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 Summary 
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Summary 

Platelets are produced by bone marrow megakaryocytes in a process involving actin 

dynamics. Actin-depolymerizing factor (ADF) and cofilin are actin-binding proteins 

that act as key regulators in actin turnover by promoting filament severing and 

depolymerization. The overall significance of ADF/cofilin function and actin turnover 

in platelet formation is presently unclear. In the first part of this thesis, platelet 

formation and function were studied in mice constitutively lacking ADF and/or mice 

with a conditional deficiency (Cre/loxP) in n-cofilin. To delete cofilin exclusively in 

megakaryocytes and platelets, cofilinfl/fl mice were crossed with PF4 (platelet factor 

4)-Cre mice. While a single-deficiency in ADF or n-cofilin resulted in no or only a 

minor platelet formation defect, respectively, a double-deficiency in ADF and n-cofilin 

led to an almost complete loss of platelets. Bone marrow megakaryocytes of ADF/n-

cofilin-deficient mice showed defective platelet zone formation. Interestingly, in vitro 

and ex vivo megakaryocyte differentiation revealed reduced proplatelet formation and 

absence of platelet-forming swellings. These data establish that ADF and n-cofilin 

have redundant but essential roles in the terminal step of platelet formation in vitro 

and in vivo. 

In the second part of the thesis, mechanisms underlying cellular regulation of the 

major platelet collagen receptor, glycoprotein VI (GPVI), were studied. GPVI 

mediates platelet activation on exposed subendothelial collagens at sites of vascular 

injury, and thereby contributes to normal hemostasis but also to occlusion of 

diseased vessels in the setting of myocardial infarction or stroke. Thus, GPVI is an 

attractive target for anti-thrombotic therapy, particularly because previous studies 

have shown that anti-GPVI antibodies induce irreversible down-regulation of the 

receptor in circulating platelets by internalization and ectodomain shedding. 

Metalloproteinases of the ADAM (a disintegrin and metalloproteinase domain) family 

are suspected to mediate this ectodomain shedding, but in vivo evidence for this is 

lacking. To study the mechanism of GPVI regulation in vivo, two mouse lines, Gp6 

knock-out and Adam10fl/fl, PF4-Cre mice, were generated and in addition low TACE 

(TNF converting enzyme) mice were analyzed. It was shown that GPVI can be 

cleaved in vitro by ADAM10 or TACE depending on the shedding-inducing signaling 

pathway. Moreover, GPVI was down-regulated in vivo upon antibody injection in 

ADAM10-deficient and low TACE mice suggesting that either both or an additional 

metalloproteinase is involved in GPVI regulation in vivo.   
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Zusammenfassung 

Blutplättchen werden von Megakaryozyten im Knochenmark in einem Prozess 

produziert, an dem Aktin beteiligt ist. Aktin-Depolymerisierungsfaktor (ADF) und 

Cofilin sind Aktin-bindende Proteine, die als entscheidende Regulatoren im 

Aktinumsatz agieren, indem sie das Schneiden und Depolymerisieren von 

Filamenten unterstützen. Die Bedeutung von ADF/Cofilin und des Aktinumsatzes in 

der Bildung von Blutplättchen ist gegenwärtig nicht bekannt. In der vorliegenden 

Arbeit wurden Mäuse untersucht, die eine konstitutive ADF-Defizienz und/oder die 

eine konditionale n-Cofilin Defizienz (Cre/loxP) aufweisen. Um Cofilin nur in 

Megakaryozyten und Blutplättchen auszuschalten, wurden Cofilinfl/fl Mäuse mit PF4-

Cre Mäusen verpaart. ADF- oder n-Cofilin-defiziente Mäuse hatten keinen oder nur 

einen geringen Phänotyp in Blutplättchen. Eine Defizienz von ADF und n-Cofilin 

führte hingegen zu einem beinahe kompletten Verlust der Blutplättchen, was mit 

Defekten in der Bildung von Plättchenzonen in Knochenmark-Megakaryozyten 

einherging. Weitere Untersuchungen an in vitro und ex vivo kultivierten 

Megakaryozyten zeigten eine Reduzierung der Bildung von Proplättchen und das 

Fehlen der typischen Verdickungen der Proplättchen. Diese Daten zeigen 

redundante aber essentielle Funktionen von ADF und n-Cofilin im terminalen Schritt 

der Plättchenbildung in vitro und in vivo, und belegen erstmals eine wichtige Rolle 

des Aktinumsatzes in diesem Prozess. 

Im zweiten Teil dieser Dissertation wurden die Mechanismen untersucht, die für die 

zelluläre Regulierung des Hauptkollagenrezeptors auf Blutplättchen, Glykoprotein VI 

(GPVI), verantwortlich sind. Nach einer Gefäßwandverletzung wird subendotheliales 

Kollagen freigelegt, wodurch GPVI die Aktivierung von Blutplättchen vermittelt, und 

damit zur Blutstillung (Hämostase), aber auch zum Verschluss eines verletzten 

Gefäßes beitragen kann, was letztendlich zu einem Myokardinfarkt oder einem 

Schlaganfall führen kann. Deshalb ist GPVI ein attraktives Zielprotein für eine anti-

thrombotische Therapie, insbesondere weil frühere Studien gezeigt haben, dass anti-

GPVI Antikörper eine irreversible Herunterregulierung des Rezeptors auf 

zirkulierenden Blutplättchen mittels Internalisierung und Abspaltung induzieren. Es 

wird vermutet, dass Metalloproteinasen der ADAM (a disintegrin and 

metalloproteinase domain) - Familie das Abspalten vermitteln, jedoch fehlt in vivo der 

Beweis dafür. Um die Mechanismen des Abspaltungsprozesses des GPVI Rezeptors 

in vivo besser verstehen zu können, wurden zwei Mauslinien, GPVI- und konditionale 
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ADAM10-defiziente Mäuse, generiert und zusätzlich sogenannte „low TACE (TNF 

converting enzyme)“ Mäuse analysiert. Es konnte gezeigt werden, dass GPVI in vitro 

von ADAM10 oder TACE in Abhängigkeit der Signalwege, die zum Abspalten des 

Rezeptors führen, geschnitten werden kann. Darüberhinaus wurde GPVI in vivo nach 

Antikörperverabreichung in ADAM10-defizienten Mäusen und „low TACE“ Mäusen 

herunterreguliert, was vermuten lässt, dass entweder beide Metalloproteinasen an 

diesem Prozess beteiligt sind oder noch eine zusätzliche Metalloproteinase für die 

GPVI Regulation in vivo verantwortlich ist. 
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A. Introduction 

Platelets are an important component of the blood system because they play a 

pivotal role in two processes: primary hemostasis and thrombosis. When the 

endothelium of a blood vessel is disrupted, platelets are able to interact with the 

exposed subendothelium, start reactions to seal smaller lesions and thereby prevent 

further blood loss. On the other hand, under pathological conditions such as a 

rupture of an atherosclerotic plaque in a diseased vessel, platelets are able to 

essentially contribute to uncontrolled thrombus formation that leads to complete 

occlusion of the vessel and consequently results in stroke or myocardial infarction. 

These two events are the main causes of death in industrialized countries1. 

 

A.1. Platelet morphology and structure 

Platelets display a discoid shape and are the smallest cells of the blood system, with 

a diameter of 1-2 µm in mice and 3-4 µm in humans. The number of platelets in 

human blood is about 150,000-300,000/µL, whereas the platelet count in mice is 

approximately 1,000,000/µL. Platelets have only a short lifespan of about five and ten 

days in mice and humans, respectively, before they are removed from the circulation 

in the spleen. Platelets are anucleated cell fragments and thus are not able to 

synthesize proteins de novo. But they can rapidly change their discoid shape to a 

spherical shape with pseudopodia formation upon activation with different ligands. A 

non-activated platelet contains several components in the cytoplasm like an opened 

and closed cannalicular system, mitochondria, peroxisomes, glycogen stores, 

lysosomal granules, dense granules and -granules. -granules contain adhesion 

proteins (fibrinogen, vWF), growth factors (PDGF) or coagulation factors (FV, FXIII), 

whereas dense granules contain mostly small anorganic molecules including ADP, 

serotonin and Ca2+. 

 

A.2. Thrombus formation 

After injury of the vessel wall, the response of platelets is a primary event in 

thrombus formation2. The formation of a thrombus can be divided into three distinct 

processes, (I) adhesion, (II) activation and (III) aggregation of platelets (Fig. 1). The 

platelet membrane receptors GPIb-V-IX, GPVI, GPIa/IIa and GPIIb/IIIa are centrally 

involved in these processes.  
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Fig. 1: Model of thrombus formation (Varga-Szabo et al.)3. 
At sites of vascular injury, the extracellular matrix becomes exposed and allows platelet adhesion and 
aggregation. Under high shear flow conditions, the initial contact is mediated by the immobilized von-
Willebrand factor on collagen and GPIb. Then, GPVI-collagen interactions lead to platelet activation 
with a shift of integrins to a higher-affinity state and release of second-wave mediators (ADP, 
thromboxane A2). In parallel, tissue factor triggers thrombin generation that contributes to cellular 
activation. Finally, integrins in a higher-affinity state mediate firm adhesion of platelets.  

 

Following rupture of the endothelial barrier, the subendothelium containing adhesive 

molecules like laminin, collagen and fibronectin is exposed to the blood stream. 

Collagen, one of the major subendothelial matrix components, which is also found in 

atherosclerotic plaques of diseased vessels, stimulates thrombus formation via 

platelet activation4. In the beginning of the process, von Willebrand factor (vWF) 

circulating in the plasma is immobilized on exposed collagen. Under high shear 

conditions as it is found in arterioles and small arteries the reversible interactions 

between the platelet adhesion receptor complex GPIb-V-IX and the immobilized vWF 

cause the deceleration and the rolling of the flowing platelets along the vessel wall5;6, 

a process termed “tethering”. The rolling of the platelets enables them to stay in close 

contact with the exposed extracellular matrix components. Finally, the platelet 

receptor GPVI binds directly to exposed collagen7;8 and platelets become activated 

and release secondary mediators like ADP and thromboxane A2 which in turn 

mediate thrombus growth by activating additional platelets. In parallel, generation of 

thrombin contributes to cellular activation. Additionally, a shift of integrins from a low-

affinity to a high-affinity state takes place9;10. The conformational change of the 

integrins 21 (GPIa/IIa) and IIb3 (GPIIb/IIIa) mediated by activation of platelets 

through the collagen receptor GPVI induces firm adhesion of platelets. Activated 
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GPIa/IIa and GPIIb/IIIa bind to collagen and vWF, respectively. Following this, 

platelet-platelet interaction is mediated by binding of activated IIb3 (GPIIb/IIIa) to 

plasma fibrinogen. 

 

A.3. Megakaryocytes and platelet production 

Platelets are cell fragments originating from megakaryocytes (MKs) in the bone 

marrow (BM) (Fig. 2). MKs evolve from hematopoietic stem cells and develop to 

become the largest cells of the BM (up to 100 µm in diameter). Within the bone 

marrow, megakaryocyte maturation is regulated by a variety of cytokines including IL-

3, IL-6, IL-11 and mainly thrombopoietin (TPO)11 that binds to its receptor (c-Mpl) and 

plays a primary role in this process. Endomitosis is a TPO-driven unique process in 

MKs, that is characterized by DNA replication without cell division, resulting in a 

polyploid and multilobed nucleus with a DNA content ranging from 4N to 128N12. 

Thus, endomitosis of MKs is an abortive mitosis that fails to complete especially in 

the late stage phases of the process by cleavage furrow regression13-15. For platelet 

biogenesis, maturation of the MK cytoplasm is a prerequisite. Platelet secretory 

granules are assembled in the MK body and the production of the demarcation 

membrane system (DMS) occurs that subdivides the cytoplasm into fields, 

associates with the actin cytoskeleton and serves as a membrane reservoir for 

proplatelet elaboration16. It has been reported that extension of cytoplasmic 

protrusions (proplatelets) is mechanically driven by tubulin sliding and assembly, 

while proplatelet shaft bifurcation is based on actin-dependent processes. This is 

supported by the observation that actin filaments are highly abundant in the swellings 

of the proplatelet shaft17. According to the current model, the tip of these protrusions 

extends into the lumen of a vessel and seems to be sheared by blood shear forces. 

However, the released proplatelets in the circulation are larger in size than normal 

platelets since beaded proplatelets and barbell-shaped platelet pairs were observed 

in the blood leading to speculations that finalization of platelets may occur in the 

circulation18. Disorders in the process of platelet formation can influence platelet 

count and size. Patients with congenital macrothrombocytopenia have been 

described with defects in the GPIb/V/IX complex, in transcription factors e.g. GATA-1 

or in the Myh9 gene encoding the nonmuscle myosin heavy chain-A19;20. However, in 

many cases the reason for congenital macrothrombocytopenia is unknown. In 
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addition, many aspects of the complex process of platelet biogenesis are 

controversial and currently unclear. 

   

 
 
 
Fig. 2: Model of platelet formation (Battinelli et al.)16. 
Platelets are originated from bone marrow megakaryocytes (MKs). MKs undergo proplatelet formation, 
initiated by development of pseudopods and followed by proplatelet elongation and branching. Tips of 
these protrusions extend into the lumen of a vessel and are sheared by blood shear forces resulting in 
released platelets. 
 

A.4. Actin-depolymerizing factor (ADF) and cofilin 

A.4.1. Structure, location and expression of ADF and cofilin 

The first members of the ADF/cofilin (AC) family were identified in the early 1980s. 

Whereas the first observation for the actin-depolymerizing factor (ADF) was that it 

rapidly reduces the viscosity of F-actin in solution, cofilin was primarily found to bind 

to F-actin, hence the name cofilamentous structures with actin. ADF and cofilin are 

actin-binding proteins of a molecular mass of about 15-21 kD (113-168 amino acids) 

and share a high sequence identity of about 70%. ADF and cofilin are composed of a 

single fold ADF homology domain which is similarly found in other actin-binding 

proteins like gelsolin. The most highly conserved regions between the species is the 

actin binding site and a phosphorylation site (Ser 3)21;22. In mammals, three isoforms 

of the ADF/cofilin family on different chromosomes exist that have arisen from two 
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sequential gene duplications, namely Adf (actin-depolymerizing factor/destrin), 

cofilin-1 (n-cofilin) and cofilin-2 (m-cofilin). ADF and non-muscle cofilin (n-cofilin) are 

expressed in most tissues, but only n-cofilin shows high expression levels during 

embryonic development. Muscle cofilin (m-cofilin) is found only in muscle cells23-25.  

 

A.4.2. Cellular function of ADF and n-cofilin 

The cytoskeleton of a cell is composed of several proteins among which actin is of 

particular importance. Actin monomers (G-actin) can assemble to each other to form 

a polar filamentous actin structure (F-actin). Due to this property actin is not only an 

important structural protein but its highly dynamic assembly and disassembly is also 

essential for a variety of cellular processes including cytokinesis, cell polarization and 

morphological changes.  

The rate of actin turnover in vivo is significantly higher than in vitro26-28 which is based 

on the presence of actin-binding proteins that are known to accelerate actin 

remodeling29Among them, members of the ADF/cofilin family play a pivotal role in 

spatially and temporally regulating actin turnover21;30-32. Upon dephosphorylation, 

ADF and n-cofilin preferentially bind in a cooperative manner to ADP-bound F-

actin22;29;33;34. Older filaments are marked for turnover by containing more ADP-actin 

monomers. Upon binding to actin, ADF and n-cofilin have the unique property to 

induce a twist in the actin filament (5° rotation per subunit) and with this, to weaken 

the lateral binding. Following this, actin turnover is enhanced by dissociation of actin 

monomers from the minus (pointed) end and by filament severing33-37. These two 

processes (Fig. 3) enhance actin turnover since other proteins transfer dissociated 

monomers to the plus (barbed ends) or severed filaments provide new plus ends for 

addition of actin monomers to the growing filament.  
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Fig. 3: Model of cellular function of ADF and n-cofilin 
(A) After dephosphorylation ADF/n-cofilin bind to the ADP-bound actin filament at the minus end. (B) 
Dissociation of an actin monomer mediated by ADF/n-cofilin. Transfer of an actin monomer to the 
barbed end via other proteins. (C) The severing activity of ADF and n-cofilin leads to an actin filament 
strand break followed by an increase of barbed ends. 
 

A.4.3. Regulation of ADF/n-cofilin activity 

The activity of ADF/n-cofilin is regulated by several mechanisms, including the 

isoform expression pattern, the compartmentalization, competitive binding with other 

proteins like tropomyosin, pH value and phosphatidylinositol (4,5) biphosphate (PIP2) 

binding21. However, the main and best studied regulatory mechanism is (de-) 

phosphorylation of ADF/n-cofilin. ADF and n-cofilin are tightly regulated via (de-) 

phosphorylation at the highly conserved amino acid serine 338. LIM kinase (LIMK) 

and testicular protein kinase (TESK) phosphorylate and inactivate ADF/n-cofilin 

activity, whereas dephosphorylation and consequently activation of ADF/n-cofilin is 

mediated by phosphatases such as PP1, PP2A, slingshot and chronophin39-43. 

Activation of phosphorylated ADF/n-cofilin is a rapid process in response to different 

stimuli in many cell types35. In platelets, approximately 90% of n-cofilin at position 
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serine 3 is phosphorylated in resting state, suggesting a slow actin turnover. After 

stimulation with thrombin, maximal n-cofilin dephosphorylation (75%) occurs within 1-

2 minutes44. 

 

A.4.4. In vivo functions of ADF/n-cofilin 

Studies on different model organisms have revealed an essential role for ADF/cofilin 

during development. Deficiency of the single isoform of ADF/cofilin in yeast or 

drosophila resulted in lethality45-47. The same was found in C. elegans when both 

isoforms UNC-60A and UNC-60B were affected48;49. In mice, n-cofilin deficiency led 

to defects in neural crest cell migration, neural tube closure and embryonic lethality50. 

Furthermore, conditional gene targeting in mice revealed an association of n-cofilin 

with cell cycle control in the cerebral cortex and disorders in neuronal migration51. In 

contrast, mice constitutively lacking ADF are viable and display no obvious defect in 

brain development51. However, in the cornea, where ADF (destrin) is the 

predominant isoform, corneal disease-1 (corn1) mice with a spontaneous mutation in 

the Adf gene show an increased proliferation of epithelial cells and consequently 

thickening of the cornea52.  

 

A.5. Glycoprotein VI (GPVI) 

A.5.1. Structure, location and expression of the GP6 gene 

The mouse and the human GP6 gene consists of eight exons which span over 23 

kbp. Exon 1 and 2 encode for the signal peptide, whereas exon 3 and 4 encode for 

one immunoglobulin domain each. The mucin-like sequence is encoded by exons 5-

7. The transmembrane and cytoplasmic domains of GPVI are represented by exon 

853. Human and mouse GP6 have been mapped on chromosome 19 and 7, 

respectively53-55.  

Furthermore, splice variants of GP6 have been described. Compared to GPVI-1, 

GPVI-2 lacks 18 amino acids between the immunoglobulin domains and the 

transmembrane domain without a frameshift. The splice variant GPVI-3 contains an 

insertion of four amino acids encoded in exon 7. In consequence of the frameshift, 

this splice variant is elongated of 361 amino acids with no apparent transmembrane 

domain53 (Fig. 4). 
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Fig. 4: Genomic structure of the human GP6 gene with alternative splice variants53. 
The eight exons of GP6 are shown as boxes. The numbers above the boxes are nucleotides. The 
splice variants are labeled. 
 
 
It was demonstrated that GPVI is expressed only in megakaryocytes and platelets. 

Furthermore, it was shown that the expression of GPVI increased together with the 

expression of the FcR-chain in the terminal phase of megakaryocyte differentiation. 

That is why GPVI can function as a marker of late-stage megakaryocyte 

differentiation56. 

 

A.5.2. Protein structure of GPVI 

SDS gel electrophoresis showed that the apparent molecular weight of GPVI is 

approximately 62 kD. The first cloning study revealed that GPVI is a member of the 

immunoglobulin (Ig) receptor superfamily and closely related to the natural killer cell 

receptor and to FcR54. Human GPVI is composed of 339 amino acids, whereas 

mouse GPVI is composed of 319 amino acids. Interestingly, the cytoplasmic part of 

GPVI is not closely related to other receptors indicating an unique function of this 

receptor in different signaling processes57.  

The extracellular part of GPVI consists of two immunoglobulin (Ig)-like domains that 

protrude from the platelet surface (Fig. 5). These Ig-like domains contain a collagen 

binding site and two N-linked glycosylation sites (N92 and S94 in human and N93 

and N244 in mouse GPVI). Closer to the platelet surface, there is a mucin-like stalk 

with a serine/threonine-rich region bearing many O-glycosylation sites8;57.  
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Fig. 5: Structure of GPVI associated with FcR-chain; modified from Nieswandt and Watson8. 

 

The transmembrane region is crucial for the stabilization of GPVI into the lipid 

membrane and for the association of GPVI to the FcR-chain. GPVI binds to the 

FcR-chain non-covalently through Arg2528;57;58. The association is mediated by 

forming a salt bridge between the positively-charged arginine and a negatively-

charged aspartic acid in the transmembrane region of the FcR-chain. The FcR-

chain represents the signaling subunit of the receptor complex59;60. GPVI expression 

on the platelet surface is strictly dependent on the expression of the FcR-chain, as 

revealed by the analysis of FcR-chain-deficient mouse platelets which do not 

express GPVI61.  

The cytoplasmic tail of human GPVI is divided into four distinct but overlapping 

regions, namely (1) juxtamembrane-, (2) basic-, (3) proline-rich and (4) C-terminal- 

region (Fig. 6). The full length cytoplasmic tail in human consists of 51 amino acids. 

Interestingly, the cytoplasmic tail of mouse GPVI contains only 27 amino acids 

lacking the C-terminal region (Fig. 6)62. 

 

 

Fig. 6: Cytoplasmic tail of human and mouse GPVI57. 
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The basic region is able to associate to calmodulin63. Disruption of calmodulin 

binding causes down-regulation of GPVI from the platelet surface by a yet undefined 

platelet-derived metalloproteinase64.  

The proline-rich sequence constitutively binds Src kinases like Fyn and Lyn65. The 

basic and juxtamembrane regions are important for the association of the FcR-chain 

to GPVI. This was shown by sequential deletion of the intracellular part of GPVI 

which leads to the dissociation of the FcR-chain from GPVI66. 

 

A.5.3. Extracellular ligands of GPVI 

Collagen is the most important physiological ligand for GPVI. More than 20 isoforms 

of collagen exist in humans. The essential isoforms for platelet interaction are type I 

and III collagen. Monomeric collagens are cross-linked to form a fibrillar structure in 

the extracellular matrix. Collagen consists of many glycine (G), proline (P) and 

hydroxyproline (O) amino acid repeats (GPO). The proportion of GPO repeats in 

collagen I and III is about 10%. These amino acid repeats are essential for GPVI 

binding8. 

The synthetically produced collagen-related peptide (CRP) consists of many GPO 

repeats. CRP, with cross-linked N- and C-terminal cysteine or lysine residues to form 

a fibrillar structure, mimicks the physiological ligand collagen and is a powerful tool 

for GPVI analysis8;66. 

Furthermore, several snake venom toxins have been identified that specifically bind 

to GPVI and have significantly contributed to our understanding of platelet-collagen 

interaction. One example is convulxin, a C-type lectin from the venom of the 

rattlesnake Crotalus durissus terrificus, which strongly activates platelets through 

GPVI67;68. A few other C-type lectins have also been described like trimucytin69, 

alboaggregin A70;71and alboluxin72, all of which bind to GPVI. 

The rat monoclonal antibody JAQ1 is a useful tool to detect mouse GPVI and to 

study the biological function of this receptor in vitro and in vivo. It was known that 

JAQ1 binds the collagen binding site on the Ig–like domain of GPVI and blocks 

aggregation induced by low concentrations of collagen61. However, when the 

concentration of collagen is increased, the inhibitory effect is overcome indicating the 

existence of a second activatory epitope within collagen73. JAQ1 alone is not able to 

induce platelet aggregation in vitro like other ligands. However, after cross-linking of 

JAQ1 with anti-rat IgG antibodies, aggregation takes place61.  



  A. Introduction 
   

  
  11  

A.5.4. Intracellular ligands and signal transduction of GPVI 

The exposure of platelets to collagen is believed to result in clustering of GPVI and 

these clusters mediate signals via the non-covalently associated FcR-chain. Ligand 

binding of GPVI induces tyrosine phosphorylation of the immunoreceptor tyrosine-

based activation motif (ITAM) of the FcR-chain (Fig. 7)60;61;74;75 via Fyn and Lyn Src 

kinases76;77. The phosphorylated ITAM serves as a binding site for the SH2-domains 

of Syk family kinases78;79 leading to phosphorylation of Syk, which then serves as a 

binding partner for many adaptor proteins.  

LAT (linker for activation of T-cell) is an adaptor protein which binds to the 

phosphorylated Syk kinases80. LAT contains many putative and mapped 

phosphorylation sites to recruit other proteins to the GPVI clusters, like 

phospholipase C2 (PLC2) and SLP-7681. PLC2 becomes activated upon binding 

to LAT. After activation, PLC2 liberates diacylglycerol (DAG) and inositol (1,4,5)-

trisphosphate that are responsible for protein kinase C activation and Ca2+ 

mobilization, respectively (Fig. 7). Agonist-induced elevation of cytosolic Ca2+ is 

essential for many processes in platelets. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: GPVI signaling (Moroi, M. et al.)57. 
GPVI is non-covalently associated with the FcR-chain. Crosslinking of GPVI leads to phosphorylation 
of the immunoreceptor tyrosine-based activation motif (ITAM) of the FcR-chain by the Src kinases 
Fyn and Lyn. Binding and activation of Syk results in an activation cascade of adaptor and effector 
molecules including PLC2. 
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A.5.5. GPVI as an anti-thrombotic target 

In vivo treatment of mice with the monoclonal anti-GPVI antibody JAQ1 induces 

down-regulation of the receptor GPVI in circulating platelets resulting in a prolonged 

"GPVI knock-out"–like phenotype82 and profound anti-thrombotic protection in 

different thrombosis models83;84. Further, it was shown that both anti-mouse GPVI 

antibodies, JAQ2 and JAQ3, which bind to different epitopes, also induce down-

regulation of GPVI. Thus, antibody-induced down-regulation of GPVI is independent 

of the binding site of the antibody to the epitope85.  

