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Abstract

We apply an antiferromagnetic symmetry breaking implementation of the dynamical clus-

ter approximation (DCA) to investigate the two-dimensional hole-doped Kondo lattice

model (KLM) with hopping t and coupling J . The DCA is an approximation at the level

of the self-energy. Short range correlations on a small cluster, which is self-consistently

embedded in the remaining bath electrons of the system, are handled exactly whereas

longer ranged spacial correlations are incorporated on a mean-field level. The dynamics

of the system, however, are retained in full. The strong temporal nature of correlations in

the KLM make the model particularly suitable to investigation with the DCA.

Our precise DCA calculations of single particle spectral functions compare well with exact

lattice QMC results at the particle-hole symmetric point. However, our DCA version,

combined with a QMC cluster solver, also allows simulations away from particle-hole

symmetry and has enabled us to map out the magnetic phase diagram of the model as a

function of doping and coupling J/t.

At half-filling, our results show that the linear behaviour of the quasi-particle gap at small

values of J/t is a direct consequence of particle-hole symmetry, which leads to nesting

of the Fermi surface. Breaking the symmetry, by inclusion of a diagonal hopping term,

results in a greatly reduced gap which appears to follow a Kondo scale.

Upon doping, the magnetic phase observed at half-filling survives and ultimately gives

way to a paramagnetic phase. Across this magnetic order-disorder transition, we track

the topology of the Fermi surface. The phase diagram is composed of three distinct regions:

Paramagnetic with large Fermi surface, in which the magnetic moments are included in

the Luttinger sum rule, lightly antiferromagnetic with large Fermi surface topology, and

strongly antiferromagnetic with small Fermi surface, where the magnetic moments drop

out of the Luttinger volume. We draw on a mean-field Hamiltonian with order parameters

for both magnetisation and Kondo screening as a tool for interpretation of our DCA results.

Initial results for fixed coupling and doping but varying temperature are also presented,

where the aim is look for signals of the energy scales in the system: the Kondo temperature

TK for initial Kondo screening of the magnetic moments, the Neel temperature TN for

antiferromagnetic ordering, a possible T ∗ at which a reordering of the Fermi surface is

observed, and finally, the formation of the coherent heavy fermion state at Tcoh.
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Kurzfassung

Wir setzen eine Implementierung der dynamischen Cluster Näherung (DCA) mit gebroch-

ener Symmetrie ein um das zweidimensionale lochdotierte Kondo Gitter Model (KLM)

mit dem Hüpfmatrixelement t und der Kopplung J zu untersuchen. Die DCA beruht

auf einer Näherung der Selbstenergie. Kurzreichweitige Korrelationen auf einem kleinen

Cluster, der selbstkonsistent in ein Bad der übrigen Systemelektronen eingebettet ist,

werden exakt behandelt, während langreichweitige Korrelationen auf Mean-Field Basis

berücksichtigt werden. Dabei wird jedoch die Dynamik des Systems voll beibehalten.

Auf Grund starker dynamischer Korrelationen zeigt sich das KLM als besonders geeignet

für Untersuchungen im Rahmen der DCA.

Präzise Berechnungen der Einteilchen Spektralfunktion geben gute Übereinstimmung mit

exakten Gitter-QMC Resultaten am Teilchen-Loch symmetrischen Punkt. Unsere DCA

Version, kombiniert mit einem QMC Cluster Solver, erlaubt es, Simulationen fern vom

Teilchen-Loch symmetrischen Punkt durchzuführen und hat es uns ermöglicht das mag-

netische Phasendiagram des Models als Funktion der Dotierung und der Kopplung J/t

abzutasten.

Bei halber Füllung zeigen unsere Resultate, dass das lineare Verhalten der Qua-

siteilchenlücke bei kleinem J/t direkt aus der vorliegenden Teilchen-Loch Symmetrie, die

ihrerseits zu Nesting führt, hervorgeht. Brechung dieser Symmetrie durch das Einführen

eines diagonalen Hüpfmatrixelements, hat eine an die Kondo Skala gekoppelte, stark re-

duzierte Quasiteilchenlücke zur Folge.

Im dotiertem System setzt sich die bei Halbfüllung beobachtete magnetische Phase fort

bis sie letztendlich der paramagnetischen Phase weicht. Wir verfolgen die Entwick-

lung der Topologie der Fermifläche beim Durchstoßen dieses magnetischen Übergangs

vom Ordnungs- zum Unordnungregime. Das Phasendiagram unterteilt sich in drei ver-

schiedenen Regionen: Den Paramagnetischen Bereich mit großer Fermifläche, in dem die

magnetische Momente zum Luttinger Volumen beitragen, den schwachen Antiferromag-

neten, mit großer Fermiflächetopologie, und den starken Antiferromagneten mit kleiner

Fermifläche, bei dem die magnetischen Momente nicht am Luttinger Volumen beteiligt

sind. Wir beziehen uns zur weiteren Interpretation unserer DCA Resultate auf einen

Mean-Field Hamiltonian mit Ordnungsparametern sowohl für die Magnetisierung als auch

für die Kondo-Abschirmung.

Erste Resultate bei fester Kopplung und Dotierung, jedoch bei unterschiedlichen Tem-
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peraturen, zwecks der Ermittlung der verschiedene Energieskalen des Systems, werden

dargestellt. Wir suchen Signale der Kondo Temperatur TK bei der die Kondo-Abschirmung

der magnetische Momente einsetzt, der Neel Temperatur TN der antiferromagnetischem

Ordnung, das eventuelle Auftreten einer durch T ∗ gekennzeichnete Änderung der Fer-

miflächen Topologie, und letztendlich die Ausbildung eines kohärenten schwerfermionis-

chen Zustandes bei Tcoh.
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1 Introduction

In the 1960’s the study of localised magnetic moments was placed firmly in the emerging

field of strongly correlated electron systems when Anderson first identified interactions

between localised electrons as the driving force for local moment formation [1]. Early

experimentalists realised that local moment formation on magnetic iron ions dissolved in

non-magnetic metals is dependent on the host [2, 3]. The magnetic susceptibility of a

system of iron dissolved in a niobium-molybdenum alloy was seen to follow a Curie-Weiss

law for compositions close to molybdenum, indicating the presence of local moments. The

low temperature limit of Curie-Weiss susceptibility is given by the Kondo temperature, the

temperature at which the local moment is screened due to the formation of an entangled

spin singlet state of the local moment and surrounding conduction electrons.

At high energies the local moment in the metallic host is free, but at energies below

the Kondo temperature, it interacts so strongly with the surrounding electrons that the

magnetic moment is shielded by those electrons. The physics of local moment screening,

the Kondo effect, manifests itself in a variety of properties of correlated electron systems

including the Kondo resistivity minimum and also the formation of heavy fermion metals.

With the latter, the presence of local moments greatly changes the metals properties with

quasi-particles developing which may have an effective mass many times larger than the

bare electron mass whilst still behaving as a Fermi liquid at low temperatures.

Such behaviour led Doniach to propose that the huge mass renormalisation has its roots

in a lattice version of the Kondo effect and that such heavy fermion systems should be

modelled by the Kondo lattice model (KLM) [4]. The mass renormalisation can be at-

tributed to the coherent superposition of individual Kondo screening clouds and the re-

sulting metallic state is characterised by a Fermi surface with Luttinger volume (Fermi

surface volume) containing both conduction and localised electrons. In its simplest form,

the KLM describes a lattice of spin 1/2 magnetic moments coupled antiferromagnetically

via an exchange coupling J to a single band of conduction electrons and is believed to

capture the physics of heavy fermion materials such as CeCu6.

The KLM is given by the following Hamiltonian:

H =
∑

k,σ

ǫ(k)c†k,σck,σ + J
∑

i

Sc
i · Sf

i (1.1)

with conduction electron creation operator c†k,σ creating a conduction electron on an ex-
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1 Introduction

tended orbital with wave vector k and a z-component of spin σ =↑, ↓. The spin 1/2 degrees

of freedom, coupled via J , are represented with the aid of the Pauli spin matrices σσσ by

Sc
i =

1

2

∑

s,s′

c†i,sσσσs,s′ci,s′ (1.2)

or the equivalent definition for Sf
i

using the localised orbital creation operators f †
i,σ. The

KLM forbids charge fluctuations on the f -orbitals and as such the constraint of one electron

per localised orbital must be included.

Although the physics of the single impurity Kondo problem is well understood [5] the

KLM still poses a problem half a century since its original conception. The difficulty

with the lattice problem arises due to the presence of two competing energy scales. The

first energy scale, given by the Kondo temperature, is associated with the screening of

impurity spins via the Kondo effect. At constant density, the J dependence of the inverse

effective mass — or the coherence temperature — has been argued to track this single

ion Kondo scale [6, 7]. However, in the lattice problem, polarisation of the conduction

electron spins around a first magnetic impurity can couple to a second impurity leading

to an effective interaction between impurity spins, the Ruderman-Kittel-Kasuya-Yosida

(RKKY) interaction [8, 9, 10], and an associated second energy scale. This RKKY scale

dominates at low values of the exchange coupling and is the driving force for the observed

magnetic order-disorder quantum phase transitions in heavy fermion materials.

The nature of this phase transition is of current interest following experimental results

suggesting a sudden change in the Fermi surface topology at the quantum critical point

(QCP) for the heavy fermion metal YbRh2Si2 [11]. Tuning this system from the non-

magnetic heavy fermion metallic phase to the antiferromagnetic metallic phase causes a

rapid change in the low temperature Hall coefficient which is extrapolated to a sudden

jump at T = 0. Since the low-temperature Hall coefficient is related to the Fermi surface

volume the results are interpreted as showing a sudden reordering of the Fermi surface at

the QCP from a large Fermi surface, where the local moment impurity spins are included

in the Luttinger volume, to a small Fermi surface where the impurity spins drop out of

the Fermi surface volume. This scenario lies at odds with the Hertz-Millis description of

the quantum phase transition [12, 13] and has triggered alternative descriptions [14, 15].

More recently it has been experimentally shown that the Fermi surface topology change

does not necessarily occur only at the magnetic order-disorder QCP. For examples we think

of CeIn3 [16] or CeRh1−xCoxIn5 [17]. In fact, even in YbRh2Si2 it has now been shown that

the Fermi surface reconstruction can be shifted away from the magnetic phase transition

to either side of the QCP via application of positive or negative chemical pressure [18]. In

yet another recent example, neutron scattering experiments on the heavy-fermion system

Ce1−xLaxRu2Si2 show that, there, fluctuations of the antiferromagnetic order parameter

are responsible for the magnetic phase transition and that the transition is well understood
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1.1 Weak Coupling and Strong Coupling limits of the KLM

in terms of the Hertz-Millis approach [19].

To summarise, recent experimental results indicate a complicated phase diagram centred

around an antiferromagnetic QCP in heavy fermion systems often with the involvement

of a restructuring of the Fermi surface. The magnetic phase transition does not however

appear to be directly connected with the topology change in all model systems such that in

many cases the Hertz-Millis theory of quantum phase transitions holds. In such cases the

topology change can be interpreted as a crossover and not the result of the local critical

fluctuations proposed in references [14, 15]. The factors controlling the Fermi surface

topology are currently of much interest.

In this work we investigate the interplay between Kondo screening and the RKKY inter-

action in the 2D KLM concentrating in particular on the nature of the phase transition

and Fermi surface topology of the ground state. To achieve this we employ a variant of

the Dynamical Cluster Approximation (DCA) with a quantum Monte-Carlo algorithm as

cluster solver. An introduction to the DCA and in particular our own symmetry breaking

DCA variant, is given in chapter 2. Following this, in chapter 3, we review relevant aspects

of the QMC solver algorithm as it pertains the KLM Hamiltonian. Chapter 4 considers the

KLM on the basis of simple mean-field or spin density wave (SDW) approaches which are

then drawn on in the chapters following to gain extra insight into the numerical results.

In chapter 5 the KLM is considered at half-filling. Comparison with previous QMC results

is made in order to validate our method followed by detailed analysis of the magnetisa-

tion, single particle spectra and quasi-particle gap as a function of coupling J/t. Finally,

in chapter 6, the system is hole-doped and we map out the magnetic phase diagram as

a function of doping and coupling. Here we examine the RKKY driven quantum phase

transition to the AF ordered state and follow the evolution of the Fermi surface across

this transition. Initial results with increasing temperature are also shown here before we

summarise in chapter 7.

Now, before beginning with the description of our numerical methods we use the following

introductory sections of this chapter to make some general points about the KLM and in

particular to consider the competing effects of RKKY interaction and Kondo screening,

which make the model interesting in the first place.

1.1 Weak Coupling and Strong Coupling limits of the KLM

At half-filling and for J/t → ∞ the ground state of the KLM is a spin liquid in any

dimensions [20]. This state is characterised by quantum disorder amongst the spins and

also spin and charge correlation functions that decay exponentially in space and time. If

we consider the limit J/t = ∞ then the wavefunction must be a product of single-site

wavefunctions. The single site eigenstates and corresponding energies are:

11



1 Introduction

singlet 1√
2
(| ↑〉f | ↓〉c − | ↓〉f | ↑〉c) E = −3

4J

triplet



















| ↑〉f | ↑〉c
| ↓〉f | ↓〉c

1√
2
(| ↑〉f | ↓〉c + | ↓〉f | ↑〉c)

E = 1
4J

doublet | ↑〉f | ↑↓〉c ; | ↓〉f | ↑↓〉c E = 0

doublet | ↑〉f |0〉c ; | ↓〉f |0〉c E = 0.

The energy spectrum for the complete system is easily labelled via two quantum numbers

(Nd, Nt): The number of doubly occupied or empty sites, Nd, and the number of on-site

triplets, Nt. The energy of a general state for the half-filled N -site system is calculated

by summing up the energies of the composite single-site states:

E(Nd, Nt) = −3

4
JN +

3

4
J · 2Nd + JNt. (1.3)

The factor 2 in the second term in the sum is because at half-filling, the number of doubly

occupied conduction electron sites equals the empty sites. The ground state at half-filling

in the J/t = ∞ limit will therefore be a product state of on-site singlets and be defined by

the quantum numbers (0, 0). The lowest spin excitation out of the ground state is achieved

by breaking a singlet to form a triplet. The spin gap to this excited state (0, 1) is ∆s = J .

The quasiparticle gap, the energy required to add/remove an electron is just ∆qp = 3
4J .

The charge gap ∆c = 3
2J is the energy required for excitation to (1, 0), thereby changing

the charge configuration. Now since the charge, spin and quasiparticle excitations are all

gapped, the strong coupling J/t = ∞ limit is a suitable start for perturbation theory in

t/J to investigate the nature of the system at progressively smaller J/t. In particular, the

low level excitations will evolve continuously with decreasing J/t.

Alternatively, we can consider the spin liquid phase from the hybridisation picture given

by the periodic Anderson model (PAM) also used as a model for heavy fermion systems.

The PAM Hamiltonian is given by

HPAM =
∑

k,σ

ǫ(k)c†
kσckσ + V

∑

i,σ

(

c†
iσfiσ + f †

iσciσ

)

+
∑

i,σ

ǫfn
f
iσ + U

∑

i

nf
i↑n

f
i↓ (1.4)

where V defines the degree of hybridisation between the conduction band and localised f-

orbitals at each site. A Coulomb repulsion U is only applied to the f-electrons. Anderson

showed for the single-site model, with an f-orbital at a single site only, that under the

symmetric condition

EF − ǫf = ǫf + U − EF , (1.5)

where EF is the Fermi energy, then the energy required for the doubly occupied f-site is

the same as for the empty f-site. As long as the upper and lower levels have little overlap
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1.1 Weak Coupling and Strong Coupling limits of the KLM
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Figure 1.1: Limiting cases of the KLM and the PAM.

with the Fermi energy, then the Coulomb term causes the f-site to be singly occupied on

average. In the PAM, as long as the f level is well below the Fermi energy, a large U will

still mean that the occupancy on the f-sites is close to one. This is the Kondo regime of

the PAM. More formally, the KLM can be derived from the PAM via a Schrieffer-Wolff

transformation [21]. In this way, the KLM coupling parameter is related to the PAM

parameters as J ∝ V 2

U . We recognise that the large U limit of the PAM is equivalent to

the small J limit of the KLM (Fig. 1.1).

Interestingly, the large J/t spin liquid limit of the KLM, can still be linked to the PAM

in the small U limit even though only with a large U acting between the f -electrons can

we arrive at the KLM with the condition of single occupancy on the f -sites fulfilled. For

U = 0 the (non-interacting) PAM just describes the hybridisation between the c and f

electrons. The Hamiltonian would be

H0
PAM =

∑

k,σ

(

c†kσ f †kσ

)





ǫ(k) V

V ǫf









ckσ

fkσ



 . (1.6)

Diagonalising this Hamiltonian gives an upper and a lower hybridised band in the quasi-

particle spectrum with energies

E±(k) =
1

2

(

ǫ(k) + ǫf ±
√

(ǫ(k) − ǫf )2 + 4V 2

)

(1.7)

and the quasi-particles are created with hybridised operators γ†
kσ = ukc

†
kσ + vkf

†
kσ and

η†k = −vkc†kσ + ukf
†
kσ (where |uk|2 + |vk|2 = 1) such that

H0
PAM =

∑

k,σ

(

E+(k)γ†kσγkσ + E−(k)η†kσηkσ

)

. (1.8)
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1 Introduction

When the hybridisation matrix element V is zero, the two electron systems are completely

decoupled and we have localised f -spins with atomic state energies ǫf embedded in a

conduction band of free c-electrons. But with V 6= 0 the quasi-particles are of c-f nature,

or hybridised, and display a two-band gapped spectrum where the maximum of the lower

band is at (π, π) and the minimum of the upper band at (0, 0). Turning on a small

Coulomb interaction will progressively renormalise the hybridised bands as correlation

effects strengthen.

We get exactly the same hybridised band structure for the KLM in the J → ∞ limit if

we come at it with the large-N mean-field approach shown in section 4.1. We have also

already argued above that the strong coupling KLM is a suitable point for perturbative

expansion in t/J to lower values of J .

From the above we have tried to make clear the connection between the KLM and the

PAM in the large J - small U limit. In this limit the KLM cannot be derived from the

PAM but, taking both as models in their own right, the respective limits produce the same

spin liquid phase and this phase evolves continuously away from the limit. At small J ,

large U , the models converge (Fig. 1.1).

However, at small J/t the nature of the phase is not so clear. Consider to begin with

J/t = 0. Here the localised spins are completely decoupled from the conduction electrons

which themselves are just a free electron gas. Due to the freedom of the localised spins,

the total system is highly degenerate. The system will be a paramagnetic metal with

gapless spin and charge excitations. Even in one dimension, where long range AF order

cannot exist, it is difficult to predict whether the paramagnetic metallic state of J = 0

will persist to small finite values of J/t since the smallest of couplings lifts the degeneracy

caused by the free localised spins and introduces complex correlation effects. In fact, for

dimensions d ≥ 2 and at small values of J/t, the ground state of the system displays long

range AF order mediated by the RKKY interaction to be described shortly, i.e. the system

is in the Neel state with gapless magnon excitations. We see that the point J = 0 can be

considered a singular limit, where the model is of such a different nature to the limit of

J/t→ 0, that a perturbative expansion in J/t around J = 0 is not an easy matter.

1.2 Correlation, Screening and Magnetisation

The complexities of the KLM and the PAM are quite subtle. Correlations in these models

are due to scattering events with the localised spins. This is easily visualised in the KLM

by considering a conduction electron moving around the lattice. At each lattice site it can

undergo a spin flip process involving the localised spin at that site if both partners have

antiparallel spin. The conduction electron therefore leaves a spin flip trail in the localised

spins as it moves around the lattice. Whether a second conduction electron moving onto a

14



1.2 Correlation, Screening and Magnetisation

lattice site can undergo a spin flip is then dependent on the spin flip trail left by the first

conduction electron and, of course, all the other conduction electrons. All the itinerant

conduction electrons and the localised spins are therefore correlated with one another in

a highly complex manner. We can also see on the basis of this intuitive argument that

the correlations must be of a strong temporal nature, since the second electron feels the

effects of the trail left by the first at a given site only when it itself arrives at that site

some time later.

It is argued, however, that determination of the ground state can be reduced to basically

considering two competing effects. The first is the extension of the idea of Kondo screening

to a dense Kondo lattice of impurities. Initially beginning with a single impurity with spin

state | ↑〉f or | ↓〉f , it becomes energetically favourable at sufficiently low temperatures

for a conduction electron at the lattice site of the impurity to build an entangled Kondo

singlet state,

|Kondo singlet〉 =
1√
2
(| ↑〉f | ↓〉c − | ↓〉f | ↑〉c), (1.9)

such that the magnetic impurity spin is fully screened. This is known as the Kondo effect

and the temperature scale for its onset is given by the Kondo temperature TK which scales

as

TK ∼ e−
t
J . (1.10)

The Kondo temperature can also be thought of in connection with the tunnelling rate τ−1

describing the amplitude for a spin flip process of the impurity spin state. If the impurity

spin is strongly correlated with the surrounding electrons the high rate of spin flips means

that the magnetic moment disappears. The temperature at which this occurs defines the

Kondo temperature as

TK ∼ τ−1 (1.11)

below which the magnetic moment is screened.

