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Abstract

Neuroanatomical data in fly brain research are mostly available as spatial gene
expression patterns of genetically distinct fly strains. The Drosophila standard
brain, which was developed in the past to provide a reference coordinate system,
can be used to integrate these data. Working with the standard brain requires
advanced image processing methods, including visualisation, segmentation and
registration. The previously published VIB Protocol addressed the problem of
image registration. Unfortunately, its usage was severely limited by the necessity
of manually labelling a predefined set of neuropils in the brain images at hand.

In this work I present novel tools to facilitate the work with the Drosophila
standard brain. These tools are integrated in a well-known open-source image
processing framework which can potentially serve as a common platform for im-
age analysis in the neuroanatomical research community: ImageJ. In particular,
a hardware-accelerated 3D visualisation framework was developed for ImageJ
which extends its limited 3D visualisation capabilities. It is used for the devel-
opment of a novel semi-automatic segmentation method, which implements au-
tomatic surface growing based on user-provided seed points. Template surfaces,
incorporated with a modified variant of an active surface model, complement
the segmentation. An automatic non-rigid warping algorithm is applied, based
on point correspondences established through the extracted surfaces. Finally,
I show how the individual steps can be fully automated, and demonstrate its
application for the successful registration of fly brain images.

The new tools are freely available as ImageJ plugins. I compare the results
obtained by the introduced methods with the output of the VIB Protocol and
conclude that our methods reduce the required effort five to ten fold. Further-
more, reproducibility and accuracy are enhanced using the proposed tools.



Zusammenfassung

Expressionsmuster genetisch manipulierter Fliegenstämme machen den Groß-
teil neuroanatomischer Daten aus, wie sie in der Gehirnforschung der Taufliege
Drosophila melanogaster entstehen. Das Drosophila Standardgehirn wurde u.a.
entwickelt, um die Integration dieser Daten in ein einheitliches Referenz-Koor-
dinatensystem zu ermöglichen. Die Arbeit mit dem Standardgehirn erfordert
hochentwickelte Bildverarbeitungsmethoden, u.a. zur 3D Visualisierung, Seg-
mentierung und Registrierung. Das bereits publizierte “VIB Protocol” stellte
bisher eine Möglichkeit für die Registrierung zur Verfügung, die aber duch die
Notwendigkeit manueller Segmentierung bestimmter Neuropile nur eingeschrnkt
verwendbar war.

In der vorliegenden Arbeit stelle ich neue Werkzeuge vor, die den Umgang
mit dem Standardgehirn erleichtern. Sie sind in ein bekanntes, offenes Bildver-
arbeitungsprogramm integriert, das potentiell als Standardsoftware in der neu-
roanatomischen Forschung dienen kann: ImageJ. Im Zuge dieser Arbeit wurde
eine hardwarebeschleunigte 3D Visualisierungs-Bibliothek entwickelt, die die Vi-
sualisierungsmöglichkeiten von ImageJ ergänzt. Auf Basis dieser Entwicklung
wurde anschließend ein neuer halbautomatischer Segmentierungs-Algorithmus
erstellt. In diesem Algorithmus werden Neuropil-Oberflächen, ausgehend von
ausgewählten Ausgangspunkten, aufgebaut und erweitert. Vorlagen von Neuropil-
Oberflächen aus der Segmentierung eines Referenz-Datensatzes, die anhand
eines modifizierten “Active Surface” Modells einbezogen werden können, ergän-
zen die aktuelle Segmentierung. Die so erhaltenen Oberflächen ermöglichen es,
korrespondierende Landmarken in den Bildern zu ermitteln, die für eine nicht-
rigide Registrierung verwendet werden. Schließlich wird dargelegt, wie die einzel-
nen Schritte voll automatisiert werden können, um die Bilder der Fliegengehirne
aufeinander abzubilden.

Die vorgestellten Methoden sind frei als Erweiterungen für ImageJ verfügbar
(Plugins). Ein direkter Vergleich mit dem VIB Protokoll zeigt, dass durch die
vorgestellten Methoden nicht nur der Benutzeraufwand auf ein Sechstel re-
duziert, sondern dass gleichzeitig auch die Genauigkeit und Reproduzierbarkeit
erhöht wird.
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IntroductionIntroduction 11
The brain has been a fascinating subject of investigation ever since for numerous
researchers. Its complexity is enormous, which becomes obvious even in such
daily activities like driving a car during rush hour. Not less enormous is the
efficiency by which it provides its capabilities. To gain a deeper understanding
of how the brain works it is necessary to link its anatomical subunits to the func-
tions they perform, and to understand how these subunits are connected, both
physically and functionally. For Drosophila, more than for any other organism,
genetic and molecular tools exist for investigating these questions. Established
techniques such as the Gal4-UAS system allow to specifically express arbitrary
genes in arbitrary subregions of the fly brain. Subsequent behavioural assays po-
tentially unveil the effect of this manipulation. Finally, imaging techniques like
confocal microscopy provide the means to visualise the manipulations at high
resolution as 3D image volumes representing the entire fly brain. As a result of
the availability of such appropriate techniques, thousands of genetically differ-
ent fly lines have been established and characterised by their spatial expression
patterns. Eventually, they will be associated with functional phenotypes.

This large amount of available knowledge must be organised. The Drosophila
standard brain was developed to integrate these data in a functional atlas of the
fly brain [1]. In this thesis computational methods are developed that facilitate
the work with the standard brain.

1.1 Background about image acquisition

The Gal4-UAS system

The Gal4-UAS system (fig. 1.1), first published in 1993 [2], provides the means
to manipulate gene expression in Drosophila brains. Two transgenic fly lines
are required, the Gal4 driver line and the UAS effector line. The genome of
the driver line contains the gene for the yeast transcription factor Gal4 under
the control of a specific promoter or enhancer. The genome of the UAS line
contains a Gal4 specific binding site, the so-called Upstream Activation Sequence
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GAL4 driver line

Promoter GAL4

x

UAS effector line

UAS GFP

GAL4/UAS line

Promoter GAL4

UAS GFP

GAL4 protein

Figure 1.1: UAS-Gal4 system. The Gal4 driver line, the genome of which
contains the gene for the transcription factor Gal4 under the control of a specific
enhancer or promoter, is crossed with the UAS line, which contains in its genome
a so-called effector gene. The genome of the progeny contains both Gal4 and
the effector gene. In tissue where the promoter is active, Gal4 is expressed and
binds to the UAS sequence, which activates the expression of the effector gene
(GFP in the figure).

(UAS), and downstream of it an effector gene, e.g. the gene producing GFP
(Green Fluorescent Protein). When the two lines are crossed, the genome of
the progeny flies contains both the Gal4 gene and the UAS sequence. In tissue
where Gal4 is expressed, it binds to the UAS sequence, activating thereby the
expression of the effector protein.

The location of the Gal4 gene in the driver line dictates in which tissue the
effector gene is expressed, while the UAS line determines the effector gene. The
combination of different driver and UAS lines allows to express in vivo arbitrary
proteins in a spatially restricted manner.

The fine-grained genetic control offered by molecular techniques like the
Gal4-UAS system makes Drosophila outstanding as a model organism in brain
research.

Immunohistochemistry

To visualise fly brains, the Gal4-UAS system can be used to express GFP at the
synapses in the fly brain. Expressed GFP is however often too weak for reliable
visualisation, so that immunohistochemical techniques are required. For the
brain images used throughout this work, the mouse antibody nc82 was used as
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Beam splitter
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Figure 1.2: Principle of the confocal microscope. Light with a discrete wave-
length, originating from a laser, is focused by an objective lens to a small sub-
volume of the sample. A pinhole restricts the detection to light emitted from
the focal plane, and discards light emitted above or below.

a primary antibody which binds to the ubiquitously expressed synapse protein
bruchpilot. A Cy3-tagged secondary anti-mouse antibody binds to the primary
antibody. The red-fluorescent Cy3 is visible under the confocal microscope. A
more detailed description of the staining protocol can be found in [1, 3]. All
the brain images used in this thesis were part of the Drosophila standard brain
project.

Confocal Microscopy

In a confocal microscope (fig. 1.2), a laser beam with discrete wavelengths is
focused by an objective lens to excite only a small subvolume within the sample.
The emitted light passes a pinhole before reaching the detecting photomultiplier.
The position and geometry of the pinhole allows emitted light from the focal
plane to pass and reach the detector, while light from above or below the focal
plane is blinded out. This accounts for the high effective resolution achieved
with confocal microscopy, compared to conventional wide-field microscopy [4].
The whole sample is scanned voxel by voxel. With a twenty-fold objective lens
it is possible to record stainings of entire fly brains.
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1.2 Research context and goals

The Drosophila standard brain

With the above mentioned techniques, studies of the Drosophila brain have led
to the generation of a large number of genetically distinct Gal4 driver lines. The
largest collections were established by the research groups of K. Ito (University
of Tokyo) and G. Rubin (Janelia Farm Research Campus, Washington), but a
significant number of other laboratories have generated their own fly lines. For
most of these lines, plans exist to make them publicly available. Typically, fly
lines are characterised by their expression patterns, which are usually stored as
confocal image stacks.

In 2002, K. Rein et al published the Drosophila standard brain [1]. They
described a method to align and average confocal images of adult fly brains, and
applied this method to 28 brains of each gender. They subsequently selected for
each gender the individual brain that correlated most to the calculated average
and declared them the Drosophila standard brains. Image alignment (or regis-
tration) was based on manual segmentation of several brain structures. Overall,
their analysis was performed using the commercially available software Amira
(Mercury Inc.).

Rein et al applied these methods to compare volume and shape differences
between male and female fly brains, between different wildtype stocks and be-
tween wildtype flies and structural mutants. Additionally, they aligned and
standardised Gal4 expression patterns. For this purpose, fly brains were typi-
cally double-stained; next to the expression-specific staining, a neuropil marker
like bruchpilot was used for a reference staining. Brain images were then aligned
to the standard brain, based on the reference staining.

The Drosophila standard brain offers a standardised reference fly brain. Line-
specific gene expression data can be characterised with respect to the standard-
ised coordinates of the template and integrated into a functional map of the
fly brain. Furthermore, aligned expression patterns can be averaged. Averaged
images represent the expression pattern of a specific fly line more reliably than
single specimens and they directly show their variability across specimens.

Research goals

The goal of this work is to develop computational methods that facilitate the
work with the standard brain by improving the tools for visualisation, segmen-
tation and alignment of confocal fly brain images. In particular, it focuses on
the automation of image segmentation and registration. Its main purpose is to
reduce the amount of work that is required by existing methods, thus allowing
to apply the introduced techniques broadly to the growing amount of available
data.
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1.3 Outline of this thesis

1.3.1 The Virtual Insect Brain Protocol.

Background In 2006, Jenett et al published the Virtual Insect Brain Protocol
(VIB Protocol). The VIB Protocol extended and refined the ideas of Rein et
al and provided a unified way to register fly brains to the standard brain. It
was implemented as a script suite for the commercial imaging software Amira
(Mercury Inc.). In chapter 2 the VIB Protocol is revisited. Disadvantages, orig-
inating from the dependence on Amira, are revealed: 1) Users need to purchase
an expensive Amira license. 2) Amira’s numerous runtime instabilities lead to
frequent crashes, invalidating the processing before. 3) New Amira versions are
in general not backwards-compatible, so that the VIB Protocol is limited to
specific versions.

Implementation To address these problems, the VIB protocol is ported to
the free image-processing platform ImageJ. ImageJ is not only easily extend-
able by so-called plugins, but also well-established in the biomedical microscopy
community. The VIB Protocol comprises several ordered steps: resampling the
images, manual segmentation of a defined set of neuropils, global rigid regis-
tration, neuropil-wise local registration, and averaging the individual channels.
These steps are implemented here as individual modules, which define mutual
dependencies. This modular design allows each module to verify the data it
depends on, and will facilitate the future extension to distributed computing.

Results The new version, based on ImageJ, improves the VIB protocol sub-
stantially. While delivering equivalent results in terms of alignment quality, the
design of the graphical user interface is no longer restricted to the limited possi-
bilities Amira offers. Consequently, usability is improved, and runtime instabil-
ities are avoided. The new version is available as an ImageJ plugin completely
for free.

1.3.2 3D visualisation

Background Chapter 3 describes a novel 3D visualisation framework for Im-
ageJ. Numerous software packages, both commercial and open-source, exist for
the visualisation of three-dimensional biomedical images. However, none of
them offers an appropriate solution, because they are either targeted to end-
users and do not allow to access their functionality programmatically, or they
are not written in the Java programming language and thus inaccessible to Im-
ageJ. The development of semi-automatic segmentation tools, as presented in
later chapters, requires advanced three-dimensional rendering capabilities, such
as a combined display of 3D image volumes and segmented surfaces. Addition-
ally, means for interactive user input are needed, which allow an expert to guide
the segmentation.
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Implementation For this purpose, a hard-ware accelerated 3D visualisation
library is developed. It is implemented in the Java programming language, and
utilises Java 3D for hardware-accelerated rendering. 3D images can be displayed
in several ways, for example as volume renderings (implemented via 2D texture
mapping) or as surfaces (using a variant of the marching cubes algorithm for
surface extraction). The different rendering modalities of 3D images can be
augmented with custom shapes, such as lines, points or triangles. Furthermore,
support for user interaction via mouse and keyboard is incorporated. Numerous
other features include volume editing, annotation and animation recording and
4D data display.

Results The presented framework offers a 3D visualisation solution both for
end-users (as an ImageJ plugin) and for developers. For the latter, it exposes
a public application programming interface (API) which allows to access its
functionality from third-party software programs. For the work presented in
subsequent chapters, it forms the groundwork for the development of semi-
automatic methods for segmentation, providing convenient means for interactive
user input to guide the algorithms.

1.3.3 Semi-automatic segmentation

Background Image alignment in the VIB Protocol is based on manual seg-
mentations of several brain structures in the confocal images. A user must
draw the outlines of a defined set of neuropils slice by slice. This task is not
only tedious and time-consuming, it is also highly subjective and thus con-
strains reproducibility. Chapters 4 and 5 address these problems and together
provide an alternative to the VIB Protocol. Chapter 4 thereby proposes a novel
semi-automatic method for segmenting the images.

Implementation The new method combines automatic surface growing with
template surfaces. From a seed point, a first triangle is constructed which forms
an initial surface. Iteratively, this surface is extended by new vertices. An
initial guess for the position of a new vertex is obtained assuming the existing
surface bends smoothly. After this, its position is optimised along the image
gradient. Repeated extension yields a surface which follows salient edges in the
image. Typically, the resulting surface (the model surface) lacks major parts.
To complete the segmentation, template surfaces are utilised: They are aligned
to the model image using a novel shape-preserving variant of an active surface
model. The active surface model is initialised by aligning the template surface
to the partial model surface, via the Iterative Closest Point (ICP) algorithm.

Results The methods presented in this chapter are implemented as semi-
automatic tools: The 3D visualisation library of chapter 3 provides means to
visualise the image, model and template surfaces. Via the 3D interface, the
user selects seed points and controls the growing surface conveniently via the
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scroll wheel. Furthermore, he adjusts the parameters of the active surface, the
evolvement of which is continuously updated in the 3D view. The proposed
methods allow to quickly and reliably segment the medulla, lobula, lobula plate
and central brain of the fly brain images.

1.3.4 Surface-based registration

Background Landmarks in images can be used for model-based non-rigid
registration, if correspondences across images are known. Recent research in
computer vision has revealed numerous methods for automatically detecting
landmark points in images and establishing correspondences between them.
Well-known representatives of such algorithms are the scale-invariant feature
transform (SIFT) or the multi-scale oriented patches (MOPS).

Implementation In chapter 5 it is demonstrated that these methods are not
applicable to the confocal images of fly brains. Instead, a different method
for identifying matching landmarks in these images is elaborated, based on the
surfaces obtained in chapter 4. For both the model and the reference image,
surfaces of the medulla, lobula, lobula plate and the central brain are extracted
as described there. These surfaces are subsequently aligned using the Iterative
Closest Point algorithm. After the alignment, a point pair (i.e. one point of the
template and one of the model surface) is considered corresponding if the two
points are mutually nearest neighbours. For the non-elastic registration based
on the identified corresponding landmarks, two methods are implemented: a
thin-plate spline based algorithm and one based on moving least squares.

Results Typically, about ten thousand point correspondences are identified
per image pair. They are filtered, keeping only eight hundred of the best-
matching pairs that are evenly spread over the entire template surface. Filtering
eliminates false correspondences and thus avoids any warping artefacts. Empir-
ically, the thin-plate spline based warping algorithm is found to be superior to
the moving least squares approach. Using the former, the fly brain images can
be registered successfully.

1.3.5 Evaluation

Background Semi-automatic segmentation and landmark-based warping, as
introduced in chapters 4 and 5, together offer a powerful alternative to the VIB
Protocol for the alignment of fly brain images. In chapter 6 both methods are
compared regarding the quality of the resulting alignment and the required user
interaction.
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Implementation For the evaluation, ten fly brain images are selected from
the original collection of Drosophila brain images that were already part of the
Drosophila standard brain project. To run the VIB protocol in batch mode, the
images are pre-segmented. Hence, for each image a labelfield is obtained, which
stores for each pixel the associated neuropil. Registration is then performed
using both methods, the VIB Protocol and the novel method, as described
earlier. For both methods, the resulting transformations are not only applied
to the original intensity images, but also to the corresponding labelfields. From
the ten transformed labelfields, the mean overlap is calculated for each neuropil.

Results Using the novel methods, the time required for segmentation and
registration is reduced to about twenty percent of the time needed using the VIB
Protocol. At the same time, reproducibility is enhanced. The new approach
outperforms the VIB Protocol also in terms of alignment quality: All of the
sixteen labelled neuropils overlap to a larger extent, except one of the antennal
lobes, which shows a slightly reduced overlap.

1.3.6 Towards full automation

Background Two steps of the entire process described in chapters 4 and 5
require user intervention: In the surface growing algorithm, an operator chooses
seed points at the shape boundaries of interest and controls the extent to which
the surface is expanded. When incorporating template surfaces to complete
the segmentation, the user adjusts the parameters of the active surface model.
Chapter 7 proposes a possible way to fully automate these steps.

