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1 Introduction

Since the first mobile robots have been designed during the late 60’s, a lot of research and

technological development has been undertaken in the field of intelligent vehicles. Today there

exists a variety of different application areas in which mobile robots are successfully utilized.

The biggest field is the transportation of materials in the industrial production sector, which

is predominantly handled by self-contained mobile robots, often called autonomous transport

systems. But also for space exploration mobile robots are successfully applied to investigate

planetary surfaces, e.g., on the Mars (http://marsrovers.jpl.nasa.gov). Besides the industrial

applications mobile robots also found their way into the private sector like, e.g., vacuum

cleaning robots or lawn mowing robots, which accomplish their tasks mostly autonomously.

As those single-robot systems proved their usefulness in various areas, one reasonably expects

that for various tasks the utilization of multiple cooperating robots can significantly improve

the overall efficiency. Naturally, the realization of the more complex multi-vehicle systems

induces a variety of challenging problems that need to be considered and solved before a

lucrative and robust application can be possible.

The investigation of distributed robotic systems started in the late 80’s, when researchers

began to focus on systems consisting of multiple mobile robots. One of the first works in this

field describes the multi-robot architecture ACTRESS (ACTor-based Robot and Equipment

Synthetic System), which consists of three robots and three workstations [AMI89, AOI+91].

Within the testbed the authors evaluated algorithms for specific box-pushing tasks as well as

collision avoidance based on dynamic path planning.

Since these early works, the number of publications concerning multi-vehicle systems is

steadily growing. One reason for this is the development and the standardization of wireless

communication technologies, which are significant for the mobility of distributed systems.

Many fields of robotics research, like for example space exploration [DB08] or operations in

dangerous environments [KKP+04], can benefit from the application of groups of cooperating

robots. Without risking human lives, the robots can access contaminated regions and build up

a sensor network that collects important informations or they even might interact with their

environment. Further they can be used to provide a mobile communication infrastructure in

environments where usual communication systems (e.g., via satellites) are not available. In
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1. INTRODUCTION

[DBS05] a requirement analysis for the cooperation between humans and multiple robots that

is based on questionnaires and personal interviews with professionals in the field of search

and rescue, has been presented. Besides efficient approaches for the interaction between

humans and robots there is a certain demand for autonomous functionalities, where robots

accomplish tasks without the need for human intervention. In this monograph we focus on

such autonomous functionalities by designing and verifying low-level control algorithms for

the motion coordination in systems of multiple networked vehicles.

Depending on the application, a group composed of simple mobile robots often can solve

tasks more efficient than it is possible for a single mobile robot even if it is well-equipped.

Moreover a group of cooperating robots provides redundancy, which makes the system more

robust against failures. A recent overview about directions and advances in multi-robot

systems was given in [APP02]. Even though the class of mobile robots among others also

includes aerial vehicles, underwater vehicles, spacecraft, as well as legged and chained ground

vehicles, this monograph focuses mainly on wheeled ground vehicles and especially on robots

of the car-like type. In contrast to many works in this field we attach great importance

to the practicability of the developed methods. Thus, besides mathematical analyzes and

simulation experiments, the main results of this thesis are also verified within laboratory

hardware experiments with real mobile robots.

Today there exists a huge variety of different control architectures for multi-robot systems

that can be classified into two groups. On the one hand we have the centralized systems

in which a core unit is responsible for the overall coordination of the system. It manages

environmental data received from the mobile nodes and uses this global information to gen-

erate new commands for them. In systems with many nodes a lot of information has to be

processed and accordingly the computational resources of the central unit often have to be

much higher compared to those of the other units. On the other hand there are the decen-

tralized systems in which the resources are typically evenly distributed among the robots of

the group. Each robot collects local information about its own state and the environment,

which might be shared with other vehicles within a certain neighborhood often defined by

the available communication range. As a result the usually global mission goal needs to be

attained by robots that in principle rely on local information.

A general conclusion about which of the two control architectures is more efficient cannot

be drawn since both structures have advantages and disadvantages. In centralized systems for

example it is comparatively easy to optimize the performance of a task (e.g., total time) due to

the availability of global information. Also failures of individual robots can be compensated

without much difficulty. Nevertheless, a fault in the core unit could result in a complete

2



Figure 1.1: Motivating scenario 1: snow shoveling on airfields. Formations of autonomous snow-
plows remove the snow from the runways and service roads.

breakdown of the system. Due to the distributed nature, decentralized systems generally

can cope with the breakdown of several nodes. Further, these systems are better scalable as

the amount of information for the individual vehicle does not increase with a higher number

of robots. However, it is often difficult to define distributed control laws that efficiently

attain the global mission goal. Thus, the choice of the architecture mainly depends on the

requirements of the underlying application. Note that in practice most systems are hybrid,

i.e., they are neither purely centralized nor decentralized.

An important field when dealing with cooperative multi-vehicle systems is the coordination

of motions among the robots. During a mission, various vehicles usually have to maintain

a certain predefined relative configuration. To solve this cooperative control problem, the

control of each individual vehicle needs to be implemented adequately, i.e., one has to design

control laws that regulate the robots’ actuators in order to fulfill the collective task. The two

realistic application scenarios for cooperative groups of wheeled ground vehicles, described in

the following, motivate the algorithms developed in the context of this work.

The first scenario is concerned with the problem of snow shoveling on the airfield of large

airports. Today, the snow is typically removed from the runways and roads by utilizing a

fleet of human-driven snowplows. Recent developments in the field of autonomous vehicles

theoretically enable the application of autonomous snowplow robots for the sweeping task.

A control center might coordinate the task by grouping the vehicles into formations and

by providing individual plans about which roads will be cleaned next. Figure 1.1 shows

3



1. INTRODUCTION

Figure 1.2: Motivating scenario 2: rendezvousing in networks of distributed mobile robots. The
vehicles gather (rendezvous) by means of local control laws.

an aerial photo of a part of Frankfurt International airport, one of the biggest airports

in Europe. It is not difficult to see that the creation of an optimal sweeping schedule is

a complex task. The number of possibilities is immense since the snowplow formations

are allowed to divide and unite arbitrarily during the shoveling process. Assuming that

grouping information and a sequence of concurrent road segments is provided by the control

center it remains to coordinate the motions among the robots. This includes trajectory

planning for the coalitions as well as for the individual vehicles while enabling the possibility

to divide and unite the formations. Further it is desirable that the tracking control for the

motion execution guarantees optimal breadthwise coverage of the vehicles’ shovels on the

road. Especially during sharp turns, the center of the shovel significantly deviates from

the snowplow’s barycenter and therefore the application of available tracking controllers for

car-like vehicles results in non-optimal coverage of the road.

In the second scenario a group of spatially distributed vehicles are supposed to gather

within a certain area. Due to the spatial distance, a mobile robot is usually neither within the

communication range nor within the sensing range of all of the other nodes as it is illustrated

in Figure 1.2. Thus it makes sense to solve the task by means of decentralized algorithms that

exclusively rely on the information from vehicles in range. Besides the robustness against

vehicle failures, a decentralized approach allows the implementation within relatively large

groups consisting of several hundreds of robots without the need for a significantly higher

amount of individual computational power. The gathering task, which is often referred to as

multi-robot rendezvous can be beneficial in a variety of applications. Consider for example

a group of mobile robots that autonomously fan out in order to collect soil samples or other

objects of interest. During the mission the collecting robots might need to come together

with a container vehicle or with a robot that carries chemical analysis devices. Further it is

desired to gather together the robots at the end of the mission in order to ease their pickup.
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1.1 Contribution

Other application scenarios that have been dealt with in the context of cooperating ve-

hicles include but are not limited to traffic coordination [KGCC+08], agricultural robots

[ABLR+06], object manipulation [LS05, LMPS05, Sch04], mutual localization [GS03, RB02],

as well as exploration and mapping problems [BMSS05, MFP04]. An overview of applications

focused especially on cooperative control of multi-vehicle systems can be found in a recent

survey presented in [Mur07].

1.1 Contribution

This work focuses on coordination methods and the control of motion in groups of wheeled

mobile robots, in particular of the car-like type. We shortly introduce notions of Lyapunov

stability for dynamical systems with discontinuous right-hand side and reformulate existing

theorems such that they allow stability analysis with respect to part of the state variables.

After the introduction of various differential models for wheeled mobile robots we use these

tools to analyze the stability of position stabilizing controllers for car-like robots. The main

contribution of this work is threefold.

Formation motion planning

We introduce several enhancements to a motion planning approach for formations of non-

holonomic mobile robots. First, we enable the approach to handle a time-varying reference

speed without affecting the relative position coordinates. Second, with the enhanced version

it is now possible to adjust the formation’s shape during reference trajectory segments with

continuously differentiable curvature in contrast to the need for a constant curvature in the

original approach. Third, we introduce functions that allow adjustments of the formation’s

shape without generating undesired discontinuities in the speed and steering profiles of the

vehicles. Finally, all of the enhancements are demonstrated in various simulations.

Applied motion coordination

The scenario of snow shoveling on an airfield by utilizing multiple formations of autonomous

snowplows is discussed. We propose solutions to the subproblems of motion planning for

the formations and tracking control for the individual vehicles. For the formations’ leading

vehicles, continuous reference trajectories are generated from a sequence of points. The

corresponding paths are composed of straight, circular, and clothoid curve segments. Further,

the developed approach can cope with changing formation shapes as well as with vehicles that

leave or join a formation. Besides that, the derived tracking controller is designed in order to

5



1. INTRODUCTION

guarantee optimal breadthwise coverage of the roads to clean. While all situations that might

occur have been tested in a simulation environment, we also verified the tracking controller

in real robot hardware experiments.

Multi-robot rendezvous

The rendezvous problem for groups of car-like vehicles, which has not yet been addressed in

literature, is analyzed. We propose distributed and provably stable control systems that drive

all vehicles to a common position in the plane. Besides vehicles with free steering, for which

we developed a stabilizing discontinuous control law, we also consider the more realistic case

of car-like robots with bounded steering. In this case we combine a discontinuous control

law with a specific switching logic that drives certain vehicles out of undesired equilibria via

an orientation adjustment maneuver. The convergence properties of both approaches are

analyzed by utilizing Lyapunov based techniques. Furthermore, they are evaluated within

various simulation experiments, while the bounded steering case is also verified within labo-

ratory hardware experiments. Finally we introduce a modification to the bounded steering

system that allows concurrent orientation adjustment maneuvers among neighboring vehicles.

Based on extensive simulation results we compare the performance of the modified system

with the original one.

1.2 Outline

The remainder of this monograph is organized as follows. Chapter 2 lays the foundation for

the stability analysis performed for mobile robot control systems throughout the following

chapters. First we introduce Filippov’s concept of solutions for dynamical systems with

discontinuous right-hand side and the corresponding notion of Lyapunov based stability.

After recapitulating the concept of stability with respect to a part of the state variables

we reformulate the stated results in order to cope with partial stability of discontinuous

dynamical systems.

Chapter 3 starts with an overview of several differential models for wheeled mobile robots.

After this, we propose two discontinuous feedback controllers for the position stabilization of

car-like robots, whose stability properties are analyzed by applying the methods presented in

Chapter 2.

Chapter 4 deals with the planning of motion for formations of nonholonomic mobile ro-

bots. After a survey of current research in this area, we recapitulate in detail the concept

of a given formation motion planning approach that maintains the formation in curvilinear

6



1.2 Outline

coordinates and also incorporates predefined adjustments of the formation’s shape. Then,

we propose a variety of enhancements that eliminate different weaknesses in the presented

planning method. These improvements result in the relaxation of certain assumptions made

on the reference trajectory and further they guarantee continuous speed and curvature pro-

files for all vehicles even during changes of the formation’s shape. Finally the proposed

enhancements are demonstrated in various simulation experiments.

The problem of snow shoveling on airports by applying formations of autonomous snow-

plows is discussed in Chapter 5. We give an overview of related work before we describe the

task specific concept of a centrally supervised system architecture with a hierarchical struc-

ture on the motion coordination level. Based on the idea of the motion planning approach

considered in the previous chapter, reference trajectories are generated for every formation

and thereupon also for each individual vehicle. Further, we introduce a dynamic feedback

controller in order to track the generated trajectories with optimal breadthwise coverage of

the shovel on the roads. After this, we demonstrate the motion related capabilities of the

system in a simulated environment and present results from the verification of the controller

in laboratory hardware experiments with two mobile robots.

Chapter 6 examines the rendezvous problem for groups of car-like mobile robots. First,

we introduce a graph-based representation of the interaction topology in multi-agent systems

followed by the formulation of the problem statement. After providing a detailed survey on

multi-agent consensus and the rendezvous problem for networked multi-vehicle systems as a

special case, we propose a local control law for the rendezvous of car-like robots with free

steering and prove its convergence by applying the stability theorems stated in Chapter 2.

Then, we focus on the rendezvous problem for groups of car-like vehicles with limited steering.

Starting from a local control law as in the free steering case, we introduce orientation ad-

justment maneuvers that drive certain vehicles out of undesired equilibria. After proving the

overall system’s convergence we discuss the problem of terminating the rendezvous process in

a distributed manner. While both proposed control systems are demonstrated in simulated

scenarios, the bounded steering system is also verified in multiple hardware experiments.

Finally, we propose an extension to the bounded steering system that enables concurrent ori-

entation adjustment maneuvers among neighboring vehicles without damaging the system’s

convergence properties. The performance of the extended approach is statistically compared

to that of the original one using the results of extensive simulation runs.

The main results presented throughout this thesis are summarized in Chapter 7. Based on

this, we give concluding remarks and point out open issues and possible directions for future

work.
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2 Stability of nonlinear dynamical systems

In the literature there are several well established concepts of stability for dynamical sys-

tems. In this chapter we review the Lyapunov stability methods for discontinuous dynamical

systems and the notion of partial stability for continuous systems. Then, by combining both

concepts we formulate the corresponding theorems that are able to deal with partial stability

in discontinuous systems.

2.1 Introduction

Consider the dynamical system given by

ẋ(t) = f
(
x(t)

)
, (2.1)

where f : Rn → Rn, n ∈ N\{0} is a locally Lipschitz continuous vector field. Since the right-

hand side of (2.1) exclusively depends on the state x, the system is referred to as autonomous.

The point xe ∈ Rn is an equilibrium of (2.1) if 0 = f(xe). For convenience let us assume that

the equilibrium is located at the origin of Rn, i.e., xe = 0. This can be done without loss of

generality since any equilibrium can be shifted to the origin by a simple change of variables.

Definition 2.1.1. [Kha02] The equilibrium point xe = 0 of (2.1) is

• (Lyapunov) stable if, for each ε > 0, there is a δ = δ(ε) > 0 such that

||x(0)|| < δ ⇒ ||x(t)|| < ε, ∀t ≥ 0.

• unstable if it is not stable.

• asymptotically stable if it is stable and δ can be chosen such that

||x(0)|| < δ ⇒ lim
t→∞

x(t) = 0.

The stability of xe can be analyzed with the aid of the well known stability theorem of

Lyapunov also referred to as Lyapunovs direct method as well as with LaSalle’s invariance

principle (see, e.g., [Kha02]). The theorems can be utilized to prove Lyapunov stability

and asymptotic stability of nonlinear dynamical systems, if one is able to find a suitable

9



2. STABILITY OF NONLINEAR DYNAMICAL SYSTEMS

Lyapunov function candidate. For system (2.1) a classical solution on an interval [0, t1] is a

continuously differentiable map x : [0, t1]→ Rn that satisfies (2.1). The existence of classical

solutions is guaranteed by the continuity of the vector field. However, in case the vector field

is discontinuous, classical solutions of (2.1) might not exist.

In the remainder of this chapter we present generalized versions of Lyapunov’s stability

theorem and LaSalle’s invariance principle that are capable of dealing with an alternative

notion of solutions especially developed for dynamical systems with discontinuous right-hand

side (Section 2.2). Further we introduce definitions for stability of dynamical systems with

respect to part of the state variables as well as a related Lyapunov-like stability theorem in

Section 2.3. Finally in Section 2.4 we reformulate Lyapunov’s stability theorem and LaSalle’s

invariance principle in order to be capable of handling partial stability of discontinuous dy-

namical systems.

2.2 Dynamical systems with discontinuous right-hand side

There exist different alternative ways to relax the classical notion of solutions in order to

consider a discontinuous vector field (cf. [Cor08]). One such solution is the Carathéodory

solution that follows the direction specified by the vector field except for a set of time instants

that has measure zero. In other words, Carathéodory solutions are absolutely continuous

functions that solve the integral version of (2.1) given by

x(t) = x(0) +
∫ t

0
f
(
x(s)

)
ds.

Relaxing the value of the vector field on a set of times of measure zero like in the notion

of Carathéodory solutions is not always sufficient to guarantee that such solutions exist.

Its value can be subject to significant changes arbitrarily close to a given point due to the

discontinuity of the vector field, which might not allow the construction of a Carathéodory

solution.

To get around this problem one can consider Filippov solutions [Fil88] that follow the idea

of looking at a neighborhood of each point instead of focusing on the value of the vector field

at individual points. To formalize this let P(Rn) be the collection of subsets of Rn and let

B(x, δ) be the open ball centered at x with radius δ > 0. Now for f : Rn → Rn we define the

Filippov set-valued map K[f ](x) : Rn → P(Rn) by

K[f ](x) =
⋂
δ>0

⋂
µ(S)=0

co
{
f
(
B(x, δ)\S

)}
, (2.2)

10



2.2 Dynamical systems with discontinuous right-hand side

where co denotes the convex closure and µ(S) denotes the Lebesgue measure of the set S.

An alternative definition that is equivalent to (2.2) is given in [PS87]: There exists Sf ⊆
Rn, µ(Sf ) = 0 such that for all S ⊆ Rn, µ(S) = 0

K[f ](x) = co{lim f(xi) : xi → x, xi 6∈ Sf ∪ S}.

Note that by the definition of the set-valued map, the value of K[f ] at a point x is independent

of the value of the vector field f at x. To deal with the discontinuities of the vector field f

we now replace the differential equation (2.1) by the differential inclusion

ẋ(t) ∈ K[f ](x(t)). (2.3)

A Filippov solution of (2.1) on [0, t1] is an absolutely continuous map x : [0, t1] → Rn that

satisfies (2.3) for almost all t ∈ [0, t1]. In [PS87] a calculus has been developed for computing

Filippov’s differential inclusion (2.3). We summarize some of the properties in the following

proposition.

Proposition 2.2.1.

(i) If f : Rn → Rn is continuous, then K[f ](x) = {f(x)}.

(ii) If f, g : Rn → Rn are locally bounded, then K[f + g](x) ⊆ K[f ](x) + K[g](x). If f is
also continuous, then K[f + g](x) = f(x) +K[g](x).

(iii) If g : Rn → Rn×m is continuous and f : Rn → Rm is locally bounded, then K[gf ](x) =
g(x)K[f ](x), where gf(x) := g(x)f(x).

Before we can continue towards the statement of the stability theorem we need the defi-

nitions of the regularity of a function, the distance between two nonempty closed sets, semi-

continuity of multi-valued functions, the generalized gradient, and the set-valued derivative

which are stated in the following.

Definition 2.2.2. [Cla83] A function V : Rn → R is called regular at x ∈ Rn if for
all v ∈ Rn its right directional derivative V ′+(x, v) at x in the direction of v exists, and
V ′+(x, v) = V o(x, v). Here, the right directional derivative is defined as

V ′+(x, v) = lim
h→0+

V (x+ hv)− V (x)
h

,

and V o(x, v) denotes the Clarke upper generalized derivative of V at x in the direction of v
that is defined as

V o(x, v) = lim sup
y→x,h→0+

V (y + hv)− V (y)
h

.

The function V is called regular if it is regular at each x ∈ Rn.

11



2. STABILITY OF NONLINEAR DYNAMICAL SYSTEMS

It is easy to see that a function that is continuously differentiable at x is also regular at x.

Definition 2.2.3. [Fil88] The distance between two nonempty closed sets A and B in
a metric space, in particular in Rn, is characterized by

β(A,B) = sup
a∈A

dist(a,B),

β(B,A) = sup
b∈B

dist(b, A),

α(A,B) = max{β(A,B), β(B,A)},

where dist(x, Y ) corresponds to the distance between point x and the closest point y ∈ Y in
the metric space.

Definition 2.2.4. [Fil88] A set-valued function K(p) is called upper semi-continuous

(with respect to the inclusion) at the point p if β(K(p′),K(p)) → 0 as p′ → p. Further, the
function K(p) is called upper semi-continuous if it is upper semi-continuous at each point of
its domain.

Definition 2.2.5. [Cla83] Let V : Rn → R be a locally Lipschitz function, and let Ωf ⊂ Rn

denote the set of points where V fails to be differentiable. The Clarke generalized gradient

∂V : Rn → P(Rn) of V is defined by

∂V (x) = co{ lim
i→∞
∇V (xi) : xi → x, xi 6∈ Ωf}.

It is easy to see that ∂V (x) = {∇V (x)} on the whole domain if V (x) is everywhere

differentiable. With the definition of the Clarke generalized gradient, we can now define the

set-valued derivative.

Definition 2.2.6. [BC99] The set-valued derivative of V with respect to the set-

valued map K is defined as

V̇ K[f ](x) = {a ∈ R : ∃v ∈ K[f ](x), p ∈ ∂V (x) such that p · v = a}.

Note that if V (x) is everywhere differentiable, the corresponding set-valued derivative can

be written as

V̇ K[f ](x) = ∇V (x) ·K[f ](x).

The set-valued derivative allows to study how the function V evolves along the solutions of a

differential inclusion without having to explicitly obtain the solutions. For this purpose the

following result from [BC99] can be applied.

Lemma 2.2.7. Let x : [0, t1] → Rn be a solution of the differential inclusion (2.3), and let
V : Rn → R be locally Lipschitz and regular. Then d

dtV
(
x(t)

)
exists almost everywhere and

d

dt
V
(
x(t)

)
∈ V̇ K[f ]

(
x(t)

)
almost everywhere.
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2.2 Dynamical systems with discontinuous right-hand side

Proof. The proof can be found in [BC99, Lemma 1].

Now, with the aid of Lemma 2.2.7 we can formulate a generalization of Lyapunov’s stability

theorem for systems of the form (2.3). The following theorem originally appeared in [BC99].

Theorem 2.2.8. Let K : Rn → P(Rn)\{∅} be an upper semi-continuous multivalued map
with compact, convex values. Let xe be an equilibrium of the differential inclusion (2.3), i.e.,
0 ∈ K[f ](xe), and let D ⊆ Rn be an open and connected set with xe ∈ D. Furthermore, let
the function V : Rn → R be locally Lipschitz and regular on D as well as V (xe) = 0, and
V (x) > 0 for x ∈ D\{xe}.

If max V̇ K[f ](x) ≤ 0 for each x ∈ D, then xe is a stable equilibrium of (2.3) in Lyapunov’s

sense. If further max V̇ K[f ](x) < 0 for each x ∈ D\{xe}, then xe is an asymptotically stable
equilibrium of (2.3).

This kind of stability is often referred to as strong stability, which means that stability

holds for all solutions starting from each initial condition. Weak stability in contrast means

that stability holds for at least one solution starting from each initial condition.

In many situations it is difficult or even impossible to find a Lyapunov function candidate

whose derivative is strictly negative definite even if the corresponding system is asymptotically

stable. If this is the case, it might be possible to apply a version of La Salle’s invariance

principle that was extended in order to deal with discontinuous dynamical systems. Similar

to the continuous case this principle states the convergence of solutions towards a specific set

under certain conditions and often allows to conclude asymptotic stability.

Theorem 2.2.9. Let K : Rn → P(Rn)\{∅} be an upper semi-continuous multivalued map
with compact, convex values and let V : Rn → R be a locally Lipschitz continuous and
regular function. Let S ⊂ Rn be compact and strongly invariant for (2.3) and assume that
max V̇ K[f ](y) ≤ 0 for each y ∈ S. Then all solutions x : [0,∞) → Rn of (2.3) starting in S

converge to the largest weakly invariant set M contained in

S ∩ {y ∈ Rn : 0 ∈ V̇ K[f ](y)},

where {·} denotes the closure of the set.

Proof. The proof can be found in [BC99, Theorem 3].

Note that a dynamical system with discontinuous right-hand side can also be analyzed

in the framework of switching systems [Lib03], where the switching is state-dependent and

without impulse effects. For such systems the state space is partitioned into operation regions

whose individual vector field can be described by a continuous-time dynamical model. With

a continuously differentiable common Lyapunov function for all operation regions one can

13



2. STABILITY OF NONLINEAR DYNAMICAL SYSTEMS

deduce stability and asymptotic stability of certain equilibria without considering solutions

in the Filippov sense. Nevertheless, LaSalle-like invariance principles for switching systems

like for example in [GST08, MAG06, HLAS05] usually depend on restrictions of the switching

signal (e.g., persistent dwell-time) that in general do not hold for the control systems discussed

in this monograph.

2.3 Partial stability of continuous systems

For some systems it makes sense to look at stability with respect to part of the state variables

[Vor98]. This is, e.g., the case for a car-like robot in the plane that should be stabilized to a

specific point (xd, yd)T while its final orientation is considered irrelevant (cf. Section 3.2).

The following definitions and the corollary on sufficient conditions for partial stability were

taken from [CH02].

Definition 2.3.1. Consider the nonlinear dynamical system

ẋ1(t) = f1

(
x1(t), x2(t)

)
, x1(0) = x10, (2.4)

ẋ2(t) = f2

(
x1(t), x2(t)

)
, x2(0) = x20 (2.5)

where x1 ∈ D ⊆ Rn1, x2 ∈ Rn2, 0 ∈ D, n1, n2 ∈ N\{0}, f1 : D× Rn2 → Rn1 is such that for
every x2 ∈ Rn2, f1(0, x2) = 0 and f1(·, x2) is locally Lipschitz in x1, f2 : D × Rn2 → Rn2 is
such that for every x1 ∈ D, f2(x1, ·) is locally Lipschitz in x2. Additionally we assume that
there exists a unique solution

(
x1(t), x2(t)

)
to (2.4), (2.5) that is defined for all t > 0.

• The nonlinear dynamical system (2.4), (2.5) is called Lyapunov stable with respect

to x1 if, for every ε > 0 and x20 ∈ Rn2, there exists a δ(ε, x20) > 0 such that ||x10|| < δ

implies that ||x1(t)|| < ε for all t ≥ 0.

• The nonlinear dynamical system (2.4), (2.5) is called Lyapunov stable with respect

to x1 uniformly in x20 if, for every ε > 0, there exists a δ(ε) > 0 such that ||x10|| < δ

implies that ||x1(t)|| < ε for all t ≥ 0 and for all x20 ∈ Rn2.

• The nonlinear dynamical system (2.4), (2.5) is called asymptotically stable with

respect to x1 if it is Lyapunov stable with respect to x1, and for every x20 ∈ Rn2, there
exists a δ(x20) > 0 such that ||x10|| < δ implies that limt→∞ x1(t) = 0.

• The nonlinear dynamical system (2.4), (2.5) is called asymptotically stable with

respect to x1 uniformly in x20 if it is Lyapunov stable with respect to x1 uniformly
in x20, and there exists a δ > 0 such that ||x10|| < δ implies that limt→∞ x1(t) = 0 for
all x20 ∈ Rn2.

14



2.4 Partial stability of discontinuous systems

Note that w.l.o.g. the definition considers x1 = 0 to be the unique partial equilibrium

of system (2.4), (2.5). Further note that there is a difference between the partial stability

definitions given in Definition 2.3.1, where x20 can be arbitrary compared to the more popular

definitions of partial stability given in [Vor98], which require that both initial conditions x10

and x20 lie in a neighborhood of the origin.

The following corollary gives sufficient conditions for partial stability as defined in Defini-

tion 2.3.1 that are similar to those from Lyapunov’s direct method. Recall that a continuous

function γ : [0, a)→ [0,∞] is said to belong to class K if it is strictly increasing and γ(0) = 0.

Corollary 2.3.2. Consider the nonlinear dynamical system given by (2.4), (2.5) and let
V ′(x1) denote the Fréchet derivative of V at x1. If there exists a continuously differentiable,
positive-definite function V : Rn1 → R such that

V ′(x1)f1(x1, x2) ≤ 0

for all (x1, x2) ∈ D × Rn2, then the nonlinear dynamical system is Lyapunov stable with
respect to x1 uniformly in x20. If, in addition, there exists a class K function γ(·) such that

V ′(x1)f1(x1, x2) ≤ −γ(||x1||)

for all (x1, x2) ∈ D×Rn2, then the nonlinear dynamical system is asymptotically stable with
respect to x1 uniformly in x20.

Proof. The proof can be found in [CH02] and the corresponding erratum in [CH03].

Note that by setting n1 = n and n2 = 0 we obtain the special case of nonlinear autonomous

systems of the form (2.1). Then, Lyapunov/asymptotic stability with respect to x1 and

Lyapunov/asymptotic stability with respect to x1 uniformly in x20 are equivalent to the

classical Lyapunov/asymptotic stability of nonlinear autonomous systems. In case the partial

derivatives of V are continuous the Fréchet derivative of V is equal to the gradient ∇V .

Further information on partial stability and control of dynamical systems can be found in

[CH02, Vor98, Vor05].

2.4 Partial stability of discontinuous systems

In this section we incorporate the definitions of partial stability (Definition 2.3.1) into the

stability theorem 2.2.8 and the invariance principle 2.2.9 for discontinuous dynamical systems.

For this we consider the differential inclusions

ẋ1(t) ∈ K1

(
x1(t), x2(t)

)
, x1(0) = x10, (2.6)

ẋ2(t) ∈ K2

(
x1(t), x2(t)

)
, x2(0) = x20 (2.7)
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2. STABILITY OF NONLINEAR DYNAMICAL SYSTEMS

where x1 ∈ Rn1 , x2 ∈ Rn2 , n1, n2 ∈ N\{0}, and Ki : Rn1 ×Rn2 → P(Rni)\{∅}, i ∈ {1, 2}, are

upper semi-continuous multivalued maps with compact, convex values.

