Journal of Organometallic Chemistry, 215 (1981) 27-39 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SYNTHESE, REAKTIONEN UND STRUKTUR VON TRICARBONYL(1R,1R',2,3,4,5-TETRAPHENYL-1-GERMACYCLO-PENTADIEN)EISEN-KOMPLEXEN

PETER JUTZI *, ALFONS KARL,

Fakultät für Chemie der Universität Bielefeld, Universitätsstrasse, D-4800 Bielefeld (B.R.D.) und Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg (B.R.D.)

und CHRISTIAN BURSCHKA

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg (B.R.D.)

ļ

(Eingegangen den 19. Januar 1981)

Summary

The tricarbonyl(germacyclopentadiene)iron complexes VI—X are synthesized by the reaction of the germacyclopentadienes I—V with Fe(CO)₅. In 1,1-dialkyl- and -diaryl-1-germacyclopentadiene complexes the Ge—C(*exo*) bond can be split by different element halides, whereby the 1-halo-1-germacyclopentadiene complexes XII, XIII, XV—XVII are formed. Decomplexation takes place by the reaction of complex XI with Me₃NO or TiCl₄. Tricarbonyl-(1-chloro-1-germacyclopentadiene)iron (XII) reacts with AgF, NaI, NaOMe and LiAlH₄ to the complexes XIX—XXII. The germane XXII can be transferred to XII with CCl₄. The tricarbonyliron complexes XI, XII, XVI, XVII and XIX react photochemically with trimethylphosphane to the dicarbonyl(trimethylphosphane) complexes XXIII—XXVII. The crystal structure of tricarbonyl-(1-*exo*-fluoro-1-*endo*-methyl-2,3,4,5-tetraphenyl-1-germacyclopentadiene)iron is described.

Zusammenfassung

Die Tricarbonyl(germacyclopentadien)eisen-Komplexe VI-X werden durch Umsetzung der Germacyclopentadiene I-V mit Fe(CO)₅ dargestellt. In 1,1-Dialkyl- und -Diaryl-1-germacyclopentadien-Komplexen kann die Ge-C(exo)-Bindung durch verschiedene Elementhalogenide gespalten werden, wobei die 1-Halogen-1-germacyclopentadien-Komplexe XII, XIII, XV-XVII gebildet werden. Eine Entkomplexierung des Komplexes XI tritt bei der Reaktion

0022-328X/81/0000-0000/\$02.50, © 1981, Elsevier Sequoia S.A.

mit Me₃NO oder TiCl₄ ein. Das Tricarbonyl(1-chlor-1-germacyclopentadien)eisen XII reagiert mit AgF, NaJ, NaOMe und LiAlH₄ zu den Komplexen XIX-XXII. Das German XXII kann mit CCl₄ in XII überführt werden. Die Tricarbonyleisen-Komplexe XI, XII, XVI, XVII und XIX reagieren photochemisch mit Trimethylphosphan zu den Dicarbonyl(trimethylphosphan)-Komplexen XXIII-XXVII. Die Kristallstruktur des Tricarbonyl(1-exo-fluor-1-endo-methyl-2,3,4,5-tetraphenyl-1-germacyclopentadien)eisen wird beschrieben.

Über die ersten Vertreter aus der Verbindungsklasse der Germacyclopentadien-eisentricarbonyle sowie über einige Reaktionen haben wir bereits kurz berichtet [1]. Wir beschreiben hier die Darstellung neuer Komplexe, weitere Reaktionen sowie das Ergebnis einer Kristallstrukturuntersuchung.

Darstellung

Bekanntlich lassen sich im Eisenpentacarbonyl Kohlenmonoxidliganden photochemisch oder thermisch durch n- oder π -Donatoren ersetzen. Nach dem von uns bereits beschriebenen Verfahren [1] haben wir weitere Germacyclopentadien-eisentricarbonyl-Komplexe hergestellt; so entstehen aus den Germacyclopentadienen I-V die Komplexe VI-X in hohen Ausbeuten. Die Komplexe fallen als gelbe bis orangegelbe Kristalle an, die sich als luftstabil erweisen und sich erst an ihrem Schmelzpunkt zersetzen. Mit Ausnahme von X haben wir die Komplexe auch auf thermischem Wege dargestellt; hierzu werden in einem Autoklaven die entsprechenden Germacyclopentadiene mit Eisenpentacarbonyl in Benzol längere Zeit auf 190–200°C erhitzt.

R	Et	-			-Ø ^{F5}
Verb.	I, VI	II, VII	III, VIII	IV, IX	V, X

Durch die Komplexierung treten am Germaniumatom zwei nicht äquivalente Positionen R_{endo} und R_{exo} auf. Die Zuordnung erfolgte anhand der ¹H-NMR-Spektren und mit Hilfe von Vergleichsdaten ähnlicher Metall-Dien-Komplexe [2-5]. Es gilt als gesichert, dass durch den Komplexrest die exo-ständige Gruppe eine Verschiebung nach höherem Feld, die endo-ständige eine Verschiebung nach tieferem Feld erfährt. In den IR-Spektren der Komplexe findet man im $\nu(CO)$ -Bereich zwei starke, für Tricarbonyl(1,3-dien)eisen-Verbindungen

charakteristische [6,7] Banden: eine scharfe bei höheren und eine breite, oft in zwei Banden aufgespaltene bei niedrigen Wellenzahlen (siehe Versuchsteil).

Spaltung der Ge-Cexo-Bindung

Wir haben bereits beschrieben, dass im 1,1-Dimethyl-2,3,4,5-tetraphenyl-1-germacyclopentadien (XI) die *exo*-ständige Methylgruppe sehr leicht durch ein Chloratom ersetzt werden kann, wenn man XI bei Raumtemperatur mit Zinntetrachlorid umsetzt [1]. Diese überraschende Reaktivität veranlasste uns, weitere Elementhalogenide zur Spaltung der Germanium—Kohlenstoff-Bindung in XI einzusetzten:

Mit Zinntetrachlorid, Antimonpentachlorid und Bortrichlorid kann XI in die exo-Chlor-Verbindung XII überführt werden; mit Zinntetrabromid entsteht aus XI die exo-Brom-Verbindung XIII. Keine Reaktion auch nach mehrstündigem Erwärmen in siedendem Benzol beobachteten wir zwischen XI und Zinntetrajodid, Germaniumtetrachlorid, Bortrifluorid, Arsentrichlorid und Antimontrifluorid.

