0, we have

u′ = 0 on [0, T ] and hence the constant value of the control can be directly computed from (6.18), that

is, find the unique x = u(T ) ∈ R such that

x = −α
γ

(
eAT eBTxy0 − yT

)⊤
BeAT eBTxy0.

Furthermore, we have proven uniqueness of the minimizer in that case, since Ĵ cannot have any other

critical points.

In order to obtain error estimates, coercivity of the quadratic form v 7→ Ĵ ′′(·)(v, v) in a neighborhood of a

strict local minimum ū is necessary in the sense that there exists ε,Λ > 0 such that Ĵ ′′(u)(v, v) ≥ Λ∥v∥22
for all v ∈ L2(0, T ) and u ∈ Bε(ū;L

2). Due to the non–linearity of the control–to–state map, it is

in general difficult to transfer the convexity in u of our cost functional J to the desired second–order

conditions of the reduced cost functional Ĵ . However, in our specific case, we can exploit the bilinear

structure of the state equation and make use of results of modern theory of second–order analysis for

non–convex minimization problems as given in [21].

6.3 Second–order analysis

It is the aim of this section to apply Theorem 1.3.6 to our optimal control problem. For that purpose,

we need to verify the following properties of Ĵ .

Lemma 6.3.1. For all (uk), (vk) ⊂ L2(0, T ) with uk → u and vk ⇀ v in L2(0, T ), it holds that

a) Ĵ ′(u)v = limk→∞ Ĵ ′(uk)vk ;

b) Ĵ ′′(u)(v, v) ≤ lim infk→∞ Ĵ ′′(uk)(vk, vk) ;

c) if v = 0, then γ lim infk→∞ ∥vk∥22 ≤ lim infk→∞ Ĵ ′′(u)(vk, vk).

We remark that the second derivative of Ĵ at u is a bilinear mapping from L2(0, T )× L2(0, T ) to R.

Proof. Recall that for u, v ∈ L2(0, T ) and y := G(u), ξ := G′(u)v, χ := G′′(u)(v, v),

Ĵ ′(u)v = β

∫ T

0

(y(t)− yd(t)) · ξ(t) dt+ α(y(T )− yT ) · ξ(T ) + γ⟨u, v⟩2, (6.19)

Ĵ ′′(u)(v, v) = β∥ξ∥22 + β

∫ T

0

(y(t)− yd(t)) · χ(t) dt+ α(y(T )− yT ) · χ(T ) + α|ξ(T )|2 + γ∥v∥22. (6.20)

First, notice that the Lipschitz continuity (6.10) implies – if the limits exist –

lim
k→∞

Ĵ ′(uk)vk = lim
k→∞

(
Ĵ ′(uk)− Ĵ ′(u)

)
vk + lim

k→∞
Ĵ ′(u)vk = lim

k→∞
Ĵ ′(u)vk. (6.21)

Similarly, we have lim infk→∞ Ĵ ′′(uk)(vk, vk) = lim infk→∞ Ĵ ′′(u)(vk, vk). Next, let us define ξk :=

G′(u)vk, χk := G′′(u)(vk, vk) for k ∈ N. Analogously to the compactness of G, one can show the

convergences ξk → ξ, χk → χ in L2(0, T ) and uniformly on [0, T ]. This is obviously sufficient for the

convergences Ĵ ′(u)vk → Ĵ ′(u)v and lim infk→∞ Ĵ ′′(u)(vk, vk) ≥ Ĵ ′′(u)(v, v); for the latter, recall the weak

lower semicontinuity of the L2–norm. This fact together with equation (6.21) proves the assertions a)

and b) of Lemma 6.3.1.

In order to prove c), let vk ⇀ 0 in L2(0, T ). The above convergence results imply ξk, χk → 0 in L2(0, T )

and uniformly on [0, T ], and thus,

β∥ξk∥22 + β

∫ T

0

(y(t)− yd(t)) · χk(t) dt+ α(y(T )− yT ) · χk(T ) + α|ξk(T )|2 → 0, k → ∞.
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This immediately implies γ lim infk→∞ ∥vk∥22 = lim infk→∞ Ĵ ′′(u)(vk, vk) which concludes the proof of

Lemma 6.3.1.

The following theorem states that, in our setting, the positive definiteness Ĵ ′′(ū)(v, v) > 0 is a sufficient

second–order condition for ū. It is a consequence of Lemma 6.3.1 and Theorem 1.3.6; notice that in our

case there are no box constraints on the controls.

Theorem 6.3.2. Let ū ∈ L2(0, T ) fulfill the second–order condition Ĵ ′′(ū)(v, v) > 0 for all v ∈ L2(0, T )\{0}
and Ĵ ′(ū) = 0 on L2(0, T ). Then, ū is a strict local minimum of Ĵ , and there exist ε, δ, Λ > 0 such that

for all u ∈ Bε(ū;L
2) the following holds:

i) the quadratic growth condition Ĵ(ū) + δ
2∥u− ū∥22 ≤ Ĵ(u);

ii) if Ĵ ′(u)v = 0 for all v ∈ L2(0, T ), then u = ū;

iii) local coercivity of the second derivative Ĵ ′′(u)(v, v) ≥ Λ
2 ∥v∥

2
2 for all v ∈ L2(0, T ).

This section concludes the analysis of the continuous optimal control problem. Next, we focus on its

discretized counterpart.

6.4 Finite element discretization of the forward and backward problems

In this section, we introduce a linear finite element discretization scheme for the forward and backward

problem. For this purpose, we define a uniform grid on [0, T ] withK ∈ N subintervals of length ∆t := T/K

and the grid points

ti := i∆t for i = 0, . . . ,K.

On this grid, we introduce the following finite–dimensional spaces of polynomials

P0
K := {ψ : [0, T [→ R | ψ is constant on [ti, ti+1[ , i = 0, . . . ,K − 1} ⊂ L2(0, T ),

P1
K := {ψ ∈ C([0, T ]) | ψ is linear on [ti, ti+1], i = 0, . . . ,K − 1} ⊂ H1(0, T ),

P2
K := {ψϕ | ψ, ϕ ∈ P1

K}.

We refer to P1
K as the space of continuous, piecewise linear polynomials and to P2

K as the space of

continuous, piecewise quadratic polynomials. Notice that the set of hat functions {ψi | i = 0, . . . , N} at

grid points ti forms a basis of P1
K , where for i = 1, . . . ,K − 1, we have

ψi(t) :=


(t− ti−1)/∆t, t ∈ [ti−1, ti[,

(ti+1 − t)/∆t, t ∈ [ti, ti+1[,

0, else.

(6.22)

Further, at the end points, we have

ψ0(t) :=

(t1 − t)/∆t, t ∈ [0, t1[ ,

0, else,
and ψK(t) :=

(t− tK−1)/∆t, t ∈ [tK−1, T [

0, else.
(6.23)

The maps Proj1K : H1(0, T ) → P1
K and Proj2K : H1(0, T ) → P2

K denote the L2–orthogonal projection from

(continuous) H1(0, T ) functions to continuous and piecewise quadratic functions. There exists C = CT

such that

∥f − Proj1K(f)∥2 ≤ C∥f∥H2K−2, ∥f − Proj1K(f)∥H1 ≤ C∥f∥H2K−1, f ∈ H2(0, T ); (6.24)

∥f − Proj1K(f)∥2 ≤ C∥f∥H1K−1, lim
K→∞

∥f − Proj1K(f)∥H1 = 0, f ∈ H1(0, T ); (6.25)
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for a proof we refer to [33, Proposition 1.5]. The same convergence rates hold for Proj2K .

Next, we introduce the discrete control–to–state map GK : L2(0, T ) → (P1
K)N and the discrete control–

to–adjoint map QK : L2(0, T ) → (P1
K)N : For given u ∈ L2(0, T ), find yK , qK ∈ (P1

K)N such that, for all

i = 0, . . . ,K, it holds

⟨y′K , ψi⟩2 = ⟨(A+ uB)yK , ψi⟩2, (6.26)

−⟨q′K , ψi⟩2 = ⟨(A+ uB)⊤qK + β(yK − yd,K), ψi⟩2, (6.27)

with yK(0) = y0, qK(T ) = α(yK(T ) − yT ) and yd,K := Proj1K(yd). This setting (formally) defines the

mappings

GK , QK : L2(0, T ) → (P1
K)N , GK(u) := yK , QK(u) := qK .

Notice that the well–definedness of u 7→ GK(u), QK(u) follows if K is sufficiently large compared to

|A|, |B|, ∥u∥2. This can be seen by performing the integrations in (7.6)–(7.7). Thus, these variational

equations become implicit (algebraic) equations for the grid values yK(ti), qK(ti) for i = 0, . . . ,K, when

the values yK(tj), qK(tk) for j < i, , k > i are known. For yi := yK(ti) we obtain for i = 1, . . .K − 1 the

left–hand side of (7.6)

⟨y′K , ψi⟩2 =
1

2
(yi+1 − yi−1),

and for the right–hand side

⟨(A+ uB)yK , ψi⟩2 =
∆t

6
A(yi−1 + 4yi + yi+1) +

∫ ti

ti−1

u(t)

(
t− ti−1

∆t
− (t− ti−1)

2

∆t2

)
dtByi−1

+ ⟨u, ψ2
i ⟩2yi +

∫ ti+1

ti

u(t)

(
ti+1 − t

∆t
− (ti+1 − t)2

∆t2

)
dtByi+1

with obvious modifications for i = 0 and i = K. Analogous equations can be obtained for (7.7). We can

uniquely solve the equations for yK(ti) and qK(ti) if the integral of u over [ti, ti+1] is sufficiently small.

In the special case of piecewise constant controls, (7.6) becomes for i = 1, . . .K − 1

yi+1 − yi−1 = ∆t

(
1

3
(A+ ui−1B)yi−1 +

4

3
(A+ uiByi) +

1

3
(A+ ui+1B)yi+1

)
,

which in the framework of linear multistep methods is known as the Milne–method; see Lemma 6.9.1.

It is sufficient for our analysis to define GK , QK on some set {u ∈ L2(0, T ) | ∥u∥2 ≤ R}; see below (6.31)

for the definition of R. This yields the following well–definedness result:

Lemma 6.4.1. There exists K0 ∈ N such that for all K ≥ K0 the mappings GK , QK are well–defined for

controls from the set {u ∈ L2(0, T ) | ∥u∥2 ≤ R}.

In the following we assume K0 = 1 for shorter notations. If u is a piecewise polynomial, we can carry out

all integrations in the variational formulation (7.6)–(7.7). As demonstrated in Section 6.9 for u ∈ P2
K ,

we obtain an implicit, linear multistep scheme [18, Chapter 4] for the grid values of yK and qK . We refer

to [36, Chapter 3.3] on the connection between finite elements and finite difference schemes in general.

Next, we examine its accuracy. First, notice that our first–order problem and its finite element formulation

differs from the classical case for elliptic equations that satisfy the usual coercivity condition. In this

setting, second–order accuracy holds for L2–controls u by an application of (6.24) and Céa’s lemma,

cf. [20] and [61, Chapter 14]. In our framework, we have second–order accuracy results for GK and QK

at least for smooth controls u ∈ C2([0, T ])

∥GK(u)−G(u)∥2 + ∥QK(u)−Q(u)∥2 ≤ C∥ū′′∥∞K
−2. (6.28)
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This is proven in Lemma 6.9.1 from Section 6.9 by using (6.24) and with techniques from linear multistep

methods. For piecewise polynomials uK ∈ P2
K , however, the corresponding exact solutions G(uK) and

Q(uK) only belong to H2(0, T ) and it seems difficult to prove or find second–order accuracy results in

that case. In Lemma 6.9.2 from Section 6.9, we are able to show that at least first–order accuracy holds

for uK ∈ P2
K , that is,

∥GK(uK)−G(uK)∥2 + ∥QK(uK)−Q(uK)∥2 ≤ C∥uK∥H1
K−σ (6.29)

with σ = 1. In view of (6.24), (6.28) and the numerical evidence presented in Section 6.9, it seems

reasonable to assume that (6.29) with σ = 2 can be shown with a more sophisticated approach.

The Fréchet derivative of GK : L2(0, T ) → R can be obtained analogously to the continuous case. Hence,

for u, v ∈ L2(0, T ), we have that ξK := G′
K(u)v satisfies the following problem

⟨ξ′K , ψi⟩2 = ⟨(A+ uB)ξK , ψi⟩2 + ⟨vB yK , ψi⟩2, ξK(0) = 0, i = 0, . . . ,K. (6.30)

6.5 A variational discretization of the optimal control problem

Central to the idea of a variational discretization scheme is the following observation. If the discrete

state and adjoint belong to a finite element space, then the minimizer of the discrete cost functional also

belongs to a certain finite element space. In other words, we only have to discretize the control–to–state

and control–to–adjoint map but not the space L2(0, T ) over which we minimize, and we still obtain

that local minimizers of this (semidiscrete) problem belong to a finite–dimensional functional space. In

our case, this approach works due to the bilinear structure of the problem, and the key idea is taking

advantage of the implicit formula of local minimizers.

