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Chapter 1

Introduction

The concept of an invariant subspace is the basic tool in the structure theory
of linear dynamical systems. Consider for example a linear finite-dimensional
time-invariant ODE

ẋ = Ax , (1.1)

where x ∈ Rn and A ∈ Rn×n. An invariant subspace of this system is a linear
subspace V ⊂ Rn with the property that every trajectory starting in V will
stay in V in the future. Apparently the system can be restricted to such a
subspace. As is well known, the invariant subspaces for the system (1.1) are
exactly the invariant subspaces of the linear operator A : Rn −→ Rn, i.e. the
subspaces V ⊂ Rn with AV ⊂ V .

What is called the geometric approach to linear systems theory is the attempt
to apply the same idea to linear control systems. Consider, for example, a
linear finite-dimensional time-invariant control systems in state space form

ẋ = Ax+Bu ,

y = Cx .
(1.2)

A subspace V of the state space is called (A,B)-invariant or controlled invari-
ant, if for every starting point in V there exists a control input such that the
corresponding trajectory stays in V in the future. One of the most important
results of linear systems theory says that such a control input can always be
chosen in a special form, namely constant state feedback u(t) := Fx(t). In al-
gebraic terms this means that V is (A,B)-invariant if and only if there exists
F such that V is (A + BF )-invariant, i.e. (A + BF )V ⊂ V holds. Applying
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1 Introduction

constant state feedback makes the (A,B)-invariant subspace dynamically in-
variant, such that the control system can be restricted to the subspace. An
equivalent condition is AV ⊂ V+ImB, i.e. that V is A-invariant up to ImB.

While (A,B)-invariant subspaces address the input side of a control system
an analogous formation of a concept on the output side results in the notion
of (C,A)-invariant or conditioned invariant subspaces. A subspace V of the
state space is called (C,A)-invariant, if A(V ∩ KerC) ⊂ V holds. This is
the case if and only if there exists J such that V is (A − JC)-invariant,
i.e. (A − JC)V ⊂ V holds. Apparently, a (C,A)-invariant subspace can be
made dynamically invariant by applying constant output injection. Then the
control system can be restricted to the subspace.

From the point of view of linear algebra the concepts of (A,B)-invariance and
(C,A)-invariance are dual to each other. A subspace V is (A,B)-invariant
(i.e. controlled invariant) if and only if its orthogonal complement V⊥ with
respect to the standard inner product is (B∗, A∗)-invariant (i.e. conditioned
invariant). In system theoretic terms this means that a subspace is (A,B)-
invariant with respect to the system (1.2) if and only if its orthogonal com-
plement is (C,A)-invariant with respect to the dual system. In view of du-
ality, restrictions to (A,B)-invariant subspaces translate to corestrictions to
(C,A)-invariant subspaces, i.e. restrictions to the factor space with respect
to the given subspace.

A natural question now is what can be said about the set of all invariant sub-
spaces for a given fixed system. In the case of a linear ODE of the form (1.1),
i.e. in the case of a linear operator A, the geometry of the set of A-invariant
subspaces is well understood. It can easily be seen to be a compact algebraic
subvariety of the Grassmann manifold it is part of. Most of the literature
in the field treats the more general case of A-invariant partial flags, which
includes the case of A-invariant subspaces as the special case of flag length
one. Steinberg [Ste76] obtained some results about the dimension of the va-
riety and the number of irreducible components. His results imply that the
variety is connected when A is nilpotent. For the case of flag length one,
connectedness was already proved by Douglas and Pearcy [DP68]. Shimo-
mura [Shi80] constructed a stratification of the variety into a finite number
of affine spaces indexed by a Young diagram. In [Shi85] he studied the
irreducible components of these strata. In the case of flag length one Shay-
man [Sha82] constructed a stratification of the variety in a finite number of
smooth submanifolds of the Grassmannian. The strata consist of the sub-
spaces with fixed cyclic structure, i.e. fixed Jordan type of the restriction of
A to the subspace. Shayman showed that these strata in general are neither
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1 Introduction

unions nor intersections of Schubert varieties. Helmke and Shayman [HS87]
generalized these results to arbitrary flag length. Furthermore, they showed
that each Jordan stratum has a biflag manifold as a strong deformation re-
tract, which allows to identify the homology type of the strata as that of a
product of Grassmannians. In the case of flag length one, the biflag manifold
is a generalized partial flag manifold. Helmke and Shayman used the Schu-
bert cell decomposition of that flag manifold to calculate the Betti numbers
of the Jordan strata in this case.

The structure of the set of all (C,A)-invariant subpaces for a given fixed con-
trol system is considerably more complicated and not fully understood, yet.
In a remarkable paper Hinrichsen, Münzner and Prätzel-Wolters [HMP81]
associated to each (C,A)-invariant subspace a module of Laurent series and
parametrized these modules using their so-called Kronecker-Hermite bases.
This leads to a parametrization of (C,A)-invariant subspaces, which depends
on the restriction indices, i.e. the observability indices of the restriction of the
pair (C,A) to the subspace. This paper also contains a rudimentary structure
theory for (C,A)-invariant subspaces. In unpublished work based on these
ideas Münzner constructed a stratification of the set of (C,A)-invariant sub-
spaces into smooth submanifolds of the Grassmannian. He also constructed
cell decompositions of these strata.

Polynomial descriptions of (A,B)-invariant and (C,A)-invariant subspaces
have also been derived by Fuhrmann and Willems [FW79, FW80], Emre and
Hautus [EH80] and Fuhrmann [Fuh81], focussing rather on characterizations,
not so much on parametrization.

During the last five years there has been a sort of a revival of interest in
parametrization issues in geometric control theory. Fuhrmann and Helmke
[FH97, FH00, FH01] constructed a smooth map from the manifold of similar-
ity classes of µ-regular controllable pairs of the appropriate size onto the set
Vk(C,A) of all (C,A)-invariant subspaces of codimension k of a fixed control
system of the form (1.2). They showed that this map restricts to a diffeomor-
phism between the submanifold of µ-tight pairs and the subset Tk(C,A) of
tight subspaces. The map is given in terms of kernels of truncated and per-
muted reachability matrices (hence the name kernel representation), whose
entries are directly related to corestrictions of the given control system to the
(C,A)-invariant subspaces under consideration. The exact relation is stated
and proved in this thesis, see the discussion below Proposition 5.30. Fur-
thermore, analogous mappings between sets of restricted system equivalence
classes of controllable triples and sets of almost (C,A)-invariant subspaces are
constructed (Sections 5.2 and 5.3). Almost (C,A)-invariant subspaces were
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1 Introduction

introduced in a series of papers by Willems [Wil80, Wil81, Wil82]. They sat-
isfy the invariance condition only up to an arbitrarily small ε (in the metric
of the state space).

Ferrer, F. Puerta and X. Puerta [FPP98, FPP00] constructed a stratification
of Vk(C,A) into smooth submanifolds of the Grassmann manifold of codimen-
sion k subspaces. These so called Brunovsky strata consist of the subspaces
with fixed restriction indices. F. Puerta, X. Puerta and Zaballa [PPZ00]
explicitely described coordinate atlases for the strata, in [PPZ01] they con-
structed cell decompositions. While kernel representations are related to
corestrictions, these are not used in [FPP98, FPP00, PPZ00, PPZ01]. In-
stead, the stratification and cell decomposition results of Ferrer, F. Puerta,
X. Puerta and Zaballa make use of restrictions of control systems to (C,A)-
invariant subspaces. They lead to image representations, i.e. the subspaces
are parametrized via columnspans of block Toeplitz type matrices. Such de-
scriptions have also been derived by Fuhrmann and Helmke [FH00, FH01],
using submodules of polynomial models to describe (C,A)-invariant sub-
spaces.

X. Puerta and Helmke [PH00] showed that the Brunovsky strata have gen-
eralized flag manifolds as strong deformation retracts, thus deriving effective
formulas for the Betti numbers of the strata. Inspired by this paper, the
stratification and cell decomposition results of Ferrer, F. Puerta, X. Puerta
and Zaballa are re-derived and simplified in this thesis in the special case
of tight subspaces using a different approach involving Kronecker forms and
unipotent transformations (Chapter 6). In this way the known cell decom-
position of Tk(C,A) is shown to be induced by a Bruhat decomposition of
a generalized flag manifold. Furthermore, the adherence order of the cell
decomposition is identified.

One of the difficulties arising in the study of the geometry and the topology
of Vk(C,A) is that this set is in general not compact, i.e. not closed in
the Grassmannian. A first attempt at obtaining a compactification might
be to extend the set by including all almost (C,A)-invariant subspaces. An
example due to Özveren, Verghese and Willsky [ÖVW88] shows that this
attempt fails by constructing a subspace in the closure of all (C,A)-invariant
subspaces which is not almost (C,A)-invariant. With a different approach it
is however possible to construct a compactification, at least in some special
cases. The corresponding result is not part of this thesis, but will appear in
a joint paper with Helmke and Fuhrmann [THF02].

While one of the most important applications of (almost) (A,B)-invariant
subspaces is the solution of the (almost) disturbance decoupling problem, in
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1 Introduction

the dual setting this role is played by partial observers. A partial observer is
a control system which reconstructs part of the state of the observed system
from the input and output data of that system. The literature on partial
observers splits into two lines of research. One part is mainly concerned with
existence results, therefore the theory is formulated in the context of factor
spaces with respect to (almost) invariant subpaces. The second approach
is more application-oriented, the main focus lies on characterization results
in terms of matrix equations. Since characterizations of partial observers is
what is needed for parametrization issues, the second approach is chosen in
this work. Unfortunately the literature in this field is a kind of fragmentary
and contains a number of flaws and misunderstandings. Hence the whole
theory is redeveloped from scratch, here. Furthermore, the characterization
results are extended to the almost invariant case using descriptor systems
as observers (Section 3.2.1). Concerning parametrization issues this new
approach seems to be more fruitful than the usual PID-observer approach
(cf. Section 5.7).

This thesis is organized as follows.

In Chapter 2 the definitions and basic properties of various kinds of (almost)
invariant subspaces are presented. This includes decomposition results, algo-
rithms for computing such subspaces and (co)restrictions of control systems
to such subspaces. The (dual) Brunovsky form and the (dual) Kronecker
form of a control system is explained.

In Chapter 3 dynamic characterizations of (almost) (C,A)-invariant sub-
spaces in terms of observers are derived. A structure theory for observers
is developed. New results in this chapter are the characterization of almost
(C,A)-invariant subspaces in terms of singular observers (Section 3.2.1), the
characterization of tracking output observers (Section 3.2.3) and the charac-
terization of asymptotic observers for functions of the state of non control-
lable systems (Theorem 3.57).

Chapter 4 contains some basic topological facts about moduli spaces of lin-
ear systems. New results in this chapter are the µ-partial Kalman embed-
ding (Proposition 4.4) and the vector bundle structure of the set of (C,A)-
invariant subspaces plus friends over the moduli space of tracking observer
parameters (Section 4.3).

In Chapter 5 kernel representations of almost (C,A)-invariant subspaces are
used for parametrization issues. The link to partial realization theory and
to the restriction pencil (see Jaffe and Karcanias [JK81]) is explained. New
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1 Introduction

results in this chapter are the kernel representations of almost observability
and almost (C,A)-invariant subspaces (Sections 5.2 and 5.3), the characteri-
zation of observability subspaces in this context (Section 5.4), the link to the
restriction pencil (Section 5.5) and the connection between kernel represen-
tations, corestrictions and observers (Section 5.7).

The aim of Chapter 6 is to construct a Bruhat type cell decomposition of cer-
tain sets (Brunovsky strata) of (C,A)-invariant subspaces. The construction
uses image representations of these subspaces. New results in this chapter are
the construction of Kronecker strata of tight (C,A)-invariant subspaces (The-
orem 6.12), the equivalence of the reverse Bruhat order and the Kronecker
order on any S(m)-orbit of combinations (Section 6.2) and the identification
of the Kronecker cell decomposition of a Brunovsky stratum as being induced
by the Bruhat decomposition of a generalized flag manifold (Proposition 6.33
and Theorem 6.34).

In Appendix A some facts about orbit spaces of Lie group actions are pre-
sented. A somehow best possible criterion for the orbit space to be a manifold
is given. The meaning of “best possible” is explained by an example.

Appendix B contains a sufficient criterion for a (topological) vector bundle to
be a differentiable vector bundle. It can also be seen as a sufficient criterion
for the preimage of a smooth submanifold to be again a smooth submanifold.
Quotients of vector bundles with respect to Lie group actions are considered.
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Chapter 2

Almost invariant subspaces

In this chapter, the definitions and basic properties of various kinds of in-
variant subspaces are presented. These invariant subspaces are linear sub-
spaces of the state space Fn, F = R,C, of the linear finite-dimensional
time-invariant control system

ẋ = Ax+Bu

y = Cx ,
(2.1)

where A ∈ Fn×n, B ∈ Fn×m and C ∈ Fp×n. Here x ∈ Fn is referred to
as the state, u ∈ Fm as the control or input and y ∈ F p as the output of
system (2.1), respectively.

2.1 Almost (A, B)-invariant subspaces

The concept of almost (A,B)-invariant subspaces was introduced by Willems
[Wil80, Wil81]. He generalized the concept of (A,B)-invariant subspaces
introduced by Basile and Marro [BM69] and by Wonham and Morse [WM70].
An extensive treatment of (A,B)-invariant subspaces can be found in the
books by Wonham [Won74] and Basile and Marro [BM92]. A good source
for further results on almost (A,B)-invariant subspaces is Trentelman’s thesis
[Tre85]. All the results presented in this section, except for some of the
results on feedback transformations (subsection 2.1.2) and (co)restrictions
(subsection 2.1.3), can be found in that work. Further references will be
given on the spot.
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2 Almost invariant subspaces

The definitions in this section are formulated from the behavioral point of
view, i.e. using solution trajectories rather than state space vectors (cf.
Polderman and Willems [PW98]). In the behavioral approach to system
theory a system is regarded as a subset of a function space, the behavior ,
containing the input/state/output-trajectories defined by equations of the
form (2.1). The state part of the behavior defined by (2.1) is the set

Σx(A,B) := {x ∈ Cabs(R,Fn) | ∃x0 ∈ F
n ∃u ∈ Lloc1 (R,Fm) ∀t ∈ R

x(t) = eAt x0 +

t∫

0

eA(t−τ)Bu(τ)dτ} ,

where Cabs(R,F i) and Lloc1 (R,F i) denote the spaces of absolutely continuous
and locally integrable functions f : R −→ F i, respectively.

Remark 2.1. It would not change the subsequent notion of invariance if x was
required to lie in Lloc1 (R,Fn), with the defining variation of constant equation
of Σx(A,B) assumed to hold almost everywhere. Since any linear subspace
V of Fn is closed, any absolutely continuous trajectory which does not lie in
V in time t0 in fact does not lie in V for a time set of measure greater than
zero (this time set necessarily contains a non empty interval around t0).

Definition 2.2. A linear subspace V of the state space Fn of system (2.1)
is called (A,B)-invariant , if for every starting point x0 ∈ V there exists at
least one trajectory x ∈ Σx(A,B) satisfying x(0) = x0 and x(t) ∈ V for all
t ∈ R.

A linear subspace Va of the state space Fn of system (2.1) is called al-
most (A,B)-invariant , if for every starting point x0 ∈ Va and every ε > 0
there exists at least one trajectory x ∈ Σx(A,B) satisfying x(0) = x0 and
dist(x(t),Va) < ε for all t ∈ R.

PSfrag replacements

V x0

R
x1
Ra

ε
Va

PSfrag replacements

V x0

R
x1
Ra

ε ε

Va

Figure 2.1: (almost) (A,B)-invariant subspaces
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2.1 Almost (A,B)-invariant subspaces

The (A,B)-invariant subspaces are exactly those subspaces, to which the
control system can be restricted (cf. Section 2.1.3). Thus (A,B)-invariant
subspaces correspond uniquely to linear subspaces of the behavior Σx(A,B).
There are the following geometric and feedback characterizations.

Proposition 2.3. A subspace V is (A,B)-invariant if and only if AV ⊂ V+
ImB or, equivalently, if and only if there exists a feedback matrix F ∈ Fm×n

such that AFV ⊂ V, where AF = A+BF . Such an F is called a friend of V.

To obtain similar characterizations for almost (A,B)-invariant subspaces, it
is convenient to introduce another concept, first.

Definition 2.4. A linear subspace R of the state space Fn of system (2.1)
is called a controllability subspace, if for every pair of points x0, x1 ∈ R there
exists a time T > 0 and at least one trajectory x ∈ Σx(A,B) satisfying
x(0) = x0, x(T ) = x1 and x(t) ∈ R for all t ∈ R.

A linear subspace Ra of the state space F
n of system (2.1) is called an almost

controllability subspace, if for every pair of points x0, x1 ∈ R there exists a
time T > 0 such that for every ε > 0 there exists at least one trajectory
x ∈ Σx(A,B) satisfying x(0) = x0, x(T ) = x1 and dist(x(t),Ra) < ε for all
t ∈ R.

PSfrag replacements

V x0R

x1
Ra

ε
Va

PSfrag replacements

V x0

R

x1

Ra

εε

Va

Figure 2.2: (almost) controllability subspaces

Controllability subspaces were introduced by Wonham and Morse [WM70],
almost controllability subspaces by Willems [Wil80, Wil81]. Note, that T
depends on x0 and x1 but not on ε in the definition of almost controllability
subspaces. The controllability subspaces are exactly those (A,B)-invariant
subspaces, such that the restricted system is controllable (cf. Section 2.1.3).
Note further, that every almost controllability subspace is almost (A,B)-
invariant. There are the following feedback characterizations.
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2 Almost invariant subspaces

Proposition 2.5. A subspace R is a controllability subspace if and only if
there exist a feedback matrix F ∈ Fm×n and a subspace B1 ⊂ ImB such that

R = B1 + AFB1 + · · ·+ An−1
F B1 .

A subspace Ra is an almost controllability subspace if and only if there exist
a feedback matrix F ∈ Fm×n and a chain of subspaces ImB ⊃ B1 ⊃ · · · ⊃ Br
such that

Ra = B1 + AFB2 + · · ·+ Ar−1
F Br .

The chain can be chosen such that the sums are direct sums and dimBi =
dimAi−1

F Bi for i = 1, . . . , r.

Let
R(A,B) := ImRn(A,B) := Im

(

B AB . . . An−1B
)

denote the reachable subspace of system (2.1). Since R(A + BF,B) =
R(A,B) for every feedback matrix F ∈ Fm×n, any (almost) controllabil-
ity subspace is contained in the reachable subspace.

To generalize the well known spectral assignability property of controllability
subspaces to the almost controllability case, the notion of Cg ⊂ C, a ’good’
part of the complex plane, is needed. See Trentelman’s thesis [Tre85, Section
2.7] for a reasoning on this. Cg denotes any subset of C which is symmetric
(i.e. λ ∈ Cg ⇔ λ̄ ∈ Cg, where λ̄ denotes the complex conjugate of λ)
and contains a left semi infinite real interval (i.e. there exists a number
c ∈ R such that ] − ∞, c] ⊂ Cg). The prototype of such a ’good’ part is
C− = {z ∈ C | Re z < 0}.

Proposition 2.6. A subspace R is a controllability subspace if and only if
for every monic polynomial p of degree dimR there exists a feedback matrix
F ∈ Fm×n such that AFR ⊂ R and the characteristic polynomial of AF |R is
equal to p.

A subspace Ra is an almost controllability subspace if and only if for every
set Cg and every ε > 0 there exists a feedback matrix F ∈ Fm×n such that
dist(eAF t x0,Ra) < ε for all t ≥ 0 and x0 ∈ Ra, while the spectrum of
AF |R(A,B) lies in Cg.

The use ofR(A,B) rather thanRa in the almost part of this characterization
is due to the fact that a restriction of AF toRa is not well definable sinceRa is
not necessarily (A,B)-invariant. Now it is possible to formulate a geometric
and a feedback characterization of almost (A,B)-invariant subspaces.

16



2.1 Almost (A,B)-invariant subspaces

Proposition 2.7. A subspace Va is almost (A,B)-invariant if and only if
there exist an (A,B)-invariant subspace V and an almost controllability sub-
space Ra such that Va = V + Ra or, equivalently, if and only if for every
ε > 0 there exists a feedback matrix F ∈ Fm×n such that dist(eAF t x0,Va) < ε
for all t ≥ 0 and x0 ∈ Va.

Further insight into the structure of almost (A,B)-invariant subspaces is
achieved by introducing the concepts of coasting and sliding subspaces due
to Willems [Wil80]. They provide a tool to eliminate the ambiguity resulting
of the fact that controllability subspaces are both (A,B)-invariant and almost
controllability subspaces.

Definition 2.8. A linear subspace C of the state space Fn of system (2.1)
is called coasting , if for every starting point x0 ∈ C there exists exactly one
trajectory x ∈ Σx(A,B) satisfying x(0) = x0 and x(t) ∈ C for all t ∈ R, i.e.
if C is (A,B)-invariant and x1, x2 ∈ Σx(A,B), x1(0) = x2(0), x1(t) ∈ C and
x2(t) ∈ C for all t ∈ R imply x1 = x2.

A linear subspace S of the state space Fn of system (2.1) is called sliding ,
if S is an almost controllability subspace and x ∈ Σx(A,B) and x(t) ∈ S for
all t ∈ R imply x(t) = 0 for all t ∈ R.

Coasting and sliding subspaces can be understood as (A,B)-invariant sub-
spaces or almost controllability subspaces, respectively, which contain no
nontrivial controllability subspace. To formulate this property in mathe-
matically correct terms, the upper semilattice structure of the set of (A,B)-
invariant subspaces contained in a given subspace is presented next.

Proposition 2.9. The sum of any two (A,B)-invariant subspaces is an
(A,B)-invariant subspace. Let any linear subspace U of the state space F n of
system (2.1) be given. The set of all (A,B)-invariant subspaces contained in
U forms an upper semilattice with respect to ⊂,+, hence it admits a supre-
mum, the maximal (A,B)-invariant subspace contained in U , which will be
denoted by V∗(U).

The analogous result holds for almost (A,B)-invariant subspaces, control-
lability subspaces and almost controllability subspaces. The corresponding
suprema will be denoted by Va

∗(U), R∗(U) and R∗a(U), respectively.

Now it is possible to formulate the following charaterization of coasting and
sliding subspaces.
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2 Almost invariant subspaces

Proposition 2.10. A subspace C is coasting if and only if C is (A,B)-
invariant and R∗(C) = {0} holds.

A subspace S is sliding if and only if S is an almost controllability subspace
and R∗(S) = {0} holds.

Using these concepts, Proposition 2.7 can be refined as follows.

Proposition 2.11. For every almost (A,B)-invariant subspace Va there exist
a coasting subspace C and a sliding subspace S such that

Va = C ⊕R⊕ S ,

R = R∗(Va) ,

C ⊕R = V∗(Va) and

R⊕ S = R∗a(Va) .

If R∗(Va) = {0} then C and S are uniquely determined.

Note the following consequence of this decomposition result: If an almost
(A,B)-invariant subspace is both (A,B)-invariant and an almost controlla-
bility subspace, then it is a controllability subspace.

Remark 2.12. Apparently the notion of (almost) (A,B)-invariance depends
on the function space the behavior defined by (2.1) lives in. It has been
shown by Willems [Wil81] that (A,B)-invariance with respect to the space
of distributions is the same as almost (A,B)-invariance as it is presented
here. For (almost) controllability subspaces a similar result holds.

Computations done by the author indicate that using hyperfunctions with
compact support (see Morimoto [Mor93]) instead of distributions does not
change this picture. Whether the use of hyperfunctions with non compact
support would generate a new notion of invariance is an open problem.

2.1.1 Subspace algorithms I

In this section two algorithms for computing some types of maximal invariant
subspaces are presented. Both algorithms (ISA and ACSA) were already used
by Wonham [Won74]. The meaning of the limit of ACSA was discovered by
Willems [Wil80].
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Proposition 2.13. Consider an arbitrary linear subspace U of the state space
Fn. Then V∗(U) coincides with the limit V∞(U) of the invariant subspace
algorithm:

V1(U) = U ,

V i+1(U) = U ∩ A−1(V i(U) + ImB) .
(ISA)

Note, that the sequence (V i(U))i∈N is nonincreasing. Hence the limit V∞(U)
exists.

Proposition 2.14. Consider an arbitrary linear subspace U of the state space
Fn. Then R∗a(U) coincides with the limit R∞(U) of the almost controllability
subspace algorithm:

R0(U) = {0} ,

Ri+1(U) = U ∩ (ARi(U) + ImB) .
(ACSA)

Here the sequence (Ri(U))i∈N0 is nondecreasing and contained in U . Hence
the limit R∞(U) exists. Using Proposition 2.11, similar results for controlla-
bility subspaces and almost (A,B)-invariant subspaces are achieved.

Proposition 2.15. Consider an arbitrary linear subspace U of the state space
Fn. Then

(1) R∗(U) = V∞(U) ∩R∞(U) = R∞(V∞(U)) = V∞(R∞(U)) and

(2) Va
∗(U) = V∞(U) +R∞(U) .

The preceding results can be used to obtain the following geometric charac-
terisations of coasting and sliding subspaces, respectively.

Proposition 2.16. A subspace C is coasting if and only if C is (A,B)-
invariant and R∞(C) = {0} or, equivalently, C ∩ ImB = {0} holds.

A subspace S is sliding if and only if S is an almost controllability subspace
and V∞(S) = {0} holds.

Proof. Let C be (A,B)-invariant, then V∗(C) = C and C is coasting if and
only if R∗(C) = {0} (Proposition 2.10). According to Propositions 2.15 and
2.13 this is the case if and only if R∞(C) = {0}. Since the sequence Ri(C) is
nondecreasing this is the case if and only if R1(C) = C ∩ ImB = {0}.

Let S be an almost controllability subspace with respect to the pair (A,B),
then R∗a(S) = S and S is sliding if and only if R∗(S) = {0} (Proposi-
tion 2.10). According to Propositions 2.15 and 2.14 this is the case if and
only if V∞(S) = {0}.
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2 Almost invariant subspaces

2.1.2 Feedback transformations

The results on controllability indices presented in the first part of this section
are due to Brunovsky [Bru70] and Wonham and Morse [WM72]. A nice
treatment of the subject can be found in the book by Wonham [Won74,
Chapter 5.7]. The results on Kronecker indices presented in the second part
of this section are due to Helmke [Hel82, Hel85].

Note that all types of invariant subspaces introduced in the first part of this
chapter depend only on the linear maps represented by the pair of matrices
(A,B) and have feedback characterizations. That is to say, these concepts
are invariant under feedback transformations

((T, F, S), (A,B)) 7→ (T (A+BF )T−1, TBS−1) ,

where F ∈ Fm×n is an arbitrary matrix and T ∈ Fn×n, S ∈ Fm×m are
invertible. In fact, T describes the choice of a basis in the state space Fn, S
describes the choice of a basis in the input space Fm, F describes constant
state feedback. All such transformations form a group, the feedback trans-
formation group, which acts on the set of controllable pairs (A,B). Let Ω
be the orbit space of this action. Two pairs belonging to the same orbit are
called feedback equivalent .

Proposition 2.17. There is a bijection from Ω onto the set of all lists of
integers κ = (κ1, . . . , κm) with κ1 ≥ · · · ≥ κm ≥ 0 and κ1 + · · ·+ κm = n.

Given a controllable pair (A,B), the corresponding numbers (κ1, . . . , κm) are
called the controllability indices of the pair.

Proposition 2.18. A controllable pair (A,B) with controllability indices
(κ1, . . . , κm) is feedback equivalent to the pair

A =


















0 1... ...... 1

0

...
0 1... ...... 1

0

︸ ︷︷ ︸

κ1
. . . ︸ ︷︷ ︸

κm


















and B =















0...
0
1

...
0...
0
1




















κ1

...





κm

.

This pair is said to be in Brunovsky canonical form. Actually, the Brunovsky
canonical form is a normal form for the feedback equivalence relation.
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For the pupose of parametrization or classification of invariant subspaces
(of any of the above types) of a given controllable system (2.1), it is some-
times convenient to assume that the system, i.e. the matrix pair (A,B),
is in Brunovsky canonical form. This can be done without loss of general-
ity. Note that the previous proposition implies that the number of nonzero
controllability indices is equal to rkB.

Helmke [Hel82] considered the action of the following subgroup of the feed-
back transformation group. A restricted feedback transformation is defined
by

((T, F, U), (A,B)) 7→ (T (A+BF )T−1, TBU−1) ,

where F ∈ Fm×n is an arbitrary matrix, T ∈ Fn×n is invertible and U ∈
Fm×m is unipotent upper triangular (i.e. U is invertible and upper triangular
with all diagonal entries equal to 1). The choice of a basis in the input space
Fm is thus restricted to unipotent transformations of the standard basis. All
such transformations form a group, the restricted feedback transformation
group, which acts on the set of all controllable pairs (A,B). Let Ω̂ be the
orbit space of this action. Two pairs belonging to the same orbit are called
restricted feedback equivalent .

Proposition 2.19. There is a bijection from Ω̂ onto the set of all unordered
lists of nonnegative integers K = (K1, . . . , Km) with K1 + · · ·+Km = n.

Given a controllable pair (A,B), the corresponding numbers are called the
Kronecker indices of the pair.

Proposition 2.20. A controllable pair (A,B) with Kronecker indices (K1,
. . . , Km) is restricted feedback equivalent to a pair of the form shown in Propo-
sition 2.18 but with block sizes K1, . . . , Km. This pair is said to be in Kro-
necker canonical form. Actually, the Kronecker canonical form is a normal
form for the restricted feedback equivalence relation.

Apparently the only difference between controllability indices and Kronecker
indices is that the former are ordered while the latter need not to be ordered.
The precise connection is as follows.

Proposition 2.21. Let the controllable pair (A,B) have controllability in-
dices (κ1, . . . , κm) and Kronecker indices (K1, . . . , Km). Then there exists a
permutation π ∈ S(m) such that

(K1, . . . , Km) = (κπ(1), . . . , κπ(m)) .
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2 Almost invariant subspaces

Proof. Let (AK , BK) be the Kronecker canonical form of (A,B). Then
(AK , BK) is restricted feedback equivalent, hence feedback equivalent to
(A,B). Therefore (AK , BK) is feedback equivalent to the Brunovsky canon-
ical form (AB, BB) of (A,B).

Let π−1 ∈ S(m) be a permutation that orders (K1, . . . , Km), i.e. Kπ−1(1) ≥
· · · ≥ Kπ−1(m). Let P

−1 be a permutation matrix that represents π−1 and let

P̂−1 be a permutation matrix that permutes the blocks in (AK , BK) in the
same way. Then (Â, B̂) = (P̂AKP̂

−1, P̂BKP
−1) is in Brunovsky canonical

form and feedback equivalent (in general not restricted feedback equivalent,
since P is in general not unipotent) to (AK , BK).

It follows that (Â, B̂) = (AB, BB) and (K1, . . . , Km) = (κπ(1), . . . , κπ(m)).

As a consequence of this statement the orbits of the feedback transforma-
tion group action (Brunovsky strata) decompose into orbits of the restricted
feedback transformation group action (Kronecker strata) and this decompo-
sition is parametrized by the permutations π ∈ S(m). In the dual setting of
Section 6.3 this fact will be used to identify a certain cell decomposition as
a Bruhat decomposition.

Remark 2.22. The (restricted) feedback transformation group also acts on
the set of all matrix pairs (A,B) ∈ Fn×n×Fn×m. The notion of (restricted)
feedback equivalence will also be used in the general case. A complete set of
feedback invariants is provided by the controllability indices together with
the invariant factors (uncontrollable modes) of (A,B), see e.g. Wolovich
[Wol74] for the details. For restricted feedback equivalence a corresponding
result seems to be unknown.

2.1.3 Restricted and corestricted systems I

In this section the meaning of ”restricting” and ”corestricting” system (2.1)
to a given (A,B)-invariant subspace V is clarified.

The notion of (co)restriction can be easily understood if one considers the
linear maps represented by the matrices A, B and so on. Given an (A,B)-
invariant subspace V , Proposition 2.3 asserts that there exists a feedback
matrix F such that (A + BF )V ⊂ V , i.e. V is an invariant subspace of the
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2.1 Almost (A,B)-invariant subspaces

linear map represented by AF = A+BF . But then the commutative diagram
of linear maps

Fm/B−1(V)
B̃

Fn/V
Ã

Fn/V

Fm
B

Fn

AF

Fn

B−1(V)
B̄

V
Ā

V

defines a restriction (Ā, B̄) and a corestriction (Ã, B̃) of the pair (A,B) to
V in terms of linear maps. Of course, both of them depend on the choice of
F . Let k = dimV and l = dimB−1(V). The matrix representations (Ā, B̄) ∈
Fk×k ×Fk×l and (Ã, B̃) ∈ F (n−k)×(n−k) ×F (n−k)×(m−l) of the (co)restriction
depend on the choice of a basis in V and B−1(V), also. More precisely, the
following holds.

Proposition 2.23. Let V be an (A,B)-invariant subspace. Any two ma-
trix representations of (co)restrictions of the pair (A,B) to V are feedback
equivalent.

Proof. Let (Ā1, B̄1) and (Ā2, B̄2) be two matrix representations of restrictions
of (A,B) to V with corresponding feedback matrices F1 and F2, respectively.
Since B̄1 and B̄2 do not depend on the choice of feedback, they represent the
same map B̄ : B−1(V) −→ V . Hence there exist invertible T ∈ F k×k and
S ∈ F l×l such that B̄2 = TB̄1S

−1.

Furthermore, (A+BF1)V ⊂ V and (A+BF2)V ⊂ V , hence B(F2−F1)V ⊂ V
and

(F2 − F1)V ⊂ B−1(V) .

It follows that

(A+BF2)|V = (A+BF1)|V + B̄(F2 − F1)|V . (2.2)

Let F̄ ∈ F l×k represent the map (F2 − F1)|V : V −→ B−1(V) in the basis
corresponding to (Ā1, B̄1). Then the map on the right side of equation (2.2)
is represented by Ā1 + B̄1F̄ in the basis corresponding to (Ā1, B̄1). On the
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2 Almost invariant subspaces

other hand the map on the left side of equation (2.2) is represented by Ā2 in
the basis corresponding to (Ā2, B̄2). It follows that Ā2 = T (Ā1 + B̄1F̄ )T

−1.

The result on corestrictions follows along the same lines.

Remark 2.24. Note that the restriction (Ā, B̄) of a controllable pair (A,B)
to V is controllable if and only if V is a controllability subspace, while the
corestriction (Ã, B̃) is always controllable. Note further that B̄ and B̃ are
both of full column rank if B has full column rank.

Corollary 2.25. The controllability indices of all matrix representations of
controllable restrictions (resp. corestrictions) coincide. They are called the
(co)restriction indices of (A,B) with respect to V.

The situation is even more convenient since there is a canonical choice for
the matrix representation of a controllable (co)restriction of the pair (A,B)
to V .

Proposition 2.26. Given an (A,B)-invariant subspace V and a matrix rep-
resentation of a (co)restriction of (A,B) to V, every feedback equivalent ma-
trix pair is also a matrix representation of a (co)restriction of (A,B) to V.

Proof. Let (Ā0, B̄0) be a matrix representation of a restriction of (A,B) to
V with corresponding feedback matrix F0. Given invertible T ∈ Fk×k and
S ∈ F l×l as well as any F̄ ∈ F l×k, it has to be shown that the pair

(Ā, B̄) := (T (Ā0 + B̄0F̄ )T
−1, T B̄0S

−1)

is a matrix representation of a restriction of (A,B) to V .

Let Z0 ∈ F
n×k with V = ImZ0 and W0 ∈ F

m×l with B−1(V) = ImW0 be
the bases corresponding to (Ā0, B̄0). Then the defining diagram yields

(A+BF0)Z0 = Z0Ā0 and BW0 = Z0B̄0

and Z = Z0T
−1 and W = W0S

−1 are the bases corresponding to (Ā, B̄). It
follows ZB̄ = Z0T

−1TB̄0S
−1 = BW0S

−1 = BW . Furthermore

ZĀ = Z0T
−1T (Ā0 + B̄0F̄ )T

−1

= Z0Ā0T
−1 + Z0B̄0F̄ T

−1

= (A+BF0)Z0T
−1 +BW0F̄ T

−1

= (A+BF0)Z +BW0F̄ T
−1 .

Take F ∈ Fm×n with FZ0 = W0F̄ . Then ZĀ = (A+BF0)Z +BFZ0T
−1 =

(A+B(F0 + F ))Z.

Again the result on corestrictions follows along the same lines.

24



2.1 Almost (A,B)-invariant subspaces

Now Proposition 2.18 immediately yields the following corollary.

Corollary 2.27. Given an (A,B)-invariant subspace V with controllable
(co)restriction, there exists a feedback matrix F and a matrix representation
of the resulting (co)restriction, which is in Brunovsky canonical form.

Sometimes this special matrix representation is referred to as the (co)re-
striction of the pair (A,B) to V or the (co)restricted system on V . Propo-
sitions 2.23 and 2.26 together yield the following result on the degree of
uniqueness of matrix representations of (co)restrictions.

Proposition 2.28. Let (Ā0, B̄0) be a matrix representation of a restriction
of (A,B) to V. Then the set

{(T (Ā0 + B̄0F̄ )T
−1, T B̄0S

−1) |T ∈ Fk×k, S ∈ F l×l, F̄ ∈ F l×k,

T, S invertible}

is the set of all matrix representations of all restrictions of (A,B) to V. For
corestrictions the analogous result holds.

In the dual setting of Section 6.1 a similar but slightly different notion of
restrictions (which play the role of corestrictions then) involving unipotent
transformations will be used to obtain the cell decomposition of Section 6.3.
The following proposition characterizes the admissible corestriction indices
of a given pair (A,B).

Proposition 2.29. Let (A,B) have controllability indices (κ1, . . . , κm) and
let (λ1, . . . , λm−l) be the corestriction indices of (A,B) with respect to the
(A,B)-invariant subspace V. Then

λi ≤ κi , i = 1, . . . ,m− l . (2.3)

Conversely, for all integers 0 ≤ l < m and all lists of integers (λ1, . . . , λm−l)
with λ1 ≥ · · · ≥ λm−l ≥ 1 and λ1 + · · · + λm−l = n − k ≤ n satisfying
equation (2.3) there exists an (A,B)-invariant subspace V of dimension k,
such that (A,B) has corestriction indices (λ1, . . . , λm−l) with respect to V.

The first statement of (the first part of) Proposition 2.29 the author could find
is contained in a paper by Heymann [Hey76, Theorem 7.3]. Another reference
(for the full statement) is Baragaña and Zaballa [BZ95], who discuss also the
general case of corestrictions, where the pair (A,B) is not controllable.

Heymann also derived a result on the restriction indices of a controllable
pair (A,B) with respect to a controllability subspace [Hey76, Theorem 7.5].
Baragaña and Zaballa [BZ97] obtained similar results for restrictions of a
controllable pair (A,B) to an (A,B)-invariant subspace. In a recent paper
[BZ99] they address restrictions in the general case.
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2 Almost invariant subspaces

2.2 Duality

Duality is a fundamental tool in linear systems theory. The basic idea is the
following: associate to any system another system, the dual system, and to
any property of a system another property, the dual property, such that a
system exhibits a special property if and only if the dual system exhibits the
dual property. Instead of proving that a given system has a special property,
it is possible to prove that its dual system has the dual property, then. If
both properties happen to be of interest, characterizations for both of them
can be derived in one step.

Of course, the notion of duality comes from linear algebra. In this section
the connection between system theoretic duality and duality of linear maps
is explained. The presentation follows the book by Knobloch and Kappel
[KK74].

Consider system (2.1). The way it acts on a finite time interval [0, T ] can be
characterized in terms of three linear maps:

1. The input-state function

σT : Cm
pw −→ Fn × Cn

pw ,

u(.) 7→ (0, Bu(.)) = (0, g(.)) ,

which associates to an input function u(.) the starting point 0 together
with the inhomogeneous part g(.) = Bu(.) of the differential equation.

2. The state-state function

ωT : Fn × Cn
pw −→ Fn × Cn

pw ,

(x0, g(.)) 7→ (eAT x0 +

T∫

0

eA(T−τ) g(τ)dτ ,

eA(.) x0 +

.∫

0

eA(.−τ) g(τ)dτ)

= (xT , x(.)) ,

which associates to a starting point x0 together with an inhomogeneous
part g(.) of the differential equation an end point xT together with the
solution trajectory x(.).
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3. The state-output function

τT : Fn × Cn
pw −→ Cp

pw ,

(xT , x(.)) 7→ Cx(.) = y(.) ,

which associates to an end point xT together with a state function x(.)
an output function y(.) = Cx(.).

Here Ck
pw denotes the space of all piecewise continuous functions f : [0, T ] −→

Fk. This function space is chosen for simplicity. The analogous discussion
in Lloc1 (R,Fk), the space of locally integrable functions f : R −→ F k would
require considerably more effort, while the result is the same. Consider the
standard inner products on Fk and Ck

pw:

(x1, x2) = x∗1x2 and

(f1(.), f2(.)) =

T∫

0

f ∗1 (τ)f2(τ)dτ .

With respect to these inner products the adjoint linear maps to σT , ωT and
τT are the following.

1. The state-output function

σ∗T : Fn × Cn
pw −→ Cm

pw ,

(x0, x(.)) 7→ B∗x(.) = u(.) .

2. The state-state function

ω∗T : Fn × Cn
pw −→ Fn × Cn

pw ,

(xT , g(.)) 7→ (e−A
∗(−T ) xT −

0∫

T

e−A
∗(−τ) g(τ)dτ ,

e−A
∗(.−T ) xT −

.∫

T

e−A
∗(.−τ) g(τ)dτ)

= (x0, x(.)) .

3. The input-state function

τ ∗T : Cp
pw −→ Fn × Cn

pw ,

y(.) 7→ (0, C∗y(.)) = (0, g(.)) .
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2 Almost invariant subspaces

In the same way as above these three maps characterize the system

ẋ = −A∗x− C∗y

u = B∗x ,

on the finite interval [0, T ], where the time is reversed, i.e. goes from T to
0. The minus signs in the first equation are due to the requirement that x(.)
has to be a solution trajectory of the system (note that g(.) = +C∗y(.)).
This system is usually replaced by the following dual system to system (2.1),
which is equivalent by time reversal:

ẋ = A∗x+ C∗y

u = B∗x .
(2.4)

Note, that in the dual system the roles of input and output are exchanged.
For example, system (2.1) is controllable if and only if the dual system (2.4)
is observable.

2.3 Almost (C, A)-invariant subspaces

In this section the dual notions to those of Section 2.1 are defined. The con-
cept of almost (C,A)-invariant subspaces was introduced by Willems [Wil82].

As stated in Section 2.1.2, all types of invariant subspaces of system (2.1)
that have been introduced in Section 2.1 do only depend on the pair of ma-
trices (A,B). In view of Section 2.2, especially system (2.4), the dual notions
should only depend on the pair of matrices (C,A). Indeed, this is the case.
The following definitions make use of the feedback characterizations of the
dual case (cf. Section 2.1). They translate to output injection characteriza-
tions here. Dynamical characterizations in terms of observers are derived in
Chapter 3.

Definition 2.30. A linear subspace V of the state space Fn of system (2.1)
is called (C,A)-invariant , if there exists an output injection matrix J ∈ F n×p

such that AJV ⊂ V , where AJ = A− JC. Such a J is called a friend of V .

A linear subspace Va of the state space Fn of system (2.1) is called almost
(C,A)-invariant , if for every ε > 0 there exists an output injection matrix
J ∈ Fn×p such that dist(eA

J t x0,Va) < ε for all t ≥ 0 and x0 ∈ Va.
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In view of Propositions 2.3 and 2.7 there are the following geometric charac-
terizations.

Proposition 2.31. A subspace V is (C,A)-invariant if and only if V⊥ is
(A∗, C∗)-invariant or, equivalently, if and only if A(V ∩KerC) ⊂ V.

A subspace Va is almost (C,A)-invariant if and only if Va
⊥ is almost (A∗, C∗)-

invariant.

Next the duals of (almost) controllability subspaces are introduced. Recall
the notion of Cg, a ’good’ part of the complex plane (cf. Section 2.1). Let

N (C,A) := KerOn(C,A) := Ker









C
CA
...

CAn−1









denote the unobservable subspace of system (2.1).

Definition 2.32. A linear subspace O of the state space Fn of system (2.1)
is called an observability subspace, if for every monic polynomial of degree
codimO there exists an output injection matrix J ∈ Fn×p such that AJO ⊂
O and the characteristic polynomial of AJ |Fn/O is equal to p.

A linear subspace Oa of the state space Fn of system (2.1) is called an
almost observability subspace, if for every set Cg and every ε > 0 there exists

an output injection matrix J ∈ Fn×p such that dist(eA
J t x0,Oa) < ε for all

t ≥ 0 and x0 ∈ Oa, while the spectrum of AJ |Fn/N (C,A) lies in Cg.

The duals of controllability subspaces have already been studied by Morse
[Mor73], they were named (complementary) observability subspaces by Wil-
lems and Commault [WC81]. Note that Cg can be the same for every ε
in the definition of almost observability subspaces. This corresponds to T
not depending on ε in the definition of almost controllability subspaces (cf.
Definition 2.4). There are the following characterizations, dual to Proposi-
tion 2.5.