Definition 2.4.1. Let V : Rn1 → R be locally Lipschitz and regular. We define the set-

valued derivative of V with respect to the set-valued map K1 as

V̇ K1(x1, x2) = {a ∈ R : ∃v ∈ K1(x1, x2), p ∈ ∂V (x1) such that p · v = a}.

The following result is a direct consequence of Lemma 2.2.7 since all properties of a solution

x(t) needed for the proof (cf. [BC99]) also hold for the semi-trajectory x1(t).

Lemma 2.4.2. Let x : [0, t1] → Rn1 × Rn2 , x(t) =
(
x1(t), x2(t)

)
be a solution of the dy-

namical system (2.6),(2.7). Further, let V : Rn1 → R be locally Lipschitz and regular. Then
d
dtV

(
x1(t)

)
exists almost everywhere and

d

dt
V
(
x1(t)

)
∈ V̇ K1

(
x1(t), x2(t)

)
almost everywhere.

Note that even though V is a function of x1(t), its time-derivative usually is a function of

the full state x(t). With respect to Definition 2.3.1 we can now use Lemma 2.4.2 to formulate

the following stability result which generalizes the first part of Theorem 2.2.8.

Theorem 2.4.3. Let K1 : Rn1 → P(Rn1)\{∅} be an upper semi-continuous multivalued map
with compact, convex values. Let xe be a partial equilibrium of the differential inclusion
(2.6), i.e., 0 ∈ K1(xe, x2) for all x2 ∈ Rn2, and let D ⊆ Rn1 be an open and connected
set with xe ∈ D. Furthermore, let V : Rn1 → R be locally Lipschitz and regular on D

as well as V (xe) = 0, and V (x1) > 0 for x1 ∈ D\{xe}. If max V̇ K1(x1, x2) ≤ 0 for all
(x1, x2) ∈ D × Rn2, then the partial equilibrium xe of system (2.6),(2.7) is Lyapunov stable
with respect to x1 uniformly in x20.

Finally we reformulate the invariance principle for discontinuous systems stated in Theo-

rem 2.2.9 such that it can also deal with the semi-trajectories of a solution.

Theorem 2.4.4. Let K1 : Rn1 → P(Rn1)\{∅} be an upper semi-continuous multivalued
map with compact, convex values and let V : Rn1 → R be a locally Lipschitz continuous
and regular function. Let S ⊂ Rn1 be compact and strongly invariant for (2.6) and assume
that max V̇ K1(y1, y2) ≤ 0 for all (y1, y2) ∈ S × Rn2. Then the semi-trajectories x1(t) of
all solutions x(t) =

(
x1(t), x2(t)

)
of system (2.6),(2.7) with x10 ∈ S converge to the largest

weakly invariant set M contained in

S ∩ {y1 ∈ Rn1 : 0 ∈ V̇ K1(y1, y2)}.

Proof. The proof is along the lines of the proof of Theorem 3 in [BC99]. We just have to
replace solutions of the system x(t) by the corresponding semi-trajectory x1(t).
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3 Modeling and control of wheeled mobile

robots

Today, basic control problems for a single wheeled mobile robot are considered as solved and

the systems are quite well understood. As a consequence of this, a collection of differential

models for wheeled mobile robots has been established over the years. The aim of this

chapter is to review some of the well-known differential models and to point out the difficulties

when dealing with car-like vehicles. After this we introduce and prove the stability of two

discontinuous control laws for the car-like model that move the robot to or close to an

arbitrary position in the plane.

3.1 Differential models for wheeled mobile robots

In this section we introduce differential models for the state transition of different types of

wheeled mobile robots moving in the plane. Note that the dependence on the time t is often

omitted, if it is clear from the context.

For the simplest model, the single-integrator, we consider the two state variables x, y ∈
R that denote absolute Cartesian coordinates in the plane and the corresponding linear

equations of motion

ẋ = u1,

ẏ = u2,
(3.1)

where the control input u = (u1, u2)T ∈ R2 corresponds to the velocity vector of the system.

The system is fully actuated, which means, it has as many independent control inputs as

degrees of freedom. Systems like (3.1) with a maximum of one integration from input to

state are called kinematic or first order systems. These kind of systems allow instant velocity

changes, which can be considered as unrealistic, especially for heavy vehicles moving at high

speed. To get around this problem, system (3.1) can be extended to second order dynamics.

Physically that means the acceleration vector, which can be interpreted as a force, replaces the

velocity vector as the control input. By considering Newton’s law F = ma, the corresponding
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3. MODELING AND CONTROL OF WHEELED MOBILE ROBOTS

second order system often referred to as double-integrator in the plane yields

ẋ = v1,

ẏ = v2,

v̇1 = u1/m,

v̇2 = u2/m,

(3.2)

where v = (v1, v2)T ∈ R2 is the velocity vector, u = (u1, u2)T ∈ R2 is the input force/accel-

eration vector and m > 0 corresponds to the mass of the vehicle. Models that incorporate

Newton’s law are called dynamic models. Note that the mass m is often incorporated in the

control input and therefore it does not occur in the model. Moreover, it is natural for the

proposed models to bound the input vector by some constant, such that |u| ≤ umax. A mobile

robot that exclusively drives on spherical wheels can be described by model (3.1) or (3.2). It

is easy to see that such a robot can accelerate in an arbitrary direction of the planar state

space.

This is not the case for all kinds of mobile robots and therefore one distinguishes between

holonomic and nonholonomic vehicles. The classification is based on model-specific kinematic

constraints, which mathematically describe restrictions of the robot’s mobility. Holonomic

constraints can be expressed as explicit function

F (q1, . . . , qm, t) = 0,

that exclusively depends on position variables. In contrast, nonholonomic constraints cannot

be expressed without the dependence on the velocity, i.e., the time-derivative of at least one

position variable. Formally a nonholonomic constraint can be expressed as

G(q1, . . . , qm, q̇1, . . . , q̇m, t) = 0,

which is not integrable such that the resulting expression exclusively depends on position vari-

ables. A mobile robot is called nonholonomic if its model contains at least one nonholonomic

constraint, otherwise the robot is holonomic.

Compared to the holonomic models described above, the differential drive robot, whose

schematics are depicted in Figure 3.1, is a vehicle that is subject to a nonholonomic constraint.

Its equations of motion can be written as

ẋ =
r

2
(ul + ur) cos θ,

ẏ =
r

2
(ul + ur) sin θ,

θ̇ =
r

L
(ur − ul),

(3.3)
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3.1 Differential models for wheeled mobile robots

Figure 3.1: Schematics of a differential drive mobile robot. The vehicle’s (x, y)-position is de-
picted by the white circle centered on the axle of the fixed wheels.

Figure 3.2: Schematics of a unicycle. The vehicle’s (x, y)-position is depicted by the white circle
in the middle of the wheel.

where x, y ∈ R are the Cartesian coordinates, L > 0 is the distance between the fixed wheels

with radius r > 0, and θ ∈ [0, 2π) denotes the vehicle’s orientation with respect to the x-axis.

The input vector u = (ul, ur)T consists of the angular speeds of the left and the right wheel.

Since there are less control inputs than state variables, (3.3) is referred to as underactuated

system. This kind of robot is often equipped with one or more Castor wheels that stabilize

the vehicle and prevent it from turning over. It is easy to see that when ul = ur > 0, the robot

moves forward on a straight trajectory. Further, the robot rotates on the spot without any

translation when an input with ul = −ur 6= 0 is applied. Due to its design, the differential

drive robot cannot accelerate in arbitrary directions like it is the case for the introduced

linear models. Especially it cannot move sideways against the direction of the fixed wheels,

which is expressed in the vehicle’s nonholonomic constraint

− ẋ sin θ + ẏ cos θ = 0. (3.4)

It is possible to perform a transformation on the action space of model (3.3). For this we set

uψ = (ul + ur)/2 and uω = (ur − ul) and the model becomes

ẋ = ruψ cos θ,

ẏ = ruψ sin θ,

θ̇ =
r

L
uω.

(3.5)

In the transformed model, uψ can be interpreted as the robot’s translational input and uω as

its rotational input respectively.
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3. MODELING AND CONTROL OF WHEELED MOBILE ROBOTS

Another model that is closely related to the differential drive model is the so called unicycle

(cf. Figure 3.2), which is perhaps due to its simplicity the most frequently investigated non-

holonomic model in publications concerning wheeled mobile robots. The equations of motion

for the unicycle are

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω,

(3.6)

where v corresponds to the translational speed in the direction of the vehicle’s front and ω

controls its change of orientation. The unicycle simply consists of one wheel, which does not

seem appropriate for practical terms. But note that under the transformation v = ruψ, ω =

ruω/L, the models (3.5) and (3.6) are equivalent, which means a differential drive robot can

imitate a unicycle and vice versa. Under the well defined, origin-preserving state and control

coordinate transformation

x1 = x cos θ + y sin θ,

x2 = θ,

x3 = 2(x sin θ − y cos θ)− θ(x cos θ + y sin θ),

u1 = v − ω(x sin θ − y cos θ),

u2 = ω,

model (3.6) takes the form

ẋ1 = u1,

ẋ2 = u2,

ẋ3 = x1u2 − x2u1.

(3.7)

This representation of model (3.6) is well known as Brockett’s nonholonomic integrator and

can be found quite frequently in the literature dealing with nonholonomic systems. Since

it does not contain the trigonometric functions, it is usually more convenient to work with

model (3.7) rather than with model (3.6).

Finally we introduce the kinematic model for the rear-wheel driven car-like mobile robot

(cf. Figure 3.3), which will often be referred to throughout this thesis. It can be described

with the following coupled nonlinear equations:

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = vK = v
tanφ
L

.

(3.8)
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3.1 Differential models for wheeled mobile robots

Figure 3.3: Schematics of a car-like robot. The vehicle’s (x, y)-position is depicted by the white
circle centered on its rear axle. The dashed curve denotes the robot’s path, given a
constant steering and a positive speed.

Like for the other introduced nonholonomic models the state vector consists of the robot’s

position coordinates p = (x, y)T ∈ R2, and its heading θ ∈ [0, 2π). The control vector

consists of speed v ∈ R and curvature K ∈ R or equivalently of speed and steering angle

φ ∈ (−π/2, π/2), where φ corresponds to the angle of a virtual steering wheel centered on

the robot’s front axle and the constant L denotes the distance between front and rear axle.

Like the differential drive robot and the unicycle, the car-like model is subject to the

nonholonomic constraint (3.4). Physically this can be explained by the fact that both vehicles

are equipped with one or more fixed wheels on a single axle. As a result, the differential

equations referring to the position variables x and y are equivalent. In the car-like model,

the steering angle φ cannot take angles with an absolute value of π/2, since its tangent is

not defined. This would correspond to a situation, where the steering wheels are oriented

perpendicular to the orientation direction. Naturally the rear-wheel driven vehicle cannot

move without skidding over its front wheels.

As it was mentioned before, the absolute value of the robot’s speed and especially for car-

like robots the absolute value of its curvature are often limited to an upper bound. In the

context of model (3.8) this means

|v| ≤ vmax,

|K| ≤ Kmax.
(3.9)

where vmax and Kmax are positive constants. From an upper bound for K automatically

follows that |φ| ≤ φmax with φmax = arctan(LKmax).
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From the similarity of the car-like model (3.8) and the unicycle (3.6) we can conclude that

the unicycle as well as the differential drive can imitate a car-like robot. The other way

around is not possible, since for the differential drive and the unicycle, the rotation rate can

be set independently of the translational speed. For the car-like robot the rotation rate also

depends on the translational speed v, which makes it impossible to rotate the car without

a translational motion. In other words, it cannot turn on the spot. Note that a car-like

vehicle is still able to reach the complete (obstacle-free) configuration space, but possibly not

without ever changing its movement direction.

Further information on differential models for wheeled mobile robots can be found, e.g., in

[LaV06, Lau98, SN04].

3.2 Position stabilization of the car-like robot via discontinuous

feedback

In the literature two major motion control problems for mobile ground robots situated in an

obstacle-free plane are considered. On the one hand we have trajectory following which is also

referred to as trajectory tracking. In this problem the robot has to follow a usually feasible

reference trajectory defined in the Cartesian space. Such a controller will be introduced in

Section 5.4 for the specific problem of snowplows tracking a certain reference trajectory with

the center of their shovel. On the other hand there is the problem of point-to-point motion

whose goal it is to reach a specific target configuration from a given initial one. The task is

also often referred to as point stabilization or position stabilization if the orientation of the

vehicle at the desired Cartesian position can be arbitrary.

Both problems can be solved by application of feedforward or feedback control or by a

combination of both. As with real robot hardware uncertainties cannot be neglected, usually

a certain level of feedback is desired in order to introduce robustness into the system. In

general, novel control algorithms initially are designed and analyzed for the kinematic model.

In a second step, they could be extended to a dynamic model that might be necessary when

dynamic effects cannot be neglected. In this section we introduce feedback control laws that

stabilize the position coordinates p = (x, y)T of a car-like robot with free as well as with

bounded steering angle described by the kinematic equations in (3.8). W.l.o.g. we set the

desired position to (xd, yd)T = (0, 0)T . So the problem is to design a control law that moves

the car such that (x, y)T → 0 as t→∞.

As the proposed feedback control laws are discontinuous, we apply the stability theorems

that have been introduced in Section 2.4 in order to analyze the convergence properties of
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3.2 Position stabilization of the car-like robot via discontinuous feedback

the resulting closed-loop systems. While for the following systems stability can be also shown

by applying the original direct method of Lyapunov to the individual continuous subspaces,

the application of the discontinuous versions are meant as an exemplary introduction for the

more complicated systems considered in Chapter 6.

3.2.1 Free steering angle

For the case of free steering angle, i.e., φ < π/2, we propose the following discontinuous

control law

v = −c1 sgn(x cos θ + y sin θ)
√
x2 + y2, (3.10)

φ = arctan
(
c2ω

L

v

)
(3.11)

with

ω = −π
2

+
(

atan2(−y,−x)− θ +
π

2

)
modulo π

and

sgn(x) =
{

1 x > 0
−1 otherwise

where c1 and c2 are positive constants and the function atan2(·, ·) denotes the arctangent of

two variables which is defined as

y 6= 0:

atan2(y, x) =


arctan |y/x| · sgn(y) x > 0
π/2 · sgn(y) x = 0
(π − arctan |y/x|) · sgn(y) x < 0

y = 0:

atan2(y, x) =
{

0 x ≥ 0
π x < 0

.

(3.12)

For v = 0 the value of φ is not defined. But since in this case the system state of the robot

does not change, we assume φ remains unchanged whenever v = 0. If we substitute (3.11)

for φ in the kinematic model (3.8), we obtain θ̇ = c2ω. Thus ω can be interpreted as the rate

of turning. The sign of ω and of v both depend on the quadrant of the x-y-plane, in which

the vehicle is currently located, as well as on its current orientation θ. Figure 3.4 shows two

example configurations at a fixed position in the second quadrant resulting in different values

for v and identical values for ω.

The following theorem states the stability of the closed-loop system defined by equations

(3.8), (3.10) and (3.11) under the assumption that v 6= 0 at unstable weak equilibria. These

equilibria refer to configurations with 0 ∈ K[f ]
(
(x, y, θ)T

)
to which the system does not

23



3. MODELING AND CONTROL OF WHEELED MOBILE ROBOTS

(a) v > 0, 0 < ω = ω̂ (b) v < 0, 0 < ω 6= ω̂

Figure 3.4: Illustration of the relation between the vehicle’s configuration and the values for v
and ω, where ω̂ := atan2(−y,−x)−θ. The resulting movement direction is depicted
by the arrow originating in the car’s barycenter.

return if disturbed, where f corresponds to the function representing the vector field of

the kinematic model (3.8). For the considered closed-loop system the set of unstable weak

equilibria is defined by D = {(x, y, θ)T : x cos θ + y sin θ = 0}. Resulting from the design

of the control law these equilibria do not have a stable manifold for certain choices of the

controller constants c1 and c2 as we will show in the following. As a result, every solution

can be only in an unstable weak equilibrium at its initial configuration. In those cases the

removal of the zero from the Fillipov inclusion guarantees the convergence to the desired

position.

Theorem 3.2.1. Consider a car-like vehicle described by (3.8). If

c1, c2 ∈ R+, c2 >
2
π
c1 (3.13)

holds and we assume that v 6= 0 at unstable weak equilibrium configurations, then under the
control law defined by equations (3.10) and (3.11) the partial equilibrium (x, y) = (0, 0) is
asymptotically stable uniformly in θ.

Proof. The set-valued map corresponding to the car-like model can be written as

ṗ ∈ K1(p, θ) = K

[
v cos θ
v sin θ

]
,

θ̇ ∈ K2(p, θ) = K[v tanφ/L].

Lyapunov stability of the partial equilibrium can be shown by applying Theorem 2.4.3. For
this we define the quadratic candidate Lyapunov function

V (p) =
1
2
(
x2 + y2

)
.
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3.2 Position stabilization of the car-like robot via discontinuous feedback

Since V is continuous, its set-valued derivative can be computed as

V̇ K1(p, θ) = ∇V (p) ·K1(p, θ) =

(
x

y

)
·K

[
v cos θ
v sin θ

]
. (3.14)

Substituting (3.10) for v in equation (3.14) and considering the calculus introduced in Propo-
sition 2.2.1 yields K[sgn(z)]z = {|z|} as well as

V̇ K1(p, θ) = K[v](x cos θ + y sin θ) =
{
−c1

√
x2 + y2|x cos θ + y sin θ|

}
≤ 0.

As a result we have V
(
p(t)

)
≤ V

(
p(0)

)
for all t ≥ 0, i.e., the partial equilibrium (x, y) = (0, 0)

of the closed-loop system is Lyapunov stable uniformly in θ.
Now we define a bounded set of positions as

Sk = {p ∈ R2 : V (p) ≤ k}.

with k > 0. The set is closed due to the continuity of V and strongly invariant for the closed-
loop system. Therefore we can apply the modified version of LaSalle’s invariance principle
introduced in Theorem 2.4.4 which states that the semi-trajectories p(t) converge to the
largest invariant set within

S = Sk ∩ {p ∈ R2 : 0 ∈ V̇ K1(p, θ)} = {p ∈ Sk : x cos θ + y sin θ = 0, θ ∈ [0, 2π)}.

Assuming that V > 0 we show now that the time-derivative of the set predicate is unequal
zero, which renders all trajectories starting from points in Sk to be non-invariant except for
the origin. The time-derivative of the set predicate can be calculated as

d

dt
(x cos θ + y sin θ) = cos θ(ẋ+ yθ̇) + sin θ(ẏ − xθ̇).

W.l.o.g. we can assume that θ = 0, so we have ω = π/2 sgn y from the definition of the control
law. Remember that v 6= 0 at unstable weak equilibria by assumption and therefore we have
v ∈ [−c1|y|, c1|y|]\{0} in terms of Filippov solutions. For the derivative we now obtain

d

dt
(x cos θ + y sin θ) = ẋ+ yθ̇ = v + yc2ω = v︸︷︷︸

|·|≤c1|y|

+
π

2
c2|y|︸ ︷︷ ︸

|·|>c1|y|

6= 0. (3.15)

Note that since V (p) is continuously differentiable it would have been sufficient to calcu-

late V̇ (p) directly. In Theorem 3.2.1 we assumed that v 6= 0 at unstable weak equilibrium

configurations. This is because even though the control law (3.10) yields v 6= 0 for V > 0 the

definition of Filippov solutions yields that at points of discontinuity, i.e., when (x, y, θ)T ∈ D,

v might take any value in the interval [−c1

√
x2 + y2, c1

√
x2 + y2]. Since the interval includes
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Figure 3.5: The set of discontinuous points D in a neighborhood of the origin (a) and the
corresponding vector field on both sides of the surface (b).

zero, it is possible that the vehicle remains at this configuration. From the definition of (3.10)

it is clear that any small perturbation results in a velocity unequal zero and the system drives

away from the undesired, unstable weak equilibrium. Geometrically, the points in D are the

configurations for which it does not matter if v is positive or negative in order to decrease

the V -function. Compared to configurations outside of D for which the necessary movement

direction is well-defined, the vehicle has to decide whether to move forward or backward.

Figure 3.5(a) illustrates the set D in a neighborhood of the origin, while Figure 3.5(b) shows

the vector field on both sides of the surface restricted to orientations in [0, π]. Since all op-

posing vectors are parallel, it is not possible to form a linear combination that is tangent to

the discontinuous surface. Therefore we can conclude that sliding motions along the surface

will not happen in this system.

With the modification of the set of Filippov solutions the set-valued map is neither compact

nor convex anymore. Fortunately in our case the results in Section 2.4 still hold, since we

just removed the solutions that remain in a point of D for more than an instant of time.

As a result the largest weakly invariant set M in Theorem 2.4.4 becomes a subset of the

one that corresponds to the standard Filippov solutions. In [YTN05] a related, even more

restrictive modification of the Filippov set-valued map has been introduced. This modification

eliminates trajectories that stay on the discontinuous surface as long as there exists at least

one solution that leaves the surface.

In the simple case of stabilizing one vehicle towards a static point the reason for condition
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3.2 Position stabilization of the car-like robot via discontinuous feedback

(a) (b)

Figure 3.6: Vehicle configuration from the set S. The car is oriented perpendicular to the line
through position (x, y) and the origin (a). Thus, the vehicle has to drive into the
disc to lower the value of the V -function (b).

(3.13) can be visually illustrated. For this we solve the set predicate of S for θ resulting in

(x, y, θ) ∈ S ⇔ x = y = 0 ∨ θ = kπ − atan2 (x, y) , k ∈ Z\{0}

which means, if (x, y)T 6= (0, 0)T the vehicle is oriented perpendicular to the line through

position (x, y)T and the origin (0, 0)T , i.e., ω ∈ {−π/2, π/2} (cf. Figure 3.6(a)). From (3.10)

it follows that v 6= 0 and the steering angle needs to be such that the vehicle drives into

the disk centered at the equilibrium with radius
√
x2 + y2 in order to get V decreased (cf.

Figure 3.6(b)). Assuming ω = −π/2 this requires φ to be such that

−
√
x2 + y2 < r < 0 (3.16)

where

r :=
1
K

=
L

tanφ
, φ ∈

(
−π

2
,
π

2

)
\{0}

is the momentary signed curve radius of the vehicle. Successively inserting φ, ω and v yields

L

tanφ
=

v

c2ω
= − 2v

c2π
= − 2

c2π
c1

√
x2 + y2.

It is easy to see that the constraint in (3.16) is satisfied whenever (3.13) holds. The case

when ω = π/2 can be shown in the same way.
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3. MODELING AND CONTROL OF WHEELED MOBILE ROBOTS

In order to move the vehicle to an arbitrary position (xd, yd)T in the plane, one simply

needs to shift the momentary coordinates appropriately resulting in the control law

v = −c1 sgn
(
(x− xd) cos θ + (y − yd) sin θ

)√
(x− xd)2 + (y − yd)2,

φ = arctan
(
c2L

v

(
−π

2
+
(

atan2(yd − y, xd − x)− θ +
π

2

)
modulo π

))
.

The proposed controller was not designed to control the final orientation. For vehicles of

the unicycle type, which have no limitations on the turning radius, full state stabilization

can easily be achieved (see, e.g., [dWS92, ACBB95, MM97, ODV02]). The full state point

stabilization for car-like vehicles sometimes also referred to as parallel parking problem is

more complicated, since the vehicle cannot turn on the spot. Nevertheless there exist a

couple of approaches that provide a reasonable solution (see, e.g., [Sam93, DOS98, LYC99]).

3.2.2 Bounded steering angle

Due to mechanical and physical limitations real car-like vehicles usually provide a smaller

interval of applicable steering angles than the system considered in Section 3.2.1. That

means there exists a constant 0 < φmax < π/2 that bounds the steering angle such that

φ ∈ (−φmax, φmax). As a result the vehicle cannot follow curves with arbitrary small curve

radius. Actually the minimum traceable curve radius cannot get below L/ tanφmax, which is

equal to the reciprocal of the maximum curvature Kmax. It is clear that in contrast to cars

with free steering angle, vehicles with bounded steering cannot reach every point in the plane

without having to move away from it first. In order to avoid this problem we ease the task

and consider an enhanced version of control law (3.10)-(3.11) that drives the car-like robot

with limited steering angle into a bounded neighborhood of the desired destination, which

for simplicity we again choose to be (xd, yd)T = (0, 0)T . For this we define

v =
{
−c1 (x cos θ + y sin θ + sgn(x cos θ + y sin θ) · b) e > L

tanφmax

−c1(x cos θ + y sin θ) otherwise
, (3.17)

φi = σφmax

(
arctan

(
c2ω

L

v

))
, (3.18)

where ω, c1, c2 are defined as in Section 3.2.1, and

e =
√
x2 + y2, b = e− L

tanφmax
, σα(x) =


α x > α
−α x < −α
x otherwise

.

Like in the free steering case we assume that φ remains unchanged whenever v = 0. The

convergence properties of the bounded steering closed-loop system are stated in the following

theorem.
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3.2 Position stabilization of the car-like robot via discontinuous feedback

Theorem 3.2.2. Consider a car-like vehicle described by (3.8) that has a bounded steering
angle φ ∈ (−φmax, φmax), with 0 < φmax < π/2. If the constants in the control law are chosen
such that

c1, c2 ∈ R+, c2 >
2
π
c1

holds and we assume that v 6= 0 at unstable weak equilibrium configurations, then the control
law defined by equations (3.17) and (3.18) drives the vehicle towards a point (x̃, ỹ)T with√
x̃2 + ỹ2 ≤ L/ tanφmax.

Proof. Like in the proof of Theorem 3.2.1 we apply Theorem 2.4.3 to show stability in the
sense of Lyapunov. Therefore we define the quadratic candidate Lyapunov function

V (p) =
1
2

(x2 + y2).

Since V (p) is continuously differentiable we calculate its time-derivative directly instead of
the set-valued derivative receiving

V̇ (p) = xẋ+ yẏ = v(x cos θ + y sin θ).

Substituting the control law (3.17) for v and considering that sgn(z)z = |z| yields

V̇ (p) =

{
−c1

(
(x cos θ + y sin θ)2 + |x cos θ + y sin θ| · b

)
e > L

tanφmax

−c1(x cos θ + y sin θ)2 otherwise
.

It is easy to see that V̇ (p) ≤ 0 and therefore V
(
p(t)

)
≤ V

(
p(0)

)
for all t ≥ 0, so the partial

equilibrium (x, y) = (0, 0) of the closed-loop system is Lyapunov stable uniformly in θ.
We define now a bounded set of positions as

Sk = {p ∈ R2 : V (p) ≤ k}.

with k > 0 and apply Theorem 2.4.4. So we define the subset of Sk for which V̇ = 0 as

S = {p ∈ Sk : x cos θ + y sin θ = 0}.

To complete the proof it has to be shown that the subset of S, for which the inequality√
x2 + y2 > L/ tanφmax holds, is non-invariant with respect to the closed-loop dynamics.

Therefore we choose a p ∈ S such that
√
x2 + y2 > L/ tanφmax and assume w.l.o.g. that

θ = 0. This yields x = 0 and we have√
x2 + y2 = |y| > L

tanφmax
. (3.19)

In the case when the steering angle bound is not reached we have θ̇ = c2ω. Then, the time
derivative of the set predicate of S is equal to (3.15) and therefore known to be nonzero.
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3. MODELING AND CONTROL OF WHEELED MOBILE ROBOTS

In the second case we have to consider situations in which the steering angle bound is
reached such that θ̇ = v tanφmax sgn(−y)/L. From the fact that v 6= 0 by assumption, the
following statement holds for the set predicate of S:

d

dt
(x cos θ + y sin θ) = v + yθ̇ = v + y sgn(−y)

tanφmax

L
v

= v

1− |y|tanφmax

L︸ ︷︷ ︸
>1 (3.19)


6= 0.

Note that in most cases the vehicle will get closer to the goal than L/ tanφmax. This

depends on the angle at which the vehicle enters the circle with radius L/ tanφmax centered at

the desired position. At this point of entrance the control law (3.17) switches and a movement

speed different from zero is no more guaranteed. In literature there exist approaches that

achieve point stabilization for bounded steering vehicles that definitely converge to the desired

point by means of switching movement direction (see, e.g., [Sam93]) or by initially driving

away from the goal (see, e.g., [Ind99]).
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4 Motion planning for formations of

nonholonomic mobile robots

The aim of this chapter is to analyze the problem of motion planning for formations of

nonholonomic vehicles. In particular we want to find an approach that is not exclusively

designed for differential drive vehicles but also applicable for mobile robots of the car-like

type. After an overview of related work, a promising approach from literature is presented in

more detail. Then we point out a number of weak points in the approach and improve them

by proposing several enhancements. Finally the developed enhancements are demonstrated

in various simulated scenarios.

4.1 Problem statement and related work

Motion planning deals with the problem to produce a feasible continuous motion that connects

an initial configuration with a goal configuration while avoiding collisions with obstacles.

A motion planning algorithm takes these configurations as input, and outputs appropriate

control inputs (e.g., speed and steering commands) for the mobile robot. The research in

robot motion planning can be traced back to the early stages of the development of computer-

controlled robots, which started in the late 60’s. Even though, most of the foundational

achievements are more recent and have been discovered during the 80’s. For instance, the

cell decomposition method divides the configuration space into cells that lay inside, partially

inside, or outside the free space. After this, one searches for a collision-free path by exploring

the adjacency graph of free cells. Details on these classical motion planning approaches can

be found in [Lat91].

From the 90’s the motion planning problem has been considered in the presence of kinematic

constraints. When the degrees of freedom of a mobile robot are not independent, like, e.g., for

a car-like robot that cannot alter its orientation without changing its position, the searching

for a motion is referred to as nonholonomic motion planning. In that case, not every path

in the free configuration space is necessarily feasible. Another difficulty arises on the motion

execution level, since the existence of stabilizing smooth feedback is no more guaranteed
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for nonholonomic systems. Detailed information about motion planning in the presence of

kinematic constraints can be found, e.g., in [Lau98, LaV06].

