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Abstract 

The production of commodities such as cocoa, rubber, oil palm and cashew, is the main driver of 

deforestation in West Africa (WA). The practiced production systems correspond to a land 

management approach referred to as agroforestry systems (AFS), which consist of managing trees 

and crops on the same unit of land. Because of the ubiquity of trees, AFS reported as viable solution 

for climate mitigation; the carbon sequestrated by the trees could be estimated with remote sensing 

(RS) data and methods and reported as emission reduction efforts. However, the diversity in AFS 

in relation to their composition, structure and spatial distribution makes it challenging for an 

accurate monitoring of carbon stocks using RS. Therefore, the aim of this research is to propose a 

RS-based approach for the estimation of carbon sequestration in AFS across the climatic regions 

of WA. The main objectives were to (i) provide an accurate classification map of AFS by 

modelling the spatial distribution of the classification error; (ii) estimate the carbon stock of AFS 

in the main climatic regions of WA using RS data; (iii) evaluate the dynamic of carbon stocks 

within AFS across WA. Three regions of interest (ROI) were defined in Cote d’Ivoire and Burkina 

Faso, one in each climatic region of WA namely the Guineo-Congolian, Guinean and Sudanian, 

and three field campaigns were carried out for data collection. The collected data consisted of 

reference points for image classification, biometric tree measurements (diameter, height, species) 

for biomass estimation. A total of 261 samples were collected in 12 AFS across WA. For the RS 

data, yearly composite images from Sentinel-1 and -2 (S1 and S2), ALOS-PALSAR and GEDI 

data were used. A supervised classification using random forest (RF) was implemented and the 

classification error was assessed using the Shannon entropy generated form the class probabilities. 

For carbon estimation, different RS data, machine learning algorithms and carbon reference 

sources were compared for the prediction of the aboveground biomass in AFS. The assessment of 

the carbon dynamic was carried between 2017 and 2021. An average carbon map was generated 

and use as reference for the comparison of annual carbon estimations, using the standard deviation 

as threshold. As far as the results are concerned, the classification accuracy was higher than 0.9 in 

all the ROIs, and AFS were mainly represented by rubber (38.9%), cocoa (36.4%), palm (10.8%) 

in the ROI-1, mango (15.2%) and cashew (13.4%) in ROI-2, shea tree (55.7) and African locust 

bean (28.1%) in ROI-3. However, evidence of misclassification was found in cocoa, mango, and 

shea butter. The assessment of the classification error suggested that the error level was higher in 
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the ROI-3 and ROI-1. The error generated from the entropy was able reduced the level of 

misclassification by 63% with 11% of loss of information. Moreover, the approach was able to 

accurately detect encroachment in protected areas. On carbon estimation, the highest prediction 

accuracy (R²≥ 0.8) was obtained for a RF model using the combination of S1 and S2 and AGB 

derived from field measurements. Predictions from GEDI could only be used as reference in the 

ROI-1 but resulted in a prediction error about 9 times higher than when using field measurements. 

It was found that the prediction error was higher in cashew, mango, rubber and cocoa plantations, 

and the carbon stock level was higher in African locust beans (43.9 t/ha), shea butter (15t/ha), 

cashew (13.8 t/ha), mango (12.8 t/ha), cocoa (7.51 t/ha) and rubber (7.33 t/ha). The analysis 

showed that carbon stock is determined mainly by the diameter (R²=0.45) and height (R²=0.13) of 

trees. It was found that crop plantations had the lowest biodiversity level, and no significant 

relationship was found between the considered biodiversity indices and carbon stock levels. The 

assessment of the spatial distribution of carbon sources and sinks showed that cashew plantations 

are carbon emitters due to firewood collection, while cocoa plantations showed the highest 

potential for carbon sequestration. The study revealed that Sentinel data could be used to support 

a RS based approach for modelling carbon sequestration in AFS. Entropy could be used to map 

crop plantations and to monitor encroachment in protected areas. Moreover, field measurements 

with appropriate allometric models could ensure an accurate estimation of carbon stocks in AFS. 

Even though AFS in the Sudanian region had the highest carbon stocks level, there is a high 

potential to increase the carbon level in cocoa plantations by integrating and/or maintaining forest 

trees.
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Zusammenfassung 

Die Produktion von Rohstoffen wie Kakao, Kautschuk, Ölpalmen und Cashew ist die 

Hauptursache für die Entwaldung in Westafrika (WA). Die verwendeten Produktionssysteme 

entsprechen einem Landbewirtschaftungskonzept, welches als Agroforstsysteme (AFS) 

bezeichnet wird und darin besteht, Bäume und Nutzpflanzen auf der gleichen Landeinheit zu 

bewirtschaften. Aufgrund der kohlenstoffbindung durch Bäumen sind AFS als praktikable Lösung 

für den Klimaschutz anerkannt, und der von den Bäume sind AFS als praktikable Lösung für den 

Klimaschutz anerkannt, die Vielfalt der AFS in Bezug auf ihre Zusammensetzung, Struktur und 

räumliche Verteilung erschwert jedoch eine genaue Schätzung der Kohlenstoffvorräte. Hier 

können Daten und Methoden der satellitenbasierten Erdbeobachtung ansetzten. Ziel dieser 

Forschungsarbeit ist es daher, einen fernerkundungs-basierten Ansatz für die Schätzung der 

Kohlenstoffbindung in AFS in den Klimaregionen von WA vorzuschlagen. Die Hauptziele waren 

(i) die Erstellung einer genauen Klassifizierungskarte von AFS durch Modellierung der räumlichen 

Verteilung des Klassifizierungsfehlers; (ii) die Schätzung des Kohlenstoffbestands von AFS in den 

wichtigsten Klimaregionen von WA unter Verwendung von Fernerkundungs-daten (RS); (iii) die 

Bewertung der räumlichen Verteilung von Kohlenstoffquellen und -senken innerhalb von AFS in 

ganz WA. Für jede Klimaregion in Westafrika wurden drei Regionen von Interesse (ROI) 

festgelegt, nämlich die guineisch-kongolesische (ROI 1), die guineische (ROI 2) und die 

sudanesische Region (ROI 3) in Côte d'Ivoire und Burkina Faso, und es wurden drei 

Feldkampagnen zur Datenerhebung durchgeführt. Die gesammelten Daten bestanden aus 

Referenzpunkten für die Bildklassifizierung und biometrischen Messungen (Durchmesser, Höhe, 

Artname) zur Schätzung der Biomasse. Insgesamt wurden 261 Proben in 12 AFS in ganz WA 

gesammelt. Für die RS-Daten wurden jährliche Komposite von Sentinel-1 und -2 (S1 und S2), 

ALOS-PALSAR und GEDI-Daten verwendet. Es wurde eine überwachte Klassifizierung mit 

Random Forest (RF) Algorithmus durchgeführt, und der Klassifizierungsfehler wurde anhand der 

aus den Klassenwahrscheinlichkeiten generierten Shannon-Entropie bewertet. Für die 

Kohlenstoffschätzung wurden verschiedene RS-Daten, Algorithmen für maschinelles Lernen und 

Kohlenstoff-Referenzquellen für die Vorhersage des Kohlenstoffs in AFS verglichen. Die 

Bewertung der räumlichen Verteilung von Kohlenstoffsenken und -quellen basierte auf der 

Bewertung von Anomalien in der Kohlenstoffdynamik zwischen 2017 und 2021. Es wurde eine 
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Karte zum durchschnittliche gebundenen Kohlenstoff erstellt, und die jährliche Differenz wurde 

verwendet, um Kohlenstoffsenken und -quellen zu identifizieren. Die Klassifizierungsgenauigkeit 

war in allen ROI höher als 0,9, und in der Region dominierten Kautschuk (38,9 %), Kakao (36,4 

%), Palme (10,8 %) in ROI-1, Mango (15,2 %) und Cashew (13,4 %) in ROI-2, Sheabaum (55,7) 

und Johannisbrot (28,1 %) in ROI-3. Hinweise auf eine Fehlklassifizierung wurden vor allem bei 

Kakao, Mango und Sheabutter gefunden. Die Bewertung des Klassifizierungsfehlers ergab, dass 

das Fehlerniveau in ROI-3 und ROI-1 höher war. Der aus der Entropie generierte Fehler konnte 

das Ausmaß der Fehlklassifizierung reduzieren, ohne die gut klassifizierten Pixel zu 

beeinträchtigen. Außerdem war der Ansatz in der Lage, Eingriffe in Schutzgebiete zuverlässig und 

akkurat zu erkennen. Was die Kohlenstoffschätzung betrifft, so wurde die höchste 

Vorhersagegenauigkeit (R²≥ 0,8) bei der Kombination von S1 und S2 mit Random Forest und 

AGB aus Feldmessungen erzielt. Vorhersagen von GEDI konnten nur als Referenz in der ROI-1 

verwendet werden, führten aber zu einem Vorhersagefehler, der etwa 9-mal höher war als bei der 

Verwendung von Feldmessungen. Es wurde festgestellt, dass der Vorhersagefehler bei Cashew-, 

Mango-, Kautschuk- und Kakaoplantagen höher war und der Kohlenstoffbestand bei Johannisbrot 

(43,9 t/ha), Sheabutter (15 t/ha), Cashew (13,8 t/ha), Mango (12,8 t/ha), Kakao (7,51 t/ha) und 

Kautschuk (7,33 t/ha) höher war. Die Analyse zeigte, dass der Kohlenstoffbestand hauptsächlich 

durch den Durchmesser (R²=0,45) und die Höhe (R²=0,13) der Bäume beeinflusst wird. Zudem 

wurde festgestellt, dass Plantagenkulturen die geringste Biodiversität aufweisen, und es wurde 

kein signifikanter Zusammenhang zwischen Biodiversitätsindizes und Kohlenstoffvorräten 

festgestellt. Die Bewertung der räumlichen Verteilung von Kohlenstoffquellen und -senken zeigte, 

dass Cashew ein Kohlenstoffemittent ist, da in dieser Region Brennholz gesammelt wird, während 

Kakaoplantagen wichtige Kohlenstoffsenken sind. Die Studie ergab zudem, dass Sentinel-Daten 

zur Unterstützung eines RS-basierten Ansatzes für die Modellierung der Kohlenstoffbindung in 

AFS verwendet werden könnten. Die Entropie könnte zur Kartierung von Anbauplantagen und zur 

Überwachung von Schutzgebiete verwendet werden. Darüber hinaus gewährleisten 

Feldmessungen mit geeigneten allometrischen Modellen eine genaue Schätzung der 

Kohlenstoffvorräte in AFS. Die AFS in der sudanesischen Region weisen die höchsten 

Kohlenstoffvorräte auf, aber es besteht die Möglichkeit, den Kohlenstoffgehalt in Kakaoplantagen 

durch die Integration und/oder Erhaltung von Waldbäumen zu erhöhen.
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1.1   Carbon on earth 

Carbon is a nonmetallic chemical element widely distributed in nature just like oxygen, hydrogen 

or Aluminum. His symbol in the periodic table is C, and it has an atomic number of 6. The atoms 

of carbon can bond to one another in different ways to from various allotropes of C, which refers 

to the property of some chemical elements to exist in two or more different forms in the same 

physical state. Some of the well-known allotropes of C include graphite which are used in pencils 

and electrodes, and diamond. Carbon is the 15th most abundant element in the earth crust and the 

fourth most abundant element in the universe by mass after hydrogen, helium and oxygen. 

Atoms of C can bond also to the five main chemical elements that make up all living things namely 

hydrogen, nitrogen, oxygen, phosphorus and sulfur (commonly known as CHNOPS) to form 

complex biological molecules. By mass, C is the second most abundant element in plants (12%) 

and animals (19%) after oxygen, and is found in carbohydrates, lipids, nucleic acids and proteins 

(Fischer et al., 2020). Because of its abundance, its unique diversity of organic compounds, and 

its ability to form polymers at temperatures commonly encountered on earth, C is the primary 

component of all known life on earth and is stored in the form of biomass and coal, often referred 

to as solid or sequestrated carbon. Such forms of carbon have a high energy density and is up to 

date the main source of energy for human activities including industries, transportation and 

electricity. Through combustion, sequestrated carbon is realized in the atmosphere following the 

equation below. 

Solid carbon + O2    ⟶  CO2 + H2O 

C is also found in the atmosphere in the form of carbon dioxide (CO2) and represents about 0.04% 

of its composition. CO2 plays an important role in the atmosphere by regulating the temperature 

on earth, but is also the most important element for the development of photosynthetic plants. They 

are the first layer in maintaining life on earth by producing oxygen according to the equation below 

where C6H12O6 represent sugar, a form of solid carbon. 

6 CO2 + 6 H2O    
𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙

⟶
𝑆𝑢𝑛𝑙𝑖𝑔ℎ𝑡

    C6H12O6 + 6O2 
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In the atmosphere and at the surface of oceans, CO2 can react with water to form carbonic acid. 

Carbon is incorporated into water causing an acidification of the solution (reducing the pH). The 

process is represented in the equation below where H2CO3 stands for carbonic acid.  

CO2 + H2O    ⇋  H2CO3 

A consequence of the relationship between CO2 and water is that, higher concentrations of carbon 

in the atmosphere will lead to more acid surface water on earth, which has negative impact on the 

biodiversity (Widdicombe & Spicer, 2008).  

1.1.1 Carbon cycle 

Under terrestrial conditions, the conversion of one chemical element to another is very rare. 

Therefore, the total amount of C on earth is constant, moving between the atmosphere, biosphere, 

hydrosphere and lithosphere. The paths of carbon in the environment is known as carbon cycle 

(Figure 1). The process goes as follow: carbon in the atmosphere is absorbed by plants during 

photosynthesis. It is a process by which plants and other organisms convert light energy into 

chemical energy using CO2 and water. The synthesized chemical energy could be used to fuel the 

organism’s activity or could be stored as biomass and/or starches. The carbon goes from the 

atmosphere to the biosphere through photosynthesis, and from the biosphere through the 

atmosphere through respiration, decomposition and/or combustion (a wild fire for example). 

Carbon is stored in the biosphere in the form of forest biomass. The carbon stored in plants is 

transferred to all links in the food chain. The energy will flow from plants to herbivores, carnivores 

and finally decomposers. The carbon is transferred from the biosphere to the lithosphere (soil) 

through decomposition in the form of dead organisms and animal waste. Carbon in the soil is not 

transferred in the biosphere, and can be stored for a long time: therefore, they are referred to as 

carbon sinks or carbon reservoirs. However, the carbon could be released in the atmosphere 

through fires, or poor agricultural practices (ploughing and erosion for instance). Under specific 

conditions, soil organic carbon could be transformed into rocks fossils and fossil fuels. Ocean also 

play a significant role in the carbon cycle as it is the largest carbon sink, followed by soils and 

forests. It is estimate that the amount of CO2 in the oceans is about 50 times greater than the amount 

in the atmosphere (Bopp et al., 2002). Surface waters exchange gases with the atmosphere partly 

through phytoplankton and their photosynthetic activities, but also because CO2 can dissolve in 
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ambient seawater that is not saturated. The dissolved carbon increases the pH and cause an increase 

in water density via the solute density effect and is stored in the form of calcium carbonate 

(Morgado & Esteves, 2014).  

 

Figure 1:Carbon cycle on earth (created by the author). 

C stored in stable forms such as forest biomass, soil organic carbon and/or fossil fuels is said to be 

sequestrated, and the process of collecting atmospheric carbon and storing it in the form of biomass 

is called carbon sequestration. On the other hand, releasing stored carbon in the atmosphere 

through combustion and/or land cover change (deforestation) is referred to as carbon emissions. 

Both of these processes have a significant effect on one of the most important natural phenomena 

known as the greenhouse effect. 

1.1.2 Greenhouse effect 

Greenhouse effect is the process by which heat is trapped close to the earth’s surface by greenhouse 

gases (GHG) to maintain a favorable temperature for life on earth. Without this, the global average 

temperature would be -18°C. The main GHG include water vapor and clouds (36-72%). Water 

vapor is the most abundant greenhouse gas in the atmosphere, but human activities have only small 
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direct influence on its atmospheric concentration (Table 1). However other GHG are produced and 

emitted through human activities associated with industrialization. 

Table 1: Greenhouse gases and their contribution to the greenhouse effect 

Compound Formula Concentration in the 

atmosphere (ppm) 

Contribution 

(%) 

Water vapor and clouds H2O 10- 50000 36 - 72 

Carbon dioxide CO2 ~400 9 - 26 

Methane CH4 ~1.8 4 - 9 

Ozone O3 2 - 8 3 - 7 

When the sun emits radiation towards the earth, not all the energy reaches the earth surface: a 

portion of the emitted radiation is reflected back into space by the top of the atmosphere. The 

proportion of solar energy that reaches the surface of the earth is often referred to as incident 

radiation. At the top of the earth, a portion of the incident radiation is also reflected back in the 

atmosphere by different materials on the earth surface and some of the incident radiation is 

absorbed. The absorbed energy is converted into heat, and is radiated in the atmosphere in the form 

of infrared (IR). A portion of the IR radiation will go through the atmosphere into space, while 

some the rest will be trapped by GHG and reflect back to the earth surface. This phenomenon is 

called the greenhouse effect. It is crucial to maintain an optimal temperature for life on earth. The 

average global temperature for the 20th century was 13.9°C instead of -18°C if there were no 

greenhouse gases. 

However, changes of the landcover as well as of the concentration of the GHG in the atmosphere 

could lead to the accentuation of the greenhouse effect. Tree canopies filter in-coming solar 

radiation, by reflecting about 86 -97% of the incident radiation in the tropics depending on the tree 

species and leaf density (Shahidan et al., 2006). Trees reduce the energy reaching the ground, 

resulting in reduced IR radiation levels. Therefore, the microclimate is modified through the 

cooling effect of trees which is acknowledged to have a significant effect on reducing land surface 

temperature (Schwaab et al., 2021). On the contrary, the conversion of forest into bare soil and 

cities increases the surface of incident radiation absorption, leading to a higher level of IR 

radiation, resulting in increase in the average temperature. 
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Moreover, it is recorded that the global atmospheric concentrations of CO2, CH4, NO and certain 

manufactured GHG have risen significantly over the last few hundred years. Also, the 

concentration of CO2 has increased substantially (48%) since the beginning of the industrial era, 

rising from an annual average of 280 ppm in the late 1700s to 414 ppm in 2021 (EPA, 2022). This 

has a direct impact on increasing the global land-Ocean temperatures (Lin et al., 2023). In a 

nutshell, the land cover change combined with the increased concentration of GHG in the 

atmosphere contribute to the accentuation of the greenhouse effect, resulting in the increase of the 

land surface temperature: this situation is often referred to as global warming. 

1.2   Global warming and climate change 

Several definitions are proposed for global warming: on Wikipedia, global warming is presented 

as the long-term heating of earth’s surface observed since the pre-industrial period (between 1850 

and 1900) due to human activities, primarily fossil fuel burning, which increases heat-trapping 

GHG levels in the atmosphere. In the IPCC special report, it  is defined as the estimated increase 

in global mean surface temperature averaged over a 30-year period (IPCC, 2018). Global warming 

is different from climate change even though both terms are often used interchangeably. Climate 

change refers to a change in the state of the climate that can be identified (using statistical test for 

example) by changes in the mean and/or the variability of its properties and that persists for an 

extended period, typically decades or longer. Climate change may be due to natural internal 

processes or external forcing such as modulations of the solar cycles, volcanic eruptions and 

persistent anthropogenic changes in the composition of the atmosphere or in land use (IPCC, 

2018). The United Nations Framework Convention on Climate Change (UNFCCC), in its article 

1 defines climate change as “a change of climate which is attributed directly or indirectly to human 

activity that alters the composition of the global atmosphere and climate variability attributable to 

natural causes”. 

There is a high confidence that human induced global warming has increased the global mean 

surface temperature to approximately 1°C above pre-industrial values, and if the current warming 

rate continues, it will reach 1.5°C by 2040, with major impacts on natural and human systems 

(IPCC, 2018). Glaciers and sea ice melting are important indicators of global warming because 

their physical changes (growing or shrinking, advancing or receding) provide evidence of changes 
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in temperature and precipitation. They also act as reservoirs of freshwater, and provide water to 

ecosystems when melting. Under global warming, glaciers melt faster and increase sea levels, 

which in turn increases coastal erosion and elevates storm surge as warming air and ocean 

temperatures create more frequent and intense coastal storms like hurricanes and typhoons (Collins 

& Walsh, 2017). Glaciers melting also cause the loss of terrestrial and aquatic species as glaciers 

are natural habitats for endangered species including polar bears, artic fox and narwhal but also 

modifies the chemical composition of oceans which affects the aquatic biosphere. This process 

will also result in less freshwater available to support natural and human ecosystems including less 

water for consumption, lower hydroelectric energy generation capacity and less water available 

for irrigation. Finally, glaciers melting contribute to climate change as it slows the ocean currents 

which play a fundamental role in shaping the climatic zones on earth (Marsh & van Sebille, 2021). 

In fact, ocean currents help counteract the uneven distribution of solar radiation that reaches the 

earth’s surface by transporting warm water and precipitations from the equator toward the poles 

and cold water from the poles back to the tropics. Without ocean currents (or with slowed ocean 

currents), regional temperatures will be more extremes with very high temperatures at the equator 

and very low temperatures towards the poles. 

On land, the frequency and intensity of heavy precipitations are expected to increase under global 

warming, with fewer rainy days and shifted rainy seasons especially in tropical Africa (Deque et 

al., 2017). This will increase the risk of flooding events as the precipitation will exceed the 

infiltration rate in certain region. Moreover, heavy rainfall will increase soil erosion and runoffs 

especially in slope land, therefore decreasing soil fertility with severe effects on agricultural and 

livestock activities (Meng et al., 2021). Increasing temperatures combined with fewer rainy days 

results in increasing evapotranspiration which affects water availability in ecosystem (Zhao et al., 

2022). In fact, under higher temperature, water in plants and in the top layers of the soil evaporates 

causing acute stress on plants especially in dry seasons, increasing the risk of desertification in 

natural area and lowering the productivity of agriculture systems. Another impact is the frequent 

occurrence of severe drought events, heatwaves and natural fires especially in the Mediterranean 

region and West Africa (IPCC, 2013).  

Beyond natural systems, climate change also affects human systems including water availability, 

energy and health. In many areas, people’s demand for drinking water as well as water for 
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agricultural activities will increase, while water availability is likely to decrease as a response to 

climate change. Due to frequent hazard events such as flooding and runoffs, water quality is 

expected to be affected because of nutrients and sediments pollution. In Coastal areas, the 

advancing of salty water into the land due to increase of sea level is likely to contaminate fresh 

waterbodies and causing important stress on water infrastructures according to the projections 

under an increase of 2°C above pre-industrial time (IPCC, 2018). Moreover, it is reported that 

global warming increases the risk of epidemic and infectious diseases. Over half of the know 

human pathogenic diseases is likely to be aggravated by climate change as climatic hazards 

contributes to their transmission (Zhao et al., 2022). The lifecycles of the pathogens, their spatial 

distribution and the animals that carry them are influenced by global warming and changes in the 

seasonal patterns. Also, habitat degradation through deforestation and other anthropogenic-

induced activities increases the contact between humans and animals increasing the risk of disease 

transfer. 

1.3   Responses to climate change 

The beginning of the history of climate change could be traced back to the year 1824 when the 

French physicist Joseph Fourier first described the greenhouse effect, which is responsible of 

maintaining the earth warm. Few years later in 1896, the Swedish chemist Svante Arrhenius 

suggested that industrial-age coal burning will enhance the natural greenhouse effect. In 1900, the 

finding of Knut Angstrom revealed that even at lower concentrations, CO2 in the atmosphere 

strongly absorbs parts of the infrared spectrum emitted from the earth, thus showing that the 

increasing concentration of certain gas in the atmosphere could increase the greenhouse effect. It 

was in 1938 that British engineer Guy Callendar demonstrated that the temperature had risen 

compared to the previous century, as a response to the increased concentrations of CO2 in the 

atmosphere, pointing at CO2 as the cause of global warming. In 1988, the UN general assembly 

endorsed the establishment of the Intergovernmental Panel on Climate Change (IPCC) with the 

initial task of collecting and evaluating the state of knowledge of the science of climate change, its 

social, environmental and economic impact, and potential response elements for future 

international convention on climate. 
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United Nations Framework on Climate Change (UNFCCC) 

In 1992, many countries joined the United Nations Framework on Climate Change (UNFCCC), 

which is an international treaty acting as the foundational framework for international cooperation 

and negotiations to combat climate change. The aim is to limit the average global temperature 

increases and the resulting climate change, and coping with the inevitable impacts. The 

negotiations between countries towards a strong response to climate change led to the adoption of 

the Kyoto protocol in 1997. The Kyoto protocol operationalizes the UNFCCC by committing 

industrialized countries (Annex B parties) to limit and/or reduce their GHG emissions in 

accordance to the agreed targets. These goals should be reached through the adoption of policies 

and measures on mitigation which has to be reported periodically. An important element of the 

Kyoto protocol is the establishment of flexible market mechanisms based on the trade of emissions 

permits. Therefore, countries have to meet their target of allowed emissions by national measures, 

but also through additional market-based mechanisms including (i) International Emissions 

Trading (article 17 of the protocol) which allows countries that have emissions less than their target 

to sell the “unused” emissions to countries that are over their targets; (ii) Clean Development 

Mechanism (CDM) (article 12 of the protocol) allows a country with emission reduction 

commitment (Annex B parties) to implement an emission reduction project in developing countries 

from which it can earn certified emission reduction (CER) credits. These credits can be counted as 

effort towards meeting the emission targets. Examples of projects include rural electrification 

project with solar panels or installation of more energy-efficient infrastructures (cooking stoves, 

boilers); and (iii) Joint Implementation (article 6 of the protocol) which allows a country from the 

Annex B to earn emission reduction units from an emission reduction project in another Annex B 

party. It offers a flexible and cost-efficient means to reach the emission reduction targets while the 

host country benefits from foreign investment and technology transfer.  

Paris agreement 

The Paris agreement (COP21) is the latest step in the evolution of the UN climate change 

conference. It is a legally binding international treaty on climate change adopted in 2015 in Paris 

and its overarching goal is to keep the increase in the global average temperature to well below 

2°C above pre-industrial levels, and purse the effort to limit the temperature increase to 1.5°C 
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above pre-industrial levels. To reach this ambitious goal, social and economic transformation are 

required to face the existing and upcoming climate change problems based on the best scientific 

knowledge available. The Paris agreement works on a five-year cycle: since 2020, countries have 

been submitting their Nationally Determined Contributions (NDCs) or Intended NDCs, which 

indicate climate actions by each country to reduce national emissions and to build resilience to 

adapt to the impacts of climate change (Article 4 of the Paris agreement). Every five years, 

countries are required to prepare, communicate (submission to the UNFCCC secretariat) and 

maintain successful NDCs to be achieved. Moreover, the Paris agreement also provides a 

framework for financial, technical and capacity building support to countries who need it. 

Developed countries are encouraged to provide financial assistance to vulnerable ones to support 

mitigation and adaptation to climate change which require large investments and significant 

financial resources. Also, technology development transfer and climate related capacity building 

are emphasized to provide guidance and sufficient capacities to deal with the challenges initiated 

by climate change. Under the enhanced transparency framework establish by the Paris agreement, 

countries will report on actions taken and progress in climate change mitigation and adaptation 

measures starting in 2024.  

REDD+ 

In 2013 during COP 19 in Warsaw, UNFCCC member states developed a holistic framework for 

climate action to strengthen the protection and sustainable management of forests known as 

Reduction of Emissions from Deforestation and forest Degradation (REDD+). REDD+ activities 

address not only deforestation but also relevant social, policy and environmental aspects to help 

conserving forest through five activities including reducing emissions from deforestation, reducing 

emissions from forest degradation, conservation of forest carbon stocks, sustainable management 

of forests and enhancement of forest carbon stocks. REDD+ is implemented in phases which can 

overlap, allowing countries to start at different points and at their own pace based on their national 

circumstances. The phases include (i) development of national strategy or action plan, policies, 

measures and capacity building also known as readiness phase, (ii) implementation of the national 

policies, measures and strategies and results-based demonstration activities, (iii) evolution into 

results-based actions that are measured, reported and verified, enabling countries to seek and 

obtain results-based payments. To receive those payments, countries are required to provide (i) a 
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national REDD+ strategy or action plan specifying how the drivers of deforestation and forest 

degradation will be addressed, (ii) the assessment of the forest reference level (FRL) by 

independent forest experts through two separate verification processes including the technical 

assessment of the FRL as the baseline for REDD+ activities and the technical analysis of the 

submitted REDD+ results; (iii) information on how the REDD+ safeguards have been addresses 

and respected in the REDD+ activities. These safeguards include among others the consistency of 

the actions to the objectives of the national programs and international conventions, respect for the 

knowledge and rights of indigenous people, full and effective participation of relevant stakeholders 

and actions to reduce the displacement of emissions (Hirata et al., 2012) (iv) National forest 

monitoring that provide data and information that are transparent, consistent and appropriate for 

Measurement, Reporting and Verification (MRV) built on existing systems and allowing for 

improvement over time. 

Deforestation-free supply chain 

Sustainable forest management is one of the most important aspects of climate change mitigation 

since deforestation accounts for 11% of GHG emissions (Hirata et al., 2012). Tropical countries 

including Brazil, Indonesia and DR Congo are associated with the highest deforestation rate in the 

world (Hirata et al., 2012). Agriculture have been identified as the main cause, and it is responsible 

of about 90% of the deforestation the main commodities linked with a high risk of deforestation 

include cocoa, cattle, coffee, palm oil, rubber and soya. They are cash crops mainly produced by 

smallholder farmers to supply the world’s demand. About 1/3 of the globally traded agricultural 

products are imported to and/or consumed by the EU market, representing about 10% of the global 

deforestation between 1990 to 2008 (EU, 2022). 

As a response, the European commission, council and parliament agreed on an innovative 

regulation (EUDR) which aims to limit placing of deforestation-linked products on the EU market. 

The law will enter into force later in the year 2023 and will limit the importation of products 

containing or made from commodities that were produced on land that have been subjected to 

deforestation after December 2020. The regulation requires economic operators to provide 

evidence (a due diligence statement) that the commodities and products they wish to introduce on 

the EU market have not contributed to deforestation. In addition to the legal documents, the 
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operators should provide the geographical coordinates of the farms where the commodities were 

produced (Article 9 and 31). The regulation will be extended to other relevant ecosystems 

including wetlands and savannas as well as natural systems with high levels of carbon stocks or 

high biodiversity such as grasslands and peatlands (Article 32).  

The EUDR is not a legally binding agreement between countries, rather it applies only to operators 

involved in importing to- and/or exporting commodities from the EU market. Those actors should 

provide evidence to competent authorities that their products are legal and have not contributed to 

deforestation in the country of production. The regulation will require an existing, functioning and 

updated national forest monitoring systems to provide near-real time information on the status of 

the forest areas especially around deforestation hotspots. The implementation of this regulation is 

expected to improve deforestation monitoring by providing accurate data on the locations 

production plots. These data could be reported in NDCs or MRV as avoided deforestation. 

1.4   Carbon stock estimation 

The goal of the Paris agreement to limit temperature increases below 1.5°C before pre-industrial 

times could be reached speedily through the sustainable management of forests. For this purpose, 

reports on emission reduction efforts under the Paris agreement (NDCs) and/or REDD+ (MRV) 

require that the amount of sequestrated carbon in different carbon pools should be accurately 

estimated over a given period of time. These estimations are demonstrations of countries’ 

contributions to fight climate change, and could be used as proof for financial gratifications. 

Moreover, the carbon stock of an ecosystem is an indicator its contribution to climate change 

because it represents not only the amount of CO2 that has been removed from the atmosphere, but 

also the quantity of carbon that will be released if the system is subjected to perturbations such as 

wildfire or deforestation (Somarriba et al., 2013). The main terrestrial carbon sequestration pools 

include aboveground or standing biomass (AGB), belowground biomass (BGB), soil organic 

carbon (SOC), litter and deadwood (Gytarsky et al., 2015; Kayler, Janowiak & Swanston, 2017). 