Implementation Concentrating on the fly brain images, a preprocessing pipe-
line is elaborated to automatically identify seed points for the growing surface
algorithm: After downsampling the images and edge-preserving smoothing by a
bilateral filter, a three-dimensional variant of a gradient filter is applied. In the
resulting images, only salient edges remain. Local maxima are chosen as seed
points for the surface growing algorithm, which yields then partial surfaces for
the medulla, lobula, lobula plate and central brain. As in chapter 4, template
surfaces are aligned using the Iterative Closest Point algorithm and the afore-
mentioned modified active surface model. For the latter, parameter settings
are established per neuropil which work reliably across images. The obtained
surfaces are subsequently used for landmark-based registration.

Results The proposed approach suggested a possible way for fully automating
the semi-automatic tools of previous chapters. Our implementation was suc-
cessfully tested with a few images from the collection of the original Drosophila
Standard Brain. In future work, the full set of images will be used for a complete
optimisation of the required parameter settings.
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2.1 The VIB Protocol revisited

The VIB Protocol [3] takes a collection of brain images as input and calculates
an average image from them, using user-provided segmented regions. For the
calculation of the average image, it is necessary to align (register) the individual
images to a reference image. The reference image is chosen by the user. The
individual steps of the VIB Protocol are described below. The VIB Protocol
can align any number of images to a reference image. For clearness, however,
only two images are used for the explanations below: the reference (also called
template) image and the model image (the one that is aligned to the template
image).

The VIB Protocol is capable of standardising multi-channel images, given
that one channel contains a reference staining. For the Drosophila brains, typ-
ically a ubiquitously expressed neuropil marker such as bruchpilot is used for
the reference staining. Driver-specific gene expression patterns, present in ad-
ditional channels, are aligned and standardised along with the reference chan-
nel. The example images in the explanations below are confocal recordings of
double-stainings. The corresponding flies were obtained by crossing the mush-
room body specific mb247 Gal4 driver line to UAS-mcd8GFP. Channel one
contains the mb247 expression pattern, channel two the nc82 reference staining
(fig. 2.1). The VIB Protocol consists of the following five steps:

Segmentation. The first step is to segment a set of neuropils in each brain
image that should be standardised. This is done by manually drawing outlines of
the neuropils, slice by slice. Having high-resolution images that consist of up to
200 slices, this step is extremely laborious and time-consuming. The neuropils
used for the VIB Protocol are the medulla, lobula, lobula plate, mushroom body
and antennal lobe (in both hemispheres). Figure 2.2 shows the segmentations
of these neuropils in different slices throughout a stack.
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Figure 2.1: The two channels of the confocal image of a double-staining. Both
channels are rendered as three-dimensional volume renderings, showing the en-
tire adult fly brain. The green channel contains an nc82 reference staining, the
red one the mushroom body specific mb247 expression pattern.

Figure 2.2: Segmentation of the image stacks. For the segmentation, the nc82
reference staining is used. Depicted here are some sample slices of a confocal
stack. Segmentation is performed manually by drawing the outlines of the
neuropils. Neuropils used in the VIB Protocol are the medulla (red), lobula
(orange), lobula plate (yellow), mushroom body (magenta) and antennal lobe
(blue).
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Figure 2.3: Global rigid registration. Based on the centres of gravity of the
segmented neuropils, a rigid transformation is estimated that roughly aligns
both brains. The model brain is shown in magenta, the template brain in green.
The left image shows both brains before, the right one after the alignment.

Global rigid registration. The given neuropil areas from the previous step
are subsequently used to calculate the centre of gravity for each segmented
neuropil. These points represent landmark correspondences across both images.
They are used to estimate a global rigid transformation that aligns both point
sets ([5], see figure 2.3). This is a computationally cheap method that brings
the brains roughly into the same orientation. Because fly brains of different
individuals differ slightly in shape (like the size of the neuropils and their relative
distance to each other), the centres of gravity do not match exactly. Further
optimisation is necessary.

Local rigid registration. The global rigid registration is used to initialise
local rigid alignments: Each neuropil is registered separately, again restricted to
rigid transformations. In contrast to the landmark-based method in the previous
step, an iterative approach must be used here. A multivariate optimisation
algorithm is applied to adjust the parameters of a rigid transformation that
maximises the similarity between both images. Conjugate Direction Search is
used as an optimisation algorithm [6], image similarity is calculated in terms of
shape overlap of the corresponding neuropil. This results in one transformation
per neuropil. The optimisation for the medulla is illustrated in figure 2.4.

Diffusion interpolation. The local registrations identify an optimal trans-
formation for each single neuropil. These transformations define a displacement
field, i.e. a vector field that points from each pixel location in the model image
to the corresponding location in the template image. Displacements are known
at the locations of the neuropils, but unknown in between. A diffusion-like iter-
ative algorithm is used to interpolate the vector field. Figure 2.5 illustrates the
interpolation of the vector field, for clearness purposes projected to two dimen-
sions. Figure 2.6 shows the result of diffusion interpolation for the two example
images.
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Figure 2.4: Local rigid registration. The global registration is refined for each
neuropil individually. Depicted here is the registration of the medulla. An iter-
ative algorithm adjusts the transformation parameters to maximise the overlap
of the medulla in the template (green) and model (magenta) image. The left
image shows both brains after the global rigid registration, the right one after
the local rigid registration of the medulla.

Figure 2.5: Principle of diffusion interpolation. Left the vector field initialised
with the displacements obtained from the local rigid registration. Regions be-
tween neuropils are interpolated (right). Shown here is a two-dimensional anal-
ogy with only an extract of the whole image containing one optical lobe is
shown.
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Figure 2.6: Results of diffusion interpolation. Left: the global rigidly registered
brains. Right: the result of the diffusion interpolation.

Averaging transformed images. The last step of the VIB Protocol averages
the transformed images pixel-wise. In addition to an average greyscale image,
an average labelfield is generated. The average labelfield stores for each pixel
the percentage of the overlap at that position. A value of 100 therefore states
that in all processed images the same neuropil occurs at that pixel position.

2.2 Implementation as a plugin for ImageJ

As mentioned earlier, the VIB Protocol, as published in [3], was implemented
as a suite of scripts for the commercial software Amira. The dependency on
Amira caused several disadvantages: 1) The Graphical User Interface suffered
from the limited possibilities Amira offers. 2) Amira was not freely available. Its
highly advanced features, mostly not required for the VIB Protocol, accounted
for its high price. 3) Changes in Amira, for example due to a version upgrade,
led repeatedly to incompatibilities between the current Amira version and the
available script suite. 4) Frequently occurring Amira crashes were annoying for
users and forced the authors to develop a storage mechanism that allowed to
restore the state before the crash. To circumvent these restrictions, we decided
to re-implement the VIB Protocol on a different platform, with the following
goals:

• Increased scientific audience: The new platform to be chosen should be
freely available to everybody, so that users of the VIB Protocol are no
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longer required to buy expensive software. A platform that is already
known to the neuroanatomy research community would be desirable.

• Reliability: The platform to be chosen should run robustly, without show-
ing the frequent crashes that occurred using Amira.

• Usability: The new version should provide an intuitive interface, making
it fail-proof also for non-experienced users.

These reasons guided our decision to the open-source image processing pack-
age ImageJ [7]. ImageJ started as a very small program developed by W. Ras-
band. It consists of a relatively small core that contains basic image processing
functionality, and is easily extensible due to its plugin-based design. This struc-
ture links users and developers, and accounts for its high popularity in the
scientific community, particularly in the field of imaging and microscopy. Hun-
dreds of plugins and macros exist, mostly developed by users in need of a certain
functionality. Most of these extensions are freely available online.

The VIB Protocol can benefit from several features of ImageJ: It is written
in the Java programming language, which facilitates development and deploy-
ment. It runs on any operating system supported by Java, without requiring
any platform-specific testing by the programmer. Many scientists in the field
already use ImageJ, which frees them from learning the usage of yet another
software. Finally, it provides support for all common file formats of microscope
images.

To meet ImageJ’s structure, we implement the VIB Protocol as a plugin.
The individual steps of the VIB Protocol are designed as separate modules. All
modules implement a common interface and specify dependencies on other mod-
ules (e.g. the module for calculating the local rigid transformations is dependent
on another module for segmentation). Each module checks that previous mod-
ules are executed completely and correctly before starting its own work. This
ensures the correct functioning of the overall protocol.

2.3 Usage of the ImageJ-based VIB Protocol

Running the VIB Protocol

The VIB Protocol is installed like other ImageJ plugins: After downloading the
JAR archive and copying it into ImageJ’s plugin folder, ImageJ needs to be
restarted. Alternatively, the VIB protocol can be used under Fiji [8]. Fiji is
an ImageJ distribution which bundles a large collection of lifescience-oriented
plugins. The VIB Protocol is already included in Fiji. After installation, the
VIB Protocol can be launched from a new entry in ImageJ’s (or Fiji’s) “Plugin”
menu, called “VIB Protocol”. This opens the main input dialog (fig 2.7), which
contains various input fields with the following meanings:
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Figure 2.7: Input dialog of the VIB Protocol. This window is exposed to the
user after he has started the software. It provides the means to specify the image
files for registration and various parameters which are explained in greater detail
in the text.

Files The area below “Files” contains the images that should be aligned to the
template image. The user can add and remove images using the corre-
sponding buttons next to this area.

Working directory The VIB Protocol stores all results in a dedicated output
folder, which must be specified here.

Template One image must be selected as the template image. This can either
be one of the images in the “Files” area, or a different image on the hard
disk.

No of channels The VIB Protocol can process multi-channel files. Here the
user must specify how many channels the files contain.

No of reference channel One channel is used as a reference channel. This
is the channel exposed to the user for segmenting the neuropils that are
later used for registration. When working with multi-channel images, the
user can specify here which channel represents the reference channel.

Resampling factor To accelerate processing of very large images resampling
should be considered, which can be specified here. When a resampling
factor of “1” is used, the original images are processed, otherwise the
images are downsampled by the given factor.
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Figure 2.8: Segmentation Editor. The Segmentation editor is implemented as
an independent ImageJ plugin which resembles the graphical user interface of
Amira’s segmentation editor.

The only other step that requires user interaction is the segmentation of
images. For this purpose, the segmentation editor is opened automatically for
each image. The segmentation editor (fig. 2.8) was implemented to resemble the
graphical user interface of Amira’s segmentation editor, facilitating for users of
the previous Amira-based VIB Protocol to switch to the new version conve-
niently.

Particularly two features of the segmentation editor are worth mentioning
here because they ease this time-consuming step. The first one is local thresh-
olding: The user can select a rough region of interest and then adjust a threshold
that is only applied to the selected area. For fly brains, this accelerates partic-
ularly the segmentation of the neuropils in the optic lobes. Another feature is
the interpolation of segmentations across slices: If the regions to be segmented
do not change much between consecutive slices, it is sufficient to segment them
in every 3rd, 4th or even 5th slice. Missing segmentations in between are then
obtained by shape interpolation.

Structure of the output

As mentioned earlier, the results of the VIB Protocol are saved to a dedicated,
user-specified output directory. After running the protocol, the following sub-
folders are available:
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images 1... n folders containing the result of splitting the
original image data into n separate channels.images n

labels Contains the labels, resulting from the segmentation
step.

resampled 1... If the user has specified a resampling factor greater
than one, these folders contain the resampled image
data of the n channels and the resampled labelfields
respectively.

resampled n,
resampled labels,

statistics Contains information about the labelfields, such as
centres of gravity, volumes, etc..

warped 1...
n+1 folders containing the n aligned channels and
the labelfield of each image.

warped n
warped labels

output 1... n+1 folders containing the averaged channels over
all images and the probability map of the
labelfields.

output n
output labels

Batch processing

Apart from the input dialog at the start, the segmentation is the only step that
requires user interaction. To run the VIB Protocol in batch mode, one can
segment the images in advance, using the segmentation editor as a standalone
plugin. The resulting labelfields must be copied to a folder called “labels” in
the output directory. The VIB Protocol then detects the labels automatically,
it avoids opening the segmentation editor and runs without further interruption.

Facilitating registration and segmentation of Drosophila brain images is the
focus of this work. After describing the implementation of a 3D visualisation
framework in the next chapter, I will return to these problems in chapters 4-
7. In these chapters, I will develop new semi- and fully-automatic methods
as alternatives to the VIB protocol. Both methods accelerate the registration
significantly and yield more reproducible results.
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In the previous chapter I have described the implementation of the VIB Protocol
for the non-commercial open-source platform ImageJ. ImageJ however was pri-
marily build for two-dimensional image processing. When new imaging methods
like confocal microscopy or electron microscopy emerged, it became important
to support three-dimensional data structures. This was built on top of the ex-
isting ImageJ, by introducing the concept of image stacks, which represented
collections of two-dimensional image slices. Still, all the algorithms worked (and
mostly still work) on a 2D basis, but could optionally be applied to all images
within a stack. More importantly, the only way to display 3D images was to
show them in a so-called stack window, which allowed users to scroll through
the slices of a stack. However, a real three-dimensional view was missing.

To establish and improve the usability of ImageJ in the area of neuroanatomy
in general, and in particular to offer users of the VIB Protocol advanced visu-
alisation possibilities for their three-dimensional data, we decided to develop a
viewer that can display image stacks in a virtual three-dimensional space. What
started as a small side-project turned out to become a major part of my work.
Not only did it fill a gap in ImageJ, which was a useful extension for many of
its users. Over time it also developed from an end-user application to a flexible
programming library that allows other applications to easily incorporate 3D vi-
sualisation. Hence, it supports the development of new algorithms for 3D image
processing by offering means for testing their correct functioning, for debugging
them and for interactive user input. Several third-party software products use
it by now, some of which will briefly be introduced at the end of this chapter
(section 3.8). For my own work, the viewer was of essential value for the devel-
opment of the semi-automated segmentation procedure that will be described
in chapters 4 and 5. This is why I devote a whole chapter to this part of my
work.

This chapter is organised as follows: In section 3.1 I briefly review existing
3D visualisation software and discuss why they did not fulfil our requirements.
Section 3.2 gives a short introduction to the concepts of Java 3D and Java 3D-
based programs. Section 3.3 outlines the internal structure of our framework,
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and section 3.4 shows how conventional image stacks can be rendered in a vir-
tual three-dimensional space as surfaces, volume renderings and orthoslices.
Section 3.5 then shows how these renderings of image stacks can be augmented
by custom geometric shapes, like points, lines, triangles and quads. Usage of the
framework, both for end-users and developers, is described in section 3.7, other
features of the framework are summarised in section 3.6, and its application in
third-party applications is discussed in section 3.8.

3.1 Previous work

We have identified a lack of accessible 3D/4D visualization software libraries
for biological image processing. Numerous image processing packages exist, ei-
ther commercial (Amira, Visage Imaging; MeVisLab, Mevis; Imaris, BitPlane;
Volocity, PerkinElmer) or open source (VOXX, [9]; VTK and VTK-based appli-
cations such as Slicer3D, BioImageXD, and V3D [10]; VolumeJ [11] and Volume
Viewer [12]). These packages offer excellent solutions for the specific problems
they were designed to solve. While end-users benefit from well-documented,
special-purpose commercial applications, the development of custom analytical
tools is better handled by open source packages. The application programming
interfaces of existing packages range from the non-existent for most closed com-
mercial solutions, to the very detailed and comprehensive open source VTK
environment.

We have created a software library for 3D/4D visualization, with functions
for surface extraction, volume rendering and interactive volume editing. Our li-
brary removes all the complexity of creating and interacting with image volumes
and meshes in a 3D environment. We have designed our library to enrich the
core functionality of ImageJ (and its descendant Fiji [8]), an open source image
processing application. Via ImageJ, our library has access to hundreds of biolog-
ical image file formats. Over the years, the scientific community has contributed
a very large number of ImageJ extensions, known as plugins, which provide read-
ily accessible implementations of numerous computer vision algorithms. With
our library, we empower the ImageJ scientific community to rapidly implement
custom analytical tools for 3D/4D data sets, with a minimal investment of
time and resources in handling the complex details of a hardware-accelerated
3D environment. This reduction in the difficulty of visualizing 3D information
commoditizes the usage of a 3D scene. For example, our library enables software
developers to visually assess the correctness of individual algorithmic steps, such
as the 3D shape of a mesh deformation. The simplicity of our library is in stark
contrast to existing libraries such as VTK, which require detailed knowledge of
the underlying data structures.
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Java 3D Node Function

BranchGroup A node capable of being the root
of several subtrees.

TransformGroup A node that transforms the subtree
below it by a specified transformation

Shape3D A node representing a displayable object.
A Shape3D consists of a Geometry and an
Appearance

OrientedGroup A node that orders its children in a defined z-order
Switch A node having several child nodes that can

be toggled on or off.

Table 3.1: The most prominent Java 3D node classes and their associated func-
tion in the scene graph.

3.2 A short primer about Java 3D

3D visualisation is computationally expensive. The power of the CPU alone,
even on modern computers, is not sufficient for smooth and interactive 3D ren-
dering. Graphic hardware, equipped with its own processors and memory, is
developed and optimised for highly parallel matrix calculations to support the
CPU in rendering complex 3D scenes. Two interfaces exist that allow to access
its resources programmatically, DirectX and OpenGL. Unfortunately, programs
written for DirectX will typically not run under OpenGL and vice versa. In-
stead of addressing these interfaces directly (through their Java bindings, like
Jogl), we use Java 3D. Java 3D is a fully object-oriented 3D visualisation library,
which forms an abstraction layer between software applications and the under-
lying graphic interface. It uses whatever is present in the machine on which the
program is running, either DirectX or OpenGL. If no hardware acceleration is
available at all, it will fall back to (slow) software rendering instead of failing or
crashing.

The most informative Java 3D documentations utilised for the implementa-
tion of this framework include Sun’s API tutorial [13] and the Java 3D online
API [14].

Java 3D uses the concept of a scene graph. The scene graph is an acyclic
directed graph that specifies the content and properties of a virtual universe.
Each 3D object is defined by a sequence of scene graph nodes characterising
its geometry, appearance, location and transformation. The Java 3D rendering
engine uses the information in the scene graph to project the given arrangement
of the 3D data volumes onto a 2D canvas. Different Java 3D node classes exist
which have different functionality. An overview over the most important nodes
is displayed in table 3.1.

Each Java 3D based program begins typically by instantiating a Virtual-

Universe, a class that represents the virtual 3D space in which objects are
displayed. The root node of the scene graph (an object of the class Locale)
can be accessed through the VirtualUniverse object and can be used to add
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nodes to the scene. A simple example makes the concept of the scene graph
clear: To implement two objects that can be transformed both together and
individually, a TransformGroup needs to be attached to the root node, which
would be responsible for the common transformation of the two objects. To
the TransformGroup, a BranchGroup is added, which in turn gets two child
TransformGroups, each of which is responsible for the transformation of the
object attached to it.

