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The aim of the present paper is to clarify the r61e of extreme order statistics in 
general statistical models. This is done within the general setup of statistical 
experiments in LeCam's  sense. Under the assumption of monotone likelihood 
ratios, we prove that a sequence of experiments is asymptotically Gaussian if, 
and only if, a fixed number  of extremes asymptotically does not contain any 
information. In other words: A fixed number  of extremes asymptotically contains 
information iff the Poisson part of the limit experiment is non-trivial. Suggested by 
this result, we propose a new extreme value model given by local alternatives. The 
local structure is described by introducing the space of extreme value tangents. It 
turns out that under local alternatives a new class of extreme value distributions 
appears as limit distributions. Moreover, explicit representations of the Poisson 
limit experiments via Poisson point processes are found. As a concrete example 
nonparametric tests for Fr6chet type distributions against stochastically larger 
alternatives are treated. We find asymptotically optimal tests within certain 
threshold models. © 1994 Academic Press, Inc. 

l .  INTRODUCTION AND NOTATION 

The present paper aims to clarify the r61e of extreme observations within 
i.i.d, models of real valued random variables in the asymptotic setting. The 
starting points of our investigation are the recent monographs of Reiss 
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1,19] and Resnick 1-21] about extreme value theory where the high mathe- 
matical standard of extreme value theory is documented. On the other 
hand, the asymptotic statistical theory was recently deeply influenced 
by the description of models given by tangent cones; see Pfanzagl 
and Wefelmeyer [18], which goes back to earlier work of Koshevnik and 
Levit [ 11 ]. 

The investigation of the structure of extremes and their statistical 
experiments has two aspects, which may be described as follows: 

I. What is the asymptotic contribution of a finite number of extremes 
for a given arbitrary model? 

II. Which kind of asymptotic models can be used for extreme value 
problems? 

The present questions can naturally be embedded in the universal 
applicable theory of statistical experiments of LeCam 1-12]. Recall that the 
asymptotic statistical properties of a given sequence of rowwise i.i.d, obser- 
vations are completely described by the class of infinitely divisible limit 
experiments F = G ® P  which can uniquely be decomposed into the 
product of a Gaussian experiment G and a Poisson experiment P; see 
LeCam [12, Chapt. 9] and Miibrodt and Strasser 1-17]. Within this 
concept, the relevance of a given portion of extreme order statistics is 
discussed in terms of their limit experiments. 

The most popular models (such as those given by tangent cones) are 
asymptotically Gaussian models. In that case, a finite number of extremes 
can asymptotically be neglected without any loss of information. In these 
circumstances, the extremes are often suspected to be outliers and they may 
be thrown out for the sake of robustness. In Section 2, the main result, 
Theorem 2.2, shows that this is the only case where extremes may be 
cancelled. The Gaussian limit experiments are completely characterized by 
extremes: Under monotone likelihood ratios the limit experiment is 
Gaussian if, and only if, the extreme observations yield no information. 
The consequences of that result are twofold: Note first that extreme value 
problems cannot be described by asymptotically Gaussian experiments 
(including tangent cones) but Poisson experiments appear naturally. 
Second, the result gives a further foundation of extreme value theory which 
is always relevant except for the purely Gaussian limit case. The charac- 
terization of Gaussian limit experiments may be compared with the 
behaviour of central order statistics; see Example 2.3. They are, of course, 
non-negligible and are frequently used as rough estimators of the under- 
lying parameter. Finally, we remark that there is a formal accordance 
between the present results for statistical experiments and sums of inde- 
pendent random variables considered earlier by Gnedenko and Koimogorov 
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[3] and Lo6ve [ 15]. They showed that the underlying sums are asymptoti- 
cally normal if, and only if, the lower and upper extremes converge to zero 
in probability. 

In Section 3, we show that certain Poisson limit experiments can 
completely be described by extremes. Note that from abstract results it is 
known that they can be realized by Poisson point processes; compare with 
the general program of LeCam [12] and Milbrodt [16]. Here, we find an 
explicit representation via extreme value processes of that result. The 
results of Section 2 suggest extreme value models given by a set of inten- 
sities of Poisson point processes, which stand for a collection of local 
extreme value alternatives. The local structure of alternatives is described 
by the space of extreme value tangents, which is introduced (Definition 3.1 ). 
In Section 4, a first statistical application of the concept of extreme value 
tangents is given by an example. We study tests for Fr6chet type distributions 
against stochastically larger alternatives. They have a natural interpretation 
within the concept of intensity measures and hazard rates. As an application, 
their asymptotic optimality is discussed. In order not to disturb the main 
ideas of the present paper, all proofs are postponed to Section 5. 

For the remainder of this section, the notation is introduced and some 
facts concerning statistical experiments are recalled. The reader is referred 
to LeCam [12], LeCam and Yang [13], Milbrodt and Strasser [17], 
Strasser [23], and Torgersen [25]. 

Let E=(I2 ,  aa/, { P , : t e T } )  be a statistical experiment (sometimes 
briefly denoted by {P, : t  e T}) Then E" denotes the n th product experi- 
ment of E consisting of the product measures P','. The restriction of E to 
some subset O c T is denoted by El o. Let 

-' : aP, ( aP, ) ,p. dp. ( i 
dP, d(P,+ P,) \d(P~+ P,)] (o,~) {o} \d(P:+ P,) 

denote the likelihood ratio of P, w.r.t. P,. 
Two statistical experiments E = ( 1 2 ~ , . ~ ,  {P, : r e  T}) and F =  (122, ~¢z, 

{ Q , : t e T } )  are called equivalent (E~F)  if the distributions of all 
likelihood processes of E and F coincide: 

&# \ \dP ,J ,~r  P" = £# \ \ d a , / , ~ r  Q" ' 
seT.  

The weak convergence of classes of experiments (w.r.t. ~ ) is defined by 
the weak convergence of all finite dimensional marginal distributions of the 
log-likelihood process. The weak convergence of E, to E is denoted by 
E,--* E. 
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By definition, 

),,2 o))"' 

is the Hellinger distance and IIP-QII is the norm of total variation 
between two probability measures P and Q. Recall that 

1 - d 2 ( P  ", Q")= ( 1 - d z ( P ,  Q))" (1.1) 

and that weak convergence of experiments implies convergence of the 
corresponding Hellinger distances. 

Let E,, = (12,,, st,,,, {P,,, Q,,} ), n e ~, be a sequence of binary experiments. 
A sequence (Q,,),, is called contiguous to the sequence (P,,),, if P , , ( A , ) ~ 0  
implies Q,,(A,,) ~ 0 for A,, e ~g,,. Suppose that (E,,),, is weakly convergent to 
some binary limit experiment E = (12, ~/, {P, Q }). By LeCam's first lemma, 
the sequence (Q,,),, is then contiguous to the sequence (P,,), iff Q is 
absolutely continuous w.r.t.P. 

An experiment of mutually absolutely continuous distributions is called 
Gaussian if at least one log-likelihood process is a Gaussian process. For 
example, the experiment (R k, ~k, {N(tF, F):t~l/~k}),  where N(a, 1") 
denotes the normal distribution with mean a and covariance matrix F on 
I~ k, defines a Gaussian experiment which is usually called Gaussian shift on 
R k. An experiment E o is said to be totally uninformative if all distributions 
coincide for t e  T. Recall that convergence of a sequence of experiments 
({P .... : t ~  T}),, to the totally uninformative experiment is equivalent to 
lIP,,.,,-P,,.,,II ~ 0  for all it, t2~ T. In this case, no information about the 
unknown parameter t is available within the asymptotic setting. 

A positive function L defined on some neighborhood Ix0, ~ )  of infinitely 
is regularly varying (at infinity) of index p ~ R if 

L(tx)/L(t) ~ x p, t ~ ~ .  

