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Zusammenfassung

Die vorliegende Arbeit beschreibt eine neue Methode zur modellunabhängigen
Messung von Viskositäten bei hohen Temperaturen. Viele der Mechanismen,
welche vulkanischer Aktivität zugrunde liegen, werden stark durch die viskosen
Eigenschaften der beteiligten Materialien beeinflusst. Die eruptierten Materialien
– zum überwiegenden Teil Silikatschmelzen – sind bei Eruptionstemperatur nicht
komplett geschmolzen. Deshalb sind Gleichgewichts- und Nichtgleichgewichts-
kristalle in den betrachteten Systemen vorhanden. Um diese Inhomogenitäten in
objektive Materialparameter einzubeziehen, basiert die vorgestellte Viskositäts-
messung auf auf einem Rotationsviskosimeter in einer “wide gap”-Anordnung.
Die Spaltbreite zwischen den beiden konzentrischen Zylindern wurde so groß wie
möglich gemacht um Inhomogenitäten zu berücksichtigen. Die aufkommenden
Schwierigkeiten bezüglich der modellunabhängigen Bestimmung der Viscositäten
aus den gemessenen Daten wurden mit einer geeigneten Interpolationsmethode
gelöst.

Mit dieser Methode wurden die Viskositäten eines, für die Mehrheit vulkani-
scher Eruptionen auf der Erde typisches Material gemessen: eines kontinentalen
Basaltes aus Billstein (Rhön, Deutschland). Die gemessenen Viskositäten zeigen
bei konstanter Temperatur eine starke Abhängigkeit von der Deformations-
rate. Dies überrascht, da basaltische Schmelzen bis heute bei vergleichbaren
Temperaturen als Newtonsche Flüssigkeiten betrachtet wurden.

Da ein nicht-Newtonsches Material, im Vergleich mit einem Newtonschen,
ein deutlich anderes Relaxationsverhalten aufweist (das Newtonsche zeigt ul-
timativ keine Relaxation), und da ein deutliches Relaxationssignal während
der Viskositätsmessung gemessen wurde, wurden die Bewegungsgleichungen der
Couette Bewegung untersucht. Die zeitabhängige Spannungeverteilung in einem
Material, verursacht durch eine quasi-stufenartige Geschwindigkeitsänderung
am inneren Couette-Radius (d. h. am Drehkörper des Viskosimeters) wurde be-
trachtet. Die Ergebnisse zeigen, dass ein Material, welches ein linear elastisches
Schermodul und eine newtonsche Viskosität kombiniert – ein Maxwell-Material
– das Relaxationverhalten quantitativ nicht beschreiben kann. Dies könnte als
Hinweis betrachtet werden, dass die weitverbreiteten Maxwell-Relaxationszeiten
nicht 1:1 von mikroskopischen Betrachtungen auf makroskopische Situationen
angewendet werden können.
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Abstract

This work presents a new method to measure model independent viscosities
of inhomogeneous materials at high temperatures. Many mechanisms driving
volcanic eruptions are strongly influenced by the viscous properties of the partic-
ipating materials. Since an eruption takes place at temperatures at which these
materials (predominantly silicate melts) are not completely molten, typically
inhomogeneities, like e.g. equilibrium and non-equilibrium crystals, are present
in the system. In order to incorporate such inhomogeneities into objective mate-
rial parameters the viscosity measurement is based on a rotational viscometer
in a wide gap Couette setup. The gap size between the two concentric cylinders
was designed as large as possible in order to account for the inhomogeneities.
The emerging difficulties concerning the model independent data reduction from
measured values to viscosities are solved using an appropriate interpolation
scheme.

The method was applied to a material representative for the majority of vol-
canic eruptions on earth: a typical continental basaltic rock (Billstein/Rhön/Ger-
many). The measured viscosities show a strong shear rate dependency, which
surprises, because basaltic melt has been, until now, assumed to behave as a
Newtonian fluid.

Since a non-Newtonian material shows a very different relaxation behavior
in the Couette motion compared to a Newtonian one (which, ultimately, does
not show any), and a strong relaxation signal was recorded during viscosity
measurements, the equations of Couette motion were investigated. The time
dependent stress distribution in a material due to a quasi step-like velocity
change at the inner Couette radius (i.e. the spindle) was considered. The results
show that a material combining a linear shear modulus and a Newtonian viscosity
– a Maxwell material – cannot quantify the relaxation behavior. This could be
considered as a hint, that the widely used Maxwell relaxation times cannot
be applied as a 1:1 mapping from microscopic considerations to macroscopic
situations.
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1Introduction

Processes controlling volcanic eruptions take place on time scales varying
from several thousand years (1010 s) [54] to less than a microsecond (10−6 s) [16].
These huge variations are responsible for the complexity and the comparable little
knowledge about volcanic systems. Volcanic eruptions are typically classified
from field-, or from direct visual observation [3, 14]. Viscous properties of
igneous materials play an important role in almost all eruption scenarios [54].
The only important exception are explosive volcanic eruptions driven by Molten
Fuel Coolant Interaction (MFCI, [22]). This process is strong and fast enough
to bring even a liquid with a viscosity comparable to water from fluid state into
the brittle regime, so that dissipative properties of continuous deformation do
not play a role. The violence of a volcanic eruption is strongly controlled by the
conversion of heat of the magma taking part in the eruption process into kinetic
energy. The transitions from continuous plastic deformation of partially molten
magmatic material to elastic deformation, and finally to brittle failure at the far
end of the deformation scale, are processes which determine the time scale of
this energy conversion [15].

Viscous properties describe the dissipation of momentum of a material in
motion due to inner friction arising from its deformation. Exact knowledge of
these properties is important everywhere, where a material can be assumed
to get deformed at some rigid boundary. The momentum loss due to friction
takes then place in the boundary layer [see e.g. 7, 31, 51], and the thickness
of the boundary layer is determined by the materials properties. In typical
volcanic processes this boundary layer is large enough to cover the whole volume
under consideration (the involved viscosities are typically high compared to
water, which dominates the picture of a ‘typical’ viscous fluid). Therefore
viscous properties are a vital part in the description of igneous material motion.
Viscous properties in continuous media are usually described via the Navier-
Stokes equations [57]. One of the material parameters taken into account, the
viscosity, describes the momentum loss. Materials obeying these equations,
which assume a linear dependence of viscous stress on rate of deformation, are
called Newtonian materials. Materials not following this rule consequently are
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1 Introduction

called non-Newtonian materials. When dealing with highly viscous systems the
question arises if one paramter for the description of momentum dissipation is
sufficient, despite the aim to keep the overall description of a system as simple
as possible. This question is not only academic, it rather arises from practical
applications in volcanology. A good example for this question is the application
of the Navier-Stokes equations to the problem of a lava flow. Calculating
the velocities of the lava consists essentially of solving these equations. This
is usually done numerically, since nature typically does not provide simple
boundary conditions. However, one important limit of the consideration is the
analytical expression describing the balance of viscous force, represented by
parameter η, acting against deformation caused by the gravitational acceleration
g. Assuming simple boundary conditions the lava may flow down a simple plain
inclined by an angle α. The thickness of the lava layer is given by h. Figure 1
provides a sketch of this scenario. The steady state velocity of this system is
then given by

v =
ρ

η

g sinα

2
y (2h− y) . (1-1)

For typical measured parameters [27], i.e. η ' 100Pa s, ρ ' 3 · 103 kg m−3, and
sinα ' 1/2, a velocity at a flow width of 1 m of 75 m s−1 is calculated. This
result is orders of magnitudes too large. Typical observed flow velocities lie in the

Figure 1.1: Simple lava flow. The
curved, dashed line in the flow indicates
the velocity profile.

range from halt up to rarely seen 5 ms−1.
Larger velocities can be observed only dur-
ing explosive eruptions. There, fragmen-
tation processes produce big and small
particles travelling as 2-phase flows, or
as single particles on ballistic trajectories
[15, 35, 62, 63]. It is also documented [9]
that the Newtonian model fails to describe
the often observed behavior of a lava flow
to ’hang’ at a slope. That means, the ve-
locity almost vanishes — the flow jams.
To describe this behavior using the mea-

sured heat conductivities [17], a Newtonian viscosity needs to have a value of
105 Pa s. Measured Newtonian viscosities are more than 3 orders of magnitude
lower. It was also shown numerically [9] that boundary conditions as e.g. the
finite length of a flow or confinement at the flow sides do not alter this result
significantly. The large number of components in a magmatic melt leads to a
temperature range in which a part of these components is molten, and other
components are still solid. There are various (mostly thermodynamic) calcula-
tions [e.g. 24] and measurements investigating solid and liquid states of these
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Introduction 1

components . Other research also shows that non-equilibrium effects of crystal-
lization and remelting strongly depend on cooling and heating rates, not only
on absolute temperatures [34, 60]. Therefore it is not possible to describe the
dynamic behavior in complete detail. On the other hand, because the number of
these effects is large, all of them will be effective at once, non of them alone, as
dominating process. In such a case it seems reasonable to describe the material
as quasi-continuum. The minimum scale to which this description can be ap-
plied is then set by the condition that the largest inhomogeneities must still be
much smaller than the minimum scale. Material properties derived from these
assumption will not be as simple as for, say chemically ‘pure’ materials. The
presence of a melting region instead of a melting point is just one consequence.

Besides the meaning for material deformation, viscosity has been widely
used to relate microsopic models via thermodynamical processes to macroscopic,
mechanical observables [49]. The ratio of viscosity and a materials elastic
modulus defines the maxwell relaxation time [e.g. 38], which is related to various
propabilities of change of states of a material. Thus, knowledge of viscosity is
necessary to verify microscopic models of many macrosopic observables. For
Newtonian materials viscosity is independent of rate of deformation, and so
the relaxation time is a material constant (as long as the elastic modulus is a
constant). In the case of a non-Newtonian material the relaxation time is not
a material constant but consists of at least one material function leading to a
spectrum of relaxation times.

Systematic measurement of viscous properties of volcanologically relevant
materials started in the late 60s of last century [see e.g. 41, 43, 53]. Since that
time it has been a constant topic of discussions. Besides technical difficulties
of viscosity measurement, arising from high temperatures and inhomogeneities
of various kinds, and the development of some rather exotic measurement
techniques [45], the characteristic dependency of shear stress on deformation
rate has been a strongly stressed point. The first measurements assumed
Newtonian fluid models even though the measured flow curves were not linear.
The non-linearity was claimed to originate from viscous heating [53]. Later a
yield stress was introduced into the measurement procedures [46], which for some
highly viscous, igneous melts were then replaced by a non-linear relationship
between stress and deformation rate [12, 59]. Melts with comparable low
SiO2 content today are assumed [47] to show Newtonian behavior, except the
melt has a very high crystal content (≥ 30%). This assumption however,
has never experimentally been validated. A class of volcanic material with a
low, i.e ≤ 55 wt.% SiO2 content are basaltic melts. Numerical simulations of
lava flows have been using non-Newtonian rheology since the last decade [19–
21, 25, 42]. They introduced the Bingham fluid to lava rheology. Named
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1 Introduction

after E. C. Bingham, who introduced [10] this model of a flow curve as a first,
pragmatic approximation to a more complex description of friction in fluids.
Analogously to friction between solid bodies the Bingham model assumes zero
shear rate below a critical shear stress, the so-called yield strength. Above the
yield strength the material is assumed to show a linear flow curve. In search of
more accurate models, research in the 1980s showed, that there is no reasonable
way to reproducibly measure its value [5, 6] — the yield strength does not really
exist. Therefore the Bingham model is not suitable as a base of flow curve
measurement. The determination of the relation between deformation rate and
shear stress, should be as transparent as possible, and as independent of models
as possible. Various different constitutive equations, i.e. types of flow curves,
have been developed [e.g. 11, 36]. After a correct measurement it is possible to
set up a suitable approximation of a flow curve that fits to further applications.

The aim of this work is to provide a method to measure the flow curve of
magmatic melts making as few assumptions as possible about the constitutive
equation. Only if it is possible to determine, besides the quantitative measure-
ment of the flow curves parameters, its qualitative structure, the result will be
useful for further applications.

Material: In order to establish this method a suitable material needs to be
selected that represents a large class of volcanic activities. A continental flood
basalt at Billstein hill in the volcanic field Rhön/Germany, satisfies this condition.
There is nothing special about this basalt except that some of its properties
have already been measured [61] and the general behavior is known from daily
work in the laboratory. The chemical composition is listed in appendix B.2.

The content is roughly devided into three parts. Chapter 2 introduces
principal properties of the considered flows and materials, which are used in
the following of the document. Chapter 3 derives the experimental method
of flow curve measurement, and presents first results of test materials and
of the application to the ‘real world’ material Billstein Basalt. Chapter 4
finally investigates the transient behavior of the considered material regarding
the Maxwell relaxation times formalism, and consequences from the measured
non-Newtonian viscosities. The results of the viscosity measurements and
the measurement of the rate of deformation at brittle fragmentation were
published in the Geophysical Research Letters [56] and the Journal of Geophysical
Research [15], respectively. The publications can be read in appendix D.
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2Deformation and Stress

The following treats magmatic materials as quasi continuum. To account for
inhomogeneities, which are assumed to be small enough so that a reasonable
averaging can be achieved, a more general friction behavior, compared to the
linear Newtonian assumption, is explicitly allowed. The resulting bulk properties
can be more complicated as can be seen at e.g. the properties of polymer solutions.
Physical effects taken into account in this description are:

1. Mass density ρ. As long as no gaseous phase is present besides the two
other phases, it is reasonable to assume ρ as constant in space and time.
The temperature dependence of ρ is reasonably well known [30, 43].

2. Elasticity. Describes the ability of a system to recover some initial state
after being forced to move out of it. Deformation due to elastic properties
conserves a systems total energy. Elasticity will be denoted by its modulus
M .

3. Material internal friction η. Describes the effect of energy and momentum
loss due to material deformation. In many simple materials η can be
approximated by a constant of material motion. For other materials,
though very homogeneous, η must be determined empirically for every
state of motion by a material function. In some cases it might not even
be possible to determine a viscosity.

A gaseous phase which is probably present during a magmatic eruption must
be neglected here due to its high dependency on pressure states and buoyancy
effects. The description of material motion assumes a non-porous, incompressible,
homogeneous material. The well established equation for conservation of mass
∂ρ/∂t+ div (ρv) = 0 [31], in which v is the velocity of a material point, yields
the equally well known condition of material incompressibility

div v = 0 .

Conservation of momentum in a continuous, inviscid material leads to the Euler
equation

v̇ = −1

ρ
grad p+ g ,

13



2 Deformation and Stress

where p is the isostatic pressure and g represents the gravitational acceleration.
The left hand side is the total derivative, or the so called material derivative
of velocity v. In order to include effects of momentum dissipation one can
expand a – yet unknown – momentum term, representing energy dissipation
in a material, into first order of spatial velocity gradient [31]. The condition
that this description must be independent of the frame of reference leads to the
Navier-Stokes equations

v̇ = −1

ρ
grad p+

η

ρ
4v + g . (2-1)

η is called viscosity and results as the first order parameter from the expansion.
The right hand side can alternatively be written with help of a stress tensor S

v̇ =
1

ρ
div S + g . (2-2)

S contains here the isostatic pressure p as well as the terms of the velocity
gradient and viscosity.

The application of this formalism is possible, but implies a) the existence of
material functions connecting the dissipative material character in S and the
velocity gradient, and b) the existence of the material functions first derivative
with respect to the deformation gradient. Then the first derivative represents a
linear approximation of dissipation at small velocity gradients and defines the
so called ’Newtonian’ viscosity. To extend this formalism to higher terms of the
velocity gradients time derivative [50], it is necessary to increase the number of
experimental determined parameters significantly, for various flow symmetries.
Such methods were not able to produce reasonable results for many materials
which are known not to follow the Navier Stokes formalism [52].

An alternative to expansion into higher terms of velocity gradient is to as-
sume certain symmetries of a material motion. Examples of different types
of motion are translation, rotation, extension, or shear. Each type of motion
possesses comparably high symmetry properties, and therefore corresponding
material properties can be verified quiet well. In particular the motion in a
rotational viscometer can be identified with a simple shear deformation. This
assumption enables one to solve the Navier-Stokes equations (2-1) analytically.
An empirical verification in chapter 3 however will show that the linear depen-
dency of material stress due to inner friction proposed by equation (2-1) is not
a good approximation. On the other hand this simple deformation type allows
to verify more complicated material properties. Since equation (2-2) denotes
the material stress implicitly, it is suitable for a more general material descrip-
tion. The disadvantage of this method is the reduced applicability of measured
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Deformation and Stress 2

material parameters. Material properties measured under this conditions and
with these assumptions are strictly speaking only valid for the assumed type of
motion. For application to scenarios in volcanic processes, however, the shear
motion is a very important (probably the most important) type of deformation.

The movement of a material element with coordinates dxi at time t is
commonly described by a transformation from the elements coordinates dx̃k

at some reference time t0. Material motion can always be described as a
combination of rotation motion, in which relative material positions are preserved
(an antisymmetric operation), and a deformation motion which describes the
rest (a symmetric operation). The symmetric part of material motion describes
only material deformation. It is given by the so called Cauchy-Green strain
tensor

cik = (fT )ij f
j
k = glj

∂xl

∂x̃i
∂xj

∂x̃k
. (2-3)

Here gik denote the components of the metric tensor. A measure for rates of
deformation can be derived in an analogous way. The deformation rate tensor
reads

dik =
1

2

(
ḟik + ˙fT ik

)
=

1

2
(vi;k + vk;i) , (2-4)

where vi;k denotes the covariant derivative of the velocity’s i-th component with
respect to the k-th coordinate. Both definitions 2-3 and 2-4 are derived in more
detail in appendix A.1.1.

2.1Shear Motion

As stated in the introduction it is necessary to make reasonable assumptions
about some qualitative properties of the motion. Consequences from these
assumptions are inherent to the system, and the quality of these assumptions
can only be verified by empirical observation. The simple shear motion is given
in orthogonal coordinates, i. e. gik = gii is diagonal. Furthermore all velocity
components are assumed to vanish except of one, say v2, which is assumed to
depend on only one coordinate which is not the direction of deformation, i. e.
x2. The assumptions can be written as

v1 = 0 ,

v2 = v(x1, t) , gik = gik(x
1, x3) . (2-5)

v3 = 0 ,
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2 Deformation and Stress

Appendix A.1.1 shows, that then the physical components Cik of the deformation
tensor cik depend only on one parameter γ: Cik = Cik(γ). In cylindrical
coordinates, which are conveniently related to the cartesian system by

x1 = r , x2 = φ , x3 = z ,

x = r cosφ , y = r sinφ , z = z ,

γ is written as

γ = r
∂φ

∂r
. (2-6)

Physical components of the deformation rate tensor Dik analogously depend
only on the shear rate γ̇, Dik = Dik(γ̇). γ̇ is given by

γ̇ = r
∂ω

∂r
, (2-7)

where ω = φ̇.

