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Abstract
In this thesis we examine the vector boson scattering (VBS) process pp → e+νeµ−ν̄µjj+X (short:
W+W− scattering) at NLO accuracy in two experimental setups by performing a Monte Carlo
analysis of a 13 TeV LHC run. W+W− scattering shows similarities and differences compared to
the scattering of other vector bosons. We present a detailed description of the types of appearing
subprocesses and background processes. We give insight into our code which solves the problems
we are faced within W+W− scattering. This is especially the presence of the Higgs-boson
resonance in the fiducial phase-space region. Particular attention is dedicated to the permutation
of resonances. The integrated signal cross section at LO O (

α6) amounts to 2.6988(3) fb and
1.5322(2) fb, respectively, in the two experimental setups. The LO QCD-induced background of
O (

α2
sα

4) amounts to 6.9115(9) fb and 1.6923(3) fb. The EW corrections to the signal are −11.4%
and −6.7%, the QCD corrections amount to −5.2% and −23.0%. The EW corrections to the
background are −8.3% and −5.3%, the QCD corrections amount to −30.3% and −77.6%. Our
results for the QCD corrections and the QCD-induced background include a large uncertainty
from varying the renormalisation and factorisation scale, and we discuss improvements for future
calculations. We show the differential cross sections with unique features of W+W− scattering
compared to other VBS processes and investigate in particular the subprocess of Higgs-boson
production by using a modified version of our setups.

Abstract
In dieser Arbeit untersuchen wir den Vektorboson-Streuprozess (VBS-Prozess) pp → e+νeµ−ν̄µjj+
X (kurz: W+W−-Streuung) auf nächstführender Ordnung in zwei Versuchsanordnungen, indem
wir eine Monte-Carlo-Analyse des LHC-Betriebs bei 13 TeV durchführen. W+W−-Streuung zeigt
Gemeinsamkeiten mit der und Unterschiede zur Streuung anderer Vektorbosonen. Wir stellen
eine detaillierte Beschreibung der Arten auftauchender Subprozesse und Hintergrundprozesse
vor und geben Einsicht in unseren Code, der die Probleme löst, vor die wir im Rahmen der
W+W−-Streuung gestellt wurden. Dies ist insbesondere die Präsenz der Higgs-Boson-Resonanz
im Bezugsphasenraum. Besonderes Augenmerk wird auf die Permutation der Resonanzen gelegt.
Wir präsentieren den integrierten Wirkungsquerschnitt. Der integrierte Wirkungsquerschnitt des
Signals beträgt 2,6988(3) fb beziehungsweise 1,5322(2) fb auf führender Ordnung O (

α6) in den
beiden experimentellen Setups. Der QCD-Hintergrund auf führender Ordnung O (

α2
sα

4) beträgt
6,9115(9) fb bzw. 1,6923(3) fb. Die elektroschwachen Korrekturen zum Signal belaufen sich auf
−11,4% bzw. −6,7%, die QCD-Korrekturen auf −5,2% bzw. −23,0%. Die elektroschwachen Kor-
rekturen zum Hintergrund sind −8,3% bzw. −5,3%, die QCD-Korrekturen −30,3% bzw. −77,6%.
Unsere Ergebnisse für die QCD-Korrekturen und den QCD-induzierten Hintergrund enthalten
eine große Unsicherheit durch die Variation der Renormierungs- und Faktorisierungsskala und wir
diskutieren Verbesserungen für zukünftige Rechnungen. Wir zeigen die differentiellen Wirkungs-
querschnitte mit Eigenheiten von W+W−-Streuung verglichen mit anderen VBS-Prozessen und
betrachten insbesondere den Subprozess der Higgs-Boson-Produktion, indem wir eine modifizierte
Version unserer Versuchsanordnungen verwenden.
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1 Introduction
When I began my physical studies, and I sought my honourable teacher Philipp
von Jolly for advice about the conditions and prospects of my studies, he described
physics as a highly developed science, which [. . . ] would soon receive its final stable
form. There might be a mote or a vesicle to check and classify in one or another
corner, but the system stands safely, and theoretical physics approaches noticeably
that grade of perfection, which, for example, geometry has for centuries.
– Max Planck, 1924 [1]

In the middle and late 19th century, everything was fine. Gravitation was known for centuries,
electromagnetism and thermodynamics were primarily understood in the last few decades, and
atoms were some massive billiard balls that could form molecules or salts but had no interior life.
However, within only a span of 50 years, everything was about to change.

In 1902, Rutherford and Soddy found that a newly discovered phenomenon, radioactivity,
was able to transmute atoms from one element to another [2]. In their words, they discovered a
process

Th −→ ThX −→ some gas,

which we would write in modern notation as
228Th −→ 224Ra −→ 220Rn.

With this discovery, the “unbreakable” atom was literally shattered. Knowing the existence of
electrons, which were already discovered in 1897 by Thomson, Rutherford postulated after his
scattering experiments in 1909 the existence of an atomic nucleus and predicted in 1920 the
existence of uncharged nucleons [3]. In the 1930s, even more particles with masses smaller than
the hydrogen atom popped up: positrons, muons, and pions; in the 1940s, kaons joined.

Apart from the problem of sorting all of these new particles, physicists had an additional
struggle with the conservation of energy and momentum. They were well-established facts
in classical physics and new developments such as special and general relativity or quantum
mechanics did not affect them. In contrast, Noether’s newly discovered theorem grounded them
even more. On the other hand, the conservation laws seemed to be violated in some radioactive
processes. In α-decays, the radiated α-particles always have the same energy, as one would expect
in a 1 → 2 decay process. In β-decays, the radiated β-particles do not, but show a continuous
energy spectrum. This could only be resolved by Pauli by introducing a third participant in the
interaction, which was soon called the neutrino.

As the years passed by, physicists were eager to find a mathematical description of β-decays.
Fortunately, with the development of quantum mechanics, special relativity, and their unification,
quantum field theory, we possess the armamentarium to tackle these problems in the standard
model of elementary particle physics (SM). It does not only bring order to the particle zoo; it
also describes three kinds of forces: electromagnetic, weak, and strong interaction.

The SM is one of the experimentally most well-tested theories of modern physics. It describes
our surrounding world at microscopically small length and very high energy scales with astonishing
precision. The plethora of all known forms of matter can be described with only 12 elementary
particles (and their corresponding antiparticles), and six additional particles mediate the forces.
Theoretical predictions made by the SM are regularly confirmed by particle physics experiments
all over the world.

Alas, we are far away from Jolly’s hybris in the 19th century. We know that the aforementioned
gravitation eludes the description of the SM, and even worse, general relativity as a mathematical
description of gravitation is mathematically incompatible with quantum field theory. Speaking
of gravitation, we also know that astronomical measurements seem to require gravitationally
interacting, not yet discovered particles, which cannot be members of either elementary or
composite particles from the SM.
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One class of discussed candidates for these particles are the hypothetical WIMPs, weakly
interacting massive particles [4, 5]. They also come across when discussing supersymmetric
extensions of the SM. All of these new theories have one thing in common: With the introduction
of new weakly interacting particles, the predictions of the SM in its electroweak (EW) sector
are changed. There are two routes for testing the existence of hypothetical particles: direct
measurement, in which the particles have to be produced on-shell, and they or their decay
products are detected, or indirect measurement, in which we probe the SM at very high accuracy
and try to detect any deviations from its predictions.

Although direct searches of non-SM particles at the Large Hadron Collider (LHC) were
not successful [6], the LHC has become more and more capable of measuring cross sections
with high precision due to data collected in the course of the last few years. One of its most
outstanding achievements was indeed the discovery of a new SM particle in 2012, the Higgs
boson [7, 8]. The Higgs mechanism [9–13], which postulates the existence of this boson, is an
essential building block of the EW sector. Some new physics models beyond the SM revolve
around the introduction of a second Higgs doublet instead of a single one [14]. Interactions with
those new particles would also alter experimental results compared to SM predictions.

In this thesis, we investigate a process that is directly connected to the EW sector of the SM
and especially to the Higgs boson. The class of processes it belongs to is called vector boson
scattering (VBS), and the particular process is opposite-sign W+W− scattering.

VBS processes have relatively small cross sections and disappear in front of an overwhelmingly
large background unless a set of appropriate phase-space cuts on the final state of the measured
events is applied. Nevertheless, due to the immense amount of collected data, the LHC was able
to detect VBS signals in the past few years for a set of two leptonically decaying weak vector
bosons combined with the occurrence of two jets. Same-sign W+W+ [15–19], WZ [20–22] and
ZZ scattering [23–25] have been observed by ATLAS and CMS in the last decade. At last, the
observation of opposite-sign W+W− scattering has first been claimed and verified by CMS in
2021 and 2022, respectively [26–28].

With more and more experimental measurements, precise theoretical predictions of the cross
sections of VBS processes become increasingly important. There have been theoretical studies
of VBS processes for more than a decade, which mainly focussed on QCD corrections. For
opposite-sign W+W− scattering, QCD corrections became available between 2006 and 2012
[29–31]. Parton shower matching followed soon after that [32, 33]. The EW corrections have
been neglected so far for W+W− scattering. This thesis is part of a series of studies in which
special attention is given to EW corrections to VBS processes and which started in 2017 with
the calculation of both differential and integrated cross sections of W+W+ scattering at next-to-
leading order (NLO) accuracy [34, 35]. It continued with the completion of a complete analysis
of W+Z [36] and ZZ scattering [37, 38]. A paper containing next-to-leading order corrections to
parts of opposite-sign W+W− scattering neglecting the QCD background using the results of
this thesis has been published in 2022 [39].

This thesis finalises the research of the paper mentioned above [39] by presenting the entire
theoretical leading order (LO) and next-to-leading order cross sections for W+W− scattering in
two different experimental setups. We used Monte Carlo integration techniques of our in-house
multi-channel integrator Bbmc to simulate scattering events at the LHC and a combination of
the matrix element generator Recola [40, 41] and the Collier library [42, 43] to calculate
integrated and differential cross sections from our events.

The thesis is split into four parts. In Section 2, we recapitulate the theoretical foundations
forming the base of our research. Special attention is given to the Higgs mechanism and the
Glashow–Weinberg–Salam theory of EW interactions. We also recapitulate the concepts of NLO
calculations with the help of some basic examples and present the Catani–Seymour formalism,
which handles them for numeric integrators. In Section 3, we present the concrete process of
W+W− scattering. This includes a description of all orders of the coupling constants which
contribute to our process at leading and next-to-leading order. We also give insights into the
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code we used to simulate the process and show occurring problems within Bbmc when we first
tried to compute the process, as well as our solutions for these problems. In Section 4, we
introduce the simulated experimental setups and present our results for the cross sections. This
is done at the level of integrated and differential cross sections, where we first show all LO
contributions and, afterwards, the different LO contributions with their corresponding NLO
corrections separately. As a final step, we present the dependence of our differential cross section
on the used renormalisation and factorisation scale. The last part is a very brief outlook for
possible future improvements in Section 5.
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2 Theoretical foundations

2.1 Electroweak symmetry breaking

Since the purpose of this thesis is the investigation of the phenomenology of VBS, we begin with
a recapitulation of the EW interaction as a theoretical basis. We start, therefore, with a brief
historical overview of the first successful theories, and we present their problems both from a
physical and a mathematical viewpoint.

This leads us to the very beginning, the Fermi theory and its inability to reproduce the
correct energy and angular dependence of the cross section. The next theory we present is the
simple V − A theory, which can solve these physical problems but cannot be formulated as a
gauge theory, unlike the theories of electromagnetism and strong interaction. In this course, we
briefly recapitulate the concept of gauge invariance, which will lead us to the theory of Glashow,
Weinberg, and Salam. Special attention is given to the process of mass generation by the Higgs
mechanism.

2.1.1 About energy-momentum conservation and neutrinos

As we already stated in the introduction, β-decay posed a serious problem for physicists in the
early 20th century. It was known that a mother nucleus (M) decayed into some daughter nucleus
(D) and emitted a light particle, which is a simple two-particle decay. Consider a generic reaction

M −→ D + R

and calculate the energy spectrum of the radiated particle (R). It is straightforward; we have
to place ourselves in the centre-of-mass system with the mother nucleus at rest and use energy-
momentum conservation. Without loss of generality, we may assume that the radiated particle is
emitted in x1-direction: 

mM
0
0
0

 =


√
m2

D + p2
D

pD
0
0

+


√
m2

R + p2
R

pR
0
0

 . (1)

Neglecting the small mass of the radiated particle, some arithmetic leads to

pR = m2
M −m2

D
2mM

. (2)

After this reasoning, we expect a sharp energy peak of the radiated particles in our spectrometers.
This is, in fact, the case for an α-particle: All α-emitters have characteristic decay energies
[44]. Surprisingly, emitted β-particles show a continuous energy spectrum instead [45], which
contradicts our results and hence energy-momentum conservation.

To solve this puzzle, Pauli postulated in a letter a yet unknown, uncharged light particle [46],
which we call nowadays an electron-antineutrino.1 Since no apparatus at that time was technically
able to detect and prove the existence of the particle, and hence none of its characteristics was
measurable, this was a shocking assumption. Pauli did not dare to publish his ideas, but it was
the only solution for the problem. For some β-decay, one could now write:

M −→ D + e− + ν̄e. (3)

With the additional particle, we moved from a two-particle decay to a three-particle decay,
which gives us more free parameters for our equations. The third particle can absorb momentum

1We will conveniently drop the discrimination between different types of neutrinos and antineutrinos in the
written text if there are no ambiguities.
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in a second spatial dimension. There are, hence, three equations – one for energy and two
for momentum – and five free variables – the absolute values of the three momenta and two
independent angles. The energy of the electron is not fixed any more but can be expressed
as a continuous function of two free parameters. Let us assume the process takes place in the
x1, x2-plane, the electron is emitted in the x1-direction, the angle between the momenta of
daughter particle and electron is ϕD and the angle between the momenta of electron and neutrino
is ϕν . We depict this graphically in Figure 2.1. Then, energy-momentum conservation tells us,
neglecting electron and neutrino mass,

mM
0
0
0

 =


√
m2

D + p2
D

pD cosϕD
pD sinϕD

0

+


pe
pe
0
0

+


pν

pν cosϕν
pν sinϕν

0

 . (4)

Some calculation leads to

pe = m2
M −m2

D − 2mMpν
2(mM + pν cosϕν)

(5)

for the electron momentum as a function of neutrino momentum and angle between the two
particles. Since electron and neutrino are interchangeable labels in this calculation, the maximum
electron energy is achieved when the neutrino momentum is zero and takes the value calculated
in (2). Vice versa, the minimum electron energy is zero in this approximation.

x1

x2

pe

pD

pν

φν

φD

Figure 2.1: Geometry of the beta decay

2.1.2 Matrix elements and cross sections

Although the introduction of the neutrino explains why the energy spectrum of β-particles is
continuous, it does not explain the shape of the energy distribution. We will not calculate this
distribution since we are more interested in scattering than in decay processes in the course of
this thesis. Still, we will move on to the more generic topic of matrix elements and cross sections.

Suppose we do a particle physics experiment and collide two proton beams, which is exactly
what we are going to simulate in the second part of this thesis. We are then interested in the
number of scattering events in some time interval dN/dt. This quantity will depend on the
experimental design – especially the particle densities, the intersection area, and the length of
the beams. We collect all of these technical parameters and call the result the luminosity L. If
we factor off the luminosity, the remainder is the “physical” quantity named cross section, σ,
which is independent of the experimental setup. We write this in the differential form

ddN
dt = Ldσ. (6)

For a derivation of a formula for the cross section we refer to any QFT textbook, e. g. [47].
We just write it down for massless initial-state particles in the centre-of-mass frame since we are
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only interested in the high-energy limit in this thesis (and for the introductory examples, this
simplifying assumption is sufficient):

dσ = 1
2s |M|2dΓ, (7)

where s is the centre-of-mass energy, M is the matrix element and dΓ the Lorentz-invariant
final-state phase-space element. It is given in four space-time dimensions by

dΓ =

∏
f

∫ d3pf
(2π)3

1
2Ef

 (2π)4δ(4)(p1 + p2 −
∑
f

pf ), (8)

where the index f runs over all final-state particles, and the initial-state particles are labelled
with 1 and 2.

For a 2 → 2 process, the phase-space integral simplifies drastically, and we obtain the formula

dσ
dΩ = 1

64π2s
|M|2 (9)

as the connection between the differential cross section (with respect to the solid angle in
the centre-of-mass frame) and the matrix element. We will revisit the phase-space integral in
space-time dimensions different from four, especially for a 2 → 3 process in Section 2.2.1.

The matrix element is defined via the S-matrix that is the Heisenberg operator which mediates
between the asymptotic initial and final Schrödinger states:

⟨i(t = −∞)|f(t = ∞)⟩S = ⟨i|S|f⟩H ≡ ⟨i|1 + iT |f⟩H. (10)

It is given by stripping off the four-momentum conservation factor from the interaction part

⟨i|T |f⟩H = (2π)4δ(4)(p1 + p2 −
∑
f

pf )M. (11)

The matrix element contains all information about the scattering process independent of external
influences. It can be directly connected to the Lagrangian and to Feynman diagrams. We again
refer to [47] for the derivation. We are not interested in polarised cross sections in the course of
this thesis, so we will always sum over the final-state spins and helicities and average over the
initial-state ones.

2.1.3 Historical theories of the weak interaction: Fermi and V −A theory

With the tools to calculate cross sections at hand, we can go back to the problem with the
neutrinos. In quantum field theory, we need a Lagrangian to calculate matrix elements to
predict the cross sections. The first one to develop a successful theory for the β-decay, and
therefore founding the field of (electro-)weak interactions, was Enrico Fermi [48–50]. In modern
language, he introduced the following Lagrangian to explain the beta decay, including the neutrino
(n → p+ + e− + ν̄e):

LFermi = iψ̄i/∂ψi −
(
GF√

2
(ψ̄1γ

µψ2)(ψ̄3γµψ4) + h.c.
)

(12)

The first term is a sum over different fermions, which is the kinetic part, and the second is a
contact interaction between four different fermions at one single point in space-time, where the
matching fermions had to be put in “by hand”. The factor of

√
2 accompanying the coupling

constant GF is conventional. This Lagrangian cannot only describe decays but also scattering
processes. Let us hence consider the so-called inverse β-decay, in which an antineutrino collides
with a proton to form a neutron and a positron:

ν̄e + p −→ e+ + n.
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ν̄, p′

p, k′

e+, p

n, k

ν̄, p′

p, k′

e+, p

n, k

W, q

Figure 2.2: Feynman diagrams for ν̄p → e+n scattering in Fermi (left) and V −A theory (right)

In fact, this is the process in which the neutrino had been discovered [51, 52]. The corresponding
Feynman diagram is given in Figure 2.2.

We may use Fermi’s theory to calculate the cross section. The matrix element follows directly
from the Lagrangian as

M = GF√
2
v̄ν̄e(p′)γαvē(p)ūp(k′)γαun(k), (13)

if we identify the four fermions correctly and assign momenta to them. Taking the absolute
square and averaging yields after applying Casimir’s trick [53] and some Dirac algebra

|M̄|2 = 1
4
∑

|M|2 = 1
8G

2
F Tr(/p′γα/pγ

β) Tr(/k′
γα/kγβ) = 4G2

F
[
(pk)(p′k′) + (pk′)(kp′)

]
. (14)

The products of four-momenta can be rewritten into the centre-of-mass energy and the scattering
angle θ in the centre-of-mass frame as

|M̄|2 = G2
F(s2 + u2) = G2

F
2 s2

(5
2 − cos θ + 1

2 cos2 θ

)
. (15)

Plugging this into equation (9) and integrating over the solid angle, the differential and integrated
cross sections are

dσ̄
dΩ = G2

F
128π2 s

(5
2 − cos θ + 1

2 cos2 θ

)
, σ̄ = G2

F
12πs. (16)

With the Fermi theory at hand, physicists were able to calculate these weak cross sections
for the first time. Despite its success in the first decades, the result is incorrect. There are two
problems: First, the predicted cross section grows with s. In those days, this was not noticeable
in experiments since high-energy particle colliders were futuristic and typical energies in β-decays
are at the order of some few MeV. Nowadays, such behaviour is excluded by experiments. Instead,
this posed a more severe problem from a theoretical viewpoint. Such behaviour violates unitarity.
It is a fact that all individual transition probabilities from some initial state to a specific final
state must be positive and have to sum up to one. This is impossible when the integrated cross
section grows faster than ln2 s, which is called the Froissart bound [54]. Second, the prediction
of the differential cross section and the angular dependence was simply wrong.

Additionally, the Fermi theory is not renormalisable, which does not spoil the correctness
of its predictions – gravitation is also not renormalisable after all –, but it is nevertheless a
small blemish. Renormalisability of a theory is needed to calculate higher-order corrections
(see Section 2.2), and a necessary condition at the Lagrangian level is the non-negativity of
the dimension of all appearing coupling constants. By simple dimensional analysis, the Fermi
constant has a mass dimension of −2.

The issue of the infinitely growing cross section and the non-renormalisability could be
resolved by interpreting the Fermi theory as an effective theory that was only valid in the
low-energy limit. The solution was the introduction of two heavy, charged bosons, which were
called W for “weak” and mediated the interaction like photons mediate the electromagnetic
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interaction. Nevertheless, even if we introduce some heavy, charged photon and incorporate its
propagator into the theory, it is not able to predict the correct angular behaviour. The necessary
input came from another side, the decay of kaons, formerly known as θ- and τ -particles2, which
seemed to be distinct particles decaying into two or three pions respectively. The different final
states have opposite parity, but the θ and τ had identical properties otherwise. Lee and Yang
hence discussed a possible parity violation of the weak interaction [55]. This was later confirmed
by the Wu experiment [56] and the new theory was given the name “vector minus axial vector”
(V −A) theory, which introduced chiral currents [57].

For this, consider a decomposition of spinors into two orthogonal left- and right-handed
chirality states, which are eigenstates of the fifth Dirac matrix γ5. The projection operators

PL = 1 − γ5

2 PR = 1 + γ5

2 , (17)

form a complete set of orthogonal projections since

PLPL = PL, PRPR = PR, PRPL = PLPR = 0, PL + PR = 1. (18)

With these operators, we can decompose any Dirac spinor as

ψ = PLψ + PRψ ≡ ψL + ψR, (19)

and (vector) currents have the property not to mix states of different chirality:

ψ̄γµψ = ψ̄Lγ
µψL + ψ̄Rγ

µψR. (20)

In the V −A theory, there are two electrically charged heavy vector bosons mediating the
weak interactions. These bosons only couple to currents of left-handed chirality. Merging these
two fixes of the Fermi theory, we arrive at the Proca Lagrangian (called after Proca’s work
introducing a massive spin-1 particle long before V −A [58]) for a massive boson

LProca,V−A = Wµ±(□ +M2
W)W∓

µ + iψ̄i/∂ψi −
(
gψ̄1 /W

+ 1 − γ5

2 ψ2 + h.c.
)

(21)

with some coupling constant g. We are now going to calculate the cross section for the inverse
β-decay again with this Lagrangian and the corresponding Feynman diagram also shown in
Figure 2.2. The same steps as before lead to the matrix element

M = g2ūνe(p′)γα 1 − γ5

2 ue(p)
igαβ

q2 −M2
W
ūµ(k′)γβ 1 − γ5

2 uνµ(k), (22)

where q = p′ − p is the momentum transfer between the two fermion lines. After a slightly more
complicated computation, the result for the averaged squared matrix element is

|M̄|2 = g4s2 1
(q2 −M2

W)2 = g4s2 1
( s2(1 + cos θ) +M2

W)2 . (23)

Inserting this expression into the formula for the differential cross section (9) and integrating
over the solid angle, we obtain

σ̄ = g4 1
16π

s

M2
W(M2

W + s) . (24)

Hence, at small energies s ≪ M2
W, the cross section can be approximated by

σ̄ = g4 s

16πM4
W

+ O (1) , (25)

2Not to be confused with τ -leptons.
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which resembles the energy dependence of the Fermi theory.3 On the other hand, in the
high-energy limit s ≫ M2

W, the cross section becomes constant with

σ̄ = g4

16πM2
W

+ O
(
M2

W
s

)
(27)

without violating the unitarity bounds. In fact, the V −A theory with a massive intermediate
boson predicts the correct differential and integrated cross section for the inverse β-decay at LO.
Nevertheless, this comes with a price. The theory is not gauge-invariant any more, which we
discuss in detail in the following section. Furthermore, we introduced new particles, and we need
a consistent description of how those charged bosons interact with photons. Although we rescued
the inverse β-decay from being unitarity-violating, we show in Section 2.1.7 that a theory only
containing W bosons is also inconsistent.

2.1.4 Towards a gauge theory of electroweak interaction

Unfortunately, the Proca Lagrangian cannot be embedded into a gauge-invariant prescription.
We emphasise this concept of gauge invariance, especially since it can be proven that all unitarity-
preserving renormalisable theories are necessarily gauge theories [59]. To clarify the concept,
we go one step back to classical electrodynamics and quantum mechanics. Recall that states in
non-interacting quantum mechanics are invariant under a global phase rotation

ψ(x⃗, t) → ψ′(x⃗, t) = eiqαψ(x⃗, t), (28)

since the Schrödinger equation and all physical quantities are invariant under this transformation,
which is called a global gauge transformation (we include the factor q for convenience). On the
other hand, the Schrödinger equation is not invariant under a local gauge transformation, in
which the parameter α depends on time and space, because this produces terms proportional to
∂tα, ∇α and ∇2α in the primed version of the equation. Classical electrodynamics also has this
feature of gauge invariance. We can add a spatial derivative of an arbitrary function α(x⃗, t) to
the vector potential A⃗ and a temporal derivative to the electric potential ϕ without changing the
electric and magnetic field,

A⃗(x⃗, t) → A⃗′(x⃗, t) = A⃗(x⃗, t) − ∇α, ϕ(x⃗, t) → ϕ′(x⃗, t) = ϕ(x⃗, t) − ∂tα. (29)

These two a priori completely different features astonishingly combine after we put electrodynamics
and quantum mechanics together. The principle of minimal coupling to describe a wave function
that interacts with an electromagnetic field leads to the Pauli equation

i(∂t + iqϕ)ψ = (i∇ − qA⃗)2

2m ψ. (30)

After combining the two gauge prescriptions of quantum mechanics and electrodynamics, the
Pauli equation is covariant under a local gauge transformation if we identify the parameter q
that appears in the quantum mechanical phase rotation with the electric charge. The terms

3We must not directly identify GF =
√

3
4

g2

M2
W

, since we combined the two improvements. If we calculated
the Fermi theory with the correct V −A structure, and thus the correct angular dependence, we would obtain
|M̄|2 = 2G2

Fs
2 and σ̄ = G2

F
8π
s, hence

GF = 1√
2
g2

M2
W
. (26)

We additionally note that the Fermi constant in the context of V −A theory is usually redefined such that the
factors of 1

2 in the projection operators are absorbed into the Fermi constant, which results in GF = 1
4

√
2

g2

M2
W

. The
latter definition is also used in equation (271).
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emerging from the gauge transformation of the electromagnetic potentials in the Pauli equation
counteract the terms that come from taking the derivatives in the Schrödinger equation.

Mathematically speaking, the phase rotation of the wave function corresponds to a transfor-
mation under the one-dimensional unitary group U(1), which can be represented by complex
numbers with an absolute value of one. We say that electrodynamics is invariant under a
U(1) symmetry. This property became a guiding principle in physics: Forces are connected to
symmetries by transformations under Lie groups.

A Lie group is a differentiable manifold that is in close relation to a Lie algebra. Introducing
these objects, we refer for proofs to [60, 61]. Lie algebras are vector spaces with one inner
operation, the Lie bracket [A,B], which is bilinear, antisymmetric4 and obeys the Jacobi identity
[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0. We do not have to go too much into the mathematical
details for our purpose and we will restrict ourselves to the vector space of endomorphisms,
which can be represented by n× n matrices. Then the Lie bracket is simply the commutator
[A,B] = AB −BA. Lie algebras can be characterised by their structure constants: If some T a
form a basis of the Lie algebra, then every element in the algebra can be written as a linear
combination of basis elements, and we define the structure constants fabc as coefficients

[T a, T b] = ifabc T c. (31)

The structure constants are antisymmetric in their upper indices since the commutator is
antisymmetric. If all structure constants vanish, the Lie algebra is Abelian. The structure
constants uniquely define a Lie algebra. We remark that the Jacobi identity can be written in
terms of the structure constants as

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0 ⇔ fade f bcd + f bde f
ca
d + f cde f

ab
d = 0. (32)

The structure constants themselves satisfy the Lie algebra. Define the matrices (T aad)ce via

(T aad)ce = −iface , (33)

then the identity

([T aad, T
b
ad])ce = ifabd (T dad)ce (34)

holds, as can be derived from the Jacobi identity. We call these new matrices T aad the adjoint
representation of the algebra.

The connection between Lie groups and algebras comes via the matrix exponential: Every
element of the group U can be obtained as matrix exponential of a linear combination of basis
elements of the Lie algebra T a, which are hence called the generators of the group:

U = exp(iαaT a). (35)

The αa are real numbers, and the factor of i is a convention to assure that the T a are Hermitian
for the groups of our interest. Vice versa, the generators of a Lie group can be deduced from the
group elements via differentiation:

T a = −i ∂U
∂αa

∣∣∣∣
α=0

. (36)

In the following, we only deal with unitary and special unitary Lie groups. The unitary group
in n dimensions U(n) is defined as a group that can be represented by n× n matrices, which
leaves, operating on objects of dimension n, the complex scalar product invariant. We call this

4We implicitly assume that all mathematical objects are objects over the real or complex numbers and not over
exotic fields.
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representation the defining or fundamental representation of the group. This means, for any
U ∈ U(n), they obey

⟨a|b⟩ = ⟨Ua|Ub⟩ = ⟨a|U †U |b⟩ ⇒ U †U = 1. (37)

Since the determinant is multiplicative, it follows that | detU | = 1. However, each unitary group
has a normal subgroup, the SU(n). The SU(n) is defined as the matrices contained in U(n)
with detU = 1. Each element of U(n) (for n ≥ 2) can be written as a product of an element of
SU(n) and U(1), which is, as discussed above, a complex phase factor. A priori, a complex n×n
matrix has 2n2 free parameters. The unitarity condition, however, leads to n2 equations to fulfil,
and hence the dimension of U(n) is dimU(n) = n2. The dimension of SU(n) is subsequently
dimSU(n) = n2 − 1 because of additionally constraining the determinant. It can be shown that
the generators of U(n) are hermitian matrices, and the generators of SU(n) are additionally
traceless.

From this fundamental representation of the group, we may construct the fundamental repre-
sentation of the algebra, calculate the structure constants, construct the adjoint representation
of the algebra, and from thereon the adjoint representation of the group.

The fundamental representation of the group acts on an n-dimensional vector ψ via matrix
multiplication:

ψ → ψ′ = Uψ; (38)

the adjoint representation acts on n× n-matrices A via

A → A′ = UAU−1. (39)

At last, we shall mention the trivial representation of any group in which all group elements are
represented by 1. The operation of the trivial representation can also be described as “nothing
happens”.

The connection between Lie groups and forces is a powerful tool. Physicists are able to ask:
If we assume gauge invariance under a specific Lie group, which implications for the force will we
receive? The construction of a gauge-invariant theory is now straightforward. We assume that
the fermions transform in the fundamental representation. Our goal is that the free Lagrangian

Lfree = iψ̄ /∂ψ, (40)

from which the free Dirac equation follows, remains invariant under a transformation

ψ → ψ′ = eigTaαa
ψ = Uψ, (41)

where we introduced an additional yet arbitrary parameter g compared to equation (35). Like
in the base case of the Schrödinger equation, the free Lagrangian is not invariant because the
derivative also acts on the αa. To solve this formally, we replace the derivative ∂µ with a covariant
derivative Dµ and require

L′ = iψ̄U−1D′µUψ = iψ̄U−1UDµψ = L (42)
⇔ D′µUψ = UDµψ. (43)

To this end, we have to introduce an additional term by writing

Dµ = ∂µ + igT aAµa (44)

and determine the transformation properties of Aµ. We recognise that the correct behaviour is

T aAµa → T aA′µa = UT aAµaU−1 − i
g

(∂µU)U−1, (45)
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hence, A = T aAa must transform in the adjoint representation, or

Aµa → A′µa = Aµa + ∂µαa − gfabc α
bAµc + O

(
α2
)
. (46)

The second and last step is to introduce dynamics for the vector fields Aµa. We, therefore,
extend the Lagrangian with more Lorentz invariant terms that behave well under the gauge
transformation. Since we would like to stay in a renormalisable regime, we restrict ourselves to
terms with a mass dimension of four or lower. There are two more allowed terms, and both of
them contain the expression

[Dµ, Dν ] = −ig(∂µT aAνa − ∂νT aAµa) − g2AµbAνc[T b, T c]. (47)

Let us define

Fµνa = (∂µAνa − ∂νAµa) + gf bca A
µbAνc (48)

with

FµνaT a = − 1
ig [Dµ, Dν ]. (49)

The allowed terms in the Lagrangian are then FµνaFµνa and εαβµνF aαβF
a
µν . The latter, however,

can be rewritten in terms of a total derivative and does not contribute to the equations of motion
so we will ignore it.

We can shortly cross-check whether this prescription is consistent with classical electrody-
namics when we set our underlying group to be U(1). U(1) has dimension one, so there is
one generator, which is proportional to the one-dimensional unit matrix, T a = 1. With this
replacement, we receive the usual quantum mechanics gauge transformation in (41), the structure
constants vanish because of the Abelian nature, f bca = 0, and subsequently the (relativistic) elec-
tromagnetic transformation law from (46) and the usual electromagnetic field strength tensor Fµν
in (48) are recovered. Besides the number of gauge bosons, the main difference between Abelian
and non-Abelian gauge theories is the appearance of the structure constants. For non-Abelian
symmetry groups, the structure constants are non-zero and lead to additional terms in the
Lagrangian, which are tri- and quadrilinear in the gauge bosons and describe interactions between
gauge bosons. Especially, the strong force found its description in quantum chromodynamics
based on an SU(3) gauge group.

We now transfer these thoughts to the theory of weak interaction at this stage of history, the
Proca Lagrangian from (21). In the beginning, we have to incorporate the different behaviour
concerning left- and right-handed currents. If we apply a transformation as in (41) on the
fermions, the kinetic term transforms as

iψ̄ /∂ψ → iψ̄′/∂ψ′ = iψ̄ /∂ψ − gψ̄T a(/∂αa)ψ, (50)

but the interaction term comes with an expression ψ̄1 /WPLψ2. This is the only term capable of
counteracting the emerging term from the gauge transformation, but it contains a projection
operator PL. No possible transformation law of the W bosons can invert this PL because PL
projects to a subspace; the information about the orthogonal subspaces is lost after applying the
projection and cannot be restored by any means (mathematically rigorous: PL has determinant
zero). Any transformation law of the fermions must hence already involve this projection. The
solution becomes obvious when we split the fermions into their projections on the left- and
right-handed chirality subspaces. The (fermionic) Lagrangian is

Lfermion = i(ψL/∂ψL + ψR /∂ψR) − gψLT
a /W

a
ψL. (51)

If we now assume that only the left-handed parts undergo the gauge transformation and the
right-handed part remains invariant,

ψL → ψ′
L = eigTaαa

ψL, ψR → ψ′
R = ψR, (52)
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then only the first kinetic term in the Lagrangian is affected by the transformation, and we reach

L′
fermion = Lfermion. (53)

Nevertheless, there are still two problems. At first, although we could clarify the gauge dependence
of the fermionic part, the W bosons are – in contrast to photons and gluons – massive, and this
bosonic mass term in the Lagrangian transforms as

m2
WW

µaW a
µ → m2

WW
′µaW

′a
µ = m2

W
(
WµaW a

µ − 2Wµa∂µα
a + (∂µαa)2

)
. (54)

These two new terms cannot be compensated by any other term in the Lagrangian. Second, the
W bosons are charged, in contrast to gluons, so there must be some connection between the
weak interaction and the electromagnetic one, which the Proca Lagrangian does not account for.
There should be some term containing a contraction of

WµaW νbAρ (55)

(accompanied by a derivative because of dimensionality), but the photon A is completely decoupled
from the W bosons in the Proca theory since they belong to two different transformations. On
the other hand, charge conservation forbids trilinear terms in W in the Lagrangian since this
would mean an interaction of three charged W bosons, but we find a term proportional to

f bca W
µbW νc(∂µW a

ν ) (56)

in the expansion of FµνaFµνa. If this were correct, it would imply that the structure constants
are either totally antisymmetric or zero. The problem is that there is neither a two-dimensional
Lie group with totally antisymmetric structure constants nor a non-trivial Abelian Lie group.

The first issue implies that we cannot simply put a mass term by hand into a gauge-invariant
Lagrangian, but the mass must be generated dynamically; the second one leads the way directly
to a unification of the weak and the electromagnetic interaction into a theory of electroweak
interaction.

2.1.5 The Higgs Mechanism

Spontaneous symmetry breaking via the Higgs mechanism [9–13] is able to generate the mass
term. As we derived in the previous section, gauge invariance forbids the introduction of a
priori massive gauge bosons to the theory. We must assume massless particles and find a way to
introduce a term only proportional to W 2 in a gauge-invariant way that we can identify as a
mass term afterwards. In this section, we will produce a massive photon from a massless one as
Abelian U(1) example and see in the next one how this works out for W bosons.

When we start with the massless photon, it has two degrees of freedom, whereas when we
end up with a massive one, it has three. Somewhere along the way, it has to acquire one degree
of freedom. Let us incorporate an additional scalar field ϕ to the theory and couple the photon
to the scalar (hence, we need a charged and thus complex scalar with two additional degrees of
freedom). The Lagrangian for this theory would be

L = (Dµϕ)†(Dµϕ) + µ2ϕ†ϕ− λ(ϕ†ϕ)2 (57)

plus kinetic terms for the photon. This Lagrangian contains all renormalisable terms in ϕ, which
are gauge-invariant under a U(1) transformation. The potential

V = −µ2ϕ†ϕ+ λ(ϕ†ϕ)2 (58)

describes the scalar self-interaction and its mass (note that U(1) gauge invariance does not forbid
massive scalars or fermions). If the mass term µ2 is negative, then we would simply add an
additional particle, and nothing special happens since we recover the Klein–Gordon equation

(□ − µ2)ϕ = 0 + interaction. (59)
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However, if µ2 > 0, this particle would have an imaginary mass, which is clearly unphysical.
Let us investigate the case of µ2 > 0 in more detail. We immediately recognise that the

potential V is not a parabola any more since the ϕ†ϕ term dominates the (ϕ†ϕ)2 term for small
ϕ†ϕ. It instead becomes a form of the iconic “Mexican hat” with a local maximum at the origin
and a minimum symmetrically around the origin with a distance of

(ϕ†ϕ)min = µ2

2λ ≡ v2

2 . (60)

However, in nature, the field is (at zero temperature5) expected to be in its ground state rather
than in some excited state, which means at the point of minimal potential energy. This point is
in the case of our ϕ not at zero, but at its vacuum expectation value v. Since it is not possible to
uniquely determine the phase of ϕ the ground state, we may decide that ⟨ϕ⟩ = ⟨ϕ†⟩ = v√

2 .
Let us now reparametrise the scalar sector via a change of variables

ϕ, ϕ† → h, φ (61)

with

ϕ = v + h√
2
ei φ

v . (62)

Both h and φ have zero expectation value, ⟨h⟩ = ⟨φ⟩ = 0, and are real, thus uncharged, scalar
quantities. If we insert this into the Lagrangian, we obtain

L = 1
2∂µφ∂

µφ+ 1
2∂µh∂

µh− 1
2µ

2h2 − q2v2

2 AµA
µ − qvAµ∂

µφ+ . . . , (63)

where the dots represent terms of higher order in the field variables. Not only the h field has now
a real mass µ (note the sign change in front of µ2 from (57) to (63)), but also the photon in this
model acquired one of value qv. This means we started from a gauge-invariant theory, but the
true vacuum state is not gauge-invariant any more – the gauge symmetry has been broken. Other
things happening in the model are the following: There is one massless scalar boson φ, which is
called a Goldstone boson. These Goldstone bosons always appear when the original symmetry is
spontaneously broken [63]. Besides various interaction terms, there remains a strange expression
in the Lagrangian: It seems as if the Goldstone boson would have the property to convert into a
vector boson and vice versa via the term qvAµ∂

µφ. However, his term can be gauged away and
hence must not result in physical consequences. Consider the gauge transformation

ϕ → ϕ′ = ei α
v ϕ, and Aµ → A

′µ = Aµ + 1
qv
∂µα, (64)

then this gauge transformation acts on the new fields as

φ → φ′ = φ− α h → h′ = h (65)

If we choose a gauge with α = φ, then the Goldstone mode is identically zero. The h field cannot
be gauged away since it is invariant under gauge transformations.

We have now transformed a complex scalar ϕ and a massless vector with two degrees of
freedom each to a real scalar h with one and a massive vector with three degrees of freedom. The
remaining particle h is called a Higgs boson and appears immanently in spontaneously broken
gauge theories.

Additionally, something happens with the electric charge when the symmetry is broken. We
recall that a charged scalar must be a complex quantity: Mathematically transforming a scalar

5We are always assuming zero temperature. Using quantum field theory at finite temperatures, it can be shown
that there is a transition between the unbroken and the broken phase, which occurs at T ≈ 159.5 GeV ≈ 2 × 1015 K
[62], a temperature far from accessible except in the early universe.
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to its antiparticle is done via complex conjugation. If the scalar were real, it would be its own
antiparticle, which is a contradiction to its charge quantum number. However, the new h boson
is a real quantity by construction and thus should not interact with the photon any more. Having
a look at some of the interaction terms in the Lagrangian,

L = 2hAµ∂µφ− 1
2q

2(2vh+ h2)2AµAµ − λ

4 (4vh3 + h4) + . . . , (66)

this is not the case. The Higgs boson still couples to photons in a strange way, proportional to
q2, but this quantity cannot be connected to the classical electric charge any more. In fact, there
is no such quantity as classical “charge” any more. According to the Fabri–Picasso theorem,
any conserved charge operator must annihilate the vacuum [64], but the charge operator of
spontaneously broken symmetries does not fulfil the criterion. Let us calculate Q|Ω⟩ for a
spontaneously broken U(1). The charge operator is proportional to the generator of U(1), which
is the one-dimensional unit matrix, Q = 1, and the vacuum state is the one-dimensional vector
|Ω⟩ = v/

√
2. Hence

Q|Ω⟩ = v√
2

= |Ω⟩ ≠ 0. (67)

2.1.6 The Glashow–Weinberg–Salam theory of electroweak interactions

We now go back to the real world, in which we do not have to generate masses for the photon but
for the two W bosons. First, we have to embed them into a gauge theory. Therefore, let us take
the SU(2), which is the smallest Lie group with a dimension larger than two with dimSU(2) = 3.
The structure constant of SU(2), the totally antisymmetric Levi–Civita symbol, f bca = εbca,
prevents interactions between two identical bosons and a third one. Still, it allows the interaction
between three different bosons, of which one is positively and one is negatively charged, while
the third is neutral. Unfortunately, this third boson cannot be the photon: Electrodynamics is
already connected to a U(1) symmetry, which acts both on the left- and right-handed fermions,
whereas the third boson of SU(2), like the W, would only interact with the left-handed ones.

Nevertheless, let us set up a particle zoo and assign some quantum numbers. We need a
left-handed fermion doublet, which transforms in the fundamental representation of SU(2), which
we will denote as SU(2)L for clarification. As SU(2)L gauge fields, we need three vector fields
Wµa. Furthermore, we introduce a vector boson for the U(1) to incorporate electromagnetism
and a right-handed set of fermions. Both left- and right-handed fermions should transform in
the fundamental representation of the U(1), but the right-handed fermions should transform as
singlets in the trivial representation of the SU(2)L. At last, we introduce a complex scalar to
break the gauge symmetry of the theory spontaneously. Since the SU(2)L bosons should become
massive, the SU(2)L has to be broken, and the scalar must be a doublet under the SU(2)L. With
these ingredients, the gauge boson of the electromagnetic U(1) and those of the weak SU(2)L do
not interact with each other, just like the gluons of the SU(3) and the photons do not interact.
This is not what we want. Let instead also the scalar transform under the U(1). Such a U(1)
will not be the electromagnetic U(1), as we will see in a moment.

The SU(2)L has three generators, the Pauli matrices σa, and hence three charges. Since the
Pauli matrices do not commute, not all of the SU(2)L charges can be measured independently.
Let us take T 3 = 1

2σ
3 as the preferred charge and call it the “third component of the weak

isospin”. T 3 is a diagonal matrix with eigenvalues ±1
2 , so let us build the left-handed fermions

as eigenstates of T 3 with T 3|u⟩ = 1
2 |u⟩ and T 3|d⟩ = −1

2 |d⟩. The fermion states should couple
to the gauge bosons with a coupling strength g. Furthermore, U(1) has one generator, the unit
matrix I and one charge. Let us call this charge the “weak hypercharge” Y and the group
U(1)Y to distinguish it from the electromagnetic U(1)em. The hypercharge Y can be an a
priori arbitrary number for each particle, whereas the normalisations of the T a are fixed by the
condition [T a, T b] = iεabcT c. The gauge boson of U(1)Y shall be called Bµ, and the fermions
should couple to it with coupling strength g′. A tabular overview is given in Table 2.1. Let
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us emphasise that the weak hypercharge and the third component of the weak isospin can be
measured simultaneously since T 3 and Y commute and there are simultaneous eigenstates of T 3

and Y .

ψL ψR Wµa Bµ ϕ

U(1)Y F F T A F
SU(2)L F T A T F

Table 2.1: Overview of the particle content in the GWS theory and their transformation properties
under the gauge groups. F stands for transformation in the fundamental representation, A for
the adjoint representation, and T for the trivial representation.