Proposition 2.33. A subspace O is an observability subspace with respect
to the pair (C,A) if and only if O⊥ is a controllability subspace with respect
to the pair (A∗, C∗). This is the case if and only if there exists an output
injection matrix J ∈ Fn×p and a linear space KerC ⊂ K1 ⊂ F

n such that

O = K1 ∩ (AJ)−1K1 ∩ · · · ∩ (AJ)−n+1K1 .
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2 Almost invariant subspaces

A subspace Oa is an almost observability subspace with respect to the pair
(C,A) if and only if Oa

⊥ is an almost controllability subspace with respect
to the pair (A∗, C∗). This is the case if and only if there exists an output
injection matrix J ∈ Fn×p and a chain of linear spaces KerC ⊂ K1 ⊂ · · · ⊂
Kr ⊂ F

n such that

Oa = K1 ∩ (AJ)−1K2 ∩ · · · ∩ (AJ)−r+1Kr .

Since N (C,A−JC) = N (C,A) for every output injection matrix J ∈ F n×p,
any (almost) observability subpace contains the unobservable subpace.

Now it is possible to formulate a geometric characterization of almost (C,A)-
invariant subspaces, dual to Proposition 2.7.

Proposition 2.34. A subspace Va is almost (C,A)-invariant if and only if
there exist a (C,A)-invariant subspace V and an almost observability subspace
Oa such that

Va = V ∩ Oa .

To achieve further insight into the structure of almost (C,A)-invariant sub-
spaces, the duals to coasting and sliding subspaces are introduced. The
definition uses the lower semilattice structure of the set of (C,A)-invariant
subspaces containing a given one (dual result to Proposition 2.9).

Proposition 2.35. The intersection of any two (C,A)-invariant subspaces is
a (C,A)-invariant subspace. Let any linear subspace U of the state space F n

of system (2.1) be given. The set of all (C,A)-invariant subspaces containing
U forms a lower semilattice with respect to ⊂,∩, hence it admits an infimum,
the minimal (C,A)-invariant subspace containing U , which will be denoted
by V∗(U).

The analogous result holds for almost (C,A)-invariant subspaces, observabil-
ity subspaces and almost observability subspaces. The corresponding infima
will be denoted by Va∗(U), O∗(U) and Oa∗(U), respectively.

Definition 2.36. A linear subspace T of the state space Fn of system (2.1)
is called tight , if T is (C,A)-invariant and O∗(T ) = F

n holds.

A linear subspace I of the state space Fn of system (2.1) is called instanta-
neous , if I is an almost observability subspace and O∗(I) = F

n holds.
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Tight and instantaneous subspaces are (C,A)-invariant subspaces or almost
observability subspaces, respectively, which are not contained in any observ-
ability subspace other than Fn. The name tight subspace was first used
by Fuhrmann and Helmke [FH97]. For the duals of sliding subspaces there
seems to be no well accepted terminology in the literature. Willems called
the observers appearing in the dynamic characterization of I with I⊥ sliding
instantaneously acting observers (cf. Chapter 3). Hence the name instanta-
neous subspace is chosen here.

The next result follows immediately by dualizing Proposition 2.10.

Proposition 2.37. A subspace T is tight if and only if T ⊥ is coasting. A
subspace I is instantaneous if and only if I⊥ is sliding.

Using these concepts, the dual version of Proposition 2.11 can be formulated.
It refines Proposition 2.34.

Proposition 2.38. For every almost (C,A)-invariant subspace Va there exist
a tight subspace T and an instantaneous subspace I such that

Va = T ∩ O ∩ I ,

O = O∗(Va) ,

T ∩ O = V∗(Va) and

O ∩ I = Oa∗(Va) .

Here all intersections are transversal, i.e. T + O = O + I = T + I =
V∗(Va) + I = T +Oa∗(Va) = F

n. If O∗(Va) = F
n then T and I are uniquely

determined.

Note the following consequence of this result: If an almost (C,A)-invariant
subspace is both (C,A)-invariant and an almost observability subspace, then
it is an observability subspace.

2.3.1 Subspace algorithms II

In this section the algorithms for computing minimal invariant subspaces are
presented. They are dual to the algorithms of Section 2.1.1.
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2 Almost invariant subspaces

Proposition 2.39. Consider an arbitrary linear subspace U of the state space
Fn. Then V∗(U) coincides with the limit V∞(U) of the conditioned invariant
subspace algorithm:

V1(U) = U ,

Vi+1(U) = U + A(Vi(U) ∩KerC) .
(CISA)

Proposition 2.40. Consider an arbitrary linear subspace U of the state space
Fn. Then Oa∗(U) coincides with the limit O∞(U) of the almost observability
subspace algorithm:

O0(U) = F
n ,

Oi+1(U) = U + (A−1Oi(U) ∩KerC) .
(AOSA)

Using Proposition 2.38, similar results for observability subspaces and almost
(C,A)-invariant subspaces are achieved.

Proposition 2.41. Consider an arbitrary linear subspace U of the state space
Fn. Then

(1) O∗(U) = V∞(U) +O∞(U) = O∞(V∞(U)) = V∞(O∞(U)) and

(2) Va∗(U) = V∞(U) ∩ O∞(U).

Again these results can be used to obtain geometric characterizations of tight
and instantaneous subspaces, respectively. These characterizations are dual
to those of Proposition 2.16.

Proposition 2.42. A subspace T is tight if and only if T is (C,A)-invariant
and O∞(T ) = F

n or, equivalently, T +KerC = Fn holds.

A subspace I is instantaneous if and only if I is an almost observability
subspace and V∞(I) = F

n holds.

2.3.2 Output injections

In this section the results dual to those of Section 2.1.2 are presented.

All types of invariant subspaces introduced in Section 2.3 depend only on
the linear maps represented by the pair of matrices (C,A) and have output
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2.3 Almost (C,A)-invariant subspaces

injection characterizations. That is to say, these concepts are invariant under
output injection transformations

((T, J, S), (C,A)) 7→ (SCT−1, T (A− JC)T−1) ,

where J ∈ Fn×p is an arbitrary matrix and T ∈ Fn×n, S ∈ Fp×p are in-
vertible. In fact, T describes the choice of a basis in the state space Fn, S
describes the choice of a basis in the output space F p, J describes constant
output injection. All such transformations form a group, the output injection
transformation group, which acts on the set of observable pairs (C,A). Let
Ω be the orbit space of this action. Two pairs belonging to the same orbit
are called output injection equivalent .

Proposition 2.43. There is a bijection from Ω onto the set of all lists of
integers µ = (µ1, . . . , µp) with µ1 ≥ · · · ≥ µp ≥ 0 and µ1 + · · ·+ µp = n.

Given an observable pair (C,A), the corresponding numbers (µ1, . . . , µp) are
called the observability indices of the pair.

Proposition 2.44. An observable pair (C,A) with observability indices (µ1,
. . . , µp) is output injection equivalent to the pair

C =








0 ... 0 1

...
0 ... 0 1

︸ ︷︷ ︸

µ1
. . . ︸ ︷︷ ︸

µp








and A =


















0

1
...... ...

1 0

...
0

1
...... ...

1 0

︸ ︷︷ ︸

µ1
. . . ︸ ︷︷ ︸

µp


















.

This pair is said to be in dual Brunovsky canonical form. Actually, the
dual Brunovsky canonical form is a normal form for the output injection
equivalence relation.

For the purpose of parametrization or classification of invariant subspaces
(of any of the above types) of a given observable system (2.1), it is some-
times convenient to assume that the system, i.e. the matrix pair (C,A), is
in dual Brunovsky canonical form. This can be done without loss of general-
ity. Note that the previous proposition implies that the number of nonzero
observability indices equals rkC.
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2 Almost invariant subspaces

As in the dual case consider the following subgroup of the output injection
transformation group. A restricted output injection transformation is defined
by

((T, J, U), (C,A)) 7→ (UCT−1, T (A− JC)T−1) ,

where J ∈ Fn×p is an arbitrary matrix, T ∈ Fn×n is invertible and U ∈ F p×p

is unipotent lower triangular (i.e. U is invertible and lower triangular with all
diagonal entries equal to 1). The choice of a basis in the output space F p is
thus restricted to unipotent transformations of the standard basis. All such
transformations form a group, the restricted output injection transformation
group, which acts on the set of all observable pairs (C,A). Let Ω̂ be the
orbit space of this action. Two pairs belonging to the same orbit are called
restricted output injection equivalent .

Proposition 2.45. There is a bijection from Ω̂ onto the set of all unordered
lists of nonnegative integers K = (K1, . . . , Kp) with K1 + · · ·+Kp = n.

Given an observable pair (C,A), the corresponding numbers are called the
Kronecker indices of the pair.

Proposition 2.46. An observable pair (C,A) with Kronecker indices (K1,
. . . , Kp) is restricted output injection equivalent to a pair of the form shown
in Proposition 2.44 but with block sizes K1, . . . , Kp. This pair is said to be in
dual Kronecker canonical form. Actually, the dual Kronecker canonical form
is a normal form for the restricted output injection equivalence relation.

Again the only difference between observability indices and Kronecker indices
is that the former are ordered while the later need not to be ordered. As in
the dual case the precise connection is as follows.

Proposition 2.47. Let the observable pair (C,A) have observability indices
(µ1, . . . , µp) and Kronecker indices (K1, . . . , Kp). Then there exists a permu-
tation π ∈ S(p) such that

(K1, . . . , Kp) = (µπ(1), . . . , µπ(p)) .

As a consequence of this statement the orbits of the output injection trans-
formation group action (Brunovsky strata) decompose into orbits of the re-
stricted output injection transformation group action (Kronecker strata) and
this decomposition is parametrized by the permutations π ∈ S(p). This fact
will be used in Section 6.3 to identify a certain cell decomposition as a Bruhat
decomposition.

34



2.3 Almost (C,A)-invariant subspaces

Remark 2.48. The (restricted) output injection transformation group also
acts on the set of all matrix pairs (C,A) ∈ F p×n × Fn×n. The notion of
(restricted) output injection equivalence will also be used in the general case.
A complete set of output injection invariants is provided by the observability
indices together with the invariant factors (hidden modes) of (C,A). For
restricted output injection equivalence a corresponding result seems to be
unknown.

2.3.3 Restricted and corestricted systems II

In this section the meaning of ”restricting” and ”corestricting” system (2.1)
to a given (C,A)-invariant subspace V is clarified. Again system (2.1) is
assumed to be observable.

As in the dual case (Section 2.1.3) the notion of (co)restriction can be easily
understood if one considers the linear maps represented by the matrices C,
A and so on. Given a (C,A)-invariant subspace V , there exists an output
injection matrix J such that (A− JC)V ⊂ V , i.e. V is an invariant subspace
of the linear map represented by AJ = A− JC. But then the commutative
diagram of linear maps

Fn/V
Ã

Fn/V
C̃

Fp/C(V)

Fn
AJ

Fn
C

Fp

V
Ā

V
C̄

C(V)

defines a restriction (C̄, Ā) and a corestriction (C̃, Ã) of the pair (C,A) to V
in terms of linear maps. Note, that the roles of restriction and corestriction
are interchanged when compared to the dual case. Of course, both of them
depend on the choice of J . Let k = codimV and q = codimC(V). The
matrix representations (C̄, Ā) ∈ F (p−q)×(n−k) × F (n−k)×(n−k) and (C̃, Ã) ∈
F q×k ×Fk×k of the (co)restriction depend on the choice of a basis in V and
C(V), also. More precisely, the following holds.

35



2 Almost invariant subspaces

Proposition 2.49. Let V be a (C,A)-invariant subspace. Any two matrix
representations of (co)restrictions of the pair (C,A) to V are output injection
equivalent.

Remark 2.50. Note that the corestriction (C̃, Ã) of an observable pair (C,A)
to V is observable if and only if V is an observability subspace, while the
restriction (C̄, Ā) is always observable. Note further that C̃ and C̄ are both
of full row rank if C has full row rank.

Corollary 2.51. The observability indices of all matrix representations of
observable restrictions (resp. corestrictions) coincide. They are called the
(co)restriction indices of (C,A) with respect to V.

Again, there is a canonical choice for a matrix representation of an observable
(co)restriction of the pair (C,A) to V .

Proposition 2.52. Given a (C,A)-invariant subspace V and a matrix repre-
sentation of a (co)restriction of (C,A) to V, every output injection equivalent
matrix pair is also a matrix representation of a (co)restriction of (C,A) to
V.

Corollary 2.53. Given a (C,A)-invariant subspace V with observable (co)-
restriction, there exists an output injection matrix J and a matrix represen-
tation of the resulting (co)restriction, which is in dual Brunovsky canonical
form.

Sometimes this special matrix representation is referred to as the (co)re-
striction of the pair (C,A) to V or the (co)restricted system on V . Propo-
sitions 2.49 and 2.52 together yield the following result on the degree of
uniqueness of matrix representations of (co)restrictions.

Proposition 2.54. Let (C̄0, Ā0) be a matrix representation of a restriction
of (C,A) to V. Then the set

{(SC̄0T
−1, T (Ā0 − J̄C̄0)T

−1) |T ∈ F (n−k)×(n−k), S ∈ F (p−q)×(p−q),

J̄ ∈ F (n−k)×(p−q), T, S invertible}

is the set of all matrix representations of all restrictions of (C,A) to V. For
corestrictions the analogous result holds.

In Section 6.1 a similar but slightly different notion of restrictions involving
unipotent transformations will be used to obtain the cell decomposition of
Section 6.3. The following proposition (dual to Proposition 2.29) character-
izes the admissible restriction indices of a given pair (C,A).
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2.3 Almost (C,A)-invariant subspaces

Proposition 2.55. Let (C,A) have observability indices (µ1, . . . , µp) and let
(λ1, . . . , λp−q) be the restriction indices of (C,A) with respect to the (C,A)-
invariant subspace V. Then

λi ≤ µi , i = 1, . . . , p− q . (2.5)

Conversely, for all integers 0 ≤ q < p and all lists of integers (λ1, . . . , λp−q)
with λ1 ≥ · · · ≥ λp−q ≥ 1 and λ1 + · · · + λp−q = n − k ≤ n satisfying
equation (2.5) there exists a (C,A)-invariant subspace V of codimension k,
such that (C,A) has restriction indices (λ1, . . . , λp−q) with respect to V.
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Chapter 3

Observers

In this chapter dynamic characterizations of various kinds of almost (C,A)-
invariant subspaces (cf. Section 2.3) are derived. The precise relation be-
tween observers and these subspaces is explored. Again linear finite-dimensio-
nal time-invariant control systems of the following form are considered.

ẋ = Ax+Bu

y = Cx ,
(3.1)

where A ∈ Fn×n, B ∈ Fn×m and C ∈ Fp×n, F = R,C. Here x ∈ Fn is
referred to as the state, u ∈ Fm as the control or input , y ∈ F p as the output
of system (3.1), respectively. Various kinds of observers for system (3.1) are
considered throughout the literature, identity observers, tracking observers
and asymptotic observers being the most popular. Unfortunately the liter-
ature in this field is a kind of fragmentary and contains a number of flaws
and misunderstandings. Hence the whole theory is redeveloped from scratch,
here.

3.1 Identity observers

Definition 3.1. An identity observer for system (3.1) is a dynamical system

˙̂x = Ax̂+Bu+ L(y − ŷ)

ŷ = Cx̂ .
(3.2)

L ∈ Fn×p is called the observer gain matrix .
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3 Observers

Apparently system (3.2) is driven by the input u of system (3.1) and by the
difference y−ŷ of the output of system (3.1) and the output of the observer. x̂
is considered to be an estimate for the state x of system (3.1). The dynamics
of the estimation error e(t) := x(t)− x̂(t) is given by

ė = (A− LC)e .

If (C,A) is detectable, the matrix L can be chosen such that A − LC is
stable, which implies that the estimation error goes to zero for every initial
value e(0) = x(0)− x̂(0). The state x of system (3.1) is then asymptotically
identified by the observer. Any identity observer (not only those with A−LC
stable) has the tracking property : If the estimation error is initially zero
(e(0) = 0 or equivalently x(0) = x̂(0)) it stays zero all the time (e(t) =
0 or equivalently x(t) = x̂(t) for all t ∈ R). The combined dynamics of
system (3.1) and the identity observer (3.2) is visualized in Figure 3.1.

L

gain

˙̂x = Ax̂+Bu+ L(y − ŷ)
ŷ = Cx̂

observer

ẋ = Ax+Bu
y = Cx

plant µ´
¶³
−

ru y

ŷ

Figure 3.1: Combined dynamics of a system and an identity observer

The idea of estimating the state of system (3.1) using an identical copy of
the system driven by the innovations y− ŷ goes back to the original work of
Luenberger [Lue64, Lue66, Lue71]. The identity observers are also called full
order observers , since the observer state x̂ has as many components as the
system state x has. In applications it is often not necessary to estimate the
whole state x of system (3.1), but rather a part V x of it, where V ∈ F k×n.
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Of course this could still be done using an identity observer, but in this case
it is more natural to search for an observer of lower order (think especially of
the case where k = 1, i.e. where V is nothing but a single linear functional of
the state). However it is not immediately clear how to construct such partial
observers . It will be shown below that in principle it suffices to consider
corestrictions (cf. Section 2.3.3) of identity observers to (C,A)-invariant
subspaces.

Remark 3.2. 1. Using ŷ = Cx̂ the observer equation can be rewritten as

˙̂x = (A− LC)x̂+ Ly +Bu .

2. It is well known that the full state of system (3.1) can also be estimated
by an observer of order n− rkC, the so called reduced order observer ,
which uses direct feedthrough of the output y = Cx (cf. Section 3.2.4
and Section 3.3.1).

3.2 Tracking observers

The simplest kind of partial observers are tracking observers. They can be
used to characterize (C,A)-invariant subspaces dynamically. In a first step
observers without an output equation are considered. The observer state is
used as an estimate for a linear function of the state of the observed system.
Observers with output will be discussed below (Sections 3.2.3 and 3.2.4).

Definition 3.3. A tracking observer for the linear function V x of the state
of system (3.1), V ∈ Fk×n, is a dynamical system

v̇ = Kv + Ly +Mu , (3.3)

K ∈ Fk×k, L ∈ Fk×p and M ∈ Fk×m, which is driven by the input u and
by the output y of system (3.1) and has the tracking property : For every
x(0) ∈ Fn, every v(0) ∈ Fk and every input function u(.)

v(0) = V x(0) ⇒ v(t) = V x(t) for all t ∈ R.

k is called the order of the observer.

Note that the tracking property makes a statement about all trajectories of
system (3.1): whatever starting point x(0) and whatever input u(t) is chosen,
setting v(0) := V x(0) must make the observer track the given function. Note
further that an identity observer is a tracking observer for Ix. The follow-
ing characterization of tracking observers has been proposed by Luenberger
[Lue64].
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Theorem 3.4. System (3.3) is a tracking observer for V x if and only if

V A−KV = LC

M = V B .
(3.4)

In this case the tracking error e(t) = v(t)− V x(t) is governed by the differ-
ential equation ė = Ke.

Proof. Let the system (3.3) satisfy equations (3.4). Set e(t) = v(t)− V x(t).
Then

ė = v̇ − V ẋ

= (Kv + Ly +Mu)− V (Ax+Bu)

= Kv + LCx+Mu− V Ax− V Bu

= Kv −KV x+KV x+ LCx− V Ax+Mu− V Bu

= K(v − V x)− (V A−KV − LC)x+ (M − V B)u

= Ke ,

where the last equation follows from (3.4). Now e(0) = 0, i.e. v(0) = V x(0),
implies e(t) = 0, i.e. v(t) = V x(t), for all t ∈ R.

Conversely let (3.3) be a tracking observer for V x. Again set e(t) = v(t) −
V x(t). Then

ė = Ke− (V A−KV − LC)x+ (M − V B)u .

Let x(0) and u(0) be given and set v(0) = V x(0), i.e. e(0) = 0. Then e(t) = 0
for all t ∈ R implies

ė(0) = Ke(0)− (V A−KV − LC)x(0) + (M − V B)u(0)

= (V A−KV − LC)x(0) + (M − V B)u(0)

= 0 .

Since x(0) and u(0) were arbitrary it follows V A−KV −LC =M−V B = 0,
i.e. equations (3.4).

Note that the characterization by equations (3.4) implies that a tracking
observer for Ix, i.e. for the full state, is necessarily an identity observer.
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Now consider the composite system

˙(x
v

)

=

(

A 0
LC K

)(

x
v

)

+

(

B
M

)

u ,

e =
(

−V I
)
(

x
v

)

.

(3.5)

Denote

Ac :=

(

A 0
LC K

)

, Bc :=

(

B
M

)

and Cc :=
(

−V I
)

.

In order to derive a characterization of tracking observers in terms of the
composite system matrices the following result is needed.

Proposition 3.5. The output y(.) of system (3.1) has the property that for
every x(0) ∈ Fn and every input function u(.)

y(0) = 0 ⇒ y(t) = 0 for all t ∈ R

if and only if KerC is A-invariant and contains ImB.

Proof. Let KerC be A-invariant and contain ImB. Since the reachable sub-
space

R(A,B) := ImRn(A,B) := Im
(

B AB . . . An−1B
)

is the smallest A-invariant subspace containing ImB it follows R(A,B) ⊂
KerC. Let y(0) = 0, i.e. x(0) ∈ KerC. Let t ∈ R and u(.) be arbitrary.
Since KerC is A-invariant it follows eAt x(0) ∈ KerC. But then the variation
of constant formula implies

y(t) = C eAt x(0) + C

t∫

0

eA(t−τ)Bu(τ)dτ = 0

since the integral lies in R(A,B) ⊂ KerC.

Conversely let y(0) = 0 imply y(t) = 0 for all t ∈ R. Assume KerC is not A-
invariant. Then there exist x0 ∈ KerC and t ∈ R such that eAt x0 6∈ KerC.
But then the trajectory corresponding to x(0) = x0 and u(.) ≡ 0 satisfies
y(0) = 0 but y(t) 6= 0, a contradiction. Hence KerC is A-invariant. Since
every point x ∈ R(A,B) is reachable from x(0) = 0 (which implies y(0) = 0)
in finite time T > 0, the hypothesis y(T ) = 0 implies x = x(T ) ∈ KerC, i.e.
ImB ⊂ R(A,B) ⊂ KerC.
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Corollary 3.6. System (3.3) is a tracking observer for V x if and only if
KerCc is Ac-invariant and contains ImBc.

Equations (3.4) allow a geometric characterization of the existence of tracking
observers or, depending on the point of view, a dynamic characterization of
(C,A)-invariant subspaces. The concept of (C,A)-invariant (or conditioned
invariant) subspaces has been introduced by Basile and Marro [BM69] as the
notion dual to (A,B)-invariant (or controlled invariant) subspaces. Recall
the following definition from Section 2.3.

Definition 3.7. A linear subspace V of the state space Fn of system (3.1) is
called (C,A)-invariant , if there exists an output injection matrix J ∈ F n×p

such that AJV ⊂ V , where AJ = A − JC. Such a J is called a friend of V .
An equivalent condition is A(V ∩KerC) ⊂ V .

The next theorem provides the link to observer theory.

Theorem 3.8. There exists a tracking observer for the linear function V x
of the state of system (3.1) if and only if V = KerV is (C,A)-invariant.

Proof. Let the system (3.3) be a tracking observer for V x. According to
Theorem 3.4 it follows V A − KV = LC. Let x ∈ KerV ∩ KerC. Then
V Ax = V Ax − KV x = LCx = 0 and Ax ∈ KerV . With V = KerV it
follows A(V ∩KerC) ⊂ V and V is (C,A)-invariant.

Conversely let V ∈ Fk×n and let V = KerV be (C,A)-invariant. There exists
J ∈ Fn×p such that (A−JC)V ⊂ V . But then there exists a matrixK ∈ F k×k

such that V (A−JC) = KV . Setting L := V J yields V A−KV = LC. Define
M := V B. According to Theorem 3.4 the system v̇ = Kv + Ly +Mu is a
tracking observer for V x.

Remark 3.9. 1. The idea of using the existence of observers as a definition
of (C,A)-invariant subspaces originates from the work of Willems and
Commault [WC81], which contains also a proof of Theorem 3.8.

2. In the nonlinear setting a generalization of Theorem 3.8 has been proved
by van der Schaft [vdS85] and Krener [Kre86].
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3.2.1 Singular (partially) tracking observers

In this section the notion of tracking observers is generalized in two ways.
First, they may be singular systems themselves to allow a dynamic character-
ization of almost (C,A)-invariant subspaces. Second, they may be required to
track a given function only when started with zero (hence the name partially
tracking observers).

Recall the following facts about solutions of singular systems (see e.g. Lewis
[Lew86] for a detailed discussion). The system

Ev̇ = Kv , (3.6)

where E,K ∈ Fk×k, is called admissible if the matrix pencil λE + µK is
regular , i.e. det(λE + µK) 6= 0 for some λ, µ ∈ C. The so called initial
manifold of such an admissible system is the set of starting points v(0) ∈ F k

admitting a solution t 7→ v(t) which is continuous at t = 0. Such solutions
are uniquely determined by v(0). The initial manifold is known to coincide
with the supremal subspace S ⊂ Fk such that

KS ⊂ ES

holds.

Remark 3.10. If the admissible system is given in Weierstraß form, i.e. if
K = diag(K1, I) and E = diag(I,N), where I denotes the identity matrix
and N is nilpotent, then the initial manifold is formed by all those elements
of Fk whose second block coordinate is zero.

A singular system with input

Ev̇ = Kv +Rz , (3.7)

where R ∈ Fk×q, is called admissible if the system (3.6) without input is
admissible. Apparently, not every input function z(.) will lead to a continuous
solution, even if v(0) lies in the initial manifold. On the other hand, there
exists a certain set of starting points v(0) for which there exist input functions
z(.) that lead to continuous solutions. Again, such solutions are uniquely
determined by v(0) and z(.). That set of admissible initial conditions is
known to coincide with the supremal (K,E, ImR)-invariant subspace, i.e.
the supremal subspace S ⊂ Fk such that

KS ⊂ ES + ImR

holds.
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Definition 3.11. A singular tracking observer for the linear function V x of
the state of system (3.1), V ∈ F k×n, is a (possibly singular but admissible)
dynamical system

Ev̇ = Kv + Ly +Mu, (3.8)

with E,K ∈ Fk×k, L ∈ Fk×p and M ∈ Fk×m, which is driven by the input u
and by the output y of system (3.1) and has the tracking property : For every
x(0) ∈ Fn and every input function u(.) the corresponding output function
y(.) and v(0) := V x(0) lead to a continuous solution v(.) and, furthermore,

v(0) := V x(0) ⇒ v(t) = V x(t) for all t > 0.

Again k is called the order of the observer. The observer (3.8) is called a
singular partially tracking observer if it has the partial tracking property : For
every x(0) ∈ KerV and every input function u(.) the corresponding output
function y(.) and v(0) := V x(0) = 0 lead to a continuous solution v(.) and,
furthermore,

v(0) := V x(0) = 0 ⇒ v(t) = V x(t) for all t > 0.

Note that the partial tracking property makes a statement about special
trajectories of system (3.1): whatever starting point x(0) ∈ KerV and what-
ever input u(.) is chosen, setting v(0) := V x(0) = 0 must make the observer
track the given function. Apparently, any singular tracking observer is also
a singular partially tracking observer.

Remark 3.12. Since the singular observer is used to track a solution of a
non singular system, it suffices to consider continuous trajectories of the ob-
server. The situation becomes more complicated, when the observed system
is singular itself. However, that case is not considered here.

There is the following characterization of singular (partially) tracking ob-
servers.

Theorem 3.13. System (3.8) is a singular tracking observer for V x if and
only if

EV A−KV = LC

M = EV B .
(3.9)

System (3.8) is a singular partially tracking observer for V x if and only if

(EV A−KV − LC)|R(KerV ) = 0

M = EV B .
(3.10)
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Here R(KerV ) ⊂ Fn denotes the subspace of the state space Fn of sys-
tem (3.1) consisting of all points x(T ) ∈ Fn, which are reachable from a
point x(0) ∈ KerV in time T ≥ 0.

Proof. Let the system (3.8) be a singular partially tracking observer for V x.
Then x(0) ∈ KerV and v(0) := V x(0) = 0 lead to a continuous solution v(.)
for every choice of u(.). Furthermore, it follows v(t) = V x(t) for all t > 0
and hence for all t ≥ 0. But this implies v̇(t) = V ẋ(t) for all t ≥ 0. Now
calculate

0 = E(v̇(t)− V ẋ(t))

= Kv(t) + Ly(t) +Mu(t)− EV (Ax(t)−Bu(t))

= (KV + LC − EV A)x(t) + (M − EV B)u(t)

for all t ≥ 0. In particular, setting x(0) := 0 ∈ KerV , it follows 0 =
(M −EV B)u(0) and hence M = EV B, since u(0) ∈ Fm was arbitrary. But
then 0 = (KV + LC − EV A)x(t) for all t ≥ 0 and all x(0) ∈ KerV implies
(EV A−KV − LC)|R(KerV ) = 0, i.e. the equations (3.10) are satisfied.

If the system (3.8) is a singular tracking observer for V x then the same
argument holds for every x(0) ∈ Fn, hence this implies equations (3.9).

Conversely, let the system (3.8) satisfy equations (3.9). Let x(0) ∈ F n and
u(.) be arbitrary and consider the corresponding solution x(.) of system (3.1).
Then the continuous function t 7→ V x(t) =: v(t), t ≥ 0, is a solution of the
observer equation (3.8), since

Ev̇(t) = EV ẋ(t)

= EV (Ax(t) +Bu(t))

= (KV + LC)x(t) +Mu(t)

= Kv(t) + Ly(t) +Mu(t)

for all t ≥ 0. Since continuous solutions are uniquely determined, this implies
that v(0) := V x(0) leads to a continuous solution satisfying v(t) = V x(t) for
all t > 0. Hence the system (3.8) is a singular tracking observer for V x.

If the system (3.8) satisfies equations (3.10) then the same argument holds for
every x(0) ∈ KerV , since this implies x(t) ∈ R(KerV ) for all t ≥ 0. Hence
v(0) := V x(0) = 0 leads to a continuous solution satisfying v(t) = V x(t) for
all t > 0 and the system (3.8) is a singular partially tracking observer for
V x.
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SinceR(KerV ) ⊃ R(A,B) = R({0}), for controllable systems Theorem 3.13
reduces to the following.

Corollary 3.14. Let the system (3.1) be controllable. System (3.8) is a
singular partially tracking observer for V x if and only if it is a singular
tracking observer for V x. This is the case if and only if equations (3.9) are
satisfied.

As the following example shows, for non controllable systems there might
exist singular partially tracking observers which are not singular tracking
observers.

Example 3.15. Let

A :=








0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0







, B := 0 and C :=

(

0 1 0 0
0 0 0 1

)

.

Let further

V :=

(

1 0 0 0
0 0 1 0

)

and

E :=

(

0 0
1 0

)

, K :=

(

1 0
0 1

)

, L := 0 and M := 0 .

Since A(KerV ) = {0} it follows R(KerV ) = KerV , and hence M = EV B
and EV A−KV − LC = −V implies that v̇ = Kv + Ly +Mu is a singular
partially tracking observer for V x, while it is not a singular tracking observer
for V x.

However, as the next theorem shows, the (full) tracking property can be
enforced by a slight modification of the singular observer even in the non
controllable case. Hence the generalization to partially tracking observers
yields no new class of observable functions.

Theorem 3.16. If there exists a singular partially tracking observer for V x,
then there exists a singular tracking observer for V x. If there exists a non-
singular partially tracking observer for V x, then there exists a tracking ob-
server for V x.
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Proof. Let (3.8) be a singular partially tracking observer for V x. Using
Theorem 3.13 it follows (EV A − KV − LC)|KerV = 0 and M = EV B.
Since V |KerV is injective, there exists a matrix Q ∈ F k×k such that EV A−
KV − LC = QV . Set K1 := K + Q, L1 := L and M1 := M , then EV A −
K1V = L1C and M1 = EV B, i.e. equations (3.9) hold for the system
Ev̇ = K1v+L1y+M1u. According to Theorem 3.13 this is a singular tracking
observer for V x. Now let E be invertible. Set K2 := E−1K1, L2 := E−1L1

and M2 := E−1M1, then V A − K2V = L2C and M2 = V B. According to
Theorem 3.4 the system v̇ = K2v+L2y+M2u is a tracking observer for V x,
then.

Since any tracking observer is also a partially tracking observer, Theorem 3.8
immediately yields the following Corollary.

Corollary 3.17. There exists a singular partially tracking observer for the
linear function V x of the state of system (3.1) if and only if there exists
a singular tracking observer for V x. There exists a non-singular partially
tracking observer for V x if and only if there exists a tracking observer for
V x. The latter is equivalent to V = KerV being (C,A)-invariant.

Note that a tracking observer can be interpreted as a ”singular” (partially)
tracking observer with E = I.

Now recall the following definitions from Section 2.3. Cg denotes any subset
of C which is symmetric (i.e. λ ∈ Cg ⇔ λ̄ ∈ Cg, where λ̄ denotes the complex
conjugate of λ) and contains a left semi infinite real interval (i.e. there exists
a number c ∈ R such that ] −∞, c] ⊂ Cg). The prototype of such a ’good’
part of C is C− = {z ∈ C | Re z < 0}.

Definition 3.18. A linear subspace V of the state space Fn of system (3.1)
is called almost (C,A)-invariant , if for every ε > 0 there exists an output
injection matrix J ∈ Fn×p such that dist(eA

J t x0,V) < ε for all t ≥ 0 and
x0 ∈ V .

A linear subspace V of the state space Fn of system (3.1) is called an almost
observability subspace, if for every set Cg and every ε > 0 there exists an

output injection matrix J ∈ Fn×p such that dist(eA
J t x0,V) < ε for all t ≥ 0

and x0 ∈ V , while the spectrum of AJ |Fn/N (C,A) lies in Cg. Here N (C,A)
denotes the unobservable subspace of system (3.1).
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To link these concepts to observer theory, characterizations of almost (C,A)-
invariant subspaces and almost observability subspaces in terms of rational
and polynomial matrices are needed. Since the (dual) characterizations of al-
most (A,B)-invariant subspaces and almost controllability subspaces which
are contained in Willems’ paper [Wil82, Proposition A.3] and in Trentel-
man’s thesis [Tre85, Lemma 5.7] are partly incorrect, a correct version of
these results (Proposition 3.20) is derived, first. Let F k[s] (respectively
Fk(s)) denote the space of all k-vectors whose components are polynomi-
als (respectively rational functions) with coefficients in F . Similarly, for a
subspace U ⊂ Fk let U [s] (respectively U(s)) denote the space of all elements
ξ(s) ∈ Fk[s] (respectively ξ(s) ∈ F k(s)) with the property that ξ(s) ∈ U for
all s ∈ dom ξ(s). The following result can be found in Trentelman’s thesis
[Tre85, Theorem 2.15 and Theorem 2.16].

Proposition 3.19. Consider system (3.1).

(1) V ⊂ Fn is almost (A,B)-invariant if and only if for every x0 ∈ V there
exist ξ(s) ∈ V(s) and ω(s) ∈ Fm(s) such that

x0 = (sI − A)ξ(s) +Bω(s) . (3.11)

(2) V ⊂ Fn is an almost controllability subpace if and only if for every x0 ∈
V there exist ξ(s) ∈ V [s] and ω(s) ∈ Fm[s] such that equation (3.11)
holds.

From this result the following characterization can be derived.

Proposition 3.20. Consider system (3.1), and let G ∈ Fn×k and H ∈ Fk×n

be such that V := ImG = KerH.

(1) V is almost (A,B)-invariant if and only if there exists a rational matrix
W (s) such that

H(sI − A)−1BW (s) = H(sI − A)−1G . (3.12)

(2) V is an almost controllability subspace if and only if there exists a poly-
nomial matrixW (s) such that equation (3.12) holds and (sI−A)−1(G−
BW (s)) is polynomial.
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Proof. Ad (1): Let the equation (3.12) have the rational solution W (s). Let
x0 ∈ V = ImG. Then there exists v0 ∈ F

k such that x0 = Gv0. Define
ξ(s) := (sI − A)−1(G − BW (s))v0 ∈ F

n(s) and ω(s) := W (s)v0 ∈ F
m(s),

then it follows (sI−A)ξ(s)+Bω(s) = (G−BW (s))v0+BW (s)v0 = Gv0 = x0.
Furthermore, equation (3.12) implies Hξ(s) = 0 for all s ∈ dom ξ(s). Since
KerH = V this yields ξ(s) ∈ V(s). But then it follows from Proposition 3.19
that V is almost (A,B)-invariant.

Conversely let V = ImG be almost (A,B)-invariant. According to Proposi-
tion 3.19 there exist ξi(s) ∈ V(s) and ωi(s) ∈ F

m(s), i = 1, . . . , k, such that
Gei = (sI −A)ξi(s)−Bωi(s), where ei ∈ F

k denotes the i-th standard basis

vector. Define W (s) :=
(

ω1(s) . . . ωk(s)
)

, then H(sI − A)−1(BW (s) −

G)ei = H(sI − A)−1Bωi(s) − Hξi(s) − H(sI − A)−1Bωi(s) = 0 for all
i = 1, . . . , k, since ξi(s) ∈ V(s) and V = KerH. But this implies equa-
tion (3.12).

The proof of (2) follows along the same lines. The extra condition on W (s)
comes from the requirement that ξ(s) has to be polynomial, here.

As the following example shows, the additional condition on W (s) in (2) is
indispensible.

Example 3.21. Let

A :=








0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0








and B :=








0 0
1 0
0 0
0 1







.

Let further

G :=








1 0
0 0
0 1
0 0








and H :=

(

0 1 0 0
0 0 0 1

)

.

Then ImG = KerH and H(sI − A)−1G = 0. Hence the equation (3.12) has
the polynomial solution W (s) = 0, although V := ImG = KerH is not an
almost controllability subpace with respect to the pair (A,B). In fact, V is
a tight (A,B)-invariant subspace. Indeed, one calculates

(sI − A)−1(G−BW (s)) =








1
s

0
0 0
0 1

s

0 0







.

51



3 Observers

Dualizing Proposition 3.20 yields the following corollary.

Corollary 3.22. Consider system (3.1), let V ∈ F k×n.

(1) V = KerV is almost (C,A)-invariant if and only if there exists a ra-
tional matrix W (s) such that

W (s)C(sI − A)−1|V = V (sI − A)−1|V . (3.13)

(2) V = KerV is an almost observability subspace if and only if there
exists a polynomial matrix W (s) such that equation (3.13) holds and
(V −W (s)C)(sI − A)−1 is polynomial.

Now the following characterization of almost (C,A)-invariant subspaces and
almost observability subspaces in terms of the existence of singular tracking
observers can be derived. The proof uses the following Lemma.

Lemma 3.23. Let E ∈ Fk×k be nilpotent and let EV A = V + LC. Then

(V − (sE − I)−1LC)(sI − A)−1 = −
k−2∑

i=0

siEi+1V . (3.14)

Proof. Multiplying with (sE − I) from the left and with sI − A from the
right, equation (3.14) is equivalent to

sEV − V − LC = −(sE − I)

(
k−2∑

i=0

siEi+1V

)

(sI − A) .

The right hand side is equal to

(I − sE)

(
k−2∑

i=0

si+1Ei+1V −
k−2∑

i=0

siEi+1V A

)

=

k−2∑

i=0

si+1Ei+1V −
k−2∑

i=0

siEi+1V A−
k−2∑

i=0

si+2Ei+2V +
k−2∑

i=0

si+1Ei+2V A =

k−2∑

i=0

si+1Ei+1V −
k−2∑

i=0

siEi+1V A−
k−1∑

i=1

si+1Ei+1V +
k−1∑

i=1

siEi+1V A =

sEV − EV A− skEkV + sk−1EkV A =

sEV − EV A ,

where the last equality follows from Ek = 0. Now EV A = V + LC yields
the desired result.
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Theorem 3.24. (1) There exists a singular tracking observer for the linear
function V x of the state of system (3.1) if and only if V = KerV is
almost (C,A)-invariant.

(2) There exists a singular tracking observer for the linear function V x of
the state of system (3.1) with E nilpotent and K = I if and only if
V = KerV is an almost observability subspace.

Proof. Ad (1): Let the system (3.8) be a singular tracking observer for V x,
let x(0) ∈ KerV and let u(t) = 0 for all t ∈ R. Set v(0) := V x(0). Taking
Laplace transforms in (3.1) and (3.8) yields

sX(s)− x(0) = AX(s) and

sEV (s)− Ev(0) = KV (s) + LCX(s) .

Note that v(.) is continuous, hence the Laplace transform can be applied as
usual. It follows

X(s) = (sI − A)−1x(0)

and

V (s) =(sE −K)−1EV x(0) + (sE −K)−1LCX(s)

=(sE −K)−1LC(sI − A)−1x(0) .

Now v(t) = V x(t) for all t ≥ 0 implies V (s) = V X(s) hence

(sE −K)−1LC(sI − A)−1x(0) = V (sI − A)−1x(0) .

Since x(0) ∈ KerV =: V was arbitrary it follows

(sE −K)−1LC(sI − A)−1|V = V (sI − A)−1|V .

Applying Corollary 3.22 with W (s) := (sE − K)−1L shows that KerV is
almost (C,A)-invariant.

Conversely, let V = KerV be almost (C,A)-invariant. According to Corol-
lary 3.22 there exists a rational matrixW (s) such that equation (3.13) holds.
Realize W (s) as singular system of the form (3.8). It follows

(sE −K)−1LC(sI − A)−1x(0) = V (sI − A)−1x(0)

for all x(0) ∈ KerV . Since solutions of (3.8) are not necessarily continuous,
the following Laplace transform argument is carried out in the space of dis-
tributions. See e.g. Kailath [Kai80] for an explanation of the concept of left
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and right initial values (v(0−) and v(0+)) and the corresponding unilateral
Laplace transforms. Choose x(0) ∈ KerV and set v(0−) := V x(0) = 0. For
the moment assume that B = 0 and M = 0. Taking Laplace transforms in
(3.1) and in (3.8) yields

V X(s) = V (sI − A)−1x(0)

= (sE −K)−1LC(sI − A)−1x(0)

and

V (s) =(sE −K)−1Ev(0−) + (sE −K)−1LCX(s)

=(sE −K)−1EV x(0) + (sE −K)−1LC(sI − A)−1x(0)

=(sE −K)−1LC(sI − A)−1x(0) ,

then. It follows V (s) = V X(s) and v(t) = V x(t) for all t > 0. But then
v(0+) = V x(0) = 0 and hence v(0) := V x(0) = 0 leads to a continuous
solution satisfying v(t) = V x(t) for all t > 0. Hence (3.8) with M = 0
is a singular partially tracking observer for the function V x of the state of
system (3.1) with B = 0. According to Theorem 3.16 this observer can be
modified such that EV A−KV = LC holds. Now let B be arbitrary and set
M := EV B. Applying Theorem 3.13 completes the proof.

Ad (2): The first part of the ’only if’ direction follows along the same lines as
the ’only if’ part of (1) using the fact thatW (s) := (sE−I)−1L is polynomial
if E is nilpotent. Furthermore, Theorem 3.13 yields EV A − V = LC, and
hence by Lemma 3.23 (V −W (s)C)(sI−A)−1 = (V −(sE−I)−1LC)(sI−A)−1

is polynomial, too. Apply Corollary 3.22.

The proof of the ’if’ direction uses kernel representations of almost observ-
ability subspaces and is hence postponed until later (cf. Theorem 5.36). It
seems that the method used in the proof of the ’if’ part of (1) does not apply
here: In that proof the matrix K was modified using Theorem 3.16.

Although rather counter to intuition, the use of a singular system to observe
a non-singular system is of theoretical interest. The observer matrices are
directly related to the matrices appearing in the kernel representations of (al-
most) (C,A)-invariant subspaces and almost observability subspaces derived
in Chapter 5 (cf. especially Section 5.7).

Remark 3.25. A similar characterization of almost (C,A)-invariant subspaces
and almost observability subspaces in terms of PID-observers and PD-ob-
servers , repectively, has been derived by Willems [Wil82] (see also Trentel-
man [Tre85, Theorem 5.6]). Although based on a partly incorrect charac-
terization of almost controllability subspaces (cf. the above comments to
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Proposition 3.20), the observer type characterizations seem to be correct
themselves.

3.2.2 Uniqueness vs. pole assignment

In this section equations (3.4) are used to obtain (non)uniqueness results for
tracking observers. It is shown that the source of nonuniqueness is either a
lack of rank (in V or in C) or a freedom of pole placement (in K).

Theorem 3.26. Let V ∈ Fk×n. Let

Obsk(V ) = {(K,L,M) ∈ Fk×(k+p+m) |V A−KV = LC,M = V B}

be the set of all order k tracking observers for V x. If Obsk(V ) is nonempty
it is an affine space of dimension

dimObsk(V ) = k(def C + def V + [n− dim(KerV +KerC)]) .

Here def denotes the defect, i.e. the dimension of the codomain minus the
rank.

Proof. Being the solution set of the linear matrix equation

X ·Q :=
(

K L M
)

·






V 0
C 0
0 I




 = V

(

A B
)

,

Obsk(V ) is either empty or an affine space. Since the number of rows in X
is k, its dimension is k · dimKerQ∗. But

dimKerQ∗ = dim(ImQ)⊥

= k + p+m− rkQ

= k + p+m− (n+m− dimKerQ)

= k + p− n+ dim(KerV ∩KerC)

= k + p− n+ dimKerV + dimKerC − dim(KerV +KerC)

= k + p− n+ (n− rkV ) + (n− rkC)− dim(KerV +KerC)

= (k − rkV ) + (p− rkC) + n− dim(KerV +KerC) .
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In applications it causes no loss of generality to assume that C and V are
both of full row rank. In this case the dimension formula is especially nice.

Corollary 3.27. Let C be of full row rank p and let V := KerV be a codi-
mension k subspace (which is equivalent to V being of full row rank k). If V
is (C,A)-invariant then the set Obsk(V ) of all tracking observers for V x is
an affine space of dimension k[n− dim(V +KerC)].

Corollary 3.27 suggests the following definition (see also Section 2.3 and
Proposition 2.42).