To start, we introduce the discretized reduced cost functional ĴK . For this purpose, we replace the

continuous quantities G(u) and yd with their discretized, finite–dimensional counterpart. This gives rise

to the functional

ĴK : L2(0, T ) → R,

ĴK(u) :=
β

2

∫ T

0

|yK(t)− yd,K(t)|2 dt+ γ

2
∥u∥22 +

α

2
|yK(T )− yT |2, (6.31)

where yK = GK(u) and yd,K = Proj1K(yd) are (P1
K)N functions. If we look for minimizers ūK of ĴK ,

we obtain an upper bound R > 0 for ∥ūK∥2 by calculating ĴK(0), since all the terms in (6.31) are non–

negative. The bound R depends on |A|, |B|, ∥yd∥H1 , |yT |, α, β, γ but not on K. Analogously to Theorem

6.2.1, one can prove existence of minimizers.

Lemma 6.5.1. The semidiscrete optimal control problem (we call it in this instance semidiscrete because

we did discretize the state space but not the control space L2(0, T ))

min
u∈L2(0,T )

ĴK(u) (PK)

admits a global minimizer ūK , i.e. ĴK(ūK) = infu∈L2(0,T ) ĴK(u).

The next step is to analyze the functional structure of solutions to (PK). For this purpose, the following

theorem states that for our bilinear optimal control problem with piecewise linear discretization in the

forward and backward problem, the space of piecewise quadratic polynomials is the natural discrete

optimization space. In fact, we conclude that the discrete optimality system and the discretized optimality

system do coincide with our choices of finite element spaces. Notice that the concept of local minima of

ĴK (over L2(0, T )) is defined analogously to Definition 6.2.2.
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Theorem 6.5.2. Let GK , QK be given by (7.6)–(7.7). Then the reduced cost functional ĴK is Fréchet

differentiable from L2(0, T ) to R. Further, let ūK ∈ L2(0, T ) be a local minimum of ĴK , and define

ȳK := GK(ūK), q̄K := QK(ūK). Then the following holds:

a) For every u ∈ L2(0, T ), we have

Ĵ ′
K(u)v = γ⟨ū, v⟩2 + ⟨q⊤KB yK , v⟩2, v ∈ L2(0, T ), (6.32)

where yK := GK(u), qK := QK(u).

b) For every u ∈ L2(0, T ), the first–order derivative Ĵ ′
K(u) ∈ L2(0, T )′ can be identified as a L2(0, T )

function that has the pointwise formula

Ĵ ′
K(u)(t) = γu(t) + qK(t)⊤B yK(t), f.a.e. t ∈ [0, T ],

where yK := GK(u), qK := QK(u).

c) ūK belongs to the finite–dimensional space P2
K and has the representation

ūK(t) = − 1

γ
q̄K(t)⊤B ȳK(t), t ∈ [0, T ]. (6.33)

Specifically, the minimization problems of ĴK over the finite–dimensional space P2
K and over

L2(0, T ) are equivalent in the following sense:

ū ∈ L2(0, T ) is a local minimum of ĴK |L2(0,T ) ⇐⇒ ū ∈ P2
K is a local minimum of ĴK |P2

K
.

Proof. The Fréchet differentiability of GK implies the differentiability of ĴK on L2(0, T ) by an application

of the chain rule. For u, v ∈ L2(0, T ), we define ξK := G′
K(u)v ∈ (P1

K)N and yK := GK(u), and we obtain

the following formula

Ĵ ′
K(u)v = β

∫ T

0

(yK(t)− yd,K(t))ξK(t) dt+ α(yK(T )− yT )ξK(T ) + γ⟨u, v⟩2.

Next, we derive the representation of J ′
K(u) via the discrete adjoint qK := QK(u); similarly to the

continuous case. To this end we need to show that the following holds

β⟨yK − yd,K , ξK⟩2 + α(yK(T )− yT )ξK(T ) = ⟨q⊤KB yK , v⟩2 v ∈ L2(0, T ). (6.34)

First, recall the equations (7.7) and (6.30) that determine q̄K and ξK . Due to the linearity in ψi, and

since {ψi} form a basis of P1
K , we obtain for all ϕ ∈ (P1

K)N the following

−⟨q̄′K , ϕ⟩2 = ⟨(A+ uB)⊤q̄K + β(ȳK − yd,K), ϕ⟩2, q̄K(T ) = α(ȳK(T )− yT ), (6.35)

⟨ξ′K , ϕ⟩2 = ⟨(A+ uB)ξK , ϕ⟩2 + ⟨vB ȳK , ϕ⟩2, ξK(0) = 0. (6.36)

Consequently, we obtain (6.34) if we test (6.35) with ϕ = ξK ∈ (P1
K)N , partially integrate and test (6.36)

with ϕ = q̄K ∈ (P1
K)N . This yields the variational representation

Ĵ ′
K(u)v = γ⟨u, v⟩2 + ⟨q̄⊤KB ȳK , v⟩2, for all u, v ∈ L2(0, T ).

We apply the Riesz representation theorem and the fundamental lemma of the calculus of variation to

find that v 7→ Ĵ ′
K(u)v can be represented as L2(0, T )–function with pointwise formula

Ĵ ′
K(u)(t) = γu(t) + qK(t)⊤B yK(t), f.a.e. t ∈ [0, T ].
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This concludes the proof of part b).

Now let ūK ∈ L2(0, T ) be a local minimizer and let ȳK := GK(ūK), q̄K = QK(ūK). Therefore, it must

hold Ĵ ′
K(ūK)(t) = 0, i.e.

ūK(t) = − 1

γ
q̄K(t)⊤B ȳK(t), f.a.e. t ∈ [0, T ].

Apparently, the right–hand side is the product of piecwise linear polynomials. Therefore, we obtain

formula (6.33) and ūK ∈ P2
K after (possibly) modifying ūK on a set of measure zero. The last claim

follows from the inclusion P2
K ⊂ L2(0, T ).

Our main steps for deriving error estimates are presented in the next section.

6.6 Convergence of optimal controls of the discretized problem

First, we present preliminary results for our error estimates by studying the convergences as K tends to

infinity of the discrete maps GK , QK , Ĵ
′
K and the local discrete minima ūK . We start with the discrete

control–to–state and discrete control–to–adjoint maps. Recall that local minima of Ĵ and ĴK are elements

of C2([0, T ]) and P2
K , respectively.

Lemma 6.6.1. The following holds for local minima ū and ūK of Ĵ and ĴK , respectively:

a) there exists C(1) = CJ,∥ū∥H1 ,∥ūK∥H1
> 0 such that for all K ∈ N

∥G(ū)−GK(ūK)∥2 + ∥Q(ū)−QK(ūK)∥2 ≤ C(1)
(
K−2 + ∥ū− ūK∥2

)
;

b) let (uK)K∈N with uK ∈ P0
K ∪ P2

K and uK ⇀ ū in L2(0, T ) as K → ∞. Then it holds that

Ĵ(ū) ≤ lim inf
K→∞

ĴK(uK),

and we have strong convergences of the sequences

GK(uK) → G(u), QK(uK) → Q(u) in L∞(0, T ) as K → ∞.

Proof. Assertion a) follows from the triangle inequality by inserting G(ūK) and Q(ūK), respectively, and

then exploiting the Lipschitz continuity of G and Q and the convergence rate for GK and QK given in

(6.29).

The strong convergences from part b) follow, after inserting the terms G(uK), Q(uK) and making use of

the triangle inequality, from the compactness of G and Q; see Lemma 6.1.2 and Lemma 6.2.3. These

results, together with yd,K → yd in L∞(0, T ) and ∥ū∥22 ≤ lim infK→∞ ∥uK∥22, imply with (6.31) the

desired estimate Ĵ(ū) ≤ lim infK→∞ ĴK(uK) and the proof is complete.

Next, we provide convergence results for the reduced gradient.

Lemma 6.6.2. Let ū and ūK be some local minima of Ĵ and ĴK . Then, there exists C(2) =

CJ,∥ūK∥H1 ,∥ū∥H1
> 0 such that for all v ∈ L2(0, T ), it holds for u ∈ {ūK , ū} that∣∣∣(Ĵ ′

K(ūK)− Ĵ ′(u)
)
v
∣∣∣ ≤ C(2)

(
K−2 + ∥ūK − u∥2

)
∥v∥2.

Proof. First, recall the reduced gradients for u ∈ {ūK , ū}

Ĵ ′
K(ūK)v = γ⟨ūK , v⟩2 + ⟨QK(ūK)⊤BGK(ūK), v⟩2,

Ĵ ′(u)v = γ⟨u, v⟩2 + ⟨Q(u)⊤BG(u), v⟩2.
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Therefore, by the Cauchy-Schwarz inequality, it follows that∣∣∣(Ĵ ′
K(ūK)− Ĵ ′(u)

)
v
∣∣∣ ≤ γ∥ūK − u∥2∥v∥2 + ∥QK(ūK)⊤BGK(ūK)−Q(u)⊤BG(u)∥2∥v∥2.

Due to Lemma 6.6.1 and using triangle inequalities, we can estimate the last term against C(1)(K−2 +

∥ūK − u∥2) which concludes the proof.

The following theorem establishes the relationship between the discrete minimizer ūK ∈ P2
K of problem

(PK) and the minimizer ū of the continuous problem (P ). We remark that this is where the second–order

results of Section 6.4 enter most strongly.

Theorem 6.6.3. The following results hold:

a) Let ū ∈ L2(0, T ) be a strict local minimum of Ĵ . Then there exists a sequence of local minima ūK

of (PK) such that ūK → ū in L2(0, T ) as K → ∞.

b) For K ∈ N, let ūK be a solution of (PK). Then there exists ū ∈ C2([0, T ]) solution of (P ) with

ūK → ū in L2(0, T ) as K → ∞.

c) In both cases a) and b), the sequence (ūK) is bounded in H1, uniformly in K. Therefore, the

constants C(1) and C(2) from Lemma 6.6.1 and 6.6.2 are independent of K.

Proof. We use the following well–known results for the L2–Hilbert space in part a) and b): Let fk ⇀ f and

gk → g both in L2(0, T ) as k → ∞. Then it holds that ⟨fk, gk⟩2 → ⟨f, g⟩2. Furthermore, ∥fk∥2 → ∥f∥2
if and only if fk → f strongly in L2(0, T ).

We start with the proof of a). First, we denote with ε > 0 the radius given by Definition 6.2.2 for the

strict local minimum ū of Ĵ . Thus, for every 0 < ε′ < ε it holds that

Ĵ(ū) = min
{
Ĵ(u) | u ∈ Bε′(ū;L

2)
}
,

where we denote by Bε′(ū;L
2) = {u ∈ L2(0, T ) | ∥u − ū∥L2 ≤ ε′} the closed ball around ū of radius

ε′ with respect to the L2(0, T )–norm. We construct the discrete local minima sought by considering for

ε′ := ε/2 the problem

min
{
ĴK(u) | u ∈ P2

K ∩Bε′(ū;L2)
}
. (6.37)

There exists Nε′ ∈ N sufficiently large such that for all N ≥ Nε′ we have the estimate ∥ū−Proj2K(ū)∥L2 <

ε′. Thus, P2
K ∩ Bε′(ū;L2) is non–empty, and we conclude the existence of a solution ūK to (6.37) for

every N ≥ Nε′ .

Notice that at this point, we cannot claim that the solution ūK is a local minimum of ĴK in the sense of

Definition 6.2.2, since possibly ūK is on the boundary of the ε′–ball from (6.37). However, because ū is a

strict local minimum, in the following we show that ūK → ū in L2(0, T ), which implies that ūK is in the

open ball for sufficiently large K and therefore is a local minimum of ĴK . For this purpose, we see that

(ūK)N≥Nε′ is bounded in L2(0, T ) by ∥ū∥L2 + ε′ uniformly in K. Therefore, there exists a weak limit w

contained in the L2–closure of the ball, i.e, w ∈ Bε′(ū;L
2). If we can show that Ĵ(ū) = Ĵ(w), then the

local uniqueness result, see Theorem 6.3.2 i), implies ū = w. To this end, notice that

Ĵ(w) ≤ lim inf
K→∞

ĴK(ūK) ≤ lim sup
K→∞

ĴK
(
Proj2K(ū)

)
= Ĵ(ū) ≤ Ĵ(w),

where we used Lemma 6.6.1 b) for the first estimate. In conclusion, we have shown that ūK ⇀ ū in

L2(0, T ) after selecting a subsequence with indices in S ⊂ N.
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Next, we prove convergence of the norms ∥ūK∥2 → ∥ū∥2, from which the required strong L2–convergence

follows. For this aim, recall that ȳK := GK(ūK) → ȳ := G(ū) and q̄K := QK(ūK) → q̄ := Q(ū) in

L∞(0, T ) due to Lemma 6.6.1 b). On the other hand, notice that ū being a local minimum of Ĵ and ūK

being a minimum of ĴK in P2
K ∩Bε′(ū;L2) imply the following

0 = Ĵ ′(ū)v = γ⟨ū, v⟩2 + ⟨q̄⊤B ȳ, v⟩2, v ∈ L2(0, T ), (6.38)

0 ≤ Ĵ ′
K(ūK)(u− ūK) = γ⟨ūK , u− ūK⟩2 + ⟨q̄⊤KB ȳK , u− ūK⟩2, u ∈ P2

K ∩Bε′(ū;L2). (6.39)

Testing equation (6.38) with v = ū and inequality (6.39) with u = Proj2K(ū) gives

∥ū∥22 = − 1

γ
⟨q̄⊤B ȳ, ū⟩2, ∥ūK∥22 ≤ ⟨ūK ,Proj2K(ū)⟩2 +

1

γ
⟨q̄⊤KB ȳK ,Proj

2
K(ū)− ūK⟩2.

This result yields the desired convergence of the norms for K ∈ S,K → ∞

∥ūK∥22 − ∥ū∥22 ≤⟨ūK ,Proj2K(ū)⟩2 +
1

γ
⟨q̄⊤KB ȳK ,Proj

2
K(ū)⟩2

− 1

γ
⟨q̄⊤KB ȳK , ūK⟩2 + ⟨q̄⊤B ȳ, ū⟩2 → 0.