For p = 0 the function L is usually called slowly varying. For the back- 
ground concerning regular varying functions, we refer to the monograph 
by Bingham, Goldie, and Teugels [1]. The concept of regularly varying 
functions has proved to be a powerful tool in extreme value theory 
and for details we refer to Section 8.13 of [1 ] and to the monograph by 
de Haan [4]. 

Let S be locally compact with countable base and let ~ denote the 
corresponding Borel a-field. Designate by M(S, ~ )  the set of all locally 
finite point measures defined on S. Recall that /~ e M(S, ~ )  if there exists 
a denumerable set of points xj~ S, i~ / ,  such that/~ = ~ ,~ i  ex, and/~(K) < 
for every compact set K. The set M(S, ~ )  is endowed with the a-field 
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J[(S, ~) ,  which is by definition the smallest a-fled such that the projec- 
tions g--* g(B), B e ~ ,  are measurable. The space M(S, ~)  is Polish in the 
vague topology. Moreover, the a-field Jt '(S, ~ )  coincides with the Borel 
( - B a i r e )  a-field w.r.t, the vague topology; see Kallenberg [9]).  Some- 
times, we simply write M(S) and ./¢'(S) instead of M(S, ~) and ,//(S, ~) ,  
respectively. A point process on (S, ~ )  is a measurable mapping N on some 
measurable space (I2, ~¢) into M(S, ~). An excellent introduction to the 
theory of point processes is the recent monograph by Reiss [20]. 

2. EXTREMES OF ASYMPTOTICALLY GAUSSIAN MODELS 

In this section, let P,. ~ always denote continuous distributions of R, and 
let X~:,, ~< X2:,<~ ... <~X,:, denote the order statistics of the canonical 
projections X~: R " ~  R on the ith coordinate. The consideration below 
deals with the k-dimensional lower and upper extremes given by 

W,,.k=(XI ........ Xk:,,) and Z , . k = ( X , , + l _ k  ........ X .... ). (2.1) 

The associated statistical experiments are abbreviated by 

Ej:,,.j_<, = (R*, ~*,  {Le(W,,., I e: . ,O : OE 0,,}) 

and E,+~_j:,,.j<~k, respectively, with W,.k replaced by Z,.k,  where O , c  R 
denotes a suitable parameter set with lo,-- ,  lo  for some parameter set O. 
Throughout,  we assume that 0 E O. The following two theorems show that 
under standard regularity assumptions asymptotic Gaussian models are 
not appropriate for extreme value problems. On the other hand, 
Theorem 2.2 is essential for extreme value theory. Note that whenever the 
limit experiment is not Gaussian then the extremes yield a non-negligible 
asymptotic contribution. 

Asymptotic normality is often derived under the standard assumption of 
Lq-differentiability (at 0) of a given family (P,9)~ for some 1 ~< q ~< 2, which 
is satisfied if there exists some g e Lq(Po), called the q-derivative of the 
likelihood ratio, with 

in Lq(Po) as ~9 ~ 0 and 

,)/o . .  

as oq ~ 0. By Lq(Po) we denote the space of Lq-integrable functions w.r.t. 
P0. 

Pa \ [d (Po+Pa) -  1 =o(1~1 ~) 
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Recall that a family (P,9).9 is called stochastically increasing if 
P%((x, oo))~>P~,((x, oo)) for all x e R  and each pair 9~ > 3  2 . Before we 
state our results, note that the totally uninformative experiment Eo 
contains no information about the unknown parameter 3. 

2.1. THEOREM. Assume that the sequence o f  experiments ( R " , ~  n, 
{ P',',. ~ :3  s O,, }) is weakly convergent to some Gaussian limit experiment G. 
Either let 

(a) P,,.:~=P,,_~.,~ arise fi'om an Lq-differentiable family  (P9),9 (at 
zero) for  1 <-N q <<. 2, or let 

(b) (P,,.o),9 be stochastically increasing for  each n. 

Then for  each k >1 1 the extreme value experiments Ej:, . j  ~ k and E ,  + l - j : , ,  j <. k 
are weakly convergent to the totally uninformative experiment Eo. 

Under slightly stronger conditions also the converse of Theorem 2.1 can 
be obtained. In that case, Gaussian limit experiments are completely 
characterized by the extremes. Recall that a family (P,~),~ on R has 
monotone likelihood ratio in x, if for each pair 9, < 9 2 

dP,~ 2 
dP~, (x) = h%. ~2(x) (2.2) 

holds P~,+Poz-almost everywhere for some nondecreasing function 
h,%.,9,:R~[0, oo]. It is well known that (2.2) implies that (P9),9 is 
stochastically increasing; cf. Witting [26, p. 214]. The boundedness 
assumption of (2.3) below is standard in asymptotic theory; cf. [17, p. 40]. 

2.2. THEOREM. Assume that (P,,. ~ ) ~  o, admits monotone likelihood ratios 
in x for  each n ~ N. Let the n-fold product experiment E ~ = (R ~, ~" ,  
{ P;',. ,~ : 9 e 0,, } ) be bounded, that is, 

l imsupndZ(P, , . ,%,P, , .o : )<oo fo ra l131 ,32 .  (2.3) 
n ~  7~  

Let E" be weakly convergent to some limit experiment E. For f i xed  k ~ N the 
following assertions (a)-(c) are equivalent: 

(a) E is Gaussian. 

(b) For each 3 ~ 0  

log dP,, ~ (Xi:,,)) 
i E  { I . . . . .  k ,  n +  1 - k ,  ..., n}  

in P ,",. o" and P ,",, e-probability. 

(c) 

--*0 

Ej:,.j<.k--* E o and En+,_j:n.j<~k---~ Eo weakly as n--* oo. 
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In the case of central order statistics the situation is completely different. 
The experiments of central order statistics are in general not negligible and 
often again asymptotically Gaussian, as can be seen from the next example. 

2.3. EXAMPLE. Let Fdenote  a distribution function on I~ with absolutely 
continuous Lebesgue density f and finite Fisher information !r = S (f'(x))2/ 
f(x)  dx < ~ .  Consider the stochastically increasing location family P~ with 
distribution functions F ( . - 9 ) .  

Whenever f (F- ' (q))>O, 0 < q < l ,  the experiment of central order 
statistics 

(R, ~ ,  {~ (xc , ,~  1 :,, I P',',-, -',0 : 9 ~  R})  

converges weakly to the one-dimensional Gaussian shift (R, M, 
{N(ga 2, a-'): 9e  R}) with the variance 

a2=f2(F l(q))(q(1-q))-~ 

The proof follows from Theorem 4.1.4 of Reiss [-19], where the 
convergence of 

n'/2f(F - t(q) )(X•,,q I :,,- F- '(q))  

to N(9f(F- l (q)) ,q(1-q))  under P',',-,~2:~ is proved w.r.t, the variational 
distance. 

Finally, we discuss the median Xt,,/,_l :,, (q = ½) for 0-symmetric densities 
f. Its Fisher efficiency is given by 1 >t p := a'-/!r= 4f2(O)/lf. The inequality 
4f2(O)<~Is is well known and can be proved directly by the Cauchy- 
Schwarz inequality. The discussion of the equality sign proves that the 
median is asymptotically efficient (w.r.t. the Fisher efficiency), that is, p = 1, 
if and only i f f ( x ) = e x p ( -  Ixl )/2 is the density of the double exponential 
distribution. 

3. EXTREME VALUE ALTERNATIVES AND POISSON POINT PROCESSES 

As a conclusion of Section 2, we now study the precise influence of 
the (upper) extremes when the limit experiment is not Gaussian or only a 
portion of upper extremes is observable. It turns out that in various cases 
we find an explicit representation of the corresponding limit experiment by 
Poisson point processes. Let us first summarize some frequently applied 
approaches in extreme value theory. 

