BAYERISCHE JULIUS-MAXIMILIANS-UNIVERSITÄT WÜRZBURG FAKULTÄT FÜR BIOLOGIE LEHRSTUHL FÜR MIKROBIOLOGIE

Der Thiol:Disulfid-Redox-Metabolismus und der Blaulichtrezeptor Lmo0799 von *Listeria monocytogenes*

Dissertation

zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg

> vorgelegt von Nicolai Ondrusch aus Augsburg

Würzburg 2010

Eingereicht am:

Mitglieder der Promotionskommission:

Vorsitzender:

1. Gutachter

Prof. Dr. Jürgen Kreft

2. Gutachter

PD Dr. Knut Ohlsen

Tag des Promotionskolloquiums:

Doktorurkunde ausgehändigt am:

Ich versichere, dass die vorliegende Arbeit nur unter Verwendung der angegebenen Hilfsmittel angefertigt und von mir selbständig durchgeführt und verfasst wurde.

Diese Dissertation hat weder in dieser noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegen.

Neben dem akademischen Grad "Diplom-Biologe Univ." habe ich keine weiteren akademischen Grade erworben oder zu erwerben versucht.

Würzburg, den

Der experimentelle Teil dieser Arbeit wurde von März 2007 bis Juli 2010 am Lehrstuhl für Mikrobiologie (Prof. Dr. W. Goebel bzw. Prof. Dr. T. Rudel) am Theodor-Boveri-Institut für Biowissenschaften der Bayerischen Julius-Maximilians-Universität zu Würzburg durchgeführt.

Meiner Oma

Vielen Dank!

Mein allerherzlichster und zutiefst empfundener Dank gilt Herrn Prof. Dr. Jürgen Kreft für die ausgezeichnete Betreuung dieser Arbeit und sein immer offenes Ohr. Sein unermüdlicher Einsatz, seine Hilfe und Unterstützung waren für den Erfolg dieser Arbeit essentiell.

Ich danke Herrn Prof. Dr. Rudel für die Bereitstellung des Arbeitsplatzes und Herrn PD Dr. Knut Ohlsen für die freundliche Übernahme des Zweitgutachtens.

Ein besonderes Dankeschön gilt allen Mitarbeitern des Lehrstuhles für Mikrobiologie für das angenehme Arbeitsklima und die Unterstützung bei allen Problemen. Besonders hervorheben möchte ich Marco Albrecht, Dr. Regina Stoll und Dr. Biju Joseph, für ihre Hilfe, die netten Unterhaltungen und ihr immer offenes Ohr. Antje Fuß und Nicole Hagen danke ich besonders für die herzliche Atmosphäre im Labor.

Ein großer Dank geht auch an alle "hilfreichen Geister": Frau Stapf und Frau Steinbrecher in der Medienküche und Jessica Fromm im Sekretariat, sowie Herrn Turba und Herrn Oechsner in der Werkstatt für die Hilfe und die Herstellung der Belichtungsbrücke und der IR-Hintergrundbeleuchtung.

Danke auch an alle "meine Würzburger und Landshuter", die mich immer wieder erinnert haben, dass es auch noch ein Leben außerhalb des Labors gibt.

Ganz besonders herzlich bedanke ich mich bei meiner Mutter und meiner Tante Gerda, die immer an mich geglaubt haben und mich während des gesamten Studiums und der Promotion unterstützt haben, wo es nur ging. Ohne Euch hätte ich es nie geschafft.

Würzburg, im Juli 2010

1. Zusammenfassung	1
1. Abstract	5
2. Einleitung	8
2.1 Motivation zur Arbeit mit <i>Listeria</i>	8
2.2 Allgemeine Charakterisierung von Listeria monocytogenes	9
2.2.1 Pathogenese von L. monocytogenes	9
2.1.2 Intrazellulärer Lebenszyklus und Virulenzfaktoren von L. monocytogenes	10
2.2 Thiol:Disulfid Redox-Metabolismus von L. monocytogenes	13
2.2.1 Thioredoxin-System	15
2.2.2 Glutathion-System	18
2.2.3 Redox-Switch Chaperon Hsp33	19
2.2.4 Transkriptionsregulatoren	21
2.2.5 Superoxid-Dismutase SOD	28
2.2.6 Katalase Kat	29
2.3 Bakterielle Photorezeptoren	29
2.3.1 Das PYP Protein	29
2.3.2 Cryptochrome und Photolyasen	
2.3.3 Die BLUF-Domänen Proteine	
2.3.4 Phototropin-ähnliche Blaulichtrezeptoren in Bakterien	
2.3.5 Das Stressosom und die σ^{B} Antwort von <i>B. subtilis</i>	
2.4 Zielsetzungen dieser Arbeit	
3. Material	
3.1 Geräte	
3.2 Verbrauchsmaterial	
3.3 Medien und Agarplatten	
3.4 Antibiotika	
3.5 Bakterienstämme	
3.6 Plasmide	
3.7 Oligonukleotide	
3.8 Größen- und Molekulargewichtsstandards	
3.9 Verwendete Kits	
4. Methoden	43
4.1 Arbeiten mit Bakterien	
4.1.1 Wachstumskurven	43
4.1.2 Wachstum unter Stressbedingungen	43
4.1.3 Disk Diffusion Assay	
4.1.4 Motilitäts-Untersuchung	
4.1.5 Lecitinase und Hämolysin Assays	44
4.1.6 Überlebensassay mit Gallenextrakt	
4.2 Molekulargenetische Methoden	
4.2.1 Isolierung chromosomaler DNA aus <i>Listeria</i>	
4.2.2 Isolierung von Plasmid-DNA	
4.2.3 Herstellung von Bakterien-Zelllysat	
4.2.4 Reinigung von DNA	
4.2.5 Konzentrationsbestimmung chromosomaler DNA	
4.2.6 Elektrophoretische Auftrennung von DNA	
4.2.7 Polymerase Unain Reaction (PUR)	
4.2.8 Kestriktionsverdau von DNA	
4.2.9 Ligation von DNA-Fragmenten	
4.2.10 I Fansion in Listerian (Derkund Statistic 1000)	
4.2.11 Elektroporation in Listerien (Park und Stewart, 1990)	52 ピン
4.2.12 Mulagenese uurun nonooge Nekononalon	
1.2.10 merstehung von drycer mikulturen	

4.2.15 Konzentrationsbestimmung von RNA 54 4.2.16 Reverse Transkription und PCR mit cDNA 54 4.2.17 Reverse Transkriptionsprofilierung durch Microarray-Experimente 55 4.2.18 Gesamttranskriptionsprofilierung durch Microarray-Technologie 55 4.3.218 Gesamttranskriptionsprofilierung durch Microarray-Technologie 56 4.3.1 Herstellung von Bakterienaliquots 57 4.3.2. Auftauen und Einfrieren eukaryontischer Zellen 57 4.3.3 Lubultivierung eukaryontischer Zellen 57 4.3.4 Invasionsassay von <i>Lmonocytogenes</i> in Caco-2 Enterozyten 58 5. Ergebnisse 59 5.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 1000000000000000000000000000000000000	4.2.14 Isolierung von RNA aus Listerien	53
4.2.16 Reverse Transkription und PCR mit cDNA 54 4.2.17 Reverse Transkription von RNA für Microarray-Experimente 55 4.2.18 Gesamttranskriptionsprofilerung durch Microarray-Technologie 55 4.3.2 Auftauen und Einfrieren eukaryontischer Zellen 57 4.3.3 Subkultivierung eukaryontischer Zellen 57 4.3.3 Vanstonssasay von L.monocytogenes in Caco-2 Enterozyten 58 5. Ergebnisse 59 5.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 59 5.2. Gesamttranskriptomstudien mittels DNA-Microarray 62 5.2.1 Vergleich von L. monocytogenes EGD-e Wildtyp und AgshF 62 5.2.2 Vergleich von L. monocytogenes EGD-e Wildtyp und AgshF Mutante 68 5.4 Charakterisierung von ImoO799 69 5.4.1 Konstruktion einer Deletionsmutante für Imo0799 70 5.4.2 Wachstumsversuche in BHI 71 5.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 63 5.4 Norstruktion einer Deletionsmalysen ausgewählter Testgene mit blauem Licht 86 5.4.1 könstruktion einer Deletionsmutante für Imo0799 70 5.4.3 Ritiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 64 6.1 Versuche zur Replikation v	4.2.15 Konzentrationsbestimmung von RNA	54
4.2.17 Reverse Transkription von RNA für Microarray-Experimente 55 4.2.18 Gesamttranskriptionsprofilierung durch Microarray-Technologie 55 4.3 Zellkultur 56 4.3.1 Herstellung von Bakterienaliquots 57 4.3.2 Auftauen und Einfrieren eukaryontischer Zellen 57 4.3.3 Subkultivierung eukaryontischer Zellen 57 4.3.4 Invasionsassay von Lmonocytogenes in Caco-2 Enterozyten 58 5. Ergebnisse 59 5.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM unter verschiedenen Bedingungen 59 5.2. Gesamttranskriptomstudien mittels DNA-Microarray 62 5.2.1 Vergleich von L. monocytogenes EGD-e Wildtyp und AgshF 66 5.3 Versuche zur Lecithinase- und Hämolysin Aktivität der AgshF Mutante 68 5.4 Charakterisierung von Imo0799 70 5.4.1 Konstruktion einer Deletionsmutante für Imo0799 70 5.4.2 Wachstumsversuche in BHL 71 5.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L monocytogenes 5.5 Invasionsversuche in it salzgestressten und blau belichteten EGD-e Wildtyp und 4.4 QRT PCR Transkriptionsanalysen ausgewählter Testgene mit rotem Licht 86 5.5 Invasionsversuche in itslagestressten und blau belic	4.2.16 Reverse Transkription und PCR mit cDNA	54
4.2.18 Gesamttranskriptionsprofilierung durch Microarray-Technologie 55 4.3 Zellkultur 56 4.3.1 Herstellung von Bakterienaliquots 57 4.3.2. Auftauen und Einfrieren eukaryontischer Zellen 57 4.3.3.4 Invasionsassay von Lmonocytogenes in Caco-2 Enterozyten 58 5. Ergebnisse 59 5.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM unter verschiedenen Bedingungen 59 5.2. Gesamttranskriptomstudien mittels DNA-Microarray 62 5.2.1 Vergleich von L. monocytogenes EGD-e Wildtyp und AgshF 62 5.2.2 Vergleich von L. monocytogenes EGD-e Wildtyp und AgshF mut 5mM GSHreat im Medium 66 5.4 Charakterisierung von Imo0799 70 5.4.1 Konstruktion einer Deletionsmutante für Im00799 70 5.4.2 Wachstumsversuche in BHI 71 5.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 66 5.5 Invasionsversuche mit salzgestressten und blau belichteten EGD-e Wildtyp und AgshF. 71 5.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit totem Licht. 76 6.2.5 Invasionsversuche mit salzgestressten und blau belichteten EGD-e Wildtyp und AgshF. 96 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM unter verschiedenen	4.2.17 Reverse Transkription von RNA für Microarray-Experimente	55
4.3 Zellkultur 56 4.3.1 Herstellung von Bakterienaliquots 57 4.3.2 Auftauen und Einfrieren eukaryontischer Zellen 57 4.3.3 Subkultivierung eukaryontischer Zellen 57 4.3.4 Invasionsassay von L.monocytogenes in Caco-2 Enterozyten 58 5. Ergebnisse 59 5.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 59 5.2. Gesamttranskriptomstudien mittels DNA-Microarray 62 5.2.1 Vergleich von L. monocytogenes EGD-e Wildtyp und ΔgshF mit 5mM GSH-eat im 66 5.3 Versuche zur Lecithinase- und Hämolysin Aktivität der ΔgshF Mutante 68 5.4 Charakterisierung von Imo0799 70 5.4.1 Konstruktion einer Deleitonsmutante für Imo0799 70 5.4.2 Wachstumsversuche in BHI 71 5.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 71 5.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit rotem Licht 76 5.5 Invasionsversuche mit salgestressten und blau belichteten EGD-e Wildtyp und Almo0799 Listerien in Caco-2 Enterozyten 94 6. Diskussion 96 6.1 Kersuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 94 6. Diskussion 96 6.2 Gesamttranskriptomstudien mittels	4.2.18 Gesamttranskriptionsprofilierung durch Microarray-Technologie	55
4.3.1 Herstellung von Bakterienaliquots 57 4.3.2 Auftauen und Einfrieren eukaryontischer Zellen 57 4.3.3 Subkultivierung eukaryontischer Zellen 57 4.3.4 Invasionsassay von L.monocytogenes in Caco-2 Enterozyten 58 5. Ergebnisse 59 5.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 59 5.2. Gesamttranskriptomstudien mittels DNA-Microarray 62 5.2.1 Vergleich von L. monocytogenes EGD-e Wildtyp und AgshF 62 5.2.2 Vergleich von L. monocytogenes EGD-e Wildtyp und AgshF Mutante 66 5.3 Versuche zur Lecithinase- und Hämolysin Aktivität der AgshF Mutante 66 5.4 Charakterisierung von Im00799 70 5.4.1 Konstruktion einer Deleitonsmutante für Im00799 70 5.4.2 Wachstumsversuche in BHI 71 5.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 65 5.4.5 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit rotem Licht 76 5.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit rotem Licht 76 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 94 6. Diskussion 96 6.2 Gesamttranskriptomstudien mittels DNA-Microarray 97	4.3 Zellkultur	56
4.3.2. Auftauen und Einfrieren eukaryontischer Zellen 57 4.3.3 Lubkultivierung eukaryontischer Zellen 57 4.3.4 Invasionsassay von Lmonocytogenes in Caco-2 Enterozyten 58 5. Ergebnisse 59 5.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM unter verschiedenen Bedingungen 59 5.2. Gesamttranskriptomstudien mittels DNA-Microarray 62 5.2.1. Vergleich von L. monocytogenes EGD-e Wildtyp und ΔgshF mit 5mM GSH-ree im Medium 66 5.3. Versuche zur Lecithinase- und Hämolysin Aktivität der ΔgshF Mutante 68 5.4.4. Charakterisierung von Imo0799 70 5.4.1. Konstruktion einer Deletionsmutante für Imo0799 70 5.4.2. Wachstumsversuche in BHI 71 5.4.3. Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 71 5.4.4. qRT PCR Transkriptionsanalysen ausgewählter Testgene mit rotem Licht 76 5.4.5. qRT PCR Transkriptionsanalysen ausgewählter Testgene mit rotem Licht 76 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 71 5.4.3. Invision 96 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 77 6.2. Gesamttranskriptomstudien mittels DNA-Microarray 97	4.3.1 Herstellung von Bakterienaliquots	57
4.3.3 Subkultivierung eukaryontscher Zeiten 57 4.3.4 Invasionsassay von L.monocytogenes in Caco-2 Enterozyten. 58 5. Ergebnisse 59 5.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 59 5.2. Gesamttranskriptomstudien mittels DNA-Microarray. 62 5.2.1. Vergleich von L. monocytogenes EGD-e Wildtyp und AgshF. 62 5.2.2. Vergleich von L. monocytogenes EGD-e Wildtyp und AgshF Mutante. 68 5.3. Versuche zur Lecithinase- und Hämolysin Aktivität der AgshF Mutante. 68 5.4. Charakterisierung von Imo0799. 69 5.4.1 Konstruktion einer Deletionsmutante für Imo0799. 70 5.4.2. Wachstumsversuche in BHI 71 5.4.3. Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 71 5.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit totem Licht 76 5.4.5 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit rotem Licht 86 6. Diskussion 96 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 94 6. Diskussion 96 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 97 6.2.2. Vergleich von L. monocytogenes EGD-e WT und AgshF Mutante </th <td>4.3.2. Auftauen und Einfrieren eukaryontischer Zellen</td> <td>57</td>	4.3.2. Auftauen und Einfrieren eukaryontischer Zellen	57
4.3.4 invasionsassay von L.monocytogenes in Caco-2 Enterozyten 58 5. Ergebnisse 59 5.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM unter verschiedenen Bedingungen 59 5.2. Gesamttranskriptomstudien mittels DNA-Microarray 62 5.2.1 Vergleich von L. monocytogenes EGD-e Wildtyp und AgshF mit 5mM GSH _{red} im Medium 66 5.3 Versuche zur Lecithinase- und Hämolysin Aktivität der AgshF Mutante 68 5.4 Charakterisierung von Imo0799 70 5.4.1 Konstruktion einer Deletionsmutante für Im00799 70 5.4.2 Wachstumsversuche in BHI 71 5.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 71 5.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit blauem Licht 76 5.4.5 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit totem Licht 76 5.4 torastonsversuche mit salzgestressten und blau belichteten EGD-e Wildtyp und Almo0799 Listerien in Caco-2 Enterozyten 94 6. Diskussion 96 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM unter verschiedenen Bedingungen 97 6. 2.1. Vergleich von L. monocytogenes EGD-e WT und AgshF Mutante 99 6.2.1. Vergleich L. monocytogenes EGD-e WT und AgshF mit SmM GSHred im Medium 99 <	4.3.3 Subkultivierung eukaryontischer Zellen	5/
5. Ergebnisse 59 5. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM unter verschiedenen Bedingungen 59 5.2. Gesamttranskriptomstudien mittels DNA-Microarray 62 5.2.1 Vergleich von <i>L. monocytogenes</i> EGD-e Wildtyp und <i>AgshF</i> mit 5mM GSH _{red} im 66 5.3 Versuche zur Lecithinase- und Hämolysin Aktivität der <i>AgshF</i> Mutante 68 5.4 Charakterisierung von <i>Imo0799</i> 69 5.4.1 Konstruktion einer Deletionsmutante für <i>Imo0799</i> 70 5.4.2 Wachstumsversuche in BHI 71 5.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in <i>L. monocytogenes</i> 71 5.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit blauem Licht 76 5.4.5 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit totem Licht 86 5.5 Invasionsversuche mit salzgestressten und blau belichteten EGD-e Wildtyp und <i>Almo0799</i> Listerien in Caco-2 Enterozyten 94 6. Diskussion 96 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 99 6. A. Charakterisierung von <i>Imo0799</i> 90 6.2.1. Vergleich L. monocytogenes EGD-e WT und AgshF mit 5mM GSHred im Medium 99 6.3.2 Vergleich L. monocytogenes EGD-e WT und AgshF. 97 6.2.1. Vergleich von <i>L. monocytogenes</i> EGD-e WT un	4.3.4 Invasionsassay von <i>L.monocytogenes</i> in Caco-2 Enterozyten	58
5.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 59 unter verschiedenen Bedingungen 59 5.2. Gesamttranskriptomstudien mittels DNA-Microarray 62 5.2.1 Vergleich von L. monocytogenes EGD-e Wildtyp und AgshF 62 5.2.2 Vergleich von L. monocytogenes EGD-e Wildtyp und AgshF 62 5.3 Versuche zur Lecithinase- und Hämolysin Aktivität der AgshF Mutante 68 5.4 Charakterisierung von Imo0799 69 5.4.1 Konstruktion einer Deletionsmutante für Imo0799 70 5.4.2 Wachstumsversuche in BHI 71 5.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L monocytogenes 71 5.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit blauem Licht 76 5.4.5 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit totem Licht 86 5.5 Invasionsversuche mit salzgestressten und blau belichteten EGD-e Wildtyp und 21 4.1 Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 96 6.2 Gesamttranskriptomstudien mittels DNA-Microarray 97 6.2.1. Vergleich. Lu monocytogenes EGD-e Wildtyp und AgshF mit 5M GSHred im Medium 99 6.3 Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 97 6.2.1. Vergleich. In unocytogenes EGD-e W	5. Ergebnisse	59
unter verschiedenen Bedingungen 59 5.2. Gesamttranskriptomstudien mittels DNA-Microarray 62 5.2.1 Vergleich von L. monocytogenes EGD-e Wildtyp und AgshF 62 5.2.2 Vergleich von L. monocytogenes EGD-e Wildtyp und AgshF mit 5mM GSHred im 66 5.3 Versuche zur Lecithinase- und Hämolysin Aktivität der AgshF Mutante 68 5.4 Charakterisierung von Imo0799 69 5.4.1 Konstruktion einer Deletionsmutante für Imo0799 70 5.4.2 Wachstumsversuche in BHI 71 5.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 71 5.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit blauem Licht 76 5.4.5 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit rotem Licht 86 5.5 Invasionsversuche mit salzgestressten und blau belichteten EGD-e Wildtyp und Almo0799 Listerien in Caco-2 Enterozyten 94 6. Diskussion 96 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 99 6.2.2 Vergleich von L. monocytogenes EGD-e WT und AgshF mit 5mM GSHred im Medium 99 6.3.4 Charakterisierung von Imo0799 100 6.4.2 Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM unter verschiedenen Bedingungen 96 6.2 Gesamttranskriptomstudie mittels DNA-Microarray <	5.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM	
5.2. Gesamttranskriptomstudien mittels DNA-Microarray. 62 5.2.1 Vergleich von L. monocytogenes EGD-e Wildtyp und AgshF. 62 5.2.2 Vergleich von L. monocytogenes EGD-e Wildtyp und AgshF mit 5mM GSH _{red} im 66 5.3 Versuche zur Lecithinase- und Hämolysin Aktivität der AgshF Mutante. 68 5.4 Charakterisierung von Imo0799. 69 5.4.1 Konstruktion einer Deletionsmutante für Imo0799. 70 5.4.2 Wachstumsversuche in BHI. 71 5.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 71 5.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit blauem Licht. 76 5.4.5 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit rotem Licht. 86 5.5 Invasionsversuche mit salzgestressten und blau belichteten EGD-e Wildtyp und 41m00799 Listerien in Caco-2 Enterozyten. 96 6.1 Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 96 6.2 Gesamttranskriptomstudien mittels DNA-Microarray. 97 6.3.1 Vergleich von L. monocytogenes EGD-e W1 und AgshF mit 5mM GSHred im Medium. 99 6.3 Versuche zur Lecithinase- und Hämolysin Aktivität der AgshF Mutante. 99 6.4.1 Konstruktion einer Deletionsmutante für Im00799. 100 6.4.1 Konstruktion einer Deletionsmutante für Im00799.	unter verschiedenen Bedingungen	59
5.2.1 Vergleich von L. monocytogenes EGD-e Wildtyp und ΔgshF 62 5.2.2 Vergleich von L. monocytogenes EGD-e Wildtyp und ΔgshF mit 5mM GSH _{red} im 66 5.3 Versuche zur Lecithinase- und Hämolysin Aktivität der ΔgshF Mutante 68 5.4 Charakterisierung von Imo0799 69 5.4.1 Konstruktion einer Deletionsmutante für Imo0799 70 5.4.2 Wachstumsversuche in BHI 71 5.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 71 5.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit totem Licht 86 5.5 Invasionsversuche mit salzgestressten und blau belichteten EGD-e Wildtyp und Almo0799 Listerien in Caco-2 Enterozyten 94 6. Diskussion 96 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 97 6.2. Gesamttranskriptomstudien mittels DNA-Microarray 97 6.3. Versuche zur Lecithinase- und Hämolysin Aktivität der ΔgshF Mutante 99 6.4. Charakterisierung von Imo0799 100 6.4.1 Konstruktion einer Deletionsmutante für Imo0799 100 6.4.2 kayntype State state und Hämolysin Aktivität der ΔgshF Mutante 99 6.3 Versuche zur Lecithinase- 101 6.4.2 kayntype State state und Hämolysin Aktivität der ΔgshF Mutante <td< th=""><td>5.2. Gesamttranskriptomstudien mittels DNA-Microarray</td><td> 62</td></td<>	5.2. Gesamttranskriptomstudien mittels DNA-Microarray	62
5.2.2 Vergleich von L. monocytogenes EGD-e Wildtyp und AgshF mit 5mM GSH _{red} im 66 5.3 Versuche zur Lecithinase- und Hämolysin Aktivität der AgshF Mutante. 68 5.4 Charakterisierung von Imo0799 69 5.4.1 Konstruktion einer Deletionsmutante für Imo0799. 70 5.4.2 Wachstumsversuche in BHI. 71 5.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 71 5.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit totem Licht 76 5.4.5 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit rotem Licht 86 5.5 Invasionsversuche mit salzgestressten und blau belichteten EGD-e Wildtyp und Almo0799 Listerien in Caco-2 Enterozyten. 94 6. Diskussion 96 6.2 Gesamttranskriptomstudien mittels DNA-Microarray. 97 6.2.1 Vergleich von L. monocytogenes EGD-e Wildtyp und ΔgshF Mutante 99 64. Charakterisierung von Imo0799 100 6.4.1 Konstruktion einer Deletionsmutante für Imo0799. 100 100 64.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene und Invasionsversuche in BHI. 101 6.6.2 Gesamttranskriptomstudien mittels DNA-Microarray. 97 6.2.1 Vergleich von L. monocytogenes EGD-e Wildtyp und ΔgshF. 99 6.4.2 Argt pCR Transkriptionsanalysen ausgewählter Testgene und Invasionsversuche in BHI.	5.2.1 Vergleich von <i>L. monocytogenes</i> EGD-e Wildtyp und Δgsh F	62
Medium 66 5.3 Versuche zur Lecithinase- und Hämolysin Aktivität der ΔgshF Mutante 68 5.4 Charakterisierung von Imo0799 69 5.4.1 Konstruktion einer Deletionsmutante für Imo0799 70 5.4.2 Wachstumsversuche in BHI 71 5.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 71 5.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit blauem Licht 76 5.4.5 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit rotem Licht 86 5.5 Invasionsversuche mit salzgestressten und blau belichteten EGD-e Wildtyp und 41mo0799 Listerien in Caco-2 Enterozyten 94 6. Diskussion 96 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 97 6.2.1. Vergleich von L. monocytogenes EGD-e Wildtyp und ΔgshF 97 6.2.2 Vergleich L. monocytogenes EGD-e WT und ΔgshF mit 5mM GSHred im Medium 99 6.4. Charakterisierung von Imo0799 100 6.4.1 Konstruktion einer Deletionsmutante für Imo0799. 100 6.4.2 Wachstumsversuche in BHI 100 6.3.4 Konarkterisierung von Imo0799 100 6.4.2 Karakterisierung von Imo0799 100 6.4.4 QRT PCR Transkriptionsanalysen ausgewählter Testgene und Invasions	5.2.2 Vergleich von <i>L. monocytogenes</i> EGD-e Wildtyp und $\Delta gshF$ mit 5mM GSH _{red} im	
5.3 Versuche zur Lecithinase- und Hamolysin Aktivität der ΔgshF Mutante	Medium	66
5.4 Charakteristerung von Imo0799 69 5.4.1 Konstruktion einer Deletionsmutante für Imo0799 70 5.4.2 Wachstumsversuche in BHI 71 5.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 71 5.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit blauem Licht 76 5.4.5 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit rotem Licht 86 5.5 Invasionsversuche mit salzgestressten und blau belichteten EGD-e Wildtyp und 41mo0799 Listerien in Caco-2 Enterozyten 94 6. Diskussion 96 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 96 6.2. Gesamttranskriptomstudien mittels DNA-Microarray 97 6.2.1. Vergleich L. monocytogenes EGD-e Wildtyp und ΔgshF. 97 6.2.2. Vergleich L. monocytogenes EGD-e Wildtyp und ΔgshF. 97 6.3. Versuche zur Lecithinase- und Hämolysin Aktivität der ΔgshF Mutante. 99 6.4. Charakterisierung von Imo0799 100 6.4.1 Konstruktion einer Deletionsmutante für Imo0799 100 6.4.2 Wachstumsversuche in BHI. 100 6.4.2 Wachstumsversuche in BHI. 101 6.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene und Invasionsversuche in Caco-2 Enterozyten 101	5.3 Versuche zur Lecithinase- und Hämolysin Aktivität der $\Delta gshF$ Mutante	68
5.4.1 Konstruktion einer Deletionsmutante für <i>Imo0</i> 799	5.4 Charakterisierung von Imo0799	69
5.4.2 Wachstumsversuche in Brit 71 5.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in <i>L. monocytogenes</i> 71 5.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit blauem Licht 76 5.4.5 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit rotem Licht 86 5.5 Invasionsversuche mit salzgestressten und blau belichteten EGD-e Wildtyp und 94 6. Diskussion 96 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 96 6.2. Gesamttranskriptomstudien mittels DNA-Microarray 97 6.2.1. Vergleich von <i>L. monocytogenes</i> EGD-e Wildtyp und ΔgshF 97 6.2.2 Vergleich L. monocytogenes EGD-e WT und ΔgshF mit 5mM GSHred im Medium 99 6.4. Charakterisierung von <i>Imo0799</i> 100 6.4.1 Konstruktion einer Deletionsmutante für <i>Imo0799</i> 100 6.4.2 Wachstumsversuche in BHI 100 6.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in <i>L. monocytogenes</i> 101 6.5.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene und Invasionsversuche in Caco-2 Enterozyten 101 6.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene und Invasionsversuche in Caco-2 Enterozyten 101 6.5 Hypothetisches Modell des listeriellen Stressosoms und der SigB-Antwort 101 </th <td>5.4.1 Konstruktion einer Deletionsmutante für <i>Imo</i>0/99</td> <td> / U 7 1</td>	5.4.1 Konstruktion einer Deletionsmutante für <i>Imo</i> 0/99	/ U 7 1
5.4.5 Initiale Experimente Zum Enniuss von Licht auf die Transkription in Z. Monocytogenes 71 5.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit blauem Licht. 76 5.4.5 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit rotem Licht. 86 5.5 Invasionsversuche mit salzgestressten und blau belichteten EGD-e Wildtyp und 94 6. Diskussion 96 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 96 6.2 Gesamttranskriptomstudien mittels DNA-Microarray. 97 6.2.1. Vergleich von L. monocytogenes EGD-e Wildtyp und ΔgshF. 97 6.2.2. Vergleich L. monocytogenes EGD-e WT und ΔgshF mit 5mM GSHred im Medium. 99 6.4. Charakterisierung von Imo0799 100 6.4.1 Konstruktion einer Deletionsmutante für Imo0799. 100 6.4.2 Wachstumsversuche in BHI 100 6.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 101 6.5 Hypothetisches Modell des listeriellen Stressosoms und der SigB-Antwort. 107 7. Literaturverzeichnis 109 8. Anhang 119 9. Lebenslauf / Curriculum vitae. 123 9.1 Publikationen 124	5.4.2 Wachstumsversuche in BH1	/ 1
5.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit blauem Licht. 76 5.4.5 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit rotem Licht. 86 5.5 Invasionsversuche mit salzgestressten und blau belichteten EGD-e Wildtyp und 94 6. Diskussion 96 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 96 6.2 Gesamttranskriptomstudien mittels DNA-Microarray. 97 6.2.1. Vergleich von L. monocytogenes EGD-e Wildtyp und ΔgshF. 97 6.2.2 Vergleich L. monocytogenes EGD-e WT und ΔgshF mit 5mM GSHred im Medium 99 6.3 Versuche zur Lecithinase- und Hämolysin Aktivität der ΔgshF Mutante 99 6.4.1 Konstruktion einer Deletionsmutante für Imo0799 100 6.4.2 Wachstumsversuche in BHI 100 6.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 101 6.5 Hypothetisches Modell des listeriellen Stressosoms und der SigB-Antwort 107 7. Literaturverzeichnis 109 8. Anhang 119 9. Lebenslauf / Curriculum vitae. 123 9.1 Publikationen 124	5.4.5 Initiale Experimente zum Emnuss von Licht auf die Transkription in <i>L. monocytog</i>	71 renes
5.4.5 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit rotem Licht	5 4 4 gRT PCR Transkriptionsanalysen ausgewählter Testgene mit blauem Licht	71
5.1 Invasionsversuche mit salzgestressten und blau belichteten EGD-e Wildtyp und <i>Almo0799</i> Listerien in Caco-2 Enterozyten 94 6. Diskussion 96 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 96 6.2. Gesamttranskriptomstudien mittels DNA-Microarray 97 6.2.1. Vergleich von <i>L. monocytogenes</i> EGD-e Wildtyp und ΔgshF. 97 6.2.2. Vergleich L. monocytogenes EGD-e WT und ΔgshF mit 5mM GSHred im Medium 99 6.3. Versuche zur Lecithinase- und Hämolysin Aktivität der ΔgshF Mutante. 99 6.4. Charakterisierung von <i>Imo0799</i> 100 6.4.1 Konstruktion einer Deletionsmutante für <i>Imo0799</i> 100 6.4.2 Wachstumsversuche in BHI 100 6.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in <i>L. monocytogenes</i> 101 6.5 Hypothetisches Modell des listeriellen Stressosoms und der SigB-Antwort. 107 7. Literaturverzeichnis 109 8. Anhang 119 9. Lebenslauf / Curriculum vitae. 123 9.1 Publikationen 124	5.4.5 gRT PCR Transkriptionsanalysen ausgewählter Testgene mit otdeen Licht	7 0
Almo0799 Listerien in Caco-2 Enterozyten 94 6. Diskussion 96 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 96 6.2.1 Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 96 6.2 Gesamttranskriptomstudien mittels DNA-Microarray	5.5 Invasionsversuche mit salzgestressten und blau belichteten EGD-e Wildtvp und	
6. Diskussion 96 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 96 6.2. Gesamttranskriptomstudien mittels DNA-Microarray 97 6.2.1. Vergleich von L. monocytogenes EGD-e Wildtyp und ΔgshF 97 6.2.2. Vergleich L. monocytogenes EGD-e WT und ΔgshF mit 5mM GSHred im Medium 99 6.3. Versuche zur Lecithinase- und Hämolysin Aktivität der ΔgshF Mutante 99 6.4. Charakterisierung von Im00799 100 6.4.1 Konstruktion einer Deletionsmutante für Im00799 100 6.4.2 Wachstumsversuche in BHI 100 6.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 101 6.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene und Invasionsversuche in Caco-2 Enterozyten 101 6.5 Hypothetisches Modell des listeriellen Stressosoms und der SigB-Antwort 107 7. Literaturverzeichnis 109 8. Anhang 119 9. Lebenslauf / Curriculum vitae 123 9.1 Publikationen 124	Δlmo0799 Listerien in Caco-2 Enterozyten	94
6. Diskussion 90 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 96 6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM 96 6.2 Gesamttranskriptomstudien mittels DNA-Microarray	6 Dickussion	06
0.1. Versiche zur Reprikation verschiedener TDKM-Mitanten in Din, 135 und 111M unter verschiedenen Bedingungen 96 6.2 Gesamttranskriptomstudien mittels DNA-Microarray 97 6.2.1. Vergleich von L. monocytogenes EGD-e Wildtyp und ΔgshF 97 6.2.2 Vergleich L. monocytogenes EGD-e WT und ΔgshF mit 5mM GSHred im Medium 99 6.3 Versuche zur Lecithinase- und Hämolysin Aktivität der ΔgshF Mutante 99 6.4. Charakterisierung von Imo0799 100 6.4.1 Konstruktion einer Deletionsmutante für Imo0799 100 6.4.2 Wachstumsversuche in BHI 100 6.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 101 6.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene und Invasionsversuche in Caco-2 Enterozyten 101 6.5 Hypothetisches Modell des listeriellen Stressosoms und der SigB-Antwort 109 8. Anhang 119 9. Lebenslauf / Curriculum vitae 123 9.1 Publikationen 124	6.1 Varsuche zur Panlikation varschiedener TDPM-Mutanten in BHL TSR und HTM	90
6.2 Gesamttranskriptomstudien mittels DNA-Microarray	unter verschiedenen Redingungen	96
6.2.1. Vergleich von L. monocytogenes EGD-e Wildtyp und ΔgshF	6.2 Gesamttranskrintomstudien mittels DNA-Microarray	97
6.2.2 Vergleich L. monocytogenes EGD-e WT und ΔgshF mit 5mM GSHred im Medium	6.2.1. Vergleich von <i>L. monocytogenes</i> EGD-e Wildtyp und Δ <i>ash</i> F	
6.3 Versuche zur Lecithinase- und Hämolysin Aktivität der ΔgshF Mutante	6.2.2 Vergleich L. monocytogenes EGD-e WT und Δ gshF mit 5mM GSHred im Medium	99
6.4. Charakterisierung von Imo0799 100 6.4.1 Konstruktion einer Deletionsmutante für Imo0799 100 6.4.2 Wachstumsversuche in BHI 100 6.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 101 6.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene und Invasionsversuche in 101 6.5 Hypothetisches Modell des listeriellen Stressosoms und der SigB-Antwort 107 7. Literaturverzeichnis 109 8. Anhang 119 9. Lebenslauf / Curriculum vitae 123 9.1 Publikationen 124	6.3 Versuche zur Lecithinase- und Hämolysin Aktivität der Δ <i>qshF</i> Mutante	99
6.4.1 Konstruktion einer Deletionsmutante für <i>lmo0799</i>	6.4. Charakterisierung von <i>lmo0799</i>	100
6.4.2 Wachstumsversuche in BHI 100 6.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 101 6.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene und Invasionsversuche in 101 6.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene und Invasionsversuche in 101 6.5 Hypothetisches Modell des listeriellen Stressosoms und der SigB-Antwort 107 7. Literaturverzeichnis 109 8. Anhang 119 9. Lebenslauf / Curriculum vitae 123 9.1 Publikationen 124	6.4.1 Konstruktion einer Deletionsmutante für <i>lmo0799</i>	100
6.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in L. monocytogenes 101 6.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene und Invasionsversuche in Caco-2 Enterozyten 101 6.5 Hypothetisches Modell des listeriellen Stressosoms und der SigB-Antwort 107 7. Literaturverzeichnis 109 8. Anhang 119 9. Lebenslauf / Curriculum vitae 123 9.1 Publikationen 124	6.4.2 Wachstumsversuche in BHI	100
101 6.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene und Invasionsversuche in Caco-2 Enterozyten 101 6.5 Hypothetisches Modell des listeriellen Stressosoms und der SigB-Antwort 107 7. Literaturverzeichnis 109 8. Anhang 119 9. Lebenslauf / Curriculum vitae 123 9.1 Publikationen 124	6.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in <i>L. monocytog</i>	ienes
0.4.4 qitti Felt Hanskriptionsanalysen ausgewanter Festgene und invasionsversuche in Caco-2 Enterozyten 101 6.5 Hypothetisches Modell des listeriellen Stressosoms und der SigB-Antwort 107 7. Literaturverzeichnis 109 8. Anhang 119 9. Lebenslauf / Curriculum vitae 123 9.1 Publikationen 124	6 1 1 aPT DCP Transkriptionsanalysen ausgewählter Testgene und Invasionsversuche i	101 n
6.5 Hypothetisches Modell des listeriellen Stressosoms und der SigB-Antwort	Caco-2 Enterozytan	101
7. Literaturverzeichnis	6 5 Hypothetisches Modell des listeriellen Stressosoms und der SigB-Antwort	107
 8. Anhang	7 Litoraturvorzoichnis	100
 8. Annang	7. Eneratur verzentinns	1107
9. Lebenslauf / Curriculum vitae	o. Alliang	.119
9.1 Publikationen	9. Lebenslauf / Curriculum vitae	.123
0.2 Destermine sentetion on 124	9.1 Publikationen	124
9.2 Posterprasentationen	9.2 Posterpräsentationen	124

1. Zusammenfassung

Die gram-positiven Listerien sind ubiquitär verbreitete Umweltbakterien. Die Gattung *Listeria* umfasst sowohl human- und tierpathogene, aber auch apathogene Arten. Die einzige Art, die auch beim Menschen eine Erkrankung (Listeriose) verursachen kann, *L. monocytogenes*, gelangt über kontaminierte Nahrung in den Körper. Die Symptome einer Listeriose sind vielgestaltig und reichen von Durchfall und grippeähnlichen Symptomen bis zur Meningoenzephalitis. Neben ihrer Rolle als Lebensmittelkontaminanten und Krankheitserreger stellen die pathogenen Arten der Gattung *Listeria*, insbesondere *L. monocytogenes*, ein weltweit bearbeitetes Modellsystem für fakultativ intrazelluläre Erreger dar.

Nach der Aufnahme über kontaminierte Lebensmittel beginnen pathogene Listerien effektiv ihre Invasion in nicht-phagozytierende Zellen wie Epithelzellen. Dabei spielen die bakteriellen Oberflächenproteine Internalin A und B (InlA, InlB) eine wichtige Rolle. Der nachfolgende intrazelluläre Lebenszyklus läuft in verschiedenen Schritten ab: 1. Ausbruch aus dem primären Phagosom durch Listeriolysin O (LLO) und Phospholipase A (PlcA), 2. Replikation im Cytosol, 3. Rekrutierung von wirtszelleigenem Aktin an der bakteriellen Oberfläche und Bildung eines Aktinschweifs zur Bewegung durch das Cytosol der Wirtszelle durch das ActA-Protein, 4. Ausbildung eines bakterienhaltigen Pseudopodiums, das durch die Nachbarzelle phagozytiert wird und 5. Ausbruch aus dem doppelwandigen, sekundären Phagosom mit Hilfe von LLO und PlcB. Anschließend beginnt der Zyklus von Neuem. Dabei vermeidet Listeria als intrazellulärer Erreger die humorale Immunantwort des Wirts, kann jedoch durch aus Lysosomen stammende antibakterielle Substanzen oder den "oxidativen burst" (Erzeugung reaktiver Sauerstoff-Intermediate) professionell phagozytierender Zellen geschädigt werden. Die Expression der genannten Virulenzfaktoren steht unter der Transkriptionskontrolle durch das PrfA-Protein und teilweise auch des alternativen Sigmafaktors SigB.

Der Thiol-Redox-Metabolismus, der in allen lebenden Zellen zu finden ist, wirkt oxidativem Stress entgegen. Des Weiteren dient er auch der Aufrechterhaltung der intrazellulären Thiol:Disulfid-Balance, die wiederum für die Funktion vieler Proteine essentiell ist. Auch stellt er Reduktionsäquivalente für die Produktion von Desoxyribonucleotiden für die DNA-Synthese bereit und hilft oxidierte Proteine zu reparieren. Die am besten charakterisierten bioaktiven Thiole sind γ-Glutamyl-Cystein-Glycin (Glutathion, GSH) und die kleinen Enzyme Thioredoxin (Trx) und Glutaredoxin (Grx), die durch korrespondierende Reduktasen (GSH-Reduktase – Gor/GshR, Trx-Reduktase – TrxB) ständig wieder reduziert werden müssen. Teilweise werden der Thiol-Redox-Metabolismus sowie andere zelluläre Prozesse durch Thiol-basierende "regulatory switches", regulatorische molekulare Schalter, reguliert. Der Thiol:Disulfid-Redox-Metabolismus (TDRM) unterscheidet sich von anderen metabolischen Netzwerken dadurch, dass keine Kohlenstoff- oder Stickstoffbindungen verändert werden. In vielen Fällen beinhaltet er die reversible Oxidation zweier benachbarter Cysteinreste im entsprechenden Protein, was zur Ausbildung von Disulfidbrücken führt.

Glutathion und Thioredoxine haben ähnliche oder sogar gleiche Rollen in verschiedenen Prozessen, z.B. in der Synthese von Desoxyribonucleotiden, der Entgiftung von Peroxiden oder der Reduktion von Disulfiden. Während Thioredoxine und Thioredoxin-Reduktase in allen lebenden Zellen gefunden wurden, findet man GSH, Grx und GshR zwar in fast allen Eukaryoten, jedoch nur selten in gram-positiven Bakterien. Eine kleine Anzahl von Bakterienarten, darunter *Listeria*, synthetisiert GSH mit Hilfe eines ungewöhnlichen Multidomänen-Fusions-Proteins, GshF, das beide Schritte der GSH-Synthese - zunächst Bildung des Vorläufermoleküls γ -Glutamyl-Cystein, dann vollständiges GSH - übernimmt.

Eine Liste von Genen, deren Produkte höchstwahrscheinlich in den TDRM von *Listeria monocytogenes* involviert sind, konnte anhand der Genomsequenz erstellt werden. Sie beinhaltet *gshF, grx,* zwei putative *gshR,* sechs Gene der Thioredoxin-Familie, *trxB,* verschiedene

1

Ribonucleotid-Reduktase-Gene (*nrd*), *gpo/gpx, prx, tpx ohrA/R* (Detoxifikation von organischen Hydroperoxiden), *msrA* (Methionin-Sulfoxid-Reduktase – Proteinreparatur) und eine nicht geringe Anzahl an Regulatoren, wie z.B. *perR* (Peroxid Regulon), *spx* und *rex* (Redox-sensitive Regulatoren) *fur, zur* und *mntR* (Regulatoren der Metall-Aufnahme – Metalle spielen eine wichtige Rolle bei Redox-Prozessen) sowie das Redox-sensitive Chaperon *hsp33. kat* (Katalase) und *sod* (Superoxid-dismutase) wurden ebenfalls in die Liste aufgenommen, da sie reaktive Sauerstoffspezies (Reactive Oxygen Species, ROS) aus der Zelle entfernen.

2005 gelang es S. Gopal, Mutationen in *gshF* von *L. monocytogenes* einzubringen. Die Mutanten wurden mit ins*gshF*466 bzw. $\Delta gshF$ bezeichnet. Die ins*gshF*466-Mutante ist noch in der Lage, den GSH-Vorläufer, γ -Glutamyl-Cystein zu produzieren, wohingegen die $\Delta gshF$ -Mutante weder GSH noch γ -Glutamyl-Cystein produzieren kann. Neben diesen beiden Mutanten standen zu Beginn dieser Arbeit noch Insertionsmutanten in *perR* und *gpo* zur Verfügung. Anhand von Transkriptionsanalysen mittels DNA-Microarray unter verschiedenen Bedingungen, in vivo- und in vitro-Versuchen zum Wachstum und der Konstruktion weiterer Mutanten sollte die Rolle der Genprodukte der "TDRM-Liste" im Bezug auf den TDRM selbst und die Physiologie von *L. monocytogenes* im allgemeinen und in Bezug auf Virulenz und Invasivität ermittelt werden.

Dazu wurden zunächst Wachstumsversuche der vorhandenen Mutanten in verschiedenen Medien sowie unter Peroxidstress durchgeführt. Dabei zeigte sich, dass – mit Ausnahme der ins*gshF*466-Mutante – alle Mutanten unter allen untersuchten Bedingungen keinen Wachstumsdefekt aufweisen. Die ins*gshF*466-Mutante zeigte unter allen Bedingungen ein deutlich langsameres und weniger dichtes Wachstum.

Da ein totaler Ausfall der GSH-Synthese einen geringeren Effekt zu haben schien als ein teilweiser, wurden DNA-Microarray-Transkriptomanalysen der $\Delta gshF$ -Mutante durchgeführt. Dazu wurde mittels Hybridisierung von cDNA (d.h. eine Repräsentation der unter den jeweiligen Bedingungen bzw. in Mutante oder Wildtyp transkribierten mRNA) an DNA-Microarrays, die molekulare Sonden (Oligonucleotide) des gesamten *L. monocytogenes* Genoms tragen, nach Zielgenen gesucht, deren Transkription durch das Fehlen von GSH in der Zelle beeinflusst wird. Dies war die erste umfassende Studie dieser Art.

Dabei zeigte sich, dass eine große Zahl von Genen betroffen war. Es wurden rund 750 Gene als signifikant reguliert (p < 0,05, Fold-change <0,5 bzw. >2) identifiziert. Da die am stärksten regulierten Gene von besonderem Interesse waren, wurden die Ausschlussgrenzen auf <0,2 bzw. >5 –fach reguliert heraufgesetzt. Diese Parameter trafen auf 92 Gene zu, davon 41 durch GSH-Mangel herauf-regulierte (d.h. die mRNA-Menge war in der Mutante höher als im Wildtyp) und 51 herunter-regulierte. Zunächst richtete sich das Augenmerk auf diejenigen Gene, die bereits in der "TDRM-Liste" als Kandidaten aufgeführt waren. Von diesen erfüllten jedoch nur wenige obige Parameter, darunter *trxB, perR* und *sod*. Auffällig war jedoch eine deutliche Herabregulierung der *prfA*-abhängigen Virulenzgene wie *hly, actA, plcB* oder *inlA* und *inlB*. Dies konnte auch in Versuchen zur Lecithinase-Aktivität bestätigt werden. *prfA* selbst konnte nicht als reguliert identifiziert werden. Auffällig war auch, dass die Expression vieler Gene, welche durch den Stress-Sigmafaktor SigB reguliert werden, bei Fehlen von GSH verändert war. Zu den am stärksten (sechs- bis elffach) herauf-regulierten Genen zählen *lmo0135-7*, sie codieren für einen putativen Oligopeptidtransporter. Die Vermutung lag nahe, dass dieser evtl. GSH aus dem Medium in die Zellen transportieren könnte.

Um diese Hypothese zu testen, wurden DNA-Microarray-Analysen der $\Delta gshF$ -Mutante durchgeführt, die in Medium mit 5mM reduziertem GSH angezogen wurden. Die Analyse dieser Versuche zeigte, dass nur noch wenige Gene im Vergleich zum Wildtyp (der in Medium ohne zusätzliches GSH angezogen wurde) überhaupt reguliert waren. Bei Ausschlussgrößen von p<0,05 sowie Fold-change <0,5 bzw. >2 konnten nur 21 Gene identifiziert werden, von denen die meisten für Transportproteine codieren. Man kann also davon ausgehen, dass GSH von *Listeria* aktiv aus dem Medium aufgenommen wird und dass die Effekte, die im Versuch ohne zusätzliches GSH auftreten, direkt auf das Fehlen von GSH zurückzuführen sind.

Um die Microarray-Experimente graphisch aufzuarbeiten, wurden die Ergebnisse aufbereitet und mittels Software auf die Datenbank KEGG (Kyoto Encyclopedia of Genes and Genomes) abgebildet, in der die Gene bzw. Genprodukte zu funktionalen Einheiten (Stoffwechselwegen) zusammengefasst sind. Dadurch wurde die Analyse der durch das Fehlen von GSH modulierten Stoffwechselwege stark vereinfacht.

Zusammengefasst zeigte sich, dass ein Ausfall der GSH-Synthese in *Listeria* keinen auffälligen Phänotyp zeigt. Es wurden jedoch sehr umfangreiche Veränderungen des Transkriptionsprofils beobachtet, offenbar konnten die Bakterien dadurch eine neue zelluläre Homöostase erreichen. Physiologische Mengen von GSH im Medium komplementierten den Ausfall der GSH-Synthese fast vollständig.

Im Laufe dieser Analysen fiel das Augenmerk auf ein Gen mit unbekannter Funktion, *lmo0799*, das in der $\Delta gshF$ -Mutante als deutlich heraufreguliert identifiziert worden war. Eine nähere insilico-Analyse ergab deutliche Homologien des Lmo0799 Proteins zu einem Blaulicht-photorezeptor, YtvA, von *Bacillus subtilis*. Da ein Zusammenhang mit dem TDRM aufgrund der Microarray-Analysen mehr als wahrscheinlich schien, richtete sich das Augenmerk verstärkt auf die Charakterisierung des putativen Blaulichtrezeptors Lmo0799. Es wurde eine In-Frame-Deletionsmutante in *lmo0799* hergestellt, die mit $\Delta lmo0799$ -Mutante bezeichnet wurde. Darin ist das ursprünglich 253 Aminosäuren (AS) große Genprodukt von *lmo0799* auf sieben AS verkürzt, ohne den Promotor- oder Terminatorbereich bzw. umliegende Gene zu verändern. Parallel wurde begonnen, Versuche zum Einfluss von Licht (blau, λ =455nm bzw. rot, λ =625nm) in vivo und in vitro auf *L. monocytogenes* durchzuführen. Dabei zeigte die $\Delta lmo0799$ -Mutante keinen Wachstumsdefekt gegenüber dem Wildtyp, jedoch zeigte sich, dass sowohl Wildtyp als auch Mutante im Dunklen etwas besser wachsen als bei Blaulicht.

Als nächstes wurden Versuche zur Resistenz gegen Peroxid- (H_2O_2) sowie Disulfid-Stress durch GSH-Depletion durch Diamid durchgeführt. Dabei zeigte sich, dass der Wildtyp bei Bestrahlung mit blauem Licht signifikant empfindlicher auf diese Arten von Stress reagiert als im Dunklen. Auch die $\Delta lmo0799$ -Mutante reagierte empfindlicher im Licht, dies war jedoch meist nicht signifikant. Die Ergebnisse mit rotem Licht waren weniger eindeutig. Versuche zur Flagellenvermittelten Motilität schlossen sich an, dabei zeigte die $\Delta lmo0799$ -Mutante einen eindeutigen Phänotyp. Während der Wildtyp bei Bestrahlung mit blauem Licht deutlich geringere Koloniegrößen aufwies, wuchs die $\Delta lmo0799$ -Mutante zur selben Größe wie die Dunkelkontrollen heran. Rotes Licht zeigte auch beim Wildtyp keine Wachstumshemmung, d.h. der Blaulichtrezeptor Lmo0799 reguliert die Flagellen-vermittelte Motilität negativ, der Mechanismus ist unbekannt.

Versuche mittels qRT-PCR wurden durchgeführt um die genaue Wirkweise von Lmo0799 näher aufzuklären. Dazu wurden Testgene aus verschiedenen Regulons ausgewählt und deren Transkription in Proben von Wildtyp und $\Delta lmo0799$ -Mutante mit und ohne blauem bzw. rotem Licht sowie mit und ohne Salzstress gemessen. Dabei zeigte sich, dass vor allem die Transkription von Genen des SigB-Regulons, das für die allgemeine Stressantwort in Listerien zuständig ist, durch Licht moduliert wurde. Die Wirkung von Blaulicht hing in hohem Maße von der Anwesenheit von Lmo0799 ab, welches wahrscheinlich eine Komponente des "Stressosoms" von Listeria darstellt. Die Lichtregulation betraf auch die Internaline A und B, deren Transkription durch Belichtung stark erhöht wurde.

Infektionsversuche mit blau belichteten bzw. dunkel gehaltenen Wildtyp- bzw. $\Delta lmo0799$ -Bakterien an humanen Caco-2 Enterozyten zeigten, dass wildtypische Listerien nach Bestrahlung mit blauem Licht ihre Invasionsrate verdoppelten, während die $\Delta lmo0799$ -Listerien auf Niveau der Dunkelkontrolle blieben. In der vorliegenden Arbeit konnte erstmals gezeigt werden, dass *L. monocytogenes* (und wohl auch die anderen *Listeria*-Arten) in Lmo0799 einen funktionalen Blaulichtrezeptor besitzt, der eine wichtige Rolle in der Vermittlung von Stressreizen via SigB spielt und auch die Motilität und Virulenz moduliert. Weiterhin konnte gezeigt werden, dass auch rotes Licht die Transkription zahlreicher durch Blaulicht regulierter Gene beeinflusst. Der molekulare Mechanismus konnte im Rahmen dieser Arbeit nicht mehr aufgeklärt werden.

1. Abstract

The gram-positive *Listeriae* are ubiquitious environmental bacteria. The genus *Listeria* comprises human and animal pathogens as well as apathogenic species. The only species known to cause an infectious disease, listeriosis, in man, *Listeria monocytogenes*, is taken up via contaminated food. Symptoms of listeriosis are manyfold and vary from mild gastroenteritis and cold-like symptoms to meningoencephalitis. Aside their role as food contaminants and pathogens, the pathogenic species of the genus *Listeria*, especially *L. monocytogenes*, are widely studied model systems for facultative intracellular bacteria.

After uptake via contaminated food, pathogenic *Listeriae* start to effectively trigger their invasion into non-phagocytic cells, e.g. epithelia. The bacterial surface proteins internalin A and B (InIA, InIB) play a major role here. The subsequent intracellular lifecycle involves the following steps: 1. escape from the primary phagosome, mediated by listeriolysin O (LLO) and phospholipase A (PlcA) 2. replication in the cytosol, 3. recruitment of host cell actin to the bacterial surface, formation of a propulsive actin-tail and intracellular movement by ActA 4. formation of a bacteria-containing pseudopod which is phagocytosed by a neighboring cell 5. escape from the double membrane secondary phagosome (requiring LLO and PlcB), followed by another replication cycle. As an intracellular pathogen, *Listeria* avoids the humoral immune-response of the host by spreading from cell to cell, but can be damaged by antibacterial components from lysosomes or the "oxidative burst" (generation of reactive oxygen species) of professional phagocytes. The expression of the above mentioned virulence factors is under the transcriptional control of the PrfA protein and partially also of the alternative sigma factor SigB.

The thiol-redox metabolism, which can be found in all living cells, counteracts oxidative stress. It also serves in maintaining a proper intracellular thiol:disulfide balance which is essential for many protein functions. It also provides reducing power for the production of deoxynucleotides and thus for DNA synthesis and helps in repairing oxidized proteins. The best characterized bioactive thiols are γ -glutamyl-cysteine-glycine (glutathione, GSH) and the small enzymes thioredoxin (Trx) and glutaredoxin (Grx) which have to be recycled to their reduced state by their corresponding reductases (GSH-reductase – Gor/GshR, Trx-reductase – TrxB). The thiol-redox metabolism and other cellular processes are partially regulated by thiol-based regulatory switches. The thiol:disulfide-redox metabolism (TDRM) differs from other metabolic pathways in that no carbon- or nitrogenbonds are altered. In many cases it involves the reversible oxidation of two neighboring cysteines in the corresponding protein, leading to the formation of disulfide bonds.