Definition 3.28. A (C,A)-invariant subspace V is called ρ-tight if

dim(V +KerC) = ρ .

A n-tight subspace is also called tight .

Since dim(V+KerC) = n implies V+KerC = Fn, this definition of tightness
coincides with that of Section 2.3. The name tight subspace was first used
by Fuhrmann and Helmke [FH97]. The degree of tightness ρ measures the
(non)uniqueness of tracking observers.

Corollary 3.29. Let C in system (3.1) be of full row rank p. If KerV is a
codimension k ρ-tight (C,A)-invariant subspace then the set Obsk(V ) of all
tracking observers for V x is an affine space of dimension k(n − ρ). There
exists a unique tracking observer for V x if and only if KerV is a codimension
k tight (C,A)-invariant subspace.

If C has full row rank it is possible to characterize tightness of V in terms of
the map A− JC, where J is a friend of V .

Proposition 3.30. Let C have full row rank. A (C,A)-invariant subspace
V is tight if and only if the map (A− JC)|Fn/V is the same for every friend
J of V, i.e. if and only if (A − J1C)V ⊂ V and (A − J2C)V ⊂ V imply
(A− J1C)|Fn/V = (A− J2C)|Fn/V for every choice of J1 and J2.

Proof. Let (A− J1C)V ⊂ V and (A− J2C)V ⊂ V . Then (A− J1C)|Fn/V =
(A− J2C)|Fn/V if and only if

[

(A− J1C)|Fn/V − (A− J2C)|Fn/V
]

(x+ V) = (J2 − J1)C|Fn/V(x+ V)

= (J2 − J1)Cx+ V

= V
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for all x ∈ Fn. Since C is surjective this is equivalent to Im(J2 − J1) ⊂ V .
Recall that V is tight if and only if V + KerC = Fn, i.e. if and only if C|V
is surjective.

Let V be tight and let (A − J1C)V ⊂ V and (A − J2C)V ⊂ V . Then
(J2 − J1)CV ⊂ V and C|V being surjective implies Im(J2 − J1) ⊂ V . But
then (A− J1C)|Fn/V = (A− J2C)|Fn/V .

Conversely let (A−J1C)V ⊂ V and (A−J2C)V ⊂ V imply (A−J1C)|Fn/V =
(A−J2C)|Fn/V for every choice of J1 and J2. Then Im(J2−J1) ⊂ V . Define
a full row rank matrix V by V =: KerV . Then the diagram (3.15) yields
K1V = K2V for every choice of tracking observers v̇ = K1v + L1y +M1u
and v̇ = K2v + L2y + M2u for V x. Since V has full row rank it follows
K1 = K2. Furthermore M1 = V B = M2 and L1 = V J1 = V J2 = L2

since Im(J2 − J1) ⊂ V = KerV . But then Corollary 3.29 implies that V is
tight.

Now recall the following definition from Section 2.3.

Definition 3.31. A (C,A)-invariant subspace V is called observability sub-
space if for every monic polynomial p of degree codimV there exists a friend
J of V such that the characteristic polynomial of (A− JC)|Fn/V is equal to
p.

The dual concept of controllability subspaces has been introduced by Won-
ham and Morse [WM70]. Morse [Mor73] first studied observability subspaces
(talking only about duals of controllability subspaces), which were named
later by Willems and Commault [WC81].

Comparing the last definition with Proposition 3.30, observabilty subspaces
and tight subspaces play a kind of complementary roles. This idea is sup-
ported by the following result due to Willems [Wil82]. An extensive proof
(of the dual result) can be found in Trentelman’s thesis [Tre85]. See also
Proposition 2.38.

Proposition 3.32. For every (C,A)-invariant subspace V there exists a tight
(C,A)-invariant subspace T such that

V = T ∩ O∗(V) and T +O∗(V) = F
n .

Here O∗(V) denotes the smallest observability subspace containing V (cf. Sec-
tion 2.3).
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If V is of full row rank k then the spectrum of a corestriction (cf. Sec-
tion 2.3.3) of A to KerV , i.e. of the map (A− JC)|Fn/V where J is a friend
of V , is reflected in the matrix K of an appropriate tracking observer for V x.

Theorem 3.33. Let V ∈ Fk×n be of full row rank k. For every friend
J ∈ Fn×p of V := KerV there exists a unique tracking observer for V x such
that K is similar to (A− JC)|Fn/V . Conversely, for every tracking observer
v̇ = Kv+Ly+Mu for V x there exists a friend J of V such that (A−JC)|Fn/V
is similar to K.

Proof. Let (A − JC)V ⊂ V then there exists a matrix K ∈ F k×k such that
V (A− JC) = KV , i.e. such that the following diagram commutes. Since V
has full row rank, K is uniquely determined.

Fn
A− JC

V

Fn

V

Fk
K

Fk

This induces a quotient diagram with the induced map V̄ an isomorphism.

Fn/V

(A− JC)Fn/V

V̄

Fn/V

V̄

Fk
K

Fk

(3.15)

But then K is similar to (A − JC)|Fn/V . Define L := V J then the first
diagram yields V A−LC = KV . DefineM := V B. It follows by Theorem 3.4
that v̇ = Kv + Ly +Mu is a tracking observer for V x.

Conversely let v̇ = Kv + Ly +Mu be a tracking observer for V x. It follows
by Theorem 3.4 that V A − KV = LC. Since V is surjective there exists
J ∈ Fn×p such that L = V J . But then V (A − JC) = KV and hence
(A− JC)V ⊂ V , i.e. J is a friend of V . Furthermore, Diagram (3.15) yields
that (A− JC)|Fn/V is similar to K.
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3.2 Tracking observers

In this sense a tracking observer is nothing else but a corestriction of an
identity observer to a (C,A)-invariant subspace.

Theorem 3.33 allows to relate (non)uniqueness of observers to the following
classical pole placement result. The dual version can e.g. be found in Won-
ham’s book [Won74, Corollary 5.2]. It has been extended by Schumacher
[Sch80a, Sch81].

Proposition 3.34. Let V be (C,A)-invariant. If J is a friend of V then

σ((A− JC)|Fn/V) = σJ ∪ σfix ,

where

σJ := σ((A− JC)|Fn/O∗(V))

is freely assignable by a suitable choice of J , and

σfix := σ((A− JC)|O∗(V)/V)

is fixed for all J .

Note that Proposition 3.34 implies that any friend J of a (C,A)-invariant
subspace V is automatically a friend of O∗(V). Let T be a tight complement
of O∗(V) (cf. Proposition 3.32) then O∗(V)/V is naturally isomorphic to
Fn/T . In view of Theorem 3.33, Proposition 3.34 indeed makes the following
statement on observer poles .

Theorem 3.35. Any tracking observer for V x, V of full row rank, has some
completely arbitrary poles (corresponding to Fn/O∗(KerV )) and some fixed
poles (corresponding to Fn/T for any tight complement T of O∗(KerV )).
The spectrum of the observer is fixed if and only if KerV is tight. It is
completely variable if and only if KerV is an observability subspace.

Remark 3.36. The statement of the last theorem was already contained in a
paper by Willems [Wil82]. The paper does not contain a proof, though.

The following example shows that there is no direct relation between the
number of free parameters in K (i.e. the degree of tightness ρ) and the
number of free eigenvalues (i.e. the codimension of O∗(V)), even if C is of
full row rank p.
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Example 3.37. Let

A =











0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0











and C =

(

0 0 1 0 0
0 0 0 0 1

)

.

1. Consider

V1 =






0 0 1 0 0
0 1 0 0 0
1 0 0 0 0




 .

Then V1 = KerV1 is an observability subspace of codimension 3, i.e.
there are 3 free eigenvalues in any tracking observer for V x. Solving
V1A−K1V1 = L1C for K1 yields

K1 =






k1 1 0
k2 0 1
k3 0 0




 ,

where ki ∈ F , i = 1, 2, 3 are arbitrary (ρ1 = 4). Note that K1 is in
(permuted) companion form.

2. Consider

V2 =






1 0 0 0 0
0 0 0 1 0
0 0 0 0 1




 .

Then V2 = KerV2 is (C,A)-invariant but not an observability subspace.
It is codimO∗(V2) = 2, i.e. there are 2 free eigenvalues in any tracking
observer for V x. But solving V2A−K2V2 = L2C for K2 yields

K2 =






0 0 k1
0 0 k2
0 1 k3




 ,

where ki ∈ F , i = 1, 2, 3 are arbitrary (ρ2 = 4). Though having the
same number of free parameters as K1, K2 has a fixed zero eigenvalue.

With a little more effort the rank condition on V can be dropped in Theo-
rem 3.33, at least in the case where the spectrum is completely variable.
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Theorem 3.38. For every monic polynomial p of degree k there exists a
tracking observer for the linear function V x of the state of system (3.1) such
that the characteristic polynomial of K is equal to p if and only if V := KerV
is an observability subspace.

Proof. Assume that for every monic polynomial p of degree k there exists
a tracking observer for V x such that the characteristic polynomial of K is
equal to p. According to Theorem 3.8 V := KerV is (C,A)-invariant. Let J0
be a friend of V then (A− J0C)V ⊂ V and the quotient map

A0 := (A− J0C)|Fn/V : Fn/V −→ Fn/V ,

x+ V 7→ (A− J0C)x+ V

is well defined. Let

π : Fn −→ Fn/V ,

x 7→ x+ V

be the canonic projection. Choose a map S : F p −→ Fp such that KerSC =
KerC + V . Choose a map

C0 : F
n/V −→ Fp

such that C0π = SC. Such a map exists since V ⊂ KerSC.

Let λ ∈ C and choose a tracking observer v̇ = Kv + Ly +Mu for V x such
that λ 6∈ σ(K). According to Theorem 3.4 it follows V A−KV −LC = 0. Let
x+ V ∈ Ker(A0 − λ · idFn/V) ∩KerC0. Then SCx = C0πx = C0(x+ V) = 0
hence x ∈ KerC+V and there exists x′ ∈ KerC such that x+V = x′+V . But
then Ax′+V = (A−JC)x′+V = A0(x

′+V) = A0(x+V) = λ(x+V) = λx′+V
and hence KV x′ = (KV + LC)x′ = V Ax′ = λV x′. Since λ 6∈ σ(K) this
implies V x′ = 0 hence x + V = x′ + V = V . Since λ ∈ C was arbitrary it
follows by the Hautus test that the pair (C0, A0) is observable.

Let p be a monic polynomial of degree codimV . Then there exists an output
injection J1 : F

p −→ Fn/V such that the characteristic polynomial of (A0−
J1C0) is equal to p. Choose J2 : Fp −→ Fn such that πJ2 = J1. Define
J := J0 + J2S. Then V ⊂ KerSC implies (A − JC)V = (A − J0C)V ⊂ V
hence J is a friend of V . Furthermore

π(A− JC) = π(A− J0C)− πJ2SC

= A0π − J1C0π

= (A0 − J1C0)π .
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But then (A− JC)|Fn/V = A0− J1C0 has the characteristic polynomial p. It
follows that V is an observability subspace.

Conversely let V ∈ Fk×n and let V := KerV be an observability subspace.
There exists J0 ∈ F

n×p such that (A− J0C)V ⊂ V and hence there exists a
matrix K0 ∈ F

k×k such that V (A− J0C) = K0V . Setting L0 := V J0 yields
V A−K0V = L0C. Let N ∈ Fk×k be such that KerN = V (KerC).

Let λ ∈ C and choose a friend J of V such that λ 6∈ σ(A − JC)|Fn/V . Let
z ∈ Ker(K0−λI)∩KerN then z ∈ V (KerC), i.e. there exists x ∈ KerC such
that z = V x. Furthermore x ∈ KerC implies V (A−JC)x = V (A−J0C)x =
K0V x = λV x. It follows (A − JC)Fn/V(x + V) = λ(x + V). Since λ is not
an eigenvalue of (A − JC)|Fn/V this implies x + V = V hence z = V x = 0.
Since λ ∈ C was arbitrary it follows by the Hautus test that the pair (N,K0)
is observable.

Let p be a monic polynomial of degree k. Then there exists an output
injection Q ∈ Fk×k such that the characteristic polynomial of K := K0−QN
is equal to p. For x ∈ KerC it follows (V A − KV )x = (V A − K0V )x =
L0Cx = 0, i.e. KerC ⊂ KerV A−KV . But then there exists L ∈ F k×p such
that LC = V A−KV . Set M := V B. According to Theorem 3.4 the system
v̇ = Kv + Ly +Mu is a tracking observer for V x.

Remark 3.39. A statement of Theorem 3.38 as an exercise can be found in
the textbook by Trentelman, Stoorvogel and Hautus [TSH01]. They use the
same techniques as in the above proof to prove a geometric characterization
of the existence of tracking observers with stable K. Since the latter are
related to asymptotic observers (cf. Section 3.3), the statement and proof of
this result is postponed until later (Theorem 3.66).

3.2.3 Tracking output observers

Until now the observer state has been required to track the given function V x
of the system state. Therefore the order of the observer has always been equal
to the number of rows in V . In this section an output equation is attached to
the observer and this observer output is required to track the function V x. It
is shown that the only difference to tracking observers without output results
from the possibility to apply direct feedthrough of the system output y.
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3.2 Tracking observers

Definition 3.40. A tracking output observer for the linear function V x of
the state of system (3.1), V ∈ F k×n, is a dynamical system

v̇ = Kv + Ly +Mu ,

w = Pv +Qy ,
(3.16)

K ∈ F q×q, L ∈ F q×p, M ∈ F q×m, P ∈ Fk×q and Q ∈ Fk×p which is driven
by the input u and by the output y of system (3.1) and has the tracking
output property : For every x(0) ∈ Fn, every v(0) ∈ Fk and every input
function u(.)

w(0) = V x(0) ⇒ w(t) = V x(t) for all t ∈ R.

Here q is called the order of the observer.

Note that the tracking output property leaves some freedom in the choice of
the starting state v(0) of the observer. To obtain tracking, it is only required
to be chosen such that w(0) = Pv(0) + QCx(0) has the appropriate value.
There is the following characterization of tracking output observers.

Theorem 3.41. System (3.16) is a tracking output observer for V x if and
only if there exists a matrix K̂ ∈ Fk×k such that

(V −QC)A− K̂(V −QC) = PLC ,

PM = (V −QC)B ,

PK = K̂P .

(3.17)

Then ˙̂v = K̂v̂ + PLy + PMu is a tracking observer for (V −QC)x.

Proof. Apply Proposition 3.5 to the composite system

˙(x
v

)

= ẋc = Acxc +Bcu =

(

A 0
LC K

)(

x
v

)

+

(

B
M

)

u ,

e = w − V x = Ccxc =
(

QC − V P
)
(

x
v

)

.

Then the system (3.16) is a tracking output observer for V x if and only
if KerCc is Ac-invariant and contains ImBc. The latter is equivalent to
CcBc = 0, i.e. to (QC − V )B + PM = 0, which is the second equation
in (3.17). KerCc is Ac-invariant if and only if there exists a matrix K̂ ∈ Fk×k

such that CcAc = K̂Cc, i.e.
(

(QC − V )A+ PLC PK
)

=
(

K̂(QC − V ) K̂P
)

.

This yields the other two equations in (3.17). The last statement follows
from Theorem 3.4.
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On the other hand, assume that v̇ = Kv + Ly +Mu is a tracking observer
for (V −QC)x. Then by definition the system

v̇ = Kv + Ly +Mu ,

w = Iv +Qy

is a tracking output observer for V x. Since P = I is invertible, there is no
freedom in the choice of the starting state v(0), here. Using Theorem 3.41
and Theorem 3.8 this immediately yields the following corollary.

Corollary 3.42. There exists a tracking output observer for V x with direct
feedthrough matrix Q if and only if there exists a tracking observer for (V −
QC)x. The latter is equivalent to Ker(V −QC) being (C,A)-invariant.

In particular, there exists a tracking output observer for V x without direct
feedthrough, i.e. with Q = 0, if and only if there exists a tracking observer
for V x. The latter is equivalent to KerV being (C,A)-invariant.

3.2.4 Tracking observers with output

In this section tracking (state) observers with an extra output equation are
discussed. Theoretically, they allow the tracking of functions which are not
related to (C,A)-invariant subspaces using low dimensional observers. But on
the other hand tracking observers with output require more knowledge about
the starting state of the system than tracking observers or tracking output
observers would, which sometimes might reduce their practical usefullness.
The observer dimension can be reduced further by direct feedthrough of the
system output (Luenberger observer).

Definition 3.43. A linear function Ux, U ∈ F q×n, of the state of sys-
tem (3.1) is said to contain the linear function V x, V ∈ F k×n, if there exists
a matrix P ∈ Fk×q such that V = PU or, equivalently, if KerU ⊂ KerV .

Using this concept it is easy to construct an observer which tracks an ar-
bitrary linear function V x of the state of system (3.1). Simply choose a
function Ux which contains V x, and for which KerU is (C,A)-invariant.
Since Ker I = {0} is (C,A)-invariant and is trivially contained in KerV ,
such a function exists. Therefore it is even possible to choose such a U of
minimal dimension q (i.e. maximal dimension of KerU). Next, construct a
tracking observer

v̇ = Kv + Ly +Mu
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for Ux and attach to it the output equation

w = Pv ,

where V = PU . Now, setting v(0) = Ux(0) yields v(t) = Ux(t) and hence
w(t) = Pv(t) = PUx(t) = V x(t) for all t ∈ R. Since tracking observers
always relate to (C,A)-invariant subspaces (Theorem 3.8), designing such an
observer of minimal order results in finding a maximal dimensional (C,A)-
invariant subspace contained in KerV (cf. Section 5.6, Theorem 5.25). Since
the sum of two (C,A)-invariant subspaces is not necessarily (C,A)-invariant,
there might exist many such subspaces.

As has been mentioned before, setting v(0) = Ux(0) requires more knowledge
about the starting state x(0) of the system (3.1) than just V x(0), which would
be needed for a tracking observer or a tracking output observer for V x.

Remark 3.44. Observers of the above type have been named preobservers
by Fuhrmann and Helmke [FH01]. They appear in the characterization of
asymptotic output observers (cf. Section 3.3.1).

As an application of the above design procedure, the following result due to
Schumacher (see e.g. [Sch81, Lemma 2.9]) is used to construct the reduced
order observer or Luenberger observer for the full state x of system (3.1),
which is required to be detectable here. The reduced order observer uses
direct feedthrough of the system output y. In the (more special) case of
an observable system the corresponding result has been derived by Wonham
[Won70]. The proposition refers to the following concept introduced by Schu-
macher [Sch81] and by Willems and Commault [WC81] as the notion dual
to stabilizability subspaces . The latter were introduced by Wonham [Won74]
and named by Hautus [Hau80].

Definition 3.45. A (C,A)-invariant subspace V is called outer detectable if
there exists a friend J of V such that (A− JC)|Fn/V is stable.

By some authors an outer detectable subspace is also called detectability
subspace.

Proposition 3.46. Let (C,A) ∈ F p×n × Fn×n be detectable. Then there
exists an outer detectable subspace V such that V ⊕KerC = Fn. (Note that
such a V is tight.)

Using this result a reduced order observer for the full state x of system (3.1)
is constructed as follows. Let V ⊂ Fn be outer detectable such that V ⊕
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KerC = Fn. Let U ∈ F (n−rkC)×n such that KerU = V . Then U has full row
rank n − rkC. According to Theorem 3.33 there exists a tracking observer
v̇ = Kv+Ly+Mu for Ux such that K is stable. According to Theorem 3.4
then the tracking error e = v − Ux is governed by ė = Ke. Since

Ker

(

U
C

)

= {0} = Ker I

there exist matrices P ∈ Fn×(n−rkC) and Q ∈ Fn×p such that PU +QC = I.
Since Ux by definition contains PUx, adding the output equation

w = Pv

to the observer and setting v(0) = Ux(0) yields w(t) = PUx(t) = (I −
QC)x(t) for all t ∈ R. Hence adding the output equation

w̃ = Pv +Qy ,

with the direct feedthrough term Qy = QCx, yields an observer of reduced
order n− rkC with

v(0) = Ux(0) ⇒ w̃(t) = x(t) for all t ∈ R .

Furthermore, since K is stable and ė = Ke, for arbitrary v(0) ∈ Fn−rkC

it follows limt→∞(w̃(t) − x(t)) = limt→∞ Pe(t) = 0, i.e. the system state is
asymptotically identified by the observer.

Remark 3.47. A generalization of Proposition 3.46 using an almost observ-
ability subspace instead of KerC has been derived by Trentelman [Tre84]. He
uses direct feedthrough of derivatives of the output y for a further reduction
of the observer order (PID-observer).

3.3 Asymptotic observers

Asymptotic observers in general do not track (part of) the system state but
identify it asymptotically, i.e. for the time going to infinity, while the starting
state of the observer can be chosen arbitrarily. In this section the precise
relation between asymptotic observers and tracking observers is discussed.
In a first step observers without output are considered. Adding an output to
an asymptotic observer yields a practically useful new type of observer which
can be used to observe arbitrary (linear) functions of the system state. It
is then possible to talk about minimal observers, i.e. observers of minimal
order.
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Definition 3.48. An asymptotic observer for the linear function V x of the
state of system (3.1), V ∈ F k×n, is a dynamical system

v̇ = Kv + Ly +Mu , (3.18)

K ∈ Fk×k, L ∈ Fk×p and M ∈ Fk×m, which is driven by the input u and
the output y of system (3.1) and has the property that

lim
t→∞

(v(t)− V x(t)) = 0

for every choice of x(0), v(0) and the input function u(.), i.e. the observer
state converges to the to be estimated function of the system state. As before
k is called the order of the observer.

Note that any tracking observer with stable K is an asymptotic observer
(Theorem 3.4), especially an identity observer with A − LC stable is an
asymptotic observer for Ix. It will be shown below (Corollary 3.58) that the
converse is also true if the system (3.1) is controllable.

Example 3.49. Let ẋ = Ax be a free (totally uncontrollable) and stable
system. Let V = I. Then limt→∞ V x(t) = 0 for every starting point x(0) ∈
Fn. Any other free and stable system v̇ = Kv, K ∈ Fn×n, is an asymptotic
observer for V x, then. But apparently it is not a tracking observer for V x
unless K = A.

If the system (3.1) is merely partially controllable then the Kalman decompo-
sition into a controllable and a free subsystem allows a similar construction.
Hence, in general, asymptotic observers do not have the tracking property.

To deduce a characterization of asymptotic observers consider the following
result on linear systems. Let

R(A,B) := ImRn(A,B) := Im
(

B AB . . . An−1B
)

be the reachable subspace and let

N (C,A) := KerOn(C,A) := Ker









C
CA
...

CAn−1









be the unobservable subspace of system (3.1).
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Proposition 3.50. The output y(.) of system (3.1) has the property that
lim
t→∞

y(t) = 0 for every choice of x(0) and u(.) if and only if

(1) R(A,B) ⊂ KerC and

(2) A is stable on Fn/N (C,A).

Proof. Let limt→∞ y(t) = 0 for every choice of x(0) and u(.). Assume there
exists x0 ∈ R(A,B) with Cx0 6= 0. Since x0 ∈ R(A,B) there exists a control
u(.) and a corresponding trajetory x(.) that oscillates between 0 and x0,
contradicting y(t) = Cx(t) → 0 for t → ∞. Hence (1) holds. If N (C,A) =
Fn there is nothing to prove in (2). Assume N (C,A) 6= Fn and assume
that A is not stable on Fn/N (C,A). Then there exists 0 6= x0 ∈ F

n with
x0 6∈ N (C,A) and Ax0 = λx0 for a λ ∈ C with Reλ ≥ 0. It is x0 6∈ KerC
since the span of x0 is A-invariant but N (C,A) is the largest A-invariant
subspace of KerC. Choosing x(0) = x0 and u(.) ≡ 0 yields a trajectory with
y(t) = Cx(t) 6→ 0 for t→∞. Hence (2) holds.

Conversely let (1) and (2) hold. Let x(0) = x0 ∈ F
n and let u(.) be arbitrary.

Then

y(t) = Cx(t) = C eAt x0 + C

t∫

0

eA(t−τ)Bu(τ)dτ ,

where the integral is an element of R(A,B) and hence of KerC. Let Fn =
N (C,A) ⊕ W and decompose x0 = n0 + w0 with n0 ∈ N (C,A) and w0 ∈
W . Since N (C,A) is A-invariant and contained in KerC it follows y(t) =
C eAtw0. But then (2) implies limt→∞ y(t) = 0.

Apparently, applying Proposition 3.50 to the composite system

˙(x
v

)

= ẋc = Acxc +Bcu =

(

A 0
LC K

)(

x
v

)

+

(

B
M

)

u ,

e = v − V x = Ccxc =
(

−V I
)
(

x
v

) (3.19)

results in the following characterization of asymptotic observers.

Corollary 3.51. System (3.18) is an asymptotic observer for V x if and only
if R(Ac, Bc) ⊂ KerCc and Ac is stable on Fn+k/N (Cc, Ac).
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In a more general setting (cf. Section 3.3.1) this characterization has been
used by Schumacher [Sch80b] as a definition of what he called a stable ob-
server . In the following a more elaborate version of this characterization is
deduced. The following two lemmas are technical.

Lemma 3.52. Let x ∈ Fn and v ∈ Fk. Then

(

−V I
)
(

A 0
LC K

)j−1 (

x
v

)

= 0 (3.20)

for all j ∈ N if and only if v = V x and (V A−KV − LC)Ai−1x = 0 for all
i ∈ N.

Proof. Let (3.20) hold for all j ∈ N. Setting j = 1 yields v = V x. It will be
proved by induction that (V A−KV − LC)Ai−1x = 0 for all i ∈ N. It is

(

A 0
LC K

)(

x
v

)

=

(

A
LC +KV

)

x (3.21)

and
(

−V I
)
(

A 0
LC K

)(

x
v

)

= −(V A− LC −KV )x (3.22)

hence setting j = 2 yields (V A−KV − LC)x = 0. Let

(

A 0
LC K

)i (

x
v

)

=

(

A
LC +KV

)

Ai−1x (3.23)

and (V A−KV − LC)Ai−1x = 0 for a fixed i ∈ N. Then

(

A 0
LC K

)i+1 (

x
v

)

=

(

A 0
LC K

)(

A
LC +KV

)

Ai−1x

=

(

Ai+1

LCAi +K(LC +KV )Ai−1

)

x

=

(

Ai+1

LCAi +K(V A)Ai−1

)

x

=

(

A
LC +KV

)

Aix

(3.24)

and

(

−V I
)
(

A 0
LC K

)i+1 (

x
v

)

= −(V A− LC −KV )Aix (3.25)
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hence (V A−KV − LC)Aix = 0. This completes the induction.

Conversely let v = V x and let (V A − KV − LC)Ai−1x = 0 for all i ∈ N.
Then v = V x immediately implies (3.20) for j = 1. It will be proved by
induction that (3.20) holds for all j ∈ N, j ≥ 2. (3.21) and (3.22) imply
(3.20) for j = 2. Let j ∈ N, j ≥ 2 be fixed, let (3.23) be true for i = j − 1
and let (3.20) be true for j. Then (3.24) holds and (3.25) implies (3.20) for
j + 1. This completes the induction.

Lemma 3.53. The following statements are equivalent.

(1) (V A−KV − LC)Rn(A,B) = 0,

(2) R(A,B) ⊂ Ker(V A−KV − LC),

(3) R(A,B) ⊂ N (V A−KV − LC,A) and

(4) ImB ⊂ N (V A−KV − LC,A).

Proof. (1)⇔ (2) follows from R(A,B) = ImRn(A,B). (2) implies (3) since
R(A,B) is A-invariant but N (V A−KV −LC,A) is the largest A-invariant
subspace of KerV A−KV −LC. (3) implies (2) sinceN (V A−KV −LC,A) =
KerOn(V A −KV − LC,A). (3) implies (4) since ImB ⊂ R(A,B) and (4)
implies (3) since N (V A−KV − LC,A) is A-invariant.

The first condition of Corollary 3.51 states that the system input (Schu-
macher [Sch80b] talks of the disturbance) is decoupled from the estimation
error , i.e. the input and the output of the composite system are decoupled.
The following Lemma implies that this is indeed a tracking property on the
controllable subspace (cf. Theorem 3.4).

Lemma 3.54. The following statements are equivalent.

(1) R(Ac, Bc) ⊂ KerCc,

(2) CcRn+k(Ac, Bc) = 0 and

(3) (V A−KV − LC)Rn(A,B) = 0 and M = V B.

Proof. (1)⇔ (2) follows from R(Ac, Bc) = ImRn+k(Ac, Bc). To get (2)⇔ (3)
apply Lemma 3.52 with u ∈ Fm arbitrary, x = Bu and v =Mu.
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The next lemma is an easy consequence of Lemma 3.52.

Lemma 3.55.

N (Cc, Ac) =

(

I
V

)

N (V A−KV − LC,A) . (3.26)

Proof. By definition N (Cc, Ac) = KerOn+k(Cc, Ac). Use Lemma 3.52.

The following lemma is due to Schumacher [Sch80b].

Lemma 3.56.

σ(Ac|Fn+k/N (Cc,Ac)) = σ(A|Fn/N (V A−KV−LC,A)) ∪ σ(K) .

Proof. By Lemma 3.55 it follows

Np :=

{

x ∈ Fn | ∃
v ∈ Fk

(

x
v

)

∈ N (Cc, Ac)

}

= N (V A−KV − LC,A) .

(3.27)

Furthermore,

(

0
v

)

∈ N (Cc, Ac) ⊂ KerCc = Ker
(

−V I
)

implies v = 0.

Hence

dimN0 := dim

{

v ∈ Fk |

(

0
v

)

∈ N (Cc, Ac)

}

= 0 .

On the other hand clearly dimN (Cc, Ac) = dimNp + dimN0 hence (3.27)
implies dimN (Cc, Ac) = dimN (V A−KV − LC,A). Let

P : N (Cc, Ac) −→ Np = N (V A−KV − LC,A)

be the natural projection, then P is an isomorphism. Moreover, the following
diagram commutes.

N (Cc, Ac)
Ac

P

N (Cc, Ac)

P

N (V A−KV − LC,A)
A

N (V A−KV − LC,A)
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Hence

σ(Ac|N (Cc,Ac)) = σ(A|N (V A−KV−LC,A)) .

On the other hand clearly

σ(Ac) = σ(A) ∪ σ(K) .

Combining the two equations yields the desired result.

Now applying Proposition 3.50 to the composite system (3.19) and using
Lemmas 3.54 and 3.56 yields the following characterization of asymptotic
observers.

Theorem 3.57. System (3.18) is an asymptotic observer for V x if and only
if

(1) (V A−KV − LC)Rn(A,B) = 0 and M = V B,

(2) K is stable and

(3) A is stable on Fn/N (V A−KV − LC,A) .

For curiosity note that by Proposition 3.50 the first part of (1) and (3) amount
to limt→∞ z(t) = 0 for the system ẋ = Ax+Bu, z = (V A−KV −LC)x. In
the controllable case Theorem 3.57 specializes to the following.

Corollary 3.58. Let the system (3.1) be controllable. System (3.18) is an
asymptotic observer for V x if and only if it is a tracking observer for V x
with stable K, i.e. if and only if K is stable and equations (3.4) are satisfied.

Proof. If the system (3.1) is controllable then R(A,B) = Fn and Rn(A,B)
has full rank n. Hence (1) of Theorem 3.57 is equivalent to equations (3.4).
Using Lemma 3.53 the first equation of (1) is equivalent to R(A,B) ⊂
N (V A−KV − LC,A) hence N (V A−KV − LC,A) = Fn and (3) is guar-
anteed.

Note again that the characterization by equations (3.4) implies that an
asymptotic observer for Ix, i.e. for the full state, of a controllable system is
necessarily an identity observer with K = A− LC stable.
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Remark 3.59. Although Corollary 3.58 and its generalization to asymptotic
observers with output (cf. Theorem 3.70) is considered to be well known
throughout the literature, there seems to be only a very recent paper by
Fuhrmann and Helmke [FH01], in which a rigorous proof is carried out. Most
authors cite the original work of Luenberger [Lue64, Lue66, Lue71], which
does only contain the ’if’-part. The general characterization of Theorem 3.57
has not been in the literature in this form.

Remark 3.60. Some authors, see e.g. Fortmann and Williamson [FW72],
Moore and Ledwich [ML75] or Sirisena [Sir79], use the stronger condition

lim
t→∞

dj

dtj
(v(t)− V x(t)) = 0 for all j = 0, 1, 2, . . .

as the definition of an asymptotic observer for V x. However, by Corol-
lary 3.58 and Theorem 3.4 the equality for j = 0 implies ė = Ke, where
e(t) := v(t) − V x(t) and K is stable, and hence implies the equality for
j = 1, 2, . . . So, in the case of a controllable system, the above condition is
equivalent to the definition of an asymptotic observer as it has been given
here.

Theorem 3.57 allows a geometric characterization of the existence of asymp-
totic observers. It uses the concept of outer detectable subspace (cf. Sec-
tion 3.2.4).

Theorem 3.61. There exists an asymptotic observer for V x if and only if
there exists an A-invariant subspace W ⊃ ImB such that V = KerV ∩W is
outer detectable with a friend J that satisfies Im J ⊂ W.

The proof of Theorem 3.61 uses the following two lemmas.

Lemma 3.62. LetW be an A-invariant subspace, let (V A−KV −LC)|W = 0
and let K be stable. Set V := KerV ∩ W. Then there exists an output
injection J such that Im J ⊂ W, (A − JC)V ⊂ V and (A − JC)|W/V is
stable.

Proof. Consider V |W as surjective linear map

V |W :W −→ V (W) .

The key point in the proof is to modify K in such a way that it maps V (W)
into itself and is still stable. Let x ∈ W ∩KerC then KV x = V Ax−LCx =
V Ax and since W is A-invariant this implies KV x ∈ V (W). Hence

K|V (W∩KerC) : V (W ∩KerC) ⊂ V (W) −→ V (W) . (3.28)
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SinceK is stable, the restriction of (3.28) to the largest K-invariant subspace
of V (W ∩ KerC) is stable. The same is true for every linear extension
K(1) : V (W) −→ V (W) of (3.28). Let K (1) be such an extension. Let
N : V (W) −→ V (W) be any linear map with KerN = V (W ∩ KerC) then
the pair (N,K(1)) is detectable (note that the choice of the codomain of N
is not vital). Hence there exists an output injection Q : V (W) −→ V (W)
such that K(2) := K(1) − QN is stable. The definition of N implies that
K(2)|V (W∩KerC) = K|V (W∩KerC).

Having modified K it is now possible to modify L in such a way that it
maps C(W) into V (W). For x ∈ W ∩ KerC it follows K (2)V x − V Ax =
KV x − V Ax = 0, i.e. W ∩ KerC = KerC|W ⊂ Ker(K(2)V − V A)|W . But
then there exists a linear map L(1) : C(W) −→ V (W) such that L(1)C|W =
(K(2)V − V A)|W .

In a last step the modified L is used to define J . Let S : V (W) −→W be a
right inverse of V , i.e. let V S = idV (W). Define J := −SL(1) : C(W) −→W .
Extend J by 0 to a map J (1) : Fp −→ Fn. Then Im J (1) ⊂ W and it
follows (A− J (1)C)W = (A− JC)|WW ⊂W . Furthermore V (A− JC)|W =
(V A+V SL(1)C)|W = (V A+L(1)C)|W = K(2)V |W . But then V =W∩KerC
implies (A−J (1)C)V = (A−JC)|WV ⊂ V . Let λ ∈ C and let x ∈ W such that
V x 6= 0. Then (A− J (1)C)|W/V(x+ V) = λ(x+ V) implies V (A− J (1)C)x =
λV x. Hence K(2)(V x) = V (A − JC)|Wx = V (A − J (1)C)|Wx = λ(V x).
Since K(2) is stable this implies Reλ < 0. This means (A − J (1)C)|W/V is
stable.

Lemma 3.63. Let W and V = KerV ∩ W both be (A − JC)-invariant
subspaces. Let (A − JC)|W/V be stable. Then there exist a stable matrix
K ∈ Fk×k and a matrix L ∈ Fk×p such that (V A−KV − LC)|W = 0.

Proof. Since V is (A−JC)-invariant there exists a linear mapK0 : V (W) −→
V (W) such that the following diagram commutes.

W

(A− JC)W

V

W

V

V (W)
K0

V (W)

This induces a quotient diagram with the induced map V̄ an isomorphism.
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W/V

(A− JC)W/V

V̄

W/V

V̄

V (W)
K0

V (W)

But then K0 is similar to (A − JC)|W/V and hence stable. Extend K to a
stable map K : Fk −→ Fk. Define L := V J then the first diagram yields
(V A−KV − LC)|W = (V A−K0V − LC)|W = 0.

Proof of Theorem 3.61. Let the system (3.18) be an asymptotic observer for
V x. According to Theorem 3.57 it follows (V A −KV − LC)Rn(A,B) = 0
which by Lemma 3.53 implies ImB ⊂ N (V A −KV − LC,A) =: W . Then
W is A-invariant and W ⊂ KerV A−KV −LC. Set V := KerV ∩W . Since
K is stable (Theorem 3.57) Lemma 3.62 yields the existence of an output
injection J such that Im J ⊂ W , (A−JC)V ⊂ V and (A−JC)|W/V is stable.
But then (A − JC)|Fn/V is stable since A|Fn/W = (A − JC)|Fn/W is stable
(Theorem 3.57). Hence V is outer detectable.

Conversely let V ∈ Fk×n and let W ⊃ ImB be an A-invariant subspace
such that V := KerV ∩W is outer detectable with friend J and Im J ⊂ W .
Then V and W are both (A− JC)-invariant. Since (A− JC)|Fn/V is stable
so is (A − JC)|W/V . Applying Lemma 3.63 yields the existence of a stable
matrix K and of a matrix L such that (V A − KV − LC)|W = 0. Since
R(A,B) is the smallest A-invariant subspace containing ImB, ImB ⊂ W
implies R(A,B) ⊂ W . It follows (V A − KV − LC)Rn(A,B) = 0. Define
M := V B. Since Im J ⊂ W it is A|Fn/W = (A − JC)|Fn/W and the later is
stable since V ⊂ W . Furthermore W ⊂ KerV A − KV − LC implies W ⊂
N (V A −KV − LC,A) (the later being the largest A-invariant subspace in
KerV A−KV−LC). It follows that A|Fn/N (V A−KV−LC,A) is stable. According
to Theorem 3.57 the system v̇ = Kv + Ly +Mu is an asymptotic observer
for V x.

If the system (3.1) is controllable then Theorem 3.61 reduces to the following.

Corollary 3.64. Let the system (3.1) be controllable. There exists an asymp-
totic observer for V x if and only if V := KerV is outer detectable.
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Proof. If the system (3.1) is controllable then R(A,B) = Fn. Since R(A,B)
is the smallest A-invariant subspace containing ImB, any A-invariant sub-
space W ⊃ ImB is equal to Fn, then.

Remark 3.65. 1. The proof of Theorem 3.61 has been adopted from Schu-
macher [Sch80b]. As has been pointed out before he used the composite
system (3.19) to define asymptotic observers (and called them stable
observers).

2. The controllable case of Corollary 3.64 has also been treated by Kawaji
[Kaw80] who implicitely assumes that V is of full row rank. Further-
more he relies on Corollary 3.58 (cf. Remark 3.59).

3. Both of them discussed asymptotic observers with output, cf. Sec-
tion 3.3.1.

Another consequence of Lemma 3.62 and Lemma 3.63 is the following geo-
metric charcterization of the existence of tracking observers with stable K.
It also provides a dynamic characterization of outer detectable subspaces.
Note that there is no hypothesis on the pair (C,A) nor on the matrix V . As
has been pointed out before (Remark 3.39), it could also be proved in the
same way as Theorem 3.38.

Theorem 3.66. There exists a tracking observer for V x with stable K if and
only if V := KerV is outer detectable.

Proof. Let the system (3.3) be a tracking observer for V x with stable K.
According to Theorem 3.4 it follows V A−KV = LC. Set V = KerV . Ap-
plying Lemma 3.62 with W = Fn yields the existence of an output injection
J such that (A− JC)V ⊂ V and (A− JC)|Fn/V is stable. Hence V is outer
detectable.

Conversely let V ∈ Fk×n and let V = KerV be outer detectable. There exists
J ∈ Fn×p such that (A− JC)V ⊂ V and (A− JC)|Fn/V is stable. Applying
Lemma 3.63 with W = Fn yields the existence of a stable matrix K and of
a matrix L such that V A − KV − LC = 0. Define M := V B. According
to Theorem 3.4 the system v̇ = Kv + Ly +Mu is a tracking observer for
V x.
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3.3.1 Asymptotic output observers

In this section an output is attached to the observer, and this output is
required to identify the given (linear) function of the system state asymp-
totically. Since the starting state of an asymptotic observer can be chosen
arbitrarily anyway, there is no need to make a difference analogously to Sec-
tion 3.2.3 vs. Section 3.2.4. Again, direct feedthrough of the system output
is used to reduce the observer order.

Definition 3.67. An asymptotic output observer for the linear function V x
of the state of system (3.1), V ∈ F k×n, is a dynamical system

v̇ = Kv + Ly +Mu ,

w = Pv +Qy ,
(3.29)

K ∈ F q×q, L ∈ F q×p, M ∈ F q×m, P ∈ Fk×q and Q ∈ Fk×p, which is driven
by the input u and by the output y of system (3.1) and has the property that

lim
t→∞

(w(t)− V x(t)) = 0

for every choice of x(0), v(0) and the input function u(.), i.e. the observer
output converges to the to be estimated function of the system state. Here
q is called the order of the observer. The observer (3.29) is called observable
if the pair (P,K) is observable.

Applying Proposition 3.50 to the composite system

˙(x
v

)

= ẋc = Acxc +Bcu =

(

A 0
LC K

)(

x
v

)

+

(

B
M

)

u ,

e = w − V x = Ccxc =
(

QC − V P
)
(

x
v

) (3.30)

results in the following characterization of asymptotic output observers.

Theorem 3.68. System (3.29) is an asymptotic output observer for V x if
and only if R(Ac, Bc) ⊂ KerCc and Ac is stable on Fn+q/N (Cc, Ac).

In a slightly more general setting, allowing a function r = Hu instead of u
in the observer equation, this characterization has been used by Schumacher
[Sch80b] as a definition of what he called a stable observer .

To require the observer (3.29) to be observable does not really impose a
limitation, since non observable observers would anyway be of unnecessarily
large order.
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Proposition 3.69. If there exists an asymptotic output observer for V x then
there exists an observable asymptotic output observer for V x of less or equal
order. Both observers contain the same direct feedthrough term, i.e. they
have the same Q.

Proof. Consider the dual Kalman decomposition for the pair (P,K): There
exists an invertible S ∈ F q×q such that

SKS−1 =

(

K11 0
K21 K22

)

and PS−1 =
(

P1 0
)

,

while the pair (P1, K11) is observable. Now split

SL =

(

L1

L2

)

, SM =

(

M1

M2

)

and Sv =

(

v1
v2

)

analogously. Then starting the system

v̇1 = K11v1 + L1y +M1u ,

w = P1v1 +Qy

with v1(0) generates the same output as starting the original observer with
v(0).

As has been pointed out before (cf. Remark 3.59), the following characteriza-
tion of observable asymptotic output observers for controllable systems has
a long history in the literature. The proof given here uses ideas developed
by Fuhrmann and Helmke [FH01], who treated the case Q = 0 (no direct
feedthrough) and V of full row rank.

Theorem 3.70. Let the system (3.1) be controllable. System (3.29) is an
observable asymptotic output observer for V x if and only if there exists a
matrix U ∈ F q×n such that

UA−KU = LC ,

M = UB ,

V = PU +QC ,

(3.31)

(P,K) is observable, and K is stable.
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Proof. Let there be a matrix U ∈ F q×n such that the system (3.29) satisfies
equations (3.31). Let (P,K) be observable, and let K be stable. According
to Theorem 3.4 then e = v − Ux is governed by ė = Ke, which implies
limt→∞ e(t) = 0. It follows limt→∞(w(t) − V x(t)) = limt→∞ Pe(t) = 0, i.e.
the system (3.29) is an observable asymptotic output observer for V x.

Conversely let the system (3.29) be an observable asymptotic output observer
for V x. By Theorem 3.68 it follows R(Ac, Bc) ⊂ KerCc, i.e.

(

QC − V P
)
(

A 0
LC K

)j−1 (

B
M

)

= 0 for all j ∈ N . (3.32)

It will be proved by induction that

(

A 0
LC K

)j−1 (

B
M

)

=






Aj−1B

Kj−1M +
j−2∑

i=0
KiLCAj−i−2B




 .

Obviously, this is true for j = 1. Let it be true for a fixed j ∈ N now. It
follows

(

A 0
LC K

)j (

B
M

)

=

(

A 0
LC K

)(

A 0
LC K

)j−1 (

B
M

)

=

(

A 0
LC K

)





Aj−1B

Kj−1M +
j−2∑

i=0
KiLCAj−i−2B






=






AjB

KjM + LCAj−1B +
j−1∑

i=1
KiLCAj−i−1B






=






AjB

KjM +
j−1∑

i=0
KiLCA(j+1)−i−2B




 ,

which completes the induction. But now equation (3.32) implies

(V −QC)Aj−1B = P



Kj−1M +
j−2
∑

i=0

KiLCAj−i−2B



 for all j ∈ N .

Since (A,B) is controllable, the reachability matrix

Rn(A,B) =
(

B AB . . . An−1B
)
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has full rank and hence it follows

V −QC = PŨ ,

where

Ũ =





n∑

j=1



Kj−1M +
j−2
∑

i=0

KiLCAj−i−2B



B∗(A∗)j−1



 ·

· (Rn(A,B)Rn(A,B)∗)−1 .