Practical problems are often concerned with the upper tails of the under- 
lying distributions. Here, we may think about the insurance mathematics, 
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where extremely large claim sizes are most important. Another example, 
where naturally extremes appear, is the flood of the ocean or of rivers. 
These examples have the common feature that the interesting statistical 
information is located in the tails of the distributions and the shape of the 
rest of the distribution may be suppressed. There are two traditional 
methods in extreme value theory which take care of this effect. 

1. For a given sample size n often only the k,, largest order statistics 
are taken into account (or even the k,, largest data points are only 
observable), where X,,+ ~_. ~ ......... X, .... is a relatively small portion of order 
statistics. 

2. Often only the exceedances Yi=X~l~a.o~(Xi) of Xi over a non- 
random threshold d are considered. In this case, the statistician has the idea 
that the effects of interest lie behind the level of size d. 

In the sequel, we motivate a new local consideration in extreme value 
theory. Assume that a nonparametric model depends on a f a m i l y ~  of 
extreme value distributions or related ones on [0, oe). We are interested in 
the performance of given procedures at a distribution Po E ~'. In practice, 
ad hoc methods relying on preliminary estimates /~,, bring us into a 
neighborhood of Po, where the accuracy of the approximation depends on 
the sample size n. At this stage, we again refer to the classical Gaussian 
situation; see Pfanzagl and Wefelmeyer [18]. The investigation of local 
parameters, expressed in terms of the tangent cone, leads for n--* oe to 
Gaussian shifts and provides there an adequate tool for treating asymptotic 
problems. By the results of Section 2, this approach fails in extreme value 
theory. Motivated by the points 1 and 2 above, we introduce now the 
following local model. The direction of deviation from Po is described by 
the set of all "smooth" functions h >~ 0 such that 

dP~ (x)=h(~gx)+r(x, ~9), ~9~0c [0, ~ ) ,  0 ~ O  
dPo 

leads to a curve of distributions P.~ which belong to ~ locally at zero. 
Among other conditions, we require h(x) ~ 1 as x ], 0, and that the remain- 
der term r(x, ~9) be sufficiently small as ~9~0. Also, one may think about 
related models where h(~gx) is replaced by h(~gq)(x)) given by a scale 
transformation ¢p and .~0(~0 ] Po) satisfies the regularity conditions of our 
extreme value model. The present model has the following meaning. For 9 
near zero the difference between Po and P,9 is more and more located in the 
tails. Following the motivation above, the tail effects of the curve are 
described by the function h, which can be considered as an extreme value 
version of a tangent function or an influence function. The local structure 
of the family ~ at Po is specified below in Definition 3.1. 
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In the following we restrict ourselves to absolutely continuous distribu- 
tions Po on ~+ with distribution function Fo and density .fo w.r.t, the 
Lebesgue measure 2 such that the yon Mises condition 

xfo(x)  
lim - -  =~,  ~ > 0  (3.1) 

. . . . . .  1 - Fo(x) 

holds and fo is bounded on each intervall [y,  ~ ) ,  y > 0 .  Condition (3.1) 
implies that Po belongs to the max-domain of attraction of the Fr6chet 
distribution with shape parameter 

Gl.: ,(x)=exp(-x-: ' )  1 (o..~ i(x), ~ > 0 ,  (3.2) 

that means, there exist constants 3,, > 0, y,, E R, such that 
~(6 . (X . : . - y . ) [P '~)~G~, .  weakly. Moreover, one can choose 3,,:= 
I/F o t(1 - 1/n) and b,, = 0, where Fo I denotes the generalized inverse of Fo, 
see, e.g., De Haan [4].  Note that in our notation we do not distinguish 
between a distribution and its distribution function. 

3.1. DEFINITION (Extreme value tangent space). Let Po fulfill the yon 
Mises condition (3.1) and let ~ be a family of probability measures with 
P o e ~ .  Denote by ~ the set of measurable functions h: [0, m ) ~  [0, ~ )  
with 

lira h(x)= 1 (3.3) 
xlO 

and 

/ h ( x ) m i n { l , x  (J+~)+~} d x <  ~ (3.4) 

for some 0 < e < ~ .  
The extreme value tangent space Tv,(Po, ~)  is the set of functions h e 

such that a curve 

dP., 
dp ° (x)=h(oax)+r(x, 9), oq~6)c [0, ~ ) ,  0 ~ O  (3.5) 

and some q > 0 exist with P~ ~ ~ for 0 < ~9 < q, where the remainder term r 
in (3.5) fulfills the regularity conditions 

(i) r(6,-~x, 6,~9)---,0 for 2 almost all x > 0  and 

(ii) ~.,.~, ]r(z, 6,,oa)lfo(z)dz=o(n-I), for each x > 0  

and for each oa>0 as n --* ~ ,  where 6, := l /For(1  - 1/n). 

Note that the function x ~ h(~gx) also belongs to the tangent space for 
~9 >10 if h ~ Tv,(Po, ~). The relevance of the normalizing sequence (6,,), is 
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discussed in (3.11) below. The next example has a natural application for 
testing problems; see Section 4. 

3.2. EXAMPLE. Consider the Fr+chet distribution Po of index ~ > 0  
with distribution function G~.~; see (3.2). Let :~ denote the set of all 
distributions which are stochastically larger than Po- The tangent space 
T~,(Po,  ~ )  consists of all functions h E ~ satisfying 

I 
N 

h ( z ) z - I I + ' ~ a ~ > ~ . v  -~ for all x > 0 .  (3.6) 
x 

Let P,,~E~ be a curve of the form (3.5). Then Theorem 3.5 below implies 
(3.6). Conversely, for all he  ~ satisfying (3.6), a curve P,~ exists which 
fulfills (i) and (ii) of Defintion 3.1. Straightforward calculations show that 
one can choose the curve P9 represented by 

P:~((-oo, x ] ) = e x p  -0~ h ( S z ) z - ~ l + ~ d z  , x > 0 .  (3.7) 
x 

The model (3.7) has a very interesting interpretation in terms of intensity 
rates and hazard rates if in the latter case the transformation x --* q~(x) := 
l/x, x > 0, is applied. Let f,~ denote the Lebesgue density of P,~. Then the 
intensity rate is defined by 

f,~(x) 
- h ( S x )  ~ x -  ~ + ~ 

P. ,~((-  ~ ,  x])  
x > 0  

and the intensity ratio is just 

f : , ( x )  ( fo(x) "~ - 
p,,,((-oo, x]) \]Oo((---~-, x]) / 

1 

= h ( a x ) .  (3 .8)  

The family (/3,,~),,~ := (.9~((o I P,~)),9 yields lifetime distributions of Weibull 
type with 

P , 9 ( ( - ~ , x ] ) = l - e x p  - ~  h ( 8 / z ) z ' - '  dz , 

where now the hazard rate 2o of P~ satisfies 

~..~(x) := y~(x) = h(O/x) ~ x ' -  ~, 
1 - P , 9 ( (  - o o ,  x ]  ) 

x > 0 .  
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The model (3.8) is thus equivalent to the lifetime model with the ratio of 
hazard rates 

~,~( x )/~o( X ) = h( # /x  ). (3.9) 

Further examples can be obtained from the following lemma, which is 
concerned with distributions of exponential family type. 

3.3. LEMMA. For a given direction h E ~v define 

dP ,,~ 
dPo (x) = c(h(9. )) h(gx) = h(gx) + r(x, 9) 

with 1/c(h(~.)) = S h(gx) dPo(x). Then, the conditions 
Definition 3.1 are satisfied. 

(3.10) 

(i) and (ii) of  

3.4. EXAMPLES. (a) If we take h ( x ) = e x p ( - x ) ,  the family (P~),~ (3.10) 
gives an exponential family. Since extreme value distributions often have 
heavy tails, Po usually does not lie in the domain of attraction of N(0, l ) 
and Gaussian limit experiments cannot be expected. 