With these ingredients, we get the Glashow–Weinberg–Salam (GWS) Lagrangian [65–67]

LGWS = − 1
4F

µνaF aµν − 1
4G

µνGµν + iψ̄L /DψL + iψ̄R /DψR

+ (Dµϕ)†(Dµϕ) + µ2ϕ†ϕ− λ(ϕ†ϕ)2, (68)

where Fµνa is the field strength tensor of the SU(2)L, Gµν is the field strength tensor of the
U(1)Y and Dµ is the covariant derivate, which can be written as

Dµ = ∂µ + igT aWµa + ig′Y Bµ, (69)

when acting on an SU(2)L doublet ψL, ϕ and

Dµ = ∂µ + ig′Y Bµ, (70)

when acting on an SU(2)L singlet ψR.
Let us focus on the covariant derivatives of the Higgs field ϕ. Whilst the weak isospins are

fixed by the structure constants of SU(2), we can freely choose a normalisation of Y by fixing
YH = 1

2 , which simplifies the upcoming expressions.6 The Abelian model can be straightforwardly
generalised, and the Higgs field acquires a vacuum expectation value at ⟨ϕ†ϕ⟩ = µ2/(2λ) = v2/2.
We choose as a convention

⟨ϕ⟩ =
(

0
v√
2

)
, (71)

such that we reparametrise the two-component Higgs field in four real scalars h, φa

ϕ =
(

0
v+h√

2

)
ei T aφa

v , (72)

which is just the generalisation of the results in the previous section for SU(2) with a Higgs
doublet and three generators. As we also saw in the last section, we may choose again a gauge,
in which φa = 0. Then, the covariant derivative acts on the Higgs doublet as

(Dµϕ)†(Dµϕ) = v2

2
(
0 1

)
(gT aWµa + g′ 1

2B
µ)(gT bW b

µ + g′ 1
2Bµ)

(
0
1

)
+ O(h, ∂µh) (73)

= g2v2

8
(
0 1

)(Wµ3 + g′

g B
µ Wµ1 − iWµ2

Wµ1 + iWµ2 −Wµ3 + g′

g B
µ

)2(
0
1

)
+ O(h, ∂µh) (74)

= g2v2

8
[
(Wµ1)2 + (Wµ2)2 + (g′

g B
µ −Wµ3)2

]
+ O(h, ∂µh), (75)

6This is just a convention. For example, going back to classical electrodynamics, we could say the electron has
not charge q = −1, but q′ = −2. This would not change physics if we rescaled all other charges also by a factor of
2, the Coulomb constant by ε′ = 4ε et cetera.
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where the kinetic terms and the coupling to the remaining Higgs boson have been left out. With
this method, we achieved two massive W bosons with masses MW = gv

2 and a third term, which
is not diagonal in the U(1)Y gauge field Bµ and the third SU(2)L field Wµ3. We can fix this last
issue by mixing the B and the W 3 fields to diagonalise the matrix into two mass eigenstates

Aµ = sin θwW
µ3 + cos θwB

µ Zµ = cos θwW
µ3 − sin θwB

µ, (76)

where

θw = arctan g
′

g
(77)

is the weak mixing angle. The inverse transformation is

Bµ = cos θwA
µ − sin θwZ

µ Wµ3 = sin θwA
µ + cos θwZ

µ. (78)

With this rotation, the covariant derivative for the Higgs field becomes

(Dµϕ)†(Dµϕ) = g2v2

8

[
(Wµ1)2 + (Wµ2)2 + 1

cos2 θw
(Zµ)2

]
+ O(h, ∂µh). (79)

Especially, there is one massive Z boson and one massless A boson. The remaining questions
are: Is the A really the photon, and how do we recover the electric charge, which is a conserved
quantity in nature?

To answer these questions, we look at the Fabri–Picasso theorem again. Recall that the
charge operator of all conserved charges must annihilate the vacuum state

(
0 v/

√
2
)
. Out

of the generators of measurable SU(2) and U(1) charges, we can, besides normalisation, build
exactly one hermitian generator that fulfils the criterion:

Q = T 3 + Y =
(

1 0
0 0

)
. (80)

The Lie algebra with only one generator Q has structure constants zero ([Q,Q] = 0Q). This
means, the group SU(2)L × U(1)Y is broken down to the desired U(1) symmetry. We still
have to check whether it has the correct properties, i. e. not differentiating between left- and
right-handed currents and the correct coupling to the W bosons.

We would like to formulate the SU(2)L fermion doublets in terms of their electric charge
eigenstates (the singlets are trivial). This implies, the coupling to the photon should not mix
them. Let us start with the right-handed fermions, which interact with the A and the Z fields via

iψ̄R /DψR = iψ̄R /∂ψR − g′Y ψ̄R /BψR = iψ̄R /∂ψR − g′Y cos θwψ̄R /AψR + g′Y sin θwψ̄R /ZψR. (81)

Since T 3 does not act on ψR, we have for the right-handed singlets the identification Q = Y
proportional to the unit matrix and need for a consistent description of electromagnetism and
the unified theory as a relation between the coupling constants

e = g′ cos θw = g sin θw. (82)

With this, we can rewrite

iψ̄R /DψR = iψ̄R /∂ψR − eψ̄RQ /AψR + e tan θwψ̄RQ/ZψR. (83)

The left-handed fermions interact in a more complicated way via

iψ̄L /DψL = iψ̄L/∂ψL −
(
ūL d̄L

)
(gT 3 /W

3 + g′Y /B)
(
uL
dL

)
+ . . . (84)

= iψ̄L/∂ψL − e
(
ūL d̄L

)
Q /A

(
uL
dL

)
(85)

− e
(
ūL d̄L

)
(cotθwT

3 − tan θwY )/Z
(
uL
dL

)
+ . . . (86)
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with the A and Z fields, where we already replaced g, g′, T 3, and Y by e and Q in the terms
proportional to A. We remark that Q is not proportional to the unit matrix in this expression
but given by equation (80). Hence, we see that the A field truly couples equally both to the
left- and right-handed fermions, and we identify it with the photon. Apart from the photon,
there is another boson that has to be neutral, like the photon. In contrast to the photon, the Z
boson is massive and couples with different strengths to the left- and right-handed fermions. Its
coupling to left-handed fermions is not proportional to the electric charge of the fermions, and
the Z boson may interact with neutrinos.

Remember that at this step, Q is an operator, and its eigenvalues are yet arbitrary since the
eigenvalues of Y are arbitrary. Especially, while we could simply assign QψR = qψR and define
the singlet fields, we still have to prove that the interplay between the photon and the W 1,2 fields
reproduces the relevant terms in the old Proca Lagrangian as well as the correct electromagnetic
coupling to the physical W± bosons.

ψL =
(
νL
eL

)
ψQ =

(
uL
dL

)
ψe = eR ψu = uR ψd = dR ϕ =

(
0
v+h√

2

)
ei T aφa

v

T 3
(

+1/2
−1/2

) (
+1/2
−1/2

)
0 0 0

(
+1/2
−1/2

)
Y −1/2 +1/6 −1 +2/3 −1/3 +1/2

Q

(
0

−1

) (
+2/3
−1/3

)
−1 +2/3 −1/3

(
+1
0

)

Table 2.2: Charge assignments to SM fields. We slightly abuse the notation by denoting the
eigenvalues of the operators with the name of the operator in this table. The third component of
the weak isospin T 3 is determined by the eigenvalues of the SU(2) generator T 3 = 1

2σ
3 and the

weak hypercharge Y is chosen such that the electric charge Q = T 3 + Y gets the values that are
observed in classical electrodynamics. In the SM, all charges of the right-handed neutrinos are
zero, making them sterile particles and decoupling them from the SM particle content, so we do
not include them in this table. We show in Section 2.2.6 that this is, up to normalisation, the
only assignment of quantum numbers that is possible in a self-consistent quantum field theory if
we require non-zero hypercharges for all fields.

Of course, we know what particles hide behind uL and dL as eigenstates of Q and what their
eigenvalues have to be. We summarise the assignment of charges in Table 2.2. Let us use this
knowledge for a moment to determine what to do with the two W 1 and W 2 fields and come back
to the problem in Section 2.2.6. To be able to reproduce the terms proportional to W± in the
Proca Lagrangian, we must ensure that the left-handed doublet couples proportionally to(

ūL d̄L
)( 0 /W

+

/W
− 0

)(
uL
dL

)
+ . . . (87)

to them. It is, hence, clear that we have to define the charge eigenstates

Wµ± = 1√
2

(Wµ1 ∓ iWµ2). (88)

Furthermore, we define

T± = 1√
2

(T 1 ± iT 2), (89)

so we can write

T aWµa = T+Wµ+ + T−Wµ− + T 3Wµ3 (90)
= T+Wµ+ + T−Wµ− + T 3 sin θwA

µ + T 3 cos θwZ
µ. (91)
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To check whether the bosons that we identified as physical charged W bosons couple correctly
to the photon, we have a look at the field strength tensors. The terms in Gµν do not lead to any
couplings since U(1) is Abelian. On the other hand, because of the mixing of the W 3 and B
fields, the photon couples to the W 1,2 and Z fields via the terms in Fµνa. Remember that the
field strength tensor can be written as

FµνaT a = 1
ig [Dµ, Dν ], (92)

and the interaction terms are determined by g[WµaT a, T bW νb]. In the unbroken basis, this
resembled the structure constants of SU(2)L, but let us check the couplings in the broken phase.
The relevant term is

g[T 3 sin θwA
µ, T±W ν±] = eAµW ν±[T 3, T±] = ±eAµW ν±T±. (93)

Hence, the photon couples correctly to the charged W bosons, and the GWS theory is consistent
with our desires.7

Let us summarise: The GWS theory is able to unify the electromagnetic and the weak forces
into one EW force. With the GWS theory and the Higgs mechanism to spontaneously break the
EW SU(2)L × U(1)Y symmetry to a U(1)em symmetry, it provides a way to generate massive
charged W bosons that couple only to left-handed currents, and a massless A boson (the photon)
that couples equally to left- and right-handed currents, without violating gauge invariance. On
top, it historically predicted the existence of two additional particles: a massive, uncharged vector
boson Z which couples differently to left- and right-handed currents and a massive, uncharged
scalar boson H.

Historically, the discovery of the Z boson in 1973 [68] was a strong confirmation of the GWS
theory, and the discovery of the H boson in 2012 [7, 8] is generally seen as a milestone of modern
physics.

2.1.7 Unitarity preservation in the GWS theory

Although the V −A theory could solve the problem of unitarity violation in 2 → 2 scattering
processes with four external fermions, it introduced the W bosons as new particles. With the
additional particle content, new problems also emerge. In this section, we show that both Z and
H bosons are needed for a consistent description.

Since the W bosons are massive, they can be longitudinally polarised, in contrast to the
massless photon:

Wµ
0 = W0ϵ

µ
0e

ipx = W0
1

MW

(
pµ − M2

W
pq

qµ
)
eipx (94)

is a valid solution of the Proca equation

∂ν(∂νWµ − ∂µW ν) +M2
WW

µ = 0 (95)

for an arbitrary choice of a light-like auxiliary vector q, which is not perpendicular to p [69]
(especially it satisfies the Lorenz condition ∂νW

ν = 0). We may also loosen the constraint of
light-likeness on q if we normalise ϵ0 appropriately afterwards to ϵ2 = −1. Unlike the transverse
polarisations, the expression for ϵ0 scales with the momentum of the particle. This scaling leads
to problems for unitarity for the scattering of or into longitudinally polarised vector bosons in the
high-energy limit. We emphasise that the Goldstone boson equivalence theorem [59, 70, 71], which
we will introduce in this section, is, as its name suggests, based on the existence of Goldstone
bosons, which appear only after spontaneous symmetry breaking, hence only in theories with

7Mathematically rigorous, we can find the eigenvalues and eigenstates of Q in the Lie algebra, qX = [Q,X],
which gives the same results X = T 1 ± iT 2 without physical motivation up to a normalisation constant.
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scalar bosons in its particle content. It is not applicable in the V −A theory. We will see how
the Higgs boson fixes the unitarity problems, and the Goldstone boson equivalence theorem
simplifies calculations.

First, we show briefly that the Z boson is needed for a consistent theory by studying the
energy dependence of the process

νeν̄e → W+
0 W−

0 .

Although without being of any practical relevance – the cross section is far too small to be
measured nowadays and even in the far future – it leads to the unitarity-violating catastrophe.
Without a Z boson, there is only one single Feynman diagram; it is a t-channel exchange of an
electron, shown on the left-hand side of Figure 2.3. The matrix element is

Mt = v̄(p1) g√
2
γµ

1 − γ5

2
/q

q2
g√
2
γν

1 − γ5

2 u(p2)ϵ∗µ0 (k1)ϵ∗ν0 (k2). (96)

Calculating the squared matrix element is quite tedious since it involves a trace of up to 12 Dirac
matrices. We do not need to do the full calculation for our estimate since we can rely on power
counting: The external fermionic spinors scale as √

p1 and √
p2, respectively, the longitudinal

polarisation vectors as k1 and k2. Taking the square leads to a plethora of terms containing
various products of those kinematic variables. This is counteracted by the fermionic propagator,
which scales as 1/q. Each of those variables scales as

√
s for its part; hence we arrive at

|M̄t|2 ∼ p1p2k2
1k

2
2

q2 ∼
√
s
√
sss

s
∼ s2 (97)

(the expressions k2
i must not be taken literally as kµi ki,µ = M2

W here). Constructing the cross
section via equation (9) removes one further power of s from the numerator, so σ ∼ s. This
again violates the Froissart bound. We conclude that we need an additional particle mediating
the interaction via the s-channel to exactly cancel the LO terms in s2, shown on the right-hand
side of Figure 2.3.8 A detailed computation with full results is given in [72].

ν̄, p1

ν, p2

W+, k1

W−, k2

e, q

ν̄, p1

ν, p2

W+, k1

W−, k2

Z, q

Figure 2.3: Feynman diagrams for νν̄ → W+W− scattering

In the second calculation, we show why only adding the Z boson to the theory is not sufficient.
In contrast to the last process, the one we use now is relevant in nature and lies exactly at the
heart of this thesis: it is W+W− vector boson scattering,

W+
0 W−

0 → W+
0 W−

0 . (98)

Without the Higgs boson, there are five diagrams to compute: Both s- and t-channel exchanges
of a photon or a Z boson, respectively, and the quartic vertex. The corresponding Feynman

8We feel obliged to remark that the propagator of the Z boson in the s channel scales as 1/q2, in contrast to
the fermionic propagator in the t channel which scales as 1/q. This different scaling is compensated by the triple
vector boson coupling that leads to an additional momentum factor in the numerator.
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diagrams are shown in subdiagrams (a), (b), and (e) of Figure 3.1. The s-channel matrix element
takes the form

Mγ,Z
s =icγ,Zϵµ1 ϵν2ϵ

∗ρ
3 ϵ

∗σ
4 gαβ (99)

× [−gµν(p2 − p1)α + gνα(p2 + q)µ − gαµ(q + p1)ν ] (100)

×
[
−gρσ(p4 − p3)β + gσβ(p4 + q)ρ − gβρ(q + p3)σ

]
, (101)

where

cγ = g2 sin2 θw
s

and cZ = g2 cos2 θw
s−M2

Z
(102)

emerge from the photon and Z boson vertex and propagator factors. The t-channel matrix
element is similar with the appropriate replacements in the momentum factors and s ↔ t in the
denominator of the propagator. The matrix element with a quartic coupling is

M4W = ig2ϵµ1 ϵ
ν
2ϵ

∗ρ
3 ϵ

∗σ
4 [2gµρgνσ − gµνgρσ − gµσgνρ] . (103)

Note that we use the so-called Feynman gauge in this calculation, which simplifies the propagators.
The drawback of the Feynman gauge is, in principle, the reappearance of Goldstone bosons in our
expressions. We are, however, free of them in this particular case since there is no triple vertex
with two W bosons and a Goldstone boson φZ. Although we are interested in the high-energy
limit, we will keep the Z masses in the denominator to be able to perform a correct Taylor
expansion afterwards.

The strategy is now to plug in the explicit expressions for all ϵi after we have conveniently
chosen the auxiliary vectors qi. Of course, the final result must not depend on this choice. Instead
of a lengthy calculation, we quote the results from [72]9:

Mγ,Z
s = −icγ,Z

s3 + 2s2t+ 8M2
Wst

4M4
W

+ O(1), (104)

Mγ,Z
t = −icγ,Z

s2t3 + 2s3t2 − 8M2
Ws

3t− 24M2
Ws

2t2

4M4
W (s− 4M2

W)2 + O(1), (105)

M4W = ig2 s
4 + 4s3t+ s2t2 − 12M2

Ws
3 − 28M2

Ws
2t

4M4
W(s− 4M2

W)2 + O(1). (106)

Each of these five matrix elements shows divergences of O(s2) and O(s) (recall that t = O(s)
and cγ,Z = O(s−1)). We now perform an expansion for the high-energy limit in the variables
M2

W,M
2
Z ≪ s, t:

1
(s− 4M2

W)2 = 1
s2 + 8M2

W
s3 + O

(
M4

W
s4

)
,

1
s−M2

Z
= 1
s

+ M2
Z

s2 + O
(
M4

Z
s3

)
. (107)

The product of these two terms, with s replaced by t in one term, appears in MZ
t in the

denominators:

1
(s− 4M2

W)2
1

t−M2
Z

= 1
s2t

+ 8M2
W

s3t
+ M2

Z
s2t2

+ O
(
M4

s5

)
. (108)

Multiplying and adding everything together, we finally end up with

Mγ
s + MZ

s + Mγ
t + MZ

t + M4W = ig2 s+ t

M2
W

− ig2 3M2
Z cos2 θw
4M4

W
(s+ t) + O(1). (109)

9We note that this source uses a convention that “eats up” a factor of the imaginary unit i in a not clearly
defined step of the process of calculating the matrix elements, which we restore for our results. The missing factor
can be seen most easily by comparing sub-equation 6 of equation (39) in the source material to our equation (103),
which is identical to line 3 of Figure 1 in the source material.
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The leading terms of O (
s2) have disappeared due to cancellations in the gauge sector, but the

matrix element still diverges with O (s). As in the previous cases, then the cross section also
diverges at O (s) and violates unitarity. Hence, only the gauge sector is not sufficient for unitarity
preservation. Fortunately, the GWS theory provides us with an additional particle, the Higgs
boson, that can be exchanged both via s- and t-channel, which is shown in subdiagrams (c) and
(d) of Figure 3.1. Again, we quote the results [72]:

MH
s = −ig2 s

4M2
W

+ O(1) (110)

MH
t = −ig2 t

4M2
W

+ O(1). (111)

Adding all of these seven terms, the final result is

M = 3
4ig2

(
1 − M2

Z cos2 θw
M2

W

)
s+ t

M2
W

+ O(1) (112)

and this result does not diverge if and only if MZ cos θw = MW, which is a prediction of the GWS
theory. The quintessence of this reasoning is the following: First, a theory without Z and Higgs
boson is inconsistent. Second, even with some additional particles, we need large cancellations
between different terms in the matrix elements to guarantee a consistent description; a gauge
theory can exactly provide the required relations.

We conclude this chapter with an excursus to the Goldstone boson equivalence theorem. In
the GWS theory with spontaneous symmetry breaking, we can express matrix elements with
longitudinally polarised gauge bosons in the high energy limit by replacing them with their
corresponding Goldstone boson:

M(Aµ0 , . . . ) = −iM(φ, . . . ) + O
(
MW√
s

)
. (113)

The reasoning behind this is that the gauge bosons appear massless in the high-energy limit.
Since they have received their mass by “eating up” the unphysical Goldstone boson, it takes
over the role of the third polarisation. We may now compute the matrix element of the process
W+

0 W−
0 → W+

0 W−
0 again in the high-energy limit. After the lengthy calculations in this section,

which we have not carried out, it turns out to be almost trivial since we only have to calculate
the scattering amplitude of four scalars φ+

0 φ
−
0 → φ+

0 φ
−
0 by replacing the vector bosons with

their Goldstone boson counterparts (and modifying the couplings). Then, the s-channel matrix
elements for the Goldstone bosons are simply

Mγ,Z
s = ic̃γ,Z(t− u) (114)

MH
s = −ig

2

4
M4

H
M2

W

1
s−M2

H
, (115)

where

c̃γ = g2 sin2 θw
s

and c̃Z = g2
(

cos2 θw − sin2 θw
2 cos θw

)2 1
s−M2

Z
, (116)

and the t-channel matrix elements are obtained by replacing s ↔ t. In contrast to the full
calculation, we may safely set the Z mass to zero in the propagator. The quartic contribution is
a constant:

M4φW = −ig
2

2
M2

H
M2

W
. (117)

We recognise that none of these terms shows divergent behaviour. The terms of O(1), which we
omitted in the above full calculation, are simply the sum over these seven contributions.
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Nevertheless, we can also show that the Higgs boson is a crucial ingredient for the Goldstone
boson equivalence theorem by decoupling it from the theory. We, therefore, send its mass to
infinity, which is not forbidden by the theorem since it only assumes M2

W ≪ s. In such a
hypothetical limit, the parts of the matrix element involving photon or Z boson exchange are of
O(1), whereas

M4φW + MH
s + MH

t = −ig
2

2
M2

H
M2

W
− ig

2

4
M4

H
M2

W

(
1

s−M2
H

+ 1
t−M2

H

)
+ O(1) (118)

= ig2 s+ t

4M2
W

+ O(1). (119)

This is precisely the result without the presence of the Higgs boson in the full calculation.
In fact, it can be shown that the Higgs mass cannot be arbitrarily large to preserve unitarity

in the GWS theory. As Lee, Quigg, and Thacker have shown in a detailed analysis with all
longitudinal or scalar 2 → 2 processes [73, 74], the Higgs boson mass must not exceed

M crit
H = 8

√
π

3
MW
g

=

√
8π

√
2

3GF
≈ 1 TeV. (120)

2.2 Next-to-leading order calculations

In the previous section, we investigated general aspects of the theory. When we calculated
matrix elements and cross sections to illustrate them with examples, we always implicitly used
LO calculations in perturbation theory. Our objective of this thesis is, however, to present
calculations of W+W− scattering at NLO accuracy. In this section, we give a brief overview of
NLO effects and calculate some simple examples.

In quantum-field-theoretical perturbation theory, we expand in the coupling constants g or
gs. In Feynman diagrams, factors of g or gs are always connected to vertices; triple vertices
correspond to one power of g or gs, quartic vertices to factors of g2 or g2

s . Pictorially, an expansion
in the coupling constants hence corresponds to an expansion in the number of vertices of the
Feynman diagrams. Alternatively, there can be more quartic vertices than in corresponding LO
diagrams. This can lead to two effects: One additional power of g or gs leads to the emission
of an additional particle. Two powers of either g or gs may also lead to the emission of two
additional particles, but also to a closed particle loop.

Processes with additional external particles are called real corrections, such with closed
particle loops virtual corrections. Real-correction diagrams and LO diagrams are summarised
as tree-level diagrams. While virtual corrections correspond to the same process, it might be
questionable why we also have to include processes with additional particles and, hence, another
final-state particle content. We motivate this a priori from an experimental point of view: A real
particle detector has only a finite momentum and position resolution. Similarly, two particles
emitted in the same line of flight will be reconstructed as only one object. A process that we can
observe is therefore always a process of all detected particles accompanied by an indeterminate
number of additional collinear and soft particles.

We will see in the course of this chapter that these soft and/or collinear particles cause
so-called infrared (IR) singularities in the cross sections, which means the real-emission cross
sections are divergent. To be able to quantify the singularities, we start this section with the
concept of dimensional regularisation. Not only the real but also the virtual corrections show
IR-divergent behaviour. It turns out that the IR singularities from real and virtual corrections
exactly cancel each other and the final result is IR-finite. For practical computations, this
cancellation can be handled by the Catani–Seymour dipole formalism, which is an integral
component of our Monte Carlo integration. However, there are also other types of singularities,
the so-called ultraviolet (UV) singularities, which only stem from virtual corrections. We have to
introduce the concept of renormalisation to handle them since they are in contrast to the IR
divergences not cancelled by other physical structures.
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At last, we examine the concept of anomalies, which may result from chiral symmetries like
the left-handed SU(2)L of the GWS theory. This is more of a theoretical question that does
not directly connect to our calculations. We show that the GWS theory is anomaly-free only if
certain conditions on quantum numbers are met, which restricts deviations from the SM in these
quantities.

2.2.1 Dimensional regularisation

Our surrounding world, as we recognise it, has four space-time dimensions d. In quantum field
theory, it turns out that these four space-time dimensions cause troubles in the calculation of
NLO corrections, and we would sometimes like to use a variable number of dimensions. For our
calculations to be meaningful in the end, we should be able to take the limit d → 4 continuously.
In practice, we shift this dependence to a small parameter ε and write d = 4 − 2ε and take the
limit of ε → 0. The factor of 2 is purely convenience, and we will specify when we have to take
the limit from above (ε → 0+) or from below (ε → 0−). This method is called dimensional
regularisation [75]. This is only a mathematical tool and does not resemble the physical reality
since we still use four-dimensional Minkowski vectors, four Dirac matrices, et cetera. However,
there are some slight changes to familiar results in the Lorentz algebra, the Dirac algebra and
phase-space integrals, which we introduce as necessary basics.

Recall that the identity gµνgµν = 4 is only valid in four space-time dimensions, and the
generalisation for an arbitrary number of d dimensions is

gµνgµν = d. (121)

Since this result is used to derive expressions for the contraction of Dirac matrices, they are also
subject to change in a different number of dimensions. In an arbitrary dimension, they are [47]

γαγνγα = (2 − d)γν , (122)
γαγνγργα = 4gνρ − (4 − d)γνγρ (123)

γαγνγργσγα = −2γσγργνγα + (4 − d)γνγργσ, (124)

and reduce to the usual expressions in the limit d → 4.
Furthermore, we have to take care of the dimension of the components of the Lagrangian

in space-time dimensions different from four. Space and time still have dimension minus one,
mass, momentum, and energy have dimension one and the action S =

∫
ddxL is dimensionless.

Hence, the Lagrangian has mass dimension [L] = d, and we can infer from the kinetic terms in
the Lagrangian that the fields have dimensions

[A] = d− 2
2 , [ψ] = d− 1

2 , (125)

and from the interaction term, we conclude that the coupling gains the mass dimension

[e] = 4 − d

2 . (126)

We redefine

e → µ
4−d

2 e (127)

with an arbitrary parameter of mass dimension µ, which we call the renormalisation scale, to
ensure that the electric charge remains a dimensionless quantity. The physical relevance of this
parameter becomes clear in the following examples. Also, for these quantities, the limit d → 4
results in the familiar expressions.
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Next, we have to define what we understand under an integral over a non-integer space-time
dimension. For a vector kE, which is defined in a Euclidean d-dimensional space-time, we
generalise the integration in four-dimensional polar coordinates as

∫ d4kE
(2π)4 =

∫ dΩ4
(2π)4

∫
dkE k

3
E →

∫ ddkE
(2π)d =

∫ dΩd

(2π)d
∫

dkE k
d−1
E , (128)

where the integral over the solid angle is given by

∫ dΩd

(2π)d = 1
(2π)d

2πd/2

Γ(d/2) = 1
2d−1πd/2Γ(d/2)

. (129)

The formula for the angular integration can be derived from a d-dimensional generalisation of
the integration over a real power of a Gaussian curve instead of an integer,

(
√
π)d =

(∫ ∞

−∞
dx e−x2

)d
=
∫

ddr e−r2
, (130)

and the definition of the Gamma function. The conversion between Euclidean and Minkowski
vectors can be achieved by Wick-rotating the k0 component in the complex plane k0 ≡ ik0

E while
leaving ki = kiE unaltered. This change of variables results in quadratic expressions in picking up
a minus sign

k2 = (k0)2 − k⃗2 → −(k0
E)2 − k⃗2

E = −k2
E (131)

and the integration measure picks up an imaginary unit due to the zeroth component, d4k = i d4kE.
The expressions for phase-space integrals generalise equation (8) for an arbitrary number

of space-time dimensions. We write down the two- and three-particle Lorentz-invariant phase
spaces explicitly:

∫
2

dΓd = (2π)2−d
∫ dd−1p3

2E3

dd−1p4
2E4

δ(d)(p3 + p4 − q); (132)∫
3

dΓd = (2π)3−2d
∫ dd−1p3

2E3

∫ dd−1p4
2E4

∫ dd−1p5
2E5

δ(d)(p3 + p4 + p5 − q), (133)

where the final-state particles are labelled with 3, 4 and 5, and the sum of the initial-state
momenta is q. It is, however, convenient in the case of the three-particle final state to perform a
change of variables

xi = 2piq
q2 (134)

to integrate out the angular dependence. The initial-state xs fulfil x1 + x2 = 2 and momentum
conservation translates to x3 + x4 + x5 = 2. The calculation of the new phase-space measure is
rather involved, already for three massless final-state particles, and we quote the result [76]:

∫
3

dΓd =
(
s

4π

)d−4 s

128π3Γ(d− 2)

×
∫ 1

0
dx3dx4dx5

[ 1
(1 − x3)(1 − x4)(1 − x5)

]2−d/2
δ(x3 + x4 + x5 − 2). (135)

We will need these expressions when calcluating the real corrections.
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2.2.2 Virtual corrections

In the following, we want to give a glimpse of concepts that appear when NLO corrections are
taken into account. Therefore we start with a simple example and work our way through the
appearing difficulties. The example process we use is

e+e− → µ+µ−

and we restrict ourselves to pure QED corrections. Already, with this restriction, there are
three new types of diagrams compared to the LO calculation: We can connect both initial- or
final-state fermions with a photon, leading to two triangle diagrams. We can also insert a fermion
loop into the LO photon propagator or a photon emission and absorption by the same fermion,
leading to five different self-energy diagrams.10 At last, we can connect the initial- and final-state
fermions with an additional photon in two different ways, leading to two box diagrams. We
present an example for each of these diagram types in Figure 2.4.

p1

p2

p3

p4

q

p3 + k

−p4 + k

k

p1

p2

p3

p4

q q
k

k + q

p1

p2

p3

p4

p1 + k p3 + k

p1 + p2 + k

k

Figure 2.4: The three types of loop diagrams in e+e− → µ+µ− scattering with momentum
assignment. k is the loop momentum to be integrated over, q is fixed by momentum conservation.
We use the convention that the momentum flow of fermionic propagators is always parallel to
the fermionic flow; the loop momentum flow of bosons is indicated by arrows for clarity (but
irrelevant for the computation).

We remind of the important fact that the momenta of internal particles in Feynman diagrams
are a priori indeterminate and we had to integrate over all of them in the calculation of matrix
elements. However, energy and momentum have to be conserved at each vertex, which leads
to delta functions to completely determine all internal four-momenta in the case of tree-level
diagrams but not in the case of loop diagrams. We may prove this in analogy to Euler’s
polyhedron formula, which states

#vertices − #edges + #faces = 2.

We are tempted to directly identify the faces with loops, the edges with propagators and the
vertices with vertices, but this is not correct. External particles are also edges, and their endpoints
are also vertices in the Eulerian sense. However, there are exactly as many endpoints as external
particles, and thus, the difference between Eulerian vertices and edges is identical to the difference
between physical vertices and propagators. Furthermore, the outside face of the graph is not a
loop. We, therefore, end with the slightly modified version

#vertices − #propagators + #loops = 1. (136)

Hence, for tree-level diagrams, there is one propagator less than there are vertices. One delta
function of the vertices is used up for overall energy–momentum conservation between initial and
final states, and the others exactly match the number of propagators. However, if there is at least

10Of these five diagrams only the self-energy of the internal photon propagator contributes to the matrix element
due to the LSZ reduction formula [77] after the fields are properly renormalised.
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one loop, then the delta functions are not sufficient any more to determine all propagators.11

Respecting energy–momentum conservation at each vertex, we labelled the integration parameter
four-momentum, which we have to integrate over, with k in Figure 2.4. We explicitly state that
this integration variable does not have to obey the on-shell condition.

With this in mind, we can write down the matrix element of the final-state triangle diagram,
assuming massless fermions, as

M = v̄(p2)(ieγµ)u(p1)−igµν
q2 ū(p3)

[∫ d4k

(2π)4 (ieγρ)i /p3 + /k

(p3 + k)2 (ieγν)i
−/p4 + /k

(p4 − k)2 (ieγσ)−igρσ
k2

]
v(p4).

(137)

The difference between the LO and the NLO expression is the NLO vertex factor

ieΓν = −e3
∫ d4k

(2π)4
γρ(/p3 + /k)γν(/p4 − /k)γρ

(p3 + k)2k2(p4 − k)2 , (138)

whereas at LO, the vertex factor was ieγν . The NLO vertex contains an integral expression which
we are not able to carry out immediately. This can be seen as follows: There are terms in the
integrand that scale as k−4 for large k. The integral measure d4k in the form of four-dimensional
polar coordinates after Wick rotation scales as k3dk, which leads to a logarithmically divergent
integral. However, this is only a problem in space-time dimensions equal or greater than four,
and we can make use of dimensional regularisation: In 4 − 2ε dimensions, ε > 0, the integral is
executable. Restoring our four-dimensional world by taking the limit ε → 0, we end up with a
divergence in ε.

Applying the modified Dirac algebra (122) and (124) the vertex factor reads

ieΓν = −e3µ4−d
∫ ddk

(2π)d
−2(/p4 − /k)γν(/p3 + /k) + (4 − d)(/p3 + /k)γν(/p4 − /k)

(p3 + k)2k2(p4 − k)2 . (139)

These integrals are generally solved by introducing Feynman parameters, which is rewriting the
denominator as

1
(p3 + k)2k2(p4 − k)2 = 2

∫ 1

0
dxdydz δ(x+ y + z − 1)

[x(p3 + k)2 + yk2 + z(p4 − k)2]3
(140)

= 2
∫ 1

0
dxdydz δ(x+ y + z − 1)

[k2 + 2k(xp3 − zp4)]3
(141)

= 2
∫ 1

0
dxdydz δ(x+ y + z − 1)

[(k + xp3 − zp4)2 + xzs]3
. (142)

We may now shift the integration parameter kµ → k′µ = kµ + xpµ3 − zpµ4 for a simplified
denominator depending only on k′2.

Of course, we have to shift the integration parameter in the numerator as well. At first sight,
this blows up the expression. However, we can use the Dirac equation /p4v(p4) = ū(p3)/p3 = 0,
since both external fermions are on-shell and in the expression for the matrix element, we
are going to sandwich ieΓµ between those two spinors. With a slight abuse of mathematical

11To be precise, the polyhedron formula is only valid for planar graphs. However, one-loop graphs are always
planar. Let us now start with a planar graph and keep the number of external particles fixed. An additional vertex
will divide an existing propagator into two, and we are forced to introduce an additional propagator that must
either merge with a triple to a quartic vertex or produce a second additional vertex (which then subsequently
splits another propagator into two). In both cases, the difference between the number of vertices and propagators
is lowered by one after the complete procedure. Alternatively, a new propagator might also be inserted between
two already existing vertices, lowering the difference between the numbers of vertices and propagators by one. In
all cases, there is one more integral to carry out. The difference between a planar and a non-planar graph is only
in the number of resulting loops. For non-planar graphs, there is no simple connection “number of loops equals
the number of integrals”.
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notation, we pretend that we can omit those factors already in the expression of the vertex factor.
Furthermore, any term proportional to an odd power of k′ vanishes after integration since they
are antisymmetric under the exchange k′ → −k′, but the denominator and the integration region
are symmetric. With this, we arrive at

−2(/p4 − /k)γν(/p3 + /k) + (4 − d)(/p3 + /k)γν(/p4 − /k)
= −(2 − d)/k′

γν/k
′ + [−2(1 − x)(1 − z) + (4 − d)xz]/p4γ

ν
/p3 + . . . (143)

for the numerator, where the dots represent the parts which vanish after integration or according
to the Dirac equation.

For the first term, we use the identity
∫

ddk′ k′αk′β =
∫

ddk′ 1
dg

αβk′2. For the last, we use the
Dirac algebra to anticommute the /p3 to the left, after which we can use the Dirac equation again.
Finally, this leads to

ieΓν = −2e3µ4−dγν
∫ 1

0
dxdydz δ(x+ y + z − 1)

×
∫ ddk′

(2π)d
(2−d)2

d k′2 + [(2 − d)xz + 2x+ 2z − 2] s
[k′2 + xzs]3 . (144)

As a last step before the integration, we Wick-rotate k′ and change to polar coordinates. The
final integral expression is

ieΓν = − 2e3µ4−dγν
∫ 1

0
dxdydz δ(x+ y + z − 1)

×
∫ dΩd

(2π)d
∫

dk′
E ik′d−1

E
− (2−d)2

d k′2
E + [(2 − d)xz + 2x+ 2z − 2] s

[−k′2
E + xzs]3 . (145)

Formally, we could have written down everything so far in four dimensions despite the integrals
not being well-defined. Since we are now at the point to carry out the integrals, this is a good
point to talk about the divergence of the vertex function again. For small k′

E, the denominator is
a constant, and we can only run into trouble from the Feynman parameter integration. This
gives rise to the IR divergences. For large k′

E, the first term of the numerator combined with the
integral measure and the denominator scales as dkE k

d−1+2−6
E = dkE k

d−5
E , the second term as

dkE k
d−7
E . For large momenta, the second term is well-defined (UV-finite), but the first one is

UV-divergent. Hence, we calculate these two objects separately.

UV-divergent terms We carry out the integration of the first term in d dimensions and set
d = 4 − 2ε:

ieΓν = −2ieγν
∫ 1

0
dxdydz δ(x+ y + z − 1) µ2ε

(4π)2−εΓ(ε)
( 1

−xzs

)ε
+ UV-finite. (146)

We are now also able to integrate the Feynman parameters. Since the integrand (except the
delta function) does not depend on y, the integration over y is trivial, and we can rewrite the
integration boundaries as∫ 1

0
dx
∫ 1

0
dz
∫ 1

0
dy δ(x+ y + z − 1) =

∫ 1

0
dx
∫ 1−x

0
dz. (147)

Hence

ieΓν = ieγν e
2

8π2

(
4πµ2

−s

)ε Γ(ε)Γ2(2 − ε)
Γ(3 − 2ε) + UV-finite. (148)

The critical term in this expression is Γ(ε) with a single pole at ε = 0, while the other terms are
not problematic as they have a well-defined limit as ε → 0.
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IR-divergent terms Let us now carry out the integration of the second term in d dimensions.
By simple power-counting, the integral over k′

E is well-defined, and we could write down a result
also in d = 4 dimensions. However, the integrals over the Feynman parameters cause problems in
four dimensions. To see this, we also rewrite the triple integral over the parameters as a double
integral and arrive at

ieΓν = ie3µ4−dγν
∫ 1

0
dx
∫ 1−x

0
dzΓ(3 − d/2)

(4π)d/2
[(2 − d)xz + 2x+ 2z − 2]s

(−xzs)3−d/2 + UV-divergent. (149)

The z-integral diverges at the lower bound of integration for d ≤ 4 since the last term in the
numerator is constant in z while the denominator scales as z3−d/2. In contrast to the UV-divergent
term, the problematic space-time dimensions are on the other “side” of the critical point d = 4.
This might tempt us to use a definition of the IR-regulator εIR different from the UV-regulator
εUV from the previous section. However, to avoid confusion, we instead use the same convention
d = 4 − 2ε for the IR-regulator but have to take care of the non-standard limit εIR → 0−,
approaching zero from below, in contrast to εUV → 0+. We will make this differentiation between
the two limits in using the subscripts whenever necessary.

Carrying out the integral over the Feynman parameters and substituting the d-dependence
with ε leads to the result

ieΓν = ie e2

16π2γ
ν

(
4πµ2

−s

)ε Γ(ε)Γ(−ε)Γ(2 − ε)
Γ(2 − 2ε)

ε2 + 2
1 − ε

+ UV-divergent. (150)

Compared to the UV-singularity, there is a double pole at ε = 0 because of the two factors Γ(ε)
and Γ(−ε).

It may seem as if we seperated the IR- and UV-divergent terms from each other, but this
is not the case. In fact, the UV-divergent term also contains a hidden IR singularity from the
lower integration bound of the Feynman parameters, although it is encoded in εUV instead of
εIR. This is an artefact of dimensional regularisation, and we come back to the problem in the
course of renormalisation.

Other virtual contributions As stated above, there are other contributions to the virtual
correction than the calculated final-state triangle correction. The calculation of the initial-state
triangle correction is similar to the final-state one and modifies the other vertex factor. The
photon self-energy also leads to a UV singularity, which we do not calculate here. The virtual
correction modifies the propagator and is given by

−igµν
q2 −→ −iGµν

q2 = −igµρ
q2

∫ d4k

(2π)4

− Tr
[
(−ieγρ)i(/k)(−ieγσ)i(/k + /q)

]
k2(k + q)2

−igσν
q2 (151)

in Feynman gauge. The underlying argument is identical to the case of the triangle corrections
and relies on simple power-counting of the integration variable k: The integrand scales as k−2,
the integration measure as k3dk. However, the Ward identity preserves the term from being
quadratically divergent and softens it to a logarithmic one. It is, hence, conceptually identical to
the triangle correction discussed above. On the other hand, the self-energy is not IR divergent.

The box diagrams, whose matrix elements are given by

M =
∫ d4k

(2π)4 v̄(p2)(ieγρ)i /p1 + /k

(p1 + k)2 (ieγµ)u(p1)ū(p3)(ieγν)i /p3 + /k

(p3 + k)2 (ieγσ)v(p4)

× −igµν
k2

−igρσ
(p1 + p2 + k)2 , (152)

and an analogous expression for the crossed version are not UV-divergent at all since the integral
scales as d4k/k6 for large k. Their IR divergences cancel against the real IR divergence from the



30 2 THEORETICAL FOUNDATIONS

interference of initial- and final-state radiation, which we will not show explicitly here since it is
conceptually identical to our example. In contrast to the other types of loop diagrams, the box
correction also does not simply modify a vertex or a propagator.

In the following, we will pretend as if there was only one virtual correction, namely the
final-state triangle correction since it is sufficient to present the concepts.

Virtual cross section When doing perturbation theory at NLO, one-loop diagrams contribute
to the cross section via interference with tree-level diagrams. To make the calculations easier,
we recall that the spin-summed matrix element factorised into a production and decay part, as
we saw in equation (14).12 We are now going to calculate the LO cross section and modify the
calculations at the appropriate steps for the virtual corrections.

With the identity ∑
λ=±

ϵ∗µλ (q)ϵνλ(q) = −gµν (153)

as sum over the different polarisations of a photon, we can identify

M(e+e− → µ+µ−) =
∑
λ=±

v̄(p2)(ieγµ)u(p1)ϵ∗µλ (q)︸ ︷︷ ︸
M(e+e−→γ∗)

i
q2 ū(p3)(ieγν)v(p4)ϵνλ(q)︸ ︷︷ ︸

M(γ∗→µ+µ−)

. (154)

When we calculate the cross section, we have to square the matrix element and integrate it
over the phase space. Using Casimir’s trick [53] for spinor-summation again, we can define an
initial-state tensor iµα and a final-state tensor fνβ

σ̄d(e+e− → µ+µ−) = 1
2s

∫
dΓd |M̄|2 ≡ e4

2s3µ
8−2diµαfνβgαβgµν = e4

2s3µ
8−2diµαfµα, (155)

where the initial-state tensor is defined as

iµα = 1
4 Tr(/p2γ

µ
/p1γ

α) = pµ1p
α
2 + pα1 p

µ
2 − q2

2 g
µα. (156)

This is true in any dimension since manipulating the space-time dimension does not affect traces
of Dirac matrices of non-chiral currents. We already absorbed the spin-averaging factor into i
and factorised out the coupling constants. The phase-space integral is included directly in the
final-state tensor:

fνβ =
∫

dΓd Tr(/p3γ
ν
/p4γ

β) =
∫

dΓd
(
4pν3p

β
4 + 4pβ3pν4 − 2q2gνβ

)
. (157)

To simplify the calculations further, we realise that the final-state tensor must be of the form

fµν = (qµqν − q2gµν)f(q2) (158)

because q is the only leftover variable after we integrate over p3 and p4, fµν must be a true
Lorentz tensor since the phase-space integral is compatible with the Lorentz structure, and the
Ward identity qµfµν = 0 has to hold [78]. A contraction the Lorentz indices yields for the scalar
f(q2):

gµνf
µν = q2(1 − d)f(q2) ⇒ f(q2) = 1

(1 − d)q2 gµνf
µν . (159)

12Precisely, we saw this for the four-fermion contact interaction. Nevertheless, we can insert a factor of gµν by
hand into the equation to achieve the same tensor structure in the Fermi theory as in electromagnetism. The
additional factor of s−1 from the propagator and other constants do not matter for this argument.
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Hence,

iµαf
µα = d− 2

2 q4f(q2) = d− 2
2(1 − d)q

2gµαf
µα. (160)

The phase-space integral is easy to execute with the use of equation (132) since all angular
dependence vanishes in the contraction of the final-state tensor with the metric tensor

gµαf
µα = −

∫
dΓd 2(d− 2)s = −2(d− 2)s

(4π
s

)2−d/2 2−d
√
πΓ(d/2 − 1/2) . (161)

Collecting all pieces, setting d = 4 − 2ε and applying Legendre’s duplication formula for the
Gamma function to get rid of the square root of π and the 4ε, we arrive at

σ̄d = e4

πs
µ2ε(1 − ε)2

(
4πµ2

s

)ε Γ(3 − ε)
Γ(5 − 2ε) . (162)

As a cross-check, the LO cross section reduces with Γ(3)/Γ(5) = 1/12 in four dimensions to the
familiar expression

σLO = e4

12πs. (163)

Since the virtual corrections modify the vertex only by a number, Γν is still proportional to
γν , we can write

Γν = g(s, µ, ε)γν ⇒ Mvirt = g(s, µ, ε)MLO. (164)

We note that the factor g does not depend on other kinematic variables than the total centre-of-
mass energy squared s. The NLO contribution from the virtual corrections can be obtained by
calculating

σtot = 1
2s

∫
dΓd(MLO + Mvirt)(M∗

LO + M∗
virt), (165)

where we truncate the NNLO contribution of |Mvirt|2 and subtract the LO cross section. Hence

σvirt = 1
2s

∫
dΓd (MLOM∗

virt + M∗
LOMvirt) = 2 Re(g)σdLO (166)

is just the LO cross section multiplied with twice the real part of the vertex correction factor
from equations (148) and (150). We recall that in both of these equations, an imaginary part
stems from the factors(

4πµ2

−s

)ε
=
(

4πµ2

s

)ε
eiπε ⇒ Re g(s, µ, ε) = g(−s, µ, ε) cos(πε). (167)

Collecting everything, we get the cross section from the UV-divergent part of the virtual
corrections

σUV-div
virt = σdLO

e2

4π2

(
4πµ2

s

)ε Γ(ε)Γ2(2 − ε)
Γ(3 − 2ε) cos(πε) (168)

= σLO
3e2

π2 µ
2ε
(

4πµ2

s

)2ε

(1 − ε)2 Γ(3 − ε)
Γ(5 − 2ε)

Γ(ε)Γ2(2 − ε)
Γ(3 − 2ε) cos(πε) (169)

and for the UV-finite part

σUV-fin
virt = σdLO

e2

8π2

(
4πµ2

s

)ε Γ(ε)Γ(−ε)Γ(2 − ε)
Γ(2 − 2ε)

ε2 + 2
1 − ε

cos(πε) (170)

= σLO
3e2

2π2µ
2ε
(

4πµ2

s

)2ε Γ(3 − ε)
Γ(5 − 2ε)

Γ(ε)Γ(−ε)Γ(2 − ε)
Γ(2 − 2ε) (ε2 + 2)(1 − ε) cos(πε). (171)
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Figure 2.5: Feynman diagrams for final-state photon emission in e+e− → µ+µ−(+γ) scattering
with momentum assignments. Note the minus signs on the right-hand diagram due to our
momentum flow convention, in agreement with the relative minus signs in equations (172) and
(173).