Glutathione and thioredoxins have similar or even identical roles in varying processes, e.g. the synthesis of desoxynucleotides and thus DNA-synthesis, the detoxification of peroxides or disulfide reduction. While thioredoxins and thioredoxin-reductase can be found in all living cells, GSH, Grx and GshR can be found in virtually all eukaryotes but rarely in gram-positive bacteria. A small number of bacterial species, among them *Listeria*, synthesize GSH through an unusual multidomain fusion protein, GshF, which carries out both steps of GSH-synthesis.

A list of genes the products of which are most presumably involved in the TDRM of *Listeria monocytogenes* was generated based on the genome sequence. It contains *gshF*, *grx*, two putative *gshR*, six genes of the thioredoxin family, *trxB*, various ribonucleotide-reductase genes (*nrd*), *gpo/gpx*, *prx*, *tpx*, *ohrA/R* (detoxification of organic hydroperoxides), *msrA* (methionine-sulfoxide-reductase – protein repair) and a large number of regulators, e.g. *perR* (peroxide regulon), *spx* and *rex* (redoxsensitive regulators), *fur*, *zur* and *mntR* (regulators of metal uptake – metals play an important role in redox processes) as well as the redoxsensitive chaperon *hsp33*. *kat* (catalase) and *sod* (superoxide-dismutase) were also included in the list as they remove reactive oxygen species (ROS) from the cell.

In 2005, S. Gopal was able to obtain mutants in *gshF* of Listeria monocytogenes. The mutants were referred to as ins*gshF*466 and $\Delta gshF$, respectively. The ins*gshF*466-mutant is still able to produce the precursor of GSH, γ -glutamyl-cysteine, while the $\Delta gshF$ mutant can produce neither GSH nor γ -glutamyl-cysteine. In addition to these two mutants, two other insertion mutants in *perR* and *gpo* respectively, were available at the beginning of this work. Transcriptional analysis by DNA-microarray under various conditions, *in vivo* and *in vitro* assays on growth and the construction of further mutants were the tools of choice to investigate the role of the gene products from the "TDRM-list" concerning the TDRM itself and the physiology of *L. monocytogenes* in general and the virulence and invasiveness in particular.

Growth tests in various media as well as under peroxide stress showed no growth defect in the mutants compared to the wildtype, except for the ins*gshF*466-mutant, which showed slower and less dense growth under all conditions tested.

As a total deficiency in GSH synthesis seemed to have a lesser effect as a partial one, DNA microarray experiments were carried out with the $\Delta gshF$ mutant. Therefore cDNA (a "snapshot" of the RNA in the mutant or condition) was hybridized onto DNA microarrays, which carry molecular probes (oligonucleotides) of the whole *L. monocytogenes* genome, to search for target genes which are differently transcribed due to the lack of GSH in the cell. This was the first global analysis of this type.

As it turned out, a large number of genes was affected. Around 750 genes were identified to be differentially transcribed to a significant (p < 0.05, fold-change <0.5 or >2) extend. The focus was on the most differentially transcribed genes and therefore the threshold was set to < 0.2 or >5 - fold regulated, respectively. These parameters held true for 92 genes, of which 41 were up regulated by the lack of GSH (meaning the amount of mRNA of this gene is x-fold higher in the mutant than in the wildtype), and 51 were down regulated. First analyses showed that only few genes of the TDRM list fulfilled these parameters, among them *trxB*, *perR* and *sod*. Interestingly *prfA*-dependent virulence genes like *hly*, *actA*, *plcB* or *inlA* and *inlB* were among the genes down regulated most significantly. This was also confirmed by e.g. lecithinase assay. *prfA* itself was not differentially transcribed. Strikingly the expression of many SigB-regulated genes was altered when GSH was lacking. Among the genes up regulated the most (six- to elevenfold) were *lmo0135-7*, encoding a putative oligopeptide transporter. Probably it facilitates the uptake of GSH from the medium into the cell.

To test this hypothesis, DNA-microarray experiments of the $\Delta gshF$ mutant were carried out, which was grown in medium containing additional 5 mM reduced GSH. Compared to the wildtype, which was grown in medium without additional GSH, it showed that only few genes were regulated at all. Setting the threshold to p < 0.05 and fold change to < 0.5 or >2 respectively, 21 genes were identified, most of them encoding transporters. One can therefore postulate, that *Listeria* is able to actively take up GSH from the medium, and that the effects seen in the experiments without additional GSH are direct results of the lack of GSH.

In order to graphically prepare the microarray-results, they were conditioned and mapped onto the KEGG database (Kyoto Encyclopedia of Genes and Genomes) by the software KegArray. KEGG integrates genes or gene products, respectively, into functional units or metabolic pathways. This facilitated the analysis of pathways modulated by the lack of GSH. Taken together, the results of this work show that a loss of GSH synthesis in *Listeria* does not result in a particular phenotype. However, extensive changes in the transcription profile were observed as a consequence of the lack of GSH, apparently the bacteria thus could establish a new cellular homeostasis. Physiological amounts of GSH in the medium can complement the loss of GSH synthesis almost completely.

During these analyses a gene of unknown function, *lmo0799*, was noticed to be significantly up regulated in the $\Delta gshF$ mutant. A closer *in silico* analysis showed strong homologies of the Lmo0799 protein to a blue-light photoreceptor, YtvA from *Bacillus subtilis*. As there seemed to

be a clear connection to the TDRM because of the microarray analysis, the focus shifted to the characterization of the putative blue light receptor Lmo0799. An in-frame deletion mutant in *lmo0799* was obtained, which was designated $\Delta lmo0799$. In this mutant the 253 amino acid long gene product of *lmo0799* was shortened to seven amino acids, without altering the promoter or terminator region or any surrounding gene, respectively. In parallel, experiments were started to investigate the influence of light (blue, λ =455nm or red, λ =625nm) on *L. monocytogenes in vivo* and *in vitro*. First experiments showed no growth-defect of the $\Delta lmo0799$ mutant compared to the wild type, but it turned out that the wild type as well as the mutant showed a slightly faster growth when grown in the dark compared to blue-light irradiance.

Experiments investigating the resistence to peroxide- (H_2O_2) as well as to disulfide stress generated by GSH depletion through diamide were carried out next. It turned out that the wild type was significantly more sensitive to these kinds of stress, when illuminated with blue light. The $\Delta Imo0799$ mutant showed more sensitive reactions under blue light conditions as well, but these results were not significant. Results with red light were less clear. Next, assays of flagellamediated motility were carried out, where the $\Delta Imo0799$ mutant showed a clear phenotype. While the wild type showed much smaller colonies when grown with blue light, the $\Delta Imo0799$ mutant grew as big as the reference kept in the dark. Red light showed no growth inhibition in the wild type as well. This showed that the blue-light receptor Lmo0799 negatively regulates flagellar motility by an unknown mechanism.

qRT-PCR experiments were carried out to give more detailed information on the mode of action of Lmo0799. Test genes from different regulons were selected and their transcription was tested in samples from wild type and the $\Delta lmo0799$ mutant, kept in the dark or irradiated with red or blue light, and plus/minus salt stress. It turned out that Lmo0799 is linked to the SigB regulon, responsible for the stress response in *Listeria*, suggesting that Lmo0799 is a component of the "stressosome". It also became clear that the transcription of the Internalins A and B was stimulated by blue light.

Infection assays with human Caco-2 enterocytes, using wild type and $\Delta lmo0799$ bacteria grown under NaCl-stress conditions and in the dark or with blue light, showed that the wild type doubles its invasion rate after illumination with blue light compared to the reference kept in the dark, while the $\Delta lmo0799$ mutant showed no increased invasiveness.

In this work it could be demonstrated for the first time that *L. monocytogenes* (and presumably also the other *Listeria* species) possess a functional blue-light photoreceptor, Lmo0799, which plays a major role in relaying stress stimuli via SigB and which also modulates motility and virulence. Furthermore, it could be shown that also red light has an effect on the transcription of blue-light modulated genes. The underlying mechanism could not be elucidated in the framework of this thesis.

2. Einleitung

2.1 Motivation zur Arbeit mit Listeria

Die zu den Firmicutes zählende Gattung *Listeria* bildet eine Gruppe Gram-positiver, aerob und fakultativ anaerober, nicht sporulierender Stäbchenbakterien. Derzeit umfasst die Gattung sechs Arten: *L. monocytogenes, L. innocua, L. ivanovii, L. seeligeri, L. welshimeri* sowie *L. grayi*.

Von den sechs beschriebenen Arten sind nur *L. monocytogenes* und *L. ivanovii* Pathogene und können eine als Listeriose bezeichnete Infektionskrankheit auslösen. *L. ivanovii* ist bis auf wenige Ausnahmefälle tierpathogen, *L. monocytogenes* tritt als Tier- und Humanpathogen auf. Die restlichen vier Arten gelten als harmlose Umweltkeime. Listerien sind in der Natur ubiquitär verbreitet und können sowohl im Boden, im Wasser, auf Pflanzenteilen als auch in zahlreichen Tierarten, vorwiegend in Säugern, aber auch in Vögeln und Fischen vorkommen [1, 2]. Selbst in Amöben können Listerien überleben und replizieren [3]. Die Gattung *Listeria* ist laut tRNA-Analysen eng mit den Gattungen *Bacillus, Streptococcus, Staphylococcus, Enterococcus* und *Lactobacillus* verwandt [4]. Vor allem zu *Bacillus* besteht eine hohe Sequenzähnlichkeit von 92 bis 95 % [5].

Listerien haben typischerweise einen Durchmesser von ca. 0,4 bis 0,5 µm und eine Länge von 0,5 bis 2,0 µm [6]. Sie zählen zu den Gram-positiven Bakterien mit geringem GC-Gehalt. *L. monocytogenes* EGD (Serotyp 1/2a) weist einen GC-Gehalt von 39 % auf, *L. innocua* von 37 %. Sie zählen des Weiteren zu den Katalase-positiven und Oxidase-negativen Bakterien [7] und sind bei 20 bis 25 °C peritrich begeißelt und dadurch motil. Bei höheren Temperaturen ist die Transkription der Flagellengene in den meisten Stämmen reprimiert und die Bakterien sind dadurch unbeweglich [3, 8].

Extreme Umweltbedingungen stellen kein Problem für das Überleben von *Listeria* dar. Sie können noch bei Temperaturen von 1 bis 45 °C und bei einem pH-Wert zwischen 6 und 9 wachsen und replizieren. In speziellen Kulturmedien ist Wachstum sogar noch bei 0,5 °C möglich [6, 9]. Optimale Wachstumsbedingungen für *Listeria* sind Temperaturen zwischen 30 und 37 °C, neutraler bis leicht alkalischer pH-Wert und Salzkonzentrationen von 0,5 % [6, 10, 11]. Die Fähigkeit, konventionelle Methoden der Nahrungsmittelkonservierung unbeschadet zu überstehen und sich bei Kühlschranktemperaturen sogar zu vermehren, macht *L. monocytogenes* zu einem gefährlichen Nahrungsmittelpathogen [7].

Erstmals wurde *L. monocytogenes* 1926 von Murray *et al.* als Erreger einer Krankheit bei Laborkaninchen und Meerschweinen beschrieben. Da sich die Krankheit in einer typischen Monozytose äußerte, wurde es zunächst *Bacterium monocytogenes*, 1940 zu Ehren Lord Lister's *Listeria monocytogenes* genannt [12].

In den letzten 25 Jahren wurde intensiv an *L. monocytogenes* geforscht. In fast allen Ländern der EU sind jährlich 2 bis 10 Fälle von humaner Listeriose pro Million Menschen zu verzeichnen [7]. Hohe Sterblichkeitsraten bei einer Erkrankung an Listeriose (20-30 %) erfordern die intensive Erforschung dieses Organismus [13]

2.2 Allgemeine Charakterisierung von *Listeria monocytogenes*

2.2.1 Pathogenese von L. monocytogenes

Die Infektion mit Listerien erfolgt meist durch den Verzehr kontaminierter Nahrungsmittel. Zwei symptomatisch verschiedene Formen der Listeriose können in Abhängigkeit der immunologischen Fitness des Wirtes, der Virulenz des *L. monocytogenes*-Stammes und der Infektionsdosis auftreten: Zum einen die nicht-invasive, gastrointestinale Listeriose und zum anderen die invasive Listeriose. Bei immunkompetenten Individuen tritt meist eine nichtinvasive Listeriose auf und manifestiert sich als fiebrige Gastroenteritis. Die Wahrscheinlichkeit an einer invasiven Listeriose zu erkranken, ist besonders bei physiologisch oder pathologisch geschwächten Personen sehr hoch [14]. Zu den Risikogruppen zählen Schwangere, Neugeborene, ältere Menschen sowie immunsupprimierte Individuen, deren Immunsystem durch Leukämie, Chemotherapie, Organtransplantationen, chronischen Leber- oder Nierenleiden, HIV usw. geschwächt ist [1].

Typischerweise treten Symptome wie Meningitis, Encephalitis, fötale Infektionen über die Placenta-Schranke und Sepsis auf. Diese diversen klinischen Manifestationen der Infektion mit *Listeria* verdeutlichen die Fähigkeit der Bakterien, drei verschiedene Barrieren im menschlichen Körper zu durchbrechen: nach der Aufnahme kontaminierter Nahrung durchbricht *L. monocytogenes* die intestinale Barriere, indem es ins Darmepithelium eindringt. Dies ermöglicht es den Bakterien, innere Organe zu erreichen. Die zweite Barriere, die Listerien überwinden können, ist die Blut-Hirn-Schranke. Die hieraus resultierende Infektion der Hirnhäute und des Gehirns (Encephalitis) tritt in 10 % der listeriellen Infektionen auf [15]. Ferner kann die Placenta-Barriere durchbrochen werden, die Erkrankungen des Fötus kann zu Fehl- oder Totgeburten führen [1, 2].

Nachdem die intestinale Barriere durchbrochen wurde, werden die Bakterien vom Blut oder der Lymphflüssigkeit zu den mesenterischen Lymphknoten, der Milz und der Leber transportiert.

Abbildung 2.1: Schritte der menschlichen Listeriose (aus Cossart & Toledo-Arana, 2008)

Listerien sind dazu in der Lage, ihre eigene Internalisierung über den Zipper-Mechanismus (siehe unten) zu induzieren, selbst in Zelltypen, die normalerweise nicht phagozytisch aktiv sind. Dies schließt Epithelzellen, Fibroblasten, Leberzellen, Endothelzellen und Nervenzellen ein [1, 16].

L. monocytogenes lässt sich anhand der somatischen (O) und Flagellen- (H) Antigene in 13 Serotypen einteilen: 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 4c, 4d, 4e und 7 [6, 12, 17]. Für 95% der menschlichen Infektionen sind die Serotypen 1/2a, 1/2b und 4b verantwortlich und für die meisten Krankheitsausbrüche Stämme des Serotyps 4b [6, 14].

Die geeignete Therapie setzt sich, sofern die Listeriose innerhalb von vier Tagen erkannt wird, aus einer kombinatorischen Behandlung mit Penicillin G oder Ampicillin und einem Aminoglykosid oder Sulfomethaxozol/Trimethoprim zusammen [18]. Der Infektionsverlauf von *L. monocytogenes* wurde im Mausmodell eingehend untersucht und dient als Modellsystem zur Erforschung von Infektions- und Vermehrungsstrategien fakultativ intrazellulärer Bakterien. Es sind nur diejenigen Stämme von *L. monocytogenes* pathogen, die durch die Produktion des porenbildenden Toxins Listeriolysin O (LLO) auf Blutplatten einen β -hämolytischen Phänotyp zeigen [1]. A-hämolytische Mutanten erscheinen dagegen im Tiermodell avirulent.

2.1.2 Intrazellulärer Lebenszyklus und Virulenzfaktoren von L. monocytogenes

Sechs Virulenzfaktoren, die für die Hauptschritte der intrazellulären Pathogenität von *L. monocytogenes* verantwortlich sind, befinden sich auf der 9 kb großen chromosomalen Pathogenitätsinsel LIPI-1 (*Listeria* pathogenicity island 1). Die hier codierten Gene sind mit *prfA*, *plcA*, *hly*, *mpl*, *actA* und *plcB* benannt. Die zentrale Position des Lokus nimmt *hly* ein, welches für das Listeriolysin (LLO) codiert. Downstream davon liegt das Lecithinase-Operon einschließlich *mpl*, *actA* und *plcB* in derselben Orientierung. Das plcA-prfA-Operon ist upstream von *hly* lokalisiert und wird in der entgegengesetzten Richtung transkribiert [1].

Abbildung 2.2: Physikalische und transkriptionelle Organisation des zentralen Virulenzgenclusters (LIPI-1) von *L. monocytogenes* (modifiziert nach Vazquez-Boland *et al.*, 2001). Die zur LIPI-1 zählenden Gene sind farbig, flankierende Loci sind schwarz dargestellt. Die Pfeile oberhalb der LIPI-1 Gene stellen bekannte Transkripte dar. Bekannte Aktivierung bzw. Inhibierung der Transkription durch PrfA ist ebenfalls durch Pfeile angedeutet.

LIPI-1 ist in der chromosomalen Region zwischen den Genen *prs* und *ldh* inseriert, welche die Haushaltsenzyme Phosphoribosyl-Pyrophosphat-Synthase und Lactat-Dehydrogenase codieren. Zwischen *plcB-ldh* wurden zwei ORFs, *orfA* und *orfB* gefunden. Zwischen *plcB* und *orfB* sind zwei weitere ORFs lokalisiert, *orfX* und *orfZ*.

- *prfA* = positive regulation factor A (codiert für den positiven Regulationsfaktor PrfA, welcher die Transkription der nachfolgend genannten fünf Gene in *L. monocytogenes* reguliert)
- *plcA* = phosphatidylinositol-specific phospholipase C type A (Phosphatidylinositol-spezifische Phospholipase C = PI- PLC)

- *hly* = haemolysin (Listeriolysin 0 = LLO)
- *mpl* = metalloprotease of *Listeria* (zinkabhängige Metalloprotease)
- *actA* = actin nucleation factor A (Aktinfilament-akkumulierender Faktor A = ActA)
- *plcB* = phosphatidylcholin-specific phospholipase C type B (Phosphatidylcholin-spezifische Phospholipase C oder Lecithinase = PC-PLC)

Die Pathogenitätsinsel LIPI-1 ist, außer in L. seeligeri, nicht in apathogenen Listeria-Arten zu finden. Für die Expression von hly und den anderen Genen des LIPI-1-Clusters ist das 27 kDa schwere Protein PrfA essentiell. Dieses Protein gehört zur Familie der Crp-Fnr Transkriptionsaktivatoren, wird von *prfA* codiert und ist der bisher einzige bekannte Regulator bei Listeria spp., der direkt in die Kontrolle der Virulenzgen-Expression involviert ist [19]. Die Gene des LIPI-1 Lokus und verschiedene Gene der Internalinfamilie werden streng durch PrfA reguliert. Andere, wie z.B. das inlAB-Operon, werden nur partiell durch PrfA reguliert, und manche Virulenzgene (wie der *inlGHE* Internalin Lokus) werden auch vollständig unabhängig von PrfA exprimiert [1, 20]. PrfA ist ein 237 Aminosäuren großer Transkriptionsregulator und besitzt ein für die DNA-Bindung nötiges Helix-turn-Helix-Motiv in der C-terminalen Domäne [21]. Die von PrfA regulierten Gene besitzen in ihrer - 41 Region relativ zum Transkriptionsstart eine PrfA-Box mit der Konsensussequenz 5'-TTAACANNTGTNAN-3', die über das Helix-turn-Helix-Motiv durch PrfA-Dimere erkannt wird [22]. Die PrfA-abhängige Transkription unterliegt einer Thermoregulation und wird bei ca. 37 °C induziert. Der Grund hierfür liegt posttranslational; das prfA-Transkript enthält einen untranslatierten Bereich (UTR) am 5' Ende. Dieser bildet bei niedrigen Temperaturen (\leq 30 °C) eine Sekundärstruktur, wodurch die Shine-Dalgarno Sequenz sterisch blockiert und eine Translation der downstream liegenden prfAcodierenden Region verhindert wird. Bei Temperaturen ab 37 °C kann das Leader-Transkript aufgrund der Temperatursensitivität der RNA diese inhibitorische Sekundärstruktur nicht bilden und die Translation des prfA-Transkriptes kann erfolgen. PrfA induziert nachfolgend die Expression des bicistronischen *plcA/prfA*-Transkriptes und somit seine eigene Translation [2] [16]. Erreicht die Konzentration von PrfA einen Schwellenwert, werden auch die übrigen Virulenzgene aktiviert. Durch diesen Mechanismus kann sichergestellt werden, dass die Virulenzgene nur dann transkribiert werden, wenn sich die Bakterien in einem Wirt befinden [1] [16]. Auch andere Umweltbedingungen, wie Osmolarität, Konzentration von Eisen, pH-Wert, die Anwesenheit von fermentierbaren Zuckern, Stress und Bedingungen innerhalb der Wirtszelle, können *prfA* regulieren [2].

Abbildung 2.3: Thermoregulierte Kontrolle der PrfA Expression (aus Hamon *et al.*, 2006). Bei niedrigen Temperaturen (\leq 30 °C) bildet sich im untranslatierten Bereich eine Sekundärstruktur, wodurch die Shine Dalgarno –Sequenz (SD) sterisch inhibiert wird und somit das Ribosom nicht binden kann. Die Translation von PrfA findet nicht statt. Ab 37 °C schmilzt diese Sekundärstruktur auf, wodurch das Ribosom an der SD-Sequenz binden kann. Die Translation von PrfA kann erfolgen.

Innerhalb des Wirtes lebt L. monocytogenes überwiegend intrazellulär. Makrophagen nehmen Listerien aktiv auf, und die Endocytose der Bakterien in nicht-professionell phagozytische Zellen wird durch bakterienspezifische Produkte herbeigeführt [2, 23]. Die Infektion beginnt mit der Adhäsion des Bakteriums an die Wirtszelle. Dies geschieht über die bakteriellen Oberflächenproteine Internalin A und B, über die die Listerien an die Rezeptoren der Membran der Wirtszelle binden. Die Internaline A und B sind hauptverantwortlich für die Induktion der Phagozytose in nicht-professionelle Phagozyten. Das Eindringen in eine Wirtszelle geschieht durch den so genannten Zipper-Mechanismus. Hierbei wird die Aufnahme des Bakteriums in die Wirtszelle durch die Interaktion mit Rezeptoren in der Cytoplasmamembran induziert, worauf es zu einer schrittweisen Einhüllung des Bakteriums durch die Plasmamembran kommt [16, 24]. Nach dem Eindringen in die Zelle sind die Bakterien in eine primäre Vakuole eingeschlossen. Nach ca. 30 min haben sich die Listerien aus dieser mit Hilfe des Porenbildners LLO und der Phosphatidyl-Inositol-Phospholipase C (PI-PLC) befreit [23]. Die Aktivität von LLO hat bei einem pH-Wert < 6 ihr Optimum. So ist dieses porenformende Toxin im sauren Milieu des Phagosoms voll aktiv, im neutralen pH des Cytoplasmas der Wirtszelle jedoch weniger aktiv [2]. Nach der Befreiung aus der Vakuole replizieren die Bakterien im Cytosol mit einer Teilungsrate vergleichbar mit der im Vollmedium. Sie sind dazu in der Lage, wirtszelleigenes Aktin zu polymerisieren und generieren so ein Netzwerk von verzweigten Filamenten [16]. Die Listerien polymerisieren mit Hilfe des Aktinfilament-akkumulierenden Faktors A (ActA) das Aktin der Wirtszelle; nach ca. 2 Stunden entsteht ein sogenannter Aktinschweif an einem Pol des Bakteriums. Durch Einfügen von Aktinmonomeren zwischen Schweif und Bakterium schieben sich die Bakterien durch das Cytoplasma der Wirtszelle. Der Schweif verbleibt dabei an derselben Position im Cytoplasma, während die Bewegung des Bakteriums durch die ständige Neupolymerisation von Aktin zustande kommt [1]. Die Bakterien können sich so mit einer Geschwindigkeit von bis zu 10 μ m/min durch das Cytoplasma bewegen [16]. Wenn L. monocytogenes die Plasmamembran erreicht, drückt das Bakterium gegen diese und induziert die Formation einer pseudopodienartigen Ausstülpung, welche bis in die Nachbarzelle reicht, wodurch eine Endocytose durch die Nachbarzelle ausgelöst wird. In der neu infizierten Zelle befindet sich das Bakterium in einer sekundären Vakuole, die von einer Doppelmembran umgeben ist. Mit Hilfe der Lecithinase PlcB und LLO können die Bakterien auch aus dieser Vakuole entkommen und einen neuen Infektionszyklus beginnen. L. monocytogenes kann sich so von Zelle zu Zelle ausbreiten, ohne vom Immunsystem des Wirts erkannt zu werden [16].

Abbildung 2.4: Schematische Darstellung der aufeinander folgenden Schritte des Zellinfektionsprozesses durch L. monocytogenes (modifiziert nach Tilney und Portnoy, 1989, Kreft, 1995, übernommen von S. Altrock, 2002). Die Hauptvirulenzfaktoren sind eingezeichnet. 1: Adhäsion 2: Überleben im Phagolysosom 3: Lyse der Vakuolenmembran (Phagolysosom) 4: Intrazelluläre Replikation 5: Intrazelluläre Bewegung 6: Bildung der sekundären Vakuole. 7: Lyse der Doppelmembran

2.2 Thiol:Disulfid Redox-Metabolismus von L. monocytogenes

In allen aerob lebenden Zellen entstehen als Produkte der Autoxidation von Flavoproteinen reaktive Sauerstoff-Spezies (ROS) wie das Superoxid-Anion O_2^- und Wasserstoffperoxid H_2O_2 . Der Elektronentransfer auf Sauersoff kann nur in Ein-Elektronen-Schritten erfolgen. Die anfängliche Elektronenübertragung generiert O_2^- und Flavosemiquinon. Diese Verbindung reagiert anschließend schnell mit einem weiteren Sauerstoffmolekül und generiert hierbei ein zweites O_2^- . Durch Spin-Inversion und Orbital-Überlappung entsteht ein Isoalloxazin-Ring. Durch die heterolytische Spaltung dieses Ringes wird H_2O_2 gebildet. Dieser Reaktionsablauf ist typischerweise bei der NADH-Dehydrogenase, der Sulfit-Reduktase, der Succinat- und der Fumarat-Dehydrogenase u.a. zu beobachten [25].

Abbildung 2.5: Autoxidation eines Flavoproteins, wodurch ein Mix aus Superoxid-Anionen und Wasserstoffperoxid entsteht (aus Imlay, 2003).

Diese reaktiven Sauerstoff-Spezies entstehen aber nicht nur durch die aerobe Lebensweise der Bakterien, sondern werden auch von Makrophagen als Verteidigung gegen zahlreiche Pathogene gebildet und gehören zur Immunantwort des Wirtes (Oxidativer Burst) [26].

Die ROS sind in der Lage DNA, Proteine und Lipide zu schädigen, wobei O_2^{-} und H_2O_2 nur mit wenigen Biomolekülen direkt reagieren, Wasserstoffperoxid beispielsweise mit Cystein und Methionin in Proteinen [25, 27]. Das stärkste Oxidationsmittel ist das hochreaktive Hydroxylradikal HO. Es wird in der Fenton-Reaktion aus Wasserstoffperoxid und freiem Fe²⁺ gebildet.

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH + OH^{-}$$

Fe²⁺ wird mit Wasserstoffperoxid zu Fe³⁺, einem Hydroxylradikal und einem Hydroxyl-Anion oxidiert.

$$Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + OOH + H^+$$

Fe³⁺ wird dann durch Wasserstoffperoxid wieder zu Fe²⁺ reduziert, wobei ein Peroxidradikal und ein Proton entstehen.

Der Thiol-Disulfid-Redox-Metabolismus (TDRM) umfasst die reversiblen Oxidationen und Reduktionen von Thiol-Gruppen zweier benachbarter Cysteine im entsprechenden Protein, wobei Disulfidbrücken gebildet oder gelöst werden. Der TDRM ist durch den Transfer von Elektronen (Reduktion/Oxidation) gekennzeichnet. Dieser Stoffwechsel und auch andere zelluläre Prozesse werden durch regulatorische Schalter, welche auf Thiolen basieren, reguliert. Der Thiol-Disulfid-Redox-Metabolismus ist mit der oxidativen Stressantwort eng verbunden und in zentrale zelluläre Prozesse involviert.

Gene, die bei anderen Mikroorganismen mit diesem Metabolismus verknüpft sind und für die vermutliche Orthologe in der Genomsequenz von *L. monocytogenes* vorhanden sind, werden in Tabelle 1 aufgeführt. Was über sie in anderen Mikroorganismen bekannt ist, wird im Folgenden näher erläutert.

Tabelle 1: Gene bzw. Genprodukte, die möglicherweise in den Thiol-Disulfid-Redox-Metabolismus von *Listeria* involviert sind:

Gen	Lmo-Nr.	Beschreibung
Thioredoxin	<u>System</u>	
<i>trxB</i>	lmo2478	Thioredoxin-Reduktase
trxA	lmo1233	Thioredoxin
ytpP	lmo1609	Thioredoxin Familie
	lmo1903	Thioredoxin Familie
trxL	lmo2152	Thioredoxin Familie
	lmo2830	Thioredoxin Familie
tpx	lmo1583	Thiol-Peroxidase
prx	lmo1604	2-Cys-Peroxiredoxin (= AhpC)
msrA	lmo1860	Methionin-Sulfoxid-Reduktase
Glutathion S	vstem	
gshF	lmo2770	Glutathion-Synthetase
gor/gshR	lmo0906	Glutathion-Reduktase
gor2	lmo1433	Putative Glutathion-Reduktase 2
grx	lmo2344	Glutaredoxin
gpo/gpx	lmo0983	Glutathion-Peroxidase
Thioredoxin	/Glutathion-G	lutaredoxin abhängige Systeme
nrdA	lmo2155	aerobe Ribonucleotid-Reduktase Untereinheit A
nrdB	lmo2154	aerobe Ribonucleotid-Reduktase Untereinheit B
nrdI	lmo2153	regulatorische Untereinheit (putativ)
nrdD	lmo0279	anaerobe Ribonucleotid-Reduktase Untereinheit D
nrdG	lmo0280	anaerobe Ribonucleotid-Reduktase Untereinheit G
nrdR	lmo1562	nrdDG Transkriptionsaktivator
hsp33	lmo0222	Redox-switch Chaperon ("holdase")
Peroxid- Det	toxifikation (zi	usätzlich zu gpo, prx, tpx, trx)
ohrA	lmo2199	organische Hydroperoxid Entgiftung
ohrR	lmo2200	Transkriptionsregulator von ohrA
Transkriptic	<u>onsregulatorer</u>	<u>n (zusätzlich zu OhrR)</u>
perR	lmo1683	Repressor des Peroxid-Regulons (homolog zu OxyR)
fur	lmo1956	Regulator für die Eisenaufnahme (durch PerR reguliert)
zurR	lmo1445	Regulator für die Zinkaufnahme (Zn ²⁺ ist Cofaktor)
mntR	lmo1878	Regulator für Mangantransport (Mn ²⁺ ist Cofaktor)
spx	lmo2191	Redox/Peroxid Regulator
rex	lmo2072	Redox-sensing (NAD+/NADH Verhältnis) Regulator
<u>Andere</u>		
sod	lmo1439	Superoxid-Dismutase (enthält Mn ²⁺)
kat	lmo2785	Katalase

2.2.1 Thioredoxin-System

2.2.1.1 Thioredoxine

Thioredoxine erfüllen viele verschiedene Funktionen in allen lebenden Organismen. Sie sind kleine (ca. 13 kDa) Proteine mit einem hoch konservierten katalytischen Sequenzmotiv (Cys-Xaa-Xaa-Cys) [28, 29].

CLUSTAL W	(1.83) multiple sequence alignment	
TrxÀ	MVKE ITDATFEOETSEGLV	19
2830	MAITFAKEDDLEETISSHPKT	21
1609		19
2152	MTSTETKSPEEFOAHINGEELV	22
1903	MKKTVLLLALITVVLTVGACSDNKKETEEKANKTEEESATELTTISTKDEKOKMADKTTG	60
2424	METAOKKEEDE	11
TrxA	LTDFWATWCGPCRMVAPVLE-EIQ-EERGEALKIVKMDVDENPETPGSFGVMSI	71
2830	LLNFWAEWCAPCRCFWPTLE-QFA-EMEEGNVQVVKINVDKQRALAQKFDVKGI	73
1609	VFMFSADUCGDCKFIEPVMP-EIE-AENED-FSFYHVDRDEFIDLCADLAIFGI	70
2152	YVDYWKDNCPNCKMLDLSFA-EFKNSEIASKVKVLKVKLEEMGENFFFDRDVQQT	76
1903	FVYVGRPTCEDCQAFQPILKKELKKRQPDQKMAYYNTDKASEKSRDNMIALLEKNDIDSV	120
2424	VVFFFTPMCGSCQIASRLVDVVIEADGIQTEVAKVNLNYVPDIAQSLEITSV	63
TrxA	PTLLIKKDGEVVETIIGYRPKEELDEVINKYV 103	
2830	PNSLVLVDGEIKGAIAGIVSCDELRSR 100	
1609	PSFLAFEDGEEVGRFVSKDRKTKEEINDFLAAI 103	
2152	PTLVLYKGGEEIHRLNGFIPPNKIEEAVSLNA 108	
1903	PTMVYLKDGKVASTYAATDEPAKLTNWMNKVSGEVSE 157	
2424	PALVKFKNGQPADLSYQLHDATAIFEFLYSE 94	
	* : .*: : .	

Abbildung 2.6: Cluster Alignment der Thioredoxine von *L. monocytogenes*. Das katalytische Sequenzmotiv CXXC ist eingezeichnet.

Thioredoxine sind ein Teil des Thioredoxin-Systems, in dem Elektronen von NADPH auf die Thioredoxin-Reduktase und schliesslich auf die Thioredoxine übertragen werden. Sie werden reversibel oxidiert und reduziert und sind effiziente Reduktanten von Disulfiden in niedermolekularen Verbindungen und Proteinen [29]. Sie zeichnen sich durch ein sehr niedriges Redoxpotential (-270 bis -330 mV bei *E. coli*) aus. Diese Proteine sind zusammen mit Glutaredoxinen dafür verantwortlich, das zelluläre Redox-Gleichgewicht aufrechtzuerhalten. Zudem können sie die Aktivität von Enzymen regulieren. Thioredoxine interagieren mit anderen Proteinen, um funktionelle Proteinkomplexe zu bilden [28]. Zu den wichtigsten Funktionen der bakteriellen Thioredoxine (siehe Abb. 2.7) gehört die Reduktion einer Vielzahl von Enzymen, sie sind Wasserstoff-Donoren für Ribonucleotid-Reduktasen sowie Methionin-Sulfoxid-Reduktasen. Sie spielen demzufolge auch eine wichtige Rolle bei der DNA-Synthese und bei der Proteinreparatur. Außerdem können Thioredoxine Wasserstoffperoxid reduzieren und fungieren als Hydroxyl-Radikalfänger sowie als Fänger für Singulett-Sauerstoff. Des Weiteren regulieren Thioredoxine die Aktivität des "Redox-switch Chaperons" Hsp33. Thioredoxine nehmen demzufolge eine wichtige Rolle in der oxidativen Stressantwort ein [28, 29].

Abbildung 2.7: Funktionen der Thioredoxine (modifiziert nach Zeller & Kluge, 2006)

Viele der angesprochenen Funktionen der Thioredoxine sind von ihrem reduzierenden Potential abhängig. Dieses wird stets durch die Thioredoxin-Reduktase in einem NADPH-abhängigen Prozess aufrecht erhalten [30].

Bereits 1979 erkannte man, dass Thioredoxin als genereller Disulfid-Reduktant wirkt. Ursprünglich wurden Thioredoxine bei E. coli als Wasserstoff-Donoren für Ribonucleotid-Reduktasen identifiziert. Unter aeroben Bedingungen übertragen Thioredoxine bei Staphylococcus aureus Reduktions- äquivalente von NADPH zu Klasse Ib Ribonucleotid-Reduktasen. Diese sind für die Synthese von Desoxyribonucleotiden aus Ribonucleotiden zuständig. Unter anaeroben Bedingungen ist dies jedoch nicht der Fall, da die nrdDG-Gene, welche für die Klasse III Ribonucleotid-Reduktasen codieren, nur in Abwesenheit von Sauerstoff exprimiert werden. Diese Ribonucleotid-Reduktasen beziehen ihre Reduktionsenergie aus Formiat [31]. Thioredoxine reduzieren Disulfidbrücken durch einen sog. "Ping-Pong"-Mechanismus. Die effiziente Katalyse erfordert eine Umorientierung der Disulfidbrücke des Substrates. Die Thiolgruppe der Cysteinyl-Seitenkette des Thioredoxins wird unter physiologischen Bedingungen schnell deprotoniert. Das hierbei entstehende Thiolat agiert als Nucleophil und greift die Disulfidbrücke des Substrates an, um eine Verbindung zwischen dem N-terminalen Reaktionszentrum des Thioredoxins mit einer der Cysteinyl-Seitenketten des Substrats zu bilden. Das so gebildete Disulfid wird anschließend durch die C-terminale, aktive Stelle der Cysteinyl-Seitenkette reduziert, wodurch ein reduziertes Substrat und ein Disulfid im Reaktionszentrum des Thioredoxins gebildet werden. Daraufhin wird das Disulfid durch die Thioredoxin-Reduktase mit Hilfe von NADPH reduziert [32].

Thioredoxin A (TrxA) wird durch das *trxA*-Gen codiert. Es ist essentiell für die Lebensfähigkeit der Zelle und wird durch viele Arten von Stress induziert. Die Expression dieses Genes wird durch den σ^A (Haushalts-) oder σ^B (genereller Stress-) Promotor reguliert [30]. Die Expression des *trxA* Genes wird bei verschiedenen Stressfaktoren, einschließlich Wasserstoffperoxid und Hitzestress stark erhöht. Bei der Abwesenheit von TrxA kann *B. subtilis* den negativen Stresseffekten mit anderen Strategien entgegenwirken; andere Thioredoxine oder Thioredoxin-verwandte Proteine übernehmen dann dessen Aufgaben. Die Thioredoxin-Reduktase (TrxB)

recycelt das Reduktions- potential von TrxA. Der Redox-Regulator Spx ist verantwortlich für die Induktion der Gene, welche in die Thiol-Homöostase involviert sind, einschließlich Thioredoxin A und B. Die Transkriptions- aktivierung von *trxA* und *trxB* durch Spx erfolgt in Abhängigkeit der Bildung von intramolekularen Disulfidbrücken unter oxidativen Bedingungen [30].

2.2.1.2 Peroxiredoxin

Die bakterielle Verteidigung gegen oxidative Schäden, welche durch Peroxide verursacht werden, umfasst auch eine Familie von Nicht-Häm- und Nicht-Selen-Proteinen, die sich von Katalasen und Glutathion-Peroxidasen unterscheiden. Diese Proteine entgiften organische Hydroperoxide, Wasserstoffperoxid und Peroxynitrite [33]. Hierfür sind reaktive Cysteinyl-Reste und eine Kaskade von Dithiol-Disulfid Austauschreaktionen wichtig. AhpC ist ein 22 kDa schweres Peroxid-reduzierendes Protein, das eine große und weit verbreitete Familie von Peroxidasen (Prx) repräsentiert [34, 35]. Die AhpC-Untereinheit der Alkyl-Hydroperoxid-Reduktase wurde als generelles Stressprotein identifiziert. Es wird bei Hitze- oder Salzstress bzw. nach Eintritt in die stationäre Phase induziert. Das ahp-Operon codiert die beiden Untereinheiten AhpC und AhpF, wobei diese bei B. subtilis stark induziert werden, sobald die Zelle unter oxidativem Stress steht [36]. Das 52 kDa schwere Flavoprotein AhpF fungiert als "AhpC-Reduktase" und wird nur bei Eubakterien exprimiert [34]. In Bakterien, in welchen diese Reduktase fehlt, werden AhpC oder andere Peroxidasen durch Thioredoxin-Reduktase (TrxR) und Thioredoxin (Trx) NADPH-abhängig recycelt [35]. Peroxidase-Reaktionen, welche durch AhpC katalysiert werden, benötigen keine Häm- oder andere Metall- oder Nicht-Metall-Cofaktoren. Zwei Cysteinreste, Cys46 und Cys165, in jeder Untereinheit des AhpC Dimers spielen im Peroxid-Metabolismus mutmaßlich eine katalytische Rolle [37]. Ein C-terminaler Rest von AhpF ist homolog zu TrxR (35 % Identität), weiterhin ist ein CXXCD-Motiv konserviert, welches bei TrxR für die Dithiol-Disulfid Austauschreaktion mit Trx notwendig ist. Es ist ein weiterer Rest am N-Terminus von AhpF vorhanden, der in TrxR nicht auftritt und welcher ein weiteres CXXC-Motiv in dieser Domäne enthält. Dies deutet auf ein weiteres katalytisches Disulfid-Redox-Zentrum in AhpF hin. PerR-Boxen, welche mit der ahpC-Promotorregion überlappen, können Zielstellen für einen putativen Regulonrepressor sein [35, 36].

2.2.1.3 Methioninsulfoxid-Reduktase

Die Schäden, die durch reaktive Sauerstoff-Intermediate verursacht werden, entstehen z.B. durch die kovalente Modifikation von Methioninresten, wodurch Methioninsulfoxid (Met-SO) gebildet wird. Methionin besitzt einen besonderen Status unter den Aminosäuren. Methionin ist in den katalytischen Zentren von Enzymen von entscheidender Rolle und ist in die Bindung von Metallen, wie z.B. Kupfer, involviert. Die Methioninsulfoxid-Reduktase MsrA kann wiederum Methionin regenerieren und die Proteinfunktionen nach einem oxidativen Schaden wieder herstellen[38]. *B. subtilis* besitzt zwei Gene, welche für Methioninsulfoxid-Reduktasen codieren: *msrA* und *msrB*. Diese beiden Gene bilden ein Operon und werden von einem Promotor (σ^{A} -abhängig) transkribiert. Die Transkription wird durch Paraquat verursachten oxidativen Stress induziert, jedoch nicht durch Wasserstoffperoxid. Für die durch Paraquat verursachte spezifische Induktion der *msrAB* Expression ist Spx verantwortlich [39]. *E. coli*-Zellen, welche kein MsrA mehr synthetisieren können, reagieren hypersensitiv auf Wasserstoffperoxid, aber auch auf Nitrite und S-Nitrosoglutathion[38].

2.2.2 Glutathion-System

2.2.2.1 Glutathion und Glutaredoxin

Das Glutathion-System setzt sich aus Glutaredoxin und seinem Cofaktor Glutathion zusammen. Bei der Reduktion seiner Substrate wird Glutaredoxin oxidiert und dann durch Glutathion wiederum reduziert. Das oxidierte Glutathion wird daraufhin durch die Glutathion-Reduktase reduziert. Glutaredoxine fungieren als Elektronen-Überträger in der Glutathion-abhängigen Synthese von Desoxyribonucleotiden durch die Ribonucleotid-Reduktase und können die Aktivität von Hsp33 regulieren [40]. Glutathion (γ-L-Glutamyl-L-Cysteinyl-Glycin) (GSH) ist das niedermolekulare Thiol in lebenden Organismen. Die physiologischen häufigste Konzentrationen liegen im Bereich zwischen 0,1 bis über 10 mM in Bakterien. Diese Verbindungen spielen eine Schlüsselrolle in vielen metabolischen Prozessen, wie in der Thiol-Redox-Homöostase, beim Schutz gegen ROS, bei der Proteinfaltung und bei der Bereitstellung von Elektronen mittels NADPH für reduktive Enzyme [41]. Die meisten grampositiven Bakterien enthalten jedoch kein Glutathion [42]. Die Biosynthese von Glutathion erfolgt in zwei Schritten, die jeweils ein ATP verbrauchen:

Abbildung 2.8: Biosynthese von Glutathion (aus Copley & Dhillon, 2002)

In den meisten Organismen, so z.B. auch bei *E. coli*, wird jeder Teilschritt der GSH Biosynthese durch ein separates Enzym (GshA bzw. GshB) katalysiert. Bei einigen wenigen Bakterien, darunter Listerien, werden beide Schritte von einem einzigen, bifunktionalen Enzym (GshF) durchgeführt [41, 42].

Abbildung 2.9: Schematische Darstellung der Architektur der Domänen des Fusionsproteins GshF (von *Lmo2770* codiert) von *L. monocytogenes*. Die Domänen sind durch die Boxen dargestellt. Die Nummern in den Boxen zeigen die Aminosäure-Reste an, welche die Domänen bilden (aus Gopal *et al.*, 2005).

Bei einem pH-Wert von 7,0 und einer Temperatur von 25 °C beträgt das Redoxpotential des Redoxpaares Glutathion/Glutathion-Disulfid (GSH/GSSG) -240 mV. Das Verhältnis von GSH zu GSSG im Cytoplasma wird durch GSH kontrolliert und befindet sich meist im reduzierten Status. Im Cytoplasma fungiert Glutathion entweder direkt oder durch die Reduktion von Enzymen des

Glutaredoxin-Systems als Protein-Reduktant. Oxidiertes Glutathion wird durch die Glutathion-Reduktase (Produkt des *gor* Gens), mit Hilfe von Reduktionsäquivalenten aus NADPH, reduziert [41].

Roles of glutathione (y-Glu-Cys-Gly, GSH) in bacteria

Abbildung 2.10: Funktion von Glutathion und Glutaredoxin in Bakterien (modifiziert nach Masip *et al.*, 2006)

Glutathion besitzt Funktionen im Schutz gegen verschiedene Arten von Stress wie osmotischen -, Säure- und oxidativen Stress, welcher durch Peroxide, wie Wasserstoffperoxid oder Alkyl-Hydroperoxide erzeugt wird [41]. Glutathion stellt zudem einen Wasserstoffdonor für die Glutathion-Peroxidase dar, die für die Entgiftung von Peroxiden zuständig ist. Insgesamt ist die Ähnlichkeit der Aufgaben des Glutaredoxin- und Thioredoxin Systems sehr auffällig.

2.2.2.2 Glutathion-Peroxidase

Die Generierung und Entlassung von toxischen ROS durch phagozytische Zellen ist eine wichtige Komponente der Immunität des Wirts gegen bakterielle Infektionen. Als Reaktion darauf haben Pathogene effektive Systeme für die Verteidigung gegen den oxidativen Stress entwickelt, welche die Kombination von reduzierenden Enzymen, molekularen Radikalfängern und Proteinund DNA-Reparaturenzymen beinhalten. Die Glutathion-Peroxidase (GpoA) ist eine Oxoreduktase, die in Eukaryonten intensiv untersucht wurde und eine wichtige Rolle im Schutz der Zelle gegen oxidative Schädigung der DNA spielt und an der Aufrechterhaltung des zellulären Redox-Gleichgewichtes beteiligt ist. Die Inaktivierung des Gens, welches für dieses Selenoprotein codiert, führt zu einer erhöhten Sensitivität der resultierenden Mutante gegenüber oxidativen Stress. Bei vielen Pathogenen, wie *B. ssp., L. monocytogenes, Yersinia pestis, Salmonella enterica* usw. wurden homologe Gene gefunden [43].

2.2.3 Redox-Switch Chaperon Hsp33

Hitzeschock-Proteine stellen einen Teil eines komplexen Systems von molekularen Chaperonen dar, deren Hauptaufgabe es ist, Proteine korrekt zu falten und Zellen vor den schädigenden Effekten von Proteinaggregationen zu schützen. Diese Proteinfamilie spielt eine wichtige Rolle im bakteriellen Verteidigungssystem gegen oxidativen Stress [44]. Mehrere Studien konnten zeigen, dass verschiedene Hitzeschock-Proteine, darunter auch Hsp33, redox-reguliert sind. Die Expression des prokaryontischen Hsp33-Proteins wird zwar unter Hitze-Stress-Bedingungen induziert, es wird jedoch erst durch Oxidation funktionell aktiviert. Hsp33 ist ein kleines, 32,8 kDa schweres, cytoplasmatisches Protein. Es enthält vier konservierte Cystein-Reste in seiner C-terminalen Domäne, welche ein Zink-Atom mit hoher Affinität binden. In E. coli reagiert Hsp33 auf oxidativen Stress durch eine schnelle Aktivierung seiner Chaperon-Funktion. Hsp33 durchläuft drei verschiedene Konformationsänderungen: im reduzierten, monomeren Zustand stabilisiert die Zinkverbindung den α -helikalen C-Terminus, maskiert so die Substratbindestelle und verhindert die Dimerisierung. Die Freisetzung des Zink-Ions ohne die Bildung zweier Disulfidbrücken bedingt die teilweise C-terminale Entfaltung von Hsp33. Dies reicht aus, um die Substratbindestelle, jedoch nicht die Dimerisations-Region zu entblößen. Die Bildung von Disulfidbrücken führt zur weiteren Entfaltung des C-Terminus und erlaubt die Assoziation von zwei oxidierten Hsp33-Monomeren. Dadurch entsteht ein aktives Hsp33-Dimer, welches dazu fähig ist, Zellen gegen die verschiedenen Wirkungen des oxidativen Hitzestresses zu schützen [45].

Abbildung 2.11: Das prokaryontische Hitzeschock-Protein Hsp33 befindet sich unter reduktiven Bedingun- gen in einem inaktiven, monomeren Zustand. Unter oxidativen Bedingungen dimerisiert Hsp33 durch die Bildung von zwei intramolekularen Disulfidbrücken und entlässt das Zink-Atom. Es liegt nun in seiner aktiven Form vor. Oxidiertes Hsp33 wird durch Glutaredoxin wieder reduziert (aus Fedoroff, 2006).

Das molekulare Chaperon Hsp33 gehört zu einer neuen Klasse von redox-regulierten Proteinen, deren Aktivität durch den Redoxstatus reguliert wird. In Prokaryonten befindet sich dieses Protein in der stark reduzierten Umgebung des Cytosols, wo es als Monomer vorliegt und die Chaperon-Funktion inaktiv ist. Die Affinität des reduzierten Hsp33 zu Zinkatomen ist sehr hoch (2,5 x 10¹⁷ M⁻¹) und das Zink-Bindemotiv CXCX²⁷⁻³²CXXC ist im C-Terminus von Hsp33 lokalisiert. Wenn die vier Cysteinreste das Zink-Ion unter oxidativen Stressbedingungen freisetzen, bilden sich schnell zwei intramolekulare Disulfidbrücken aus, die je zwei benachbarte Cysteinreste verbinden: Cys²³² mit Cys²³⁴ sowie Cys²⁶⁵ mit Cys²⁶⁸. Dies induziert die Dimerisation zweier oxidierter Hsp33-Monomere. In seiner aktiven Form fungiert Hsp33 als hoch effizientes "holdase" Chaperon, welches die Aggregation vieler verschiedener, ungefalteter Proteine verhindert. Damit Hsp33 diese Substrate wieder entlassen kann, müssen reduzierte Bedingungen vorliegen. Dadurch wird Hsp33 in ein reduziertes Dimer umgewandelt, welches immer noch aktiv ist aber nun das Protein zum Dnak/DnaJ/GrpE "foldase" System transportieren kann [44, 45]. Bis heute wurden über zwanzig homologe Proteine bei

verschiedenen Bakterien gefunden, einschließlich *E. coli* und *Haemophilus influenzae*. Diese Proteine weisen allerdings keine Sequenzhomologie zu anderen bekannten Hitzeschock-Proteinfamilien auf. Die post-translationale Regulation von Hsp33 verläuft schneller als die gewöhnliche Transkriptionsregulation von Hitzeschock-Proteinen[46]. 20 min nach der Behandlung mit Wasserstoffperoxid erhöht sich die Proteinkonzentration um das zweifache [44].

2.2.4 Transkriptionsregulatoren

2.2.4.1 Peroxid-sensitive Regulatoren

Die bakterielle Anpassung an ROS erfolgt durch die Steigerung der Expression von Enzymen mit Funktionen in Entgiftung, DNA- und Proteinreparatur. Diese Reaktionen werden durch Transkriptionsfaktoren aufeinander abgestimmt, die die Zielgene regulieren. Im Folgenden werden drei Klassen von Regulatoren (OxyR, PerR und OhrR) näher beschrieben, die Peroxide wahrnehmen können. Bei allen drei Regulatoren werden durch Peroxide Änderungen im Redoxstatus der Cysteinreste verursacht. Dabei sind jedoch die molekularen Details verschieden. OxyR wird durch die Bildung von Disulfidbrücken zwischen zwei reaktiven Cysteinresten zum Transkriptionsaktivator. PerR ist ein Metalloprotein, welches als Peroxidsensitiver Repressor fungiert. Durch die Oxidation wird die Anordnung der Metallionen moduliert; auch die Bildung von Disulfidbrücken kann involviert sein. Die Enzyme können in der Dauer der Expression, in der subzellulären Lokalisierung oder in der Regulation differieren [47].

2.2.4.1.1 OxyR-Familie

Das OxyR-Regulon umfasst eine Vielzahl von Genen, die sowohl am Peroxid-Metabolismus und Schutz (*katG*, *ahpC*, *ahpF* und *dps*), als auch an der Aufrechterhaltung der Redoxbalance beteiligt sind (*gor*, *grxA* und *trxC*). Zudem enthält es wichtige Regulatoren wie *fur* und die sRNA *oxyS*. Der Regulator OxyR nimmt die Oxidationsmittel direkt wahr und bindet an zwei angrenzende große Furchen der DNA, welche durch eine helikale Drehung getrennt sind. In der oxidierten Form wird eine Region bestehend aus vier großen Furchen gebunden und die Transkription durch direkten Kontakt mit der RNA-Polymerase aktiviert. Die Initialreaktion findet an Cys¹⁹⁹ statt, was zur Bildung eines instabilen Cys-SOH-Intermediates führt. Liegt Cys¹⁹⁹ im oxidierten Zustand vor, reagiert es mit Cys²⁰⁸ und bildet so eine intramolekulare Disulfidbrücke. Das OxyR-Regulon von *E. coli* wird bei weniger als 100 nM intrazellulären H₂O₂ aktiviert und das Wachstum wird ab 2 µM inhibiert. Regulatoren wie OxyR sind unter Gram-negativen Bakterien weit verbreitet und auch bei manchen Gram-positiven zu finden [47].

2.2.4.1.2 Repressor des Peroxid-Regulons PerR

Eisen gehört zu den essentiellen Nährstoffen und ist zusammen mit Mangan ein wichtiger Cofaktor für bakterielle Schutz-Enzyme gegen reaktive Sauerstoff-Spezies, wie z.B. in Katalasen, Peroxidasen und Superoxid-Dismutasen (SOD). Infolgedessen haben Bakterien spezielle Proteine entwickelt, welche die Konzentrationen verschiedener Metallionen wahrnehmen und entsprechend die Gen-Expressionen regulieren können [48]. Vier Metallionen-abhängige Repressoren wurden in *B. subtilis* identifiziert: drei Fur-verwandte Proteine, Fur, PerR und Zur sowie ein DtxR-verwandtes Protein, MntR. Fur kontrolliert die Eisen-Homöostase mittels eines Regulons bestehend aus Eisentransportern, Eisen-Siderophor-Transportern und Siderophor-Biosynthese-Proteinen. Die Zink-Homöostase wird durch die Zur-vermittelte Repressionen zweier Operons aufrechterhalten, welche für Zinkaufnahme-Transporter codieren. MntR ist ein bifunktionaler Regulator zweier Mangantransporter, MntABCD und MntH. Beide Transporter werden selektiv bei hohen Konzentrationen an Mn(II) reprimiert, während MntR unter Wachstumsbedingungen mit geringen Mn(II)- Konzentrationen als positiver Regulator des *mntABCD* Operons funktioniert[48].

Die Wahrnehmung von reaktiven Sauerstoff-Spezies ist essentiell für die zelluläre Antwort auf oxidativen Stress. Das Erkennen von Peroxiden wird üblicherweise durch redox-aktive Cysteine in zellulären Sensoren vermittelt, wie z.B. in den bakteriellen Proteinen OxyR, OhrR und Hsp33.