A 3D object itself is represented in Java 3D by the class Shape3D, which
consists of a Geometry object and an Appearance object. All possible geome-
tries of objects are composed of lists of so-called primitives, which are either
quads, triangles, lines or points. In contrast, the Appearance has many pa-
rameters like colour, transparency, textures, etc. The objects to be rendered in
our software are isosurfaces, volume renderings and orthoslices. Their Java 3D
implementation will be described in the following sections.

3.3 Overall program structure

The overall structure of our software is best described by its scene graph and
the relationships between the core classes. The scene graph (fig. 3.1) consists
of a trunk that splits up into a subtree for each 3D object. The trunk is com-
posed of global transformations that are applied to the whole 3D space: A
TransformGroup scales the whole scene globally, so that it fits into the field of
view. Two TransformGroups globally rotate and translate the scene and are
changed upon user interaction. Yet another TransformGroup centres the scene
in the field of view. To the last TransformGroup, a BranchGroup is attached
which splits the scene graph into several subtrees, each of which belongs to one
individual object. Each subtree in turn consists of different TransformGroups,
which are responsible for object-individual transformations. At the very end
of each subtree, there are the Shape3Ds that finally represent the 3D objects
themselves, which are either volume renderings, isosurfaces or orthoslices. The
provided information about transformations and visual properties is used by
Java 3D’s rendering engine to generate a 2D projection of the three-dimensional
objects onto the screen.

A simplified class diagram illustrates the relationships between the core
classes in the framework (fig. 3.2). The base package is ij3d, which contains
the two principal classes Content and Image3DUniverse. The latter repre-
sents the virtual space in which objects are displayed. It extends Java 3D’s
VirtualUniverse class and thus holds the root of the scene graph. When it is
instantiated, it composes the above described trunk of the scene graph. Because
all 3D objects must finally be attached to the trunk, Image3DUniverse provides
methods for adding and removing objects. Several other methods are offered
by this class for changing view parameters, such as the background colour, and
adjusting the global transformations.

Each 3D object is described by an instance of the Content class. This class
contains a reference to the image stack it displays, and additional attributes like
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Rotation-
Interpolator

TG Global scale transformation

TG Global rotation

TG Global translation

TG Global center translation

BG Root of tree

BG Root of the subtrees

BG

Subtree for a surface
object

TG Local translation

TG Local rotation

S
Switch for bounding box,
coordinate system etc

Shape3D surface

Mouse-
Behaviour

Light

Subtree for another
object

BG

Figure 3.1: Java 3D scene graph of the 3D viewer. Java 3D is based on a
scene graph, which determines which and how 3D objects are rendered. The
scene graph of our framework consists of global and local TransformGroup (TG)
objects. Global TGs represent transformations applied to all objects, local
TGs represent transformations of individual objects. Other nodes include
BranchGroup (BG) nodes, which are capable of holding several subtrees, and
Switch (S) nodes (the child nodes of which can be toggled on and off).
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Content
+ color:
+ transparency
+ transformation

n 1

1

1
ContentNode

+ colorUpdated()
+ transparencyUpdated()

DefaultUniverse

+ getScene()
+ getWindow()

DefaultAnimatableUniverse

+ startAnimation()
+ stopAnimation()
+ record()

Image3DUniverse

+ show()
+ close()
+ addVoltex()
+ addMesh()
+ getContent(name : String)
+ removeContent(name : String)
+ selectContent(name : String)

VoltexGroup

OrthoGroup

MeshGroup

CustomNode

Figure 3.2: Simplified class diagram of the 3D viewer. The most important
interactions between the core classes are depicted here. For normal users of
the API, two classes are sufficient for accessing most of the framework’s func-
tionality: Image3DUniverse and Content. The former represents the 3D space
and provides amongst others functions for adding and removing objects, the
latter represents 3D objects with functions for changing attributes like colour,
transparency etc.
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a b c

Figure 3.3: Implemented rendering possibilities for volumetric data. Shown here
is a confocal stack of a Drosophila brain, rendered (a) as a volume rendering,
(b) as orthoslices and (c) as an isosurface, using a threshold of 50.

the colour and transparency. It offers methods for changing these attributes
as well as the local transformations. Each Content object has exactly one
reference to a ContentNode object. ContentNode itself is abstract and extended
by the four classes VoltexGroup, MeshGroup, OrthoGroup and CustomNode.
They represent volume renderings, surface renderings, orthoslices and custom
geometries respectively.

3.4 Displaying stacks of 2D images in 3D

This framework aims to provide fast and advanced 3D visualisation possibili-
ties. ImageJ’s capabilities are limited to a basic stack window. We implement
three additional rendering modalities, which I describe in more detail below:
isosurfaces, volume renderings and orthoslices.

3.4.1 Displaying image stacks as volume renderings

Background
In contrast to other rendering methods, volume rendering does not require pre-
processing or information extracting prior to the actual rendering step. It pre-
serves as much information of the raw data as possible. Therefore, it is mostly
used to visualise the data as it is acquired by various microscopic methods.

Several ways exist to implement volume renderings. The first method in-
vestigated in the past is ray-tracing, often also called ray-casting. Ray-tracing
models a ray of sight for each pixel on the screen. Each such ray originates from
the users virtual eye position and extends beyond the corresponding screen
pixel. The 3D image volume is virtually placed behind the screen. Where the
extended ray intersects the 3D volume, equidistant samples are taken along the
ray, usually using tri-linear interpolation. Thus, the ray can be thought of as
the light ray reflected by the 3D object and reaching the observer (in reverse
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direction). To each sample point, an opacity value is assigned, using a transfer
function. Then, the samples along each ray are integrated to yield a final pixel
value.

Ray tracing results in particularly realistic, high-quality renderings, at the
cost of a high computational load: Since consumer graphic hardware does not
support ray-tracing per se, it was restricted to CPU implementations until
the advent of programmable graphic hardware, rendering it too slow for many
biomedical visualisation applications. Approximation and optimisation methods
have been investigated in the past, limiting the number of traversed volume pix-
els of each ray and allowing rays to terminate early once a certain opacity value
is reached [15, 16]. Despite these advances, other hardware-accelerated meth-
ods were favoured in the meantime by commercial applications, because of their
higher speed. With the advent of programmable graphic hardware, however,
ray-tracing re-attracted increased attention: Since each ray is independent, cal-
culations could easily be paralellised. This allowed to transfer large parts of the
computations to the graphic hardware, using custom fragment shaders [17, 18].

Another variant of volume rendering implementation is based on texture
mapping (see e.g. [19]). Being supported on consumer graphic hardware, this is
probably the most applied method in today’s commercial applications. 2D and
3D texture mapping are distinguished. 2D texture mapping arranges the data
as 2D rectangles one after another in the virtual 3D space, in an arbitrary ori-
entation. To each rectangle, a different image slice through the original volume
is mapped as a texture. An opacity value is assigned to each pixel, governed
by a transfer function. Depending on the direction of view and the orienta-
tion of the object, slices are either taken in the xy-, xz- or yz-plane through
the original volume. This accounts directly for the high memory requirement
of this method: Three copies of the data need to be cached, each of which is
loaded and displayed depending on the view direction. Only 2D interpolation
within each texture needs to be performed, which is supported by all common
graphic cards. This leads however to rendering artefacts when the displayed set
of slices is exchanged due to a change of the orientation. 3D texture mapping
avoids both problems. Unfortunately, it is only available on dedicated graphic
hardware supporting 3D interpolation. Additionally, the size of 3D textures is
very limited.

In this project, we want to implement 3D visualisation for a broad user audi-
ence, reducing hardware requirements as much as possible. Our software should
not be limited to dedicated workstations, but also run on common laptops,
as they are often found in biological research laboratories. Since CPU-based
ray-tracing is too slow for rendering the large data sets acquired by biomedical
microscopy, and both accelerated ray-tracing and 3D texture mapping require
dedicated graphic hardware, we decide to implement 2D texture mapping.

Implementation
The work presented here is highly inspired by Doug Gehringer’s online tuto-
rial [20]. For 2D texture mapping, the volume data to be displayed needs to be
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Figure 3.4: Interactive volume editing. Shown here is a volume rendering of
a Drosophila brain, together with a user-provided 2D ROI. The ROI was pro-
jected back onto the image volume, and the intersected region was filled black.
Afterwards, the brain was rotated to show the effect.

arranged in sets of 2D slices. This meets ImageJ’s stack concept. Here, how-
ever, three different stacks are required, resulting from reslicing the volume in
x-, y-, and z-direction. Each slice constitutes a Shape3D. As mentioned earlier,
a Shape3D consists of a Geometry and an Appearance. The Geometry of a slice
is simply given by a rectangle, the Appearance needs to load the appropriate
volume slice as a texture and assign a transparency value to each of its pixels.
In this way, three sets of Shape3Ds are obtained, each of which represents one
view direction. The slices of each set are attached to an OrderedGroup object,
which takes care of their correct z-ordering. The slices of the first three sets are
cloned, ordered reversely and attached to three additional OrderedGroups, rep-
resenting the negative view directions. From the resulting six OrderedGroups,
only one is displayed a time, depending on the view direction. For this purpose,
the six Groups are combined in a Switch node. Switch nodes allow to toggle
the visibility of their child nodes.

Results
Figures 3.3a and 3.4 show the volume renderings of a Drosophila brain, obtained
by confocal microscopy. Next to pure viewing, we implement methods that allow
the user to interactively edit volumes: The user can draw a 2D region of interest
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(ROI) on the canvas window. Each pixel of the 3D image volume the projection
of which falls within this ROI can then be set to an arbitrary colour. Using
black as a fill colour makes the corresponding pixels fully transparent and thus
effectively crops the data. This is shown in figure 3.4.

3.4.2 Displaying image stacks as isosurfaces

Background
In contrast to volume renderings, isosurface renderings do not render the vol-
umetric data directly. Rather, geometric information is extracted in form of a
surface that is composed of polygons, typically triangles. Thus, isosurface ren-
derings consist of two steps: extracting the surface triangles from the volumetric
data and rendering them in a virtual 3D space.

The second step is straightforward, using a low-level 3D library like OpenGL
or Java 3D. These libraries perform the necessary calculations for projecting the
given list of polygons onto the 2D screen, taking visual effects such as light into
account. This paragraph will therefore focus on the surface extraction step.

Isosurfaces assume that the object of interest is separable from its back-
ground by adjusting a threshold intensity value (similar to threshold-based seg-
mentation). The probably widest used technique for extracting a surface from
a 3D volume is the marching cubes technique [21]. Here, a cube “marches”
through the data volume pixel by pixel. At each position, the intensity values
at the corners of the cube are compared to the pre-defined threshold value. If
both values below and above the threshold occur, the isosurface must intersect
the cube. The algorithm then generates, based on a lookup table, the appropri-
ate triangles (faces) which resemble the part of the isosurface intersecting the
cube.

For each of the eight corners of a cube, the intensity value may be below
or above the isovalue. Thus 256 (28) cases can be distinguished. Common
implementations use a lookup table that stores the appropriate triangles for
each of these cases (also called configurations).

After the original publication of the marching cubes algorithm, much work
has been performed on improving shortcomings and performance. It was realised
that the original version could not only lead to topological inconsistencies, but
also to incorrect isosurfaces. Several researchers worked on resolutions to these
issues [22, 23, 24], mostly by developing modified and better suited lookup
tables.

Other work has focused on accelerating the surface extraction. A broadly-
investigated approach attempted to avoid the traversal of non-contributing empty
cubes. Wilhelms et al utilise the octree data structure for this purpose. An oc-
tree is a hierarchical data structure: At the top level, the whole data volume is
represented by one cube. At each consecutive level, the cube of the parent level
is split into eight child cubes. Each cube stores its maximum and minimum



3.4 Displaying stacks of 2D images in 3D 31

intensity values. By comparing the isovalue with both extrema, the marching
cubes algorithm can already decide at a high level into which parts of the vol-
ume it needs to descend. Empty parts are skipped early. Other interesting
methods aiming to avoid empty cubes include span-based techniques (the IS-
SUE and NOISE algorithms, [25, 26]). They store the minimum and maximum
for each single cube in a kd-tree, allowing to efficiently separate empty cubes
from non-empty ones.

Yet other approaches try to accelerate isosurface generation by avoiding to
produce polygonal surfaces at all. The polygonal representation is typically
used to render the results; reported rendering alternatives are based on ray-
casting [27, 19] or on a point-based rendering of the resulting isosurface ver-
tices [28].

The marching cubes algorithm is still subject of further improvement and
refinement. A comprehensive review was published recently [29], summarising
the different development branches.

Implementation
In this work, we implement the surface extraction method called “Marching
Cubes 33”, which uses an extended lookup table to avoid ambiguities and to
yield a topologically correct isosurface [22]. The C++ source code, published
together with a follow-up paper [24], is re-implemented in the Java program-
ming language, to be accessible to our framework. Having extracted the set of
triangles comprising the entire surface, a Java 3D Geometry object is instanti-
ated from them. Together with an Appearance object, they compose the final
Shape3D that represents the isosurface rendering.

Results
Figure 3.3c shows the isosurface rendering of a Drosophila brain. The original
volumetric image was obtained by confocal microscopy. After applying Gaussian
blurring, the marching cubes algorithm was applied with a threshold value of
50 (with intensity values ranging from 0 to 255).

Using a cube size corresponding to the dimensions of one voxel usually gener-
ates an enormous number of triangles, often slowing down the rendering process.
The number of resulting triangles can be reduced by increasing the cube size of
the algorithm, but this causes an undesired degradation of the surface resolu-
tion. Here we follow a different idea: In a post-processing step we reduce the
number of triangles, based on the local surface curvature. Plane parts of the
surface can be represented with less, larger triangles without loss of detail, while
the high number of triangles is preserved in regions with high curvature. We
implement a method that iteratively contracts edges in a flat neighbourhood.
Our approach is inspired by work published in [30]. A more detailed description
is postponed to chapter 4 (p. 46), since edge contraction also plays an important
role for the work on segmentation elaborated there.
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3.4.3 Displaying image stacks as orthoslices

Orthoslices display volumetric data by showing three orthogonal planes. From
the implementation point of view, orthoslices are a special case of volume ren-
dering. In contrast to those, only one slice is shown of each view direction,
and all three view directions are shown at the same time. Figure 3.3b shows
the orthoslices of the Drosophila brain image. In our application, the user can
scroll through the slices and toggle the visibility of individual view directions.
Orthoslices are particularly useful if the region under study is inside the volume.

3.5 Displaying custom geometries

Background
So far, it has been described how volumetric image data can be visualised in
3D, either as volume renderings, isosurfaces or orthoslices. While this proba-
bly suffices the common needs of end-users, application developers who use our
framework as a programming library may require additional capabilities. This
section shows how the aforementioned rendering modalities can be augmented
by custom shapes. Arbitrary geometric objects in the form of point, line, tri-
angle and quad meshes can be combined with the above described visualisation
possibilities for image volumes. Various use-cases illustrate the benefits: To
visualise a 3D feature detection algorithm, for example, the image data can be
displayed as a volume rendering, together with the identified feature points as
custom point objects. Similarly, to visualise a 3D segmentation algorithm one
can display the 3D image as orthoslices, augmenting it with the segmented sur-
face as a triangle mesh. Particularly this latter case will recur in the following
chapters of this thesis that address the problem of (semi-automatic) 3D image
segmentation (see for example figure 4.7, p. 45).

Implementation and results
To implement support for arbitrary shapes in our framework, a new package
called customnode is added. It contains mainly four new classes CustomTri-

angleMesh, CustomQuadMesh, CustomLineMesh and CustomPointMesh, which
represent custom triangle, quad, line and point meshes, respectively. All four
classes extend a newly introduced abstract class CustomMesh. A reference to a
CustomMesh object is kept in CustomMeshNode, which extends the abstract class
ContentNode (fig 3.5, compare also figure 3.2).

Because CustomMesh itself is a Shape3D, the four new classes are again
composed of a Geometry and an Appearance object. The Appearance is con-
structed similarly to that of isosurface shapes, while the Geometry utilises the
specialised Java 3D Geometry classes TriangleArray, QuadArray, LineArray
and PointArray.
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CustomMeshNode

ContentNode

+ colorUpdated()
+ transparencyUpdated() CustomPointMesh

CustomPointMeshCustomTriangleMesh

CustomLineMesh

CustomPointMeshCustomQuadMesh

CustomMesh

+ setColor()
+ setTransparency()
+ update()

-List<Point>

Figure 3.5: Class diagram of the customnode package. CustomMeshNode

extends ContentNode (see also figure 3.2) and holds a reference to an ob-
ject of type CustomMesh, an abstract class that is implemented by the
four classes CustomPointMesh, CustomLineMesh, CustomTriangleMesh and
CustomQuadMesh, which represent point, line, triangle and quad meshes respec-
tively.

3.6 Other features

Various other features of our framework that were not mentioned so far are
briefly summarised below.

Annotation in 3D space.
The 3D scene can display landmark annotations for each image volume. These
are added using the point tool of ImageJ’s toolbar. Existing landmarks are
listed in a table that allows the manipulation of their properties, such as name
and colour. Each image volume hosted in the 3D scene may have an associated
set of 3D landmarks of this type. A set of landmarks may be stored in a file for
external analysis and reloaded in subsequent annotation sessions.

Landmark-based 3D rigid registration of image volumes.
Two sets of homonymous landmarks positioned over two corresponding image
volumes can be used for estimating a rigid transformation model [5] (fig. 3.6).
Using this model, one image volume can be aligned onto the other. The “Trans-
form” menu offers options for exporting the transformed image volume as an
image stack suitable for further processing with ImageJ.

Animation and recording.
The 3D viewer offers an option to record a 360-degree rotation of any 3D scene.
Additionally, a recording mode is available. When this is activated, every man-
ual rotation, translation and zooming of the display or any of its elements is
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Figure 3.6: Interactive landmark-based registration. (a) Two unaligned
Drosophila brains. The reference brain is shown in green, the model brain (the
one to be registered) is shown in magenta. (b) Landmark selection in the model
brain. The display mode is automatically changed to orthoslices. The user can
scroll through the image planes and select landmarks, which are displayed in a
separate dialog window. Landmarks are shown yellow in the figure. They can
be moved, highlighted and renamed. (c) Subsequent landmark selection of the
template brain. (d) The landmarks are used to infer a rigid transformation that
aligns the model image to the template.
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Figure 3.7: Simulation of dendritic growth in the thorax of a Drosophila. To
simulate the growing of dendrites, the stack was displayed as a grey volume
rendering, into which the dendritic parts were painted continuously in red.

recorded; when stopped, the recording is displayed as an ImageJ stack. Record-
ings may be output as videos via ImageJ, to embed them for example in pre-
sentations.