2.2 Stress Tensor of Shear Motion

The dissipative part of stress S in equation 2-2 is physically related to the rate
of deformation. Possible elastic effects are related to states of deformation.
Therefore it is reasonable to assume S = sik(γ, γ̇). Appendix A.2 derives further
details of the sik from symmetry properties. In general the shear motion allows
the sik to depend on four material functions. This functions have various different
definitions, since they can be distributed over five non-vanishing elements of sik.
They will be denoted as p, τ,N1, and N2. Three of them, the pressure p and the
two Normal Stress Differences N1 and N2, emerge in the diagonal elements sii.
The first Normal Stress Difference N1 is responsible for the Weissenberg Effect
[11], also known as rod climbing of a material. Its magnitude is typically more
than 100 times smaller than the shear stress τ which is found in the off-diagonal
elements of S. Effects of the second Normal Stress Difference are rarely known
and there are only few materials for which there exist estimates of its magnitude.
Therefore N1 and N2 will be neglected in the following. The stress tensor is
then of the form

s12 = s21 = τ , s11 = s22 = s33 = −p , others: 0 . (2-8)
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Deformation and Stress 2

A further assumption is that the direction of g is anti-parallel to z. This restricts
the motion to the so-called Couette flow. Calculation of physical components
of div S (see appendix A.3) and application to the equation of motion (2-2)
yields the following relation between motion ω and shear stress τ in cylindrical
coordinates for the Couette motion

ρ r
∂ω

∂t
=
∂τ

∂r
+

2

r
τ . (2-9)

This result makes no assumptions about the explicit dependency of material
functions p, τ on flow states γ, γ̇. It can be used for further specializations as
e.g. in chapter 3 assuming a time independent velocity. Then the flow curve
τ(γ̇), the dissipative part of the shear stress, can be measured experimentally. In
chapter 4 an explicit model is assigned to equation 2-9, and the time dependent
velocity is determined from the boundary value problem.

2.3Constant Deformation

In the special case of constant angular velocity ω̇ = 0, the elastic property
does not contribute to the stress in a material. Thus, the measurement of
viscous properties, as described in chapter 3, is carried out at constant angular
velocities. The experimental method used is that of a rotational viscometer,
where a material is sheared between two rotating cylinders. The corresponding
radii of the inner and outer cylinder will be called Ri and Ro, respectively,
in the following. Using these assumptions, the relation between motion and
stress – equation (2-9) – is time independent and decoupled. This means,
for a suitable boundary condition, the material function τ(γ̇) describing the
momentum dissipation due to inner friction, is then determined completely.
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3Viscometry

The aim of this chapter is to derive a method to empirically determine a mate-
rials viscosity character. The primary interest here is not the time dependent re-
sponse behavior of a material due to applied stress or motion, though this time de-
pendence will play a role as motivation for the next chapter. The focus lies on the

a)

b)

Figure 3.1: Typical geometries of
rotational viscometer setups for mea-
surement of Non-Newtonian proper-
ties. a.) Cone and Plate, b.) Narrow
Gap Couette.

state of stationary shear motion. For materi-
als relevant to geologic processes the measured
material samples should be as large as possible.
The larger a sample, the more inhomogeneities
can be taken into consideration experimentally.
The more effects due to inhomogeneities can
be measured, the more realistic, i.e. scalable,
a model will become, which is based on this
measurement. A samples size is limited by the
experimental setup. There are many methods
to measure viscosity of a material [11]. The
best realization of a shear motion is achieved
by a rotational viscometer. It allows measure-
ments with comparable large sample volumes
(in contrast to a, say, capillary viscometer).
A rotational viscometer essentially consists of
a sensor, which measures the torque applied
to a rotation axis z. The setup applying the
torque can vary significantly. The shear zone
typically lies either perpendicular to z or perpendicular to r. In the former case
an approximation of simple shear is achieved in the Cone and Plate setup (Fig-
ure 3.1 a). For a good approximation of shear motion properties, as given from
equation (2-5), the cone angle α must be small, so that cosα ' 1. Then the
shear rate γ̇ is approximately constant over the whole gap, and thus determined
by the experimental geometry only. The latter case is typically realized in the
Couette geometry, where two concentric cylinders setup the deformation zone.
If the finite length of the cylinders is neglected, the Couette geometry always
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provides a simple shear motion, regardless of the gap size.
In order to simplify calculations and to reduce errors it can be realized

in a Narrow Gap setup, in which the curvature of the deformation zone is

Figure 3.2: Couette
geometry, wide gap
setup.

negligible (Figure 3.1-b). Then, similar to the Cone and
Plate case, γ and γ̇ are approximately constant over the
gap. The simplifying geometries are, however, difficult
to achieve for large sample volumes. The Narrow Gap
approximation for example, Ro/Ri − 1� 1 where Ro de-
notes the crucible and Ri the bob radius, respectively, is
only valid if either Ro is too large for today’s laboratory
scales or the gap is too small for the materials considered
here. In numbers, the necessary gap size of 1 cm needs
a crucible radius of not less than 1 m. This clearly ex-
ceeds scales of currently available laboratory equipment,
keeping in mind that the experiment needs to be done at
temperatures of > 1600 K. Alternatively it is possible to
reduce Ri, the radius of the bob in the Couette geometry.

Then the cylinder curvature cannot be neglected but the deformation is still
of simple shear type. Consequently the complexity of data analysis grows sig-
nificantly. However, it is still possible to measure viscosities within reasonable
error bars. Since this method has not been used in common viscosity measure-
ment techiques the procedure of measurement and data processing had to be
reworked completely. These methods are described in the following.

3.1 Measurement of Shear Viscosity

The measurement of the flow curve τ(γ̇) follows the ideas of I. L. Krieger and
H. Elrod [28, 29]. At the time when these analyses were published, scientific
computing was almost completely done by hand. Digital computers were rare
and very expensive. It will turn out that the data analysis contains a significant
part of numerical effort which explains why these ideas did not become very
popular. Since then times changed. The following derives the necessary analytical
expressions and then shows how to discretize the measured data for numerical
processing. It assumes incompressible behavior of the measured material, and
the existence of a material function τ(γ̇) – the flow curve – which was motivated
in chapter 2.1.
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The torque N acting on the inner cylinder is related to shear stress τ by

τ =
N

2πr2 L
, (3-1)

where L is the length of the cylinder. The definition of the shear rate γ̇ in
cylindrical coordinates is given by equation (2-7). Thus one gets an expression
for the angular velocity distribution between the cylinders using the inverse
function of the yet unknown material function τ(γ̇)

ω(r) =

∫ r

Ri

dω =

∫ r

Ri

γ̇
dr̃

r̃
=

∫ N/2πr2L

N/2πR2
iL

−1

2

γ̇

τ
dτ . (3-2)

It is always possible to calculate the inverse of τ(γ̇), since the flow curve is by
definition a monotonously growing function. Now Ω denotes the angular velocity
ω(r) at the inner cylinder r = Ri. The expression

dΩ

dN
= −1

2

{
dτo
dN

γ̇(τo)

τo
− dτi

dN

γ̇(τi)

τi

}
,

where τi and τo are given by equation (3-1) for r = Ri and r = Ro, respectively,
is equivalent to

2N
dΩ

dN
= γ̇(τi)− γ̇

(
R2
i

R2
o

τi

)
.

The left hand side can be summed up, scaled by the geometry parameter
λ = (Ri/Ro)

2

2N
dΩ

dN
+ 2Ñ

dΩ

dÑ

∣∣∣∣
Ñ=λN

= γ̇(τi)− γ̇(λ2τi)

⇔
n∑
i=0

2Ñ
dΩ

dÑ

∣∣∣∣
Ñ=λiN

= γ̇(τi)− γ̇(λn+1τi) .

Expanding n→∞, the latter part of the right hand sides of the above equations
vanishes, since λ< 1. Thus the shear rate γ̇ can be obtained by the measured
data pairs N and Ω, while shear stress τ is obtained directly by the measured
torque only:

τ =
N

2πR2
iL

(3-3)

γ̇ =
∞∑
i=0

2Ñ
dΩ

dÑ

∣∣∣∣
Ñ=λiN

. (3-4)

Here the advantage of a known law for the flow curve becomes clear. For
any explicit (and valid) functional dependence τ(γ̇) the sum in equation (3-4)
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converges, when calculated explicitly via equation (3-2) and a more or less simple
expression is obtained. It becomes, however, also clear what happens if the
assumed flow curve model is too simple. Then specific features cannot be seen,
which might be relevant for deformation behavior of a fluid. If, for example, a
fluid starts from rest to some finite deformation rate, all states of deformation
rate in between need to be known, not only the final state. However, without
any further assumption about the relation Ω(N) it is not possible to proceed
from this state of analysis. Since Ω(N) is written as a continuous function in
equation (3-4) the quality of the interpolation method relating the descrete
measured data pairs to the continuous function Ω is responsible for the result.
The most neutral way to interpolate between measured points is a simple linear
interpolation. Since this is a lot of similar, but not absolutely standardized work,
a small numerical program was written to ease the data processing. The program
takes measured torque and frequency data and provides user interfaces where
necessary to control the process. A detailed description is given in chapter 3.3.
Closely related to the above discussion is also the in the introduction mentioned
question of a possible existence of a yield stress. The significant effort in the late
1980’s to the early 1990’s to develop a measurement technique to reproducibly
extrapolate a flow curve τ(γ̇) to a possible finite value of τ at γ̇ = 0 was not
successful [6]. It was shown that a material (e.g. 6 % iron oxide dispersed in
mineral oil [44]) which changes viscosity by a factor of 105 in a range of applied
shear stress between 0.7 Pa and 3 Pa has a finite viscosity at low shear rates and
a continuous transition. The more accurate the measuremen is, i.e. the lower
the minimum shear rate is, the lower is the extrapolated yield stress.

The considerations above are only valid for very long cylinders, for which
effects of finite lengths are much smaller compared to the torque due to the
motion independent on the vertical coordinate z. This complication is another
example how an explicit assumption of the flow curve would significantly simplify
the calculation, but on the other hand will have a significant implicit influence
on the result, which is not easy to quantify. The measured torque consists of
two parts

N = Nc +N0 ,

where N0 denotes the torque caused by the end effect, and Nc the torque caused
by cylindrical symmetric (z-independent) shear flow. The aim, to measure only
Nc, can be approximately achieved in the limit of large distances of the spindles
end from the crucible bottom. Then N0 does not depend on z, and the difference
of two measurements with same angular frequencies but different immersion
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depths (Nlong, Nshort) does not depend on N0:

Nlong −Nshort = Nc,long +N0 −Nc,short −N0

= Nc,long −Nc,short .

It should be noted that the melt level in the crucible varies significantly due to
the different immersion depths. If L0 denotes the height difference of the spindle
between long and short immersion depths in a laboratory coordinate system,
the difference in the fluid covered length L of the spindle is

L =
L0

1− λ
. (3-5)

For the experiment the squared ratio of the two radii λ is of great importance.
Besides the high temperatures which are a constant source of noise, and therefore
must be taken care of throughout the whole calculation of errors, λ is present
explicitly in equation (3-4) and implicitly in equation (3-3) via (3-5). To minimize
errors the exact control of λ and it’s temperature dependence is very important.

3.2Viscometer and Measurement Procedure

The viscometer is a Searl type instrument, i.e. the rotating parts are its axis
and the spindle, the crucible stands still. It consists of a Haake M5 sensor,
which applies a constant angular velocity Ω and measures the torque N on the
rotation axis. The rotation axis is connected to rotating spindle which couples
to the fluid in the crucible. There are two joints built into the rotation axis.
This construction provides a self centering mechanism for small deviations of the
spindle from the central position in the crucible. It will not interfere with the
measurement as long as the joint angles α are small, i.e. cosα ' 1. Figure 3.3
gives a short overview of the experimental setup. The range of angular velocities
which can be applied lie between Ω = 5.2 10−3s−1 and 52 s−1. Since the rotation
axis not only experiences the mechanichal torque of the measurement, but also
the thermal gradient between room temperature and measurement temperature,
it is made of a Al2O3 ceramic, which provides a very low thermal conductivity
as well as a well known thermal expansioncoefficient, and a very low heat
capacity. The crucibles are also made of this material. It provides good wetting
properties for the melt-crucible interface in combination with chemical stability.
The spindle consists of a high temperature steel with a melting point of about
1400 ◦C, which provides good mechanical coupling to the measured material.

23



3 Viscometry

Figure 3.3:
Viscometer-furnace
connection.

Thus slip effects, which are very important for viscom-
etry of polymers [4], can be neglected. As already dis-
cussed the geometry of the deformation zone is of Couette
type. To minimize the end effect right from the start
the cylindrical walls of the spindle were designed as long
as possible.This construction maximizes the contribu-
tion from the ideal cylindrical flow to the total torque.
The radius sizes of spindle and crucible were taken from
former measurements in the laboratory [17, 61]. The
dimensions in combination with the applied angular ve-
locities yield shear rates, which cover the most important
ranges observed in nature. These former measurements
were carried out in a standardized DIN 53019 setup [18],
which also provides a wide gap in a Couette motion. The
setup was designed to measure Newtonian viscosities and
so was the end of the spindle. This way it is possible
to determine viscosity without measuring twice at each
velocity — however only by employing the Newtonian
material assumption. The crucibles in use have a diam-
eter of about 5 cm. The diameter of the spindle is about

1 cm. This geometry yields a factor λ = 0.04 measured at room temperature.
The procedure of experiment starts with centering the torque sensor above with
the crucible in the furnace. Then the crucible is filled with about 150 g of the
Billstein material and heated up to 1350 ◦C. It turned out that the best and
most reproducible result is achieved, when the melt has enough time to “equili-
brate” at this temperature, that means if it stays at this temperature for about
12 hours (typically over night). After this time torque is measured for applied
angular velocities.

When changing the sensor speed the torque typically shows an overshoot
before settling to its asymptotic value. The latter is then taken for viscosity
determination. Figure 3.4 shoes an example of typical material response to a
step-like change of sensor speed Ω. In some cases (usually at higher Ω) N shows
no overshoot over the asymptotic value but approaches it from smaller values.
This time dependence is quite characteristic when measuring non-Newtonian
materials. It does not occur in the case of a Newtonian fluid. It was, however,
not possible to figure out a characteristic rule for this dependency. A possible
reason is the varying acceleration duration of the spindle. The change in Ω does
not happen immediately, but is electronically controlled such, that the sensor is
not overloaded. Acceleration times lie between 0.1 and 1 s. Therefore chapter 4
discusses the material response to a step-like change in Ω, including the step
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Figure 3.4: Typical time dependence of torque signals during viscosity measurements.
The red line indicates the asymptotic value to which N relaxes.

duration. The qualitative difference between the Newtonian and non-Newtonian
material response is that the Newtonian material, despite varying acceleration
times does not show signifficant torque over-/undershoots.

3.3Data Processing

To determine γ̇ from equation (3-4) it is necessary to evaluate a function Ω(N),
which is only known at several (the measured) points. A graphical representation
of the approach given in the following is shown in Figure 3.6. Calculation of
the shear rate given in formula (3-4) means to start evaluation (i = 0) of Ω(N)

at a measured point, say the j-th point (Ωj, Nj). For the next term of the sum
Ω(N) needs to be evaluated at N = λNj which probably does not coincide with
a measured data pair. Thus it is necessary to interpolate between the (Ωj, Nj).
In order to stay as model independent as possible (e.g do not explicitly assume
a curvature of the flow curve, since this already implies a certain model), a
simple linear interpolation is the only reasonable method. The interpolation
of the derivative at measured points needs some extra attention. Between the
(Ωj, Nj) the derivative is given by the slope of the interpolation lines. Since
the slope at measured points is not continuous, the average values of slopes at
the neighbour points of lower and higher N , respectively, is taken. This rule
has significant impact on the result, since the first term of sum (3-4), which
is the largest contributor to the sum (λ0N = N), will always hit a measured
point. Interpolation between the lowest velocity and the origin is also realized
as linear dependency. From Ω = 0 up to, but not including, the lowest velocity,
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the material is thus assumed to have Newtonian properties. After an initial step
in velocity, when starting from rest or changing from a before measured finite
speed, the torque data show a strong dependency on time before asymptotically
approaching a steady state value (see the preceding section 3.2). The reason for
this dependency will be analyzed in chapter 4. It is of importance here since
the time intervals to be analyzed need to be selected manually. The strange
mixture of simple experimental facts and non-standard data evaluation made it
necessary to write a small program, which simplifies and partially automates this
process. This program is called VC and is written in Java to gain a maximum of
compatibility. It is pragmatically divided into the following parts, which provide
the necessary features. Each part is realized as an own Java class. The work
flow is sketched in Figure 3.5. The chronological flow is as follows (the terms
after each item are the names of corresponding classes or methods):

• Selection of time intervals in which the measured torque was constant.
VC_Frame

• Calculation of average values for each spindle speed of Ω, N, T .
UtilsCollection.average

• Calculation of torque differences for the two immersion depths.
UtilsCollection.torqueDiff

• Actual calcultation of γ̇ and τ and corresponding errors.
VCCal

Figure 3.5: Work-
flow for data evalua-
tion.

While the calculation of τ is straight forward from equa-
tion (3-3), the sum (3-4) for γ̇ is written as a loop that
aborts, when its relative change compared to the previous
iteration is less that 10−8. A visualization of this central
part of the calculation is given in Figure 3.7. Since the
measurement happens at temperatures between 1448 K

and 1673 K a direct measurement of the geometry at tem-
perature of experiment is not possible. Therefore crucible
and spindle sizes were determined at room temperature,
and corrected with the help of thermal expansion coeffi-
cients. At this stage of development these data are hard
coded into VC. The comparable strong dependence of the
steel spindle’s radius on temperature yields a (compara-
ble) strong dependence of λ on T . This is one of many
points that shows the importance of an exact control of

temperature in the furnace. Above the largest measured velocity the curve is
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assumed to have the same slope as between the largest two measured data pairs
(i.e. assumption of a Newtonian model outside the measured range).

Figure 3.6: Method of data evaluation. For demonstration a flow curve τ ∼ γ̇1/2, and
λ = 1/2. a.) Ideal evaluation points/values for a continuous flow curve. b.) Approximation
for a finite number of real measured data.

Figure 3.8 shows strongly shortened the interdependence of data flow between
the most important classes. As already stated the central position is taken
by class VC_Cal. Input of experimental parameters – except measured time
intervals – are handeled by class ViscoCalcParams, which also initializes the
main user interface VC_Frame. VC_Frame provides an input interface for time
intervals, the input and output file/folder selections and the “go”-button to
start the calculation. Classes drawn at the left side provide the user interface.
VC_Cal in the middle leads through the calculation. At the right side the class
UtilsCollection provides methods and fields, for which it turned out that a
separate class would be handy. Modules providing error calculation were not
drawn into the graph.
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Figure 3.7: Numerical implementation of equation (3-4). Boxes with a dashed border
illustrate under which conditions data flow in the referring branch, after a branch point,
here illustrated with a dot. The two squares show the entrance and exit point, respectively.