2.2.3 Real corrections

The other contribution at NLO is the emission of a real photon. Since we pretended in the
calculations of the virtual corrections that the virtual photon only interacts with the final-state
fermions, it is only straightforward and consistent to claim for our model calculation that only the
final-state fermions can emit a real photon. The matrix element, whose corresponding Feynman
diagrams are shown in Figure 2.5, reads

M = v̄(p2)(ieγµ)u(p1)−igµν
q2

× ū(p3)
[
(ieγρ)i /p3 + /k

(p3 + k)2 (ieγν) − (ieγν)i /p4 + /k

(p4 + k)2 (ieγρ)
]
v(p4)ϵ∗ρ(k). (172)

We calculate the cross section with the same strategy as in the previous section by dividing the
calculations into a product of an initial-state tensor, which is identical to the initial-state tensor
of the LO process, and a final-state tensor. In the case of real emission, it is

fµα = µ4−de2
∫

dΓd Tr
(
/p3

[
γρ

/p3 + /k

(p3 + k)2γ
µ − γµ

/p4 + /k

(p4 + k)2γ
ρ

]

× /p4

[
γα

/p3 + /k

(p3 + k)2γρ − γρ
/p4 + /k

(p4 + k)2γ
α

])
. (173)

Like in the other cases, we only need the contraction fµαgµα. After some Dirac algebra involving
the modified identities (122), (123) and (124), as well as the identity (153), we arrive at

gµαf
µα = −µ4−de2

∫
dΓd

[
2(d− 2)2

(
p3k

p4k
+ p4k

p3k

)
+ 4(d− 2)s p3p4

(p3k)(p4k)

]
+ (d− 4) × const. (174)

after taking the traces. Because of our preparatory work on d-dimensional 3-particle phase-space
integrals in equation (135), we rewrite the expression in terms of the x variables. We find for the
contracted final-state tensor

gµαfµα = −4e2(d− 2)µ4−d
∫

dΓd
[
x2

3 + x2
4 + d−4

2 x2
5

(1 − x3)(1 − x4)

]
+ (d− 4) × const. (175)
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The constant term vanishes for d → 4, and we are safe to drop it already at this stage of the
computation. Combining the leftover term with the integral measure and integrating out x5
thanks to the delta distribution leads to

gµαfµα = −4e2µ4−d
(
s

4π

)d−4 (d− 2)s
32π3Γ(d− 2)

×
∫ 1

0
dx4

∫ 1

1−x4
dx3

[
x2

3 + x2
4 + d−4

2 (2 − x3 − x4)2

(1 − x3)3−d/2(1 − x4)3−d/2(−1 + x3 + x4)2−d/2

]
. (176)

In this form, we realise that singularities arise for d ≤ 4 at the upper bounds of integration in
both x3- or x4-integrals. Physically, these regions correspond to the emission of a low-energetic
photon or a photon collinear to one of the outgoing fermions. Let us investigate the case x3 → 1
to prove this statement:

1 − x3 = q2 − 2p3q

q2 = 2p4k

q2 = 2E4Eγ(1 − cos θ)
q2 , (177)

where Eγ is the energy of the photon and θ is the angle between photon and particle 4. In
the limit x3 → 1, either the photon has to be very soft, Eγ = 0, or the particles are collinear
to each other, θ = 0. According to these cases, the singularity is called a soft, collinear or
soft-collinear singularity because a particle can become soft and collinear at the same time. We
explicitly mention that the case E4 = 0 is forbidden. It contradicts our assumption of being in
the high-energy limit, in which we are allowed to set p2

4 = 0, which we implicitly used to derive
this result. In practice, we avoid the emission of low-energy fermions (outside of jets) with our
event selection criteria (see Section 4.2).

Like in the case of the IR-divergent virtual contribution, the integration converges in more
than four space-time dimensions. We hence set d = 4 − 2εIR with the limit εIR → 0− and drop
the subscript. Unfortunately, the evaluation of the integral itself is very intricate since we have
to deal with various hypergeometric functions. It does also not lead to further physical insights.
We had to perform the integral, then follow the steps as in equation (160) to connect it to the
initial-state tensor (which is identical in this NLO and LO process) and use equation (155) to
merge it to a result for the cross section. Instead, we quote the result from [76] and rewrite it in
our convention:

σreal = e6

16π3s
µ2ε

(
4πµ2

s

)2ε 1 − ε

3 − 2ε(1 − 2ε)
[
(ε− 1)2 + 1

] Γ2(−ε)Γ(2 − ε)
Γ(2 − 2ε)Γ(3 − 3ε) (178)

= σLO
3e2

4π2µ
2ε
(

4πµ2

s

)2ε 1 − ε

3 − 2ε(1 − 2ε)
[
(ε− 1)2 + 1

] Γ2(−ε)Γ(2 − ε)
Γ(2 − 2ε)Γ(3 − 3ε) . (179)

We exhibit a double pole at ε = 0 due to the term Γ2(−ε) as for the IR-divergent virtual
contribution.

Other real contributions There are two other real emission contributions apart from squaring
the final-state emission: the initial-state emission squared and the interference between those
two processes. It can be shown that these three contributions do not influence each other’s
singularity structure: Suppose electron and muon coupled with two unrelated charges Qe and
Qµ. The final-state loop is a process of O

(
QeQ3

µ

)
, which is interfered with the LO diagram of

O (QeQµ). The only real correction leading to a cross section of the same order is obtained by
squaring the final-state radiation diagrams of O

(
QeQ2

µ

)
. Similarly, the virtual box diagrams

interfered with LO diagrams (O
(
Q2

eQ
2
µ

)
× O (QeQµ)) are intertwined with the interference of

initial- and final-state radiation (O (
Q2

eQµ
)× O

(
QeQ2

µ

)
) and the analogous statement is true

for initial-state radiations. We are able to handle those contributions with the same strategies as
the final-final contribution.
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The emission of a soft or collinear particle is a necessary condition for the appearance of an
IR singularity at the Feynman diagram level, but not a sufficient one. In our exemplary process,
there is only the possibility of a photon emission from an external line. We have explicitly
shown that the right-hand diagram of Figure 2.5 became singular under soft or collinear photon
emission. This corresponded to the appearance of a singularity in the fermion propagator

−i(/p4 − /k)
(p4 + k)2 =

−iq2(/p4 − /k)
1 − x3

(180)

of equation (172), which has the same factor in its denominator as the problematic integral (176).
However, suppose there is a more complicated process, and we attach an additional external
photon to a propagator that scatters off or decays into hard particles. In that case, there is no
singularity because the propagating particle is off-shell.

If an initial-state particle emits a photon, there is a singularity also connected to the propagator
going on-shell. This happens when the photon is soft, as is in the case of final-state emission, or
when the photon becomes collinear to the incoming particle.

2.2.4 Handling the singularities

A theory is only useful if it can predict measurable finite quantities. The last two sections,
however, give the impression as if the opposite was the case in quantum field theory. Actually,
this is not the case. Infinities at intermediate steps are not problematic as long as they cancel
out in the final result. As we already discussed, the Gamma functions lead to single and/or
double poles, and we receive contributions proportional to ε−2, ε−1, ε0 and higher powers that
vanish in taking the limit of ε → 0. In the UV-divergent parts of the amplitude there were only
single poles, whereas the IR-divergent parts also showed double poles. The omnipresent term µ2ε

is an artefact and will later drop out, whereas the equally omnipresent similar term (4πµ2/s)2ε

plays a major role due to its dependence on s. We perform a series expansion in ε to the second
power to investigate its influence due to interplay with the different poles:(

4πµ2

s

)2ε

= 1 + 2ε ln
(

4πµ2

s

)
+ 2ε2 ln2

(
4πµ2

s

)
+ O

(
ε3
)
. (181)

In the case of a single pole, multiplying out the terms results in a constant single pole,
logarithms of 4πµ2/s with a finite coefficient and constant finite terms. The squared logarithmic
term vanishes. Like in the case of a potential, where we cannot measure the absolute values but
only differences, the poles cancel each other when we calculate differences of quantities. In the
logarithmic term, the dependence on the arbitrarily introduced parameter µ2 cancels even when
comparing quantities at different scales s because of ln(µ2/s1) − ln(µ2/s2) = ln(s2/s1). Hence,
the single poles from UV divergences are good to handle, and we get rid of them by a procedure
called renormalisation.

In contrast, if there is a double pole, like in the IR-divergent contributions, then the single
poles in the final expression are not constant but are accompanied by the logarithmic term.
Furthermore the squared logarithms survive and the parameter µ2 does not cancel, since
ln2(µ2/s1) − ln2(µ2/s2) ̸= ln2(s2/s1). Especially we are not able to renormalise these double
poles and have to take care of them differently. Luckily, they vanish due to the Block–Nordsieck
[79] and Kinoshita–Lee–Nauenberg theorems [80, 81].

Renormalisation To handle the UV singularities, we use the concept of renormalisation.
The core of this concept is very old and already used in classical electrodynamics when Dirac
encountered a divergent integral leading to an infinite electron mass [82]. The idea is to view
the quantities that appear in the fundamental physical objects as the Lagrangian, not as the
observed quantities, but as some “bare” parameters. These bare parameters are infinitely large
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themselves, but they have the correct properties to cancel out the divergent terms from higher-
order perturbation theory. When adding the divergent integral quantities to the bare results, we
arrive at a finite value. We will not go through the complete procedure of renormalisation, which
would include the computation of propagator loops, but consider rewriting all bare parameters
in the Lagrangian in terms of renormalised quantities and some renormalisation factor

ψ =
√
ZψψR, Aµ =

√
ZAA

µ
R, e = ZeeR. (182)

Then, we can write

L = eψ̄ /Aψ + · · · = Zψ
√
ZAZeeRψ̄R /ARψR + · · · = (1 + δ)eRψ̄R /ARψR + . . . , (183)

where we shift the singular behaviour to δ. In our renormalised theory, there are two interaction
terms in the Lagrangian, namely the well-known part eRψ̄R /ARψR, which leads to the usual
Feynman rules and the above infinities, and a new term δeRψ̄R /ARψR. In terms of Feynman
diagrams, the new term also corresponds to a vertex, and the Feynman rule for the vertex factor
is just ieRδγ

µ, multiplying the conventional vertex factor by (the number) δ. At NLO, we can
state for the matrix element (still assuming only a final-state triangle loop):

MR = v̄(p2)(ieRγ
µ)u(p1)−igµν

q2 ū(p3)(ieR(Γν + δγν))v(p4), (184)

which has to be a finite quantity (we conveniently drop the index R hereafter).
However, there is a problem. This procedure only specifies that δγν has to include the same

divergent parts as Γν , but it does not state anything about the finite parts of δ. This is done by a
so-called renormalisation scheme. Let us first introduce the on-shell scheme, in which we recover
the LO vertex factor in the low-energy limit without quantum corrections. This is a physical
scheme which states that the electron charge at low energies is e. It imposes the renormalisation
condition

ie Γν |s=0 = ieγν . (185)

We do not focus on the finite part, but we may calculate the divergent part by referring to
equation (145) for the unrenormalised one-loop vertex correction and set s = 0 to obtain

−2e2 (2 − d)2

d
µ4−dγν

∫ 1

0
dxdydzδ(x+ y + z − 1)

∫ dΩd

(2π)d
∫

dk kd−5 + δOSγν = γν . (186)

On the left-hand side, the k-integral is one of the scaleless integrals mentioned above. It does
not converge in any dimension, because it diverges both in the IR and the UV region, but we
can still calculate it using dimensional regularisation by splitting the integration region at some
arbitrary point a:∫ ∞

0
dk kd−5 =

∫ a

0
dk kd−5 +

∫ ∞

a
dk kd−5 =

∫ a

0
dk k−1−2εIR +

∫ ∞

a
dk k−1−2εUV

= −1
2

(
a−2εIR

εIR
− a−2εUV

εUV

)
= −1

2

( 1
εUV

− 1
εIR

)
+ O (εUV, εIR) . (187)

It can be shown that these scaleless integrals vanish in dimensional regularisation [83]. This
implies εUV = εIR, which is only allowed if we analytically continue the regions of convergence of
our integrals that are only defined for εUV > 0, εIR < 0. Then, it is not possible to differentiate
between the origin of the singularities any more. Inserting a zero in form of

∫
dk kd−5 shifts

the ε−1
UV poles to ε−1

IR poles. However, we still maintain the different εs carefully for identifying
the UV-divergent and the IR-divergent parts of the virtual cross section. These hidden IR
singularities do not occur in other regularisation schemes. For a treatment with a finite photon
mass regulator, where a 1/ε divergence corresponds to a logM2

γ/s, see, for example, [47] or [76]).
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The integration of the Feynman parameters in (186) is trivial using equation (147), since
they disappeared from the inner integral, and the expression for the solid angle is given in (129).
We end up with

e2

16π2

(
(4πµ2)εUV

εUV
− (4πµ2)εIR

εIR

)
+ δOS(1 + O (εUV, εIR)) = 1. (188)

Solving for δOS results in

δOS = − e2

16π2

( 1
εUV

− 1
εIR

)
+ O (1) . (189)

In the course of this thesis and our computations, we use a different renormalisation scheme,
which is called the modified minimal subtraction (MS) scheme. Preparatory, we introduce the
minimal subtraction (MS) scheme, which simply defines the finite part of δ to be zero [84, 85],
giving

δMS = − e2

16π2

( 1
εUV

− 1
εIR

)
. (190)

The divergent part is identical in all renormalisation schemes. Let us calculate the renormalised
version of the formerly UV-divergent part of the virtual cross section. We start with appropriately
modifying equation (164) to

ΓνR = Γν + δγν = (g + δ)γν ⇒ MR,virt = (g + δ)MLO, (191)

subsequently leading to

σR,virt = 2 Re(g + δ)σdLO. (192)

To simplify calculations, we insert a zero up to O (ε) into the counter term leading to the form

δMS = − e2

16π2

[(
4πµ2

s

)εUV 1
εUV

−
(

4πµ2

s

)εIR 1
εIR

]
+ O (εUV, εIR) . (193)

The finite terms of O (1) cancel each other in this expression. We then add the counter term to
(168) and expand partially in εUV to obtain

σUV-div
R,virt = σdLO

e2

8π2

[(
4πµ2

s

)εUV

(1 − γE) +
(

4πµ2

s

)εIR 1
εIR

]
, (194)

where γE is the Euler–Mascheroni constant. Its appearance is a remnant of Taylor expanding
the Gamma function (Γ(ε) = ε−1 − γE + O (ε)).

By carefully retaining the different εs, we revealed the IR singularity in the UV-divergent
part of the virtual cross section. The formerly UV-divergent virtual cross section is UV-finite
after renormalisation because it contains no poles in εUV any more. Although the LO cross
section in d dimensions is still ε-dependent, it is finite and we can take the limit εUV → 0+ in
σUV-div

R,virt . This leads to

σUV
virt = lim

εUV→0+
σdLO

e2

8π2

(
4πµ2

s

)εUV

(1 − γE) = e2

8π2 (1 − γE)σLO. (195)

A more common renormalisation scheme than the MS scheme is the MS scheme. This scheme
is based on the observation that the appearance of the Euler–Mascheroni constant serves no
physical purpose. In fact, the γE in σUV

virt will cancel against terms from the IR-divergent part
of the virtual cross section and the real emission cross section. Furthermore, the 4π are an
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omnipresent constant that originated from dimensionally regularising the integrand. MS removes
both of them by a redefinition

µ2
MS → µ2

MS = 4πe−γEµ2
MS. (196)

In contrast to the on-shell scheme, neither the MS scheme nor the MS scheme are physical.
They do not take care of the appearance of the parameter µ which we introduced way back as an
arbitrary renormalisation scale without any physical meaning and µMS might appear in the final
expressions. This may seem very concerning and sets up the stage for the renormalisation group
equations, which we will not discuss here since this is a large topic which could fill entire books
on its own and also has applications in solid-state physics. In the end, all observables must not
depend on the renormalisation scale. Actually, each order of perturbation theory introduces new
dependencies on µMS, but after summing up all orders, the dependence on µMS vanishes, and it
is a major task to find a sensible scale at finite-order calculations [86, 87].

Bloch–Nordsieck and Kinoshita–Lee–Nauenberg theorems The Bloch–Nordsieck theo-
rem (for QED) and the (more general) Kinoshita–Lee–Nauenberg theorem state that physical
predictions in the SM are IR-finite to all perturbative orders. Whilst the Bloch–Nordsieck
theorem states that it is sufficient to sum over all possible final-state photons (if the electron is
massive), the Kinoshita–Lee–Nauenberg theorem also requires summation over all degenerate
initial states. This includes processes in which more than two particles scatter off each other.
We are not going to prove or motivate the theorems here, but we show that the Bloch–Nordsieck
theorem holds for our example case. Let us collect all leftover IR-divergent terms, which are
the UV-finite part of the virtual cross section before renormalisation (171), the revealed IR
singularity in the UV-divergent part in the second term of (194) and the real contribution of
(179). We start with partially expanding (171) in ε:

σUV-fin
virt = σLO

3e2

2π2µ
2ε
(

4πµ2

s

)2ε [
− 1

6ε2 + 3γE − 4
9ε + 1

108
(
−131 + 96γE − 36γ2

E + 15π2
)]
.

(197)

We do the same with the revealed IR singularity of (194) taking the d-dimensional LO cross
section into account:

σhidden IR
virt = σLO

e2

8π2µ
2ε
(

4πµ2

s

)2ε [1
ε

+ 2 − 3γE
3

]
. (198)

Finally, we expand (179):

σreal = σLO
3e2

2π2µ
2ε
(

4πµ2

s

)2ε [ 1
6ε2 + 13 − 12γE

36ε + 1
216

(
259 − 156γE + 72γ2

E − 30π2
)]
. (199)

Adding up all three contributions, all poles cancel. The result for the sum of all IR-divergent
parts is finite and we can take the limit ε → 0−:

σIR
real+virt = σLO

e2

8π2µ
2ε
(

4πµ2

s

)2ε (
γE + 1

2

)
→ σLO

e2

8π2

(
γE + 1

2

)
. (200)

We explicitly mention that the Bloch–Nordsieck theorem is only valid for QED, not for the
GWS theory with a spontaneously broken symmetry [88–90]. Although the divergences stemming
from the massless photon as gauge boson of the residual U(1) symmetry are cancelled, the terms
of log2M2

W/s survive. Although this is a general property, it is especially the case when we do
not perform a fully inclusive study with radiated final-state W and Z bosons. These surviving
terms are called Sudakov double logarithms.
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NLO cross section To calculate the renormalised NLO correction, we are only left with
adding up the different parts from (195) and (200):

σreal+virt = σUV
virt + σIR

real+virt = 3e2

16 σLO. (201)

Parton distribution functions and factorisation In the context of the initial-state ra-
diations, which we only briefly touched on here, we encounter collinear singularities that are
regulated by the electron mass and lead to terms proportional to ln q2/m2

e . Although they can
become arbitrarily large, the electron mass may save our example process in QED. However,
in QCD, gluons can be radiated off gluons and no mass term regulates the singularity. The
phenomenon of singularities arising from particles collinear to the initial-state particle has to be
interpreted differently than particles collinearly accompanying a final-state particle.

If we imagine two protons instead of an electron-positron pair as initial-state particles, the
solution is obvious: A proton is a complicated bound state, and at high energies q2 ≫ m2

p, the
scattering process takes place between two constituting partons of the protons instead of the
composite object. The residuals of the protons keep flying in the same direction. Similarly, one
can imagine the electron in an NLO scattering process as a bound state of an electron-parton
and a bundle of photons.

In general, such processes can be factorised as

dσ(p1, p2) =
∑
i,j

∫
dx1dx2 fi(x1)fj(x2) dσ̂ij(x1p1, x2p2), (202)

where fi and fj are the so-called parton distribution functions (PDFs) that determine the
possibility of finding a parton i or j inside the composite object and σ̂ij is the partonic cross
section. In QED, the electron PDFs can be calculated exactly order by order in perturbation
theory, and we find for NLO e+e− → µ+µ−(+γ) scattering [91]

dσ̂(0) = dσ(0) (203)

dσ̂(1) = dσ(1) −
[∫

dx1f
(1)
e (x1)dσ̂(0)(x1p1, p2) +

∫
dx2f

(1)
e (x2)dσ̂(0)(p1, x2p2)

]
, (204)

where a superscript (0) stands for the LO quantity and a (1) denotes the NLO correction. The
expression (204) has the structure of a bare term plus a counter term that is able to cover
all possible singularities. In fact, the mass singularities of initial-state QED radiation can be
absorbed into the PDFs. For further information on electron PDFs, we refer to the cited source
material.

In QCD, the PDFs already become relevant at LO because they are not able to be integrated
out like in the QED case, where we know the initial condition f

(0)
e (x) = δ(1 − x): At LO, an

electron-particle consists of one electron-parton and it carries all of the momentum, but we do
not know the constituents of the proton (except its valence quarks). The PDFs of a proton
are quantities to be determined by measurement. They factorise the hard partonic scattering
process off the soft, non-perturbative QCD stuff that happens when the proton breaks apart
into its partons. Similar to the QED case, the singular behaviour can be absorbed by the PDFs,
but additionally, we have to introduce an arbitrary mass parameter to regulate the collinear
divergence. This parameter is called the factorisation scale µF. It is the energy scale at which we
separate the hard from the soft process. Since it is non-physical like the renormalisation scale,
the true physical cross section summed over all orders of perturbation theory is independent of
the factorisation scale. At fixed order, however, there is a dependence on µF. Like in the case
of the renormalisation scale, from which the renormalisation-group equations follow, there are
differential equations that govern the evolution of the PDFs in dependence on the factorisation
scale, the DGLAP equations [92–94].
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2.2.5 The Catani–Seymour dipole formalism

As we have seen in the previous sections, the NLO calculations in perturbation theory can
be performed analytically. However, the complexity of their computation, in addition to the
sheer number of diagrams to consider, grows very fast with the number of external legs. A full
computation for more complicated processes than simple examples is almost impossible. A much
more effective way is the use of Monte Carlo methods to integrate cross sections numerically. In
the first place, we need a program, which returns us the matrix element evaluated for a specific
combination of initial- and final-state momenta, after which we discretely sum over all generated
events, which lie in a specified region of the phase space. Unfortunately, such a program would
always return nonsensical results when we make it analyse radiative corrections because, at some
point, it will run into a singular region. A numerical integrator cannot know that the badly
behaving real IR divergences cancel exactly against the bad behaviour from the virtual process
with a different particle content after integration.

The Catani–Seymour (CS) dipole formalism [95, 96] (and its generalisation for QED by
Dittmaier [97]) solves this problem. Its general idea is to introduce a counter term (not to
be confused with the UV-regulating counter terms) for the real emission cross section at the
phase-space point level:

σNLO = σvirt + σreal =
∫
n

dσvirt +
∫
n+1

dσreal (205)

=
∫
n

(
dσvirt +

∫
1

dσC

)
+
∫
n+1

(dσreal − dσC) . (206)

The idea behind the dipole formalism is to factorise the singular behaviour out of the (n+ 1)-
particle matrix element

|Mn+1(pi, pj , pk, p1, . . . , pn+1)|2 → |M̃n(p̃ij , p̃k, p1, . . . , pn)|2 ⊗ Vij,k, (207)

where the particles i and j are a pair of emitter and soft or collinear emitted particles, and k is a
third so-called spectator particle. The crucial point of the dipole formalism is the factorisation
in such a manner that the divergent parts are a process-independent expression, called the CS
dipoles Vij,k. The dipoles are convoluted with a process-dependent LO matrix element M̃n with
modified particle momenta p̃ij and p̃k. This LO matrix element is called the reduced matrix
element, and all quantities that are subject to the projection on the reduced n-particle phase
space are denoted with a tilde. There are multiple dipoles to take care of each singular region,
and their indices signal the combination of emitting, emitted and spectating particles. With this
reasoning, we can write

σNLO =
∫
n+1

dσreal −
∑
i,j,k

dσ̃LO ⊗ Vij,k

+
∫
n

dσvirt +
∑
i,j,k

dσ̃LO ⊗
∫

1
dVij,k

 (208)

≡
∫
n+1

dσreal −
∑
i,j,k

dΓ̃n+1
2s̃ Dij,k

+
∫
n

dσvirt +
∑
i,j,k

dΓ̃n
2s̃ Vij,k

 . (209)

dΓ̃ is the reduced phase space element. With this notation, we absorbed the convolution of the
matrix elements and the dipoles into

Dij,k = |M̃n|2 ⊗ Vij,k and Vij,k = |M̃n|2 ⊗
∫

1
dVij,k, (210)

while we factored out the phase-space integration and the prefactor including the centre-of-mass
energy of the reduced matrix element s̃ for converting the matrix element into the cross section.
We define the convolution operator ⊗ such that any spin- and charge/colour-correlation is
included into the convolution and not into the dipole Vij,k. In the n-particle matrix element, the
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momenta of the splitting particle (ij) and the spectator k get modified in a way such that both
particles remain on-shell and overall momentum conservation is secured:

p̃2
ij = 0, p̃2

k = 0, p̃ij + p̃k = pi + pj + pk. (211)

We show the concept pictorially in Figure 2.6.

∑
i,j,k

pi

pj

pk

pi + pj
⇒

∑
i,j,k

p̃ij

p̃k

⊗ Vij,k(pi, pj , pk)

Figure 2.6: Pictorial description of the CS dipole formalism. Note that the splitting can also
occur in the initial state, as well as the spectator particle k can be an initial-state particle.
The big grey blob denotes any kind of tree-level interaction. The factor Vij,k is independent of
the type of interaction and depends only on the momenta and the types of particles i and j.
There are different dipoles for initial- and final-state emission as well as initial- and final-state
spectators.

In the course of this thesis, we cannot prove the existence of such universal dipole quantities
nor write down all of them. The sheer amount of formulas – we need all kinds of possible massless
three-particle splittings, the formalism differs within initial- and final-state emission, initial-
and final-state spectators, and we need both the non-integrated and the integrated version –
goes beyond the scope. We will hence stick exemplarily to our model process e+e− → µ+µ−γ
with final-state photon emission in this section for a conceptual example and come back to
the formalism in Section 3.2.3 and Section 3.2.4 when we discuss problems that arise in the
implementation for W+W− scattering.

Therefore, let us introduce the dipole contributions for the final-state emitter, final-state
spectator quark to quark-photon splitting. The convolution operator ⊗ reduces in the QED case
to a simple multiplication operator containing the charge correlation [97],

|M̃n|2 ⊗ Vij,k = |M̃n|2QiQk
Q2
i

Vij,k. (212)

With the appropriate dipole factor [95], this leads to

∑
k ̸=i,j

Dij,k = |M̃n|2
∑
k ̸=i,j

QiQk
Q2
i

Vij,k (213)

= 1
2pipj

|M̃n|2
∑
k ̸=i,j

2e2µ2ε
[

2
1 − z̃i(1 − yij,k)

− (1 + z̃) − ε(1 − z̃i)
]
, (214)

where

yij,k = pipj
pipj + pjpk + pkpi

and z̃i = pipk
pjpk + pipk

. (215)

Let us just investigate the soft limit as proof of concept, which is obtained by taking

pµj = λpµγ , λ → 0 (216)
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and more simple than the collinear one. In this limit, the spin-summed dipole contribution
reduces to ∑

k ̸=i,j
Dij,k = 1

λ2 e
2µ2ε|M̃n|2 s

(pipγ)(pjpγ) + O (1) . (217)

Since we can ignore the initial-state contributions, we recall the final-state contribution of the
LO matrix element from equation (161). In the following, we do not carry out the phase-space
integration since we are only interested in the integrand – the squared matrix element –, leading
to ∫

n
dΓ̃ |M̃n|2 ∼ gµαfLO

µα =
∫
n

dΓ̃ (−2(d− 2)s) , (218)

and ∫
n+1

dΓ̃
∑
k ̸=i,j

Dij,k ∼
∫
n+1

dΓ̃
(

−2(d− 2) 1
λ2 e

2µ2ε s2

(pipγ)(pjpγ)

)
+ O (1) . (219)

On the other hand, we recall the expression for the real matrix element from equation (174).
Only the second term of the integrand is singular in the soft limit, leading to,

∫
n+1

dΓ|Mn+1|2 ∼ gµαf real
µα = −µ4−de2

∫
n+1

dΓd
[
4(d− 2)s pipk

(pipj)(pkpj)

]
+ O (1)

=
∫
n+1

dΓ
(

− 1
λ2 2e2(d− 2)µ2ε s2

(pipγ)(pkpγ)

)
+ O (1) (220)

with d = 4 − 2ε and 2pipk → s in the soft limit.13 The universal dipole splitting function, in
combination with the process-dependent LO matrix element summing over all possible emitter-
spectator pairs, perfectly mimics the emission of a soft photon. The difference of the real and
the dipole contribution is hence free of soft singularities in d = 4 dimensions.

The integrated dipole contribution is [95]

∑
i,j,k

dΓ̃n
2s̃ Vij,k =

∑
i,j,k

dΓ̃n
2s̃ |M̃n|2 e

2

8π2

(
4πµ2

s

)ε Γ2(1 − ε)
Γ(1 − 3ε)

( 1
ε2 + 1

ε

3 + ε

2(1 − 3ε)

)
(221)

= dΓ̃n
2s̃ |M̃n|2 e

2

4π2

(
4πµ2

s̃

)ε ( 1
ε2 + 3 − 2γE

2ε + O (1)
)
. (222)

The summation yields a factor of 2 because there are two different configurations of emitter and
spectator.

We compare this to the IR-divergent part of the virtual cross section. Since σvirt = 2 Re(g +
δ)σdLO (c. f. (192)), we write down the expanded form of the one-loop vertex correction factor g
of equation (150) combined with the IR-divergent part of the counter term from equation (190):

σIR
virt = 2 Re(gIR + δIR)

∫ dΓn
2s |Mn|2 = −

∫ dΓn
2s |Mn|2 e

2

4π2

(
4πµ2

s

)ε [ 1
ε2 + 3 − 2γE

2ε + O (1)
]
.

(223)

As we see, the divergent terms cancel when adding the integrated dipole contribution to the
virtual cross section.

13We explicitly note, to avoid confusion, that momentum k in equation (174) refers to the photon, which is the
emitted particle j and not the spectating particle k in this context.
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2.2.6 Excursus: anomaly cancellation and eigenvalues of Y

For a small excursus, we come back to the eigenvalues of the electric charge and weak hypercharge
operators, which we introduced ad hoc in Table 2.2. In that chapter, we realised that there exists
a relation Q = T 3 + Y between the electric charge, the third component of the weak isospin
and the weak hypercharge. While the values of the weak isospins of different particles in the
weak isospin doublets are – up to rescaling – uniquely determined by the different eigenvalues
of the SU(2) group, and a SU(2) singlet has no weak isospin, this is not the case for the weak
hypercharge, which can a priori take arbitrary values. In this chapter, we are going to investigate,
by NLO calculations, why the assignment of weak hypercharges (and subsequently electric
charges) follows some constraints in nature.

Quantum field theories can suffer from anomalies, which means that a symmetry of the
classical theory, to which the LO calculation corresponds, is spoiled by quantum effects. The
SU(2)L is a chiral symmetry that is connected to an anomaly at the one-loop level. In the
GWS theory, there are corrections to triple vector couplings at the one-loop level by inserting a
fermion triangle loop to the vertex, but let us start for simplicity with an Abelian theory and
generalise our results. We constructed the GWS Lagrangian (68) such that it is invariant under
the transformations

ψ → ψ′ = eiαψ and ψ → ψ′ = eiβγ5
ψ, (224)

which leads according to Noether’s theorem to the two conserved quantities

jµV = ψ̄γµψ and jµA = ψ̄γµγ5ψ. (225)

In a quantum theory, we expect that the Ward identity for a gauge boson that couples to such a
current holds.

p, µ

k, ν

q, αl

l + p

l − k

p, µ

k, ν

q, αl

l − p

l + k

Figure 2.7: Triangle diagrams

We now consider a one-loop diagram, in which we have one axial vector coupling proportional
to γαγ5 and two vector couplings proportional to γµ, γν . Because of the closed fermion loop, we
get a factor of −1 and have to take the trace, and the amputated matrix element, where we strip
off the polarisation vectors, reads

Mαµν = g3
∫ d4l

(2π)4γ
αγ5 /l + /p

(l + p)2γ
µ /l

l2
γν

/l − /k

(l − k)2 + {p, µ ↔ k, ν}. (226)

We show the corresponding Feynman diagrams in Figure 2.7. Let us now contract this matrix
element with the corresponding momenta of the vector bosons. After some calculation, we find

qαMαµν = 4iεµνρσ
∫ d4l

(2π)4

[
lρkσ

l2(l + k)2 + lρpσ

l2(l − p)2

]
+ {p, µ ↔ k, ν}, (227)

pµMαµν = −4iεανρσ
∫ d4l

(2π)4

[(l − p)ρ(l + k)σ
(l − p)2(l + k)2 − (l − k)ρ(l + p)σ

(l − k)2(l + p)2

]
. (228)

Note that the diagram on the right-hand side of Figure 2.7 is obtained from the diagram on the
left-hand side by pairwise replacement of p, µ ↔ k, ν, leading to the symmetric expressions in
(227). This symmetry is broken by contracting with pµ in (228).
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The first integral (227), connected to the axial current, is pretty simple because all terms
depend only either on p or k. Since M must be a true Lorentz tensor and the only vector
around in each summand is either p or k, the contraction must have the structure qαMαµν =
εµνρσ(a1kρkσ+a2pρpσ) = 0 because we contract a symmetric object with the totally antisymmetric
Levi–Civita symbol.

In the second integral (228), connected to the vector current, we would like to regulate the
divergence. The problem is that many regularisation procedures spoil current conservation and
the Ward identity we want to prove here, and we cannot just use dimensional regularisation
because, in this case, we would have to cautiously handle γ5, which we have only properly
defined in d = 4 dimensions. Nevertheless, it seems as if we had a loophole when we shift
l → l′ = l− p

2 + k
2 in the first and l → l′′ = l− k

2 + p
2 in the second term. Under such a shift, the

denominators stay finite, and the first integrand becomes

l′ρl′σ − (p+k)ρ

2 l′σ + l′ρ (p+k)σ

2 − (p+k)ρ

2
(p+k)σ

2(
l′2 + (p+k)2

4

)2 . (229)

The second one is similar. In this expression, the first and the last term become zero because of
the contraction with the Levi–Civita symbol already before integration. The other ones vanish
by symmetry arguments: There are only odd powers of l in the numerator after the shift and
only even powers of l in the denominator, making the whole expression odd, which we integrate
over a symmetrical region.

However, splitting the two divergent terms, freely manipulating the integration variables in
different ways and meshing them somehow together, since the end justifies the means and we
know which result to expect, feels more than hand-waving. Instead, we have to handle the terms
in a mathematically proper way. In fact, there is a simple prescription, how to deal with linearly
divergent integrals under a shift of the integration variable: We start with the shift mentioned
above and throw away those terms that vanish due to the contraction with εανρσ. The terms
linear in l′ can be combined since they are antisymmetric in ρ and σ. The result is a function of
the type

∆ρσ =
∫ d4l

(2π)4
(
fρσ(l′) − fρσ(l′ − a)

)
(230)

with

fρσ(l′) = l′ρ(p+ k)σ(
l′2 + (p+k)2

4

)2 and a = p− k. (231)

Wick-rotate the momentum (giving a factor of i) and Taylor-expand in a. Since all terms of
order l′ρl′σ/l4 will vanish due to the contraction with the epsilon tensor, we can truncate the
Taylor series at the first order. Afterwards, we use Gauss’s theorem to rewrite the integral as
surface integral evaluated at l′ → ∞. Hence

∆ρσ = i
∫ d4l

(2π)4a
µ ∂

∂lµ
fρσ = iaµ

∫ dΩ4
(2π)4 lim

l→∞
l2lµf

ρσ. (232)

Inserting fρσ and aµ, we find with lµl
ρ = 1

4 l
2gρµ and

∫
dΩ4 = 2π2:

qαMαµν = 1
4π2 ε

µνρσpρkσ ̸= 0 and pµMαµν = kνMαµν = 0. (233)

This result states that there is a Ward identity for the vector currents but not for the axial
currents.

The existence of this anomaly at the loop level has a severe impact on the theory: If there is
a conserved charge, then there has to be an exact local gauge symmetry and vice versa. This
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gauge symmetry is (in the case of Abelian gauge theories) always accompanied by the Ward
identity. What we have shown here is that one-loop corrections may spoil the Ward identity and,
thus, the symmetry. So far we only investigated the vector and axial vector currents of a U(1)
symmetry. For the GWS theory in the unbroken phase, we can check whether we obtain such an
anomaly by generalising our procedure to arbitrary gauge theories. This is done quite easily:
At each vertex, a theory based on Lie groups picks up a factor of the generator T a, which can
be stripped off from the rest of the calculation. We can split this into the symmetric and the
antisymmetric part

Tr(T aT bT c) = 1
2 Tr([T a, T b]T c) + 1

2 Tr({T a, T b}T c) = i12TRf
abc + 1

4ARd
abc. (234)

With the last equality, we further separated the two traces into a representation-dependent part TR
and AR as well as an independent part fabc and dabc. TR is called the index of the representation,
and AR is the anomaly coefficient. fabc is the totally antisymmetric structure constant and dabc
is the totally symmetric anomaly constant. It is normalised such that dabc = 2 Tr({T a, T b}T c)
normalising Afund = 1. The term proportional to the structure constant fabc can be absorbed
into a counter term if it is divergent since the triple gauge boson vertex is also proportional
to fabc. As its name suggests, the interesting term in this context is therefore the anomaly
coefficient.

We also have to consider that there is more than one fermion that can flow through the loop.
Left- and right-handed fermions contribute with a different sign because of the different sign in
front of the γ5 in the projection operator. In very generality, it can be shown that

qαjaα ∼
∑

left
ARd

abc −
∑
right

ARd
abc

 εµνρσF bµνF cρσ, (235)

in which jα should be a conserved current. This is called the Adler–Bell–Jackiw anomaly [98, 99].
A non-chiral theory, where left- and right-handed particles transform in the same representation
and have the same quantum numbers, is always anomaly free. This is especially the case for
massive fermions, since the Dirac equation couples left- and right-handed fermions and forces
them to have the same quantum numbers. QCD is also non-chiral and we do not have to worry
about SU(3)3

c anomalies, when all three boson coupling to the fermion triangle are SU(3) bosons.
Since {T a, T b} ∼ δab for SU(2) and Tr(T a) = 0 for any SU(N), a possible SU(2)3 anomaly
vanishes. Furthermore, any “mixed” anomaly with only one SU(N) generator vanishes due to
the tracelessness.

We are left with the combinations SU(N)2U(1) and U(1)3.14 Hence, there are three non-
trivial constraints within the SM and an additional one if we include gravitation. We summarise
them in Table 2.3 [76, 102].

There are two sets of real solutions for these four nonlinear equations with six variables,
parametrised by two arbitrary real numbers a and b. The first one is

YL = −a

2 − b, Ye = −a− b, Yν = −b, YQ = a

6 + b

3 , Yu = 2a
3 + b

3 , Yd = −a

3 + b

3; (236)

the second one is

YQ = YL = 0, Yu = a, Yd = −a, Ye = b, Yν = −b. (237)

14This statement seems to be at odds with Furry’s theorem [100, 101]; any graph containing a closed loop with
only external photons vanishes if the number of photons, undoubtedly U(1) gauge bosons, is odd. Furry’s theorem,
however, is only valid for Dirac fermions, not Weyl fermions, since it relies on U(1) charge conjugation. For Weyl
fermions, ψL and ψR are two independent quantities with a priori different quantum numbers (and in fact, the
weak hypercharges of SM left- and right-handed fields differ).
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Gauge groups Constraint
U(1)3

Y (2Y 3
L − Y 3

e − Y 3
ν ) + 3(2Y 3

Q − Y 3
u − Y 3

d ) = 0
SU(3)2

cU(1)Y 2YQ − Yu − Yd = 0
SU(2)2

LU(1)Y YL + 3YQ = 0
gravity2U(1)Y (2YL − Ye − Yν) + 3(2YQ − Yu − Yd) = 0

Table 2.3: SM constraints on the weak hypercharge of particles. The subscripts L and Q denote
left-handed leptons and quarks, the subscripts u, d, e and ν denote right-handed quarks of up-
or down-type and right-handed electrons and neutrinos. There is a factor of 2 in front of the
doublets since they contain two kinds of fermions and a factor of 3 in front of the quarks because
of three different colours. Note that the factors of Y are emerging from the U(1) generators in
the anomaly constant dabc.

Since we do not observe right-handed neutrinos that couple to the B field in nature, we have
the constraint Yν = 0 and must set b = 0 in both solutions.15 The second solution would then
describe a world in which only right-handed quarks would couple to the B field, which is also
not what we observe. The leftover solution, with a = 1 as arbitrary normalisation, that can be
absorbed by a redefinition of g′, as mentioned above, is

YL = −1
2 , Ye = −1, Yν = 0, YQ = 1

6 , Yu = 2
3 , Yd = −1

3 , (238)

in accordance with the electric charges that we know and with the values that we have stated in
Table 2.2. Although we derived this result in perturbation theory via a one-loop calculation, it
can be shown that it is a non-perturbative result, i. e. higher order corrections do not change it
[103]. In other words, we have shown that the GWS theory, as it is realised in nature, is anomaly
free. It is additionally the only anomaly-free solution in a world without right-handed neutrinos
and all other particles having non-zero hypercharges.

15We add that the parameter choice a = 0, b = 1 leads to the solution

YQ = Yu = Yd = 1
3 , YL = Ye = Yν = −1,

which are the baryon and lepton numbers. Although theoretically possible, we do not observe such an X boson
converting quarks into leptons.
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3 W+W− scattering
Our objective in this thesis is the investigation of vector boson scattering. VBS is, as its name
already tells, a process in which two (EW) vector bosons interact with each other and produce
two outgoing vector bosons. The expression “W+W− scattering” may, however, be slightly
misleading since the W do not refer to incoming, but outgoing particles. In other words, we
would like to investigate the process V V → W+W−, where V are two arbitrary vector bosons.
All possible underlying Feynman diagrams at LO are shown in Figure 3.1.

(a)
W+ W+

W− W−

Z, γ

(b)
W+ W+

W− W−

Z, γ

(c)
W+ W+

W− W−

H

(d)
W+ W+

W− W−

H

(e)
W+ W+

W− W−

(f)
Z, γ W+

Z, γ W−

W

(g)
Z W+

Z W−

H

(h)
Z, γ W+

Z, γ W−

Figure 3.1: Feynman diagrams for the VBS subprocess VV → W+W−. Note that subfigures (a)
and (b) encode two different diagrams, and subfigures (f) and (h) are three different ones.

As we already motivated in our small example in Section 2.1.7, there are s- and t-channel Z-,
γ- and H-exchanges as well as the quartic term for the process W+W− → W+W−. Furthermore,
there are neutral initial states ZZ,Zγ, γγ → W+W−. All of them are featured by t-channel
W-exchange and the quartic term; in the case of the ZZ initial state, there is additionally
s-channel H exchange.

Alas, W bosons are unstable short-lived particles, and we can neither simply put them into a
storage ring nor measure their properties in a particle detector. Hence we are faced with a more
complicated process, in which the W bosons only appear as virtual particles and other diagrams
than the ones above contribute as well.

3.1 Description of the process

The complete process we investigate is

pp → e+νeµ
−ν̄µjj +X. (239)

We obtain this process out of the pure V V → W+W− subprocess by the following considerations:
At first, we need something to collide. Although processes in lepton colliders are theoretically
much easier to describe, the colliders themselves are much more difficult to construct.16 We
therefore use an existing proton–proton collider. Protons are, however, a bound state, and in
the hard scattering process, only two of their constituent partons interact. Since each of the
partons has to emit a virtual vector boson and go out of the process again, they are seen in
the detector as jets. When calculating the cross sections, we calculate it for each (physically
allowed) combination of partons in the initial state and each combination of partons forming
the final state jets separately and call this a partonic channel. We require two jets to avoid

16Because of synchrotron radiation, it is almost impossible to accelerate leptons to high energies comparable to
the LHC. The most powerful accelerator so far was LEP with

√
s = 209 GeV [104]. For a planned linear lepton

collider with
√
s = 250 GeV, see [105].
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contamination with processes, in which a single jet is emitted. The outgoing Ws are decaying
either hadronically or into lepton-neutrino pairs. If one or both of them decay hadronically, then
we see more jets in the detector, but this final state is again contaminated with other processes
as background. Therefore we restrict ourselves to a process with two oppositely charged leptons
of different generations in the final state. In that case, it becomes more likely that these are
decay products of two W-bosons, especially since the different generations exclude Z-decay or
photon-splitting. The two corresponding neutrinos are not separately detectable and manifest
themselves as missing transverse momentum in the event. We will abbreviate the leptonic content
as 4ℓ in the following. At last, NLO corrections can produce additional photons or jets, which
we denote by the X.

Although we may call this complete process still W+W− scattering and carefully choose
a signal final state, there are lots of other processes which contribute to the same final state.
Some of the underlying Feynman diagrams do not even include the presence of two W bosons.
In some partonic channels, there are Feynman diagrams with VBS subprocesses appearing
alongside background processes, which makes it impossible to separate the “signal” in theoretical
calculations in a gauge-invariant way, and some other partonic channels are pure background.

There is, however, a separable background contribution, which we mention explicitly in some
detail: tt̄ production. As its name suggests, in this kind of process, a tt̄ pair is, most likely via
QCD processes, produced. Top quarks decay into a bottom quark and a lepton-neutrino pair
of a specific generation approximately in 1/9 of the cases [106]; hence leading in about 1% of
the events to the same final-state signal as W+W− scattering. This background contribution
is overwhelmingly large. Although using much more inclusive event selection criteria than we
do (cf. Section 4.2), ATLAS measured the tt̄ cross section to be 826 pb (sic!) [107]. Typical
VBS cross sections, including the backgrounds, are at the one-digit femtobarn level, i. e. five
orders of magnitude smaller, and we do not expect that applying even the harsh VBS cuts on tt̄
production will have an influence drastic enough to curtail the background.

A method to get rid of all tt̄ events is vetoing all events with a b-jet. From an experimental
standpoint, this requires the b-tagging to work with 100% accuracy. Furthermore, we may also
neglect contributions from initial-state bottom quarks: With the assumption of a diagonal CKM
matrix, the only bottom quark induced processes consist of a bb̄ annihilation, since there must
not be any leftover bottom quarks in the final-state. These contributions are not only suppressed
by our experimental setups but they are also double-suppressed by the PDFs. A rough estimate
for the cross section bb̄ → 4ℓuū yielded a contribution of few parts-per-billion compared to the
total cross section at all orders.

In the following subsections, we have a closer look at the substructure of our process.

3.1.1 Leading order

Processes of four different orders in the coupling constants α and αs contribute to the process
(239) at leading order: O (

α6), O (
αsα5) and O (

α2
sα

4) are tree-level contributions; and the
underlying Feynman diagrams are of O (

g6), O (
gsg5) and O (

g2
s g

4). The orders O (
α6) and

O (
α2

sα
4) can only be constructed out of diagrams of the orders O (

g6) or O (
g2

s g
4) respectively,

and we call them EW and QCD-induced contribution. The process of O (
αsα5) consists mainly of

interfering EW and QCD-induced Feynman diagrams, and we call it the interference contribution
for simplicity. However, there are also partonic channels, which are featured by diagrams of
O (

gsg5). The last ingredient is the loop-induced contribution of O (
α4

sα
4).

The electroweak process, O (
α6) Ignoring the b-quarks, there are 60 different quark- and

four photon-induced partonic channels contributing to the EW process of O (
α6). There are four

main categories of quark-induced Feynman diagrams which appear at tree-level of O (
g6):

• VBS ZZ → W+W− and γγ → W+W−: This is a part of our signal VBS process, which
we explained above. There are two quark lines connecting the initial and final state, which
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both emit a Z-boson or a photon in the t-channel. The Z-bosons or photons scatter off
each other and emit s-channel W-bosons. In a partonic channel able to show these types
of Feynman diagrams, there must be a quark of the same generation and the same weak
isospin in the final state for each quark in the initial state since the emitted Z-bosons
or photons neither changes generation nor weak isospin. As already stated above, the
VBS subprocess is richer in Feynman diagrams in the case of Z-bosons than in the case
of photons since we then also have s- and t-channel Higgs boson exchanges. Nevertheless,
we abbreviate this type with ZZ → W+W− hereafter. An example diagram is given in
Figure 3.2 (a).