Die Reaktivität der Ge- R_{exo} -Bindung hängt deutlich von der Art des organischen Restes R ab. Zur Abspaltung von Benzyl- bzw. Arylgruppen aus den Komplexen XIV [1], VIII bzw. IX mit Zinntetrachlorid sind vergleichsweise drastischere Reaktionsbedingungen notwendig, um zu den entsprechenden *exo*-Chlor-Verbindungen XV [1], XVI bzw. XVII zu gelangen.

Elektronenziehende Reste R wie die Chlormethyl- oder die Pentafluorphenylgruppe lassen sich schliesslich auch durch mehrstündiges Erhitzen am Rückfluss mit Zinntetrachlorid in Benzol nicht mehr gegen ein Chloratom austauschen.

Die exo-Chlor- bzw. -Bromsubstituierten Komplexe XII, XIII, XV, XVI und XVII stellen gelbe, etwas hydrolyseempfindliche kristalline Verbindungen dar. In Benzol, Schwefelkohlenstoff, Methylenchlorid und flüssigem Schwefeldioxid sind sie sehr gut, in aliphatischen Kohlenwasserstoffen und Nitromethan dagegen schlecht löslich. Durch den Elektronenzug des Halogenatoms wird in den ¹H-NMR-Spektren das Signal für die *endo*-ständige Gruppe nach tieferem Feld, in den IR-Spektren die ν (CO)-Schwingung um etwa 10 cm⁻¹ nach höheren Wellenzahlen verschoben (siehe Versuchsteil).

Entkomplexierung

Nach Shvo [8] und nach Hogeveen [9] gelingt die Ablösung von Dien-Liganden in Eisentricarbonylkomplexen sehr leicht bei Zugabe von Trimethylaminoxid. Dies gilt auch für Germacyclopentadien-eisentricarbonylkomplexe, wie wir durch Umsetzung von XI mit Trimethylaminoxid beispielhaft zeigen konnten. Auch mit Titantetrachlorid gelingt die Entkomplexierung zum 1,1-Dimethyl-1-germacyclopentadien (XVIII).

Substitutionsreaktionen mit Verbindung XII

Im 1-Chlor-1-methyl-2,3,4,5-tetraphenyl-1-germacyclopentadien (XII) kann das Chloratom sehr leicht durch andere Nukleophile ersetzt werden. Vergleichbare Reaktionen an komplexierten Silacyclopentadienen sind bereits von Sakurai [10] beschrieben worden. Mit Silberfluorid reagiert XII zur Fluorverbindung XIX, mit Natriumjodid zur Jodverbindung XX, die mit Zinntetrachlorid sehr leicht wieder in die Chlorverbindung XII überführt werden kann.

Die Reaktionen von XII mit Lithiumalanat führt zum German XXII [1]. Bei dieser Verbindung zeigt sich der elektronenschiebende Effekt einer Eisentricarbonylgruppierung besonders deutlich. Die Ge-H-Funktion ist nicht mehr, wie in den unkomplexierten Germacyclopentadienen [5] acid, sondern bereits so stark hydridisch, dass sie bei Raumtemperatur mit Tetrachlorkohlenstoff zu Verbindung XII chloriert werden kann. Auf die thermische Beständigkeit von XXII haben wir bereits hingewiesen [1].

CO-Substitution durch Trimethylphosphan

In Analogie zu entsprechenden Reaktionen an Silacyclopentadien-eisentricarbonyl-Komplexen [5] gelingt es auch bei den germaniumhaltigen Komplexen, photochemisch einen Kohlenmonoxid- gegen einen Trimethylphosphanliganden auszutauschen. So haben wir aus den Verbindungen XI, XII, XVI, XVII und XIX die Komplexe XXIII—XXVII dargestellt.

XI, XII, XVI, XVII, XIX

ł

XXIII - XXVII

R(exo)	Me	<u> </u>	<u> </u>	<u>C1</u>	F
R '	Ме	Me	O-Me	O-NMe ₂	Me
Verb.	XI	XII	XVI	XVII	XIX
	XXIII	XXIV	XXV	XXVI	XXVII

Die gelb bis gelborangen Trimethylphosphan-Komplexe sind thermisch sehr stabil und zersetzen sich erst bei ihrem Schmelzpunkt. Ihre Löslichkeit in unpolaren organischen Lösungsmitteln ist im Vergleich zu den entsprechenden Tricarbonyl-Verbindungen herabgesetzt. Die ¹H-NMR-Spektren sind vergleichsweise wenig verändert. Interessanterweise tritt bei Verbindung XXVII eine Kopplung zwischen dem Phosphoratom und dem exoständigen Fluorliganden auf. Für die CO-Valenzschwingungen erscheinen in den IR-Spektren zwei Paare von Banden, was für das Vorliegen von Isomeren spricht. Diese Isomerieerscheinung ist wie bei den entsprechenden Silacyclopentadien-Komplexen [5] darauf zurückzuführen, dass bei einer quadratisch pyramidalen Anordnung der Liganden der Phosphanligand zwei verschiedenartige Positionen einnehmen kann. Aufgrund eines sehr schnellen Platzaustauches ist NMR-spektroskopisch ein Nachweis der Isomerie nicht möglich.