For the single impurity problem the Kondo singlet acts as a scattering centre, which

gives rise to an increase in the resistivity at low temperature and a minimum in the

resistivity curve. In the Kondo lattice problem, with magnetic impurities at every lattice

site, again there is an increase in resistivity as the crossover to Kondo screening takes

place with decreasing temperature. The temperature of this crossover will be related

to the single impurity Kondo temperature but modified by lattice effects. With further

temperature decrease scattering begins to take place coherently in accordance with Bloch

theory for a periodic scattering potential, and a narrow band with width of the order

TK is formed. The narrow band has such little curvature that the effective mass m∗ of

the quasiparticles is very large giving rise to the term heavy fermions. Experimentally,
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1 Introduction
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Figure 1.2: Resistance in Ce1−xLaxCu6 as a function of temperature [22]. Coherence develops as

x approaches 1.

the development of the coherent heavy fermion state has also been observed by gradually

increasing the concentration of Ce in LaCu6 [22] (Fig. 1.2). This is equivalent to increasing

the concentration of magnetic moments in the non-magnetic conduction electron sea. With

the development of coherence (x → 1 in Fig. 1.2) the temperature dependency of the

resistivity follows

ρ = ρ0 +AT 2 (1.12)

in accordance with Fermi liquid theory. In this regime the electronic specific heat also

becomes linear

CV = γ∗T (1.13)

but with a greatly enhanced linear coefficient

γ∗ =
m∗

m
γ (1.14)

in comparison to the γ for the conduction band in the absence of the magnetic moments.

For the heavy fermion material CeCu6, for example, γ∗ = 1550mJ mole−1 K−2 where we

make the comparison to pure Cu with γ = 0.695mJ mole−1 K−2.

The second effect, which competes with Kondo screening, is due to the fact that localised

magnetic moments can couple with each other via an indirect interaction known as RKKY,

so-called after the main investigators of the mechanism: Ruderman, Kittel, Kasuya and

Yosida [8, 9, 10]. We show later in chapter 5 (5.26), in connection, however, to deriving

the conditions for perfect nesting, that the z-z component of the static spin susceptibility
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1.2 Correlation, Screening and Magnetisation

of the conduction electrons is

χ(q) = − 2

N

∑

k

nF (ǫ(k)) − nF (ǫ(k + q))

ǫ(k) − ǫ(k + q)
(1.15)

with the Fermi function nF and conduction electron dispersion ǫ(k). A localised magnetic

impurity at site j will cause a spin polarisation of the conduction electrons, and this

response at a site i is governed by the strength of the coupling J between the impurity

spin and the electron spin at site j multiplied with the real-space Fourier transform of the

susceptibility:

χ(ri − rj) =
∑

q

χ(q)eiq(ri−rj). (1.16)

A second magnetic impurity at site i can, in turn, again couple to the spin density at i via

the hybridisation coupling J . We therefore have an effective interaction between magnetic

moments at sites i and j:

JRKKY(ri − rj) ∼ J2χ(ri − rj , ω = 0). (1.17)

As an example of the form this interaction can explicitly take we consider a simple

quadratic band ǫ(k) = k2

2m in three dimensions. In this simplified case, calculation (for

example [23]) shows the effective interaction JRKKY to be

JRKKY(ri − rj) ∼ −J2D(kF )
cos(2kF (ri − rj))

(kF (ri − rj))3
(1.18)

with Fermi wave vector kF and conduction electron density of states at the Fermi wave

vector D(kF ). In general, we can think of a magnetic moment as a delta-function-like

magnetic field placed into the conduction electron host band. This will give rise to an

oscillatory response in the conduction electron spin density. It is the oscillatory nature

of the effective interaction which makes the RKKY interaction the proposed mechanism

for the stabilisation of the AF phase in the KLM. The oscillations in the spin density are

of the same form as the Friedel oscillations in the charge density of conduction electrons

screening a charged impurity in a metal. The RKKY mechanism for effective coupling of

magnetic moments is illustrated in Fig. 1.3.
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Figure 1.3: Two magnetic moments (large arrows) experience an effective coupling via the RKKY

interaction. The conduction electron spins become polarised by the first magnetic moment causing

Friedel oscillations in the spin density. The second magnetic moment in turn couples to the

polarisation

From a k-space perspective, and considering equation (1.15), we may see the oscillation as

being due to the sharp discontinuities in electron occupation at the Fermi surface, wave

vector kF , which will equate to an oscillatory form after Fourier transformation to real-

space. We can associate an energy scale ERKKY with the RKKY interaction JRKKY such

that

ERKKY ∝ J2χ(q, ω = 0) = JRKKY(q) (1.19)

whereas for Kondo screening of the magnetic moments the scale is given by the Kondo

temperature

TK ∼ e−t/J . (1.20)

For large values of J/t then TK > ERKKY and the Kondo screened paramagnetic ground

state is found whereas for small values of J/t then ERKKY > TK and RKKY induced AF

order between impurity spins will dominate. The phase diagram of the KLM according to

Doniach is summarised schematically in Fig. 1.4. The zero temperature transition point

between the PM and AF ordered phase represents a quantum critical point. This phase

transition is part of the main focus of the results presented in this work.
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PMAF
ERKKYTK

JD(EF )
TemperatureT

Figure 1.4: Phase diagram of the KLM according to Doniach based on comparison of the energy

scales for Kondo screening TK versus RKKY interaction ERKKY. The paramagnetic (PM) and

antiferromagnetic (AF) ordered states are separated by a phase transition (dotted line) terminating

in a quantum critical point at zero temperature
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2 Mean Field Theory, Dynamical Mean Field

Theory, and the Dynamical Cluster

Approximation

2.1 The Mean Field Approach

Even the simplest quantum many-body Hamiltonians pose problems in their solution.

Exact solutions of the Hubbard Model, for example, which is often considered as a kind of

minimalist model for strongly interacting electrons in a solid, are only available in special

cases: notably, several analytical results can be obtained in one-dimension by means of the

Bethe Ansatz (see, for example, the review article [24] and references therein). In general

cases suitable approximations are sought with which one may capture the physics of the

situation under investigation. Approximations which have some controllable limiting case

are particularly desirable since in the relevant limit it is then possible to understand the

essence of the approximation and its effect on the physics of the system as one moves

away from this limit. In fact, expansion around some limiting case forms the basis of

many systematic controllable improvement methods. We can think, here, of the example

given by perturbation theory, in which the actual approximation used is decided upon on

the basis of which physics are to be investigated.

Mean field theories constitute one such class of approximation methods. The underlying

concept, in application to lattice models, is to replace the many site lattice by a single

site embedded in an effective interaction field which is calculated self-consistently and

takes into account the effect of the remaining sites. In classical and quantum spin lattice

models, in which each lattice site is associated with a localised spin degree of freedom, the

self-consistent equations determining the mean field are well known and their solution is

known to become exact in the limiting case of infinite coordination number or, equivalently,

infinite dimensions. For example consider a simple Ising-like spin model

H = −
∑

i,j

JijSiSj (2.1)

where Si is a discrete variable representing the spin at site i and taking only the values

±1, and Jij is a ferromagnetic (Jij > 0) or antiferromagnetic (Jij < 0) coupling between

spins at i and at j. An effective Hamiltonian is created by considering each spin to be
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2 Mean Field Theory, Dynamical Mean Field Theory, and the Dynamical Cluster Approximation

in an effective interaction field created by all the other surrounding spins and replacing

those surrounding spin operators by their expectation values mj = 〈Sj〉. The effective

Hamiltonian is then

Heff = −
∑

i

heff
i Si (2.2)

with the effective field at site i given by

heff
i =

∑

j

Jijmj. (2.3)

We note that if we assume translational symmetry and a homogeneous spin coupling

between, say, nearest-neighbours only (Jij = J for nearest neighbours i, j and Jij = 0

otherwise) the effective field is dependent on just a single parameter m since mj = m∀j.
Solving now for the magnetisation of the spin at a given site under the influence of the

effective field heff = heff
i = zJm (where z is the coordination number) gives

m = tanh(βheff ). (2.4)

We note that in order to preserve a finite entropy and internal energy per site the coupling

must be rescaled as J = J∗

z as z → ∞. The mean field equations defined by (2.3) and

(2.4) must be solved self-consistently.

Such spin lattice problems have the simple controllable limit of infinite dimensionality

for which the approximation becomes exact. This is intuitively clear for our Ising spin

example since in infinite dimensions a given spin is surrounded by infinite neighbours such

that fluctuations in the local effective field become negligible.

Therefore, when applied to classical or quantum spin systems, the mean field approach

displays the desirable characteristics of controllability and exactness in the limiting case of

d→ ∞. This is all well and good for problems involving localised degrees of freedom but

the system becomes fundamentally more complicated when we introduce itinerant degrees

of fermionic freedom. One prominent example is the Hubbard model with Hamiltonian

H = −t
∑

〈i,j〉,σ
(a†iσajσ + h.c.) + U

∑

i,σ

ni↑ni↓, (2.5)

which includes a nearest neighbour hopping t in addition to an on-site (Coulomb) inter-

action U . To develop a mean-field theory for this model one may proceed analogously to

the spin lattice model mean field approximation by neglecting fluctuations in the interac-

tion field in order to reduce the Hamiltonian to that of an effective single site problem.

Formally, this is achieved within the Hartree-Fock (HF) approximation by writing the

two-particle interaction term, given more generally as the product of two operators A and

B, as

AB = (A− 〈A〉)(B − 〈B〉) +A〈B〉 + 〈A〉B − 〈A〉〈B〉. (2.6)

22



2.2 Dynamical Mean Field Theory

The last term on the right hand side is just a product of expectation values and there-

fore just a complex number which cancels out in the partition function Z = e−βH when

calculating the expectation value of some operator A as 〈A〉 = 1
Z Tr(Ae−βH). The approx-

imation is given by neglecting the first term which describes fluctuations of the operators

about their expectation values:

AB
HF→ A〈B〉 + 〈A〉B − 〈A〉〈B〉. (2.7)

Again, we may ask ourselves whether the approximation becomes exact in the limit d→ ∞.

Metzner and Vollhardt began study of the Hubbard model and related models in high

dimensions in 1989 [25], which sparked a series of papers on the subject which showed the

usefulness of the limiting case when considering such models in lesser dimensions as small

as even d = 3 or d = 2 [26, 27] However, when applied to the Hubbard model, the HF

approximation does not match the exact the result in the limit d → ∞ [25, 26] since the

neglected fluctuation term (ni↑ − 〈ni↑〉)(ni↓ − 〈ni↓〉) in the on-site interaction is in fact of

order one regardless of dimensionality.

2.2 Dynamical Mean Field Theory

The desire to find a mean field approximation for which the dimensionality d or coordi-

nation number z may be used as a control parameter to extrapolate to an exact solution

in the limit d → ∞ was the focus of a number of studies in the years following the

groundbreaking work of Metzner and Vollhardt in 1989 [25]. For a list of the historical

development of infinite dimensional studies and dynamical mean field theory (DMFT) we

refer the reader to the review article of A. Georges et al. [28].

2.2.1 The DMFT equations

The goal is to calculate the interacting Green function

G(k, iωn) =
1

iωn − (ǫ(k) − µ) − Σ(k, iωn)
(2.8)

for the lattice model. We wish to achieve this by some kind of mean-field approxima-

tion to deal with the spacial fluctuations whilst retaining the dynamics of the itinerant

electrons and at the same time guaranteeing the controllable limit of d → ∞. We begin

by considering the following effective action for a dynamic model containing two-particle

interactions only at a single-site:

Seff = U

∫ β

0
dτn↑(τ)n↓(τ) −

∫ β

0
dτ

∫ β

0
dτ ′
∑

σ

c†σ(τ)G−1
0 (τ − τ ′)cσ(τ ′) (2.9)

The Green function G0, which we will henceforth refer to as the bath Green function,

contains all the information of the sites around a particular chosen site. In other words
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2 Mean Field Theory, Dynamical Mean Field Theory, and the Dynamical Cluster Approximation

the other sites have been integrated out and the action is that of an impurity1 embedded

in a space-averaged bath of the surrounding electrons with which the impurity interacts.

Physically, G0 represents the effective amplitude for an electron to be created at the impu-

rity site at a time τ and be destroyed again at time τ ′. Or equivalently, it is the amplitude

for an electron to come out of the bath onto the impurity site at a given time and return to

the bath a certain time later. This bath Green function may be considered as the natural

extension of the mean-field (Weiss field) seen in the Ising-spin example considered above,

where the order parameter was given by the magnetisation, to the case of itinerant spins

such as in the Hubbard model. The difference is that whereas for classical (or quantum

spin models without hopping) the mean-field was a single parameter, in the itinerant spin

model the quantity playing the role of the Weiss field, i.e. G0, is still local in space but

is now a dynamic quantity able to capture the effect of quantum fluctuations onto the

impurity site. The interacting Green function to G0 for the impurity problem is given by

Ḡ−1(iωn) = G−1
0 − Σimp[Ḡ(iωn)], (2.10)

where the skeleton expansion for the self-energy Σimp of the impurity problem is a func-

tional of the interacting Green function Ḡ. In this equation we are dealing with the Mat-

subara frequency Green function (with fermionic Matsubara frequencies ωn = (2n+1)π/β)

which is obtained via

Ḡ(iωn) =

∫ β

0
dτḠ(τ)ei ωnτ (2.11)

from the imaginary time Green function in turn calculated using the effective action Seff :

Ḡ(τ − τ ′) = −〈Tc(τ)c†(τ ′)〉Seff
. (2.12)

Now, the function Ḡ(iωn) is a local function which describes the impurity site and its

interactions with the effective bath. In the spirit of the mean field approach we require

that the local Green function of the full model (which equates to a summation over k in

the first BZ) must be equal to the interacting function Ḡ(iωn) of the effective impurity

model. Therefore we have the condition

Ḡ(iωn)
!
=

1

N

∑

k∈BZ

G(k, iωn) =
1

N

∑

k∈BZ

1

iωn − (ǫ(k) − µ) − Σimp(iωn)
. (2.13)

This may be considered as the analogon to the requirement hi =
∑

j Jijmj (2.3) in the

Ising model. It is important to note that on the right hand side of (2.13) the k-dependent

self-energy Σ(k, iωn) of the full lattice model has been replaced by the purely local self-

energy Σimp(iωn) of the effective impurity model. We will come back to this important

point shortly.

1We use the term impurity since solving a problem where particle interactions are restricted to a finite

number of sites is often the case for models of systems with magnetic impurities.
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2.2 Dynamical Mean Field Theory

In this section we have attempted to show some analogies between the DMFA and the

Weiss mean-field approach to lattice problems. In the DMFA the bath Green function

G0(iωn) plays a similar role to the Weiss effective field, where the spacial fluctuations are

integrated, or frozen out. The important difference with the DMFA is that local quantum

fluctuations between states are taken fully into account. The dynamics of these local

state transitions as a function of imaginary time are described by G0(τ). The ingredients

required in an effective Hamiltonian to describe the local problem must therefore include

a hybridisation term, allowing electrons to come out of the bath onto the impurity site

and return again to the bath, in addition to a term to describe the local interaction. If we

equate the bath electrons with a conduction band and the impurity site with an impurity

f-orbital electron, then we see that a general form of the single impurity Anderson model

would provide a suitable Hamiltonian for our effective problem

HSIAM =
∑

iσ

ǫic
†
iσciσ +

∑

iσ

Vi

(

c†iσfσ + f †σciσ
)

+ ǫf
∑

σ

f †σfσ + Unf
↑n

f
↓ , (2.14)

where the parameters ǫi and Vi would have to be chosen such that the model’s non-

interacting Green function

GSIAM
0 (iωm) =

1

(iωm − ǫf ) − 1
N

∑

i
V 2

i

iωm−ǫi

(2.15)

coincides with the effective G0 in (2.9). To make the link with impurity model Hamiltonians

more concretely we may consider the skeleton diagrams of the self-energy diagrammatic

perturbation expansion (where we follow the arguments presented in [29]).

The first few skeleton diagrams in the diagrammatic perturbation expansion for the Hub-

bard model (taken as an example) are given in Fig. 2.1. The double lines in the diagram

represent the interacting Green function, which could also be decomposed into a sum of

terms containing products of non-interacting Green functions. The non-interacting Green

function propagator between sites i and j will give a power of t, the hopping matrix ele-

ment, of t|i−j| with Manhattan distance |i − j|. This will then also be the lowest power

of t present in the interacting Green function. In the limit of infinite dimensionality d, it

is important to realise that the hopping matrix element must be rescaled as t = t∗/
√
d

in order to maintain a non-trivial model with finite kinetic energy per site. Now, a given

vertex at site i in any diagram may be linked to a site j via Pij independent paths along

fully dressed propagators. Summing over j is equivalent to summing over the Manhattan

distance R = |i − j| and multiplying with the number of sites N(R) found to be at that

distance. Since N(R) is just proportional to the dimension d then the total sum produces

a term with a power of t of at least

tRPijdR ∝
(

1

d

)R
“

Pij
2

−1
”

. (2.16)
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Σij (iωm)σ
=

δij

+ + + ...

i i i jj rσ σ σ

−σ −σ
−σ

−σ
−σ −σ

Figure 2.1: Diagrammatic perturbation expansion series for the Hubbard Model: The double

lines are full interacting Green function propagators, and the diagrams are therefore the skeleton

diagrams (figure taken from [29])

Just by considering the diagrams in the expansion we see that vertices at different sites

i and j will always be joined by at least three independent paths, Pij ≥ 3 so that in the

limit d → ∞ such diagrams will tend to zero with a power law of at least (1/
√
d)R and

not contribute to the sum. Only local diagrams will survive in this limit, with all vertices

carrying the same spacial index. We then note that a skeleton diagram perturbation

expansion for the impurity site self-energy Σff (iωn) of the single impurity Anderson model

looks, order for order, exactly the same as for the Hubbard model, with all vertex indices

labelled by the same site index (the impurity site). The topology of the skeleton diagrams

just gives the functional form of the self-energy. We can therefore conclude that in the

limit d→ ∞ the skeleton self-energy functional of the Hubbard model is the same as that

of the SIAM.

ΣHubb.[ · ] ≡ ΣSIAM[ · ]. (2.17)

So we see that if the limit d → ∞ is taken, then the self-consistent equations (2.10) and

(2.13) become exact, since the above analysis has shown that the self-energy of the full

lattice problem really is a local quantity whose functional form is the same as for the

embedded impurity problem. We therefore have a method with the desired controllable

limit of d → ∞ which we refer to as DMFT, as opposed to the approximation of a

local self-energy in lower dimensions, which is referred to as the dynamical mean-field

approximation (DMFA). Assuming a local self-energy means we are neglecting even the

shortest ranged spacial correlations. This is fine for problems where the main physics is

of a local nature. The desire to gradually restore at least short ranged correlations can be

achieved by a variety of proposals [30], collectively referred to as quantum cluster theories.

In this work we use a variant of the dynamical cluster approximation (DCA). The DCA

is best formulated in k-space. Looking back to the DMFA, a purely local self-energy is

equivalent to assuming that the self-energy does not depend on k. The DCA described in

the next section gradually reintroduces the k-dependence of the self-energy.
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Figure 2.2: DCA is an approximation in k-space which in real space corresponds to understanding

a lattice vector x as an inter-cluster vector x̃ plus an intra-cluster vector X. In k-space, the example

shows a cluster patching of the first BZ using Nc = 4: inside each patch around patch centres, K,

the self-energy is approximated as k-independent.

2.3 The Dynamical Cluster Approximation

The DCA is based on an underlying approximation to the self-energy of the full lattice

problem. In the DMFA, the self-energy is assumed to be momentum independent so

that for a given Matsubara frequency iωn, it is constant across the whole Brillouin zone:

Σ(k, iωn) = Σ(iωn). As already mentioned, in real-space this is equivalent to neglecting

non-local correlations. The DCA begins to restore the k-dependency by defining smaller

sized patches in momentum space in which the self-energy is constant for a given frequency.

The self-energy for momenta in a neighbouring patch may take a different constant value

for that frequency. We consider this, and the implications for the self-consistent equations,

more formally below.

In momentum space a k-vector in the first Brillouin zone is described by a centre of patch

vector K and a vector k̃ within the patch such that k = k̃ + K. In real space this can be

equated to each site of the original lattice being described by a vector x̃, which determines

the origin of a given cluster, and an intra-cluster vector X to point to one of the Nc sites

within that cluster.

The reciprocal vector spaces to each other are therefore: x̃ ↔ k̃ and X ↔ K. Fig. 2.2

illustrates the various vector definitions and divisions of momentum space and real space

into patches and clusters.
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In the language of Feynman diagrams, each vertex in a diagram represents an interaction

term as follows

≡ v(kl;nm) 1
β δωk+ωl,ωm+ωn ,

where v(kl;nm) is defined for the two-particle interaction of the model at hand, and

the Kronecker delta just ensures energy conservation for the interaction. On the simple

example of the Hubbard model, with on-site Coulomb interaction U , then

v(km,kn;klkp) =
U

N
δkm+kn,kl+kpδσmσl

δσnσpδσm,−σn (2.18)

=
U

N2
(Nδkm+kn,kl+kp)δspin, (2.19)

where we use a short hand for the spin Kronecker deltas, δspin = δσmσl
δσnσpδσm,−σn , which

are there to restrict the on-site Coulomb interaction to spins of opposite signs (Pauli

principle!) and forbid spin flips. The quantity in brackets is defined as the Laue function

which can be written as

∆ = Nδkm+kn,kl+kp =
∑

i

ei ri(km+kn−kl−kp) (2.20)

and which imposes strict conservation of momentum on the interaction process given by

the vertex.