Considering the importance of the information it conveys, methodological approaches for the 

estimation of carbon stocks constitute a key aspect of terrestrial ecosystems monitoring (Covey et 

al., 2012). Several methodologies for carbon stock estimation are reported in the literature based 

on the ecosystem, the carbon pool and the spatial scale (Brahma et al., 2021; Nayak et al., 2019; 
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Qureshi, et al., 2012). The commonalities between the existing approaches are that they are based 

on direct (soil, litter samples) and/or indirect (diameter, height) field measurements from which 

carbon stocks are derived by laboratory analysis or using allometric models. To be generalized 

over a larger geographic region, studies often rely on geo-technologies including geo-statistics and 

remote sensing. However, the precision of the estimations is affected by the measurement 

techniques and the size and heterogeneity of the study area. The reporting of carbon stock 

estimations by countries in the framework of climate change mitigation require the methodologies 

to be accurate, transparent and documented following the good practice guidance (GPG). 

Good practice guidance (GPG) 

The GPG was proposed by IPCC as framework for carbon estimation and reporting which ensures 

the minimization of under – or overestimations and the quantification of uncertainties (IPCC, 

2019). For large scale studies (subnational or national levels), a good practice for carbon estimation 

in a given ecosystem is to use a combination of direct field measurements from field campaigns 

and remote sensing. In woodlands ecosystems including forests, savannas and wetlands, diameter 

and height are reported as the most important parameters from which the AGB and BGB could be 

derived (Brahma et al., 2021). To convert biometric parameters of trees into carbon stock, a good 

practice is to use appropriate allometric equations, i.e transfer models which have been developed 

in the region of interest, with tree species that are present in that region. Often such models are not 

available, especially in the tropics. Therefore, a pan-tropical multi-specie allometric model such 

as the one developed by Chave et al. (2014) is accepted as good practice in locations where no 

region-specific allometric models are available (IPCC, 2019). Field measurements and the derived 

estimations of carbon stocks are crucial for generalization over larger areas because they are used 

as reference data inputs for the development of transfer models including machine learning 

models. Because of their nature, field campaigns cannot be carried over large area and for all 

carbon pools even though they provide accurate carbon estimations. In fact, field campaigns are 

laborious, costly in terms of time, financial and human resources. Moreover, field campaigns are 

spatially limited since it is often impossible in certain part of the globe because of insecurity or 

unreachability. Therefore, indirect measurement methods are used because they allow to collect 

relevant property of the ecosystem without direct contact. Spaceborne remote sensing (RS) has 
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emerged as the most cost-effective tool for ecosystem monitoring globally because it consistently 

provides data of the earth surface at different spatial, temporal and spectral resolutions.  

Remote sensing 

The history of remote sensing began with the invention of photography (Table 2), when the first 

permanent photograph was taken in 1826 by the French inventor Nicéphore Niépce (NFI, 2023). 

In 1858, Gaspard Tournachon took the first aerial photo of a village near Paris from a balloon at 

an altitude of about 365 m. This picture was the start of the era of earth observation and his example 

was soon followed by other people worldwide. In fact, aerial photography from balloons played 

an important role to reveal defence positions in Virginia during the civil war of 1860 in the US. 

This war time speeded the development of photography, lenses and airborne-use of this 

technology. During world war I, aeroplanes were used on a large scale for photo reconnaissance, 

and aircraft was found to be more reliable and more stable platform than balloons. After WWII 

and the application of non-visible part of the electromagnetic spectrum, aerial photograph started 

to be available for civil research in field such as geology, forestry and agriculture. This led to 

improved cameras with near-infrared, thermal and radar sensors. In the 1950s, two type of radar 

was developed: side-looking airborne radar (SLAR) and synthetic aperture radar (SAR). 

In the early 1960s, the US started the space era of remote sensing with the first meteorological 

satellite TIROS (Television Infrared Observation satellite). About a decade later, ERTS-1 (Earth 

Resources Technology Satellite) later renamed in 1975 as Landsat was the first satellite 

specifically designed to collect data of the earth’s surface and its resources. The collected images 

established remote sensing as a valuable technology worldwide, capable of providing repetitive 

high-quality images at low cost with multispectral coverage and minimal image distortion. 

Following the success of ERTS-1 and the Landsat program, other successful earth observation 

missions have been launched and continue to be launched across the world as presented in Table 

2. According to United Nations Office for Outer Space Affairs (UNOOSA) in 2022, there was 

4852 active individual satellites orbiting the earth, providing different types of imagery data at 

different spectral, spatial and temporal resolutions for different applications (Mohanta, 2023). 
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Table 2: Milestone in the history of remote sensing  

1800 Discovery of Infrared by Sir W. Herschel 

1839 Beginning of practice of photography 

1847 Infrared spectrum shown by J.B.L. Foucault 

1859 Photography with balloons 

1873 Theory of electromagnetic spectrum by Jc. Maxwell 

1909 Photography from airplanes 

1916 War war I: aerial reconnaissance 

1935 Development of Radar in Germany 

1940 WW II: Applications of non-visible part of the electromagnetic spectrum 

1959 First space photograph of the earth (Explorer-6) 

1960 First TIROS Meteorological Satellite launched 

1972 Launch of Landsat-1 (ERST-1): MSS sensor 

1982 Launch of Landsat-4: new generation of Landsat sensors: TM 

1986 French commercial earth observation satellite SPOT 

1991 Launch of the first radar satellite JERS-1 by Japan 

1995 Launch of Radarat by Canada 

1995 Launch of ERS-2 by ESA 

1999 Launch of EOS: NASA earth observing mission “Terra” with MODIS and ASTER 

1999 Launch of IKONOS, very high spatial resolution sensor system 

2001 Launch of QuickBird, very high spatial resolution sensor system 

2002 Launch of ‘Aqua” with MODIS by NASA 

2006 Launch of Advanced Land Observing Satellite (ALOS) 

2014 Launch of Sentinel-1 by ESA 

2015 Launch of Sentinel 2A 

2018 Launch Global Environment Dynamics Investigation (GEDI) 

 

In the GPG, important criteria in the selection of RS data and products include adequate land use 

classification scheme, appropriate spatial and temporal resolution for estimating land use and 

carbon stock changes, availability of accuracy assessment, transparent methods applied in data 

acquisition and processing and consistency and availability over time (Gytarsky et al., 2015). 

Earliest carbon estimation studies using RS data were based on aerial photo interpretation to map 

forest biomass in combination with non-destructive field sampling. The approach was to develop 

regression models to predict in-situ biomass using in situ measurements including mean crown 

diameter, density and basal cover, and delineated crown cover on the aerial photo (Tiwari & Singh, 

1984). RS was able to differentiate different forest types and provide and accurate estimation of in 

situ carbon stocks. In current biomass assessment studies, traditional aerial photographs are not 

used anymore. Photographs are mainly collected using unmanned aerial vehicles (UAV) and the 
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image interpretation and measurements are carried out using photogrammetry software such as 

pix4D or Regard3D. Carbon estimations using this approach are very accurate because UAVs 

provide a very high spatial resolution (up to 1.25 cm), and the overlapping of the photos allows 

the processing of 3D point clouds (Abdullah et al., 2021; Jones Kachamba et al., 2016; Maesano 

et al., 2022). However, the acquisition of aerial photo over large areas is costly, mainly because 

UAV are powered by batteries, therefore limiting the spatial extent that could be covered. 

Moreover, this approach is highly regulated and is limited by the weather. Another type of RS data 

acknowledged in the GPG include optical imagery data, which consist of spectral bands on the 

visible and near infrared spectrum, used to describe the vegetation. Optical imagery could be freely 

accessed, and the Copernicus Sentinel-2 mission from the European Space Agency (ESA) provides 

relatively high-resolution image (10 m resolution) globally every 5 days. The methodology for 

biomass estimation that consists of linking field measurements and vegetations indices derived 

from the original spectral bands, have been successfully used in different terrestrial ecosystems 

including forest, savannah, wetlands and agriculture (Bousbih et al., 2018; Forkuor et al., 2020; 

Malhi et al., 2022; Wang et al., 2020; Zhang et al., 2019). Even if high prediction accuracies have 

been obtained using Sentinel-2 data, there are some limitations associated with optical data for 

biomass studies such as (i) the sensitivity to atmospheric conditions. In fact, optical sensors capture 

the emitted radiations of objects which are exposed to the sun. therefore, optical sensors could 

provide data in the night or if there are clouds, which is always the case in tropical regions. (ii) 

Another limitation is that the optical spectral reflectance saturates at high biomass levels (Shao & 

Zhang, 2016). Consequently, optical data could not differentiate ecosystems (mainly forests) over 

a certain biomass level, resulting in poor carbon estimation in forests. To solve the issue associated 

with optical imagery, Synthetic Aperture Radar (SAR) data are used, as they can collect data 

regardless of the weather or time of day. Also their ability to penetrate the targeted object allows 

to accurately modelled the biomass as it reported that SAR data are more sensitive to higher 

biomass (El Hajj et al., 2018; Huang et al., 2018; Lone et al., 2018; Naidoo et al., 2015). SAR data 

could be freely accessible from the Sentinel-1 mission of ESA, which provides C-band SAR data 

at 10 m resolution. Sentinel-1 have been successfully used for biomass estimations in several 

ecosystems, but the prediction of the SAR data is always lower than optical data (GFOI, 2018; 

Ghosh & Behera, 2021). A better prediction accuracy is obtained when combining optical and 
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SAR data. This combination allowed accurate estimations of biomass in tropical humid and dry 

forests (Forkuor et al., 2020; Tadese, Soromessa et al., 2019), the detection of encroachments in 

protected areas (Abu et al., 2021; Knauer et al., 2017), the delineation of complex landscape such 

as agroforests and small size mixed crop (Aguilar et al., 2018; Numbisi et al., 2019) and monitoring 

deforestation and forest degradation (Gao et al., 2020; Mitchell et al., 2017).  

Land Use, Land Use Change and Forestry (LULUCF) 

Deforestation is taking place at an alarming rate, predominantly in tropical countries. According 

to FAO, this process is defined as “the conversion of forest area to another land use -such as arable 

land, urban use, logged area or wasteland-, or the long-term reduction of tree canopy cover below 

the 10% threshold” (FAO, 2020). In the same report, a forest is defined as a piece of land with a 

minimal area of 0.5 ha, with trees that could reach at least five meters at maturity, with a crown 

cover of at least 10%. In the last decades, the forest cover in Africa has decreased by 24.4%, which 

correspond to an average loss of 4.4 million hectares of forest per year (Mongabay, 2020). The 

annual deforestation in Africa is an import source of greenhouse gas emissions corresponding to 

about 11% of the global emissions (Friedlingstein et al., 2022). Deforestation occurs as the result 

of the pressure for agriculture lands which is driven by the global demand for commodities such 

as cocoa, rubber, oil palm. In west Africa, cash production, especially cocoa farming expansion 

was reported as the main driver of land use change. In Côte d’Ivoire for instance -the world largest 

producer of cocoa beans-, cocoa expansion was responsible of the loss of more than 80% of the 

forest cover in the country between 1960 and 2000 (Sabas et al., 2020). Agriculture plays an 

important role in the region as it is the major activity which employs about 80% of the active 

population and represents an important source of income for countries. In west Africa, the exports 

of cocoa represent about 5% of the income of producer countries and support the livelihood of 

more than two million farmers (ECOWAS, 2016). Beyond its negative effect on the environment, 

the intensification of the production of commodities (cash crop agriculture) is acknowledged as a 

potential solution for poverty alleviation and could be beneficial for the environment as it involve 

the long term management of perennial trees also known as agroforestry (Boeckx, Bauters, & 

Dewettinck, 2020; Nair, Kumar, & Nair, 2009; Owusu, Anglaaere, & Abugre, 2018; Thangata & 

Hildebrand, 2012). 
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1.5   Agroforestry systems 

Agroforestry refers to a land management practice at the interface between agriculture and 

forestry. It brings into a given agricultural production system the socioeconomic and 

environmental benefits of forestry, such as soil fertility restoration, firewood, food and medicine 

(Tschora & Cherubini, 2020). Agroforestry is the oldest land management practice and is often 

refers to as “a new name for an old practice”. Originally it was define as a suitable land 

management system which increases the yield of the land, combines the production of crops 

(including tree crops) and forest plants and/or animals simultaneously or sequentially on the same 

unit of land, and applies management practices that are compatible with the cultural practices of 

the local population (Howard & Nair, 1988). It was the main land management approach in Europe 

and Asia until the middle ages, and is still the dominant practice in the tropics. It consisted of 

clearing a piece of land in combination with fire to burn the slash after what agricultural crops 

were established. This land use sequence is no longer existing in Europe, but I was still used in 

Finland and in Germany until the end of the 1920 (Steppler & Nair, 1987). A different kind of 

shifting cultivation was practised in Asia: In the process of cleaning the forest for agriculture 

(mostly rice production), certain trees were deliberately maintained on farm and by the end of the 

growing season, they would provide shade to protect the crops from excessive exposure to the sun. 

This function was crucial in period where soil moisture was more important than sunlight for the 

development and maturation of the grain. In addition to the protection function, the trees provided 

food and medicine (Steppler & Nair, 1987). In Africa, crops on farms have always been cultivated 

in combination with trees because of the desire to extract the maximum amount of resources from 

a given land unit. A well-known agroforestry system (AFS)- slash and burn agriculture- consists 

of removing unwanted forest trees prior to the establishment of high value crops on the land, often 

always followed by natural or improved fallows (Kanmegne, 2004).Until now, trees are perceived 

as an inexpensive way of combatting erosion and leaching, and of managing soil fertility.  

History of agroforestry 

In the tropics, agroforestry has emerged from the need to combat deforestation and forest 

degradation, and to implement sustainable practice in agriculture. The importance and worldwide 

notability of agroforestry as a land management system started with forest plantations around the 
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end of the nineteenth century. In fact, during the year 1806 in Myanmar (Burma) the taungya 

system was tested and proposed as “the most efficient way of planting teak trees”. Initially 

designed for foresters, it is a way of establishing tree plantations (initially teak trees) where food 

crops are associated and managed with tree seedlings until canopy closure (Atangana et al., 2014). 

This system spread rapidly in different parts of the world and quickly was adopted by foresters as 

the most inexpensive way to establish forests and restore landscapes, and is still used throughout 

the tropics for different forest species. It was around 1974 that aid to the rural poor farmer was 

added as a new direction to the traditional areas of forestry development of agroforestry. Emphasis 

started to be put on the beneficial effects of trees and forests on agricultural production stressing 

the necessity of devising systems which would provide food and fuel and yet conserve the 

environment (Steppler & Nair, 1987). The acceptance of agroforestry as a sustainable and 

promising land use system on farms and forest was facilitated by some measures including the re-

examination of policies by FAO, the deteriorating food supply in several developing countries, 

increase of deforestation and degradation of forest ecosystems in the tropics, the energy crisis of 

the 1970s leading to the increase in commodity prices and absence of fertilizers and the 

establishment of the International Development Research Centre (IDRC) of Canada which aimed 

at identifying research priorities for tropical forestry (Atangana et al., 2014). IDRC was faced with 

the problem of deforestation and forest degradation and its impact including soil degradation and 

fertility loss, with slash and burn agriculture as the main driver (Kanmegne, 2004). As a solution, 

production systems which integrate forestry, agriculture and animals was proposed as a response 

to slash and burn in the tropics; This is the mission of the International Council for Research in 

Agroforestry (ICRAF) nowadays known as World Agroforestry Centre which was created in 1977. 

In the beginning, ICRAF activities were focused on creating an inventory of existing agroforestry 

systems, collecting information and introducing new approaches and systems, fine-tuning existing 

agroforestry practices towards soil fertility management. Activities included alley cropping, fallow 

systems with nitrogen-fixing species (Leucaena leucocephala, Calliandra calothyrsus Inga edulis 

etc.), intercropping and development of agropastoral systems that are adapted to the tropics. Due 

to the limited impact on slowing deforestation and improving the livelihood of farmers, poverty-

reduction strategies was included through a worldwide domestication program, which consisted of 

identifying and ranking priority species that farmer would like to plant on their farms (indigenous 
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tree species) and techniques for their production (Leakey, 2017). At the present time, research 

priorities of ICRAF include four categories: (i) Landscapes: improving governance of tree crop 

landscapes for resilient Green economies, climate change and sustainable environmental services; 

(ii) Soils: land health evaluation, restoration and investments decisions; (iii) Systems: Resilient 

productivity and profitability of agroforestry systems; and (iv) Trees: tree productivity and 

diversity – realising economic and ecological value from tree genetic resources 

(https://apps.worldagroforestry.org/research-areas  access on May 30, 2023). 

Classification of agroforestry systems 

As mentioned previously, agroforestry is a generic name for land-use systems, practices or 

technologies where woody perennials are deliberately integrated with agricultural crops and/or 

animals in the same land management unit in some form of spatial arrangement or temporal 

sequence. As defined by Howard & Nair (1988) the key points of an agroforestry system are (i) 

presence and management of a woody perennial (shrubs, trees, bamboo etc.) in the system: it 

should be adapted to the locality and provide some benefits such as food, fodder, income, 

medicine, fertility restoration, protection in form of shade or windbreaks etc. and (ii) positive 

ecological and/or socioeconomical interactions between the components of the system since 

multiple production systems are managed on the same land unit. However, some agroforestry 

systems do not have a food crop component such as cocoa agroforests. As far as the classification 

is concerned, agroforestry systems are classified based on (i) the structural composition and the 

spatial arrangement of the component within the system including the temporal sequence of 

introducing different components in the system. Also, (ii) the function of the tree component in 

the system is considered (production or protection). Finally (iii) agroforestry systems are classified 

based on the level of inputs in the management of the system, which is different if the system is 

meant for food production or for commercial purposes (cocoa plantations and fruits trees on 

farmlands for example). It is worth noticing the difference between an agroforestry system (AFS) 

and an agroforestry practice (AFP): AFS involve the integrated production of trees and 

crops/animals characterized by the environment, plant species and their arrangement, management 

and socioeconomic functions while AFP reflects the distinct arrangement of components in space 

and time. Therefore, similar practices are found in different AFS under different conditions, 

however, both terms are often used interchangeably (Atangana, 2014). Hundreds of AFS have 

https://apps.worldagroforestry.org/research-areas
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been identified in the tropics for about 30 AFPs. One of the most popular AFP since mid-1990s is 

the participatory tree domestication of high value and multipurpose indigenous forest species. The 

most common AFS in the humid tropics include improved fallows, homegardens, perennial crop-

based systems, farm wooldlots, alley cropping and plantation crops (Table 3). 

Table 3: Main agroforestry systems in the tropics (adapted from Atangana et al. 2014) 

 Agroforestry systems (AFS) Description 

1. Improved fallow Tree or shrub species planted and left to grow during the 

fallow phase. 

2. Taungya  Combined stand of woody and agricultural species during 

early stages of establishment of plantations 

3. Alley cropping Woody species in hedges; agricultural species in alleys 

between hedges; micro-zonal or strip arrangement 

4. Multilayer tree gardens Multispecies, multilayer, dense plant associations with no 

organized planting arrangements 

5. Multipurpose trees on 

croplands 

Trees scattered in cropland (eg: maize in parkland) or 

according to some systematic patterns on bunds, terraces 

or plot fields boundaries 

6. Plantation crops combination Integrated multi-storey mixture of plantation crops 

Mixtures of plantation crops in alternate or other regular 

arrangement 

7. Homegardens Intimate, multi-storey combinations of various trees and 

crops around homesteads 

8. Irrigated agrisilviculture Crop combination with fruit bearing woody perennials 

9. Fuelwood production Interplanting firewood species on or around agricultural 

lands 

10. Herboforestry High-value specialty herbs cultivated under woody 

perennials 
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11. Mangrove management Plantation establishment and rehabilitation of degraded 

mangrove formations to mitigate erosion and reduce 

flooding, protect fish and shrimp ponds 

12. Community forestry Tree planting on common lands by local people 

 

Because of the ubiquity of trees, AFS are acknowledged to have an interesting potential for carbon 

sequestration. In fact, it was found that AFS stored more carbon than other land cover; for example 

carbon stocks levels were higher in AFS compared to monocrop agricultural systems, although the 

amount of sequestrated carbon varied based on the AFS depending on the species and density of 

trees (Ali et al., 2022; Gomes et al., 2020). Feliciano et al. (2018) found that for sylvopastoral AFS 

(trees combined with animals), the carbon stocks were higher in the soil, whereas in sylviculture 

AFS such as cocoa plantations, carbon were predominant in the biomass. Moreover, AFS 

demonstrated their ability to regulate the temperature by creating a microclimate that is beneficial 

to other crops (Gomes et al., 2020). The potential of AFS to reduce fire risk and protect ecosystem 

was also reported, as areas where AFS were present had fewer wildfire incidents compared to 

forest, shrublands or grasslands (Damianidis et al., 2021). The integration of animals in the land 

management helped controlling the progression of grass which are easily flammable during the 

dry season. In addition to the economic benefits that are derived from AFS, the environmental 

impact in terms of emission reduction and avoid emissions could be rewarded under existing 

mechanism within the UNFCCC framework (REDD+), if those efforts are properly measured and 

monitored. 
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1.6   Problem statement 

Mixed pixels 

Freely available RS imagery including imagery data from the Sentinel mission have been 

extensively used for the detection and mapping of AFS in West Africa. For instance, the 

combination of Sentinel-1 and -2 data was successfully used for the detection of cocoa plantations 

encroachment in protected area (Abu et al., 2021). By applying machine learning techniques on 

time series images, it was possible to accurately estimate the extent of cocoa plantations in major 

producer countries namely Cote d’Ivoire and Ghana. Moreover, advanced processing techniques 

including deep learning approach was able to distinguish between full sun cocoa plantations from 

cocoa agroforests in West Africa (Ashiagbor et al., 2020). The availability of increasing computing 

resources combined with powerful algorithms and methodologies and increasing open-source data 

has improved the monitoring of AFS in the tropics. However, earth observation with open-source 

data remain challenging particularly for tropical AFS. One of the reasons is due to the fact that 

AFS are very heterogenous by nature. The composition and density of the elements within an AFS 

as well as the spatial arrangement of field create similar aspect across AFS. This often result in 

spectrally overlapping signals making it difficult for separate those AFS within that landscape 

(Filella, 2018). Another reason is related to the size of the plots. In fact, in Africa agricultural farms 

are small (generally less than 1ha) and are established next to each other. The combination of these 

reasons results in mixed pixels where more than one AFS is captured in a pixel. This led to high 

omission and commission errors during the classification which results in a very low overall 

accuracy. This phenomenon was observed in the classification of cocoa plantations in west Africa 

where high levels of confusion were recorded between cocoa and rubber plantations (Kanmegne 

Tamga et al., 2022a).  

As a solution, high resolution imagery data are used in combination with open-source data. Optical 

data of very high resolution are often used to improve the classification and open-source SAR data 

could be considered as additional input variable. This methodology was implemented for the 

delineation of cocoa plantations in Cameroon, and was able to reduce the confusion between cocoa 

agroforests and secondary forests (Numbisi et al., 2019). Likewise, Aguilar et al. (2018) were able 

to accurately delineate different AFS in Mali, and captured the characteristics of small agroforestry 
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farms including different crops and planting-patterns. In most of the case, those very high-

resolution images are not free, they are expensive, and their coverage is limited. In September 

2020, the Norway’s International Climate and Forest Initiative (NICFI) satellite data program has 

provided open access to planet’s high-resolution data to help reduce and reverse the loss of tropical 

forest to support efforts to combat climate change. The available data consisted of monthly and 

quarterly analysis-ready mosaics of four bands (red, green, blue and near-infrared) at a spatial 

resolution of 4.77 meters. Since then, Planet-data have been used worldwide in different 

programmes including governmental projects, private sectors and university research. Because it 

is a composite, Planet-data are mainly used as reference data in classification and validation. It has 

been used to map tropical forest cover and deforestation, and was found to provide reference points 

with ‘extremely high” accuracies (Vizzari, 2022; Wagner et al., 2023). Classification studies where 

Planet-data are considered used Sentinel data as input data for landcover classification. Planet-data 

is very useful to improve the assessment of the classification by providing reliable reference points, 

but is not able to deal with mixed pixel which is a major problem in the classification of complex 

landscapes including AFS. There is a need to propose a new approach to evaluate the classification 

capable of detecting mixed pixels which contribute to the classification error. This will allow the 

development of error maps alongside with the classification map resulting therefore in more robust 

and reliable maps of complex landscapes. 

Spatial distribution of the classification error  

The assessment of a classification map is based on the confusion matrix. Also known as error 

matrix, it is a table that is used to evaluate the performance of the classification algorithm and it 

shows the score of the predictions versus the reference/actual values. The values in the confusion 

matrix are used to calculate the producer’s and user’s accuracies of the classification as well as the 

overall accuracy. Other metrics such as precision, recall, F1 score and AUC ROC curve could also 

be calculated from the confusion matrix. Confusion matrix and the information it provides are 

essential to see the performance of a model and the type of error it is making, but it is criticised 

because it does not provide any information on the spatial distribution of the classification error 

on the map (Roodposhti et al., 2019). The assumption on existing maps is that the error is 

homogeneously distributed across the region of interest. Even if this assumption is valid in 

different terrestrial systems including forest, wetlands and agriculture, complex landscapes where 
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there is evidence of mixed pixels could not by evaluated on this basis. The combination of certain 

conditions related to the type of AFS and its spatial arrangement could result in higher 

classification error at given location on the map. A local form of spatial analysis known as 

Geographically weighted regression (GWR) was introduced and allowed the modelling of the 

relationships between the independent variables and the dependant variable to vary by locality. In 

the literature, GWR showed that the relation between biomass and vegetation indices were 

significantly spatially variable (Propastin, 2012). It revealed that certain drivers of deforestation 

(land ownership, altitude and slope) showed significant spatial variability, which facilitate and 

improved the understanding of the causes and mechanisms of deforestation in different regions 

(Pineda Jaimes et al., 2010). The application of GWR models in the classification of AFS is 

missing and there is a need to evaluate the relationship between the spatial distribution of the 

classification error and the independent variables across the map. 

Methodologies for carbon estimation in AFS 

AFS are acknowledged to have a great potential for climate mitigation. Because of the ubiquity of 

trees in their system, AFS have the ability to capture and store atmospheric carbon in the biomass 

of trees and in the soil (Nair et al., 2009). Several studies assessed the carbon stocks in different 

AFS in the tropics using RS, and revealed that the standing biomass is an important carbon pools 

(Nair et al., 2009; Nair et al., 2010; Vatandaşlar & Abdikan, 2022). Yet, methodologies for carbon 

estimations are criticized, mainly because of the lack of uniformity within AFS (Nair & Nair, 

2014). The main argument is that the methodologies are based on assumptions which have been 

derived from forestry and implemented without any adaptation, resulting in unreliable estimations 

of carbon stocks in AFS. As a response, the GPG was proposed by IPCC as a framework to 

normalize methodologies for carbon estimation studies in terrestrial ecosystems. Despite these 

efforts, existing methodologies need to be adapted and fine-tuned to match with the specificities 

of AFS. One of the critics is about the selection of the allometric model: In the GPG it is accepted 

as good practice to use the pan-tropical allometric model such as the one developed by Chave et 

al. (2014). This allometric model gave accurate estimations in forestry, but not in AFS because the 

model was developed and validated in forest ecosystems, using forest species which are not always 

present in AFS. As a result, the biomass estimations are associated with high levels of 

uncertainties. There is a need to develop and/or used appropriate allometric equations for biomass 
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estimation, which have been developed and tested on agroforestry tree species. Also, the carbon 

fraction used in most studies are not appropriate. It is established in forestry half of the biomass is 

carbon. Nair & Nair (2014) demonstrated that in most case the proportion is less than 0.5 and is a 

function of the tree species, the environmental conditions and the management practice in the AFS. 

For instance, a different carbon fraction is used in biomass studies in Mozambique: in dry forest 

ecosystems 0.45 of the biomass is regarded as carbon (Negash & Kanninen, 2015). Therefore, it 

would be a better practice to present biomass levels instead of carbon stocks to limit estimations 

errors unless a reliable carbon fraction is applicable. Finally, the generalization of the carbon 

estimations often assumes AFS to be uniform across a given region and refer to them as a single 

agroforestry class. But, there is a high level of spatial heterogeneity within AFS depending on the 

management practices, their composition as well as the climatic regions. There is a need for a 

remote sensing-based approach for the estimation of carbon stocks in each of the main AFS in 

different climatic regions in the tropics. This will address the existing information gap related to 

the carbon sequestration potential of different AFS in the tropics, and their ability to address 

climate change. 

Unevaluated remote sensing data  

Field measurements play a crucial role in the estimation of carbon stocks, and it is required as a 

good practice when using RS data and methods. The measurements should be accurate, and the 

number of samples large enough to be representative of the region of interest. Generally, field 

campaigns consist of collecting biometric parameters on trees such as height, diameter at breast 

height, crown size etc. which are then input in allometric equations to get the biomass. By nature, 

it is a costly and exhausting task which could only cover a limited area. For larger areas, such 

information could be derived using Light Detection and Ranging data (LiDAR) which is a RS 

method that uses light in the form of pulsed laser to measure ranges to earth. LiDAR data provide 

information on the location and height of the target allowing 3D modelling of the earth surface. It 

has been used in biomass modelling studies and provide very accurate estimation of the standing 

biomass of terrestrial ecosystems (Anderson et al., 2016; da Costa et al., 2021; Musthafa & Singh, 

2022; Pourshamsi et al., 2021). In 2018, the Global Ecosystem Dynamics Investigation (GEDI) 

mission was launch and it provides accurate 3D measurements of the earth surface. GEDI is the 

first satellite mission to provide high resolution LiDAR data designed for ecosystem monitoring. 
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It has successfully contributed to the accurate estimations of biomass in different wooded land 

(Duncanson et al., 2020; Milenković et al., 2022; Silva et al., 2021). Taking advantage of its 

precision for biomass modelling, predictions of aboveground biomass was generated using the 3D 

measurements of GEDI and ground truth data in different ecosystems, to create a biomass product 

known as GEDI level 4A (L4A) (Dubayah et al., 2020). GEDI L4A has been successfully used to 

monitor forest regrowth and carbon emissions from land use change (Houghton et al., 2012; 

Milenković et al., 2022). This could be a major contribution to carbon assessment methodologies 

as it could be used as a complement and/or a substitute to field campaigns especially in hostile 

areas. To this point, very limited studies have investigated the potential of GEDI L4A for biomass 

estimation and existing studies focused on forests and wetlands. There is a need to evaluate 

biomass predictions from GEDI L4A in AFS in comparison with field measurements. 

1.7   Objectives of the research 

Carbon sequestration is an important topic nowadays as it represents one of the main ways to 

mitigate climate change globally. Therefore, a lot of initiatives are financed to improve the state 

of the art by providing relevant information in the fight against climate change. In the tropics, 

agroforestry has contributed to global emissions through unsustainable agricultural practices such 

as slash and burn agriculture and crop plantations (mainly cocoa). Yet, agroforestry is 

acknowledged as a viable solution to address poverty, food security and climate change. Existing 

AFS could be integrated in emission reduction strategies at national level and/or could be eligible 

for financial compensation within international mechanisms such as REDD+. For that, accurate 

information, reliable data and applicable methodologies need to be provided. The aim of this study 

is to propose a methodological framework for the assessment of carbon sequestration in AFS of 

West Africa using remote sensing. More specifically, the objectives are: 

1. Provide an accurate map of the different AFS in West Africa, by modelling the spatial 

distribution of the classification error (Kanmegne Tamga et al., 2022a).  The main research 

questions are: 

a. How does the spatial distribution of the classification error vary across different AFS in 

west Africa? 
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b. How does the input data from remote sensing affects the distribution of the classification 

in AFS? 

2. Estimate the carbon stock of AFS in different climatic regions of West Africa using remote 

sensing (Kanmegne Tamga et al., 2022b). The research questions are: 

a. What is the best combination of remote sensing data (SAR, optical and LiDAR) for the 

estimation of the standing biomass in different AFS? 

b. How does the carbon stock level vary in different AFS across west Africa? 

3. Assess the spatial dynamic of carbon stocks within AFS across West Africa. The research 

questions are: 

a.  How does the aboveground biomass change between 2017 and 2021 in AFS of west 

Africa? 

b. How does the spatial distribution of carbon sources and sinks vary across the region of 

interest between 2017 and 2021? 

c. What are the main carbon sinks and carbon sources within the AFS in west Africa? 

