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Summary. In Janssen and Reiss (1988) it was shown that in a location model 
of a Weibull type sample with shape parameter -1 <a< 1 the k(n) lower 
extremes are asymptotically local sufficient. In the present paper we show that 
even global sufficiency holds. Moreover, it turns out that convergence of the 
given statistical experiments in the deficiency metric does not only hold for 
compact parameter sets but for the whole real line. 

1. Introduction 

In the asymptotic theory of statistics, local as well as global results where estab­
lished. Take, for example, Le Cam's local and global asymptotic bounds for 
risk functions of estimates or the local and global asymptotic normality of statis­
tical experiments. In the present paper we formulate a global version of a local 
result by Janssen and Reiss (1988) in a location model of Weibull type with 
shape parameter a strictly between -1 and 1. We adopt their notation. 

We consider a location family Pr, tE1R, with Lebesgue density h(x) = f(x - t), 
where f is ofWeibull type i.e.,! has a representation 

for x>O 
for x~O, 

where r is slowly varying at zero. Throughout, we assume that the density 
fis known. 

Now let X 1> ••• , X" be i.i.d. random variables with common distribution 
Pr and denote by Xl:", ... , X":,, the pertaining order statistics arranged in the 
increasing order. It is well known that the set of order statistics is sufficient 
i.e., it contains all the information about the unknown parameter. In the present 
paper we reduce the number of order statistics to the k(n) lower extremes 
Xl:", ..• , X"<II):II and calculate an upper bound for the loss of information. We 
restrict ourselves to the non-regular case -1 < a < 1. Notice that for a ~ 1 the 
LAN condition holds. 
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The loss of information is measured in terms of the deficiency of statistical 
experiments in the sense of Le Cam (1986), see also Strasser (1985). Let E 
=(.a1 ,.!iIl> {Pr: tET}) and F=(Q2, .!iI2 , {Q/: tET}) be statistical experiments, 
where T::j:: 0 is an arbitrary set. Denote by 1111 the variational distance between 
probability measures. Moreover, let (j(E, F) be the deficiency of E w.r.t. F and 
let L1 (E, F) = max {(j (E, F), (j (F, En be the deficiency between E and F. If E is 
dominated and (Q2 , .912 ) is Polish then the Markov kernel criterion holds i.e., 

beE, F}=infsup IIQt-KPrII 
K teT 

where the infnnum is taken over all Markov kernels K: .!iI2 x Q 1 -+ [0,1] from 
(.aI' .!ill) to (.a2, .912) and, by definition, 

It is well known that the deficiency L1 is a pseudo distance on the set tS(T) 
of all experiments given a parameter set T. 

In general it is not possible to calculate the deficiency; some exceptions 
can be found in the papers by Luschgy (1987) and Torgersen (1972). Due 
to the Markov kernel criterion an upper bound for (j(E, F) is given by 
sup 11 Qt - K* Pr 11 where K* is any Markov kernel. The choice of K* is crucial. 
leT 

We consider the statistical experiments 

En = (1R", 18", {Ptnt: tER}) 

En,k =(Rk, 18k, {2'«(j; 1 (X l:n' ... , X k:n) I Pd""t): tER}) 

G=(RIN, JBN, {2'«S]/(l+a)+t)jeN): tER}} 

where (c5"),,eN is specified in Sect. 3 and S j is the j-th partial sum of independent, 
standard exponential random variables. 

The present paper is organized as follows. In Sect. 2 we establish an upper 
bound of the deficiency between En and En,k' In Sect. 3 the asymptotic global 
sufficiency of the ken) smallest order statistics is shown. Some parts of the present 
paper are proved in a similar way as results in Janssen and Reiss (1988). The 
crucial problem is to establish a bound for (j(En,k' Eft) (see Theorem 2.1). 

2. Upper bound for the deficiency between E. and En,k 

Let - 1 < a < 1 and let P, be defined as in Sect. 1. Denote by 

the conditional distribution of (X l:n' ... , Xn:n) given (XI:", ... , X k:,,) 

=(Xl' ... , Xk)='~ under the parameter t. It is well known (see Reiss 1989, Theo­
rem 1.8.1) that 
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where 8y denotes the Dirac measure at y and the 1';, ie{l, ... , n-k}, are Li.d. 
random variables with common distribution Pr,Xk (the restriction of Pr to the 
interval (Xk' 00». 