Kristallstruktur von Tricarbonyl(1-exo-fluor-1-methyl-2,3,4,5-tetraphenyl-1-germacyclopentadien)eisen

Über den Bau von Germacyclopentadien-eisentricarbonyl-Komplexen waren bisher in der Literatur keine Angaben vorhanden, lediglich die Struktur eines Tricarbonyl(silacyclopentadien)-Ruthenium-Komplexes wurde kürzlich beschrieben [11]. Wir haben deshalb den Germacyclopentadien-Komplex XIX röntgenographisch untersucht und seine Struktur aufgeklärt. Diffraktometermessungen an einem ausgewählten Einkristall (Syntex-P2,-Diffraktometer, Mo- K_{α} -Strahlung, Graphit-Monochromator, λ 0.71069 Å) ergaben für die Gitterkonstanten der rhombischen Elementarzelle folgende Werte: a 9.985(2) Å. b 15.350(3) Å, c 18.384(4) Å (kleinste-Quadrate-Rechnung mit 14 zentrierten Reflexen im Bereich $2\theta = 23-25^{\circ}$). Die Zelle enthält 4 Formeleinheiten (ρ_{calc} 1.42 mg/mm³, ρ_{exp} 1.42–1.44 mg/mm³). Von den 2482 vermessenen Reflexen $(2\theta = 5-45^\circ, \omega$ -Abtastung, $\Delta \omega 1^\circ$) waren 1981 symmetrieunabhängig und davon 1871 als beobachtet klassifiziert ($I_0 \ge 2.96 \sigma(I_0)$). ψ -Abtastung mehrerer Reflexe lieferten die Basis für eine Absorptionskorrektur. Auf Grund der regelmässigen Auslöschungen in der Zone 0kl mit k = 2n + 1 und der Zone h0l mit h + 1 = 2n + 1 waren die Raumgruppen Pbnm und Pbn2, möglich. Da die Verteilung der E-Werte für das Fehlen eines Symmetriezentrums sprach, wurde die Raumgruppe Pbn2, (No. 33, Standardaufstellung: Pna2,) angenommen.

Ein Teilmodell der Struktur konnte mit Hilfe direkter Methoden zur Phasenbestimmung (Multan-Programm) erhalten und über Fourier- und Differenzfouriersynthesen vervollständigt werden. Die Verfeinerung der Strukturparameter unter Vernachlässigung der Wasserstoffatome und bei Berücksichtigung anomaler Dispersion ergab bei einem konventionellen *R*-Wert von R = 0.052für 1871 Reflexe die in Tab. 1 angegebenen Werte. Die höchsten Maxima der Differenzelektronendichte lagen bei 0.5 e/Å³ und liessen keine Unstimmigkeiten erkennen. Verfeinerungsversuche mit dem Enantiomorphen der Struktur führten zu einem schlechteren *R*-Wert (R = 0.057). Alle Rechnungen wurden mit Hilfe des Programmsystems Syntex-XTL auf einem NOVA 1200-Computer erstellt unter Verwendung der von Cromer und Waber [18] analytisch approximierten Atomformfaktoren für ungeladene Atome.

Die Figur 1 veranschaulicht die Struktur des Moleküls, Tab. 2 enthält eine Auswahl der resultierenden interatomaren Abstände und Bindungswinkel. Das Fe-Atom ist, wie erwartet, an die Dieneinheit π -gebunden, wobei die Fe--C(1)und Fe--C(4)- etwas länger als die Fe--C(2)- und Fe--C(3)-Bindungen sind. Die hier vorliegende Konformation entspricht den auf MO-Rechnungen fussenden Voraussagen [17]. Die C--C-Abstände innerhalb des Fünfringes sind nahezu gleich und liegen zwischen einer C--C-Einfach- und einer C=C-Doppelbindung. Die Phenylringe (A, B, C, D) sind gegenüber der Butadienebene verdrillt (Verdrillungswinkel A: 42.3°; B: 55.7°; C: 68.2°; D: 38.0°) und propellerartig angeordnet. Die Ge--C-Bindungslängen liegen im erwarteten Bereich, der Ge--F-Abstand ist dagegen etwas aufgeweitet, was für eine exo-ständige σ -Bindung nicht überrascht.

Die Ebenen C(1)–C(2)–C(3)–C(4) und C(1)–Ge–C(4) bilden miteinander einen Winkel von 31.1° , das Ge-Atom steht damit 1.00 Å über der Butadienebene. Der Abstand Ge–Fe von 2.87 Å macht eine bindende Fe–Ge-Wechsel-

Atom	x		У	z	В	
Ge	8684(1)		6410(1)	0		
Fe	6643(2)		5155(1)	9673(1)		
F	9179(6)		7532(4)	9887(4)	4.5(1)	
0(1)	4001(10)		4619(6)	133(6)	7.0(2)	
0(2)	6807(10)		3742(6)	8617(6)	6.3(2)	
0(3)	7996(11)		4147(7)	818(6)	7.4(2)	
C(01)	5069(12)		4812(7)	9948(7)	5.0(2)	
C(02)	6690(11)		4306(8)	9034(7)	4.2(2)	
C(03)	7513(13)		4579(8)	360(7)	4.9(2)	
C(1)	6797(10)		6387(7)	260(5)	3.1(2)	
C(2)	6082(10)		6482(6)	9584(6)	3.1(2)	
C(3)	6800(11)		6209(7)	8956(6)	3.4(2)	
C(4)	8141(11)		5886(7)	9090(6)	3.5(2)	
C(5)	6302(11)		6549(6)	1001(6)	3.3(2)	
C(6)	4965(11)		6382(7)	1208(6)	4.1(2)	
C(7)	4562(13)		6561(8)	1946(7)	5.0(3)	
C(8)	5474(14)		6868(9)	2443(7)	4.9(3)	
C(9)	6805(13)		7054(8)	2225(7)	4.7(3)	
C(10)	7203(12)		6910(8)	1519(6)	4.1(2)	
C(11)	4718(10)		6880(6)	9532(5)	3.2(2)	
C(12)	3657(11)		6466(7)	9144(7)	4.0(2)	
C(13)	2407(13)		6937(8)	9103(7)	4.9(2)	
C(14)	2222(13)		7676(9)	9448(7)	5.7(3)	
C(15)	3278(12)		8112(8)	9816(7)	5.1(3)	
C(16)	4555(10)		7687(7)	9871(6)	3.9(2)	
C(17)	6260(11)		6353(7)	8198(6)	3.6(2)	
C(18)	6121(12)		7207(8)	7977(6)	4.3(2)	
C(19)	5716(15)		7406(10)	7249(9)	6.2(3)	
C(20)	5408(16)		6764(9)	6777(9)	6.6(3)	
(21)	5414(15)		5886(10)	7010(9)	7.0(4)	
C(22)	5935(13)		5687(8)	7713(7)	5.0(3)	
C(23)	9112(10)		5551(7)	8550(6)	3.2(2)	
C(24)	9354(13)		6010(8)	7908(7)	4.8(3)	
C(25)	326(14)		5740(9)	7426(7)	5.5(3)	
C(26)	1115(15)		5014(9)	7564(8)	6.1(3)	
C(27)	883(14)		4524(9)	8228(8)	6.0(3)	
C(28)	9894(13)		4808(8)	8717(7)	4.8(3)	
	B ₁₁	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
3e	3.1(0)	4.2(1)	2.9(0)	-0.1(1)	-0.2(1)	-0.5(1)
?e	4.2(1)	3.1(1)	2.7(1)	-0.0(1)	-0.3(1)	-0.1(1)

