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1. Summary  
 

Avian pathogenic Escherichia coli (APEC) represent a subset of the so-called 

extraintestinal pathogenic Escherichia coli (ExPEC) pathotype that can cause various 

extraintestinal infections in humans and animals. APEC are the causative agent of 

localized colibacillosis or systemic infection in poultry. In this latter case, the syndrome 

starts as an infection of the upper respiratory tract and develops into a systemic infection. 

Generally, ExPEC are characterized by a broad variety of virulence-associated factors 

that may contribute to pathogenesis. Major virulence factors, however, that clearly define 

this pathotype, have not been identified. Instead, virulence-associated genes of ExPEC 

and thus also of APEC could be used in a mix-and-match-fashion. Both pathotypes could 

not be clearly distinguished by molecular epidemiology, and this suggested a hypothetical 

zoonotic risk caused by APEC. 

 

Accordingly, the main scientific question of this study was to characterize 

common traits as well as differences of APEC and human ExPEC variants that could 

either support the possible zoonotic risk posed by these pathogenic E. coli strains or 

indicate factors involved in host specificity. Comparative genomic analysis of selected 

APEC and human ExPEC isolates of the same serotype indicated that these variants 

could not be clearly distinguished on the basis of (i) general phenotypes, (ii) phylogeny, 

(iii) the presence of typical ExPEC virulence genes, and (iv) the presence of 

pathoadaptive mutations. Allelic variations in genes coding for adhesins such as MatB 

and CsgA or their regulators MatA and CsgD have been observed, but further studies are 

required to analyze their impact on pathogenicity.  

 

On this background, the second part of this thesis focused on the analysis of 

differences between human ExPEC and APEC isolates at the gene expression level. The 

analysis of gene expression of APEC and human ExPEC under growth conditions that 

mimick their hosts should answer the question whether these bacterial variants may 

express factors required for their host-specificity. The transcriptomes of APEC strain 

BEN374 and human ExPEC isolate IHE3034 were compared to decipher whether there 
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was a specific or common behavior of APEC and human ExPEC, in response to the 

different body temperatures of man (37°C) or poultry (41°C). Only a few genes were 

induced at 41 °C in each strain relative to growth at 37 °C. The group of down-regulated 

genes in both strains was markedly bigger and mainly included motility and chemotaxis 

genes. The results obtained from the transcriptome, genomic as well as phenotypic 

comparison of human ExPEC and APEC, supports the idea of a potential zoonotic risk of 

APEC and certain human ExPEC variants.  

 

In the third part of the thesis, the focus was set on the characterization of Mat 

fimbriae, and their potential role during ExPEC infection. Comparison of the mat gene 

cluster in K-12 strain MG1655 and O18:K1 isolate IHE3034 led to the discovery of 

differences in (i) DNA sequence, (ii) the presence of transcriptional start and 

transcription factor binding sites as well as (iii) the structure of the matA upstream region 

that account for the different regulation of Mat fimbriae expression in these strains. A 

negative role of the H-NS protein on Mat fimbriae expression was also proven at 20 °C 

and 37 °C by real-time PCR. A major role of this fimbrial adhesin was demonstrated for 

biofilm formation, but a significant role of Mat fimbriae for APEC in vivo virulence 

could not yet be determined. Interestingly, the absence of either a functional matA gene 

or that of the structural genes matBCDEF independently resulted in upregulation of 

motility in E. coli strains MG1655 and IHE3034 by a so far unknown mechanism.  

 

In conclusion, the results of this thesis indicate a considerable overlap between 

human and animal ExPEC strains in terms of genome content and phenotypes. It becomes 

more and more apparent that the presence of a common set of virulence-associated genes 

among ExPEC strains as well as similar virulence gene expression patterns and 

phylogenetic backgrounds indicate a significant zoonotic risk of avian-derived E. coli 

isolates. In addition, new virulence factors identified in human ExPEC may also play a 

role in the pathogenesis of avian ExPEC.  
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Zusammenfassung 
Vogelpathogene Escherichia coli (APEC) sind eine Untergruppe der sogenannten 

extraintestinal pathogenen Escherichia coli (ExPEC), welche Infektionen außerhalb des 

Verdauungstraktes beim Menschen und vielen Tieren verursachen können. ExPEC sind 

durch eine Vielzahl Virulenz-assoziierter Faktoren charakterisiert, die zur Pathogenese 

beitragen können. Haupt-Virulenzfaktoren, die eine eindeutige Zuordnung zu diesem 

Pathotyp erlauben, wurden jedoch noch nicht identifiziert. Die Virulenz bei ExPEC und 

somit auch bei APEC scheint auf der kombinierten Expression von Virulenzfaktoren zu 

beruhen. Beide Pathotypen können daher nicht eindeutig aufgrund des Genomgehaltes 

sowie molekularer Epidemiologie voneinander unterschieden werden. 

  

In der vorliegenden Arbeit sollten Gemeinsamkeiten sowie Unterschiede bei 

ausgewählten APEC- und humanen ExPEC-Isolaten des gleichen Serotyps untersucht 

werden, um nähere Hinweise auf ein Zoonoserisiko zu erhalten oder um Faktoren zu 

charakterisieren, die zur Wirtsspezifität beitragen können. Vergleichende Analysen des 

Genomgehaltes zeigten, dass diese Varianten nicht aufgrund (i) genereller Phänotypen, 

(ii) ihrer Phylogenie, (iii) der Anwesenheit typischer Virulenz-assoziierter Gene sowie 

(iv) pathoadaptiver Mutationen voneinander unterschieden werden können. 

Interessanterweise wurden bei manchen Isolaten Allelvariationen in Genen beobachtet, 

die für Adhäsine wie MatB und CsgA sowie für ihre Regulatoren (MatA und CsgD) 

kodieren. Ihre mögliche Bedeutung für die Virulenz muß jedoch weiter analysiert 

werden. 

 

 Im zweiten Abschnitt dieser Arbeit wurde untersucht, ob sich eng verwandte 

Vogel- und humane ExPEC-Isolate hinsichtlich ihrer Genexpression unterscheiden. Um 

zu untersuchen, ob die Körpertemperatur des Menschen (37 °C) oder von Geflügel (41 

°C) einen unterschiedlichen Einfluß auf die bakterielle Genexpression hat und somit zur 

Wirtsspezifität beitragen kann, wurden die Transkriptome des APEC-Stammes BEN374 

und des humanen ExPEC-Stammes IHE3034 nach Anzucht in vitro bei 37 °C bzw. 41 °C 

miteinander verglichen. Wachstum bei 41 °C führte nur bei wenigen Genen zu einer 

Induktion der Genexpression, wohingegen die Anzahl der reprimierten Gene bei dieser 
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Temperatur in beiden Stämmen deutlich höher war und vor allem auf eine reduzierte 

Beweglichkeit und Chemotaxis hindeutete. Die Ergebnisse von vergleichender Genomik, 

Transkriptomik und Phänotypisierung humaner ExPEC- und APEC-Stämme unterstützen 

somit die Annahme, dass es ein Zoonoserisiko zwischen manchen APEC- und humanen 

ExPEC-Isolaten gibt. 

 

 Im dritten Teil dieser Arbeit stand die Charakterisierung der Mat Fimbrien-

Expression in E. coli sowie ihre Rolle bei der Infektion im Mittelpunkt. Der Vergleich 

der kodierenden matABCDEF Determinanten im E. coli K-12 Stamm MG1655 und im 

humanen ExPEC O18:K1 Isolat IHE3034 zeigte Unterschiede in (i) der jeweiligen 

Nukleotidsequenz, (ii) der Anwesenheit von Transkriptionsstartpunkten und 

Transkriptionsfaktor-Bindungsstellen sowie (iii) der Struktur der „Upstream“-Region des 

Genclusters auf, die zur unterschiedlichen Fimbrienexpression in beiden Stämmen 

beitragen können. Eine Repression der Mat Fimbrienexpression durch das H-NS Protein 

wurde nachgewiesen. Zudem wurde gezeigt, dass Mat Fimbrien signifikant zur 

Biofilmbildung beitragen, wohingegen ein Beitrag zur in vivo-Virulenz nicht festgestellt 

wurde. Interessanterweise beeinflusste der MatA Regulator, aber auch die Mat Fimbrien-

Strukturgene, die Flagellenexpression: die Abwesenheit von matA bzw. von matBCDEF 

führte in beiden E. coli Stämmen zu einer Induktion der Flagellenexpression und 

Motilität. Der zugrundeliegende Mechanismus ist noch unbekannt. 

 

Zusammenfassend zeigen die Ergebnisse dieser Arbeit, dass es eine beträchtliche 

Überlappung des Genomgehaltes und der Phänotypen bei ExPEC-Stämmen, die von 

Menschen oder Tieren isoliert wurden, gibt. Das Vorhandensein eines gemeinsamen 

Virulenzgenpools, ihre Phylogenie und ähnliche Genexpressionsprofile legen nahe, dass 

ein Zoonoserisiko von APEC-Isolaten ausgehen kann. Die Identifizierung bislang 

unbekannter Virulenzfaktoren humaner ExPEC-Stämme kann sich daher auch auf das 

Verständnis der Pathogenese von APEC-Isolaten auswirken. Die Ergebnisse dieser Arbeit 

belegen auch, wie am Beispiel der Mat Fimbrien gezeigt, dass unterschiedliche E. coli-

Phänotypen nicht nur auf einen unterschiedlichen Genomgehalt, sondern auch auf die 

unterschiedliche Regulation konservierter Determinanten zurückgeführt werden kann.      
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2. Introduction 
 

2.1 Escherichia coli, a versatile bacterium 
 

Among bacterial infections of man and animals, those caused by Escherichia coli 

(E. coli) are special because of the diversity of E. coli pathotypes and different types of 

infection caused. E. coli, a Gram-negative bacterium of the family Enterobacteriaceae is 

a commensal bacterium of the intestinal flora in man and warm-blooded animals. It 

represents at least 80% of the aerobic flora. E. coli is a heterogeneous bacterial species 

with high genomic plasticity and many pathogenic variants (125, 126, 293). The different 

pathovars of E. coli are characterized by their host tropism or tissue. Some strains are 

responsible for intestinal infections causing severe diarrhea. Other strains cause 

extraintestinal infections such as urinary tract infections, newborn meningitis, 

septicaemia, pneumonia but also systemic infections in poultry. These bacteria must be 

able of infecting the host, to resist the immune system and later to efficiently colonize 

these different niches (164, 285) .  

 

Among extraintestinal pathogenic Escherichia coli (ExPEC) strains, avian 

pathogenic E. coli (APEC) which cause several diseases in poultry, can be distinguished 

from uropathogenic E. coli (UPEC), which are responsible for approximately 90% of  

uncomplicated urinary tract infections (UTI) (169) and about 50 % of the nosocomial 

UTIs (286, 319).  

 

APEC infection causes avian colibacillosis, a complex syndrome characterized by 

air sacculitis, pericarditis, peritonitis, salpingitis, polyserositis, septicemia, synovitis, 

osteomyelitis, and yolk sac infection (fibrinous lesions of internal organs) (118, 119). In 

poultry, these diseases cause important economic losses. Nowadays no effective vaccine 

is available on the market, antibiotic therapy remains the most appropriate treatment 

despite the increasing resistance to antibiotics (233, 360). Several factors involved in the 

pathogenesis of these bacteria have been identified and are also present in ExPEC strains, 

such as type I- or P- and S-type fimbriae, the siderophore aerobactin, K1 capsule or the 
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protein IbeA (98, 99, 153). Nevertheless, these virulence factors are not sufficient to 

explain the whole process of infection in poultry since some pathogenic strains have no 

factors above. This suggests the existence of other still unidentified virulence factors. 

 

UTI is the most common bacterial infection in the industrialized world: in the 

USA 7 million patient visits per year are counted with total costs exceeding one billion 

dollars (17). As many as 50 % of the women report to have had at least one UTI in their 

lifetime (21). UTI affects either the bladder (cystitis) or the kidneys and their collecting 

systems (pyelonephritis), or both. The bacterial colonization of the urinary tract may be 

completely free of clinical symptoms (“asymptomatic bacteriuria”, ABU) (364). 

Moreover, a pyelonephritis can be acute or chronic. The last case is a more complex 

disorder where the bacterial infection plays a dominant role. However, other factors like 

vesicourethral reflux and obstruction or immunodeficiency are also critically involved in 

pathogenesis. UTI is normally an ascending infection (less frequently UTI can be an 

infection through the bloodstream) where the bacteria derive from the patient’s own 

faecal flora. The initial step of the pathogenesis is colonization of the distal urethra and 

vagina in women (305). From the urethra, the pathogens may gain entrance into the 

bladder. Here, when the natural defense mechanisms e.g., flushing of urine, secretion of 

IgA or uromucoid (specific protein, a urinary mucoprotein, insoluble, or glycoprotein of 

Tamm-Horsfall; type 1 pili link on it, so E. coli aggregate and are eliminated by urinary 

flux), are overwhelmed by the virulent bacteria, bacterial adhesion and colonization may 

occur evolving into UTI. The colonization of the urinary tract provokes cellular responses e. 

g., activation of the epithelial cells, secretion of cytokines and neutrophile migration into the 

urothelium. Therefore, the ability of some pathogens to overcome these mechanisms and 

colonize the urinary tract is linked to the presence of virulence factors encoded by 

horizontally acquired genes not present in their non-pathogenic relatives. These factors 

include adhesins, cytotoxins, iron-uptake systems and extracellular polysaccharides such 

as lipopolysaccharide and capsules. Nevertheless, these virulence factors, identicals to 

the ones found in APEC are not sufficient to explain the whole process of infection. 
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2.1.1 Origin of Escherichia coli 
 

On July 14th, 1885, the German pediatrician Theodor Escherich described a 

bacterial species isolated from feces of a healthy newborn as a Gram-negative rod of 

about 1.1-1.5µm x 2.0-6.0 µm. Theodor Escherich considered it as a typical “colonic 

bacterium” and designated it “Bacterium coli commune”. In 1919 “Bacterium coli 

commune” was re-named into Escherichia coli (E. coli) in honor of the man who 

discovered it. This denomination became official in 1958 on recommendation of the 

subcommittee Enterobacteriaceae of the nomenclature committee of the International 

Association of Microbiology Societies (28, 97). 

 

Escherich was initially convinced that “Bacterium coli commune” is a “harmless 

commensal”. However, Escherich reported “on cystitis in children provoked by 

“Bacterium coli commune” as early as 1894 in a published lecture. He hypothesised that 

the intestinal bacteria could be considered as a source of urinary tract infections (bladder 

and kidney infections). This early hypothesis that E. coli bacteria which persist without 

symptoms in the intestine and for various reasons find their way into the urinary tract 

where they might cause inflammation, has now been confirmed by modern biochemical 

and molecular biological methods (127). Lesage already suggested in 1887 that there are 

also pathogenic E. coli variants (194). 

 

However, it was Jensen who attested E. coli, considered for a long time only as a 

commensal of the human intestine, a pathogenic role after observation of diarrhea 

resulting of calves infection (154). Escherich already implicitly put the potential 

pathogenicity of E. coli in observing the strong frequence of neonatal diarrhea and 

lethality in rabbits and guinea pigs infected by these bacteria. Escherich himself observed 

the morphological variety of E. coli colonies. Even more numerous are the serological 

variants. The E. coli strains are serotyped on the basis of their O (somatic), H (flagellar), 

and K (capsular) surface antigen profiles (168), where the specific combination of these 

factors defines the serotype of an isolate. E. coli strains of a specific serotype can be 

associated with certain clinical manifestations. However, the surface antigens alone are 

not considered to confer pathogenicity themselves. Rather there are specific clonal 



2. Introduction 

 - 8 - 

lineages which have served as “hosts” for horizontally transfered virulence genes 

resulting in pathogenic clones (369). 

 

According to Hacker and Kruis (126), around 50,000 different serotypes may 

occur in nature arising from the combination of different antigen structures. To date 173 

surface (O), 80 capsular (K) and 56 flagellar (H) antigens are known in E. coli. In 

addition, there are also more than 100 adhesin variants which cause further differences in 

serological behavior and exhibit differences in receptor recognition. 

 

2.1.2 Non-pathogenic  
 

Many bacteria are normally present on the skin and mucous membranes of 

healthy humans and animals. They form the resident commensal flora, constituted of non-

pathogenic bacteria and opportunistic pathogens. In humans, only the genital and 

digestive commensal flora include E. coli. The digestive flora is the most abundant with 

500 to 1000 different bacterial species and it is the natural habitat of 

E. coli (365). At the time of birth, the intestine, which is normally sterile, is quickly 

colonised by micro-organisms from the environment and the urogenital tract of the 

mother. The bacteria start to appear in feces during the first hours after birth and their 

number increases gradually during the first week. The first microorganisms isolated from 

feces of infants are facultative anaerobic bacteria such as E. coli and generally belong to 

the Enterobacteriaceae, staphylococci and streptococci. In adults, E. coli represents about 

0.l % of the total intestinal flora and 80 % of the aerobic intestinal flora, because of 1011 

bacteria per gram of feces with a localization mainly in terminal parts of the intestine 

(139, 147, 293). As in humans, the most important bacterial flora of warm-blooded 

animals, including poultry, is in the gastrointestinal tract, particularly in the large 

intestine. Together with enterococci, E. coli is the most widespread bacterial species 

among pets and are present in different proportions depending of the animal (309) (see 

Table 1). 
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Table 1: E. coli from normal feces flora of different species (309). 

 rabbit horse calf Sheep pork chicken mouse dog cat 
E. coli 2.7 4.1 4.3 6.5 6.5 6.6 6.8 7.5 7.6 
Average values from 10 individuals (log CFU/g of feces) 
 

E. coli can also be found in healthy subjects outside of its natural habitat, 

particularly in the upper respiratory tract of rabbits (5), of puppies (4), and chickens (76). 

In the avian, E. coli is also present on the skin and feathers (48, 49, 52, 53, 237). 

 

The non-pathogenic strain of E. coli the most studied and best known is the strain 

K-12 and its derivatives. It was isolated in 1922 from the stool of a patient suffering from 

diphtheria (191) and was stored in the bacteriological strain collection of the Medical 

School of Stanford University in California under the laboratory designation “K-12”. 

When parasexual processes - i.e. the capability of exchanging genetic material between 

two bacterial cells - were then discovered in this E. coli K-12 strain, this strain became 

the standard research object of microbial geneticists and molecular biologists. One of the 

first bacterial strains whose genome was completely sequenced was consequently an E. 

coli K-12 strain (MG1655) (33). 

 

2.2 E. coli Infections 
 

Pathogenic E. coli bacteria are classified into different “pathotypes” according to 

the disease type they cause. E. coli strains causing intestinal infections are distinguished 

from other strains that are responsible for extraintestinal infections. Pathogenic E. coli 

variants are characterized by the presence of various virulence factors, such as various 

toxins, particular fimbrial adhesins, invasins or secretion system (see Figure 1). They can 

be present in the bacterial genome, encoded on genomic/pathogenicity islands, plasmids 

or phages. 
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Figure 1: Pathogenicity of diarrhoeagenic E. coli. The six recognized categories of diarrhoeagenic E. 
coli have unique features in their interaction with eukaryotic cells. Here, the interaction of each category 
with a typical target cell is schematically represented. These descriptions are largely the result of in vitro 
studies and might not completely reflect the phenomena that occur in infected humans. a | EPEC adhere to 
small bowel enterocytes, but destroy the normal microvillar architecture, inducing the characteristic 
attaching and effacing lesion. Cytoskeletal rerrangements are accompanied by an inflammatory response 
and diarrhoea. 1. Initial adhesion, 2. Protein translocation by type III secretion, 3. Pedestal formation. b | 
EHEC also induce the attaching and effacing lesion, but in the colon. The distinguishing feature of EHEC 
is the expression of Shiga toxin (Stx), systemic absorption of which leads to potentially life-threatening 
complications. c | Similarly, ETEC adhere to small bowel enterocytes and induce watery diarrhoea by the 
secretion of heat-labile (LT) and/or heat-stable (ST) enterotoxins. d | EAEC adhere to the small and large 
bowel epithelia in a thick biofilm and secrete enterotoxins and cytotoxins. e | EIEC invade the colonic 
epithelial cell, lyse the phagosome and move through the cell by nucleating actin microfilaments. The 
bacteria might move laterally through the epithelium by direct cell-to-cell spread or might exit and re-enter 
the baso-lateral plasma membrane. f | DAEC elicits a characteristic signal transduction effect in small 
bowel enterocytes that manifests as the growth of long finger-like cellular projections, which wrap around 
the bacteria. AAF, aggregative adherence fimbriae; BFP, bundle-forming pilus; CFA, colonization factor 
antigen; DAF, decay-accelerating factor; EAST1, enteroaggregative E. coli ST1; LT, heat-labile 
enterotoxin; ShET1, Shigella enterotoxin 1; ST, heat-stable enterotoxin. (From: Kaper et al., 2004) 
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2.2.1 E. coli involved in intestinal infections 
 

Intestinal pathogenic E. coli are subdivided at present into six pathotypes which 

cause diarrhoea with different clinical manifestation (164). The clinical symptoms and 

the virulence factors expressed by the strains, the adhesion factors and toxins, are used as 

criteria for their classification (see Table 2). The serotyping mainly employed in earlier 

years to identify and classify clinical isolates is being more and more replaced today by 

the molecular genetic detection of bacterial virulence and pathogenicity factor-encoding 

genes that are known, supported by evidence of specific pathogenic features (see Figure 

1). 

 

2.2.1.1 Enteropathogenic E. coli (EPEC) 
 

EPEC was the first pathotype of E. coli to be described. Large outbreaks of infant 

diarrhoea in the United Kingdom led Bray, in 1945, to describe a group of serologically 

distinct E. coli strains that were isolated from children with diarrhoea but not from 

healthy children. EPEC remains an important cause of potentially fatal infant diarrhoea in 

developing countries (228). A characteristic intestinal histopathology is associated with 

EPEC infections; known as ‘attaching and effacing’ (A/E), the bacteria intimately attach 

to intestinal epithelial cells and cause striking cytoskeletal changes, including the 

accumulation of polymerized actin directly beneath the adherent bacteria. The microvilli 

of the intestine are effaced and pedestal-like structures on which the bacteria perch 

frequently rise up from the epithelial cell. The ability to induce this A/E histopathology is 

encoded by genes on  the ‘locus of enterocyte effacement’ (LEE) (212), a 35-kb 

pathogenicity island (PAI). Homologues of LEE are also found in other human and 

animal pathogens.  
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Table 2: Main characteristics of the different pathovars of intestinal pathogenic Escherichia coli.   
C: chromosomally-encoded; P: plasmid-encode 

 

 

Pathotype Adhesins Toxins Invasive Histopathology G enetic support Host  Symptoms 

ETEC 
K88(F4)PK99 (F5)P CS31AP 987P 
(F6)P F17C F18 F42 CFA/I (F2)P 
CFA/II (F3) [ CS1P, CS2C, CS3P]  
          CFA/IIIP + CS6P                     
  CFA/IV [ CS4P, CS5P, CS6P]  
     CS7P CS17P PCFO166P   
      PCFO159P PCFO148P 

 

Enterotoxin  
cytotoxic:            
LT-IP, LT-II  
 
STaP, STbP 

No No Chromosomal 
Plasmid 

Human 
 
 
Piglet 
 
 
Calf 
Lamb 

Watery diarrhoea + dehydration + 
 acidose 
 
Newborn diarrhoea and post-weaning 
 
 
Watery diarrhea + dehydration +  
Acidose + newborn diarrhoea 

EPEC 
BFPC FB171-14                    
FB171-15 FB171-16            
AF/R1P AF/R2P                     
intiminC 

EAST1P/C Limited Attaching effacing   
(Hep-2 or HeLa) 

Chromosome (LEE) 
Plasmid (EAF) 

Human, 
piglet,  
rabbit  

Watery diarrhoea  
           +  
Dehydration 

EHEC 
IntiminC                      
Other adhesins       
F18 (pork)P 

Stx1C Stx2C 

EAST1C 

EnterohemolysinP 

Ehly1 Ehly2 

No Attaching-Effacing  
(Hep-2 or HeLa) 
Inflammation 

Chromosome (LEE) 
Plasmid  

Human 
 
 
 
 
Pork 
Calf 

Non-bloody diarrhoea 
Bloody diarrhoea 
HUS 
Oedema 
 
Post-weaning diarrhoea  
Mucoid enteritis 
Bloody diarrhoea 

EAEC 
AAF/IP AAF/IIP EAST1P 

Cytotoxins 
No Mucus biofilm 

Hypersecretion 
Chromosome 
Plasmid 

Human Persistent watery and mucoid  
diarrhoea in adult and children 

EIEC 
Ipa Enterotoxins Yes +/- (depends on the 

inflammation severity) 
Chromosome 

Plasmid (140 MDa) 

Human Watery diarrhoea and occasionally  
dysentery (mucous and blood in feces) 

DAEC F1845 AIDA-I 

“fine projections” 

 Rare ? Chromosome 

Plasmid 

Children Watery diarrhoea 
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The model of EPEC pathogenesis is considerably more complex than simple 

binding to epithelial cells by a single adhesin and secretion of an enterotoxin that induces 

diarrhoea. The emerging model, several aspects of which are reviewed elsewhere (103, 

134, 170, 228), indicates that EPEC initially adhere to epithelial cells by an adhesin, the 

identity of which is not yet clearly established; potential candidates include BFP, the 

EspA filament, flagella, LifA/Efa1 and intimin (by host-cell receptors). 

 

Diarrhoea probably results from multiple mechanisms, including active ion 

secretion, increased intestinal permeability, intestinal inflammation and loss of absorptive 

surface area resulting from microvillus effacement. EPEC are also pathogenic to animals 

and causes major losses in the rearing of young animals, e.g. in rabbits, chickens. EPEC 

have also been isolated from animals livestock with lesions A/E such as cattle (56, 110, 

202, 203), pigs (368), or rabbits (217) but also among pets such as dogs and cats (42)  

 

2.2.1.2 Enterotoxigenic E. coli (ETEC) 
 

ETEC cause watery diarrhoea, which can range from mild, self-limiting disease to 

severe purging disease. The organism is an important cause of childhood diarrhoea in the 

developing world and is the main cause of diarrhoea in travellers to developing countries 

(228). ETEC colonizes the surface of the small bowel mucosa and secrete enterotoxins, 

which induce intestinal secretion. ETEC enterotoxins belong to one of two groups: the 

heat-labile enterotoxins (LTs) and the heat-stable enterotoxins (STs). ETEC strains might 

express only an LT, only an ST, or both LTs and STs. LTs are a class of enterotoxins that 

are closely related in structure and function to cholera enterotoxin (CT), which is 

expressed by Vibrio cholerae (311). STs are small, single-peptide toxins that include two 

unrelated classes — STa and STb — which differ in both structure and mechanism of 

action. Only toxins of the STa class have been associated with human disease (228). The 

STb toxin is associated with animal disease and is a 48-amino acid peptide containing 

two disulphide bonds (reviewed in (85)). STb can elevate cytosolic Ca2+ concentrations, 

stimulate the release of prostaglandin E2 and stimulate the release of serotonin, all of 

which are mechanisms that could lead to increased ion secretion. 
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ETEC is mainly a pathogen of developing countries, and it is well known that 

these countries typically have a low rate of colon cancer. Pitari et al. (256) have reported 

that STa suppresses colon cancer cell proliferation through a guanylyl cyclase C-

mediated signalling cascade. Accordingly, the high prevalence of ETEC in developing 

countries might have a protective effect against this important disease, and indicates that 

infectious diseases might exist in a complex evolutionary balance with their human 

populations. 

 

2.2.1.3 Enterohaemorrhagic E. coli (EHEC) 
 

First recognized as a cause of human disease in 1982, EHEC causes bloody 

diarrhoea (haemorrhagic colitis), non-bloody diarrhea and haemolytic uremic syndrome 

(HUS). The bovine intestinal tract is the principal reservoir of EHEC and initial outbreaks 

were associated with consumption of undercooked hamburgers. Subsequently, a wide 

variety of food items have been associated with disease, including sausages, 

unpasteurized milk, lettuce, cantaloupe melon, apple juice and radish sprouts — the latter 

were responsible for an outbreak of 8,000 cases in Japan. Facilitated by the extremely 

low infectious dose required for infection (estimated to be <100 cells), EHEC has also 

caused numerous outbreaks associated with recreational and municipal drinking water, 

person-to-person transmission and petting zoo and farm visitations. A recent report 

indicates potential airborne transmission after exposure to a contaminated building (338). 

EHEC strains of the O157:H7 serotype are the most important EHEC pathogens in North 

America, the United Kingdom and Japan, but several other serotypes, particularly those 

of the O26 and O111 serogroups, can also cause disease and are more prominent than 

O157:H7 in many countries. 

 

The key virulence factor for EHEC is Stx, which is also known as verocytotoxin 

(VT). The Stx family contains two subgroups — Stx1 and Stx2 — that share 

approximately 55% amino acid homology. Stx is produced in the colon and is transported 

by the bloodstream to the kidney, where it damages renal endothelial cells and occludes 

the microvasculature through a combination of direct toxicity and induction of local 
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cytokine and chemokine production, resulting in renal inflammation (11). This damage 

can lead to HUS, which is characterized by haemolytic anaemia, thrombocytopoenia and 

potentially fatal acute renal failure. Stx also mediates local damage in the colon, which 

results in bloody diarrhoea, haemorrhagic colitis, necrosis and intestinal perforation. 

 

 In addition to Stx, most EHEC strains also contain the LEE pathogenicity island 

that encodes a type III secretion system and effector proteins that are homologous to 

those that are produced by EPEC. Animal models have shown the importance of the 

intimin adhesin in intestinal colonization, and HUS patients develop a strong antibody 

response to intimin and other LEE encoded proteins. EHEC O157:H7 is believed to have 

evolved from LEE-containing O55 EPEC strains that acquired a bacteriophage encoding 

Stx (274).  

 

2.2.1.4 Enteroaggregative E. coli (EAEC) 
 

EAEC are increasingly recognized as a cause of often persistent diarrhea in 

children and adults in both developing and developed countries, and have been identified 

as the cause of several outbreaks worldwide. At present, EAEC are defined as E. coli that 

do not secrete LT or ST and that adhere to HEp-2 cells in a pattern known as 

autoaggregative, in which bacteria adhere to each other in a ‘stacked-brick’ configuration 

(228). Nevertheless, at least a subset of EAEC has been proven as human pathogens.  

 

 The basic strategy of EAEC infection seems to comprise colonization of the 

intestinal mucosa, probably predominantly that of the colon, followed by secretion of 

enterotoxins and cytotoxins (229). Studies on human intestinal explants indicate that 

EAEC induces mild, but significant, mucosal damage (140) — these effects are most 

severe in colonic sections. Mild inflammatory changes are observed in animal models 

(339) and evidence indicates that at least some EAEC strains might be capable of limited 

invasion of the mucosal surface (1, 24). The most dramatic histopathological finding in 

infected animal models is the presence of a thick layer of autoaggregating bacteria 

adhering loosely to the mucosal surface. EAEC prototype strains adhere to HEp-2 cells 
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and intestinal mucosa by virtue of fimbrial structures known as aggregative adherence 

fimbriae (AAFs) (64, 227, 230), which are related to the Dr family of adhesins. Several 

toxins have been described for EAEC. Two such toxins are encoded by the same 

chromosomal locus on opposite strands. The larger gene encodes an autotransporter 

protease with mucinase activity called Pic; the opposite strand encodes the oligomeric 

enterotoxin that is known as Shigella enterotoxin 1 (ShET1), owing to its presence in 

most strains of Shigella flexneri 2a (137, 236). Although no single virulence factor has 

been irrefutably associated with EAEC virulence, epidemiological studies implicate a 

‘package’ of plasmid-borne and chromosomal virulence factors, similar to the virulence 

factors of other enteric pathogens. Several EAEC virulence factors are regulated by a 

single transcriptional activator called AggR, which is a member of the AraC family of 

transcriptional activators (230). One consistent observation from studies involving EAEC 

epidemiology is the association of the AggR regulon with diarrhoeal disease. Jiang et al. 

have recently shown that the presence of genes associated with the AggR regulon is 

predictive of significantly increased concentrations of faecal IL-8 and IL-1 in patients 

with diarrhoea caused by EAEC (155). It has been suggested that the term ‘typical 

EAEC’ should be reserved for strains carrying AggR and at least a subset of AggR-

regulated genes (for which the traditional EAEC probe is an adequate marker), and that 

the term ‘atypical EAEC’ should be used for strains lacking the AggR regulon. 

 

2.2.1.5 Enteroinvasive E. coli (EIEC)  
 

EIEC are biochemically, genetically and pathogenically closely related to Shigella 

spp. Numerous studies have shown that Shigella spp. and E. coli are taxonomically 

indistinguishable at the species level (269, 351), but, owing to the clinical significance of 

Shigella, a nomenclature distinction is still maintained. The four Shigella species that are 

responsible for human disease, S. dysenteriae, S. flexneri, Shigella sonnei and Shigella 

boydii, cause varying degrees of dysentery, which is characterized by fever, abdominal 

cramps and diarrhoea containing blood and mucus. EIEC might cause an invasive 

inflammatory colitis, and occasionally dysentery, but in most cases EIEC elicits watery 

diarrhoea that is indistinguishable from that due to infection by other E. coli pathogens 
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(228). EIEC are distinguished from Shigella spp. by a few minor biochemical tests, but 

these pathotypes share essential virulence factors. EIEC infection is thought to represent 

an inflammatory colitis, although many patients seem to manifest secretory, small bowel 

syndrome. The early phase of EIEC/Shigella pathogenesis comprises epithelial cell 

penetration, followed by lysis of the endocytic vacuole, intracellular multiplication, 

directional movement through the cytoplasm and extension into adjacent epithelial cells 

(292). Movement within the cytoplasm is mediated by nucleation of cellular actin into a 

‘tail’ that extends from one pole of the bacterium. In addition to invasion into and 

dissemination within epithelial cells, Shigella (and presumably EIEC) also induces 

apoptosis in infected macrophages (371).  

 

Genes that contribute to this complex pathogenicity are present on a large 

virulence plasmid that is found in EIEC and all Shigella species. The sequence of the 

213-kb virulence plasmid of S. flexneri (pWR100) indicates that this plasmid is a mosaic 

that includes genetic elements that were initially carried by four plasmids (46). One-third 

of the plasmid is composed of insertion sequence (IS) elements, which are undoubtedly 

important in the evolution of the virulence plasmid. This plasmid encodes a type III 

secretion system and a 120-kDa outer-membrane protein called IcsA, which nucleates 

actin by the binding of N-WASP (87, 111). The growth of actin micofilaments at only 

one bacterial pole induces movement of the organism through the epithelial cell 

cytoplasm. This movement culminates in the formation of cellular protrusions that are 

engulfed by neighbouring cells, after which the process is repeated. Although EIEC are 

invasive, dissemination of the organism past the submucosa is rare. 

 

Although the extensively characterized type III secretion system is essential for 

the invasiveness characteristic of EIEC and Shigella species, additional virulence factors 

have been described, including the plasmid-encoded serine protease SepA, the 

chromosomally encoded aerobactin iron-acquisition system and other secreted proteases 

that are encoded by genes present on pathogenicity islands.  
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2.2.1.6 Diffusely adherent E. coli (DAEC)  
 

DAEC are defined by the presence of a characteristic, diffuse pattern of adherence 

to HEp-2 cell monolayers. DAEC have been implicated as a cause of diarrhoea in several 

studies, particularly in children >12 months of age (228, 294). Approximately 75% of 

DAEC strains produce a fimbrial adhesin called F1845 or a related adhesin (Ref. 29; 

unpublished observations in review 164); F1845 belongs to the Dr family of adhesins, 

which use DAF, a cell surface glycosylphosphatidylinositol-anchored protein, which 

normally protects cells from damage by the complement system, as the receptor (27, 133, 

252). DAEC strains induce a cytopathic effect that is characterized by the development of 

long cellular extensions, which wrap around the adherent bacteria (see Figure 1). This 

characteristic effect requires binding and clustering of the DAF receptor by Dr fimbriae 

(27). All members of the Dr family (including UPEC as well as the DAEC strain C1845) 

elicit this effect (29). Binding of Dr adhesins is accompanied by the activation of signal 

transduction cascades, including activation of PI-3 kinase (252). Peiffer et al. have 

reported that infection of an intestinal cell line by strains of DAEC impairs the activities 

and reduces the abundance of brush border-associated sucrase isomaltase and 

dipeptidylpeptidase IV (251). This effect is independent of the DAF-associated pathway 

described above, and therefore provides a feasible mechanism for DAEC-induced enteric 

disease and also indicates the presence of virulence factors in DAEC other than Dr 

adhesins. Tieng et al. (323) have proposed that DAEC might induce expression of MICA 

by intestinal epithelial cells, indicating that DAEC infection could be proinflammatory; 

this effect could potentially be important in the induction of inflammatory bowel 

diseases. 

 

2.2.2 Extraintestinal pathogenic Escherichia coli 
 

Extraintestinal infections involving E. coli include urinary tract infections, 

newborn meningitis as well as human and animal septicemia. Unlike IPEC, ExPEC are 

very often found as intestinal commensal flora and are not the cause of gastroenteritis in 

humans. The acquisition of ExPEC by the host does not often cause an infection, they 
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will have to colonize first, from the intestine or external middle, tissues and organs 

normally sterils (urinary tract, peritoneal cavity, lungs) (158, 288) 

 

ExPEC strains express different types of virulence factors which allow them to 

colonize the surface of the mucous membranes of the host, to escape host defence 

mechanisms, to multiply under conditions of limited essential elements (nutrients) such 

as iron. Other virulence factors will enable ExPEC to invade the host tissue and to induce 

an inflammatory response (156). These virulence factors of ExPEC include various 

adhesins, surface polysaccharides (capsule, LPS), toxins, siderophores, proteases, 

invasins and proteins enabling them to resist the effects of complement. It is impossible 

today to characterize with precision different pathotypes among ExPEC solely on the 

basis of their virulence factors. Nevertheless, ExPEC strains were isolated from various 

extraintestinal infections. There are thus E. coli responsible for urinary tract infections 

(UPEC, Uropathogenic E. coli), E. coli responsible for the newborn meningitis (NMEC, 

Neonatal Meningitidis E. coli) and E. coli implicated in localized and systemic poultry 

infections (APEC Avian pathogenic E. coli). 

 

2.2.2.1 The UPEC pathotype 
 

The urinary tract is the most common site of bacterial infection in industrialized 

countries (348), and urinary tract infection (UTI) is also the leading nosocomial disease. 

UTI can be caused by several microbial pathogens. The most common causative agent of 

urinary tract infections, however, are uropathogenic E. coli (UPEC), which cause 

uncomplicated UTI in about 80% of all cases (148, 319). 

 

The urinary tract represents a usually sterile compartment, which is protected 

from bacterial infections by various mechanisms such as urine flow and immune 

responses. Furthermore, the urinary tract is a hostile environment in terms of supporting 

bacterial growth. The chemical composition, osmolarity, and pH of urine determine the 

rate of bacterial growth and the maximum population that can be supported, and can be 

very variable, depending on the diet. Normal urine constituents include amino acids and 
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glucose, which are usually present at sufficient concentrations to support rapid bacterial 

growth. However, other components of urine, such as urea and organic acids, may inhibit  

 
Figure 2: Pathogenesis of urinary tract infection caused by uropathogenic E. coli. The figure shows 
the different stages of a urinary tract infection. CFU, colony-forming units; PMNs, polymorphonuclear 
leukocytes. (From: Kaper et al., 2004) 
 

growth, mainly by affecting pH and osmolarity (14). Therefore, the ability of some 

pathogens to overcome these mechanisms and colonize the urinary tract is linked to the 

presence of virulence factors encoded by horizontally acquired genes not present in their 

non-pathogenic relatives. These factors include adhesins, cytotoxins, iron-uptake systems 

and extracellular polysaccharides such as lipopolysaccharide and capsules. For 

comprehensive reviews on virulence factors of uropathogenic E. coli see Emödy et al. 

(2003), Johnson (1991), Mühldorfer et al. (2001), or Oelschlaeger et al. (2002).  

 

The subset of E. coli that causes uncomplicated cystitis and acute pyelonephritis is 

distinct from the commensal E. coli strains that comprise most of the E. coli colonizing 

the lower colon of humans. E. coli from a small number of O serogroups (six O groups 

cause 75% of UTIs) have phenotypes that are epidemiologically associated with cystitis 



2. Introduction 

 - 21 - 

and acute pyelonephritis in the normal urinary tract, which include expression of P 

fimbriae, α-haemolysin, aerobactin, serum resistance and encapsulation. Clonal groups 

and epidemic strains that are associated with UTIs have been identified (238, 255). 

Availability of the genome sequence of E. coli CFT073 (353) and 536 (45), efforts by 

other investigators to identify virulence genes by signature-tagged mutagenesis (19) and 

other methods have allowed the development of a model of pathogenesis for UPEC (see 

Figure 2). 

 

2.2.2.2 Meningitis/Sepsis-associated E. coli (MNEC, SEPEC) 
 

E. coli is the second leading cause of meningitis among newborns (25-30% of 

cases) after the group B streptococci (210), with a case fatality rate of 15–40% with 

severe neurological defects in many of the survivors (71, 333). 

 

Sepsis-causing E. coli employ pathogenicity factors similar to UPEC. Sepsis 

caused by E. coli occurs in humans, cattle, sheep, pigs and poultry. Septicemic E. coli 

(SEPEC) protect themselves from attack by the complement system by having certain 

capsule types and, to a lesser extent, long-chain lipopolysaccharides. This enables them 

to survive for a longer time in blood serum. SEPEC are therefore described as “serum-

resistant”. In humans they are transferred from the mother to the neonate during birth and 

can trigger meningitis in the newborn child or by exposure to bacteria during a hospital 

stay (104, 239). The E. coli meningitis usually develops through various stages of 

interaction between the host and the bacterium. These mechanisms include MENEC 

colonization of the respiratory or digestive tract, the invasion of intravascular space 

followed by a survival and an increase in the blood. This strong bacteremia is necessary 

for E. coli to cross the blood-brain barrier, invade the central nervous system and thus 

cause meningitis (173, 176). 