The basic approximation in the DCA is an approximation to the Laue function:

∆DCA = NcδM(km)+M(kn),M(kl)+M(kp), (2.21)

where M(k) is a function which maps the momentum k to the cluster momentum K at

the centre of the patch in which k is found. In formulae, and using the same symbolism

for the vectors as in Fig. 2.2, i.e. for an original lattice momentum vector k = K + k̃, we

have

M(k) = M(K + k̃) = K. (2.22)

When inserted into the vertex interaction the DCA Laue function results in a relaxation

of strict momentum conservation since momentum is now only approximately conserved,

in fact, with a tolerance equal to the size of a patch. We see that this approximation easily

allows a smooth transition between the simplest case with Nc = 1 and the limit Nc = N ,

the size of the original lattice. For Nc = 1 all k-vectors are mapped to a single momentum,

the self-energy becomes momentum independent, and we obtain the DMFA. For Nc = N

we would recover full momentum dependence and the solution would be exact:

∆DCA
Nc→1−−−−→ ∆DMFA (2.23)

∆DCA
Nc→N−−−−→ ∆exact. (2.24)
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Figure 2.3: A typical second-order diagrammatic perturbation term in the Baym-Kadanoff gen-

erating functional Φ. Per definition of Φ, as a skeleton expansion, the full lines represent full

interaction Green functions. The numbered labelling of these propagators represents the momen-

tum, Matsubara frequency and spin of the propagator. For example, 1 ≡ (k1, iω1, σ1)

In order to guarantee a thermodynamically consistent approximation, in which a quantity

calculated as a derivative of the grand potential Ω agrees with the result calculated via

the Green function G, the grand potential must be stationary with respect to G:

δΩ

δG
= 0. (2.25)

To meet this condition it is sufficient that the single-particle self-energy Σ = G−1
0 − G−1

can be obtained from the Baym-Kadanoff generating functional Φ [31, 32] via functional

derivation:

Σ =
δΦ[G]

δG
. (2.26)

The generating functional Φ = Φ[G, v] is defined as the sum of all topologically differ-

ent, closed, skeleton diagrams constructed with the full interacting Green function G, as

propagating/non-propagating lines, and any number of interaction vertices v.

To demonstrate the effect of replacing the exact momentum conserving Laue function ∆

with the DCA Laue function ∆DCA we consider explicitly a second order diagram term in

Φ and assume a local Coulomb interaction U at the vertices as represented in Fig. 2.3.

This diagram is translated into a mathematical formula according to the Feynman rules:

1. Each dotted line represents an interaction vertex, which we take to be the on-site

Coulomb interaction, as given in (2.19) together with the preceding diagram of the

vertex.

2. Full lines ≡ −Gki
(iωi).

3. Extra factor for non-propagating lines (where a full line enters and leaves the same

vertex): eiωn0+
.

4. Include a factor (−1)n ǫS

h(θ) where n is the perturbation order (number of vertices in

the diagram), ǫ = −1 (1) for fermions (bosons), S is the number of closed propagator

loops, and h(θ) is the topology factor.
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5. Summation over all internal momenta and all internal Matsubara energies (which will

mean summing over all k and ω variables here since all diagrams in the generating

functional Φ are, per definition, closed diagrams).

Fig. 2.3 therefore translates to

∑

k1,k2,k3,k4

∑

ω1,ω2,ω3,ω4

(−1)nǫn

h(θ)

U2

N4
(Nδk1+k2,k3+k4)

2 1

β2
(δω1+ω2,ω3+ω4)

2 ×

×δspin (−Gk1(iω1)) (−Gk2(iω2)) (−Gk3(iω3)) (−Gk4(iω4)) . (2.27)

We now make the approximation to the Laue function, i.e. ∆ → ∆DCA, so that

Nδk1+k2,k3+k4 → NcδM(K1+k̃1)+M(K2+k̃2),M(K3+k̃3)+M(K4+k̃4)
(2.28)

= NcδK1+K2,K3+K4. (2.29)

The sums over momenta can be split up as
∑

ki
=
∑

Ki,k̃i
, where now the sums over

momenta vectors k̃i inside a patch are not subject to a momentum conserving Kronecker

delta. With a shorthand notation for the energies Kronecker delta, δenergies = δω1+ω2,ω3+ω4,

the diagram term becomes

∑

K1,K2,K3,K4

∑

ω1,ω2,ω3,ω4

(−1)nǫn

β2h(θ)

U2

N2
c

δK1+K2,K3+K4δspinδenergies ×

×



−Nc

N

∑

k̃1

G
K1+k̃1

(iω1)







−Nc

N

∑

k̃2

G
K2+k̃2

(iω2)



×

×



−Nc

N

∑

k̃3

G
K3+k̃3

(iω3)







−Nc

N

∑

k̃4

G
K4+k̃4

(iω4)



 . (2.30)

We define a coarse-grained Green function

ḠK(iω) =
Nc

N

∑

k̃

G
K+k̃

(iω) (2.31)

as the average over the patch momentum vectors of the full lattice in that patch, so that

translating the mathematical expression back into a diagram gives exactly the same figure

as to start with but where now each full line represents a coarse-grained Green function

ḠK. On this example for a typical diagram in the expansion for Φ, we note that, now,

the only summation left is over the small number (Nc) of centre of patch vectors Ki such

that the exact same diagrams and terms to be summed up would have been obtained by

considering the skeleton diagram perturbation expansion for a simple cluster of Nc lattice

sites with corresponding Nc cluster momentum vectors Ki in reciprocal space. This is

under the condition that the full interacting Green function Gc for such a cluster is equal

to the coarse-grained Green function of the lattice. Now, since the self-energy can be
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2.3 The Dynamical Cluster Approximation

generated from the Φ-functional, we see that the approximation to the Laue function is

equivalent to an approximation to the self-energy of the lattice: The skeleton self-energy

of the lattice has the same functional form as that of an Nc-site cluster, but the argument

of the functional (or in other words, each full propagator line in the Feynman diagrams)

is equal to the coarse-grained Green function of the lattice itself.

In formulae we have for the DCA lattice Green function

Gk(iωn) =
1

G0
k(iωn)−1 − Σc(K, iωn)

, (2.32)

whereby M(k) = K. The task is therefore to calculate the self-energy for an effective

cluster model, in the sense that the interacting Green function for this cluster model must

be equal to the DCA coarse-grained Green function of the lattice model. The Dyson

equation for this case gives

Σc(K, iωn) = G0
K(iωn)−1 − ḠK(iωn)−1, (2.33)

in which we define G0 as the non-interacting Green function of the effective cluster Hamil-

tonian. In the same way as in the DMFT this function may be seen as including the

integrated-out effects of dynamical fluctuation interactions with the bath of electrons sur-

rounding the real-space cluster. One also speaks of cluster-excluded bath Green function,

to indicate that interactions on the cluster itself have yet to be included via the cluster

self-energy Σc. The functional form of the self-energy is known: it is that of an Nc-site

interacting cluster. We therefore need only find some suitable cluster solver capable of

producing the corresponding interacting Green function to a given non-interacting (bath)

Green function in order to extract the self-energy via (2.33). In this work we use a relevant

implementation [33] of the Hirsch-Fye QMC impurity algorithm [34] as cluster solver. The

set of equations (2.32) and (2.33), taken together with the definition of the coarse-grained

Green function (2.31), then represent a closed set of equations which must be solved self-

consistently for the lattice function Gk(iωn). To this end we use the following iterative

solution system:

1. Make an initial guess for the bath Green function G0.

2. With G0 as input, use the QMC cluster solver to calculate the corresponding inter-

acting Green function, which we define as Gc
K .

3. calculate the cluster self-energy with

Σc(K, iωn) = G0
K(iωn)−1 −Gc

K(iωn)−1. (2.34)

4. Use the self-energy to calculate the coarse-grained Green function of the lattice:

ḠK(iω) =
Nc

N

∑

k̃

1

iωn − (ǫ(K + k̃) − µ) − Σc(K, iωn)
. (2.35)
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2 Mean Field Theory, Dynamical Mean Field Theory, and the Dynamical Cluster Approximation

5. Check for convergence of the scheme: The self-consistent equations are solved if the

coarse-grained Green function Ḡ is equal to the interacting Green function of the

cluster Gc.

6. If not converged, then calculate a new improved estimate for the bath Green function

by excluding the interactions on the cluster via

G0
K(iωn)−1 = ḠK(iωn)−1 + Σc(K, iωn) (2.36)

and go back to step 2.

In practice we have often considered the convergence of certain observables, for example

the staggered magnetisation of the f-electrons and the c-electron occupancy, which we are

interested in, measured during the QMC cluster solver part of the cycle at each iteration

step, as a convenient test of whether or not a self-consistent solution has been reached.

Checks are then subsequently made to confirm that the coarse-grained Green function is

equal to the interacting cluster Green function within the QMC error bars. The start

point for a new simulation will in general be a non-interacting Green function or, in order

to speed up the convergence, we often use the DCA result of a neighbouring simulation in

parameter space.

We note that the coarse-graining and Dyson equation are applied to the Green functions

as a function of Matsubara frequencies. However, the QMC algorithm works on functions

of discrete imaginary times. Therefore an efficient method for Fourier transform between

the two representations is necessary. For the transform from Matsubara frequency to

imaginary time,

G(τ) =
1

β

∞
∑

n=−∞
e− i ωnτG(iωn), (2.37)

we calculate the Matsubara sum up to a cut-off frequency and take account of the remain-

ing terms by fitting to the asymptotic behaviour of Matsubara Green function [29].

The transform from imaginary time to frequencies is much more problematic. With the

aid of the single particle spectral function A(ω) = − 1
π ImGret(ω) we can write the desired

Green function as

G(iωn) =

∫

dω
A(ω)

iωn − ω
. (2.38)

To find the spectral function we can attempt to invert the spectral representation of the

imaginary time Green function

G(τ) = −
∫

dωA(ω)
e−τω

1 + eβω
, (2.39)
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which proves so difficult since we know the value of G(τ) only at each discrete Trotter time

slice. The inversion is an ill-defined problem since many possible spectral functions would

produce a G(τ) which is consistent with the statistical error of the measured G(τ). Similar

to the method used in reference [29] we draw on methods of Maximum Entropy, based on

Bayesian probability, to define a ‘most likely’ spectral function, given the data and any pre-

knowledge of the solution, whilst minimising the amount of artificial structure, i.e. finding

the solution with maximum information entropy given the aforementioned constraints. In

our implementation, we now favour the so-called stochastic analytic continuation approach

[35], of which the Maximum Entropy method is a special limit [36].

2.4 Broken Symmetry DCA

The DCA described in the previous is capable of capturing spacial correlations where the

correlation length is less than the size of the cluster in real-space. However, broken spin

symmetry phases are suppressed since we work with a unit cell containing only one site.

During the iterative solution process the spin-up and spin-down Green functions of the

lattice, calculated at each iteration step, will not be equal to each other if the system

parameters are such as to cause AF ordering. The spin-up and spin-down functions must

be averaged after each QMC iteration step in order to restore the translational symmetry

assumed through definition of the lattice vectors. If a given parameter set J/t, µ, βt would

produce a spin-symmetry broken solution, then this artificial restoration of spin-symmetry

means that our self-consistent solution would not be correct. With this standard DCA

approach, which is fine for paramagnetic regions of parameter space, we are therefore

unable to enter magnetically ordered regions of the phase diagram of the KLM. Our

approach to this problem has been to develop a new implementation of the DCA in which

we define a larger unit cell capable of accommodating broken spin-symmetry.

We note that spin susceptibility measurements, within even the standard implementation

of the DCA, could be used to indicate an AF phase transition, since we need only look

for a closing of the spin-gap and corresponding divergence of the static spin susceptibil-

ity. However, such two-particle correlation functions have been seen to be particularly

difficult to measure within the DCA approach [37], since they involve the inversion of

a Bethe-Salpeter equation for the two-particle correlation function, which is a function

of three momentum indices and three Matsubara frequencies. We remember that the

QMC cluster solver however works in real-space and imaginary time. A recent publication

made attempts towards calculating susceptibilities by approximating the full irreducible

two-particle vertex by an effective vertex dependent on the momentum and frequency

of the spin and/or charge excitation [38]. Our broken spin symmetry DCA here allows

recognition of the phase transition simply by reading out a QMC measurement of the
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2 Mean Field Theory, Dynamical Mean Field Theory, and the Dynamical Cluster Approximation

single-particle staggered magnetic moment for the f-electrons once a self-consistent solu-

tion to the DCA equations has been reached. Additionally, simulations within the AF

ordered phase now become accessible. As a final remark before defining our symmetry

breaking implementation of DCA we point out that work is currently underway towards

resolving the difficulties in calculating two-particle correlations within the DCA [39]. The

new approach involves calculating susceptibility functions and the component Green func-

tions G(iωm) in Matsubara frequencies directly at each QMC step in the DCA algorithm

instead of first calculating G(τ), obtaining the spectral function A(ω) via the stochastic

Maximum Entropy method [35, 36] and subsequently calculating G(iω) =
∫

dω A(ω)
i ωm−ω .

2.4.1 Symmetry breaking DCA definitions

We will always refer to the original lattice as meaning the real-space lattice formed by the

basis vectors

ax = a





1

0



 , ay = a





0

1



 (2.40)

and a unit cell consisting of a single lattice point. The lattice constant is a, which we will

set equal to one in applications but retain here for clarity of the definitions. The smallest

unit cell with which we can capture AF symmetry breaking consists of two, neighbouring,

original lattice sites. We label each site within a unit cell with a vector rµ i.e.

r1 =





0

0



 , r2 = a





1

0



 . (2.41)

This unit cell is represented by the dotted lines in Fig. 2.4, on which we also show all the

other real-space lattice vectors defined in this section.

The superlattice of the two-site unit cell is created with basis vectors

a1 = a





1

1



 , a2 = a





1

−1



 (2.42)

and the lattice constant of this 45◦-tilted lattice is α = |a1| = |a2| = a
√

2. Points on this

translationally invariant superlattice are described by x = ma1 +na2 with whole numbers

m and n. The reciprocal lattice vectors to this superlattice are therefore given by

G = mb1 + nb2 (2.43)

where the reciprocal basis vectors are

b1 =
π

a





1

1



 , b2 =
π

a





1

−1



 (2.44)
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2.4 Broken Symmetry DCA

Figure 2.4: Demonstration of the relations between, and definitions of: the unit cells (dotted

lines), orbital vectors rµ in the unit cell, primitive lattice vectors a1, a2, lattice vectors x, cluster

superlattice x̃ and intra-cluster vectors X.
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2 Mean Field Theory, Dynamical Mean Field Theory, and the Dynamical Cluster Approximation

such that ai · bi = 2πδij is fulfilled. If L is the linear size of the superlattice (which is

taken large enough to ensure the thermodynamic limit) and this superlattice is thought

of as periodically repeated in space, then a fine mesh of discrete k values is created in

momentum space. With k = mb1
L + nb2

L and m,n ∈
[

L
2 + 1, L

2

]

we denote an element of

the Brillouin zone of the superlattice of the unit cells. We will periodically refer to this

Brillouin zone as the magnetic Brillouin zone (MBZ), which is exactly half the size of the

original BZ and tilted through 45◦.

Within the spirit of a real-space formulation of the DCA we now define a cluster of

NAF
c = 4 unit cells in real-space, using the index AF to indicate that it is a cluster of,

in this example, four 2-site (AF) unit cells. To be sure of what is meant, this cluster

contains eight original lattice points equating to a total of 16 orbitals since each lattice

site has space for one f-electron and one c-electron. Obviously, in the context of the QMC

cluster solver used, where the computational time scales with the number of orbitals to

the cubed (see section 3.2.1), this is a large number of orbitals, such that NAF
c = 4 was the

largest cluster considered in this work. The main portion of our results refer to a “cluster”

of size NAF
c = 1 which nevertheless still contains four orbitals. However, we continue

to demonstrate the formalism on the larger cluster for non-trivial generality. As before,

within the standard DCA formulism, we use x̃ = mLca1 + nLca2 to denote the location

of a cluster in real-space, with Lc =
√

NAF
c = 2 being the linear size of the cluster in

units of the lattice constant α of the superlattice of unit cells. The reciprocal lattice to the

superlattice x̃ of the real-space clusters is given by K = mb1
Lc

+nb2
Lc

. Those such reciprocal

vectors within the MBZ are the cluster momentum vectors of the DCA. An element of the

Brillouin zone of the superlattice of the cluster is defined by a vector k̃. These momentum

vectors therefore define the vectors in the patch around the cluster vector K for which

the approximation of a k-independent self-energy is made. In summary of the above, in

momentum space, any vector k in the MBZ can be decomposed into a cluster (centre of

patch) vector K and a patch vector k̃:

k = K + k̃. (2.45)

Additionally, a vector k̄ in the BZ of the original lattice can be written as

k̄ = k + G (2.46)

with suitably chosen G as defined in (2.43). The relationship between the various types

of k-vectors and an example of the patching used in the MBZ when using the cluster size

NAF
c = 4 is shown in Fig. 2.5.

2.4.2 Broken Symmetry DCA Self-Consistent Equations

With the above definitions, introduced to cope with broken spin-symmetry between nearest

neighbours in the original lattice, we now consider the implications for the DCA self-
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2.4 Broken Symmetry DCA

Figure 2.5: Demonstration of the DCA patching in momentum space that we use when NAF
c = 4.

Left: a vector k within the MBZ can be decomposed into a centre-of-patch vector K, which is a

reciprocal lattice vector to the cluster superlattice in real-space, and a vector k̃ within the patch.

Right: A vector k̄ within the BZ of the original lattice can be decomposed into a vector k within the

MBZ plus a vector G, which is a reciprocal lattice vector to the basis vectors a1, a2 in real-space.

consistent equations. The aim is to write an expression for the lattice Green function on

which the DCA can be applied. We will see that when the unit cell contains more than one

lattice site we will obtain a matrix equation for the Green function to reflect the different

orbitals in the real-space unit cell.

To begin with we consider the non-interacting Green function starting with a non-

interacting Hamiltonian consisting only of a general hopping term. A given site in the

original lattice is described by a pair of vectors (x, rµ), which gives the position of the

unit cell in the superlattice of unit cells, and the position of the site within the unit cell,

respectively. Using real-space creation and annihilation operators using these indices, and

hopping txµ;yν between the given sites, the Hamiltonian is written as

H0 =
∑

xµ,yν

c†x,rµ
txµ;yνcy,rν . (2.47)

We restrict ourselves for the moment to nearest neighbour hopping (with amplitude t) on

a square lattice and use the two-site unit cell and vector definitions given in section 2.4.1.

For a given site there are four hopping possibilities: one takes place within the same unit

cell, and the remaining three go into one of the neighbouring cells. Alternatively, referring

to Fig. 2.6 we can choose a particular cell and write down the hopping processes relating to

the sites within that cell, whilst being careful to avoid overcounting of equivalent hopping
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2 Mean Field Theory, Dynamical Mean Field Theory, and the Dynamical Cluster Approximation

Figure 2.6: The possible hopping processes onto and off of a given unit cell and between the

orbitals of that cell are shown as red arrows in the diagram. Hopping possibilities in the direction

to the left of the cell or below it are already counted due to the assumed translational symmetry

of the lattice with primitive vectors a1, a2.

processes under translation.

H0 = −t
∑

x

[

c†x,r1
cx,r2 + c†x,r1

cx−a2,r2

+ c†x,r2
cx+a1,r1 + c†x,r2

cx+a1+a2,r1 + h.c.
]

. (2.48)

We can Fourier transform with respect to the superlattice of unit cells using

cx,rµ =

√

2

N

∑

k

eikxck,rµ . (2.49)

The result can be written as

H0 = −t
∑

k

(

c†k,r1
c†k,r2

)





0 z

z∗ 0









ck,r1

ck,r2



 (2.50)

where

z =
(

1 + e− ika1

)(

1 + e− ika2

)

(2.51)

and z∗ is just the complex conjugate. The generalisation to a formulation with an Nb-site

unit cell is just

H0 =
∑

k

∑

µν

c†
k,rµ

Ẑ(k)µνck,rν (2.52)

where the Nb × Nb matrix Ẑ is the Fourier transform (to k-vectors in the first Brillouin

zone of the superlattice formed by the basis vectors appropriate to the definition of the
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unit cell) of the hopping txµ;yν . In other words it is a matrix form for the free dispersion

ǫ(k) where the row and column indices stand for the different spacial orbitals in the unit

cell. We note each element on the diagonal of the matrix represents hopping from an

orbital at a certain position in a first unit cell onto an orbital with the same position in

another unit cell. For our specific case, with an Nb = 2 AF-unit cell, the inclusion of

next-nearest neighbour hopping , taking place in directions a1 and a2, would give rise

to non-zero diagonal elements in Ẑ. We discuss the inclusion of these diagonal hopping

processes at the end of section 5.1.

In principle at least, using larger unit cells would mean that the type of ordering must not

be anticipated. So whether it be AF or some more complicated spiral ordered spin phase

is of no consequence: if one period of the order fits onto the unit cell then it would show up

naturally. In practice though, increasing the cluster size is linked with a large increase in

the computational time required for a simulation. The bottleneck of the iterative solution

technique is the QMC cluster solver, in which the time scales with the total number of

orbitals within the cluster to the power of three.

Continuing the derivation we write (2.52) as

H0 =
∑

k

~c†
k
Ẑ(k)~ck (2.53)

with ~ck =
(

ck,r1 · · · ck,rNb

)T
. We can bring this equation in diagonal form with

respect to the orbital indices by inserting suitable unitary matrices Uk:

H0 =
∑

k

~c†
k
UkU

†
k
Ẑ(k)UkU

†
k
~ck (2.54)

=
∑

k

~γ†
k
λ̂(k)~γk. (2.55)

Here we have defined the diagonal matrix

λ̂(k) = U †
k
Ẑ(k)Uk (2.56)

with the eigenvalues of Ẑ(k) as its elements, and

~γ†k = ~c†kUk ; ~γk = U †
k~ck (2.57)

are composite fermionic operators for which H0 is diagonal. We further define the non-

interacting Green function matrix Ĝ0
k(iωm) containing elements

{

Ĝ0
k(iωm)

}

µν
=

∫ β

0
dτei ωmτ 〈Tck,rµ(τ)c†

k,rν
(0)〉 (2.58)

and calculate this matrix after unitary transformation with Uk:
{

U †
k
Ĝ0

k(iωm)Uk

}

ij
=

∫ β

0
dτei ωmτ 〈T

(

U †
k

)

iµ
ck,rµ(τ)c†

k,rν
(0) (Uk)νj〉 (2.59)

=

{

[

iωm1− λ̂k

]−1
}

ij

. (2.60)
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The Green function matrix is now given by

Ĝ0
k(iωm) = Uk

[

iωm1− λ̂k

]−1
U †

k (2.61)

=
[

Uk(iωm1− λ̂k)U †
k

]−1
(2.62)

=
[

iωm1− Ẑk

]−1
. (2.63)

It is then logical to include interactions via a self-energy matrix Σ̂(k, iωm) which effectively

renormalises the hopping processes between orbitals such that the dispersion matrix would

be modified. The full interacting Green function is then

Ĝk(iωm) =
[

iωm1− Ẑk − Σ̂(k, iωm)
]−1

(2.64)

=
[

Ĝ0
k(iωm)−1 − Σ̂(k, iωm)

]−1
. (2.65)

Now we may define the DCA patches in k-space (the patching must take place in the

true BZ of the superlattice of the unit cells; i.e. the MBZ) and make the approximation

to the Laue function as before in the standard DCA approach (see section 2.3) to arrive

at the corresponding matrix-equation equivalents to the self-consistent equations (2.32),

(2.33), and the coarse-grained Green function (2.31). When defining the geometry of the

cluster in k-space it is important to preserve the point symmetry of the underlying lattice

problem. Thus it is ensured that equivalent points in k-space are mapped to the same

cluster momentum via the mapping function M(k) [37].