ATOMKOORDINATION (X 10^4) und temperaturfaktoren (Å²) der struktur des komplexes XIX mit geschätzten standardabweichungen in klammern

TABELLE 2

TABELLE 1

AUSGEWÄHLTE BINDUNGSABSTÄNDE (Å) UND BINDUNGSWINKEL (Altgrad)

Ge—F	1.80(1)	C(3)-C(4)	1.45(2)	FeC(1)	2.18(1)
GeC(29)	1.97(1)	C(1)-C(5)	1.47(2)	FeC(2)	2.12(1) \
Ge-C(1)	1.95(1)	C(2)-C(11)	1.50(1)	Fe-C(3)	2.09(1)
Ge-C(4)	1.93(1)	C(3)-C(17)	1.51(2)	FeC(4)	2.16(1)
Ge—Fe	2.867(2)	C(4)-C(23)	1.48(2)	Fe-C(01)	1.73(1)
C(1)C(2)	1.44(2)			Fe-C(02)	1.76(1)
C(2)C(3)	1.43(2)			FeC(03)	1.77(1)
¥C(1)FeC(4)	86.2(4)	≯FG¢C(29)		104.0(4)	
∡GeC(1)C(2)	105.4(7)	4C(1)C(2)C(3)		114.9(9)	
4C(2)C(3)C(4)	115.4(9)	4C(3)C(4)Ge		105.3(7)	
	· · · · · · · · · · · · · · · · · · ·				

Fig. 1. Molekülstruktur von Tricarbonyl(1-exo-fluor-1-methyl-2,3,4,5-tetraphenyl-1-germacyclopentadien)-eisen.

wirkung unwahrscheinlich. Für kovalente Fe-Ge-Bindungen wurden demgegenüber Abstände zwischen 2.40 und 2.54 Å gefunden [12-14]. Der Diederwinkel liegt mit 31.1° in der gleichen Grössenordnung wie bei anderen Tricarbonyl- $(\eta^4$ -heterocyclopentadien)metall-Komplexen [11,15,16].

Experimentelles

Alle Versuche wurden unter Ausschluss von Feuchtigkeit in N₂-Atmosphäre und unter Verwendung sorgfältig gereinigter und getrockneter Lösungsmittel

durchgeführt. Die Angabe der chemischen Verschiebung erfolgt in δ -Werten (ppm, mit positivem δ feldabwärts). ¹H-NMR-Spektren: Varian T60 (60 MHz); ¹⁹F-NMR-Spektren: Varian XL 100; ³¹P-NMR-Spektren: Bruker WH 90; IR-Spektren (Angaben in cm⁻¹): Perkin—Elmer 283; Massenspektren: Varian-MAT CH 7; Differentialthermoanalysen: Modell 990 Du Pont; C, H, N-Analysen wurden im Mikrolaboratorium des Instituts durchgeführt. Mol-Massen wurden massenspektrometrisch bestimmt.

Tricarbonyl-[1,1-diethyl-2,3,4,5-tetraphenyl-1-germacyclopentadien]eisen (VI), Tricarbonyl-[1,1,2,3,4,5-hexaphenyl-1-germacyclopentadien]eisen (VII), Tricarbonyl-[1,1-di(p-tolyl)-2,3,4,5-tetraphenyl-1-germacyclopentadien]eisen (VIII), Tricarbonyl-[1,1,-bis(p-dimethylaminophenyl)-2,3,4,5-tetraphenyl-1-germacyclopentadien]eisen (IX) und Tricarbonyl-[1,1-bis(pentafluorphenyl)-2,3,4,5-tetraphenyl-1-germacyclopentadien]eisen (X)

Allgemeine Vorschrift: 2.00 g der entsprechenden Germacyclopentadiene und 2–3 ml Eisenpentacarbonyl werden in 150 ml Benzol in einer Tauchlampenapparatur aus Duran-Glas mit einem Hg-Hochdruckbrenner (Philips HPk 125 W) 72–100 Stunden bestrahlt, wobei das Eisenpentacarbonyl während der Bestrahlung in kleinen Mengen zugegeben wird. Der Reaktionsablauf wird ¹H-NMR-spektroskopisch verfolgt. Nach vollständiger Komplexierung der Diene wird eventuell entstandenes Dieisenenneacarbonyl abgefrittet. Die eingeengte Benzollösung filtriert man, mit Ausnahme von IX, mit Benzol/Petrolether 1/2 über eine Al₂O₃-(neutral, Akt. I)-Säule ab und kristallisiert nach dem Abziehen der Lösungsmittel die gelb bis gelborangen Komplexe aus n-Hexan/Cyclohexan um.

Verb. VI: Schmp. 149°C, Ausb. 75%. Gef.: C, 66.88; H, 5.12; Mol-Gew. 628. $C_{35}H_{30}FeGeO_3$ ber.: C, 67.04; H, 4.82%; Mol-Gew. 627.06. ¹H-NMR (in CS₂, CH₂Cl₂ int.): $\delta(C_2H_5)$ 0.7–1.9 (m, 10); $\delta(aromat, H)$ 6.6–7.2 (m, 20). IR (in Cyclohexan): $\nu(CO)$ 2034.1, 1976.1, 1969.7.