(b) Assume that (P,~),9 denotes a family given by (3.10) and some 
functionh. For d > 0  define a new family of distributions (Po),,~>o by 
J~o = Po and 

dPo 
dPo (x) = ?(oq)( 1 [o. d~(~X) + h(gx) 1 [a. ~ i(~x)) 

= 1 [o .  d~(~X) + h(~x)  1 [,t, ~ ~(~x) + r(x, ~). 

For sufficiently large n this model can be used to obtain a threshold model 
at size d/6,,, where the interesting effects occur in the tails. 

The local considerations now require a rescaling procedure with ~,, 10, 
such that the experiment 

(Rk., Mk., {*~(Z,,.kn [ P,;.,~) : ~9 ~ 0}), (3.11) 

given by the relevant part of the order statistics (2.1), is convergent to some 
non-trivial limit experiment, where now ~ denotes a local parameter. The 
rescaling procedure is necessary in order to compensate the influence of an 
increasing sample size n. It turns out that the asymptotic behaviour of this 
experiment is completely determined by the function h which justifies the 
investigation of extreme value tangents. For these reasons we introduce the 
following nonparametric structure model (3.12). 
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For a given set ~u o = ~u w i t h  h = 1 • ~u o define 

dPh 
dPl ( x )=c (h )h (x ) ,  h •  ~o (3.12) 

with normalizing factor c(h) = (S h dP~ )-~, where, for obvious reasons, we 
prefer the notation Pl instead of Po. Our nonparametric structure model is 
then {Ph : h •  ~uo}. If ~o = {h(9-) : 9 • 0 }  we obtain the model (3.10). 

In the following, we point out that typically Poisson experiments occur 
as limit experiments of the structure model (3.12), which can be identified 
by Poisson point processes. Let 

w(z) = (log Gt. :,(z))' = ~z -II  +~'~ 1 io" ~l(z) 

and define for k >/1 the probability measure Qk, h by 

dQk. h (xk, . , q )=exp  - w ( z ) h ( z ) d z  w(xi) h(x j} 1A,(Xk Xl) 
d2~ .... . . . . . .  .v~ . /=  I 

with 

Ak = { ( y k  . . . . .  )'l) •Rk:O~<yk~ < "'" ~ < Y l } ;  

cf. Lemma 5.3. Note that for k = 1 and h = 1 we obtain the Fr6chet density. 
Under the regularity assumptions (i) and (ii) of Definition 3.1, we now 
derive the limit distribution of a fixed number k,, = k of upper extremes 
Z,,.k (2.1) under local alternatives (3.5). Increasing portions k ,  of upper 
extremes are discussed later. For 9 = 0 the following result is known from 
uniform convergence results of extremes (Falk [2],  Sweeting [24];  see also 
De Haan and Resnick [5]).  

3.5. THEOREM. Suppose that Po fulfills the yon Mises condition(3.1). 
Consider a curve (3.5) with h • 7 t, where the remainder term satisfies (i) and 
(ii) of Definition 3.1. Then 

11~(6,,Z,,.k l P',~,,,~)--Qk, h~,9.~ll ~ 0  

for n ~  and 3>O. 

From Lemma 3.3 we know that (Ph~a,s. ~)s satisfies the regularity assump- 
tions (i) and (ii) of Definition 3.1 and thus Theorem 3.5 implies the following 
result. 
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3.6. COROLLARY. Let {P,, :h ~ ~o} be the structure model (3.12). Then, 
the experiments induced by the k largest extremes 

E,,+, i:,,.i<~k = E,,+, i:,,.j<~k(~uo) 

=(~k,~k,{z /~(Z, , .k l  h¢,~,.~, : h E ~o}) (3.13) 

converge weakly to 

E, = E,(~'o) = (R k, ~k, {Qk.,, : h s  ~o}). (3.14) 

Next, we study the limit experiment of the sequence (E,,+ ~ i:,, j-<k),, in 
more detail. For h e ~ define 

v,,(l-x, oo))=I, ~. h(z) w(z)d: 

and let ~bl, denote the inverse of v h given by 

~%(u)--- sup{t : Vh([t, ~ ) ) > i  U}, u > 0 .  

Note that 
exponential random variables and 

k 

Sk= ~. ~i. 
i=1  

By Lemma 5.3, we see that 

Qk.h = ~9((~Jh(Sj))j<~k), 

~,~(u)=u-I /L Let (~i)iE~J be a sequence of i.i.d, standard 

(3.15) 

(3.16) 

The limit experiment (3.14) can now be rewritten in terms of point 
processes. By ~, we denote the Dirac measure in x, that is, ex(B)= I B(x). 
Then 

k 

Nk. h = ~, et~h(s j) 
j=l 

denotes the point process corresponding to Qk.h and let 

Nh = ~ ~¢,h(Sj) 
.i>~ I 

be the full point process. It is easy to see that Nh is a Poisson point process 
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with intensity measure v h (see, e.g., Resnick [21, Proposition 3.7]). We call 
N~.h the k-limited point process of Nh. Obviously 

(M((0, ~ )),. t[((0, ~ )), { L;a(N~. ,,) : h • ~o}) 

is equivalent to Ek; see Lemma 5.3. 
In the next step we briefly discuss the asymptotic behaviour of the 

experiments given by Z,,.~,, where the sequence k,, tends to infinity slowly 
enough. It is natural to consider first the limit of E,,.~. as n ---, ~ and then 
the limit k--* oo. The subsequent lemma gives the limit experiment E~ of 
(Ek)~  ~. In conclusion, we see that there exist sequences k,, --* oo (increasing 
slowly enough) such that E,_ is a weak accumulation point of E,,+ t -j:,,.j.<k, 
given by (3.13). For concrete examples we will see which kind of sequences 
k,, yield convergence to the limit experiment E~. ; see Example 3.8 below. 

3.7. LEMMA. The weak limit experiment of  ( E ~ ) , ~  is given b), 

E~. = E~ (tPo) = (M((0, ~. )), J[((0,  ~ )), { L~'(N,,) : h • ~o} ). 

Remarks. (a) The parameter h is just the density of vh w.r.t, v~. Thus 
the tangent space has a quite natural interpretation in terms of the intensity 
measures (Vh)h~, ° of the limit experiment; see also (3.8) and (3.9). For 
practical purposes extreme value models can now be established by the 
investigation of structure models (3.12) given by a relevant subfamily ~o 
of tangent functions of intensity measures. Note that in the case of 
Example 3.2 the corresponding intensities of stochastically larger alter- 
natives are just those vh with vh([x, ~))>~v~([x,  ~ ) )  for each x > 0 .  
Statistical inference of Poisson point processes can be found in the books 
by Karr [10] and Reiss [20]. 

(b) Recall from Karr [10, Proposition 6.14], that ~ (Nh)  is absolutely 
continuous w.r.t. L/'(N~) iff 

~ z t  

j ( ] -  ]11,2(.V))2 X cl +'~ d.v < o¢.. 
O 

Otherwise the distributions are mutually singular. Note that each tangent 
h •  ~ with h(x)= 1 for 0 < x < d  satisfies that condition. On the other 
hand, there exists h •  ~u such that ~ (Nh)  and ~ ( N t )  become singular. 
However, the distributions Qk. h and Qk. ~ are always non-singular for each 
ke t~ .  

The present concept includes various parametric experiments which were 
earlier considered in the literature. A collection of them is given in our 
next example. Special attention is given to the experiments (3.13) with 
increasing portion of extremes k,, ~ ~ .  In Example 3.8(b) and (c) (under 
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the restriction ct<2) it is already known that the limit experiment of 
E,,+, -j:,,.j~k, is E~ for each sequence k,, --* ~ (even for k,, = n) under mild 
regularity conditions concerning ~o; see [6, 7]. In that case, a finite 
number of upper extremes is approximately sufficient. 