The latter scalar products converge since both q⊤KB ȳK → q̄⊤B ȳ and Proj2K(ū) → ū strongly in L2(0, T )

as K ∈ S,K → ∞. Hence, we have proved ūK → ū in L2(0, T ).

A consequence of this convergence result is that all ūK have to be in the interior of the ball P2
K∩Bε′(ū;L2)

for all K ∈ S sufficiently large. Therefore, ūK has to be a local minimum of ĴK , i.e., there exists ε∗ > 0

such that

ĴK(ūK) = min
{
ĴK(u) | u ∈ P2

K ∩Bε∗(ūK ;L2)
}
. (6.40)

Next, we prove assertion b) and consider the sequence (ūK)K∈N of solutions of (PK). First, we need a

uniform bound in L2(0, T ) of this sequence. This follows from ĴK(ūK) ≤ ĴK(0), after inserting G(0),

which simply is the solution of y′ = Ay with y(0) = y0. This yields

γ∥uK∥22 ≤− β∥GK(uK)− yd,K∥22 − α|GK(uK)(T )− yT |2

+ β∥GK(0)− yd,K∥22 + α|GK(0)(T )− yT |2

≤β∥GK(0)− yd,K∥22 + α|GK(0)(T )− yT |2 ≤ CJ .

In conclusion, ∥uK∥22 is bounded by a constant depending only on given quantities. Hence, there exists

a weak limit w ∈ L2(0, T ). Now, let ū ∈ L2(0, T ) be the solution of (P ). Analogously to a) we obtain

Ĵ(w) ≤ lim inf
K→∞

ĴK(ūK) ≤ lim sup
K→∞

ĴK
(
Proj2K(ū)

)
= Ĵ(ū) ≤ Ĵ(w).

Notice that, in this argument, it is essential that ūK and ū are not only local but global minima of (PK)

and (P ), respectively. This implies that ūK ⇀ ū in L2(0, T ) for a subsequence, which consequently yields

ȳK → ȳ and q̄K → q̄ in L∞(0, T ). Due to the fact that Ĵ ′(ū) = 0 on L2(0, T ) and Ĵ ′
K(ūK) = 0 on P2

K ,

we conclude that

γ∥ū∥22 − γ∥ūK∥22 = −⟨q̄⊤B ȳ, ū⟩2 + ⟨q̄⊤KB ȳK , ūK⟩2
= ⟨q̄⊤B ȳ, ūK − ū⟩2 + ⟨q̄⊤KB ȳK − q̄B ȳ, ūK⟩2 → 0.

This implies the strong convergence ūK → ū in L2(0, T ) (for a subsequence). Furthermore, both in a)

and b), it follows by the standard argument from Lemma 1.4.3 that ūK → ū holds without selection of a
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subsequence. Lastly, recall that local minima of Ĵ have the higher regularity C2. This result completes

the proof of assertion a) and b).

Part c) follows from the implicit formula for ūK stated in Theorem 6.5.2 with analogous estimates as in

(6.16). The functions ȳK , q̄K are uniformly bounded in the H1–norm due to the fact that ūK is uniformly

bounded in the L2–norm.

Notice that the parts a) and b) of Theorem 6.6.3 can be proven analogously for (suitable) other discrete

spaces for the control. This is due to the fact that we do not exploit the discrete implicit formula for ūK

and we make no statement about convergence rates.

Based on the L2–convergence results stated in Theorem 6.6.3, we can prove the following.

Corollary 6.6.4. Let ū fulfill the sufficient second–order condition and let Λ, ε > 0 be given by Theorem

6.3.2. Furthermore, let (ūK)K∈N ⊂ L2(0, T ) and Kε ∈ N such that ∥ūK − ū∥2 < ε/2 for all K ≥ Kε.

Then for all K ≥ Kε, it holds that

Λ

2
∥ū− ūK∥22 ≤

(
Ĵ ′(ūK)− Ĵ ′(ū)

)
(ūK − ū).

Proof. Taking v = ūK − ū in Theorem 6.3.2 iii), it holds that

Λ

2
∥ū− ūK∥22 ≤ Ĵ ′′(w)

(
(ūK − ū), (ūK − ū)

)
for every w ∈ Bε(ū;L

2). Furthermore, by the mean value theorem, for every K ∈ N there exists some

λK ∈ [0, 1] such that for wK := λK ū+ (1− λK)ūK , we have

Ĵ ′′(wK)
(
(ūK − ū), (ūK − ū)

)
= (Ĵ ′(ūK)− Ĵ ′(ū))(ūK − ū).

Since wK ∈ Bε(ū;L
2) for K ≥ Kε, the claim follows.

6.7 Accuracy estimates

In this section, we use the results presented above to prove second–order accuracy of the optimal control

computed with the finite element method. The following theorem improves the statements of Theorem

6.6.3 and is the second main result of this chapter.

Theorem 6.7.1. Consider the following two cases:

a) Let ū fulfill the sufficient first– and second–order conditions of the minimization problem (P ) from

Section 6.2, that is J ′(ū)v = 0 and Ĵ ′′(ū)(v, v) > 0 for all v ∈ L2(0, T )\{0}. Let (ūK)K∈N be the

sequence of local minima of ĴK given by Theorem 6.6.3 a).

b) For K ∈ N, let ūK be a solution of (PK) from section (6.5) and let ū be given by Theorem 6.6.3

b). Furthermore, let ū fulfil the sufficient second–order condition.

In both cases, there exists C > 0 depending (continuously) only on |A|, |B|, |y0|, T related to the state

equation and on γ, β, α, ∥yd∥H2 , |yT | related to the cost functional J , such that

∥ū− ūK∥2 ≤ CK−2. (6.41)

We remark that the rate K−2 has to be replaced by K−1 if σ = 1 in (6.29).
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Proof. The starting point of the proof is the estimate from Corollary 6.6.4. Notice that Ĵ ′
K(ūK)v = 0 for

all v ∈ L2(0, T ) by Theorem 6.5.2. Thus, we obtain the estimate

Λ

2
∥ū− ūK∥22 ≤

(
Ĵ ′(ū)− Ĵ ′(ūK)

)
(ū− ūK) =

(
Ĵ ′
K(ūK)− Ĵ ′(ūK)

)
(ū− ūK). (6.42)

We recall the uniform bound ∥ūK∥H1 ≤ CJ from Theorem 6.6.3 c). Now, we apply Lemma 6.6.2 with

v = ū− ūK and conclude that

Λ

2
∥ū− ūK∥22 ≤ CJK

−2∥ū− ūK∥2.

This yields the desired second–order accuracy estimate ∥ū− ūK∥2 ≤ CJ K
−2.

6.8 Accuracy estimates with box constraints on the control

In this section, we extend our analysis of accuracy to the case of a finite element approximation to a

control–constrained optimal control problem. For the case where the controls are assumed piecewise

constant, we prove the estimate ∥ū − ūK∥2 ≤ CK−σ with σ = 1, whereas in the case of continuous

piecewise quadratic controls we obtain σ = 2 if we assume second–order accuracy in (6.29).

We focus on the optimal control problem discussed in the previous sections with the addition of bilateral

box constraints that define the following set of admissible controls

Uad := {u ∈ L2(0, T ) | a ≤ u(t) ≤ b f.a.e. t ∈ ]0, T [ }

with −∞ ≤ a < b ≤ ∞.

Therefore, based on our construction of the control–to–state map and of the cost functional, our optimal

control problem is defined as follows

min
u∈Uad

Ĵ(u), (Pad)

The first–order necessary condition for a local minimum ū ∈ Uad becomes a variational inequality of the

form

J ′(ū)(v − ū) ≥ 0, v ∈ Uad. (6.43)

Consequently, Corollary 6.2.5 must be adapted. The reason is that ū is in general only Lipschitz contin-

uous and satisfies the following equation

ū(t) = max

{
a,min

{
b,− 1

γ
q̄(t)⊤B ȳ(t)

}}
, t ∈ [0, T ]. (6.44)

Clearly, some steps in our analysis cannot be directly performed in this case. Specifically, one cannot

transfer the proof to deduce (6.44) from (6.43) for the discrete case with piecewise quadratic controls,

and an implicit equation for the discrete local minima like in (6.33) from Theorem 6.5.2 seems difficult

to obtain.

One can also see that the inequality condition (6.43) impacts our accuracy analysis, in the sense that the

local coercivity Ĵ ′′(u)(v, v) ≥ Λ
2 ∥v∥

2
2 does no longer hold for all v ∈ L2(0, T ) but on a subset Cτū given

below. Consequently, since we set v = ūK − ū in the proof of Corollary 6.6.4, we have to verify that the

sequence (ūK − ū) is in Cτū for K sufficiently large.

With these preparatory comments, we start our discussion of the optimal control problem (Pad). We

remark that all properties of the control–to–state and control–to–adjoint map remain valid, as well as
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Theorem 6.2.1 which states the existence of an optimal control. The definition of a (local) minimum of

(Pad) is the same as in Definition 6.2.2 with the addition that ū ∈ Uad and the set Bε(ū;L
2) has to be

replaced by Uad ∩Bε(ū;L2). Next, equation (6.14) of the optimality system has to be adapted. For this

purpose, let us focus on a local minimum ū of (Pad) and define

Φ(t) := γū(t) +Q(ū)(t)⊤BG(ū)(t), t ∈ [0, T ]. (6.45)

By testing (6.43) with proper v ∈ Uad one obtains for t ∈ [0, T ] the following implications that give rise

to the formula for ū given in (6.44):
Φ(t) > 0 =⇒ ū(t) = a,

Φ(t) < 0 =⇒ ū(t) = b,

a < ū(t) < b =⇒ Φ(t) = 0.

(6.46)

Next, concerning the accuracy analysis, we have that Lemma 6.3.1 remains valid if vk, v ∈ Uad. In order

to reformulate Theorem 6.3.2, we follow [21] and define the following sets for a local minima ū ∈ Uad and

τ ≥ 0. We have

Sū := {λ(v − ū) | λ > 0, v ∈ Uad},

Cτū := Sū
L2

∩
{
v ∈ L2(0, T ) | |Ĵ ′(ū)v| ≤ τ∥v∥2

}
,

Eτū :=

v ∈ L2(0, T ) | v(t)


≥ 0, if ū(t) = a

≤ 0, if ū(t) = b

= 0, if |Φ(t)| > τ

 .

(6.47)

For our bilinear optimal control problem, it can be shown with standard techniques that E0
ū = C0

ū since

γ > 0. The sufficient second–order condition for a local minimum ū ∈ Uad now reads

Ĵ ′′(ū)(v, v) > 0, v ∈ C0
ū\{0}. (6.48)

This fact implies the local coercivity of Ĵ , in the sense that there exists δ, ε,Λ, τ > 0 such that

Ĵ ′′(u)(v, v) ≥ Λ

2
∥v∥22, v ∈ Cτū , u ∈ Uad ∩Bε(ū;L2). (6.49)

For later use, we remark that Eτū ⊂ Cτ
√
T

ū , since for v ∈ Eτū it holds that

|Ĵ ′(ū)v| =
∫
{t∈[0,T ]||Φ(t)|<τ}

|Φ(t)v(t)| dt ≤ τ

∫ T

0

|v(t)| dt ≤ τ
√
T∥v∥2. (6.50)

This remark concludes our discussion of the continuous problem with box constraints.

Next, we investigate the discrete finite element approximation to our control–constrained optimal control

problem. We see that the properties of the discrete control–to–state map and control–to–adjoint map

(6.28)–(6.30), as well as the definition of the reduced cost functional (6.31) remain mostly unchanged.

Analogously to the continuous case, Theorem 6.5.2 and the implicit equation for a local minimum ūK

have to be adapted as discussed below.

We start with the case of piecewise constant controls in the space

P0
K = {ψ : [0, T [→ R | ψ is constant on [ti, ti+1[ , i = 0, . . . ,K − 1} ⊂ L2(0, T ).

For a local minimum ūK ∈ Uad ∩ P0
K , we define

ΦK(t) := γūK(t) +QK(ūK)(t)⊤BGK(ūK)(t), t ∈ [0, T ], (6.51)
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and the Fréchet differentiabilty of ĴK implies the necessary condition Ĵ ′
K(ūK)(v − ūK) ≥ 0 for all v ∈

Uad ∩ P0
K . The choice of piecewise constant controls allows us to test with the indicator function on the

interval [ti, ti+1[

t 7→ v(t) = 1|[ti,ti+1[(t) ∈ P0
K .

Thus, it holds for all i = 0, . . . ,K − 1 and all numbers x ∈ [a, b] that∫ ti+1

ti

ΦK(t) dt
(
x− ūiK

)
≥ 0,

where we use the notation ūiK := ūK(ti).