1.8   Structure of the thesis 

The thesis is organized in five chapters: (i) Introduction where all the terms and concepts are 

defined. Here the state of the art, the research gaps and the objective of the study is presented. (ii) 

materials and methods where the methodological approach is presented. It starts with the 

presentation of the region of interest and the description of the data, their acquisition and 

processing. All the analysis are presented including formula and the workflow used to address the 

research questions. (iii) Results is the section where all the findings are presented. Maps, graphs, 

tables and statistics from the analysis are described. (iv) in the discussion, the results are put in 

context of the state of the art, and the findings of this research are discussed and compared with 

existing studies. Limitations of the proposed methodology are evaluated and further improvements 

are proposed. Finally (v) the conclusion presents the main findings of the study: answers to the 

initial research questions are presented and implications of the results are presented 
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2.1   Study area 

The study was carried in two west African countries of Côte d’Ivoire and Burkina Faso, located 

within the latitude 4.34° to 15.08° and the longitude -8.59° to 2.45° (Figure 2). Both are French 

speaking countries, and are part of the 16 members of the economic community of the west African 

states (ECOWAS). They are bordered by the Gulf of Guinea in the south, Liberia and Guinea in 

the west, Mali and Niger in the north, and Ghana, Togo and Benin in the east. Côte d’Ivoire is 

ranked as the 3rd richest country in West Africa after Nigeria and Ghana, while Burkina Faso is 

ranked 5th based on their GDP. The two countries are separated by a terrestrial border of 584 km 

which regulates most of the economic exchanges from one side to the other, using a common 

currency -the West African CFA franc. 

 

Figure 2: Area of interest (AOI) of the study 
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Côte d’Ivoire 

The Republic of Côte d’Ivoire is a former French colony bordered by Liberia, Guinea, Mali, 

Burkina Faso and Ghana. The name is derived from the intensive trade of Ivory that took place in 

the coastal part of the country between the 15th to 17th centuries. The country has two capital cities: 

Yamoussoukro which is the official capital since 1983 and Abidjan which is the administrative 

capital but also the largest city of the country (around 6.3 million inhabitants). Another intriguing 

fact, it is not the “Republic of Ivory Coast”! Since 1986, the government changed the name and 

adopted the French name even though some media still use the former English translation. The 

country has five UNESCO world heritage sites. Among them, natural site includes the Comoe 

National Park, one of the largest protected areas in West Africa; the Taï National Park which has 

a rich and diverse natural flora and is home of threatened mammal species such as the pygmy 

hippotamus and also Mount Nimba Strict Nature Reserve which has a diverse flora and fauna such 

as viviparous toad and chimpanzees. 

About 70% of the economy of Côte d’Ivoire comes from the exportation of agricultural products, 

As the country is the world largest producer of cocoa beans. In 2020, the production was over 2 

million tons, which represented about 39% of the world’s cocoa production (Shahbandeh, 2021). 

The exported commodities are mainly represented by cocoa products (49%), several nuts including 

coconuts and cashews (7%) and rubber (2%). Those products are mainly traded in Europe 

(Netherlands, Switzerland, and France), America (mainly the USA) and Asia (Malaysia) according 

to the report of the OEC (2020). Côte d’Ivoire is a relatively large country with a size of 322 460 

km², associated with a population density of 85.2 inhabitants/km², with agriculture as the main 

activity. There, cocoa farming is by far the most important activity, providing employment and 

supporting the livelihood of more than two million small scale farmers (Boeckx et al., 2020). 

Although very few farmers live solely on revenues from cocoa and the question of child labour in 

the cocoa value chain, the sustainable intensification of cocoa production is acknowledged as an 

important pillar for poverty alleviation (Boeckx et al., 2020; Busquet et al., 2021; ILO, 2017; 

International Anti-slavery, 2004). In fact, global demand for cocoa beans is expected to increase 

by 7.3% in 2025, due to growing chocolate industries in emerging economies such as China and 

India (GVR, 2019). Next to cocoa, Côte d’Ivoire is also the world largest producer of raw cashew 

nuts, with 792.678 megatons in 2022 (WPR, 2023). Cashew nuts are mainly grown by small-scale 
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farmers in the middle and northern parts of the country, where cashew, cotton and mango are the 

main cash crops. The yield per tree is low (2 or 3 kg of raw cashew nuts per trees per year) because 

farms are managed extensively with low to no inputs, resulting therefore in low income. Most of 

the farmer sell their nuts to local traders, which will be sold to independent buyers and finally will 

be exported, mainly in India and Vietnam (Koné, 2010). 

Burkina Faso 

Burkina Faso is a landlocked country bordered by Mali, Niger, Benin, Togo, Ghana and Côte 

d’Ivoire. Similar to Côte d’Ivoire, it is a former French colony which was named Upper Volta after 

the independence in 1960. It was in 1984 that the current name was adopted which means “country 

of upright men” derived from the local language (Moré). The capital city of Burkina Faso is 

Ouagadougou, and the country is 274 200 km² for a population density of 80.6 inhabitants per km². 

Over 40 percent of its population was living below the poverty level, and the country was ranked 

184th out of 191 countries between 2021-2022 according to the Human Development Index report 

of the United Nations Development Programme (UNDP, 2022). The main activity is agriculture, 

which represents about 80 percent of the workforce of the country. the land is exploited for food 

crop production (sorghum, millet, cowpea, and maize), but also for cash crop including cashew 

and cotton. Cotton is an important crop in Burkina Faso, to the extent that the country is the 3rd 

largest producer in Africa, behind Benin and Côte d’Ivoire, and the commodity represent about 5 

percent of the income from exportations (OEC, 2020). Because of the extreme climatic conditions 

associated with the Sahel, most agricultural activities are carried out in the southern and western 

parts of the country. The north is part of the Sahel region, where the low rainfall level supports a 

landscape mostly appropriate for livestock. The Northern part of the country has been facing 

terrorist attacks from military rebels based in Burkina Faso, Mali, and Niger. The first attack was 

recorded in April 2015, and since then, the instability in the country has increased to the point of 

having two coup d’états in 2022. Despite the political instability and the associated insecurity on 

the one hand, and the extreme climatic conditions on the other hand, the country showed interesting 

results on the adoption and the impact of agroforestry not only by improving the local economy 

(shea butter value chains), but also by contributing to climate change adaptation through the 

improvement of soil organic carbon in agricultural farms (Coulibaly et al., 2017). 
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2.2   Climatic regions 

West Africa is bordered in the south by the Golf of guinea which opens to the Atlantic Ocean, and 

the Sahara Desert in the North (Figure 3). These two regions generate two different air masses: a 

hot, dry continental air masses from the Sahara Desert known as Harmattan, and a moist equatorial 

air masses from the Atlantic Ocean known as Monsoon, and their interactions regulate the 

precipitation regime and the temperature in West Africa (CILSS, 2016). The interactions of the 

Harmattan and Monsoon have defined several climatic regions going from a wet climate in the 

south characterized by high precipitations, and dryer conditions with fewer rainfall in the north. 

 

Figure 3: Main climatic regions in the study area 

 The study area covered four climatic regions in West Africa namely: (i) Guineo-Congolian, (ii) 

Guinea, (iii) Sudanian and (iv) Sahel. For this study, the first three climatic regions were 

considered, and the Sahel was excluded from the region of interest. Aside from the insecurity in 

the northern part of Burkina Faso, and in the Sahel in general, the primary reason was the climatic 
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conditions which are not optimal for the establishment and management of AFS with a high 

potential for carbon sequestration. The selected climatic zone provides different conditions 

allowing the development of different AFS across West Africa. 

2.2.1 The Guineo-Congolian region  

It is the largest climatic region of the study area, which covers the southern half of Côte d’Ivoire. 

It is also the wettest region in West Africa, with an annual rainfall between 2200 and 5000 mm 

and a temperature between 24 and 28°C. The precipitation regime is bimodal characterized by a 

long raining season of four months from April to July, and a short one of 2-3 months between 

September and November. The region has 4-5 dry months per year organised in two dry seasons, 

following each of the rainy seasons. In response to the increased concentration of GHG in the 

atmosphere, the temperature in the region is projected to rise between 1.7 to 3.7°C (very likely) by 

2080 (BMZ, 2020). The sea level is expected to rise as a response to temperature increases, which 

could end up in flooding and intrusion of sea water into groundwater reservoirs, compromising 

therefore the availability of freshwater. Also, heavy precipitation events are expected to be more 

intense, posing a risk for food crop production and risk of flooding. BMZ (2020) reported that a 

change in the rainfall pattern will have a negative impact on the yield of maize, while rice and 

cassava are projected to gain from climate change. 

The climatic conditions of the Guineo-Congolian region correspond to the tropical rainforest. 

However, the forests in Côte d’Ivoire have been reduced to small patches mainly due to cash crop 

expansion, including cocoa, rubber, and oil palm. Cocoa beans and rubber are often sold to 

independent buyers for exportations, while oil palm is included in the diet, and portion is sold in 

the local market, mainly in major cities like Abidjan and Yamoussoukro. Food crops are mainly 

represented by maize, cassava, yam, plantain, and rice which is cultivated mainly for family 

consumption. It is often produced on small farms (generally less than 2 ha).  

2.2.2 The Guinean region 

This climatic region covers the northern part of Côte d’Ivoire and is characterized by a monomodal 

precipitation regime. The mean annual rainfall ranges between 1200 and 2200 mm, distributed 

between March/April and October, with the wettest months in July to September. The rainy season 

is followed by a long dry season of 4-7 months. The temperature in the region varies between 27 
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to 34°C, the hottest months being March and April. The impact of climate change will be more 

severe in the Guinean region, where an increase in temperature would increase the risk of droughts. 

Consequently, crop yields are projected to decline as a response to the increased exposure of crops 

to drought. Moreover, the frequency of wildfires will increase, and their intensity will increase 

with the availability of dry biomass, increasing the risk for infrastructure and human lives. 

The vegetation in the Guinean region corresponds to the semi-deciduous forest and wooded 

savannas, with trees reaching up to 20 m. The region is severely affected by anthropic activities 

including fire management as a tool for soil preparation or to renew the pasture before the raining 

season, but also cash crop agriculture including cotton, mango, and cashew. Cash crop production 

is the main income for small scale farmers in the northern Côte d’Ivoire. After the harvest, raw 

cashew nuts are sold to local buyers at a very low price compared to the official price of 1.29 US$. 

For mango, often the price is agreed upon in advance, and the harvest is then made by the buyer. 

Aside from cash crop, farmers grow food, mainly maize, sorghum and millet together with several 

vegetables depending on the season. 

2.2.3 The sudanian region 

In the study area, the region is a belt located in the middle of Burkina Faso, bordered in the south 

by the Guinean region, and in the north by the Sahel. The region is dryer with the annual rainfall 

between 600 and 1200 mm. The precipitation region is monomodal with a rainy season between 

June and September, with August being the wettest month. The dry season starts in October, and 

last for 7 to 8 months. The average temperature varies between 26 to 40°C, and the picks are 

observed between March and April. The impact of climate change will be catastrophic for the 

country because agriculture is the main activity (over 80% of the active population which depends 

mainly on climatic conditions. Following the current trend of the increase in temperature an 

increase of about 1.4 to 1.6°C is expected by 2050 (ICRC, 2021). The precipitation levels are 

expected to change, and intense rainfall could be more frequent and more severe, even though the 

projections on the precipitations are associated with a high level of uncertainty in this region. 

In the region, the main cash crop is cotton. It represents the main income of small-scale farmers, 

and it is often associated with oil seed production such as shea butter. In such farms, shea trees are 

introduced or maintained, and managed together as an AFS. The fruit are often processed by 
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women, and the derived oil is used in the diet or as cosmetic. Because of its fat content, shea butter 

is a valuable product for the cosmetic industry, and the demand is increasing both nationally and 

internationally. The local food crops include maize, millet, and cowpea, which is managed at the 

farm level in association with cattle to produce milk, meat, and derivatives.  

2.3   Regions of interest 

To capture the climatic effect of the different climatic region on the AFS in West Africa, three 

regions of interest (ROIs) were defined, one in each climatic region. In Côte d’Ivoire, 02 ROIs 

were defined, one in south and one in the north, and 01 ROI was defined in Burkina Faso. In the 

Guineo-Congolian region, the ROI was defined around the municipalities of Soubré, Buyo and 

Gueyo (Figure 4). Two field campaigns were carried out for data collection in March 2020 and 

November 202 in the municipality of Gueyo and Buyo, in the vicinity of the Taï national park 

(TNP). The TNP is one of the most important forest reserves in Côte d’Ivoire, together with the 

Comoe national park. It was created in 1926 as a forest reserve and was promoted to national park 

status in 1972. Because of the flora and fauna diversity of the TNP, it was recognized as a 

UNESCO biosphere reserve in 1978, and added to the world heritage site in 1982. It is nowadays 

one of the last areas of primary rainforest in West Africa (Riezebos et al., 1994). From a 

management point of view, the TNP is assumed to be intact, and available reports confirmed its 

integrity and no human activities within the boundary of the park (GIZ, 2020). The TNP was not 

investigated during this study, and field measurements from the park were not considered in the 

analysis. However, due to the rapid extension of cocoa plantations in the surrounding of the park, 

the ability of remote sensing to detect encroachment was tested. 
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Figure 4: Region of interest in Côte d’Ivoire showing the distribution of the field plots and the 

footprints from GEDI (Background image: google earth) 

For the Guinean region, a ROI was defined around the municipality of Tafiere, in the northern part 

of Côte d’Ivoire. Like the activities in the south of the country, two field campaigns were carried 

out in the same period. The field activities were limited in the sub-division of Tafiere because of 

the constraint due to transportation. Motorbike was the only practicable way to reach farms for 

data collection mainly due to the road, and the daily distances to the sites were limited to about 10 

to 20 km.  

The third ROI was defined in Burkina Faso. (Figure 5). Here, only one field campaign was 

possible, and the data collection was carried in 04 municipalities: Pa, Pompoï, Yaho and Boromo, 

in June 2021. The defined ROI contained several protected areas, which consisted of six classified 

forests located in the municipality of Pa, Bouahoun, Bounou, Tui, Bansié and Nossébou. The 

investigation on the ground showed that the protected areas that were referenced at forest were 

severely deforested, mainly due to overgrazing of livestock and bush fires. Certain areas have been 

converted for cotton production, but the main areas associated with protected areas were managed 

in the form of agroforestry parklands dominated by Parkia biglobosa. The tree gives a fruit 

commonly known as African locust bean (nere in French), which is appreciated for its pulp and 

seeds which is used as food and medicine both for humans and for the cattle. 
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Figure 5: Region of interest in Burkina Faso showing the distribution of the field plots and the 

footprints from GEDI (Background image: google earth view) 

2.4   Agroforestry systems 

Agroforestry systems (AFS) is a collective term for land-use systems, practices, or technologies, 

where woody perennials (trees, shrubs, bamboo etc.) are deliberately integrated with agricultural 

crops and/or animals in the same land management unit in some form of spatial arrangement or 

temporal sequence (Lundgren et al., 1983). AFS is not a revolutionary land management approach, 

rather it has been always present throughout the history of mankind. In fact, it is often said to be 

“a new name for an old practice”. The tree component is central for AFS and its composition 

and/or arrangement is used to determine the typology of a system. The three major aspects 

considered in the definition and classification of AFS were described by Atangana et al. (2014) 

and included: 

i. The structural composition and spatial arrangement of the trees in the system: here, AFS will 

be differentiated based on a vertical stratification as it is the case for shade trees, or if the 

trees/shrubs are the same size as the crop, as it is the case in alley cropping. Also, the spatial 

arrangement is important and helps distinguish systems where trees are used as windbreaks 

or living fences. Furthermore, some AFS show trees with no spatial arrangement, where trees 

are randomly distributed on a farm for example. This is the case for fruit trees or trees with 

medicinal properties, which are actively maintained on farmlands. 

ii. The temporal sequence of the woody component: A popular system here is the fallow, or 

improved fallow, where trees and/or shrubs are allowed to grow in the process of 
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regenerating the soil fertility. In the case of improved fallow, nitrogen fixing shrubs are often 

introduced, as an efficient way to reduce the length of the fallow. An older system is referred 

to as the Taungya. It is a reforestation approach which consists of associating the seedlings 

of trees with agricultural crops. The seedlings benefit from the treatment applied on crops 

(pesticides, fertilisers), and the crops are reduced as the tree grows. The same is applied in 

Côte d’Ivoire for cocoa plantations. At their early stage, cocoa seedlings and banana trees 

are managed simultaneously. Until the cocoa trees are big enough, they benefit from the 

shade from banana trees. 

iii. The functions of the woody perennials in the system: among the functions, production refers 

to direct product generated by the trees. This could be fruits, edible leaves, bark and roots, 

medicine. Another function is service including firewood, timber for construction, fodder to 

feed the cattle, production of by-products such as honey and edible insects. Another function 

could be social as some trees are sacred and some parts used in rituals and traditional 

ceremonies such as marriage and funerals. A function could be environmental. This includes 

soil protection, fertility restoration, wind protection, improvement of the microclimate and 

carbon sequestration. 

In this study, four AFS were considered, mainly agri-silvicultural systems, where the woody 

perennials are associated with agricultural crops. The main AFS identified in the ROIs were 

presented and described in Table 4. Homegardens, Improved fallow and multipurpose trees on 

croplands were referred to as farms, and plantations crop combinations were identified by the main 

cash crop of the system (cocoa, rubber, oil palm, mango, and cashew). In the Sudanian region, 

since all the AFS in the ROI were in the form of multipurpose trees on croplands (associated 

mainly with Cotton and sesame), the AFS classification was based on the composition of the tree 

species. The name of the most abundant tree species in an agroforestry farm was used as the name 

of the AFS.  
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Table 4: AFS identified in West Africa, and their description (adapted from Atangana et al., 2014) 

AFS Description  

1. Homegardens Combination of trees and crops around farmer’s house. 

The woody components are often fruit trees. 

2. Improved fallow Perennial planted or left to grow during fallow. The woody 

components are fast-growing leguminous tree species 

3. Multipurpose trees on 

croplands 

Trees scattered in cropland. The perennial components are 

multipurpose trees (fruits, medicine, fodder, firewood etc.) 

4. Plantation crop combinations Mixture of trees and cash crop such as cocoa, rubber, 

mango, and cashew. The associated tree species are often 

forest tree species. 

 

2.4.1 Plantation crop combination  

The plantation crops were mainly found in the Côte d’Ivoire. Cocoa, rubber, and oil palm 

plantations were identified in the Guineo-Congolian region, whereas cashew and mango 

plantations were mostly located in the Guinean region. The plantation crops were often installed 

at the expense of forest or old fallows, especially for cocoa. The selected plantations were at least 

10 years old, with at least 1 production cycle (Figure 6). The tree components in the oil palm 

plantations were managed sequentially in the form of a long rotation that could be up to 25 years. 

In the Guinean region, mango and cashew are established on previous agricultural farms. Most of 

the plantation crops in the region were established in the early 2000, mainly for the farmer to 

multiply and diversify sources of income. From the discussion with farmer on the ground, a future 

land use change was not planned. The sequence could therefore be summarized as follow: a forest 

or old fallow is cleared for agriculture including cotton production. The land is then converted to 

mango or cashew plantation. In the Guineo-Congolian region, the sequence is a bit different: a 

forest or old fallow is converted to cocoa, rubber, or oil palm plantation. The land conversion is 
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triggered by the yield level. When the farm is no longer economically viable, the land is converted 

to agricultural farms which eventually will be converted to fallow. 

 

 

Figure 6: Plantation crops combination in Côte d’Ivoire. From left to right, first row: oil palm, 

rubber, cocoa; second row: mango and cashew plantations. (Source: author, Côte d’Ivoire, March 

2020) 

2.4.2 Farms 

Farms are mainly managed for food production, for consumption at the family level, or for the 

market. The AFS referred to as farms also include homegardens, and fallows (Figure 7). The main 

agricultural crops in West Africa include: 

- Cassava (Manihot esculenta) which is used to manufacture Atieké, the main local food of 

the country.  

- Rice (Oriza sativa) which is also a major component of the daily diet. The rice is mainly 

cultivated in lowlands throughout the year, but there is also a variety of rainfed rice for the 

rainy season.  
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Figure 7:Agroforestry farms in West Africa. From left to right: homegardens, multipurpose trees 

on crop lands and improved fallow (from where firewood is often collected). (Source: author, Côte 

d’Ivoire, March 2020). 

- Yam (Dioscorea alata) is an important food crop cultivated mainly on very fertile lands. 

The edible tubers are pounded often in combination with banana-plantain, to make a very 

appreciated meal referred to as futu. However, the main purpose of yam production is the 

commercialization in urban areas. 

- Plantain or banana (Musa sp) is a major crop in the region. It is often established at the 

early stage of cocoa plantations. Since cocoa trees are mainly grown on pure stands 

(without associated trees), the shade they need at their early stage is often provided by 

banana trees. The production is part of the local consumption, but the surplus is destined 

to the local and international market. 

- Maize (Zea mays) is one of the most important crops in the country. Because of its short 

cycle, it is one of the most cultivated crops both in high and lowlands. In the Guinean 

region, it was found as the main element of the diet of farmers. The residuals from maize 

are used as fodder for the cattle during the dry season. Also, maize is used as input for 

processing local beer. 

- Cotton (Gossypium sp) is the first cash crop in the Guinean and Sudanian region of West 

Africa. It has a cycle of about 3 months, and it is the main source of income for farmers in 

that region. The yield was estimated at 473 kg/ha in Côte d’Ivoire and about 385 kg/ha in 

Burkina Faso.  

- Sesame (Sesamum indicum) is an important crop in the Sudanian, and Burkina Faso is the 

6th world largest producer with about 374.7 tonnes in 2019. Sesame is preferably 

established on old fallows, where they are managed in combination with other trees. 
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African locust bean trees and shea trees (Parkia sp and Vitellaria sp) are often associated 

with cash crop. 

2.5   In situ data 

During the field campaign two types of data were collected: (i) reference points for the image 

classification and (ii) biophysical parameters of trees for carbon estimation.  

2.5.1 Data collection  

The same data collection approach was applied in each of the ROIs. In each site, sample plots of 

40 × 40 m were defined in plantations (cocoa, rubber, oil palm, mango, and cashew) (Figure 8). 

The plot was defined in the middle of the considered AFS, at least 100 m away from the main 

road. A condition of minimum five trees in the sample plot was observed in each AFS. When the 

previous conditions were fulfilled, the coordinates of the four corners of the plot were recorded 

using a GPS, and the centre of the field plot was also registered and labelled.  

 

Figure 8:Establishment of a field plot in an agroforestry farm (Source: author, Burkina Faso, June 

2021) 
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Each tree in the defined sample plot was identified by its name (common name and or local name) 

with the help of field assistants. For trees that were not directly identifiable in the field, pictures, 

and some parts of the trees (leaves and/or fruits) were collected for a post-field identification by a 

botanist. Another challenge was to find the correct scientific names of trees species from their local 

names, as the local name is associated with the local language. Therefore, local names were 

recorded with the corresponding dialect, and the corresponding picture. Additionally, to the name 

of the tree, biometric parameters of the tree were collected including the height of the tree, and the 

diameter at breast height (Figure 9). The height was measured by an altimeter, which provided a 

ready-to-use measurement in metres. The DBH was measured using a diameter tape, which 

returned the diameter of the tree from the diameter. 

 

Figure 9:Collection of biophysical parameters of trees in AFS (Source: author, Côte d’Ivoire, 

March 2020). 

from left to right: diameter measurement using diameter tape; species identification; and height 

measurement with an altimeter. (Picture from the field campaign, Côte d’Ivoire, March 2020). 

The collected sample plots in West Africa were summarized in Table 5. It shows (i) 122 samples 

in the Guineo-Congolian region including 62 plots in farms, 30 plots in cocoa plantations, 16 plots 

in oil palm and 31 plots in rubber plantations. (ii) 66 samples were collected in the Guinean region: 

21 plots in cashew, 22 plots in mango plantations and 23 plots in farms, and finally (iii) 56 samples 

in the Sudanian region, in different crop farms (Sesame, cotton and maize) managed as AFS. 
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Table 5: Summary of the number of samples collected in West Africa  

Climatic regions AFS Number of samples 

Guineo-

Congolian  

Cocoa 30 

Rubber  31 

Oil palm 16 

farm 62 

Guinean Mango  21 

Cashew 22 

farm 23 

Sudanian  Miscellaneous 

AFS 

56 

2.5.2 Data preparation 

The collected data were reported and organized in MS Excel. it included quantitative data gathered 

through in situ measurements and qualitative data collected using questionnaire. The main 

elements of the qualitative data included information related to the age of the AFS, the 

management practices and a description of the land cover supported by pictures. 

2.6   Carbon estimation  

The estimation of carbon stocks in a given ecosystem summarizes the carbon stocks of five 

different carbon pools namely: aboveground biomass (AGB), belowground biomass, dead wood, 

litter and soils (Gytarsky et al., 2015). In Agri-silviculture, it was reported that aboveground carbon 

sequestration rates were higher in farms (improved fallows and multipurpose trees on crops lands) 

compared with any other AFS, while soil carbon sequestration rates were higher in crop plantations 

(Feliciano et al., 2018). In this study, AGB was considered the most important carbon pool, since 

it is the only pool that could be used for a consistent monitoring of carbon sequestration across 

AFS using remote sensing. Therefore, the aboveground parameters collected on trees were used to 



Chapter 2 

46 

 

determine the standing biomass in each plot. For each tree, the species name was used to retrieve 

the wood density from the ICRAF’s database (Carsan et al., 2012). For trees that were not found 

in the database (Ficus gnaphalocarpa for example), the wood density of a tree from the same 

family was used (Ficus trachyphylla in this case).  

AGB=0.0580 × σ × (D² ×H)0.999  

The wood density of the species (σ), the height (H) and the diameter (D) of the tree were compiled 

to determine the AGB using the allometric equation proposed by Aabeyir et al. (2020) equation 

1). This allometric equation is a mixed-species model for the estimations of AGB in the tropical 

woodlands of West Africa, which was found to be equivalent to the pantropical model proposed 

by Chave et al. (2014) within ±10% of their mean prediction. The model was appropriate for this 

study, as all the tree species that were identified in the AFS were present in the list of species used 

to develop the allometric model. This ensured that the prediction of the model was more accurate 

than the prediction from the pantropical model of Chave et al. (2014), as suggested by the study. 

The AGB estimations of all the trees in a sample plot were averaged to get an estimation for the 

sample plot. 

2.7   Remote sensing data 

2.7.1 Data description  

Three data sources were considered and used during this research: (i) the C-band Radar and Optical 

data from the Sentinel missions; (ii) the L-band Radar data from the Advanced Land Observation 

Satellite-2 (ALOS-2) and (iii) the LiDAR data from the Global Ecosystem Dynamics Investigation 

(GEDI). 

2.7.1.1 Sentinel mission 

Sentinel mission is an earth observation mission developed by the European Space Agency, and 

was created with the aim of replacing older earth observation missions such as ERS and Envisat 

missions, to ensure a continuity of data (ESA, 2022). Sentinel has seven missions, each one 

observing different aspects of the earth surface including atmosphere (Sentinel-4, -5, -5P), oceans 

(Sentinel-1, -3, -6), and land (Sentinel-1, -2). In the research, Sentinel-1 (S1) and Sentinel-2 (S2) 

data were considered.  
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S1 was first launched in April 2014 and is composed of two polar-orbiting satellites (S1A and 

S1B) operating day and night, to provide VH/VV polarization for the C-band Synthetic Aperture 

Radar data (SAR), enabling the observation of the earth surface regardless of the weather 

conditions. Figure 10 illustrates an overview of the S1 data over the AOI in the Guineo-Congolian 

region. SAR refers to a technique for producing fine-resolution images from a resolution-limited 

radar system, requiring the radar to be moving in a straight line, from the space platform (NISAR, 

n.d.). The constellation (S1A and S1B) covers the entire world with a revisit time of six days.  

 

Figure 10: Sentinel-1 image (VV polarization) of the ROI in the Guineo-Congolian region 

S2 is a constellation of two polar-orbiting satellites (S2A and S2B) placed in the same sun-

synchronous orbit, phased at 180° to each other, that was first launched in June 2015. The 

constellation offers a revisit time of 5 days and a spatial resolution of 10 m for the visible-Near 

infrared bands including red, green, blue, and near-infrared and 20 m for the red-edge band. S2 

data are sensitive to clouds, since they are passive sensors, which makes it harder to monitor 

tropical landscapes. Figure 11 shows and overview of a false colour display of S2 data in the 

Guinean region. 
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Figure 11: Sentinel-2 image (false colour) of the ROI in the Guinean region 

2.7.1.2 ALOS-2 

The spacecraft ALOS-2 also known as DAICHI-2 was launched in May 2014 and provides Phased 

Array L-band Synthetic Aperture Radar (PALSAR) data. PALSAR data were reported to be 

successful for the effective monitoring of cultivated areas and for the identification of carbon sinks. 

ALOS-2 has a revisit time of 14 days and can observe the earth surface day and night in all weather 

conditions. The data is available at a single polarization (HH or VV) but the cross polarization 

(HH/VV) was used (PALSAR, 2022). Figure 12 gives an overview of the VH polarization of the 

ALOS PALSAR data in the Sudanian region. 
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Figure 12: ALOS-2 PALSAR image (HH polarization) of the AOI in west Africa 

2.7.1.3 GEDI 

GEDI is a full waveform lidar instrument, which uses pulses of laser light to measure the 3D 

structure of the earth surface. It is the first high resolution laser ranging observation instrument to 

study the earth surface. It was launched on SpaceX-16 on December 5th, 2018. GEDI started 

collecting scientific data on March 25th, 2019, and will continue until 2023. The applications of 

GEDI are numerous and diverse, and some of the domains include water resource management, 

weather prediction, geomorphometry and forest management. It provides accurate measurements 

of the forest canopy height, the canopy vertical structure and the surface elevation, which has 

radically improved the estimations of carbon stocks. The LiDAR system of GEDI is made of three 

lasers that produce eight parallel tracks of observations. Each laser is emitted at a frequency of 242 

Hz to illuminate a 25 m footprint where the 3D structure is measured. Each footprint is separated 

by 60 m along the track and 600m across-track distance. From the measured 3D structure, several 

products have been derived including relative height (level 2A), canopy cover fraction (level 2B) 

and aboveground biomass (level 4A). The level 4A product (GEDI L4A) contains aboveground 
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biomass predictions and the associated uncertainties which has been derived from level 2A 

combined with field measurements (Dubayah et al., 2020).  

2.7.2 Data acquisition 

All the satellite data were accessed via Google Earth Engine (GEE), and a mosaic image for each 

region of interest was generated. For S2 data, a composite image was used as a solution to the 

cloud issue. The image collection from January to December was filtered, and only scenes with a 

maximum cloud percentage of 5% were selected. A median image was then generated for five 

bands (blue, green, red, red-edge and near-infrared). For S1, the Sentinel global backscatter model 

(S1GBM) was used, where the VH/VV polarizations was acquired by the interferometric wide 

swath mode, which is mostly used for land monitoring since it satisfies most of the current service 

requirements such as preserving the revisit performance (Bauer-Marschallinger et al., 2021; 

Copernicus, 2022). Only the yearly composites of the ALOS-2 data were available on GEE. 

Average images of the HH/VV polarization were generated over the past three year (2019 to 2021) 

to reduce the noise on the image. GEDI L4A data were downloaded from the Earth Data platform, 

and the footprints were extracted as shapefile for each region of interest. The footprints were 

filtered based on the quality of prediction as described in the metadata. Only footprints associated 

with a good quality (high accuracy and low error) was selected. 

2.7.3 Data preparation 

The five optical bands from S2 were combined to generate seven vegetation indices including 

NDVI, GLI, EVI, SAVI, MSAVI, TCARI and VARI (Table 6). The five bands and the seven 

derived indices were stacked together to represent S2 data input. 

Each of the HH/VV and VH/VV polarizations from ALOS-2 and S1 respectively were used to 

generate texture parameters. The Grey Level Co-occurrence Matrix (GLCM) was used to generate 

the texture parameters. GLCM is a tabulation of how often different combinations of pixel 

brightness values (grey levels) occur in an image (Hall-Beyer, 2017). GLCM texture considers the 

relation between two pixels at the same time, called the reference and the neighbour pixel. It returns 

the probability of the reference pixel to have the same grey level with its neighbour, in specific 

direction, and the result textures metrics are based on those probabilities. For the calculation, all 

direction was considered, within one pixel offset (a reference pixel and its immediate neighbour).  
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Table 6: Vegetation indices and formulae  

Vegetation indices Formula 

1. Normalized Difference 

Vegetation Index (NDVI) 
(NIR – R) / (NIR + R) 

2. Green Leaf Index (GLI) (2 × G – R – B) / (2 × G + R + B) 

3. Enhanced Vegetation Index 

(EVI) 
2.5 × (NIR – R) / (NIR + 6 × R – 7.5 × B + 1) 

4. Soil Adjusted Vegetation 

index (SAVI) 
(1 + L) × (NIR – R) / (NIR + R + 0.5) 

5. Modified Soil Adjusted 

Vegetation Index (MSAVI) 
0.5 × (2 × NIR + 1 – sqrt ((2 × NIR + 1)² - 8 × (NIR – R)) 

6. Transformed Chlorophyll 

Absorption in Reflectance 

Index (TCARI) 

3 × ((RE – R) - 0.2 × (RE - G) × (RE / R)) 

7. Visible Atmospherically 

Resistance Index (VARI) 
(G - R) / (G + R - B) 

* sqrt = square root, (bands B: blue, G: green, R: red, RE: red-edge, NIR: near infra-red). 