Das PerR-Protein von B. subtilis gehört zur weit verbreiteten Familie Metall-abhängiger Peroxid-Sensoren, welche die induzierbaren Peroxid-Verteidigungs-Gene regulieren [49]. PerR kontrolliert bei S. aureus die Transkription der Gene, welche für die oxidativen Stress-Resistenz-Proteine Katalase (KatA), Alkyl-Hydroperoxid Reduktase (AhpCF), "bacterioferritin comigratory protein" (Bcp) und Thioredoxin Reduktase (TrxB) codieren. Zudem reguliert PerR hier die Transkription der Gene, die das Eisenspeicher-Protein Ferritin (Ftn) und den Ferritin-ähnlichen Dps-Homologen MrgA codieren. Die Transkription von perR ist autoreguliert und PerR reprimiert die Transkription des Eisen-Homöostase-Regulators Fur. Fur selbst wiederum ist ein positiver Regulator der Katalase-Expression. Rea et al. [50] konnten 2005 zeigen, dass auch bei L. monocytogenes zahlreiche Gene, wie kat, fur, hemA, trxB, lmo0641 und lmo1604, durch PerR bei Peroxid-Stress reguliert werden. PerR funktioniert als Mangan-abhängiger Transkriptionsrepressor des korrespondierenden Regulons. Erhöhte Eisenkonzentrationen induzieren das PerR Regulon[48]. PerR erkennt Peroxide durch Metall - katalysierte Oxidation. Dieses Protein weist zwei Metall-Bindungs-stellen pro Monomer auf sowie eine strukturelle Zn²⁺⁻ Bindungsstelle und eine regulatorische Fe²⁺⁻ oder Mn²⁺⁻ Bindungsstelle [50]. Vier Cysteinreste (C⁹⁶, C⁹⁹, C¹³⁶ und C¹³⁹) formen eine Zn²⁺- Bindungsstelle mit hoher Affinität und weitere fünf Aminosäure - Reste (H37, D85, H91, H93 und D104) stellen Liganden für die regulatorischen Metallionen Fe²⁺ oder Mn²⁺ dar [49].

Abbildung 2.12: PerR -Monomer (aus Lee & Helmann, 2006). Die Fe²⁺ bindenden Aminosäuren sind rot eingefärbt, die Zn²⁺ bindenden gelb (ball & stick). Die Stellen der H₂O₂- vermittelten Oxidation (H³⁷ und H⁹¹) befinden sich im Helix –turn – Helix Motiv (blau) bzw. im roten ß - Faltblatt. Die vier Cystein-Reste der Zn²⁺- Bindungsstelle liegen im roten bzw. grünen ß-Faltblatt.

Gebundene Eisen (II)-Ionen katalysieren die Oxidation des Proteins; dies führt zur schnellen Bindung eines Sauerstoff-Atoms an Histidin 37 (H³⁷) oder H⁹¹. Diese beiden Histidine sind für die Funktion des Proteins essentiell. Dieser Mechanismus ermöglicht es PerR, geringe Mengen an Wasserstoffperoxid wahrzunehmen.

Gene, die durch PerR reguliert werden, werden bei geringen Wasserstoffperoxid-Konzentrationen (< 10 μ M) induziert. Im Gegensatz dazu ist die PerR:Zn,Mn-Form relativ unempfindlich gegenüber H₂O₂ [49]. Dies könnte an der antioxidierenden Eigenschaft von Mangan liegen. Es konnte gezeigt werden, dass verschiedene Mangankomplexe die Disproportionierung von Wasserstoffperoxid katalysieren und teilweise als Superoxid -Entgifter fungieren können [48]. PerR wirkt aber nicht nur als Repressor, sondern kann z.B. bei *B. subtilis* auch selektiv die Genexpression von *srfA* aktivieren. Das *srfA*-Operon ist für die Synthese von Surfactin und die Entwicklung der genetischen Kompetenz verantwortlich. Die Regulation der Expression von *srfA* durch PerR erfolgt unabhängig von anderen bekannten Regulatoren der *srfA*-Expression (*comQXP*, *rapC* und *spx*). Die Genexpression wird hier durch direkte Bindung von PerR an zwei hintereinander angeordnete PerR-Boxen in der upstreamgelegenen Promotor-Region von *srfA* reguliert [51].

Das regulatorische PerR-System ist unter Gram-positiven und Gram-negativen Bakterien weit verbreitet. Homologe wurden in *S. pyogenes, S. aureus, Campylobacter jejuni* und *Streptomyces coelicolor* beschrieben [52]. Die PerR-Regulation spielt in der Virulenz von *S. pyogenes* eine wichtige Rolle [53]. Ein funktionelles Analogon zu PerR stellt OxyR in *E. coli* dar. Allerdings ist dieses Protein nicht metallhaltig und wird durch die Bildung von Disulfidbrücken aktiviert, welche wiederum durch Wasserstoffperoxid katalysiert werden. Die Aktivierung von PerR bei *B. subtilis* ist jedoch an Metallionen gebunden [48]. In *S. aureus* konnten nicht alle Gene des PerR-Regulons durch Wasserstoffperoxid induziert werden. Eine Induktion konnte nur in der frühen und mittleren logarithmischen Phase beobachtet werden, in der stationären Wachstumsphase jedoch nicht. Dies deutet darauf hin, dass nicht alle Promotoren durch H₂O₂ induzierbar sind [48, 54].

2.2.4.1.3 OhrR, Transkriptionsregulator von ohrA

OhrR ist ein Sensor für organische Peroxide, der die Expression eines induzierbaren Peroxiredoxins, OhrA, reprimiert. Die Oxidation eines Cysteinrests in OhrR führt zu einem Sulfensäure-haltigen Intermediat, welches die DNA-Bindeaktivität beibehält. In den folgenden Reaktionen wird entweder ein Gemisch aus Disulfiden (S-Thiolation) oder ein Protein aus Sulfenamid-Derivaten generiert. S-Thiolation schützt OhrR vor der Überoxidation und sorgt durch eine Thiol-Disulfid Austausch-reaktionen für die Regeneration von aktivem OhrR. Auch Sulfenamid kann durch diese Austausch-reaktion reduziert werden. Die Reaktion verläuft hier jedoch sehr langsam [55, 56].

Das Gen *ohrA* codiert eine Thiol-abhängige Peroxidase, welche organische Hydroperoxide durch Reduktion in den korrespondierenden Alkohol umwandeln und somit detoxifizieren kann [57]. Wird die Repression durch OhrR verringert, wird im Gegenzug die Transkription von *ohrA* induziert. Die Transkription des *ohrR* Gens wird durch Aktivierung von OhrR induziert. Bei *S. coelicolor* bindet reduziertes OhrR an den Bereich der DNA zwischen *ohrA* und *ohrR*, welcher einen primären und zwei angrenzende Inverted Repeat-Motive enthält, die mit den Promotorelementen überlappen (siehe Abb. 14). So wird die Transkription beider Gene reprimiert. Organische Peroxide erniedrigen die Bindungsaffinität von OhrR für die primäre Bindungsstelle und senken gleichzeitig die kooperative Bindung zu den angrenzenden Bereichen. Somit kann die RNA- Polymerase an den *ohrR*- und *ohrA*-Promotor binden. Die Transkription von *ohrA* kann dann durch die RNA-Polymerase initiiert werden, die Transkription von *ohrR* benötigt hingegen noch eine zusätzliche Aktivierung durch gebundenes OhrR-Protein [58].

Abbildung 2.13: Modell der dualen Aktivität von OhrR gegenüber den *ohrA* und *ohrR* Genen in Anwesenheit eines Oxidationsmittels (aus Oh *et al.*, 2007).

In der reduzierten Form (Red), bindet OhrR an die Region zwischen *ohrA* und *ohrR* und hindert somit die Bindung der RNA-Polymerase an die Promotoren. In der oxidierten Form (Ox), sinkt die Bindungsaktivität von OhrR mit einer gleichzeitigen Senkung der kooperativen Bindung. Dadurch kann die RNA-Polymerase an beide Promotoren binden. Das schwach gebundene oxidierte OhrR sorgt für eine zusätzliche Bindung der RNA-Polymerase an den *ohrR*-Promotor. Die beiden Polymerasen können denselben oder verschiedene Sigma-Faktoren enthalten.

OhrR gehört zur MarR/SlyA Familie von DNA-Bindeproteinen. Der Repressor bindet an Inverted-Repeat-Elemente, wobei er den *ohrA*-Promotor überlappt. Fuangthong *et al.* [59] konnten 2001 zeigen, dass bei *B. subtilis* eine Region von 15 bp für die Repression des *ohrA* Gens durch OhrR erforderlich ist. Diese Region enthält einen perfekten Inverted Repeat, TACAATT-AATTGTA, welcher die OhrR Bindestelle definiert. Hierzu verwandte unvoll-kommene Inverted Repeat Sequenzen (bis zu 3 Mismatches) konnten in der *ohrA* und *ohrR* Promoterregion ebenfalls gefunden werden. Diese unvollkommenen Elemente erlauben trotzdem eine Restregulation durch OhrR. Einen Beweis für die Autoregulation von *ohrR* konnte jedoch nicht erbracht werden. Oxidiertes OhrR verliert seine DNA-Bindeaktivität, wodurch *ohrA* transkribiert werden kann. Die meisten orthologen OhrR-Proteine enthalten zwei Cysteinreste, welche ebenfalls regulatorisch Aktiv sein können. In *B. spp., S. coelicolor* u.a. enthält OhrR nur einen Cysteinrest [57].

Abbildung 2.14: Mechanismus der Wahrnehmung von organischen Hydroperoxiden durch OhrR (aus Lee *et al.*, 2007). Im Grundzustand liegt OhrR in voll reduzierter Form in der Zelle vor (1) und reagiert schnell mit organischen Hydroperoxiden (R`-OOH) um Sulfensäure - Intermediate zu generieren. Das OhrR-Sulfenat ist weiterhin zur DNA-Bindung befähigt, kann jedoch schnell S-thioliert werden (2), wodurch OhrR inaktiviert wird und die Derepression des Zielgens (ohrA) verursacht. Thiol-Disulfid Austauschreaktionen regenerieren den aktiven Repressor (3). Das Sulfenat kann aber auch spontan zu Sulfenamid reagieren (4). Dieses kann ebenfalls durch Thiol-Disulfid Austauschreaktionen reduziert werden (5). Wenn die intrazellulär vorhandenen Thiole erschöpft sind, kann eine Überoxidation des Cys15 zu Sulfin- und Sulfon-Säure-Derivaten stattfinden (6).

2.2.4.2 Eisenaufnahme-Regulator Fur

Fur ist in der Lage, Eisen wahrzunehmen und die Expression von Genen, die für Produkte für die Siderophor-Biosynthese und den Eisentransport codieren, zu regulieren. Fur funktioniert als allgemeiner Regulator der Eisen-Homöostase, wobei Fur die Induktion der Eisenaufnahme (unter Eisenmangelbedingungen) und die Expression von Eisenspeicherproteinen und Eisenverwertenden Enzymen (bei Verfügbarkeit von Eisen) kontrolliert. Die Koordination eines Fe²⁺-Ions pro Monomer befähigt das dimere Fur-Protein an eine spezifische, 19 bp lange DNA-

Sequenz zu binden. Diese Sequenz wird als "Fur-Box" bezeichnet. Innerhalb dieser Box liegt der Promotor der regulierten Gene. Ist die Eisenmenge erhöht, reprimiert Fur die Aufnahme von weiterem Eisen und hilft dadurch einen Eisenüberschuss zu vermeiden. Die Bindung von Fur, welches mit Eisen assoziiert ist, verhindert den Zugang der RNA-Polymerase an den Promotor. Hieraus resultiert die Repression der downstream gelegenen Gene [57, 60]. Fur ist aber auch an Prozessen beteiligt, die nicht direkt im Zusammenhang mit dem Eisen-Metabolismus stehen. Dies umfasst z.B. zelluläre Prozesse, wie die Säure-Schock-Antwort, Verteidigung gegen Sauerstoff-Radikale, Chemotaxis, Biolumineszenz und Produktion von Toxinen und anderen Virulenzfaktoren [60]. Horsburgh *et al* [48] konnten bei *S. aureus* nachweisen, dass Fur zusammen mit PerR die Transkription von *katA* reguliert. Hierbei funktioniert Fur entweder als direkter oder indirekter Eisen-abhängiger positiver Regulator der *katA* Expression. Dies konnte auch bei *C. jejuni* gezeigt werden. In *Helicobacter pylori* ist Fur zudem in das Wachstum bei niedrigem pH involviert und spielt eine wichtige Rolle bei der Säureresistenz [61].

Bei *B. subtilis* sind vier Cysteinreste in beiden CXXC-Motiven des Fur-Proteins essentiell für die Aktivität und Stabilität des Proteins und sind in die Koordination von Zn²⁺ involviert. Bei manchen Mitgliedern der Fur-Familie sind keine strukturellen Zn²⁺-Ionen vorhanden [56].

Abbildung 2.15: Interaktion der Fur-Familien Proteine mit DNA und Metallionen (aus Lee & Helmann, 2007).

Abb. 2.15 A: Modell der Interaktion von Fur_{PA} (*Pseudomonas aeruginosa*) mit DNA; Die Nterminalen DNA-Bindedomänen sind in rot und blau dargestellt. Die C-terminale Dimerisationsdomäne ist grün dargestellt. Die klassische Fur-Box ist als eine 19 bp Palindrom-Sequenz definiert. In diesem Modell von zwei überlappenden 7-1-7 Motiven (Pfeile), binden zwei Fur-Dimere die beiden 7-1-7 Motive von sich gegenüberliegenden Seiten der DNA.

Abb. 2.16 B: Vergleich der Metallbindestellen in Fur_{PA} und Per_{BS} (*B. subtilis*). In Fur_{PA} ist das strukturelle Zn²⁺-Ion durch Seitenketten von His³², Glu⁸⁰, His⁸⁹ und Glu¹⁰⁰ koordiniert und verbindet die DNA-Bindedomäne (blau) und die Dimerisationsdomäne (grün). Das regulatorische Fe²⁺-Ion ist in der Dimerisationsdomäne lokalisiert. In PerR_{BS} ist das strukturelle Zn²⁺-Ion durch 4 Thiolate koordiniert (Cys⁹⁶, Cys⁹⁹, Cys¹³⁶ und Cys¹³⁹) und blockiert die Dimerisationsdomäne. Die regulatorische Fe²⁺/Mn²⁺ Stelle in PerR_{BS} schließt His³⁷, Asp⁸⁵, His⁹¹, His⁹³ und Asp¹⁰⁴ ein.

Die Palindrom-Sequenz der Fur-Box lautet: GAT AAT GAT w ATC ATT ATC wobei für w die Basen A oder T steht. Je ein Fur - Dimer bindet an jede Fur-Box. Die positive Regulation durch Fur geschieht oft indirekt aufgrund der Fur-abhängigen Repression über eine regulatorische Antisense sRNA (small RNA). Diese RNA reprimiert die Translation der Zielgene posttranskriptionell. Fur kann aber auch als direkter Transkriptionsaktivator fungieren. Dabei bindet Fur upstream der Promotoren dieser Gene Metall-abhängig und kann in vitro direkt die Transkription durch die RNA-Polymerase aktivieren[56].

Mitglieder der Fur-Familie sind innerhalb der Eubakterien weit verbreitet. Die meisten dieser Enzyme funktionieren als Metall-abhängige, DNA-bindende Repressoren. Die Metall-

Abhängigkeit und Spezifität variiert allerdings stark innerhalb dieser Familie. Zur, das als Sensor die Zinkkonzentration wahrnimmt, gehört ebenfalls zur Fur-Familie. Weiterhin gehören zu dieser Familie auch Proteine, die auch andere Signale außer Metallionen wahrnehmen können, wie z.B. PerR. Proteine der Fur-Familie können direkt agieren, um die Transkription von Zielpromotoren zu stimulieren oder sie können die Genexpression indirekt, durch sRNA oder Protein-Intermediate, regulieren [56].

2.2.4.3 Zinkaufnahme-Regulator Zur

In *B. subtilis* reprimiert Zur den ABC-Transporter der Zinkaufnahme sowie ein Operon, das für Proteine mit bislang unbekannter Funktion codiert. Des Weiteren enthält Zur - wie Fur - zwei distinkte Metall-Bindestellen mit unterschiedlicher Affinität. Bindet Zur nur ein Zn²⁺-Ion pro Monomer, ist es nicht in der Lage, DNA zu binden. Sobald ein zweites Zn²⁺-Ion koordiniert wird, kann Zur an den *znuC*-Promotor binden und so die Anheftung der RNA-Polymerase sterisch behindern [56]. Auch bei *L. monocytogenes* übt Zur die Funktion des Zinkaufnahme-Regulators aus. Des Weiteren wurde hier die Zink-Permease ZurA-ZurM nachgewiesen [62].

2.2.4.4 Mangantransport-Regulator MntR

Sowohl Eisen als auch Mangan sind bei hoher intrazellulärer Konzentration toxisch. Deshalb regulieren Bakterien deren Aufnahme streng [63]. Die Regulation der Manganaufnahme in Bakterien erfolgt durch die biochemische Regulation der Transporteraktivität und durch Transkriptionsregulation der Genexpression [64]. Bei S. aureus kontrolliert MntR die Expression der Gene mntABC und mntH, welche für einen putativen Mangantransporter codieren. Die Expression von mntABC wird durch Mn(II) MntR-abhängig reprimiert. Die Expression von mntH wird bei erhöhtem Mn(II)-Spiegel hingegen dereprimiert und eine mntR-Mutante zeigte geringere Transkriptionslevel von *mntH*. Demzufolge arbeitet MntR als negativer und positiver Regulator an den jeweils entsprechenden Loci. Da MntR die Aufnahme von Mangan kontrolliert, werden die durch Mn(II) regulierten Bestandteile des PerR-Regulons und die Fur-Proteine durch MntR mit beeinflusst. MntH arbeitet als selektiver Mangantransporter, wobei dieser bei der Zellantwort auf ROS und bei der Pathogenese von Bedeutung ist. In Bakterien besitzt Mangan viele spezifische zelluläre Aufgaben. Es ist Cofaktor für Enzyme, welche in Teilen des Metabolismus, des Katabolismus, der Signaltransduktion und der Photosynthese eine Rolle spielen. Zudem wurde Mangan eine Bedeutung beim Schutz gegen oxidativen Stress zugeschrieben[48].

Auch in *B. subtilis* hat MntR eine bifunktionale Bedeutung. Bei hohem Mn(II)-Spiegel reprimiert MntR *mntABC* und *mntH*, bei geringen Mn(II)-Mengen fungiert MntR jedoch als positiver Regulator der *mntABC*- Expression [65].

2.2.4.5 Redox/Peroxid-sensitiver Regulator Spx

Spx wirkt als allgemeiner Transkriptionsregulator der oxidativen Stressantwort in B. subtilis. Dieses Protein ist bei einer großen Anzahl von Gram-positiven Bakterien hoch konserviert [66]. Die Konzentration von Spx wird durch die ATP-abhängige Protease ClpXP kontrolliert. Spx selbst übt eine negative Transkriptionskontrolle aus, indem es die Interaktion zwischen Aktivator und RNA-Polymerase verhindert [67-69]. Dabei bindet Spx an die C-terminale Domäne der α-Untereinheit der RNA-Polymerase (Siehe Abb.17). Hierbei werden diejenigen Gene reprimiert, deren Produkte in den primären Metabolismus involviert sind (z.B. pur und pyr-Gene (erforderlich für Purin-und Pyrimidin-Synthese), Gene für die Biosynthese von Aminosäuren und Gene für die Vitaminbiosynthese) [66, 68]. Unter oxidativen Stressbedingungen kann Spx aber auch die Transkription von Genen, beispielsweise von trxA und trxB, durch direkte Interaktionen mit der RNAP stimulieren [70]. Dabei werden Gene induziert, deren Produkte Funktionen in der Aufrechterhaltung der Thiol-Homöostase haben [70]. Der detaillierte Mechanismus der Spx-abhängigen Transkriptions-aktivierung ist noch nicht bekannt, da Spx keinem anderen Transkriptionsaktivator strukturell ähnelt und auch keine Sequenz-spezifische DNA-Bindeaktivität aufweist. Allerdings ähnelt es der Arsenatreduktase ArsC des Plasmids R773 hinsichtlich der primären und der Super - Struktur[71, 72]. Es ist bekannt, dass die Bildung eines Disulfids am N-terminalen CXXC-Motiv erforderlich ist, um eine optimale Transkriptionsaktivierung zu initiieren. Kristallstruktur-Analysen zeigten, dass Spx aus zwei Domänen besteht. Eine zentrale Domäne, die mit der α -Untereinheit der RNA-Polymerase interagiert und eine Redox-Domäne, die durch N-und C-terminale Bereiche von Spx gebildet werden und ein CXXC-Motiv beinhalten [71, 73]. Das CXXC-Motiv am N-Terminus des Spx-Proteins enthält einen Thiol/Disulfid-Switch und ist für eine Steigerung der Spx-Aktivität verantwortlich [70].

Spx kann als Aktivator fungieren, der bestimmte Mechanismen positiv reguliert um oxidativem Stress entgegenzuwirken. Zudem kann Spx als negativer Regulator wirken, der die Ausführung energie-aufwändiger Prozesse verhindert, während die Zelle den Stress bewältigt [68].

Abbildung 2.16: Positive Transkriptionsaktivierung durch ein Zwei-Komponenten-Signaltransduktions-System und negative Kontrolle durch das Spx-Protein. Die Histidin-Proteinkinase (Membran-gebundener HPK-Sensor) wird nach Erkennen eines Reizes autophosphoryliert und überträgt das Phosphat auf den Response-Regulator (RR-Aktivator). Dieser interagiert mit der Promotorregion eines Genes, welches unter seiner Kontrolle steht. Spx wird durch die Protease ClpXP abgebaut. Dies ermöglicht die transkriptionelle Aktivierung. Die Untereinheiten β , β , α und σ der RNA-Polymerase sind hier involviert, indem sie die Position der αCTD-Untereinheit präsentieren. Unter Disulfid-Stress oder bei clpX oder clpP-Mutanten wird Spx verstärkt gebildet und bindet an die αCTD-Region, wodurch es die Interaktion zwischen Aktivator und RNA-Polymerase blockiert (aus Zuber, 2004).

Bei *B. subtilis* befindet sich das *spx*-Gen im *yjbC-spx* Operon und wird von fünf Promotoren durch die RNA-Polymerase unter Verwendung verschiedenster Sigmafaktoren (σ^A , σ^B , σ^M und σ^W) transkribiert. Die Promotoren liegen in der *yjbC*-Regulator-Region bzw. im Bereich zwischen *yjbC* und *spx*. Die Kontrolle der Expression von *spx* als Reaktion auf oxidativen Stress erfolgt in drei Stufen. Die Transkription von *spx* wird durch den Promotor P3 initiiert, der durch die σ^A -RNAP erkannt wird. Zusätzlich sind zwei Transkriptionsrepressoren vorhanden, PerR und YodB. Die strenge Kontrolle der *spx*-Expression und der Aktivität seines Produkts stellt sicher, dass Spx nicht überproduziert wird wenn es nicht benötigt wird. Hohe Konzentrationen von Spx haben einen großen Einfluss auf das Wachstum von *B. subtilis* und eine Vielfalt von Entwicklungsprozessen [72]. In *Listeria* scheint *spx* essentiell zu sein [74], in *B. subtilis* hingegen nicht [75]. Eine loss-of-function-Mutante im spx locus zeigte hier eine enge Verknüpfung von Spx mit den ClpXP Proteasen sowie mit dem ClpC – ComK-Komplex und MecA. Auch in *Listeria* scheinen *spx, mecA, ClpC* und *ClpP* eng verknüpft zu sein [74].

2.2.4.6 Redox-sensitiver Regulator Rex

Der Redox-wahrnehmende Repressor Rex ist unter Gram-positiven Bakterien weit verbreitet. Bei S. coelicolor bindet Rex an eine Operatorstelle, die Upstream mehrerer respiratorischer Gene, einschließlich des cydABCD und rex-hemACD-Operons, lokalisiert ist. Die DNA-Bindeaktivität von Rex wird durch das Redox-Gleichgewicht des NADH/NAD+-Pools kontrolliert: die DNA-Bindeaktivität von Rex wird durch NADH, aber nicht durch NAD+ inhibiert. NAD+ konkurriert mit NADH um die Bindung an Rex, wobei Rex eine viel höhere Affinität zu NADH als zur oxidierten Form aufweist. Der Repressor beinhaltet eine Pyridin-Nucleotid-Bindedomäne (Rossmann fold) und hochkonservierte Reste, die eine Schlüsselrolle in der Struktur und Nucleotid-Bindung spielen. Das zentrale Glycin im GlyXGlyXXGly - Motiv ist essentiell für die Wahrnehmung des Redoxstatus. In den meisten Gram-positiven Bakterien existieren homologe Proteine zu Rex, einschließlich einiger menschlicher Pathogene, wie S. aureus, L. monocytogenes und Streptococcus pneumoniae. Bei Sauerstoffknappheit oder anderen Bedingungen, die die Atmung verhindern, erfolgt eine Erhöhung des NADH/NAD⁺-Verhältnisses als Ergebnis einer fortgesetzten Substrat-Oxidation. Rex verliert seine DNA-Affinität und dies führt zur Expression des Rex-Regulons. Dieses Regulon umfasst das Cytochrom-bd-Oxidase Operon (durch cyd-Operon codiert), welches die Fähigkeit besitzt, die Redox-Homöostase wieder herzustellen [76]. Gyan et al. [77] konnten zeigen, dass in B. subtilis ein zu Rex homologes Protein, YdiH existiert. Auch hier wird das cyd-Operon durch Rex reprimiert. Zudem werden hier die Gene ldh und ywcJ, welche für die Lactat-Dehydrogenase und einen putativen Formiat-Nitrat-Transporter codieren, reprimiert. Ndh fungiert als Haupt-NADH-Dehydrogenase in B. subtilis und oxidiert NADH im Cytoplasma, wenn genügend Energie zur Verfügung steht. Die ndh-Transkription wird direkt durch Rex reguliert. Gyan et al. [77] postulierten, dass Rex und Ndh einen regulatorischen Kreislauf bilden, um ein konstantes Verhältnis von NADH/NAD+ aufrechtzuerhalten. Im Gegensatz zu S. coelicolor verstärkt NAD+ hier die Bindeaktivität von Rex, und NADH hat nur einen unbedeutenden oder partiell negativen Effekt auf die DNA-Bindung [77].

2.2.5 Superoxid-Dismutase SOD

Die Aufnahme von *L. monocytogenes* durch Phagozyten induziert den sog. oxidativen Burst; darunter versteht man die Freisetzung von bakteriziden Superoxid-Radikalen in die Phagosomen [78]. *Listeria* kann sich zwar aus dem phagosomalen Kompartiment befreien, muss aber dennoch für kurze Zeit zytotoxische, reaktive Sauerstoff-Intermediate überstehen [79]. Die Entdeckung der Superoxid-Dismutase war das erste Indiz dafür, dass aerobe Organismen durch das Superoxid-Anion O₂- geschädigt werden können [2, 80]. Die Superoxid-Dismutase wandelt Superoxide in Wasserstoffperoxid (H₂O₂) um, welches wiederum durch Katalasen und Peroxidasen metabolisiert wird: $O_2^- + O_2^- + 2H^+ \rightarrow O_2 + H_2O_2$

SOD ist ein Teil der allgemeinen Verteidigungsmechanismen aerober Bakterien gegen endogenen oxidativen Stress. Da die *Listeria* - SOD dem Sauerstoffradikal-Stress entgegenwirkt und somit Listerien in Phagozyten überleben und replizieren lässt, zählt man die SOD zu den Virulenzfaktoren. Die Pathogenität fakultativ intrazellulärer Bakterien wie *Nocardia asteroides* und *Shigella flexneri* wird ebenfalls durch die Superoxid-Dismutase beeinflusst. Bei *L. monocytogenes* wird SOD durch *sod* codiert [78]. Superoxid-Dismutasen zählen zu den Metalloproteinen und werden entsprechend ihres Metallcofaktors (Eisen, Mangan, Kupfer oder Zink) klassifiziert. Bei *L. monocytogenes* liegt vermutlich Mangan als Cofaktor vor. Die Expression von SOD wird durch die Anwesenheit von O₂· induziert [79]. Archambaud *et al.* [81] konnten zeigen, dass die Aktivität der cytoplasmatischen MnSOD durch Phosphorylierungen reguliert wird. Während der stationären Phase wird die Aktivität durch Phosphorylierungen an Serin/Threonin herunter reguliert. Die komplette Dephosphorylierung durch die Serin-Threonin-Phosphatase Stp erhöht die Aktivität der Superoxid-Dismutase deutlich. Diese aktive, unphosphorylierte Form von SOD wird SecA2-abhängig sekretiert. *E. coli* produziert zwei Superoxid-Dismutasen: ein Eisen-enthaltendes und ein Mangan-enthaltendes Protein. FeSOD wird unter aeroben und anaeroben Bedingungen exprimiert, MnSOD wird hingegen nur unter oxidativen Stressbedingungen, also bei Anwesenheit von z.B. Superoxid-Radikalen, exprimiert [82].

2.2.6 Katalase Kat

Katalasen katalysieren u.a. den Abbau von Wasserstoffperoxid zu Wasser und Sauerstoff. Hierbei nutzt sie einen Zwei-Elektronen-Transfer [83]. Katalasen werden bei den meisten aeroben Organismen einschließlich Mensch und Bakterien sowie bei vielen mikroaerophilen und aerotoleranten Arten produziert. C. jejuni exprimiert eine Häm-enthaltende Katalase, welche zu anderen Häm-Katalasen von eukaryontischen und prokaryontischen homolog Mikroorganismen ist [84]. B. subtilis enthält verschiedene Katalasen. Das Gen katG codiert für eine Wasserstoffperoxid-induzierte Katalase, wohingegen katE für eine zweite Katalase codiert, die in der stationären Wachstumsphase in Zellen exprimiert wird und unter der Kontrolle des spezifischen Sigma-Faktors σ^{s} steht. In der vegetativen Phase konnte nur eine Katalase, KatA, nachgewiesen werden. Das hierfür codierende Gen katA ist durch Wasserstoffperoxid und Wachstumsphasen-abhängig induzierbar [85]. Katalasen von pathogenen Bakterien, wie L. monocytogenes, H. influenzae und H. pylori werden als Virulenzfaktoren betrachtet, da sie den Sauerstoff-abhängigen Verteidigungsmechanismen von infizierten Phagozyten entgegenwirken können [86]. Bei *H. pylori* werden Katalasen in hohen Mengen exprimiert und machen ca. 1 % der gesamten Proteoms aus [87]. Bei L. monocytogenes EGD steigt die Aktivität der einzigen Katalase während des Wachstums stetig bis zu einem Maximum in der stationären Phase an (1 x 10⁵ U (mg Protein)⁻¹). Die Katalaseaktivität wird durch Hitze-, H₂O₂- und Salzstress induziert. Zudem wird die Expression hier ebenso wie bei B. subtilis teilweise durch SigB kontrolliert [88, 89].

2.3 Bakterielle Photorezeptoren

Licht ist die Hauptenergiequelle für fast alle lebenden Organismen, kann jedoch bei höheren Intensitäten auch schädlich wirken. Es ist daher für alle Lebewesen wichtig, Licht wahrnehmen und entsprechend reagieren zu können. Bereits Darwin beschrieb 1881 zum ersten Mal einen phototrophen Effekt von blauem Licht auf Pflanzen. Seither werden diese Effekte vor allem in pflanzlichen Modellorganismen wie z.B. *Arabidopsis* untersucht. Erst spät wurden die ersten Phytochrome in Cyanobakterien entdeckt [90, 91]. Bereits zuvor wurden jedoch andere Photorezeptoren in Bakterien erkannt und untersucht:

2.3.1 Das PYP Protein

Das halophile Purpur-Bakterium *Ectothiorhodospira* (*Halorhodospira*) halophila entfernt sich aktiv schwimmend von blauen Lichtquellen, vermutlich um dem schädigenden Effekt von UV – Licht zu entgehen. Meyer [92] postulierte 1985, dass das photoaktive, gelbe Protein PYP als Photorezeptor für diese negative Phototaxis verantwortlich ist. PYP – Homologe wurden mit der Zeit in *Rhodospirillum salexigens* (*Rhodothalassium salexigens*) [93], *Chromatium salexigens* [94] und *Rhodobacter sphaeroides* RK1 [95, 96] entdeckt. Ihre Aufgabe und Wirkweise ist bislang jedoch großteils unverstanden; bisher konnte kein Molekül, das Downstream von PYP agiert, identifiziert werden. Trotz mangelnder detaillierter Informationen über seine physiologischen Funktionen ist PYP ein attraktives Modell, um die grundlegenden Eigenschaften der Lichtwahrnehmung in biologischen Systemen zu erforschen, da es klein, löslich und Funktion des photoaktiven gelben Proteins von *E. halophila* (E-PYP), das nach Lichtabsorption einen auffälligen Photozyklus mit verschiedenen Intermediaten zeigt. Das für die Licht-Aktivierung zuständige Chromophor ist p-Cumarsäure, das kovalent über einen Thiolester an Cys69 von PYP gebunden ist. Dieser Photozyklus erinnert stark an die sensorischen Rhodopsine der *Archeae*.

Lagarias et al. [97] konnten bereits 1995 Sequenzhomologien zwischen PYP und der ubiquitären Signaltransduktionsdomäne, PAS (Per-Arnt-Sim), identifizieren. Tatsächlich konnten mittels Röntgenkristallographie Ähnlichkeiten zwischen PYP und anderen, bekannten Proteinen mit PAS-Domänen gefunden werden [98]. Seither gilt PYP als strukureller Prototyp für die Tertiärstruktur der PAS-Domänen Superfamilie [99, 100].

Abbildung 2.17: Domänenstruktur prokaryotischer Blaulichtrezeptoren (aus Braatsch & Klug, 2004) Erläuterungen: siehe Text

2.3.2 Cryptochrome und Photolyasen

Cryptochrome sind Flavoproteine, die als Photorezeptoren in Pflanzen bekannt sind. Es gibt deutliche Hinweise darauf, dass sich die Eukaryotischen Cryptochrome aus Photolyasen entwickelt haben [101]. DNA-Photolyasen sind monomere Flavoproteine von 450 - 550 AS Länge, die in allen drei Reichen des Lebens vorkommen [102]. Photolyasen katalysieren die Blau-/UV-Licht-abhängige DNA-Reperatur, die Schäden durch hochenergetisches, kurzwelliges (<350nm) UV-Licht behebt. Dieser Prozess, der auf lichtinduziertem, reversiblem Elektronentransfer basiert, wird Photoreaktivierung genannt. Obwohl Cryptochrome ähnliche Domänen wie Photolyasen aufweisen und sowohl die für die Zusammensetzung von Chromophoren als auch die für die enzymatische Aktivität nötigen Aminosäurereste hoch konserviert sind, zeigen sie keine Photoreaktivierungsaktivität [103, 104]. Alle bisher bekannten Vertreter der Cryptochrom/Photolyase Familie erfüllen je nur eine der beiden möglichen Funktionen. Im Jahr 2000 postulierten Hitomi et al. [105], dass das Genprodukt des Gens sll1629 von Synechocystis sp. PCC 6803 für ein Cryptochrom codiert, da es keine Photolyase-Aktivität aufweist. Später konnte gezeigt werden, dass Sll1629 DNA binden kann, und es wurde daher in DASH umbenannt. Mittels Microarrayanalysen konnte gezeigt werden, dass DASH einige Gene transkriptionell beeinflusst, seine genaue Funktion ist jedoch unbekannt [106]. Die Proteine VcCry1 und VcCry2 von Vibrio cholerae beeinflussen die Photoreaktiverung nicht, sie werden daher per Definition den Cryptochromen zugeordnet [107]. Auch ihre Funktion ist bisher noch unbekannt.

2.3.3 Die BLUF-Domänen Proteine

Die fakultativ phototrophen Purpurbakterien der Gattung *Rhodobacter* regulieren die Neubildung ihrer Photosynthese-Komplexe je nach Verfügbarkeit von Sauerstoff und Licht. Fällt der Sauerstoff - Partialdruck unter eine gewisse Schwelle, werden die Photosysteme auch im Dunklen signifikant verstärkt gebildet. Die zentrale Rolle der sauerstoffabhängigen Genaktivierung in *R. sphaeroides* spielt das Zwei-Komponenten-System PrrA/PrrB [108]. Die
Sensorkinase PrrB misst vermutlich ein Redoxsignal, das durch den Elektronenfluss in der terminalen, Cytochrom cbb(3) Oxidase erzeugt wird. Abhängig von diesem Redoxsignal wird PrrB autophosphoryliert und transferiert die Phosphatgruppe auf PrrA [109, 110]. Das phosphorylierte PrrA aktiviert durch direkte DNA-Bindung die Transkription verschiedener Photosynthesegene, darunter die *puf* und *puc* Operons, die für die meisten Strukturproteine der Licht-Sammel-Komplexe und Reaktionszentren der Photosysteme codieren [111]. PpsR wiederum reprimiert einen Teil der Photosynthesegene bei höherem Sauerstoffpartialdruck [112, 113]. Das Flavoprotein AppA fungiert als PpsR-Antagonist, es ist somit an der sauerstoffabhängigen Redox-Kontrolle der Expression der Photosynthesegene beteiligt [112]. FAD, dass nicht-konvalent an die BLUF-Domäne von AppA gebunden ist, ist für die blaulichtabhängige Repression von *puc* und *puf* essentiell. Deletiert man die BLUF-Domäne von AppA oder wird der FAD-Cofaktor entfernt, geht die Wahrnehmung von blauem Licht verloren, die Blaulicht-unabhängige Funktion des Proteins bleibt jedoch bestehen [114]. AppA ist somit das erste Beispiel für ein Protein das sowohl Redox- als auch Licht-Signale wahrnehmen kann.

Die errechnete Sekundärstruktur der BLUF-Domäne ist der von Kristallstrukturen abgeleiteten Struktur von PAS-Domänen oder Photolyasen nicht ähnlich. Datenbankrecherchen förderten eine große Zahl uncharakterisierter Proteine zu Tage, die Domänen mit signifikanter Ähnlichkeit zur BLUF- Domäne von AppA aufweisen [115]. Die nähere Untersuchung der BLUF-Domänen der photoaktivierten Adenylylcyclase (PAC) von *Euglena gracilis* zeigte, dass diese ebenso wie die BLUF- Domäne von AppA an der Wahrnehmung von blauem Licht beteiligt sind. PAC agiert als Photorezeptor der photophoben Antwort von *Euglena* [116].

2.3.4 Phototropin-ähnliche Blaulichtrezeptoren in Bakterien

Phototropine sind die Haupt-Lichtrezeptoren des Phototropismus in Pflanzen; sie werden blaulichtabhängig phosphoryliert [117]. Phototropine besitzen zwei N-terminale, photoaktive Licht-, Sauerstoff-, Spannungs-Domänen (light, oxygen, voltage, LOV) sowie eine C-terminale Serin/Threonin Domäne. LOV-Domänen sind eine Unterklasse der PAS-Domänen und können mit einer großen Anzahl anderer Domänen verknüpft sein [118, 119]. Nach Belichtung mit blauem Licht durchlaufen die Phototropine einen Photozyklus, der die reversible Bildung eines FMN-cysteinyl Adduktes in der LOV Domäne einschliesst [120, 121]. LOV-Domänen, die das photoaktive Flavin-Bindemotiv beinhalten, wurden in vielen verschiedenen Bakterienarten gefunden [119]. Abgesehen von YtvA von *Bacillus subtilis* ist die Funktion der bakteriellen LOV-Domänen-Proteine jedoch unbekannt.

Abbildung 2.18: Strukturmodelle der LOV-Domäne von YtvA von *B. subtilis* (aus Losi *et al.*, 2002) Abbildung 2.18A: Die LOV-Domäne mit der zentralen α 'A Helix und gebundenem FMN-Cofaktor Abbildung 2.18B: Die α 'A und α C Helices bilden eine Tasche, aus der der funktional essentielle Aminosäure-rest C62 herausragt, um den FMN-Cofaktor zu binden.

2.3.4.1 Der Blaulichtrezeptor YtvA von B. subtilis

Das am besten und intensivsten erforschte bakterielle Protein mit LOV-Domäne ist YtvA von *B. subtilis.* Erstmals wurde es 2001 von Akbar et al. [122] als Homolog des regulatorischen Proteins RsbR (siehe unten) beschrieben, das als positiver Regulator der Hitze- und Salzschock-Antwort über den alternativen Sigma-Faktor σ^{B} wirkt. Akbar und Kollegen erkannten in YtvA jedoch keine LOV-Domäne, sondern lediglich eine PAS-Domäne. Auch die drei in den anderen RsbR Homologen (siehe unten) konservierten Threoninreste konnten in YtvA nicht gefunden werden. Da *ytvA* jedoch mit zwei anderen RsbR-Homologen (*ykoB* und *yqhA*) eine Transkriptionseinheit bildet, untersuchten Akbar et al. auch die Auswirkungen einer Deletion im *ytvA* Locus. Dabei stellten sie fest, dass eine Deletion von *ytvA* einen klaren σ^{B} -regulatorischen Phänotyp zur Folge hat, der die Stressantwort auf Salz und Ethanol deutlich reduziert. Akbar et al. postulierten daher, dass YtvA als positiver Regulator der σ^{B} abhängigen Stressantwort wirkt.

2002 wurde YtvA schließlich von Losi et al. [123] als erster Phototropin-ähnlicher Blaulichtrezeptor näher beschrieben. Sie erkannten die LOV-Domäne und deren Ähnlichkeit in Struktur und Photochemie zu bereits beschriebenen Phototropinen aus Pflanzen. Sie identifizierten auch eine STAS-Domäne (Sulfate-Transporter/Anti-Sigmafactor-Antagonist) die typischerweise in bakteriellen Anti-Sigma-faktor-Antagonisten und σ^{B} -aktivierenden Regulatoren vorkommen. Auch die NTP-bindenden Eigenschaften der STAS-Domänen [124] waren bereits bekannt und wurden der ATP-Bindung anderer Phototropine gegenübergestellt. Allerdings fehlt YtvA das Ser/Thr-Kinase Motiv, das klassische Phototropine, wie z.B. Phot1 von *Arabidopsis spp.* aufweisen. Losi et al. postulierten daher das YtvA als Fragment von Phot1 über horizontalen Gentransfer zwischen *B. subtilis* und Pflanzen erworben wurde.

Zwei Jahre später veröffentlichte Aba Losi [125] einen weiteren Artikel, in dem sie die Exsistenz von 29 weiteren, putativen LOV-Proteinen aus 24 verschiedenen Bakterienarten und -Gattungen postulierte, darunter die *Listeria*-Arten *monocytogenes* und *innocua*.

Abbildung 2.19: Sequenzalignment bakterieller LOV-Domänen mit phot-LOV-Domänen bekannter Struktur (aus Losi, 2004). Bemerkenswert ist die hohe Homologie in der zentralen α 'A Helix.

Losi ging dabei nochmals auf die Rolle von YtvA als möglicher σ^{B} -Regulator ein, wobei sie sich auf die Arbeit von Akbar et al., 2001 stützte und postulierte: die Interaktion von YtvA und RsbR (siehe 2.3.5) - und damit die Regulation von σ^{B} - könne lichtabhängig sein und blaues Licht könne einen Stressfaktor darstellen, der von YtvA wahrgenommen wird. Noch fehlte ein experimenteller Beleg für diese These, doch bereits 2006 konnten Ávila-Pérez und Kollegen [126] erste experimentelle Nachweise für eine blaulicht-induzierte, σ^{B} -abhängige Stressantwort durch YtvA erbringen. Dazu maßen sie die σ^{B} -Aktivität mittels ß-Galactosidase-Aktivität unter Kontrolle eines *ctc* Promotors nach Belichtung mit verschiedenen Wellenlängen bzw. im Dunklen, sowie unter Salzstress im *B. subtilis* Wildtyp und einer $\Delta ytvA$ -Mutante. Dabei konnten sie zeigen, dass YtvA in der Tat lichtabhängig die σ^{B} -Antwort reguliert. Auch konnte gezeigt werden, dass Spx die *ytvA*-Expression um das Zwei- bis Dreifache steigern kann, dass jedoch die Hauptkontrolle über die YtvA-Funktion posttranslational durch blaues Licht erfolgt [127]. Dies schlossen die Autoren vor allem aus folgenden Punkten:

- Die Bestrahlung von YtvA mit blauem Licht induziert einen Lichtzyklus, der die Interaktion zwischen der N-terminalen LOV-Domäne und der C-terminalen STAS-Domäne verändert.

- Dieser Lichtzyklus erfordert die Bildung eines Photoadduktes zwischen dem FMN-Chromophor und dem konservierten Cys62 der LOV-Domäne.
- Ersetzt man das Cystein an Position 62 durch Serin oder Alanin verhindert dies die positiv regulatorische Aktivität von YtvA *in vivo*.

Die Autoren postulierten daher, dass eine blaulicht-induzierte, strukturelle oder dynamische Änderung wichtig für die Funktion von YtvA ist und dass diese Änderung wiederum die Interaktion von YtvA und seinen potentiellen Bindungspartnern innerhalb des großen σ^{B} -Signalkomplexes verändert. Dies wurde durch Suzuki et al. 2007 [128] in weiten Teilen bestätigt, auch konnten sie zeigen, dass YtvA ein Homodimer über die LOV-Domänen bildet. Dies wurde wiederum durch Möglich & Moffat [129] bestätigt, die eine Röntgenstrukturanalyse von YtvA-Kristallen veröffentlichten. Zwei Jahre später schlossen Ávila-Pérez et al. [130] den Kreis, indem sie die Lichtaktivierung von σ^{B} über YtvA mit dem Stressosom und den Rsb-Proteinen in Verbindung brachten, da sie zeigen konnten, dass eine Störung der GTP-Bindung in der STAS-Domäne (z.B. durch S195A oder D193N Austausch) die lichtabhängige Aktivierung von σ^{B} verhindert. Sie sprechen YtvA daher die Rolle eines lichtabhängigen NTP-Rekrutierungsproteins für die RsbT – Kinase zu.

2.3.5 Das Stressosom und die σ^{B} Antwort von *B. subtilis*

Auf ungünstige Lebensbedingungen reagiert *B. subtilis* mit der Expression von mehr als 200 Genen, die den Zellen verschiedene Resistenzen verleihen [131]. Diese generelle Stressantwort wird durch die Aktivierung eines alternativen Sigma-Faktors, σ^{B} , gesteuert. Sigma Faktoren binden direkt an die RNAP und ermöglichen die Transkription der Gene, die unter der Kontrolle des jeweiligen Sigma-Faktor-Abhängigen Promotors stehen. Die Regulation von σ^{B} erfolgt über sieben Proteine, die im σ^{B} Operon codiert liegen, nämlich RsbR, RsbS, RsbT, RsbU, RsbV, RsbW und RsbX [132, 133]. Des Weiteren sind noch zwei andere Gene, rsbQ und rsbP, an der σ^{B-} Regulation beteiligt. RsbV, RsbW und σ^{B} bilden einen Protein-Komplex, der σ^{B} durch Protein-Protein-Interaktion direkt reguliert. Unter normalen, sprich Nicht-Stress-Bedingungen, wird σ^{B} in einem Komplex mit dem Anti-Sigma-Faktor RsbW inaktiv gehalten, so dass σ^{B} nicht mit der RNAP interagieren kann [134]. RsbV liegt hauptsächlich in der phosphorylierten Form, RsbV-P, vor. Unter Stressbedingungen wird eine der beiden Phosphatasen (RsbU bei Umweltstress, RsbP bei Energiestress) durch ihren jeweiligen Phosphataseaktivator (RsbT aktiviert RsbU und RsbQ aktiviert RsbP) aktiviert und dephosphoryliert RsbV-P. RsbW formt daraufhin einen alternativen Komplex mit RsbV, dem Anti-Anti-Sigma-Faktor, zu dem es eine höhere Affinität hat als zu σ^{B} [135]. Dieses alternative Bindungsverhalten von RsbW kontrolliert die σ^{B} - Aktivität direkt und wurde Partner-Switching-Mechanismus genannt. RsbW wirkt außerdem als Serin-Kinase, ihr Substrat ist RsbV. Die Phosphorylierung von RsbV induziert die Dissoziation des RsbV-RsbW-Komplexes, und ermöglicht es somit RsbW, wieder mit σ^{B} zu interagieren.

Abbildung 2.20: Die oB - Kaskade von Bacillus subtilis (aus Marles-Wright *et al.*, 2007)

Die Antwort auf Umweltstress wurde in B. subtilis in letzter Zeit intensiv untersucht, da sie von einem supramolekularen Komplex, dem sog. Stressosom, kontrolliert wird. Der Stressosomkomplex wurde zuerst von Chen und Kollegen [136] identifiziert. Sie konnten in einer Reihe von Experimenten über die Interaktionen von RsbR, RsbS und RsbT zeigen, dass RsbR und RsbS einen hochmolekularen Komplex bilden, der auch RsbT binden kann. Sie konnten ebenfalls zeigen, dass diese Komplexbildung nicht spontan oder zufällig geschieht, sondern spezifisch. Diese Komplexe konnten auch aus wildtypsichen *B. subtilis* isoliert werden [137]. Das native Stressosom besteht aus RsbS, RsbR und den RsbR-Paralogen (YkoB, YojH, YqhA und YtvA) in einem unbekannten Verhältnis. RsbS bildet mit den RsbR-Paralogen das Grundgerüst des Stressosoms, das durch ihre stark konservierten C-terminalen STAS-Domänen gebildet wird. Eben diese STAS-Domänen werden durch RsbT bei Umweltstress phosphoryliert; dabei dissoziiert RsbT aus dem Komplex und aktiviert daraufhin RsbU, welches wiederum RsbV dephosphoryliert und somit σ^{B} aktiviert. [138-140].

Das Stressosom wirkt als eine Art Signal-Sammelstelle; in der ungestressten Zelle wird RsbT durch den Komplex abgeschirmt und nur nach einem aktivierenden Stress-Signal ist die Kinase-Aktivität von RsbT ausreichend, um RsbS und die RsbR-Paraloge zu phosphorylieren. Welchen Vorteil die Bildung eines 1.5 MDa großen Komplexes hat ist bisher unverstanden; da jedoch Umweltstress von einer großen Anzahl verschiedener Signale wie kleinen Molekülen, Proteinen oder Licht vermittelt wird, könnte man das Stressosom als Mechanismus verstehen, der es ermöglicht, verschiedenste Signale zu sammeln um eine einzige Signalkaskade auszulösen [140]. Das Stressosom enthält fünf verschiedene RsbR-Paraloge, jedes mit einer unterschiedlichen N-terminalen Domäne, die dazu dienen könnten, Signale wahrzunehmen [137], wie es bereits für Licht und die LOV-Domäne von YtvA gezeigt wurde [126].

2.4 Zielsetzungen dieser Arbeit

Bisher wurden nur einzelne Komponenten des TDRM von *L. monocytogenes* näher charakterisiert (GshF, Fur, Prx, Kat, Sod), für PerR lagen begrenzte Daten über die von diesem Faktor transkriptionell regulierten Gene vor. Die schon länger verfügbare Gesamt-Genomsequenz von *L. monocytogenes* EGD-e sollte jedoch eine umfassendere Untersuchung prinzipiell möglich machen.

Ziel dieser Arbeit war es daher, Aufschlüsse über regulatorische und funktionale Zusammenhänge im gesamten TDRM zu erhalten.

Durch bioinformatorische Analyse der Genomsquenz war zuvor eine Liste von Genen erstellt worden ("Kandidatengene"), deren Genprodukte bei anderen Mikroorganismen, in wenigen Fällen auch bei *L. monocytogenes* in Zusammenhang mit dem TDRM gebracht worden waren. Weiterhin lagen mehrere Mutanten von *L. monocytogenes* vor, bei denen einzelne Komponenten des TDRM durch gezielte Mutation inaktiviert waren: $\Delta gshF$ mit völligem Ausfall des Glutathion (GSH) Synthesewegs; ins gshF466 mit einer Insertion bei Position 466 der Glutathionsynthetase, diese Mutante synthetisiert noch das GSH-Vorläufermolekül γ -Glutamyl-Cystein; ins Gpo trägt eine Insertion in der Glutathionperoxidase und ins *perR* im Repressor des Peroxidregulons.

Am Beispiel der Mutante Δgsh F (Ausfall der Biosynthese des zentralen Reduktants Glutathion – GSH) sollten die Auswirkungen dieser Mutation auf das Transkriptionsmuster des Gesamtsystems untersucht werden, zunächst unter "Normalbedingungen in vitro", d.h. in reichem Kulturmedium. Alles zusammen sollte Erkenntnisse über vorher unbekannte regulatorische und funktionale Zusammenhänge zwischen Komponenten des TDRM erbringen.

Im Laufe der Arbeit richtete sich das Augenmerk mehr und mehr auf das Gen *lmo0799*, das auf Grund von Sequenzhomologien als Blaulichtrezeptor annotiert wurde. Nach erfolgreicher Deletion des Genes wurden Versuche zur Charakterisierung von *lmo0799* sowie der Einfluss von Licht auf *Listeria monocytogenes in vitro* und *in vivo* durchgeführt.

3. Material

3.1 Geräte

Gerät Abzug Autoklaven Begasungsbrutschrank Brutschränke Bunsenbrenner Fireboy eco Eismaschine AF30 Elektrophoresekammer Elektroporationsgerät "MicroPulser™" Feinwaage Geldokumentationsgerät Biostep Dark Hood DH-40/50 Drehteller Schütt petriturn-Molus Grobwaage Heizblöcke Klettphotometer Kühlzentrifuge Magnetrührer Microarray-Scanner Axon GenePix 4200 Mikroskope Mikrowelle Nano Drop Spectrophotometer PCR-Gerät "96 Universal Gradient" pH-Meter Photometer Ultrospec 3100 pro Pipetten (2,5, 20, 100, 200, 1000 µl) StepOne Plus Realtime Thermocycler Schüttelinkubatoren Shreddergerät "Fast Prep FP120" Sterilbänke Synergy Wasseraufbereitungssystem Tischzentrifugen Ultraschallgerät Sonifier®B-12 Vortexer "Vortex-Genie 2" Wasserbad Zellkulturbench Geräte für die Belichtungsversuche Dipol D2M VSL Pro Nachtsichtgerät 3x LED Blau, $\lambda = 455$ nm 3x LED Rot, λ=625nm 1x IR-LED, λ=850nm

Firma Waldner Webeco und Biomedis Laborservice GmbH Cellstar Heraeus Hartenstein Scotman® Hartenstein BioRad KERN ABS Biostep Biostep Schütt Labortechnik GmbH KERN EW Liebisch® Klett-Summerson Beckman Coulter SBS Molecular Devices Leica, Zeiss AFK PEQLAB Biotechnologie GmbH PEQLAB Biotechnologie GmbH WTW Amersham Biosciences Eppendorf Research Applied Biosystems **HTInfors AG** Bio 101 ThermoSavant Gelaire Flow Laboratories, NUAIR Biological Safty Cabinets Millipore Hettich Zentrifugen, Eppendorf BRANSON SONIC POWER COMPANY Scientific Industries Hartenstein, Memmert Thermo SCIENTIFIC

Dipol / Gross, Deutschland Luxeon Star LXHL-MRRD 1W Luxeon Star LXHL-MD1D 1W Osram Opto Semiconductors SFH4730 3W

3.2 Verbrauchsmaterial

Chemikalien

Die benötigten Chemikalien wurden von den Firmen Aldrich, Boehringer, Difco, Fluka, Gibco-BRL, Merck, Oxoid,

Riedel de Haen, Quanta Biosciences, Roth, Serva und SIGMA bezogen.

Einwegmaterial

Die verwendeten Einwegmaterialien wie Pipettenspitzen, Petrischalen, Caps etc. wurden von den Firmen Sarstedt, Greiner, Falcon, Peqlab, Eppendorff , Corning und Omnitip bezogen.

Enzyme

Die verwendeten Enzyme stammten von den Firmen Appligene, Biomol, Boehringer, Gibco-BRL, New England Biolabs,

MBI-Fermentas, Pharmacia, Promega und Stratagene.

3.3 Medien und Agarplatten

Die Medien bzw. Agarplatten werden nach den aufgeführten Rezepten zusammengestellt und autoklaviert (20 min bei 120°C). Nach dem Abkühlen auf unter 50°C werden Zusätze wie Antibiotika zugesetzt und die Agarplatten gegossen.

LB-Medium (Luria Broth):	Select-Peptone	10.0 g
	Yeast-Extrakt	5.0 g
	NaCL	10.0 g

Ad 1000 ml H₂O_{dest}

LB-Agar: Auf 1000 ml LB-Medium werden 15.0 g Agar zugesetzt.

Blutagar: Auf 975ml LB – Agar werden nach abkühlen auf ca. 40°C werden 25ml Schafblut zugesetzt und gut vermischt.

Eigelbagar: Auf 979ml LB – Agar werden nach dem Abkühlen auf ca. 40°C werden 10ml 50% Glucose (steril), 1ml Thiamin-Lösung (5mg/ml, steril) und 3 Eigelb zugesetzt und gut vermischt.