(3.33)

Now set e(t) = w(t)− V x(t) and consider the composite system (3.30) with
Laplace transform

(

X(s)
V (s)

)

=

(

(sI − A)−1 0
(sI −K)−1LC(sI − A)−1 (sI −K)−1

)

·

·

((

B
M

)

U(s) +

(

x(0)
v(0)

))

.

Then the Laplace transform of e(t) is

E(s) = W (s)− V X(s) = PV (s) + (QC − V )X(s) = PV (s)− P ŨX(s)

=
{

P (sI −K)−1M +
[

P (sI −K)−1LC − PŨ
]

(sI − A)−1B
}

U(s)+
[

P (sI −K)−1LC − PŨ
]

(sI − A)−1x(0) + P (sI −K)−1v(0) .

Let x(0) = 0 and u(t) = 0 for all t ∈ R. Then limt→∞ e(t) = 0 for every
choice of v(0) ∈ F q implies P (sI − K)−1 being stable. Since the observer
and hence the pair (P,K) is observable, this implies the stability of K.

Now let x(0) = v(0) = 0. Then limt→∞ e(t) = 0 for every choice of u(t)
implies that the term in braces is zero: Assume an entry in the i-th row is
nonzero then U(s) can be chosen such that the i-th component of E(s) is 1

s

contradicting limt→∞ e(t) = 0. It follows

P (sI −K)−1M = −
[

P (sI −K)−1LC − PŨ
]

(sI − A)−1B , (3.34)

and since (P,K) is observable this implies KerB ⊂ KerM . Hence there
exists W ∈ F q×n such that M =WB. But then (3.34) implies

P (sI −K)−1
[

W (sI − A) + LC − (sI −K)Ũ ](sI − A)−1B = 0 .

For every J ∈ F q×k the equality

P (sI −K + JP )−1 = (I + P (sI −K)−1J)−1P (sI −K)−1
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holds, and hence it follows

P (sI−(K−JP ))−1
[

W (sI−A)+LC−(sI−K)Ũ ](sI−A)−1B = 0 . (3.35)

Since (P,K) is observable, the matrix J can be chosen such that (K − JP )
and A have disjoint spectra.

According to Gantmacher [Gan59, Chapter 8, §3] then the Sylvester equation

(K − JP )X −XA = −ŨA+KŨ + LC (3.36)

has a unique solution X ∈ F q×n. Set Y = W +X − Ũ . Then

Y (sI − A)− (sI − (K − JP ))X = W (sI − A) + LC − (sI −K)Ũ (3.37)

and hence by (3.35) it follows

P (sI − (K − JP ))−1
[

Y (sI − A)− (sI − (K − JP ))X
]

(sI − A)−1B =

P (sI − (K − JP ))−1Y B − PX(sI − A)−1B = 0 .

Since (K − JP ) and A have disjoint spectra this yields

P (sI − (K − JP ))−1Y B = PX(sI − A)−1B = 0 .

Since (P,K) is observable, so is (P,K − JP ), and it follows Y B = 0. Fur-
thermore, from the controllability of the pair (A,B) it follows PX = 0.

Now comparing the constant terms in (3.37) yields

−Y A+KX +WA− LC −KŨ = 0 .

Define

U := W − Y = Ũ −X . (3.38)

Then it follows UA−KU −LC = 0, i.e. the first equality in (3.31). Further-
more, it is UB = WB − Y B = M and PU = P Ũ − PX = V − QC, which
are the second and third equalities in (3.31). This completes the proof.

Remark 3.71. The ’if’-direction of Theorem 3.70 could as well be formulated
without the observability hypothesis: If the equations (3.31) are satisfied,
and if K is stable, then the system (3.29) is an asymptotic output observer
for V x. Observability of (P,K) has not been used for this conclusion in the
above proof.
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Note that for a controllable system the characterization by equations (3.31)
implies (Theorem 3.4) that an observable asymptotic output observer for V x
with direct feedthrough matrix Q tracks a function Ux containing (V −QC)x
(cf. Definition 3.43). A formula for such a U is given by equations (3.33),
(3.36) and (3.38). This means, a reduced order asymptotic output observer
(Luenberger observer) for the full state of a controllable system is necessarily
of the form shown in Section 3.2.4.

Unfortunately, it seems to be quite hard to derive a generalization of Theo-
rem 3.70 to non controllable systems, as has been done for observers without
output (Theorem 3.57).

Remark 3.72. It has been pointed out before (Remark 3.60) that some au-
thors use the stronger condition

lim
t→∞

dj

dtj
(w(t)− V x(t)) = 0 for all j = 0, 1, 2, . . .

as the definition of an asymptotic output observer for V x. However, the
equality for j = 0 implies ė = Ke, where e(t) := v(t) − Ux(t) and K is
stable, as has just been shown in the proof of Theorem 3.70. This in turn
implies

lim
t→∞

dj

dtj
(w(t)− V x(t)) = lim

t→∞

dj

dtj
Pe(t) = 0 for j = 1, 2, . . .

So, in the case of a controllable system and an observable observer, the above
condition is equivalent to the definition of asymptotic output observers as it
has been given here. A proof deducing equations (3.31) from the above
condition (for j = 0, 1, 2, . . . ) can be found in the paper by Fortmann and
Williamson [FW72]. The alternative proof given by Moore and Ledwich
[ML75] is incomplete, they use a misshaped reachability matrix.

Equations (3.31) allow the following geometric characterization of the exis-
tence of observable asymptotic output observers for a controllable system.

Theorem 3.73. Let the system (3.1) be controllable. There exists an observ-
able asymptotic output observer for V x if and only if there exists an outer
detectable subspace U with U ∩KerC ⊂ KerV .

There exists an observable asymptotic output observer for V x without direct
feedthrough, i.e. with Q = 0, if and only if there exists an outer detectable
subspace U ⊂ KerV .
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Proof. Let the system (3.29) be an observable asymptotic output observer
for V x. According to Theorem 3.70 and Theorem 3.4 then the system v̇ =
Kv + Ly +Mu is a tracking observer for a function Ux, U ∈ F q×n, and K
is stable. Furthermore it is

V =
(

P Q
)
(

U
C

)

, (3.39)

which implies KerU ∩ KerC ⊂ KerV . According to Theorem 3.66, U =
KerU is outer detectable.

Conversely let U be outer detectable with U ∩ KerC ⊂ KerV . Set q =
codimU and choose U ∈ F q×n such that KerU = U . Then there exist
matrices P ∈ Fk×q and Q ∈ Fk×p such that equation (3.39), i.e. V = PU +
QC, holds. According to Theorem 3.66 there exists a tracking observer v̇ =
Kv+Ly+Mu for Ux with stableK. By Theorem 3.4 this implies UA−KU =
LC and M = UB. According to Theorem 3.70 and Remark 3.71 then the
system (3.29) is an asymptotic output observer for V x. By Proposition 3.69
there exists an observable asymptotic output observer for V x.

The proof of the second statement follows along the same lines.

Careful tracking of the various sizes of matrices appearing in the above proof
yields the following corollary.

Corollary 3.74. Let the system (3.1) be controllable. If there exists an order
q observable asymptotic output observer for V x (without direct feedthrough)
then there exists an outer detectable subspace U of codimension less or equal
than q with U ∩KerC ⊂ KerV (U ⊂ KerV ).

If there exists a codimension q outer detectable subspace U with U ∩KerC ⊂
KerV (U ⊂ KerV ) then there exists an observable asymptotic output ob-
server for V x (without direct feedthrough) of order less or equal than q.

An immediate consequence of Corollary 3.74 and Proposition 3.69 is the fol-
lowing characterization of the minimal order of asymptotic output observers.

Theorem 3.75. Let the system (3.1) be controllable. The minimal order of
an asymptotic output observer for V x is equal to the minimal codimension
of an outer detectable subspace U with U ∩KerC ⊂ KerV . Such an observer
is necessarily observable.

The minimal order of an asymptotic output observer for V x without direct
feedthrough, i.e. with Q = 0, is equal to the minimal codimension of an outer
detectable subspace U ⊂ KerV . Such an observer is necessarily observable.
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As a consequence of Theorem 3.75, for controllable systems, a lower bound
for the minimal order of an (observable) asymptotic output observer for V x
without direct feedthrough is given by the minimal codimension of a (C,A)-
invariant subspace contained in KerV (cf. Section 5.6, Theorem 5.25).

Another consequence of Theorem 3.75 is the following result on the minimal
order of an (observable) asymptotic output observer for the full state of a
controllable and detectable system (Luenberger observer).

Theorem 3.76. Let the system (3.1) be controllable and detectable. Then
the minimal order of an (observable) asymptotic output observer for the full
state is n − rkC. The minimal order of an (observable) asymptotic output
observer for the full state without direct feedthrough, i.e. with Q = 0, is n.

Proof. An observer of order n− rkC has been constructed in Section 3.2.4.
Now let the system (3.29) be an asymptotic output observer for Ix of minimal
order q. Then q ≤ n− rkC holds. According to Theorem 3.75 the observer
is observable, and there exists a codimension q outer detectable subspace U
with U ∩KerC ⊂ Ker I = {0}, i.e. U ∩KerC = {0}. Since U ⊂ Fn it follows

q = dimFn − dimU

≥ dim(Fn ∩KerC)− dim(U ∩KerC)

= dimKerC = n− rkC ,

i.e. q = n− rkC.

To construct an observer of order n without direct feedthrough take an iden-
tity observer with K = A − LC stable (cf. Section 3.1) and add to it the
output equation w = Ix̂. Now let the system (3.29) be an asymptotic output
observer for Ix without direct feedthrough, of minimal order q. According
to Theorem 3.75 then the observer is observable, and there exists a codimen-
sion q outer detectable subspace U ⊂ Ker I = {0}, i.e. U = {0}. It follows
q = n.

In the remaining part of this section analogous results for general (not nec-
essarily controllable) systems are stated. They have been derived by Schu-
macher [Sch80b].

Theorem 3.77. There exists an observable asymptotic output observer for
V x if and only if there exist an A-invariant subspaceW ⊃ ImB and an outer
detectable subspace U ⊂ W with a friend J satisfying Im J ⊂ W such that
U ∩KerC ⊂ KerV .
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There exists an observable asymptotic output observer for V x without direct
feedthrough, i.e. with Q = 0, if and only if there exist an A-invariant subspace
W ⊃ ImB and an outer detectable subspace U ⊂ W ∩KerV with a friend J
satisfying Im J ⊂ W.

In both cases the observer order can be chosen to be less or equal than dimW−
dimU .

Proof. This is the statement of Theorem 1 and Theorem 2 of Schumacher
[Sch80b] in the case H = I, i.e. B0 = {0}.

Theorem 3.78. The minimal order of an asymptotic output observer for V x
(with or without direct feedthrough) is equal to the minimal dimension differ-
ence dimW−dimU of a pair (U ,W) satisfying the (respective) requirements
of Theorem 3.77. Such an observer is necessarily observable.

Proof. This is the statement of Theorem 3 of Schumacher [Sch80b] combined
with Proposition 3.69.

If the system (3.1) is controllable, it follows R(A,B) = Fn. Since R(A,B) is
the smallest A-invariant subspace containing ImB, any A-invariant subspace
W ⊃ ImB is equal to Fn, then. Hence in this case Theorem 3.77 and
Theorem 3.78 reduce to Theorem 3.73 and Theorem 3.75, respectively.

As before, these results can be used to determine the minimal order of an
(observable) asymptotic output observer for the full state of system (3.1). It
turns out that the system has to be detectable in order to allow such an ob-
server. The proof given here is due to Schumacher [Sch80b, Theorem 4]. For
a matrix A ∈ Fn×n let E−(A) and E+(A) denote the sums of the generalized
eigenspaces associated with eigenvalues with negative and nonnegative real
part, respectively. Apparently, it is Fn = E−(A)⊕ E+(A).

Theorem 3.79. There exists an observable asymptotic output observer for
the full state of system (3.1) if and only if the pair (C,A) is detectable. The
minimal order of such an observer is dim((E+(A) +R(A,B))∩KerC). The
minimal order of an (observable) asymptotic output observer for the full state
without direct feedthrough, i.e. with Q = 0, is dim(E+(A) +R(A,B)).

Proof. Let there exist an asymptotic output observer for Ix. By Theo-
rem 3.77 there exists an outer detectable subspace U with U ∩ KerC ⊂
Ker I = {0}, i.e. U ∩KerC = {0}. But then there exists a matrix J ∈ Fn×p
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such that (A−JC)U ⊂ U and (A−JC)|Fn/U is stable. Since U∩KerC = {0},
the map C|U : U −→ C(U) is injective and hence the restriction (C̄, Ā) of
(C,A) to U with corresponding output injection J (cf. Section 2.3.3) is ob-
servable. Hence there exists a map J̄ : C(U) −→ U such that Ā − J̄C̄ is
stable. Extend J̄ by zero to a map J1 : Fp −→ Fn then Im J1 ⊂ U and it
follows (A− (J + J1)C)U ⊂ U and (A− (J + J1)C)|Fn/U = (A− JC)|Fn/U .
Furthermore (A− (J + J1)C)|U = Ā− J̄C̄ implies

σ(A− (J + J1)C) = σ((A− JC)|Fn/U) ∪ σ(Ā− J̄C̄) ⊂ C− ,

But then (C,A) is necessarily detectable. For the remainder of this proof let
the pair (C,A) be detectable.

To construct an observer of order less or equal than dim((E+(A)+R(A,B))∩
KerC) set W := E+(A) +R(A,B). Then W ⊃ ImB is A-invariant. Apply
Proposition 3.46 to the restriction (C̄, Ā) of (C,A) to W (cf. Section 2.3.3),
which is detectable too, and get a subspace U ⊂ W withW = U⊕(W∩KerC)
and a map J̄ : C(W) −→ W such that (Ā − J̄C̄)U ⊂ U and (Ā − J̄C̄)|W/U

is stable. Extend J̄ by zero to a map J : Fp −→ Fn then Im J ⊂ W and
it follows (A − JC)W ⊂ W and (A − JC)|Fn/W = A|Fn/W . Furthermore,
(A− JC)|W = Ā− J̄C̄ by U ⊂ W implies (A− JC)U ⊂ U and

σ((A− JC)|Fn/U) = σ(A|Fn/W) ∪ σ((Ā− J̄C̄)|W/U) ⊂ C− ,

where A|Fn/W is stable since E+(A) ⊂ W . From U ⊂ W and U ∩ (W ∩
KerC) = {0} it follows U ∩ KerC = {0}, i.e. U ∩ KerC ⊂ Ker I = {0}.
According to Theorem 3.77 there exists an (observable) asymptotic output
observer for Ix of order less or equal than dimW−dimU = dim(W∩KerC) =
dim((E+(A) +R(A,B)) ∩KerC).

Now let the system (3.29) be an asymptotic output observer for Ix of minimal
order q. Then q ≤ dim((E+(A) + R(A,B)) ∩ KerC). According to Theo-
rem 3.78 the observer is observable, and there exist an A-invariant subspace
W ⊃ ImB and an outer detectable subspace U ⊂ W with a friend J satisfy-
ing Im J ⊂ W such that U ∩KerC ⊂ Ker I = {0}, i.e. U ∩KerC = {0}, and
dimW − dimU = q. Since Im J ⊂ W and since W is A-invariant, W is also
(A− JC)-invariant, as is U . Furthermore, it is (A− JC)|Fn/W = A|Fn/W . It
follows

C− ⊃ σ((A− JC)|Fn/U) = σ(A|Fn/W) ∪ σ((A− JC)|W/U) ,

and hence E+(A) ⊂ W . Since W is A-invariant and contains ImB, it also
contains R(A,B) being the smallest A-invariant subspace containing ImB.
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It follows E+(A) +R(A,B) ⊂ W . But then U ⊂ W implies

q = dimW − dimU

≥ dim(W ∩KerC)− dim(U ∩KerC)

≥ dim((E+(A) +R(A,B)) ∩KerC) ,

and hence q = dim((E+(A) +R(A,B)) ∩KerC).

To construct an observer of order less or equal than dim(E+(A) +R(A,B))
without direct feedthrough set W := E+(A) + R(A,B). Then W ⊃ ImB
is A-invariant and the restriction (C̄, Ā) of (C,A) to W (cf. Section 2.3.3)
is detectable, too. Hence there exists a map J̄ : C(W) −→ W such that
(Ā−J̄C̄) is stable. Extend J̄ by zero to a map J : Fp −→ Fn then Im J ⊂ W
and it follows (A−JC)W ⊂W and (A−JC)|Fn/W = A|Fn/W . Furthermore,
(A− JC)|W = Ā− J̄C̄ implies

σ(A− JC) = σ(A|Fn/W) ∪ σ(Ā− J̄C̄) ⊂ C− ,

where A|Fn/W is stable since E+(A) ⊂ W . Set U := {0} ⊂ W then U ⊂
W ∩ Ker I = {0} is outer detectable since A − JC = (A − JC)|Fn/U is
stable. According to Theorem 3.77 there exists an (observable) asymptotic
output observer for Ix of order less or equal than dimW−dimU = dimW =
dim(E+(A) +R(A,B)).

Now let the system (3.29) be an asymptotic output observer for Ix without
direct feedthrough, of minimal order q. Then q ≤ dim(E+(A) + R(A,B)).
According to Theorem 3.78 the observer is observable, and there exist an
A-invariant subspace W ⊃ ImB and an outer detectable subspace U ⊂
W ∩ Ker I = {0}, i.e. U = {0}, with a friend J satisfying Im J ⊂ W such
that q = dimW − dimU = dimW . As in the first half of this proof it
follows E+(A) +R(A,B) ⊂ W , hence q ≥ dim(E+(A) +R(A,B)) and finally
q = dim(E+(A) +R(A,B)).

Remark 3.80. As far as is known to the author, it is an unsolved problem
to find a closed formula (not an iterative computation algorithm) for the
minimal order of an asymptotic output observer for a general function V x.
Nevertheless, much work on lower bounds for this order has been done, at
least in the case of a controllable system. Roman and Bullock [RB75] ex-
ploit the connection between partial observers and partial realizations (cf.
Section 5.6) to obtain such a lower bound and to outline a design algorithm
for minimal observers which uses this bound. The same program is carried
out by Moore and Ledwich [ML75] but using decision methods instead of
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partial realizations. Sirisena [Sir79] proposed a rather algebraic algorithm,
while Kimura [Kim77] and Kawaji [Kaw80] relie on Wonham’s geometric
algorithms. A comparison between the various algorithms can be found in
Siefert [Sie97].
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Chapter 4

Moduli spaces of linear systems

In this chapter the moduli spaces of linear systems used in Chapter 5 are in-
troduced. Some of their topological properties are stated. The moduli space
of tracking observer parameters (cf. Section 3.2) is shown to be a smooth
manifold, which allows to make the connection between (C,A)-invariant sub-
spaces and tracking observers established in Theorem 3.33 more precise using
a vector bundle structure over this manifold.

4.1 Controllable pairs

The moduli space Σk,p(F) consisting of similarity classes of controllable pairs
has been examined since the 1970s now. An extensive treatment can e.g. be
found in the monograph by Helmke [Hel92].

Consider the similarity action

σ : GL(Fk)× (Fk×k ×Fk×p) −→ Fk×k ×Fk×p ,

(S, (A,B)) 7→ (SAS−1, SB)

on the set of controllable pairs (A,B). The orbit space (cf. Appendix A) of
this action, i.e. the manifold of all similarity classes

[A,B]σ = {(SAS−1, SB) |S ∈ GL(Fk)}

of controllable pairs (endowed with the quotient topology) is denoted by
Σk,p(F).
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This moduli space will be used in Chapter 5 to describe the set of all codi-
mension k (C,A)-invariant subspaces of an observable pair (C,A) in dual
Brunovsky form with observability indices (µ1, . . . , µp) (cf. Section 2.3.2).
Following Antoulas [Ant83] and Fuhrmann and Helmke [FH00] the descrip-
tion uses the following object. The terminology used here has been intro-
duced by Fuhrmann and Helmke.

Definition 4.1. Let 1 ≤ k ≤ n and µ = (µ1, . . . , µp) with µ1 ≥ · · · ≥ µp > 0
and µ1 + · · · + µp = n. The µ-partial reachability matrix Rµ(A,B) of a
controllable pair (A,B) ∈ F k×k ×Fk×p is the k × n-matrix

Rµ(A,B) = (b1, Ab1, . . . , A
µ1−1b1, . . . , bp, Abp, . . . , A

µp−1bp) ,

where bi denotes the i-th column of B, i = 1, . . . , p.

Using this matrix, some special kinds of controllable pairs are defined.

Definition 4.2. A pair (A,B) is called µ-regular , if the µ-partial reachability
matrix has full row rank, i.e.

rkRµ(A,B) = k .

The pair is called µ-tight , if it is µ− 1 = (µ1 − 1, . . . , µp − 1)-regular, i.e. if

rkRµ−1(A,B) = rk(b1, . . . , A
µ1−2b1, . . . , bp, . . . , A

µp−2bp) = k .

Obviously, any µ-tight pair is µ-regular and µ-regularity implies controlla-
bility. Both notions are invariant under the similarity action. Therefore it
is possible to define the set of all similarity classes of µ-regular and µ-tight
pairs, respectively.

Σk,p(µ) := {[A,B]σ ∈ Σk,p(F) | rkRµ(A,B) = k} ⊂ Σk,p(F) ,

Σt
k,p(µ) := {[A,B]σ ∈ Σk,p(F) | rkRµ−1(A,B) = k} ⊂ Σk,p(µ) .

In Section 4.2 another condition on (A,B) will show up: A being nilpo-
tent. Since nilpotency is another similarity invariant, the following subsets
of Σk,p(F) are well defined.

Nk,p(F) := {[A,B]σ ∈ Σk,p(F) |A nilpotent} ,

Nk,p(µ) := {[A,B]σ ∈ Σk,p(µ) |A nilpotent} ,

N t
k,p(µ) := {[A,B]σ ∈ Σt

k,p(µ) |A nilpotent} ,

In this context a different partial reachability matrix, the reverse µ-partial
reachability matrix

←−
R µ(A,B) = (Aµ1−1b1, . . . , Ab1, b1, . . . , A

µp−1bp, . . . , Abp, bp)

is used. Apparently rkRµ(A,B) = rk
←−
R µ(A,B), so µ-regularity and µ-tight-

ness stays the same.
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4.1.1 Topology of µ-regular pairs

It is well known that the moduli space Σk,p(F) of controllable pairs is a
smooth connected manifold of dimension kp over F (see e.g. [Hel92]). Being
defined by a ’full rank’ condition the subset Σk,p(µ) of similarity classes of
µ-regular pairs is open and dense in Σk,p(F), hence a smooth manifold of
dimension kp over F . Note that Σk,p(µ) is only defined for 1 ≤ k ≤ n and
is nonempty as is its subset Nk,p(µ), an element of which can be constructed
by the method shown in the proof of Lemma 4.3 below.

Since the subset Σt
k,p(µ) of similarity classes of µ-tight pairs is defined by a

’full rank’ condition, it is either empty or open and dense in Σk,p(µ), hence
either empty or a smooth manifold of dimension kp over F .

Lemma 4.3. Σt
k,p(µ) is nonempty if and only if k ≤ n−p. The same is true

for N t
k,p(µ).

Proof. Let (A,B) ∈ Fk×k ×Fk×p. Then Rµ−1(A,B) is a k× (n− p)-matrix.
For k > n− p it follows rkRµ−1(A,B) < k and therefore Σt

k,p(µ) and N
t
k,p(µ)

are empty.

Let k ≤ n− p. Let

A =









0 1
. . . . . .

0 1
0









∈ Fk×k .

Note that A is nilpotent. Let ei, i = 1, . . . , k, be the standard basis vectors
of Fk. Let j ∈ N be the maximal j with k = (

∑j−1
i=1 (µi − 1)) + l and l ∈ N0.

Let B ∈ Fk×p be defined by the following equation:

( b1 . . . A
µ1−2b1 . . . bj . . . A

l−1bj A
lbj . . . A

µj−2bj . . . bp . . . A
µp−2bp ) =

( ek . . . ek−µ1+1 . . . el . . . e1 0 . . . 0 . . . 0 . . . 0 )

Then rkRµ−1(A,B) = k and [A,B]σ ∈ N
t
k,p(µ) ⊂ Σt

k,p(µ).

Σk,p(F) can be embedded into the Grassmann manifold Gn+p−k(F
n+p), i.e.

the manifold of all codimension k linear subspaces of Fn+p, where n = kp.
The embedding map

Rk+1 : Σk,p(F) −→ Gn+p−k(F
n+p) ,

[A,B]σ 7→ KerRk+1(A,B) := Ker
(

B AB . . . AkB
)
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is called the Kalman embedding of Σk,p(F) (see [Haz77], [BH78]). In fact
this embedding can be obtained as a special case (µ1 = · · · = µp = k) of the
following new result.

Proposition 4.4. Let 1 ≤ k ≤ n and let µ = (µ1, . . . , µp) with µ1 ≥ · · · ≥
µp ≥ 1 and µ1 + · · ·+ µp = n. Then the map

Rµ+1 : Σk,p(µ) −→ Gn+p−k(F
n+p) ,

[A,B]σ 7→ KerRµ+1(A,B)

is an embedding, the µ-partial Kalman embedding.

Proof. Since KerRµ+1(A,B) is invariant under the similarity action and
rkRµ(A,B) = k hence rkRµ+1(A,B) = k for (A,B) ∈ Σk,p(µ) the map
Rµ+1 is well defined. Clearly it is continuous.

To show that the map Rµ+1 is injective let [A1, B1]σ, [A2, B2]σ ∈ Σk,p(µ)
with KerRµ+1(A1, B1) = KerRµ+1(A2, B2). Then there exists S ∈ GL(F k)
such that Rµ+1(A1, B1) = SRµ+1(A2, B2) = Rµ+1(SA2S

−1, SB2). But then
it might be assumed w.l.o.g. (i.e. up to similarity) that Rµ+1(A1, B1) =
Rµ+1(A2, B2), i.e. B1 = B2 and A1Rµ(A1, B1) = A2Rµ(A2, B2). Since
Rµ(A1, B1) = Rµ(A2, B2) it follows (A1 − A2)Rµ(A1, B1) = 0. But then
rkRµ(A1, B1) = k yields A1 − A2 = 0, i.e. (A1, B1) = (A2, B2).

To show that the map Rµ+1 is open onto its image Rµ+1(Σk,p(µ)), it suf-
fices to show that its inverse R−1µ+1 : Rµ+1(Σk,p(µ)) −→ Σk,p(µ) is sequen-
tially continuous (the sets Rµ+1(Σk,p(µ)) and Σk,p(µ) are aubspaces of mani-
folds, hence metrizable). Let ([Aj, Bj]σ)j∈N ⊂ Σk,p(µ) be a sequence with
KerRµ+1(Aj, Bj) → KerRµ+1(A∞, B∞) for j → ∞ and a [A∞, B∞]σ ∈
Σk,p(µ). Then w.l.o.g. Rµ+1(Aj, Bj) → Rµ+1(A∞, B∞) holds. It follows
Bj → B∞ and (Aj − A∞)Rµ(Aj, Bj)→ 0. Since Rµ(Aj, Bj)→ Rµ(A∞, B∞)
and rkRµ(A∞, B∞) = k it follows Aj − A∞ → 0, i.e. (Aj, Bj)→ (A∞, B∞).

Helmke [Hel92] used the following modification of the Kalman embedding

R̃k : Σk,p(µ) −→ F
k ×Gn−k(F

n) ,

[A,B]σ 7→ (c(A),KerRk(A,B)) ,

where n = kp and c(A) = (c0, . . . , ck−1) ∈ F
k denotes the vector of coeffi-

cients of the characteristic polynomial of A

det(sI − A) =
k∑

j=0

cjs
j , ck = 1
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to show that Nk,p(F), which consists of all [A,B]σ ∈ Σk,p(F) with c(A) = 0,
is compact. The proof uses the Cayley-Hamilton Theorem and can thus
not easily be generalized to Nk,p(µ). In fact, being defined by a ’full rank’
condition, Nk,p(µ) is open in Nk,p(F). It can only be compact if it is also
closed in Nk,p(F). To demonstrate the topological locus of the ’gap’ between
Nk,p(µ) and Nk,p(F), in the following proof an element of the difference set
and a sequence in Nk,p(µ) converging to this element is constructed.

Proposition 4.5. Let 1 ≤ k ≤ n and let µ = (µ1, . . . , µp) with µ1 ≥ · · · ≥
µp ≥ 1 and µ1+ · · ·+µp = n. For k ≤ µp the set Nk,p(µ) is equal to Nk,p(F),
hence it is compact. For k > µp the set Nk,p(µ) is not closed in Nk,p(F),
hence it is not compact.

Proof. Let k ≤ µp and let [A,B]σ ∈ Nk,p(F). Then rkRk(A,B) = k. Since
µ1 ≥ · · · ≥ µp ≥ k this implies rkRµ(A,B) = k and [A,B]σ ∈ Nk,p(µ).
Using Nk,p(µ) ⊂ Nk,p(F) it follows Nk,p(µ) = Nk,p(F) and hence Nk,p(µ) is
compact.

Let k > µ1. Let

Aα =









0 1
. . . . . .

0 1
0









∈ Fk×k .

Note that Aα is nilpotent. Let ei, i = 1, . . . , k, be the standard basis vectors
of Fk. Let j ∈ N be the maximal j with k = (

∑j−1
i=1 (µi − 1)) + l and l ∈ N0.

Let Bα ∈ F
k×p be defined by

(Bα)β =







ek , β = 1
1
α
e
(
∑j−β

i=1
(µi−1))+l

, β = 2, . . . , j

0 , β = j + 1, . . . , p

.

Note that (Aα, Bα) is the same as the pair (A,B) considered in the proof of
Lemma 4.3 but with b2, . . . , bj premultiplied by 1

α
. Then

A∞ = lim
α→∞

Aα =









0 1
. . . . . .

0 1
0









∈ Fk×k
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and

B∞ = lim
α→∞

Bα =









0 0 . . . 0
...

... . . .
...

0 0 . . . 0
1 0 . . . 0









∈ Fk×p .

It follows rkRk(Aα, Bα) = rkRk(A∞, B∞) = k. Hence [Aα, Bα]σ ∈ Nk,p(F)
and [A∞, B∞]σ ∈ Nk,p(F). Furthermore rkRµ(Aα, Bα) = k, i.e. [Aα, Bα]σ ∈
Nk,p(µ). But rkRµ(A∞, B∞) = µ1 < k, i.e. [A∞, B∞]σ 6∈ Nk,p(µ) andNk,p(µ)
is not closed in Nk,p(F).

Let finally µ1 ≥ k > µp. Let

Aα =









0 1
. . . . . .

0 1
0









∈ Fk×k .

Let Bα ∈ F
k×p be defined by

(Bα)β =







1
α
ek , β = 1

0 , β = 2, . . . , p− 1

ek , β = p

.

Then

A∞ = lim
α→∞

Aα =









0 1
. . . . . .

0 1
0









∈ Fk×k

and

B∞ = lim
α→∞

Bα =









0 0 . . . 0
...

... . . .
...

0 0 . . . 0
0 0 . . . 1









∈ Fk×p .

It follows rkRk(Aα, Bα) = rkRk(A∞, B∞) = k. Hence [Aα, Bα]σ ∈ Nk,p(F)
and [A∞, B∞]σ ∈ Nk,p(F). Furthermore rkRµ(Aα, Bα) = k since µ1 ≥ k, i.e.
[Aα, Bα]σ ∈ Nk,p(µ). But rkRµ(A∞, B∞) = µp < k, i.e. [A∞, B∞]σ 6∈ Nk,p(µ)
and Nk,p(µ) is not closed in Nk,p(F).

Further results on the topology of Nk,p(µ) can be found in Helmke [Hel92].
In Theorem 2.24 of that paper Helmke proposed that the inclusion map of
Nk,p(F) into Σk,p(F) is a homotopy equivalence, a rigorous proof of which
has yet to be given.
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4.2 Controllable triples

The moduli space Ck,p(F) of restricted system equivalence classes of control-
lable triples is well understood. It is a compactification of the moduli space
Σk,p(F) of similarity classes of controllable pairs [Hel92]. Basic facts about
matrix triples (in the sense of descriptor systems, singular control systems,
linear DAEs) can e.g. be found in the lecture notes by Dai [Dai89].

Consider the restricted system equivalence action

η : (GL(Fk)×GL(Fk))× (Fk×k ×Fk×k ×Fk×p) −→ Fk×k ×Fk×k ×Fk×p,

((S, T ), (E,A,B)) 7→ (SET−1, SAT−1, SB)

on the set of admissible triples (E,A,B), i.e. triples for which the matrix
pencil λE+µA is regular , i.e. det(λE+µA) 6= 0 for some λ, µ ∈ C. It is well
known (see e.g. the textbook by Gantmacher [Gan59]) that for an admissible
triple (E,A,B) there exists a transformation (S, T ) such that

SET−1 =

(

I 0
0 N

)

,

SAT−1 =

(

A1 0
0 I

)

and

SB =

(

B1

B2

)

,

where I is the identity matrix andN is nilpotent (Weierstraß decomposition).
This decomposition is not unique but the following holds ([Dai89, Theorem
1-3.1]):

Lemma 4.6. Let (S, T ) and (S ′, T ′) be two transformations, which decom-
pose the given triple (E,A,B) as above. Then there exist invertible matrices
U1, U2 with

S ′ = diag(U1, U2)S , T ′ = diag(U1, U2)T ,

A′1 = U1A1U
−1
1 ,

N ′ = U2NU
−1
2 ,

B′1 = U1B1 , B′2 = U2B2 ,

i.e. the pairs (A1, B1) and (A′1, B
′
1) and the pairs (N,B2), (N

′, B′2) are sim-
ilar, respectively.
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As a consequence of this, any similarity invariants of the pairs (A1, B1) and
(N,B2) of any Weierstraß decomposition of the admissible triple (E,A,B)
together form a restricted system equivalence invariant of the triple. As a
first example controllability of a triple is defined.

Definition 4.7. An admissible triple (E,A,B) is called controllable, if both
of the pairs (A1, B1) and (N,B2) of any Weierstraß decomposition are con-
trollable.

A triple is controllable if and only if the associated descriptor system (singular
control system, linear DAE)

Eẋ = Ax+Bu

is controllable (see e.g. Dai [Dai89]). Apparently the restricted system equiv-
alence action η restricts to the set of controllable triples. The orbit space
(cf. Appendix A) of this action, i.e. the manifold of all restricted system
equivalence classes

[E,A,B]η = {(SET
−1, SAT−1, SB) | (S, T ) ∈ GL(Fk)×GL(Fk)}

of controllable triples (endowed with the quotient topology) is denoted by
Ck,p(F).

This moduli space will be used in Chapter 5 to describe the set of all almost
(C,A)-invariant subspaces of an observable pair (C,A) in dual Brunovsky
form with observability indices (µ1, . . . , µp) (cf. Section 2.3.2). The descrip-
tion uses the following object.

Definition 4.8. Let 1 ≤ r ≤ k ≤ n and µ = (µ1, . . . , µp) with µ1 ≥ · · · ≥
µp > 0 and µ1 + · · · + µp = n. The combined µ-partial reachability matrix
Rµ(A1, B1, N,B2) of a pair of matrix pairs ((A1, B1), (N,B2)) ∈ (F r×r ×
F r×p)× (F (k−r)×(k−r) ×F (k−r)×p) is the k × n-matrix

Rµ(A1, B1, N,B2) =
(
Rµ(A1,B1)
←−
Rµ(N,B2)

)

=
(

b11 A1b11 ... A
µ1−1

1 b11 ... b1p A1b1p ... A
µp−1

1 b1p

Nµ1−1b21 Nµ1−2b21 ... b21 ... Nµp−1b2p Nµp−2b2p ... b2p

)

,

where bij denotes the j-th column of Bi, i = 1, 2, j = 1, . . . , p.

Using this matrix, some special kinds of admissible triples are defined.

96



4.2 Controllable triples

Definition 4.9. An admissible triple (E,A,B) is called µ-regular , if for
any (and therefore for all) Weierstraß decomposition ((A1, B1), (N,B2)) of
(E,A,B) the combined µ-partial reachability matrix has full row rank, i.e.

rkRµ(A1, B1, N,B2) = k .

The triple is called µ-tight , if it is µ− 1 = (µ1− 1, . . . , µp− 1)-regular, i.e. if

rkRµ−1(A1, B1, N,B2) = rk
(

b11 ... A
µ1−2

1 b11 ... b1p ... A
µp−2

1 b1p

Nµ1−2b21 ... b21 ... Nµp−2b2p ... b2p

)

= rk
(
Rµ−1(A1,B1)
←−
Rµ−1(N,B2)

)

= k .

Apparently any µ-regular triple and any µ-tight triple is controllable. Both
notions are invariant under the restricted system equivalence action. There-
fore it is possible to define the set of all restricted system equivalence classes
of µ-regular and µ-tight triples, respectively.

Ck,p(µ) := {[E,A,B]η ∈ Ck,p(F) | rkRµ(A1, B1, N,B2) = k} ⊂ Ck,p(F) ,

Ct
k,p(µ) := {[E,A,B]η ∈ Ck,p(F) | rkRµ−1(A1, B1, N,B2) = k} ⊂ Ck,p(F) .

It will follow from Proposition 5.13 that µ-tightness of (E,A,B) implies µ-
regularity (cf. Corollary 5.16), i.e. C t

k,p(µ) ⊂ Ck,p(µ) holds.

As has already been indicated before, the moduli space Ck,p(F) of control-
lable triples is a smooth compact manifold of dimension kp over F ([Hel92]).

If the triple

(E,A,B) =

((

I 0
0 N

)

,

(

A1 0
0 I

)

,

(

B1

B2

))

is given in Weierstraß form then

Rµ(A1, B1, N,B2) = ( Eµ1−1b1 Eµ1−2Ab1 ... EAµ1−2b1 Aµ1−1b1

... Eµ1−1bp Eµ1−2Abp ... EAµ1−2bp Aµ1−1bp ) ,

where bi, i = 1, . . . , p, denotes the i-th column of B. Unfortunately, the
object on the right hand side does not behave well under the restricted system
equivalence action unless S = T , which does not leave enough freedom to
transform an arbitrary (admissible or even controllable) triple into Weierstraß
form. Hence its rank, in general, is no restricted system equivalence invariant
as the following example shows.
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Example 4.10. Let p = 1, µ1 = 2,

E =

(

1 0
0 0

)

, A =

(

0 0
0 1

)

and B =

(

1
1

)

.

Then

rk
(

EB AB
)

= rk

(

1 0
0 1

)

= 2 ,

but with

S =

(

1 0
0 1

)

and T−1 =

(

1 −1
1 1

)

it follows

rk
(

SET−1SB SAT−1SB
)

= rk

(

0 0
0 2

)

= 1 .

In view of this example the object seems to be no suitable tool to derive
topological properties of Ck,p(µ) and C

t
k,p(µ).

Furthermore, there exists no continuous transformation of the set of con-
trollable triples into Weierstraß form ([Hel92]). Consequently, results on the
topology of Ck,p(µ) and C

t
k,p(µ) would be much harder to derive than those

for Σk,p(µ) and Σt
k,p(µ) in the case of controllable pairs.

4.3 The manifold of tracking observers

If the system (3.1) is observable then the connection between (C,A)-invariant
subspaces and tracking observers established in Theorem 3.33 can be made
more precise using the following manifold structure.

Theorem 4.11. Let the system (3.1) be observable and let

Obsk = {(K,L,M, V ) ∈ Fk×(k+p+m+n) |V A−KV = LC, M = V B}

be the set of all order k tracking observer parameters for system (3.1). Obsk
is a smooth submanifold of F k×(k+p+m+n) of dimension dimObsk = k2 + kp.
Its tangent space at the point (K,L,M, V ) ∈ Obsk is

T(K,L,M,V )Obsk = {(K̇, L̇, Ṁ , V̇ ) | − K̇V − L̇C+ V̇ A−KV̇ = Ṁ− V̇ B = 0} .
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Proof. Consider the map

f : Fk×(k+p+m+n) −→ Fk×(n+m),

(K,L,M, V ) 7→ (V A−KV − LC,M − V B) .

It will be shown that (0, 0) is a regular value of f , hence Obsk = f−1(0, 0)
is a smooth submanifold of Fk×(k+p+m+n). The derivative of f at a point
(K,L,M, V ) is given by

Df : (K̇, L̇, Ṁ , V̇ ) 7→ (−K̇V − L̇C + V̇ A−KV̇ , Ṁ − V̇ B) ,

where (K̇, L̇, Ṁ , V̇ ) ∈ T(K,L,M,V )(F
k×(k+p+m+n)).

An element (ξ, η) ∈ Tf(K,L,M,V )(F
k×(n+m)) is orthogonal to the image of Df

if and only if

tr ξ∗(−K̇V − L̇C + V̇ A−KV̇ ) + tr η∗(Ṁ − V̇ B) = 0

for all (K̇, L̇, Ṁ , V̇ ) ∈ T(K,L,M,V )(F
k×(k+p+m+n)). This is equivalent to

V ξ∗ = 0 (4.1)

Cξ∗ = 0 (4.2)

η∗ = 0 (4.3)

Aξ∗ − ξ∗K = 0 . (4.4)

From (4.4) it follows by induction Aiξ∗ − ξ∗Ki = 0 for all i ∈ N. Together
with (4.2) this yields









C
CA
...

CAn−1









ξ∗ = 0 .

Since (C,A) is observable this yields ξ∗ = 0. It follows that Df is surjective
and (0, 0) is a regular value of f (in fact f is a submersion).

The dimension of Obsk = f−1(0, 0) is k(k+ p+m+n)−k(n+m) = k2+kp.
From the fibre theorem it follows T(K,L,M,V )Obsk = (Df)−1(0, 0).

Corollary 4.12. Being an open subset of Obsk the set

Obsk,k = {(K,L,M, V ) ∈ Obsk | rkV = k}

is a smooth submanifold of F k×(k+p+m+n) of dimension k2 + kp.

99



4 Moduli spaces of linear systems

Now consider the similarity action on Obsk,k

σ : GL(Fk)×Obsk,k −→ Obsk,k ,

(S, (K,L,M, V )) 7→ (SKS−1, SL, SM, SV )

and the induced similarity classes

[K,L,M, V ]σ = {(SKS−1, SL, SM, SV ) |S ∈ GL(Fk)} .

Note that σ is well defined since V A − KV = LC and M = V B imply
SV A− SKS−1SV = S(V A−KV ) = SLC and SM = SV B.

Theorem 4.13. The orbit space

Obsσk,k = {[K,L,M, V ]σ | (K,L,M, V ) ∈ Obsk,k}

of similarity classes of order k tracking observer parameters for system (3.1)
is a smooth manifold of dimension dimObsσk,k = kp.

Proof. Since V has full row rank k for (K,L,M, V ) ∈ Obsk,k, the similarity
action is free and has a closed graph mapping (cf. Appendix A): SV = V
implies S = I, furthermore Vj → V and SjVj → W imply Sj → S and
W = SV . Hence the orbit space of σ is a smooth manifold of dimension
dimObsσk,k = dimObsk,k − dimGL(Fk) = k2 + kp− k2 = kp.

Now the following theorem refines Theorem 3.33. Let Gn−k(F
n) denote the

Grassmann manifold of all codimension k linear subspaces of Fn.

Theorem 4.14. Let the system (3.1) be observable. For each k the set

InvJn−k = {(V , J) ∈ Gn−k(F
n)×Fn×p | (A− JC)V ⊂ V}

is a smooth manifold of dimension dim InvJn−k = np. The map

f̄ : InvJn−k −→ Obsσk,k ,

(V , J) 7→ [K,L,M, V ]σ ,

defined by KerV = V, M = V B, L = V J and KV = V A−LC = V (A−JC)
is a smooth vector bundle with fiber F (n−k)×p.
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Proof. Consider the set

Mn−k = {(V, J) ∈ St(k, n)×Fn×p | (A− JC)KerV ⊂ KerV } ,

where St(k, n) denotes the set of full row rank k × n matrices (Stiefel man-
ifold). Apparently, if (V, J) ∈ Mn−k then KerV is a codimension k (C,A)-
invariant subspace with friend J . Consider the map

f :Mn−k −→ Obsk,k ,

(V, J) 7→ (K,L,M, V ) ,

where L = V J , M = V B and K is defined as the unique solution of the
equation KV = V A−LC = V (A−JC) (cf. Theorem 3.33, Part 1). By The-
orem 3.33, Part 2, the map f is surjective. Since K = V (A−JC)V ∗(V V ∗)−1,
the map f is continuous. Moreover, it is the restriction of a smooth map de-
fined on St(k, n)×Fn×p, which is an open subset of Fk×n×Fn×p. According
to Corollary 4.12 the set Obsk,k is a smooth submanifold of Fk×(k+p+m+n).

Given V and L = V J , the solution set of V X = V J is the affine space
V ∗(V V ∗)−1(V J) +

∏p
i=1KerV . Furthermore, dimKerV = n− k. Therefore,

for every (K,L,M, V ) ∈ Obsk,k the fiber f−1(K,L,M, V ) is an affine space
of dimension (k − n)p.