 

MNEC also protect themselves by capsule formation (often of the K1 serotype). 

They adhere to epithelial and endothelial cells using e.g. S- or F1C fimbrial adhesins and 

can penetrate through these tissue barriers. As with E. coli pathotypes that have a well 
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defined genetic basis for virulence, strains that cause meningitis are represented by only a 

limited number of O serogroups, and 80% of the strains are of the K1 capsule type. One 

interesting difference between MNEC and E. coli that cause intestinal or urinary tract 

infections is that although the latter strains can be readily transmitted by urine or faeces, 

infection of the central nervous system offers no obvious advantage for the selection and 

transmission of virulent MNEC strains. 

 

As for other E. coli pathotypes, the genomes of these E. coli K1 strains have 

additional genes that are not found in the commensal E. coli K-12 strains. In genomic 

comparisons, the genome of E. coli RS218, a newborn meningitis isolate, was found to 

have at least 500 kb of additional genes inserted in at least 12 loci compared with E. coli 

K-12 (38, 279). In addition, strain RS218 harbours a 100-kb plasmid, on which at least 

one virulence factor has been localized (18). Some insights into the mechanism of 

pathogenesis of these strains have been obtained. K1 strains use S fimbriae to bind to the 

lumenal surfaces of brain microvascular endothelium in neonatal rats (248). Invasion 

requires the outer-membrane protein OmpA to bind to the GlcNAcβ1-4GlcNAc epitope 

of the brain microvascular endothelial cell receptor glycoprotein (265). Other membrane 

proteins — for example, IbeA, IbeB, IbeC and AslA — are also required for invasion 

(174). Invasion correlates with microaerobic growth and iron supplementation (117). The 

toxin CNF1, which has been shown to induce bacterial phagocytosis in epithelial cells 

(100), is required for invasion of human brain microvascular endothelial cells and may 

involve the same mechanism (18), as is the K1 capsule, which elicits serum resistance 

and has antiphagocytic properties. In an experimental model, strains that express K1 

capsule proteins and those that do not were able to cross the blood-brain barrier, but only 

the K1-expressing strains survived (142). As a consequence of invasion, actin 

cytoskeletal rearrangement occurs and tyrosine phosphorylation of focal adhesion kinase 

(FAK) and paxillin is induced (272). In addition, a substantial list of in vivo-induced 

genes, including those that encode iron-acquisition systems, was compiled using in vivo 

expression technology (IVET) in conjunction with a murine model of septicaemic 

infection (172). 
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2.2.2.3 The APEC pathotype 
 

In birds, E. coli is a normal resident of the intestinal flora, the upper respiratory 

tract (trachea, pharynx) and is also found on the skin and feathers (20, 76). However, 

some E. coli strains, so-called avian-pathogenic E. coli (APEC), can cause infection in 

poultry. APEC strains comprise a subset of pathogenic E. coli that cause extraintestinal 

diseases in poultry (118). The most common syndrome starts as an infection of the upper 

respiratory tract in 3 to 12-week-old broiler chickens and turkeys, and frequently 

develops into a systemic infection. APEC infections are enhanced or iniated by 

predisposing factors such as environmental conditions and viral or Mycoplasma 

infections (77, 119).  

 

In poultry, APEC have been associated with various extraintestinal infections. 

The most common are the respiratory colibacillosis, necrotizing dermatitis syndrome and 

the Swollen Head Syndrome (20, 77, 119). The respiratory colibacillosis is one of the 

leading causes of mortality and disease in poultry, and causes economic losses in the 

poultry (20). 

 

The serological tests of somatic antigens are the classical characterization method 

of APEC strains. Early studies conducted in 1961 by Sojka and Carnaghan from 243 

strains of E. coli isolated from internal organs of birds suffering of colibacillosis showed 

that among APEC the most frequently serogroups encountered are O1 (Ol: Kl), O2 (O2: 

Kl) and O78 (O78: K80)(306). In the various studies that have followed, these three 

serogroups always represent the majority serogroups of APEC (32, 77, 281). However, an 

increasing variety of serogroups identified and the large number of non-typable strains 

make it difficult to carry out a relevant APEC classification based on serotyping. 

 

A) Localized avian colibacillosis 

 
Omphalitis (umbilic infection) may be technically defined as an inflammation of the 

navel. As commonly used, the term refers to improper closure of the navel with 

subsequent bacterial infection (navel ill; mushy chick disease). This also refers to the 
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yolk sac infection. The contamination happens by the feces, during the entry through the 

unhealed navel or penetration of the egg shell prior to or during incubation. This results 

in a high mortality of the young birds until 3 weeks after birth (20). 

 

The necrotizing dermatitis is a skin inflammation. Although rare in animals, they are very 

frequent in birds. The injuries may reach the muscle, and are often associated with 

abscess formation (190). They are often localized in the cloacal and abdominal zone of 

the birds (89-92). 

 

The swollen head syndrome (SHS) maybe observed in chicken and turkey. SHS is 

usually a multifactorial disease; it is believed that the initial lesions are caused by viruses.  

 

The ovaritis and salpingitis (oviduct inflammation) are found in the adult chicken. They 

are due to an ascending infection from the cloaca and the left abdominal air sac. The 

layer which had these injuries may contaminate the eggs before the shell formation, and 

be responsible for high embryo mortality. A peritonit may be due to a salpingitis, or not 

(20). 

 

B) Systemic colibacillosis with respiratory origin 
 

The systemic colibacillosis with respiratory origin is the most frequent form of 

colibacillosis in the chicken. It may develop into bacteremia and septicemia with a 

relatively high mortality rate. The respiratory colibacillosis is essentially present in the 

animals between 3 and 12 weeks, with important losses between 4 and 9 weeks (77). 

Colibacillosis is typically characterized by an air saculitis: the air sacs (see Figure 3) are 

thicker than normal, and appear white or opaque rather than transparent with 

accumulation of material (fibrine). In the generalized form, fibrinous injuries of the 

serous membrane can be observed.  

 

The respiratory tract, which is the principal entrance way for the bacteria, plays a 

crucial role in the pathogenesis. The healthy animal has few phagocytes present in the 

respiratory tract like neutrophil and heterophil granulocytes or macrophages (329). The 
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pathogens enter by inhalation of contaminated dust particles with E. coli originating from 

the intestinal tract of healthy or ill animals. Other biological agents may enhance APEC 

infection. The infectious bronchitis virus (IBV) causes an economically important 

respiratory disease in poultry worldwide, as well as the Newcastle disease virus or the 

causative agent of Gumboro disease, Mycoplasma gallisepticum; but also non-biological 

factors like the ammonium concentration or the dust in the rearing (20). Their inhalation 

decreases the number of the mucus secretory cells and the deciliation of epithelial cells. 

This decrease of mucus allows the APEC to adhere to the epithelium and persist in the 

respiratory tract of the animal (226). 

 

 
Figure 3: Scheme of the avian respiratory system. Chickens have a total of nine air sacs: four connected 
to each lung (two cervical sacs, two anterior thoracic sacs, two posterior thoracic sacs, two abdominal 
sacs), and one large intraclavicular air sac shared between the two lungs. (From: 
http://www.hiyt.afhe.ualberta.ca/winter06projects/breathbones.pdf) 
 

In the lower part of the respiratory tract, lungs and air sac, few APEC strain may 

resist inside the macrophages (258). Mellata et al. demonstrated the role of type I 

fimbriae in the association of APEC with phagocytes, whereas the K1capsule, the O78 

LPS antigen and P fimbriae allowed the bacteria to escape phagocytosis (216). Like it, 
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the APEC may colonize the respiratory tract and propagate in the rest of the organism. 

This form of colibacillosis may be reproduced experimentally either by intra-tracheal 

inoculation of the pathogen or by inoculation directly into the airsac (75, 258). 

 

2.3 Virulence factors of ExPEC 
 

Different potential virulence factors were identified in ExPEC, allowing them to 

adhere, to penetrate the epithelial cells, to resist to the immune system and to multiply. In 

Table 3, you may see a list of the differents virulent factors clearly identify in ExPEC. 

 

2.3.1 Fimbrial adhesins 
 

The fimbriae possess fibre-like structures and are visible on the bacteria surface 

by electronic microscopy. Fimbriae exhibit a composite structure, consisting of a rod-

shaped shaft of 6-7 nm in diameter comprising over a thousand major subunits and minor 

subunits. 

 

In ExPEC, we can distinguish four important types of fimbriae, i.e. type 1 

fimbriae, P fimbriae, S/F1C fimbriae (and AC/I fimbriae). P-, S- and F1C-fimbriae are 

more exclusively associated with extraintestinal E. coli isolates and the tip of these 

adhesins recognize carbohydrate moieties: Galα(1-4)Gal, α-sialyl-2,3-β-galactose, and 

GalNAcβ(1-4)Galβ, respectively. These fimbriae are factors contributing to the virulence 

potential of such strains, but they are not necessarily sufficient to cause disease (219). 

 

2.3.1.1 Type 1-fimbriae  
 

The type 1-fimbriae are extracellular structures encoded by a group of nine genes 

localized on the core chromosome (fimA to fim I) where seven genes are organized in an 

operon (fimA, fimC, fimD, fimF-I) whose expression is phase variable (88, 105, 211). 
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Table 3: Virulence factors of extraintestinal pathogenic Escherichia coli 

Virulence factors Role Gene 
Adhesins and invasins 
Type 1 
 
 
Dr  
P 
 
S-/F1C  
F17 
Curli 
IbeA 

 
Adhesion to the respiratory tract 
(APEC) or uroepithelial cells 
(UPEC) 
 
Adhesion to depth organs (APEC) 
or uroepithelial cells (UPEC) 
Adhesion to depth organs (APEC) 
or uroepithelial cells (UPEC) 
Colonization factor 
Promotes invasion 

 
fimA-H 
 
 
afa/dra 
papA-K 
 
sfaA-G, focA-G 
f17ACDG 
csgA-G 
ibeA 

Iron acquisition systems 
Aerobactin 
Salmochelin 
Yersiniabactin 
IreA 
Chu 

 
Capture iron in the host 

 
iucA-D/iutA 
iroBCDN 
irp2 and fyuA 

Pst System Phosphate ATP-dependant 
transporter 

phoU-pstSCAB 

Tsh protein Proteolytic activity tsh 
Immune resistance 
system 
K1Capsule  
 
Outer membrane protein 
A 
 
Iss 
LPS (O78) 

 
 
Protection against the serum 
(complement inhibition), 
protection against phagocytosis 

 
 
kpsMT-neuDBACES 
kpsFEDUCS 
ompA 
 
traT 
iss 
rfb locus  

Toxin and cytotoxin 
α-haemolysin 
Colibactin 
CNF 
CDT 
 
Sat 
Verotoxin 
Vat 

 
Cell lysis 
 
Altered cytoskeleton, necrosis 
DNaseI activity, blocks mitosis in 
G2/M phase 
Vacuolation 
Cell damage 
Vacuolation 

 
hlyA 
pks genomic island 
cnf 
cdtABC 
 
sat 
vt2y 
vat 
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The fimA gene encodes the major component of the structure, the fibrillin. Other genes of 

the operon encode minor proteins, including fimH encoding the adhesin (205). The role 

of the major subunits is yet unclear, although they have been proposed to be important for 

adherence to mammalian extracellular matrix proteins (180). 

 

fim operon
8-9 kbp

fimB fimE fimA fimI fimC fimD fimF fimG fimH

Chaperon AdhesinMajor subunit Minor component Usher proteinRegulator

fim operon
8-9 kbp

fimB fimE fimA fimI fimC fimD fimF fimG fimH

fim operon
8-9 kbp

fimB fimE fimA fimI fimC fimD fimF fimG fimH

Chaperon AdhesinMajor subunit Minor component Usher proteinRegulator  
Figure 4: Genetic organization of the fim locus coding for type 1-fimbriae.  
 

The adhesin and some other minor subunits are responsible for the specific 

binding to carbohydrate moieties on the surface of eukaryotic cells, therefore contributing 

to specific adherence. The synthesis, export, correct folding and ordered assembly during 

the fimbrial biogenesis occurs in a coordinated manner (302). These fimbriae are 

characterized by their ability to adhere to and agglutinate erythrocytes of mammals and 

birds. This adhesion is inhibited by the addition of D-mannose which blocks the adhesin 

FimH. Accordingly, these fimbriae are also called mannose-sensitive hemagglutinating 

(MSHA) fimbriae (84, 341). Type 1-fimbriae are present in both ExPEC and non-

pathogenic strains. However, these fimbriae are more represented among pathogenic than 

among non-pathogenic strains (75.45% vs 55.5%  (83) 100% vs 40% (362), 90.4% vs 

26.7 (214) and have been for a long time considered as potential virulence factors for 

ExPEC.  

 

During UTI, between 4 and 24 hours after infection, the new environment in the 

bladder selects for the expression of type 1-fimbriae (122), which play an important role 

early in the development of an UTI (62). Type 1-fimbriated E. coli attach to mannose 

moieties of the uroplakin receptors that coat transitional epithelial cells (225). Attachment 

triggers apoptosis and exfoliation; for at least one strain, invasion of the bladder 

epithelium is accompanied with formation of pod-like bulges on the bladder surface that 
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contain bacteria encased in a polysaccharide-rich matrix surrounded by a shell of 

uroplakin (10). In strains that cause cystitis, type 1-fimbriae are continuously expressed 

and the infection is confined to the bladder (62). 

 

Among APEC expressing type 1-fimbriae, the in vivo expression of these 

adhesins was highlighted in the trachea, the air sacs and lungs, but not in the blood or 

deep organs. This result suggested a potential role in the early stages of infection (80, 

259). Several experiments have shown, however, that these fimbriae are not 

indispensable for the colonization of the upper respiratory tract poultry by APEC and that 

on the contrary, the deletion of the gene coding the adhesin FimH promotes colonization 

of the trachea by the APEC (13, 204).  

 

In addition it was shown that type I-fimbriae promote phagocytosis by 

macrophages and heterophils in chickens (216). A correlation between the presence of 

these fimbriae and resistance of bacteria to bactericidal serum has been suggested (83, 

362). However, these observations cannot be generalized since the discovery of a type 1-

fimbriae-negative APEC strain which still has the ability to resist complement. This 

suggests a minor role of these fimbriae for serum resistance of APEC strains (215, 259). 

The ro1e of type 1-fimbriae in the pathogenesis of avian colibacillosis has so far not been 

demonstrated. However, recent studies have shown that they could be involved in the 

invasion of human intestinal cells in culture (39). 

 

2.3.1.2 P-fimbriae 
 

Many ExPEC strains express P-fimbriae which are one of the most extensively 

studied adhesin, and also the first virulence-associated factor identified for UPEC. They 

were first described in E. coli isolated from urinary tract infections (pyelonephritis) in 

humans (162). P-fimbriae are heteropolymers encoded by a chromosomal locus of 11 

genes (papA to papK) (151, 166) (Figure 5). The pap locus codes for the major protein  

PapA and the adhesin PapG that exists in three  variants (317). These variants recognize 

different glycolipid isoreceptors and are recognizable by their ability to agglutinate 
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different types of erythrocytes. As this haemagglutination is not inhibited in the presence 

of D-mannose, these fimbriae are also designated “mannose-resistant hemagglutination 

(MRHA) fimbriae” (334). 

 

pap operon
10 kbp

papX papG papF papE papK papJ papD papC papH papA papB papI

AdhesinChaperon Usher proteinMajor subunitRegulator Minor component

pap operon
10 kbp

papX papG papF papE papK papJ papD papC papH papA papB papI

AdhesinChaperon Usher proteinMajor subunitRegulator Minor component

pap operon
10 kbp

papX papG papF papE papK papJ papD papC papH papA papB papI

AdhesinChaperon Usher proteinMajor subunitRegulator Minor component  
Figure 5: Organisation of the pap locus coding for the P-fimbriae in E. coli UTI89. 
 

 P-fimbriae, encoded by the pap (pyelonephritis-associated pili) genes, are 

significantly prevalent among strains of UPEC that cause pyelonephritis and are 

characterized by their adherence to Gal(α1–4)Galβ moieties present in the globoseries of 

membrane glycolipids on human erythrocytes of the P blood group and on uroepithelial 

cells (192, 193). The PapG variant and the chromosomal location of pap alleles typically 

differ among UPEC strains. The pap gene clusters reside within pathogenicity islands. 

 

Since the discovery of P-fimbriae, it has been hypothesized that these adhesins 

contribute to the pathogenesis of UPEC within the mammalian urinary tract. An earlier 

study, conducted in 1987, demonstrated that the serum of female patients with symptoms 

of pyelonephritis contained P-fimbrial antibodies, suggesting that P-fimbriae were 

expressed during infection (72). Similarly, another study conducted shortly thereafter 

demonstrated that bacteria obtained from midstream or catheterized urine specimens from 

patients with E. coli cystitis expressed type 1- and P-fimbriae (177). Thus, both studies 

provided compelling evidence for the in vivo expression of P-fimbriae during human 

UTI. To determine whether P-fimbriae are indispensable for UPEC pathogenesis, 

isogenic P-fimbrial mutants of different UPEC strains have been constructed and studied 

in different animal models of ascending UTI. It was demonstrated that after one week of 

infection, no significant differences in bacterial load or histological findings between the 

wild-type and double-pap mutant were detected in the urine, bladder, or kidney at any 

challenge concentration. But none of these experiments could fully satisfy the molecular 
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Koch’s postulates. More recent studies have uncovered a molecular crosstalk between the 

Toll-like receptor 4 that binds bacterial lipopolysaccharide and P-fimbrial-mediated 

attachment, which is lipopolysaccharide-independent. Activation of the Toll-like receptor 

4 by P-fimbrial attachment subsequently leads to the production of pro-inflammatory 

cytokines and chemokines (interleukin-6 and CXCL8, respectively) and recruitment of 

neutrophils (25). Since P-fimbriae are implicated in triggering inflammation, it can be 

deduced that they may also contribute to the pathology and symptoms of acute 

pyelonephritis. It appears that there is a subtle role for P-fimbriae in mediating adherence 

to uroepithelial cells in vivo and establishing a robust inflammatory response during renal 

colonization, which in turn contributes to kidney damage during acute pyelonephritis. 

 

The APEC strains produce mainly P-fimbriae belonging to serotype F11 fimbriae 

close to the same type associated with UPEC (336). As for type l-fimbriae, the expression 

of P-fimbriae is subject to phase variation (337, 355). P-fimbriae are more frequently 

present in strains isolated from septicaemic chickens than among non-pathogenic strains 

(69.1% vs 14.3 (83), 41.2% vs 15.6% (214)). As for type 1-fimbriae, the role of type P-

fimbriae in the pathogenesis of APEC is not yet well defined. Several studies have shown 

that these fimbriae did not participate in the adhesion of the bacteria to the pharynx and 

trachea cells in vitro (336, 342), or the adhesion of bacteria ex vivo on trachea cuts of 

chicken (80). These observations suggest that P-fimbriae receptors are absent from the 

surface of these cell types or their expression in the upper respiratory tract requires 

special conditions. However, chickens inoculated intra-tracheally or in the air sacs with 

an APEC strain with fimbriae F11 show a specific anti-F11 answer characteristic of P-

fimbriae expression in vivo. The expression of P-fimbriae has also been demonstrated in 

vivo by immunofluorescence in blood and some deep organs (kidney and heart) (259, 

260). These observations suggest the role of P-fimbriae in the colonization of organs and 

the development of sepsis (259, 260). Although no difference has been observed upon the 

colonization of organs and multiplication in the blood of a wildtype APEC strain and its 

mutant papG- (215), another study which compared a pap+ APEC strain and its pap-

mutant described the role of P-fimbriae for bacterial attachment phagocytes thus 

demonstrating their involvement in the resistance to phagocytosis (216).  
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These results suggest that P-fimbriae provide an advantage to bacteria during infection 

and play a role rather in the final stages of infection, possibly in the persistence of the 

bacterium in the animal, and resistance to phagocytosis (260, 315). 

 

2.3.1.3 S-/F1C-fimbriae 
 

The fimbriae of the S-/F1C-family include several fimbrial type, e.g. S-, F1C- and 

AC/I-fimbriae (171). S-fimbriae are coded by a locus of nine genes (sfaA to sfaH; Figure 

6). They are composed of the major subunit SfaA and the minor subunits SfaG, SfaH and 

adhesin SfaS. The adhesin SfaS adheres to α-sialyl-2,3-β-galactose containing 

glycoproteins  present on the surface of eukaryotic cells, while the major subunit SfaA 

also has adhesive properties and can bind to the sulfated glycolipids present on the 

epithelial cells of the brain (246, 264).  

 

sfa operon
8 kbp

sfaC sfaB sfaA sfaD sfaE sfaF sfaG sfaS sfaH

AdhesinChaperon Usher proteinMajor subunitRegulator Minor component

sfa operon
8 kbp

sfaC sfaB sfaA sfaD sfaE sfaF sfaG sfaS sfaH

AdhesinChaperon Usher proteinMajor subunitRegulator Minor component  
Figure 6: Organisation of the sfa region coding for the S-fimbriae in E. coli UTI89. 
 

S-fimbriae have been known to mediate adherence of UPEC to uroepithelial cells 

in vitro and in vivo, suggesting their involvement in infection. Between 30-60% of the 

UPEC express S-fimbriae (218). S-fimbriae are associated with neonatal sepsis and 

meningitis (181). Studies suggest that adhesion of S-fimbriated bacteria to the binding 

sites observed in the neonatal brain plays a role during bacterial invasion from circulation 

into the cerebrospinal fluid (248). 

 

Similar structures of the S-family fimbriae have been identified among APEC and 

named AC/I (avian E. coli I) (231, 367). The analysis of the genetic organization of the 

fac operon (fimbriae of avian pathogenic E. coli) coding for AC/I fimbriae confirmed that 
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they belonged to the family of S-fimbriae with an identical organization relative to that of 

the sfa operon (16). These fimbriae are present only in a few APEC (about 4.4% of 

strains studied) (73, 178, 316). AC/I fimbriae have no hemagglutinating properties but 

adhere to the cells of the trachea, suggesting their involvement in the infection (367). 

 

2.3.2 Curli fimbriae 
 

Curli are thin and filamentous structures present on the surface of E. coli and 

Salmonella spp. (282). These fimbriae are encoded by seven genes clustered in two 

operons transcribed in the opposite directions: csgDEFG and csgABC (130). The protein 

CsgA (curlin) is the major curli subunit and is secreted in a soluble form into the 

extracellular environment. CsgB, located on the surface of the bacterial membrane is 

involved in the polymerization of CsgA monomers by "nucleation-precipitation" (131). 

CsgE and CsgF participate in polymerization of CsgA monomers (57) and are necessary 

to assemble an effective curli fimbriae (278) (Figure 7). 

 

csg Operon
5 kbp

csgG csgF csgE csgD csgB csgA csgC

Putative autoagglutination proteinnucleator Major componentAssembly and transport Regulator

csg Operon
5 kbp

csgG csgF csgE csgD csgB csgA csgC

Putative autoagglutination proteinnucleator Major componentAssembly and transport Regulator
 

Figure 7: Organisation of the csg genes coding for curli in E. coli 
 

Curli are present on the surface of ExPEC strains and non-pathogenic strains 

(209, 267). The role of curli in the adhesion and the formation of E. coli biofilms was 

highlighted first in 1998 by the characterization of an overproducer of curli (340). Further 

studies of adhesion properties of this overproducer mutant have proven its ability to 

colonize surfaces such as glass, polystyrene or sand (43). Among APEC, curli can be 

involved in the invasion of several types of eukaryotes cell by strains of serogroup O78 

(113, 114) but their role in the avian colibacillosis is not clarified . 
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In UPEC, it is suggested that these fimbriae play a role only in the early phase of 

infection (e.g., adherence to periurethral skin surface), since they are frequently 

expressed only at 30 °C (242) . In the last years, isolates have been detected in which co-

expression of curli fimbriae and cellulose occurs at 30 °C as well as at 37 °C (rdar 

morphotype), but the importance of this trait for the survival and colonization in the host 

organism remains unclear (370). 

 

2.3.3 The IbeA protein 
 

The role of the IbeA protein was first highlighted in NMEC strain RS218: an 

ibeA:TnphoA mutant invaded less efficiently human brain microvascular endothelial cells 

(BMEC) than the wild-type (35). These early observations were confirmed later by the 

construction of a mutant deleted of ibeA gene (149).  

 

The prevalence of gene ibeA was analysed among APEC strains and non-

pathogenic for poultry (107). None of the non-pathogenic strains of E. coli had ibeA. A 

small proportion of APEC strains had ibeA (26%), but this gene was strongly associated 

with strains of serogroup O88 (100%), Ol8 (70% -100%) and O2 (49.1%) (107, 222). The 

IbeA protein of APEC strain BEN2908 similar to that of the strain RS2l8 was involved in 

the invasion of BMEC (222). Its precise role remains to be clarified although interactions 

between IbeA and eukaryotic proteins have been detected. In an experimental model of 

chicken infection the involvement of IbeA in the avian colibacillosis (bacteremia and 

colonization of the liver significantly lower for the mutant strain than for the wild-type) 

has been shown (107, 222). The authors suggest that IbeA participates in the crossing of 

bird epithélia, the exact location, however, remains to be determined. 

 

2.3.4 Iron acquisition systems 
 

Iron is necessary for growth of most microorganisms. Bacteria need about 10-6 

mol/L for their growth. The concentration of free iron available in body fluids animals 

and humans is much lower (about 10-18 mol/L) and does not cover the needs of the 
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bacterium (59). To remedy this lack, bacteria have developed two strategies to dispose of 

iron present in eukaryotic cells. On the one hand, bacteria express receptors which can 

bind complexed iron as present in the host organism in proteins such as transferrin, 

lactoferrin but also in hemoglobin. Then, the bacteria can take this iron up and use it for 

growth. The second strategy is the synthesis of siderophors with high affinity for iron, 

allowing them to capture iron ions by competing with physiological chelators (271).  

 

The genes coding for the biosynthesis of such iron-uptake systems in E. coli may 

be located on plasmids or on the chromosome. The gene clusters encoding the enzymes 

for enterobactin (ent) and the ferric dicitrate transport system (fec) have a commonly 

conserved localization in the E. coli core genome. However the fec gene cluster has been 

identified to be PAI-encoded in Shigella flexneri (198).  

 

Another mechanism for iron acquisition in pathogenic E. coli is the direct 

utilization of host iron compounds, particularly heme or hemoglobin (187, 188). Hagan et 

al. demonstrate the importance of others iron acquisition factors on multiple culture 

conditions designed to mimic the in vivo environment of the pathogen. Iron compound 

receptors FhuA, IutA, IroN, ChuA, Iha, and IreA were detected, and a novel iron-related 

OMP was also identified, hypothetical protein c2482. The genes encoding ChuA, IroN, 

hypothetical protein c2482, and IutA are significantly more prevalent (P < 0.01) among 

UPEC strains than among fecal-commensal E. coli isolates (128). 

 

 E. coli produces two main types of siderophors, the catechole enterobactin and 

the hydroxamate aerobactin (produced especially by invasive strains of E. coli) (40). In 

addition to these two siderophore types, two other iron acquisition systems are present in 

several E. coli (salmochelins, yersiniabactin, the Sit and the Fec system). 

 

Aerobactin seems to have an important role in the pathogenesis of avian 

colibacillosis (108). The aerobactin system is encoded by an operon of five genes (iucA, 

iucB, iucC, iucD and iutA) located on type ColV plasmids or on chromosome (30, 208). 
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The genes iucA-D encode enzymes necessary for the synthesis of aerobactin while iutA 

codes for an outer membrane receptor (Figure 8). 

iuc operon
8 kbp

iutA iucD iucC iucB iucA

EnzymeReceptor

iuc operon
8 kbp

iutA iucD iucC iucB iucAiutA iucD iucC iucB iucA

EnzymeReceptor  
Figure 8: Genetic organisation of the genes coding for aerobactin in E. coli CFT073 
 

In UPEC, the aerobactin iron uptake system has been shown to contribute to 

serum resistance as well as to bacterial survival and growth in the host (51). IroN, a novel 

catecholate siderophore receptor, has been shown to be more prevalent in E. coli isolates 

from UTI or bacteremia specimens than in fecal E. coli isolates (287). 

 

The majority of APEC strains possesses the genes iutA and iucC and produced 

aerobactin relative to non-pathogenic avian isolates (86.3% vs 7.8% (183), 92.3% vs 

63.5% (234), 63% vs l2% (73)). The deletion of this operon led to a decrease of the 

persistence of bacteria in the blood and also reduced damage of the respiratory tract and 

deep organs within a reproduction model of the avian colibacillosis on chicken (81). The 

same authors have identified the iroN gene coding for the siderophore receptor a 

counterpart of the UPEC strain 536 iroN gene (308). This gene is part of an operon 

consisting of the five genes iroBCDEN coding for the salmochelin system, which is also 

encoded by the plasmid ColV (160). The inactivation of the iro operon reduced the 

persistence of the bacterium in the blood and the respiratory tract lesions and deep organs 

indicating that this group of genes is required for the pathogenesis of avian colibacillosis 

(54, 81). Among E. coli isolates, iro sequences were shown to be associated with ExPEC 

isolated from neonatal meningitis (232), UTI, and prostatitis in humans (23, 163, 287) as 

well as APEC (99, 281). 
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Several authors have identified the presence of an additional siderophore: 

yersiniabactin encoded on the high pathogenicity island (HPI) of pathogenic yersiniae 

(165, 297, 298). The irp1 and irp2 genes encode proteins likely to be involved in the 

production of yersiniabactin and fuyA code for the receptor for yersiniabactin FyuA (106, 

253). These genes have been detected in 89% of septicaemic APEC strains of serogroup 

O78 and in 80% of O2 strains (115). It is also interesting to note that 70% of these 

isolates (serogroup O78 and O2 combined) carry the iucD gene of the aerobactin operon 

suggesting that these two iron acquisition systems exist independently of one another 

among many isolates E. coli (115). More recently, two other siderophore systems, i.e. the 

Sit (Salmonella iron transport), a member of the Mn-Zn-Fe transporter family, and Chu 

(E. coli haeme utilization) system were highlighted by several authors, their involvement 

in the virulence of APEC has not yet been identified (196, 221, 289, 296, 313).  

 

The homologous SitABCD system of APEC strain χ7122, encoded by the 

plasmid pAPEC-1 can transport both, Fe2+, Fe3+ and Mn2+ ions, characteristic of carriers 

of the Mn-Zn-Fe transporter family. The isogenic sitABCD deletion mutant of the APEC 

strain χ7122 was tested in an experimental reproduction model of the colibacillosis on 

chicken. The severity of injuries caused in chickens has been the same for the mutated 

strain and to the wild-type strain. These results suggest that the absence of the SitABCD 

system is probably compensated by the presence of other iron or metals acquisition 

systems (289). It may be hypothesized that these systems are likely to have a role in 

growth of the bacteria at different stages of the avian colibacillosis, though their exact 

role in the infection process remains poorly understood and despite the high prevalence 

of these systems among APEC.  

 

In UPEC, Chu system is involved in formation of intracellular bacterial 

communities (IBCs) in bladder urothelial cells but not the Sit system (275). Iha is 

expressed in vivo in the mouse urinary tract and functions as a catecholate siderophore 

receptor (195). 
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2.3.5 Phosphate transporter system (Pst) 
 

The Pst system is a phosphate ATP-dependent transporter, a family member of 

the ABC-transporters (for a review Higgins, 2001). The corresponding proteins are 

encoded by the operon pstSCAB-phoU which is located on the chromosome and belongs 

to the Pho regulon (270) (Figure 9). This transporter is a system for inorganic phosphate 

(Pi) acquisition in a reduced Pi environment, a cellular component important for  

phosphorylation of nucleic acids, lipids, sugars and proteins (327). 

 

pst opéron
5 kbp

phoU pstB pstA pstC pstS

Phosphate binding proteinPhosphate transporter permease subunitATPase componentRegulator

pst opéron
5 kbp

phoU pstB pstA pstC pstS

Phosphate binding proteinPhosphate transporter permease subunitATPase componentRegulator  
Figure 9: Organisation of the pst-phoU operon coding for the Pst system in E. coli CFT073. 
 

The PstS protein is periplasmic, PstA and PstC are transmembrane and PstB binds 

ATP (8, 318). PhoU probably represses the expression of the Pho regulon in the presence 

of high concentrations of phosphate (347). A mutation of the pst-phoU operon triggered 

constitutive expression of the Pho regulon in a porcine septicaemic ExPEC strain and 

reduced its pathogenicity (66). 

 
STM (signature-tagged mutagenesis) methods with insertions in different sites of 

the phoU gene are attenuated in the ability to cause UTI. These mutants were 

outcompeted approximately 100-fold by the wild-type strain at all sites in the urinary 

tract (19). Recently, it has been demonstrated with the phoU mutant and its 

complemented variant that PhoU contributes to efficient colonization of the murine 

urinary tract and thus PhoU was added to the list of confirmed urovirulence factors (47). 

 

The APEC strain χ7122 has virulence characteristics common to a porcine 

SEPEC strain such as the ability to withstand the effects of serum (66, 82). In view of 

these similarities, Lamarche et al. have studied the implication of the pst-phoU operon in 
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virulence of the APEC strain χ7122 to the chicken (184). Thus, the strain deleted of the 

pstCAB operon formed significantly less lesions in the host, lost its ability to multiply in 

the blood and to colonize extraintestinal organs analysed (lungs and spleen). The mutant 

exhibited phenotypic changes (heightened sensitivity to the acid shock and polymixin) 

indicating a likely deterioration of the composition of the bacterial surface, which could 

partly explain the decrease in virulence (184). Moreover, this operon seems not to be 

involved in the resistance to bactericidal chicken serum. This indicates that the pst operon 

is not involved in the early stages of respiratory colibacillosis (184). 

 

2.3.6 The Tsh protein and other autotransporters 
 

Autotransporter proteins are also widely distributed in E. coli (138). The 

autotransporteurs are high molecular weight proteins organized into several functional 

domains. The thermosensible-hemagglutinin (Tsh) is part of the serine protease 

autotransporters of Enterobacteriaceae family (SPATE). Tsh exhibits similarity in its 

secretion mechanism with IgA (Immunoglobulin A) and with serine proteases of 

Neisseria gonorrhoeae and Haemophilus influenzae (266). The Tsh protein is composed 

of two parts, the secreted domain TshS and the Tshβ domain anchored in the outer 

membrane (312). The gene encoding the Tsh protein is located on the plasmid ColV near 

the cluster of genes coding for colicine V (82). However, the gene has been identified by 

hybridization to be chromosomally located as well in an APEC strain (44).  

In the study conducted by Maurer et al. the tsh gene is present in 46% of APEC 

pathotype isolates tested but not in commensal strains (209), while other studies have 

shown a strong association of the tsh gene with commensal strains (39.5% vs 3.8% (74), 

90.4% vs 51.9% (234)). Dozois et al. confirmed the association of tsh to the APEC 

showing a lethality test on one day chicks. Results indicated that among tsh-positive 

APEC strains  (46.2 % of tested strains) 90 % belong to the class of high lethality (LC1) 

(82). These same authors show that presence of the tsh gene is associated with the 

amount of fibrin and lesion development in the air sacs but not in other targeted sites of 

the colibacillosis (82). This suggests the role of Tsh as a putative adhesin in colonization 

of the air sacs but not in the development of systemic infection. So far, the potential role 
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of Tsh in the avian colibacillosis results from the more frequent association of the 

encoding gene with APEC strains than with non-pathogenic avian strains. The protease 

function deducible from the Tsh structure has not yet been demonstrated. However, a 

recent study has highlighted the adhesive and proteolytic properties of Tsh (182). The 

authors have shown that the purified protein TshS not only adheres to red blood cells but 

also to hemoglobin and the proteins of the extracellular matrix (fibronectin and collagen 

type IV). The proteolytic activity of TshS against casein has also been published (182). 

Further studies are needed to determine the ro1e of the proteolytic activity in the 

virulence of APEC strains. 

 

Heimer et al. demonstrated that the autotransporter-encoding genes pic (SPATE 

homologue) and tsh are associated with E. coli strains that cause acute pyelonephritis and 

are expressed during urinary tract infection. These determinants have been found more 

frequently in UPEC strains than in fecal E. coli, suggesting a role in virulence (135). 

 

Other SPATEs are considered to be toxins as well: the plasmid-encoded toxin 

(Pet) of EAEC, the protease Pic of EAEC and Shigella flexneri, EspC of EPEC, EspP of 

EHEC, SepA of Shigella flexneri, and Sat of UPEC (86). The Sat (Secreted 

Autotransporter Toxin) protein is widely distributed in UPEC and was shown to have 

cytopathic activity (elongation and vacuolation of eukaryotic cells). Sat-specific 

antibodies were found in the serum of E. coli-infected mice. Nevertheless the inactivation 

of the sat gene did not attenuate the E. coli strain CFT073 (124). All SPATEs possess a 

characteristic GDSGS serine protease motif and it is tempting to speculate that their 

protease activity may serve as peptide-providing source for the bacteria.  

 

2.3.7 Complement resistance 
 

The complement system is one of the early stages of host defense against micro-

organisms. The ability to withstand the effects of complement is essentially due to the K1 

capsule, certain outer membrane proteins (Omp) in the outer membrane or other proteins 

such as Iss (Increased serum survival), or the lipopolysaccharides. 
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2.3.7.1 The K1 capsule 
 

The E. coli capsular antigen Kl is known to be an essential virulence factor of 

neonatal meningitis strains, with 80% of K1 capsule-positive E. coli strains isolated from 

neonatal septicaemia or acute pyelonephritis (175). The K1 capsule consists of a linear 

homopolymer of N-acetytneuraminic acid (NeuNAc). The biosynthesis and transport of 

the E. coli Kl capsule are mediated by a polycistronic region of 17 kb located on the 

chromosome which is divided into three functional regions (358) (Figure 10). The region 

2 (encoded by the genes neuUDEBACED (34)) is unique to each K antigen and codes for 

the proteins involved in the synthesis, activation and polymerization of sialic acid. The 

region 1 contains two genes (kpsMT); the region 3 is composed of six genes 

(kpsFEDUCS). The latter two regions are highly conserved across the species E. coli. 

These genes are required for the transport of the capsular polysaccharides through the 

cytoplasmic membrane (KpsM and KpsT) and their assembly on the surface of the 

bacterium (KpsD and KpsE) (358). 

capsule operon
16  kbp

kpsF kpsE kpsD kpsU kpsC kpsS neuS neuE neuC neuA neuB

neuD

kpsT

kpsM

ABC transporterExport proteinSynthesis Assembly

capsule operon
16  kbp

kpsF kpsE kpsD kpsU kpsC kpsS neuS neuE neuC neuA neuB

neuD

kpsT

kpsM

ABC transporterExport proteinSynthesis Assembly  
Figure 10: Organisation of the polycistronic kps region coding for the K1 capsule in E. coli 
 

The Kl antigen is frequently associated with of the most represented APEC 

serogroups O1 and O2 (77, 119). The immunogenic properties of this surface antigen are 

weak and could therefore be associated with the APEC resistance to the bird immune 

defense system. Kl capsule-positive APEC are more resistant to serum than non-

encapsulated E. coli strains (259). Mellata et al. have confirmed the results obtained by 

Pourbakhsh et al. by comparing the ability of a spontaneous non-encapsulated mutant and 

its wild-type Kl capsule-positive variant to resist to the effects of complement and have 
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also shown the importance of this surface antigen in the association of APEC strains to 

phagocytes (215, 216).  

 

2.3.7.2 The outer membrane proteins OmpA, TraT and Iss 
 

The outer membrane proteins (Omp) belong to at least two types: structural 

proteins and porins permit the passage of small molecules (235). Three proteins of the 

outer membrane, OmpA, TraT and Iss, play a more or less important role in the resistance 

to serum. The first studies on the role of OmpA in the in vivo pathogenesis of E. coli for 

chicken were conducted in 1991 (352). By the comparison of a Kl capsule- and OmpA-

positive E. coli strain with its ompA mutant, the authors demonstrated the role of the 

OmpA protein in resistance to serum in vitro and in vivo as well as its ro1e  as a virulence 

factor in chicken (263, 352).  

 

The traT gene is carried on conjugative plasmids such as plasmid R6-5 of E. coli 

or plasmid ColV (3, 349). The lipoprotein TraT causes a structural and/or functional 

change of complement proteins which reduces their interactions with proteins on the 

bacterial surface. Accordingly, phagocytosis of bacteria is reduced in serum (3). Unlike 

for ompA, no correlation has been established between the presence of traT and virulence 

as measured by a fatality test on chicken embryos (361). A prevalence study of the traT 

gene showed a distribution equivalent of this gene among APEC strains and non-

pathogenic strains. Thus, the authors assigned TraT a minor role in APEC pathogenesis 

(254). However, the genes traT, traK and traG are expressed in vivo during chicken 

infection (81).  

 

The iss gene is carried on the ColV plasmid and codes for a lipoprotein of the 

outer membrane (60). This gene is mainly present in isolates associated with avian 

colibacillosis when compared with isolates from healthy animals (76.6% vs 18.7% (254), 

82.7% vs 18.3%(281)). The relationship between the presence of the iss gene and the 

complement resistance was first established by Binns et al. (31). These authors observed 

that when the iss gene was introduced in trans into an E. coli K-12 strain, resistance to 
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bactericidal serum was increased (31). Moreover, a strain deleted for the Kl capsule 

determinant was more sensitive to complement than an iss mutant, suggesting that Iss 

play a less important role for serum resistance than the K1 capsule (324). 

 

2.3.7.3 The lipopolysaccharide complex 
 

Lipopolysaccharide (LPS) is a key component of the outer membrane of Gram-

negative bacteria. It comprises three distinct regions: Lipid A, the oligosaccharide core, 

and commonly a long-chain polysaccharide, the O side chain that causes a smooth 

phenotype (see Figure 11). 