In this work we have solved these equations for the KLM, defining for our purpose, a

two-site unit cell. This cell actually contains four orbitals corresponding to two itinerant

c-electron sites and two localised f-electron sites. The self-consistent equations therefore

involve 4 × 4 matrices for the Green functions. However, the KLM enforces single occu-

pancy on the f-sites and those elements Ĝµν which correspond to propagation between

f-sites and c-sites are zero. Ĝ is therefore block diagonal, with two non-zero submatrices

corresponding to the c-sites and f-sites, respectively. Due to this, the DCA matrix equa-

tions can be decomposed into matrix equations of dimension 2 × 2 so that the f and c

sectors may be handled separately from each other. Further, in the f-sector the submatrix

will be diagonal and its elements independent of k since we know that the lattice Green

function for the f-electrons must be purely local and non-propagating. This means that

already at the first iteration step of the iterative solution process, the QMC result for the

interacting cluster Green function for the f-electrons is the correct result for the lattice.

To see this we first point out that in general, after convergence to a self-consistent solution

has been reached, local quantities measured on the cluster while the QMC cluster solver

runs will be equal to the same quantity on the lattice [37]. Now, our initial “guess” for

the non-interacting f-electron sector of the bath (cluster excluded) Green function matrix
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will simply be to set the diagonal elements equal to a constant -0.5 in imaginary time.

This ensures that without interactions, therefore with detached localised spins, we start

with half-filling since nf = −G0
ii(τ = 0) = 1

2 . The function is constant in imaginary time

because without interactions, there is no excitation spectrum, which would be generated

by slopes in the imaginary time Green function (compare section 5.5). This first guess is

therefore also equivalent to the non-interacting lattice Green function for the f-electrons.

The cluster solver gives the cluster Green function so that we can calculate the f-electron

self-energy (also a local quantity) on the cluster. Since all the quantities are k-independent,

calculation of the coarse-grained DCA lattice Green function just gives the cluster Green

function again and convergence has already been reached in the first iteration step. In

our application then, at each iteration step, we reset the f-electron sector of the Green

function matrix to the known non-interacting lattice Green function for the f-electrons in

order to keep statistical errors under control, which can creep in due to the QMC cluster

solver.

2.4.3 Plotting the AF Green function in the extended BZ

As we have seen, in the AF phase the doubling of the unit cell due to the broken spin

symmetry means that the true BZ is defined by a diamond shape, half the size of the

original lattice BZ. In order to compare the single particle spectra A(k, ω) of both cases

we will later plot results for the AF spectra using the same k-vectors as in the PM case.

That is to say, we are going to plot the AF spectra in an extended Brillouin zone scheme.

This is justified because we calculate the combined excitation spectrum of spin-up and

spin-down electrons. For this quantity the translational symmetry of the original lattice

is restored so that the relevant k-space in which to plot is given by the original lattice BZ.

The spectrum can be extracted from the lattice Green function which will be averaged

over the two spin directions. However, in the AF broken symmetry formulation of the

DCA, we have already shown that this Green function is a 2×2 matrix, reflecting the two

orbitals of the unit cell. Transforming back to the k-vectors of the original BZ is achieved

in the following. A real-space lattice site x̄ of the original lattice can be decomposed as

x̄ = x̃ + X + rµ = x + rµ (2.66)
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so that an annihilation operator cx̄ at this site may be written as cx,rµ In momentum

space an element of the original lattice BZ can be written as k̄ = k + G so that

ck̄ =
1√
N

∑

x,µ

e− i k̄(x+rµ)cx,rµ (2.67)

=
1√
N

∑

x,µ

e− i(k+G)xe− i k̄rµcx,rµ (2.68)

=
1√
N

∑

x,µ

e− ikxe− i k̄rµcx,rµ , (2.69)

where in the last step we have used the fact that Gx = 2πm (m is a whole number) since

they are reciprocal lattice vectors to each other per definition. Carrying out the sum over

x gives

ck̄ =
1√
2

∑

µ

e− i k̄rµck,rµ . (2.70)

Together with the equivalent formula for the creation operator, we can write the desired

Green function in the extended Brillouin zone as

gk̄(iωn) =
1

2

∑

µ,ν

ei k̄(rν−rµ)
{

Ĝk(iωn)
}

µν
(2.71)

=
1

2

∑

µ,ν

ei k̄(rν−rµ)

{

1

Ĝ0
k
(iωn)−1 − Σ̂c(K, iωn)

}

µν

. (2.72)

We note that the Green function matrix on the right hand side of the equation is to be

understood as the spin averaged matrix.

2.5 Technical Details in the Application of the Algorithm

2.5.1 Start point of the DCA iterative solution process

In general, we do not know in advance whether the parameters of a simulation will cause

the system to order magnetically or not. We therefore begin each simulation by setting a

small external magnetic field. This is achieved by adding a Zeeman term to the 2× 2 free

dispersion matrix Ẑk of the non-interacting Green function (compare derivation in section

2.4.2) that we use to start a simulation:

Ĝ0
k,σ(iωm) =

[

iωm1− Ẑk,σ

]−1
, (2.73)
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where, if we also include a nearest neighbour hopping,

Ẑk,σ =





−2t′[cos(ka1) + cos(ka2)] −tz
−tz∗ −2t′[cos(ka1) + cos(ka2)]





+ σ





hz 0

0 hz



 . (2.74)

The second term is for the external staggered magnetic field which is only included to

start a simulation. If the parameters of the simulation are such as to stabilise the AF

order, then this will become evident in the broken spin symmetry of the DCA self-energy.

2.5.2 Convergence of the solution

In practice we confirm that the DCA self-consistent equations have been fulfilled by ini-

tially checking the convergence of the observables in which we are interested. After con-

vergence, we additionally check that the coarse-grained Green function ḠK(τ) is equal to

the QMC cluster Green function Gc
K(τ) within the statistical error bars. Far from the

magnetic phase transition the system often converges quickly (within some 15 iterations)

to a self-consistent solution. Close to the phase transition convergence experiences critical

slowing down. The magnetisation fluctuates around the final self-consistent solution value

for many iterations.We show the typical progression of the staggered magnetisation with

iterations for the two cases in Fig. 2.7. In the case of slow convergence, we have experi-

mented with achieving better results by carrying out a series of simulations with identical

parameters except for the value of an applied external field, implemented as in the previ-

ous subsection, but where we keep its value constant until convergence is reached. A small

applied AF field reduces the number of iterations needed to reach convergence, and the

hope was that if the field was small enough we could linearly extrapolate the QMC mea-

sured magnetisation down to the result we would obtain with zero applied field. However,

experience has shown that the size of field required in order to justify linear extrapolation

does not reduce the number of iterations required for convergence significantly. Since we

must carry out a number of simulations, one for each value of the applied field, the total

number of iterations required to obtain a solution via this proposed extrapolation method

is not reduced.

2.5.3 Interpolation of the Self-Energy

When using a cluster of size NAF
c > 1 the Brillouin zone is divided into NAF

c patches. The

DCA will give a self-energy function Σ(Ki, iωn) for each of the centre of patch vectors

Ki. When plotting the single particle spectrum there will be a discontinuous jump in the

spectrum when moving from one patch in k-space to the next since the self-energy will
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Iteration Number
mf z

14121086420

0.80.70.60.50.40.30.20.10
(a)

Iteration Number
mf z

100806040200

0.40.30.20.10-0.1
(b)

Figure 2.7: Typical progression of the staggered magnetisation (shown here for J/t = 0.8, βt =

100) with the number of DCA iterations: a) well inside the AF ordered phase where convergence

is fast. b) slow convergence very close to the magnetic phase transition

be different in the next patch. As NAF
c is increased, the discontinuities would decrease in

size until a smooth function is reached in the NAF
c = N limit. If we desire, we might wish

to interpolate the self-energy between the patches to obtain smooth spectral functions in

k-space. Arguably, however, one should not do anything with the self-energy, since this

is the result one obtains in the well-reasoned DCA, which is known to be a causal and

conserving approximation. Nevertheless, perhaps only for aesthetic reasons, we describe

a possible interpolation scheme for the self-energy in the following.

By means of example we take NAF
c = 4 but a generalisation to larger cluster sizes is trivial.

We write the self-energy for a given centre-of-patch vector Ki as

Σ(Ki, iωn) =
∑

r

eiKirA(r, iωn), (2.75)

where the vectors r are the vectors of the original square lattice and A(r, iωn) is a suitable

function. If we choose an origin vector and then divide the lattice vectors in the sum into

shells around that origin, determined as nearest neighbour, next-nearest neighbour and so

on, then we can rewrite as

Σ(Ki, iωn) =
∑

{r1}
eiKir1A(r1, iωn) +

∑

{r2}
eiKir2A(r2, iωn) + ... (2.76)
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with the set of vectors {ri} in shell i given by

{r1} =





0

0





{r2} =





0

1



 ,





1

0



 ,





0

−1



 ,





−1

0





{r2} = {...next-nearest neighbour vectors...}
...

For a given Matsubara frequency we use a shorthand notation

Sij =
∑

{rj}
eiKirj (2.77)

Aj = A(rj , iωn) (2.78)

Σi = Σ(Ki, iωn) (2.79)

and can then setup the equation system

Σi = SijAj (2.80)

with summation over j. Writing as vectors and inverting the equation we have

~A = Ŝ−1~Σ (2.81)

such that we can find the required functions A(ri, iωn). Now for a vector k lying some-

where between cluster vectors (between centre-of-patch vectors) we can interpolate the

self-energy as

Σ(k, iωn) =

4
∑

i=1

∑

{ri}
eikriA(ri, iωn). (2.82)

Obviously, if k is in fact a cluster vector K then the above equation will just give the

correct value of the self-energy as per definition in (2.76).2 For a vector between the

cluster vectors, the shell system interpolates the self-energy.

2This is an important point and we note, with particular relevance to our later discussion of the Fermi

surface, that for NAF
c = 4 there are cluster vectors at both (π, π) and (π

2
, π

2
and as such the results

there are definitely not influenced by any interpolation process.
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3 QMC Hirsch-Fye Cluster Solver

3.1 Auxiliary Field Quantum Monte-Carlo Formulation of the

KLM

The DCA method is dependent on an effective cluster solver to calculate the self-energy for

an effective model with non-interacting Green function equal to the bath Green function

G. We employ a QMC auxiliary field method where the algorithm is essentially that of

Hirsch and Fye [34] first introduced to treat a small number of magnetic impurities in

a metal. The formulation requires that we are able to write the Hamiltonian in a form

suitable for the introduction of auxiliary fields.

The KLM is given by

HKLM =
∑

k,σ

ǫ(k)c†
kσckσ + J

∑

i

Sc
i · Sf

i
. (3.1)

We rewrite this in a quadratic form

H ′ =
∑

k,σ

ǫ(k)c†kσckσ − J

4

∑

i

(

∑

σ

c†iσfiσ + f †iσciσ

)2

. (3.2)

The relationship between H ′ and H is given by realising that when multiplying out the

square in (3.2) this term only allows pair hopping between the c and f orbitals, for example

c†
i↑c

†
i↓fi↓fi↑. The term does not however produce any single electron hopping between these

orbitals. Therefore the total number of doubly occupied and empty f-sites is conserved:

[

H ′,
∑

i

(1 − nf
i↑)(1 − nf

i↓) + nf
i↑n

f
i↓

]

= 0. (3.3)

Applying a projection Q0 onto the subspace with no doubly occupied or empty f-sites is

then seen to give the KLM:

H ′Q0 = HKLM . (3.4)

In practical application this projection can be achieved by adding a Hubbard term HU

for f-sites. The resultant model Hamiltonian H = H ′ + HU is in a convenient form for
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auxiliary field QMC:

H =
∑

k,σ

ǫ(k)c†
kσckσ − J

4

∑

i

(

∑

σ

c†
iσfiσ + f †

iσciσ

)2

+ Uf

∑

i

(nf
i↑ −

1

2
)(nf

i↓ −
1

2
). (3.5)

We can write

H = Ht +HJ +HU (3.6)

with which we initially wish to calculate the partition function

Z = Tr
[

e−β(H−µN)
]

. (3.7)

The three terms in the Hamiltonian do not commute with each other but we may still

factorise the exponential function by using the Trotter decomposition. The propagation

in imaginary time from 0 to β is split into LT time-slices of equal size ∆τ such that

LT ∆τ = β. For non-commuting operators H1, H2 in the Hamiltonian H = H1 +H2 it is

clear that e−β(H1+H2) = lim∆τ→0

[

e−∆τH1e−∆τH2
]LT . For a small, but finite ∆τ it can be

shown 1 that when calculating the expectation value of an operator O then

Tr[e−βHO]

Tr[e−βH ]
=

Tr
[

(e−∆τH1e−∆τH2)LTO
]

Tr [(e−∆τH1e−∆τH2)LT ]
+ O(∆τ2) (3.8)

and the systematic error of the Trotter decomposition is of order ∆τ2.

For our partition function we therefore write

Z = Tr

[

LT
∏

τ=1

e−∆τHU e−∆τHJ e−∆τHt

]

. (3.9)

The terms with HJ and HU are two-particle terms which we cannot calculate trivially.

To handle these terms we introduce auxiliary fields to reduce down to single particle

operators however this can only be achieved at the expense of having to perform a large

sum over all possible field configurations. This is where the QMC sampling comes in: A

configuration occurs with a certain statistical weight and therefore measurements of Greens

functions and observables are carried out by summing the individual measurements for

each configuration reached in a Markov chain of configurations.

With a Hubbard-Stratonovich transformation we introduce the field variable l = ±1,±2

for the HJ quadratic term [40] to obtain

e−∆τHJ =
∏

i

e∆τ J
4
(
P

σ c†
iσ

fiσ+f†
iσ

ciσ)2 (3.10)

=
∏

i





∑

l±1,±2

γ(l)e

q

∆τJ
4

η(l)
P

σ(c†
iσfiσ+f†

iσciσ)
+ O(∆τ4)



 , (3.11)

1the proof assumes that both H1 and H2 and also the operator O in question must be simultaneously

real representable in a given basis. See, for example, reference [29], appendix B for further details
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where

γ(±1) = 1 +

√
6

3
, γ(±2) = 1 −

√
6

3
(3.12)

η(±1) = ±
√

2(3 −
√

6) , η(±2) = ±
√

2(3 +
√

6). (3.13)

The transformation is approximate with error proportional to ∆τ4 on each time slice. The

total systematic error gathered over all time slices will be proportional to LT∆τ4 which

is equal to β∆τ3 and therefore an order of magnitude smaller than the error incurred by

the Trotter decomposition.

For the HU -term we introduce the auxiliary field variables si = ±1 to write

e−∆τHU = e−∆τUf

P

i(n
f
i↑−

1
2
)(nf

i↓−
1
2
) (3.14)

= C
∑

s1,...,sN=±1

eα
P

i si(n
f
i↑−nf

i↓) (3.15)

with

C =
e−

∆τUN
4

2N
, cosh(α) = e

∆τU
2 . (3.16)

We insert (3.11) and (3.15) into the partition function (3.9) and after we pull the sum over

the field variables to the front, which means both field variables now possess an imaginary

time index and an index for each lattice site, we are left with

Z =
∑

{si,τ}=±1

{lj,τ}=±1,±2

CLT





∏

i,τ

γ(li,τ )



Tr

[

LT
∏

τ=1

eα
P

i si,τ (nf
i↑−nf

i↓) ×

× e

q

∆τJ
4

P

j η(lj,τ )
P

σ(c†
jσ

fjσ+f†
jσ

cjσ)
e−∆τ

P

k,σ(ǫ(k)−µ)c†
kσckσ

]

. (3.17)

We introduce the operator ax,σ where the index x is a super-index representing the lattice

site and whether we are dealing with an f-electron orbital or c-electron orbital at that

site. Therefore we set x = (i, n) and define a(i,1),σ = fi,σ and a(i,2),σ = ci,σ. With these

operators we construct vector-like objects ~aσ and ~a†σ corresponding to column and row

vectors, respectively, where each element ax,σ of the vector is actually a 2 × 2 matrix.

Using this representation we can write the partition function as

Z =
∑

{si,τ}=±1

{lj,τ}=±1,±2

CLT





∏

i,τ

γ(li,τ )





∏

σ

Tr(σ)

[

e~a
†
σ V̂ (σ)({si,τ})~aσ ×

× e~a
†
σ Ĵ({li,τ})~aσe−∆τ~a†

σ T̂~aσ

]

. (3.18)
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We note that the trace can be broken into the product of the trace over the spin-up and

spin-down sectors since the Hamiltonian is block diagonal in spin-space. The matrices Ĵ

and T̂ are spin independent but since the discrete Hubbard-Stratonovich transformation

used to decouple the two-particle Coulomb interaction term breaks spin-symmetry for a

given field configuration {si,τ}, the matrix V̂ (σ) carries a spin index. Using the properties

of Slater determinants to evaluate the trace the partition function can then be written as

Z =
∑

{si,τ}=±1

{lj,τ}=±1,±2

CLT





∏

i,τ

γ(li,τ )





∏

σ

det
[1+ B̂

(σ)
LT
...B̂

(σ)
1

]

, (3.19)

with the N ×N matrix (where the elements are themselves again 2 × 2 matrices)

B̂(σ)
τ = eV̂

(σ)({si,τ})eĴ({li,τ })e−∆τT̂ . (3.20)

To continue we introduce the further definitions

U{s,l}(τ2, τ1) =
∏

σ

n2
∏

n=n1+1

e~a
†
σ V̂ (σ)({si,n})~aσe~a

†
σ Ĵ({li,n})~aσe−∆τ~a†

σ T̂~aσ , (3.21)

B̂
(σ)
{s,l}(τ2, τ1) =

n2
∏

n=n1+1

B̂(σ)
n , (3.22)

with the imaginary times τi = ni∆τ on a Trotter time-slice. Since we have already

formulated the partition function through the introduction of auxiliary fields we are now

able to write the expectation value of an observable A as

〈A〉 =

∑

{s,l}

(

∏

i,τ γ(li,τ )
)

Tr
[

U{s,l}(β, 0)A
]

∑

{s,l}

(

∏

i,τ γ(li,τ )
)

∏

σ det
(1+ B̂

(σ)
{s,l}(β, 0)

) (3.23)

=
∑

{s,l}

(

∏

i,τ γ(li,τ )
)

∏

σ det
(1+ B̂

(σ)
{s,l}(β, 0)

)

∑

{s,l}

(

∏

i,τ γ(li,τ )
)

∏

σ det
(1+ B̂

(σ)
{s,l}(β, 0)

) ×

×
Tr
[

U{s,l}(β, 0)A
]

∏

σ det
(1+ B̂

(σ)
{s,l}(β, 0)

) (3.24)

=
∑

{s,l}





(

∏

i,τ γ(li,τ )
)

∏

σ det
(1+ B̂

(σ)
{s,l}(β, 0)

)

∑

{s,l}

(

∏

i,τ γ(li,τ )
)

∏

σ det
(1+ B̂

(σ)
{s,l}(β, 0)

)



×

×
(

Tr
[

U{s,l}(β, 0)A
]

Tr
[

U{s,l}(β, 0)
]

)

(3.25)

=

∑

{s,l} P{s,l}〈A〉{s,l}
∑

{s,l} P{s,l}
. (3.26)
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In the final line we have introduced the definitions

P{s,l} =





∏

i,τ

γ(li,τ )





∏

σ

det
(1+ B̂

(σ)
{s,l}(β, 0)

)

(3.27)

and

〈A〉{s,l} =
Tr
[

U{s,l}(β, 0)A
]

Tr
[

U{s,l}(β, 0)
] . (3.28)

The observable can therefore be calculated by performing the weighted summation of

〈A〉{s,l} for each field configuration {s, l}. We therefore equate 〈A〉{s,l} with the value of

the observable for that given field configuration. The function W =
P{s,l}

P

{s,l} P{s,l}
could be

interpreted as a probability since the summing over {s, l} gives 1. However to interpret

W as a probability it must also be positive which is not necessarily the case. We therefore

write

P{s,l} = sign{s,l} |P{s,l}|, (3.29)

where sign{s,l} is just ±1 dependent on the field configuration. We can then derive for the

observable

〈A〉 =

∑

{s,l} sign{s,l} |P{s,l}|〈A〉{s,l}
∑

{s,l} sign{s,l} |P{s,l}|
(3.30)

=

(

∑

{s,l} |P{s,l}| sign{s,l}〈A〉{s,l}
)

/
(

∑

{s,l} |P{s,l}|
)

(

∑

{s,l} |P{s,l}| sign{s,l}
)

/
(

∑

{s,l} |P{s,l}|
) , (3.31)

which we can write as

〈A〉 =
〈signA〉′
〈sign〉′ , (3.32)

where we mean that the average value of signA must be divided by the average sign,

where both values are now calculated with the positive definite probability function W ′ =
|P{s,l}|

P

{s,l} |P{s,l}
| =

P ′
{s,l}

P

{s,l} P ′
{s,l}

. This allows a proper definition in terms of weight functions but

has the drawback that if the average sign 〈sign〉′ is small then the QMC simulation requires

much more time to run to compensate for the statistical fluctuations of the observable.