Denote by F the distribution function of Po. If F(Xk-t)< 1 then the distribu­
tion Pr,Xk has the Lebesgue density 

I' it 1 
Jt,Xk= I-F(xk-t) [Xk'CO)' 

To obtain an upper bound for LI(E", E",k) we choose a kernel of the type 

K~"(;~:n, ... ,XklnkIXl:'" ... , X k:,,), 

where " is an appropriate estimator of the unknown location parameter t. 
Janssen and Reiss (1988) considered the kernel K"r/ for their local treatment 
at O. In our situation a plausible choice of 1C is the minimum 

R(X 1:", ... , X k :,,)=X1 :n • 

Using the kernel 
KZ';k(n»(·1 ~) 

we will be able to verify the global sufficiency of the ken) smallest order statistics. 
Kernels from an initial parameter estimate have been successfully applied for 
the derivation of bounds for the deficiency in various cases, see e.g. Helgeland 
(1982), Mammen (1986), and Weiss (1979). The upper bound for .L1 (E", E",k) 
will depend on the following three auxiliary functions h, g, and l/I: 

a a 
h(y)=y2-(y-1)2, y?;l, 

co a a 
g(x)= f «y2 rt(xy)-(y-l)2 rt(x(y-l»)/rt(x)-h(y»2 dy, 

1 

co 

t/I(Z)= f h2(y)dy, z~1. 
% 

We remark that heL2 and t/I =0 for a=O. 

2.1. Theorem. For ke{l, ... , n}, teR, and 8>0 with k/n:;;;! F(8) < 1 the following 
inequality holds,' 

(2.1) 11..cl'«X1: .. , ... , X .. :,,)IPrn)-K~;k) ..cl'«X1: .. , ... , X k:,,) 1 Pr") 11 
:;;;!(1- F(8»-t(n-k)t 1 1,,,(I 2,n+ 1 3,II,J+ Rn,k 

where 

If.,.= f r(xd x:. + 1 d!l'(X 1: .. 1 PO)(x1), 

(0,0) 

nn= f g(x!ld..cl'(X 1:n IP8)(x 1), 

(0,0) 



264 F. Marohn 

and 
R",k =exp( -n(F(e) - k/n)2/3). 

Notice that the right-hand side of (2.1) is independent of the parameter t. 

Proof of Theorem 2.1. For convenience, we abbreviate the left-hand side of (2.1) 
by pen, k, t). First note that for Xl' XkE(t, e+t) we have F(Xk-Xl)~F(Xk-t) 
~F(B)< 1. Repeating the arguments in Janssen and Reiss (1988) we obtain 

.+1 .+1 

pen, k, t)~(1-F(e»-t(n-k)t J J J(XI -t,Xk- t) 
t 

where 

Since {.rn is a location family we obtain 

(0,6) (0,.) 

From Lemma 2.18 in Janssen and Reiss (1988) we know that 

(2.2) PS{Xk:,,>e} ~exp( -n(F(e)-k/n)2/3) 

for k/n~F(e). By substitution and the Minkowski inequality we obtain 

J(XI,Xk)=xt( r (ft(X1 Y)-f t (XdY-1»)2 dy)t 
\xk/XI 

By the Cauchy-Schwarz inequality and the definition of g and ljJ the proof 
is complete. 0 

It is obvious that if we utilize the kernel K~·k) instead, we cannot establish 
an upper bound for the deficiency which is independent of the parameter, so 
one has to restrict the parameter space to compact subsets in this case. 

Let us denote the right-hand side of (2.1) by D(n, k). Notice that D(n, k) 
is an upper bound for the deficiency between En and En,lt. 

4 
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3. Global sufficiency of the k(n) smallest order statistics 

Denote again by F the distribution function of Po. Recall that for the normalizing 
sequence on = F- I (1/n) occurring in En and En,k we have (see Bingham et al. 
1987, Theorem 1.5.12) on=n- I/(1+a)I(1/n) where I is a further slowly varying 
function (at zero). In the sequel we assume that 

(A1) r(x)=c exp(ii(x» for O<x<xo 

where c>O and ii satisfies the condition lii(x)I;2;LxY for some constant L>O 
and ,),>0. Under condition (A1) we may choose the normalizing sequence 

Note that Hm r(x)=c and '5n",on' From Corollary 5.5.5 in Reiss (1989) one 
xLO 

easily deduces 

~C - kt+- . ((
k)Y/(I +a) k) 

- n n 

In addition to (A 1), we require the following conditions: 

00 

(A2) r is absolutely continuous on (0, co) and J «r'(x»2/r(x»xa dx< co. 
o 

(A 3) lim J Xl +a d2('5,;- 1 X I:nl P8)< co. 
n .... 00 

Assumption (A3) is valid whenever the second moment of X 1 exists. This follows 
from limit theorems for moments of extremes (Polfeld 1970, p. 45; Resnick 1987, 
Chap. 2). 

We treat the case a=!=O. For a=O the convergence rates of Janssen and 
Reiss (1988) carry over. 