 

Lipid A is the most conserved part of LPS. It is connected to the core part, which 

links it to the O repeating units (Figure 11). In E. coli, five different core structures (K-12 

and R1-R4) have been described (9, 144, 277). The O repeating units are highly 

polymorphic, and more than 190 serologically distinguished forms in E. coli are known 

today (136, 243). The genes coding for LPS core synthesis are located at a conserved 

position on the E. coli K-12 chromosomal map (81-82 min) (26). The wa* (formerly rfa) 

gene clusters contain the genes which code for the enzymes required for the core 

biosynthesis and assembly and consist of three operons, defined by their first genes 

gmhD, waaQ and waaA. Although the O repeating unit-encoding gene cluster (wb*, 

former rfb) is extremely polymorphic within the species E. coli, it is localized at a 

conserved position on the E. coli K-12 chromosome between the genes galF and gnd 

(45.4 min.) (26). 
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Inner core

Outer core

Inner core

Outer core

 
Figure 11: Chemical structure of LPS from E. coli O111:B4 according to Ohno and Morrison 1989 
(241). (Hep) L-glycerol-D-manno-heptose; (Gal) galactose; (Glc) glucose; (KDO) 2-keto-3-deoxyoctonic 
acid; (NGa) N-acetyl-galactosamine; (NGc) N-acetyl-glucosamine.  
 

These determinants consist of several sugar transferase-, epimerase- and 

isomerase-encoding genes, the O antigen flippase (wzx), the O antigen polymerase (wzy, 

formerly rfc) as well as the genes coding for enzymes involved in carbohydrate 

biosynthesis pathways. Until now, several E. coli O antigen-encoding gene clusters have 

been studied, e.g. those of serotypes O7, O111, O113, and O157 (206, 250, 345, 346). 

They show no significant nucleotide homology between each other, with the exception of 

some common genes such as manC and manB. However, they contain a conserved range 
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of predicted enzyme activities. The O6 antigen is widely distributed among pathogenic 

and non-pathogenic faecal E. coli isolates and is often found in uropathogenic E. coli 

strains. Since LPS is located on the outer surface of bacterial cells, its expression is 

known to be responsible for many features of the cell surface of the Gram–negative 

bacteria, such as resistance to detergents, hydrophobic antibiotics, organic acids, serum 

complement factors, adherence to eukaryotic cells (22, 112, 120, 152, 199, 320). It has 

been suggested that some of these characteristics, especially resistance to the bactericidal 

effect of the complement system, are dependent on the length of the O side chain (257). 

LPS is believed to significantly contribute to virulence by protecting bacteria from the 

bactericidal effect of serum complement (150, 273, 335). Moreover, it has recently been 

reported that the K5 capsule does not contribute as much to serum resistance of E. coli 

strains as the O antigen (50). The lipid A is endowed with toxic properties and represents 

the endotoxin of Gram-negative bacteria that can be released only upon bacterial lysis. 

The synthesis of several types of extracellular polysaccharides is necessary for optimal 

urovirulence (19). 

 

Ellis and co-workers studied the relationship between serum resistance and 

virulence of pathogenic E. coli strains isolated from turkeys and showed a correlation 

between the serogroup of the strains and resistance to serum (93). Eight of the ten APEC 

strains tested showed resistance to the effects of complement. Among these eight strains, 

seven belonged to serogroup O78. The rfb locus coding for the LPS, is expressed in vivo 

during infection indicating its importance for APEC virulence (81). By comparing a wild-

type pathogenic smooth O78 strain and its O78 O-side chain mutant, the authors have 

documented the importance of this surface antigen for bacterias resistance to host 

defenses. The O78-mutant, unlike the wild-type, could not resist to the bactericidal effect 

of serum. Moreover, in an experimental reproduction model of avian colibacillosis, the 

O78 LPS-mutant exhibited reduced virulence features compared to its O78+ wild type 

strain (216). These studies demonstrate the importance of the surface antigen O78 for the 

virulence of APEC. 
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2.3.8 Toxins and bacteriocins 
 

Toxins are prominent virulence factors of bacterial pathogens. Three toxins play a 

major role during UTI: the cytotoxic necrotizing factor 1 (CNF 1), the cytolethal 

distending toxin-1 (CDT-1) and α-haemolysin. CNF 1 is widely distributed in 

extraintestinal pathogens (12) and belongs to a toxin family which modifies Rho, a 

subfamily of small GTP-binding proteins that are regulators of the actin cytoskeleton (6). 

The gene for CNF 1 is chromosomally located on different pathogenicity islands of 

UPEC (36, 328). Eukaryotic cells intoxicated with CNF 1 exhibit membrane ruffling, 

formation of focal adhesions and actin stress fibers and DNA replication in absence of 

cell division. 

 

CDT-1 is a secreted protein which has the capacity to inhibit cellular proliferation 

by inducing an irreversible cell cycle block at the G2/M position (61). CDT-1 is 

composed of three polypeptides (CdtA, B and C) which are all required for CDT activity 

(94). The direct role of the toxin in uroinfection, however, remains to be proven. The α-

haemolysin is a member of the RTX toxin family, which is widely disseminated among 

pathogenic bacteria and widely distributed in UPEC as well as in EHEC isolates. The hly 

gene cluster encoding the toxin and the enzymes for its biosynthesis is located on PAIs or 

on plasmids. The type I secretion pathway, a posttranslational maturation and the 

presence of C-terminal calcium binding domain are characteristics of this pore-forming 

toxin (143, 344). 

 

Other secreted compounds, such as colicins and microcins, are also widespread 

among E. coli strains and are believed to mediate antagonistic relationships, thus 

contributing to competitiveness and the effective colonization of the host. Microcins are 

peptides of a relatively small size (1.18 to 9.00 kDa). They are considered as modified 

peptide antibiotics since they are synthesized as peptide precursors which are 

subsequently modified by other proteins. They recognize a wide range of cellular targets: 

colicin B17 has been shown to be an inhibitor of the DNA gyrase (343), colicin C7 

inhibits protein synthesis (121), and colicin V disrupts the membrane potential (366). 
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Microcin H47, encoded by the chromosomally-located mch gene cluster, was shown to be 

ribosomally synthesized as a peptide precursor (280). 

 

APEC strains rarely produce toxins (32, 77). Two types of toxic effects were 

observed in 22.5% of APEC strains isolated from septicaemic chickens and turkeys in a 

study of 500 strains: a cytotoxic effect on Vero cells and/or on Y-1 cells culture (95). 

However, Fantinatti et al. observed a cytotoxic effect on Vero cells for only three strains 

isolated from septicaemic chickens on 17 (101). Some studies show that a small 

proportion of avian strains possess the genes encoding Shiga toxins Stx1 and Stx2, CNF 

1 or CNF 2 toxins (32, 65, 73). Salvadori et al. have highlighted a cytotoxic effect of 

certain APEC strains on several avian cell lines in culture (kidney cells and fibroblasts), 

which is manifested by the formation of vacuoles (290). The toxin, called Vat for 

vacuolating autotransporter toxin, is a new member of the family SPATE (138, 247). The 

gene vat was located on a pathogenicity island recently identified in APEC strain Ec222 

(249). A ∆vat isogenic mutant strain of the Ec222 was tested in two models of infection 

and revealed to be non-virulent for chickens (249). It is still not deciphered today if the 

cell and tissue damage of the host during the infection process of avian colibacillosis is 

due to the direct action of these toxins or simply the activation of an inflammatory 

response of the host. 

 

2.4 Potential other virulence factors 
 

In case of the APEC, all virulence factors described above are not sufficient to 

explain all stages of the pathogenesis of respiratory colibacillosis and their role is not 

clearly defined. The recent identification of new potential virulence factors of APEC 

could provide new data for a better understanding of their role in respiratory 

colibacillosis.  

 

Among these new virulence factors we can cite the Fl7 fimbriae. These fimbriae 

were mainly reported in pathogenic E. coli strains responsible for diarrhoea or 

septicaemia in cattle and sheep (189, 197, 244). It was only recently that these adhesins 
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have been associated with APEC (316). Few APEC strains express these fimbriae. A 

recent study conducted on 763 strains APEC and 208 non-pathogenic avian strains found 

that only 7.7% of APEC strains have the f17A gene. However, only one non-pathogenic 

strain (0.48%) proved to be positive for this gene (316). The pathogenicity of certain 

strains with the F17 adhesin but without P-fimbriae has been tested in an experimental 

model of the avian colibacillosis. Fl7-positive APEC strains were pathogenic for chicken 

and caused characteristic lesions of avian colibacillosis (315). However, these results are 

not sufficient to conclude that F17 fimbriae are a virulence factor of APEC, because the 

strains possess other known potential virulence factors: fimbriae type I and/or iron 

acquisition system and/or Tsh protein (315). F17-related adhesins were also identified in 

human UPEC and bovine septicaemic E. coli strains (207). 

 

Mat fimbriae is a novel fimbrial type recently detected in human O18:K1:H7 

strain IHE3034 (262). The binding specificity or the function of these fimbriae is not 

known. The 7-kb mat region required for Mat fimbriae expression does not share 

significant homology with DNA encoding other filamentous adhesins. The mat gene 

cluster is found to be highly homologous (97-99 %) in Klebsiella pneumoniae and in 

various E. coli pathogroups but it seems to be absent in ETEC strains. Expression of Mat 

fimbria is probably differently regulated in various E. coli pathogroups as it was detected 

only in MENEC strains in vitro. Rendon et al. demonstrated its expression in intestinal 

commensal and pathogenic E. coli, in an in vitro model. Isogenic mutants of EHEC 

O157:H7 or of commensal Mat fimbriae-negative E. coli showed significant reduction in 

adherence to cultured epithelial cells. This pilus may have a potential role in host 

epithelial cell colonization and may represent an adherence factor of both pathogenic and 

commensal E. coli (276).  

 

Different studies on virulence factors in septicemic E. coli strains of various hosts 

like humans, birds and lambs (220) show a variable profile of virulence genes as well as 

the presence of mobility-related sequences, indicating the existence of a ‘mix-and-match’ 

combinatorial system of virulence factors that can be used. The important conclusion of 

this study is that the distribution of virulence factors was independent of the host: bacteria 
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from the same host can have different virulence-related genes, just as bacteria from 

different hosts can share the same virulence-related sequences. 

 

A recent study on APEC, UPEC, and NMEC, based on serotyping, virulence 

genotyping, and ECOR grouping (99) supports the hypotheses that poultry may be a 

vehicle or even a reservoir for human ExPEC strains, that APEC potentially serve as a 

reservoir for virulence-associated genes of UPEC and NMEC, and that some ExPEC 

strains, although of different pathotypes, may share common ancestors.  

 

Several molecular epidemiological studies by multilocus sequence typing 

(MLST), which is highly discriminatory to analyze clonal relationships, support the 

results from subtractive hybridization and DNA sequencing. They show that the profile 

of virulence factors in ExPEC strains, as well as their clonal relationship, is independent 

of the host and independent of the serotype. However, there may be some degree of host 

specificity in ExPEC strains, because E. coli strains isolated from avian septicemia are 

more virulent to chicks than E. coli strains isolated from new born meningitis (285). 

 

Recent studies about the comparison of sequences of avian and human 

extraintestinal pathogenic E. coli by genomic subtractive hybridization (167) or genome 

sequencing of a representative APEC strain (159) underline the genetic variability of 

ExPEC as well as genomic similarities between UPEC and APEC. Nevertheless, they did 

not identify any single marker that would determine host and/or niche specificity of 

APEC or UPEC.  

 

2.5 Aims of this study 
 

As specific virulence factors that trigger the infection of either humans or poultry 

could not be identified yet, one aim of this study was to investigate whether differential 

regulation of virulence gene expression may be responsible for host specificity of APEC 

and human ExPEC strains. A thorough analysis of factors that contribute to the host 

specificity (human vs. poultry) of ExPEC strains is therefore important to evaluate the 
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zoonotic risk emerging from these bacteria. In this context, the difference between the 

human and the avian body temperature (37 °C and 41-42 °C, respectively) could be 

important. Consequently, the transcriptome of a human and an avian ExPEC isolate of 

serotype O18:K1 in response to different growth temperatures should be compared by 

DNA array hybridization to identify genes that are specifically transcribed either in 

response to the body temperature of humans (37 °C) and avians (41 °C) or depending on 

the strain background. 

 

In the second part of my thesis, the expression of Mat fimbriae of MENEC, 

O18:K1:H7 strain IHE3034 was investigated. The role of the matA gene, coding for the 

putative regulator of Mat fimbriae, was studied by transcriptome comparison of the wild 

type and its isogenic matA mutant, carrying a mutation in the helix-turn-helix domain of 

the protein. Additionally, the genetic organization of the mat gene cluster was studied, the 

matA promoter was analysed and its transcription start point was determined. The 

influence of different growth temperatures and transcription factors on mat gene 

expression was analysed as well. The results should improve our knowledge on the 

molecular mechanisms underlying different gene expression patterns in different ExPEC 

strains. 
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3. Material 
 

3.1 Strains 

 

All bacterial strains used in this study and their relevant genotype are listed in Table 4. 

 

Table 4: Bacterial strains used in this study. 

Strain    Relevant properties       Reference 

 

E. coli MG1655  OR:K-:H48, F-, λ-, ilvG, rfb-50 rph-1    (Blattner et 

            al., 1997) 

E. coli DH5α  F-, endA1, hsdR17 (rk-, mk-), supE44, thi-1, recA1,   (Bethesda  

   gyrA96, relA1, λ-, ∆(argF-lac)U169, Φ80dlacZ    Research  

   ∆M15        Laboratories) 

E. coli IHE3034  ExPEC O18:K1:H7, newborn meningitis isolate (181) 

E. coli BEN374  ExPEC O18:K1:H7, avian septicaemia isolate. (M. Moulin-Schouleur, INRA 

          Centre de Tours, France) 

E. coli RS218  ExPEC O18:K1: H7, newborn mengitis isolate. (352) 

E. coli BEN79  ExPEC O18:K1:H7, avian septicaemia isolate. (M. Moulin-Schouleur, INRA  

         Centre de Tours, France) 

E. coli IHE3072  ExPEC O2:K1: H5, newborn meningitis isolate. (Achtman et al., 1986) 

E. coli BEN2908  ExPEC O2:K1:H7, avian septicaemia isolate. (Schouler et al., 2004)  

E. coli 1772  ExPEC O2:K1, avian septicaemia isolate.  (Mokady et al., 2005) 

E. coli 285  ExPEC O78, newborn meningitis isolate.  (Mokady et al., 2005)  

E. coli 789  ExPEC O78, avian septicaemia isolate.  (Yerushalmi et al., 1990) 

IHE3034∆hcha  chromosomal deletions of CDS    (this study) 

IHE3034∆matA  chromosomal deletions of CDS    (this study) 

BEN374∆matA  chromosomal deletions of CDS    (this study) 

BEN374∆matB  chromosomal deletions of CDS    (this study) 

MG1655∆matA  chromosomal deletions of CDS    (this study) 
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3.2 Plasmids 

All plasmids used and constructed during this study are listed in Table 5. 

Table 5: Plasmids used in this study. 

Plasmid  Relevant properties    Reference 

 

pKD46   repA101 (ts), araBp-gam-bet-exo (λred  (70) 

recombinase under the contol of araB 

promotor), ApR (bla) 

pKD3   oriRg, ApR, cat-gene flanked by  (70) 

FRT sites     

pKD4   oriRg, ApR, npt-gene flanked by   (70) 

FRT sites     

pCP20   Yeast Flp recombinase gene (FLP, aka exo)  (70)    

  ts-rep, ApR,CmR 

pGEMT-matA      This study 

pBAU1          gene fusion of MBP and MatA  This study 

 

 

3.3 Medium 

 

Bacteria were routinely grown in Luria-Bertani (LB) broth at 37 °C with shaking at 220 

rpm or on LB agar plates if not state otherwise. Bacteria carrying temperature-sensitive 

plasmids (pKD46) were grown at permissive temperatures (30°C).  

When appropriate, media were supplemented with chloramphenicol (20 µg/ml), 

kanamycin (30 µg/ml), or ampicillin (100 µg/ml).  

All media were autoclaved for 20 min at 120 °C, if not stated otherwise. Supplements for 

media and plates were sterile filtered through a 0.22 µm pore-filter and added after 

cooling down the media to <50 °C. 
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3.3.1 Media 
 
LB medium (Luria-Bertani):  (Sambrook, 1989)  

10 g tryptone from casein 

5 g yeast extract 

5 g NaCl ad 1 l dH2O 

 

LB agar plates: 

LB medium + 1.5 % (w/v) agar (Difco Laboratories, Detroit, USA) 

 

Motility agar plates: 

LB medium + 0.3 % (w/v) agar 

 

Blood agar plates: 

LB plates containing 5 % (v/v) washed sheep erythrocytes 

(Elocin Lab, Mühlheim a. d. Ruhr) 

 

X-Gal medium: 

LB-medium supplemented with the following additives: 

IPTG (0.1 M) 

X-Gal (2 %, (w/v) in N,N'-dimethylformamide) 

 

Yeast-tryptone medium (YT): 

Tryptone 16 g 

Yeast extract 10 g 

NaCl 10 g 

dH2O add 1000 ml 
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Medium for detection of aerobactin expression (Braun, Gross et al. 1983; Ott, 

Bender et al. 1991):  

Aerobactin agar plates: 

Nutrient broth  4 g 

NaCl 2.5 g 

Agar 6 g 

Dipyridyl (200 mM) 5 ml 

Titriplex (10 mM) 5 ml 

dH2O add 500 ml 

Soft agar for aerobactin agar plates: 

Nutrient broth 0.8 g 

NaCl 0.5 g 

Agar 0.75 g 

Dipyridyl 200 mM 1 ml 

Titriplex 10 mM 1 ml 

E. coli strain EN99 

overnight culture 

(YT,Tc) 

4 ml 

dH2O add 100 ml 

 

Congo red medium: 

The congo red and Coomassie brilliant blue stock solutions were sterilized by filtration 

through a 0.22 µm sterile filter and added to the autoclaved medium. 

 

Trypton 10 g 

Congo-red (0.4 mg/ml) 1 ml 

Coomassie brilliant blue (0.2 mg/ml) 1 ml 

dH2O add 1000ml 
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M63B1 minimal medium: 

10 ml 20 % (w/v) (NH4)2SO4 solution 

13.6 g KH2PO4 

1 ml 10 % (w/v) MgSO4 solution 

1 ml 0.1 % (w/v) FeSO4 solution                 ad 978 ml dH2O 

 

pH adjusted to 7 with KOH and autoclaved; then addition of 

2 ml 0.05 % (w/v) thiamine (sterile filtered) 

20 ml 20 % (w/v) glucose (sterile filtered) 

 

CAS agar plates:  (Schwyn and Neilands 1987)  

I) Basal agar medium: 

 

30.24 g PIPES; dissolved in 250 ml dH2O + 12 ml 50 % NaOH 

100 ml 10 x MM9 salts   3 g /l KH2PO4 

                                        5 g /l NaCl 

                                        10 g /l NH4Cl 

autoclaved and cooled to 50 °C; 

 

15 g agar dissolved in 500 ml dH2O 

autoclaved, cooled to 50 °C and mixed with first solution; then addition of 

 

30 ml 10 % (w/v) casamino acids solution (sterile filtered) 

10 ml 20 % (w/v) glucose solution (sterile filtered) 

 

II) CAS indicator solution: (100 ml) 

 

60.5 mg Chrome azurole S (CAS; Sigma) dissolved in 50 ml dH2O 

10 ml iron III solution: 27 mg FeCl3 x 6 H2O 

83.3 µl 37 % HCl 

ad 100 ml dH2O 
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To the above solution, 72.9 mg hexadecyltrimethyl ammonium bromide (HDTMA) 

dissolved in 40 ml distilled water was added slowly under stirring. The resultant dark 

blue solution was sterile filtered, heated to 50 °C and added very slowly along the glass 

walls to the basal agar medium before pouring approximately 25 ml into each plate. 

 

3.3.2 Antibiotics 
 

When appropriate, media and plates were supplemented with the antibiotics listed in 

Table 6 in the indicated concentrations. Stock solutions were sterile filtered and stored at 

-20 °C until usage. 

 

Table 6: Antibiotic substances used in this study. 

Antibiotic                           Stock concentration        Solvent       Working concentration 

 

Chloramphenicol (Cm)   50 mg/ml           EtOH                20 µg/ml 

Ampicillin (Ap)     100 mg/ml            dH2O              100 µg/ml 

Kanamycin (Km)       50 mg/ml            dH2O                50 µg/ml 

anhydro-Tetracycline (aTc)       2 mg/ml             EtOH                0.2 µg/ml 

Spectinomycin (Spec)    100 mg/ml           dH2O               100 µg/ml 

 

3.4 DNA and Protein Markers 

 

To determine the size of DNA fragments in agarose gels, the “GenerulerTM” 1-kb DNA 

ladder, purchased from MBI Fermentas, was used. As a reference in denaturing 

agarosegels for Northern blotting, both the low-range RNA marker from Peqlab as well 

as the 0.24-9.5-kb RNA ladder from Invitrogen were used. To determine the molecular 

weight of protein fractions separated by polyacrylamide gel electrophoresis, “Rainbow 

marker” (RPN800) purchased from Amersham Biosciences was used. 
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3.5 Technical Equipment 

 

Balances IL-180, Chyo Balance Corp 

Kern 470 

Ohaus Navigator 

Autoclaves Integra Bioscience, H+P Varoclav 

Bioanalyzer 2100 Agilent Techn., Palo Alto, CA 

Incubators Memmert Tv40b (30 °C, 42 °C) 

Heraeus B5050E (37 °C) 

Clean bench NUAIRE, Class II, type A/B3 

Electrophoresis systems BioRad 

Electroporator Gene Pulser, BioRad 

FPLC Amersham Pharmacia 

Hybridization oven HybAid Mini 10 

Centrifuges (cooled) Beckmann J2-HC ® JA10 and JA20 rotors 

Haraeus Sepatech Megafuge1.OR 

Haraeus Sepatech Biofuge 13R 

Centrifuges (table top) Eppendorf 5415C 

Hettich Mikro20 

GenePix4000B microarray reader (GE Healthcare). 

Magnetic stirrer Heidolf MR3001K 

Micropipettes Eppendorf Research 0.5-10 µl 

Gilson pipetman 20 µl, 200 µl, 1000 µl 

Microwave AEG Micromat 

Power supplies BioRad Power Pac 300 

PCR-Thermocycler Biometra T3 

pH-meter WTW pH 525 

Documentation BioRad GelDoc2000 + MultiAnalyst Software V1.1 

Developer Agfa Curix 60 

Photometer Pharmacia Biotech Ultrospec 3000 

Phosphoimager Amersham Biosciences, Typhoon 4600 
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Shakers Bühler TH30 SM-30 (37 °C, 150 rpm) 

Innova 4300, New Brunswick Scientific (37 °C, 220 rpm) 

Innova 4230, New Brunswick Scientific (30 °C, 220rpm) 

Sonicator Bandelin Sonoplus HD70; Tip UW70 

Speedvac Savant SC110 

Thermoblocks Liebisch 

Vacuum Blotter Pharmacia + LKD Vacu Gene Pump 

Videoprinter Mitsubishi Hitachi, Cybertech Cb1 

Vortexer Vortex-Genie 2TM Scientific Industries 

UV-Crosslinker BioRad 

Waterbath GFL 1083, Memmert 
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4. Methods 
 

If not stated otherwise, all methods followed the instructions described in the CSH 

Laboratory Manual (Sambrook 1989). Centrifugations with no other indications were 

carried out in a table top centrifuge at 13,000 rpm. 

 

4.1 Manipulation of DNA 
 

4.1.1 Small scale isolation of plasmids 
 
While using the QIAGEN Plasmid Midi and Mini Kit, bacteria were collected from 

100 ml over night cultures by centrifugation (6000 rpm, 4 °C, 15 min) and resuspended in 

4 ml buffer P1, according to the manufacturer’s recommendations. After 5 min 

incubation at room temperature, 4 ml buffer P2 were added for lysis of the cells. After 

clearing of the suspension, 4 ml neutralization buffer P3 were added and samples were 

incubated for 10 min on ice. Cell debris and genomic DNA were removed by 

centrifugation (11000 rpm, 4 °C, 30 min). Plasmid DNA-containing supernatant was 

loaded on equilibrated columns by gravity flow. Columns were washed with buffer QC. 

Subsequently, plasmid DNA was eluted with 3.5 ml buffer QF and precipitated by 

addition of 0.7 vol isopropanol. After centrifugation (13000 rpm, 4 °C, 20 min), DNA 

pellets were washed with 70 % (v/v) ethanol, air-dried and resuspended in water. 

Plasmid isolation using the QIAspin mini kit were performed similarly with some 

modifications: bacteria were harvested from 1-10 ml over night cultures, buffer N3 

containing guanidine hydrochloride was used for neutralization, and plasmid DNA was 

purified from the supernatant by using small spin columns, which were centrifuged at 

13000 rpm for 1 min. DNA was eluted in a small volume of dH2O and directly used for 

further experiments. 
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4.1.2 Isolation of chromosomal DNA (Grimberg et al. 1987)  
 
Bacteria from 1 ml of an over night culture were harvested by centrifugation for 4 min in 

a 1.5 ml reaction tube. After washing with 1 ml TNE buffer, cells were centrifuged for 4 

min and resuspended in 270 µl TNE-X solution. 30 µl lysozyme (5 mg/ml) were added 

and samples were incubated for 20 min at 37 °C. Afterwards, 15 µl proteinase K (20 

mg/ml) were added and further incubated for up to 2 h at 65 °C until the solution became 

clear. The genomic DNA was precipitated by addition of 0.05 vol 5 M NaCl (15 µl) and 

500 µl ice-cold ethanol and then collected by centrifugation for 15 min. After washing 

two times with 1 ml 70 % (v/v) ethanol, DNA pellets were air-dried and redissolved in 

100 µl sterile dH2O.   

 

TNE: 10 mM Tris 

10 mM NaCl 

10 mM EDTA pH 8.0 

TNE-X: TNE + 1 % Triton X-100 

 

4.1.3 Precipitation of DNA with alcohol 
 
DNA was either precipitated with ethanol or with isopropanol. In the first case, 0.1 vol 3 

M Na-acetate (pH 4.8) were added to the samples before the addition of 2.5 vol ice-cold 

100 % (v/v) ethanol. For the precipitation with isopropanol, 0.7 vol were used. Samples 

were incubated for at least 1 h at -80 °C before centrifugation (13,000 rpm, 4 °C, >20 

min). The DNA pellet was washed with 70 % (v/v) ethanol, dried in a Speedvac for 10 

min and resuspended in dH2O. 

 

4.1.4 Determination of nucleic acid concentrations 
 
Nucleic acid concentrations were measured at 260 nm in quartz cuvettes with a diameter 

of 1 cm. An absorption at 260 nm of 1.0 corresponds to 50 µg/ml double-stranded DNA 

or 40 µg/ml RNA. The purity of the preparations was determined by measuring the 
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absorption of the sample at 280 nm. DNA and RNA were considered sufficiently pure 

when the ratio A260 / A280 was higher than 1.8 or 2.0, respectively. 

 

4.1.5 Polymerase chain reaction (PCR) 
 
This method allows the exponential amplification of DNA regions in vitro by using a heat 

stable DNA polymerase from Thermus aquaticus (Taq). This way, even small amounts of 

template DNA can be amplified to high copy numbers and easily visualized during 

screening assays. Another application of PCR is site-directed mutagenesis by using 

oligonucleotides with adapted sequences, e.g. restriction sites. 

 

Standard PCR 

For routine PCR-amplification, Taq DNA polymerase kits of different suppliers 

(QIAGEN, Sigma) were used. Usually, the reaction was performed in a final volume of 

20 µl. 

 

Mix for one sample: 2 µl 10× reaction buffer (QIAGEN) 

2 µl 20mM dNTP mix (Sigma) 

0.6 µl 25 mM MgCl2 

0.2 µl 100 pM primer solution 1 

0.2 µl 100 pM primer solution 2 

1 µl 100 ng/µl template DNA or boiled cells 

0.05 µl Taq DNA polymerase (QIAGEN) 

14 µl dH2O 

For the Sigma Red Taq polymerase kit, both primers and template DNA were added to 

8.6 µl 

dH2O and 10 µl 2× Red Taq ready mix (see the manufacturer’s instructions). 

 

The thermal profile was designed according to the annealing temperature of the 

individual primers and the length of the expected amplification product: 

Initial denaturation 2 min, 95 °C 
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1. Denaturation 45 sec, 95 °C 

2. Annealing 45 sec (54-60 °C)                                     25-35 cycles 

3. Elongation 30 sec 0.5-5 min, 72 °C 

Final elongation 2 min, 72 °C 

 

PCR with proof-reading polymerases 

For site-directed mutagenesis using PCR products, a different polymerase with 3’-5’ 

proofreading activity had to be used in order to prevent misincorporations during 

extension. The composition of a typical PCR mix for the λ Red mutagenesis (see section 

4.1.13) is given below: 

 

Mix for 1 sample: 5 µl 10× Opti buffer (Eurogentec) 

5 µl 20mM dNTP mix (Sigma) 

3.5 µl /kb 50 mM MgCl2 

1 µl 100 pM primer solution 1 

1 µl 100 pM primer solution 2 

1 µl 100 ng/µl template plasmid DNA 

0.5 µl DAP Goldstar polymerase (Eurogentec) 

ad 50 µl dH2O 

 

4.1.6 Enzymatic digest of DNA with restriction endo nucleases 
 
The DNA was dissolved in dH2O and mixed with 0.2 vol 10× reaction buffer and 1 U of 

restriction enzyme per µg DNA, so that the final volume of the sample was 15 µl for 

plasmid DNA and 50 µl for genomic DNA. The mixture was incubated at 37 °C, 

depending of the specific requirements of the enzyme indicated on the product sheets. 

Whereas plasmid DNA was digested for one to two hours, digestion of genomic DNA 

was carried out over night. The reaction was stopped by adding 0.2 vol stop-mix (see 

following section 4.1.7.). When appropriate, inactivation of the restriction enzyme was 

carried out by heating the samples for 20 min at 65 °C. 
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4.1.7 Horizontal Gel Electrophoresis 
 
For routine analytical and preparative separation of DNA fragments, horizontal gel 

electrophoresis was performed using agarose gels under non-denaturing conditions. 

Depending on the size of the DNA fragments to be separated, the agarose concentration 

varied between 1 and 2 % (w/v) in running buffer (1× TAE). In order to have a visible 

running front and to prevent diffusion of the DNA, 0.2 vol loading dye was added to the 

samples before loading. The electrophoresis was carried out at a voltage in the range 

between 16-120 V. The gels were stained in an ethidium bromide solution (10 mg/ml), 

washed with water and photographed under a UV-transilluminator. 

 

4.1.8 Isolation of DNA fragments from agarose gels 
 
DNA was purified from agarose gels using the QIAquick Gel Extraction Kit (QIAGEN). 

Agarose pieces containing the DNA fragment of interest were cut out of the gel and 

subsequently melted for 10 min at 50 °C in QG buffer (supplied by the manufacturer). 

The DNA was separated from the rest of the solution by applying the mixture to 

QIAquick spin columns followed by centrifugation for 1 min. The columns were then 

washed with 750 µl PE buffer (supplemented with ethanol). Residual PE buffer was 

removed by centrifugation (2× 1 min). Finally, the DNA was eluted from the column 

with 20-50 µl sterile dH2O. 

 

4.1.9 Ligation of DNA fragments 
 
Linearized vector and insert DNA after restriction digest can be ligated either due to the 

presence of sticky ends or by blunt-end ligation. The modifying enzyme for ligation 

process was a T4-DNA ligase (New England Biolabs). Best efficiencies were obtained 

using a insert/vector ratio of 3/1. Reactions were performed over night at 16 °C in a final 

volume of 15 µl containing 1.5 µl 10× ligation buffer and 50 U T4 ligase. 
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4.1.10 Transformation of bacterial cells 
 
Preparation of electrocompetent cells and electroporation 

50 ml LB medium were inoculated with 500 µl of an over night culture of the strain of 

interest and grown OD600 of 0.6-0.8. The cells were collected by centrifugation for 

10 min 6000 × g at 4 °C. The pellet was left on ice for 30 min and then washed with 

50 ml ice-cold dH2O. After a second centrifugation step at the same conditions, the pellet 

was resuspended in 25 ml 10 % (v/v) glycerol, centrifuged again and finally resuspended 

in 600 µl 10 % glycerol. The cells were stored as 40 µl aliquots at -80 °C. For 

electroporation, one aliquot was thawed on ice and mixed with ~ 0.5 µg DNA. The 

mixture was applied into a “Gene pulser” cuvette (BioRad) with a distance between the 

electrodes of 0.1 cm and incubated for 10 min on ice. The cells were electroporated using 

a Gene pulser transfection apparatus (BioRad) at the following conditions: 2.5 kV, 25 µF, 

and 600 Ω for linear fragments or 200 Ω for plasmids. Immediately after electroporation, 

1 ml LB medium was added to the cuvettes. The mixture was transferred into a new tube 

and incubated at 37 °C (or 30 °C for temperature-sensitive plasmids) for 1 h before the 

cells were plated on selective agar plates. 

 

4.1.11 A/T cloning of PCR products using the pGEM-T ® Easy vector 
system 
 
This kit enables rapid cloning of PCR fragments without digestion by overhanging 

adenine nucleotides at their 3' ends into a linearized vector that contains overhanging 5' 

terminal thymidine residues. pGEM-T® Easy vector allows cloning of DNA fragments in 

a multiple cloning site which is flanked by T7 and SP6 RNA polymerase promoters, 

respectively. This vector expresses the α-peptide of the β-galactosidase, thus enabling 

“blue-white” screening of successful DNA integration. The ligation reaction was 

performed overnight at 4 °C or for 2 h at RT and was prepared as follows: 

 

2× T4 DNA ligation buffer 10 µl 

pGEM-T® Easy vector 1 µl 

PCR product 1-8 µl 
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T4 DNA ligase 1 µl 

dH2O to final volume of 20 µl 

 

4.1.12 Cloning of DNA fragments digested with restr iction enzymes 
 
DNA fragments digested with restriction enzymes were cloned in vectors that were cut 

with appropriate enzymes (“sticky ends ligation”). For ligation, digested vector and insert 

were mixed in a ratio of 1:3. The ligation reaction was performed overnight at 4 °C or 16 

°C, or for 2 h at RT and was prepared as follows: 

Linearized vector 0.5-1 µl 

Restriction enzyme-digested DNA fragment 1-17.5 µl 

5× T4 ligase buffer 2 µl 

T4 ligase (New England BioLabs), 2 U/µl 1 µl 

dH2O to final volume of 20 µl 

 

When the vector and the insert were cut with only one restriction enzyme or for blunt end 

ligation, the ends of the linearized vector molecule were dephosphorylated before ligation 

using antarctic phosphatase (New England BioLabs) in order to prevent religation of the 

vector. Removal of the 5'-phosphate residue was carried out by addition of 0.1 vol 10× 

antarctic phosphatase reaction buffer (ZnCl2 1 mM; MgCl2 10 mM; Bis Tris-Propane 500 

mM; pH 6.0; H2Obidest.), 1 U antarctic phosphatase and incubation for 1 h at 37 °C. The 

reaction was stopped by heating for 5 min at 65 °C. 

 

4.1.13. Gene inactivation by λ Red recombinase-mediated 
mutagenesis using linear DNA fragments 
 
The construction of the mutants was performed using linear DNA for recombination, as 

described by Wanner and Datsenko (2000). This method relies on the replacement of a 

chromosomal sequence with an antibiotic marker that is generated by PCR using primers 

with homology extensions to the flanking regions of the target sequence. Recombination 

is mediated by the Red recombinase derived from the λ phage. This recombination 
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system consists of three genes (λ, ß, exo), which encode the phage recombinases and an 

inhibitor of the host RecBCD exonuclease V, which normally mediates degradation of 

linear DNA in the cell. A schematic overview of the procedure is depicted in Figure 12. 

Briefly, a linear DNA fragment containing an antibiotic marker cassette flanked by FRT 

sites and 45-nt homologous extensions to the target genes (up- and downstream regions, 

respectively) were amplified by PCR as described in section 4.1.5. The proofreading Dap 

Goldstar polymerase (Eurogentec) was used for amplification of the linear fragments 

with plasmids pKD3 (harboring a chloramphenicol resistance cassette) or pKD4 

(harboring a kanamycin resistance cassette) as template in a total volume of 400 µl. The 

annealing temperature for all primers was 54 °C using 30 cycles of amplification. PCR 

products were purified using the QIAquick PCR purification kit, ethanol precipitated and 

resuspended in 10 µl dH2O. 

 

 
Figure 12: Strategy for inactivation of chromosomal genes using PCR products (70). 
 

Meanwhile, the cells were first transformed with the pKD46 helper plasmid by 

electroporation (see section 4.1.10.). Transformants were selected at 30 °C on agar plates 

containing 100 µg/ml ampicillin. Of these transformants, electrocompetent cells were 

prepared from 50 ml LB cultures supplemented with ampicillin and 3 ml of an 0.1 M 
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arabinose solution to induce the Red recombinase on the helper plasmid. 40 µl competent 

cells were transformed with 5 µl of the linear PCR fragment by electroporation. After the 

addition of 1 ml LB medium to the cuvette, cells were incubated for 2 h at 30 °C with 

aeration. In contrast to normal electroporation, the cultures were then taken out of the 

incubator and left standing on the bench top over night at room temperature. In the next 

morning, cells were spun down, resuspended in 300 µl LB medium and distributed onto 

three agar plates supplemented with the appropriate antibiotic (Cm or Km, respectively). 

Transformants with confirmed allelic exchange were also re-streaked onto ampicillin-

containing agar plates at 37 °C to confirm loss of the temperature-sensitive helper 

plasmid pKD46. 

 

The antibiotic marker could be removed with the help of the FLP recombinase (encoded 

on plasmid pCP20), which mediates recombination between the two FRT sites flanking 

the antibiotic resistance cassette, thus leaving behind a complete deletion of the open 

reading frame. 

 

Electroporation was performed as described in section 4.1.10.2. Transformants were first 

selected on ampicillin-containing agar plates at 30 °C, and then re-streaked onto LB agar 

plates with no antibiotic. These plates were incubated at 37 °C in order to induce the loss 

of the second helper plasmid pCP20. The deletion mutants now could be used to 

introduce a second or third mutation by starting the whole procedure from the beginning. 

All mutations were confirmed by both PCR and Southern hybridization. 

 

Table 7: Primers use for gene deletions and control. 

matA red direct stop 
 

CCCGGTGAGTCATTTTTAAAACTAACTTGCCTGG 
AGTTTAGTGTAGGCTGGAGCTGCTTC 

matA red reverse start 
 

AGAAACTGAATGTACCTGTAAAAATTACAGGTT 
TGGAAAGTAGTGCATATGAATATCCTCCTTA 

matA south left TAATTTCCATTTCCCGGTCA 
matA south right CCCCATGACGCCTACTTCTA 
matA apec start wanner left CTGAATGTACCTGTAAAAATTACAGGTTTGGAAAGTAGTGG 

TGTAGGCTGGAGCTGCTTC 
matA apec start wanner right CCCGGTGAGTCATTTTTAAAACTAACTTGCCTGGAGTTTAA 

TGGGAATTAGCCATGGTCC 
Primer vérif matA right CTGTTCACATATTGACACTC 
Primer verif matA left GAGTTGAATTGAGGACATGA 
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Table 7: Primers use for gene deletions and control - continued 

matB apec start wanner left GACTTCATGTCCTCAATTCAACTCGGGAAGAAAAGCAATGAT 
TGTGTAGGCTGGAGCTGC 

matB verif left GGCCACTGTCGGTACTGTTT 
matB verif right CGCTGGACTGAGTCGTGATA 
matB apec stop wanner right AAAGCAGGGGGGTACCCCTGCTGGTACATCAGAGAGATTAATG 

GGAATTAGCCATGGTCC 
yedU direct wanner start 
 

ATAGTGACTACCCTAACTAAGCAACAATAAGGAATACACTATGG 
TGTAGGCTGGAGCTGCTTC 

Wanner yedU reverse 
 

GCGATTGATTATGCGCTTACATTCAAACGTAACAGGGATTAATG 
GGAATTAGCCATGGTCC 

yedU verif left TAGCGGCCAGCTCAGTCGCA 
yedU verif right CTGCGATTGATTATGCGCTT 
cadA lambda red left 
 

AAGGGAAGTGGCAAGCCACTTCCCTTGTACGAGCTAATTAGTG 
TAGGCTGGAGCTGCTTC 

cadA lamda red right 
 

AAAGTATTTTCCGAGGCTCCTCCTTTCATTTTGTCCCATGATGG 
GAATTAGCCATGGTCC 

cadA verif left GTGGCAAGCCACTTCCCTTG 
cadA verif right CGGTGAACTGACCGGTATCG 

 

4.1.14 Southern Blot analysis 
 
For Southern blot analysis, 10 µg chromosomal DNA were restricted with an appropriate 

endonuclease resulting in 1 to 5-kb DNA fragments with the target gene. The DNA 

fragments were separated by horizontal gel electrophoresis (see section 4.1.7.), denatured 

in a 0.5 M NaOH, 1.5 M NaCl solution for 30 min with shaking, and neutralized in a 

neutralization solution (0.5 M Tris-HCl, pH 7.5; 1.5M NaCl). Meanwhile, a nylon 

membrane (Nytran Super Charge; pore size 0.45 µm; Schleicher & Schuell, Dassel, 

Germany) of appropriate size was shortly pre-incubated in dH2O and then soaked for 10 

min in 20× SSC. Capillary blot was done overnight to transfer the DNA from the gel to 

the membrane. 

After the DNA transfer, the nylon membrane was incubated for 1 min in 0.4 N NaOH and 

1 min in 0.25 M Tris-HCl, pH 7.5 for neutralization. The membrane was then shortly 

dried and the DNA was crosslinkd to the membrane by exposure to UV light. 