3.8. EXAMPLES. (a) Our first example deals with a threshold model 
with d >  0. Introduce the transformation 

¢(h)(x) = 1 t0, al(x) + h(x) 1 ta. ~(x) 
on 7 / and consider the structure model (Pe(h))hE~'. If we take first 6n,L0 
and then k ---, ~ we arrive at the limit experiment 

(M((0, ~ ) ) ,  J[((0, ~ ) ) ,  {~(Ne(h)) : h e ~}), (3.17) 

which is a subexperiment of E:~(~u). We now identify (3.17) with an experi- 
ment of truncated point processes. Throughout let N(. n [t, ~ ) )  denote the 
restriction of a point process N(.) on [t, ~) .  For 0 < t < d the truncated 
version of (3.17) relative to [t, ~ )  has the likelihood ratio 

dN¢'h)('n[t'~))dNt(.n[t,~)) (/~)=exp(I~l°gh(x)d/a(x)+I~ ( 1 - h ( x ) ) w ( x ) d x )  

(3.18) 

(see Karr [10, Theorem 2.31] and Reiss [20, Theorem 3.1.1], for the 
density formula). Note that the likelihood (3.18) is independent of t and its 
distribution coincides with the likelihood distribution of 

(M((O, oo)),Jg((O,~)),{ZP(Nh(.n[d,~))):he~}). (3.19) 

If we now let t tend to zero the next theorem implies that the experiments 
(3.17) and (3.19) are equivalent. Thus also the asymptotic threshold limit 
experiments are embedded in our approach. 

(b) In Janssen [6] the extremes of exponential families were 
investigated. The models include as a practical application the family of 
inverse Gaussian distribution which is used to make a statistical inference 
about the Wiener processes with unknown drift under inverse sampling. By 
Corollary 3.6, the limit experiment of the k largest extremes of Example 
3.4(a) is now 

Fk = (m((0, oo)), ,At((0, oo)), {£q'(Nk. expi_a.)) : 9̀ >~0}) 

with 

Fk --+ r : =  (m((0, oo)), ,//((0, oo)), {£-a(Nk. e,p(_ ~.)) : ,9 >/0}). 

683/48/1-2 
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For a < 2  and k=k,,--* oo as n--* oo the occurring limit experiment of 
E,+~_j:,,.j~k, is equivalent to some exponential family F'= {Q,~:8~>0} 
with 

dQ~ 
dQo (x) = c(8) e x p ( - S x ) ,  

where Qo is a one-sided stable distribution with index ct. We see that F and 
F' are equivalent. It can be shown for 0 < ct < 1 that the relation between 
F and F '  is given by the sufficient statistic 

fO ~" 
M((O, ~))~p---, xdp(x). (3.20) 

In the case 1 ~< ct ~< 2 the mapping (3.20) must be centered. 
The consideration of exponential families has further aspects. If we make 

use of the arguments of Theorem 3.9 below, we see that the truncated 
version of Fw.r.t. [t, ~ ) ,  t > 0 ,  

N(')= ~ e~h(s~)l[,.~-)(¢h(Sj)) 
j~>l 

is again an exponential family whenever h(x)=exp(-x)1 ,o .~)(x)  and 
/1--* S~ x d~ is a sufficient statistic. 

(c) Lifetime location models of Weibull type with density 

f (x )  = (1 + a) x" exp( - x  I ÷") 1(o, ~)(x) (3.21) 

and shape parameter a e ( - 1 ,  1) yield a limit experiment G given by the 
family of point processes 

es],. +.J+, 9 , 8>10 
j~>l 

(see Janssen and Reiss [8J). From Gl,~(x) with ct= l + a  we arrive at 
(3.21) by using the transformations x-~ 1Ix. This model is also contained 
in our approach. Straightforward calculations show that for a# :0  G is 
equivalent to the sub-experiment 

(M((0, ~ ) ) ,  ,/4((0, oc)), {&a(Nh~ :8> /0})  

given by 

h g(x)=h(Sx), h(x) := (1 - x ) "  1(o ' j)(x) 
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and the corresponding intensity measures 

dv ,9 
d2 (x)=hg(x)(1 +a)x-t2+")lto.~.)(x).  

Note that the corresponding qJo-functions have the form 

ql ~(x) = (x I/(~ + " ' +  ~)- 

Statistical applications for lifetime tests making use of the limit 
experiment G are contained in Janssen and Mason [7]. For instance, this 
method proves that related score tests for survival times have certain 
optimality properties. It should be remarked that G is a stable Poisson 
experiment in the sense of Strasser [22]. 

The experiment Eo~(~) appears as the limit experiment of the truncated 
experiments {~(Nh(" C~ It, o0))): h6 7'}, as the following theorem shows. 

3.9. THEOREM. The experiment 

(M((0, ~ ) ) ,  .//((0, ~) ) ,  {£-a(Nh(-n [t, ~ ) ) )  : he  ~u}) 

converges weakly to E~(~ u) whenever t J, O. 

Our last result concerns the limit experiment of the threshold model 
given in Example 3.8(a). Under additional assumptions on the function h 
the number of extremes k,  may tend to infinity at any rate. 

3.10. THEOREM. 
space 

~l := {he ~ :  h (x)=  l, x~ [0, d) , forsomed>O}.  

Then, for each sequence k,, T co, k,, <<. n, we have 

En+ l_j:n,j<~kn(~Jl) ~ E ~ ( ~ t )  

Consider the structure model (3.12) with parameter 

(3.22) 

weakly. 

4. TESTING EXTREME VALUE HYPOTHESIS 

The results of the preceding section are applied for testing the Fr6chet 
distribution G L ~ against stochastically larger alternatives; see Example 3.2. 

As a consequence of the convergence of extreme value experiments the 
performance of statistical procedures can then be compared along curves 
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of alternatives (3.5). Recall from LeCam [12] and Strasser [23] that, 
whenever a (non-degenerate) limit experiment exists, the statistician has 
(only) to solve the underlying decision problem for the limit experiment 
and the lower bounds (for power functions, risk functions, etc.) of the limit 
experiment yield lower bounds for the sequence of experiments. So far, the 
extreme value models are embedded in the general asymptotic decision 
theory. 

However, in contrast to the case of local asymptotic normality it cannot 
be expected that the risk bounds of the limit experiments can be attained 
by the underlying procedures in general. Recently, LeCam [14] discussed 
lower bounds for Poisson experiments. Here we study a concrete example 
showing which type of asymptotic results can be expected. 

As in Example 3.2 denote by ~ the class of distributions which are 
stochastically larger than Gl. ~. We consider the testing problem 

Ho = {G,.~} against H~ = . # \ H  o 

at sample sizen, where we assume that the tail index a > 0  is known. 
In addition, we assume that the relevant differences between H 0 and H~ 
lie behind a given threshold d/6,,, d >  O, where 3,, = ( log(n / (n -1 ) ) )J /L  
Throughout, the following two models are compared. 

1. Only X,, + ~ _ k ........ X, : ,  are available for fixed k e I~. 

2. An increasing sequence of order statistics (X, + t _j:,)~.< k,, k,, 1" oo 
(including k,, = n), is available. 

Our model is a structure model (3.12) with Pt = Gt. ~ and parameter space 

~2 = {he ~ :  hl[o.d)= 1 and h fulfills (3.6)}. 

Within this setup, now let 1 ~< hoe ~2, ho ~- 1, be a fixed "tangent." Then 
the structure of the likelihood ratio suggests the test statistic 

fm T ~  . . . .  = w ( z ) ( l  - ho(z)) & 
ax{d, ~nXn+ I -kn:n} 

kn 

+ ~ (l°gho(f, ,X,,+l-j:, ,))lta.:~.~(f, ,X,,+l-j:, ,) .  
j = l  

Then two asymptotic tests are proposed (for the situations 1 and 2 above): 

f l >/ 
¢P t, ,, = Tk  . c l  

0 ' < 

{1 
~02., = Tk. ,, c2. 