Figure 3.8: Overview of the structure of VC. A box represents a class with its prototype and
name in the top part. The middle part (white background) shows important variables. The
lower part (grey background) contains methods provided by the class. The connection lines
show, which method creates which instance of an object, or which method is responsible
for variable manipulation. Plus and minus signs describe the visibility of and object, i.e.
visible and invisible, respectively, for objects not belonging to the same instance of a class.
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3.4Test

The setup was tested with two materials with known viscosities. One is a
Newtonian silicon based oil called AK 10000 [58] produced by Wacker Chemie
GmbH. It is normally used for calibration purposes and has an approximate
viscosity of 10 Pa s at room temperature. The other is a polymer water solution.
The polymer content is 0.4 weight percent. The product title of producer
CibaTM is MagnaflocTM 1011. Viscous properties of polymers and silicon oils
highly depend on temperature. Therefore the room temperature needed to be
very constant during measurement. For the silicon oil the temperature was
adjusted to 20◦C. Viscosity data for comparison of the polymer were taken from
a publication by M. W. Liberatore et. al. [32] dealing with structures of drag
reducing polymers, and measured viscosity of MagnaflocTM at 25◦C. Hence the
test measurement was also performed at this temperature. Figure 3.9 shows
the measured viscosities for the two test materials. The results are in good
agreement with the reference values. The viscosity variations of the silicon oil
are smaller than the errors. The strong non-Newtonian behavior of the polymer
is well reproduced. The comparison with the reference fluid cannot be as good
as for the silicon oil, since all measurements of non-Newtonian materials are
principally less exact compared to the ones with assumed Newtonian behavior.

3.5Results

Results of the viscosity measurement are shown in Figure 3.11. Viscosity values
shown there are also listed in appendix B.3. They show a strong shear thinning
behavior. The viscosities vary by a factor of 10 in the measured shear rate range,
which lies typically between 10−2 s−1 and 30 s−1. At high shear rates seems to
weaken a little.

After measuring the viscosities it is now easily possible to pragmaticaly fit a
function to these data. In the measured shear rate interval, this function, and its
parameters, is then a very reliable measure of viscosity, despite of its pragmatic
nature. Figure 3.12 shows the same viscosities as Figure 3.11, but with both
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Figure 3.9: Test of experimental setup and evaluation method. The experiment correctly
measures the viscosity of the Newtonian calibration oil, as well as the strongly shear thinning
behavior of the Magnafloc polymer.

T/K η̄/Pa sm m

1448 209± 15.29 0.59± 0.02

1458 111 0.59

1473 59± 3.87 0.56± 0.02

1497 17.4± 1.4 0.62± 0.02

Table 3.1: Viscosity fit parameters
of equation (3-6).
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Figure 3.10: Graph of the viscosity temper-
ature dependency given in the table left.
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Figure 3.11: Viscosities of Billstein Basalt at temperatures between 1448 Kand 1498 K.
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Figure 3.12: Power law fits (equation (3-6)) to the measured viscosities. m varies
between 0.56 and 0.62. The main temperature dependence is found in the proportionality
constant.
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axes scaled logarithmically. The dashed lines represent best fits of a power law

τ

τ0
=

(
γ̇

γ̇0

)m

⇔ η = η̄ γ̇m−1 .

(3-6)

For 1458 K the power law index m was taken as fixed value. Then η̄ agrees well
with an overall smooth temperature dependence. The value of exponent m is
roughly 0.6 for all the measured temperatures. Table 3.4 lists the exact values.
Since m does not vary significantly over T the viscosity’s main temperature
dependency must ly in the proportionality factor η̄. Figure 3.10 shows that
this temperature dependency agrees reasonably well with an Arrhenian like
exponential.
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3.6 Viscous Heating

A possible side effect when working with viscous materials can be the heating
of a sample due to its continuous inner friction. If a material is sheared fast
enough, the produced energy cannot spread fast enough to the surrounding
temperature reservoir, but it will raise the melts temperature at the point of
friction. The conduction and temperature equilibration is controlled by the
thermal conductivity λ. This calculation makes some simplifying assumptions
in order to provide an upper limit of this temperature rise. The following two
points enable a comparably simple consideration of the problem.

• The melts viscosity does not depend on the temperature. This assumption
is an upper limit which neglects the strong temperature dependency of
viscosity.

• In thermal equilibrium the temperatures at the boundaries, i.e. at r =

Ri, Ro, respectively, are equal.

Furthermore a power law rheology is assumed, since an explicit rheology term is
necessary.

If U denotes the inner energy, and q the heat flux through a volume element
dV , the heat conduction can be described with the following equation:

∂

∂t
(ρU) = −div (ρUv)− div q + SikDik . (3-7)

The left hand side describes the change of inner energy due to the terms on
the right hand side. The first of these is called convection. Since the melt is
incompressible and has an approximately constant mass density, this term can
be neglected here. The heat flux q can be seen as a gradient of a scalar function,
which is proportional to temperature T . The last source of heat is the energy
density of the fluids friction. It is described by the double contraction of the
stress tensor S and the velocity gradient tensor D. Since convection can be
neglected it is practical to express most of this equation in terms of temperature:

ρ cp
∂T

∂t
= λ div gradT + SikDik .

Here cp is the samples specific heat capacity. For the purposes here it is enough
to consider a case when T is in equilibrium and its derivative vanishes. Then
equation (3-7) reduces to a pure heat conduction equation with a position
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dependent source SikDik. From equation (2-8) S is known and the double
contraction becomes

SikDik = τ γ̇ ,

and the heat conduction equation can be written in cylindrical coordinates

∂2T

∂r2
+

1

r

∂T

∂r
= −τ γ̇

λ
= −λ−1η̄−1/m

(
N

2πL

)1+1/m

r−2(1+1/m) .

The position coordinate can be scaled by r̄ = r/Ro, so that

T ′′ +
T ′

r̄
= −λ−1η̄−1/m

(
N

2πL

)1+1/m

R−2/m
o︸ ︷︷ ︸

a

r̄−2(1+1/m) , (3-8)

and the ′ stands for ∂/∂r̄. This equation has a solution of the form

T (r̄) = A r̄ α +B ln r̄ + C .

Two parameters can be determined immediately to

α = −2/m

A = −a/α2 .

As boundary conditions equal temperature at inner and outer radius, and its
value, say T0, are assumed:

T (r̄ = δ) = T (r̄ = 1), δ =
Ri

Ro

,

T (r̄ = δ) = T0 .

From these conditions the two remaining unknown parameters can be determined
as

B/A = −δ
α − 1

ln δ
= −ξ

C = T0 + (m/2)2 a .

The proportionality constant a of equation (3-8) consists of material and geome-
try parameters and a value describing the state of the motion. This latter value
can be chosen as the shear rate γ̇i at the inner cylinder r = Ri. Then a becomes

a =
η̄

λ
γ̇m+1
i R2

o δ
2(1+1/m) .

The temperature distribution reads now

T (r̄)− T0 =
η̄

λ
γ̇m+1
i R2

o δ
2(1+1/m)

(m
2

)2 (
1− r̄−2/m − ξ ln r̄

)
. (3-9)
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Figure 3.13: Temperature variation due to inner friction. Material parameters are taken
from Billstein material at 1175 ◦C, i.e. m = 0.6, η̄ = 200 Pa sm. The geometry is given
as Ri/Ro = 0.4, Ro = 0.025 m. Shear rate at the spindel was γ̇i = 25 s−1.

The radius of maximum temperature can be calculated to be

rm =

(
− B

αA

)1/α

=
(m

2
ξ
)−m/2

,

and its corresponding temperature is

Tm = T (rm) =
(m

2

)2

a
{

1− m

2
ξ (1− ln(m/2)− ln ξ)

}
.

Figure 3.13 shows a temperature distribution (3-9). It shows the maximum
temperature rise calculated from the measured data. The peak lies at about
0.1 K and hence shows that the effect of viscous heating is more than 10 times
smaller compared to the error of the temperature measurement.
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4Material Relaxation

The transient behavior of a material between solid and liquid state can
be described by considering a combination of viscous and elastic properties.
While elasticity is a reversible process — it conserves the energy taken from
deformation — the viscosity dissipates this energy, i.e. converts it to heat or
changes in the materials structure. The widest known viscoelastic model is
the so-called Maxwell material. It combines linear elasticity, denoted here by
the shear modulus M , and a Newtonian viscosity η. The ratio of this two
material constants is called the Maxwell relaxation time tr, since James C.
Maxwell used a similar ratio in 1868 in his theory of gases [40]. The model was
often employed in combination with the Adam-Gibbs theory of the relaxation
processes in glasses [2]. tr determines the order of the time scale on which the
material relaxes applied stress. As was shown in the previous chapter (pp. 25)
the Billstein material shows significant time dependent behavior as response to
a change in applied velocity. The strongest time dependency is observed when
starting from rest. Though ist is difficult to reproduce exact values of this time
dependence due to the experimental conditions (see section 3.2) the order of the
average duration of the range of measured time dependencies is 102 s as response
to a velocity step which took place on a time scale of 0.1 s to 1 s.

Values for the shear modulus M of ceramic materials in general lie in the
range of 10 GPa− 200 GPa, for basaltic materials common values are 30 GPa−
40 GPa [8, 39]. These data were measured or calculated and refer to room
temperature. There are no directly measured data on M in the solid-fluid
transition region or in the fluid regime. Hence, M is usually calculated using
common values for tr, or a negligible temperature dependency of M is assumed,
so that a measured value from lower temperatures can be applied [13].

Assuming a small temperature dependency of M , and combining it with
the viscosities presented in the preceding chapter yields very small values for tr:
10−10 s ≤ tr ≤ 10−7 s. This time scale is many orders of magnitudes to short to
be a) measured using a mechanical apparatus, and b) to be comparable with the
102 s time scale on which the Billstein basalt material relaxes. It does not seem
likely that the geometry of the viscometer apparatus, specifficaly the curvature
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4 Material Relaxation

of the cylinder geometry due to the wide-gap setup, changes the relaxation
behavior of the macroscopic sample enough to account for the huge descrepancy
of relaxation behavior. However, it is not easy to estimate the interaction of
material relaxation, effects of inertia, and effects of geometry in the wide-gap
setup. In order to quantify these effects this chapter calculates the response of a
viscoelastic Maxwell material to a quasi step-like motion at the inner Couette
boundary Ri in the viscometer, taking place on the time scale t0. Beside the
linear viscoelastic material, the equations of motion are also established for a
Newtonian non-elastic fluid, for a non-elastic power-law material, and for a a
combined material posessing linear elastic and power-like viscous properties.

4.1 Boundary Condition

0

ω0

0 t0

Ω
(t

)

t

Figure 4.1: Boundary condition at r = Ri:
Velocity step of duration t0.

Choosing appropriate conditions de-
scribing the motion at the boundaries
of the viscometer apparatus is an im-
portant part of this calculation. At the
inner cylinder Ri it will be assumed
that the angular velocity ω starts from
rest at time t = 0 and accelerates in a
small but finite time t0 asymptotically
to its equilibrium value. At the outer
cylinder Ro the material is assumed to
rest. In order to get a consistent pic-
ture, the first derivative with respect to t at t = 0 needs to vanish. This is
accomplished by the correct superposition of two exponentials and a constant:

ω(r, 0) = 0 , ω(Ro, t) = 0 ,

ω(Ri, t) = Ω(t) = ω0

(
1− 2 e−t/t0 + e−2t/t0

)
.

(4-1a)

Figure 4.1 gives a graphical impression of Ω(t). Initial conditions are chosen
so that ω starts from 0. To stay consistent with the boundary conditions, the
initial first time derivative must vanish for all r ∈ [Ri, Ro]:

ω(r, 0) = 0 ,
∂

∂t
ω(r, t)

∣∣∣∣
t=0

= 0 . (4-1b)
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4.2Linear Viscoelastic Fluid

Figure 4.2: Schematical represen-
tation of a volume element of the
Maxwell material.

To describe a material with both, elastic and
viscous properties, each volume element is as-
signed an elastic shear modulus M and a New-
tonian viscosity η. The total deformation is
the sum of the partial deformation caused by
elasticity and viscosity γ = γe + γv. Schemat-
ically each volume element can be seen as a combination of a spring and a
dashpot as sketched in Figure 4.2. Calculation of the total stress in an element
using the definitions of shear modulus τ = M γ and Newtonian viscosity τ = η γ̇

yields the stress expressed as differential equation instead of a ordinary one as
in the case of a viscous material

∂τ

∂t
= − τ

tr
+M γ̇ . (4-2)

The material equation is described by tr and M . The density is not present.
ρ is introduced by inserting equation (4-2) into equation (2-9) from chapter 2,
derived from momentum conservation and continuity. It reads

ρ

M

∂2ω

∂t2
+
ρ

η

∂ω

∂t
=

3

r

∂ω

∂r
+
∂2ω

∂r2
, or

ω̈ +
ω̇

tr
= c2

( 3

r
ω′ + ω′′

)
.

(4-3)

This equation has the form of a wave equation with a damping term ω̇/tr. In
the second line a wave speed is introduced by c2 = M/ρ. The dots and primes
refer to partial derivatives with respect to t and r, respectively.

The solution of the boundary value problem arising from equations (4-1a)
and (4-3) is derived in detail in appendix A.5. It consists of the sum of two
solutions: The first solution contains the amplitudes As, which are functions
of position r. They result from a fourier transform (with frequency parameter
s) of equation (4-3) and boundary condition Ω(t) (see equation (4-1a) and
section A.5.1 in the appendix). This solution obeys the boundary conditions,
but not the initial conditions of equation (4-1b). Correct initial conditions are
achieved by adding a solution based on a separation ansatz, which vanishes at
the boundaries Ri, Ro, compensates the wrong initial values of the first term,
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4 Material Relaxation

and adds correct initial conditions:

ω(r, t) = ω0

{
A0(r)− 2Ai/t0(r) e

−t/t0 + A2i/t0(r) e
−2t/t0

+
∞∑
j=1

Tj(t)Zj(r)
}

.
(4-4)

The summation term is the separation ansatz solution. The Zj(r) form a fun-
damental system so that expansion coefficients can be derived to compensate
the non-zero parts of the amplitudes at t = 0, and setup correct start values.
Details of this part are shown in Appendix A.5.2. Details on numerical deter-
mination of the wave numbers qj, on which the Zj are based, are given in the
appendix in equation (A-22)/page 64 and appendix C.3.

The stress is determined with help of equation (4-2). This is a linear
differential equation of first order for the time variable. The general solution
includes one integration parameter, depending on r, which is chosen, so that
τ(r, 0) = 0. The solution is given here again in terms of the amplitudes As:

τ(r, t) = ω0M r tr

{
∂A0

∂r
(1− e−t/tr)

− 2

1− tr/t0
∂Ai/t0
∂r

(e−t/t0 − e−t/tr)

+
1

1− 2tr/t0

∂A2i/t0

∂r
(e−2t/t0 − e−t/tr)

+
∞∑
j=0

∂Zj
∂r

[
B1,j

a1,j + 1/tr
(ea1,jt − e−t/tr)

+
B2,j

a2,j + 1/tr
(ea2,jt − e−t/tr)

]}
.

(4-5)

Appendix A.5.2 lists it in a more explicit form.
This solution is a quite general expression of the behavior of a Maxwell

material in the Couette geometry. It describes the interaction of inertia ρ,
elasticity M and viscosity η. This three material parameters, the geometry
scales Ri and Ro, and the boundary condition (4-1a) can be combined to form
three time scales, and their relation classifies the material behavior.

tc =
Ro −Ri

c
, tr =

η

M
, t0 (see eq. (4-1a))

The newly introduced variable tc is an approximate measure for the time
necessary for a signal to travel the distance from Ri to Ro. Figure 4.3 shows
an example of the velocity and stress distribution in which multiple reflections
between spindle and crucible walls take place. The 3 time scales yield 6 types of
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material response. In the following list the signs of inequality (< ) must not be
read literally. Their meaning is that one time scale is significantly smaller or
larger, so that the corresponding effect becomes clear:

a. tc < tr < t0
The signal can travel from Ri to Ro (and back) before the material relaxes.
Therefore, even though the acceleration takes place on a longer time scale
than material relaxation, the stress response is slower than the velocity.

b. tc < t0 < tr
The signal can travel from Ri to Ro (and back) before the material relaxes.
The acceleration is also faster than material relaxation. Thus the stress
response is always slower compared to case a.

c. t0 < tc < tr
The boundary condition is the fastest. The signal travels faster between
Ri and Ro and back than the material can relax. This can be seen as
characteristic advances in the stress signal.

d. t0 < tr < tc
The boundary condition is the fastest. The material relaxes faster than
the signal travels between Ri and Ro and back. The stress response is
faster compared to the velocity at Ri and shows a characteristic overshoot.

e. tr < t0 < tc
The material relaxes faster than the material is accelerated. The material
is accelerated faster than the signal travels back and forth in the gap. This
results in a characteristic stress overshoot on the time scale t0. The limit
of this case for tr → 0 corresponds to the behavior of a Newtonian fluid.

f. tr < tc < t0
The material relaxes faster than the signal travels in the gap, and is
accelerated on a longer time scale compared to the signal travel time. The
stress response is thus faster than the velocity at Ri, but does not show
any overshoot. The limit tr → 0 in this case does not correspond to the
Newtonian fluid, since tc has a significant effect — by “removing” the
overshoot during material acceleration — determined by c, the wave speed.
c, however, is infinite in an idealized Newtonian fluid.

Figure 4.4 shows typical stress responses for all of the 6 described categories. The
change between response types due to changes in geometry is difficult to describe
by simple closed formulas. This change heavily relies on the Bessel functions
employed in solution (4-5) and the numerically determined wave numbers qj.
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Figure 4.5 shows a transition from a type a. response, to a type e. response,
passing the ‘region’ of type f.

The maxwell material, as shown by the solution of this boundary value
problem, shows qualitatively all features necessary to describe the strong time
dependent response in the viscometer. A type d. response with a small enough
acceleration time t0 corresponds to the time dependent torque response shown
in Figure 3.4 and described in the preceding chapter on viscometry (page 25).
The maxwell model, however, predicts a torque response on the time scale of
the larger one of tr and tc. This time scales, if determined by the macroscopic
parameters ρ, M, η are much to small to be comparable to 102 s. The geometry
dependence, which is not covered by the simple estimate in the introduction of
this chapter, is much too weak to be responsible for the multiple orders lying
between the measured and the predicted relaxation durations.
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Figure 4.3: Typical response of a Maxwell viscoelastic material to a step-like forced
motion at the boundary Ri, drawn in the upper plot as line parallel to the t axis. The
plots show the angular frequency ω(r, t) and shear stress τ(r, t) between the cylinder walls
(Ri ≤ r ≤ Ro). Reflections at Ro can be identified as well as the wave speed c. Here the
boundary and material parameters were chosen so that tr = 5 t0.
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Figure 4.4: Classification of stress response of the Maxwell material. Vertical red lines
show the position of corresponding time scales. For comparison with the blue stress reponse,
the velocity at r = Ri (i.e. the boundary condition) is plotted as grey dashes into each
graph.
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Figure 4.5: Material response at various geometries. Transition of material stress response
from asymptotic convergence from smaller values for geometries with Ro close to Ri, to
overshoot behavior for Ro>Ri. The response behavior starts as type a., crosses type f.,
and ends as type e. Time scales are drawn as lines into the t-Ro plane. The vertical
axis is scaled by τ0 so that the response converges to 1 for large t. The t-axis is scaled
logarithmically.
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4.3 Newtonian Fluid

The behavior of a Newtonian fluid can be considered as a limit of tr → 0 of
the Maxwell fluid derived in the preceding section. For small relaxation times
the first time derivative in equation (4-3) is dominant compared to the second
time derivative, so that the equation of motion becomes independent of shear
modulus M :

ρ

η

∂ω

∂t
=
∂2ω

∂r
+

3

r

∂ω

∂r
. (4-6)

This equation can also be derived from the general equation of motion (2-9)
and the material behavior of a Newtonian fluid τ = η γ̇. It can also be derived
directly from the Navier-Stokes equations by limitting the motion to a Couette
system [31]. The solution of the boundary value problem is also given by
formula (4-4), the wave numbers given from boundary condition (4-1a) do not
contain wave speed c, however. They are given by

k2
s = −isρ/η , ki/t0 =

√
ρ

η t0
, k2i/t0 =

√
2 ki/t0 . (4-7)

The shear stress of a viscous material is not determined from the velocity distri-
bution by a differential equation, but by a linear relation. Thus this materials
react quasi instantneoulsy – as a whole – to applied stress or deformation. Con-
sequently discontinuities in the quantities ω and τ are possible. Therefore τ is
uniquely defined by the solution of (4-6) and the material equation of a New-
tonian fluid. Since τ is directly proportional to the shear rate no new features
can be extracted from this solutions time dependence. Therefore it will not be
discussed in further detail.