The majority of motion planning approaches in multi-vehicle systems can be classified into

two fields: dynamic assignment and formation motion planning. Given n identical agents and

m ≥ n destinations, the task of dynamic assignment is to derive distributed control laws for

every agent such that, for any initial configuration, all agents move to distinct destinations

and remain there. In [ZP08], the authors propose a distributed hybrid approach to the

assignment problem that simultaneously addresses the discrete allocation of destinations to

agents as well as the continuous control strategies for driving the individual agents to the

destinations. Optimization based strategies for large groups of integrator-agents that solve

the problem for a given formation shape without considering location, scale, and rotational

effects have been proposed in [DS07]. The problem of finding collision-free trajectories for

multiple robots moving toward individual goals (static assignment) within a common roadmap

environment has been discussed in [PCM08].

In contrast to the assignment problem, the task of formation motion planning (sometimes

also referred to as open-loop formation control) is to generate a trajectory for each robot

of a group that guarantees the maintenance of a predefined spatial pattern, the formation’s

shape. For the planning, a desired goal configuration or a reference trajectory is usually given

beforehand. To achieve a coordinated motion, the generated trajectories can be tracked with

a feedback controller by each robot individually. Thus in principle the task of formation

control is split into the tasks of trajectory planning and tracking control. Solutions to the

formation control problem can also be partitioned into three groups of approaches: Virtual

structures, behavioral and leader following.

In the virtual structure approach the entire formation is treated as a single rigid body. In

order to derive the control, firstly the dynamics of the virtual structure are defined. After

this, the motion of the virtual structure is translated into the desired motion for each vehicle.

Finally each vehicle individually tracks its corresponding desired trajectory [LT97]. In [EH01]

the authors propose a coordination strategy for multi-agent formation control applicable to

models that support independent control of rotational and translational velocity. The problem

is defined by a rigid body constraint in combination with a desired reference path. Sufficient

conditions for the existence of a control Lyapunov function for the robot formation have

been derived in [ÖEH02]. The “Lyapunov Formation Function” is constructed as a weighted

sum of the robots individual Lyapunov functions. [BK04] introduces an approach for the

generation of optimal trajectories for rigid formations of fully actuated mobile robots towards

a desired goal configuration. By tuning a parameter, the trajectory is chosen from a family

32



4.1 Problem statement and related work

that includes optimal trajectories for rigid formations as well as independent trajectories that

are optimal for each individual robot. This allows the robots to cluster together in order to

avoid obstacles. In [BTK04], a geometric method for motion planning for virtual structure

formations of differential-drive wheeled mobile robots is presented that explicitly takes into

account the vehicles’ nonholonomic constraints.

The behavioral approach for formation control is inspired by the natural behavior of an-

imal herds like flocks of birds or schools of fish. Each member of the group implements a

set of prescribed desired behaviors like, e.g., move-to-goal, avoid-robot, avoid-static-obstacle,

maintain-formation, etc. The control action is obtained as a weighted average of the control

for each behavior [BA98]. In contrast to virtual structures, behavioral approaches are natu-

rally decentralized as a result of their local design. With “social potential fields” the authors

of [RW99] introduce a variant of the behavioral scheme, in which artificial force laws are

defined between neighboring robots inducing a potential field of attraction and repulsion into

the system. Also closely related to this method is the physics-based control scheme described

in [SSHH04]. In this specific approach the mobile agents sense and react to virtual forces

which are inspired by natural physics laws.

In the leader following approach, the formation consists of leading and following robots.

Usually the control inputs of the followers are calculated with respect to position and orien-

tation of one or multiple designated leaders [DOK01]. The leaders do not necessarily need

to be physical vehicles as long as their configuration is not determined by means of sensor

measurements, like it is the case in [DFK+02] where the authors use the information from

omnidirectional cameras to provide feedback to the applied controllers. Another vision based

approach that uses a generic panned camera combined with a laser range finder on each robot

has been presented in [FM02]. The key idea is that each robot keeps a single leader at a

desired angle and distance. By panning the sensor and by moving themselves if necessary,

the robots simply have to center their leader in the sensor’s field of view. It is a fact that

in leader-following systems of this type the formation error is amplified during the signal

propagation, which has been formally justified in [TPK04]. A method for designing robust

decentralized control laws for leader-follower type formations of unmanned aerial vehicles

(unicycle model) with an overlapping information structure has been presented in [SİTT04].

After expanding the interconnected system into a higher dimensional space, a static state

feedback controller is designed for the subsystems that afterwards can be contracted back to

the original system for implementation. In [MSG+08] a feedback law using Lyapunov-type

analysis is derived that guarantees collision avoidance and tracking of a reference trajectory
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for a group of unicycles. Further, the authors present extensive experimental results that

validate the effectiveness of the proposed approach.

The choice of which method to be utilized mainly depends on the underlying application.

For large groups of vehicles the behavioral approach might be the best choice due to the

scalability properties resulting from its decentralized nature. When more control over the in-

dividual vehicles is desired, usually the virtual structure and the leader following approaches

are the better choice. Nevertheless, the distinction between these three groups of approaches

is not always possible. For instance, [BLH01] addresses the problem of coordinating multiple

spacecraft to fly in tightly controlled formations. For this the authors introduce a coordina-

tion architecture that merges leader-following, behavioral, and virtual-structure approaches.

Besides space exploration, applications for formation control can be found, e.g., in coopera-

tive box pushing [Sch04, LT97] as well as in cooperative load transportation [ASTBK06]. In

both tasks the mobile robots have to fulfill certain geometric constraints that are similar to

the problem of moving in a rigid formation. This is also the case in cooperative airfield snow

shoveling as it will be discussed in Chapter 5 of this monograph. Formation control might

also play a role in the design of automated highway systems as discussed, e.g., in [HV00].

For some applications it is useful to separate the motion planning from the controller,

giving more transparency and therefore an increased control over the overall group behav-

ior. Such an approach, where the trajectory of every robot in the formation is explicitly

planned, was introduced in [BC04]. Further, a controller is implemented on each robot to

ensure the tracking of its planned trajectory in contrast to maintaining some fixed distance

to a leader. In [GPFZ07] a decentralized strategy for car-like robots with bounded control

inputs is presented, where each vehicle computes an optimal trajectory using only locally

generated information. Moreover, the authors propose reactive adaption of the trajectory

during the planning phases enabling obstacle avoidance and communication maintenance.

[HSB+07] discusses the specific motion planning problem for two-spacecraft interferometry

based on geometric optimal control. Compared to single-telescope observation, astronomical

interferometry with multiple spacecraft telescopes results in increased resolution capabilities

due to an increased observatory baseline. A centralized approach for motion planning for

multiple formations of disc-shaped robots in dynamic virtual environments has been pro-

posed in [LG08]. The planning task is solved by combination of a flexible virtual structure

approach and a model for crowd simulation.
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4.2 Trajectory generation with piecewise constant reference

curvature

In this section we describe the formation motion planning approach by Barfoot and Clark

[BC04, BCRD02] in more detail. Depending on a reference trajectory, the method gener-

ates trajectories for the nonholonomic mobile robots of a formation, whose kinematics were

introduced in (3.8). Further it allows to specifically alter the formation’s shape during the

motion, which is accomplished by ensuring that the relative distances between robots are

maintained in curvilinear coordinates rather than in the usual Cartesian coordinate system.

The curvature of the curvilinear coordinate system corresponds to the momentary curvature

of the reference trajectory. As a consequence, during turns the method automatically plans

for robots on the outside to speed up and for robots on the inside to slow down.

It is assumed that each robot can sense its own location relative to a common global refer-

ence frame, thus inter-robot communication is not necessary. However, communication is still

necessary in order to transfer information about the planned motion (reference trajectory)

to each of the robots. In the following we refer to the leader as the reference point, which

might be either a real or a virtual vehicle moving on the reference trajectory. The task is now

to calculate suitable control inputs for the following vehicles in order to maintain a certain

formation structure, which can be subject to intended modifications. Due to the nonholo-

nomic equations of motion it is often inappropriate to compute these control inputs from

the momentary position and orientation of a reference point. In the considered method this

problem is omitted by maintaining the formation in curvilinear coordinates and calculating

speed and curvature from control inputs of the reference point at identical traveled distances.

It can be seen in Figure 4.1 that the distances between robots vary for different curvatures of

the trajectory in the Cartesian but not in the curvilinear coordinate system. For this reason

we assume that the initial distances between robots are chosen big enough in order to avoid

inter-vehicle collisions within the group during the coordinated motion.

Let the formation consist ofN nonholonomic vehicles that evolve according to the equations

introduced in (3.8). To demonstrate that the followers’ control inputs do not explicitly

depend on the time we perform a change in variable from time t to the traveled distance s.

Hence the control inputs of the reference point are defined as vc(sc) and Kc(sc) at a traveled

distance sc(t) (cf. Figure 4.1). In the same manner vi(si) denotes the speed and Ki(si) denotes

the curvature of the ith robot’s trajectory at a traveled distance si(t) respectively. Note that

si(t) is meant to be measured along the reference trajectory. Furthermore pi(si) and qi(si)

are the curvilinear coordinates of robot i relative to the reference point C. Therefore, the
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(a) Kc = 0 ⇒ Ki = 0, vi = vc (b) Kc > 0 ⇒ Ki < Kc, vi > vc

Figure 4.1: 5 Robots driving in formation on a straight (a) and on a curved (b) trajectory. vi

denotes the speed and Ki denotes the curvature of the ith robot’s trajectory at the
current traveled distance si. pi and qi are the curvilinear coordinates of the ith
robot measured relatively to the reference point C whose momentary control inputs
are denoted by vc and Kc.

relationship between the reference point’s traveled distance sc and the ith vehicle’s traveled

distance si can be written as

si(t) = sc(t) + pi(t). (4.1)

As long as the reference point is located in front of the vehicles, i.e., pi is opposite in sign to vc,

the reference trajectory can be generated in real-time, e.g., by a high level path planner or a

teleoperator. This results from the fact that the shape of the formation is completely defined

by the coordinates (pi, qi) and therefore it does not depend on the reference trajectory.

The derivation of the control inputs for the followers is based on the relationship between

the Cartesian coordinates (xi, yi) and the curvilinear coordinates (pi, qi) (cf. Figure 4.2). Also

it is assumed that the curvature Kc of the reference trajectory is piecewise constant. From

Figure 4.2 it can be seen that

xi(t) =
(

1
Kc
− qi(t)

)
sin
(
si(t)Kc

)
,

yi(t) =
1
Kc
−
(

1
Kc
− qi(t)

)
cos
(
si(t)Kc

)
.

(4.2)

Note that due to readability the dependency on time t is omitted in the following equations.

Calculating the first time derivatives of (4.2) we obtain

ẋi = −q̇i sin(siKc) + ṡi(1− qiKc) cos(siKc),

ẏi = q̇i cos(siKc) + ṡi(1− qiKc) sin(siKc),
(4.3)
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Figure 4.2: Relationship between Cartesian coordinates (xi, yi) and curvilinear coordinates
(pi, qi). The point R denotes the center of curvature for vehicle i as well as for
the reference C.

and for the second time derivatives we obtain

ẍi = −
(
q̈i + ṡ2

iKc(1− qiKc)
)

sin(siKc) +
(
s̈i(1− qiKc)− 2ṡiq̇iKc

)
cos(siKc),

ÿi =
(
q̈i + ṡ2

iKc(1− qiKc)
)

cos(siKc) +
(
s̈i(1− qiKc)− 2ṡiq̇iKc

)
sin(siKc).

(4.4)

It is well known from basic physics that the time derivative of the position results in the

speed and therefore we can write the overall speed of vehicle i along a path in the plane as

vi =
√

(ẋ2
i + ẏ2

i ). (4.5)

With equation (4.5) and the component-wise velocities given by (4.3) we can express the

speed of vehicle i as

vi =
√(

q̇2
i + ṡ2

i (1− qiKc)2
)
. (4.6)

Considering that dqi/dsi = q̇i/ṡi and ṡi = vc, equation (4.6) can be reformulated as

vi = Qivc, (4.7)

where

Qi :=

√(
dqi
dsi

)2

+
(

1− qiKc

)2

. (4.8)

Note that equation (4.7) depends on local variables, i.e., on variables that concern vehicle i

as well as on vc and Kc which characterize the reference trajectory.
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The curvature at a point (x, y) on a curve in parameter notation can be calculated as

K =
ẋÿ − ẍẏ(
ẋ2 + ẏ2

)3/2 . (4.9)

In order to receive the curvature for robot i, we simply substitute (4.3) and (4.4) for the first

and second derivatives in expression (4.9) yielding

Ki =
Kcṡiq̇

2
i + (1− qiKc)(ṡiq̈i − s̈iq̇i) +Kcṡi

(
q̇2
i + ṡ2

i (1− qiKc)2
)√(

q̇2
i + ṡ2

i (1− qiKc)2
)3 . (4.10)

Reducing the fraction by ṡ3
i and considering that

d2qi
ds2
i

=
ṡiq̈i − s̈iq̇i

ṡ3
i

, (4.11)

equation (4.10) can be written as

Ki =
1
Qi

Kc +

(
1− qiKc

)
d2qi
ds2i

+Kc

(
dqi
dsi

)2

Q2
i

 . (4.12)

Like equation (4.7) this expression depends on local variables as well as on the curvature of

the reference trajectory Kc.

Until now, the case when the center of curvature is located between the robot itself and

the reference trajectory has been neglected. As can be seen in Figure 4.3 this happens when

qi is greater/less than the momentary positive/negative signed curve radius of the reference

trajectory given by 1/Kc or equivalently whenever

1− qiKc < 0.

It can be seen that in such a case the values for speed vi and curvature Ki need to be opposite

in sign to vc and Kc in order to maintain the formation. This is achieved, e.g., by multiplying

equations (4.7) and (4.12) with the factor

Si = sign(1− qiKc). (4.13)

As such we finally receive

vi = SiQivc, (4.14)

Ki =
Si

Qi

Kc +
Kc

(
dqi
dsi

)2
+
(
1− qiKc

)d2qi
ds2i

Q2
i

 . (4.15)
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Figure 4.3: Illustration of the special case when qi is greater than the momentary positive signed
curve radius of the reference trajectory given by 1/Kc.

The coordinate pi and, during trajectory segments with constant curvature (Kc(si) = Kc =

const.), also the coordinate qi might be continuously altered in order to effect modifications of

the formation’s shape. Among other things this can be especially helpful for reactive obstacle

avoidance as it is described, e.g., in [HSS06, SHS07]). A change of pi is simply accomplished

by a temporary decrease or increase of the ith robot’s driving speed. To vary the q-coordinate

of robot i the following function has been proposed:

ψso,sf ,ψo,ψf
(s) =


ψo 0≤ s≤ so
ψo + (ψf − ψo)b2(3− 2b) so<s≤ sf
ψf sf <s

(4.16)

where b = (s− so)/(sf − so). It can be seen that ψo and ψf denote the initial and the final

value of function (4.16), which is meant to be adjusted during the interval [so, sf ] of traveled

distance measured along the reference trajectory. To apply this function for a change of qi
while the ith robot’s traveled distance resides between si,o and si,s one simply sets

qi(si) = ψsi,o,si,f ,qi,o,qi,f (si). (4.17)

Figure 4.4 shows an example of the function and its first two derivatives. A benefit of this

approach lies in the fact that the adjustments of pi and qi do not depend on the shape of the

reference trajectory. Therefore one might offline create a catalog that contains a collection of
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Figure 4.4: Example of function (4.17) and its first two derivatives. The constants were chosen
as si,o = 2m, si,f = 10m, qi,o = 0m and qi,f = 4m.

different maneuvers for the present formation. Thus, a higher level entity that might rely on

sensor measurements can trigger adequate maneuvers from the catalog in specific situations.

This could be for example to switch to a column formation in order to overcome a narrow

passage that was just detected. As a result the formations arrangement is changed with

minimal computational effort.

If the coordinates (pi, qi) remain unchanged in order to maintain the structure of the

formation, the control inputs of the ith follower (4.14)-(4.15) at a traveled distance of si(t)

simplify to

vi(si) = vc(si)
(
1− qiKc(si)

)
,

Ki(si) =
Kc(si)

1− qiKc(si)
.

Since the formation’s structure remains constant there is no need for keeping Kc constant

and we can specify the dependency on the traveled distance si. Note that this is not the case
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for equations (4.14) and (4.15), where we omitted to specify a dependency on si as in general

it does not hold. This problem will be taken on in Section 4.3 where an extended equation

for Ki will be derived.

As the geometrical distance between robots with a different value for pi varies slightly

during turns, the approach can be classified as flexible rather than rigid, which makes it

inappropriate for cooperative load transport. But since vehicles with the same value for pi
maintain a fixed distance to each other, the approach is well suited for convoying and for

the cooperative box pushing task. The possibility to alter the formation’s shape during the

movement allows reactive response to unforeseen obstacles and narrow passages.

Further information on this method about motion planning for robot formations can be

found in [BC04, BCRD02].

4.3 Enhanced trajectory generation

Before we point out weaknesses and propose different enhancements to the motion planning

approach described in Section 4.2, we recapitulate the definitions of polynomial splines and

of the differentiability classes of a function.

Definition 4.3.1. Consider a real valued function f : R→ R and let k ∈ N+. The function
f is said to be of class Ck or Ck-continuous, if the derivatives f ′, f ′′, . . . , f (k) exist and
are continuous. If k =∞, the function f is referred to as smooth.

Definition 4.3.2. [HV94] Let

∆N = {a = τ0 < τ1 < . . . < τN = b}, N ≥ 2

be a fixed subdivision of the interval [a, b]. Then, a polynomial spline of degree r ∈ N+ and
defect k ∈ {1, . . . , r} with respect to ∆N is a function s composed of algebraic polynomials of
degree r ‘tied together’ at the points τ1, . . . , τN−1 in such a way that on the whole interval [a, b]
the spline s is continuous together with its derivatives up to and including order r− k. Thus
s ∈ Cr−k on [a, b] and on each interval (τi−1, τi), i = 1, . . . , N s is an algebraic polynomial of
degree at most r.

The approach for generating trajectories for formations as described in Section 4.2 is unsuit-

able for practical usage due to several reasons. The first problem results from the algorithm’s

behavior for non-constant reference speed. If a non-constant function is applied for vc the

values of pi change with time causing unintentional deformations in the formation’s arrange-

ment. The second problem comes from the fact that Kc is assumed to be piecewise constant.

Thus the equations that define the control inputs for the followers are not able to deal with
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changes of qi during reference trajectory segments with non-constant curvature. That means,

modifications of the formation’s shape are very limited and therefore cannot be applied re-

actively, e.g., to avoid recently detected obstacles. Moreover, if the reference trajectory is

generated in real-time, the complete segment for a maneuver might not be known in time

by the corresponding robot. A third reason for impracticalness is that if one utilizes the

C1-continuous function (4.17) to effect a change of the q-coordinate, this results in a dis-

continuous profile for the vehicle’s curvature Ki. Looking at equation (4.17) it can be seen

that its second derivative is not defined in the connection points (cf. Figure 4.4). In terms

of practical application this requires an instantaneous change of the steering angle during

the motion, which is physically impossible. In the remainder of this section we describe

how to modify the approach that was described in Section 4.2 in order to overcome the just

mentioned problems. We assume from now on that the curvature of the reference trajectory

Kc(si) is of class C1 or higher since we need the first derivative of Kc(si) in order to compute

the followers’ curvature input Ki as will be seen later. Note that this requirement is much

less strict than the demand for piecewise constant curvature in the original approach. Parts

of the following results have been published in [HSS07b].

4.3.1 Time varying reference speed

Concerning the first problem it happens, especially for fast changing vc, that the formation’s

shape is stretched or compressed along the reference trajectory and collisions between robots

might occur. This phenomenon can be easily avoided by calculating vi as

vi(t) = SiQivc(t), (4.18)

which depends on the momentary speed of the reference point rather than on vc(si). On the

other hand this requires that the entity that generates the reference trajectory immediately

transmits the current speed vc to all of the vehicles, making the approach inappropriate for

groups of vehicles in which a communication link from the “leader” to every follower lacks

to exist. Another solution would be to limit the change of vc and therefore the acceleration

for a certain interval of traveled distance. As a result the deformations along the reference

trajectory will be bounded, but on the other hand the space of feasible reference trajectories

is further constrained. Which of the modifications is more suitable depends on the intended

application.

42



4.3 Enhanced trajectory generation

Figure 4.5: Position and orientation of the ith vehicle with respect to the reference point C.

4.3.2 Time varying reference curvature

To resolve the second problem it is necessary to derive the equations for vi and Ki without

the assumption that the curvature of the reference trajectory is piecewise constant. In the

following we will show how to enhance the method in order to be capable of handling reference

trajectories with time-varying curvature. In contrast to Section 4.2, in which the derivation

of vi and Ki was based on the relationship between Cartesian and curvilinear coordinates, we

will start directly from the equations of motion (3.8). As will be seen in the following, this

results in similar control input equations that are capable of handling reference trajectories

with time-varying, continuously differentiable curvature.

Integration of the kinematic equations (3.8) results in a canonical expression of the equa-

tions of odometric dead reckoning. With these formulas and the assumption that pi(t) = 0

for the ith vehicle, its configuration at time t can be written as:

xi(t) = xc(t)− qi(t) sin θ(t)

=
∫ t

0
vc(τ) cos θ(τ)dτ − qi(t) sin θ(t),

yi(t) = yc(t) + qi(t) cos θ(t)

=
∫ t

0
vc(τ) sin θ(τ)dτ + qi(t) cos θ(t),

θ(t) =
∫ t

0
Kc(τ)vc(τ)dτ.

Figure 4.5 schematically depicts the momentary configuration of the ith vehicle relative to

the reference point C.
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From here, the remaining steps in order to get to the equations for vi and Ki are very

similar to the steps described in Section 4.2. For readability, we again omit the dependency

on t in the notation of the following equations. This time we obtain

ẋi = cos θ(vc − qiθ̇)− sin θq̇i,

ẏi = sin θ(vc − qiθ̇) + cos θq̇i,

θ̇ = Kcvc,

for the first derivatives in time and

ẍi = cos θ(v̇c − 2q̇iθ̇ − qiθ̈)− sin θ(θ̇(vc − qiθ̇) + q̈i),

ÿi = sin θ(v̇c − 2q̇iθ̇ − qiθ̈) + cos θ(θ̇(vc − qiθ̇) + q̈i),

θ̈ = vcK̇c +Kcv̇c,

for the second derivatives in time. If we insert the above equations into the general formulas

for velocity (4.5) and curvature (4.9) along a path in parametric form, we obtain the control

inputs for the ith vehicle at time t as

vi =
√(

Kcqi − 1
)2
v2
c + q̇2

i ,

Ki =
1
v3
i

(
K3
c q

2
i v

3
c − 2K2

c qiv
3
c + q̈ivc

+ q̇i(qivcK̇c − v̇c) +Kc

(
v3
c + vc(2q̇2

i − qiq̈i) + qiq̇iv̇c
))
.

It is straightforward to perform a change of variable from time t to the traveled distance s

along the reference trajectory. Considering that ṡi = vc(si) as well as equation (4.11) and

the equalities
q̇i
ṡi

=
dqi
dsi

,
K̇c

ṡi
=
dKc

dsi
,

we obtain the following control inputs:

vi(si) = Qi(si)vc(si), (4.19)

Ki(si) =
1

Qi(si)

(
Kc(si) +

Kc(si)
(dqi
dsi

(si)
)2

Qi(si)2

+

(
1− qi(si)Kc(si)

)d2qi
ds2i

(si) + qi(si)dqidsi
(si)dKc

dsi
(si)

Qi(si)2

 , (4.20)

where si is calculated just like in equation (4.1) and

Qi(si) :=

√(
dqi
dsi

(si)
)2

+
(

1− qi(si)Kc(si)
)2
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is the same as in equation (4.8) except that Kc is allowed to be varying.

After incorporating the factor Si defined in (4.13) to these equations, it can be seen that the

varying curvature has no influence on the robot’s speed, because the derived formula for the

speed is the same as equation (4.14) deduced for the piecewise constant case. In comparison

to equation (4.15), there exists an additional term in the expression for Ki, which takes

care of the changing curvature of the reference trajectory. Assuming that dKc/dsi = 0,

i.e., the curvature Kc along the reference trajectory is constant, equation (4.20) simplifies to

equation (4.15) which corresponds to the piecewise constant case.

By utilizing equations (4.20) and (4.18) it is now possible to move a group of nonholonomic

robots with kinematics described by (3.8) in a possibly changing formation along trajectories

with time-varying curvature. Of course, for the derivative dKc/dsi to be defined, the reference

curvature needs to be at least C1-continuous. Furthermore, the constraints in equation (3.9)

must be satisfied for all vehicles at every point of their trajectory in order to be able to

maintain the formation.

4.3.3 Adequate adjustment of relative position coordinates

The adjustment of the ith vehicle’s relative coordinates pi and qi as it is described in Sec-

tion 4.2 results in a non-continuous trajectory. But since a real vehicle cannot adjust its

speed nor its curvature from one value to another in an instant of time, continuous profiles

for vi and Ki are desired. In the following, one possible way is described how to obtain

C1-continuous speed profiles and at least C0-continuous curvature profiles for the follower

vehicles.

In order to effect changes of the ith robot’s p-coordinate, which is measured along the

reference trajectory, one simply needs to increase or decrease the robot’s current speed vi as

it was shortly mentioned in Section 4.2. To formalize this we introduce the variables ti,o and

ti,f denoting the adjustment’s starting and ending time, where ti,f > ti,o. Further, we set pi,o

to be the initial value of pi and pi,f to be its final value respectively. With these values we

now define the function

vi(t) =


Qi
(
si(t)

)(
vc(t) + ψti,o,(ti,o+∆t/4),0,ṽc

(t)
)

ti,o< t< ti,o + ∆t
4

Qi
(
si(t)

)(
vc(t) + ṽc

)
ti,o + ∆t

4 ≤ t < ti,o + 3∆t
4

Qi
(
si(t)

)(
vc(t) + ψ(ti,o+3∆t/4),ti,f ,ṽc,0(t)

)
ti,o + 3∆t

4 ≤ t < ti,f
Qi
(
si(t)

)
vc(t) otherwise,

(4.21)

where

ṽc =
4
3
pi,f − pi,o
ti,f − ti,o

, ∆t = ti,f − ti,o,

45



4. MOTION PLANNING FOR FORMATIONS OF NONHOLONOMIC
MOBILE ROBOTS

and ψ corresponds to function (4.16). In principle this enhancement of vi results in a C1-

continuous decrease (increase) of the speed relative to the vehicle’s reference in the first

quarter of the time interval [ti,o, ti,f ]. During the second and the third quarter, the speed’s

modification is kept equal to the constant ṽc, and finally it returns to zero along a continuously

differentiable curve in the fourth quarter. If the modification increases or decreases depends

on the desired change of pi, i.e., if pi,o < pi,f it will increase in the first quarter of [ti,o, ti,f ]

and decrease in the fourth quarter and vice versa. During such maneuvers pi is evolving as

described by

ṗi =
vi
Qi
− vc. (4.22)

To verify the behavior of equation (4.21) we can calculate the integral of (4.22) during the

adjustment:∫ ti,f

ti,o

ṗi dt =
∫ ti,f

ti,o

vi
Qi
− vc dt

=
∫ ti,o+ ∆t

4

ti,o

ψti,o,(ti,o+∆t/4),0,ṽc
(t) dt+

∫ ti,o+ 3∆t
4

ti,o+ ∆t
4

ṽc dt

+
∫ ti,f

ti,o+ 3∆t
4

ψ(ti,o+3∆t/4),ti,f ,ṽc,0(t) dt

=
(
− 64t(pi,o − pi,f )

·
−2t3 − 3ti,ot(3ti,o + ti,f ) + t2(7ti,o + ti,f ) + t2i,o(5ti,o + 3ti,f )

3(ti,o − ti,f )4

)∣∣∣∣∣
ti,o+ ∆t

4

ti,o

+
4t(pi,f − pi,o)

3∆t

∣∣∣∣ti,o+ 3∆t
4

ti,o+ ∆t
4

+
(

64t(pi,o − pi,f )

·
−2t3 − 3ti,f t(ti,o + 3ti,f ) + t2(ti,o + 7ti,f ) + t2i,f (3ti,0 + 5ti,f )

3(ti,o − ti,f )4

)∣∣∣∣∣
ti,f

ti,o+ 3∆t
4

=
1
6

(pi,f − pi,o) +
2
3

(pi,f − pi,o) +
1
6

(pi,f − pi,o) = (pi,f − pi,o).

From the value of the integral it can be seen that the change of pi in the interval [ti,o, ti,f ]

is equal to the desired amount. Figures 4.6 and 4.7 show two examples of adjustments of

the relative position coordinate pi while maintaining a C1-continuous speed profile. In both

examples qi was set to 0, which results in vi = vc for all t ≤ ti,o and t ≥ ti,f . In Figure 4.6

the reference trajectory follows a root-function and the maneuver constants were chosen as

pi,o = −2m, pi,f = −3m, ti,o = 1s, and ti,f = 4s. Note the negative value of vi, which makes
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Figure 4.6: Example 1: adjustment of the relative position coordinate pi while the reference
speed follows a root-function. (a) shows the speed profiles of the reference trajectory
and of vehicle i and (b) shows the development of pi.

the robot temporarily move backwards. This is necessary in order to achieve a decrease

of 1m within 3 seconds at such a low reference speed vc. In the second example shown

in Figure 4.7 the reference speed has a sinusoidal profile and the maneuver constants were

chosen as pi,o = −4m, pi,f = −1m, ti,o = 1s, and ti,f = 6s.

It should be mentioned that a linear change of speed in the first and in the fourth quarter

of interval [ti,o, ti,f ] results in the same final value for pi. Nevertheless, in the connection

points at times ti,o + ∆t/4 and ti,o + 3∆t/4 the speed function vi would be just of class C0.

Physically this means that the vehicle will encounter abrupt changes in acceleration which

are known to be uncomfortable for possible occupants.