Verb. VII: Schmp. 218°C, Ausb. 91%. Gef.: C, 71.21; H, 4.42; Mol-Gew. 724. $C_{43}H_{30}FeGeO_3$ ber.: C, 71.42; H, 4.18%; Mol-Gew. 723.15. ¹H-NMR (in CS₂, TMS int.): δ (Ge-C₆H₅) 7.2-7.5 (m, 10); δ (aromat. H) 6.7-7.2 (m, 20). IR (in Cyclohexan): ν (CO) 2039.5, 1986.2, 1969.8 cm⁻¹.

Verb. VIII: Schmp. 246°C, Ausb. 91%. Gef.: C, 71.72; H, 4.60, Mol-Gew. 752. $C_{45}H_{34}FeGeO_3$ ber.: C, 71.95; H, 4.56; Mol-Gew. 751.21. ¹H-NMR (in CS₂, TMS int.): $\delta(exo \ CH_3)$ 2.31 ppm (s, 3), $\delta(endo \ CH_3)$ 2.35 ppm (s, 3), $\delta(exo \ C_6H_4)$ 7.27, 7.14 ppm (AB-Spektrum, rechter Teil im Aromaten-H-Bereich, J 7.6 Hz, 2); $\delta(endo \ C_6H_4)$ 7.30, 7.14 ppm (AB-Spektrum, rechter Teil im Aromat. H-Bereich, J 7.6 Hz, 2); $\delta(aromat. H)$ 6.6–7.3 ppm (m, 24). IR (in Cyclohexan): $\nu(CO)$ 2040.0, 1985.0, 1968.3 cm⁻¹.

Verb. IX: Schmp. 237°C, Ausb. 93%. Gef.: C, 70.16, H, 5.21; N, 3.39; Mol-Gew. 810. $C_{47}H_{40}FeGeN_2O_3$ ber.: C, 69.76; H, 4.98; N, 3.46%; Mol.Gew. 809.29. ¹H-NMR (in CS₂, TMS int.): δ (N-CH₃): 2.92 (s, 6); 2.94 (s, 6) ppm, δ (*exo* C₆H₄) 6.43, 6.58 ppm (AB-Spektrum, linker Teil verdeckt, J 8.8 Hz, 2), δ (*endo* C₆H₄) 6.44, 6.59 ppm (AB-Spektrum, linker Teil verdeckt, J 8.8 Hz, 2); δ (aromat. H) 6.4-7.3 ppm (m, 24). IR (in Cyclohexan): ν (CO) 2038.0, 1982.7, 1963.9 cm⁻¹.

Verb. X: Schmp. 215°C, Ausb. 79%. Gef.: C, 57.50; H, 2.43; Mol.Gew. 904.

 $C_{43}H_{20}F_{10}FeGeO_3$ ber.: C, 57.19; H, 2.23%; Mol.Gew. 903.06. ¹H-NMR (in CS₂, TMS int.): δ (aromat. H) 6.7–7.2 ppm (m). ¹⁹F-NMR (in C₆D₆, CFCl₃ ext.): δ (exo C₆F₅) –127.18 (mc, o-F), –159.28 (mc, m-F) –147.62 ppm (tt, J(o-F) 3.5 Hz, J(m-F) 20.0 Hz, p-F); δ (endo C₆H₅) –119.96 (mc, o-F), –158.37 (mc, m-F), –147.60 ppm (tt, J(o-F) 3.5 Hz, J(m-F) 20.0 Hz, p-F).

Tricarbonyl(1-exo-chlor-1-endo-methyl-2,3,4,5-tetraphenyl-1-germacyclopentadien)eisen (XII) aus XI und BCl₃

Zu 25 ml Benzol kondensiert man 234 mg (2.00 mmol) Bortrichlorid und tropft bei 6–7°C eine Lösung von 1.20 g (2.00 mmol) XI in 25 ml Benzol zu. Nach zweistündigem Rühren bei Raumtemperatur wird das Lösungsmittel abgezogen. Eine Umkristallisation des Rückstandes aus n-Hexan/Cyclohexan ergibt Verb. XII [1], Ausb. 954 mg (77%), Schmp. 171°C. Gef. C, 61.95; H, 3.55. Ber. C, 62.05; H, 3.74%. ¹H-NMR (in CS₂, CH₂Cl₂ int.): δ (CH₃) 1.42 ppm (s, 3), δ (aromat. H) 6.7–7.3 ppm (m, 20). IR (in Cyclohexan): ν (CO) 2045.0, 1986.4 cm⁻¹, (in KBr): ν (Ge–Cl) 346.1 cm⁻¹.

Verb. XII aus XI und SbCl₅: Zu einer Lösung von 1.20 g (2.00 mmol) XI in 25 ml Benzol werden 0.26 ml (0.60 g, 2.00 mmol) Antimonpentachlorid in 25 ml Benzol zugetropft. Man lässt 12 Stunden rühren und zieht dann das Lösungsmittel ab. Eine Umkristallisation des Rückstandes aus n-Hexan ergibt XII, Ausb. 1.08 g (87%).

$\label{eq:constraint} Tricarbonyl (1-exo-brom-1-endo-methyl-2,3,4,5-tetraphenyl-1-germacyclopenta-dien) eisen (XIII) aus XI und SnBr_4$

1.20 g (2.00 mmol) XII und 877 mg (2.00 mmol) Zinntetrabromid werden in 50 ml Benzol eine Stunde unter Rückfluss erhitzt. Nach Abziehen des Lösungsmittels ergibt eine Umkristallisation des Rückstandes aus n-Hexan/Cyclohexan den Komplex XIII. Schmp. 176°C, Ausb. 1.20 g (90%). Gef.: C, 57.65, H, 3.40; Mol.Gew. 664. $C_{32}H_{23}BrFeGeO_3$ ber.: C, 57.90; H, 3.49%, Mol. Gew. 663.88. ¹H-NMR (in CS₂, CH₂Cl₂ int.): δ (CH₃) 1.52 ppm (s, 3), δ (aromat. H) 6.6–7.3 ppm (m, 20). IR (in Cyclohexan): ν (CO) 2045.4, 1987.0 cm⁻¹.