BHI-Medium (Brain-Heart-Infusion): BHI 37.0 g

TSB

Ad 1000 ml H_2O_{dest}

BHI-Agar: Auf 1000 ml BHI-Medium werden 15.0 g Agar zugesetzt.

TSB-Medium (Tryptic Soy Broth):

30.0 g

Ad 1000 ml H₂O_{dest}

HTM-Medium (Hodgson & Tsai Medium):	H ₂ O	60 ml
	Solution 1a	20 ml
	Solution 1b	2 ml
	Solution B	10 ml
	Riboflavin	1 ml
	Thiamine & Biotin	1 ml
	Thioctic acid	1 ml
	Glucose 20%	5 ml
	Total	100 ml
Solution 1a: (sterilfiltrieren)		
	MOPS	10.46 g (0.5 M)
	KH2PO4	0.328 g
	Na ₂ HPO ₄ .7H ₂ O	1.548 g
	Total	100 ml

Solution 1b: (sterilfiltrieren)

Von jeder der nachfolgenden Aminosäuren 125 mg in insgesamt 25 ml $\rm H_2O_{dest}$ lösen.

Alanin, Arginin, Asparagin, Asparaginsäure, Cystein, Gluthamin, Gluthaminsäure, Glycin, Histidin, Isoleucin, Leucin, Lysin, Methionin, Phenylalanin, Prolin, Serin, Threonin, Tryptophan und Valin.

pН

7.4

Solution B: (autoklavieren)

	MgSO4.7H2O	0.418 g	
		Ad 100 ml H ₂ O _{dest}	
<u>Riboflavin Stock</u> : (sterilfiltrieren)			
	Ameisensäure	0.46 ml	
	Riboflavin	0.5 mg	
		Ad 10 ml H ₂ O _{dest}	

Thiamine & Biotin Stock: (sterilfiltrieren)

	Thiamin		1.0 mg
	Biotin		0.5 mg
			Ad 10 ml H ₂ O _{dest}
Thioctic Acid Stock: (sterilfiltrieren)			
	Thioctic Acid		0.5 mg
	EtOH		1.0 ml
			Ad 1000 ml H ₂ O _{dest}
<u>Glucose 20 %</u> : (autoklavieren)			
	Glucose	120.0 g	
		Ad 600 n	nl H2Odest

3.4 Antibiotika

Antibiotika werden entweder in Ethanol und/oder H2Odest gelöst. Antibiotika, die ausschließlich in H2Odest

aufgenommen werden, müssen sterilfiltriert werden. Die Antibiotikalösungen werden bei –20°C gelagert.

Antibiotikum	Stammlösung	Endkonzentration	Selektion
Erythromycin	100 mg / ml in 100% EtOH	300 μg / ml 10 μg / ml	E. coli L. monocytogenes
Gentamycin	50 mg / ml, gebrauchsfertige Lösung	50 bzw. 100 μg / ml	in Zellkulturversuchen
Penicillin G	10 mg / ml in H2Odest	5 μg / ml	L. monocytogenes

3.5 Bakterienstämme

Stamm	Beschreibung/ Genotyp	Referenz
L. monocytogenes Sv 1/2a EGD-e	Wildtyp	Acc. No. ATCC BAA-679
		schwach hämolytisch (Hly+/-); pathogen Herkunft: Hahn Berlin
		für das " <i>Listeria</i> genome sequencing project" verwendeter Ausgangs-stamm
		Genomsequenz verfügbar unter: <u>http://genolist.pasteur.fr/ListiList</u>
L. monocytogenes $\Delta gshF$	Deletion des Gens Lmo2770	Shubha Gopal, Würzburg 2005
L. monocytogenes	Insertion in <i>lmo</i> 2770 (<i>gshF</i>) an	Shubha Gopal, S. Gopal et al. 2005
InsgshF466	Position 466	
L. monocytogenes ALmo0799	Deletion des Gens <i>Lmo0799</i>	Diese Arbeit

<i>E. coli</i> DH5α	F-, Φ80/ΔlacZΔM15,	Laboratories (BRL), Bethesda
	Δ(lacZYA-argF) U169, recA1,	Research
	endA1,hsdR17 (rK-, mK+),	
	supE44, λ-, tfi-1, gyrA, relA1	
E. coli TG1	repA+, KanR, sup E ∆hsd-5 thi ∆ (lac-	Herkunft E. Maguin, "Institut
	proAB);	National de la Recherche
	F´[traD36 pro AB+ lac1q lacZ ∆M15]	Agronomique", Frankreich

3.6 Plasmide

pG+Host4:

Mutageneseplasmid (4,6 kb); pGK12-Derivat; besitzt gram-positiven, temperatursensitiven Origin aus pVE6002 (bei 28 °C aktiv, über 37,5 °C inaktiv); verfügt über eine "broad-host-range" in gram-positiven Bakterien, kann aber auch in *E. coli* replizieren Multiple cloning site aus pBluescript, Em^R aus pE194 Herkunft/ Referenz: E. Maguin, "Institut Nationale de la Recherche Agronomique", France; Biswas et al. 1993

 phps9:
 Shuttle-Vektor, pUC – ori , P59 Promotor aus Lactococcus lactis ssp. cremoris. Em^R, Cm^R, Referenz: Haima et al, 1987

3.7 Oligonukleotide

Bezeichnung	Sequenz (5' -> 3')	Zielgen
0799 A Pstl	CCT TCC GCA CTG CAG ACA TAC G	Imo0799 (LBlue)
0799 B	GTA AAA AGT GAC TAT TGG AGC CAA GTG CTT C	Imo0799 (LBlue)
0799 C	GAA GCA CTT GGC TCC AAT AGT CAC TTT TTA C	Imo0799 (LBlue)
0799 chk DO	GTC GTC GGC GTC TTT GTT TCG	Imo0799 (LBlue)
0799 chk up	CGG ACA GCT AAT CAC TTC ATC TTT ATC	Imo0799 (LBlue)
0799 D EcoRI	CCC ATA ATA ACG GAA TTC GGG CTA TTT TGC	Imo0799 (LBlue)
0799 DO F - HindIII	CAG CAC AAT CAA AGA AGC TTT AC	Imo0799 (LBlue)
0799 DO R - Pst1	CAG CCA ATC TGC AGG AAA TTG	Imo0799 (LBlue)
0799 komp UP Eco	CGT TAT AAT CGA TAG TGA ATT CTT CTT C	Imo0799 (LBlue)
0799 qRT - F	TAC ATG GAT CAC GGC AAA GA	Imo0799 (LBlue)
0799 qRT - R	GCG AAA TTC CGG TGA TGA TA	Imo0799 (LBlue)
0799 UP F - BamH1	CCA ATG TTT GAT TGG ATC CCG TCA TC	Imo0799 (LBlue)
0799 UP R - HindIII	CGA ATT GTG GAT AAG CTT TCA TCT GC	Imo0799 (LBlue)
1433 do	TCG CCA GGC TTA ATT TCA GT	gor/gshR2
1433 up	TCA TCT CTG GTC ATG CAA GC	gor/gshR2
bsh - F	TTG CTG CTG TGA TGG AAA AC	bsh
bsh - R	ATT CAA AGG GGG TCA CAT TG	bsh
cheR - F	ACGCAAATGAAACGTCGAAT	cheR
cheR - R	ATTGCGATTACGGAAAAACG	cheR
flaA - F	CGTGAACAATCAATCCATCG	flaA
flaA - R	ACATTTGCGGTGTTTGGTTT	flaA
GshRD2	TCT CTA TGA CGA TTG ATA ACG TG	gshR
GshRU2	TTG CAC TGG AAA AGG GGA CAT GC	gshR
inIA-gRT-F	TGT GAC TGG CGC TTT AAT TG	inIA
inIA-gRT-R	TCC AAT AGT GAC AGG TTG GCT A	inIA
inlB-qRT-F	AAA AGC AAG ATT TCA TGG GAG A	inlB
inlB-gRT-R	TCG GAG GTT TAG GTG CAG TT	inlB
Imo0222 3	TCC AAG GAA AAG CGT CCC	hslO
Imo0222_5	TTA GTT AAA GCG TTA GCC TAC G	hslO
Imo0279_3	GAA CTA GCT ACG TTT GCA AT	nrdD
Imo0279_5	ATG CAA TGA CCA ACT GTT GT	nrdD
Imo0280_3	GTT GTA GCA GCC TTC GCA	nrdG
Imo0280_5	GTG TGA ATG GAA GTC GAA TGA A	nrdG
Imo0906_3	GTA ACC ATA AGC ATC TGC GTA T	gor/gshR
Imo0906_5	ACG GAG CAA AGT GTG CAT TAA	gor/gshR
Imo0906-BamH1	CTA CGC GGA TCC AAA ATG TC	gor/gshR
Imo0906-EcoR1	GAT GGC GAA TTC TAT TAA CAA AGA	gor/gshR
Imo0906-Xho1-fo	CAA CAG GAC TCG AGG AAT TTG	gor/gshR
Imo0906-Xho1-rev	GCC ACC AAT CTC GAG ATA ATC	gor/gshR
Imo0983 3	AAA GTG GGC TGG CAT CTT	qpo
Imo0983_5	TTG AAA TTC TCG GTT TCC CAT G	gpo
Lmo0983-F	TTG AAA TTC TCG GTT TCC CAT G	gpx
Lmo0983-R	AAA GTG GGC TGG CAT CTT	gpx
lmo1233_3	TTC ATC TAC GTC CAT TTT GAC G	trxA
lmo1233_5	TTG AAC AAG AAA CTA GCG AAG G	trxA
Lmo1233-F	TTG AAC AAG AAA CTA GCG AAG G	trxA
Lmo1233-R	TTC ATC TAC GTC CAT TTT GAC G	trxA
lmo1433_3	AAC TAA TGC CGC TAC GAA ATC	gor/gshR2
lmo1433_5	CTC CCA GAT TCT GTC GTT TTT	gor/gshR2
Imo1433-BamH1	AAT TGA TGG ATT AGG TGT TG	gor/gshR2
Imo1433-EcoR1	CCC GTC TGA ATT CAC TTT CA	gor/gshR2

40

Imo1433-EcoR1-2 Imo1433-Sal Imo1439 3 Imo1439 5 Imo1445 3 lmo1445 5 Imo1562 3 Imo1562 5 Imo1583 3 Imo1583 5 lmo1604_3 lmo1604_5 lmo1609_3 Imo1609_5 Imo1683_3 lmo1683_5 Imo1860_3 Imo1860_5 Imo1878_3 lmo1878_5 Imo1903 3 Imo1903_5 Imo1956_3 Imo1956_5 lmo2072_3 Imo2072_5 Imo2152_3 lmo2152_5 lmo2153_3 Imo2153_5 lmo2154_3 Imo2154 5 Imo2155 3 lmo2155 5 Imo2191 3 Imo2191 5 Imo2199 3 Imo2199 5 Imo2200 3 Imo2200 5 Imo2344 3 Imo2344 5 Imo2424 3 Imo2424 5 Imo2478 3 Imo2478 5 Imo2770 DO Xba1 Lmo2770 UP BamH1 Imo2770_3 Imo2770_5 Imo2785_3 Imo2785_5 Imo2830_3 Imo2830_5 M14 mcp - F mcp - R opuCA-qRT-F opuCA-qRT-R opuCB-qRT-F opuCB-qRT-R opuCC-qRT-F opuCC-qRT-R opuCD-aRT-F opuCD-gRT-R plsV-BamH1 plsV-EcoR1 RedR rpoB-qRT-F rpoB-qRT-F rpoB-qRT-R rpoB-aRT-R Sod-C Sod-N

TGA GGG AGG AAT TCG CAT AA CTT TCT TGT CGA CCG TCA CA TTC GAT ATA TTC AGG ACG ACG TCT ACA GCT AAC CAA GAT TCT C CTT ATT CCC GGG AAA TCA TCT AGC AAC TGA AGC ACT CAT GAA A AAA CCG CGT CGC ACT TTT TGA TGG CAA TTC CAT CCG A CAACCGTATTATCTAAATTGCTTGC GAA GAA GTA ACA TTG CAC GAT TAT G AAG CAC CAA TTA TGC GTG CAT ATA GAA GAC GAC AAA TGG ACG TTC ACC GTC TTC AAA CGC TAA A ATT CAT CGA ACC AGT AAT GCC T TGC TAC ACT CAT GTT AGG GGC AGT AGA TGT CTT GAA ATA ACT GGA CGA TAC GAA TCG AGG ACA TAC AGA AGC AAT CCA A ATA TGG GAC GGA TCT ACG GAA ACT GGA TAA GGA CGA AT TTG GTC TGG TTG TCT TTT TT TTT TAA CTA CCA TTT CCA CC AGC TCC AAT GTT CTA TAA ACG G ATT AAC ACC ACA GCG AGA AG CTG GCT AAG TGT TTT GCT GAA A CGA GTA TCA TCT GCG GAA TTA GAA GTT TTC GCC CAT TTC TTC TAA T GGG GAA GAA TTA GTA TAT GTA GAC TTG CCA TTC GGT CGA CAG CAT GGA CAG TCG ACT ACG AGT TCT TTA TAC GCA CGG T GGC TAA CCA AAA AGA ACA AC TTT TTC ACG GAA AGT ACC TTC G ATT TTC ATG GAA GCT GTA GAG C TCT TCA TTG TAC CCA ACT TG CTC GTT CAA AAA CGT TCC AA CGC AAA TAG TTG TTC AGG GTT T CAA CAG TCA TTA ATA CAG GTG G TCT GTT AGG CGA ATA TAA ACG C AAC TTG GAA AGA GGT TGG CTT T CGT ATT TGG CTT GGA GAA CT ATG GCT AAT GTC GTC GTT TG GCC GTT GCA TCA TGT AAT TGA T AGA CGG GAT TCA GAC GGA TAC TCA GCT CCA AAT TGT TTC G TTA ATG ATT GAA CGC GGT GTA C GGA AGA GTA ATC TAG AAT CCC AGC TAC CCA TCT TTT TAG TTA GGA TCG AAT TTT C TTC GCG AAG GTA GAT GAT TTC AAA AAC ACA GAT CCT TTG CGC AGC GTC ATT GTT CCT ACG T TGA AAA TGG AGA CTA TCC TG TCA AAT TTC TGA GCT AAT GCG C ACT TAA TTT TTG GGC AGA GTG G TTG TAA AAC GAC GGC CAG TGA AGTGGCGACCTATCATACCG ACGTTGTCGCTCGAAGATTT AAA CTG GCA GAC CGT ATC GT TCG CTT CGA TTA AGC GAT CT TTC AAG AAA ACG GCC ATA ACT T TAC TTT TGG TGA ACG CGT GA CAG ATT TAG TTG GTC CGC TAG G CGT ATT CGC AAA ACC GTA AGA CTT ACG GAG TTA TCT TCG CAG C ATT GCT AGT GCC GGA ATT GT AAT AAG CTT GGC TGC AGG TC GTT TTC CCA GTC ACG ACG TT ACA GGA AAC AGC TAT GAC CAT CAC CCT GAA GCT CCA TTT GT CAC CCT GAA GCT CCA TTT GT ACA CGA CGA ACC CAG ATT TC ACA CGA CGA ACC CAG ATT TC GTT CCC AAA CAT CTA AGC C CTT ATG ATG CTT TGG AGC CG

aor/ashR2 gor/gshR2 sod sod zurR zurR nrdR nrdR tpx tpx prx prx ytp ytp perR perR msrA msrA mntR mntR lmo1903 lmo1903 fur fur rex rex trxL trxL nrdl nrdl nrdB nrdB nrdA nrdA spx spx ohrA ohrA ohrR ohrR grx grx yusE yusE trxB trxB gshF gshF gshF gshF kat kat lmo2830 lmo2830 pGhost4 mcp mcp opuCA opuCA opuCB opuCB opuCC opuCC opuCD opuCD plsV101 plsV101 pGhost4 rpoB rpoB rpoB rpoB sod sod

3.8 Größen- und Molekulargewichtsstandards

GeneRuler[™] 1kb DNA Ladder (Fermentas):

3.9 Verwendete Kits

Nucleobond® AX Purification of Plasmids (MACHEREY-NAGEL)

QIAquick[™] PCR Purification Kit (QIAGEN)

RNA - Mini - Kit (Seqlab)

PerfeCTa[™] SYBR Green FastMix[™] ROX (Quanta Biosciences)

TURBO DNA-free Kit (AMBION)

4. Methoden

Soweit nicht anders angegeben, sind die hier angeführten Methoden aus dem Laborhandbuch Sambrook et al., 1989 übernommen. Die genannten Puffer und Lösungen werden, wenn nicht anders angegeben, autoklaviert (20 min bei 120°C).

4.1 Arbeiten mit Bakterien

4.1.1 Wachstumskurven

Übernachtkulturen werden 1:20 in BHI verdünnt und unter Schütteln bei 37°C inkubiert. In regelmäßigen Abständen wird von der Bakterienkultur ein Aliquot entnommen und die optische Dichte im Photometer bei einer Wellenlänge von 600 nm in Vergleich zu einem Leerwert (nur Medium) bestimmt. Diese Werte werden notiert und graphisch als Wachstumskurve dargestellt. Genauere Ergebnisse erhält man bei Verwendung eines Klettphotometers und Klettkolben, da hierbei das Volumen über die gesamte Versuchsdauer konstant bleibt. Auch hierbei wird die optische Dichte gegen einen Leerwert (nur Medium) gemessen. Vor dem Animpfen sollten die Klettkolben einzeln durchgemessen werden, da Klettkolben anders als Einweg – Küvetten das Licht unterschiedlich brechen.

4.1.2 Wachstum unter Stressbedingungen

Zur Untersuchung des Bakterienwachstums unter Stressbedingungen werden Übernachtkulturen, wie unter 4.1.1 beschrieben, verdünnt und dem Kulturmedium verschiedene Stressreagenzien (Ethanol, NaCl) zugesetzt. Die Kulturen werden wie oben beschrieben inkubiert und die optische Dichte in regelmäßigen Zeitabständen bestimmt. Hieraus resultiert ebenfalls eine Wachstumskurve. Als Kontrolle dient jeweils der Wildtypstamm *L. monocytogenes* EGD-e WT.

Für die Transkriptionsanalysen unter Stressbedingungen wird anders verfahren. Bakterien verfügen über zahlreiche Möglichkeiten, sich an Stress anzupassen, und es dauert nicht lange, bis alternative Stoffwechselwege aktiviert sind. Deshalb zieht man die Kulturen bis zur logarithmischen Wachstumsphase (OD600 = 1) unter Idealbedingungen (BHI Medium, 37°C, Schüttler 190 rpm) und setzt sie dann für kurze Zeit (10 min) dem Stressfaktor aus. In der vorliegenden Arbeit wurden die Auswirkungen von Salzstress und Hitzeschock auf verschiedene Gene auf Transkriptionsebene untersucht.

Um Salzstress zu erzeugen, werden den OD600 = 1 Kulturen für 10 min 3M NaCl bis zu einer Endkonzentration von 0,3M zugesetzt und anschließend abzentrifugiert (4°C, 5000 rpm, 10 min), der Überstand abgenommen und sofort in flüssigem Stickstoff eingefroren. Danach wird die RNA, wie unter 4.2.13 beschrieben, isoliert.

Für Versuche unter verschiedenen Lichtbedingungen werden Übernachtkulturen in Alufolie lichtdicht verpackt und am nächsten Tag unter Verwendung eines Nachtsichtgerätes sowie einer definierten Hintergrundbeleuchtung (λ =850nm) in Kolben angeimpft, die ebenfalls lichtdicht in Alufolie eingepackt sind. Bei diesen Versuchen ist peinlich genau darauf zu achten, dass die Kulturen unter keinen Umständen belichtet werden, außer es ist Teil des Versuches.

Zur RNA-Isolierung: Haben die Kulturen eine OD600 von 0,9 erreicht, werden sie wahlweise mit 3M NaCl versetzt bis die Endkonzentration von 0,3M erreicht ist. Je 20 ml der Kulturen werden dann auf zwei mittlere Zellkulturflaschen aufgeteilt und für 10 min bei 37°C inkubiert, wovon eine belichtet wird (blau 455nm oder rot 625nm) während die andere in Alufolie verpackt wird. Anschliessend werden die Proben für 10 min bei 4°C mit 5100 rpm abzentrifugiert, der Überstand wird sauber abgenommen und die Proben in flüssigem Stickstoff eingefroren. Die Isolierung der RNA erfolgt wie unter 4.2.13 beschrieben.

Für Disk Diffusion Assays: 200µl der ÜNK werden im Dunklen mit Hilfe eines Nachtsichtgerätes und definierter Hintergrundbeleuchtung mittels Glasperlen auf BHI Agar ausplattiert. Anschliessend kann der Versuch, wie unter 4.1.3 beschrieben, durchgeführt werden, wobei das Auflegen ebenfalls im Dunklen geschieht, und jede Platte im Duplikat präpariert wird, wovon eine in Alufolie gewickelt, die andere für die Dauer der Inkubation belichtet wird.

4.1.3 Disk Diffusion Assay

Als schnellere Alternative zu Wachstumskurven unter Stressbedingungen lassen sich auch Diffusionsversuche durchführen. Dabei werden die zu testenden Agenzien in bekannter Konzentration und in verschiedenen Volumina auf sogenannte Blank Disks, kleine Scheiben aus Filterpapier, aufgetropft. Diese werden auf zuvor ausplattierte Agarplatten aufgelegt und über Nacht unter den im Ergebnisteil genannten Bedingungen inkubiert. Danach wird die Größe der Hemmhöfe gemessen.

4.1.4 Motilitäts-Untersuchung

Die Flagellen-vermittelte Motilität von *L. monocytogenes* EGD-e Wildtyp und verschiedenen Mutanten wurde mit einer Modifikation der von Shetron-Rama et al. [141] beschriebenen Methode untersucht.

Die jeweiligen Bakterienstämme werden über Nacht in BHI-Medium bei 37°C angezogen, dann 1:30 mit BHI verdünnt und bei 37°C bis zu einer OD_{600} von ~ 0,6 weiter kultiviert.

Aliquots von 2.0 μ l werden auf die Oberfläche von BHI-Weichagar-Platten (0.3 % Agar) aufgetragen, die Platten werden mit Parafilm abdichtet und für 24 Std. bei den im Ergebnisteil beschriebenen Temperatur- und Belichtungsbedingungen inkubiert.

Wachstum bzw. Ausbreitung der Bakterien werden fotografisch dokumentiert und der Durchmesser der Wachstumsbzw. Ausbreitungszonen ausgemessen. Die Initial aufgetragenen 2 μ l Bakterienkultur nahmen einen Durchmesser von ca. 3 mm ein.

4.1.5 Lecitinase und Hämolysin Assays

Die Lecitinase und Hämolysin Aktivität von *L. monocytogenes* EGD-e Wildtyp und verschiedenen Mutanten wurde durch punktförmiges Animpfen mit einer Impfnadel in spezielle Eigelb oder Blutplatten (siehe 3.3) untersucht. Von einer BHI – Platte wird eine Einzelkolonie mit einer Impfnadel abgenommen und senkrecht in eine Blut- oder Eigelbplatte eingestochen. Die Platte wird über Nacht bei 37°C inkubiert.

Wachstum und Lecitinase (weisse Höfe um die Kolonien) bzw. Hämolysin (klare Lysis-Höfe um die Kolonien) Aktivität werden fotografisch dokumentiert.

4.1.6 Überlebensassay mit Gallenextrakt

Die Toleranz von *L. monocytogenes* EGD-e Wildtyp und verschiedenen Mutanten gegenüber Gallensalzen wurde mit einer leichten Modifikation der von Watson et al. [142] beschriebenen Methode untersucht.

Der jeweilige Stamm wird über Nacht in BHI-Medium bei 37°C im Dunklen angezogen. Die Kultur wird geteilt und entweder weiter Dunkel gehalten oder für 10min mit blauem Licht (λ =455nm) belichtet. Danach wird 1:20 mit frischem BHI verdünnt dem wahlweise 1% (w/v) porcines Gallenextrakt zugesetzt ist. So ergeben sich aus einer Übernachtkultur vier Kulturen, die bei 37°C für 30 min bei 190rpm inkubiert werden: Belichtet in BHI + Gallenextrakt, Unbelichtet in BHI + Gallenextrakt, Belichtet in BHI und Unbelichtet in BHI. Nach der Inkubation werden die Kulturen bis 10⁻⁵ in PBS verdünnt und je drei mal drei Verünnungsstufen auf BHI–Agar ausplattiert. Nach inkubation über Nacht bei 37°C werden die Platten ausgezählt und die CFUs bestimmt.

4.2 Molekulargenetische Methoden

4.2.1 Isolierung chromosomaler DNA aus Listeria

- Es werden 2 ml einer Übernachtkultur verwendet
- Nach einem Zentrifugationsschritt von 5 min, 15.000g bei RT wird der Überstand verworfen und das Pellet in 1 ml 10mM Tris/HCl (pH 8.0) resuspendiert
- Es erfolgt die Zugabe von 2 mg/ml Lysozym und 20 U/ml Mutanolysin
- Der Ansatz wird 30 min bei 37°C inkubiert und anschließend 5 min, 15.000g, RT abzentrifugiert
- Der Überstand wird verworfen und das Pellet vorsichtig in 750µl DNAzol® aufgenommen (Pipettenspitze abschneiden!)
- Nach Zentrifugation (2 min, 15.000 g, RT) wird der Überstand in ein neues Cap überführt, mit ½ Vol. 100 % EtOH p. a. versetzt und durch Invertieren gemischt (DNA fällt aus)
- Mit einer Impföse wird der DNA-Faden herausgefischt und in 500µl 75% EtOH gewaschen
- Nach Zentrifugation (10 min, 15.000 g, 4°C) wird der Überstand verworfen und das Pellet zweimal mit 700µl 75% EtOH p.a. gewaschen
- Das Pellet wird an der Luft getrocknet, anschließend in 200µl 8mM NaOH aufgenommen und im Kühlschrank aufbewahrt

4.2.2 Isolierung von Plasmid-DNA

Isolierung von Plasmid-DNA aus E. coli mit dem Nucleobond AX-Midiprep-Kit (Macherey-Nagel):

• Es werden 100 ml Bakterien-Übernachtkultur verwendet. Die Durchführung erfolgte genau nach dem Protokoll des Herstellers.

4.2.3 Herstellung von Bakterien-Zelllysat

- In einem Eppendorffcap werden 50 µl steriles H₂O_{dest} vorgelegt
- Es wird etwas Bakterienmaterial von einer Agarplatte abgenommen und resuspendiert dieses in dem vorgelegten Volumen an H₂O_{dest}
- Die Lösung wird 10 min bei 110°C aufgekocht und anschließend bei 15000 rpm, 5 min bei RT abzentrifugiert
- Der Überstand kann als Template für eine PCR-Reaktion verwendet werden

4.2.4 Reinigung von DNA

Reinigung von PCR-Produkten

Die PCR-Produkte werden unter Verwendung des QIAquick PCR Purification Kits (Qiagen) gereinigt.

- das PCR-Produkt wird mit dem 5fachen Volumen an PB-Puffer versetzt und der gesamte Ansatz auf eine QIAquick spin Säule geladen
- nach einem Zentrifugationsschritt von 30 s (15000 rpm, RT) wird der Durchfluss verworfen (das gewünschte PCR-Produkt bindet an die Säule)
- die Säule wird mit 2x 0,75 ml PE-Puffer gewaschen und nach kurzem Abzentrifugieren (30 s, 15000 rpm, RT) in ein neues Sammelcap gegeben
- das PCR-Produkt wird mit 30-50 μ l H₂O_{dest} aus der Säule eluiert; dabei erhöht sich die Ausbeute, wenn vor dem Zentrifugieren 5 min auf Eis inkubiert wird
- man fängt das PCR-Produkt in einem Eppendorffcap auf, die Lagerung erfolgt bei -20°C

4.2.5 Konzentrationsbestimmung chromosomaler DNA

Nukleinsäuren besitzen ein Absorptionsmaximum bei 260 nm. Deshalb können durch Messung der optischen Dichte am Nanodrop Photometer DNA-Konzentration und –Reinheit bestimmt werden.

- die Extinktion bei 260, 280 und 320 nm Wellenlänge wird gemessen
- die Berechnung der Konzentration erfolgt im Gerät nach folgender Formel:

DNA-Konzentration $[\mu g/\mu l]$ = $(OD_{260nm}-OD_{320nm}) \times 5 (dsDNA)$ = $(OD_{260nm}-OD_{320nm}) \times 3 (ssDNA)$

Der Quotient aus OD_{260nm}/OD_{280nm} gibt Auskunft über die Reinheit und sollte zwischen 1,5 und 2,0 liegen.

4.2.6 Elektrophoretische Auftrennung von DNA

Aufgrund ihrer elektrischen Ladung lassen sich DNA-Fragmente unterschiedlicher Größe mittels Gelelektrophorese auftrennen. Um DNA-Fragmente sichtbar zu machen, wird dem Agarosegel Ethidiumbromid zugesetzt, welches in doppelsträngige DNA interkaliert. Unter einer UV-Lampe lassen sich so fluoreszierende DNA-Fragmente in Form von Banden sichtbar machen.

Das Wanderungsverhalten der DNA hängt von folgenden Faktoren ab:

- Größe der dsDNA: Je größer das DNA-Fragment ist, desto langsamer wandert es in Richtung der Anode
- Konformation der dsDNA: Relaxierte DNA wandert langsamer als die ringförmige superhelikale Form
- Agarosegelkonzentration: Je nach Agarosegelkonzentration können 0,2 bis 20 kb große DNA-Fragmente aufgetrennt werden. Ein 1% iges Agarosegel eignet sich für die Auftrennung von DNA-Fragmenten mit einer Länge von 400 bis 1000 bp
- Stromstärke und Puffer

50 x TAE-Puffer:	Tris	242,0 g
	Eisessig	57,1 ml
	EDTA 0,5 M pH 8,0	100 ml
		ad 1000 ml H_2O_{dest}
10 x Probenpuffer:	Bromphenolblau	0,2%
	EDTA	0,2 M
	Glycerin	50,0%

Herstellung eines 1%igen Agarosegels

- als Laufpuffer dient 1 x TAE (Tris-Acetat-EDTA) oder 1 x TBE (Tris-Borat-EDTA)
- 1,0 g Agarose wird in 100 ml Laufpuffer kurz aufgekocht, bis sich die Agarose vollständig gelöst hat
- nach dem Abkühlen auf ca. 50°C gießt man das Gel in eine Gelkammer mit eingesetztem Kamm und lässt es 30 – 45 min bei RT auspolymerisieren
- die DNA-Proben werden mit 1/10 Vol. Probenpuffer gemischt und in die Geltaschen pipettiert
- die elektrophoretische Auftrennung erfolgt bei 160 V für ca. 40 min
- das Gel wird in einem Ethidiumbromid-TAE-Bad (500 ml TAE + 50 μl EtBr (10mg/ml)) für ca. 15 min gefärbt, anschließend unter der UV-Lampe betrachtet und die aufgetrennten DNA-Fragmente fotografiert

4.2.7 Polymerase Chain Reaction (PCR)

4.2.7.1 Klassische PCR

Die Polymerase-Ketten-Reaktion (PCR) stellt ein automatisiertes Verfahren zur Vervielfältigung eines beliebigen DNA-Abschnitts zwischen zwei Oligonukleotid-Primern, die gegenläufig an komplementäre Stränge gebunden sind, dar. Voraussetzung ist also, dass ca. 20 bp aus den Endbereichen der zu amplifizierenden DNA bekannt sind. Es werden hitzestabile Polymerasen, wie z. B. die Taq-Polymerase aus *Thermus aquaticus*, die Tfl-Polymerase aus *Thermus flavus* oder die Tth-Polymerase aus *Thermus thermophilus*, verwendet. DNA-Polymerasen benötigen einen kurzen doppelsträngigen Bereich mit freiem 3'OH-Ende, um komplementäre DNA-Sequenzen zu synthetisieren. Entstandene DNA-Synthese-Produkte werden bei 94°C denaturiert und nach Hybridisierung der Oligonukleotide (i.d.R. bei 48-60°C) amplifiziert. Die Zyklen aus Denaturierung, Hybridisierung ("Annealing") und DNA-Synthese ("Elongation") werden wiederholt, wodurch eine exponentielle Vermehrung der Zielsequenz möglich wird. Als Template kann gereinigte chromosomale DNA, isolierte Plasmid-DNA oder Bakterien-Zelllysat dienen.

Die Schritte im Einzelnen:

- **Denaturierung:** Doppelsträngige Ausgangs-DNA (dsDNA) wird durch Erhitzen auf 94°C in einzelsträngige DNA (ssDNA) überführt
- Annealing: Hybridisierung eines bzw. mehrerer (i. d. R. zwei) für die Zielsequenz spezifischer Oligonukleotid-Primer an komplementäre Sequenzen; die in diesem Schritt gewählten Temperaturen hängen von der Schmelztemperatur und der Homologie der Oligonukleotide ab und liegen normalerweise zwischen 48°C und 60°C
- **Elongation:** Polymerisation (Vervielfältigung) der zwischen den Oligonukleotid-primern liegenden DNA-Sequenz an den 3'OH-Enden der Primer durch die thermo-stabile Polymerase bei 72°C; die Elongationszeit sollte ca. 1 min pro 1 kb DNA betragen

Standard-PCR-Ansatz

	ad 50 µl H2O _{dest}
Template-DNA	2,0 µl (100-500 ng)
Taq-Polymerase (5U/μl)	0,1 µl
Primer II (100 µM)	0,4 μl
Primer I (100 μM)	0,4 μl
dNTPs 20 mM	0,5 μl
10x Polymerase-Puffer	5,0 µl

Je nach verwendeten Primern und Template variieren die am Thermocycler eingegebenen Bedingungen. Als Standardbedingungen, unter denen meist positive Ergebnisse erzielt werden, gelten folgende:

Standard-PCR-Bedingungen:

3 min	94°C	first step delay
30 Zyklen:		
30 s	94°C	Denaturierung
30 s	55°C	Annealing
1 min	72°C	Elongation
3 min	72°C	last step delay

Für die Auswahl der Oligonukleotide gelten folgende Kriterien:

- GC-Gehalt ca. 50%
- ideale Länge 18-28 bp
- palindromische Sequenzen vermeiden
- Homologien der Primer zueinander vermeiden
- G oder C am 3'OH-Ende zur Stabilisierung des in der PCR entstehenden Hybrids, jedoch längere GC-Abfolge am 3'OH-Ende vermeiden

Die Schmelztemperatur (Tm) der Primer lässt sich nach folgender Faustformel berechnen:

$Tm = (A+T) \times 2^{\circ}C + (G+C) \times 4^{\circ}C$

Diese Formel gilt nur für Primer mit Längen zwischen 18 und 24 Nukleotiden. Die optimale Annealing-Temperatur liegt ca. 2 - 5°C unter dem niedrigeren beider berechneter Schmelzpunkte. Sollten unspezifische PCR-Produkte amplifiziert werden, erhöht man am besten die Annealing-Temperatur. Fehlt das Produkt, wird die Temperatur erniedrigt. Geht man von einer sehr geringen Template-Konzentration aus oder möchte eine größere Produktausbeute erzielen, kann die Anzahl der Zyklen angehoben werden.

4.2.7.2 Real-time (quantitative) PCR

Die quantitative Real-time PCR stellt die modernste Methode der Quantifizierung von Nucleinsäuren dar. Hierbei werden nicht absolute Mengen an PCR-Produkt gemessen, sondern man nutzt die Kinetik der PCR-Reaktion aus: in den frühen Zyklen treten meist nur nicht-detektierbare Mengen an PCR-Produkt auf, und auch die späten Zyklen (sog. Plateauphase) sind weitgehend uninformativ. Die quantitative Information in einer PCR-Reaktion wird von den wenigen Zyklen geliefert, in denen die DNA-Menge logarithmisch vom Background bis in die Plateauphase hinein ansteigt. Oft fallen nur 4 oder 5 von 40 Zyklen in diesen "log-linearen" Teil der Kurve. Man kann die Information aus diesen wenigen Zyklen dadurch erhalten, dass man die Probe in Aliquots unterteilt und nach jedem Zyklus eines

dieser Aliquots entnimmt. Über eine gelelektrophoretische Auftrennung wird der Anteil an PCR-Produkt mittels Fluoreszenzfärbung des Gels quantifiziert. Man verwendet zum Färben des Gels entweder Ethidiumbromid oder SYBRGREEN™. Beide Farbstoffe interkalieren in doppelsträngige DNA und können so PCR-Produkte sichtbar machen. Die Helligkeit des Fluoreszenzsignals wird gemessen und die Fluoreszenz gegen die Zyklenzahl in einem Diagramm aufgetragen. Durch die Mitführung von Standardwerten mit bekannten DNA-Konzentrationen können DNA-Mengen anhand der gemessenen Fluoreszenzsignale quantifiziert werden.

Die Quantifizierung mit Hilfe eines LightCyclers[™] vereinfacht diesen Prozess. Die Fluoreszenz der Proben wird kontinuierlich nach jedem Zyklus gemessen. Man verwendet SYBRGREEN[™], einen Farbstoff, der vermutlich in die kleine Furche der DNA bindet. SYBRGREEN[™] besitzt im nicht gebundenen Zustand eine relativ niedrige Fluoreszenz.

Abb. 4-1: Der Reaktionsansatz enthält dsDNA, Primer und SYBRGREEN™

Abb. 4-2: SYBRGREEN™ interkaliert in dsDNA und emittiert Licht

Wenn die DNA-Menge in der PCR-Reaktion ansteigt, steigt proportional auch die Fluoreszenz des Farbstoffs.

Abb. 4-3: Die DNA-Polymerase synthetisiert DNA, es interkaliert mehr SYBRGREEN™ und die Fluoreszenz steigt

SYBRGREEN[™] ist einfach zu verwenden, da es keine Sequenzspezifität besitzt, dadurch aber auch an jedes doppelsträngige Produkt bindet, egal, ob es sich dabei um das gewünschte Produkt oder ein unspezifisches Nebenprodukt handelt. Um ausschließen zu können, dass die Fluoreszenz aus unspezifischen Nebenprodukten resultiert, wird im Anschluss an die PCR-Reaktion eine Schmelzkurve durchgeführt. Ist die Schmelztemperatur des gewünschten Produkts erreicht, kann eine starke Verringerung des Fluoreszenzlevels detektiert werden. Unspezifische Produkte schmelzen meist bei niedrigeren Temperaturen als die längeren spezifischen Produkte. Dies ermöglicht es, Fluoreszenzsignale aus unspezifischen Produkten aus der Messung auszuschließen.

Reaktionsansatz für Real-time PCR

dH ₂ O	8,5 µl
PerfeCTa™ SYBR Green FastMix™ ROX	12,5 μl
Primer I (10pM)	0,75 µl
Primer II (10pM)	0,75 µl
Template	2 ,5 µl
Total	25 μl

Standardbedingungen für Real-time PCR bei Verwendung eines Fast-Mix:

1 min	95°C	Enzyme Activation
40 Zyklen:		
3 s	95°C	Denaturation
30 s	60°C	Annealing/ Extension
15 s	95°C	Schmelzkurve
1 min	60°C	bis 95°C
15 s	60°C +0,5°C/Clycle	

4.2.8 Restriktionsverdau von DNA

Restriktionsendonukleasen sind Bestandteil des Restriktions- / Modifikations-Systems, das Bakterien vor der Aufnahme artfremder DNA schützt, gleichzeitig aber genetische Variabilität durch die Aufnahme fremder DNA in niedriger Frequenz gewährleistet. Die verwendeten TypII-Restriktionsendonukleasen ermöglichen sequenzspezifisches Schneiden von dsDNA. Es werden – abhängig vom verwendeten Restriktionsenzym – unterschiedliche Puffer- und Temperaturbedingungen (37°C und 30°C) benötigt.

1 Unit Restriktionsenzym spaltet bei optimalen Reaktionsbedingungen 1µg DNA pro Stunde. Es wird zwischen dem partiellen Verdau, bei dem geringe Enzymmengen eingesetzt werden, und dem vollständigen Verdau, bei dem ein Überschuss an Restriktionsenzym eingesetzt wird, unterschieden.

Verdau von Plasmid-DNA / PCR-Fragmenten (Standardansatz)

Plasmid-DNA	1 μg
10x-Puffer	4 μl
Restriktionsenzym	1-2µl (10-20 Units)
	ad 20 µl H2Odest

Normalerweise wird der Verdau 1 bis 2 h bei 37°C inkubiert. Die Kontrolle des Verdaus erfolgt bei Plasmid-DNA über elektrophoretische Auftrennung auf einem Agarosegel (\rightarrow 4.2.6).

4.2.9 Ligation von DNA-Fragmenten

Zur Herstellung rekombinanter DNA-Moleküle wird neben den Restriktionsenzymen noch die T4-DNA-Ligase benötigt. Dieses Enzym fügt unter ATP-Verbrauch freie 3'OH-Enden mit 5'-Phosphatenden von dsDNA zusammen. Es können sowohl überhängende ("sticky-ends") als auch glatte ("blunt-ends") Enden miteinander verbunden (ligiert) werden. Rekombinante DNA-Moleküle werden häufig durch Einfügen eines speziellen DNA-Fragments (Insert) in einen Klonierungsvektor gewonnen. PCR-Produkte können entweder "sticky-end" durch über Primer eingeführte Schnittstellen mit Vektoren ligiert werden oder "blunt-end" nach Blunting / Kinasing in einen glatt geschnittenen Vektor inseriert werden.

Ligation kohäsiver Enden

geschnittener Vektor	0,05 μg
geschnittenes Insert	0,45 μg
10 x T4-DNA-Ligase-Puffer	2 µl
T4-DNA-Ligase (5 U / μl)	1 µl
-	ad 10 µl H2Osteril

Die Ligationsansätze werden für 1h bei 22°C inkubiert und anschließend für 10 min bei 65° bzw. 80°C inaktiviert. Vom Ansatz werden 5 – 10 µl für eine Transformation in E. coli (\rightarrow 4.2.10.2) eingesetzt.

Ligation kohäsiver Enden mit der T4-DNA-Ligase (Promega)

-	
T4-DNA-Ligase (3U/μl)	1 µl
2 x Rapid Ligation buffer	5 µl
geschnittenes Insert	0,08 µg
geschnittener Vektor	0,02 μg

ad 10 µl H₂O_{steril}

4.2.10 Transformation in E. coli

4.2.10.1 Herstellung chemisch kompetenter E. coli-Zellen

Lösung I:	MgSO ₄	10 mM (steril filtriert)
	Glucose	0,2 % (steril filtriert)
-		ad 100 ml LB-Medium
Lösung II:	MgSO ₄	12 mM (steril filtriert)
	Glycerin	36,0 % (steril filtriert)
	PEG MW 7500	12,0 % (steril filtriert)
-		ad 100 ml LB-Medium

- eine Übernachtkultur von *E. coli* wird 1:100 in Lösung I verdünnt und im Schüttler bei 37°C bis zur mittleren logarithmischen Phase (OD₆₀₀= 0,8) angezogen
- die Zellen werden in Greinerröhrchen umgefüllt, 10 min auf Eis gestellt und anschließend abzentrifugiert (6000 rpm, 4°C, 10 min)
- das entstandene Pellet wird in 0,5 ml Lösung I resuspendiert, es werden 2,5 ml Lösung II dazugegeben und Aliquots von je 100 μl bei -80°C eingefroren

4.2.10.2 Transformation von Plasmid-DNA in E. coli

- der gesamte Ligationsansatz wird zu 100 μl kompetenter *E. coli*-Zellen gegeben und 30 bis 60 min auf Eis inkubiert
- der Ansatz wird anschließend 90 s in einen 42°C warmen Heizblock gestellt und danach 2 min auf Eis inkubiert
- es werden 800 µl LB-Medium zugegeben und der Ansatz bei 37°C im Schüttler inkubiert; zur Ausprägung von Antibiotikaresistenzen, wie z. B. Ampicillin, wird normalerweise 1 h lang inkubiert, bei Erythromycin dagegen 4 bis 5 h
- auf einer vorgewärmten LB-Selektionsplatte werden je 100 μl des Transformationsansatzes ausplattiert und die Platten über Nacht bei 37°C im Brutschrank inkubiert
- die gewachsenen Klone werden in Selektivmedium gepickt und mittels PCR getestet

4.2.10.3 Herstellung elektrokompetenter E. coli-Zellen

- 1 ml einer *E. coli*-Übernachtkultur wird mit 40 ml LB-Medium verdünnt und bei 37°C im Schüttler bis zu einer optischen Dichte von OD600 = 0,6 angezogen
- der Ansatz wird 30 min auf Eis inkubiert und anschließend auf 2x 20 ml aufgeteilt
- die Zellen werden bei 5200 rpm, 4°C, 10 min abzentrifugiert
- das Pellet wird mit 20 ml kaltem H2Odest gewaschen und erneut abzentrifugiert (5200 rpm, 4°C, 10 min)
- der Überstand wird abgenommen, die beiden Pellets vereinigt und nochmals in 10 ml kaltem H2Odest gewaschen
- nach einem weiteren Zentrifugationsschritt (5200 rpm, 4°C, 10 min) wird der Überstand abgenommen und das Pellet in 200 μl 10% Glycerin gelöst
- der Ansatz wird in 50 μl-Portionen aliquotiert und bei -80°C aufbewahrt

4.2.10.4 Elektrotransformation von E. coli

- 1-2 µl des Ligationsansatzes werden zu 50 µl elektrokompetenter *E. coli* Zellen gegeben
- der Ansatz wird 10 min auf Eis inkubiert
- der Puls erfolgt bei 2,5 kV; 25 μF; 200 Ohm
- sofort nach dem Puls werden 500 μl kaltes Medium dazugegeben, resuspendiert und anschließend je nach Antibiotikaresistenz bei 37°C im Schüttler inkubiert (1h bei Ampicillin, o.ä.; 4 – 6 h bei Erythromycin)
- auf einer vorgewärmten LB-Selektionsplatte werden je 100 µl des Transformationsansatzes ausplattiert und die Platten über Nacht bei 37°C im Brutschrank inkubiert

4.2.11 Elektroporation in Listerien (Park und Stewart, 1990)

Herstellung kompetenter Listerien

SMHEM-Medium (3,5x):	Saccharose	952 mM
	MgCl ₂	3,5 mM
	HEPES	7 mM

- eine Listerien-Übernachtkultur wird 1:20 mit BHI-Medium verdünnt
- nach Inkubation bei 37°C bis 90 Klett erfolgt Zugabe von Penicillin G (5 μg/ml)
- es wird erneut bei 37°C bis 120 Klett inkubiert
- die Bakterienzellen werden abzentrifugiert (6000 rpm, 4°C, 10 min) und anschließend zweimal in 1/10 Vol. 3,5 x SMHEM-Medium gewaschen
- nach dem letzten Waschschritt wird das Bakterienpellet in 1/100 Vol. SMHEM resuspendiert und dann in 200 μl-Portionen bei -80°C eingefroren

Elektroporation in kompetente Listerien

- 100 μl kompetente Listerien werden mit 4 μg Plasmid-DNA in einer vorgekühlten Elektroporationsküvette gemischt und 1 min auf Eis inkubiert
- die Elektroporation erfolgt bei 100 Ohm, 25 μF Kondensator und 10 kV (entspricht 2 kV bei 0,2 cm-Küvette)
- anschließend wird 1 ml BHI-Medium zupipettiert
- die Zwischenzüchtung erfolgt 1 h bis 5 h bei 30°C (je nach Antibiotikaresistenz: Ampicillin: 1 h, Erythromycin: 6 h)
- die Zellen werden auf den entsprechenden Selektionsplatten ausplattiert und für 1-3 Tage bei 30°C inkubiert

4.2.12 Mutagenese durch homologe Rekombination

(Wuenscher et al., 1991; Brehm, 1996)

Die homologe Rekombination zwischen einem rekombinanten Plasmid und dem bakteriellen Chromosom ist eine gängige Methode, um mit Hilfe eines temperatursensitiven (ts) Vektors Deletions- oder Insertionsmutanten herzustellen. Ein solcher Vektor kann aufgrund seines ts-Origins in gram+ Bakterien (Listerien) nur bei 25-30°C, kaum aber bei 37°C und überhaupt nicht bei 42°C replizieren. Das listerielle Chromosom kann jedoch auch noch bei 37°C und darüber replizieren. Wurden zuvor in den Vektor zum Genom der zu mutierenden Bakterien homologe Bereiche inseriert, so kann zufällig, über homologe Rekombination, eine Integration des rekombinanten Plasmids (Vektor plus Insert) ins bakterielle Chromosom Da das "freie", d.h. extrachromosomale, rekombinante Plasmid bei 37°C oder darüber nicht replizieren kann, können homologe Rekombinanten über Anzucht bei 37°C (bzw. 42°C) auf Antibiotika-haltigen Medien selektioniert werden: Nur wenn das rekombinante ts-Plasmid (mit Antibiotikaresistenz-Marker) ins Chromosom integriert ist, wird seine Replikation (zusammen mit dem Chromosom) auch bei höherer Temperatur und unter Antibiotika-Selektion möglich.

Für die homologe Rekombination werden mindestens 100 bp des Bereichs, der mutiert werden soll, benötigt. Je größer dieser Bereich ist, umso wahrscheinlicher tritt das Ereignis der homologen Rekombination auf. Optimal ist eine Größe zwischen 0,5 und 2,5 kb, wobei Größe und Lage des ausgewählten homologen Bereichs von der Größe des jeweiligen Gens und der Position funktionaler Bereiche des Genprodukts (N- oder C-terminal) abhängen.

Konstruktion von Insertionsmutanten

Zur Herstellung von Insertionsmutanten ist nur ein Rekombinationsereignis notwendig.

 das Mutageneseplasmid wird in *L. monocytogenes* über Elektroporation (--> 4.11) transformiert, auf BHI-Platten mit 10 μg/ml Erythromycin ausplattiert und bei 30°C inkubiert

- nach 2-4 Tagen wird mit einem, über PCR auf Anwesenheit des Plasmids überprüften Klon eine Übernachtkultur (BHI, 10 μg/ml Erythromycin) angelegt und bei 30°C inkubiert
- anschließend wird die ÜNK auf vorgewärmte BHI-Platten (10 μ g/ml Erythromycin) in den Verdünnungsstufen 10⁻¹ bis 10⁻⁷ ausplattiert und bei 42°C inkubiert
- die Integration des Mutageneseplasmids in das bakterielle Chromosom wird mittels PCR (--> 4.8.1) überprüft, unter Verwendung eines Oligonucleotidprimers, welcher "oberhalb" des klonierten Bereichs ans Chrosomosom bindet und eines Vektor-spezifischen Primers.

Konstruktion von Deletionsmutanten

Zur Erzielung von Deletionsmutanten werden in das ts-Mutagenese-Plasmid zwei zum Chromosom homologe DNA-Fragmente inseriert (sog. "upstream"- und "downstream"-Fragmente, zwischen denen der letztlich zu deletierende Genomabschnitt fehlt). Bei der ersten Rekombination (experimentelles Vorgehen siehe oben) inseriert das Plasmidkonstrukt entweder über den "upstream"- oder den "downstream"-homologen Bereich. Nach Selektion und Charakterisierung eines primären Insertionsklons wird dieser dann bei permissiver (d.h. 30°C) Temperatur ohne Antibiotikum subkultiviert. Dabei kann es zufällig zu einem zweiten Rekombinationsereignis kommen – entweder (häufig) zur Exzission des Mutagenesekonstrukts, und damit zur Reversion zum Wildtyp, oder zur gewünschten Deletion. In beiden Fällen enthalten die Bakterien zunächst ein rekombinantes Plasmid (urprüngliches Mutagenese-Konstrukt oder wildtypisches Insert) mit entsprechendem Antibiotika-Resistenzgen. Da die Subkultivierung jedoch in Antibiotika-freien Medien erfolgt, sind Bakterien, welche das Plasmid spontan verloren haben, aufgrund energetischer Gründe (geringerer DNA-Replikationsaufwand) gegenüber den Plasmid-haltigen (oder noch die chromosomale Insertion tragenden) im Vorteil und reichern sich an. Unter den Antibiotika-sensitiven Klonen müssen dann die gewünschten Deletionsmutanten zunächst über PCR identifiziert und dann durch DNA-Sequenzierung verifiziert werden.

4.2.13 Herstellung von Glycerinkulturen

Zur langfristigen Lagerung von Bakterien werden diese bei -80°C eingefroren. Hierfür wird ein spezielles Medium benötigt:

Einfriermedium: 50% Glycerin

2,9% NaCl

eine Bakterien-ÜNK wird 1:1 mit dem Einfriermedium gemischt und 1,5 ml dieser Lösung bei -80°C eingefroren

4.2.14 Isolierung von RNA aus Listerien

RNA Mini Kit (Seqlab)

- eine Bakterien-Übernachtkultur wird 1:20 verdünnt und bei den erforderlichen Bedingungen bis zu einer OD600 = 1,0 angezogen
- 10 ml der Kultur werden abzentrifugiert (6000 rpm, 10 min, 4°C)
- Das Pellet wird über Nacht bei -80°C gelagert
- Am nächsten Tag wird das Pellet auf Eis aufgetaut, mit 650µl Lysispuffer RL versetzt und auf eine lysing matrix B ("Shreddertube") gegeben.
- Man shreddert in der Fast Prep FP 120 drei mal mit einer Geschwindigkeit von 6,5 für 45 s. Zwischen den Läufen kühlt man die Proben für je 1 min auf Eis.
- Es wird für 2 min bei 18000g zentrifugiert
- Der Überstand wird auf eine Filterkartusche D gegeben und für 2 min bei 10000g zentrifugiert
- Der Durchlauf wird mit 400µl 70% EtOH versetzt und auf eine Filterkartusche R gegeben.
- Wiederum wird für 2 min bei 10000g zentrifugiert
- Man wäscht mit 500µl Waschpuffer HS, zentrifugiert für 2 min bei 10000g und wäscht erneut mit 700µl Waschpuffer LS; anschliessend wird wiederum für 2 min bei 10000g zentrifugiert.
- Abschliessend wird nochmals für 3 min bei 10000g trockenzentrifugiert und die Filterkartusche auf ein 1,5 ml Cap überführt.

- Man eluiert die RNA mit 50µl RNAse freiem Wasser und zentrifugiert diese nach 5 min inkubation bei RT mit 6000g für 3 min aus der Kartusche.
- die Lagerung der RNA erfolgt bei -80°C

4.2.15 Konzentrationsbestimmung von RNA

Die Konzentrationsbestimmung für RNA erfolgt wie die für DNA (→ 4.2.5), aber mit folgender Umrechnungsformel:

RNA-Konzentration $[\mu g/\mu l]$ = $(OD_{260nm}-OD_{320nm}) \times 4$

Der Quotient OD_{260nm}/OD_{280nm} gibt hier ebenfalls den Reinheitsgrad an und sollte zwischen 1,5 und 2,0 liegen.

4.2.16 Reverse Transkription und PCR mit cDNA

Der Ausdruck cDNA steht für komplementäre DNA, d. h. der Ursprung der DNA liegt nicht in der DNA selbst, sondern in der RNA. Retroviren, wie z. B. Vogel-Leukämie-Virus, Maus-Leukämie-Virus oder HIV, enthalten ein RNA-Genom, das mit Hilfe der virus-kodierten reversen Transkriptase (RNA - abhängige DNA-Polymerase) in einer eukaryontischen Zelle in dsDNA umgeschrieben werden kann.

Die reverse Transkriptase dient als nützliches Werkzeug in der molekularen Genetik, da nicht nur virale RNA-Moleküle, sondern jede beliebige RNA unter geeigneten Bedingungen von der reversen Transkriptase als Matrize akzeptiert wird. Auf diesem Weg ist es möglich, DNA-Kopien von mRNA-Molekülen herzustellen.