In Section 4.2 the function (4.17) was introduced with the intention to be utilized for ad-

justments of the relative position variable qi. Since the function is of class C1 its second

derivative, which is needed to compute Ki as defined in (4.20) or in (4.15), is not defined

everywhere. The central part of equation (4.17) is a third order polynomial function con-

necting the points (s0, ψ0)T and (sf , ψf )T . At these points ψ is only once differentiable.

In the remainder of this section we concentrate on how to construct a higher order spline

function as replacement for the third order polynomial in (4.17) that features a better overall

smoothness.

In order to compute Ki as in equation (4.20) the first derivative of the reference curvature

dKc/dsi needs to exist everywhere. If this derivative is C0, i.e., Kc ∈ C1, then the profile of

Ki cannot be smoother than C0. Hence it would be sufficient if the spline function will be

of class C2. As a result Ki would always be C0-continuous in the starting and ending points
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Figure 4.7: Example 2: adjustment of the relative position coordinate pi along a sinusoidal
reference speed profile. (a) shows the speed profiles of the reference trajectory and
of vehicle i and (b) shows the development of pi.

of adjustments of qi. A guaranteed continuously differentiable curvature profile is obtained,

if Kc is at least of class C2 and the qi-adjusting spline function is at least of class C3. In

order to construct a C3-continuous spline that connects the points (s0, ψ0)T and (sf , ψf )T we

define

ξso,sf ,ξ0,ξf (s) =


ξ̃1(s) so≤ s≤S1

ξ̃2(s) S1 <s≤S2

ξ̃3(s) S2 <s≤ sf
, (4.23)

with

ξ̃i(s) = ais
5 + bis

4 + cis
3 + dis

2 + eis+ fi,

S1 = so + (sf − so)/4,

S2 = so + 3(sf − so)/4.

To figure out the equation’s coefficients we will now set up a set of equality constraints. At

first we have to assure that the function values at the starting point s0 and the ending point

sf of the function are equal to ξ0 and ξf and the first three derivatives in these points are

equal to zero. Thus, for the starting point we have

ξ̃1(s0) = a1s
5
0 + b1s

4
0 + c1s

3
0 + d1s

2
0 + e1s0 + f1 = ξ0, (4.24)

ξ̃′1(s0) = 5a1s
4
0 + 4b1s3

0 + 3c1s
2
0 + 2d1s0 + e1 = 0, (4.25)

ξ̃′′1 (s0) = 20a1s
3
0 + 12b1s2

0 + 6c1s0 + 2d1 = 0, (4.26)

ξ̃
(3)
1 (s0) = 60a1s

2
0 + 24b1s0 + 6c1 = 0, (4.27)
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and for the ending point

ξ̃3(sf ) = ξf , (4.28)

ξ̃′3(sf ) = 0, (4.29)

ξ̃′′3 (sf ) = 0, (4.30)

ξ̃
(3)
3 (sf ) = 0, (4.31)

respectively. Another eight equations result from the need to connect the polynomials piece-

wise to a C3-continuous spline. Thus, for S1 we have

ξ̃1(S1) = ξ̃2(S1), (4.32)

ξ̃′1(S1) = ξ̃′2(S1), (4.33)

ξ̃′′1 (S1) = ξ̃′′2 (S1), (4.34)

ξ̃
(3)
1 (S1) = ξ̃

(3)
2 (S1), (4.35)

and for S2 we have

ξ̃2(S2) = ξ̃3(S2), (4.36)

ξ̃′2(S2) = ξ̃′3(S2), (4.37)

ξ̃′′2 (S2) = ξ̃′′3 (S2), (4.38)

ξ̃
(3)
2 (S2) = ξ̃

(3)
3 (S2). (4.39)

As there are 16 equations in 18 unknown variables, we have to add two more equations in

order to obtain a unique solution. For this we chose to decrease the order of the first and the

third polynomial by one, which means

a1 = 0, (4.40)

a3 = 0. (4.41)

Now we can solve the linear equation system (4.24)-(4.41) in order to obtain the coefficients

of (4.23). See Appendix A for the solution. Note that a C2-continuous spline function

connecting the points (s0, ψ0)T and (sf , ψf )T can be constructed in the same way from three

third order polynomials.

With the constructed spline function of class C3 we can now set

qi(si) =


qi,o 0≤ si≤ si,o
ξsi,o,si,f ,qi,0,qi,f (si) si,o<si≤ si,f
qi,f si,f <si

, (4.42)
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Figure 4.8: Plot of the C3-continuous function (4.42) intended for adjustments of the ith robot’s
q-coordinate and its first three derivatives. The constants were chosen as si,o = 2m,
si,f = 10m, qi,o = 0m, and qi,f = 4m.

which can be utilized to adjust the ith robot’s q-coordinate while generating a C1 or C0-

continuous profile for Ki depending on the continuity class of the reference curvature Kc.

An exemplary plot of equation (4.42) can be found in Figure 4.8, where the constants were

chosen as si,o = 2m, si,f = 10m, qi,o = 0m, and qi,f = 4m.

4.4 Simulation results

In this section we present the simulation results of two exemplary scenarios to highlight the

abilities of the enhanced motion planning approach. Therefore we define a reference trajectory

as well as a collection of maneuver constants that describe the desired modifications of the

vehicles p and q-coordinates during the motion. The results of the simulations are depicted

in Figures 4.9-4.11. The topmost plot in each figure shows the trajectories of the vehicles and

the reference in the x-y-plane as well as snapshots of the vehicles’ configuration at specific

points in time. The remaining figure contains graphs of the speeds vc and vi and the relative

coordinates pi and qi plotted against the time as well as the curvatures Kc and Ki plotted
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4.4 Simulation results

i
s̃Ii,o ∆tI pIi,o pIi,f s̃IIi,o ∆tII pIIi,o pIIi,f
[m] [s] [m] [m] [m] [s] [m] [m]

1 9 3 -1 -2 32 3 -2 -1
2 21 3 -2 -1 40 3 -1 -2

i
sIi,o sIi,f qIi,o qIi,f
[m] [m] [m] [m]

1 8 11 0 -1
2 8 11 0 1

i
sIIi,o sIIi,f qIIi,o qIIi,f sIIIi,o sIIIi,f qIIIi,o qIIIi,f sIVi,o sIVi,f qIVi,o qIVi,f
[m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m]

1 25 28 -1 0 32 35 0 1 40 44 1 0
2 25 28 1 0 32 35 0 -1 40 44 -1 0

Table 4.1: Maneuver constants for formation motion planning simulation scenario 1.

against the traveled distance along the reference trajectory. The vertical dashed lines in these

plots denote the points in time at which the vehicle snapshots in the x-y-plot were taken.

The bold black curves in the speed and the curvature plot correspond to the values of the

reference point vc and Kc.

4.4.1 Scenario 1

In the first scenario we compare the motion planning approach that assumes a piecewise

constant reference curvature described in Section 4.2 with the enhanced motion planning

approach proposed in Section 4.3. Therefore we evaluated both methods in the same scenario,

which means both methods have to cope with the same reference trajectory defined by vc(s)

and Kc(s) as well as identical modifications of pi and qi. The maneuver constants specifying

the adjustments of the relative coordinates are listed in Table 4.1. We decided to let the

starting time ti,o of a p-modification be the time when the corresponding car reaches a certain

distance s̃i,o measured along the reference trajectory for the first time. The trigger has to be

limited to the first time, because the adjustment might cause the vehicle to move backwards,

thus decreasing its traveled distance possibly below s̃i,o. So the vehicle might pass by the

same point at different times. The reason for not choosing fixed times is simply the easier

synchronization with q-modifications which have to depend on the traveled distance. Note

that it is important to apply adjustments of qi every time the vehicle’s traveled distance si

resides in the corresponding interval [si,o, si,f ].

The simulation results for the method that assumes a piecewise constant reference curvature

are depicted in Figure 4.9 and the results for the enhanced method are depicted in Figure 4.10

respectively. At the beginning of the simulation run the reference trajectory was set to follow

a sinusoidal curve for the speed vc while keeping the curvature Kc constant. This shows

51



4. MOTION PLANNING FOR FORMATIONS OF NONHOLONOMIC
MOBILE ROBOTS

10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

1.2

1.4

t [s]

v
c
, 

v
i [

m
/s

]

10 20 30 40 50 60

−2

−1.5

−1

−0.5

t [s]

p
i [

m
]

0 5 10 15 20 25 30 35 40 45

−1.5

−1

−0.5

0

0.5

1

1.5

s
c
, s

i
 [m]

K
c
, 

K
i [

1
/m

]

0 10 20 30 40

−1

−0.5

0

0.5

1

s
i
 [m]

q
i [

m
]

Figure 4.9: Motion planning simulation scenario 1: method assuming a piecewise constant ref-
erence curvature. The figure depicts the vehicle trajectories in the plane, the speed
and the curvature profile as well as the values of pi and qi.
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Figure 4.10: Motion planning simulation scenario 1: enhanced method. The figure depicts the
vehicle trajectories in the plane, the speed and the curvature profile as well as the
values of pi and qi.
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well how the p-coordinates of the followers change with the original approach even though

no modifications were projected as can be seen from Table 4.1. The enhanced approach in

contrast maintains the formation, since all vehicles are applying the same reference speed

at the same time. In order not to penalize the first method, the remainder of the reference

trajectory was set to maintain a constant speed. The bends in the trajectory are composed

of a continuously increasing (decreasing) curvature part, a part with constant curvature and

finally a part where the curvature moves back to zero such that the profile of Kc is C2-

continuous. The first two desired modifications of qi were placed on trajectory intervals

with constant curvature, while pi is changed one time during and one time before the q-

adjustment. From the x-y-plots one can see that both methods manage the task well. Note

the jumps (vertical parts) in the curvature profile of Figure 4.9 resulting from the application

of equation (4.17) in comparison to the continuously differentiable curvature profiles of the

enhanced approach in Figure 4.10.

In contrast to the first two adjustments of qi the third and fourth were carried out on

trajectory intervals with varying curvature, namely when a straight trajectory part passes

into a part with nonzero constant curvature or vice versa. As expected, the method that

assumes a piecewise constant reference curvature fails to manage these modifications of the

formation’s arrangement (cf. x-y-diagram in Figure 4.9). On the other hand, one can see

in the x-y-diagram in Figure 4.10 that the enhanced approach handles the q-adjustments

without problems. Note that the function values of pi and qi in Figure 4.9 do not correspond

to the real relative positions seen in the x-y-plot. They rather describe the position relative

to the reference point where the robots “think” they are located, because they are obtained

as the output of equation (4.17) and the integral of equation (4.22). But in case of calculating

Ki as in equation (4.15) on trajectory intervals with varying curvature this does not hold

since the assumption of a constant reference curvature during q-adjustments is not satisfied.

4.4.2 Scenario 2

In the second scenario we demonstrate the abilities of the enhanced approach with a forma-

tion of six vehicles on a more complicated reference trajectory. In the results depicted in

Figure 4.11 one can see that the reference speed vc and the reference curvature Kc follow a

heterodyne beat which naturally varies all the time. While in motion the vehicles will change

from the initial column formation to a wedge shaped formation, which is followed by a for-

mation of two lines each with three vehicles. After this, the vehicles rotate clockwise to the

position of their neighbor and finally they get back to a column formation on the reference

trajectory. All these maneuvers are defined by the maneuver constants found in Table 4.2.
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i
s̃Ii,o ∆tI pIi,o pIi,f s̃IIi,o ∆tII pIIi,o pIIi,f s̃IIIi,o ∆tIII pIIIi,o pIIIi,f

[m] [s] [m] [m] [m] [s] [m] [m] [m] [s] [m] [m]

1 30 10 -1 -3 N/A N/A
2 12 8 -2 -1 20 10 -1 -3 28 10 -3 -6
3 4 8 -3 -2 12 8 -2 -1 N/A
4 3 8 -4 -3 28 10 -3 -4 N/A
5 2 8 -5 -3 18 10 -3 -1 30 10 -1 -2
6 1 8 -6 -3 28 10 -3 -5 N/A

i
sIi,o sIi,f qIi,o qIi,f sIIi,o sIIi,f qIIi,o qIIi,f sIIIi,o sIIIi,f qIIIi,o qIIIi,f

[m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m]

1 20 25 0 -1 30 35 -1 0 N/A
2 5 8 0 -0.5 12 16 -0.5 -1 28 33 -1 0
3 4 8 0 0.5 12 16 0.5 1 20 25 1 0
4 3 7 0 -1 18 23 -1 0 N/A
5 2 7 0 1 30 35 1 0 N/A
6 18 25 0 1 28 33 1 0 N/A

Table 4.2: Maneuver constants for formation motion planning simulation scenario 2.

Here, like in the first scenario, the beginning of the p-adjustments is triggered by the first

time the corresponding vehicle reaches a certain traveled distance s̃i,o measured along the

reference trajectory. As can be seen, the applied motion generation approach manages the

complete scenario without problems. For t ≥ 0 and accordingly for s ≥ 0 the resulting speed

and curvature profiles in Figure 4.11 are continuously differentiable.

4.5 Summary and discussion

In this chapter we reviewed a motion planning approach for formations of nonholonomic

mobile robots that is also applicable to vehicles of the car-like type. After pointing out weak-

nesses of the method, we introduced several enhancements that close the identified gaps. In

the original method, a time-varying reference speed results in an undesired modification of the

formation’s shape that can be avoided by simply synchronizing the vehicles’ speeds. More-

over, an extended equation has been derived for the curvature input calculation of the follower

robots. This modification allows changes of the formation’s shape along trajectory segments

with continuously differentiable curvature in comparison to the need for constant curvature

in the original approach. Finally, specific polynomial spline functions have been proposed
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Figure 4.11: Motion planning simulation scenario 2: enhanced method. The figure depicts the
vehicle trajectories in the plane, the speed and the curvature profile as well as the
values of pi and qi.
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for the relative position coordinates’ alteration. Given C0-continuous reference speed and

C1-continuous reference curvature, their application results in guaranteed continuous speed

and steering profiles for the follower vehicles.

The motion planning approach calculates values for the vehicles’ control inputs based on

the corresponding values of a reference trajectory. However, in real world applications the

control inputs cannot be applied without perturbations. In order to prevent the error from

uncontrolled increase one has to include some kind of position feedback into the calculation of

the control inputs. One way to achieve this, is to numerically integrate the kinematic model

with the corresponding inputs and to apply a controller that tracks the resulting trajectory

in the state space. In that case it is also possible to do the planning directly in absolute

coordinates as it will be shown in Chapter 5 in the context of snow shoveling on airfields via

formations of autonomous plows.
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5 Airfield snow shoveling utilizing

multi-vehicle formations

This chapter is concerned with the scenario of snow shoveling on airfields by utilizing multi-

ple formations of autonomous snowplow robots. First, we describe the problem and review

the related topic of cooperative sweeping. Then, we introduce the task specific concept of a

centrally supervised system architecture with a leader-follower hierarchy on the motion coor-

dination level. The basic idea of the method is to dynamically form formations of snowplows

whose size depends on the width of the roads to clean. In the main part of this chapter,

we develop solutions to the subproblems of motion planning for the formations and tracking

control for the individual vehicles. For this we focus on suitable motion generation tech-

niques that rely on the idea of maintaining the formations in curvilinear coordinates as it

was proposed in Chapter 4. After this we derive a feedback controller in order to track

the individually generated trajectories with the snowplows effector. Finally, implementation

details and results from the simulations carried out are presented followed by the tracking

controller’s verification in laboratory hardware experiments.

5.1 Problem statement and related work

During the winter months, snowy weather has a huge influence on an airport’s usual workflow.

The air traffic needs to be interrupted from time to time in order to sweep away the snow

from the airfield. This is crucial since snow is a potential risk for takeoff and landing aircrafts.

Today the tracks of an airport are usually cleaned from snow by utilizing a fleet of human

driven snowplows. Recent technological advances in the field of mobile robotics enable the

setup of a multi-vehicle system consisting of groups of autonomous snowplow robots for this

task. By arranging the vehicles in formations and applying a coordinated task allocation

algorithm, such a system could significantly reduce the time of interrupted airport traffic.

The snow shoveling task is, from an application point of view, related to the field of

cooperative sweeping, whose aim is to find and execute a motion for the sweeping robots

in order to cover a predefined area by their effectors, which in our case are the snowplows’

59



5. AIRFIELD SNOW SHOVELING UTILIZING MULTI-VEHICLE
FORMATIONS

shovels. For cooperative sweeping it is often desired to coordinate the vehicles in a way

that time optimality is achieved. Kurabayashi et al. addressed the problem of cooperative

sweeping by generating a path for a single robot, which is then segmented and distributed

among the vehicles [KOAY96]. The same group extended the approach with the robot’s

ability to relocate movable obstacles in [KOA+96, AKOI96]. In contrast to this, Wagner et al.

proposed an ant-like strategy for the cooperative cleaning of an unknown non-convex grid-map

region [WB97]. The homogeneous robots with a limited amount of memory follow only local

rules, which makes the method fully decentralized. Another decentralized approach using

an on-line negotiation mechanism to resolve the task sharing was proposed in [MY98]. For

this market-based strategy the authors assume that all-to-all communication is available. In

[JN02] the authors use a partitioning algorithm that divides the area to be cleaned into a finite

number of polygons. These are then allocated among the robots in a decentralized fashion.

Both, the determination of the subareas and their assignment are done during the cleaning.

Luo et al. developed a real-time method based on biologically inspired neural networks

where each robot treats the other robots as moving obstacles [LY02, LYS03]. The sweeping

of dynamic materials is investigated in [ABW05]. Here it is assumed that the material to

clean spreads within the grid-based map. In [AS06] the authors propose a decomposition of

the sweeping task by partitioning the area that is supposed to be cleaned. The approach is

characterized by its focus on realizability, which is demonstrated in an experiment with real

robots.

Projecting the problem of cooperative sweeping onto the structured environment of an

airfield, the snow shoveling task generates some problems that have not yet been addressed

in that context. The mentioned sweeping approaches lack robustness or rely on simplifications

of the problem that makes them unusable for the airport sweeping problem. In particular it

is assumed that the robots move on a grid or that they are able to move towards a certain

goal point. In contrast, the approach described in the following considers the nonholonomic

kinematics of usual snowplows as well as position and orientation of the plows’ shovels. Most

of the above mentioned methods also lack the ability to react on sudden changes in the

environment which is important for the robust and safe execution of the sweeping process.

Furthermore it has to be considered that the working space is more structured due to the

airfield environment.

5.2 System overview

In this section we describe the overall system structure of our snow shoveling approach. We

decided to rely on central supervision for the high level coordination of the system. The main
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Figure 5.1: Scheme of the complete snow shoveling system. The arrows denote communication
links between the different modules.

reason for this is safety, since a central command center has a complete overview of the whole

system. The single-point-of-failure problem, which rises from a single command center can

be dealt with one or two redundant command center units that take over in case of a failure.

Another reason for the centralized approach is that the workspace of the snowplow robots

is well known in size and structure. Therefore the scalability provided by a decentralized

approach with agents exchanging parts of the map etc. is not necessary. Another drawback

of the decentralized case would be the additional time needed for the sweeping process, since

the task allocation has to be done with less information available.

The highest level of the proposed scheme (see Figure 5.1) is divided into two types of

units. The first one, which we call the Command Center, is responsible for the central tasks.

The second kind of unit (blocks denoted as Formation I to Formation M) represents the

current constellation of vehicles where each unit corresponds to one formation with currently

NI to NM vehicles. These units, which are independent from the Command Center most

of the time, primarily are responsible for translating the assigned task into the appropriate

formation motion. Note that the number of formations as well as the number of vehicles in

a formation most likely changes during the sweeping process.

The core of the Command Center is the Task Allocation module that utilizes two data

structures: MAP and GRAPH. The GRAPH data structure is prepared off-line from the

MAP by assigning nodes to all intersection and edges for each road in between. Furthermore

we assign two numbers to the edges of the graph: The first is an integer value equal to the

number of plow robots needed for the sweeping of the corresponding road and the second
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number is equal to the road’s length, which is assumed to be proportional to the necessary

cleaning time. These values are used by the Task Allocation module in order to generate a

reasonable output. Additionally we assign a flag to each edge that marks the already cleaned

roads. In contrast to the static MAP, the GRAPH structure can be adjusted by a human

operator closing and reopening roads according to the current airport traffic. Also plows that

detect an obstacle on a road are meant to update the GRAPH structure.

The current GRAPH structure is used as an input for the Task Allocation module. De-

pending on the number of plows and the size of the roads, the module then generates one

or multiple tasks that consist of information about the edge to be cleaned and the corre-

sponding starting point. Further, it contains a list of the vehicles assigned to this task. Once

these snowplow robots are gathered at the given starting point, they will start to remove

the snow from the road that corresponds to the defined edge. An execution step of the Task

Allocation module is triggered by snowplows that just accomplished (or failed) their current

task, so they are waiting for new instructions. Besides the GRAPH, the module maintains

actual plans of all coalitions as well as a priority setting for each road, which depends on the

airport traffic as well as on the snowing intensity. Details about the functionality of the Task

Allocation module can be found in [SHS08b].

For the Formation units we choose a leader-following structure, as it results in a good

compromise between decentralization and control over individual vehicles. The Leader robot

is responsible for generating a reference trajectory for its formation at the beginning of

each task. This is done with the information received from the Task Allocation module

and the appropriate coordinates from the MAP structure. When the trajectory generation

is complete, the trajectory will be transmitted to the remaining robots within the group.

The individual control inputs in order to follow the reference trajectory while maintaining

the formation are calculated separately by each follower, where the Leader robot provides

a signal for synchronization. As a result the Formation units are independent from the

Command Center most of the time. Note that the Leader robot is just one designated robot

in the formation, usually the one in front of the unit. Besides the snow shoveling the Leader

acts as a connection between the robots and the Command Center. It informs the Command

Center about detected obstacles, finished or aborted tasks as well as the need for additional

robots to compensate for failures. Further note that the Leader robot is not meant to be the

reference point in terms of the formation movement, in which it acts like the other robots of

the group.

As will be seen in the following sections we divided the motion coordination problem into

the subproblems of motion planning and trajectory tracking.
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5.3 Motion planning

To be able to move the snowplow robots towards the points of interest deduced from the

Task Allocation’s output and the MAP, we have to construct a path that connects the points

in the correct order. The resulting path has to be feasible for the formation of vehicles,

which should track it during the shoveling task. Additionally it should be placed in a way

that the sweeping plows create a clean track as wide as possible. The first state of the path

is obtained by connecting the points of interest by line segments in the correct order. An

example is shown in Figure 5.2, where the solid gray path refers to the line segment path

connecting the points P1 with P2 and P2 with P3. Since this path cannot be followed by a

snowplow, which is usually a vehicle of the car-like type, the sharp edges need to be replaced

by curves. The dashed gray path in the figure characterizes the circular arc which connects

the intersection points of lines a1 and b1 with the solid gray lines. Here, a1 and b1 intersect in

the arc’s center S1 which lies on the bisecting line of the sharp edge at P2. The intersection

with the solid gray line segments is chosen at equal distance from P2, which has to be large

enough to guarantee a radius greater than or equal to the minimum turn radius of the vehicles.

Intuitively the dashed gray path seems to be traceable by a car-like vehicle with constant

speed. But due to the discontinuous curvature in the connection points, its steering angle

would need to change in an instant of time from 0 to a certain value or vice versa. One

possible solution would be to stop the plow in the connection points and adjust the steering

angle at zero speed, but that would make the approach very inefficient. The more elegant

solution is to replace the sharp edges of the solid gray path by segments with continuous

curvature (CC) like is has been described, e.g., in [FS04]. In Figure 5.2 such a CC-turn is

depicted by the dashed black path. It consists of a clothoid arc reaching from the initial

point of the turn (intersection with b1) to the intersection with b2, which is also chosen with

respect to traceability. The arc’s curvature varies from 0 to the constant curvature k of the

second segment, which is a circular arc (from intersection with b2 to intersection with a2)

with its center of curvature in S2. The third and final segment (a2 to a1) is a clothoid arc

of inverted sharpness compared to the first one whose curvature changes from k to 0. Due

to the continuous curvature profile of the CC-turn the whole path can be followed without

stopping. The final desired path with CC-turns can be parameterized by its arc length s

resulting in two functions xc(s) and yc(s). To transform the path into a trajectory for the

snowplow formations, a suitable speed profile vc(s) is assigned along the path. Note that

the resulting trajectory is C2-continuous with respect to x and y, what is essential for exact

tracking as it will be described in Section 5.4.
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Figure 5.2: Different paths for connecting the points P1, P2 and P3: Line segments (solid gray),
line and circular arc-segments (dashed gray), line and clothoid arc segments (dashed
black). The solid black path is shifted relatively to the dashed black reference path
and might act as planned path for a vehicle of the formation.

Figure 5.3: The formation of snowplows is maintained in curvilinear coordinates.
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As it was mentioned in Section 4.1, methods for formation driving are often based on

maintaining a certain distance and angle to a moving reference point which could be a leading

vehicle, the barycenter of the group or even a predefined point. Since car-like vehicles are

nonholonomic and therefore cannot accelerate in an arbitrary direction nor can they turn

on the spot, this is not very applicable in the Cartesian space. However, the main problem

is that the desired relative angle between the leader and a following vehicle changes, if they

should drive through a curve one after the other on the same path. A solution to this problem

is to maintain the distance to the reference point in curvilinear coordinates as in the motion

planning approach that was described in Chapter 4. Compared to this method, here the

reference trajectory is given in terms of the Cartesian coordinates xc(s) and yc(s) combined

with a speed profile vc(s), rather than in terms of speed and curvature. This allows us to

apply a feedback controller for trajectory tracking as it will be described in Section 5.4.

Figure 5.3 shows three snowplows in formation where C denotes the reference point and

pi and qi denote the longitudinal and lateral distance from the ith vehicle to C respectively.

pi as well as the traveled distances of the reference point sc and of the vehicles si are always

measured along the reference path and therefore

si(t) = sc(t) + pi(t).

It can be seen that the Euclidean distances between the plows slightly vary depending on

the momentary curvature of the reference trajectory. Due to a limited turning radius this

deformation effect is upper bounded and therefore unproblematic if the initial values for pi
are chosen such that the distance between the vehicles is big enough. xc(si) and yc(si) provide

the position of the reference point at the traveled distance of vehicle i. Then, with respect

to qi the desired position for the ith snowplow can be computed as

xdi (si, qi) = xc(si)− qi sin(θ̂i),

ydi (si, qi) = yc(si) + qi cos(θ̂i),

where θ̂i is equal to the angle between the x-axis and a tangential vector at
(
xc(si), yc(si)

)T
pointing towards the movement direction. Next to the dashed black path in Figure 5.2 the

solid black curve shows the computed path for a vehicle with qi < 0. The quadratic markers

on both curves are placed on equal traveled distances measured along the reference path. It

can be seen that a vehicle on the solid path has to move faster in order to keep up with one

on the dashed reference path. Apart from that its steering angle has to be smaller. Note that

for traceability the vehicle’s steering angle constraint needs to be satisfied at every point of

the desired trajectory. But since the airfield was designed for big airplanes, whose turning
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L = 0.30mM = 0.18m

(x,y)

Figure 5.4: Topview of a MERLIN robot (cf. Appendix B) equipped with a shovel.

radius is usually more limited, we assume that the steering angle constraint of the snowplows

is satisfied.

5.4 Adapted trajectory tracking control

To follow the desired trajectories a trajectory tracking controller developed for car-like robots

was implemented on each snowplow. In [DOS98] a dynamic feedback controller is described

that utilizes exact feedback linearization on the kinematic equations for the barycenter of the

robot located at the center of its rear axle. The dynamic controller was intensively tested

and showed its applicability except in sharp turns as can be seen in Figure 5.5(a). Note that

it is not possible to influence the orientation of the vehicle when tracking a trajectory with

a car-like robot. So the bigger the distance between shovel and barycenter of the plow, the

more the cleaned area deviates from the desired path. To increase the cleaning performance

we choose the shovel’s mounting point as the new position that should track the desired

trajectory. The steps of the controller’s derivation will be described in the following.

The kinematic model for one vehicle with the new reference point can be written as

ẋ(t) = v(t) cos
(
θ(t)

)
− (L+M) sin

(
θ(t)

)
θ̇(t), (5.1)

ẏ(t) = v(t) sin
(
θ(t)

)
+ (L+M) cos

(
θ(t)

)
θ̇(t), (5.2)

θ̇(t) = v(t)
tan

(
φ(t)

)
L

,

φ̇(t) = ψ(t),
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where x, y are the Cartesian coordinates of the shovel’s mounting point (cf. Figure 5.4), θ

denotes the orientation angle with respect to the x-axis, and φ denotes the steering angle.

Further, L denotes the distance between front and rear axle and M corresponds to the

distance between front axle and the shovel’s mounting point. The two control inputs speed

and angular velocity of the steering angle are referred to as v and ψ. Note that compared to

the kinematic model of a usual car-like robot (3.8) we simply shifted the Cartesian coordinates

(x, y)T to another location and added an integrator to the original control input φ.

In the following equations the dependency on time t is omitted due to readability. Accord-

ing to the tracking task we choose the system outputs as (x, y)T . Now with u = (v, ψ)T we

can write (5.1) and (5.2) as(
ẋ
ẏ

)
=
(
− sin θ(L+M)θ̇

cos θ(L+M)θ̇

)
+
(

cos θ 0
sin θ 0

)
u.

The input ψ does not appear and therefore the matrix weighting the inputs is singular. Like

in [DOS98] we add an integrator with state ξ on the first input

v = ξ, ξ̇ = v′, (5.3)

with v′ as auxiliary input. With (5.3) the second derivative of the output is computed as(
ẍ
ÿ

)
=
(
−ξ2 tanφ

L2

(
L sin θ + (L+M) cos θ tanφ

)
ξ2 tanφ

L2

(
L cos θ − (L+M) sin θ tanφ

) )+
(
P R
Q S

)(
v′

ψ

)
(5.4)

with

P = cos θ −
(

1 +
M

L

)
sin θ tanφ,

Q = sin θ +
(

1 +
M

L

)
cos θ tanφ,

R = −ξ
(

1 +
M

L

)
sin θ
cos2φ

,

S = ξ

(
1 +

M

L

)
cos θ
cos2φ

.