Antibody-induced loss of GPVI has also been reported in autoimmune patients who 

had developed anti-GPVI antibodies resulting also in down-regulation of the 

receptor86;87. Moreover, it has been demonstrated that GPVI can be cleared from 

human platelets by anti-GPVI antibodies in vivo in a nonobese diabetic severe 

combined immunodeficient (NOD/SCID) mouse model88, confirming that GPVI is a 

powerful target for anti-thrombotic therapy. These data were confirmed by generated 

Gp6 knock-out mice and patients with GPVI-related defects as described in detail in 

section A.5.7. 

 

A.5.6. Cleavage and shedding processes of GPVI 

Bergmeier et al. demonstrated in mice that GPVI is not down-regulated by stimulating 

the GPVI/FcR-chain or G protein-coupled receptor signaling pathways with CRP or 

thrombin, respectively. However, the authors showed that after activation of 

metalloproteinases using carbonyl cyanide m-chlorophenylhydrazone (CCCP) the 

GPVI/FcR-chain pathway is impaired in mouse and human platelets. This is caused 

by shedding of GPVI from the platelet surface by an unknown metalloproteinase-

dependent cleavage mechanism89. 

As mentioned above, calmodulin binds the basic region of GPVI63. Metalloproteinase-

mediated GPVI shedding was observed in vitro using the calmodulin inhibitor W7 

which blocks the association between calmodulin and GPVI64. In this case, 

calmodulin indirectly regulates shedding of GPVI. 

 

A.5.7. Phenotypic consequences of GP6 mutations in mouse and human 

As mentioned before, injection of JAQ1 antibody into wild-type mice causes a 

transient GPVI-deficiency accompanied by thrombocytopenia and a mild bleeding 
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defect82. Furthermore, FcR-chain knock-out mice do not express GPVI on the 

platelet surface61.  

Recently, a few reports described the function of GPVI using Gp6 knock-out mice. 

Deletion of the Gp6 gene neither has an impact on mice viability or development nor 

on fertility. Interestingly, the protein level of the FcR-chain is normal in these mice. 

Consistent with previous data, Gp6 knock-out platelets show defective collagen- and 

convulxin-induced aggregation. Additionally, knock-out platelets lack spreading and 

thrombus formation on a collagen matrix in vitro. Contrary to JAQ1 antibody treated 

mice, the authors reported that an alteration of the tail bleeding time is not detectable 

and the primary adhesion process is also normal on the collagen-coated surface90. 

Another Gp6 knock-out mouse model was published by Lockyer et al. where a 

different knock-out strategy was used to delete the Gp6 gene. The knock-out 

phenotype was different suggesting an important role of GPVI in the process of 

primary adhesion of platelets to collagen91. 

To date, only few human individuals have been identified with defects associated 

with the receptor GPVI. In 1987, Sugiyama et al. reported a patient suffering from 

autoimmune thrombocytopenia caused by an autoantibody in her serum that was 

directed against a 60 kD platelet surface protein. This antigen was, however, absent 

in platelets of the patient. Furthermore, the patient´s platelets displayed defective 

aggregation in response to collagen92. These were the first indications that the 60 kD 

protein is a collagen receptor. In 1989, Moroi et al. described a patient deficient in 

GPVI. This individual also showed defective platelet aggregation in response to 

collagen but the response to other stimuli was normal. These results suggested that 

the identified 60 kD protein and GPVI are identical87.  

Over the last 20 years, a few patients have been reported with GPVI-related defects 

that can be categorized as follows: (1) an acquired deficiency, resulting from (a) anti-

GPVI autoantibodies or (b) other causes; or (2) a congenital deficiency, where (c) 

GPVI is not expressed or (d) is expressed in a dysfunctional form93. These human 

individuals show primarily a mild bleeding phenotype and their platelets are 

unresponsive to collagen.   
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A.6. The metalloproteinases ADAM10 and ADAM17  

A.6.1. ADAMs family 

The ADAMs (a disintegrin and metalloproteinase domain) family is a group of 29 type 

I integral membrane-anchored proteins94. These multi-domain proteins are 

approximately 750 amino acids long (Fig. 8). The members contain a prodomain that 

is responsible for correct folding and inhibits the catalytic activity, and is followed by a 

metalloprotease domain. The disintegrin domain is supposed to be important for 

adhesion activity. The family name is derived from the existence of the last two 

mentioned domains. The cysteine-rich domain is also involved in adhesion, whereas 

the EGF-like domain is used for membrane fusion. The transmembrane domain 

anchors the protein in the membrane and the cytoplasmic part transfers signaling 

events95. 

 

 

 

Fig. 8: Modified scheme of the general domain structure of ADAM proteins95. 
N: N-terminus, S: signal peptide, Pro: prodomain, MP: metalloprotease, Dis: disintegrin, Cys: cysteine-
rich, E: EGF-like, T: transmembrane, IC: (inner) cytoplasmic, C: C-terminus 

 

ADAMs have been implicated in highly diverse processes, including fertilization, 

myogenesis, inflammatory responses, neurogenesis and shedding of various 

proteins. Fourteen ADAM members are expressed in somatic tissues, whereas the 

others are expressed specifically or predominantly in testis. Only 17 from 29 ADAM 

proteins have a protease active site, including ADAM10 and ADAM1795. Both, 

ADAM10 and ADAM17, are the best characterized metalloproteinases within the 

ADAMs family. Platelets express ADAM10 and ADAM17, but their role in platelet 

function is still poorly understood. 

 

A.6.2. ADAM10  

The Adam10 gene was assigned to human chromosome 15 and to mouse 

chromosome 9, respectively96;97. The genomic region comprises 160 kbp with in total 

16 exons (Fig. 9)98. 
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Fig. 9: Modified scheme of the mouse Adam10 gene with exon and intron sizes98. 
The mouse Adam10 gene consists of 16 exons. The different domains of ADAM10 are indicated.  
 

Mammalian ADAM10 is closely related to its homologous proteins Kuzbanian in 

Drosophila and SUP-17 in C. elegans, respectively. In these model organisms it was 

shown that ADAM10 controls proteolytic processing of Notch and that Notch is 

important for cell fate decision during embryonic development99;100. Fibroblast cell 

lines from ADAM10-deficient mice also revealed that ADAM10 is essential for the 

Notch signaling pathway and that this phenotype resembles the Notch1 receptor 

knock-out phenotype. However, Adam10-/- mice die during embryogenesis at day 9.5 

due to multiple defects mainly in the cardiovascular system, the central nervous 

system and the somites. Embryos display only a size of two-third of control embryos 

at this developmental stage101. Taken together, this demonstrates that ADAM10 and 

the Notch signaling pathway are crucial for embryonic development and ablation of 

one of the proteins results in an early embryonic abort. Recently, Tian and 

colleagues published the first mouse strain with a floxed Adam10 gene. A mouse line 

carrying the Lck-Cre transgene was used to delete Adam10 conditionally in T-cells. 

They showed that ADAM10 is essential in Notch1 activation during thymocyte 

development and confirmed with these observations previous results102.  
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A.6.3. ADAM17 

The Adam17 gene was mapped to mouse chromosome 12 and human chromosome 

2, respectively. The Adam17 gene is approximately 50 kbp long and contains 19 

exons (Fig. 10)103. 

 

 

 

Fig. 10: Table of the mouse Adam17 gene with exon-intron junctions (upper panel) and scheme of the 
genomic structure of the mouse Adam17; taken from Cerretti et al.103 
The mouse Adam17 gene consists of 19 exons. The different domains of ADAM17 are indicated. SS: 
signal sequence, Pro: prodomain, Catalytic: catalytic domain with the active site, Zn: zinc-binding 
motif, Di: disintegrin, EGF: EGF-like, TM: transmembrane   
 

ADAM17 was identified as the major enzyme cleaving TNF (tumor necrosis factor)  

and hence was termed TNF converting enzyme (TACE). T cells showed a severe 

defect of TNFcleavage when the Zn2+ binding domain of TACE (TACEΔZn/ΔZn) was 

disrupted by replacing the zinc-binding domain with a PGK-neo cassette104. 

TACEΔZn/ΔZn mice die in the late stage of development between embryonic day 17.5 

and the first day of birth. The lethality was surprising as mice that lack either TNF or 

the TNF receptors p55 TNFR and p75 TNFR are viable and appear to develop 

normally105-107. As perinatal lethality of TACEΔZn/ΔZn mice has prevented analysis of 
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TACE function for many cell types in the adult animal, conditional TACE knock-out 

mice (loxP) were recently generated. Mx1-Cre mice for temporal deletion and LysM-

Cre mice for deletion in myeloid cells were used to analyze endotoxin shock. It was 

demonstrated that mice deficient in TACE are protected from endotoxin shock due to 

lower TNF levels108. Furthermore, mutant mice were generated with deletion of TACE 

using the Cre recombinase driven by a Sox9 promoter. These studies revealed that 

the mutant mice have a reduced life span to approximately 9-10 months with infertility 

and defects in the hematopoietic system, skeleton and skin108.   

 

A.6.4. ADAM10 and ADAM17 substrates 

The ADAM proteins have emerged as the major proteinases involved in ectodomain 

shedding. The current understanding of ADAMs-mediated shedding is mainly based 

on the two members ADAM10 and ADAM17. Many studies have shown that 

ectodomain shedding regulates receptor function. 2-4% of receptor proteins are 

believed to be regulated by shedding109. In the last decade, many reviews contained 

comprehensive lists of substrates cleaved by ADAM10 and ADAM17. Whereas 

ADAM10 is the sheddase for example of EGF, Delta, CXCL-16 and others, TACE 

cleaves the proteins TNF receptor I and II, ErbB4, L-selectin and other proteins110-115. 

In some cases, however, a substrate is cleaved by more than one sheddase such as 

CX3CL-1 and the IL-6 receptor. These proteins are processed by both 

metalloproteinases, ADAM10 and ADAM17116-118. 

 

A.6.5. Shedding of platelet receptors by ADAM10 and ADAM17 

To date, it has only been shown for a few platelet receptors that their surface 

expression is regulated by proteolytic cleavage. This key regulatory mechanism was 

demonstrated for the following adhesion receptors: P-selectin, CD40 ligand, GPIb 

and GPV119-122. GPIbis constitutively shed by ADAM17 (TACE) as soluble 

GPIb(glycocalicin) levels were decreased in plasma of TACEΔZn/ΔZn mice and 

increased levels GPIbwere detected on circulating platelets. It was demonstrated 

that TACE plays also a role in GPV shedding, however, only when shedding was 

induced122. A recent publication implicated a role of ADAM10, besides ADAM17, for 

GPV shedding123. However, not only adhesion receptors are subjected to ectodomain 

shedding, but also the platelet-activating receptor GPVI was identified to be regulated 

by proteolytic cleavage. The authors were able to show for the first time using a 
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mitochondrial injury model that GPVI is down-regulated from murine platelets by a 

metalloproteinase-dependent mechanism. Since GPVI plays a critical role in platelet 

activation and subsequent thrombus formation, it is important to understand the 

underlying mechanisms of GPVI regulation. ADAM10 and ADAM17 are believed to 

be candidate sheddases of GPVI. Cleavage studies on GPVI-based synthetic 

peptides indicated that ADAM10 is probably the GPVI sheddase under these special 

conditions123. However, the identity of the in vivo sheddase of GPVI remains elusive. 

 

A.7. Aim of the study 

The aim of this study was to investigate two different regulatory mechanisms in 

platelets:  

Actin-depolymerizing factor (ADF) and non-muscle cofilin are both actin-binding 

proteins and play an important role in cytoskeletal dynamics. However, their role in 

platelets, that are highly dynamic cells, was only poorly investigated. The first aim of 

this study was to investigate the effect of ADF and/or cofilin deficiency and 

consequently altered actin turnover on platelet formation and function.  

GPVI is the activatory receptor on the platelet surface. GPVI down-regulation can be 

induced in vivo by antibody treatment resulting in long-term anti-thrombotic protection 

without bleeding complications. It is essential to understand the mechanisms 

underlying this process, as this is crucial for the development of anti-GPVI based 

therapeutics. Therefore, the second aim of the study was to investigate the regulation 

of GPVI using genetically modified mouse lines.  
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B. Materials and methods 

 

B.1. Materials 

B.1.1. Chemicals 

Acetic acid      Roth (Karlsruhe, Germany) 

ADP        Sigma (Deisenhofen, Germany)  

AEC solution      EUROPA (Cambridge, UK) 

Agar       Roth (Karlsruhe, Germany) 

Agarose      Roth (Karlsruhe, Germany) 

Ampicillin      Roth (Karlsruhe, Germany) 

Apyrase (grade III)      Sigma (Deisenhofen, Germany) 

Bovine serum albumin (BSA)   AppliChem (Darmstadt, Germany),   

                     Sigma (Deisenhofen, Germany)  

Cacodylate   AppliChem (Darmstadt, Germany) 

Calcium chloride   Roth (Karlsruhe, Germany) 

Canamycin sulfate     Roth (Karlsruhe, Germany) 

Carbonyl cyanide m-chlorophenylhydrazone  Sigma (Deisenhofen, Germany) 
(CCCP)  

Chloramphenicol     Roth (Karlsruhe, Germany) 

Convulxin      Axxora (Lörrach, Germany) 

DAPI       Invitrogen (Karlsruhe, Germany) 

Disodiumhydrogenphosphate   Roth (Karlsruhe, Germany) 

EDTA        AppliChem (Darmstadt, Germany) 

Enhanced chemoluminiscence (ECL)  MoBiTec (Göttingen, Germany)  

detection substrate  

Eosin       Roth (Karlsruhe, Germany) 

Ethanol      Roth (Karlsruhe, Germany) 

Ethidium bromide     Roth (Karlsruhe, Germany) 

EZ-Link sulfo-NHS-LC-biotin   Pierce (Rockford, IL,USA) 

Ficoll       Sigma (Deisenhofen, Germany) 

Fibrillar type I collagen (Horm)   Nycomed (Munich, Germany) 

Glucose      Roth (Karlsruhe, Germany) 

Glutaraldehyde     Merck (Darmstadt, Germany) 

Glycerol      Roth (Karlsruhe, Germany) 
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GM6001       Calbiochem (Bad Soden, Germany) 

Hematoxylin      Sigma (Deisenhofen, Germany) 

Hexamethyldisilazan    Merck (Darmstadt, Germany) 

Hering sperm DNA     Sigma (Deisenhofen, Germany) 

High molecular weight heparin    Sigma (Deisenhofen, Germany) 

Human fibrinogen      Sigma (Deisenhofen, Germany) 

Isopropanol      Roth (Karlsruhe, Germany) 

Low melting agarose    Euromedex (Mundolsheim, France) 

Magnesium sulfate     Roth (Karlsruhe, Germany) 

Manganese chloride    Roth (Karlsruhe, Germany) 

Milk powder      AppliChem (Darmstadt, Germany) 

MOPS       AppliChem (Darmstadt, Germany) 

NEM       Calbiochem (Bad Soden, Germany) 

Nonidet P-40 (NP-40)   Roche Diagnostics (Mannheim, 

Germany) 

Osmium tetraoxide     Merck (Darmstadt, Germany) 

Paraformaldehyde     Applichem (Darmstadt, Germany) 

Penicillin/streptomycin     PAN (Aidenbach, Germany) 

Peptone (pancreatic digested)   Roth (Karlsruhe, Germany) 

Phorbol 12-myristate 13-acetate (PMA)   Sigma (Deisenhofen, Germany) 

Poly-L-Lysine     Sigma (Deisenhofen, Germany) 

Potassium acetate     Roth (Karlsruhe, Germany) 

Potassium chloride     Roth (Karlsruhe, Germany) 

Prolong Antifade     Invitrogen (Karlsruhe, Germany) 

Propidium iodide     Invitrogen (Karlsruhe, Germany) 

Propylen oxide     Merck (Darmstadt, Germany) 

Prostacyclin       Calbiochem (Bad Soden, Germany) 

Protein G sepharose     GE Healthcare (Uppsala, Sweden) 

Rubidium chloride     Roth (Karlsruhe, Germany) 

Sodium chloride     AppliChem (Darmstadt, Germany) 

Sodium citrate     AppliChem (Darmstadt, Germany) 

Sodiumdihydrogenphosphate   Roth (Karlsruhe, Germany) 

Sodium hydroxide     AppliChem (Darmstadt, Germany) 

Tannic acid      Merck (Darmstadt, Germany) 
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Thrombin                                   Roche Diagnostics (Mannheim,  

                                          Germany)  

Thrombopoietin  Biosource (Solingen, Germany) 

3,3,5,5-tetramethylbenzidine (TMB)   EUROPA (Cambridge, UK) 

TRIS ultra      Roth (Karlsruhe, Germany) 

Trizol       Invitrogen (Karlsruhe, Germany) 

U46619       Alexis Biochemicals (San Diego, USA) 

W7        Calbiochem (Bad Soden, Germany) 

X-gal       AppliChem (Darmstadt, Germany) 

Yeast extract      AppliChem (Darmstadt, Germany) 

 

All enzymes were purchased from Fermentas (St. Leon-Rot, Germany) or obtained 

from Invitrogen (Karlsruhe, Germany). 

Collagen related peptide (CRP) was kindly provided by S.P Watson (University of 

Birmingham, UK).  

 

All other chemicals were obtained from Sigma (Deisenhofen, Germany) or Roth 

(Karlsruhe, Germany). 

 

B.1.2. Kits 

 Ligation: 

Fast-Link DNA Ligation Kit   Eppicentre (Hess. Oldendorf, Germany) 

Ready-to-go T4 DNA Ligase  Amersham Biosciences (Freiburg, Germany) 

T4 DNA Ligase    Invitrogen (Karlsruhe, Germany) 

 PCR: 

GeneAmp XL PCR Kit   Applied Biosystems (New Jersey, USA) 

Triple Master PCR System  Eppendorf (Hamburg, Germany) 

 Cloning: 

TOPO TA Cloning Kit   Invitrogen (Karlsruhe, Germany) 

TOPO XL PCR Cloning Kit  Invitrogen (Karlsruhe, Germany) 

Zero Blunt TOPO PCR Cloning Kit Invitrogen (Karlsruhe, Germany) 

 Site-directed mutagenesis: 

QuickChange-XL    Stratagene (Amsterdam, The Netherlands) 
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 DNA Purification Kits: 

Plasmid DNA Maxi/Midi Purification Qiagen (Hilden, Germany) 

Nucleo Spin Extract II Kit   Macherery-Nagel (Düren, Germany) 

Nucleo Spin Plasmid Kit   Macherery-Nagel (Düren, Germany) 

BACMAX DNA Purification Kit  Eppicentre (Hess. Oldendorf, Germany) 

 

B.1.3. Cell culture material 

Beta-mercaptoethanol   Roth (Karlsruhe, Germany) 

DMEM     Gibco (Karlsruhe, Germany) 

Fetal calf serum    Perbio (Bonn, Germany) 

Geneticin     Gibco (Karlsruhe, Germany) 

LIF (Leukemia Inhibitory Factor)  Chemicon (Hampshire, United Kingdom) 

Kryo-tubes     Roth (Karlsruhe, Germany) 

Nonessential amino acids   Gibco (Karlsruhe, Germany) 

PBS      Gibco (Karlsruhe, Germany)  

Penicillin/streptomycin    Gibco (Karlsruhe, Germany) 

Stem cells     kindly provided by Nagy A.124  

Tissue culture dishes (100/20 mm) Greiner (Frickenhausen, Germany) 

Tissue culture flasks (25 or 175 cm2) Greiner (Frickenhausen, Germany) 

Trypsin     Gibco (Karlsruhe, Germany) 

Well plates      Greiner (Frickenhausen, Germany) 

 

B.1.4. Isotope lab material 

Probequant G 50 Microcolumns Amersham Biosciences (Freiburg, Germany) 

Rediprime DNA Labeling Kit Amersham Biosciences (Freiburg, Germany) 

Redivue-  32P-dCTP; 250 µCi Amersham Biosciences (Freiburg, Germany) 

 

B.1.5. Buffers and media 

All buffers were prepared and diluted using aqua bidest. 

 

 Blotting buffer A 

Tris, pH 10.4        0.3 M 

Methanol        20% 
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 Blotting buffer B 

Tris, pH 10.4        25 mM 

Methanol        20% 

 

 Blotting buffer C 

-amino-n-caproic acid      4 mM 

Methanol         20% 

 

 CATCH buffer 

HEPES        25 mM 

EDTA        3 mM 

BSA        3.5% 

PBS 

 

 Church buffer for southern blot 

Phosphate buffer (0.5 M; pH 7.2)             50% 

SDS (20%)                33% 

EDTA (0.5 M)               0.1% 

Hering sperm DNA                1% 

BSA              10 g/L 

 

 Church wash buffer for southern blot 

Phosphate buffer (0.5 M; pH 7.2)             4% 

SDS (20%)                          5% 

 

 Coating buffer, pH 9.0 

NaHCO3         50 mM 

 

 Coomassie Stain 

Acetic acid        10% 

Methanol        40% 

Brilliant blue        1 g 

in H2O 
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 Coupling buffer 2x, pH 9.0 

NaHCO3          14 g/L 

Na2CO3          8.5 g/L 

 

 Decalcification buffer 

EDTA        10% 

PBS 

pH 7.4 

 

 Denaturation buffer for southern blot 

NaCl               1.5 M 

NaOH               0.5 M 

 

 Destaining solution 

Acetic acid        10%  

H2O         50% 

Methanol        40%  

        

 EF-Medium 

DMEM  

FCS         10% 

 

 ES-Medium 

DMEM  

FCS         20% 

Nonessential amino acids      1%  

-mercaptoethanol       3.5 µL 

LIF         1,000 units/mL 

 

 ES+G418 Medium 

ES-Medium   

Geneticin         400 µg/mL 
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 Freezing-Medium 

DMEM  

FCS         50% 

DMSO        10% 

 

 IP buffer 

Tris/HCl (pH 8.0)      15 mM 

NaCl         155 mM 

EDTA         1 mM  

NaN3         0.005% 

 

 Karnovsky fixation buffer 

Paraformaldehyde      2% 

Glutardialdehyde      2.5% 

Cacodylate         0.1 M 

pH 7.2 

 

 Laemmli buffer 

Tris         40 mM 

Glycin        0.95 M 

SDS         0.5% 

 

 LB-Medium 

(solution) 

Peptone (pancreatic digested)    10 g/L  

Yeast extract       5 g/L 

NaCl        10 g/L 

(agar) 

Agar        15 g/L 

 

 Lysis buffer 

TRIS base        100 mM 

EDTA (0.5 M)       5 mM 

NaCl         200 mM 
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SDS         0.2% 

added Proteinase K (20 mg/mL)            100 µg/mL 

 

 MK medium 

IMEM 

FCS        10% 

Penicillin/streptomycin      1% 

Thrombopoietin       50 ng/mL 

 

 Neutralisation buffer for southern blot 

NaCl        1.5 M 

TRIS base       0.5 M 

HCl (37%) until pH 7.2 

 

 PHEM 

PIPES        18.14 g/L 

HEPES        5.96 g/L 

EGTA        3.8 g/L 

AcMg2+        0.214 g/L 

H2O 

pH 6.9 

 

 Phosphate-buffered saline (PBS), pH 7.14 

NaCl         137 mM  

KCl         2.7 mM  

KH2PO4         1.5 mM 

Na2HPO4 x 2H2O       8 mM 

 

 PBS/EDTA 

PBS 

EDTA        5 mM 

 

 Phosphate buffer (0.5%; pH 7.2) 

Solution A (1 M) 
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Na2HPO4 x 2 H20              68.4%  

Solution B (1 M) 

NaH2PO4 x 2 H20              31.6%  

 

 SDS sample buffer, 2x 

-mercaptoethanol (for red. conditions)    10% 

Tris buffer (1.25 M), pH 6.8      10% 

Glycerin         20% 

SDS         4% 

Bromophenolblue       0.02%  

 

 Solution I for Mini DNA purification 

Glucose        50 mM 

TRIS base       25 mM 

EDTA        10 mM 

 

 Solution II for Mini DNA purification 

NaOH        0.2 M 

SDS        1% 

 

 Solution III for Mini DNA purification pH 5.5 

Potassium acetate      3 M 

 

 10x SSC for southern blot 

NaCl        1.5 M 

Na-citrate        0.25 M 

 

 Storage buffer, pH 7.0 

Tris         20 mM 

NaCl         0.9% 

BSA         0.5% 

NaN3         0.09% 
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 50x TAE 

TRIS base                 0.2 M 

Acetic acid                  5.7% 

EDTA (0.5 M)           10% 

 

 TE buffer 

TRIS base             10 mM 

EDTA                1 mM 

 

 TFB I solution for competent cells 

Potassium acetate              30 mM 

MnCl2                  5 mM 

RbCl              100 mM 

CaCl2              100 mM 

Glycerol                 15% 

Acetic acid (0.2 M) until pH 5.8 

 

 TFB II solution for competent cells 

MOPS               10 mM 

CaCl2               75 mM 

RbCl2               10 mM 

Glycerol                  15% 

 

 Tris-buffered saline (TBS), pH 7.3 

NaCl        137 mM  

Tris/HCl         20 mM 

 

 Tyrode’s buffer, pH 7.3 

NaCl         137 mM  

KCl         2.7 mM 

NaHCO3         12 mM 

NaH2PO4        0.43 mM 

Glucose         0.1% 

Hepes         5 mM 
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BSA         0.35% 

CaCl2         2 mM 

MgCl2         1 mM 

 

 Washing buffer 

PBS 

Tween 20        0.1% 

 

B.2. Methods 

B.2.1. Molecular biology 

B.2.1.1. BAC screening 

For BAC screening, a BAC internal probe was labeled with the radioactive substance 
32P and then High Density Filters (CHORI, Oakland, USA) were hybridized with the 

BAC internal probe. Details of the labeling and hybridization steps are exactly 

explained in B.2.2.8. “Analysis of stem cell DNA (Southern Blot)”. Subsequently, a 

film was placed on top of the filters in a cassette. The film was developed after four 

hours exposure at RT. The signals were interpreted due to the supplied protocol to 

determine the position and thereby the labeling of positive clones. Positive clones 

were ordered at www.chori.org 

 

B.2.1.2. General PCR schemes for amplification of construct flanking sites and   

               probes 

 Triple Master PCR (Eppendorf)    

PCR cycler: Mastercycler gradient (Eppendorf) 

 

0.2 µg  Primer forward 

0.2 µg  Primer reverse 

10 ng   DNA template 

5 µL   10x Triplemix buffer 

1 µL   10 mM dNTP 

0.5 µL  Triplemix enzyme (5 u/µL) 

H2O was added to a final volume of 50 µL. 