Displaying 4D data
Modern microscopic techniques allow sometimes live imaging over time. Single
Plane Illumination Microscopy (SPIM), for example, is used to image and study
embryogenesis in Drosophila [31, 32]. The resulting time-lapse recordings of 3D
data sets can be visualised in our framework. Standard command buttons for
play, pause, fast-forward, etc. control the time point displayed in the viewer.
Interactive zooming, rotation and panning are enabled as the time sequence
progresses. When paused, the visualisation of the current time point may be
annotated, interacted with and measured as with any other 3D scene.

Time-dependent display of data can also be achieved by changing individual
voxel values in volume renderings. This method is used to simulate the growth of
dendrites: Figure 3.7 shows the thorax of a Drosophila. It displays the thorax as
a grey volume rendering, into which the dendritic parts are painted continuously
in red. The source code for this example is shown in appendix C.

3.7 Usage

Usage as a GUI application

Our 3D visualisation library includes a fully functional plugin for ImageJ named
“3D Viewer”. The plugin is listed automatically in ImageJ’s plugin menu. When
executed, the plugin initialises a new 3D scene, and automatically offers a dialog
for displaying any open image stack. The dialog provides the means to alter
the attributes of the image volume, such as its representation type (volume
rendering, isosurface or orthoslices), and its colour and transparency settings.
The menu of the 3D scene window offers options for inserting further image vol-
umes and editing, annotating and transforming them. Extensive documentation
is available online http://3dviewer.neurofly.de, along with video tutorials
and a “Frequently Asked Questions” section.

http://3dviewer.neurofly.de
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Usage as a programming library

Our framework exposes a public API to allow applications to integrate its fea-
tures. A basic source code example demonstrates the use-case of visualising
in 3D an image volume and a mesh. The example illustrates the development
of an image segmentation algorithm, which extracts the boundary of the struc-
tures of interest as surfaces and represents them as a mesh composed of triangles.

Listing 3.1: A basic source code example.

1 Image3DUniverse univ = new Image3DUniverse ( ) ;
2 univ . show ( ) ;
3
4 ImagePlus imp = IJ . openImage ( ” f l y b r a i n . t i f ” ) ;
5 Content c = univ . addOrthoslice ( imp ) ;
6
7 List<Point3f> vertices = createVertices ( ) ;
8 CustomMesh cm = new CustomTriangleMesh ( vertices ) ;
9 univ . addCustomMesh ( cm , ” t r i a n g l e mesh” ) ;

Line 1-3 The first step is to instantiate an object of the class Image3DUniverse.
Calling its show() method opens a new window to show the 3D scene. The scene
graph is set up automatically.

Line 4-6 Next, the image volume is loaded. It is displayed as orthoslices in the
3D scene by calling the addOrthoslice() method. Alternatively, addVoltex()
or addMesh() could be used to display the image as a volume or isosurface
rendering, respectively.

Line 7-9 Assuming that there exists an external method createVertices()

that returns a list of points describing the vertices of the surface, and that three
consecutive vertices define a triangle, these lines show how to make a custom
triangle mesh and add it to the scene.

The result looks similar to figure 4.7, which shows a confocal image of a fly
brain together with parts of the surface of the medulla and the lobula.

Documentation in the form of source code examples is available online at
http://3dviewer.neurofly.de, in the Developer HowTos category. The doc-
umentation demonstrates in a tutorial style the available functionality of our
framework.

http://3dviewer.neurofly.de
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a b

Figure 3.8: Third-party applications using our framework for 3D visualisation.
(a) Visualisation of bead-based registration of the different views obtained by
SPIM, rendering the beads as point meshes. (b) Snapshot of the Simple Neurite
Tracer application, featuring the central compartments of the Drosophila brain.
The intensity image is displayed as a volume rendering (grey), the protocerebral
bridge and the fan-shaped body are shown as surface renderings (cyan & yellow),
and the produced traces are displayed as custom meshes (magenta & green).

3.8 Application in third-party software

Numerous ImageJ-based applications currently use our 3D visualisation library.
I briefly discuss three key applications below, illustrating the breadth of func-
tionality we provide.

The Simple Neurite Tracer [33, 34] is an ImageJ plugin for semi-automated
tracing of neurons in 3D image data. The application provides semiautomatic
segmentation of filament-like structures such as neural arborisations and blood
vessels. A starting point is chosen and then the filament is auto-traced up to
a desired end point. The traced 3D path is visualised using components of
our framework (fig. 3.8b). This example demonstrates how an analytical tool
for measuring complex 3D structures can be augmented with 3D visualisation
capabilities to display those objects.

An algorithm has been developed for registering images of a 3D sample,
where each image volume represents a different angle of view obtained by Single
Plane Illumination Microscopy [31]. The implementation of this complex algo-
rithm required the 3D visualisation of intermediate and final image registration
steps. Our library enabled the algorithm developers to generate the required
visualisations with very little effort (fig. 3.8a).

TrakEM2 is an ImageJ plugin for visualisation, analysis, segmentation, re-
construction and registration of very large 3D image data sets obtained by
serial section electron microscopy [35, 36]. TrakEM2 makes extensive usage
of our framework for interaction with the 3D representation of image volumes
and segmented objects of interest. The development of our library empowered
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TrakEM2 developers to plan and design for 3D interactive features that would
not have been possible otherwise. Reciprocally, the high-performance require-
ments of TrakEM2 drove implementation of parallel processing strategies for
isosurface extraction and mesh composition in the 3D scene.

The interaction of our library with other software packages, each with specific
requirements, promotes the development of new features and improves perfor-
mance. These improvements then propagate back and enhance other ImageJ
applications.
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In chapter 2 I have introduced the VIB Protocol. As shown there, its alignment
strategy is based on the manually obtained segmentations of specific neuropils.
Manual segmentation constitutes not only a time-consuming and tedious task
that discourages many potential users from applying the VIB Protocol, it is
also highly subjective. Since the borders between neuropils are sometimes only
weakly defined, it is difficult to obtain reproducible results in repeated segmen-
tation rounds, even if performed by the same operator. To circumvent these
shortcomings, segmentation needs to be automated, at least partially.

Automatic image segmentation is one of the oldest problems in image pro-
cessing, and remains still subject of current research, due to the variety of image
modalities. Segmentation methods can rarely be transferred from one image
type to another, and the emergence of new imaging methods continuously re-
quires further development and adjustment of existing algorithms. Nevertheless,
several approaches for fully-automated image segmentation have proven success-
ful in the past. They can roughly be divided into traditional and model-based
methods.

Representatives for the traditional approach to image segmentation are global
and local thresholding [37, 38, 39], region growing [40], the Watershed algorithm
[41] and edge based methods (such as the Sobel, Canny and Laplacian filters,
see for example [42]). Many techniques of this category were applied and tested
comprehensively with confocal images of the Drosophila brain [43]. In summary,
these methods are based on local image information and therefore susceptible
to noise and boundary discontinuities; they fail if the boundaries of structures
are indistinct or disconnected.

The family of deformable models belongs to the second, model-based cate-
gory. The most famous representative of this family is the so-called “snake”,
introduced by Kass et al [44]. Their applicability to biological and medical
images was soon recognised, after which they were extensively adapted and ex-
tended to many segmentation tasks in this area. A full survey of deformable
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models is beyond the scope of this thesis, but the fundamental ideas and devel-
opments are introduced in section 4.3.1.

In this chapter, I combine the traditional and the model-based approach to
develop a new semi-automatic procedure for the segmentation of confocal images
of fly brains. In section 4.1 I introduce a new edge-based method for interactive
surface extraction. This new technique results in incomplete surfaces. To obtain
complete segmentations, template surfaces are utilised, the generation of which
I describe in section 4.2. Together with the partial surfaces, they are used in
section 4.3 to initialise an active surface model that allows to extract reliably the
surfaces of the central brain and the neuropils in the optic lobes. In chapter 5,
these surfaces are used to apply a non-rigid registration method.

4.1 Automatic surface extension

4.1.1 Procedure overview

The semi-automatic segmentation approach described below utilises user-provi-
ded seed points and image gradients to implement an automatically extending
surface. The surface is generated as a triangle mesh and aims to resemble the
surface of the anatomical structure to be segmented. The investigated image
is loaded into the 3D viewer (using the 3D visualisation methods described in
chapter 3) and rendered as a set of orthoslices. This allows the user to conve-
niently start the segmentation by selecting a point on the shape boundary of
interest. The algorithm generates a first triangle that forms the initial mesh.
This mesh is then extended automatically, assuming that the boundary of the
extracted shape does not bend abruptly. Surface extension is accomplished by
repeatedly selecting a point beyond the surface boundary and incorporating it
into the existing surface. More precisely, a point outside the surface, but in the
tangent plane of one of its previous boundary points, is constructed (fig. 4.1).
The new point is moved along the image gradient at the new position, until
the absolute value of the gradient is maximised. New triangles are then con-
structed from the new point and incorporated into the existing surface. Details
about the construction of the new point are described below. The user controls
conveniently the extent to which the surface grows via the scroll wheel of the
mouse.

4.1.2 Implementation

Selection of edges to extend
The existing surface is iteratively extended by connecting a new point to ex-
isting border edges. Each iteration starts with selecting the edges that become
connected to the new point. This comprises four steps (fig. 4.2): 1) From the
existing surface, the border point with the smallest angle enclosed by the two
adjacent edges is selected. 2) All edges within a certain distance are collected.
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Figure 4.1: Principle of automatic surface extension. The given part of a surface
can be extended by adding a new point (P’) that is in the tangent plane of a
point on the old surface boundary (P) and is only a small distance apart from
the surface border. The new point is subsequently moved along the image
gradient to the position (P”) where the gradient is maximal (indicated by the
green contour).

3) From this set of edges, iteratively the furthermost is removed, until all re-
maining edges form valid triangles with the new point. A triangle is considered
valid if there is no obtuse angle. 4) Some stop criteria (to be described later)
are evaluated to prevent the surface from growing in wrong directions, before
the triangles are finally incorporated into the existing surface.

Construction of a new surface point
After identifying the next edge(s) to extend, the new surface point is calculated
as follows (fig. 4.3): First, the third point of the triangle containing the edge
is projected onto the plane that is perpendicular to the edge and intersects its
midpoint. The projected point is mirrored at the image gradient at the edge
midpoint. Finally, this point is moved along the image gradient at the new
position, until its maximum is reached.

The image gradient at a position p = (px, py, pz) is a vector pointing into
the direction where the intensity in the image volume changes most. Its length
is proportional to the intensity change. The vector is calculated using finite
differences: grad(p) = (dx dy dz)T , where dx = ( I(px + 1, py, pz) − I(px −
1, py, pz) ) / 2 and I(p) is the intensity at position p. In case of an anisotropically
calibrated image, it is important to multiply the denominator with the voxel
size.

If there is more than one edge to extend, the above described procedure is
repeated for each edge, and the final position of the new point is determined by
averaging the positions of the single candidates.
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Figure 4.2: Edge selection for automatic surface extension. In each iteration,
the border point with the smallest angle (enclosed by the adjacent edges) is
selected (p1). From the edges in its neighbourhood, those are chosen (e1 and
e2) which could be combined to new triangles by a single new point (pnew).
Several criteria must be fulfilled before the existing surface is indeed extended
by the new triangle candidates.
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Figure 4.3: Construction of a new surface point. The third point (p1) of the
triangle containing the edge is first projected onto a plane (blue) that is per-
pendicular to the edge and passes through its midpoint (p2). This point is then
mirrored at the image normal at the midpoint of the edge, resulting in p3. In
a final step, which is not shown in this figure, p3 is moved along the image
gradient (at p3) until it reaches the maximum of the gradient.
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Stop criteria
To avoid that the surface grows in the wrong direction, several criteria are
elaborated that must be fulfilled by the new triangle candidates:

• Directions of the surface normals
The surface normals of the new triangle candidates are compared to the
surface normals of the triangles that are extended. If the angle between
both exceeds a certain threshold (chosen to be 45◦), the triangles are not
added, and the edge to be extended is marked as not-extendable.

• Direction of the image gradient
The direction of the image gradient at the new point is compared to the
direction of the image gradient at the midpoint of the extended edge. If
the angle between both vectors exceeds a certain threshold (chosen to be
45◦), the new triangles are also not added, and again, the edge to be
extended is marked as not-extendable.

• Triangle area
To avoid the generation of strangely shaped triangles, it is assured that
the areas of the new candidates are significantly greater than zero. If there
is a triangle for which this is not the case, the edge is again not extended
and instead marked as not-extendable.

Different cases of constructing a new triangle
Four different cases can be distinguished for constructing a new triangle from
an existing edge and a new point (fig. 4.4).

• The new point is not part of the old surface.

• The new point is part of the old surface, and one of the two edge points
is already connected to it.

• The new point is part of the old surface, and both edge points are already
connected to it. This is the case when the new triangle closes a hole in
the old surface.

• The new point is part of the old surface, but none of the two edge points
is connected to it. This last case occurs when different parts of the surface
are about to grow together.

Avoiding back-growing
Without precaution, an acute angle at the surface boundary causes the evolving
surface to grow back onto itself, as it is demonstrated by the sequence of steps
shown in figure 4.5. To avoid this, the edges are chosen in the order of ascending
border angle for extension, as mentioned earlier. Additionally, it is checked if
the angle in the current iteration is acute; if this is the case, no new point is
added, but the neighbour edges are connected directly. The correct order is
shown in figure 4.6.



44 4. SEMI-AUTOMATIC SEGMENTATION

a) b) c) d)

Figure 4.4: The four different cases to construct a new triangle from an existing
edge and a new point. The edge and the new point are highlighted in red. a)
and b) show the two obvious cases. In c), the new triangle closes a hole in the
old surface. Case d) occurs when different parts of the surface are joining.

a) b) c) d)

Figure 4.5: Sequence of steps that cause the surface to “grow back” onto itself.
This occurs when boundary edges enclose an acute angle (shown in b and c).
To avoid it, the two edges adjacent to the acute angle are connected without
creating a new point (fig. 4.6).

a) b) c)

Figure 4.6: Avoiding “back-growing” by not creating a new point in c), where
an acute angle occurs at a boundary point, but by connecting the two adjacent
edges to form a new triangle.
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a b c

Figure 4.7: Results of the growing surface algorithm, using a confocal stack of a
fly brain. (b) and (c): Successful segmentations of large parts of the medulla and
lobula. In (b) the three-dimensional triangle mesh is visualised, while in (c), the
mesh is drawn into a single slice of the volumetric image. (a) The automatically
growing surface may follow wrong edges where the image gradient is diffuse.
The desired path for the surface is indicated by the green arrows. To correct
this, the user has to stop the segmentation early and select another seed point,
for instance at the inner surface of the medulla.

4.1.3 Results

The method described in this section is tested with the confocal images of fly
brains. Figure 4.7 shows the segmentation of the right lobula and medulla.
Large parts of the neuropils in the optic lobes (medulla, lobula and lobula
plate) can be segmented with the growing surface method. It is also possible
to segment the central brain as one single structure. More difficult is the seg-
mentation of neuropils within the central brain. Experiments show that it is
still possible to segment parts of the antennal lobes and the fan-shaped body.
In contrast, segmentation of the mushroom bodies is nearly impossible: Only in
some images, parts of the calyx can be reconstructed, in others, the intensity in
the corresponding image regions is too low. The peduncle is typically too thin:
Surface extension as described above often yields here points that are already
far from its surface. At the regions of the mushroom body lobes, finally, the
images contain numerous other edges which distract the segmentation.

The tests also reveal that the surface sometimes grows in the wrong direction,
despite the precautions described above. An example is shown in figure 4.7a:
In the stainings investigated in this work, the border between medulla and
lobula often gets diffuse in the anterior part of both neuropils. This causes the
evolving surface in the figure to follow the border of the whole optic lobe instead
of growing into the cleft between medulla and lobula. To address this problem,
the growing surface algorithm is implemented as a semi-automatic method. The
user controls to which extent the surface is expanded. He can go back in the
segmentation, removing the latest added triangles. Furthermore, he can select
a different seed point, upon which the surface starts to grow from the new
position. Surface parts resulting from distinct seed points will grow together in
the course of surface expansion.
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It turns out that the stop criteria explained earlier usually cause the seg-
mentations to remain incomplete. This means that it is not only possible that
they contain holes, but also that larger parts of the surface are missing. How
these partial surfaces can be completed using template surfaces is the topic of
the next sections.

4.2 Generating template surfaces

In the previous section, a method was introduced that allows to segment many
anatomical structures by automatically extending a surface from a user-selected
seed point. The resulting surfaces however remain incomplete. For a human
expert the missing parts of these surfaces are often intuitively imaginable, due
to our knowledge about the shapes that are to be segmented. Transferring
this idea to a computational method, information about the shapes must be
incorporated. This is accomplished by template surfaces. In this section I
describe how the template surfaces were generated from existing volumetric
labelfields. After this, in section 4.3, I will show how they are incorporated to
complete the partial segmentations obtained in the previous section.

The template surfaces were generated using the labelled standard brain. In
particular, the segmentation editor (see p. 18) was used to obtain a labelfield
for the template brain. Labelfields are images that store at each voxel position
the class, here the neuropil, to which the voxel belongs. Typically, they are
represented by 8-bit image volumes with an assigned lookup table. The lookup
table associates with each index a neuropil, displayed in a different colour.

After obtaining the template labelfield, the surface of each neuropil is ex-
tracted separately. For this purpose, a binary (black and white) image is gen-
erated for each neuropil. This binary image is subsequently smoothed using
Gaussian blurring. The marching cubes algorithm is then used to extract an
isosurface, using an isovalue of 127 (which is in the middle of the intensity range,
0 - 255). For more detail on the marching cubes technique, see section 3.4.2
(p. 30). The resulting surface typically consists of an enormous amount of tri-
angles, making it impractical for further analysis. Therefore, we implemented a
mesh decimation algorithm that iteratively contracts edges and thus effectively
reduces the number of triangles. The implemented method is highly inspired by
the work published in [30].