• VBS W+W− → W+W−: Also part of the signal, the quark lines emit a W boson each.
In contrast to ZZ → W+W−, the W changes the weak isospin, but, since we assume a
diagonal CKM matrix, not the generation. Hence there must be a quark of the same
generation and different weak isospin in the final state for each quark in the initial state.
We present an example in Figure 3.2 (b).

• WWW production: This type is part of the irreducible EW background. In contrast
to to signal, the quark lines connect only initial- or final-state particles. Three W bosons
are emitted in the s-channel which then decay to the final-state particles. This especially
means that the two final-state jets are also produced via s-channel boson exchange. We
hence need a quark-antiquark pair of the same generation but different weak isospin in
both initial and final state, but the generations of initial- and final-state quarks may differ.
Figure 3.2 (c) serves as an example.

• WWZ production: This is the analogue of WWW production, but in addition to the
two leptonically decaying W bosons a hadronically decaying Z boson (or photon) is emitted.
The two quark-antiquark pairs in the initial and the final state must hence have identical
generation and weak isospin each. We show such a case in Figure 3.2 (d).

In some partonic channels, the quark content fulfils multiple criteria. There are, for example,
processes in which both ZZ → W+W− and W−W+ → W+W− scattering occur. An overview
of the combinations of the different types with an exemplary channel each and the number of
partonic channels falling into these combinations is given in Table 3.1. We explicitly state that
each of our partonic channels falls in some of the above categories, i. e. there are no channels
which show neither VBS nor triple vector boson production (3VP).

Apart from these main categories, there are miscellaneous background processes. Double
vector boson production (WW production) is a background which appears in all partonic channels,
exemplarily shown in Figure 3.2 (e). Depending on the partonic channel, there are more types of
diagrams which we will not classify any further (see for few examples Figure 3.2 (f) – (h)).

The photon-induced channels are a minor background, and we expect them not to contribute
in a sizeable manner. The O (

g6) Feynman diagrams need two photons in the initial state and are
hence double PDF-suppressed. Although there are a variety of diagrams, of which one is shown
in Figure 3.2 (i), we will not discuss them in detail. Further examples of Feynman diagram
structures of O (

g6) (without explicit particle labels) can be inferred from Figure 3.15.
With all of these process types, W+W− scattering offers a full spectrum of EW physics

already at LO. There are triple and quartic gauge boson couplings in all partonic channels, and
the Higgs boson is present in all quark-induced channels.

The QCD-induced process, O (
α2

sα
4) Since none of the QCD-induced processes is featured

by VBS or 3VP, it makes no sense to classify the partonic channels of O (
α2

sα
4) in the same way

as those of O (
α6). Instead, we chose to divide the quark-induced processes after the appearing

Mandelstam variable in the gluon propagator.

• s-channel g exchange: Requirement for an s-channel gluon exchange is the existence
of a quark-antiquark-pair of the same generation in both the initial and the final state.
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ū

u

Figure 3.2: Examples of Feynman diagrams of O (
g6). Diagrams (a) and (b) are part of the

signal, and (c) – (i) are EW background.

subtype exemplary channel # of channels
only ZZ → W+W− uu → 4ℓuu 24

only W+W− → W+W− us → 4ℓdc 8
both W+W−/ZZ → W+W− ud → 4ℓud 4

ZZ → W+W− and WWW production ud̄ → 4ℓud̄ 4
ZZ → W+W− and WWZ production uū → 4ℓuū 8

only WWW production ud̄ → 4ℓcs̄ 4
only WWZ production uū → 4ℓcc̄ 8

γ-induced γγ → 4ℓuū 4

Table 3.1: Categorisation of partonic channels at O (
α6) according to appearing subprocesses.

They do not necessarily have to have corresponding weak isospins; in this case, we have
to emit one W boson from the initial-state quark line and one from the final-state one. If
they have the same weak isospin, however, this can be seen as a QCD-analogue of WWZ
production, where the Z-boson is switched with a gluon.

• t-channel g exchange: For a t-channel gluon exchange, the quark lines connect initial-
and final-state and, since the gluon does not change the generation, for each quark in the
initial-state we need a quark of the same generation in the final-state. Since we may emit
W bosons either both from the same quark line, not changing the weak isospin, or from
different quark lines, the weak isospins of the final-state quarks can be identical or flipped
compared to the initial state.
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• u-channel g exchange: Almost identical to the t-channel exchange, we cross the two
quark lines and therefore need two quarks or antiquarks of the same generation, but not a
quark-antiquark-pair, in the final-state: If the weak isospins of the quarks are identical,
then we may flip the lines after the emission of the W-bosons if they are different, then the
number of emitted W-bosons from each quark line changes compared to the corresponding
t-channel.

subtype exemplary channel # of channels
4q, only s-channel g exchange uū → 4ℓcc̄ 12
4q, only t-channel g exchange uc̄ → 4ℓuc̄ 24

4q, both t- and u-channel g exchange uu → 4ℓuu 12
4q, both s- and t-channel g exchange uū → 4ℓuū 12

qq → 4ℓgg uū → 4ℓgg 4
g-induced gg → 4ℓuū 12

Table 3.2: Categorisation of partonic channels at O (
α2

sα
4) according to appearing subprocesses.

Like in the case of the EW process, not all of these categories are mutually exclusive. The
possible combinations of QCD-induced contributions with an exemplary channel and the number
of channels are given in Table 3.2. Exemplary Feynman diagrams are presented in Figure 3.3 (a)
and (b).
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Figure 3.3: Examples of Feynman diagrams of O (
g2

s g
4).

In contrast to the O (
g6) photon-induced channels, in which photons could only appear in the

initial state, there are also diagrams of O (
g2

s g
4) with one gluon in the initial- and the final-state

each, which are hence “mixed” gluon-quark-induced channels. At last, there are the purely
gluon-induced channels. In cases with two initial–state gluons, there is either an s-channel gluon
exchange, accompanied by a triple gluon vertex, or a t-channel quark exchange. We do not
classify these channels further and also summarise the mixed channels under the same category
as gluon-induced processes. For an example diagram, see Figure 3.3 (c). Furthermore, there is a
class of quark-induced channels with two gluons in the final state. These channels are always of
the kind qq̄ → 4ℓgg and diagrams with all Mandelstam variables contribute: s-channel gluon
exchange as well as t- and u-channel quark exchange.

The interference contribution, O (
αsα

5) In the interference contribution, we mainly interfere
the diagrams of O (

g6) and O (
g2

s g
4). We may only interfere diagrams with the same particle

content, so photon-induced diagrams of O (
g6) and the diagrams with external gluons of O (

g2
s g

4)
are not part of this order. Instead, there are additional non-interference partonic channels with
Feynman diagrams of O (

gsg5). All of these have exactly one gluon as an external particle and
need a photon in the initial state because of fermion number conservation. We refer to those
processes hence as photon-induced contributions. For an example diagram, consider Figure 3.2
(i) with the lower photon replaced by a gluon.
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Concerning the purely quark-induced partonic channels, there are, however, fewer combina-
tions possible than in the case of O (

α6) or O (
α2

sα
4). Since we interfere different diagrams, we

have exactly one gluon as an internal particle. As known from the colour algebra – the trace over
an odd number of SU(3) generators is zero –, only those contributions survive, in which we can
construct a single closed quark line and we thus meet two quark-quark-gluon vertices going along
the line. This is only possible if we can combine processes in which the jets are produced via
propagators with different Mandelstam variables. Explicitly, this rules out all partonic channels,
in which only s-channel or only t-channel gluon exchange occurs, because then the corresponding
EW processes also feature only jets that are produced via s- or t-channel. Vice versa, channels
with only WWZ or only WWW production are excluded, since all vector bosons in them appear
also only in the s-channel.

When we classify the remaining channels, we may use either the same classification as for the
EW contributions or the one for the QCD-induced contribution since the diagrams of O (

g6) and
O (

g2
s g

4) are on equal footing for the interference. However, there is no urgent need to choose in
our case, since the interference contribution turns out to be negligible and does not need to be
discussed in detail.

3.1.2 Loop-induced contributions

The loop-induced contributions take an exceptional position in our calculation. As their name
suggests, there are no tree-level diagrams for partonic channels in this category. Hence, they
are not one-loop corrections to some LO diagrams, as we discuss in the next subsection, but
LO processes in their own right. However, they are of orders in the coupling constants that
are even higher than the NLO corrections. In fact, there are three such loop-induced processes:
γγ → 4ℓgg at O (

α2
sα

6), gγ → 4ℓgg at O (
α3

sα
5) and gg → 4ℓgg at O (

α4
sα

4).
The corresponding Feynman diagrams are of O (

g2
s g

6), O (
g3

s g
5) and O (

g4
s g

4) and are not
interfered with tree-level diagrams, but diagrams of the same order. Since the gluons as final-state
jets have to couple to some quark to be able to interact indirectly with the leptons, all of them
are featured by a closed quark loop. We depict some diagrams for the loop-induced contributions
in Figure 3.4.
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Figure 3.4: Examples of loop-induced Feynman diagrams for each appearing order.

We include especially the process with four external gluons. Although this process is of
the same order as NNLO QCD corrections to the QCD-induced process, it is doubly enhanced:
Gluons in the initial state have a larger PDF share than quarks and gluons in the final state have
a larger colour multiplicity than quarks. Furthermore, assuming α2

s ≈ α, processes of O (
α4

sα
4)

are by naive power-counting expected to be larger than processes of O (
α7), which we include as

NLO correction in our calculations.17

While the corresponding loop-induced contribution of O (
α3

sα
5) is both enhanced by the

gluon-PDF and suppressed by the photon-PDF, the O (
α2

sα
6) contribution is doubly suppressed.

We hence expect their contribution to the cross section to be negligible and calculate them for
reasons of completeness.

17A posteriori, it turned out that the loop-induced contributions are of the same size as the O
(
α7) corrections.

We refer to the results in Table 4.3 and in Table 4.4 for numeric comparison.
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In contrast to the LO processes, categorising the loop-induced contributions is futile since
there is only one partonic channel per order of coupling constants. In fact, we even summarise
all orders of loop-induced contributions into the same category since the process of O (

α4
sα

4)
is by far the most dominant contribution. In fact, when discussing the numeric results, we
abbreviate the complete loop-induced contributions simply as contributions of O (

α4
sα

4), unless
stated otherwise.

3.1.3 Virtual corrections

As we sketched in Section 2.2.2 with a simple example, the virtual NLO corrections to a process
are obtained by interfering tree-level diagrams of a given partonic channel with one-loop diagrams
of the same partonic channel. Since a one-loop diagram contains exactly one more internal
propagator than a tree-level diagram with the same external particle content, a loop diagram
is two orders in the coupling constants g or gs higher than a tree-level diagram for the same
process. In our case there are hence loop diagrams of O (

g8), O (
gsg7), O (

g2
s g

6), O (
g3

s g
5) and

O (
g4

s g
4). Interfering them with the tree-level diagrams of O (

g6), O (
gsg5) and O (

g2
s g

4) gives
rise to contributions of four different orders: O (

α7), O (
αsα6), O (

α2
sα

5) and O (
α3

sα
4).18

The diagrams of O (
g8) are purely EW corrections. Besides taking a tree-level diagram of

O (
g6) and simply inserting a photon or a Z boson to connect two charged or weakly interacting

particles, there is a plethora of new diagram types. For example, there are also closed fermion
loops or more complicated loops involving additional insertions of W bosons. Additionally,
there is the possibility to construct additional quartic vertices. We give some example diagrams
in Figure 3.5. Interfering the electroweak loops with tree-level diagrams of O (

g6) leads to a
contribution of O (

α7), interfering them with diagrams of O (
g2

s g
4) to one of O (

αsα6).
(a)
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Figure 3.5: Examples of one-loop Feynman diagrams at O (
g8).

The diagrams of O (
g4

s g
4) are pure QCD corrections to the QCD tree-level diagrams of

O (
g2

s g
4) like the diagrams of O (

g8) are for the electroweak case. The types of new Feynman
diagrams are similar to those of O (

g8). Of course, we have fewer possibilities to integrate the
leptonic part of our process into the new loops. Instead, we have more ways to play around with
external gluons and may also include quartic gluon vertices, which are not present in LO diagrams.
Example diagrams are shown in Figure 3.6. Combining these diagrams with tree-level diagrams
of O (

g6) also leads to a contribution of O (
α2

sα
5), combining them with such of O (

g2
s g

4) leads
to one of O (

α3
sα

4).
The diagrams of O (

gsg7) and O (
g3

s g
5) are those with one external gluon and must be derived

from the tree-level diagrams of O (
gsg5). In the first case, it is a matter of an EW insertion, and

in the latter one of a QCD insertion. The discussion is hence analogous as in the two former
cases with a different tree-level base case. Both of these kinds of diagrams can only be interfered
with diagrams of O (

gsg5) leading to a contribution of O (
αsα6) or O (

α2
sα

5). Figure 3.7 depicts
examples of diagrams of both of these orders.

18Let us here explicitly mention again that an odd power of gs implies the presence of an external gluon. Such
diagrams can only be interfered with diagrams with also an odd power of gs, giving in total even powers of both gs
and g.
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Figure 3.6: Examples of one-loop Feynman diagrams at O (
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s g
4).
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ū

u
W

d

d̄

(b)
γ

u

W

Z

u

W−

W+

ν̄µ

µ−

e+

νe

u

g

g
g

u

Figure 3.7: Examples of one-loop Feynman diagrams at O (
gsg7) and O (

g3
s g

5).
The last order of diagrams is O (

g2
s g

6). These diagrams are most interesting because, in
contrast to the other cases, in which the type of correction could be clearly stated (either EW
or QCD), the distinction in this case is sometimes impossible. Only looking at the order of
coupling constants, these diagrams can be either QCD corrections to the O (

g6) diagrams or
EW corrections to the O (

g2
s g

4) diagrams. Both perspectives are correct and sensible: Take, for
example, an arbitrary O (

g6) diagram in which the two quark lines are connected with a photon.
Inserting an additional gluon between those lines leads to the same diagram as inserting a photon
to the same O (

g2
s g

4) diagram, in which the quarks are connected with a gluon. We depict this
situation in Figure 3.8 (a). In fact, when we calculate the corresponding matrix element, we
obtain both QED and QCD singularities. This shows that it is already impossible to differentiate
between EW and QCD corrections at the level of some Feynman diagrams. Apart from diagrams
with mixed singularities, there are such with only QED or only QCD singularities. Especially in
partonic channels with external gluons, the two powers of gs are already “used up”, and we can
only construct EW loops at this order, as we see explicitly in Figure 3.8 (b). Nevertheless, in
other channels, there are also diagrams with pure EW or QCD loops. We refer to Figure 3.8 (c)
for an example with a pure QCD loop. When interfered with a tree-level diagram of O (

g6)
we produce a contribution of O (

αsα6), when interfered with one of O (
g2

s g
4), the result is of

O (
α2

sα
5).
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Figure 3.8: Examples of one-loop Feynman diagrams at O (
g2

s g
6).

We may hence summarise that the O (
α7) virtual corrections are purely EW corrections to

the EW process and O (
α3

sα
4) consists only of QCD corrections to the QCD-induced process.

The other two orders are a mix of different contributions. Besides clear EW corrections from
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the mixed gluon-photon-induced contributions, the process of O (
αsα6) is featured by interfering

pure EW loops with QCD-induced LO diagrams as well as interfering indistinguishable mixed
EW/QCD loops with EW LO diagrams. The O (

α2
sα

5) is similar with exchanging EW ↔ QCD.
A pictorial description borrowed from papers of previous works on VBS [35] is presented in
Figure 3.9.
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5
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NLO

EW

QCD

EW

QCD

EW

QCD

Figure 3.9: Pictorial description of interplay between LO and NLO for VBS [35].

3.1.4 Real emission

The other NLO contributions are real emission of photons or additional jets. An additional
external particle rises the order of a corresponding LO contribution by one power of g or gs,
leading to four orders of Feynman diagrams with real emission in our process: O (

g7), O (
gsg6),

O (
g2

s g
5) and O (

g3
s g

4). For reasons of bookkeeping, we differentiate the diagrams not only in
their order of coupling constants but also in their jet multiplicity. These diagrams then have
to be squared or interfered with real emission diagrams containing the same external particle
content. This results, as in the case of the virtual corrections, in allowed contributions of O (

α7),
O (

αsα6), O (
α2

sα
5) and O (

α3
sα

4).
Processes with identical jet multiplicity as partonic channels at LO are easy to describe since

they must have emitted a photon from some charged particle. We obtain them by taking a
LO diagram and attaching one photon to all possible particles. Alternatively, we can modify
an appropriate triple gauge-boson vertex to a quartic one. We present an example diagram in
Figure 3.10 (a) and refer to Figure 3.2 and 3.3 with the imagination of an additional photon for
further examples. These processes hence give rise to diagrams of O (

g7), O (
gsg6) and O (

g2
s g

5).
Although these diagrams are EW corrections, there is a possibility for a hidden QCD singularity
at O (

αsα6) and O (
α2

sα
5). We address this topic in Section 3.2.4.
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Figure 3.10: Examples of real photon emission at O (
g7) and real gluon emission at O (

gsg6).
These types of emission are also possible for other orders in the coupling constants, depending
on the order of the underlying LO diagram (here: O (

g6)).
If the process has three jets, none, one, two or all three of them may be gluons, and the

number of final-state quarks is the difference to the total number of jets. These processes cannot
be unambiguously defined based on LO diagrams. Our discussion here is based on the appearing
CS dipoles. There are four classes of them: 1) gluon splitting into two gluons (g → gg∗), 2)
gluon emission from a quark (q → gq∗), 3) quark emission from a quark (q → qg∗) and 4)
quark emission from a gluon (g → qq∗). Furthermore, the gluon can be replaced by a photon
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except for case 1). However, multiple dipoles can appear in one partonic channel, which makes a
one-to-one correspondence between the LO and NLO partonic channels impossible. We choose
the convention that partonic channels that are obtained by adding a gluon to the final state
compared to an existing LO partonic channel correspond to this particular LO channel.

With this convention, NLO partonic channels with at least one gluon in the final state are on a
purely pictorial level obtained by taking an LO diagram of an LO partonic channel with one gluon
less in the final state and attaching a gluon to any coloured particle or modifying an appropriate
triple gauge vertex to a quartic one, like in case of photon emission. This leads to diagrams
of O (

gsg6), O (
g2

s g
5) and O (

g3
s g

4). However, there might be many more singularities present
than in that case. Because of the ambiguous nature of processes with less than three gluons in
the final state, other singularities, both of QED and QCD type, emerge from interpreting the
channel as quark radiation off an LO process with final-state gluons. We show this ambiguity in
detail in Figure 3.11 and discuss it further in the caption. Two explicit example diagrams are
given in Figure 3.10 (b) and (c). Further examples can be imagined out of the LO diagrams in
Figure 3.2 and 3.3 with an additional gluon.

Figure 3.11: Impossibility of one-to-one correspondence between LO and NLO partonic channels.
qq → 4ℓqqg on the left is an NLO diagram of O (

gsg6) (we omit the leptonic part in the diagrams
for clarity, since they do not play a role in this discussion). In our convention, it is assigned as
a correction to the LO diagram qq → qq of O (

g6) (middle) via gluon radiation off one of the
quarks. This gluon radiation leads to a QCD singularity when the internal quark propagator
becomes on-shell. However, there is also a QED singularity present when the intermediate photon
becomes on-shell; the same NLO process can also be interpreted as quark radiation off a quark.
The corresponding LO diagram is qγ → qg of O (

gsg5) (right). In fact, we need QCD and QED
CS dipoles with both underlying Born processes to cancel all divergences.

The leftover processes are those with three quark jets. Because of fermion number conservation,
there must be only one quark in the initial state, and the other initial-state particle has to be a
boson. In our bookkeeping convention, partonic channels with three quark jets are hence counted
as corrections to the photon/gluon-induced LO partonic channels. There are two possibilities for
this initial-state boson: either it splits directly into a quark–antiquark pair or it interacts with
other bosons and a quark–antiquark-pair is produced somewhere else in the process. In the case
of direct splitting, one type of Feynman diagram is just obtained by crossing initial-state quark
and final-state gluon or photon from initial-state gluon or photon emission. Another type of
diagram is derived from LO diagrams with final-state gluons splitting into a quark-antiquark pair.
There are, however, also diagrams that are not simply obtainable from modifying LO diagrams.
Diagrams with three final-state quark jets are shown in Figure 3.12. Since the initial-state boson
can be either a photon or a gluon, diagrams with three quark jets can be of O (

g7), O (
gsg6),

O (
g2

s g
5) or O (

g3
s g

4).
Diagrams of O (

g7) contain only EW bosons: either an additional photon in the final state or
a mixed photon-quark initial state. Hence, there are only QED singularities present, and we can
identify partonic channels of O (

α7), which can be uniquely constructed out of those diagrams,
as pure EW corrections. With photon emission or a third jet and a mixed quark-photon initial
state, the resulting partonic channels are of the type qq → 4ℓqqγ or qγ → 4ℓqqq. Although we
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Figure 3.12: Examples of real corrections with three quark jets at O (
g7) ,O (

g2
s g

5) and O (
g3

s g
4).

An example for O (
gsg6) can be obtained by replacing the initial-state photon with a gluon in

subfigure (a).

count the latter as corrections to the photon-induced process, they are not expected to show the
typical behaviour of NLO quantities since they are strongly enhanced over the LO process of
the same kind: At first, this process is not doubly suppressed by PDFs, since only one photon
contributes. Second, depending on the explicit quark flavours, these new channels may include
photon-induced VBS processes at NLO. An example diagram is shown in Figure 3.12 (a). We
will recognise their effect in Section 4.3.3 when we investigate the NLO cross sections.

Similarly, channels of O (
α3

sα
4) can only be constructed out of diagrams of O (

g3
s g

4) and
are pure QCD corrections to the QCD-induced process. Partonic channels of this order are
qq → 4ℓqqg, qq → 4ℓggg, qg → 4ℓqgg, qg → 4ℓqqq and gg → 4ℓqqg. We remark that Feynman
rules forbid a channel gg → 4ℓggg on tree-level.

Partonic channels of the other two orders O (
αsα6) and O (

α2
sα

5) consist both of interference
contributions between Feynman diagrams of different orders (O (

g7)× O (
g2

s g
5) and O (

gsg6)×
O (

g3
s g

4) respectively) and combinations of Feynman diagrams of the same order (
(O (

gsg6))2 and(O (
g2

s g
5))2 respectively), like in the case of LO partonic channels. For O (

αsα6), the first case
contains both a new interference between an EW process and a QCD-induced process and EW
corrections to the LO interference. Although there are O (

g2
s g

5) diagrams with QCD singularities,
they cannot be interfered with diagrams of O (

g7) (or the singularity is integrable, see section
3.2.5). In the second case, the diagrams of O (

gsg6) contain both QED and QCD singularities.
They can be ambiguously seen as EW corrections to the interference or QCD corrections to
the EW process. Partonic channels for O (

αsα6) are qq → 4ℓqqγ, qq → 4ℓqqg, qγ → 4ℓqqq,
qγ → 4ℓqgγ, γγ → 4ℓqqg, qg → 4ℓqqq and gγ → 4ℓqqγ. With appropriate replacements, the
same reasoning is valid for O (

α2
sα

5) and the resulting partonic channels are obtained with the
replacement γ ↔ g. Additionally, there are the partonic channels of type qγ → 4ℓqgg and
qq → 4ℓggγ, since gluons form jets in contrast to photons.

The resulting picture is the same as in Figure 3.9 for the virtual corrections. The identical
singularity structure is a necessity for them to be able to cancel order by order in the coupling
constants.

3.2 Technical details

For our calculations, we make use of our in-house Monte Carlo event generator Bbmc in
combination with the matrix element generator Recola 1.4.0 [40, 41] and the one-loop library
Collier 1.2.4 [43, 108–110]. For detailed information on Recola and Collier, we refer to the
literature. Roughly speaking, their task is only to compute matrix elements: Bbmc passes a
set of momenta onto them and receives the corresponding matrix elements back. This includes
“normal” tree-level and one-loop matrix elements for the LO process and the real and virtual
corrections, as well as spin- and/or colour-correlated matrix elements, which are needed both for
the subtracted and the integrated CS dipoles. The remainder is done by Bbmc, which includes
not only the generation of phase-space points and applying the event selection routine but also
the identification of the dipole structure and the actual dipole subtraction, and the calculation
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of the integrated and differential cross sections out of the information given by Recola and
Collier as well as information stemming from the PDFs.

3.2.1 Momentum generation with BBMC

Bbmc is a multi-channel Monte Carlo event generator which is based on the output of a certain
number of random variables to generate phase-space points. However, a Monte Carlo integration
with equally distributed (and even restricted to physically allowed) momenta of all of our final-
state particles would be very inefficient. Therefore, Bbmc is a multi-channel generator. The
term “multi-channel” refers to the presence of multiple different so-called integration channels.
In each of these, a set of a priori equally distributed random numbers is mapped to a set of
momenta by using physical information which is taken from Feynman diagrams – by default, for
a given partonic channel, each Feynman diagram corresponds to one integration channel. The
first step for Bbmc is hence constructing all possible tree-level Feynman diagrams for a given
partonic channel and indexing them.19 Generating the integration channels Bbmc assigns a
binary code to all external particles and propagators. When telling Bbmc the process to compute,
the appearing external particles are in a certain order in the input file. If i is the position of the
external particle in that file, then the binary of the particle is 2i, with the first two positions
being used for the incoming particles. s-channel propagators are labelled back-to-front as follows:
Their binaries are the sum of the binaries of their two decay particles. t-channel propagators20

are afterwards labelled front-to-back: the first one is assigned the sum of the binaries of the
incoming particle i = 1 and the binary of the s-channel propagator or final-state particle it
shares a vertex with particle 1. Afterwards, this t-channel becomes the new incoming particle for
labelling until the last vertex is reached: The sum of the binaries of all three lines at this vertex
has to be 2i+1 − 1. We demonstrate this procedure best by two examples in Figure 3.13.

(a)
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60, H
12, W

48, W

65, W
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16
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(b)
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32

16

4
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193, q

241, q

192, W
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Figure 3.13: Two examples of integration channels (Feynman diagrams) for generic qq →
e+νeµ−ν̄µqq scattering at O (

α6) with assigned binary codes. Note that the binary codes of the
particles and, hence, the priorities of the invariants depend on the ordering of the input.

For every set of momenta, a set of random numbers x⃗ with 0 < xi < 1 is generated by use of
the random number generator Ranlux [111, 112]. The first of these random numbers is used to
select an integration channel, the second and third ones to determine the partonic centre-of-mass
energy ŝ and the rest for the final-state momentum generation. If we are integrating the CS
dipoles, additional random numbers are needed, which we will omit from the discussion in this
chapter, since they do not affect the momenta.

19For the loop-induced contributions, Bbmc also uses effective vertices. Quartic vertices are replaced with
auxiliary particles connecting auxiliary triple vertices in the t channel.

20Bbmc does not discriminate between t- and u-channel propagators. Suppose in some process t- and u-channel
exchange are possible. In that case, different binaries are assigned to the two propagators .
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At first, a specific integration channel i is picked by using the so-called channel weights αi.
These αi do not necessarily have to be uniformly distributed, but a priori, the weight of each
channel is identical; if N is the number of integration channels, then

αa priori
i = 1/N ⇒

∑
αi = 1. (240)

The αi are hence normalised such that they sum up to one. For some random number x1, the
channel i fulfilling the criterion ∑i−1

j=1 αj < x1 <
∑i
j=1 αj is chosen. Since the mapping of the

random numbers to momenta is also not uniform, each of these channels has an individual
probability density gi(x⃗) for mapping the random numbers to a set of momenta.21 The total
probability density g(x⃗) = ∑

i αigi(x⃗) is still a well-defined probability density regardless of the
distribution of the αs and the shape of the individual probability densities, since∫ 1

0
dx⃗ g(x⃗) =

∫ 1

0
dx⃗

∑
αigi(x⃗) =

∑
αi

∫ 1

0
dx⃗ gi(x⃗) =

∑
αi = 1 (241)

and g(x⃗) is non-negative and always smaller than one by definition. To see the benefit of a
non-uniform distribution of integration channels, we are now artificially rewriting the integrated
cross section as the expectation value of the so-called event weight w(x⃗)

σ = 1
2s

∫
dΓ |M|2 =

∫
dx⃗ 1

2s
dΓ
dx⃗ |M|2 ≡

∫
dx⃗ w(x⃗)g(x⃗) = ⟨w⟩ (242)

with

w(x⃗) = 1
2s

dΓ/dx⃗
g(x⃗) |M|2. (243)

The probability density drops out of the expression of the cross section since it must not depend
on the choice of mappings and channel weights. However, the integration error

√
⟨w2⟩ − ⟨w⟩2

depends on the αi and the gi, since

⟨w2⟩ =
∫

dx⃗ g(x⃗)w2(x⃗) =
∫

dx⃗ 1
g(x⃗)

( 1
2s

dΓ
dx⃗ |M|2

)2
. (244)

Whilst the individual probability densities are fixed, it is possible to optimise the channel weights
after a certain amount of accepted events. The procedure Bbmc uses is described in [113], and
the optimisation is carried out after 100N × 2k, k ∈ N, accepted events. If we assume an a priori
uniform distribution, the first optimisation hence occurs after each channel was picked 100 times
on average.

After choosing an integration channel, Bbmc starts with the momentum generation by
determining the momentum fractions of the incoming partons, which are assumed to be perfectly
collinear to the beam axis. The momenta of the partons are directly derived from the centre-of-
mass energy of the beam protons

√
s via

p1 =
(
p1 0 0 p1

)
= x2

(√
s/2 0 0

√
s/2

)
(245)

p2 =
(
p2 0 0 −p2

)
= x3

(√
s/2 0 0 −√

s/2
)
. (246)

The partonic centre-of-mass energy squared is hence ŝ = x2x3s.
Afterwards, the final-state momenta are constructed as follows: At first, the s-channel

invariants are determined. Therefore, we can divide the Feynman diagram into “decay chains”:
s-channel propagators of different decay chains are separated by t-channel propagators or emerge
from the decay of the same mother particle. In the examples of Figure 3.13, there is one main
decay chain (60-12/48) in the diagram on the left-hand side with two sub-chains (12,48), and

21We use the abbreviation x⃗ as argument, but in fact, we mean only x4, x5, . . . since the other three random
numbers are already in use at this stage.
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there are three independent decay chains (12,48,192) in the diagram on the right-hand side.
Depending on their binaries, individual propagators and decay chains are said to have a specific
priority that fixes their position in the sequence in which they are determined. By default,
the priority decreases from back to front; the first invariant to be calculated is the one of the
s-channel propagator with the smallest binary code.

Depending on physical constraints, any s-channel propagator in a diagram must have an
s-value between some minimal smin and a maximal smax. For each decay chain individually, si
for some propagator with binary code i has to be larger than

si,min =
(∑√

sj
)2
, (247)

when propagators j are its direct decay products. This bound is a direct consequence of energy-
momentum conservation. Note that we define sj = m2

j if the binary code j corresponds to an
external particle. Since we calculate a process with only massless external particles, we reduce
our discussion here without taking external masses into account in the formulae. Vice versa, the
maximum of si does not only depend on the total centre-of-mass energy squared of the process
but also on the values for sk, that are already reserved for propagators in other decay chains
with higher priority:

si,max =
(√

ŝ−
∑√

sk
)2
. (248)

If there were massive final-state particles, then it would also depend on the minimal s-values of all
other decay chains since a certain amount of energy is required to produce the massive external
particle. Between these extrema, the actual si are determined using the random numbers for
massive s-channel propagators via the formula

sm̸=0
i = miΓi tan

(
x arctan

(
si,max −m2

i

miΓi

)
+ (1 − x) arctan

(
si,min −m2

i

miΓi

))
+m2

i , (249)

where Γi is the decay width of the particle and x is the generic random variable. This function
has a plateau around s ≈ m2

i , which is becoming larger as Γi becomes smaller. This means, the
propagator is most likely mapped towards its resonance peak and the sharper the peak is, the
more likely this mapping occurs. Massless s-channel invariants are mapped with

sm=0
i =

(
xs1−ν

max + (1 − x)s1−ν
min

) 1
1−ν , ν = 0.9. (250)

The use of this specific ν-value is based on experience, and the function maps more likely to
small values of s.

To demonstrate this routine and fill it with life, we use a small exemplary set of random numbers and
the integration channel of Figure 3.13 (a). Let us say, x⃗ =

(
x1 0.4 0.7 0.9 0.1 0.6 . . .

)
and√

s = 13 TeV. This leads to
√
ŝ = 6.9 TeV. At first, the W boson with binary 12 is determined with

x4 = 0.9, √
s12,min = 0 TeV, √

s12,max = 6.9 TeV ⇒ √
s12 = 83.6 GeV. (251)

Since the minimal s-value of the s-channel propagator with next smallest binary 48 is independent
of propagator 12 – propagator 12 is not a decay product of propagator 48 –, it remains unchanged.
The maximal s-value is, however, affected since a certain amount of energy is used up by propagator
12 of a different sub-chain and cannot flow into propagator 48 any more. s48 is thus determined with

x5 = 0.1, √
s48,min = 0 TeV, √

s48,max = 6.8 TeV ⇒ √
s48 = 77.4 GeV. (252)

At last, the s-value of the propagator of the Higgs boson 60 is calculated. Since it has two decay
products, whose invariant masses have been determined previously, it obtains a bound on its minimal
s-value. However, the maximal s-value is only limited by the complete centre-of-mass energy:

x6 = 0.6, √
s60,min = 160.9 GeV, √

s60,max = 6.9 TeV ⇒ √
s60 = 203.2 GeV. (253)
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The last s-channel invariant is not a free variable since it is fixed by energy-momentum
conservation. After the s-channels, the t-channel invariants are determined. Then, the angular
distribution of the outgoing momenta is determined with a set of random numbers in accordance
with the previously given invariants. We leave out further explanations of this more lengthy
procedure since it gives no significant insights into specific problems we had to face for W+W−-
scattering.

With the information out of the generated momenta of final-state and intermediate particles
in a specific channel, Bbmc can calculate the probability gi for exactly this outcome in each other
channel. In practice, the generated momenta are first passed to the event selection routine, which
checks whether they are inside our fiducial phase-space region to avoid unnecessary computation
of probability densities. Afterwards, the momenta are passed to Recola for matrix element
computations.

If we have to compute CS dipoles, Bbmc also calculates the mapping from the n+ 1-particle
phase space to the corresponding underlying n-particle Born phase spaces and passes them to
Recola again for the computation of the reduced matrix elements. The dipole terms themselves
are calculated by Bbmc again. We mention explicitly that Bbmc only uses the n+ 1-particle
integration channels for constructing the momenta. Subsequently, only these channels and the
event weight after applying the subtraction procedure are taken into account for the weight
optimisation.

3.2.2 Permutation of resonances

For some processes, the default momentum generation procedure of Bbmc does not produce
optimal results and W+W− scattering at O (

α6) falls under this kind. The general problem is
the fixed sequence of determining the s-channel invariants. It may happen that some internal
particle only becomes resonant with a small probability, not because of physical constraints,
but purely by specific construction of the mappings or, in some minor cases, by an unfortunate
interplay between both factors. Describing this problem is fairly simple by example.

For the first case, let us reuse Figure 3.13 (a). Being one of the main ingredients for calling
our process “W+W− scattering”, this statement explicitly demonstrates the importance of the
issue. On the one hand, both s-channel W bosons in this integration channel have a higher
priority than the Higgs boson because they emerge from its decay, and thus both have a smaller
binary code than the Higgs boson. Since their invariants are the first to be determined, there is
usually22 sufficient centre-of-mass energy to map both of them preferably towards their resonance
peak at

s+
W ≈ M2

W s−
W ≈ M2

W. (254)

As a consequence, the Higgs boson is only very seldom mapped towards its resonance peak since

sH ≈ 4M2
W > M2

H. (255)

We already performed a small example for one random phase-space point in the last section
concerning this integration channel, in which we saw this behaviour. We show an example
histogram of √

sH in Figure 3.14 in the channel. The bulk of generated events lies around √
sH =

2MW ≈ 160 GeV, only a fraction of less than 1% of the events lies around √
sH = MH ≈ 125 GeV.

For all integration channels in W+W− scattering, an s-channel Higgs boson must decay into two
W bosons, so this is a general statement independent of the specific example. On the other hand,

22This statement becomes false, if the total centre-of-mass energy is below two times the W mass. Such a
situation is excluded in our experimental setup since there must be enough energy inside the process to pass the
invariant-mass cuts for the jets, which are defined in equations (284) and (292) of Section 4.2 to be at 400 GeV and
500 GeV respectively. Bbmc uses this knowledge on cuts such that all events with lesser partonic centre-of-mass
energy are dismissed right away. In fact, if the energy is just above the threshold and this integration channel is
chosen, the most likely scenario will be: Both W bosons are mapped towards their resonances, then there is too
little energy left for the jets, and the event is dismissed.
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events with a resonant Higgs boson have, due to its very narrow decay width, a large matrix
element and hence a strong impact on the integration stability, if they are not often hit.
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Figure 3.14: Distribution of √
sH for 106 generated events in the integration channel shown in

Figure 3.13 (a) for ud → 4ℓud. Note that the probability of generating momenta accidentally
hitting the Higgs-boson resonance for √

s4ℓ might be larger in other integration channels without
resonant Higgs boson by chance.

For the other case, consider the 3VP diagram from Figure 3.13 (b) again. This type of
diagram becomes problematic only if the total centre-of-mass energy is too small to put all three
W (or one Z and two W) bosons onto their resonance peaks. The fixed order of determining the
invariants then leads to an asymmetry in the momenta of the decay products since, in all of these
events, only the W boson with the highest priority (or the two highest priorities) is mapped
correctly. For our cut setup, this situation is excluded. Suppose the partonic centre-of-mass
energy is just above the threshold to be accepted by our cuts. In that case, the event is most
likely cut away independent of the priority of the propagators since either there is not enough
energy left for the jets (see also footnote 22) or the invariant mass of the two jets is mapped to
the W or Z resonance way lower than the required

√
s-value for the event selection.

Although the second issue is only of theoretical interest, we resolved both of the problems at
once by introducing new integration channels into Bbmc. Our goal was to construct a method
which guarantees that every propagator can become resonant and that subsequent possibly
resonant propagators are addressed with identical probability. In very generality, to naively cover
all eventualities, we would have to ensure that every ordering of s-channel propagators has its
own integration channel: only then can we guarantee that there is at least one channel for all
combinations of resonance mappings. Having between two and four (five) independent s-channel
invariants for our (N)LO process would introduce between 2! = 2 and 5! = 120 channels, where
formerly we had only one. The number of integration channels directly affects computation time
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when calculating each event weight, and most of the channels would be redundant. If physical
constraints forbid particles to become resonant, these particles could have become resonant
anyhow, or a smaller set of new integration channels would have been already sufficient. The
latter is always the case for more than 3 resonances by simple combinatoric considerations. Each
propagator can become either resonant or not resonant. For each Feynman diagram, there
are, thus, at most 2n cases to cover and to address by a particular integration channel. For
n > 3, the inequality n! > 2n holds. Since n! grows much faster than 2n, the inclusion of all
possible integration channels results in a large number of redundant integration channels for
more complicated processes.

Our first observation is that massless propagators can be put aside from the procedure.
Massless particles never become resonant, and therefore, there is no necessity to permute them
to the front. Since it is of much more importance to map the resonances of massive propagators
correctly, we can, in fact, give the least priority to all massless particles. The improved algorithm
thus differentiates between massive and massless propagators and calculates the massive invariants
always before the massless ones in the new integration channels. Considering only the ordering
of the massless propagators, it is identical to the default Bbmc ordering.

In the case of W+W− scattering, there are up to 5 massive independent s-channel propagators
and a plethora of different types of Feynman diagrams. To discuss and invent a general – not only
working for W+W− scattering – and at the same time minimal procedure exceeds the scope of
this thesis. We chose a procedure, which is sufficient to produce stable integration results for our
process and our targeted precision of integration. Especially, the need for integration channels,
when the total energy inside the process is not sufficient to put all possible particles onto their
resonances, was considered to be unimportant since our phase-space cuts guarantee a minimum
centre-of-mass energy to be sufficient for all intermediate particles to become resonant. The
method of choice was taking only cyclic permutations of the order, in which massive s-channel
invariants are calculated, into account. With at most 5 massive propagators, this leads to a
maximum factor of 5 times the original number of integration channels instead of up to 120
times. Of course, this method is neither general nor minimal. Nevertheless, we show that the
resonances are mapped sufficiently correctly with our method.

Since we impose a veto on external bottom quarks and assume a diagonal CKM matrix,
there are no massive fermions to take care of. Only bosonic propagators can become resonant.
It turns out that there are only very few classes of LO Feynman diagrams left with three or
more bosonic s-channel propagators for W+W− scattering (the case of two or less massive
propagators is trivial since the cyclic permutations are already all possible permutations). With
8 external particles, there are, neglecting 4-particle vertices, 5 propagators. Let us assume all
external particles are fermions. This neglects the case of LO photon-photon-induced contributions
and NLO quark-photon-induced contributions with quark radiation, as well as gluon-induced
contributions.23

For having 3 s-channel propagators, we must have 2 t- or u-channel propagators (for simplicity
we only call them t-channel propagators). This then splits into three cases:

1. Both t-channel propagators are bosonic. This means the two quark lines flow from the
initial to the final state, and there is a bosonic s-channel propagator attached to both of
the t-channel propagators. Since we need two more massive s-channel propagators with 5
propagators in total, they also have to be directly connected to the s-channel propagator
we already have. This case is depicted in Figure 3.15 (a).

2. One of the t-channel propagators is fermionic, and one is bosonic. In this case, one of the
quarks must emit a massive vector boson, which decays into two bosons before they decay
into fermions. Figure 3.15 (b) shows this case.

23In case of W+W− scattering, gluon-induced LO contributions appear at O
(
αsα

5) only in combination with
photons in the initial-state or at O

(
α2

sα
4). In the latter case, there are at most two massive EW bosons appearing

in the process.
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3. Both t-channel propagators are fermionic. This means both initial-state quarks are on the
same fermion line, and we have to attach three bosonic s-channel propagators to that line,
leading to the diagram shown in Figure 3.15 (c).

There are also three cases with four s-channel propagators, of which three or four are massive:

4. There is one bosonic t-channel propagator. One of the quarks emits a massive boson after
its interaction with the other quark, in contrast to case 2, where the emission happened
before the interaction. Compared to that case, we traded the t-channel fermion propagator
for a massless s-channel one. Figure 3.15 (d) is a depiction of that case.

5. There is one fermionic t-channel propagator connecting the two initial-state quarks. Two
massive bosons are emitted from this line, of which both decay into fermions. Then one of
these fermion lines emits an additional massive boson (see Figure 3.15 (e)).

6. There is one fermionic t-channel propagator, like in case 5, but only one of the bosons
decays into fermions. The other splits into two massive bosons, leading to four massive
propagators. This case is shown in Figure 3.15 (f).

At last, there are the s-channel-induced integration channels, in which an initial-state quark-
antiquark pair annihilates into a boson X. These channels have five s-channel propagators.
Out of these five propagators, however, only four are independent since the s-value of the first
propagator X is fixed by the total centre-of-mass energy. There are either three or four bosonic
s-channel propagators:

7. The boson X can split into two fermions. One of the fermion lines emits a massive boson,
which then splits into two massive bosons. This is depicted in Figure 3.15 (g).

8. The boson X splits into two massive bosons. Like in case 5, both of them decay into
fermions, and one fermion line emits another massive boson. The corresponding diagram is
given in Figure 3.15 (h)

9. The last case is similar to cases 6 and 8: The initial boson split into two bosons, of which
one decays fermionically and the other one into two massive bosons. This is shown in
Figure 3.15 (i).

Surely, it can happen in cases 6 and 9 that only three of the four bosons are massive, but if the
algorithm can handle massive propagators, replacing one of them with a massless one does not
do harm.

In cases 1, 2, 4 and 7 (Figure 3.15 (a,b,d,g)), all massive bosons are attached to the same
vertex. The Bbmc standard mapping procedure determines the s-values of both daughter bosons
first (D1D2M). One cyclic permutation leads to the determination of the mother boson and one
of the daughters (D2MD1) and the last one to the other daughter and the mother (MD1D2),
covering all processes, in which only two of the three bosons could become resonant. Case 6
(Figure 3.15 (f)) is analogous since the additional decay chain does not affect the three bosons.
In principle, it would have been sufficient to permute only the propagators attached to the triple
gauge boson vertex and determine the additional propagator always at last. Case 9 (Figure 3.15
(i)) is also related. Since we do not have to care about the first s-channel propagator in the decay
chain, the subsystems A and MD1D2 are independent.

In cases 5 and 8 (Figure 3.15 (e,h)), we have to distinguish two subcases: either MC < MB

or MC > MB. In the first case, everything is fine: Neither boson B nor C becoming resonant
hinders the other one from also becoming resonant, and their order does not matter. In the
second case, the order of B and C matters since one of the bosons becoming resonant hinders
the other one. Because of the permutation, some channels can map A and B first, and other
channels can map A and C first. Case 3 (Figure 3.15 (c)) is trivially covered since there are no
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Figure 3.15: Types of generic Feynman diagrams with at least three massive s-channel propagators
for W+W− scattering at O (

α6). Note that we did not distinguish between vector and scalar
bosons in our discussion, and the wavy lines M in subdiagrams (a) and (i) might also represent
a scalar Higgs boson.

physical constraints on resonances of different decay chains, and only insufficient energy causes
problems.

Hence, we showed that our method of cyclic permutations is able to cover all LO Feynman
diagrams for W+W− scattering with only external fermions. For NLO processes, we note that
attaching an external photon to a massive propagator (cutting it thereby into two propagators)
does not affect the ability of either of these propagators to become resonant since the external
photon momentum is determined at last and can become arbitrarily small. It is, hence, unimpor-
tant in which order the s-values of these two propagators are determined. If the “ancestor” is the
first to be determined, the minimum s-value of its “heir” is not affected. Its maximum s-value is
identical to the s-value of the “ancestor”, whose maximum s-value, on the other hand, is only
affected by other decay chains or even further predecessors in the same decay chain and identical
to the one of the “heir”, if it would have been determined first. If the “heir” is determined first,
the analogue is true vice-versa: The maximum s-value of the “ancestor” does not depend on
the s-value of the “heir” and the minimum s-value of “heir” and “ancestor” are identical. It
can happen by chance that the first propagator to be determined does not become resonant by
receiving a too large or too small s-value and therefore forbids the second one to become resonant
as well, but this is a physical constraint in a single phase-space point. The other boson then
tends to have an identical s-value (leaning most likely to its resonance peak), which results in the
emission of a very soft photon, no matter whether the “ancestor” or the “heir” was determined
first. Such events are unavoidable in a Monte Carlo procedure, and their influence will eventually
smooth out, averaging over a large number of generated phase-space points. There is, however, a
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small caveat concerning case 7, which does not notably affect the stability of the integration.24

We can conclude that our method is capable to handle all classes of diagrams that are obtained
by attaching a photon to an already existing LO diagram. This generalises to gluon emission,
since the gluon never couples to a massive propagator in our case. Thus, our method works for
the large class of qq → 4ℓqqγ and qq → 4ℓqqg NLO partonic processes.

We did not investigate resonance permutations in depth for photon-induced processes. At
LO, they turn out to be negligible (see Section 4.3.1); at NLO, they have some influence, but the
integration procedure seems to be stable enough. The latter part is also true for gluon-induced
processes, especially since there is no sharp Higgs boson resonance peak for LO gluon-induced
processes of O (

αsα5) and O (
α2

sα
4).