0 ' < (4.1) 
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Introduce the limit distributions under GL. ,  

p~ = £P w(z)(1 - ho(z)) dz + Z log ho(S ~ '/~) 
ax{d, Sk -1 ' '  } j =  1 

and 

) p 2 = . ~  w(z)(1 -ho(z))dz + logho(S7 I/~) . 
j = l  

Then (~PL,,),, and (~P2. ,.). are test sequences of asymptotic level ~ (not to be 
confused with the notation of the tail index ~), whenever p ; ( [ c ,  oo))~<~ 
for i =  1.2. These tests are asymptotic Neyman-Pearson tests for 

.~(Z . . . .  I P'~) against .~(Z..r [ P¢'~01~..~), r e  {k, k.} 

if cg are continuity points of the distribution functions ofp~ and Pi( [ c .  ~ )) = 
holds. According to Example 3.2, this is an asymptotically optimal test for 
alternatives given by the ratio of intensities ho(6,,.) (3.8). 

A proper choice of ho leads to further relevant tests. We obtain shape 
alternatives if we choose 

hl~(x)=l{o.d)(X)+(fl/ot)x~-tJl[a.~o)(x), 0<fl<~x.  

Then the tail Php([x, c~) )=Gl .p ( [x ,  oo)) is for x~>djus t  the tail of the 
Fr6chet distribution with shape parameter ft. Since 

log hp(x) = (log(fl/cQ + (c~ - r )  log x) 1 [a, ~(x)  

it is convenient to introduce test statistics 
kn 

Tk .... = Z (log(6.X,,+~_j:.)) lta.~(6.X.+~_j:,,), 
j = l  

which are independent of r !  Note that the limit distribution of :Irk.,. under 
Ho is 

£P( ~ iog(Sj-'/~) lta,~)(STI/~)) 
j = l  

whenever k . ~  ~ as n ~  ~ .  If the critical value is taken as the ( 1 - ~ ) -  
quantile of that distribution we arrive at tests which are asymptotically 
equivalent to q~2... These tests are asymptotically optimal tests for 

£~'(Z,,.k. [ G'~,=) against ~q~(Z,,,k. [ P'/,~I~..~) 

for arbitrary 0 < fl < a. 
We obtain scale alternatives if we choose h~(x) = 1 tO, d)(X) + a ' l  ta,~)(x), 

> 1. In this case the asymptotic optimal test statistic depends only on the 
number of exceedances. 
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Remarks. (a) The assertion above remains valid if GL, is substituted 
by Po, where Po fulfills the von Mises condition (3.1). 

(b) Check that h s belongs to ~, whenever h~ ~ and 0<~9< 1 (use 
H61der's inequality). Thus {Nh~ :~ge [0, 1]} defines an exponential family 
which is a subfamily of the limit experiment. For this reason the asymptotic 
optimality of the test ~0~.,, and ~o2.,, in (4.1) carries over to alternatives 
specified by h~(6,,. ), 0 < ~ <<. 1. 

5. PROOFS 

The proofs require some technical preparations. First we derive the 
likelihood ratio of the extremes (2.1). 

5.1. LEMMA. Consider distributions Pi with continuous distribution 
functions Fi for i = O, 1. Then for 1 <~ k <~ n 

d&e(W,,.klP'O x k ) = , ~  dP' (1 -- F'(xk)'] "-k 
dL#(W,,.k l P'~) (x' ..... .= "-~o (x ')  1--Fo(xk),] (5.1) 

for x~ < .. • < xk and zero otherwise. 

Proof It is known that &a(W,,.kl P'~'), i =  O, 1, has the P~ density 

d£e(W,,.k l P',') n! 
(xl ..... X k ) = ( n _ k ) !  (1--Fi(Xk)) n - k  (5.2) 

dP~ 

if Xl < -.- < Xk and the density is equal to zero otherwise; see, e.g., Reiss 
[19, Theorem 1.5.2]. If P~ is Po absolutely continuous (5.1) is an easy 
consequence of (5.2). In general, the density is first calculated for 
Pz := (Po+PI ) /2 .  Then the expression (dP~/dP2)/(dPo/dP,_) gives the 
desired formula (5.1). II 

A similar formula holds for upper extremes; replace (x~ ..... Xk) by 
(Xk ..... X,) and 1 - - F  i by Fi. 

Proof of  Theorem 2.1. Using contiguity it is sufficient to consider the 
likelihood process with basis 0. In the sequel, the proof is carried out for 
the lower extremes. According to (5.1), we must show that 

~ log ~--B~-'- (Xi:,,) + log ~ 0  (5.3) 
i = l  . 

in P;',.o-probability, where F,,. s denotes the distribution function of P,, s. 
By means of Hellinger distances (see (1.1)), the expression nd2(p,,.s, P,.o) 
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is convergent and (2.3) holds. Thus Theorem (6.3) of Milbrodt and Strasser 
[17] can be applied to Y,,i :=log(dP,,..9/dP,,.o)(Xi). Hence, for e>~0 

n e ' , i . o { I Y , ,  j I~>~} --,0 (5.4) 

recall that X~ is by definition the canonical projection) and thus 

Y,,.~:,,--,O and Y, ....... --+0 (5.5) 

in P;',. o-probability for the order statistics of Y,,. Since 

dP,, 
Y,,. 1:,, ~< log ~ (Xi:,,) <~ Y ........ (5.6) 

the first term in (5.3) vanishes as n --+ oo. A Taylor expansion now shows 
that the proof of (5.3) is complete whenever 

(n - k)(F,,, o(.Yk :,,) - F,,, o(Xk :,)) -+ 0 (5.7) 

in P',' o-probability. The verification of (5.7) will be done separately for the 
cases (a) and (b) of Theorem 2.1. 

Case (a). For x, yE [0, 1] the mean value theorem yields for q~> 1 

I x -  yl <~ q Ixl/q-- yl/ql. (5.8) 

Let /~, = Po+ P,,-,J,,~. H61der's inequality together with (5.8)implies 

In( f ,,. ,9( Xk :,,) -- F,,. o( Xk :,,)l 

<~nq,{_o~.x,:,]f \-'-~-p~ ] - \ d p , , /  

~< ( f , -  oo. x,:,l I [fdP"-''"°'~l/qq~,-dla,, J - ~,dlx,jfdP°'~l/q'~l ) i n  TM " dl~,,)'/" 

x (nu, ,(-  ~ ,  Xk:,,]) l -  ~i,. (5.9) 

Next, we remark that 

nu . ( ( -  oo, Xk:.])=n(e, , .o((-oo,  xk:,,]) + P.. ~( ( -  oo, xk:.]))  

is stochastically bounded under P,". o. The boundedness ofnP,,, o(( - oo, Xk :,-I ) 
is immediate, since the expression coincides in distribution with the order 
statistic Uk:, of n independent random variables which are uniformly 
distributed in the unit interval. By the same arguments riP,,. ~(( -  oo, Xk:,]) 
is stochastically bounded under P,". ~. Contiguity gives the result also under 
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P~',.o. It remains to show that the first factor on the right-hand side of (5.9) 
converges in Pg-probability to zero. Note that Lq-differentiability yields 

( (de . - , , . , ; ]  '/~ ( ePo]  '/~\ / ~ . , , / .  
( f , -~ .x , : , l  [ q \ \  dl~, J - \ d l ~ , , /  ) / n - ' / q  dl~,) 

(5.1o) 

Since X~:,, converges to the lower endpoint of the support of Po, the 
dominated convergence theorem implies that (5.10) converges in 
P,~.o-probability to zero. 

