Zur Kristallstruktur der Thiocuprate K₃Cu₈S₆ und Rb₃Cu₈S₆

On the Crystal Structure of the Thiocuprates $K_3Cu_8S_6$ and $Rb_3Cu_8S_6$

Christian Burschka*

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg

Z. Naturforsch. 34b, 675-677 (1979); eingegangen am 15. Januar 1979

Crystal Structure, Ternary Sulfides

The title compounds can be synthesized by fusion reaction of the alkali carbonates with copper and sulfur at 790 °C. The structure was solved from X-ray diffractometer data of single crystals and refined to an *R*-value of 0.06. The compounds crystallize with the same layer-type structure which is closely related to that of KCu₃S₂. Crystal data for K₃Cu₈S₆ (Rb₃Cu₈S₆): space group C2/m, z = 2, $\rho_{calc} = 4.27(4.76)$ g/cm³, a = 17.332(4) (17.840(6)) Å, b = 3.830(2) (3.865(1)) Å, c = 9.889(4) (10.011(3)) Å, $\beta = 104.12(2)^{\circ}$ (104.91(2)°).

1. Einleitung und Darstellung

Über die Synthese der Verbindung K₃Cu₈S₆ berichteten W. Rüdorff et al. [1] schon 1952. Einkristalle dieser Phase wurden röntgenographisch untersucht [1, 2], trotzdem blieb die Kristallstruktur unbekannt, obwohl die Möglichkeit zum Vergleich mit der Struktur des gemischtvalenten KCu₄S₃ [1] einen besonderen Anreiz für ihre Aufklärung bot. Erste eigene Syntheseversuche unter Anlehnung an die genannten älteren Angaben führten zunächst nicht zum Erfolg, sondern zur Entdeckung des bis dahin unbekannten KCu₃S₂ [3]. Die gewünschte Verbindung K₃Cu₈S₆ konnte jedoch ausgehend von einem Gemenge aus K₂CO₃, Kupfer und Schwefel in dem angegebenen Verhältnis in einem schmalen, etwas niedrigeren Temperaturbereich erhalten werden. Bei 790 °C ließ sich die Bildung von KCu₄S₃ und/oder K₃Cu₈S₆ durch die Wahl der Heizdauer steuern. Nach einer Verweilzeit von 2 h konnte nach Auslaugen des erkalteten Schmelzkuchens mit Wasser und Waschen mit Alkohol röntgenographisch reines K₃Cu₈S₆ isoliert werden. Bei Einsatz von Rb₂CO₃ entstand unter sonst gleichen Bedingungen das schon auf anderem Wege [1] erhaltene $RbCu_4S_3$ und das bisher nicht dargestellte Rb₃Cu₈S₆. Die Reaktionen wurden in Korundtiegeln unter Argon als Schutzgas durchgeführt. Die Messung der Temperatur erfolgte mit Hilfe eines NiCr/Ni-Thermoelementes im Innern des Reaktionsrohres.

2. Röntgenographische Untersuchungen und Strukturaufklärung

Eine Identifizierung der erhaltenen Produkte war an Hand ihrer Pulverdiagramme möglich (Guinier-Simon-Verfahren, Cu-Ka₁-Strahlung), die ausgehend von den angegebenen [1, 2] Gitterkonstanten störungsfrei indiziert werden konnten. Weissenbergund Präzessionsaufnahmen nadelförmiger Einkristalle (Nadelachse [010]) ergaben in Bestätigung älterer Untersuchungen [2] die regelmäßige Auslöschung von Reflexen hkl mit h+k=2n+1. Je ein Einkristall der beiden Verbindungen K₃Cu₈S₆ und Rb₃Cu₈S₆ mit Abmessungen von ca. 0,03 \times 0.05 imes 0.4 mm wurde am Diffraktometer vermessen (Syntex-P21, Mo-Ka-Strahlung, Graphit-Monochromator, $\lambda = 0.71069$ Å, ω -scan). Die eingangs angegebenen Gitterkonstanten sind das Ergebnis einer least-squares-Rechnung mit 19 (12) zentrierten Reflexen im Bereich $2\theta = 23-26^{\circ}$. Der für die Strukturaufklärung verwendete Datensatz umfaßte 1051(1111) symmetrieunabhängige Reflexe im Bereich bis 2 $\theta \leq 60^{\circ}$, von denen 947(991) als beobachtet klassifiziert waren ($I_0 \ge 3\sigma_{Io}$). Sie wurden mit Hilfe eines von 8 (11) Reflexen aufgenommenen ψ -scans bezüglich Absorption korrigiert ($\mu_{M0} =$ 154 cm^{-1} ($\mu_{Mo} = 253 \text{ cm}^{-1}$)). Unter der Annahme, daß die höchstsymmetrische Raumgruppe C2/m vorliegt, führten Versuche zur Bestimmung der Vorzeichen von 124 Strukturfaktoren auf direktem Wege (Multan) im Falle des K₃Cu₈S₆ nach Vergleich mehrerer E-maps mit einer Pattersonsynthese zu einem Strukturmodell, das plausible Umgebungsverhältnisse für alle Atome ergab. Demnach besetzen Kupfer bzw. Schwefel die Punktlage 4i vier-