Let V0 ∈ St(k, n). Since V0 has full row rank there exists a permutation

matrix P0 such that V0P0 =
(

X0 Y0
)

with X0 ∈ F
k×k invertible. Then

W = {
(

X Y
)

P−10 |X invertible} is an open neighborhood of V0 in St(k, n)

and KerV = {P0(−X
−1Y y, y)> | y ∈ Fn−k} for every V =

(

X Y
)

P−10 ∈
W . But then

ϕW : W ×Fn−k −→ W ×Fn ,

(V, y) 7→ (V, P0[In −

(

Ik
0

)

(V P0

(

Ik
0

)

)−1V P0]

(

0
In−k

)

y)

(V, P0(−X
−1Y y, y)>)

is a smooth injective map mapping (V,Fn−k) onto (V,KerV ) for every V ∈
W . Hence ϕW is a homeomorphism onto its image. The inverse map

ϕ−1W : ϕW (W ×Fn−k) −→ W ×Fn−k ,

(V, z) 7→ (V,
(

0 In−k
)

P−10 z)

is the restriction of a smooth map defined on all of F k×n × Fn. If V =(

X1 Y1
)

P−11 =
(

X2 Y2
)

P−12 ∈ W1 ∩ W2 then the change of coordinate
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4 Moduli spaces of linear systems

function ϕ−1W2
◦ ϕW1

induces the invertible linear transformation

ϑW2,W1,V : y 7→
(

0 In−k
)

P−12 P1

(

−X−11 Y1
In−k

)

y

on Fn−k.

Using p-fold products of ϕW it is now easy to construct local trivializations
of f . Given (K0, L0,M0, V0) ∈ Obsk,k choose the neighborhood

U := (Fk×k ×Fk×p ×Fk×m ×W ) ∩Obsk,k ,

which is open in Obsk,k. Let pr2 denote the projection (V, y) 7→ y and
consider the map

φU : U ×F (n−k)×p −→ f−1(U) ,

(K,L,M, V, ( y1 ... yp )) 7→

(V, V ∗(V V ∗)−1L+ ( pr2(ϕW (V,y1)) ... pr2(ϕW (V,yp)) )) ,

where yi, i = 1, . . . , p, denotes the i-th column of the matrix Y ∈ F (n−k)×p.
Apparently, f(φU(K,L,M, V, Y )) = (K,L,M, V ) for all (K,L,M, V ) ∈ U
and all Y ∈ F (n−k)×p. Furthermore, φU is bijective by construction. Since
ϕW is smooth, so is φU . Let ei, i = 1, . . . , p, denote the i-th standard basis
vector of Fp. The inverse map

φ−1U : f−1(U) −→ U ×F (n−k)×p ,

(V, J) 7→ (f(V, J), g(V, J)) ,

where

g(V, J) = ( pr2(ϕ−1W (V,[J−V ∗(V V ∗)−1(V J)]e1)) ... pr2(ϕ
−1
W

(V,[J−V ∗(V V ∗)−1(V J)]ep)) ) ,

is the restriction of a smooth map defined on St(k, n) × Fn×p, which is an
open subset of Fk×n×Fn×p. It follows that φU is a homeomorphism. Finally,
if (K,L,M, V ) ∈ U1 ∩ U2 = (Fk×k × Fk×p × Fk×m × (W1 ∩W2)) ∩ Obsk,k
then the change of coordinate function φ−1U2 ◦φU1 induces the invertible linear
transformation

θU2,U1,(K,L,M,V ) : ( y1 ... yp ) 7→ ( ϑW2,W1,V (y1) ... ϑW2,W1,V (yp) )

on F (n−k)×p.

According to Theorem B.2 the setMn−k is a smooth submanifold of Fk×n×
Fn×p of dimension dimObsk,k + (n − k)p = k2 + kp + (n − k)p = k2 + np.
Furthermore, the map f is a differentiable vector bundle with fiber F (n−k)×p.
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As has been shown in the proof of Theorem 4.13, the similarity action σ on
Obsk,k is free and proper (cf. Theorem A.5). By the same arguments this is
also true for the similarity action onMn−k:

σ : GL(Fk)×Mn−k −→Mn−k ,

(S, (V, J)) 7→ (SV, J) .

As is well known, the quotient space St(k, n)/GL(F k) is diffeomorphic to
Gn−k(F

n) via [V ]σ 7→ KerV , hence the quotient Mn−k/GL(Fk) is dif-
feomorphic to InvJn−k and the latter is a smooth manifold of dimension
dimMn−k − dimGL(Fk) = k2 + np− k2 = np.

Apparently, (K,L,M, V ) ∈ U implies (SKS−1, SL, SM, SV ) ∈ U since S
being invertible and V ∈ W implies SV ∈W . Furthermore,

φU(σ(S, (K,L,M, V )), Y ) = φU((SKS
−1, SL, SM, SV ), Y )

= (SV, (SV )∗(SV (SV )∗)−1SL+ (pr2(ϕW (SV,y1)) ... ))

= (SV, V ∗(V V ∗)−1L+ (pr2(ϕW (V,y1)) ... ))

= σ(S, (V, V ∗(V V ∗)−1L+ (pr2(ϕW (V,y1)) ... )))

= σ(S, φU((K,L,M, V ), Y )) .

But then Theorem B.3 implies that f̄ is a smooth vector bundle with fiber
F (n−k)×p, which completes the proof.
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Chapter 5

Kernel representations

In this chapter the moduli spaces presented in Chapter 4 are used to gain
some insight into the topology and geometry of the set of all codimension
k almost (C,A)-invariant subspaces of a given observable pair (C,A) in dual
Brunovsky form. The idea of using controllable pairs to parametrize (C,A)-
invariant subspaces goes back to the pioneering work of Hinrichsen, Münzner
and Prätzel-Wolters [HMP81]. Permuted and truncated observability ma-
trices were first used by Antoulas [Ant83] to characterize (A,B)-invariant
subspaces. The results presented in this chapter are generalizations of the
results achieved by Fuhrmann and Helmke [FH97, FH00, FH01] in the tight
(not almost) (C,A)-invariant case (Section 5.1). In Section 5.5 the restric-
tion pencil used by Jaffe and Karcanias [JK81] and Schumacher [Sch83] to
characterize almost invariant subspaces is shown to be directly related to the
parametrizing triples. In Section 5.6 the connection of kernel representations
to partial realization theory is explored. The relevance of these results for
observer design is explained in Section 5.7.

5.1 The tight case

In this section some of the results achieved by Antoulas [Ant83] and Fuhr-
mann and Helmke [FH97, FH00, FH01] are presented. The notation used
follows Fuhrmann and Helmke. They use controllable pairs (cf. Section 4.1)
to describe the set of all codimension k (C,A)-invariant subspaces of a given
observable pair (C,A) in dual Brunovsky form with observability indices µ =
(µ1, . . . , µp) (cf. Section 2.3.2). The methods used in the proofs can also be
applied in the instantaneous case (Section 5.2).
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Proposition 5.1. Let 1 ≤ k ≤ n and let (A,B) ∈ F k×k ×Fk×p.

(1) V = KerRµ(A,B) is (C,A)-invariant,

(2) codimV = k if and only if (A,B) is µ-regular and

(3) V is tight of codimension k if and only if (A,B) is µ-tight.

Proof. Ad (1): According to Proposition 2.31 it is sufficient to show that
A(V ∩KerC) ⊂ V . Let x ∈ V ∩KerC. Then

x =






















x01...
xµ1−21

0
...

x0p...
xµp−2p

0






















∈ KerC

with

Rµ(A,B)x =
p
∑

j=1

µj−2∑

l=0

Albjx
l
j = 0 .

It follows

Rµ(A,B)Ax =
p
∑

j=1

µj−1∑

l=1

Albjx
l−1
j

= A
p
∑

j=1

µj−2∑

l=0

Albjx
l
j = 0 ,

i.e. Ax ∈ V .

Ad (2): By definition (A,B) is µ-regular if and only if codimKerRµ(A,B) =
rkRµ(A,B) = k.

Ad (3): Let (A,B) be µ-tight, then (A,B) is µ-regular and V is a codimension
k (C,A)-invariant subspace. According to Proposition 2.42 V is tight if and
only if V +KerC = Fn.
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5.1 The tight case

Let

x =

















x01...
xµ1−11

...

x0p...
xµp−1p

















∈ Fn .

Since rkRµ−1(A,B) = k, any linear combination of the vectors Aµj−1bj, j =
1, . . . , p, can be written as a linear combination of the columns of Rµ−1(A,B),
i.e. there exist numbers ylj ∈ F , j = 1, . . . , p and l = 0, . . . , µj − 2, with

p
∑

j=1

Aµj−1bjx
µj−1
j =

p
∑

j=1

µj−2∑

l=0

Albjy
l
j . (5.1)

Consider the decomposition

x =





















−y01...
−yµ1−21

xµ1−11
...

−y0p...
−yµp−2p

xµp−1p





















+





















x01 + y01...
xµ1−21 + yµ1−21

0
...

x0p + y0p...
xµp−2p + yµp−2p

0





















=: y + z .

Then (5.1) yields y ∈ KerRµ(A,B) = V and obviously z ∈ KerC, i.e. x ∈
V +KerC. Since x ∈ Fn was arbitrary, this yields V +KerC = Fn and V is
tight.

Conversely let V be tight of codimension k. Then (A,B) is µ-regular. As-
sume, that (A,B) is not µ-tight, i.e. rkRµ−1(A,B) < k. Since rkRµ(A,B) =
k, there exists a linear combination of the vectors Aµj−1bj, j = 1, . . . , p,
which is not contained in columnspanRµ−1(A,B). This means that there

exist numbers x
µj−1
j ∈ F , j = 1, . . . , p, such that for every choice of numbers

xlj ∈ F , j = 1, . . . , p and l = 0, . . . , µj − 2,

p
∑

j=1

µj−1∑

l=0

Albjx
l
j 6= 0 . (5.2)
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It will be shown that

x =




















0
...
0

xµ1−11
...

0
...
0

xµp−1p




















6∈ V +KerC .

x ∈ V + KerC would imply x = y + z with y ∈ V and z ∈ KerC, i.e. there
would exist numbers zlj ∈ F , j = 1, . . . , p and l = 0, . . . , µj − 2, such that

y = x− z =























−z01...
−zµ1−21

xµ1−11
...

−z0p...
−zµp−2p

xµp−1p























∈ V = KerRµ(A,B) .

But then the choice xlj = −z
l
j, j = 1, . . . , p and l = 0, . . . , µj − 2, contradicts

(5.2). Hence x 6∈ V +KerC.

It follows V + KerC 6= Fn, a contradiction to V being tight. Hence (A,B)
was µ-tight.

Proposition 5.2. Let V ⊂ Fn be (C,A)-invariant with codimV = k. Then
there exists a µ-regular pair (A,B) ∈ F k×k ×Fk×p with V = KerRµ(A,B).

Since the existence part of the proof turns out to be more instructive in the
dual case, this result is obtained by dualizing the following proposition.

Proposition 5.3. Let (A,B) be a controllable pair in Brunovsky form with
controllability indices κ = (κ1, . . . , κm) (cf. Section 2.1.2). For any k-
dimensional (A,B)-invariant subspace V ⊂ Fn there exists a pair (C,A) ∈
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Fm×k ×Fk×k with

V = Im Oκ(C,A) = Im
















c1...
c1A

κ1−1

...

cm...
cmA

κm−1
















,

where ci, i = 1, . . . ,m, denotes the i-th row of C.

Proof. Let V ⊂ Fn be a k-dimensional (A,B)-invariant subspace and let

X =
















x01...
xκ1−11

...

x0m...
xκm−1m
















∈ Fn×k

be a rank k matrix with ImX = V . Proposition 2.3 yields ImAX ⊂ ImX +
ImB. Equivalently, there exist matrices A ∈ F k×k and Y ∈ Fm×k with

AX = XA+ BY .

Written out row by row this is equivalent to

xl+1j = xljA , j = 1, . . . ,m and l = 0, . . . , κj − 2

yj = −x
κj−1
j A , j = 1, . . . ,m ,

where yj, j = 1, . . . ,m, denotes the j-th row of Y . Setting cj = x0j for
j = 1, . . . ,m yields the desired result.

Proof of Proposition 5.2. The existence of such a pair (A,B) follows by du-
alizing Proposition 5.3. The µ-regularity of (A,B) follows from codimV =
codimKerRµ(A,B) = rkRµ(A,B) = k.
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Since the linear space KerRµ(A,B) is invariant under the similarity action,
i.e. KerRµ(A,B) = KerRµ(A

′, B′) for (A′, B′) ∈ [A,B]σ, and in view of
Proposition 5.1 the following map is well defined:

ρµ : Σk,p(F) −→ V(C,A) ,

[A,B]σ 7→ KerRµ(A,B) .

Here V(C,A) denotes the set of all (C,A)-invariant subspaces. As a conse-
quence of Proposition 5.1 the following two restrictions of this map are well
defined. Vk(C,A) and Tk(C,A) denote the sets of all codimension k (C,A)-
invariant subspaces or tight subspaces, respectively.

Theorem 5.4. The map

ρµ : Σk,p(µ) −→ Vk(C,A) ,

[A,B]σ 7→ KerRµ(A,B)

is a surjective algebraic map. It restricts to a bijection

ρµ : Σt
k,p(µ) −→ Tk(C,A) .

Proof. Surjectivity of the first map follows from Proposition 5.2. Surjectiv-
ity of the second map follows from surjectivity of the first map and Propo-
sition 5.1. Injectivity of the second map follows from the same arguments
as injectivity of the µ-partial Kalman embedding (cf. Proposition 4.4) with
µ+ 1 replaced by µ.

To bring in the topology, the spaces Tk(C,A) and Vk(C,A) are viewed as
subsets of the Grassmann manifold Gn−k(F

n).

Theorem 5.5. The map

ρµ : Σt
k,p(µ) −→ Tk(C,A) ,

[A,B]σ 7→ KerRµ(A,B)

is a homeomorphism.

Proof. According to Theorem 5.4 ρµ is bijective. Furthermore it is clearly
continuous. It remains to show that the map ρµ is open. This follows from
the same arguments as openness of the µ-partial Kalman embedding (cf.
Proposition 4.4) with µ+ 1 replaced by µ.

Corollary 5.6. For k ≤ n− p, Tk(C,A) is a smooth manifold of dimension
kp over F , which is embedded into Gn−k(F

n) via ρµ. For k > n−p, Tk(C,A)
is empty.
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5.2 The instantaneous case

In this section a result analogous to the result of Section 5.1 is achieved in the
instantaneous case. Here controllable pairs (A,B) with A nilpotent (cf. Sec-
tion 4.1) are used to describe the set of all codimension k almost observability
subspaces with respect to a given observable pair (C,A) in dual Brunovsky
form with observability indices µ = (µ1, . . . , µp) (cf. Section 2.3.2).

Proposition 5.7. Let 1 ≤ k ≤ n and let (A,B) ∈ F k×k ×Fk×p, where A is
nilpotent.

(1) Oa = Ker
←−
R µ(A,B) is an almost observability subspace with respect to

the pair (C,A),

(2) codimOa = k if and only if (A,B) is µ-regular and

(3) Oa is instantaneous of codimension k if and only if (A,B) is µ-tight.

Proof. Ad (1): According to Proposition 2.40 Oa is an almost observability
subspace if and only if O∞(Oa) = Oa, where O∞ refers to the limit of AOSA.
Note that Oa ⊂ O∞ is trivial.

Let n1(A) = min{l |Al = 0} be the nilpotency index of A. It will be shown
by induction that

Oi ⊂ KerAn1(A)−i
←−
R µ(A,B)

for i = 0, . . . , n1(A). For i = 0 this is obvious. Let it be true for a fixed
0 ≤ i < n1(A), now. Then

Oi+1 ⊂ Ker
←−
R µ(A,B) + (A−1KerAn1(A)−i

←−
R µ(A,B) ∩KerC) .

Clearly,

Ker
←−
R µ(A,B) ⊂ KerAn1(A)−(i+1)

←−
R µ(A,B) ,

so it remains to show that

A−1KerAn1(A)−i
←−
R µ(A,B) ∩KerC ⊂ KerAn1(A)−(i+1)

←−
R µ(A,B) .
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Let x ∈ A−1KerAn1(A)−i
←−
R µ(A,B) ∩KerC. Then

x =






















xµ1−11 ...
x11
0
...

xµp−1p ...
x1p
0






















∈ KerC

and Ax ∈ KerAn1(A)−i
←−
R µ(A,B), i.e.

An1(A)−i
←−
R µ(A,B)Ax =

p
∑

j=1

µj−2∑

l=0

An1(A)−iAlbjx
l+1
j

=
p
∑

j=1

µj−1∑

l=1

An1(A)−(i+1)Albjx
l
j

= An1(A)−(i+1)
←−
R µ(A,B)x = 0 .

But that means x ∈ KerAn1(A)−(i+1)
←−
R µ(A,B) and hence the induction is

complete.

Now On1(A) ⊂ Ker
←−
R µ(A,B) = Oa and therefore O∞ = Oa.

Ad (2): By definition (A,B) is µ-regular if and only if codimKer
←−
R µ(A,B) =

rk
←−
R µ(A,B) = k.

Ad (3): Let (A,B) be µ-tight, then (A,B) is µ-regular and Oa is a codimen-
sion k almost observability subspace. According to Proposition 2.42 Oa is
instantaneous if and only if V∞(Oa) = Fn, where V∞ refers to the limit of
CISA.

It will be shown by induction that

Vi ⊃ KerAi−1←−R µ(A,B)

for all i ∈ N. Obviously, this is true for i = 1. Let it be true for a fixed
i ∈ N, now. Then

Vi+1 ⊃ Ker
←−
R µ(A,B) + A(KerAi−1←−R µ(A,B) ∩KerC) .
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Let

x =

















xµ1−11 ...
x01
...

xµp−1p ...
x0p

















∈ KerAi←−R µ(A,B) ,

i.e.

Ai←−R µ(A,B)x = Ai
p
∑

j=1

µj−1∑

l=0

Albjx
l
j = 0 . (5.3)

Since rk
←−
R µ−1(A,B) = k, any linear combination of the vectors Aµj−1bj, j =

1, . . . , p, can be written as a linear combination of the columns of
←−
R µ−1(A,B),

i.e. there exist numbers ylj ∈ F , j = 1, . . . , p and l = 0, . . . , µj − 2, with

p
∑

j=1

Aµj−1bjx
µj−1
j =

p
∑

j=1

µj−2∑

l=0

Albjy
l
j . (5.4)

Then (5.3) yields

Ai−1
p
∑

j=1

µj−1∑

l=1

Albj(x
l−1
j + yl−1j ) = Ai

p
∑

j=1

µj−2∑

l=0

Albj(x
l
j + ylj) = 0 . (5.5)

Consider the decomposition

x =























xµ1−11

−yµ1−21
...
−y01
...

xµp−1p

−yµp−2p
...
−y0p























+ A























xµ1−21 + yµ1−21
...

x01 + y01
0
...

xµp−2p + yµp−2p
...

x0p + y0p
0























=: y + Az .

Then (5.4) yields y ∈ Ker
←−
R µ(A,B) and (5.5) yields z ∈ KerAi−1←−R µ(A,B).

Obviously, z ∈ KerC. Hence

x ∈ Ker
←−
R µ(A,B) + A(KerAi−1←−R µ(A,B) ∩KerC) ⊂ Vi+1
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and Vi+1 ⊃ KerAi←−R µ(A,B). This completes the induction.

Since A is nilpotent, Ai−1 = 0 and hence Vi ⊃ Ker 0 ·
←−
R µ(A,B) = Fn for i

big enough, i.e. V∞ = Fn and Oa is instantaneous.

Conversely let Oa be instantaneous of codimension k. Then (A,B) is µ-

regular. Assume, that (A,B) is not µ-tight, i.e. rk
←−
R µ−1(A,B) < k. Since

rk
←−
R µ(A,B) = k, there exists a linear combination of the vectors Aµj−1bj,

j = 1, . . . , p, which is not contained in columnspan
←−
R µ−1(A,B). This means

that there exist numbers x
µj−1
j ∈ F , j = 1, . . . , p, such that for every choice

of numbers xlj ∈ F , j = 1, . . . , p and l = 0, . . . , µj − 2,

p
∑

j=1

µj−1∑

l=0

Albjx
l
j 6= 0 . (5.6)

It will be shown by induction that

x :=




















xµ1−11
0
...
0
...

xµp−1p
0
...
0




















6∈ Vi

for all i ∈ N. For i = 1 choose xlj = 0, j = 1, . . . , p and l = 0, . . . , µj − 2,

then (5.6) yields x 6∈ Ker
←−
R µ(A,B) = Oa = V1. Let it be true for a fixed

i ∈ N, now. Then x ∈ Vi+1 = Oa + A(Vi + KerC) would imply x = y + Az
with y ∈ Oa, i.e. there would exist numbers zlj ∈ F , j = 1, . . . , p and
l = 1, . . . , µj − 1, such that

y = x− Az =























xµ1−11

−zµ1−11
...
−z11
...

xµp−1p

−zµp−1p
...
−z1p























∈ Oa = Ker
←−
R µ(A,B) .
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But then the choice xlj = −z
l+1
j , j = 1, . . . , p and l = 0, . . . , µj−2, contradicts

(5.6). Hence x 6∈ Vi+1 and the induction is complete.

It follows x 6∈ V∞, i.e. V∞ 6= F
n, a contradiction to Oa being instantaneous.

Hence (A,B) was µ-tight.

Proposition 5.8. Let Oa ⊂ F
n be an almost observability subspace with

respect to the pair (C,A) with codimOa = k. Then there exists a µ-regular

pair (A,B) ∈ Fk×k ×Fk×p with A nilpotent such that Oa = Ker
←−
R µ(A,B).

Since the existence part of the proof turns out to be more instructive in the
dual case, this result is obtained by dualizing the following proposition.

Proposition 5.9. Let (A,B) be a controllable pair in Brunovsky form with
controllability indices κ = (κ1, . . . , κm) (cf. Section 2.1.2). For any k-
dimensional almost controllability subspace Ra ⊂ F

n with respect to the pair
(A,B) there exists a pair (C,N) ∈ Fm×k ×Fk×k with N nilpotent and

Ra = Im
←−
O κ(C,N) = Im
















c1N
κ1−1

...
c1
...

cmN
κm−1

...
cm
















,

where ci, i = 1, . . . ,m, denotes the i-th row of C.

Proof. According to Proposition 2.5 there exists a feedback matrix F ∈ Fm×n

and a chain of subspaces ImB ⊃ B1 ⊃ · · · ⊃ Br such that

Ra = B1 ⊕ AFB2 ⊕ · · · ⊕ Ar−1
F Br

and ni := dimBi = dimAi−1
F Bi, i = 1, . . . , r, where

AF = A + BF =


















0 1... ...
0 1

f1

...
0 1... ...

0 1

fm
︸ ︷︷ ︸

κ1
. . . ︸ ︷︷ ︸

κm
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and fi, i = 1, . . . ,m, denotes the i-th row of F . It follows n1 + · · ·+ nr = k.
It is possible to choose a basis b1, . . . , bn1 of B1 such that b1, . . . , bni is a basis
of Bi, i = 1, . . . , r. The set of vectors

Ar−1
F

b1 ... Ar−1
F

bnr

Ar−2
F

b1 ... Ar−2
F

bnr Ar−2
F

bnr+1 ... Ar−2
F

bnr−1
...

...
...

...
AF b1 ... AF bnr AF bnr+1 ... AF bnr−1 ... AF bn3+1 ... AF bn2

b1 ... bnr bnr+1 ... bnr−1 ... bn3+1 ... bn2 bn2+1 ... bn1

forms a basis of Ra, then. Read this tabular from bottom to top and from
left to right and form subspaces

Ui = bi ⊕ AFbi ⊕ · · · ⊕ Ari−1
F bi , i = 1, . . . , n1 ,

where ri = max{ρ | i ≤ nρ} and bi = columnspan bi. Then r1 + · · ·+ rn1 = k
and

Ra = U1 ⊕ · · · ⊕ Un1 .

Fix an i ∈ {1, . . . , n1}. Since bi ∈ ImB, there exist numbers c1ij ∈ F ,
j = 1, . . . ,m, with

bi =



















0
...
0
c1i1
...

0
...
0
c1im



















.

Assume that for l < ri

Al−1
F bi =

















cl−κ1+1i1 ...
cli1
...

cl−κm+1
im ...
clim

















,
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where csij = 0 for s ≤ 0, then

Al
F bi =

















cl−κ1+2i1 ...
cl+1i1
...

cl−κm+2
im ...
cl+1im

















,

where cl+1ij ∈ F are suitable numbers. By induction

Ui = Im






Ui1
...

Uim




 ,

where

Uij = Im

















0 0 . . . 0
...

...
...

0 0 . . . 0
0 0 . . . c1ij...

...
...

0 0 cri−2ij

0 c1ij . . . cri−1ij

c1ij c2ij . . . criij

















if ri ≤ κj and

Uij = Im












0 0 . . . c1ij . . . c
ri−κj+1
ij...

...
...

...

0 0 c
κj−2
ij . . . cri−2ij

0 c1ij . . . c
κj−1
ij . . . cri−1ij

c1ij c2ij . . . c
κj
ij . . . criij












if ri > κj, respectively. Choosing

Ci =






c1i1 . . . crii1...
...

c1im . . . criim




 and Ni =







0 1
. . . . . .

0 1
0
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it follows

Ui = Im
















ci1N
κ1−1
i...
ci1
...

cimN
κm−1
i...

cim
















.

Now the choice

C = (C1 . . . Cn1) and N = diag(N1, . . . , Nn1)

yields the desired result.

Proof of Proposition 5.8. The existence of such a pair (A,B) follows by du-
alizing Proposition 5.9. The µ-regularity of (A,B) follows from codimOa =

codimKer
←−
R µ(A,B) = rk

←−
R µ(A,B) = k.

Since the linear space Ker
←−
R µ(A,B) is invariant under the similarity action,

i.e. Ker
←−
R µ(A,B) = Ker

←−
R µ(A

′, B′) for (A′, B′) ∈ [A,B]σ, and in view of
Proposition 5.7 the following map is well defined:

←−ρ µ : Nk,p(F) −→ Oa(C,A) ,

[A,B]σ 7→ Ker
←−
R µ(A,B) .

Here Oa(C,A) denotes the set of all almost observability subspaces with re-
spect to the pair (C,A). As a consequence of Proposition 5.7 the following
two restrictions of this map are well defined. Oa

k(C,A) and Ik(C,A) denote
the sets of all codimension k almost observability subspaces or instantaneous
subspaces with respect to the pair (C,A), respectively.

Theorem 5.10. The map

←−ρ µ : Nk,p(µ) −→ Oa
k(C,A) ,

[A,B]σ 7→ Ker
←−
R µ(A,B)

is a surjective algebraic map. It restricts to a bijection

←−ρ µ : N t
k,p(µ) −→ Ik(C,A) .
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Proof. Surjectivity of the first map follows from Proposition 5.8. Surjectiv-
ity of the second map follows from surjectivity of the first map and Propo-
sition 5.7. Injectivity of the second map follows as in the proof of Theo-
rem 5.4.

To bring in the topology, the spaces Ik(C,A) and Oa
k(C,A) are viewed as

subsets of the Grassmann manifold Gn−k(F
n).

Theorem 5.11. The map

←−ρ µ : N t
k,p(µ) −→ Ik(C,A) ,

[A,B]σ 7→ Ker
←−
R µ(A,B)

is a homeomorphism.

Proof. According to Theorem 5.10 ←−ρ µ is bijective. Furthermore it is clearly
continuous. Openness of ←−ρ µ follows as in the proof of Theorem 5.5.

Corollary 5.12. For k ≤ n − p, Ik(C,A) is locally compact. If in addition
k ≤ µp − 1 then Ik(C,A) is compact. For k > n− p, Ik(C,A) is empty.

5.3 The O∗ = Fn case

In this section the results of Sections 5.1 and 5.2 are combined to describe
the set of all codimension k almost (C,A)-invariant subspaces of a given
observable pair (C,A) in dual Brunovsky form with observability indices µ =
(µ1, . . . , µp) (cf. Section 2.3.3). This description uses controllable triples (cf.
Section 4.2).

Proposition 5.13. Let 1 ≤ r ≤ k ≤ n and let ((A1, B1), (N,B2)) ∈ (F r×r×
F r×p)× (F (k−r)×(k−r)×F (k−r)×p) be a pair of matrix pairs with N nilpotent.

(1) Va = KerRµ(A1, B1, N,B2) is an almost (C,A)-invariant subspace,

(2) codimVa = k if and only if the triple

(E,A,B) =

((

I 0
0 N

)

,

(

A1 0
0 I

)

,

(

B1

B2

))

is µ-regular and
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(3) O∗(Va) = F
n and codimVa = k if and only if (E,A,B) is µ-tight.

Some parts of the proof turn out to be easier in the dual case and will be
obtained by dualizing the following Lemmas.

Lemma 5.14. Let (A,B) be a controllable pair in Brunovsky form with con-
trollability indices κ = (κ1, . . . , κm) (cf. Section 2.1.2). Let 1 ≤ r ≤ k ≤ n
and let ((C1, A1), (C2, N)) ∈ (Fp×r × F r×r)× (Fp×(k−r) × F (k−r)×(k−r)) be a
pair of matrix pairs with N nilpotent. Let

Va = Im Oκ(C1, A1, C2, N) = Im ( Oκ(C1,A1)
←−
Oκ(C2,N) )

= Im













c11 c21Nκ1−1

...
...

c11A
κ1−1

1 c21

...
...

c1m c2mNκm−1

...
...

c1mA
κm−1
1 c2m













∈ Fn×k ,

where cij denotes the j-th row of Ci, i = 1, 2, j = 1, . . . ,m. If the matrix

Oκ−1(C1, A1, C2, N) = ( Oκ−1(C1,A1)
←−
Oκ−1(C2,N) ) ∈ F (n−m)×k

has full (column) rank k then for all i ∈ N

V i(Va) ⊂ Im ( Oκ(C1,A1)
←−
Oκ(C2,N)N i−1 ) ,

where V i refers to the steps of ISA.

Proof. The statement will be proved by induction. Obviously it is true for
i = 1. Let it be true for a fixed i ∈ N now. Then

V i+1 = Va ∩ A−1(V i + ImB)

⊂ Im













c11 c21Nκ1−1

...
...

c11A
κ1−1

1 c21

...
...

c1m c2mNκm−1

...
...

c1mA
κm−1
1 c2m













∩ Im
















1 0 0
0 c11 c21Nκ1−1N i−1

...
...

...
0 c11A

κ1−2

1 c21NN i−1

...
...

...
1 0 0
0 c1m c2mNκm−1N i−1

...
...

...
0 c1mA

κm−2
1 c2mNN i−1
















.
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For y ∈ V i+1 it follows the existence of x1 ∈ F
r, x2 ∈ F

k−r, x3 ∈ F
m,

x4 ∈ F
r and x5 ∈ F

k−r such that

y =













c11...
c11A

κ1−1

1

...
c1m...

c1mA
κm−1
1













x1 +












c21Nκ1−1

...
c21
...

c2mNκm−1

...
c2m












x2

=













1
0...
0
...

1
0...
0













x3 +















0
c11...

c11A
κ1−2

1

...
0

c1m...
c1mA

κm−2
1















x4 +















0
c21Nκ1−1N i−1

...
c21NN i−1

...
0

c2mNκm−1N i−1

...
c2mNN i−1















x5 .

This implies

Oκ−1(C1, A1)A1x1 +
←−
O κ−1(C2, N)x2 = Oκ−1(C1, A1)x4 +

←−
O κ−1(C2, N)N ix5 .

But then Oκ−1(C1, A1, C2, N) having full rank k yields

Oκ−1(C1, A1)(A1x1 − x4) =
←−
O κ−1(C2, N)(N ix5 − x2) = 0 .

Since Oκ−1(C1, A1) has full rank r and Oκ−1(C2, N) has full rank k − r it
follows A1x1 = x4 and N ix5 = x2. But then

y =













c11...
c11A

κ1−1

1

...
c1m...

c1mA
κm−1
1













x1 +












c21Nκ1−1

...
c21
...

c2mNκm−1

...
c2m












N ix5 ∈ Im ( Oκ(C1,A1)
←−
Oκ(C2,N)N i ) ,

which completes the induction.

Lemma 5.15. Let (A,B) be a controllable pair in Brunovsky form with con-
trollability indices κ = (κ1, . . . , κm) (cf. Section 2.1.2). Let 1 ≤ r ≤ k ≤ n
and let ((C1, A1), (C2, N)) ∈ (Fp×r × F r×r)× (Fp×(k−r) × F (k−r)×(k−r)) be a
pair of matrix pairs with N nilpotent. Let Oκ(C1, A1, C2, N) have full rank
k and let Va = ImOκ(C1, A1, C2, N). Let Oκ−1(C1, A1) have full rank r and

let
←−
O κ−1(C2, N) have full rank k − r. If rkOκ−1(C1, A1, C2, N) < k then

V∞(Va) 6= V := ImOκ(C1, A1), where V
∞ refers to the limit of ISA.
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Proof. According to Proposition 5.1 V is (A,B)-invariant. By definition
V ⊂ Va holds. According to Proposition 2.13 V∞(Va) is the largest (A,B)-
invariant subspace contained in Va. It follows V ⊂ V∞ hence V ⊂ V i for all

i ∈ N. Oκ−1(C1, A1) and
←−
O κ−1(C2, N) having full rank, respectively, while

rkOκ−1(C1, A1, C2, N) < k, yields the existence of x1 ∈ F
r and x2 ∈ F

k−r

with
Oκ−1(C1, A1)x1 =

←−
O κ−1(C2, N)x2 6= 0 .

But then y =
←−
O κ(C2, N)x2 6= 0 and y 6∈ V since Oκ(C1, A1, C2, N) has full

rank. It will be shown by induction that y ∈ V i for all i ∈ N. Obviously, this
is true for i = 1. Let it be true for a fixed i ∈ N now. Then

Ay =














c21Nκ1−2

...
c21
0
...

c2mNκm−2

...
c2m
0














x2 =















c11...
c11A

κ1−1

1
0
...

c1m...
c1mA

κm−1
1
0















x1 ∈ V + ImB ⊂ V i + ImB .

But then y ∈ A−1(V i + ImB) and therefore y ∈ V i+1 which completes the
induction. It follows y ∈ V∞ and the proof is complete.

Proof of Proposition 5.13. By Proposition 5.1 and Proposition 5.7 the sub-
space V := KerRµ(A1, B1) is (C,A)-invariant while the subspace Oa :=

Ker
←−
R µ(N,B2) is an almost observability subspace with respect to the pair

(C,A). By definition it is Va = V ∩ Oa.

Ad (1): According to Proposition 2.34 Va is an almost (C,A)-invariant sub-
space.

Ad (2): (E,A,B) is µ-regular if and only if codimKerRµ(A1, B1, N,B2) =
rkRµ(A1, B1, N,B2) = k.

Ad (3): Let (E,A,B) be µ-tight. According to (1) Va is an almost (C,A)-
invariant subspace. Dualizing Lemma 5.14 yields

Vi(Va) ⊃ Ker
(

Rµ(A1,B1)

N i−1←−Rµ(N,B2)

)

for all i ∈ N, where Vi refers to the steps of CISA. Since N is nilpotent, there
exists i ∈ N such that N i−1 = 0 and hence Vi ⊃ KerRµ(A1, B1) = V , i.e.
Va ⊂ V ⊂ V∞(Va) = V∗(Va) (for the last equality cf. Proposition 2.39). Since
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n case

V∗(Va) is the minimal (C,A)-invariant subspace containing Va and since V is
(C,A)-invariant (it is even tight since (A1, B1) is µ-tight, cf. Proposition 5.1),
it follows V∗(Va) = V∞(Va) = V . But then according to Proposition 2.41
O∗(Va) = O∞(V∞(Va)) = O∞(V) = F

n, since V is tight (Proposition 2.42).
It follows from Proposition 2.38, that V + Oa = Fn. But then codimVa =
codimV + codimOa. Since (A1, B1) and (N,B2) are both µ-tight and hence
are both µ-regular, codimV = r (Proposition 5.1) and codimOa = k − r
(Proposition 5.7). It follows codimVa = k.

Conversely let O∗(Va) = Fn and let codimVa = k. Then (E,A,B) is µ-
regular, i.e. rkRµ(A1, B1, N,B2) = k. Since V ⊃ Va it is O∗(V) ⊃ O∗(Va) =
Fn. Hence O∗(V) = Fn and V is tight. According to Proposition 5.1 this
means rkRµ−1(A1, B1) = r. On the other hand Ra ⊃ Va and therefore
O∗(Ra) ⊃ O∗(Va) = Fn. Hence O∗(Ra) = Fn and Ra is instantaneous.
According to Proposition 5.7 this means rkRµ−1(N,B2) = k − r. Assume,
that (E,A,B) is not µ-tight, i.e. rkRµ−1(A1, B1, N,B2) < k. Dualizing
Lemma 5.15 yields V∞(Va) = V∗(Va) 6= V . According to Proposition 2.38
the decomposition Va = V ∩ Oa is unique, since O∗(Va) = Fn. It follows
V∗(Va) = V , a contradiction. Hence (E,A,B) was µ-tight.

Corollary 5.16. Any µ-tight triple (E,A,B) is µ-regular.

Proof. Let (E,A,B) be µ-tight, and let ((A1, B1), (N,B2)) be any Weierstraß
decomposition of (E,A,B). Then the triple in number (2) of Proposition 5.13
is restricted system equivalent to (E,A,B). Hence it is also µ-tight and Va =
KerRµ(A1, B1, N,B2) is a codimension k almost (C,A)-invariant subspace.
But then this triple is µ-regular and therefore (E,A,B) is µ-regular.

Proposition 5.17. Let Va ⊂ F
n be an almost (C,A)-invariant subspace with

codimVa = k. Then there exists a pair of matrix pairs ((A1, B1), (N,B2)) ∈
(F r×r × F r×p) × (F (k−r)×(k−r) × F (k−r)×p) with N nilpotent such that Va =
KerRµ(A1, B1, N,B2) and rkRµ(A1, B1, N,B2) = k.

Proof. According to Proposition 2.38 there exists an instantaneous subspace
I such that Va = V∩I, where V = V∗(Va) is (C,A)-invariant and V+I = Fn.
Let r = codimV , then codim I = codimVa−codimV+codim(V+I) = k−r+
0 = k− r. According to Proposition 5.2 there exists a matrix pair (A1, B1) ∈
F r×r × F r×p with V = KerRµ(A1, B1). According to Proposition 5.8 there
exists a matrix pair (N,B2) ∈ F

(k−r)×(k−r) ×F (k−r)×p with N nilpotent and

I = Ker
←−
R µ(N,B2). It follows Va = KerRµ(A1, B1, N,B2) and codimVa =

codimKerRµ(A1, B1, N,B2) = rkRµ(A1, B1, N,B2) = k.
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5 Kernel representations

Apparently the previous two Propositions set up a relation between control-
lable triples and almost (C,A)-invariant subspaces via the Weierstraß decom-
position. Since the linear space KerRµ(A1, B1, N,B2) is invariant under the
action induced on the Weierstraß pairs by the restricted system equivalence
action (cf. Lemma 4.6) and in view of Proposition 5.13 the following map is
well defined:

ρµ : Ck,p(F) −→ Va(C,A) ,

[E,A,B]η 7→ KerRµ(A1, B1, N,B2) ,

where A1, B1, N and B2 are taken from any Weierstraß decomposition of
(E,A,B). Here Va(C,A) denotes the set of all almost (C,A)-invariant sub-
spaces. As a consequence of Proposition 5.13 the following two restrictions
of this map are well defined. Vka (C,A) and Fk(C,A) denote the sets of all
codimension k almost (C,A)-invariant subspaces or almost (C,A)-invariant
subspaces Va with O∗(Va) = F

n, respectively.

Theorem 5.18. The map

ρµ : Ck,p(µ) −→ V
k
a (C,A) ,

[E,A,B]η 7→ KerRµ(A1, B1, N,B2)

is a surjective algebraic map. It restricts to a bijection

ρµ : Ct
k,p(µ) −→ Fk(C,A) .

Proof. Surjectivity of the first map follows from Proposition 5.17. Surjectiv-
ity of the second map follows from surjectivity of the first map and Proposi-
tion 5.13. Injectivity of the second map follows from the fact that (A1, B1)
and (N,B2) are both µ-tight if (E,A,B) is µ-tight, from the uniqueness of
the decomposition Va = V ∩ Oa in the O∗ = F

n case (Proposition 2.38) and
from Theorem 5.4 and Theorem 5.10.

5.4 The observability case

In view of the decomposition result of Proposition 2.38, in order to parame-
trize the set of all codimension k almost (C,A)-invariant subspaces, i.e. to
cover also the O∗ 6= F

n case, a description of the set of all observability
subspaces with respect to (C,A) is needed. Unfortunately the description
obtained in the following Proposition does not lead to a bijective correspon-
dence.
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Proposition 5.19. Let 1 ≤ k ≤ n and let (A,B) ∈ F k×k × Fk×p, where A

is nilpotent. O = Ker
←−
R µ(A,B) is an observability subspace with respect to

the pair (C,A) if and only if (A,B) satisfies the complementary condition

KerA ∩ Im
←−
R µ−1(A,B) = {0} .

Proof. According to Proposition 5.7 O is an almost observability subspace
with respect to the pair (C,A). Hence it is an observability subspace if and
only if it is also (C,A)-invariant, i.e. if and only if A(O ∩ KerC) ⊂ O.
Equivalently, for any x ∈ KerC, i.e.

x =






















xµ1−11 ...
x11
0
...

xµp−1p ...
x1p
0






















,

with x ∈ O = Ker
←−
R µ(A,B), i.e.

←−
R µ(A,B)x =

p
∑

j=1

µj−1∑

l=1

Albjx
l
j =

p
∑

j=1

µj−2∑

l=0

Al+1bjx
l+1
j

= A
p
∑

j=1

µj−2∑

l=0

Albjx
l+1
j = 0 ,

it follows Ax ∈ O = Ker
←−
R µ(A,B), i.e.

←−
R µ(A,B)Ax =

←−
R µ(A,B)




















0
xµ1−11 ...
x11
...

0
xµp−1p ...
x1p




















=
p
∑

j=1

µj−2∑

l=0

Albjx
l+1
j = 0 .
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5 Kernel representations

But this is equivalent to the following: for any y ∈ Im
←−
R µ−1(A,B), i.e.

y =
p
∑

j=1

µj−2∑

l=0

Albjx
l+1
j ,

with Ay = 0 it follows y = 0. This in turn is equivalent to KerA ∩

Im
←−
R µ−1(A,B) = {0}.

5.5 The restriction pencil

The aim of this section is to relate kernel representations of almost invariant
subspaces to the matrix pencil characterizations of almost invariant subspaces
obtained by Jaffe and Karcanias [JK81] and used by Schumacher [Sch83].

Definition 5.20. Let (A,B) ∈ Fn×n×Fn×m with rkB = m. Let N ∈ Fn×n

be the orthogonal projector onto (ImB)⊥ with respect to the standard inner
product on Fn. Let V ∈ Fn×k with rkV = k. The restriction pencil of V is
the pencil sNV −NAV , s ∈ C.

Remark 5.21. Jaffe and Karcanias [JK81] speak of the restriction pencil of
the subspace V := ImV . Since V = ImV S−1 for every S ∈ GL(Fk), this
notion is not well defined. Furthermore, they do not require N to be an
orthogonal projector onto (ImB)⊥ but rather a left annihilator of B. Hence
any TN for T ∈ GL(Fn) can be used instead. But then at least the restricted
system equivalence class

[sNV −NAV ]η = {sTNV S
−1 − TNAV S−1 |T ∈ GL(Fn), S ∈ GL(Fm)}

(cf. Section 4.2) of the restriction pencil is uniquely determined by the sub-
space V . Since they use only restricted system equivalence invariants in their
characterizations of almost invariant subspaces, this is good enough.

The following Theorem relates the notion of restriction pencil to the image
representations of almost invariant subspaces, the duals of which have been
derived in Section 5.3 (being then kernel representations, of course).

Theorem 5.22. Let (A,B) be a controllable pair in Brunovsky form with
controllability indices κ = (κ1, . . . , κm) (cf. Section 2.1.2). Let 1 ≤ r ≤ k ≤ n
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5.5 The restriction pencil

and let ((C1, A1), (C2, N)) ∈ (Fp×r × F r×r)× (Fp×(k−r) × F (k−r)×(k−r)) be a
pair of matrix pairs with N nilpotent. Let

V = Oκ(C1, A1, C2, N) = ( Oκ(C1,A1)
←−
Oκ(C2,N) )

=













c11 c21Nκ1−1

...
...

c11A
κ1−1

1 c21

...
...

c1m c2mNκm−1

...
...

c1mA
κm−1
1 c2m













∈ Fn×k ,

where cij denotes the j-th row of Ci, i = 1, 2, j = 1, . . . ,m. If the matrix

Oκ−1(C1, A1, C2, N) = ( Oκ−1(C1,A1)
←−
Oκ−1(C2,N) ) ∈ F (n−m)×k

has full (column) rank k then the restriction pencil sNV −NAV is restricted
system equivalent to the pencil

s






I 0
0 N
0 0




−






A1 0
0 I
0 0




 .

Proof. Since

N =















1 ...
1
0

...
1 ...

1
0




















κ1

...





κm

,

it follows

sNV − NAV =
















sc11−c11A1 sc21Nκ1−1−c21Nκ1−2

...
...

sc11A
κ1−2

1 −c11A
κ1−1

1 sc21N−c21
0 0
...

...
sc1m−c1mA1 sc2mNκm−1−c2mNκm−2

...
...

sc1mA
κm−2
1 −c1mA

κm−1
1 sc2mN−c2m

0 0
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5 Kernel representations

and hence

sNV − NAV =
















c11 c21Nκ1−2 ∗

...
...

...
c11A

κ1−2

1 c21 ∗
0 0 ∗
...

...
...

c1m c2mNκm−2 ∗

...
...

...
c1mA

κm−2
1 c2m ∗
0 0 ∗





















sI − A1 0
0 sN − I
0 0




 .

Since Oκ−1(C1, A1, C2, N) has full column rank, the same is true for the
submatrix formed of the two leftmost block columns of the square matrix on
the left hand side of this expression. Hence the ∗-entries can be chosen such
that this matrix has full rank.