 

 

http://www.chori.org/�
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Program 1: (product < 2kb) 

96°C  2 min 

94°C  30 sec 

x°C  30 sec      35 cycles 

72°C  30 sec 

 

Program 2: (product > 2kb) 

96°C  3 min 

94°C  30 sec 

x°C  30 sec        35 cycles 

68°C  5 min 

 

x°C : The PCR reaction was performed with different annealing temperatures per 

sample : 

1: 50°C;  2: 50.3°C;  3: 51.4°C;  4: 53.2°C;  5: 55.5°C;  6: 58°C;  7: 60.8°C;  8: 63.5°C 

 

 GeneAmp XL PCR (Appl. Biosystems);  

PCR cycler: GeneAmp PCR System 9700  (Appl. Biosystems) 

 

0.2 µL  rTth polymerase (2 u/µL) 

6 µL   3.3x XL buffer 

100 ng  DNA template 

1 mM   Mg(OAc)2 

1.6 µL  10 mM dNTP 

100 ng  Primer forward 

100 ng  Primer reverse 

H2O was added to a final volume of 20 µL. 

 

Program: 

94°C 1 min 

94°C 30 sec 

58°C 20 sec    35 cycles 

68°C 2.15 min + 2 sec/cycle 

72°C 5 min  
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 PCR using Taq-Polymerase (Fermentas) 

PCR cycler: GeneAmp PCR System 9700  (Appl. Biosystems) 

  

 100 ng forward primer 

 100 ng reverse primer 

     1 µL  10 mM dNTP 

     5 µL  10x Taq – buffer (+ KCl, - MgCl2) 

     1 µL  DNA template 

  0.4 µL  Taq-Polymerase (5 u/µL) 

     2 µL  25 mM MgCl2 

 H2O was added to a final volume of 50 µL. 

 

Program: 

96°C   5 min 

94°C  30 sec 

60°C  30 sec       35 cycles 

72°C  30 sec 

72°C  10 min 

 
 

B.2.1.3. Agarose gel 

1 g agarose was added to 100 mL 1x TAE buffer for a small 1% agarose gel. The 

agarose in TAE buffer was heated up in a microwave for 3 minutes. When the 

temperature was decreased to about 60°C again, 5 µL ethidium bromide were added 

and the fluid was poured into a slide with a comb. The slight was laid in a chamber 

filled with 1x TAE buffer. The samples were diluted in 10x loading buffer and loaded 

into the slots of the gel. The samples were run at about 120 V. In parallel, a 1 kb 

ladder was separated to determine the size of the DNA bands under UV light.  

4 g agarose in 400 mL 1x TAE buffer were used for a big 1% agarose gel. Finally, 20 

µL ethidium bromide were added to the solved agarose in 1x TAE buffer.  

Additionally, 0.7% and 2% agarose gels were done to separate DNA bands. 
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B.2.1.4. DNA-Extraction from an agarose gel  

A DNA band was excised from an agarose gel under UV light. 700 µL NT buffer 

(Macherey-Nagel) were added to the isolated agarose piece and shaken at 55°C for 

several minutes until the gel was completely dissolved. After 1-2 minutes incubation 

on ice, the DNA was applied to the column and centrifuged at 11,000 rpm for 30 

seconds. Then the column was washed twice with 750 µL NT3 buffer with ethanol at 

11,000 rpm for 1 minute. A drying step followed by centrifugation the empty column 

at 11,000 rpm for 2 minutes and the rest of ethanol was removed by air-drying the 

tube with opened lid for 3-5 minutes. Finally, 30 µL H2O were added and incubated 

for 2-4 minutes. The DNA was eluted by centrifugation at 11,000 rpm for 2 minutes. 

 

B.2.1.5. Treatment of insert and vector 

- The pBluescript II KS vector was treated two times with 1 µL CIP (Calf Intestine 

   Phosphatase) at 37°C for 30 minutes in order to prevent religation of the vector. 

- The insert was treated with Klenow-Fragment and T4 Polynucleotide kinase to   

   ligate the insert into a blunt end cut vector as follows: 

  27 µL DNA insert  

   5 u Klenow-Fragment 

  2 µL 10 mM dNTP 

   5 u T4 Polynucleotide kinase 

   4 µL 10x Polynucleotide kinase buffer A (forward reaction) 

   1 µL  10 mM ATP 

H2O was added to a final volume of 40 µL. The sample was incubated at 37°C 

for 30 minutes. 

- The insert was incubated with Taq polymerase to ligate the insert into a vector 

   with T-overhangs as follows: 

47 µL DNA insert (PCR product) 

    5 u Taq polmerase (Invitrogen) 

 2 µL  10 mM dATP 

The incubation was performed at 72°C for 30 minutes. 

 

B.2.1.6. Repurification of DNA 

The repurification step is necessary to remove proteins from the DNA. Therefore, 500 

µL NT buffer (Nucleo Spin Extract II Kit; Macherery-Nagel) were added to a sample 
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of 50 µL volume. The sample was immediately loaded on the column without a 

heating step. The remaining procedure is the same like in “DNA-Extraction from an 

agarose gel”. 

Alternatively, another method was used to repurify DNA. One tenth 3 M sodium 

acetate (pH 5.2) and five times more 100% ethanol of the volume with DNA were 

added to the sample, mixed and incubated at –20°C for at least 30 minutes. After 

centrifugation at 14,000 rpm for 10 minutes at 4°C, the pellet was washed with 500 

µL 70% ethanol and centrifuged again. The pellet was dried and dissolved in 30-50 

µL H2O. 

 

B.2.1.7. Ligations 

The amount of insert and vector DNA was estimated after running on a 1% gel. 

 Fast-Link DNA Ligation Kit (Eppicentre)  

1.5 µL  10x Fast-Link Ligation Buffer 

1.5 µL  10 mM ATP 

Insert DNA : Vector DNA    2:1 

1 µL Fast-Link DNA Ligase 

H2O was added to a final volume of 15 µL; Incubation for one hour at 16°C. 

 

 Ready-to-go T4 DNA Ligase (Amersham Biosciences) 

Insert DNA : Vector DNA 2 : 1 

H2O was added to a final volume of 20 µL; Incubation for one hour at 16°C. 

 

 T4 DNA Ligase (Invitrogen)  

Insert DNA : Vector DNA 2 : 1 

4 µL  5x Ligase Buffer 

1 µL  T4 Ligase 

H2O was added to a final volume of 20 µL; Incubation over night at 16°C. 

 

B.2.1.8. Cloning with TOPO kits (Invitrogen) 

 TOPO TA or Zero Blunt TOPO 

1 µL PCR product (dilution depends on amount of DNA) 

1 µL Salt Solution 

1 µL TOPO vector 
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3 µL Sterile Water 

The incubation time ranged from 5 – 20 minutes at room temperature. 

 TOPO XL 

For TOPO XL Cloning reaction a special preparation of the PCR product was 

necessary. Hence, the PCR product was run on an agarose gel, but this gel was 

stained with Crystal Violet and purified with a special supplied gel-purifying kit 

according to the manual. 

4 µL Gel-purified PCR product 

1 µL pCR-XL-TOPO vector 

The incubation time ranged from 5 – 20 minutes at room temperature (RT) and the 

reaction was stopped with 1 µL 6x TOPO Cloning Stop. 

All the following transformations were performed either with own competent cells 

(procedure explained in B.2.1.10. “Transformation”) or with competent cells supplied 

with the kit. Therefore, 2 µL of the TOPO Cloning reaction were added to one vial of 

chemically competent E. coli cells and incubated on ice for 30 minutes. The cells 

were heat-shocked at 42°C for 30 seconds. The tubes were transferred on ice for 2 

minutes. Following addition of 250 µL S.O.C. medium, the samples were shaken at 

37°C for one hour. 150 µL were spread on a LB plate containing 50 µg/mL 

canamycin. The plate was incubated at 37°C over night. When blue/white colony 

selection was necessary, 1.6 mg X-gal were added to one plate before plating the 

cells. 

 

B.2.1.9. Transformation 

5-7 µL of the ligation reaction or 1 µL of a ligated product were added to 100 µL 

chemically competent cells (DH5, DH10B or XL10Gold) and incubated on ice for 

45 minutes. The transformation was performed for 90 seconds at 42°C and then put 

on ice for 2 minutes. 1 mL LB-medium without antibiotics was added to the cells and 

incubated for 30 minutes at 37°C. Either all cells, after centrifugation for 3 minutes at 

5,000 rpm, or 100 µL of the cells (retransformation of a vector) were plated on a LB 

plate containing 50 µg/mL ampicillin or canamycin. The plate was incubated over 

night at 37°C.  

When blue/white colony selection was necessary, 1.6 mg X-gal were added to one 

plate before plating the cells.  
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B.2.1.10. Mini DNA purification 

3 mL LB medium containing the selective antibiotic (50 µg/mL ampicillin or 

canamycin) and a picked single colony were shaken for 12-16 hours at 37°C. The 

cells were spun down at 11,000 rpm for 30 seconds and the pellet was resuspended 

in 200 µL solution I. 300 µL of solution II were used to lyse the cells for about 5 

minutes at RT. Then, 300 µL of solution III were added and the sample was 

incubated for 5 minutes at RT. Subsequently, the tube was centrifuged at 11,000 rpm 

for 5 minutes. The supernatant was transferred into a new tube and mixed with 700 

µL isopropanol and incubated on ice for 5 minutes. After centrifugation at 14,000 rpm 

for 10 minutes at 4°C, the pellet was washed with 500 µL 70% ethanol and incubated 

for 8 minutes at RT. The sample was centrifuged at 14,000 rpm for 8 minutes at 4°C 

and finally the dried DNA pellet was dissolved in 30 µL TE buffer with 0.1 µg/µL 

RNaseA. 

 

B.2.1.11. Mini DNA purification (Macherey-Nagel) 

This Mini DNA Plasmid Purification Kit was used in order to get clean DNA for 

sequencing.  

Therefore, 3 mL LB medium containing the selective antibiotic (50 µg/mL ampicillin or 

canamycin) and a picked single colony were shaken for 12-16 hours at 37°C. The 

cells were centrifuged at 11,000 rpm for 30 seconds and the pellet was resuspended 

in 250 µL A1 buffer. Additional 250 µL of A2 buffer were used to lyse the cells for 5 

minutes at RT. Next, 300 µL of A3 buffer were added and the sample was 

centrifuged at 11,000 rpm for 5 minutes. The supernatant was transferred to a 

column and centrifuged at 11,000 rpm for 1 minute. 600 µL of washing buffer AW 

with ethanol were applied to the column and centrifuged at 11,000 rpm for 1 minute. 

Following one minute incubation with 50 µL TE buffer, DNA was eluted by 

centrifugation at 11,000 rpm for 1 minute. 

 

B.2.1.12. Sequencing of plasmid DNA 

The sequencing of plasmid DNA was performed by the company MWG Biotech in 

Ebersberg (Germany). Therefore, 3 µg plasmid DNA diluted in TE buffer to a final 

volume of 20 µL were sent to MWG Biotech/eurofins. Either standard primers from 

the company were chosen or own primers were sent. For that, 1 µg primer was 

diluted in TE buffer in a final volume of 12 µL. 
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Two alignment programmes were used to analyze the sequencing results: 

http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi 

http://searchlauncher.bcm.tmc.edu/multi-align/multi-align.html 

 

B.2.1.13. Midi (Maxi) DNA Purification  

150 mL (250 mL) LB medium containing the selective antibiotic (50 µg/mL ampicillin 

or canamycin) and a picked single colony were shaken for 12-16 hours at 37°C. The 

bacterial cells were harvested by centrifugation at 6,000 rpm for 15 minutes. The 

bacterial pellet was resuspended in 4 mL (10 mL) resuspension buffer. Then 4 mL 

(10 mL) lysis buffer were added and the tube was inverted 4-6 times and incubated 

for 5 minutes at RT. 4 mL (10 mL) neutralization buffer were poured to the sample 

and chilled for 15 minutes on ice. Next, the sample was centrifuged at 20,000 rpm for 

30 minutes at 4°C and the supernatant was centrifuged for 20 minutes again. The 

supernatant containing the plasmid DNA was transferred to a Qiagen-tip 100 

(Qiagen-tip 500), after the column was equilibrated by applying 4 mL (10 mL) 

equilibration buffer. Then 2 x 10 mL (2 x 30 mL) washing buffer were loaded to the 

column and subsequently, plasmid DNA was eluted by applying 5 mL (15 mL) elution 

buffer. 3.5 mL (10.5 mL) isopropanol were added to the eluted DNA and centrifuged 

at 15,000 rpm for 30 minutes at 4°C. The DNA pellet was washed with 2 mL (5 mL) 

70% ethanol and centrifuged at 15,000 rpm for 10 minutes. Then, the pellet was 

dried, 200 µL (500 µL) TE buffer were added and the DNA concentration was 

measured at 260 nm. 

 

B.2.1.14. BAC DNA purification  

150 mL LB medium containing 12.5 µg/mL chloramphenicol and a piece of agar with 

BAC DNA in bacterial cells were shaken for 12-16 hours at 37°C. The cells were 

pelleted by centrifugation at 5,000 rpm for 8 minutes. The pellet was resuspended in 

6 mL BACMAX Solution 1. Then 6 mL BACMAX Solution 2 were added and the tube 

was inverted for 2-3 times. After 5 minutes incubation, 4.5 mL BACMAX Solution 3 

were poured to the sample and chilled for 15 minutes on ice. Next, the sample was 

centrifuged at 15,000 rpm for 15 minutes at 4°C and 0.6 volumes isopropanol were 

added to the removed supernatant. The mixed sample was centrifuged at 15,000 rpm 

for 15 minutes at 4°C and the pellet was dried before adding 500 µL TE buffer. After 

addition of 20 µL RiboShredder RNase Blend with incubation for 30 minutes at 37°C, 

http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi�
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500 µL TE buffer and 1 mL of chilled BACMAX Solution 4 with incubation for 15 

minutes on ice, the tube was centrifuged at 15,000 rpm for 15 minutes at 4°C. The 

recovered supernatant was mixed with 4 mL ethanol and centrifuged under the same 

conditions as before. The pellet was dried, dissolved in 200 µL TE buffer and the 

DNA concentration was measured at 260 nm.   

 

B.2.1.15. Digestion of plasmid DNA 

All samples were usually digested for at least 45 minutes at 37°C. Only when special 

enzymes were used, the incubation was performed at the appropriate temperature. 

 

2-10 u  enzyme per sample 

2 µL  10x enzyme buffer 

0.5-2 µg DNA 

H2O was added to a final volume of 20 µL. 

 

Additional 2-10 units of the other enzyme were added for a double digestion if the 

reaction was possible under the same buffer and temperature conditions.  

If a double digestion was not possible under same conditions, then at first a digestion 

with one enzyme was performed and after this the enzyme was inactivated for 10 

minutes at 68°C. Subsequently, the sample was chilled for two minutes on ice and 

then the double volume was added that contained the second enzyme, 10x buffer 

and H2O. Then, the incubation was performed at the temperature for the second 

enzyme.  

 

B.2.1.16. Generation of competent cells 

5 mL LB medium with a piece of cells (DH5, DH10B or XL10 Gold) from a frozen 

glycerol stock were incubated at 37°C and 220 rpm over night. 1 mL from the over 

night culture was added to 150 mL LB medium supplemented with sterilely filtrated 

10 mM KCl and 20 mM MgSO4. The cells were allowed to grow at 37°C and 220 rpm 

until an OD600 = 0.4. Afterwards, the cells were centrifuged at 6,000 rpm for 10 

minutes and the pellet was resuspended in 75 mL TFB I buffer. After 10 minutes 

incubation on ice, the cells were centrifuged again and the pellet was resuspended in 

6 mL TFB II buffer. 100 µL were distributed in each tube and immediately stored at –

80°C. 
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B.2.1.17. Site-directed mutagenesis 

The site-directed mutagenesis comprised three different steps: 

 

 PCR (PCR cycler: GeneAmp PCR System 9700; Appl. Biosystems) 

125 ng  Primer forward 

125 ng Primer reverse 

50-100 ng dsDNA template 

5 µL  10x reaction buffer 

1 µL   dNTP mix 

3 µL  Quick solution 

1 µL  Pfu Turbo polymerase (2.5 u/µL) 

H2O was added to a final volume of 50 µL. 

 

Program: 

95°C 5 min 

95°C   30 sec 

60°C   30 sec  18 cycles 

68°C   1 min/kb plasmid 

68°C   7 min 

 

 Digestion 

Half volume of the PCR product was used as a transformation control later. The other 

half of the PCR product was treated with 1 µL Dpn I and incubated for 1 hour at 

37°C. 

 

 Transformation 

Two tubes with 45 µL competent cells from the kit were put on ice. 2 µL -

mercaptoethanol were added to each tube and incubated on ice for 10 minutes. The 

tubes were gently shaken every second minute. Then 5 µL from the control and the 

digested sample were added to different tubes with competent cells and incubated 

for 30 minutes on ice. The heat shock step was performed for 30 seconds at 42°C 

and then the samples were immediately put for two minutes on ice. 500 µL 

prewarmed LB medium were added to each tube and shaken at 300 rpm and 37°C 

for 1 hour. Finally, 250 µL were plated on a plate with the appropriate selective 
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antibiotic (50 µg/mL ampicillin or canamycin) and incubated at 37°C over night. On 

the next day, the numbers of colonies on both plates were compared and colonies of 

the digested sample were picked. 

 

B.2.2. Stem cell work 

B.2.2.1. Preparation of feeder cells 

A mouse strain containing a neomycin cassette in the genome was used for the 

preparation of feeder cells. For this, fertile collagen IX knock-out mice were time-

mated. At day 14.5 mice embryos were excised of the pregnant mouse. Then, the 

embryos were washed in PBS and subsequently, skeleton muscles and skin of the 

embryos were homogenized in a final volume of 10 mL EF-Medium (for a number of 

7-9 embryos) with 10% trypsin and incubated in a 37°C waterbath for at least 5 

minutes. This step was repeated once. One mL of the homogenized embryos in 

medium was added to 9 mL EF-Medium in a 10 cm tissue culture dish. After one day 

of incubation at 37°C and 5% CO2, the EF-Medium was changed and when the cells 

were grown confluently, one 10 cm tissue culture dish was split into two 175 cm2 

tissue culture flasks. The densely grown cells were trypsinized, collected and spun 

down (all cell culture centrifugation steps: 5 minutes with 900 rpm in a Multifuge 3 S-

R from Heraeus). The cells were collected in a final volume of 15 mL EF-Medium. 

Subsequently, the cells were irradiated with 40 Gray (1.031 Gray/min; at MSZ 

Würzburg). After spinning down, Freezing-Medium was added to the pellet and the 

cells in Freezing-Medium were stored as 1 mL aliquots (cells of an 175 cm2 tissue 

culture are frozen in 3 mL freezing medium) in 2 mL Kryo-Tubes at –80°C. One Kryo-

Tube with cells was used for checking contamination and efficiency of irradiation. 

Therefore, one tube with feeder cells was added to a 10 cm tissue culture dish with 

EF-Medium and was checked under the microscope every day for one week. 

 

B.2.2.2. Electroporation 

Before electroporation, wild-type stem cells (R1 clone, passage number 13)124 were 

cultured. Therefore, 1/6 of a vial feeder cells and one vial stem cells were diluted in 

ES-Medium and used for one six-well (growth at 37°C and 5% CO2). Next day, stem 

cells were transferred into a 75 cm2 flask. New feeder cells were necessary for this 

step. 1.5 mL feeder cells were spun down and the pellet was diluted in ES-Medium. 

Feeder cells and trypsinized stem cells in ES-Medium were transferred in the 75 cm2 
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flask and diluted with additional ES-Medium. Next day, the medium was changed and 

the following day the cells were transferred into two 175 cm2 flasks. After reaching a 

certain density, usually the cells of one flask were used for electroporation of two 

constructs. Before electroporation, cells were checked for mycoplasm contamination. 

100 µg DNA of the final construct were digested (2 hours, 37°C) to linearize the 

vector for electroporation: 

100 µg DNA  

10x enzyme buffer 

200 units enzyme 

ad H2O 

 

The linearization of the vector was confirmed by comparing same amounts of DNA of 

the digested and the undigested vector on a 0.7% gel. To precipitate the digested 

DNA, phenol/chloroform was added to the sample in the ratio 1:1 and shaken. After 

centrifugation at 14,000 rpm for 8 minutes, the upper layer was transferred into a new 

1.5 mL tube. Then, after addition of chloroform (ratio 1:1), the sample was shaken 

and centrifuged again. The supernatant was supplemented with 10% 3 M 

sodiumacetate pH 5.2 and three times more 100% ethanol. The precipitated DNA 

was washed twice in a sterile tube with 800 µL 70% ethanol. After spinning down, 

DNA was dried under sterile conditions for several minutes and then resuspended in 

700 µL PBS and well vortexed. 

The stem cells in the 175 cm2 tissue culture flask were trypsinized and diluted in ES-

Medium. Subsequently, cells were spun down and washed three times in PBS. The 

number of cells was approximately 4 x 107/mL. Cells were centrifuged again and the 

supernatant was removed. The DNA in 700 µL PBS was transferred to the stem cells 

and then electroporated in a cuvette (Cat. No.: 165-2088; 0.4 cm electrode gap, 

Biorad, Munich, Germany) with 0.8 kV and 3 µF (Gene Pulser II from Bio-Rad). The 

electroporated stem cells were diluted with 7 mL ES-Medium and distributed to seven 

beforehand prepared 10 cm tissue culture dishes. Therefore, one vial feeder cells 

diluted in ES-medium was added per dish. 

 

B.2.2.3. Selection of stem cells 

First day after electroporation, the selection was started by treatment with the 

antibiotic Geneticin (G418) which is structurally similar to neomycin. Thus, the ES-
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Medium was removed and 10 mL ES-Medium with 400 µg/mL Geneticin (ES+G418 

Medium) were added. The selection was performed for at least 7 days. Every day 

each tissue culture dish was checked for contamination with bacteria or yeast. Before 

cell picking the cells were checked once for contamination with mycoplasm. 

 

B.2.2.4. Picking of neomycin-resistant stem cell clones 

1 vial feeder cells was used for one 24-well plate. Therefore, ES+G418 Medium was 

added to the feeder cells and spun down. Afterwards, the pellet of feeder cells was 

diluted with 24 mL ES+G418 Medium and evenly distributed to each well of a 24 well 

plate and incubated at 37°C until use. 

Picking with a 200 µL pipette was performed under a LEICA MS5 microscope 

(setting: 0.63x magnification). Clones that had survived the Geneticin treatment were 

picked when they had the appropriate shape, color and size. Cells looking 

differentiated or necrotic were not picked. Each picked clone was transferred into one 

well of a 96 well plate containing two drops of trypsin (~ 100 µL) in order to solve the 

cell clone into single cells. After incubation for 5 minutes at 37°C and 5% CO2, each 

clone was resuspended in the well with trypsin and added to one well of the 

beforehand prepared 24 well plate. The cells were incubated at 37°C over night and 

then the ES+G418 Medium was changed. After this, the cells grew 2 days without 

changing medium. Every day each well plate was checked for contamination with 

bacteria or yeast. Before freezing, cells were checked once for contamination with 

mycoplasm. 

 

B.2.2.5. Freezing of picked stem cell clones 

Cells in a 24-well plate were trypsinized and then 1 mL Freezing-Medium was added 

to each well. After resuspension, 600 µL of the sample were transferred to a labeled 

Kryo-tube and immediately stored at –80°C. Each well was labeled with the same 

number according to the Kryo-tube. The remaining 400 µL were filled up with 

ES+G418 Medium and incubated over night at 37°C. After this, the medium was 

replaced by 1 mL new ES+G418 Medium. 

 

B.2.2.6. Lysis of stem cells 

After the color of the medium had become yellow which was usually after 3-4 days, 

the supernatant was removed and the cells were lysed with lysis buffer 
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supplemented with 100 µg/mL proteinkinase K. Half mL lysis buffer was added to one 

well. The cells were lysed for at least 1 day at 37°C and 5% CO2.  

 

B.2.2.7. Precipitation of stem cell DNA 

Following the lysis, DNA of the stem cells was precipitated with 0.5 mL isopropanol 

per well. Therefore, sterile conditions were not necessary. The samples were 

agitated on a shaker between 4-6 hours at room temperature. In the meantime, 1.5 

mL tubes were labeled with the corresponding numbers and filled with 150 µL TE 

buffer. The precipitated DNA fibers were transferred with a stick into the 

corresponding 1.5 mL tube. After shaking the samples for a few minutes at 55°C with 

open lid to remove traces of isopropanol, DNA was incubated with closed lid in a 

55°C incubator over night. Afterwards, the samples were shortly vortexed and ready 

for analysis.  

 

B.2.2.8. Analysis of stem cell DNA 

 Digestion of stem cell DNA 

Each stem cell DNA was digested in order to distinguish a positive clone that 

integrated the electroporated DNA via homologous recombination and a negative 

clone that could not integrate the electroporated DNA via homologous recombination. 

The genomic stem cell DNA was digested over night at 37°C: 

 

20 µL stem cell DNA 

    4 µL 10x enzyme buffer 

  25 u enzyme 

H2O was added to a final volume of 40 µL. 

 

 Southern blot 

The digested DNA samples were run on a 1% agarose gel for at least 3-4 hours at 

140 V. Then, a photo was taken from the gel with a ruler to estimate the size of the 

bands after development. The gel was incubated with denaturation buffer for 20 

minutes twice and subsequently with neutralization buffer for 20 minutes twice. 

