3 Ergebnisse

Beim Abbau verzweigtkettiger Fettsäuren kommt der Enzymklasse der Racemasen eine wichtige Funktion zu. Von den natürlich vorkommenden Diastereomeren α -methylverzweigter Fettsäuren können lediglich die (S)-Stereoisomere aufgrund der Stereospezifität der beteiligten Enzyme weiter oxidativ abgebaut werden. Um auch die (R)-Isomere zu metabolisieren, ist deshalb eine Racemisierung der (R)- zu den entsprechenden (S)-Stereomeren erforderlich. In der Ratte konnte 1994 eine α -Methylacyl-CoA-Racemase nachgewiesen werden (Schmitz *et al.*, 1994), die die methylverzweigten Fettsäuren als CoA-Ester racemisiert. Mit der vorliegenden Arbeit sollte die α -Methylacyl-CoA-Racemase aus humanem Gewebe isoliert und charakterisiert werden. Zu diesem Zweck mußte zuerst ein geeignetes Verfahren zur Bestimmung der enzymatischen Aktivität der Racemase entwickelt werden.

3.1 Enzymatische Bestimmung der α -Methylacyl-CoA-Racemase

Analog der Methylmalonyl-CoA-Racemase katalysiert die α -Methylacyl-CoA-Racemase vermutlich die Umkehr der Konfiguration am Stereozentrum durch den Austausch des α -ständigen Protons gegen ein Proton aus Wasser (Stabler *et al.*, 1985). Bei der Aktivitätsbestimmung der α -Methylacyl-CoA-Racemase macht man sich diesen Reaktionsmechanismus zunutze, wobei die [³H]H₂O-Freisetzung aus entsprechend markierten Substraten gemessen wird (Schmitz *et al.*, 1994). Diese radiometrische Methode wurde analog zu der von Rhead und Mitarbeitern beschriebenen Bestimmung des freigesetzten [³H]H₂O aus [2,3-³H]Butyryl-CoA entwickelt (Rhead *et al.*, 1981). Der Vorteil dieser indirekten Messung gegenüber der direkten Bestimmung der Racemaseaktivität anhand einer gaschromatographischen Produktanalyse (3.3.10.2) liegt in ihrer hohen Empfindlichkeit und schnellen Durchführbarkeit. Hierbei wird durch den Einsatz von [2-³H] markiertem Pristanoyl-CoA nach Inkubation mit Enzympräparaten das freigesetzte [³H]H₂O durch *reversed phase* Chromatographie vom Substrat abgetrennt und durch Flüssigkeitszintillationsmessung quantifiziert.

Die Ausbeute an $[^{3}H]H_{2}O$ liegt bei dieser Methode bei 95 %, wobei das Substrat zu 99,8 % an das Säulenmaterial Lichoprep RP-18 gebunden bleibt (2.2.5.1). Um eine Mizellen-Bildung und

unspezifische Substratbindungen möglichst gering zu halten und noch intakte Organellen aufzubrechen, wurde in Rohextrakten bzw. nur schwach angereicherten Enzympräparationen, wie subzellulären Fraktionen, 0,2 % Nonidet P-40 als Detergenz zugegeben.

Für die Ratte konnte gezeigt werden, daß die Aktivität der α -Methylacyl-CoA-Dehydrogenase und α -Methylacyl-CoA-Oxidase in keinem quantitativen Zusammenhang zur Bildung von [³H]H₂O aus [2-³H]Pristanoyl-CoA steht (Schmitz *et al.*, 1994). Bei der [³H]H₂O-Freisetzung aus [2,3-³H]Butyryl-CoA konnte Rhead dagegen einen signifikanten Einfluß der beteiligten Dehydrogenasen und Oxidasen nachweisen (Rhead *et al.*, 1981). Für die humane Racemase mußte deswegen zunächst sichergestellt werden, daß die [³H]H₂O-Bildung aus [2-³H]Pristanoyl-CoA nicht durch die Aktivität konkurrierender Enzyme, sondern in erster Linie auf die Racemase selbst zurückgeht.