The GLCM values were used to calculate eight texture parameters for each polarization, using a 

window size of five-by-five pixels and the default number of 32 grey levels. The parameters were 

computed using the glcm R package version 1.6.5 (Zvoleff, 2020). The formula of the different 

GLCM parameters and their explanation is presented in Table 7. 
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Table 7: GLCM texture parameters (Hall-Beyer, 2017)  

Texture measures Formula Explanation 

Entropy  ∑-ln(Pij) Pij Smaller Pij leads to higher entropy value 

Contrast  ∑Pij (i-j)² Express difference as an exponential function 

Variance ∑Pij (i-µi)² Describe the variance of GLCM values  

Correlation  ∑Pij [(i-µi) (j-µi) / σ²] Describe the correlation of GLCM values  

Mean ∑Pij / N Describe the mean of the GLCM values  

Homogeneity ∑Pij / (1+(i -j))² Express difference as an inverted exponential 

function 

Dissymmetry ∑(∑(|i-j| Pij)) Express difference as a linear function 

Second moment ∑(∑(Pij)²) Return the max value when all pixels are identical 

where (i): reference pixel; .(j) : neighbour pixel; Pij: GLCM expressed as a probability of having a 

pair of pixels with a specific value in a specific spatial relationship , µ: mean -and σ: standard 

deviation within GLCM in the specified window size. 

 

2.8   Data processing  

2.8.1 Overview of data processing  

The approach for the data analysis was organized in three steps (Figure 13):  

(ii) Mapping the different AFS: This step consisted of training a random forest algorithm (RF) 

using field data, for the classification of the satellite data using a supervised classification 

approach. From the trained model, the probability map of each feature class was generated 

and used as input to generate an entropy map. The entropy map was used to analyse the 

heterogeneity at pixel level using predefined threshold values. Different entropy threshold 

values which were used to differentiate mixed- from unmixed pixels on the classification 
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map, were defined and compared. An improved classification map was obtained by 

removing mixed pixels from the initial classification map.  

(iii)Estimating carbon stock in AFS: The analysis consisted of training and comparing the 

performance of seven machine learning regression models for the prediction of carbon 

stock based on two AGB reference sources: the first reference source was the carbon 

estimations derived from field measurements and the second one was the predictions 

obtained from the GEDI L4A product. The performance of the regression models was 

assessed and the model setting with the best performance was used to generate the carbon 

map in each ROI. Based on the carbon estimation generated with field measurements, the 

uncertainties at plot level was quantified and a RMSE map was generated. Using the 

improved AFS map from step (i), the carbon and RMSE maps per AFS were generated.  

(iv) Evaluating the carbon dynamic in different climatic regions: in this section, the spatial 

distribution of carbon source and carbon pools were detected, and the amount of 

emitted/stored was estimated using yearly estimations of carbon storage of AFS between 

2017 to 2021. The carbon time series was summarized by producing an average carbon 

map and the corresponding standard deviation map. Yearly anomaly maps were returned 

from the difference between the annual estimation and the average, and the standard 

deviation map was used as threshold to detect significant changes in the carbon stocks. The 

detected changes and the improved AFS classification were used to describe the carbon 

flux in the AFS of West Africa. 

2.8.2 Image classification  

2.8.2.1 Random forest classification  

RF was trained in R using the package random forest (Breiman, 2001). Pixels values from the 

satellite images were extracted using the labelled field plots. The resulting data was divided in two 

parts: 3/4 was used to train the model and 1/4 as a test set. The model was trained using a cross 

validation approach of 10 folds and 10 repetitions. The hyperparameter tuning routine was 

implemented to find out the optimal number of variables to be sampled at each split. The model 

was then used for the classification of the AFS, and three parameters were extracted: the overall 

accuracy (OA); the producer and user accuracies (PA and UA respectively). To reduce the salt and 
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pepper effect on the map, a probability pass filter of 3 by 3 pixels was applied on the classified 

map. 

2.8.2.2 Spatial error assessment (entropy and GWR) 

Probability maps of each feature class were generated from the trained model, showing the 

likelihood of each pixel to belong to the corresponding AFS. The Shannon entropy was calculated 

to assess the heterogeneity at each pixel by returning a value between 0 and 1, where 0 correspond 

to a low level of heterogeneity referred to as “pure pixels” in this study, and 1 correspond to high 

heterogeneity referred to as “mixed pixels”. The entropy threshold values used to distinguish pure 

from mixed pixels were 0.2, 0.3, 0.4 and 0.5. Each of those values were compared with the AFS’ 

entropy threshold values derived from the entropy map using the field plots. The entropy map was 

then classified into pure pixels and mixed pixels, referred to as good and error pixels respectively.  

H(x) = -∑P(x)i log P(x) 

Where H(x) represents the Entropy values for the pixel (x), and P(x)i the probability value of the 

pixel (x) to belong in the AFS class i. 

Before using the error pixels, their spatial distribution was assessed to check for spatial 

autocorrelation in the study area using a geographically weighted regression (GWR). GWR is a 

technique to model spatial heterogeneities on the map  when the relationship between variables 

varies as a function of spatial location (Brunsdon et al., 1996).  

Yi = βi0 + ∑βikXik + εi  

Where Yi corresponds to the pixel label (good/error pixels) at location i; βi0 is the intercept variable 

at location i; βik is the regression coefficient for variable k at location i;  Xik is the independent 

variable k at location i, and εi is the residual error at location i. 

To implement the GWR, 500 random points were used to extract pixel’s values across the study 

area. The values were taken from the satellite images and the entropy map (good/error pixels). The 

relevant features to explain the distribution of the error pixels were selected using a stepwise 

logistic regression based on the Akaike information criterion (AIC). The spatial autocorrelation in 

the residuals was tested using the Moran’s I statistic  
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I = n ∑∑wij ZiZj (S0 ∑Zi
2)-1  

Where Zi represents the deviation to the mean for feature i; wij is the spatial weight between feature 

i and j. n represents the number of features and S0 is the aggregate of all the spatial weights 

(ArcGIS, 2005) 

In case of no evidence of spatial autocorrelation, the relationship between the predictors and the 

error pixels was assumed to be constant across the map, thus a GWR was not applicable. However, 

if there was evidence of spatial autocorrelation in the residuals, a multiscale GWR was applied, 

and the residuals were tested for spatial autocorrelation. Depending on the scale at which each 

variable affected the distribution of the error (local or global) on the one hand, and the result of 

the spatial autocorrelation test on the other hand, a variant of the GWR was applied as described 

by Comber et al. (2020). After the spatial assessment of the classification error, the error pixels 

were removed from the classified map, returning an improved classification map of the AFS in the 

study area. 

2.8.3 Carbon estimation  

2.8.3.1 Model training 

For the carbon estimation, two carbon reference sources (field measurements and GEDI L4A) were 

compared. The pixel values extracted from the input images using the field plots and the GEDI 

footprints were used separately to train a set of models. Several models were considered including:  

i. a linear regression model with three regularization techniques namely Ridge, Lasso and 

ElasticNet (Kirkland et al., 2015).  

ii. a RF model was considered, and the model was trained using a cross validation approach of 

10 folds and 10 repetitions. The model was tuned to determine the optimal number of 

variables to be sampled at each split. The model used to generate a carbon map from the 

satellite data.  

iii. the variable selection using random forest model (VSURF) which is based on reducing the 

correlation within predictors by removing redundant variables and identifying the most 

relevant variable for the prediction and interpretation (Genuer et al., 2015).  

iv. a support vector machine classifier (SVM) which is aimed at minimizing the margin 

between two classes to distinguish them (Genuer et al., 2015) 
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The coefficient of determination (R²) and the root mean square error (RMSE) were used to assess 

the prediction performance of the AGB models in the study area. The combination of satellite data 

and the model that showed the highest performance was selected to generate the AGB map in each 

region of interest. The improved classification of the AFS was then used to describe the carbon 

stock for different AFS in West Africa. 

RMSE = √
∑ (ŷ𝐢 − 𝐲𝐢)²

𝒏
 

R² = 1 - 
∑ (ŷ𝐢 − 𝐲𝐢)²

∑ (𝐲𝐢 − �̅�)²
 

Where ŷi represents the predicted carbon stock value at the pixel i ; yi is the measured carbon stock 

value at pixel i; n is the number of pixels; y̅ is the average carbon stock value of the field plot. 

2.8.3.2 Uncertainties estimations 

The carbon estimations were compared with the measured value to capture the spatial distribution 

of the prediction uncertainties. The prediction was compared to the measured values of carbon 

stocks for each pixel, and the RMSE was estimated for each plot. Using the RMSE value at the 

plot level as a target, a RF algorithm was used to generate an uncertainty map from the satellite 

input data. The RMSE value from the carbon stock estimation model was used as a threshold to 

identify pixels with higher or lower RMSE value. Pixels with an uncertainty lower than the RMSE 

of the model were considered to have a lower error, whereas pixels with a predicted uncertainty 

higher than the RMSE of the model was considered to have a higher error. The uncertainty map 

was presented alongside the carbon map to show the spatial distribution of the uncertainties in the 

estimation of the carbon stock in AFS. 

2.8.4 AGB dynamic in AFS 

2.8.4.1 AGB time series mapping (2017-2021) 

Yearly AGB maps were generated between 2017 and 2021 for each ROI. The predictions were 

generated using the model that was trained using the field measurements as reference. Since the 

reference data were only available for the year 2021, the evaluation of the yearly AGB predictions 

was not possible. The main assumption was that the variation of the carbon level in the sample 

plots was minimal during the time frame. Consequently, the R² and the RMSE were not calculated 
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for that period, and the error was assumed to be consistent from one year to the other. The yearly 

AGB maps were summarized using a raster calculator to generate an average AGB map and a 

standard deviation map over the period 2017 – 2021. 

2.8.4.2 Anomaly detection in the AGB 

To capture the dynamic of AGB stocks in West Africa, the yearly anomaly maps were returned 

from the difference between the yearly AGB estimation and the average AGB level. By showing 

the difference of the AGB estimation of a given year to the average AGB level, the anomaly map 

provides the spatial distribution of carbon source and carbon sinks, where carbon source was 

defined as the portion of the map which emits carbon. It corresponded to the area where the yearly 

estimation is below the average. On the other hand, a carbon sink was defined as the portion of the 

map which stored carbon. It represented locations where the yearly AGB estimation was higher 

than the average. 

The values from the anomaly map of a given year was assessed for significance using the standard 

deviation map. The standard deviation was used as a threshold to separate non-significant changes 

from significant changes. If the values from the anomaly maps were lower than the standard 

deviation (in absolute value), the difference between the yearly AGB estimation and the average 

AGB level was not significant for that location. On the contrary, if the values of the anomaly map 

were superior to the standard deviation, the difference was significant, and the location was 

classified as carbon sink or carbon source, depending on the direction of the change. 

The spatial distribution of carbon sinks and carbon sources was then used as a mask to remove 

areas where the carbon level was constant. The values from the anomaly maps, representing the 

amount of carbon stored or emitted, were used to quantify the contribution of the ROI to climate 

change. Finally, the AFS map was used to rank AFS based on their level of emission and/or 

sequestration. 
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Figure 13: Flowchart of analysis: the boxes in green represent the carbon reference data sources; the boxes in blue correspond to the 

main outputs. The output best parameters correspond to the data combination and ML regression model that gives the best 

performance. 
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3.1   Mapping AFS in West Africa  

Mapping AFS is a challenging task especially when using opensource RS imagery such as data 

from the Sentinel mission. The applied methodology aimed at providing a reliable classification 

map of the main AFS in West Africa by identifying the best feature combination of the predictors 

derived from optical and SAR data on the one hand, and also to model the spatial distribution of 

the classification error on the other hand. Some of the results presented in this section were 

organised and applied in Cote d’Ivoire to model the spatial distribution of the classification error 

in cocoa agroforestry systems (Kanmegne Tamga et al., 2022). This section was organised in way 

to present the AFS mapping for each of the main climatic regions in West Africa, including 

assessment of the classification model and the spatial error assessment. 

3.1.1 Guineo-Congolian region  

3.1.1.1 Feature importance and AFS classification 

The classification of the AFS in the Guineo-Congolian region was carried by training a RF model 

on RS derived indices from Sentinel-1 and -2. Features derived from optical data, especially band 

B and G but also the vegetation index GLI, are the most important variables for mapping AFS 

(Figure 14). The figure also shows that S1 bands and the derived GLCM texture parameters are 

less important features regarding the mean decrease Gini value.  

 

Figure 14: Feature importance (A) and the variable selection for the classification of AFS in the 

Guineo-Congolian region 
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The wide value range within the feature importance and the large proportion of unimportant 

features required a feature selection to identify the most important variables for the prediction of 

AFS using Sentinel data. The variable selection using random forest (VSURF) was used to return 

the list of variables for the prediction of AFS while minimizing the correlation between features. 

The VSURF shows only 10 features are required for mapping AFS in the Guineo-Congolian 

region: four optical bands, four vegetation indices and two GLCM texture parameters. The 

assessment of the variable’s importance after the VSURF shows that significant variables for AFS 

mapping are derived from optical data.  

Classification assessment 

The selected variables were used to train a RF model for the classification of AFS. The assessment 

of the model suggested an overall accuracy OA = 0.89 (Kappa = 0.86). The confidence interval of 

the accuracy at 95% is between 0.86 and 0.92. The producer’s and user’s accuracies showed that 

the omission and commission errors are higher for farm (PA=0.85, UA=0.92), cocoa (PA=0.89, 

UA=0.84), rubber (PA=0.92, UA=0.94) and palm (PA=0.92, UA=0.89) respectively. These results 

were supported by the AUC for each of the feature class: farm (0.85), cocoa (0.89), rubber (0.96) 

and palm (0.98). Figure 15 shows the spatial distribution of the main AFS in the region and the 

area statistics suggested that rubber (38.9%) and cocoa plantations (36.4%) were dominant, 

followed by farms (13.8%) and oil palm (10.8%). The protected area corresponding to the Taï 

National Park (TNP) corresponded to a tropical dense forest. However, during the classification 

the area was not masked out, rather it was classified as an AFS. Only waterbodies, urban area and 

bare soil were removed. The TNP is mainly classified as cocoa plantations with intrusions of 

rubber and palm plantations which could help detected encroachments within the boundaries of 

the protected area. 
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Figure 15: Classification map of the AFS in the Guineo-Congolian region of West Africa 

A closer look at the classification map shows evidence of misclassification in cocoa plots as 

presented in figure 15-snippet 1 and snippet 2. Pixels within cocoa boundaries were misclassified 

as rubber or oil palm plantations. Also, some pixels corresponding to farm are falsely classified as 

rubber or palm plantations as presented in Figure 15-snippet 3. 

3.1.1.2 Spatial error assessment 

The probability maps that were derived from the classification showed that the spatial distribution 

of pixels with high probability of prediction for cocoa and rubber are overlapping in certain region, 

for example within the protected area (Figure 16).  
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Figure 16: Probability maps of the AFS in the Guineo-Congolian region 

In agreement with the information provided by the probability maps, the entropy map showed that 

pixels located within the boundaries of the protected areas were associated with a high level of 

heterogeneity (Figure 17). From the entropy map, different thresholds were used to generate the 

error maps. The common points between the error maps was that, for the different considered 

thresholds, the region corresponding to protected area was classified as error. 

The error maps showing the spatial distribution of mixed pixels have been used to improve the 

classification map by removing pixels associated with error (Figure 18). All the pixels in the 

protected area were removed, however certain pixels were not considered as error, and could be 

regarded as encroachment within the protected areas. The analysis also showed that by removing 

the mixed pixels, there is an improvement of the classification at the plot level. In cocoa plantations 

for instance, the level of error within certain plots was significantly reduced (Figure 18-Snippet 2) 

but in region where cocoa plantations were established next to rubber, all the pixels were 

considered as error and therefore removed (Figure 18-Snippet 1). In agricultural land, the approach 

reduced the level of misclassified pixels, but the overall error level remains high (Figure 18-

Snippet 3). 
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Figure 17: Entropy map and corresponding error maps at different threshold in the Guineo-

Congolian region 

 

Figure 18: Improved classification of the AFS in the Guineo-Congolian region 
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Considering the improved AFS map, the estimation of the corresponding area is presented in 

Figure 19. The graph shows a comparison between areas estimated at different threshold and the 

reference threshold (derived from field measurement). It appears that farm, cocoa, rubber and palm 

had the largest area respectively at different threshold. In farms, a threshold under 0.4 

underestimated the area, while above that threshold value, the area was overestimated. However, 

in cocoa rubber and palm, area estimations were lower than the reference value regardless of the 

threshold value. 

 

Figure 19: Area statistics of the main AFS in the Guineo-Congolian region 

3.1.2 Guinean region 

3.1.2.1 Feature importance and AFS classification 

The feature importance in the Guinean region revealed the mean decrease Gini value decreased 

evenly from one feature to the other, in opposition to the Guineo-Congolian region some features 

were disproportionally more important than other. The graph shows that the most important 

features for AFS mapping in the region are represented by vegetation indices Figure 20 A. The 

VSURF shows that only eight features are required for the prediction of AFS in the region with 

four vegetation indices (GLI, SAVI, MSAVI and TCARI), three optical bands (B, NIR and B) and 

one texture parameter from S1 (Contrast from the VH polarization).  
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Figure 20: Feature importance (A) and variable selection (B) for the classification of AFS in the 

Guinean region 

Classification assessment  

The eight features were used as predictors for a supervised classification of the AFS in the Guinean 

region. The model returned an OA =0.91 (Kappa = 0.87), with a 95% confidence interval between 

0.86 and 0.95. The area under the curve showed that for the three main AFS in the region (cashew, 

farm and mango), mango was the AFS class with the lowest error (AUC=0.96) followed by cashew 

(AUC=0.94) and farm (AUC=0.86). However, the producer’s and user’s accuracies showed that 

the higher commission error was associated with mango (PA=0.82, UA =0.91), cashew (PA=0.96, 

UA=0.9) and farm (PA=0.96, UA=0.92). The spatial distribution of the AFS in the region of 

interest is presented in (Figure 21). The map shows that in the region of Tafiere, which is located 

in the centre of the ROI, the main AFS is cashew and mango. Samples plots in that region showed 

that classification errors were located at the edges of farm plots when they were next to mango 

plantations (Figure 21-Snippet 1 and 3). 
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Figure 21: Classification map of the AFS in the Guinean region of west Africa 

3.1.2.2 Spatial error assessment 

Based on the classification map presented in Figure 21, the observation of the classification at field 

plot level reveals that the level of classification error is reduced in the Guinean region, compared 

to the Guineo-Congolian. The probability maps showed that farm was the AFS class with the 

highest probability level across the region. Only localised area in the central part has a higher 

probability of prediction of cashew and mango (Figure 22). 

 

Figure 22: Probability map of the AFS classes in the Guinean region  
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The entropy map showed that the overall entropy level was below 0.51 suggesting a lower number 

of mixed pixels in the region of interest (Figure 23). The spatial distribution of the detected mixed 

pixels did not show any spatial configuration, rather are evenly distributed across the region. At 

different thresholds, it was found that the error level was comparable, and no large difference was 

observable from the map. 

 

Figure 23: Entropy and error maps at different thresholds in the Guinean region 

The AFS resulting from the improvement of the classification of AFS in the Guinea region showed 

few and localised changes in the ROI (Figure 24). As presented in Figure 24-Snippet 1, the 

approach was able to efficiently remove misclassified farm, providing a more reliable area for 

farm. However, the approach was not able to deal efficiently with cashew and mango. For Cashew, 

the detection was mixed cashew pixels resulted in loss of information while in mango plantation, 

no changes were observed. 

The area statistics derived from the improved AFS map in the Guinean region showed that, in the 

ROI, farm was the main AFS in term of area (71.4% of the total area) followed by mango and 
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cashew with 15.2% and 13.4% km² respectively. They also showed that the spatial assessment in 

the region resulted in an underestimation of the area of the different feature classes (Figure 25). 

As the threshold increased, the estimated area approximated more and more the real area value. 

However, Farm was more sensitive to threshold setting compared to mango and cashew 

respectively. It was also found that for all the threshold values considered in the study, the area 

estimation was always lower than the estimation based on field measurement. 

 

Figure 24: Improved AFS map in the Guinean region  

 

Figure 25: Area statistics of the main AFS in the Guinean region 
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3.1.3 The Sudanian region 

3.1.3.1 Feature importance and AFS classification 

The classification of AFS in the sudanian region relied mainly on predictors derived from optical 

data. The feature analysis showed that the most important features for the classification vegetation 

indices were mainly VARI and GLI and optical bands (Figure 26 A). The contribution of SAR 

data as well as the derived GLCM texture parameters was significantly low. The variable selection 

was then carried on to identify the most relevant features for the classification of AFS. The VSURF 

reveals that 12 out of the 30 initial predictors were significantly important for the classification of 

AFS in the ROI. Four textures parameters from the VH polarization namely entropy, mean, 

contrast and homogeneity were reported relevant for class prediction. Five vegetation indices and 

three optical bands were also included (Figure 26-B) 

 

Figure 26: Feature importance (A) and variable selection (B) for the classification of AFS in the 

Sudanian region 

Classification assessment 

In the ROI, seven different AFS were identified, but only the three most common AFS were 

represented, and the rest was labelled as others. This include fallow and agricultural farm were the 

main the most common trees were gum Arabic trees (Acacia senegalensis), African grapes 

(Lannea macrocarpa), barwood (Pterocarpus erinaceus) and cider trees (Sclerocarya birrea). The 

classification suggestede an OA =0.89 (Kappa 0.87), and the confidence interval at 95% of the 

accuracy at 95% is between 0.84 and 0.94. From a producer’s point of view, the results showed 

that the omission error is lower for the apple ring (Acacia albida) (PA=1, UA=0.85) follow by 
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others (PA = 0.97, UA= 0.86), the African locust bean (Parkia biglobosa) (PA= 0.83, UA = 0.85), 

and shea tree (Vitellaria paradoxa) (PA=0.97, UA=0.86). The AUC also showed similar results 

with the lowest value AUC=0.89 corresponding to shea trees. the balanced accuracy per feature 

class was higher for apple ring (0.97) and others (0.96) compared to the African locust bean (0.91) 

and shea trees (0.81). The area statistic showed that the ROI was dominated by shea tree (55.7%), 

African locust bean (28.1%), others (10.8%) and apple ring (5.3%) and the map indicated that the 

protected areas were dominated by AFS based on the African locust bean (Figure 27). At the plot 

level, evidence of classification error was mainly found in the shea trees, which was either 

classified as others (Figure 11-snippet 1), African locust bean (Figure 11-snippet 2) or apple ring 

(Figure 11-snippets 3 and 4). 

 

Figure 27: Classification of AFS in the Sudanian climate region of west Africa. 

3.1.3.2 Spatial error assessment 

The observation of the probability maps reveals that the protected area in the ROI is mainly 

covered by parkia AFS. The AFS are found in specific locations and there are some areas where 

there are absent. However, shea tree is evenly distributed across the region, except in the protected 

area (Figure 28).  



Chapter 3 

72 

 

Using the probability maps as input, an entropy map was generated, and different threshold values 

were considered to generate the error map. Figure 29 reveals that the overall entropy was high in 

the ROI. This is confirmed by the error maps where there was a homogenous reparation of mixed 

pixels across the ROI. However, in the protected area, the entropy was very low, which resulted 

in a low level of error pixels in that region.  

The improved classification map showed a comparable pattern as the initial map. In the Sudanian 

region, the classification error was recorded predominantly in AFS farms based on shea tree. In 

the ROI, it was found that its spectral signature was comparable to other AFS such as fallow, but 

also Apple ring (Figure 30). The improvement of the classification was less effective in this region 

as shown in Figure 30-snippet 1. When the shea tree was surrounded by other crop types, the 

approach was unable to capture and remove mixed pixels. Also, it was also found that when the 

AFS was misclassified such as in the Figure 30-snippet 3, where shea tree was falsely classified 

as Apple ring, the approach was unable to deal efficiently with such error. The information loss 

per AFS resulting from the improvement of the classification showed that, using the field plots, 

the information within the AFS Apple ring and others was not lost. The percentage of pixel loss 

during the improvement was equal to zero. The highest information loss was found in The African 

locust bean (10.3%) and shea tree (4.8%). 

 

Figure 28: Probability maps of the AFS in the Sudanian region 
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Figure 29: Entropy and error maps at different thresholds in the Sudanian region 

 

Figure 30: Improved AFS map in the Sudanian region 
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The area statistics showed that the region was dominated by shea butter, with about 350 km² using 

the field reference as threshold value for the entropy (Figure 31). It was also found that all the 

selected threshold values resulted in underestimating of the area for the AFS except for shea tree, 

where there was an overestimation of the area if the threshold value was greater than 0.3. 

 

Figure 31: Area statistics for the main AFS in the Sudanian region 

3.2   Geographically Weighted Regression 

The generated error maps showing the spatial distribution of mixed pixels was considered in the 

estimation of the proportion of error in the different ROI. In ROI-1 corresponding to the Guineo-

Congolian Region, about 50% of the estimated area was represented by mixed pixels considering 

the reference level. In the Guinean region (ROI-2), the error level on the classified map was 

estimated at 20% based on the reference entropy’s threshold value. The Sudanian region (ROI-3) 

showed the highest level of mixed pixels with an estimated proportion around 56% (Figure 32). 

Across the different ROI, it appeared that an entropy threshold value of 0.4 gives an estimation of 

the error which was close to the reference value. Moreover, entropy threshold value below 0.4 tend 

to overestimate the proportion of mixed pixels while a larger value underestimate it. 



Results 

75 

 

 

Figure 32: proportion of mixed pixels at different entropy threshold values 

GWR was used to determine if the spatial distribution of mixed pixels across the classified map 

followed a spatial pattern. The summary of the GWR for each ROI at different threshold is 

presented in Table 8. The table shows that overall, there was a strong relationship between the 

predictors derived from Sentinel data and the corresponding error map, with an average R² value 

of 0.87, 0.85 and 0.77 for the Guineo-Congolian, Guinean and Sudanian region respectively. The 

assessment of the spatial correlation of the residuals from the logistic regression showed that it is 

not significant all the ROI, except for the Guineo-Congolian region, where a significant spatial 

correlation was reported for the entropy threshold value of 0.5. The implementation of the GWR 

model was found significant with a relatively low R² value of 0.31. 

Based on the results derived from the GWR, there was evidence of spatial correlation of the 

classification error if the entropy threshold value of 0.5 was used. The analysis of the bandwidth 

of the predictors was applied to identify the predictors that were constant throughout ROI (global 

predictors) as well as the predictors that were varying within the ROI (local predictors) (Figure 

33). It was found that four predictors including the intercept, namely: The Green Leaf Index (GLI), 

the Visible Atmospherically Resistant Index (VARI) and the mean GLCM of the VV polarization 

of S1. The seven others were local predictors based on the size of the bandwidth. This included 

Soil Adjusted Vegetation Index (SAVI), the mean GLCM texture of the VH polarization, the 

Transformed Chlorophyll Absorption in Reflectance Index (TCARI) and the Sentinel-2 bands blue 

(B), green (G), red (R), and red-edge (RE). 
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Table 8: summary of the GWR for the error assessment of AFS map 

 Threshold LR (R²) Number 

of 

features 

Optimum 

number of 

neighbours 

Moran I 

statistic (p-

value) 

GWR 

model 

(R²) 

Guineo-

Congolian 

0.2 0.87 16 4 0.25  

0.3 0.82 19 4 0.12 

0.4 0.78 19 2 0.10 

0.5 0.76 18 6 0.09 0.31 

Reference 0.75 18 2 0.19  

Guinean 0.2 0.85 21 1 0.46  

0.3 0.87 19 1 0.34 

0.4 0.89 18 1 0.20 

0.5 0.91 3 9 0.85  

Reference 0.88 17 1 0.34  

Sudanian 0.2 0.77 20 3 0.17  

0.3 0.75 18 1 0.30 

0.4 0.72 17 1 0.34 

0.5 0.68 15 3 0.45 

Reference 0.72 17 1 0.25 
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Figure 33: Bandwidth of the predictors for the error maps. 

The GWR coefficient was retrieved and plotted to illustrate the spatial distribution of the change 

across the ROI (Figure 34). It appears that for predictors with smaller bandwidth up to four 

different regions could be identified. The first correspond to the extent of the TNP, followed by a 

small ring around it. Then smaller regions with coefficients in the same value ranges were 

identified in upper right corner of the ROI. For local predictors with larger bandwidth such as 

SAVI, it was found that about three regions could be identified as presented in the figure. 

 

Figure 34: Spatial variation of the GWR coefficients for local predictors 
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Considering the global predictors (Figure 35), it was found that the range within the coefficient 

value was different compared to the local predictors. If the difference in value range within the 

local predictor with the smaller bandwidth was about 100 units, the difference within the range in 

global predictors was not more than 5 units. The overall value was constant across the ROI, with 

a variance of about 0.1 units, 0.5 units and 0.25 units for VARI, VV_mean and GLI respectively. 

Only the intercept showed variation corresponding to about 5 units, yet the spatial distribution of 

the coefficient did not show any pattern. 

 

Figure 35: Spatial variation of the GWR coefficient for global predictors 
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3.3   Carbon stock in West Africa 

Beyond the economic value of AFS and their contribution to the livelihood of local population, 

carbon modelling in AFS is crucial to assess the contribution of those systems to climate change. 

Since AFS was been reported as a viable solution to alleviate poverty and mitigate climate change, 

there is a need to provide a reliable remote sensing-based approach for carbon estimation in 

different AFS across west Africa. The aim was to compare the performance of different RS data 

sources and different machine learning algorithms to identify the best combination for carbon 

modelling in different climatic regions. Moreover, it was to compare the carbon stock level in 

different AFS across west Africa to identify the main predictors of biomass with the aim of making 

informed recommendations. The results from this section were published under the title 

“Estimation of aboveground biomass in agroforestry systems over three climatic regions in West 

Africa using Sentinel-1, Sentinel-2, ALOS and GEDI data” (Kanmegne Tamga, et al., 2022b). 

This section is organised in three main parts: (i) global modelling approach where different data 

were compared without consideration of the climatic regions; (ii) a modelling approach based on 

the comparison of different RS dataset in different climatic regions; (iii) the comparison of 

different machine learning algorithms and (iv) the comparison of the AGB level in different AFS 

across west Africa. 

3.3.1 Global model for carbon estimation  

The prediction performance of the aboveground carbon stocks using a single model -here referred 

to as global model- over the entire region of West Africa, was evaluated in a scatterplot between 

measured vs. predicted values for each of the AGB reference sources that was used as response 

variables namely AGB estimations derived from field measurements and AGB predictions from 

GEDI L4A. A trendline (in red) and a 1:1 ratio line (dotted) was added to the plot to assess the 

performance of the model (Figure 36).  
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Figure 36: relation between measured and predicted AGB in West Africa using field measurements 

as reference data (Kanmegne Tamga et al., 2022b).  

When considering AGB derived from field measurements as response variable, the results show 

that for single RS dataset, optical data derived from S2 were the most sensitive to AGB (R² = 0.84, 

RMSE = 6.08) compared to Radar data. For RADAR data, the error level reported by the RMSE 

was almost similar, but ALOS (R² = 0.51 RMSE = 11.87) was more sensitive to AGB than S1 (R² 

= 0.42, RMSE = 11.67). When optical and Radar data were combined, the best score was returned 

from the combination of S1 and S2 (S1 + S2) with R² = 0.87 and RMSE = 5.55, which was higher 

than the combination ALOS + S2 (R² =0.78, RSME = 7.61). 