The possibility of permuting the integration channels slightly changes the assignment of
minimal and maximal s-values for the individual propagators: Since it can happen that the
invariant mass of an ancestor is fixed before the s-values of all of its heirs are determined, equation
(248) is not universally applicable any more. The maximal s-value in such a case depends only
on the s-values of the ancestor and its other heirs, and not on the s-value of other particles in
the process or the partonic centre-of-mass energy. However, the form of the equation remains
unchanged, if we identify ŝ with the invariant mass of the ancestor squared and sum only over
propagators k with the same ancestor. Vice versa, the minimal invariant mass of a propagator
now depends only on its direct daughter propagators, if they are already determined before.

We again fill this discussion with life by reconsidering our example of the last section and use the
permuted channel of Figure 3.13 (a) with the Higgs boson propagator determined first and equally
permuted random numbers x⃗ =

(
x1 0.4 0.7 0.6 0.9 0.1 . . .

)
. The results are

x4 = 0.6, √
s60,min = 0 TeV, √

s60,max = 6.9 TeV ⇒ √
s60 = 125.0 GeV; (256)

x5 = 0.9, √
s12,min = 0 GeV, √

s12,max = 125.0 GeV ⇒ √
s12 = 83.4 GeV; (257)

x6 = 0.1, √
s48,min = 0 GeV, √

s48,max = 41.6 GeV ⇒ √
s48 = 15.1 GeV, (258)

pushing the Higgs boson towards its resonance peak and pulling one of the W bosons away from its
resonance peak compared to the unpermuted results.

In Figure 3.16, we demonstrate the influence of the new integration channels. We generated
momenta for the partonic process ud → 4ℓud at O (

α6) until the third channel weight optimisation
and threw away those until the first one to remove the bias from the equal a priori channel
weights. The statistics in the graph include 81600 events without and 127200 events with the
new channels. In contrast to Figure 3.14, we used all integration channels for this plot and
applied the event selection cuts for the VBS setup (see Section 4.2.1), i. e. this is actual data
from our calculation. Formerly, the momenta were most likely mapped towards two resonant W
bosons and only in less than 0.5% of the cases towards the Higgs-boson resonance. With the new
integration channels, the picture changes dramatically: Events revolving around the Higgs-boson
resonance occur in almost 20% of all generated momenta. This corresponds to large weights of
integration channels, in which the Higgs boson can be mapped towards the resonance. In fact,
the probability of picking one of the two integration channels of Figure 3.13 (a) with the Higgs
boson permuted to the first or second place is 28.5% after the third optimisation (the probability
of the two channels of the corresponding ZZ → WW diagram is another 5%), whilst the a priori
weight sum of four channels was only below 1%.

We did not produce explicit NLO data for testing purposes, but to stress the importance of
the new channels, we quote from a posteriori data. Including the permuted channels, there are
4438 integration channels for ud → 4ℓud + γ at O (

α7). After our complete analysis, including
24Consider case 7 and attach a photon to the first propagator, which was formerly completely determined by

the total centre-of-mass energy. We then concluded that the decay chains A and MDD′ were independent. If we
insert the photon, the “ancestor” is still fixed, but the “heir” becomes free. The order of determining the s-values
of the “heir” and the other propagator certainly has an influence on the subsystems A and MDD′. We did not
investigate this case further, since the invariant-mass cut on the two jets already forces the minimum s-value of
the “heir” much above the resonance. If the integrator picks this class of diagrams, the resulting phase-space point
is cut anyway.
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Figure 3.16: Distribution of √
s4ℓ between the first and third weight optimisation for the partonic

channel ud → 4ℓud at O (
α6) in the VBS setup (see Section 4.2.1). The default Bbmc momentum

generation routine without resonance permutation is shown in blue, and the Bbmc momentum
generation routine including resonance permutation in orange.

several millions of accepted events, the last weight optimisation gave a cumulated channel weight
of 62, 8% to a number of only four integration channels. All of these included the Higgs-boson
resonance and were permuted channels.

3.2.3 The Catani–Seymour algorithm revisited: resonances

For our calculations, we make use of the CS algorithm. In Section 2.2.5, we saw that this
formalism can be used to subtract divergences which emerge from the emission of a real photon.
In general, it is an advantage that all external momenta of the (n+ 1)-particle phase space are
mapped on-shell onto the reduced n-particle phase space: The reduced matrix element is then a
physically valid quantity. However, in the course of W+W− scattering and any other process
with sharp resonance peaks, there is a negative by-product.

In a very unfortunate momentum constellation of emitter, emissus and spectator, the CS
algorithm may take a phase-space point, which does not necessarily need to be near a singularity
and which has thus a small event weight, i. e. without subtraction procedure would be completely
innocuous, and send the subtraction term directly onto a resonance. In these cases, the subtraction
term has a much higher weight than the original phase-space point. This is fine when carrying
out the integration analytically. However, it is a catastrophe for Monte Carlo integration: Those
events completely spoil the numerical stability of the integration and manifest themselves as
sharp edges when plotting the cross section over the number of generated events.

After introducing the new integration channels, this problem was partially solved, because
more events were sent towards the resonance peak. A further refinement is not applying the
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CS dipole formalism to every phase-space point far away from dangerous phase-space regions,
in which the emitted photons cause divergences. This is done by introducing the so-called α
parameter (not to be confused with the channel weight α), which was proposed by Nagy and
Trócsányi [114]. In the original CS formalism, the dipoles are defined over the complete phase
space. The α parameter (0 < α ≤ 1) restricts the phase-space volume to the more singular
regions. While α = 1 corresponds to the application of the subtraction dipoles to the full phase
space, α < 1 introduces a cut-off for the subtraction terms and correspondingly an α dependence
of the integrated dipole terms. The modified α-dependent formulae for subtraction terms and
integrated dipoles we used can be found in [115]. We also refer to the references therein.

The advantage of taking an α < 1 is, at first, a gain in computation time since fewer dipoles
have to be computed. On the other hand, if α is chosen too small, the faster integration is spoiled
by large numerical cancellations between the real-subtracted and the integrated dipole processes.
In the past, we have had positive experiences with α = 10−2 as optimum. In our case, we benefit
in another way from smaller α parameters: If there are fewer events in which subtraction terms
have to be evaluated, there are automatically fewer events in which bad subtraction behaviour
can occur. A small value of α also results in a smaller change of the momenta because the phase
space is restricted to the singular regions. We hence tried to lower α to a value of 10−4 for W+W−

scattering at O (
α7). Although the cancellations between the real emission process and the

integrated dipole terms became larger, we still benefitted from the effect of fewer bad subtraction
points. Together with the resonance permutation, we could achieve a stable integration for
processes with photon radiation from leptons. In the other orders of coupling constants, in which
this problem does not occur, we stuck to our usual value of α = 10−2.

3.2.4 Photon-to-jet conversion and photon fragmentation

In the context of real emission, there are two subtleties for W+W− scattering and similar
processes. The photon-to-jet conversion function appears mainly at O (

αsα6) (and at O (
α7)

only for photon-induced contributions); the photon fragmentation function mainly at O (
α2

sα
5)

(and at O (
αsα6) also only for photon-induced contributions).

The photon-to-jet conversion function is needed for final-state photon splittings into a quark-
antiquark pair. There is an IR divergence connected to this kind of process if the pair is collinear.
The underlying types of Born processes for the CS algorithm are hence γq → 4ℓqγ, gq → 4ℓqγ or
qq → 4ℓgγ, and the divergences are cancelled by interfering Born processes of these types with
their corresponding virtual processes. The arising problem is that they are not part of our signal
final state since it has to contain exactly two jets at the Born level. In the original framework of
Bbmc, these final-state photon splitting dipoles are not found by the dipole algorithm, and even
if they were, we would miss the corresponding virtual contribution.
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Figure 3.17: Implementation of photon-to-jet conversion. uū → 4ℓcc̄g (left; we omit the leptonic
part for clarity) is categorised as gluon-radiation process at O (

αsα6). The underlying Born, when
the internal quark propagator goes on-shell with a QCD singularity, is uū → 4ℓcc̄ (middle). If
the final-state quark-antiquark pair becomes collinear, then there is a QED singularity associated
with the Born process uū → 4ℓgγ, which does not pass our event selection criteria, unless the
photon γ is treated as photojet pj (right).

The first step was making the program recognise that it had to find those contributions.
We therefore introduced for internal bookkeeping an auxiliary particle, the photojet pj, and an
additional auxiliary coupling gpj = 1. As the name suggests, the photojet has the same properties
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as an ordinary photon (especially it couples to the same particles) but is treated as a jet by
our algorithm and couples with a strength of ggpj. Since gpj = 1, this variable is only used for
internal bookkeeping. By default, all processes are of O

(
g0

pj
)
. Only if a quark-antiquark pair is

present in the final state of a real emission contribution, the process is defined to be of O
(
g1

pj
)
.

When searching for possible underlying Born contributions, the algorithm also includes photojets
in the construction of integration channels. Since internal photojets would immediately lead
to expressions of O

(
g2

pj
)
, such integration channels are dismissed right away and do not lead

to double counting of integration channels. In channels without quark–antiquark pairs in the
real emission process, no final-state photojets are allowed in the underlying Born contribution,
and if such a pair is present, exactly one photojet has to be in the final state to match the
required O

(
g1

pj
)
. A second final-state photojet would also lead to a process of O

(
g2

pj
)
. With

this procedure, we thus assure that we get at most one pj particle in the final state if the ordinary
Feynman rules for a photon allow it. We mention that this approach is general for all possible
NLO processes, even if there are other photons in the signal LO final-state particle content that
must not be identified as jets. The singularity in the real emission matrix element with two
collinear quarks is then taken care of by the usual γ∗ → ff̄ CS dipole. After Bbmc passes the
process to Recola for the calculation of the reduced matrix element, the photojet is treated
as an ordinary photon by Recola again. We give a pictorial description of the problem in
Figure 3.17.

The second step is taking account of the virtual singularities connected to this process.
Therefore, we added the photon-to-jet conversion function to the usual γ∗ → ff̄ integrated CS
dipole if a configuration with a photojet in the reduced matrix element appears. The photon-to-jet
conversion function Dγ→j is related to the hadronic vacuum polarisation ∆α(5)

had [116]. It is defined
as

Dγ→j(z, µF) = ∆α(5)
had(M2

Z) +
∑
q

Nc

Q2
qα

2π

[
ln
(
µ2

F
M2

Z

)
+ 5

3

]
Pfγ(z), (259)

in which ∆α(5)
had(M2

Z) = 276.11 × 10−4 is an experimentally determined constant [117], Nc = 3 is
the number of colours, Qq the charge of the quarks the photon splits into, µF is the factorisation
scale and Pfγ(z) the Altarelli–Parisi splitting function evaluated the integration variable z. We
refer to [116] for detailed information. Since we calculate each partonic channel separately, we
distributed ∆α(5)

had(M2
Z) equally over the four active flavours, pulling it under the summation as

Dγ→j(z, µF) =
∑

q=u,d,c,s

{
∆α(5)

had(M2
Z)

4 +Nc

Q2
qα

2π

[
ln
(
µ2

F
M2

Z

)
+ 5

3

]
Pfγ(z)

}
. (260)

The photon fragmentation function appears when the final state consists of both photons and
gluons. This happens in W+W− scattering at O (

αsα6) and O (
α2

sα
5) when Born processes with

final-state gluons emit real photons. Like in the case of the photon-to-jet conversion function, the
problem is connected to a misidentification of the underlying singularity and the Born process.
The critical real emission processes are qγ → 4ℓqgγ, qg → 4ℓqgγ or qq̄ → 4ℓggγ, when a hard
photon and a soft gluon collinear to each other are recombined into a single hard jet. Together
with another hard jet, the event may pass the selection criteria (whilst an event with only one
hard jet, as well as a soft gluon and a hard photon that are not collinear to each other would
not). The soft gluon leads to a QCD singularity with an underlying Born of type qγ → 4ℓqγ,
qg → 4ℓqγ or qq̄ → 4ℓgγ, which are not part of the signal final state. Apart from other dipole
types that stem from a different singularity, the Bbmc dipole algorithm only finds Born processes
with the gluon in the final state (qγ → 4ℓqg et cetera) and their corresponding QED photon
emission dipole q∗ → qγ. In the relevant configurations, Bbmc thus falsely assumes that there are
only QED singularities from photon emission (which are indeed present if the photon is soft and
the gluon is hard) and no QCD singularities from soft gluon emission. We show this graphically
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in Figure 3.18. In the case of final-state gluon-to-quark-antiquark or photon-to-quark-antiquark
splitting, we do not face these soft singularities. If the QCD partons become collinear, the event
never passes the selection criteria since we see only one jet in the final state.
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Figure 3.18: Hidden QCD singularity at photon emission.
uū → 4ℓggγ (left; we omit the leptonic part for clarity) is a process at O (

α2
sα

5). Bbmc assumes
the presence of QED dipoles for soft and/or collinear photons with an underlying Born of
uū → 4ℓgg (middle). However, one of the gluons can become soft and collinear to the photon,
recombining into a single jet and leading to a QCD singularity. The underlying Born uū → 4ℓgγ
(right) is not part of our signal final state. In contrast to the photon-to-jet conversion, the photon
must not be identified as jet in this case since it is present as a real particle at NLO.

The solution to the problem of soft gluons recombining with hard photons is to veto configu-
rations in which jets are dominated by photon energies. It had been shown to be convenient in
previous works of our group [36, 38, 118] to restrict the energy fraction of photons inside a jet,

zγ = Eγ
Eγ + Ea

, (261)

where in a given jet Eγ is the energy of the photon and Ea the energy of the QCD particle, to
values of zγ ≤ zγ,cut = 0.7. This cut destroys the IR safety of our calculation, which can be
restored by including the fragmentation of quarks into photons [118–122]. Referring back to
equation (206), we write

dσNLO =
∫
n+1

Θ(zγ,cut − zγ)[dσreal − dσdip] (262)

+
∫
n

[
dσvirt +

∫
1

(
dσdip − dσγ coll

dip (zγ,cut)
)

− dσfrag(zγ,cut)
]

(263)

with the additional term of dσfrag(zγ,cut) absorbing the singularities from the imperfect cancella-
tion between virtual and real contribution and

dσγ coll
dip (zγ,cut) = Θ(zγ − zγ,cut)dσdip (264)

The fragmentation contribution dσfrag is defined via

dσfrag =
∑
i

dσborn

∫ 1

zγ,cut
dzγDqi→γ(zγ), (265)

where the sum runs over all quarks and Dqi→γ is the photon fragmentation function. We refer to
Appendix A of [118] for appropriate definitions of the modified dipoles and the fragmentation
function. As therein, we use for the appearing fit parameters

µ0 = 0.14 GeV C = −13.26 (266)

as measured by ALEPH [123].
Bbmc does not combine the two dipole terms to integrate them numerically simultaneously.

Instead, the expression
∫

dσγ coll
dip + dσfrag can be integrated analytically and be subtracted from

the “standard” dipole contribution.
The newly implemented photon-to-jet conversion function and photon fragmentation function,

as well as types of dipoles that were not yet implemented in Bbmc for other scattering processes
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before calculating W+W− scattering, were verified against their implementation in the program
MoCaNLO. MoCaNLO is a multichannel integrator used by our group that is independent of
Bbmc and can be used as a cross-check. The check was performed in the course of our work
on ZZ scattering [37, 38] and is valid in case of W+W− scattering since the dipoles, conversion
and fragmentation function are universal quantities and all of them that are used for W+W−

scattering are also required for ZZ scattering and vice versa. The verification was carried out both
on the phase-space point level and on the level of integrated cross sections. On the phase-space
point level, we took phase-space points generated by MoCaNLO, fed Bbmc with the specific
momentum configuration and compared the resulting matrix elements and dipole contributions.
We found no deviations between MoCaNLO and Bbmc. In case of the integrated cross sections,
we calculated a selection of partonic channels at all appearing orders of the coupling constants.
We also found no deviations within a range of 3σ of the integration error.

3.2.5 Integrable singularities and technical cuts

The CS algorithm allows us to compute real and virtual contributions separately and guarantees
integrability, which means we can carry out the integration

∫
dΓ. However, it does not guarantee

the finiteness of the integrand since integrable singularities may remain in the phase space.
Although hitting such a singular phase-space point by the Monte Carlo integration would not
spoil the correctness of the result after generating infinitely many phase-space points, it might
destroy the numerical stability of the integration when we generate only a finite number.

As we already discussed, singularities in the case of real emission on the integrand level
appear when an emitted massless particle becomes either soft or collinear to its emitter. Formerly,
Bbmc used a technical cut on all squared invariant masses sij of all pairs of final-state particles
i and j to exclude such events. These dismissed configurations did not necessarily lead to a
singularity because sij could belong to a particle pair that was never able to emerge from a
single propagator (e. g. a gluon and an electron). Fortunately, with the dipole finding algorithm,
we already had a tool at hand to refine the technical cuts: The dipole finder checks whether a
certain splitting of a propagator to a pair i, j can appear in the process. We, hence, only have to
apply the technical cut on such pairs of i and j, for which a possible dipole can be found.
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Figure 3.19: Integrable singularity at O (
αsα6):

The process uγ → 4ℓuuū appears at O (
αsα6) as interference process with an s-channel gluon or

photon (we omit the leptonic part for clarity). If one of the uū-pairs becomes collinear, there is
an integrable singularity from the gluon or photon propagator.

We explicitly state that this dipole does not have to appear in the final calculation of the
real process. This is the case for interference processes: If there is no underlying squared Born,
then there is no dipole contribution, but the integrable singularity is still present. We show an
example in Figure 3.19. However, although the dipole is finally rejected, we may apply the cut
on its particle configuration. The value of our technical cut is

sij
ŝ
< 10−10, (267)

where ŝ denotes the partonic squared centre-of-mass energy. The phase-space region that is cut
away leads to a negligible contribution in the cross section.
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4 Numerical results
In this section, we present the numerical results that we obtained for the calculation of the cross
section of W+W− scattering by using the methods that we described throughout the last sections.
We produced LO and NLO differential cross sections for several physical (and one unphysical)
observables as well as the integrated cross sections in two different experimental setups.

4.1 Input parameters

The input parameters for physical parameters are identical in both setups and follow the previous
setups of our group investigating VBS processes. We simulate an LHC run at a centre-of-mass
energy of 13 TeV. As parton distribution functions we use the NLO NNPDF3.1luxQED set with
αs(MZ) = 0.118 in the nF = 5 fixed-flavour scheme [124, 125] as provided by the LHAPDF
library [126] throughout. Singularities from initial-state collinear radiation are treated in the MS
redefinition of the PDFs.

The central renormalisation and factorisation scales µcentral
ren , µcentral

fac , introduced in Section 2.2.2
and Section 2.2.4, are the geometric average of the transverse momenta of the two hardest jets,
called tagging jets,

µcentral
ren = µcentral

fac = √
pT,j1pT,j2 . (268)

The discriminating criterion of being “hardest” follows an ordering of identical objects according
to their transverse momentum. To check the scale dependence of our calculations, we perform a
7-point scale variation around the central scales, i. e. we use the seven scale pairs

(µren/µ
central
ren , µfac/µ

central
fac ) = (0.5, 0.5), (0.5, 1), (1, 0.5), (1, 1), (1, 2), (2, 1), (2, 2) (269)

for the calculation of the cross sections and use the envelope for an estimation of the perturbative
uncertainty.

The EW coupling constant α is fixed within the Gµ scheme [127], where we use the Fermi
constant

Gµ = 1.16638 × 10−5 GeV−2 (270)

as input parameter and calculate the coupling constant via

α =
√

2
π
GµM

2
W

(
1 − M2

W
M2

Z

)
. (271)

The (on-shell) masses and widths of the massive gauge bosons are taken from the PDG review
2020 [106],

MOS
Z = 91.1876 GeV, ΓOS

Z = 2.4952 GeV, (272)
MOS

W = 80.379 GeV, ΓOS
W = 2.085 GeV, (273)

(274)

and the conversion between on-shell and pole masses and widths, which we use in our calculations,
is obtained via [128]

MV = MOS
V√

1 + (ΓOS
V /MOS

V )2
, ΓV = ΓOS

V√
1 + (ΓOS

V /MOS
V )2

, (275)

where V stands for the W and Z boson, respectively. Since we treat the bottom quark as massless,
the only other massive particles in our setup are the Higgs boson and the top quark. Whilst their
masses can also be read off the aforementioned PDG review, we can set the top-quark width to
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zero because we neglect external bottom quarks and use a diagonal CKM matrix. Therefore,
top and bottom quarks can only appear in closed fermion loops and never become resonant
particles.25 The Higgs decay width is taken from [129].

mt = 173.0 GeV, Γt = 0 GeV, (276)
MH = 125.0 GeV, ΓH = 4.07 × 10−3 GeV. (277)

Propagators of unstable particles are treated in the complex-mass scheme [130–133].

4.2 Event selection

Experimentally, different final states of opposite-sign W scattering have been probed, including
either a pair of opposite-charged leptons of the same generation (e+e− or µ+µ−) or of different
generations (e+µ− or e−µ+). As already discussed in Section 3.1, we restrict ourselves in this
analysis to a final state with different lepton generations. Especially, we only use the e+µ− state.
Since we assume lepton universality and zero lepton masses, the inclusion of the charge-conjugate
state would only lead to an overall factor of two in the integrated cross section and differential
cross sections with observables containing a single charged lepton would have to be symmetrised
with the corresponding observable containing the lepton of opposite charge.

We simulate two different experimental setups, the VBS and the Higgs setup. The selection
criteria that are dictated by the construction of the detector are identical in both setups: QCD
partons are clustered into jets, and real photons are recombined with jets into jets or with leptons
into dressed leptons by the use of the anti-kT algorithm [134] and a resolution parameter of
R = 0.4. Only partons with rapidity |y| < 5 are considered for recombination, while particles
with larger rapidity are assumed to be lost in the beam pipe. The rapidity and the transverse
momentum of a particle are defined as

y = 1
2 ln E + pz

E − pz
, pT =

√
p2
x + p2

y, (278)

where E is the energy of the particle, pz is the component of its momentum along the beam
axis and px, py are the components perpendicular to the axis. The other selection criteria differ
according to the setup.

4.2.1 VBS setup

We call the first setup “VBS setup” since it is inspired by the previous work on VBS of our
group [34–39] and the CMS [135] and ATLAS measurements [136] of opposite-sign W-boson pair
production, appropriately modified to the different final-state particle content. Recently, CMS
used a similar setup for the observation of W+W− scattering [26–28].

Each of the charged leptons has to fulfil

pT,ℓ > 25 GeV, |yℓ| < 2.4 (279)

and together, they must satisfy

pT,ℓ+ℓ− > 30 GeV, Mℓ+ℓ− > 20 GeV, (280)

where pT,ℓ+ℓ− is the vectorial sum of the transverse momenta (i. e. summing the momenta and
extracting the transverse part, not taking the sum of the transverse momenta) of both charged
leptons and Mℓ+ℓ− is their invariant mass. The missing transverse momentum, which is the
transverse part of the sum of the neutrino momenta, is required to fulfil

pT,miss > 40 GeV. (281)
25In a cross-check calculation concerning the effect of initial-state bottom quark pairs, they can also appear only

as t-channel particles, and we may neglect their decay widths.
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After jet clustering, jets that fulfil the conditions

pT,j > 30 GeV, |yj| < 4.5, ∆Rjℓ > 0.4 (282)

are called identified jets. The distance ∆Rij is defined as

∆Rij =
√

(∆ϕij)2 + (∆yij)2 (283)

with the azimuthal angle difference ∆ϕij = min(|ϕi−ϕj |, 2π−|ϕi−ϕj |) and the rapidity difference
∆yij = yi − yj . The two identified jets with the highest transverse momenta, called hardest,
leading or tagging jets, must obey

Mj1j2 > 500 GeV, |∆yj1j2 | > 2.5. (284)

4.2.2 Higgs setup

Our second setup dubbed “Higgs setup” inspired by the CMS measurements of EW Higgs-boson
production and decay into a W+W− pair [137]. This subprocess is, as can be especially inferred
from the discussion in Section 3.2.2, an important building block of W+W− scattering.

In this setup, the charged leptons have to fulfil

pT,ℓ1 > 25 GeV, pT,ℓ2 > 10 GeV, |yℓ| < 2.4 (285)

individually. As in the case of the jets, the leptons are ordered according to their transverse
momentum, and we call the harder lepton leading, the softer lepton trailing lepton. The properties
of the charged lepton pair are

Mℓ+ℓ− > 12 GeV, pT,ℓ+ℓ− > 30 GeV (286)

and in addition to the VBS setup, there is a minimum distance between the charged leptons with

∆Rℓ+ℓ− > 0.5. (287)

The missing transverse momentum must exceed

pT,miss > 20 GeV. (288)

Additionally, we require the transverse mass of the four-lepton system MT,4ℓ to be within a range
below the Higgs mass,

60 GeV < MT,4ℓ < 125 GeV, (289)

where MT,4ℓ is defined as

MT,4ℓ =
√

2pT,ℓ+ℓ−pT,miss [1 − cos ∆ϕ(ℓ+ℓ−, νν̄)], (290)

in which ∆ϕ(ℓ+ℓ−, νν̄) is the azimuthal angle between the sum of the charged-lepton momenta
and the sum of the neutrino momenta. We explicitly mention that this is a measurable quantity
since the neutrino momenta do not enter this formula individually.

The tagging jets in this setup are required to fulfil

pT,j1,2 > 30 GeV, |yj1,2 | < 4.7, ∆Rj1,2ℓ > 0.4 (291)

and the typical VBS topology cuts

|∆yj1j2 | > 3.5, Mj1j2 > 400 GeV. (292)
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Contribution O (
α6) O (

αsα5) O (
α2

sα
4) sum

VBS setup
σ(4q,VBS)[ fb] 2.6988(3) 0.05439(2) 2.2315(3) 4.9846(4)

σ(4q,non-VBS)[ fb] 1.4734(9) × 10−4 – 0.008641(3) 0.008788(3)
σ(γ/g)[ fb] 6.832(2) × 10−6 0.010605(2) 4.6714(8) 4.6820(8)
σ(total)[ fb] 2.6988(3) 0.06500(2) 6.9115(9) 9.6752(9)
fraction [%] 27.9 0.7 71.4 100

Higgs setup
σ(4q,VBS)[ fb] 1.5322(2) 0.007490(5) 0.39866(7) 1.9384(2)

σ(4q,non-VBS)[ fb] 1.850(2) × 10−5 – 0.0012729(6) 0.00129138(6)
σ(γ/g)[ fb] 7.764(4) × 10−7 0.0015062(4) 1.2923(3) 1.2938(3)
σ(total)[ fb] 1.5322(2) 0.008996(5) 1.6923(3) 3.2335(3)
fraction [%] 47.4 0.3 52.3 100

Table 4.1: Division of LO cross sections into contributions of partonic channels with specific
subprocesses. No contributions with external bottom quarks are included. Each contribution
is given in fb and as a fraction relative to the sum of the four contributions in per cent. The
digits in parentheses indicate integration errors. Note that no non-VBS processes containing two
quarks in both the initial and final state contribute at order O (

αsα5).
Additionally, there is a jet veto for any third jet that is produced in NLO real emissions. After
clustering, an event with three jets is only kept if the third (softest) jet obeys

pT,j3 < 30 GeV. (293)

Furthermore, the rapidities of the charged leptons are bounded by the rapidity of the two
tagging jets, for which we use the quantity of centrality, also called the Zeppenfeld variable zℓj1j2 .
It is defined as

zℓj1j2 =
yℓ − yj1 +yj2

2
∆yj1j2

(294)

and required to fulfil

−0.5 < zℓj1j2 < 0.5. (295)

4.3 Integrated cross sections

4.3.1 Leading order

In this section, we present our LO numerical results. A general overview of both setups at the
central scale is given in Table 4.1.

In the VBS setup, which is most comparable to other setups that our group used for the
investigation of other VBS processes, the EW process of O (

α6) contributes with 2.7 fb to the
total cross section. The interference of O (

αsα5) is almost negligible with 0.065 fb and the QCD
background of O (

α2
sα

4) with 6.9 fb is very large. The total LO cross section amounts to 9.68 fb,
to which the EW process contributes 27.9%, the QCD background 71.4% and the interference
contribution does not exceed the negligible amount of 0.7%. We can relate this to other VBS
processes, of which we give an overview of the relevant orders in Table 4.2.

When we compare the EW contributions among the different processes, W+W− scattering
has the highest cross section of this order and W+W+ scattering comes second. The difference
between these processes is the amount of QCD background, and comparing the ratios of EW
and QCD-induced cross sections, W+W− scattering mostly relates to ZZ scattering. This is
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Order W+W+ [35] W+Z [36] ZZ [38] W+W−

(VBS setup) (VBS setup)

σα
6

LO[fb] 1.4178(2) 0.25511(1) 0.073676(3) 2.6988(3)
σ
α2

sα
4

LO [fb] 0.17229(5) 1.0973(1) 0.13614(2) 6.9115(9)
σtot

LO[fb] 1.6383(2) 1.3592(1) 0.2288(3) 9.6752(9)

Table 4.2: LO cross sections of different VBS processes at the central scale for relevant orders
with comparable selection criteria, adjusted to the final-state leptonic particle content: e+νeµ+νµ
for W+W+, e+νeµ+µ− for W+Z, e+e−µ+µ− for ZZ and e+νeµ−ν̄µ for W+W−. For details, we
refer to the given references.

understandable since both processes consist of a neutral final state in the leptonic sector, so
there is a plethora of combinations of initial- and final-state partons leading to a physically
valid partonic process. All partonic channels that contribute to W+W− scattering appear in
ZZ scattering and vice versa. The processes are thus closely related. The presence of partonic
processes with external gluons leads to the large QCD background in particular. This background
is not present in W+W+ scattering since we need two positively charged quarks (∑ qq,in = 4/3)
in the initial state that flip their weak isospins (∑ qq,out = −2/3) for charge conservation reasons.
Similarly, there is one initial/final-state quark pair in W+Z scattering with a weak isospin flip,
leading already to an enhanced background, which is, however, still smaller than in the case of a
neutral initial state.

In our second setup, the Higgs setup, the EW contribution amounts to 1.5 fb and is smaller
than in the VBS setup due to generally stricter cuts. We checked that the most dominant
and efficient cut for this setup compared to the VBS setup is the transverse mass cut on the
four-lepton system, whose influence superimposes all looser cuts on the trailing lepton, the
missing transverse momenta and the jets. The interference contribution is also negligible in
this setup with 0.009 fb. The QCD background is drastically reduced to 1.7 fb, which leads to a
relative contribution of 47.4% of the EW and of 52.3% of the QCD-induced process.

In the substructure of Table 4.1, we compare the cross sections of partonic channels which
contain VBS as subprocess at O (

α6) (denoted as 4q, VBS) with background processes, which are
quark-induced channels that feature only 3VP at O (

α6) (4q, non-VBS) and LO processes with
external photons or gluons at all orders (γ/g). We recognise that the VBS contribution at O (

α6)
is dominant for both setups, whilst non-VBS and photon-induced contributions are completely
negligible at this order. At the interference level, the photon–gluon-induced contributions are also
smaller than the quark-induced contributions. For the QCD-induced processes, the cross section
of non-VBS partonic channels with four external quarks is still much smaller than the one of VBS
channels. As already discussed in Section 3.1, calling an O (

α2
sα

4) process “VBS” or “non-VBS”
is a simplification. In this table it should be rather seen as an abbreviation for “the contribution
of those channels at O (

α2
sα

4), that have the same external particles as channels, which are
featured by VBS subprocesses at O (

α6)”. It is, however, not futile to do this discrimination at
O (

α2
sα

4) at least once: It allows us to estimate the influence of the PDFs and combinatorical
factors to the corresponding cross section of O (

α6). At O (
α2

sα
4), the different size cannot be

explained by the lack of VBS subprocesses. For the QCD-induced process, it is rather an effect
of the much smaller PDF share of the parton combinations that appear in non-VBS processes.
Additionally, fewer partonic channels are contributing to non-VBS processes. All processes
with two valence quarks in the initial state are categorised as VBS processes. However, the
ratio between non-VBS and VBS processes at O (

α2
sα

4) is in both setups between 3 and 4%,
whereas the ratio at O (

α6) is of O (
10−5). We therefore conclude that the non-VBS channels are

dominated by the VBS channels at O (
α6) even if we take the influence of the PDFs and their

numerical inferiority into account. This conclusion is further backed up when we investigate a
modified version of our setups in Section 4.3.5.
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Order O (
α2

sα
6) O (

α3
sα

5) O (
α4

sα
4) Sum

VBS setup
σloop[fb] 5.2(6) × 10−8 2.2(1) × 10−4 0.1952(8) 0.1954(8)

fraction [%] 3 × 10−5 0.1 99.9 100
Higgs setup
σloop[fb] 9(1) × 10−9 8(2) × 10−5 0.1057(7) 0.1057(7)

fraction [%] 9 × 10−6 0.1 99.9 100

Table 4.3: Loop-induced cross sections at the central scale.

The channels with external gluons dominate in both setups the QCD-induced cross section.
On a global comparison of all values in Table 4.1, the Higgs-setup cuts are very efficient to curtail
the QCD-induced background by a factor of 4, whereas the EW cross section shrinks only by
roughly a factor of 2. Especially the quark-induced content of O (

α2
sα

4) is drastically reduced.

4.3.2 Loop-induced contributions

The loop-induced contributions are, as expected, clearly dominated by the gluon–gluon-induced
process of O (

α4
sα

4). They have a value of 0.20 fb in the VBS and a value of 0.11 fb in the Higgs
setup. The gluon–photon-induced process of O (

α3
sα

5) and the photon-photon-induced process
of O (

α2
sα

6) are completely negligible. We present the results for completeness in Table 4.3.
Compared to the summed LO cross sections, they amount to a relative percentage of 2.0% in the
VBS and 3.3% in the Higgs setup.

4.3.3 Next-to-leading order

We already stated the impossibility to distinguish between QCD and EW corrections at some
orders in the context of the process description with Figure 3.9. However, since the interference
contribution is almost negligible in both setups compared to the EW and to the QCD-induced
process, we ignore it in our discussion of NLO effects. This means, we pretend in our discussion
that there were no corrections to the interference (while, of course, taking them into account
in our calculations). So we denote the corrections of O (

αsα6) as QCD corrections to the LO
processes of O (

α6) and the corrections of O (
α2

sα
5) as EW corrections to the LO processes

of O (
α2

sα
4). This is a necessary simplification to unambiguously define relative corrections

since it allows us to compare the corrections of O (
α7) and O (

αsα6) with O (
α6) as well as

the comparison of the corrections of O (
α2

sα
5) and O (

α3
sα

4) with O (
α2

sα
4). It is physically

impossible to distribute NLO corrections between the different LO bases quantitatively. We
nevertheless expect that corrections to the already small interference only lead to effects at the
sub-percent level anyway.

Corrections to the electroweak process We start with the discussion of the corrections to
the EW process, which we present in Table 4.4. In this table, we divided the partonic channels
further, according to our characterisation in Section 3.1: partonic channels with VBS and without
3VP, partonic channels with VBS and 3VP, further divided in WWZ and WWW production,
channels with only 3VP, and the photon-photon- and photon-gluon-induced channels. As we also
already stated in Section 3.1.4, NLO partonic channels of the kind qq̄ → qq̄g are always treated
as gluon-radiation corrections to the qq → qq LO partonic channel, not as quark-radiation to
qγ → qg; and NLO partonic channels of the kind qg/qγ → qqq̄ are treated as corrections to the
photon/gluon-induced process.
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Contribution σα
6

LO[ fb] ∆σα7
NLO[ fb] δα

7 [%] ∆σαsα6

NLO [ fb] δαsα6 [%]
VBS setup

VBS only 2.1695(3) −0.2812(8) −13.0 −0.149(2) −6.8
VBS + WWW 0.13783(3) −0.0164(2) −11.9 0.0071(4) 5.2
VBS + WWZ 0.39140(6) −0.0427(3) −10.9 −0.0135(9) −3.5
WWW only 5.319(8) × 10−5 −1.49(5) × 10−5 −28.0 0.01169(1) 2 × 104

WWZ only 9.415(3) × 10−5 −2.72(3) × 10−5 −28.8 0.003907(2) 4 × 103

γγ/γg 6.832(2) × 10−6 0.03292(1) 5 × 105 −2(6) × 10−4 −3 × 103

total 2.6988(3) −0.3074(9) −11.4 −0.140(2) −5.2
Higgs setup

VBS only 1.1958(2) −0.091(1) −7.6 −0.241(1) −20.2
VBS + WWW 0.06603(1) −0.0052(2) −7.8 −0.0092(2) −14.0
VBS + WWZ 0.27030(4) −0.0160(5) −5.9 −0.0459(6) −17.0
WWW only 6.28(2) × 10−6 −1.8(1) × 10−6 −28.9 0.002509(5) 4.0 × 104

WWZ only 1.223(2) × 10−5 −3.30(8) × 10−6 −27.0 6.769(6) × 10−4 6 × 103

γγ/γg 7.764(4) × 10−7 0.00916(2) 1 × 106 −0.0590(7) −7 × 105

total 1.5322(2) −0.1033(13) −6.7 −0.352(1) −23.0

Table 4.4: NLO corrections at O (
α7) and O (

αsα6) in relation to their LO counterparts of O (
α6),

classified after appearing subprocesses, and corresponding relative corrections δα7 = ∆σα7
NLO/σ

α6
LO

and δαsα6 = ∆σαsα6

NLO/σ
α6
LO.

Electroweak corrections, O (
α7) As we have already seen in the discussion of our

LO results, the dominant contribution arises from partonic channels with VBS subprocesses.
Quantitatively, this does not change at NLO since the bulk of the absolute EW corrections also
emerges from VBS channels. Channels with VBS processes even dominate the channels with
combinations of VBS and 3VP, but this is also a PDF effect. In terms of relative EW corrections,
they are quite similar, ranging roughly between −11% and −13% in the VBS and −6% and −8%
in the Higgs setup. The two pure 3VP categories also do not differ sizeably within the setups
concerning the EW corrections, which are between −28% and −29% in the VBS and −27% and
−29% in the Higgs setup. The corrections to the photon-induced processes have the enormous
size of O (

+106%
)

in both setups. Due to the small absolute size of the LO contributions, neither
the corrections to the photon-induced nor those to the pure 3VP contributions have a large
influence on the overall relative corrections, which are aligned with the corrections of the VBS
processes with −11.4% in the VBS and −6.7% in the Higgs setup.

Compared to the other VBS processes, which we briefly recapitulate in Table 4.5, the relative
size of the total corrections is relatively small. In other VBS processes, the EW corrections range
between −15% and −18%. However, we have to state that an EW correction of −11% or even
−7% should not generally be considered as “small” because the naively expected size of a relative
EW correction is around α ≈ 1/137 ≈ 1%. The large EW corrections in other VBS processes
emerge from the presence of Sudakov logarithms. We recall that the Sudakov logarithms are
terms proportional to lnM2

W/Q
2 and ln2M2

W/Q
2 which survive the Bloch–Nordsieck cancellation.

In our case, Q2 is the four-lepton invariant mass squared M2
4ℓ ≡ s4ℓ as the energy scale of the

EW subprocess. Studies from our group with other VBS processes have shown that this quantity
is particularly large in VBS processes giving rise to large Sudakov logarithms and the Sudakov
approximation [138] is a viable method to estimate the NLO cross section [34, 36, 37].

The leading contribution for W+W− scattering is

σLL = σLO

[
1 − α

4π4CEW
W ln2 s

M2
W

+ α

4π2bEW
W ln s

M2
W

]
(296)
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W+W+ [35] W+Z [36] ZZ [38] W+W− W+W−

(VBS setup) (VBS setup) (Higgs setup)

σα
6

LO[fb] 1.4178(2) 0.25511(1) 0.073676(3) 2.6988(3) 1.5322(2)
∆σα7

NLO[fb] −0.2169(3) −0.0409† −0.01299(5) −0.3074(9) −0.1033(13)
δα

7 [%] −15.3 −16.0 −17.6 −11.4 −6.7

Table 4.5: NLO EW corrections for different VBS processes at the central scale.
†This is a value not given explicitly in the cited paper reconstructed from σα6

LO and σα6+α7

NLO , thus lacking the
specification of an integration error.

with the EW Casimir operator CEW
W = 2/ sin2 θw and the beta function coefficient bEW

W =
19/(6 sin2 θw). This correction factor is universal to V V → V V processes and does not depend
on particular kinematic variables except the centre-of-mass energy of the four-lepton system.
This means, in contrast to the subleading terms, we can perform a global approximation and do
not have to evaluate it event-by-event. We applied the Sudakov approximation to our differential
cross section with respect to the four-lepton invariant mass, calculating (dσ/dM4ℓ)LL with a bin
width of 100 GeV, and integrated it. We give further information on this topic in Appendix A.
The results of our setups are

δα
7

LL,VBS = −11.9%, δα
7

LL,Higgs = −5.6% (297)

with the definition δα
7

LL = σLL/σLO − 1. We remark that the approximation fits very well with
the VBS result and underestimates the corrections for the Higgs result. Nevertheless, we have to
be careful in our process since the Sudakov approximation is only valid if s4ℓ ≫ M2

W. In our
case, however, the sharp Higgs-boson resonance peak at MH ≈ 1.5MW is a crucial contribution,
which drags the cross section towards small values of M4ℓ. This becomes especially clear when we
calculate the mean value for the invariant mass ⟨M4ℓ⟩ from of the binned distribution,26 which is

⟨M4ℓ⟩VBS ≈ 333 GeV, ⟨M4ℓ⟩Higgs ≈ 221 GeV. (298)

We may compare this value with the literature result for W+W+ scattering of ⟨M4ℓ⟩W+W+ ≈
390 GeV [34]. The mean value for the VBS setup is already smaller, and, as expected, the cuts
for the Higgs setup are designed such that even lower values of M4ℓ are favoured.

We did not put special effort into explaining the large EW corrections in channels with only
3VP because of their small absolute size, which makes them completely negligible. For our
fiducial phase space concerning VBS, we are in far-off corners of the fiducial phase space for a
sensible investigation of 3VP. In fact, the applied invariant mass and rapidity difference cuts on
the two jets are almost complementary (see e. g. [139]), since 3VP cuts focus on s-channel jets,
whereas VBS cuts try to avoid them.

In contrast, the absurdly large relative corrections to the photon-induced processes at O (
α7)

are easily explicable. All of these channels are doubly PDF-suppressed at LO because of the
γγ initial state, whereas some of them with a qγ initial state are only singly suppressed at
NLO. Additionally, in some photon–quark-induced processes at O (

α7) the possibility of VBS-
subprocesses opens up (c. f. Figure 3.12 (a)), allowing the particular partonic process to pass
our cuts more likely. These two features do not only combine to an extreme relative correction
due to the small LO normalisation base but also to a sizeable absolute NLO correction of O (1%)
if we normalise the photon-induced corrections to the total LO cross section of O (

α6).
QCD corrections, O (

αsα
6) The QCD corrections of O (

αsα6) show a qualitatively
different behaviour between the VBS and the Higgs setup. While the total EW corrections are

26We remark that ⟨M4ℓ⟩ ̸=
√

⟨s⟩. ⟨M4ℓ⟩ is used as comparison with the literature, ⟨s⟩ for our proper calculations,
see Appendix A.



4.3 Integrated cross sections 79

smaller in the Higgs setup, the QCD corrections are much larger and amount to −23% in the
Higgs compared to −5% in the VBS setup. As for the EW corrections, there is a quantitative
difference in the size of relative corrections between the channels including VBS and those
including only 3VP processes.

In the VBS channels, the QCD correction in the VBS setup ranges between −7% and +5%,
whereas the Higgs setup shows corrections of −14% to −20%. This large difference between the
two setups emerges from the jet veto, which suppresses the (positive) contributions from real gluon
emissions whilst leaving the (negative) contributions from virtual corrections unaffected. The
experimental cut on pT,j3 ≤ 30 GeV is very strict and delivers an example for incomplete Kinoshita–
Lee–Nauenberg cancellations (c. f. Section 2.2). The jet veto leads to terms proportional to
αs ln p2

T,j cut/Q
2, instead of αs in the perturbation series expansion, where Q is a typical energy

scale within the hard process [140, 141]. When we take Q2 = ⟨s4ℓ,LO α6⟩ = 268.32 GeV2 (see
Appendix A) as typical scale in the Higgs setup, we obtain ln p2

T,j cut/Q
2 ≈ −4.4 and we

effectively expand in 4.4αs instead of αs. This larger (absolute) value of the expansion factor in
the perturbation series spoils its convergence rate. It is still an open question whether including
a jet resummation procedure is crucial for reliable predictions of the cross section with recent
studies coming to different results for different processes [141].

The 3VP channels show very large positive corrections of O (
+104%

)
in both setups. We

can explain this effect as follows: In these channels, the two quarks forming the two jets in
the final state have to emerge from an s-channel vector boson (c. f. Figure 3.2 (c) and (d)) at
LO. This resonance is extremely suppressed by our cut on the invariant mass of the two jets.
However, the emission of a gluon at NLO changes the situation since the two hard jets may
consist of the gluon and one of the quarks (c. f. Figure 3.10 (b) and similar diagrams). This
new configuration is much more likely to pass the VBS cuts, leading to a strong enhancement of
the 3VP contributions at NLO. This effect evidently outshines the effect of the jet veto because
the two jets that emerge from the s-channel boson are most likely low-energetic and have a
small transverse momentum that naturally allows them to pass the jet veto. As a result, these
corrections are the only positive QCD corrections in the Higgs setup. The extreme values of the
relative corrections in both setups are also due to the small reference value at LO. In absolute
values, the channels are still irrelevant compared to the VBS channels.

The other extremely large relative corrections in the last column of Table 4.4 come from the
photon/gluon-induced channels. Several effects we already discussed come together in this case:
less PDF-suppressed initial states, new channels including VBS, a small LO reference value and,
in the case of the Higgs setup, additionally, the jet veto. In the VBS setup, the large relative
corrections might also only be an artefact when we look at the small size of the absolute value
and its corresponding integration error. We thus cannot definitely state their origins.