Afterwards, DNA was blotted from the agarose gel on a nitrocellulose membrane 

(Hybond XL, Amersham Biosciences, Freiburg, Germany) over night at RT.  
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After blotting, gel slots were labeled on the membrane. Then, DNA was crosslinked 

with the membrane (120,000 µJ/cm2; HL-2000 HybriLinker from UVP). For probe 

labeling and hybridization, the following steps were performed in an isotope lab: 

The external probe (10 - 100 ng) was diluted in 35 µL TE buffer and incubated for 3 

minutes at 96°C. When the DNA was resuspended in the Rediprime DNA Labeling 

Kit, 5 µL radioactive substance 32P was added to one sample and incubated for 20 

minutes at 37°C. In the meantime, the buffer of the Probequant G 50 Microcolumns 

was removed via centrifugation and the membrane was briefly preincubated in 

Church wash buffer. The DNA with the radioactive substance was loaded on the 

column and centrifuged for 1 minute at 2,000 rpm (Biofuge A from Heraeus). The 

flow-through containing the radioactively labeled DNA was incubated for 3 minutes at 

96°C and then added to the membrane in Church buffer. The membrane was shaken 

in Church buffer over night at 68°C. Then, the membrane was washed twice with 

Church wash buffer for 20 minutes at 68°C. Subsequently, a film was put on the top 

of the membrane and stored at –80°C. The film was developed after 3-5 days 

depending on the signal. 

 

B.2.2.9. Reculturing of positive stem cells 

Frozen tubes of those clones that had been identified as positive were thawn and 

added to one well of a six well plate containing feeder cells and ES-Medium+G418. 

After growing at 37°C and 5% CO2 to a certain density, cells were trypsinized and 

cultured in a 25 cm2 flask. Two days later, cells were trypsinized again and added to 

a 75 cm2 tissue culturing flask. Finally, cells were trypsinized and a small amount of 

cells were transferred to one well of a 24 well plate to check again for homologous 

recombination via Southern Blot. The majority of cells were frozen into four aliquots. 

Three Kryo-tubes were stored at –80°C and one tube with ES cells was used for the 

generation of chimeric mice. Therefore, this tube was sent on dried ice to Michael 

Bösl (MPI, Munich) who injected these cells into blastocysts and sent obtained the 

chimeric mice. 

 

B.2.3. Genotyping of mice 

B.2.3.1. Genomic DNA isolation from mouse ear/tail 

A small piece of the ear/tail was cut and dissolved in 700 µL lysis buffer by over night 

incubation at 56°C under shaking conditions (1,000 rpm). 250 µL of saturated NaCl 
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(6 M) solution was added to the samples and then centrifuged at 14,000 rpm for 10 

min. 750 µL supernatant was transferred, 500 µL isopropanol was added and 

samples were shaken for 2 min. After centrifugation at 14,000 rpm for 10 min, the 

DNA pellet was washed twice with ice cold 70% ethanol. The DNA pellet was left to 

dry and finally resuspended in 50 µL H2O.   

 

B.2.3.2. PCR-Genotyping 

 Mx-Cre 

2 µL     DNA Template 

5 µL     10x Taq buffer (+KCl, -MgCl2) 

5 µL     MgCl2 (25 mM) 

2 µL     dNTPs (10 mM) 

2 µL     primer forward (1:10 in H2O, stock: 1 µg/µL) 

2 µL     primer reverse (1:10 in H2O, stock: 1 µg/µL) 

0.5 µL    Taq Polymerase (5 u/µL, native, without BSA) 

31.5 µL    H2O 

---------- 

50 µL 

 

PCR program: 

95°C  3 min 

95°C  30 sec  

63°C  30 sec  

-1°C 

R=3.0°C/sec                10x 

G=0.0°C 

72°C  30 sec 

95°C  30 sec 

53°C  30 sec                35x 

72°C  30 sec 

4°C   ∞ 
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Primer: 

MxCre1_for  5´ AAC ATG CTT CAT CGT CGG 3´ 

MxCre2_rev  5´ TTC GGA TCA TCA GCT ACA CC 3´ 

Expected band size: 450 bp 

 

 PF4-Cre 

2 µL     DNA Template 

5 µL     10x Taq buffer (+KCl, -MgCl2) 

5 µL     MgCl2 (25 mM) 

2 µL     dNTPs (10 mM) 

2 µL     primer forward (1:10 in H2O, stock: 1 µg/µL) 

2 µL     primer reverse (1:10 in H2O, stock: 1 µg/µL) 

0.5 µL    Taq Polymerase (5 u/µL, native, without BSA) 

31.5 µL    H2O 

---------- 

50 µL 

 

PCR program: 

96°C  3 min 

94°C  30 sec 

58°C  30 sec    35x 

72°C  45 sec 

72°C  3 min 

Primer: 

PF4-Cre_for: 5´ CCC ATA CAG CAC ACC TT TG 3´ 

PF4-Cre_rev: 5´ TGC ACA GTC AGC AGG TT 3´ 

Expected band size: 450 bp 

 

 Adam10  

2 µL  DNA Template 

2 µL     10x Taq buffer (+KCl, -MgCl2) 

1.2 µL    MgCl2 (25 mM) 

0.4 µL    dNTPs (10 mM) 

0.1 µL  primer loxP_f (stock: 1 µg/µL) 
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0.1 µL    primer AD10e2_f2 (stock: 1 µg/µL) 

0.3 µL  primer A10_3fsc_r (stock: 1 µg/µL) 

0.125 µL Taq Polymerase (5 u/µL, native, without BSA) 

13.775 µL H2O 

---------- 

20 µL 

 

PCR program: 

96°C  5 min 

94°C  30 sec 

51.4°C 30 sec  35x 

72°C  1 min 

72°C  10 min 

Primer: 

loxP-f: 5´ CGT ATA ATG TAT GCT ATA CG 3´ 

A10e2_f2: 5´ CTT CTA GAT TTC CAT GCT CA 3´ 

A10_3fsc_r: 5´ CTG TAT GTT ACT GAT TAA AT 3´ 

Expected band size: approx.: wt: 380 bp, floxed: 480 bp; deleted: 100 bp 

 

 Low TACE 

2 µL  DNA Template 

5 µL     10x Taq buffer (+KCl, -MgCl2) 

4 µL     MgCl2 (25 mM) 

1 µL     dNTPs (10 mM) 

0.5 µL  primer forward (diluted 1:10 in H2O; stock: 1 µg/µL) 

0.5 µL    primer reverse (diluted 1:10 in H2O; stock: 1 µg/µL) 

0.5 µL  Taq Polymerase (5 u/µL, native, without BSA) 

36.5 µL H2O 

---------- 

50 µL 
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PCR program: 

95°C  5 min 

95°C  1 min 

52°C  1 min            40x 

72°C  1 min 

72°C  5 min 

Primer:  

flox_A17_f: 5´ CTT ATT ATT CTC GTG GTC ACC 3` 

flox_A17_r: 5´ TAT GTG ATA GGT GTA ATG 3´ 

Expected band size: wt: 281 bp; ex: 451 bp 

 

 ADF 

1 µL  DNA Template 

2 µL     10x Taq buffer (+KCl, -MgCl2) 

1.2 µL    MgCl2 (25 mM) 

0.4 µL     dNTPs (10 mM) 

0.5 µL  primer A (diluted 1:10 in H2O; stock: 1 µg/µL) 

1.5 µL  primer B (diluted 1:10 in H2O; stock: 1 µg/µL) 

0.5 µL    primer C (diluted 1:10 in H2O; stock: 1 µg/µL) 

0.125 µL Taq Polymerase (5 u/µL, native, without BSA) 

12.775 µL H2O 

---------- 

20 µL 

 

PCR program: 

94°C  2 min 

94°C  30 sec 

58°C  30 sec  35x 

68°C  40 sec 

68°C  5 min 

 

Primer:  

Primer A: 5´ GAT TAA GTT GGG TAA CGC C 3` 

Primer B: 5´ GAA GAA GGC AAA GAG ATC TT 3´ 
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Primer C: 5´ CTA CCT AAA GGG CAT CCT TTC 3´ 

Expected band size: wt: 420 bp; ko: 180 bp 

 

 n-cofilin 

1 µL  DNA Template 

2 µL     10x Taq buffer (+KCl, -MgCl2) 

1.2 µL    MgCl2 (25 mM) 

0.4 µL     dNTPs (10 mM) 

0.5 µL  primer A (diluted 1:10 in H2O; stock: 1 µg/µL) 

1.5 µL  primer B (diluted 1:10 in H2O; stock: 1 µg/µL) 

0.5 µL    primer C (diluted 1:10 in H2O; stock: 1 µg/µL) 

0.125 µL Taq Polymerase (5 u/µL, native, without BSA) 

12.775 µL H2O 

---------- 

20 µL 

 

PCR program: 

94°C  2 min 

94°C  30 sec 

58°C  30 sec  35x 

68°C  40 sec 

68°C  5 min 

Primer:  

Primer A: 5´ CGC TGG ACC AGA GCA CGC GGC ATC 3` 

Primer B: 5´ CTG GAA GGG TTG TTA CAA CCC TGG 3´ 

Primer C: 5´ CAT GAA GGT TCG CAA GTC CTC AAC 3´ 

Expected band size: wt: 380 bp; fl: 420 bp; deleted: 170 bp 

 

B.2.3.3. RT-PCR 

Two mice were bled in heparin (20 u/mL) in TBS. Platelets were washed with 

PBS/EDTA and pellet was resuspended in 200 µL IP buffer with 1% NP-40. 

Following addition of 800 µL Trizol reagent, the sample was incubated for 60 min at 

4°C. After shaking, 200 µL chloroform was added and incubated for 15 min at 4°C. 

Sample was centrifuged at 10,000 rpm for 10 minutes and upper phase was 
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incubated with 3x vol of 70% ethanol and with 10% sodium acetate pH 5.2 for one 

hour at -20°C. After centrifugation at 14,000 rpm for 15 min, the pellet was washed 

with 70% ethanol, then centrifuged again and pellet was dried. 30 µL of RNase free 

water was added and concentration was determined. 

Generation of cDNA was performed as follows: 

Mastermix 1: 

1 µg  mRNA 

2 µL  Oligo dT (0.5 µg/µL) 

x µL  H2O 

total 20 µL  denaturation at 70°C for 10 min, then incubation on ice 

 

Mastermix 2: 

4 µL  5x first strand buffer 

2 µL  DTT (0.1 M) 

1 µL  dNTP (10 mM) 

0.1 µL  RNase inhibitor (5 u/µL) 

Mix 2 was added to mix 1 and then 1 µL Super Script RT (200 u/µL) was added and 

sample was incubated at 42°C for 1 hour and inactivated at 70°C for 10 minutes; 

A gradient PCR was performed afterwards with Taq polymerase as described. 

Following this, a PCR with the appropriate annealing temperature was performed. 

 

B.2.4. Animals 

B.2.4.1. Genetically modified mice 

Mice were either self-generated as described or obtained from the following 

collaboration groups: Adf knock-out and cofilinfl/fl mice from W. Witke (Bonn, 

Germany)50;51, low TACE mice from S. Rose-John (Kiel, Germany), PF4-Cre mice 

from R. Skoda (Basel, Switzerland)125 and Mx-Cre mice from C. Brakebusch 

(Copenhagen, Denmark)126. 

 

B.2.4.2. Bone marrow chimeras 

Recipient C57BL/6 mice of an age between 5-6 weeks were lethally irradiated with 

10 Gray. Femur and tibia of donator mice were prepared. Bone marrow was flushed 

with a 22G needle into prewarmed DMEM with 10% FCS and 1% antibiotics. Ten µL 

of cells was diluted 1:100 and counted in a Neubauer chamber under 10x 
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magnification. Four million cells diluted in 150 µL DMEM were intravenously injected 

into one recipient mouse. Animals received 2 g/L neomycin in water for 6 weeks. 

 

B.2.5. Antibodies 

B.2.5.1. Monoclonal antibodies (mAbs) 

All mAbs (see list below) used for experiments were generated and modified in our 

laboratory.  

 

antibody clone isotype antigen described in 

JAQ1 98A3 IgG2a GPVI 82 

JAQ2 21G10 IgG2a GPVI 85 

JAQ3 0E3 IgG2a GPVI 85 

DOM1 89F12 IgG2a GPV 127 

DOM2 89H11 IgG2a GPV 127 

WUG 1.9 5C8 IgG1 P-selectin unpublished 

p0p6 56F8 IgG2b GPIX 127 

JON1 6C10 IgG2b IIb3 127 

MWReg30 5D7 IgG1 IIb3 128 

JON/A 4H5 IgG2b IIb3 129 

INU1 11E9 IgG1 CLEC-2 130 

p0p3 7A9 IgG2a GPIb 128 

p0p4 15E2 IgG2b GPIb 127 

p0p/B 57E12 IgG2b GPIb 84 

p0p1 3G6 IgG1 GPIb 128 

ULF1 96H10 IgG2a CD9 127 

EDL-1 57B10 IgG2a 3  127 

 12C6  2 unpublished 

 
 
Anti-ADF and anti-cofilin 1 antibody were kindly provided by Walter Witke. Anti-

tubulin antibody was purchased from Molecular Probes (Invitrogen, Karlsruhe, 

Germany). 
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B.2.5.2. Polyclonal antibodies (pAbs)/secondary reagents 

Rabbit anti-rat IgG (-FITC, -HRP), streptavidin-HRP and goat anti-rabbit IgG–HRP 

were purchased from DAKO (Hamburg, Germany). Anti-ADAM10 (Calbiochem, Bad 

Soden, Germany), Alexa-conjugated secondary antibodies (Molecular Probes, 

Invitrogen, Karlsruhe, Germany) and anti-actin (Sigma, Deisenhofen, Germany) were 

purchased.  

Alexa-conjugated phalloidin, a high affinity probe for F-actin, was purchased from 

Molecular Probes (Invitrogen, Karlsruhe, Germany).   

 

B.2.5.3. Biotinylation of antibodies 

Antibody (3 mg) was dialyzed against coupling buffer over night at 4°C. After that EZ-

link sulfo-NHS-LC-biotin was added to a final concentration of 300 µg/mL for 30 

minutes at RT with rotation. Reaction was stopped by addition of 100 µL of 1 M 

NH4Cl and the antibody was finally dialyzed against PBS over night at 4°C.  

To check the efficacy of the biotinylation, washed platelets were incubated with the 

biotinylated antibody (2, 5 and 10 µg/mL) for 10 min at RT, then centrifuged (2,800 

rpm, 5 min) to remove unbound antibody, and subsequently incubated with FITC-

labeled streptavidin (1.5 µg/mL; 10 min, RT). Reaction was stopped by addition of 

500 µL PBS, and samples were analyzed immediately by flow cytometric analysis. 

 

B.2.6. Platelet handling 

B.2.6.1. Platelet preparation and washing 

Mice were bled under isofluran anesthesia from the retroorbital plexus. Blood was 

collected into a tube contaning 20 u/mL heparin in TBS, pH 7.3 (300 µL). Blood was 

centrifuged at 800 rpm (Eppendorf 5415C) for 5 min. Supernatant was taken and 

centrifuged at 800 rpm for 6 min at RT to obtain platelet rich plasma (prp). To wash 

platelets, prp was centrifuged at 2,800 rpm for 5 min in the presence of prostacyclin 

(PGI2) (0.1 µg/mL) and apyrase (0.02 u/mL) and the pellet was resuspended in 

Tyrode’s buffer without Ca2+ containing PGI2 (0.1 µg/mL) and apyrase (0.02 u/mL) 

and left to incubate at 37°C for 5 min. After a second centrifugation step, platelets 

were resuspended in the same buffer and incubated at 37°C for 5 min. Platelets were 

finally centrifuged as above, resuspended in Tyrode’s buffer with 2 mM Ca2+ 

containing apyrase (0.02 u/mL) and left to incubate for at least 30 min at 37 °C before 

analysis. 
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B.2.6.2. Platelet isolation with ficoll 

Platelet isolation with ficoll was performed when mice had less than 10% platelet 

count of control mice. One volume of ficoll containing 3 µL/mL heparin and 0.5 µL/mL 

PGI2 (stock: 10-3 M) was added to two volumes blood (bled in ACD) and centrifuged 

at 250 rpm (37°C) for 10 minutes (always with slow stop). Upper layer was incubated 

with 3 mL Tyrode`s containing 0.1 M Ca2+, heparin and PGI2 for 10 min at 37°C and 

subsequently centrifuged at 2,200 rpm (37°C) for 3 min. The pellet was resuspended 

twice in Tyrode`s, incubated and centrifuged at 1,900 rpm (37°C) for 2.5 min. Finally, 

the platelets were resuspended in Tyrode`s with 2 mM Ca2+ and left to incubate for 

30 min at 37 °C before analysis. 

 

B.2.6.3. Platelet counting 

For determination of platelet counts, blood (50 µL) was obtained from the retroorbital 

plexus of anesthetized mice using siliconized microcapillaries and diluted 1:20 in 

PBS and analyzed in a Sysmex cell counter. 

 

B.2.6.4. Platelet surface biotinylation 

To biotinylate platelet surface molecules, washed platelets (in PBS/EDTA) were 

resuspended in PBS/EDTA at a concentration of 2 x 109 platelets/mL. EZ-link sulfo-

NHS-LC-biotin was then added at a final concentration of 25 µg/mL and left to 

incubate for 10 min at RT with rotation. Reaction was stopped by addition of Tris 

buffer (final concentration 10 µM). The sample was centrifuged at 2,200 rpm for 5 

min. The final platelet pellet was resuspended in Tyrode’s buffer with 2 mM Ca2+ 

containing apyrase (0.02 u/mL) and PGI2 (0.1 µg/mL). To check the efficacy of the 

biotinylation, a sample (1:20 diluted in PBS; 50 µL) was incubated with FITC-labeled 

streptavidin (1.5 µg/mL; 10 min, RT), reaction was stopped by the addition of 500 µL 

PBS and samples were analyzed immediately by flow cytometry. 

 

B.2.6.5. Platelet life span 

Five µg (2 µg in mice with less than 10% platelet count) of an anti-GPIX antibody 

conjugated with Dylight-488 were injected i.v. Percentage of positively labeled 

platelets were determined in a FACSCalibur at the indicated time points. 
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B.2.7. Immunoprecipitation and immunoblotting 

B.2.7.1. Immunoprecipitation of cleaved surface receptors 

For immunoprecipitation, 10 µg/mL antibody was added to biotinylated platelets (2 x 

109) for 5 min at RT. If necessary, shedding was induced and samples were 

centrifuged after incubation time at 2,800 rpm for 5 min. Pellet was immediately 

prepared for immunoblotting and supernatant was treated with 25 µL G-sepharose 

(washed 3x in IP buffer). Samples were left to incubate over night at 4°C with 

rotation. Samples were then washed once with IP buffer containing 1% NP-40 and 

twice with IP buffer (14,000 rpm, 1 min). 

 

B.2.7.2. Immunoblotting 

For Western blot analysis, platelets were washed 2x in PBS/EDTA and finally 

solubilized in 80 µL IP buffer containing 1% NP-40. Samples were separated by 10, 

12 or 15% SDS-PAGE and transferred onto a polyvinylidene difluoride membrane. 

To prevent non-specific antibody binding, the membrane was incubated in 10% fat-

free milk (dissolved in washing buffer) for 1 h at RT. After that, the membrane was 

incubated with the required antibody (5 µg/mL) for 1 h at RT. For washing, the 

membrane was incubated 3x with washing buffer for 10 min at RT. After washing 

steps, HRP-labeled secondary reagent was added and left to incubate for 1 h at RT. 

After several washing steps, proteins were visualized by ECL. 

 

B.2.8. In vitro analysis of platelet function 

B.2.8.1. Flow cytometry 

Platelets (1 x 106) were activated with the indicated agonists or reagents and stained 

for 15 min with saturating amounts of fluorophore-conjugated antibodies. Reaction 

was stopped by addition of 500 µL PBS, and sample was immediately analyzed on a 

FACSCalibur (Becton Dickinson).  

 

B.2.8.2. Aggregometry 

To determine platelet aggregation, light transmission was measured using washed 

platelets adjusted to a platelet concentration of 3 x 108 platelets/mL with Tyrode’s 

buffer without calcium. Alternatively, heparinized prp was used for measurements 

with ADP. Agonists or reagents were added as 100-fold concentrates and light 

transmission was recorded over 10 min on an Apact 4-channel optical aggregation 
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system. Before starting the measurements, Tyrode’s buffer (for washed platelets) or 

plasma (for prp) was set as 100% aggregation and washed platelet suspension (for 

washed platelets) or prp (for prp) was set as 0% aggregation. For activation with 

thrombin, platelets were diluted in Tyrode`s with 2 mM Ca2+, for other agonists 

platelets were diluted in Tyrode`s with 2 mM Ca2+ and 70 µg/ml fibrinogen. 

  

B.2.8.3. Induction of shedding of platelet receptors 

Washed platelets resuspended at a concentration of ~1.5 x 109 platelets/mL in 

Tyrode’s buffer containing calcium and apyrase (0.02 u/mL) were treated for 1 h 

(CCCP, W7) or 20 min (NEM, PMA) at 37°C with the indicated agents and 

immediately analyzed on a FACSCalibur. Alternatively, samples were preincubated 

with the indicated inhibitors for 30 minutes at 37°C. 

 

B.2.8.4. GPVI shedding ELISA assay 

Washed platelets with PBS/EDTA were resuspended in Tyrode’s buffer without Ca2+ 

containing PGI2 (0.1 µg/mL) and apyrase (0.02 u/mL). After incubation for 5 min at 

37°C, biotinylated JAQ1 anitbody (10 µg/mL) was added and incubated for 5 min at 

RT. Then, volume was expanded to 1 mL and centrifuged (2,800 rpm, 5 min). 

Platelets were resuspended in Tyrode’s buffer containing calcium and apyrase (0.02 

u/mL). To induce GPVI shedding, the cells were then treated with CCCP (100 µM) or 

W7 (150 µM) for 1 h or with NEM (2 mM) for 20 min at 37°C. Platelets were 

centrifuged (2,800 rpm, 5 min) and supernatants were incubated on JAQ3-coated (10 

µg/mL) ELISA plates for 1 h at 37°C. After extensive washing, plates were incubated 

with HRP-labeled streptavidin for 45 min at 37°C and after extensive washing, 

developed using 3,3,5,5-tetramethylbenzidine (TMB). The reaction was stopped by 

addition of 2 N H2SO4 and absorbance at 450 nm was recorded on a Multiskan 

(Thermo Scientific). 

 

B.2.8.5. Adhesion under flow conditions 

Blood was collected in 300 µL 20 u/mL heparin and finally diluted as follows: 2:1 in 

Tyrode`s buffer containing Ca2+. Coverslips (24 x 60 mm) were coated with fibrillar 

(Horm) collagen (0.2 mg/mL, Nycomed, Munich, Germany) over night at 37°C and 

finally blocked for 1 h with 1% bovine serum albumin. Perfusion studies were 

performed as follows. Transparent flow chambers with a slit depth of 50 µm, 



                                                                                               B. Materials and Methods 
   

  
  55  

equipped with the coated coverslips, were connected to a syringe filled with the anti-

coagulated blood. Perfusion was performed using a pulse-free pump under high 

shear stress equivalent to a wall shear rate of 1,000 s-1 (4 min). Thereafter, chambers 

were rinsed with Tyrode`s buffer at the same shear stress and phase-contrast 

images were recorded from at least five different microscope fields (40x objectives). 

Analysis was performed using MetaVue ® software.  

 

B.2.8.6. Platelet spreading on fibrinogen 

Thrombin (0.001 u/mL) was added to washed platelets and 60 µL platelets (300,000 

plts/µL in Tyrode`s containing calcium) were immediately allowed to spread on a 

fibrinogen-coated (1 mg/mL, 1 hour at 37°C, blocked with 1% BSA for 1 hour at RT) 

rectangular coverslip (24 x 60 mm). Platelet spreading was monitored under 100x 

magnification with taken pictures every 5 seconds for 20 min. For statistical analysis, 

bound platelets were fixed with 4% PFA in Tyrode´s buffer at the indicated time 

points and counted. Alternatively, for analysis with STED (stimulated emission 

depletion microscopy) microscopy (Leica SP5), spread platelets on fibrinogen were 

stained with phalloidin-Atto 647. 

 

B.2.8.7. F-actin assembly  

150,000-200,000/µL of washed platelets were diluted 1:10 in Tyrode`s buffer 

containing calcium and were subsequently incubated with 10 µL anti-GPIX 

DyLight649 antibody for a sample of a volume of 100 µL for 3 minutes at 37°C and 

400 rpm. Subsequently, the platelets were not stimulated or stimulated with 1 u/mL 

thrombin for 2 min at 37°C and 400 rpm. The platelets were fixed with 0.55 volume of 

10% paraformaldehyde for 10 min at 37°C and 400 rpm and then centrifuged. The 

pellet was resuspended in 55 µL Tyrode`s containing calcium with 0.1 volume 1% 

Triton X-100. After this, the platelets were stained with 10 µM phalloidin-FITC for 30 

min at RT, stopped with PBS, centrifuged at 2,800 rpm for 5 min, resuspended in 500 

µL PBS and analyzed on a FACSCalibur from Becton Dickinson. Resting values 

were set to 1. 
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B.2.9. In vivo experiments 

B.2.9.1. Measurement of cleaved GPVI in plasma 

Isofluran anaesthetized mice were injected intravenously with biotinylated JAQ1 (100 

µg) and blood (100 µL in 100 µL heparin) was collected. Blood was centrifuged at 

2,800 rpm for 5 min and supernatant again at 14,000 rpm for 5 min. Plasma was 

collected and incubated on JAQ3-coated ELISA plates. ELISA was performed as 

described in B.2.8.4. 

 

B.2.9.2. Measurement of cleaved GPIb and GPV in plasma 

100 µL blood was collected in 100 µL 20 u/mL heparin in TBS and centrifuged at 

2,800 rpm for 5 minutes and plasma was used for ELISA. Plates were coated with 30 

µg/mL 7A9 (GPIb) or 89H11 (GPV) over night at 4°C and subsequently blocked with 

5% BSA for 2 hours at 37°C. Plasma was added to the plates and diluted in log2 

dilutions in 1% BSA in PBS for 1 hour at 37°C. After 3x washing, plates were 

incubated with 15E2-HRP (GPIb) 1:500 or 89F12-HRP (GPV) 1:1,000 for 1 hour at 

37°C. After 3x washing, samples were developed using 3,3,5,5-tetramethylbenzidine 

(TMB). The reaction was stopped by addition of 2 N H2SO4 and absorbance at 450 

nm was recorded on a Multiskan. 