^{*} Sonderdruckanforderungen an Dr. Ch. Burschka. 0340-5087/79/0500-0675/\$ 01.00/0

bzw. dreimal. Kalium besetzt je einmal die Punktlage 4i und 2b. Überraschenderweise konnte dieses Modell mit Hilfe von least-squares-Methoden unter

Abb. Die Strukturen von KCu₃S₂, K₃Cu₈S₆ und KCu₄S₃ bei Projektion parallel b. Das Atom Cu 3 ist als einziges entsprechend den in Tab. I angegebenen Temperaturfaktoren als Ellipsoid wiedergegeben.

Tab. I.	Strukturparameter	der	Verbindung	K3Cu8S6
(Rb ₃ Cu ₈	₃ S ₆).		0	0 0 0

Atom	x	y	z	B[Å ²]
K1 (Rb1)	0,0000 0,0000	$0,5 \\ 0,5$	0,0000 0,0000	$1,65(4) \\ 1,45(2)$
K2 (Rb2)	0,1890() 0,1895()	$\begin{array}{ll}1) & 0,5\\1) & 0,5\end{array}$	0,2991(2) 0,3018(1)) $1,84(3)$) $1,68(3)$
Cu 1 (Cu 1)	0, 3914 () 0, 3911 ()	$\begin{array}{ll} 1) & 0,5 \\ 1) & 0,5 \end{array}$	0,2131(1) 0,2144(2))
Cu 2 (Cu 2)	0,4092() 0,4122()	l) 0,5 l) 0,5	$0,4761(1)\\0,4751(1)$)
Cu 3 (Cu 3)	0,2967() 0,2957()	1) 0,0 1) 0,0	0,0626(3 0,0596(3	;) ;)
Cu 4 (Cu 4)	0,4819(1 0,4813(1	l) 0,0 l) 0,0	$0,3534(1)\\0,3536(2)$)
S 1 (S 1)	0,1558(1) 0,1580(1)	l) 0,0 l) 0,0	0,0181(2 0,0139(3	$\begin{array}{c}1,13(3)\\0,97(4)\end{array}$
S 2 (S 2)	0,0370(1) 0,0340(2)	l) 0,0 2) 0,0	0,2917(2) 0,2952(3)	1,24(3) 1,05(4)
S 3 (S 3)	0,3448(1) 0,3487(2)	l) 0,0 2) 0,0	0,3586(2) 0,3587(3)) $1,38(3)$) $1,13(4)$
Atom	B11	B ₂₂ B ₃	3 B ₁₂	B ₁₃ B ₂₃
Cu 1 (Cu 1)	$3,1(1) \\ 3,0(1)$	$ \begin{array}{cccc} 6,7(1) & 1,2 \\ 7,1(1) & 0,2 \end{array} $	2(0) 0 - 0 - 0 = 0	$ \begin{array}{ccc} -0,3(0) & 0 \\ -0,2(0) & 0 \end{array} $
Cu 2 (Cu 2)	2,0(0) 1,8(1)	1,7(1) $1,21,7(1)$ $1,6$	2(0) 0 D(0) 0	$\begin{array}{ccc} 0,3(0) & 0 \\ 0,3(0) & 0 \end{array}$
Cu 3 (Cu 3)	2,5(1) 2,7(1)	1,2(1) 11,0 1,2(1) 11,2	$ \begin{array}{ccc} 3(2) & 0 \\ 2(2) & 0 \end{array} $	$\begin{array}{ccc} {\bf 3,6(1)} & 0 \\ {\bf 4,3(1)} & 0 \end{array}$
Cu 4 (Cu 4)	$\substack{2,9(0)\\2,4(1)}$	$\begin{array}{ccc} 1,2(1) & 2,3\\ 1,2(1) & 2,6 \end{array}$	$ \begin{array}{ccc} 3(0) & 0 \\ 0(1) & 0 \end{array} $	$\begin{array}{ccc} {\bf 1,4}(0) & 0 \\ {\bf 1,4}(0) & 0 \end{array}$