Die für die cDNA-Synthese verwendete SuperscriptTM II (Invitrogen) ist ein Produkt des *pol*-Gens des Moloney-Murine-Leukämie-Virus und besitzt zwei Aktivitäten:

- eine 5'-3'- Primer abhängige Polymeraseaktivität
- eine durch Punktmutation reduzierte 3'-5'-RNaseH-Aktivität, die den RNA-Anteil des RNA-DNA-Hybrids abbaut. Durch Zugabe des RNase-Inhibitors wird diese Aktivität zusätzlich gehemmt

Reverse Transkription mit Superscript[™] II (Invitrogen)

Gesamt-RNA	5,0 μg
Random Primers (3 µg/µl; Invitrogen)	9,0 μg
RNase free water	ad 18 μl

• Inkubation für 5 min bei 70°C mit anschließendem Transfer der Proben auf Eis

Herstellung des Mastermix für die reverse Transkription (1x-Ansatz):

Ribonuclease Inhibitor (RNase Out™; Invitrogen)	1,0 μl	
dATP (20mM)	1,0 µl	
dTTP (20mM)	1,0 µl	
dGTP (20mM)	1,0 µl	
dCTP (20mM)	1,0 µl	
DTT (100mM)	0,4 µl	
First strand buffer (5x)	8,0 µl	
Superscript TM II (Invitrogen)	1,0 µl	
RNase free water	ad 20 ul	

• Nach Zugabe von 20 μl Mastermix zur RNA-Probe folgt ein Inkubationsschritt von 10 min bei RT

- Die cDNA-Synthese erfolgt bei 42°C für 2 h
- Anschließend wird der Ansatz für 15 min bei 70°C inkubiert (Zerstörung der RNaseOut[™])
- Der Ansatz wird mit dem "PCR Purification Kit" (Qiagen) aufgereinigt und die entstandene cDNA in 40 μl EB-Puffer eluiert
- Die Lagerung der cDNA erfolgt bei -20°C

4.2.17 Reverse Transkription von RNA für Microarray-Experimente

Es werden 30 bis 40 μg Gesamt-RNA pro zu untersuchenden Stamm benötigt

Gesamt-RNA	30 – 40 μg
Random Primers (3 µg/µl; Invitrogen)	9,0 µg
RNase free water	ad 18 µl

• Inkubation für 5 Min. bei 70°C mit anschließendem Transfer der Proben auf Eis

Herstellung des Mastermix für die reverse Transkription (1x-Ansatz):

Ribonuclease Inhibitor (RNase OutTM; Invitrogen)	1,0 µl	
dATP (20mM)	1,0 μl	
dTTP (20mM)	1,0 μl	
dGTP (20mM)	1,0 μl	
dCTP (10mM)	0,8 μl	
DTT (100mM)	0,4 μl	
First strand buffer (5x)	8,0 μl	
SuperscriptTM II (Invitrogen)	1,0 µl	
RNase free water	ad 20 µl	

- Es werden 20 µl Mastermix und 2,0 µl CytoDye3 bzw. CytoDye5 (Amersham Biosciences) zugegeben und der Ansatz 10 Min. bei RT inkubiert
- Die cDNA-Synthese erfolgt bei 42°C für 2 h
- Anschließend werden die Ansätze für 15 min bei 70°C inkubiert (Zerstörung der RNaseOutTM)
- Die Ansätze werden kurz zentrifugiert und es werden je 2,0 µl RNase (Roche) zugegeben (Zerstörung der RNA)
- Nach einem Inkubationsschritt von 45 min bei 37°C werden die Ansätze mit dem "PCR Purification Kit" (Qiagen) aufgereinigt und die entstandene cDNA in 30 µl EB-Puffer eluiert
- Die mittels Microarray zu vergleichenden Ansätze werden vereinigt und in der Speedvac bei 45°C auf ein Gesamtvolumen von 30 µl reduziert
- Die markierte cDNA wird entweder direkt für Microarray-Experimente weiterverwendet oder bei -20°C eingefroren
- •

4.2.18 Gesamttranskriptionsprofilierung durch Microarray-Technologie

Zur Gesamttranskriptionsprofilierung werden Gesamtgenom-DNA-Microarrays verwendet, die 70mer Oligodesoxyribonukleotide aller open reading frames (ORFs) des *L. monocytogenes*-Genoms enthalten. Die Oligonukleotide wurden entsprechend der Herstellerangaben auf Epoxy-beschichtete Glas-Objektträger von Quantifoil gespottet (Dr. Chakraborty; Institut für Medizinische Mikrobiologie, Gießen, Deutschland bzw. Dr. Kneitz, Viologie, Uni Würzburg).

Insgesamt wurden 6 RNA-Proben für die Markierung und Hybridisierung der cDNA hergestellt. Es wurden jeweils gleiche Mengen der zu vergleichenden RNA-Proben (40 μ g) mittels Superscript IITM (Invitrogen, Germany) und den fluoreszenzmarkierten Nukleotiden Cy3-dCTP und Cy5-dCTP (Amersham Pharmacia, Germany) in cDNA umgeschrieben. Die beiden unterschiedlich markierten cDNA-Proben wurden vereinigt und auf dem Microarray hybridisiert. Das Scannen und die Auswertung der Microarrays erfolgte mit dem GenePix 4200 Scanner und der GenePixPro 6.1 Software (Axon Laboratories bzw. Molecular Devices, Sunnyvale, California, USA)

Waschen und Blocken der Microarray-Slides

- 1 x 5 Min. in Rinsing solution 1 (0,1% Triton-X 100) bei RT
- 2 x 2 Min. in Rinsing solution 2 (HCl solution; ~100µl konz. HCl in 1000ml H₂O_{dest}) bei RT
- 1 x 10 Min. in Rinsing solution 3 (100mM KCl) bei RT
- 1 x 1 Min. in H₂O_{dest} bei RT
- 1 x 15 Min. in 1 x QMT Blocking Solution (50mM Ethanolamin, 0,1% SDS in 0,1M Tris, pH9,0) bei 50°C
- 1 x 1 Min. in H₂O_{dest} bei RT
- Die Slides werden durch Zentrifugation (3 Min., 1600 rpm) getrocknet

Hybridisierung der markierten cDNA

- Die Cy3/Cy5-markierte cDNA wird mit 6,0 μl 20x SSC und 5,0 μl 1% SDS versetzt und 1 Min. bei 95°C inkubiert
- Der Ansatz wird auf den Microarray-Slide aufgetragen und mit einem Deckglas abgedeckt
- Der Slide wird in eine Hybridisierungskammer eingelegt, mit Alufolie eingepackt und im Wasserbad bei 50°C über Nacht inkubiert

Waschen der Microarray-Slides

Alle angegebenen Waschschritte werden bei Raumtemperatur durchgeführt.

- 1 x 10 Min. in Waschpuffer I (2x SSC + 0,2 % SDS)
- 1 x 10 Min. in Waschpuffer II (2x SSC)
- 1 x 10 Min. in Waschpuffer III (0,2x SSC)

Trocknen des Slides durch Zentrifugieren (3 Min., 1600 rpm)

4.3 Zellkultur

Eukaryotische Zellen werden in humider Atmosphäre in CO₂-Begasungsbrutschränken bei 37°C in speziellen Petrischalen oder Kulturflaschen gehalten. Die verwendeten Puffer und Medien werden stets auf 37°C vorgewärmt.

RPMI-Komplettmedium ohne Antibiotikum:

	FCS (fötales Kälberserum, hitzeinaktiviert)	
--	---	--

50 ml Ad 500 ml RPMI-Medium

10x PBS:

 NaCl
 80,0 g

 KCl
 2,0 g

 Na2HPO4
 11,5 g

 KH2PO4
 2,0 g

 Ad 1000 ml H2Odest

10x Ca²⁺/Mg²⁺:

 MgCl₂ x 6 H₂0
 1,0 g

 CaCl₂
 1,0 g

 Ad 1000 ml H₂O_{dest}

PBS + Ca^{2+/}Mg²⁺:

(nicht autoklavieren)

10 x PBS	100 ml	
$10 \text{x Ca}^{2+}/\text{Mg}^{2+}$	100 ml	
	ad 1000 ml H ₂ O _{dest}	

4.3.1 Herstellung von Bakterienaliquots

- eine Übernachtkultur des Bakterienstammes wird 1:25 verdünnt und bis zu einer optischen Dichte von 1,0 angezogen
- 20 ml der Zellen werden 10 Min. bei 4°C und 6000 rpm abzentrifugiert, mit 20 ml 1xPBS gewaschen und erneut zentrifugiert
- Das Zellpellet wird in 20 ml 1xPBS/Glycerin (5:1) resuspendiert, in 1ml-Portionen aliquotiert und bei -80°C eingefroren
- Am darauf folgenden Tag werden jeweils von dem ersten und letzten der aliquotierten Eppendorf-Caps Verdünnungsreihen hergestellt und je 100μl der Verdünnungsstufen 10⁻⁵ bis 10⁻⁷ auf BHI-Platten ausplattiert und diese über Nacht im 37°C-Brutschrank inkubiert
- Am nächsten Tag werden aus den Kolonien die Lebendzellzahlen bestimmt und der jeweilige Durchschnittswert aus den Verdünnungen des ersten und letzten Caps ermittelt und der Durchschnitt dieser beiden Werte gebildet, um mögliche Fehler durch ein Absetzen der Bakterien während des Aliquotierens für alle Aliquots heraus zu mitteln
- Mit den erhaltenen Bakterienzellzahlen / ml wird am Tag der Infektion des Infektionsmedium mit FCSfreiem Medium auf eine MOI von 10 (für Caco2-Zellen), respektive der ermittelten Zellzahl / Napf eingestellt.
- Dabei wird die entsprechende Konzentration auf ein Volumen an Infektionsmedium / Napf von 0,5 ml berechnet um eine Applikation der Bakterien in räumlicher Nöhe zu den Zellen zu ermöglichen

4.3.2. Auftauen und Einfrieren eukaryontischer Zellen

(Freshney, 1987)

Auftauen eukaryontischer Zellen

Die Lagerung eukaryontischer Zellen erfolgt in flüssigem Stickstoff (-196°C). Um Kristallbildung innerhalb und außerhalb des Cytoplasmas sowie Dehydratation zu vermeiden, werden üblicherweise 10% DMSO (Dimethylsulfoxid) zugesetzt.

Die in flüssigem Stickstoff gelagerten Zellen werden bei 37°C im Wasserbad aufgetaut und sofort in einer Flasche mit vorgewärmtem Kulturmedium ausgesäet

Nach 3-6 h wird überprüft, ob sich die Zellen bereits am Flaschenboden abgesetzt haben und wechselt anschließend das (noch DMSO-haltige) Medium

Einfrieren eukaryontischer Zellen

- Die Zellen werden zunächst durch Trypsinieren vom Flaschenboden abgelöst
- Man bestimmt die Zellzahl und stellt diese auf 2-4 x 10⁶ Zellen ein
- Auf Eis werden jeweils 900 μl Zellsuspension in einem Kryoröhrchen mit 100 μl DMSO versetzt und über Nacht bei -70°C eingefroren, bevor sie in flüssigem Stickstoff gelagert werden.

4.3.3 Subkultivierung eukaryontischer Zellen

Trypsinierung eukaryontischer Zellen

Eukaryontische Zellen bilden nach ca. 3-4 Tagen eine Monolayer und müssen auf neue Kulturflaschen gesplittet werden.

- Nach dem Absaugen des Mediums aus der Kulturflasche werden die Zellen 2 x mit 10 ml 1 x PBS ohne Ca²⁺/Mg²⁺ gewaschen. Hierdurch werden Ca²⁺- und Mg²⁺-Ionen aus dem Medium entfernt.
- Nach Zugabe von 1-2 ml Trypsin/EDTA-Lösung erfolgt Inkubation bei 37°C für ca. 5-10 Minuten.
- Das Ablösen der Zellen wird makroskopisch und mikroskopisch kontrolliert und die Zellen werden in frischem Medium gründlich resuspendiert.
- Die Zellen werden in einem Verhältnis von 1:4-1:10 in eine neue Kulturflasche ausgesät.
- Die Flaschen werden im Brutschrank bei 37°C inkubiert.

Bestimmung der Lebendzellzahl (LZZ)

Die Bestimmung der Lebendzellzahl erfolgt mit Hilfe der Fuchs-Rosenthal-Zählkammer:

- 20 µl der abtrypsinisierten Zellen werden in der Zählkammer im Phasenkontrast ausgezählt.
- Es werden 4 Großquadrate mit je 16 Kleinquadraten ausgezählt und das arithmetische Mittel bestimmt.
- Zur Bestimmung der Zellzahl, multipliziert man den erhaltenen Wert mit dem Kammerfaktor 5 x 10³:

Lebendzellzahl / ml = Mittelwert Großquadrate x 5000

4.3.4 Invasionsassay von *L.monocytogenes* in Caco-2 Enterozyten

- Es werden die *L. monocytogenes lmo0799*-Deletionsmutante und der Wildtyp in einer bestimmten MOI (multiplicity of infection; Verhältnis Bakterienzellen / ausgesäte Zellen) auf einen semikonfluenten Caco-2-Zellrasen gegeben. Die Bakterien induzieren ihre eigene Phagocytose in die Darmzellen.
- Nach 1h wird Gentamycin dazugegeben, wodurch alle extrazellulären Bakterien abgetötet werden. Lysiert man die Zellen nach 1h und bestimmt die Lebendzellzahl der Bakterien durch Ausplattieren, kann eine Aussage über die Invasivität der Bakterien getroffen werden. So kann der Beitrag dieses Gens zu Invasion durch Vergleich der Deletionsmutante mit dem Wildtyp bestimmt werden.

a) Aussäen der Zellen

• Für eine Infektion von Caco-2 Enterozyten wird 21-24 Std. vor Infektionsbeginn mit dem Aussäen der Zellen begonnen. Zunächst werden die Zellen durch Trypsinisierung vom Boden der Flasche gelöst und in einer Fuchs-Rosenthal-Zählkammer die Zelldichte bestimmt. Die Zellzahl wird dann auf 3 x 10⁵ Zellen/ml eingestellt. Anschließend wird aus dieser Suspension je 1 ml pro well in einer 24-well-Kulturplatte ausgesät.

b) Infektion von Caco2 Zellen

- Die Caco2-Zellen werden 2 x mit 1ml 1xPBS/Ca2+Mg2+ gewaschen und mit 500 μl Infektionsmedium infiziert
- Nach einer Infektionsdauer von 60 Min. bei 37°C und 5% CO2 wird das Medium abgenommen.
- Um verbleibende extrazelluläre Bakterien abzutöten wird nun ein Gentamycin-haltiges RPMI (100 μg/ml Gentamycin) zugegeben und die Ansätze für die weitere Zeit im Brutschrank inkubiert (→ "post infection": p.i.).
- Nach 1 Std. Inkubation wird der Messwert genommen, indem von allen Ansätzen das Medium abgenommen wird, und die Zellen durch Zugabe von 1ml sterilem ddH₂O lysiert werden.
- Nach mehrmaligem Resuspendieren wird das Lysat in ein Eppendorf-Cap überführt und 1 Min. lang gründlich gemischt.
- Von den Lysaten werden Verdünnungsreihen hergestellt und je 100 µl aus verschiedenen Verdünnungsstufen auf BHI-Platten ausplattiert
- Die BHI-Platten werden über Nacht bei 37°C inkubiert und am darauf folgenden Tag werden die colony forming units (CFU/ml) berechnet. Dies gibt Aufschluss über die Fähigkeit der einzelnen Stämme in Caco-2 Zellen einzudringen bzw. sich in diesen zu vermehren

CFU / ml = gezählte Kolonien x Verdünnungsstufe x 10

MOI = 10 x [Bakterienzahl / 0,5 ml Infektionsmedium] : [eukaryontische Zellen / Napf]

5. Ergebnisse

5.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM unter verschiedenen Bedingungen

Wie unter 2.4 beschrieben, standen bei Beginn der Arbeit vier Mutanten von *L. monocytogenes* EGD-e zur Verfügung, welche in Genen des Thiol:Disulfid Redox Metabolismus (im Folgenden als TDRM bezeichnet) oder in der oxidativen Stressantwort verändert waren: $\Delta gshF$ mit völligem Ausfall des Glutathion (GSH) Synthesewegs; ins gshF466 mit einer Insertion bei Position 466 der Glutathionsynthetase, diese Mutante synthetisiert noch das GSH-Vorläufermolekül γ -Glutamyl-Cystein; ins Gpo trägt eine Insertion in der Glutathionperoxidase und ins perR im Repressor des Peroxidregulons.

Um einen ersten Aufschluss über die physiologischen Eigenschaften der verschiedenen Mutanten zu erhalten und um die Ergebnisse von Gopal et al. [42] zu verifizieren, wurden von Jo-Ana Herweg unter meiner Anleitung im Rahmen eines F2-Praktikums Wachstumsversuche in verschiedenen Medien durchgeführt. Verwendet wurden die komplexen Medien BHI (Brain Heart Infusion Broth) und TSB (Tryptic Soy Broth) sowie das definierte Medium HTM, mit und ohne Zusatz von Cumen-Hydroperoxid (CHP). CHP ist ein organisches Peroxid, welches eine spezifische Art von oxidativem Stress bewirkt. Die genaue Durchführung der Experimente ist unter 4.1.1 beschrieben. Alle Wachstumsversuche wurden dreimal wiederholt, die gezeigten Kurven sind exemplarisch.

Wachstumskurve in BHI

Abb. 5.1: Wachstumskurve von *L. monocytogenes* EGD-e Wildtyp (EGD-e WT) und den oben genannten Mutanten in BHI. Eine Übernachtkultur wurde 1:20 in frischem Medium verdünnt und bei 37°C inkubiert, zu den angegebenen Zeiten wurde die Zelldichte durch Trübungsmessung in einem Klett-Meter bestimmt.

Wachstumskurve in BHI 13mM CHP

Abb. 5.2: Wachstumskurve von *L. monocytogenes* EGD-e Wildtyp (EGD-e WT) und den oben genannten Mutanten in BHI mit Zusatz von 13mM CHP. Eine Übernachtkultur wurde 1:20 in frischem Medium mit CHP verdünnt und bei 37°C inkubiert. Zu den angegebenen Zeiten wurde die Zelldichte durch Trübungsmessung in einem Klett-Meter bestimmt.

Abb. 5.3: Wachstumskurve von *L. monocytogenes* EGD-e Wildtyp (EGD-e WT) und den oben genannten Mutanten in TSB. Eine Übernachtkultur wurde 1:20 in frischem Medium verdünnt und bei 37°C inkubiert. Zu den angegebenen Zeiten wurde die Zelldichte durch Trübungsmessung in einem Klett-Meter bestimmt.

Abb. 5.4: Wachstumskurve der untersuchten Stämme in Tryptic Soy Broth mit zugesetztem CHP. Auch bei diesem Versuch wurden Übernachtkulturen 1:20 mit frischem Medium mit zugesetztem CHP verdünnt und bei 37°C inkubiert. Zu den angegebenen Zeiten wurde die Zelldichte durch Trübungsmessung in einem Klett-Meter bestimmt.

Abb. 5.5: Wachstum der untersuchten Stämme in definiertem Minmalmedium (Hodgson – Tsai – Medium). Wie zuvor wurden Übernachtkulturen 1:20 in frischem Medium verdünnt und bei 37°C inkubiert, und zu den angegebenen Zeiten wurde die Zelldichte durch Trübungsmessung in einem Klett-Meter bestimmt.

Wachstumskurve in TSB 13mM CHP

Wachstumskurve in HTM 13mM CHP

Abb. 5.6: Wachstum der untersuchten Stämme in definiertem Minimalmedium (Hodgson – Tsai – Medium). Wie zuvor wurden Übernachtkulturen 1:20 in frischem Medium mit zugesetztem CHP verdünnt und bei 37°C inkubiert, und zu den angegebenen Zeiten wurde die Zelldichte durch Trübungsmessung in einem Klett-Meter bestimmt.

Es wird deutlich, dass die Mutanten $\Delta gshF$, ins *Gpo* und ins *perR* keinen Wachstumsdefekt im Vergleich zum EGD-e WT zeigen. Lediglich die Ins *gshF*466 Mutante wächst unter allen untersuchten Bedingungen deutlich weniger dicht als der Wildtyp, wie bereits von Gopal et al. [42] gezeigt. Die Zugabe von 13mM CHP zeigt nur für die ins *perR* Mutante in BHI Medium einen Effekt; die Mutante wächst etwas schlechter als der Wildtyp oder die $\Delta gshF$ bzw. ins *Gpo* Mutante, jedoch besser als die ins *gshF*466 Mutante.

5.2. Gesamttranskriptomstudien mittels DNA-Microarray

5.2.1 Vergleich von *L. monocytogenes* EGD-e Wildtyp und *Agsh*F

Um die Auswirkung einer Deletion der Glutathionsynthetase näher zu untersuchen, wurden Microarray –Experimente zum Vergleich des Transkriptoms von *L. monocytogenes* EGD-e und *L. monocytogenes AgshF* durchgeführt. Dabei wurden in vier unabhängigen Experimenten Microarrays mit unterschiedlich markierter cDNA - wie unter 4.2.18 beschrieben - hybridisiert. Dabei wurden die Ansätze bei der Synthese der cDNA geteilt und jeweils mit Cy3-dCTP und Cy5-dCTP markiert, um Unterschiede bei der Markierung auszugleichen (Dyeswap). Die Arrays wurden mit der GenePix Pro Software von Axxon und dem Softwarepaket EMMA der Uni Bielefeld (LIMMA, https://emma.cebitec.uni-bielefeld.de/) ausgewertet. Nachstehend eine Liste der am stärksten signifikant regulierten Gene. Eine vollständige Liste aller Gene findet sich im Anhang auf der CD-ROM.

Für diese Liste wurden die Ausschlussgrenzen bei ≥5 bzw. ≤0,2 gewählt, d.h. die Expression eines Gens ist im Vergleich zum EGD-e WT in der $\Delta gshF$ -Mutante um das Fünf-fache erhöht bzw. erniedrigt. Auch wurden P-Werte, die über 0,05 liegen, ausgeschlossen. Das heißt, die gezeigten Regulationen sind hoch signifikant. Die Daten sind gemittelte Werte aus vier unabhängigen Experimenten.

Tabelle 5.1: Liste der Gene, deren Transkription in der Mutante $\Delta gshF$ gegenüber dem Wildtyp mindestens fünffach (fold change ≥ 5 oder $\leq 0,2$) verändert ist:

Gen nummer	Gennrodukt / Protein	P-Wert	fold change
lmo0013	A3-600 guinol ovidase subunit II	2 40F-18	5 507671984
lmo0013	AA2 600 quinoi oxidase subunit I	2,401-10	5,507071704
liii00014	AAS-600 quinto toxitase subunit i Ilalmoura – bioluvianita to quinel avidere ee2 600 chein W	2,03E-00 1,72E 17	5,004047055
liii00016	Unknown - inginy similar to Quinoi oxidase ads-out cliain iv	1,72E-17	3,3020030
100096	Unknown - similar to PTS system mannose-specific - factor IIAB	1,38E-24	0,045632124
Imo0097	Unknown - similar to PTS system mannose-specific - factor IIC	7,25E-22	0,052918107
Im00098	Unknown - similar to PTS system mannose-specific - factor IID	6,3/E-23	0,075925608
Im00099	Unknown	4,86E-20	0,103467438
Imo0115	Unknown - similar to Antigen D	4,86E-13	0,186337592
lmo0116	Unknown - similar to Antigen C	1,43E-14	0,172400727
Imo0117	Antigen B	1,87E-10	0,141002388
lmo0118	Antigen A	3,80E-14	0,116060366
lmo0119	Unknown	1,27E-12	0,122378521
lmo0120	Unknown	1,40E-14	0,150682437
lmo0121	Unknown - similar to bacteriophage minor tail proteins	4,07E-12	0,17723424
lmo0122	Unknown - similar to phage proteins	8,85E-13	0,143283798
lmo0123	Unknown - similar to protein gp18 from Bacteriophage A118	7,37E-12	0,172431478
lmo0135	Unknown - similar to oligopeptide ABC transport system substrate-binding proteins	2,42E-11	11,73572481
lmo0136	Unknown - similar to oligopeptide ABC transporter - permease protein	3,00E-21	7,885056662
lmo0137	Unknown - similar to oligopeptide ABC transporter - permease protein	3,12E-20	6,411964431
lmo0152	Unknown - similar to oligopeptide ABC transporter-binding protein	1,47E-13	7,040264022
lmo0201	Phosphatidylinositol-specific phospholipase c	1,55E-16	0,153325147
lmo0202	Listeriolysin O precursor	1.18E-15	0.148089108
lmo0204	Actin-assembly inducing protein precursor	7.91E-20	0.072908019
lmo0205	Phospholipase C	2.35E-17	0.093728959
lmo0206	Inknown	2 99E-22	0 118434126
lmo0278	Inknown - similar to sugar ABC transporter - ATP-hinding protein	2,55E-15	0.093770546
lmo0327	Inknown - similar to cell surface proteins (I PXTG motif)	1 46F-21	0.087091366
Imo0328		2 97E-09	0 103744007
Imo0354	Unknown - similar to fatty-acid-CoA ligase	179E-10	0,153314647
Imo0255	Unknown - similar to laty-actu-corangese	2 2 4 E 10	0,133314047
lino0333	Julia de la constancia de	3,24E=19	0,003790420
11100390	Unknown - similar to phosphoti ansier ase system enzyme inA	4,105-12	0,137023343
100399	Unknown - similar to iructose-specific prosphotransferase enzyme fib	9,51E-11	0,108503193
Im00412	Unknown	4,03E-18	0,123039516
Imo0433	Internalin A	1,75E-21	0,168529184
lmo0434	Internalin B	1,39E-22	0,181277394
lmo0450	Unknown - similar to unknown proteins	1,94E-17	0,196255009
lmo0469	Unknown	1,49E-13	7,484208577
lmo0474	Unknown	6,00E-11	5,190481957
lmo0475	Unknown	3,14E-11	5,213405353
lmo0485	Unknown	7,11E-06	7,874811499
lmo0490	Unknown - similar to shikimate 5-dehydrogenase	8,22E-14	0,12357237
lmo0560	Unknown - similar to NADP-specific glutamate dehydrogenase	7,57E-21	5,06069762
lmo0597	Unknown - similar to transcription regulator CRP/FNR family	2,04E-08	5,2266209
lmo0598	Unknown - similar to proteins involved in biotin metabolism (BioY)	7.82E-09	5.049874087
lmo0609	Unknown - similar to E. coli phage shock protein E	3.71E-16	7.007676279
lmo0641	Unknown - similar to heavy metal-transporting ATPase	5.77E-24	0.057991555
lmo0642	Unknown	1.18E-12	0.108152542
lmo0656	Inknown - conserved hypothetical protein	475E-18	5 764665026
lmo0728	Inknown - similar to riboflavin kinase / FAD synthase	5.87F-13	5 942722573
lmo0788	Inknown	843F-20	0 171179118
Imo0804	Inknown	2 68E-14	5 049820366
Imc0905		2,001-14	5,047020300 E 2020026E0
lmo0011	Unknown similar to conhanic anhydrogo	2,100-11	14624244
liii00011 lmo0022	Unknown - similar to tar boint annyui ase	3,72E-22	14,034244
11100622	Unknown - similar to transcriptional regulators	1,196-15	0,031/1119/
100903	Unknown - conserved nypotnetical protein	1,34E-20	9,813289755
Im00912	Unknown - similar to transporters (formate)	4,55E-22	0,141887555
Imo0918	Unknown - similar to transcription antiterminator BgIG family	1,63E-08	7,412064432
Imo0977	Unknown - similar to B. subtilis YjcH protein	2,36E-16	6,068202446
lmo0998	Unknown - similar to hypothetical protein	8,77E-12	5,326375265
lmo1254	Unknown - similar to alpha - alpha-phosphotrehalase	6,23E-12	0,10807607
lmo1414	Unknown - similar to Acetyl-CoA:acetyltransferase	2,23E-10	5,113699757
lmo1439	Superoxide dismutase	2,30E-23	7,666901109
lmo1515	Unknown - similar to unknown protein	3,81E-16	6,082392302
Imo1523	Unknown - similar to (p)ppGpp synthetase	3,27E-12	5,109227454
Imo1588	Unknown - highly similar to N-acetylornithine aminotransferase	2,77E-13	0,193925979
lmo1634	Unknown - similar to Alcohol-acetaldehyde dehydrogenase	2,19E-24	0,002335886
lmo1683	Unknown - similar to transcription regulators (Fur family) - PerR in B. subtilis	5,93E-18	5,201541151
lmo1717	Unknown - similar to hypothetical proteins	1,98E-20	0,13549344
lmo1730	Unknown - similar to sugar ABC transporter binding protein	3,06E-12	0,127254624
lmo1945	Unknown - similar to unknown protein	4,09E-05	15,81843459
lmo2057	Unknown - highly similar to heme A farnesyltransferase	9,57E-18	6,522320188
lmo2062	Unknown - similar to copper export proteins	4,88E-16	10,47431697
lmo2176	Unknown - similar to transcriptional regulator (tetR family)	2.93E-17	12.71692636
lmo2212	Unknown - similar to uroporphyrinogen III decarboxylase	4.26E-21	6.173512683
lmo2352	Unknown - similar to LysR family transcription regulator	4.08E-07	8.071058796
lmo2389	Unknown - similar to NADH dehydrogenase	4 90E-13	5 290451713
lmo2393	Unknown - similar to B. subtilis YuzD protein	1.18E-12	5.754977726
lmo2397	Unknown - similar to NifU protein	4.06E-11	5.218785501
lmo2409	Unknown	115E-16	0 146107265
lmo2457	Unknown - highly similar to triose phoenbate isomerase	3 56F-19	0 152959700
lmo2459	Unknown - highly similar to phosphalucerate binace	1.87F-17	0,102000/00
Imo2450	Unknown - highly similar to glyceraldahyda 3-nhosphoto dahydrogonaco	1,0/L-1/ 11/F-21	0,1712274
11102439 hm o 2479	onknown - mgmy sinnar to givteraidenyde 5-phosphate denydrogenase	1,146-41	0,104303/0/
111102478 hmo2627	I moreuoxin i eudotase	0,/1E-15	0,005349245
1110203/ hmo2646	Unknown - conserveu npoprotein	7,UZE-10 6 07E 11	0,1300/3413
11102040	Ulikilowii Uniwawa similarta maatinina amidala la	0,07E-11	0,098654919
Imo2647	Unknown - similar to creatinine amidohydrolase	8,60E-12	0,148666101
Imo2648	Unknown - similar to Phosphotriesterase	1,59E-10	0,108485114
Imo2649	Unknown - similar to hypothetical PTS enzyme IIC component	1,83E-07	0,184030519
Imo2650	Unknown - similar to hypothetical PTS enzyme IIB component	3,28E-18	0,06214829
Imo2651	Unknown - similar to mannitol-specific PTS enzyme IIA component	8,08E-18	0,111768469
lmo2669	Unknown	6,50E-20	0,146894242
Imo2844	Unknown - similar to unknown proteins	8,75E-07	5,078816556

Die Datenbank KEGG (Kyoto Encyclopedia of Genes and Genomes; URL: http://www.genome.jp/kegg/) enthält unter anderem grafische Darstellungen aller bekannten Stoffwechselwege. Mittels der Software KegArray (URL: <u>http://www.genome.jp/download/</u>) können die Ergebnisse von Microarray-Analysen auf diese grafische Darstellung abgebildet ("gemappt") werden.

Werden die Werte der obigen Tabelle mittels KegArray auf die KEGG Datenbank gemappt, ergibt sich folgendes Bild im Überblick:

Abb. 5.7: Übersicht der Kegg-Pathways mit regulierten Genen beim Vergleich Wildtyp gegen $\Delta gshF$

Dabei stehen rote Farbtöne für herunterregulierte Stoffwechselwege bzw. Gene in diesen Stoffwechselwegen und grüne Farbtöne für heraufregulierte. Die "Stärke" der Farbe korrespondiert zum Fold-change Wert in obiger Liste. Von den 92 Genen in obiger Liste sind 41 herauf- und 51 herunterreguliert. Diese verteilen sich auf folgende KEGG– Pathways (Stoffwechselwege), die jeweils regulierten Gene sind entsprechend farbcodiert:

lmo02060: Phosphotransferase system (PTS) - Listeria monocytogenes EGD-e (8; lmo0096-98, 0398, 0399, 2649-51)

lmo00051: Fructose and mannose metabolism - Listeria monocytogenes EGD-e (7; lmo0096-98, 0398, 0399, 2457, 2651)

lmo00190: Oxidative phosphorylation - Listeria monocytogenes EGD-e (6; lmo0013, 0014, 0016, 0355, 2057, 2389)

lmo02010: ABC transporters - Listeria monocytogenes EGD-e (6; lmo0135-37, 0152, 0278, 1730)

lmo00010: Glycolysis / Gluconeogenesis - Listeria monocytogenes EGD-e (4; lmo1634, 2457 - 59)

lmo00520: Amino sugar and nucleotide sugar metabolism - Listeria monocytogenes EGD-e (3; lmo0096-98)

lmo00650: Butanoate metabolism - Listeria monocytogenes EGD-e (3; lmo0355, 1414, 1634)

lmo00330: Arginine and proline metabolism - Listeria monocytogenes EGD-e (3; lmo0560, 1588, 2647)

lmo00562: Inositol phosphate metabolism - Listeria monocytogenes EGD-e (3; lmo0201, 0205, 2457)

Imo00632: Benzoate degradation via CoA ligation - Listeria monocytogenes EGD-e (2; Imo0355, 1414) lmo00071: Fatty acid metabolism - Listeria monocytogenes EGD-e (2; lmo1414, 1634) lmo00910: Nitrogen metabolism - Listeria monocytogenes EGD-e (2; lmo0560, 0811) lmo05100: Bacterial invasion of epithelial cells - Listeria monocytogenes EGD-e (2; lmo0433, 0434) lmo00860: Porphyrin and chlorophyll metabolism - Listeria monocytogenes EGD-e (2; lmo2057, 2212) lmo00620: Pyruvate metabolism - Listeria monocytogenes EGD-e (2; lmo1414, 1634) lmo02020: Two-component system - Listeria monocytogenes EGD-e (2; lmo0355, 1414) lmo00380: Tryptophan metabolism - Listeria monocytogenes EGD-e (1; lmo1414) lmo04621: NOD-like receptor signaling pathway - Listeria monocytogenes EGD-e (1; lmo0202) lmo00240: Pyrimidine metabolism - Listeria monocytogenes EGD-e (1; lmo2478) lmo00250: Alanine, aspartate and glutamate metabolism - Listeria monocytogenes EGD-e (1; lmo0560) lmo00900: Terpenoid backbone biosynthesis - Listeria monocytogenes EGD-e (1; lmo1414) lmo00624: 1- and 2-Methylnaphthalene degradation - Listeria monocytogenes EGD-e (1; lmo1634) lmo00500: Starch and sucrose metabolism - Listeria monocytogenes EGD-e (1; lmo1254) Imo00350: Tyrosine metabolism - Listeria monocytogenes EGD-e (1; Imo1634) lmo00400: Phenylalanine, tyrosine and tryptophan biosynthesis - Listeria monocytogenes EGD-e (1; lmo0490) Imo00230: Purine metabolism - Listeria monocytogenes EGD-e (1; Imo1523) lmo00072: Synthesis and degradation of ketone bodies - Listeria monocytogenes EGD-e (1; lmo1414) lmo00564: Glycerophospholipid metabolism - Listeria monocytogenes EGD-e (1; lmo0205) lmo00641: 3-Chloroacrylic acid degradation - Listeria monocytogenes EGD-e (1; lmo1634) lmo00640: Propanoate metabolism - Listeria monocytogenes EGD-e (1; lmo1414) lmo00020: Citrate cycle (TCA cycle) - Listeria monocytogenes EGD-e (1; lmo0355) lmo00310: Lysine degradation - Listeria monocytogenes EGD-e (1; lmo1414) lmo00280: Valine, leucine and isoleucine degradation - Listeria monocytogenes EGD-e (1; lmo1414)

Übersichten der Pathways finden sich im Anhang auf der CD-ROM. Ebenso wie bei der obigen Gesamtansicht stehen auch bei den Einzeldarstellungen der Pathways rote Farbtöne für herunterregulierte Stoffwechselwege bzw. Gene in diesen Stoffwechselwegen und grüne Farbtöne für heraufregulierte. Die "Stärke" der Farbe korrespondiert zum Fold-change Wert.

5.2.2 Vergleich von *L. monocytogenes* EGD-e Wildtyp und ∆*gshF* mit 5mM GSH_{red} im Medium

Unter 5.2.1 wurde gezeigt, dass die Deletion in *gshF* und das sich daraus ergebende Fehlen von endogenem Glutathion (GSH) zu umfangreichen Veränderungen im Transkriptionsprofil von *L. monocytogenes* führt. Es sollte daher untersucht werden, ob eine Zugabe von GSH zum Medium zu einer Veränderung des Transkriptionsprofils, beispielsweise einer Reversion in Richtung Normalzustand, führt. Die physiologische Konzentration von GSH in Säugerzellen liegt je nach Zelltyp und Proliferationsphase zwischen 0.1 und 10 mM [143, 144]. Es wurde daher mittels Microarray-Analyse das Transkriptionsprofil von *L. monocytogenes* EGD-e Wildtyp mit dem der $\Delta gshF$ -Mutante verglichen, nach Anzucht bis zu einer OD600= 0,8-1,0 (log-Phase) in BHI mit 5mM reduziertem GSH. Nachstehend eine Liste der am stärksten signifikant regulierten Gene. Eine vollständige Liste aller Gene findet sich im Anhang auf der CD-ROM.

Für diese Liste wurden die Ausschlussgrenzen bei ≥ 2 bzw. ≤ 0.5 gewählt, d.h. die Expression eines Gens ist im Vergleich zum EGD-e WT in der $\Delta gshF$ Mutante um das Zwei-fache erhöht bzw. erniedrigt. Auch wurden P-Werte die über 0,05 liegen, ausgeschlossen. Diese Daten sind Durchschnittswerte aus zwei unabhängigen Experimenten. Betrachtet man die Zahlenwerte, so sind nur 20 Gene mehr als zweifach heraufreguliert und nur ein Gen wird weniger als 0,5 fach transkribiert. Diese sind in der nachstehenden Liste aufgeführt:

Tabelle 5.2: Liste der Gene, deren Transkription in der Mutante $\Delta gshF$ mit zugesetztem	5mM	GSH				
gegenüber dem Wildtyp mindestens zweifach (fold change > 2 oder < 0,5) verändert ist.						

Gen Nummer	Funktion	P-Wert	fold change
lmo0123	Unknown - similar to protein gp18 from Bacteriophage A118	0,000822463	4,522466586
lmo0980	Unknown - similar to ABC transporter transmembrane component	0,000232046	4,876297201
lmo1654	Unknown - putative cellsurface protein	3,47713E-06	2,333353739
lmo1876	Unknown - similar to formyl-tetrahydrofolate synthetase C-terminal part	0,011552492	5,128612596
lmo1926	Unknown - similar to chorismate mutase	0,000112565	2,093982578
lmo1946	Unknown - similar to similar to acyl-CoA hydrolase	9,03217E-05	2,948517027
lmo1947	Unknown - similar to two-component sensor histidine kinase (ResE)	0,000387414	3,068791839
lmo1948	Unknown - similar to two-component response regulator (ResD)	6,3625E-07	4,366027623
lmo1957	Unknown - similar to ferrichrome ABC transporter (permease)	2,8705E-07	2,07950941
lmo1959	Unknown - similar to ferrichrome binding protein	2,30785E-08	2,007667549
lmo1960	Unknown - similar to ferrichrome ABC transporter (ATP-binding protein)	2,09998E-07	2,616287595
lmo1971	Unknown - similar to pentitol PTS system enzyme II C component	0,013250307	2,306551963
lmo1972	Unknown - similar to pentitol PTS system enzyme II B component	0,000242669	3,444312193
lmo1975	Unknown - similar to E. coli DNA-damage-inducible protein dinP	6,05296E-06	2,74398918
lmo1979	Unknown - similar to unknown proteins	3,3457E-08	3,022152507
lmo1983	Unknown - similar to dihydroxy-acid dehydratase	0,000232221	2,678755627
lmo1984	Unknown - similar to acetolactate synthase (acetohydroxy-acid synthase) (large subunit)	3,96203E-06	2,812923713
lmo1990	Unknown - similar to 3-isopropylmalate dehydratase (small subunit)	7,07474E-10	2,805782745
lmo2841	Unknown - weakly similar to sucrose phosphorylase	3,42979E-07	0,4637498

Im Vergleich zu den Versuchen ohne zugesetztes GSH zeigte sich dass nur noch wenige (und andere) Gene in der Mutante eine vom Wildtyp abweichende Transkription aufwiesen. Auch diese Ergebnisse wurden auf die Stoffwechselwege in der KEGG Datenbank gemappt.

Abb. 5.8: Übersicht der Kegg-Pathways mit regulierten Genen beim Vergleich Wildtyp gegen $\Delta gshF$ + 5mM GSH

Dabei zeigte sich, dass die Gene mit vom Wildtyp abweichenden Transkriptionsverhalten jeweils an mehreren Stoffwechselwegen (Pathways) beteiligt sind, insgesamt an acht:

lmo02010 ABC transporters - Listeria monocytogenes EGD-e (4; lmo0980; 1957, 1959, 1960)

lmo00290 Valine, leucine and isoleucine biosynthesis - Listeria monocytogenes EGD-e (3; lmo1983, 1984, 1990)

lmo00660 C5-Branched dibasic acid metabolism - Listeria monocytogenes EGD-e (2; lmo1984, 1990)

lmo02060 Phosphotransferase system (PTS) - Listeria monocytogenes EGD-e (2; lmo1971, 1972)

lmo00770 Pantothenate and CoA biosynthesis - Listeria monocytogenes EGD-e (2; lmo1983, 1984)

lmo02020 Two-component system - Listeria monocytogenes EGD-e (2; lmo1947, 1948)

lmo00650 Butanoate metabolism - Listeria monocytogenes EGD-e (1; lmo1984)

lmo00785 Lipoic acid metabolism - Listeria monocytogenes EGD-e (1; lmo0931)

lmo00400 Phenylalanine, tyrosine and tryptophan biosynthesis - Listeria monocytogenes EGD-e (1; lmo1926)

Übersichten der Pathways finden sich im Anhang auf der CD-ROM. Ebenso wie bei der obigen Gesamtansicht stehen auch bei den Einzeldarstellungen der Pathways rote Farbtöne für herunterregulierte Stoffwechselwege bzw. Gene in diesen Stoffwechselwegen und grüne Farbtöne für heraufregulierte. Die "Stärke" der Farbe korrespondiert zum Fold-change Wert.

5.3 Versuche zur Lecithinase- und Hämolysin Aktivität der \triangle *gshF* Mutante

Die Transkriptionsanalysen mittels Microarrays hatten gezeigt, dass in der Mutante $\Delta gshF$ unter anderem die Virulenzgene *plc*B und *hly* signifikant herunterreguliert waren. *plc*B kodiert für eine Phospholipase C des Lecithinasetyps, *hly* für das Cytolysin (Hämolysin) Listeriolysin O. Die funktionale Expression beider Gene kann leicht auf BHI-Agar mit Zusatz geeigneter Substrate der beiden Proteine untersucht werden. Beide Proteine werden von den Bakterien sekretiert, die Lecithinase PlcB spaltet aus Eigelb-Lecithin das schwer wasserlösliche Diacylglycerin (DAG) ab, Listeriolysin O lysiert Erythrocyten.

Um die Lecithinase- bzw. Hämolysin-Aktivität der Δgsh F Mutante zu testen, wurden Eigelbplatten bzw. Blutplatten mit einer Impfnadel punktförmig mit EGD-e Wildtyp und Δgsh F Listerien beimpft und über Nacht bei 37°C inkubiert, wie unter 4.1.5 beschrieben. Die erhaltenen Ergebnisse lassen sich nicht quantifizieren, nur der visuelle Eindruck kann beschrieben und diskutiert werden. Nachstehende Ergebnisse sind exemplarisch.

Abb. 5.9: Lecithinaseaktivität von L.m. EGD-e Wildtyp und Mutante $\Delta gshF$

Man erkennt deutlich weiße Höfe (abgespaltenes DAG) um die Einstichstellen des EGD-e Wildtyps. Die Koloniegröße scheint beim Wildtyp und der Deletionsmutante dieselbe zu sein, jedoch sind bei den Kolonien der $\Delta gshF$ keine weißen Höfe erkennbar, das bedeutet niedrige Lecithinaseaktivität.

Abb. 5.10: Hämolytische Aktivität von Wildtyp und Mutante auf BHI-Agar mit 5% Schaf-Erythrocyten. Die Versuche zur Hämolyse zeigen keine gesteigerte oder verringerte Hämolyse der $\Delta gshF$ Mutante im Vergleich mit dem Wildtyp.

5.4 Charakterisierung von Imo0799

Bei den vergleichenden Transkriptionsanalysen von Wildtyp und Mutante $\Delta gshF$ fiel auf, dass die Transkription des Gens *lmo0799* in der Mutante gegenüber dem Wildtyp deutlich (3,4-fach) heraufreguliert war. Laut Datenbankeintrag kodiert dieses Gen für ein Protein mit Homologie zu dem Blaulichtrezeptor YtvA von Bacillen und erschien daher von großem Interesse. Wie schon in der Einleitung dargestellt, war für *Bacillus subtilis* bereits 2006 gezeigt worden, dass Blaulicht über YvtA die SigmaB-vermittelte Stressantwort stimuliert [126, 127].

Ein Homologievergleich mittels ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/) von Lmo0799 und YtvA zeigte folgendes Ergebnis:

Lmo0799	MTAYPQFDVILKALNLSS	VGVIITDPEQKD	NPIIFVNTGFENI	GY <mark>AKEEAL</mark> GS	54
YtvA	MASFQSFGIPGQLEVIKKALDHVR' *::: *: *: ** ***:	VGVVITDPALED ***:**** :*	DNPIVYVNQGFVQM ****::** ** ::*	TGYETEEILGK	60
Lmo0799	N <mark>C</mark> HFLQGDDTDKEEVAKIRHAINE	ST <mark>ANVLLKNYP</mark> LOV domain –	KDGTSFMNELTIEI	PIYDDHEHLYF	114
YtvA	NCRFLQGKHTDPAEVDNIRTALQN	EPVTVQIQNYK	KDGTMFWNELNID	PM-EIEDKTYF *::::**	119
Lmo0799	VGIQKDVTTEHDYQLELEKSLTEI	EKLSTPIVPIKE	NICVLPLIGSLTH	ORFQHMSEYVS	174
YtvA	VGIQNDITKQKEYEKLLEDSLTEI ****:*:*::*: **.*****	TALSTPIVPIRN ********::	IGISALPLVGNLTER	ERFNSIVCTLT	179
Lmo0799	EYMDHGKEDYLIMDLSGLAEFNED	AVMNLVKFHGFM STAS domain	KLTGVELIITGISI	PKFAMTLIRYE	234
YtvA	NILSTSKDDYLIIDLSGLAQVNEQ : :*:****:*****:.**:	FADQIFKLSHLI	KLTGTELIITGIKI	PELAMKMNKLD	239
Lmo0799	ENLASLTTYSTIKEALQFY 2	53	identities	125/253 (49	9 %)
YtvA	ANFSSLKTYSNVKDAVKVLPIM 2	61	similarities	169/253 (67	1 8)

Abb. 5.11: Alignment von Lmo0799 und YtvA. Identische Aminosäuren sind mit (*) unter den Aminoäuresequenzen, ähnliche mit (:) gekennzeichnet. Die LOV- und STAS-Domainen (siehe Einleitung 2.3.4) beider Proteine sind angegeben, das essentielle Cystein an Pos. 56 (Lmo0799) bzw. 62 (YtvA) ist gelb unterlegt.

Die beiden Proteine zeigen signifikante Homologie über den gesamten Bereich. Insbesondere ist auch das funktional wichtige, für die Bildung eines Photoaddukts (siehe Einleitung 2.3.4.1) essentielle Cystein konserviert.

Auch eine Domainenanalyse mittels SMART [145, 146] (<u>http://smart.embl-heidelberg.de/</u>) zeigte für Lmo0799 und YtvA eine identische Domainenstruktur, nämlich eine N-terminale PAS/PAC-Domaine (die LOV-Domaine (siehe 2.3.4), eine Unterklasse der PAS-Familie, ist in SMART nicht implementiert) und eine C-terminale STAS-Domaine.

Abb. 5.12: Domänenstruktur von Lmo0799 und YtvA

5.4.1 Konstruktion einer Deletionsmutante für Imo0799

Zur Ermittlung der biologischen Funktion des putativen Blaulicht-Rezeptorproteins Lmo0799 sollte zunächst eine In-frame Deletionsmutante von *L. monocytogenes* EGD-e hergestellt werden, in welcher der kodierende Bereich von Lmo0799 nahezu vollständig entfernt war. Dabei sollte zunächst geprüft werden, ob eine solche Mutante vital ist bzw. ob und inwieweit die Replikation der Bakterien durch einen Verlust des Proteins beeinflusst wird. Dies war für die Durchführung und Interpretation nachfolgender Versuche von großer Bedeutung. Dazu wurden Primer designed, die über eine HindIII Site das Genprodukt von *Imo0799* auf sieben Aminosäuren verkürzt, dabei jedoch die Promotorregion sowie das upstream liegende Imo0800 sowie das downstream liegende LysRS (putativer Lysin Riboswitch) unverändert belassen (siehe Anhang). Das Konstrukt wurde in den Shuttlevector pGhost4 über PstI und BamH1 Schnittstellen kloniert, in E.coli TgRep amplifiziert und schliesslich in *L. monocytogenes* EGD-e transformiert, nachdem das Konstrukt via Sequenzierung überprüft wurde. Nach der homologen Rekombination wurde mittels Temperaturshift eine zweite Rekombination erzwungen, die das wildtypische Gen eliminierte. Auch dies wurde mittels Sequenzierung überprüft.

Abb. 5.13: Restsequenz von *lmo0799* in der ∆lmo0799 -Mutante

5.4.2 Wachstumsversuche in BHI

Zur Charakterisierung der Deletionsmutante $\Delta lmo0799$ wurden zunächst Wachstumsversuche in BHI mit und ohne Belichtung (blaues Licht, $\lambda = 455$ nm) durchgeführt. Die Versuche wurden zweimal wiederholt und die Mittelwerte sowie die Standardabweichung ermittelt.

Abb. 5.14: Wachstum von L. monocytogenes EGD-e Wildtyp und Almo0799 Mutante in BHI

Die Deletionsmutante $\Delta lmo0799$ zeigte hierbei keinen Wachstumsdefekt im Vergleich zum Wildtyp. Auffällig jedoch ist, dass sowohl Wildtyp als auch $\Delta lmo0799$ ohne Licht (-) in der exponentiellen Phase etwas schneller wachsen als mit Licht (+). Mit erreichen der stationären Phase gleichen sich die Wachstumskurven jedoch wieder an.

5.4.3 Initiale Experimente zum Einfluss von Licht auf die Transkription in *L. monocytogenes*

Für *B. subtilis* wurde bereits beschrieben [126], dass die Aktivität des Promoters des generellen Stressproteins Ctc durch Blaulicht gesteigert wird; dieser Effekt war ausgeprägter in Gegenwart von 0,3 M NaCl. Rotlicht (Dunkelkammerbeleuchtung) hatte den Veröffentlichungen nach keinen Einfluss auf die *ctc*-Transkription. Für erste Experimente zur lichtregulierten Transkription in *L. monocytogenes* EGD-e wurden zusätzlich zu *ctc* noch die SigB-regulierten Gene *arsC, opuCD* und *lmo1433* sowie weitere interessante Gene ausgewählt (siehe 5.4.4) und deren Transkriptionsstärke mit und ohne Blaulicht mittels qRT-PCR bestimmt. Für die Dunkelkontrolle wurden die experimentellen Arbeiten bei roter Dunkelkammerbeleuchtung durchgeführt. Dabei zeigte sich, dass erstens nur ein schwacher Effekt des Blaulichts zu messen war und dass zweitens die Ergebnisse wiederholter Versuche ungewöhnlich hohe Schwankungen aufwiesen. Dies ließ vermuten, dass zumindest bei *Listeria* auch Rotlicht einen Effekt haben könnte. Daher wurden alle weiteren Dunkel-

Experimente bei diffuser Beleuchtung durch eine Infrarot-LED (λ = 850 nm) und mit Hilfe eines Nachtsichtgerätes durchgeführt. Längere Zeit nach Beginn dieser Arbeiten wurde veröffentlicht [147], dass Rotlicht auch bei *B. subtilis* die Transkription des *ctc*-Promoters induziert, allerdings waren dafür höhere Beleuchtungs-stärken als bei Blaulicht erforderlich. Bereits zuvor war begonnen worden, alle weiteren Experimente mit *L. monocytogenes* sowohl unter Blaulicht (λ = 455 nm) als auch unter gleich starker Belichtung mit Rotlicht (λ = 625 nm) durchzuführen, mit der oben beschriebenen diffusen Infrarot-Beleuchtung als Dunkelkontrolle.

5.4.3.1 Disk Diffusions Assays

Wie eingangs gezeigt, ist die Transkription von *lmo0799* in der Mutante $\Delta gshF$ deutlich heraufreguliert. Sie wird also offensichtlich durch die Funktionalität des TDRM beeinflusst. Daher war es interessant zu untersuchen, ob Wildtyp und die Mutante $\Delta lmo0799$ lichtreguliert in ihrer Reaktion auf Peroxid- bzw. Disulfid-Stress verändert waren. Diamid ist ein Reagenz, welches relativ spezifisch mit Glutathion reagiert und dieses depletiert. Dadurch entsteht in der Zelle sogenannter Disulfid-Stress, d.h. viele normalerweise reduzierte SH-Gruppen bilden unphysiologische Disulfidbrücken.

Um dies zu untersuchen, wurden Disk Diffusionstests - wie unter 4.1.3 beschrieben - durchgeführt. Dabei wurden Papierscheibchen mit definierten Mengen Chemikalien getränkt und auf BHI-Agar aufgelegt, auf welche zuvor die Teststämme gleichmäßig ausplattiert worden waren. Die Platten wurden über Nacht mit und ohne Blaulicht (λ = 455nm) bei 37°C inkubiert. Zum Vergleich wurden die Versuche auch mit Rotlicht (λ = 625 nm) durchgeführt. Die Platten wurden gescannt und die Hemmhöfe ausgemessen. Die nachstehenden Bilder sind exemplarisch.

Abbildung 5.15: Disk Diffusions-Assays von EGD-e WT und $\Delta 0799$ Mutante auf BHI mit Diamid (rechts) und H₂O₂ (links) sowie Belichtung mit rotem (unten) oder blauem (oben) Licht (λ = 625nm bzw. λ = 455nm, bzw. Anzucht im Dunklen

Abb. 5.16: Statistische Auswertung aus je drei biologischen Replikaten der Disk-Diffusion-Assays

Die Versuche wurden je dreimal mit rotem und blauem Licht wiederholt; die Mittelwerte und Standardabweichungen der Inhibitionszonen wurden berechnet und die Signifikanzen mittels zweiseitigem Students-T-Test ermittelt.

Es zeigt sich deutlich, dass der Wildtyp bei Bestrahlung mit blauem Licht empfindlicher auf Peroxidund Disulfidstress reagiert als im Dunklen. Dies scheint auch für die $\Delta Imo0799$ Mutante zu gelten, jedoch sind diese Ergebnisse nicht signifikant. Bei Belichtung mit einer Wellenlänge von 625nm ändert sich das Ergebnis; die Mutante $\Delta Imo0799$ reagiert im Dunklen empfindlicher auf H₂O₂ als wenn sie mit rotem Licht bestrahlt wird, wohingegen der Wildtyp weiterhin mit Licht empfindlicher reagiert als im Dunklen. Beim Vergleich der Inhibition durch Diamid bei Bestrahlung mit rotem Licht reagieren sowohl Wildtyp als auch Mutante im Licht weniger empfindlich als im Dunklen; diese Ergebnisse sind jedoch nicht signifikant.

5.4.3.2 Toleranz gegenüber Gallensalzen

Eine der ersten großen Hürden für eine erfolgreiche Infektion durch *Listeria* stellt das sauere Milleu des Magens dar. Neben dem niedrigen pH-Wert des Magens stellen Gallensalze, die in den Zwölffingerdarm sekretiert werden und der Fettverdauung dienen, eine weitere Hürde dar. Um den Einfluss von Licht und Gallensalzen auf die Überlebensfähigkeit des EGD-e Wildtyps und der Δ Imo0799 Mutante zu überprüfen, wurden Überlebensassays mit 1% porcinem Gallenextrakt - wie unter 4.1.6 beschrieben -durchgeführt. Dabei wurden Übernachtkulturen in BHI im Dunklen angezogen, belichtet (λ = 455nm) oder weiter dunkel gehalten sowie 1:20 in frischem BHI verdünnt, dem 1% porcines Gallenextrakt zugesetzt wurde. Als Referenz wurden unbelichtete Wildtypbakterien ohne Gallensalze verwendet. Nach einer Inkubation von 30 min im Dunklen ausplattiert. Die Kolonie formenden Einheiten (Colony forming units / CFU) wurden bestimmt, Mittelwerte und Standardabweichungen berechnet. Die Signifikanz der Ergebnisse wurde mittels zweiseitigem Student's-T-Test berechnet. Der Versuch wurde dreimal wiederholt, die gezeigten Ergebnisse sind exemplarisch:

Abb. 5.17: Überlebende Listerien nach Behandlung mit blauem Licht und 1% Gallenextrakt (++), ohne Licht mit 1% Gallenextrakt (-+), mit Licht ohne Gallenextrakt (+-) und ohne Licht und ohne Gallenextrakt (--)

Deutlich erkennt man, dass der Wildtyp empfindlicher auf Gallenextrakt reagiert, wenn er mit blauem Licht stimuliert wurde. Blaues Licht ohne Gallenextrakt hat keine Auswirkung auf die Überlebensrate des Wildtyps. Die Δ Imo0799 Mutante verhält sich unter allen untersuchten Bedingungen anders als der Wildtyp. Blaues Licht erhöht sowohl mit als auch ohne Gallenextrakt die Überlebensfähigkeit; Gallenextrakt ohne Licht führt in der Mutante zu keiner verminderten Überlebensfähigkeit verglichen mit der Referenz.