Case (b). For stochastically increasing families the convergence of (5.7) 
can be derived by the following arguments: Let ,9 > 0. By the weak sequen- 
tial compactness of statistical experiments (for finite parameter sets) it is 
sufficient to show that each weak accumulation point F =  {P, Q} of 
Ej:,.j~<kl~O.,~} is totally uninformative. Assume that convergence holds 
along a subsequence (nj)j. Taking into account the arguments (5.4)-(5.6) 
above, we obtain 

1--F""9(Xk:") Po') LP(log dQ P)  1) 
L'a( ( n j - k ) l ° g  1 F,,,. o(Xk :,,j) l ~ v ° : =  ~ ] (5.1 

in distribution. Since F,, .:~ F,. o we have Vo([0, o r ] ) =  1. On the other 
hand, the definition of Vo implies S exp(x)dvo(x)<~ 1. Thus Vo=eo and 
F = Eo follows. 

In the case ~9 < 0 the r61e of 0 and ~ can be interchanged. In connection 
with upper extremes the random variables - X  i can be regarded. An 
obvious modification of the present proof yields the result for stochastically 
decreasing families. II 

The following auxiliary result is crucial for the proof of Theorem 2.2; its 
proof is elementary. 

5.2. LEMMA. Let Y,,, Z,, : (12,,, sg,,,, P,,) ~ R denote random variables with 
Z,, >1 Y,,. Assume that Z,, ~ Z and Yn ~ Z converge in distribution to some 
random variable Z defined on some probability space ((2, d ,  P). Then 
Z , -  Yn--* 0 in P,,-probability. 

Proof of  Theorem 2.2. The proof is devided into two steps. 

I. Here, we show the equivalence of the assertions (b) and (c) for 
stochastically increasing families (P,.o)o. Note that the implication 
(b) ~ (c) is given in part (b) of the preceding proof. Assume now that the 
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assertion (c) holds. Again, it is only necessary to treat the lower extremes 
and by induction it remains to prove that 

k dP,, 
Z log Ix,:,,) o 

i = 1  u l  n-0 

in P~i.o- and P~',. o-probability. By our assumptions (5.3) converges to zero 
in P',',. o- and P',',. o-probability. The proof now reduces by showing that (5.7) 
holds under P',i.o and P',',.o. To this end, we recall from extreme value 
theory that under P~I..9 

k 

nF,.o(Xk:,,)'-* ~, rli, 
i = 1  

where r/i are i.i.d, exponential random variables with mean 1. Since Xk:,, 
contains asymptotically no information about 9, the assertion (5.7) also 
holds under P',',, o. 

Define 

Y,=nF,,.o(X,:, ,)  and Z,,=nF,,.o(X,:,,). 

Then Z,,>>. Y,, for ,9>0 and Z,,~< Y, whenever 0 <0. Thus Lemma 5.2 
yields Z , , -  Y,,--* 0 in P~. o-probability. Again, Z , , -  Y,, contains no infor- 
mation about ~9 and thus the convergence holds also under P,~..9. Hence, 
the assertion (5.7) is proved. 

II. In the second step, we prove the implication (b) ~ (a) for families 
with monotone likelihood ratios 

dP ,,. :~ 
dp,,.o ( x )=  h,,. o(X). 

The arguments are based on the criterion (5.12) below for the convergence 
to Gaussian experiments. Here, we need a slight extension of Theorem (6.3) 
of Milbrodt and Strasser [17], given in Janssen and Mason [7, Theorem 
3.1, Appendix ]. Note that this theorem is applicable, since the boundedness 
assumption (2.3) implies the infinitesimality of (E,,),,; see Lemma 5.7 in 
[17]. Along these lines it is sufficent to prove that for each 0 < e <1 

n(P, , .o+P,.o){l logh, .ol  >~} ~ 0 .  (5.12) 

Note that by assumption (b) 

P~. o{log h~. o(X .... ) > e } = P;:. o{ max log h,,..9(X,) > e } 
1 < ~ i ~ < n  

= 1 - ( p , . o { l o g  h,,..~ < ~ } ) "  ~ o, 
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np,,,o{logh,.8>e} --*0 (5.13) 

for n ~  ~ .  Assertion (5.12) easily follows, since (5.13) also holds under 
P,,. ,~. The proof of Theorem 2.2 is complete. 1 

Proof of Lemma 3.3. Put 

r(x,  8)  = h ( S x ) [ c ( h ( 8 .  )) - 1 ]. 

We see that condition (i) is satisfied if 

lim (c(h(8.)))- '= 1. (5.14) 
8J.O 

Taking into account (3.3), Fatou's lemma implies lira infoio(c(h(8.))) - j  
t> 1. So it remains to show 

lim sup ( c ( h ( 8 . ) ) ) - l  <<. 1. 
,9 ,!. 0 

We split the integration into three domains whenever 0 < c8 < 6: 

I h ( S x ) f o ( x )  d x  

" 1 o~ 1 ,5 =Jo h(ox)io(x)ax+} ~, h(x)io(xiO)ax+} ~, hO<)io(XiO)ax 
= I i ( 8 )  + I 2 ( 8 )  + I3(8). 

For all c > 0, we have 

I , ( 8 ) ~  fo(x) dx<~ l 

as 8 ~ 0. Sincefo is - ( 1  + ~) varying at infinity by Karamata's theorem (see 
Bingham et al. [1, Theorem 1.6.1]), we can find a constant K =  K(c) such 
thatfo(y)<~Ky -"+')+~ for y>~c and (3.4) holds. Hence, for all 6 > 0  

f; I2(8) ~ h(x)KOl+' -"x -"+ ' )+~dx~O 
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as 8J.0. Next, we choose 6 such that h(x)  ~< 2 for x ~ [0, 6]. Then for 
large e 

2K I :  x -(1 + ~)+ ~'8' +~-~ dx 13(8) ~ -o 

1 
<~2K8 ~-~ (c8) - '+~ 

2K 
_ _  C-~+~ 

0~ - -  8 

which becomes arbitrarily small for large c. Combining these results, we see 
that (5.14) is valid. 

To show the validity of condition (ii) it is sufficient to show 

io~ h(6.0z)fo(z)dz=O(n-'). (5.15) 
.,-/6,, 

The substitution z by 6,~-'z yields 

F "F n h(6.  Oz)fo(z)  dz = -~. h ( S z ) f o ( 6 .  'z) dz. 
xlSn x 

Since Fo is -0( varying and F o ( F o ' ( X ) ) =  x, we conclude from (3.1) that 

n6., %(87,  'x)  --+ ctx - ( '  +'1 (5.16) 

Note that the convergence in (5.16) takes place uniformly on intervals 
[a, oo), a > 0, which is a well-known property of regularly varying 
functions (see Bingham et al. [1, Theorem 1.5.2]). Now, assertion (5.15) 
follows from (5.16). I 

Proof  o f  Theorem 3.5. Let 

f,,, k, n. a.a = d . ~ ( 6 . Z . ,  k [ P'~.o)/d2k. 

By Scheff6's lemma the result is proved if 

f,,.k.,,.6,# -'-* dQk.h(#.)/d2k 

as n ~ oo. By formula (1.4.8) of Reiss [19] we have 

k 
n - - k  - 1  f . ,k,h, 6.~(Xk . . . . .  X l ) = F 6 .  o (8.  xk)  l'-I ( n - - j +  l ) 6 ~ f o ( 6 f f ' x J )  

j = l  

x [ h ( S x j ) + r ( 6 ~ ' x j ,  6.8)]  1Ak(X k ..... Xl), 
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where 

J A N S S E N  A N D  M A R O H N  

Ak---- {(.Vk ... . . .  V,)e (0, ~ ) k  :.)'k < ) ' k - ,  < "'" <Y,}.  