Corrections to the QCD-induced process Next, we present the results for O (
α2

sα
5) and

O (
α3

sα
4). As already discussed, the latter are unambiguously the QCD corrections to the QCD-

induced process. In contrast, the first ones consist of both QCD corrections to the interference as
well as EW corrections to the QCD-induced contributions. By simple power-counting arguments
and the size of the coupling constants α and αs, it is generally expected that relative QCD
corrections are about 10 times larger than EW ones. However, the QCD-induced LO contribution
itself is 100–200 times larger than the interference contribution in our two setups. We therefore
expect that the EW corrections to O (

α2
sα

4) are the main part of O (
α2

sα
5) and define this order

conventionally as EW corrections. The “error” we obtain with this convention is – presumably27

– larger than in the case of O (
αα6), where we neglected the influence of EW corrections to a

small quantity. However, we have to decide on a nomenclature and normalisation. The inclusion
of the interference contribution to the normalisation of O (

α2
sα

5) and the labelling as combined
correction would only result in a minor difference. As already stated in the process description,
we divide the process into categories according to appearing Mandelstam variables. In addition

27It is still physically impossible to quantify the specific amounts, and we rely on power-counting estimations.
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Contribution σ
α2

sα
4

LO [ fb] ∆σα
2
sα

5

NLO [ fb] δα
2
sα

5 [%] ∆σα
3
sα

4

NLO [ fb] δα
3
sα

4 [%]
VBS setup

4q, s-channel 0.008641(2) −0.001994(6) −23.1 −0.02488(8) −288
4q, t-channel 0.46532(5) −0.0400(2) −8.6 −0.1765(7) −37.9

4q, s- & t-channel 0.46617(7) −0.048(2) −10.4 −0.1987(7) −42.6
4q, t- & u-channel 1.3000(3) −0.096(2) −7.4 −0.681(3) −52.4

qq → gg 0.4334(1) −0.0381(4) −8.8 −0.112(1) −25.9
γg/gg/qg 4.2380(8) −0.350(1) −8.3 −0.899(4) −21.2

total 6.9115(9) −0.574(3) −8.3 −2.098(6) −30.3
Higgs setup

4q, s-channel 0.001273(1) −3.38(2) × 10−4 −26.6 −0.01471(6) −1155
4q, t-channel 0.09375(2) −0.0057(2) −6.1 −0.0970(2) −104

4q, s- & t-channel 0.09048(2) −0.00683(7) −7.5 −0.1077(3) −119
4q, t- & u-channel 0.2144(1) −0.0120(3) −5.6 −0.2518(5) −117

qq → gg 0.15914(8) −0.0078(3) −4.9 −0.0607(5) −38.1
γg/gg/qg 1.1332(3) −0.0570(5) −5.0 −0.781(2) −68.9

total 1.6920(3) −0.0897(6) −5.3 −1.312(2) −77.6

Table 4.6: NLO corrections at O (
α2

sα
5) and O (

α3
sα

4) in relation to their LO counterparts
of O (

α2
sα

4), classified after appearing subprocesses, and corresponding relative corrections
δα

2
sα

5 = ∆σα
2
sα

5

NLO /σ
α2

sα
4

LO and δα
3
sα

4 = ∆σα
3
sα

4

NLO /σ
α2

sα
4

LO .

to channels with four external quarks, there are channels with external (final-state and/or
initial-state) gluons already at LO. Like in the case of the EW process, we use the convention
that NLO partonic channels of qq → qqg and qq → qqγ are corrections to the corresponding
qq → qq LO partonic channel and all other partonic channels count as corrections to the photon-
and/or gluon-induced processes or processes with two gluons in the final state. The results are
summarised in Table 4.6.

Electroweak corrections, O (
α2

sα
5) The corrections of O (

α2
sα

5) amount in total to −8%
in the VBS and −5% in the Higgs setup. This overall behaviour verifies our assumption that the
corrections are mainly EW and not QCD corrections: Real QCD corrections are accompanied by
the emergence of an additional jet, which would trigger the harsh jet veto in the Higgs setup, as
we already saw at O (

αsα6) and which we also see later at O (
α3

sα
4). In the absence of these

large corrections at O (
α2

sα
5), the corrections in the Higgs setup are smaller than in the VBS

setup, giving evidence of our claim. However, this picture changes when looking at individual
contributions. We recognise that the corrections in the VBS setup are larger than in the Higgs
setup except for the channels with only s-channel gluon exchange, where −23% in the VBS setup
compare to −27% in the Higgs setup. This particular relative correction is also much larger than
the average. This contribution is also special because of its very small LO base. We explain this
as follows: The small contribution resembles the fact that jets emerging from s-channel vector
bosons are strongly suppressed, as we already saw in the case of the EW 3VP channels. However,
there is the same effect at O (

α2
sα

5) as at O (
αsα6) (and also at O (

α3
sα

4)), when we interpret it
as QCD correction to the interference process: the additional radiated gluon is able to form a
third jet which is then able to pass the VBS cuts. Especially, this opens up additional t-channel
diagrams at NLO. We hence conclude that the corrections to the s-channel contributions at
O (

α2
sα

5) are not mainly EW corrections – the emission of an additional photon does not lead
to additional jets with t-channel vector bosons and subsequently not to an enhancement of the
process –, but in fact a manifestation of QCD corrections to the interference. To a much less
dominant extent, this effect is also seen in partonic channels with s- and t-channel diagrams with
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a relative correction larger than the average with −10% in the VBS and −8% in the Higgs setup.
The other contributions do not show very distinct behaviour with relative corrections between
−7% and −9% in the VBS and −5% and −6% in the Higgs setup.

QCD corrections, O (
α3

sα
4) At O (

α3
sα

4), we see large negative corrections for both
setups. While the overall corrections for the VBS setup have a reasonable size of −30%, the size
of the corrections for the Higgs setup reaches −78%. In general, we see that channels with four
external quarks show larger corrections than channels with external gluons in both setups. All of
these partonic channels show QCD corrections of more than −100% in the Higgs setup, which
is clearly an unphysical result. Also for the sum of all partonic contributions, the differential
cross section becomes negative, as we will see in a moment. We thus expect large higher-order
corrections, which can be estimated by investigating the scale dependence. We address this topic
in the following section. The only very distinct individual cross section that we want to mention
are the 4q, s-channel contributions. As in the case of O (

αsα6) and O (
α2

sα
5), they receive their

enormous size due to the third jet at NLO that is produced via t-channel.

4.3.4 Scale dependence

In this section, we present our results for the seven-point scale variation. Factorisation and
renormalisation scales are not physical parameters but are artificially introduced for calculations
in perturbation theory. We introduced the renormalisation scale in Section 2.2.1 for dimensional
regularisation and briefly talked about it in the context of renormalisation. The factorisation scale
was introduced in Section 2.2.4. The choice of a specific scale value in a fixed-order perturbation-
theory calculation is arbitrary and its effects are cancelled when taking all orders of perturbation
theory into account. Investigating the scale dependence of a cross section is, hence, an estimation
for higher-order effects. Therefore, one has to carefully balance between a good position in the
region near the optimum, where

dσNLO
dµR

≈ 0, dσNLO
dµF

≈ 0, (299)

to obtain a solid fixed-order result on the one hand and not underestimate higher-order effects on
the cross section by exactly placing oneself on the optimum. At LO, the results generally become
smaller at higher scales due to the running of αs. NLO results show a maximum of the cross
section with a steep rising left and a moderately falling right flank (for diagrammatic examples
see also Figure 5.1 and Figure 5.2). A good central scale choice is said to be placed somewhere
on the right of the maximum in a region with moderate NLO corrections.

For our process, we first have a look at the LO results in Table 4.7. Since we work in the
Gµ scheme with a fixed electromagnetic coupling constant α, altering the renormalisation scale
does not influence the cross section of O (

α6). The EW cross section depends only very little
on the factorisation scale, which enters through the PDFs for these processes. As soon as our
process includes the strong coupling constant αs, the scale dependence becomes stronger because
of the running of αs. We see at LO the typical behaviour of the interference, QCD-induced and
loop-induced cross sections becoming smaller with higher scales. At LO, the cross sections in the
two setups have a scale uncertainty of

σtotal
LO,VBS = 9.6753(9)+29.2%

−20.1% fb, σtotal
LO,Higgs = 3.2335(4)+22.7%

−16.0% fb. (300)

In absolute values, this translates to a variation between 12.449 fb and 7.7354 fb in the VBS
setup and between 3.9672 fb and 2.7175 fb in the Higgs setup. We note that the lesser scale
dependence in the Higgs setup at LO is a result of the smaller QCD-induced background.

Next, we look at the NLO cross sections of O (
α7) and O (

αsα6). As before, we treat them
as corrections to the EW process of O (

α6) and normalise them accordingly. The full results
are shown in Table 4.8. Like the LO EW process, the NLO EW corrections do not depend on
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Scale (µF, µR) σα
6

LO[ fb] σαsα5

LO [ fb] σ
α2

sα
4

LO [ fb] σtotal
LO [ fb] σloop[ fb]

VBS setup
(1/2, 1/2) 2.9187(3) 0.07639(3) 9.504(1) 12.499(1) 0.375(2)
(1/2, 1) 2.6988(3) 0.07191(2) 8.588(1) 11.358(1) 0.314(1)

. (1, 1/2) 2.9187(3) 0.06907(2) 7.650(1) 10.637(1) 0.2331(9)
(1, 1) 2.6988(3) 0.06500(2) 6.9115(9) 9.6753(9) 0.1954(8)
(1, 2) 2.5069(3) 0.06144(2) 6.2853(8) 8.8537(9) 0.1661(7)
(2, 1) 2.6988(3) 0.05932(2) 5.6882(7) 8.4463(8) 0.1282(5)
(2, 2) 2.5069(3) 0.05607(2) 5.1726(7) 7.7354(7) 0.1089(4)

Higgs setup
(1/2, 1/2) 1.6324(2) 0.010598(6) 2.3242(4) 3.9672(5) 0.201(1)
(1/2, 1) 1.5322(2) 0.010009(5) 2.1319(4) 3.6741(4) 0.172(1)
(1, 1/2) 1.6324(2) 0.009529(5) 1.8453(3) 3.4872(4) 0.1235(9)
(1, 1) 1.5322(2) 0.008996(5) 1.6923(3) 3.2335(4) 0.1057(7)
(1, 2) 1.4418(1) 0.008533(5) 1.5580(3) 3.0084(3) 0.0915(7)
(2, 1) 1.5322(2) 0.008173(4) 1.3774(3) 2.9177(3) 0.0686(5)
(2, 2) 1.4418(1) 0.007751(4) 1.2679(2) 2.7175(3) 0.0593(4)

Table 4.7: Seven-point scale variations at LO O (
α6) ,O (

αsα5) ,O (
α2

sα
4) and the total LO cross

section as well as the total loop-induced cross section. The scales are given in multiples of
µcentralsc

F and µcentralsc
F defined in equation (268).

the renormalisation scale and show only a flat dependence on the factorisation scale due to the
PDFs. The QCD corrections are also quite flat. Especially in the VBS setup, we seem to be very
close to the peak, where dσNLO/dµ ≈ 0. In the Higgs setup, we are clearly on the left of the
maximum since our largest (2, 2)-scale provides higher cross sections than any other scale choice.
For the total NLO corrections to the EW process, the scale uncertainty ranges between

σα
6+α7+αsα6

NLO,VBS = 2.253(3)+1.3%
−2.5%, σα

6+α7+αsα6

NLO,Higgs = 1.077(2)+5.3%
−7.8% (301)

or in absolute values between 2.196 fb and 2.283 fb in the VBS setup, and between 0.993 fb and
1.134 fb in the Higgs setup.

We now focus our attention on the QCD-induced process of O (
α2

sα
4) and its corrections of

O (
α2

sα
5) and O (

α3
sα

4) which we present in Table 4.9. We note that the NLO cross sections
at O (

α2
sα

4) + O (
α2

sα
5) are still dominated by the falling behaviour of the LO cross section

and follow them almost exactly. This justifies again our nomenclature as EW corrections since
EW corrections always mimic the LO behaviour due to their lack of introducing an own scale
dependence. The QCD corrections for the QCD-induced contribution show the exact opposite
behaviour and increase with higher scales in both setups. As for the QCD corrections to the EW
contribution, we are on the steep rising flank of the scale dependence. We particularly point out
that the results for the NLO cross section become unphysical, negative, for a downscaling of the
factorisation scale by a factor of 1/2. Subsequently, the scale uncertainty of

σ
α2

sα
4+α2

sα
5+α3

sα
4

NLO,VBS = 4.176(5)+11.4%
−43.0% σ

α2
sα

4+α2
sα

5+α3
sα

4

NLO,Higgs = 0.328(3)+104.9%
−250.6% (302)

is very large for an NLO cross section and exceeds even the LO scale dependence. This points to
a bad scale choice. The absolute values for the NLO QCD-induced cross section range between
2.382 fb and 4.651 fb in the VBS setup and between −0.494 fb and 0.672 fb in the Higgs setup.

Given our results, it is necessary to argue in defence of our scale that it has been proven to
be a good scale for other VBS processes like ZZ scattering. We believe that it is still a viable
option for the EW contribution but is obviously too low for the QCD-induced contribution of
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Scale (µF, µR) σα
6

LO[ fb] σα
6+α7

NLO [ fb] σα
6+αsα6

NLO [ fb] σα
6+α7+αsα6

NLO [ fb]
VBS setup

(1/2, 1/2) 2.9187(3) 2.573(1) 2.542(3) 2.196(3)
(1/2, 1) 2.6988(3) 2.3914(9) 2.546(3) 2.238(3)
(1, 1/2) 2.9187(3) 2.573(1) 2.579(3) 2.233(3)
(1, 1) 2.6988(3) 2.9314(9) 2.560(2) 2.253(3)
(1, 2) 2.5069(3) 2.2318(9) 2.558(2) 2.283(2)
(2, 1) 2.6988(3) 2.3914(9) 2.572(2) 2.265(2)
(2, 2) 2.5069(3) 2.2318(9) 2.553(2) 2.278(2)

Higgs setup
(1/2, 1/2) 1.6324(2) 1.517(1) 1.109(2) 0.993(2)
(1/2, 1) 1.5322(2) 1.429(1) 1.140(2) 1.036(2)
(1, 1/2) 1.6324(2) 1.517(1) 1.164(2) 1.048(2)
(1, 1) 1.5322(2) 1.429(1) 1.180(2) 1.077(2)
(1, 2) 1.4418(1) 1.349(1) 1.204(1) 1.111(2)
(2, 1) 1.5322(2) 1.429(1) 1.213(1) 1.110(2)
(2, 2) 1.4418(1) 1.349(1) 1.226(1) 1.134(2)

Table 4.8: Seven-point scale variations at LO O (
α6) and NLO with corrections of O (

α7) and
O (

αsα6).

Scale (µF, µR) σ
α2

sα
4

LO [ fb] σ
α2

sα
4+α2

sα
5

NLO [ fb] σ
α2

sα
4+α3

sα
4

NLO [ fb] σ
α2

sα
4+α2

sα
5+α3

sα
4

NLO [ fb]
VBS setup

(1/2, 1/2) 9.504(1) 8.702(2) 3.184(7) 2.382(7)
(1/2, 1) 8.588(1) 7.881(2) 3.708(6) 3.001(6)
(1, 1/2) 7.650(1) 7.002(2) 4.586(5) 3.939(5)
(1, 1) 6.9115(9) 6.341(2) 4.746(4) 4.176(5)
(1, 2) 6.2853(8) 5.781(2) 4.911(4) 4.407(4)
(2, 1) 5.6882(7) 5.218(1) 5.082(3) 4.612(4)
(2, 2) 5.1724(7) 4.756(1) 5.067(3) 4.651(3)

Higgs setup
(1/2, 1/2) 2.3242(4) 2.1976(9) −0.367(4) −0.494(4)
(1/2, 1) 2.1319(4) 2.0195(8) −0.148(4) −0.260(4)
(1, 1/2) 1.8453(3) 1.7442(7) 0.308(3) 0.206(3)
(1, 1) 1.6923(3) 1.6025(7) 0.417(2) 0.328(3)
(1, 2) 1.5580(3) 1.4780(6) 0.523(2) 0.443(2)
(2, 1) 1.3774(3) 1.3040(5) 0.690(2) 0.617(2)
(2, 2) 1.2679(2) 1.2026(5) 0.738(2) 0.672(2)

Table 4.9: Seven-point scale variations at LO O (
α2

sα
4) and NLO with corrections of O (

α2
sα

5)
and O (

α3
sα

4).

our calculations of W+W− scattering. We seem to severely underestimate the NLO cross section,
especially in the Higgs setup. We come back to this problem in our final Section 5, where we
briefly discuss another possible scale choice.
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4.3.5 The influence of the Higgs-boson resonance

As we stated in the discussion of the results, many differences between opposite-sign WW
scattering and other VBS processes stem from the presence of the Higgs-boson resonance in the
fiducial phase space. While typical other VBS events take place at high s4ℓ, a large fraction of
the events in opposite-sign WW scattering is taken over by on-shell Higgs production and decay,
in contrast to the on-shell production and decay of two vector bosons.28 As an overstatement, we
could say that Higgs production and decay is an additional background process, which we cannot
get rid of by physical cuts, which is present in all partonic channels with VBS subprocesses and
which, therefore, overlaps our signal. Furthermore, we stated that the small EW corrections are
an effect of the dominating Higgs contribution.

We investigate this effect quantitatively by introducing two modified VBS and Higgs setups,
which differ from the original setups by an unphysical invariant-mass cut on the four-lepton
system, where we require

|M4ℓ(+γ) −MH| > NΓH. (303)

This means we cut out a small region of our fiducial phase space around the Higgs mass with
a width of 2N times the Higgs decay width ΓH. This cut is unphysical because we are not
able to measure the neutrino momenta; however, in the course of a Monte Carlo simulation,
we can impose such a cut. In contrast to diagram-removal techniques, which were proposed in
[142, 143], this method has the advantage of being manifestly gauge-invariant, and it does not
spoil the important role of the Higgs boson for unitarity preservation, which we discussed in
Section 2.1.7. In fact, if we were able to measure the neutrino momenta, this would be a totally
standard method to remove an undesired background. If we assume a Breit–Wigner distribution
of the cross section in the area around the resonance peak, which sits on top of the non-resonant
background, we cut away a fraction of

σcut

σBW ≈ 2
π

arctan(2N) (304)

for NΓH ≪ MH, where σcut is the removed part of the Breit-Wigner cross section σBW. For our
analysis, we have chosen

N = 20, (305)

which results in a removal of 98.4% of the resonance. While removing most of the resonance
contribution, the slice in the fiducial phase space is tiny compared to the range of M4ℓ over
hundreds of GeV: 20ΓH ≈ 80 MeV. Since the cut slice is very small, we do not expect the cut
to influence the cross section of non-resonant processes significantly. Nevertheless, we have to
state that, at NLO, we also cut away events in which a hard photon is not emitted from the
decay products of the Higgs boson, and the momentum constellation of the four leptons, and the
photon is accidentally within our cut region. We rely on the smallness of the region and that
such events are, hence, very seldom and negligible.

In Table 4.10, we show our numerical results for the modified setups. There are two main
observations: In all channels with VBS, and thus the Higgs resonance, the EW corrections are
more negative, and QCD corrections tend to be more positive than in the original setups. We
recognise that the EW corrections for the modified VBS setup range between −12.5% and −14.8%
in channels with VBS. In total, we get an EW correction of −13.2% in the VBS setup. When
we take only the channels with VBS subprocesses into account, the EW corrections amount to
−14.5% in the VBS setup, which is almost at the order of EW corrections for other VBS processes,
especially since photon-induced corrections to other VBS processes have been neglected so far.
The modified Higgs setup still has relatively small EW corrections between −9.0% and −10.7%

28To relate this statement to our investigations of ZZ scattering [38], we imposed a two-lepton invariant mass
Mℓ+ℓ− cut of 60 GeV < Mℓ+ℓ− < 120 GeV, which is roughly a 30 GeV, or 12ΓZ, range around MZ.



4.3 Integrated cross sections 85

Contribution σα
6

LO[ fb] ∆σα7
NLO[ fb] δα

7 [%] ∆σαsα6

NLO [ fb] δαsα6 [%]
VBS setup with Higgs-resonance cut

VBS only 1.6117(2) −0.239(2) −14.8 −0.043(3) −2.7
VBS + WWW 0.11398(2) −0.0143(2) −12.5 0.0080(5) 7.1
VBS + WWZ 0.24916(4) −0.0324(3) −13.0 0.002(1) 0.1
WWW only 5.303(2) × 10−5 −1.43(2) × 10−5 −27.0 0.01110(2) 2 × 104

WWZ only 9.415(2) × 10−5 −2.80(2) × 10−5 −29.7 0.004021(3) 4 × 103

γγ/γg 6.832(4) × 10−6 0.02575(3) 4 × 105 0.0108(2) 2 × 105

total 1.9750(2) −0.260(2) −13.2 −0.007(3) −0.4
Higgs setup with Higgs-resonance cut

VBS only 0.4841(1) −0.0513(6) −10.6 −0.050(3) −10.3
VBS + WWW 0.03654(1) −3.30(9) × 10−3 −9.0 −0.0037(3) −10.1
VBS + WWZ 0.07925(2) −7.4(2) × 10−3 −9.3 −0.0109(6) −13.8
WWW only 6.220(7) × 10−6 −1.63(8) × 10−6 −26.2 2.25(1) × 10−3 4 × 105

WWZ only 1.2170(9) × 10−5 −3.2(1) × 10−6 −26.0 5.70(2) × 10−4 5 × 103

γγ/γg 7.767(3) × 10−7 2.754(3) × 10−3 4 × 105 −0.0161(1) −2 × 106

total 0.5999(1) −0.0592(7) −9.9 −0.078(3) −12.9

Table 4.10: LO cross section of O (
α6) and NLO cross section of O (

α7) and O (
αsα6) in fb

and relative corrections in per cent with an unphysical invariant-mass cut on the Higgs-boson
resonance in both setups, classified after appearing subprocesses and corresponding relative
corrections δα7 = ∆σα7

NLO/σ
α6
LO and δαsα6 = ∆σαsα6

NLO/σ
α6
LO.

in channels with VBS. Combining the three categories with VBS subprocesses, the relative
corrections are −10.4%, and in total, the EW corrections amount to −9.9%. The comparison
between the physical VBS setup and the modified VBS setup shows that the presence of the
Higgs boson resonance is the main reason for the small corrections in the VBS setup. However,
even with the unphysical cut, they are sizeably smaller in the modified Higgs setup than in
the modified VBS setup. We explain this as follows: The event selection in the Higgs setup
is tailored to Higgs production and specifically built such that a small four-lepton invariant
mass is favoured. We see this explicitly in the differential distribution of the two-lepton and the
four-lepton invariant masses in Figure 4.6. From an experimentalist standpoint, it seems dubious
to construct such a setup in the first place and then to cut out the main ingredient. Cutting
away the Higgs boson resonance at small M4ℓ does not reinstate the events at large M4ℓ, that are
cut away by the other selection criteria and which are the reason for the large EW corrections in
other VBS processes and the modified VBS setup.

The mean values for the four-lepton invariant mass are

⟨M4ℓ⟩VBS modified ≈ 400 GeV, ⟨M4ℓ⟩Higgs modified ≈ 333 GeV. (306)

In comparison to the original setups, both values are larger. However, the value in the modified
Higgs setup is still much smaller than the corresponding value in the modified VBS setup. This
reflects the fact that the Higgs-setup cuts are designed such that the tails of the four-lepton
invariant-mass distribution are suppressed, leading to a smaller EW correction than in the VBS
setup. We can also apply the Sudakov approximation differentially to the modified setups, and
we obtain

δα
7

LL,VBS modified = −15.8%, δα
7

LL,Higgs modified = −12.1%. (307)

These results overestimate the corrections in both setups, also in the case when only channels with
VBS subprocesses are taken into account. Since the approximation in the VBS setup becomes
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Contribution σα
6

LO[ fb] fraction[%] ∆σα7
NLO[ fb] δα

7 [%] ∆σαsα6

NLO [ fb]
VBS setup, Higgs-resonance contribution

VBS only 0.5577(4) 25.7 −0.042(2) −7.5 −0.10(1)
VBS + WWW 0.02385(4) 17.3 −2.3(3) × 10−3 −9.5 −1(1) × 10−3

VBS + WWZ 0.14224(7) 36.3 −0.0103(4) −7.2 −0.015(3)
WWW only 1.6(9) × 10−7 −6(5) × 10−7 5.9(3) × 10−4

WWZ only 3(37) × 10−9 8(4) × 10−7 −1.15(3) × 10−4

γγ/γg −5(25) × 10−10 7.17(3) × 10−3 −0.0109(9)
total 0.7238(4) 26.8 −0.047(2) −6.5 −0.13(1)

Higgs setup, Higgs-resonance contribution
VBS only 0.7118(2) 59.5 −0.040(1) −5.6 −0.191(4)

VBS + WWW 0.02950(2) 44.7 −1.9(2) × 10−3 −6.3 −5.5(4) × 10−3

VBS + WWZ 0.19105(4) 70.7 −8.6(5) × 10−3 −4.5 −0.0349(8)
WWW only 6(2) × 10−8 −1.8(16) × 10−7 2.6(1) × 10−4

WWZ only 6(2) × 10−8 −1.3(14) × 10−7 1.07(2) × 10−4

γγ/γg −2(5) × 10−10 6.41(2) × 10−3 −0.043(1)
total 0.9323(2) 60.8 −0.044(1) −4.7 −0.274(4)

Table 4.11: LO cross section at O (
α6) and NLO corrections at O (

α7) and O (
αsα6) in fb and

relative corrections in per cent, classified after appearing subprocesses, for the contribution of the
Higgs resonance to the cross section σresonance = σoriginal setup − σ modified setup and the fraction of
the Higgs-resonance contribution to the fiducial cross section σresonance/σoriginal setup at LO.

worse when cutting out the resonance contribution, we conclude that the approximation does
not lead to the almost perfect match despite the presence of the low-energy resonance peak, but
coincidentally because of it dragging the cross section into a region, in which the approximation is
not applicable. However, even if we cut out the resonance, the leading logarithmic approximation
is not much worse than in the case of the other VBS processes, being off by only a few percentage
points.

Next, we analyse the complement of our cut, i. e. we subtract the modified setups from
our original setups to obtain the contribution of the Higgs resonance. The results are shown in
Table 4.11. We remark that these results suffer from extreme cancellation in those instances, in
which the cut is not effective and only slightly affects the cross section, since we then subtract
two almost identical numbers. As a result, we obtain large relative integration errors in those
cases. This affects the non-VBS channels at LO in particular. An alternative would have been
to calculate the results directly with the complementary cuts. Because of the small slice as
fiducial phase space and hence many events not passing the cuts, this approach would be very
computation-time intensive. We did not believe this method to be resource-efficient, especially
since we already had collected the other data. For the channels that are affected by the cut, we
get a satisfying integration error, and the other channels are negligible.

In this depiction, we see our assumption confirmed that the cut affects only partonic channels
with a present Higgs resonance. At LO, these are mainly the channels with VBS subprocesses.
All other channels at LO are compatible with zero within a 3σ integration error, except WWZ
production in the Higgs setup with 3.2σ (in WWW production, it is just under the 3σ limit
with 2.8σ). We believe this to be a statistical fluctuation in light of the small cross sections,
although we have to admit that there are some Feynman diagrams with Higgs-boson resonances
also in 3VP already at LO (c. f. Figure 3.10 (c) without the final-state gluon). However, these
contributions are extremely suppressed by our event selection criteria. The cross sections of the
photon-induced channels being negative at LO is also an artefact of the Monte-Carlo integration
since, physically, they have to be positive. The Higgs resonance contribution in the VBS setup
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amounts to 26.8% ranging between 17% and 36% in the individual subdivisions. The Higgs
setup actually enhances the fraction of Higgs-production events over VBS events with 60.8%
of the total cross section emerging from the Higgs-boson resonance. The contributions in the
different subdivisions range between 45% and 71%. We did not include the values for only 3VP
and the photon-induced channels at LO since the absolute values are already compatible with
zero, and we cannot infer any information from them. We note the interesting fact that not only
the relative but also the absolute cross section at O (

α6) that stems from the Higgs resonance
contribution is larger in the Higgs than in the VBS setup. However, the overall cross section in
the (unmodified) Higgs setup is smaller than in the (unmodified) VBS setup.

The EW corrections are small in both setups and resemble more the corrections in Higgs-
production processes than in VBS processes [144, 145], as we expect near the Higgs resonance.
The average correction is −6.5% in the VBS setup and −4.8% in the Higgs setup, which repeats
the general pattern of EW corrections being smaller in the Higgs setup than in the VBS setup.
The 3VP channels are still compatible with zero at O (

α7) in both setups, but the cut on M4ℓ
affects the EW corrections of the photon-induced partonic channels because of the newly opened
VBS subprocesses in mixed qγ-induced channels at O (

α7). We see similar effects for the QCD
corrections for the photon/gluon-induced channels. The additional non-zero effect concerning
the 3VP channels can be explained as follows: Considering Figure 3.10 (c) again, the additional
gluon allows the passing of the VBS cuts when it becomes a tagging jet, as we already discussed
for the original setups. This means that in these situations the cut on the Higgs-boson resonance
can become relevant. This effect is absent in the case of EW corrections, where an emitted
photon does not lead to the required jet, and so the cut does not affect the corrections of O (

α7)
to these channels.

We did not extend the analysis of the modified setups to contributions of the other orders.
Since the Higgs boson is not present in any Feynman diagram of O (

g2
s g

4), the QCD-induced
process of O (

α2
sα

4) is expected to be almost completely unaffected by this cut, like the 3VP
processes of O (

α6) are unaffected. Additionally, we also do not expect the cut to have an
influence on the corrections of O (

α3
sα

4). For the interference process, we performed a summary
calculation in the VBS setup at LO, where we found σαsα5

LO,VBS modified = 0.06500(2) fb, which is
the same value as for the physical VBS setup given in Table 4.1 within the limits of the numerical
integration error. Thus, we do also not expect a significant influence on O (

α2
sα

5) via NLO QCD
corrections. However, the Higgs boson resonance cut affects the loop-induced contributions: The
closed fermion loop might be a top quark, to which a Higgs boson couples, and the Higgs boson
subsequently decays into the four-lepton system.
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Figure 4.1: Differential distributions at LO in the transverse momentum of the hardest (left) and
the second-hardest jet (right) in the VBS (top) and the Higgs setup (bottom). The upper panels
show the absolute EW contribution at O (

α6), the interference at O (
αsα5), the QCD contribution

at O (
α2

sα
4), the loop-induced contribution at O (

α4
sα

4), and the sum of all contributions. The
lower panels show the relative contributions normalised to the sum of all contributions. Shaded
bands indicate integration errors.

4.4 Differential distributions

4.4.1 Leading order

In this section, we graphically present differential distributions for both VBS and Higgs setup
at the leading orders O (

α6) ,O (
αsα5) ,O (

α2
sα

4) and O (
α4

sα
4) as well as the sum of all LO

cross sections. The figures are generally built up as follows: Each figure is a 2 × 2 grid of four
subfigures. The rows of the grid correspond to the two different physical setups, and in the two
columns, we present two observables per figure. Each of the subfigures is again divided into two
panels, of which the upper panel shows the absolute contributions and the lower one presents the
relative contributions normalised to the sum of the LO differential cross sections.

We begin with the transverse momentum of the leading jet in the left and the subleading jet
in the right panels of Figure 4.1. There is a maximum in the sum of the differential cross sections
with respect to the hardest jet at pT,j1 ≈ 100 GeV. The differential cross section with respect to
the second-hardest jet decreases from the first bin on in both setups. The subleading jet shows a
sharper falling flank than the leading one. These statements for the sum of the differential cross
sections are also valid for the individual contributions of different orders. This observation is
easily explicable since the hardest jet must have more transverse momentum than any other jet by
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definition. A specific value of pT,j2 imposes no constraint on pT,j1 . Thus, dσ/dpT,j2 at small pT,j2
can acquire contributions from regions of the phase space with large pT,j1 , whereas the reverse
statement, replacing 1 ↔ 2, is false. The inequality

∫ P
0 dpT,j1 (dσ/dpT,j1) ≤ ∫ P

0 dpT,j2 (dσ/dpT,j2)
has to hold for any P . The shape of the loop-induced contribution for the hardest jet in the
Higgs setup is slightly different. Its maximum is also in the lowest bin. This phenomenon is
explicable because the PDF of the gluon peaks at small parton energies, also leading towards
small transverse momenta that can be distributed among the system. In fact, the falling flank
of the loop-induced contribution is the sharpest of all and the loop-induced process becomes
very soon negligible with higher transverse momenta. For the leading jet, the QCD-induced
process is dominant over the EW-induced process, clearly seen in the VBS setup, whereas, in the
Higgs setup, both contributions become almost equal at low transverse momentum. We observe
that there is a peak of the EW-induced process in the relative contribution at pT,j1 ≈ 100 GeV,
near the absolute peak of the summed differential cross section in both setups. The interference
contribution is negligible over the complete range of transverse momentum concerning the hardest
jet. In the differential distribution in the second-hardest jet, the QCD-induced contribution
dominates the EW contribution only at low transverse momentum. In the VBS setup, both
contributions become equally large at about pT,j2 ≈ 500 GeV and the relative share between
them does not change sizeably at higher values. In the Higgs setup, on the other hand, the
EW contribution starts to exceed the QCD-induced contribution already at pT,j2 > 50 GeV with
a rising tendency towards higher values of pT,j2 . An interesting fact is the behaviour of the
interference contribution for the subleading jet, whose relative size starts to grow with higher
transverse momenta.

We present the transverse momentum sums of the two hardest jets and the transverse
momentum sum of the four-lepton system in Figure 4.2. Since these two groups of particles
are complementary and form the complete final-state content at LO, and the total transverse
momentum must sum up to zero, the differential distributions are completely identical at LO.
However, they become different at NLO and we already include both variables at LO as a
placeholder for the future NLO discussion and to explicitly demonstrate the identicalness. We
recognise a peak in the EW and QCD-induced contributions around pT,j1j2 ≈ 100 GeV in the VBS
and around pT,j1j2 ≈ 80 GeV in the Higgs setup. In both setups, the ratios between the relative
EW and QCD-induced contributions are quite constant until pT,j1j2 ≈ 160 GeV, after which the
relative EW contribution starts slowly falling. After pT,j1j2 > 800 GeV, the ratio becomes almost
constant again in the VBS setup, whilst the decay continues linearly in the Higgs setup up to
pT,j1j2 = 1000 GeV.

The next two observables that we discuss are the transverse momenta of the charged leptons,
the muon and the positron. We show differential distributions of the cross section with respect
to their transverse momenta in Figure 4.3. There is no striking difference in the shapes of the
distributions according to the different electric charges of the leptons, which could have happened
because the process in a proton–proton collider is not invariant under charge conjugation. The
relative contributions of the processes remain constant over a large range of transverse momentum
above pT,µ− > 200 GeV in the VBS setup for the negative-charged muon after a relative increase
of the QCD-induced contribution over the first 200 GeV. In contrast, the relative contribution
of the QCD-induced process keeps rising until pT,e+ = 1000 GeV in case of the positive-charged
electron, where the depicted range ends. The behaviour of the cross sections in the Higgs setup
almost mimics the VBS setup with the difference that the ratio between QCD- and EW-induced
process is smaller than in the VBS setup for the integrated cross section and hence also in the
differential cross sections.

The differential cross section with respect to the two charged leptons and the differential
cross section with respect to the missing transverse momentum are shown in Figure 4.4. For the
transverse momentum sum of the two charged leptons, the maximum of all contributions for both
setups is around pT,e+µ− ≈ 20 GeV. At this value, the relative EW contribution also shows a slight
maximum. Like in the case of the transverse momentum sum of the two hardest jets, the relative
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Figure 4.2: Differential distributions at LO in the (vectorial) transverse momentum sum of the
two hardest jets (left) and the four-lepton system (right) in the VBS (top) and the Higgs setup
(bottom).

EW contribution becomes smaller for large pT,e+µ− . In the VBS setup, the ratio between the
EW and the QCD-induced contribution is almost constant and very slowly linearly decaying for
400 GeV < pT,e+µ− < 1000 GeV, while it decays linearly between 300 GeV < pT,e+µ− < 1000 GeV
in the Higgs setup. The only significant difference between Higgs and VBS setup in both of
these observables is the ratio between the negligibly small interference and the loop-induced
contribution; in the VBS setup, the interference contribution starts to exceed the loop-induced
contribution at some point, while in the Higgs setup, it does not. Concerning the missing
transverse momentum, the maximum for all contributions in both setups is at low missing
transverse momentum of pT,mis ≈ 40 GeV. We see that the EW contribution falls faster than the
QCD-induced one. Furthermore, we notice a difference between VBS and Higgs setup in the
behaviour of the loop-induced and interference contributions. In the Higgs setup, both of these
contributions are strongly suppressed for high missing transverse momentum.

We turn our attention to the invariant mass of the total visible system, i. e. all final-state
objects excluding the neutrinos, and the invariant mass of the two hardest jets in Figure 4.5.
For the total visible invariant mass, we see an absolute maximum in all contributions at
Mvis ≈ 900 GeV in the VBS and at Mvis ≈ 700 GeV in the Higgs setup. In both setups, the
relative contribution of the QCD-induced process has a single maximum at an invariant mass
slightly lower than the value where the absolute maximum occurs, and the EW process has a
corresponding minimum. The EW process is more important at small and large invariant masses.
In the VBS setup, the EW process dominates the QCD-induced process at invariant masses
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Figure 4.3: Differential distributions at LO in the transverse momentum of the muon (left) and
the positron (right) in the VBS (top) and the Higgs setup (bottom).

higher than Mvis > 2500 GeV and in the Higgs setup at invariant masses above Mvis > 1300 GeV.
Whilst the EW contribution is slightly smaller than the QCD-induced one at low invariant masses
in the VBS setup, it also dominates that differential cross section below Mvis < 440 GeV in
the Higgs setup. We note that this region is not within the fiducial phase space for the VBS
setup. The absolute cross section in this region in the Higgs setup is extremely small (around
10−7 fb/GeV), which even the best particle accelerators are unable to measure in these days.
The dominance of the EW contribution at high invariant masses is typical for VBS processes
and resembles the dominance of the EW contribution at high invariant masses of the jets. The
relatively large EW contribution at small invariant masses is special for W+W− scattering. It is
likely due to the presence of the Higgs resonance and the enhancement of the EW cross section
at small four-lepton invariant masses. As we already stated in the discussion of the transverse
momenta of the jets, the slope of the loop-induced contribution falls steepest. It leads to a
sizeable contribution only below Mvis < 1500 GeV in the VBS and Mvis < 2000 GeV in the
Higgs setup with a maximal relative contribution of around 5%, before the graph of the relative
contribution becomes non-visible behind the axis. The interference contribution is negligible over
the complete phase space. The differential cross section with respect to the invariant mass of
the two jets shows at large invariant masses the same behaviour as the invariant mass of the
complete visible system. However, there is no EW enhancement at low invariant masses. This
provides evidence that the effect at low total visible invariant masses emerges from the leptonic
part of the process. The distribution of the invariant mass of the two jets is typical for VBS
processes. The QCD-induced contribution is only dominant at small invariant masses, and the
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Figure 4.4: Differential distributions at LO in the transverse momentum of the two charged
leptons (left) and the missing transverse momentum (right) in the VBS (top) and the Higgs
setup (bottom).

EW contribution takes over above Mj1j2 > 1500 GeV in the VBS and Mj1j2 > 1000 GeV in the
Higgs setup. The loop-induced contribution is only relevant for small invariant masses, and the
interference contribution is negligible. The invariant-mass cuts in equations (284) and (292),
respectively, are thus a well-suited tool to enhance the EW contribution.

The next observables are the invariant mass of the two charged leptons and the invariant
mass of the four-lepton system in Figure 4.6. We emphasise that only the invariant mass of the
two leptons is a physical observable, and the invariant mass of the four-lepton system serves only
to illustration purposes. In the VBS setup, the absolute maximum of the differential cross section
with respect to the invariant mass of the two-lepton system appears around Me+µ− ≈ 80 GeV
for all contributions. In the relative contributions, we observe a maximum for the EW process
at very small invariant masses, at such below Me+µ− < 40 GeV it is of comparable size as the
QCD-induced one, which decays to a minimum at invariant masses around Me+µ− ≈ 100 GeV,
followed by a smooth increase until the ratio between EW and QCD-induced contribution
becomes constant above Me+µ− > 600 GeV. Interference and loop-induced contributions are
both negligible over the complete phase space. In the Higgs setup, we observe the same overall
behaviour with the exception that the maximum of the EW differential cross section appears at low
two-lepton invariant masses below Me+µ− < 40 GeV. In this bin, it even exceeds the QCD-induced
contribution before being compatible in size between 40 GeV < Me+µ− < 80 GeV. We also observe
the constant ratio between QCD-induced and EW contribution above Me+µ− > 600 GeV. The
loop-induced contribution shows a very flat maximum around Me+µ− ≈ 500 GeV, but its relative
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Figure 4.5: Differential distributions at LO in the invariant mass of all visible particles (left) and
the two hardest jets (right) in the VBS (top) and the Higgs setup (bottom).

contribution remains below 5%. As already stated, the large EW contribution at low invariant
masses of the two charged leptons emerges from the presence of the Higgs-boson resonance. To
emphasise this, we included the non-observable differential cross section with respect to the
invariant mass of the four-lepton system. In this graph, we only mention both the absolute and
relative maximum of the EW contribution in the bin between 120 GeV < M4ℓ < 240 GeV – the
bin, in which the Higgs-boson resonance sits at 125 GeV. The relative EW contribution reaches
almost 50% in the VBS and almost 70% in the Higgs setup as a clear outlier compared to its
surrounding bins with a very smooth envelope of both EW and QCD-induced contributions.

The differential cross section with respect to the rapidities of the hardest and second-hardest
jets are shown in Figure 4.7. As expected, all of these graphs are symmetric around zero, so we
use “large” and “small” rapidities as abbreviations for large and small values of the absolute value
of the rapidity. In both setups, both distributions show a maximum of the sum of the differential
cross sections at medium rapidities. The absolute maximum of the QCD-induced contribution
is at a smaller rapidity than the absolute maximum of the EW contribution. For the leading
jet, the QCD-induced absolute maximum occurs at a rapidity of yj1 ≈ 1.5 and the EW one at
yj1 ≈ 2.1 in the VBS setup, in the Higgs setup they occur at yj1 ≈ 2.2 and yj1 ≈ 2.5 respectively.
The relative maxima of the EW contribution are placed at even larger rapidities of the hardest
jet for both setups, at about yj1 ≈ 4 for the VBS setup and at the edge of the fiducial phase
space at yj1 ≈ 4.5 for the Higgs setup. We recognise that the QCD-induced contribution has a
much steeper shape in the Higgs setup compared to the VBS setup, both for values below and
above the maximum. Comparing the rapidities of the hardest and the second-hardest jet, the
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Figure 4.6: Differential distributions at LO in the invariant mass of the two charged leptons (left)
and the four-lepton system (right) in the VBS (top) and the Higgs setup (bottom).

hardest jet tends towards small rapidities and the softer one to large rapidities for both setups.
This is easily explicable if we assume that the energy and transverse momentum of a jet are not
strongly correlated. Then, the momentum of a jet with smaller transverse momentum points in
the forward or backward direction, leading to a higher rapidity. The relative contributions of the
EW and the QCD-induced process are flatter in the case of the second-hardest jet compared
to the hardest jet in the VBS case, where the relative EW contribution shows a minimum at
zero rapidity and barely a maximum at yj2 ≈ 3.7. The absolute maximum of the EW and the
QCD-induced contribution are both at yj2 ≈ 2.7. For the Higgs setup, we recognise a similar
pattern in the absolute differential cross sections of the second-hardest jet as for the VBS setup
with an absolute maximum of the EW contribution at 2.9 and for the QCD-induced contribution
at yj2 ≈ 2.5. The relative differential distributions, however, differ between the setups since there
is a second maximum of the relative EW cross section at small rapidities. This maximum emerges
through the strong suppression of the QCD-induced process, especially at small rapidities. The
responsible cut that leads to this suppression is the cut on the Zeppenfeld variable z: If both
leptons have rapidity with opposite signs, then this cut forces any tagging jet to have larger
rapidity than the lepton with the smallest rapidity.

We now discuss the differential cross sections with respect to the lepton rapidities in Figure 4.8
briefly. We see, as in the case of the transverse momenta, a slight asymmetry between the
distributions of muon and positron rapidities for both setups. This asymmetry is stronger in
the QCD-induced process, where the differential cross section with respect to the rapidity of
the positron forms a much larger flat plateau than in the case of the muon. Nevertheless, the
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Figure 4.7: Differential distributions at LO in the rapidity of the hardest (left) and the second-
hardest jet (right) in the VBS (top) and the Higgs setup (bottom).

general shape of the absolute differential cross sections for all contributions in both setups and
both charges of the leptons is similar, with an absolute maximum at zero rapidity. The relative
contributions are also always of the same shape with a maximum of the EW contribution at zero
rapidities.

The differential cross sections with respect to the rapidity difference of the two jets and the
differential cross section with respect to the rapidity difference of the two charged leptons are
shown in Figure 4.9. Since all rapidity distributions are symmetric around zero and uncorrelated,
the distributions in rapidity difference are also symmetric and we show only the absolute values,
especially since we imposed a cut on the rapidity difference of the two hardest jets. This cut
explains the small value of all contributions in the first non-empty bin of the absolute differential
cross sections in both setups regarding the jets since half of the bin is actually cut away. Apart
from this artefact, we see smooth curves with an absolute maximum of the EW contribution
around |∆yj1j2 | ≈ 4.4 in the VBS and |∆yj1j2 | ≈ 4.8 in the Higgs setup. The maximum of the
QCD-induced contribution is at |∆yj1j2 | ≈ 3.6 in the VBS and at |∆yj1j2 | ≈ 3.8 in the Higgs
setup. Looking at the relative contributions, we recognise the typical VBS pattern, where the
EW contribution dominates at high rapidity separation when both jets are back-to-back. In the
VBS setup, the EW dominance begins at |∆yj1j2 | ≈ 6.0 and in the Higgs setup at |∆yj1j2 | ≈ 5.2.
Like the invariant-mass distribution, this behaviour confirms the use of the phase-space cuts of
equations (284) and (292). The absolute differential cross section with respect to the rapidity
difference of the charged leptons does not show fundamental differences in its shape when we
compare VBS and Higgs setup. It has a maximum for all contributions at a very small rapidity
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Figure 4.8: Differential distributions at LO in the rapidity of the muon (left) and the positron
(right) in the VBS (top) and the Higgs setup (bottom).

difference apart from zero in both setups, i. e. most of the time, both leptons are emitted into
the same direction projected to the beam axis. The relative contributions show an interesting
shape: At small rapidity differences, the relative contributions of EW and QCD-induced processes
oscillate. This effect is due to the Higgs boson resonance. We discuss it in more detail in the
context of Figure 4.22 with the NLO corrections. The minimum of the relative EW contribution
is at ∆ye+µ− ≈ 1.0 in the VBS and ∆ye+µ− ≈ 2.0 in the Higgs setup, and the EW contribution
rises from thereon. The dominance of the QCD-induced process at small jet rapidity differences
for both setups, combined with the fact that the charged leptons are mostly central with low
rapidity difference, confirms our statement about the different shapes of the differential cross
section with respect to the rapidity of a single jet for VBS and Higgs setup: QCD-driven events
tend to small rapidity difference and most likely both leptons are central.