5.4.3.3 Motilitätsversuche

Bei Bakterien stehen Lichtreaktionen häufig in Zusammenhang mit Motilität. Daher wurden entsprechende Experimente mit dem *L. monocytogenes* EGD-e Wildtyp und der Mutante Δ lmo0799 und unter verschiedenen Belichtungsbedingungen durchgeführt. Zur Untersuchung der Beweglichkeit wurden Motilitätsversuche auf Weichagar - wie unter 4.1.4 beschrieben - durchgeführt. Dabei wurden Flüssigkulturen auf den 0,3% Weichagar aufgetropft und die Petrischalen über Nacht bei 27° oder 37°C mit oder ohne Licht ($\lambda = 455$ nm oder 625nm) inkubiert.

Abb. 5.18: Motilitätsassays auf 0,3% BHI Agar von EGD-e Wildtyp und Δ*lmo0799*-Mutante bei 27°C

Bei Inkubation bei 27°C mit blauem Licht zeigt der Wildtyp deutlich kleinere mobile Kolonien als im Dunklen. Die Deletionsmutante $\Delta lmo0799$ zeigt sowohl mit blauem Licht als auch im Dunklen gleich große mobile Kolonien. Werden die Platten mit rotem Licht ($\lambda = 625$ nm) bestrahlt, wachsen Wildtyp

und Mutante zu gleicher Größe heran. Der Versuch wurde dreimal wiederholt, die gezeigten Bilder sind exemplarisch.

Abb. 5.19: Bei 37°C zeigen sowohl der Wildtyp als auch die Δlmo0799 Mutante im Dunklen und bei Bestrahlung mit blauem Licht gleich große, sessile Kolonien.

Die Koloniedurchmesser wurden ermittelt, Mittelwerte und Standardabweichung berechnet. Im Diagramm ergibt sich ein klares Bild:

Abb. 5.20: Mittlere Koloniegrößen von *L. monocytogenes EGD-e* Wildtyp und Δ*lmo0799*-Mutante im Motilitätsassay bei 27°C und verschiedenen Lichtbedingungen

Es zeigt sich deutlich, dass die $\Delta lmo0799$ Mutante unter allen untersuchten Bedingungen in etwa gleich große Kolonien bildet. Der Wildtyp wächst bei 27°C und dauerhafter Belichtung mit blauem Licht der Wellenlänge 455nm nur zu Kolonien halber Größe heran. Rotes Licht der Wellenlänge 625nm zeigt diesen Effekt nicht.

5.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit blauem Licht

Zur weiteren Charakterisierung der Deletionsmutante $\Delta lmo0799$ und zur Untersuchung des Einflusses von Blaulicht auf Wildtyp und Deletionsmutante wurden qRT-PCR Transkriptionsanalysen ausgewählter Gene - wie unter 4.2.7.2 beschrieben - durchgeführt. Die untersuchten Gene wurden nach folgenden Gesichtspunkten ausgewählt:

- prfA , hly und plcA als PrfA-abhängige Virulenzgene

- *inlA, inlB* und *bsh* als Gene unter doppelter Transkriptionskontrolle durch SigB und den Virulenzregulator PrfA [148]

- *arsC, opuCD* (letztes Gen der *opuC*-Transkriptionseinheit) und *lmo1433* als nachgewiesenermaßen stark SigB-regulierte Gene [149, 150]

- *ctc* als generelles und SigB-reguliertes Stressgen, mit dem auch alle Experimente an *B. subtilis* durchgeführt wurden

-trxA, trxB und *gshF* als Schlüsselgene des TDRM. Für *trxB* von *B. subtilis* war zudem eine Kontrolle durch den redox-sensitiven Regulator Spx gezeigt worden, welcher zudem die Transkription von *ytvA* steuert [127, 128]

- spx und lmo0799 selbst

Für die Analysen wurden Übernachtkulturen im Dunklen angezogen, im Dunklen 1:20 in frischem BHI verdünnt und im Dunklen bis zu einer $OD_{600}=0,9$ gezogen, wie unter 4.1.2 beschrieben. Die RNA wurde - wie unter 4.2.14 isoliert und wie unter 4.2.16 beschrieben - in cDNA umgeschrieben. Die qRT-PCR Versuche (siehe 4.2.7.2) wurden mit drei biologischen Replikaten sowie je 4 technischen Replikaten durchgeführt und mit der StepOne[®] Software von Applied Biosystems als "Study" aus allen drei biologischen Replikaten analysiert. Als endogenes Kontrollgen wurde *rpoB* verwendet. Als Referenz-Sample wurden die unbelichteten Proben des Wildtyps auf den Wert 1 gesetzt. Alle anderen Werte sind als x - Fache Menge an cDNA bezogen auf die Referenz zu verstehen (RQ-relative Expression).

Abb. 5.21: Überblick der Transkriptionsänderungen der untersuchten Gene mit und ohne Salzstress sowie nach Belichtung mit blauem Licht (λ = 455nm) in EGD-e Wildtyp und Δ 0799 Mutante

Deutlich erkennt man einen Anstieg der Transkription verschiedener Gene, sobald der Wildtyp mit blauem Licht bestrahlt wird. Setzt man NaCl mit einer Endkonzentration von 0,3M zu, werden stressabhängige Gene heraufreguliert. Wird zusätzlich mit blauem Licht bestrahlt, verstärkt sich die Transkription deutlich. In der Deletionsmutante $\Delta lmo0799$ werden einige Gene im Dunklen weniger stark transkribiert als im Wildtyp. Belichtet man die Mutante, so werden lediglich die Internaline A und B verstärkt transkribiert. Setzt man NaCl zu, ergibt sich ein ähnliches Muster wie beim Wildtyp. Wird die Mutante zusätzlich belichtet, ähnelt das Muster wiederum dem Wildtyp, jedoch deutlich abgeschwächt. Die einzelnen Gene bzw. Gengruppen werden nun im Detail dargestellt:

Abb. 5.22: Transkription von prfA im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

prfA zeigt bei Belichtung des Wildtyps mit λ = 455nm eine kaum erhöhte Transkription (1,16) im Vergleich zu dunkel angezogenen *L. monocytogenes* EGD-e. Wird NaCl zugegeben, steigt die Transkription auf das 1,55-fache der Dunkelkontrolle. Belichtet man zusätzlich, steigt die Transkription auf das 2,87-fache an. Die Deletionsmutante transkribiert im Dunklen lediglich das 0,75 -fache der Menge an *prfA*-mRNA des Wildtyps. Belichtung ändert an diesem Level nichts (0,7). Wird NaCl zugegeben steigt die Transkription fast auf das Niveau des Wildtyps unter gleichen Bedingungen (1,38). Wird zusätzlich belichtet, steigt die Transkription auf das 1,95-fache und bleibt somit geringer als der Wildtyp unter denselben Bedingungen.

Abb. 5.23: Transkription von hly im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

hly wird unter allen untersuchten Bedingungen geringer transkribiert als im Wildtyp, der im Dunklen angezogen wurde. Wird die Probe belichtet, sinkt die Transkription geringfügig. Wird NaCl zugegeben, sinkt die Transkription auf das 0,6-fache der Referenz. Wird zusätzlich belichtet, tritt keine Änderung auf. Das Basislevel der $\Delta Imo0799$ Mutante liegt ebenfalls beim 0,6-fachen der Referenz. Belichtung hat hier einen minimalen Anstieg der Transkription zur Folge (0,67 fach). Setzt man die $\Delta Imo0799$ Mutante Salzstress aus, verringert sich die Transkription weiter und weist mit dem 0,28-fachen der Referenz die geringste Transkription aller untersuchten Bedingungen auf. Wird zusätzlich zum Salzstress belichtet, steigt das Niveau wieder leicht an (0,42).

Abb. 5.24: Transkription von plcA im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

plcA zeigt sowohl bei Belichtung des Wildtyps als auch unter Salzstress ein geringeres Transkriptionsmuster als die Referenz (0,76 bzw. 0,68-fach). Wird zusätzlich zum Salzstress belichtet, steigt die Transkription auf das 0,93-fache der Referenz. Die $\Delta lmo0799$ Mutante hat im Dunklen ein 0,79-fach niedrigeres *plcA* mRNA Level als der Wildtyp. Wird die Mutante belichtet, steigt die Transkription auf 93% der Referenz. Versetzt man die Mutante im Dunklen in Salzstress, sinkt die Transkription auf 0,44. Wird zusätzlich belichtet steigt das Niveau auf das der Referenz (1,1).

Die Transkription von *plcA* zeigte ein ähnliches Muster wie die von *hly*, beide Gene zeigen nur geringe Veränderungen unter allen Versuchsbedingungen. Auffällig ist vor allem, dass Belichtung und Salzstress bei beiden Genen und sowohl beim Wildtyp als auch bei der Mutante zu keinem Anstieg bzw. bei hly sogar zu einem Rückgang der Transkription führen. Dies steht in deutlichem Kontrast zum Transkriptionsverhalten des Regulators PrfA, welcher unter diesen Bedingungen einen signifikanten Anstieg zeigt.

Abb. 5.25: Transkription von *inlA* und *inlB* im *L. monocytogenes EGD-e* Wildtyp und der $\Delta Imo0799$ Mutante

Die Internaline A und B zeigen bei Belichtung des Wildtyps eine deutliche Änderung ihres Transkriptionsprofils. *inlA* steigt um das 3,1-fache, *inlB* sogar um das 4,5-fache des Referenzwertes. Salzstress ohne Belichtung führt zu einer leicht verringerten Transkription (*inlA*: 0,83; *inlB*: 0,78). Wird neben dem Salzstress mit blauem Licht belichtet, steigt das Niveau auf das 5-fache für *inlA* und auf das 6,5-fache für *inlB*. Die $\Delta Imo0799$ Mutante zeigt im Dunklen einen fast identischen Wert wie der Wildtyp für *inlA* (0,98), für *inlB* liegt der Wert etwas darunter (0,87). Wird die Mutante belichtet, steigen die Werte auf das 2,3- bzw. 2,4-fache der Referenz. Wird die Mutante durch NaCl gestresst,

ohne dass sie belichtet wird, steigt das *inlA* level auf das 1,3-fache, *inlB* hingegen ändert das Niveau im Vergleich zur Referenz nicht (1,0). Salz und Licht lassen die Werte wieder ansteigen (*inlA*: 3,4; *inlB*: 3,2), bleiben jedoch deutlich hinter den Werten des Wildtyps zurück.

Anders als bei *hly/plcA* folgt das Transkriptionsprofil der beiden Internalingene dem von *prfA*, mit Ausnahme der Versuchsbedingung "ohne Licht / mit Salzstress". Während *prfA* hier sowohl für den Wildtyp als auch die Mutante einen leichten Anstieg zeigte, blieb die Transkription von *inlA/B* auf dem Grundniveau.

Abb. 5.26: Transkription von bsh im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

Wird der Wildtyp belichtet, steigt die Transkription von *bsh* um das 1,48-fache, bezogen auf die Referenz. Wird der Wildtyp mit NaCl gestresst, sinkt die Transkriptmenge auf 64%. Wird jedoch zusätzlich belichtet, steigt das Level auf das 4,6-fache der Referenz. Die Deletionsmutante zeigt im Dunklen fast identische Werte wie der Wildtyp (0,95); Belichtung erhöht den Wert auf 1,13. Wird die $\Delta Imo0799$ Mutante mit Salz gestresst, sinkt die Transkription auf 0,55. Wird zusätzlich zum Salzstress belichtet, steigt die Transkription von *bsh* auf 2,23.

Abb. 5.27: Transkription von arsC im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

Wird der Wildtyp mit blauem Licht bestrahlt, so erhöht sich das Transkriptionslevel von *arsC* um das 2,8-fache. Auch Salzstress erhöht das Level; im Dunklen auf das 2-fache, mit blauem Licht sogar auf das 7-fache. Die Transkription von *arsC* der Deletionsmutante $\Delta Imo0799$ liegt im Dunklen beim 0,47-fachen des Wildtyps. Wird $\Delta Imo0799$ mit blauem Licht bestrahlt, steigt der Wert unwesentlich auf 0,62. Salzstress ohne Licht steigert die Transkription auf das 1,13-fache, wird zusätzlich mit blauem Licht bestrahlt, steigt sie auf das 2,28 -fache.

Abb. 5.28: Transkription von ctc im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

Der EGD-e Wildtyp zeigt nach Bestrahlung mit Licht der Wellenlänge λ = 455nm eine leicht erhöhte Transkription des *ctc* –Gens (1,64). Auch Salzstress erhöht das Level, der Wert erreicht 1,26. Treten beide Reize auf, wird 3,17 mal mehr *ctc*-mRNA gebildet als unter Dunkelbedingungen ohne Salzstress. Die Deletion von *lmo0799* hat keinen Einfluss auf die Transkription von *ctc* im Dunklen, der Wert liegt bei 1,07. Wird belichtet, steigt der Wert auf 1,25. Salzstress ändert ohne Licht nichts, der Wert erreicht 1,03. Wird zusätzlich belichtet, steigt das Level auf 2,65.

Abb. 5.29: Transkription von opuCD im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

Wird der EGD-e Wildtyp mit blauem Licht bestrahlt, erhöht sich die Transkription von *opuCD* um das 2,23-fache des Referenzwertes. Salzstress hat kaum Einfluss auf das Transkriptionslevel, der Wert liegt bei 0,89. Salz und blaues Licht steigern das Niveau auf 2,81. Die Deletionsmutante transkribiert im Dunklen lediglich das 0,37-fache der mRNA, bezogen auf den unbelichteten Wildtyp. Wird die Mutante mit λ = 455nm bestrahlt, steigt die Transkription auf das 0,96-fache der Referenz. Unter Salzstress beträgt der Wert 0,56; wird zusätzlich belichtet, erreicht der Wert 1,15.

Abb. 5.30: Transkription von Imo1433 im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

Die Transkription von *lmo1433* im Wildtyp erhöht sich nach Belichtung mit Licht (λ = 455nm) auf 1,58. Salzstress senkt das Level auf 0,73. Treten beide Reize zusammen auf, so steigt das Transkriptionslevel auf das 2,59-fache der Referenz. Das Grundniveau von *ctc* der Deletionsmutante *Almo0799* beträgt das 0,61-fache des Wildtyps. Licht erhöht den Wert auf 93%, 0,3M NaCl senkt den Wert jedoch auf 0,42. Beide Reize zusammen erhöhen das Transkriptionsniveau auf das 1,25-fache des Wildtyps im Dunklen.

Die vorstehend untersuchten, in allen bisherigen Analysen des SigB-Regulons von *L. monocytogenes* als SigB-abhängig beschriebenen Gene *bsh, arsC, ctc, opuCD* und *lmo1433* weisen im Wesentlichen das gleiche Transkriptionsmuster auf, d.h. Induktion durch Erhöhung der Osmolarität und weitere Steigerung durch Bestrahlung mit Blaulicht. Dabei trat der Blaulichteffekt, wenn auch deutlich abgeschwächt, bei der *lmo0799*-Deletionsmutante ebenfalls auf.

Abb. 5.31: Transkription von trxA, trxB im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

Die Thioredoxine *trxA* und *trxB* zeigen bei Belichtung mit $\lambda = 455$ nm eine unterschiedliche Modulation ihrer Transkription. Das *trx* -Level steigt auf 1,27, *trxB* hingegen sinkt auf das 0,89-fache seines Dunkelwertes. Salzstress führt bei beiden Thioredoxinen zu einer Erhöhung der Transkription, die Werte erreichen 2,13 bzw. 2,21. Wird zusätzlich belichtet, fallen die Werte auf 2,09 bzw. 1,7. Die Deletionsmutante *Δlmo0799* transkribiert unter Dunkelbedingungen nahezu identische Mengen an *trxA* – mRNA, der Wert liegt bei 0,98. Das *trxB* Niveau liegt niedriger, der Wert erreicht lediglich 0,8. Licht der Wellenlänge 455nm führt zu einer verringerten Transkription der

Thioredoxine in der Mutante, die Werte liegen bei 0,76 bzw. 0,4. Salzstress führt auch bei $\Delta lmo0799$ zu erhöhten Transkriptmengen, die Werte erreichen 1,84 bzw. 1,76 für *trxB*. Licht und Salz führen in der Mutante zu einer Erhöhung für *trxA* auf 1,88 und zu einer Verringerung auf 1,25 für *trxB*.

Abb. 5.32: Transkription von spx im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

Die Transkription von *spx* wird im Wildtyp durch Licht oder Salz nur geringfügig beeinflusst; die Werte betragen 0,96 bei Belichtung mit λ =455nm und 0,84 unter Salzstress. Treten beide Reize auf, steigt der Wert auf das 1,74-fache der Referenz. Das Basislevel der $\Delta Imo0799$ Mutante im Dunklen liegt bei 0,94 des Wildtyps. Blaues Licht senkt das Level auf 0,7. Unter Salzstress transkribiert die Mutante lediglich das 0,64 -fache der *spx* – mRNA des Wildtyps im Dunklen. Salz und Licht erhöhen den Wert wieder auf Referenzniveau (1,07).

Abb. 5.33: Transkription von gshF im L. monocytogenes EGD-e Wildtyp und der Δlmo0799 Mutante

Die Transkription von *gshF* wird im Wildtyp durch Belichtung nur geringfügig erhöht, der Wert beträgt 1,12. Wird Salzstress erzeugt, erreicht der Wert 1,35 im Dunklen und 1,36 bei Belichtung. In der Mutante liegt das Level im Dunklen bei 0,8, wird belichtet, sinkt es auf 0,52. Salzstress erhöht die Transkription auch in der Mutante, ohne Licht beträgt sie das 1,15-fache der Referenz, mit Licht liegt der Wert bei 1.

Abb.5.34: Transkription von Imo0799 im L. monocytogenes EGD-e Wildtyp

Die Transkription von *lmo0799* konnte nur im Wildtypstamm EGD-e untersucht werden. Wird mit blauem Licht belichtet, steigt die Transkription auf das 1,13-fache der Referenz. Salzstress erhöht den Wert auf 1,73 im Dunklen, wird zusätzlich belichtet beträgt der Wert 1,64.

Die Gene für das Peptidthiol Thioredoxin A und die zugehörige Reduktase TrxB, für die Glutathionsynthetase GshF und für den Blaulichtrezeptor Lmo0799 weisen alle eine Transkriptionssteigerung bei Salzstress auf, ohne eine weitere Erhöhung durch Bestrahlung mit Blaulicht. Das Gen für den redox-sensitiven Transkriptionsregulator Spx wird nur durch Blaulicht deutlich induziert.

Abb. 5.35: Transkription von kat, sod, prx, grx und gpo im L. monocytogenes EGD-e Wildtyp

Zusätzlich wurden auch die Transkription von *kat, sod, prx, grx* und *gpo* im *L. monocytogenes EGD-e* Wildtyp unter Salzstress und bei Belichtung mit Licht der Wellenlänge 455nm untersucht. Dabei zeigte sich, dass *kat* im Wildtyp nicht durch Licht beeinflusst wird, der Wert liegt bei 1,1. Unter Salzstress im Dunklen erreicht der Wert 1,6 bei Belichtung und Salzstress 1,4. Die Transkription von *sod* wird im Wildtyp durch blaues Licht auf 1,56 gesteigert. Im Dunklen unter Salzstress liegt der Wert bei 1,86, bei Belichtung und Salzstress bei 2,3. *prx* wird bei Belichtung unverändert transkribiert, der Wert beträgt 0,97. Salzstress ohne Licht senkt den Wert auf 0,84; wird zusätzlich belichtet, steigt der Wert wieder auf Referenzniveau (1,01). Die Transkription von *grx* sinkt durch Belichtung auf das 0,78-fache der Referenz. Salzstress hebt den Wert auf 0,97 sowohl mit als auch ohne Licht. Die Transkription von *gpo* reagiert auf blaues Licht im Wildtyp mit einer leichten Steigerung auf 1,2. Salzstress ohne Belichtung hebt den Wert auf 1,34, wird zusätzlich belichtet, steigt er auf 1,43.

Die Motilitätsversuche unter 5.4.3.3 hatten gezeigt, dass die Motilität der $\Delta lmo0799$ Mutante bei 27°C im Licht sich deutlich von der des Wildtyps unterscheidet. Aus diesem Grund wurden auch qRT–PCR

Versuche mit den Flagellen bzw. Chemotaxisgenen *flaA, cheR* und *mcp* durchgeführt. Da sich die Motilität der $\Delta lmo0799$ Mutante bei 37°C nicht phänotypisch von der des Wildtyps unterscheidet, wurden nur RNA-Proben des Wildtyps bei 37°C untersucht. Bei 27°C wurde sowohl vom Wildtyp als auch von der $\Delta lmo0799$ Mutante RNA isoliert. Die RNA wurde wie unter 4.2.14 beschrieben gewonnen.

Abb. 5.36: Transkription von *flaA* im *L. monocytogenes EGD-e* Wildtyp und der Δ*lmo0799* Mutante bei 27°C und 37°C

Licht der Wellenlänge 455nm hat bei 37°C keinen Einfluss auf die Transkription von *flaA* im Wildtyp, der Wert steigt unwesentlich auf 1,29. Wird der Wildtyp im Dunklen bei 27°C angezogen, ist der Wert im Vergleich zur Referenz 171-fach erhöht. Wird der Wildtyp mit blauem Licht bestrahlt, nachdem er bei 27°C angezogen wurde, ist der Wert 248-fach erhöht, bezogen auf den Wildtyp ohne Licht bei 37°C. Die Mutante zeigt bei 27°C etwas niedrigere Werte. Diese liegen bei 119 im Dunklen und 181 mit blauem Licht.

Abb. 5.37: Transkription von *mcp* und *cheR* im *L. monocytogenes EGD-e* Wildtyp und der *Almo0799* Mutante bei 27°C und 37°C

Auch auf die Transkription von *cheR* hat blaues Licht im Wildtyp bei 37°C keinen Einfluss, der Wert liegt beim 1,2-fachen der Referenz. Der Wert von *mcp* liegt unter diesen Bedingungen bei 2,6. Bei 27°C wird im Dunklen die doppelte Menge *mcp*–RNA transkribiert, aber das 17-fache an *cheR* RNA. Blaues Licht beeinflusst die Transkription des Wildtyps bei 27°C deutlich; *mcp* steigt auf 5,1 wohingegen *cheR* auf 6 fällt. Zieht man die Δ Imo0799 Mutante bei 27°C im Dunklen an, erreicht der *mcp*-Wert 3, *cheR* lediglich 5,7. Blaues Licht ändert an diesen Werten wenig, sie liegen bei 4,3 (*mcp*) bzw. 6,2 (*cheR*).

Bei den vorangegangenen Motilitätsassays auf Weichagar waren sowohl der *L. monocytogenes* EGD-e Wildtyp als auch seine $\Delta lmo0799$ -Mutante bei einer Inkubationstemperatur von 37°C unbeweglich, dies steht in Einklang mit früheren Untersuchungen. Bei 27°C waren Wildtyp und Mutante im Dunkeln gut beweglich, bei Dauerbestrahlung mit Blaulicht war der Wildtyp, nicht aber die Mutante, stark in der Beweglichkeit reduziert. Übereinstimmend mit dem Phänotyp wurden bei 37°C das Gen

für das Flagellenhauptprotein FlaA nicht nachweisbar, die ebenfalls in dem umfangreichen chromosomalen Gencluster für Flagellen-Biogenese und Beweglichkeit liegenden Gene *mcp* und *cheR* nur schwach transkribiert. Bei 27°C zeigte sich ein komplexes Transkriptionsmuster, welches nicht mit dem beobachteten Phänotyp in Einklang zu bringen war.

Tabelle 5.3: Übersicht der qRT – PCR Ergebnisse von EGD-e Wildtyp und Δ lmo0799 Mutante bei Salzstress und Belichtung mit blauem Licht (λ = 455nm)

Chammer (Da Jin ann a	7:	DO	Channer (Da din anna	7:	DO
Stamm / Bedingung	Zielgen	KQ	Stamm / Bedingung	Zieigen	RQ
EGD-e W1 + blue light 455nm	arsc	2,8026102346/0022	EGD-e $\Delta Imo0799$ + blue light 455nm	arsc	0,6211906904845322
EGD-e WT + blue light 455nm	bsh	1,4745760238248846	EGD-e $\Delta Imo0799$ + blue light 455nm	bsh	1,1321172748250032
EGD-e W1 + blue light 455nm	ctc	1,6430030096680384	EGD-e $\Delta Imo0799$ + blue light 455nm	ctc	1, 2539614142057955
EGD-e W1 + blue light 455nm	gsnF	1, 11/58/1500998429	EGD-e $\Delta Imo0799$ + blue light 455nm	gsnF	0,5222485943497562
EGD-e W1 + blue light 455nm	niy	0,8514218256412961	EGD-e $\Delta lmo0799$ + blue light 455nm	niy	0,6683/02269535261
EGD-e WT + blue light 455nm	iniA	3, 145/3850234350/	EGD-e Almo0799 + blue light 455nm	iniA	2,3326810335293846
EGD-e WT + blue light 455nm	Inib	4, 5353276348422344	EGD-e Almo0799 + blue light 455nm	INIB	2,4416009/8024/15/
EGD-e WT + blue light 455nm	Im00799	1, 1308378552708802	EGD-e Almo0799 + blue light 455nm	Im01433	0,9298568407830826
EGD-e WT + blue light 455nm	Im01433	1,580495/3/656401	EGD-e Almo0799 + blue light 455nm	opuco	0,9638665285280208
EGD-e WT + blue light 4551111	opuco	2,2333094370100310	EGD-e $\Delta lmo0799$ + blue light 455mm	picA	0,9204019233912044
EGD-e WT + blue light 4551111	picA	0,7020902094373773	EGD-e $\Delta lmo0799$ + blue light 455mm	pr i A	0,0955220570005940
EGD-e WT + blue light 4551111	priA	1, 150095970051205	EGD-e $\Delta lmo0799$ + blue light 455mm	spx	0,7000275907440099
EGD-e WT + blue light 4551111	spx	1 266902641429600	EGD-e $\Delta lmo0799$ + blue light 455mm	ti XA	0, /014455000510944
ECD o WT + blue light 455mm	tryP	0.0022015540462270	ECD $a Alma0700 + blue light 455mm + 0.2M NaCl$	areC	0,4030302193301073
ECD-e WT + blue light 455nm + 0.3M NaCl	areC	6 975206454002333	EGD-e $Almo0799 + blue light 455nm + 0.3M NaCl$	heh	2,274730030039913
ECD-e WT + blue light 455nm + 0,3M NaCl	heh	4 5752662667199315	EGD-e $Almo0799$ + blue light 455nm + 0.3M NaCl	ctc	2,2330710377032737
FCD-e WT + blue light 455nm + 0,3M NaCl	ctc	3 1735811464348287	ECD-e $Almo0799$ + blue light 455nm + 0.3M NaCl	achF	1 0044111409511607
FCD-e WT + blue light 455nm + 0,3M NaCl	gshF	1 3608112211047214	FGD-e $Almo0799$ + blue light 455nm + 0.3M NaCl	hlv	0 4223472850942338
ECD-e WT + blue light 455nm + 0,3M NaCl	bly	0 6176706061476143	EGD-e $Almo0799$ + blue light 455nm + 0.3M NaCl	inlA	3 419452276067358
ECD-e WT + blue light 455nm + 0,3M NaCl	inlA	5 049133362959221	EGD-e $Almo0799$ + blue light 455nm + 0.3M NaCl	inlB	3, 16630356573781
FCD-e WT + blue light 455nm + 0,3M NaCl	inlR	6 484873204337308	EGD-e Almo0799 + blue light 455nm + 0.3M NaCl	lmo1433	1 2486882442444172
FCD-e WT + blue light 455nm + 0,3M NaCl	lmo0799	1 6385552843908537	FGD-e $Almo0799$ + blue light 455nm + 0.3M NaCl	opuCD	1 1488717886809674
FCD-e WT + blue light 455nm + 0,3M NaCl	lmo1433	2 5891160149259047	FGD-e $Almo0799$ + blue light 455nm + 0.3M NaCl	nlcA	1,0350907235730817
FCD-e WT + blue light 455nm + 0,3M NaCl	opuCD	2,813280921396109	EGD-e Almo0799 + blue light 455nm + 0.3M NaCl	nrfA	1,9505878307737208
FCD-e WT + blue light 455nm + 0,3M NaCl	nlcA	0 934416794404389	FGD-e $Almo0799$ + blue light 455nm + 0.3M NaCl	sny	1 0675548573521128
FCD-e WT + blue light 455nm + 0.3M NaCl	prefA	2 872063339907578	FGD-e $Almo0799$ + blue light 455nm + 0.3M NaCl	trvA	1 8751245708144206
EGD-e WT + blue light 455nm + 0,3M NaCl	snx	1 7376747364416285	EGD-e $Almo0799$ + blue light 455nm + 0.3M NaCl	trxB	1 2487026798886187
EGD-e WT + blue light 455nm + 0.3M NaCl	trxA	2 085443324162652	EGD-e Almo0799 - light	arsC	0 4668273238761327
EGD-e WT + blue light 455nm + 0.3M NaCl	trxB	1 6946203316876034	EGD-e Almo0799 - light	hsh	0 9500662589448814
EGD-e WT - light + 0 3M NaCl	arsC	2 008090549131171	EGD-e Almo0799 - light	ctc	1 0717272824603277
EGD-e WT - light + 0.3M NaCl	bsh	0.6357320079706923	EGD-e Almo0799 - light	gshF	0.7961891368487296
EGD-e WT - light + 0.3M NaCl	ctc	1,264161888273573	EGD-e Almo0799 - light	hlv	0.6029251379369993
EGD-e WT - light + 0.3M NaCl	gshF	1,3523592251116014	EGD-e Almo0799 - light	inlA	0.9870528382120002
EGD-e WT - light + 0.3M NaCl	hlv	0.5848421043860503	EGD-e <i>Almo0799</i> - light	inlB	0.8660632615061561
EGD-e WT - light + 0.3M NaCl	inlA	0.8250190055862437	EGD-e $\Delta lmo0799$ - light	lmo1433	0.6123024018660429
EGD-e WT - light + 0,3M NaCl	inlB	0,778528813517841	EGD-e Δlmo0799 - light	opuCD	0,37074050646554646
EGD-e WT - light + 0.3M NaCl	lmo0799	1,727156466028269	EGD-e $\Delta lmo0799$ - light	plcA	0.7904108092075595
EGD-e WT - light + 0,3M NaCl	lmo1433	0,729255019776734	EGD-eΔlmo0799 - light	prfA	0,7402577570385926
EGD-e WT - light + 0,3M NaCl	opuCD	0,8886504811075125	EGD-eΔlmo0799 - light	spx	0,9347914118864507
EGD-e WT - light + 0,3M NaCl	plcA	0,6846780310441296	EGD-e∆lmo0799 - light	trxA	0,9795312433121947
EGD-e WT - light + 0,3M NaCl	prfA	1,554200912069704	EGD-e∆lmo0799 - light	trxB	0,7984237354146403
EGD-e WT - light + 0,3M NaCl	spx	0,8442876523622395	EGD-e Δlmo0799 - light + 0,3M NaCl	arsC	1,1389480686849036
EGD-e WT - light + 0,3M NaCl	trxA	2, 1256253330369654	EGD-e <i>∆lmo0799</i> - light + 0,3M NaCl	bsh	0, 5491639763480759
EGD-e WT - light + 0,3M NaCl	trxB	2, 2062218804934965	EGD-e <i>∆lmo0799</i> - light + 0,3M NaCl	ctc	1,0312275360478342
EGD-e WT 27° - light	mcp	2,06972003	EGD-e <i>∆lmo0799</i> - light + 0,3M NaCl	gshF	1, 1506852624021984
EGD-e WT 27° - light	flaA	171, 7184906	EGD-e Δlmo0799 - light + 0,3M NaCl	hly	0,27622443926462714
EGD-e WT 27° - light	cheR	17, 08213234	EGD-e <i>∆lmo0799</i> - light + 0,3M NaCl	inlA	1,2897869209847999
EGD-e WT 27° + blue light 455nm	mcp	5, 119773865	EGD-e <i>∆lmo0799</i> - light + 0,3M NaCl	inlB	0,9958167757034384
EGD-e WT 27° + blue light 455nm	flaA	248, 159256	EGD-e <i>∆lmo0799</i> - light + 0,3M NaCl	lmo1433	0, 41668835859245934
EGD-e WT 27° + blue light 455nm	cheR	5, 970350266	EGD-e <i>∆lmo0799</i> - light + 0,3M NaCl	opuCD	0, 5570005091894135
EGD-e WT + blue light 455nm	mcp	2, 630106211	EGD-e <i>∆lmo0799</i> - light + 0,3M NaCl	plcA	0,4407156886628733
EGD-e WT + blue light 455nm	flaA	1, 290280223	EGD-e <i>∆lmo0799</i> - light + 0,3M NaCl	prfA	1,3774572369345508
EGD-e WT + blue light 455nm	cheR	1, 198145151	EGD-e <i>∆lmo0799</i> - light + 0,3M NaCl	spx	0,6413855015526665
EGD-e WT + blue light 455nm	gpo	1, 2019560314479962	EGD-e <i>∆lmo0799</i> - light + 0,3M NaCl	trxA	1,8370369480315747
EGD-e WT + blue light 455nm	grx	0, 7794933494472744	EGD-e <i>∆lmo0799</i> - light + 0,3M NaCl	trxB	1,7553645671645175
EGD-e WT + blue light 455nm	kat	1,0611052347452419	EGD-e d0799 27° - light	mcp	2,971617937
EGD-e WT + blue light 455nm	prx	0, 9695720704709041	EGD-e d0799 27° - light	flaA	119, 5534668
EGD-e WT + blue light 455nm	sod	1, 5565185873355367	EGD-e d0799 27° - light	cheR	5,70492506
EGD-e WT + blue light 455nm + 0,3M NaCl	gpo	1, 4314020000934393	EGD-e d0799 27° + blue light 455nm	mcp	4,267534733
EGD-e WT + blue light 455nm + 0,3M NaCl	grx	0,9673390582102408	EGD-e d0799 27° + blue light 455nm	flaA	180, 6139374
EGD-e WT + blue light 455nm + 0,3M NaCl	kat	1, 4239124003155288	EGD-e d0799 27° + blue light 455nm	cheR	6, 164214611
EGD-e WT + blue light 455nm + 0,3M NaCl	prx	1, 0125208439306645			
EGD-e WT + blue light 455nm + 0,3M NaCl	sod	2, 3141176617046884			
EGD-e WT - light + 0,3M NaCl	gpo	1, 3486618533609147			
EGD-e WT - light + 0,3M NaCl	grx	0,9657602236943086			
EGD-e WT - light + 0,3M NaCl	kat	1, 5903959929475466			
EGD-e WT - light + 0,3M NaCl	prx	0,8390973177119291			
EGD-e WT - light + 0,3M NaCl	sod	1,8600013154804484			

5.4.5 qRT PCR Transkriptionsanalysen ausgewählter Testgene mit rotem Licht

Die Vorversuche zur Charakterisierung von Lmo0799 hatten gezeigt das Rotlicht einen Einfluss auf Listeria hat, der sich von den Effekten von blauem (λ = 455nm) Licht unterscheidet. Aus diesem Grund wurden die Transkriptionsanalysen der Testgene mit RNA wiederholt, die aus Kulturen gewonnen wurde, die mit rotem (λ = 625nm) statt blauem Licht bestrahlt wurden:

Abb. 5.38: Überblick der Transkriptionsänderungen der untersuchten Gene mit und ohne Salzstress sowie nach Belichtung mit rotem Licht (λ = 625nm) in EGD-e Wildtyp und Δ lmo0799 Mutante

Rotes Licht der Wellenlänge $\lambda = 625$ nm bewirkt nur eine geringe Änderung der Transkription der untersuchten Gene im Wildtyp EGD-e. Salzstress induziert im Dunklen eine erhöhte Transkription verschiedener *sigB*-abhängiger Gene. Belichtet man zusätzlich zum Salzstress mit rotem Licht, bleibt das Muster dasselbe, wird jedoch leicht verstärkt. Die Deletionsmutante $\Delta lmo0799$ zeigt im Dunklen im Wesentlichen dieselbe Transkription wie der Wildtyp. Wird sie mit rotem Licht bestrahlt werden eine Reihe von Genen deutlich verstärkt transkribiert. Wird 0,3M NaCl zugesetzt, reagiert die Mutante ebenfalls mit verstärkter Transkription der meisten untersuchten Gene. Ähnlich wie bei Bakterien, die ohne Salzstress angezogen wurden, führt Bestrahlung mit rotem Licht zu einer Verstärkung des Effektes. Die einzelnen Gene bzw. Gengruppen werden nun im Detail dargestellt:

Abb. 5.39: Transkription von prfA im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

Wildtypische Listerien reagieren nach Bestrahlung mit rotem Licht mit einer leicht-erhöhten Transkription von *prfA*, der Wert erreicht das 1,2-fache der Referenz. Salzstress führt sowohl im Dunklen als auch bei Belichtung zu einer verstärkten Transkription von *prfA* (2,3 bzw. 3,31). Die Deletionsmutante $\Delta lmo0799$ zeigt ein leicht erhöhtes Basislevel im Dunklen (1,32) bezogen auf die

Referenz. Wird sie mit rotem Licht bestrahlt, steigt der Wert unwesentlich auf 1,46. Salzstress führt auch in der $\Delta lmo0799$ Mutante zu einem erhöhten *prfA* Level; ohne Licht liegt er bei 2,48, wird zusätzlich mit rotem Licht bestrahlt, erreicht der Wert das 3-fache der Referenz.

Abb. 5.40: Transkription von hly im L. monocytogenes EGD-e Wildtyp und der Δlmo0799 Mutante

hly wird unter den untersuchten Bedingungen nur unmerklich reguliert. Die Transkription im Wildtyp steigt nach Belichtung mit rotem Licht ($\lambda = 625$ nm) auf das 1,36-fache der Referenz. Salzstress senkt den Wert auf 0,64, wird zusätzlich belichtet erreicht er 0,78 im Wildtyp. Die Deletionsmutante *Almo0799* transkribiert im Dunklen nahezu identische Mengen *hly*, der Wert beträgt 1,07, bei Belichtung mit rotem Licht 0,97. Salzstress ohne Licht senkt den Wert auf 0,69, mit Licht steigt er auf 1,18.

Abb. 5.41: Transkription von *plcA* im *L. monocytogenes EGD-e* Wildtyp und der Δlmo0799 Mutante

Licht der Wellenlänge 625nm bewirkt im Wildtyp eine erhöhte Transkription der *plcA* mRNA; der Wert liegt beim 1,54-fachen der Referenz. Salzstress senkt das Transkriptionsniveau auf 0,65 im Dunklen; bei zusätzlicher Belichtung mit rotem Licht steigt der Wert wieder auf Referenzniveau (1,01). Die Deletionsmutante $\Delta lmo0799$ zeigt kein verändertes Basislevel im Dunklen (1,09), mit rotem Licht erreicht der Wert 1,2. Wie beim Wildtyp senkt Salzstress die *plcA* Transkription (0,61), und zusätzliche Belichtung mit 625nm erhöht den Wert wieder (1,2).

Wie schon bei den Versuchen mit blauem Licht zu erkennen ist, unterscheiden sich die Transkriptionsmuster von *prfA* und der durch PrfA regulierten Gene, sie verhalten sich beinahe entgegengesetzt. Die Transkriptionsmuster von Rot- und Blaulichtversuchen ähneln sich untereinander jedoch stark.

Abb. 5.42: Transkription von inlA, inlB im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

Der Wildtyp reagiert auf rotes Licht mit erhöhter Transkription der Internaline A und B; die Werte erreichen 1,8 für *inlA* und 2,35 für *inlB*. Salzstress bewirkt ebenfalls eine verstärkte Transkription, im Dunklen liegen die Werte beim 2,92-fachen für *inlA*, bzw. beim 3,56-fachen der Referenz für *inlB*. Salzstress und rotes Licht erhöhen die Transkription auf das vierfache für *inlA* und das 5,3-fache für *inlB*. Die Deletionsmutante *Δlmo0799* transkribiert im Dunklen bereits die doppelte Menge an mRNA für inlA (2,05) und inlB (2,19). Belichtet man die Mutante mit rotem Licht, wird 6,97 mal mehr *inlA* und 9,5 mal mehr *inlB* mRNA gebildet als in der Referenz. Salzstress führt ohne Licht ebenfalls zu vermehrter Transkription von inlA (5,41) und inlB (6,52); wird zusätzlich mit rotem Licht belichtet, steigen die Werte auf das 9,04-fache für *inlA* und das 12,07-fache für *inlB*.

Ebenso wie im Versuch mit blauem Licht folgt das Transkriptionsmuster der Internaline dem von *prfA* unter denselben Bedingungen.

Abb. 5.43: Transkription von bsh im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

Nach Bestrahlung mit rotem Licht sinkt die Transkription von *bsh* im Wildtyp auf das 0,6-fache des Dunkelwertes. Salzstress führt zu einer 1,85-Fachung im Dunklen, mit Licht liegt der Wert bei 2,48. Die $\Delta Imo0799$ Mutante weist ein leicht erhöhtes *bsh* Basislevel im Dunklen auf (1,38); dieser steigt bei Belichtung mit rotem Licht auf das 5,72-fache an. Unter Salzstress transkribiert die Mutante im Dunklen die 2,05-fache Menge an *bsh* mRNA; wird zusätzlich mit rotem Licht bestrahlt, steigt der Wert auf 6,34.

Abb. 5.44: Transkription von arsC im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

Bestrahlt man den Wildtyp mit rotem Licht, so sinkt die Transkription von arsC auf das 0,78-fache der Referenz. Salzstress erhöht den Wert auf das 4,7-fache im Dunklen bzw. 6,3-fache mit rotem Licht. Das Grundniveau der $\Delta lmo0799$ Mutante liegt im Dunklen beim 1,69-fachen der Referenz. Rotes Licht erhöht den Wert auf das 3,85-fache. Salzstress ohne Licht führt zu 4,94-facher Transkriptionssteigerung, rotes Licht und Salzstress sogar zu 8,13 mal höheren *arsC* mRNA Level als in der Referenz.

Abb. 5.45: Transkription von ctc im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

ctc wird im Wildtyp nach Belichtung mit rotem Licht 1,25-fach stärker transkribiert als unter Dunkelbedingungen. 0,3M NaCl führt zu 1,43-fach erhöhter Transkription im Dunklen; wird zusätzlich mit rotem Licht bestrahlt, steigt der Wert auf 2,19. In der Mutante $\Delta Imo0799$ liegt der Basiswert im Dunklen beim 1,35-fachen der Referenz. Rotes Licht erhöht den Wert auf 2,58. Salzstress ohne Licht führt in der Mutante zu 1,79-fach erhöhter Transkription, bezogen auf die Referenz. Zusätzliche Belichtung lässt den Wert auf 3,43 ansteigen.

Abb. 5.46: Transkription von opuCD im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

Die Transkription von *opuCD* erhöht sich nach Belichtung mit rotem Licht auf 1,27. Salzstress erhöht das Level im Dunklen auf 5,59, mit Salz und rotem Licht auf 7,9. Die Deletionsmutante transkribiert im Dunklen 1,29 mal mehr *opuCD* als die Referenz. Rotes Licht erhöht den Wert auf 6,18. Salzstress ohne Licht lässt den Wert auf 5,47 steigen, rotes Licht und Salz auf 7,2.

Abb. 5.47: Transkription von Imo1433 im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

Wird der Wildtyp rotem Licht ausgesetzt, sinkt die Transkription von *lmo1433* auf das 0,88 -fache der Referenz. Salzstress ohne Licht lässt das Level auf 2,48 ansteigen, wird zusätzlich belichtet, steigt er auf 3,17. Die Deletionsmutante *Almo0799* hat ein 1,4-fach höheres Level im Dunklen. Bei Belichtung mit λ = 625nm steigt die Transkription von *lmo1433* auf 5,22. Salzstress führt in der Mutante zu 2,52-fach höherer Transkription als in der Referenz. Rotes Licht und Salz lässt die Mutante 5,39 mal soviel *lmo1433* mRNA herstellen wie der Wildtyp im Dunklen ohne Salz.

Die Transkription der SigB-abhängigen Gene ist unter Rotlichtbedingungen meist deutlich geringer, als im Versuch mit blauem Licht. Im Gegensatz zu blauem Licht induziert rotes Licht ohne Salzstress die Transkription dieser Gene jedoch nicht, in manchen Fällen ist die Transkriptionsrate sogar niedriger als in der Dunkelkontrolle. In der $\Delta Imo0799$ -Mutante liegen die Werte deutlich höher.

Abb. 5.48: Transkription von *trxA* und *trxB* im *L. monocytogenes EGD-e* Wildtyp und der $\Delta Imo0799$ Mutante

Die Transkription der Thioredoxine A und B wird im Wildtyp durch rotes Licht kaum beeinflusst; die Werte liegen auf Referenzniveau für *trxA* (1,00) bzw. knapp darunter (*trxB*: 0,77). Salzstress führt mit und ohne rotem Licht zu erhöhten Transkriptmengen; *trxA* wird ohne Licht 2,19-fach, mit Licht 2,39-fach stärker transkribiert als in der Referenz. *trxB* wird ohne Licht 2,39-fach, mit Licht 2,2-fach stärker transkribiert. Die Werte der $\Delta lmo0799$ Mutante liegen im Dunklen beim 1,4 (*trxA*) bzw. 1,85 (*trxB*) -fachen der Referenz. Rotes Licht senkt den Wert auf 1,29 für *trxA*, für *trxB* sogar auf 1,07. Salzstress ohne Licht führt in der Mutante zu erhöhten Level von *trxA* (2,63) und *trxB* (3,29) mRNA. Wird zusätzlich mit rotem Licht bestrahlt, fallen die Werte leicht ab (*trxA*: 2,65, *trxB*: 2,28).

Abb. 5.49: Transkription von spx im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

Die Transkription von *spx* wird im Wildtyp kaum durch rotes Licht beeinflusst (0,96). Salzstress erhöht den Wert auf 1,31 ohne Licht, mit rotem Licht auf 1,4. Die Deletionsmutante transkribiert im Dunklen das 1,35-fache der Referenz. Rotes Licht führt zu 2,15-fach erhöhter Transkription von *spx*. Salzstress im Dunklen beeinflusst die Transkriptmenge von *spx* der Mutante nicht, sie beträgt das 1,4-fache der Referenz. Auch bei Salzstress und rotem Licht liegt der Wert in etwa beim Wert ohne Salz mit Licht (2,21).

Abb. 5.50: Transkription von gshF im L. monocytogenes EGD-e Wildtyp und der Almo0799 Mutante

gshF wird im Wildtyp nach Bestrahlung mit rotem Licht unwesentlich schwächer transkribiert als in der Referenz (0,92). Salzstress ohne Licht steigert den Wert auf 1,7, wird zusätzlich mit rotem Licht bestrahlt, erreicht er 1,82. Das Grundniveau in der Deletionsmutante im Dunklen liegt beim 1,34-fachen der Referenz. Rotes Licht führt zu etwas niedrigerer Transkription von *gshF* (1,11), Salzstress ohne Licht erhöht den Wert etwas (1,85). Salzstress und rotes Licht resultieren in 1,61-fach erhöhter Transkription, bezogen auf die Referenz.

Abb. 5.51: Transkription von Imo0799 im L. monocytogenes EGD-e Wildtyp

Wie bei den Versuchen mit blauem Licht konnte die Transkription von *lmo0799* auch bei den Versuchen mit rotem Licht nur im Wildtyp untersucht werden. Rotes Licht hat keinen Einfluss auf die Transkription, der Wert liegt bei 1. Salzstress ohne Licht erhöht diesen leicht auf 1,56; wird zusätzlich mit rotem Licht bestrahlt, steigt der Wert weiter auf 1,7

Rotes Licht beeinflusst die Transkription der Thioredoxine und von *gshF* nicht. Sie werden bei Salzstress induziert und auch in der Deletionsmutante zeigt sich kein rotlichtabhängiger Effekt. *spx* zeigt im Wildtyp wie schon beim Versuch mit blauem Licht keine signifikant veränderte Transkription. In der Deletionsmutante wird *spx* bei Bestrahlung mit rotem Licht verstärkt transkribiert. *Imo0799* wird - wie im Versuch mit blauem Licht - durch Salzstress geringfügig Induziert.

Tabelle 5.4: Übersicht der qRT – PCR Ergebnisse von EGD-e Wildtyp und Δ lmo0799 Mutante bei Salzstress und Belichtung mit rotem Licht (λ = 625nm)

Chammer / Da dimana	7:	DO	Charman (Dad	·	7:-1	DO
FCD o WT + rod light 625pm	areC	KQ 0.7920012000061660	ECD o d0700	rod light 625nm	areC	NU 2 0E4242E07420E4EE
ECD a WT + red light 625nm	di SC hah	0.7030013090001009	EGD=e d0799	+ red light 625mm	di SC hah	5.0342423074203433
ECD o WT + red light 625nm	ush F	0.0102254519552267	EGD-e d0799	+ red light 625nm	oto	2 570117110256024
ECD o WT + red light 625nm	bly	1 2562702994220007	EGD-e d0799	+ red light 625nm	ach F	1 1121022570002210
ECD o WT + red light 625nm	inlA	1.3302702004220097	EGD-e d0799	+ red light 625nm	bly	1.1121032370902319
ECD o WT + red light 625nm	inlR	2 240200064700005	EGD-e d0799	+ red light 625nm	in] A	6 072200510210200
EGD-e WT + red light 625mm	lillb	2.340290004799003	EGD-e d0799	+ red light 625mm	inIR	0.973309319310300
EGD-e WT + red light 625mm	11100799	0.070201052002050042	EGD-e 00799	+ red light 625min	1111D	9.300700009909329
EGD-e WI + red light 625nm	Im01433	0.8/82010539839589	EGD-e d0799	+ red light 625nm	Imo1433	5.21551130289/20/
EGD-e WI + red light 625nm	opucD	1.205501/338413083	EGD-e d0799	+ red light 625nm	opuco	0.1/495059552851
EGD-e WI + red light 625nm	picA	1.5391158/8501854	EGD-e d0799	+ red light 625nm	picA	1.2004530528331248
EGD-e WI + red light 625nm	priA	1.2062631669522015	EGD-e d0799	+ red light 625nm	priA	1.4622099/3691519/
EGD-e WI + red light 625nm	spx	0.9612069839818786	EGD-e d0/99	+ red light 625nm	spx	2.1549/340059828
EGD-e W1 + red light 625nm	trxA	1.004254660073094	EGD-e d0/99	+ red light 625nm	trxA	1.291385/64830329/
EGD-e W1 + red light 625nm	trxB	0.7656498038665034	EGD-e d0/99	+ red light 625nm	trxB	1.0/4/2/6462542588
EGD-e W1 + red light 625nm + 0,3M NaCl	arsc	6.302058998640309	EGD-e d0/99	+ red light 625nm + 0,3M NaCl	arsc	8.12//52/104226/
EGD-e WT + red light 625nm + 0,3M NaCl	bsh	2.4759711003279707	EGD-e d0799	+ red light 625nm + 0,3M NaCl	bsh	6.340912116410942
EGD-e WT + red light 625nm + 0,3M NaCl	ctc	2.1860666286115102	EGD-e d0799	+ red light 625nm + 0,3M NaCl	ctc	3.4276553152735287
EGD-e WT + red light 625nm + 0,3M NaCl	gshF	1.8182572408911375	EGD-e d0799	+ red light 625nm + 0,3M NaCl	gshF	1.6053494420838095
EGD-e WT + red light 625nm + 0,3M NaCl	hly	0.7808774244241434	EGD-e d0799	+ red light 625nm + 0,3M NaCl	hly	0.969376880369548
EGD-e WT + red light 625nm + 0,3M NaCl	inlA	4.043551188209969	EGD-e d0799	+ red light 625nm + 0,3M NaCl	inlA	9.035920785067821
EGD-e WT + red light 625nm + 0,3M NaCl	inlB	5.262012151346146	EGD-e d0799	+ red light 625nm + 0,3M NaCl	inlB	12.073693155554786
EGD-e WT + red light 625nm + 0,3M NaCl	lmo0799	1.7383376463447213	EGD-e d0799	+ red light 625nm + 0,3M NaCl	lmo1433	5.392762591392943
EGD-e WT + red light 625nm + 0,3M NaCl	lmo1433	3.169037823100541	EGD-e d0799	+ red light 625nm + 0,3M NaCl	opuCD	7.196289088038903
EGD-e WT + red light 625nm + 0,3M NaCl	opuCD	7.902969341793949	EGD-e d0799	+ red light 625nm + 0,3M NaCl	plcA	1.1979862302448416
EGD-e WT + red light 625nm + 0,3M NaCl	plcA	1.099286279079969	EGD-e d0799	+ red light 625nm + 0,3M NaCl	prfA	2.991748324849637
EGD-e WT + red light 625nm + 0,3M NaCl	prfA	3.3143262252311465	EGD-e d0799	+ red light 625nm + 0,3M NaCl	spx	2.210518367394178
EGD-e WT + red light 625nm + 0,3M NaCl	spx	1.4021474412543244	EGD-e d0799	+ red light 625nm + 0,3M NaCl	trxA	2.6540619121282294
EGD-e WT + red light 625nm + 0,3M NaCl	trxA	2.3878143167377384	EGD-e d0799	+ red light 625nm + 0,3M NaCl	trxB	2.278170724003369
EGD-e WT + red light 625nm + 0,3M NaCl	trxB	2.203251204347881	EGD-e d0799	- light	arsC	1.6858875742101918
EGD-e WT - light + 0,3M NaCl	arsC	4.697074830404933	EGD-e d0799	- light	bsh	1.3829643299314316
EGD-e WT - light + 0,3M NaCl	bsh	1.8530510727397667	EGD-e d0799	- light	ctc	1.353893076981243
EGD-e WT - light + 0,3M NaCl	ctc	1.429544446209292	EGD-e d0799	- light	gshF	1.3432485169879969
EGD-e WT - light + 0,3M NaCl	gshF	1.6951191975512336	EGD-e d0799	- light	hly	1.0666496182946612
EGD-e WT - light + 0,3M NaCl	hly	0.6412980244164184	EGD-e d0799	- light	inlA	2.0515029183636457
EGD-e WT - light + 0,3M NaCl	inlA	2.9184745553555063	EGD-e d0799	- light	inlB	2.1887158043357124
EGD-e WT - light + 0,3M NaCl	inlB	3.560553480591088	EGD-e d0799	- light	lmo1433	1.4000196667338851
EGD-e WT - light + 0,3M NaCl	lmo0799	1.5565126795495972	EGD-e d0799	- light	opuCD	1.2888798543528217
EGD-e WT - light + 0,3M NaCl	lmo1433	2.4842822865775434	EGD-e d0799	- light	plcA	1.0847817494343481
EGD-e WT - light + 0,3M NaCl	opuCD	5.587135793938318	EGD-e d0799	- light	prfA	1.3222008682661417
EGD-e WT - light + 0,3M NaCl	plcA	0.6473149598435733	EGD-e d0799	- light	spx	1.3507779715206987
EGD-e WT - light + 0,3M NaCl	prfA	2.299519390400028	EGD-e d0799	- light	trxA	1.3964139084058638
EGD-e WT - light + 0,3M NaCl	spx	1.3105661082835474	EGD-e d0799	- light	trxB	1.8532564311719784
EGD-e WT - light + 0,3M NaCl	trxA	2.1924965720183947	EGD-e d0799	- light + 0,3M NaCl	arsC	4.942799678491329
EGD-e WT - light + 0,3M NaCl	trxB	2.3934553826667866	EGD-e d0799	- light + 0,3M NaCl	bsh	2.053383234705336
			EGD-e d0799	- light + 0,3M NaCl	ctc	1.792090279611181
			EGD-e d0799	- light + 0,3M NaCl	gshF	1.8530121708687544
			EGD-e d0799	- light + 0,3M NaCl	hly	0.6862804691855949
			EGD-e d0799	- light + 0,3M NaCl	inlA	5.41101686685124
			EGD-e d0799	- light + 0,3M NaCl	inlB	6.518262466439119
			EGD-e d0799	- light + 0,3M NaCl	lmo1433	2.5163759235720877
			EGD-e d0799	- light + 0,3M NaCl	opuCD	5.471349775639531
			EGD-e d0799	- light + 0,3M NaCl	plcA	0.606557865778609
			EGD-e d0799	- light + 0,3M NaCl	prfA	2.4776511263092202

EGD-e d0799 - light + 0,3M NaCl

EGD-e d0799 - light + 0,3M NaCl

EGD-e d0799 - light + 0,3M NaCl

spx

trxA

trxB

1.3982182519322075

2.6274085975506694

3.286071036640454

5.5 Invasionsversuche mit salzgestressten und blau belichteten EGD-e Wildtyp und ∆*Imo0799* Listerien in Caco-2 Enterozyten

Um die Ergebnisse der qRT-PCR Versuche zu überprüfen, wurden Infektionsversuche in Caco2-Zellen wie unter 4.3.4 beschrieben durchgeführt. Die Versuche wurden mit EGD-e WT und *Almo0799* Listerien durchgeführt, die im Vorfeld des Versuches entweder im Dunklen angezogen wurden und für 10 min mit 0,3M NaCl gestresst wurden oder zusätzlich während dieser 10 min mit blauem Licht (λ = 455nm) bestrahlt wurden. Nach der Infektion mit MOI = 10 wurden die Kolonie bildenden Einheiten (colony forming units, CFU) bestimmt und die absolute und relative Invasivität bestimmt. Für die relative Invasivität wurde der Wert der absoluten Invasion der EGD-e WT mit Salzstress im Dunklen als 100% gesetzt und die anderen Werte darauf bezogen. Nachstehend exemplarisch die Ergebnisse eines typischen Infektionsversuchs:

CFU/ml EGD-e WT		EGD-e WT	EGD-e <i>∆lmo0799</i>	EGD-e <i>∆lmo0799</i>
	+ 0,3M NaCl	+ 0,3M NaCl	+ 0,3M NaCl	+ 0,3M NaCl
	- Licht	+ 455nm blaues Licht	- Licht	+ 455nm blaues Licht
Infektionsmedium	9500000	7666666,667	12450000	8400000
Technisches Replikat 1	108333,333	155000	130000	117666,667
Technisches Replikat 2	100666,667	183666,667	129666,667	172333,333
Technisches Replikat 3	147333,333	161000	125000	156333,333
Mittelwert	118777,778	166555,556	128222,222	148777,778
Standardabweichung	20432,9678	12344,8395	2282,5154	22948,1434

Die Signifikanz wurde mittels zweiseitigem Studenten-T-Test ermittelt; der p-Wert liegt in diesem Beispiel unter 0,01.