4.4 Power-Law viscosity

As shown in chapter 3 a power law description of viscosity is much more applicable
to silicate based materials compared to a Newtonian model. Combination of its
material equation

τ

τ0
=

(
γ̇v
γ̇0

)m
⇔ τ = η̄ γ̇m . (4-8)
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with equation (2-9), the equation of motion of a power law fluid in Couette
geometry reads

ρ/(m η̄) (r ω′)1−mω̇ = ω′′ + (m+ 1)/m
ω′

r
. (4-9)

This is a quasi-linear partial differential equation. As long as 0 ≤ m ≤ 1 the
nonlinearity sticks to terms containing first derivatives. In the other case it
is still possible to formulate equation (4-9) as quasi-linear, it might however
make more sense to formulate an equation of motion for material stress τ . The
nonlinearity circumvents the possibility to superpose multiple special solutions
to customize solutions to a boundary value problem. Equation (4-9) needs to
be solved at once. An ansatz

ω′1−m = ζ rm−1 ω̈

ω̇

with the complex parameter ζ transforms equation (4-9) into a linear partial
differential equation of an increased order:

ζρ/(m η̄) ω̈ = ω′′ + (m+ 2)/m
ω′

r
. (4-10)

As was shown in chapter 4 for the boundary value problem of the maxwell mate-
rial, this equation can be solved analytically. However, either the transformation
parameter ζ and the second order derivative need a physical inerpretation,
or a physically reasonable mapping of the boundary conditions needs to be
established. Both alternatives are beyond the scope of this work.

4.5Linear elasticity and viscous power law

Combining the considerations of the previous sections naturally yields the
question of an equation of motion for an elastic material with a non-linear
friction property. Following the considerations of section 4.2 elastic effects yields
a constitutive relation in form of a differential equation. The total deformation
is assumed as sum of elastic and viscous contribution as in the case of the linear
maxwell material. The constitutive relation reads

r
∂ω

∂r
= γ̇ = γ̇e + γ̇v =

1

M

∂τ

∂t
+
(τ
η̄

)1/m

(4-11)
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This material equation yields in combination with the general equation of
motion (2-9) an equation of motion formulated in τ , which reads

∂2τ

∂r2
− ρ

M

∂2τ

∂t2
− ρ ∂

∂t

(τ
η̄

)1/m

+
1

r

∂τ

∂r
− 4

r2
τ = 0 . (4-12)

A similar ansatz as for the viscous power-law material can be made here. The
assumption

ρ
∂

∂t

(τ
η̄

)1/m

= ϑ
∂τ

∂t

yields a linear wave equation which contains a damping term dependent on ϑ:

∂2τ

∂r2
+

1

r

∂τ

∂r
− 4

r2
τ =

ρ

M

∂2τ

∂t2
+ ϑ

∂τ

∂t
. (4-13)

The main parts of this equation can be solved analytically. What remains to be
proven is the physical significance of these kind of solutions – i.e. a reasonable
explanation of parameter ϑ – as well as their applicability to suitable boundary
conditions.
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5Conclusions

A new method to determine viscosities of macroscopic, inhomogeneous
samples at high temperatures was developed. The results show clearly that the
measured Billstein basalt, formerly classified to be a Newtonian material [47],
is a non-Newtonian material. The viscosities vary by more than a factor of
10 over the measured shear rates at each given temperature. A power-law
fits well to the measured flow curve, though it was not assumed to determine
the latter. The transient behavior of this melt differs also strongly from a
Newtonian material. Viscous heating does not play a significant role. While
it is still difficult to quantify the material stress-deformation relationship, it
was shown (chapter 4) that it is clearly the rheology which determines the
long term material relaxation. The results may be a hint that the connection
between viscosities of a macroscopic sample and microscopic properties might
not be the straight forward application of a microscopically calculated Maxwell
relaxation time to macroscopical scenarios, or the calculation of viscosities from
a materials chemical composition alone. From the physical point of view this
is not surprising: The viscosity describes the dissipation of momentum (and
energy) due to material deformation. Dissipation has, however, always been
the deviation, the rest not taken into account by any model. And there is no
reason why this deviation should follow extraordinarily simple rules. Perhaps
it is possible to deploy the evolving models of material jamming [26, 33, 37],
connecting non-linear friction and temperature states, to magmatic melts. This
would establish a connection to smaller structures, and probably unveil the
reasons for the non-Newtonian behavior. For practical application a power-law
returns satisfying results. This power-law predicts a diverging viscosity at small
shear rates. This property can replace the effort to measure an objective yield
stress. What remains to be solved is the interaction of a power-law rheology
with an elastic modulus, i.e. equation (4-12). It also remains to be measured
if viscosity continues to diverge when further decreasing the shear rate, or if it
will converge to a Newtonian plateau. The measured shear thinning behavior
is however significant, since the experimental setup was designed so that the
corresponding shear rates (10−2 s−1 − 102 s−1) are in the same range as observed
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in natural volcanic processes.

50



6References

[1] M. Abramowitz & I. A. Stegun (editors), 1970: Handbook of Mathe-
matical Functions. Dover Books, 9th edition.

[2] G. Adam & J. H. Gibbs, 1965: On the Temperature Dependence of
Cooperative Relaxation Properties in Glass-Forming Liquids. In The Journal
of Chemical Physics, volume 43, no. 1, page 139. doi:10.1063/1.1696442.

[3] D. Andronico, S. Branca, S. Calvari, M. Burton, T. Caltabi-
ano, R. A. Corsaro, P. D. Carlo, G. Garfi, L. Lodato, L. Mi-
raglia, F. Murè, M. Neri, E. Pecora, M. Pompilio, G. Salerno, &
L. Spampinato, 2005: A multi-disziplinary study of the 2002-03 Etna erup-
tion: insights into a complex plumbing system. In Bulletin of Volcanology,
volume 67, no. 4, page 314. doi:10.1007/s00445-004-0372-8.

[4] H. A. Barnes, 1995: A review of the slip (wall depletion) of polymer
solutions, emulsions and particle suspensions in viscometers: its cause,
character, and cure. In Journal of Non-Newtonian Fluid Mechanics, vol-
ume 56, page 221.

[5] H. A. Barnes, 1999: The yield stress - a review or ’παντα ρει’ - everything
flows? In Journal of Non-Newtonian Fluid Mechanics, volume 81, page
133.

[6] H. A. Barnes & K. Walters, 1985: The yield stress myth? In Rheologica
Acta, volume 24, no. 4, page 323.

[7] G. K. Batchelor, 1990: An Introduction To Fluid Dynamics. Cambridge
University Press.

[8] M. Beblo, A. Berkthold, U. Bleil, H.Gebrande, B. Grauert,
U. Haack, V. Haak, H. Kern, H. Miller, N. Petersen, J. Pohl,
F. Rummel, & J. R. Schopper, 1982: Physical Properties of Rocks. In
K.-H. Hellwege & G. Angenheister (editors), Group V. Geophysics
and Space Research, Springer, volume 5,1,b of Landolt-Börnstein. Numerical
Data and Functional Relations in Science and Technology. New Series.

51



6 References

[9] S. Bez, 2001: Thermodynamisches und rheologisches Verhalten von
Lavaflüssen. Diplomarbeit, Universität Würzburg. (unpublished).

[10] E. C. Bingham, 1914: The Viscosity of Binary Mixtures. In Journal of
Physical Chemistry, volume 18, no. 2, page 157.

[11] R. B. Bird, R. C. Armstrong, & O. Hassager, 1987: Dynamics of
Polymeric Liquids, volume 1. John Wiley & Sons, 2nd edition.

[12] Y. Bottinga, 1994: Configurational entropy and the non-Newtonian
rheology of homogeneous silicate melts. In Physical Review B, volume 49,
no. 1, page 95. doi:10.1103/PhysRevB.49.95.

[13] Y. Bottinga & P. Richet, 1996: Silicate melt structural relaxation:
rheology, kinetics, and Adam-Gibbs theory. In Chemical Geology, volume
128, no. 1-4, page 129 . doi:10.1016/0009-2541(95)00168-9.

[14] S. Branca & P. D. Carlo, 2005: Types of eruptions of Etna volcano
AD 1670-2003: implications for short-term eruptive behaviour. In Bulletin
of Volcanology, volume 67, no. 8, page 732.

[15] R. Büttner, P. Dellino, H. Raue, I. Sonder, & B. Zimanowski,
2006: Stress Induced Brittle Fragmentation of Magmatic Melts: Theory and
Experiments. In Journal of Geophysical Research, volume 111, page B08204.
doi:10.1029/2005JB003958.

[16] R. Büttner & B. Zimanowski, 1998: Physics of Thermohydraulic
Explosions. In Physical Review E, volume 57, no. 5, page 5726. doi:
10.1103/PhysRevE.57.5726.

[17] R. Büttner, B. Zimanowski, C. Lenk, A. Koopmann, & V. Lorenz,
2000: Determination of thermal conductivity of natural silicate melts. In
Applied Physics Letters, volume 77, no. 12, page 1810. doi:10.1063/1.
1311815.

[18] Deutsches Institut für Normung, 1980: DIN 53019 — Messung von
Viskositäten und Fließkurven mit Rotationsviskosimetern mit Standard-
geometrie.

[19] M. Dragoni, 1989: A dynamical model of lava flows cooling by radiation. In
Bulletin of Volcanology, volume 51, no. 2, page 88. doi:10.1007/BF01081978.

[20] M. Dragoni, I. Borsari, I. Borsari, & A. Tallarico, 2005: A model
for the shape of lava flow fronts. In Journal of Geophysical Research, volume
110, page B09203. doi:10.1029/2004JB003523.

52



References 6

[21] M. Dragoni & A. Tallarico, 1994: The effect of crystallization on
the rheology and dynamics of lava flows. In Journal of Volcanology and
Geothermal Research, volume 59, no. 3, page 241. doi:10.1016/0377-0273(94)
90098-1.

[22] G. Fröhlich, B. Zimanowski, & V. Lorenz, 1993: Explosive Thermal
Interactions Between Molten Lava and Water. In Experimental Thermal
and Fluid Science, volume 7, page 319.

[23] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman,
M. Booth, & F. Rossi, 2003: Gnu Scientific Library: Reference Manual.
Network Theory Ltd., 2nd edition.

[24] D. Giordano, J. K. Russell, & D. B. Dingwell, 2008: Viscosity of
magmatic liquids: A model. In Earth and Planetary Science Letters, volume
271, no. 1-4, page 123. doi:10.1016/j.epsl.2008.03.038.

[25] R. W. Griffiths, 2000: The Dynamics of Lava Flows. In Annual Review
of Fluid Mechanics, volume 32, no. 1, page 477. doi:10.1146/annurev.fluid.
32.1.477.

[26] C. Heussinger & J.-L. Barrat, 2009: Jamming Transition as Probed
by Quasistatic Shear Flow. In Physical Review Letters, volume 102, no. 21,
page 218303. doi:10.1103/PhysRevLett.102.218303.

[27] A. Koopmann, 1999: Zur Platznahme des Weiersbacher Lavastromes
(Westeifel) — eine Synthese aus Gelände- und Laborarbeiten. Diplomarbeit,
Universität Würzburg. (unpublished).

[28] I. M. Krieger, 1968: Shear Rate in the Couette Viscometer. In Transac-
tions of The Society of Rheology, volume 12.

[29] I. M. Krieger & H. Elrod, 1953: Direct Determination of the Flow
Curves of Non-Newtonian Fluids. In Journal of Applied Physics, volume 24,
no. 2, page 134.

[30] I. Kushiro, 1976: Changes in Viscosity and Structure of Melt of NaAlSi2O6
Composition at High Pressures. In Journal of Geophysical Research, vol-
ume 81, page 6347. doi:10.1029/JB081i035p06347.

[31] L. D. Landau & E. M. Lifschitz, 1991: Lehrbuch der theoretischen
Physik. In P. Ziesche & W. Weller (editors), Hydrodynamik, Akademie
Verlag, Berlin, volume 6 of Lehrbuch der Theoretischen Physik. 5th edition.

53



6 References

[32] M. W. Liberatore, E. J. Pollauf, & A. J. McHugh, 2003: Shear-
induced structure formation in solutions of drag reducing polymers. In
Journal of Non-Newtonian Fluid Mechanics, volume 113, no. 2-3, page 193.
doi:10.1016/S0377-0257(03)00110-1.

[33] A. J. Liu & S. R. Nagel, 1998: Jamming is not just cool any more. In
Nature, volume 396, page 21. doi:10.1038/23819.

[34] G. Lofgren, 1971: Spherulitic Textures in Glassy and Crystalline Rocks.
In Journal of Geophysical Research, volume 76, no. 23, page 5635. doi:
10.1029/JB076i023p05635.

[35] V. Lorenz & B. Zimanowski, 1984: Fragmentation of Alkali-Basaltic
Magmas and Wall-Rocks by Explosive Volcanism. In Annales Scientifiques de
l’Université de Clermont-Ferrand 2. Probabilités et Applications, volume 74,
page 15.

[36] C. W. Macosko, 1994: Rheology Principles, Measurements, and Applica-
tions. VCH, New York, 1st edition.

[37] R. Mari, F. Krzakala, & J. Kurchan, 2009: Jamming versus Glass
Transitions. In Physical Review Letters, volume 103, no. 2, 025701. doi:
10.1103/PhysRevLett.103.025701.

[38] W. P. Mason, W. O. Baker, H. J. Mcskimin, & J. H. Heiss,
1948: Mechanical Properties of Long Chain Molecule Liquids at Ultra-
sonic Frequencies. In Physical Review, volume 73, no. 9, page 1074. doi:
10.1103/PhysRev.73.1074.

[39] MatWeb. Material Property Data. Automation Creations Inc. Online
database of material properties, www.matweb.com.

[40] J. C. Maxwell, 1868: XV. On the dynamical theory of gases. In
Philosophical Magazine Series 4, volume 35, no. 235, page 129. doi:
10.1080/14786446808639951.

[41] A. R. McBirney & T. Murase, 1984: Rheological Properties of Magmas.
In Annual Review of Earth and Planetary Sciences, volume 12, page 337.

[42] H. Miyamoto & S. Sasaki, 1997: Simulating lava flows by an improved
cellular automata method. In Computers & Geosciences, volume 23, no. 3,
page 283. doi:10.1016/S0098-3004(96)00089-1.

54

www.matweb.com


References 6

[43] T. Murase & A. R. McBirney, 1973: Properties of Some Common
Igneous Rocks and Their Melts at High Temperatures. In Geological Society
of America Bulletin, volume 84, page 3563.

[44] R. C. Navarrete, L. E. Scriven, & C. W. Macosko, 1996: Rheology
and Structure of Flocculated Iron Oxide Suspensions. In Journal of Colloid
and Interface Science, volume 180, no. 1, page 200. doi:10.1006/jcis.1996.
0290.

[45] H. Pinkerton, 1978: Field measurements of rheology of lava. In Nature,
volume 276, page 383. doi:10.1038/276383a0.

[46] H. Pinkerton & G. Norton, 1995: Rheological properties of basaltic
lavas at sub-liquidus temperatures: laboratory and field measurements on
lavas from Mount Etna. In Journal of Volcanology and Geothermal Research,
volume 68, no. 4, page 307. doi:10.1016/0377-0273(95)00018-7.

[47] H. Pinkerton & R. J. Stevenson, 1992: Methods of determining the
rheological properties of magmas at sub-liquidus temperatures. In Journal
of Volcanology and Geothermal Research, volume 53, no. 1-4, page 47.
doi:10.1016/0377-0273(92)90073-M.

[48] W. H. Press, S. A. Teukolsky, W. T. Vetterling, & B. P. Flan-
nery, 1992: Numerical Recipes in C. Cambridge University Press, 2nd
edition.

[49] F. Reif, 1987: Statistische Physik und Theorie der Wärme. Walter de
Gruyter, 3rd edition.

[50] R. Rivlin & J. Ericksen, 1955: Stress-Deformation Relations for
Isotropic Materials. In Journal of Rational Mechanics and Analysis, vol-
ume 4, pages 323.

[51] H. Schlichting & K. Gersten, 2006: Grenzschicht-Theorie. Springer,
10th edition.

[52] W. R. Schowalter, 1978: Mechanics of non-Newtonian Fluids. Pergamon
Press.

[53] H. R. Shaw, 1969: Rheology of basalt in the melting range. In Journal of
Petrology, volume 10, no. 3, page 510.

[54] H. Sigurdsson, B. Houghton, H. Rymer, & J. S. and (editors), 1999:
Encyclopedia of Volcanoes. Academic Press, 1st edition.

55



6 References

[55] W. I. Smirnow, 1985: Lehrgang der höheren Mathematik, volume 2. Verlag
Harri Deutsch, 17th edition.

[56] I. Sonder, R. Büttner, & B. Zimanowski, 2006: Non-Newtonian
Viscosity of Basaltic Magma. In Geophysical Research Letters, volume 33,
page L02303. doi:10.1029/2005GL024240.

[57] G. G. Stokes, 1880: Mathematical And Physical Papers, volume 1. Cam-
bridge University Press.

[58] Wacker. Silikonöle AK. Data Sheet.

[59] S. L. Webb & D. Dingwell, 1990: Non-Newtonian Rheology of Igneous
Melts at High Stresses and Strain Rates: Experimental Results for Rhyolite,
Andesite, Basalt, and Nephelinite. In Journal of Geophysical Research,
volume 95, page 15,695.

[60] T. Wohlleben, 1993: Zur Abkühlgeschichte experimentell erzeugter
Schmelzepartikel: Analyse und Modellierung der physikalischen Prozesse.
Diplomarbeit, Universität Würzburg. (unpublished).

[61] B. Zimanowski, R. Büttner, & A. Koopmann, 2004: Experiments
on Magma Mixing. In Geophysical Research Letters, volume 31, no. 9,
page L09612. doi:10.1029/2004GL019687.

[62] B. Zimanowski, R. Büttner, V. Lorenz, & H. G. Häfele, 1997:
Fragmentation of Basaltic Melt in the Course of Explosive Volcanism. In
Journal of Geophysical Research, volume 102, page 803. doi:10.1029/
96JB02935.