We present the differential cross sections with respect to the azimuthal angular separation of
the two hardest jets and with respect to the azimuthal angular separation of the two charged
leptons in Figure 4.10. Beginning with the jets, we see for both setups a similar pattern, where
the differential cross section is increasing for both EW and QCD-induced processes with larger
angular separation. In terms of relative contributions, the EW process becomes slightly more
important at large angular separation, although the ratio is almost constant in both setups. We
note that the EW process takes over at an azimuthal angular separation of ∆ϕj1j2 = 2.5 in the
Higgs setup. We explicitly mention the otherwise subordinate loop-induced contribution, whose
absolute differential cross section shows the different behaviour of staying almost constant. For
the angular separation of the leptons, there are more differences between the VBS and the Higgs
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Figure 4.9: Differential distributions at LO in the absolute value of the rapidity difference of the
two hardest jets (left) and the two charged leptons (right) in the VBS (top) and the Higgs setup
(bottom).

setup than in any other distribution we presented so far. In the VBS setup, there is a maximum
for both EW and QCD-induced contributions at ∆ϕe+µ− ≈ 0.4. The EW contribution falls until
it reaches a minimum at ∆ϕe+µ− ≈ π/2 and rises to a second, lower maximum at ∆ϕe+µ− = π.
The QCD-induced contribution remains almost constant after its first maximum and shows its
absolute maximum at ∆ϕe+µ− = π. No substructure is seen for the loop-induced contribution
with a maximum at ∆ϕe+µ− = π. The sum of all differential cross sections subsequently shows
its maxima at the same positions as each contribution, and its minimum is slightly below π/2.
The relative contributions of the EW and QCD-induced process are almost constant until their
first maximum and in the interval π/2 < ∆ϕe+µ− < π. Although there is still a maximum for
the EW contribution at ∆ϕe+µ− ≈ 0.4 in the Higgs setup, it does not show a second maximum
at π, but instead it falls off until it reaches the absolute minimum there. The QCD-induced
contribution has no maximum at ∆ϕe+µ− ≈ 0.4, since it rises until ∆ϕe+µ− ≈ 2.2, but it shows a
step at this value. We also mention the loop-induced contribution, which also shows a maximum
near ∆ϕe+µ− ≈ 2.2 before falling again. Thus, the maximum of the sum of all differential cross
sections is around ∆ϕe+µ− ≈ 0.4, but the rising slope of the QCD-induced contribution does
not compensate for the falling one of the EW contribution at large ∆ϕe+µ− , so the sum of
the differential cross sections also has its absolute minimum at ∆ϕe+µ− = π. The EW process
dominates for small azimuthal angular separations. Like in the case of the VBS setup, the relative
contributions are almost constant until the maximum is reached. Afterwards, the relative EW
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Figure 4.10: Differential distributions at LO in the azimuthal angular separation of the two
hardest jets (left) and the two charged leptons (right) in the VBS (top) and the Higgs setup
(bottom).

contribution drops and at ∆ϕe+µ− ≈ 1.3 the QCD-induced process becomes dominant. Around
∆ϕe+µ− ≈ 2.5 the relative contributions become constant again.

Figure 4.11 shows the differential cross section with respect to the R separation between
the two hardest jets and with respect to the separation between the two charged leptons. For
the differential distribution in the R separation of the two hardest jets, both setups show
almost identical behaviour. There is a maximum for the absolute QCD-induced contribution
at ∆Rj1j2 ≈ 4.0 and ∆Rj1j2 ≈ 4.6 in the Higgs setup and a maximum for the absolute EW
contribution at ∆Rj1j2 ≈ 4.8 for the VBS and ∆Rj1j2 ≈ 5.0 for the Higgs setup. As usual in VBS
processes, the EW contribution is dominant for high jet R separations, e. g. when the jets are
back-to-back. In the VBS setup, the EW contribution exceeds the QCD-induced contribution
for ∆Rj1j2 > 6.2 and in the Higgs setup for ∆Rj1j2 > 5.6. We mention that the range of this
observable is determined by cuts on the rapidity separation of the jets, the maximum rapidity of
a single jet and the domain of definition of the azimuthal angular separation to explain the shape
of the relative contributions for large ∆Rj1j2 in the VBS and small ones in the Higgs setup. Next,
we discuss the differential distribution of the R separation between the two charged leptons. We
recognise in both setups a large dip after ∆Re+µ− = π, which is due to the domain of definition
of the azimuthal angular separation: R separations below this value can be achieved by any
rapidity difference if the azimuthal angular separation is large enough; R separations above this
value require a minimum rapidity difference. In this observable, we realise some similarities and
differences between the VBS and the Higgs setup. The shape of the QCD-induced contribution
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Figure 4.11: Differential distributions at LO in the R separation of the two hardest jets (left)
and the two charged leptons (right) in the VBS (top) and the Higgs setup (bottom).

is quite similar since it raises until a separation of ∆Re+µ− ≈ 3 in the VBS and ∆Re+µ− ≈ 2.5
in the Higgs setup, after which it starts falling and has the aforementioned dip at π. A slight
difference between both setups is the smoother curve in the case of the Higgs setup. The EW
contributions are shaped differently in the two setups. In the VBS setup, there are two flat
maxima, one around ∆Re+µ− ≈ 0.4 and the other at ∆Re+µ− ≈ 3 with a minimum in between at
∆Re+µ− ≈ 1.5. In the Higgs setup, the maximum appears at small ∆Re+µ− with an afterwards
monotonously falling behaviour, although the curve is quite flat around ∆Re+µ− ≈ 3. We
already mentioned in the discussion of Figure 4.9 that the differential distribution in the rapidity
difference between the charged leptons is similar in the two setups. However, the differential
distribution in the azimuthal angular separation, discussed in Figure 4.10, is different. With
the different differential distribution in the azimuthal angular separation, we can also explain
the differences in this observable: While the differential distribution in the azimuthal angular
separation for the EW process is very flat in the VBS setup, it shows a clear tendency towards
small values in the Higgs setup, so we also see this tendency in the total separation. We also
mention the sum of the LO differential cross sections, which therefore also has different shapes
comparing both setups: In the VBS setup, it is growing to a maximum at ∆Re+µ− ≈ 3, in the
Higgs setup it has its maximum already at ∆Re+µ− ≈ 1 and sinks afterwards. While its shape
in the VBS setup resembles the shape of the QCD-induced contribution due to the flat EW
contribution, the raising QCD-induced and the falling EW contribution lead to a smoothly falling
curve in the Higgs setup. The relative contributions show more similarity than the absolute ones.
In the VBS setup, they are almost equal at low separation, and the relative EW contribution falls
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Figure 4.12: Differential distributions at LO in the R separation of the hardest jet and the muon
(left) and the second hardest one and the muon (right) in the VBS (top) and the Higgs setup
(bottom).

to a very flat minimum between 2 < ∆Re+µ− < 3, where the ratio between both contributions is
almost constant. Afterwards, the relative EW contribution rises again and for ∆Re+µ− > 4.5,
the ratio becomes constant again. In the Higgs setup, the EW contribution dominates for small
separations and falls and also reaches a plateau with constant ratios between 2.4 < ∆Re+µ− < 3.
In contrast to the VBS setup, there is no second plateau within the depicted range of the variable,
but it grows constantly.

We discuss the differential cross section with respect to the R separation of the hardest jet and
the muon and with respect to the separation of the second-hardest jet and the muon depicted in
Figure 4.12. The differential distributions concerning the R separation of a jet and the positron
are almost identical and are not discussed separately. Concerning the separation between the
hardest jet and the muon, the shape of the absolute EW contribution is very similar with a
maximum at ∆Rj1µ− ≈ 3. The shape of the QCD-induced contribution is, however, different. In
both setups, we recognise the drop around ∆Rj1µ− = π after the maximum at ∆Rj1µ− ≈ 3, which
is almost absent in the EW contribution, but in the VBS setup it is much more pronounced.
The relative contributions also behave differently in the two setups. We recognise the drop in
the shapes at ∆Rj1µ− = π, until which, in both setups, the relative EW contribution is almost
linearly growing. In the Higgs setup, after the break, we have the same linear behaviour as
before and the EW contribution exceeds the QCD-induced one at ∆Rj1µ− ≈ 3.4, but in the VBS
setup, the EW contribution has a flat maximum at ∆Rj1µ− ≈ 4 and becomes less important for
large separations. We can compare this with the separation of the second-hardest jet and the
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Figure 4.13: Differential distributions at LO in the centrality of the electron (left) and the muon
with respect to the two hardest jets (right) in the VBS (top) and the Higgs setup (bottom).

muon. In both setups, the maximum of the QCD-induced contribution is at ∆Rj2µ− ≈ 3, while
the maximum of the EW contribution is at ∆Rj2µ− ≈ 3 in the VBS and ∆Rj2µ− ≈ 3.2 in the
Higgs setup. We do not see a recognisable dip at ∆Rj2µ− = π in any contribution; especially
for the EW contribution in the Higgs setup, the maximum is at larger separations. Both EW
and the QCD-induced relative contributions in the VBS setup are very flat. The EW relative
contribution has two very slight maxima at ∆Rj2µ− ≈ 2.2 and ∆Rj2µ− ≈ 3.2, after which it
drops until becoming almost constant at ∆Rj2µ− > 6. For the Higgs setup, we also have a very
flat behaviour of the relative contributions with a maximum of the EW relative contribution
at ∆Rj2µ− ≈ 3.4. After a minimum at ∆Rj2µ− ≈ 4.4, the relative EW contribution grows in
contrast to the VBS setup. As we have seen in Figure 4.8, leptons are mostly central in both
setups and in Figure 4.7, we investigated the rapidities of the jets in both setups. There, we saw
that the second-hardest jet tends to have larger rapidity than the hardest one. This explains
the broader shape in the differential distribution in the separation of the second-hardest jet and
lepton compared to the separation of the hardest jet and lepton.

At last, we discuss the differential cross section with respect to the centralities of the two
charged leptons compared to the two hardest jets (Zeppenfeld variables) in Figure 4.13. We
do not recognise remarkable differences between the electron and the muon. Comparing both
setups, the shapes of the distributions are also quite similar. The absolute and relative EW
contribution peaks at zℓ,j1j2 = 0, which means, in both setups the leptons are mostly placed
around the average of the jet rapidities in the EW processes. In the QCD process, however, the
Zeppenfeld variable has a maximum at zµ−,j1j2 ≈ 0.3 in both setups. We explicitly mention that
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Figure 4.14: Differential distributions for the NLO corrections to the EW contribution in the
transverse momentum of the hardest (left) and the second-hardest jet (right) in the VBS (top) and
the Higgs setup (bottom). The upper panels show the absolute LO EW contribution at O (

α6),
the NLO cross sections including the EW corrections (O (

α6)+ O (
α7)), the QCD corrections

(O (
α6)+ O (

αsα6)) and the complete NLO cross sections (O (
α6)+ O (

α7)+ O (
αsα6)). The

lower panels show the relative NLO contributions normalised to the LO EW contribution. Shaded
bands indicate integration errors.

the depicted range of the differential distribution was designed to cover the fiducial phase space
in the Higgs setup, and about 30% of the QCD-induced cross section lies outside the depicted
range of the histogram in the VBS setup, while only about 10% of the EW cross section does so,
which matches our previous observation of both jets in QCD-induced processes being more likely
central than EW jets.

4.4.2 NLO corrections to the EW contribution

In this section, we discuss the NLO corrections to the EW contribution for both VBS and Higgs
setup. As usual, we talk about the contributions of O (

αsα6) as QCD corrections to the EW
cross section and ignore the fact that they also include EW corrections to the interference process.
We thus depict in our plots the LO contribution of O (

α6) and the combined NLO contributions
O (

α6)+ O (
α7) and O (

α6)+ O (
αsα6) in the upper panels and the relative corrections of both

O (
α7) and O (

αsα6) normalised to the LO contribution of O (
α6) in the lower panels. The

general design of our figures is the same as in the previous section with the VBS setup depicted
in the upper, the Higgs setup depicted in the lower row and two different observables in the two
columns.
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We begin with the transverse momentum of the leading and subleading jet in Figure 4.14. We
recognise that the behaviour of the EW corrections is similar in both setups for both distributions.
For the hardest jet, the EW corrections are always negative and become larger with higher pT,j1 ,
although the relative corrections start fluctuating due to the integration error in the Higgs setup.
These corrections reach −35% in the VBS and −50% in the Higgs setup for pT,j1 > 800 GeV.
The behaviour of the relative EW corrections for the differential distribution of the second-
hardest jet is similar, but there is a maximum in the VBS setup around pT,j2 ≈ 500 GeV with
a relative correction of −30%. For the Higgs setup, we can only suspect such a maximum
between 600 GeV < pT,j2 < 800 GeV since this is, unfortunately, the region with large integration
errors due to the smallness of both LO and NLO cross section. In all cases, the results are not
unexpected. Large EW corrections with higher transverse momenta, i. e. with higher energy
in the system, are already well known due to the influence of large Sudakov logarithms. The
behaviour of the QCD corrections differs between the setups as we could already infer from the
integrated cross section. In the VBS setup, the QCD corrections for the hardest jet start positive
and show a very flat minimum around pT,j1 ≈ 400 GeV with a relative value around −10%. At
about pT,j1 ≈ 900 GeV, the QCD corrections become zero. This behaviour is mirrored by the
QCD corrections regarding the second-hardest jet. They are negative for small values of pT,j2 and
peak at pT,j2 ≈ 300 GeV with a value of −10%, before they become positive for large transverse
momentum, crossing the zero-line around pT,j2 ≈ 500 GeV and amounting to even +25% for
pT,j2 > 800 GeV. This is in contrast to their behaviour in the Higgs setup. Although the QCD
corrections for the hardest jet are only slightly positive in the first bin, they start similarly,
and after a first rapid negative growth, the corrections flatten in the region at pT,j1 > 400 GeV.
The amount of relative contributions is with −40% much larger than in the VBS setup in this
region, and in contrast to the VBS setup, they do not tend to zero afterwards but stay almost
constant. The QCD corrections for the second-hardest jet are very flat in a region between
100 GeV < pT,j2 < 450 GeV, also with a value of −40%, and start to tend to zero for very large
transverse momenta again. The large negative corrections for the leading jet with large and the
subleading jet with medium transverse momenta are explicable by the jet veto: If already the
leading jet is soft, then the second- and third-hardest jet must also be very soft and the third jet
passes the cut criteria. The same is true if only the subleading jet is soft. Hence, we do not get
those large negative corrections for small values of pT,j1 or pT,j2 . As soon as both tagging jets
exceed a certain amount of transverse momentum, the cut for the third jet can become efficient,
and we recognise the immense drop in the corrections.

We turn to the transverse momentum sum of the two hardest jets on the left-hand side of
Figure 4.15. The EW corrections in both setups are negative and become larger with growing
transverse momentum. This resembles the behaviour of the corrections in the transverse momenta
of a single jet. We note that in the region of a large absolute cross section, the relative EW
corrections in the Higgs setup are smaller than in the VBS setup, whereas the relative corrections
are larger for high pT,j1j2 . The QCD corrections also resemble the corrections in the transverse
momentum of a single jet. In the VBS setup they are positive at both borders of the spectrum and
negative between 80 GeV < pT,j1j2 < 900 GeV with a negative maximum around pT,j1j2 ≈ 350 GeV,
where they reach about −10%. The QCD corrections in the Higgs setup start already off negative
at −15% and reach −40% at pT,j1j2 ≈ 600 GeV, before they start to fluctuate. The different
behaviour compared to the VBS setup and the negative value of the correction from the start on
is also a consequence of the jet veto: If the sum of the transverse momentum of the two hardest
jets is about zero, then the system would like to have a third hard jet to carry away transverse
momentum that is acquired from the leptonic system. Until pT,j1j2 ≈ 80 GeV, the corrections for
both VBS and Higgs setup are almost constant; afterwards the Higgs setup QCD corrections
massively drop before they become constant again around pT,j1j2 ≈ 300 GeV. The correlated
observable of the transverse momentum of the four leptons does not differ significantly for the
EW corrections in both setups. However, the QCD corrections in the VBS setup are largest
at pT,4ℓ = 0 tend almost linearly to zero at pT,4ℓ ≈ 1000 GeV. In the Higgs setup, the QCD
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Figure 4.15: Differential distributions for the NLO corrections to the EW contribution in the
(vectorial) transverse momentum sum of the two hardest jets (left) and the four-lepton system
(right) in the VBS (top) and the Higgs setup (bottom).

corrections are always negative and grow with larger pT,4ℓ, but they have a more linear shape
than in case of pT,j1j2 .

The next distributions that we discuss are the corrections to the differential cross sections
with respect to the muon and the electron transverse momentum in Figure 4.16. As we have
seen for LO, both of these distributions are almost identical. The EW corrections behave as
expected and grow larger with larger transverse momentum for both setups and particles. We
recognise again that the relative corrections are smaller in the Higgs setup than in the VBS
setup for small transverse momenta and larger for large transverse momenta. In the VBS setup,
they amount up to −45% in the depicted range; in the Higgs setup, they are up to −50% in the
region with reliable integration errors. The QCD corrections in both setups behave oppositely
in the two setups. In the VBS setup, they start negative and become almost linearly positive
with larger transverse momentum, where we see the zero point at pT,µ− ≈ 600 GeV for the muon
and at pT,e+ ≈ 400 GeV for the positron. In the Higgs setup, they tend to have more negative
values with growing transverse momentum, which is again a direct consequence of the jet veto.
After pT ≈ 200 GeV, the QCD corrections become, disregarding statistical fluctuations in the
tails, almost constant.

The differential cross section with respect to the transverse momentum sum of the two charged
leptons and the differential cross section with respect to the missing transverse momentum are
shown in Figure 4.17. Both EW and QCD corrections behave similiarly in these two observables.
We see again the enormous EW corrections at high transverse momenta of the system in both
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Figure 4.16: Differential distributions for the NLO corrections to the EW contribution in the
transverse momentum of the muon (left) and the positron (right) in the VBS (top) and the Higgs
setup (bottom).

setups. As for other distributions, the EW corrections are in the Higgs setup smaller than in the
VBS setup for small transverse momenta and larger for large transverse momenta. In the VBS
setup, they reach a maximum at −45%, whereas they tend to values below −50% in the Higgs
setup. In the peak region of the absolute cross section, the EW corrections in the Higgs setup
are smaller than in the VBS setup. The QCD corrections behave as we already know from other
distributions in transverse momentum: While they are moderate and tending almost linearly
from −10% at zero to +10% at pT = 1000 GeV in the VBS setup, with a zero pT ≈ 600 GeV,
they become more negative in the Higgs setup with growing pT, beginning at −25% at zero
transverse momentum and also reaching values of approximately −50% at pT,e+µ− ≈ 600 GeV.

We now discuss the corrections to the differential cross section with respect to the invariant
mass of the visible system and to the invariant mass of the two hardest jets in Figure 4.18. For
both of these distributions in both setups, the EW corrections behave as expected and become
larger with larger invariant masses. We see the repeating pattern that the EW corrections in
the Higgs setup are smaller than the ones in the VBS setup for small energies and – in these
cases – equally large for high energies. They amount up to −20% both at large Mvis and Mj1j2
in both setups. We emphasise that the EW corrections grow slower at large energies and become
almost constant, except for Mvis in the Higgs setup. The QCD corrections to the differential
distribution in the visible system are also almost constant over the complete depicted range and
have a small tendency to slightly positive values for large Mvis in the VBS setup. In the Higgs
setup, the QCD corrections are also almost constant over the complete depicted range and hence
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Figure 4.17: Differential distributions for the NLO corrections to the EW contribution in the
transverse momentum sum of the two charged leptons (left) and the missing transverse momentum
(right) in the VBS (top) and the Higgs setup (bottom).

show a different behaviour than in the case of transverse momenta. The QCD corrections for the
invariant-mass distribution of the two hardest jets in the VBS setup are almost zero for small
invariant masses, after which we see a drop around Mj1j2 ≈ 600 GeV to a relative value of about
−5%. After a second phase of being almost constant until around Mj1j2 ≈ 2500 GeV, the QCD
corrections tend back to zero for larger values of Mj1j2 . We see a qualitatively identical behaviour
for the QCD corrections in the Higgs setup. Although the corrections are larger than in the
VBS setup, the curve is only shifted towards more negative values, and we also see the phase
of almost constant corrections between 1000 GeV < Mj1j2 < 3200 GeV, before the curve tends
back to smaller values. In contrast to the transverse momentum distributions of the two jets,
the shape of the relative QCD corrections in both setups is similar. We can therefore deduce
that the transverse momentum cut on the jets does not affect specific values of invariant masses;
i. e. transverse momentum and invariant mass of the jet pair are largely uncorrelated. This
also confirms our considerations in the last chapter, when we discussed the connection between
energies, rapidities and transverse momenta in the LO distributions.

We turn our attention to the leptonic system and present the NLO corrections to the
invariant-mass distribution in the two charged leptons and the four-lepton system in Figure 4.19.
We again emphasise that the four-lepton invariant mass is not a physical observable. The
behaviour of the EW corrections is identical in both setups for both observables, and we get
large negative corrections at high invariant masses. In the VBS setup, they reach −30% for
both Me+µ− = 1200 GeV and M4ℓ = 2000 GeV, while they reach −40% in the Higgs setup for
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Figure 4.18: Differential distributions for the NLO corrections to the EW contribution in the
invariant mass of the total visible system (left) and the two hardest jets (right) in the VBS (top)
and the Higgs setup (bottom).

these values and the pattern of larger EW corrections at high energies in the Higgs setup than
in the VBS setup also repeats. At low invariant masses, the EW corrections are smaller in the
Higgs setup. The QCD corrections for both observables are almost constant over the complete
depicted range for both setups. In the VBS setup, the QCD corrections are quite large for very
small two-lepton invariant masses before they reach a plateau, and we observe a slight tendency
towards positive values at large Me+µ− . In the Higgs setup, the effect at low two-lepton invariant
masses is absent. The same effect can be seen in the four-lepton invariant mass, where the QCD
corrections are constant in both setups except for the first two bins. In the bin, in which the
Higgs-boson resonance resides, between 100 GeV < M4ℓ < 200 GeV, there is a dip in the QCD
corrections for the VBS setup, which is absent for the Higgs setup. A second effect that can be
seen in the distribution for the four-lepton invariant mass is the very large relative corrections,
both of QCD and EW origin, in the very first bin, at invariant masses below the Higgs-boson
resonance. Admittedly, the absolute size of the differential cross section is negligible at LO and
remains so at NLO. The four-lepton invariant-mass distribution beautifully demonstrates the
threefold nature of W+W+ scattering: The first bin below the Higgs boson resonance contains
only non-resonant background processes with even positive electroweak corrections. The bin
containing the Higgs boson resonance is, in the VBS setup, dominated by large QCD corrections.
The typical VBS signature with small QCD corrections and large EW corrections only becomes
prominent above the resonance. The last remark on both distributions and their almost constant
QCD corrections concerns, as in the case of the invariant masses of the two hardest jets and the
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Figure 4.19: Differential distributions for the NLO corrections to the EW contribution in the
invariant mass of the two charged leptons (left) and the four-lepton system (right) in the VBS
(top) and the Higgs setup (bottom).

total visible system, the fact that the transverse momentum of a jet and invariant mass of the
leptons are largely uncorrelated.

The next distributions in Figure 4.20 are the corrections to the differential cross section with
respect to the rapidity of the hardest and the second hardest jet. We begin our discussion with
the EW corrections in the VBS setup. For both jets, there is a minimum for the absolute value
of the relative corrections at zero rapidity and a maximum at medium rapidities. This effect is
stronger in the case of the second hardest jet, but the corrections never exceed more than −15%
or less than −5%. The Higgs setup shows a similar behaviour, although the shape of the relative
corrections is even less pronounced than in the VBS setup, and the corrections never exceed
−10%. Since larger EW corrections are a sign of large energies in the system, large energies seem
to favour both moderate rapidity and large transverse momentum. The QCD corrections behave
differently than the EW ones: For the hardest jet in the VBS setup, the corrections amount to
−10% at yj1 = 0 and are about ±0% at the borders of the spectrum, although we recognise a
tendency towards positive values. On the other hand, the QCD corrections of the second hardest
jet show the opposite behaviour with zero relative corrections in the centre and QCD corrections
up to −10% at the edges. For the Higgs setup, this picture changes. The overall corrections
are more negative than in the VBS setup. However, we also see a negative maximum of the
corrections around zero rapidity for both jets at −35%. The QCD corrections at the borders of
the spectrum are smaller in the case of the first jet than in the case of the second, with −10%
compared to −18%.
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Figure 4.20: Differential distributions for the NLO corrections to the EW contribution in the
rapidity of the hardest (left) and the second hardest jet (right) in the VBS (top) and the Higgs
setup (bottom).

We discuss very briefly the corrections to the differential cross section with respect to the
rapidity of the muon and the electron in Figure 4.21. The EW corrections are constant over
the whole depicted range for both setups. The same is true for the QCD corrections in the
Higgs setup. We only see a tendency towards smaller QCD corrections at the borders of the
phase space for the VBS setup after it remains almost constant between −1 < y < 2. These
distributions do not deliver new insights, and we can only use them to confirm and repeat our
previous statements: The rapidity of the leptons does neither correlate with the energy in the
system nor with the transverse momentum of the hadronic system. In consequence, both EW
and QCD corrections in the Higgs setup are almost constant and the QCD corrections behave
similarly in the two setups.

The corrections to the differential cross sections with respect to the rapidity difference of the
two hardest jets and the rapidity difference of the two charged leptons are shown in Figure 4.22.
We recognise for both distributions differences in the shapes of the relative corrections between
the setups. The EW corrections in the differential cross section with respect to the rapidity
difference of the jets are falling (in the sense that they are negative and their absolute value
becomes smaller) for large rapidity difference in the VBS and growing in the Higgs setup. It
should be annotated that this effect is not very prominent and the relative corrections are in a
small band for both setups. The QCD corrections in the distribution in this observable are quite
different. In the VBS setup, the relative QCD corrections have a negative maximum around
|∆yj1j2 | ≈ 4 and tend toward small and positive values at large rapidity differences. In the Higgs
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Figure 4.21: Differential distributions for the NLO corrections to the EW contribution in the
rapidity of the muon (left) and the positron (right) in the VBS (top) and the Higgs setup
(bottom).

setup, almost the opposite is the case. We see large negative QCD corrections both for small and
large rapidity difference, −40% for |∆yj1j2 | = 3.5 and even larger for |∆yj1j2 | = 9.0. In contrast,
the corrections are moderate with a minimum at intermediate rapidity differences. At a small
rapidity difference, one of the two hard jets is likely central. If this is the hardest jet – we know
from the distribution of the rapidities of a single jet, c. f. Figure 4.7 or Figure 4.20, that the
hardest jet is more central than the second hardest – it is also likely that there is large transverse
momentum in the hadronic system. The other region with large QCD corrections at large rapidity
separation occurs when the differential cross section is already very small. In the differential
distribution in the rapidity difference of the two charged leptons, the EW corrections in the
VBS setup range between −10% and −15% with a minimum at zero rapidity difference and a
maximum for intermediate rapidity differences. In the Higgs setup, there is also a minimum for
small |∆ye+µ− |, but the maximum is at the outer ends of the depicted phase space, and we have
a larger range of corrections between −5% and −20%. While the size of the corrections in the
VBS setup does not allow further conclusions, the large corrections in the region of large rapidity
difference between the charged leptons in the Higgs setup point towards a phase-space region, in
which the Higgs-boson resonance is not prominent. We see the larger corrections coming from
Sudakov logarithms at high energies. This behaviour is explicable by helicity conservation: The
Higgs boson as spin-0 particle forces its daughter W bosons as decay products to have opposite
helicity. Since the EW interaction couples only to left-handed fermions, the two oppositely
charged leptons emerging from this process are emitted in the same direction. Thus, leptons with
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Figure 4.22: Differential distributions for the NLO corrections to the EW contribution in the
rapidity separation of the two hardest jets (left) and the two charged leptons (right) in the VBS
(top) and the Higgs setup (bottom).

a small rapidity difference are more likely to emerge from the Higgs-production subprocess with
small EW corrections, and such with large differences result from the other VBS subprocesses
with typical VBS signatures. This consideration is consistent with the fact that the shape of the
distribution in the Higgs setup is much narrower than in the VBS setup, since the Higgs-setup
cuts enhance the resonant Higgs contribution, as we already saw with the integrated cross section.
The QCD corrections are also quite different: In the VBS setup, they are largest for zero rapidity
difference and tend towards zero for large |∆ye+µ− |, whereas they remain almost constant in the
Higgs setup.

The next two distributions that we present are the corrections to the differential cross
section with respect to the azimuthal angular separation of the two hardest jets and the angular
separation of the two charged leptons, depicted in Figure 4.23. For the angular separation of
the jets, both EW and QCD corrections are, except for some statistical outliers in the VBS
setup, almost constant in both setups. For the angular separation of the charged leptons, the
EW corrections in the VBS and the Higgs setup are quite similar and become larger for larger
angular separation. However, the range of EW corrections over the complete phase space varies
only between −8% and −15% in the VBS setup and −6% and −13% in the Higgs setup. The
QCD corrections in the VBS setup vary only moderately between −10% at small and −3% at
large angular separation. In the Higgs setup, the QCD corrections are almost constant over the
complete phase space.



112 4 NUMERICAL RESULTS

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

dσ d∆
φ
[fb

]
LO α6

NLO α6 + α7
NLO α6 + αsα

6

NLO α6 + α7 + αsα
6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
∆φj2j1

−20

−10

0

δ[
%

]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.25

0.50

0.75

1.00

1.25

dσ d∆
φ
[fb

]

LO α6

NLO α6 + α7
NLO α6 + αsα

6

NLO α6 + α7 + αsα
6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
∆φe+µ−

−20

−10

0

δ[
%

]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

dσ d∆
φ
[fb

]

LO α6

NLO α6 + α7
NLO α6 + αsα

6

NLO α6 + α7 + αsα
6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
∆φj2j1

−40

−20

0

δ[
%

]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.25

0.50

0.75

1.00
dσ d∆
φ
[fb

]

LO α6

NLO α6 + α7
NLO α6 + αsα

6

NLO α6 + α7 + αsα
6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
∆φe+µ−

−40

−20

0

δ[
%

]

Figure 4.23: Differential distributions for the NLO corrections to the EW contribution in the
azimuthal angular separation of the two hardest jets (left) and the two charged leptons (right) in
the VBS (top) and the Higgs setup (bottom).

We discuss briefly the corrections to the differential cross section with respect to the R
separation of the two hardest jets and the R separation of the two charged leptons, that we
show in Figure 4.24. Since both relative EW and QCD corrections for the azimuthal angular
separation of the two hardest jets are almost constant, the shape of the relative corrections in
the total separation is governed by the shape of the corrections in the rapidity separation and we
cannot extract more information than already stated above. For the R separation of the two
charged leptons we want to re-emphasise that the different shapes of VBS and Higgs setup are a
consequence of the different shapes of the distribution in the azimuthal angular separation and
we see this more clearly in the NLO distribution than in the LO one of Figure 4.11 because of
a simple rescaling of the axis. The responsible cut is, as mentioned in the LO discussion, the
transverse mass cut on the leptons. Both relative corrections are in both setups also an overlay
of the behaviour of the corrections in the rapidity and the azimuthal angular separation. Since
the EW corrections in the VBS setup are slightly growing for large azimuthal angular separation,
and they have a maximum at intermediate rapidity separation, we also see a very slight (negative)
maximum at intermediate total separations. The EW corrections in the Higgs setup grow larger
for larger azimuthal angular and rapidity separations, and as a consequence they also do for
the total separation. The falling QCD corrections in the VBS setup and the constant ones in
the Higgs setup for both rapidity and azimuthal angular separation also lead to their respective
counterpart in the R separation.
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Figure 4.24: Differential distributions for the NLO corrections to the EW contribution in the R
separation of the two hardest jets (left) and the two charged leptons (right) in the VBS (top)
and the Higgs setup (bottom).

In Figure 4.25, we present the corrections to the differential cross section with respect to the
R separation of the muon and the hardest jet as well as the R separation of the muon and the
second hardest jet. As in the case of the LO distributions, we mention that the shape of both
the LO cross section as well as the NLO corrections of the separation of the electron and the
jets is similar to the depicted one. The EW corrections for the separation of the muon and the
hardest jet in the VBS setup are almost constant over a long range of the phase space between
0 < ∆Rj1µ− < 5, varying only between −14% and −10%. Afterwards, they tend linearly to
smaller values and the last bin we consider to be a statistical outlier. In the Higgs setup, the
behaviour of the EW corrections is slightly different. However, they are still almost constant over
the complete depicted range, with only the statistical outlier in the last bin. There is a slight
minimum at intermediate values around ∆Rj1µ− ≈ 3. The QCD corrections in this observable
follow a similar shape in the VBS and the Higgs setup, varying only very little for small separation
and a tendency towards more positive values for 5 < ∆Rj1µ− < 7 in case of the VBS setup and
smaller values in case of the Higgs setup for 4 < ∆Rj1µ− < 6. The behaviour of the corrections
in the separation of the muon and the second hardest jet is similar to its behaviour for the
separation of the muon and the hardest jet: The EW corrections vary very slowly and become
smaller with large separation in the VBS setup, whereas they show a minimum at intermediate
separations for the Higgs setup. The QCD corrections are also quite constant in the case of the
VBS setup with a tendency towards positive values for very large separations. In the Higgs setup,
they are also becoming smaller with a larger R separation.



114 4 NUMERICAL RESULTS

1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

dσ d∆
R

[fb
]

LO α6

NLO α6 + α7
NLO α6 + αsα

6

NLO α6 + α7 + αsα
6

1 2 3 4 5 6 7
∆Rj1µ−

−20

0

δ[
%

]

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

dσ d∆
R

[fb
]

LO α6

NLO α6 + α7
NLO α6 + αsα

6

NLO α6 + α7 + αsα
6

1 2 3 4 5 6 7 8
∆Rj2µ−

−20

0

δ[
%

]

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

dσ d∆
R

[fb
]

LO α6

NLO α6 + α7
NLO α6 + αsα

6

NLO α6 + α7 + αsα
6

1 2 3 4 5 6 7
∆Rj1µ−

−40

−20

0

δ[
%

]

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

dσ d∆
R

[fb
]

LO α6

NLO α6 + α7
NLO α6 + αsα

6

NLO α6 + α7 + αsα
6

1 2 3 4 5 6 7 8
∆Rj2µ−

−40

−20

0

δ[
%

]

Figure 4.25: Differential distributions for the NLO corrections to the EW contribution in the R
separation of the muon and the hardest (left) and the separation of the muon and the second
hardest jet (right) in the VBS (top) and the Higgs setup (bottom).

At last, we show the corrections to the differential cross sections with respect to centralities of
the electron and the muon compared to the two hardest jets (Zeppenfeld variables) in Figure 4.26.
Like in case of the LO distribution, the NLO distributions and the NLO corrections of the two
charged leptons are very similar. The EW corrections in the Zeppenfeld variables are almost
constant over the depicted range for both setups. The QCD corrections in the VBS setup show
slightly larger corrections in case of forward leptons (zµ−j1j2 > 0), but do not vary largely, whereas
the QCD corrections in the Higgs setup show a not very prominent minimum around zµ−j1j2 = 0.
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Figure 4.26: Differential distributions for the NLO corrections to the EW contribution in the
centrality of the electron (left) and the muon compared to the two hardest jets (right) in the
VBS (top) and the Higgs setup (bottom).
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4.4.3 NLO corrections to the QCD-induced contribution

In this section, we discuss the NLO corrections to the QCD-induced contribution for both VBS
and Higgs setup. In our plots we depict the LO contribution of O (

α2
sα

4) and the sum of the
contributions O (

α2
sα

4)+ O (
α2

sα
5), which are mainly the EW corrections to the QCD-induced

contribution, the sum of the contributions O (
α2

sα
4)+ O (

α3
sα

4), which are the QCD corrections
to the QCD-induced contribution, and the complete NLO corrections to the QCD-induced
contribution O (

α2
sα

4)+O (
α2

sα
5)+O (

α3
sα

4). The absolute values are, as in the previous section,
shown in the upper panels, and the relative corrections are shown in the lower ones. In the upper
row of our figures, we present two observables in the VBS setup, and in the lower row, the same
observables in the Higgs setup.

Before we start with the discussion of the plots, we remind of our remarks from Section 4.3.4,
where we already stated that our QCD-induced results should be treated with caution since
our chosen scale tends to predict a large LO result with large NLO corrections, leading to a
very small or even negative NLO result in a slowly converging perturbation expansion. We
will see this throughout, especially in the Higgs setup, in which the effect is larger than in the
VBS setup and additionally overlaps with the already large negative corrections because of the
jet veto. In fact, many of the differential distributions deliver negative cross sections at some
point. We hence decided not to use the O (

α3
sα

4) results for the Higgs setup at our particular
scale choice as a sensible benchmark, which we could compare with the VBS setup. Since the
scale dependence of the integrated cross section in the VBS setup is smaller than in the Higgs
setup, we still consider the O (

α3
sα

4) absolute cross sections and corrections as valid NLO results
with subsequent moderate NNLO corrections in contrast to large expected NNLO corrections in
the Higgs setup. In our depicted region, the O (

α3
sα

4) results of the VBS setup do not become
negative. However, we must admit that the combined O (

α3
sα

4)+ O (
α2

sα
5) corrections exceed

−100% on several occasions, especially in distributions that correlate with the centre-of-mass
energy inside the process. We checked that the shape of the relative corrections does not change
when we perform the 7-point scale variation and show this explicitly in Section 4.5. Since the
O (

α2
sα

5) results are in both setups mainly the EW corrections and follow the scale dependence
of the LO results, the corresponding relative corrections are considered to be valid for both
setups.

Our plots in Figure 4.27 depict the differential cross section with respect to the transverse
momentum of the hardest and the second hardest jet. The EW corrections are, in both cases for
both setups, quite similar. They are always negative and grow with larger transverse momentum
and reach values of more than −25% in both setups at the end of our portrayed region at
pT = 1000 GeV for both the hardest and second hardest jet. Although not as prominent as for
the EW corrections to the EW process, the behaviour of having a tendency of larger corrections
in regions of high transverse momentum is typical for the EW NLO corrections. The QCD
corrections of the hardest and the second hardest jet in the VBS setup behave differently since
they become larger for growing pT,j1 , being almost zero at very small transverse momentum and
quickly dropping below −25% around pT,j1 ≈ 100 GeV. They reach almost −100% at the end of
our depicted region even in the VBS setup. For the second hardest jet, the QCD corrections
in the VBS setup are most negative for small pT,j2 , exceeding more than −50%, and reaching a
minimum in absolute values around pT,j2 ≈ 200 GeV. At higher values of pT,j2 the corrections
start to grow again and reach around −25% at pT,j2 = 1000 GeV. Since the second-hardest jet
has by definition smaller transverse momentum than the hardest one, and the QCD corrections
in the case of the second-hardest jet at low transverse momentum are very large, we can infer
that there is a transverse momentum gap for the QCD jets: The relative corrections for the
second-hardest jet are largest, where the absolute LO cross section is also largest, which means,
there is also a large absolute integrated NLO correction, if we integrate up to some small pT,j2 . To
match the absolute corrections in the pT,j1 distributions, it has to be compensated from regions
in which either the LO differential cross section with respect to pT,j1 or its relative corrections are
large. These are, however, the regions with a signficantly larger pT,j1 than pT,j2 . As a last note
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Figure 4.27: Differential distributions for the NLO corrections to the QCD-induced contribution
in the transverse momentum of the hardest (left) and the second-hardest jet (right) in the VBS
(top) and the Higgs setup (bottom). The upper panels show the absolute LO QCD-induced
contribution at O (

α2
sα

4), the NLO cross sections including the EW corrections (O (
α2

sα
4) +

O (
α2

sα
5)), the QCD corrections (O (

α2
sα

4)+ O (
α3

sα
4)) and the complete NLO cross sections

(O (
α2

sα
4) + O (

α2
sα

5) + O (
α3

sα
4)). The lower panels show the relative NLO contributions

normalised to the LO QCD-induced contribution. Shaded bands indicate integration errors.

to the two observables, we mention that the differential cross section with respect to the hardest
jet decays, despite the large NLO corrections, still slower than the differential cross section with
respect to the second hardest one. This is obvious since for each single event pT,j2 ≤ pT,j1 .

In Figure 4.28 we present the differential cross sections with respect to the transverse momen-
tum sum of the two jets and differential cross section with respect to the transverse momentum
sum of the four leptons. For these observables, the EW corrections also behave similarly in
both setups, as they are negative and become larger with growing transverse momentum sum.
The relative EW corrections grow up to −30% in the tails around pT = 1000 GeV in the VBS
setup. In the Higgs setup, the relative EW corrections amount to about −25% in the tails. The
relative QCD corrections in the VBS setup are distinct in the two observables: For the two jets,
they are almost zero at pT,j1j2 = 0 GeV, and at the other end of the depicted spectrum, the
corrections exceed −90%. We note that the shape of the relative corrections in the transverse
momentum sum of the two hardest jets follows the shape of the relative corrections with respect
to the hardest jet. This confirms our considerations made in the previous discussion. A small
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Figure 4.28: Differential distributions for the NLO corrections to the QCD-induced contribution
in the transverse momentum sum of the two jets (left) and the four-lepton system (right) in the
VBS (top) and the Higgs setup (bottom).

transverse momentum sum implies either small transverse momenta of both jets or jets with a
large separation. On the other hand, the QCD corrections to the differential distribution with
respect to the transverse momentum sum of the four leptons are already −25% at pT,4ℓ = 0 GeV
and show a minimum around pT,4ℓ ≈ 50 GeV. Interestingly, the same minimum appears in the
Higgs setup. We cannot explain this effect, especially since we did not expect a QCD correction
having a distinct influence on a small phase-space region of a purely leptonic observable without
affecting the smooth shape of the complementary jet observable.

We only briefly discuss the corrections to the differential cross section with respect to the
transverse momentum of the muon or the electron, respectively, in Figure 4.29. As we expected,
both EW and QCD corrections are very similar if we compare the two charged leptons. Concerning
the EW correction, the VBS and the Higgs setup behave almost identically. It starts at very
small negative corrections and becomes larger with growing transverse momentum. At the
end of the depicted spectrum around pT,ℓ = 1000 GeV, the relative EW corrections amount to
approximately −40% in the VBS and −30% in the Higgs setup. The QCD corrections are also
always negative, become larger with higher transverse momentum, and range between −25%
at small pT,ℓ and almost −100% at the other end of the shown phase space. We additionally
mention that the shape of the relative corrections to the differential cross sections with respect
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Figure 4.29: Differential distributions for the NLO corrections to the QCD-induced contribution
in the transverse momentum of the muon (left) and the positron (right) in the VBS (top) and
the Higgs setup (bottom).

to the individual transverse lepton momenta is very similar to the shape of the corrections in the
distribution of the transverse lepton momentum sum.

We present the differential cross section with respect to the sum of the transverse momenta of
the two charged leptons and the differential cross section with respect to the missing transverse
momentum in Figure 4.30. Like in the case of the LO distributions and the corrections to the
EW contribution, the two observables behave quite similarly in the QCD-induced contribution
and its NLO corrections. We recognise again the typical behaviour of the EW corrections in both
setups, where the relative corrections are growing with larger transverse momentum. For both
observables, they reach about −40% at pT = 1000 GeV in the VBS setup and between −25% and
−30% in the VBS setup. The QCD corrections in the VBS setup follow the typical behaviour in
the energy-dependent observables, where the relative corrections correlate with the transverse
momentum of the system and reach values of around −100% at pT = 1000 GeV.

The corrections to the differential cross section with respect to the invariant mass of the
total visible system and the invariant mass of the two hardest jets are shown in Figure 4.31.
Both observables are strongly correlated since most of the energy is contained in the jets, and
hence, it is not surprising to find an identical behaviour for the corrections. The corrections of
O (

α2
sα

5) are always negative in both setups and grow with larger invariant mass. The same
is true for the QCD corrections. At large invariant masses around Mvis,Mj1j2 = 4000 GeV, the
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Figure 4.30: Differential distributions for the NLO corrections to the QCD-induced contribution
in the transverse momentum sum of the two charged leptons (left) and the missing transverse
momentum (right) in the VBS (top) and the Higgs setup (bottom).

EW corrections in the invariant mass of the total visible system reach around −15% in both
setups. For the two hardest jets, the relative corrections show more statistical uncertainty, but
they also fluctuate around −15 and −20% in both setups. The QCD corrections in the VBS
setup reach −50% for both observables. We explicitly mention that the overall behaviour at
large invariant masses mimics the behaviour at large transverse momenta. However, the size of
the corrections of the differential cross sections is smaller in the tails. At small invariant masses,
there is a slight difference in the corrections for the two observables, which is especially seen in
the VBS setup. The EW corrections in the invariant mass of the visible system are almost zero,
while the corrections in the invariant mass of the two hardest jets take on a finite value. An
analogous behaviour can be found in the QCD corrections, which are significantly smaller at low
energies. This is reasonable since the leptons play a more significant role in the invariant mass of
the total visible system when the invariant mass of the two-jet system is small. We link these
findings to the discussion of the next observables, the invariant mass of the two charged leptons
and the invariant mass of the four-lepton system.

We present the corrections to the differential cross sections with respect to the invariant mass
of the charged lepton pair and the invariant mass of the four-lepton system in Figure 4.32. In
general, the EW and the QCD corrections follow the same behaviour as in all previous observables
that are connected with the energy contained in the system: Both corrections become more
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Figure 4.31: Differential distributions for the NLO corrections to the QCD-induced contribution
in the invariant mass of the visible system (left) and the two hardest jets (right) in the VBS
(top) and the Higgs setup (bottom).

negative with larger invariant masses. In the case of the invariant mass of the two charged leptons,
nothing very noteworthy happens. The EW corrections reach from −5% in the VBS setup and
−3% in the Higgs setup at Me+µ− = 0 GeV to −25% at Me+µ− = 1200 GeV in both setups. The
QCD corrections range between −25% and −75% in the VBS setup. For the invariant mass of
the four-lepton system, we remark an astonishing detail in both setups: For M4ℓ < 100 GeV,
the corrections of O (

α2
sα

5) become positive with a relative value of +10% in both setups. This
is the only bin with positive corrections of O (

α2
sα

5) in all observables like this was the only
bin in all observables with positive corrections of O (

α7), seen in Figure 4.19. As in the case of
the corrections of O (

α7), the absolute value of the differential cross section at LO as well as
at NLO is negligible. This effect is smaller for the QCD-induced contribution than for the EW
contribution. We verified for the dominant quark-induced channel at O (

α2
sα

4) that the positive
NLO contribution is present both in the EW correction to the QCD-induced process and the
QCD correction to the interference. With this small additional investigation, we can rule out
that the effect is connected to remnants of the Higgs resonance in the interference process. Apart
from this detail, the corrections behave as expected, and the EW corrections range between 0%,
being slightly negative, at M4ℓ ≥ 100 GeV for both setups and −20% in the Higgs and −30%
in the VBS setup for M4ℓ = 2000 GeV. The QCD corrections in the VBS setup do not show
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Figure 4.32: Differential distributions for the NLO corrections to the QCD-induced contribution
in the invariant mass of the two charged leptons (left) and the four-lepton system (right) in the
VBS (top) and the Higgs setup (bottom).

any distinctive features, monotonically decreasing from almost 0% at M4ℓ = 0 GeV to −75% at
M4ℓ = 2000 GeV.

Next, we present in Figure 4.33 the corrections to the differential cross section with respect
to the rapidity of the hardest and the rapidity of the second-hardest jet. Since these observables
are not correlated with the energy of the system, we observe almost constant EW corrections for
both observables in both setups, with a small tendency of larger EW corrections towards more
central hardest jets around |yj1 | = 0. For the QCD corrections in the VBS setup, we recognise
larger corrections at central hardest jets with a relative value of −35% at |yj1 | = 0 and smaller
corrections of −20% at |yj1 | = 4.5. In contrast, the behaviour is exactly the opposite for the
second-hardest jet. There we find smallest QCD corrections for |yj2 | = 0 with a value of −15%,
while the corrections near |yj2 | = 4.5 reach −50%. For the absolute value of the QCD corrections
to the Higgs setup, we remark that they never become negative in the rapidity distributions,
equivalent to the relative corrections never hitting −100%, in contrast to all observables that are
correlated with transverse momentum and energy.

The corrections to the differential cross section with respect to rapidities of the charged
leptons are shown in Figure 4.34. As for the rapidity of the jets, the relative EW corrections are
almost constant for both leptons in both setups, with a slight tendency towards larger corrections
near zero rapidities. The relative QCD corrections are also very flat in the case of the muon in
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Figure 4.33: Differential distributions for the NLO corrections to the QCD-induced contribution
in the rapidity of the hardest jet (left) and the second-hardest jet (right) in the VBS (top) and
the Higgs setup (bottom).

the VBS setup but show a more distinctive negative maximum around ye+ = 0. This leads to an
even larger plateau of almost constant absolute NLO cross section for the positron than for the
muon compared to the LO counterpart.