Assuming ξ 6= 0, which makes the matrix weighting the inputs nonsingular, we set (ẍ, ÿ)T =

(r1, r2)T . Then solving equation (5.4) for the input vector (v′, ψ)T yields the following non-

linear dynamic feedback controller

v = ξ,

ψ = cos2φ
[
4L3(r2 cos θ − r1 sin θ)

− 4
[
ξ2
(
(L+M)2/ cos2φ−M(2L+M)

)
+ L2(L+M)(r1 cos θ + r2 sin θ)

]
tanφ

]
/
(
4ξL2(L+M)

)
,

ξ̇ = r1 cosθ + r2 sin θ +
(L+M)ξ2 tan2φ

L2
.

(5.5)
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(a) (b)

Figure 5.5: Comparison of barycenter tracking (a) and shovel center tracking (b) in simulation.
The dots denote the path of the car’s barycenters and the dashed line between the
cars denotes the reference path. Further, the solid thin lines denote the shovels’
position at certain time instances.

The linearization process transformed the original system into two double integrators

ẍ = r1,

ÿ = r2.

Now the decoupled system can be stabilized with linear feedback of the form

r1 = ẍd +Kv,1(ẋd − ẋ) +Kp,1(xd − x),

r2 = ÿd +Kv,2(ẏd − ẏ) +Kp,2(yd − y),

with the feedback gains such that the polynomials

λ2 +Kv,jλ+Kp,j , j = 1, 2

are Hurwitz. As can be seen in Figure 5.5(b), the resulting controller handles sharp turns

in a much more efficient way than the original one. Note that for those controllers to work

properly an accurate positioning system is required that provides feedback of the position,

and velocity errors. But since the site to clean is not changing, a reliable positioning system

(e.g., DGPS, landmarks) can be installed on site for feedback purposes.

The task allocation algorithm might command vehicles to move into the direction they

just came from. This can be due to a blocked road or simply because it is the most efficient

route towards the upcoming task. Because of the limited steering angle of car-like robots,

turning the vehicle around is not a trivial task. If there is enough space at the vehicles current

position we let them turn around before heading towards the next task. If there is too few

space available, the vehicles should move backwards towards the previous intersection they
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passed. This will be no problem, because the snow has been removed recently. Once the plows

reach the intersection they can reorient in order to proceed forward towards their currently

assigned task. An example for such a maneuver is shown in the simulation snapshots in

Section 5.5. Note that for the backward motion the vehicles need to switch to a different

controller, because otherwise they would turn around and switch to a forward motion as a

result of minimal disturbances. The backward motion controller can be derived in the same

way as the one for forward motion by simply negating the factor (L + M) in the kinematic

equations (5.1) and (5.2). As a result, the reference point for the tracking is located behind

the plow.

5.5 Implementation and simulation results

In this section we provide some remarks concerning the implementation of the multi-snowplow

motion coordination. Furthermore we present the results from the simulation of a motion

coordination scenario that covers all crucial situations that might occur during the snow

shoveling process. This includes dividing and extending formations as well as reacting on

unforeseen obstacles.

For the snow removal the formation should be arranged in such a way that the snow is

transported to the side of the roads. Since the Task Allocation module decides about the

compositions of the formations, the vehicles should be applicable in every possible setup.

As a natural consequence the plows have to be homogeneous, i.e., size, speed and steering

bounds, shovel orientation, etc. should be the same for all of them. This induces a formation

structure in which the vehicles are arranged diagonal to the roads direction. Since the shovel’s

mounting point is not in the vehicle’s center, the shovel covers the path to a lesser extent

during turns than on straight trajectory segments. Therefore we arrange the vehicles in such

a way that their shovels overlap a little even during maximal turning. This also leaves some

tolerance for temporary displacements due to uncertainties in the localization.

In some cases it can be useful to adjust the shape of a formation while its vehicles are in

motion. This can be done, e.g., in order to adapt to changes in the environment like a road

getting narrower, to avoid an obstacle, or to adjust the formation structure after switching

to a new group. Such deformations can be achieved by appropriate and smooth enough

modifications of the formation parameters pi and qi as it was described in Chapter 4.

Figure 5.6 shows four snapshots of the implemented snow shoveling simulation. The initial

formation whose reference point starts at position (0, 0) consists of 8 plows. The desired

speed of the reference point is 10m/s throughout all trajectory segments and for the feedback

gains of the trajectory tracking controller we chose Kp,j = 6.25 and Kv,j = 4.75 with j ∈
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(a) (b)

(c) (d)

Figure 5.6: Simulation snapshots from the introduced motion coordination approach in an ar-
tificial scenario that covers all crucial situations that might occur during the snow
shoveling process. Units are in meters.
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Figure 5.7: Profiles of speed v, steering angle φ and position error ep from the first part of the
snow shoveling simulation.

{1, 2}. On the first intersection the group is divided into two formations in order to sweep

smaller roads as it has been commanded by the Task Allocation module. On the motion

coordination level this is achieved by letting snowplows, that reach the transition point, switch

into another group by changing their q-parameter to an appropriate value and follow the new

reference trajectory respectively. In the transition from one into two formations depicted in

Figure 5.6(a) qi, i ∈ {1, . . . , 8} is changed from (q1, ..., q8) = (−21,−15,−9,−3, 3, 9, 15, 21)

to (q1, ..., q4) = (q5, ..., q8) = (−9,−3, 3, 9), where we numbered the vehicles from the front to

the rear of the initial formation. It can be seen that the transition to the subsequent reference

trajectory happens smoothly.

After some time the formation heading south faces an obstacle blocking the road. At

this point the plow that detected the obstacle informs the Command Center. As a result of

the Task Allocation module’s next iteration the group in the south receives the command

to return to the northern intersection and wait for four more vehicles before start sweeping

the road heading eastwards. For turning the formation around there is not enough space

available. So the formation moves backwards until it reaches the last intersection where an
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appropriate reorientation is always possible (cf. Figure 5.6(b)). The snapshot in Figure 5.6(c)

shows the formation waiting for additional plows at the road to the right of the intersection.

At the moment the group that cleaned the road in the north arrives, the two formations unite

and start sweeping the east heading road (cf. Figure 5.6(d)). Further simulated scenarios like,

e.g., for the environment of Frankfurt International airport can be found in [HSS07a, SHS08a].

Figure 5.7 shows the profiles of speed v, steering angle φ and position error ep = |(x−xd, y−
yd)| from the first part of the snow shoveling simulation. The depicted profiles end shortly

after the point when all vehicles completed their first curve (just before snapshot 5.6(a) was

taken). The remaining speed and steering changes during the other curves are principally

recurrences with different amplitude and prolongation.

Looking at the position error profile it can be seen that the error initially grows before it

converges asymptotically towards zero. This results from the dynamic nature of the controller

and the fact that the vehicles start with zero speed. The speed profile depicts that the vehicles’

speeds overshoot the desired speed of 10m/s at the beginning, in order to catch up with the

constantly moving reference point. To avoid this, one could play with the values for Kp,j

and Kv,j or one could define an adequate desired speed function vc(s) that also considers

the acceleration time of the plows. As can be also seen from the error profile, switching of

formations as well as driving through curves, which happens to all vehicles within the first

40s, does not significantly influence the position error. As expected, the changes of speed

and steering of vehicles of the same formation, happen during intervals of equal length for

the same curve. Note that the speed and steering profiles are continuous, which would not

be the case, if the barycenter controller from [DOS98] were applied. This is because for exact

tracking it requires a reference trajectory that is at least C3-continuous with respect to x and

y.

5.6 Hardware experiments

This section describes the snow shoveling hardware experiments that were carried out using

a testbed with two car-like mobile robots of the Indoor MERLIN type (cf. Appendix B).

The aim of the hardware experiments is to verify the results of the motion coordination

simulations and especially the feedback controller (5.5) in a real environment. The utilized

MERLIN robots are equipped with various sensors including wheel encoders and a gyroscope.

Further, each vehicle contains a wireless communication device to enable inter-robot data-

exchange. For the experiments the snow was made of small pieces of polystyrene and for the

shovels we used straight bars, which were mounted transversely to the bumper of the mobile

robots. The distances between front and rear axle L and between front axle and center of
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the shovel M were determined as L = 0.3m and M = 0.18m. The snowshovels’ breadthwise

coverage when moving straight is approximately 0.3m.

The designed scenario consists of a larger road for two vehicles and two smaller roads that

can be swept by only one plow. Since we have just three roads and two intersections, the task

allocation for this small scenario is optimally solved in one step. Initially the vehicles relative

formation parameters are chosen to be p1 = 0m, p2 = −1.5m, q1 = 0.25m and q2 = −0.25m.

We did several experimental runs with different controller gains in the scenario where the

reference path is composed of line and circle segments as well as in the scenario where the

reference path is composed of line segments and CC-turns. Figure 5.8 shows three snapshots

from the experiments.

At the beginning of a run, the two snowplows start as one formation to remove the snow

from the bigger road. After shoveling the first turn together the formation is divided into

two formations with only one plow in order to clean the smaller roads separately. At the

point of separation, we set p1 = p2 = q1 = q2 = 0 and the vehicles start tracking individual

trajectories. Before the snowplows reunite, the vehicle on the center road has to wait for

the other one to pass by. Otherwise the robot coming from the outer slope would leave an

amount of snow in the turnoff. Note that the remaining snow on the roads after the shoveling

process results from the simple design of the shovels. When the vehicles unite again to one

formation their p and q-parameters are reset to its initial value and the plows converge to

their initial arrangement during the final turn. After this, they proceed towards the starting

point on the big road.

The localization of the robots in the experiment relies on dead reckoning which is based

on information obtained from wheel encoders and gyroscope. As it was mentioned before, an

accurate positioning system should be utilized in a real application in order to obtain external

feedback for the robots’ absolute position. But note that a global positioning system will

not significantly change the results of the experiment, since the principle responses of the

motion coordination implementation as well as of the tracking controller will be the same.

The only difference lies in the fact that a global feedback prevents the accumulation of the

global position error, which is crucial for the safety and robustness in real world scenarios.

The speed and the steering profile as well as the vehicles individual position error of two

experimental runs are depicted in Figure 5.9. The solid curves denoted by cc1 and cc2 refer to

the run with clothoid segments while the dashed curves denoted by circ1 and circ2 correspond

to the run with circular segments during turns. In these runs we set the feedback gains of the

trajectory tracking controller to Kp,j = 9.0 and Kv,j = 6.0 with j ∈ {1, 2} such that the poles

of the closed-loop system are located at −3. The mean speed along the reference trajectory
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(a)

(b)

(c)

Figure 5.8: Photographic snapshots from the snow shoveling laboratory hardware experiments.
The initial experimental setup is depicted in (a), while (b) shows a closeup of the
two robots cleaning the first curve together. Image (c) was taken after a successful
run of the experiment.
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Figure 5.9: Plots from the snow shoveling hardware experiment. The figure contains plots of
the individual vehicles’ speed v, steering angle φ, and position error ep from two
experimental runs. The solid curves denoted by cc1 and cc2 refer to the run with
clothoid segments during turns while the dashed curves denoted by circ1 and circ2

correspond to the run with circular segments.
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was set to 0.4m/s. As a compromise between a reasonable resolution for the encoder-based

speed measurement and a preferably small discretization stepsize, the sampling interval was

set to 105ms. The speed values, which are also utilized by the dead reckoning, are quite

accurate. In contrast to this the steering values are only a linear approximation from the

PWM signal currently applied to the steering servo. The accuracy of the steering values is

further decreased by a tolerance of about 4◦ in the wheel suspension.

In the position error plot in Figure 5.9 it can be observed that there is a relatively large

position error at the beginning of both simulation runs as well as in the profiles of robot 1

at around t = 60s, which is directly after the waiting. This comes from the fact that the

reference speed is already 0.4m/s from the beginning and in contrast to the kinematic model,

the real robot cannot accelerate arbitrarily fast due to its inertia. A reduction of this error

without considering a dynamic model could be achieved by adapting the speed profile of the

reference trajectory. The chosen gains are quite aggressive for bigger errors as they occur

when starting from standstill, like it happens, e.g., at the beginning of the speed profile. But

once this initial position error is overcome, the controller keeps the error below 0.027m in the

case of a smooth enough reference trajectory. The increase as well as the oscillation of the

position error during turns results from the discretization of the continuous model. In the

continuous-time simulation presented in Section 5.5 this phenomenon could not be observed.

Due to the step in the derivatives when switching from a line segment to a circular segment

we observe short peaks at these connection points in the dashed speed profiles as well as in the

dashed profiles of the position error. Further, there is an initial overshoot in the steering angle

at the beginning of each turn. These phenomena can be reduced by choosing less aggressive

controller gains at the expense of a slower decrease of the tracking error. Moreover, as can

be seen in the steering profile in Figure 5.9, the steering angle oscillates with an amplitude

of approximately 2◦ on straight path segments. This results from the tolerance in the wheel

suspension of the robots such that in the worst case the controller needs to command a change

greater than 4◦ to achieve a change of steering at all.

5.7 Summary

In this chapter we discussed the application of autonomous multi-snowplow formations for

the snow shoveling on airfields. For this we introduced a centrally supervised system archi-

tecture with a leader-follower hierarchy on the motion coordination level. The architecture

was designed by consideration of the specific properties of the task. To solve the motion

coordination part we introduced a trajectory planner that transforms the output of the Task

Allocation module into a trajectory for the reference point of the corresponding Formation
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unit. On the lowest level each vehicle computes its own desired trajectory based on the

reference trajectory and applies a feedback controller that was adapted for the needs of the

snow shoveling task. Furthermore, the framework is able to react on unforeseen changes in

the environment such as narrow road segments, obstacles and blocked roads. The individ-

ual approaches as well as the complete framework have been tested in various simulations.

Additionally the robustness of the motion coordination solutions was verified in hardware

experiments.

77





6 Rendezvous for groups of car-like mobile

robots

This chapter deals with the rendezvous for groups of car-like mobile robots. The rendezvous

problem for multi-vehicle systems requires that all nodes are driven to a common configura-

tion by means of local control strategies. Before we survey related work on rendezvous and

the interconnected consensus problem, we describe how to model the interaction topology in

multi-agent systems by a graph. Then, we formulate the problem statement and consider

the rendezvous task in groups of car-like robots with free steering angle. In the main part

of this chapter we solve the rendezvous problem for the bounded steering case by applying

discontinuous feedback control in combination with a specific switching logic. After present-

ing results from simulations and hardware experiments, the method is extended for faster

convergence, which is verified by a statistical analysis.

6.1 Graph-based representation of the interaction topology in

multi-agent systems

In multi-agent systems, the underlying interaction topology can be represented by a graph

G = (V, E). Given a group of N agents, each element of the set of vertices V = {1, . . . , N}
represents one agent of the system. The set of directed edges E, often referred to as arcs,

consists of ordered pairs of vertices (i, j) ∈ V × V which indicate an interaction link from

agent i to agent j. Such a link enables agent i to obtain knowledge of the current state of

agent j. This might be achieved by active sensing or via local communication as depicted in

Figure 1.2.

For agent i the set of neighbors Ni consists of all agents j ∈ V, j 6= i, that are connected

with agent i via an interaction link, i.e., (i, j) ∈ E and |Ni| denotes the cardinality of the set

Ni. If (i, j) ∈ E ⇒ (j, i) ∈ E holds for all (i, j) ∈ E we refer to the graph G as undirected. If

this is not the case G is a directed graph also referred to as digraph. A sequence of vertices is

called a path, if for each of its vertices there exists an edge to the next vertex in the sequence.

An undirected (directed) graph is connected (strongly connected) if for all pairs of vertices
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(i, j) ∈ V×V there exists a path from i to j. If the underlying undirected graph of a digraph

G is connected, we call G weakly connected. Furthermore, a digraph G is called balanced, if

the number of incoming edges of each vertex of G is equal to its number of outgoing edges.

In a proximity graph the existence of an edge between two distinct agents depends on the

geometric distance of agents in the configuration space. Formally, if for the utilized distance

function d(i, j), i 6= j, it holds that d(i, j) ≤ d̂ for a predefined constant d̂ > 0, if and only

if (i, j) ∈ E. Note that a proximity graph is always undirected, since distance functions are

symmetric by definition.

6.2 Problem statement

Consider a system consisting of N homogeneous car-like robots. The motion of the ith robot

in the plane is described by the following kinematic equations:

ẋi = vi cos θi,

ẏi = vi sin θi, (6.1)

θ̇i = vi
tanφi
L

,

where vi ∈ R is the velocity input and φi is the steering input, which is limited to (−π/2, π/2)

in the free steering case. Like in model (3.8) in Section 3.1, L denotes the distance between

front and rear axle of a vehicle. The vector pi = (xi, yi)T represents the position in the

plane, and θi is the orientation angle with respect to the x-axis. We can rewrite (6.1) for the

complete system as

ṗ = f1(p, θ, v) =


v1 cos θ1

v1 sin θ1
...

vN cos θN
vN sin θN

 ,

θ̇ = f2(p, θ, v, φ) =

 v1 tanφ1/L
...

vN tanφN/L

 ,

(6.2)

with p = (x1, y1, . . . , xN , yN )T , θ = (θ1, . . . , θN )T , v = (v1, . . . , vN )T , and φ = (φ1, . . . , φN )T .

Further, we assume that each vehicle is labeled with a unique ID from 1 to N and we denote

by IDi the ID of the ith robot.

The problem is now to find local continuous-time control laws that drive the robots’ position

vectors pi to a common configuration. During the execution of the control law, the robots
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have access to the state variables of their neighbors in the interaction graph, which is assumed

to be undirected, connected, and static. Further, we assume that the vehicles have no spatial

extent and therefore do not collide with each other.

6.3 Related work

The rendezvous problem in networked multi-agent systems can be seen as a specific appli-

cation of the consensus problem. Due to the close relation we review the key results and

related work from consensus theory before we survey the work that explicitly deals with the

rendezvous of robotic agents.

6.3.1 Consensus in networked multi-agent systems

Reaching a consensus in networks of agents or dynamic systems means to reach an agreement

regarding a certain quantity of interest. A consensus protocol also referred to as consensus

algorithm is an interaction rule that specifies the information exchange between an agent

and all of its neighbors on the network [OSFM07]. Since the consensus protocol is imple-

mented locally on each agent, the consensus problem is related to the field of distributed

computation (cf. [Lyn96]). Also in statistics, consensus problems have a long history (cf.

[DeG74]), while from a system theory point of view they are closely related to the concept of

connective stability (cf. [Šil78, Chapter 4]). Later, the problem has been approached in the

context of distributed computation over networks like in the work of Borkar and Varaiya on

asymptotic agreement in distributed estimation [BV82] and in the work of Tsitsiklis et. al. on

asynchronous distributed computation [Tsi84, TBA86]. During the last years this issue has

received a lot of attention in the cooperative control community. For a better understand-

ing of the consensus problem in networked multi-agent systems we review recent key results

before we summarize the most important works concerning this issue.

Let xi(t), i ∈ {1, . . . , N} be the information state of agent i at time t, which represents

the information the agents should agree on. This could be, e.g., its position, heading, speed,

an environmental measurement, or a decision variable. Reaching a consensus means that

under a certain control law (consensus protocol) the agents information state asymptotically

converges to a space for which

x1 = x2 = . . . = xN ,

which means ||xi − xj || → 0 as t → ∞, ∀i 6= j. As it was described in Section 6.1 the

interaction topology of the group of agents can be projected on a graph G = (V, E). If we
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assume the information state of all agents follows simple integrator dynamics in continuous

time, i.e.,

ẋi(t) = ui(t), (6.3)

a consensus protocol can be expressed as

u̇i(t) =
∑

j∈Ni(t)

aij(t)(xj(t)− xi(t)), (6.4)

where aij is a positive, possibly time-varying weighting factor for the edge (i, j) ∈ E and

Ni(t) = {j ∈ V : aij 6= 0}

denotes the set of neighbors of agent i, which includes all agents whose information is available

for agent i at time t (cf., e.g., [RB05, OSFM07]). In matrix form the closed-loop system of

(6.3) and the linear consensus protocol (6.4) can be written as

ẋ(t) = −Lx(t),

where x = (x1, . . . , xN )T and L = (lij)i,j∈{1,...,N} is the graph Laplacian defined by

lij =
{ ∑N

k=1,k 6=i aik j = i

−aij j 6= i.

The corresponding formulation for agents with discrete-time models can be found, e.g., in

[RB05, OSFM07].

The following theorem about asymptotic stability and the group decision of (6.4) has been

stated in [OSFM07].

Theorem 6.3.1. Consider a network of N integrator-agents with topology G applying con-
sensus protocol (6.4). Suppose G is a strongly connected digraph. Then a consensus is
asymptotically reached for all initial states and the group decision is

lim
t→∞

xi(t) =
N∑
i=1

wixi(0) ∀i ∈ {1, . . . , N},

with
∑N

i=1wi = 1. Further, if the digraph is balanced, an average-consensus is asymptotically
reached, i.e.,

lim
t→∞

xi(t) =
1
N

N∑
i=1

xi(0) ∀i ∈ {1, . . . , N}.

Proof. See the proof of Theorem 1 in [OSFM07].
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If the communication graph is only weakly connected or not connected at all, it is most

likely that a consensus will not be reached by application of (6.4).

The speed of reaching a consensus in a system with integrator dynamics depends on the

topology of the network. Considering the application of a consensus algorithm in balanced

directed networks that include undirected networks as a special case, it can be easily shown

that α = (
∑N

i=1 xi(t))/N is an invariant quantity. Thus, we can define the disagreement vector

δ(t) = x(t) − α(1, . . . , 1)T that provides a measure for the disagreement within the network

[OSM04]. With respect to the dynamics of the disagreement vector, the following theorem

provides an upper bound on the convergence speed for linear continuous-time consensus in

balanced networks.

Theorem 6.3.2. Let λ2(Ls) be the second smallest Eigenvalue of the matrix Ls = (L +
LT )/2. For a strongly connected and balanced directed network, a continuous-time consensus
is globally exponentially reached with a speed that is faster or equal to λ2 = λ2(Ls), i.e.,
||δ(t)|| ≤ ||δ(0)|| exp(−λ2t).

Proof. See the proof of Theorem 8 in [OSM04].

Note that the value of λ2, which is also referred to as algebraic connectivity of the graph G,

is relatively large for dense graphs and relatively small for sparse graphs. According to

Theorem 6.3.2 that means a network with many interconnections solves a consensus problem

faster than a connected but sparse network. In this context Olfati-Saber demonstrated in

[OS05] that the algebraic connectivity of a regular network can be considerably increased

via random rewiring that turns local links into nonlocal ones. The results of [CFSZ08] show

significant improvement of the convergence rate under weighted digraphs, when instead of

being fixed, the communication graph is chosen randomly at each time step over a family of

graphs with the constraint that the number of incoming arcs in each vertex is constant.

Let us suppose that agent i receives the information state sent by its neighbor j after a

constant time-delay τij , which can be seen as a network with a uniform one-hop communi-

cation time-delay. In [OSM04] the authors proposed the following consensus protocol that

solves the average-consensus problem for such systems on undirected graphs.

Theorem 6.3.3. Consider a network of integrator agents with equal communication time-
delay τ > 0 in all links. Assume the network topology G is static, undirected, and connected.
Then, the consensus protocol

ui(t) =
∑
j∈Ni

aij
(
xj(t− τij)− xi(t− τij)

)
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with τij = τ globally asymptotically solves the average-consensus problem if and only if 0 ≤
τ < π/2 ·λN , where λN = λmax(L) is the largest Eigenvalue of the graph Laplacian L of graph
G.

Proof. See the proof of Theorem 10 in [OSM04].

In many applications the communication topology changes over time, e.g., due to link

changes, packet loss, formation reconfiguration, etc. This gives rise to the following theorem,

which states that a consensus is asymptotically reached, when the communication topology

switches between balanced and strongly connected digraphs G1, . . . , Gm.

Theorem 6.3.4. Consider a network of agents applying the consensus protocol

ẋ = −L(Gs(t))x,

where s(t) : R→ {1, . . . ,m} is an arbitrary switching signal. Suppose every graph G1, . . . , Gm

is a balanced digraph that is strongly connected and let

λ∗2 = min
k∈{1,...,m}

λ2(Gk).

Then, the agents asymptotically reach an average-consensus for all initial states with a speed
faster or equal to λ∗2.

Proof. See the proof of Theorem 9 in [OSM04].

Another result that does not require the individual undirected graphs to be connected has

been presented in [JLM03, Theorem 2] for the discrete-time domain. The authors show that

it is sufficient that there exists an infinite sequence of successive, nonempty, and bounded

time-intervals during which the union of the individual communication graphs is connected.

This result was further generalized to directed graphs in [Mor05] and [RB05].

Recent surveys on the subject have been published in [OSFM07, RBA05]. As can be

seen, many publications about rendezvous and consensus in networked multi-agent systems

follow the direction of the results mentioned above. [Ren07] introduces extended consensus

algorithms for systems modeled by second-order dynamics (double-integrator). Further, the

article points out that many existing leader-follower, behavioral, and virtual structure/virtual

leader formation control approaches (cf. Section 4.1) can be mapped on consensus-based

strategies. In [RMC07] the authors present a generalized consensus protocol for l-integrator

systems (l ∈ N), and [Ren08] analyzes consensus algorithms in networks of double-integrator

agents with bounded control input as well as without relative velocity measurements.
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[XW07] presents necessary and sufficient conditions to solve a consensus problem for multi-

agent systems in high-dimensional state space. Consensus in a network of discrete-time inte-

grator agents under quantized communication has been discussed in [Spe06, Chapter 4], while

quantized consensus on connected graphs in discrete-time for which the information state of

each node is always an integer-value has been studied in [KBS07]. Consensus protocols for

reaching an agreement in finite time in networks of continuous-time integrator agents were

introduced in [WX07]. Moreover the authors consider switching communication topologies

and establish an upper bound for the overall convergence time. Linear consensus strate-

gies in randomly changing communication networks have been studied, e.g., in [PS07] and

[FZ08], while reaching consensus via model predictive control strategies has been addressed

in [BGP06, JSJJ08, KJ08]. Consensus protocols especially designed for the application in

wireless sensor networks recently have been analyzed in [KM08] and [BMM08].

A novel asynchronous consensus control strategy for continuous-time multi-agent systems

with switching topology and time-varying delays was proposed in [XW08]. Due to its asyn-

chronism, the approach overcomes the difficulties caused by unreliable communication chan-

nels that usually cannot be avoided in current state-of-the-art wireless networks.

6.3.2 Rendezvous for groups of mobile robots

The rendezvous problem can be seen as a special case of the consensus problem, as the goal

is to develop local control strategies that drive each robots’ positions to a common value in

the configuration space. Even though in some works the point of rendezvous is predefined

[BF08] or has to be within a finite set of candidate rendezvous points [FMC08], we focus on

decentralized control strategies where this is not the case.

Local control strategies for the rendezvous in groups of mobile autonomous agents have

been introduced in [LBF04]. Graph-based nonlinear feedback control laws for a group of

integrator agents based on weighted graph Laplacians have been proposed in [JE07]. Fur-

ther, the authors introduce a control law that solves the rendezvous problem while ensuring

connectedness, meaning the agents move in a way such that established communication links

in the proximity graph will never break down.

The rendezvous problem for groups of differential drive robots was investigated in [DK07].

The authors use Lyapunov’s direct method and LaSalle’s invariance principle that were ex-

tended to nonsmooth systems in [SP94] in order to prove asymptotic convergence of the

proposed distributed and discontinuous control law to a common configuration in the state

space. Further, the control law ensures connectedness of the existing edges in the communi-
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cation graph. In special cases, rendezvous is not achieved by the proposed control law as it

is shown in Chapter C of the appendix.

In [RCB+08] the results from various rendezvous and axial alignment hardware experiments

are presented. With four differential drive robots the authors verify the theoretical results for

the single integrator consensus protocol (6.4) applied in scenarios with fixed and switching

interaction topologies. They also emphasize the importance of a high update rate for the

robot positioning, which was achieved by a ceiling-mounted camera.

Cyclic pursuit, which is a special case of rendezvous control law in which agent i pursues

agent (i + 1) moduloN , has been the subject of research in recent publications. [MBF04]

for example presents stability results for cyclic pursuit of integrator agents as well as for

unicycle vehicles. In [SG06] the authors determine the point of convergence and define a

set of reachable rendezvous points depending on the individual controller gains of the agents

with integrator dynamics. Cyclic pursuit for agents with nonlinear equations of motion has

been studied in [SG07].

An alternative definition of rendezvous control laws can be found in [MBCF07]. At suc-

cessive communication rounds, the agents exchange their position with their neighbors. Ren-

dezvous without connectivity constraint is achieved by letting the agents move between com-

munication rounds such that they reach the point that is the average of the positions received

from their neighbors. Under a second law originally introduced in [AOSY99], the agents move

towards the circumcenter of their neighbors positions and its own, thus ensuring connectivity

with each of their neighbors. The circumcenter of a set of points is defined as the center

of the smallest circle that encloses all of the points. This law was further investigated in

[LMA03, LMA04, CMB06, CP07] for the synchronous and the asynchronous case, where de-

cisions do not depend on a common clock. The main contribution of [MBCF07] in terms of

the rendezvous problem is the determination of upper and lower bounds for the time com-

plexity of the two laws. A generalized analyzis of these “stop-and-go” strategies can be found

in [LMA07a] and [LMA07b] as well as in [BCM08].

There exist several publications on the rendezvous problem that are less related to our work.