Under the hypotheses of Theorem 5.22 the subspace V := ImV is a k-
dimensional almost (A,B)-invariant subspace with R∗(V) = {0} (dualize
Theorem 5.13). Hence in this special case the characterizations achieved by
Jaffe and Karcanias [JK81] and by Schumacher [Sch83] can easily be verified
using the results of this Chapter.

5.6 Partial realizations

It has been pointed out recently by Fuhrmann and Helmke [FH01] that there
is a close relation between partial realization theory and kernel representa-
tions of (C,A)-invariant subspaces which has been discovered by Antoulas
[Ant83]. The presentation here follows Fuhrmann and Helmke [FH01].

As is well known the transfer function H(s) = C(sI −A)−1B, s ∈ C \ σ(A),
describes the steady state frequency response of system (2.1). Its Lau-
rent expansion H(s) =

∑∞
i=1H

(i)s−i uniquely defines the Markov parame-
ters H(i) = CAi−1B, i ∈ N. The partial realization problem introduced by
Kalman (see e.g. [KFA69]) is the following: Given fixed Markov parameters
H(i) ∈ Fp×m, i = 1, . . . , N , find a system of form (2.1), i.e. find matrices
A ∈ Fn×n, B ∈ Fn×m, C ∈ Fp×n, such that H(i) = CAi−1B for i = 1, . . . , N
holds. A generalization of this problem proposed by Antoulas is the following
nice partial realization problem:

Let µ = (µ1, . . . , µp) be a list of integers (indices) with µ1 ≥ · · · ≥ µp ≥ 1
and µ1 + · · · + µp = n. Let rν = #{µj |µj ≥ ν}, ν = 1, . . . , µ1, be the
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5.6 Partial realizations

conjugate indices (# means cardinality). Note that p = r1 ≥ · · · ≥ rµ1 ≥ 1
and r1 + · · ·+ rµ1 = n. Let V ∈ Fk×n be partitioned as

V =
(

V1 . . . Vp
)

,

where Vj ∈ F
k×µj , j = 1, . . . , p. Let the nice sequence (H (ν)), H(ν) ∈ Fk×rν ,

ν = 1, . . . , µ1, be defined by

H
(ν)
j = Vjν , j = 1, . . . , rν , ν = 1, . . . , µ1 ,

where H
(ν)
j denotes the j-th column of H (ν) and Vjν denotes the ν-th column

of Vj. Then H(ν) consists of the ν-th columns of the blocks V1, . . . , Vrν .
The blocks Vj, j = rν + 1, . . . , p have less than ν columns. Find matrices
A ∈ F q×q, B ∈ F q×p and C ∈ Fk×q, such that

H
(ν)
j = CAν−1bj , j = 1, . . . , rν , ν = 1, . . . , µ1 , (5.7)

where bj denotes the j-th column of B. Note that for p = r1 = · · · = rµ1
(equivalently µ1 = · · · = µp) this is the usual partial realization problem. A
triple (A,B,C) of matrices satisfying (5.7) is called a partial realization of
the nice sequence (H (ν)) of McMillan degree q.

Proposition 5.23. Let (C,A) be an observable pair in dual Brunovsky form
with observability indices µ = (µ1, . . . , µp) (cf. Section 2.3.2). Let V ∈ F k×n

define the nice sequence (H (ν)) as above and let 1 ≤ q ≤ n. If there exists a
partial realization of (H (ν)) of minimal McMillan degree q then there exists
a codimension q (C,A)-invariant subspace U ⊂ KerV . Conversely, if there
exists a codimension q (C,A)-invariant subspace U ⊂ KerV then there exists
a partial realization of (H (ν)) of (not necessarily minimal) McMillan degree
q.

Proof. Assume that there exists a partial realization (A,B,C) of (H (ν)) of
minimal McMillan degree q. Then (5.7) yields

V = CRµ(A,B) . (5.8)

According to Proposition 5.1 U := KerRµ(A,B) is (C,A)-invariant. Further-
more (5.8) yields U ⊂ KerV . Assume that rkRµ(A,B) < q. Then there
exists a state space transformation S ∈ GL(F k) such that

SRµ(A,B) = Rµ(SAS
−1, SB) = Rµ(

(

A1 A3

0 A2

)

,

(

B1

0

)

) =

(

Rµ(A1, B1)
0

)

with (A1, B1) ∈ F
q1×q1 × F q1×p and q1 < q. Partitioning CS−1 = (C1 C2)

with C1 ∈ F
k×q1 then yields V = C1Rµ(A1, B1) and (A1, B1, C1) is a partial
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realization of (H (ν)) of McMillan degree q1 < q contradicting the assumption
of q being minimal. Hence rkRµ(A,B) = q holds and (A,B) is µ-regular.
But then, according to Proposition 5.1, codimU = q.

Conversely, let U ⊂ KerV be (C,A)-invariant of codimension q. According
to Proposition 5.2 there exists a µ-regular pair (A,B) ∈ F q×q × F q×p such
that U = KerRµ(A,B). Since KerRµ(A,B) ⊂ KerV there exists a matrix
C ∈ Fk×q such that (5.8) and hence (5.7) holds. Then (A,B,C) is a partial
realization of (H (ν)) of McMillan degree q.

Corollary 5.24. Let (C,A) be an observable pair in dual Brunovsky form
with observability indices µ = (µ1, . . . , µp) (cf. Section 2.3.2). Let V ∈ F k×n

define the nice sequence (H (ν)) as above. The minimal McMillan degree q
of a partial realization of (H (ν)) is equal to the minimal codimension of a
(C,A)-invariant subspace U ⊂ KerV .

Proof. According to Proposition 5.23 there exists a (C,A)-invariant subspace
U ⊂ KerV of codimension q. Assume that there exists a (C,A)-invariant
subspace Ũ ⊂ KerV with codim Ũ < q. Then Proposition 5.23 yields the
existence of a partial realization of (H (ν)) of McMillan degree codim Ũ < q,
a contradiction to q being minimal.

Gohberg, Kaashoek and Lerer [GKL91, Theorem 2.2] have derived a formula
for the minimal McMillan degree of a partial realization of the nice sequence
(H(ν)). Applying Corollary 5.24 then immediately yields the following for-
mula for the minimal codimension of a (C,A)-invariant subspace U ⊂ KerV .
Let

Hi :=














H
(1)
1...ri H

(2)
1...ri+1 H

(3)
1...ri+2 . . . H

(µ1−i+1)
1...rµ1

H
(2)
1...ri H

(3)
1...ri+1 . . .

...

H
(3)
1...ri . . .

...
...

...

H
(i)
1...ri . . . H

(µ1)
1...rµ1














and

H̃i :=














H
(1)
1...ri+1 H

(2)
1...ri+2 H

(3)
1...ri+3 . . . H

(µ1−i)
1...rµ1

H
(2)
1...ri+1 H

(3)
1...ri+2 . . .

...

H
(3)
1...ri+1 . . .

...
...

...

H
(i)
1...ri+1 . . . H

(µ1−1)
1...rµ1














,

where H
(ν)
1...j denotes the submatrix of H (ν) consisting of the first j columns.
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Theorem 5.25. The minimal codimension of a (C,A)-invariant subspace
U ⊂ KerV is equal to

µ1∑

i=1

rkHi −
µ1−1∑

i=1

rk H̃i .

As has been pointed out in Section 3.3.1, this formula provides a lower bound
for the minimal order of an asymptotic output observer for the function V x
(at least if the observed system is controllable).

The following theorem extends and corrects a result of Fuhrmann and Helmke
[FH01, Theorem 5.2]. If (A,B,C) is a partial realization of the nice se-
quence (H(ν)) of McMillan degree q then so is (SAS−1, SB,CS) for every
S ∈ GL(F q). For parametrization purposes it is therefore convenient to
introduce similarity classes

[(A,B,C)]σ = {(SAS−1, SB,CS) |S ∈ GL(F q)}

of partial realizations. Let Pq(H
(ν)) denote the set of all similarity classes of

partial realizations of (H (ν)) of McMillan degree q. Let VKerVq (C,A) denote
the set of all codimesion q (C,A)-invariant subspaces contained in KerV .

Theorem 5.26. Let (C,A) be an observable pair in dual Brunovsky form
with observability indices µ = (µ1, . . . , µp) (cf. Section 2.3.2). Let V ∈ F k×n

define the nice sequence (H (ν)) as above. Let q be the McMillan degree of a
minimal partial realization of (H (ν)). The map

ρµ : Pq(H
(ν)) −→ VKerVq (C,A) ,

[A,B,C]σ 7→ KerRµ(A,B)

is a surjection. If VKerVq (C,A) happens to consist only of tight subspaces then
ρµ is bijective.

Proof. Since KerRµ(A,B) is invariant under the similarity action and ac-
cording to Proposition 5.23 the map ρµ is well defined and surjective. In
the tight case the pair (A,B) is (up to similarity) uniquely determined by
KerRµ(A,B) (Theorem 5.4). Since rkRµ(A,B) = q, equation (5.8) deter-
mines C uniquely.

In general partial realizations of nice sequences are not unique – even in the
tight and minimal case – as the following example shows.
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Example 5.27. Let (C,A) be observable in dual Brunovsky form with ob-
servability indices µ1 = 3 and µ2 = 2, i.e. p = 2 and n = µ1 + µ2 = 5.
Consider

V =

(

1 0 1 0 0
0 1 0 1 1

)

.

Let q = rkV = 2. Observe that there exists no pair (A,B) ∈ F q×q × F q×p

with V = Rµ(A,B). Hence Proposition 5.1 yields that KerV is not (C,A)-
invariant (but of codimesion 2). But then according to Proposition 5.23 there
exists no partial realization of the nice sequence

H(1) =

(

1 0
0 1

)

, H(2) =

(

0 0
1 1

)

, H(3) =

(

1
0

)

of McMillan degree q = 2. The McMillan degree of a minimal partial real-
ization of H (ν) is hence ≥ 3. Now consider the family

A(x, y, z, v, w) =







− x
y−v

− v
y−v

1
y−v

1 + x
y−v

1 + v
y−v

− 1
y−v

y − x z−w
y−v

w − v z−w
y−v

z−w
y−v






,

B(x, y, z, v, w) =






1 0
0 1
x v




 , x, y, z, v, w ∈ F , y 6= v

of µ-tight pairs (A(.), B(.)). According to Proposition 5.1 the subspaces

T (.) = KerRµ(A(.), B(.)) = Ker






1 0 1 0 0
0 1 0 1 1
x y z v w






are tight of codimension 3 (note that y 6= v). Apparently T (.) ⊂ KerV holds
for all values of the parameters. But then the family (A(.), B(.), C(.)), where

C(.) =

(

1 0 0
0 1 0

)

,

consists of (obviously different) partial realizations of (H (ν)) of minimal
McMillan degree 3. In fact, every partial realization of (H (ν)) of McMillan de-
gree 3 comes from a kernel representation of the above type (Theorem 5.26),
where y 6= v is necessary since

A ·






0
1
y




 =






1
0
z




 and A ·






0
1
v




 =






0
1
w






implies a12+ ya13 = 1 and a12+ va13 = 0 hence (y− v)a13 = 1 and y− v 6= 0.
Consequently all minimal partial realizations of (H (ν)) are tight.
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5.7 Observers II

In this section the connection between kernel representations of (almost)
(C,A)-invariant subspaces and observer theory as well as the link of the
latter to partial realization theory is explained.

Consider the system

ẋ = Ax+ Bu

y = Cx ,
(5.9)

where the pair (C,A) is observable and in dual Brunovsky form with observ-
ability indices µ = (µ1, . . . , µp) (cf. Section 2.3.2). In this set-up the following
three propositions provide an alternative proof for Theorem 3.8. The new
proof clarifies the dynamical meaning of the matrix pair (A,B) appearing in
the kernel representation of a (C,A)-invariant subpace V = KerRµ(A,B).

Proposition 5.28. Let V ∈ Fk×n and let V := KerV be (C,A)-invariant.
Then there exists a (not necessarily controllable) pair (A,B) ∈ F k×k ×Fk×p

such that V = Rµ(A,B).

Proof. Let q := codimV , then q ≤ k. According to Proposition 5.2 there
exists a (µ-regular) pair (Ã, B̃) ∈ F q×q×F q×p such that V = KerRµ(Ã, B̃) =
KerV . But then there exists a rank q matrix P ∈ F k×q such that V =
PRµ(Ã, B̃). Since KerP = {0}, there exists an invertible matrix S ∈ F k×k

such that

SP =

(

I
0

)

.

Now define

A := S−1
(

Ã 0
0 0

)

S and B := S−1
(

B̃
0

)

.

It follows

Rµ(A,B) = S−1
(

Rµ(Ã, B̃)
0

)

= S−1SPRµ(Ã, B̃)

= V .
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Proposition 5.29. Let (A,B) ∈ F k×k×Fk×p, and set V := Rµ(A,B), K :=

A, L := −
(

Aµ1b1 . . . Aµpbp
)

and M := V B. Then v̇ = Kv + Ly +Mu is
a tracking observer for V x.

Proof. Calculate

V A−KV = Rµ(A,B)A− ARµ(A,B)

=
(

0 . . . 0 −Aµ1b1 . . . 0 . . . 0 −Aµpbp
)

= LC

and apply Theorem 3.4.

Proposition 5.30. Let V ∈ Fk×n and let v̇ = Kv + Ly +Mu be a tracking
observer for V x. Set

A := K and B := V















1
0...
0

...
1
0...
0




















µ1

...





µp

.

Then Rµ(A,B) = V , A = K, −
(

Aµ1b1 . . . Aµpbp
)

= L and V B = M . It

follows that V := KerV is (C,A)-invariant.

Proof. According to Theorem 3.4 it is M = V B and V A − KV = LC, i.e.
Kvi = vi+1, i = µ1+· · ·+µj−1+1, . . . , µ1+· · ·+µj−1, andKvµ1+···+µj = −lj,
where j = 1, . . . , p and vi, li denote the i-th column of V and L, respec-
tively. By induction this yields Aibj = K ivµ1+···+µj−1+1 = vµ1+···+µj−1+1+i,
i = 0, . . . , µj − 1 and Aµjbj = Kµjvµ1+···+µj−1+1 = −lj, where j = 1, . . . , p
and bj denotes the j-th column of B. V being (C,A)-invariant follows from
Proposition 5.1.

Let V ∈ Fk×n be such that V := KerV is (C,A)-invariant. Let

P id
k (V ) := {(A,B) ∈ F k×k ×Fk×p |Rµ(A,B) = V }

be the set of µ-representations of V and let

Obsk(V ) = {(K,L,M) ∈ Fk×(k+p+m) |V A−KV = LC,M = V B}
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be the set of all order k tracking observers for V x. By the previous proposi-
tions the map

ρV : P id
k (V ) −→ Obsk(V ) ,

(A,B) 7→ (K,L,M) = (A,−
(

Aµ1b1 . . . Aµpbp
)

, Rµ(A,B)B)

is a surjection. Since V = Rµ(A,B) defines B uniquely, ρV is also injective,
hence a bijection. An already well known (cf. Theorem 5.4) consequence of
this fact is that V has a unique representation V = Rµ(A,B) if and only if
V has full row rank k and V = KerV is tight (Corollary 3.29). If V has full
row rank k then the matrices A appearing in P id

k (V ) are nothing else but the
corestrictions (cf. Section 2.3.3) of A to V (Theorem 3.33). Hence the spectral
properties of V (e.g. being outer detectable or an observability subspace)
are reflected in P id

k (V ) in this case. The formulation of the corresponding
statements is left as an exercise to the reader.

The following theorem provides the link between the previous results and par-
tial realizations (cf. Section 5.6). It extends a result achieved by Fuhrmann
and Helmke [FH01, Theorem 5.5]. The proof uses the following lemma on
uniqueness of tracked functions.

Lemma 5.31. Let the system (5.9) be controllable. Consider a tracking
observer v̇ = Kv + Ly +Mu for the function Ux, where U ∈ F q×n. Then
UA−KU = LC and M = UB. If the observer tracks a second function Ũx,
where Ũ ∈ F q×n, i.e. if ŨA−KŨ = LC and M = ŨB, then U = Ũ .

Proof. The equalities UA − KU = LC and M = UB follow from Theo-
rem 3.4. If also ŨA − KŨ = LC and M = ŨB then UB = ŨB and
UAB = KUB + LCB = KŨB + LCB = ŨAB and by induction it follows
URn(A,B) = ŨRn(A,B). By controllability of (A,B) this implies U = Ũ .

If the system (5.9) is not controllable then tracked functions in general are
not unique as the following example shows.

Example 5.32. Let p = 2, µ1 = µ2 = 2,

A =








0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0







, B = 0 and C =

(

0 1 0 0
0 0 0 1

)

.

Let K = 0, L = 0 and M = 0, then U =
(

u1 u2 u3 u4
)

satisfies UA −
KU = LC and M = UB if and only if u2 = u4 = 0, while u1 and u3 are
arbitrary.
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Theorem 5.33. Let the system (5.9) be controllable. Let V ∈ F k×n, and let

Obsoutq (V ) := {(K,L,M,P ) ∈ F q×q ×F q×p ×F q×m ×Fk×q |

∃U ∈ F q×n UA−KU = LC,M = UB, V = PU}

be the set of order q tracking observers for V x with output (cf. Section 3.2.4).
Let

Pq(V ) = {(A,B,C) ∈ F q×q ×F q×p ×Fk×q |CRµ(A,B) = V }

be the set of partial realizations of V (respectively of the nice sequence (H (ν))
defined by V , cf. Section 5.6) of McMillan degree q. The map

ρV : Pq(V ) −→ Obsoutq (V ) ,

(A,B,C) 7→ (K,L,M,P ) = (A,−
(

Aµ1b1 . . . Aµpbp
)

, Rµ(A,B)B, C)

is a bijection. It restricts to a bijection from the set of McMillan degree q ob-
servable and stable partial realizations of V onto the set of order q observable
asymptotic output observers for V x without direct feedthrough.

Proof. Let (A,B,C) ∈ Pq(V ) then, according to the above considerations,
the (K,L,M)-part of ρV (A,B,C) forms a tracking observer for the function
Ux := Rµ(A,B)x. Hence ρV (A,B,C) ∈ Obsoutq (V ) and ρV is well defined.
Since ρU : P id

q (U) −→ Obsq(U) is surjective for every U ∈ F q×n for which
KerU is (C,A)-invariant (or, equivalently, for which there exists a tracking
observer for Ux), so is ρV . By Lemma 5.31 the (K,L,M)-part of ρV (A,B,C)
defines U uniquely, which is therefore equal to Rµ(A,B). The latter defines
B uniquely, and since K = A and P = C it follows that (A,B,C) is uniquely
defined by ρV (A,B,C), i.e. ρV is injective. The second statement follows
from Theorem 3.70.

Since minimal asymptotic output observers for V x are necessarily observable
(Proposition 3.69), the minimal order of an (observable) asymptotic output
observer without direct feedthrough for the function V x of the state of the
controllable system (5.9) is consequently equal to the minimal McMillan
degree of an observable stable partial realization of V . As has been pointed
out before, a formula for this minimal order (in the manner of Theorem 5.25)
is not yet available.

The next results are the counterparts of Proposition 5.28 and Proposition 5.29
for almost observability subspaces.
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Proposition 5.34. Let V ∈ Fk×n and let V := KerV be an almost ob-
servability subspace with respect to the pair (C,A). Then there exists a (not
necessarily controllable) pair (A,B) ∈ F k×k × Fk×p such that A is nilpotent

and V =
←−
R µ(A,B).

Proof. Let q := codimV , then q ≤ k. According to Proposition 5.8 there
exists a (µ-regular) pair (Ã, B̃) ∈ F q×q × F q×p such that Ã is nilpotent and

V = Ker
←−
R µ(Ã, B̃) = KerV . But then there exists a rank q matrix P ∈ F k×q

such that V = P
←−
R µ(Ã, B̃). Since KerP = {0}, there exists an invertible

matrix S ∈ Fk×k such that

SP =

(

I
0

)

.

Now define

A := S−1
(

Ã 0
0 0

)

S and B := S−1
(

B̃
0

)

.

It follows that A is nilpotent and

←−
R µ(A,B) = S−1

(←−
R µ(Ã, B̃)

0

)

= S−1SP
←−
R µ(Ã, B̃)

= V .

Proposition 5.35. Let (A,B) ∈ F k×k × Fk×p with A nilpotent, and set

V :=
←−
R µ(A,B), E := A, K := I, L := −B and M := EV B. Then

EV A−KV = LC and Ev̇ = Kv + Ly +Mu is a singular tracking observer
for V x (with E nilpotent and K = I).

Proof. Calculate

EV A−KV = A
←−
R µ(A,B)A−

←−
R µ(A,B)

=
(

0 . . . 0 −b1 . . . 0 . . . 0 −bp
)

= LC

and apply Theorem 3.13.

The following theorem now fills the gap left in the proof of Theorem 3.24. Re-
call that there was made no assumption on the pair (C,A) in the formulation
of that theorem.
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Theorem 5.36. Consider the system (3.1). Let V ∈ F k×n and let V :=
KerV be an almost observability subspace. Then there exists a singular track-
ing observer for V x with E nilpotent and K = I (cf. Section 3.2.1).

Proof. Consider the dual Kalman decomposition of the pair (C,A): There
exist invertible matrices T ∈ Fn×n and S ∈ Fp×p such that

C(1) := SCT−1 =

(

C11 0
0 0

)

and A(1) := TAT−1 =

(

A11 0
A21 A22

)

,

where A11 ∈ F
r×r, C11 ∈ F

q×r, (C11, A11) is observable and C11 has full row
rank q.

Let i ∈ N, J ∈ Fn×p and Ki ⊃ KerC. Then there exists a matrix Ki ∈ F
p×p

such that Ki = KerKiC. But then

x ∈ (A− JC)−i+1Ki ⇐⇒

KiC(A− JC)i−1x = 0⇐⇒

KiS
−1SCT−1T (A− JS−1SC)i−1T−1Tx = 0⇐⇒

(KiS
−1)SCT−1(TAT−1 − (TJS−1)SCT−1)i−1Tx = 0⇐⇒

Tx ∈ (A(1) − (TJS−1)C(1))−i+1Ker(KiS
−1)C(1)

by Proposition 2.33 implies that KerV T−1 is an almost observability sub-
space with respect to the pair (C (1), A(1)). Hence

KerV T−1 ⊃ N (C(1), A(1)) = Ker
(

I 0
)

and V (1) := V T−1 =
(

V1 0
)

, where V1 ∈ F
k×r.

Again let i ∈ N, J (1) ∈ Fn×p and K(1)
i = KerK

(1)
i C(1) ⊃ KerC(1). Then

x = ( x1x2 ) ∈ (A(1) − J (1)C(1))−i+1K(1)
i ⇐⇒

(Ki,1 Ki,2 )
(
C11 0
0 0

) ((
A11 0
A21 A22

)

−
(
J11 J12
J21 J22

) (
C11 0
0 0

))i−1
( x1x2 ) = 0⇐⇒

(Ki,1C11 0 )
(
A11−J11C11 0
A21−J21C11 A22

)i−1
( x1x2 ) = 0⇐⇒

Ki,1C11(A11 − J11C11)
i−1x1 = 0⇐⇒

x1 ∈ (A11 − J11C11)
−i+1KerKi,1C11

implies that KerV1 is an almost observability subspace with respect to the
pair (C11, A11).
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According to Proposition 2.44 there exist invertible matrices T1 ∈ F
r×r

and S1 ∈ F
q×q and a matrix J1 ∈ F

r×q such that the pair (C(2), A(2)) :=
(S1C11T

−1
1 , T1(A11 − J1C11)T

−1
1 ) is in dual Brunovsky form with observabil-

ity indices µ = (µ1, . . . , µq).

Once again let i ∈ N, J ∈ F r×q and Ki = KerKiC11 ⊃ KerC11. As before

x ∈ (A11 − JC11)
−i+1Ki ⇐⇒

T1x ∈ (A(2) − (T1(J − J1)S
−1
1 )C(2))−i+1Ker(KiS

−1
1 )C(2)

implies that KerV (2) := KerV1T
−1
1 is an almost observability subspace with

respect to the pair (C(2), A(2)).

By Proposition 5.34 and Proposition 5.35 there exist a nilpotent matrix E ∈
Fk×k and a matrix L1 ∈ F

k×q such that EV (2)A(2) − V (2) = L1C
(2). Setting

L :=
(

L1S1 + EV1J1 0
)

S ∈ Fk×p

yields

(EV A− V )T−1 = E(V T−1)(TAT−1)− V T−1

= E
(

V1 0
)
(

A11 0
A21 A22

)

−
(

V1 0
)

=
(

EV1A11 − V1 0
)

=
(

E(V1T
−1
1 )(T1(A11 − J1C11)T

−1
1 )T1 − (V1T

−1
1 )T1 0

)

+
(

EV1J1C11 0
)

=
(

(EV (2)A(2) − V (2))T1 + EV1J1C11 0
)

=
(

L1C
(2)T1 + EV1J1C11 0

)

=
(

(L1S1 + EV1J1)C11 0
)

=
(

(L1S1 + EV1J1) 0
)
(

C11 0
0 0

)

= (LS−1)(SCT−1)

= LCT−1 .

It follows that EV A−V = LC. SetM := EV B. According to Theorem 3.13
the system Ev̇ = Iv + Ly + Mu is a singular tracking observer for V x,
then.
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Remark 5.37. The above proof uses the fact that any almost observability
subspace contains the unobservable subspace (cf. Section 2.3). Since there is
no analogous result for (C,A)-invariant subspaces, the techniques used above
can not be applied to generalize Proposition 5.29 to general pairs (C,A).
That generalization has been proved in Section 3.2 by different methods,
though (Theorem 3.8).

The following result is the counterpart to Proposition 5.30 for almost observ-
ability subspaces.

Proposition 5.38. Let V ∈ Fk×n and let Ev̇ = v + Ly +Mu be a singular
tracking observer for V x with E nilpotent. Set

A := E and B := V















0...
0
1

...
0...
0
1




















µ1

...





µp

.

Then
←−
R µ(A,B) = V , A = E, −B = L and EV B = M . It follows that

V := KerV is an almost observability subspace with respect to the pair (C,A).

Proof. According to Theorem 3.13 it is M = EV B and EV A− V = LC, i.e.
vi = Evi+1, i = µ1+ · · ·+µj−1+1, . . . , µ1+ · · ·+µj−1, and vµ1+···+µj = −lj,
where j = 1, . . . , p and vi, li denote the i-th column of V and L, respectively.
By induction this yields bj = vµ1+···+µj = −lj and Aibj = Eivµ1+···+µj =
vµ1+···+µj−i, where i = 0, . . . , µj − 1, j = 1, . . . , p and bj denotes the j-th
column of B. V being an almost observability subspace with respect to the
pair (C,A) follows from Proposition 5.7.

Let V ∈ Fk×n be such that V := KerV is an almost observability subspace
with respect to the pair (C,A). Let

←−
P id

k (V ) := {(A,B) ∈ F k×k ×Fk×p |Ak = 0,
←−
R µ(A,B) = V }

be the set of reverse µ-representations of V and let

Obsnilk (V ) = {(E,K,L,M) ∈ F k×(k+k+p+m) |

Ek = 0, K = I, EV A−KV = LC,M = EV B}
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be the set of all order k singular tracking observers for V x with E nilpotent
and K = I. By the previous propositions the map

←−ρ V :
←−
P id

k (V ) −→ Obsnilk (V ) ,

(A,B) 7→ (E,K,L,M) = (A, I,−B,ARµ(A,B)B)

is a surjection. Obviously it is also injective, hence a bijection.

The next results are the counterparts to Propositions 5.28 and 5.29 (respec-
tively Propositions 5.34 and 5.35) for almost (C,A)-invariant subspaces.

Proposition 5.39. Let V ∈ Fk×n and let V := KerV be almost (C,A)-
invariant. Then there exists a not necessarily controllable but admissible (cf.
Section 4.2) triple (E,A,B) ∈ F k×k×Fk×k×Fk×p such that EA = AE and

V = Rµ(E,A,B) := ( Eµ1−1b1 Eµ1−2Ab1 ... EAµ1−2b1 Aµ1−1b1 ... Eµp−1bp ... Aµp−1bp ) ,

where bj, j = 1, . . . , p, denotes the j-th column of B.

Proof. Let q := codimV , then q ≤ k. According to Proposition 5.17 there ex-
ists a pair of matrix pairs (Ã1, B̃1) ∈ F

r×r×F r×p and (Ñ , B̃2) ∈ F
(q−r)×(q−r)×

F (q−r)×p with Ñ nilpotent such that V = KerRµ(Ã1, B̃1, Ñ , B̃2) = KerV and
rkRµ(Ã1, B̃1, Ñ , B̃2) = q. But then there exists a rank q matrix P ∈ F k×q

such that V = PRµ(Ã1, B̃1, Ñ , B̃2). Since KerP = {0}, there exists an
invertible matrix S ∈ Fk×k such that

SP =

(

I
0

)

.

Now define

E := S−1






Ĩ 0 0

0 Ñ 0
0 0 0




S, A := S−1






Ã1 0 0
0 I 0
0 0 0




S and B := S−1






B̃1

B̃2

0




 .

It follows

Rµ(E,A,B) = S−1







Rµ(Ã1, B̃1)
←−
R µ(Ñ , B̃2)

0







= S−1SPRµ(Ã1, B̃1, Ñ , B̃2)

= V .

Apparently, EA = AE holds and (E,A,B) is admissible.
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Proposition 5.40. Let (E,A,B) ∈ F k×k ×Fk×k ×Fk×p be admissible with

EA = AE. Set V := Rµ(E,A,B), K := A, L := −
(

Aµ1b1 . . . Aµpbp
)

and
M := EV B. Then Ev̇ = Kv + Ly +Mu is a singular tracking observer for
V x.

Proof. Calculate

EV A−KV = ERµ(E,A,B)A− ARµ(E,A,B)

=
(

0 . . . 0 −Aµ1b1 . . . 0 . . . 0 −Aµpbp
)

= LC

and apply Theorem 3.13.

The next proposition is the counterpart to Proposition 5.30 (respectively
Proposition 5.38) for almost (C,A)-invariant subpaces. The proof uses the
following result on the quasi Weierstraß form of a matrix pencil, which is due
to Helmke (private communication).

Theorem 5.41. Let (E,A) ∈ F k×k × Fk×k be admissible with EA = AE.
Then there exists an invertible matrix S ∈ F k×k such that

SES−1 =

(

E1 0
0 E2

)

and SAS−1 =

(

A1 0
0 A2

)

,

where E1 ∈ F
r×r and A2 ∈ F

(k−r)×(k−r) are invertible, E2 is nilpotent,
E1A1 = A1E1 and E2A2 = A2E2. The transformed pencil is said to be
in quasi Weierstraß form, then. If both (E,A) and (SES−1, SAS−1) are in
quasi Weierstraß form then

S =

(

S1 0
0 S2

)

.

Proof. Let S ∈ Fk×k be invertible and such that

SES−1 =

(

E1 0
0 E2

)

with E1 ∈ F
r×r invertible and E2 nilpotent (such an S exists by the spectral

decomposition theorem). Partition

SAS−1 =

(

A1 X
Y A2

)
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such that A1 ∈ F
r×r. Then the equality AE = EA implies SES−1SAS−1 =

SAS−1SES−1 and hence E1A1 = A1E1, E2A2 = A2E2, E1X = XE2 and
E2Y = Y E1.

Since E2 is nilpotent, there exists q ≥ 2 such that Eq
2 = 0. Let v ∈ Fk−r,

then E1XE
q−1
2 v = XE2E

q−1
2 v = XEq

2v = 0. Since E1 is invertible it follows
XEq−1

2 v = 0 and v being arbitrary yields XEq−1
2 = 0. But then E1XE

q−2
2 v =

XE2E
q−2
2 v = XEq−1

2 v = 0 yields XEq−2
2 v = 0 and hence XEq−2

2 = 0.
Iterating this argument finally yields X = 0, and Y = 0 follows along the
same lines.

Since (E,A) is admissible, there exist λ, µ ∈ C such that det(λE + µA) =
det(λE1+µA1) det(λE2+µA2) 6= 0 and hence det(λE2+µA2) 6= 0. Assume
that A2 is singular, i.e. KerA2 6= {0}. Since E2A2 = A2E2 it follows that
KerA2 is E2-invariant. Since E2 is nilpotent, so is E2|KerA2 . But then there
exists v ∈ KerA2 \ {0} such that E2v = 0. It follows that (λE2 + µA2)v =
0 and hence det(λE2 + µA2) = 0, a contradiction. Consequently, A2 is
invertible.

Let finally S ∈ Fk×k be invertible, and let

E =

(

E ′1 0
0 E ′2

)

and SES−1 =

(

E1 0
0 E2

)

be such that E1, E
′
1 are invertible and E2, E

′
2 are nilpotent. Partition

S =

(

S1 X
Y S2

)

,

then SE = (SES−1)S implies Y E ′1 = E2Y and XE ′2 = E1X. As before it
follows X = 0 and Y = 0.

Proposition 5.42. Let V ∈ Fk×n and let Ev̇ = Kv + Ly +Mu be a sin-
gular tracking observer for V x with EK = KE. Set A := K and B :=(

b1 . . . bp
)

, where

bj := S−1
(

E
−(µj−1)
1 0
0 0

)

Svµ1+···+µj−1+1 + S−1
(

0 0

0 A
−(µj−1)
2

)

Svµ1+···+µj

for j = 1, . . . , p. Here E1 and A2 are taken from any quasi Weierstraß form
of (E,A), and S is the corresponding transformation. vi denotes the i-th

column of V . Then Rµ(E,A,B) = V , A = K, −
(

Aµ1b1 . . . Aµpbp
)

= L

and EV B =M . It follows that V := KerV is almost (C,A)-invariant.
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5 Kernel representations

Proof. According to Theorem 3.13 it is M = EV B and EV A −KV = LC,
i.e. Avi = Kvi = Evi+1, i = µ1 + · · · + µj−1 + 1, . . . , µ1 + · · · + µj − 1, and
Avµ1+···+µj = −lj, where j = 1, . . . , p and li denotes the i-th column of L.
By induction this yields

Eµj−i−1Aibj = S−1
(

E
µj−i−1
1 Ai

1 0

0 E
µj−i−1
2 Ai

2

)

Sbj

= S−1
(

E−i1 A
i
1 0

0 0

)

Svµ1+···+µj−1+1+

S−1
(

0 0

0 E
µj−i−1
2 A

−(µj−i−1)
2

)

Svµ1+···+µj

= S−1
(

E−i1 E
i
1 0

0 0

)

Svµ1+···+µj−1+i+1+

S−1
(

0 0

0 A
−(µj−i−1)
2 A

µj−i−1
2

)

Svµj+···+µj−1+i+1

= vµj+···+µj−1+i+1

for i = 0, . . . , µj − 1 and Aµjbj = AE0Aµj−1bj = Avµ1+···+µj = −lj, where
j = 1, . . . , p.

Define B̃1 and B̃2 by
(

B̃1

B̃2

)

:= SB .

Set B1 :=
(

Eµ1−1
1 b̃11 . . . E

µp−1
1 b̃1p

)

and B2 :=
(

Aµ1−1
2 b̃21 . . . A

µp−1
2 b̃2p

)

,

where b̃ij, i = 1, 2 and j = 1, . . . , p, denotes the j-th column of B̃i. Then
V = KerV being almost (C,A)-invariant follows from

V = Rµ(E,A,B)

= S−1Rµ(SES
−1, SAS−1, SB)

= S−1
(

Rµ(E
−1
1 A1, B1)

←−
R µ(E2A

−1
2 , B2)

) (5.10)

and Proposition 5.13 (note that E2A
−1
2 is nilpotent).

Let V ∈ Fk×n be such that V := KerV is almost (C,A)-invariant. Let

P̂ id
k (V ) := {(E,A,B) ∈ F k×k ×Fk×k ×Fk×p |

(E,A,B) admissible, EA = AE,Rµ(E,A,B) = V }
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be the set of µ-representations of V and let

Obssing.k (V ) = {(E,K,L,M) ∈ F k×(k+k+p+m) | (E,K) admissible,

EK = KE,EV A−KV = LC,M = EV B}

be the set of all order k singular tracking observers for V x. By the previous
propositions the map

ρV : P̂ id
k (V ) −→ Obssing.k (V ) ,

(E,A,B) 7→ (E,K,L,M) =

(E,A,−
(

Aµ1b1 . . . Aµpbp
)

, ERµ(E,A,B)B)

is a surjection. Assume that ρV (E,A,B) = ρV (E
′, A′, B′). Then E = E ′,

A = A′ and V = Rµ(E,A,B) = Rµ(E,A,B
′). Choose an S which transforms

(E,A) to quasi Weierstraß form. Look at equation (5.10). Apparently, V
and S define B1 and B2 uniquely, i.e. B1 = B′1 and B2 = B′2. Since E1 and
A2 are invertible, it follows B̃1 = B̃′1 and B̃2 = B̃′2 and B = B′. But then ρV
is also injective, hence a bijection.

Remark 5.43. In the special case of system (5.9) the last three propositions
provide an alternative proof for Theorem 3.24, (1). The new proof clarifies
the dynamical meaning of the matrices appearing in the kernel representation
of an almost (C,A)-invariant subspace.
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Chapter 6

Image representations

In this chapter image representations (i.e. explicit bases arranged in a ma-
trix) for tight (C,A)-invariant subspaces are constructed, where (C,A) is a
given observable pair in dual Brunovsky form. The set of all codimension k
tight (C,A)-invariant subspaces is shown to be the union of smooth manifolds
(the Brunovsky strata) consisting of the subspaces with fixed restriction in-
dices. These strata are shown to be diffeomorphic to a quotient of a certain
set of block Toeplitz type matrices, which provide bases for the subspaces
under consideration. This result is due to Ferrer, F. Puerta and X. Puerta
[FPP98]. Then a slight variation of the method is applied to obtain another
block Toeplitz type description corresponding to Kronecker strata instead of
Brunovsky strata. The two results are combined to obtain a Bruhat type cell
decomposition of the Brunovsky strata.

6.1 Brunovsky and Kronecker strata

The results presented in this Section extend the work of Ferrer, F. Puerta
and X. Puerta [FPP98] on Brunovsky strata of (C,A)-invariant subspaces.

Let (C,A) be an observable pair in dual Brunovsky form with observability
indices µ = (µ1, . . . , µp) (cf. Section 2.3.2). The following lemma is due to
Fuhrmann and Helmke [FH00].

Lemma 6.1. A codimension (C,A)-invariant subspace V is tight if and only
if rk C̄ = p for any (and thus for all) restriction (C̄, Ā) of (C,A) to V, i.e.
if and only if the smallest restriction index λp satisfies λp ≥ 1.
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6 Image representations

Proof. Let V be tight. According to Proposition 2.42 V + KerC = Fn, i.e.
for all x ∈ Fn there exist u ∈ V and z ∈ KerC with x = u + z. But then
for all x ∈ Fn there exists u ∈ V with Cx = Cu. Since C is surjective this
implies C|V being surjective. Hence C̄ has full rank p.

Conversely, if C̄ has full rank p then C|V is surjective and for all y ∈ F p

there exists v ∈ V with y = Cv. This implies that for all x ∈ Fn there exists
v ∈ V with Cx = Cv, but then x = v + (x − v) ∈ V + KerC. It follows
Fn ⊂ V + KerC and hence Fn = V + KerC. According to Proposition 2.42
V is tight, then.

The following results are specializations of the results of Ferrer, F. Puerta
and X. Puerta [FPP98] on (C,A)-invariant subspaces to the tight case. The
presentation follows mainly Fuhrmann and Helmke [FH00].

Theorem 6.2. V ⊂ Fn is tight (C,A)-invariant of codimension k if and
only if there exists an observable pair (C̄, Ā) ∈ Fp×(n−k) × F (n−k)×(n−k) of
matrices in dual Brunovsky form with rk C̄ = p and observability indices
λ = (λ1, . . . , λp) and a full rank matrix Z ∈ Fn×(n−k) with V = ImZ, such
that

(1) AZ = ZĀ+ AZC̄>C̄

(2) CZ = CZC̄>C̄

(3) CZC̄> ∈ Fp×p is invertible.

Then (C̄, Ā) is a matrix representation of a restriction of (C,A) to V with
restriction indices λ = (λ1, . . . , λp). It is λi ≤ µi for all i = 1, . . . , p.

Proof. Let V be tight of codimension k. According to Proposition 2.52 there
exists an output injection matrix J and an observable matrix representation
(C̄, Ā) ∈ Fp×(n−k) × F (n−k)×(n−k) of the resulting restriction of (C,A) to
V which is in dual Brunovsky form. The matrix C̄ consisting of p rows
follows from Lemma 6.1. Let Z, S be the matrix representations of the
inclusions i : V −→ Fn and i : C(V) −→ Fp with respect to the associated
bases, respectively. According to Lemma 6.1 it is rk C̄ = rkS = p. From
the defining diagram (see Section 2.3.3) it follows (A − JC)Z = ZĀ and
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6.1 Brunovsky and Kronecker strata

CZ = SC̄. Note that C̄C̄> = I since C̄ is in dual Brunovsky form. But then
CZC̄> = S has rank p and (3) follows. Furthermore it is

AZ = ZĀ+ JCZ

= ZĀ+ JSC̄

= ZĀ+ JCZC̄>C̄

= ZĀ+ JCZC̄>C̄ − AZC̄>C̄ + AZC̄>C̄

= ZĀ− (A− JC)ZC̄>C̄ + AZC̄>C̄

= ZĀ− ZĀC̄>C̄ + AZC̄>C̄

= ZĀ+ AZC̄>C̄ ,

where the last equation follows from ĀC̄> = 0 (dual Brunovsky form). This
yields (1). Equation (2) follows from CZ = SC̄ = CZC̄>C̄. Now let λ =
(λ1, . . . , λp) be the observability indices of (C̄, Ā). By definition these are
the restriction indices of (C,A) with respect to V . From Proposition 2.55 it
follows λi ≤ µi for all i = 1, . . . , p.

Conversely let (C̄, Ā) and Z be given as stated. Let V = ImZ ⊂ Fn. Using
(1)-(3) it follows

AZ = ZĀ+ AZC̄>C̄

= ZĀ+ AZC̄>(CZC̄>)−1CZ

= ZĀ+ JCZ ,

where J := AZC̄>(CZC̄>)−1. It follows (A−JC)Z = ZĀ, i.e. (A−JC)V ⊂ V
and V is (C,A)-invariant. Setting S := CZC̄>, equation (2) yields CZ = SC̄.
Together this means that (C̄, Ā) is a matrix representation of a restric-
tion of (C,A) to the (C,A)-invariant subspace V with restriction indices
λ = (λ1, . . . , λp) (cf. Section 2.3.3). It follows from Lemma 6.1 that V is
tight. Again, λi ≤ µi for all i = 1, . . . , p follows from Proposition 2.55.

Theorem 6.2 characterizes the image representations (i.e. the bases) of tight
(C,A)-invariant subspaces. The next task is to derive a uniqueness result for
this kind of representation. Given a fixed tight subspace V ⊂ Fn, the pair
(C̄, Ā) appearing in the characterizing equations is uniquely determined by
V . In fact, it is the restriction of (C,A) to V , which is in dual Brunovsky
canonical form (cf. Section 2.3.3). Concerning the matrix Z there is the
following result.
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6 Image representations

Definition 6.3. Given (C,A) and (C̄, Ā) with rk C̄ = p in dual Brunovsky
form, i.e. given µ and λ, the set of all full rank matrices Z ∈ Fn×(n−k)

satisfying equations (1)-(3) of Theorem 6.2 is denoted by M(λ, µ). Set
Γ(λ) :=M(λ, λ).

Theorem 6.4. Let Z1, Z2 ∈ M(λ, µ). Then ImZ1 = ImZ2 if and only if
there exists S ∈ Γ(λ) such that Z2 = Z1S

−1. S is uniquely determined. It is

Γ(λ) = {S ∈ GL(Fn−k) | (WC̄S−1, S(Ā− LC̄)S−1) = (C̄, Ā)

for suitable L ∈ F (n−k)×p,W ∈ Fp×p,

W invertible}

and Γ(λ) is a subgroup of GL(Fn−k) that acts freely on M(λ, µ) via Z 7→
ZS−1.

Proof. Note that any S ∈ Γ(λ) ⊂ F (n−k)×(n−k) has full rank and is hence
invertible. Calculating

(C̄S−1C̄>)(C̄SC̄>) = (C̄S−1C̄>C̄)(SC̄>) = C̄S−1SC̄> = C̄C̄> = I

shows that the inverse of C̄SC̄> is C̄S−1C̄>. It is easily checked that Γ(λ)
is indeed a subgroup of GL(Fn−k): Let S1, S2 ∈ Γ(λ). Then

C̄S1S2 = C̄S1C̄
>C̄S2

= C̄S1C̄
>C̄S2C̄

>C̄

= C̄S1S2C̄
>C̄

and

ĀS1S2 = S1ĀS2 + ĀS1C̄
>C̄S2

= S1S2Ā+ S1ĀS2C̄
>C̄ + ĀS1C̄

>C̄S2

= S1S2Ā+ ĀS1S2C̄
>C̄ − ĀS1C̄

>C̄S2C̄
>C̄ + ĀS1C̄

>C̄S2

= S1S2Ā+ ĀS1S2C̄
>C̄ ,

where the last equality follows from C̄S2C̄
>C̄ = C̄S2. Furthermore it is

C̄S1S2C̄
> = C̄S1C̄

>C̄S2C̄
> and hence is invertible as a product of invertible

matrices. It follows S1S2 ∈ Γ(λ). Next, let S ∈ Γ(λ). Then C̄S = C̄SC̄>C̄
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6.1 Brunovsky and Kronecker strata

implies C̄ = (C̄SC̄>)−1C̄S = C̄S−1C̄>C̄S and C̄S−1 = C̄S−1C̄>C̄. Multi-
plying SĀ = ĀS − ĀSC̄>C̄ by S−1 on both sides yields

ĀS−1 = S−1Ā− S−1ĀSC̄>C̄S−1

= S−1Ā− S−1ĀSC̄>C̄S−1C̄>C̄

= S−1Ā− S−1(ĀS − SĀ)S−1C̄>C̄

= S−1Ā+ ĀS−1C̄>C̄ − S−1ĀC̄>C̄

= S−1Ā+ ĀS−1C̄>C̄ ,

where the last equality follows from ĀC̄> = 0. Furthermore C̄S−1C̄> is the
inverse of C̄SC̄> hence itself invertible. It follows S−1 ∈ Γ(λ) and Γ(λ) is a
subgroup of GL(Fn−k).