Tricarbonyl(1-exo-chlor-1-endo-p-tolyl-2,3,4,5-tetraphenyl-1-germacyclopentadien)eisen (XVI)

1.50 g (2.00 mmol) VIII und 1.04 g (0.47 ml, 4.00 mmol) Zinntetrachlorid werden in 50 ml Benzol 12 Stunden gerührt und anschliessend 5 Stunden unter Rückfluss erhitzt. Nach Abziehen des Lösungsmittels ergibt eine Umkristallisation des Rückstandes aus n-Hexan/Cyclohexan Verbindung XVI. Schmp. 228°C, Ausb. 1.30 g (93%). Gef.: C, 65.43; H, 3.91; Mol.Gew. 696. $C_{38}H_{27}$ Cl-FeGeO₃ ber.: C, 65.62; H, 3.91%; Mol.Gew. 695.53. ¹H-NMR (in CS₂, TMS int.) δ (CH₃) 2.35 ppm (s, 3), δ (C₆H₄) 7.08, 7.41 ppm (AB-Spektrum, J 8.0 Hz, 4), δ (aromat. H) 6.7–7.5 (m, 20). IR (in Cyclohexan): ν (CO) 2047.8, 1991.7, 1981.9 cm⁻¹, (in KBr): ν (Ge–Cl) 336.6 cm⁻¹.

Tricarbonyl(1-exo-chlor-1-endo-p-dimethylaminophenyl-2,3,4,5-tetraphenyl-1-germacyclopentadien)eisen (XVII)

1.62 g (2.00 mmol) IX und 1.04 g (0.47 ml, 4.00 mmol) Zinntetrachlorid werden in 50 ml Benzol 4 Stunden gerührt. Nach Abziehen des Lösungsmittels ergibt eine Umkristallisation des Rückstandes aus n-Hexan/Cyclohexan Verbindung XVII. Schmp. 216°C, Ausb. 1.20 g (83%). Gef.: C, 64.33; H, 4.46; N, 1.86; Mol.Gew. 725. $C_{39}H_{30}$ ClFeGeNO₃ ber.: C, 64.65; H, 4.17; N, 1.93%, Mol. Gew. 724.57. ¹H NMR (in CS₂, TMS int.) δ (N-CH₃) 2.98 ppm (s, 6), δ (C₆H₄) 6.57, 7.36 ppm (AB-Spektrum, J 8.8 Hz, 4), δ (aromat. H) 6.8-7.4 ppm (m, 20). IR (in Cyclohexan): ν (CO) 2039.8, 1990.5, 1979.2 cm⁻¹, (in KBr) ν (Ge-Cl) 334.9 cm⁻¹.

Entkomplexierung von XI

(a) mit Trimethylaminoxid. Zu einer Suspension von 1.50 g (20.0 mmol) Trimethylaminoxid in 50 ml Benzol wird bei Raumtemperatur eine Lösung von 1.20 g (2.00 mmol) XI in 25 ml Benzol zugetropft, wobei Gasentwicklung auftritt. Nach dreistündigem Rühren filtriert man das überschüssige Trimethylaminoxid ab, wäscht die Benzollösung mehrmals mit schwach angesäuertem Wasser, trennt die organische Phase ab und trocknet sie über Natriumsulfat. Nach Abziehen des Benzols erhält man quantitativ Verbindung XVII.

(b) mit Titantetrachlorid. Zu einer Lösung von 1.20 g (2.00 mmol) XI in 25 ml Benzol werden 0.38 g (0.22 ml, 2.0 mmol) Titantetrachlorid in 25 ml Benzol zugetropft. Es fällt sofort ein brauner Niederschlag aus. Nach Abtrennung des Niederschlags und Abziehen des Lösungsmittels ergibt eine Umkristallisation des Rückstandes aus n-Hexan Verbindung XVIII. Ausb. 670 mg (73%).

Tricarbonyl(1-exo-fluor-1-endo-methyl-2,3,4,5-tetraphenyl-1-germacyclopentadien)eisen (XIX)

1.55 g (2.50 mmol) XII und 508 mg (4.00 ml) Silberfluorid werden in 30 ml Benzol gerührt. Nach vollständiger Umsetzung (¹H-NMR-spektroskopisch verfolgt) filtriert man das überschüssige Silberfluorid und das entstandene Silberchlorid ab, zieht das Lösungsmittel ab und kristallisiert den Rückstand aus Cyclohexan um. Verb. XIX: Schmp. 218°C, Ausb. 1.45 g (96%). Gef.: C, 63.36; H, 3.84; Mol.Gew. 604. C₃₂H₂₃FFeGeO₃ ber.: C, 63.74; H, 3.85%; Mol.Gew. 602.97. ¹H-NMR (in CS₂, CH₂Cl₂ int.): δ(CH₃) 1.18 ppm (d, J 5.1 Hz, 3), δ(aromat. H) 6.7–7.2 ppm (m, 20). ¹⁹F-NMR (CDCl₃, CFCl₃ ext., [¹H]): δ(Ge–F) –120.0(s) ppm. IR (in Cyclohexan): ν(CO) 2044.2, 1985.1 cm⁻¹.

Tricarbonyl(1-exo-jod-1-endo-methyl-2,3,4,5-tetraphenyl-1-germacyclopentadien)eisen (XX)

1.55 g (2.50 mmol) XII und 635 mg (5.00 mmol) Natriumjodid werden in 50 ml Aceton 3 Tage gerührt, wobei sich die Lösung von gelb nach braun verfärbt. Nach Abziehen des Lösungsmittels nimmt man den Rückstand in heissem n-Hexan auf, filtriert die Natriumsalze ab und isoliert nach Kristallisation Verb. XX. Schmp. 170°C, Ausb. 1.60 g (90%). Gef.: C, 54.11; H, 3.37; Mol.Gew. 712. $C_{32}H_{23}FeGeJO_3$ ber.: C, 54.07; H, 3.26%; Mol.Gew. 710.88. ¹H-NMR (in CS_2 , CH_2Cl_2 int.): $\delta(CH_3)$ 1.66 ppm (s, 3), $\delta(aromat. H)$ 6.8–7.3 ppm (m, 20). IR (in Cyclohexan): $\nu(CO)$ 2045.3, 1987.6 cm⁻¹.