Global model using GEDI L4A 

The AGB prediction of the GEDI L4A was used as response variable to train a global model for 

ASB estimation in West Africa (Figure 37). The results showed that the overall performance of 
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the prediction model was low, where S2 showed the highest score (R² = 0.13, RMSE = 75.16). for 

Radar data, a score of R² = 0.05, RMSE = 66.84 and R² = 0.03, RMSE = 67.55 was obtained for 

S1 and S2 respectively. based on the trendline, the model was underestimating the AGB level in 

the region when using GEDI L4A. 

 

Figure 37: relation between measured and predicted AGB in West Africa using GEDI L4A as 

reference data (Kanmegne Tamga et al., 2022b) 

3.3.2 AGB estimation in climatic regions 

Guineo congolian 

The next step in AGB modelling was to stratify the ROI by the climatic regions. AGB prediction 

models were then developed and compared between the existing climatic regions. Here also, both 

AGB reference data were considered (AGB from field measurements and GEDI L4A). In the 

southern part of Côte d’Ivoire which correspond to the Guineo-Congolian region, the main AFS 
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were represented by cocoa, rubber and palm oil plantations as well as agricultural farms. When 

using the AGB derived from field measurements as reference data, optical data from S2 returns 

the highest performance (R² = 0.9, RMSE = 4.12). For Radar data, the score obtained from ALOS 

data (R² = 0.54, RMSE = 10.58) was higher than the one from S1 (R² = 0.26, RMSE = 11.11). The 

highest score however was obtained when optical and radar data were combined (Figure 38). The 

combination that returned the highest score was S1 + S2 (R² = 0.91, RMSE = 3.82) which was 

higher than ALOS + S2 (R² = 0.86, RMSE = 5.64). 

 

Figure 38: relation between measured and predicted AGB in the Guineo Congolian region using 

field measurements as reference data (Kanmegne Tamga et al., 2022b) 

AGB prediction using GEDI L4A also returned interesting score for optical and radar data (Figure 

39). The best performance was obtained with S2 (R² = 0.64, RMSE = 41.28) however, the error 

level was about 10 times higher compare to the score obtained with reference data derived from 
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the field. ALOS (R² = 0.61, RMSE = 34.16) was showing a better performance than the 

combination S1 +S2 (R² = 0.61, RMSE = 44.26). Even though both had the same R² value, ALOS 

has a lower prediction error. When combined with S2, the performance was reduced (R² = 0.54, 

RMSE = 36.9), and the score was lower than the single dataset ALOS and S2 respectively. The 

lowest score was obtained with the S1 dataset (R² = 0.36, RMSE = 56.39). It was also the dataset 

with the largest prediction error when using GEDI L4A. 

 

Figure 39: relation between measured and predicted AGB in the Guineo Congolian region using 

GEDI L4A as reference data (Kanmegne Tamga et al., 2022b) 

Guinean 

The Guinean region which corresponds to the northern part of Côte d’Ivoire was mainly dominated 

by cashew and mango plantations alongside with agricultural farms. The assessment of the AGB 

predictions using field measurement as reference data showed that when considering single 
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dataset, optical data from S2 provides the best score (R² = 0.72, RMSE = 9.64) which was lower 

compared to the Guineo-Congolian region (Figure 40). As far as radar data is concerned, S1 (R² = 

0.6, RMSE = 11.91) showed a higher score compared to ALOS (R² = 0.39, RMSE = 13.23). it 

appeared that S1 was more sensitive to AGB in this region compared to the Guineo Congolian as 

the score was about 43% higher with about the same prediction error level. The highest score was 

obtained with S1 + S2 (R² = 0.82, RMSE = 8.45) while the combination ALOS + S2 (R² = 0.63, 

RMSE = 9.68) showed a score which is lower than S2. The trendlines showed that in their 

prediction, the models tend to overestimate AGB in locations with a low level of AGB, while they 

underestimated it in regions with high ABG level. 

 

Figure 40: relation between measured and predicted AGB in the Guinean region using field 

measurements as reference data (Kanmegne Tamga et al., 2022b) 
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When trying to predict the AGB level in the Guinean region using GEDI L4A as reference data, 

the model was giving negative R² suggesting that the model was doing worse than guessing (Figure 

41). Based on the level of the prediction error, the best score in this setting was obtain using S1 + 

S2 (RMSE = 45.98) followed by S2 (RMSE = 51.99). The worst score was returned by ALOS + 

S2 followed by ALOS (RMSE = 68.55).  

 

Figure 41: relation between measured and predicted AGB in the Guinean region using GEDI L4A 

as reference data. (Kanmegne Tamga et al., 2022b) 

Sudanian 

The sudanian region corresponded to the ROI located in Burkina Faso. In this location, diverse 

type of AFS were found, mainly in association with agricultural crops including cotton and sesame. 

The main AFS were represented by the African locust bean, apple ring and shea trees. The 

estimation of the AGB using reference data derived from field measurements showed that for 
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single RS dataset, the best score was obtained with S2 (R² = 0.84, RMSE =5.91) followed by 

ALOS (R² = 0.71, RMSE = 5.9) and S1 (R² = 0.55, RMSE = 10.21). when the data were combined, 

S1 + S2 is slightly higher than S2, with R² = 0.86 and RMSE = 5.3, while the combination ALOS 

+ S2 (R² = 0.7, RMSE = 6.24) was worse than ALOS alone (Figure 42). Also, it was found that, 

when using ALOS data, the model overestimate AGB predictions for area with low biomass levels. 

 

 

Figure 42: Relation between measured and predicted AGB in the sudanian region using field 

measurements as reference data (Kanmegne Tamga et al., 2022b) 

The usability of AGB predictions from GEDI L4A for biomass modelling in the Sudanian region 

results in models which predictions were worse than guessing as shown by negative R² (Figure 

43). The combination ALOS + S2 shows the lowest error level (RMSE = 80.17) which was 15.5 
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times higher than the predictions based on field measurements. In this scenario, S2 showed the 

worst performance with an RMSE = 109.13. 

 

Figure 43: Relation between measured and predicted AGB in the sudanian region using GEDI L4A 

as reference data. (Kanmegne Tamga et al., 2022b). 

3.3.3 Machine learning algorithms 

Modelling the AGB in different climatic of West Africa could be heavily influenced by the 

machine algorithm used in the process. The performance of different machine learning algorithms 

(ML) were compared based using their coefficient of determination and error level using the 

different reference data. Based on their coefficient it appeared that for linear models namely linear, 

ridge Lasso and ElasticNet regression models, the prediction performance was almost similar for 

both reference data (Figure 44). It also appears that a higher R² was achieved when using the 

combination S1 + S2. However, for non-linear models, it was found that there is an important 
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difference between predictions based on field data and GEDI L4A. The predictions based on field 

measurements had a higher R² for RF, VSURF and SVM. The best model however was achieved 

using RF with S1 + S2 (R²=0.91). When using GEDI L4A as reference, the accuracies were similar 

for S2, ALOS+S2 and S1+S2 (R²=0.63). The same trend was observed when VSURF and SVM 

are used. 

 

Figure 44: R² of ML algorithms for AGB predictions in West Africa (Kanmegne Tamga et al., 

2022b) 

The assessment of the RMSE showed that the prediction error was higher for prediction based on 

GEDI L4A (Figure 45). This error was recorded to be much higher for linear ML, except for the 

linear regression model which showed a prediction error comparable to RF for all the different 

datasets. The smallest RMSE value was obtained with RF when using field data and S1+S2 

(RMSE=3.78), while the same combination returned an error level about 10 times higher (RMSE= 

37.28) when evaluating against GEDI L4A data. 
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Figure 45: RMSE of ML algorithms for AGB predictions in West Africa (Kanmegne Tamga et al., 

2022b) 

3.4   Carbon maps and uncertainties  

Guineo-Congolian. 

The AGB map in Guineo-Congolian region was generated using RF and the combination S1 + S2 

and the prediction error at each pixel was generated (Figure 46). The classification assessment 

showed a R² = 0.91 and RMSE =3.82, and the RMSE value was used as a threshold to define four 

classes of different level of prediction error; low and very low if the RMSE was lower than 1.91 

and 0.95 respectively or high and very high if the pixel value was higher than one or two time. The 

interpretation of the carbon map revealed that higher biomass levels were observed in the region 

corresponding to the Taï national park. The sample plots presented in snippet-1 showed that the 

biomass level was higher in rubber plantations compared to cocoa farms. The prediction error was 

found to be high across the ROI. The region around the Taï national park showed a prediction error 

which was higher than the prediction from the model. At the sample level, the prediction error was 

higher in cocoa AFS compared to rubber and farm (Figure 46 snippet-2). 
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Figure 46: carbon map in the Guineo-Congolian region (A) and the uncertainty map (B). 

(Kanmegne Tamga et al., 2022b) 

Guinean 

The AGB level was found to be uniform across the ROI in the Guinean region (Figure 47). The 

observation at sample level showed that AGB in cashew plantations was slightly higher compared 

to mango.  

 

Figure 47: Carbon map in the Guinean region (north Côte d’Ivoire) (A) with the uncertainty map 

(B). (Kanmegne Tamga et al., 2022b) 

The level of prediction error was very high across the area. In farms, there was heterogeneity in 

the spatial distribution of the prediction error, so that the prediction error was low in the middle of 
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the farm but increased around the boundaries of the plot (Figure 47, snippet-1). On the other hand, 

the prediction error was uniform for cashew and mango plantations with a very high level of error 

(Figure 47, snippet-2). 

Sudanian 

The AGB level of the ROI in the Sudanian region was uniform across the area, except from the 

protected area, where the AGB level was lower (Figure 48). The area is showing a very low 

prediction error except from certain spot where there are higher prediction errors. As an 

illustration, the Figure 48 snippet-1 shows the AGB and prediction error for a plot of the African 

locust bean (Parkia biglobosa). The AGB level as well as the associated prediction error was not 

evenly distribution within the plot. The predictor at certain areas were not as reliable as the 

prediction around it. Moreover, the Figure 48 snippet-2 shows that the error in AGB estimation 

varies from one plot to the other for shea based AFS. 

 

Figure 48: Carbon map in the Sudanian region (A) with the uncertainty map (B) (Kanmegne 

Tamga et al., 2022b) 

3.4.1 Carbon stocks for each AFS in West Africa 

The average AGB level was estimated for the different AFS in West Africa to create a reference 

to evaluate their contribution to climate change. Using the area statistics, the average AGB was 

determined in tonne per ha (Mg.ha-1). Also, the carbon map was validated at plot level, and the 

accuracy for each AFS was reported (Table 9). In the Guineo-Congolian region, the higher AGB 

level was found in cocoa plantations (7.51 ± 0.6 Mg.ha-1) followed by rubber (7.33 ± 0.3 Mg.ha-1) 
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and farm (6.97 ± 0.4 Mg.ha-1). The assessment of the prediction at pixel level showed that the 

AGB map was more accurate in farm (R² = 0.76, RMSE = 7.0) and cocoa farms (R² = 0.6, RMSE 

= 7.48) compared to rubber plantations (R² = 0.25, RMSE = 13.86). 

In the Guinean region, the highest AGB level was found in cashew plantations (13.78 ± 0.9 Mg.ha-

1) followed by mango (12.82 ± 0.6 Mg.ha-1) and farm (11.78 ± 0.2 Mg.ha-1). The assessment of 

the AGB map showed that the best prediction accuracy was achieved in farm (R² =0.78, RMSE = 

6.62) followed by mango (R² = 0.58, RMSE = 21.07). AGB estimation in cashew plantations was 

very low (R² =0.37, RMSE = 38.68) with a very high level of error.  

The AFS in the sudanian region were associated with the highest level of AGB level in west Africa. 

The largest AGB stock was reported in AFS dominated by custard apple (82.11 Mg.ha-1), African 

locust bean (43.97 ± 54.4) and apple ring AFS (23.24 ± 10.3 Mg.ha-1). The shea tree which was 

one of the most popular AFS in the region was having an AGB level (15.05 ± Mg.ha-1) which was 

higher than all the AFS in the Guineo-Congolian and Guinean region.  

Table 9: Summary of AGB estimations of AFS in West Africa (Kanmegne Tamga et al., 2022b) 

Climatic regions AFS Carbon (Mg ha-1) R² RMSE N plots 

Guineo-

Congolian 

Farm  6.97 ± 0.4 0.76 7.00 62 

Cocoa 7.51 ± 0.6 0.6 7.48 30 

Rubber 7.33 ± 0.3 0.25 13.86 30 

Guinean 

Cashew 13.78 ± 0.9 0.37 38.68 21 

Mango 12.82 ± 0.6 0.58 21.07 22 

Farm 11.78 ± 0.2 0.78 6.62 23 

Sudanian 

Custard apple 82.11   1 

Shea tree 15.05 ± 7.3   11 

Apple-ring  23.24 ± 10.3   5 

Marula 6.59 ± 0.3   2 

African locust bean 43.97 ± 54.4   6 
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The assessment of the relationship between the AGB level, the biometric parameters (height and 

diameter) and the tree composition in each AFS revealed that the biometric parameters of the trees 

were more important than the composition of the AFS. In fact, the AGB was more sensitive to 

diameter (R² =0.45) and tree height (R² = 0.13) compared to tree density (R² =0.1) (Figure 49). 

Therefore, AFS with trees that have larger diameter and height tends to return large AGB levels 

 

Figure 49: Relation between tree parameters and AGB of AFS in West Africa Map of carbon and 

RMSE in AFS (Kanmegne Tamga et al., 2022b). 

The improved AFS maps were used to extract the spatial distribution of AGB level of the main 

AFS in each ROI. Rubber and cocoa plantations were identified as the dominant AFS in the 

Guineo-Congolian region, representing more than 75% of the land cover in the region. The AGB 

estimations in oil palm plantations were not presented because the development of the model did 

not include training samples from that AFS. The map shows that carbon stocks in cocoa plantations 

are evenly distributed across the ROI. However, the prediction error was lower in the 

municipalities of Guiberoua and Gagnoa, and higher in the southern part (Soubre, Sassandra and 

Gueyo) (Figure 50).  
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Figure 50: Spatial distribution of the AGB level of cocoa plantations in the Guineo-Congolian 

region. 

In rubber plantations, the overall level of carbon stocks was lower compared to cocoa plantations 

and no specific municipality could be associated with a high level of rubber production. The map 

suggested no encroachment of cocoa plantations in the boundaries of the protected area, and the 

AGB prediction error was relatively high in the municipality of Sassandra. The spatial distribution 

of AGB level in farms is present in Figure 51.  

 

Figure 51: Spatial distribution of the AGB distribution of the AGB level of rubber plantations in 

the Guineo-Congolian region. 
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In the Guinean region, the main cash crops were represented by cashew and mango. As far as the 

carbon stocks distribution was concerned, cashew showed the highest level across the ROI, 

especially in the municipality of Tafiere (Figure 52). Cashew plantations with higher levels of 

AGB were identified in the eastern and western part of the municipality. The associated prediction 

error was found to be higher across the ROI, mainly in the central part of the municipality of 

Tafiere was showing higher uncertainties. In mango plantations, higher AGB levels are recorded 

in the municipalities of Sinematiali and Ferkessedougou. In the north-western part of Tafiere, the 

pattern of AGB level suggested that mango plantations are planted in the form of small, well-

defined units (Figure 53). 

 

Figure 52: Spatial distribution of the AGB level of cashew plantations in the Guinea region 
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Figure 53: Spatial distribution of the AGB level of mango plantations in the Guinean region 

3.4.2 Biodiversity assessment of AFS in West Africa 

The biodiversity level was assessed in the AFS of West Africa using two ecological indices namely 

biodiversity and Simpson indices (Figure 54). The biodiversity index is the ratio between the 

number of species and the number of trees. The value ranges between 0 and 1 where 0 is associated 

with a poor biodiversity (monocropping for example) and 1 higher diversity. A higher biodiversity 

level was found in multipurpose trees on agricultural lands. In west Africa, the African locust bean 

AFS showed the highest biodiversity index (BI=0.84) followed by agricultural farms in the 

Guineo-Congolian region (BI=0.61). The AFS class referred to as others (BI= 0.55), shea trees 

(BI= 0.46) and apple ring (BI=0.37) which were found in the Sudanian region, showed a higher 

biodiversity compared to farms in the Guinean region (BI=0.32). Plantation crops which are 

mainly represented by mango (BI=0.08), cashew (0.07), cocoa (BI=0.05) and rubber (BI=0.03) 

were associated with the lowest biodiversity in West Africa. 

The Simpson index was also used to assess the biodiversity in AFS. It considers the number of 

species as well as the relative abundance of each species. Based on this metric, it was found that 

farms in the Guineo-Congolian region (SI=0.57) showed a higher value compared to the African 

locust bean (SI=0.54). The Simpson index was also found to be higher in others (SI=0.49) and 
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farms of the Guinean region (SI=0.44) compared to shea trees (SI=0.23) and apple ring (SI=0.21). 

In plantation crops, the Simpson index values were the lowest in cashew (SI=0.12), mango 

(SI=0.1); cocoa (SI=0.08) and rubber (SI=0). 

 

Figure 54: Biodiversity and Simpson indices of different AFS in West Africa 

The relationship between the biodiversity indices and the estimated AGB was explored across the 

AFS in West Africa (Figure 55). It was found that the biodiversity index was showing a positive 

correlation with the AGB (R²=0.57) while the relation between the AGB and the Simpson’s index 

was weaker (R²=0.31). However, the relation between biodiversity indices and AGB was not 

significant in AFS at a significance threshold of 5%, suggesting that the AGB level was not 

determined or influenced by the level of biodiversity. 

 

Figure 55: Relation between the biodiversity indices and the AGB level of AFS in West Africa 
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3.5   Carbon stock dynamic within AFS in West Africa 

The assessment of carbon stock dynamic of AFS in west Africa was based on the comparison of 

yearly AGB estimations to the average AGB maps and the corresponding standard deviation map 

in each climatic region between 2017 and 2021. The average and variance maps corresponding to 

the above-mentioned period are presented in Figure 56. The maps show that the overall AGB level 

is higher in the Sudanian, and Guinean compared to the Guineo-Congolian region, and the SD was 

lowest in the Guinean region. 

 

Figure 56: Average AGB level and the corresponding standard deviation maps between 2017 and 

2021. 

3.5.1 The Guineo-Congolian region 

The difference between the AGB level at a given year and the average AGB level was used to 

detect anomalies, which referred to location where the AGB level was different from the long-

term trend. SD was used as threshold to determine if the differences were significant, and the 

locations were labelled as carbon source if the anomalies suggested a loss of biomass or carbon 

sink for increase in AGB. Figure 57 shows the carbon dynamic of a cocoa and rubber field plots. 

In cocoa plantations, it was found that the dynamic of the standing biomass was higher, with an 

increase of carbon sinks between 2017 to 2019, a significant AGB loss in 2020 followed by an 
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increase in AGB in 2021. In rubber plantations on the other hand, it was found that the proportion 

of carbon sinks were increasing consistently from 2017 to 2021. 

 

Figure 57: Dynamic of carbon stocks of crop plantations in the Guineo-Congolian region 

The dynamic of carbon in the entire ROI is summarized in Figure 58. The map suggests that AFS 

were mainly behaving as carbon sources between the year 2017 and 2018. However, from year 

2019, the overall AGB level started to increase, as illustrated by the increase of carbon sinks across 

the ROI. 
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Figure 58: spatial distribution of the carbon pools and carbon sinks in the Guineo-Congolian region 

The area statistics showed a decrease of the proportion of carbon sinks, going from 36.5% to 3.5% 

between 2017 and 2018. This decrease is followed by an increase of proportion of carbon sinks 

going from 44.9% in 2019 up to 85% in 2021 (Figure 59). 

 

Figure 59: Dynamic of the proportion of carbon sinks in the Guineo-Congolian region  
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3.5.2 The Guinean region 

In the Guinean region, the carbon stock dynamics observed in farm, cashew and mango plantations 

are presented in Figure 60. It was found that in farms (the line on the top), the carbon stock level 

was varying, showing a decrease of carbon sinks from 2017 to 2018 and from 2020 to 2021, while 

a large increase of AGB was captured between 2019 and 2020. In cashew and mango plantations, 

the trend suggested no change in the carbon level. In fact, the carbon level in 2017 barely decreased 

across the year, except for a significant loss of carbon in cashew plantations in 2019. 

 

Figure 60: Dynamic of carbon stocks of some AFS in the Guinean region 

The spatial distribution of carbon sinks and carbon sources in the ROI is presented in Figure 61. It 

was found that from 2017, the carbon level decreased until 2019. The year 2020, the carbon level 

had increased, as presented by the increase of carbon sinks. In 2021, there was a decrease in carbon 

sink, suggesting a lower AGB level compared to the long-term trend. 



Chapter 3 

102 

 

 

Figure 61: spatial distribution of the carbon pools and carbon sinks in the Guinean region of west 

Africa 

The area statistics suggested a decrease of the proportion of carbon sinks over the period of 

observation, with 74.4% in 2017 to 49.5% in 2021 (Figure 62). It was also found that the proportion 

of carbon sinks was very low for the years 2018 (30.6%) and 2019 (29.6%). In 2020, the proportion 

of carbon sinks increased up to 69.2%. 

 

Figure 62: Dynamic of the proportion of carbon sinks in the Guinean region 
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3.5.3 The sudanian region 

In the Sudanian region, the carbon stock dynamic was observed for the African locust bean and 

the shea trees (Figure 63). It was found that for both AFS, the AGB level was very low in 2017 

compared to the average AGB level. For the African locust bean, the AGB level was found to be 

constant over time, while shea trees showed an increase in carbon sinks suggesting the increases 

in the AGB level.  

When considering the entire ROI, the year 2017 was characterised by an overall lower AGB level 

compared to the average AGB level (Figure 64). In the year 2018, there was an increase in the 

proportion of carbon sinks mainly in the northern part, while the AGB level in the south remained 

low. In 2019, the overall level of AGB increased, showing an important change in the southern 

part of the ROI and within the boundaries of the protected areas. In 2020, A decrease in the AGB 

level was detected, mainly in the southern part of the ROI. In 2021, the overall AGB level 

increased, mainly in the southern part of the ROI and within the protected area. 

 

Figure 63: Dynamic of carbon stocks of some AFS in the sudanian region 
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Figure 64: Spatial distribution of carbon pools and carbon sinks in the Sudanian region of West 

Africa 

The area statistics of the proportion of carbon sink in the sudanian region showed an increase 

during the temporal window used for the analysis, going from 18.5% in 2017 to 82.3% in 2021. 

From 2017 to 2019, the area of carbon sinks increased linearly and reached 61.3% in 2017. It was 

also found that in the year 2020, the proportion of carbon sinks decreased to 51.3% (Figure 65).  

 

Figure 65: Dynamic of the proportion of carbon sinks in the Sudanian region 
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3.6   Proportion of the carbon sinks in each AFS 

The improved classification map of the AFS in each climatic region was used to extract the area 

statistic of the carbon sink between 2017 and 2021 (Figure 66). The proportion of carbon sink 

corresponds to the proportion associated to each AFS for the entire ROI. The largest proportion of 

carbon sinks was found within the AFS in the Guinean region. In the year 2017, the largest 

proportion of sinks was found in agricultural farms (42.4%) followed by cashew (18.4%) and 

mango (13.2%). Then in 2018, cashew showed the highest proportion of carbon sink, where 57% 

of the increase in AGB was found in cashew plantations. In 2019, the proportion of cashew sinks 

decreased to reach 4.7%. In 2020 and 2021, the largest proportion of sinks in the AFS was found 

in farms, followed by cashew and mango plantations. In the Guineo-Congolian region, it was found 

that the largest proportion of Sink was found in cocoa plantations, when rubber plantations and 

farms were showing similar values. In 2017, the proportion of sinks in cocoa plantations was 

estimated at 13.1% of the ROI, compared to 8.2% and 8.4% for farm and rubber plantations 

respectively. From 2019 to 2021, the proportion of sinks in cocoa plantations increased from 

15.6% to 29.7% suggesting either an increase in the AGB level within existing plantations or an 

increase of the area of cocoa plantations in the ROI. Comparatively, an increase from 10.2% to 

19.1% was recorded for rubber plantations. In the sudanian region, the dynamics of the proportion 

of carbon sinks in the AFS moved similarly, with values that were similar. In 2017, the proportion 

of carbon sinks between AFS varied between 2.7% and 3.4%. It was found that this proportion has 

increased over time to reach 12.7 to 13.6% in 2021. No AFS was found more important than the 

others, rather they showed the same pattern over time. 

 

Figure 66: Dynamic of the proportion of carbon sinks of the AFS in different climatic region of 

West Africa
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4.1   Agroforestry systems 

The occurrence and the spatial distribution of the main agroforestry systems (AFS) in West Africa 

depends on several factors including economic and sociocultural. However, the major determinant 

of the adoption of an AFS in a region are the environmental conditions including soil and climatic 

properties. In West Africa, the humid climatic conditions associated with the Guineo-Congolian 

region is favourable for cash crop plantations such as cocoa farming, rubber plantation, and oil 

palm. In the ROI, the AFS was mainly dominated by rubber (38.9%) and cocoa (36.4%), but also 

oil palm (10.8%). The investigation on the field revealed that those AFS are often established on 

previous fallow and/or secondary forests for an extensive period (30 years in average). The main 

reason is economic as cocoa farming provides sufficient income for about 33% of farmer in the 

region (Boeckx et al., 2020). Cocoa beans production is a major commodity in Cote d’Ivoire and 

represent about 5% of the revenues from exports. The country is the world largest cocoa beans 

producer with over two million tons in 2020 (Shahbandeh, 2021). Cocoa farming is also the main 

driver of deforestation , responsible of the loss of more than 80% of the forest cover in Cote 

d’Ivoire between 1961 and 2000 (Sabas et al., 2020), with consequences such as encroachment in 

protected areas, habitat degradation, loss of biodiversity, soil degradation and  climate change. Yet 

sustainable intensification of cocoa production could be a solution for poverty alleviation and 

climate change as the demand for cocoa is projected to expand by 7.3% in 2025 mainly due to 

rapid growing of chocolate industries in emerging economies (Boeckx et al., 2020; GVR, 2019; 

Nair et al., 2010). 

In drier and hotter conditions, AFS are mainly represented by either cashew and mango plantations 

in the Guinean region, where the precipitation level guarantees sufficient water for the crops, or 

by multipurpose trees on agricultural land. The area statistics revealed that the ROI was mainly 

represented by farms (71.4%), and the cash crops represented only 15.2% and 13.4% for mango 

and cashew respectively. For local farmers, cashews and mango represent the main source of 

income. Because they are highly perishable, mangoes are sold to local industries or to local market. 

Cashew on the other hand are dried and stored to be sold later on to meet family needs. Like the 

Guinean region, farm was the main AFS in the Sudanian region, mainly dedicated to agricultural 

cash crops such as cotton and sesame, associated with fruit trees. Trees are maintained on farms 

mainly for the derived non-timber products (fruits, edible leaves, fodder, and medicine). The 
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region is dominated by shea trees (55.7%) which is one of the most important crops in West Africa, 

primarily because it is included in the diet of the farmer, but also because of the high demand on 

the international market. In fact, the market was valued at 655.2 million dollars in 2020, and the 

demand is estimated to reach 2.4 billion by 2030 (Anil & Roshan, 2021; Dagnogo et al., 2021; 

Wadudu et al., 2016). 

Agricultural farms and cash crops plantations are managed differently in West Africa, yet the 

spatial distribution of trees within similar AFS is comparable across the region. For instance, an 

average tree density of 20 trees/ha was observed in farms across West Africa, and the main crops 

were mainly determined by the climatic conditions and the diet of the farmers. Moreover, the 

production system in farms is extensive, relying mainly on crop rotation as nutrient management 

practice (Acevedo-Siaca & Goldsmith, 2020). For cash crop plantation on the other hand, the 

production system is semi-intensive especially in cocoa plantations with the use of pesticides to 

protect the cocoa trees against common disease including brown cocoa pod rot, cocoa stem canker 

or brown root rot among others. However, cocoa production is threatened by the swollen shoot, an 

endemic pathology in West Africa which is caused by the cocoa swollen shoot virus, and which is 

responsible for cocoa tree mortality with important consequences on cocoa yields (Adopo et al., 

2022). The economic loss due to the decrease of the yield is one of the major triggers for cocoa 

expansion, leading to deforestation in the region (Ruf et al., 2014). 

4.2   Satellite-based classification of AFS 

Guineo-Congolian 

Forest loss is a major issue as far as climate change is concerned; therefore, an accurate mapping 

of AFS is crucial for monitoring deforestation in West Africa. In the Guineo-Congolian region, 

cocoa farming is acknowledged as the main driver of deforestation, threatening the integrity of 

protected area like the Taï national park. When using open-source data from the sentinel mission, 

it was found that a combination of ten input variables including vegetation indices and some 

texture parameters (GLCM mean) returns an overall accuracy of 89%, with a confidence interval 

at 95%. between 86 and 92% at 95%. Looking at the detection of the main cash crops, the error of 

omission was higher for cocoa (11%) compared to rubber and palm oil (8%), and cocoa also 

showed the highest error of commission (16%). The detection of cocoa farms derived from this 

AFS classification is more accurate than the cocoa detection map proposed by Abu et al. (2021) in 



Chapter 4 

 

110 

 

the same region, using the same RS-data. This could result from the fact that Abu et al. (2021) 

carried a classification at national level, focussing only on cocoa farm in Cote d’Ivoire and Ghana. 

A second point could be related to the fact that the current study considered multiple classes, which 

therefore reduce the level of misclassification error, as it was demonstrated that multi-class is more 

efficient than single-class (Madden et al., 2005). Moreover, the balanced accuracy associated with 

cocoa farms is superior to the accuracy presented by Numbisi et al. (2019) in the delineation of 

cocoa agroforests in Cameroon, central Africa. This could be explained by the fact that the 

challenges of cocoa mapping are different in Central and west Africa. In central Africa, the higher 

forest tree density in cocoa plantations makes it difficult to separate cocoa farm from secondary 

forest (Yemefack, 2005). Higher balanced accuracies were reported for rubber and oil palm 

plantations probably because they are monocrop plantations where trees are established at regular 

intervals, which is not the case for agricultural farms and cocoa plantations in which no spatial 

arrangement is observed. 

The assessment of the classification map showed that there is evidence of classification errors 

mainly in cocoa plots, which are falsely classified either as rubber or oil palm. An important point 

to keep in mind is that based on the variable selection procedure prior to the classification, it was 

found that optical data and the derived vegetation indices were significantly more important that 

SAR data for AFS mapping. This could mean that cocoa, rubber and oil palm return similar spectral 

signature at 10 m resolution, making difficult to properly delineate them. Similar findings were 

reported in the literature, presenting the difficulty to delineate cocoa farm from rubber plantations 

in west Africa, mainly because cocoa are grown full sun, showing there the same structure as 

rubber plantations (Minang et al., 2014). Furthermore, the probability maps of the feature class 

showed that at pixel level, the confusion is higher between cocoa and rubber compared to cocoa 

and oil palm. 

Guinean 

The classification map of cashew and mango plantations in the Guinean region was much precise 

compared to the AFS map in the Guineo-Congolian. The assessment of the returned and overall 

accuracy of 91% with a confidence interval between 86 and 95%. The classification accuracy of 

cashew and mango were found to be comparable (0.94 and 0.96 respectively) as suggested by the 

area under the curve (AUC). However, it was harder to accurately detect agricultural farms (AUC= 
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0.86). this could be due to the spatial arrangement of cashew and mango which are monocrop, and 

where trees are established using regular intervals. In west Africa few information related to 

cashew farming is available, meanwhile cashew plantation area is expanding. In Benin for 

instance, it was found that cashew plantation area almost doubled from 2015 to 2021, where over 

55% of new plantations are established within protected areas (Yin et al., 2023). Some studies also 

reported the difficulty to differentiate cashew plantations from other woody landcover. In India, it 

was found that cashew the combination of optical and SAR data was more suitable for the 

delineation of cashew plantation (Rege et al., 2022). A different conclusion was achieved in west 

Africa, as the variable selection revealed that out of the eight most important variables, only one 

variable derived from SAR data was significant. This could be due to the fact that in the Guinean 

region, cashew plantations are not established around forests, therefore, the vegetation indices 

derived from optical data are sufficient for their delineation. In the region, it was observed that 

boundaries between mango and cashew plantations were difficult to be set, resulting therefore in 

classification error at the edges of cashew farms. This observation is confirmed by the assessment 

of the probability maps of each AFS; showing a low proportion of overlapping pixels. The problem 

could be caused by the spatial resolution of the input data, which could be solved by using RS data 

with higher resolution like planet data (spatial resolution 2.4 m).  