Berücksichtigung individueller isotroper Temperaturfaktoren jedoch nur bis zu einem R-Wert von R = 0.2 verfeinert werden. Entsprechende Rechnungen führten im Falle des Rb₃Cu₈S₆ zum gleichen Ergebnis. Die bei diesem Stand erstellten Differenzfouriersynthesen ließen bei jeder der beiden isotypen Verbindungen im Bereich des Atoms Cu3 (vgl. Abb.) eine besonders starke Diskrepanz zwischen beobachteter und berechneter Elektronendichte erkennen. Nach sukzessiver Freigabe anisotroper Temperaturfaktoren für alle Kupferatome und weiteren Verfeinerungszyklen konnte zwar eine bessere Übereinstimmung der Fo- und Fc-Werte erreicht werden (R = 0.06), für die Atome Cu3 und Cu1 ergaben sich jedoch zum Teil anomal hohe Temperaturfaktoren (vgl. Tab. I). Weitere Differenzfouriersynthesen unter Verwendung der angegebenen Strukturparameter zeigen, daß die Elektronendichteverteilung am Ort des Atoms Cu3 im vorliegenden Modell nur unvollkommen durch ein Ellipsoid beschrieben werden kann, vielmehr demgegenüber keulen- und S-förmig verzerrt ist. Die durch diese Unstimmigkeit hervorgerufenen Restmaxima sind mit 2,5 und 1.8 e/Å^3 (Rb₃Cu₈S₆: 3,5 und 3,2 e/Å³) mit Abstand die höchsten [5].

Durch welche modellmäßige Beschreibung die tatsächlichen Verhältnisse in diesem Bereich der Struktur am besten anzunähern sind, steht bis jetzt noch offen.

3. Beschreibung der Struktur und Diskussion

 $K_3Cu_8S_6$ und $Rb_3Cu_8S_6$ kristallisieren in einem bisher nicht bekannten Strukturtyp (er wurde kürzlich auch bei dem Selenid $Rb_3Cu_8Se_6$ aufgefunden [4]), der Verwandtschaft zeigt zu den Strukturen von KCu_4S_3 und KCu_3S_2 . Gemeinsames Merkmal der drei Strukturtypen ist die Ausbildung von Kupfer-Schwefel-Schichtverbänden, zwischen denen die

Tab. II. Auswahl der interatomaren Abstände [Å].

K ₃ Cu ₈ S ₆		$Rb_3Cu_8S_6$	
K1 - S1 - S2	$3,28\ 4 imes 3,39\ 4 imes$	$\frac{-1}{-81}$	3,39 $4 imes3,45$ $4 imes$
K 2 -S 1 -S 2 -S 3 -S 3	$\begin{array}{ccc} {\bf 3,31} & {2 \times} \\ {\bf 3,24} & {2 \times} \\ {\bf 3,24} & {2 \times} \\ {\bf 3,57} & {1 \times} \end{array}$	Rb 2–S 1 –S 2 –S 3 –S 3	$\begin{array}{ccc} {3,39} & {2 \times} \\ {3,37} & {2 \times} \\ {3,36} & {2 \times} \\ {3,63} & {1 \times} \end{array}$
Cu 1–S 1 –S 2 –S 3	$egin{array}{ccccc} 2,23 & 1 imes \\ 2,45 & 1 imes \\ 2,64 & 2 imes \end{array}$	Cu 1 –S 1 –S 2 –S 3	$2,23 \ 1 imes 2,47 \ 1 imes 2,64 \ 2 imes$
${ m Cu}2{-}{ m S}2\ -{ m S}3$	$\begin{array}{ccc} 2,26 & 1 imes \\ 2,37 & 2 imes \end{array}$	${f Cu2{-}S2}\ {-}S3$	$\begin{array}{ccc} 2,25 & 1 imes \\ 2,39 & 2 imes \end{array}$
Cu 3–S 1 –S 1 –S 3	$2,30 \ 2 imes 2,37 \ 1 imes 2,84 \ 1 imes$	Cu 3 –S 1 –S 1 –S 3	$\begin{array}{ccc} 2,29 & 2 \times \\ 2,38 & 1 \times \\ 2,90 & 1 \times \end{array}$
Cu 4–S 2 –S 3	$\begin{array}{ccc} 2,29 & 2 imes \\ 2,39 & 1 imes \end{array}$	${ m Cu}4{-}{ m S}2\ {-}{ m S}3$	$\begin{array}{ccc} 2,29 & 2 imes \\ 2,38 & 1 imes \end{array}$
Cu 1–Cu 2 –Cu 4 –Cu 3	$2,54\ 1 imes 2,64\ 2 imes 2,72\ 2 imes$	Cu 1Cu 2 Cu 4 Cu 3	$2,54 \ 1 \times 2,67 \ 2 \times 2,77 \ 2 \times$
Cu 2–Cu 4 –Cu 4	$\begin{array}{ccc} 2,73 & 2 imes \\ 2,92 & 2 imes \end{array}$	$\begin{array}{c} \operatorname{Cu}2\operatorname{-Cu}4\\ -\operatorname{Cu}4\end{array}$	$\begin{array}{ccc} 2,74 & 2 imes \\ 2,93 & 2 imes \end{array}$
Cu 3–Cu 3	2,62 $1\times$	Cu 3 – Cu 3	$2,61$ $1\times$
Cu4-Cu4	2,81 1×	Uu4u4	<i>z,77</i> 1×