[63] B. Zimanowski, K. Wohletz, P. Dellino, & R. Büttner, 2003: The
volcanic ash problem. In Journal of Volcanology and Geothermal Research,
volume 122, no. 1-2, page 1. doi:10.1016/S0377-0273(02)00471-7.

56



Appendix A

Details of Calculations

A.1Measures For Deformation And Rate Of Deformation

The motion of a material can be expressed in terms of a transformation converting
coordinates of a given material point x̃i at time t0 to coordinates dxi of the
same material point at time t:

dxi =
∂xi

∂x̃k
dx̃k = f ikdx̃

k . (A-1)

As long as the f ik are denote an invertible transformation their determinant
will not vanish. Then it is possible to write the f ik as product of a symmetric
part uik and an antisymmetric part rik:

f ik = riju
j
k . (A-2)

The antisymmetric part can be identified with a rotation leaving the shape of a
material point unaltered. The goal here, however, is to describe deformation.
Hence, using the antisymmetric properties of the rik, a quantity which contains
only the symmetric part is a good measure for deformation:

cik = fT ij f
j
k = gil f

l
jf

j
k . (A-3)

cik is called the (relative) Cauchy-Green Strain Tensor. An equivalent quantity
is the Finger Tensor f ijfT

j
k. In the following the cik will be used. This strain

tensor depends on time t and on the reference configuration at time t0, i.e.
cik|t=t0 = δik.

A measure for the rate of deformation is obtained from the time derivative
of the deformation gradient

˙f ik|t=t0 =
d

dt
(riju

j
k)|t=t0 = ˙rij|t=t0 ujk|t=t0 + rij|t=t0 ˙uikt=t0

= ( ˙rik + ˙uik)|t=t0 .

It becomes clear that the time derivative of the deformation gradient can be
expressed as the sum of an antisymmetric and a symmetric part. Explicit
calculation of this derivative yields ˙f ik|t=t0 = vi;k, where vi;k is the covariant
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A Details of Calculations

derivative of the i-th velocity component. Consequently defining a suitable
measure for the rate of deformation dik can be achieved as follows:

dik =
1

2

(
ḟik + ˙fT ik

)
=

1

2
(vi;k + vk;i) . (A-4)

The trace of this deformation rate tensor characterizes a relative change of
volume in time dii = dV̇ /dV , which is also known from the continuity equation

dii = div v = 0 . (A-5)

A.1.1 Shear Motion

Explicit calculation of components of the strain tensor (A-3) with the assump-
tions given in (2-5), yields the following expressions for deformation:

c11 = g11 + g22

(
∂x2

∂x̃1

)2

, c12 = g22
∂x2

∂x̃1
, c13 = 0 ,

c21 = g22
∂x2

∂x̃1
, c22 = g22 , c23 = 0 , (A-6)

c13 = 0 , c23 = 0 , c33 = g33 .

The physical components of a tensor given in an orthogonal coordinate system
are defined as

Cik =
cik√
gii gkk

.

The Cik can be expressed using only one parameter. A combination of metric
tensor and deformation gradient γ is defined by

γ =

√
g22

g11

∂x2

∂x̃1
, (A-7)

and so

C11 = 1 + γ2 C12 = γ C13 = 0

C21 = γ C22 = 1 C23 = 0 (A-8)

C31 = 0 C32 = 0 C33 = 1 .

Physical components of the dik are calculated in a analogous way. Here the
handy parameter is γ̇ and called the shear rate

γ̇ =

√
g22

g11

∂v2

∂x̃1
.
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Details of Calculations A

The physical components read then

D11 = 1 + γ̇2 D12 = γ̇ C13 = 0

D21 = γ̇ D22 = 1 D23 = 0 (A-9)

D31 = 0 D32 = 0 D33 = 1 .

A.2Stress tensor of the shear motion

The stress tensor (2-2) is assumed to depend only on the strain tensor (A-3)
and its history as well as on time t. It must follow the transformation properties
of a tensor

s̄ ik =
∂xi

∂x̄l
∂x̄m

∂xk
s lm ,

where x̄i(xk) is some arbitrary, coordinate transformation. Now a special
transformation q ik can be selected which is chosen as a time independent
reflection of the 3-axis

q 1
1 = 1 q 2

2 = 1 q 3
3 = −1 , others: 0 .

Applying this to the strain tensor, we see that it stays the same for the non
vanishing elements

c̄ ik = q ilc
l
mq

m
k = c ik .

Since q ik is constant in time, all parameters on which the sik depend stay the
same, so that we can write

s̄ ik = q il q
m
k s

l
m = s ik .

However, by explicitely calculating this relation we see, that it is only true, if

s 1
2 = s 1

3 = s 3
1 = s 2

3 = 0 .

sik can be assumed to be symmetric [31]. Thus the 5 non vanishing elements are
determined by four independent parameters, which we choose to call p, τ,N1,N2.

59



A Details of Calculations

A.3 Divergence of the Stress Tensor

The divergence of a tensor Aik in cylindrical coordinates reads

(div A)r =
∂arr
∂r

+
1

r

∂arφ
∂φ

∂arz
∂z

+
arr
r
− aφφ

r

(div A)φ =
∂aφr
∂r

+
1

r

∂aφφ
∂φ

+
1

r

∂aφz
∂z

+
aφr
r

+
arφ
r

(div A)z =
∂azr
∂r

+
1

r

∂azφ
∂φ

+
∂azz
∂z

+
azr
r

.

With the assumed kind of stress tensor (2-8) the equations of motion (2-2)
become

0 =
∂p

∂r
+

1

r

∂τ

∂φ

ρ r
∂2φ

∂t2
=
∂τ

∂r
+

1

r

∂p

∂φ
+

2

r
τ

0 =
∂p

∂z
+ ρ g .

Since we assumed that the problem is symmetric in φ, the first equation tells
us that p is a function of z only. Thus the third equation yields the pressure
dependence

p = ρ g (z0 − z)

with an integration constant z0, to be determined by boundary conditions. Since
the variation of p is orthogonal to the motion in φ it does not contribute to
the motion at all, so that p will not be of great further interest. The second
equation is the equation of motion (2-9) to be solved in combination with some
equation characterizing τ by material properties.
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A.4Equation of motion of the Maxwell Fluid

The total deformation is denoted by γ and consists of two terms, the elastic,
reversible deformation γe and the viscous, irreversible deformation γv. The
stresses caused by this two mechanisms must be equal, i.e.

γ = γe + γv ⇔ γ̇ = γ̇e + γ̇v

τ = τe = τv = M γe = η γ̇v .

This results in the differential equation (4-2)

τ̇ = − τ
tr

+M γ̇ .

Calculating the derivative of equation (4-2) with respect to r and the derivative
of equation (2-9) with respect to t yields

∂

∂r

(
r
∂ω

∂r

)
=

1

M

∂2τ

∂r∂t
+

1

η

∂τ

∂r

∂

∂t

(
ρ r
∂ω

∂t

)
=

∂2τ

∂r∂t
+

2

r

∂τ

∂r
.

Dividing the second equation by M and subtracting it from the first gives

∂

∂r

(
r
∂ω

∂r

)
− 1

M

∂

∂t

(
ρ r
∂ω

∂t

)
=

1

η

∂τ

∂r
− 2

r

(
r
∂ω

∂r
− τ

η

)
.

The second term on the right hand side of this equation is derived from equa-
tion (4-2). The two terms containing τ and a derivative of τ , can now be replaced
with help of equation (2-9) by terms only consisting of expressions containing ω.
This leads to equation (4-3).

A.5Boundary Value Problem of the Maxwell Fluid

There are several ways to obtain solutions of equation (4-3). The following two
will be used here
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a. Fouriertransform,

b. Separation of variables.

The solution is obtained in two steps, represented by the two velocities u(r, t)

and v(r, t), respectively. u(r, t) will satisfy the boundary conditions (4-1a), but
not the initial conditions (4-1b). v(r, t) will vanish at r = Ri and r = Ro.
Additionally, initial values of v will equal the negative initial values of u. The
new boundary conditions hence read:

u(Ro, t) = 0 , u(Ri, t) = ω0

(
1− 2 e−t/t0 + e−2t/t0

)
, (A-10a)

v(Ro, t) = 0 , v(Ri, t) = 0 , (A-10b)

v(r, 0) = −u(r, 0) , v̇(r, 0) = −u̇(r, 0) . (A-10c)

The solution of the boundary value problem will then have the structure

ω(r, t) = u(r, t) + v(r, t) . (A-11)

A.5.1 u – Fourier transform

With the relaxation time tr = η/M and some wave speed defined by c2 = M/ρ,
a fourier transform can be applied to equation (4-3)

r2 d
2

dr2
Fsu+ 3 r

d

dr
Fsu+ c2 r2

(
s2 − i s/tr

)
Fsu = 0 . (A-12)

The transformation

x = c
√
s2 − i s/tr r = ks r , (A-13)

y = rFsu ,

yields a Bessel differential equation of first order:

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − 1) y = 0 . (A-14)

The general solution is a linear combination of the two linear independent Bessel
functions of first order

y = C1 J1(x) + C2 Y1(x) .

C1 and C2 are integration constants. Thus the general solution of equation (A-12)
is

Fsu =
1

r
(C1 J1(ksr) + C2 Y1(ksr)) . (A-15)

62



Details of Calculations A

Boundary condition (A-10a) determines an integration constant at r = Ro as

C =
C2

C1

= −J1(ksRo)

Y1(ksRo)
.

Further (A-10a) determines the second constant via its fourier transform at
r = Ri by

C1

Ri

{
J1(ksRi)−

J1(ksRo)

Y1(ksRo)
Y1(ksRo)

}
=
√

2πω0 [ δ(s) − 2δ(s− i/t0)

+ δ(s− 2i/t0) ] .

Both conditions included, the solution reads

Fsu(r) =
√

2π ω0
Ri

r

φks(r)

φks(Ri)
[ δ(s)− 2δ(s− i/t0) + δ(s− 2i/t0) ] ,

where φk(r) = J1(r)Y1(Ro) − J1(Ro)Y1(r). Application of the inverse fourier
transform F−1

t (Fsu) leads to the first part in equation (4-4)

ω(r, t) = ω0

(
A0(r)− 2Ai/t0(r) e

−t/t0 + A2i/t0 e
−2t/t0

)
. (A-16)

Here the “amplitudes” As(r) are given by

As(r) =
Ri

r

φks(r)

φks(Ri)
.

In the case s = 0, the amplitude is given by its limitting value

A0(r) = lim
s→0

Ri

r

J1(ksr)Y1(ksRo)− J1(ksRo)Y1(ksr)

J1(ksRr)Y1(ksRo)− J1(ksRo)Y1(ksRi)

The Bessel functions behave [1] like

z → 0: Jν(z) ' 1

Γ(ν + 1)

(z
2

)ν
Yν(z) ' −Γ(ν)

π

(
2

z

)ν
,

thus

A0(r) =
(Ro/r)

2 − 1

(Ro/Ri)2 − 1
. (A-17)
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A.5.2 v – Separation of variables

For v(r, t) the ansatz
v(r, t) = T (t) ·R(r) (A-18)

is applied to the partial differential equation (4-3), which yields two ordinary
differential equations, parameterized by a currently not determined wave number,
say q:

d2T

dt2
+

1

tr

dT

dt
∓ (qc)2 T = 0

r2 d
2R

dr2
+ 3r

dR

dr
∓ q2R = 0 .

(A-19)

The corresponding general, parameterized solutions are

Tq(t) = B1,q e
a1,qt +B2,q e

a2,qt , and

Rq(r) =


1

r
(C1,q J1(qr) + C2,q Y1(qr)) , + q2

1

r
(C1,q I1(qr) + C2,qK1(qr)) , − q2 ,

(A-20a)

where

a1,q = − 1

2 tr
+ bj = − 1

2 tr
+

√(
1

2 tr

)2

± (qc)2 , and

a2,q = − 1

2 tr
− bj = − 1

2 tr
−

√(
1

2 tr

)2

± (qc)2 .

(A-20b)

To get finite values for v(r, t) at all t, the negative signs in the square roots
of equation (A-20b) need to be chosen. Correspondingly the lower sign of the
solutions in equation (A-19) are taken. One boundary condition of (A-10c), e.g.
at the inner radius v(Ri, t) = 0, is satisfied if

Cq = C2,q/C1,q = −J1(qRi)/Y1(qRi) . (A-21)

Then the condition at Ro is

0 =
C1,q

Ro

(
J1(qRo)−

J1(qRi)

Y1(qRi)
Y1(qRi)

)
⇔

0 = J1(qRo)Y1(qRi)− J1(qRi)Y1(qRo) .

(A-22)

This condition has infinitely many positive solutions for q, however the equation
cannot be solved analytically. A numerical calculation gives knowledge of
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RoRi

Figure A.1: First 10 base functions Zj(r) of separation ansatz (A-18) between r = Ri
and r = Ro.

these numbers, which from now will be denoted by qj, where j takes integer
values, starting at 1. The solutions corresponding to a specific qj will from
now be writteen as vj = Tj Rj etc. This condition can be used to construct a
fundamental system with base functions Rj(r) [55]. A weighted scalar product
of two functions f1(r), f2(r) can be defined by

〈f1, f2〉 =

Ro∫
Ri

f1(r) f2(r) r
3dr ,

where the bar denotes the complex conjugate of a number. Calculating explicitely
the products 〈Rj, Rl〉 it is seen that the Rj are orthogonal on [Ri, Ro], i.e.
〈Rj, Rl〉 ∼ δj,l. The equation

δj,l = 〈Zj, Zl〉 =
1

NjN l

〈Rj, Rl〉 (A-23)

defines hence a normalized set Zj(r) = Rj(r)/Nj of functions proportional to
the Rj, satisfying ansatz (A-18). Figure A.5.2 gives an impression of the Zj(r)
in the range[Ri, Ro].

Recalling the initial conditions in (A-10c) v(r, 0) = −u(r, 0) and v̇(r, 0) =

−u̇(r, 0), with the onthonormal Zj, two conditions for the integration constants
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B1,j, B2,j of the Tj can be formulated:

B1,j +B2,j = −〈u(r, 0), Zj〉
= −ω0

(
〈A0, Zj〉 − 2

〈
Ai/t0 , Zj

〉
+
〈
A2i/t0 , Zj

〉)
a1,jB1,j + a2,jB2,j = −〈u̇(r, 0), Zj〉

= −ω0 2/t0
(〈
Ai/t0 , Zj

〉
−
〈
A2i/t0 , Zj

〉)
.

For a further analysis it is necessary to split the Tj into even and odd functions
with respect to t. Since the bj take either real or imaginary, but never complex
numbers, the Tj can be written in terms of real functions

Tj(t) = ω0 e
−t/(2tr)

{
〈A0, Zj〉

[
−1/(2tr)b

−1
j fodd(t)− feven(t)

]
−2
〈
Ai/t0 , Zj

〉 [
(1/t0 − 1/(2tr)) b

−1
j fodd(t)− feven(t)

]
〈
A2i/t0 , Zj

〉 [
(2/t0 − 1/(2tr)) b

−1
j fodd(t)− feven(t)

]}
,

(A-24)

where

feven(t) =

{
cos(|bj|t) if (qjc)

2 > (2tr)
−2 ,

cosh(bjt) if (qjc)
2 < (2tr)

−2 ,

and

fodd(t) =

{
i sin(|bj|t) if (qjc)

2 > (2tr)
−2 ,

sinh(bjt) if (qjc)
2 < (2tr)

−2 .

Stress

The shear stress τ is obtained as general solution of material equation (4-2):

τ(r, t) = e−t/tr
{∫ t

0

M r
∂

∂r
ω(r, t̃) et̃/trdt̃ + τ0(r)

}
. (A-25)

The material is assumed to start its movement from rest without any deformation
in its history. Therefore τ(r, 0) must vanish. Since the integral vanishes at t = 0,
the r-dependent integration constant τ0(r) must vanish too. The evaluated
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intgral reads in terms of derivatives of the amplitudes and base functions

τ(r, t) = ω0M r tr

{
∂A0

∂r
(1− e−t/tr)

− 2

1− tr/t0
∂Ai/t0
∂r

(e−t/t0 − e−t/tr)

+
1

1− 2tr/t0

∂A2i/t0

∂r
(e−2t/t0 − e−t/tr)

+
∑
j

∂Zj
∂r

[ B1,j

a1,j + 1/tr
(ea1,jt − e−t/tr)

+
B2,j

a2,j + 1/tr
(ea2,jt − e−t/tr)

]}
.

(A-26)

In terms of symmetric and antisymmetric functions τ reads

τ(r, t) = ω0M r tr

{
∂A0

∂r
(1− e−t/tr)

− 2

1− tr/t0
∂Ai/t0
∂r

(e−t/t0 − e−t/tr)

+
1

1− 2tr/t0

∂A2i/t0

∂r
(e−2t/t0 − e−t/tr)

+ e−t/2tr
∑
j

[
−〈A0, Zj〉

fodd(t)

bj

+ 2
〈
Ai/t0 , Zj

〉 [
1− 1

2t0tr(qjc)2

+
1

t0(qjc)2

(
feven(t)− e−t/2tr

)]
+
〈
A2i/t0 , Zj

〉 [( 1

t0tr(qjc)2
− 1
) fodd(t)

bj

− 2

t0(qjc)2

(
feven(t)− e−t/2tr

)]]∂Zj
∂r

}
,

(A-27)

where feven and fodd are the same as were used in equation (A-24). The scalar
products used in this solutions are derived by straight forward integration. In
the following formulas the Cj obtained by evaluating the integration constant of
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the boundary condition (A-21) at q = qj.

〈A0, Zj〉 =
R2
o

Njqj(R2
o/R

2
i − 1)

{
J0(qjRo)− J0(qjRi)

+ J2(qjRo)−
R2
i

R2
o

J2(qjRi)

+ Cj

(
Y0(qjRo)− Y0(qjRi)

+ Y2(qjRo)−
R2
i

R2
o

J2(qjRi)
)}

(A-28)

〈As, Zj〉 = − qjR
2
i

Nj(k2
s − q2

j )

(
J0(qjRi) + CjY0(qjRi)

)
if k2

s ≥ 0 (A-29)

〈As, Zj〉 = − qjR
2
i

Nj(q2
j + k2

s)

(
J2(qjRi) + CjY2(qjRi)

)
if k2

s ≤ 0 (A-30)

And the normalizing factors Nj, finally, read

N2
j =

R2
i

2

(
J0(qjRi)J2(qjRi) + 2CjJ0(qjRi)Y2(qjRi)

+ C2
j Y0(qjRi)Y2(qjRi)

)
+
R2
o

2

(
J0(qjRo)J2(qjRo) + 2CjJ0(qjRo)Y2(qjRo)

+ C2
j Y0(qjRo)Y2(qjRo)

)
.