Sudanian 

The sudanian region is a particular region in west Africa, because of the typology of their AFS. In 

fact, in other climatic region, AFS are defined around a cash crop that is mainly a tree (cocoa, 

rubber, cashew etc.), giving to associated AFS a high economic value. In this region on the 

contrary, the main cash crops such as cotton or sesame are not managed together with trees. Trees 

are primarily found in agricultural farms where they contribute to the livelihood of farmers at a 

lower level (diet or as medicine). In this setting, trees are allowed to grow larger and bigger making 

such systems distinguishable from monocrop farms using remote sensing. The variable selection 

showed that a balanced combination of optical and SAR data was required for AFS mapping in 

the ROI. Contrary to the other regions, four GLCM texture parameters for the VH polarization of 

S1 was significant for the classification of the AFS. This could be due to the fact that S1 is more 

sensitive to higher biomass level as we will see in the following section. An overall accuracy of 

89% was achieved. Because of the large number of AFS in the region, the three most common 

AFS were considered namely apple ring (Acacia albida), African locust bean (Parkia biglobosa) 
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and shea trees (Vitellaria paradoxa) were considered while the rest was labeled as others. AFS 

based on apple ring trees were the most accurately detected with an accuracy of 97% followed by 

others 96%. The African locust bean which is the dominant tree in protected areas showed and 

accuracy of 91%. However, shea trees, the main AFS in the region, was associated with the lowest 

accuracy on the map (89%). This is explained by the fact that since all the AFS are agricultural 

farms, they are shea trees in almost every AFS because its fruit is a major component in the local 

diet. On the map, shea trees are associated with other AFS including apple ring, locust bean and 

fallows. Moreover, the probability maps showed overlapping of shea trees mainly with apple ring 

and others. Despite the economic importance of shea, research have shown that under climate 

change, its spatial distribution will decrease as a response to extension of arid condition under 

different climatic projections in west Africa (Chabi et al., 1970; Dimobe et al., 2020). Therefore, 

RS could support restoration activities and the monitoring of AFS extension in the sudanian region. 

4.3   Spatial assessment of the classification error  

The assessment of the classification is a part of the classification workflow require to evaluate the 

strength of the relation between the classified map and the image on the ground. Generally, it uses 

a confusion matrix where feature classes on the map are compared with the landcover at different 

point. From this matrix, the overall accuracy of them model and other metrics are calculated. One 

limitation associated to the above-mentioned method is that is does not provide any spatial 

information about the error. For the estimation of the classification error at pixel level, the 

probability of prediction was used to assess the level of heterogeneity. The Shannon entropy was 

proposed as a methodological approach to quantify the classification error on the map. It is one of 

the most popular methods which uses the prediction strength (class probability) as a proxy for 

measuring uncertainty (Dehghan & Ghassemian, 2007; Loosvelt et al., 2012). Other methods such 

ignorance uncertainty, α-quadratic entropy and maximum probability which have been 

successfully used in remote sensing to detect regions of confusion on the map are mainly 

applicable for subpixel (fuzzy) classification (Giacco et al., 2010; Stehman, 1997). The entropy 

map was classified using thresholds of purity which separate good pixels from error (mixed pixels). 

This approach has two related shortcomings: firstly, good pixels are not pure pixels as they still 

have integrated level of impurity and could be misclassified pixels. Also, accurately classified 

pixels could be labelled as error. This is particularly true in complex landscape such as AFS where 
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the spatial and spectral resolution of open-source data remain too coarse to appropriately capture 

the difference between different AFS (Filella, 2018). Therefore, the approach will not perfectly 

capture the uncertainties on the map. However, as the threshold is derived from field 

measurements, the resulting error maps will significantly reduce the confusion between the AFS 

in the ROI. This approach was used to assess the classification error in different climatic region of 

west Africa. 

The classification error was found to be larger in the Sudanian and Guineo-Congolian regions 

compared to the Guinean region. The fact that the AFS (cashew and mango) in the Guinean region 

are planted in a regular manner result in a very low classification error in the area. However, for 

irregular plantations or AFS with mixed trees, the classification error is higher at moderate 

resolution (10 m). The threshold derived from the field plots was varying from one AFS to the 

others, ranging for example from 0.35 to 0.49 in the Sudanian region. The estimation of areas using 

the entropy threshold value from the field plots (reference threshold) suggested that the error 

represented 56.1% of the total area in the Sudanian region, and 54.6% and 19.9 % in the Guineo-

Congolian and Guinean region respectively. Acknowledging that field measurements are difficult 

to get, different threshold was evaluated, and it was found that the optimum threshold value was 

found to be between 0.3 and 0.4 in the Guinean and Guineo-Congolian region, while a threshold 

value between 0.4 and 0.5 was optimum in the Sudanian region. It was found that lower values 

overestimated the classification error while higher values underestimated the error. The spatial 

autocorrelation was assessed in the error maps using GWR. Evidence of spatial autocorrelation in 

the error would suggest the predictors’ coefficients for the classification error are not constant but 

vary across the map (local predictor with a small bandwidth). This situation was observed in the 

Guineo-Congolian region when a threshold of 0.5 was used to generate the error map. Because the 

error at this threshold is underestimated, the GWR showed evidence of spatial correlation of the 

classification error. On the contrary, no spatial autocorrelation suggests that the predictors’ 

coefficients of the error are constant across the map (Comber et al., 2020). It was found that the 

classification error was stationary for the optimum threshold, and no spatial autocorrelation was 

detected in the classification error. The approach used to improve the classification was to remove 

mixed (error) pixels from the classified map. During the process, it was noticed that well classified 

pixels was removed. This effect referred to as information loss, was higher in mango (33.9%), oil 

palm (30.8%), rubber (23.7%), cashew (21.9%) compared to the African locust bean, cocoa (4.9%) 
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and shea trees (4.8%). For relevant AFS such as cocoa plantations and shea trees which have a 

larger ecological and economic impacts, the approach scored a loss of less than 5% of the original 

classification. This could be therefore integrated in the classification workflow for monitoring 

those AFS by reducing the error and conserving 95% of the class information. 

4.4   Protected areas 

Another interesting aspect related to mapping AFS in west Africa is their relation and interaction 

with protected areas. In fact; agriculture is acknowledged as the main driver of deforestation in 

West Africa, mainly AFS. As a matter of fact, cocoa farming is the leading cause of deforestation 

in the Guineo-Congolian and cashew in the Guinean region (Rege et al., 2022; Sabas et al., 2020; 

Yin et al., 2023). According to recent studies, it was found that cocoa farming has encroached into 

protected areas. Abu et al. (2021) showed that 18.2% of protected areas in the region (about 5649 

ha) were converted into cocoa plantations in 2019. Acknowledging the contribution of cocoa 

farming to deforestation, the governments in west Africa especially of Côte d’Ivoire and Ghana 

and the world’s leading cocoa and chocolate compagnies agreed to end deforestation and promote 

forest restoration and protection in cocoa supply chain. Under this initiative also known as cocoa 

and forest initiative, 28 million trees were planted for the purpose of forest regeneration in Côte 

d’Ivoire, resulting in about 9 448 ha of degraded forest that was restored (Von Maillot, 2020). In 

the same report, it is recorded that cocoa and chocolate companies distributed 11.3 million non-

cocoa trees for the development of agroforestry in the region to promote sustainable cocoa farming. 

Effort on landscape restoration is a good point as far as climate change is concerned, but it also 

improves the economic life of the farmers, since income is one of the major drivers behind the 

pressure of deforestation. Monitoring the supply chain for cocoa farm is therefore the most 

important aspect especially in the light of the new EU deforestation supply chain that guaranty 

premium price for cocoa beans harvested on deforestation-free farms. Nowadays, the cocoa 

farming in west Africa have reached a 72% traceability in their direct supply chains.  

The AOI of the Guineo-Congolian covers the northern portion of the TNP. The approach used for 

the detection of encroachments consisted of allowing the algorithm to classify the protected area 

into different AFS, with the idea that encroachments would be associated with a very low 

classification error. As expected, the error assessment revealed that the entire region was entirely 

constituted of mixed pixels regardless of the threshold values. After the map has been improved 
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by removing error pixels, evidence encroachments were detected in the TNP. However, when 

considering the average size of cocoa plantation (about 2ha), those detections within the 

boundaries of the park where not significant. This result was supported by the management reports 

of the TNP which claimed no human activities within the boundaries of the park (Bitty et al., 2015; 

GIZ, 2020; Riezebos et al., 1994). Moreover, in situ verification during field campaigns confirmed 

the information presented in the management reports. Therefore, the AFS encroachments detected 

within the TNP could be attributed to the shortcomings of the approach or could be artefacts related 

to the fact that a composite image was used as input data.  

In the Sudanian region, it was observed that protected areas are mainly covered by African locust 

bean trees. It is one of the most important multipurpose agroforestry trees in Sahelian region 

because of its commercial and consumption value, and it is the most appreciated indigenous 

species across ethnic and gender groups (Fischer et al., 2020). In the region of interest, the 

protected area was converted into AFS, mainly the African locust bean because of the 

socioeconomic benefits. As previously acknowledged in different part of West Africa, agriculture 

is the major threat both for parklands and protected area. It is reported in the literature than the 

management of AFS in the region depends on the social status of the farmer, where migrant farmer 

is less likely to install and manage AFS. It was also found that AFS near protected areas had more 

stable structural parameters, higher species richness and natural regeneration rate compared to AFS 

far from protected area (Zoungrana et al., 2023). AFS are therefore more likely to be preserved 

compared to natural woodlands which is often perceived as available land for agriculture. 

4.5   Carbon stocks in west Africa 

In carbon studies, carbon stocks are derived from the estimation of the biomass using a conversion 

factor of 0.5, where half of the measured biomass correspond to pure carbon stock. This is 

particularly applicable in natural forest ecosystems however, in AFS because of the tree species 

and the land management among other reasons, the conversion is often lower than 0.5 and varies 

from one AFS to the other (Nair & Nair, 2014). The study uses the biomass as an indication of 

carbon stocks in different AFS, but only the standing biomass (AGB) was considered. In fact it is 

well known that the larger portion of carbon in an AFS is stored in the soil, and some studies 

reported that the soil organic carbon was four time higher than the standing biomass in certain AFS 

(Thangata & Hildebrand, 2012). In this research, the carbon pool to be investigated was determined 
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by the tools and methods. In fact, RS data was the main data source used throughout this research 

and has its inherent limitations such as the unavailability of opensource data accurate soil mapping. 

Therefore, only the AGB was considered, which is the most important layer in the carbon cycle 

which allows the conversion of atmospheric carbon (CO2) into biomass and soil carbon. 

Impact of climate on carbon stocks 

The importance of climatic stratification was assessed by comparing the results of carbon 

estimation in West Africa before and after applying a climatic stratification. It was found that the 

stratification of the study area into different climatic zones was crucial for biomass estimation in 

west Africa. In fact, regional or national studies tends to overlook the effect of climatic conditions 

which have a significant impact on the estimated AGB level in AFS (Balima et al., 2021). The 

analysis revealed that the prediction error was reduced by 31.2% and 4.5% for the Guineo-

Congolian and Sudanian region respectively, but was increased by 52.3% in the Guinean when 

field measurement was used as reference data. The estimations based on GEDI L4A showed that 

the prediction error was reduced by 36.6% and 34.8% in the Guineo-Congolian and Guinean 

region respectively but was increased in the Sudanian region by 17.4%. In most cases, it was found 

that regardless of the reference data used stratification resulted in a more accurate estimation of 

the AGB, with different level of uncertainties at each region.  

Remote sensing and reference data 

Optical and SAR data were used as predictors of AGB while field measurements and GEDI L4A 

predictions were considered as reference data. S2 data was found to be more sensitive to biomass 

compared to SAR data for all climatic regions and for all reference data. Similar results were 

reported in AFS and forest where vegetation indices derived from S2 were better explanatory 

variables of the variance in AGB (Chang & Shoshany, 2016; Nuthammachot et al., 2020, Forkuor 

et al., 2020). Also, S1 showed a better performance in the Guinean and Sudanian region compared 

to ALOS based on the prediction error and the accuracy of prediction (R²). In the Guineo-

Congolian region, it was observed that ALOS performed better than S1. When combined, it was 

found that S1 + S2 gave the highest prediction score and the lowest prediction error in all the 

climatic region and for all reference data. This was in line with the literature that suggested that 
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the combination of optical and SAR data result in higher accuracies both for landcover 

classification and for biomass estimation (David et al., 2022; Nuthammachot et al., 2020).  

The GEDI L4A product provides prediction of the AGB that could be used as reference data. it 

was found that in the Guineo-Congolian region, an accuracy of 64% was achieved with S2 data. 

this prediction is relatively low compared to when field measurement is considered. The prediction 

error is reduced by 90% going from 41.28 to 4.12 and the prediction accuracy increased from 64% 

to 90%. In the other climatic regions, the biomass predictions suggested that when using the 

predictions were worse than guessing. GEDI L4A are therefore not usable in those regions. When 

using the GEDI L4A product, the prediction error was found 8.94 times higher than the error level 

derived from field measurements. This could be explained by the fact that AGB predictions in the 

GEDI L4A product were generated using models that were calibrated with forest tree data. As a 

matter of fact, in ecosystems with high tree density such as forests, the AGB predictions from the 

GEDI L4A product were more accurate (Duncanson et al., 2022; Leite et al., 2022). In addition to 

the remote sensing variables, another important parameter in biomass modelling is the selection of 

the best allometric model for the conversion of field measurement into biomass. For this 

conversion, the pan-tropical allometric equation proposed by Chave et al. (2014) was not used, 

rather a mixed-species model which was developed locally was considered (Aabeyir et al., 2020). 

To validate their allometric model, Aabeyir et al. (2020) compared the predictions derived from 

both allometric equations which was found to be equivalent, and therefore could be used following 

the GPG of IPCC. Moreover, the model showed a higher mean value for AGB predictions in West 

Africa compared to the one from Chave et al. (2014), and all the species that were used to develop 

that model was found in AFS across West Africa. 

AGB estimations in West Africa  

The AGB estimations in AFS showed that, in cocoa plantations, the AGB level was 12 times lower 

than the average AGB in cocoa agroforestry (Asigbaase et al., 2021; Ballesteros-Possú et al., 

2022). Low levels of biomass were found in Côte d’Ivoire because cocoa is grown in pure stands, 

also known as full sun cocoa, where all the shade trees are removed. Full sun cocoa gives a higher 

productivity per hectare compared to agroforests, allowing the farmers to have two harvest per 

year (Tondoh et al., 2015). In similar studies, cocoa trees were associated with forest trees, which 

explain the observed higher AGB level. This pointed out that for a sustainable cocoa production 
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system, more trees should be added to existing cocoa plantations (Tondoh et al., 2015). Companion 

trees (tree components in an AFS) also played an important role in the AGB level of a system. In 

the Sudanian region, the average AGB level in the AFS was 4.7 times higher than in cocoa 

plantations, even though cocoa plantations have 10 times more trees. It was found that the diameter 

(R² = 0.45) and the height (R²=0.13) of the trees were more important to the level of AGB than 

tree density (R² = 0.1). The same conclusion was found in the Sudanian region, diameter and height 

was reported to describe 69% and 28% of the carbon variation respectively in different AFS in 

Burkina Faso. The association of forest trees such as the white silk-cotton tree (Ceiba Pentandra) 

or kola tree (Kola accuminata) could improve the carbon level in cocoa plantations (Zomer et al., 

2022). Concerning the prediction accuracies of AGB in AFS, rubber and cocoa plantations in the 

Guineo-Congolian region, and cashew and mango in the Guinea region were found to have low 

accuracies at the plot level. A plausible reason could be related to the sampling scheme, as the 

sample size was not sufficient to capture the diversity between those classes. Increasing the sample 

size has been reported as a way to reduce the prediction error in AGB estimation (Araza et al., 

2022; Zomer et al., 2022). However, a larger sample size does not guarantee a lower prediction 

error, as it was demonstrated that the similarity in the spectral response in AFS resulted in higher 

error, especially when open-source remote sensing is used (Filella, 2018; Kanmegne Tamga et al., 

2022). The spatial assessment of the prediction of AGB should be associated with the Carbon map, 

to report the area where the estimation could be affected by error associated with the 

methodological approach. Such transparency is required by the GPG of the IPCC and is crucial for 

carbon estimation to be considered in the MRV process. 

4.6   Biodiversity in AFS 

Biodiversity is an important element for the assessment of the health as well as the sustainability 

of a given ecosystem. It refers the variability among living organisms, including genetic and 

structural difference between individual and within and between species. As far as climate change 

is concerned, biodiversity strengthens the resilience of natural systems towards extreme events 

such as droughts, storms or wildfires (AparnaRathore & Yogesh, 2013). In general, LULUCF leads 

to a decrease of the biodiversity mainly because it is intimately associated with deforestation. 

Moreover, the production system of cash crops, which is a major production system in West Africa 

(palm oil, cocoa, rubber, cashew and mango) is mainly a monoculture. Yet, the sustainability of 
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AFS depends significantly on the biodiversity. It was reported that the sustainable cocoa farming 

requires among other element a variety of tree species combined with cocoa trees. In this 

consideration, cocoa agroforestry is more sustainable than full sun cocoa, but also less productive. 

There is therefore a trade-off between biodiversity (sustainability) and profitability. 

In west Africa, there was a need to analyse the biodiversity in each AFS and investigate their 

relation to carbon sequestration. Biodiversity in this case was restricted to tree species because of 

their ability for carbon sequestration. The biodiversity and the Simpson’s indices were considered 

as proxies to assess the biomass level in different AFS. As expected, crop plantations which are 

mainly monocultures are associated with the lowest biodiversity. In West Africa, rubber and palm 

oil plantations are pure monoculture. Before their establishment, all the vegetation is removed for 

the trees to grow freely. It is only in cocoa and cashew plantations that trees are purposely 

maintained on farm for other services, therefore increasing the biodiversity. The literature reported 

that biodiversity could be improved by the adoption of agroforestry rubber plantations, which were 

found to provide modest biodiversity benefits compared to monoculture without compromising 

the yield (Warren-Thomas et al., 2020). The main benefits included butterfly, bird and reptile 

richness which increased with the height of herbaceous vegetation. In rubber plantations, 

herbaceous plants are intentionally removed to limit the risk of encountering dangerous reptiles, 

because the farmers do not use appropriate personal protection equipment such as rubber shoes. 

On the other hand, cocoa, cashew, and mango plantations have similar levels of biodiversity with 

about 2-4 species/ha. Even though cocoa production is the main driver of biodiversity loss in West 

Africa, it is also regarded as environmentally preferable to any other land use system, primarily 

for its potential to conserve forest trees, birds, ants and other lifeforms (Asare, 2006). In Côte 

d’Ivoire, the cocoa production system which is full-sun cocoa instead of cocoa agroforests, doesn’t 

allow the presence of trees, instead shade is momentarily provided in the early stage by banana 

trees. The biodiversity level is higher in multipurpose trees on agricultural land, with a richness 

level ranging from about 2 species/ha in shea butter plantations up to 5 species/ha in fallows in the 

Sudanian region. At first, it seems that the higher the biodiversity in an AFS the higher the AGB 

level. But, even if the relationship between AGB and biodiversity shows a positive correlation 

between the two variables, this relation is not significant in AFS of West Africa, suggesting that 

shifting the resilience and sustainability of a system does not result in an improvement of the 

carbon sequestration capacities. The findings of this research demonstrate that AGB level is related 
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to the size of trees (diameter and height) even if it is a single tree species. These findings are 

supported by the existing literature on natural forest, where it was found that increase in the AGB 

level resulted in the decrease of the biodiversity due to the competition for sunlight (Pesola et al., 

2017). Also, the relation between AGB and biodiversity is reported to be dynamic, and it was 

found that it is strong in the early stage of the tree development, but weak later on, as a result of 

positive selection (Lasky et al., 2014). 

It is clear that the biodiversity level does not account for carbon sequestration; yet, it has an 

important contribution in improving the resilience of cocoa farming. In fact, the cocoa swollen 

shoot virus disease is the major threat for cocoa productivity in west Africa. At the moment, there 

is no available treatment and the only solution is to cut down trees that are visibly infected. Very 

few studies have investigated the contribution of biodiversity to the resilience of cocoa farms. Yet, 

it is reported that while resistance breeding and mild strain cross-protection may reduce the 

swollen shoot disease by 30 percent, diversification measures including shading (agroforestry) and 

barrier cropping could reduce the infection between 40 to 85 percent (Andres et al., 2017). Further 

research showed that AFS with a tree shade around 50% (between 14 and 17 trees/ ha) in cocoa 

plantations is the optimal configuration to balance between the symptom severity of the swollen 

shoot disease and the reduced cocoa yield until disease trees are replaced by more resistant trees 

(Andres et al., 2018). Moreover, it is reported that high exposition to sunlight, which is the main 

characteristic of full sun cocoa, is one of the major factors responsible of the severity the swollen 

shoot disease. Increasing and maintaining the biodiversity in AFS is important to enhance the 

resilience of plantations but also increases the productivity of by products as it is the case in cashew 

plantations. Bees are one of the most common managed animals in cashew plantations because 

they are attracted to the flowers of the trees allowing apiculture which is practiced by about 79% 

of the cashew farmers in Cote d’Ivoire. The product from this side activity represents and 

additional source of income, and a valuable source of nutrients to supplement the diet and 

traditional pharmacopoeia.  

4.7   Carbon dynamics in AFS 

Another interesting aspect in modelling carbon sequestration in AFS is to understand carbon flows 

and dynamics across the systems. Understanding carbon dynamics informs on the contribution of 

AFS to climate change as it helps identifying those that behave as carbon sources (emitter of carbon 
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in the atmosphere) or carbon sinks (remover of carbon from the atmosphere). A good point to keep 

in mind is that AFS are not natural ecosystems, rather a particular type of man-made land use 

where natural trees are allowed to develop (to fulfill a specific function). In that sense, the dynamic 

of carbon stocks within such setting is very much limited to from one year to the other and could 

rapidly change from woodlands to bare soil if a cashew farm is converted into agricultural land for 

cotton production for example (less like to happen but possible). This being said, this section is 

exploring the potential of remote sensing to capture the trend in biomass dynamic under “normal” 

management conditions and give an impression on the optimal AFS to consider to tackle climate 

change.  

The approach used is a well-known approach which is often used in climatology and yield 

modelling in agriculture under the name anomaly detection. Anomaly detection is a processing 

approach in remote sensing with the purpose of identifying pixels whose spectrum are significantly 

different form the surrounding. In the case of a time series it helps identifying pixels with 

“abnormal” values, that is away from the general trend (often the mean). It is a very efficient 

process, but the results are affected by noise and therefore require specific technics using algorithm 

such as local Reed-Xiaoli (LRX) (Lindner et al., 2023). For this research the approach was based 

on comparing the pixel value with the mean value of the same location over the considered period 

of time (2017 to 2021). The standard deviation was used as a threshold value to minimize the noise 

from one year to the other. Using this approach locations with a biomass level higher than the 

mean value were considered as sinks for that year, while locations with lower biomass level were 

reported as carbon sources. In the literature, a robust assessment of carbon/biomass dynamic is a 

more complex process which should include factors related to biomass gain and loss including tree 

growth, accrue biomass over time, tree mortality, disturbances and tree recovery among others 

(Wulder et al., 2020). Therefore, depending on the factor to monitor, the optimum time frame 

should be selected between 8 years in studies interested in biomass recovery, up to 33 years for 

long term studies (Lasky et al., 2014; Pesola et al., 2017; Wulder et al., 2020). These requirements 

were mainly implemented on studies in natural forest environment, with limited anthropogenic 

interventions. AFS in the contrary have a different lifespan, going from a year to a maximum of 

around 25 years for crop plantations. Therefore, for most AFS, five years is a sufficient time-frame 

window to capture the trends of carbon flux, since AFS are dynamic system by themselves 

compared to natural forests.  
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Talking about the AFS, cocoa and rubber in the Guineo-Congolian region, cashew and mango in 

the Guinean region as well as all of the AFS in the Guinean region were considered. Cocoa 

plantations are larger carbon sinks compared to rubber plantations. However, there is a lot more 

dynamics in cocoa plantations while the biomass in rubber plantations remain constant, increasing 

consistently across time. This could be explained by the fact that management practices in rubber 

plantations does not included practices such as pruning, removing/adding trees which is the case 

in cocoa farm. In fact, cocoa trees are often pruned to improve the production or for regeneration. 

Also because of the swollen shoot disease, certain trees are often removed and replaced. The 

proportion of carbon sinks in the Guineo-Congolian is increasing overtime time. This could be 

improved by the introduction of larger trees in cocoa plantations which will result in a lower annual 

fluctuation of carbon stocks. In Cashew and mango plantations, the biomass level tends to be 

constant over time. This could be explained by the fact that when the trees reached maturity, the 

biomass is maintained. Also, the management practices do not include stimulation biomass growth. 

In fact, biomass has to remain low and constant as it is reported that there is a negative relationship 

between biomass and fruit production: the higher the biomass level, the lower the fruit production 

(Rosati et al., 2018). However, AFS referred to as tree on farm (farm), there is an increase of 

biomass over time suggesting that farms in the Guinean region are better sinks compared to mango 

and cashew farms. The overall region appears as a carbon source in west Africa, where the biomass 

decreases over time. The conversion of forest and other wooded land into cashew and mango 

plantations is responsible of larger amount of carbon emission in the atmosphere. The argument 

of cashew and mango plantations as a solution for climate change is not valid, considering the 

report of their carbon stock dynamic. 

In the sudanian region, AFS based on shea trees and African locust bean were considered because 

they are the most abundant form of land management in the region. It was found that most of the 

region was having a very low level of biomass in early 2017. The proportion of carbon sinks in 

the region have increased significantly for both AFS, but with larger proportions for the African 

locust bean. Sinks in AFS based on shea trees increase in smaller size, revealing patterns of 

smallholder farming, while African locust bean’s AFS sinks cover larger area. This could be the 

result of a national program or a kind of organisation activities. This assumption agrees with the 

spatial distribution of the AFS in the region, where African locust bean is the main tree encountered 

in protected areas. According to the centre of International Forestry research, The African locust 
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bean is more than just a tree as it is part of the local diet, provide additional household income, 

provide fodder for the cattle and improve soil fertility. Looking at the evolution of carbon sinks in 

the sudanian region, it appears that biomass in the region increases over time across the AFS, 

allowing those systems to sequestrate more CO2. Based on the results that were obtained in the 

sudanian region, it seems clear that reforestation program should consider the integration of 

indigenous forest tree species due to their socio-economic benefits in addition to the environmental 

aspect. 
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Carbon sequestration modelling is an important thematic in the context of climate change because 

it provides quantitative evidence of the contribution of anthropic activities to global warming. 

Based on the deforestation rate, West Africa is significantly contributing to carbon emission, and 

is one of the regions in Africa where the impact of climate change is expected to be more severe. 

The main driver of deforestation in the region is agricultural extension, primarily the conversion 

of forested land into agroforestry systems (AFS) for cash crop production including cocoa, rubber 

and cashew among others. An AFS is a land management practices where the interaction between 

forest trees and crops are managed on the same land unit. Some of those systems include crop 

plantations (cocoa, rubber and cashew) and tree on farms. Because of the importance of the tree 

component in the system, AFS is acknowledged as a viable solution for climate mitigation based 

on their potential for carbon sequestration. However, a workable approach for the AFS mapping 

using open source remote sensing (RS) data is still missing, resulting in classified map with a 

higher level of classification error. Also, existing methodologies for carbon estimation derived 

from forestry are not applicable in AFS as they need to be adapted. Therefore, the carbon stock 

level and the potential of carbon sequestration of the different AFS in West Africa is unknown. 

The aim of this research was to propose an integrated methodological approach for modelling 

carbon sequestration of different AFS across the climatic regions of West Africa using remote 

sensing. This goal was organized around three objectives: (i) provide an accurate map of the 

different AFS in west by modelling the spatial distribution of the classification error; (ii) estimate 

the carbon stock of AFS in different climatic regions across west Africa using remote sensing and 

(iii) assess the carbon dynamic in AFS by evaluating the spatial distribution of carbon sources and 

carbon sinks within AFS in west Africa. This research is a significant contribution to the 

development of a valid scientific methodology for the estimation of carbon sequestration in AFS, 

which is the main land use in west Africa, to evaluate their contribution to climate change and 

support their integration into national emission reduction programmes and emission reduction 

program such as REDD+. 

Mapping AFS in west Africa 

AFS plays an important economic and sociocultural role in the livelihood of farmers across the 

different climatic region of west Africa. In Cote d’Ivoire, they are mainly represented by rubber 

and cocoa plantations in the southern part (Guineo-Congolian region), which are often established 
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on previous secondary forest for an average period of 30 years, while in the northern part of the 

country (Guinean region), cashew and mango plantations represent together about 30% of the AFS, 

the main AFS being trees on agricultural farm. In Burkina Faso, the main AFS was found to be 

shea trees, whose fruits are an important component in the local diet and an additional source of 

income. As far as the classification is concerned, an overall accuracy of 89% was obtained both in 

the Guineo-Congolian and Sudanian region and 91 % was reported in the Guinean region. In the 

Guineo-Congolian region, the highest classification error was reported in cocoa plantations, 

misclassified as rubber or oil palm plantations using 10 m resolution RS data. In the sudanian 

region on the other hand, the highest level of classification error was reported for Shea trees AFS 

which showed a higher confusion towards apple ring (Acacia albida) and African locust bean 

(Parkia biglobosa). The spatial assessment of the classification error revealed that the Shannon 

entropy was found between 0.35 and 0.49. About 55% of the ROI in the Guineo-Congolian and 

Guinean region, was associated with classification error. The Geographically Weighted 

Regression (GWR) showed no spatial autocorrelation in the classification error. However, when 

using a very small threshold (0.2 in this study), there was an overestimation of the classification 

error leading to the detection of spatial autocorrelation in the Guineo-Congolian region. By 

removing pixels with a high classification error (mixed pixels), the information loss in the main 

AFS was around 5%. 

Carbon stocks in AFS 

The combination of optical and SAR data from the Sentinel mission was found to be more sensitive 

to the biomass level across different AFS in West Africa. Moreover, the prediction error was 

reduced about 30% when carbon estimation was carried after a stratification into different climatic 

regions. Field measurements was identified as the best source of reference data for the carbon 

estimation in AFS, even though an accuracy of 64% was obtained in the Guineo-Congolian region 

using GEDI L4A product as reference data. But, the prediction error was about 9 times higher than 

predictions based on field measurements. The estimation revealed that cocoa plantations have the 

largest carbon stock in the Guineo-Congolian region with 7.51 ± 0.6 Mg / ha (R² =0.91). In the 

Guinean region cashew showed 13.78 ± 0.9 Mg / ha (R² = 0.82), But the largest carbon stocks 

were found in the sudanian region with an average of 34.2 ± 18 Mg / ha (R² = 0.86). It was found 

that the biometric parameters of the tree component in an AFS (diameter and height) were the most 
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important factor, describing about 70% of the carbon variation. The biodiversity in AFS showed 

no significant relationship with carbon stocks. However, played a significant role in the resilience 

of crop plantations as it could reduce the infection to up to 85% for the swollen shoot cocoa disease 

in west Africa.  

Carbon dynamics in AFS 

Cocoa, rubber in the Guineo-Congolian region, cashew and mango in the Guinean region and all 

the AFS in the Sudanian region showed interesting performance as carbon sinks. First in the 

Guinean region, cocoa plantations are larger carbon sinks compared to rubber plantations. 

However, the carbon dynamic is higher in cocoa plantations with large decrease in biomass level 

between year due to management practices. The trend in carbon stocks showed that the proportion 

of carbon sinks is increasing in the region, suggesting that AFS are storing more carbon over time. 

In Cashew and mango plantations in the Guinean region, the carbon level tends to stagnate as 

biomass is inversely related to fruit production. The trend in the Guinean region showed that the 

biomass level in AFS is decreasing overtime, suggesting that cashew and mango are not good 

carbon sinks, rather behave as carbon source. In the sudanian region, Shea trees and African locust 

bean are the major carbon sinks. Even though both increased over time, it was observed that 

African locust bean grew faster than shea trees. The overall trend in the region showed that more 

carbon is stored in the Sudanian region over time. 

Paths for improvement 

Modelling carbon sequestration of AFS in West Africa using open-source RS data is challenging. 