Next, we introduce the following mean values within one discrete time interval

si :=
1

∆t

∫ ti+1

ti

− 1

γ
QK(ūK)(t)⊤BGK(ūK)(t) dt, i = 0, . . . ,K − 1.

With this construction, we obtain
ūK(ti) = a =⇒

∫ ti+1

ti
ΦK(t) dt ≥ 0 =⇒ ūiK ≥ si,

ūK(ti) = b =⇒
∫ ti+1

ti
ΦK(t) dt ≤ 0 =⇒ ūiK ≤ si,

a < ūK(ti) < b =⇒
∫ ti+1

ti
ΦK(t) dt = 0 =⇒ ūiK = si.

(6.52)

This result yields the implicit formula ūK(ti) = max
{
a,min{b, si}

}
; compare this with (6.44). Next,

concerning the accuracy of GK and QK in the case of piecewise constant controls with box constraints,

in view of (6.25), we assume first–order estimates, that is for every u ∈ P0
K there exists C = C∥u∥∞ > 0

such that

∥GK(u)−G(u)∥2 + ∥QK(u)−Q(u)∥2 ≤ CK−1, K ∈ N, (6.53)

GK(u) → G(u), QK(u) → Q(u) in H1 and uniformly on [0, T ] as K → ∞.

Now, concerning our analysis in Section 6.6, we see that Lemma 6.6.1 remains valid if we replace the

rates K−2 with K−1.

Further, due to the implicit formula (6.52), it can be shown that ūK → ū uniformly on [0, T ]. Theorem

6.6.3 also remains true; its proof changes only slightly.

The next issue is to verify Corollary 6.6.4. To this end, we need to make sure that v = ūK − ū ∈ Cτū in

order to apply the local coercivity of Ĵ ′′. Due to Eτ
′

ū ⊂ Cτū with τ ′ := τ/
√
T , it is sufficient to prove that

for all t ∈ [0, T ] it holds

ūK(t)


≥ ū(t), if ū(t) = a,

≤ ū(t), if ū(t) = b,

= ū(t), if |Φ(t)| > τ ′.

The first two claims are clearly fulfilled since ūK ∈ Uad. The third claim is fulfilled for K sufficiently

large and can be shown as follows. Notice that ΦK → Φ uniformly on [0, T ] due to the properties of GK

and QK and since ūK → ū uniformly. Further, define the set Mτ ′ := {t ∈ [0, T ] | |Φ(t)| > τ ′} and notice

with (6.46) that ū(t) ∈ {a, b} for t ∈ Mτ ′ . Thus, we fix any t′ ∈ Mτ ′ with t′ ∈ [tj , tj+1[ and want to

prove
∫ tj+1

tj
ΦK(t) dt ̸= 0 for K sufficiently large as this implies ūK(t′) ∈ {a, b} due to (6.52). Due to the

Lipschitz continuity of Φ and the above mentioned uniform convergence, there exists K0 ∈ N such that

for all K ≥ N0 and all t ∈ [tj , tj+1[ it holds

Φ(t′)− Φ(t) ≤ L∆t = LT/K ≤ τ ′/4 and ΦK(t)− Φ(t) ≤ τ ′/4.
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Because t′ ∈Mτ ′ it holds that Φ(t′) > τ or Φ(t′) < −τ . In the first case, we find that∫ tj+1

tj

ΦK(t) dt ≥
∫ tj+1

tj

(
− |ΦK(t)− Φ(t)| − |Φ(t)− Φ(t′)|+Φ(t′).

)
dt ≥ −∆t τ ′/2 + ∆tΦ(t′) > 0.

We argue analogously for the second case and conclude that
∫ tj+1

tj
ΦK(t) dt ̸= 0. This completes the proof

of ūK − ū ∈ Cτū .

Now, we continue our discussion referring to Section 6.7. In the presence of box constraints, it is important

to construct some discrete control wK ∈ P0
K such that

Ĵ ′(ū)ū = Ĵ ′
K(ūK)wK .

It can be shown that the choice

wK(t) :=


(∫ tj+1

tj
Φ(s) ds

)−1 ∫ tj+1

tj
ū(s)Φ(s) ds,

∫ tj+1

tj
Φ(s) ds ̸= 0

∆t−1
∫ tj+1

tj
ū(s) ds,

∫ tj+1

tj
Φ(s) ds = 0,

(6.54)

for j = 0, . . . ,K − 1, t ∈ [tj , tj+1[ fulfills Ĵ
′(ū)(ū − wK) = 0 with linear accuracy ∥ū − wK∥2 ≤ CK−1.

Thus, using this result, we obtain the linear error estimate ∥ū− ūK∥2 ≤ CJK
−1 with Corollary 6.6.4 and

Young’s inequality as follows

Λ

2
∥ū− ūK∥22 ≤

(
Ĵ ′(ū)− Ĵ ′(ūK)

)
(ū− ūK)

≤
(
Ĵ ′
K(ūK)− Ĵ ′(ūK)

)
(ū− ūK) +

(
Ĵ ′(ū)− Ĵ ′

K(ūK)
)
(ū− wK)

≤ CK−1∥ū− ūK∥2 + C
(
K−1 + ∥ū− ūK∥2

)
∥wK − ū∥2

≤ C
(
K−2 +K−1∥wK − ū∥2 + Cϵ∥wK − ū∥22 + ϵ∥ū− ūK∥22

)
.

(6.55)

Next, we present our analysis of the case of continuous, piecewise quadratic discrete controls. Analogously

to Lemma 6.5.1, we introduce for K ∈ N the semidiscrete optimal control problem, that is, we discretize

the control–to–state map G and the target state in J but not the set of admissible controls:

min
u∈Uad

ĴK(u) with ĴK defined as in (6.31). (PKad)

The necessary condition for local minima of ĴK now yields the analogous result to Theorem 6.5.2.

Theorem 6.8.1. Let ūK ∈ Uad be a local solution to (PKad) and define ȳK := GK(ūK), q̄K := QK(ūK) ∈
(P1

K)N . Then the implicit formula

ūK(t) = max

{
a,min

{
b,− 1

γ
q̄K(t)⊤B ȳK(t)

}}
, t ∈ [0, T ] (6.56)

holds and ūK is a continuous piecewise quadratic polynomial (not necessarily on the same, uniform grid).

Analogously to (PK), the problem (PKad) is a-priori not a finite–dimensional one, however, equation

(6.56) implies that calculating local minima is a finite–dimensional problem. Thus in application, it is

numerically possible to compute the grid values of ūK and one can follow the approach from Section 9.

The next Lemma is the analogue to Theorem 6.6.3.

Lemma 6.8.2. The following results hold:

a) Let ū ∈ Uad be a strict local minimum of Ĵ over Uad. Then there exists a sequence of local minima

ūK of (PKad) such that ūK → ū in L2(0, T ) as K → ∞.
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b) For K ∈ N let ūK be a solution of (PKad). Then there exists a Lipschitz continuous function ū

solution of (Pad) with ūK → ū in L2(0, T ) as K → ∞.

c) In both cases a) and b), the sequence (ūK) is bounded in H1, uniformly in K.

Proof. We only sketch the proof due to its similarity to the proof of Theorem 6.6.3. In a), the sequence

(ūK) is constructed analogously. Thus, in both cases a) and b), the weak convergence can be shown in

the same manner. Lastly, the strong L2–convergence of ūK to ū follows from (6.56) and Lemma 6.6.1 b).

For part c), recall that both max{f, g},min{f, g} ∈W 1,p(0, T ) if f, g,∈W 1,p(0, T ) and their W 1,p–norm

is bounded by ∥f∥W 1,p + ∥g∥W 1,p .

The next step is to prove Corollary 6.6.4. It is only left to show that v = ūK − ū is in Cτū for sufficiently

large K. Once again, this is a consequence of the representation (6.56) and we omit the details.

The difference to (6.55) is that Ĵ ′
K(ūK)(v − ūK) ≥ 0 holds for all v ∈ Uad instead of v from a discrete

space. Therefore, we may simply set wK = ū, and an analogous coercivity estimate from Corollary 6.6.4

yields

Λ

2
∥ū− ūK∥22 ≤

(
Ĵ ′(ū)− Ĵ ′(ūK)

)
(ū− ūK) ≤

(
Ĵ ′
K(ūK)− Ĵ ′(ūK)

)
(ū− ūK)

≤ CJK
−1∥ū− ūK∥2.

(6.57)

The last estimate follows from an application of Lemma 6.6.2.

This concludes the discussion of the box-constrained optimal control problem, and we summarize the

results in the following two theorems; compare this with Theorem 6.6.3 and Theorem 6.7.1.

Theorem 6.8.3. (The piecewise constant case with box constraints)

The following results hold.

a) Let ū ∈ Uad be a local minimum of Ĵ , which fulfills the second–order condition from Theorem 6.3.2.

Then there exists a sequence of local minima ūK ⊂ Uad ∩ P0
K of the corresponding discrete optimal

control problem such that ūK → ū in L2(0, T ) as K → ∞.

b) For K ∈ N, let ūK ∈ Uad ∩ P0
K be a solution of the discrete optimal control problem. Then there

exists ū ∈ Uad solution of (P ) with ūK → ū in L2(0, T ) as K → ∞.

In both cases, we have the linear accuracy

∥ūK − ū∥2 ≤ CK−1.

Theorem 6.8.4. (The continuous piecewise quadratic case with box constraints)

The following results hold.

a) Let ū ∈ Uad be a local minimum of Ĵ which fulfills the second–order necessary condition. Then there

exists a sequence of local minima ūK ⊂ Uad of the corresponding discrete optimal control problem

min
u∈Uad

ĴK(u), (6.58)

where ūK is a continuous, piecewise polynomial and ūK → ū in L2(0, T ) as K → ∞.

b) For K ∈ N, let ūK ∈ Uad be a solution of the discrete optimal control problem (6.58). Then there

exists ū ∈ Uad solution of (P ) with ūK → ū in L2(0, T ) as K → ∞.

In both cases, we have at least first–order accuracy

∥ūK − ū∥2 ≤ CK−1.

Assuming σ = 2 in (6.29), we remark that second–order accuracy holds in Theorem 6.8.4.
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6.9 Numerical approximation and optimization

In this section, numerical evidence is presented that supports our theoretical findings in the unconstrained

case. More precisely, we see quadratic accuracy of the finite element approximation (7.6)–(7.7) for the

forward and backward problem. Furthermore, Theorem 6.7.1 is verified numerically in the sense that

finite–dimensional solutions ūK of (PK) are computed and the convergence (6.41) with quadratic accuracy

to an exact solution ū of (P ) holds.

We start this section, by calculating the finite element scheme for i = 0, . . . ,K

⟨y′K , ψi⟩2 = ⟨(A+ uB)yK , ψi⟩2, (6.59)

−⟨q′K , ψi⟩2 = ⟨(A+ uB)⊤qK + β(yK − yd,K), ψi⟩2, (6.60)

using the hat functions {ψi | i = 0, . . . ,K} given in (6.22)–(6.23) as basis of P1
K . Let K ∈ N be arbitrary

but fixed. In the following computations, we write an upper index i for an evaluation at time point

ti = i∆t and we omit to write the lower index for the accuracy. Thus, yi := yK(ti), q
i := qK(ti)

⊤ and

ui = uK(ti). Notice that the components of yK and qK belong to P1
K and hence on an interval [ti, ti+1]

we can use the (linear Taylor) representation

yK(t) = yi + (t− ti)
yi+1 − yi

∆t
, t ∈ [ti, ti+1]; (6.61)

an analogous representation holds for qK . In order for ūK ∈ P2
K to be determined on a subintervall

[ti, ti+1[, we introduce the midpoints

ti+1/2 := ti +∆t/2, ti−1/2 := ti −∆t/2 for i = 0, . . . ,K.

Thus, the exact (quadratic Taylor) representation of a discrete control uK ∈ P2
K is given by

uK(t) = ui +
t− ti
∆t

(
−ui+1 + 4ui+1/2 − 3ui

)
+

(t− ti)
2

∆t2
2
(
ui+1 − 2ui+1/2 + ui

)
, t ∈ [ti, ti+1].

In the numerical implementation, the piecewise quadratic polynomial ūK will be computed via the discrete

reduced gradient (6.33). Therefore, the evaluation of uK at the intermediate points is a numerical

available procedure; recall that due to the finite element approximation of yK and qK , we obtain the

(exact) intermediate values of the discrete state and discrete co–state simply by

yK(ti+1/2) =
yi+1 + yi

2
and qK(ti+1/2) =

qi+1 + qi

2
.

For the forward problem (6.59), the left–hand side becomes

⟨y′K , ψi⟩2 =
1

2

(
yi+1 − yi−1

)
, i = 1, . . .K − 1,

⟨y′K , ψ0⟩2 =
1

2

(
y1 − y0

)
, ⟨y′K , ψK⟩2 =

1

2

(
yK − yK−1

)
.