Intuitively, contracting an edge does not introduce much deformation to a
surface if the neighbourhood of the edge is flat. The higher the curvature around
the edge, the higher is also the introduced deformation. Therefore, a cost is
assigned to each edge that quantifies this deformation (fig. 4.8). To calculate the
cost for a particular edge, the triangles adjacent to it are identified. For all these
triangles the surface normals are calculated. Intuitively, the more the triangle
normals are preserved by the contraction, the lower is the cost. Therefore, the
edge is virtually contracted and the surface normals are re-calculated. For each
triangle, the angle between the normal vectors before and after the contraction
is then calculated. The angles are summed up for all triangles, yielding a final
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Figure 4.8: Principle of edge contraction. Contracting one edge reduces the
number of triangles effectively by two. For each neighbouring triangle (n1...n8),
the triangle normal vector before and after the contraction is calculated. The
angle between both is summed up for all triangles, yielding a measure for the
shape deformation introduced by the contraction.

cost value that measures the error introduced by contracting this particular
edge. A priority queue is used to store the edges, the priority being given by the
reciprocal cost value. Iteratively, the edge with the lowest cost is then removed
from the queue and contracted, upon which the costs of the neighbouring edges
must be updated.

After resampling the template image to a resolution of 256x256x57, the
marching cubes algorithm yielded a surface with over 50,000 vertices. Using edge
contraction, the number of vertices was iteratively reduced to 30,000, 20,000,
10,000 and 5,000 (figure 4.9). The surface with 20,000 was found to provide a
good compromise between surface complexity and required level of detail.

4.3 Incorporating template surfaces using a new
active surface model

The template surfaces from the previous section are used to complete the partial
surfaces obtained from the growing surface method described in section 4.1. This
is mainly accomplished by a modified version of an active surface model. Active
surfaces are surfaces that are placed with an initial shape in a volumetric image
and can then evolve to adapt to salient image features such as edges, following
physical rules. Their performance depends mainly on the quality of the initial
shape. Below, I first review the most important developments in the history
of deformable models in biomedical image processing. Next, I describe how
template surfaces and partially segmented surfaces can be combined to provide
excellent initial shapes for active surface models. This technique is subsequently
applied to the confocal images to obtain robust segmentations of the central
brain and the neuropils of the optic lobes.

4.3.1 Active contours in the literature

Active contours, also called snakes, for semi-automatic image segmentation are
introduced by Kass [44]. They belong to the family of energy minimisation
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Figure 4.9: Results of iterative edge contraction. The initial surface obtained by
the marching cubes algorithm contained over 50,000 vertices. Edge contraction
was used to reduce the number of vertices to (a) 30,000, (b) 20,000, (c) 10,000
and (d) 5,000.
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methods that aims to find optimal outlines for salient structures in the image.
Intuitively, a snake is a contour in an image which develops from its initial shape
to its final form by minimising its intrinsic energy. In particular, the energy is
given by

Esnake =

∫ 1

0

α(s)|vs(s)|2 + β(s)|vss(s)|2︸ ︷︷ ︸
internalenergy

− |∇I(x(s), y(s))|2︸ ︷︷ ︸
externalenergy

ds

The integral along the contour consists of both external and internal energy
terms. The internal terms reflect the physical properties of the snake: The
first-order term, controlled by the parameter α, makes the snake behave like a
membrane, while the second-order term (controlled by β) makes it behave like
a thin plate. The external energy term is a potential function defined on the
image which attracts the snake towards image features, like edges.

Kass uses calculus of variations to derive the Euler-Lagrange equations which
are satisfied when the energy is minimal, i.e. the forces are in equilibrium. In
this way, the final contour of the snake is obtained.

The advantage of snakes, compared to traditional methods like thresholding,
region growing, edge detection etc, is their inherent continuity and smoothness,
which can compensate for gaps and other boundary irregularities in noisy im-
ages. In the basic problem of 2D image segmentation, the user typically provides
an initial contour which roughly resembles the structure to be segmented. The
contour is then allowed to evolve, after which it can be fine-tuned manually.

Cohen et al realise that the snake in its original formulation shrinks in the
absence of image features (based on the first-order smoothing term) and finally
vanishes [45]. They tackle this problem by introducing an inflation force which
counteracts the shrinkage and makes the contour expand. The initial contour
needs then to be chosen inside the structure of interest, and expands, driven
by the newly invented force, beyond spurious edges to match the desired image
features.

Another problem with the original snake model is the difficulty to attract
towards boundary concavities. Xu et al demonstrate this by investigating the
original external, image-based force field. Based on their findings, they develop
a more appropriate force field using gradient vector flow. The resulting snake
models are therefore called GVF deformable models [46, 47].

Cohen et al extend the active contour concept to 2 1
2D [48]. 2 1

2D emphasises
that the algorithm still works two-dimensionally, despite being applied to three-
dimensional images or video sequences. In this approach, the user provides an
initial contour for the first image slice. The snake is then optimised in this
slice. Subsequently the resulting contour is propagated to the next slice, where
it serves as a new initial contour. As an obvious advantage, the user only needs
to provide the initial contour for one frame.

Miller et al introduce the first step towards a real 3D deformable model by
suggesting a polygonal sphere as an initial surface [49]. Driven by an expansion
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force, it undergoes geometric deformations to conform to the shape of interest.
Active contours in three dimensions are often called active surfaces.

More work on active surfaces is published by Cohen et al [45, 48] who use
the finite element method to parametrise the surface and formulate the update
equations. Due to the parametrisation, less surface points need to be used,
which accelerates the convergence of the model.

Originating the computer vision research, the applicability of deformable
models in medical image processing was discovered soon. Deformable models
were extensively modified and applied to innumerable image modalities such
as X-ray, computer tomography, magnetic resonance imaging and ultrasound.
Next to segmentation, they were also employed for motion tracking, e.g. of the
left ventricle of the heart [50]. All in all, they were used for the segmentation
of the brain, heart, face, cerebral coronary, kidney, lungs, liver and skull.

In this work, active surfaces are used as part of a pipeline for segmenting
confocal stacks of adult Drosophila brains. Below I will first show the overall
work flow for incorporating template surfaces. This process consists of several
steps that gradually improve the position and shape of the template to resemble
the neuropil surface of interest. A key role plays a modified variant of an active
surface model with an additional regularisation term counteracting non-rigid
shape deformation.

4.3.2 Work flow

Incorporating template surfaces to complete the partial segmentations obtained
from section 4.1 comprises several steps which integrate four kinds of infor-
mation: the template surfaces themselves, the template greyscale image, the
partially segmented surface and the greyscale image that is currently segmented.
The template surfaces are supposed to be segmentations of the template greyscale
image. In the case of working with fly brain images, the Drosophila standard
brain may serve as a greyscale reference image. The three steps to align template
surfaces are listed here and described in more detail below:

1. Global rigid alignment of the greyscale images. The resulting transforma-
tion is used as an initial rough transformation of the template surface.

2. Alignment of the template surface to the partially segmented surface, us-
ing the Iterative Closest Point (ICP) algorithm. The ICP algorithm is
initialised using the result of step 1.

3. Free-form refinement of the incorporated template surface using a modified
version of an active surface model. The initial shape of the active surface
is given by the result of step 2.
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Figure 4.10: Intensity-based rigid registration of the template image to the
model image. An iterative optimisation algorithm (Conjugate Direction Search)
is used to adjust the parameters of a rigid transformation, to minimise the
difference between model and template image. The six parameters of a rigid
transformation consist of three rotational and three translational parameters.
Image difference is calculated as the Euclidean distance, i.e. the square root of
summed squares of pixel differences. The resulting transformation is used to
transform the template surface so that it roughly fits the corresponding model
structure. The transformed template surface is subsequently subject to further
adjustment.

Global rigid registration of the greyscale images
To obtain an initial guess for the position of the template surface within the
image to be segmented (in the following called the model image), the template
image is registered roughly to the model image. This is done fully automati-
cally, only based on the intensity images. Registration is based on a multivariate
optimisation algorithm, in particular Conjugate Direction Search [6]. It itera-
tively adjusts the six parameters of the rigid transformation (three translational
and three rotational parameters) to minimise the difference between model and
template image. The difference between both images is calculated using the Eu-
clidean distance (corresponding to the square root of summed squares of voxel
differences). The algorithm is illustrated in figure 4.10. The optimised trans-
formation is applied to the template surface, so that it roughly matches the
corresponding structure in the model image.
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Alignment of the template surface to the partially segmented surface,
using the Iterative Closest Point algorithm.
The Iterative Closest Point algorithm (ICP, [51]) is used to refine the align-
ment between the template surface and the partial model surface. It iteratively
identifies for each template surface point a corresponding point on the partial
model surface (via nearest neighbour search). The obtained point correspon-
dences are then used to estimate a rigid transformation in terms of minimum
least squares [5], which is subsequently applied to the template surface points.
The whole procedure is repeated until the template surface does not change any
more.

Note: In contrast to the common situation, it is here the template surface
that is aligned to the model surface, because the model surface needs to be com-
pleted using information from the template.

Free-form refinement using a modified active surface model
Typically, after steps 1 and 2, the template surface fits very well to the cor-
responding anatomical structure in the model image. However, both methods
transform the incorporated surface only rigidly, not altering its shape at all. To
account for shape differences, the incorporated surface must be allowed to freely
adopt (to a certain extent) to the model image. For this purpose, a new active
surface model has been developed which is introduced below.

4.3.3 A modified version of an active surface model

In the original active contour model, prior shape knowledge can only be incor-
porated by specifying the initial shape of the surface which is then changed in
the course of optimisation. However, in biomedical images in general, and in the
confocal images of fly brains in particular, the shapes of anatomical structures
differ only slightly between specimen. It is therefore desirable to preserve the
shape of the evolving surface to an adjustable extent. This limits the search
space for the final shape of the surface and therefore reduces the risk for the
evolving model of getting attracted to wrong image features. The model I pro-
pose here exchanges the second order regularisation term of the original snake
model by a rigidity force which counteracts shape deformations of the evolving
surface. Figure 4.11 illustrates some of the forces acting on a vertex.

Initialisation of the active surface

For the initialisation of the active surface both the partial segmentation (i.e.
the model surface) and the template surface, aligned by the ICP algorithm,
are used: The latter provides a topologically correct surface, while the former
usually offers better fitting vertex coordinates.

Starting point of a combined surface is therefore the template surface, be-
cause it provides a valid connectivity between vertices. For each vertex vm of
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the model surface the nearest neighbour vt in the template surface is then iden-
tified. If not only vt is the nearest template vertex to vm, but also vm is the
nearest model vertex to vt, the corresponding vertex coordinate of the combined
surface is set to vm.

This procedure is particularly successful if the model surface is restricted to
a subset of the template vertices, and does not contain surface parts of different
anatomical structures.

Calculation of the force terms

The different force terms are calculated as follows:

• The image force Fimg
For each vertex v, p is calculated as the position of the maximum gradient
along the vertex normal at v. The direction of Fimg is then given by the
difference p − v, and its absolute value is given by the absolute value of
the image gradient at p.

• The smoothness force Fsmooth
For each vertex v, m is calculated as the mean position of the neighbour
vertices of v. Then the direction of the smoothness force Fsmooth is given
by the difference n− v, and its absolute value is given by a user-adjusted
smoothness weight.

• The rigidity force Frig
To calculate the rigidity force, the original vertex positions Vo are stored
before running the model. From the current vertex positions V and the
original vertex positions Vo, the best rigid transformation t can be calcu-
lated [5]. For each vertex v, the direction of the rigidity force Frig is then
given by the difference (v − t(vo)), and its absolute value is given by a
user-adjusted rigidity weight.

• The expansion force Fexp
The direction of the expansion force Fexp of a vertex v is simply given by
the outward pointing vertex normal at v. The vertex normal is calculated
by averaging the surface normals of the surrounding triangles of v. The
absolute value of Fexp is given by a user-adjusted expansion weight.

Iteration

In each iteration, the sum of the four forces is calculated for all vertices and
their positions are updated accordingly. Subsequently, the vertex normals are re-
calculated. Iteration is performed until convergence, or until the user interrupts
early.
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Fimg
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Figure 4.11: Forces of an active surface model, acting on each vertex: The
image force Fimg drags a vertex to local gradient maxima, the smoothness force
Fsmooth drags it to the mean of the neighbour points. The rigidity force Frig
(counteracting shape deformation) and the expansion force Fexp are not shown
here.

The active surface model is implemented as an interactive method: The user
can interrupt the iteration at any time, change the parameters, in particular the
weights for the different force terms, and resume iteration. The display of the
evolving surface is updated continuously, providing visual feedback to the user.

4.3.4 Results

Figure 4.12 shows the result of incorporating the template surface of the medulla.
The three rows in the figure correspond to the three steps of the process. Step
one, the intensity-based image alignment, yields a rigid transformation which is
applied to the template medulla surface. The surface is shown together with the
model image in the top row of figure 4.12. The figure demonstrates clearly that
this first step allows to estimate the position of the medulla within the model
image only very inaccurately. However, it provides a first guess which can be
refined in the subsequent steps.

Having identified the rough position of the template surface in the model
image, the alignment is refined in step two via the ICP algorithm. The middle
row of figure 4.12 shows the template medulla surface, after aligning it to the
partial (red) model surface. The template surface resembles the medulla in the
model image already quite well. However, only rigid transformations are applied
to the template surface so far, which do not account for shape differences across
specimen.

For this purpose, the template surface can evolve non-rigidly in the third
step, using the active surface model. After convergence, the resulting surface
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resembles the medulla in the model image almost perfectly (bottom row in
figure 4.12).

The performance of active surface models depends mainly on their initiali-
sation, in this case on the results of the growing surface algorithm. Thus, active
surfaces can successfully be applied to neuropils that can at least partially be
segmented by the growing surface method. As mentioned in section 4.1, these
are the medulla, lobula, lobula plate and the central brain. Additionally, the
antennal lobe and the fan-shaped body can be segmented, although with more
problems. Both neuropils exhibit partially well-defined borders, which allow to
define a well-aligned initial guess for the active surface model. In regions with
salient image features the evolving surface gets attracted to them, caused by the
predominance of the image force in these regions. In regions with blurred edges,
the smoothness and rigidity forces predominate and guide the adjustment of the
surface. Segmentation of the mushroom bodies was not possible, since already
the growing surface method failed here. Please note that the active surface
model may very well be capable of extracting them, but a more appropriate
method is needed to initialise it.

Together with the growing surface method of section 4.1, the three steps
introduced in this section to incorporate template surfaces allow to quickly and
reliably segment the medulla, lobula and lobula plates of confocal stacks of
adult fly brains. Also, the central brain as one single structure can easily be
segmented via these steps. A segmentation of these seven shapes is shown in
figure 4.13. In the next chapter, the obtained surfaces are used for automatic,
non-rigid registration of the images.
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Figure 4.12: Alignment of the template surface of the medulla. The left column
shows three-dimensional views, the right one shows the meshes drawn into a sin-
gle slice of the image stack. The partially segmented model surface is depicted
in red, while the aligned template surface is green. (a) and (b): The template
surface after transforming it by the rigid transformation that is obtained by
rigidly aligning the template intensity image to the model image. (c) and (d):
The template surface after aligning it to the available parts of the model sur-
face, using the ICP algorithm. (e) and (f): The template surface after several
iterations of the active surface model.
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Figure 4.13: Results of incorporating template surfaces. Segmentation of
medulla, lobula, lobula plate and central brain can be performed efficiently
and reliably, using the growing surface method and aligning template surfaces.
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5.1 Background

Image registration methods can be subdivided into two major categories. Inten-
sity-driven methods usually define a similarity measure between images based
on the intensity values. Commonly used measures are the squared differences
of pixel intensities, correlation and mutual information. Depending on the type
of transformation (rigid, affine or free-form), the transformation parameters
are adjusted iteratively to maximise the image similarity between model and
template image, using an optimisation algorithm. In contrast, model-driven
methods use corresponding anatomical elements in both model and template
images to guide the volumetric transformation. The VIB Protocol is an example
for the latter, using manually outlined neuropils to align the brain images. Other
methods exist that use point or line correspondences. A comprehensive review
about registration in biomedical image analysis can be found in [52]. This
chapter focuses on landmark-based registration.

This chapter is organised as follows: First, I introduce some recently devel-
oped algorithms for automatically identifying point correspondences in image
pairs. I apply these algorithms to the confocal stacks of adult fly brains, and
demonstrate that they are not applicable to the problem at hand. In section 5.3
I reveal an alternative way to establish point correspondences across images:
This approach uses the vertices of the surfaces that are obtained using the
segmentation techniques of the previous chapter. Section 5.4 uses the point
correspondences for landmark-based warping. In particular, a 3D variant of the
thin-plate spline warping algorithm, introduced by Bookstein [53], is applied.
Semi-automated surface extraction and automatic warping together offer a con-
venient alternative to the VIB Protocol, allowing to efficiently register confocal
fly brain images. Both approaches are compared in detail in chapter 6.
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5.2 Previous work about automatic feature de-
tection

Recent work in the computer vision field addresses the problem of automatically
identifying point correspondences in image pairs. Such correspondences are
used for object recognition, object tracking, camera calibration, stereo matching
and stitching. In this work, they should be used for landmark-based warping.
The most important methods include SIFT (Scale Invariant Feature Transform,
[54]), MOPS (Multi-Scale Oriented Patches, [55]), GLOH (Gradient Location
and Orientation Histogram, [56]) and SURF (Speeded Up Robust Features,
[57]). Although differing in the details, these techniques share the following
three steps:

1. Identifying points of interest
The most important property of a point detector is repeatability, i.e. whether
a given method finds the same location in corresponding images. Therefore,
points are typically identified at corners, blobs and T-junctions in the image,
where the curvature is high in each direction. The most famous point detection
algorithm is probably the Harris corner detector, which evaluates the eigenvec-
tors of the second-moment matrix at pixel locations [58]. Other methods include
those based on the evaluation of the Hessian matrix, like the LoH (Laplacian
of Hessian). They are based on the fact that the eigenvalues of the Hessian
matrix are large at corner points. Yet another method is the LoG (Laplacian of
Gaussian), and its approximation, the DoG (Difference-of-Gaussian).

2. Generating feature vectors
The local neighbourhood is used to calculate a feature vector for each point
of interest. The purpose of the feature vector is to describe the local image
structure for reliable matching of features across images. Various methods were
proposed for calculating such feature vectors: SIFT uses for example a 128-bin
histogram of local oriented gradients. MOPS uses image patches, oriented to the
dominant local orientation, while the SURF descriptor describes a distribution
of Haar-wavelet responses in the local neighbourhood of the point of interest.