 

Probe labelling (ECLTM Kit, Amersham Biosciences) 

For labelling of DNA probes, the ECLTM-Kit (enhanced chemoluminescence) was used. 

The binding of a DNA probe to the complementary sequence on the nylon membrane was 

detected by chemoluminescence. Positively charged horseradish peroxidase molecules 
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were mixed with the negatively charged DNA probe. Addition of glutaraldehyd 

covalently linked the horseradish peroxidase molecules with the DNA probes. Reduction 

of H2O2 by the peroxidase requires the oxidation of luminol which results in light 

emission, which can be detected by suitable light-sensitive films, e.g. the Hyperfilm ECL. 

 

For labeling of the probe, 100 ng DNA per ml hybridization buffer in a final volume of 

10 µl in dH2O were denatured for 10 min at 90 °C and cooled for 5 min on ice. 

Subsequently, 10 µl labelling reagent and 10 µl glutaraldehyd were added. The mixture 

was incubated for 10 min at 37 °C and then added to the hybridization reaction. 

 

Hybridization and detection of the membrane 

Hybridization of the membrane was carried out over night at 42 °C in hybridization 

solution (10-15 ml), after the nylon membrane was pre-incubated at 42 °C in the 

hybridization solution for 1 h. The next day, the membrane was washed twice for 20 min 

at 55 °C with wash solution I and two times for 10 min at RT with wash solution II. The 

membrane was placed on Whatman paper to remove the rest of the wash solution, and 

then incubated for 5 min in 5-10 ml detection solution I and detection solution II 

provided with the kit and mixed immediately (1:1) before addition to the membrane. The 

membrane was superficially dried on Whatman paper and packed in saran wrap avoiding 

air bubbles on the top surface of the membrane. Chemoluminescence was detected by 

exposure of the membrane to Hyperfilm ECL. The exposure time depended on the signal 

intensity. 

Wash solution 1: 0.5× SSC; 0.4 % (w/v) SDS 

Wash solution 2: 2× SSC 

 

4.1.15 Sequence analysis 
 
The nucleotide sequences of mutagenized chromosomal genes or plasmid constructs were 

determined using fluorescent dye terminators (ABI prism BigDye terminator kit, Applied 

Biosystems). The sequencing-PCR mix for one sample was: 

30 ng PCR product (or: 0.5 µg plasmid DNA) 
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1.5 µl 10 pM primer 

2 µl 5 x buffer (kit component) 

2 µl premix (kit component) ad 10 µl ABI-H2O 

 

The thermal profile for the PCR reaction was: 40 cycles of denaturation at 96 °C for 

30 sec, annealing at ≤ 60 °C for 15 sec, and extension at 60 °C for 4 min, followed by 

final extension at 60 °C for 2 min. Sequencing products were purified by ethanol 

precipitation (see section 4.1.3.) and analyzed in a ABI prism sequencer (Perkin Elmer). 

 

4.2 Manipulation of RNA 
 

4.2.1 Isolation of RNA 
 
10 ml LB cultures were grown to mid-log phase, i.e. to an optical density at 600 nm of 

0.5-0.6. 2 mL of culture was mixed with 4 mL of RNA Protect Reagent (Qiagen), 

vortexed, and centrifuged at room temperature, 6000 x g for 10 min to pellet cells. The 

supernatant was removed and cell pellets stored at -80 °C for 1 week or less before RNA 

extraction. 

RNA isolation was carried out as directed in the QIAGEN RNeasy Mini protocol with the 

modifications that cell pellets were resuspended in TE buffer containing lysozyme 

(400 µg/ml). To remove traces of chromosomal DNA, 60 mg total RNA was treated with 

55 U RNase-free DNase I (Roche Diagnostics GmbH, Mannheim, Germany) for 2 h at 

37 °C. The RNA was purified using the RNeasy Mini Prep™ clean-up protocol as 

recommended by the manufacturer (Qiagen). The quality of the isolated RNA was 

analyzed by agarose gel electrophoresis and using the Bioanalyzer 2100 (Agilent Techn., 

Palo Alto, CA, USA). RNA concentrations were determined spectrophotometrically and 

all samples were stored at -80 °C. As a control for successful removal of all DNA from 

the samples, 2 µl of the DNase treated RNA or 1 µl DNA as positive control were used as 

template in a PCR reaction with primers binding within the coding sequence of gene 

fimH. The DNase digest was considered as complete if no product could be amplified 

from the RNA samples. 
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4.2.2 Northern hybridization 
 
For Northern blotting, RNA was separated by denaturing electrophoresis. A 1.2 % 

agarose/formaldehyde gel was prepared by mixing 1.95 g agarose and 96 ml DEPC-

treated H2O. The agarose was dissolved by heating in a microwave, mixed well, and 

cooled to 60 °C. In a fume hood, 11.05 ml of 37 % formaldehyde, and 13.3 ml freshly 

prepared 10× MOPS buffer were added, mixed well and poured into the gel casting 

device. 

 

10-20 µg DNase-treated RNA in a final volume of 10 µl were mixed with an equal 

volume of 2× RNA loading buffer and denatured at 55 °C for 15 min. The RNA samples 

were then loaded onto the formaldehyde gel and separated in 1 x MOPS running buffer at 

4 V/cm electrode distance for 4-5 hours, until the bromophenol blue dye had migrated 

three-quarters of the way down the gel. After electrophoresis was completed, the gel was 

stained with ethidium bromide and photographed to record the electrophoretic separation 

of the loaded RNA. 

 

RNA was transferred to a nylon membrane by overnight blotting as described earlier for 

Southern hybridization (see section 4.1.14.), with minor modifications: RNA transfer 

does not need depurinization, and the composition of the denaturation- and neutralization 

buffers differed slightly. The nylon membrane was prepared for hybridization as 

described for Southern hybridization analysis. 

 

DNA probes were amplified by PCR, followed by ECL-labeling, and hybridization to the 

membrane over night at 42 °C. After washing with 0.4× SSC/0.1 % SDS, transcripts were 

detected using the ECL advance nucleic acid detection kit (Amersham Biosciences) 

following the manufacturer’s recommendations. 
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4.2.3 Determination of the transcription starting p oint. 
 
To determine the transcription starting point of matA, the 5’-RACE kit from Roche 

Applied Science (Cat. No. 03 353 621 001, Germany) was used. This method is used to 

extend partial cDNA clones by amplifying the 5' sequences of the corresponding 

mRNAs. During PCR, the thermostable DNA polymerase is directed to the appropriate 

target RNA by a single primer derived from the region of known sequence; the second 

primer required for PCR is complementary to a general feature of the target - in the case 

of 5'-RACE, to a homopolymeric tail added (via terminal transferase) to the 3'-termini of 

cDNAs transcribed from a preparation of mRNA. This synthetic tail provides a primer-

binding site upstream of the unknown 5'-sequence of the target mRNA. The products of 

the amplification reaction are cloned into a plasmid vector for sequencing and subsequent 

manipulation.  

We followed the manufacturer’s protocol, with slight modifications. 2 µg of RNA were 

used in each experiment. The primers used are in the Table 8. 

 

Table 8: Primers used for the 5-RACE method. 

Name Sequence (5’-3’) 
SP1 CGCCGATGGGTATACACTG 

SP2  CCGCAATCAATACGACCTG 

SP3 GTAGGCGTCATGGGGAGACC 

SP4 CGGAAGTAAATAAGATACG 

 
The Dap polymerase (Roche) was used for the nested PCR. 

Prior to subcloning, the PCR products were cut out from an agarose gel and purified on a 

column (Quiagen PCR purification kit). 

The primer SP4 was used to get only the second transcriptional start point product of 

strain IHE3034 by PCR. 

 

4.2.4 cDNA synthesis and hybridizations 
  
For cDNA synthesis, the Superscript III reverse transcription kit (Invitrogen) was used. 

RNA was transcribed into cDNA and concomitantly fluorescence labeled by the 



4. Methods 

 - 73 - 

incorporation of Cy3 and Cy5 (GE Healthcare, Amersham Biosciences, Freiburg, 

Germany). 

10 µg of total RNA in a final volume of 15 µl were mixed with 1 µg of random hexamer 

primers (Amersham Biosciences). This annealing mix is heated for 10 minutes at 70 °C, 

then cooled down to room temperature for 5 min.  

The composition of the RT-mix for 1 sample was: 

 

Reaction mix: 

5x first strand buffer* 8 µl 

0.1x DTT* 4 µl 

RNaseOut 1 µl 

Nucleotide mastermix 4 µl 

Cy3- or Cy5-dUTP (1 mM) 4 µl 

SuperScript III TM (200 U/µl) 2 µl 

Annealing mix 15 µl 

 

Total volume 38 µl 

 

* first strand buffer and DTT is included with purchase of Superscript III 

 

The reaction mix is incubated at 50 °C for 30 min. After a brief centrifugation, 2 µl of 

SuperScript III TM is added again and the mix is incubated for additional 30 min at 50 

°C. The reaction is stopped by incubated 15 min at 70 °C. To hydrolyze the RNA, 10 µl 

NaOH (1 M) is added and the mix incubated at 65 °C for 15 min. Afterwards the reaction 

is cooled down to room temperature. To neutralize, 25 µl Tris-HCl (1M, pH 7.5) has to 

be added. 

 

Uncoupled dye was removed by another purfication using the PCR cleanup kit. 

Concentration of cDNA and amount of incorporated dye was measured for each sample 

using a Nanodrop spectrophotometer (Ambion). 
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4.2.5 DNA microarray hybridization and analysis 
 
Transcription profiling was performed using the sciTRACER E. coli K-12-patho chip 

(Scienion AG, Berlin, Germany) which comprises 3340 PCR products derived from 3840 

genes from the database of E. coli K-12 strain MG1655 (acc-nr: NC_000913). The PCR 

products designed by the Scienion bioinformatics department cover 87 % of the realized 

ORFs. Additionally, 370 PCR products from various genomes of pathogenic E. coli are 

also present on the chip. All PCR products were dissolved in spotting solution and 

spotted robotically onto modified glass slides. All fragments were purified, normalized 

and they are represented in single spots on each array. Multiple controls were spotted in 

the last row of each subarray block forming the control area and comprised controls 

enabling spiking and endogenous controls. 

The sciTRACER E. coli K-12-patho chip represents a custom tailored microarray and 

contains oligonucleotide probes that cover the complete genome of E. coli K-12 strain 

MG1655 and several genomes of E. coli variants pathogenic for humans and birds. 

 

Microarrays were hybridized with the fluorescence-labeled probes for 2 days at 49 °C in 

total darkness, and afterwards washed according to the manufacturer’s protocol. The 

microarrays were scanned using the GenePix4000B microarray reader (GE Healthcare). 

Data were linearly normalized with EMMA2.0 software (78). Genes were considered to 

be up-regulated when RNA level was found to be increased at least twofold in the wild 

type in comparison to the mutant. Genes were regarded to be negatively affected when 

the RNA level was at least twofold higher. Data analysis was repeated on at least 4 

independent microarray experiments for each condition tested, with dye-switch. The 

normalization was done under the function LOWESS. The statistical significance or p-

value for the genes for the data was p <0.05, using a t-test with the Holm function (the 

Bonferroni function gave appreciatively the same results). In total, 11 independent 

microarrays were evaluated and the mean for each single gene was calculated. The 

Hierarchical Clustering is done using the EMMA2.0 software too (defaults: mean, 

euclidian, p=0.01). 
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In case of the Operon chips used for the transcriptome analysis between IHE3034 and its 

isogenic matA mutant, the protocol furnished by the manufacturer was followed, with 

slide modification. The labelling was performed like previously explained, with a 

quantification of the dye integration and normalization between each probes. The 

hybridization was done at 42 °C and for 20H00. Four independent experiments were 

performed. In this case, data were linearly normalized with Acuity 4.0 software. Genes 

were considered to be up-regulated when RNA level was found to be increased at least 

twofold in the wild type in comparison to the mutant. Genes were regarded to be 

negatively affected when the RNA level was at least twofold higher. Data analysis was 

repeated on 4 independent microarray experiments for each condition tested, with dye-

switch. The normalization was done under the function LOWESS. The statistical 

significance or p-value for the genes for the data was p <0.05, using a t-test with the 

Holm function (the Bonferroni function gave appreciatively the same results). 

 

4.2.6 Real-time RT-PCR 
 
To confirm the results of the microarray analysis, the relative expression levels of genes 

were validated by real-time PCR. In brief, the DNase-digested RNA was transformed into 

cDNA using the iScript cDNA synthesis kit (Biorad) following the manufacturer’s 

protocol. The transcription profiling was carried out using the iCycler iQ real-time PCR 

detection system (Bio-Rad Laboratories GmbH, München, Germany), according to the 

manufacturer’s instructions. Appropriate dilution series for each of the primers were 

made and one tenth of the synthesized cDNA together with the iQ supermix (Bio-Rad) 

for the real-time PCR. The nucleotide sequences of employed primers are listed in Table. 

 

Table 9: Primers for real-time RT- PCR 

Name Sequence (5’-3’) 
flhD left rt CTCCGAGTTGCTGAAACACA 
flhD right rt GTGGCTGTCAAAACGGAAGT 
cadA left rt GAATTCCAGCACGCTACCAT 
cadA right rt ACCGCTCATACCGCATTTAC 
matA left rt GAGTACAGCTTGGCCTCTGC 
matA right rt CGCTGGACTGAGTCGTGATA 
matB left rt CCGCTGATGATGGAGAAAGT 
matB right rt CGCCTTATCACCAACACCTT 
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Table 9: Primers for real-time RT- PCR – continued 

matC left rt TCAAACCAGACAATGCGGTA 
matC right rt CGCCTCATCAATATCCGTCT 
matD left rt TGTCGAGTTTGTTCGCTGAC 
matD right rt CAGCAAATAGGTGGGGTGAT 
matE left rt CCGAGGTTCACCATCTGTTT 
matE right rt CTCAGCAACACCTCAATCCA 
matF left rt TAGCACTGATGGCAATACGG 
matF right rt AAGTCAGCGCTTCAGGAGAG 
fliC RT left TTGATGAAATTGACCGCGTA 
fliC RT right CGTTGCAGCTTTGTTGGTAA 
fliA RT left AGCGTGGAACTTGACGATC 
fliA RT right CTATTGCCTGTGCCACTTCA 
cheZ RT left CGCAGGATTTTCAGGATCT 
cheZ RT right CCTGATCCTGACTGGCTACC 
cheY RT left GCGTAACCTGCTGAAAGAGC 
cheY RT right CGCTTCTGCAGTCACCATTA 
frr left for real time pcr  GGCAAGCGTAACGGTAGAAG 
frr right for real time pcr  CTTGTTCTGCTTCACCACGA 
cysW left ACTGCTGACGCTACTGGACA 
cysW right GACACGTCACGAAGATGGTG 
cysK left AAGCTGCTGAAAGCGTTAGG 
cysK right CAACCTGACCGTCGGTATCT 
aer left AGAAAATGTTGCCCATCAGG 
aer right AGCGTCTCACTGCCATTTCT 
tar left CGGGTGAAGTGCGTAATCTT 
tar right GATGCAATCTCGCCCATAAT 
pyrI left TTGGTCTGAACCTGCCTTCT 
pyrI right CAGACCAGCACATTGTCGAT 
hdeA left TGCTTCTTCTGCCAGTTGTG 
hdeA right ACGGTTGCAATACCCTGAAC 
hdeB left GCCAATGAATCCGCTAAAGA 
hdeB right CAAATTTTTCTGCGGGTTTT 
glnB left ACTGGCCGAAGTCGGTATTA 
gnlB right GCCGTGCGAATAATGGTATC 
hdhA left ATTTTCGCCGTGCTTATGAA 
hdhA right CCAGGTCAAACGCCATATTT 
motA left TTTCCTCGGCATTTTATTGG 
motA right GCACATGCTCTTCCAGTTCA 
yedU left TGCAGCAATCTTTGTTCCTG 
yedU right CCAATCTCTGGCGTTTGTTT 

 

4.2.7 Semi-quantitative reverse-transcription PCR ( RT-PCR) 
 
cDNA samples derived from reverse transcription were 20× diluted in water and directly 

used for PCR amplification. As a control for DNA contaminations, a second PCR 

reaction was performed using total RNA without any reverse transcription reaction. DNA 

served as positive control for the PCR reaction. For adjustment of cDNA amounts, 16 S 
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rRNA (rrsA) was used as internal standard using 35 cycles of amplification. The RT-PCR 

primers were selected with the FastPCR software version 3.6.28 (Ruslan Kalendar, 

Institute for Biotechnology, University of Helsinki, Finland). The sequences of all 

oligonucleotides used are listed in Table 10. 

 

Table10: Primer use for the RT-PCR experiments. 

Name Sequence (5’-3’) 
matA-B left CCTCGATAGCCACGTCAAAT 

matA-B right CGCTGGACTGAGTCGTGATA 

matA-C left (use in pair 
with matA-B right) 

GCGTCGCATTTCCTGTATTT 

matDE left GCTTTCGTATGGGTGACGTT 

matDE right TTACCGTCTCCGGTCGTATC 

matEF left CACCTGATCGAAGGACCATT 

matEF right AACGTCACCCATACGAAAGC 

matAD left ACCAATCCCGTACAGTGAGC 

matAD right CGCTGGACTGAGTCGTGATA 

 

For the PCR reaction, Red Taq polymerase ready mix (Sigma) was used (see section 

4.1.5.). The 2× concentrated mix contained all necessary components for PCR, thereby 

minimizing pipetting errors. 10 µl of the ready mix were mixed with 4.6 µl water and 

0.2 µl of each 100 pM RT primer. This mixture was then added to the adjusted cDNA in 

a final volume of 5 µl and placed into the thermal cycler. 

 

Thermal profile:  Initial denaturation 2 min, 95 °C 

1. Denaturation 30 sec, 95 °C 

2. Annealing 30 sec, 57-59 °C   25-35 cycles 

3. Elongation 30 sec, 72 °C 

Final elongation 2 min, 72 °C 

 

Since the PCR ready mix already contained a loading dye for gelelectrophoresis, 10 µl of 

the PCR samples were directly loaded on a 2 % agarose gel and analyzed after ethidium 

bromide staining. To keep the PCR amplification in a linear range, i.e. to prevent over-

saturation of the PCR products, the cycle number of amplification was altered, whereas 
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the template amount was always kept constant. The primers used are listed in the table 

10.  

 

4.3. Working with Protein 
 

4.3.1 Denaturing polyacrylamide gel electrophoresis  (PAGE) 
 
Protein samples were separated and analyzed in denaturing polyacrylamide gels as 

described by Laemmli (1970). This was done using the detergent sodium dodecylsulfate 

(SDS), which binds to proteins and leaves them unfolded and negatively charged. 

Therefore, the protein mixture can be separated in the meshwork of the polyacrylamide 

gel due to variable migration speed depending on the size of the protein. Since most of 

the proteins of interest in this study were about 15 kDa in size, a 15 % resolution 

polyacrylamide gel was used. The size of the gels was 10 × 10 × 0.5 cm, and 

electrophoresis was performed at room temperature at 16 mA per gel in 1x 

electrophoresis buffer. The samples were loaded onto the gel after heating for 10 min at 

90 °C in 1× loading buffer. 

The acrylamide gel consists of two parts: a lower part mediating the separation of the 

proteins, and an upper part, which is used for concentration of the sample in a single 

running front after entering the gel. The mixture sufficient for 4 mini gels was: 

 

15 % separation gel:  15 ml 30 % acrylamyde: bis-acrylamide (37.5:1) 

5 ml 1.5 M Tris-HCl, pH 8.8 

10 ml dH2O 

300 µl 10 % (w/v) SDS 

250 µl 10 % (w/v) ammonium persulfate (APS) 

8 µl TEMED 

 

5 % collecting gel:  1.96 ml 30 % acrylamyde: bis-acrylamide (37.5:1) 

2.8 ml 0.5 M Tris-HCl, pH 6.8 

4.6 ml dH2O 
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112 µl 10 % (w/v) SDS 

32 µl 10 % (w/v) APS 

16 µl TEMED 

10 x running buffer:   30 g Tris 

144 g glycine 

10 g solid SDS 

ad 1 l dH2O 

4 x SDS-loading buffer: 2.5 ml 1 M Tris-HCl, pH 6.8 

4 ml 50 % (v/v) glycerol 

0.8 g solid SDS 

0.1 ml ß-mercaptoethanol 

0.02 g bromophenol blue 

ad 10 ml dH2O 

 

4.3.2 Visualization of proteins in acrylamide gels by Coomassie 
staining 
 
After electrophoresis, the polyacrylamide gels were incubated for 15 min in Coomassie 

staining solution. Protein bands were visualized after removing unbound Coomassie dye 

by incubating the gel in destaining solution I for 30 min, followed by incubation in 

destaining solution II for > 2h. 

 

Staining solution:   1 g Coomassie Brilliant Blue R-250 

0.25 g Coomassie Brilliant Blue G-250 

238 ml ethanol 

50 ml acetic acid 

ad 500 ml dH2O 

Destaining solution I:  10 % (v/v) acetic acid; 50 % (v/v) ethanol 

Destaining solution II:  7.5 % (v/v) acetic acid; 5 % (v/v) ethanol 
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4.3.3 Immunoblotting 
 
For the preparation of crude cell extracts, 800 µl bacterial culture were centrifuged for 

2 min at 13,000 rpm in a table top centrifuge and the pellet was resuspended in ¼ vol of 

the measured optical density of the culture in 1× Laemmli buffer (e.g. 250 µl for a sample 

with OD600nm = 1). After heating the samples for 10 min at 90 °C, 15 µl were used for 

PAGE (see section 4.3.1.). After PAGE, separated proteins were transferred to a 

nitrocellulose membrane (Optitran BA-S85 Reinforced NC; pore size 0.45 µm; 

Schleicher&Schuell). The transfer of the proteins was carried out between two graphite 

plates in a semi-dry western blotting apparatus, using 12 Whatman paper slices, soaked 

with Anode buffer I, II or Cathode buffer. The membrane was incubated for 5 min in 

Anode buffer II. The lower graphite plate (anode) was moistened with water and covered 

with 6 slices of Whatman paper soaked with Anode buffer I, followed by 3 slices of 

Whatman papers soaked with Anode buffer II. The nitrocellulose membrane was laid on 

top of the Whatman papers, followed by the polyacrylamide gel and 3 slices of Whatman 

paper soaked in Cathode buffer. Air bubbles were carefully removed before laying the 

second graphite plate at the top (cathode). The transfer was carried out by applying an 

electric current of 0.8 mA cm-2 for 1 h. 

 

Anode buffer I:  0.3 M Tris, 20 % methanol 

Anode buffer II:  25 mM Tris, 20 % methanol 

Cathode buffer:  25 mM Tris, 40 mM ε-amino-n-capronic acid, 20 % methanol 

 

After transfer of the proteins, the membrane was incubated over night at 4 °C (or 1 h at 

room temperature) in TBS-T solution (0.05 M Tris-HCl, pH 7.5; 0.15 M NaCl; 0.1 % 

Tween 20) supplemented with 5 % fat-free dry milk. Subsequently, the blot was 

incubated with the primary antibody for 1 h at room temperature. The concentration of 

the primary antibody depended on the titre, but the dilution usually ranged from 1:1000 

to 1:5000 in TBS-T supplemented with 5 % dry milk. After washing the membrane with 

TBS-T three times for 5 min, the secondary peroxidase-conjugated antibody (1:5000 

diluted in TBS-T) was added and incubated for 1 h at room temperature. Finally, the 

membrane was washed three times for 10 min with TBS-T at room temperature. Signal 
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detection using the ECL kit (Amersham Biosciences) was performed as described before 

(see section 4.1.14.). 

 

4.4. Phenotypic assays 
 

4.4.1 Detection of aerobactin expression 
 
For aerobactin media plates, 1 ml of an overnight culture (YT, Tc) of the indicator E. coli 

strain EN99 was mixed with 100 ml aerobactin soft agar (0.75 %(w/v), see section 3.3.1) 

medium, pre-cooled to 42 °C. A thin layer (0.5 mm) of the mixture was poured on the 

surface of the aerobactin plates. The bacterial strains to be tested were grown overnight in 

1 ml LB medium. Sterile susceptibility discs (Oxoid) were soaked with cells of the 

overnight culture and were placed on the aerobactin plates and incubated overnight at 37 

°C. Aerobactin production was assessed by the presence of growth zones of the iron-

deficient indicator strain EN99 around the colonies of the tested strains. 

 

4.4.2 Detection of type 1 fimbriae expression 
 
Overnight cultures of the strains to be tested and of a positive (E. coli strain Nissle 1917) 

and of a negative (E. coli strain AAEC189) control were grown. The mannose-dependent 

yeast agglutination assay was carried out by mixing 10 µl of the different bacterial 

overnight cultures with 10 µl yeast cells-suspension (1 mg/ml Saccharomyces cerevisiae 

cells diluted in 0.9 % (w/v) NaCl, with or without 2 % (w/v) mannose) on microscope 

slides (75:25:1 mm). The slides were kept on ice until the aggregation of bacterial and 

yeast cells was observed in absence of mannose. 

 

4.4.3 Detection of F1C fimbriae expression 
 
Overnight cultures of the strains to be tested and of a positive (E. coli strain Nissle 1917) 

and of a negative (E. coli strain AAEC189) control were grown. For the 
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immunoagglutination assay a polyclonal α-F1C fimbriae rabbit antibody was used 

(provided by S. Kahn, Wuerzburg), that was diluted 1:1000 in 1× PBS. The 

immunoagglutination assay was carried out by mixing 10 µl of the bacterial overnight 

culture with 10 µl of the α-F1C fimbriae antibody solution on microscope slides (75:25:1 

mm) and incubation on ice until the aggregation of the bacterial cells was clearly 

observed. 

 
1× PBS 
NaCl 8g 
KCl 0.2 g 
Na2HPO4 1.4 g 
K2HPO4 0.24 g 
NaOH add to pH 7.4 
dH2O to a final volume of 1000 ml 
 

4.4.4 Detection of S fimbriae expression 
 
Overnight cultures of the strains to be tested and of a positive (E. coli strain Nissle 1917) 

and of a negative (E. coli strain AAEC189) control were grown. For the 

immunoagglutination assay a polyclonal α-S fimbriae rabbit antibody was used (provided 

by S. Kahn, Wuerzburg), that was diluted 1:1000 in 1× PBS. The immunoagglutination 

assay was carried out by mixing 10 µl of the bacterial overnight culture with 10 µl of the 

α-F1C fimbriae antibody solution on microscope slides (75:25:1mm) and incubation on 

ice until the aggregation of the bacterial cells was clearly observed. 

 

4.4.5 Biofilm formation experiments 
 
Bacterial strains were grown overnight at 37 °C in LB. Overnight cultures were diluted 

(1:200) with fresh LB or M63 medium. 160µl of the 1: 200 bacterial dilution was added 

in wells of a 96-well microtiter plate (Flexible Plate, U-Bottom, Lid for flexible plate, 

Falcon). Sterilization of the 96-well microtiter plate and lid by exposure to UV light for 

20 min before use. The cells were grown at 20 °C or 37 °C without agitation. After 24H 

(37 °C) or 48H (20 °C), the supernatant of the biofilm was completely discarded and the 
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biofilm washed twice with 1× PBS. Finally, the biofilm was dried at 60 °C, each well 

stained with 160µl of the 0.1% Kristal Violet solution (in water) for 10 min and washed 

at least 2 times with 1× PBS. The absorbed Kristal Violet is eluted with 180µl of 

acetone/EtOH (1/5 v/v). The biofilm is measured at OD580. 

 

4.5 In silico analysis 
 

For standard sequence comparison and similarity searches, the Basic Local Alignment 

SearchTool (BLAST) at the National Center for Biotechnology Information Homepage 

was used. 

For alignments of nucleotide and amino acid sequences, the BioEdit sequence alignment 

editor V7.0.1 was used (129). Genome comparison was performed using the Artemis 

Comparison Tool (ACT) Release 4 of the Sanger Institute. 

 

4.6 Statistical analyse 
 

Statistical analyses were performed using the Prism 4.0b software package (GraphPad 

Software). The statistical significance or p-value for the data was p <0.05. 
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5. Results 
 

5.1 Analysis of zoonotic risk between human and avian ExPEC 
 

ExPEC may cause different diseases in humans and animals thus bearing a 

zoonotic risk. Assuming that host specificity is due to (i) specific genes required for 

metabolism or pathogenicity, (ii) allelic variation of genes coding for proteins interacting 

with the host and (iii) the ability to sense the host and specifically regulate virulence gene 

expression, our aim was to find out whether there is a host specificity of human and avian 

ExPEC strains.  

 

As specific virulence factors that trigger the infection of either humans or poultry 

could not be identified yet, we investigated whether differential regulation of virulence 

gene expression may be responsible for host specificity of APEC and human ExPEC 

strains. A thorough analysis of factors that contribute to the host specificity (human vs. 

poultry) of ExPEC strains was therefore important to evaluate the zoonotic risk emerging 

from these bacteria. In this context, the difference between the human and the avian body 

temperature (37°C and 41-42°C, respectively) can be important. One focus of this study 

was therefore the transcriptome analysis of a human and an avian ExPEC isolate of 

serotype O18:K1 in response to different growth temperatures by means of DNA arrays. 

 

 The aim of these experiments was the identification of genes that are specifically 

transcribed either in response to the body temperature of humans (37 °C) and avians (41-

42 °C) or depending on the strain background. Subsequently, differential regulations of 

promising candidate genes identified by the global transcriptome analysis were then 

confirmed by additional approaches. 
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5.1.1 The characterisation of human and avian ExPEC  strains  
 
 The COLIRISK project members characterised nine human and avian ExPEC 

strains that have been compiled for the COLIRISK strain collection. In Table 11 the 

preliminary results performed by the COLISK partners for this approach are summarised. 

According to these results, a clear correlation between the presence of ExPEC-specific 

virulence-associated genes and human or avian origin could not be identified. 

 

Table 11: Genotypic characterisation of the human and avian ExPEC isolates of the COLIRISK 
strain collection.  

 RS218 
Human 
O18:K1 

IHE3034 
Human 
O18:K1 

BEN79 
Avian 
O18:K1:H7 

BEN374 
Avian 
O18:K1:H7 

IHE3072 
Human 
O2:K1:H5 

BEN2908 
Avian 
O2:K1:H7 

1772 
Avian 
O2:K1 

285 
Human 
O78 

789 (AC/I) 
Avian 
O78 

hly + - - - - - - - - 
cnf1 + - + - - - - - + 
cdt - + + + - - - - - 
pap + - - - + - - - - 
sfa + sfaII + + + - - - fac 
fim + + + + + + + + + 
ybn + + + + + + + + + 
iro + + + + + + + + + 
iut + + + + + + + + + 
cvaC - - + + + + - + - 
traT + + + + + + - - - 
kps K1 K1 K1 K1 K1 II K1 II - 
ibeA + + + + - + + - - 
flg + + + + + + + + + 
fimH + + + + + + + + + 
matB + + + + + + + + + 
csgA + + + + + + + + + 
csgD + + + + + + + + + 
sfaH + + + + - - - - + 
sfaS + + + + - - - - - 
focG + + + + - - - - - 
focH + + + + - - - - + 
papGII - - - - + - - - - 
papGIII + - - - - - - - - 
 

The presence or absence of different fimbrial adhesin genes was investigated by 

PCR assays (Table 11). All strains tested carried the determinants coding for type I 

fimbriae (fim) as well as for curli (csg) and Mat fimbriae (mat). The O2:K1 strains were 
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negative for both, the S- and F1C-fimbrial gene cluster. Strain 789 was PCR-positive for 

the adhesin genes focH and sfaH but negative for the accessory genes sfaS and focG. This 

is due to the fact that this strain carries the highly homologous fac gene cluster which is 

also a member of the S adhesin family. 

 

Furthermore, phenotypic tests have been performed to test the COLIRISK strains 

for production of α-hemolysin, the iron-uptake system aerobactin, type 1- and F1C 

fimbriae, and for their motility (Table 12). 

 

Table 12: Phenotypic characterisation of the COLIRISK strains.  

Strain Origin Serotype Type I 
fimbriae 

F1C 
fimbriae 

S 
fimbriae 

P 
fimbriae 

Colici
ns 

flg 

RS218 hu O18:K1 + + + + - + 
IHE3034 hu O18:K1 + + sfaII + + - + 
BEN79 av O18:K1:H7 + + - + + + 
BEN374 av O18:K1:H7 + + - + + + 
IHE3072 hu O2:K1:H5 + + - + + + 
BEN2908 av O2:K1:H7 + + - + + + 
1772 av O2:K1 - - - + - + 
285 hu O78 + + - + + - 
789 (AC/I) av O78 - - fac + - - 

+: expressed; -: not expressed. K1: serotype of capsule. II: Group II capsular polysaccharides. 

 

To complete this analysis, the expression of these fimbriae (when the genes were 

present) was compared in the strains isolated from humans or poultry. Polyclonal 

antibodies specific for these fimbriae were used to perform agglutination assays. 

Furthermore, the expression of other virulence-associated traits such as the siderophore 

aerobactin, curli fimbriae, and cellulose formation was tested in order to see differences 

in gene expression between the different strains (Table 12). For this, all the strains were 

inoculated on specific agar plates (CAS plate, Congo Red plate, aerobactin plates) and 

incubated at different temperatures, including the human and avian body temperature, but 

also 20 °C and 30 °C. 
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Figure 13: Analysis of rdar morphotype and cellulose expression. Figure A depicts the rdar (red dry and 
rough) morphotype, i.e. the simultaneous expression of curli and cellulose on Congo Red agar plates after 
48 h of growth). Figure B indicates cellulose expression on calcofluor agar plates after 48 h of growth.  The 
E. coli strain EcN expresses at 30 °C and 37 °C the so-called rdar morphotype on congo red agar plates 
(370) which is characterized by red colored colonies with a dry colony surface and strong cell-cell 
interactions. This morphotype is considered to be due to co-expression of curli fimbriae and cellulose. In 
comparison, the uropathogenic E. coli strain 536 expresses the rdar morphotype only at 30 °C. The E. coli 
K-12 MG1655 is our negative control for cellulose and expresses curli at 30 °C. 
 

  The results (see Figure 13) suggested there was no clear correlation between the 

strain origin and rdar morphotype expression. Cellulose biosynthesis is known to play a 

significant role in biofilm formation, but does not contribute to the virulence of 

Salmonella enteritidis (307). Curli fimbriae are predominantly expressed in human and 

avian isolates between 20 °C and 37 °C. Cellulose expression was not frequently 

observed, and its expression was higher at 30 °C than at lower or higher temperatures.  

 

5.1.2 Detection of allelic variation of genes of th e ExPEC patho-gene 
pool.  
 

Host specificity may not only result from the presence or absence of certain 

virulence-associated genes or their strain-specific regulation. Differences in receptor 

recognition due to amino acid variation within the adhesin molecule may also contribute 
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to variation of the receptor binding ability (allelic variation, pathoadaptive mutations). 

The following fimbrial determinants (genes) of ExPEC strains were studied with regard 

to allelic variation: type 1 fimbriae (FimH), P fimbriae (Pap/PrfG), S adhesin family 

(SfaS/H and FocG/H), curli fimbriae (CsgA/D) and the Mat fimbriae (MatA/B). The 

amino acid sequences of these fimbrial subunits have been deduced from the relevant 

nucleotide sequences that were determined for the members of the COLIRISK strain 

collection. The amino acid sequences obtained were compared to the corresponding 

sequences of E. coli K-12 strain MG1655. For FimH, the adhesin of type 1-fimbriae, 

sequence variations have been observed at positions V27→A, S62→A, G66→C, 

N70→S, S78→N and G159→S. These amino acids changes have been identified to 

confer shifts in receptor specificity (295) and/or virulence (145). The sequence variation 

at position 62 is especially important for adhesiveness of meningitis-associated E. coli to 

collagen (261) and for binding of mono-mannose residues thus playing a role for 

extraintestinal infections. This amino acid exchange was only detected in the two human 

O18:K1 isolates, but not in any other human or avian isolate of the COLIRISK strain 

collection (see Figure 14). It can be speculated that the S62→A exchange may be 

involved in host specificity of human O18:K1 isolates. The other amino acid exchanges 

detected could not be correlated with the source of isolation or the serotype of the strains. 

 

 
Figure 14: Amino acid sequence variations of FimH among E. coli strains of the COLIRISK strain 
collection compared to E. coli K-12 strain MG1655. The substitutions are boxed. 
 

The allelic variation proteins encoded by the curli determinant is interesting, too. 

The level of sequence variation observed was very low in the case of the regulator protein 

CsgD (S109A) but higher for the curli adhesin CsgA (T61A; N110D; E112T). Further 

studies are required to analyse the impact of these allelic variations on the function of the 

MG1655   TQIFCHNDYPETITDYVTLQRGSAYGGVLSNFSGTVKYSGSSYPFPTTSETPRVVYNSRT 
IHE3034  TQIFCHNDYPETITDYVTLQRGAAYGGVLSSFSGTVKYNGSSYPFPTTSETPRVVYNSRT 
RS218    TQIFCHNDYPETITDYVTLQRGAAYGGVLSSFSGTVKYNGSSYPFPTTSETPRVVYNSRT 
BEN79    TQIFCHNDYPETITDYVTLQRGSAYGCVLSSFSGTVKYNGSSYPFPTTSETPRVVYNSRT 
BEN2908  TQIFCHNDYPETITDYVTLQRGSAYGGVLSSFSGTVKYNGSSYPFPTTSETPRVVYNSRT 
BEN374   TQIFCHNDYPETITDYVTLQRGSAYGGVLSSFSGTVKYNGSSYPFPTTSETPRVVYNSRT 
IHE3072  TQIFCHN DYPETITDYVTLQRGSAYGGVLSNFSGTVKYSGSSYPFPTTSETPRVVYNSRT 
789      TQIFCHNDYPETITDYVTLQRGSAYGGVLSNFSGTVKYSGSSYPFPTTSETPRVVYNSRT 
285      TQIFCHNDYPETITDYVTLQRGSAYGGVLSNFSGTVKYSGSSYPFPTTSETPRVVYNSRT 

62 70 78 66 
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encoded proteins. However, no correlation could be found in regards of the host, serotype 

and certain alteration with this amount of strain checked.  

 

 
MG1655       VLAIALVTVFTGMGVAQAADVTAQAVATWSATAKKDTTSKLVVTPLGSLAFQYAE  
RS218        VLAIALVTVFTGTGVAQAADVTAQAVATWSATAKKDTT SKLVVTPLGSLAFQYAE  
BEN79        VLAIALVTVFTGTGVAQAADVTAQAVATWSATAKKDTT SKLVVTPLGSLAFQYAE  
BEN374       VLAIAXVTVFTGTGVAQAADVTAQAVATWSATAKKDTTRKLVVTPLGSLAFQYAE  
IHE3034      VLAIALVTVFTGTGVAQAADVTAQAVATWSATAKKDTTSKLVVTPLGSLAFQYAE  
IHE3072      VLAIALVTVFTGTGVAQAADVTAQAVATWSATAKKDTTSKLVVTPLGSLAFQYAE  
BEN2908      VLAIALVTVFTGTGVAQAADVTAQAVATWSATAKKDTTSKLVVTPLGSLAFQYAE  
789          VLAIALVTVFTGMGVAQAADVTAQAVATWSATAKKDTT SKLVVTPLGSLAFQYAE  
285          VLAIALVTVFTGMGVAQAADVTAQAVATWSATAKKDTT SKLVVTPLGSLAFQYAE  
1772         VLAIALVTVFTGMGVAQAADVTAQAVATWSATAKKDTT SKLVVTPLGSLAFQYAE  

 
MG1655  GIKGFNSQKGLFDVAIEGDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGAAVEKT  
RS218   GIKGFNSQKGLFDVAIEGDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGATVEKT  
BEN79   GIKGFNSQKGLFDVAIEGDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGATVEKT  
BEN374  GIKGFNSQKGLFDVAIEGDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGATVEKT  
IHE3034 GIKGFNSQKGLFDVAIEGDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGAAVEKT  
IHE3072 GIKGFNSQKGLFDVAIEGDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGAAVEKT  
BEN2908 GIKGFNSQKGLFDVAIEGDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGAAVEKT  
789     GIKGFNSQKGLFDVATESDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGAAVEKT  
285     GIKGFNSQKGLFDVAIEGDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGAAVEKT  
1772    GIKGFNSQKGLFDVAIEGDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGAAVEKT  

 
Figure 15: Amino acid sequence variations of MatB among E. coli strains of the COLIRISK strain 
collection compared to E. coli K-12. The substitution positions are boxed (S21R; I53T; G55S; A93T. 
Mutation in the N-terminal signal: T-6M). 
 

Amino acid sequence alterations (see Figure 15) have also been detected for MatB 

(S21→R, I53→T, G55→S, A93→T). MatB exhibits a high amount of mutations which 

may also contribute to variation of the receptor binding ability (allelic variation or 

pathoadaptive mutations). But the receptor of Mat fimbriae is not yet identified to answer 

this question.  Nevertheless, no correlation could be found so far with regard to the host 

or its serotype.  

 

5.1.3 Biofilm formation on polyethylene  
  

Biofilm formation is, as well as invasion, considered a potential cause of recurrent 

and chronic infections enabling the bacteria to stay within the body and to escape the 

host’s immune system and antibiotic therapy.  

 

The COLIRISK strains were tested for their ability to form biofilm on inert plastic 

surfaces. A colorimetric quantification of biofilm formation (M63B1 medium, 37 °C) in 

21 

53 55 93 
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polyethylene microtiter plates has been carried out (Fig. 16). The strains differed in their 

ability to form biofilm on polyethylene. There was neither a clear correlation between 

human and avian E. coli isolates nor between certain serotypes and biofilm formation. 

 
Figure 16: Colorimetric determination of biofilm formation (M63B1 medium, 37 °C) in polyethylene 
microtiter plates. 
 

5.1.4 Motility tests 
 

Furthermore, motility tests have been performed to screen the COLIRISK strains 

for expression of flagella and for their motility (Table 13 and Figure 17). 