The right–hand side reads for uK ∈ P2
K , i = 1, . . . ,K − 1

⟨(A+ uKB)yK , ψi⟩2 =
∆t

60

((
10A+ (ui−1 + 8ui−1/2 + ui)B

)
yi−1

+
(
40A+ (−ui−1 + 12ui−1/2 + 18ui + 12ui+1/2 − ui+1)B

)
yi

+
(
10A+ (ui + 8ui+1/2 + ui+1)B

)
yi+1

)
.
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Let IN ∈ RN×N denote the identity matrix. Combining both results, we obtain the following implicit

scheme: The value y0 ∈ RN is given by the initial condition and the first step to calculate y1 is(
IN − ∆t

30

(
10A+ (u0 + 8u1/2 + u1)B

))
y1 =

(
IN +

∆t

30

(
20A+ (9u0 + 12u1/2 − u1)B

))
y0.

For i = 1, . . . ,K − 2, the value of yi+1 is computed from yi and yi−1 via

yi+1 − yi−1 =
∆t

30

((
10A+ (ui−1 + 8ui−1/2 + ui)B

)
yi−1

+
(
40A+ (−ui−1 + 12ui−1/2 + 18ui + ui+1/2 + ui+1)B

)
yi

+
(
10A+ (ui + 8ui+1/2 + ui+1)B

)
yi+1

)
.

(6.62)

Notice that this scheme is well–defined in the sense that we can solve for yi+1 if ∆t is sufficiently small

depending on A,B, ∥u∥∞. Once again, we use the uniform bound ∥ūK∥H1 ≤ CJ .

Next, we consider the accuracy of this scheme and verify (6.28). For this purpose, define

F (t) := A+ u(t)B and write F i := F (u(ti)) for i = 0, . . . ,K.

Lemma 6.9.1. For the problem y′ = (A+ u(t)B)y with u ∈ C2([0, T ]) and unique solution y ∈ C3([0, T ]),

consider the implicit two–step scheme

yi+1 − yi−1 =
∆t

3

(
F i−1yi−1 + 4F iyi + F i+1yi+1

)
. (6.63)

Then, this method is of order 2, that is, it holds for the local error

|y(ti)− yi| ≤ C∆t3 as ∆t→ 0.

Furthermore, it is stable and consistent, and therefore convergent of order 2.

Proof. The claim follows by an application of Theorem 2.4 with coefficients

α2 = 1, α1 = 0, α0 = −1, β2 = β0 =
1

3
, β1 =

4

3

and Theorem 4.5 from [40, Chapter III].

We remark that the scheme (6.63) is known as the Milne–method [40, Chapter III.1]. It has the same

order as (6.62) since the difference of the coefficients, e.g., ui−1 + 8ui−1/2 + ui = 10ui−1 + O(∆t) is of

lower order.

Next, we prove (6.29) for linear accuracy σ = 1.

Lemma 6.9.2. There exists K0 ∈ N and C > 0 such that for all K ≥ K0

∥GK(uK)−G(uK)∥2 + ∥QK(uK)−Q(uK)∥2 ≤ C∥uK∥H1
K−1.

Proof. First, notice that K0 is given in Lemma 6.4.1 in order to have well–defined functions GK , QK .

For i = 0, . . . ,K, let

yK := GK(ūK), y := G(ūK), z := Proj1K(y) and yi := yK(ti), z
i := z(ti).

Due to the second–order accuracy of the projection (6.24), we obtain

∥z − y∥2 ≤ C∥G(ūK)∥H2K−2 ≤ C∥ūK∥H1K−2 ≤ CJK
−2.
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Thus, it is sufficient to prove ∥yK − z∥2 ≤ CK−1. We do this by following the lines of [40, Chapter

III.2] but instead of considering the pointwise local error, one needs to analyze a L2–local error: Let yi+1

be the numerical solution of (6.63) under the assumption that the exact starting values were used, i.e.,

yi = y(ti) and y
i−1 = y(ti−1). Then the local L2–error is defined as

∥yK − z∥2,i :=
(∫ ti+1

ti

|yK(s)− z(s)|2 ds
)1/2

.

Notice that z and the exact solution y coincide at the grid points. Hence, under the assumption that

yi, yi−1 are exact and by writing yK and z via (6.61), we obtain the following

∥yK − z∥22,i =
∆t

3

(
(yi − zi)2 + (yi+1 − zi+1)2 + yi+1(yi − zi) + zi+1(yi − zi)

)
=

∆t

3
(yi+1 − zi+1)2 =

∆t

3
(yi+1 − y(ti+1))

2.

Thus, the L2–local error and the pointwise local error are (up to the factor (∆t)1/2) the same and from [40,

Chapter III.2], we can repeat the proof of Lemma 2.2, Theorem 2.4 with |y′(t)− y′(s)| ≤ C∥y∥H2
|t− s|1/2

to obtain that the local L2–error is of first-order, that is,

∥yK − z∥2,i ≤ C∆t2

Lastly, we follow the lines of the proof of Theorem 4.5 to derive the linear global error estimate

∥yK − z∥L2(0,T ) ≤ C∆t.

This proves the first–order accuracy for GK , and the case for QK is done analogously.

We proceed similarly for the adjoint problem. The left–hand side is

−⟨q′K , ψi⟩2 =
1

2

(
qi−1 − qi+1

)
, i = 1, . . .K − 1,

−⟨q′K , ψ0⟩2 =
1

2

(
q0 − q1

)
, −⟨q′K , ψK⟩2 =

1

2

(
qK−1 − qK

)
.

For given uK ∈ P2
K , yK ∈ (P1

K)N , the terms on the right–hand side become

⟨q⊤K(A+ uB), ψi⟩2 =
∆t

30

(
qi−1

(
10A+ (ui−1 + 8ui−1/2 + ui)B

)
+ qi

(
40A+ (−ui−1 + 12ui−1/2 + 18ui + 12ui+1/2 − ui+1)B

)
+ qi+1

(
10A+ (ui + 8ui+1/2 + ui+1)B

))
,

⟨(yK − yd,K), ψi⟩2 =
∆t

6

(
(yi−1 − yi−1

d ) + 4(yi − yid) + (yi+1 − yi+1
d )

)
.

The value of qK is given by the terminal condition, and we arrive at the following two–step scheme

qK−1
(
IK − ∆t

30

(
10A+ (uK + 8uK−1/2 + uK−1)B

))
=qK

(
IK +

∆t

30

(
20A+ (9uK + 12uK−1/2 − uK−1)B

))
+

∆t

3
β
(
2(yK − yKd ) + yK−1 − yK−1

d

)
,
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qi−1
(
In − ∆t

30

(
10A+(ui−1 + 8ui−1/2 + ui)B

))
=qi+1

(
In +

∆t

30

(
10A+ (−ui−1 + 12ui−1/2 + 18ui + 12ui+1/2 − ui+1)B

))
+

∆t

30
qi
(
40A+ (−ui−1 + 12ui−1/2 + 18ui + 12ui+1/2 − ui+1)B

)
+

∆t

3
β
(
yi−1 − yi−1

d + 4(yi − yid) + yi+1 − yi+1
d

)
.

We remark that the linear accuracy result for the adjoint can be proven analogously to the case of the

state equation.

Once yK and qK are computed on [0, T ], we can calculate the reduced gradient via

Ĵ ′
K(u)(t) = qK(t)⊤B yK(t) + γu(t), t ∈ [0, T ]. (6.64)

Notice that (6.64) is a local formula which is very advantageous from a numerical point of view in the

sense that only the values of qK , yK and u at time ti are needed to calculate the gradient at time ti.

We remark that in the case of using other finite element space than P2
K for the discrete controls, this

feature is lost. For example, taking P1
K as the discrete space for the controls, one obtains that the discrete

reduced gradient at ti depends on all grid values of yK(tj), qK(tj), j = 0, . . . , N .

Next, we construct an optimal control problem for N = 1 to which an exact solution can be obtained.

First, one picks any (by hand integrable) ū ∈ C2([0, 1]) and y0, A,B ∈ R; we choose y0 = A = B = 1 and

ū(t) := 2π sin(2πt).

Correspondingly, we obtain the solution to the forward problem

ȳ(t) = exp

(
At+B

∫ t

0

ū(τ) dτ

)
= ete1−cos(2πt).

Now, the optimality condition 0 = γū(t) + q̄(t)⊤B ȳ(t) yields the backward solution

q̄(t) = − γ

B

ū(t)

ȳ(t)
, q̄(T ) = 0.

Once (ū, ȳ, q̄) is determined, we compute the components of the cost functional from the backward

problem. We choose α = 0, β = 1 and obtain the desired state

yd(t) = q̄′(t) + q̄(t)
(
A+ ū(t)B

)
+ ȳ(t) = − γ

B

ū′(t)

ȳ(t)
+ ȳ(t).

This concludes the construction of our test problem.

Next, we briefly describe the numerical algorithm that solves our optimal control problem. We set the

number of grid points K, define a uniform grid on [0, T ] and set an initial guess uK,0 := 0 ∈ P2
K for the

discrete optimal control ūK . The finite–dimensional minimization problem is solved with a non–linear

conjugate gradient (NCG) scheme, see Algorithm 1 below.

In order to support the claim of quadratic accuracy, we have solved the above constructed problem for

every number of grid points K = 1, . . . , 300. We calculate the mappings of interest

K 7→
(
∥ū− ūK∥2, ∥ȳ − ȳK∥2, ∥q̄ − q̄K∥2

)
, ȳK := GK(ūK), q̄K := QK(ūK)

and plot them for K = 5, 10, . . . , 300 in a log log–plot; see the figures below. For illustrative purposes, we

have included two reference functions K 7→ CK−1 in a dashed line and K 7→ CK−2 in a solid line (for

a suitable constant C > 0). Thus, it is evident that we have second–order convergence for the control,

state and adjoint.
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Algorithm 1 (NCG scheme)

1: Compute y0 = GK(uK,0), q0 = QK(uK,0) via (6.59)–(6.60).

2: Compute d0 = Ĵ ′
K(uK,0) via (6.64).

3: Set n = 0, nmax = 1000, ε = 10−7.

4: while n < nmax do

5: Set uK,n+1 = uK,n + αndn. ▷ αn is obtained with a line–search algorithm.

6: Compute yK,n+1 = GK(uK,n+1), qK,n+1 = QK(uK,n+1) via (6.59)–(6.60).

7: if ∥uK,n+1 − uK,n∥2 < ε then

8: set ūK := uK,n+1 ∈ P2
K , ȳK := yK,n+1, q̄K := qK,n+1 ∈ P1

K and terminate.

9: end if

10: Compute gn+1 = Ĵ ′
K(uK,n+1) via (6.64).

11: Set dn+1 = βndn − gn+1. ▷ βn is a Fletcher–Reeves step size correction.

12: Set n = n+ 1.

13: end while
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Let us conclude this chapter with a summary of our findings. First– and second–order accuracy esti-

mates for an optimal control problem governed by an ODE system with bilinear control mechanism were

presented. This problem is closely related to a semidiscrete Galerkin approximation of a Fokker–Planck

optimal control problem. The accuracy estimates were obtained based on a variational discretization

concept combined with a first– and second–order analysis of optimality of the semidiscrete and contin-

uous optimal control problems. Main emphasis was put on the unconstrained case, where the forward

and backward problem was discretized by continuous, piecewise linear polynomials. Piecewise quadratic

polynomials were used for the discretization of the controls, which lead to a setting where the optimize–

then–discretize approach coincides with the discretize–then–optimize one.

In the presence of box constraints on the control, a piecewise constant discretization for the controls was

considered and first–order accuracy estimates were obtained in that case. The theoretical claims were

supported with numerical evidence.
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7
Accuracy estimates for the Fokker–Planck optimal

control problem

All people are smart – some before, others after.

Voltaire, 1694 – 1778

In this chapter, linear and quadratic error estimates for the Fokker–Planck optimal control problem from

Chapter 4 are derived. This is done by merging the results from Chapters 4–6 together. More precisely,

we show that the control problem under investigation satisfies the conditions of the abstract splitting

approach stated in Section 5.1. Then, semidiscrete accuracy estimates can be derived by applying the

main results of Chapter 4. In the next section, we recall the discretization concepts and precisely formulate

the claim of linear and quadratic accuracy estimates.

7.1 Main results: linear and superlinear accuracy

Let us state the optimal control problem and its semi– and fully discretizations. The minimization

problem reads

min
u∈UT

ad

Ĵ(u), (7.1)

where Ĵ(u) := J(G(u), u) with control–to–state map G : L∞(0, T ) → W (0, T ) given in Definition 2.4.1,

where we set m = 1. The set of admissible controls UTad is defined in (2.35) in the same section. The

cost functional J is stated in (4.4) with the assumption (J1) from the same section and regularizing norm

Y = L2(0, T ). Concerning the Fokker–Planck problem, the assumptions (F1)–(F7) hold, see Chapter

2. In this chapter, we will write ϱ = Θ(u), given in Definition 4.1.4, for the adjoint of the FP control

problem for the reason that the variable q will be used for the adjoint of the ODE control problem.
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Next, we recall the semidiscrete minimization problem

min
u∈UT

ad

Ĵh(u), (7.2)

where h > 0 denotes the spatial mesh size, and N = N(h) is the dimension of the corresponding finite

element space PNΩ with basis {ψi | i = 1, . . . , N} given in Section 5.1. We have Ĵh(u) := Jh(Gh(u), u)

with the semidiscrete control–to–state map Gh : L∞(0, T ) → H1(0, T ;PNΩ ) from (5.26) given by the

semidiscrete Galerkin scheme. The semidiscrete cost functional reads for h > 0

Jh : H1(0, T ;PNΩ )× UTad → R, Jh(f, u) :=
β

2
∥f − pdh∥2L2(ΩT ) +

α

2
∥f(T )− pTh ∥2L2(Ω) +

γ

2
∥u∥22,

where pdh := ProjNL2(Ω)(p
d) and pTh := ProjNL2(Ω)(p

T ). The projection ProjNL2(Ω) from L2(Ω) to the finite

element space PNΩ is given in Section 5.1. We also introduce the equivalent formulation for N ∈ N

JN : H1(0, T )N × UTad → R, JN (y, u) :=
β

2
∥y − yd∥22,M +

α

2
|y(T )− yT |2M +

γ

2
∥u∥22.

and for YN : L2(0, T ) → H1(0, T )N given in (5.25), it holds that

Jh(Gh(u), u) = JN (YN (u), u).