For example they deal with rendezvous of spacecraft [WH07], which usually involves dock-

ing with previous attitude alignment of the spacecraft. [BF08] investigates minimum-time

rendezvous of Dubins vehicles based on path planning. A Dubins vehicle can be consid-

ered as a simplified model of a mobile robot with bounded curvature and constant speed

[Dub57]. Rendezvous of Dubins cars with minimalist sensing and control was studied in

[YLL08]. With Lyapunov tools the authors showed that the vehicles can achieve guaranteed

rendezvous by exclusive usage of a three level quantized control and a simple sensor that
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only reports the presence of another agent within some sector of its windshield. The per-

formance of discrete-time integrator rendezvous under random time-varying communication

topologies with respect to average relative agents’ distance, input energy consumption and

the number of communication messages has been discussed in [SZ06b, SZ06a]. In [NB06]

the distributed computation of minimal enclosing shapes for achieving minimum time ren-

dezvous of the robotic agents was investigated. In [SBF07] the analogy between Euclidean

curve shortening and the rendezvous problem for mobile autonomous robots is shown on a

group with a polygonal interaction topology.

The main area of application for mobile robot rendezvous is field and outdoor robotics.

Although mobile outdoor robots are typically of the car-like type, nobody tackled the ren-

dezvous problem for a group of car-like vehicles. In the following sections we will consider the

rendezvous problem for these kind of vehicles in order to fill the gap. We will introduce feed-

back control systems for the free steering case as well as for the more complicated case when

the vehicles’ steering is bounded. Besides mathematical analysis of the system’s convergence

we also verify the developed algorithms in various simulation and hardware experiments.

6.4 Rendezvous with Free Steering Angle

In this section we introduce a control law for system (6.1) which drives the robots’ position

vectors pi to a common configuration. Note that this leaves out the orientation which means

that we do not claim to achieve an agreement on the full state. During the rendezvous

process each vehicle takes into account only their own states and those of their neighbors in

the underlying interaction graph. Thus the control law can be considered as decentralized.

For the ith robot with kinematics given by (6.1), we define the following discontinuous

feedback control law:

vi = −c1 sgn(v̂i) ·

√(
1

2|Ni|
x̂i

)2

+
(

1
2|Ni|

ŷi

)2

, (6.5)

φi = arctan
(
c2ωi

L

vi

)
, (6.6)

where

x̂i =
∑
j∈Ni

(xi − xj), ŷi =
∑
j∈Ni

(yi − yj),

v̂i = cos θi · x̂i + sin θi · ŷi,

sgn(x) =
{

1 x > 0
−1 otherwise

,

ωi = −π
2

+
(

atan2 (−ŷi,−x̂i)− θi +
π

2

)
mod π.
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c1 and c2 are positive constants and the function atan2(·, ·) denotes the arctangent of two

variables as it was defined in (3.12). It can be seen that for vi = 0 the value of φi is not

defined. But since in this case the system state of robot i does not change, we assume φi
remains unchanged whenever vi = 0.

In the following theorem we prove the partial asymptotic stability of the closed-loop system

defined by equations (6.1), (6.5), and (6.6) under some sufficient conditions.

Theorem 6.4.1. Consider a connected system comprised of N robots that evolve according
to (6.1) and the control law defined by (6.5)-(6.6). We assume that the constants c1 and c2

are chosen according to the following condition:

c2 >
2
π
c1. (6.7)

Further we assume that vi 6= 0 for vehicles located at unstable weak equilibrium configurations.
Then the closed-loop system is asymptotically stable to an equilibrium characterized by

pi − pj = 0, ∀i, j (6.8)

uniformly in θ.

Proof. Consider the Lyapunov function candidate

V (p) =
1
2

N∑
i=1

∑
j∈Ni

(
(xi − xj)2 + (yi − yj)2

)
. (6.9)

Computing the time-derivative of (6.9) yields

V̇ (p) = ∇V T f1(p, θ)

=



2
∑

j∈N1
(x1 − xj)

2
∑

j∈N1
(y1 − yj)
...

2
∑

j∈NN
(xn − xj)

2
∑

j∈NN
(yn − yj)



T 

v1 cos θ1

v1 sin θ1

...
vN cos θN
vN sin θN


= 2

N∑
i=1

(
vi (cos θi · x̂i + sin θi · ŷi)

)
= 2

N∑
i=1

(
viv̂i

)
. (6.10)

By substituting the control law (6.5) for vi in equation (6.10) and considering that sgn(z)z =
|z| we get

V̇ (p) = −2c1

N∑
i=1

|v̂i| ·
√(

1
2|Ni|

x̂i

)2

+
(

1
2|Ni|

ŷi

)2
 ≤ 0. (6.11)
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Since V̇ (p) is continuous, the set-valued derivative V̇ K[f1](p, θ) is the singleton {V̇ (p)} for
all possible system configurations. This yields V

(
p(t)

)
≤ V

(
p(0)

)
for all t ≥ 0, and due to

Theorem 2.4.3 the closed-loop system is Lyapunov stable to an equilibrium characterized by
pi − pj = 0 for all i, j uniformly in θ.

Now we define the following sublevel set of relative vehicle positions

Sk = {p : V (p) ≤ k}.

For any k > 0 the set Sk is closed by the continuity of V . Furthermore it is bounded with
respect to the robots’ relative positions because for every pair (i, j) ∈ E we have |pi−pj | ≤

√
k

from the definition of V and since the interaction graph is connected this yields

|pi − pj | ≤ (n− 1)
√
k ∀i, j. (6.12)

Therefore Sk is compact and we can apply Theorem 2.4.4. It states that all semi-trajectories
p(t) starting in Sk will converge to the largest invariant set within

S = {p ∈ Sk : 0 = V̇ (p)}

=

{
p ∈ Sk :

N∑
i=1

|cos θi · x̂i + sin θi · ŷi| = 0

}
.

(6.13)

From the set predicate of S, which also can be written as

∀i ∈ {1, . . . , N} : x̂i = ŷi = 0 ∨ θi = kπ − atan2(x̂i, ŷi), k ∈ Z\{0},

it is easy to see that the set S contains the desired equilibrium characterized by (6.8) as well
as all configurations for which the direction vector [cos θi, sin θi]T of each vehicle i is oriented
perpendicular to the vector defined by [x̂i, ŷi]T . We will show now that the derivative of the
inner product of the two vectors is not equal to zero for at least one car if the system is not
at the desired equilibrium. From this it follows that the largest invariant set in S contains
only the desired configurations where pi − pj = 0 ∀i, j. The derivative of the inner product
yields

˙̂vi = sin θi

∑
j∈Ni

(ẏi − ẏj)− θ̇ix̂i

+ cos θi

∑
j∈Ni

(ẋi − ẋj) + θ̇iŷi

 .

W.l.o.g. we set i ∈ arg maxj |vj | and assume θi = 0. As a result the derivative of v̂i becomes

˙̂vi =
∑
j∈Ni

(ẋi − ẋj)︸ ︷︷ ︸
=:a

+ θ̇iŷi︸︷︷︸
=:b

. (6.14)

Note that for V > 0 the elements of S correspond to points on the discontinuous surface of
the closed-loop system. From the control law (6.5) it can be seen that in terms of Filippov
solutions for the velocity of vehicle i it holds

vi ∈
[
− c1

2|Ni|
|ŷi|,

c1

2|Ni|
|ŷi|
]
. (6.15)
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It is easy to see that since vi = 0 is included in the set, these configurations are weak equilibria
of the system. Looking at the neighborhood of these points it is obvious that these equilibria
are also unstable and any small perturbation would drive the system out. Remember that
by assumption we have |vi| > 0. As such, for the summands of (6.14) we obtain

|a| =

∣∣∣∣∣∣
∑
j∈Ni

(ẋi − ẋj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j∈Ni

(cos θi︸ ︷︷ ︸
=1

vi − cos θjvj)

∣∣∣∣∣∣
≤ 2|Ni| · |vi|

(6.15)

≤ c1|ŷi|
(6.7)
<

π

2
c2|ŷi| = c2|ωi| · |ŷi| = |c2ωiŷi| = |θ̇iŷi| = |b|.

(6.16)

For the rearrangement we used the fact that according to equation (3.12) atan2(y, 0) =
(π/2) sgn(y) and therefore it holds that |ωi| = π/2 as well as sgn(ŷi)ωi = −|ωi| from the
definition of ωi. Now from |a| < |b| we conclude that ˙̂vi = a+ b 6= 0. This means that the set
S without the desired equilibrium (6.8) is non-invariant under the closed-loop system defined
by (6.1), (6.5), and (6.6) and the partial trajectory p(t) converges to the set characterized by
(6.8).

Note that Theorem 6.4.1 does not claim anything about the absolute position to which all

the agents converge; however, it says that the agents will converge to some common point.

Theoretically, also the solutions for multiple runs with the same initial conditions are not

necessarily the same, since it is not clear if vehicles will move forward or backward when the

system starts from a point on the discontinuous surface. Further note that each local part of

the control law can be interpreted as a point stabilizing controller with a moving reference

point. If we look at a point of time, the rendezvous control law of vehicle i is equivalent to

the position stabilizing controller in Subsection 3.2.1 with the desired position(
xd
yd

)
=
(
xi
yi

)
− 1

2|Ni|

(
x̂i
ŷi

)
=

1
2

(
xi + 1

|Ni|
∑

j∈Ni
xj

yi + 1
|Ni|

∑
j∈Ni

yj

)
.

6.5 Rendezvous with Bounded Steering Angle

In this section the control law (6.5)-(6.6) is enhanced for systems of car-like robots with

limited steering angle. The kinematics of vehicle i are as in (6.1) except that for the steering

input we have

φi ∈ [−φmax, φmax], (6.17)

where 0 < φmax < π/2.
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6.5.1 The closed-loop feedback control law

For each robot i we define the following discontinuous feedback control law:

vi =

{
−c1

(
v̂i + sgn(v̂i) · b̂i

)
êi >

L
tanφmax

−c1v̂i otherwise
, (6.18)

φi = σφmax

(
arctan

(
c2ωi

L

vi

))
, (6.19)

where x̂i, ŷi, v̂i, ωi, c1, c2 and sgn(·) are defined as in Section 6.4, and

êi =

√(
1

2|Ni|
x̂i

)2

+
(

1
2|Ni|

ŷi

)2

, (6.20)

b̂i = êi −
L

tanφmax
,

σb(x) =


b x > b
−b x < −b
x otherwise

.

Like in the free steering case we assume that the value of φi remains unchanged whenever

vi = 0. Stability and convergence properties of the control law defined by (6.18) and (6.19),

which we also refer to as the closed-loop controller, are given in the two following lemmas.

Lemma 6.5.1. Consider a connected system of N robots that evolve according to (6.1) with
constraint (6.17) and the control law (6.18)-(6.19). Then the closed-loop system is Lyapunov
stable to an equilibrium characterized by pi − pj = 0 for all i, j uniformly in θ.

Proof. To show stability in the sense of Lyapunov we use equation (6.9) as a candidate
Lyapunov function like in Section 6.4 and compute

V̇ (p) = 2
N∑
i=1

(viv̂i).

Considering again sgn(z)z = |z| and substituting vi by control law (6.18), yields

V̇ (p) =

{
−2c1

∑N
i=1

(
v̂2
i + |v̂i|b̂i

)
êi >

L
tanφmax

−2c1
∑N

i=1 v̂
2
i otherwise

≤ 0.

(6.21)

As a result V
(
p(t)

)
≤ V

(
p(0)

)
for all t ≥ 0, and due to Theorem 2.4.3 the closed-loop system

is Lyapunov stable to an equilibrium characterized by pi − pj = 0 for all i, j uniformly in
θ.

Lemma 6.5.2. Consider a connected system of N car-like robots that evolve according to
(6.1) with constraint (6.17). We assume that the constants c1 and c2 are chosen to satisfy
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(6.7). Further we assume that vi 6= 0 for vehicles located at unstable weak equilibrium con-
figurations. Then applying the control law (6.18)-(6.19) for all vehicles drives the system’s
position variables towards the set

Sinv =
{
p : V̇ (p) = 0 ∧ êj ≤ L/ tanφmax ∀j ∈ {1, . . . , N}

}
=

{
p :

N∑
i=1

|cos θi · x̂i + sin θi · ŷi| = 0 ∧ êj ≤ L/ tanφmax ∀j ∈ {1, . . . , N}

}
.

Proof. Like in the proof of Theorem 6.4.1 we define the sublevel set

Sk = {p : V (p) ≤ k},

which for any k > 0 is closed by the continuity of V , and also bounded with respect to the
robots relative positions. Further we have V̇ (p) ≤ 0 for all p ∈ Sk (cf. Lemma 6.5.1). Now
we can apply the modified version of LaSalle’s invariance principle stated in Theorem 2.4.4.
As a result, all semi-trajectories p(t) starting in Sk will converge to the largest invariant set
within

S = {p ∈ Sk : V̇ (p) = 0}

=

{
p ∈ Sk :

N∑
i=1

|cos θi · x̂i + sin θi · ŷi| = 0

}
.

To classify the non-invariant subsets of S, we let the current configuration be an element
of the set S where V > 0. Further we assume that êj > L/ tanφmax for at least one j, and
the constants c1 and c2 are chosen appropriately by considering (6.7). Now, w.l.o.g. we set
the orientation θi = 0 where i ∈ arg maxj |vj | is chosen to be among the fastest vehicles of
the group. Since the set S is the same as in the free steering case the derivative in time of v̂i
is equal to (6.14). Again the elements of S correspond to points on the discontinuous surface
for V > 0.

Considering that vi 6= 0 at unstable weak equilibria as well as the definition of vi in (6.18)
it can be seen that in terms of Filippov solutions the velocity is an element of a bounded set,
specifically

vi ∈
[
−c1

(
|ŷi|

2|Ni|
− L

tanφmax

)
, c1

(
|ŷi|

2|Ni|
− L

tanφmax

)]
\{0}.

Now to calculate estimates for the terms a and b of (6.14) we have to distinguish between two
cases: The first case occurs when the saturation function σφmax(·) has no effect on vehicle i,
that is, when | arctan(c2ωiL/vi)| ≤ φmax. As a result θ̇i = c2ωi and (6.16) holds like in the
free steering case. The second case contains all configurations in which the steering angle is
at its limit and therefore θ̇i = vi sgn(−ŷi) tanφmax/L. As such

|a|
(6.16)

≤ 2|Ni| · |vi| <
∣∣∣∣vi|ŷi|tanφmax

L

∣∣∣∣ = |θ̇iŷi| = |b|. (6.22)
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6.5 Rendezvous with Bounded Steering Angle

Figure 6.1: Example for an equilibrium configuration for the closed-loop controller defined by
equations (6.18)-(6.19).

For the less-than relation it was considered that from êi > L/ tanφmax follows

2|Ni| < |ŷi|
tanφmax

L

when θi = 0.
So as long as there is one vehicle i with êi > L/ tanφmax the system will break out of the

set S. On the other hand we get vi = 0 for all i if êi ≤ L/ tanφmax for all vehicles, i.e., this
part of S is invariant under the control law given by equations (6.18) and (6.19). As a result
we can define the invariant set Sinv ⊆ S as

Sinv =

{
p ∈ Sk :

N∑
i=1

|cos θi · x̂i + sin θi · ŷi| = 0 ∧ êj ≤ L/ tanφmax ∀j ∈ {1, . . . , N}

}
.

As can be seen from Lemmas 6.5.1 and 6.5.2, the bounded steering angle of the vehicles

limits the convergence properties of the closed-loop control system. We cannot even conclude

the convergence to a certain region. As an example consider a group of vehicles arranged

equidistantly on a circle with radius much bigger than L/ tanφmax. Each vehicle is connected

to the two closest robots and oriented perpendicular to the line through its position coordi-

nates and the center of the circle (cf. Figure 6.1). It is easy to see that êi < L/ tanφmax as

well as v̂i = 0 for all i ∈ {1, . . . , N} and therefore the configuration is contained in the set

Sinv.
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6. RENDEZVOUS FOR GROUPS OF CAR-LIKE MOBILE ROBOTS

Figure 6.2: Illustration of a maneuver that satisfies (M1)-(M4). The figure shows a snapshot
from the beginning of the maneuver (a), at time tmi,j (b), and from the end of the
maneuver (c). The point qi,j denotes the position for vehicle i that minimizes the
V -function during the maneuver.

6.5.2 Introducing orientation adjustment maneuvers

Since we want to achieve convergence to a common position, we somehow have to complement

the closed-loop controller such that the system is moved away from the undesired configu-

rations of the invariant set. To achieve this, we add a switching logic to the controller that

forces certain vehicles to leave the closed-loop system temporarily (cf. Figure 6.3). Such a

robot then performs a two step maneuver with the following four properties:

(M1) tfi,j − toi,j < tm <∞,

(M2) pi(tmi,j) = pi(toi,j),

(M3)
(

cos θi(t), sin θi(t)
)T = −1 · (x̂i(t

o
i,j),ŷi(t

o
i,j))T

||(x̂i(toi,j),ŷi(toi,j))T || , ∀t ∈ [tmi,j , t
f
i,j ],

(M4) pi(t
f
i,j) = pi(toi,j)−

c3
2|Ni|

(
x̂i(toi,j)
ŷi(toi,j)

)
, c3 ∈ (0, 1].

Here, toi,j and tfi,j denote the starting and the ending time of the jth maneuver of the ith

vehicle and tmi,j is a point in time with toi,j < tmi,j < tfi,j . (M1) states that the maneuver should

be carried out within finite time and tm is meant to be a global upper bound for all possible

maneuvers. It is easy to see that such a tm always exists for a properly defined maneuver and

it depends on the maneuver’s definition and on the initial position of the vehicles. Condition

(M2) ensures that at time tmi,j during the maneuver the corresponding vehicle’s coordinates

pi(tmi,j) match the maneuver’s initial position. From that point in time until the end of

the maneuver the vehicle has to be oriented towards the target point pi(t
f
i,j) as required by

condition (M3). Finally, (M4) fixes the target point, where the constant c3 ∈ (0, 1] has to

94



6.5 Rendezvous with Bounded Steering Angle

wait maneuver

closed-loop
control

(C1)

(C1)

(C1) (C2) (C3)
(C4) (C5)

maneuver
completed

Ù
ÙÙ

Ù

Figure 6.3: Automaton that describes the switching between controllers for each robot of the
group. If conditions (C1)-(C5) are satisfied, the corresponding robot will switch
to the open loop maneuver controller in order to adjust its orientation. For the
neighbors of the maneuvering robot condition (C1) becomes untrue such that they
will switch in order to wait for the maneuver to be completed.

be chosen globally. An example of such a maneuver is illustrated in Figure 6.2. During the

maneuver the control input vj of all neighbors of the maneuvering vehicle i is set to zero in

order to prevent changes of x̂i and ŷi (waiting case in Figure 6.3).

As illustrated in Figure 6.3 robot i will start maneuvering if all of the following conditions

are met:

(C1) None of the neighbors is currently maneuvering,

(C2) |vi| < ε1,

(C3) ∀j ∈ Ni : |vj | < ε1,

(C4) (x̂i 6= 0 ∨ ŷi 6= 0) ∧
(

(cos θi, sin θi) · (x̂i,ŷi)
T

||(x̂i,ŷi)T || < ε2

)
,

(C5) (êi > maxj∈Ni
êj) ∨ (∀j ∈ arg maxj∈Ni

êj : IDi < IDj ∧ êi = êj).

Here, ε1 and ε2 are positive constants which should be chosen close to 0. These bounds are

necessary to start maneuvers in finite time, since because of the definition of the closed-loop

controller, zero is only reached as t→∞. Condition (C1) ensures that neighboring vehicles in

the interaction graph will not maneuver at the same time. Note that multiple vehicles might

still maneuver at the same time as long as the interaction graph is not complete. (C2)-(C4)

are true at the same time if and only if robot i including its neighbors are close to an undesired

equilibrium configuration of the closed-loop system described by (6.1), (6.18) and (6.19). In

condition (C4) we use the normalized vector for the inner product rather than the original

one. This is to avoid results close to zero when the vectors are not orthogonally aligned,
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which would happen when vehicles are located close to each other. Further the case where

x̂i = ŷi = 0 is excluded, that is, when robot i is located at its momentary desired position.

Since all vehicles are close to an equilibrium of the closed-loop system when (C2)-(C4) are

true for ε1, ε2 small enough, a decision has to be made about which robot will do a maneuver.

This is resolved by condition (C5), which ensures that vehicle i only maneuvers if the factor

êi, which is proportional to the speed after the maneuver, is greater than the respective value

of its neighbors. If it happens that neighboring robots’ values of êi are equal, we simply chose

to favor the one with a lower ID. This implies of course that neighboring vehicles exchange

the value of vi and êi in addition to their position coordinates.

Before stating the convergence results, we introduce a corollary and a lemma that will be

used in the proof of the convergence theorems.

Corollary 6.5.3. Consider the position vector p of the current configuration of a connected
system of N vehicles, such that there exist i, j with i 6= j and pi 6= pj. If p is an element of
the set

Sinv =

{
p :

N∑
i=1

|cos θi · x̂i + sin θi · ŷi| = 0 ∧ êj ≤ L/ tanφmax ∀j ∈ {1, . . . , N}

}

or “close” to the set Sinv, then conditions (C1)-(C5) are satisfied for at least one vehicle.

Here, being “close” to the set Sinv means, the position vector nearly satisfies the set con-

straints of Sinv, where the tolerance depends on the choice of the constants εi, i = 1, 2, in

conditions (C2)-(C4). Since the closed-loop controller drives the system asymptotically to-

wards the set Sinv, the corollary states that if the vehicles do not head for a common position,

a maneuver will be initiated within finite time. This can be easily verified by examining the

conditions (C1)-(C5) for values from the set Sinv and its neighborhood.

Lemma 6.5.4. Consider a connected system of N vehicles and let V ∗ be a constant with
V ∗ > 0. Then, for all position vectors p that satisfy V (p) ≥ V ∗, there exists a positive
constant µ = µ(V ∗, N) such that

∃i ∈ {1, . . . , N} : êi ≥ µ. (6.23)

Proof. From

êi =
1

2|Ni|

√
x̂2
i + ŷ2

i

it follows that the statement of Lemma 6.5.4 is true, if there exists a positive constant that
bounds maxi x̂i from below for any p with V (p) ≥ V ∗ and any valid interaction topology.
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Further, as a result of V (p) ≥ V ∗ > 0 and the definition of V in (6.9) there have to exist two
connected vehicles, which w.l.o.g. we set to be vehicle 1 and 2, with

|p1 − p2| ≥ ν :=

√
2V ∗

N(N − 1)
.

Also w.l.o.g. we can rotate the whole system in the plane such that

x1 − x2 ≥ ν. (6.24)

Considering that

x̂ =


x̂1

...
x̂N

 = L


x1

...
xN

 = Lx

where L corresponds to the graph Laplacian of the underlying interaction graph, we can now
calculate

min
x
||Lx||∞ s.t. x1 − x2 ≥ ν. (6.25)

Since every norm is positive definite and convex, there has to exist a global minimum for
(6.25). This minimum has to be strictly positive, because the Laplacian of a connected graph
always has a simple Eigenvalue at 0 with the one-dimensional Eigenspace span

(
(1, . . . , 1)T

)
(cf., e.g., [OSM04]) which, due to (6.24), does not contain the vector x. Calculating (6.25)
for the finite number of valid graph Laplacians and dividing the smallest resulting value by
2|Ni| will provide a µ > 0 that satisfies (6.23) for all p with V (p) ≥ V ∗.

With Corollary 6.5.3 and Lemma 6.5.4 we can now state the main result of this section

that is concerned with the convergence of the overall system.

Theorem 6.5.5. Consider a connected system of N car-like robots that evolve according
to (6.1) with constraint (6.17). Then, by applying the control law (6.18)-(6.19) combined
with the orientation-adjustment-maneuver extension as depicted in Figure 6.3, the position
coordinates pi of all vehicles converge towards a common value as t→∞.

Proof. For every maneuver j we have pi(toi,j) = pi(tmi,j) by definition. Thus, we can assume
for all maneuvers that the position pi of each robot stays constant during the time interval
[toi,j , t

m
i,j ]. Now let N ≥ 2 be the number of vehicles. We know from Lemma 6.5.2 that the

closed-loop controller drives the system’s position variables towards the set Sinv. It remains to
show convergence for the case when the closed-loop controller’s limit is not a common position.
From Lemma 6.5.1 and the assumption that the position of each vehicle i stays constant
during the time interval [toi,j , t

m
i,j ], it results that the Lyapunov function V

(
p(t)

)
defined in

(6.9) is a monotonically nonincreasing function of t that is upper bounded by V
(
p(0)

)
and

lower bounded by zero. As a result there must exist a finite limit V ∗ = limt→∞ V
(
p(t)

)
. In
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the remainder of the proof we will show that this limit is equal to zero, which corresponds to
the configurations where all vehicles are located at a common position. Now let us assume
V ∗ > 0. Then due to Lemma 6.5.4 there always has to exist a vehicle i with êi ≥ µ for
all configurations p with V ∗ ≤ V (p) ≤ V

(
p(0)

)
, where µ is a finite positive constant that

depends on V ∗ and the number of vehicles N .
From equation (6.21) it follows that

−2c1(v̂2
i + |v̂i|b̂i) ≤ −2c1v̂

2
i ≤ 0,

and therefore no vehicle will ever contribute to an increase of the V -function by means of the
closed-loop controller. Thus it suffices to concentrate on a vehicle i with i ∈ arg maxj êj that
satisfies maneuver condition (C5) and therefore cannot be in the waiting state. It follows from
Corollary 6.5.3 that such a vehicle i will start an orientation adjustment maneuver within
finite time, if the vehicle and its neighbors are not heading towards a common position.

We show now that in case vehicle i performs an orientation adjustment maneuver, the
nonpositive difference between the V -values before and after the jth maneuver of vehicle i

∆Vi,j = V
(
p(tfi,j)

)
− V

(
p(toi,j)

)
(6.26)

is nonzero and upper bounded. Since the neighboring vehicles have to wait during the ma-
neuver, the contribution of vehicle i to the Lyapunov function (6.9) can be written as

Vi(xi, yi) =
1
2

∑
j∈Ni

((
xi − xj(toi,j)

)2 +
(
yi − yj(toi,j)

)2)
. (6.27)

It is easy to see that the unique global minimum of (6.27) is located at

qi,j := arg min
(xi,yi)T∈R2

Vi(xi, yi) =
1
|Ni|

∑
j∈Ni

xj(toi,j),
∑
j∈Ni

yj(toi,j)

T

.

Condition (M3) and (M4) from the maneuver definition ensure that vehicle i decreases its
distance to the point qi,j by c3êi ≥ c3µ during the time interval [tmi,j , t

f
i,j ]. As a result the

value of Vi(xi, yi) and therefore also the value of the Lyapunov function (6.9) decreases. An
estimate for ∆Vi,j is given by

∆Vi,j = V
(
p(tfi,j)

)
− V

(
p(toi,j)

)
≤ V

(
p(tfi,j)

)
− V

(
p(tmi,j)

)
≤ Vi

(
xi(t

f
i,j), yi(t

f
i,j)
)
− Vi

(
xi(tmi,j), yi(t

m
i,j)
)

= Vi
(
xi(t

f
i,j)− c3x̂i(t

f
i,j)/(2|Ni|), yi(tfi,j)− c3ŷi(t

f
i,j)/(2|Ni|)

)
− Vi

(
xi(tmi,j), yi(t

m
i,j)
)

= −4c3 − c2
3

8|Ni|

∑
j∈Ni

xj − |Ni|xi

2

+

∑
j∈Ni

yj − |Ni|yi

2
= −4c3 − c2

3

8|Ni|
(
x̂2
i + ŷ2

i

) (6.20)
= −4c3 − c2

3

2
|Ni|ê2

i ≤ ∆Vµ := −4c3 − c2
3

2
µ2.

(6.28)
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So as long as the vehicles do not tend towards a common position by means of the closed-
loop controller, there will always be a vehicle i with êi ≥ µ that performs an orientation
adjustment maneuver within finite time. Let tk, k ∈ N+ denote the ending times of those
maneuvers. Now since V ∗ > 0 is assumed to be the limit of the positive semidefinite function
V
(
p(tk)

)
, the inequality

V
(
p(tk)

)
≥ V ∗ ∀k ∈ N (6.29)

should hold. But since we have

V
(
p(tk)

)
≤ V

(
p(t0)

)
− k∆Vµ

as long as (6.29) holds, it follows that (6.29) is not satisfied for k chosen sufficiently large.
Because of this contradiction we can conclude that V ∗ has to be zero and the vehicles’
positions converge towards a common value as t→∞.

In Theorem 6.5.5 we assumed that the position of maneuvering vehicles does not change in

the first part of each maneuver. This is crucial for the proof of convergence for the designed

system, because if we look at any configuration of the set Sinv with not all vehicles at a

common position, it is easy to see that due to the steering constraint (6.17) the V -function

would increase for any kind of motion. Note that Theorem 6.5.5 also holds without the

assumption that vi 6= 0 at unstable weak equilibria as it was necessary for Theorem 6.4.1 and

Lemma 6.5.2. This is because in such a situation one of the vehicles will satisfy conditions

(C1)-(C5) and therefore starts an orientation adjustment maneuver that drives the system

away from the undesired equilibrium while achieving a decrease of the V -function at the same

time. Further note that for the proof of Theorem 6.5.5 we only considered the decrease of the

V -function during recurring maneuvers of vehicles with êi ≥ µ. Nevertheless, the convergence

time does not necessarily decrease with an increasing number of these maneuvers. In general,

the decrease of the V -function is even much higher during intervals without any maneuvers as

can be observed from the simulation results described in Sections 6.6 and 6.8.2. The problem

is that it is more difficult to define a lower bound for the amount of decrease than in case of

a maneuver.