Wie sich im weiteren Verlauf der Arbeiten schließlich zeigte, basiert auch in menschlichen Geweben die [³H]H₂O-Freisetzung aus [2-³H]Pristanoyl-CoA fast ausschließlich auf der Aktivität der α -Methylacyl-CoA-Racemase. Dies trifft nicht nur auf das gereinigte Enzym, sondern auch bereits auf Rohextrakte zu (3.3.10.2).

Die radiometrische [${}^{3}H$]H₂O-Meßmethode wurde aus diesen Gründen als Standardverfahren zur Verfolgung der Proteinreinigung und zur Untersuchung der enzymatischen Eigenschaften der humanen α -Methylacyl-CoA-Racemase eingesetzt.

3.2 Präparation und Reinigung von humaner α-Methylacyl-CoA-Racemase

Als Ausgangsmaterial für die Reinigung der humanen α -Methylacyl-CoA-Racemase diente menschliche Leber, die innerhalb von 24 h p.m. eingefroren und bei –20°C gelagert wurde. Der Rohextrakt wurde aus 235 g Humanleber durch Homogenisierung mittels Ultraturrax und Ultraschall, wie in 2.2.2.5 beschrieben, hergestellt. Anschließend erfolgte eine 60 %ige Ammoniumsulfatfällung des Humanleberextrakts, wie unter Punkt 2.2.2.4 dargestellt. Alle Reinigungsschritte erfolgten bei einer Temperatur von 4°C, zur Stabilisierung des Enzyms wurde, soweit nicht anders erwähnt, 10 mM Na/K/P_i-Puffer, pH 6.8 eingesetzt.

3.2.1 Anionenaustauschchromatographie an DEAE-Cellulose

Das dialysierte Retentat aus der Ammoniumsulfatfällung wurde auf eine DEAE-Cellulose-Säule (500 ml SV, äquilibriert mit Phosphatpuffer, Flußrate: 1 ml/min) aufgetragen und der ungebundene Proteinanteil mit 2 SV Phosphatpuffer ausgewaschen. Die Elution erfolgte mit 4,51 eines hyperbolischen Gradienten von 0-0,3 M NaCl in Phosphatpuffer (2.2.4.1.2). Fraktionen à 25 ml wurden auf ihre enzymatische Aktivität und den Proteingehalt überprüft und die aktiven Fraktionen im Bereich von 50 – 150 mM des NaCl-Gradienten vereinigt.

Abb. 3-1: DEAE-Chromatographie zur Reinigung der humanen α -Methylacyl-CoA-Racemase.

3.2.2 Hydroxylapatitchromatographie

Zur weiteren Auftrennung wurde eine Hydroxylapatitsäule mit einem Säulenvolumen von 250 ml mit Phosphatpuffer äquilibriert und die vereinigten DEAE-Fraktionen aufgetragen (Flußrate: 1,2 ml/min). Die Säule wurde mit einem Säulenvolumen Phosphatpuffer ausgewaschen und mit 10 SV eines linearen Phosphatgradienten von 10 - 500 mM Na/K/P_i, pH 6.8 eluiert (2.2.4.1.3). Die aktiven Fraktionen à 26 ml im Bereich von 120 - 180 mM [PO₄]³⁻ wurden mittels Ultrafiltration (cut off: 30 kD) entsalzt und auf 10 ml konzentriert.

Abb. 3-2: Hydroxylapatitchromatographie zur Reinigung der humanen α -Methylacyl-CoA-Racemase.

3.2.3 Gelfiltration

Die chromatographische Auftrennung nach Molekulargewicht wurde mit einer 500 ml Sephadex G-100 *superfine*-Säule erreicht, die mit 250 mM NaCl in Phosphatpuffer, pH 6.8 äquilibriert wurde (2.2.4.1.5). Nach Auftrag der konzentrierten HA-Fraktionen wurde mit einer Flußrate von 0,35 ml/min mit dem Auftragspuffer eluiert. Nach Bestimmung der Aktivität wurden die enzymatisch aktiven Fraktionen anschließend in einer Ultrafiltrationszelle (YM-30 Diaflo-Membran, *cut of* = 30 kDa; Amicon) auf 9 ml konzentriert.