Aus obiger Tabelle lässt sich die absolute und relative Invasivität der Bakterien ermitteln.

%	EGD-e WT + 0,3M NaCl - Licht	EGD-e WT + 0,3M NaCl + 455nm blaues Licht	EGD-e <i>Δlmo0799</i> + 0,3M NaCl - Licht	EGD-e <i>∆lmo0799</i> + 0,3M NaCl + 455nm blaues Licht
Absolute Invasion	1,2502924	2,172246377	1,02989737	1,77116402
Relative Invasion	100	173,756457	82, 372521	141,659985

Abb. 5.52: Relative Invasion in Prozent, bezogen auf den Wildtyp mit 0,3M NaCl und ohne Licht (+ -) und absolute Invasion in CFU / ml

Fasst man die fünf durchgeführten Invasionsversuche (fünf biologische Replikate mit je drei technischen Replikaten) zusammen und ermittelt die Mittelwerte und Standardabweichungen der Werte der relativen Invasionen, ergibt sich folgendes Bild:

Abb. 5.53: Mittelwerte der relativen Invasionen aus fünf unabhängigen Infektionsversuchen

Man erkennt deutlich eine Steigerung der Invasivität des Wildtyps nach Bestrahlung mit blauem Licht ($\lambda = 455$ nm) um das Doppelte (p = 0,0040853). Wird die Δ lmo0799 Mutante mit blauem Licht bestrahlt, ist sie genauso Invasiv wie der unbelichtete Wildtyp. Wird die Mutante im Dunklen angezogen, ist die Invasivität sogar noch weiter vermindert und erreicht nur rund 80% der Referenz.

6. Diskussion

Biologische Thiole, wie Thioredoxin und Glutathion, spielen eine wichtige und diverse Rolle in allen lebenden Zellen [28, 41, 151, 152]. Sie erhalten das cytoplasmatische Redox-Potential aufrecht, das für die korrekte Funktion von Enzymen und der gesamten zellulären Maschinerie essentiell ist. Dies beinhaltet auch die Regulation der Aktivität von redox-sensitiven Transkriptionsfaktoren, den sog. "thiol switches", z.B. Spx [153, 154]. Des Weiteren stellen sie Reduktionsäquivalente für Reduktasen bereit; sie fungieren dabei als Elektronendonoren. Sie sind auch bei der Proteinfaltung von Bedeutung [32] und reparieren oxidierte Proteine. Von besonderer Bedeutung sind die Thiole bei der Entgiftung gefährlicher reaktiver Sauerstoffspezies (ROS) und Peroxide. Ein Ausfall des Glutathion-Metabolismus könnte also einige dieser Funktionen beeinträchtigen.

In dieser Arbeit wurden verschiedene Mutanten von *L. monocytogenes* EGD-e untersucht, welche in Genen des Thiol:Disulfid-Redox-Metabolismus (im Folgenden als TDRM bezeichnet) oder in der oxidativen Stressantwort verändert waren: $\Delta gshF$ mit völligem Ausfall des Glutathion-Synthesewegs; *insgshF466* mit einer Insertion bei Position 466 der Glutathionsynthetase, diese Mutante synthetisiert noch das GSH-Vorläufermolekül γ -Glutamyl-Cystein; *insgpo* trägt eine Insertion in der Glutathionperoxidase und *insperR* im Repressor des Peroxidregulons. Das Hauptaugenmerk lag vor allem auf der $\Delta gshF$ -Mutante, deren Transkriptionsmuster mittels DNA-Microarray-Versuchen mit dem EGD-e Wildtyp verglichen werden sollte.

Im Verlauf der Arbeit richtete sich das Augenmerk jedoch verstärkt auf Lmo0799 das aufgrund von Sequenzhomologien als putativer Blaulichtrezeptor identifiziert wurde. Es wurde daher damit begonnen, *lmo0799* und sein Genprodukt *in vivo* näher zu charakterisieren.

6.1. Versuche zur Replikation verschiedener TDRM-Mutanten in BHI, TSB und HTM unter verschiedenen Bedingungen

Alle untersuchten Mutanten des TDRM wachsen unter allen untersuchten Bedingungen nahezu wildtypisch. Lediglich die insgshF466-Mutante wächst unter allen untersuchten Bedingungen weniger schnell und weniger dicht. Die insgshF466-Mutante synthetisiert noch das GSH-Vorläufermolekül y-Glutamyl-Cystein. GshF wurde als fusionierte Glutathionsynthetase beschrieben [42]. In den meisten anderen Bakterienarten wird die GSH-Synthese von zwei getrennt codierten Enzymen, GshA und GshB, ermöglicht, wobei GshA den GSH-Vorläufer, γ-Glutamyl-Cystein, synthetisiert. Betrachtet man das Vorkommen von GshA und GshB bzw. GshF innerhalb der Firmicutes, fällt auf, dass es lediglich GshA- oder GshF- Homologe zu geben scheint. Eine "klassische" Aufspaltung in GshA und GshB wie bei E. coli scheint in dieser Bakteriengruppe nicht vorzukommen [155]. Wird *gshB* in *E. coli* deletiert, verringert sich die Wachstumsrate um die Hälfte, wohingegen eine Deletion von gshA oder die Deletion beider Gene (*gshA* und *gshB*) keinen Einfluss auf das Wachstum hat [156]. Offenbar kann das Dipeptid-Thiol γ -Glutamyl-Cystein die Aufgaben von Glutathion (GSH) in *Listeria* nicht übernehmen, und es scheint, als würden die Thioredoxine bei vollständigem Ausfall des GSH-Metabolismus dessen Aufgaben übernehmen. Im Menschen wurde gezeigt, dass ein Ausfall der GSH-Synthetase (*gshB*) zur Anhäufung von 5-Oxoprolin (durch die γ-Glutamyl-Cyclotransferase) im Blutplasma und der cerebrospinalen Flüssigkeit führt. Dieses wird normalerweise durch die 5-Oxoprolinase wieder zu Glutamat abgebaut. Durch Ausfall der GSH-Synthetase wird jedoch mehr γ -Glutamyl-Cystein gebildet und durch die γ -Glutamyl-Cyclotransferase in 5-Oxoprolin umgewandelt als durch die 5-Oxoprolinase abgebaut werden kann, was wiederum zur Acidose führt [143]. Eine Analyse des L. monocytogenes Genoms auf evtl. vorhandene Homologe der 5-Oxoprolinase und der γ -Glutamyl-Cyclotransferase erbrachte jedoch keine eindeutigen Homologien. Lmo0458 zeigt weitgehende Homolgien zur humanen 5-Oxoprolinase, jedoch konnte kein Homolog der γ -Glutamyl-Cyclotransferase identifiziert werden. Allerdings wurde Lmo1260 als Glutamat-5-Kinase annotiert; sie wandelt Glutamat in Glutamylphosphat um. Glutamylphosphat reagiert unter physiologischen Bedingungen spontan weiter zum 5-Oxoprolin. Eine Untersuchung des pH-Wertes von BHI-Medium, in dem EGD-e Wildtyp oder *ins GshF466*-Mutante gewachsen waren, zeigte aber, dass das Medium nach Wachstum der *ins GshF466*-Mutante (pH: 6,88) sogar weniger sauer ist als beim Wildtyp (pH: 5,68). Dies macht eine intracelluläre Acidose als Ursache der Wachstumsverzögerung unwahrscheinlich. Als plausible Erklärung, die jedoch im Rahmen dieser Arbeit nicht weiter untersucht werden konnte ist eine Herunterregulierung der Expression essentieller Stoffwechselgene anzusehen.

Eine Ursache für das leicht verringerte Wachstum der *ins perR*-Mutante in BHI mit 13mM CHP konnte nicht festgestellt werden, da die Mutante in BHI, HTM, HTM mit 13mM CHP, TSB und TSB mit 13mM CHP wie der Wildtyp wächst.

6.2 Gesamttranskriptomstudien mittels DNA-Microarray

Die $\Delta gshF$ -Mutante zeigte in den Wachstumsversuchen keinen phänotypischen Unterschied zum Wildtyp. Es war jedoch kaum vorstellbar, dass eine Deletion des gesamten gshF-Genes keinen Einfluss auf das Transkriptionsprofil haben sollte. Eine Möglichkeit, den Verlust der GSH Synthese zu kompensieren, wäre eine Hochregulierung der Thioredoxine und des Thioredoxin-Metabolismus, da sich Thioredoxin- und GSH-Metabolismus viele Aufgaben teilen (siehe 2.2). Da BHI, das aus tierischem Gewebe hergestellt wird, eine gewisse Menge GSH enthält, wäre zusätzlich auch eine Aufnahme von GSH aus dem Medium denkbar. Da jedoch TSB und HTM kein GSH enthalten und die $\Delta gshF$ -Mutante auch in diesen Medien keinen Wachstumsdefekt zeigt, erschien diese Möglichkeit weniger wahrscheinlich.

6.2.1. Vergleich von *L. monocytogenes* EGD-e Wildtyp und *\(\Deltagsh\)*F

Ein völliger Verlust des GSH-Systems, wie durch Deletion von *gshF*, könnte das Transkriptionsprofil z.B. durch Modulation der Aktivität verschiedener Transkriptionsfaktoren verändern. Dies könnte durch strukturelle Veränderungen aufgrund eines negativeren intrazellulären Redoxpotentials, einer veränderten SH:Disulfid-Ratio bei Proteinen mit SH-Gruppen, oder auch dem Fehlen von Protein-S-Glutathionylierung [157] geschehen. Eine weitere Konsequenz des Fehlens von GSH könnte eine Veränderung der Konzentration an Co-Repressoren, die in die Endprodukthemmung involviert sind, sein, da die Aktivität der Biosynthese-Enzyme durch das negativere Redox-Potential gestört sein könnte. Denkbar wäre auch eine veränderte Stabilität der mRNAs, z.B. durch Störung des mRNA-Degradosoms. Des Weiteren ist davon auszugehen, dass durch das Fehlen von GSH die Detoxifizierung reaktiver Sauerstoffspezies (ROS) bzw. der Beseitigung und Reparatur der durch ROS geschädigten Makromoleküle beeinträchtigt ist. Dies sollte zu Expressionsänderungen der ROS-Abwehr- und Reparaturmechanismen führen.

Welche der genannten Reaktionswege tatsächlich nach Deletion von gshF zum Tragen kommen, sollte mittels DNA-Microarray (Transkriptionsprofilierung) untersucht werden. Dabei ergab sich ein komplexes Bild. Es wurden 92 Gene ermittelt, die in der $\Delta gshF$ -Mutante mehr als fünffach reguliert (herauf oder herunter) waren. Auffällig war dabei vor allem die Herunterregulierung der *prfA*-abhängigen Virulenzgene wie *hly, actA, plcB* oder *inlA* und *inlB*. Dies deckt sich mit Ergebnissen von S. Gopal, die für die $\Delta gshF$ -Mutante eine verminderte Invasion und Replikation in eukaryontischen Wirtszellen festgestellt hatte (S. Gopal, 2005, unveröffentlicht). Eine Transkriptionssenkung von *prfA* selbst, die dies erklären könnte, konnte in den hier durchgeführten Transkriptionsanalysen allerdings nicht beobachtet werden. Es wurde jedoch mehrfach gezeigt, dass die Expression der PrfA-regulierten Virulenzgene nicht nur von der Transkriptmenge des *prfA*-Gens abhängt. Vielmehr spielen Translationseffizienz, d.h. die Menge an PrfA-Protein und auch dessen Aktivitätszustand eine entscheidende Rolle [158-161].

Zu den am stärksten heraufregulierten (sechs- bis elffach) Genen zählen *lmo0135-7*, sie codieren für einen putativen Oligopeptidtransporter. Lmo0135 wurde vor kurzem in CtaP umbenannt.

Xayarath et al. [162] beschreiben CtaP als Cystein-Transport-assoziiertes Protein, das außerdem eine wichtige Rolle bei der listeriellen Pathogenität spielt. Zusammen mit Imo0136-7 könnte CtaP einen vollständigen Oligopeptid-ABC-Transporter bilden, der möglicherweise GSH aus dem Medium ins Zellinnere transportiert. Für E. coli wurde ein Glutathion-ABC-Transporter beschrieben (Suzuki et al., 2005), der durch yliA-D (gsiA-D) codiert wird. Eine BLAST-Suche gegen das Genom von *L. monocytogenes* EGD-e zeigt hohe Homologien (ca. 40%) von *lmo0135* zu yliB, lmo0136 zu yliC und lmo0137 zu yliD. Lediglich das Homolog von yliA, die ATP-bindende Komponente des Transporters, scheint an einem anderen Locus codiert zu sein. Die größte Übereinstimmung in der Sequenz herrscht hier zu *lmo2192*, aber auch verschiedene andere ABC-bindende Untereinheiten der diversen ABC-Transporter zeigen hohe Homologien, u.a. Imo1014, die ABC-bindende Untereinheit eines Glycin/Prolin-ABC-Transporters. Imo1014 ist laut Microarray-Analyse in der $\Delta gshF$ -Mutante das einzige Gen des Glycin/Prolin-ABC-Transporters, das Hochreguliert (mehr als dreifach) ist. Möglicherweise rekrutiert also der unvollständige GSH-ABC-Transporter lmo0135-7 die ATP-bindende Untereinheit lmo1014. Die Rekrutierung einer ATP-bindenden Untereinheit durch mehrere ABC-Transporter wurde bereits eingehend untersucht und beschrieben, vor Kurzem auch in Listeria [163]. Welche ATPbindende Untereinheit aber letztlich den putativen GSH-ABC-Transporter funktionell vervollständigt, wird sich wohl nur im Versuch klären lassen.

Man findet unter den herunterregulierten Genen auch einige, die eine wichtige Rolle in der Glykolyse spielen. Außerdem sind viele Gene der oxidativen Phosphorylierung heraufreguliert (Qox, NADH-Dehydrogenase, usw). Dies legt die Vermutung nahe, dass der Ausfall der Glykolyse, deren Ursache sich aus den hier durchgeführten Untersuchungen nicht direkt ableiten lässt, eine Heraufregulierung der oxidativen Phosphorylierung bewirkt, um den Energiestoffwechsel der Zelle weiterhin zu gewährleisten; es handelt sich also möglicherweise bei der Heraufregulierung der oxidativen Phosphorylierung nicht um eine direkte Auswirkung des Ausfalls der GSH-Synthese, sondern um einen sekundären, kompensatorischen Effekt.

Auffällig ist auch die Herunterregulierung verschiedener Phosphotransferase-Systeme (PTS) sowie zahlreicher weiterer Gene des Fructose/Mannose-Metabolismus. Es wurde beschrieben, dass die Aktivität von PrfA durch das Expressionsniveau und den Phosphorylierungszustand einiger PTS-Systeme, darunter desjenigen für die Mannose-Aufnahme, stark beeinflusst wird [164]. Die Herunterregulierung der PrfA-abhängigen Virulenzgene deutet auf einen Einfluss des GSH-Metabolismus auf die posttranskriptionelle Regulation von PrfA hin.

Die Heraufregulierung der Thioredoxine TrxA und TrxB deutet darauf hin, dass der Thioredoxinmetabolismus zumindest teilweise die Aufgaben des GSH-Metabolismus übernimmt. Die $\Delta gshF$ -Mutante zeigt keinen phänotypischen Wachstumsdefekt, auch scheinen die Zellen nicht unter deutlichem Stress zu stehen. Zwar ist das *relA*-Homolog *lmo1523*, das für eine Alarmon-Synthethase codiert [165] deutlich heraufreguliert, jedoch ist für die Auslösung einer "stringenten Antwort" auch die Aktivierung des RelA-Proteins erforderlich. Diese Aktivierung und die nachfolgende "stringente Antwort" gehen jedoch immer mit einer stark verringerten Zellteilung und der Induktion verschiedener Aminosäure-Biosynthesewege einher. Für keinen der beiden Punkte lässt sich im Wachstumsverhalten oder im Transkriptionsprofil ein Anhaltspunkt finden.

Das wildtypische Wachstum wird vermutlich durch eine Kombination aus GSH Import über den putativen GSH-ABC-Transporter *lmo0135-7* sowie eine teilweise Übernahme der Aufgaben von GSH durch den Thioredoxinmetabolismus begünstigt. Vor allem aber können die massiven Regulationsveränderungen einer Vielzahl von Genen offenbar den Ausfall des GSH-Metabolismus zu kompensieren und ermöglichen so der $\Delta gshF$ -Mutante eine neue zelluläre Homöostase.

6.2.2 Vergleich L. monocytogenes EGD-e WT und \triangle gshF mit 5mM GSHred im Medium

Die Ergebnisse der Microarray-Experimente, in denen der EGD-e Wildtyp mit der $\Delta gshF$ -Mutante verglichen wurde, zeigen deutlich, dass die Zellen mit großem transkriptionellen Aufwand den Ausfall des GSH-Metabolismus kompensieren. Die Wiederholung des Experiments mit 5mM reduziertem GSH im Medium zeigt eine fast vollständige Wiederherstellung des "Normalzustandes". Die intrazelluläre Konzentration von GSH in wildtypischen Listerien ist nicht bekannt, in den meisten Organismen liegt sie zwischen 0,2 und 20mM [166]. Nur 21 Gene konnten als reguliert (mehr als zweifach) identifiziert werden. Auffällig dabei ist das Zweikomponenten-System ResE/ResD (*lmo1947-8*). Von ResE/ResD aus B. subtilis ist bekannt, dass es für die aerobe und anaerobe Atmung von großer Wichtigkeit ist und eine Reihe von Genen transkriptionell reguliert [167]. Von ResD aus *L. monocytogenes* ist eine Beteiligung an der transkriptionellen Regulation verschiedener Gene, darunter der Cytochromoxidase bd (CydA/B, Lmo2717-8), aber auch Virulenzgene, ebenfalls bekannt [168]. Jedoch zeigten sich die oben genannten Zielgene von ResD bei Zugabe von GSH nicht verändert. Über die transkriptionelle Regulation von ResE/ResD ist bei Listeria nichts bekannt, die hier beschriebenen Ergebnisse lassen jedoch vermuten, dass das Redoxpotential eine Rolle spielt. Ebenfalls heraufreguliert sind der Ferrichrom-ABC-Transporter (fuh, lmo1957, lmo1959, *lmo1960*) sowie das Pentitol-PTS-System (*ula, lmo1971-2*), das Pentitole (z.B. Xylitol), eventuell aber auch Ascorbat aufnimmt. Auffällig sind auch *lmo1983-4* und *lmo1990*, die für verschiedene Enzyme der Aminosäuren-Biosynthese codieren, die sich aus dem Pyruvatstoffwechsel ableiten. Zusammenfassend lässt sich sagen, dass der Ausfall des GSH-Metabolismus durch extrazelluläres, reduziertes GSH in physiologisch relevanter Konzentration (z.B. 5mM) weitgehend komplementiert werden kann. Die Ursache der Regulation einiger weniger differentiell transkribierter Gene liegt vermutlich in dem durch Zugabe von außen nicht exakt zu reproduzierenden physiologischen GSH-Spiegel.

6.3 Versuche zur Lecithinase- und Hämolysin Aktivität der *AgshF* Mutante

Die Lecithinase PlcB von *L. monocytogenes* ist seit langem bekannt und gut erforscht [169]. Eine Phospholipase wird von *plcB* (*lmo0205*)codiert und liegt innerhalb der LIPI1, flankiert von *actA* und *orfX* und gehört damit zu den klassischen Pathogenitätsfaktoren von *L. monocytogenes.* Während der EGD-e Wildtyp auf Eigelbplatten weißliche Höfe um die Kolonien herum produziert, sind bei der *AgshF*-Mutante keine Höfe erkennbar. Die Höfe werden durch die Lecithinase-bedingte Abspaltung von schwer wasserlöslichem Diacylglycerin (DAG) aus dem Lecithin des Eigelbs verursacht. Dies deckt sich mit den Ergebnissen der Microarray-Analysen (siehe 6.2.1), hier ist *plcB* zehnfach herabreguliert.

LLO ist in den Microarrays in der $\Delta gshF$ -Mutante zwar ähnlich stark herabreguliert wie PlcB, da jedoch auch der Wildtyp unter den untersuchten Bedingungen nicht hämolytisch aktiv ist, konnte kein Unterschied festgestellt werden. Der PlcB-Phänotyp und die verringerte Invasivität (S. Gopal, 2005, unveröffentlicht) der $\Delta gshF$ -Mutante decken sich mit den Ergebnissen der Microarray-Analysen, in denen alle Gene der LIPI1 als stark herunterreguliert erscheinen.

In dieser Arbeit konnte gezeigt werden, dass ein Ausfall der GSH-Synthese in *Listeria* keinen auffälligen Phänotyp zur Folge hat. Es wurden jedoch sehr umfangreiche Veränderungen des Transkriptionsprofils beobachtet, offenbar konnten die Bakterien dadurch eine neue zelluläre Homöostase erreichen. Physiologische Mengen von GSH im Medium komplementierten den Ausfall der GSH-Synthese fast vollständig.

Die Entdeckung eines Blaulichtrezeptors in einem nicht photosynthetisch aktiven Bakterium wie Listeria monocytogenes war zunächst sehr bemerkenswert. Eine Literatursuche förderte aber einige Beispiele aus anderen Spezies zu Tage. Die Arbeiten von Aba Losi zum Blaulichtrezeptor YtvA aus B. subtilis lieferten erste Anhaltspunkte, um Lmo0799 näher zu charakterisieren. Neben ihren Arbeiten zu YtvA beschäftigte sie sich aber auch mit der Verbreitung von Lichtrezeptoren in Bakterien [170]. Ihre Datenbankrecherche zeigte, dass 278 Bakterienarten bzw. -stämme putative Photorezeptoren in ihrem Genom codieren, die rotes oder blaues Licht wahrnehmen können. Die meisten davon sind Phototrophe, für die die Wahrnehmung von Licht essentiell ist, um die Synthese der Photopigmente bzw. Antennenkomplexe regulieren zu können. Aber auch für nicht-phototrophe Bakterien kann es wichtig sein, Licht – insbesondere blaues Licht - wahrnehmen zu können. Blaues Licht dringt am tiefsten in die Wassersäule ein und stellt damit den dominantesten Lichtreiz überhaupt dar. Des Weiteren absorbieren die ubiquitär verbreiteteten Porphyrine Licht in diesem Spektralbereich. Diese Protein-Cofaktoren neigen deshalb in der Anwesenheit von Sauerstoff dazu, hoch reaktiven Singulett-Sauerstoff und andere reaktive Sauerstoff-Spezies zu bilden. Aus der Notwendigkeit heraus, diese oxidative Schädigung zu vermeiden, könnte sich eine größere Vielzahl von Blaulichtrezeptoren entwickelt haben.

6.4. Charakterisierung von Imo0799

Der Sequenzvergleich zwischen Imo0799 und ytvA von Bacillus subtilis zeigt 49% Identität und 67% Ähnlichkeit und somit eine signifikante Homologie über den gesamten Bereich. Eine Domänenanalyse zeigt N-terminal eine LOV-Domäne sowie C-terminal eine STAS-Domäne. Auch das essentielle Cystein [128] an Position 62 in ytvA ist in *lmo0799* konserviert, allerdings an Position 56. Neben dem essentiellen Cystein sind jedoch auch noch die Aminosäurereste R63 und R79 für die Bildung des Photoadduktes zwischen dem FNM-Chromophor und YtvA wichtig [123]. Ein Alignment (siehe 5.4) zeigt, dass ein konserviertes Arginin an Position 73 (entsprechend R79 in ytvA) in Listeria vorhanden ist. An Position 57 folgt auf das essentielle Cystein jedoch ein Histidin statt eines Arginins in Lmo0799. Histidin und Arginin haben sehr polare Seitenketten. Wichtig für die Funktion in der LOV-Domäne ist jedoch die Guanidingruppe des Arginins. Diese Funktion könnte der Imidazolring des Histidins ebenfalls übernehmen, da dieser unter physiologischen Bedingungen sowohl als Protonendonor als auch als Protonenakzeptor fungieren kann. Die meisten Aminosäurereste die in der Literatur [171, 172] als wichtig für die Funktion der LOV-Domäne, der Linkerregion oder der STAS-Domäne von YtvA für wichtig erachtet wurden, sind in Lmo0799 hoch konserviert. In silico sind somit alle Voraussetzungen für einen Blaulichtrezeptor erfüllt.

6.4.1 Konstruktion einer Deletionsmutante für Imo0799

Die Überprüfung der Deletion von *lmo0799* mittels PCR und Sequenzierung zeigte, dass das Genprodukt von 253 Aminosäuren auf sieben verkürzt wurde. Die Up- und Downstream gelegenen Gene (*lmo0800* bzw. LysRS) sowie die Promotor- und Terminatorregion von *lmo0799* blieben durch die Deletion unverändert. Polare Effekte der Deletion können deshalb ausgeschlossen werden.

6.4.2 Wachstumsversuche in BHI

Das Wachstumsverhalten der $\Delta lmo0799$ -Mutante in BHI entspricht dem des EGD-e Wildtyps, und zwar sowohl im Dunklen als auch bei Bestrahlung mit blauem Licht. Allerdings war bei Anzucht in flüssigem BHI in der exponentiellen Phase eine gewisse Wachstumshemmung bei den belichteten Kulturen zu beobachten, der bei fortschreitender Kulturdauer (d.h. in der stationären Phase) nicht mehr festzustellen war. Dieser ist möglicherweise auf Lichtstress und daraus resultierend die vermehrte Bildung toxischer ROS [173, 174] in den belichteten Kulturen zurückzuführen. Wurden die Bakterien auf BHI-Agar angezogen und mit blauem oder rotem Licht bestrahlt, bewirkte Blaulicht eine deutliche Wachstumshemmung. Der Effekt war nach 18h sichtbar und nach 36h maximal ausgeprägt. Der Unterschied zwischen Anzucht in flüssigem Medium und auf Agarmedium lässt sich derzeit nicht erklären. Da das Augenmerk zum ersten Mal in der Δ gshF-Mutante auf *lmo0799* fiel, erschien ein Zusammenhang mit dem TDRM als sehr wahrscheinlich. Die Untersuchung der Empfindlichkeit gegenüber H₂O₂ und Diamid mittels Disk-Diffusion-Assay zeigte sowohl im EGD-e Wildtyp als auch in der Δ *lmo0799*-Mutante einen deutlichen Effekt bei Bestrahlung mit blauem Licht verglichen mit der Dunkelkontrolle, beide Stämme reagierten unter Blaulichteinfluss signifikant empfindlicher auf H₂O₂ und Diamid als im Dunklen. Denkbar ist auch hier, dass durch Blaulicht zusätzlich ROS generiert werden [173, 174], die zusätzlich zum Peroxid- oder Diamidstress das Wachstum hemmen. Dafür sprechen auch die Ergebnisse der Versuche mit rotem Licht. Die Reaktion von EGD-e Wildtyp und Δ *lmo0799*-Mutante auf Diamid ist bei Belichtung mit rotem Licht weniger empfindlich als in der Dunkelkontrolle, jedoch sind die Unterschiede hier nicht signifikant. In der Reaktion auf H₂O₂ bei Bestrahlung mit rotem Licht unterscheiden sich EGD-e Wildtyp und Δ *lmo0799*-Mutante; der Wildtyp reagiert bei Bestrahlung mit rotem Licht empfindlicher auf H₂O₂ als in der Dunkelkontrolle. Die Δ *lmo0799*-Mutante reagiert hingegen im Dunklen empfindlicher auf H₂O₂ als bei rotem Licht.

Die Toleranz gegenüber Gallenextrakt unterscheidet sich zwischen EGD-e Wildtyp und $\Delta lmo0799$ -Mutante deutlich. Im Wildtyp verringern die Gallensalze sowohl mit als auch ohne blaues Licht die Anzahl der überlebenden Bakterien. Die Kontrolle ohne Gallenextrakt zeigt keinen Unterschied zwischen belichteten und unbelichteten Kulturen. In der $\Delta lmo0799$ -Mutante zeigt sich ein interessanter Unterschied zwischen belichteten und unbelichteten kulturen, unabhängig vom Zusatz von Gallenextrakt. Die Gallensalzhydrolase (Bsh, bile salt hydrolase) von *Listeria monocytogenes* wird PrfA-abhängig exprimiert und ihre Aktivität hängt vom Sauerstofflevel direkt ab [175]. Die Transkription von *bsh* ist aber auch σ^{B} -abhängig [176]. In dieser Arbeit konnte gezeigt werden, dass die Transkription von *bsh* auch durch Licht (blau und rot) moduliert wird (siehe 5.4.4) So führt blaues Licht zusammen mit Salzstress zu stark erhöhten Transkriptionsleveln von *bsh* sowohl im Wildtyp als auch in der $\Delta lmo0799$ -Mutante(siehe 5.4.4), wohingegen die Transkription durch Salzstress im Dunklen reduziert wird.

Lichtreaktionen sind bei Bakterien meist an Bewegung gekoppelt, sei es photophob oder photophil. Die Untersuchung der Motilität von *Listeria monocytogenes* EGD-e Wildtyp und $\Delta lmo0799$ -Mutante zeigt einen eindeutigen Phänotyp. Wurden die Stämme bei 27°C inkubiert, unterschieden sich die Koloniegrößen im Dunklen nicht, jedoch wachsen Wildtypkolonien bei Bestrahlung mit blauem Licht nur ca. halb so groß; die Kolonien der Mutante hingegen erreichen dieselbe Größe wie im Dunklen. Sowohl der EGD-e Wildtyp als auch die $\Delta lmo0799$ -Mutante waren bei 37°C unbeweglich, d.h. dass die Blaulichthemmung der Motilität nur in der Umwelt, nicht aber bei der Infektion von Warmblütern eine Rolle spielen kann. Dieser Phänotyp ist eindeutig Blaulicht- und Lmo0799-abhängig, da sich die Motilität von Mutante und Wildtyp bei Rotlicht nicht unterscheidet. Es handelt sich bei dieser Lichtreaktion nicht um (negative) Phototaxis, Versuche mit seitlicher Belichtung erbrachten kein "Richtungswachstum" (Daten nicht gezeigt).

6.4.4 qRT PCR Transkriptionsanalysen ausgewählter Testgene und Invasionsversuche in Caco-2 Enterozyten

Die initialen Versuche zur Charakterisierung von *lmo0799* zeigen bereits einen deutlichen Einfluss von blauem Licht (λ = 455nm) auf den EGD-e Wildtyp und die Δ *lmo0799*-Mutante. Um die Rolle von Δ *lmo0799* im metabolischen und regulatorischen Netzwerk von *L. monocytogens* genauer zu untersuchen, wurden qRT-PCR Transkriptionsanalysen ausgewählter Gene durchgeführt. Diese lassen sich wie folgt in Gruppen einteilen:

- *prfA*, *hly* und *plcA* als PrfA-abhängige Virulenzgene
- *inlA, inlB* und *bsh* als Gene unter doppelter Transkriptionskontrolle durch SigB und den Virulenzregulator PrfA [148]

- *arsC, opuCD* (letztes Gen der *opuC*-Transkriptionseinheit) und *lmo1433* als nachgewiesener-maßen stark SigB-regulierte Gene [149, 150]
- *ctc* als generelles und SigB-reguliertes Stressgen, mit dem auch alle Experimente an *B. subtilis* durchgeführt wurden
- *trxA, trxB* und *gshF* als Schlüsselgene des TDRM. Für *trxB* von *B. subtilis* war zudem eine Kontrolle durch den redox-sensitiven Regulator Spx gezeigt worden, welcher zudem die Transkription von *ytvA* steuert [127, 128]
- *spx* und *lmo0799* selbst

Die Gruppe der PrfA-abhängigen Virulenzgene prfA, hly und plcA reagierte im Wildtyp nur schwach auf blaues Licht. Auch Salzstress ohne Belichtung hatte kaum Auswirkungen. Salzstress und blaues Licht führten zu einer ca. dreifach erhöhten Transkription von *prfA*, wohingegen *hly* und *plcA* auch hier kaum differenziell transkribiert werden. *prfA* reagiert in der $\Delta lmo0799$ -Mutante unter den untersuchten Bedingungen mit blauem Licht mit einem sehr ähnlichen Transkriptionsprofil wie im Wildtyp, nur jeweils etwas "gedämpft", sprich abgeschwächt. Bereits das Referenzniveau liegt etwas niedriger als im Wildtyp. Von Listeria ist bekannt, dass zumindest einer der zahlreichen Promotoren (prfAp₂), die die Transkription von PrfA regulieren, SigB-abhängig ist [177]. Dies zeigt erneut, wie schon beim Einfluss von Glutathion diskutiert (siehe 6.2.1), dass der Einfluss von PrfA auf die Transkription sog. PrfA-abhängiger Gene nicht nur von der Transkriptmenge von *prfA* abhängt. Kazmierczak et al. [178] untersuchten 2006 den Einfluss von Salzstress (0,3M NaCl) auf *prfA* und *plcA* mittels qRT-PCR, jedoch in der frühen beobachteten dabei exponentiellen Phase. Sie keine signifikante Erhöhung der Transkriptmengen von prfA und plcA. Sie verwendeten dabei allerdings die Methode der absoluten Quantifizierung der Transkriptmengen sowie einen älteren Cycler, der nur Unterschiede zwischen Transkriptmengen, die größer als zweifach sind, messen kann. Daher erschien ihnen der Unterschied evtl. als nicht signifikant.

Die Gruppe der SigB-regulierten Gene gibt ein uniformeres Bild ab. Im EGD-e Wildtyp wurden sie alle durch blaues Licht leicht verstärkt transkribiert. Das *opuCD*-Transkriptionslevel war um das Doppelte erhöht, die *inlA* und *inlB* –Level sogar um das 3- bzw. 4,5-fache. Salzstress, ein klassischer Induktor der SigB-Antwort [176, 179, 180] induzierte im Dunklen die SigB-abhängigen Gene jedoch nicht, das Transkriptionslevel sinkt in den meisten Fällen sogar etwas ab. Erst wenn zusätzlich mit blauem Licht bestrahlt wird, steigt die Transkription deutlich an, insbesondere bei *inlA, inlB, bsh, arsC, ctc* und *lmo1433*. Betrachtet man die SigB-abhängigen Gene in der Deletionsmutante fällt wie schon bei den PrfA-abhängigen Genen auf, dass die Tendenzen unter den untersuchten Bedingungen die gleichen wie im Wildtyp bleiben, jedoch sind die Werte insgesamt geringer, man könnte wieder von einer "gedämpfteren" Antwort sprechen. Offensichtlich stellt blaues Licht einen wichtigeren oder upstream gelegeneren Auslöser für die SigB-Antwort dar als Salzstress. Diese Erkenntnis stellt viele bereits publizierte Ergebnisse zum SigB-Regulon von *Listeria* in einem anderen Licht dar, da bisher nie auf kontrollierte Lichtbedingungen geachtet wurde.

Die Thioredoxingene trxA und trxB reagieren differenziell auf blaues Licht. Das Transkriptionslevel von trxB sinkt bei Bestrahlung mit blauem Licht mit und ohne Salzstress leicht ab, verglichen mit den Dunkelwerten. trxA hingegen zeigt eine leicht erhöhte Transkription in blauem Licht und auch im Salzstress bleibt das Transkriptionslevel mit und ohne Licht nahezu identisch. Die Thioredoxine werden wie erwartet durch Salzstress induziert, blaues Licht scheint kaum Einfluss auf ihre Transkription zu haben. In der $\Delta lmo0799$ -Mutante verstärkt sich der negative Effekt auf trxB; ohne Salzstress wird es um mehr als das Doppelte herunterreguliert. Auch mit Salzstress ist der negative Effekt von blauem Licht auf trxB deutlich stärker als im Wildtyp.

Die Untersuchung von *spx, gshF* und *lmo0799* mit und ohne blaues Licht sowie mit und ohne Salzstress zeigt allenfalls einen geringfügigen Einfluss von Licht und Salz auf die Transkription. *spx* scheint durch blaues Licht unter Salzstress leicht verstärkt transkribiert zu werden, *gshF*
wird in der $\Delta lmo0799$ -Mutante bei Bestrahlung mit blauem Licht um das Doppelte herunterreguliert. *lmo0799* scheint durch Salzstress leicht induziert zu werden. Alle anderen untersuchten Bedingungen modulieren die Transkription von *spx, gshF* und *lmo0799* nur unwesentlich.

Die Ergebnisse der bisherigen qRT-PCR-Experimente deuten auf eine wichtige Rolle des Blaulichtrezeptors in der SigB-abhängigen Stressantwort auf Umwelt-Stress hin. Um diese Theorie zu prüfen, wurden weitere qRT-PCR-Experimente durchgeführt und die Transkription der für die oxidative Stressantwort wichtigen Gene *kat, sod, prx, grx* und *gpo* im EGD-e Wildtyp unter Salzstress und mit und ohne Belichtung mit blauem Licht untersucht. Dabei zeigte sich, dass diese Gene unter den untersuchten Bedingungen in ihrer Transkription kaum moduliert werden, lediglich *sod* reagiert auf blaues Licht und Salzstress mit einer Heraufregulierung über den Schwellenwert von mehr als zweifach.

Den deutlichsten Phänotyp zeigt die $\Delta Imo0799$ -Mutante im Motilitätsassav nach Bestrahlung mit blauem Licht bei 27°C. Um dies näher zu untersuchen, wurden gRT-PCR Experimente mit dem EGD-e Wildtyp und der ∆lmo0799-Mutante bei 27°C und 37°C und mit und ohne blaues Licht durchgeführt. Als Testgene wurden *flaA, mcp* und *cheR* ausgewählt. FlaA, das Flagellin von Listeria, ist der Hauptbaustein der Flagelle und damit Grundvoraussetzung für die Motilität. CheR von B. subtilis ist eine Methyltransferase, die den Membranrezeptor (Mcp, Lmo0723) während der chemotaktischen Antwort methyliert. CheR von L. monocytogenes weist eine 47prozentige Ähnlichkeit zu CheR von *B. subtilis* auf [181]. Transkriptionsstudien von Michel et al. [181] zeigten eine 10-fach höhere Expression von cheR und flaA im Wildtyp bei 25°C als bei 37°C. Die gRT-PCR Experimente im Rahmen dieser Arbeit zeigen eine 171- bzw. 248-fach höhere Transkription von *flaA* bei 27° als bei 37°C, im Dunklen bzw. bei Belichtung mit blauem Licht. Die Transkription von cheR ist im Wildtyp im Dunklen bei 27°C 17-fach erhöht verglichen zum Wert bei 37°C im Dunklen. Bei Belichtung mit blauem Licht liegt die Transkription bei 27°C sechsmal höher als bei 37°C. Mcp (Lmo0723), das Methyl-Accepting-Protein, wird bei bei Belichtung immer etwas stärker transkribiert als in der entsprechenden Dunkelkontrolle. Die $\Delta lmo0799$ -Mutante zeigt bei 27°C im Dunklen als auch bei Belichtung nahezu identische Werte, sie entsprechen weitestgehend den Werten des Wildtyps bei 27°C und Belichtung. Die Temperaturregulation der Flagellen-vermittelten Motilität wird in L. monocytogenes durch ein komplexes Zusammenspiel des Responseregulators DegU, des Transkriptionsrepressors MogR und des Antirepressors GmaR gesteuert [182-184]. Dabei erfolgt die Regulation über die Transkription des umfangreichen Genclusters, welches Proteine für Flagellenbiogenese und Chemotaxis kodiert. Der Motilitätsverlust bei 37°C geht dabei immer mit einer drastischen Herunterregulierung der Transkription von *flaA* einher. Eine solche Herunterregulierung von flaA wurde bei Bestrahlung mit Blaulicht nicht beobachtet. Der Motilitätshemmung muss hier also ein anderer Mechanismus zugrunde liegen. Andere Beispiele für eine veränderte Motilität unabhängig von der flaA-Transkription wurden beschrieben [141], insbesondere auch ein negativer Einfluss von SigB [185]. Da, wie gezeigt, Blaulicht das SigB-System aktiviert, könnte dies den beobachteten Effekt gut erklären, der genaue Mechanismus ist aber noch ungeklärt.

Wiederholt man die qRT-PCR-Experimente mit rotem Licht ($\lambda = 625$ nm) wird deutlich, dass es einen wesentlich geringeren Einfluss auf die Transkription der untersuchten Gene hat als es bei blauem Licht der Fall ist. Das Transkriptionsprofil von *prfA* ist für EGD-e Wildtyp und $\Delta lmo0799$ -Mutante nahezu identisch zum Versuch mit blauem Licht. Der Effekt scheint bei *prfA* also nicht von der Wellenlänge des Lichts oder der Aktivität des Blaulichtrezeptors Lmo0799 abzuhängen. Auf *hly* und *plcA* scheint rotes Licht einen Effekt zu haben; ohne Salzstress steigt das Transkriptionsniveau leicht an, blaues Licht hatte hier keinen Effekt. Unter Salzstress gleichen sich die Werte der Rot- und Blaulichtversuche wieder. In der $\Delta lmo0799$ -Mutante liegt der Level in allen untersuchten Bedingungen etwas höher als im Versuch mit blauem Licht, das Transkriptionsprofil ist jedoch nahezu identisch. Die *prfA*-abhängigen Gene werden also durch Licht und Salzstress in ihrer Transkription reguliert, dabei ist die Wellenlänge unter Salzstress oder in der $\Delta lmo0799$ -Mutante jedoch anscheinend nicht von Bedeutung. Insgesamt sind die Transkriptionsunterschiede sehr gering.

Die Transkription der Internaline A und B wird durch rotes Licht weniger stark angeregt als durch blaues Licht, dennoch ist eine deutliche Transkriptionssteigerung im Vergleich zu den Dunkelkontrollen sichtbar. Möglicherweise ist dies durch die Methode der Auswertung zu erklären, die relative Quantifizierung ermöglicht es, Aussagen über Herauf- oder Herabregulierung der Transkription von Genen zu treffen. Die absoluten Werte (z.B. ng cDNA) werden dabei nicht berücksichtigt. Eine Versuchsbedingung wird zur Referenz erklärt, in dieser Arbeit wurde das Transkriptionslevel des EGD-e Wildtyps im Dunklen gewählt. Normalisiert wurde über das Referenzgen rpoB. Ein Housekeeping-Gen sollte immer und unter allen Bedingungen gleich transkribiert werden. Für *rpoB* ist bekannt, dass dem nicht immer so ist. Dennoch wurde *rpoB* als Referenzgen in zahlreichen Publikationen verwendet, und die Verwendung von *rpoB* als Referenz bei Versuchen zur Stressantwort in *L. monocytogenes* wurde eingehend diskutiert und akzeptiert [176, 186, 187]. Auffällig ist die stark erhöhte Transkription von *inlA* und *inlB* in der $\Delta Imo0799$ -Mutante bei Bestrahlung mit rotem Licht. Zwar liegt das Grundniveau in diesem Versuch wiederum leicht erhöht, jedoch steigt die Transkription von inlB in der Mutante bei Salzstress und rotem Licht auf das 12-fache der Referenz. Der Effekt von rotem Licht kommt also insbesondere in der $\Delta Imo0799$ -Mutante zum Tragen, wie sich auch bei der Betrachtung der SigB-abhängigen Gene zeigt.

Im Wildtyp werden SigB-abhängige Gene durch rotes Licht nicht in ihrer Transkription moduliert; *bsh, arsC* und *lmo1433* werden sogar etwas schwächer transkribiert als in der Referenz. Salzstress induziert alle untersuchten SigB-abhängigen Gene, jedoch ist der Unterschied zwischen Dunkelkontrollen und belichteten Proben relativ gering. In der $\Delta lmo0799$ -Mutante erreicht die Transkription von z.B. bei *bsh, arsC* und *opuCD* bei rotem Licht sehr hohe Werte, verglichen mit dem Wildtyp. Zusammen mit den Ergebnissen der Blaulicht-Versuche deutet dies verstärkt auf einen Zusammenhang zwischen dem Blaulichtrezeptor Lmo0799 und der SigB-abhängigen Stressantwort hin. Für YtvA von *B. subtilis* wurde dieser Zusammenhang bereits gezeigt [126, 127, 136]. Rotes Licht beeinflusst die Transkription der Thioredoxine und *gshF* nicht. Sie werden bei Salzstress induziert und auch in der Deletionsmutante zeigt sich kein rotlichtabhängiger Effekt. *spx* zeigt im Wildtyp wie schon beim Versuch mit blauem Licht keine signifikant veränderte Transkription. In der Deletionsmutante wird *spx* bei Bestrahlung mit rotem Licht verstärkt transkribiert. *lmo0799* wird wie im Versuch mit blauem Licht durch Salzstress geringfügig induziert.

Betrachtet man die Ergebnisse aller qRT-PCR-Experimente von *L. monocytogenes* EGD-e Wildtyp und $\Delta lmo0799$ -Mutante in dieser Arbeit, wird deutlich, dass blaues Licht im Wildtyp eine deutliche Aktivierung des SigB-Regulons zur Folge hat. Man könnte ebenfalls folgern, dass der Reiz durch blaues Licht ein größeres Gewicht hinsichtlich der Auslösung der SigB-Antwort hat als es NaCl-Stress hat. Insbesondere die sehr schwache SigB-Antwort (Transkription der SigBabhängigen Gene) auf den klassischen Induktor NaCl-Stress im Dunklen und die verstärkte Antwort bei Bestrahlung mit blauem Licht machen dies deutlich. Zusammen mit den Erkenntnissen über YtvA aus *B. subtilis*, den Sequenzhomologien zwischen YtvA und Lmo0799 sowie den Vorversuchen zur Motilität sind ausreichend Indizien gesammelt, um Lmo0799 als Blaulichtrezeptor von *L. moncytogenes* zu annotieren, und daher in LBlue umzubenennen.

Die Ergebnisse der Infektionsversuche bestätigen die Ergebnisse der Real-Time Experimente hinsichtlich der Internaline. EGD-e Wildtyp Listerien, die unter Salzstress mit blauem Licht bestrahlt wurden, wiesen eine doppelt so hohe Invasivität in Caco-2 Enterozyten auf wie wildtypische Listerien die im Dunkeln mit Salzstress angezogen wurden bzw. wie Δlmo0799-Zellen, die unter Salzstress und mit blauem Licht angezogen wurden (siehe 5.5). Die Transkription der Internaline war im Wildtyp unter Salzstress bei Belichtung mit blauem Licht rund 4-fach höher als im Dunklen unter Salzstress. InlA und InlB sind oberflächenassoziierte Proteine, sie werden Sec-abhängig an die Oberfläche transportiert [188]. Neben posttranslationaler Regulation spielt deshalb posttranskriptionaler und auch die Translokationseffizienz eine Rolle bei der Expression der Internaline (A. Frenzen, Dissertation, 2007, dieser Lehrstuhl) [189]. Denkbar ist auch, dass die Oberfläche, die neben Internalinen eine große Vielzahl von Proteinen trägt, trotz verstärkter Transkription bzw. Expression bereits mit Internalin A gesättigt ist oder dass ab einem gewissen Schwellenwert von InlA keine Erhöhung der Invasivität mehr stattfindet. Diese Punkte erklären den Unterschied zwischen der stark erhöhten Transkription der Internaline und der vergleichsweise "geringen" Erhöhung der Invasivität des Wildtyps. Die $\Delta Imo0799$ -Mutante zeigte ebenfalls eine leicht erhöhte Transkription der Internaline nach Bestrahlung mit blauem Licht, während die Werte im Dunklen so hoch waren wie im Wildtyp. Dies lässt vermuten, dass die Modulation der Invasivität durch blaues Licht möglicherweise noch durch einen anderen Faktor bestimmt wird, der im Rahmen dieser Arbeit nicht untersucht wurde.

Vor Kurzem veröffentlichten Ávila-Pérez und Kollegen [147], dass auch rotes Licht eine SigB-Antwort in B. subtilis auslöst. Sie berichteten, dass diese Antwort über den in Bacillus vorhandenen zweiten Arm der Rsb-Signalkaskade, die für Energiestress zuständig ist, über RsbP/Q funktioniert. Sie konnten jedoch den genauen Mechanismus nicht erklären, postulierten jedoch das Vorhandensein eines bis dato unbekannten Chromophors, das rotes Licht wahrnimmt und RsbP direkt aktiviert. Im Gegensatz zu YtvA soll dieses Chromophor ein breiteres Spektrum von Licht wahrnehmen können, aber auch höhere Lichtintensitäten benötigen [147]. In dieser Arbeit wurden ebenfalls rotlicht-abhängige Effekte auf die Transkription verschiedener Gene sowie die Stressresistenz gegen Peroxide und oxidativen Stress beobachtet. Im EGD-e Wildtyp verstärkte rotes Licht die Transkription SigB-abhängiger Gene nur in Anwesenheit von Salzstress minimal. Auffällig hingegen war die verstärkte Transkription der Internaline und einiger SigB-abhängiger Gene in der $\Delta lmo0799$ -Mutante. Im Wildtyp waren Rotlicht-abhängige Effekte nur in Verbindung mit Salzstress zu beobachten (arsC, bsh, opuCD, lmo1433), in der $\Delta lmo0799$ -Mutante hingegen auch ohne Salzstress. Dies deutet darauf hin, dass Lmo0799 im Wildtyp den Effekt von rotem Licht verhindert, solange kein zusätzlicher Reiz (z.B. Salzstress) eine SigB-Antwort induziert. Fehlt Lmo0799, wird die SigB-Antwort auch ohne zusätzlichen Reiz induziert, verstärkt sich jedoch, wenn ein solcher auftritt. Wie Listeria rotes Licht wahrnimmt, konnte nicht geklärt werden. Eine Analyse der Genomsequenz zeigte keine Proteine mit eindeutiger Ähnlichkeit zu bekannten Rotlichtrezeptoren (Phytochrome), jedoch wäre ein Rezeptor mit ungewöhnlicher, bisher unbekannter Struktur denkbar.