 

B.2.9.3. Measurement of thrombopoietin level in plasma 

Experiment, preparations and dilutions were performed according to the 

manufacturer´s protocol (R&D Systems, Minneapolis, USA). Briefly, 50 µL assay 

diluent was added to each well and then either 50 µL of standard, control or mouse 

plasma was added and incubated for 2 hours. Each step was performed at RT. After 

5x washing with wash buffer, 100 µL TPO conjugated was added for 2 hours. After 

washing, 100 µL substrate solution was added for 30 minutes under light protection 

and reaction was stopped with 100 µL stop solution. The absorbance was measured 

at 450 nm on a Multiskan. 

 

B.2.9.4. Intravital microscopy of thrombus formation in FeCl3-injured 

mesenteric arterioles 

Mice of a weight between 15 - 18 g were anesthetized with 2.5% avertin and the 

mesentery was exteriorized through a midline abdominal incision. 35 – 60 µm 

diameter arterioles were visualized at 10x with an inverted microscope (Axiovert 200; 
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Carl Zeiss, Inc.) equipped with a 100-W HBO fluorescent lamp source and a camera 

(CoolSNAP-EZ; Visitron). Injury was induced by topical application of a 3-mm2 filter 

paper saturated with 20% FeCl3. Thrombus formation of fluorescently labeled 

platelets (DyLight 488–conjugated anti-GPIX Ig derivative) in arterioles was 

monitored for 40 min or until complete occlusion occurred (blood flow stopped for >1 

min).  

 

B.2.9.5. Aorta occlusion model  

A longitudinal incision was performed to open the abdominal cavity of anesthetized 

mice and expose the abdominal aorta. An ultrasonic flow probe was placed around 

the vessel, and thrombosis was induced by a single firm compression with a forceps. 

Blood flow was monitored until complete occlusion occurred or 30 min had elapsed. 

 

B.2.10. Bleeding time experiments 

Mice were anesthetized by intraperitoneal injection of the substances dormitor, 

dormicum and fentanyl, and a 1 mm segment of the tail tip was cut off with a scalpel. 

Tail bleeding was monitored by gently absorbing the drop of blood with a filter paper 

without contacting the wound site. When no blood was observed on the paper after 

20 second intervals, bleeding was determined to have ceased. The experiment was 

manually stopped after 20 minutes. 

 

B.2.11. Electron microscopy of platelets 

B.2.11.1. Sample preparation for transmission electron microscopy (TEM) 

Fixed platelets (300,000/µL) with 2.5% glutaraldehyde (GA) were washed 3x with 

cacodylate buffer and centrifuged at 1,500x g for 5 min. Then, 1 mL 2% agarose 

(45°C) was added to the platelets and centrifuged at high speed for 5 min. The 

supernatant except 100 µL was discarded. After 10 min, the platelet pellet in agarose 

was cut into small pieces and transferred in cacodylate buffer. The pieces were 

incubated with 1% osmium for 1 hour at RT and then washed 2x with cacodylate 

buffer and 2x with H2O. Then 2% uranyl acetate was added for 1 hour at 4°C. The 

samples were washed 3x with H2O and dehydrated with ethanol (70% 4 x 5´, 95% 3 

x 15´, 100% 3 x 15´). Next, samples were incubated with propylenoxide 2 x 10´ at RT 

and propylenoxide and epon in the ratio 1:1 for 1 hour at RT under rotation. Following 

this, epon was added over night at RT under rotation and next day again for 2 hours. 
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The samples were embedded in gelatine tubes filled with epon and incubated at 

60°C for 48 hours. Then the sample preparation was finshed and could be used for 

cutting and analysis.  

 

B.2.11.2. Sample preparation for scanning electron microscopy (SEM) 

Fixed resting platelets (1,000x g for 5´, washed once in cacodylate buffer) were 

allowed to adhere for 20 minutes at RT on coverslips coated with 0.01% Poly-Lysin 

(coating for 10 minutes and then left to dry over night at RT or 2 hours at 60°C).  

For the spreading of platelets, coverslips were coated with 100 µg/mL fibrinogen for 2 

h at RT and blocked with 1% BSA. Platelets (30,000/µL) were preactivated with 0.1 

u/mL thrombin and applied to the cover slip. The samples were stopped after the 

indicated time points with 2.5% GA for 1 hour at 37°C. Samples were washed once 

with cacodylate buffer and treated as follows: 

ethanol: 70%  4x5´ 

80%  1x5´ 

95%  1x5´ 

100%  2x30´ 

hexamethyldisilazan (HMDS) diluted in 100% ethanol: 

25%  1x5´ 

50%  1x5´ 

  75%  1x5´ 

  100%  2x5´ 

Then, samples were fixed on specimen mount stubs and left to dry at RT. Following 

this, samples were coated with gold/palladium in a Sputter Coater and analyzed. 

Alternatively for analysis of the cytoskeleton, spread platelets were treated with 

cytoskeleton buffer for 2 minutes and then fixed with 2% PFA in PHEM buffer. The 

samples were washed 3x in PHEM, 1x in H2O and treated with 0.2% tannic acid for 

30 min. After extensive washing with H2O, samples were incubated with 0.5% OsO4 

for 5 min and washed 3x with H2O. Then, dehydration was performed with ethanol 

(70% 4 x 5´, 80% 1 x 5´, 95% 1 x 5´ and 100% 2 x 30´) and then treated as described 

above with HMDS and sputtered.  
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B.2.12. Staining of histological sections 

B.2.12.1. Paraffin sections 

Spleen or bone marrow (femur at least 6 weeks in decalcification buffer) was cut after 

embedding in paraffin into 5 µm thin sections. Deparaffination was performed with 

xylol (2 x 3´) and then rehydrated with ethanol (100%, 96%, 90%, 80% and 70% 

each 2 min) and H2O. Samples were stained with hematoxylin for 30 sec and after 

running under tab water for several minutes with 0.05% eosin for 3 min. Dehydration 

was performed in reversed order. The samples were mounted with a Xylol-based 

medium (Eukitt). 

 

B.2.12.2. Cryo sections 

Spleen was frozen in liquid nitrogen and cut into 5 µm thin sections. The samples 

were fixed in cold acetone for 20 min and washed in PBS. Peroxidase inhibition was 

done with 0.03% H2O2 at RT for 20 min. After washing in PBS, samples were blocked 

with 1% BSA in 0.3% rat serum for 60 min. Anti-GPIb (15E2/3G6) antibody 

conjugated with HRP (1:500) was added for 2 hours and then removed by washing 

with PBS. Then, samples were treated with AEC solution for approximately 30 min 

and then counterstained with hematoxylin for 30 sec. The samples were mounted 

with aquatex.  

 

B.2.13. Analysis of megakaryocytes 

B.2.13.1. In vitro differentiation of megakaryocytes 

Fetal liver cells of embryos at day 13.5-14.5 were prepared and homogenized with a 

syringe and using 18G and 22G needles. The cells were centrifuged once with MK 

medium and cultured with MK medium containing 50 ng/mL thrombopoietin (TPO) in 

a 12 well plate at 37°C and 5% CO2. On day 3, megakaryocytes were enriched by 

gradient density filtration with 1.5 and 3% BSA. Therefore, collected cells were gently 

overlayed on the prewarmed BSA gradient and incubated for 45 minutes at RT. The 

lowest phase of 500 µL contained the cells with the biggest size. These cells were 

centrifuged again and cultured with MK medium containing 50 ng/mL thrombopoietin 

(TPO) in a 12 well plate for one day at 37°C and 5% CO2. On day 4, megakaryocytes 

were analyzed and counted for proplatelet formation under a light microscope. Visual 

fields containing at least 10 differentiated megakaryocytes without contact inhibition 

were counted for proplatelet formation. 
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B.2.13.2. Staining of in vitro differentiated megakaryocytes 

For analysis under a confocal microscope, 250 µL of the cultured cells were 

centrifuged on an object slide at 800 rpm for 6 minutes, fixed in 4% 

paraformaldehyde, 0.05% GA and 0.05% triton-X for 12 minutes at RT. After 3x 

washing with 1x PHEM, samples were incubated with 0.1% NaBH4 in PHEM 2x for 

10 min. Cells were washed 3x in PBS and permeabilized with 0.5% triton-X in PBS 

and washed again. Then the samples were blocked with 3% BSA for 2 hours and 

stained with the indicated antibodies for 1 hour. Staining with DAPI was performed 

for 5 minutes. The samples were mounted with Prolong Antifade. 

 

B.2.13.3. Determination of ploidy from bone marrow megakaryocytes 

Femur from one mouse was flushed with CATCH buffer. 1/10 of the suspension was 

centrifuged at 1,200 rpm for 5 min and resuspended in 400 µL 1:1 mixture 

CATCH/PBS with 5% FCS. Unspecific binding sites were saturated with an anti-FcR 

antibody (1/50 dilution; 2.4G2 antibody) for 15 min on ice and then stained either for 

control with an anti-rat IgG1-FITC antibody (1/5 dilution) or with an anti-GPIIb 

antibody (1/5 dilution; 5D7-FITC) for 20 minutes on ice. Finally, 1 mL CATCH/PBS 

with 5% FCS buffer was added, the sample centrifuged and after resuspension in 

250 µL PBS/0.1% EDTA fixed with additional 250 µL PBS/1% PFA for 10 min on ice. 

Washing was performed with addition of 3 mL PBS and after centrifugation, 

permeabilization was done by resuspending the pellet in 500 µL PBS/0.1% Tween for 

10 min on ice. After washing, samples were stained with 500 µL propidium iodide 

staining solution over night at 4°C and analyzed in a flow cytometer.   

 

B.2.13.4. TEM analysis of bone marrow megakaryocytes 

For transmission electron microscopy the femura of mice were cut with scissors in 

pieces, and then fixed for 3 hours or over night at 4°C with 0.1 M sodium cacodylate 

(pH 7.2) containing 2.5% glutaraldehyde and 2% formaldehyde. The bone was 

removed with forceps. The remaining bone marrow was washed with 50 mM sodium 

cacodylate (pH 7.2) and subsequently fixed for 2 hours at 4°C with 2% osmium 

tetroxide in 50 mM sodium cacodylate (pH 7.2). Samples washed with distilled water 

were stained over night with 0.5% aqueous uranyl acetate, dehydrated with ethanol 

and embedded in Epon 812. Ultrathin sections were stained with 2% uranyl acetate 

(in 100% ethanol) followed by lead citrate.  
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For immunolocalization pieces of femur containing bone marrow were fixed for 3 

hours or over night at 4°C with PBS containing 4% formaldehyde.  The bone marrow 

was then processed for embedding in LR-White resin exactly as described131. 

Ultrathin LR-White sections were incubated with actin antibody (1:20 dilution) 

followed by the incubation with a secondary antibody conjugated to 12 nm colloidal 

gold. LR-White sections were incubated with antibodies, washed and finally stained 

with uranyl acetate and lead citrate as described131. Sections were inspected with an 

EM900 electron microscope (Zeiss, Oberkochen, Germany). Negatives were 

digitalized by scanning and processed with Adobe Photoshop.  

 

B.2.13.5. Analysis of bone marrow explants 

Bone marrow was obtained by flushing femora with Tyrode’s buffer. The bone 

marrow was cut in transverse sections of 0.5 mm and placed in an incubation 

chamber containing Tyrode’s buffer supplemented with 5% mouse serum. Each 

chamber contained 12 fragments and was maintained at 37°C for 6 h. 

Megakaryocytes at the periphery of the tissue were observed under a phase contrast 

microscope (63x objective) coupled to a video camera. Images were acquired 

sequentially at 5 second intervals and processed with Metamorph software. Cells 

were classified according to their morphology. 

 

B.2.14. Data analysis  

The results shown are mean ± S.D. Statistical analysis was performed using Mann-

Whitney-U-test with P < 0.05 taken as the level of significance (*) and P < 0.001 

taken as the level of highly significance (***). 
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C. Results 

C.1. ADF/cofilin-dependent actin turnover is essential for platelet formation 

Adf-/- mice are viable, whereas mice lacking n-cofilin die during embryonic 

development50;51. To study n-cofilin (further on referred to as cofilin) function in 

megakaryocytes and platelets, mice carrying a floxed (loxP sites) n-cofilin gene were 

crossed with mice expressing Cre recombinase under the control of the 

megakaryocyte-specific platelet factor 4 (PF4) promoter (cofilinfl/fl, PF4-Cre)125. 

Western blot analysis confirmed that both ADF and cofilin were strongly expressed in 

wild-type platelets (Fig. 11). The absence of the proteins in platelets from the 

respective knock-out mice was confirmed demonstrating that the recombination of 

the loxP sites mediated by the Cre recombinase under the PF4 promoter efficiently 

abrogated cofilin expression. Possible mutual up-regulation of one isoform in 

response to the loss of the other was not obvious, indicating that compensatory 

mechanisms were not active in the mutant megakaryocytes/platelets. 

 

 

Fig. 11: Whole platelet proteins were separated by SDS-PAGE under reducing conditions and 
immunoblotted with anti-ADF (1:500), anti-cofilin (1:500) or anti-GPIIIa (1:1,000) antibodies. 
 
 
C.1.1. Analysis of ADF-null and cofilin-null platelets 

To study consequences of the lack of ADF or cofilin in platelet function and 

physiology, peripheral platelet counts and platelet size were determined. Mice 

constitutively lacking ADF had normal platelet counts (Fig. 12A) and size (not shown, 

see also Fig. 12C). In contrast, mice lacking cofilin displayed moderately reduced 

platelet counts varying from approximately 60 to 80% of control (Fig. 12A). 
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Remarkably, however, the size of these platelets was markedly increased compared 

to the control as revealed by determination of the forward scatter signal in flow 

cytometry (Fig. 12B) and transmission electron microscopy (Fig. 12C). In contrast to 

wild-type and Adf-/- platelets which appeared normal in size and displayed a discoid 

shape, platelets from cofilin-deficient mice were giant and displayed an ovoid shape.  

 

 

 

Fig. 12: Determination of platelet count, size and shape of single knock-out platelets. 
Platelet count (A) and size (B) were determined by flow cytometry. Results are mean ± SD (n = 6 mice 
per group). *, P < 0.05; ***, P < 0.001. (C) Transmission electron microscopy analysis of resting 
platelets under 6,500x magnification. 
 

Further analysis of Adf knock-out mice revealed no obvious phenotype. Briefly, Adf -/- 

platelets displayed normal expression of prominent platelet receptors (Fig. 13A), 

overall unaltered agonist-induced integrin activation and P-selectin exposure, a 

marker for -granule release (Fig. 13B and C), and platelet aggregation (Fig. 13D) 

upon activation with all tested agonists and different concentrations (not shown). 
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Fig. 13: Unaltered protein expression, platelet activation and aggregation of Adf–/– platelets.  
(A) Flow cytometric analysis of glycoprotein expression. Platelets were stained with the indicated 
fluorophore-labeled antibodies for 15 minutes and directly analyzed. Results are mean ± SD (n = 6 
mice per group). (B+C) Flow cytometric analysis of integrin IIb3 activation (binding of JON/A-PE) 
and degranulation-dependent P-selectin exposure. Washed blood was incubated with the indicated 
agonists for 15 minutes and analyzed on a FACSCalibur. Results are mean ± SD (n = 6 mice per 
group). (D) Aggregation of Adf–/– platelets (gray lines) in response to indicated agonists (recording 
time = 10 min).  
 

Next, hemostatic function of Adf-/- mice was tested in a tail bleeding assay. For this, 1 

mm of the tail tip was cut with a scalpel and bleeding was determined as ceased 

when no blood drop was observed on a Whatman filter paper. Adf knock-out mice 

arrest bleeding within a similar time frame as control mice (Fig. 14A). ADF-deficient 

platelets were able to adhere and form thrombi in the ex vivo flow chamber system, 

in which anti-coagulated whole blood was perfused over a collagen-coated surface 

(Fig. 14B). Similarly, they formed normal thrombi in a FeCl3-induced arterial 

thrombosis model in vivo (Fig. 14C) where injury is induced by applying a drop of 

20% FeCl3 on a mesenteric arteriole. Taken together, this demonstrates that ADF is 

dispensable for platelet production and function in mice.  
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Fig. 14: Unaltered hemostatic function and thrombus formation in ADF-deficient mice. 
(A) 1 mm of the tail tip was cut with a scalpel and bleeding was determined to have ceased when no 
blood drop was observed on a filter paper. (B) Whole blood in buffer (Tyrode´s with calcium) was 
perfused over 0.2 mg/mL collagen in a flow chamber with a shear rate of 1,000 s-1. Representative 
pictures were taken (63x magnification). Mean surface coverage was measured with Metamorph. n = 
8 mice (C) Mesenteric arterioles were treated with 20% FeCl3, adhesion and thrombus formation of 
fluorescently labeled platelets were monitored by in vivo video microscopy. Representative images 
and statistical evaluation of time to occlusion are shown. 
 

Due to their increased size, cofilin-deficient platelets showed increased levels of 

prominent surface receptors (Table 1). This finding again indicated that cofilin is of 

major importance in the regulation of platelet size. 

The ultrastructure of cofilin-deficient giant platelets was not disordered, but according 

to their increased platelet size they contained more granules than control platelets. In 

line with this, these platelets exposed higher levels of -granule-derived P-selectin in 

response to strong agonists, such as thrombin or collagen related peptide (CRP) as 

compared to control (Fig. 15A). Agonist-induced inside-out activation of IIb3 was 

not affected (Fig. 15B). Cofilin-null platelets were also able to form aggregates after 

stimulation with various agonists (Fig. 15C) at different concentrations (not shown). 
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 control cofilin-null 

 
GPIb 387 ± 25 556 ± 69 
GPIX 483 ± 10 621 ± 49 
GPV 397 ± 7 471 ± 39 
CD9 1461 ± 24 1612 ± 92 
GPVI 59 ± 5 66 ± 7 
2 91 ± 3 118 ± 9 

1 181 ± 11 201 ± 12 

IIb3 296 ± 8 316 ± 24 
 
 
Table 1: Flow cytometric analysis of surface protein expression. Platelets were stained with the 
indicated fluorophore-labeled antibodies for 15 minutes and directly analyzed. Results are mean ± SD 
(n = 6 mice per group). 
 
 

 

 

Fig. 15: Unaltered platelet activation and aggregation of cofilin-null platelets.  
Flow cytometric analysis of degranulation-dependent P-selectin exposure (A) and integrin IIb3 
activation (B). Washed blood was incubated with the indicated agonists for 15 minutes and analyzed 
on a FACSCalibur. Results are mean ± SD (n = 6 mice per group). (C) Aggregation of cofilin-null 
platelets (gray lines) in response to indicated agonists (recording time = 10 min). Agonists were added 
after 30 seconds. 
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Cofilin-null mice also displayed normal bleeding times (Fig. 16A) and normal 

thrombus formation in the ex vivo flow chamber system (Fig. 16B) and in the in vivo 

FeCl3-induced arterial thrombosis model (Fig. 16C). This suggests that cofilin is not 

essential to arrest bleeding or to form stable thrombi. 

 

 

 

Fig. 16: Unaltered hemostatic function and thrombus formation in cofilin-null mice. 
(A) 1 mm of the tail tip was cut with a scalpel and bleeding was determined as ceased when no blood 
drop was observed on a whatman paper. (B) Whole blood in buffer (Tyrode´s with calcium) was 
perfused over 0.2 mg/mL collagen in a flow chamber at a shear rate of 1,000 s-1. Mean surface 
coverage was measured with Metamorph. n = 8 mice (C) Mesenteric arterioles were treated with 20% 
FeCl3, adhesion and thrombus formation of fluorescently labeled platelets was monitored by in vivo 
video microscopy. Representative images and statistical evaluation of time to occlusion are shown. 
 

To test the possibility that the increased platelet size and altered shape of cofilin-

deficient platelets resulted from an increased turnover of the platelets, their in vivo life 

span was determined. Therefore, a fluorescently labeled non-cytotoxic platelet-

specific antibody was intravenously injected into mice and the percentage of 

fluorescently labeled platelets was determined over time132. No differences were 

found in the turnover between wild-type, Adf-/- and cofilin-deficient mice with 
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continuous loss of the fluorescent platelet population over approximately 5 days (Fig. 

17). These data suggested that the lack of cofilin directly affected the production of 

correctly sized and shaped platelets rather than indirectly by increasing platelet 

production due to a reduced platelet life span. 

 

 

 

Fig. 17: Normal platelet life span of ADF- and cofilin-deficient platelets. 
Anti-GPIX antibody was injected i.v. Percentage of positively-labeled platelets were determined in a 
FACSCalibur at the indicated time points. 
 

Platelets are able to change their shape and spread on adhesive surfaces such as 

immobilized fibrinogen. This is a highly dynamic process that requires rapid 

reorganization of the actin cytoskeleton enabling filopodia and subsequent 

lamellipodia formation. To test a role of ADF or cofilin in this process, wild-type and 

mutant platelets were allowed to spread on immobilized fibrinogen for 60 min and 

analyzed at different time points (Fig. 18A). Adf-/- platelets were able to spread with 

the same kinetics as wild-type platelets with >90% of the cells having formed 

lamellipodia after 20 minutes. In contrast, while the adherence of cofilin-null platelets 

to the fibrinogen surface was normal, filopodia and subsequent lamellipodia 

formation were profoundly delayed. After 20 minutes, only approximately 40% of the 

cells had started lamellipodia formation. However, all cofilin-null platelets were 

principally able to form lamellipodia as shown after 60 minutes. This was also 

confirmed by electron and STED microscopy which revealed normal reorganization 

of the cytoskeleton in spread cofilin-deficient platelets at that time point (Fig. 18B+C). 

These results indicated that cofilin can functionally compensate the loss of ADF in 
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platelets and cofilin-mediated accelerated platelet actin dynamics are important in 

outside-in signaling through integrins but as shown before dispensable for initial 

agonist-induced activation44.  

 

 
 
Fig. 18: Delayed spreading of cofilin-null, but not of ADF-null platelets on fibrinogen. 
(A) Platelets were allowed to spread on a fibrinogen-coated surface. Platelets were fixed at different 
time points and counted. Pictures (upper panel; 100x magnification) were recorded after 20 minutes. 
(B) Scanning electron microscopy of spread platelets after plasma membrane denudation (pictures 
after 60 minutes; magnification 15,000x). (C) STED microscopy of spread platelets stained with 
phalloidin (pictures after 60 minutes; bar: 3 µm).  
 

C.1.2. Analysis of ADF/cofilin double-deficient platelets  

As described above, the lack of cofilin in megakaryocytes resulted in the formation of 

giant, non-discoid platelets. To further assess the role of ADF/cofilin in the process of 

platelet formation, mice were generated lacking both ADF and cofilin in 

megakaryocytes (Adf-/-/cofilinfl/fl, PF4-Cre). Remarkably, platelet counts in these 

double-mutant mice were dramatically reduced to < 5% of control mice (Fig. 19A), 

but the animals did not show any signs of spontaneous bleeding (data not shown). 

Transmission electron microscopy revealed that the few circulating platelets 
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displayed a marked variability in size and morphology (Fig. 19B). Giant platelets and 

microparticle-like platelets were observed and in most cases the ultrastructure was 

disordered. In contrast to single-deficient platelets, ADF/cofilin-deficient platelets 

contained accumulation of filaments in the cytoplasmic and the peripheral zone as 

shown by transmission electron microscopy of resting platelets (Fig. 19C). These 

findings demonstrate that combined lack of ADF and cofilin results in severely 

defective platelet production. Further functional analyses revealed marked functional 

deficits in the double-mutant platelets, including defective spreading as shown with 

scanning electron microscopy after denudation of the plasma membrane (Fig. 19D). 

 
Fig. 19: Determination of platelet count, shape and ultrastructure of double knock-out platelets. 
(A) Platelet count was determined in a flow cytometry. Results are mean ± SD (n = 6 mice per 
group).*, P < 0.05; ***, P < 0.001. (B+C) Transmission electron microscopy analysis of resting 
platelets. (D) Scanning electron analysis of spread platelets (60 minutes) after denudation of the 
membrane (15,000x magnification). 
 

ADF and cofilin are actin-binding proteins that enhance the depolymerization rate at 

the pointed end of filamentous actin, thereby promoting actin turnover and F-actin 

assembly. To test this directly, a F-actin assembly assay in platelets was performed 

using flow cytometry. The F-actin assembly ratio of thrombin-activated and resting 
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platelets was compared between all mouse lines. F-actin assembly in Adf-/- platelets 

was similar as observed in wild-type platelets (Fig. 20). A reduced ratio of F-actin 

assembly was measured in cofilin-null platelets. However, cofilin-null platelets were 

still able to polymerize actin. Strikingly, F-actin assembly was completely abolished in 

ADF/cofilin-deficient platelets. These results show that ADF along with cofilin are 

necessary for successful F-actin assembly, whereas absence of one of these 

proteins induces either no or a milder phenotype.  

 

 

 

Fig. 20: F-actin assembly is abolished in ADF/cofilin-deficient platelets. 
After activation with thrombin, platelets were fixed, permeabilized, stained with phalloidin-FITC and 
analyzed in a FACSCalibur. Resting wild-type value (mean fluorescence intensity) was set to 1 and 
ratio of activated platelets and resting platelets was determined. 
 

C.1.3. In vitro and in vivo analysis of megakaryocytes  

To assess the reason for the severe thrombocytopenia in ADF/cofilin-deficient mice, 

megakaryocytes (MK) were analyzed in spleen and bone marrow. ADF/cofilin-null 

mice displayed a severe splenomegaly (Fig. 21A). Interestingly, even at an early time 

point such as nine weeks the spleen/body weight ratio was significantly increased. 

After five months the splenomegaly was such profound that the spleen/body weight 

ratio was approximately six-fold increased compared to wild-type. Notably, in wild-

type and single-deficient mice (Adf-/- mice not shown) the spleen/body weight ratio did 

not change over time. Histological sections of the spleen revealed that in contrast to 

single-deficient mice, in ADF/cofilin-deficient mice the number of megakaryocytes 

was strongly increased (visual field: 328 x 246 µm; wt: 1.93 ± 0.14; ADF/cofilin-null 

12.8 ± 1.06) (Fig. 21B). This was confirmed by analysis of splenic cryo-sections 

stained with an anti-GPIb antibody specific for megakaryocytes and platelets (left 
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panel) and hematoxylin-eosin (HE)-stained paraffin sections (right panel). Apparently, 

a high number of anucleated megakaryocytes were observed in HE sections. 