To get an estimate for the decrease we now consider the case where a vehicle i with

i ∈ arg maxj êj , êi ≤ L/ tanφmax and condition (C5) satisfied does not perform an orientation

adjustment maneuver within a nonempty time interval tn. As a result this robot does not

satisfy at least one of the conditions (C1)-(C4), since otherwise it would start an orientation

adjustment maneuver. Condition (C1) must be satisfied, or else one vehicle j with êj ≥ êi

would perform a maneuver, which is excluded by assumption. If (C2) is not satisfied, we
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have |vi| ≥ |c1v̂i| ≥ ε1 by definition of the control law (6.18) and therefore |v̂i| ≥ ε1/c1. Now

it follows from equation (6.21) that

V̇ ≤ −2c1v̂
2
i ≤ −

2ε2
1

c1
. (6.30)

In the same way we obtain

V̇ ≤ −2c1v̂
2
j ≤ −

2ε2
1

c1
, (6.31)

if (C3) is not satisfied. For the case that (C4) is not satisfied we can estimate the absolute

value of the ith robot’s speed as

|vi| ≥ |c1v̂i| = |c1(cos θi · x̂i + sin θi · ŷi)| ≥ c1ε2 |(x̂i, ŷi)|︸ ︷︷ ︸
2êi|Ni|

≥ 2c1ε2µ,

and therefore |v̂i| ≥ 2ε2µ as well as

V̇ ≤ −2c1v̂
2
i ≤ −2c1ε

2
2µ

2. (6.32)

Thus, from (6.30)–(6.32) a lower bound for the amount of decrease of the V -function can be

derived as

V
(
p(t+ tn)

)
− V

(
p(t)

)
≤ max

{
−2ε2

1

c1
tn, −2c1ε

2
2µ

2tn

}
< 0.

Compared to this, the case when êi > L/ tanφmax for vehicle i is more problematic. This

is because if condition (C4) is satisfied, the value for v̂i can be arbitrary close to zero while

no maneuver is initiated and therefore the value for V̇ can be arbitrary small. We know

from Lemma 6.5.2 that the closed-loop controller drives the system towards the set Sinv and

therefore it will happen within finite time that êi ≤ L/ tanφmax. During this process it might

happen that vehicle i performs an orientation adjustment maneuver depending on the value of

v̂i when êi ≈ L/ tanφmax. This causes no problem as the maneuver’s time is upper bounded

by tm and therefore it reduces the value of êi to (1 − c3)êi within finite time. Nevertheless

it turned out to be difficult to derive a lower bound for the amount of decrease of V in this

case.

6.5.3 Distributed termination of the rendezvous process

In a real-world implementation vehicles cannot overlap without causing a collision. Thus, in

practice it is desired to gather the vehicles within a certain area rather than in one point.

In other words, we want the rendezvous process to stop, when the distance between any two

vehicles falls below a certain bound, that is, when

max
i,j
|pi − pj | = max

i,j

√
(xi − xj)2 + (yi − yj)2 ≤ dmax (6.33)
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Figure 6.4: System configuration that demonstrates the impossibility of a local stopping crite-
rion. The robots denoted by ĩ are the only ones with êĩ > 0, but for dmax = n ·1.2m
they satisfy (6.34) and (6.36) for arbitrary N ≥ 5. But they could be located many
nodes away from the vehicles with i ∈ {1, 2} and êi = 0 that do not satisfy the local
stopping criteria.

for some dmax > 0. This condition automatically holds if for every vehicle i ∈ {1, . . . , N} the

local condition

max
j∈Ni

|pi − pj | ≤
dmax

N − 1
, (6.34)

is satisfied. To derive another local condition that implies (6.33) consider a group of N

robots with a connected interaction graph. It can be easily verified that the lowest value

for the V -function, such that maxi,j |pi − pj | = dmax, is achieved when all vehicles are ar-

ranged equidistantly on a line of length dmax and share an interaction link with their nearest

neighbors. Since the outer robots have only one neighbor in this configuration, we have

V =
d2

max

N − 1
(6.35)

for this configuration. Note that if we also consider the interaction structure to be known,

the denominator could be replaced by the number of edges of the longest path in the inter-

action graph that does not contain a cycle. By taking into account additional details of the

interaction graph it might be possible to derive an even higher value for the righthandside of

(6.35). Based on the definition of V in (6.9), a second local condition that implies (6.33) is

given by

Vi,local :=
∑
j∈Ni

(
(xi − xj)2 + (yi − yj)2

)
≤ 2
N
· d

2
max

N − 1
, ∀i ∈ {1, . . . , N}. (6.36)

Unfortunately in the proposed system, condition (6.33) cannot be validated in a decentral-

ized fashion. This becomes clear from the situation depicted in Figure 6.4, where the two

robots closest to the center do not satisfy (6.34) nor (6.36). For these vehicles we also have
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ê1 = ê2 = 0, which implies that they stand still at the moment. In contrast, the robots in

the corners denoted by ĩ are the only ones with êĩ > 0, but they satisfy both local stopping

criteria. Nevertheless they do not have any information about the vehicles with i ∈ {1, 2}.
The dots in the interaction links indicate that there could be any finite number of equally

spaced vehicles with the same orientation, which also would have êi = 0. So the information

whether to continue or to stop the rendezvous system can be located arbitrarily far away in

the interaction graph.

To efficiently stop the execution of the rendezvous controller when (6.33) is satisfied, we

suggest the following broadcasting strategy. The idea of this strategy is that vehicles which

do not satisfy (6.36) will broadcast this information from time to time over the network.

Assuming that a connected communication topology is available, this can be simply achieved

by a communication packet, in the following referred to as SP, which contains the vehicle ID

and an incremental packet number. After the SP was sent to all neighbors of the broadcasting

robot, the receiving nodes should forward the data to all of their neighbors excluding the

sending unit. If a robot receives the same SP for the second time it will be simply discarded.

For simplicity we assume that there exists a maximum broadcasting time tb that depends on

the longest path in the communication graph of the system. This means that a broadcasted

message will be received by all vehicles of the system within the time interval tb after its

initiation. To integrate the SPs into the controller’s logic we let successive broadcasts of the

same vehicle happen after a period of tB, which should correspond to the time needed for

doing the first part of a maneuver, i.e., tB := tmi,j − toi,j . Now we disallow doing maneuvers for

all vehicles that satisfy (6.36) and did not receive a SP within a period of tB. Note that since

the vehicles are homogeneous and we assume that every robot applies the same maneuver

controls, the difference tmi,j − toi,j is the same for all valid choices of i and j. Further, any

vehicle that did not receive a SP for a finite amount of time t∗B > tB should stop all control

actions immediately.

The described broadcasting extension gives rise to the following theorem.

Theorem 6.5.6. Consider a connected system of N car-like vehicles with bounded steering
angle. By applying the control system depicted in Figure 6.3 combined with the broadcasting
extension described above, the vehicles will stop maneuvering after finite time and tend to a
configuration that satisfies (6.33) for a chosen dmax > 0.

Proof. If all vehicles initially satisfy (6.36) we are done. If not, after a period tb every vehicle
will have the permission to move and to do maneuvers as long as there exists a vehicle that
does not satisfy (6.36). Now, from Theorem 6.5.5 we can conclude that V

(
p(tk)

)
is decreasing

until there exist no more vehicles satisfying (6.36). Once this is the case for a k∗, we know
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from (6.35) that V
(
p(tk)

)
has to be less or equal than d2

max/(N − 1) for all k > k∗, which
implies that (6.33) holds.

It remains to show that the vehicles will stop maneuvering after finite time. This is clear
if there will be no more SP after a period of tb + t∗B after the last SP has been distributed.
Indeed it is possible that (6.36) becomes untrue for vehicles that previously satisfied the
criterion by application of the closed-loop controller, since the time-derivative of Vi,local

V̇i,local = 2
∑
j∈Ni

(
vi
(
(xi − xj) cos θi + (yi − yj) sin θi

)
+ vj

(
(xj − xi) cos θj + (yj − yi) sin θj

))
can take positive as well as negative values.

Let us assume that there exists always a vehicle that does not satisfy (6.36) before all
vehicles come to a stop after a period of tb + t∗B. As a result V

(
p(tk)

)
continues decreasing

such that after finite time it will be less or equal than d2
max/

(
N(N − 1)

)
. But since V is

non-increasing and

V =
1
2

N∑
i=1

Vi,local, (6.37)

this stands in contradiction with the existence of a vehicle that satisfies (6.36).

The local stopping criterion (6.34) is closer related to (6.33) than (6.36). Nevertheless it

is less applicable as a stopping criterion since we have no results about the development of

the summed distances. Indeed there exist situations where the summed squared distances as

they occur in (6.36) and in the V -function decrease, while the summed non-squared distances

increase.

To guarantee that there will be no more maneuvers after finite time it is necessary to stop

the control actions after finite time t∗B after the last received SP. If we would not do this

one can find a configuration for which all vehicles satisfy (6.36) and one vehicle converges

asymptotically to a point where (6.36) becomes untrue by application of the closed-loop

controller. As a result it will send another SP after an arbitrary long time interval.

6.6 Simulation results

In this section we present selected simulation results of the rendezvous control systems intro-

duced in the previous sections. With the first randomly generated scenario we demonstrate

the different behavior of the controllers for the free and for the bounded steering case. The

second scenario shows how the bounded steering rendezvous system acts in a constructed

setup in which most of the vehicles initially are located at their desired reference point. For

the simulation runs we set the kinematic constant denoting the distance between front and

rear axle of the vehicles to L = 0.3m.
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6.6.1 Scenario 1

The first scenario contains ten car-like robots, whose initial position and orientation was

chosen randomly, where the position variables were limited to a rectangle of 20m×20m. The

structure of the interaction graph was chosen to be the minimal fully connected proximity

graph of the initial system configuration. We present two simulation runs of this scenario, one

for the free steering case (Figure 6.5) and one for the bounded steering case (Figure 6.7) with

a maximum steering angle φmax = 10◦. The corresponding speed and steering profiles as well

as the development of the V -function and of Vi,local can be found in Figure 6.6 for the free

steering case and in Figure 6.8 for the bounded steering case respectively. The interaction

graph is depicted in the first of the simulation snapshots.

For the free steering case we applied the control law defined by equations (6.5) and (6.6),

where the constants of the controller were chosen as c1 = 6 and c2 = 12, which clearly

satisfy the constraint (6.7). For the bounded steering case on the other hand we applied the

control system depicted in Figure 6.3 combined with the broadcasting extension described

in Subsection 6.5.3. There we chose the controllers constants as c1 = 3 and c2 = 6 in order

to achieve approximately the same initial speed for the vehicles. Note that if we increase

(decrease) the values of c1 and c2 by the same percentage, the resulting vehicle paths will

be the same with an increased (decreased) speed profile. Therefore, the time until the local

stopping criterion (6.36) is satisfied decreases (increases) for all vehicles. The constant that

characterizes the amount of movement in the final phase of the maneuvers in the bounded

steering case was set to c3 = 0.2.

In this scenario we set dmax = 4m. For more illustrative figures we let the system continue

with the control actions for some time even after (6.36) has been satisfied for all vehicles.

The global stopping criterion (6.33) is reached, once the value of the V -function has fallen

below 1.78. In the free steering case this happens after 6.79s and in the bounded steering case

after 16.22s. The local stopping criterion Vi,local ≤ 0.36 is reached for all vehicles after 9.28s

in the free steering case and after 19.97s in the bounded steering case as can be observed

in the plots of Vi,local in Figures 6.6 and 6.8. Since in this scenario the longest path in the

interaction graph without cycles contains seven edges, the benefit of the relaxed stopping

criterion mentioned above is rather small. The resulting constraint Vi,local ≤ 0.46 becomes

true for all i after 8.74s with free steering and after 19.47s in the bounded steering case.

In the speed profile in Figure 6.6 we do not observe a curve passing through zero. That

means there is no vehicle changing its movement direction during the simulation run, which is

caused by the free steering angle. Note that this does not mean that a change of the movement

direction will never happen with the free steering controller. If the moving reference point of a
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vehicle’s controller, given by
(
xd(t), yd(t)

)T = 1/(2|Ni|)
(
x̂i(t), ŷi(t)

)T , moves faster than the

vehicle will follow with its orientation, the sign of the robot’s speed will change. In certain

cases this will also happen when the moving reference point passes through the vehicle’s

position coordinates. As can be seen in the speed profile in Figure 6.8, in the bounded

steering case it is more likely that vehicles change their movement direction because of the

limited steering angle.

It can be observed that in both cases (free and bounded steering) the vehicles head towards

a common position and the non-increasing V -function tends towards zero even if Vi,local partly

increases for some of the vehicles. In the bounded steering case the closed-loop controller

reaches one of the undesired equilibria at t ≈ 6.9s and two of the vehicles start an orientation

adjustment maneuver with a slight offset. The time interval of the maneuvers is depicted

in the V -plot in Figure 6.8, where the inner vertical dash denotes tmi,1, the point in time

when the corresponding vehicle’s coordinates match the maneuver’s initial position. In the

corresponding speed and steering profiles one can observe that the inputs during the maneuver

are piecewise continuous, which results from the simple design of the maneuver. The forward

motions during the maneuver are achieved by utilization of the position stabilizing controller

that was introduced in Subsection 3.2.2 and the backward motion that stabilizes the car onto

the line through the points pi(tmi,j) and pi(t
f
i,j) are achieved by the controller described in

[LKYC99, Proposition 1]. Since with these controllers the desired equilibrium is not reached

within finite time, we switch to the subsequent one, once the position and orientation error

have fallen below a certain value (< 10−3). As it was shown in Subsection 6.5.2 there is

always a certain decrease of the V -function in the final part of the maneuvers, but it is hard

to see in the plot of V in Figure 6.8 due to its relative smallness. This decrease can be seen

much clearer in the second simulation scenario.

6.6.2 Scenario 2

The second scenario is essentially the example depicted in Figure 6.4 that was used to demon-

strate the impossibility of a local stopping criterion for the rendezvous system for vehicles

with bounded steering angle. For this scenario we only present the results for the bounded

steering case with a maximum steering angle φmax = 10◦. Six snapshots of the simulation

run are depicted in Figure 6.9 and the corresponding speed and steering angle profiles as well

as the development of the V -function and of Vi,local can be found in Figure 6.10. For this

scenario the distance of the stopping criterion was chosen to be dmax = 12m which is already

satisfied in the global sense. The maneuver control inputs were calculated in the same way as
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(d) t = 10.8s

Figure 6.5: Rendezvous simulation scenario 1 snapshots: free steering. The figure consists of
four snapshots from the simulation run, while (a) shows the initial configuration
and the underlying interaction topology.
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Figure 6.6: Rendezvous simulation scenario 1 plots: free steering. The figure depicts the corre-
sponding speed and steering profiles as well as the plots of V and Vi,local.
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(d) t = 21.8s

Figure 6.7: Rendezvous simulation scenario 1 snapshots: bounded steering. The figure consists
of four snapshots from the simulation run, while (a) shows the initial configuration
and the underlying interaction topology.
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Figure 6.8: Rendezvous simulation scenario 1 plots: bounded steering. The figure depicts the
corresponding speed and steering profiles as well as the plots of V with indicated
maneuver intervals and Vi,local.
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Figure 6.9: Rendezvous simulation scenario 2 snapshots: bounded steering. The figure consists
of six snapshots from the simulation run, while (a) shows the initial configuration
and the underlying interaction topology.
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Figure 6.10: Rendezvous simulation scenario 2 plots: bounded steering. The figure depicts the
corresponding speed and steering profiles as well as the plots of V with indicated
maneuver intervals and Vi,local.
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it was done for the bounded steering case in the first scenario, while this time the closed-loop

controller’s constants were set to c1 = 5 and c2 = 10.

At the beginning of the simulation run, the four outer vehicles do an orientation adjustment

maneuver. All other vehicles remain motionless, since they are located at the current position

of their reference point, which means we have x̂i = ŷi = 0 for those robots. After completing

the maneuver these four robots converge towards the position of their only neighbor. Once

they are close enough such that maneuver condition (C3) is satisfied from the perspective

of their neighbor, each of them performs an orientation adjustment maneuver as can be

observed in the snapshot in Figure 6.9(c). After this, the two vehicles on each of the four

sides head towards one of the robots in the center with a certain offset as can be seen from

the differences in the corresponding speed profile in Figure 6.10 at t ≈ 9.4s. This offset

comes from the fact that the two vehicles follow different reference points, resulting from

different neighbors in the interaction graph. While the reference point for the vehicles of the

second maneuver wave is located between them and the inmost vehicles, the initially outside

located robots’ reference points are located between themselves and their only neighbor. The

two inmost vehicles receive the permission for a maneuver at the same time. Since they are

connected and the distance to their reference point is the same, only the left robot performs

a maneuver because of its lower ID. During the final part of this maneuver at t ≈ 15.44s the

local stopping criterion (Vi,local ≤ 3.2) becomes true for all of the vehicles. In this scenario

the relaxed stopping criterion has a much bigger impact than it was observed in the first

scenario. With a longest cycle-free path of five edges, the relaxed criterion Vi,local ≤ 5.76

is reached after approximately 8.64s. As can be seen from the plot of V in Figure 6.10 the

global stopping criterion V ≤ 16 is satisfied from the beginning with the chosen value for

dmax.

6.7 Hardware experiments

We carried out a series of laboratory hardware experiments that demonstrate the applicability

of the presented rendezvous control system on real robots of the car-like type. The distance

between front and rear axle of the four utilized Indoor MERLINs (cf. Appendix B) was

determined as L = 0.278m. As a result of the natural steering bound of car-like vehicles,

we always utilized the rendezvous control system developed for the bounded steering case,

where we set the corresponding constants to c1 = 0.4, c2 = 0.8 and c3 = 0.1. It is well known

that updating a robot’s position via dead reckoning involves an accumulating position error.

Nevertheless if the utilized sensors are well calibrated, the resulting accuracy is good enough

for short-term hardware experiments like the ones described in the remainder of this section.
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Figure 6.11: MERLIN robot with positioning device. After placing the robot, its dead reckoning
module is reset and it is moved to to its desired initial configuration via remote
control.

In principle the applied control inputs for a robot depend on the relative distance vectors

between itself and its neighbors in the interaction graph. Thus, the location of the origin

has no effect on the resulting system behavior. However, since the utilized vehicles are not

able to determine the location of their neighbors it is essential for the experiments to match

the vehicles global coordinate systems. In the first scenario presented in Subsection 6.7.1

we achieve this by resetting the robots dead reckoning module at the same location (cf.

Figure 6.11), one after the other. After the reset, the robot is moved to its desired initial

configuration via remote control. In the second scenario we simply set the initial configuration

in the robots system and placed the vehicles in the environment respectively.

Once all vehicles are set up, we remotely start the rendezvous control system. Note that the

photo snapshots as well as the corresponding plots of the experiments were taken exclusively

during the active phase of the rendezvous control system. In our experiments the interaction

between the vehicles is realized through broadcast communication of UDP-packets. The static

communication structure is simply hard-coded. That means each robot knows the IDs of its

neighbors and the rendezvous controller exclusively uses their incoming data. Compared to

the simulations, we are facing delays of up to 50ms in the communication links of the hardware

system. However, due to the design of the controller, the robots significantly reduce their

movement speed the closer they get together, and therefore these delays are negligible in

our experiments. To avoid inter vehicle collisions, which first and foremost interfere with

the dead reckoning based positioning as a result of skidding and slipping, we added basic
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collision avoidance techniques to the robots’ system. Sensor based approaches for collision

avoidance might be more sophisticated but since the main focus of the experiments lies on the

rendezvous control system, the vehicles just use the position data received from the others

to decide if another robot blocks the current direction of motion. If this is the case, the

vehicle that detected the potential collision simply stops moving. Due to the possibility of

mutual blocking in large groups of robots, this method might prevent the rendezvous from

happening. However, in our experiments with four robots we did not observe such a situation.

Since a robot’s speed input given by the control law can be quite large depending on the

choice of c1 as well as position and distance of its neighbors, we limited the absolute speed of

each robot to 0.6m/s. It is easy to see from equation (6.21) that such a limitation does not

influence the convergence behavior of the system. Due to the need for real-time responses and

the limited computational power on the robot’s microcontroller, the control laws had to be

discretized with a fixed time interval in comparison to the continuous treatment in the theo-

retical examinations and the adaptively refined discrete treatment in the simulations. After

a few tests we set the fixed time interval to 105ms, in order to cope with the resolution of the

wheel encoders (≈ 900ticks/m =̂ 1.11mm) and the valid timer settings of the microcontroller.

Note that besides the scenarios described in what follows, we carried out additional exper-

iments with different steering bounds and communication structures, where all runs provided

the expected outcome.

6.7.1 Scenario 1

The first scenario shows the behavior of the rendezvous control system on a group of four

randomly placed vehicles with their maximum absolute steering angle limited to 20◦. The sys-

tem’s configuration before and after the application of the rendezvous control are depicted in

Figure 6.12(a) and Figure 6.12(b), respectively. Figure 6.12(c) shows photographic snapshots

of the experiment that were taken every two seconds and merged into one picture. Further-

more, with a frequency of 1Hz Figure 6.12(d) depicts the dead reckoning data of the robots

which refers to the positions and orientations where the robots “think” they are located.

The lines between the robots in the initial as well as in the final configuration denote the

communication links, which form a ring structure in this scenario. The corresponding speed

and steering profiles as well as the development of the V -function and Vi,local are depicted in

Figure 6.13. Like in the snow shoveling hardware experiments in Section 5.6 the speed values

were measured by the robots wheel encoders and therefore they are quite accurate while the

steering values are just a linear approximation from the PWM signal currently applied to

the steering servo. Also, the steering values’ accuracy is further decreased by a tolerance
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of about 4◦ in the wheel suspension. Fortunately the dead reckoning does not rely on the

steering angle values, since changes of the orientation are directly obtained from a gyroscope,

whose measurements are quite accurate in comparison.

As expected from the theoretical results and the simulations, the vehicles converge towards

a common position. The V -function tends towards zero and the rendezvous control system

stops after finite time. In the snapshots in Figure 6.12 it can be observed that the vehicle

starting at (xo, yo) = (1.79, 6.47) initially drives away from the final rendezvous point, which

results from the fact that this robot has no information from the one starting on the top right

of the configuration space. The slight overshoots (|vi| > 0.6m/s) in the speed profile result

from the behavior of the integrated linear speed controller, which was tuned to react quite

aggressively, in order to quickly reach the values demanded by the rendezvous control system.

By comparing the final vehicle positions of the photographic snapshot in Figure 6.12(b) with

those of the dead reckoning data in Figure 6.12(d) it can be seen that they do not exactly

concur with each other, especially for the vehicle that started in the upper right corner of

the configuration space. This emphasizes the well known fact that positioning in longterm

vehicle experiments should not just rely on dead reckoning.

6.7.2 Scenario 2

The second scenario was designed to compare the system’s behavior for different bounds of the

steering angle. Since it turned out to be difficult to observe orientation adjustment maneuvers

in a random scenario with only four vehicles, for this scenario the robots have been arranged in

a square with respect to their positions. Each robot is connected to the two closest neighbors

such that the communication graph depicted in the positions diagram (Figure 6.14(d)) forms

a square as well. In the following the results from two runs are described that provide the same

initial configuration except for different steering bounds. For the run labeled scenario 2a, the

steering bound φmax was set to 20◦ and for scenario 2b we set φmax = 10◦. Photographic

snapshots as well as the positioning data obtained from the dead reckoning can be found in

Figure 6.14 for scenario 2a and in Figure 6.16 for scenario 2b, respectively. Furthermore the

corresponding speed and steering profiles as well as the development of the V -function and

Vi,local are depicted in Figure 6.15 for scenario 2a and in Figure 6.17 for scenario 2b.

In scenario 2a, the steering bound was chosen big enough such that there is no need for

orientation adjustment maneuvers and the vehicles converge towards a common position by

means of the closed-loop controller. Initially all four vehicles stand perpendicular to their

momentary desired point and êi > L/ tanφmax for all of them. As a result all vehicles start

driving forward, but since their initial orientations are not related in a symmetric fashion, the
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(a) Initial configuration (b) Final configuration

(c) Merged snapshots (0.5Hz) (d) Dead reckoning (1Hz)

Figure 6.12: Rendezvous hardware experiment scenario 1 snapshots.
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Figure 6.13: Rendezvous hardware experiment scenario 1 plots. The figure depicts the corre-
sponding speed and steering profiles as well as the plots of V and Vi,local.
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(a) Initial configuration (b) Final configuration

(c) Merged snapshots (0.5Hz) (d) Dead reckoning (1Hz)

Figure 6.14: Rendezvous hardware experiment scenario 2a snapshots.
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Figure 6.15: Rendezvous hardware experiment scenario 2a plots. The figure depicts the corre-
sponding speed and steering profiles as well as the plots of V and Vi,local.
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(a) Initial configuration (b) Final configuration

(c) Merged snapshots (0.5Hz) (d) Dead reckoning (1Hz)

Figure 6.16: Rendezvous hardware experiment scenario 2b snapshots.
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Figure 6.17: Rendezvous hardware experiment scenario 2b plots. The figure depicts the corre-
sponding speed and steering profiles as well as the plots of V and Vi,local.
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rendezvous point is not in the center as one might expect, but shifted below. It should also

be noted that even though Vi,local initially increases for one robot, the value of the V -function

is non-increasing all of the time.

In scenario 2b, the set steering bound necessitates orientation adjustment maneuvers at

the beginning of the experiment. Initially êi is the same for all vehicles, such that robot 1, the

vehicle with the lowest ID and the opposing one (robot 2) start doing orientation adjustment

maneuvers. In a simulation environment the other two vehicles would start maneuvers once

the maneuvers of robot 1 and 2 have been completed. This is usually not the case in real

environments due to existing uncertainties in the robot hardware like, e.g., from the tolerance

in the wheel suspensions or from the inertia of the motors. As a result the maneuvers are not

as accurate as in the simulation such that the vehicles need slightly different time intervals

for the same maneuver as can be observed from the corresponding figures. Also note that if

the vehicle starting from the bottom had a higher ID, it would have not fulfilled condition

(C5) and robot 1 would have been the only maneuvering vehicle.

The robot that started from the bottom is the first that finishes the maneuver. Thus, it

already moved a bit towards its desired point, when the opposing robot finishes its maneuver.

As a result the desired point for the two robots located at the left and the right side is shifted

from the global coordinate system’s origin towards the top, which is also emphasized by the

vehicles backward motion after their neighbors maneuvers have been completed. After the

maneuvers of robot 1 and 2 a small increase of the V -function can be observed. This is due

to the fact that because of existing uncertainties, the positions pi(toi,1) and pi(tmi,1) for i = 1, 2

during the maneuvers are not exactly identical. Further it can be observed that the vehicle,

which started from the top, moves backwards and deviates to the left at the end of the

experimental run. Actually the vehicle detected a potential collision with the vehicle coming

from the south and stopped moving. The opposing robot itself did not predict a collision and

therefore pushed against its opponent until the local stopping criterion had been satisfied for

all four vehicles.

6.8 Extension to concurrent maneuvers among neighboring

vehicles

A major drawback of the rendezvous approach for the bounded steering case introduced in

Section 6.5 lies in the design of the maneuver methodology. During a vehicle’s orientation

adjustment maneuver, all of its neighbors have to remain motionless. Especially for a system

with dense interaction topology, the number of neighbors of a robot can be very high. In the
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worst case, in which the interaction graph is complete, it is not possible to do orientation

adjustment maneuvers for more than one vehicle at a time.

Since the neighbors of a maneuvering vehicle are also close to an equilibrium position of

the closed-loop controller, this leads to the assumption that the convergence time of the

rendezvous in dense networks can be improved with a different methodology for the maneu-

ver part of the approach that somehow allows neighbors to perform concurrent orientation

adjustment maneuvers. In the remainder of this section we introduce such a modification

and compare its performance to that of the rendezvous system for the bounded steering case

under various aspects.

6.8.1 The extended approach

The main reason for the prohibition of concurrent maneuvers comes from the fact that the

current desired position coordinates of a robot depend on the position of its neighbors. By

keeping the neighbors’ positions constant during the orientation adjustment maneuver we

ensure that the desired position of the maneuvering robot is not moving, thus the robot will

be oriented towards this point at time tmi,j and also at the end of its maneuver.

To enable concurrent maneuvers among neighboring robots we modify the switching meth-

odology introduced in Figure 6.3 and complement the set of maneuver conditions (C1)-(C5)

stated in Subsection 6.5.2 with

(C6) ∃j∗ ∈ arg maxj∈Ni
êj ,∃k : toj∗,k < t < toj∗,k +K · (tmj∗,k − toj∗,k)

with constant K ∈ [0, 1]. With the extended switching methodology (Figure 6.18) it is

now possible for waiting vehicles to start an orientation adjustment maneuver if they fulfill

conditions (C2)-(C4) as well as condition (C6), which is satisfied if there exists a neighboring

vehicle j∗ with êj∗ = maxj∈Ni
êj that is currently maneuvering and the start of the maneuver

is no longer ago than K · (tmj∗,k− toj∗,k). Because of potential neighbors currently in the closed-

loop control state it is possible for waiting robots that conditions (C2)-(C4) become true

later during the maneuver of vehicle j∗. The variable K defines for how long it is allowed for

neighbors of robot j∗ to initiate a maneuver. For K = 0 the extended approach degrades to

the one described in Section 6.5 since in this case, condition (C6) cannot be satisfied. Higher

values for K can result in longer waiting times for robot j∗ after the maneuver.

If all vehicles carry out a maneuver as defined by (M1)-(M4) in Subsection 6.5.2 we cannot

guarantee that a vehicle is oriented towards its desired position when switching back to the

closed-loop controller since neighboring robots might have maneuvered in the meantime and

thus possibly caused a shifting of this desired point. To avoid a movement in the wrong
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wait maneuver

closed-loop
control
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Figure 6.18: Automaton that describes the switching between controllers for the concurrent
maneuver approach. Each robot in the waiting state that satisfies conditions (C2)-
(C4) and (C6) will switch to the maneuver state while one or more of its neighbors
are currently maneuvering. Robots that completed their maneuver switch to the
waiting state until all maneuvering neighbors also finished with the orientation
adjustment.

direction we require c3 = 0 in maneuver property (M4) for all vehicles i that reached the

maneuver state through the waiting state. Thus it is p(tfi,j) = p(tmi,j) for the final maneuver

position of all vehicles that currently have a neighbor j∗ ∈ Ni that satisfies maneuver condi-

tion (C5). In consequence these vehicles i usually complete their maneuvers earlier than their

neighbor j∗ with c3 > 0 whose current desired point would be shifted if the robots i return

to the closed-loop controller immediately after their maneuver. To keep the desired point of

robot j∗ constant we introduced a second modification in the switching scheme, which forces

all vehicles that completed a maneuver to switch to the waiting state until every neighbor

completed its maneuver. Accordingly we still can guarantee a lower-bounded decrease of the

V -function during maneuvers for V > 0. This gives rise to the following Theorem:

Theorem 6.8.1. Consider a connected system of N car-like robots that evolve according
to (6.1) with constraint (6.17). Then, by applying the control law (6.18)-(6.19) combined
with the orientation-adjustment-maneuver extension as depicted in Figure 6.18, the position
coordinates pi of all vehicles converge towards a common value as t→∞.