We present the corrections to the differential cross section with respect to the rapidity
separation of the two hardest jets and the rapidity separation of the two charged leptons in
Figure 4.35. As before, we remark that the step in the first filled bin in the absolute differential
cross sections with respect to the rapidity separation of the jets is due to a mismatch between
the (symmetrised) histogram and the cut setup, which cuts exactly half of the first bin. In the
relative corrections, we see a smooth transition between the first and the second bin. In both
setups the EW corrections show a slight tendency towards larger relative values at small rapidity
separation of the two hardest jets with a value of approximately −10% at |∆yj1j2 | = 2.5 in the
VBS setup and −6% at |∆yj1j2 | = 3.5 in the Higgs setup, albeit they do not vary largely over
the complete phase space. The QCD corrections in the VBS setup behave oppositely and are
smallest at small jet rapidity separation with a value of −15% at |∆yj1j2 | = 2.5, dropping to
−35% at |∆yj1j2 | = 4.0 and staying almost constant from thereon. The relative EW corrections
in the differential cross section with respect to the lepton rapidity separation are almost constant
over the complete phase space in both setups. The relative QCD corrections are largest at small
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Figure 4.34: Differential distributions for the NLO corrections to the QCD-induced contribution
in the rapidity of the muon (left) and the positron (right) in the VBS (top) and the Higgs setup
(bottom).

rapidity separation with a value of −35% at |∆ye+µ− | = 0 in the VBS setup and become sizeably
smaller at large separations with only −15% around |∆ye+µ− | = 4.

The NLO distributions for the differential cross sections with respect to the azimuthal angular
separation of the two hardest jets and the azimuthal angular separation of the two charged
leptons are depicted in Figure 4.36. Concerning the separation of the two hardest jets, the EW
corrections are almost constant, only very slowly decreasing for larger separations in both setups.
The QCD corrections are always negative and become smaller for larger ∆ϕj2j1 , varying between
−40% at ∆ϕj2j1 = 0 and −25% at ∆ϕj2j1 = π in the VBS setup. The EW corrections in the
angular separation of the two charged leptons are almost constant for both setups, with a slight
tendency towards larger corrections at very large ∆ϕe+µ− . The QCD corrections in the VBS
setup are also almost constant.

In Figure 4.37, we show the corrections to the differential cross section with respect to the R
separation of the two hardest jets and the R separation of the two charged leptons. In case of
the two jets, the EW corrections in both setups are largest in regions with small separation with
approximately −12% in the VBS setup at ∆Rj1j2 ≈ 3 and smallest at medium separations with
only −6% at ∆Rj1j2 ≈ 6.5. In the Higgs setup, the corrections amount to −12% at ∆Rj1j2 ≈ 3.5
and only −4% around ∆Rj1j2 ≈ 6.2. The relative QCD corrections in the VBS setup have a slight
minimum around ∆Rj1j2 ≈ 4 with also only little variation between −30% at ∆Rj1j2 ≈ 3, −25%
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Figure 4.35: Differential distributions for the NLO corrections to the QCD-induced contribution
in the rapidity separation of the two hardest jets (left) and the two charged leptons (right) in
the VBS (top) and the Higgs setup (bottom).

at the minimum and around −35% between 6 < ∆Rj1j2 < 7, before also the QCD corrections start
to fluctuate. The behaviour of these very flat relative QCD corrections in the total separation
can be seen as a combination of the rising corrections in the rapidity and the falling corrections
in the angular separation. For the separation of the two leptons, we get almost constant EW
corrections in both setups with a slight tendency towards larger corrections at large separations.
We already noted the same tendency in both the rapidity and the angular separation. The QCD
corrections in the VBS setup show a significant kink around ∆Re+µ− = π. While before only
moderately varying between −35% and −30% over the complete span, it falls down to −20% at
∆Re+µ− = 5. This can also be seen as an effect of combining the behaviour in the case of rapidity
and angular separation: Total separations larger than π cannot only be achieved by azimuthal
angular separation. While the angular corrections were almost flat, the falling behaviour of the
corrections in the rapidity separation starts to take over at π, coinciding to the edge in the shape
of the absolute cross section both at LO and NLO. Especially, the NLO corrections tend to
flatten this edge. Although we do not consider our results in the Higgs setup as trustworthy, we
would like to mention that the edge almost disappears in that case.

The corrections to the differential distribution with respect to the R separation of the hardest
jet and the muon and the R separation of the second-hardest jet and the muon are given in
Figure 4.38. We mention here that we only present the separation of the jets and the muon; the
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Figure 4.36: Differential distributions for the NLO corrections to the QCD-induced contribution
in the azimuthal angular separation of the two hardest jets (left) and the two charged leptons
(right) in the VBS (top) and the Higgs setup (bottom).

distributions of the separation of the jets and the electron are only slightly different concerning
some numeric values but show no conceptual differences. We hence only give a qualitative
overview of these observables. For the separation of the hardest jet and the muon, both EW and
QCD corrections behave identically, although the characteristics can be better seen in the QCD
corrections. We can divide the phase space into two regions with the boundary at ∆Rj1µ− = π.
The relative corrections start with a maximum at zero separation and show a first minimum
between 0 < ∆Rj1µ− = π around ∆Rj1µ− = 1.6. There is an obvious kink in the corrections at π,
where both types of corrections have a maximum, after which both EW and QCD corrections
slowly become smaller again. We see the same behaviour also in the Higgs setup. The shape of
the absolute cross sections and the relative corrections in the case of the second-hardest jet is
completely different than for the hardest one. We do not see a clear fall-off around ∆Rj2µ− = π.
Although the EW corrections have a slight maximum at this point in the VBS setup, and the
shapes of the EW correction are similar, this maximum in the Higgs setup lies at ∆Rj2µ− ≈ 4.
The QCD corrections in the VBS setup are also only slowly varying and their minimum is at
∆Rj2µ− ≈ 2.5. In contrast to ∆Rj1µ− , there is nothing special happening at ∆Rj2µ− = π and the
relative corrections keep growing.

At last, we discuss the corrections to the differential cross section with respect to the
centralities of the electron and the muon compared to the two hardest jets in Figure 4.39. As
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Figure 4.37: Differential distributions for the NLO corrections to the QCD-induced contribution
in the R separation of the two hardest jets (left) and the two charged leptons (right) in the VBS
(top) and the Higgs setup (bottom).

in the previous cases concerning these observables, electron and muon do not show significant
differences. For both leptons, the EW corrections are almost constant with only a slight tendency
towards larger corrections in case of forward leptons. The QCD corrections in the VBS setup also
show an asymmetry with larger relative corrections in the forward direction with a maximum
around zℓj1j2 ≈ 0.3, where they reach −35%, while they are slightly below −25% at zℓj1j2 = −0.5.
We again mention for this diagram that the plot was designed for the Higgs setup and does not
depict the complete fiducial phase space in the VBS setup.
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Figure 4.38: Differential distributions for the NLO corrections to the QCD-induced contribution
in the R separation of the hardest jet and the muon (left) and the second-hardest jet and the
muon (right) in the VBS (top) and the Higgs setup (bottom).
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Figure 4.39: Differential distributions for the NLO corrections to the QCD-induced contribution
in the centrality of the electron (left) and the muon compared to the two hardest jets (right) in
the VBS (top) and the Higgs setup (bottom).
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4.5 Scale dependence plots

In this section, we give an overview of the scale dependence of some differential distributions
both at LO and NLO. As we already stated in the discussion of the integrated cross section, the
scale dependence of the pure EW process and its QCD corrections is rather small. In contrast,
we get a large scale dependence for the QCD-induced process and especially its QCD corrections.
Since the central scale is chosen too small in the QCD-induced process, we can only infer sensible
information from higher scales, i. e. the combinations (2µcentralsc

F , µcentralsc
R ), (µcentralsc

F , 2µcentralsc
R )

and (2µcentralsc
F , 2µcentralsc

R ), which all lead to NLO results larger than the central scale in the
integrated cross section as well as most bins of the differential cross sections. The scales below
the central scale cause unphysical results also in the case of the VBS setup and an even faster
breakdown of the QCD corrections for the QCD-induced process in the Higgs setup. For
exemplary purposes, they are nevertheless included in the plots below. We also decided not to
present all observables of which we have shown the distributions at the central scale before, but
only a selection of some energy-correlated and energy-uncorrelated variables. As we saw before,
the energy-correlated variables are more likely to become unphysical at the central scale, whereas
the uncorrelated observables had positive results also in the Higgs setup.

For our presentation, we decided not to distinguish between EW and QCD corrections
and summarised them as NLO corrections to the corresponding LO distribution since the EW
corrections do not introduce a distinct dependence on the scale choice – apart from small changes
due to the PDFs – compared to their LO counterpart. The figures in this section are hence built
up differently than in the previous section. In each figure, we show one observable in both setups.
The VBS setup is depicted in the first and the Higgs setup in the second row. Differently from
the previous plots, we present in the left column the EW process of O (

α6) and the corresponding
complete NLO result (O (

α6)+ O (
α7)+ O (

αsα6)) and on the right the QCD-induced process
of O (

α2
sα

4) and the corresponding NLO cross section (O (
α2

sα
4)+ O (

α2
sα

5)+ O (
α3

sα
4)). As

usual, we neglect the fact that the processes of O (
αsα6) and O (

α2
sα

5) also contain interference
contributions for our presentation. Each subfigure is split up into three panels. The upper
ones depict the absolute differential distributions. The solid line represents the central scale
dσ/dX(µcentralsc

F , µcentralsc
R ), the shaded bands in this section indicate the scale variation and

cover the area between max(dσ/dX(µiF, µiR)) and min(dσ/dX(µiF, µiR)). The middle panels show
the differential NLO and LO cross sections, normalised to the corresponding cross section at the
central scale if the cross section at the central scale is larger than zero. We call this ratio δ′.
Sub-zero cross sections are considered unphysical, and it is impossible to normalise to a zero or
sub-zero value sensibly. The central scale always takes the value of 100% and the shaded area
lies between max

(
dσ/dX(µi

F,µ
i
R)

dσ/dX(µcentralsc
F ,µcentralsc

R )

)
and min

(
dσ/dX(µi

F,µ
i
R)

dσ/dX(µcentralsc
F ,µcentralsc

R )

)
. We also show the

two extreme scale variations, (1
2µ

centralsc
F , 1

2µ
centralsc
R ) and (2µcentralsc

F , 2µcentralsc
R ), denoted by −

and + markers, for the NLO contribution in this panel. We explicitly note that the extrema of
the scale variation do not necessarily coincide with the extrema of the differential cross sections
at NLO. Furthermore, we included the third, lowest panel, in which we show the relative NLO
corrections normalised to the corresponding LO contribution of the same scale. This is the same
δ as in the previous sections. The solid line represents the value of dσNLO/dX(µcentralsc

F ,µcentralsc
R )

dσLO/dX(µcentralsc
F ,µcentralsc

R ) and

the shaded band covers the area between max
(

dσNLO/dX(µi
F,µ

i
R)

dσLO/dX(µi
F,µ

i
R)

)
and min

(
dσNLO/dX(µi

F,µ
i
R)

dσLO/dX(µi
F,µ

i
R)

)
.

We begin our discussion with the transverse momentum of the hardest jet, which is a typical
energy-dependent observable of the hadronic system, in Figure 4.40. In the EW process, the
relative LO scale uncertainty becomes larger with larger transverse momentum in both setups.
At NLO, the scale uncertainty in the VBS setup becomes significantly smaller than at LO for
all bins. The relative scale uncertainty at LO is almost symmetrically around the central scale,
whereas it is asymmetric at NLO. The scale choice corresponds well to the maximum of the
NLO EW cross section. In the graphs, the area of the ratios δ′ covers mostly regions below
the 100%-line. We point out that the minimal and maximal scale choices cross the 100%-line
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Figure 4.40: Scale variation plot of the transverse momentum of the hardest jet in the VBS (top)
and the Higgs setup (bottom) for the EW (left) and the QCD-induced process (right).

around pT,j1 ≈ 100 GeV with a smaller scale corresponding to a larger cross section and a larger
scale to a smaller one at values below 100 GeV and vice versa above. In the Higgs setup the
scale uncertainty is almost always larger at NLO than at LO. We already noted this effect in
the discussion of the integrated cross section. We explained this by the large NLO corrections
due to the harsh jet veto since we do not expect these extreme variations for a contribution of
O (

αsα6). Especially since we normalise to the NLO cross section, the smallness of the latter
almost automatically leads to a large relative uncertainty. When we compare the two setups, the
scale uncertainty of the relative corrections does not extremely differ between them since the
large relative scale uncertainty in the Higgs setup at NLO results only from a small absolute one.
Nonetheless, we are with our central scale choice already in the EW process at the edge of the
physical region and we strongly advise against choosing a smaller scale.

For the QCD-induced cross section, the LO scale uncertainty remains almost constant for
both setups. At NLO, we recognise in the VBS setup that the scale uncertainties are small for
low transverse momentum but become larger than the LO scale variations at high transverse
momenta. We remark that the relative scale uncertainty band in the VBS setup shows clearly
the asymmetry at NLO also for the QCD-induced process. At large transverse momenta, we get
a relative scale uncertainty of more than ±50% and very soon unphysical results if we choose
a smaller scale than the central one. There are also problems arising in the central scale for
pT,j1 ≈ 800 GeV. However, choosing a scale already twice as large as the central one prevents us
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Figure 4.41: Scale variation plot of the transverse momentum of the second-hardest jet in the
VBS (top) and the Higgs setup (bottom) for the EW (left) and the QCD-induced process (right).

from these unphysical results. On the other hand, in the Higgs setup, using a slightly higher
scale does not prevent the NLO cross section from rapidly decreasing. We may only state
that increasing the scales by a factor of 2 leads to a breakdown of the cross section around
pT,j1 ≈ 300 GeV instead of 150 GeV.

The next observable that we discuss is the transverse momentum of the second-hardest jet in
Figure 4.41. It is of special interest because it is included in the definition of our renormalisation
and factorisation scales. Like in the previous observable, the relative scale uncertainty at O (

α6)
grows with larger transverse momentum in both setups. For the QCD-induced process, the scale
uncertainty at LO is almost constant. The shape of the relative scale variation at NLO in the
VBS setup features in the VBS setup a minimum at pT,j2 ≈ 600 GeV for the EW contribution
and around pT,j2 ≈ 200 GeV in the QCD-induced contribution. This region of pT,j2 ≈ 600 GeV in
the EW process in the VBS setup is also an example for the minimal and maximal scale crossing
the 100%-line. Especially, this behaviour is contrary to the one in the differential distribution of
the hardest jet since the smaller scale corresponds to a larger cross section at large transverse
momenta of the second-hardest jet. In the QCD-induced contribution of the VBS setup, there is
an unexpectedly large relative scale variation at very small transverse momentum. We refer to
these two effects in Section 5. In the Higgs setup, the NLO scale variation of the EW contribution
is larger than the LO one in the relevant region of the phase space. We cannot infer information
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Figure 4.42: Scale variation plot of the invariant mass of the two charged leptons in the VBS
(top) and the Higgs setup (bottom) for the EW (left) and the QCD-induced process (right).

from the NLO scale variation in the QCD-induced contribution since it breaks down already in
the third bin below pT,j2 ≪ 100 GeV.

The next discussed observable is the invariant mass of the charged lepton pair, depicted
in Figure 4.42. Like the previous example, this is an energy-dependent variable, but in the
leptonic sector. In the EW process, the uncertainty becomes larger with higher invariant mass in
both setups at LO but is drastically reduced at NLO for the VBS setup. In contrast, the scale
dependence remains present in the Higgs setup and exceeds the LO uncertainty in almost all
bins. However, compared to the transverse momentum of the hardest jet, the scale dependence
is relatively moderate in this case. We also recognise the asymmetry in the scale uncertainty for
both VBS and Higgs setup. In the QCD-induced process, the uncertainty at LO is again almost
constant for both setups. At NLO, large uncertainties remain in both setups, although the scale
uncertainty for small invariant masses is smaller than at LO in the VBS setup. We also note
that choosing scales twice as large as the central scale already almost always leads to physically
sensible results in both setups over the depicted range.

In Figure 4.43, we present an example of an observable that is not correlated to the transverse
energy of the system. In the EW process, we recognise at LO larger scale uncertainty at large
rapidity differences in both setups. In the VBS setup, the scale uncertainty at NLO behaves as
expected and becomes drastically smaller in all regions of the phase space. In the Higgs setup,
however, the scale uncertainty at NLO almost reverses its shape with a large error band at small
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Figure 4.43: Scale variation plot of the rapidity separation of the two hardest jets in the VBS
(top) and the Higgs setup (bottom) for the EW (left) and the QCD-induced process (right).

rapidities and small bands at large rapidities. In fact, above ∆yj1j2 ≈ 5.5, the relative NLO scale
uncertainty is smaller than the LO scale uncertainty. This can be understood with the following
reasoning: The scale dependence in the NLO corrections for the EW process emerges mostly
from the QCD corrections of O (

αsα6). We saw in Figure 4.14 for the transverse momentum of
the hardest jet in the Higgs setup that the QCD corrections mostly affected the cross section
at large pT, whereas we saw in Figure 4.22 that the same large corrections affected small jet
rapidity differences. In the QCD-induced process, the scale uncertainty at LO becomes larger
at high rapidity differences in both setups. At NLO the scale uncertainty in the VBS setup
is smaller at low rapidity differences, but also for intermediate ones, the relative NLO scale
uncertainty band lies outside of the relative LO uncertainty band, e. g. while the uncertainty
at LO is nearly symmetric around 100%, scale variations at NLO show also in this observable
everywhere a tendency towards smaller values, which means, the scale choice in the VBS setup
is already near the peak value of the NLO cross section. In the Higgs setup, there is a scale
uncertainty of more than ±50% for each bin.

The last observable that we present in this section is the azimuthal angular separation of
the two charged leptons, depicted in Figure 4.44, which is a leptonic observable not related to
energy. We keep the discussion very brief since nothing conceptually changed in comparison to
the previous observable, except that the scale variation at NLO in the Higgs setup in the EW
process is almost constant over the complete phase space.
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Figure 4.44: Scale variation plot of the azimuthal angular separation of the two charged leptons
in the VBS (top) and the Higgs setup (bottom) for the EW (left) and the QCD-induced process
(right).

Concluding this section, we state that the choice of our central scale, µcentralsc
F = µcentralsc

R =√
pT,j1pT,j2 is a common scale choice for the investigation of VBS processes and was used in

the works of our group successfully before. Only considering the typical VBS setup at O (
α6)

and its corresponding NLO corrections, the scale choice did not disappoint in mostly reducing
the scale dependence at NLO. It is, however, also known that the scale choice is fairly low for
the QCD-induced process, and as proven in this study, we must use another scale for sensible
results for the QCD-induced background. Especially, we ran into problems with our scale choice
when dealing with large transverse momenta. In the Higgs setup, this leads to an additional
destructive interplay with the jet veto that already pushes down such events.
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4.6 Differential distributions for the unphysical setups

Although we are not able to measure the differential distributions for the modified setups, in
which we cut out a region around the Higgs boson resonance, we can infer some information
that gives evidence to the remarks that we made in the context of discussing the measurable
differential distributions. We admit that the s-channel Higgs-boson diagrams as subprocess are
an integral part of VBS. Without Higgs boson, the theory would violate the unitarity constraint.
However, the Higgs-boson contribution gives rise to a considerable EW background which is not
present in other VBS processes or can be cut away by physical cuts, such as in ZZ scattering.
It might be interesting to investigate physical cuts for a real experimental setup to enhance
further the other VBS contributions over the Higgs-production contribution by exploring the
correlations between the not measurable four-lepton invariant mass and other observables. When
we talk about the VBS contributions in this section, we explicitly mean those excluding Higgs
production.

We thus do not present all observables that were shown in Section 4.4 and do not discuss
the plots in full length, but give a selection of those we found the most interesting and present
the important details. The figures in this section are built up as follows: As usual, we present
two observables per figure in both setups, the VBS setup in the top and the Higgs setup in the
bottom column. Each subfigure is divided into three panels: The upper one shows the absolute
LO contributions of O (

α6), the NLO EW contribution of O (
α6)+O (

α7) and the complete NLO
contribution of O (

α6)+ O (
α7)+ O (

αsα6) both for the physical and the modified setup. The
middle panel shows the corresponding relative corrections. The additional lower panel compared
to the figures from Section 4.4 shows the ratio between the modified setup and the physical setup
for all of the three contributions.

We begin with the trivial observation in the left-hand side of Figure 4.45 that the cut is
obviously working by showing the differential distributions in the four-lepton invariant mass.
Starting at large invariant masses, the ratio between the modified and the physical setups both
at LO and NLO is constant at 100%. This verifies our assumption that the effect of the cut on
constellations with a photon and the four lepton accidentally having an invariant mass around
the Higgs boson mass, while the four leptons are far away from the resonance, is negligible. The
situation changes, when we reach the bin between 100 GeV < M4ℓ < 200 GeV. Both ratios drop
significantly, which is the effect of cut-out Higgs-boson resonance, that is the main contribution to
the cross section in this phase-space region. Going to even smaller four-lepton invariant masses,
the two ratios decouple in both setups: The NLO ratio drops to 0%, the LO ratio goes back to
100%. This effect shows that the tiny contribution in this bin is completely due to the Higgs
boson decay products emitting a photon, lowering the four-lepton invariant mass below 100 GeV.
The effects of the cut on the unphysical four-lepton invariant mass translates to the physical
observable of the two-lepton invariant mass, which we show on the right-hand side: Most of the
contribution to the EW cross section in the region of Me+µ− < 100 GeV stems from the Higgs
boson resonance. We recognise that the neutrinos carry away a significant amount of energy
since the bin between 100 GeV < Me+µ− < 150 GeV is completely unaffected by the cut. The
decoupling of the LO and NLO ratios at small two-lepton invariant masses is not present, because
the differential cross section has a non-negligible value in the lowest bin and the effect seen in
the four-lepton mass is too tiny to be relevant.

Two other observables that show distinct differences between the VBS signal without the
Higgs boson and the Higgs-production contribution are the azimuthal angular difference and the
rapidity difference between the two charged leptons, whose distributions we show in Figure 4.46.
We recognise that the peak in the differential cross section with respect to the angular sep-
aration at ∆ϕe+µ− ≈ 0.5 in both setups is an effect solely due to the Higgs production, and
it completely flattens out when cutting away the resonance contribution. The Higgs boson
resonance contribution remains dominant for ∆ϕe+µ− < 0.7 in the VBS and ∆ϕe+µ− < 1.5 in the
Higgs setup. At large azimuthal angular differences, the VBS contribution takes over completely.
We also recognise that the cut on the four-lepton invariant mass and the transverse mass cut
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Figure 4.45: Differential cross sections with respect to the four-lepton invariant mass and
with respect to the invariant mass of the two charged leptons for the physical VBS (top) and
the physical Higgs setup (bottom) compared to the respective modified setups with cut-out
Higgs-boson resonance.

(289) are in some sense complementary: We already mentioned that the different shape of this
distribution in the two physical setups is due to the cut on the transverse mass, which causes
the second maximum at large azimuthal angular separation that we see in the VBS setup to
disappear in the Higgs setup. This cut is designed to enhance the Higgs-production contribution,
and it does so very efficiently. The related differential distribution with respect to the rapidity
difference also flattens out at small values of ∆ye+µ− in both setups. As we also noted earlier,
the distribution in the case of the physical Higgs setup is much narrower than in the case of
the physical VBS setup. The difference in shapes completely disappears when cutting away the
resonance contribution. This observation is in accordance with our explanation that the Higgs
boson as a scalar particle forces its decay products to have opposite helicity, which leads to the
two charged leptons being emitted more likely in the same direction: With this contribution cut
away this enhancement in the Higgs setup disappears. Angular momentum conservation also
explains the strong enhancement of the Higgs-production contribution over the VBS process at
small azimuthal angular differences. We do not show this observable explicitly for the unphysical
setups. However, it propagates to the R separation of the two charged leptons, which is strongly
correlated to the two presented observables. At NLO, we recognise in the two observables that
the EW corrections to the EW cross section are significantly smaller in those regions where we
cut away the resonance contribution.
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Figure 4.46: Differential cross sections with respect to the azimuthal angular and with respect to
the rapidity separation of the two charged leptons for the physical VBS (top) and the physical
Higgs setup (bottom) compared to the respective modified setups with cut-out Higgs-boson
resonance.

Next, we investigate how the Higgs boson resonance affects the observables on which the
typical VBS cuts are applied, the invariant mass of the two jets and their rapidity separation.
Their distributions are presented in Figure 4.47. In the invariant-mass distribution, we see only
a very small dependence on the additional cut in the VBS setup. However, in the Higgs setup, it
becomes clear that the Higgs boson resonance favours small values of Mj1j2 . We see from the
rapidity difference that Higgs production takes place at large values of ∆yj1j2 .

At last, we present two observables that we did not expect to have a strong dependence on
the Higgs boson resonance cut in Figure 4.48: the transverse momenta of the two hardest jets.
We clearly see a strong tendency of the VBS subprocesses towards large transverse momenta of
both jets. In both setups, they completely dominate the cross section above pT,j1 > 400 GeV and
pT,j2 > 200 GeV. This feature of W+W− scattering might explain why the choice of our central
scale worked for other VBS processes whilst it is already for the EW process of O (

α6) too low
for W+W− scattering, especially in the Higgs setup. The presence of the Higgs boson resonance
does not only drag the invariant mass of the four-lepton system towards smaller values compared
to the other processes, but also the transverse momenta of the two hardest jets. This effect
is even more enhanced in the Higgs setup, explaining the large scale uncertainty of O (

αsα6).
However, it does not explain the large scale uncertainty of O (

α3
sα

4) in the QCD-induced process
since the Higgs boson resonance is not present in that case.
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Figure 4.47: Differential cross sections with respect to the invariant mass and with respect to
the rapidity separation of the two hardest jets for the physical VBS (top) and the physical Higgs
setup (bottom) compared to the respective modified setups with cut-out Higgs-boson resonance.
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Figure 4.48: Differential cross sections with respect to the invariant mass and with respect to
the rapidity separation of the two hardest jets for the physical VBS (top) and the physical Higgs
setup (bottom) compared to the respective modified setups with cut-out Higgs-boson resonance.
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5 Outlook: Attempts for an improved scale choice

After we ran into problems with our “traditional” scale choice of µF and µR, defined in equation
(268) as the geometric average of the two hardest jet transverse momenta and henceforth denoted
as “geometric scale” µgeom, we chose to briefly investigate another scale for its suitability in the
VBS and the Higgs setup for both the VBS signal and the QCD background. Our new try for
an appropriate scale choice is

µarith
F = µarith

R = 1
2 (pT,j1 + pT,j2) + 1

2
(
ET,W+ + ET,W−

)
, (308)

which was proposed in [146] for on-shell WW production associated with two jets. In the context
of our off-shell production, the transverse energy of the W bosons ET,W is calculated from our
physical final state via

ET,W =
√
p2

T,ℓν +M2
W, (309)

in which MW is the W mass, and pT,ℓν denotes taking the vectorial sum of the momenta of the
lepton and its corresponding neutrino and calculating the transverse part afterwards. Containing
the arithmetic mean of the transverse momenta of the two hardest jets, we denote this new scale
choice as “arithmetic scale”. Since there are two neutrinos in our final state, the two quantities
ET,W are not measurable, but factorisation and renormalisation scales are no physical quantities
either. With the arithmetic mean being always larger than the geometric mean and the second
term containing the transverse energies of the leptonic sector being always larger than MW (and
hence obviously larger than zero), we guarantee that µarith > µgeom not only after integrating
over the complete phase space, but for each event individually. We explicitly mention that the
scale used for the computations in this thesis with its geometric mean leads to relatively small
event-wise scales compared to an arithmetic mean, when the difference between the quantities
is quite large, i. e. we have a very hard hardest and a very soft second-hardest jet. This effect
became especially visible when we investigated the second-hardest jet in Figure 4.41 with its
unexpected large scale variation for small transverse momenta. It also explains the opposite
behaviour of the distributions of the transverse momenta of the leading and the one of the trailing
jet: If the transverse momentum of the leading jet is large and the one of the trailing jet is low,
the geometric mean tends to small values; if the transverse momentum of the trailing jet is also
large, the difference between the geometric and the arithmetic mean becomes smaller.

In our investigation, we had a closer look at eight partonic channels. Because of technical
reasons, Bbmc computes a partonic channel together with the partonic channel, in which the
generations of the quarks are interchanged, e. g. the channel uu → 4ℓuu together with cc → 4ℓcc.
In our discussion, we abbreviate them with the quarks from the first generation. We calculated the
quark-induced channels uu → uu + 4ℓ(+g) and ud → ud + 4ℓ(+g) at O (

α6), O (
αsα6), O (

α2
sα

4)
and O (

α3
sα

4) as well as the gluon-induced channels ug → ug + 4ℓ(+g) and dg → dg + 4ℓ(+g) at
O (

α2
sα

4) and O (
α3

sα
4). The two quark-induced channels are the largest channels at O (

α6), and
these two channels alone cumulate to approximately 50% of the integrated EW cross section in
both setups. In the QCD-induced process, they are still the largest quark-induced channels and
combining them with the two largest gluon-induced partonic channels accounts for approximately
60% of the cross section at O (

α2
sα

4). We hence expect that they also play major roles within the
arithmetic scale choice and verified this via a low-precision calculation of all LO contributions.
We summarise the results in Table 5.1 and justify that an examination of these few channels
should suffice for deciding the quality of a particular scale choice.

For the NLO investigation, we only included the QCD corrections since the scale dependence
of EW corrections follows the LO results. As stated repeatedly, the assignment of “QCD” and
“EW” corrections is ambiguous, and there is no one-to-one correspondence between an LO channel
and an NLO one, but we use the convention that adding a gluon to the final state compared to a
LO channel is the real QCD correction to this specific channel.
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σα
6 [ fb] σα

6
/σα

6
tot[%] σα

2
sα

4 [ fb] σα
2
sα

4
/σ

α2
sα

4

tot [%]
VBS setup, geometric scale
uu → uu 0.4021(2) 14.9 0.5248(2) 7.6
ud → ud 1.0611(3) 39.3 0.6026(2) 8.7
ug → ug – – 2.1625(7) 31.3
dg → dg – – 1.1412(4) 16.5

total 2.6988(3) 100 6.9115(9) 100
VBS setup, arithmetic scale
uu → uu 0.36183(9) 15.4 0.36717(7) 8.0
ud → ud 0.9590(4) 40.8 0.4211(1) 10.5
ug → ug – – 1.4158(3) 30.8
dg → dg – – 0.740(1) 16.1

total 2.348(6) 100 4.601(7) 100
Higgs setup, geometric scale
uu → uu 0.15475(7) 10.1 0.08332(4) 4.9
ud → ud 0.5995(1) 39.1 0.09907(4) 5.9
ug → ug – – 0.5437(3) 32.1
dg → dg – – 0.2824(1) 16.7

total 1.5322(2) 100 1.6923(3) 100
Higgs setup, arithmetic scale
uu → uu 0.136(2) 9.7 0.05759(5) 5.2
ud → ud 0.54(1) 38.5 0.0679(1) 6.1
ug → ug – – 0.3511(1) 31.7
dg → dg – – 0.181(2) 16.3

total 1.40(2) 100 1.109(5) 100

Table 5.1: Comparison of the absolute and relative contributions of selected major partonic
channels at LO in both setups for different scales. We normalise to the sum of all partonic
channels for a given order, except the bottom-induced contributions. The geometric scale is
defined in equation (268), and the arithmetic scale in equation (308).

In this chapter, we choose both factorisation and renormalisation scales to be equal (µF =
µR = µ) and vary them between µ = 2−4µcentralsc and µ = 24µcentralsc with a step width of 2,
i. e. we perform calculations for nine different scale choices. We show the results for the EW
process in Figure 5.1 and the results for the QCD-induced process in Figure 5.2. We mention
that we merged both quark- and both gluon-induced processes in the case of the QCD-induced
process, since the channels uu → 4ℓuu and ud → 4ℓud belong to different subclasses of processes
at O (

α6) (there is only Z exchange in the first one, but Z and W exchange in the second one),
but to the same one at O (

α2
sα

4) (with both t- and u-channel g exchange). Similarly, the two
channels ug → 4ℓug and dg → 4ℓdg are identical from the point of view of Feynman diagrams at
O (

α2
sα

4). Different effects from scale variations are hence only expected from their influence on
the PDFs and the minor effect of the QCD couplings being less important in the case of the u
quark compared to the d quark because of its larger electric charge.

In Figure 5.1 we can see clearly for the EW process that we are still at the rising flank of the
cross section for the main contributions and the geometric scale choice. Although we reach the
maximum of the cross section in the VBS setup between 2µcentralsc

geom and 4µcentralsc
geom , we get only a

mild dependence on the scale, as we noted earlier in Section 4.3.4. If we choose the arithmetic
scale instead, we are almost at the very maximum of the cross section. In the Higgs setup, both
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Figure 5.1: Integrated cross sections of the partonic channels uu → 4ℓuu(+g) (left) and ud →
4ℓud(+g) (right) at O (

α6) and O (
αsα6) in the VBS (top) and the Higgs setup (bottom) for

different scale choices. The shaded band indicates the integration error.

geometric and arithmetic scale choices are seemingly too low for the main contributions. The
scale dependence of the integrated cross section is, as we expected from previous results, larger
than in the VBS setup. For the geometric scale choice we reach the maximum at 16µcentralsc

geom .
Changing to the arithmetic scale results in a clear reduction of the scale uncertainty. Nevertheless,
the dominant partonic channel still favours an even higher scale choice and the optimum lies
around 4µcentralsc

arith . In case of the subdominant channel, the optimum is also between 4µcentralsc
arith

and 8µcentralsc
arith .

In Figure 5.2 we can see that the maxima of the NLO cross section are much more pronounced
in the case of the QCD-induced contribution than in the case of the EW contribution. We could
already infer this fact from the data of our classical seven-point scale variation of the geometric
scale. There are also larger differences between VBS and Higgs setup and some different behaviour
of the dominant quark- and the dominant gluon-induced channels. The latter effect is also not
unexpected, since quark and gluon PDFs behave differently under a change of the factorisation
scale. For the VBS setup, the dominant quark-induced contributions are spot-on at the maximum
within the central geometric scale. In contrast, the leading gluon-induced contributions are below
their peak value. Although the maximum is already reached at 2µcentralsc

geom , the steepness of the
curve leads to a large scale uncertainty. In the Higgs setup, the effect is even larger than in the
VBS setup. In taking only the dominant contributions into account, the quark-induced part
has a negative cross section at NLO already at the central geometric scale. The optimum for
the quark-induced contribution within the geometric scale frame is far beyond 16µcentralsc

geom . For
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Figure 5.2: Summed integrated cross sections of the two quark-induced partonic channels uu →
4ℓuu(+g) and ud → 4ℓud(+g) (left) and the two gluon-induced partonic channels ug → 4ℓug(+g)
and dg → 4ℓdg(+g) (right) at O (

α2
sα

4) and O (
α3

sα
4) in the VBS (top) and the Higgs setup

(bottom) for different scale choices.

the dominant gluon-induced channels the optimum would be between 4µcentralsc
geom and 8µcentralsc

geom ,
and, as we already saw in Section 4.3.4, already a slight variation of the scale results in a total
breakdown of the cross section. Within the arithmetic scale frame, we are past the maximum for
the dominant quark-induced contribution and exactly on the maximum for the gluon-induced
one for the VBS setup and, hence, in a region of mild scale dependence. Additionally, we are in
the region of small relative NLO QCD corrections. For the Higgs setup, the arithmetic scale
is passably suited for the gluon-induced contributions with the maximum of the cross section
being near 2µcentralsc

arith . We still mention that being on the falling flank of the cross section would
result in a much milder scale dependence than being on the rising one. The quark-induced part
of the cross section also requires a higher scale. The maximum, however, seems to be much more
flat than in the case of the gluon-induced part. We also want to remind that the quark-induced
contributions are much smaller than the gluon-induced ones at O (

α2
sα

4) in the Higgs setup and,
as we can infer from the dominant contributions, this will not change drastically at O (

α3
sα

4)
also when choosing a much higher scale (up to 16µcentralsc

arith ). We believe that optimising the scale
for the gluon-induced channels at O (

α3
sα

4) is of much more importance in finding a compromise
between the two types of processes than choosing an optimum for the quarks.

To summarise, choosing an optimal scale for all types of processes (quark-induced, gluon-
induced) for all orders (EW, QCD-induced) and all setups (VBS, Higgs) is impossible. The Higgs
setup demands much higher scales than the VBS setup. Especially, none of our investigated
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observables seems to be suited for a “natural” distinction between those two setups that could
be incorporated into a scale variable that naturally produces much larger scales for the Higgs
than for the VBS setup. Nevertheless, the scale that is proposed in this chapter seems to be a
very good scale for the VBS setup and pointing in the correct direction for the Higgs setup.
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6 Summary and conclusion

In this thesis, we calculated the integrated and differential cross sections of the process pp →
e+νeµ−ν̄µjj + X, shortly W+W− scattering, at LO and NLO using our in-house Monte Carlo
integrator Bbmc which itself uses the programs Recola and Collier to calculate scattering
amplitudes. For the calculation of NLO corrections, we used the CS dipole formalism and
implemented CS dipoles in Bbmc that were not necessary yet. We checked these new dipoles
both at the level of the integrated cross section, and the level of individual phase-space points
against the implementation in the Monte Carlo integrator MoCaNLO. Furthermore, we included
the method of resonance permutation into the framework of Bbmc to be able to handle the
Higgs-boson resonance.

Our specific interest was the study of vector boson scattering (VBS) in the process pp →
e+νeµ−ν̄µ(+X), which is a part of the EW contribution of O (

α6), while the main background
consists of QCD-induced processes of O (

α2
sα

4). Additional background contributions emerge
from non-VBS EW processes, the interference at O (

αsα5) and loop-induced contributions of
O (

α4
sα

4). We considered two different experimental setups. The first one used standard VBS
phase-space cuts (VBS setup); in the second one, we used cuts designed for Higgs boson searches
(Higgs setup). In both of our setups, we found that the EW non-VBS background and the
interference contribution are completely negligible.

We found that the cross section of W+W− scattering at O (
α6) is the largest cross section

of all massive VBS scattering processes, which are of the type pp → ℓℓννjj +X when we use a
comparable experimental setup. Compared to those other processes, we found many similarities:
The LO differential distributions show a clear preference for the signal process of O (

α6) towards
a large invariant mass and a large rapidity separation of the two final jets. Using these observables
to design the experimental setups, we get a relatively large signal-to-background ratio of 0.4 in the
standard VBS setup at LO, which is only exceeded by same-sign W+W+ scattering. In the Higgs
setup the ratio is even 0.9. For all VBS processes and hence also for W+W− scattering, there are
extremely large EW corrections of up to −50% in the tails of energy-correlated observables such
as transverse momenta. In contrast, the EW corrections of energy-uncorrelated observables such
as rapidities remained basically constant. As already studied before, the large EW corrections
can be traced back to the influence of large Sudakov logarithms.

In contrast to other VBS processes, W+W− has some unique features that we also studied
in this thesis and whose influences we could see in our results. The main difference to other
VBS processes is the presence of the Higgs-boson resonance inside our fiducial phase space.
Vector-boson fusion into an s-channel Higgs boson is a fundamental part of W+W− scattering in
particular: every partonic channel with VBS characteristics includes resonant Higgs production
and vice versa. In contrast to ZZ scattering, in which phase-space cuts can remove it, and the
other VBS processes, in which it is not present at all, there is no possibility for a physically
meaningful cut on this particular subprocess in our process. This led to a hybrid form of our
process, in which not only VBS, but also Higgs physics play a role, which manifested itself
in considerably smaller EW corrections at O (

α7) of only −11.4% for standard VBS cuts and
−6.7% for Higgs-search cuts. Partonic channels with VBS and Higgs-boson contributions had
significantly smaller NLO corrections than those without. To study the influence of the Higgs-
boson resonance further, we introduced an additional cut on the non-measurable four-lepton
invariant mass around the Higgs mass and modified our two setups. As expected, the fraction of
the Higgs-boson resonance contribution in the Higgs setup is larger than in the VBS setup with
60.8% compared to 26.8%, which explains the smaller EW correction. In our modified setups,
the EW corrections of O (

α7) amount to −13.2% in the VBS and −9.9% in the Higgs setup.
Apart from the main partonic channels, we also found a sizeable (positive) contribution of

photon-induced processes at O (
α7), which is not present for same-sign W+W+ scattering and

which we did not consider when calculating ZZ scattering. Omitting this contribution, the size
of the EW corrections in the case of the modified VBS setup is with −14.5% in the same region
as for the other VBS processes.
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Another difference to our previous investigations of VBS processes was the influence of the
renormalisation and factorisation scale. We used the standard scale choice of the geometric
average of the transverse momenta of the two hardest jets, that delivered good results in the past
and performed a seven-point scale variation. Unfortunately, the scale choice turned out to be
too low for W+W− scattering, especially in the Higgs setup. This leads to relatively large QCD
corrections of O (

αsα6) in the Higgs setup because of an interplay with the harsh jet veto, which
removes most of the (positive) contribution from real gluon emissions. The QCD corrections of
O (

αsα6) have been found to amount to −5.1% in the VBS and −23.0% in the Higgs setup. On
the level of partonic channels, we found large QCD corrections to the non-VBS EW background,
which emerged from additional emitted gluons that allowed the passing of the invariant-mass
cuts but remained irrelevant due to their small absolute size. For future research, we encourage
the calculation of the Higgs setup with a pT resummation of the third jet.

We also calculated the QCD background and its NLO corrections. The main contribution in
both setups emerged from gluon-induced processes, whose existence differentiates opposite-sign
W+W− scattering from same-sign W+W+ scattering. We found that the Higgs setup is very
efficient in cutting away most of the QCD background already at LO. The corrections of O (

α2
sα

5)
are very moderate with −8.2% in the VBS and −5.2% in the Higgs setup, and are, except for
the partonic channels with only s-channel gluon exchange, mainly EW corrections to the QCD
background. In these types of processes, the additional emission of gluons as QCD corrections to
the interference contributions allows, as in the case of O (

αsα6), the passing of the invariant-mass
cuts.

Unfortunately, the corrections of O (
α3

sα
4), i. e. the QCD corrections to the QCD background,

turned out to have unphysical properties due to our low scale choice. They amount to −30.3% in
the VBS and −77.7% in the Higgs setup. Adding the two corrections of O (

α2
sα

5) and O (
α3

sα
4),

we found corrections of more than −100%, and sometimes even more than −200% in several bins
of our differential cross sections, especially in observables correlated with transverse momentum.
This lead us to a brief investigation of another scale, the arithmetic mean of the transverse
momenta of the two hardest jets plus the arithmetic mean of the transverse momenta of the
reconstructed W bosons. The arithmetic scale choice produced better results in both setups for
a few selected channels, which are capable of most of the cross section, although we found that it
is still too small for the Higgs setup. For future research works, we recommend investigating
even higher scale choices.
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A A note on the Sudakov approximation
As we stated in Section 4.3.3 and Section 4.3.5, the Sudakov approximation works well for
estimating the EW corrections of O (

α7) for other VBS processes and gives a reasonable result
also for W+W− scattering. A main difference between the other processes and this one is,
however, as repeatedly mentioned the presence of the Higgs boson resonance which drags the
bulk of the cross section towards a region in which the Sudakov approximation is not applicable.

In the other processes, the leading logarithm is off by a few per cent. Compared to these results,
the NLO corrections in W+W− scattering seem to be very on point with the approximation. In
this appendix, we are showing that the extremely good estimate, especially in the VBS setup
with δLL,VBS = −11.9% versus δα7

VBS = −11.4%, is the result of a spurious cancellation. We were
pointed to this fact since the Sudakov approximation of the modified setup, in which we cut
the region of small centre-of-mass energies, should become more accurate, but actually becomes
worse with δLL,VBS modified = −15.8% versus δα7

VBS modified = −13.2%.
We recall from equation (296) the leading logarithm corrections:

δLL,i = − α

4π4CEW
W ln2 si

M2
W

+ α

4π2bEW
W ln si

M2
W
. (310)

We apply this formula on each bin i of the differential cross section with respect to the four-lepton
invariant mass. Due to the bin width, we assume a uniform distribution of M4ℓ leading to an
estimated value of

⟨s⟩i = 1
Mimax −Mimin

∫
dM4ℓ,i si(M4ℓ,i) (311)

= M2
imax +MimaxMimin +M2

imin
3 , (312)

where Mimax denotes the upper boundary of bin i and Mimin the lower boundary respectively.
We note that ⟨M4ℓ⟩i, which we used to compare with the literature, is trivially

⟨M4ℓ⟩i = Mimax +Mimin
2 . (313)

The variance of si is given by

Σ2
si

= 1
Mimax −Mimin

∫
dM4ℓ,i s

2
i (M4ℓ,i) − ⟨s⟩2

i (314)

= 4M4
imax −M3

imaxMimin − 6M2
imaxM

2
imin −MimaxM3

imin + 4M4
imin

45 . (315)

This variance propagates to an uncertainty of δLL,i as

ΣδLL,i
=
δLL,i − α

4π4CEW
W ln2 si

M2
W

si ln si

M2
W

Σsi . (316)

With this preparatory work, we can define

⟨s⟩ = 1
σ

∑
i

⟨s⟩i
( dσ

dM4ℓ

)
i
(Mimax −Mimin) (317)

and

σLL =
∑
i

( dσ
dM4ℓ

)
LO,i

(1 + δLL,i)(Mimax −Mimin). (318)

The leading logarithmic correction factor δLL is then

δLL = σLL
σLO

− 1. (319)



149

Setup δα
7 [%] δLL[%] ⟨M4ℓ⟩[ GeV]

√
⟨s⟩[ GeV]

VBS −11.4 −11.9 333.0 414.8
Higgs −6.7 −5.6 221.5 268.3

VBS, modified −13.2 −15.8 400.0 476.0
Higgs, modified −9.9 −12.1 332.5 384.2

Table A.1: Overview over NLO EW corrections of O (
α7) versus the corrections from the leading-

logarithmic Sudakov approximation as well as average centre-of-mass energy and the square root
of the average centre-of-mass energy squared in the two investigated setups and their modification
according to Section 4.3.5.
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Figure A.1: Differential cross sections in the four-lepton invariant mass for the VBS (left) and the
Higgs setup (right) for the LO EW contribution, the NLO EW corrections to the EW contribution
and the LL approximation.

An overview of the Sudakov approximation compared with the full NLO results is given in
Table A.1.

In Figure A.1, we show the differential distributions in the (not measurable) M4ℓ. Apart from
the first bin with M4ℓ < 100 GeV with a negligible contribution, we recognise that the Sudakov
approximation underestimates the NLO corrections for M4ℓ < 300 GeV and overestimates them
at higher values in both setups. We remark that the region, in which the Sudakov approximation
underestimates the corrections, is the part of the phase space in which the approximation is not
applicable, but it is also the region of the largest contribution. The very good results of the
approximation in the VBS setup of W+W− scattering are just a coincidental result of these two
regions cancelling out each other; in the Higgs setup, the region of small four-lepton invariant
mass dominates. Cutting away the large contributions around the Higgs boson resonance results,
the approximation in the VBS setup becomes worse despite cutting away the non-applicable
region.
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