Tricarbonyl(1-exo-methoxy-1-endo-methyl-2,3,4,5-tetraphenyl-1-germacyclopentadien)eisen (XXI)

1.55 g (2.50 mmol) XII und 540 mg (10.0 mmol) Natriummethylat werden

in 75 ml Methanol zwei Stunden unter Rückfluss erhitzt. Nach Abziehen des Lösungsmittels nimmt man den Rückstand in heissem n-Hexan auf, filtriert die Natriumsalze ab und isoliert nach Kristallisation Verbindung XXI. Schmp. 135°C, Ausb. 1.35 g (88%). Gef. C, 63.98; H, 4.44; Mol.Gew. 616. C₃₃H₂₆Fe-GeO₄ ber.: C, 64.45; H, 4.26%, Mol. Gew. 615.01. ¹H-NMR (in CS₂, CH₂Cl₂ int.): δ (CH₃) 0.98 ppm (s, 3), δ (OCH₃) 3.50 ppm (s, 3), δ (aromat. H) 6.7–7.2 ppm (m, 20). IR (in Cyclohexan): ν (CO) 2041.1, 1982.0 cm⁻¹, (in KBr): ν (Ge–O) 1053.3 cm⁻¹.

Tricarbonyl(1-endo-methyl-2,3,4,5-tetraphenyl-1-germacyclopentadien)eisen (XXII)

Darstellung siehe [1]. ¹H-NMR (in CS₂, TMS int.): δ (CH₃) 1.03 ppm (d, J 2.5 Hz, 3), δ (GeH) 6.6 ppm (q, 1), δ (aromat. H) 6.5–7.1 (m, 20). IR (in Cyclohexan): ν (CO) 2038.4, 1979.9, 1973.8 cm⁻¹.

Verb. XII aus Verb. XXII. Zu 200 mg (0.34 mmol) XXII gibt man 10 ml Tetrachlorkohlenstoff und lässt 15 Minuten rühren. Nach Abziehen der flüchtigen Bestandteile kann Verb. XII quantitativ und analysenrein isoliert werden.

Verb. XII aus Verb. XXI. Zu einer Lösung von 200 ing (0.33 mmol) XXI in 10 ml Schwefelkohlenstoff werden 0.10 ml (0.22 g, 0.86 mmol) Zinntetrachlorid zugegeben. Nach Abziehen des Lösungsmittels erhält man durch Umkristallisation des Rückstandes aus n-Hexan Verb. XII. Ausb. 185 mg (92%).

Dicarbonyl(1,1-dimethyl-2,3,4,5-tetraphenyl-1-germacyclopentadien)trimethylphosphaneisen (XXIII), Dicarbonyl(1-exo-chlor-1-endo-methyl-2,3,4,5-tetraphenyl-1-germacyclopentadien)trimethylphosphaneisen (XXIV), Dicarbonyl-(1-exo-chlor-1-endo-p-tolyl-2,3,4,5-tetraphenyl-1-germacyclopentadien)trimethylphosphaneisen (XXV), Dicarbonyl(1-exo-chlor-1-endo-p-dimethylaminophenyl-2,3,4,5-tetraphenyl-1-germacyclopentadien)trimethylphosphaneisen (XXVI) und Dicarbonyl(1-exo-fluor-1-endo-methyl-2,3,4,5-tetraphenyl-1-germacyclopentadien)trimethylphosphaneisen (XXVII)

Allgemeine Vorschrift: 3.00 mmol des entsprechende Tricarbonyleisen-Komplexes XI, XII, XVI, XVII oder XIX und 3.30 mmol Trimethylphosphan werden in 200 ml Benzol in einer Tauchlampenapparatur aus Duran-Glas mit einem Hg-Hochdruckbrenner (Philips HPk 125 W) bestrahlt. Nach beendeter CO-Entwicklung (ca. drei Stunden) wird das Lösungsmittel abgezogen und der Rückstand aus n-Hexan/Cyclohexan (Verb. XXIV, XXV, XXVII) bzw. Cyclohexan (Verb. XXIII) bzw. Cyclohexan/Benzol (Verb. XXVI) umkristallisiert.

Verb. XXIII: Schmp. 258°C, Ausb. 91%. Gef.: C, 64.79; H, 5.77; Mol.Gew. 648. $C_{35}H_{35}FeGeO_2P$ ber.: C, 64.97; H, 5.45%, Mol.Gew. 647.08. ¹H-NMR (in CS₂, CH₂Cl₂ int.): $\delta(exo \ CH_3)$ 0.50 ppm (s, 3); $\delta(endo \ CH_3)$ 1.00 ppm (s, 3), $\delta(PCH_3)$ 1.34 ppm (d, J 8 Hz, 9), $\delta(aromat. H)$ 6.6–7.4 ppm (m, 20). ³¹P-NMR (in C₆D₆, H₃PO₄ ext. [¹H]): $\delta(PCH_3)$ 8.33 ppm (s). IR (in Cyclohexan): $\nu(CO)$ 1973.5, 1916.0 und 1960.5, 1907.0 cm⁻¹.

Verb. XXIV: Schmp. 223°C, Ausb. 79%. Gef.: C, 60.98; H, 4.94; Mol.Gew. 668. $C_{34}H_{32}CIFeGeO_2P$ ber.: C, 61.18; H, 4.83%; Mol.Gew. 667.50. ¹H-NMR (in CS₂, CH₂Cl₂ int.): δ (CH₃) 1.42 ppm (s, 3), δ (PCH₃) 1.37 ppm (d, J 8.5 Hz, 9), δ (aromat. H) 6.8–7.4 ppm (m, 20). ³¹P-NMR (in C₆D₆, H₃PO₄ ext. [¹H]): δ (PCH₃) 9.07 ppm s. IR (in Cyclohexan): ν (CO) 1983.4, 1929.4 und 1969.5,

1918.0 cm⁻¹; (in KBr): ν (GeCl) 325.0 cm⁻¹.