Alkaliatome angeordnet sind. Die K₃Cu₈S₆-Struktur enthält Teilbereiche, deren Atomanordnung entweder dem KCu₄S₃-Typ oder dem KCu₃S₂-Typ entspricht (vgl. Abb.). Während die Alkaliatome bezüglich Schwefel im KCu₃S₂ eine 7er-Koordination und im KCu₄S₃ ausschließlich eine würfelförmige 8er-Koordination aufweisen, kommen in der Struktur des K₃Cu₈S₆ beide Koordinationspolyeder vor: das Atom K1 ist 8-fach, das Atom K2 7-fach von Schwefel koordiniert (vgl. Tab. II). Die Kupferatome befinden sich bezüglich Schwefel in annähernd trigonal planarer oder verzerrt tetraedrischer Umgebung. Die ersteren (Cu2 und Cu4) bilden mit ihren Schwefelnachbarn kettenförmige Verbände, die in dieser Form schon bei einigen anderen ternären Sulfiden der Münzmetalle beobachtet wurden [6]. Sie verlaufen in Richtung der kristallographischen b-Achse. Die Verknüpfung dieser Verbände zu Schichten erfolgt sowohl im KCu₃S₂ als auch im K₃Cu₈S₆ über Schwefeltetraeder, die die restlichen Kupferatome aufnehmen und die ihrerseits über gemeinsame Kanten verknüpft sind. Ein Unterschied zwischen den beiden Strukturen besteht darin, daß der Teilbereich mit verzerrt tetraedrisch umgebenen Kupferatomen im K₃Cu₈S₆-Typ gegenüber dem KCu₃S₂-Typ auf das Doppelte ausgedehnt ist. Die Atomanordnung in diesem Bereich (in der Abb. durch Strichelung begrenzt) entspricht bis auf eine leichte Verzerrung derjenigen des KCu₄S₃-Typs.

Innerhalb des Kupfer-Schwefel-Verbandes nimmt das Atom Cu3 eine Sonderstellung ein. Es trennt jene Bereiche voneinander, in denen die Atomanordnung des KCu₃S₂-Typs ausgebildet ist (in der Abb. durch Verbindungslinien hervorgehoben). Vermutlich begünstigen die Umgebungsverhältnisse an dieser "Nahtstelle" der Struktur eine Fehlordnung, die sich bei der Verfeinerung in hohen anisotropen Temperaturfaktoren äußert.

Herrn Prof. W. Bronger möchte ich an dieser Stelle für wertvolle Diskussionen herzlich danken.

- [1] W. Rüdorff, H. G. Schwarz u. M. Walter, Z. Anorg. Allg. Chem. 269, 141 (1952).
- [2] J. Geuskens, Diplomarbeit, Aachen 1971.
- [3] Ch. Burschka u. W. Bronger, Z. Naturforsch. 32b, 11 (1977).
- [4] W. Bronger u. H. Schils, Privatmitteilung.
- [5] Programm-Paket: Syntex-XTL auf NOVA 1200.
- [6] Ch. Burschka, Z. Naturforsch., im Druck.