Proof. The proof follows the same arguments as in the case of exclusive maneuvers among
neighboring vehicles (cf. proof of Theorem 6.5.5).

Due to the complicated system behavior we are not able to make an analytical statement

about the performance of the concurrent maneuver approach nor of the exclusive maneu-

ver approach. Nevertheless, we carried out a series of simulations in order to compare the

performance of the two approaches.
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6.8.2 Performance evaluation of the two rendezvous systems

To compare the rendezvous performance of the exclusive maneuver approach (Sem) with the

system that allows multiple concurrent maneuvers among neighbors (Smm), a set of 1000

random scenarios for a group of ten robots with L = 0.3m was generated. The vehicles initial

positions were randomly set within an area of 20m×20m. The parameters for the closed-loop

controller were fixed to c1 = 5 and c2 = 10. Orientation adjustment maneuvers were carried

out like it was illustrated in the example depicted in Figure 6.2 while the amount of time

needed for the maneuver was set to be equal to its path length in meters. This simulates

an average speed of 1m/s during maneuvers. The constant in maneuver property (M4) was

set to c3 = 0.2 and the constant in condition (C6) of the extended approach Smm was set

to K = 1/8. When utilizing the local stopping criterion defined by (6.36), systems with a

higher number of interaction links are disadvantaged since Vi,local depends on the number of

neighbors. Thus, in order to achieve fair conditions, a simulation run was stopped once the

distance between every pair of vehicles was less or equal to 0.5m no matter if they share an

edge in the interaction graph or not. As the main performance criterion we evaluated the

elapsed time from a scenario’s start until the stopping criterion was fulfilled. Further the

total traveled distance, and the total number of maneuvers (maneuver phases) each summed

over all vehicles have been considered.

In the first series we kept the robots’ steering bound constant at φmax = 10◦ and varied

the average number of interaction links per vehicle from the minimal connected graph to the

complete graph. The minimal interaction graph simply consists of nine undirected edges that

connect robot 1 with robot 2, robot 2 with robot 3, etc. Thus every vehicle has two neighbors

except for robot 1 and robot 10 with only one neighbor, which results in an average of 1.9

interaction links per vehicle. A denser interaction graph was achieved by randomly adding

new interaction links up to the complete graph with an average of nine interaction links per

vehicle. Altogether 30000 simulation runs were carried out for this series.

In the second series the interaction structure was chosen to be the smallest proximity graph

that is still connected at the initial configuration. The resulting mean number of interaction

links per vehicle averaged over all 1000 scenarios was 3.4. This time we varied the vehicles

steering bound such that each of the generated scenarios was evaluated with 21 different

values for φmax ranging from 5◦ to 25◦ resulting in a total of 50000 simulation runs.

The results of the simulations are depicted in the plots in Figs. 6.19, 6.20 and 6.21. Fig-

ure 6.19 shows time, total traveled distance as well as the total number of maneuvers (ma-

neuver phases) averaged over all 1000 scenarios and plotted against the average number of

interaction links and the steering bound φmax respectively. In Figs. 6.19(c) and 6.19(f) the
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solid curves illustrate the total number of maneuvers while the dotted curves represent the

total number of maneuver phases. A new maneuver phase is initiated when a robot starts

a maneuver and in that moment there exists no other robot in the group that started a

maneuver no longer ago than K · (tmj∗,k − toj∗,k).

Since the depicted values are averaged over all scenarios, these plots are not suitable for

the comparison of the two rendezvous systems. Their main intension is to depict the effect of

different values for the varying parameter (av. comm. links, φmax). The comparison of Sem

and Smm was done on a per scenario basis and the results for time, traveled distance and

number of maneuvers are depicted with respect to the average number of interaction links per

vehicle in Figure 6.20 and with respect to the maximum allowed steering in Figure 6.21. In

both figures, plots (a)-(c) illustrate the number of scenarios in which each of the approaches

dominated (performed better) as well as the ones with identical outcome. On the contrary,

plots (d)-(f) compare the two approaches on a percentage basis. For each simulation run it

was calculated by how many percent the dominating approach outperforms the other one,

where we used a negative percentage when Sem performed better and a positive value when

it was the other way round. Now the bars in the plots correspond to the average of these

percent values, which denote the mean performance improvement of one system over the

other. The negative and the positive standard deviation is represented as intervals placed on

top of the bar plot.

Figure 6.19(a) shows that the time needed by Smm averaged over all scenarios hyperbolically

decreases with an increasing number of interaction links in the system. Compared to this

Sem decreases in a similar way until the average number of interaction links per vehicle is

approximately equal to three, which is one third of the average interaction links per node in

the complete graph. The reason for the decrease in time can be found in the fact that the

distribution of information is faster in systems with a denser interaction graph. For more than

three average interaction links per vehicle the average time needed for the rendezvous slightly

increases with additional links. This is due to the higher number of neighbors per vehicle

in systems with a denser interaction graph. When a robot does an orientation adjustment

maneuver, all of its neighbors switch to the waiting state. As a consequence, there are more

vehicles that cannot decrease V by means of the closed-loop control nor by performing a

maneuver themselves. This also can be observed in Figure 6.19(c), where the number of total

maneuvers decreases while the number of maneuver phases increases with a higher number

of interaction links in the system, which means there are less concurrent maneuvers during

the rendezvous process. Note that for the complete graph the number of maneuver phases
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Figure 6.19: Evaluation of Sem and Smm: Time, total traveled distance and number of maneu-
vers (maneuver phases) averaged over 1000 simulated scenarios and plotted against
the average number of interaction links and the steering bound φmax respectively.
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Figure 6.20: Performance evaluation of Sem and Smm concerning time, traveled distance and
number of maneuvers for different interaction topologies. Plots (a)-(c) illustrate
the number of scenarios in which each of the methods performed better as well
as the ones with identical outcome. Plots (d)-(f) compare the two methods on a
percentage basis.
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Figure 6.21: Performance evaluation of Sem and Smm concerning time, traveled distance and
number of maneuvers for different steering bounds. Plots (a)-(c) illustrate the
number of scenarios in which each of the methods performed better as well as
the ones with identical outcome. Plots (d)-(f) compare the two methods on a
percentage basis.
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is equal to the number of total maneuvers, since if one vehicle maneuvers all others have to

wait.

From Figure 6.19(b) it can be seen that the average total traveled distance decreases

for both rendezvous systems for an increasing number of interaction links until it reaches

an average value of approximately three. With further interaction links the average total

traveled distance increases linearly for both approaches. In contrast to this, the number of

total maneuvers shows a hyperbolic decrease with an increasing number of interaction links for

both methods throughout the whole domain as can be seen from Figure 6.19(c). Therefore

we can conclude that the linear increase has to result from the closed-loop controller. In

fact the value of v̂i increases with the number of distant neighbors and as a result also the

input velocity vi is increased as can be seen from equation (6.18). Since the rate of turning

θ̇i = σφmax(c2ωi) is not affected, the resulting path to the momentary desired position is

longer in the case of ωi 6= 0, which holds whenever robot i is not oriented towards this point.

Figure 6.19(c) also shows that compared to the decreasing and than increasing number of

maneuver phases for Sem, the average number of maneuver phases for Smm continuously

decreases with the number of interaction links in the system. This results from the possibility

to perform concurrent maneuvers among neighbors with Smm, while it is prohibited in Sem.

It can be easily comprehended that because of the degraded mobility, feasible short paths

to a desired position become infeasible for vehicles with a lower steering bound in many cases.

Thus it is not surprising that with an increasing value for the maximum steering angle the

needed time as well as the traveled distance decrease hyperbolically for both approaches as

can be observed in Figure 6.19(d) and Figure 6.19(e). A decrease with growing steering bound

is also observed for the total number of maneuvers and maneuver phases (Figure 6.19(f)). In

fact, the amount of maneuvers will converge to zero as φmax → π/2 or equivalently as the

system approaches the free steering case that was considered in Section 6.4.

Figure 6.20 illustrates the results from comparing the two approaches on a per-scenario

basis with respect to the average number of interaction links per vehicle. Looking at Fig-

ure 6.20(a) it can be seen that Smm dominates most of the scenarios with respect to time, while

the corresponding diagram concerning the total traveled distance depicted in Figure 6.20(b) is

nearly inverted. The amount of dominated scenarios with respect to the number of maneuvers

(Figure 6.20(c)) is closely related to the amount with respect to the traveled distance aside

from a few additional scenarios with equal outcome. The average improvement in needed time

of Smm versus Sem continuously increases from 26.0% for the minimal connected interaction

graph to 341.9% for the fully connected case (cf. Figure 6.20(d)). Concerning the traveled

distance, Sem needs on average 22.0% less than Smm without major changes with respect to
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the average number of interaction links per vehicle. However, the standard deviation, which

significantly decreases with the number of interaction links, indicates that the outcome varies

more in systems with sparse interaction topology. As Figure 6.20(f) indicates, the average

number of maneuvers is less for Sem for various interaction topologies. The improvement

increases from 90.3% at 1.9 average interaction links per vehicle to 269.8% for the complete

interaction graph that has nine interaction links per vehicle. The high standard deviation

implies that the improvement varies a lot from case to case. Its higher negative value indi-

cates a lower number of cases for which the improvement with Sem is much better than the

average value. Compared to this there are more cases for which the improvement is less or

even negative in some of the runs with less than five average interaction links per vehicle.

Results from comparing the two approaches on a per-scenario basis with respect to the

steering angle bound φmax are depicted in Figure 6.21. It can be observed from Figs. 6.21(a)-

6.21(c) that Smm dominates with respect to time and Sem dominates with respect to total

traveled distance and the number of maneuvers for low steering bounds. The distribution in

the corresponding plots is quite similar. With a more relaxed steering bound the number of

simulation runs with identical outcome increases significantly. In most of these runs no ma-

neuvers were carried out since the improved mobility of an increased steering bound enabled

the robots to fulfill the stopping criterion exclusively by means of the closed-loop controller.

This is also the main reason why the average improvement with respect to time, total trav-

eled distance and maneuvers decreases while the steering bound is increased (Figs. 6.21(d)-

6.21(f)). Also it can be observed in all three plots that the standard deviation in direction

of the dominating controller is significantly bigger than in the opposite direction.

We conclude that with respect to time needed for the rendezvous, Smm is the better choice

in all cases. But if energy consumption is an issue and needed time is less important, than

Sem with a lower mean traveled distance will perform better on an average given the utilized

vehicles have a huge turning radius.

6.9 Summary and discussion

In this chapter we proposed solutions to the rendezvous problem for groups of car-like vehicles

for the cases of free and bounded steering that have not yet been addressed in literature. For

the free steering case we introduced a discontinuous feedback controller, whose convergence

was proven by applying the partial stability theorems from Chapter 2. For the bounded

steering case the controller was slightly modified and complemented with a switching logic

which commands certain vehicles to perform orientation adjustment maneuvers that drive

the system out of undesired equilibria. After proving convergence for the complete system

131



6. RENDEZVOUS FOR GROUPS OF CAR-LIKE MOBILE ROBOTS

we discussed the problem of distributed termination of the rendezvous process that is un-

solvable without utilizing some kind of broadcasting strategy. Both approaches have been

verified in simulations, while the developed system for the bounded steering case has also

been demonstrated in hardware experiments. Finally, the bounded steering approach was

extended in order to allow concurrent orientation adjustment maneuvers among neighboring

vehicles. The resulting decrease of the convergence time at the expense of a higher overall

traveled distance has been verified statistically using the data from extensive simulations.

To show the convergence of the rendezvous control systems we relied on the concept of

Filippov solutions, which are guaranteed to exist even for dynamical systems with discontin-

uous right-hand side. Since the feedback control law is discontinuous, situations might occur

in which a part of the system state slides along a discontinuous surface. This can happen

to a vehicle’s position when its neighbors move in such a way that for the time-derivative of

the condition classifying the discontinuous surface we have ˙̂vi = 0. One might argue that the

notion of sample-and-hold solutions (cf., e.g., [Cor08]) is more suitable for our specific system,

but it is not difficult to find situations in which the proposed control system for the bounded

steering case results in a deadlock situation. Further it should be noted that concerning

the bounded steering case, Theorem 6.5.5 also holds without the assumption that vi 6= 0 at

unstable weak equilibria. At such an equilibrium all vehicles satisfy the maneuver condition

(C4) and if none of them is moving, there will be at least one vehicle doing an orientation

adjustment maneuver that drives the system away from the discontinuous surface.

The design of the feedback control laws has to be done carefully. It is essential for the

equation computing vi in the free steering case (6.5) as well as in the bounded steering case

(6.18) that we divide by 2|Ni| instead of |Ni|. Otherwise the estimates (6.16) and (6.22)

do not hold and it is possible to construct a non-converging example like in Appendix C

simply by placing two vehicles with different orientation on opposing tangents of a circle,

whose radius does not violate the vehicles’ steering bound. With the developed controller

for vehicles with bounded steering it might also happen that the maneuver conditions (C2)

and (C3) are satisfied for all nodes even directly after a maneuver depending on the value

of ε1. As a consequence, this could result in an increased number of orientation adjustment

maneuvers; however, the convergence properties are not affected. But since in real world

applications the convergence to a certain region is desired, this situation will not occur given

the constant ε1 was chosen small enough.

In special cases the convergence to the desired equilibrium from the same initial state

can be faster even though the steering bound is more restricted. Because of the distributed

nature of the system it is very difficult or even impossible for individual nodes to identify such
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situations. The average convergence time might be significantly improved if vehicles would be

able to detect and intelligently react on them. Using a dedicated leader unit to command the

gathering also might result in faster convergence due to the possibility to calculate an optimal

meeting point. But the fact that the leader is a single point of failure for the whole system

justifies the need for a decentralized approach, which provides robustness and scalability to

the system. To decrease the communication effort within the system, position and speed of

neighboring vehicles might be obtained via acoustic or optical range measurements or by a

vision system. Also the transmission of êi to the neighbors in the bounded steering case can

be limited to the time intervals when the “local” conditions (C2) and (C3) are satisfied.
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7 Conclusion and future work

In this monograph we discussed different problems concerning the coordination and control

of motion in systems of autonomous wheeled mobile robots. As most of the related work

in literature does not cover car-like robots, there exists a certain demand for motion plan-

ning approaches and control systems that are applicable to groups of these kind of vehicles.

Therefore we attached great importance to develop approaches that fulfill this criterion.

We reviewed a motion planning approach for formations of nonholonomic mobile robots

that is also applicable for vehicles of the car-like type. A closer look at the approach revealed

several weak points that significantly lower its applicability. In order to close the identified

gaps we introduced different enhancements to the original motion planning approach. In

particular, in the original approach, an unconstant reference speed results in an undesired

modification of the formation’s shape. This problem could be solved by simply synchronizing

the vehicles’ speeds. Furthermore, we derived an extended equation for the curvature input

calculation of the follower robots. This modification now allows changes of the formation’s

shape along trajectory segments with continuously differentiable curvature in comparison to

the need for constant curvature in the original approach, which in practical terms has been

a huge disadvantage. Moreover, the originally proposed function for requested modifications

of the formation’s shape created undesired jumps in the speed and curvature profiles of

the follower vehicles. This problem could be solved by introducing higher order polynomial

spline functions for the relative position coordinates’ alteration. Provided that the given

reference speed is at least C0-continuous and the reference curvature is of class C1 or smoother,

their application results in guaranteed continuous speed and steering profiles for the follower

vehicles.

The considered motion planning approach generates values for the vehicles’ control inputs

based on the speed and curvature values of a reference trajectory. Since closed-loop trajectory

tracking requires the absolute position error and the corresponding derivatives one might

integrate the kinematic model numerically. An alternative solution is to do the planning

directly in absolute coordinates as it was shown in the context of the task of snow shoveling

on airfields via formations of autonomous snowplows.
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7. CONCLUSION AND FUTURE WORK

For the snow shoveling task a centrally supervised system architecture was designed with

a leader-follower hierarchy on the level of motion coordination. The motion coordination was

divided into the subproblems of formation motion planning and tracking of the generated

trajectories. For the motion planning part we introduced a trajectory planner that trans-

forms the output of the Task Allocation module into a trajectory for the reference point of

the corresponding Formation unit. Based on this reference trajectory each vehicle computes

its own desired trajectory. In order to achieve a robust tracking of the planned trajectory,

we derived a controller that is based on feedback linearization. Since the shovel’s mounting

point was chosen as the tracking’s reference, the controller efficiently handles sharp turns by

achieving optimal breadthwise coverage of the road. Furthermore, the required differentia-

bility class for error free tracking is reduced to C2 compared to the need for C3-continuity if

the tracking reference is located in the center of the snowplows’ rear-axle. In a simulation

environment we showed that the developed snow shoveling framework is also able to react on

unforeseen changes in the environment such as narrow road segments, obstacles and blocked

roads. Besides that, we demonstrated the robustness of the motion coordination solutions in

laboratory hardware experiments.

Another problem that was dealt with in this work is concerned with the rendezvous prob-

lem for groups of car-like vehicles. Besides the free steering case, which allows arbitrary

steering angles below 90◦, we considered also the more realistic case of vehicles with bounded

steering angle. For the free steering case we introduced a discontinuous feedback controller

that depends exclusively on the robot’s own state and the position of other vehicles in range.

Convergence of the closed-loop system’s position variables has been proven by applying ver-

sions of Lyapunov’s direct method and LaSalle’s invariance principle that were generalized

to discontinuous systems and reformulated in order to cope with partial state stability. For

the bounded steering case the developed controller was slightly modified and complemented

with a switching logic that commands certain vehicles to perform orientation adjustment ma-

neuvers that drive the system out of undesired equilibria. After the proof of convergence for

the complete system, the problem of distributed termination of the rendezvous process was

discussed. It turned out that a solution relying exclusively on already available information

is impossible for the proposed control system, such that some kind of broadcasting strategy

needs to be implemented. Then we verified both approaches in simulations, while the devel-

oped system for the bounded steering case has also been evaluated in hardware experiments

with four robots. Finally, the bounded steering approach has been extended such that it al-

lows concurrent orientation adjustment maneuvers among neighboring vehicles. Based on the

data from extensive simulation runs we carried out a statistical analysis which showed that
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the extended version provides faster convergence at the expense of a higher overall traveled

distance.

The work in this dissertation could be extended in several aspects. In the snow shoveling

application for example, we sometimes face the situation that the intersections are not swept

adequately as snow remains in the unswept bends or the center. Finding an appropriate

solution to this problem is not obvious as a formation could somehow sweep the intersection

completely at its first arrival (low-level solution) or the crossing could be visited multiple

times during the cleaning process (high-level solution).

Another open problem lies in the fact that the developed rendezvous control systems lack

the ability to deal with a limited interaction range. The control laws could be extended

in such a way that interaction links are preserved once they are established. One possible

solution might be the application of artificial potentials as it has been proposed, e.g., in

[ZP07, JE07].

Along the lines of related work on rendezvous and consensus for simpler dynamical systems,

the proposed controllers could be extended to directed and time-varying interaction graphs.

Further, it might be possible to introduce procedures for collision avoidance such that the

no-collision assumption can be omitted (cf., e.g., [SHSŠ07]).

In real world networked systems, one faces packet loss, delay, jitter, etc. Instead of using a

simplified model of a perfect interaction topology one could take into account more realistic

models which also consider the imperfection of the individual interaction links. For sure

this step would significantly increase the difficulty of formulating a convergence proof for an

already complicated control system.

137





Appendices

139





A Solution to the linear equation system from

Subsection 4.3.3

Here, the solution to the linear equation system defined by equations (4.24)-(4.41) in Sub-

section 4.3.3 is provided. The received values correspond to the coefficients of (4.23) which

describes the demanded spline.

By determining that S1 = so + (sf − so)/4 and S2 = so + 3(sf − so)/4, the solution for the

equation system is given by

a1 = 0,

b1 = −
40(qo − qf )

57(S1 − S2)4
,

c1 =
80(3S1 − S2)(qo − qf )

57(S1 − S2)4
,

d1 = −
20(S2 − 3S1)2(qo − qf )

19(S1 − S2)4
,

e1 =
20(3S1 − S2)3(qo − qf )

57(S1 − S2)4
,

f1 =
5(S2 − 3S1)4qf − (291S4

1 − 84S3
1S2 − 414S2

1S
2
2 + 396S1S

3
2 − 109S4

2)qo
114(S1 − S2)4

,

a2 =
24(qo − qf )

19(S1 − S2)5
,

b2 = −
60(S1 + S2)(qo − qf )

19(S1 − S2)5
,

c2 =
80(S2

1 + 7S1S2 + S2
2)(qo − qf )

57(S1 − S2)5
,

d2 =
20(S1 + S2)(S2

1 − 8S1S2 + S2
2)(qo − qf )

19(S1 − S2)5
,

e2 =
20(S4

1 − 10S3
1S2 + 36S2

1S
2
2 − 10S1S

3
2 + S4

2)(qo − qf )
57(S1 − S2)5

,

f2 =
S5

1(5qo + 109qf )− S5
2(109qo + 5qf )− 30S2

1S
3
2(27qo + 11qf )

114(S1 − S2)5

+
5S1S

4
2(101qo + 13qf ) + 30S3

1S
2
2(11qo + 27qf )− 5S4

1S2(13qo + 101qf )
114(S1 − S2)5

,
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A. SOLUTION TO THE LINEAR EQUATION SYSTEM FROM
SUBSECTION 4.3.3

a3 = 0,

b3 =
40(qo − qf )

57(S1 − S2)4
,

c3 =
80(S1 − 3S2)(qo − qf )

57(S1 − S2)4
,

d3 =
20(S1 − 3S2)2(qo − qf )

19(S1 − S2)4
,

e3 =
20(S1 − 3S2)3(qo − qf )

57(S1 − S2)4
,

f3 =
5(S1 − 3S2)4qo + (109S4

1 − 396S3
1S2 + 414S2

1S
2
2 + 84S1S

3
2 − 291S4

2)qf
114(S1 − S2)4

.
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B The MERLIN vehicles

The MERLIN (Mobile Experimental Robot for Locomotion and Intelligent Navigation) ve-

hicles are a collection of mobile robots based on different locomotion platforms, whose de-

velopment started in the mid 90’s in the context of the European Mars rover development

effort MIDD [SRB+97]. Even though the kind of movement is different for each vehicle, they

share an identical setup of electronic components for control and sensor processing. Keep-

ing in mind that the performance of a mobile robot depends mainly on suitable sensors to

characterize the environment and the actual position, the first generation of MERLINs was

designed as test vehicles that allow flexibility and easy access for the evaluation of different

sensor configurations [SM02].

The Outdoor MERLIN (cf. Figure B.1(a)) is a car-like robot that was designed for harsh

outdoor environments and various weather conditions. It is usually equipped with a vision

system, GPS, gyroscope, and an array of ultrasonic sensors surrounding the robot. The

Tracked MERLIN (cf. Figure B.1(b)) is equipped with continuous tracks that surround its

body. Hence it is able to navigate even in very cluttered environments. The third type

of platform, which was used for the experiments carried out in the context of this work, is

the Indoor MERLIN (cf. Figure B.1(c)). It is a small-sized car-like robot whose odometric

sensors combined with the gyroscope provide adequate measurements of motion in the plane

for short-term laboratory hardware experiments.

The MERLINs are equipped with a Siemens C167 microcontroller that processes incoming

data from attached sensors and further is responsible for time-critical, low-level control al-

gorithms. Moreover the vehicles are equipped with a stack of PC/104-modules that provide

WLAN communication and, compared to the microcontroller, enough computational power

for the implementation of high-level algorithms like, e.g., image processing. The MERLIN

Control System, a modular structured software framework that is continuously enhanced,

provides a powerful basis for implementation and testing of novel control algorithms. Among

other things, it contains modules for the basic functionality like communication, access to

sensor data, and control of the actuators.
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B. THE MERLIN VEHICLES

(a) Outdoor MERLIN (b) Tracked MERLIN

(c) Indoor MERLIN

Figure B.1: Three vehicles from the MERLIN family.

During the last years, MERLIN vehicles have been applied in various projects that, among

other things, deal with driver assistant systems [ESS08], cooperative search and rescue mis-

sions [KKP+04], as well as cooperative box pushing tasks [Sch04].
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C Towards the convergence of a recently

proposed rendezvous control law for groups

of unicycles

A discontinuous rendezvous control law for unicycle robots has been recently proposed in

[DK07]. After a short introduction of the controller, we describe a system configuration with

two vehicles for which the proposed control law does not necessarily achieves the desired

rendezvous.

C.1 The control law

Theorem 4 in [DK07] states that, assuming the system’s static communication graph is con-

nected, N unicycles with kinematics

ẋi = ui cos θi,

ẏi = ui sin θi i ∈ {1, . . . , N},

θ̇i = ωi,

converge to a common configuration in the state space by applying the following control law:

ui = − sgn(δxi cos θi + δyi sin θi) ·
√
δ2
xi + δ2

yi, (C.1)

ωi = −(θi − atan2(δyi, δxi)), (C.2)

where

δxi = 2
∑
j∈Ni

ξ′
(
(xi − xj)2 + (yi − yj)2

)
(xi − xj),

δyi = 2
∑
j∈Ni

ξ′
(
(xi − xj)2 + (yi − yj)2

)
(yi − yj),

and

sgn(x) =
{

1 if x ≥ 0
−1 otherwise

.
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C. TOWARDS THE CONVERGENCE OF A RECENTLY PROPOSED
RENDEZVOUS CONTROL LAW FOR GROUPS OF UNICYCLES

Here, Ni denotes the set of neighbors of vehicle i in the underlying interaction graph (cf.

Section 6.1). The function ξ : [0, d2)→ [0,∞) is defined as

ξ(x) =
{
a1/(d2 − x) if µ < x < d2

a2x if 0 ≤ x ≤ µ , (C.3)

where the parameters are chosen as d2 = 2µ, a1 = a2µ
2 such that the function is continuously

differentiable for all x. Thus, its first derivative can be computed as

ξ′(x) =
{
a1/(d2 − x)2 if µ < x < d2

a2 if 0 ≤ x ≤ µ .

For the proof the authors apply Lyapunov’s direct method for nonsmooth systems [SP94]

with the Lyapunov function candidate

W =
N∑
i

∑
j∈Ni

ξ(||qi − qj ||2).

They show that ˙̃
W < 0 for all configurations that are not an element of the set

S =
{

(δxi = δyi = 0) ∨ (δxi cos θi + δyi sin θi = 0),∀i ∈ {1, . . . , N}
}
,

for which ˙̃
W = 0. Further it is stated that because of the definition of control law (C.2), the

set S is invariant except for the desired rendezvous configurations for which δxi = δyi = 0

holds for all i.

C.2 A counterexample

In this section we present a simple example in which the agents do not converge to a common

configuration under the proposed control law (C.1)-(C.2).

Given two mutually connected agents with the initial configurations (x1,0, y1,0, θ1,0) =

(−r̂, 0, π/2) and (x2,0, y2,0, θ2,0) = (r̂, 0,−π/2) with r̂ > 0 as depicted in Figure C.1 it is

easy to see that in this case we have δyi = 0 and cos θi = 0 for i = 1, 2. As a result,

δxi cos θi + δyi sin θi = 0 and therefore the configuration is an element of the set S. From

equations (C.1) and (C.2) we can compute

ω1 = ω2 = π/2,

as well as

ui = −
√
δ2
xi + δ2

yi,
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C.2 A counterexample

Figure C.1: Initial configuration for which the proposed rendezvous controller fails.

which correspond to the inputs of one possible Filippov solution starting from the specified

configuration. By choosing the constants of equation (C.3) as µ ≥ 4r̂2 and a2 = π/8 and

considering the fact that δy1 = δy2 = 0 we obtain

ui = −|δxi| = −

∣∣∣∣∣∣2
∑
j∈Ni

ξ′
(
(xi − xj)2 + (yi − yj)2

)
(xi − xj)

∣∣∣∣∣∣
= −4r̂ξ′(4r̂2) = −π

2
r̂.

(C.4)

Now, the signed curve radius of the motion trajectory of vehicle i can be computed as

ri =
ui
ωi

= −r̂. (C.5)

From equations (C.4) and (C.5) we can conclude that the vehicles move backwards on the

smallest circle going through both vehicles without changing distance to each other. Therefore

δxi cos θi + δyi sin θi = 0 and the trajectory is not leaving the set S for all time, which means

that no decrease in the function value of W will be observed. Since r̂ was chosen to be

greater than zero, rendezvous will never be reached. Note that this special case is just one

of the possible Filippov solutions, which makes the configuration a weak equilibrium of the

closed-loop system. Like for the unstable weak equilibria in sections 6.4 and 6.5, any small

perturbation would drive the system out.

In the same way counterexamples can be found for similar theorems by the same authors

in [DK08a, Theorem 6] and [DK08b, Theorem 2]. The problem of the proposed control law is

that depending on a vehicle’s relative position with respect to its neighbors, we can achieve

arbitrary speeds ui, while the rate of turning θ̇i is not affected. A solution to this would

be to include the movement speed ui into equation (C.2) in such a way that the rate of
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C. TOWARDS THE CONVERGENCE OF A RECENTLY PROPOSED
RENDEZVOUS CONTROL LAW FOR GROUPS OF UNICYCLES

turning θ̇i increases with an increasing movement speed ui. For the control laws introduced

in Section 6.4 and 6.5 this is automatically the case due to the characteristic of the kinematic

model of car-like vehicles.
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