Now let Z1, Z2 ∈ M(λ, µ). If Z2 = Z1S
−1 for any S ∈ Γ(λ) then ImZ1 =

ImZ2 is clear. Conversely, from ImZ1 = ImZ2 it follows Z2 = Z1S
−1 for

a suitable S ∈ GL(Fn−k). Since Z1 and Z2 have full rank, respectively, S
is uniquely determined. Since Z1, Z2 ∈ M(λ, µ) it follows CZ1S

−1 = CZ2 =
CZ2C̄

>C̄ = CZ1S
−1C̄>C̄ = CZ1C̄

>C̄S−1C̄>C̄ and CZ1S
−1 = CZ1C̄

>C̄S−1.
Since CZ1C̄

> has full rank these two equations imply C̄S−1 = C̄S−1C̄>C̄.
Furthermore

AZ1S
−1 = AZ2

= Z2Ā+ AZ2C̄
tC̄

= Z1S
−1Ā+ AZ1S

−1C̄>C̄

= Z1S
−1Ā+ Z1ĀS

−1C̄>C̄ + AZ1C̄
>C̄S−1C̄>C̄

= Z1S
−1Ā+ Z1ĀS

−1C̄>C̄ + AZ1C̄
>C̄S−1

and AZ1S
−1 = Z1ĀS

−1+AZ1C̄
>C̄S−1. Using that Z1 has full rank these two

equations imply ĀS−1 = S−1Ā + ĀS−1C̄>C̄. Finally, (C̄S−1C̄>)(C̄SC̄>) =
(C̄S−1C̄>C̄)(SC̄>) = C̄S−1SC̄> = C̄C̄> = I yields that C̄S−1C̄> is invert-
ible. It follows S−1 ∈ Γ(λ) and since Γ(λ) is a subgroup of GL(Fn−k) this
yields S ∈ Γ(λ).

Since any Z ∈ M(λ, µ) has full rank, ZS−1 = Z for S ∈ Γ(λ) implies S = I
and hence Γ(λ) acts freely on M(λ, µ).

If S ∈ Γ(λ) then Theorem 6.2 yields that (C̄, Ā) is a matrix representation
of a restriction of (C̄, Ā) to V = ImS. By the defining diagram (cf. Sec-
tion 2.3.3) this means that there exist a matrix L ∈ F (n−k)×p and a matrix
W ∈ Fp×p of full rank such that S−1(Ā − LC̄)S = Ā and WC̄S = C̄. But
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6 Image representations

then W−1C̄S−1 = C̄ and S(Ā− (−S−1LW−1)C̄)S−1 = Ā and S is contained
in the set stated in the theorem.

Conversely, let S ∈ GL(Fn−k) and let here exist matrices L ∈ F (n−k)×p and
W ∈ Fp×p, W of full rank, such that S(Ā− LC̄)S−1 = Ā and WC̄S−1 = C̄.
Then C̄S−1C̄> = W−1C̄C̄> = W−1 implies that C̄S−1C̄> is invertible and
that C̄S−1C̄>C̄ = W−1C̄ = C̄S−1. Furthermore,

ĀS−1 = S−1Ā+ LC̄S−1

= S−1Ā+ LC̄S−1C̄>C̄

= S−1Ā+ LC̄S−1C̄>C̄ − ĀS−1C̄>C̄ + ĀS−1C̄>C̄

= S−1Ā− (Ā− LC̄)S−1C̄>C̄ + ĀS−1C̄>C̄

= S−1Ā− S−1ĀC̄>C̄ + ĀS−1C̄>C̄

= S−1Ā+ ĀS−1C̄>C̄ ,

and hence S−1 ∈ Γ(λ). Since Γ(λ) is a subgroup of GL(Fn−k) this yields
S ∈ Γ(λ).

Theorem 6.4 shows that Γ(λ) measures the degree of uniqueness of image
representations of tight (C,A)-invariant subspaces. The structure of Γ(λ)
(being the state space similarity transformations occuring in the stabilizer
subgroup of output injection transformations, cf. Section 2.3.2) is well known
and has been determined e.g. by Münzner and Prätzel-Wolters [MPW78] or
by Fuhrmann and Willems [FW79]. The description of Γ(λ) in terms of
equations (1)-(3) in Theorem 6.2 is due to Ferrer, F. Puerta and X. Puerta
[FPP98].

The characterization of image representations (i.e. of the bases) of tight
(C,A)-invariant subspaces in terms of equations (1)-(3) of Theorem 6.2 al-
lows to specify the structure of these bases explicitely. This is done by
solving the equations (1) and (2) for Z. The details are carried out in the
paper by Ferrer, F. Puerta and X. Puerta [FPP98]. The result is the fol-
lowing description of block Toeplitz type. Of course, the same technique
applies to Γ(λ) =M(λ, λ), resulting in a description of the state space simi-
larity transformations occuring in the stabilizer subgroup of output injection
transformations. In a recent preprint F. Puerta, X. Puerta and I. Zaballa
[PPZ00] use this description to construct overlapping coordinate charts for
the manifold M(λ, µ)/Γ(λ) via parameter elimination.
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6.1 Brunovsky and Kronecker strata

Theorem 6.5. V is tight (C,A)-invariant of codimension k with restriction
indices λ if and only if V = ImZ with

Z =







Z11 . . . Z1p
...

...
Zp1 . . . Zpp






,

where each block Zij ∈ F
µi×λj , i, j = 1, . . . , p, is of the form

Zij =

























zij1 0 ... 0

zij2
... ...

...
...

... ... 0

zij
µi−λj

... zij1

zij
µi−λj+1

... zij2

0
... ... ......
... ... zij

µi−λj

0 ... 0 zij
µi−λj+1



















, λj ≤ µi

(
0 ... 0...

...
0 ... 0

)

, λj > µi

and CZC̄> (i.e. the matrix consisting of the lower right corner entries of each
block) is invertible. M(λ, µ) consists exactly of all matrices of this structure.

Note that CZC̄> being invertible implies λi ≤ µi, i = 1, . . . , p. The following
theorem exploits the results reached so far.

Theorem 6.6. Let Tk(λ, µ) ⊂ Tk(C,A) denote the set of codimension k
tight subspaces with restriction indices λ (Brunovsky stratum). Tk(λ, µ) is
nonempty if and only if λi ≤ µi, i = 1, . . . , p. Then Tk(λ, µ) is a smooth sub-
manifold of Gn−k(F

n) which is diffeomorphic to the orbit spaceM(λ, µ)/Γ(λ)
via Z · Γ(λ) 7→ ImZ.

Proof. Tk(λ, µ) being nonempty if and only if λi ≤ µi, i = 1, . . . , p, follows
from Theorem 6.5. The set Tk(λ, µ) being a smooth manifold diffeomorphic
to M(λ, µ)/Γ(λ) via Z · Γ(λ) 7→ ImZ is an immediate consequence of The-
orem 6.2 and Theorem 6.4 (cf. Appendix A for the notion of orbit space).
Tk(λ, µ) being a submanifold of Gn−k(F

n) follows from a local section argu-
ment which is carried out in Ferrer, F. Puerta and X. Puerta [FPP00].
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6 Image representations

A slight modification of the above arguments leads to the following new
results. See Section 2.3.2 for an explanation of the dual Kronecker canonical
form.

Theorem 6.7. V ⊂ Fn is tight (C,A)-invariant of codimension k if and
only if there exists an observable pair (C̄, Ā) ∈ Fp×(n−k) × F (n−k)×(n−k) of
matrices in dual Kronecker form with rk C̄ = p and Kronecker indices K =
(K1, . . . , Kp) and a full rank matrix Z ∈ Fn×(n−k) with V = ImZ, such that

(1) AZ = ZĀ+ AZC̄>C̄

(2) CZ = CZC̄>C̄

(3) CZC̄> ∈ Fp×p is unipotent lower triangular.

Then (C̄, Ā) is a restriction of (C,A) to V with restriction indices λ =
(λ1, . . . , λp) = (Kπ−1(1), . . . , Kπ−1(p)), where π

−1 ∈ S(p) is a permutation that
orders the Ki, i = 1, . . . , p, decreasingly. It is λi ≤ µi for all i = 1, . . . , p.

Proof. Let V be tight of codimension k. Let the observable pair (C̄0, Ā0) ∈
Fp×(n−k) × F (n−k)×(n−k) be any matrix representation of any restriction of
(C,A) to V . Let Z0, S0 be the matrix representations of the inclusions
i : V −→ Fn and i : C(V) −→ Fp with respect to the associated bases,
respectively. According to Lemma 6.1 it is rk C̄0 = rkS0 = p. According to
Proposition 2.54 the pair (C̄1, Ā1) = (S0C̄0, Ā0) is another matrix representa-
tion of a restriction of (C,A) to V . Z1 := Z0 and S1 := I are the matrix rep-
resentations of the inclusions i : V −→ Fn and i : C(V) −→ Fp with respect
to the (new) associated bases, respectively. According to Propositions 2.46
and 2.54 there are matrices J̄ ∈ F (n−k)×p, T ∈ GL(Fn−k) and U ∈ Fp×p

unipotent lower triangular such that (C̄, Ā) = (UC̄1T
−1, T (Ā1 − J̄C̄1)T

−1)
is a matrix representation of a restriction of (C,A) to V which is in dual
Kronecker canonical form. Z := Z1T

−1 and S := U−1 are the matrix repre-
sentations of the inclusions i : V −→ Fn and i : C(V) −→ Fp with respect
to the (new) associated bases, respectively. Note that S is unipotent lower
triangular. Note further that C̄C̄> = I and ĀC̄> = 0 are also valid for a pair
in dual Kronecker form. Then (1)-(3) follow as in the proof of Theorem 6.2.
Let K = (K1, . . . , Kp) be the Kronecker indices of (C̄, Ā). According to
Proposition 2.47 λ = (λ1, . . . , λp) = (Kπ−1(1), . . . , Kπ−1(p)), where π

−1 ∈ S(p)
is a permutation that orders the Ki, i = 1, . . . , p, decreasingly, are the ob-
servability indices of (C̄, Ā). By definition these are the restriction indices of
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6.1 Brunovsky and Kronecker strata

(C,A) with respect to V . λi ≤ µi for all i = 1, . . . , p follows from Proposition
2.55.

Conversely let (C̄, Ā) and Z be given as stated. Let V = ImZ ⊂ Fn. It fol-
lows as in the proof of Theorem 6.2 that (C̄, Ā) is a matrix representation of a
restriction of (C,A) to the (C,A)-invariant subspace V with restriction indices
λ = (λ1, . . . , λp) = (Kπ−1(1), . . . , Kπ−1(p)), where π

−1 ∈ S(p) is a permuta-
tion that orders the Ki, i = 1, . . . , p, decreasingly (cf. Proposition 2.47 and
Section 2.3.3). Again, λi ≤ µi for all i = 1, . . . , p follows from Proposition
2.55.

Again the pair (C̄, Ā) appearing in the characterizing equations is uniquely
determined by V ⊂ Fn as the following proposition shows.

Definition 6.8. Given (C,A) and (C̄, Ā) with rk C̄ = p, i.e. given µ and K,
the set of all full rank matrices Z ∈ Fn×(n−k) satisfying equations (1)-(3) of
Theorem 6.7 is denoted by M(K,µ). Set Γ(K) :=M(K,K).

Proposition 6.9. Let Z ∈ M(K,µ) and Z ′ ∈ M(K ′, µ) with V := ImZ =
ImZ ′. Then K = K ′.

Proof. Since ImZ = ImZ ′ there exists S ∈ GL(Fn−k) such that Z ′ =
ZS−1. From CZ ′C̄ ′>C̄ ′ = CZ ′ and CZC̄>C̄ = CZ it follows (CZ ′C̄ ′>)C̄ ′ =
CZ ′ = CZS−1 = (CZC̄>)C̄S−1 and hence C̄ = U−1C̄ ′S, where U−1 :=
(CZC̄>)−1(CZ ′C̄ ′>) is unipotent lower triangular.

Now AZ = ZĀ + AZC̄>C̄ implies AZ ′ = AZS−1 = ZĀS−1 + AZC̄>C̄S−1.
On the other hand

AZ ′ = Z ′Ā′ + AZ ′C̄ ′>C̄ ′

= ZS−1Ā′ + AZS−1C̄ ′>C̄ ′

= ZS−1Ā′ + ZĀS−1C̄ ′>C̄ ′ + AZC̄>C̄S−1C̄ ′>C̄ ′ .

But then

AZC̄>C̄S−1C̄ ′>C̄ ′ = AZC̄>U−1C̄ ′C̄ ′>C̄ ′

= AZC̄>U−1C̄ ′

= AZC̄>C̄S−1

implies ZĀS−1 = ZS−1Ā′+ZĀS−1C̄ ′>C̄ ′ and hence ZĀ = ZS−1(Ā′−JC̄ ′)S,
where J := −SĀS−1C̄ ′>. Since Z has full rank this implies Ā = S−1(Ā′ −
JC̄ ′)S.
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Together it follows that (C̄, Ā) and (C̄ ′, Ā′) are restricted output injection
equivalent. Since both pairs are in dual Kronecker canonical form this implies
(C̄, Ā) = (C̄ ′, Ā′) and hence K = K ′.

As a consequence of Proposition 6.9 it is possible to define the Kronecker
indices of a tight subspace V ⊂ Fn to be the Kronecker indices of the pair
(C̄, Ā) appearing in equations (1)-(3) of Theorem 6.7. Concerning the matrix
Z there is the following result.

Theorem 6.10. Let Z1, Z2 ∈ M(K,µ). Then ImZ1 = ImZ2 if and only if
there exists S ∈ Γ(K) such that Z2 = Z1S

−1. S is uniquely determined. It is

Γ(K) = {S ∈ GL(Fn−k) | (UC̄S−1, S(Ā− LC̄)S−1) = (C̄, Ā)

for suitable L ∈ F (n−k)×p, U ∈ Fp×p,

U unipotent lower triangular}

and Γ(K) is a subgroup of GL(Fn−k) that acts freely on M(K,µ) via Z 7→
ZS−1.

Proof. Γ(K) being a subgroup of GL(Fn−k) follows as in the proof of The-
orem 6.4 (use the fact that the unipotent lower triangular matrices form a
group).

Now let Z1, Z2 ∈ M(K,µ). If Z2 = Z1S
−1 for any S ∈ Γ(K) then ImZ1 =

ImZ2 is clear. Conversely, from ImZ1 = ImZ2 it follows as in the proof of
Theorem 6.4 that Z2 = Z1S

−1 for a uniquely defined S−1 ∈ GL(Fn−k) which
satisfies equations (1) and (2) of Theorem 6.7. Since CZ1C̄

> and CZ2C̄
> =

CZ1S
−1C̄> are both unipotent lower triangular, from CZ1 = CZ1C̄

>C̄ and
hence CZ1S

−1C̄> = (CZ1C̄
>)(C̄S−1C̄>) it follows that C̄S−1C̄> is unipo-

tent lower triangular. Hence S−1 ∈ Γ(K) and since Γ(K) is a subgroup of
GL(Fn−k) this yields S ∈ Γ(K).

Since any Z ∈ M(K,µ) has full rank, ZS−1 = Z for S ∈ Γ(K) implies
S = I and hence Γ(K) acts freely onM(K,µ). The characterization of Γ(K)
stated in the Theorem follows as in the proof of Theorem 6.4 (use the identity
C̄SC̄> = U).

Since the block Toeplitz type structure of the matrices in M(λ, µ) already
follows from equations (1) and (2) of Theorem 6.2 (which are the same as
equations (1) and (2) of Theorem 6.7), there is the following analogous de-
scription of matrices in M(K,µ). The condition Ki ≤ µi for all i = 1, . . . , p
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follows directly from the structure of the matrices and from the requirement
that CZC̄> (i.e. the matrix consisting of the lower right corner entries of
each block) has to be unipotent. Note again that this description covers also
Γ(K) =M(K,K).

Theorem 6.11. V is tight (C,A)-invariant of codimension k with Kronecker
indices K if and only if V = ImZ with

Z =







Z11 . . . Z1p
...

...
Zp1 . . . Zpp






,

where each block Zij ∈ F
µi×Kj , i, j = 1, . . . , p, is of the form

Zij =

























zij1 0 ... 0

zij2
... ...

...
...

... ... 0

zij
µi−Kj

... zij1

zij
µi−Kj+1

... zij2

0
... ... ......
... ... zij

µi−Kj

0 ... 0 zij
µi−Kj+1



















, Kj ≤ µi

(
0 ... 0...

...
0 ... 0

)

, Kj > µi

and CZC̄> (i.e. the matrix consisting of the lower right corner entries of
each block) is unipotent lower triangular. Furthermore it is Ki ≤ µi for all
i = 1, . . . , p. M(K,µ) consists exactly of all matrices of this structure.

As before, the results reached so far yield the following manifold structure.

Theorem 6.12. Let Tk(K,µ) ⊂ Tk(C,A) denote the set of codimension k
tight subspaces with Kronecker indices K (Kronecker stratum). Tk(K,µ) is
nonempty if and only if Ki ≤ µi and λi ≤ µi, i = 1, . . . , p. Here λi = Kπ−1(i),
i = 1, . . . , p, as in Theorem 6.7. Then Tk(K,µ) is a smooth submanifold
of Gn−k(F

n) which is diffeomorphic to the orbit space M(K,µ)/Γ(K) via
Z · Γ(K) 7→ ImZ.

The preceding results are used in Section 6.3 to obtain a Bruhat type cell
decomposition of Tk(λ, µ). The order presented in the following section will
be the adherence order of this decomposition.
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6.2 Orders on combinations

In this section the relation between the Kronecker order, the Bruhat order
and the dominance order on a subset of the set of combinations Kn,m is
explored.

Let
Kn,m = {(K1, . . . , Km) ∈ Nm |K1 + · · ·+Km = n}

be the set of all combinations of m natural numbers with sum n. To each
element K = (K1, . . . , Km) ∈ Kn,m one associates the set

YK = {(i, j) ∈ N2 | 1 ≤ j ≤ m and 1 ≤ i ≤ Kj} ,

which can be visualized by a Young diagram as shown in Figure 6.1

(2, 1, 3) (1, 2, 3) (2, 2, 2)

(2, 1)

(1, 1) (1, 2)

(3, 3)

(2, 3)

(1, 3) (1, 1)

(2, 2)

(1, 2)

(3, 3)

(2, 3)

(1, 3)

(2, 1)

(1, 1)

(2, 2)

(1, 2)

(2, 3)

(1, 3)

Figure 6.1: Young diagrams visualizing combinations

Since K1 + · · ·+Km = n holds, YK consists of exactly n pairs, say (i1, j1) <
· · · < (in, jn), where < denotes the lexicographic order on N2, i.e.

(i1, j1) ≤ (i2, j2)⇐⇒







i1 < i2 or

i1 = i2 and j1 ≤ j2
.

Let
p(K) = ((i1, j1), . . . , (in, jn))

be the position of K, e.g. p(K) = ((1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 3)) for
K = (2, 1, 3) (see Figure 6.1). The lexicographic order on N2 induces the
following product order on the set of all positions of combinations:

p(L) ≤Lex p(K)⇐⇒ (i′α, j
′
α) ≤ (iα, jα) , α = 1, . . . , n ,

where p(L) = ((i′1, j
′
1), . . . , (i

′
n, j
′
n)).
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6.2 Orders on combinations

Definition 6.13. The Kronecker order on Kn,m is the partial order defined
by

K ≤Kro L⇐⇒ p(L) ≤Lex p(K)

for all K,L ∈ Kn,m.

In [Hel82] the covers of this partial order are characterized (see also [Hel85]).
See e.g. the textbook by Aigner [Aig79] for an explanation of the concept of
covers.

Definition 6.14. Let 1 ≤ i < j ≤ m. The transposition K̄ = TijK ∈ Kn,m

of the combination K ∈ Kn,m is obtained in the following way:

(1) If Ki < Kj then

K̄i = Kj ,

K̄j = Ki ,

K̄α = Kα , α 6∈ {i, j} .

(2) If Ki ∈ {Kj, Kj + 1} then K̄ = K.

(3) If Ki > Kj + 1 then

K̄i = Kj + 1 ,

K̄j = Ki − 1 ,

K̄α = Kα , α 6∈ {i, j} .

It can be shown, that the covers of a combinationK relative to the Kronecker
order are the transpositions TijK which are minimal in a certain sense (see
the above references for details). The exact characterization of covers is not
needed here, but all covers being transpositions yields the following important
property of the Kronecker order on Kn,m.

Proposition 6.15. Let K,L ∈ Kn,m. If K ≤Kro L then there exists a
sequence (Tiαjα)

l
α=1 of transpositions such that L = Tiljl . . . Ti1j1K.

Now fix an element κ = (κ1, . . . , κm) ∈ Kn,m with κ1 ≥ · · · ≥ κm. The subset
of Kn,m under consideration is the S(m) orbit

S(m) · κ = {(κπ−1(1), . . . , κπ−1(m)) |π ∈ S(m)}
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of κ in Kn,m. To get a non redundant description of S(m) ·κ, permutations π
and π′ of κ leading to the same K must be identified. Usually this is done in
the following way (cf. Hiller [Hil82]). Let κ∗i := #{j ∈ {1, . . . ,m} |κj ≥ i},
i = 1, . . . , κ1, be the conjugate indices of κ. Then m = κ∗1 ≥ · · · ≥ κ∗κ1 ≥ 1.
Consider the subgroup Sκ(m) of S(m) generated by the set {(i, i + 1) | 1 ≤
i < m, i 6∈ {κ∗1, . . . , κ

∗
κ1
}} consisting of elementary transpositions. Then

π ·κ = π′ ·κ if and only if there exists τ ∈ Sκ(m) such that π′ = π ◦ τ . Hence
the coset space S(m)/Sκ(m) is the right space to work with.

Now consider the length function l(π) =
∑m−1

j=1 #{i > j |π(i) < π(j)} for
π ∈ S(m). It is well known, that each coset π ◦Sκ(m), π ∈ S(m), contains a
unique element of minimal length [Hil82, Corollary I.5.4]. Let Sκ(m) denote
the set of all these minimal length coset representatives. Any π ∈ S(m)
has a unique decomposition π = σ ◦ τ with σ ∈ Sκ(m) and τ ∈ Sκ(m).
The set Sκ(m) is clearly isomorphic to the coset space S(m)/Sκ(m), hence
S(m) ·κ = Sκ(m) ·κ and the latter is the required non redundant description.

The Bruhat order on S(m) (see e.g. Deodhar [Deo77] for various character-
izations) induces an order on S(m) · κ = Sκ(m) · κ via

π · κ ≤Bru π
′ · κ ⇐⇒ ∃τ,τ ′∈Sκ(m) π ◦ τ ≤ π′ ◦ τ ′ .

According to the previous considerations this is well defined. There is the
following strong relation between the Kronecker order and the Bruhat order
on S(m) · κ.

Theorem 6.16. The Kronecker order on Kn,m restricts to the reverse Bruhat
order on S(m) · κ, i.e.

K ≤Kro L⇐⇒ L ≤Bru K

for all K,L ∈ S(m) · κ.

The first step in the proof of Theorem 6.16 is to refine Proposition 6.15. This
is done in Proposition 6.19 using the following lemmas.

Lemma 6.17. A sequence of transpositions containing a transposition of
type (3) must leave S(m) · κ.

Proof. For a combination K ∈ Kn,m let

rν(K) = #{α ∈ {1, . . . ,m} |Kα ≥ ν} , ν ∈ N
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6.2 Orders on combinations

be the conjugate partition (# means cardinality). Observe that K ∈ S(m) ·κ
if and only if rν(K) = rν(κ) for all ν ∈ N and rν(K) = 0 for ν > κ1.
Transpositions of type (1) and (2) leave the conjugate indices invariant hence
stay on the same S(m) orbit. A transposition Tij of type (3) has the following
effect on the conjugate indices: In the case Ki > Kj+2 the conjugate indices
of K̄ = TijK are

rKj
(K̄) = rKj

(K)− 1

rKj+1(K̄) = rKj+1(K) + 1

rKi−1(K̄) = rKi−1(K) + 1

rKi
(K̄) = rKi

(K)− 1

rν(K̄) = rν(K) , ν 6∈ {Kj, Kj + 1, Ki − 1, Ki} ,

in the case Ki = Kj + 2 they are

rKj
(K̄) = rKj

(K)− 1

rKj+1(K̄) = rKj+1(K) + 2

rKi
(K̄) = rKi

(K)− 1

rν(K̄) = rν(K) , ν 6∈ {Kj, Kj + 1, Ki} .

Nevertheless, the conjugate indices are decreased in the lexicographic order
hence K̄ andK do not lie on the same S(m) orbit. Furthermore a sequence of
transpositions containing any positive number of transpositions of type (3)
decreases the conjugate indices in the lexicographic order and must hence
leave S(m) · κ.

Lemma 6.18. Let K ∈ S(m) · κ and let Tij be a transposition of type (1).
Then K ≤Kro TijK.

Proof. If the position of K is

p(K) = ((1, 1), . . . , (Ki, i), . . . , (Ki, j), . . . ,

(Ki + 1, l), (Ki + 1,m), . . . , (Ki + 1, j), . . . )

with l < i < m < j, then the position of K̄ := TijK is

p(K̄) = ((1, 1), . . . , (Ki, i), . . . , (Ki, j), . . . ,

(Ki + 1, l), (Ki + 1, i), (Ki + 1,m), . . . ) .

It follows p(K̄) <Lex p(K) and hence K ≤Kro K̄.
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Proposition 6.19. Let K,L ∈ S(m) · κ. Then K ≤Kro L if and only if
there exists a sequence (Tiαjα)

l
α=1 of transpositions of type (1) such that L =

Tiljl . . . Ti1j1K.

Proof. Let K ≤Kro L. According to Proposition 6.15 there exists a sequence
(Tiαjα)

l
α=1 of transpositions such that L = Tiljl . . . Ti1j1K. Since K and L lie

on the same S(m) orbit this series can’t contain transpositions of type (3)
(Lemma 6.17). Transpositions of type (2) are the identity hence can be left
out.

Conversely let L = Tiljl . . . Ti1j1K with transpositions Tiαjα , α = 1, . . . , l, of
type (1). Using Lemma 6.18 repeatedly yields K ≤Kro Ti1j1K ≤Kro . . . ≤Kro

Tiljl . . . Ti1j1K = L.

The following nice characterization of the Bruhat order on S(m) can be found
in a textbook by Fulton on Young diagrams ([Ful97, §10.5, Corollary 1]).

Proposition 6.20. Let π, τ ∈ S(m). Then π ≤ τ if and only if there exists
a sequence ((iα, jα))

l
α=1 of transpositions with iα < jα for all α = 1, . . . , l,

such that with τ0 := τ and τα := τ · (i1, j1) · · · · · (iα, jα), α = 1, . . . , l, it is
τα−1(iα) > τα−1(jα) for all α = 1, . . . , l and τl = π.

Now the proof of Theorem 6.16 is straight forward using the following lem-
mas.

Lemma 6.21. Let K ∈ S(m) · κ and let Tij be a transposition of type (1).
Then TijK ≤Bru K.

Proof. Since Tij is a transposition of type (1) it is i < j and Ki < Kj.
Let K = π · κ. Then l := π−1(i) > π−1(j) =: m since κ is ordered with
κ1 ≥ · · · ≥ κm. So it is m < l and j = π(m) > π(l) = i. According to
Proposition 6.20 it is π · (m, l) ≤ π. It follows (i, j)π = π(m, l) ≤ π and
TijK ≤Bru K.

Lemma 6.22. Let i < j and let π ∈ S(m) such that π(i) > π(j). Then
π · κ ≤Kro π · (i, j) · κ.

Proof. Let K := π · κ and let l := π(i) and m := π(j). Then m < l and
(m, l)·π = π·(i, j). SinceKl = κi andKm = κj it followsKm < Kl (i < j and
κ is ordered with κ1 ≥ · · · ≥ κm). Hence π · (i, j) · κ = (m, l) · π · κ = TmlK
and Tml is a transposition of type (1). But then Proposition 6.19 yields
π · κ = K ≤Kro TmlK = π · (i, j) · κ.
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Proof of Theorem 6.16. Let K ≤Kro L. According to Proposition 6.19 there
exists a sequence (Tiαjα)

l
α=1 of transpositions of type (1) such that L =

Tiljl . . . Ti1j1K. Using Lemma 6.21 repeatedly yields L = Tiljl . . . Ti1j1K ≤Bru

. . . ≤Bru Ti1j1K ≤Bru K.

Let π · κ = L ≤Bru K = τ · κ. According to Proposition 6.20 there exists
a sequence ((iα, jα))

l
α=1 of transpositions with iα < jα for all α = 1, . . . , l,

such that with τ0 := τ and τα := τ · (i1, j1) · · · · · (iα, jα), α = 1, . . . , l, it
is τα−1(iα) > τα−1(jα) for all α = 1, . . . , l and τl = π. Using Lemma 6.22
repeatedly yields K = τ0 · κ ≤Kro τ1 · κ ≤Kro . . . ≤Kro τl · κ = L.

There is another interesting order on Kn,m, the dominance order defined by

K ≤Dom L⇐⇒
l∑

α=1

Kα ≤
l∑

α=1

Lα for all l = 1, . . . ,m .

There is the following strong relation between the Kronecker order and the
dominance order on S(m) · κ.

Theorem 6.23.

K ≤Kro L =⇒ K ≤Dom L

for all K,L ∈ S(m) · κ.

The proof of Theorem 6.23 uses the following lemma.

Lemma 6.24. Let K ∈ S(m) · κ and let Tij be a transposition of type (1).
Then K ≤Dom TijK.

Proof. Since Tij is a transposition of type (1) it is i < j and Ki < Kj. Tij
swaps Ki and Kj hence with K̄ := TijK it follows

l∑

α=1

Kα =
l∑

α=1

K̄α for all l = 1, . . . , i− 1 and l = j, . . . ,m ,

while
l∑

α=1

Kα <
l∑

α=1

K̄α for all l = i, . . . , j − 1 .

It follows K ≤Dom K̄.
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Proof of Theorem 6.23. Let K ≤Kro L. According to Proposition 6.19 there
exists a sequence (Tiαjα)

l
α=1 of transpositions of type (1) such that L =

Tiljl . . . Ti1j1K. Using Lemma 6.24 repeatedly yields K ≤Dom Ti1j1K ≤Dom

. . . ≤Dom Tiljl . . . Ti1j1K = L.

Now Theorem 6.16 yields that the reverse order of the dominance order, the
so called specialization order , is finer than the Bruhat order on S(m) · κ.
Various computations suggest that these two orders are in fact equivalent on
S(m) · κ, i.e. the converse of Theorem 6.23 is also true, but there seems to
be no easy proof of this statement.

Remark 6.25. In a nice survey Hazewinkel and Martin [HM83] pointed out
that there are many relations between the various orders that have been
discussed in this Section. Nevertheless, they focus on the subset of Kn,m

formed by the partitions , i.e. the ordered combinations. So their results do
not apply here.

6.3 A cell decomposition

In this section a cell decomposition of a Brunovsky stratum Tk(λ, µ) of codi-
mension k tight subspaces is constructed. It is shown to be induced by a
Bruhat decomposition of a generalized flag manifold which is a retract of
Tk(λ, µ) as has been shown in a recent article by X. Puerta and Helmke
[PH00]. After finishing this work the author got knowledge of another pa-
per by F. Puerta, X. Puerta and Zaballa [PPZ01] in which the same cell
decomposition is deduced by totally different methods (direct calculations).
Nevertheless the author believes that the proofs presented here (besides be-
ing more elegant) allow much deeper insight into the structure of this cell
decomposition.

Theorem 6.26. The manifold Tk(λ, µ) of all codimension k tight subspaces
with restriction indices λ = (λ1, . . . , λp) decomposes into a finite number
of cells, the Kronecker cells Tk(K,µ), each consisting of the subspaces with
Kronecker indices K = (K1, . . . , Kp) = (λπ(1), . . . , λπ(p)), where π ∈ S(p).
(Recall that Tk(K,µ) is nonempty if and only if Ki ≤ µi and λi ≤ µi, i =
1, . . . , p, and note that different πs might yield the same K.)

Proof. Since any tight subspace has some Kronecker indices (K1, . . . , Kp),
the manifold Tk(λ, µ) decomposes into a finite number of Tk(K,µ) sets. K
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running through the permutations of λ follows from Theorem 6.7. It remains
to show that Tk(K,µ) is a cell, i.e. homeomorphic to FN , N ∈ N.

According to Theorem 6.12 it suffices to show that the equivalence relation
on M(K,µ) defined by Z ′ ≡ Z if and only if Z ′ = ZS−1 with S ∈ Γ(K) has
a normal form homeomorphic to FN . This is done by showing that the free
parameters in S−1 can be used to eliminate parameters in Z. This can be
done block columnwise. In fact, since Γ(K) operates on M(K,µ), i.e. S−1

preserves the structure of Z, it suffices to consider the first column of each
block.

To make it easier to understand the following construction, it is visualized by
an example with µ = (4, 2, 2) and K = (3, 1, 2). Recall the Toeplitz structure
of each block (Theorem 6.11). For example the free parameters (visualized
by asterisks) in the upper left block of Z are all equal.

Z =





















∗ 0 0 ∗ ∗ 0
1 ∗ 0 ∗ ∗ ∗
0 1 ∗ ∗ 0 ∗
0 0 1 0 0 0

0 0 0 ∗ 0 0
0 0 0 1 0 0

0 0 0 ∗ 1 0
0 0 0 ∗ 0 1





















and S−1 =
















1 0 0 * ∗ 0
0 1 0 * 0 ∗
0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 * 1 0
0 0 0 * 0 1
















.

Choose a block column, say number i, in S−1 and consider the first column
of this block (bold face in the example). In block row number j of Z, j =
1, . . . , p, delete µj − Kj ≥ 0 rows starting with the first row of the block.
According to Theorem 6.11 (applied with µ = K) the resulting square matrix
Z1 has full column rank, hence also full row rank for every choice of the free
parameters.

Z1 =
















1 ∗ 0 * ∗ ∗
0 1 ∗ * 0 ∗
0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 * 1 0
0 0 0 * 0 1
















and S−1 =
















1 0 0 * ∗ 0
0 1 0 * 0 ∗
0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 * 1 0
0 0 0 * 0 1
















.

As a consequence of Theorem 6.11 the 1s in Z1 all lie on the main diagonal,
and the first column of block column number i of Z (bold face in the example)
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coincides with the corresponding column in S−1. Let j1, . . . , jq be the row
numbers of the zero entries of this column. Let Ai be the row number of
the 1 in this column. Delete the rows j1, . . . , jq and the row Ai from Z1.
Then the resulting matrix Z2 still has full row rank for each choice of the
free parameters.

Z2 =










1 ∗ 0 * ∗ ∗
0 1 ∗ * 0 ∗

0 0 0 * 1 0
0 0 0 * 0 1










and S−1 =
















1 0 0 * ∗ 0
0 1 0 * 0 ∗
0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 * 1 0
0 0 0 * 0 1
















.

By construction the column Ai of Z2 only consists of free parameters. Since
the 1s in Z1 are on the main diagonal, the columns j1, . . . , jq and the column
Ai of Z2 contain no 1. Since Z2 has full row rank for every choice of the free
parameters, especially if the free parameters in the columns j1, . . . , jp and in
column Ai are set to zero, deleting these columns from Z2 results in a full
rank square matrix Z3.

Z3 =










1 ∗ ∗ ∗
0 1 0 ∗

0 0 1 0
0 0 0 1










.

The following picture visualizes the locus of Z3 (bold face) in Z.

Z =





















∗ 0 0 ∗ ∗ 0
1 * 0 ∗ * *
0 1 ∗ ∗ 0 *
0 0 1 0 0 0

0 0 0 ∗ 0 0
0 0 0 1 0 0

0 0 0 ∗ 1 0
0 0 0 ∗ 0 1





















and S−1 =
















1 0 0 * ∗ 0
0 1 0 * 0 ∗
0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 * 1 0
0 0 0 * 0 1
















.

From the construction it is now clear that there is a unique choice of the
free parameters in column Ai of S

−1 (bold face in the example, they meet Z3

when multiplying Z by S−1) which zeros out column Ai in Z2 (framed entries
in the example) when multiplying Z by S−1. As has been said before, these
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entries are all free parameters. Note that the position of these entries in Z
does only depend on i, K and µ, but not on the values of the free parameters
in Z.

Iterating this construction over all block columns of S−1 results in a normal
form Znorm of Z which is homeomorphic to FN , where N is the difference
of the number of free parameters in Z and the number of free parameters in
S−1.

Znorm =





















∗ 0 0 ∗ ∗ 0
1 ∗ 0 0 0 ∗
0 1 ∗ 0 0 0
0 0 1 0 0 0

0 0 0 ∗ 0 0
0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1





















.

Corollary 6.27. If Ki ≤ µi, i = 1, . . . , p, then

dim Tk(K,µ) =
p
∑

i,j=1

max{µi −Kj + 1, 0} −
p
∑

i=1

i−

p
∑

i,j=1

max{Ki −Kj + 1, 0}+#{Ki ≥ Kj | 1 ≤ i ≤ j ≤ p} .

Proof. Count the free parameters in M(K,µ) and Γ(K).

To get an index set for the decomposition of Tk(λ, µ) in Kronecker cells,
permutations π and π′ of λ leading to the same K must be identified.
This is done using the set Sλ(p) of minimal length coset representatives of
S(p)/Sλ(p), cf. page 160. The required index set is the set consisting of all
π ∈ Sλ(p) satisfying λπ(j) ≤ µj for all j = 1, . . . , p.

In order to see that the decomposition of Tk(λ, µ) in Kronecker cells is indeed
a cell decomposition in the topological sense it is shown to be induced by
a Bruhat decomposition of a generalized flag manifold. Recall the following
definition of a cell decomposition.

Definition 6.28. Let X be a Hausdorff space. A decomposition (Xi)i∈I of
X into disjoint subsets is called a cell decomposition if
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(1) (Xi)i∈I is locally finite and each Xi is homeomorphic to some Rni ,

(2) X̄i\Xi is contained in the union of cells Xj of strictly smaller dimension,
where X̄i denotes the topological closure of Xi.

The cell decomposition is called finite, if I is a finite set. The cell decompo-
sition is said to satisfy the frontier condition, if additionally

(3) Xj ∩ X̄i 6= ∅ if and only if Xj ⊂ X̄i for all i, j ∈ I.

Let b = (b1, . . . , bµ1) be the conjugate indices of µ read from right to left,
i.e. let bi = #{j ∈ {1, . . . , p} |µj ≥ µ1 − i + 1} for i = 1, . . . , µ1. Then
1 ≤ b1 ≤ · · · ≤ bµ1 = p. Let a = (a1, . . . , aµ1) be the conjugate indices of
λ read from right to left and brought into line with b, i.e. let ai = #{j ∈
{1, . . . , p} |λj ≥ µ1 − i + 1} for i = 1, . . . , µ1. Then 0 ≤ a1 ≤ · · · ≤ aµ1 = p,
and λi ≤ µi for all i = 1, . . . , p implies ai ≤ bi for all i = 1, . . . , µ1.

Consider the compact analytic manifold of partial flags of type a

Flag(a,Fp) = {(V1, . . . ,Vµ1) ∈
µ1∏

i=1

Gai(F
p) | V1 ⊂ · · · ⊂ Vµ1}

(see e.g. Hiller [Hil82]). It is well known that each (complete) reference flag

V∗ = (V∗1 , . . . ,V
∗
p ) , V∗1 ⊂ · · · ⊂ V

∗
p and dimV∗j = j for j = 1, . . . , p

induces a finite cell decomposition on Flag(a,F p) via the following construc-
tion. For a k-dimensional subspace V ⊂ F p define the signature sigV∗(V) =
{s1, . . . , sk}, where s1 < · · · < sk are the ”jump points” of V with respect to
the reference flag V∗, i.e. (V∗0 := {0})

V ∩ V∗si−1 6= V ∩ V
∗
si
, i = 1, . . . , k .

Then V ⊂ V ′ implies sigV∗(V) ⊂ sigV∗(V
′). In particular, for any flag

V = (V1, . . . ,Vµ1) ∈ Flag(a,Fp) there is an increasing sequence of signa-
tures sigV∗(V) := (sigV∗(V1), . . . , sigV∗(Vµ1)) with

(1) sigV∗(V1) ⊂ · · · ⊂ sigV∗(Vµ1) ⊂ {1, . . . , p},

(2) # sigV∗(Vi) = ai for i = 1, . . . , µ1.
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Any such sequence S = (S1, . . . , Sµ1) of subsets of {1, . . . , p} satisfying (1)
and (2) is called a flag symbol of type a. Let F (a) denote the set of all such
flag symbols. Now for any flag symbol S ∈ F (a) the set

BS
V∗ := {(V1, . . . ,Vµ1) ∈ Flag(a,Fp) | sigV∗(V1, . . . ,Vµ1) = S}

is a cell, a so called Bruhat cell of Flag(a,F p) with respect to the given
reference flag V∗. All these cells form a (obviously finite) cell decomposition
(BS

V∗)S∈F (a) of Flag(a,F
p) which satisfies the frontier condition.

If in particular the reference flag V∗ is chosen to be the standard flag

V0 = (V01 , . . . ,V
0
p ) , V0j = span{e1, . . . , ej} for j = 1, . . . , p ,

where ej, j = 1, . . . , p, denotes the j-th standard basis vector of F p, then the
corresponding (classical) Bruhat decomposition (BS

V0)S∈F (a) restricts to the
compact analytic generalized flag manifold (cf. Helmke and Shayman [HS87])

Flag(a, b,Fp) = {(V1, . . . ,Vµ1) ∈ Flag(a,Fp) | Vi ⊂ V
0
bi
, i = 1, . . . , µ1} .

Apparently, for any flag symbol S ∈ F (a) the intersection BS
V0∩Flag(a, b,F

p)
is nonempty if and only if the flag symbol S = (S1, . . . , Sµ1) is (a, b)-admis-
sible, i.e. Si ⊂ {1, . . . , bi} for i = 1, . . . , µ1. In this case BS

V0 ⊂ Flag(a, b,Fp)
holds. Let F (a, b) denote the set of all (a, b)-admissible flag symbols of type
a, then (BS

V0)S∈F (a,b) is a cell decomposition of Flag(a, b,F p) which satisfies
the frontier condition.

A convenient way to describe the boundary relation of a cell decomposition
satisfying the frontier condition is the so called adherence order , a partial
order ≤ defined on the index set I which has the property thatXj ⊂ X̄i if and
only if j ≤ i. For the Bruhat decomposition (BS

V0)S∈F (a) of Flag(a,F
p) this

adherence order is induced by the well known Bruhat order on the symmetric
group S(p): To any flag symbol

S = (S1, . . . , Sµ1) = ({s11, . . . , s1a1}, . . . , {sµ11, . . . , sµ1aµ1}) ∈ F (a)

associate a permutation πV0(S) in the following way. Consider the sequence
rV0(S) := (r1V0(S), . . . , r

p
V0(S)) with {r

ai−1+1
V0 (S), . . . , raiV0(S)} = Si \ Si−1 and

(r
ai−1+1
V0 (S), . . . , raiV0(S)) ordered increasingly, i = 1, . . . , µ1 (set a0 := 0 and

S0 := ∅). Since Si−1 ⊂ Si, i = 1, . . . , µ1, it follows {r1V0(S), . . . , r
p
V0(S)} =

{1, . . . , p}. Hence there exists a unique permutation πV0(S) ∈ S(p) with
πV0(S)(j) = rjV0(S), j = 1, . . . , p.
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Example 6.29. Let a := (0, 0, 1, 3, 3, 5, 6) and

S := (∅, ∅, {2}, {1, 2, 4}, {1, 2, 4}, {1, 2, 3, 4, 6}, {1, 2, 3, 4, 5, 6}) ∈ F (a) .

Then rV0(S) = (2, 1, 4, 3, 6, 5) and πV0(S) = (1, 2)(3, 4)(5, 6).

From the construction it follows that πV0(F (a)) = Sλ(p) ⊂ S(p) (for the
meaning of Sλ(p) see page 160). Now the Bruhat order on S(p) yields a
partial order on Sλ(p) = πV0(F (a)) via

π ≤ π′ ⇐⇒ ∃τ,τ ′∈Sλ(p) π ◦ τ ≤ π′ ◦ τ ′ .

This order in turn induces a partial order on F (a) via πV0(.). This order,
denoted by ≤Bru and also called Bruhat order, turns out to be the adherence
order of (BS

V0)S∈F (a). Apparently, the restriction of this order to F (a, b)
then is the adherence order of the Bruhat decomposition (BS

V0)S∈F (a,b) of
Flag(a, b,Fp).

Now consider the reverse standard flag

Vp = (Vp1 , . . . ,V
p
p ) , Vpj = span{ep−j+1, . . . , ep} for j = 1, . . . , p ,

and the corresponding Bruhat decomposition (BS
Vp)S∈F (a) of Flag(a,Fp).