The mass matrix corresponding to the finite element approximation on Ω is given by Mij := ⟨ψi, ψj⟩L2(Ω)

and the norms ∥ · ∥2,M and | · |M are defined below (5.20). As in (5.42)–(5.43), the functions yd and yT

are the coefficients corresponding to the finite element approximation of pd and pT , that is,

pdh(t, x) =

N∑
i=1

ydi (t)ψi(x) and pTh (x) =

N∑
i=1

yTi ψi(x).

The initial value from the ODE Cauchy problem for y = YN (u) ∈ H1(0, T )N reads

y′(t) = (A+ u(t)B)y(t), y(0) = y0 ∈ RN ,

and the N ×N matrices are given by A := M−1Ã, B := M−1B̃ with

Ãij = −
∫
Ω

(
a∇ψj(x)− ψj(x)c(x)

)
· ∇ψi(x) dx,

B̃ij = −
∫
Ω

ψj(x)M(x) · ∇ψi(x) dx.

Similarly, for q = QN (u) ∈ H1(0, T )N we have

−q′(t) = β(y(t)− yd(t)) + (A+ u(t)B)⊤q(t), q(T ) = α(y(T )− yT ).

Thus, the Galerkin approximations PN and ϱN to p = G(u) and ϱ = Θ(u), respectively, are given by

PN (t, x) =

N∑
i=1

yi(t)ψi(x), ϱN (t, x) =

N∑
i=1

qi(t)ψi(x). (7.3)

We recall from Theorem 5.3.3 the convergences of PN → p and ϱN → ϱ in L2(0, T ;H1(Ω)) and

L∞(0, T ;L2(Ω)) with linear rate, uniformly in u on UTad. In that context, we introduce the norms corre-

sponding to the finite element representation of (7.3)

|z|N,ψ :=

∥∥∥∥∥
N∑
i=1

ziψi(·)

∥∥∥∥∥
L2(Ω)

, |z|N,∇ψ :=

∥∥∥∥∥
N∑
i=1

zi∇ψi(·)

∥∥∥∥∥
L2(Ω)

for z ∈ RN . (7.4)
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Due to the boundedness of PN and ϱN in C([0, T ];H1(Ω)) by Theorem 5.3.3 e), we have that |PN |N,∇ψ
and |ϱN |N,∇ψ are bounded on [0, T ], uniformly in N and on UTad.

The fully discrete minimization problem reads

min
u∈UT

ad,K

ĴN,K(u), (7.5)

where K denotes the number of uniform grid points on [0, T ]. The discrete control space UTad,K can

be either chosen as the box constrained space of piecewise constant functions on that grid or as the

box constrained space of continuous, piecewise quadratic polynomials. The fully discrete reduced cost

functional ĴK : L2(0, T ) → R is given by

ĴK(u) :=
β

2

∫ T

0

|yK(t)− ydK(t)|2 dt+ α

2
|yK(T )− yT |2 + γ

2
∥u∥22,

where ydK = Proj1K(yd). It is important to remark that the computation of ĴK on UTad,K is a finite

dimensional problem, since the integral over [0, T ] becomes a finite sum. The fully discrete state yK =

GN,K(u) and adjoint qK = QN,K(u) are given for all u ∈ L2(0, T ) by the time finite element method

⟨y′K , ϕi⟩2 = ⟨(A+ uB)yK , ϕi⟩2, (7.6)

−⟨q′K , ϕi⟩2 = ⟨(A+ uB)⊤qK + β(yK − yd,K), ϕi⟩2, (7.7)

for all i = 0, . . . ,K, where {ϕi | i = 0, . . . ,K} is the basis of P1
K given in (6.22). In the case of u ∈ UTad,K

both equations reduce to a linear multistep method.

We want to analyze linear error estimates for an optimal control ū and a minimizer ūN,K of the fully

discrete problem by the splitting idea

∥ū− ūN,K∥2 ≤ ∥ū− ūN∥2 + ∥ūN − ūN,K∥2.

The idea is to apply the abstract results from Chapter 5 on the first term and the error estimates from

Chapter 6 on the second term. For the latter, we have to uniformly bound the constants appearing in

Chapter 6 as N tends to infinity. We only consider the case of piecewise quadratic controls with box

constraints from Section 6.8. A look at estimate (6.55) or (6.57) reveals the constants that needs to be

controlled is Λ given in Corollary 6.6.4 and C(1), C(2) from Lemma 6.6.1 and 6.6.2. This issue is addressed

next.

Lemma 7.1.1. Let (F1)–(F7) and (J1)–(J2) from Chapter 4 hold. Let ū ∈ UTad satisfy the first– and

second–order assumptions (A1)–(A2). Then, the following holds:

a) The Fokker–Planck optimal control problem (7.1) and its semidiscrete problem satisfies the condi-

tions (C1)–(C5) from Section 5.2.

b) The constant Λ given in Corollary 6.6.4 can be chosen independent of N and K: There exists Λ > 0,

N0 ∈ N and a sequence (Kn)n∈N ⊂ N such that the following holds for all N = N(h) ≥ N0 and all

K ≥ KN :
Λ

2
∥ūN − ūN,K∥2 ≤

(
Ĵ ′
N (ūN,K)− Ĵ ′

N (ūN )
)
(ūN,K − ūN ).

c) Ĵ ′
N is Lipschitz continuous uniformly in N in the sense that there exists C = CadCF∗CJ and N0 ∈ N

such that

Ĵ ′
N (u)v − Ĵ ′

N (w)v ≤ C(∥u− w∥2 + h)∥v∥2

for all N = N(h) ≥ N0, u,w ∈ UTad, v ∈ L2(0, T ).
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We remark that the necessity of the sequence (Kn)n∈N ⊂ N comes from the fact that for given N ∈ N,
the fully discrete solution of y and q are defined only for sufficiently large K, see (7.6)–(7.7).

Now, we can formulate the main theorem on semidiscrete accuracy estimates for ū ∈ UTad satisfying first–

and second–order optimality conditions.

Theorem 7.1.2. (Main theorem on semidiscrete accuracy estimates)

Let (F1)–(F7) and (J1)–(J2) from Chapter 4 hold. Let ū ∈ UTad satisfy the first– and second–order

assumptions (A1)–(A2). Then, there exists C = CadCF∗CJ and N0 ∈ N such that the following holds for

all N = N(h) ≥ N0:

a) There exists ūN ∈ Uad which is a local minimum of the semidiscrete minimization problem (7.2).

Furthermore, for these controls (ūN )N≥N0 , conditions (C1)–(C6) are satisfied and the following

linear accuracy estimate holds

∥ū− ūN∥2 ≤ Ch.

b) If additionally the regularity assumptions G(ū),Θ(ū) ∈ L2(0, T ;H3(Ω)) ∩ H1(0, T ;H2(Ω)) hold,

then the accuracy estimate in a) is of second–order.

For the fully discrete accuracy estimates, we need the following assumption on the time discretization

scheme: For some control u ∈ Uad, let yN,K := YN,K(u), qN,K := QN,K(u) ∈ P1
K and p := G(u),

ϱ := Θ(u). Then, we assume the following linear error estimate for the space–time finite element scheme:

Let pN,K , ϱN,K from PNΩ × P1
K with

pN,K(t, x) :=

N∑
i=1

pijψi(x)ϕj(t), ϱN,K(t, x) :=

N∑
i=1

ϱijψi(x)ϕj(t)

be the unique solution to∫ T

0

⟨∂tpN,K , ψi⟩L2(Ω)ϕj + F(pN,K , ψi)ϕj dt = 0, i = 1, . . . , N, j = 0, . . . ,K∫ T

0

⟨∂tϱN,K , ψi⟩L2(Ω)ϕj + F(ψi, ϱ
N,K)ϕj dt = β

∫ T

0

⟨p− pd, ψi⟩L2(Ω)ϕj dt, i = 1, . . . , N, j = 0, . . . ,K

with the corresponding initial and terminal condition, respectively. Then, analogously to Theorem 5.3.3,

we assume to have linear error estimates in time and space: There exists C = CadCF∗CJ , N0 ∈ N and a

sequence (Kn)n∈N ⊂ N such that for all u ∈ Uad, K ≥ KN and N ≥ N0 it holds that

∥pN,K − p∥2,H1 + ∥pN,K − p∥∞,2 ≤ C(h+ k)(∥p∥2,H2 + ∥p∥H1,2), (7.8)

∥ϱN,K − ϱ∥2,H1 + ∥ϱN,K − ϱ∥∞,2 ≤ C(h+ k)(∥ϱ∥2,H2 + ∥ϱ∥H1,2). (7.9)

It is reasonably to assume that a linear convergence rate holds given the regularity of p and ϱ due to anal-

ogous results for space–time finite element discretizations for similar parabolic problems, cf [35]. Notice

that this implies (G1)–(G2) below, stating that the convergences of the time–finite element discretization

of the semidiscrete problem from Chapter 6 are uniformly in N on UTad, i.e., there exists C = CadCF∗CJ ,

N0 ∈ N and a sequence (Kn)n∈N ⊂ N such that for all u ∈ UTad, N ≥ N0 and K ≥ KN

∥ |yK − y|N,ψ∥L2(0,T ) ≤ Ck ∥ |y|N,ψ∥H1(0,T ), (G1)

∥ |qK − q|N,∇ψ∥L2(0,T ) ≤ Ck ∥ |q|N,∇ψ∥H1(0,T ). (G2)

In Chapter 6, we have considered two discrete control space, the box–constrained space of piecewise

constant controls, and a variational discretization concept. We will only consider the latter case in the
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following theorem, since a variational discretization fits well to the bilinear FP optimal control problem.

Hence, the fully discrete optimal controls are given by the fully discrete version of (7.21), and therefore,

we consider the space of continuous, box–constrained, piecewise quadratic controls

UTad,K =
{
u ∈ C([0, T ]) : u(t) = min

{
umax,max{ϕ(t)φ(t), umin}

}
, t ∈ [0, T ], ϕ, φ ∈ P1

K

}
.

Theorem 7.1.3. (Main theorem on fully discrete accuracy estimates)

Let (F1)–(F7) and (J1)–(J2) from Chapter 4 hold. Let ū ∈ UTad satisfy the first– and second–order

assumptions (A1)–(A2). Then, there exists C = CadCF∗CJ , N0 ∈ N and a sequence (Kn)n∈N ⊂ N such

that the following holds for all N = N(h) ≥ N0 and all K ≥ KN :

a) There exists local minima ūN,K ∈ UTad,K of the fully discrete minimization problem (7.5) that

converges strongly to ūN in L2(0, T ) as K → ∞, where ūN is from Theorem 7.1.2 a).

b) If assumptions (7.8)–(7.9) or (G1)–(G2) hold, then the following linear accuracy estimate holds

∥ūN − ūN,K∥2 ≤ C(h+ k).

This concludes the results on accuracy estimates of the FP optimal control problem (7.1) with a variational

discretization concept for the time dependent controls. In the next section, these statements are proven.

7.2 Proofs

Let us start with the proof of Lemma 7.1.1.

Proof of part a) from Lemma 7.1.1. In Chapter 4, we have performed a first– and second–order analysis

of the minimization problem (7.1), and in this process, conditions (C1), (C2.1)–(C2.3) have been verified.

Next, we observe that (C3) follows from the convergences of the Galerkin scheme given in Theorem 5.3.3.

Subsequently, we can examine (C4), and for that purpose, we aim to apply Lemma 5.2.2. In the proof of

Theorem 6.2.1, we have verified that Ĵh is weakly–lower–semicontinuous on L2(0, T ). An application of

Lemma 5.2.2 a) yields the candidates (ūN )N∈N for our semidiscrete local minimizers. Next, we see that

Ĵ and ĴN are of the form from Lemma 5.2.2 c). Thus, given the weak convergence ūN ⇀ ū in L2(0, T ),

we need to show that

GN (ūN )(T ) → G(ū)(T ) strongly in L2(Ω) and GN (ūN ) → G(ū) strongly in L2(ΩT ).