However, the proposed methodology was able to produce accurate and reliable results. Some of 

the issue that needs to be addressed are related to:  

a) The resolution of the RS data. Agroforestry systems are complex landcover because of 

their composition. As such, the accurate delineation of field boundaries is a constant issue 

due to the phenomenon of mixed pixels which is by far the most important challenge in 

AFS mapping. The spatial and spectral resolutions offered by open-source data including 

the Sentinel mission remain insufficient to ensure a very high output quality and the end of 

the process. For this reason, VHR data is often considered in research and project. There 

is a need for open-source data with higher spatial and spectral accuracies to reduce the level 
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of classification especially if the final map is to be used for the evaluation of mechanism 

such as REDD+ to support supply chain analysis in the framework of the EU deforestation 

law for instance.  

b) The classification processes. This is an important part of the workflow where the errors 

could be reduced. Future studies could use more field data which could be collected with 

direct method during field campaign or indirectly using VHR data at a subpixel resolution. 

Detailed field information combined with more powerful machine learning techniques 

including deep learning could significantly reduce the prediction error on the final 

classification. Also, for biomass measurement, high resolution SAR data could be used in 

addition to field measurement to get accurate estimations of biomass especially in AFS 

with low tree density. 

c) The classification error assessment routine. From the analysis it was found that even though 

the classification was corrected to a certain extent, the final map was still containing some 

classification error. Error assessment routines other than the Shannon entropy need to be 

explore to identify the most appropriate approach for AFS.  

d) Biomass to carbon conversion factor. A usable conversion factor of biomass to carbon is 

still missing. For this reason, the carbon was presented in term of biomass to avoid 

conversion error. Studies should be carried on trees in AFS to establish the existing relation 

between biomass and carbon content. Useful studies have already improved the allometric 

equations, and the research should be pushed more into that direction. 

e) Long term study of carbon in AFS. As far as carbon sequestration is concerned, there is a 

need for long term study to understand the life cycle of the main AFS in West Africa, with 

the aim of capturing the development (growth and production) of all the component in the 

AFS in order to create and/or used more accurate carbon model such as the CO2FIX model, 

which gives not only the carbon stocks, but also the carbon sequestration expressed in terms 

of Mg / ha / year. 

Recommendations 

The findings of this research demonstrated that AFS in west Africa have a real potential for carbon 

sequestration on the one hand, and on the other remote sensing data could be used to quantify and 

monitor the carbon stock levels of AFS in different climatic regions. The proposed methodology 
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could be used as good practice guidance as it allowed a realistic estimation combined with the 

quantification of the error associated with the approach. To improve the performance of carbon 

sequestration in West Africa, it is necessary to  

- Increase the density of forest trees in AFS. As it was demonstrated in this document, 

diameter and height are the most important parameters to influence the biomass level of 

AFS. In cocoa plantations, there is a need to move from full sun cocoa farming back to 

cocoa agroforests. Projects such as the Vision for Change (V4C) led by the World 

Agroforestry center (ICRAF) in west Africa should be multiplied, because cocoa is the 

AFS in west Africa with the largest potential for carbon sequestration. Forest trees with 

high values (socioeconomic or cultural) should be introduced in cocoa farms, while 

industries around derivatives from those trees (gum or fruits) should be promoted to ensure 

diversification in household income and prevent further deforestation. 

- Increase biodiversity in cocoa plantations. In addition to improving carbon biomass, 

introducing forest trees in AFS will also increase the biodiversity. Biodiversity is a major 

aspect for the resilience of cocoa plantations. In cote d’Ivoire, cocoa farms are destroyed 

because of the swollen shoot disease with severe economic consequences. In addition to 

resistant cocoa tree varieties, it was demonstrated that a higher biodiversity level in cocoa 

plantations could be a more economical solution. Therefore, efforts should be put in place 

to provide adequate trees and promote good practices among local farmers. 

- Limit cashew and mango production. The results revealed that cashew and mango 

production are not a good solution as far as climate change is concerned, as they are 

behaving more as carbon source than carbon sinks. Over time, the biomass level in cashew 

plantations showed a decreased, releasing more carbon in the atmosphere. This is explained 

by the wood density of those trees which is significantly lower than those of forest trees. 

As a solution, research should be oriented toward the impact of introducing forest trees into 

cashew and mango plantations, while existing forest should be protected.  

A good implementation of these recommendations could improve carbon sequestration level in 

AFS, increasing therefore their contribution to national emission reduction efforts, making them 

eligible for financial compensation under REDD+ mechanism.
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Appendices 

Appendix 1: Sources and materials 

The methodology of this research project was based on field data collection and the use of satellite 

data. The field campaign was carried in the framework of the WASCAL-DE-Coop in collaboration 

with the research institute including ICRAF/CIFOR in Côte d’Ivoire and WASCAL in Burkina 

Faso as presented in the following table. The satellite data used are open access and freely 

accessible online, and the data processing was based on existing methodologies available in the 

literature. 

Institution Contribution  Contact 

German Federal Ministry 

of Education and Research 

(BMBF)  

via the project carrier at the German 

Aerospace Agency (DLR)Support 

through the WASCAL-DE-Coop 

Project (KFZ: 01LG1808A) 

Dr. Michael Thiel  

(Project leader) 

michael.thiel@uni-

wuerzburg.de 

World Agroforestry 

(ICRAF/CIFOR) Abidjan-

Côte d’Ivoire 

Support for field data collection by 

providing field assistants. 

Dr Jules Bayala 

(Supervisor) 

j.bayala@cgiar.org 

West African Science 

Service centre on Climate 

Change and Adapted Land 

Use (WASCAL) 

Support for field data collection by 

providing field assistants 

Dr. Michael Thiel 

michael.thiel@uni-

wuerzburg.de 
Department of remote 

sensing, Institute of 

Geology and Geography, 

University of Würzburg  

provide a working place including 

field equipment for data collection 

(GPS, altimeter and measuring 

tape) 

Graduate School of 

Science and Technology 

(GSST) 

Provide mentors to carry out the 

research projects. They help in the 

conceptualization, the development 

of the methodology and the review 

of the publication and the 

dissertation  

Prof. Dr. Tobias Ullmann 

Tobias.ullmann@uni-

wuerzburg.de 
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Appendix 2: List of publications  

1. Kanmegne Tamga, D., Latifi, H., Ullmann, T., Baumhauer, R., Thiel, M., & Bayala, J. 

(2022). Modelling the spatial distribution of the classification error of remote sensing data 

in cocoa agroforestry systems. Agroforestry Systems. https://doi.org/10.1007/s10457-022-

00791-2 

 

2. Kanmegne Tamga, D., Latifi, H., Ullmann, T., Baumhauer, R., Bayala, J., & Thiel, M. 

(2022). Estimation of aboveground biomass in agroforestry systems over three climatic 

regions in west Africa using Sentinel-1, Sentinel-2, ALOS, and GEDI data. Sensors 2023, 

Vol. 23, Page 349, 23(1), 349. https://doi.org/10.3390/S23010349 
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Appendix 3: Credit author statement: 

The table presents the contribution to all the publications listed in Appendix 2.  

Terms Definition Author’s name 

Conceptualization Ideas; formulation or evolution of overarching 

research goals and aims 

Kanmegne Tamga D. 

Ullmann T. 

Latifi H. 

Thiel M. 

Methodology Development or design of methodology, 

creation of models 

Kanmegne Tamga D. 

Ullmann T. 

Latifi H. 

Software Programming, implementation of the 

computer codes and supporting algorithms 

Kanmegne Tamga D. 

Validation Verification, whether as a part of the activity 

or separate, of the overall 

replication/reproducibility of results 

Kanmegne Tamga 

Ullmann T. 

Latifi H. 

Formal analysis Application of statistical, mathematical, 

computational or other formal techniques to 

analyze or synthesize study data 

Kanmegne Tamga D. 

Investigation Conducting a research and investigation 

process, specifically performing the 

experiments, or data/evidence collection  

Kanmegne Tamga D. 

Resources Provision of study materials, reagents, 

materials, computation resources or other 

analysis tools 

Thiel M. 

Bayala J. 

Data curation Management activities to annotate (produce 

metadata), scrub data and maintain research 

data (including software code, where it is 

necessary for interpreting the data itself) for 

initial use and later reuse 

Kanmegne Tamga D. 
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Writing – Original 

draft 

Preparation, creation and/or presentation of the 

published work, specifically writing the initial 

draft (including substantive translation) 

Kanmegne Tamga D. 

Writing – Review & 

editing 

Preparation, creation and/or presentation of the 

published work by those from the original 

research group, specifically critical review, 

commentary or revision – including pre-or 

post-publication stages 

Kanmegne Tamga D. 

Baumhauer R. 

Ullmann T. 

Latifi H. 

Bayala J. 

Thiel M. 

visualization Preparation, creation and/or presentation of the 

published work, specifically visualization/data 

presentation 

Kanmegne Tamga D. 

Supervision  Oversight and leadership responsibility for the 

research activity planning and execution, 

including mentorship external to the core team 

Baumhauer R. 

Ullmann T. 

Latifi H. 

Thiel M. 

Project 

administration  

Management and coordination responsibility 

for the research activity planning and 

execution  

Thiel M. 

Bayala J. 

Funding acquisition Acquisition of the financial support for the 

project leading to this publication 

Thiel M. 

Overall contribution 

of the candidate (%) 
90 % 
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Appendix 4: Statement on reused materials 

Some results presented in this dissertation have been peer reviewed and published in international 

scientific journals in partial fulfillment of the requirements of the GSST. The content of the 

publications and the corresponding sections in the dissertation is presented in the table below. The 

text from the paper was not reproduced ad verbatum in the dissertation, and some figures were 

resused as specified in the table. All the co-authors (Ullmann T., Latifi H., Bayala J. and Thiel M.) 

have been consulted and gave their approval for reusing the published results in the thesis. 

Concerning the copyright and licensing, it is stated on the website of both journals that: “copyright 

is retained by the authors. Articles are licensed under and open Access Creative Commons CCG 

BY 4.0 license (…). In addition, the article may be reused and quoted provided that the orignal 

publised version is cited”. 
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Title of the article Content of the publication Reference in the thesis 

Modelling the 

spatial 

distribution of the 

classification 

error of remote 

sensing data in 

cocoa 

agroforestry 

systems 

The aim of the paper was to propose a workflow 

to detect misclassified pixels in the mapping 

complex landscapes such as the cocoa 

agroforestry systems (AFS) in south of Côte 

d’Ivoire. 

The topic covered by this article corresponds to a 

subset of the first objective of the dissertation. 

The materials and methods are presented in chapter 2, in sections: 

2.1, 2.2.1 and 2.3: (description of the study area) 

2.5.1 (field data collection) 

2.7.1.1; 2.7.2 and 2.7.3 (remote sensing data) 

2.8.2 (data processing) 

The published results are found in chapter 3, partly found in section:  

3.1.1 (mapping) 

3.2 (error assessment and Improving the classification) 

Illustrations: 

Figures: (1) study area, (2) classification, (3) 

error map and (4) improved classification 

Tables: (1) GLCM texture parameters and (2) 

Vegetation indices formulae 

Pictures: No pictures 

 

Figures: No figure from the publication was resused. 

 

Tables: the table was adapted and correspond to table 7 and table 6 in 

the dissertation respectively. 

Pictures: No picture. 



Appendices 

137 

 

Formulae: 

Equations: (1) Shannon entropy and (2) GWR 

The equation was reused in the dissertation, and correspond to 

equation 2 and -3 respectively. 

Estimation of 

aboveground 

biomass in 

agroforestry 

systems over 

three climatic 

regions in West 

Africa using 

Sentinel-1, 

Sentinel-2, ALOS 

and GEDI data 

The aim of the paper was to evaluate the 

performance of different satellite data for the 

estimation of the the aboveground biomass in 

west Africa and to compare the biomass density 

of different AFS and climatic regions of west 

Africa. 

The topic covered by this article corresponds to 

the second objective presented in this dissertation 

The materials and methods are presented in chapter 2, in sections: 

2.1, 2.2 and 2.3 (description of the study area) 

2.4 (description of the agroforestry systems 

2.5 (field data collection) 

2.6 (remote sensing data) 

2.8.3 (data processing) 

The published results are found in chapter 3, partly found in sections  

3.3 (assessment of data sources and machine learning algorithms) 

3.4.1 (uncertainties assessment and mapping)  

3.4.1 (comparison of aboveground biomass across AFS) 

Illustrations 

Figures: (1) study area, (5-8) scatterplots of the 

predictions, (9 and 10) performance of machine 

learning algorithms, (11-13) uncertaincies 

 

Figures: the figure of the study area was not used in the dissertation. 

The other figures were adapted and reused. The are found in the 

dissertation as figure 36-43 (scatterplots of predictions), figure 44 and 
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mapping of biomass predictions, (14) relation 

between biomass and tree parameters. 

Tables: (1) description of AFS, (2) vegetation 

indices and (3) GLCM texture parameters 

formulae, (4) summary of the biomass 

estimations in different AFS. 

Pictures: (2 and 3) illustration of AFS, (4) 

illustration of field data measurement. 

45 (performance of machine learning algorithms), figure 46-48 

(uncertainties mapping of biomass predictions). 

Tables: All the tables were resused. They correspond to table 4 

(description of AFS), table 6 (vegetation indices), table 7 (texture 

parameters) and table 9 (summary of biomass estimations) 

 

Pictures: all the pictures were reused in the dissertation, and 

correspond to picture 6 and 7 (illustration of AFS) and picture 9 

(illustration of field data collection) 

Formulae: 

Equations: (1) allometric equation, (2) RMSE 

formula, (3) R² formula 

The equations were reused in the dissertation, and correspond to 

equation 1 (allometric equation), equation 4 (RMSE and R² formulae) 



 

139 

 

References 

(CILSS), C. inter-états de L. conte la S. dans le S. (2016). Landscapes of West Africa: a window 

on a changing world. https://eros.usgs.gov/westafrica/sites/default/files/ebook-

English/index.html#p=3 

Aabeyir, R., Adu-Bredu, S., Agyare, W. A., & Weir, M. J. C. (2020). Allometric models for 

estimating aboveground biomass in the tropical woodlands of Ghana, West Africa. Glob 

Chang Biol, 20, 3177–3190. https://doi.org/10.1186/s40663-020-00250-3 

Abdullah, M. M., Al-Ali, Z. M., & Srinivasan, S. (2021). The use of UAV-based remote sensing 

to estimate biomass and carbon stock for native desert shrubs. MethodsX, 8. 

https://doi.org/10.1016/J.MEX.2021.101399 

Abu, I. O., Szantoi, Z., Brink, A., Robuchon, M., & Thiel, M. (2021). Detecting cocoa plantations 

in Côte d’Ivoire and Ghana and their implications on protected areas. Ecological Indicators, 

129. https://doi.org/10.1016/J.ECOLIND.2021.107863 

Acevedo-Siaca, L., & Goldsmith, P. D. (2020). Soy-maize crop rotations in sub-Saharan Africa: 

A literature review. International Journal of Agronomy, 2020. 

https://doi.org/10.1155/2020/8833872 

Adopo, W. A., Adolphe, M. G., Tiehi, N., Koffi, C., Kouakou, K., & Ballo, Z. (2022). Impact of 

Swollen Shoot Disease on the Livelihoods of Smallholder Cocoa farmers in Côte d’Ivoire. 

European Scientific Journal, ESJ, 11, 258–258. 

https://doi.org/10.19044/esipreprint.11.2022.p258 

Aguilar, R., Zurita-Milla, R., Izquierdo-Verdiguier, E., & de By, R. A. (2018). A cloud-based 

multi-temporal ensemble classifier to map smallholder farming systems. Remote Sensing, 

10(5). https://doi.org/10.3390/rs10050729 

Ali, F., Zamir, A., Khan, I., Khalil, A. U., Umrani, A. M., & Ahmed, S. (2022). Comparative 

analysis of carbon stocks in different agro-forestry systems of district Mardan. International 

Scholars Journals, 10. www.internationalscholarsjournals.com 

Anderson, K., Hancock, S., Disney, M., & Gaston, K. J. (2016). Is waveform worth it? A 



References 

 

140 

 

comparison of LiDAR approaches for vegetation and landscape characterization. Remote 

Sensing in Ecology and Conservation, 2(1), 5–15. https://doi.org/10.1002/rse2.8 

Andres, C., Blaser, W. J., Dzahini-Obiatey, H. K., Ameyaw, G. A., Domfeh, O. K., Awiagah, M. 

A., Gattinger, A., Schneider, M., Offei, S. K., & Six, J. (2018). Agroforestry systems can 

mitigate the severity of cocoa swollen shoot virus disease. Agriculture, Ecosystems & 

Environment, 252, 83–92. https://doi.org/10.1016/J.AGEE.2017.09.031 

Andres, C., Gattinger, A., Dzahini-Obiatey, H. K., Blaser, W. J., Offei, S. K., & Six, J. (2017). 

Combatting Cocoa Swollen Shoot Virus Disease: What do we know? Crop Protection, 98, 

76–84. https://doi.org/10.1016/J.CROPRO.2017.03.010 

Anil, K., & Roshan, D. (2021). Shea Butter Market Size ,Share | Industry analysis 2030. 

https://www.alliedmarketresearch.com/shea-butter-market-A13671 

Araza, A., de Bruin, S., Herold, M., Quegan, S., Labriere, N., Rodriguez-Veiga, P., Avitabile, V., 

Santoro, M., Mitchard, E. T. A., Ryan, C. M., Phillips, O. L., Willcock, S., Verbeeck, H., 

Carreiras, J., Hein, L., Schelhaas, M. J., Pacheco-Pascagaza, A. M., da Conceição Bispo, P., 

Laurin, G. V., … Lucas, R. (2022). A comprehensive framework for assessing the accuracy 

and uncertainty of global above-ground biomass maps. Remote Sensing of Environment, 272. 

https://doi.org/10.1016/J.RSE.2022.112917 

ArcGIS. (2005). How Spatial Autocorrelation (Global Moran’s I) works—ArcGIS Pro | 

Documentation. https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-

how-spatial-autocorrelation-moran-s-i-spatial-st.htm 

Asare, R. (2006). A review on cocoa agroforestry as a means for biodiversity conservation. Paper 

presented at world cocoa foundation partnership conference. 13. 

https://www.researchgate.net/publication/313079119_A_review_on_cocoa_agroforestry_as

_a_means_for_biodiversity_conservation_Paper_presented_at_world_cocoa_foundation_pa

rtnership_conference 

Ashiagbor, G., Forkuo, E. K., Asante, W. A., Acheampong, E., Quaye-Ballard, J. A., Boamah, P., 

Mohammed, Y., & Foli, E. (2020). Pixel-based and object-oriented approaches in segregating 

cocoa from forest in the Juabeso-Bia landscape of Ghana. Remote Sensing Applications: 



References 

141 

 

Society and Environment, 19, 100349. https://doi.org/10.1016/J.RSASE.2020.100349 

Asigbaase, M., Dawoe, E., Lomax, B. H., & Sjogersten, S. (2021). Biomass and carbon stocks of 

organic and conventional cocoa agroforests, Ghana. Agriculture, Ecosystems & Environment, 

306, 107192. https://doi.org/10.1016/J.AGEE.2020.107192 

Atangana, A., Khasa, D., Chang, S., & Degrande, A. (2014). Tropical Agroforestry. 

Balima, L. H., Kouamé, F. N. G., Bayen, P., Ganamé, M., Nacoulma, B. M. I., Thiombiano, A., & 

Soro, D. (2021). Influence of climate and forest attributes on aboveground carbon storage in 

Burkina Faso, West Africa. Environmental Challenges, 4, 100123. 

https://doi.org/10.1016/J.ENVC.2021.100123 

Ballesteros-Possú, W., Valencia, J. C., & Navia-Estrada, J. F. (2022). Assessment of a Cocoa-

Based Agroforestry System in the Southwest of Colombia. Sustainability, 14(15), 9447. 

https://doi.org/10.3390/su14159447 

Bauer-Marschallinger, B., Cao, S., Navacchi, C., Freeman, V., Reuss, F., Geudtner, D., Rommen, 

B., Vega, F. C., Snoeij, P., Attema, E., & Reimer, C. (2021). The Sentinel-1 Global 

Backscatter Model (S1GBM) - Mapping Earth’s Land Surface with C-Band Microwaves. TU 

Wien. https://researchdata.tuwien.ac.at/records/n2d1v-gqb91 

Bitty, A. E., Gonedele, S. B., Koffi Bene, J. C., Kouass, P. Q., & Mcgraw, W. S. (2015). Tropical 

Conservation Science | ISSN 1940-0829 | Tropicalconservationscience.org Cite this paper as. 

Mongabay.Com Open Access Journal-Tropical Conservation Science, 8(1), 95–113. 

http://creativecommons.org/licenses/by/3.0/us/.The:95-

113.Availableonline:www.tropicalconservationscience.org 

Boeckx, P., Bauters, M., & Dewettinck, K. (2020). Poverty and climate change challenges for 

sustainable intensification of cocoa systems. Current Opinion in Environmental 

Sustainability, 47, 106–111. https://doi.org/10.1016/J.COSUST.2020.10.012 

Bopp, L., Bowler, C., Guidi, L., Karsenti, É., & De Vargas, C. (2002). ocean-climate.org A 

MAJOR ROLE FOR THE OCEAN IN THE EVOLUTION OF ATMOSPHERIC CO 2 The 

Ocean: a Carbon Pump. 



References 

 

142 

 

Bousbih, S., Zribi, M., Hajj, M. El, Baghdadi, N., Lili-Chabaane, Z., Gao, Q., & Fanise, P. (2018). 

Soil moisture and irrigation mapping in a semi-arid region, based on the synergetic use of 

Sentinel-1 and Sentinel-2 data. Remote Sensing, 10(12). https://doi.org/10.3390/rs10121953 

Brahma, B., Nath, A. J., Deb, C., Sileshi, G. W., Sahoo, U. K., & Kumar Das, A. (2021). A critical 

review of forest biomass estimation equations in India. Trees, Forests and People, 5, 100098. 

https://doi.org/10.1016/J.TFP.2021.100098 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. 

https://doi.org/10.1023/A:1010933404324 

Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). Geographically Weighted 

Regression: A Method for Exploring Spatial Nonstationarity. Geographical Analysis, 28(4), 

281–298. https://doi.org/10.1111/J.1538-4632.1996.TB00936.X 

Busquet, M., Bosma, N., & Hummels, H. (2021). A multidimensional perspective on child labor 

in the value chain: The case of the cocoa value chain in West Africa. World Development, 

146, 105601. https://doi.org/10.1016/J.WORLDDEV.2021.105601 

Carsan, Orwa, S., Harwood, C., Kindt, C., Stroebel, R., Neufeldt, A., & Jamnadass, R. (2012). 

African Wood Density Database. World Agroforestry Centre, Nairobi. 

http://apps.worldagroforestry.org/treesnmarkets/wood/index.php# 

Chabi, J. F., Gnanglè, F. O., Bello, C. P., Yabi, O. D., Ahoton, I., & Saïdou, L. (1970). Modelling 

the Current and Future Spatial Distribution Area of Shea Tree (Vittelaria paradoxa C. F. 

Gaertn) in the Context of Climate Change in Benin. American Journal of Climate Change, 

10, 263–281. https://doi.org/10.4236/ajcc.2021.103012 

Chang, J., & Shoshany, M. (2016). Mediterranean shrublands biomass estimation using Sentinel-

1 and Sentinel-2. International Geoscience and Remote Sensing Symposium (IGARSS), 2016-

Novem(July), 5300–5303. https://doi.org/10.1109/IGARSS.2016.7730380 

Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., 

Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., 

Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., 



References 

143 

 

Nogueira, E. M., Ortiz-Malavassi, E., … Vieilledent, G. (2014a). Improved allometric models 

to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–

3190. https://doi.org/10.1111/GCB.12629 

Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., 

Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., 

Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., 

Nogueira, E. M., Ortiz-Malavassi, E., … Vieilledent, G. (2014b). Improved allometric models 

to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–

3190. https://doi.org/10.1111/gcb.12629 

Collins, J. M., & Walsh, K. (2017). Hurricanes and Climate Change. Hurricanes and Climate 

Change, 3, 1–255. https://doi.org/10.1007/978-3-319-47594-3 

Comber, A., Brunsdon, C., Charlton, M., Dong, G., Harris, R., Lu, B., Lü, Y., Murakami, D., 

Nakaya, T., Wang, Y., & Harris, P. (2020). The GWR route map: a guide to the informed 

application of Geographically Weighted Regression. 1–34. http://arxiv.org/abs/2004.06070 

Copernicus. (2022). User Guides - Sentinel-1 SAR - Acquisition Modes - Sentinel Online - Sentinel 

Online. https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/acquisition-

modes 

Coulibaly, J. Y., Chiputwa, B., Nakelse, T., & Kundhlande, G. (2017). Adoption of agroforestry 

and the impact on household food security among farmers in Malawi. In Agricultural Systems 

(Vol. 155, pp. 52–69). Elsevier Ltd. https://doi.org/10.1016/j.agsy.2017.03.017 

Covey, K. R., Orefice, J., & Lee, X. (2012). The Physiological Ecology of Carbon Science in 

Forest Stands. In Managing Forest Carbon in a Changing Climate (pp. 31–49). Springer 

Netherlands. https://doi.org/10.1007/978-94-007-2232-3_3 

da Costa, M. B. T., Silva, C. A., Broadbent, E. N., Leite, R. V., Mohan, M., Liesenberg, V., 

Stoddart, J., do Amaral, C. H., de Almeida, D. R. A., da Silva, A. L., Lucas, L. R., Cordeiro, 

V. A., Rex, F., Hirsch, A., Marcatti, G. E., Cardil, A., de Mendonça, B. A. F., Hamamura, C., 

Corte, A. P. D., … Klauberg, C. (2021). Beyond trees: Mapping total aboveground biomass 

density in the Brazilian savanna using high-density UAV-lidar data. Forest Ecology and 



References 

 

144 

 

Management, 491, 119155. https://doi.org/10.1016/J.FORECO.2021.119155 

Dagnogo, F., Fofana, L., Konaté, D., Ousmane, T., Coulibaly, S. S., Dagnogo, F., Fofana, L., 

Konaté, D., Ousmane, T., & Coulibaly, S. S. (2021). Socio-Economic Impact of Shea Butter 

Production on the Living Conditions of Producers in the Regions of Poro and  Tchologo 

(Northern Côte d’Ivoire). Open Journal of Social Sciences, 9(11), 149–158. 

https://doi.org/10.4236/JSS.2021.911012 

Damianidis, C., Santiago-Freijanes, J. J., den Herder, M., Burgess, P., Mosquera-Losada, M. R., 

Graves, A., Papadopoulos, A., Pisanelli, A., Camilli, F., Rois-Díaz, M., Kay, S., Palma, J. H. 

N., & Pantera, A. (2021). Agroforestry as a sustainable land use option to reduce wildfires 

risk in European Mediterranean areas. Agroforestry Systems, 95(5), 919–929. 

https://doi.org/10.1007/S10457-020-00482-W/FIGURES/1 

David, R. M., Rosser, N. J., & Donoghue, D. N. M. (2022). Improving above ground biomass 

estimates of Southern Africa dryland forests by combining Sentinel-1 SAR and Sentinel-2 

multispectral imagery. Remote Sensing of Environment, 282, 113232. 

https://doi.org/10.1016/J.RSE.2022.113232 

Dehghan, H., & Ghassemian, H. (2007). Measurement of uncertainty by the entropy: application 

to the classification of MSS data. Http://Dx.Doi.Org/10.1080/01431160600647225, 27(18), 

4005–4014. https://doi.org/10.1080/01431160600647225 

Dimobe, K., Ouédraogo, A., Ouédraogo, K., Goetze, D., Stein, K., Schmidt, M., Ivette Nacoulma, 

B. M., Gnoumou, A., Traoré, L., Porembski, S., & Thiombiano, A. (2020). Climate change 

reduces the distribution area of the shea tree (Vitellaria paradoxa C.F. Gaertn.) in Burkina 

Faso. Journal of Arid Environments, 181, 104237. 

https://doi.org/10.1016/J.JARIDENV.2020.104237 

Dubayah, R., Blair, J. B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S., Hofton, M., Hurtt, G., 

Kellner, J., Luthcke, S., Armston, J., Tang, H., Duncanson, L., Hancock, S., Jantz, P., 

Marselis, S., Patterson, P. L., Qi, W., & Silva, C. (2020). The Global Ecosystem Dynamics 

Investigation: High-resolution laser ranging of the Earth’s forests and topography. Science of 

Remote Sensing, 1, 100002. https://doi.org/10.1016/J.SRS.2020.100002 



References 

145 

 

Duncanson, L., Kellner, J. R., Armston, J., Dubayah, R., Minor, D. M., Hancock, S., Healey, S. 

P., Patterson, P. L., Saarela, S., Marselis, S., Silva, C. E., Bruening, J., Goetz, S. J., Tang, H., 

Hofton, M., Blair, B., Luthcke, S., Fatoyinbo, L., Abernethy, K., … Zgraggen, C. (2022). 

Aboveground biomass density models for NASA’s Global Ecosystem Dynamics 

Investigation (GEDI) lidar mission. Remote Sensing of Environment, 270, 112845. 

https://doi.org/10.1016/J.RSE.2021.112845 

Duncanson, L., Neuenschwander, A., Hancock, S., Thomas, N., Fatoyinbo, T., Simard, M., Silva, 

C. A., Armston, J., Luthcke, S. B., Hofton, M., Kellner, J. R., & Dubayah, R. (2020). Biomass 

estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in 

Sonoma County, California. Remote Sensing of Environment, 242, 111779. 

https://doi.org/10.1016/J.RSE.2020.111779 

ECOWAS. (2016). Import and export | Economic Community of West African States(ECOWAS). 

https://www.ecowas.int/doing-business-in-ecowas/import-and-export/ 

El Hajj, M., Baghdadi, N., Bazzi, H., & Zribi, M. (2018). Penetration Analysis of SAR Signals in 

the C and L Bands for Wheat, Maize, and Grasslands. Remote Sensing 2019, Vol. 11, Page 

31, 11(1), 31. https://doi.org/10.3390/RS11010031 

ESA. (2022). ESA - The Sentinel missions. 

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/The_Sentinel_missions 

EU. (2022). EU Deforestation-free Regulation (Vol. 2022, Issue December). 

FAO. (2020). Terms and Definitions FRA 2020. 

Federal Ministry for Economic Cooperation and Develpment (BMZ). (2020). Climate Risk 

Profile : Côte d ’ Ivoire. https://www.pik-potsdam.de/en/institute/departments/climate-

resilience/projects/project-pages/agrica/giz_climate-risk-profile-cote-

d2019ivoire_en_final_2#:~:text=Depending on the scenario%2C temperature,north of Côte 

d’Ivoire. 

Feliciano, D., Ledo, A., Hillier, J., & Nayak, D. R. (2018). Which agroforestry options give the 

greatest soil and above ground carbon benefits in different world regions? Agriculture, 



References 

 

146 

 

Ecosystems and Environment, 254, 117–129. https://doi.org/10.1016/J.AGEE.2017.11.032 

Filella,  guillem B. (2018). Cocoa segmentation in Satellite images with deep learning. ETH 

Zurich. 

Fischer, R. A., Cottrell, E., Hauri, E., Lee, K. K. M., & Le Voyer, M. (2020). The carbon content 

of Earth and its core. Proceedings of the National Academy of Sciences of the United States 

of America, 117(16), 8743–8749. https://doi.org/10.1073/PNAS.1919930117/-

/DCSUPPLEMENTAL 

Forkuor, G., Benewinde Zoungrana, J. B., Dimobe, K., Ouattara, B., Vadrevu, K. P., & Tondoh, 

J. E. (2020). Above-ground biomass mapping in West African dryland forest using Sentinel-

1 and 2 datasets - A case study. Remote Sensing of Environment, 236, 111496. 

https://doi.org/10.1016/J.RSE.2019.111496 

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, 

C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, 

S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., … Zheng, B. (2022). 

Global Carbon Budget 2022. Earth System Science Data, 14(11), 4811–4900. 

https://doi.org/10.5194/ESSD-14-4811-2022 

Gao, Y., Skutsch, M., Paneque-Galvez, J., & Ghilardi, A. (2020). Remote sensing of forest 

degradation: a review. Environmental Research Letters, 15. https://doi.org/10.1088/1748-

9326/abaad7 

Genuer, R., Poggi, J. M., & Tuleau-Malot, C. (2015). VSURF: An R package for variable selection 

using random forests. R Journal, 7(2), 19–33. https://doi.org/10.32614/rj-2015-018 

GFOI. (2018). A Layman’s Interpretation Guide to L-band and C-band Synthetic Aperture Radar 

data. 