This decomposition also satisfies the frontier condition. Associate to any
flag symbol

S = (S1, . . . , Sµ1) = ({s11, . . . , s1a1}, . . . , {sµ11, . . . , sµ1aµ1}) ∈ F (a)

a permutation πVp(S) by the following construction. Consider the sequence
of numbers rVp(S) := (r1Vp(S), . . . , r

p
Vp(S)) where {r

ai−1+1
Vp (S), . . . , raiVp(S)} =

{p − r
ai−1+1
V0 (S) + 1, . . . , p − raiV0(S) + 1} and (r

ai−1+1
Vp (S), . . . , raiVp(S)) is or-

dered increasingly, i = 1, . . . , µ1 (set a0 := 0 and S0 := ∅). As before it
follows {r1Vp(S), . . . , r

p
Vp(S)} = {1, . . . , p} and there exists a unique permuta-

tion πVp(S) ∈ S(p) with πVp(S)(j) = rjVp(S), j = 1, . . . , p.

Example 6.30. Consider Example 6.29. Here rVp(S) = (5, 3, 6, 1, 4, 2) and
πVp(S) = (1, 4, 5)(6, 3, 2).

It is πVp(F (a)) = πV0(F (a)) = Sλ(p) ⊂ S(p) and the Bruhat order on S(p)
induces a partial order on F (a) via πVp(.). By symmetry considerations it
follows that this order is the reverse order of the Bruhat order ≤Bru. It turns
out that the adherence order of (BS

Vp)S∈F (a) is the Bruhat order ≤Bru, i.e. the
same order as the adherence order of (BS

V0)S∈F (a).
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A flag symbol (S1, . . . , Sµ1) ∈ F (a) is called reversely (a, b)-admissible if Si ⊂
{p− bi + 1, . . . , p}, i = 1, . . . , µ1, holds. Let Fp(a, b) ⊂ F (a) denote the set of
all reversely (a, b)-admissible flag symbols. The next proposition shows that
the Bruhat decomposition of Flag(a,F p) with respect to the reverse standard
flag Vp induces a cell decomposition with index set Fp(a, b) on Flag(a, b,F p)
by restriction. The proof uses the following well known homogeneous space
descriptions of Flag(a,F p) and Flag(a, b,F b).

Let V (a, b) denote the set of those matrices in GL(F p) for which the last
p− bi entries in columns ai−1 + 1, . . . , ai (set a0 := 0) are zero, i = 1, . . . , µ1.
Then P (a) := V (a, a) is a parabolic subgroup of GL(F p). Furthermore
Flag(a,Fp) is diffeomorphic to GL(F p)/P (a) and Flag(a, b,F p) is diffeo-
morphic to V (a, b)/P (a): Any matrix Z ∈ GL(F p) (resp. Z ∈ V (a, b))
represents a flag V = (V1, . . . ,Vµ1) ∈ Flag(a,Fp) (resp. V ∈ Flag(a, b,F p))

via Vi := columnspan
(

z1 . . . zai
)

, i = 1, . . . , µ1, where zj, j = 1, . . . , p,

denotes the j-th column of Z. Z and Z ′ represent the same flag if and only
if Z ′ = ZS−1 with S ∈ P (a).

Proposition 6.31. (BS
Vp ∩ Flag(a, b,Fp))S∈Fp(a,b) is a cell decomposition of

Flag(a, b,Fp) which satisfies the frontier condition. Its adherence order is
the restriction of the Bruhat order ≤Bru to Fp(a, b) ⊂ F (a).

Proof. Let S ∈ F (a). A flag V ∈ BS
Vp ⊂ Flag(a,Fp) has a unique represen-

tative Z =
(

z1 . . . zp
)

∈ GL(Fp) in generalized Echelon normal form:

zj =
















0
...
0
1
?
...
?
















, j = 1, . . . , p ,

where the 1-entry is in row number rjVp(S), and the ?-entry in row num-

ber k ∈ {rjVp(S) + 1, . . . , p} is zero if k ∈ {r1Vp(S), . . . , r
a(j)
Vp (S)}, where

a(j) := min{ai ≥ j | i = 1, . . . , µ1}, otherwise it is a free parameter. To
avoid misunderstandings, the normal form for Example 6.29/6.30 is given
here.
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0 0 0 1 0 0
0 0 0 ∗ 0 1
0 1 0 0 0 0
0 ∗ 0 0 1 0
1 0 0 0 0 0
∗ 0 1 0 0 0













From this normal form it is clear thatBS
Vp∩Flag(a, b,F

p) 6= ∅ if and only if the
row positions of the 1-entries in columns 1, . . . , ai are smaller or equal than
bi, i = 1, . . . , µ1, i.e. if and only if p− s+ 1 ≤ bi for all s ∈ Si, i = 1, . . . , µ1,
i.e. if and only if Si ⊂ {p − bi + 1, . . . , p}, i = 1, . . . , µ1, i.e. if and only if
S ∈ Fp(a, b). In this case the last p − bi entries in columns ai−1 + 1, . . . , ai,
i = 1, . . . , µ1, are all free parameters. Setting them to zero hence yields a
normal form for elements of BS

Vp ∩Flag(a, b,F
p), which is therefore a cell, i.e.

homeomorphic to some RNS . These cells clearly decompose Flag(a, b,F p).
Furthermore dimBS

Vp < dimBS′

Vp if and only if dim(BS
Vp ∩ Flag(a, b,Fp)) <

dim(BS′

Vp ∩ Flag(a, b,Fp)), whenever S, S ′ ∈ Fp(a, b).

Consider the natural projections pi : Gai(F
p) −→ Gai(F

bi) induced by the
linear projections F p −→ F bi with kernel span{ebi+1, . . . , ep}, i = 1, . . . , µ1,
where ej, j = 1, . . . , p, denotes the j-th standard basis vector of F p. Then
the projection p := (p1 × · · · × pµ1)|Flag(a,Fp) restricts to a homeomorphism
p|Flag(a,b,Fp) : Flag(a, b,F

p) −→ p(Flag(a, b,F p)). It follows from the above
considerations that p(BS

Vp ∩ Flag(a, b,Fp)) = p(BS
Vp) for all S ∈ Fp(a, b).

Now let S, S ′ ∈ Fp(a, b) and let S ≤Bru S ′, then BS
Vp ⊂ BS′

Vp . Since p is
continuous this implies

p(BS
Vp ∩ Flag(a, b,Fp)) = p(BS

Vp)

⊂ p(BS′
Vp)

⊂ p(BS′
Vp)

= p(BS′
Vp ∩ Flag(a, b,Fp)) .

But then (p|Flag(a,b,Fp))
−1 being continuous yields BS

Vp ∩ Flag(a, b,Fp) ⊂

BS′
Vp ∩ Flag(a, b,Fp).

Conversely, let (BS
Vp ∩ Flag(a, b,Fp)) ∩ (BS′

Vp ∩ Flag(a, b,Fp)) 6= ∅. Then

clearly S, S ′ ∈ Fp(a, b) andB
S
Vp∩B

S′
Vp 6= ∅, i.e. B

S
Vp ⊂ BS′

Vp (frontier condition).

But this implies S ≤Bru S
′ and BS

Vp ∩ Flag(a, b,Fp) ⊂ BS′
Vp ∩ Flag(a, b,Fp),

as has just been shown. This completes the proof.
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The following result due to X. Puerta and Helmke [PH00] relates Tk(λ, µ)
and Flag(a, b,Fp).

Theorem 6.32. The surjective smooth and closed maps

γ :M(λ, µ) −→ V (a, b) ,

Z 7→ CZC̄>

and

γ :Γ(λ) −→ P (a) ,

S 7→ C̄SC̄>

induce a surjective smooth and closed map

γ̃ : Tk(λ, µ) ≡M(λ, µ)/Γ(λ) −→ V (a, b)/P (a) ≡ Flag(a, b,F p)

on quotients. Furthermore, Flag(a, b,F p) is a strong deformation retract of
Tk(λ, µ), hence Tk(λ, µ) and Flag(a, b,F p) are homotopy equivalent.

Note that C̄ denotes a matrix in dual Brunovsky canonical form with indices
λ, here. As the next proposition shows, the map γ̃ behaves well with respect
to the decompositions in cells constructed above.

Proposition 6.33. γ̃ maps Kronecker cells onto Bruhat cells with respect to
the reverse standard flag.

Proof. Let π ∈ Sλ(p) and let K = (K1, . . . , Kp) = (λπ(1), . . . , λπ(p)) be such
that Kj ≤ µj for all j = 1, . . . , p. Let V ∈ Tk(K,µ) ⊂ Tk(λ, µ). According
to Theorem 6.11 there exists Z ∈ M(K,µ) such that V = ImZ. Let Pπ−1
be the standard permutation matrix that permutes the block columns of Z
according to π−1 when multiplied to Z from the right. Then V = ImZ ′ where
Z ′ := ZPπ−1 . From Theorem 6.5 it follows that Z ′ ∈M(λ, µ). Furthermore,
since the matrix formed of the lower right corner entries of each block of Z
is unipotent lower triangular, the matrix γ(Z ′) = CZ ′C̄> =

(

g1 . . . gp
)

formed of the lower right corner entries of each block of Z ′ has the following
structure:

gj =
















0
...
0
1
?
...
?
















,
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where the 1-entry is in row number π−1(j), j = 1, . . . , p. Since γ(Z ′) ∈
V (a, b), it represents a flag V ∈ Flag(a, b,F p). From the structure of γ(Z ′)
it follows that sigVp(V) is such that rjVp(sigVp(V)) = π−1(j), j = 1, . . . , p,
i.e. such that πVp(sigVp(V)) = π−1. Hence sigVp(V) does only depend on the
choice of π and not on Z ′ or Z.

It follows that γ̃ maps any Kronecker cell into a corresponding Bruhat cell
with respect to the reverse standard flag (cf. Proposition 6.31). Since γ̃ is
surjective, the statement follows.

Now the promised topological result follows immediately.

Theorem 6.34. The decomposition of Tk(λ, µ) into Kronecker cells is a finite
cell decomposition. Furthermore, Tk(K,µ) ∩ Tk(K ′, µ) 6= ∅ if and only if
K ≤Kro K

′ (cf. Section 6.2).

Proof. For K = (K1, . . . , Kp) = (λπ(1), . . . , λπ(p)), where π ∈ Sλ(p) and
Kj ≤ µj for all j = 1, . . . , p, let S(K) denote the flag symbol of the
Bruhat cell (BS

Vp ∩ Flag(a, b,Fp)) on which Tk(K,µ) is mapped by γ̃ (cf.
Proposition 6.33). Let K = (K1, . . . , Kp) = (λπ(1), . . . , λπ(p)) and K ′ =
(K ′1, . . . , K

′
p) = (λπ′(1), . . . , λπ′(p)) be as stated. According to Theorem 6.16

it is K ≤Kro K ′ if and only if π′ ≤Bru π. The latter is equivalent to
(π′)−1 ≤Bru π

−1, i.e. to πVp(S(K
′)) ≤Bru πVp(S(K)) as has been shown in the

proof of Proposition 6.33. Since πVp(.) induces the reverse order of the Bruhat
order on F (a), it follows that K ≤Kro K

′ if and only if S(K) ≤Bru S(K
′).

Let Tk(K,µ) ∩ Tk(K ′, µ) 6= ∅ then γ̃(Tk(K,µ)) ∩ γ̃(Tk(K ′, µ)) 6= ∅. Since
γ̃ is continuous, it is γ̃(Tk(K ′, µ)) ⊂ γ̃(Tk(K ′, µ)). But then it follows
γ̃(Tk(K,µ)) ∩ γ̃(Tk(K ′, µ)) 6= ∅, in other words

(B
S(K)
Vp ∩ Flag(a, b,Fp)) ∩ (B

S(K′)
Vp ∩ Flag(a, b,Fp)) 6= ∅ .

By the frontier condition this implies

B
S(K)
Vp ∩ Flag(a, b,Fp) ⊂ B

S(K′)
Vp ∩ Flag(a, b,Fp) (6.1)

and hence S(K) ≤Bru S(K
′), i.e. K ≤Kro K

′.

Conversely let K ≤Kro K
′, then S(K) ≤Bru S(K

′) implies (6.1), i.e.

γ̃(Tk(K,µ)) ⊂ γ̃(Tk(K ′, µ)) = γ̃(Tk(K ′, µ)) ,
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where the last equality follows from γ̃ being continuous and closed. Since
γ̃−1(γ̃(Tk(K,µ))) = Tk(K,µ), this implies Tk(K,µ) ∩ Tk(K ′, µ) 6= ∅.

Now let K ≤Kro K
′ and K 6= K ′. It remains to show that dim Tk(K,µ) <

dim Tk(K
′, µ). In view of Corollary 6.27 this is equivalent to

#{Ki ≥ Kj | 1 ≤ i ≤ j ≤ p} < #{K ′i ≥ K ′j | 1 ≤ i ≤ j ≤ p}

since the other terms in the dimension formula for Tk(K,µ) do not depend
on the order of the elements of K. But then the claim follows from Proposi-
tion 6.19.

Remark 6.35. (1) It is not at all clear if the decomposition of Tk(λ, µ) in
Kronecker cells satisfies the frontier condition or not. A proof or dis-
proof of this should make heavy use of the structure of matrices in
M(K,µ).

(2) A generalization of the results presented in this chapter to the non
tight case, which is also covered by the work of Ferrer, F. Puerta and
X. Puerta [FPP98], X. Puerta and Helmke [PH00] and F. Puerta, X.
Puerta and Zaballa [PPZ01], is subject to future research.

175



6 Image representations

176



Appendix A

Topology of orbit spaces

In this appendix some facts about the topology of orbit spaces of Lie group
actions on manifolds are presented.

Definition A.1. A Lie group action of a Lie group G on a manifold M is a
differentiable map

Φ : G×M −→M, (g, p) 7→ Φ(g, p) =: g · p

with e · p = p and (gh) · p = g · (h · p) for all g, h ∈ G, p ∈M . Sometimes G
is called Lie transformation group, the pair (M,Φ) is often referred to as a
G-manifold .

The isotropy subgroup or stabilizer subgroup of a point p ∈ M is the closed
subgroup Gp = {g ∈ G | g · p = p} of G. The action Φ is called free, if every
isotropy subroup is trivial, i.e. Gp = {e} for every p ∈M .

The orbit of a point p ∈ M is the subset G · p = {g · p | g ∈ G} of M . The
action Φ is called transitive if for one (and therefore for every) point p ∈M
the orbit G · p is all of M . One says, G acts transitively on M , then.

For non-transitive actions Φ one consideres the orbit space M/G = M/ ∼Φ,
where ∼Φ denotes the equivalence relation on M set up by Φ: m ∼Φ m′ if
there exists a g ∈ G with m′ = g · m. The orbit space M/G is equipped
with the quotient topology, i.e. the finest topology for which the natural
projection

π :M −→M/G, m 7→ [m]∼Φ

is continous.
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The graph map Φ̂ associated to Φ is the map

Φ̂ : G×M −→M ×M, (g, p) 7→ (p, g · p) .

The image of Φ̂ is nothing else but the relation ∼Φ seen as a subspace of
M ×M .

Under certain circumstances the orbit space M/G is a manifold again. The
following necessary and sufficient condition can be found in [Die82, Theorem
16.10.3].

Theorem A.2. There is a unique manifold structure on M/G such that the
natural projection π is a submersion if and only if the image of the graph
map Im Φ̂ is a closed submanifold of M ×M .

If the action Φ is free, Im Φ̂ being a closed submanifold can be checked easily.

Proposition A.3. Let Φ be a free Lie group action of G on M . Then Im Φ̂
is a closed submanifold of M ×M if and only if Φ̂ is a closed map, i.e. maps
closed sets to closed sets.

Proof. Since Φ is free, Φ̂ is injective. The map

Φp : G −→M, g 7→ g · p

is a subimmersion ([Die82, Proposition 16.10.2]) and hence Φ being free im-
plies KerTgΦp = TgΦ

−1
p (g · p) = Tg{g} = {0}. Therefore TgΦp is injective

and Φp is an immersion. Since the projections

pr1 : G×M −→ G, (g, p) 7→ g and pr2 : G×M −→M, (g, p) 7→ p

are immersions and Φ̂ = pr2 × (Φp ◦ pr1), it follows that Φ̂ is an injective

immersion. But then Φ̂ is an embedding with Im Φ̂ closed if and only if Φ̂ is
a closed map. The statement follows.

In the case of a free action Φ there is a sequence criterion for Φ̂ being a closed
map.

Proposition A.4. Let Φ be a free Lie group action of G on M . Then Φ̂
is a closed map if and only if for every sequence ((gi, pi))i∈N in G ×M for
which the sequence (Φ̂(gi, pi))i∈N in M ×M converges, the sequence (gi)i∈N
in G has an accumulation point.
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Proof. Let Φ̂ be a closed map. Let ((gi, pi))i∈N be a sequence for which the
sequence (Φ̂(gi, pi) = (pi, gi · pi))i∈N converges to (p, p′). Since Im Φ̂ is closed,
there exists a g ∈ G with p′ = g · p. Assume that the sequence (gi)i∈N ⊂ G
has no accumulation point. Then ((gi, pi))i∈N has no accumulation point,
either. But that means the set {(gi, pi) | i ∈ N} is closed and therefore the
set {Φ̂(gi, pi) = (pi, gi · pi) | i ∈ N} is closed, too, and contains the point
(p, g · p). Since Φ is free it follows (g, p) ∈ {(gi, pi) | i ∈ N}. Assume the set
I = {i ∈ N | (gi, pi) = (g, p)} is finite. Then repeat the same argument for
the still closed set {(gi, pi) | i ∈ N \ I} which then contains the point (g, p),
a contradiction. So, I must be infinite. But then (g, p) is an accumulation
point of ((gi, pi))i∈N, a contradiction.

Conversely let A ⊂ G × M be closed and let (pi, gi · pi) be a convergent
sequence in Φ̂(A) with limit (p, p′). Then the sequence (gi)i∈N has an ac-
cumulation point g, i.e. there exists a subsequence (hj)j∈N of (gi)i∈N with
hj → g. Then (hj, pj)→ (g, p) and (g, p) ∈ A since A is closed. Furthermore

(pj, hj · pj)→ (p, g · p) = (p, p′) since Φ̂ is continous. But then (p, p′) ∈ Φ̂(A)

and Φ̂(A) is closed. Note that Φ was not required to be free in this direction
of the proof.

In the literature another condition for M/G being a manifold can be found.

Theorem A.5. Let Φ be a free Lie group action of G on M . Then M/G
is a manifold if and only if Φ is proper. Especially, if Φ is a free Lie group
action of a compact Lie group G on M then M/G is a manifold.

Proof. Φ is a proper action if and only if Φ̂ is a proper map. If Φ is a free
action, Φ̂ is injective and hence a proper map if and only if it is a closed map
([Bou66, Chapter I, §10.1, Proposition 2]). If G is compact, Φ is necessarily
proper ([Bou66, Chapter III, §4.1, Proposition 2]).

In the proper context, the sequence criterion of Proposition A.4 can be found
in [Bou66, Chapter III, §4.1].

The closedness of Im Φ̂ plays an important role in the whole theory. M/G
is a Hausdorff space if and only if Im Φ̂ is closed ([Bou66, Chapter I, §8.3,
Proposition 8 and Chapter III, §2.4, Lemma 2]). Nevertheless, M/G being
a manifold requires more than that. In the following example of a free Lie
group action Im Φ̂ is a closed set but Φ̂ is not a closed map.
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Example A.6. Note first, that a global analytic injective flow on R2

Φ : R× R2 −→ R2, (t, (x, y)) 7→ Φt(x, y)

is a free analytic Lie group action of the group G := (R,+) on the manifold
R2. If Φ is invariant under the transformation

τ : R2 −→ R2, (x, y) 7→ (x+ 2,−y) ,

i.e. Φ ◦ (idR× τ) = τ ◦Φ, then Φ can be seen as a global analytic flow on the
Möbiusband M := R2/ <τ >, where <τ > denotes the subgroup of End(R2)
generated by τ . Then Φ : G×M −→M is a free analytic Lie group action.
Consider now the injective flow on R2 induced by the vector field

x′ = (1− sin2(
π

2
x))2

y′ = − sin(
π

2
x) .

It is obviously τ -invariant. Seen onM , Im Φ̂ is closed sinceM/G is Hausdorff,
but Φ̂ is not closed, since the sequence criterion of Proposition A.4 is violated
for a sequence (xi, yi)→ (−1,−y) and Φti(xi, yi)→ (1, y) (≡ (−1,−y) inM)
monotonically, because then ti →∞ monotonically and hence (ti)i∈N has no
accumulation point.

The sequence criterion of Proposition A.4 is used by Helmke [Hel92] to show
that the orbit space Σk,p(F) of the similarity action σ (cf. Section 4.1) is a
manifold. In particular, he shows that σ is a free action when restricted to
the space of controllable pairs.
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Appendix B

On the differentiability of
vector bundles

In this appendix a sufficient condition for a (topological) vector bundle be-
ing a differentiable vector bundle is presented. The result also provides a
sufficient condition for the preimage of a differentiable submanifold being a
differentiable submanifold again. Second, quotients of differentiable vector
bundles with respect to free and proper Lie group actions are shown to be
differentiable vector bundles.

Definition B.1. Let X and B be Hausdorff spaces and let

f : X −→ B

be a continuous surjection. Let p ∈ N be fixed. For each point x ∈ B let
there exist an open neighborhood U such that there is a homeomorphism

φU : U ×Fp −→ f−1(U)

such that
f(φU(x, y)) = x

for all x ∈ U and all y ∈ F p. Such a homeomorphism is called a local
trivialization of f . For each pair φU and φV of local trivializations and each
point x ∈ U ∩ V let there exist a map θV,U,x ∈ GL(Fp) such that

φ−1V ◦ φU(x, y) = (x, θV,U,x(y))

for all y ∈ Fp, i.e. the induced change of coordinates function on F p is linear.
If all these hypotheses hold then f is called a vector bundle with fiber F p. If
X and B are differentiable manifolds, f is a differentiable map and each φU
is a diffeomorphism then the bundle f is called differentiable.
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Theorem B.2. Let X ⊂ Fn and B ⊂ Fm be topological subspaces and let
f : X −→ B be a vector bundle such that f is the restriction of a differentiable
map

F : UX −→ F
m ,

where UX is an open neighborhood of X in Fn. Let B be a q-dimensional
differentiable submanifold of Fm and let each local trivialization φU : U ×
Fp −→ f−1(U) ⊂ Fn of f be differentiable and such that φ−1U : f−1(U) −→
U ×Fp is the restriction of a differentiable map

ΦU,inv : Uf−1(U) −→ F
m ×Fp ,

where Uf−1(U) is an open neighborhood of f−1(U) in Fn. Then X is a (q+p)-
dimensional submanifold of Fn and f is a differentiable vector bundle.

Proof. Let x0 ∈ X, then there exists an open neighborhood U1 of f(x0) in
B and a local trivialization φU1 : U1 × F

p −→ f−1(U1) of f . Furthermore,
there exists an open neighborhood U2 of f(x0) in B and a local coordinate
chart ϕU2 : U2 −→ ϕU2(U2) ⊂ F

q of B around f(x0). Set U := U1 ∩ U2,
then U is open in B and φU := φU1|U×Fp : U × Fp −→ f−1(U) is a local
trivialization of f . Furthermore, ϕU := ϕU2 |U : U −→ ϕU(U) = ϕU2(U) is
a local coordinate chart of B around f(x0). Define a local coordinate chart
ψf−1(U) : f

−1(U) −→ ϕU(U)×F
p of X around x0 by

x 7→ (ϕU ◦ pr1 ◦ φ
−1
U (x), pr2 ◦ φ

−1
U (x)) .

Here pr1 and pr2 denote the projections on the first and second factor of
U × Fp, respectively. Note that f−1(U) is open in X since f is continuous.
Note further that ϕU(U)×F

p is open in F q×Fp since ϕU is a local coordinate
chart of B. Since φ−1U and ϕU are both bijective, so is ψf−1(U). Furthermore,
ψf−1(U) is continuous as concatenation of continuous maps, hence it is a
homeomorphism.

Now let ψf−1(U) and ψf−1(V ) be two such local coordinate charts of X and let
f−1(U) ∩ f−1(V ) 6= ∅. Then

ψf−1(V ) ◦ ψ
−1
f−1(U) : ϕU(U ∩ V )×Fp −→ ϕV (U ∩ V )×Fp ,

which is given by

(z, y) 7→ (ϕV ◦ pr1 ◦ φ
−1
V ◦ φU(ϕ

−1
U (z), y), pr2 ◦ φ

−1
V ◦ φU(ϕ

−1
U (z), y)) =

(ϕV ◦ ϕ
−1
U (z), θV,U,ϕ−1

U
(z)(y)) ,

182



B On the differentiability of vector bundles

is a diffeomorphism since ϕV ◦ ϕ
−1
U is a diffeomorphism (because B is a

differentiable manifold) and θV,U,ϕ−1
U

(z) ∈ GL(Fp). It follows that X is a

(p+ q)-dimensional differentiable manifold. Since the local coordinate charts
of X are continuous, the preimage of any open set in F q×Fp under any chart
is open in X. Since these preimages form a basis of the topology τ induced
on X by its differentiable structure, τ coincides with the given topology on
X, which is the subspace topology induced by the topology on Fn. Hence
X is a submanifold of Fn.

Since f and the inverse maps φ−1U of all local trivializations φU of f are
restrictions of differentiable maps defined on open subsets of Fn, they are
differentiable themselves. Since each φU is also differentiable, it follows that
f is a differentiable vector bundle.

Theorem B.3. Let f : X −→ B be a differentiable vector bundle with fiber
Fp and let

φX : G×X −→ X

and
φB : G×B −→ B

be free and proper actions of the Lie group G on X and B, respectively. For
every local trivialization φU of f let U consist of full G-orbits (i.e. x ∈ U
implies φB(g, x) ∈ U for all g ∈ G) and let

φU(φB(g, x), y) = φX(g, φU(x, y)) (B.1)

for all g ∈ G, x ∈ U and y ∈ F p. Then

f̄ : X/G −→ B/G ,

[x]∼φX 7→ [f(x)]∼φB

is a differentiable vector bundle with fiber F p.

Proof. Let x ∈ X and g ∈ G be arbitrary. Then f(x) ∈ B and hence
there exists a neighborhood U of f(x) and a local trivialization φU such that
x = φU(z, y) for appropriate z ∈ U and y ∈ F p. But then (B.1) implies
f(φX(g, x)) = f(φX(g, φU(z, y))) = f(φU(φB(g, z), y)) = φB(g, z). Taking
g = e yields f(x) = z. But this means

f ◦ φX(g, x) = φB(g, f(x)) (B.2)

for all g ∈ G and x ∈ X.
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From (B.2) it follows that f̄ is well defined. By Theorem A.5 the spaces
X/G and B/G are both differentiable manifolds. Now consider the following
commutative diagram:

X
f

πX

B

πB

X/G
f̄

B/G

Apparently the map πB ◦ f is differentiable and hence f̄ is differentiable by
the universal property of quotients ([Die82, Proposition 16.10.4]).

For every local trivialization φU of f define a local trivialization of f̄ by

φ̄U : πB(U)×F
p −→ πX(f

−1(U)) ,

([x]∼φB , y) 7→ [φU(x, y)]∼φX .

From (B.1) it follows that φ̄U is well defined. Since πB is an open map, it
follows that πB(U) is open in B/G. Since πB is surjective, the sets πB(U)
cover B/G. As before, the commutative diagram

U ×Fp
φU

πB × id

f−1(U)

πX

πB(U)×F
p φ̄U

πX(f
−1(U))

implies that φ̄U is differentiable. Since πX and φU are both surjective so
is πX ◦ φU , and hence φ̄U is surjective. To see that φ̄U is also injective
consider x, x′ ∈ U and y, y′ ∈ Fp with [φU(x, y)]∼φX = [φU(x

′, y′)]∼φX . Then
there exists g ∈ G with φU(x, y) = φX(g, φU(x

′, y′)) = φU(φB(g, x
′), y′), i.e.

x = φB(g, x
′) and y = y′, since φU is injective. It follows that ([x]∼φB , y) =

([x′]∼φB , y
′) and φ̄U is injective. Now the commutative diagram

f−1(U)
φ−1U

πX

U ×Fp

πB × id

πX(f
−1(U))

φ̄−1U πB(U)×F
p
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implies that φ̄−1U is differentiable, hence φ̄U is a diffeomorphism.

Now let x ∈ U and y ∈ F p. Then

f̄(φ̄U([x]∼φB , y)) = f̄([φU(x, y)]∼φX )

= [f(φU(x, y))]∼φB
= [x]∼φB .

If φV is another local trivialization of f , x ∈ U ∩ V and y ∈ F p then

φ̄V ([pr1 ◦ φ
−1
V ◦ φU(x, y)]∼φB , pr2 ◦ φ

−1
V ◦ φU(x, y)) =

[φV (pr1 ◦ φ
−1
V ◦ φU(x, y), pr2 ◦ φ

−1
V ◦ φU(x, y))]∼φX =

[φU(x, y)]∼φX

implies

φ̄−1V ◦ φ̄U([x]∼φB , y) = φ̄−1V ([φU(x, y)]∼φX )

= ([pr1 ◦ φ
−1
V ◦ φU(x, y)]∼φB , pr2 ◦ φ

−1
V ◦ φU(x, y))

= ([x]∼φB , θV,U,x(y)) .

Let furthermore g ∈ G be arbitrary then successive use of (B.1) implies

θV,U,φB(g,x)(y) = pr2 ◦ φ
−1
V ◦ φU(φB(g, x), y)

= pr2 ◦ φ
−1
V ◦ φX(g, φU(x, y))

= pr2 ◦ φ
−1
V ◦ φX(g, φV (φ

−1
V ◦ φU(x, y)))

= pr2 ◦ φ
−1
V ◦ φX(g, φV (x, θV,U,x(y)))

= pr2 ◦ φ
−1
V ◦ φV (φB(g, x), θV,U,x(y))

= θV,U,x(y) .

Hence
θV,U,[x]∼φB

:= θV,U,x

is well defined and

φ̄−1V ◦ φ̄U([x]∼φB , y) = ([x]∼φB , θV,U,[x]∼φB
(y)) .

It follows that f̄ is a differentiable vector bundle with fiber F p.
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[Die82] J. Dieudonné. Foundations of Modern Analysis, volume 3. Aca-
demic Press, 1982.

[DP68] R.G. Douglas and C. Pearcy. On a topology for invariant sub-
spaces. J. Functional Analysis, 2:323–341, 1968.

[EH80] E. Emre and M.L.J. Hautus. A polynomial characterization of
(A,B)-invariant and reachability subspaces. SIAM J. Control and
Optimization, 18:420–436, 1980.

[FH97] P.A. Fuhrmann and U. Helmke. A homeomorphism between ob-
servable pairs and conditioned invariant subspaces. Systems and
Control Letters, 30:217–223, 1997.

[FH00] P.A. Fuhrmann and U. Helmke. On the parametrization of condi-
tioned invariant subspaces. In F. Colonius, U. Helmke, D. Prätzel-
Wolters, and F. Wirth, editors, Advances in mathematical systems
theory. A volume in honor of Diederich Hinrichsen on the occa-
sion of his 60th birthday, Systems and Control: Foundations and
Applications. Birkhäuser, Boston, 2000.
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Notation

Structures

C− stable part of the complex plane C 16
Cg symmetric subset of C containing ]−∞, c] 16
F the underlying field, here R or C 13
F (a) set of flag symbols of type a 169
F (a, b) set of (a, b)-admissible flag symbols 169
Fp(a, b) set of reversely (a, b)-admissible flag symbols 171
Fk[s] set of k-vectors with polynomial entries 50
Fk(s) set of k-vectors with rational entries 50
Kn,m set of combinations of m numbers with sum n 158
S(m), S(p) the symmetric group 21,34,159,169
Sκ(m), Sλ(p) group of min. length coset representatives 160,167
U [s] set of vectors in U with polynomial entries 50
U(s) set of vectors in U with rational entries 50

Matrices

Ac, Bc, Cc composite system matrices 43,63,68,77
AJ short for A− JC 28
AF short for A+BF 15
A,B,C system matrices in (dual) Brunovsky form 20,33

Ã, B̃, C̃ corestricted system matrices 23,35
Ā, B̄, C̄ restricted system matrices 23,35
H(i) Markov parameters 128
H(s) transfer matrix 128
On(C,A) observability matrix of (C,A) 29
Oκ(C,A) κ-partial observability matrix of (C,A) 109
←−
O κ(C,A) reverse κ-partial observability matrix of (C,A) 115
Oκ(C1, A1, C2, N) combined κ-partial observability matrix 120
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Notation

Rn(A,B) reachability matrix of (A,B) 16
Rµ(A,B) µ-partial reachability matrix of (A,B) 90
←−
R µ(A,B) reverse µ-partial reachability matrix of (A,B) 90
Rµ(A1, B1, N,B2) combined µ-partial reachability matrix 96
Rµ(E,A,B) µ-partial reachability matrix of (E,A,B) 141

Subspaces

E−(A), E+(A) sums of certain generalized eigenspaces 85
N (C,A) unobservable subspace of ẋ = Ax, y = Cx 29
O∗(U) min. observability subspace containing U 30
Oa∗(U) min. almost observab. subspace containing U 30
O0,O1, . . . ,O∞ subspace sequence of AOSA and its limit 32
R(A,B) reachable subspace of ẋ = Ax+Bu 16
R(U) subspace of points reachable from x(0) ∈ U 47
R∗(U) max. controllability subsp. contained in U 17
R∗a(U) max. almost controllab. subsp. contained in U 17
R0,R1, . . . ,R∞ subspace sequence of ACSA and its limit 19
V∗(U) max. (A,B)-invariant subsp. contained in U 17
Va
∗(U) max. almost (A,B)-inv. subsp. contained in U 17
V1,V2, . . . ,V∞ subspace sequence of ISA and its limit 19
V∗(U) min. (C,A)-invariant subsp. containing U 30
Va∗(U) min. almost (C,A)-inv. subsp. containing U 30
V1,V2, . . . ,V∞ subspace sequence of CISA and its limit 32

Maps

η r.s.e. action on admissible triples 95
Rk+1 Kalman embedding 91
Rµ+1 µ-partial Kalman embedding 92
σ similarity action on controllable pairs 89

Topological spaces

BS
V∗ Bruhat cell 169

Cabs(R,F i) absolutely continuous funct. f : [0, T ] −→ F i 14
Ck,p(F) r.s.e. classes of controllable triples 96
Ck,p(µ) r.s.e. classes of µ-regular triples 97
Ct
k,p(µ) r.s.e. classes of µ-tight triples 97

Ck
pw piecewise continuous functions f : [0, T ] −→ F k 26
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Notation

Fk(C,A) codim. k almost (C,A)-inv. with O∗ = F
n 124

Flag(a,Fp) partial flag manifold 168
Flag(a, b,Fp) generalized flag manifold 169
Gk(F

n) Grassmann manifold of k-dim. subspaces of Fn 100
Γ(K) square block Toeplitz type matrices 155
Γ(λ) square block Toeplitz type matrices 150
Ik(C,A) codimension k instantaneous subspaces 118
InvJn−k (C,A)-inv. subspaces of codim. k plus friends 100
Lloc1 (R,F i) locally integrable functions f : R −→ F i 14
M(K,µ) block Toeplitz type matrices 155
M(λ, µ) block Toeplitz type matrices 150
Nk,p(F) sim. classes of controllable pairs with A nilp. 90
Nk,p(µ) sim. classes of µ-regular pairs with A nilp. 90
N t
k,p(µ) sim. classes of µ-tight pairs with A nilp. 90
Oa(C,A) almost observability suspaces 118
Oa

k(C,A) codimension k almost observability subspaces 118
Obsk order k tracking observer parameters 98
Obsk,k order k tracking obs. param. with full rank V 99
Obsσk,k simil. classes of tracking observer parameters 100
Obsk(V ) order k tracking observers for V x 55

Obsnilk (V ) nilpotent singular tracking observers for V x 140

Obssingk (V ) singular tracking observers for V x 145
Obsoutq (V ) order q tracking observers with output for V x 136
P (a) parabolic subgroup of GL(F p) 171
P id
k (V ) µ-representations of V 134
←−
P id

k (V ) reverse µ-representations of V 140

P̂ id
k (V ) µ-representations of V by triples 144
Pq(H

ν) similarity classes of order q partial realizations 131
Pq(V ) order q partial realizations of V 136
Σx(A,B) state trajectories of ẋ = Ax+Bu 14
Σk,p(F) similarity classes of controllable pairs 89
Σk,p(µ) similarity classes of µ-regular pairs 90
Σt
k,p(µ) similarity classes of µ-tight pairs 90

St(k, n) Stiefel manifold 101
Tk(C,A) codimension k tight subspaces 110
Tk(K,µ) Kronecker stratum of tight subspaces 157
Tk(λ, µ) Brunovsky stratum of tight subspaces 153
V (a, b) matrices representing flags in Flag(a, b,F p) 171
V(C,A) (C,A)-invariant subspaces 110
Vk(C,A) codimension k (C,A)-invariant subspaces 110
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Notation

VKerVq (C,A) codim. q (C,A)-inv. subspaces in KerV 131
Va(C,A) almost (C,A)-invariant subspaces 124
Vka (C,A) codim. k almost (C,A)-invariant subspaces 124

System and subspace invariants

a = (a1, . . . , aµ1) conjugate indices of λ lined up with µ 168
[A,B]σ similarity class of the controllable pair (A,B) 89
[A,B,C]σ simil. class of the partial realization (A,B,C) 131
b = (b1, . . . , bµ1) conjugate indices of µ 168
[E,A,B]η r.s.e. class of the controllable triple (E,A,B) 96
[K,L,M, V ]σ simil. class of observer parameters 100
κ = (κ1, . . . , κm) controllability indices of (A,B) 20
K = (K1, . . . , Km) Kronecker indices of (A,B) 21
K = (K1, . . . , Kp) Kronecker indices of (C,A) or V 34,154
λ = (λ1, . . . , λp) restriction indices 148
µ = (µ1, . . . , µp) observability indices of (C,A) 33

Miscellaneus

n1(A) nilpotency index of A 111
πV∗(S) permutation of a flag symbol 169
rV∗(S) row indices of a flag symbol 169
σ(A) the spectrum of A 59
sigV∗(V) signature of a subspace 168
sigV∗(V) signature of a flag 168
Tij transposition of combinations 159
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Index

(A,B)-invariant subspace, 14, 44
(C,A)-invariant subspace, 28, 44
(a, b)-admissible, 169

reversely, 171
G-manifold, 177
µ-partial

Kalman embedding, 92
reachability matrix, 90

µ-regular
pair, 90
triple, 97

µ-tight
pair, 90
triple, 97

ρ-tight subspace, 56

adherence order, 169
admissible

system, 45
triple, 95

algorithms
ACSA, 19
AOSA, 32
CISA, 32
ISA, 19

almost
(A,B)-invariant subspace, 14
(C,A)-invariant subspace, 28, 49
controllability subspace, 15
observability subspace, 29, 49

asymptotic
observer, 67

output observer, 77

behavior, 14
block Toeplitz matrix, 152, 156
Bruhat

cell, 169
decomposition, 169
order, 160, 169

Brunovsky
form, 20, 33
strata, 22, 34, 153

canonical form
Brunovsky, 20
dual Brunovsky, 33
dual Kronecker, 34
generalized Echelon, 171
Kronecker, 21

cell, 168
Bruhat, 169
decomposition, 167
Kronecker, 164

chain of subspaces, 16, 30
coasting subspace, 17
combinations, 158
combined µ-partial reachability

matrix, 96
complementary condition, 125
conditioned invariant subspace, 44
conjugate indices, 129, 160, 168
containing a function, 64
control, 13, 39
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Index

control system, 13
controllability

indices, 20
subspace, 15, 57

controllable triple, 96
controlled invariant subspace, 44
corestricted system, 23, 35
corestriction indices, 24, 36
cover, 159

degree of tightness, 56
descriptor system, 96
detectability subspace, 65
direct feedthrough, 41, 62, 65, 77
distributions, 18
disturbance, 70
dominance order, 163
dual system, 28
duality, 26

Echelon form
generalized, 171

estimate, 40
estimation error, 40, 70

feedback, 15
equivalence, 20
transformation, 20
transformation group, 20

fiber, 181
flag

reference, 168
reverse standard, 170
signature, 168
standard, 169
symbol, 169
type, 168

flag manifold
generalized, 169
partial, 168

free action, 177
friend of a subspace, 15, 28, 44

frontier condition, 168
full order observer, 40

gain matrix, 39
generalized flag manifold, 169
graph map, 178
Grassmann

manifold, 91, 100, 110, 119

hidden modes, 35
homotopy equivalence, 173
hyperfunctions, 18

identity observer, 39
indices

conjugate, 129, 160, 168
controllability, 20
corestriction, 24, 36
Kronecker, 21, 34, 156
nilpotency, 111
observability, 33
restriction, 24, 36, 148

initial manifold, 45
innovations, 40
input, 13, 39
input-state function, 26
instantaneous subspace, 30
instantaneously acting observer, 31
invariant factors, 22, 35
isotropy subgroup, 177

Kalman embedding, 92
µ-partial, 92

Kronecker
cell, 164
form, 21, 34
indices, 21, 34, 156
order, 159
strata, 22, 34, 157

length function, 160
lexicographic order, 158
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Index

Lie group action, 177
Lie transformation group, 177
linear DAE, 96
local trivialization, 181
Luenberger observer, 65

Möbiusband, 180
Markov parameters, 128
matrix

µ-partial reachability, 90
block Toeplitz, 152, 156
combined µ-partial

reachability, 96
reverse µ-partial

reachability, 90
unipotent, 21, 34, 154

matrix pencil, 45, 95
maximal subspace, 17
McMillan degree, 129
minimal order observer, 83
minimal subspace, 30

natural projection, 177
nice partial realization

problem, 128
nice sequence, 129
nilpotency index, 111

observability
indices, 33
subspace, 29, 57

observable observer, 77
observer

asymptotic, 67
asymptotic output, 77
full order, 40
gain matrix, 39
identity, 39
instananeously acting, 31
Luenberger, 65
minimal order, 83
observable, 77

order, 41, 46, 63, 67, 77
partial, 41
PD, 54
PID, 54, 66
poles, 59
reduced order, 41, 65
singular partially tracking, 46
singular tracking, 46
stable, 69, 77
tracking, 41
tracking output, 63

orbit, 177
orbit space, 177
order

adherence, 169
Bruhat, 160, 169
cover, 159
dominance, 163
Kronecker, 159
lexicographic, 158
of an observer, 41, 46, 63, 67, 77
specialization, 164

outer detectable subspace, 65, 73
output, 13, 39
output injection, 28

equivalence, 33
transformation, 33
transformation group, 33

pair
µ-regular, 90
µ-tight, 90

parabolic subgroup, 171
partial

flag manifold, 168
observer, 41
realization, 129
realization problem, 128
tracking property, 46

partitions, 164
PD-observer, 54
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Index

pencil
of matrices, 45, 95
regular, 45, 95

PID-observer, 54, 66
poles of an observer, 59
position of a combination, 158
preobserver, 65

quasi Weierstraß form, 142

reachable subspace, 16, 43, 67
realization problem

nice partial, 128
partial, 128

reduced order observer, 41, 65
reference flag, 168
regular pencil, 45, 95
restricted feedback

equivalence, 21
transformation, 21
transformation group, 21

restricted output injection
equivalence, 34
transformation, 34
transformation group, 34

restricted system, 23, 35
equivalence action, 95
equivalence class, 96

restriction
indices, 24, 36, 148
pencil, 126

retract
strong deformation, 173

reverse µ-partial reachability
matrix, 90

reverse standard flag, 170
reversely (a, b)-admissible, 171

semilattice structure, 17, 30
signature

of a flag, 168
of a subspace, 168

similarity
action, 89, 100
class, 89, 100, 131

singular
control system, 96
partially tracking observer, 46
tracking observer, 46

sliding subspace, 17
specialization order, 164
stabilizability subspace, 65
stabilizer subgroup, 152, 177
stable observer, 69, 77
standard flag, 169
state, 13, 39

estimate, 40
space, 13

state-output function, 27
state-state function, 26
Stiefel manifold, 101
strata

Brunovsky, 22, 34, 153
Kronecker, 22, 34, 157

strong deformation retract, 173
subspace

(A,B)-invariant, 14, 44
(C,A)-invariant, 28, 44
ρ-tight, 56
almost (A,B)-invariant, 14
almost (C,A)-invariant, 28, 49
almost controllability, 15
almost observability, 29, 49
coasting, 17
conditioned invariant, 44
controllability, 15, 57
controlled invariant, 44
detectability, 65
instantaneous, 30
maximal, 17
minimal, 30
observability, 29, 57
outer detectable, 65, 73
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Index

reachable, 16, 43, 67
signature, 168
sliding, 17
stabilizability, 65
tight, 30, 56
unobservable, 29, 49, 67

subspaces, chain of, 16, 30
system

control, 13, 39
disturbance, 70
input, 13, 39
output, 13, 39
state, 13, 39

tight subspace, 30, 56
time reversal, 28
tracking

error, 42, 66
observer, 41
output observer, 63
output property, 63
property, 40, 41, 46

transfer function, 128
transitive action, 177
transposition of a combination, 159
transversal intersection, 31
triple

µ-regular, 97
µ-tight, 97
admissible, 95
controllable, 96

trivialization
local, 181

uncontrollable modes, 22
unipotent matrix, 21, 34, 154
unobservable subspace, 29, 49, 67

vector bundle, 181
differentiable, 181

Weierstraß decomposition, 45, 95

Weierstraß form, quasi, 142

Young diagram, 158
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