This follows immediately from the compactness of G on C([0, T ];L2(Ω)), see Section 4.1, and the linear

convergence of the Galerkin scheme from Theorem 5.3.3. More precisely, it holds that

∥GN (ūN )(T )−G(ū)(T )∥L2(Ω) ≤ ∥G(ūN )(T )−G(ū)(T )∥L2(Ω) + ∥GN (ūN )(T )−G(ūN )(T )∥L2(Ω),

and the latter term can be estimated against Ch(∥G(ūN )∥L2H2 + ∥G(ūN )∥L2H1). We remark, that only

the L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω))–regularity is necessary for the linear convergence of the Galerkin

scheme. Furthermore, notice that ∥G(ūN )∥L2H2 and ∥G(ūN )∥H1L2 are bounded uniformly in N since

∥ūN∥∞ ≤ Cad due to the box–constraints. Consequently, the desired convergences of GN (ūN ) to G(ū)

follows. Next, due to the H2–regularity of pd and pT and (5.7), we can conclude that

∥GN (ūN )− ProjNL2(Ω)(p
d)∥2L2(ΩT ) → ∥G(u)− pd∥2L2(ΩT ),

∥GN (ūN )(T )− ProjNL2(Ω)(p
T )∥2L2(Ω) → ∥G(u)(T )− pT ∥2L2(Ω)



130 Accuracy estimates for the Fokker–Planck optimal control problem

as N → ∞. Thus, we have verified the conditions to apply Lemma 5.2.2 c) and conclude that (ūN ) are

local minimizers of ĴN which converge strongly to ū in L2(0, T ). We therefore obtain that condition (C4)

holds.

Lastly, let us verify condition (C5) that concerns the behaviour of the second–order derivatives of Ĵ and

ĴN . We recall the derivatives for u ∈ UTad, v ∈ L2(0, T ) and N ∈ N

J ′′(u)(v, v) = ∥z∥2L2(ΩT ) +

∫
ΩT

(p− pd)w dt dx+

∫
Ω

(p(T )− pT )w(T ) dx+ ∥z(T )∥2L2(Ω) + γ∥v∥22, (7.10)

Ĵ ′′
N (u)(v, v) = ∥ξ∥22,M +

∫ T

0

(y(t)− yd(t))
⊤Mχ(t) dt+ (y(T )− yT )⊤Mχ(T ) + |ξ(T )|2M + γ∥v∥22. (7.11)

The W (0, T )–functions z := G′(u)v, w := G′′(u)(v, v) are given in (2.41) and (2.52). The H1(0, T )N–

functions ξ := Y ′
N (u)v and χ := Y ′′

N (u)(v, v) have been introduced in Lemma 6.1.3. Due to the Galerkin

convergence with linear rate from Theorem 5.3.3, it holds for all u ∈ Uad that y = YN (u) converges to

p = G(u) with linear rate, uniformly in u on UTad, in the sense that

∥∥∥∥∥
N∑
i=1

YN (u)ψi −G(u)

∥∥∥∥∥
X

≤ CadCF∗h→ 0, as N → ∞, (7.12)

where X is L∞(0, T ;L2(Ω)) or L2(0, T ;H1(Ω)).

We also have to verify the convergence of the same Galerkin scheme for the Fréchet derivatives of G.

First, we observe that Theorem 4.1.1 yields higher regularity of z = G′(u)v and w = G′′(u)(v, v). Thus,

we may apply Theorem 5.3.3 b) to obtain a linear convergence rate of the Galerkin scheme. Consequently,

for all u ∈ UTad, v ∈ L2(0, T ), we deduce for ξ = Y ′
N (u)v, χ = Y ′′

N (u)(v, v) the following convergences

∥∥∥∥∥
N∑
i=1

ξi ψi − z

∥∥∥∥∥
X

≤ CadCF∗h∥v∥2 → 0, as N → 0, (7.13)

and

∥∥∥∥∥
N∑
i=1

χi ψi − w

∥∥∥∥∥
X

≤ CadCF∗h∥v∥22 → 0, as N → 0, (7.14)

where X is L∞(0, T ;L2(Ω)) or L2(0, T ;H1(Ω)). The convergence in condition (C5) follows now directly

from (7.12), (7.13), (7.14) and the definition of yd, y
T . We will prove this only for

∫ T

0

y(t)⊤Mχ(t) dt→
∫
ΩT

p(t, x)w(t, x) dt dx,

since the other terms can be treated analogously. Recall that Mij =
∫
Ω
ψi(x)ψj(x) dx. Let ∥ · ∥q =
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∥ · ∥Lq(ΩT ) for q ∈ {1, 2} and observe that∣∣∣∣∣
∫ T

0

y(t)⊤Mχ(t) dt−
∫
ΩT

p(t, x)w(t, x) dt dx

∣∣∣∣∣
≤
∫
ΩT

∣∣∣∣∣
N∑

i,j=1

yi(t)ψi(x)χj(t)ψj(x)− p(t, x)w(t, x)

∣∣∣∣∣ dt dx
≤

∥∥∥∥∥∥
N∑

i,j=1

yi ψi χj ψj − p

N∑
j=1

ψjχj

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥p
N∑
j=1

ψjχj − pw

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
(

N∑
i=1

yi ψi

)  N∑
j=1

ψj χj

− p

N∑
j=1

ψjχj

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
 N∑
j=1

ψjχj − w

 p

∥∥∥∥∥∥
1

≤

∥∥∥∥∥
(

N∑
i=1

yi ψi

)
− p

∥∥∥∥∥
2

∥∥∥∥∥∥
N∑
j=1

ψjχj

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
N∑
j=1

ψjχj − w

∥∥∥∥∥∥
2

∥p∥2.

Since
∥∥∥∑N

j=1 ψjχj

∥∥∥
2
converges to ∥w∥2, it is bounded by some constant C = CadCF∗. Consequently, an

application of (7.14) yields for all small h > 0∣∣∣∣∣
∫ T

0

y(t)⊤Mχ(t) dt−
∫
ΩT

p(t, x)w(t, x) dt dx

∣∣∣∣∣ ≤ CadCF∗h∥v∥22.

Let δ > 0 from condition (C5) be arbitrary but fixed. Hence, there exists N0 ∈ N such that for all

N = N(h) ≥ N0, it holds that CadCF∗h < δ; notice that N0 takes the role of h0 from (C5). This proves

condition (C5) for one term, and as mentioned above, the proof for the other terms is done analogously.

This concludes the proof of part a).

Since the conditions (C1)–(C5)) are satisfied, we can prove part b) as follows.

Proof of part b). First, we observe that the existence of the semidiscrete minimizer (ūN )N≥N0 of (7.2)

and the L2–convergence to ū is given by (C4).

Next, we show how condition (C5) implies the local coercivity of Ĵ ′′
N around ūN if ū fulfills the second–

order assumption (A2). This proves then that Λ from Corollary 6.6.4 is independent of N . For this

purpose, recall the critical cone for Ĵ

Cū = Sū
L2

∩ {v ∈ L2(0, T ) : Ĵ ′(ū)v = 0}.

For τ ≥ 0 and u ∈ UTad, we introduce the following extended cones for Ĵ and ĴN at u:

Eτu := Sū
L2

∩
{
v ∈ L2(0, T ) : |Ĵ ′(u)v| ≤ τ∥v∥2

}
,

Eτ,Nu := Sū
L2

∩
{
v ∈ L2(0, T ) : |Ĵ ′

N (u)v| ≤ τ∥v∥2
}
.

Obviously, Cu = E0
u ⊂ Eτu ⊂ Esu for 0 ≤ τ ≤ s. These extended cones are useful since, from Theorem

1.3.6, we obtain local coercivity around ū in the sense that there exists ε,Λ, τ > 0 such that

Ĵ ′′(u)(v, v) ≥ Λ

2
∥v∥22, for all v ∈ Eτū , u ∈ Uad ∩Bε(ū;L2). (7.15)

Condition (C5) implies that local coercivity holds for ĴN around ūN for all N larger than some N0 ∈ N
since (7.15) and Ĵ ′′(u)(v, v) ≤ Ĵ ′′

N (u)(v, v) + δ∥v∥22 imply(
Λ

2
− δ

)
∥v∥22 ≤ Ĵ ′′

N (u)(v, v)
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for all v ∈ Eτū and u ∈ Uad ∩ Bε(ū;L2). Furthermore, due to the strong L2–convergence of ūN → ū, we

find some N1 ∈ N and ε∗ > 0 such that

Bε∗(ūN ;L2) ⊂ Bε(ū;L
2), N ≥ N1. (7.16)

Let τ > 0 be given by (7.15) and define τ ′ := τ/2. Thus, it is only left to show that there exists some

N2 ∈ N such that Eτ
′,N
ūN

⊂ Eτū for all N ≥ N2. For that purpose, let v
∗ ∈ Eτ

′,N
ūN

be arbitrary and observe

that for ȳN := GN (ūN ), q̄N := QN (ūN )

|Ĵ ′
N (ūN )v∗| =

∣∣⟨q̄⊤N B̃ ȳN , v∗⟩2 + ⟨ūN , v∗⟩2
∣∣ ≤ τ ′∥v∗∥2. (7.17)

Next, we obtain by Cauchy–Schwarz for p̄ := G(ū), ϱ̄ := Θ(ū)

|Ĵ ′(ū)v∗| =
∣∣⟨⟨p̄M,∇ϱ̄⟩L2(Ω), v

∗⟩2 + ⟨ū, v∗⟩2
∣∣

≤ ∥q̄⊤N B̃ȳN − ⟨p̄M,∇ϱ̄⟩L2(Ω)∥2∥v∗∥2
+ ∥ū− ūN∥2∥v∗∥2 + |⟨q̄⊤N B̃ȳN , v∗⟩2 + ⟨ūN , v∗⟩2|.

The first two terms tend to zero as N tends to infinity due to the strong L2–convergence ūN → ū and

q̄⊤N B̃ ȳN → ⟨p̄M,∇q̄⟩L2(Ω) in L2(0, T ) which is shown in the proof of part c) below. Therefore, we find

N2 ∈ N such that for all N ≥ N2 it holds that

∥q̄⊤N B̃ȳN − ⟨pb,∇q⟩L2(Ω)∥2∥v∗∥2 + ∥ū− ūN∥2∥v∗∥2 ≤ τ ′∥v∗∥2.

The third term can also be estimated by τ ′∥v∗∥22 due to (7.17). Thus, we have shown that

|Ĵ ′(ū)v∗| ≤ τ∥v∗∥2,

and hence, v∗ ∈ Eτū . Since v
∗ was arbitrary, we have proven that Eτ

′,N
ūN

⊂ Eτū for all N ≥ N2. According

to (7.15) and (C5) with the choice δ = Λ/4, we obtain local coercivity of Ĵ ′′
N around ūN in the sense that

for ε∗ from (7.16) and N∗ := max{N0, N1, N2}, it holds for all N ≥ N∗ that

Ĵ ′′
N (u)(v, v) ≥ Λ

4
∥v∥22, v ∈ Eτ

′,N
ūN

, u ∈ Uad ∩Bε∗(ūN ;L2). (7.18)

This is a sufficient second–order condition on ūN , that is, ūN is a strict local minimum of ĴN for N ≥ N∗

that satisfies the standard assumptions for the error analysis, see Theorem 6.8.1 and Theorem 6.8.4. This

concludes the proof of part b).

Next, we prove part c) concerning the Lipschitz continuity of Ĵ ′
N , uniformly in N .

Proof of part c). Let u ∈ UTad, v ∈ L2(0, T ) and recall that

Ĵ ′
N (u)v = β⟨(YN (u)− yd),MY ′

N (u)v⟩2 + α(YN (u)|t=T − yT )⊤MY ′
N (u)v|t=T + γ⟨u, v⟩2.

Analogously to the proof of Lemma 6.2.4, we see that

β⟨(YN (u)− yd),MY ′
N (u)v⟩2 = ⟨QN (u)M, vBYN (u)⟩2 +QN (u)⊤|t=TMY ′

N (u)v|t=T ,

and hence,

Ĵ ′
N (u)v = ⟨QN (u)⊤B̃ YN (u), v⟩2 + γ⟨u, v⟩2.
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Let q := QN (u) and y := YN (u). It is very important to observe that due to the Galerkin approximation

(7.3), we can rewrite the first term for t ∈ [0, T ] as follows

q(t)⊤B̃ y(t) =

N∑
i,j=1

∫
Ω

qi(t)∇ψi(x)⊤M(x) yj(t)ψj(x) dx

=

∫
Ω

∇ϱN (t, x)⊤M(x)PN (t, x) dx.

Thus, due to the linear convergence rate (uniformly on UTad) of

ϱN → Θ(u) in L2(0, T ;H1(Ω)), PN → G(u) in L∞(0, T ;L2(Ω)),

it follows that there exists C = CadCF∗CJ such that for all u ∈ UTad and N = N(h) we have

|⟨QN (u)⊤B̃ YN (u), v⟩2 − ⟨Θ(u)⊤BG(u), v⟩2| ≤ Ch∥v∥2. (7.19)

Furthermore, Ĵ ′ is Lipschitz continuous and independent of N , and therefore,

|⟨∇Θ(u)⊤M G(u), v⟩2 − ⟨∇Θ(w)⊤M G(w), v⟩2| ≤ C∥u− w∥2∥v∥2, (7.20)

where C = CadCF∗CJ is independent of u,w and N . We use the triangle inequality and both estimates

(7.19) and (7.20) to conclude

|Ĵ ′
N (u)v − Ĵ ′

N (w)v| = ⟨QN (u)⊤B̃ YN (u)−QN (w)⊤B̃ YN (w), v⟩2 + γ⟨u− w, v⟩2
≤ C (∥u− w∥2 + h) ∥v∥2,

where C is independent of N = N(h) and u,w. This concludes the proof of Lemma 7.1.1.