However, sequential cuttings revealed that the same megakaryocyte that appeared 

to be anucleated on the one section contained a nucleus on one of the following 

sections (not shown). Together, these results demonstrated that the severe 

thrombocytopenia in ADF/cofilin-deficient mice was not caused by defective 

differentiation of megakaryocytes.  

 

 
 
Fig. 21: Splenomegaly and elevated MK (megakaryocyte) numbers in ADF/cofilin knock-out mice. 
(A) Spleen and body weight was measured after 9 weeks and 5 months. (B) Cryo and paraffin-
embedded sections (5 µm) were stained with anti-GPIb-HRP/hematoxylin and hematoxylin/eosin, 
respectively. Numbers of MKs per visual field (328 x 246 µm) were determined. White arrows indicate 
MK. 
 

Prompted by the splenomegaly and the elevated MK numbers, plasma 

thrombopoietin levels were measured to determine a possible role of thrombopoietin 

(TPO) for the observed phenotype. However, no obvious differences of TPO level in 
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plasma were found in the knock-out mice, excluding a role of TPO for the strong 

spleen phenotype observed in ADF/cofilin knock-out mice (Fig. 22). 

 

 
 
Fig. 22: Similar TPO plasma levels in the analyzed mice. 
Plasma was collected from mice and investigated for TPO levels in a Multiskan photometer at 450 nm. 
Each symbol represents one mouse. 
 
 
Similar to spleen, MK numbers in the bone marrow of ADF/cofilin-null mice were 

markedly increased compared to wild-type controls (visual field: 328 x 246 µm; wt: 

8.46 ± 2.13; ADF/cofilin-null: 26.6 ± 5.6) (Fig. 23A), whereas no alterations were 

found in the single-mutant mice. The structure of the bone marrow was not obviously 

altered in any of the single- or double-mutant mice. However, transmission electron 

microscopy revealed marked morphological abnormalities in ADF/cofilin-null MKs. 

The typical highly organized structure of the cytoplasm was totally absent (Fig. 23B). 

Only remaining parts of the demarcation membrane system (DMS) were observed 

and granule distribution was severely defective. These results implicated that 

ADF/cofilin are crucial for the formation of platelet zones in MKs. The peripheral zone 

was enlarged due to enrichment of actin filaments and in addition, significant 

accumulation of actin filaments in the cytoplasm was frequently seen in ADF/cofilin-

deficient MKs (Fig. 23B). Actin accumulation was also confirmed by actin 

immunlocalization (Fig. 23C). In summary, ADF/cofilin are highly important for the 

correct development and organization of the demarcation membrane system in the 

megakaryocyte cytoplasm which is required for normal platelet production. 



  C. Results    

  
  74  

 

 

Fig. 23: Morphological abnormalities in bone marrow MKs of ADF/cofilin-null mice. 
(A) Paraffin-embedded sections (5 µm) were stained with hematoxylin/eosin. Numbers of MKs per 
visual field (328 x 246 µm) were determined. (B) Transmission electron microscopy of bone marrow 
MKs. (C) Actin-immunlocalization in bone marrow MK of ADF/cofilin-null mice. Individual 12 nm gold 
particles are marked with a black circle. 
 

To test whether the abnormal ultrastructure of bone marrow MKs is a consequence 

of a defect in early MK maturation, ploidy as a marker for endomitosis was 

investigated. Therefore, distribution of DNA content in bone marrow MKs was 

measured after harvesting the bone marrow. The frequency of distribution of MK 

DNA content was similar between all mouse lines (Fig. 24). Only a minor shift to 

higher ploidy was observed in ADF/cofilin-null MKs which is in agreement with 

reports on minor increase in ploidy in acute thrombocytopenia133. However, a defect 

in endomitosis and with this a defect in MK maturation was not observed. This 

suggested that the defect in development of the demarcation membrane system is a 

late stage defect. 
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Fig. 24: Similar distribution of bone marrow MK DNA content 
Bone marrow was harvested and MK DNA was stained with propidium iodide and DNA distribution 
was measured on a FACSCalibur. Representative histograms are depicted. Results are mean ± SD (n 
= 4 mice per group).  
 

To further study platelet biogenesis in more detail, fetal liver cells of wild-type and 

mutant mice were cultured and allowed to differentiate into MKs for 4 days as 

described134. While in cultures of ADF- or cofilin-null mice proplatelet formation 

occurred to the same level as wild-type cultures, a significant (P < 0.001) reduction in 

the number of proplatelet forming MKs (wt: 33.46 ± 4.12%; ADF/cofilin-null: 16.98 ± 

3.88%) was seen in the double-mutant cultures (Fig. 25A). Given the fact that 

ADF/cofilin-null mice show a severe thrombocytopenia (< 5% of wt) and bone marrow 

megakaryocytes are unable to form a normal demarcation membrane system in vivo, 

it was surprising that still a significant number of ADF/cofilin-null megakaryocytes 

were able to produce proplatelets. Therefore, the differentiated ADF/cofilin-deficient 

megakaryocytes were investigated in more detail. Again, it was observed that actin 

accumulates in the cell body as shown by phalloidin staining (Fig. 25B). Most 

strikingly, however, the typical periodical swellings located at the proplatelet shaft in 

wild-type MKs12 were absent (Fig. 25C). This finding strongly suggests that 

ADF/cofilin are crucially involved in the formation of proplatelet swellings in vitro. This 

lead to the hypothesis that the formation of proplatelet swellings in vitro rather than 

the formation of proplatelets is the more likely correlate to the formation of platelet 

zones in bone marrow megakaryocytes in vivo. Further, explantation of wild-type and 

ADF/cofilin-null bone marrow was performed and MK differentiation observed and 

analyzed. During preparation it was generally observed that double knock-out bone 

marrow was less compact and more transluctant. To analyze MK differentiation, MKs 



  C. Results    

  
  76  

were classified into four categories: small MKs, spherical MKs, MKs with large 

pseudopodia and MKs with proplatelets. Fig. 25D shows that the number of small 

MKs is 2-3x increased in double knock-out bone marrow but they are less capable to 

form proplatelets.  

 

 
 
 
Fig. 25: Reduced proplatelet and absent swelling formation of ADF/cofilin-null MKs. 
(A) Fetal liver cells were cultured for 4 days and MKs were analyzed for proplatelet formation. (B+C) 
In vitro MKs ((B) without proplatelets; (C) with proplatelets) were analyzed with confocal microscopy 
after staining for the nucleus (blue), tubulin (magenta) and actin (red). (D) MKs from bone marrow 
explants were cultured for the indicated time points and classified into different stages. Left pictures 
depict different stages of wild-type MK differentiation. MKs are marked with white arrows. 
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Detailed observation showed that the cytoplasm and nucleus of ADF/cofilin-deficient 

MKs are not clearly delineated and the contour appeared to be more irregular (Fig. 

26B). The few proplatelet-like extensions that were formed by double-deficient MKs 

appeared to be thinner, without swellings and shorter (Fig. 26A). Interestingly, after 

the 6 hours observation period many thin extensions of double-deficient MKs were 

found loosely in the chamber (Fig. 26C). This possibly indicates that proplatelet 

swellings contribute to the stabilization of proplatelets. The results shown in figure 26 

support previous findings that ADF/cofilin-null MKs form significantly less proplatelets 

and that formed proplatelet-like extensions are not decorated with periodical 

swellings.   

 

 
 
 
Fig. 26: Altered morphology of MKs and extension in ADF/cofilin-null bone marrow explants. 
Bone marrow explants were cultured in a chamber and images were recorded after 6 hours.  
Proplatelet-like extensions (A) and morphology of spherical MKs (B) were compared and analyzed. 
(C) Single extensions of ADF/cofilin-null MKs found in the chamber.  
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C.1.4. Platelet and MK analysis of cofilin- and ADF/cofilin-deficient mice using  

           the Mx-Cre system 

Before 2007 when the mouse line was generated carrying the Cre recombinase 

under the PF4 promoter125, the Mx-Cre mouse was the commonly accepted mouse 

line to study conditional gene deletion in the hematopoietic system. In contrast to the 

PF4-Cre system, the expression of the Cre recombinase can be induced in the Mx-

Cre system by type I interferon in the adult state of a mouse. The knock-out efficacy 

in the hematopoietic system is extremely efficient, however, it is not specific for the 

hematopoietic system as it also effects other cell types including liver cells, 

endothelial cells and the bone marrow126. For these studies, Cre induction was 

achieved by injecting 200 µg Poly-I/Poly-C per mouse on day 0 and day 2.   

Platelet counts in cofilin-null, but not control mice were dramatically reduced five 

days after Cre induction (Fig. 27A). Mice deficient in both ADF and cofilin showed an 

even stronger decrease in platelet counts at this time point. No differences in 

hematocrits were observed on day 5 (not shown), whereas marked differences were 

determined on day 9 (control: 43.5 ± 2.2%, cofilin-null: 29.7 ± 7.1%, ADF/cofilin-null: 

19.7 ± 1.5%). All double-deficient mice died within ten days after Poly-I/Poly-C 

injection. Megakaryocytes of the mutant mice were analyzed to understand the 

dramatic decrease of the platelet count. MK counts were determined in spleen (Fig. 

27B) and bone marrow (Fig. 27C) in control and mutant mice at different time points 

after Cre induction. Although the spleen structure was unaltered, the number of MKs 

in both spleen and bone marrow of cofilin-null mice was profoundly reduced (to 30 

and 60% of control) on day 5 and further decreased on day 9 (to 13 and 17% of 

control) and 12 (both to 6% of control). At the later time points, a progressive 

destruction of bone marrow structure and reduction in bone marrow cellularity 

became evident in cofilin-null mice. In double-deficient mice, the reduction in MK 

numbers was even more severe as was the destruction of the bone marrow 

architecture. The results obtained by using the Mx-Cre system show that cofilin is the 

more important isoform for maintaining the bone marrow architecture and 

consequently for MK survival. However, ADF also contributes to this process as the 

double-mutant mice show a stronger phenotype. 
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Fig. 27: Reduced platelet and MK counts in mutant mice. 
(A) Platelet count was determined by flow cytometry. Results are mean ± SD (n = 4 mice; 
representative of three individual experiments). (B) Analysis of 5 µm splenic sections on day 9. 
Paraffin-embedded (upper panel) and Cryo sections (lower panel) were stained with 
hematoxylin/eosin and anti-GPIb-HRP/hematoxylin. Numbers of MKs per visual field (328 x 246 µm) 
were determined. (C) Analysis of 5 µm bone marrow sections. Paraffin-embedded sections were 
stained with hematoxylin/eosin. Numbers of MKs per visual field (328 x 246 µm) were determined.  
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C.2. Regulation of GPVI by ADAM metalloproteinases 

In the second part of the dissertation, mechanisms underlying the regulation of the 

platelet receptor glycoprotein VI (GPVI) were studied. For this, a Gp6 knock-out and 

an Adam10 conditional knock-out mouse were generated. In addition to ADAM10 

mice, low TACE (ADAM17) mice were used to identify the GPVI sheddase.  

 

C.2.1. GPVI down-regulation in murine platelets through metalloproteinase-  

           dependent shedding 

GPVI mediates platelet activation which leads to firm adhesion and aggregation on 

subendothelial collagen. As mentioned in the introduction, GPVI can be down-

regulated from the platelet surface in mice in vivo making this receptor a promising 

target for anti-thrombotic therapy. The mechanisms of down-regulation and the 

relevance of these observations for humans are not fully explored. To study this in 

more detail, genetically modified mouse lines were generated to investigate GPVI 

regulation. 

 

C.2.2. Construction of targeting vectors for the generation of Gp6 transgenic   

           mice 

The successful construction of the targeting vectors for the generation of Gp6 

transgenic mice was performed before and described in detail in the Master thesis 

“Targeting vectors for the generation of human GPVI transgenic mice” (Markus 

Bender, February 2006). Therefore, the chapters C.2.1.1. – C.2.1.6. briefly 

summarize the main results of the thesis. 

 

C.2.2.1. Identification of the mouse Gp6 gene 

For identification of the mouse Gp6 gene, a mouse genomic library was screened 

which represents most of mouse genes as ligated DNA fragments into BAC (bacterial 

artificial chromosome) vectors.  

Primers were designed against the exon 2 and 3 region of the Gp6 gene. This region 

was amplified, tested by Southern blot and used as an internal probe for screening 

the mouse library. After hybridizing the BAC filters with the radioactively labeled 

internal probe, five positive clones were identified and purchased. Genomic DNA 

from the delivered BAC clones was isolated and used as a template for the control 
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PCR (Fig. 28). RP22 - 365P17 and RP22 - 455P10 BAC clones (lane 2 and 4) 

contained the genomic region of mouse Gp6. 

 

 
 
 
Fig. 28: Identification of the mouse Gp6 gene using PCR-based strategy.  
Exon 2, intron 2 and exon 3 were amplified by exon 2 forward and exon 3 reverse primers. The size of 
the PCR products is indicated with an arrow. Lane 2 and 4 are positive. 
 
In order to confirm the PCR results, RP22 - 365P17 clone was digested with different 

restriction endonucleases, fragments were size-separated, blotted onto a 

nitrocellulose membrane and hybridized with the internal probe. After Southern 

blotting, expected DNA fragments were labeled (Fig. 29). This correct BAC clone was 

used as a PCR template to amplify the homologous arms for the generation of the 

targeting vector.  

 

 
 
 
Fig. 29: Southern hybridization of a Gp6 positive BAC clone.  
(A) The mouse Gp6 DNA sequence was virtually digested with EcoRI, BamHI, HindIII. According to 
NCBI sequencing data, the expected sizes of DNA fragments are indicated. (B) Analysis of BAC clone 
with Southern hybridization is shown. RP22–365P17 BAC clone was digested with EcoRI, BamHI and 
HindIII enzymes. Sizes of radioactively labeled genomic fragments are indicated with arrows. 
 

C.2.2.2. Targeting strategy for the generation of GP6 knock-out and knock-in  

               mice 

The strategies for the generation of Gp6 knock-out and GP6 knock-in mice are 

schematically presented in Fig. 30. The signal peptide of mouse GPVI is encoded by 

exons 1 and 2. The GPVI amino acid sequence of different species was aligned (not 
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shown) demonstrating that the signal peptide sequences strongly vary between the 

species. Therefore, the mouse signal peptide was preserved for the knock-in 

constructs. Exon 2 and intron 2 were partially deleted and a marker and a neomycin 

resistance cassette were inserted and fused to exon 3 in all cases. Upstream of the 

IRES (internal ribosome entry site) element in the knock-out vector a multiple cloning 

site was created which allowed to insert wild-type or mutated human GP6 cDNA 

easily. The human GP6 cDNA without the coding region of the signal peptide was 

fused to exon 2 in frame. This strategy makes it possible to express a chimeric GPVI 

protein which contains the mouse signal peptide of GPVI and the human GPVI 

receptor. 

 
Fig. 30: Targeting strategy of the mouse Gp6 gene; generation of GP6 knock-out and knock-in mice. 
The gene structure of mouse Gp6 is displayed. Exons (E1 to E8) are indicated as black boxes. Introns 
are labeled with a line. Domain structures and motifs are labeled according to the coded exons (SP: 
signal peptide; Ig-C2: immunoglobulin-like domain; M: mucin-rich region; TM: transmembrane domain; 
CB: calmodulin binding site; PLP: poly-L-proline-rich sequence). Schematic structure of the knock-out 
GPVI allele is shown. The pWH9 (IRES+lacZ) and neomycin resistance cassette (PGK promoter+neo 
gene) are labeled. The schematic structure of the knock-in GP6 allele is displayed. Fusion of the 
human GP6 cDNA to exon 2 is shown. The signal peptide is encoded by exon 1 and a part of exon 2, 
other domains and motifs are encoded by the human GP6 cDNA. 
 

C.2.2.3. Amplification of the homologous arms for the targeting vector 

The 5´ arm of Gp6 contains exon 1, intron 1 and a part of exon 2. The size of the 5´ 

arm is 3.2 kb. After subcloning, a new HindIII restriction enzyme site in intron 1 was 
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generated by using site-directed mutagenesis. This newly generated HindIII site in 

intron 1 was crucial for the identification of homologue recombinant clones. An 

extract of the sequencing results concerning the generation of the new HindIII site in 

intron 1 is shown (Fig. 31). 

 

 

 

 
 
Fig. 31: Part of the Gp6 5` arm containing the new HindIII site. 
(A) The upper line (Seq.1) shows an extract of the mouse Gp6 sequence. The lower line (Seq. 2) is an 
extract of the sequencing result. Identical nucleotides are indicated with bars. The star marks the 
mutation for generation of a HindIII site. Reverse sequence is displayed. (B) An extract of the 
sequencing data is shown. The asterisk indicates the mutation for the generation of a HindIII site. 
 
The 3´ arm with a length of about 4.1 kb was amplified with exon 3 forward and exon 

4 reverse primers using the Gp6-specific genomic BAC clone as a template.  

 

C.2.2.4. Amplification of the human GP6 cDNA  

To generate GP6 knock-in mice, the human GP6 cDNA was ligated into a cloning 

vector. Therefore, based on EST sequencing data (NCBI), three EST clones were 

purchased bearing the human GP6 cDNA (see Table 2). 

 

 

 

 

 

 

 

Table 2: EST clones bearing the human GP6 cDNA. 

 

RPZD clone ID 

IMAGp958M21997Q2 

IMAGp958K07197Q2 

HU3_p983F041002D2 
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The human GP6 cDNA was amplified from the translation initiation site until stop 

codon. This human cDNA served as a template for the following PCR. For generation 

of a mouse/human GPVI chimeric receptor, first the human signal peptide in the 

cDNA was deleted. For this, a primer combination was used which amplified the 

coding region of human GP6. The length of the PCR product was 1 kb.  

 

C.2.2.5. Mutation of calmodulin, CRP and collagen binding sites on human  

              GP6 

In addition, three different human GP6 cDNAs were generated which contained 

mutated important binding sites according to the following publications: (1) Lecut C. 

et al. identified the most important amino acid residues which are involved in collagen 

binding. In vitro studies revealed that valine 34 and leucine 36 are crucial for the 

interaction between GPVI and collagen. Moreover, a mutation of glycine 30 caused a 

stronger defect for binding to collagen135. (2) Smethurst et al. demonstrated in vitro 

that the mutation from lysine 59 to a glutamic acid on a human monomeric 

recombinant peptide resulted in a reduced binding to CRP (collagen-related 

peptide)136. (3) The interaction between GPVI and calmodulin was examined by 

Andrews et al. using a GPVI-related synthetic peptide (His269-Pro287). This peptide 

contained a calmodulin recognition site63. Based on the amino acid alignment with 

other calmodulin binding proteins, three amino acids were conserved in the motif of 

calmodulin binding sites. Therefore, the amino acids R271A, K273E and R280A were 

mutated in human GPVI which seemed to be crucial for calmodulin and GPVI 

interaction. Site-directed mutagenesis was performed using the subcloned wild-type 

human cDNA. Table 3 shows the references and the mutated amino acids.  

 

Binding sites on human GPVI Mutated amino acids References 

Collagen G30A, V34A, L36A 135 

CRP K59E 136 

Calmodulin R271A, K273E, R280A 63 

 

  

Table 3: Mutated binding sites on human GPVI. 
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Fig. 32 shows an extract from the sequencing results and the alignment of the 

mutated cDNAs compared with the wild-type sequence, based on nucleotide and 

amino acid level. 

 
 
Fig. 32: Sequencing results of mutated human GP6. 
Nucleotide and amino acid alignment of human wild-type (Seq. 1) and mutated (Seq. 2) GPVI are 
shown. Mutated codon triplets are labeled with a horizontal line. The corresponding amino acid is 
shown (italicized). An extract from the sequencing results of each mutated human GP6 is also 
depicted. A reverse sequence (3´5´) is displayed in the case of CRP and calmodulin. (A) mutation of 
the collagen binding site, (B) mutation of the CRP binding site, (C) mutation of the calmodulin binding 
site. 
 

C.2.2.6. Cloning of the knock-out and knock-in vectors 

A pWH9 plasmid construct was used for the generation of the final targeting vector. 

This construct contains an IRES element, a lacZ gene with a polyadenylation signal, 

a PGK promoter and a neomycin resistance gene.  
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Scheme: 

 

 

 

 

The targeting knock-out vector was sequenced to confirm that the vector contains 

both flanking sites (not shown). Moreover, different enzymatic digestions of the 

plasmids were performed (Fig. 33 and 34). The band pattern matched the expected 

band sizes. The correct ligation point in the knock-in vectors between exon 2 and the 

human cDNAs was confirmed by sequencing (not shown). It was proven that no 

frame shift mutation or ligation errors had occured.  

 

 
Fig. 33: Digestion of the final vector.  
(A) Lengths of the fragments as indicated refer to the distance between enzyme sites. Enzyme sites 
used for digestion are indicated. The final vector consists of 17.3 kb. (B) AccIII/BgllI (left picture) and 
XhoI/BgllI (right picture) digested samples were separated on an agarose gel. 1 = knock-out final 
construct; 2 = human wild-type cDNA in final vector; 3 = human cDNA with mutated collagen binding 
site in final vector; 4 = human cDNA with mutated CRP binding site in final vector; 5 = human cDNA 
with mutated calmodulin binding site in final vector. M: marker. The 1kb band shift (= human cDNA) is 
labeled with asterisks. 
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Fig. 34: Digestion of the final vector. 
(A) Lengths of the fragments as indicated refer to the distance between enzyme sites. Enzyme sites 
used for digestion are indicated. (B) The final vector consists of 17.3 kb. NotI and SalI digested 
samples were size-separated on an agarose gel. 1 = knock-out final construct; 2 = wild-type cDNA in 
final vector; 3= human cDNA with mutated collagen binding site in final vector; 4 = human cDNA with 
mutated CRP binding site in final vector; 5 = human cDNA with mutated calmodulin binding site in final 
vector. M: marker.  
 
 

To have the opportunity to enhance the efficiency of the selection process after 

electroporation of the constructs into stem cells, a second selection marker, a 

thymidine kinase cassette, was inserted into the final vectors. This ligation step was 

proven by sequencing (not shown) and digestions (Fig. 35). To have a unique SalI 

site for linearization, one SalI site upstream of the 3´ arm was deleted. 

 

 

 

Fig. 35: Digestion of the final vector with the thymidine kinase (TK neo) cassette. 
Exemplarily the Gp6 knock-out vector without (1) and with (2) thymidine kinase cassette was digested 
with NotI. 
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In the end, five constructs were successfully generated: Gp6 knock-out, human GP6 

cDNA knock-in, human GP6 cDNA knock-in with collagen binding site mutation 

(G30A, V34A, L36A), human GP6 cDNA knock-in with CRP binding site mutation 

(K59E) and human GP6 cDNA knock-in with calmodulin binding site mutation 

(R271A, K273E, R280A).  

 

C.2.3. Electroporation of the targeting vectors into ES cells and analysis of   

           selected ES clones 

An external probe (565 bp, forward primer: 5´-CTT TAC CTA CTG AGC TAG GG-3´; 

reverse primer: 5´-CAA GTG TGA GGA AAT GTC AT-3´) was used that recognizes a 

sequence upstream of exon 1. The scheme of a virtual HindIII digested Gp6 locus 

shows that the wild-type allele (8.4 kb) and the knock-out / knock-in alleles (7.3 kb) 

can be distinguished by using this external probe (Fig. 36A).  

To test whether the generated vectors can target the GP6 locus via homologous 

recombination, the Gp6 knock-out and the human wild-type GP6 knock-in vector 

were electroporated into ES cells. Before electroporation, the targeting vectors were 

linearized with the SalI enzyme. The isolated DNA of neomycin-resistant stem cells 

was digested with concentrated HindIII enzyme, size-fractionated in an agarose gel, 

transferred onto a nitrocellulose membrane and hybridized with the radioactively 

labeled external probe. The X-ray film was exposed to the Southern blot membranes 

and visualized bands of different ES clones were analyzed (Fig. 36B+C).  

From each electroporation 384 stem cell clones were analyzed. In both cases one 

positive clone was obtained. The cells were recultured, tested again for successful 

homologous recombination and finally injected into blastocysts. The three mutated 

human GP6 knock-in vectors will be electroporated in near future when the 

expression rate of the human GPVI protein in the Gp6 knock-out background has 

been determined and is sufficient for analysis. 
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Fig. 36: Analysis of neomycin-resistant clones.  
(A) The scheme shows detection of wild-type and mutant (Gp6 knock-out / human GP6 knock-in) 
bands. The external probe (black horizontal bar) recognizes a sequence upstream of exon 1. The 
exons are represented by black vertical bars. The wild-type band between two HindIII sites is about 
8.4 kb. A new HindIII is introduced by integrating the targeting construct. The mutant band is about 7.3 
kb. (B) HindIII digested DNA from ES cell after electroporation of the Gp6 knock-out vector. (C) HindIII 
digested DNA from ES cell after electroporation of the human wild-type GP6 knock-in vector.  
 
 

C.2.4. Gp6 chimeric mice 

The following Gp6 chimeric mice were obtained: 

 

Gp6 (knock-out): 

 

Gender Chimerism 

male 3x100%, 1x70%, 1x50%, 1x40% 

female 2x100%, 1x60% 
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GP6 (knock-in): 

 

Gender Chimerism 

male 2x50%, 2x40%, 1x30%, 1x20% 

female - 

 

 

These mice were crossed with female C57BL/6J mice to determine germline 

transmission.  

For the human GP6 knock-in chimeric mice no germline transmission was obtained. 

Electroporation of this vector was repeated and resulted again in one positive stem 

cell clone which was injected into blastocysts. Soon the first chimeric offsprings are 

being expected. 

In contrast, germline transmission was achieved for Gp6 knock-out chimeric mice 

that confirms that the GP6 multivector system is principally working. 

 

C.2.5. Analysis of Gp6 knock-out mice 

To test the genotype after crossing heterozygous Gp6 mice, a Southern blot (Fig. 

37A) was performed that revealed that Gp6 knock-out mice were obtained and 

resulted in a Mendelian ratio (not shown) excluding embryonic lethality. The absence 

of the protein was shown by Western blot (Fig. 37B) and flow cytometric analysis 

(Fig. 37C). As expected, expression of other prominent platelet surface proteins was 

not altered (Fig. 37D). In addition, platelet count (Fig. 37E) and platelet size (Fig. 