 

Table 13: Motility of the COLIRISK strains.  

Strain Origin Serotype Motility 

RS218 hu O18:K1 + 

IHE3034 hu O18:K1 ++ 

BEN79 av O18:K1:H7 ++ 

BEN374 av O18:K1:H7 ++ 

IHE3072 hu O2:K1:H5 + 

BEN2908 av O2:K1:H7 ++ 

1772 av O2:K1 ++ 

285 hu O78 - 

789 (AC/I) av O78 - 

The tests have been performed at 37 °C and 41 °C. 

 

According to these results, a clear correlation between the motility of the different 

ExPEC strains and human or avian origin does not exist. It is nevertheless interesting that 
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motility and/or flagella expression of both O78 strains was impaired. Genome sequences 

of these two strains indicate the integrity and functionality of the flagella gene clusters 

(Eliora Ron, personal communication).  

 
Figure 17:  Motility of the COLIRISK strains.  Soft agar plates (LB, 0.3% agar) were incubated at 37 
°C, for 12 h. UPEC strain 536 was used as a positive control. E. coli strain HB101∆fliA served as a 
negative control. 
 

5.1.5 Transcriptome comparison of human and avian E xPEC isolates 
following in vitro cultivation 
 

In order to assess whether human and avian O18:K1 isolates generally differ in 

gene expression and to screen for factors that may direct host specificity (infection of 

man or birds) the influence of growth temperature on transcription profiles of human and 

avian O18:K1 strains was analysed. These studies have been carried out with the strains 

IHE3034 (human origin) and BEN374 (avian origin) that have been grown at 37 °C 

(human body temperature) and 41 °C (avian body temperature). For transcriptome 

comparison, DNA micorarrays were used for competitive hybridisation with cy3- and 

cy5-labelled cDNA from total RNA extracts. These initial experiments revealed that gene 

expression in these strains differs at 37 °C and 41 °C (Table 14). 
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Table 14: Influence of human or avian body temperature on the transcriptome of E. coli strain 
 IHE3034 and BEN374.  

Repressed genes at 41 °C in 
IHE3034 and BEN374  
(70 candidates genes)  
 

Genes induced in strain  
IHE3034 at 41 °C  
(30 candidates genes) 
 

Genes induced at 41 °C in strain 
BEN374 
(30 candidates genes) 
 

fli  operon flagellar biosynthesis 
genes 
 
flg operon component of flagellar 
motor complex 
 
Chemotaxis genes (cheA, cheB, 
 fliZ, tar, cheZ, aer, motB…) 
 
b1409       ynbB putative 
phosphatidate 
                 cytidyltransferase 
 
nanA        N-acetylneuraminate lyase 
 
b0805       putative outer membrane  
                 receptor for iron transport 
 
nlp            transcriptional regulator 

codB  cytosine transporter 
 
b1498  putative sulfatase 
 
yedU  heat shock protein Hsp31 
 
b1171  hypothetical protein 
 
hdhA  7-α-hydroxysteroid  
              dehydrogenase 
 
yfeA  predicted diguanylate  
              cyclase 
 
yggB  mechanosensitive ion  
              channel 
 
pyrI  aspartate  
              carbamoyltransferase 
 
pyrL  Pyr operon leader peptide 
 
purK      N5-carboxyaminoimidazole 
              ribonucleotide synthase 
 
b1497    putative enzyme 
 
napD     undefined role in the post- 
              translational assembly of 
              a functiona NapAl 
 
ORF55  Putative transposase 

hdeB             acid resistance protein 
 
yedU         heat shock protein Hsp31 
 
yggB         mechanosensitive ion  
                      channel  
 
cdtA, B, C     cytolethal distending toxin  
                      subunits 
cadA          subunit of lysine  
                       decarboxylase 
 
marA          multiple antibiotic  
                       resistance protein 
 
cysA, D ,J, H, K, W, I, N   : 
                       sulfate and thiosulfate 
                      transport 
 
hdeA             HdeA dimer, inactive form  
                     of acid-resistance protein, 
                      possible chaperone 
 
glnB              Protein PII plays a critical  
                      role in the regulation of  
                      nitrogen metabolism 

Genes with significantly induced transcript levels at 41 °C relative to 37 °C were determined by 
competitive DNA array hybridization. The genes presented in Table 14 have an expression ratio ≥2 and a 
p-value ≤ 0.05. The data are representative of a least 4 experiments for each strain with dye-switch. 
 

 The hierarchical cluster analysis of the global transcription profiles of human 

O18:K1 isolate IHE3034 and avian O18:K1 strain BEN374 indicated that the two strains 

exhibit only a few differences in their transcription profiles (figure 18). The results of the 

transcriptome analysis in response to avian and human body temperature (41 °C vs. 37 

°C) revealed a common gene set which was repressed at 41 °C including the flagellar and 

chemotaxis operon in both strains. The majority of genes induced at the higher 
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temperature differ between the human and avian isolates. Their contribution to host 

specificity needs to be further analysed. 

 

1 21 2

 
Figure 18: Cluster analysis of the transcriptome comparison of E. coli strains IHE3034 and BEN374 at 
37 °C vs. 41 °C.  The column 1 represent the avian strain BEN374 and the column 2 represent the human strain 
IHE3034. The hierarchical clustering was performed with the EMMA2.0 software, (defaults: mean, euclidian, 
p=0.01).  

 

Some genes were specifically up or down regulated in the two strains. About the 

specific up regulated genes in BEN374 (see Table 15), a majority of the encoded protein 

are involved in metabolism (katE, betB, deoA, deoC, galT). The genes betI and araC 

code for regulatory proteins. Genes coding for conserved proteins with unknown function 

were present, too (b0833 and ybiI). Transcript levels of genes coding for the acid 

resistance protein msyB (332) and the starvation protein slp involved in acid resistance 

(331) were upregulated, too. 
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Table 15: Most up-regulated genes in APEC strain BEN374 at 41 °C versus 37 °C (p≤≤≤≤ 0.05) 

Probe designation SignificanceTest1535 
:P Dataset p value 

M1 mean 
(log2) 

M1 sd   

ykgE 0.00543993 1.26974924 0.35086892 
araC 0.0047973 1.54955991 0.40986838 
betI 6.58E-05 1.25933291 0.07818977 
cysJ 0.00888352 2.59508298 0.85196114 
cysH 0.04874303 1.71133578 1.06435617 
hdeB 0.00432877 1.04748358 0.26736674 
cysD 0.00638976 3.68538456 1.07727588 
cysA 0.01873467 2.18591424 0.93977641 
ykgF 0.00752802 1.07172367 0.33184566 
katE 0.00050232 1.02019865 0.12517021 
cysK 0.00885973 2.15558396 0.70700166 
cysW 0.02311901 1.37360156 0.63866395 
cysI 0.01922881 2.87463572 1.2478343 
cysN 0.02931913 1.84116217 0.93684437 
ybiI 0.02354102 1.17887444 0.55186429 
slp 0.00089129 1.16061294 0.17275505 
msyB 0.00078219 1.08581853 0.15465298 
deoA 0.00096356 1.28919875 0.19701739 
cdtB 0.00034247 1.30049663 0.14029228 
ME_EO_28C_orf8_1 0.00034578 1.23028144 0.13314663 
ME_EO_28C_orf7_1 0.00071355 1.21381028 0.16760954 
cdtC 0.00048255 1.27121131 0.15387641 
deoC 0.00061479 1.32109817 0.17349344 
cdtA 0.00141583 1.18962525 0.20710662 
ME_EO_28C_orf9_1 0.00059416 1.15523527 0.14997762 
betB 0.00036858 1.25641374 0.13892192 
galT 0.00185744 1.19844404 0.22881511 
b0833 0.00212187 1.01613398 0.20301395 
sd, standard deviation 
 

Around twelve genes were specifically down-regulated in E. coli BEN374 at 41 °C (see 

Table 16). This group of genes codes for conserved and predicted proteins (YhcH, b1773, 

b1760, b1742). Another gene, map, was strongly down-regulated in BEN374. The map 

gene encoding a methionine aminopeptidase is essential for growth in E. coli (55). The 

csgC was down regulated, but in contrast to the curli genes csgAB, it has its own 

promoter (EcoCyc; http://biocyc.org/) and its inactivation doesn’t affect curli production 

(130). The other repressed genes (ydbU, malE, yhcI, ycgC) code for proteins involved in 

different metabolism pathways. 
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Table 16: Most down-regulated genes in APEC strain BEN374 at 41 °C versus 37 °C (p≤≤≤≤ 0.05) 

Probe designation SignificanceTest1535 :P   
Dataset: p value 

M1 mean 
(log2) 

M1 sd   

map 0.00016849 -1.01514352 0.08633757 
ydbU 0.00083735 -1.33476107 0.19453245 
tap 0.00166095 -1.19696049 0.21999943 
yhcI 0.04411655 -1.75815417 1.05019683 
yhcH 0.03507661 -1.69380326 0.92384214 
b1773 0.00511914 -1.19631243 0.32365422 
malE 0.01985466 -1.33125959 0.58478154 
cheW 0.00022486 -1.68610959 0.15795702 
b1742 0.00270855 -1.13293905 0.24605796 
cheR 0.00080308 -1.2037265 0.17297841 
ycgC 0.00849791 -1.04375095 0.33731571 
b1760 0.00107619 -1.15213419 0.18277749 
sd, standard deviation 
 

IHE3034 possesses specific genes which are up or down regulated. Only a few genes 

were specifically up-regulated in Human ExPEC strain IHE3034 at 41 °C (see Table 17).  

 

Table 17: Most up-regulated genes of human ExPEC strain IHE3034 at 41 °C versus 37 °C (p≤≤≤≤ 0.05) 

Probe 
designation 

SignificanceTest1535 :P  
Dataset: p value 

M1 mean M1 sd   

codB 0.01173818 1.40769138 0.71622353 
b1498 0.00608196 1.55551794 0.65611535 
b1171 0.00402307 1.20381341 0.45301183 
yfeA 0.00065681 1.1317387 0.26347573 
yggB 0.00097419 1.11584155 0.28780917 
pyrI 0.01987001 1.46992707 0.87545328 
pyrL 0.04121575 1.48148788 1.11604763 
purK 0.03273331 1.09608159 0.76463036 
b1497 0.0034056 1.27501449 0.45852511 
napD 0.00089112 1.18312757 0.29815342 
sd, standard deviation 

 

 Transcription of two genes involved in transport (codB, yggB) was affected. This 

group of genes also included some genes involved in sulfate such as a putative sulfatase 

gene (b1498) and a gene coding for a predicted anaerobic sulfatase maturation enzyme, 
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predicted DNA-binding transcriptional regulator b1497. These two genes may belong to 

the same transcriptional unit (data from http://biocyc.org/).  

 

 The specificically down-regulated genes in strain IHE3034 (see Table 18) 

included genes involved in motility and chemotaxism. fliQ, fliF  were specifically down-

regulated in IHE3034 and absent among the down-regulated genes of BEN374. 

 

Table 18: Most down-regulated genes in human ExPEC strain IHE3034 at 41 °C versus 37 °C (p≤≤≤≤ 

0.05) 

Probe designation SignificanceTest1535 :P  
Dataset:p value  

M1 mean  M1 sd   

fes 0.00386284563881326 -1.15266614029998 0.428977845155756 
b1966 0.0011976961046789 -1.31821748074826 0.358886788469632 
fepA 0.00343193512200591 -1.37306500084017 0.494819591040449 
b1409 0.00129111920298342 -1.0197049508122 0.283144298498221 
fliQ 7.18424993379995e-06 -1.29324159066566 0.0958330880869793 
argT 0.0211219508414274 -1.17853621945433 0.715252597945729 
nanT 0.0236263762774541 -1.22940835681496 0.772616122002189 
fliF 0.000883922212047538 -1.20917012525715 0.304073075829504 
oppD 0.00592653412209246 -1.01352954923035 0.424429545063899 
ompC 0.000771816420381955 -1.60642288303423 0.389968612456984 
ilvE 0.0193207355291711 -1.00771834469349 0.595034788187895 
yhaO 3.19243761481044e-05 -1.06051894981428 0.114332929074428 
yeeY 0.0195227757218422 -1.14631235312373 0.679032405978833 
proX 0.00523348380164017 -1.16043885611988 0.469449233522207 
cstA 0.0321119873115126 -1.20179779833286 0.833139514211038 
b0805 0.00123427396838618 -1.55897805360676 0.427797382562192 
b2862 0.00647610328459191 -1.02491540129356 0.439966404129324 
yjiY 0.0378351616725445 -1.50185173943065 1.09918639158887 
tsx 0.020406266348883 -1.00639965516503 0.604318139550193 
cspA 0.0250851851670845 -1.33665228715835 0.855997014867116 
cspE 0.0417738493782889 -1.0758194098531 0.814162981296411 
ilvC 0.00317505182314715 -1.00371315378675 0.354169404906301 
IHE3034_1_CDS 
89_0_0 

0.0379643428356921 -1.05514668224678 0.773131167390603 

dgoA 0.0259397558264108 -1.4510698966484 0.939174554840198 
b2809 0.00783762772373267 -1.51349240492987 0.685592747607731 
fliY 0.00340502298195746 -1.15196255182291 0.414253775930393 
yagU 0.0462922159546442 -1.01675962204753 0.797116147299299 
sd, standard deviation 
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 The fact that these genes have not been detected to be deregulated in the avian 

strain may be only due to the difference of quality in experiments and thus in statistics in 

case of human strain IHE3034. Additionally, some of these genes may be absent from the 

genome of strain BEN374 and could thus not be detected upon transcriptome 

comparison. A significant amount of genes involved in transport were specifically down-

regulated (fepA, argT, nanT, oppD, ompC, yhaO, proX, cstA, tsx). Putative transporter or 

receptor were down-regulated, too (b1966, b0805). The cspA and cspE genes coding for 

regulator and the predicted regulator yeeY, were down regulated in this strain. Other 

genes are part of different metabolism pathways (fes, ilvE, ilvC dgoA). Their involvement 

in pathogenicity at 37 °C or 41°C should be analysed. yagU, an inner membrane protein 

that contributes to acid resistance was down-regulated.  

 

 A difference in some genes specifically affected in the human and avian strain has 

been observed. These genes code for regulators or putative regulators and predominantly 

for transporters and/or membrane receptors. Whether these differences, in gene 

expression, are due to pathotype-specific regulatory responses in the human or avian 

strain background, respectively or whether they result from their individual backgrounds, 

remains to be investigated.  

 

5.1.6 Confirmation of microarray data by real-time RT-PCR 
 
 To confirm the microarray data, the transcript level of interesting candidate genes 

of each strain was quantified by real-time RT-PCR (see figure 19). The reduced 

transcription of selected genes representative of components of the flagellar apparatus 

and chemotaxis, i.e. cheY, cheZ, aer, tar, fliA and fliC at 41 °C was confirmed by real-

time RT-PCR. This response to temperature elevation is well known (2, 201). Other 

genes of interest were analysed as well. The hchA (or yedU) gene which encodes the heat 

shock protein YedU (or Hsp31) was the only heat shock gene found to be induced upon 

temperature increase from 37 °C to 41 °C in the human and the avian strain. The pyrI 

gene was upregulated, too, under this condition in the human strain only. In case of the 

avian strain BEN374, hdeA and hdeB, which play a role in acid resistance, were 
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upregulated 8- and 10-fold, respectively. The gene cadA was up-regulated only in the 

avian strain at 41 °C. 
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Figure 19: Validation of a set of temperature-regulated genes in E. coli IHE3034 A) and E. coli 
BEN374 B) by qRT-PCR. To confirm the microarray-based transcriptome data for IHE3034 and BEN374, 
both strains were grown in LB medium at 37 °C and 41 °C, respectively. Bacteria were harvested for RNA 
preparation at OD600 0.6. Transcript levels of the indicated genes were quantified by qRT-PCR using equal 
quantities of RNA samples. The data was normalized using rRNA frr , as a reference, and graphed as the 
ratio of transcript levels at 37 °C vs 41 °C. Each value is representative of at least three different 
experiments with a p value < 0.05.   
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 All flagella genes are down-regulated at 41 °C. Genes coding for factors involved 

in chemotaxis signaling (aer, tar, cheY, cheZ) were downregulated by factor 14, 50, 33, 

and 14, respectively. No difference in transcript levels could be seen for flhDC, indicating 

that the de-regulation of the flagella and chemotaxis genes was independent of the FlhDC 

master regulator. The fliA and fliC genes which are directly under the control of the 

FlhDC complex were downregulated by factor 16 and 62, respectively. 

 

 To assess if these genes are involved in virulence, in vivo competition assays were 

performed in 3-5 weeks old chickens (P. Germon, INRA Nouzilly). The wild type strain 

BEN374 and its isogenic mutant were used for infection of chickens by inoculation of the 

airsac. Under this condition, differences in virulence between the wild type BEN374 and 

the mutant BEN374∆hchA could not be observed.  

 

 Furthermore, the expression of additional candidate genes was analyzed by real-

time RT-PCR in other APEC strains grown at 37 °C and 41 °C. Serotype O2:K1 isolates 

of human (IHE3072) or avian (BEN2908) origins were chosen. In order to determine if 

the overexpression of the cystein operon cysADJHKWN, in E. coli BEN374 was strain-

specific or pathotype-specific, cysW and cysK transcript levels were investigated in 

human isolate IHE3034 (see Figure 20). 
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Figure 20: Relative quantification of the cysK and cysW transcript levels in IHE3034 at 41 °C versus 
37 °C. Bacteria were harvested for RNA preparation at OD600=0.6. Transcript levels of the indicated genes 
were quantified by qRT-PCR using equal quantities of RNA samples. The data was normalized using RNA 
of frr  as a reference, and graphed as the ratio of transcript levels at 37 °C vs 41 °C. Each value is 
representative of at least three different experiments with a p value < 0.05.  
 

 The cysW transcript levels differed not significantly at 37 °C and 41 °C, 

respectively. Based on the results obtained for these two strains, we can see that there is 
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no difference of expression in the ExPEC strains above. The results obtained in BEN374 

seem to be strain-specific and not linked to the avian or human origin. 

 
 
 Similarly, expression of the cadA gene was studied. Yet, as in the avian O18:K1 

isolate BEN374, the cadA gene was found to be induced in E. coli strains IHE3072 and 

BEN2908 at 37 °C relative to 41 °C as well. However, if one applies a cut off-factor of 2, 

the expression level in the human isolate IHE3072 was at the limit of this cut off. In 

contrast, in E. coli BEN2908, cadA was overexpressed at least 10-fold, five times more 

than in the human ExPEC strain. 

 

 To assess if this difference in increased cadA transcription was strain-specific or 

not, cadA transcript levels were tested in other ExPEC strains of human and avian origin 

by real-time RT-PCR. Of the six strains tested (representing one human and one 

corresponding avian isolate of three different serotypes), all of them exhibited an 

increased cadA transcript level at 41 °C relative to 37 °C (Figure 21).  
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Figure 21: Analysis of cadA expression in avian and human ExPEC isolates at 37 °C vs. 42 °C. Strains 
were grown in LB medium at 37 °C and 41 °C, respectively. Bacteria were harvested for RNA preparation 
at OD600 0.6. Transcript levels of the indicated genes were quantified by qRT-PCR using equal quantities of 
RNA samples. The data was normalized using the frr  as a reference, and graphed as the ratio of transcript 
levels at 37 °C vs 41 °C. Each value is representative of three different experiments with a p value < 0.05. 
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 With one exception (avian O78 isolate AC/1), the amount of cadA transcripts was 

always higher in avian isolates compared to human strains. Whether this increased 

induction of cadA transcription upon at 41 °C is biologically relevant, requires further 

investigation. 

 

hdeA 789 hdeA 285

hdeB 285

hdeA
IHE3034

hdeB
IHE3034

hdeA
BEN2908

hdeB
BEN2908

hdeA
IHE3072

hdeB
IHE3072

0.1

1

10

R
el

at
iv

e 
ex

pr
es

si
on

hdeB 789

*

* * *

*

hdeA 789 hdeA 285

hdeB 285

hdeA
IHE3034

hdeB
IHE3034

hdeA
BEN2908

hdeB
BEN2908

hdeA
IHE3072

hdeB
IHE3072

0.1

1

10

R
el

at
iv

e 
ex

pr
es

si
on

hdeB 789

*

* * *

*

hdeA 789 hdeA 285

hdeB 285

hdeA
IHE3034

hdeB
IHE3034

hdeA
BEN2908

hdeB
BEN2908

hdeA
IHE3072

hdeB
IHE3072

0.1

1

10

R
el

at
iv

e 
ex

pr
es

si
on

hdeB 789

*

* * *

*

 
Figure 22: Analysis of hdeA and hdeB expression in avian and human ExPEC isolates at 37 °C vs. 42 
°C. Strains were grown in LB medium at 37 °C and 41 °C, respectively. Bacteria were harvested for RNA 
preparation at OD600=0.6. Transcript levels of the indicated genes were quantified by qRT-PCR using equal 
quantities of RNA samples. The data was normalized using the frr  gene transcript as a reference, and 
graphed as the ratio of transcript levels at 37 °C vs 41 °C. Each value is representative of three different 
experiments. The * represents data with a p value < 0.05. 
 

The hdeA and hdeB transcript levels were also checked in IHE3034 due to their 

role in acid resistance, despite their absence among the list of up-regulated genes 

identified by the microarray hybridizations (see appendix) due to its role for acid 

resistance. Surprisingly, the hdeA and hdeB genes were also up-regulated in IHE3034 at 

41 °C. A significant upregulation of hdeA transcript levels in BEN374 upon growth at 41 

°C could not be significantly confirmed by real-time RT PCR in all avian APEC (see 

Figure 22).  
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5.2: Analysis of Mat fimbriae expression in newborn 
meningitis E. coli isolate IHE3034 
 

5.2.1 MatA expression and in silico promotor studies 
 

To analyse the molecular mechanism of serotype-specific expression of Mat 

fimbriae which are only expressed in O18:K1 strains at 20 °C in LB medium, regulation 

of matA expression was studied. The matA gene codes for a regulatory protein which is 

required for expression of matB. Northern blot analysis of matA transcripts was not 

successful so far. The extremely low amount of matA transcripts may account for these 

difficulties. Alternatively, first attempts to quantify matA transcript levels by Real-Time 

RT-PCR indicated that transcript levels are higher at low growth temperatures, which 

confirms the phenotypic observation that Mat fimbriae are produced at 20 °C. 

 

The putative promoter region of matA in strain IHE3034 was also investigated 

and compared with the corresponding DNA stretch of K-12 strain MG1655. Although the 

DNA sequence of the matA upstream region of these strains is not identical, three 

different putative promoters which could direct matA transcription could be detected by 

in silico analysis (see figure 23). 
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Figure 23: In silico analysis of matA promoter with Bprom (softberry software) in A) MG1655 and B) 
IHE3034. The putative promoters found in the CDS of matA were excluded from the figures. Putative TF 
binding sites for each promoter in IHE3034: 1- RpoS17, 2- Fis, PhoB, RpoD17, Fis, LexA, 3- RpoD16, 
ArgR, ArcA; in MG1655: 1- RpoD16 2- no such sites for this promoter 3- RpoD16, ArgR , ArcA. 
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The putative promoters 1, 2 and 3 are highly similar between the two strains, but 

minor differences are present due to TF binding sites, nucleotide sequences or position 

(due to gaps between the promoters). Only the -10 and -35 signals of putative promoter 1 

are identical between the MG1655 and IHE3034 strains (but not at the same distance of 

the CDS), but not for the putative TF binding sites. Promoter 2 does not possess known 

putative TF binding sites in case of strain MG1655. For more details, see appendix. 

 

A transcript covering the region between putative promoter 2 and matA, but not 

between putative promoter 3 and matA could be amplified by RT-PCR. The matA 

promoter region of strain IHE3034 covering the matA gene and its upstream region 

including putative promoters 1, 2 and 3 was subcloned into the high copy vector pGEM-

Teasy.  

 
Figure 24: Northern Blot analysis with a promoter 2-specific probe and the following E. coli strains: 
1: IHE3034-pGEMTmatA and intergenic region 20°C, 2: IHE3034-pGEMT 20°C, 3: IHE3034-
pGEMT matA and intergenic region 37°C, 4: IHE3034-pGEMT 37°C. 
 

Northern blot analysis allowed the detection of at least three transcripts that 

comprise at least a part of the upstream region (see Figure 24). The Northern blot also 

confirmed that transcription of matA and/or of this upstream region was stronger at 20 °C 

than at 37°C. 
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5.2.2 Transcriptional organisation of the mat operon 
 

Poutu et al. demonstrated that matB and matC were co-transcribed, but they 

couldn’t prove that this was also the case with matA. A bioinformatical analysis did not 

reveal marked transcription start points for matB in the upstream region or in the matA 

gene. In addition, previous studies to determine the transcriptional start of matB by 

primer extension resulted in the sequences that ended upstream of the matA gene (data 

not show). Northern blots with a matA probe revealed a transcript of more than 2 kb in 

size, which corresponds not only to the size of the matA gene. 

 

In order to characterise the transcriptional organization of mat operon, RT-PCRs 

were performed with RNA retrieved from bacterial cultures grown under conditions 

when Mat fimbriae were expressed. After growth in LB medium at 20 °C, to an OD600 of 

0.6, total RNA was isolated and purified to be use in reverse transcription. To determine 

the transcription units of the mat gene cluster, the coding sequence was subjected to in 

silico analyses and RT-PCRs were performed. The results obtained demonstrate that the 

mat determinant is divided into two putative transcriptional units: the genes matABCD 

are located in the same reading frame, and also the matEF genes are located in another 

reading frame. The results are summarised in Figure 25. 

 

matA matB matC matD matE matFmatA matB matC matD matE matFmatA matB matC matD matE matF

 
Figure 25: Transcriptional organisation of the Mat fimbriae gene cluster of E. coli strain IHE3034. 
This scheme represents the results of RT-PCR experiments performed on the mat operon of E. coli 
IHE3034. No RT-PCR products could be amplified between matD and matE. The experiments were 
performed with 1 or 2 µg of RNA extracted from a culture grown at 20 °C in LB medium and 220 rpm, 
until it reached the mid-log growth phase. 
 

The region between matA to matD could be amplified from mRNA and the 

amplified fragment size of the PCR products correspond to the theoretical expected size 

between matA and matD i.e. including the matB and matC sizes. It was the same for the 

product between matA and matB, matA and matC, and, finally, between matE and matF. 

These results confirm the in silico analysis of the matABCDEF DNA sequence. 
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5.2.3 Analysis of matA transcription 
 
 To determine the transcription start point of matA, primer extension analysis was 

performed. In view of the results (smear due to degradation of the mat transcripts), we 

used another method to determine the transcriptional start, i.e. by 5’-RACE. For this 

purpose, RNA was extracted from strain IHE3034 grown to mid-log phase at 20 °C in LB 

medium with agitation (220 rpm). The results are present and summarize in the figure 26. 
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Figure 26: Transcriptional start point of matA in E. coli strains IHE3034 and MG1655. The 
transcriptional starts detected in both, E. coli strains IHE3034 and MG1655 are indicated in blue. Specific 
transcriptional start points only detected in one strain are shown in black. These data result from at least 
three independent experiments for each strain. Variable start positions of DNA sequence obtained from the 
5’ RACE analysis are indicated by points.  
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In strain IHE3034, three transcription start points were detected in a region of 

about 300 bp upstream of matA. Whereas the first and second start points could be clearly 

identified, the exact start of the third one could not be unambiguously determined, 

probably because of the instability of the extreme 5’-end of the mRNA. 

 

In K-12 strain MG1655, three transcription start points exist as well, which are 

relatively closely located to each other (in a region of about 100 bp upstream of matA). 

Again, the first two start sites could be exactly identified, but not the third one which 

exhibited marked instability of its extreme 5’-end. The second transcriptional start point 

of matA was identical to the first one of strain IHE3034. Furthermore, the third matA 

transcriptional start, although it could not be exactly identified, was found to be almost 

identical to the second transcriptional start point of matA in strain IHE3034. The missing 

5’-T in the 5’-matA transcript end of strain MG1655 relative to E. coli IHE3034 may be 

explained with less DNA sequences obtained with the 5’-RACE in case of the K-12 strain 

than for E. coli IHE3034. 

 

5.2.4 Effect of H-NS on mat gene expression 
  

This work was done in collaboration with T. Lehti (Biocentre, University of 

Helsinki). The strain IHE3034 hns was contructed by T. Lethi. To identify activators that 

could affect Mat fimbriae expression, Timo Lehti screened a Tn5 insertion library in E. 

coli IHE3034 to find mutants which had lost temperature-dependent expression of Mat 

fimbriae. Seven mutants were found in which the transposon was inserted at the identical 

site in hns. All these mutants expressed Mat fimbriae at 37 °C, unlike the wt IHE3034. 

For complementation, the hns gene of E. coli IHE3034 was cloned with its upstream 

region into pBR322. 

 

As H-NS represses several virulence functions induced by environmental signals 

through action of specific activators and our hypothesis is that MatA functions to induce 

Mat fimbria expression repressed by H-NS. To understand the differential expression of 

Mat fimbriae in E. coli IHE3034 and IHE3034 hns as well as the mechanism by which 
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MatA and H-NS regulate Mat fimbriae expression, we quantified transcript levels of the 

mat genes by real-time RT-PCR. Strains IHE3034 and IHE3034 hns were grown at 20 °C 

and 37 °C in LB medium to mid-log growth phase and the RNA was extracted. Real-time 

RT-PCR analysis revealed that transcript levels of all the genes of the mat determinant 

were up-regulated in the hns mutant relative to the wild type (see Figure 27). 
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Figure 27: Comparison of transcript levels of the different mat genes in E. coli IHE3034 hns relative 
to its wild type strain at 20 °C and 37 °C. The real-time RT-PCR experiments were performed in the 
strain IHE3034 hns::Tn5 and wild type strain IHE3034, in LB medium under shaking conditions (220 rpm). 
The figure A represents the relative expression at 37 °C, when Mat fimbriae are not expressed in wild type 
strain IHE3034. Figure B represents the results obtained at 20 °C, when Mat fimbriae are also expressed in 
strain IHE3034. The data depicted represent the mean values of at least three independent experiments, p ≤ 
0.05. 
 

These data suggest that H-NS represses expression of Mat fimbriae at 20 °C and 

37 °C. At 20 ºC, Mat fimbriae were strongly expressed in strain IHE3034 hns in the 

presence of matA. This was also observed at 37 ºC. Obviously, Mat fimbria expression is 

regulated by hns independently of the temperature-dependent mechanism which favours 

Mat fimbriae production at low temperatures. It was concluded that at 20 ºC MatA 
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functions as an H-NS antagonist and at 37 ºC counteracts repression by an unknown 

mechanism. H-NS represses gene expression by binding upstream and/or downstream of 

promoter regions hence hindering RNA polymerase function.  

 

5.2.5 Transcriptome comparison of E. coli IHE3034 and its matA 
mutant 
 

Since studies on the MatA regulator and its potentials target sites have not been 

performed, a transcriptome analysis was conducted between IHE3034 and its isogenic 

mutant IHE3034 matA-H179P, which does not express Mat fimbriae. The transcriptome 

analysis allowed us to screen global transcript levels in strain IHE3034 and its matA 

mutant. The conditions under which the transcriptome analysis were performed allowed 

Mat fimbriae expression (growth in LB medium at 20 °C in a shaking culture at 200 rpm 

until the exponential phase has been reached). Transcriptional profiling was performed 

using custom made E. coli microarrays (Operon). At least four independent microarray 

hybridizations for each condition tested were performed, including a dye-switch. The 

hybridization was carried out at 42 °C for 20 hours. Each experiment was performed with 

RNA obtained from independent bacterial cultures.  

 

All data (matA mutant vs. wild type) were therefore pooled, and after statistical 

analysis of the four independent experiments, only few genes were pertinently de-

regulated. These repressed genes belonged to the same operon of the mat gene cluster 

including matA, matB, matC and matD. Other genes with significant MatA-dependent 

transcription could not be identified. MatA seems only to be the transcriptional activator 

of these four genes. We can see an autoregulation effect of matA, due to the fact the gene 

is still expressed in the mutant but not able to bind on DNA. Interestingly, matE and 

matF, which are on different transcripts, are not regulated by MatA.  
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Figure 28: Comparison of transcript levels of the different mat genes and cysW in E. coli IHE matA-
H179P relative to its wild type strain at 20 °C and 37 °C. The real-time RT-PCR experiments were 
performed in LB medium, grown under shaking conditions (220 rpm) until mid-log growth phase. The data 
depicted represent the mean values of at least three independent experiments, p ≤ 0.05. 
 

These data were confirmed by real-time RT-PCR experiments (see Figure 28) and 

thus proved the role of MatA as an activator of the Mat fimbriae expression, precisely on 

matA, matB, matC and matD. But in case of cysW, this gene appeared to be down-

regulated. 

 

5.2.6 Sequence analysis of matA and matB 
 

The gene cluster coding for Mat fimbriae is widely distributed among pathogenic 

and non-pathogenic E. coli strains. To verify, if like in case of other fimbrial 

determinants, amino acid sequence variability may be detected in case of the putative 

adhesin subunit of Mat fimbriae, the MatB protein sequence was compared among the 

strains of the COLIRISK strain collection. The matB gene of the individual strains tested 

displayed several variable nucleotide positions (see appendix). When the deduced amino 

acid sequences were compared (see Figure 29), allelic variation of this adhesin could be 

observed. Unfortunately, in the absence of a known interaction partner of the MatB 

protein, it is difficult to analyze the effect of these variations on the secondary structure 

of MatB which may affect this protein’s receptor specificity.  
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Figure 29: Amino acid sequence of the MatB protein in the E. coli strains of the COLIRISK strain 
collection. Allelic variations of the MatB protein in the different E. coli strains are boxed (S21R; I53T; 
G55S; A93T; S136T). The substitution positions are boxed (S21R; I53T; G55S; A93T. Mutation in the N-
terminal signal: T-6M). 
 

The alignment of all MatB protein sequences from the COLIRISK strain 

collection displays some variability in the amino acid sequence. Their effect on the 

binding must be characterized in the future. 

 

With regard to the specific conditions of Mat fimbriae expression, the matA 

nucleotide sequence and the MatA protein sequence were also analyzed (see Figure 30).  

In the entire protein sequence, seven amino acid variations could be detected in this 

regulatory protein.  
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Figure 30: Amino acid sequence of the MatA protein in the E. coli strains of the COLIRISK strain 
collection. 
 

The protein MatA is encoded by the first gene of the mat determinant. The MatA 

sequence comprises 196 amino acids, lacks a detectable signal sequence, and contains 

between the residues 125 to 195 a predicted helix-turn-helix DNA-binding motif similar 

to the consensus pattern in the LuxR family of regulatory protein. Allelic variations 

between the different isolates of the COLIRISK collection (S5N, S67N, S72N, V128A) 

and four amino acids exchanges in the helix-turn-helix DNA-binding motif (V128A , 

T146M, Q161L, Q196P) are boxed. The alignment of all MatA regulator protein 

sequences from the COLIRISK strain collection displays some variability in the amino 

acid sequence. Their effect on the Mat fimbriae expression must be characterized in the 

future. 
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5.2.7 Biofilm formation 
 

The ability of bacterial cells to bind to abiotic surfaces, the surface of eukaryotic 

cells, as well as to express specific extracellular matrix substances, can result in the 

formation of multicellular bacterial communities (biofilm). One prerequisite for the 

formation of biofilm is direct cell-to-cell interaction which needs expression of definite 

factors - fimbrial and non-fimbrial adhesins, surface proteins, and extracellular matrix 

polymers (314). The expression of type 1- and curli fimbriae is known to contribute to the 

ability of E. coli to form biofilm, as well as cellulose biosynthesis, flagella, colanic acid 

and Ag43 expression (69, 102, 132, 284, 370). When one or more of these factors are 

expressed, bacteria tend to aggregate and form complex multicellular communities. 

 

For strain IHE3034, a strong biofilm formation could be observed at low 

temperature (less than 30 °C) in LB or minimal medium, but not at 37 °C (see Figure 31). 

As Mat fimbriae expression occurs under the same conditions under which biofilms are 

formed, it has been investigated wether Mat fimbriae expression may contribute to 

biofilm formation. 

Biofilm test

0

2

4

6

8

10

12

14

LB 20°C M63 20°C LB 37°C M63 37°C

O
D

 5
80

nm

Ctrl (medium)

ABU38

IHE3034 Rif

IHE3034 matA-H179P

MG1655

MG1655 ∆matA

Biofilm test

0

2

4

6

8

10

12

14

LB 20°C M63 20°C LB 37°C M63 37°C

O
D

 5
80

nm

Ctrl (medium)

ABU38

IHE3034 Rif

IHE3034 matA-H179P

MG1655

MG1655 ∆matA

 
Figure 31: Mat fimbriae contribute to biofilm forma tion of E. coli strain IHE3034. Biofilm formation 
was tested at 20 °C and 37 °C in LB and M63 medium in microtiter plates. Strong biofilm formation 
occurred at 20 °C due to the presence of Mat fimbriae in E. coli IHE3034. ABU strain 38 was used as a 
positive control, and a well only filled with medium served as a negative control. The data depicted 
represent the mean values of at least three independent experiments, p ≤ 0.05. 
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In order to identify whether Mat fimbriae were involved in biofilm formation, 

biofilm tests were performed in PVC 96-well plates at 20 °C for 48 h in LB and M63 

medium. At 37 °C, biofilm formation was measured after 24 hours of growth. In this 

experiment, we used the strain IHE3034, its isogenic mutant IHE3034 matA-H179P, the 

mutant deleted for matBCDEF (IHE3034 ∆matBF) which lacks the Mat fimbriae 

structural genes and the corresponding complemented mutants. The data presented in 

figure 32 clearly indicate a correlation between the presence of the functional mat gene 

cluster and biofilm formation. It was also demonstrated that only the Mat fimbrial 

organelle is involved in the biofilm formation. This is one of the first biologically 

relevant functions of this fimbrial type which could be clearly defined.  
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Figure 32: Analysis of the impact of MatA and the Mat fimbriae on biofilm formation of E. coli 
strain IHE3034. Biofilm test were performed at 20 °C in LB and M63 medium. Strong biofilm formation 
occurred at 20 °C in the presence of functional Mat fimbriae in IHE3034. The strain IHE3034 ∆matBF 
expressed MatA but not the Mat fimbrial organelle. The ABU strain 38 was used as a positive control and a 
well only filled with medium served as a negative control. The data depicted represent the mean values of 
at least three independent experiments, p ≤ 0.05. 
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5.2.8 Phenotypic Analysis of E. coli strain IHE3034 and its Mat 
fimbriae mutant 
 
The phenotypes of the matA mutant of E. coli strain IHE3034 were tested by classical 

physiological assays for typical virulence traits of extraintestinal pathogenic E. coli. In 

case of type 1 fimbriae (fim), P-fimbriae and S-fimbriae (sfa), their expression was not 

affected in the matA mutant. This supported the microarray results. Other virulence 

characteristics like haemolytic activity, or iron uptake have been checked. These traits 

were, if present, not affected in E. coli IHE3034 by the inactivation of MatA or affected 

by growth temperature. 

 

5.2.8.1 Motility and chemotaxis 
 

Biofilm formation and motility are often linked or interdependent. Accordingly, 

the expression of genes involved in motility and chemotaxis was analyzed by swimming 

tests on LB agar plates at 20 °C. The strain IHE3034 and its isogenic mutant IHE3034 

matA-H179P were compared on their swimming abilities on LB agar plates with 0.3% 

agar, that have been inoculated from another plate or from overnight cultures adjusted to 

the same OD (Figure 33 A). The complemented mutants were usually less motile than the 

wild type. Comparable phenotypes have been observed with strain BEN374 as well as its 

mutants BEN374 ∆matA and BEN374 ∆matB (Figure 33 C). 
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Figure 33: Influence of Mat fimbriae expression on motility of E. coli strain IHE3034 and its matA 
mutant. The swimming ability was tested on 0.3 % agar plates. Representative results from more than 
three independent experiments are shown. A) Motility of strain IHE3034, its isogenic mutant IHE3034 
matA-H179P and the complemented mutant IHE3034 matA-H179P/matA, at 20 °C after 48 h of incubation. 
B) Motility of strain IHE3034, its mutant IHE3034 ∆matBCDEF and the complemented IHE3034 
∆matBCDEF/matBCDEF. C) Motility of strain BEN374 which expresses Mat fimbriae at a lower level 
than IHE3034, its mutant BEN374 ∆matA and BEN374 ∆matB, at 20 °C for 48 h.  
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This reproducible experiment is a clear evidence for an effect of the matA 

expression on the strain’s motility. In the absence of a functional matA, motility was 

markedly increased. The molecular reason for this phenotype could not be characterized 

so far by real-time PCR or microarray hybridization. According to the available data, 

matA is expressed under the experimental conditions used. We could also show that Mat 

fimbriae were not expressed in K-12 strain MG1655 under all conditions tested. But 

when matA was deleted, the same effect appeared in this strain, too (Figure 34).  

A) B)
MG1655∆matA

MG1655
MG1655

MG1655∆matAA) B)
MG1655∆matA

MG1655
MG1655

MG1655∆matA

 
Figure 34: Influence of MatA on motility of E. coli strain MG1655. The motility tests were done on 0.3 
% agar plates. Representative results from more than three independent experiments are shown. The 
motility of strain MG1655 and its mutant MG1655 ∆matA was tested after 48 h of growth at 20 °C A) and 
at 16 h of growth at 37 °C B). 
 

Until now, it is unknown in which way the motility is increased and how MatA may play 

a role in its regulation.  

 

To decipher why this difference was not detectable at the gene expression level 

from the microarrays data, real-time RT-PCR experiments (see Figure 35) were 

performed on genes involved in motility like fliA and fliC. 
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Figure 35: Comparison of transcript levels of the fliA and fliC genes in E. coli IHE3034 matA-H179P 
relative to its wild type strain at 20 °C. The real-time RT-PCR experiments were performed in LB 
medium, grown under shaking conditions (220 rpm) until mid-log growth phase. The data depicted 
represent the mean values of at least three independent experiments (p ≤ 0.05). 
 