Next, we prove the main theorem on semidiscrete accuracy estimates.

Proof of Theorem 7.1.2. In Lemma 7.1.1, we have proven that (C1)–(C5) from Section 4.2 hold. This

implies the existence of local minima ūN ∈ UTad of (7.2) that converge strongly in L2(0, T ) to ū. Let us

show the uniform convergence of ūN → ū on [0, T ] as N → ∞. For that purpose, recall

Φ[ū](t) := −
∫
Ω

p̄(t, x)∇ϱ̄(t, x)⊤M(x) dx

from (4.11) and let ΦN [ūN ](t) := q̄N (t)⊤B ȳN (t), where q̄N := QN (ūN ) and ȳN := YN (ūN ). This implies

ΦN [ūN ](t) = −
∫
Ω

P̄N (t, x)∇ϱ̄N (t, x)⊤M(x) dx, t ∈ [0, T ],

Due to the FONC of the minimization problem (see Theorem 4.1.5) and the FONC (6.43) of the semidis-

crete minimization problem, the following implicit representations hold for t ∈ [0, T ]

ū(t) = min

{
umax,max

{
− 1

γ
Φ[ū](t), umin

}}
, ūN (t) = min

{
umax,max

{
− 1

γ
ΦN [ūN ](t), umin

}}
.

(7.21)

Thus, it is sufficient to prove the uniform convergence of the continuous functions ΦN [ūN ] → Φ[ū] on

[0, T ]. This follows from the convergences of PN and ϱN from Theorem 5.3.3 a) and e).

Next, we have to verify that condition (C6) holds and observe that

Ĵ ′(ūN )v − Ĵ ′
N (ūN )v = ⟨Φ[ūN ]− ΦN [ūN ], v⟩L2(0,T ).
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Applying the Cauchy-Schwarz inequality, it remains to analyze the convergence rate of

∥Φ[ūN ]− ΦN [ūN ]∥2 =
∥∥∥ ∫

Ω

(
∇ϱ̄⊤M p̄−∇ϱ̄⊤NM p̄N

)
dx
∥∥∥
2
,

where p̄ = G(ūN ) and ϱ̄ = Θ(ūN ). Since the convergence rates from Theorem 5.3.3 are uniform for

controls on UTad, we have that

∥p̄− P̄N∥L∞(0,T ;L2(Ω)) + ∥ϱ̄− ϱ̄N∥L2(0,T ;H1(Ω)) ≤ Ch.

Since M ∈ L∞(Ω)d, a Hölder estimate yields the first claim of (C6) with linear rate r = 1.

If p̄ and ϱ̄ satisfy the higher regularity, then Theorem 5.3.3 d) yields the quadratic rates

∥p̄− PN∥L∞(0,T ;L2(Ω)) + ∥ϱ̄− ϱ̄N∥L2(0,T ;H1(Ω)) ≤ Ch2,

where C = CadCF∗CJ depends additionally on p̄ and ϱ̄ in the L2(0, T ;H3(Ω))– and L∞(0, T ;H2(Ω))–

norm.

Lastly, we have to prove that (ūN − ū) is in the extended cone of Ĵ at ū

Eτū =
{
v ∈ Sū

U
: |J ′(ū)v| ≤ τ∥v∥2

}
for sufficiently large N . Let τ ′ := τ/

√
T and observe that it is sufficient to show that for sufficiently large

N (depending on τ ′), it holds that

ūN (t)


≥ ū(t), if ū(t) = umin,

≤ ū(t), if ū(t) = umax,

= ū(t), if |Φ[ū](t) + γū(t)| > τ ′,

(7.22)

since this implies

|Ĵ ′(ū)(ūN − ū)| = |⟨Φ[ū] + γū, ūN − ū⟩L2(0,T )|

≤
∫
{t∈[0,T ]:|Φ[ū](t)+γū(t)|<τ ′}

∣∣(Φ[ū](t) + γū(t))⊤(ūN (t)− ū(t))
∣∣ dt

≤ τ ′
√
T∥ū− ūN∥2

= τ∥ū− ūN∥2.

Due to the uniform convergence of ΦN [ūN ] to Φ[ū] and ūN to ū on [0, T ] there exists Nτ ′ ∈ N (depending

on τ ′) such that for all N ≥ Nτ ′ and all t ∈ [0, T ] we have

|Φ[ū](t) + γū(t)− ΦN [ūN ](t)− γūN (t)| < τ ′/2. (7.23)

Let t′ ∈ [0, T ] such that |Φ(t′)+γū(t′)| > τ ′; notice that if such t′ does not exist, then (7.22) is (trivially)

satisfied. In order to prove (7.22), we exploit the implicit representations for ū and ūN given in (7.21).

Thus, it suffices to show ΦN [ūN ](t′) ̸= 0 as this implies ūN (t′) is equal to umin or umax. For that purpose,

let N ≥ Nτ ′ and assume ΦN [ūN ](t′) > 0. This yields with (7.23) the contradiction

ΦN [ūN ](t′) = ΦN [ūN ](t′)− Φ[ū](t′) + Φ[ū](t′) > Φ[ū](t′)− τ ′/2 = τ ′ − τ ′/2 > 0,

and we can argue analogously if ΦN [ūN ](t′) < 0. This proves ΦN [ūN ](t′) = 0, and hence ūN − ū ∈ Eτū .

Therefore, the FP minimization problem and its semidiscretization satisfy conditions (C1)–(C6), and we

can apply Theorem 5.2.1 b) to obtain the linear and quadratic rates for h. This concludes the proof of

the results on the semidiscretization.



7.2 Proofs 135

The last proof of this section is about the theorem on fully discrete accuracy estimate.

Proof of Theorem 7.1.3. Assertion a) was shown in Lemma 6.8.2, where the proof that ūN,K ∈ UTad,K is

given in Theorem 6.8.1.

Let us prove claim b). For the accuracy estimate of the time discretization, we follow the lines of (6.57)

and obtain

Λ

2
∥ūN − ūN,K∥22 ≤

(
Ĵ ′
N (ūN )− Ĵ ′

N (ūN,K)
)
(ūN − ūN,K)

≤
(
Ĵ ′
N,K(ūN,K)− Ĵ ′

N (ūN,K)
)
(ūN − ūN,K),

where Λ > 0 is given in Lemma 7.1.1 a) and independent of N and K.

Next, we have to derive a linear convergence rate in k of Ĵ ′
N,K(ūN,K)− Ĵ ′

N (ūN,K) under the assumption

of (G1)–(G2).

Let N0 ∈ N be given by Theorem 7.1.2, N ≥ N0 be arbitrary and let KN ∈ N (possibly depending on N)

be sufficiently large such that for all K ≥ KN

yN := YN (ūN,K), qN := QN (ūN,K), yN,K := YN,K(ūN,K), qN,K := QN,K(ūN,K)

exists, see (7.6)–(7.7). Then, for all v ∈ L2(0, T ) we have(
Ĵ ′
N,K(ūN,K)− Ĵ ′

N (ūN,K)
)
v =

∫ T

0

(
qN,K(t)⊤B̃ yN,K(t)− qN (t)⊤B̃ yN (t)

)
v(t) dt.

After applying the Cauchy–Schwarz inequality, inserting the mixed term ±qN⊤
B̃ yN,K and using the

triangle inequality, we need to establish accuracy estimates for terms∥∥∥(qN,K − qN
)⊤
B̃ yN,K

∥∥∥
L2(0,T )

and
∥∥∥qN⊤

B̃
(
yN,K − yN

)∥∥∥
L2(0,T )

. (7.24)

By the definition of B̃, we obtain for the first term

∥∥∥(qN,K − qN
)⊤
B̃ yN,K

∥∥∥
L2(0,T )

=

∥∥∥∥∥∥
N∑

i,j=1

∫
Ω

(
qN,Ki − qNi

)
∇ψi(x)⊤M(x) yN,Kj ψj(x) dx

∥∥∥∥∥∥
L2(0,T )

≤

∥∥∥∥∥∥∥
∥∥∥∥∥
N∑
i=1

(
qN,Ki − qNi

)
ψi

∥∥∥∥∥
L2(Ω)

∥M∥L∞(Ω)

∥∥∥∥∥∥
N∑
j=1

yN,Kj ψj

∥∥∥∥∥∥
L2(Ω)

∥∥∥∥∥∥∥
L2(0,T )

.

Next, applying a Hölder estimate for the ∥ · ∥L2(0,T )–norm and using the notation (7.4), we obtain∥∥ (qN,K − qN
)⊤B̃ yN,K∥∥

L2(0,T )

≤

∥∥∥∥∥
N∑
i=1

(
qN,Ki − qNi

)
∇ψi

∥∥∥∥∥
L2(0,T ;L2(Ω))

∥M∥L∞(Ω)

∥∥∥∥∥∥
N∑
j=1

yN,Kj ψj

∥∥∥∥∥∥
L∞(0,T ;L2(Ω))

=
∥∥|qN,K − qN |N,∇ψ

∥∥
L2(0,T )

∥M∥L∞(Ω)

∥∥|yN,K |N,ψ
∥∥
L∞(0,T )

.

The last term of the third line
∥∥|yN,K |N,ψ

∥∥
L∞(0,T )

is bounded by some constant CadCF∗ uniformly in

N,K since it converges to ∥G(ū)∥L∞(0,T ;L2(Ω)) as N,K tends to infinity, where K ≥ KN (with KN

possibly depending on N), since∥∥∥∥∥∥
N∑
j=1

yN,Kj ψj −G(ū)

∥∥∥∥∥∥
L∞L2

≤

∥∥∥∥∥∥
N∑
j=1

(yN,Kj − yN )ψj

∥∥∥∥∥∥
L∞L2

+

∥∥∥∥∥∥
N∑
j=1

yNj ψj −G(ū)

∥∥∥∥∥∥
L∞L2

.
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The first term of the last line above can be estimated against

∥ |qN,K − qN |N,∇ψ∥L2(0,T ) ≤ Ck ∥ |qN |N,∇ψ∥L2(0,T )

due to (G2). As N tends to infinity, the term ∥ |qN |N,∇ψ∥L2(0,T ) converges to

∥∇Θ(ū)∥L2(0,T ;L2(Ω)) ≤ ∥Θ(ū)∥L2(0,T ;H1(Ω)) ≤ CadCF∗CJ .

Therefore, it is also bounded uniformly in N , and we obtain

∥ |qN,K − qN |N,∇ψ∥L2(0,T ) ≤ CadCF∗CJk.

The second term in (7.24) is estimated with (G1) analogously. This concludes the proof of Theorem

7.1.3.



137

8
Appendix: Algorithms

In this chapter, we provide instructions for the MATLAB files that have been used in Section 6.9,

Algorithm 1. The numerical scheme solves an ODE–constrained optimal control problem with a non–

linear conjugate gradient scheme. Furthermore, a test file is implemented that allows to validate the

result about second–order accuracy. For comparison, the optimal control problem is also solved with an

Euler discretization for state and adjoint problem. The files can be found in the zip file OPC.zip. In order

to run the main program, execute the file OPCbilUQ.m; for the test case, run the file OPCbilUQTest.m

and for a solver using an Euler discretization scheme, run OPCbilEuler.m. For convenience of the reader,

we state Algorithm 1 again below

1: Compute y0 = GK(uK,0), q0 = QK(uK,0) via (6.59)–(6.60).

2: Compute d0 = Ĵ ′
K(uK,0) via (6.64).

3: Set n = 0, nmax = 1000, ε = 10−7.

4: while n < nmax do

5: Set uK,n+1 = uK,n + αndn. ▷ αn is obtained with a line–search algorithm.

6: Compute yK,n+1 = GK(uK,n+1), qK,n+1 = QK(uK,n+1) via (6.59)–(6.60).

7: if ∥uK,n+1 − uK,n∥2 < ε then

8: set ūK := uK,n+1 ∈ P2
K , ȳK := yK,n+1, q̄K := qK,n+1 ∈ P1

K and terminate.

9: end if

10: Compute gn+1 = Ĵ ′
K(uK,n+1) via (6.64).

11: Set dn+1 = βndn − gn+1. ▷ βn is a Fletcher–Reeves step size correction.

12: Set n = n+ 1.

13: end while

Next, we describe with briefly the content of the other files. In stateEq.m and adjointEq.m, the equations

for the state and adjoint are contained. The desired state yd is saved in targetTrajectory.m. The func-

tions solveStateEq.m, solveAdjointEq.m solve the state and adjoint problem with an Euler discretization,

while the second–order finite element discretization is used in the file solveStateFEM.m and solveAd-



138 Appendix: Algorithms

jointFEM.m, see line 1 of the algorithm. The cost functional is saved in J.m and the computation of the

reduced gradients of J is performed in the functions gradHhat2.m and gradJhat2mid.m, see line 2. The

optimal control problem is solved with a non–linear conjugate gradient scheme, which is computed in

projectedCG.m and linesearch.m, see line 5 and line 10–11. Lastly, proj.m is a projection function that

maps a given function f to min{a,max{f, b}} for given box–constraints a, b.
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[4] N. Arada, E. Casas, and F. Tröltzsch, Error estimates for the numerical approximation

of a semilinear elliptic control problem, Computational Optimization and Applications, 23 (2002),

pp. 201–229.
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