37F) of GPVI-deficient mice were similar to wild-type controls.  
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Fig. 37: Analysis of basal parameters of Gp6-/- platelets.  
(A) Southern blot from tail DNA of wild-type (+/+), heterozygous (+/-) and homozygous (-/-) mice. (B) 
Western blot under non-reducing conditions with JAQ1 antibody conjugated with HRP from platelet 
lysates of wild-type and knock-out mice. (C+D) Flow cytometric analysis of glycoprotein expression. 
Platelets were stained with the indicated fluorophore-labeled antibodies for 15 minutes and directly 
analyzed. Results are mean ± SD (n = 6 mice per group). ***, P < 0.001. (E) Platelet count and (F) 
platelet size were determined in a Sysmex cell counter. Results are mean ± SD (n = 6 mice per 
group). 
 
 

To study the functional consequences of the Gp6 knock-out, platelet activation 

studies were performed. The specific GPVI-related activation defect was confirmed 

by flow cytometric analysis of activated integrin IIb3 using the JON/A-PE antibody 

(Fig. 38A), and of degranulation-dependent P-selectin surface exposure (Fig. 38B) 

upon activation with several agonists. Loss of GPVI impaired ITAM-coupled GPVI-

specific agonists (CRP, convulxin)-induced integrin activation and degranulation, 

whereas G protein–coupled agonists and rhodocytin, a ligand of the ITAM-coupled 

receptor CLEC-2, induced normal activation of GPVI-deficient platelets. Ex vivo 

aggregation studies underlined these results (Fig. 38C). Even at high concentrations 

of GPVI agonists like collagen, CRP and convulxin neither shape change nor 

aggregation of platelets occurred. However, Gp6-/- platelets aggregated normally in 

response to G protein-coupled agonists (thrombin, thromboxane analogue U46619). 
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Fig. 38: Defective platelet activation and aggregation of Gp6–/– platelets.  
Flow cytometric analysis of integrin IIb3 activation (binding of JON/A-PE) (A) and degranulation-
dependent P-selectin exposure (B). Washed blood was incubated with the indicated agonists for 15 
minutes and analyzed on a FACSCalibur. Results are mean ± SD (n = 6 mice per group). ***, P < 
0.001. (C) Impaired aggregation of Gp6–/– platelets (gray lines) in response to collagen, CRP and 
convulxin but not to thrombin and U46619 a thromboxane analogue (recording time = 10 min). wt = 
black lines.  
 

To investigate the role of GPVI in hemostasis and thrombus formation, mice were 

subjected to different models that serve as a rule for measuring the function in 

physiological hemostasis and pathological thrombosis. To test a role of GPVI in 

normal hemostasis, mice were used in a tail bleeding time assay. Here, the tip of a 

tail was cut and bleeding was determined to have ceased when no blood drop was 

observed on a filter paper. Gp6 knock-out mice only displayed a mild bleeding 

phenotype demonstrating that GPVI-deficiency has no major impact on hemostasis 

(Fig. 39A). In sharp contrast, ex vivo whole blood perfusion (shear rate: 1,000 s-1) 

over a collagen-coated matrix revealed an essential role in thrombus formation since 

no thrombi were formed in GPVI-deficient samples (surface coverage: wt: 37.4 ± 

5.6%; Gp6-/-: 5.2 ± 0.6%; Fig. 39B). This supports previous findings with antibody-
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induced GPVI-deficient platelets that GPVI is the major collagen platelet-activating 

receptor. Surprisingly, single platelet adhesion to collagen fibers was observed in 

contrast to JAQ1-treated mice where no platelet adhesion was found at all7. The 

reason for this discrepancy is under investigation. Next, Gp6 knock-out mice were 

challenged in two in vivo arterial injury models. In the first model, the abdominal aorta 

was mechanically injured and blood flow was measured until occlusion of the vessel 

occurred. The experiment showed that Gp6 knock-out mice are completely protected 

against thrombotic occlusion of the vessel since blood flow was maintained 

throughout the observation period (Fig. 39C). Furthermore, these mice were also 

protected in a second model, in which FeCl3 was applied on mesenteric arterioles 

and platelet adhesion and thrombus formation were monitored by in vivo 

fluorescence microscopy (Fig. 39D). Whereas initial platelet adhesion was unaltered 

in GPVI-deficient mice (Fig. 39D, left), formed thrombi were not stable and embolized 

which resulted in no vessel occlusion (Fig. 39D, right). This establishes GPVI as an 

important player in the formation of pathological thrombi, irrespective of the type of 

injury and size of the vessel.  

Basic analyses of Gp6-/- mice showed the expected Gp6 knock-out phenotype. These 

mice will serve as controls for the planned GP6 knock-in mice and will be a valuable 

tool for many other projects. By means of the next section, it should be demonstrated 

how Gp6 knock-out mice are going to be used in other projects. 

 

 
 
 
 
 
 
 
 
 
 
Fig. 39: GPVI deficiency has no impact on bleeding times but on pathological thrombus formation.  
(A) A 1 mm segment of the tail tip was cut with a scalpel and bleeding was determined to have ceased 
when no blood drop was observed on the filter paper. (B) Whole blood in buffer (Tyrode`s with 
calcium) was perfused over 0.2 mg/mL collagen in a flow chamber with a shear rate of 1,000 s-1. 
Representative pictures were taken (40x magnification). Mean surface coverage was measured with 
Metamorph. n = 8 mice; ***, P < 0.001. (C) The abdominal aorta was mechanically injured using 
forceps, and blood flow was monitored for 30 min or until complete vessel occlusion occurred. Left: 
time to occlusion; Right: representative experiment. (D) Mesenteric arterioles were treated with 20% 
FeCl3, adhesion and thrombus formation of fluorescently labeled platelets were monitored by in vivo 
fluorescence microscopy. Representative images (lower panel) and statistical evaluation of the time to 
first appearance of a thrombus (upper left) and to occlusion (upper right) are depicted. Asterisk 
indicates complete occlusion of the vessel. 
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C.2.6. Analysis of Gp6 knock-out/CLEC-2 depleted mice 

Besides GPVI, mouse platelets express a second ITAM-coupled receptor named 

CLEC-2 (C-type lectin-like receptor 2). CLEC-2 is a recently identified platelet-

activating receptor. Rhodocytin, a snake venom toxin purified from the venom of 

Calloselasma rhodostoma, was demonstrated to be a ligand for CLEC-2, which 

induces potent platelet activation137. The physiological ligand of CLEC-2 has 

remained elusive. May et al. very recently showed that, similar to GPVI depletion 

achieved by treatment of mice with JAQ1, CLEC-2 can be depleted from the platelet 

surface by INU1 treatment resulting in CLEC-2-deficient mice. These mice showed 

defective aggregate formation in vitro and in vivo, variable and increased bleeding 

times and profound protection against arterial thrombus formation suggesting that 

down-regulation of the receptor could be of therapeutical importance130. 

Together with Frauke May, Gp6-/- mice, in which the CLEC-2 receptor was 

additionally depleted, were analyzed to determine the effect of a double knock-out-

like phenotype. 

To test the functional consequences of the absence of both ITAM-coupled receptors 

in platelets, Gp6 knock-out mice were injected with 200 µg INU1 and after five days 

the double-deficient mice were analyzed.  

Flow cytometric analysis confirmed the absence of both surface proteins, whereas 

the expression of other analyzed receptors was not affected (Fig. 40A). After 

transient thrombocytopenia induced by INU1 injection, the platelet count returned to 

normal with platelets only slightly increased in platelet size at day five (Fig. 40B+C). 

Platelet activation analysis by flow cytometry revealed an additive activation defect 

(Fig. 40D+E). Only ITAM-coupled receptor agonist-induced activation pathways were 

impaired (e.g. rhodocytin, CRP and convulxin), whereas G protein-coupled agonist 

pathways were unaffected (e.g. thrombin, thromboxane A2 and ADP) demonstrating 

that the absence of GPVI and CLEC-2 resulted in the expected phenotype without 

affecting other pathways. 

To test the effect of GPVI/CLEC-2-deficiency on hemostasis, mice were subjected to 

the tail bleeding time assay. Hemostasis was dramatically impaired in GPVI/CLEC-2-

deficient mice. Whereas Gp6 knock-out mice have a mild and CLEC-2 depleted mice 

a variable and increased bleeding phenotype, double-deficient mice were not able to 

arrest bleeding in the 20 minutes observation period suggesting an additive function 

of both receptors in hemostasis (Fig. 41A).  
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Fig. 40: Additive platelet activation defect in GPVI/CLEC-2-deficient mice.  
(A) Flow cytometric analysis of glycoprotein expression. Platelets were stained with the indicated 
fluorophore-labeled antibodies for 15 minutes and directly analyzed. Results are mean ± SD (n = 6 
mice per group). ***, P < 0.001. (B+C) Platelet count and size was determined by flow cytometry. 
Results are mean ± SD (n = 9 mice per group). (D+E) Flow cytometric analysis of integrin IIb3 
activation (binding of JON/A-PE; (D)) and degranulation-dependent P-selectin exposure (E). Washed 
blood was incubated with the indicated agonists for 15 minutes and analyzed on a FACSCalibur. 
Results are mean ± SD (n = 6 mice per group). ***, P < 0.001. 
 

Next, double-deficient mice were analyzed in the whole blood perfusion system. 

Here, the flow chamber experiments again showed a lack of thrombus formation 

resembling the Gp6 knock-out phenotype (surface coverage: wt 41.3 ± 3.2%, double-

deficient: 1.5 ± 0.8%; Fig. 41B). Interestingly, no platelet adhesion on collagen fibers 

was observed similar to results obtained with the anti-GPVI JAQ1 antibody treated 

mice7. Whether this is due to antibody injection (JAQ1 or INU1) is still under 

investigation.  
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Fig. 41: Defective hemostasis and thrombus formation in GPVI/CLEC-2-deficient mice. 
(A) A 1 mm segment of the tail tip was cut with a scalpel and bleeding was determined as ceased 
when no blood drop was observed on a whatman paper. Bleeding longer than 20 minutes was 
stopped manually. (B) Whole blood in buffer (Tyrode`s with calcium) was perfused over 0.2 mg/mL 
collagen in a flow chamber with a shear rate of 1,000 s-1. Representative pictures were taken (40x 
magnification). Mean surface coverage was measured with the Metamorph software. n = 8 mice; ***, P 
< 0.001. (C) Mesenteric arterioles were treated with 20% FeCl3, and appearance of first thrombi > 10 
µm (upper panel: left and middle) and time to vessel occlusion (upper panel: right) were monitored by 
in vivo fluorescence microscopy and analyzed. Representative images are shown (lower panel). 
Asterisk indicates complete occlusion of the vessel. 
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Finally, mice were challenged in the in vivo FeCl3 arterial thrombosis model. Here, in 

addition to a lack of vessel occlusion, a significant delay in the onset of thrombus 

formation was observed as compared to wild-type controls (Fig. 41C).  

In an ongoing study, mice depleted in GPVI and CLEC-2 after antibody injection of 

JAQ1 and INU1, respectively, are being analyzed. Preliminary data revealed that 

both receptors can be down-regulated at the same time and the obtained results are 

similar to those of the Gp6 knock-out/CLEC-2 depleted mice (not shown). 

 

C.2.7. Construction of a targeting vector for the generation of conditional   

           Adam10 knock-out mice 

Deficiency in ADAM10 is embryonic lethal as shown by Hartmann et al.101. Therefore, 

a conditional approach (loxP) was used to specifically delete Adam10 in various 

tissues upon mating with different Cre-transgenic mice.   

 

C.2.7.1. Identification of the mouse Adam10 gene 

To generate a targeting construct for conditional knock-out mice, a RPCI-22 mouse 

bacterial artificial chromosome (BAC) library was screened which represents the 

genome of the SV129 mouse strain. Using a radioactively labeled exon 2 DNA 

fragment as an Adam10 gene specific probe, BAC clones possibly containing the 

Adam10 region were identified. BAC clones were verified by PCR using exon 2 

specific primers and by physical mapping via Southern blotting (not shown). The BAC 

clone RP22-299D1 was identified containing the Adam10 gene and used for 

amplification of the homologous arms.  

 

C.2.7.2. Targeting strategy for the generation of conditional (loxP) Adam10   

               knock-out mice  

Figure 42 depicts the strategy to target the Adam10 gene. Exon 2 is flanked by loxP 

sites to induce a site-specific deletion of Adam10 after recombination of the loxP 

sites mediated by a Cre recombinase. Deletion of exon 2 results in a frame shift 

mutation. A neomycin cassette flanked by FRT sites is inserted upstream of exon 2 

which leads to a constitutive knock-out of Adam10. The neomycin cassette can be 

removed after recombination with a FLP recombinase. 
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Fig. 42: Targeting strategy of the mouse Adam10 gene. 
The gene structure of mouse Adam10 is displayed. Exons (E1 to E16) are indicated as black boxes. 
Introns are labeled with a line. Domain structures and motifs are labeled according to the coded exons 
(SP: signal peptide; Pro: prodomain; Metallo: metalloprotease domain; Dis: disintegrin domain; T: 
transmembrane domain; Cyt: cytoplasmic domain). The FLP recombinase mediates the recombination 
of the FRT sites (red) and consequently to a deletion of the neomycin cassette (green box). The Cre 
recombinase mediates a recombination of the loxP sites (black triangle) and thus, exon 2 is removed. 
The consequence is a frame shift mutation downstream of exon 3.  
 
 

C.2.7.3. Amplification and subcloning of the homologous arms  

The 5´ arm of the Adam10 construct containing a part of intron 1 was amplified with 

the primers 5´-AAAGCGGCCGCGTCTGGATGTCTCTCAATC-3´ (forward) and 5´-

AAAGCGGCCGCATATGGCGATGCATGCCTTT-3´ (reverse) resulting in a 4 kb 

product. The primers were designed to introduce enzyme sites (Forward primer: NotI 

and reverse primer: NotI). This fragment was ligated via blunt-end ligation into a pKS 

vector. In order to confirm successful cloning, the 5´ arm in the pKS vector was 

digested with different enzymes and loaded on an agarose gel (Fig. 43). The 

expected size of DNA fragments was confirmed. Additionally, the 5´ arm was 

sequenced and no mutations were observed (data not shown).   
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Fig. 43: Digestion of the subcloned 5´ arm in the pKS vector. 
Upper panel: The 5` arm and the vector are represented by the yellow bar and the thin horizontal line, 
respectively. The insert and the vector consist of 7 kb. Enzyme sites used for digestion are indicated. 
The EcoRV site was deleted (Ø). Lower panel: The digested samples were separated on an agarose 
gel and compared with the expected band sizes.  
 
 

The 3´ arm with a length of about 2.3 kb was amplified with the primers 5´-

AAACTCGAGAGATAAGACATACTTTATTT-3´ (forward) and 5´-

AAAGTCGACTTCTTACATAGCTTCATCAC-3´ (reverse). These primers were also 

designed to introduce enzyme sites (Forward primer: XhoI and reverse primer: SalI). 

The introduction of the consensus sequences of XhoI and SalI enzymes at the ends 

of the 3´ arm was crucial for the ligation of the 3´ arm into the targeting vector. Again, 

this fragment was ligated via blunt-end ligation into a pKS vector. Restriction 

endonucleases (XhoI, SalI, BamHI and EcoRI) were chosen to digest the subcloned 

3´ arm (Fig. 44). Again, the product was sequenced confirming the amplification of 

the Adam10 product (not shown). 
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Fig. 44: Cloning of the 3´ arm into the pKS vector.  
Upper panel: The 3` arm and the vector are represented by the yellow bar and the thin horizontal line, 
respectively. The insert and the vector consist of 5.3 kb. Enzymes sites used for digestion are 
indicated. Lower panel: The digested samples were separated on an agarose gel and the band sizes 
were compared with the predicted band sizes. 
 
 
C.2.7.4. Amplification and subcloning of Adam10 exon 2  

Exon 2 with flanking intron sequences was amplified with the primers 5´-

AAAGGATCCCTCGAGTGTCACTCTTACAACAATAAG-3´ (forward) and 5´-

AAAGGATCCGGCTCCTCACATTTTCTA-3´ (reverse) resulting in a product of 

approximately 700 bp. The introduction of the consensus sequences of BamHI and 

XhoI in the forward primer and a BamHI enzyme site in the reverse primer were 

useful for the following ligation steps. This sequence was inserted into a pKS vector 

containing a loxP site. To confirm successful cloning, different enzymes were chosen 

for digestion of the vector (Fig. 45). 
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Fig. 45: Cloning of exon 2 into the pKS vector.  
Upper panel: Scheme of the vector. Enzymes sites used for digestion are indicated. Lower panel: 
The digested samples were separated on an agarose gel and the band sizes were compared with the 
predicted band sizes. 
 
 

C.2.7.5. Cloning of the final Adam10 targeting vector 

A vector containing a neomycin cassette and FRT sites was used to construct the 

final targeting vector. Therefore, following ligation steps were performed: first, exon 2 

was ligated into the final vector, then, the subcloned 3´ arm was inserted, followed by 

cloning the 5´ arm into the final vector. Finally, a thymidine kinase cassette was 

inserted downstream of the 3´ arm to use this optionally as a second selection 

marker during selection of the embryonic stem cells. Fig. 46 displays the final 

Adam10 targeting vector that was used for electroporation. In addition to sequencing 

(not shown), different enzymes were used to confirm successful cloning. 
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Fig. 46: Final targeting Adam10 vector.  
Upper panel: Scheme of the final vector. Enzymes used for digestion are indicated. Lower panel: 
The digested samples were separated on an agarose gel and the band sizes were compared with the 
predicted band sizes. 
 

 

C.2.8. Electroporation of the Adam10 targeting vector into ES cells and  

            analysis of selected ES cell clones 

An external probe (generated by PCR using the primers: 5´-

CAGTGATTGGATTATGGCT-3´ (forward); 5´-CCCTTGATTTCCACAGCTGG-3´ 

(reverse); 2 kb length) was used that recognizes a sequence in intron 1. Fig. 47 

depicts that the external probe recognizes for the wt allele a 13.5 kb band, whereas a 

band of 9.5 kb is detected for the floxed allele after digestion with PstI.  

The final vector was linearized with the XhoI enzyme and electroporated into the SV 

129/R1 ES cells. Isolated DNA of neomycin resistant stem cells was digested with 

concentrated PstI enzyme and size-fractionated on an agarose gel. Subsequently, 

the DNA was transferred onto a nitrocellulose membrane and hybridized with the 

radioactively labeled external probe. The X-ray film was exposed to the Southern blot 

membranes and visualized bands of the obtained ES clones were analyzed (Fig. 47). 

In total 384 picked stem cell clones were analyzed. One positive clone with the 

number 228 was obtained after PstI digestion. The positive stem cell clone was 
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recultured, tested for Mycoplasm contamination by PCR and injected into C57BL/6 

blastocysts.  

 

 

 

 
 
Fig. 47: Analysis of neomycin-resistant stem cell clones.  
The scheme (upper panel) depicts detection of wild-type and floxed alleles. The external probe (black 
horizontal bar) recognizes a sequence upstream of exon 2. Exon 2 is represented as a black vertical 
bar. The wild-type band between two PstI sites is about 13.4 kb, whereas the floxed band recognized 
by the external probe is about 9.5 kb. In the lower panel, stem cell DNA was digested with PstI and 
labeled with the external probe. The positive stem cell clone showed the expected band sizes. 
 

 

C.2.9. Adam10 chimeric mice 

The following Adam10 chimeric mice were obtained: 

 
Adam10 chimeric mice: 

 

Gender Chimerism 

male 100%, 100%, 75%, 60%, 30% 

female - 

 

These highly chimeric mice were crossed with female C57BL/6J mice to achieve 

germline transmission.  
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C.2.10. Megakaryocyte/platelet-specific ADAM10 deficiency has no impact on   

             platelet production 

Germline transmission was obtained as crossing of chimeric mice with C57BL/6 mice 

resulted in birth of Adam10wt/fl mice. To test the genotype after crossing of 

heterozygous mice, Southern blotting (Fig. 48A) was performed revealing that wild-

type, heterozygous and homozygous mice were obtained in a Mendelian ratio (not 

shown). To study the effect of ADAM10 deficiency on megakaryocytes and platelets, 

Adam10fl/fl mice were crossed with mice carrying the Cre recombinase under the 

platelet factor 4 (PF4) promoter. Thus, ADAM10 deficiency is restricted to 

megakaryocytes and platelets. To obtain Adam10fl/fl, PF4-Cre (referred to as ADAM10-

deficient) mice, a crossing over had to occur as both genes, Adam10 and PF4-Cre, 

are located on the same chromosome (chromosome 9). After ADAM10-deficient mice 

were obtained, the absence of the protein was shown by Western blot analysis (Fig. 

48B) of platelet lysates. Platelet count of ADAM10-deficient mice was similar to 

control mice (Fig. 48C). In addition, the expression of prominent platelet surface 

proteins was not altered (Fig. 48D). This demonstrates that ADAM10 is dispensable 

for normal platelet production and it does not seem to be a constitutive sheddase of 

platelet surface receptors. 

 
Fig. 48: Analysis of basal platelet parameters of Adam10fl/fl, PF4-Cre mice.  
(A) Southern blot from tail DNA of wild-type (wt/wt), heterozygous (wt/fl) and homozygous (fl/fl) mice. 
(B) Western blot of platelet lysates from control and Adam10fl/fl, PF4-Cre mice. (C+D) Flow cytometric 
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analysis of platelet count and glycoprotein expression. Platelets were stained with the indicated 
fluorophore-labeled antibodies for 15 minutes and analyzed directly. Results are mean ± SD (n = 4 
mice per group, representative for 3 individual experiments). 
 

   

C.2.11. Low TACE mice show increased GPIb expression on platelets 

Adam17 knock-out mice die between day 17.5 of embryonic development or 

perinatally104;107. Chalaris et al. (unpublished) used a different approach named 

EXITS (exon induced translational stop) to analyze ADAM17-deficient mice. With 

this, a new exon within the Adam17 gene was introduced which starts with an in-

frame translational stop codon. This strategy enables the investigators to study 

ADAM17 function in adult mice (referred to as low TACE (Adam17ex/ex) mice)). As the 

data are unpublished, no details about the phenotype of the low TACE mice will be 

reported in this thesis. In collaboration, these mice were used for studying the role of 

TACE in regulation of platelet surface receptors. Bone marrow of low TACE mice 

was transferred to lethally irradiated recipient C57BL/6 mice. Bone marrow chimeric 

mice were used for all experiments performed in this project. 

To determine whether low TACE mice are useful to study platelet receptor regulation, 

the GPIb expression level on platelets was measured. It was described that TACE is 

a constitutive sheddase of GPIb that can be used as a marker for platelet aging120. 

The GPIb expression rate was markedly increased on platelets of low TACE, but not 

of control and ADAM10-deficient mice (Fig. 49A+48D). These results were confirmed 

by measuring GPIb levels in the plasma of control and mutant mice. Here, the level 

of cleaved GPIb (glycocalicin) was decreased in plasma of low TACE mice as 

measured by ELISA (Fig. 49B) and Western blot (Fig. 49C). These results again 

underline the role of TACE in constitutive shedding of the platelet receptor GPIb and 

demonstrate that the low TACE mice are useful to study platelet receptor regulation. 
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Fig. 49: TACE, but not ADAM10, constitutively cleaves platelet GPIb.  
(A) Flow cytometric analysis of GPIb expression. Platelets were stained with a fluorophore-labeled 
antibody recognizing GPIb for 15 minutes and directly analyzed. Results are mean ± SD (n = 12 mice 
per group). (B) GPIb levels in plasma were determined by ELISA as described in Materials and 
Methods. Results are mean ± SD (n = 4 mice per group, representative for two individual 
experiments). (C) Western blot from plasma of wild-type and mutant mice. Plasma dilution is indicated. 
***, P < 0.001. 
  

C.2.12. GPVI is differentially regulated by ADAM10 and ADAM17 in vitro 

In contrast to GPIb, the sheddase of GPVI has remained elusive. Two possible 

candidates are currently under discussion in the literature, namely the 

metalloproteinases ADAM10 and 17. Therefore, shedding of GPVI was investigated 

in ADAM10-deficient and low TACE mice.  

For this, platelets were incubated with different shedding-inducing reagents and 

glycoprotein expression was measured by flow cytometry. Treatment of platelets with 

the calmodulin-inhibitor W7, and the protease-activating agent NEM, revealed that 

GPIb is exclusively cleaved by TACE, whereas GPV is down-regulated in both 
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mutant mice suggesting both metalloproteinases to be involved in GPV shedding 

(Fig. 50). The expression rate of GPVI was either unaltered upon W7 incubation or 

only slightly decreased upon NEM treatment, respectively, in ADAM10-deficient 

mice. These results show that ADAM10 is the sheddase of GPVI in vitro after 

incubation with W7 or NEM. 

However, treatment with CCCP, a substance that leads to damage of mitochondria, 

revealed that under these conditions, TACE, but not ADAM10, is the sheddase for 

GPIb, GPV and surprisingly for GPVI (Fig. 50). 

 

 
 
Fig. 50: Studies in flow cytometry: GPVI is differentially regulated in vitro.  
Platelets were treated with the indicated reagents (W7: 150 µM, 1h at 37°C; NEM: 2 mM, 20 min at 
37°C; CCCP: 100 µM, 1h at 37°C), stained with a fluorophore-labeled antibody recognizing the 
indicated glycoprotein for 15 minutes and directly analyzed. Results are mean ± SD (n = 4 mice per 
group, representative for 2 individual experiments). 
 

The results of GPVI shedding were confirmed by detection of cleaved GPVI in an 

ELISA system (Fig. 51). Again, ADAM10 was able to proteolytically cleave GPVI 

upon incubation with W7, whereas CCCP-induced shedding of GPVI was mediated 

by TACE (ADAM17). These data demonstrate that GPVI can be cleaved by ADAM10 
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or TACE in vitro depending on the shedding-inducing reagent and most likely on 

different metalloprotease-activating pathways.  

 

 

Fig. 51: ELISA: GPVI is differentially regulated in vitro.  
Platelets were treated with CCCP (100 µM) or W7 (150 µM) for 1 h at 37°C or NEM (2 mM) for 20 min 
at 37°C and cleaved GPVI was detected in an ELISA system. 
 