One may think that the origin of this sign problem which is often the limitation of QMC

methods might be just in the particular choice of Hubbard-Stratonovich transformation.

While some decompositions may alleviate the sign problem to some degree it has been

argued that Hubbard-Stratonovich transformations in general are unable to resolve the

problem [41].

In the spirit of Monte-Carlo, instead of carrying out the huge sum over the configuration

space of the auxiliary fields, a Markov chain of configurations is created where the config-

urations in the chain occur according to the weight function P ′
{s,l} which we will just call
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P{s,l} from now on. The value of the observable measured at each of these configurations

is averaged to obtain a final value with a statistical error proportional to the square root

of the number of configurations in the chain. The process for choosing the next config-

uration in the chain must underly the conditions of ergodicity and detail balance. Our

sampling procedure is to sweep through the complete set of field variables and propose a

new value for each one sequentially. For this s-field variable this means a change proposal

at position m of sm → s′m = −sm, and for the l-field a change to a new value ±1,±2 is

selected randomly. If we call the new configuration after one such move {s′, l′} then for

the proposed move we define an acceptance ratio as

R =
P ′
{s,l}
P{s,l}

(3.33)

and the move is accepted either via a Metropolis algorithm or, as we use here, heat-bath

method. A proposed move is therefore accepted if a generated random number x ∈ [0, 1]

satisfies

x ≤ R

1 +R
. (3.34)

3.2 The Hirsch-Fye QMC algorithm in application to the KLM

The further development of the auxiliary field formalism and derivation of the Hirsch-Fye

algorithm essentially follows the usual route [34, 42], but with some particular features

due to the fact that we have two sets of auxiliary field variables. We review here solely the

fundamental definitions, the acceptance probability for a suggested change in the field-

configuration for the next step in the Markov chain, and the subsequent update equation

for the Green function matrix, which is the central equation of the algorithm. We first

define the Green function matrix g(σ) with total dimension 2NLT ×2NLT , which we divide

into NLT ×NLT blocks of 2 × 2 matrices in which row/column 1 refers to the f-electron

orbital and row/column 2 refers to the c-electron orbital. We use the super-index labelling

x = (i, τ) for rows or columns of this super-matrix. Therefore

g(σ)
xy =





〈Tfiσ(τ1)f
†
jσ(τ2)〉 〈Tfiσ(τ1)c

†
jσ(τ2)〉

〈Tciσ(τ1)f
†
jσ(τ2)〉 〈Tciσ(τ1)c

†
jσ(τ2)〉



 . (3.35)

Calculating g (dropping the spin for the moment) is handled in the same way as described

for 〈A〉 in (3.26). Therefore we need to be able to calculate the elements of g{s,l} for each

auxiliary field configuration in the Markov chain. The index {s, l} is used to denote that

the correlation functions of the Green function matrix are to be calculated in analogy to

the definition of 〈A〉{s,l}, i.e. for a given field configuration. We note that for a given

arbitrary field configuration a Wick theorem applies for the Green function. Calculation
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of the Green function matrix for each field configuration therefore gives complete access

to all desired observables and correlation functions, because these can be decomposed into

a sum of products of elements of the matrix g{s,l}.

3.2.1 Update Equations

It can be shown [43] that

det
[1+ B̂

(σ)
LT
...B̂

(σ)
1

]

= det
[

(g(σ))−1
]

. (3.36)

With this useful relation we see from (3.33) and (3.27) that the update acceptance function

R for a move can be written as

R =
P ′
{s,l}
P{s,l}

(3.37)

=





∏

i,τ

γ(l′i,τ )

γ(li,τ )





∏

σ

det
[

g(σ)(g′(σ))−1
]

. (3.38)

Now if the proposed move was for an s-field then the first bracketed term will be equal to

one since in that case the l′ field variable configuration is unchanged from the original l

configuration. For an l-field proposed move at site m this term is just γ(l′m)
γ(lm) . We also note

that since the proposed move only changes a single field variable at a single site then the

product g(σ)(g′(σ))−1 is a relatively simple matrix equivalent to the identity matrix on all

rows except the row corresponding to the flipped field variable such that the determinant

is readily calculated.

The Green function matrix g(σ)′ for configuration {s′, l′} is related to the Green function

matrix g(σ) for configuration {s, l} via the equation

g(σ)′ = g(σ)
[1+ ∆(σ)(1− g(σ))

]−1
(3.39)

with the matrix

∆(σ) = eV̂
(σ)({s′

i,τ})eĴ({l′
i,τ})

(

eV̂
(σ)({si,τ})eĴ({li,τ})

)−1
− 1. (3.40)

A configuration change {s, l} → {s′, l} consisting of an s-field variable flip at super-index

site m (which represents a certain lattice site and Trotter time slice), such that s′m = −sm,

whilst leaving the l-field unchanged gives

∆(σ) = eV̂
(σ)({s′

i,τ})e−V̂ (σ)({si,τ}) − 1 (3.41)

such that the coupling J-term does not play a role and the explicit form of the update

equation follows precisely the original Hirsch-Fye algorithm [34].

53



3 QMC Hirsch-Fye Cluster Solver

A simple change of the l-field variable at site with super-index m takes the form lm →
l′m ∈ {±1,±2} where we will randomly choose the new value l′m from the set. We will use

a simplified formalism such that

∆(σ) = eV̂
(σ)
eĴ

′
e−Ĵe−V̂ (σ) − 1, (3.42)

where since the matrix Ĵ is dependent on the l-fields the changed configuration is repre-

sented by the dash on this matrix. Referring to (3.11) it is clear that

(

Ĵ
)

xy
=

√

∆τJ

4
η(lx)





0 1

1 0



 δxy (3.43)

with only off-diagonal terms in the 2×2 matrix representing the orbitals for a given lattice

site and Trotter slice (remember, x = (i, τ) is a super-index) since the J-term only couples

a c-orbital to an f-orbital. However, the interaction is local in space and time, hence

δxy. For insertion into the exponential function in (3.42) we diagonalise Ĵ to obtain the

diagonal matrix D̂:

(

ÛT Ĵ Û
)

xy
= D̂xy =

√

∆τJ

4
η(lx)





1 0

0 −1



 δxy (3.44)

with

Ûxy =
1√
2





1 −1

1 1



 δxy. (3.45)

We can now write
(

∆(σ)
)

xy
=
(

eV̂
(σ)
Û(eD̂

′
e−D̂ − 1)ÛT e−V̂ (σ)

)

xy
. (3.46)

Now since we have assumed that the l-field is only to be changed for super-index m then

this reduces simply to

(

∆(σ)
)

xy
=





ξ11 ξ12

ξ21 ξ22



 δxyδxm (3.47)

= ξ(σ)δxyδxm (3.48)

with the matrix elements calculated to

ξ11 = cosh

[
√

∆τJ

4

(

η(l′m) − η(lm)
)

]

− 1, (3.49)

ξ12 = eσαsm sinh

[
√

∆τJ

4

(

η(l′m) − η(lm)
)

]

, (3.50)

ξ21 = sinh

[
√

∆τJ

4

(

η(l′m) − η(lm)
)

]

e−σαsm , (3.51)

ξ22 = cosh

[
√

∆τJ

4

(

η(l′m) − η(lm)
)

]

− 1. (3.52)
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3.2 The Hirsch-Fye QMC algorithm in application to the KLM

In the update equation (3.39) we have the term
[

∆(σ)(1− g(σ))
]

xy
=

∑

z

∆(σ)
xz (1− g(σ))zy (3.53)

=
∑

z

ξ(σ)δxzδxm(1− g(σ))zy (3.54)

= (ξ(σ)δxm)(1− g(σ))my . (3.55)

This can now be represented in an “outer-product” manner of the form

∆(σ)(1− g(σ)) = ~u⊗ ~v, (3.56)

where the elements of the “vectors” ~u, ~v are really 2 × 2 matrices:

ux = ξ(σ)δxm, vy = (1− g(σ))my. (3.57)

The expression is handled more easily by writing in terms of standard vectors with scalar

elements defined by

u1 = (0, ..., 0, ξ11, ξ21, 0, ..., 0)
T , (3.58)

u2 = (0, ..., 0, ξ11, ξ21, 0, ..., 0)
T , (3.59)

v1 = (δm1 − gffσ
m1 , δm1 − gfcσ

m1 ..., δmn − gffσ
mn , δmn − gfcσ

mn , ...

..., δmN − gffσ
mN , δmN − gfcσ

mN )T , (3.60)

v2 = (δm1 − gcfσ
m1 , δm1 − gccσ

m1 ..., δmn − gcfσ
mn , δmn − gccσ

mn, ...

..., δmN − gcfσ
mN , δmN − gccσ

mN )T , (3.61)

so that then

∆(σ)(1− g(σ)) = u1 ⊗ v1 + u2 ⊗ v2 (3.62)

and the update equation for the Green function matrix is

g(σ)′ = g(σ) [1+ u1 ⊗ v1 + u2 ⊗ v2]
−1 . (3.63)

To avoid a computationally costly large matrix inversion the Sherman-Morrison formula

[44]

(A+ u⊗ v)−1 = A−1 − (A−1u) ⊗ (vA−1)

1 + v · A−1u
(3.64)

can be applied sequentially to finally obtain an effective update equation for single move

updates lm → l′m of the J-term auxiliary field variables. From (3.64) (where for our

purpose A = 1) we see that the core of the Green function update after a single field flip

is an outer product: the size of the vectors means that (2NLT )2 multiplications will be

required for the calculation. A complete sweep through all NLT s-field and l-field variables

is used to produce a new field configuration. Therefore, the computational time required

for the update algorithm will scale with (NLT )3. Recently, however, we have been able to

improve our update algorithm through implementation of so-called delayed updates (see

appendix B).
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4 Mean-Field and Spin Density Wave

4.1 The Large-N Approach

As an aid to interpretation our results, and to get a feel for the KLM, we first look at

what can be expected on the grounds of a mean-field theory or the large-N approach. In a

general sense N represents an SU(N ) symmetry at each lattice site. Often, the method is

applied to spin Hamiltonians with only SU(2) symmetry, but even though 2 is not a large

number, the large-N approach can still be remarkably successful, but there is no way of

knowing this in advance. In correlated electron physics the approach was first developed

for heavy fermion models [45] where it proves to be a useful tool. Expansion around the

large-N limit in a 1/N expansion was used to calculate Fermi liquid parameters [46, 47].

We begin by considering the Hamiltonian

H =
∑

k,σ

ǫ(k)c†
kσckσ − J

4

∑

i

(

∑

σ

c†
iσfiσ + f †

iσciσ

)2

− λ
∑

i

(nf
i
− 1), (4.1)

which is the same quadratic form as the Hamilton (3.5) used as a form suitable for the

introduction of auxiliary fields, but where now the condition of single occupancy on the

f-sites is handled by introducing a Lagrange multiplier term λ
∑

i(n
f
i
− 1). Since we do

not write a site index i on λ the term represents a relaxation of strict single occupancy

such that now the number of impurity spins per site is only equal to one on average.

We define the order parameter

V = 〈V̂ 〉 = 〈
∑

σ

(c†iσfiσ + f †iσciσ)〉 (4.2)

and write the interaction using the Hartree-Fock (HF) approximation, neglecting the

quadratic fluctuation term (V̂ − V )2 of the operator about its expectation value:

J

4

∑

i

(

∑

σ

c†
iσfiσ + f †

iσciσ

)2

=
J

4

∑

i

(

V + (V̂ − V )
)2

(4.3)

HF≈ J

4

∑

i

(

V 2 + 2V (V̂ − V )
)

. (4.4)

In the non-approximated KLM the value of V would be zero due to the strict constraint

of one localised impurity spin per site giving 〈f †iσciσ〉 = 0, but in this mean-field approx-

imation the single occupancy is given only on average so that V may be non-zero. It is
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4 Mean-Field and Spin Density Wave

therefore used as a measure of the correlation between the c-sites and f-sites which we can

equate to Kondo screening. We also refer to this Hamiltonian as the large-N approach

to the KLM since if one generalises the two spin flavours, spin-up and spin-down, to N
flavours, then in the limit of N → ∞ the approximated Hamiltonian becomes exact.

After Fourier transformation to momentum space the Hamiltonian reads

H =
∑

kσ

(

c†kσ f †kσ

)





ǫk −∆

−∆ λ









ckσ

fkσ



+N

(

JV 2

4
− λ

)

, (4.5)

whereby ∆ = JV
2 and N is the number of sites in the lattice. The mean-field solution

finds values for V and λ such that they fulfil the saddle point equations for the free energy

− 1
β lnZ[V, λ] (where Z[V, λ] is the partition function):

∂ lnZ[V, λ]

∂V
=
∂ lnZ[V, λ]

∂λ
= 0. (4.6)

The Hamiltonian matrix in (4.5) can be diagonalised via unitary transformation matrix

U =





uk+ −uk−

uk− uk+



 (4.7)

to obtain the mean-field solution. A non-zero hybridisation V causes the original light

conduction electron band to be replaced by an upper and lower quasi-particle band with

dispersion relations (see Fig. 4.1 for examples)

Ek± =
1

2

[

ǫ(k) + λ±
√

(ǫ(k) − λ)2 + 4∆2
]

(4.8)

and quasi-particle weights given by

u2
k± =

1

2

(

1 ± ǫ(k) − λ
√

(ǫ(k) − λ)2 + 4∆2

)

. (4.9)

The band separation here is caused by the hybridisation of the conduction electron states

with the local spin states to form heavy fermion states. At half-filling, the Fermi energy

lies in this hybridisation gap giving rise to the Kondo insulator. In a hole doped system

(for not too large doping) the Fermi energy cuts the dispersion in the vicinity of (π, π)

where the large effective mass characterised by the very flat band in this region leads to

the classification of a heavy hole-like Fermi surface. The term large Fermi surface is also

used in this case to indicate the inclusion of the heavy fermion states in the Luttinger sum

rule [48] for counting the number of particles in the Fermi surface volume.
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(b) next nearest neighbour hopping t′/t = −0.3

Figure 4.1: Single particle spectrum obtained in the large-N mean-field approximation at half-

filling and with J/t = 1.

4.2 The Spin Density Wave Approach

Although the above approach was able to produce the flat band structure characteristic of

experimental heavy fermion systems it takes no account of the RKKY interaction which

is in competition with Kondo screening and which attempts to build an AF ordered state.

Therefore, as an alternative, we may consider the spin density wave (SDW) picture (for

example [49]) of the KLM. As motivation for such an approach, we draw on results from

the one-dimensional Kondo lattice. In the 1D KLM the spin gap ∆s tracks the Kondo

temperature TK of the single impurity problem as

∆s ≈ T
1
ν

K (1 ≤ ν ≤ 5

4
). (4.10)

Since the single impurity Kondo temperature is given by TK ∝ exp
[

− 1
D(ǫF )J

]

(where

D(ǫF ) is the conduction electron density of states at the Fermi energy), the spin gap

becomes exponentially small for small couplings J/t. This means that the time scale for

magnetic fluctuations becomes exponentially large, particularly in comparison to the time

scale, set by 1/t, for hopping of the conduction electrons. In this case, the conduction

electrons can be considered as moving in a static magnetic background. Whether this

picture is feasible in 2D for small J/t is debatable, because here we know that the spin

gap is finite. Nevertheless, the SDW approach in 2D will give us more insight into the

model and may be useful as a tool for interpreting the DCA/QMC results.

With the above in mind we go back to the Hamiltonian of the KLM and ask ourselves

what the result would be if the f-spins were to display a fixed AF-ordering. This leads us
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Figure 4.2: Single particle spectrum obtained in the SDW approach at half-filling and with

J/t = 1.

to replace

Sf
i

=
1

2











0

0

m











eiQi (4.11)

in the KLM Hamiltonian (1.1) to obtain

H =
∑

kσ

(

c†kσ c†k+Qσ

)





ǫk
Jmσ

4

Jmσ
4 ǫk+Q









ckσ

ck+Qσ



 . (4.12)

Again we obtain a two-band dispersion relation but now with

Ek± =
1

2



ǫ(k) + ǫ(k + Q) ±
(

(ǫ(k) − ǫ(k + Q))2 +

(

Jm

4

)2
) 1

2



 (4.13)

and quasi-particle weights given by

u2
k± =

1

2






1 ± ǫ(k) − ǫ(k + Q)

(

(ǫ(k) − ǫ(k + Q))2 +
(

Jm
4

)2
)

1
2






. (4.14)

The single particle spectrum obtained via this approach is shown in Fig. 4.2 on the example

of J/t = 1 for both t′/t = 0 and t′/t = −0.3. For t′/t = 0 there is a direct band gap

of size Jm/4. For t′/t = −0.3 however the SDW approach does not produce a band gap

(Fig. 4.2).

Clearly this approach does not produce heavy fermion bands and the gap in the spectrum

(in the absence of next-nearest neighbour hopping) has a different origin to the gap seen in
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4.3 A Mixed Approach

the previous mean-field approach. A static AF ordering on the f-sites means that we must

define a new unit cell with two c-sites and two f-sites and the Brillouin zone of the lattice is

the diamond shaped magnetic BZ; half-the size of the original lattice Brillouin zone. If we

think in terms of quasi-free conduction electrons then the free dispersion relation of these

electrons must firstly be folded back into this reduced MBZ creating two bands, reflecting

the two conduction electrons of the unit cell, which for the moment are degenerate at the

MBZ boundaries. Now since these quasi-free electrons are effectively moving in the spin-

dependent potential of an AF background then Bragg reflection at the MBZ boundary

lifts the energy level degeneracy by the creation of a gap with size proportional to the

Fourier transform of the potential at a reciprocal lattice vector.

In the previous mean-field approach the gap opens due to the hybridisation between c-

electrons and f-electrons: the size of the gap reflects the energy advantage gained through

the formation of a composite quasi-particle, i.e. the localised magnetic moment together

with its c-electron screening cloud. Since the degree of hybridisation should follow the

Kondo scale then in that first case we would expect the gap to vanish exponentially with

decreasing J/t. The origin of the gap seen in our numerical DCA results is examined in

section 5.5.

4.3 A Mixed Approach

The third approach to the KLM, that we will draw on to gain understanding of the model

and aid the interpretation of our numerical DCA results, is the mean-field approximation

of Zhang and Yu [50]. This is basically a combination of the two previous approaches

which employs the order parameters

〈f †i,↑fi,↑ − f †i,↓fi,↓〉 = mfe
iQi, (4.15)

〈c†i,↑ci,↑ − c†i,↓ci,↓〉 = −mce
iQi, (4.16)

〈f †
i,↑ci,↑ + c†

i,↓fi,↓〉 = 〈f †
i,↓ci,↓ + c†

i,↑fi,↑〉 = −V. (4.17)

mf andmc are the staggered magnetisations of the impurity spins and conduction electrons

respectively and V is a hybridisation order parameter measuring the screening of the

impurity spins.

Again, we use a Lagrange multiplier term λ
((

∑

i,σ f
†
iσfiσ

)

−N
)

in the Hamiltonian to

maintain an average of single occupancy on the f-sites. In the case of half-filling this term
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4 Mean-Field and Spin Density Wave

is not necessary since there λ = 0. The Hamiltonian is now given by

H̃ =
∑

kσ

















ckσ

ck+Qσ

fkσ

fk+Qσ

















†















ǫk − µ
Jmf σ

4
JV
2 0

Jmf σ
4 ǫk+Q − µ 0 JV

2

JV
2 0 λ −Jmcσ

4

0 JV
2 −Jmcσ

4 λ

















×

×

















ckσ

ck+Qσ

fkσ

fk+Qσ

















+NJ

(

mcmf

4
+
V 2

2

)

. (4.18)

A four-band energy dispersion relation is obtained where the magnetic character and

Kondo screening character of the bands are tuned by the order parameters. In the limiting

case mf = 0, mc = 0 but V 6= 0, with the magnetism shut out, we would recover the large-

N mean-field approximation. Equivalently, setting V = 0 but mf 6= 0, mc 6= 0 recovers

the SDW result.

Motivation for this four-band modelling tool is given by exact BSS results for the finite

sized, half-filled KLM [33], which have shown that Kondo screening is also present in the

AF state, at least at half-filling. The spins are interpreted there as being partially screened

with the remnant magnetic moments ordering antiferromagnetically and the coexistence of

RKKY AF order and Kondo screening was seen to extend to small values of the coupling

J/t. However, it was also demonstrated in that work that the solutions to the saddle point

equations

〈 ∂H̃
∂mf

〉 = 〈 ∂H̃
∂mc

〉 = 〈∂H̃
∂V

〉 = 0 (4.19)

for the Zhang-Yu mean-field approximation in fact fail to describe the coexistence state

of AF order and Kondo screening, which in this framework would be given by mf 6= 0,

mc 6= 0 and also V 6= 0, except for a narrow crossover region around the AF order-disorder

quantum critical point. We come back to this approximation in the discussion of the results

of section 6.3.
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5 The Half-Filled KLM

5.1 Perfect Nesting of the Fermi Surface

In this study, we have considered the KLM at half-filling in two cases: either with or

without particle hole symmetry. Particle-hole symmetry is given if hopping is restricted

to nearest neighbours on the square lattice. In this case the free band dispersion is given

by ǫ(k) = −2t [cos(kx) + cos(ky)] and the Fermi surface is a diamond (see Fig. 5.1).

A Fermi surface of this shape is said to exhibit perfect nesting, where a macroscopic

number of electrons at the Fermi surface can be brought to another point on the Fermi

surface, therefore without any energy transfer, by the same momentum transfer vector.