3.1. Theorem. Suppose that (A1)-(A3) hold. Then for every Ae(O, 1) there exists 
a constant C>O, such that for neN and k;2;An the following inequality holds: 

L1 (En' En,k);2; C«k(a-l)/(1 +a) + (k/n)y/(1 +a) kt + k/n)t 

+ nmax(a-I, - 2y)/(2(1 +a))). 

Theorem 3.1 implies that the ken) smallest order statistics X l:n, ... , Xk(n):n are 
asymptotically global sufficient in the sense that 

lim L1 (En' En,k(n»=O 
n .... oo 

whenever n -+ CO and k (n) -+ co . 
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Proof Throughout, C denotes a generic constant which does not depend on 
n and k~) .. n. Assumptions (AI) and (A3) imply 

Hm sup (n - k)1/2 I l,n < 00. 
n'" 00 

Under assumptions (AI) and (A2) we have g(x)~Cxmin(l-a,21) which was 
proved in Janssen and Reiss (1988). By the definition of ;)n we obtain 

Itn ~ Cnmax (a-1, - 2yJ/(1 +0). 

Moreover, 

We show 

(3.2) 

An application of the mean value theorem yields 

Let Je(t, 1). Since StlSk is equals in distribution U1:k - 1, where U1:k- 1 is the 
minimum of k-l i.i.d. (0, I)-uniform random variables (Ul : o:=I), we get for 
k?;2 

(3.3) 
2 

E"'(U1~1!!1+0»)~4(t_) f (u-1/(l+0)-lt-1d.cl'(U1:k_l))(U) 
a (0,<1) 

+ Ilhll~P{U1:k-1>J}. 

Applying the exponential bound for order statistics as given in Lemma 3.1.1 
of Reiss (1989) [compare with (2.2)J we see that 

P {U1:k - 1 >!5} ~exp( -(k-l)(!5-1j(k-l))2j3). 

Substituting U by uj(k-l) we obtain for the integral on the right-hand side 
of (3.3) 

f (U- 1/(1+a)-1)0-ld.cl'(Ul:k_d(u) 
(0,3) 

a-I (k-1)6 -I -I 

=(k -1)T+a f (uT+a _(k_l)t+a)a-1 d.cl'«k-l) U1:k- 1)(U) 
o 

a-I 1 (k-1)3 I-a 

~(k-l)T+a(I-!5T+a)O-l f U l +a d.cl'«k-l) Ul :k- l )(U), 

o 

4 
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where the last inequality follows from the fact that for UE(O, (k-l)<5) we have 

Since the uniform distribution has moments of arbitrary order, we deduce from 
Proposition 2.1 in Resnick (1987) 

lim sup J u(l-a)/(l +a) d!l'«k-1) U1:k - 1)(U) < co, 
k-a:> (O,(k-l),j) 

which completes the proof of (3.2). Since 

exp( -n(F(e)-k/n)2/3»~exp( - k(F(e) -AY/(3 A» 

the assertion of Theorem 3.1 follows from the inequalities (2.1) and (3.1). 0 

In Janssen (1990) it is shown that LI.(E", G) -+ 0 and LI.(E",k(n), G) -+ 0 if n -+ co 
and k(n) -+00, where LIs indicates the restriction to the compact parameter set 
[0, sJ. A different proof of this result is given in Janssen and Reiss (1988). In 
the next theorem, we establish the analogous result for the whole real line. 
Notice that the assumptions of the convergence result of Lindae (Le Cam 1986, 
Theorem 2, p. 92, see also Remark 2, p. 93) hold only for compact parameter 
spaces. 

3.2. Theorem (Strong convergence). Assume that (A 1HA3) are valid. Then 

(i) LI (E", G) -+ 0 as n -+ co. 

(ii) LI(En.k(n>' G)-+O as n-+co 

whenever k(n)~n and k(n)-+co as n-+co. 

Proof Theorem 3.1 states that A (En, En,k(n» -+ 0 as n -+ co, ken) -+ co. Now the 
proof of (i) is a repetition of the proof of Lemma 5.21 in Janssen and Reiss 
(1988), Assertion (ii) is immediate from A (En.k(n), G);£A(En,k(n), E,,) 
+A(En, G). 0 

The last result is concerned with the rate of convergence of LI (E", G). It 
. follows from straightforward calculations similar to those in the proof of Theo­

rem 5.14 in Janssen and Reiss (1988). 

3.3. Theorem. Under conditions (AIHA3) we have 

where 

1 

a-I 

P( )= 2(3+a) 
,)" a (a-I)')' 

4(1 +a)(1 +1') 

l' > 2(1 +a) 
lor ')' I-a 

2(1 +a) 
for 0<1'< . 

I-a 
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