In view of (5.16) it remains to show that 

~ '"-  kt'~ ~Xk) "--) exp -- 
.v k 

w(z) h(,9z) dz) 

as n --) oe. First, we obtain by the substitution z --, 6,~ ~z 

~. \ n  - k 

_~,:~'" kt,'; - 'Xk) = , ~ , ,  l--f.,., 6,: ' [h(gz)+r(~, , ' z ,  6,,9)]fo(6,:'z)dz). . 

Again the uniform convergence theorem of regularly varying functions 
shows that 

f~- i ~- n6,, -~ h(,gz)fo(6,, Iz) dz 
.x'~ .x" k 

Condit ion (ii) ensures that 

w(z) h(,9z) dz. 

f 
~ 

n 6,, ~ Ir(6,;tz,  6 , ,O) l f o (6 , ;~ z )d z - ,O  
.vk 

as n ~ ~ .  The proof  is complete. II 

LEMMA 5.3. (a) Let he  71. Then 

Qk.,, = ~((~ ' j , (Sj)) j_< k). 

(b) The (~kc~(O, oe) k, .ff((O, oe)))-measurable 
M((O, oe )) defined by 

k 

T , - ( X  I . . . . .  X k )  : =  ~ ,  e.,., 
i = 1  

map Tk: (0, ~ ) - - ,  

is a sufficient statistic for the family { Qk. h : h e ~v }. 

Proof Case(a). First, the joint  distribution 
2k-density 

(x~ ..... Xk) --" e - "  1A,(X, ..... Xk) 

(Sj ..... Sk) has the 

with Ak= {(y~ ..... ) 'k)e  [~ k " 0 < y ~  < . . .  <Yk)}'  For  h > 0  the function ~h 
is bijective with q / ~ l ( x ) =  vh([x, o o ) ) = ] ' ~  h(z)w(z)dz.  An application of 
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the transformation theorem for densities yields (3.16) in the case h > 0. 
For arbitrary h e ~u we can find a sequence h,, e ~ with h,, > 0 and h,, I h 
(for example h,, = hl  Ih>ol + (I/n) 1 ~h=ol). By the dominated convergence 
theorem of Lebesgue we obtain dQk.h,/d2 ~ dQ~.h/d2 and vj,,,([x, ~ ) )  
vj,([x, oo)), which implies the assertion (3.16) for he  ~u. 

Case(b). Note that for (x~. ..... x~)eA~ 

(I; dQk. j_, (x k ..... xl) = exp - (h(z) - 1 ) w(z) dz 
dQk. ~ Ir..,, ...... ~,. 

+ f l o g h ( u ) d T d x k  ..... x , )(u))  

if we define ~b(p)=sup{t :/2((0, t ] ) = 0 }  for peM((0 ,  oo)). The Neyman 
criterion for sufficient statistics implies the result, l 

Proof of  Lemma 3.7. By Lemma 5.3 we have Ek~  {Sa(Nk.j,):he ~Vo}. 
Let nk : R N ~ R k denote the projection of the first k coordinates. Then 

F~(~o) := (R ~, M~, {LP((¢h(Si))i~)l, ,q~,~ : h 6 ~Uo } ) "  Ek. (5.17) 

In the sequel, we apply the following well-known convergence result for 
experiments, which is a consequence of the application of standard mar- 
tingale arguments. Let ~ff,, denote an increasing sequence of sub-a-fields 
which generate a a-field ff~.  Then 

{e.,,I.~, : ,geO} ~ {e: , l .~ : OeO} 

weakly. For the sequence (5.17) we have 

Fk(eo)--*F~(~o) : = ( ~ , ~ ,  {£P((N, , (S j ) ) j~) :he  Co}). (5.18) 

Since F~(~o)  is more informative than E~ and E~ is more informative that 
Ek, we conclude from (5.17) and (5.18) that Ek --* E~ and E~ ~ F~.(~Uo). l 

Proof of  Theorem 3.9. Let if, denote the a-field generated by /1 
# ( B n [ t ,  ~ ) )  for B e ~ c ~ ( 0 ,  oo) and t > 0 .  Then ff,]'d¢'(0, oo) for tJ. 0. 
Once again, a martingale argument proves the weak convergence of the 
experiments. I 

Proof of  Theorem 3.10. Consider he  Tj given by h(x)=  l to. ,n(x)+ 
h(x) lra.~(x).  Let S~,S~_ .... be as in (3.15). Then £P(Nh) is absolutely 
continuous w.r.t. P~ and we have equality in distribution under L~'(N~): 

1o dNh ~ I -~ ~- g-d-~ = ~a ( 1 - h ( x ) ) w ( x ) d , c +  ~ logh(Sf ' / ' ) .  (5.19) 
j = l  
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Next consider the structure model  (3.12). First, we show that  

(dPs:,6.',~ + { d N h )  
\ d N , j h  E (5.20) \ d ,  l,,E~,, ~,, 

weakly as n ~ ~ .  For  this purpose  we show that  

log dPl = niogc(h(6,, .))+ logh(f,,Xi:,,) (5.21) 
i = 1  i = 1  

converges weakly to the distr ibution (5.19). The  convergence of the finite 
dimensional  marginal  distr ibutions of  the likelihood process (5.20) w.r.t. P~ 
follows similarly by the C r a m b r - W o l d  device. Note  that  

h(b,, X,, + l _ j : . )  --, h(S;-1/.) 

w.r.t, the variat ional  distance for each j e  ~.  Since b,,X,,+, _j,:,, ~ 0 for each 
sequence j,, Too we can find for each e > 0 some k • / ~  such that  

lira sup P(b,, X,, + i - k:,, > d ) ~< e. 
n ~  oc 

Since log h(x) = 0 for 0 ~< x < d and S 7 l/, ~ 0 as JT oo we have 

" ~ 
~. logh(b,,Xi:,,)--* logh(ST'/~) 

i = 1  j = l  

in distribution under Pc;. 
The convergence of the log c(h(b,,. ))-part  of (5.21) can be established as 

in the proof  of L e m m a  3.3. Let Fhta..~ denote  the distr ibution function of 
Phla.. r Then 

1 = f dPht~.. )= c(h(b,. )) FI (d/b,) + 1 - Fnta,. )(d lb,) 

implies 

log c(h(6,,. )) = log Fhla.. i(d/6,,) - log Fl(d/6,, ). 

As in the proof  of L e m m a  3.3 we obtain  

f) f) n log c(h(6,,. )) -~ - w(z) h(z) dz + w(z) dz 

and (5.20) is established. Note  that  (5.20) implies convergence of the 
experiments  (3.22) for the sequence k,, = n since .t~°(Nh) is absolutely 
cont inuous w.r.t. ~ ( N ~ ) .  
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N o w  let k ,  <~ n, k ,  T oo, d e n o t e  any  s equence  of  in tegers  and  let ~u~t be 

any  finite subset  o f  ~ .  Since  E , ,+~_j : , . j_<k(~ l~)  conve rges  weak ly  to 

E k ( ~ )  we can  find by L e m m a  3.7 a sequence j,, <~ k ,  with 

E,,+ i _j: , , . j~j,(~uj l) ~ E~(~u l  i ). (5.22) 

T h u s  the l imit  e x p e r i m e n t  (5.22) is the  s a m e  w.r.t. ~ j  as for  k , = n .  Since  

{ P ' t l t 6 n . l : h e ~ l ~ }  is m o r e  i n f o r m a t i v e  t h a n  E,,+~_j:, , . j<<k,(~) and  the 
la t te r  e x p e r i m e n t  is m o r e  i n f o r m a t i v e  t h a n  tha t  e x p e r i m e n t  based  on  the j ,  

larges t  ex t r emes  we have  also c o n v e r g e n c e  of  E,,+l_j:,,..i<~kn(~/tt) to 

E~( I//ll ). I 
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