3. Matching
Based on a difference measure between the feature vectors, e.g. the Euclidean
distance, point correspondences are established across images. Typically, the
Random Sample Consensus (RANSAC) algorithm is used to filter out out-
liers [59]. RANSAC selects iteratively a random subset of the previously estab-
lished point correspondences as an initial set of inliers. A rigid transformation
model is fitted to this initial set of inliers. The remaining point correspondences
are added to the set of inliers if they support the model. The whole procedure
is repeated a fixed number of times. At the end, the model with the least fitting
error (regarding the extended set of inliers) is selected.
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Automatic feature detection as described above, in particular the SIFT algo-
rithm, was successfully applied to align and stitch images obtained by Electron
Microscopy images [60, 61, 36].

Experiments

For this work a 3D version of a feature detection algorithm was implemented
which combines the MOPS and the SIFT approaches; the first step, the location
of interest points, follows the SIFT description in [54]: A scale-space pyramid
is generated by iteratively blurring the input image volumes with a 3D Gaus-
sian filter. At each pyramid level, a difference image with respect to the next
level is calculated. Local extrema in the difference images represent potential
interest point candidates, if they are also extrema across the scale dimension.
For each candidate, the Hessian matrix is calculated. The eigenvalues of the
Hessian are proportional to the principal curvatures at the corresponding po-
sition within the image; to avoid points on edges and ridges, candidates are
neglected for which the ratio between the largest and the lowest eigenvalue is
above a certain threshold (in [54] chosen to be 10). For the local descriptors
within the image, we chose the MOPS descriptor, due to the complexity of 3D
gradient histograms that would be required by SIFT. We applied our implemen-
tation to automatically identify landmark points in the confocal images of adult
Drosophila brains. Corresponding landmarks across images should subsequently
be used for landmark-based warping. Figure 5.1 shows the identified landmark
sets of two images. The image patch describing the feature vector by one of the
correspondences is depicted by the red box. The figure shows clearly that the
point detector failed to identify reliably corresponding structures across brain
images.

The first step in the whole process, the interest point detector, is already
responsible for the failure, caused by the typical characteristics of the confo-
cal images. The intention of the SIFT algorithm originally was the automatic
recognition of known objects in photographs. These images are therefore in
stark contrast to the confocal images at hand: The anatomical structures, which
represent the common image entities on which registration should be based, do
hardly show corners or blobs. However, the evaluation of the Hessian allows only
for these features. The upper threshold on the ratio between the largest and the
lowest eigenvalue guarantees a similarly high curvature in the direction of each
eigenvector, thus by design avoiding the detection of edge-like features. Enlarg-
ing the threshold will in general enlarge the number of identified landmarks,
but their location will be less robust. Landmark points that are nevertheless
identified by our implementation originate mainly from noise in the images, in-
troduced by the optic system of the microscope, or from distortions introduced
during the preparation of the brains. The locations of such points are obviously
not preserved across images and therefore not applicable for registration.
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Figure 5.1: MOPS features of two confocal fly brain images. The identified
points of interest are rendered as yellow spheres, the image patch describing
one of the feature vectors is indicated by the red box.

5.3 Surface-based landmark points

As shown above, existing feature detection algorithms are not applicable for the
images at hand. In contrast, a much simpler approach proves more successful:
In the previous chapter, characteristic points in the images were identified as
surface points at the boundary of the medulla, lobula, lobula plate and the
central brain. These points can be used as landmarks, if correspondences can
be established across images.

To infer such correspondences, the Iterative Closest Point (ICP) algorithm
([51], see also paragraph 4.3.2, p. 52) is applied to align the points of both
images. After the alignment, points are considered to correspond to each other
if their distance is minimal. Let for example Set A denote the set of points in
image one and Set B the set of points in image two. If Pb is the closest point
of Set B to a point Pa in Set A, and if Pa is also the closest point of Set A to
Pb, then Pa and Pb are considered a corresponding point match.

Although the surfaces describe corresponding structures in both images, it is
possible that the vertices have different positions on the surfaces. However, since
the surfaces are represented by dense meshes, the introduced error is negligible,
as will be shown later.

To obtain more robust results, the ICP algorithm is not applied to the entire
surface, but to the surface of each of the described anatomical shapes (medulla,
lobula, lobula plate and central brain) individually. This improves the result-
ing alignments significantly, and consequently allows to establish more reliable
correspondences across images. This finding is explained by the loose connec-
tion between the optic lobes and the central brain in the fly brain preparations,
which was already mentioned in previous chapters.

Typically, about ten thousand point correspondences are found for an image
pair in this way. Filtering is necessary to reject wrong point matches and to
speed up the subsequent warping. The remaining points should be spread evenly
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Figure 5.2: Establishing landmark correspondences using surface points. a)
The surface of the medulla, as obtained by the segmentation techniques of the
previous chapter. b) The entire set of medulla surface points are partitioned
into 100 clusters. From each cluster, the best-matching point is selected for the
subsequent warping. c) and d) Remaining point correspondences of two distinct
brain images.
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across the whole surfaces. To achieve this, k-means clustering is applied to the
surface points. Like the ICP algorithm, this is done separately for each structure.
K-means requires to specify the number of desired output clusters. For each
structure, this number is adjusted according to the number of surface points
of that structure, compared to number of surface points of the entire surface.
The total number of clusters per image is set to 800. The top row of figure 5.2
shows the clustering of the surface points of the left medulla. The medulla
contains about one-eighth of all the surface points. The number of medulla
clusters is therefore set to 100 (= 800/8). In each cluster, one representative
point correspondence is chosen for the subsequent warping: the one where both
points in source and target image have the shortest distance. Remaining point
matches after filtering are shown in the bottom row of figure 5.2 for two different
brain images.

5.4 Warping

Landmark correspondences in two images can be used to elastically register a
model image to a reference image. The most often used landmark-driven method
for non-rigid image alignment is based on thin-plate splines [53]. A more recent
approach is based on rigid moving least squares [62]. Both methods are briefly
described below.

Landmark-based warping using thin-plate splines

In this approach, potentially irregularly spaced control point correspondences
specify an interpolating deformation function. The interpolation function passes
the control points exactly and interpolates between them such that the bending
energy is minimised.

For this purpose, radial basis functions are defined at each control point.
The basis functions take the form U(r) = r2 log r2, where r is the distance
to the corresponding control point. At each pixel location, the displacement is
then given by a weighted sum of these basis functions:

f(x) =

n∑
i=0

wi U(|x− ci|)

where n is the number of control points, ci denotes the ith control point and
wi is the associated weight. Given a set of corresponding control points, the
weights can be determined using a least-squares approach. For this problem,
a closed-form solution exists which is described in [53]. The name “thin plate
spline” refers to a physical analogy involving the bending of a thin sheet of
metal.
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Landmark-based warping using moving least squares

In chapter 2, Horn’s method [5] is used to infer a global rigid alignment across
point correspondences. The optimal transformation is calculated by minimis-
ing a least-squares problem. The moving least squares approach extends this
method: A different rigid transformation is calculated at each pixel location,
by stating a similar least-squares problem, but weighting the control points, de-
pending on their squared distance to the pixel: At pixel v, the transformation
rv is calculated that minimises

n∑
i=0

wi|rv(pi)− qi|2

where n is again the number of control points, pi is the ith control point in the
model image, qi is the corresponding point in the reference image and wi is the
associated weight of the ith control point. The weights are proportional to the
inverse square of the distance of the pixel v to the control point:

wi =
1

|pi − v|2

Effectively, each pixel gets transformed by a different rigid transformation. The
weights change smoothly between neighbouring pixels, resulting in an equally
smooth transition between neighbouring transformations. The restriction to
rigid transformation accounts for particularly realistic warpings.

For 2D, an implementation is outlined in [62], which can easily be extended
to 3D using Horn’s algorithm with weighted control points. This is described in
detail in [5].

5.5 Results

Both warping methods are implemented and applied to the fly brain images.
Landmark point correspondences are established and filtered as described ear-
lier. Experiments show that 800 landmarks in both images provide the best
trade-off between required degree of freedom for the non-rigid transformation
and undesired model complexity. Both methods are significantly accelerated
by calculating the displacements only at certain grid points in the image and
interpolate linearly in between. We use here a dense grid with a grid size of
two pixels in each direction. Empirically, Bookstein’s method using thin-plate
splines is found to yield better results than the moving least squares approach.

The results are depicted in figure 5.3. The top row shows the original, un-
transformed brain images. The second row shows the transformed model image,
after rigid registration (left) and after the above described warping procedure
(right). The bottom row shows an overlay between the template image and the
transformed model images. It is not surprising that the newly applied warping
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procedure aligns the images better than the purely rigid registration. Never-
theless, the figure demonstrates clearly the accuracy of the alignment, and the
smoothness of the warping; no artefacts are encountered.

A more comprehensive quality assessment is elaborated in the next chapter,
which compares the results yielded by the methods of this and the previous
chapter with those obtained by the VIB Protocol (chapter 2).
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Figure 5.3: Comparison of landmark-based warping and rigid registration. a)
The template image. b) The model image. c) The model image after rigid
registration. d) The model image after warping. e) Merge of template and
rigidly registered model image. f) Merge of template and warped model image.
In e) and f), the template is depicted in green and the model in magenta.
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As pointed out in chapter 2, working with the VIB Protocol is inconvenient due
to the need of manually segmenting a set of neuropils. The methods described
in chapters 4 and 5 together provide a powerful alternative for aligning fly brain
images. In this chapter, both methods are compared with respect to the required
user interaction and the quality of the resulting alignment. Additional tests are
performed to investigate the reproducibility of the new approach.

6.1 Evaluation setup

For the evaluation of both methods, ten confocal images of adult fly brains are
selected. All of them belong to the original data set that was used to calculate
the Drosophila standard brain [1]. All ten images are segmented manually in
advance, allowing to run the VIB Protocol in batch mode (see section 2.3). Next
to the neuropils required for the VIB Protocol (medullas, lobulas, lobula plates,
antennal lobes and mushroom bodies) six additional neuropils are segmented,
which are later used to assess the quality of the alignment. Segmentations are
stored as labelfields.

Registration is then performed for both methods, the VIB Protocol and the
new approach, as described in previous chapters. For the VIB Protocol, only
the aforementioned VIB-specific neuropils are used for registration. For both
methods, the resulting transformations are applied to the original greyscale
images and to the labelfields. The transformed labelfields are used to calculate
the mean relative overlap per neuropil. This is described in detail below.

All given runtime measurements below indicate the mean time needed for
processing one image. Images are downsampled to a resolution of 512x512x∼100
before processing. The experiments are performed using a laptop with a 2GHz
dual core processor.
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6.2 Required time for running and user interac-
tion

VIB Protocol
Three steps take up most of the time spent for the execution of the VIB Protocol:
segmentation, local rigid registration and the interpolation of the displacement
field (see chapter 2.1). The time spent for global rigid registration and image
averaging are negligible. Depending on the experience of the user, segmenting
an entire brain image requires about two hours. Aggravatingly, this time must
be spent actively by the user, who is performing the segmentation manually.
Under the mentioned conditions, local registration needs about 6 minutes per
image, diffusion interpolation about 15 minutes. Both steps are less decisive
since the VIB Protocol can be run in batch mode, allowing to execute these
steps automatically, for example over night. The average time needed for one
image sums up to about 2.5 hours.

New approach
The new approach is divided into two parts, segmentation and warping. Seg-
menting requires between ten and fifteen minutes. Warping is usually performed
in two minutes, using the approach described in chapter 5. Hence, the overall
process runs in about fifteen to twenty minutes, during which it requires active
user interaction.

6.3 Quality of the alignment

As described in the evaluation setup, the resulting transformations of both ap-
proaches are applied to the greyscale images and the labelfields. From the
transformed labelfields, the relative overlap of each neuropil can be calculated,
providing a measure for the quality of the obtained alignments. It is derived
for each neuropil separately. For this purpose, all ten aligned labelfields are
transformed to binary images, having a value of 1 at pixel positions where the
corresponding neuropil occurs and a value of 0 elsewhere. The pixel locations
are extracted that are covered by the corresponding neuropil in any of the ten
labelfields. A frequency histogram is then obtained over these pixels after sum-
ming up all of the ten binary images. The mean overlap is now calculated as
the mean of this histogram.

Some slices of the sum of the binary images, combined for all neuropils, are
depicted in figure 6.1. A colour lookup table is used to display the relative
overlaps, ranging from blue (zero percent overlap) to red (one hundred percent
overlap). The figure contrasts the result of the VIB Protocol (left column) with
the result of the new approach (right column). Individual slices of the stack are
displayed to emphasise the differences in individual neuropils.
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Figure 6.1: Comparison with the VIB Protocol. The left column shows the
results of the VIB Protocol, the right one those of the new approach. The
overlap of the individual neuropils is encoded by the colour, ranging from blue
(0% overlap) to red (100% overlap). Special attention is paid for (from top to
bottom): the mushroom body calyces, the protocerebral bridge, the fan-shaped
body, the ellipsoid body and the antennal lobes.
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mean overlap [%]

neuropil using the VIB Protocol using the new approach

right medulla 74.8 86.0
left medulla 73.4 85.6
right lobula 69.4 80.9
left lobula 71.9 81.8
right lobula plate 61.9 75.0
left lobula plate 61.3 76.3
right mushroom body 54.2 55.1
left mushroom body 54.7 58.1
ellipsoid body 50.4 51.3
noduli 35.5 45.8
fan-shaped body 56.7 60.4
protocerebral bridge 29.8 38.2
right antennal nerve 36.4 40.3
left antennal nerve 32.2 39.1
right antennal lobe 70.6 63.9
left antennal lobe 62.3 62.4

Table 6.1: Overlap of the transformed neuropils, expressed in percentages. The
new approach yields better results for all neuropils except for the right antennal
lobe.

The numeric values for the relative overlaps of the labelled neuropils are
summarised in table 6.1. They show that the new approach outperforms the
VIB protocol in all neuropils, except for the right antennal lobe, where the VIB
Protocol yields a slightly better value.

6.4 Reproducibility

Additionally, the reproducibility of the new approach is investigated. For this
purpose, a similar setup is chosen as described above for the comparison with
the VIB Protocol. Instead of applying the new approach to ten different images,
however, the process is repeated ten times using the same image. As a reference
image, an external sample image is selected. Pre-segmented labelfields are again
transformed together with the greyscale image. Aligned labelfields are utilised to
calculate the mean overlap as described above. The result, shown in figure 6.2,
indicates relative overlaps close to or above ninety percent.
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neuropil mean
overlap [%]

right medulla 94.3
left medulla 94.6
right lobula 90.8
left lobula 92.3
right lobula plate 82.7
left lobula plate 85.1
right mushroom body 86.7
left mushroom body 88.5
ellipsoid body 88.8
noduli 91.3
fan-shaped body 91.8
protocerebral bridge 84.8
right antennal nerve 91.4
left antennal nerve 85.6
right antennal lobe 92.8
left antennal lobe 90.8

Figure 6.2: Relative overlaps for aligning the same image ten times indepen-
dently to a reference image. As reference image, the same (external) image was
used for all ten repeats.

6.5 Summary

Using the novel tools proposed in chapters 4 and 5, the time required for seg-
mentation and registration of the confocal fly brain images can be reduced to
one sixth of the time that is needed using the VIB Protocol. At the same time,
the quality of the alignments and the reproducibility are enhanced.
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In chapter 4, a new tool for semi-automatic 3D image segmentation was intro-
duced, which was then used in chapter 5 for automatically warping the images
onto a template. While warping was performed automatically, segmentation
required user interaction: The user had to choose seed points for the grow-
ing surface and guide the incorporation of template surfaces, in particular the
parameters of the active surface model.

While testing the implementations of these methods, it is observed that
a user tends to adopt his interactions with the software, the more images he
processes. This holds true for the selection of initial seed points for the growing
surface, where the user “learns” that certain points on the neuropil surfaces are
better suited than others, and is observed again later when applying the active
surface model: The very same parameters are applicable for a specific neuropil,
even across images, while other neuropils require different settings. The longer
the software is used, the more repeatable become the individual steps. This
apparent consistency suggests to automate the entire process.

While the semi-automatic tool of chapters 4 and 5 can be used for many
kinds of (3D) images, the automation of these steps is now targeted specifically
to confocal images of Drosophila wholemount stainings and will probably not
work with other image modalities.

This chapter is divided into two parts, the first one describing the automation
of the surface growing, the second one describing the automation of incorporat-
ing template surfaces.
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7.1 Automatic Surface Growing

In this section, a number of preprocessing steps are elaborated that allow to
reliably identify seed points for the growing surface algorithm (described in
section 4.1). Conforming to the previous chapters, the anatomical structures
that are segmented are the medulla, lobula, lobula plate and the central brain.
Therefore, points must be found that are located at the boundaries of these
structures. Once such points are extracted, they are used for the growing surface
algorithm. While the semi-automatic segmentation in chapter 4 allows the user
to control the growing surface, e.g. via the mouse, it is applied in this chapter
in an automatic manner: For each seed point, the surface is extended until the
algorithm stops by itself.

Bilateral filtering

In the confocal images, the structures of interest (medulla, lobula, etc) are well-
defined. By applying a 3D variant of a gradient filter, a 3D edge image is
obtained in which the boundaries of the aforementioned structures appear as
most prominent (i.e. brightest). However, many other contours remain there,
too. To suppress them, Gaussian blurring could precede the gradient filter. A
Gaussian filter, however, smooths desired edges together with darker, undesired
ones. A more appropriate alternative is the bilateral filter [63]. Both filters,
the Gaussian and the bilateral, replace each pixel with a weighted average of
its neighbours. While for the Gaussian kernel, the weights depend only on the
spatial distance to the kernel centre, the bilateral filter uses a distance measure
in both spatial and intensity space. This effectively smooths regions with sim-
ilar intensity values more than those with different ones. Consequently, salient
contours are preserved, while less prominent ones are blurred. The result of the
bilateral filter depends on the balance between the spatial and the intensity-
based standard deviation of the Gaussian kernel. Figure 7.1 depicts the results
for different intensity-based standard deviations, while keeping the spatial stan-
dard deviation fixed: With increasing intensity-based standard deviation, more
and more salient edges are smoothed. For the fly images, reliable parameter
settings for the purpose here are σspatial = 5 and σintensity = 150, applied after
resampling the images to a size of 256 x 256 x ∼90.