The results indicated no significant differences in their expression and confirmed the fact 

they didn’t appear to be de-regulated according to the microarray experiments. Thus, this 

motility increase has to rely on another mechanism. 

 

5.2.8.2 Virulence effect in animal models. 
 

The contribution of Mat fimbriae to in vivo virulence of Escherichia coli was 

compared using a matA and a matBCDEF deletion mutant of avian pathogenic E. coli 

strain BEN374. The mutant and wild type strain were tested in chickens by inoculation of 

the airsac. This experiment was performed in collaboration with P. Germon (INRA, 

Nouzilly). According to the results obtained, Mat fimbriae did not significantly affect in 

vivo virulence of APEC strain BEN374.    
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6. Discussion 
 

6.1 The potential zoonotic risk of avian pathogenic E. coli 
 

In this study, the role of temperature-dependent differences in gene expression of 

E. coli strains that can cause systemic infection in humans and avians, i.e. human ExPEC 

and APEC isolates was explored. The aim was to answer the question whether host 

specificity of human ExPEC and APEC exists and if this may involve individual gene 

expression patterns as these pathogenic variants are frequently closely related and exhibit 

very similar genotypes. These data should also be helpful to evaluate the potential 

zoonotic risk between such avian and human extraintestinal pathogenic E. coli isolates, 

avian host may be a reservoir for human ExPEC. 

 

Since the body temperature is one of the important differences between humans 

(37 °C) and chickens (41 °C), this predominant factor may affect gene expression of the 

colonizing bacteria. Our understanding should focus on the differential expression of 

genes coding for known or putative virulence and fitness-associated factors. Therefore, a 

closer look at the genes present in human and chicken isolates, but de-regulated at the 

body temperature of their corresponding host, should help to determine their impact on 

virulence or fitness under the two different growth conditions and indicate a potential 

zoonotic risk. 

 

6.1.1 Absence of a specific genotype for human and avian ExPEC 
 

To decipher differences between human ExPEC and APEC, a lot of studies have 

been performed to compare a plethora of isolates from human or avian sources with the 

aim to find specific virulence factors, metabolism pathways or structural features for one 

or the other group of isolates (98, 99, 167, 222, 285). A correlation between the presence 

of specific factors and the origin of isolates could not be clearly identified so far. Ron and 

co-workers showed a variable profile of virulence genes as well as the presence of 

mobility related sequences, pointing to the existence of a “mix and match” combinatorial 
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system (220). With the fast development of genomic analyses, nucleotide sequences of 

plasmids and genomes became available and, although not always published, did not 

reveal a specific genotype for human ExPEC and APEC (159). Another recent study 

indicates, however, that highly virulent APEC variants may be distinguished from less 

virulent isolates on the basis of certain genes which are frequently located on colicin 

plasmids (161). Interestingly, comparison of an APEC O2 isolate carrying a wild type 

ColV plasmid with individual ColV plasmid mutants that lack known ExPEC virulence-

associated genes such as iss, tsh, iutA, iroN, sitA and cvaB indicated that these mutants 

were as virulent as the wild type thus suggesting that there may be other compensatory 

virulence factors (301). As the distribution of virulence factors seems often to be 

independent of their host, ExPEC strains from the same host type can have different sets 

of virulence-related genes as well as isolates from different host types can share the same 

virulence-related determinants. Because of this, we selected strain pairs of relevant 

serotypes, where one isolate was of human and the other one of avian origin (Tab. 12). 

Thus, these pairs of strains should guarantee a similar genetic background for each 

serotype in order to exclude that the differences observed result from genomic differences 

rather than from a different regulation of gene expression at the transcriptional or post-

transcriptional level. The comparison of global transcriptional profiles extends the current 

knowledge based on genotyping regarding the possible zoonotic risk due to ExPEC of 

human and avian origin.  

 

6.1.2 Phenotypic differences between human ExPEC an d APEC  
 

Based on the genotypic characterization of human ExPEC and APEC (Tab. 11 

and 12), both groups could not be clearly distinguished. The different routes of infection 

in humans and avians suggest that virulence factors shared between human and avian 

isolates may not be used in the same way. 

 

Among these virulence factors, adhesins may be involved at different stages of 

the infection and in different sites of the body (62, 80, 186, 315). Three important types 

of fimbriae, i.e. type 1 fimbriae, P-family adhesins and S-family adhesins have so far 
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been described to be involved in ExPEC infection. During urinary tract infection, the role 

of type 1-, P- and S-family adhesins has been well characterized (25, 62, 122, 218). In 

case of avian infections, the presence and expression of these fimbriae have been already 

demonstrated (80, 259), but whether their role and importance, e.g. in tissue tropism, is 

different in avians and in humans has not yet been completely understood.  

 

These fimbriae are factors contributing to the virulence potential of such strains, 

but they are not necessarily sufficient to cause disease (219). I used different specific 

antibodies raised against these adhesins to evaluate their expression in the human and 

avian ExPEC strains at different temperatures. The human ExPEC and APEC strains 

could not be differentiated based on the expression of type 1, P- and S-family adhesins 

(Tab. 12). In addition, expression of these fimbriae are subjected to phase variation, 

which quickly switches between the “on” and “off” state of expression under certain 

conditions in vitro (88, 105, 211, 224) and in vivo (123, 303, 304, 363).  

 

Curli are factors contributing to the virulence potential of such strains, but they 

are not necessarily sufficient to cause disease in avian (113, 114) and human (242, 370). 

Curli fimbriae are predominantly expressed in human and avian isolates between 20 °C 

and 37 °C. The human ExPEC and APEC strains could not be differentiated based on the 

expression of curli between 37 °C and 41 °C.  

 

Other virulence-associated factors like iron acquisition systems have been studied. 

It is well known that ExPEC can usually express more than one iron uptake system. Until 

now, up to six iron acquisition systems have been clearly identified (aerobactin, 

enterobactin, yersiniabactin, salmochelin, a hemin uptake system and the Sit (Salmonella 

iron transport system)) (25, 83, 113, 116, 153, 232, 281, 297) . Due to the importance of 

iron in the organism and the difficulty to supply sufficient amounts of this essential 

nutrient, ExPEC strains have developed multiple strategies to capture Fe3+ ions from 

different source and under different conditions (271). Nevertheless, the genotypic 

analysis of human and avian ExPEC did not display different iron uptake capabilities that 

could explain host specificity (Tab. 11). The iron acquisition systems are individually 
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expressed in each strain and no correlation between the presence of different siderophore 

systems, their temperature-dependent expression and the strain origin could be seen. The 

precise role of the host (avian or human) for expression of individual iron acquisition 

systems as well as the impact of differential siderophore expression during infection on 

host specificity could, however, not be addressed in this thesis. 

 

6.1.3 Different gene expression patterns between Hu man and avian 
O18:K1 ExPEC isolates IHE3034 and BEN374 
 

In this study, we concentrated on one of the major factors which may influence 

the transcriptome of ExPEC in the human and avian host: the different body temperature 

of humans (37 °C) and avians (41 °C) may result in different gene expression patterns of 

human and avian isolates. Alternatively, ExPEC strains may not specifically respond to 

the different growth temperature.  

 

Only a few genes were induced at 41 °C in each strain relative to growth at 37 °C. 

In this group, only 5 genes were commonly upregulated in these two strains (Tab. 15 and 

17). One promising candidate gene that could be involved in the virulence of ExPEC at 

41 °C was the yedU (hchA) gene. This gene codes for the protein Hsp31, a homodimeric 

member of the ThiI/DJ-1/PfpI superfamily that combines molecular chaperone and 

aminopeptidase activities. Interestingly, this gene was the only heat shock protein 

overexpressed at 41 °C in both strains. The hypothesis that this chaperone may maintain 

the correct tertiary structure of proteins expressed at the avian body temperature, 

including virulence factors, was not supported by an in vivo infection experiment. 

Differences in virulence between APEC strain BEN374 and its isogenic mutant BEN374 

∆hchA could not be observed upon experimental infection of 3-day old chickens (P. 

Germon, Nouzilly, data not shown). If this heat shock protein plays a role for the proper 

folding of proteins and/or their half-life, this is not preponderant for the virulence of 

strain BEN374 in a chicken. 
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Other candidate genes (hdeA, b0834, PAI I Orf 55, ME EO 28C rorf1.1; see 

appendix) could not be directly linked with virulence. The hdeA gene was checked in 

IHE3034 due to its role for acid resistance. Surprisingly, the hdeA and hdeB genes were 

upregulated, too, in IHE3034 at 41 °C. A significant upregulation of hdeA transcript 

levels in BEN374 upon growth at 41 °C could not be confirmed by real-time RT PCR in 

all avian APEC at 41 °C. Whether acid resistance may contribute to in vivo virulence in 

the chicken would require further analysis in analyzing more strains and maybe by 

comparing in vivo virulence of a wild type versus a hde mutant. In case of the avian 

pathogenic E. coli strain, further studies concerning the acid proteins and acid resistance 

should be performed to see whether they may be involved in virulence or host specificity. 

Expression of the cysADJHKWIN gene cluster, which was upregulated at 41 °C in strain 

BEN374, was not differently expressed at human and avian body temperature in the 

human ExPEC strain IHE3034. The results obtained for E. coli BEN374 may be strain-

specific and not linked to host specificity. However, a potential role for virulence in 

human and avian ExPEC cannot be excluded from the results. To determine whether the 

encoded proteins affect virulence, more ExPEC strains should be tested to see a 

preferential correlation between the expression of these genes in human ExPEC and/or in 

APEC. The increased transcription of the pyrI gene at 41 °C in strain IHE3034 was 

confirmed by real-time RT-PCR. Another gene, map, was strongly down-regulated in 

BEN374 and maybe a potential candidate for virulence. The E. coli MAP is a type-I 

enzyme and is a potential antibiotic target; selective inhibitors have been designed (321). 

 

In strain IHE3034, less genes were found to be upregulated than in BEN374. This 

may be due to many factors, including strain-specific gene expression profiles as well as 

the fact that the probes spotted on the microarray mainly covered the genome of E. coli 

K-12 strain MG1655 and not the complete genome of both O18:K1 strains tested in this 

study. 

 
Surprisingly, the number of the down regulated genes, more than 70 genes for 

each strain, was higher relative to the number of upregulated genes. This group of genes 

mainly contained genes involved in motility and chemotaxis. The microarray data 
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confirmed previous studies about the influence of temperature on motility (2, 201), and 

could be easily confirmed by motility tests. In E. coli, the flagellar operons are divided 

into three classes with regard to their relative position in the transcriptional hierarchy 

(200, 268, 310, 322). According to the transcriptome comparison of the two strains, the 

class 2 and 3 genes were downregulated at 41 °C relative to 37 °C. This was confirmed 

by real-time RT-PCR for one representative gene of each class. Genes which are involved 

in flagellum biogenesis (for reviews of flagellar hierarchy, see references (7, 58, 179, 

322)) at different levels, were investigated by real-time RT-PCR i.e. the chemotaxis 

genes cheA, cheZ motA (class III genes), the flhD (classI), the fliA (class II) gene, fliC 

(class III), the aer and tsr  gene (class III). These confirmed the microarrays data and 

phenotypic assays. 

 

 In case of class I, which only comprises the genes flhC and flhD, reduced 

transcription levels at 41 °C could not be detected by microarray hybridization and real-

time PCR. However, it has been demonstrated that the regulation of the FlhDC complex 

can also occur at the post-transcriptional level by the carbon storage regulator CsrA 

(350). Furthermore, post-translational regulation of FlhDC expression is mediated by the 

protease ClpX/ClpP in Salmonella enterica (325, 326). These regulatory mechanisms 

could also contribute to the repression of motility at higher temperature in strains 

IHE3034 and BEN374. In addition of the flagellar class II and class III genes, genes 

involved in chemotaxis were down regulated, too. This was also confirmed for cheY and 

cheZ by real-time RT-PCR. 

 

Other de-regulated genes presented in the Tab. 22 and 23 (see Appendix) have an 

unknown or putative function. Interestingly, one of these genes, yhjH, was downregulated 

and has been recently characterized to have a function in motility (109). Based on 

sequence homology, yhjH belongs to the newly identified and highly prevalent family of 

proteins that function in the turnover of bis-(3’-5’)-cyclic dimeric guanosine 

monophosphate (c-di-GMP), which is a secondary messenger involved in the regulation 

of a wide variety of bacterial behaviors (283). The list of de-regulated genes may consist 

of further genes with a potential role in motility, but their potential function in signaling, 
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chemotaxis and signal transduction will have to be checked in the future. This may 

rapidly and easily provide new genes involved in motility. In Tab. 22 and 23 (see 

Appendix), genes like yhjB, yihW and ynbD may be good putative candidates for 

components of the sensory and signaling pathway that regulates motility. Based on 

BLAST analysis, yihW codes for a predicted DNA-binding transcriptional regulator, 

whereas yhjB and ynbD encode a predicted DNA-binding regulator of a two-component 

regulatory system and a predicted inner membrane phosphatase, respectively. 

 

During a urinary tract infection, the role of motility is well known. Flagellum-

driven motility allows bacteria to disseminate to sites more advantageous for 

colonization. The motility contributes to virulence, enabling UPEC to propagate in the 

bladder, to disseminate to the upper urinary tract (185) and establish pyelonephritis. This 

can then in certain cases develop into septicemia, a systemic propagation in the host. 

Therefore, it was unexpected to see the reduction of motility already at 41 °C. Previous 

experiments of this type have been done at 45 °C or higher. It is generally assumed that 

an infection is like a race between the colonizing pathogen and the host response. In this 

case, reduced motility may delay infection, and normally, should increase the probability 

of bacterial clearance by the host immune response. On the other side, the presence of 

less flagellar protein will reduce immune response against bacteria. Despite it, the 

virulence of the APEC strain is quite important, but the way of infection, is different, not 

only one way and may occur before birth. This, in addition of the host difference, may 

explain why the reduction of motility due to the temperature, has not a high incidence.  In 

view of the data, we could not identify a specific regulator involved in the control of the 

motility by a temperature-dependent way. The hypothesis would be the existence or 

expression of a regulatory factor, known or unknown. The motility and its regulation are 

quite important in the virulence properties of pathogenic strains, and this motility effect 

in vitro is not an indicator of the motility in vivo, and explains why these strains are 

virulent. 

 

Finally, the different studies on avian infection caused by E. coli indicate that  the 

most important trait of APEC that contributes to avian  colonization and development of 
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colibacillosis seems to be the serum resistance and resistance of APEC against 

macrophages (81, 93, 216, 260, 315). Nevertheless this motility effect must be analyzed 

in the future, or the ability of the strain to switch from a motile form to a less motile one. 

 

6.1.4 Implications and outlook 
 

In addition to the assessment of the general genome content of APEC and human 

ExPEC strains, we analyzed the transcriptomes of a human and avian O18:K1 isolate to 

characterize individual differences in virulence gene expression in response to their hosts, 

i.e. the different body temperatures. The results obtained for the two strains did not 

elucidate major differences between the human and avian isolate regarding regulation of 

their gene expression at the transcriptional level in response to human or avian body 

temperature. They rather mirror strain-specific effects and support a common behavior of 

the two strains even upon variation of one factor, i.e. the growth temperature of 37 °C or 

41 °C. The body temperature is not the only difference between human and birds, and 

one must suspect a completely different gene expression pattern during infection, also in 

response to the course of infection, e.g. early and late stage of infection. The results 

obtained from the transcriptome, genome as well as phenotypic comparison of human 

ExPEC and APEC, further supports earlier studies (98, 99, 167, 222, 285) which discuss 

that APEC and certain human ExPEC may be zoonotic. APEC are at least considered a 

reservoir for virulence-associated genes of human ExPEC and comprise strains with a 

high pathogenic potential for humans (99). The transmission between humans and birds 

has is not been properly investigated until now. Further studies on transcriptional and 

protein level should be performed to evaluate this zoonotic risk for humans due to the 

economic and hygienic impact on our society. This is the first study which unravels 

considerable overlaps between human and animal ExPEC strains as well as putative host-

specific responses at the transcriptional level. It becomes more and more apparent that the 

presence of a common set of virulence-associated genes among ExPEC strains as well as 

similar gene expression patterns and phylogenetic backgrounds indicate a significant 

zoonotic risk of avian-derived E. coli isolates. 
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6.2 Characterization of Mat fimbriae expression of E. coli 
strain IHE3034 
 

Bacterial adherence to host tissues is a complex process that, in many cases, 

involves the participation of several distinct adhesins, which may act at the same time or 

at different stages during infection. These fimbriae are more represented among 

pathogenic strains than among non-pathogenic strains (75.45% vs 55.5%  (83), 100% vs 

40% (362), 90.4% vs 26.7 (214)) and have been longtime considered as potential 

virulence factors of ExPEC. These fimbriae are factors contributing to the virulence 

potential of such strains, but they are not necessarily sufficient to cause disease (219). 

This may be due to the large amount of unknown or uncharacterized adhesins and 

putative adhesins which may be atypical or not expressed under the studied conditions. 

The recently identified Mat (meningitis associated and temperature regulated) fimbriae, 

named because the expression of this fimbrial type was found to be associated with the 

major clonal group of MENEC, O18:K1:H7, as well as with low temperature (262), is 

one of these new putative virulence-associated adhesins. In the last years, a few studies 

have been done on these fimbriae despite the fact the gene cluster is very well conserved 

in the majority of E. coli.  

 

Whereas Poutu et al. reported that the expression of these fimbriae was specific 

for the serotype O18:K1 and K2 as well as temperature-dependant, Rendon and 

colleagues (276) demonstrated in EHEC that these fimbriae were well expressed in a lot 

of intestinal pathogenic E. coli strains at 37 °C in DMEM cell culture medium with 5 % 

CO2 concentration. Our own attempts to express Mat fimbriae of O18:K1 and K2 strains 

under these conditions in RPMI cell culture medium have not been successful. Rendon 

and co-workers designated these fimbriae “E. coli common pilus” (ECP), which are 

composed of a 21-kDa pilin subunit whose amino acid sequence corresponds to the 

product of the gene yagZ (designated matB by Poutu et al., and ecpA by Rendon et al.). 

ECP production was demonstrated in 71.6 % of a total of 169 ecpA+ strains representing 

intestinal and extraintestinal pathogenic (121 of a total of 169 strains) as well as 

commensal fecal E. coli isolates (16). They estimated that in vivo all the ecpA-positive 

strains that were phenotypically negative should be able to express Mat fimbriae, but 
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depending on the niche and other growth conditions. Furthermore, Mat fimbriae-

mediated adhesion to cultured epithelial cells could be shown, but nothing else was 

known about the expression and function of this new fimbrial type. The organization of 

the gene cluster has only been investigated to a certain extent by in silico analysis (262). 

The fact that in newborn meningitis isolates such as O18:K1:H7 strain IHE3034 Mat 

fimbriae are not expressed under the conditions described by Redon et al. implies that 

regulation of their expression is more complex and is a multifactorial process which 

needs to be further characterized. In this study, the role of the matA gene, coding for the 

putative regulator of Mat fimbriae has been characterized and its role for Mat fimbriae 

expression was analyzed. In addition, the predominance of this gene cluster in E. coli and 

the permanent expression of matA (with or without Mat fimbriae expression) let 

hypothesize a more general role for MatA than solely the control of Mat fimbriae 

expression. 

 

6.2.1 Transcriptional organization and matA promoters differences 
between IHE3034 and MG1655 
 

6.2.1.1 Genetic organization in two operons of mat gene cluster 
 

To better understand the regulation of Mat fimbriae, the transcriptional 

organization of the gene cluster was analyzed. Poutu et al. already demonstrated 

cotranscription of matB and matC (262). Based on the results obtained by RT-PCR, we 

defined two operons: matABCD and matEF (Fig. 25). A bioinformatics analysis didn’t 

reveal significant transcription start points for matB in the matA-matB intergenic region 

or within matA. Also based on the results of the determination of the matB transcriptional 

start point and the fact that primer extension indicated the transcriptional start site 

upstream of matA, the RT-PCR experiments have also been reproduced and clearly 

proved co-transcription of matABCD and matEF. These experiments further supported 

that the matABCD transcript is highly unstable, especially in the 5’ and 3’ end of matA, 

and let presume the effect is strongest at 37 °C than 20 °C. The smear detected for the 

matA transcripts by Northern blot analysis confirmed this, too.  
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6.2.1.2 matA promoters differences 
 

In addition to the genetic organization of the mat gene cluster, the different 

regulation of mat expression has been analyzed in newborn meningitis isolates IHE3034 

and K-12 strain MG1655. Although E. coli MG1655 carries the complete gene cluster, 

Mat fimbriae are not expressed. The previous work of Poutu et al. showed that IHE3034 

lost expression of Mat fimbria at 20 ºC when the matA was deleted. On the other hand 

overexpression of MatA in trans was not sufficient to cause high level Mat expression in 

wt IHE3034 at 37 ºC or detectable expression in wt MG1655 strain at 20 °C or 37 ºC 

(Timo Lehti personal communication; and my own data).  

 

The analysis and comparison of such fimbriae may have a good phylogenetic 

interest. Poutu et al., Rendon et al. demonstrated that almost all the Escherichia coli 

strains present the mat cluster, completely or not. They performed a PCR-based matB 

survey in a collection of 176 strains representing NFEC (normal flora E.coli) and the 

major E. coli pathogroups (EHEC, enteropathogenic, enterotoxigenic, enteroaggregative, 

enteroinvasive, rabbit pathogenic, avian pathogenic, and uropathogenic). This gene was 

present in 169 (96%) of these strains. The last 4% missed the matA, matB, matC and 

matD genes, without any data for matE and matF. Differences in the matA and matB 

nucleotide sequences and also in their deduced amino acid sequences could be detected 

between strains IHE3034 and MG1655 (Fig. 29 and 30). Unfortunately, in the absence of 

a known target of the MatB protein, it is difficult to analyze the effect of these variations 

on the MatB secondary structure which may affect this protein’s receptor specificity. 

Additionally, the mutations observed in MatA could not be correlated with a different 

Mat fimbriae expression without purified MatA protein. Consequently, purification of 

heterologously expressed MatA by affinity chromatography resulted in a co-purification 

with the chaperone GroEL and no DNA binding capacity of MatA (Timo Lehti, personal 

communication). For this reason, the focus was set in this thesis on further in silico 

analyses. These analyses predicted different putative promoters and transcription factor 

binding sites in strains IHE3034 and MG1655 (Fig. 23). To validate the in silico 
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predictions, the exact transcriptional start of matA was determined by 5’-RACE analysis. 

In the two E. coli strains, three transcription start points were identified. Two of them 

were common for both strains, but one specific transcriptional start could be detected in 

each of them (Fig. 26). These data suggest that individual transcriptional start sites may 

contribute to the differences in Mat fimbriae expression between both strains. 

Furthermore, these results demonstrate that matA may be expressed, but not Mat 

fimbriae. In addition to MatA, other transcription factors affect Mat fimbriae expression. 

We hypothesize that the different transcriptional start points of matA influence mRNA 

stability. The detection of matA transcripts by Northern blot analysis as well as the results 

of the 5’-RACE analysis support the idea that, at least, the 5‘-end of the matA transcript is 

very unstable. For each strain, the most distal promoter could not well be determined 

whereas the other two transcriptional starts were clearly identified. 

 

The matA gene with its own promoter could not be easily amplified from strain 

IHE3034 by PCR. This may be indicative of marked DNA curvature of this promoter 

region. Pronounced DNA curvature at promoter regions is common and often involved in 

regulation of transcription (79, 213). In contrast to strain IHE3034, matA with its 

promoter could be easily amplified in strain MG1655. Analysis of electrophoretic 

mobility of DNA fragments detected a region with marked DNA curvature at potential 

matA regulatory regions in strain IHE3034, but not in E. coli MG1655 (Timo Lehti, 

personal communication). In addition, the mat upstream region in E. coli IHE3034 lacks 

one of two potential GATC methylation sites which are present in K-12 strain MG1655. 

The methylation state of regulatory DNA regions has been shown to influence H-NS 

dependent P fimbriae expression (356).  

 

In summary, these analyses indicate several variations in DNA sequence and 

DNA curvature that may be involved in differential regulation of Mat fimbriae expression 

in vitro and/or in vivo as well as between E. coli strains IHE3034 and MG1655 (see 

Figure 36).  
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Figure 36: Summary of differences and similarities between the matA promoter structure and 
organization in IHE3034 and MG1655. Another difference, not indicated on the figure, is the presence of 
one potential GATC methylation sites in IHE3034 compared to K-12 strain MG1655. 
 

The exchange of the matA promoter between both strains would further support 

the in silico findings. Based on the in silico data and on our results, the matA upstream 

region was subdivided in three parts and these regions were exchanged between E. coli 

strains IHE3034 and MG1655. Mat fimbriae expression was detectable in E. coli 

MG1655 when the regions 1 and 2 were exchanged by those of strain IHE3034 and, in 

analogy, their expression was completely abolished in corresponding variant of E. coli 

IHE3034. Consequently, the region 3 was not involved in regulation of Mat fimbriae 

expression. In addition, the regions 1 and 2, which contain the majority of sequence 

differences (promoters, transcription factor binding sites) between strains IHE3034 and 

MG1655, have thus been shown to be essential for Mat fimbriae expression. 

Interestingly, exchange of region 1 and 2, which comprises the DNA region with marked 

DNA curvature only in the human ExPEC, between strains IHE3034 and MG1655 did 

not result in the same expression level of Mat fimbriae in strain MG1655 as in E. coli 

IHE3034 (Timo Lehti, personal communication). This may be due, at least partially, to 

the different MatA amino acid sequences in both strains which may have co-evolved with 

its own promoter. Consequently, the MatA protein from E. coli MG1655 may bind to the 

matA promoter of strain IHE3034 with lower efficiency than to its own promoter. 
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Whether some of these factors are responsible for the differential expression or whether 

these factors act in a co-ordinate manner needs to be elucidated in future studies. 

 

To perform this study, it was required to work with purified and functional MatA 

protein alone, without the chaperon GroEL. Functional MatA protein could be purified 

using a fusion protein of the maltose binding protein and MatA (MBP-MatA, this study). 

With this, binding of MatA to DNA could be demonstrated for the first time (Timo Lehti, 

personal communication) and its binding could be localized within the matA promoter 

region (between -10 to 608 nt) in E. coli IHE3034 and MG1655 (Timo Lehti, personal 

communication).  

 

6.2.1.3 H-NS affects the Mat fimbriae expression 
 

Another aspect of regulation of Mat fimbriae expression was the investigation of 

the impact of the histone-like protein H-NS. This global regulator affects the expression 

of a high amount of genes (more than 5% in E. coli) (15, 146), as it binds to DNA thus 

changing it’s curvature (67, 68). In addition, other H-NS-like proteins were recently 

identified to be involved in virulence gene regulation (213, 330, 354, 357).  

 

In addition, DNA binding assays with H-NS and the same matA upstream region 

demonstrated that H-NS bound with different affinity to the DNA stretches from E. coli 

IHE3034 and MG1655 (Timo Lehti, personal communication). Comparison of H-NS 

binding to mat regions showed that the IHE3034-specific DNA fragment located -754 to 

-1342 bp upstream of the matA translational start had a higher affinity for H-NS than the 

corresponding region from strain MG1655. In summary, three differences with respect to 

the DNA sequence, the presence of transcriptional start and transcription factor binding 

sites as well as the structure of the matA upstream region have been identified in E. coli 

IHE3034 and MG1655. These differences may potentially contribute to the differential 

expression of Mat fimbriae in these strains. Whether some of these factors are sufficient 

to cause differential expression or whether these factors function in concert will have to 

be elucidated in future studies. 
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H-NS-dependent repression of gene expression is often induced by environmental 

signals through the action of transcriptional activators which alleviate H-NS dependent 

repression (15). Interestingly, a different role of H-NS for Mat fimbriae expression in 

response to the growth temperature could be observed. Mat fimbriae expression of strain 

IHE3034 was studied in the wild type, as well as in the isogenic hns-, or hns matA 

mutants in whole cell ELISA assays at different temperatures (Timo Lehti, personal 

communication). At 20 ºC, the highest Mat fimbriae expression was observed in E. coli 

IHE3034 hns in the presence and absence of matA. In contrast, at 37 ºC the presence of 

matA was required for Mat expression in the hns-negative background. The IHE3034 hns 

matA double mutant expressed Mat fimbriae at 20 ºC, but not at 37 ºC because MatA is 

required in the hns-negative background at 37 °C for Mat expression. Obviously, Mat 

fimbriae expression is also regulated by a MatA and H-NS-independent temperature-

sensitive mechanism which favours fimbriae production at low temperatures. It can be 

concluded that at 20 ºC MatA functions as an H-NS antagonist and at 37 ºC it counteracts 

repression by an unknown mechanism. H-NS represses gene expression by binding 

upstream and/or downstream of promoter regions hence hindering RNA polymerase 

function (15, 354, 359). Remarkably, temperature (20 or 37 ºC) did not affect the affinity 

of H-NS to the matA coding region and hence the lack of Mat expression in strains 

bearing an intact matA region is probably not due to H-NS binding to this region (Timo 

Lehti, personal communication).  

 

6.2.2 Biological function of matA and Mat fimbriae 
 

6.2.2.1 The role of MatA on matABCD transcription 
 

To asses the role of a regulator and globally screen for its potential targets in an 

organism, transcriptome analysis is one of the best tools to screen all the genes of an 

organism if the genome sequence is avalaible. In this study, the global transcriptome of 

IHE3034 wild type and its isogenic matA mutant has been compared at 20 °C because 

this is one of the conditions under which Mat fimbriae are expressed directly under the 
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influence of MatA. The microarray data obtained and the subsequent confirmation of the 

most relevant results by real-time RT-PCR confirmed the role of MatA on matABCD 

transcription, but not on transcription of matEF. The negative role of H-NS on Mat 

fimbriae expression was also proven at 20 °C and 37 °C, for the complete mat gene 

cluster. A stronger effect was observed for the matABCD operon than for matEF. Any 

other gene or operon was significantly affected in the absence of MatA under the chosen 

experimental conditions.  

 

Nevertheless, after the construction of the MBP-MatA fusion protein, it was 

demonstrated that the isogenic isogenic matA mutant produce a MatA protein still able to 

bind DNA, despite the absence of Mat fimbriae expression. In this case, few side effects 

must still be present and may explain the low amount of deregulated genes, especially the 

lack of genes involved in motility. 

 

6.2.2.2 Effect on biofilm formation and on the motility 
 

The matA mutant was also phenotypically compared with the wild type strain to 

characterize possible differences in the expression of virulence-associated traits. 

Differences in expression of the toxin α-hemolysin, fimbrial adhesins, and iron 

acquisition systems, could not be found. Interestingly, matA inactivation drastically 

affected biofilm formation of E. coli IHE3034 (Fig. 31): strong biofilm formation was 

observed under the same conditions under which Mat fimbriae were expressed. Biofilm 

formation was reduced when Mat fimbriae were not expressed. Complementation of the 

matA or matBCDEF mutants indeed correlated the different biofilm formation with Mat 

fimbriae expression (Fig. 32). This observation confirmed a new function of these 

fimbriae. Biofilms are considered a virulence-associated trait. Biofilm formation of 

Enterobacteriaceae is believed to play a significant role for the colonization and 

establishment of infections on mucosal surfaces and may also enhance microbial survival 

in the environment (37, 63). Mat fimbriae-dependent biofilms may be formed in the 

environment as well as in the host, because Rendon and coworkers reported on Mat 

fimbriae expression in cell culture and their role for adhesion to eukaryotic cells. This 



6. Discussion 

 - 133 - 

supports the virulence-associated role of these fimbriae, and due to its expression at room 

temperature, maybe a factor of nosocomial infection, too. They may represent a good 

alternative or complementary factor involved in E. coli biofilm formation and may be a 

good target to interfere with biofilm formation. The preponderant role of this fimbrial 

type in the biofilm formation at low temperature opens up new perspectives in the 

comprehension of biofilm formation and the role of Mat fimbriae for host colonization, 

especially as Mat fimbriae are expressed in cell culture at 37 °C. 

 

The most unexpected result of the phenotypic comparison of wild type strains 

MG1655, BEN374 and IHE3034 and their mutants deficient in Mat fimbriae expression 

was the increased motility of the latter ones (Fig. 33 and 34). According to the 

transcriptome data obtained with strain IHE3034 matAH179P, de-regulation of genes 

known to be involved in motility and chemotaxis was not observed upon matA 

inactivation. The microarray data were also confirmed by real-time RT-PCR. 

 

Nevertheless, the construction of the MBP-MatA protein fusion and its isogenic 

mutant MBP-MatAH179P demonstrated the possibility of MatA to bind matA promoter, 

despite the lack of Mat fimbriae expression in this strain (Timo Lehti, personal 

communication). In this case, side effects must be present, explaining the weak amount of 

genes deregulated. It clarified too the strongest effects on motility test in IHE3034 ∆matA 

(data not show) and its confirmation on Western blot in this mutant vs. wt (see Figure 45, 

appendix). In view of all these data, the reproducibility of this effect in others strains 

(MG1655, BEN374), and linked to the fact that the absence of either a functional matA 

gene or that of the structural genes matBCDEF independently resulted in increased 

motility in different strain backgrounds indicates that this is indeed a general regulatory 

cross-talk that most likely occurs directly or indirectly on the level of translation or 

stability of components of the flagella apparatus or other factors that affect flagellation or 

chemotaxis. The major regulator component of the flagella apparatus, flhDC, and 

especially its promoter must be investigated in presence of MBP-MatA. 
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  The motility of bacteria implements a complex regulatory network which involves 

different stimuli and genes that affect flagellation (268). Sjostrom et al. demonstrated that 

another protein encoded in a fimbrial gene cluster also affects motility and type 1-

fimbriae (300). There seems to be a frequent cross-talk between fimbriae and flagella. 

This effect is present, too, in case of Mat fimbriae. 

 
The impact of Mat fimbriae in virulence was tested by infection of chickens. 

APEC strain BEN374 was used to infect chickens by inoculation of the airsac. In addition 

to the wild type strain, two mutants have been used for infection as well: one was deleted 

for matA and the other for matB. Virulence of both mutants which does not express Mat 

fimbriae was, however, not significantly reduced relative to the wild type (P. Germon, 

Nouzilly, data not shown). Due to the inappropriate mutation, and the genomic instability 

of the strain IHE3034 (data not show), new animal experiment must be performed in an 

appropriate model and and with a more relevant strain. 

 

6.2.3 Implications and outlooks 
 

The results obtained in this thesis will form the basis for further experiments 

aiming at the detailed characterization of the mat gene cluster, regulation of Mat fimbriae 

expression and to decipher the specific role of MatA, which has a constitutive expression 

(see figure 37).  

MatA

Mat fimbriae expression (matABCD)
and biofilm formation

Motility and FliC expression

1

2

2

MatA

Mat fimbriae expression (matABCD)
and biofilm formation

Motility and FliC expression

1

2

2

 
Figure 37: Summary on the MatA regulation functions. 1) Direct regulation in case of Mat fimbriae 
expression; 2) for the motility and FliC expression, it needs to be further analyzed if it is due to a cross-talk 
between fimbriae and flagella, or a direct regulation by MatA. 
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To increase the knowledge on the role of MatA, this protein should be purified 

and its DNA binding motif should be determined. The functional characterization of Mat 

fimbriae should focus on the cellular receptor on eukaryotes or in the extracellular matrix 

and the regulation of their expression in vivo in different isolates. To analysis of the 

impact of MatA on motility may involve the characterization of an unknown regulatory 

mechanism that affects expression of the motility genes. 
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8. Appendix 
 

8.1 Nucleotide and deduced amino-acid sequence of t he N-terminal 
part of fimH in the colirisk strains 
 
fimH K12 
ATGAAACGAGTTATTACCCTGTTTGCTGTACTGCTGATGGGCTGGTCGGTAAATGCCTGGTCATTCGCCT 
GTAAAACCGCCAATGGTACCGCTATCCCTATTGGCGGTGGCAGCGCCAATGTTTATGTAAACCTTGCGCC 
CGTCGTGAATGTGGGGCAAAACCTGGTCGTGGATCTTTCGACGCAAATCTTTTGCCATAACGATTATCCG 
GAAACCATTACAGACTATGTCACACTGCAACGAGGCTCGGCTTATGGCGGCGTGTTATCTAATTTTTCCG 
GGACCGTAAAATATAGTGGCAGTAGCTATCCATTTCCTACCACCAGCGAAACGCCGCGCGTTGTTTATAA 
TTCGAGAACGGATAAGCCGTGGCCGGTGGCGCTTTATTTGACGCCTGTGAGCAGTGCGGGCGGGGTGGCG 
ATTAAAGCTGGCTCATTAATTGCCGTGCTTATTTTGCGACAGACCAACAACTATAACAGCGATGATTTCC 
AGTTTGTGTGGAATATTTACGCCAATAATGATGTGGTGGTGCCTACTGGCGGCTGCGATGTTTCTGCTCG 
TGATGTCACCGTTACTCTGCCGGACTACCCTGGTTCAGTGCCAATTCCTCTTACCGTTTATTGTGCGAAA 
AGCCAAAACCTGGGGTATTACCTCTCCGGCACAACCGCAGATGCGGGCAACTCGATTTTCACCAATACCG 
CGTCGTTTTCACCTGCACAGGGCGTCGGCGTACAGTTGACGCGCAACGGTACGATTATTCCAGCGAATAA 
CACGGTATCGTTAGGAGCAGTAGGGACTTCGGCGGTGAGTCTGGGATTAACGGCAAATTATGCACGTACC 
GGAGGGCAGGTGACTGCAGGGAATGTGCAATCGATTATTGGCGTGACTTTTGTTTATCAATAA 

 
MKRVITLFAVLLMGWSVNAWSFACKTANGTAIPIGGGSANVYVNLAPVVNVGQNLVVDLSTQIFCHNDYPE
TITDYVTLQRGSAYGGVLSNFSGTVKYSGSSYPFPTTSETPRVVYNSRTDKPWPVALYLTPVSSAGGVAIK
AGSLIAVLILRQTNNYNSDDFQFVWNIYANNDVVVPTGGCDVSARDVTVTLPDYPGSVPIPLTVYCAKSQN
LGYYLSGTTADAGNSIFTNTASFSPAQGVGVQLTRNGTIIPANNTVSLGAVGTSAVSLGLTANYARTGGQV
TAGNVQSIIGVTFVYQ 

 
fimH RS218 
ATGAAACGAGTTATTACCCTGTTTGCTGTACTGCTGATGGGCTGGTCGGTAAATGCCTGGTCATTCGCCTG
TAAAACCGCCAATGGTACCGCAATCCCTATTGGCGGTGGCAGCGCCAATGTTTATGTAAACCTTGCGCCTG
CCGTGAATGTGGGGCAAAACCTGGTCGTAGATCTTTCGACGCAAATCTTTTGCCATAACGATTACCCAGAA
ACCATTACAGACTATGTCACACTGCAACGAGGTGCGGCTTATGGCGGCGTGTTATCTAGTTTTTCCGGGAC
CGTAAAATATAATGGCAGTAGCTATCCTTTCCCTACTACCAGCGAAACGCCGCGGGTTGTTTATAATTCGA
GAACGGATAAGCCGTGGCCGGTGGCGCTTTATTTGACGCCGGTGAGCAGTGCGGGGGGAGTGGCGATTAAA
GCTGGCTCATTAATTGCCGTGCTTATTTTGCGACAGACCAACAACTATAACAGCGATGATTTCCAGTTTGT
GTGGAATATTTACGCCAATAATGATGTGGTGGTGCCCACTGGCGGCTGCGATGTTTCTGCTCGTGATGTCA
CCGTTACTCTGCCGGACTACCCTGGTTCAGTGCCGATTCCTCTTACCGTTTATTGTGCGAAAAGCCAAAAC
CTGGGGTATTACCTCTCCGGCACAACCGCAGATGCGGGCAACTCGATTTTCACCAATACCGCGTCGTTTTC
ACCCGCGCAGGGCGTCGGCGTACAGTTGACGCGCAACGGTACGATTATTCCAGCG 

 
MKRVITLFAVLLMGWSVNAWSFACKTANGTAIPIGGGSANVYVNLAPAVNVGQNLVVDLSTQIFCHNDYPE
TITDYVTLQRGAAYGGVLSSFSGTVKYNGSSYPFPTTSETPRVVYNSRTDKPWPVALYLTPVSSAGGVAIK
AGSLIAVLILRQTNNYNSDDFQFVWNIYANNDVVVPTGGCDVSARDVTVTLPDYPGSVPIPLTVYCAKSQN
LGYYLSGTTADAGNSIFTNTASFSPAQGVGVQLTRNGTIIPA 

 
fimH IHE3034 
ATGAAACGAGTTATTACCCTGTTTGCTGTACTGCTGATGGGCTGGTCGGTAAATGCCTGGTCATTCGCCTG
TAAAACCGCCAATGGTACCGCAATCCCTATTGGCGGTGGCAGCGCCAATGTTTATGTAAACCTTGCGCCTG
CCGTGAATGTGGGGCAAAACCTGGTCGTAGATCTTTCGACGCAAATCTTTTGCCATAACGATTACCCAGAA
ACCATTACAGACTATGTCACACTGCAACGAGGTGCGGCTTATGGCGGCGTGTTATCTAGTTTTTCCGGGAC
CGTAAAATATAATGGCAGTAGCTATCCTTTCCCTACTACCAGCGAAACGCCGCGGGTTGTTTATAATTCGA
GAACGGATAAGCCGTGGCCGGTGGCGCTTTATTTGACGCCGGTGAGCAGTGCGGGGGGAGTGGCGATTAAA
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GCTGGCTCATTAATTGCCGTGCTTATTTTGCGACAGACCAACAACTATAACAGCGATGATTTCCAGTTTGT
GTGGAATATTTACGCCAATAATGATGTGGTGGTGCCCACTGGCGGCTGCGATGTTTCTGCTCGTGATGTCA
CCGTTACTCTGCCGGACTACCCTGGTTCAGTGCCGATTCCTCTTACCGTTTATTGTGCGAAAAGCCAAAAC
CTGGGGTATTACCTCTCCGGCACAACCGCAGATGCGGGCAACTCGATTTTCACCAATACCGCGTCGTTTTC
ACCCGCGCAGGGCGTCGGCGTACAGTTGACGCGCAACGGTACGATTATTCCAGCG 