In our case a momentum transfer of ±(π, π) or ±(−π, π) transfers electrons between the

lower left and top right sides or the lower right and upper left sides of the Fermi surface

diamond. To consider the consequences of this geometry, in particular with regard to the

tendency towards magnetic ordering, we draw on the thoughts of appendix A on linear

response functions and use a Kubo formula to obtain the magnetic susceptibility.

Assume we have an externally applied time-dependent and spatially oscillating magnetic

field

H = hei(q·ri−ωt) (5.1)

which couples to the magnetic moment mi of the conduction electron at site i. Here, q is

the wave vector of the harmonic spacial oscillation of the field, ω the temporal oscillation

frequency and ri the position vector of site i. The Hamiltonian will therefore include the

perturbation term

V = −
∑

i

mi · hei(q·ri−ωt). (5.2)

We will further assume that the magnetic moment of the conduction electrons at each

lattice site is given simply by

mi = gµBSi (5.3)

with Bohr magneton µB = e~

2mc and gyromagnetic ratio g ≈ 2. In this basic assumption

we are neglecting any contributions, for example, due to spin-orbit coupling. The applied
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Figure 5.1: The conduction electron dispersion relation and Fermi surface at half-filling for two

cases: (left) The particle-hole symmetrical case, i.e.without next-nearest neighbour hopping (t′ = 0)

(right) particle-hole unsymmetrical case with next-nearest neighbour hopping t′ = −0.3.

field will affect the orientation of these magnetic moments, so the quantity we wish to

consider is the so-called staggered magnetisation:

M(q) =
1

N

∑

i

〈mi〉e− iq·ri . (5.4)

This exponential factor takes account of the fact that the applied field oscillates peri-

odically in space and would therefore magnetise the spins accordingly. The staggered

magnetisation is just a sum over expectation values which we can write using the Kubo

formula (A.13), and inserting (5.2) for the perturbation term. We show this for one com-

ponent α = x, y, z of M:

Mα
t (q) =

1

N

∑

i

〈mα
i 〉te− iq·ri (5.5)

=
1

N

∑

β=x,y,z

∑

i,j

i

∫ t

−∞
dt′hβei(q·rj−ωt′)e− iq·ri〈[mα

i (t),mβ
j (t′)]−〉0 (5.6)

=
∑

β=x,y,z

i

∫ t

−∞
dt′eiω(t−t′)〈[mα(q, t),mβ(−q, t′)]−〉0hβe− iωt (5.7)

= χαβ(q, ω)hβe− iωt. (5.8)

In the above equation we have introduced the magnetic spin susceptibility function

χαβ(q, ω) = i
∫ t
−∞ dt′ei ω(t−t′)〈[mα(q, t),mβ(−q, t′)]−〉0, which is seen to be only a time

Fourier transform of a retarded correlation function or, in other words, of a retarded Green

function. At this stage we therefore rewrite the susceptibility in Matsubara formalism by

defining

χαβ(q, i ν) =

∫ β

0
dτei ντ 〈Tτm

α(q, τ)mβ(−q, 0)〉0 (5.9)
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5.1 Perfect Nesting of the Fermi Surface

so that analytic continuation

χαβ(q, i ν)
i ν→ω+i δ−−−−−−→ χαβ(q, ω) (5.10)

returns the retarded correlation function for the susceptibility with real frequencies. We

note that ν must be a bosonic Matsubara frequency (ν = 2πn
β ) since the Green function

defined in (5.9) is a correlation function of bosonic magnetic moment operators m. Here,

we wish only to consider the component χzz and we deal with the magnetic moment

operators as described below. We first go back to real space:

mz(q, τ) =
1

N

∑

i

e− iq·rimz
i (τ). (5.11)

Now, since the z-component of the magnetic moment operator at site i is just given by

mz
i = gµBS

z
i (with g ≈ 2) and the total z-component of spin at that site is given by

Sz
i = 1

2(ni↑ − ni↓) then (5.11) becomes

mz(q, τ) =
µB

N

∑

i

e− iq·ri

∑

σ

σc†iσciσ (5.12)

=
µB

N2

∑

σ

∑

k,k′

σc†kσck′σ

∑

i

e− i(k+q−k′)·ri . (5.13)

The sum over i produces the factor Nδk+q,k′ so that then summing over k′ results in

mz(q, τ) =
µB

N

∑

k,σ

σc†kσck+qσ (5.14)

We insert the moment operators into the correlation function (5.9) to obtain

χzz(q, i ν) =
µ2

B

N2

∑

kk′,σσ′

σσ′
∫ β

0
dτei ντ 〈Tτ c

†
kσ(τ)ck+qσ(τ)c†k′σ′(0)ck′−qσ′(0)〉0 (5.15)

In order to calculate the expectation value here, we remember that the index “0” indicates

that we are using the unperturbed density operator ρ0 to build the trace, dependent only

on H0, the Hamiltonian for the system of non-interacting electrons. Therefore, Wick

decomposition is applicable and we may equate

〈Tτ c
†
kσ(τ)ck+qσ(τ) c†k′σ′(0)ck′−qσ′(0)〉0

= −〈Tτ ckσ(0)c†kσ(τ)〉0〈Tτ ck+qσ(τ)c†k+qσ(0)〉0δk′,k+qδσ,σ′ (5.16)

= −G0
kσ(−τ)G0

k+qσ(τ)δk′,k+qδσ,σ′ , (5.17)

where the δσ,σ′ arises since for free electrons we have no terms in H0 that allow spin

flips and so we may only build contractions of operators with the same spin indices.

The other Kronecker delta is a result of momentum conservation. We sum over σ′ and

k′ and also Fourier transform the single particle Green functions of imaginary time to
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5 The Half-Filled KLM

fermionic Matsubara frequency functions according to G(τ) = 1
β

∑∞
n=−∞ e− i ωnτG(iωn)

with ωn = (2n + 1)π
β to obtain1

χzz(q, i ν) = − µ2
B

Nβ

∑

k,σ

∑

m,n

∫ β

0
dτei τ(ν−ωm+ωn)G0

kσ(iωn)G0
k+qσ(iωm) (5.18)

= − µ2
B

Nβ

∑

k,σ

∑

n

G0
kσ(iωn)G0

k+qσ(iωn + i ν) (5.19)

= − µ2
B

Nβ

∑

k,σ

∑

n

1

iωn − ǫ(k)

1

iωn + i ν − ǫ(k + q)
(5.20)

To perform the Matsubara frequency summation we define the function

f(z) :=
1

z − ǫ(k)

1

z + i ν − ǫ(k + q)

1

eβz + 1
(5.21)

and consider the complex path integral

1

2π i

∮

C0(R)
f(z)dz (5.22)

where the closed integration path C0(R) goes anticlockwise round a circle centred at z = 0

with radius R → ∞. With know that with Cauchy’s integral theorem the value of this

integral is equal to the sum of the residues at all of the singularities enclosed in the path.

The singularities of the function f(z) are 1st order poles at z = ǫ(k), z = ǫ(k + q) − i ν

and along the imaginary axis at the Matsubara frequencies z = iωn. So we have

1

2π i

∮

C0(R)
f(z)dz = Res[f(z), z → ǫ(k)]

+ Res[f(z), z → ǫ(k + q) − i ν]

+
∑

n

Res[f(z), z → iωn]. (5.23)

On the left hand side, the integral is equal to zero since |zf(z)| R→∞−−−−→ 0 and the conditions

for Jordan’s lemma are fulfilled. The residue of f(z) at one of the Matsubara frequencies

is just − 1
βG

0
kσ(iωn)G0

k+qσ(iωn + i ν) and (5.23) becomes

1

β

∑

n

G0
kσ(iωn)G0

k+qσ(iωn + i ν) = Res[f(z), z → ǫ(k)]

+ Res[f(z), z → ǫ(k + q) − i ν] (5.24)

=
nF (ǫ(k)) − nF (ǫ(k + q))

i ν + ǫ(k) − ǫ(k + q)
(5.25)

1Note that we could also get this from Feynman diagram rules by just recognising the two-particle

correlation function in (5.9) together with the integral over τ as a simple diagram in the two-particle

diagrammatic perturbation expansion
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5.2 Magnetic Phase Transition at Half-Filling

with the Fermi-function nF (ǫ) = (eβǫ+1)−1. We can insert this result into (5.20) to obtain

χzz(q, i ν) = −2
µ2

B

N

∑

k

nF (ǫ(k)) − nF (ǫ(k + q))

i ν + ǫ(k) − ǫ(k + q)
. (5.26)

The factor 2 just comes from summing over the spin σ.

Now we come to the point of all these calculations: The static magnetic susceptibility, i.e.

taking ν = 0, diverges for q → (π, π) since, at half-filling, for a k at the Fermi surface

then ǫ(k) − ǫ(k + q) → 0 whereas the numerator in (5.26) will be finite. This a direct

result of the diamond shape of the Fermi surface, there are many k in the summation

along each edge of the surface which contribute to the divergence of the susceptibility at

(π, π). The staggered magnetisation is then at its maximum for q = (π, π) which means

for this oscillating response magnetisation that the wave-length λ, defined by q = ( 2π
λx
, 2π

λy
),

is the same in both the x and y directions: λ = 2, and neighbouring spins are aligned

antiferromagnetically. So we see that with t′ = 0, we have perfect nesting of the Fermi

surface at half-filling and the resultant magnetic instability in the susceptibility will cause

AF order in the conduction electrons when they are placed into an infinitely small AF field.

This could form the start point for the spin density wave (SDW) approach considered as

part of chapter 4, where we lock-in a staggered magnetisation on the localised spins and

allow the conduction electrons to move in this background.

To break the perfect nesting of the Fermi surface and remove the nesting enhancement of

the magnetic order, we introduce a next-nearest neighbour hopping with matrix element

t′ = −0.3. The Hamiltonian in real space is therefore

H = −t
∑

〈i,j〉,σ
c†i,σcj,σ − t′

∑

〈〈i,j〉〉,σ
c†i,σcj,σ + J

∑

i

Sc
i · Sf

i
(5.27)

where 〈i, j〉 and 〈〈i, j〉〉 represents nearest and next-nearest neighbours, respectively. The

Fourier transform of the non-interacting part gives a modified dispersion

ǫ(k) = −2t [cos(kx) + cos(ky)] − 2t′ [cos(kx + ky) + cos(kx − ky)] (5.28)

resulting in a deformed Fermi-surface at half-filling. We will use t′/t = −0.3 which gives

the dispersion shown in Fig. 5.1. The deformation of the Fermi-surface lifts the perfect

nesting since we no longer have ǫ(k) = ǫ(k+q) for a k on the Fermi surface. However, we

note that the static spin-susceptibility χzz(q) still displays a maximum at q = (π, π) such

that this value of t′/t still will be a good choice for investigating the AF order-disorder

transition of the KLM.

5.2 Magnetic Phase Transition at Half-Filling

In section 1.2 we discussed the competition between the magnetic ordering and the screen-

ing of the localised magnetic moments in the KLM and that the Kondo screened phase
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Figure 5.2: The staggered magnetisation mf
z of the local moment spins as a function of coupling

J/t. Results are shown for the ground state with next-nearest neighbour hopping t′/t = −0.3 and

with t′/t = 0.

gives way to an AF ordered phase at a QCP as J/t is reduced at half-filling. Lattice

QMC results show the phase transition to be at 1.45 ± 0.05 [33] In order to capture the

expected transition from the insulating paramagnetic Kondo-screened phase at large val-

ues of J/t to the AF-ordered insulator at low values of J/t the staggered magnetisation

mf
z = 1

Nc

∑

i〈n
f
i,↑ − nf

i,↓〉e− iQri was measured. Hereby, Nc is just the number of original

lattice sites in the cluster (i.e. for NAF
c = 4 then Nc = 8) and Q = (π, π). This is a

local quantity and as such the value measured during the QMC cluster solver part of the

DCA calculation is equal to the value which would be obtained from the full lattice Green

function [37]. We remember also that the staggered magnetisation can be measured in

our DCA approach only because AF ordering is allowed for through the definition of the

two-site unit cell.

In Fig. 5.2, mf
z is shown as a function of the coupling J/t with and without next-nearest

neighbour hopping. Importantly, the DCA results for the particle-hole symmetry case

(t′/t = 0) are in qualitative agreement with known results: We track a continuous phase

transition from magnetic disordered to AF ordered with decreasing coupling J/t. However,

we note that the DCA results give a critical J/t which is shifted to a higher value in

comparison to the lattice QMC results. We obtain Jc

t ≈ 2.1. It is not so concerning

that the DCA does not reproduce Jc from the lattice QMC measurements, because the

measurements displayed here were with only NAF
c = 1. By definition of the DCA, as NAF

c

is increased the numerical value of all the DCA results must approach the QMC lattice

results because ultimately we would reach the limit NAF
c = N so that the cluster is the

size of the lattice and the DCA is per definition exact. However, what interests us here is

that the qualitative behaviour of the transition is reproduced by our approach, albeit at
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Figure 5.3: Staggered magnetisation as a function of coupling J/t with t′ = −0.3 but now also

showing data for different temperatures for comparison.

a different transition coupling Jc/t. As could be expected by the removal of the nesting

induced magnetic instability, the breaking of particle hole symmetry, by using t′/t 6= 0,

suppresses the onset of magnetism (Jc/t ≈ 1.85).

On the technical side, in order to ensure that a given result can be considered to be a

ground state result it was necessary to perform simulations at a variety of inverse tem-

peratures β. The energy scales in the problem, the Kondo scale, coherence scale and the

RKKY scale, all become smaller with smaller J/t.

In Fig. 5.3 we show the same magnetisation plot for t′ = −0.3 as before (Fig. 5.2) but

include some measured values at different temperatures. We point out that βt ≤ 40 is

unsuitable for J/t < 1, since we are obviously not below the Neel temperature for those

values of J/t. However βt = 40 is suitable for 1 ≤ J/t ≤ 1.6 whereas we consider βt = 20

sufficiently large for simulations with J/t > 1.6. In later results for the doped KLM we

expect lower temperatures will be required in order to consider the results to be for the

ground state because the chemical potential will no longer be in a gap and therefore the

smearing out of the spectral function due to thermal fluctuations may play a greater role.

5.3 Single Particle Spectrum - t′/t = 0

We now show the DCA results for t′/t = 0, the particle-hole symmetric case. The single

particle spectrum A(k, ω) = − 1
π ImGret

cc (k, ω) of the conduction electrons is plotted for

k vectors along a path of high symmetry in the first Brillouin zone: (π, π) → (0, π) →
(0, 0) → (π, π). As described in section 2.4.1, in the case of AF ordering, the true first

Brillouin zone would be reduced to the diamond shape, but we will continue to show the

results for the path indicated, in what we will then call the extended Brillouin zone, so
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Figure 5.4: Single particle spectral function for a simulation at half-filling (〈nc〉 = 1) and with

particle-hole symmetry (t′ = 0) close to the magnetic phase transition on the paramagnetic side,

J/t = 2.2.

as to make direct comparison with the PM case. On the energy axis, ω values are given

relative to the Fermi energy (i.e. EF ≡ [ω = 0)]) which is fixed by the value of µ.

In Fig. 5.4 we plot the spectrum for J/t = 2.2, which was seen to be in the paramagnetic

phase (see Fig. 5.2). The first notable feature is the quasi-particle gap: no band crosses

the Fermi energy (ω = 0). In section 5.5 we examine the QP gap in detail as a function of

J/t. For now, it is enough to note that a finite gap in the conduction electron spectrum

indicates that the state is insulating. The lower band runs very flat around k = (π, π), with

relatively low spectral weight (note the logarithmic scale of the colour chart) in comparison

to the other parts of the band which are mostly unchanged from the non-interacting case.

The flat band feature is associated with Kondo screening of the impurity spins and the

resultant heavy fermion nature of the composite quasi-particles, where a large effective

mass is given by the very small curvature of the band, We will later also see such flat

bands in the hole doped phase to be discussed later.

At J/t = 2.0 we have measured a non-vanishing staggered magnetisation mf
z = 0.244 ±

0.001. The spectral function (Fig. 5.5, left: for the complete path in k-space, right: showing

a close-up for k = (0, 0) → (π, π)) for this lightly AF ordered simulation now includes

additional low energy band structures: In the upper band around (π, π) and in the lower

band around (0, 0). The features are directly linked with the magnetic ordering. These

are so-called shadow bands, arising due to a reduction of the Brillouin zone, applicable

for the system when spin symmetry between neighbouring sites is broken. In the case
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Figure 5.5: Single particle spectral function for a simulation at half-filling (〈nc〉 = 1) and with

particle-hole symmetry (t′ = 0) close to the magnetic phase transition on the AF side, J/t = 2.0.

The staggered magnetisation for this point is measured to be mf
z = 0.244 ± 0.001.

of AF ordering, two k-points separated by the AF ordering vector Q = (π, π) become

equivalent. We can also say, on example of the lower band, that the heavy fermion part

of the band around (π, π) is backfolded around (π
2 ,

π
2 ), reflecting the AF reduced Brillouin

zone. The point (π
2 ,

π
2 ) lies at the edge of the true first Brillouin zone so that moving along

a path in k-space towards the zone centre at (0, 0) is equivalent to moving towards the

centre of the neighbouring Brillouin zone at (π, π). If we look back at the spectrum for

J/t = 2.2 (Fig. 5.4) we can interpret the faint low spectral weight, low energy structure

in the photoemission (ω < 0) spectrum around k = (0, 0) as pre-cursor signs of AF

ordering. In our DCA approach we begin a simulation with non-equal up/down-spin

Green functions, setting an artificial magnetisation which, when iterated to convergence

within the DCA/QMC solving process, will either vanish or stabilise depending on whether

the parameters J/t and 〈nc〉 produce a PM or AF state, respectively. For the PM state we

will never achieve G↑ = G↓ exactly, but only within our error bars. Therefore, particularly

in the neighbourhood of the quantum phase transition, where convergence of the iterative

process becomes critically slow, weak indications of backfolding are understandable.

Fig. 5.6 shows no qualitative differences to the previous plot, but we are deeper in the

magnetically ordered phase and the shadow band have a larger spectral weight. We note

that the gap between the lower and upper has progressively become smaller going from

J/t = 2.2 to J/t = 1.6, and will be analysed in section 5.5.

At J/t = 1.2 we make an important comparison with the spectrum obtained via QMC

lattice simulations (using the projective auxiliary field algorithm of [33]) for the same

parameters. We see in Fig. 5.7 the QMC lattice simulation results [33] on the left and

our DCA result on the right, both only for the (ω < 0)-photoemission spectrum. The

agreement of the DCA spectrum with the BSS result is excellent. The BSS result suffers

aesthetically from the fact that since the simulations were carried out on a finite lattice
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Figure 5.6: Single particle spectral function at half-filling (〈nc〉 = 1), with particle-hole symmetry

(t′ = 0) and with coupling J/t = 1.6 giving rise to intermediate strength AF ordering. The

staggered magnetisation is measured as mf
z = 0.608 ± 0.002.

(here a 12 × 12 lattice) spectral data is only available for that limited number of points

in k-space, at least without some interpolation method to smooth out the plot. The DCA

plot is smoother in k-space because the DCA self-energy, in the case of NAF
c = 1 is not

k-dependent so that we may calculate the lattice Green function and extract from it the

spectral function for any desired k-vector.

It is quite remarkable that already with the smallest possible cluster capable of capturing

AF order, NAF
c = 1, we are able to produce a single particle spectrum which is basically

exactly the same as the lattice QMC result. This confirms that the DCA is indeed a

well suited approximation for use with the KLM: the essence of the competition between

RKKY-mediated spacial magnetic order and the time displaced correlations responsible

for Kondo screening is successfully distilled to a small cluster dynamically embedded in

the mean-field of the remaining bath electrons.

Before moving on to results for t′/t = −0.3 we consider the position of the band maxima

and minima. The lower band maximum remains at k = (π, π) for all J/t down to at least

J/t = 1.0. In the upper band the minimum is always at (0, 0). Therefore in the PM region

we have an indirect gap with momentum transfer vector q = (π, π) (and rotationally

equivalent vectors). At J/t = 0.8 the band becomes practically flat from (0, 0) to (π, π)

and the maximum is hard to determine. Further discussion on this point will be made later

in section 5.5. In the AF phase, the backfolding of the upper and lower bands means that

the minimum and maximum of the two bands are also found at vectors q = kmax/min +Q,
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Figure 5.7: Comparison of single particle spectra for the conduction electrons with previous

results: left, data taken from [33] which used a projective auxiliary field Monte Carlo method on a

finite lattice KLM. right, our DCA results for the same parameter set - t′ = 0, 〈nc〉 = 1, J/t = 1.2.

with Q = (π, π) and rotational symmetry equivalents. We therefore have a direct gap for

the AF phase.

5.4 Single Particle Spectrum - t′/t = −0.3

We now report on the results for the case where particle hole symmetry is broken by

the inclusion of the next-nearest neighbour hopping term t′/t = −0.3. In the absence of

particle-hole symmetry, the chemical potential for a simulation can no longer simply be

set to µ = 0 to achieve 〈nc〉 = 1 i.e. half-filling. However, for larger values of J/t the

charge gap is sufficiently large such that only a few guesses for the chemical potential were

needed in ordered to land in the gap. On the basis of these results it is then possible to

extrapolate the required value of µ successively for simulations with smaller J/t.

In the PM phase with J/t = 2.5 (see Fig. 5.8) the spectrum is qualitatively identical to

the PM phase in the t′ = 0 case. The model is insulating with an indirect gap. The

underlying free dispersion relation is modified by the inclusion of next-nearest neighbour

hopping, hence the different energy span of the spectrum. In this plot we already begin

to observe some extremely weak precursors to magnetic order in the form of backfolding

in the lower band.

At J/t = 2.0 and J/t = 1.9, shown in Figs. 5.9 and 5.10 respectively, the system is still

paramagnetic (see the magnetisation plot of Fig. 5.2). For J/t = 1.9 in particular though,

we see the same sort of precursor effect to backfolding seen for t′ = 0, J/t = 2.2 (Fig. 5.4.