Verb. XXV: Schmp. 203°C, Ausb. 75%. Gef.: C, 64.54; H, 5.01; Mol.Gew. 744. $C_{40}H_{36}ClFeGeO_2P$ ber.: C, 64.61; H, 4.88%; Mol.Gew. 743.60. ¹H-NMR (in CS₂, TMS int.): $\delta(CH_3)$ 2.34 ppm (s, 3), $\delta(C_6H_4)$ 7.44, 7.31 ppm (AB-Spektrum, rechter Teil von aromat. H verdeckt, J 7.8 Hz, 4), $\delta(PCH_3)$ 1.21 (d, J 8.5 Hz, 9), $\delta(aromat. H)$ 6.8–7.4 ppm (m, 20). ³¹P-NMR (in C₆D₆, H₃PO₄ ext. [¹H]): $\delta(PCH_3)$ 8.82 ppm s. IR (in Cyclohexan): $\nu(CO)$ 1985.4, 1931.5 cm⁻¹, (in KBr): $\nu(GeCl)$ 317.0 cm⁻¹.

Verb. XXVI: Schmp. 220°C, Ausb. 70%. Gef.: C, 63.60; H, 5.03; N, 1.76; Mol.Gew. 773. $C_{41}H_{39}$ ClFeGeNO₂P ber.: C, 63.74; H, 5.09; N, 1.81%; Mol. Gew. 772.64. ¹H-NMR (in CS₂, TMS int.): δ (CH₃) 2.95 ppm (s, 6), δ (C₆H₄) 6.52, 7.27 ppm (AB-Spektrum, J 8.8 Hz, 4), δ (PCH₃) 1.23 ppm (d, 8.5 Hz, 9), δ (aromat. H) 6.8–7.3 ppm (m, 20). ³¹P-NMR (in C₆D₆, H₃PO₄ ext. [¹H]): δ (PCH₃) 8.46 ppm s. IR (in Cyclohexan): ν (CO) 1983.1, 1929.2 cm⁻¹.

Verb. XXVII: Schmp. 185°C, Ausb. 77%. Gef.: C, 62.42; H, 5.17; Mol.Gew. 652. $C_{34}H_{32}FFeGeO_2P$ ber.: C, 62.73; H, 4.95%; Mol.Gew. 651.04. ¹H-NMR (in CS₂, CH₂Cl int.): δ (CH₃) 1.16 ppm (dd, $J(^{1}H-^{31}P)$ 0.5 Hz, $J(^{1}H-^{19}F)$ 5.8 Hz, 3), δ (PCH₃) 1.35 ppm (d, J 8.4 Hz, 9), δ (aromat. H) 6.8–7.4 ppm (m, 20). ³¹P-NMR (in C₆D₆, H₃PO₄ ext. [¹H]): δ (PCH₃) 8.88 ppm (d, $J(^{31}P-^{19}F)$ 16.4 Hz. ¹⁹F-NMR (in C₆D₆, CFCl₃ ext.): δ (GeF) –119.32 ppm (dq, $J(^{19}F-^{31}P)$ 16.4 Hz, $J(^{19}F-^{1}H)$ 5.8 H). IR (in Cyclohexan): ν (CO) 1982.0, 1927.0 und 1967.9, 1916.5 cm⁻¹.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Unterstützung. A.K. dankt der Studienstiftung des Deutschen Volkes für ein Stipendium.

Literatur

- 1 P. Jutzi und A. Karl, J. Organometal. Chem., 128 (1977) 57.
- 2 H. Müller und G.E. Herberich, Chem. Ber., 104 (1971) 2772.
- 3 I.U. Khaud, P.L. Pauson und W.E. Watts, J. Chem. Soc. C, (1969) 2024.
- 4 H. Sakurai und J. Hayaski, J. Organometal. Chem., 63 (1973) C7.
- 5 P. Jutzi und A. Karl, J. Organometal. Chem., 215 (1981) 19.
- 6 R. Pettit und G.F. Emerson, Advan. Organometal. Chem., 1 (1964) 1.
 7 E.O. Fischer und H. Werner, Metal π-Complexes, Vol. 1, Elsevier Publishing Company, Amsterdam,
- 1966.
- 8 Y. Shvo und E. Hazum, J. Chem. Soc. Chem. Commun., (1974) 336.
- 9 J.H. Eekhof, H. Hogeveen und R.M. Kellog, J. Chem. Soc. Chem. Commun., (1976) 657.
- 10 H. Sakurai, J. Hayashi und T. Kobayashi, J. Organometal. Chem., 110 (1976) 303.
- 11 K.W. Munir, R. Walker, E.W. Abel, T. Blackmore und R.J. Whitley, J. Chem. Soc. Chem. Commun., (1975) 698.
- 12 M.A. Busch und P. Woodward, J. Chem. Soc., 99 (1977) 7546.
- 13 M. Elder und D. Hall, Inorg. Chem., 8 (1969) 1424.
- 14 M. Elder, Inorg. Chem., 8 (1969) 2703.
- 15 M.J. Barrow, J.L. Davidson, W. Harrison, D.W.A. Sharp, G.A. Sim und F.B. Wilson, J. Chem. Soc. Chem. Commun., (1973) 503.
- 16 M.J. Barrow, A.A. Freer, W. Harrison, G.A. Sim, D.W. Taylor und F.B. Wilson, J. Chem. Soc. Dalton Trans., (1975) 197.
- 17 T.A. Albright, P. Hoffmann und R. Hoffmann, J. Amer. Chem. Soc., 99 (1977) 7546.
- 18 D.T. Cromer und J.T. Waber, International Tables for X-Ray Crystallography, Vol. IV, p. 99, Kynoch Press, Birmingham, 1974.