(A-31)
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Tables

B.1Viscosities of test materials

Wacker AK 10000

γ̇/s−1 η/Pa s

0.03178 11.07 ± 1.3

0.05665 11.85 ± 1.3

0.1018 11.09 ± 1.2

0.1689 11.12 ± 1.2

0.2728 11.61 ± 1.26

0.4550 11.50 ± 1.25

0.7456 11.97 ± 1.3

1.263 12.14 ± 1.7

1.753 11.33 ± 1.3

2.753 11.55 ± 1.2

4.503 12.10 ± 1.6

7.554 12.06 ± 1.5

13.52 11.40 ± 1.3

17.10 11.41 ± 1.3

27.61 11.76 ± 1.4

CibaTM MagnaflocTM 1011

γ̇/s−1 η/Pa s

0.01863 33.60 ± 3.5

0.04217 23.36 ± 4.7

0.09190 17.19 ± 1.1

0.2377 8.695 ± 0.61

0.4487 5.377 ± 0.40

0.5809 4.900 ± 0.36

1.0495 3.457 ± 0.25

1.634 2.635 ± 0.19

3.220 1.685 ± 0.12

16.56 0.3505 ± 0.027

21.48 0.2788 ± 0.022

24.56 0.2708 ± 0.020

67.99 0.1185 ± 0.022

106.4 0.08494 ± 0.0068

69



B Tables

B.2 Chemical Composition of Billstein Basalt

The chemical composition was already well know at the start of this work. It
has been published 2004 in a work on magma mixing [61].

Oxides wt. %

Si 45.31

Al 12.86

Fe 11.93

Ca 10.50

Mg 10.90

Na 3.14

K 1.38

Mn 0.17

P 0.54

Ti 2.16
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Tables B

B.3Viscosities of Billstein Basalt

1448 K/1175 ◦C

γ̇/s−1 η/Pa s

0.01339 1135 ± 105

0.02111 1120 ± 350

0.05045 807 ± 170

0.09822 546 ± 50

0.16286 435 ± 45

0.30568 305 ± 35

0.47462 246 ± 35

0.65717 235 ± 36

1.32734 161 ± 20

2.23972 119 ± 30

3.29150 125 ± 38

5.08588 125 ± 48.5

12.0161 79 ± 25.5

20.5556 59 ± 9

23.4730 60 ± 11.5

1458 K/1185 ◦C

γ̇/s−1 η/Pa s

0.01681 715 ± 80

0.03829 429 ± 45

0.07964 260 ± 25

0.14201 175 ± 25

0.18438 162 ± 20.5

0.28684 138 ± 12.5

0.46464 108 ± 10

0.70039 94 ± 9

1.02558 86 ± 12.5

1.52940 82 ± 9.5

2.14217 71 ± 9

3.42825 62 ± 9.5

5.39221 57 ± 8.5

8.90426 53 ± 8.5

15.2676 46 ± 6

17.2255 49 ± 8

26.1884 55 ± 9
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1473 K/1200 ◦C

γ̇/s−1 η/Pa s

0.02091 324 ± 30

0.03624 236 ± 27.5

0.04641 249 ± 30

0.08991 190 ± 19

0.22402 99 ± 15

0.34006 77 ± 15

0.40470 83 ± 8.5

0.69727 67 ± 8

1.22494 51 ± 5.5

1.75198 47 ± 4.5

2.14861 45 ± 5

4.01037 35 ± 3

5.53170 34 ± 3.75

8.04271 36 ± 5.5

14.9918 31 ± 4

20.1732 28 ± 3.5

1498 K/1225 ◦C

γ̇/s−1 η/Pa s

0.01456 93 ± 10

0.02998 67 ± 9.5

0.06700 41 ± 6

0.09639 35 ± 6

0.12754 37 ± 4

0.21577 31 ± 3

0.32218 29 ± 4

0.58527 25 ± 4

1.36677 14 ± 1.75

2.25809 11 ± 1.75

2.33467 12 ± 1.5

5.31442 12 ± 2.6

7.66270 12 ± 1.9

12.9595 13 ± 1.9

17.7091 12 ± 2.7
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Appendix C

Notes on Numerics

The notes given in this appendix are meant to present details on the numerical
programs developed to process measured raw data (C.1 and C.2) or numerically
calculated solutions (C.3).

C.1Experimental derivative revisited

This section gives an overview of function linearSlopeApprox, which determines
a numerical derivative from experimental data. Since this function is essential

Figure C.1: As in Figure 3.7, dots denote branching points, and the referring conditions
are drawn into boxes with dashed border. Boxes with darker background show actions
taken on important variables. Entrance and exit points are marked as squares.

for the calculation, its numerical implementation is also given here.

1public double linearSlopeApprox(double [] X,
double [] Y,
double x,
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int pointNumber)
{

6int i;
boolean pointHit = false;
double dYdX; // Value to be r e t u rned
// I f t h e argument v an i s h e s
if(x == 0.)

11dYdX = Y[0]/X[0];
else
{

// Check i f argument h i t s a p o i n t . . .
for(i=0; i<pointNumber; i++)

16if(x == X[i])
{

pointHit = true;
break;

}
21// . . . i f i t h i t s , r e t u rn t h e ave rage

// v a l u e o f t h e s l o p e s
// b e f o r e and a f t e r t h i s p o i n t

if(pointHit)
{

26if(i == 0)
dYdX = .5*(Y[0]/X[0]

+ (Y[1] - Y[0])/(X[1] - X[0]));
// I f x h i t s t h e l a s t po in t ,
// r e t u rn t h e s l o p e b e f o r e t h i s p o i n t

31else if(i == pointNumber -1)
dYdX = (Y[i] - Y[i -1])/(X[i] - X[i-1]);

//
else

dYdX = .5*((Y[i+1] - Y[i])
36/(X[i+1] - X[i])

+ (Y[i] - Y[i-1])
/(X[i] - X[i -1]));

}
// Case t h a t x does not h i t a p o i n t

41else
{

// Find t h e su r round ing p o i n t s
i = 0;
while(true)

46if(X[i] < x)
i++;

else
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break;
// Usual ca se

51if(i != 0)
dYdX = (Y[i] - Y[i -1])/(X[i] - X[i-1]);

// In case t h a t x i s sma l l e r than
// t h e sm a l l e s t p o i n t in X [ ]
else

56dYdX = Y[0]/X[0];
}

}
return dYdX;

}

C.2Calculation of stress and strain rate

The function processData is the central routine calculating the viscosity val-
ues. It is a method of class UtilsCollection and hence stored in the file
UtilsCollection.java.

public void processData ()
{

lambda = RiRoom*RiRoom /( RoRoom*RoRoom );

5// New i n s t a n c e o f a U t i l s C o l l e c t i o n
UtilsCollection uc = new UtilsCollection ();

// Ca l c u l a t e ave rage v a l u e s . . .
// Of l ong immersion dep th

10uc.average(pointNumber , startLong , endLong , inDirLong );
omegaLong = uc.omega;
sigmaOmLong = uc.sigmaOm;
torqueLong = uc.torque;
sigmaTorqueLong = uc.sigmaTorque;

15tempLong = uc.temperature;
sigmaTempLong = uc.sigmaTemp;
// Of s h o r t immersion dep th
uc.average(pointNumber , startShort , endShort , inDirShort );
omegaShort = uc.omega;

20sigmaOmShort = uc.sigmaOm;
torqueShort = uc.torque;
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sigmaTorqueShort = uc.sigmaTorque;
tempShort = uc.temperature;
sigmaTempShort = uc.sigmaTemp;

25

// From average v a l u e s c a l c u l a t e t h e d i f f e r e n c e o f
// t h e two immersion dep t h s .
omega = new double[pointNumber ];
sigmaOm = new double[pointNumber ];

30torque = new double[pointNumber ];
sigmaTorque = new double[pointNumber ];
temperature = new double[pointNumber ];
sigmaTemp = new double[pointNumber ];
sigmaOm = new double[pointNumber ];

35sigmaTorque = new double[pointNumber ];
sigmaTemp = new double[pointNumber ];
uc.torqueDiff(pointNumber ,

omegaLong , omegaShort ,
torqueLong , torqueShort ,

40tempLong , tempShort ,
omega , torque , temperature ,
sigmaOmLong , sigmaOmShort ,
sigmaTorqueLong , sigmaTorqueShort ,
sigmaTempLong , sigmaTempShort ,

45sigmaOm , sigmaTorque , sigmaTemp );

boolean smallEnough;
double scaledTorque , oldValue;
double impletionDepth;

50int n;
gammaDot = new double[pointNumber ];
tau = new double[pointNumber ];
sigmaGammaDot = new double[pointNumber ];
sigmaTau = new double[pointNumber ];

55viscosity = new double[pointNumber ];
sigmaViscosity = new double[pointNumber ];

for(i=0; i<pointNumber; i++)
{

60double l = uc.lambda(lambda ,temperature[i]);
sls = uc.sigmaLambdaS(temperature[i],RiRoom ,

RoRoom ,sigmaTemp[i]);

// Proces s t r u s t i n t e r v a l o f t o r qu e
65if( i==0 )

{
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sigmaTorque[i] = Math.sqrt(
sigmaTorque[i]* sigmaTorque[i] +
Math.pow(trustI*torque [0], 2.) +

70Math.pow(trustI *( torque [1] -
torque [0]), 2.));

}
else if( i == pointNumber -1 )
{

75sigmaTorque[i] = Math.sqrt(
sigmaTorque[i]* sigmaTorque[i] +
Math.pow (2.* trustI *( torque[i] -

torque[i-1]) ,2));
}

80else
{

sigmaTorque[i] = Math.sqrt(
sigmaTorque[i]* sigmaTorque[i] +
Math.pow(trustI *( torque[i+1] -

85torque[i]), 2) +
Math.pow(trustI *( torque[i] -

torque[i-1]), 2));
}

90smallEnough = false;

// Ca l c u l a t e t h e shear r a t e
n = 0; gammaDot[i] = 0.;
while( !smallEnough )

95{
oldValue = gammaDot[i];
scaledTorque = Math.pow(l, n)* torque[i];
gammaDot[i] += scaledTorque*

uc.linearSlopeApprox(torque , omega ,
100scaledTorque ,

pointNumber );
if(( gammaDot[i] - oldValue )/ gammaDot[i]

< 0.00000001)
{

105smallEnough = true;
}
n++;

}
gammaDot[i] *= 2.;

110

// Error o f t h e shear r a t e
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int j, j_min;
double temp = 0.;
// Error c o n t r i b u t i o n o f t o r qu e

115scaledTorque = torque[i];
smallEnough = false;
j = 1; j_min = 0;
while( !smallEnough )
{

120scaledTorque *= l;
temp += Math.pow(l, j)*

Math.abs(
uc.linearSlopeApprox(

torque ,
125omega ,

scaledTorque ,
pointNumber ));

temp += torque[i]*Math.pow(l, 2*j)*
130Math.abs(

uc.curvatureApprox(
torque ,
omega ,
scaledTorque ,

135pointNumber ));
if( scaledTorque < torque [0] )
{

smallEnough = true;
j_min = j+1;

140}
j++;

}
temp += Math.pow(l, j_min )/(1.0/l - 1.0)*

Math.abs(
145uc.linearSlopeApprox(

torque ,
omega ,
0.5* torque [0],
pointNumber )) +

150Math.pow(l, 2*j_min )/(1.0/(l*l) -1.0)*
torque[i]*Math.abs(

uc.curvatureApprox(torque ,
omega , 0.5* torque [0],
pointNumber ));

155sigmaGammaDot[i] = Math.pow(2* temp*
sigmaTorque[i], 2);
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temp = 0.;
scaledTorque = torque[i];
smallEnough = false;

160j = 1; j_min = 0;

while( !smallEnough )
{

scaledTorque *= l;
165temp += j*Math.pow(l, j-1)*

Math.abs(
uc.linearSlopeApprox(

torque ,
omega ,

170scaledTorque ,
pointNumber ));

temp += torque[i]*j*Math.pow(l, 2*j-1)*
Math.abs(

uc.curvatureApprox(torque ,
175omega , scaledTorque ,

pointNumber ));

if( scaledTorque < torque [0] )
{

180smallEnough = true;
j_min = j+1;

}
j++;

}
185

temp += Math.pow(l, j_min)*
(j_min *(1.0 - l) - 1.0)/
((1.0 - l)*(1.0 - l))*
Math.abs(

190uc.linearSlopeApprox(torque ,
omega , 0.5* torque [0],
pointNumber )) +

Math.pow(l, 2*j_min + 1)/
((l*l - 1)*(l*l - 1))*

195(1.0 - j_min*(l*l - 1.0))* torque[i]*
Math.abs(

uc.curvatureApprox( torque ,
omega , 0.5* torque [0],
pointNumber ));

200sigmaGammaDot[i] += Math.pow (2.0* torque[i]*
temp , 2)*sls;
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sigmaGammaDot[i] = Math.sqrt(sigmaGammaDot[i]);

// Ca l c u l a t e t h e s t r e s s
205double Ri = uc.Ri(temperature[i], RiRoom );

impletionDepth = immersion /(1 - l);
tau[i] = torque[i]/(2* Math.PI*Math.pow(Ri, 2.)

*impletionDepth );

210// Error o f t h e s t r e s s
sigmaTau[i] = 0.;
sigmaTau[i] = Math.pow(tau[i]* sigmaTorque[i]/

torque[i], 2);
sigmaTau[i] += Math.pow (2.0* tau[i]/Ri, 2)*

215uc.sigmaRiS(RiRoom ,
temperature[i],
sigmaTemp[i]);

sigmaTau[i] += Math.pow(tau[i]/
220impletionDepth , 2)*(

Math.pow(
impletionDepth/

immersion *0.0001 ,
2) +

225Math.pow(impletionDepth*
impletionDepth/immersion ,
2) * sls);

sigmaTau[i] = Math.sqrt(sigmaTau[i]);

230// Ca l c u l a t e v i s c o s i t y
viscosity[i] = tau[i]/ gammaDot[i];

// Error o f v i s c o s i t y
sigmaViscosity[i] = Math.pow(sigmaTau[i]/

235gammaDot[i], 2.);
sigmaViscosity[i] += Math.pow(tau[i]/

(gammaDot[i]* gammaDot[i])
*sigmaGammaDot[i], 2.);

sigmaViscosity[i] = Math.sqrt(sigmaViscosity[i]);
240}

// T e l l VC_Frame t h a t c a l c u l a t i o n has f i n i s h e d .
finished = true;

}
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C.3Maxwell Fluid: Explicit Values

Figure C.2 gives an overview of the dat flow and structure of the program
viscoelastic, wich calculates explicit values of the Maxwell boundary value
problem given in equation (4-5). For speed reasons the code is written in C, and
is hence functional based. Basically, the roots qj of equation (A-22) are calculated
(FZeros) for a given geometry. The root finding algorithm used is described
in the next section (page 82). It remains the – basically – straight forward
implementation of the solutions (4-4) and (4-5) of the boundary value problem
by calculating the normalizing factors Nj given in equation (A-23)(calc_Nj)
and corresponding scalar products (scalar_A0, scalar_As). These values are
inserted in the solutions u (calc_u) and v (calc_v), which then define the
complete solutions ω(r, t) and τ(r, t). viscoelastic stricktly employs the ANSI
C standard. For a serious implementation of the Bessel functions the routines
are linked to the Gnu Scientific Library [23].

Figure C.2: Overview of viscoelastic, which calculates explicit values of solution
4-5 of the Maxwell material boundary value problem. Functions processing the data are
represented by boxes. Their names are underlayed with a grey background. They can be
found in the source files indicated in the upper right corner of each box.
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C.3.1 Determination of zeros

The solutions qj of equation (A-22) will be determined with help of the bisection
method [48]. It might not be the fastest, but the most stable routine the author
is aware of.

#include <math.h>
2#include <gsl/gsl_sf_bessel.h>

double Fj(double Ro, double k)
{

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
7∗ Returns a f u n c t i o n w i t h t h e same z e r o s as t h e

∗ l i n e a r l y independen t s o l u t i o n s s a t i s f y i n g t h e
∗ boundary v a l u e prob lem F(1) = F(Ro) = 0
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
return gsl_sf_bessel_J1(Ro*k)* gsl_sf_bessel_Y1(k)

12- gsl_sf_bessel_J1(k)* gsl_sf_bessel_Y1(k*Ro);
}

int refineInterval(double * A,
double * B,

17double Ro,
short precision)

{
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Ref ine i n t e r v a l s o f s i g n change to g i v en p r e c i s i o n

22∗ wi th t h e b i s e c t i o n method . Every 100 s t e p s t h e
∗ p r e c i s i o n i s e v a l u a t e d .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
int i;
double left , right;

27left = *A;
right = *B;
double x, relative , error;
error = pow(10.0 , -1.0*( double )( precision ));
relative = fabs((right - left)/left);

32while( relative > error )
{

i = 0;
while(i < 100)
{

37if( Fj(Ro, left)
*Fj(Ro, (x = .5*( left + right ))) < 0 )
right = x;
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else
left = x;

42i++;
}
relative = fabs((right - left)/left);

}

47*A = left;
*B = right;
if(error <= relative) return 0; else return -1;

}

52int FZeros(const double Ro,
const long j_max ,
double zeros [])

{
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

57∗ Find i n t e r v a l s where t h e s i g n o f Fj changes .
∗ Ca l l t h e r e f i n e f u n c t i o n and a f t e r t h a t
∗ wr i t e r e s u l t t o t h e ’ z e ro [ ] ’ a r ray .
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

long j; // I t e r a t o r s
62int i;

double interval;
int steps; // Number o f s t e p s
int refineState;

67steps = 100;
// I n i t i a l g u e s s o f z e ro :
interval = 3.2/(Ro - 1.0);
double x_old = interval /(( double )(steps ));
double x;

72

for(j=0; j<j_max; j++)
{

i = 0;
x = x_old + interval /(( double )(steps ));

77

// Bracke t nex t change in s i g n o f F
while( Fj(Ro, x_old)*Fj(Ro, x) > 0 )
{

x_old = x;
82x += interval /(( double )( steps ));

i++;
}
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i = 0;
87

// Re f ine r o o t s t o a p r e c i s i o n o f 1 e−15
refineState = refineInterval (&x_old , &x, Ro, 15);

// S to r e r e s u l t
92zeros[j] = x;

// Update x_old
x_old = x;

97// Update i n t e r v a l t o d i f f e r e n c e be tween l a s t z e r o s
if( j > 0 ) interval = zeros[j] - zeros[j-1];
else interval = zeros [0];

}
return 0;

102}

C.4 Source Code and Executables

Since a listing of the complete code that was written would fill too much
space, a compact disc was appended to this document. The disc contains the
complete source code and additional documentation of the programs VC and
viscoelastic.