Betrachtet man die Erkenntnisse, die über YtvA in *B. subtilis* gewonnen wurden [126, 130, 137, 139, 140, 190, 191], und die Ergebnisse dieser Arbeit, so ist ein Zusammenhang zwischen LBlue und dem SigB-Regulon nicht von der Hand zu weisen. In *B. subtilis* agiert YtvA als Aktivator der RsbT-Kinase nach Belichtung mit blauem Licht. RsbT ist essentieller Bestandteil des Stressosoms und der SigB-Antwort in *B. subtilis*, indem es die Phosphatase RsbU aktiviert, welche wiederum RsbV dephosphoryliert [130]. RsbV, der Anti-Anti-Sigma-Faktor, rekrutiert daraufhin RsbW, das σ^{B} bis dato komplexiert und damit inaktiviert hat. Bisher ist nichts über ein Stressosom in *Listeria* bekannt; auch sind bisher keine RsbR-Homologe beschrieben. Bei einer Analyse der Genomsequenz von *L. monocytogenes* EGD-e konnten jedoch mehrere eindeutige Orthologe von *B. subtilis* RsbR identifiziert werden (J. Kreft, persönliche Mitteilung):

Bs_RsbRA	-MMSNQTVYQFIAENQNELLQLWTDTLKELSEQESYQLT-DQVYENISKEYID	51
Lm RsbR	MYKDFANFIRTNKADLLNDWMNEMEKQSDQLINDIAKEAMYEETSKEFVD	50
Bs_RsbRB	-MKLNEKLYAFFSEHVEQMAEEWIETMEESDPNSLYALHNATVTEELKEQDREFYRHLNY	59
Bs_RsbRC	-MAKNKKLFEYLSQHAETISSTWYETIEETDPNSIYASTDPVVIHNLKSQNLAFNYKINR	59
Bs RsbRD	MIALDQHLTEHKKDITQQWLEVCTSNGSWLYSAKDQQKLGQKLKDQHELLVTIVAK	56
Lm Lmo0161	MNESNGSMELYLREHTEEIINNWLSKIYENTYTSFVYSPQYKDELRADSEQTADLII	57
Lm_Lmo1842	MGIMNSLLKQKEMVVKDWLTYYVSVDDPYIFTLKNDHRLMDETGFVLE	48
Lm_Lmo1642	MQIKEFLISRRSELVNMFYENYYSETDEFKLRLSSGEEEVSIRALSTA	48
_		
Bs_RsbRA	ILLLSVKDE-NAAESQISELALRAVQIGLSMKFLATALAEFWKRLYTKMNDKRL	104
Bs_RsbRA Lm_RsbR	ILLLSVKDE-NAAESQISELALRAVQIGLSMKFLATALAEFWKRLYTKMNDKRL LIVSNVTENGSKFNEKLDDFAEKVVHLGWPIHFVTTGLRVFGLLVYTAMRDEDLFLKR	104 108
Bs_RsbRA Lm_RsbR Bs_RsbRB	ILLLSVKDE-NAAESQISELALRAVQIGLSMKFLATALAEFWKRLYTKMNDKRL LIVSNVTENGSKFNEKLDDFAEKVVHLGWPIHFVTTGLRVFGLLVYTAMRDEDLFLKR MYVLPEKQFLEEFQEWVIELTNDQKHLDTPVQYVIREFMRNRRLYTKYFEKFAEENESAF	104 108 119
Bs_RsbRA Lm_RsbR Bs_RsbRB Bs_RsbRC	ILLLSVKDE-NAAESQISELALRAVQIGLSMKFLATALAEFWKRLYTKMNDKRL LIVSNVTENGSKFNEKLDDFAEKVVHLGWPIHFVTTGLRVFGLLVYTAMRDEDLFLKR MYVLPEKQFLEEFQEWVIELTNDQKHLDTPVQYVIREFMRNRRLYTKYFEKFAEENESAF IFIDDEDVYLPILKEWAFEVTQDQEHLKTPIHYIIREFVRVRDLYVSYVKEFVHLNQNTV	104 108 119 119
Bs_RsbRA Lm_RsbR Bs_RsbRB Bs_RsbRC Bs_RsbRD	ILLLSVKDE-NAAESQISELALRAVQIGLSMKFLATALAEFWKRLYTKMNDKRL LIVSNVTENGSKFNEKLDDFAEKVVHLGWPIHFVTTGLRVFGLLVYTAMRDEDLFLKR MYVLPEKQFLEEFQEWVIELTNDQKHLDTPVQYVIREFMRNRRLYTKYFEKFAEENESAF IFIDDEDVYLPILKEWAFEVTQDQEHLKTPIHYIIREFVRVRDLYVSYVKEFVHLNQMTV SLRKEDVEDELNRWSLQCARDRAVHEVTVTQSFGQFNTFRHIMFEWIHKFSEASSQDI	104 108 119 119 114
Bs_RsbRA Lm_RsbR Bs_RsbRB Bs_RsbRC Bs_RsbRD Lm_Lmo0161	ILLLSVKDE-NAAESQISELALRAVQIGLSMKFLATALAEFWKRLYTKMNDKRL LIVSNVTENGSKFNEKLDDFAEKVVHLGWPIHFVTTGLRVFGLLVYTAMRDEDLFLKR MYVLPEKQFLEEFQEWVIELTNDQKHLDTPVQYVIREFMRNRRLYTKYFEKFAEENESAF IFIDDEDVYLPILKEWAFEVTQDQEHLKTPIHYIIREFVRVRDLYVSYVKEFVHLNQNTV SLRKEDVEDELNRWSLQCARDRAVHEVTVTQSFGQFNTFRHIMFEWIHKFSEASSQDI SYFAGKKAFFEKLDKWLDNMYARRMENEVPLPEVITTLDKLRREFVTAVGDFCIHN-DEV	104 108 119 119 114 116
Bs_RsbRA Lm_RsbR Bs_RsbRB Bs_RsbRC Bs_RsbRD Lm_Lmo0161 Lm_Lmo1842	ILLLSVKDE-NAAESQISELALRAVQIGLSMKFLATALAEFWKRLYTKMNDKRL LIVSNVTENGSKFNEKLDDFAEKVVHLGWPIHFVTTGLRVFGLLVYTAMRDEDLFLKR MYVLPEKQFLEEFQEWVIELTNDQKHLDTPVQYVIREFMRNRRLYTKYFEKFAEENESAF IFIDDEDVYLPILKEWAFEVTQDQEHLKTPIHYIIREFVRVRDLYVSYVKEFVHLNQNTV SLRKEDVEDELNRWSLQCARDRAVHEVTVTQSFGQFNTFRHIMFEWIHKFSEASSQDI SYFAGKKAFFEKLDKWLDNMYARRMENEVPLPEVITTLDKLRREFVTAVGDFCIHN-DEV NLFIGMTEDLGKMNAFARELGKAQFITSLGISRILFHIRLLEEFLLDYASEIKTKSA	104 108 119 119 114 116 105
Bs_RsbRA Lm_RsbR Bs_RsbRB Bs_RsbRC Bs_RsbRD Lm_Lmo1161 Lm_Lmo1842 Lm_Lmo1642	ILLLSVKDE-NAAESQISELALRAVQIGLSMKFLATALAEFWKRLYTKMNDKRL LIVSNVTENGSKFNEKLDDFAEKVVHLGWPIHFVTTGLRVFGLLVYTAMRDEDLFLKR MYVLPEKQFLEEFQEWVIELTNDQKHLDTPVQYVIREFMRNRRLYTKYFEKFAEENESAF IFIDDEDVYLPILKEWAFEVTQDQEHLKTPIHYIIREFVRVRDLYVSYVKEFVHLNQNTV SLRKEDVEDELNRWSLQCARDRAVHEVTVTQSFGQFNTFRHIMFEWIHKFSEASSQDI SYFAGKKAFFEKLDKWLDNMYARRMENEVPLPEVITTLDKLRREFVTAVGDFCIHN-DEV NLFIGMTEDLGKMNAFARELGKAQFITSLGISRILFHIRLLEEFLLDYASEIKTKSA SCGMIIDVITGVKKRDFESIGKRRFNDKTDIRKIHQHMSEVEKYIITSLVKWKETENVFY	104 108 119 119 114 116 105 108

Bs_RsbRA Lm_RsbR Bs_RsbRB Bs_RsbRC Bs_RsbRD Lm_Lmo1161 Lm_Lmo1842 Lm_Lmo1642	PDQESTELIWQIDRFFSPINTEIFNQYSISWEKTVSLQKIALQELSAPLIPVFENITVMP EEKPEDDAYYRFETWLSSMYNKVVTAYADTWEKTVSIQKSALQELSAPLLPIFEKISVMP EPGEKQKWADLIVKVFDFTIYTFVDHAEMNAKQQLNAQREMILELSSPVITLSKSTALLP KSEEAEDLYHALIKAFDLVIHIFIEEMYKNTSLQLQAQKDMITELSAPVIVLFHSVGLLP SIQEFYEWSRILNQNIDEIIEVFTEEYHQVTMIQLNAQKEMINELSAPIMPITDGIGILP SKCEFSSSMAMVNHGFDRINEAFSAMYYNDIVKHLEQQHRLIEEISTPVISITDKLAILP NYRELYLFSIKLHQVFSSFTQNLIEGYTHANEQMIVQKENQIIKESTKLIWIAENVFLLP SDADIIQFMLAIKDTLSSIQQQLLEGFMQENRNQVAAQRKEIIQLSTRIIPITDSIGVLP	164 168 179 179 174 176 165 168
	171/175 205/209	
Bs_RsbRA Lm_RsbR Bs_RsbRB Bs_RsbRC Bs_RsbRD Lm_Lmo0161 Lm_Lmo1842 Lm_Lmo1642	LVGTIDTERAKRIMENLLNGVVKHRSQVVLIDITGVPVVDTMVAHHIIQASEAVRLVGAK LIGTIDTERAKLIIENLLIGVVKNRSEVVLIDITGVPVVDTMVAHHIIQASEAVRLVGCQ LVGDIDTERAKFILENTLQACAKRRVEHLLIDLSGVVVVDTMVAHQIFKLEALNLIGVR LIGDIDTVRAKLIMENTLHQCAKKKVTQLYIDLSGVAVIDTMVAHQIFKLEALNLIGVS LVGEIDTHRARTILESVLEQCSALKLSYLFLDISGVPIVDTMVAHQIFKUDSTKLLGIE LMGRVDRERAEKLSEITANKCVHLGVEQLCIDLSGITYFDDALGEMLTNLVTMLKLLGVE LIGKITDERAKQITETALFEVCEQPVNYLIIDLSGVQLESPNIGKYIEYFFSSLKLVGVT IVGSLDDDRGYFMKEKAVESADKLNLDTIVIDFSSAVLKDDFATKHMEDMIQSFKLIGLV ::*: *.: *.: *.: *::: .: .: *:*:	224 228 239 239 234 236 225 228
Bs_RsbRA Lm_RsbR Bs_RsbRB Bs_RsbRC Bs_RsbRD Lm_Lmo0161 Lm_Lmo1642	CLLAGIRPEIAQTIVNLGIDLSQ-VITKNTLQKGIQTALEMTDRKIVSLGE 274 AMLVGIRPEIAQTIVNLGIELDQ-IITTNTMKKGMERALALTNREIVEKEG 278 STLSGIRPEIAQTAVQLGIDFSN-ITIKTNLAQALNYHQ 277 STLSGIRPEIAQTAVQLGLSFEG-ISLRSTLASAIASDLKLKKV 282 TIISGIRPEIAQTVVKLGLDFSN-VKTEQSLAKALANKGFKIKEC 278 AFISGIQPKMAQQINRVDLNLS-IPAYHSLKAVLQDQTRTI 276 PIITGMQPQTAKVMVQANLTEQHGIKTFATLRQATKTIMKEKEARNAHK- 274 PILSGMRPSFAQRTIQVGSNISK-LESFGSLEQALTNLGV 267	
_	: *::*. *: : .:	

Abbildung 6-1: Sequenzalignment (CLUSTAL 2.0.12) von RsbR und dessen Paralogen aus *B. subtilis* sowie RsbR und den putativen RsbR Homologen aus *L.monocytogenes*. Die konservierten Threoninreste an Position 171/205 (*B. subtilis*) bzw. 175/209 (*L.monocytogenes* RsbR – Lmo0889) sind gelb markiert. Glutamat (E) bzw. Aspartatreste (D) an den entsprechenden Positionen in Lmo0161, Lmo1842 und lmo1642 (blau unterlegt) könnten aufgrund ihrer negativen Ladung phosphoryliertes Threonin simulieren.

Lmo0889 ist offfensichtlich das Ortholog zu RsbRA von B. subtilis. Drei RsbR-Paraloge werden in Listeria vermutlich durch lmo1842, lmo1642 und lmo0161 codiert. Lmo0890 weist Homologien zu RsbS auf. In der STAS-Domäne von RsbR und dessen Paraloger in B. subtilis wurden konservierte Phosphorylierungsstellen an den Threoninresten an Position 171 und 205 beschrieben, die für die Funktion von RsbR in vivo wichtig sind [122, 192]. Diese sind auch in RsbR (Lmo0889) von Listeria monocytogenes konserviert. In den drei RsbR-Homologen Lmo1842, Lmo1642 und Lmo0161 befindet sich an dieser (bzw. um 1-2 Stellen verschoben) jedoch ein Aspartat- bzw. Glutamatrest. Diese könnten durch ihre negative Ladung phosphoryliertes Threonin simulieren und so die RsbR-Homologe in einem "dauerinaktivierten" Zustand halten. Ein solcher Simulationseffekt negativ geladener Aminosäuren wurde bereits für die Isocitratdehydrogenase von *E. coli* beschrieben [193]. Die Freisetzung von RsbT erfolgt in *B. subtilis* durch eine Stress-induzierte Aktivierung der Kinasefunktion von RsbT und so zu einer Phosphorylierung von RsbR und dessen Paralogen. Deren Phosphorylierung erleichtert die Phosphorylierung von RsbS durch RsbT, woraufhin RsbT aus dem Komplex freigesetzt wird und die Phosphatase RsbU aktivieren kann. Lmo0891 wurde bereits als RsbT-Homolog beschrieben, ebenso wie das RsbV-Homolog Lmo0893 [194, 195]. Ein Hauptunterschied zur SigB-Antwort in Bacillus ist das Fehlen von RsbP bei Listeria monocytogenes, hier ist RsbU (Lmo0892) die einzige Phosphatase [196, 197] der Rsb-Signalkaskade, die sowohl Umwelt als auch Energiestress vermittelt. Dies wird in Bacillus durch zwei Phosphatasen getrennt nach Reiz (Umweltstress – RsbU, Energiestress – RsbP) erledigt. RsbW (Lmo0894) und SigB sind in Listerien ebenfalls eingehend beschrieben [149, 177, 179, 194, 195, 198-200].

6.5 Hypothetisches Modell des listeriellen Stressosoms und der SigB-Antwort

Zusammen mit dem YtvA-Homolog, Lmo0799, das in dieser Arbeit charakterisiert wurde, ergibt sich ein Bild, das dem Stressosom und der SigB-Aktivierung von *B. subtilis* sehr ähnelt:

Abb. 6-2: Vereinfachtes, hypothetisches Modell des listeriellen Stressosoms und der Rsb-Signalkaskade, die zur Aktivierung von SigB führt.

In Anlehnung an das Stressosom und die SigB-Antwort von B. subtilis kann man sich auch in Listeria einen hochmolekularen Komplex aus RsbS, RsbR sowie den putativen RsbR-Homologen und LBlue vorstellen, der als zentrale "Sammelstelle" für Stressreize dient, wobei die RsbR-Homologe möglicherweise jeweils eine andere Art von Stress wahrnehmen oder sie erlauben es der Zelle - Aufgrund ihrer räumlichen (Entfernung vom ORI) Trennung - ihre Kapazität der Umweltreiz-Wahrnehmung der Wachstumsphase anzupassen, wie dies bereits für B. subtilis postuliert wurde [201]. Ein Reiz, der zur Auslösung der SigB-Antwort führt, ist blaues Licht, wie in dieser Arbeit für Listeria sowie in zahlreichen Publikationen für Bacillus gezeigt wurde [126-128, 130]. Die RsbR-Paraloge und RsbS komplexieren die RsbT-Kinase, solange ein Reiz ausbleibt. Wird ein Reiz wahrgenommen, führt dieser über die konservierten STAS-Domänen von RsbS und den RsbR-Homologen (und LBlue) zu einer Konformationsänderung des Komplexes und ermöglicht es so der RsbT-Kinase, RsbR und RsbS zu phosphorylieren. RsbT wird daraufhin freigesetzt [190] und kann als Aktivator der Serin-Phosphatase RsbU wirken. RsbV, der Anti-Anti-Sigma-Faktor, ist in seiner phosphorylierten Form inaktiv und wird durch RsbU dephosphoryliert. Der SigB-Faktor liegt noch an RsbW, den Anti-Sigma-Faktor, gebunden vor und wird nun durch das dephosphorylierte RsbV befreit, da RsbW aufgrund seiner Serin-Kinase-Aktivität eine höhere Affinität zu RsbV als zu SigB hat [135, 196]. Der SigmaB-Faktor ist damit frei und kann an die RNA-Polymerase binden, und so die Transkription der SigBabhängigen Gene induzieren. Dieses Modell der SigB-Aktivierung in Listeria entspricht genetischen, biologischen und strukturellen Analysen der B. subtilis Signalkaskade zur Aktivierung von SigB sowie ersten Erkenntnissen aus Listeria. Viele Teilbereiche erfordern jedoch weitere Untersuchungen, vor allem wäre es interessant zu klären, welche Folgen das Fehlen der konservierten, phosphorylierbaren Threonine bei Lmo0161, Lmo1642 und lmo1842 hat und ob deren Ersatz durch negativ geladene Aminosäuren tatsächlich zu einer Dauer-Inaktivierung führt.

In der vorliegenden Arbeit konnte erstmals gezeigt werden, dass *L. monocytogenes* (und wahrscheinlich auch die anderen *Listeria*-Arten) in Lmo0799 einen funktionalen Blaulichtrezeptor besitzt, der eine wichtige Rolle in der Vermittlung von Stressreizen via SigB spielt und auch die Motilität und Virulenz moduliert. Weiterhin konnte gezeigt werden, dass auch rotes Licht die Transkription zahlreicher durch Blaulicht regulierter Gene beeinflusst. Der molekulare Mechanismus konnte im Rahmen dieser Arbeit nicht mehr aufgeklärt werden.

7. Literaturverzeichnis

- 1. Vázquez-Boland, J.A., et al., *Listeria pathogenesis and molecular virulence determinants.* Clin Microbiol Rev, 2001. **14**(3): p. 584-640.
- 2. Hamon, M., H. Bierne, and P. Cossart, *Listeria monocytogenes: a multifaceted model.* Nat Rev Microbiol, 2006. **4**(6): p. 423-34.
- 3. Gray, M.J., N.E. Freitag, and K.J. Boor, *How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr. Jekyll to pathogenic Mr. Hyde.* Infect Immun, 2006. **74**(5): p. 2505-12.
- 4. Schönhuber, W., et al., *Utilization of tmRNA sequences for bacterial identification.* BMC Microbiol, 2001. **1**: p. 20.
- 5. Sallen, B., et al., *Comparative analysis of 16S and 23S rRNA sequences of Listeria species.* Int J Syst Bacteriol, 1996. **46**(3): p. 669-74.
- 6. Schuchat, A., B. Swaminathan, and C.V. Broome, *Epidemiology of human listeriosis*. Clin Microbiol Rev, 1991. **4**(2): p. 169-83.
- 7. Jemmi, T. and R. Stephan, *Listeria monocytogenes: food-borne pathogen and hygiene indicator.* Rev Off Int Epizoot, 2006. **25**(2): p. 571-80.
- 8. Shen, A. and D.E. Higgins, *The MogR transcriptional repressor regulates nonhierarchal expression of flagellar motility genes and virulence in Listeria monocytogenes.* PLoS Pathog, 2006. **2**(4): p. e30.
- 9. Tienungoon, S., et al., *Growth limits of Listeria monocytogenes as a function of temperature, pH, NaCl, and lactic acid.* Applied and Environmental Microbiology, 2000. **66**(11): p. 4979-87.
- 10. Collins, M.D., et al., *Phylogenetic analysis of the genus Listeria based on reverse transcriptase sequencing of 16S rRNA*. Int J Syst Bacteriol, 1991. **41**(2): p. 240-6.
- 11. Lou, Y. and A.E. Yousef, *Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors.* Applied and Environmental Microbiology, 1997. **63**(4): p. 1252-5.
- 12. Farber, J.M. and P.I. Peterkin, *Listeria monocytogenes, a food-borne pathogen.* Microbiol Rev, 1991. **55**(3): p. 476-511.
- 13. Jacquet, C., et al., *A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes.* J Infect Dis, 2004. **189**(11): p. 2094-100.
- 14. Dussurget, O., *New insights into determinants of Listeria monocytogenes virulence.* Int Rev Cell Mol Biol, 2008. **270**: p. 1-38.
- 15. Antal, E.-A., et al., *Neuropathological findings in 9 cases of listeria monocytogenes brain stem encephalitis.* Brain Pathol, 2005. **15**(3): p. 187-91.
- 16. Cossart, P. and A. Toledo-Arana, *Listeria monocytogenes, a unique model in infection biology: an overview.* Microbes Infect, 2008. **10**(9): p. 1041-50.
- 17. Chaturongakul, S., et al., *Modulation of stress and virulence in Listeria monocytogenes.* Trends Microbiol, 2008. **16**(8): p. 388-96.
- 18. Hof, H., T. Nichterlein, and M. Kretschmar, *Management of listeriosis.* Clin Microbiol Rev, 1997. **10**(2): p. 345-57.
- 19. Renzoni, A., et al., *Evidence that PrfA, the pleiotropic activator of virulence genes in Listeria monocytogenes, can be present but inactive.* Infect Immun, 1997. **65**(4): p. 1515-8.
- 20. Ripio, M.T., et al., *Glucose-1-phosphate utilization by Listeria monocytogenes is PrfA dependent and coordinately expressed with virulence factors.* J Bacteriol, 1997. **179**(22): p. 7174-80.
- 21. Vega, Y., et al., Functional similarities between the Listeria monocytogenes virulence regulator PrfA and cyclic AMP receptor protein: the PrfA* (Gly145Ser) mutation increases binding affinity for target DNA. J Bacteriol, 1998. **180**(24): p. 6655-60.
- 22. Sheehan, B., et al., *A single substitution in the putative helix-turn-helix motif of the pleiotropic activator PrfA attenuates Listeria monocytogenes virulence.* Mol Microbiol, 1996. **20**(4): p. 785-97.

- 23. Cossart, P. and M. Lecuit, Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J, 1998. **17**(14): p. 3797-806.
- 24. Bierne, H. and P. Cossart, *InlB, a surface protein of Listeria monocytogenes that behaves as an invasin and a growth factor.* J Cell Sci, 2002. **115**(Pt 17): p. 3357-67.
- 25. Imlay, J.A., *Pathways of oxidative damage.* Annu Rev Microbiol, 2003. **57**: p. 395-418.
- 26. Sokolovic, Z., A. Fuchs, and W. Goebel, *Synthesis of species-specific stress proteins by virulent strains of Listeria monocytogenes.* Infect Immun, 1990. **58**(11): p. 3582-7.
- 27. Thannickal, V.J. and B.L. Fanburg, *Reactive oxygen species in cell signaling.* Am J Physiol Lung Cell Mol Physiol, 2000. **279**(6): p. L1005-28.
- 28. Zeller, T. and G. Klug, *Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes.* Naturwissenschaften, 2006. **93**(6): p. 259-66.
- 29. Scharf, C., et al., *Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis.* J Bacteriol, 1998. **180**(7): p. 1869-77.
- 30. Smits, W.K., et al., *Tricksy business: transcriptome analysis reveals the involvement of thioredoxin A in redox homeostasis, oxidative stress, sulfur metabolism, and cellular differentiation in Bacillus subtilis.* Journal of Bacteriology, 2005. **187**(12): p. 3921-30.
- 31. Uziel, O., et al., *Transcriptional regulation of the Staphylococcus aureus thioredoxin and thioredoxin reductase genes in response to oxygen and disulfide stress.* J Bacteriol, 2004. **186**(2): p. 326-34.
- 32. Berndt, C., C.H. Lillig, and A. Holmgren, *Thioredoxins and glutaredoxins as facilitators of protein folding.* Biochim Biophys Acta, 2008. **1783**(4): p. 641-50.
- 33. Kim, K.-P., B.-K. Hahm, and A.K. Bhunia, *The 2-cys peroxiredoxin-deficient Listeria* monocytogenes displays impaired growth and survival in the presence of hydrogen peroxide in vitro but not in mouse organs. Curr Microbiol, 2007. **54**(5): p. 382-7.
- 34. Bsat, N., L. Chen, and J.D. Helmann, *Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes.* J Bacteriol, 1996. **178**(22): p. 6579-86.
- 35. Poole, L.B., Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch Biochem Biophys, 2005. **433**(1): p. 240-54.
- 36. Antelmann, H., et al., *General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon.* J Bacteriol, 1996. **178**(22): p. 6571-8.
- 37. Yamamoto, Y., et al., *Mutant AhpC peroxiredoxins suppress thiol-disulfide redox deficiencies and acquire deglutathionylating activity.* Mol Cell, 2008. **29**(1): p. 36-45.
- 38. St John, G., et al., *Peptide methionine sulfoxide reductase from Escherichia coli and Mycobacterium tuberculosis protects bacteria against oxidative damage from reactive nitrogen intermediates.* Proc Natl Acad Sci USA, 2001. **98**(17): p. 9901-6.
- 39. You, C., et al., *Spx mediates oxidative stress regulation of the methionine sulfoxide reductases operon in Bacillus subtilis.* BMC Microbiol, 2008. **8**: p. 128.
- 40. Aslund, F., K.D. Berndt, and A. Holmgren, *Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria.* The Journal of biological chemistry, 1997. **272**(49): p. 30780-6.
- 41. Masip, L., K. Veeravalli, and G. Georgiou, *The many faces of glutathione in bacteria*. Antioxid Redox Signal, 2006. **8**(5-6): p. 753-62.
- 42. Gopal, S., et al., *A multidomain fusion protein in Listeria monocytogenes catalyzes the two primary activities for glutathione biosynthesis.* J Bacteriol, 2005. **187**(11): p. 3839-47.
- 43. Brenot, A., et al., *Contribution of glutathione peroxidase to the virulence of Streptococcus pyogenes.* Infect Immun, 2004. **72**(1): p. 408-13.
- 44. Jakob, U., et al., *Chaperone activity with a redox switch*. Cell, 1999. **96**(3): p. 341-52.
- 45. Graf, P.C.F., et al., *Activation of the redox-regulated chaperone Hsp33 by domain unfolding.* The Journal of biological chemistry, 2004. **279**(19): p. 20529-38.
- 46. Kim, S.J., et al., *Crystal structure of proteolytic fragments of the redox-sensitive Hsp33 with constitutive chaperone activity.* Nat Struct Biol, 2001. **8**(5): p. 459-66.

- 47. Mongkolsuk, S. and J.D. Helmann, *Regulation of inducible peroxide stress responses*. Mol Microbiol, 2002. **45**(1): p. 9-15.
- 48. Horsburgh, M.J., et al., *PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus.* Infect Immun, 2001. **69**(6): p. 3744-54.
- 49. Lee, J.-W. and J.D. Helmann, *The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation.* Nature, 2006. **440**(7082): p. 363-7.
- 50. Rea, R., C. Hill, and C.G.M. Gahan, *Listeria monocytogenes PerR mutants display a small-colony phenotype, increased sensitivity to hydrogen peroxide, and significantly reduced murine virulence.* Appl Environ Microbiol, 2005. **71**(12): p. 8314-22.
- 51. Hayashi, K., et al., *The H2O2 stress-responsive regulator PerR positively regulates srfA expression in Bacillus subtilis.* Journal of Bacteriology, 2005. **187**(19): p. 6659-67.
- 52. Herbig, A.F. and J.D. Helmann, *Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA.* Mol Microbiol, 2001. **41**(4): p. 849-59.
- 53. Brenot, A., K.Y. King, and M.G. Caparon, *The PerR regulon in peroxide resistance and virulence of Streptococcus pyogenes.* Mol Microbiol, 2005. **55**(1): p. 221-34.
- 54. Fuangthong, M., et al., *Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible.* J Bacteriol, 2002. **184**(12): p. 3276-86.
- 55. Soonsanga, S., J.-W. Lee, and J.D. Helmann, *Conversion of Bacillus subtilis OhrR from a 1-Cys to a 2-Cys peroxide sensor.* Journal of Bacteriology, 2008. **190**(17): p. 5738-45.
- 56. Lee, J.-W. and J.D. Helmann, *Functional specialization within the Fur family of metalloregulators.* Biometals, 2007. **20**(3-4): p. 485-99.
- 57. Lee, J.-W., S. Soonsanga, and J.D. Helmann, *A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR*. Proc Natl Acad Sci USA, 2007. **104**(21): p. 8743-8.
- 58. Oh, S.-Y., J.-H. Shin, and J.-H. Roe, *Dual role of OhrR as a repressor and an activator in response to organic hydroperoxides in Streptomyces coelicolor.* J Bacteriol, 2007. **189**(17): p. 6284-92.
- 59. Fuangthong, M., et al., *OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis.* J Bacteriol, 2001. **183**(14): p. 4134-41.
- 60. Escolar, L., J. Pérez-Martín, and V. de Lorenzo, *Opening the iron box: transcriptional metalloregulation by the Fur protein.* J Bacteriol, 1999. **181**(20): p. 6223-9.
- 61. Bijlsma, J.J.E., et al., *The Helicobacter pylori homologue of the ferric uptake regulator is involved in acid resistance.* Infect Immun, 2002. **70**(2): p. 606-11.
- 62. Dalet, K., et al., *Characterisation of a new operon encoding a Zur-like protein and an associated ABC zinc permease in Listeria monocytogenes.* FEMS Microbiol Lett, 1999. **174**(1): p. 111-6.
- 63. Patzer, S.I. and K. Hantke, *Dual repression by Fe(2+)-Fur and Mn(2+)-MntR of the mntH gene, encoding an NRAMP-like Mn(2+) transporter in Escherichia coli.* J Bacteriol, 2001. **183**(16): p. 4806-13.
- 64. Bhattacharyya-Pakrasi, M., et al., *Manganese transport and its regulation in bacteria*. Biochem Soc Trans, 2002. **30**(4): p. 768-70.
- 65. Glasfeld, A., et al., *Structure of the manganese-bound manganese transport regulator of Bacillus subtilis.* Nat Struct Biol, 2003. **10**(8): p. 652-7.
- 66. Nakano, S., et al., *A regulatory protein that interferes with activator-stimulated transcription in bacteria.* Proc Natl Acad Sci USA, 2003. **100**(7): p. 4233-8.
- 67. Nakano, S., et al., *Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis.* Proc Natl Acad Sci USA, 2003. **100**(23): p. 13603-8.
- 68. Zuber, P., *Spx-RNA polymerase interaction and global transcriptional control during oxidative stress.* J Bacteriol, 2004. **186**(7): p. 1911-8.
- 69. Reyes, D.Y. and P. Zuber, Activation of transcription initiation by Spx: formation of transcription complex and identification of a Cis-acting element required for transcriptional activation. Molecular Microbiology, 2008. **69**(3): p. 765-779.

- 70. Erwin, K.N., S. Nakano, and P. Zuber, *Sulfate-dependent repression of genes that function in organosulfur metabolism in Bacillus subtilis requires Spx.* J Bacteriol, 2005. **187**(12): p. 4042-9.
- 71. Newberry, K.J., et al., *Crystal structure of the Bacillus subtilis anti-alpha, global transcriptional regulator, Spx, in complex with the alpha C-terminal domain of RNA polymerase.* Proc Natl Acad Sci USA, 2005. **102**(44): p. 15839-44.
- 72. Leelakriangsak, M. and P. Zuber, *Transcription from the P3 promoter of the Bacillus subtilis spx gene is induced in response to disulfide stress.* J Bacteriol, 2007. **189**(5): p. 1727-35.
- 73. Zhang, Y., et al., *Mutational analysis of the Bacillus subtilis RNA polymerase alpha Cterminal domain supports the interference model of Spx-dependent repression.* J Bacteriol, 2006. **188**(12): p. 4300-11.
- 74. Borezee, E., et al., *Identification in Listeria monocytogenes of MecA, a homologue of the Bacillus subtilis competence regulatory protein.* J Bacteriol, 2000. **182**(20): p. 5931-4.
- 75. Nakano, M.M., et al., Loss-of-function mutations in yjbD result in ClpX- and ClpPindependent competence development of Bacillus subtilis. Mol Microbiol, 2001. **42**(2): p. 383-94.
- 76. Brekasis, D. and M.S.B. Paget, *A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor A3(2).* EMBO J, 2003. **22**(18): p. 4856-65.
- 77. Gyan, S., et al., *Regulatory loop between redox sensing of the NADH/NAD(+) ratio by Rex* (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in Bacillus subtilis. J Bacteriol, 2006. **188**(20): p. 7062-71.
- 78. Brehm, K., et al., *A gene encoding a superoxide dismutase of the facultative intracellular bacterium Listeria monocytogenes.* Gene, 1992. **118**(1): p. 121-5.
- 79. Vasconcelos, J.A. and H.G. Deneer, *Expression of superoxide dismutase in Listeria monocytogenes*. Applied and Environmental Microbiology, 1994. **60**(7): p. 2360-6.
- 80. Messner, K.R. and J.A. Imlay, *The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli.* The Journal of biological chemistry, 1999. **274**(15): p. 10119-28.
- 81. Archambaud, C., et al., *Control of Listeria superoxide dismutase by phosphorylation*. The Journal of biological chemistry, 2006. **281**(42): p. 31812-22.
- 82. Franzon, V.L., J. Arondel, and P.J. Sansonetti, *Contribution of superoxide dismutase and catalase activities to Shigella flexneri pathogenesis.* Infect Immun, 1990. **58**(2): p. 529-35.
- 83. Loewen, P.C. and J. Switala, *Multiple catalases in Bacillus subtilis*. J Bacteriol, 1987. **169**(8): p. 3601-7.
- 84. Day, W.A., et al., *Role of catalase in Campylobacter jejuni intracellular survival.* Infect Immun, 2000. **68**(11): p. 6337-45.
- 85. Bol, D.K. and R.E. Yasbin, *Analysis of the dual regulatory mechanisms controlling expression of the vegetative catalase gene of Bacillus subtilis.* J Bacteriol, 1994. **176**(21): p. 6744-8.
- 86. Naclerio, G., et al., *Bacillus subtilis Vegetative Catalase Is an Extracellular Enzyme.* Applied and Environmental Microbiology, 1995. **61**(12): p. 4471-3.
- 87. Harris, A.G., et al., *Resistance to hydrogen peroxide in Helicobacter pylori: role of catalase (KatA) and Fur, and functional analysis of a novel gene product designated 'KatA-associated protein', KapA (HP0874).* Microbiology (Reading, England), 2002. **148**(Pt 12): p. 3813-25.
- 88. Haas, A., et al., *Cloning, characterization, and expression in Escherichia coli of a gene encoding Listeria seeligeri catalase, a bacterial enzyme highly homologous to mammalian catalases.* J Bacteriol, 1991. **173**(16): p. 5159-67.
- 89. Herbert, K.C. and S.J. Foster, *Starvation survival in Listeria monocytogenes: characterization of the response and the role of known and novel components.* Microbiology (Reading, England), 2001. **147**(Pt 8): p. 2275-84.
- 90. Hughes, J., et al., *A prokaryotic phytochrome.* Nature, 1997. **386**(6626): p. 663.

- 91. Yeh, K.C., et al., *A cyanobacterial phytochrome two-component light sensory system.* Science, 1997. **277**(5331): p. 1505-8.
- 92. Meyer, T.E., Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophilic phototrophic bacterium Ectothiorhodospira halophila. Biochim Biophys Acta, 1985. **806**(1): p. 175-83.
- 93. Meyer, T.E., et al., *Soluble cytochromes and a photoactive yellow protein isolated from the moderately halophilic purple phototrophic bacterium, Rhodospirillum salexigens.* Biochim Biophys Acta, 1990. **1016**(3): p. 364-70.
- 94. Koh, M., et al., Sequence evidence for strong conservation of the photoactive yellow proteins from the halophilic phototrophic bacteria Chromatium salexigens and Rhodospirillum salexigens. Biochemistry, 1996. **35**(8): p. 2526-34.
- 95. Kort, R., et al., *The xanthopsins: a new family of eubacterial blue-light photoreceptors.* EMBO J, 1996. **15**(13): p. 3209-18.
- 96. Haker, A., et al., *Isolation, reconstitution and functional characterisation of the Rhodobacter sphaeroides photoactive yellow protein.* FEBS Lett, 2000. **486**(1): p. 52-6.
- 97. Lagarias, D.M., S.H. Wu, and J.C. Lagarias, *Atypical phytochrome gene structure in the green alga Mesotaenium caldariorum.* Plant Mol Biol, 1995. **29**(6): p. 1127-42.
- 98. Borgstahl, G.E., D.R. Williams, and E.D. Getzoff, *1.4 A structure of photoactive yellow protein, a cytosolic photoreceptor: unusual fold, active site, and chromophore.* Biochemistry, 1995. **34**(19): p. 6278-87.
- 99. Pellequer, J.L., et al., *Photoactive yellow protein: a structural prototype for the threedimensional fold of the PAS domain superfamily.* Proc Natl Acad Sci USA, 1998. **95**(11): p. 5884-90.
- 100. Taylor, B.L. and I.B. Zhulin, *PAS domains: internal sensors of oxygen, redox potential, and light.* Microbiol Mol Biol Rev, 1999. **63**(2): p. 479-506.
- 101. Todo, T., *Functional diversity of the DNA photolyase/blue light receptor family.* Mutat Res, 1999. **434**(2): p. 89-97.
- 102. Sancar, A., *Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors.* Chem Rev, 2003. **103**(6): p. 2203-37.
- 103. Kanai, S., et al., *Molecular evolution of the photolyase-blue-light photoreceptor family.* J Mol Evol, 1997. **45**(5): p. 535-48.
- 104. Bouly, J.-P., et al., *Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1.* Eur J Biochem, 2003. **270**(14): p. 2921-8.
- 105. Hitomi, K., et al., *Bacterial cryptochrome and photolyase: characterization of two photolyase-like genes of Synechocystis sp. PCC6803.* Nucleic Acids Research, 2000. **28**(12): p. 2353-62.
- 106. Brudler, R., et al., *Identification of a new cryptochrome class. Structure, function, and evolution.* Mol Cell, 2003. **11**(1): p. 59-67.
- 107. Worthington, E.N., et al., *Purification and characterization of three members of the photolyase/cryptochrome family glue-light photoreceptors from Vibrio cholerae.* The Journal of biological chemistry, 2003. **278**(40): p. 39143-54.
- 108. Eraso, J.M. and S. Kaplan, *Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase.* J Bacteriol, 1995. **177**(10): p. 2695-706.
- Oh, J.I., J.M. Eraso, and S. Kaplan, Interacting regulatory circuits involved in orderly control of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol, 2000. 182(11): p. 3081-7.
- 110. Oh, J.I., I.J. Ko, and S. Kaplan, *The default state of the membrane-localized histidine kinase PrrB of Rhodobacter sphaeroides 2.4.1 is in the kinase-positive mode.* J Bacteriol, 2001.
 183(23): p. 6807-14.
- 111. Eraso, J.M. and S. Kaplan, *Complex regulatory activities associated with the histidine kinase PrrB in expression of photosynthesis genes in Rhodobacter sphaeroides 2.4.1.* J Bacteriol, 1996. **178**(24): p. 7037-46.

- 112. Gomelsky, M. and S. Kaplan, *Genetic evidence that PpsR from Rhodobacter sphaeroides* 2.4.1 functions as a repressor of puc and bchF expression. J Bacteriol, 1995. **177**(6): p. 1634-7.
- 113. Penfold, R.J. and J.M. Pemberton, Sequencing, chromosomal inactivation, and functional expression in Escherichia coli of ppsR, a gene which represses carotenoid and bacteriochlorophyll synthesis in Rhodobacter sphaeroides. J Bacteriol, 1994. **176**(10): p. 2869-76.
- 114. Braatsch, S. and G. Klug, *Blue light perception in bacteria.* Photosyn Res, 2004. **79**(1): p. 45-57.
- 115. Gomelsky, M. and G. Klug, *BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms.* Trends Biochem Sci, 2002. **27**(10): p. 497-500.
- 116. Iseki, M., et al., *A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis.* Nature, 2002. **415**(6875): p. 1047-51.
- 117. Briggs, W.R., J.M. Christie, and M. Salomon, *Phototropins: a new family of flavin-binding blue light receptors in plants.* Antioxid Redox Signal, 2001. **3**(5): p. 775-88.
- 118. Zhulin, I.B., B.L. Taylor, and R. Dixon, *PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox.* Trends Biochem Sci, 1997. **22**(9): p. 331-3.
- 119. Crosson, S., S. Rajagopal, and K. Moffat, *The LOV domain family: photoresponsive signaling modules coupled to diverse output domains.* Biochemistry, 2003. **42**(1): p. 2-10.
- 120. Salomon, M., et al., *Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin.* Biochemistry, 2000. **39**(31): p. 9401-10.
- 121. Salomon, M., et al., *An optomechanical transducer in the blue light receptor phototropin from Avena sativa.* Proc Natl Acad Sci USA, 2001. **98**(22): p. 12357-61.
- 122. Akbar, S., et al., *New family of regulators in the environmental signaling pathway which activates the general stress transcription factor sigma(B) of Bacillus subtilis.* Journal of Bacteriology, 2001. **183**(4): p. 1329-38.
- 123. Losi, A., et al., *First evidence for phototropin-related blue-light receptors in prokaryotes.* Biophysical Journal, 2002. **82**(5): p. 2627-34.
- 124. Aravind, L. and E.V. Koonin, *The STAS domain a link between anion transporters and antisigma-factor antagonists.* Curr Biol, 2000. **10**(2): p. R53-5.
- Losi, A., *The bacterial counterparts of plant phototropins*. Photochem Photobiol Sci, 2004.
 3(6): p. 566-74.
- 126. Avila-Pérez, M., K.J. Hellingwerf, and R. Kort, *Blue light activates the sigmaB-dependent stress response of Bacillus subtilis via YtvA.* Journal of Bacteriology, 2006. **188**(17): p. 6411-4.
- 127. Gaidenko, T.A., et al., *The blue-light receptor YtvA acts in the environmental stress signaling pathway of Bacillus subtilis.* Journal of Bacteriology, 2006. **188**(17): p. 6387-95.
- 128. Suzuki, N., et al., *Enhancement of a sigma(B)-dependent stress response in Bacillus subtilis by light via YtvA photoreceptor.* J Gen Appl Microbiol, 2007. **53**(2): p. 81-8.
- 129. Möglich, A. and K. Moffat, *Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA.* J Mol Biol, 2007. **373**(1): p. 112-26.
- 130. Avila-Pérez, M., et al., *In vivo mutational analysis of YtvA from Bacillus subtilis: mechanism of light activation of the general stress response.* J Biol Chem, 2009. **284**(37): p. 24958-64.
- 131. Petersohn, A., et al., *Global analysis of the general stress response of Bacillus subtilis.* J Bacteriol, 2001. **183**(19): p. 5617-31.
- 132. Kalman, S., et al., *Similar organization of the sigB and spoIIA operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase.* J Bacteriol, 1990. **172**(10): p. 5575-85.
- 133. Wise, A.A. and C.W. Price, Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals. J Bacteriol, 1995. **177**(1): p. 123-33.
- 134. Benson, A.K. and W.G. Haldenwang, *Bacillus subtilis sigma B is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase.* Proc Natl Acad Sci USA, 1993. **90**(6): p. 2330-4.

- 135. Delumeau, O., R.J. Lewis, and M.D. Yudkin, *Protein-protein interactions that regulate the energy stress activation of sigma(B) in Bacillus subtilis.* J Bacteriol, 2002. **184**(20): p. 5583-9.
- 136. Chen, C.-C., et al., *A supramolecular complex in the environmental stress signalling pathway of Bacillus subtilis.* Mol Microbiol, 2003. **49**(6): p. 1657-69.
- 137. Delumeau, O., et al., *High-molecular-weight complexes of RsbR and paralogues in the environmental signaling pathway of Bacillus subtilis.* J Bacteriol, 2006. **188**(22): p. 7885-92.
- 138. Woodbury, M.G. and P.E. Houghton, *Prevalence of pressure ulcers in Canadian healthcare settings*. Ostomy Wound Manage, 2004. **50**(10): p. 22-4, 26, 28, 30, 32, 34, 36-8.
- 139. Hardwick, S.W., et al., *Structural and functional characterization of partner switching regulating the environmental stress response in Bacillus subtilis.* The Journal of biological chemistry, 2007. **282**(15): p. 11562-72.
- 140. Marles-Wright, J. and R.J. Lewis, *Stress responses of bacteria*. Curr Opin Struct Biol, 2007. **17**(6): p. 755-60.
- 141. Shetron-Rama, L.M., et al., *Isolation of Listeria monocytogenes mutants with high-level in vitro expression of host cytosol-induced gene products.* Mol Microbiol, 2003. **48**(6): p. 1537-51.
- 142. Watson, D., et al., *Specific osmolyte transporters mediate bile tolerance in Listeria monocytogenes*. Infect Immun, 2009. **77**(11): p. 4895-904.
- 143. Meister, A., *Glutathione metabolism and its selective modification.* J Biol Chem, 1988. **263**(33): p. 17205-8.
- 144. Nkabyo, Y.S., et al., *Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells.* Am J Physiol Gastrointest Liver Physiol, 2002. **283**(6): p. G1352-9.
- 145. Schultz, J., et al., *SMART, a simple modular architecture research tool: identification of signaling domains.* Proc Natl Acad Sci U S A, 1998. **95**(11): p. 5857-64.
- 146. Letunic, I., T. Doerks, and P. Bork, *SMART 6: recent updates and new developments.* Nucleic Acids Res, 2009. **37**(Database issue): p. D229-32.
- 147. Avila-Pérez, M., et al., *Red light activates the sigmaB-mediated general stress response of Bacillus subtilis via the energy branch of the upstream signaling cascade.* Journal of Bacteriology, 2010. **192**(3): p. 755-62.
- 148. McGann, P., M. Wiedmann, and K.J. Boor, *The alternative sigma factor sigma B and the virulence gene regulator PrfA both regulate transcription of Listeria monocytogenes internalins*. Appl Environ Microbiol, 2007. **73**(9): p. 2919-30.
- 149. Kazmierczak, M.J., et al., *Listeria monocytogenes sigma B regulates stress response and virulence functions.* Journal of Bacteriology, 2003. **185**(19): p. 5722-34.
- 150. Hain, T., et al., *Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e sigmaB regulon.* BMC Microbiol, 2008. **8**: p. 20.
- 151. Holmgren, A., et al., *Thiol redox control via thioredoxin and glutaredoxin systems.* Biochem Soc Trans, 2005. **33**(Pt 6): p. 1375-7.
- 152. Meyer, Y., et al., *Thioredoxins and glutaredoxins: unifying elements in redox biology.* Annu Rev Genet, 2009. **43**: p. 335-67.
- 153. Green, J. and M.S. Paget, *Bacterial redox sensors*. Nat Rev Microbiol, 2004. **2**(12): p. 954-66.
- 154. Nakano, S., et al., *Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx.* Mol Microbiol, 2005. **55**(2): p. 498-510.
- 155. Kim, E.-K., et al., Synthesis of gamma-glutamylcysteine as a major low-molecular-weight thiol in lactic acid bacteria Leuconostoc spp. Biochem Biophys Res Commun, 2008. **369**(4): p. 1047-51.
- 156. Helbig, K., et al., *Glutathione and transition-metal homeostasis in Escherichia coli*. Journal of Bacteriology, 2008. **190**(15): p. 5431-8.
- 157. Dalle-Donne, I., et al., *Protein S-glutathionylation: a regulatory device from bacteria to humans.* Trends Biochem Sci, 2009. **34**(2): p. 85-96.

- 158. Kreft, J. and J.A. Vázquez-Boland, *Regulation of virulence genes in Listeria*. Int J Med Microbiol, 2001. **291**(2): p. 145-57.
- 159. Scortti, M., et al., *The PrfA virulence regulon*. Microbes Infect, 2007. **9**(10): p. 1196-207.
- 160. Freitag, N.E., G.C. Port, and M.D. Miner, *Listeria monocytogenes from saprophyte to intracellular pathogen.* Nat Rev Microbiol, 2009. **7**(9): p. 623-8.
- 161. Loh, E., et al., *A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes.* Cell, 2009. **139**(4): p. 770-9.
- 162. Xayarath, B., et al., *Listeria monocytogenes CtaP is a multifunctional cysteine transportassociated protein required for bacterial pathogenesis.* Mol Microbiol, 2009. **74**(4): p. 956-73.
- 163. Gopal, S., et al., *Maltose and maltodextrin utilization by Listeria monocytogenes depend on an inducible ABC transporter which is repressed by glucose.* PLoS ONE, 2010. **5**(4): p. e10349.
- 164. Stoll, R., et al., *Modulation of PrfA activity in Listeria monocytogenes upon growth in different culture media.* Microbiology (Reading, Engl), 2008. **154**(Pt 12): p. 3856-76.
- 165. Taylor, C.M., et al., *Listeria monocytogenes relA and hpt mutants are impaired in surfaceattached growth and virulence.* J Bacteriol, 2002. **184**(3): p. 621-8.
- 166. Ostergaard, H., C. Tachibana, and J.R. Winther, *Monitoring disulfide bond formation in the eukaryotic cytosol.* J Cell Biol, 2004. **166**(3): p. 337-45.
- 167. Geng, H., P. Zuber, and M.M. Nakano, *Regulation of respiratory genes by ResD-ResE signal transduction system in Bacillus subtilis.* Meth Enzymol, 2007. **422**: p. 448-64.
- 168. Larsen, M.H., et al., *The response regulator ResD modulates virulence gene expression in response to carbohydrates in Listeria monocytogenes.* Mol Microbiol, 2006. **61**(6): p. 1622-35.
- Vazquez-Boland, J.A., et al., Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect Immun, 1992. 60(1): p. 219-30.
- 170. Losi, A. and W. Gärtner, *Bacterial bilin- and flavin-binding photoreceptors*. Photochem Photobiol Sci, 2008. **7**(10): p. 1168-78.
- 171. Losi, A., et al., *Mutational effects on protein structural changes and interdomain interactions in the blue-light sensing LOV protein YtvA.* Photochem Photobiol, 2005. **81**(5): p. 1145-52.
- 172. Tang, Y., et al., Interdomain signalling in the blue-light sensing and GTP-binding protein *YtvA: a mutagenesis study uncovering the importance of specific protein sites.* Photochem Photobiol Sci, 2010. **9**(1): p. 47-56.
- 173. Hockberger, P.E., et al., *Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells.* Proc Natl Acad Sci U S A, 1999. **96**(11): p. 6255-60.
- 174. Lockwood, D.B., et al., *Blue light generates reactive oxygen species (ROS) differentially in tumor vs. normal epithelial cells.* Dent Mater, 2005. **21**(7): p. 683-8.
- 175. Dussurget, O., et al., *Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis.* Mol Microbiol, 2002. **45**(4): p. 1095-106.
- 176. Sue, D., et al., sigmaB-dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. Microbiology (Reading, Engl), 2004. **150**(Pt 11): p. 3843-55.
- 177. Nadon, C.A., et al., *Sigma B contributes to PrfA-mediated virulence in Listeria monocytogenes.* Infect Immun, 2002. **70**(7): p. 3948-52.
- 178. Kazmierczak, M.J., M. Wiedmann, and K.J. Boor, *Contributions of Listeria monocytogenes* sigmaB and PrfA to expression of virulence and stress response genes during extra- and intracellular growth. Microbiology (Reading, England), 2006. **152**(Pt 6): p. 1827-38.
- 179. Becker, L.A., et al., *Identification of the gene encoding the alternative sigma factor sigmaB* from Listeria monocytogenes and its role in osmotolerance. J Bacteriol, 1998. **180**(17): p. 4547-54.

- Sleator, R.D., T. Clifford, and C. Hill, *Gut osmolarity: a key environmental cue initiating the gastrointestinal phase of Listeria monocytogenes infection?* Med Hypotheses, 2007. 69(5): p. 1090-2.
- 181. Michel, E., et al., *Characterization of a large motility gene cluster containing the cheR, motAB genes of Listeria monocytogenes and evidence that PrfA downregulates motility genes.* FEMS Microbiol Lett, 1998. **169**(2): p. 341-7.
- 182. Williams, T., et al., *Response regulator DegU of Listeria monocytogenes regulates the expression of flagella-specific genes.* FEMS Microbiol Lett, 2005. **252**(2): p. 287-98.
- 183. Gueriri, I., et al., *The DegU orphan response regulator of Listeria monocytogenes autorepresses its own synthesis and is required for bacterial motility, virulence and biofilm formation.* Microbiology, 2008. **154**(Pt 8): p. 2251-64.
- 184. Kamp, H.D. and D.E. Higgins, *Transcriptional and post-transcriptional regulation of the GmaR antirepressor governs temperature-dependent control of flagellar motility in Listeria monocytogenes.* Mol Microbiol, 2009. **74**(2): p. 421-35.
- 185. Raengpradub, S., M. Wiedmann, and K.J. Boor, *Comparative analysis of the sigma Bdependent stress responses in Listeria monocytogenes and Listeria innocua strains exposed to selected stress conditions.* Appl Environ Microbiol, 2008. **74**(1): p. 158-71.
- 186. Milohanic, E., et al., *Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA.* Mol Microbiol, 2003. **47**(6): p. 1613-25.
- 187. Tasara, T. and R. Stephan, *Evaluation of housekeeping genes in Listeria monocytogenes as potential internal control references for normalizing mRNA expression levels in stress adaptation models using real-time PCR.* FEMS Microbiol Lett, 2007. **269**(2): p. 265-72.
- 188. Desvaux, M. and M. Hebraud, *The protein secretion systems in Listeria: inside out bacterial virulence.* FEMS Microbiol Rev, 2006. **30**(5): p. 774-805.
- 189. Stritzker, J., C. Schoen, and W. Goebel, *Enhanced synthesis of internalin A in aro mutants of Listeria monocytogenes indicates posttranscriptional control of the inlAB mRNA*. Journal of Bacteriology, 2005. **187**(8): p. 2836-45.
- 190. Marles-Wright, J., et al., *Molecular architecture of the "stressosome," a signal integration and transduction hub.* Science, 2008. **322**(5898): p. 92-6.
- 191. Reeves, A. and W.G. Haldenwang, Isolation and characterization of dominant mutations in the Bacillus subtilis stressosome components RsbR and RsbS. Journal of Bacteriology, 2007.
 189(5): p. 1531-41.
- 192. Gaidenko, T.A., et al., *Threonine phosphorylation of modulator protein RsbR governs its ability to regulate a serine kinase in the environmental stress signaling pathway of Bacillus subtilis.* J Mol Biol, 1999. **288**(1): p. 29-39.
- 193. Hurley, J.H., et al., *Regulation of an enzyme by phosphorylation at the active site.* Science, 1990. **249**(4972): p. 1012-6.
- 194. Chaturongakul, S. and K.J. Boor, *RsbT and RsbV contribute to sigmaB-dependent survival under environmental, energy, and intracellular stress conditions in Listeria monocytogenes.* Appl Environ Microbiol, 2004. **70**(9): p. 5349-56.
- 195. Ferreira, A., et al., *Comparative genomic analysis of the sigB operon in Listeria monocytogenes and in other Gram-positive bacteria.* Curr Microbiol, 2004. **48**(1): p. 39-46.
- 196. Shin, J.-H., M.S. Brody, and C. Price, *Physical and antibiotic stresses require activation of the RsbU phosphatase to induce the general stress response in Listeria monocytogenes.* Microbiology (Reading, England), 2010.
- 197. Glaser, P., et al., *Comparative genomics of Listeria species*. Science, 2001. **294**(5543): p. 849-52.
- 198. Chaturongakul, S. and K.J. Boor, *SigmaB activation under environmental and energy stress conditions in Listeria monocytogenes.* Appl Environ Microbiol, 2006. **72**(8): p. 5197-203.
- 199. Ollinger, J., et al., *Listeria monocytogenes sigmaB modulates PrfA-mediated virulence factor expression.* Infect Immun, 2009. **77**(5): p. 2113-24.
- 200. Wiedmann, M., et al., *General stress transcription factor sigmaB and its role in acid tolerance and virulence of Listeria monocytogenes.* J Bacteriol, 1998. **180**(14): p. 3650-6.

201. Kim, T.-J., T.A. Gaidenko, and C.W. Price, *In vivo phosphorylation of partner switching regulators correlates with stress transmission in the environmental signaling pathway of Bacillus subtilis.* Journal of Bacteriology, 2004. **186**(18): p. 6124-32.

8. Anhang

Abkürzungen:

А	Adenosin
Abb.	Abbildung
ActA/actA	Aktin-bindender Faktor A/-Gen
Amp	Ampicillin
Amp _R	Ampicillinresistenz
AS	Aminosäure
ATCC	American Type Culture Collection
АТР	Adenosintriphosphat
В.	Bacillus
BHI	Brain Heart Infusion
bp	Basenpaare
bzw.	beziehungsweise
C/Cy	Cytosin
°C	Grad Celsius
ca.	circa
cDNA	komplementäre DNA
CFU	Colony Forming Units
Cm	Chloramphenicol
Cm _R	Chloramphenicolresistenz
Cys	Cystein
Da	Dalton
DEPC	Diethylpyrocarbonat
dest./d	destilliert
d.h.	das heißt
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
DNase	Desoxyribonuklease
dNTP's	Desoxyribonukleosidtriphosphate
ds	doppelsträngig
DTT	Dithiothreitol
E.	Escherichia
EDTA	Ethylendiamintetraacetat
Em	Erythromycin

Em _R	Erythromycinresistenz
et al.	und andere
EtBr	Ethidiumbromid
EtOH	Ethanol
evtl.	eventuell
F-Aktin	filamentöses Aktin
g	Gramm
G	Guanosin
h	Stunde
HTM	Hogdson – Tsai - Medium
i.d.R.	in der Regel
InlA/inlA	Internalin A/-Gen
kb	Kilobase
kDa	Kilodalton
KE	Klett-Einheiten
Km	Kanamycin
kV	Kilovolt
1	Liter
L.	Listeria
LB	Luria-Bertani
ldh	Lactatdehydrogenase-Gen
LLO/hly	Listeriolysin O/-Gen
log.	ogarithmisch
LRR's	Leucin-reiche Repeats
Lsg.	Lösung
LZZ	Lebendzellzahl
μ	mikro (10 ⁻⁶)
m	milli (10-3)
М	Molar
min	Minute
mRNA/RNA	Messenger RNA
MW	Molekulargewicht
n	nano (10 ⁻⁹)
Ν	Normal
0D	optische Dichte bei nm
0.g.	oben genannt
ORF	Open Reading Frame

ORI	Origin of Replication
р	pico (10 ⁻¹²)
p. a.	per analysis
PBS	Phosphat-gepufferte Saline
PCR	Polymerase Chain Reaction
PrfA/ <i>prf</i> A	Positiver Regulationsfaktor A/-Gen
RT	Raumtemperatur
rpm	rounds per minute
Ser	Serin
Thr	Threonin
Tyr	Tyrosin
U	Unit(s)
Vol	Volumen
WT	Wildtyp

Proteinsequenz von Lmo0799:

>L. monocytogenes EGD-e|LMO00799|Lmo0799: 253 aa -MTAYPQFDVILKALNLSSVGVIITDPEQKDNPIIFVNTGFENITGYAKEEALGSNCHFLQ GDDTDKEEVAKIRHAINEKSTANVLLKNYRKDGTSFMNELTIEPIYDDHEHLYFVGIQKD VTTEHDYQLELEKSLTEIEKLSTPIVPIKENICVLPLIGSLTHDRFQHMSEYVSEYMDHG KEDYLIMDLSGLAEFNEDAVMNLVKFHGFMKLTGVELIITGISPKFAMTLIRYEENLASL TTYSTIKEALQFY

Imo0800 Startpunkt Deletion Cys62 Imo0799 LysRS Imo0798 Imo0799 +-500bp xr6a bp

Genomische Organisation von Imo0799:

Lage der verwendeten Primer sowie (eingefügte) Schnittstellen in Imo0799:

9.1 Publikationen

 Nicolai Ondrusch und J
ürgen Kreft, 2010: "Blue and red light modulates gene transcription, motility and invasiveness in *Listeria monocytogenes*", PLoS ONE, under review.

9.2 Posterpräsentationen

- Nicolai Ondrusch und Jürgen Kreft, 2007: ""Thiolomics" – Thiol-Disulfide Redox Metabolism in a Gram-Positive Bacterial Pathogen (*Listeria*): An Integrative Approach" 2nd Studentsmeeting: Network of Excellence "EuroPathoGenomics", Čelákovice, Tschechien
- Nicolai Ondrusch und Jürgen Kreft, 2008: ""Thiolomics" – Thiol-Disulfide Redox Metabolism in Listeria monocytogenes" 3rd Studentsmeeting: Network of Excellence "EuroPathoGenomics", Innsbruck, Österreich
- Nicolai Ondrusch und Jürgen Kreft, 2009: "Roles of Glutathione and Thioredoxins in Listeria – Redundant Pathways?" 4th Studentsmeeting: Network of Excellence "EuroPathoGenomics", Palma, Spanien