The backfolded band forms more fully only with J/t = 1.8 (Fig. 5.11) and gains spectral

weight by J/t = 1.6 (Fig. 5.12). In Figs. 5.13, 5.14, and 5.15 we continue to follow the
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Figure 5.8: Single particle spectral function at half-filling (〈nc〉 = 1), away from particle-hole

symmetry (t′ = −0.3). The coupling J/t = 2.5 sets the point on the paramagnetic side of the

phase transition.

changes in the spectrum for J/t = 1.5, 1.4 and 1.3. For the moment we focus on k-vectors

along the line from (0, 0) to (π, π) (shown in the close-up plots on the right of these

figures). The local minimum energy dip at k = (π
2 ,

π
2 ) becomes less pronounced as the

heavy fermion band flattens until by the time we reach J/t = 1.2 this dip has turned into

a bump such that the lower band maximum has shifted from (π, π) to (π
2 ,

π
2 ). Although

this important change in band structure appears to be continuous, it is unlikely, even if

we had data for 1.3 > J/t > 1.2, to be clear whether the band maximum truly shifts

continuously along the path between the two positions due to limits in the resolution of

the underlying QMC result (compare also section 5.5 for the method used for resolving

band maxima or minima). For smaller J/t = 1.1, 1.0, and 0.8 the spectra are shown in

Figs. 5.17, 5.18 and 5.19 respectively, now only for the path from (0, 0) to (π, π). The

lower band maximum remains at (π
2 ,

π
2 ) and becomes more pronounced.

If we now consider the position of the minimum in the upper band, following the evolution

of the spectra again from large J/t in the paramagnetic region down to low J/t in the AF

phase, we see that for 2.5 ≥ J/t ≥ 1.6 (Figs. 5.8 - 5.12) the upper band minimum is at

k = (0, 0) whereas for 1.5 ≥ J/t ≥ 0.8 the band minimum is at k = (0, π). The position

of the minima and maxima in the upper and lower bands of the spectra for t′/t = −0.3

are summarised schematically in Fig. 5.20.
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Figure 5.9: Single particle spectral function at J/t = 2.0, with 〈nc〉 = 1, t′ = −0.3. These

parameters set the simulation in the paramagnetic region close to the magnetic phase transition.
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Figure 5.10: Single particle spectral function with J/t = 1.9, 〈nc〉 = 1, t′ = −0.3, still just on

the paramagnetic side of the phase transition.
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Figure 5.11: Single particle spectral function with J/t = 1.8, 〈nc〉 = 1, t′ = −0.3, just inside the

AF ordered phase.
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Figure 5.12: Single particle spectrum for J/t = 1.6, 〈nc〉 = 1, t′ = −0.3.
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Figure 5.13: Single particle spectrum for J/t = 1.5, 〈nc〉 = 1, t′ = −0.3.
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Figure 5.14: Single particle spectrum for J/t = 1.4, 〈nc〉 = 1, t′ = −0.3.
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Figure 5.15: Single particle spectrum for J/t = 1.3, 〈nc〉 = 1, t′ = −0.3.
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Figure 5.16: Single particle spectrum for J/t = 1.2, 〈nc〉 = 1, t′ = −0.3.
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Figure 5.17: Single particle spectrum for J/t = 1.1, 〈nc〉 = 1, t′ = −0.3.
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Figure 5.18: Single particle spectrum for J/t = 1.0, 〈nc〉 = 1, t′ = −0.3.
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Figure 5.19: Single particle spectrum for J/t = 0.8, 〈nc〉 = 1, t′ = −0.3.
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Figure 5.20: Schematic representation of the position of the upper band minima (top row) and

lower band maxima (bottom row) of the conduction electron single particle spectral function with

next-nearest neighbour hopping t′ = −0.3 and for half-filling. The squares represent the 1st

Brillouin zone (for the PM phase) or the extended Brillouin zone (for the AF phase), with the

bottom left corner and top right corner of each square given by k = (−π,−π) and k = (π, π),

respectively.
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5.5 The Quasi-Particle Gap

The quasi-particle gap ∆qp is the energy difference between the ground states of the N +1

electron system and the N electron system. For an insulator, a finite quasi-particle gap will

show up in the quasi-particle dispersion relation (the single particle spectrum). According

to Landau Fermi liquid theory for quasiparticles an extra electron added to the correlated

system will lose its single electron character and be assimilated into the pool of composite

quasiparticles. The energy difference of theN+1 andN electron ground states will give the

energy required for the lowest quasiparticle excitation. In contrast, the charge gap is the

lowest energy required for a change in the charge configuration whilst holding the number

of electrons constant. For the Kondo insulator the charge gap is just twice the quasiparticle

gap. Just by looking at the spectra of the previous section it can be difficult to read off

a reliable estimate for the gap. An easier method is to read the gap from the imaginary

time lattice Green function for the conduction electrons Gk(τ) = −〈Tτak(τ)ea†k(0)〉. In

spectral representation, by inserting the same complete set of eigenstates |En〉 to H that

we use to build the trace, this may be written as

Gk(τ) = − 1

Z

∑

n,m

|〈Enak|Em〉|2 eτ(En−Em)e−βEn (5.29)

for τ > 0, for example, where the Green function describes inverse photoemission processes.

In the T = 0 limit β → ∞ and the only term we need in the sum over n is the ground state

n = 0. In this case the asymptotic behaviour of the Green function for large τ becomes

Gk(τ)
τ→β−−−→ − |〈E0|ak|E1〉|2 e−τE1 , (5.30)

therefore an exponential decay controlled by the lowest excitation energy E1, which will

be equivalent to the quasiparticle gap. For τ < 0, corresponding to photoemission, the

spectral representation gives

Gk(τ)
τ→−β−−−−→

∣

∣

∣
〈E0|a†k|E1〉

∣

∣

∣

2
eτE1 . (5.31)

In our simulations, β is large but not infinite. The Matsubara Green functions are anti-

periodic with period β (i.e. G(−τ) = −G(β − τ)). Inverse photoemission is described by

our Green function for 0 ≤ τ . β
2 whereas the photoemission processes are described for

β
2 . τ < β. We can therefore determine the lowest excitation energies by linearly fitting

to a logarithmic plot of the Green function Gk(τ) (at the momentum vector of the gap)

and reading off the slope.

The quasi-particle gap measured as a function of J/t is shown in Fig. 5.21 with (t′/t =

−0.3) and without (t′/t = 0) next-nearest neighbour hopping. We note first that the

known linear dependence of ∆qp on J/t for t′/t = 0 and small J/t [33] is reproducible

in the DCA approach. This linear behaviour has been interpreted in [33] as being linked
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Figure 5.21: The quasi-particle gap ∆qp/t as a function of antiferromagnetic coupling J/t for the

two cases of t′ = 0 and t′/t = −0.3.

to the magnetic ordering (which sets in before the linear region at higher J/t) and, in

particular, the nesting instability to AF order in the particle-hole symmetric case. In

the framework of the SDW approximation, we would expect a gap ∆qp ∝ J/t (4.13). In

contrast to this, away from the particle-hole symmetric point with t′ = −0.3 the gap is

greatly suppressed for small J/t and is consistent with an exponential decay. Again, this

can be considered as consistent with the SDW framework since for t′/t = −0.3 the gap

proportional to J/t is lost (see back to Fig. 4.2). We can therefore assume that the gap

follows a Kondo scale and that its nature is that of a hybridisation gap which decreases

exponentially for small J/t as the RKKY scale wins out over the Kondo scale. This

is the generic result whereas the linear dependency on J/t is given only for the special

particle-hole symmetric case with perfectly nested Fermi surface for free electrons.
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6 The Hole-Doped KLM

6.1 Magnetic Phase Diagram

We have carried out numerous simulations in the hole-doped phase. This is achieved

simply by reducing the chemical potential away from the half-filling value. For the case

with t′/t = 0, where at half-filling µ = 0, we move to negative values of µ noting that in

order to achieve hole-doping, we must first reduce µ significantly enough in order to move

out of the quasi-particle gap. For t′/t = −0.3 at half-filling µ already has a negative value

which is then reduced further to dope with holes, where again we must first reduce enough

to shift the Fermi energy EF out of the gap. Since we are only considering hole-doping the

changes in the lower band will be significant for the Fermi-surface of the doped model. The

half-filling results showed the typical flat hybridisation band in the paramagnetic region

with lower band maxima at (π, π). As J/t was reduced the lower band was first backfolded,

developing shadow bands with the onset of antiferromagnetism at the QCP. With further

reduction of J/t, the magnetisation strengthened and the band maxima shifted from (π, π)

to (π
2 ,

π
2 ). Although at half-filling we cannot talk of Fermi surfaces, it is tempting to assume

a rigid band theory, as argued in the following. The periodic Anderson model (PAM) is

a band insulator at half-filling, as can be seen by considering the non-interacting Uf = 0

case where the energy dispersion would just be E(k) = ±
√

ǫ(k)2 + V 2. Now since the

KLM is just the large Uf limit of the PAM we can also argue that the half-filled KLM is a

band insulator, such that upon doping the holes will form around the lower band maxima

of the half-filling spectrum. This would mean a topological change in the Fermi surface,

a so-called Lifshitz transition [51], would occur on reducing the coupling whilst remaining

inside the AF phase. In the following section we explore the ground state magnetic phase

diagram for the hole-doped KLM,i.e 〈nc〉 < 1. We begin with several lines at constant J/t

in parameter space and vary the hole doping, before moving on to examine the spectral

function from which we can read out the Fermi surface in the hole-doped metallic phase.

6.2 Staggered Magnetisation

Fig. 6.2 shows the staggered magnetisation as a function of conduction electron density for

J/t = 0.8, 1.0, 1.2 and 1.4. The magnetically ordered state found at half-filling therefore

survives when moving away from these points by doping with holes. At all coupling
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values a continuous magnetic phase transition is observed with the AF order decreasing

gradually as the system is doped and vanishing smoothly at a quantum critical point.

Checks were made by varying the temperature, 1/β, of the simulations to ensure that the

results can be considered to be ground state. The temperature must be low enough as to

ensure that we are below the smallest scale of the problem: the coherence scale and/or

the RKKY scale. Since the coherence scale decays exponentially with J/t we are limited

to values of J/t ≥ 0.8. This restriction arises since the computational time required by

the QMC cluster solver scales as (βNAF
c )3 [34]. On general grounds, we remember, we

expect fuller magnetism at small values of J/t since in this region the RKKY scale set by

J2χ(q, ω = 0) dominates over the Kondo scale, TK ∼ e−t/J . Here, χ(q, ω = 0) corresponds

to the spin susceptibility of the conduction electrons. The results show, that upon doping,

the magnetic metallic state progressively dominates the phase diagram as a function of

decreasing coupling.

6.3 Single Particle Spectrum and Topology of the Fermi Surface

As we did for the half-filling results section we plot the single particle spectrum A(kkk, ω) =

−ImGret
cc (kkk, ω) in an extended Brillouin zone scheme and track its evolution, this time

with increasing hole-doping away from half-filling. We begin with a line in the magnetic

phase diagram at constant coupling J/t = 1.0 and plot the spectra for several points

shown in the magnetisation graph for this coupling (Fig. 6.1(b)). The plots display only

the line (0, 0) to (π, π) in k-space, as it is here that a change in the Fermi-surface topology

becomes evident. Fig. 6.2(a), where 〈nc〉 = 1, is shown again for comparison before doping

the system.

Evidently, upon initial doping (Fig. 6.2(b)) a Fermi-surface forms comprised of hole pock-

ets around (π
2 ,

π
2 ). With further doping this low energy band flattens out progressively

becoming almost flat by 〈nc〉 = 0.926 (Fig. 6.2(d)). Doping further still gives rise to a

Fermi surface with holes centred on (π, π) (and equivalent points by rotational symmetry

of the square lattice). Since at 〈nc〉 = 0.908 (Fig. 6.2(e)) and 〈nc〉 = 0.898 (Fig. 6.2(f))

we still have non-zero magnetisations of mf
z = 0.340 and mf

z = 0.245, respectively, then

backfolding of the band produces a hole at (0, 0) although there, due to the proximity of

the upper band with small positive energy relative to the chemical potential, the band

is somewhat smeared out or hard to resolve. In Fig. 6.2(g) the magnetisation is very

small (mf
z = 0.123) such that the backfolded band begins to weaken. In the final figure

of the series, the magnetisation is practically zero, and consequently, the backfolded band

has vanished leaving a Fermi-surface given solely by holes around (π, π) (and equivalent

points).

To gain insight into these DCA results we can draw on the mean-field approaches in-
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Figure 6.1: The staggered magnetisation mf
z of the f -electrons as a function of 〈nc〉 at different

constant couplings J/t
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Figure 6.2: Single particle spectrum of the conduction electrons for J/t = 1. The conduction

electron density is reduced progressively (conduction electron density value displayed above figures)

in the series of figures from half-filled 〈nc〉 = 1 in (a) to 〈nc〉 = 0.880 in (h). The y-axis is ω/t and

the x-axis gives k-vectors along the straight path from (0, 0) to (π, π)
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troduced in chapter 4. The mean-field approximation of Zhang and Yu [50] with the

Hamiltonian given by (4.18) results in a four-band energy dispersion relation, En(k), in

the MBZ. For this mean-field Hamiltonian the Luttinger sum rule reads:

2

NMBZ

∑

k∈MBZ,n

Θ(−En(k)) = 2(nf + nc) ≡ 2(1 + nc) (6.1)

where we carefully note that NMBZ stands for the number of AF unit cells (i.e. two

f -electron orbitals and two c-electron orbitals) such that NMBZ = N/2. The final equiv-

alency on the right hand side is given since the Lagrange parameter in the Hamiltonian

enforces nf = 1. The Brillouin zone volume enclosed by the surface defined by the discon-

tinuities in the single particle occupation number — the Luttinger volume — is determined

only by bands which cross the Fermi energy.

The low temperature features of the PM phase, which for J/t = 1 is given by the region

〈nc〉 . 0.880, are well understood in this mean-field framework by setting mf = mc = 0 in

(4.18) which recovers the generic hybridised band structure of the large-N approximation

with dispersion given by (4.8) and spectral weight given by (4.9). The large-N result gives

heavy (very flat band corresponding to large effective mass of the quasi-particles) bands

Ek± crossing the Fermi energy in the vicinity of k = (π, π) and equivalent points. This is

in excellent agreement with the DCA result in the PM phase. Based on this mean-field

modelling of the DCA data, and since only the Ek,− band crosses the FS, the Luttinger

volume in the PM phase, V PM
L , is given by: V PM

L /VBZ = 1
N

∑

k∈BZ Θ(−E−(k)). For

the paramagnet, the reciprocal space is given by the full BZ with Luttinger sum rule:
2
N

∑

k∈BZ,n Θ(−En(k)) = nf + nc, which in combination with the volume yields

V PM
L

VBZ
=
nf + nc

2
=

1 + nc

2
(6.2)

counting both conduction band electrons and magnetic moment spins. Since the mean-

field model accounts very well for the DCA spectral function in the PM phase, we attribute

the DCA result with this same large Luttinger volume.

In the strongly AF phase, close to half-filling with 0.926 . 〈nc〉 < 1, the DCA spectrum

with hole pockets around (π/2, π/2) can again be well accounted for with the mean-field

Hamiltonian of (4.18) but now setting non-vanishing staggered magnetisations, equal to

the QMC measured observables, and also using a non-zero hybridisation value of about

V = 0.3, for 3% doping for example, as fit parameter. An example spectrum produced

via this procedure is given in Fig. 6.3(b). The value for V is chosen purely on the basis of

whether the spectrum thus produced qualitatively matches the DCA result. Since for the

given magnetisations, which we read out of the QMC simulation, a non-zero value of V is

required to produce the observed hole-pockets, we conclude that the bands retain heavy

fermion nature and that at least partial Kondo screening is present. In this fit, one band
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Figure 6.3:

drops completely below the Fermi energy which itself is crossed only by the second band

E2(k) in the vicinity of k = (π/2, π/2). In this case the Luttinger volume is given by

V AF
L

VMBZ
= nc (6.3)

with the f-electrons excluded from the counting. Since the heavy fermion bands are still

present but shifted to lower energies, we conclude that partial Kondo screening is present

in the magnetic phase. However, the topology of the FS is actually that of a spin-density

wave approximation (V = 0, mf = 1,mc 6= 0 in (4.18)) where the f -electrons are also

frozen and do not participate in the Luttinger sum rule. Hence, we coin the FS, obtained

from the DCA spectrum, as small.

For the intermediate region of the AF phase, which for J/t = 1 is given for 0.880 .

〈nc〉 . 0.926 corresponding to staggered magnetisation 0 . mf
z . 0.455, we have the third

variant for the Fermi-surface topology. In the extended zone scheme, holes are formed

around (π, π) and (0, 0). We understand this simply by considering the spectrum of the

large-N approach backfolded around (π
2 ,

π
2 ) to take account of the reduction of the BZ

which takes place with the breaking of the original lattice symmetry via AF ordering.

This simple approach, depicted in Fig. 6.3(a) gives a good account of the DCA result for

the intermediate parameter region and again may be classified as a large Fermi-surface

topology.

We note some similarities to results recently observed in a variational Monte-Carlo ap-

proach to the KLM [52]. A major difference however is that in that work, although there
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is a magnetic phase transition separating topologically different Fermi surfaces, it is of

first order in the variational approach [52]. In contrast, the DCA calculation presented

here supports a continuous transition. However, the transition between small and large

Fermi surface topology does not occur at the quantum critical point. Such a situation may

also occur experimentally: Experiments on the quantum criticality of the heavy fermion

material YbRh2Si2 indicate, via a jump in the Hall coefficient, a topology change of the

Fermi surface that is not coupled to the order-disorder QCP and which may occur to either

side of the magnetic phase transition depending on positive or negative chemical pressure

[18]. We note that the variational wave function corresponds to the ground-state Slater

determinant of (4.18) supplemented by a Gutzwiller projection and the order parameters

are determined by minimising the variational energy. The FS is then deduced from the

mean-field Hamiltonian. In the presence of t′ and close to half-filling one expects the

observed AFe FS phase [52], characterised by V 6= 0,mf 6= 0,mc 6= 0 to correspond to

hole-pockets.

We now look at what happens at a larger coupling J/t = 1.4 upon hole-doping away from

half-filling. We recall that at half-filling the lower band maximum was at (π, π) so that

drawing on the experiences of the result for J/t = 1 and assuming a rigid band principle,

where doping serves only to move the Fermi-energy down into the lower band without

changing its qualitative structure, then the Fermi surface topology could be expected to

be that of the backfolded large-N case with holes around (π, π) and (0, 0). What in fact

happens is that firstly there appears to be no band crossing the Fermi-surface at all. The

spectral functions obtained for J/t = 1.4 are shown in Fig. 6.4 going from half-filling

(Fig. 6.4(a)) to approximately 6% hole-doping in Fig. 6.4(e). Extensive testing including

comparing the value obtained for 〈nc〉 from the QMC run with that obtained from the

DCA result for the lattice Green function and also production of well controlled QMC

data through large investment of computing time, have failed to resolve this problem.

If we consider this to be a numerical error and that the Fermi energy has been badly

resolved in the spectral plots such that a small shift of the spectrum is required, then we

would conclude that the Fermi surface is indeed the backfolded large-N large FS topology.

Progressively doping the system destroys the magnetic order, and the model undergoes a

continuous phase transition to a PM metal. Here it is interesting to note that the apparent

‘gap’ in the spectrum also appears to be smaller or may even be considered to vanish in

the absence of magnetic order. The same problem of apparent lack of Fermi surface in

the AF region of the phase diagram is also present already for J/t = 1.2. If viewed as a

numerical problem remedied by a small shift in the Fermi energy, the topology is also the

large FS.

We summarise the above results for the magnetic phase diagram and Fermi surface topol-

ogy in Fig. 6.5. It is clear in that plot that the region of phase space with a small Fermi
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Figure 6.4: Single particle spectrum of the conduction electrons for J/t = 1.4.
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6.3 Single Particle Spectrum and Topology of the Fermi Surface

surface with hole pockets around (π/2, π/2) is characterised by a large staggered magneti-

sation. We also include Fig. 6.6 as a useful summary plot with a schematic summary of

the three distinct areas of the phase diagram, the corresponding characteristic spectra in

each of those areas, and the resultant Fermi surface topologies.

We note that the results summarised in the above are confirmed by the results of simu-

lations carried out using the larger cluster size NAF
c = 4, see Fig. 6.7. In particular, we

observe the small Fermi surface topology in the strong AF region with small coupling J/t

and evidence for a large Fermi surface in the weakly ordered region (J/t & 1.2) although,

again, the problem of a shift in the chemical potential is observed, such that no band

clearly crosses the Fermi energy. The apparent gap, as read from a log-plot of the lattice

Green function, is of equal size or even slightly larger than for NAF
c = 1 when comparing

simulations at equal doping and coupling.

Since the system, according to the QMC observable, is clearly doped but the single parti-

cle spectrum fails to reflect this, then we can make a tentative argument for the existence

of some kind of quasiparticle pairing. A superconducting phase may be sandwiched be-

tween the paramagnetic Kondo screened regime and the strongly antiferromagnetic small

Fermi surface regime topologies. This must be seen only as a hypothesis, since without

susceptibility measurements we do not feel confident enough to exclude the possibility of

numerical error in the results. Consider, for example, the difficulties in determining the

correct high frequency behaviour of the self-energy using only a finite mesh in imaginary

time. A poor resolution of the high frequency tail of the self-energy can act as an effective

µ in the interacting Green function, thereby giving a systematic error in Fermi energy.

Exotic superconductivity of paired composite quasiparticles has been suggested in the

vicinity of the QCP, mediated via antiferromagnetic fluctuations. We note that a d-wave

superconducting phase has recently been suggested to exist for the Heisenberg KLM (with

an additional JAF coupling between magnetic impurities) [53].