VC was written using the Java development tool Netbeans (www.netbeans.
org) in version 6.7.1. It requires a Java runtime environment in version 1.6 or
later. The executable Java archive (VC.jar) of VC can be found in the folder
VC_exec on the CD. The souce code lies in the folder VC_dev/vc-sources. The
rest of the folder is a standard structure created by NetBeans. The folder
VC_dev/dist contains the executables and can be copied to other locations. It
contains the subfolder javadoc which holds Some documentation about the
source code in htm format. The Java archive can be executed by submitting the
command java -jar VC.jar to the operating system (e.g. on the command
line). The calculation part is started with the ‘calculate’ button in the main
window. After basic questions about the experimental geometries the experi-
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mental data can be read. The format must be an ascii file for each measured
velocity with the name ‘n.txt’, where n stands for a number between 1 and
the number of measured speeds, and 1 corresponds to the lowest speed. The
data file must not contain any comments, and each line must be of the format

’f/Hz <tab> N/Nm <tab> T/◦C’ .

viscoelastic was written in C. It consists of the 5 source files zeros.c,
expansion.c, omega.c, stress.c, and testMain.c. The corresponding header
files (.h) of the first 4 sources are also part of the program. The files
can be found in the folder viscoelastic on the disk. Apart from a work-
ing C compiler the source code depends on the Gnu Scientific Library [23]
(www.gnu.org/software/gsl/). The folder viscoelastic/Debug contains bi-
nary executables which were build on a computer running a standard Ubuntu
9.10 Linux x86_64 installation. For the sake of numerical simplicity the calcula-
tion is carried out using dimensionless quantities for time and position:

r → r̄ = r/Ri , t→ t̄ = t/tb , (C-1)

where tb is chosen appropriately, so that the wave speed c expressed in the new
coordinates equals unity. Equation (4-3) expressed in this coordinates reads

ω̈ +
ω̇

t̄r
=

3

r̄
+ ω′′ , (C-2)

where ˙ = ∂/∂t̄, and ′ = ∂/∂r̄. viscoelastic needs 8 arguments on the
command line:

1. basedir – folder where to write the data,

2. Ro – outer Couette radius R̄o,

3. to – acceleration time t̄0,

4. tr – relaxation time t̄r,

5. i_max – number of roots to search, Determines the expansion level,

6. j_max – number of time steps,

7. r – position r̄,

8. t_max – upper time limit.
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Publications

The following pages show two articles which were published in the course of this
thesis.
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Non-Newtonian viscosity of basaltic magma

I. Sonder, B. Zimanowski, and R. Büttner
Physikalisch Vulkanologisches Labor, Institut für Geologie, Universität Würzburg, Germany

Received 18 July 2005; revised 20 October 2005; accepted 7 December 2005; published 18 January 2006.

[1] Basaltic melt drives most of earth’s volcanism.
Understanding its rheology is crucial for any model of
magma transport and volcanic eruption. Basaltic magma is
generally treated as a quasi Newtonian liquid, but there are
observations of Non-Newtonian behaviour. With a method,
that allows measurement of Non-Newtonian viscosity of a
representative melt (molten basaltic rock), we found a
strong shear rate dependency of viscosity in a wide range of
temperatures. The temperature-viscosity dependency
indicates properties of the molten phase as the cause. The
viscosity data are in good agreement with a power law
model. Citation: Sonder, I., B. Zimanowski, and R. Büttner

(2006), Non-Newtonian viscosity of basaltic magma, Geophys.

Res. Lett., 33, L02303, doi:10.1029/2005GL024240.

[2] Basaltic volcanism is caused by the production of
magma in the mantle or the deep crust in depths between
20 and more than 500 km, and its consequent transport
to the surface. This magma is a complex fluid, consisting of
a molecular melt and crystals (sub-liquidus system). In
addition, gas bubbles can be present, due to the exsolution
of volatiles caused by the pressure drop during the transport
from the source region to the surface. The violence of
volcanic eruptions is strongly controlled by the flux rate,
i.e., by the volume of magma transported to the surface per
unit time, not only because of the increase of thermal energy
input but also because of the increasing degree of disequi-
librium in respect to overheat and volatile overpressure.
However, the rheology of magma still is poorly understood.
In fact, there is not even a solid physical model for the
simplest case of a lava flow at the surface. The key parameter,
describing the rheology, is the viscosity. It is generally
accepted that magma is a Non-Newtonian liquid; that is,
the relationship between strain rate and shear stress cannot be
described by a linear dependency [e.g., Bottinga, 1994; Stein
and Spera, 1998]. However, high quality measurements of
viscosity so far are still referenced to as Newtonian viscos-
ities. Alternative rheology models are numerous [e.g., James
et al., 2004], but experimental methods for the measurement
of Non-Newtonian viscosities of inhomogeneous material at
high temperatures are generally lacking. In this letter we
describe amethod tomeasure the viscosity of a representative
basaltic melt independent of flow field assumptions.
[3] For empirical determination of flow curves, materials

of viscosities comparable to basaltic melts usually are
sheared in a so called narrow gap arrangement (e.g.,
searle-type, cone and plate, parallel plates). If the gap is
narrow enough, compared to the other dimensions of the
experiment, and still wide enough to fully contain all
sources of internal friction, the shear rate can be treated as

constant and thus the shear stress/shear rate ratio can be
measured directly. Such methods run into problems when
applied to inhomogeneous materials, such as a magmatic
melt that contains crystals and gas bubbles. In order to
measure the bulk viscosity of a low viscosity magma, the
gap in the experimental device must be in the order of
0.01 m. To get narrow gap conditions, e.g., for a rotational
viscometer, the radii of container and rotational body would
have to be in the order of 1 m. This exceeds laboratory
scales, especially at magmatic temperatures. The only
solution is to accept a wide gap arrangement, however,
current wide gap techniques are not model independent
[Bird et al., 1987]. The experimental set-up used for the
measurements presented here, is a modification of a high
temperature viscometer that has been in use for standard
measurement of apparent Newtonian viscosities (DIN
53019) in our Laboratory [Zimanowski et al., 2004; Büttner
et al., 2000, 1998]. It consists of a Haake

TM

Sensor
connected via a spindle rod to a rotating body which
couples to the melt. The melt is contained in ceramic
crucibles. The thermal stability of the furnace is better than
1K, the absolute accuracy better than 2.5 K. Only the
geometry of the rotational body was modified as shown in
Figure 1, ensuring a high cylindrical symmetry. The mate-
rial selected for this study was a basaltic rock, representative
for continental basaltic lava flows that has already been
used in other studies [Zimanowski et al., 2004]. The rock
sample was granulated and a portion of 0.2 kg was filled
into the crucible. All experimental runs were carried out in a
quasi static argon atmosphere. The mechanical coupling of
the melt to the crucible and the rotational body is good (full
wettability) and thus slip effects [Barnes, 1995] can be
neglected. In the investigated temperature range between
1450 and 1500 K a temperature independent crystal content
of approx. 5 Vol. % Olivine crystals is present [Zimanowski
et al., 2004]. The sensor measures the torque N acting on
the rotating body at a constant angular velocity w. The
torque was recorded until it was found to be constant in
time. To minimize end effects on the rotating body each
measurement was carried out twice for two different im-
mersion depths (see Figure 1).
[4] The evaluation of the measured data is based on the

idea of I.L. Krieger and H. Elrod [Krieger and Elrod, 1953].
In cylindrical coordinates the shear rate is

_g ¼ r
@w

@r
;

where r is the distance from the z-axis. The shear rate can be
calculated from the interdependence of the measured data
pairs (N, w) as

_g ¼ 2
X

1

i¼0

~N
@w

@ ~N

�

�

�

�

~N¼l
i N

: ð1Þ
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Here l = (Ri/Ro)
2 denotes the squared ratio of the radii of

the rotating body and the crucible walls, respectively.
Equation (1) contains a derivative of the measured relation
w(N). By assuming a specific rheologic model, one can
calculate this derivative analytically. Since it is not our
intention to assume a model, we determine it empirically by
numerical calculation of this derivative from the measured
data. As long as l is small enough, the sum (1) converges.
The smaller l the faster the sum converges telling us that
this method gains accuracy with increased gap size.
[5] The shear stress is determined from the torque by

t ¼
N

2pR2
i
L

;

where L is the immersion depth of the cylinder in the fluid.
These relations enable us to determine the viscosity h from
the measured data pairs (N, w) as

h ¼
t

_g
:

[6] The method was successfully tested (see Figure 2)
using two homogeneous materials with known viscosities
[Liberatore et al., 2003], a Newtonian silicon calibration oil
(Wacker AK 10000), and a polymer-water solution with a
strong Non-Newtonian character (Ciba

TM

Magnafloc
TM

1011).
Now the method was applied to measure viscosities of the
basaltic melt. The melt was measured at temperatures of
1448, 1458, 1473, and 1498 K. Results are given in

Figures 3 and 4. The obtained viscosities show a surpris-
ingly strong dependency on the shear rate. In the measured
range (�10�2 s�1 – 30 s�1) viscosity decreased by a factor
of 10. A strain rate interval with quasi Newtonian behaviour
cannot be assigned to this material. Comparing the mea-
sured data with existing models, a power law model seems
to be the most suitable one (Figures 3 and 4)

t ¼ t0
_g

_g0

� �m

¼ c _g
m : ð2Þ

It is remarkable that the exponent of equation (2) does not
vary dramatically at different temperatures. Thus in a first
approximation the temperature dependency within the
investigated range can be assigned to the proportionality
factor c. Figure 5 shows the temperature dependency of
c which is in good agreement with an exponential
� exp E

kBT

� �

. Therefore, we expect Non-Newtonian

behaviour also for temperatures exceeding the investigated

range.
[7] The Non-Newtonian character of the investigated

basaltic melt seems to originate from properties of the
molten phase because influences of crystals within the
investigated temperature range can be neglected. Also, in
the latter case one would expect the power-law index m to
depend stronger on temperature than the proportionality
factor c. Our measurements demonstrate that it is inevitable
to measure viscous behaviour of magmatic melts beyond the
Newtonian models (which still dominate current simula-

Figure 1. (a) Searl type viscometer for Newtonian fluids
(DIN 53019). (b) Viscometer for Non-Newtonian fluids. It
is necessary to measure at two different immersion depths.

Figure 2. Viscosities of a Newtonian silicon calibration oil
(Wacker AK 10000) and a 0.4% Magnafloc

TM

1011 solution
in purified water.

Figure 3. Viscosity of basalt at 1448 and 1458 K. The
lines are viscosity calculations from a power law model,
equation (2) for c = 210 Pa sm, m = 0.588 at 1448 K, and c =
111 Pa sm, m = 0.588 at 1458 K.

Figure 4. Viscosity of basalt at 1473 and 1498 K. The
lines are viscosity calculations from a power law model,
equation (2) for c = 59.9 Pa sm, m = 0.563 at 1473 K, and
c = 17.4 Pa sm, m = 0.618 at 1498 K.
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tions). The bad news for the current models of magma
transport and lava flow are, that even for low viscosity,
crystal poor basaltic melts, a quasi Newtonian behaviour
cannot be applied. The good news, however are, that the
measured data nicely fit into a power-law model with a
standard exponential temperature dependency, that can be
separated and used for general modelling.
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Chemie GmbH, and Ciba a for the silicon oil and the polymer.

References
Barnes, H. A. (1995), A review of the slip (wall depletion) of polymer
solutions, emulsions and particle suspensions in viscometers: Its cause,
character, and cure, J. Non Newtonian Fluid Mech., 56, 221.

Bird, R. B., R. C. Armstrong, and O. Hassager (1987), Dynamics of
Polymeric Liquids, 2nd ed., John Wiley, Hoboken, N. J.

Bottinga, Y. (1994), Configurational entropy and the non-Newtonian
rheology of homogeneous silicate melts, Phys. Rev. B, 49(1), 95.
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[1] The release of kinetic energy during explosive volcanic eruptions is a key parameter
for hazard assessment and civil defense. The explosive production of volcanic ash by
intensive fragmentation of magma and host rocks represents a substantial part of this
energy. For cases of explosive eruption where predominantly host rock was fragmented
(phreatomagmatic eruptions) to form the major part of volcanic ash, rock mechanical
parameters could be measured and fragmentation energies assigned. In cases where most
of the produced ash is of juvenile origin (magmatic eruptions) a general method for the
determination of fragmentation energy is still lacking. In this article we introduce a
thermodynamic approach that relates grain size data of the produced ash deposits to shear
rates acting during the deformation of magma. With the use of a standardized
fragmentation experiment the physical parameters needed to determine the specific
fragmentation energy and deformation history were measured. The experiment was
calibrated and tested with two case histories of the Campi Flegrei volcanic field (southern
Italy). Both eruptions are classified as ‘‘most probable worst-case scenarios’’ during the
next period of activity, to be expected within the next 10–100 years. Using the
experimentally determined specific fragmentation energies, the total mass of produced ash
of each eruption, and assuming an energy dissipation as observed in the experiments, the
total kinetic energy release of the worst-case Campi Flegrei eruptive events to come were
calculated with 25 and 40 kt TNT equivalent.

Citation: Büttner, R., P. Dellino, H. Raue, I. Sonder, and B. Zimanowski (2006), Stress-induced brittle fragmentation of magmatic

melts: Theory and experiments, J. Geophys. Res., 111, B08204, doi:10.1029/2005JB003958.

1. Introduction

[2] Explosive volcanic eruptions are characterized by the
release of kinetic energy on a short timescale. The finger-
print of such eruptions is the production of significant
amounts of fine fragments (volcanic ash) by brittle mode
fragmentation processes [Bottinga, 1994; Zimanowski et al.,
2003]. These ash fragments, especially in the grain size
range between 20 and 150 mm [Heiken and Wohletz, 1985;
Dellino and LaVolpe, 1995], not only bear information on
the quality of the fragmentation processes [Zimanowski et
al., 1997a; Büttner et al., 1999] but also on the kinetic
energy needed for their production [Büttner et al., 2002]. If
the total amount of fragments generated during one discrete
eruption can be determined and if the specific fragmentation
energy (energy per unit mass) for all fragment populations
within the respective deposit is known from experimental
studies, the total amount of fragmentation energy consumed
during this eruption can be calculated. This value is useful

to classify the eruption and to calibrate numerical simula-
tions. Furthermore, as the dissipation of kinetic energy (i.e.,
the proportional allotment of fragmentation energy, pressure
wave or shock wave energy, seismic or acoustic energy,
ejection and transport energy) can be modeled or at least
assumed, the total amount of kinetic energy released and the
conversion rate from the thermal energy of the erupted
magma batch can be approximated. This will significantly
improve the evaluation of specific eruptions in respect to
their hazard potential.
[3] A method to determine the specific fragmentation

energy for explosive eruptions of basaltic volcanism (par-
ticularly with regard to phreatomagmatic explosion) has
been already introduced by the authors [Zimanowski et al.,
1997a, 1997b; Büttner et al., 1999] and tested for the case of
deposits of La Fossa di Vulcano [Büttner et al., 2002]. Raue
[2004] applied an alternative method to lithic fragments,
i.e., ash sized fragments that were produced during explo-
sive phreatomagmatic volcanic eruptions by fragmentation
of solid rock that hosted the volcanic edifice. He could
demonstrate that the amount of energy needed to explain the
production of these lithic fragments is in good agreement
with the amount of kinetic energy derived from the evalu-
ation of the respective magmatic ash fragments following
the method of Büttner and Zimanowski [1998]. As explo-
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sive phreatomagmatic eruptions are characterized by a
substantial proportion of lithic fragments [Zimanowski,
1998], a combination of both methods leading to converg-
ing results is a good test to verify the results in these cases.
[4] In this paper we present a general method to deter-

mine the specific fragmentation energy for fragments cre-
ated by all types of explosive eruptions, also useful for
intermediate magma and silica rich compositions, applied as
a case history to samples from deposits of volcanic centers
of the Campi Flegrei caldera in southern Italy.

2. Theory of Brittle Fragmentation

[5] In contrast to hydrodynamic fragmentation processes
[e.g., Chandrasekhar, 1968], a general analytical solution
for brittle type fragmentation processes does not exist [e.g.,
Herrmann and Roux, 1990]. If large amounts of macro-
scopic particles are produced, as is the case for volcanic ash,
thermodynamic statistical methods, following the approach
of Yew and Taylor [1994], can be applied under the
following assumptions: (1) a solid body breaks up due to
internal stress, i.e., thermodynamic equilibrium is not
achieved during crack growths within the solid body, but
until after fragmentation into n particles, (2) isothermal
conditions prevail during fragmentation, (3) surface energy
is not recoverable, i.e., the entropy of the system grows, and
(4) during increments of time the stress is treated as
constant. Now, the free enthalpy (Gibbs thermodynamic
function) G can be calculated for a solid body breaking up
into n particles:

G ¼ U þ B� TS ð1Þ

where U is the internal energy of the stressed body before
fragmentation, B is the total energy consumed in generating
new surfaces, T is the temperature, and S is the entropy
generated by the formation of new surface.

2.1. Calculation of U

[6] The strain energy density is defined by

dU ¼ 1

2
m _etð Þ2 ð2Þ

where m is the bulk modulus (m = rc2) with the density r and
the speed of sound c, _e is the strain rate, and t denotes the
time interval between stress onset and fragmentation.
[7] Within the time t the volume affected by the stress

(traveling at the speed of sound c) is (ct)3. If these volumes
break independent from each other (assumption 1), the
particle diameter s must satisfy

s � 2ct ð3Þ

combining (2) and (3) results in

dU ¼ 1

2
m_e

2t2 ) dU � 1

2
m_e

2 s2

4c2
ð4Þ

and thus for the total volume V

U ¼
Z

V

dU ) U � 1

2
m

_es

2c

� �2

V ð5Þ

using (3) and assumption 4 the fundamental description of
the geometry for n particles is

V ¼ n
4

3
p

s

2

� �3
� �

¼ 1

6
nps3 ) s ¼ 6V

np

� �1=3

ð6Þ

combining (6) and (5), the minimum energy can be
calculated by

U ¼ m

8

_e

c

� �2
6

p

� �2=3

n�2=3V 5=3 ð7Þ

2.2. Calculation of B

[8] The fracture surface energy per unit volume [Grady,
1988] is

dB ¼ 3I2

rc2s
ð8Þ

where I denotes the stress intensity factor, i.e., the
geometry-dependent energy density that leads to the
breaking of a certain material [Lawn, 1993]. Thus, for
the total volume, V follows

B ¼
Z

V

dB ) B ¼ 3I2

rc2s
V ð9Þ

and combination with (6) results in

B ¼ p

6

� �1=3 3I2

rc2

� �

n1=3V 2=3 ð10Þ

2.3. Calculation of S

[9] From semiconductor physics a solution was described
by Varotosos and Alexopoulos [1986]

S ¼ k ln
N þ nð Þ!Þ
N !n!

� �

ð11Þ

where k denotes the Boltzmann constant and N is the total
new surface normalized to 1.
[10] Fundamental thermodynamics demand a minimum

of G in equilibrium (assumption 1), i.e., combining (7),
(10), and (11) in (1)

@G

@n

� �

T ;p

¼ 0 ð12Þ

In the case of the brittle fragmentation of magma, TS will be
negligibly small in comparison to U and B. Therefore by
inserting (7), (10), and (11) in (12) the mean particle
diameter s0 of an ash fragment can be calculated by

s0 ¼ 2

ffiffiffi

3
p

I
ffiffiffi

2
p

rc_e

� �2=3

ð13Þ
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finally, the strain rate now can be calculated from measured
ash particle properties with

_e ¼
I

rc

ffiffiffiffiffi

12

s30

s

ð14Þ

Now we have a tool to validate and compare fragmentation
experiments and field observations of brittle type magma
fragmentation using simple measurements on the produced
particles.