 
MKRVITLFAVLLMGWSVNAWSFACKTANGTAIPIGGGSANVYVNLAPAVNVGQNLVVDLSTQIFCHNDYPE
TITDYVTLQRGAAYGGVLSSFSGTVKYNGSSYPFPTTSETPRVVYNSRTDKPWPVALYLTPVSSAGGVAIK
AGSLIAVLILRQTNNYNSDDFQFVWNIYANNDVVVPTGGCDVSARDVTVTLPDYPGSVPIPLTVYCAKSQN
LGYYLSGTTADAGNSIFTNTASFSPAQGVGVQLTRNGTIIPA 

 
fimH BEN79 
ATGAAACGAGTTATTACCCTGTTTGCTGTACTGCTGATGGGCTGGTCGGTAAATGCCTGGTCATTCGCCTG
TAAAACCGCCAATGGTACCGCAATCCCTATTGGCGGTGGCAGCGCCAATGTTTATGTAAACCTTGCGCCTG
CCGTGAATGTGGGGCAAAACCTGGTCGTAGATCTTTCGACGCAAATCTTTTGCCATAACGATTACCCAGAA
ACCATTACAGACTATGTCACACTGCAACGAGGTTCGGCTTATGGCTGCGTGTTATCTAGTTTTTCCGGGAC
CGTAAAATATAATGGCAGTAGCTATCCTTTCCCTACTACCAGCGAAACGCCGCGGGTTGTTTATAATTCGA
GAACGGATAAGCCGTGGCCGGTGGCGCTTTATTTGACGCCGGTGAGCAGTGCGGGGGGAGTGGCGATTAAA
GCTGGCTCATTAATTGCCGTGCTTATTTTGCGACAGACCAACAACTATAACAGCGATGATTTCCAGTTTGT
GTGGAATATTTACGCCAATAATGATGTGGTGGTGCCCACTGGCGGCTGCGATGTTTCTGCTCGTGATGTCA
CCGTTACTCTGCCGGACTACCCTGGTTCAGTGCCGATTCCTCTTACCGTTTATTGTGCGAAAAGCCAAAAC
CTGGGGTATTACCTCTCCGGCACAACCGCAGATGCGGGCAACTCGATTTTCACCAATACCGCGTCGTTTTC
ACCCGCGCAGGGCGTCGGCGTACAGTTGACGCGCAACGGTACGATTATTCCAGCG 

 
MKRVITLFAVLLMGWSVNAWSFACKTANGTAIPIGGGSANVYVNLAPAVNVGQNLVVDLSTQIFCHNDYPE
TITDYVTLQRGSAYGCVLSSFSGTVKYNGSSYPFPTTSETPRVVYNSRTDKPWPVALYLTPVSSAGGVAIK
AGSLIAVLILRQTNNYNSDDFQFVWNIYANNDVVVPTGGCDVSARDVTVTLPDYPGSVPIPLTVYCAKSQN
LGYYLSGTTADAGNSIFTNTASFSPAQGVGVQLTRNGTIIPA 

 
fimH BEN374 
ATGAAACGAGTTATTACCCTGTTTGCTGTACTGCTGATGGGCTGGTCGGTAAATGCCTGGTCATTCGCCTG
TAAAACCGCCAATGGTACCGCAATCCCTATTGGCGGTGGCAGCGCCAATGTTTATGTAAACCTTGCGCCTG
CCGTGAATGTGGGGCAAAACCTGGTCGTAGATCTTTCGACGCAAATCTTTTGCCATAACGATTACCCAGAA
ACCATTACAGACTATGTCACACTGCAACGAGGTTCGGCTTATGGCGGCGTGTTATCTAGTTTTTCCGGGAC
CGTAAAATATAATGGCAGTAGCTATCCTTTCCCTACTACCAGCGAAACGCCGCGGGTTGTTTATAATTCGA
GAACGGATAAGCCGTGGCCGGTGGCGCTTTATTTGACGCCGGTGAGCAGTGCGGGGGGAGTGGCGATTAAA
GCTGGCTCATTAATTGCCGTGCTTATTTTGCGACAGACCAACAACTATAACAGCGATGATTTCCAGTTTGT
GTGGAATATTTACGCCAATAATGATGTGGTGGTGCCCACTGGCGGCTGCGATGTTTCTGCTCGTGATGTCA
CCGTTACTCTGCCGGACTACCCTGGTTCAGTGCCGATTCCTCTTACCGTTTATTGTGCGAAAAGCCAAAAC
CTGGGGTATTACCTCTCCGGCACAACCGCAGATGCGGGCAACTCGATTTTCACCAATACCGCGTCGTTTTC
ACCCGCGCAGGGCGTCGGCGTACAGTTGACGCGCAACGGTACGATTATTCCAGCG 

 
MKRVITLFAVLLMGWSVNAWSFACKTANGTAIPIGGGSANVYVNLAPAVNVGQNLVVDLSTQIFCHNDYPE
TITDYVTLQRGSAYGGVLSSFSGTVKYNGSSYPFPTTSETPRVVYNSRTDKPWPVALYLTPVSSAGGVAIK
AGSLIAVLILRQTNNYNSDDFQFVWNIYANNDVVVPTGGCDVSARDVTVTLPDYPGSVPIPLTVYCAKSQN
LGYYLSGTTADAGNSIFTNTASFSPAQGVGVQLTRNGTIIPA 

 
fimH BEN2908 
ATGAAACGAGTTATTACCCTGTTTGCTGTACTGCTGATGGGCTGGTCGGTAAATGCCTGGTCATTCGCCTG
TAAAACCGCCAATGGTACCGCAATCCCTATTGGCGGTGGCAGCGCCAATGTTTATGTAAACCTTGCGCCTG
CCGTGAATGTGGGGCAAAACCTGGTCGTAGATCTTTCGACGCAAATCTTTTGCCATAACGATTACCCAGAA
ACCATTACAGACTATGTCACACTGCAACGAGGTTCGGCTTATGGCGGCGTGTTATCTAGTTTTTCCGGGAC
CGTAAAATATAATGGCAGTAGCTATCCTTTCCCTACTACCAGCGAAACGCCGCGGGTTGTTTATAATTCGA
GAACGGATAAGCCGTGGCCGGTGGCGCTTTATTTGACGCCGGTGAGCAGTGCGGGGGGAGTGGCGATTAAA
GCTGGCTCATTAATTGCCGTGCTTATTTTGCGACAGACCAACAACTATAACAGCGATGATTTCCAGTTTGT
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GTGGAATATTTACGCCAATAATGATGTGGTGGTGCCCACTAGCGGCTGCGATGTTTCTGCTCGTGATGTCA
CCGTTACTCTGCCGGACTACCCTGGTTCAGTGCCGATTCCTCTTACCGTTTATTGTGCGAAAAGCCAAAAC
CTGGGGTATTACCTCTCCGGCACAACCGCAGATGCGGGCAACTCGATTTTCACCAATACCGCGTCGTTTTC
ACCCGCGCAGGGCGTCGGCGTACAGTTGACGCGCAACGGTACGATTATTCCAGCG 

 
 
MKRVITLFAVLLMGWSVNAWSFACKTANGTAIPIGGGSANVYVNLAPAVNVGQNLVVDLSTQIFCHNDYPE
TITDYVTLQRGSAYGGVLSSFSGTVKYNGSSYPFPTTSETPRVVYNSRTDKPWPVALYLTPVSSAGGVAIK
AGSLIAVLILRQTNNYNSDDFQFVWNIYANNDVVVPTSGCDVSARDVTVTLPDYPGSVPIPLTVYCAKSQN
LGYYLSGTTADAGNSIFTNTASFSPAQGVGVQLTRNGTIIPA 

 
fimH IHE3072 
ATGAAACGAGTTATTACCCTGTTTGCTGTACTGCTGATGGGCTGGTCGGTAAATGCCTGGTCATTCGCCTG
TAAAACCGCCAATGGTACCGCTATCCCTATTGGCGGTGGCAGCGCCAATGTTTATGTAAACCTTGCGCCCG
TCGTGAATGTGGGGCAAAACCTGGTCGTGGATCTTTCGACGCAAATCTTTTGCCATAACGATTATCCGGAA
ACCATTACAGACTATGTCACACTGCAACGAGGCTCGGCTTATGGCGGCGTGTTATCTAATTTTTCCGGGAC
CGTAAAATATAGTGGCAGTAGCTATCCATTTCCTACCACCAGCGAAACGCCGCGCGTTGTTTATAATTCGA
GAACGGATAAGCCGTGGCCGGTGGCGCTTTATTTGACGCCTGTGAGCAGTGCGGGCGGGGTGGCGATTAAA
GCTGGCTCATTAATTGCCGTGCTTATTTTGCGACAGACCAACAACTATAACAGCGATGATTTCCAGTTTGT
GTGGAATATTTACGCCAATAATGATGTGGTGGTGCCTACTGGCGGCTGCGATGTTTCTGCTCGTGATGTCA
CCGTTACTCTGCCGGACTACCCTGGTTCAGTGCCAATTCCTCTTACCGTTTATTGTGCGAAAAGCCAAAAC
CTGGGGTATTACCTCTCCGGCACAACCGCAGATGCGGGCAACTCGATTTTCACCAATACCGCGTCGTTTTC
ACCTGCACAGGGCGTCGGCGTACAGTTGACGCGCAACGGTACGATTATTCCAGCG 

 
MKRVITLFAVLLMGWSVNAWSFACKTANGTAIPIGGGSANVYVNLAPVVNVGQNLVVDLSTQIFCHNDYPE
TITDYVTLQRGSAYGGVLSNFSGTVKYSGSSYPFPTTSETPRVVYNSRTDKPWPVALYLTPVSSAGGVAIK
AGSLIAVLILRQTNNYNSDDFQFVWNIYANNDVVVPTGGCDVSARDVTVTLPDYPGSVPIPLTVYCAKSQN
LGYYLSGTTADAGNSIFTNTASFSPAQGVGVQLTRNGTIIPA 

 
fimH 1772 
ATGAAACGAGTTATTACCCTGTTTGCTGTACTGCTGATGGGCTGGTCGGTAAATGCCTGGTCATTCGCCTG
TAAAACCGCCAATGGTACCGCTATCCCTATTGGCGGTGGCAGCGCCAATGTTTATGTAAACCTTGCGCCCG
TCGTGAATGTGGGGCAAAACCTGGTCGTGGATCTTTCGACGCAAATCTTTTGCCATAACGATTATCCGGAA
ACCATTACAGACTATGTCACACTGCAACGAGGCTCGGCTTATGGCGGCGTGTTATCTAATTTTTCCGGGAC
CGTAAAATATAGTGGCAGTAGCTATCCATTTCCTACCACCAGCGAAACGCCGCGCGTTGTTTATAATTCGA
GAACGGATAAGCCGTGGCCGGTGGCGCTTTATTTGACGCCTGTGAGCAGTGCGGGCGGGGTGGCGATTAAA
GCTGGCTCATTAATTGCCGTGCTTATTTTGCGACAGACCAACAA 

 
MKRVITLFAVLLMGWSVNAWSFACKTANGTAIPIGGGSANVYVNLAPVVNVGQNLVVDLSTQIFCHNDYPE
TITDYVTLQRGSAYGGVLSNFSGTVKYSGSSYPFPTTSETPRVVYNSRTDKPWPVALYLTPVSSAGGVAIK
AGSLIAVLILRQTN 

 
fimH AC/I ou 789 
ATGAAACGAGTTATTACCCTGTTTGCTGTACTGCTGATGGGCTGGTCGGTAAATGCCTGGTCATTCGCCTG
TAAAACCGCCAATGGTACCGCTATCCCTATTGGCGGTGGCAGCGCCAATGTTTATGTAAACCTTGCGCCCG
TCGTGAATGTGGGGCAAAACCTGGTCGTGGATCTTTCGACGCAAATCTTTTGCCATAACGATTATCCGGAA
ACCATTACAGACTATGTCACACTGCAACGAGGCTCGGCTTATGGCGGCGTGTTATCTAATTTTTCCGGGAC
CGTAAAATATAGTGGCAGTAGCTATCCATTTCCTACCACCAGCGAAACGCCGCGCGTTGTTTATAATTCGA
GAACGGATAAGCCGTGGCCGGTGGCGCTTTATTTGACGCCTGTGAGCAGTGCGGGCGGGGTGGCGATTAAA
GCTGGCTCATTAATTGCCGTGCTTATTTTGCGACAGACCAACAACTATAACAGCGATGATTTCCAGTTTGT
GTGGAATATTTACGCCAATAATGATGTGGTGGTGCCTACTGGCGGCTGCGATGTTTCTGCTCGTGATGTCA
CCGTTACTCTGCCGGACTACCCTGGTTCAGTGCCAATTCCTCTTACCGTTTATTGTGCGAAAAGCCAAAAC
CTGGGGTATTACCTCTCCGGCACAACCGCAGATGCGGGCAACTCGATTTTCACCAATACCGCGTCGTTTTC
ACCTGCACAGGGCGTCGGCGTACAGTTGACGCGCAACGGTACGATTATTCCAGCG 
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MKRVITLFAVLLMGWSVNAWSFACKTANGTAIPIGGGSANVYVNLAPVVNVGQNLVVDLSTQIFCHNDYPE
TITDYVTLQRGSAYGGVLSNFSGTVKYSGSSYPFPTTSETPRVVYNSRTDKPWPVALYLTPVSSAGGVAIK
AGSLIAVLILRQTNNYNSDDFQFVWNIYANNDVVVPTGGCDVSARDVTVTLPDYPGSVPIPLTVYCAKSQN
LGYYLSGTTADAGNSIFTNTASFSPAQGVGVQLTRNGTIIPA 

 
fimH 285 
ATGAAACCAGTTATTACCCTGTTTGCTGTACTGCTGATGGGCTGGTCGGTAAATGCCTGGTCATTCGCCTG
TAAAACCGCCAATGGTACAGCTATCCCTATTGGCGGTGGCAGCGCTAATGTTTATGTAAACCTTGCGCCTG
CCGTGAATGTGGGGCAAAACCTGGTCGTAGATCTTTCGACGCAAATCTTTTGCCATAACGATTATCCGGAA
ACCATTACAGACTATGTCACACTGCAACGAGGCTCGGCTTATGGCGGCGTGTTATCTAATTTTTCCGGGAC
CGTAAAATATAGTGGCAGTAGCTATCCATTTCCGACCACCAGCGAAACGCCGCGCGTTGTTTATAATTCGA
GAACGGATAAGCCGTGGCCGGTGGCGCTTTATTTGACGCCTGTGAGCAGTGCGGGCGGGGTGGCGATTAAA
GCTGGCTCATTAATTGCCGTGCTTATTTTGCGACAGACCAACAACTATAACAGCGATGATTTCCAGTTTGT
GTGGAATATTTACGCCAATAATGATGTGGTGGTGCCTACTGGCGGCTGCGATGTTTCTGCTCGTGATGTCA
CCGTTACTCTGCCGGACTACCCTGGTTCAGTGCCAATTCCTCTTACCGTTTATTGTGCGAAAAGCCAAAAC
CTGGGGTATTACCTCTCCGGCACAACCGCAGATGCGGGCAACTCGATTTTCACCAATACCGCGTCGTTTTC
ACCTGCACAGGGCGTCGGCGTACAGTTGACGCGCAACGGTACGATTATTCCAGCG 

 
 
MKPVITLFAVLLMGWSVNAWSFACKTANGTAIPIGGGSANVYVNLAPAVNVGQNLVVDLSTQIFCHNDYPE
TITDYVTLQRGSAYGGVLSNFSGTVKYSGSSYPFPTTSETPRVVYNSRTDKPWPVALYLTPVSSAGGVAIK
AGSLIAVLILRQTNNYNSDDFQFVWNIYANNDVVVPTGGCDVSARDVTVTLPDYPGSVPIPLTVYCAKSQN
LGYYLSGTTADAGNSIFTNTASFSPAQGVGVQLTRNGTIIPA 
 

8.2 Nucleotide and deduced amino-acid sequence of t he N-terminal 
part of matA in the colirisk strains 
 
> matA seq in K12 
GTGACATGGCAAAGTGATTACAGTAGGGACTATGAGGTTAAAAACCATATGGAATGTCAAAACCGTTCTGA
TAAATACATCTGGTCTCCCCATGACGCCTACTTCTATAAAGGACTATCTGAACTGATTGTGGATATCGACA
GATTAATTTATCTATCGTTGGAGAAAATTAGAAAAGATTTCGTGTTTATCAATCTCAGTACGGATTCTTTA
TCTGAATTTATAAACCGTGATAATGAATGGTTATCCGCGGTAAAGGGGAAACAGGTCGTATTGATTGCGGC
CAGAAAGTCAGAGGCCTTAGCAAATTATTGGTATTACAATAGCAATATTAGGGGCGTGGTATACGCTGGAC
TGAGTCGTGATATTAGAAAAGAACTGGTCTATGTGATTAATGGCAGGTTCCTGAGAAAAGATATTAAGAAA
GATAAAATCACGGACCGGGAAATGGAAATTATCCGCATGACGGCCCAGGGAATGCAACCTAAATCGATTGC
CAGAATTGAAAATTGTAGTGTGAAGACAGTGTATACCCATCGGCGTAATGCTGAGGCCAAGCTGTACTCAA
AAATATATAAGTTGGTTCAGTAA 

 
MTWQSDYSRDYEVKNHMECQNRSDKYIWSPHDAYFYKGLSELIVDIDRLIYLSLEKIRKDFVFINLSTDSL
SEFINRDNEWLSAVKGKQVVLIAARKSEALANYWYYNSNIRGVVYAGLSRDIRKELVYVINGRFLRKDIKK
DKITDREMEIIRMTAQGMQPKSIARIENCSVKTVYTHRRNAEAKLYSKIYKLVQ 

 
>matA seq in IHE3034 
GTGACATGGCAAAATGATTACAGCAGGGACTATGAGGTTAAAAACCATATGGAATGTCAAAACCGTTCTGA
TAAATACATCTGGTCTCCCCATGACGCCTACTTCTATAAAGGACTATCTGAACTGATTGTGGATATCGACA
GATTAATTTATCTATCGCTGGAGAAAATCAGAAAAGATTTCGTGTTTATCAATCTCAATACGGATTCTTTA
ACTGAGTTTATAAACCGTGATAATGAGTGGTTATCCGCGGTAAAGGGGAAACAGGTCGTATTGATTGCGGC
CAGAAAGTCAGAAGCCTTAGCAAATTATTGGTATTACAACAGCAATATTAGGGGCGTGGTATACGCTGGAC
TGAGTCGTGATATTAGAAAAGAACTGGCCTATGTGATTAATGGCAGGTTCCTGAGAAAAGATATTAAGAAA
GATAAAATCACTGACCGGGAAATGGAAATTATCCGCATGACGGCTCAGGGAATGCTGCCTAAATCGATTGC
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CAGAATTGAAAATTGTAGTGTGAAGACAGTGTATACCCATCGGCGGAATGCAGAGGCCAAGCTGTACTCAA
AATTATATAAGTTGGTTCAGTAA 
 
MTWQNDYSRDYEVKNHMECQNRSDKYIWSPHDAYFYKGLSELIVDIDRLIYLSLEKIRKDFVFINLNTDSL
TEFINRDNEWLSAVKGKQVVLIAARKSEALANYWYYNSNIRGVVYAGLSRDIRKELAYVINGRFLRKDIKK
DKITDREMEIIRMTAQGMLPKSIARIENCSVKTVYTHRRNAEAKLYSKLYKLVQ 

 
> matA BEN374 
GTGACATGGCAAAATGATTACAGCAGGGACTATGAGGTTAAAAACCATATGGAATGTCAAAACCGTTCTGA
TAAATACATCTGGTCTCCCCATGACGCCTACTTCTATAAAGGACTATCTGAACTGATTGTGGATATCGACA
GATTAATTTATCTATCGCTGGAGAAAATCAGAAAAGATTTCGTGTTTATCAATCTCAATACGGATTCTTTA
ACTGAGTTTATAAACCGTGATAATGAGTGGTTATCCGCGGTAAAGGGGAAACAGGTCGTATTGATTGCGGC
CAGAAAGTCAGAAGCCTTAGCAAATTATTGGTATTACAACAGCAATATTAGGGGCGTGGTATACGCTGGAC
TGAGTCGTGATATTAGAAAAGAACTGGCCTATGTGATTAATGGCAGGTTCCTGAGAAAAGATATTAAGAAA
GATAAAATCACTGACCGGGAAATGGAAATTATCCGCATGACGGCTCAGGGAATGCTGCCTAAATCGATTGC
CAGAATTGAAAATTGTAGTGTGAAGACAGTGTATACCCATCGGCGGAATGCAGAGGCCAAGCTGTACTCAA
AATTATATAAGTTGGTTCAGTAA 

 
MTWQNDYSRDYEVKNHMECQNRSDKYIWSPHDAYFYKGLSELIVDIDRLIYLSLEKIRKDFVFINLNTDSL
TEFINRDNEWLSAVKGKQVVLIAARKSEALANYWYYNSNIRGVVYAGLSRDIRKELAYVINGRFLRKDIKK
DKITDREMEIIRMTAQGMLPKSIARIENCSVKTVYTHRRNAEAKLYSKLYKLVQ 

 
>matA 1772 
GTGACATGGCAAAATGATTACAGCAGGGACTATGAGGTTAAAAACCATATGGAATGTCAAAACCGTTCTGA
TAAATACATCTGGTCTCCCCATGACGCCTACTTCTATAAAGGACTATCTGAACTGATTGTGGATATCGACA
GATTAATTTATCTATCGCTGGAGAAAATCAGAAAAGATTTCGTGTTTATCAATCTCAATACGGATTCTTTA
ACTGAGTTTATAAACCGTGATAATGAGTGGTTATCCGCGGTAAAGGGGAAACAGGTCGTATTGATTGCGGC
CAGAAAGTCAGAAGCCTTAGCAAATTATTGGTATTACAACAGCAATATTAGGGGCGTAGTATACGCTGGAC
TGAGTCGTGATATTAGAAAAGAACTGGCCTATGTGATTAATGGCAGGTTCCTGAGAAAAGATATTAAGAAA
GATAAAATCACTGACCGGGAAATGGAAATTATCCGCATGACGGCTCAGGGAATGCTGCCTAAATCGATTGC
CAGAATTGAAAATTGTAGTGTGAAGACAGTGTATACCCATCGGCGTAATGCTGAGGCCAAGCTGTACTCAA
AAATATATAAGTTGGTTCCGTAA 

 
MTWQNDYSRDYEVKNHMECQNRSDKYIWSPHDAYFYKGLSELIVDIDRLIYLSLEKIRKDFVFINLNTDSL
TEFINRDNEWLSAVKGKQVVLIAARKSEALANYWYYNSNIRGVVYAGLSRDIRKELAYVINGRFLRKDIKK
DKITDREMEIIRMTAQGMLPKSIARIENCSVKTVYTHRRNAEAKLYSKIYKLVP 

 
>matA BEN2908  
GTGACATGGCAAAATGATTACAGCAGGGACTATGAGGTTAAAAACCATATGGAATGTCAAAACCGTTCTGA
TAAATACATCTGGTCTCCCCATGACGCCTACTTCTATAAAGGACTATCTGAACTGATTGTGGATATCGACA
GATTAATTTATCTATCGCTGGAGAAAATCAGAAAAGATTTCGTGTTTATCAATCTCAATACGGATTCTTTA
ACTGAGTTTATAAACCGTGATAATGAGTGGTTATCCGCGGTAAAGGGGAAACAGGTCGTATTGATTGCGGC
CAGAAAGTCAGAAGCCTTAGCAAATTATTGGTATTACAACAGCAATATTAGGGGCGTGGTATACGCTGGAC
TGAGTCGTGATATTAGAAAAGAACTGGCCTATGTGATTAATGGCAGGTTCCTGAGAAAAGATATTAAGAAA
GATAAAATCACTGACCGGGAAATGGAAATTATCCGCATGACGGCTCAGGGAATGCTGCCTAAATCGATTGC
CAGAATTGAAAATTGTAGTGTGAAGACAGTGTATACCCATCGGCGGAATGCAGAGGCCAAGCTGTACTCAA
AATTATATAAGTTGGTTCAGTAA 
 
MTWQNDYSRDYEVKNHMECQNRSDKYIWSPHDAYFYKGLSELIVDIDRLIYLSLEKIRKDFVFINLNTDSL
TEFINRDNEWLSAVKGKQVVLIAARKSEALANYWYYNSNIRGVVYAGLSRDIRKELAYVINGRFLRKDIKK
DKITDREMEIIRMTAQGMLPKSIARIENCSVKTVYTHRRNAEAKLYSKLYKLVQ 

 
>matA BEN79 
GTGACATGGCAAAATGATTACAGCAGGGACTATGAGGTTAAAAACCATATGGAATGTCAAAACCGTTCTGA
TAAATACATCTGGTCTCCCCATGACGCCTACTTCTATAAAGGACTATCTGAACTGATTGTGGATATCGACA
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GATTAATTTATCTATCGCTGGAGAAAATCAGAAAAGATTTCGTGTTTATCAATCTCAATACGGATTCTTTA
ACTGAGTTTATAAACCGTGATAATGAGTGGTTATCCGCGGTAAAGGGGAAACAGGTCGTATTGATTGCGGC
CAGAAAGTCAGAAGCCTTAGCAAATTATTGGTATTACAACAGCAATATTAGGGGCGTGGTATACGCTGGAC
TGAGTCGTGATATTAGAAAAGAACTGGCCTATGTGATTAATGGCAGGTTCCTGAGAAAAGATATTAAGAAA
GATAAAATCACTGACCGGGAAATGGAAATTATCCGCATGACGGCTCAGGGAATGCTGCCTAAATCGATTGC
CAGAATTGAAAATTGTAGTGTGAAGACAGTGTATACCCATCGGCGGAATGCAGAGGCCAAGCTGTACTCAA
AATTATATAAGTTGGTTCAGTAA 
 
MTWQNDYSRDYEVKNHMECQNRSDKYIWSPHDAYFYKGLSELIVDIDRLIYLSLEKIRKDFVFINLNTDSL
TEFINRDNEWLSAVKGKQVVLIAARKSEALANYWYYNSNIRGVVYAGLSRDIRKELAYVINGRFLRKDIKK
DKITDREMEIIRMTAQGMLPKSIARIENCSVKTVYTHRRNAEAKLYSKLYKLVQ 

 
>matA 285 
GTGACATGGCAAAGTGATTACAGTAGGGACTATGAGGTTAAAAACCATATGGAATGTCAAAACCGTTCTGA
TAAATACATCTGGTCTCCCCATGACGCCTACTTCTATAAAGGACTATCTGAACTGATTGTGGATATCGACA
GATTAATTTATCTATCGTTGGAGAAAATTAGAAAAGATTTCGTGTTTATCAATCTCAGTACGGATTCTTTA
TCTGAATTTATAAACCGTGATAATGAATGGTTATCCGCGGTAAAGGGGAAACAGGTCGTATTGATTGCGGC
CAGAAAGTCAGAAGCCTTAGCAAATTATTGGTATTACAATAGCAATATTAGGGGCGTGGTATACGCTGGAC
TGAGTCGTGATATTAGAAAAGAACTGGCCTATGTGATTAATGGCAGGTTCCTGAGAAAAGATATTAAGAAA
GATAAAATCATGGACCGGGAAATGGAAATTATCCGCATGACGGCCCAGGGAATGCAACCTAAATCGATTGC
CAGAATTGAAAATTGTAGTGTGAAGACAGTGTATACCCATCGGCGTAATGCTGAGGCCAAGCTGTACTCAA
AAATATATAAGTTGGTTCAGTAA 
 
MTWQSDYSRDYEVKNHMECQNRSDKYIWSPHDAYFYKGLSELIVDIDRLIYLSLEKIRKDFVFINLSTDSL
SEFINRDNEWLSAVKGKQVVLIAARKSEALANYWYYNSNIRGVVYAGLSRDIRKELAYVINGRFLRKDIKK
DKIMDREMEIIRMTAQGMQPKSIARIENCSVKTVYTHRRNAEAKLYSKIYKLVQ 

 
>matA BEN2932 (AC/I) 
GTGACATGGCAAAGTGATTACAGTAGGGACTATGAGGTTAAAAACCATATGGAATGTCAAAACCGTTCTGA
TAAATACATCTGGTCTCCCCATGACGCCTACTTCTATAAAGGACTATCTGAACTGATTGTGGATATCGACA
GATTAATTTATCTATCGTTGGAGAAAATTAGAAAAGATTTCGTGTTTATCAATCTCAGTACGGATTCTTTA
TCTGAATTTATAAACCGTGATAATGAATGGTTATCCGCGGTAAAGGGGAAACAGGTCGTATTGATTGCGGC
CAGAAAGTCAGAAGCCTTAGCAAATTATTGGTATTACAATAGCAATATTAGGGGCGTGGTATACGCTGGAC
TGAGTCGTGATATTAGAAAAGAACTGGCCTATGTGATTAATGGCAGGTTCCTGAGAAAAGATATTAAGAAA
GATAAAATCACGGACCGGGAAATGGAAATTATCCGCATGACGGCCCAGGGAATGCAACCTAAATCGATTGC
CAGAATTGAAAATTGTAGTGTGAAGACAGTGTATACCCATCGGCGTAATGCTGAGGCCAAGCTGTACTCAA
AAATATATAAGTTGGTTCAGTAA 
 
MTWQSDYSRDYEVKNHMECQNRSDKYIWSPHDAYFYKGLSELIVDIDRLIYLSLEKIRKDFVFINLSTDSL
SEFINRDNEWLSAVKGKQVVLIAARKSEALANYWYYNSNIRGVVYAGLSRDIRKELAYVINGRFLRKDIKK
DKITDREMEIIRMTAQGMQPKSIARIENCSVKTVYTHRRNAEAKLYSKIYKLVQ 

 
>matA IHE3072 
GTGACATGGCAAAATGATTACAGCAGGGACTATGAGGTTAAAAACCATATGGAATGTCAAAACCGTTCTGA
TAAATACATCTGGTCTCCCCATGACGCCTACTTCTATAAAGGACTATCTGAACTGATTGTGGATATCGACA
GATTAATTTATCTATCGCTGGAGAAAATCAGAAAAGATTTCGTGTTTATCAATCTCAATACGGATTCTTTA
ACTGAGTTTATAAACCGTGATAATGAGTGGTTATCCGCGGTAAAGGGGAAACAGGTCGTATTGATTGCGGC
CAGAAAGTCAGAAGCCTTAGCAAATTATTGGTATTACAACAGCAATATTAGGGGCGTGGTATACGCTGGAC
TGAGTCGTGATATTAGAAAAGAACTGGCCTATGTGATTAATGGCAGGTTCCTGAGAAAAGATATTAAGAAA
GATAAAATCACTGACCGGGAAATGGAAATTATCCGCATGACGGCTCAGGGAATGCTGCCTAAATCGATTGC
CAGAATTGAAAATTGTAGTGTGAAGACAGTGTATACCCATCGGCGGAATGCAGAGGCCAAGCTGTACTCAA
AATTATATAAGTTGGTTCAGTAA 
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MTWQNDYSRDYEVKNHMECQNRSDKYIWSPHDAYFYKGLSELIVDIDRLIYLSLEKIRKDFVFINLNTDSL
TEFINRDNEWLSAVKGKQVVLIAARKSEALANYWYYNSNIRGVVYAGLSRDIRKELAYVINGRFLRKDIKK
DKITDREMEIIRMTAQGMLPKSIARIENCSVKTVYTHRRNAEAKLYSKLYKLVQ 

 
>matA RS218 
GTGACATGGCAAAATGATTACAGCAGGGACTATGAGGTTAAAAACCNTATGGAATGTCAAAACCGTTCTGA
TAAATACATCTGGTCTCCCCATGACGCCTACTTCTATAAAGGACTATCTGAACTGATTGTGGATATCGACA
GATTAATTTATCTATCGCTGGAGAAAATCAGAAAAGATTTCGTGTTTATCAATCTCAATACGGATTCTTTA
ACTGAGTTTATAAACCGTGATAATGAGTGGTTATCCGCGGTAAAGGGGAAACAGGTCGTATTGATTGCGGC
CAGAAAGTCAGAAGCCTTAGCAAATTATTGGTATTACAACAGCAATATTAGGGGCGTGGTATACGCTGGAC
TGAGTCGTGATATTAGAAAAGAACTGGCCTATGTGATTAATGGCAGGTTCCTGAGAAAAGATATTAAGAAA
GATAAAATCACTGACCGGGAAATGGAAATTATCCGCATGACGGCTCAGGGAATGCTGCCTAAATCGATTGC
CAGAATTGAAAATTGTAGTGTGAAGACAGTGTATACCCATCGGCGGAATGCAGAGGCCAAGCTGTACTCAA
AATTATATAAGTTGGTTCAGTAA 
 
MTWQNDYSRDYEVKNHMECQNRSDKYIWSPHDAYFYKGLSELIVDIDRLIYLSLEKIRKDFVFINLNTDSL
TEFINRDNEWLSAVKGKQVVLIAARKSEALANYWYYNSNIRGVVYAGLSRDIRKELAYVINGRFLRKDIKK
DKITDREMEIIRMTAQGMLPKSIARIENCSVKTVYTHRRNAEAKLYSKLYKLVQ 

8.3 Nucleotide and deduced amino-acid sequence of t he N-terminal 
part of matB in the colirisk strains 
 
>matB seq in K12 
ATGAAAAAAAAGGTTCTGGCAATAGCTCTGGTAACGGTGTTTACCGGCATGGGTGTGGCGCAGGCTGCTGA
CGTAACAGCTCAGGCTGTAGCGACCTGGTCGGCAACAGCCAAAAAAGACACCACCAGTAAGCTGGTTGTGA
CGCCACTCGGTAGCCTGGCGTTCCAGTATGCCGAAGGCATTAAAGGTTTTAACTCACAGAAAGGTCTATTT
GACGTGGCTATCGAGGGTGACTCAACGGCTACCGCCTTTAAACTGACCTCACGTCTTATCACCAACACATT
AACCCAGTTGGATACCTCAGGTTCCACACTGAATGTGGGCGTGGATTATAACGGCGCGGCAGTCGAAAAAA
CTGGCGATACCGTGATGATCGATACCGCCAACGGCGTACTGGGCGGCAACCTTAGCCCGCTGGCTAACGGT
TACAATGCCAGCAATCGTACCACCGCACAGGATGGTTTCACCTTCTCCATCATCAGCGGTACCACCAATGG
TACCACCGCAGTAACAGATTACAGCACTCTACCGGAAGGCATCTGGAGCGGCGACGTTAGCGTACAGTTCG
ACGCGACCTGGACCAGTTAA 
 
MKKKVLAIALVTVFTGMGVAQAADVTAQAVATWSATAKKDTTSKLVVTPLGSLAFQYAEGIKGFNSQKGLF
DVAIEGDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGAAVEKTGDTVMIDTANGVLGGNLSPLANG
YNASNRTTAQDGFTFSIISGTTNGTTAVTDYSTLPEGIWSGDVSVQFDATWTS* 
 

>matB IHE3034 
ATGAAAAAAAAGGTTCTGGCAATAGCTCTGGTAACGGTGTTTACCGGTACAGGTGTAGCGCAGGCTGCTGA
CGTAACAGCTCAGGCTGTAGCGACCTGGTCAGCAACAGCCAAAAAAGACACCACCAGTAAGCTGGTTGTGA
CGCCACTCGGTAGCCTGGCGTTCCAGTATGCCGAAGGCATTAAAGGTTTTAACTCACAAAAAGGTCTATTT
GACGTGGCTATCGAGGGTGACTCAACGGCTACCGCCTTTAAACTGACCTCACGCCTTATCACCAACACCTT
AACCCAGTTGGATACCTCAGGTTCCACACTGAATGTGGGCGTGGATTATAACGGCGCGGCAGTCGAAAAAA
CTGGCGATACCGTGATGATCGATACCGCCAACGGCGTACTGGGCGGCAACCTTAGCCCACTGGCTAACGGT
TACAATGCCAGCAATCGTACCACCGCACAGGATGGTTTCACTTTCTCCATCATCAGCGGCACCACCAATGG
TACCACCGCAGTAACCGATTACAGCACTCTACCGGAAGGCATCTGGAGCGGCGACGTTAGCGTACAGTTCG
ACGCTACCTGGACCAGTTAA 

 
MKKKVLAIALVTVFTGTGVAQAADVTAQAVATWSATAKKDTTSKLVVTPLGSLAFQYAEGIKGFNSQKGLF
DVAIEGDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGAAVEKTGDTVMIDTANGVLGGNLSPLANG
YNASNRTTAQDGFTFSIISGTTNGTTAVTDYSTLPEGIWSGDVSVQFDATWTS* 
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>matB BEN374  
ATGAAAAAAAAGGTTCTGGCAATAGCTCTGGTAACGGTGTTTACCGGTACAGGTGTAGCGCAGGCTGCTGA
CGTAACAGCTCAGGCTGTAGCGACCTGGTCAGCAACAGCCAAAAAAGACACCACCAGAAAGCTGGTTGTGA
CGCCACTCGGTAGCCTGGCGTTCCAGTATGCCGAAGGCATTAAAGGTTTTAACTCACAAAAAGGTCTATTT
GACGTGGCTATCGAGGGTGACTCAACGGCTACCGCCTTTAAACTGACCTCACGCCTTATCACCAACACCTT
AACCCAGTTGGATACCTCAGGTTCCACACTGAATGTGGGCGTGGATTATAACGGCGCGACAGTCGAAAAAA
CTGGCGATACCGTGATGATCGATACCGCCAACGGCGTACTGGGCGGCAACCTTAGCCCACTGGCTAACGGT
TACAATGCCAGCAATCGTACCACCGCACAGGATGGTTTCACTTTCTCCATCATCAGCGGCACCACCAATGG
TACCACCGCAGTAACCGATTACAGCACTCTACCGGAAGGCATCTGGAGCGGCGACGTTAGCGTACAGTTCG
ACGCTACCTGGACCAGTTAA 
 
MKKKVLAIALVTVFTGTGVAQAADVTAQAVATWSATAKKDTTRKLVVTPLGSLAFQYAEGIKGFNSQKGLF
DVAIEGDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGATVEKTGDTVMIDTANGVLGGNLSPLANG
YNASNRTTAQDGFTFSIISGTTNGTTAVTDYSTLPEGIWSGDVSVQFDATWTS* 

 
>matB 1772  
ATGAAAAAAAAGGTTCTGGCAATAGCTCTGGTAACGGTTTTTACCGGCATGGGTGTGGCGCAGGCTGCTGA
CGTAACAGCTCAGGCTGTAGCGACCTGGTCAGCAACAGCCAAAAAAGACACCACCAGTAAGCTGGTTGTGA
CGCCACTCGGTAGCCTGGCGTTCCAGTATGCCGAAGGCATTAAAGGTTTTAACTCACAGAAAGGTCTATTT
GACGTAGCTATCGAGGGTGACTCAACGGCTACCGCCTTTAAACTGACCTCACGTCTTATCACCAACACCTT
AACCCAGTTGGATACCTCAGGTTCCACACTGAATGTGGGCGTTGATTATAACGGCGCGGCAGTCGAAAAAA
CTGGCGATACCGTGATGATCGATACCGCCAACGGCGTACTGGGCGGCAACCTTAGCCCACTGGCTAACGGT
TACAATGCCAGCAATCGTACCACCGCACAGGATGGTTTCACTTTCTCCATCATCAGCGGCACCACCAATGG
TACCACCGCAGTAACCGATTACAGCACTCTACCGGAAGGCATCTGGAGCGGCGACGTTAGCGTACAGTTCG
ACGCTACCTGGACCAGTTAA 
 
MKKKVLAIALVTVFTGMGVAQAADVTAQAVATWSATAKKDTTSKLVVTPLGSLAFQYAEGIKGFNSQKGLF
DVAIEGDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGAAVEKTGDTVMIDTANGVLGGNLSPLANG
YNASNRTTAQDGFTFSIISGTTNGTTAVTDYSTLPEGIWSGDVSVQFDATWTS* 

 
>matB BEN2908  
ATGAAAAAAAAGGTTCTGGCAATAGCTCTGGTAACGGTGTTTACCGGTACAGGTGTAGCGCAGGCTGCTGA
CGTAACAGCTCAGGCTGTAGCGACCTGGTCAGCAACAGCCAAAAAAGACACCACCAGTAAGCTGGTTGTGA
CGCCACTCGGTAGCCTGGCGTTCCAGTATGCCGAAGGCATTAAAGGTTTTAACTCACAAAAAGGTCTATTT
GACGTGGCTATCGAGGGTGACTCAACGGCTACCGCCTTTAAACTGACCTCACGCCTTATCACCAACACCTT
AACCCAGTTGGATACCTCAGGTTCCACACTGAATGTGGGCGTGGATTATAACGGCGCGGCAGTCGAAAAAA
CTGGCGATACCGTGATGATCGATACCGCCAACGGCGTACTGGGCGGCAACCTTAGCCCACTGGCTAACGGT
TACAATGCCAGCAATCGTACCACCGCACAGGATGGTTTCACTTTCTCCATCATCAGCGGCACCACCAATGG
TACCACCGCAGTAACCGATTACAGCACTCTACCGGAAGGCATCTGGAGCGGCGACGTTAGCGTACAGTTCG
ACGCTACCTGGACCAGTTAA 
 