C.2.13. GPVI is cleaved in vivo in ADAM10-deficient and low TACE mice 

To study GPVI regulation in vivo, biotinylated anti-GPVI antibody JAQ1 (100 µg), 

described to induce shedding of the receptor in vivo82;85, was injected into control and 

mutant mice. After 30 minutes and 3 hours, platelet count, GPVI expression and 

cleaved GPVI levels in plasma were measured in both control and mutant mice. 

Interestingly, in control and mutant mice GPVI was down-regulated from the platelet 

surface (Fig. 52B) and thrombocytopenia (Fig. 52A) was observed in all analyzed 

mouse strains. In addition, preliminary data showed that similar levels of cleaved 

GPVI in plasma were detected in control and mutant mice (Fig. 52C). 

In summary, upon anti-GPVI JAQ1 antibody injection GPVI is cleaved in both mutant 

mouse lines suggesting that neither ADAM10 nor TACE alone is the exclusive 

sheddase of GPVI in vivo. Either ADAM10 and TACE are able to cleave GPVI and 

can compensate each other or another metalloproteinase is exclusively or in addition 

responsible for GPVI shedding in vivo. 
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Fig. 52: GPVI is cleaved in ADAM10-deficient and low TACE mice in vivo.  
Control and mutant mice were injected i.v. with 100 µg of biotinylated anti-GPVI (JAQ1) antibody. Flow 
cytometric analysis of platelet count (A) and GPVI expression (B) (indirectly: streptavidin-FITC) was 
performed. Platelets were stained with the fluorophore-labeled antibodies for 15 minutes and directly 
analyzed. Results are mean ± SD (n = 4 mice per group, representative for 3 individual experiments). 
As a positive control in (B), wild-type platelets from untreated mice were incubated with 10 µg/mL 
JAQ1-biotin and stained with streptavidin-FITC. (C) Mice were injected with 100 µg biotinylated-JAQ1 
and plasma was collected at the indicated time points. GPVI levels in plasma were determined by 
ELISA as described in Materials and Methods. Results are mean ± SD (n = 4 mice per group). 
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D. Discussion 

D.1. ADF/cofilin-null mice have a severe defect in platelet formation 

In this thesis, it was shown that ADF/cofilin-dependent actin turnover plays a 

fundamental role in the terminal step of platelet production.  

It is well established that sliding of microtubules is the primary force for elaboration of 

proplatelets with the help of dynein that appears to be the motor protein of this 

event16;138. However, the role of actin turnover in proplatelet formation is less well 

defined. Until today, only in vitro studies have been performed using cytochalasin, a 

fungal metabolite which is able to inhibit actin assembly, resulting in defects in 

proplatelet branching leading to reduced complexity and rolling of proplatelets138. 

Here, megakaryocytes deficient in ADF and cofilin displayed a significant reduction in 

proplatelet formation in vitro (Fig. 25A) and ex vivo (Fig. 25D), and actin 

accumulation within the megakaryocyte (Fig. 25B+C). Surprisingly, some MKs were 

able to produce proplatelets. Confocal microscopy (Fig. 25C) revealed that these 

proplatelets lacked the beaded appearance typically found in control MKs. Some 

extensions were devoid of actin supporting observations that actin is particularly 

enriched in swellings138. In general, proplatelets of double-deficient MKs appeared to 

be less complex and shorter. This was also found in the bone marrow explant model 

in which the few formed extensions of ADF/cofilin-deficient MKs appeared thinner 

and, interestingly, were found detached in the bottom of the incubation chamber after 

the observation period (Fig. 26C). This indicates that proplatelets without swellings 

are less stable. Together, these results demonstrate that actin turnover is important 

for proplatelet formation, but extensions can be formed without appropriate actin 

turnover by microtubules sliding, but then proplatelets are malformed.  

In ADF/cofilin-null mice the number of MKs in spleen and bone marrow (Fig. 

21B+23A) were elevated despite normal plasma TPO levels (Fig. 22), excluding a 

possible TPO-driven feedback mechanism due to the low platelet counts. This 

observation was also made in other mice (Stim1Sax/+ and Wdr1rd/rd) with low platelet 

counts, elevated MK numbers and unaltered TPO levels132;139. Furthermore, 

measurement of bone marrow MK ploidy revealed comparable results between wild-

type and mutant mice demonstrating that MK endomitosis was not affected by 

ADF/cofilin-deficiency (Fig. 24).  
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Ultrastructural analysis of mature wild-type MKs showed that the cytoplasm contains 

a characteristic demarcation membrane system (DMS). Schulze et al. demonstrated 

that the DMS is the source for proplatelet membranes and that DMS development is 

strongly dependent on actin140. Therefore, ADF/cofilin-null MKs were analyzed in 

transmission electron microscopy (Fig. 23B). Bone marrow MKs of double-deficient 

mice revealed an absence of the DMS. Only underdeveloped remnants of the DMS 

were observed in the cytoplasm. Again, actin-rich structures were found in the 

cytoplasm of the MKs (Fig. 23B) but also in the cortical zone (not shown). This finding 

was confirmed by immunolocalization using an anti-actin antibody (Fig. 23C). The 

strikingly abnormal morphologies in the bone marrow MKs were not only restricted to 

the development of the DMS since granules were represented only sparsely and 

granule distribution was highly disordered. Taken together, this is in agreement with 

investigations on mice having a mutation in the Wdr1 gene, a cofilin interaction 

partner. The MKs of mutant Wdr1 mice also displayed a strong defect in DMS 

development and granule distribution139. This confirms that ADF/cofilin-dependent 

actin turnover is crucial for the development of the DMS in vivo a prerequisite for 

normal platelet formation.  

Platelet counts of ADF/cofilin-null mice were profoundly reduced to less than 5% of 

control mice (Fig. 19A). This striking observation was surprising since other mice 

lacking prominent proteins involved in the structure of the cytoskeleton or in MK 

maturation showed a milder reduction (15% of control in GATA-1 Δneo Δ HS mice141, 

approximately 40% of control in β1-tubulin-/- mice142). Although the platelet count was 

markedly reduced, ADF/cofilin-null mice were viable and did not suffer from internal 

bleedings (not shown). The residual platelets displayed a heterogeneous population 

ranging from microparticle- to proplatelet-like platelets containing aggregates of actin 

(Fig. 19B+C). These platelets were not able to fulfill normal platelet function as they 

were unable to spread on immobilized fibrinogen (Fig. 19D) and to assemble F-actin 

(Fig. 20). Taken together, these data provide new important insights into the process 

of platelet formation. This may be clinically significant as detailed information on the 

mechanisms of platelet production is essential to develop new strategies to treat 

thrombocytopenic patients.  
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D.2. ADF and cofilin are functionally redundant: a role for cofilin in platelet  

        sizing 

Despite the severe defects caused by the Adf mutation in corn1 mice52, defects in 

megakaryocyte maturation, platelet formation or changes in platelet count and size in 

Adf-/- mice (Fig. 12A+C) were not observed suggesting that cofilin completely 

compensated the lack of ADF function. In contrast, conditional deletion of cofilin in 

megakaryocytes and platelets yielded a moderately reduced platelet count (Fig. 12A) 

and markedly increased platelet size with a change from a discoid to a spherical 

shape (Fig. 12B+C). In line with this, Junt et al. described that protrusions from MKs 

extended into the microvessels and that platelet-particles exceeding the size of a 

normal platelet were released into the blood stream through shear forces as revealed 

by multiphoton intravital microscopy18. This supports previous reports suggesting that 

the finalization of platelet-sizing occurs in the circulation143. The markedly increased 

platelet size and altered shape strongly suggest that cofilin plays a pivotal role in the 

finalization of platelet size and shape after release from proplatelets into the 

circulation. Several studies established a critical role for actin filament dynamics and 

cofilin in mitosis and cytokinesis. The activity of the cofilin phosphatase Slingshot-1 in 

HeLa cells was decreased in the early stage of mitosis but increased in the telophase 

and cytokinesis. Moreover, expression of inactive Slingshot-1 resulted in formation of 

multinuclear cells144. The same group also observed multinuclear cell formation by 

ectopic expression of the cofilin kinase LIMK1145. Similar results with defects in 

cytokinesis and misshaped structures were obtained by mutations of the ADF/cofilin 

homologue twinstar in Drosophila and suppressed expression of the Caenorhabditis 

elegans homologue UNC-60A, respectively45;146. These results demonstrated a role 

for cofilin in mitosis and cytokinesis. However, further studies will be required to 

address the important question of how cofilin regulates platelet size and shape 

mechanistically.  

In addition, cofilin-deficient platelets were delayed in spreading on immobilized 

fibrinogen but principally able to form lamellipodia with normal cytoskeletal 

rearrangement as shown after 60 minutes in scanning electron and STED 

microscopy (Fig. 18). This is in line with results from studies investigating 

phosphorylation events in human platelets from healthy volunteers and patients with 

Glanzmann thrombasthenia. In addition, this was also observed in studies using 

blockers of IIb3 integrin44. They suggested that cofilin is essential for actin turnover 
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mediated by outside-in signaling through the IIb3 integrin. Here, it is also 

concluded that cofilin, but not ADF, is the central mediator of actin dynamics upon 

outside-in signaling, since Adf-/- platelets were able to spread with similar kinetics as 

control platelets. However, initial agonist-induced actin rearrangement does not seem 

to be affected in cofilin-null platelets (Fig. 15C). This function is generally supposed 

to be gelsolin-dependent147.  

 

D.3. Conditional deletion of cofilin using the Mx-Cre system leads to  

          destruction of the bone marrow  

In the present study, the recently established PF4-Cre mouse line was used to delete 

cofilin conditionally in megakaryocytes and platelets125. Before the PF4-Cre system 

was available, the interferon-inducible Mx-Cre mouse line was generally used to 

conditionally delete genes supposed to be important for platelet function and to avoid 

embryonic lethality in constitutive knock-out mice. However, the Mx-Cre system is not 

specific for megakaryocytes and platelets as it also affects other tissues including 

other cells of the hematopoietic system126. Here, after induction of the cofilin knock-

out by injection of Poly-I/Poly-C, mice were analyzed at day 5. In both mouse lines, 

cofilinfl/fl, Mx-Cre and Adf-/-/cofilinfl/fl, Mx-Cre, a progressive destruction of the bone marrow 

structure and a reduction in bone marrow cellularity was observed (Fig. 27C). As a 

consequence, the numbers of MKs and platelets were dramatically decreased (Fig. 

27), accompanied by a strong reduction in the hematocrit. All double-deficient mice 

died within ten days after Poly-I/Poly-C injection. Together, this demonstrates that the 

PF4-Cre system is a more appropriate tool to analyze megakaryocyte and platelet 

function as the Mx-Cre system may lead to overinterpretation of the phenotype. 

In summary, using the PF4-Cre mice it was demonstrated that ADF/cofilin-mediated 

actin turnover is of central importance in the terminal step of platelet formation and 

moreover, cofilin is a key regulator of platelet size and shape. 

 

D.4. The activating platelet collagen receptor GPVI is a promising anti- 

          thrombotic target 

Over the last years many laboratories have intensively studied the role of GPVI in 

platelets. GPVI, the activating platelet collagen receptor, was placed in a central 

position in the steps of platelet tethering, activation, firm adhesion and aggregation8. 
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These results led to a revision of the long-standing concept that GPIa/IIa would be 

the major collagen receptor148;149. Although these investigations revealed detailed 

information on GPVI function in platelets, there is still considerable conflicting 

literature about the receptor. Many studies demonstrated that GPVI deficiency only 

results in a minor effect on tail bleeding times and in a protection against thrombus 

formation in various thrombosis models61;82;90;91. Consequently, GPVI is believed to 

be an appropriate target for the development of new and safe anti-thrombotic agents. 

Two major issues about GPVI are on the one hand the role of GPVI in thrombus 

formation in different arterial thrombosis models and on the other hand the role of 

GPVI in primary adhesion to collagen. Recently, Mangin P. et al. challenged 

GPVI/FcR-deficient mice in three distinct arterial thrombosis models and could not 

observe a defect in arterial thrombus formation after deep vascular injury. However, 

the authors demonstrated that inhibition of thrombin produces a much greater defect 

in thrombus formation in GPVI/FcR-deficient mice as compared to controls. In 

contrast, thrombus growth was reduced in GPVI/FcR-deficient mice after mild 

vascular injury150. Although it is known that for instance the FeCl3-induced thrombosis 

model is a mainly thrombin-driven model, nevertheless, the results are in contrast to 

other reports as mentioned above.  

To date, two research groups have reported studies on Gp6 knock-out mice by using 

different strategies to delete the Gp6 gene. For deletion of the Gp6 gene, Kato et al.90 

inserted a neo-cassette into exon 1, whereas Lockyer et al.91 chose a different 

strategy and deleted part of exon 2 to half of exon 3 by replacing this region with a 

neo-cassette. Similar phenotypic observations were made by both groups. However, 

interestingly, investigations regarding the precise role of GPVI in the primary 

adhesion process resulted in different observations. The results of Kato et al. did not 

support any participation of GPVI in the initial platelet adhesion process90, which 

disagrees with results of other groups. There, platelets of GPVI-depleted mice failed 

to adhere to the injured vessel wall, demonstrating a role of GPVI in this process7;84. 

This disagreement is possibly related to the different approaches to produce GPVI-

deficient mice. But contrary to Kato et al., Lockyer et al. suggested a role of GPVI in 

primary platelet adhesion. Platelets without GPVI on their surface completely lacked 

primary adhesion and subsequent thrombus formation91.  
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Thus, it is noteworthy that examinations and results about GPVI are still in the focus 

of interest. To address this issues about the role of GPVI in the process of initial 

platelet attachment and arterial thrombus formation, an own strategy was designed 

for the generation of Gp6 knock-out mice (Fig. 30). A neomycin-cassette was 

inserted between exon 2 and exon 3 of Gp6, thereby removing intron 2. 

Consequently, platelets of these mice can not express GPVI on their surface. At first, 

it was confirmed that the protein is absent in platelets (Fig. 37B-D) and that platelets 

are not activated upon incubation with GPVI-specific agonists like CRP or convulxin 

(Fig. 38). As expected, Gp6 knock-out mice displayed a minor increase in bleeding 

times (Fig. 39A) and GPVI-deficient platelets were not able to form thrombi on a 

collagen coated surface (Fig. 39B). Surprisingly, single GPVI-deficient platelets 

adhered to collagen fibers. Regarding the conflicting literature as mentioned above, it 

is difficult to interpret these results. Either differences in the technical performance or 

different strategies in the generation of the mutant mice are the reason for the 

different results. Alternatively, Gp6 knock-out platelets are able to compensate the 

lack of GPVI regarding the defect in primary adhesion in contrast to GPVI-depleted 

platelets. Further studies are necessary to address this issue. In vivo studies 

revealed that GPVI is important for thrombus formation as shown in the aorta 

thrombosis model and also in the FeCl3-induced thrombosis model (Fig. 39C+D). 

These results support previous findings that GPVI may serve as an appropriate target 

for the development of anti-thrombotic drugs.  

This newly generated mouse line will serve as control for future investigations and to 

address GPVI-related questions. GPVI and CLEC-2 are ITAM-coupled receptors in 

platelets that can be down-regulated by antibody injection into mice. This makes both 

receptors interesting as therapeutical targets. To understand the effect in mice upon 

removal of both ITAM-coupled receptors, Gp6 knock-out mice were injected with the 

INU1 antibody to induce CLEC-2 deficiency. It could be shown that single deficiency 

in GPVI or CLEC-2 leads only to a mild (Fig. 39A) or variable and increased bleeding 

phenotype130, respectively. However, lack of both ITAM-coupled receptors resulted in 

a severe bleeding phenotype (Fig. 41A). Similar results were obtained by depleting 

GPVI and CLEC-2 at the same time by antibody-treatment with JAQ1 and INU1 (data 

not shown). 
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D.5. Generation of human GP6 knock-in mice: a tool to investigate differences   

        between mouse and human GPVI    

Mouse and human GPVI share 64.4% and 67.3% identity at protein and nucleotide 

level, respectively55. Especially the cytoplasmic tail of the protein varies between 

human and mouse. The C-terminal region is 24 amino acids longer in human than in 

mouse62. This raised the question whether there are different regulation mechanisms 

of human GPVI compared to mouse GPVI. For that reason, the construction of a 

knock-in vector was performed based on the knock-out vector that was used as a 

“multifunctional vector”. With this vector only minor alteration in the cloning strategy 

was necessary to generate a new targeting vector. The human GP6 wild-type cDNA 

was inserted in-frame downstream of exon 2 of the 5´ flanking region (Fig. 30). As a 

consequence, platelets of these knock-in mice should express human GPVI at an 

appropriate level on their surface. This approach could provide new information about 

regulation and signaling of human GPVI in vivo. In addition, as mentioned above, 

GPVI is suggested to be a major target for the development of novel anti-thrombotic 

drugs. This model might be suitable for designing and testing new pharmaceuticals 

directed against human GPVI. Furthermore, it is interesting to know whether this 

technique will work to generate mice expressing the human protein at a similar level 

as the wild-type protein. So far, chimeric mice were obtained that did not produce 

offsprings with germline transmission. The chimerism of these mice was comparably 

low indicating that not the targeting strategy was responsible for the lack of germline 

transmission but rather the quality of the stem cell clone was not sufficient. This is 

also supported by the observation that most of the chimeric mice were infertile. A 

new positive stem cell clone was recently injected into blastocysts and the birth of the 

first offsprings is going to be expected soon (Fig. 36C).  

In addition, it was decided to mutate important binding sites on human GPVI (Fig. 

32). It was suggested that two different collagen binding sites exist on mouse 

GPVI73;151. Smethurst et al. described the identification of the binding site of CRP on 

human GPVI. Binding studies with CRP and immunoglobulin-like ectodomains of 

human GPVI expressed in insect cells demonstrated that the exchange of the human 

lysine through a murine glutamic acid at position 59 on the human monomeric 

recombinant peptide significantly reduced binding to CRP136. Later, Lecut et al. 

reported on the identification of residues in the first Ig-like domain on human GPVI 

that are involved in binding to collagen. Recombinant soluble human GPVI-Fc 
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mutants were generated and their binding to collagen was examined. The results 

revealed that the triple mutation of G30A, V34A, and L36A yielded full inhibition of 

binding to collagen135. It was decided to introduce the same mutations in the human 

GP6 wild-type cDNA, to test the platelet response to collagen and CRP of the mutant 

mice in vivo. This approach will be interesting to address the hypothesis of two 

distinct collagen binding sites. Finally, one additional vector was constructed with a 

mutated calmodulin binding site. Andrews et al. identified the calmodulin recognition 

site on a GPVI-related synthetic peptide His269-Pro28763. Based on an alignment of 

several calmodulin binding sites, the three most conserved amino acids were 

selected for mutation namely R271A, K273E and R280A. It was shown that 

calmodulin is involved in regulation of GPVI. If the association between GPVI and 

calmodulin, which constitutively binds the cytoplasmic tail of GPVI, is blocked, GPVI 

is shed from the platelet surface by a metalloproteinase-mediated mechanism in 

vitro64. It will be interesting to investigate this regulation mechanism in vivo. In 

summary, four vectors were successfully constructed for the generation of human 

GP6 knock-in mice, namely human wild-type GP6 knock-in, human GP6 knock-in 

with mutated collagen binding site, human GP6 knock-in with mutated CRP binding 

site and human GP6 knock-in with mutated calmodulin binding site. The vectors with 

the mutated human cDNA will be electroporated when the first human wild-type 

knock-in mice will have been analyzed and have shown sufficient human GPVI 

protein expression in platelets. 

 

D.6. GPVI is differently regulated by the metalloproteinases ADAM10 and   

         ADAM17 

Previously, it was demonstrated that GPVI can be down-regulated from the platelet 

surface by injection of the anti-GPVI antibody JAQ1 into mice. It was shown that this 

event occurrs through two different pathways: internalization and ectodomain 

shedding82;85;89. However, the GPVI sheddase has not been identified. Two possible 

candidate metalloproteinases are suspected to be the GPVI sheddase: ADAM10 and 

ADAM17. Bergmeier et al. showed that GPVI is down-regulated in murine platelets 

by a metalloproteinase-dependent mechanism. The authors suggested a different 

metalloproteinase to be involved in GPVI shedding as in GPIb shedding since 

thrombin or CRP treatment of platelets led to GPIb, but not GPVI proteolysis89. Upon 

this, subsequent publications either speculated152 or suggested123 ADAM10 to be 
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responsible for GPVI shedding. Here, megakaryocyte/platelet-specific (PF4-Cre) 

Adam10 knock-out mice were generated to address the function of ADAM10 in the 

shedding of GPVI (Fig. 48A). In addition, low TACE (ADAM17) mice with 

approximately 10% residual activity were analyzed. Enhanced GPIb surface 

expression and reduced GPIb levels in plasma of low TACE mice indicated, as 

expected, that TACE is the constitutive sheddase of GPIb and that these mice are 

useful for platelet studies (Fig. 49). To investigate the role of ADAM10 and ADAM17 

in GPVI shedding, platelets were treated with different shedding-inducing reagents 

and glycoprotein expression was measured in FACS. Using the calmodulin-inhibitor 

W7 and the metalloproteinase-activating substance NEM, it was revealed that 

ADAM10, but not ADAM17, is the sheddase of GPVI under these conditions (Fig. 

50). This result was also confirmed by an ELISA system in which cleaved GPVI of 

ADAM10-deficient platelets was significantly reduced (Fig. 51). This is in line with the 

findings of Gardiner et al. who showed in their cleavage studies on GPVI-based 

synthetic peptides that ADAM10 is the GPVI sheddase using W7 and NEM as 

shedding-inducing reagents123. In previous studies, CCCP was also used to induce 

mitochondrial damage which leads to subsequent shedding of platelet receptors. As 

expected, TACE was responsible for shedding of GPIb and GPV (Fig. 50). However 

surprisingly, TACE was also identified to be the sheddase of GPVI after platelet 

treatment with CCCP (Fig. 50+51). This is the first demonstration that GPVI can be 

down-regulated by two different metalloproteinases, ADAM10 and ADAM17, under 

different experimental conditions. However, the mechanistic basis for two different 

pathways/metalloproteinases cleaving the GPVI receptor remains elusive. In some 

cases it was already shown that a substrate is cleaved by more than one sheddase 

such as CX3CL-1 and the IL-6 receptor and that these proteins are processed by 

both metalloproteinases, ADAM10 and ADAM17116-118. However, the use of reagents 

like W7, NEM and CCCP does possibly not reflect the in vivo situation as obtained by 

injection of the anti-GPVI antibody JAQ1. Therefore, ADAM10-deficient and low 

TACE mice were injected with the antibody and GPVI expression was determined in 

flow cytometry. Interestingly, preliminary results revealed that GPVI is down-

regulated from the platelet surface and transient thrombocytopenia occurs in both 

ADAM10-deficient and low TACE mice (Fig. 52). However, further studies have to be 

performed to confirm this result. One reason for the down-regulation of GPVI could 

be that another metalloproteinase either exclusively or in addition is responsible for 
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GPVI shedding in vivo. One candidate could be ADAM9 because it is widely 

expressed, highly conserved between species and is a catalytically active 

metalloprotease. Mice lacking ADAM9 have, in contrast to ADAM10- or ADAM17-

deficient mice, no abnormalities in development and adult life. The authors suggest 

that ADAM9 could have a potential function in shedding of receptors153. Another 

more likely reason could be that both proteins, ADAM10 and ADAM17, are able to 

cleave GPVI in vivo and that lack of one metalloproteinase is compensated by the 

other. To address this, mating of both mouse strains to obtain double-deficient mice 

is in process. However, first matings revealed that mice lacking both proteins come to 

birth very rarely. This is in line with statistics from unpublished data demonstrating 

that birth of low TACE mice does not follow the Mendelian ratio (Chalaris et al., 

unpublished). This problem seems to be even more severe when crossing the mice 

to double-deficiency (data not shown). Once double-deficient mice come to birth, 

bone marrow of these mice will be transferred to lethally irradiated recipient C57BL/6 

mice to increase the number of mice available for analysis. Analysis of these mice 

might help to answer the question as to whether exclusively ADAM10 and ADAM17 

are the sheddases for GPVI or whether another metalloproteinase is involved in this 

process. 

Furthermore, both mouse lines will be analyzed to address the role of ADAM10 and 

ADAM17 in thrombus formation in vitro and in vivo.   

 

D.7. Concluding remarks 

The work presented here shows studies on the regulation of the platelet cytoskeleton 

and on the activating platelet collagen receptor GPVI in genetically modified mice. In 

addition, two knock-out mice were generated to understand the mechanisms 

underlying the cellular regulation of GPVI. 

The major findings are: 

 

Function of ADF and n-cofilin in platelets: 

 ADF is dispensable for platelet production and function 

 n-cofilin is critically involved in platelet sizing and integrin outside-in 

signaling 

 ADF and n-cofilin are functionally redundant 
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 ADF/n-cofilin-dependent actin turnover is essential for platelet formation 

 

Deficiency and regulation of GPVI in platelets: 

 Mice deficient in GPVI display a mild bleeding phenotype and are protected 

from thrombotic events 

 CLEC-2 depleted Gp6 knock-out mice display a severe bleeding phenotype 

 ADAM10 and ADAM17 are able to cleave GPVI, depending on the shedding-

inducing signaling pathway 

 Shedding of GPVI in vivo is either mediated by both metalloproteinases 

(ADAM10 and ADAM17) or an additional metalloproteinase is involved in 

GPVI ectodomain shedding 

 

D.8. Outlook 

The process of platelet formation in vivo is still only poorly understood. Further 

studies on platelets deficient in n-cofilin will provide deeper insights into the 

mechanisms of platelet size and shape determination. The in vivo visualization of the 

platelet formation process by multiphoton intravital microscopy in cofilin-deficient 

mice will reveal interesting information to better understand this process. 

 

This study could not provide the information which metalloproteinase is the in vivo 

sheddase of GPVI. Analysis of conditional Adam10 knock-out and low TACE mice 

revealed that neither ADAM10 nor ADAM17 alone is the in vivo GPVI sheddase. To 

understand whether both metalloproteinases are responsible for GPVI cleavage or 

another metalloproteinase is also involved, double-deficient mice will be analyzed in 

the near future. 
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