3. Experimental Setup

[11] The basic design of the experimental configuration is
a modification of the ‘‘blowout’’ experiment described by
Zimanowski et al. [1997a], which also later was used to
determine the ductile-brittle transition of basaltic melt
[Zimanowski et al., 2003]. A melt plug is generated in a
cylindrical crucible and then deformed, fragmented, and
ejected by a pressurized gas volume, which is introduced
from below the melt plug (Figure 1). The generation of
internal strain within the melt plug resembles the setting
associated with lava domes and conduits [e.g., Buisson and

Merle, 2002]. Scaling was achieved by comparison of the
products with the natural analogues: volcanic ash fragments
of the same chemical composition from explosive eruptions.
The final design (Figure 2) features high-resolution moni-
toring of driving gas pressure (Kistler1 603b pressure
transducer) and repulsion force (Kistler 9031A force trans-
ducer). The melt is produced in situ by inductive heating
using a radio frequency generator. The melt temperature can
be adjusted in a range between 1000 and 1700 K with a
precision of 2 K. The driving gas volume (argon or air) is
released by a high-speed solenoid. The melt mass is
adjusted in such way, that the resulting aspect ratio of the
melt plug equals the standards for bending tests (DIN 52
112). A standard z component seismometer is mounted onto
the base plate (Figure 2) to record seismic signals. All
signals are measured with a resolution of 100 kHz using a
MacAdios1 data acquisition board. A high-speed video
system at 500 frames per second (NAC1 HSV-1000) is

used for the optical monitoring of the fragmentation and
ejection history.

4. Origin and Composition of the Test Materials

[12] As an example of use we choose pyroclastic deposits
from two eruptive centers of the Campi Flegrei caldera in
southern Italy (Astroni and Agnano Monte Spina) because
they are representative for recent explosive activity within
the caldera [Di Vito et al., 1999]. The deposits are nearly
completely confined within the caldera and well exposed in
the field. Thus it is possible to correlate individual layers
over the whole dispersal area and to obtain a volume
estimation of products of each single eruptive event. In
addition, both eruptions represent the maximum expected
event in a future volcanic crisis [Dellino et al., 2001, 2004;
Orsi et al., 2004], and the knowledge of their eruptive
dynamics is important for hazard assessment.
[13] The Agnano Monte Spina eruption occurred about

4.1 ka and represents the largest of the recent eruptions at
Campi Flegrei. It formed the small caldera characterizing
the Agnano plain at Campi Flegrei [De Vita et al., 1999]. It
was a mixed magmatic-phreatomagmatic eruption, aug-
mented by a trachytic melt, and produced a complex
stratigraphy resulting from a pulsating activity that led to
the formation of both Plinian fallout deposits and pyroclas-
tic density currents [Dellino et al., 2001, 2004]. The total
amount of erupted magma was about 1.2 km3. The samples
used in this paper come from pumiceous bombs extracted
from a layer of phase B2, which represents the most
widespread pyroclastic density currents of the eruption.
They expanded all over the Agnano Plain area and sur-
mounted the border of the Campi Flegrei at the Posillipo
hill, toward Naples.

Figure 1. Schematic drawing of the experimental config-
uration. The stress field is indicated by the arrows, with s1

giving the main compression and s3 giving the main
extension.

Figure 2. Scaled drawing of the experimental setup.
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[14] The Astroni eruptive activity was characterized by
multiple eruptions which occurred in the period 4.1–3.8 ka
[Isaia et al., 2004]. The eruptions were of mixed magmatic-
phreatomagmatic nature and were alimented by a trachytic
melt. The total volume of erupted melt was about 0.45 km 3,
and the Astroni eruptions represent the average intensity of
the recent eruptions at Campi Flegrei. In each eruption the
activity was impulsive with both fallout and pyroclastic
density currents events. Samples used in this paper come
from pumiceous/glass rich bombs of the 6th stratigraphic
unit and represent the most energetic pyroclastic density
currents, which spread over the Agnano Plain.
[15] About 20 kg of unaltered bombs and lapilli

were selected from each deposit, crushed (0.5 mm <
granulate < 3 mm) and homogenized. The melting process
(nonequilibrium melting) was adjusted in such a way, that
only the matrix was molten, and the original composition of
the magma in terms of phenocrysts and bubbles was
maintained: the melting time was kept short in relation to
the resorption time of phenocrysts and in this time, due to
the high viscosity of the material the migration of bubbles
was found to be negligible. A mass of 0.4 kg of granulate
was molten in each run to produce the optimum plug
geometry. The temperature was adjusted to 1300 K for all
experiments, which is in the upper range of temperature

estimations for Campi Flegrei trachytic magma [Fulignati et
al., 2004]. Using an inductively heated lid, the melt inside
the crucible was kept thermally homogeneous. The lid was
removed only a few seconds before the experiment. The
apparent Newtonian viscosity of both melts was measured
after DIN 53019 (Table 1). The specific density (dense rock)
of quenched samples was measured after DIN 18124 at
room temperature: 2492 kg m�3 for AMS and 2467 kg m�3

for AST. The porosity of the samples, measured after DIN
18125 T1, was 46.6 vol % for AMS and 49.9 vol % for
AST.

5. Experimental Results

[16] If a critical driving pressure is exceeded, every
experiment results in a brittle failure of the melt plug,
causing formation of fragments and their rapid ejection
from the crucible. At driving pressures close to the critical
value, the melt plug gets deformed in a dome-like fashion
(Figure 3). At the upper surface of this dome, the onset of
brittle fragmentation can be observed (Figure 3a), whereas
the lower surface clearly shows patterns of ductile defor-
mation (Figure 3b). This is not a thermal effect, as the
exposure time to atmospheric conditions is so short, that
only a thin skin (
1 mm) is affected by cooling (the lengths
of the cracks are in the cm range). The critical driving
pressure at 1300 K was found to be 3.5 MPa for the AST
samples and 3.0 MPa for the AMS samples.
[17] The ash-sized fragments of each fragmentation ex-

periment were collected and compared to the natural ana-
logues. The ash grains were found to be nearly identical in
terms of grain size, shape, morphology, and chemical
composition (Figure 4). The only notable difference is the
lack of elongated bubbles in the experimental ash grains: In
contrast to these fragments, the magma of the natural
analogues was moving in a conduit, thus shear acted in
transport direction onto it, prior to fragmentation. Experi-
ments with AST and AMS resulted in different grain
size distributions under identical experimental conditions

Table 1. Temperature-Dependent Apparent Newtonian Viscosity

of the Melts Used for the Experiments

T, K AMS h, Pa s AST h, Pa s

1,573 1,524 1,486
1,548 2,783 2,037
1,523 3,990 2,888
1,498 6,240 4,339
1,473 9,480 6,308
1,448 14,780 9,705
1,423 23,204 15,553
1,398 37,944 24,951
1,373 64,617 -

Figure 3. Pictures taken from a ‘‘failed’’ experiment: The melt plug with a diameter of 10 cm was
deformed but not fragmented. (a) Upper side of the plug, with a cracked surface indicating a brittle
reaction. (b) Lower side of the plug. In its middle the ceramic lid that sealed the gas inlet is visible. The
smooth surface with elongated vesicles displays a ductile deformation behavior.
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(Figure 5). Systematic variation of the driving pressure
between 3 and 6 MPa yielded an increasing amount of
fragments with increasing driving pressure. The grain size
distribution, however, did not change with changing pres-

sure within the statistical error. Using the BET method
(nitrogen sorption), the total surface of the produced frag-
ments was determined for the grain size fractions <360 mm.
Application of standard density (DIN 18 124) and porosity

Figure 4. (top and middle) SEM pictures of experimental (artificial) and natural fragments of AMS and
AST. (bottom) Results of EDX analysis of fresh glass surfaces of both compositions.
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(DIN 18 125 T1) correction results in the total fracture
surface. Because of the self-similarity of shapes within the
ash fraction and known size fraction densities, the specific
fracture surface (SFS) can be calculated for the full grain
size range from the granulometric data (Table 2).
[18] From the pressure and force signals (Figure 6) the

repulsion force acting on the crucible and the maximum
driving pressure acting on the melt can be extracted within
time increments of 10 ms. In all experimental runs (AMS
and AST samples and different driving pressures) that
resulted in fragmentation of the melt, the respective signal
of the seismometer shows the onset (t1) of microseismics
connected to the early pressurization history and the onset
of a strong seismic signal (t2) connected to the peak of
driving pressure. The records of the high-speed video
system were synchronized with the data recording.
Figure 7 shows three frames as an example: A at the onset
of microseismics (i.e., t1 in Figure 6), B at the end of

fragmentation of the melt plug (i.e., t2 in Figure 6), and C in
the early stage of the ejection of the melt. The respective
recording of the driving pressure shows the timing of the
frames. Again, this example is representative for all experi-
ments that resulted in fragmentation of the melt plug. From
the high-speed video records the speed of ejection can be

Figure 5. Plot of the grain size distributions of experi-
mentally produced fragments of AMS and AST.

Table 2. Grain-Size-Dependent Specific Fracture Surface of the

Experimentally Produced Fragments

Fraction, mm SFS AMS, m2 kg�1 SFS AST, m2 kg�1

BET Measurements

>32 527.3 453.9
>63 454.9 418.8
>90 394.5 348.9
>125 304.2 339.1
>180 289.1 249.9
>250 267.2 234.4
>360 187.5 162.2

Model Calculations

>500 74.2 60.4
>710 52.3 42.4
>1000 36.1 30.0
>1410 26.5 21.7

Figure 6. Example of the measured physical parameters.
(top) Signal of the pressure transducer, (middle) signal of
the force transducer, and (bottom) signal of the seism-
ometer. The onset of deformation is marked by t1 and
related to the onset of microseismics; the onset of
fragmentation is marked by t2 and related to the maximum
driving pressure.
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obtained. In Figure 8 the deformation history of the melt
plug is displayed by a typical force transducer signal.
Deformation starts at t1 (corresponding to t1 in Figure 6 at
the onset of microseismics), and ends with the total frag-
mentation of the plug at maximum driving pressure at t2
(corresponding to t2 in Figure 6). From t2 on, the fragments
are accelerated by the expanding gas until the two-phase
system reaches the orifice of the crucible (‘‘shot-gun’’
physics). The maximum acceleration at t3 marks the ejection
from the crucible.

6. Determination and Validation of the Strain
Rate

[19] The cylindrical experimental design (Figure 1)
allows the calculation of the strain rate _e. The force
transducer signal captured before the fragmentation event
(Figure 8) represents the accelerated movement of the

nonfragmented melt plug, while it is still connected to the
crucible wall. The deformation of the melt plug [Schowalter,
1978] now can be described as an extensional flow by

_e ¼
1

L

dL

dt
ð15Þ

where L denotes the time-dependent length of a volume
element. From experimental observations (e.g., Figure 3)
the following deformation geometry can be assumed,
representing the best fit to the observed curvatures

z1 rð Þ ¼ a1r
2 þ Z1 z0 rð Þ ¼ a0r

3 þ Z0 ð16Þ

where z1(r) describes the downside and z0(r) the upside
surface of the plug with the central distance r, the downside
apex Z1, the upside apex Z0, and the geometry coefficients a

Figure 7. Example of the high-speed video recordings. (a–c) State of the experiment at the times
marked A, B, and C in Figure 7 (bottom), showing the signal of the pressure transducer. Figure 7a
corresponds to t1, i.e., onset of deformation within the crucible, Figure 7b corresponds to t2, i.e., at
fragmentation and opening of the system (also see Figure 6), and Figure 7c shows a situation during the
ejection of the fragmented melt plug.
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(see Figure 9). The boundary conditions at the crucible wall
are z1(R) = 0 and z0(R) = h, with the initial plug height h. For
the geometry coefficients this results in

a1 ¼ � Z1

R2
a0 ¼

h� Z0

R3
ð17Þ

with the crucible radius R. Inserting equation (17) in
equation (16) results in

z1 rð Þ ¼ Z1 1� r

R

� �2
� �

z0 rð Þ ¼ h� Z0ð Þ r

R

� �3

þ Z0 ð18Þ

As the melt plug volume V can be treated as constant before
fragmentation, we obtain

const ¼ pR2h ¼ V0 � V1 ¼
Z

R

0

2prz0 rð Þdr �
Z

R

0

2prz1 rð Þdr ð19Þ

where V0 and V1 are volumes corresponding to the surfaces
given in equation (16).
[20] Now the position of the downside apex can be

described by

Z1 ¼
6

5
Z0 � hð Þ ð20Þ

The maximum strain rate now can be described as the time-
dependent position of the apexes by

_e r¼0;tð Þ ¼
_Z0 � _Z1

Z0 � Z1
¼

_Z0

Z0 � 6h
ð21Þ

From the force transducer signal the momentum P can be
calculated and compared to the momentum calculated from
the geometry described above by

P tð Þ ¼
Z

F tð Þdt ¼
Z

r_zdV

¼ 2pr

Z

1

2
_z0 rð Þ þ _z1 rð Þ

 �

r z0 rð Þ � z1 rð Þ

 �

dr ð22Þ

where F denotes the measured repulsion force, r is the
density of the melt, and _z is the mean velocity of the melt
plug at the distance r. Integration of equation (22) over time
yields a quadratic equation with a solution for Z:

Z0 ¼ h �21�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

441þ 400

3

1

Mh

Z

Pdt

s
 !

ð23Þ

Here M denotes the total mass of the melt plug. Inserting
equation (23) in equation (21) the maximum strain rate can
be calculated and the problem is solved.
[21] We calculated _e for AMS with 50 s�1 and for AST

with 150 s�1. This result can be validated using equation
(14) to calculate the stress intensity factor I. The mean
particle diameter s0 can be extracted from the grain size
analysis of the experimentally produced particles and is
defined as the size fraction that contains the highest amount
of newly created surface. In the case of AMS s0 is 280 mm,
for AST samples 180 mm. For both materials a speed of
sound of 1800 m s�1 was assumed (porous magma). The
resulting stress intensity factors I are 3.0 � 102 N m3/2 for
AMS and 4.5 � 102 N m3/2 for AST. These values are in
good agreement with respective stress intensity factors for
porous media at high temperatures [Sih, 1973; Shan and
Leng, 1999; Steen, 1999].

7. Energy Considerations

[22] The products of the experiments are practically
identical to the products from the investigated deposits in
terms of grain size, grain morphology, and chemical com-
position. The differences between the natural products AMS
and AST can also be found in their experimental analogues,
especially the grain size distribution of the experimental

Figure 8. High-resolution plot of an example of force
(straight line) and pressure (stippled line) signals during a
fragmentation experiment. The onset of deformation is
marked by t1 and related to the onset of deformation (also
see Figures 6 and 7), the onset of fragmentation is marked
by t2 and related to the maximum driving pressure, the
maximum acceleration of the fragmented system at the
orifice of the crucible is marked by t3.

Figure 9. Schematic drawing of the geometric parameters
used for calculation of the strain rate (also see Figure 1).
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samples mirrors the data from literature [De Gennaro et al.,
1999; Dellino et al., 2001]: in both curves the AST samples
display a significant shift to smaller grain sizes, whereas the
general shapes of the distribution curves are very similar. As
the variation of driving pressure does not significantly
change the grain size distribution, these differences can be
assigned to different material properties of the magmas prior
to fragmentation.
[23] The fragmentation energy (Efrag) can be calculated

from the measured pressure, force, and ejection speed data
with the use of

Efrag ¼ Etotal � Ekin þ Eseis þ Esonð Þ ð24Þ

where Etotal denotes the total kinetic energy acting on the
melt plug, Ekin the energy of movement (i.e., deformation
and ejection of the plug mass), Eseis the energy released as
shock waves and elastic waves, and Eson is the acoustic
energy. The amount of acoustic energy released during
comparable subaerial blast operations is well known from
mining engineering [e.g., Ex and Schmücker, 2000] and
cannot exceed 5% of Etotal. Because of this minor
importance and because of the large experimental effort
needed for this measurement in a complex acoustic
environment, the acoustic energy was neglected for our
calculations. In the case of submarine explosions, however,
the proportional importance of Eson can be much higher,
because of the incompressible coupling and the much lower
acoustic impedance between magma and water.
[24] Etotal can be expressed by the work of compression

W = Dp V [J], and calculated from the recorded driving
pressure. The record of the repulsion force transducer
contains (Ekin + Eseis) [Zimanowski et al., 1997a]. Using
the high-speed video recordings, Ekin can be obtained from
the maximum ejection speed of the plug mass. Thus Eseis

can also be calculated. For the case of AMS this results in
50% EFrag, 30% Ekin, and 20% Eseis, for AST in 75% EFrag,
15% Ekin, and 10% Eseis.
[25] The specific shear stress, i.e., the energy needed for

the generation of new surface, can now be expressed as the
ratio between EFrag and the total fracture surface. This
calculation results in (69 ± 7) J m�2 for AMS and (392 ±
26) J m�2 for AST. The experimental AST melt was found
to be more than five times ‘‘stronger’’ than the experimental
AMS melt! The apparent Newtonian viscosity of AMS
melt, however, was found to be significantly higher than
the viscosity of AST melt. This, at least in the investigated
case, shows that Newtonian viscosity measurements are not
useful to characterize the brittle-mode fragmentation behav-
ior of magma. On the other hand, the granulometric field
observations (see above) are in good agreement with our
experimental results.
[26] Combining the specific shear stress and the SFS

(Table 2), the specific fragmentation energy (in J kg�1)
can be calculated for each grain size fraction. If the total
mass of the deposit of one explosive e and the granulo-
metric data is available, EFrag for this eruption can be
calculated. In first approximation [Dellino, unpublished
data] this calculation results in 8.7 � 1013 J for the AMS
and 7.7 � 1013 J for the AST eruption in the Campi Flegrei
Caldera. If the energy dissipation during these eruptive
events can be assumed to be similar as in the experiments

(see above), the totally released kinetic energy also can be
approximated: 17.4 � 1013 J, i.e., 40 kt TNT equivalent for
AMS and 10.27 � 1013 J, i.e., 25 kt TNT equivalent for
AST. In both cases, this represents significantly less than
1% of the total initial thermal energy.

8. Conclusions and Outlook

[27] The reconstruction of past eruptions from their
deposits, together with surveillance of the ongoing activity,
represents a major tool for hazard assessment and civil
defense in areas threatened by active volcanoes. The target
of our work was to establish a link between field work and
experimental determination of material properties, fragmen-
tation dynamics, and energy balances. Thickness, disper-
sion, and grain size distribution are probably the best known
parameters of volcanic deposits worldwide. Making use of
basic thermodynamics and standardized material property
measurements, the methodology presented here should be
applicable in many cases to infer the kinetic energy release
of selected explosive eruptions. Furthermore, the recon-
struction of strain rates from grain size data yields infor-
mation on the dynamics within the conduit prior to
fragmentation. Making use of these data for the refinement
of existing numerical simulations should increase the qual-
ity of risk prediction and hazard management.
[28] Experimental data, theoretical considerations, and

field data of the pyroclastic deposits, selected for this study
from recent Campi Flegrei eruptions, result in a consistent
picture of the physical conditions leading to the their
production. If the grain size distribution of volcanic ash of
deposits from explosive magmatic eruptions (and also
phreatomagmatic eruptions with a low host rock content)
can be reconstructed and basic material properties are
known, the maximum strain rates acting on the magma
prior to fragmentation can be calculated. I a first approxi-
mation this can be done using a mean size to characterize
the degree of fragmentation of one deposit. In contrast to the
use of mean grain sizes in the context of transport and
sedimentation, we propose to define this mean size in
respect to the size fraction that contributes the largest
increase in surface.
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