Identification of seed points

After resampling and bilateral filtering, a convolution with a 3D gradient filter is
applied to identify edges in the volumetric image. To suppress weak edges, pixels
in the edge image with an intensity value below 50 are set to zero. From the
remaining pixels, local maxima are collected that can then be used for the surface
growing algorithm. Figure 7.2 shows the results of the individual steps. Despite
smoothing and thresholding, the resulting surface may still contain undesired
surface parts. This does not matter as long as the subsequent incorporation of
template surfaces can be performed reliably. Automation of aligning template
surfaces is covered in the next section.
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original σint = 50 σint = 80

σint = 100 σint = 150 σint = 200

Figure 7.1: Bilateral filter with increasing intensity-based standard deviation.
The original image is shown top left. The remaining images show the effect
of the bilateral filter, applied to the original image, with increasing intensity-
based standard deviation, ranging from σint = 50 to σint = 200. The spatial
standard deviation of the Gaussian kernel is fixed in all images to σspatial = 5.

a b e

c d

Figure 7.2: The four steps of fully-automatic surface extension. The original
image is first downsampled and subsequently filtered with the bilateral filter (a).
Then, a 3D gradient filter is applied (b). After suppressing pixels below a certain
threshold (t=50, (c)), local maxima are identified (red, (d)). These maxima are
used as seed points for the growing surface algorithm (e), which reconstructs the
most salient surfaces in the images that are used to align the template surfaces.



78 7. TOWARDS FULLY-AUTOMATED REGISTRATION

7.2 Automatic incorporation of template sur-
faces

As described in section 4.3 (p. 47 ff), the incorporation of template surfaces
comprises three steps: 1) a rough intensity-based rigid registration of the tem-
plate to the model intensity image, providing an initial transformation for the
template surface, 2) a subsequent rigid alignment of the corresponding template
and model surfaces via the ICP algorithm and 3) a final refinement of the reg-
istration via an active surface model. Since each of the three steps relies on the
results of the previous one, failure of one of them invalidates the result.

In the semi-automatic approach, each neuropil is segmented separately. The
user controls the growing surface: When the template surface is aligned, the par-
tial surface thus consists only of parts that correspond to the neuropil boundary
which is currently segmented (see the red mesh in figure 7.3b). In contrast, in
the full-automatic setup the growing surface algorithm is applied to the entire
image before the individual template surfaces are aligned. Thus, the model
surface consists no longer only of the surface parts corresponding to the tem-
plate surface, but covers the entire brain structures. This impairs the alignment
via the ICP algorithm severely, often resulting in misled convergence by wrong
surface parts.

Figure 7.3 illustrates the problem: In a), the position of the right lobula
plate is shown after step 1, the rough rigid registration. This is the basis for the
ICP algorithm in the semi-automatic as well as in the fully-automatic setup.
Figure 7.3b shows the convergence of the ICP, when the partial model surface is
restricted to the shape under study: This is the case in the semi-automatic setup:
The convergence is successful. In contrast, figure 7.3c depicts the situation
for the fully-automatic setup, where the partial model surface is extracted for
the entire image before incorporating individual template surfaces. The model
surface comprises all parts of the brain, the convergence of the ICP is misled.

It was verified empirically that the problem described above occurs with the
alignment of the lobulas and the lobula plates only; the central brain and both
medullas do not show these difficulties and can be aligned without problems.
Consequently, for both the lobulas and the lobula plates the ICP algorithm
requires a more precise initialisation than the rough rigid registration. These
observations lead to the following adopted procedure: First, the central brain
and both medullas are aligned, using the previously described sequence of steps.
The ICP algorithm yields rigid transformation matrices for the left and right
medullas. These matrices are now used to initialise the ICP for the lobulas and
lobula plates, instead of the matrix obtained by rough rigid registration. They
provide a closer initialisation for the ICP algorithm, resulting in a successful
convergence. This is depicted in figure 7.3d.
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Figure 7.3: Automatic surface alignment for the lobula plate. (a) Position of the
template surface of the lobula plate (yellow) after rough initial registration of the
template and model image. This is the basis for the ICP algorithm, both in the
full-automatic and the semi-automatic setup. (b) Result of the ICP algorithm
in the semi-automatic setup: Because the model surface (red) is restricted to the
boundary of the lobula plate, the ICP converges correctly. (c) Result of the ICP
algorithm in the full-automatic setup: The model surface (red) resembles the
boundaries of all the brain structures, distracting the convergence of the ICP
algorithm to wrong surface parts. (d) Correct convergence in the full-automatic
setup has proven reliable for both medullas. Their position can be used to
initialise the ICP algorithm for the lobula and lobula plate more accurately, so
that its convergence succeeds.



80 7. TOWARDS FULLY-AUTOMATED REGISTRATION

neuropil Fsmooth Frig Fexp neighbourhood iterations

central brain 15.0 1.0 15.0 3 2000

right medulla 5.0 5.0 1.0 3 2000

left medulla 5.0 5.0 1.0 3 2000

right lobula 5.0 10.0 0.0 1 1000
3.0 5.0 0.0 1 1000

left lobula 5.0 10.0 0.0 1 1000
3.0 5.0 0.0 1 1000

right lobula plate 5.0 10.0 0.0 1 1000
3.0 5.0 0.0 1 1000

left lobula plate 5.0 10.0 0.0 1 1000
3.0 5.0 0.0 1 1000

Table 7.1: Optimal parameter settings for the active surface models for each
neuropil. Two rows for a single neuropil indicate that two active surface models
are applied consecutively with different parameter settings.

Automation of the active surface model

After a particular template surface is rigidly aligned to the model surface via the
ICP algorithm, an active surface model is applied which adjusts the template
surface to features of the model image. As described in section 4.3, the active
surface model has a number of parameters that determine the physical properties
of the evolving surface. In particular, these settings include the weights for the
different force terms and the extent of the search space. It was found that the
optimal settings for these parameters differ from structure to structure, but are
consistent across images. For example, the template surface for the central brain
converges faster for a relatively large expansion force, while the same value for
the expansion force leads to a wrong convergence for the lobula plate. Optimal
parameters were identified empirically. They are summarised in table 7.1.

7.3 Results

The repeatability of the individual steps for semi-automatically segmenting con-
focal images of adult fly brains allows to implement a fully-automatic procedure.
This chapter describes the necessary steps and possible pitfalls. Full-automation
is obtained by using the same methods that are applied in the semi-automatic
setup. The latter provides the means for identifying necessary preprocessing
steps and reliable parameters to automate both the surface growing and the
incorporation of template surfaces. Together with the warping procedure of
chapter 5, the work of this chapter provides a fully-automated method for reg-
istering the fly brain images. Tests were successfully performed with the images
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that were already used to test the semi-automatic method in chapter 5. The ob-
tained results were almost identical to the results shown there (figure 6.1, p. 71).
Before fully establishing the automatic method, however, further adjustment of
the parameters will be performed on a larger data set to yield maximum robust-
ness.
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In this work, I have developed a flexible 3D visualisation proramming library.
It provided the means for intuitive user interaction with three-dimensionally
displayed images, based on which I then implemented a novel semi-automatic
3D segmentation method. This new tool was used to segment several anatom-
ical structures in the confocal images of Drosophila brains, yielding surfaces
that were subsequently used for the non-rigid alignment of the images. The
proposed developments allow for quick and reliable image registration, and re-
duce required user interaction and time drastically compared to the previously
employed VIB Protocol.

3D visualisation

In chapter 3, a 3D visualisation framework for the visualisation of biomedical
images was presented. Numerous software tools were available previously, so one
might ask if it was indeed worthwhile to implement yet another framework for
this purpose. The following arguments reveal the contributions of this project.

High-level 3D programming library

This thesis aimed to ease segmentation and registration of confocal images of
the Drosophila brain. The work presented in chapters 4 and 5 addresses these
challenges and proposes a method for semi-automating both tasks. In general,
semi-automatic methods require user interaction. For 3D image processing, it is
essential to provide means for this via an interactive 3D interface. Existing 3D
software is however mostly targeted to end-users, and provides limited to no ac-
cess to its features programmatically. The development of new semi-automatic
methods is not possible using these tools. In contrast, our framework offers a
public Application Programming Interface (API), allowing custom applications
to integrate 3D visualisation with a minimum of required effort.
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Integration into ImageJ

The integration into ImageJ represents probably the biggest advantage our
framework offers: ImageJ itself is a small program for image processing, which is
easily extendable by virtue of its plugin-based structure and its powerful macro
language. This property accounts for its broad acceptance in many fields, mainly
however in biology and microscopy. Thousands of users have developed their
own extensions, addressing their specific problems. Most of these extensions
are available publicly. All these plugins can now benefit from easy-to-integrate
3D visualisation, and reciprocally, the functionality of our 3D viewer can be ex-
tended by accessing the features of available plugins. Hence, a whole collection
of new possibilities arises by this combination, allowing for integrated solutions
that exceed the functional scope of existing software. Recently, for example, an
ImageJ extension was published for volume reconstruction of electron tomog-
raphy data, called TomoJ [64]. Depending on 3D visualisation for displaying
its results, it was in need of an external software. The authors recommended
Chimera [65] to their users. With our proposed framework, they can now offer
an integrated solution which is not provided so far in other software packages.
To integrate into ImageJ, a usable 3D visualisation library needs to be written
in the Java programming language, since ImageJ itself is written in Java. As of
writing this thesis, there existed no other accelerated 3D visualisation library
for Java.

Extension to 4D data

The advent of high-throughput microscopy has increased the number and size of
biological image data sets in need of analysis. The acquisition of 4D data, such
as from laser-scanning fluorescent microscopy of cells moving through space,
has become commonplace. Interactive data analysis of 4D data sets for object
motion tracking is in increasing demand. From the beginning, our software
contained internally all necessary components for 4D rendering (i.e. 3D data
over time). Recently, we succeeded to extend it to a real 4D visualisation library.
While it was rudimentarily possible to display 4D data before (as described in
chapter 3), the 4D design is now built-in inherently. 3D display is of course still
possible, but in the present version it is just a special case for the general case
of 4D rendering. Existing commercial packages like Imaris (BitPlane) provide
4D visualisation, too. However, the functionality they offer with respect to 4D
analysis and segmentation is limited. As mentioned earlier, our framework is
unrestricted in this regard, as it has access to numerous available plugins. With
the recent development of a new n-dimensional data structure for ImageJ [66],
4D analysis will drastically improve even further. This new image container
framework supports arbitrary image dimensions, but abstracts the dimension
from algorithm development. For this purpose, it uses extensively new features
of the Java programming language, so-called generics. With this development
it will be possible to implement algorithms in a generic way and apply them to
images of arbitrary types and dimensions.
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Digital brain atlases

The segmentation and registration tools of chapters 4 and 5 were developed with
the Drosophila Standard Brain in mind. However, brain atlases have already
existed before for various species. In human medical research, they were estab-
lished quite some time ago to compare brain anatomy across age, gender, time,
health and disease and populations. Additionally, techniques were developed
to integrate data of different imaging modalities, such as Computer Tomogra-
phy (CT), Positron Emission Tomography (PET), Magnetic Resonance Imaging
(MRI) and cryosection images in a common atlas. These techniques were ap-
plied to data obtained for both humans and primates. Comprehensive reviews
about human brain atlases can be found in [67, 68].

In recent years, brain atlases for other species, particular for insects, have
attracted increased attention. Here, they were first used for studies on structural
differences. Rein et al have for example investigated dimorphism in the optic
lobes of Drosophila melanogaster, using a standard brain atlas [69]. They found
the size, shape and position of the optic lobes to be highly conserved between
animals, but also revealed that the optic lobes of female flies were in average
6% larger than those of males. Dreyer et al provided a standard brain atlas for
the red flour beetle Tribolium castaneum for studies on antennal lobe glomeruli,
metamorphic development and sexual dimorphism [70]. El Jundi et al developed
a brain atlas for the sphinx moth Manduca sexta to show that the conspicuous
sexual dimorphism in the olfactory system of this species is only reflected in the
shape of the antennal lobe glomeruli, and not in other brain neuropils involved
more downstream in the olfactory pathway [71].

In addition to the investigations of structural dimorphism, brain atlases
were used to study metamorphic development. Huetteroth et al combined 3D
reconstruction and 4D visualisation techniques with a brain atlas of the moth
Manduca sexta [72]. They monitored the development of selected neuropils by
recording images of different animals during defined stages of pupal develop-
ment. A very impressive video accompanies the mentioned publication as a
supplement.

A third application of digital atlases of insect brains is the investigation of
circuitry and connectivity. In the desert locust Schistocerca gregaria, a stan-
dard brain was developed and employed for anatomical studies on polarisation
pathways in the central complex [73, 74]. In this study, the authors reveal a
potential connection between a CPU1 neuron (a polarisation-sensitive colum-
nar neuron) and a GFS neuron (a tangential neuron activated during flight),
by registering single cell stainings of the two neurons to a standard brain and
visualising them subsequently. Kvello et al developed a standard brain atlas for
the moth Heliothis virescens [75]. For the investigation of the neural networks
involved in chemosensory coding and learning, they recorded and stained single
cells, in particular gustatory and olfactory interneurons and the axonal pro-
jections of gustatory receptor neurons. The individual images were registered
and combined in the atlas and visualised, revealing their projections to the
corresponding brain neuropils. In Drosophila, Jefferis et al combine single-cell
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labelling with image registration techniques to obtain high-resolution, quanti-
tative maps of the mushroom body and lateral horn for input projection and
lateral horn neurons [76]. Other studies were performed also in honeybees (see
for example [77]).

In each of the above mentioned projects, the number of images which needed
to be registered to the atlas was well below one hundred. New connectivity stud-
ies in Drosophila however work on a larger scale. Their ambition is to obtain
a full physical wiring diagram showing the information flow from sensory in-
put to behaviour output of a complete Drosophila brain [78]. For thousands
of neurons, single cell stainings must be recorded and registered to a connec-
tivity atlas. For this huge number of individual images, efficient and accurate
techniques are required for registration. In this work, I have presented novel
tools for registration and segmentation, which address these demands. Both the
semi-automatic and the fully automatic methods offer time-saving, robust and
precise methods with the potential to process the accruing data. With the de-
velopment of such an aforementioned single cell atlas, it will finally be possible
to address questions like: How much is the position of cell bodies and axons
preserved across individual animals, across different genetic strains, and during
development? How do single neurons connect, and to which extent are these
connections preserved, again with respect to developmental stages and genetic
differences. With appropriate tools at hand, one can then establish a statistical
map depicting likelihoods for the positions and shapes of single neurons, similar
to the map for neuropils shown earlier in figure 6.1 (p. 71).

Applicability

Applicability to other insects

As mentioned above, brain atlases were already established for a number of dif-
ferent insects. The difficulties they face are identical to those which occur with
the Drosophila atlas. Although not tested, we strongly believe that the methods
introduced in this thesis can successfully be transferred to other insects. This
assumption is based on the similarity across confocal brain images of different
insects, in particular if the same antibody is used in the staining protocol. Fig-
ure 8.1 (adapted from the indicated publications) compares manually labelled
neuropils from the honeybee [77], the desert locust [73], the red flour beetle [70]
and the fruit fly and shows the similarity of individual neuropils in the four
species.

Applicability to other species and imaging modalities

While the proposed steps for full automation (chapter 7) are tailored to the
confocal images of fly brains, the semi-automatic setup is not restricted to this
application. Generally, it can be applied to any three-dimensional data inde-
pendent of the acquisition method, such as electron microscopy or magnetic
resonance images. There are however several factors which either facilitate or
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Figure 8.1: Comparison of the shape of manually labelled neuropils of the hon-
eybee [77], the desert locust [73], the red flour beetle [70] and the fruit fly (from
top to bottom). The similarity of the structures across different insect species
accounts for the applicability of the proposed segmentation techniques to other
insect brain images.
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Figure 8.2: If the curvature of the shape boundary is small, the growing surface
method succeeds (left). If it is high, the calculated surface point may be too
far from the true shape boundary, so that subsequent optimisation along the
image gradient fails (right). In this case, performance could be improved by
decreasing the distance between the existing surface and the next surface point
candidate.

impair its application. These restrictions are mainly imposed by the surface
growing method (chapter 4).

Based on the assumption that the contours to be segmented bend smoothly,
the surface growing method iteratively extends the existing surface with new
points. As described in chapter 4, a new point candidate is first chosen a fixed
distance beyond the existing surface boundary, simply following the tangent
plane of the surface. The position of the new point is then optimised along the
image gradient. There is no problem if the surface does not bend much. The
more it bends, the more important becomes the distance between the existing
surface and the point. If this distance is too long, the new point candidate is too
far from the true shape surface, and subsequent optimisation along the image
gradient fails. This is depicted in figure 8.2, for clearness shown in a 2D analogy.

For a successful segmentation, this distance must therefore be chosen as
short as possible. It is however limited by the image resolution and cannot be
below the size of a pixel. If the images at hand do not meet this requirement,
a possible solution is consequently to scale the image up.

Even if the shapes bend abruptly, our method can still be applied. The
growing surface method is not required to yield a full segmentation. In this
case, template surfaces must be available. They are then aligned to the partial
surface and subsequently adjusted to the image via the active surface approach
described in this work.

Relation to existing software

Segmentation possibilities in existing software packages

Existing commercial software packages offer a variety of tools for segmentation,
which are however often restricted to traditional approaches to image segmen-
tation and rarely include model-based algorithms. Amira’s segmentation tools



89

(Mercury Inc.) range from purely manual to fully automatic. They include a
brush tool for manual painting, a lasso tool for semi-automatic contouring and a
magic wand for region growing. Furthermore, they provide thresholding, intel-
ligent scissors and active contours for contour fitting [79]. However, these tools
are applicable only for individual 2D slices of an image volume, and not in higher
dimensions. There exists a freely-available extension that implements an active
surface model, which is unfortunately designed specifically for the segmentation
of plant cells [80]. Imaris users (BitPlane) are provided with global and local
thresholding, region growing and semi-automatic surface generation methods,
the latter being based on a locally applied marching cubes algorithm with an
interactively selectable iso-value. MeVisLab (MeVis) supports image segmen-
tation via automatic region growing and a semi-automatic livewire tool. The
applicability and shortcomings of all of these methods with respect to the fly
brain images were investigated in [43]. The most comprehensive software pack-
age regarding segmentation and registration functionality is the open source
library ITK (Insight Toolkit, [81]). Its numerous options include region grow-
ing, watershed segmentation and, as a powerful model-based approach, levelset
segmentation. Levelsets for the segmentation of Drosophila brain images were
also described in [43].