Ghosh, S. M., & Behera, M. D. (2021). Aboveground biomass estimates of tropical mangrove 

forest using Sentinel-1 SAR coherence data - The superiority of deep learning over a semi-

empirical model. Computers & Geosciences, 150, 104737. 

https://doi.org/10.1016/J.CAGEO.2021.104737 



References 

147 

 

Giacco, F., Thiel, C., Pugliese, L., Scarpetta, S., & Marinaro, M. (2010). Uncertainty analysis for 

the classification of multispectral satellite images using SVMs and SOMs. IEEE Transactions 

on Geoscience and Remote Sensing, 48(10), 3769–3779. 

https://doi.org/10.1109/TGRS.2010.2047863 

GIZ. (2020). Strengthening governance and sustainable management of natural resources in the 

Comoé and Taï regions. https://www.giz.de/en/worldwide/30013.html 

Gomes, L. C., Bianchi, F. J. J. A., Cardoso, I. M., Fernandes, R. B. A., Filho, E. I. F., & Schulte, 

R. P. O. (2020). Agroforestry systems can mitigate the impacts of climate change on coffee 

production: A spatially explicit assessment in Brazil. Agriculture, Ecosystems and 

Environment, 294(January), 106858. https://doi.org/10.1016/j.agee.2020.106858 

GVR. (2019). Cocoa Beans Market Size, Analysis | Global Industry Report, 2019-2025. 

https://www.grandviewresearch.com/industry-analysis/cocoa-beans-market 

Gytarsky, J. P., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., 

Tanabe, K., & Wagner, F. (2015). Good Practice Guidance for Land Use, Land-Use Change 

and Forestry. In Comptes Rendus - Biologies (Vol. 338, Issue 2). 

https://doi.org/10.1016/j.crvi.2014.11.004 

Hall-Beyer, M. (2017). GLCM Texture: A tutorial v.3.0 March 2017. 

http://www.ucalgary.ca/UofC/nasdev/mhallbey/research.htm 

Hirata, Y., Takao, G., Sato, T., & Toriyama, J. (2012). REDD-plus Cookbook. REDD Research 

and Development center, Forestry and Forest Products Research Institute Japan. 

Houghton, R. A., House, J. I., Pongratz, J., Van Der Werf, G. R., Defries, R. S., Hansen, M. C., 

Le Quéré, C., & Ramankutty, N. (2012). Carbon emissions from land use and land-cover 

change. Biogeosciences, 9(12), 5125–5142. https://doi.org/10.5194/BG-9-5125-2012 

Howard, S., & Nair, R. (1988). Agroforestry - A Decade of Development. Edited by H. A. Steppler 

and P. K. R. Nair. Nairobi: International Council for Research in Agroforestry (1987), pp. 

335, $30.00. Experimental Agriculture, 24(3), 393–393. 

https://doi.org/10.1017/s0014479700016252 



References 

 

148 

 

Huang, X., Ziniti, B., Torbick, N., & Ducey, M. J. (2018). Assessment of Forest above Ground 

Biomass Estimation Using Multi-Temporal C-band Sentinel-1 and Polarimetric L-band 

PALSAR-2 Data. Remote Sensing 2018, Vol. 10, Page 1424, 10(9), 1424. 

https://doi.org/10.3390/RS10091424 

ICRC. (2021). Burkina Faso: climate fact sheet. https://www.climatecentre.org/wp-

content/uploads/RCCC-ICRC-Country-profiles-Burkina_Faso.pdf 

ILO. (2017). Global estimates of child labour: Results and trends, 2012-2016 International 

Labour Office (ILO), Geneva, 2017 ISBN: 978-92-2-130152-3 (print) ISBN: 978-92-2-

130153-0. 

International Anti-slavery. (2004). The cocoa industry in West Africa: a history of exploitation. In 

Thomas Clarkson House. https://doi.org/10.1038/164306b0 

IPCC. (2018). Global warning of 1.5°C: An IPCC Special Report on the impacts of global 

warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission 

pathways, in the context of strengthening the global response to the threat of climate change 

. https://doi.org/10.1017/9781009157940.008 

IPCC. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas 

Inventories, Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., 

Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P. and Federici, S. (eds). www.ipcc-

nggip.iges.or.jp 

Jones Kachamba, D., Ørka, H. O., Gobakken, T., Eid, T., Mwase, W., Melgani, F., Nex, F., 

Moreno, J., Atzberger, C., & Thenkabail, P. S. (2016). Biomass Estimation Using 3D Data 

from Unmanned Aerial Vehicle Imagery in a Tropical Woodland. Remote Sensing 2016, Vol. 

8, Page 968, 8(11), 968. https://doi.org/10.3390/RS8110968 

Kanmegne, J. (2004). Slash and Burn Agriculture in the Humid Forest Zone of Southern 

Cameroon: Soil Quality Dynamics, Improved Fallow Management and Farmers’ 

Perceptions. University of Wageningen. 

Kanmegne Tamga, D., Latifi, H., Ullmann, T., Baumhauer, R., Bayala, J., & Thiel, M. (2022). 



References 

149 

 

Estimation of Aboveground Biomass in Agroforestry Systems over Three Climatic Regions 

in West Africa Using Sentinel-1, Sentinel-2, ALOS, and GEDI Data. Sensors 2023, Vol. 23, 

Page 349, 23(1), 349. https://doi.org/10.3390/S23010349 

Kanmegne Tamga, D., Latifi, H., Ullmann, T., Baumhauer, R., Thiel, M., & Bayala, J. (2022). 

Modelling the spatial distribution of the classification error of remote sensing data in cocoa 

agroforestry systems. Agroforestry Systems. https://doi.org/10.1007/s10457-022-00791-2 

Kirkland, L.-A., Kanfer, F., & Millard, S. (2015). Lasso Tuning parameter selection. Proceedings 

of the 57th Annual Conference of SASA, 49–56. 

https://www.researchgate.net/publication/287727878_LASSO_Tuning_Parameter_Selectio

n 

Knauer, K., Gessner, U., Fensholt, R., Forkuor, G., & Kuenzer, C. (2017). Monitoring agricultural 

expansion in Burkina Faso over 14 years with 30 m resolution time series: The role of 

population growth and implications for the environment. Remote Sensing, 9(2). 

https://doi.org/10.3390/rs9020132 

Koné, M. (2010). Analysis of the Cashew Sector Value Chain in Côte d ’ Ivoire. 67pp. 

Lasky, J. R., Uriarte, M., Boukili, V. K., Erickson, D. L., John Kress, W., & Chazdon, R. L. (2014). 

The relationship between tree biodiversity and biomass dynamics changes with tropical forest 

succession. Ecology Letters, 17(9), 1158–1167. https://doi.org/10.1111/ELE.12322 

Leakey, R. R. B. (2017). Agroforestry Tree Products (AFTPs): Targeting Poverty Reduction and 

Enhanced Livelihoods: This chapter was previously published in Leakey, R.R.B., 

Tchoundjeu, Z., Schreckenberg, K., Shackleton, S., Shackleton, C., 2005. International 

Journal of Agricultural Sustainability, 3, 1–23, with permission of Taylor & Francis. 

Multifunctional Agriculture, 123–138. https://doi.org/10.1016/B978-0-12-805356-0.00013-1 

Leite, R. V., Silva, C. A., Broadbent, E. N., Amaral, C. H. do, Liesenberg, V., Almeida, D. R. A. 

de, Mohan, M., Godinho, S., Cardil, A., Hamamura, C., Faria, B. L. de, Brancalion, P. H. S., 

Hirsch, A., Marcatti, G. E., Dalla Corte, A. P., Zambrano, A. M. A., Costa, M. B. T. da, 

Matricardi, E. A. T., Silva, A. L. da, … Klauberg, C. (2022). Large scale multi-layer fuel load 

characterization in tropical savanna using GEDI spaceborne lidar data. Remote Sensing of 



References 

 

150 

 

Environment, 268, 112764. https://doi.org/10.1016/J.RSE.2021.112764 

Lin, Y., Zeng, Z., Chen, L., & Deng, Z. (2023). The Relation Between the CO 2 Concentration 

Levels and the Temperature. 03014. 

Lindner, T., Guo, H., Wang, H., Song, X., & Ruan, Z. (2023). Anomaly Detection of Remote 

Sensing Images Based on the Channel Attention Mechanism and LRX. Applied Sciences 

2023, Vol. 13, Page 6988, 13(12), 6988. https://doi.org/10.3390/APP13126988 

Lone, J. M., Sivasankar, T., Pebam, R., Sarma, K. K., Qadir, M. A., & P.L.N. (2018). (PDF) 

Comparison of C-band Sentinel-1 and L-band ALOSPALSAR-2 data for Aboveground Forest 

biomass estimation over Nongkhyllem Forest Reserve and Wildlife Sanctuary, 

Meghalaya,India. https://www.researchgate.net/publication/325144897_Comparison_of_C-

band_Sentinel-1_and_L-band_ALOSPALSAR-

2_data_for_Aboveground_Forest_biomass_estimation_over_Nongkhyllem_Forest_Reserve

_and_Wildlife_Sanctuary_MeghalayaIndia 

Loosvelt, L., Peters, J., Skriver, H., Lievens, H., Van Coillie, F. M. B., De Baets, B., & Verhoest, 

N. E. C. (2012). Random Forests as a tool for estimating uncertainty at pixel-level in SAR 

image classification. International Journal of Applied Earth Observation and 

Geoinformation, 19(1), 173–184. https://doi.org/10.1016/J.JAG.2012.05.011 

Lundgren, B., Raint, J., & Director,  ee. (1983). Sustained Agroforestry. 

Madden, M. G. ;, Munroe, D. T., & Madden, M. G. (2005). Multi-Class and Single-Class 

Classification Approaches to Vehicle Model Recognition from Images. 

https://aran.library.nuigalway.ie/handle/10379/191 

Maesano, M., Santopuoli, G., Valerio Moresi, F., Matteucci, G., Lasserre, B., & Scarascia 

Mugnozza, G. (2022). Above ground biomass estimation from UAV high resolution RGB 

images and LiDAR data in a pine forest in Southern Italy. Biogeosciences and Forestry, 15, 

451–457. https://doi.org/10.3832/ifor3781-015 

Malhi, R. K. M., Anand, A., Srivastava, P. K., Chaudhary, S. K., Pandey, M. K., Behera, M. D., 

Kumar, A., Singh, P., & Sandhya Kiran, G. (2022). Synergistic evaluation of Sentinel 1 and 



References 

151 

 

2 for biomass estimation in a tropical forest of India. Advances in Space Research, 69(4), 

1752–1767. https://doi.org/10.1016/J.ASR.2021.03.035 

Marsh, R., & van Sebille, E. (2021). Ocean currents, heat transport, and climate. Ocean Currents, 

497–520. https://doi.org/10.1016/B978-0-12-816059-6.00010-3 

Meng, X., Zhu, Y., Yin, M., & Liu, D. (2021). The impact of land use and rainfall patterns on the 

soil loss of the hillslope. Scientific Reports 2021 11:1, 11(1), 1–10. 

https://doi.org/10.1038/s41598-021-95819-5 

Milenković, M., Reiche, J., Armston, J., Neuenschwander, A., De Keersmaecker, W., Herold, M., 

& Verbesselt, J. (2022). Assessing Amazon rainforest regrowth with GEDI and ICESat-2 

data. Science of Remote Sensing, 5, 100051. https://doi.org/10.1016/J.SRS.2022.100051 

Minang, P. A., Duguma, L. A., Bernard, F., Mertz, O., & van Noordwijk, M. (2014). Prospects for 

agroforestry in REDD+ landscapes in Africa. In Current Opinion in Environmental 

Sustainability (Vol. 6, Issue 1, pp. 78–82). https://doi.org/10.1016/j.cosust.2013.10.015 

Mitchell, A. L., Rosenqvist, A., & Mora, B. (2017). Current remote sensing approaches to 

monitoring forest degradation in support of countries measurement, reporting and verification 

(MRV) systems for REDD+. Carbon Balance and Management, 12(1), 1–22. 

https://doi.org/10.1186/S13021-017-0078-9/TABLES/2 

MONGABAY. (2020). Forest data: Total Africa Deforestation Rates and Related Forestry 

Figures. https://rainforests.mongabay.com/deforestation/archive/Total_Africa.htm 

Musthafa, M., & Singh, G. (2022). Forest above-ground woody biomass estimation using multi-

temporal space-borne LiDAR data in a managed forest at Haldwani, India. Advances in Space 

Research, 69(9), 3245–3257. https://doi.org/10.1016/J.ASR.2022.02.002 

Naidoo, L., Mathieu, R., Main, R., Kleynhans, W., Wessels, K., Asner, G., & Leblon, B. (2015). 

Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-

band) Synthetic Aperture Radar data. ISPRS Journal of Photogrammetry and Remote 

Sensing, 105, 234–250. https://doi.org/10.1016/j.isprsjprs.2015.04.007 

Nair, P. K. R., Kumar, B. M., & Nair, V. D. (2009). Agroforestry as a strategy for carbon 



References 

 

152 

 

sequestration. Journal of Plant Nutrition and Soil Science, 172(1), 10–23. 

https://doi.org/10.1002/jpln.200800030 

Nair, P. R., & Nair, V. D. (2014). Solid-fluid-gas: The state of knowledge on carbon-sequestration 

potential of agroforestry systems in africa. Current Opinion in Environmental Sustainability, 

6(1), 22–27. https://doi.org/10.1016/j.cosust.2013.07.014 

Nayak, A. K., Rahman, M. M., Naidu, R., Dhal, B., Swain, C. K., Nayak, A. D., Tripathi, R., 

Shahid, M., Islam, M. R., & Pathak, H. (2019). Current and emerging methodologies for 

estimating carbon sequestration in agricultural soils: A review. Science of The Total 

Environment, 665, 890–912. https://doi.org/10.1016/J.SCITOTENV.2019.02.125 

Negash, M., & Kanninen, M. (2015). Modeling biomass and soil carbon sequestration of 

indigenous agroforestry systems using CO2FIX approach. Agriculture, Ecosystems and 

Environment, 203, 147–155. https://doi.org/10.1016/j.agee.2015.02.004 

NFI. (2023). When was Photography Invented? - Everything you need to know - NFI. 

https://www.nfi.edu/when-was-photography-invented/ 

NISAR. (n.d.). Overview | Get to Know SAR – NASA-ISRO SAR Mission (NISAR). Retrieved 

January 17, 2023, from https://nisar.jpl.nasa.gov/mission/get-to-know-sar/overview/ 

Numbisi, F. N., Van Coillie, F. M. B., & De Wulf, R. (2019). Delineation of cocoa agroforests 

using multiseason sentinel-1 SAR images: A low grey level range reduces uncertainties in 

GLCM texture-based mapping. ISPRS International Journal of Geo-Information, 8(4). 

https://doi.org/10.3390/ijgi8040179 

Nuthammachot, N., Askar, A., Stratoulias, D., & Wicaksono, P. (2020). Combined use of Sentinel-

1 and Sentinel-2 data for improving above-ground biomass estimation. 

https://doi.org/10.1080/10106049.2020.1726507 

Owusu, S., Anglaaere, L. C. N., & Abugre, S. (2018). Aboveground Biomass and Carbon content 

of a cocoa –Gliricida sepium agroforestry system in Ghana. Ghana Journal of Agricultural 

Science, 53(0), 45. https://doi.org/10.4314/gjas.v53i1.4 

PALSAR. (2022). PALSAR Overview - Earth Online. 



References 

153 

 

https://earth.esa.int/eogateway/instruments/palsar/description 

Pesola, L., Cheng, X., Sanesi, G., Colangelo, G., Elia, M., & Lafortezza, R. (2017). Linking above-

ground biomass and biodiversity to stand development in urban forest areas: A case study in 

Northern Italy. Landscape and Urban Planning, 157, 90–97. 

https://doi.org/10.1016/J.LANDURBPLAN.2016.06.004 

Pineda Jaimes, N. B., Bosque Sendra, J., Gómez Delgado, M., & Franco Plata, R. (2010). 

Exploring the driving forces behind deforestation in the state of Mexico (Mexico) using 

geographically weighted regression. Applied Geography, 30(4), 576–591. 

https://doi.org/10.1016/J.APGEOG.2010.05.004 

Pourshamsi, M., Xia, J., Yokoya, N., Garcia, M., Lavalle, M., Pottier, E., & Balzter, H. (2021). 

Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using 

machine-learning. ISPRS Journal of Photogrammetry and Remote Sensing, 172, 79–94. 

https://doi.org/10.1016/j.isprsjprs.2020.11.008 

Propastin, P. (2012). Modifying geographically weighted regression for estimating aboveground 

biomass in tropical rainforests by multispectral remote sensing data. International Journal of 

Applied Earth Observation and Geoinformation, 18(1), 82–90. 

https://doi.org/10.1016/J.JAG.2011.12.013 

Qureshi, A., Pariva, Badola, R., & Hussain, S. A. (2012). A review of protocols used for 

assessment of carbon stock in forested landscapes. Environmental Science & Policy, 16, 81–

89. https://doi.org/10.1016/J.ENVSCI.2011.11.001 

Ramachandran Nair, P. K., Nair, V. D., Mohan Kumar, B., & Showalter, J. M. (2010). Carbon 

sequestration in agroforestry systems. In Advances in Agronomy (Vol. 108, Issue C). 

Academic Press. https://doi.org/10.1016/S0065-2113(10)08005-3 

Rege, A., Warnekar, S. B., & Lee, J. S. H. (2022). Mapping cashew monocultures in the Western 

Ghats using optical and radar imagery in Google Earth Engine. Remote Sensing Applications: 

Society and Environment, 28, 100861. https://doi.org/10.1016/J.RSASE.2022.100861 

Riezebos, E. P., Vooren, A. P., & Guillaumet, J. L. (1994). Le Parc National de Taï, Côte d’Ivoire. 



References 

 

154 

 

I: Synthesis of knowledge. II: Bibliography. 

Roodposhti, M. S., Aryal, J., Lucieer, A., & Bryan, B. A. (2019). Uncertainty assessment of 

hyperspectral image classification: Deep learning vs. random forest. Entropy, 21(1), 1–15. 

https://doi.org/10.3390/e21010078 

Rosati, A., Paoletti, A., Al Harir, R., & Famiani, F. (2018). Fruit production and branching density 

affect shoot and whole-tree wood to leaf biomass ratio in olive. Tree Physiology, 38(9), 1278–

1285. https://doi.org/10.1093/TREEPHYS/TPY009 

Ruf, F., Schroth, G., & Doffangui, K. (2014). Climate change, cocoa migrations and deforestation 

in West Africa: What does the past tell us about the future? Sustainability Science 2014 10:1, 

10(1), 101–111. https://doi.org/10.1007/S11625-014-0282-4 

Sabas, B. Y. S., Danmo, K. G., Madeleine, K. A. T., & Jan, B. (2020). Cocoa Production and 

Forest Dynamics in Ivory Coast from 1985 to 2019. Land 2020, Vol. 9, Page 524, 9(12), 524. 

https://doi.org/10.3390/LAND9120524 

Schwaab, J., Meier, R., Davin, E. L., & Bürgi, C. (2021). The role of urban trees in reducing land 

surface temperatures in European cities. 2021, 1–11. https://doi.org/10.1038/s41467-021-

26768-w 

Shahbandeh, M. (2021). Cocoa production by country 2019/2020 | Statista. 

https://www.statista.com/statistics/263855/cocoa-bean-production-worldwide-by-region/ 

Shahidan, M. F., Salleh, D. E., & Mohd Shariff, M. K. (2006). The influence of tree canopy on the 

thermal environment in a tropical climate : A preliminary study. INTA Conference-Harmony 

in Culture and Nature, January 2006. 

Shao, Z., & Zhang, L. (2016). Estimating Forest Aboveground Biomass by Combining Optical 

and SAR Data: A Case Study in Genhe, Inner Mongolia, China. Sensors (Basel, Switzerland), 

16(6). https://doi.org/10.3390/S16060834 

Silva, C. A., Duncanson, L., Hancock, S., Neuenschwander, A., Thomas, N., Hofton, M., 

Fatoyinbo, L., Simard, M., Marshak, C. Z., Armston, J., Lutchke, S., & Dubayah, R. (2021). 

Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass 



References 

155 

 

mapping. Remote Sensing of Environment, 253. https://doi.org/10.1016/J.RSE.2020.112234 

Somarriba, E., Cerda, R., Orozco, L., Cifuentes, M., Dávila, H., Espin, T., Mavisoy, H., Ávila, G., 

Alvarado, E., Poveda, V., Astorga, C., Say, E., & Deheuvels, O. (2013). Carbon stocks and 

cocoa yields in agroforestry systems of Central America. Agriculture, Ecosystems and 

Environment, 173, 46–57. https://doi.org/10.1016/j.agee.2013.04.013 

Stehman, S. V. (1997). Selecting and interpreting measures of thematic classification accuracy. 

Remote Sensing of Environment, 62(1), 77–89. https://doi.org/10.1016/S0034-

4257(97)00083-7 

Steppler, H. A., & Ramachandran Nair, P. K. (1987). Agroforestry a decade of development. 

Tadese, S., Soromessa, T., Bekele, T., Bereta, A., & Temesgen, F. (2019). Above Ground Biomass 

Estimation Methods and Challenges: A Review. Journal of Energy Technologies and Policy, 

9(8), 12–25. https://doi.org/10.7176/jetp/9-8-02 

Thangata, P. H., & Hildebrand, P. E. (2012). Carbon stock and sequestration potential of 

agroforestry systems in smallholder agroecosystems of sub-Saharan Africa: Mechanisms for 

“reducing emissions from deforestation and forest degradation” (REDD+). Agriculture, 

Ecosystems and Environment, 158, 172–183. https://doi.org/10.1016/j.agee.2012.06.007 

Tiwari, A. K., & Singh, J. S. (1984). Mapping forest biomass in India through aerial photographs 

and nondestructive field sampling. Applied Geography, 4(2), 151–165. 

https://doi.org/10.1016/0143-6228(84)90019-5 

Tondoh, J. E., Kouamé, F. N. guessa., Martinez Guéi, A., Sey, B., Wowo Koné, A., & Gnessougou, 

N. (2015). Ecological changes induced by full-sun cocoa farming in CÔte d’Ivoire. Global 

Ecology and Conservation, 3, 575–595. https://doi.org/10.1016/j.gecco.2015.02.007 

Tschora, H., & Cherubini, F. (2020). Co-benefits and trade-offs of agroforestry for climate change 

mitigation and other sustainability goals in West Africa. Global Ecology and Conservation, 

22, e00919. https://doi.org/10.1016/j.gecco.2020.e00919 

UNDP. (2022). Report 2021/2022. 

Vatandaşlar, C., & Abdikan, S. (2022). Carbon stock estimation by dual-polarized synthetic 



References 

 

156 

 

aperture radar (SAR) and forest inventory data in a Mediterranean forest landscape. J. For. 

Res, 33, 827–838. https://doi.org/10.1007/s11676-021-01363-3 

Vizzari, M. (2022). PlanetScope, Sentinel-2, and Sentinel-1 Data Integration for Object-Based 

Land Cover Classification in Google Earth Engine. Remote Sensing, 14(11), 2628. 

https://doi.org/10.3390/RS14112628/S1 

Von Maillot, A. (2020). Tackling Deforestation We are committed to ending deforestation in our 

cocoa supply chain, and preserving and restoring existing forests Contents. 

Wadudu, A., Mohammed, A.-, Baah-Ennumh, T., Rahim, Y., & Abdulai, A. (2016). Role of the 

Shea Industry in the Socio-economic Lives of Women in the West Mamprusi District of 

Northern Ghana. JOURNAL OF SOCIAL SCIENCE RESEARCH, 10(1), 1968–1977. 

https://doi.org/10.24297/JSSR.V10I1.4756 

Wagner, F. H., Dalagnol, R., Silva-Junior, C. H. L., Carter, G., Ritz, A. L., Hirye, M. C. M., 

Ometto, J. P. H. B., & Saatchi, S. (2023). Mapping Tropical Forest Cover and Deforestation 

with Planet NICFI Satellite Images and Deep Learning in Mato Grosso State (Brazil) from 

2015 to 2021. Remote Sensing 2023, Vol. 15, Page 521, 15(2), 521. 

https://doi.org/10.3390/RS15020521 

Wang, D., Wan, B., Liu, J., Su, Y., Guo, Q., Qiu, P., & Wu, X. (2020). Estimating aboveground 

biomass of the mangrove forests on northeast Hainan Island in China using an upscaling 

method from field plots, UAV-LiDAR data and Sentinel-2 imagery. International Journal of 

Applied Earth Observation and Geoinformation, 85. 

https://doi.org/10.1016/J.JAG.2019.101986 

Warren-Thomas, E., Nelson, L., Juthong, W., Bumrungsri, S., Brattström, O., Stroesser, L., 

Chambon, B., Penot, É., Tongkaemkaew, U., Edwards, D. P., & Dolman, P. M. (2020). 

Rubber agroforestry in Thailand provides some biodiversity benefits without reducing yields. 

Journal of Applied Ecology, 57(1), 17–30. https://doi.org/10.1111/1365-2664.13530 

Widdicombe, S., & Spicer, J. I. (2008). Predicting the impact of ocean acidification on benthic 

biodiversity: What can animal physiology tell us? Journal of Experimental Marine Biology 

and Ecology, 366(1–2), 187–197. https://doi.org/10.1016/J.JEMBE.2008.07.024 



References 

157 

 

WPR. (2023). Cashew Production by Country 2023. https://worldpopulationreview.com/country-

rankings/cashew-production-by-country 

Wulder, M., Hermosilla, T., White, J., & Coops, N. (2020). Biomass status and dynamics over 

Canada’s forests: Disentangling disturbed area from associated aboveground biomass 

consequences. Environmental Research Letters, 15. https://doi.org/10.1088/1748-

9326/ab8b11 

Yemefack, M. (2005). Modelling and Monitoring Soil and Land Use Dynamics Within Shifting 

Agricultural Landscape Mosaic Systems in Southern Cameroon. University of Twente, ITC. 

Yin, L., Ghosh, R., Lin, C., Hale, D., Weigl, C., Obarowski, J., Zhou, J., Till, J., Jia, X., You, N., 

Mao, T., Kumar, V., & Jin, Z. (2023). Mapping smallholder cashew plantations to inform 

sustainable tree crop expansion in Benin. Remote Sensing of Environment, 295, 113695. 

https://doi.org/10.1016/J.RSE.2023.113695 

Zhang, W., Brandt, M., Wang, Q., Prishchepov, A. V., Tucker, C. J., Li, Y., Lyu, H., & Fensholt, 

R. (2019). From woody cover to woody canopies: How Sentinel-1 and Sentinel-2 data 

advance the mapping of woody plants in savannas. Remote Sensing of Environment, 234, 

111465. https://doi.org/10.1016/j.rse.2019.111465 

Zhao, M., A, G., Liu, Y., & Konings, A. G. (2022). Evapotranspiration frequently increases during 

droughts. Nature Climate Change 2022 12:11, 12(11), 1024–1030. 

https://doi.org/10.1038/s41558-022-01505-3 

Zomer, R. J., Bossio, D. A., Trabucco, A., Van Noordwijk, M., & Xu, J. (2022). Global carbon 

sequestration potential of agroforestry and increased tree cover on agricultural land. Circular 

Agricultural Systems, 2(3). https://doi.org/10.48130/CAS-2022-0003 

Zoungrana, A., De Cannière, C., Cissé, M., Bationo, B. A., Traoré, S., & Visser, M. (2023). Does 

the social status of farmers determine the sustainable management of agroforestry parklands 

located near protected areas in Burkina Faso (West Africa)? Global Ecology and 

Conservation, 44, e02476. https://doi.org/10.1016/J.GECCO.2023.E02476 

Zvoleff, A. (2020). glcm: Calculate Texture from Grey-Level Co-Occurence Matrices (GLCMs). 



References 

 

158 

 

R package version 1.6.5. htpps://cran.r-project.org/package=glcm 

 

 

 



 

159 

 

Acknowledgments 

Alles vermag ich in dem, der mich kräftigt 

 

The present work would have not been possible without the contribution and support from third 

parties that I would like to acknowledge in this section. I am grateful to: 

- The German Federal Ministry of Education and Research (BMBF) for the financial support 

via the project carrier at the German Aerospace Centre (DL projektträger) through the 

research project: WASCAL-DE-Coop (FKZ: 01LG1808A). 

- The Graduate School of Science and Technology (GSST) of the University of Würzburg 

for the opportunity I have been granted to carry my research as a PhD student. 

- The World Agroforestry Centre (ICRAF-Abidjan) for supporting my field work activities. 

I am thankful to my supervisor at ICRAF Dr Jules Bayala, who has contributed actively to 

the publications from this research. to Dr Alain Atangana who helped me in the 

organization of the operations on the field; To Augustin Yra and Michael Kouame who 

assisted me during field campaign in Côte d’Ivoire. 

- My supervisors Prof. Dr. Tobias Ullmann, PD Dr. Hooman Latifi and Prof. Dr. Roland 

Baumhauer for their support and mentoring during my PhD research. Thank you for your 

support in designing and publishing the results of my research. 

- My colleagues from the WASCAL-DE-Coop project: Dr Michael Thiel (project leader), 

Dr Sarah Schönbrodt-Stitt, and Sabine Oppmann for their support and mentoring both in 

my academic and private life. 

- My colleagues from the Department of Remote Sensing of the University of Würzburg for 

the nice environment that prevailed during my time there. I am thinking of Dr Martin 

Weggmann, Dr Mirjana Bevanda, Dr Insa Otte, Christine Linge and Dagmar Tepass 

- My PhD fellows, namely Boris Ouattara, Alexandra Bell, Itohan-Osa, Adomas Liepa, 

Maninder Singh Dhillon, Jakob Schwalb-Willmann, and Steven Hill for the nice time we 

shared together during my time in Würzburg. I wish you all the best in life guys. 

- My family, without whom I could not have completed this work. I am thinking of my 

thinking of my lovely wife Sandrine Foka Kanmegne for her love, to my mother Michelle 



Acknowledgments 

 

160 

 

Solange Medjoda for the encouragement and moral support, and to my sisters Grace 

Tchemtchoua, Ann Mboudou and Carmen Kanmegne for their availability and kindness. 

- My mentors Pr Eric Smaling, Pr Lijbert Brussard and Dr Fabrice Tiba, who helped me to 

grow as a scientist and as a man. I am thankful for the advice and guidance that you have 

always provided. 

- The family of my friends in Germany and in France. I am thinking of the family of Mbama 

Boniface, William Massoma, Emmanuel Mbo, Christian Tsamo and Alain Ngaha, Jules-

Rodrigue Nuemo, Yannick Yami, Georges Ngako and Nicaise Nguetse. 

- The mothers I met, who were very supportive. I am thinking of Amina, Alice, Dr Laura 

Kouam and Michelle Ngoube 

- My friends in Würzburg Kevin Yomi, Alexi Nana, Glory Amougou and Leaticia Fakam, 

just to name a few. 

“If everyone played the drums, there would be no one to dance”. I would like to thank those who 

participated in one way or another in the realization of this work, those who played and those who 

danced. May God reward you a hundredfold. 



 

161 

 

Affidavit 

I hereby confirm that my thesis entitled “Modelling Carbon Sequestration in 

Agroforestry Systems in West Africa using Remote Sensing”, is the result of my own work. I 

did not receive any help or contribution form commercial consultants. All sources and / or 

materials applied are listed and specified in the thesis. 

Furthermore, I confirm that this thesis has not yet been submitted as part of another 

examination process neither in identical nor in similar form. 

 

 

 

Place, Date:          Signature 

 

Eidesstattliche Erklärung 

Hiermit erkläre ich an Eides statt, die Dissertation Modellierung der Kohlenstoffbindung von 

agroforstwirtschaftlichen Systemen in Westafrika mit Fernerkungdung eigenständig, d.h. 

insbesondere selbständig und ohne Hilfe eines kommerziellen Promotionsberaters, angefertigt und 

keine anderen als die von mir angegebenen Quellen und Hilfsmittel verwendet zu haben. 

Ich erkläre außerdem, dass die Dissertation weder in gleicher noch in ähnlicher Form bereits in 

einem anderen Prüfungsverfahren vorgelegen hat. 

 

 

 

Ort, Datum:          Unterschrift 

 