MKKKVLAIALVTVFTGTGVAQAADVTAQAVATWSATAKKDTTSKLVVTPLGSLAFQYAEGIKGFNSQKGLF
DVAIEGDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGAAVEKTGDTVMIDTANGVLGGNLSPLANG
YNASNRTTAQDGFTFSIISGTTNGTTAVTDYSTLPEGIWSGDVSVQFDATWTS* 

 
>matB BEN79  
ATGAAAAAAAAGGTTCTGGCAATAGCTCTGGTAACGGTGTTTACCGGTACAGGTGTAGCGCAGGCTGCTGA
CGTAACAGCTCAGGCTGTAGCGACCTGGTCAGCAACAGCCAAAAAAGACACCACCAGTAAGCTGGTTGTGA
CGCCACTCGGTAGCCTGGCGTTCCAGTATGCCGAAGGCATTAAAGGTTTTAACTCACAAAAAGGTCTATTT
GACGTGGCTATCGAGGGTGACTCAACGGCTACCGCCTTTAAACTGACCTCACGCCTTATCACCAACACCTT
AACCCAGTTGGATACCTCAGGTTCCACACTGAATGTGGGCGTGGATTATAACGGCGCGACAGTCGAAAAAA
CTGGCGATACCGTGATGATCGATACCGCCAACGGCGTACTGGGCGGCAACCTTAGCCCACTGGCTAACGGT
TACAATGCCAGCAATCGTACCACCGCACAGGATGGTTTCACTTTCTCCATCATCAGCGGCACCACCAATGG
TACCACCGCAGTAACCGATTACAGCACTCTACCGGAAGGCATCTGGAGCGGCGACGTTAGCGTACAGTTCG
ACGCTACCTGGACCAGTTAA 
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MKKKVLAIALVTVFTGTGVAQAADVTAQAVATWSATAKKDTTSKLVVTPLGSLAFQYAEGIKGFNSQKGLF
DVAIEGDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGATVEKTGDTVMIDTANGVLGGNLSPLANG
YNASNRTTAQDGFTFSIISGTTNGTTAVTDYSTLPEGIWSGDVSVQFDATWTS* 

 
>matB 285  
ATGAAAAAAAAGGTTCTGGCAATAGCTCTGGTAACGGTGTTTACCGGCATGGGTGTGGCGCAGGCTGCTGA
CGTAACAGCTCAGGCTGTAGCGACCTGGTCGGCAACAGCCAAAAAAGACACCACCAGTAAGCTGGTTGTGA
CGCCACTCGGTAGCCTGGCGTTCCAGTATGCCGAAGGCATTAAAGGTTTTAACTCACAGAAAGGTCTATTT
GACGTGGCTATCGAGGGTGACTCAACGGCTACCGCCTTTAAACTGACCTCACGTCTTATCACCAACACATT
AACCCAGTTGGATACCTCAGGTTCCACACTGAATGTGGGCGTGGATTATAACGGCGCGGCAGTCGAAAAAA
CTGGCGATACCGTGATGATCGATACCGCCAACGGCGTACTGGGCGGCAACCTTAGCCCGCTGGCTAACGGT
TACAATGCCAGCAATCGTACCACCGCACAGGATGGTTTCACCTTCACCATCATCAGCGGCACCACCAATGG
TACCACCGCAGTAACCGATTACAGCACTCTACCGGAAGGCATCTGGAGCGGCGACGTTAGCGTACAGTTCG
ACGCGACCTGGACCAGTTAA 
 
MKKKVLAIALVTVFTGMGVAQAADVTAQAVATWSATAKKDTTSKLVVTPLGSLAFQYAEGIKGFNSQKGLF
DVAIEGDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGAAVEKTGDTVMIDTANGVLGGNLSPLANG
YNASNRTTAQDGFTFTIISGTTNGTTAVTDYSTLPEGIWSGDVSVQFDATWTS* 

 
>matB BEN2932 (AC/I)  
ATGAAAAAAAAGGTTCTGGCAATAGCTCTGGTAACGGTGTTTACCGGCATGGGTGTGGCGCAGGCTGCTGA
CGTAACAGCTCAGGCTGTAGCGACCTGGTCGGCAACAGCCAAAAAAGACACCACCAGTAAGCTGGTTGTGA
CGCCACTCGGTAGCCTGGCGTTCCAGTATGCCGAAGGCATTAAAGGTTTTAACTCACAGAAAGGTCTATTT
GACGTGGCTACCGAGAGTGACTCAACGGCTACCGCCTTTAAACTGACCTCACGTCTTATCACCAACACATT
AACCCAGTTGGATACCTCAGGTTCCACACTGAATGTGGGCGTGGATTATAACGGCGCGGCAGTCGAAAAAA
CTGGCGATACCGTGATGATCGATACCGCCAACGGCGTACTGGGCGGCAACCTTAGCCCGCTGGCTAACGGT
TACAATGCCAGCAATCGTACCACCGCACAGGATGGTTTCACCTTCACCATCATCAGCGGCACCACCAATGG
TACCACCGCAGTAACCGATTACAGCACTCTACCGGAAGGCATCTGGAGCGGCGACGTTAGCGTACAGTTCG
ACGCGACCTGGACCAGTTAA 
 
MKKKVLAIALVTVFTGMGVAQAADVTAQAVATWSATAKKDTTSKLVVTPLGSLAFQYAEGIKGFNSQKGLF
DVATESDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGAAVEKTGDTVMIDTANGVLGGNLSPLANG
YNASNRTTAQDGFTFTIISGTTNGTTAVTDYSTLPEGIWSGDVSVQFDATWTS* 

 
>matB IHE3072  
ATGAAAAAAAAGGTTCTGGCAATAGCTCTGGTAACGGTGTTTACCGGTACAGGTGTAGCGCAGGCTGCTGA
CGTAACAGCTCAGGCTGTAGCGACCTGGTCAGCAACAGCCAAAAAAGACACCACCAGTAAGCTGGTTGTGA
CGCCACTCGGTAGCCTGGCGTTCCAGTATGCCGAAGGCATTAAAGGTTTTAACTCACAAAAAGGTCTATTT
GACGTGGCTATCGAGGGTGACTCAACGGCTACCGCCTTTAAACTGACCTCACGCCTTATCACCAACACCTT
AACCCAGTTGGATACCTCAGGTTCCACACTGAATGTGGGCGTGGATTATAACGGCGCGGCAGTCGAAAAAA
CTGGCGATACCGTGATGATCGATACCGCCAACGGCGTACTGGGCGGCAACCTTAGCCCACTGGCTAACGGT
TACAATGCCAGCAATCGTACCACCGCACAGGATGGTTTCACTTTCTCCATCATCAGCGGCACCACCAATGG
TACCACCGCAGTAACCGATTACAGCACTCTACCGGAAGGCATCTGGAGCGGCGACGTTAGCGTACAGTTCG
ACGCTACCTGGACCAGTTAA 
 
MKKKVLAIALVTVFTGTGVAQAADVTAQAVATWSATAKKDTTSKLVVTPLGSLAFQYAEGIKGFNSQKGLF
DVAIEGDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGAAVEKTGDTVMIDTANGVLGGNLSPLANG
YNASNRTTAQDGFTFSIISGTTNGTTAVTDYSTLPEGIWSGDVSVQFDATWTS* 

 
>matB RS218  
ATGAAAAAAAAGGTTCTGGCAATAGCTCTGGTAACGGTGTTTACCGGTACAGGTGTAGCGCAGGCTGCTGA
CGTAACAGCTCAGGCTGTAGCGACCTGGTCAGCAACAGCCAAAAAAGACACCACCAGTAAGCTGGTTGTGA
CGCCACTCGGTAGCCTGGCGTTCCAGTATGCCGAAGGCATTAAAGGTTTTAACTCACAAAAAGGTCTATTT
GACGTGGCTATCGAGGGTGACTCAACGGCTACCGCCTTTAAACTGACCTCACGCCTTATCACCAACACCTT
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AACCCAGTTGGATACCTCAGGTTCCACACTGAATGTGGGCGTGGATTATAACGGCGCGACAGTCGAAAAAA
CTGGCGATACCGTGATGATCGATACCGCCAACGGCGTACTGGGCGGCAACCTTAGCCCACTGGCTAACGGT
TACAATGCCAGCAATCGTACCACCGCACAGGATGGTTTCACTTTCTCCATCATCAGCGGCACCACCAATGG
TACCACCGCAGTAACCGATTACAGCACTCTACCGGAAGGCATCTGGAGCGGCGACGTTAGCGTACAGTTCG
ACGCTACCTGGACCAGTTAA 
 
MKKKVLAIALVTVFTGTGVAQAADVTAQAVATWSATAKKDTTSKLVVTPLGSLAFQYAEGIKGFNSQKGLF
DVAIEGDSTATAFKLTSRLITNTLTQLDTSGSTLNVGVDYNGATVEKTGDTVMIDTANGVLGGNLSPLANG
YNASNRTTAQDGFTFSIISGTTNGTTAVTDYSTLPEGIWSGDVSVQFDATWTS* 
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8.4 In silico analysis of matA promoters by Bprom 
 
The start codon of matA CDS is represented in capital letters. 
(http://www.softberry.ru/berry.phtml?topic=bprom&group=programs&subgroup=gfindb) 
 
In MG1665 
 
gatttgtaaatctaatccacgttttaaggccgttcagggtcgtaagaaaaa acgttgatt 
caaaattcgacggattaacgatatttgtctgattaataatcagatcggatt aatgttggt 
gtgtttataacaccaacattaattttcctggggatatattcttcctgttca tttgaggcc 
aactgcctgacgtttctctccgaatattccattatcttaatgttgacttgt tgaccagct 
tcgcccctgtatgctggcatcaaccctcttttagactgaacacgccactca gtctcctcc 
ctttgcggcgcagcctgcattttcactcaaactgttaagatgataaatgtg gtaaatctg 
ttggtactaacataaaaacgtttacgccacaggaacagtctgatccaccgg taaccccgt 
cgccgacgttcgagtgccagttagagtaacgcgcacagataactgaatgca gtgccctga 
caaaaaggccatcgttcctgtgacagctggcagccttcgtttaacttcact taatctggc 
tcttgggggcttaccgaacagatgacgtacatacgcccgttcaattttcca ttacttatt 
ggaatgaacacctgtaaccattttgtgcggcatgttaatccattaaaatat cttactgat 
tggcaaatcatcttcaatgacagctcatcatagttttatattctatccctt acccttaaa 
acttgtttttttactagtccatcacacagcgcattaagactattcctaaca cttcagggc 
aaagttcctgaccaatataaaatgcaagtaagaattgaacgttatattgcc aataacctt 
atgaaaccaaatgtctttttcttcttatcaaaaaagcaatattttcagttt ttctaaata 
ttgacttaaccattgaattccttttccgttcacatattgacactcatcggg aaaaaaaac 
ataaatttaagcccaatcgaaaataattaaacttaatctcgtttaaccttt attgatatg 
tactacgtatcttatttacttccggtttactaaggaaactgaatgcacctg taaaaatta 
caggtttggaaagta GTGacatggcaaagtgattacagtagggactatgaggttaaaaac 
catatggaatgtcaaaaccgttctgataaatacatctggtctccccatgac gcctacttc 
tataaaggactatctgaactgattgtggatatcgacagattaatttatcta tcgttggag 
aaaattagaaaagatttcgtgtttatcaatctcagtacggattctttatct gaatttata 
aaccgtgataatgaatggttatccgcggtaaaggggaaacaggtcgtattg attgcggcc 
agaaagtcagaggccttagcaaattattggtattacaatagcaatattagg ggcgtggta 
tacgctggactgagtcgtgatattagaaaagaactggtctatgtgattaat  

 
 
 
> test sequence                                                                  
 Length of sequence-      1491 
 Threshold for promoters -  0.20 
 Number of predicted promoters -      4 
 Promoter Pos:   1000 LDF-  6.15 
 -10 box at pos.    985 aattaaact Score    57 
 -35 box at pos.    966 tttaag    Score    35 
 Promoter Pos:    262 LDF-  4.27 
 -10 box at pos.    247 ctgtatgct Score    57 
 -35 box at pos.    223 ttgact    Score    61 
 Promoter Pos:    656 LDF-  2.36 
 -10 box at pos.    641 cattaaaat Score    68 
 -35 box at pos.    623 ttgtgc    Score     8 
 Promoter Pos:   1451 LDF-  1.93 
 -10 box at pos.   1436 tggtatacg Score    46 
 -35 box at pos.   1413 ttacaa    Score    32 
 
 Oligonucleotides from known TF binding sites: 
 
 For promoter at   1000: 
     rpoD16:  AAATAATT at position     981 Score -  15 
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       argR:  AATAATTA at position     982 Score -  17 
       arcA:  TAATTAAA at position     984 Score -  11 
 For promoter at    262: 
     rpoD16:  TCGCCCCT at position     241 Score -   7 
 No such sites for promoter at    656 
 No such sites for promoter at   1451 
 
 
In IHE3034 
 
gatttgtaaatctaatccacgttttaaggccgttcagggtcgtaagaaaaa acgttgatt 
taaaattcgacgaattaacgatatttatctgattaataatcagaccggatt aatgttggt 
gtatttattacaccagcattaattttcctggggatgtatcttcctgttcat ttaaggtca 
actgcctgacgtttctctccgaatattccattatattaatgttgacttgtt gaccagttt 
cgccctgtatgctggcatcaactctcttttagactgaacacgccactcagt ttcctccct 
ttgcgacgcagcctgcatttacactcaaactgttaagatgataaatgtggt aaatctgtt 
ggtactgacataaaaacgtttacgccacaggaacggccagatccatcggta accccatcg 
ccgacgttcgagtgccagttagagtaacgcgcacagatgactgaatgcagt gccctggca 
aagaggccatcgttcctgtgacaactggcagtcttcgtttaacttcactta atttggctc 
ttggggggcttaccggacagatgacgtacttacacctgtttaatttttcat cacttattg 
ggatgaacacccataaccattttgtgcggcatgttaatccattaaaacacc ttactgatt 
ggcaaatcatctttaattatgacttatgatagttttatattctatttcttg tcatttaaa 
cttgtttttttactagtccattacacaacacattaagactattcctaacac ctcagggca 
aagttcctggctaatataaaatgcaagtaagaattgaacgttatattgcca ataacctta 
tgaaactgaatgtctttttcttcttatcaaaaaagcaatattttcattttt tgtaaatat 
tgacttaaccatggaattcattttctgttcacatattgacactcatcagga aaaaaacat 
aaatttaaacctaatcgaaataattaaaacttaatctcgtttaacctatat tgatatgtg 
ctacgtatcttatttacttccgatttactaaagaaactgaatgtacctgta aaaattaca 
ggtttggaaagta GTGacatggcaaaatgattacagcagggactatgaggttaaaaacca 
tatggaatgtcaaaaccgttctgataaatacatctggtctccccatgacgc ctacttcta 
taaaggactatctgaactgattgtggatatcgacagattaatttatctatc gctggagaa 
aatcagaaaagatttcgtgtttatcaatctcaatacggattctttaactga gtttataaa 
ccgtgataatgagtggttatccgcggtaaaggggaaacaggtcgtattgat tgcggccag 
aaagtcagaagccttagcaaattattggtattacaacagcaatattagggg cgtggtata 
cgctggactgagtcgtgatattagaaaagaactggcctatgtgattaatgg  
 
> test sequence                                                                  
 Length of sequence-      1491 
 Threshold for promoters -  0.20 
 Number of predicted promoters -      4 
 Promoter Pos:    729 LDF-  7.81 
 -10 box at pos.    714 ATTTAAACT Score    64 
 -35 box at pos.    694 TTTATA    Score    39 
 Promoter Pos:    260 LDF-  4.93 
 -10 box at pos.    245 CTGTATGCT Score    57 
 -35 box at pos.    222 TTGACT    Score    61 
 Promoter Pos:   1038 LDF-  3.54 
 -10 box at pos.   1023 ACGTATCTT Score    37 
 -35 box at pos.   1001 TTAACC    Score    21 
 Promoter Pos:   1449 LDF-  1.93 
 -10 box at pos.   1434 tggtatacg Score    46 
 -35 box at pos.   1411 ttacaa    Score    32 
 
 Oligonucleotides from known TF binding sites: 
 
 For promoter at    729: 
        fis:  TCTTTAAT at position     670 Score -   6 
       phoB:  TTTAATTA at position     672 Score -  11 
     rpoD17:  TTATGATA at position     684 Score -   7 
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        fis:  TATTCTAT at position     698 Score -  10 
       lexA:  TTTTTTTA at position     725 Score -  16 
 For promoter at    260: 
     rpoS17:  TTATATTA at position     211 Score -  14 
 For promoter at   1038: 
     rpoD16:  AAATAATT at position     978 Score -  15 
       argR:  AATAATTA at position     979 Score -  17 
       arcA:  TAATTAAA at position     981 Score -  11 
 No such sites for promoter at   1449 
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Figure 38: Trancriptional organization of the Mat f imbriae genes by RT-PCR. (A) Cotranscript 
between matA and matB 1: DNA ladder; 2: cDNA; 3: DNA. (B) Cotranscript between matA and matD. The 
size of the cotranscript fit with the theorical one, including the orf of matB and matC. 1: DNA ladder; 2: 
cDNA. (C) In the line 2, the amplification of a transcript product between matD and matE is negative. It 
isn’t the case in the line 3 between matE and matF. 1: DNA ladder; 2: cDNA; 3: DNA; 4: cDNA; 5: DNA. 
(D) Control of the absence of DNA in the RNA samples used in these experiments. 1, 2, 3: RNA samples; 
4: DNA sample (control). 
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Figure 39: Map of plasmid pBAU constructed during this work. Plasmid pBAU1 was constructed by 
cloning a PCR-generated fragment encoding MatA from IHE3034. This fragment was a blunt-end and 
contains a PstI site. It has been purified and digested by the restriction enzyme PstI. pMAL-c2x was 
digested by XmnI which produces a blunt end and by PstI which does a « sticky » end. The primers 1224 
and 1237 were used for sequencing of the plasmid. 
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Table 19: Significant up regulated genes in IHE3034 compared to matA mutant at 20 °C.  p≤≤≤≤ 0.05 
sd: standard deviation 

 Mean 
(Stats) 

SD 
(Stats) 

  

E100000285 3,697 0.333 yagZ hypothetical protein  
E100000286 2,188 0.484 ykgK CDS  
E100002824 2,603 0.019 ECs3760  - 
E200000691 2,781 0.818 ECs0323  - 
E200000690 3,433 1,038 b0292 yagY 
E200000372 1,254 0.203 b2390 ypeC 
E100002347 1,274 0.228 ypeC CDS  
E100001010 2,724 0.08 b1037 csgG 
E100000284 3,197 0.664 b0292 yagY 
E200000154 1,043 0.416 b4060 yjcB 
E200002134 1,097 0.038 c3386  - 
E200000024 1,335 0.058 ECs0376  - 
E200001368 2,056 0.93 b1309 ycjM 
E200001350 1,233 0.059 ECs1835  - 
E100003952 1,233 0.562 Z5659 yjcB 
E100004910 3,112 0.18 Z1444 - 
E100000918 1,704 0.108 b0943 ycbV 
E200000238 1,760 0.895 ECs0880  - 
E200003125 1,745 0.945 +:4432085~4432154 Predict_CGH_oligo 
E100005076 1,780 0.139 ECs1084  - 
E100000283 4,001 2,244 yagX CDS  
E100000778 1,782 1,035 b0802 ybiJ 
E200001810 1,591 0.933 b2148 mglC 
E100004983 1,307 0.123 ECs1292  - 
E200002372 2,434 0.237 c3786  - 
E100004695 2,561 0.27 +:690199~690268 - 
E100000832 1,145 0.127 b0856 potH 
E100002503 1,243 0.788 b2552 hmp 
E200001300 2,155 1,397 b1166 ymgB 
E100002199 1,433 0.18 b2241 glpA 
E100001280 2,467 1,067 b1309 ycjM 
E100001956 1,482 0.189 b2861 | b1997 | 

b1403 | b4272 | 
b0360 | b4579 | 
b3044 

insC-4 | insC-3 | 
 insC-2 | insC-6  
| insC-1 | yaiX | 
 insC-5 

E100003468 1,220 0.818 b3546 eptB 
E200001963 1,157 0.513 c3032  yfgJ 
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Table 20: Significant down regulated genes in IHE3034 compared to matA mutant at 20 °C. p≤≤≤≤ 0.05 
sd: standard deviation 

ID arrays Mean 
(Stats) 

SD (Stats) Gene name  

E100005414 -1,136 0.283 ECs2161  - 
E100001474 -2,420 0.041 b1503 ydeR 
E100004207 -3,805 0.146 b4320 fimH 
E100002437 -1,009 0.435 b2486 hyfF 
E100002375 -1,095 0.501 b2424 cysU 
E100000319 -1,064 0.487 b0327 yahM 
E100003253 -2,267 0.16 b3330 gspI 
E100005751 -1,211 0.088 ECs4382  - 
E100002499 -2,671 0.197 b2548 yphF 
E100003942 -2,044 0.155 Z5648 yjbO 
E100004617 -1,044 0.563 ECs0280  - 
E100003831 -1,213 0.658 b3927 glpF 
E200000374 -1,622 0.903 b2421 cysM 
E200002144 -1,122 0.099 c3396  - 
E100002372 -1,469 0.843 b2421 cysM 
E100004592 -1,862 0.173 ECs0224  - 
E200001769 -2,506 0.259 c2607  - 
E200000377 -1,461 0.892 ECs3296  - 
E100002376 -1,035 0.408 b2425 cysP 
E200002115 -1,187 0.13 c3340  - 
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Table 21: Avian top up regulated genes in BEN374 at 41 °C versus 37 °C. p≤≤≤≤ 0.05 
sd: standard deviation 

Reporter Name SignificanceTest1535 
:P :: isolation origin: 
avian Dataset 

M1_mean 
(log2) 

M1_sd   

ykgE 0.00543993 1.26974924 0.35086892 
araC 0.0047973 1.54955991 0.40986838 
betI 6.58E-05 1.25933291 0.07818977 
yedU 2.70E-05 3.97352485 0.1832899 
cysJ 0.00888352 2.59508298 0.85196114 
cysH 0.04874303 1.71133578 1.06435617 
hdeB 0.00432877 1.04748358 0.26736674 
cysD 0.00638976 3.68538456 1.07727588 
hdhA 0.00019981 1.56809008 0.14120136 
cysA 0.01873467 2.18591424 0.93977641 
ykgF 0.00752802 1.07172367 0.33184566 
katE 0.00050232 1.02019865 0.12517021 
b0834 0.00039605 1.10588983 0.12526557 
cysK 0.00885973 2.15558396 0.70700166 
cysW 0.02311901 1.37360156 0.63866395 
cysI 0.01922881 2.87463572 1.2478343 
cysN 0.02931913 1.84116217 0.93684437 
ybiI 0.02354102 1.17887444 0.55186429 
slp 0.00089129 1.16061294 0.17275505 
msyB 0.00078219 1.08581853 0.15465298 
PAI I_ORF55 0.00057021 1.6095091 0.20607919 
deoA 0.00096356 1.28919875 0.19701739 
cdtB 0.00034247 1.30049663 0.14029228 
ME_EO_28C_orf8_1 0.00034578 1.23028144 0.13314663 
ME_EO_28C_orf7_1 0.00071355 1.21381028 0.16760954 
cdtC 0.00048255 1.27121131 0.15387641 
ME_EO_28C_rorf1_1 0.00153983 1.04108357 0.18648747 
deoC 0.00061479 1.32109817 0.17349344 
cdtA 0.00141583 1.18962525 0.20710662 
ME_EO_28C_orf9_1 0.00059416 1.15523527 0.14997762 
betB 0.00036858 1.25641374 0.13892192 
galT 0.00185744 1.19844404 0.22881511 
b0833 0.00212187 1.01613398 0.20301395 
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Table 22: Avian top down regulated genes in BEN374 at 41 °C versus 37 °C. p≤≤≤≤ 0.05 
sd: standard deviation 

Reporter Name SignificanceTest1535 :P :: 
isolation origin: avian 
Dataset 

M1_mean 
(log2) 

M1_sd   

flgB 0.00023256 -2.01281786 0.19070144 
flgF 0.0002785 -2.22206194 0.22364108 
map 0.00016849 -1.01514352 0.08633757 
cheB 7.53E-05 -3.7688382 0.24482141 
fliL 5.64E-05 -2.26110959 0.1334074 
cheA 0.00011989 -2.70961973 0.20564986 
fliZ 0.00010914 -2.72955985 0.20075362 
fliO 0.00029024 -2.40786427 0.24572189 
fliC 0.00035036 -3.48807051 0.37916578 
ydbU 0.00083735 -1.33476107 0.19453245 
b1409 0.00034631 -1.07289447 0.11617281 
fliH 0.00070188 -1.4269189 0.19594497 
tap 0.00166095 -1.19696049 0.21999943 
fliJ 0.00074401 -1.00858096 0.14124773 
tar 0.00018122 -2.94120338 0.25632243 
flhE 4.45E-06 -1.86979853 0.04726676 
flhB 0.00082638 -1.97015526 0.28586187 
flgK 6.87E-06 -2.94177159 0.08595024 
flgL 6.69E-06 -1.95864195 0.05672199 
csgC 0.00068452 -1.81089638 0.24658255 
flgA 4.25E-05 -1.3646321 0.07323861 
flgH 0.00019526 -2.35571882 0.21049316 
yhjB 0.00083492 -1.44741667 0.21074456 
yhjH 0.00062025 -3.47491202 0.45770529 
yihW 0.00211656 -1.8436122 0.36802136 
yhcI 0.04411655 -1.75815417 1.05019683 
yhcH 0.03507661 -1.69380326 0.92384214 
nanA 0.01985392 -1.8041949 0.79251664 
nlp 0.00038377 -1.35014273 0.15132275 
ycgR 0.00169024 -2.35119764 0.43472281 
cheZ 0.0013391 -3.01210863 0.51457121 
fliD 0.00241675 -3.59441125 0.75077439 
aer 0.00150244 -1.69937997 0.30187626 
b1773 0.00511914 -1.19631243 0.32365422 
malE 0.01985466 -1.33125959 0.58478154 
flgN 0.00016894 -2.87923658 0.24509403 
flgC 0.00020136 -2.23760725 0.20201177 
flgE 0.00036699 -2.51492268 0.27767125 
fhuF 0.00998924 -1.04523021 0.35776244 
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tsr 0.00157304 -3.60524677 0.65050185 
ynbD 0.00048208 -1.7430733 0.21092353 
cheY 2.47E-05 -3.88065084 0.173739 
fliG 0.00032325 -2.07362285 0.21940039 
fliK 0.00324853 -1.84314649 0.42608528 
cheW 0.00022486 -1.68610959 0.15795702 
fliM 4.57E-05 -1.42290784 0.07820919 
fliN 0.0005922 -1.71259429 0.22208988 
fliA 0.00021158 -2.42582685 0.22266396 
fliP 0.02156804 -1.36687341 0.61921823 
flgJ 0.00054507 -1.74820157 0.22046687 
b1742 0.00270855 -1.13293905 0.24605796 
ompF 0.00722695 -1.34475013 0.41044479 
fliS 0.0033748 -1.79265021 0.41988537 
cheR 0.00080308 -1.2037265 0.17297841 
motB 5.09E-05 -2.62965712 0.14985877 
flhA 0.00017495 -1.32425005 0.11405464 
b1936 0.00056956 -1.98718986 0.25433917 
ycgC 0.00849791 -1.04375095 0.33731571 
b1760 0.00107619 -1.15213419 0.18277749 
flgD 0.00043529 -2.53682635 0.29661784 
flgG 0.00032966 -2.53367721 0.26984862 
flgI 0.00012266 -2.08904817 0.15976741 
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Table 23: Human top down regulated genes in IHE3034 at 41 °C versus 37 °C. p≤≤≤≤ 0.05 
sd: standard deviation 

Reporter  
Name 

SignificanceTest1535 :P :: 
 isolation origin: human Dataset:  

M1_mean  M1_sd   

fes 0.00386284563881326 -1.15266614029998 0.428977845155756 
flgB 0.00165791005509875 -1.91183705801925 0.567038164346919 
flgF 0.000287636997653689 -2.17397106215668 0.409235730353247 
cheB 0.000821598119843325 -2.3429717961473 0.578086171209726 
fliL 0.000307607272573077 -2.26425342270238 0.433618014797015 
cheA 0.000284861975609235 -1.32463484526167 0.24873601831891 
fliZ 0.000780512250565772 -2.76935743864626 0.674237435320565 
fliO 0.000243635467993889 -2.5939092943516 0.467995444443196 
fliC 8.34672521255049e-05 -2.78646540843283 0.382907554248462 
b1966 0.0011976961046789 -1.31821748074826 0.358886788469632 
fepA 0.00343193512200591 -1.37306500084017 0.494819591040449 
b1409 0.00129111920298342 -1.0197049508122 0.283144298498221 
fliH 0.00140447644736106 -1.53154403226546 0.434786747565662 
fliJ 0.000149579616436901 -1.07329524529617 0.171011114336878 
tar 0.000766981686006271 -1.85626990631802 0.449885541079533 
flhE 0.000375431684861607 -2.17737148514964 0.438836915269972 
flhB 0.00035559479731418 -2.32258038953752 0.461626484711428 
fliQ 7.18424993379995e-06 -1.29324159066566 0.0958330880869793 
flgK 0.000613086519576464 -2.56135347528802 0.58576119257408 
flgL 0.00163360463819056 -1.70623880018184 0.504086259054211 
csgC 0.00539638291472146 -1.8625949712369 0.759929222247958 
flgA 0.000907843569342958 -1.27759338306054 0.323522706616445 
flgH 0.000404800575931716 -2.64289857057522 0.543067146592859 
yhjB 0.00336033410467438 -1.01436002570629 0.363466312445492 
yhjH 0.000945507005267344 -2.52742890540931 0.646835672963669 
argT 0.0211219508414274 -1.17853621945433 0.715252597945729 
nanT 0.0236263762774541 -1.22940835681496 0.772616122002189 
yihW 0.0269574354827996 -1.08362064893766 0.709984778478855 
fliF 0.000883922212047538 -1.20917012525715 0.304073075829504 
nanA 0.0212245498255773 -1.16716976740421 0.709417081144638 
nlp 5.38360606041522e-05 -1.45834142768851 0.179370965038798 
oppD 0.00592653412209246 -1.01352954923035 0.424429545063899 
ycgR 0.0149809176055956 -1.05268856926527 0.575587962125603 
cheZ 0.000774330247263263 -1.91997457626174 0.466479006177085 
fliD 0.000245758902350417 -3.14395078969126 0.568493092461791 
ompC 0.000771816420381955 -1.60642288303423 0.389968612456984 
ilvE 0.0193207355291711 -1.00771834469349 0.595034788187895 
aer 0.000313845527328577 -1.78093530500525 0.342818017460301 
yhaO 3.19243761481044e-05 -1.06051894981428 0.114332929074428 
yeeY 0.0195227757218422 -1.14631235312373 0.679032405978833 
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proX 0.00523348380164017 -1.16043885611988 0.469449233522207 
cstA 0.0321119873115126 -1.20179779833286 0.833139514211038 
b0805 0.00123427396838618 -1.55897805360676 0.427797382562192 
flgN 0.000375328402652755 -1.92149857315448 0.387239820519335 
flgC 0.00118877257829624 -2.05595890698037 0.55864139997083 
flgE 0.00126578652649858 -2.55235681236279 0.705040437119779 
b2862 0.00647610328459191 -1.02491540129356 0.439966404129324 
yjiY 0.0378351616725445 -1.50185173943065 1.09918639158887 
tsx 0.020406266348883 -1.00639965516503 0.604318139550193 
cspA 0.0250851851670845 -1.33665228715835 0.855997014867116 
fhuF 0.00189758645581629 -1.02602119317015 0.315399631728912 
tsr 0.0137824468905127 -2.13600252538727 1.13932673191206 
cspE 0.0417738493782889 -1.0758194098531 0.814162981296411 
ilvC 0.00317505182314715 -1.00371315378675 0.354169404906301 
IHE3034 
_1_CDS 
89_0_0 

0.0379643428356921 -1.05514668224678 0.773131167390603 

ynbD 0.00274763253405157 -1.59183245521146 0.540209071881534 
dgoA 0.0259397558264108 -1.4510698966484 0.939174554840198 
cheY 0.000170869292270854 -3.29893698876288 0.543725101568598 
b2809 0.00783762772373267 -1.51349240492987 0.685592747607731 
fliG 0.000258616096326294 -2.39018222733125 0.437863663529782 
fliK 0.000127552237935764 -2.02677253555812 0.31012269389102 
fliM 0.000224477729746573 -1.57496213329067 0.278276645228968 
fliY 0.00340502298195746 -1.15196255182291 0.414253775930393 
fliN 0.000235132533760962 -2.05478787360906 0.367378898219459 
fliA 0.000405730780830484 -2.60132362482032 0.534839677162428 
fliP 6.43580411730899e-05 -2.13762729404731 0.275049934821335 
flgJ 0.000319625082571068 -2.04796824504736 0.396067247810851 
ompF 0.0152214392620137 -1.58090888802837 0.868529473776259 
fliS 0.000148385595209592 -1.23772935732151 0.196809471505364 
motB 0.00186180345915739 -1.26890930621845 0.388096865688319 
flhA 4.25604196408359e-05 -2.17447880299794 0.252051301674394 
b1936 0.00500213080767171 -2.14389728033412 0.856526245729641 
yagU 0.0462922159546442 -1.01675962204753 0.797116147299299 
flgD 0.00146376910448892 -2.46859727333852 0.708481470900605 
flgG 0.000450228221522131 -2.51542862958143 0.531209222902688 
flgI 0.000300209244571578 -2.31780826989561 0.441115854179044 
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Table 24: Human top up regulated genes in IHE3034 at 41 °C versus 37 °C. p≤≤≤≤ 0.05 
sd: standard deviation 

Reporter 
Name 

SignificanceTest1535 :P :: 
isolation origin: human 
Dataset: 

M1_mean M1_sd   

codB 0.01173818 1.40769138 0.71622353 
b1498 0.00608196 1.55551794 0.65611535 
yedU 3.26E-06 4.2714317 0.25956227 
b1171 0.00402307 1.20381341 0.45301183 
hdhA 0.00083504 1.74970674 0.4335345 
yfeA 0.00065681 1.1317387 0.26347573 
b0834 0.00089373 1.21187865 0.30563169 
yggB 0.00097419 1.11584155 0.28780917 
PAI 
I_ORF55 

0.00028539 1.05891309 0.19893336 

pyrI 0.01987001 1.46992707 0.87545328 
pyrL 0.04121575 1.48148788 1.11604763 
purK 0.03273331 1.09608159 0.76463036 
ME_EO_ 
28C_rorf1_1 

6.94E-06 1.18153603 0.08680604 

b1497 0.0034056 1.27501449 0.45852511 
napD 0.00089112 1.18312757 0.29815342 
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Figure 40: Analysis of protein expression of the protein fusion MalE-MatA (pBAU1).  The expression 
was done in Escherichia coli BL21, at 37°C and in LB medium, following the manufacturer protocol 
(IPTG induction) and checked on SDS-PAGE, 12%. 
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matAmatAmatAmatA  
 

Figure 41: Cloning of matA and its promoter region of IHE3034. The cloning procedure was done 
following the manufacturer protocol, after amplification of matA and it promoter from the strain IHE3034 
by the DAP polymerase, using the following primers, matA left 15 feb 2005 and intergenique matA reverse 
8 february 2005. In PGEM-T Easy, the product was check by sequencing with the primer T7.  
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Figure 42: Construction of MG1655 ∆matA. (A) Verification of matA deletion by λ red recombination 
and insertion of chloramphenicol resistance (cat) gene. PCR amplification using primer matA left and 
integenic complete right ctrl: wildtype strain before recombination. (B) Verification of cat gene deletionin 
MG1655. The antibiotic marker could be removed with the help of the FLP recombinase (encoded on 
plasmid pCP20), which mediates recombination between the two FRT sites flanking the antibiotic cassette, 
thus leaving behind a complete deletion of the open reading frame. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8. Appendix 

 - 187 - 

 
 
 
 
 

B
E

N
3

74
 w

t

B
E

N
3

74
 ∆

h
ch

A

A B

False-positive or mixed clones

B
E

N
3

74
 w

t

B
E

N
3

74
 ∆

h
ch

A

A B

False-positive or mixed clones

 
Figure 43: Construction of BEN374 ∆hchA:: cat. (A) PCR amplification of cat gene on pKD3. The 
construction of the mutants was performed using linear DNA for recombination, as described by Wanner 
and Datsenko (2000). This method relies on the replacement of a chromosomal sequence with an antibiotic 
marker that is generated by PCR using primers with homology extensions to the flanking regions of the 
target sequence (see method section 4.1.13). (B) PCR verification using primers binding outside the coding 
sequences of hchA (coding for YedU). 
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Figure 44: Construction of BEN374 ∆matA:: cat and of BEN374 ∆matB:: cat. (A) Construction of 
BEN374 ∆matA:: cat. PCR verification using primers binding outside the coding sequences of matA. The 
arrows represent the false-positive clones. (B) Construction of BEN374 ∆matB:: cat. PCR verification 
using primers binding outside the coding sequences of matB. (C) PCR amplification of cat gene on pKD3. 
The construction of the mutants was performed using linear DNA for recombination, as described by 
Wanner and Datsenko (2000). This method relies on the replacement of a chromosomal sequence with an 
antibiotic marker that is generated by PCR using primers with homology extensions to the flanking regions 
of the target sequence (see method section 4.1.13). 1: homology extensions to the flanking regions of matA; 
2: homology extensions to the flanking regions of matB.  
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8.4 FliC expression analysis in IHE3034 and its iso genic mutant 
IHE3034 ∆matA 

FliCH7 (62 kDa)

1 2

FliCH7 (62 kDa)FliCH7 (62 kDa)

1 2

 
Figure 45: Analysis of FliC expression during the exponential phases at 20 °C and in LB medium. 
The immunoblot was performed on a whole-cell protein extract of IHE3034 and its isogenic mutant 
IHE3034 ∆matA. Culture was performed in LB medium, at 20 °C, 200 rpm and for an OD600 0.6. Lane 1: E. 
coli IHE3034; lane 2: E. coli IHE3034 ∆matA. An overexpression of the FliC protein is proved in the 
mutant strain. It confirms the data known about the establishment of biofilm structure which needs a 
decrease of the motility when the fimbriae responsible of the biofilm, Mat fimbriae in our conditions, are 
expressed. 
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8.4 Abbreviations 
µg = microgram 
µl = microliter 
µM = micromolar 
µm = micrometer 
A = adenine 
a.a. = amino acid 
AFM = atomic force microscope 
Ap = Ampicillin 
APS = ammonium persulfate 
BLAST = Basic Local Alignment Search Tool 
bp = base pairs 
ß-ME = beta-mercaptoethanol 
°C = grad celsius 
C = cytosine 
cAMP = cyclic adenosine monophosphate 
CAS = chrome azurole S 
cat = chloramphenicol acetyltransferase 
CDS = coding sequence 
CFU = colony forming unit 
Cm = chloramphenicol 
cm = centimeter 
dATP = desoxyadenosin-5'-triphosphate 
dCTP = desoxycytosin-5'-triphosphate 
dGTP = desoxyguanosin-5'-triphosphate 
dH2O = distilled water 
dNTP = desoxynucleotide 
dTTP = desoxythymidin-5'-triphosphate 
DEPC = diethyl pyrocarbinate 
DNA = desoxyribonucleic acid 
DNase = Desoxyribonuclease 
EAEC = enteroaggregative E. coli 
EDTA = Ethylendiamintertraacetat 
EHEC = enterohemorrhagic E. coli 
EIEC = enteroinvasive E. coli 
EPEC = enteropathogenic E. coli 
EPS = extracellulat polymeric substance 
et al. = et altera (and others) 
ETEC = enterotoxigenic E. coli 
EtOH = ethanol 
ExPEC = extraintestinal pathogenic E. coli 
Fig. = figure 
Fis = factor for inversion stimulation 
FPLC = Fast protein liquid chromatography 
FRT = Flp recognition target 
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g = gram 
G = guanine 
GEI = genomic island 
h = hour 
HDTMA = hexadecyl-trimethyl-ammonium bromide 
H-NS = histone-like nucleoid structuring protein 
HU = heat-unstable nucleoid protein 
IciA = inhibitor of chromosome initiation A 
i.e. = id est (this means) 
IPEC = intestinal pathogenic E. coli 
kb = kilo bases 
kDa = kilo Dalton 
Km = Kanamycin 
l = liter 
LB = lysogeny broth 
M = molar 
mA = milliampere 
mg = milligram 
min = minute 
ml = milliliter 
mM = millimolar 
mm = millimeter 
MOPS = 
NBM = newborn meningitis 
ng = nanogramm 
NMR = nuclear magnetic resonance 
nt = nucleotides 
OD = optical density 
oligo = oligonucleotide 
ON = overnight 
ONPG = o-Nitrophenyl-ß-galactopyranoside 
ORF = open reading frame 
PAI = pathogenicity island 
PBS = Phosphate buffered saline 
PCR = polymerase chain reaction 
PIPES = 1,4-piperazine-diethane-sulfonic acid 
RNA = ribonucleic acid 
RNase = Ribonuclease 
Rob = replication origin binding protein 
rpm = rounds per minute 
RT = reverse transcription 
SD = standard deviation 
SDS = sodium dodecyl sulfate 
sec = second 
Spec = Spectinomycin 
SSC = standard saline citrate 
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T = thymine 
TAE = Tris-acetate-EDTA 
TBS = Tris-buffered saline 
TEMED = N,N,N`,N`-tetramethyldiamin 
Tet = Tetracyclin 
Tris = Trishydroxylmethylaminomethan 
U = enzyme unit (1 U=1 µmol substrate × min-1) 
UPEC = uropathogenic Escherichia coli 
UTI = Urinary tract infection 
V = Volt 
v/v = volume/volume 
wt = wild type 
w/v = weight/volume 
X-gal = 5-bromo-4-chloro-3-indolyl-β-glucoside 
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