Novelty of the proposed methods

Although rarely included in today’s available commercial packages, levelsets and
active surface models have been studied intensively in the past. Our particu-
lar implementation is unique due to the combination of the proposed modified
variant of an active surface model with the growing-surface method for its ini-
tialisation. Active surfaces have undergone an expansive development in the
computer vision and image analysis research. They have proven particularly
successful for the segmentation of anatomical images. Common problem is the
extraction of a shape which is generally preserved, but slightly deformed across
images. This is usually the case for anatomical structures in images originat-
ing from different individuals. Key feature of active models is their inherent
smoothness which makes them insusceptible against noisy data. For a success-
ful application, active surfaces require a close initialisation, i.e. an initial shape
which is close to the true shape in the image under study. In practise, they are
often embedded into hybrid methods, where they are combined with traditional
segmentation techniques such as edge detection.

The approach proposed in this thesis can be seen as such a hybrid method.
The active surface model is applied to align template surfaces to a model image,
but to initialise the active surface model, another technique is utilised, here
based on image gradients. This is the described surface growing algorithm.
Together with the subsequent surface alignment via the ICP algorithm, the
surface growing algorithm offers an excellent way to obtain a surface which is
close to the true shape one wants to segment. Only this accuracy of the initial
shape makes a successful convergence of the active surface model possible.

Consequently, the active surface model fails where the growing surface al-
gorithm does not yield satisfying results. In the investigated fly brain images,
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this is particularly the case for several neuropils within the central brain, for
example the mushroom bodies. Chapter 4 explains in detail the reasons for this
failure. Importantly, this does not mean that the active surface model is not
capable of extracting the corresponding shapes in general. However, the surface
growing method must be extended or replaced by a more appropriate initialisa-
tion method. Elaborating powerful alternatives is left to future research.

Software for image registration

The most considerable software package with regard to image registration was
published recently under an open-source license: The Computational Morphom-
etry Toolkit (CMTK) [82]. It offers fully automatic registration based on an
algorithm published in [83, 84]. This algorithm models motion between images
by a global affine transformation, followed by a free-form refinement. The latter
is based on B-Splines, which specify the displacement at sparse control points
and guarantee smooth warping. CMTK does not provide a graphical user in-
terface, it is invoked from the command line and accepts various command line
options for adjusting the parameters of the registration algorithm, including
the grid size and regularisation options. The toolkit was successfully applied to
Drosophila confocal brain images [76].

In contrast to manual segmentation, fully automatic techniques offer the
greatest possible convenience because they require no operator interaction at
all. Reciprocally however, there remains also no possibility for the user to in-
tervene and thus to prevent erroneous interpretations of individual images for
which the fully automatic procedure fails. This is not only a crucial aspect for
critical applications which therefore often prefer semi-automatic methods. It
plays also an important role for the images investigated in this work, consider-
ing how they were obtained: Before acquiring them via the confocal microscope,
the scanned fly brains were dissected. The head is separated from the thorax
and the cuticula is removed, using forceps. Obviously, these mechanical inter-
ventions easily deform, sometimes even damage the prepared brains, decreasing
the quality of the resulting scans. Furthermore, the lack of visual feedback
in fully automatic methods hampers the adjustment of algorithm parameters,
rendering a successful application often difficult or impossible.

Semi-automatic methods provide a trade-off between the convenience of fully
automatic setups and the fine-grained control of manual methods. While they
drastically decrease labour intensiveness and enhance reproducibility, they still
allow for interactive guidance by an expert. We have proposed a novel semi-
automatic method in chapters 4 and 5. Appendix A demonstrates in detail
the convenience with which segmentation and registration can be performed,
while still retaining full control over the process. Additionally, however, we
have elaborated an approach to fully automate the entire process in chapter 7.
In particular, we have described a preprocessing pipeline which allowed to au-
tomatically identify locations in the images which served as seed points for the
growing surface method. We have also elaborated a set of parameters for the
active surface model which was used to fit template surfaces to the images.
Preliminary results have turned out promising and suggest to follow up this
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approach by optimising the proposed method further. We therefore provide two
methods: Users can benefit from the convenience of full automation, but for in-
dividual images where this method delivers unusable results, our semi-automatic
tool offers a fall-back to gain valuable results from these images, too.

Although designed for it, our software is not limited to image registration.
In many other biomedical image processing tasks, segmentation is the required
first step of a subsequent quantitative analysis, such as volume measurements
of 3D structures or distance measurements of tracked cells. In the general case,
template surfaces will not be available to support the segmentation. Rather,
holes in the incomplete surfaces, as obtained by the proposed growing surface
method, can be closed by connecting adjacent edges directly to yield a topolog-
ically correct surface. This surface can then be subjected to the active surface
model for further improvement of the segmentation.

Future objectives

By now it is possible to segment the medulla, lobula, lobula plate and the central
brain with the proposed methods. Segmentation of the neuropils within the
central brain does not work reliably. For these neuropils, already the surface
growing method does not yield satisfying results which could be used for an
appropriate initialisation of the active surface model. Based on the surfaces
of the extractable neuropils, however, it is possible to align the images to the
template.

Instead of aligning the model image to the template, as it was described
before, it is also possible to do the opposite: to transform the template image
so that it fits the model. Together with the template image, the template
surfaces can be warped. The warped template surfaces will be very close to
their counterparts in the model image, close enough to initialise another active
surface model. In this way, it should be possible to obtain a more complete
segmentation of the neuropils within the central brain.
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A.1 Starting the software

Typically, the users start with opening the image which they want to segment
(again called “model” image for the rest of this chapter). After that, the plugin
is launched from ImageJ’s plugin menu. This opens a new 3D window, in which
the model image is rendered in the orthoslice view.

The 3D view allows to rotate and shift the image, and users can scroll
through the perpendicular slices, all of which is controlled conveniently by the
mouse. Next to the 3D Viewer, a dialog opens and asks the user for a template
image and the template surfaces (fig. A.1). This information is required for the
alignment of template surfaces, as described earlier. The accepted format for
surface files the OBJ file format (Wavefront Technologies). In case a user does
not plan to align template surfaces, the dialog can be cancelled. The startup
process will then continue normally, but template surfaces will not be available
later.

A.2 Segmenting a structure

The growing surface method requires user-provided seed points. The orthoslices
view offers an optimal way to select such points: In contrast to other rendering
modalities, which show only the surface of the brains, it provides means to
select arbitrary points, also inside the brains. A user just needs to click at an
appropriate location while holding down the ‘g’ key. Initial points should be
selected on the surface of the structure which one wants to extract. Once a
new seed point is chosen, a first triangle is added which can subsequently be
expanded. Expansion is controlled either by using the keyboard or the scroll
wheel, and can be performed in different step sizes: Holding down the ‘0’ and
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Figure A.1: Start of the semiautomatic segmentation plugin. The model image
is displayed in orthoslice view in a new 3D window, and a dialog window asks
the user for a template greyscale image and corresponding template surfaces. If
the user cancels here, the startup process will continue normally, but template
surfaces will not be available later.

either pressing additionally the right arrow key or scrolling down one unit will
extend the surface by one new point. Using ‘1’, ‘2’ or ‘3’ instead of ‘0’ will
extend the surface by 10, 100 or 1000 additional surface points, respectively.

From time to time, the expanding surface happens to follow wrong contours.
It is then necessary to go back a few steps, i.e. to remove the latest added tri-
angles. This can be performed similarly, by pressing the left arrow key (instead
of the right one) or scrolling up (instead of down), again holding down either
‘0’, ‘1’, ‘2’ or ‘3’ key. Especially the scroll wheel allows so to quickly go forth
and back to complete the segmentation to the desired degree.

In case the surface follows wrong edges, a new seed point can be selected,
again by clicking at the desired location while holding down the ‘g’ key. Fur-
ther expansion of the surface now starts from the newly selected point. If the
segmentation turns out to be unsuccessful, “reset” is possible by pressing the
‘Backspace’ key.

At any time, the expanding surface is displayed in the 3D view as a triangle
mesh, overlaying the orthoslice view of the segmented image. The triangles
themselves are rendered red, extendable border edges are displayed yellow, while
green border edges indicate those edges which will not be extended by the
algorithm (due to various possible conditions, such as too high curvature. For
details see section 4.1.2). Figure A.2 shows an ongoing segmentation.
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Figure A.2: Ongoing segmentation via the growing surface method. Various
aspects are depicted here: The segmentation is displayed in the 3D view as
a red triangle mesh, overlaying the model image. Normal border edges are
rendered yellow, while those regarded as non-extendable are rendered green.
The blue circle indicates a part of the surface which follows undesired edges.
User can control such a situation by going back and forth in the segmentation
and selecting different seed points.

A.3 Surface completion

As mentioned in previous chapters, the meshes resulting from the surface grow-
ing algorithm may be incomplete and contain holes (see also figure A.2). The
user has several options about how to proceed, all of which are activated via
the “Segmentation” menu. Smaller holes can be completed using “Close holes”.
Users are asked to enter the maximum number of edges a hole may contain in
order to be closed. “Close holes” simply connects the individual border points of
the holes. Larger holes can be completed with either “Close surface” or “Align
template surface”. The latter is described below.

As explained before, template surfaces are incorporated in three steps. First
they are roughly aligned using intensity-based image registration, then a more
accurate rigid alignment is achieved via the ICP algorithm, and finally, the ac-
tive surface model is applied, allowing free-form deformations. All three steps
are invoked automatically once a user clicks on “Align template surface”. After
each step the alignment is shown as a green surface, and users can decide if they
want to cancel the process or continue (see also figure 4.12, p. 56).
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Figure A.3: Aligning template surfaces. Shown here is the final step, the active
surface model. While the model is evolving, the 3D display is updated continu-
ously, so that users can observe the process. He can interact with it at any time
by interrupting the iterative process and changing the model parameters.

While the rigid registration and the ICP algorithm run automatically with-
out user interaction, the active surface model is executed interactively, i.e. users
can at any time cancel the iterations, change the model parameters, continue,
reset etc. The adapting surface is shown in the 3D view and simultaneously
projected onto the stack window (fig. A.3).

A.4 Managing completed surfaces

Typically, after segmenting one structure, a user wants to store the result some-
how and pass on to the next structure. In this plugin, the stored surfaces are
displayed in a panel at the right side of the window (fig. A.4): On the top, a
list is displayed with all the segmentations finished so far. Every entry in this
list can optionally be shown in the 3D Viewer or hided. This is done via the
right-mouse-click context menu. At the bottom of the panel a choice box allows
users to choose among actions:

Add current surface
Transfers the current segmentation (as visible in the 3D Viewer) to the list
of finished segmentations. It assigns automatically a name and a colour,
both of which can be altered by the user.
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Figure A.4: Completed segmentations are managed in the right panel. A list
shows the segmented surfaces, which can optionally be displayed or hided in the
3D view. A choice box at the bottom provides access to several utility functions.

Save all surfaces
Saves all the surfaces displayed in the list in a single file. The generated
file is again in the OBJ file format.

Load surfaces
Loads previously saved surfaces. Saving and loading also allows to inter-
rupt the work and continue at a later time point.

Create Amira labelfield
Produces a new image stack which can be saved in the Amira labelfield
format. This is a convenient way to store segmentations in volumetric
form.

Warp image to template
Uses the segmentations in the list to align the model image to the template
image with the techniques described in chapter 5.
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B.1 The configuration file

The implementation of the fully-automatic approach is still work in progress.
The current state focuses on automation and adjustment capabilities. It does
not offer a sophisticated GUI, as it was implemented for the semi-automatic
plugin. All settings must be provided by the user via a configuration file, which
is briefly described below.

Basically, the configuration file stores all settings as key-value pairs. There
is one pair per line. Key and value are separated by an ‘=’ character. Lines
beginning with ‘#’ are ignored. The configuration file is divided into several
sections. The beginning of each new section is indicated by a line which encloses
the section’s name in square brackets. An example is shown below:

# Comment which is ignored

[Name of new section]

property1 = value1

property2 = value2

[Name of another section]

property1 = value1

...

B.2 The Preprocessing section

The program expects as the first section to be called “Preprocessing”. As de-
scribed in chapter 7, preprocessing comprises several steps: First, the image
under study is downsampled. Next, a bilateral filter is applied for smoothing
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and a 3D gradient filter for edge detection. Weak edges are suppressed by set-
ting pixel values below a certain threshold to zero. From the resulting edge
image, maxima are identified which serve as seed points for the surface growing
algorithm. In the “Preprocessing” sections, the following keys are recognised by
the software and influence the work flow:

key header

resx Resampling factor in x-direction.
resy Resampling factor in y-direction.
resz Resampling factor in z-direction.
sigma spatial Spatial standard deviation of the bilat-

eral filter.
sigma intensity Intensity-based standard deviation of

the bilateral filter.
threshold Threshold for neglecting weak edges.

B.3 Sections for individual structures

After the Preprocessing section follows one section for each anatomical structure
which one wants to segment. In case of the confocal images, these are the the
medulla, lobula, lobula plates (for both hemispheres) and the central brain. The
name of each section is the name of the corresponding structure.

As described in chapter 4, the alignment of template surfaces comprises three
steps: 1) A rough rigid registration based on intensity data of the model and the
template images, 2) Shape alignment via the ICP algorithm and 3) Free-form
refinement via an active surface model. As elaborated in chapter 7, rough rigid
registration is often not precise enough to initialise the ICP algorithm. This
is in particular the case for the lobula and lobula plates. The ICP of these
structures must can be initialised more accurately using the results from align-
ing the medulla (see chapter 7, p. 78 for more details). The only parameters
which influence the template surface alignments are those for the active sur-
face model: the weights of the rigidity, smoothness and expansion forces, the
searched neighbourhood and the number of iterations.

To encode this information in the configuration file, two keys are recognised
and evaluated in each section: The first key is init from. The associated value
must be the name of the structure from which the ICP algorithm is initialised.
In the section of the right lobula ([lobula r]), the corresponding line would read
init from = medulla r. If the init from key is absent, the ICP is initialised by
the intensity-based rigid registration.

The second key is activesurface. The value is a character string storing all
the parameters of an active surface model, enclosed in squared brackets. For
example, this line may look like: activesurface = [1.0 15.0 15.0 3 2000]. In this
case, an active surface model would be applied with a rigidity force weight of
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1.0, a smoothness and expansion force weight of 15, the search space would have
an extent of 3 pixels (radius), and the model would be run for 2000 iterations. If
more than one activesurface line is present in a section, more models are applied
to the template surface consecutively.

The description of the configuration file may sound more complicated than
it actually is. For the case of the fly brain images, it is relatively short and
shown below. It also documents the empirically derived parameter settings.

FullyAutomatic.conf:

# Example configuration file for automatically segmenting

# confocal images of adult Drosophila brains.

[Preprocessing]

resx = 1

resy = 1

resz = 1

threshold = 50

sigma_spatial = 5

sigma_intensity = 150

[central_brain]

activesurface = [1.0 15.0 15.0 3 2000]

# right hemisphere

[medulla_r]

activesurface = [5.0 5.0 1 3 2000]

[lobula_plate_r]

init_from = medulla_r

activesurface = [10.0 5.0 0 1 1000]

activesurface = [5.0 3.0 0 1 1000]

[lobula_r]

init_from = medulla_r

activesurface = [10.0 15.0 0 1 1000]

activesurface = [5.0 5.0 0 1 1000]

# left hemisphere

[medulla_l]

activesurface = [5.0 5.0 1 3 2000]

[lobula_plate_l]

init_from = medulla_l

activesurface = [10.0 5.0 0 1 1000]

activesurface = [5.0 3.0 0 1 1000]

[lobula_l]

init_from = medulla_l

activesurface = [10.0 15.0 0 1 1000]

activesurface = [5.0 5.0 0 1 1000]
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We designed our 3D visualisation framework with a dual purpose, on the one
hand to provide an interactive 3D scene for end-users, on the other hand to pro-
vide an easy programming interface to instantiate a 3D scene and manipulate
its internals. Programmers can trivially augment applications with 3D visu-
alisation capabilities. This section demonstrates the latter aspect. A working
example is listed. Similar examples and tutorials, together with source code,
are found online at http://3dviewer.neurofly.de.

Listing C.1 shows how an instance of Image3DUniverse is created. An image
is opened and added to the universe as a volume rendering via addVoltex().
This method returns the new Content, which is then used to make it partially
transparent.

After adjusting the view, the VoltexVolume of the volume rendering is re-
trieved. The VoltexVolume allows to change voxel values in volume renderings
directly. The example shows how the values are read from a file input stream,
which are interpreted as tuples of 4 consecutive integer values, specifying the x,
y and z coordinate and the new voxel value.

The example uses data obtained via a segmentation algorithm. The red
channel shows an antibody staining, visualising the expression pattern of a
Drosophila GAL4 driver line. This channel was used to simulate axon growth.

http://3dviewer.neurofly.de
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Listing C.1: Source code for opening an image, rendering it as a volume ren-
dering in a virtual universe and finally changing individual voxel values, as read
from a stream.

1 import ij3d . Image3DUniverse ;
2 import ij3d . Content ;
3
4 import voltex . VoltexVolume ;
5 import voltex . VoltexGroup ;
6
7 import ij . IJ ;
8 import ij . ImageJ ;
9 import ij . ImagePlus ;

10
11 import java . io . DataInputStream ;
12 import java . io . FileInputStream ;
13 import java . io . EOFException ;
14
15 public class Editable_Volume {
16
17 public static void main ( String [ ] args ) throws Exception {
18 new ImageJ ( ) ;
19
20 // Create a 3D scene and show i t
21 Image3DUniverse univ = new Image3DUniverse (600 , 480 ) ;
22 univ . show ( ) ;
23
24 // Open the image and add i t as a volume
25 ImagePlus image = IJ . openImage ( ” thorax . t i f ” ) ;
26 Content c = univ . addVoltex ( image ) ;
27 c . setTransparency ( 0 . 7 f ) ;
28
29 // Adjust the view
30 univ . rotateToNegativeXY ( ) ;
31 univ . waitForNextFrame ( ) ;
32 univ . getViewPlatformTransformer ( ) . zoom ( 4 0 ) ;
33
34 // Retr i eve the VoltexVolume o f t h i s volume render ing
35 VoltexVolume volume = (( VoltexGroup ) c . getContent ( ) ) .
36 getRenderer ( ) . getVolume ( ) ;
37
38 // Read in data from f i l e
39 DataInputStream is = new DataInputStream (
40 new FileInputStream ( ” thorax . stream” ) ) ;
41
42 while ( true ) {
43 try {
44 int x = is . readInt ( ) ;
45 int y = is . readInt ( ) ;
46 int z = is . readInt ( ) ;
47 int v = is . readInt ( ) ;
48 volume . set ( x , y , z , v ) ;
49 } catch ( EOFException ex ) {
50 break ;
51 }
52 }
53 is . close ( ) ;
54 }
55 }
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