The main result of this section still remains to be a reordering of the Fermi surface within

the AF phase. We may ask ourselves what the driving force or mechanism for the topology

change is, or what is the nature of transition? For example, does the band structure

evolve continuously, perhaps becoming completely flat with divergent effective mass m∗?

The DCA data could never hope to give a clear answer here since the resolution of the

quasiparticle spectrum is not great enough: In our phase diagram, Fig. 6.5, we draw the

line dividing the two topologies through those simulation points in which we could not

clearly distinguish between the two.

Drawing again on our model fit, the 4-band mean field with order parameters for magneti-

sation and for Kondo screening, we set a constant c-electron occupancy of 〈nc〉 = 0.966,

coupling J/t = 1.2, and use the QMC values for the staggered magnetisations of f-electrons

and c-electrons: mf
z = 0.517, mc

z = 0.167. Our DCA results show this AF ordered point
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6 The Hole-Doped KLM

Figure 6.5: Ground state magnetic phase diagram of the hole-doped KLM showing simulation

results for the staggered magnetisation mf
z (colour-coded) as a function of coupling J/t and con-

duction electron occupancy 〈nc〉. Triangles: PM region, large FS. Squares: AF, large FS. Circles:

AF, small FS. Here t′/t = −0.3 and the calculations are carried out with the NAF
c = 1 cluster.

Figure 6.6: Summary of the three distinctive regions of the phase diagram, depicting characteristic

spectrum and Fermi surface in each case.
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6.4 The Spectral Function for T 6= 0

1

10-1

10-2

10-3

NC
AF=2x2, βt=40.0, J/t = 1.0,  <nc> = 0.977

(π,π)(π/2,π/2)(0,0)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

Figure 6.7: Single particle spectrum of the conduction electrons obtained using cluster sizeNAF
c =

4 confirming that the small Fermi surface topology in the lightly doped AF phase with coupling

J/t = 1 is not just an artifact of the smaller cluster results.

in the phase diagram to be just on the large Fermi surface side of the Lifshitz transition.

Now, we show in Fig. 6.8 a series of plots of the band dispersion around the Fermi en-

ergy obtained with our model-fit for screening parameters ranging from V = 0.30 up to

V = 0.386.

With small screening we can produce the small Fermi surface scenario and with increasing

screening the band is forced into the large Fermi surface scenario, interestingly also going

through an intermediate topology with holes at both (π
2 ,

π
2 ) and (π, π) although here the

energy scale is very small. In our modelling, the progression from small to large Fermi

surface with increasing screening occurs gradually and there is no complete flattening of

the band, and therefore no support for a divergent effective mass m∗.

This analysis is by no means conclusive, we use the model simply as a tool to understanding

the DCA results, justifying the approach by noting that the band structure thus produced

is highly resemblant of the DCA results. We therefore argue that the driving force for

Fermi surface reconstruction is linked to the strength of Kondo screening.

6.4 The Spectral Function for T 6= 0

In the ground state phase diagram the point J/t = 1, 〈nc〉 = 0.946 is AF ordered and

displays the small Fermi surface topology. In the series of plots shown in Fig. 6.10 the

evolution of the single particle spectrum with these parameters is followed as we cool the

system down, step by step, into this ground state. We firstly note from Fig. 6.9, which

displays the corresponding staggered magnetisation at each of the temperature steps, that

the magnetisation appears to develop smoothly with a Neel temperature of approximately

TN = 0.04t.
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Figure 6.8: Following the evolution of the Zhang-Yu mean-field model band (see text) at the Fermi

energy (dotted line) with increasing screening parameter V . Note the rescaling of the energy axis

with at each row of three plots.
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J/t = 1.0, 〈nc〉 = 0.946
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Figure 6.9: mf
z as a function of temperature at constant conduction electron density 〈nc〉 = 0.946

and coupling J/t = 1.0

As we reduce the temperature, the spectral function arguably1 evolves according to the

following: From βt = 20 to βt = 27 the Kondo screening signature of the hybridised band

around (π, π) strengthens. This suggests that the temperature has already dropped below

the Kondo temperature TK . Since the shadow bands associated with AF order begin to

become evident only at βt = 30 we suggest that the temperature scale associated with the

RKKY interaction at this point in the phase space is lower than the Kondo temperature.

Only at the lowest temperature, given by βt = 80 do the band features sharpen. Therefore

the final temperature scale is the coherence temperature Tcoh where we may really speak

of a Fermi liquid. If future simulations can be used to produce a plot of the specific heat

we might be able to read off the coherence temperature as the point at which the curve

becomes linear in T in accordance with Fermi liquid theory. From our results it is not

clear whether just below the Neel temperature the Fermi surface is large or small. It

would be interesting to attempt such a temperature scan closer to the ground state phase

transition such that the ground state is known to be with large Fermi surface topology.

Such temperature results would be aimed at mapping out not just the magnetic phase

diagram, but paying close attention the development of the large or small Fermi surface

with decreasing temperature, the temperature for Neel ordering and the development of

a coherent Fermi liquid.

1from the spectrum alone this is hard to read out, future work could perhaps be focused on the specific heat

in order to trace singularities, or jumps, as the temperature drops under each energy scale successively
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Figure 6.10: Tracking the single particle spectrum of the conduction electrons for J/t = 1 whilst

reducing temperature. The conduction electron density is held at 〈nc〉 = 0.946 through suitable

adjustment to the chemical potential
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7 Summary and Conclusions

In this chapter we summarise this work and review the main results. The focus of this

work has been on the two dimensional KLM both at half-filling and in the hole doped

phase. The KLM is a strongly correlated system as discussed in the introduction, where

particularly correlations in time are expected to play an important role. For this reason

the numerical method we have used, the DCA, may be considered to be well suited to the

problem. We have shown how the DCA makes an approximation to the self-energy by

assuming only a weak momentum dependence whilst, however, retaining the full dynamics

of the problem in imaginary time. The basis for the DCA is well founded, it is a conserving

approximation from which we can, in theory at least, recover the original system without

approximation by progressively increasing the cluster size.

In our particular implementation of the DCA, we wished to be able to perform simulations

within the AF ordered phase because the nature of the Fermi surface in this region is cur-

rently of on-going interest, both theoretically for model Hamiltonians for heavy fermions,

and experimentally in heavy fermion metals themselves. We developed a variant of the

DCA approach in which we define an AF unit cell in real space and allow broken symmetry

within that cell.

The DCA relies on one’s ability to calculate the effective self-energy of the cluster, given

the bath Green function G, in which the interactions of the surrounding bath electrons have

effectively been included. Since we have seen, by comparison of Feynman diagrams for

the Baym-Kadanoff generating functional, that in the DCA the cluster self-energy has the

same functional form as that of an impurity problem, then to calculate this cluster self-

energy we draw on a QMC impurity solver: the Hirsch-Fye algorithm. In a previous work

[29] we presented this algorithm in considerable detail, such that to save repetition, here we

have presented only those adaptions of the algorithm which pertain to its implementation

in solving for the KLM Hamiltonian. To this end, we re-wrote the KLM in a form suitable

for the introduction of auxiliary fields, noting that in order to implement the Hilbert space

restriction of single occupancy on the f-orbitals in the KLM, we introduce a Hubbard U

term on these sites with U chosen large enough as to give a measured value for the double

occupancy of practically zero. The Hubbard U term is handled in the standard way as

first introduced by Hirsch and Fye [34]. The J-term of the KLM required the introduction

of a second auxiliary field variable, and we derived the relevant update equation and QMC

process for implementing the algorithm. Here we note however one of the drawbacks of
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7 Summary and Conclusions

using the Hirsch-Fye algorithm: The computational time required scales with (βNc)
3, the

inverse temperature times number of cluster orbitals to the power three. The algorithm is

actually not well suited to large clusters due to the prohibitive time scaling. However, we

saw later in the first results chapter for the half-filled KLM that the single particle spectral

function obtained in the DCA approach with only NAF
c (two f-electrons, two c-electrons

in the cluster) already compared extremely favourably with that obtained via exact QMC

simulations on a 12 × 12 lattice.

Also included in the methods section at the end of chapter 2 we discussed some technical

aspects applicable when implementing DCA together with QMC. Of importance is the

method for unfolding the obtained lattice Green functions in the MBZ in order to plot

in the extended BZ. Also, we discuss an elegant method of interpolating the self-energy

between the values obtained in the DCA cluster patches in k-space.

Before moving on to discuss results we presented three useful mean-field or SDW ap-

proaches to the KLM. The so-called large-N approach is very successful at describing the

large J limit of the KLM, with hybridised heavy fermion bands and gapped quasi-particle

spectrum, but cannot capture the broken symmetry AF phase. For this, we proposed the

SDW approach, in which the conduction electrons are considered as moving in the fixed

AF ordered magnetic field generated by the localised f-electron spins. Notable aspects

here are a quasi-particle gap scaling linearly with J/t for next-nearest neighbour hopping

t′/t = 0 but which is absent for small J/t with t′/t = −0.3. However, the SDW approach

does not take account of Kondo screening, which has been previously proposed to continue

to partially exist in the AF ordered phase. Our third toy-model approach is the Zhang-Yu

mean field approach which introduces order parameters for magnetic ordering but also

for Kondo screening. Although the self-consistent solution of this approach is known to

rule out continued Kondo screening in the AF phase, we still draw on the model to help

interpret our quasiparticle spectra results on the grounds of recognising which ingredients

might be necessary in order to observe a given band structure and Fermi surface topology.

Turning now to our results sections, to begin with we looked at the KLM at half-filling.

We made the important point that the half-filled KLM with nearest neighbour hopping t

displays a perfect nesting instability to AF order. We made the case for including a next-

nearest neighbour hopping element t′/t = −0.3 in order to lift nesting of the Fermi surface

whilst still retaining a significant peak in the conduction electron spin susceptibility at the

AF ordering momentum vector (π, π). After verifying, by measurement of the staggered

magnetisation, a continuous phase transition from paramagnetic insulator to AF insulator

with decreasing coupling J/t we tracked the evolution of the quasiparticle spectra across

the transition.

In the paramagnetic phase the key feature is a very flat heavy fermion band and also the

fact that the spectrum is gapped. This is in accordance with the picture painted by strong
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coupling, large J/t, as discussed in the introduction. Our DCA calculation for half-filling

gives the AF phase transitions to be approximately at Jc/t = 2.1±0.05 for t′/t = 0 and at

Jc/t = 1.85 ± 0.05 for t′/t = −0.3. The t′ = 0 result is higher than the generally accepted

value of Jc/t = 1.45 ± 0.05, but we note that the small cluster size of only one AF unit

cell (NAF
c = 1) may be conducive to enhancement of AF order. With increasing cluster

size we would expect to progressively move towards the lattice results. The important

point is that our method is able to capture the essence of the interplay between RKKY

interaction and Kondo screening, and the agreement of the single particle spectra of the

DCA results with the lattice results is extremely favourable. In the AF phase the typical

feature is backfolding of the spectrum around (π, π) to reflect the reduction of the BZ with

the breaking of lattice translational symmetry.

For t′/t = −0.3, careful tracking of lower-band maximum and upper-band minimum re-

vealed four distinct regions of the J/t axis where these maxima and minima are found at

differing locations in the BZ. Later we saw, that with hole doping, a rigid band idea holds,

and the holes doped into the system form at the lower-band maxima positions observed

at half-filling.

We also reported measurements for the quasiparticle gap both with and without next-

nearest neighbour hopping. For t′/t = 0 we are able to verify a linear scaling of the gap,

∆qp ∝ J/t, at small J/t. This is the result suggested by the SDW approach. However, the

results for t′/t = −0.3 are consistent with an exponential scaling with J/t, i.e. the gap

tracks the Kondo scale. Again, a consistent comparison can be made with the SDW model

for t′/t = −0.3, since, in that approach, the gap is absent. Therefore the existence of a

gap in our DCA results can only be associated with the hybridisation gap and, rightly so,

tracks the exponential Kondo scale. We conclude that the generic result is that the gap

follows the exponential Kondo scale and that only in the case of perfect nesting t′/t = 0

does the gap become linear with small J/t.

In the hole-doped region, AF order survives and we observe an extended AF metallic region

giving way progressively, with a continuous magnetic order quantum phase transition to a

PM metallic region with further hole-doping (or decreasing conduction electron occupancy

〈nc〉). Our major result has been to follow the evolution of the Fermi surface which for

J/t < 1.2 can undergo a topology change, a Lifshitz transition, within the AF phase. We

see three distinct Fermi surface topologies in the magnetic phase diagram of the doped

KLM. The PM phase always displays the so-called large Fermi surface topology, in which

the f-electrons participate in the Luttinger volume sum rule, and the Fermi surface is given

by holes in the heavy fermion band around (π, π). With the initial development of AF

order, and for all values of coupling down to J/t = 0.8, we observe a simple backfolding of

the PM band spectrum into the MBZ, such that holes are present at (0, 0). However, in

those regions of the phase diagram with the strongest magnetisation, J/t < 1.2 and low
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hole doping, there is a reconstruction of the Fermi surface with holes around (π
2 ,

π
2 ) and the

Luttinger volume is the same as for the SDW approach. Based on this we conclude that

in this region the f-electron do not participate in the Luttinger sum rule and the resultant

Fermi surface is to be classed as small. Since this topology change does not take place at

the magnetic transition then the QCP may still be interpreted in terms of a Hertz-Millis

transition. We do not to need to draw on the ideas of local quantum criticality in which

a breakdown of Kondo screening via local magnetic fluctuations is proposed at the QCP.

With the aid of the Zhang-Yu mean field Hamiltonian we produced a qualitative fit to

the small Fermi surface result via variation of the screening parameter V . We also saw

that keeping the magnetisation constant and varying V drives the band structure from

the large to small Fermi surface scenario, although going through an intermediate stage

with holes at both (0, 0) and (π
2 ,

π
2 ) albeit with the crossing of the Fermi energy on a very

small energy scale. The dispersion obtained in this way does not suggest a total flattening

of the band during the transition from large to small Fermi surface, such that we might

not expect a divergence of the effective mass m∗.

We have also presented initial results at finite temperature, cooling the system down from

above the Neel temperature into a small Fermi surface ground state. Different energy scales

play a role: the Kondo temperature TK , where initial Kondo screening of the magnetic

moments occurs, the Neel temperature TN for AF ordering, the temperature T ∗ at which

a possible restructuring of the Fermi surface occurs, and the coherence temperature Tcoh

for coherent formation of heavy quasi-particles and the Fermi liquid regime. From the

remarks of the previous paragraph, a temperature driven Fermi surface topology change

may not result in divergence of the specific heat CV as would be associated with a flat

heavy fermion band and divergent effective mass m∗. However, our consideration of the

evolution of the dispersion would support a discontinuous jump in CV at reordering.

We see that the magnetic phase diagram of the KLM as a function of doping, coupling and

temperature is very complex, and remains an interesting focus for further investigation,

particularly owing to the large number of recent high profile experimental papers concerned

with Fermi surface topology and quantum criticality in heavy fermion systems.

Recent developments in numerical methods make direct measurement of susceptibilities

more feasible [39]. This provides one clear direction for future work. Additionally, contin-

ued research into the third dimension in the magnetic phase diagram, namely temperature,

is needed. Signatures of the characteristic energy scales of initial Kondo screening, AF

order, topology change and coherence can be searched for in the single particle spectrum

at different points in the phase diagram. Also, ambitious calculations of the specific heat

would be expected to highlight these energy scales. The problem of the apparent lack of

Fermi surface for intermediate coupling also remains open. A search for pairing correla-

tions might possibly shed light on the apparent gap.
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A Linear Response and the Kubo Formalism

Starting with a non-interacting system of electrons described by the Hamiltonian H0 we

can ask ourselves the question: How does the system react to a small perturbation V ? The

answer will be given by a response function such as an electrical conductivity, a suscepti-

bility or an equivalent correlation function depending on the nature of the perturbation.

For example, in the context of this work, we will consider the effect of a magnetic field on

the magnetisation M of the conduction electrons of the KLM. The magnetisation response

to the field B will be given by M = χB, where the field strength is sufficiently small such

that M is linearly proportional to B via the magnetic susceptibility χ, which is the quan-

tity we wish to calculate. In this small field regime the talk is therefore of ”linear response

theory”. Formulae for response functions of the type presented in this section where first

proposed by Green [54, 55] in application to transport in liquids. However linear response

theory is more strongly associated with Kubo who first derived equations of this kind for

electrical conductivity in solids [56]. Today, the term ”Kubo formula” is applied to all

such equations for response correlations functions in a variety of regimes such as zero and

finite temperature, static or dynamical quantities, and for numerous applications ranging

from calculation of optical properties to electrical transport or, as will be the case here,

magnetic susceptibility.

We begin by writing a perturbed Hamiltonian Ĥ = Ĥ0 + V̂ with perturbation term V̂

given by

V̂t = B̂Ft (A.1)

such that an externally applied field F couples to the observable B̂. We write the index

t on the field and perturbation to represent that we are considering fields which may be

explicitly time-dependent. How is the expectation value of an observable Â changed in

the presence of this field? Firstly, without the field we may write

〈A〉0 = Tr(ρ0A) (A.2)

where from now on we drop the hat symbol used to designate operators. Continuing, we

assume that the field was turned on at some point in the past and gradually, adiabatically,

increased to reach the required strength Ft. The density operator used to calculate the

expectation value changes accordingly:

ρ0 → ρt (A.3)
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To account for the turning-on and adiabatic increasing of the field we can set the following

boundary conditions:

lim
t→−∞

ρt = ρ0 (A.4)

It is clear that we need to find an expression for ρt in the presence of the field. Consider

the density operator in Dirac representation

ρD
t (t) = ei H0tρte

− iH0t (A.5)

where we make the point of distinguishing between the explicit time-dependency (index

t) due to time dependency of the external field and the time evolution of the operator

described by H0 in the Dirac representation (t in round brackets). We may now derive

d

dt
ρD

t (t) = iH0e
iH0tρte

− iH0t − i ei H0tρte
− iH0tH0 + ei H0t∂ρt

∂t
e− iH0t (A.6)

To deal with the time derivative in the last term we can use ρ̇t = d
dt (
∑

m pm|ψ(t)〉〈ψ(t)|)
and also i |ψ̇(t)〉 = H|ψ(t)〉 to give us

∂ρt

∂t
= − i[H, ρt]− (A.7)

and now

d

dt
ρD

t (t) = i ei H0t[H0 −H, ρt]−e
− iH0t (A.8)

= i[ρD
t (t), V D

t (t)]− (A.9)

The formal solution of this equation of motion for the density operator in Dirac represen-

tation under the boundary condition A.4 is

ρD
t (t) = ρ0 − i

∫ t

−∞
dt′[V D

t′ (t′), ρD
t′ (t

′)]− (A.10)

where we note that ρ0 can be considered to be in Schrödinger representation since ρ0

commutes with H0 and therefore also with the Dirac time evolution exponentials which

then cancel each other out. With this equation ρD
t (t) may be iteratively inserted into

the commutator on the right hand side to produce higher order terms in the perturbation

V D
t (t). However, we make the assumption that the externally applied field Ft is sufficiently

small that we may neglect these higher order terms and need only retain the linear term

in V to obtain the approximation

ρD
t (t) = ρ0 − i

∫ t

−∞
dt′[V D

t′ (t′), ρ0]− (A.11)

or equivalently

ρt = ρ0 − i

∫ t

−∞
dt′e− iH0t[V D

t′ (t′), ρ0]−e
i H0t (A.12)
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with ρt returned to Schrödinger representation. With this equation for ρt we can now

calculate the linear response of the observable A in the applied field Ft which couples to

the observable B:

〈A〉t = Tr {ρtA}

= Tr {ρ0A} − i

∫ t

−∞
dt′Ft′ Tr

{

ρ0

[

AD(t), BD(t′)
]

−

}

= 〈A〉0 − i

∫ t

−∞
dt′Ft′〈

[

AD(t), BD(t′)
]

−〉0 (A.13)

Equation A.13 is a general formulation of a Kubo formula for linear response and is used

in section 5.1 in the discussion of perfect nesting.
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B Delayed Update Algorithm Improvement

At the core of the update is an outer product for which we use the BLAS routine dger.

We note that gprof call graph analysis shows the program to spend over 90% of the total

time in this optimised BLAS routine. The compute time for one update therefore scales

with (NorbL)2 so that a sweep through all the auxiliary fields requires a time that scales

with (NorbL)3 or, equivalently, that scales as (Norbβ)3. However, the efficiency of the

algorithm has recently been improved further [57]. It is possible to delay update steps

on the whole green function matrix, calculating and storing instead only the updated

rows and columns corresponding to the Monte-Carlo move in the auxiliary field. After

accumulating Nstep such moves, the update on the whole Green function matrix can be

carried out via a matrix-matrix product of the rectangular matrices built up from each

delayed update step. For this the BLAS routine dgemm is used. The details of the update

and calculation of rectangular storage matrices show that as long as 1 ≪ Nstep ≪ L then

the algorithm will scale as (Norbβ)x where now x < 3. In figure B.1 we compare the CPU

time required by the two methods using data from a series of actual production runs. The

vast improvement in efficiency of approximately one whole order of magnitude, opens the

door to exciting new simulation possibilities deserving exploitation. Simulations close to

the phase transition provide some of the most interesting physics but, with regards to

computing time, are amongst the most intensive.
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B Delayed Update Algorithm Improvement
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Figure B.1: Comparison of our improved delayed updates QMC algorithm with the original stan-

dard updates algorithm - For the standard update procedure the curve represents a best fit to the

theoretically expected computer time scaling behaviour ∝ (Norbβ)3. The simulation running times

given are for one iteration of our program. A typical simulation may sometimes require in the order

of 70 iterations to reach convergence. The delayed updates procedure reduces the computing time

by a factor of up to seven, which will allow us to carry out very ambitious large scale simulations.
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