3.2.4 Affinitätschromatographie an immobilisierten Farbstoffsäulen

Zur weiteren Reinigung wurde eine Affinitätschromatographie an immobilisierten Farbstoffen durchgeführt. Neun verschiedene immobilisierte Farbstoffsäulen *Affinity Chromatography Media* (Sigma) wurden unter verschiedenen Elutionsbedingungen auf ihre Einsatzmöglichkeit zur Aufreinigung untersucht (2.2.4.1.6). Nach Äquilibrierung der Säulen mit 10 mM Phosphatpuffer, pH 6.8 wurde Protein in einer Konzentration von 30 mg/ml SV aufgetragen und mit 3 SV Auftragspuffer ausgewaschen. Die Proteinelution wurde mit je 6 SV der Elutionspuffer 1-7 durchgeführt, die für jede Säule nacheinander eingesetzt wurden.

Außer von den Reactive Yellow-Säulen wurde das Enzym von allen Säulenmaterialien vollständig gebunden, konnte aber nur von RB 72, RY 3 und RY 86 wieder eluiert werden, wobei die letzteren durch die unvollständige Bindung für die weitere Reinigung nicht in Frage kamen. Ohne größeren Aktivitätsverlust gelang die Elution nur bei dem Säulenmaterial RB 72 (zur Übersicht siehe Tab. 3-1).

Affinitäts-		Aktivität [%]									
chromatographiemedien	Durchlauf		Elution								
	10 mM PP,	50 µM	50 µM	50 µM	10 mM	1 M PP,	10 µM	10 mM			
	pH 6.8	FAD,	NADH,	NADP,	PP,	pH 6.8	AMP,	Tris,			
		pH 6.8	pH 6.8	pH 5.5	pH 5.5		pH 6.8	pH 8.5			
Cibacron Blue 36A											
Agarose (CB 36A)	_	_	_	_	_	_	_	_			
Reactive Blue 4 (RB 4)	_	_	_	-	-	-	-	-			
Reactive Blue 72 (RB 72)	0,5 %	3,7 %	0,2 %	-	1,4 %	3,9 %	0,3 %	90,0 %			
Reactive Brown 10 (RB 10)	_	—	_	Ι	_	Ι	Ι	-			
Reactive Green 5 (RG 5)	_	_	_	I	_	I	Ι	-			
Reactive Green 19 (RG 19)	_	_	_	I	_	I	Ι	-			
Reactive Red 120 (RR 120)	_	_	_	I	_	I	Ι	-			
Reactive Yellow 3 (RY 3)	40,0 %	5,0 %	2,0 %	1,8 %	2,2 %	5,9 %	_	43,1 %			
Reactive Yellow 86 (RY 86)	77,0 %	3,5 %	_	3,0 %	0,5 %	3,7 %	_	15,0 %			

Tab. 3-1: Affinitätschromatographie zur Reinigung der humanen α -Methylacyl-CoA-Racemase an immobilisierten Farbstoffsäulen.

Zur weiteren Reinigung wurde schließlich die *Reactive Blue* 72-Säule eingesetzt, wobei das Protein durch eine pH-Erhöhung (10 mM Tris, pH 8.5) eluiert werden konnte.

Das Proteinkonzentrat aus der Gelfiltration wurde auf die immobilisierte Farbstoffsäule *Reactive Blue* RB 72 (44 ml SV, äquilibriert mit Phosphatpuffer, pH 6.8) gegeben und die ungebundenen Proteine durch Nachwaschen mit 4 SV des gleichen Puffers entfernt. Die Elution erfolgte durch eine pH-Erhöhung mit 4 SV 10 mM Tris/HCl, pH 8.5, bei einer Durchflußrate von 60 ml/h. Das Eluat wurde mit einem Centriprep PM 30 Konzentrator auf 10 ml konzentriert und der Puffer wieder gegen 10 mM Phosphatpuffer, pH 6.8 ausgetauscht.

3.2.5 HPLC-Chromatographie

3.2.5.1 HPLC-Chromatographie an DEAE-Cellulose

Bei der anschließenden HPLC-Chromatographie (2.2.4.2) wurde zuerst eine Fractogel EMD DEAE-650-Säule (150 x 10 mm) eingesetzt, auf der das RB 72-Eluat aufgetrennt wurde (Flußrate 0,5 ml/min, Fraktionen à 1,25 ml). Nach der Äquilibrierung mit Phosphatpuffer und dem Auftrag der Proteinlösung wurden mit 15 ml Startpuffer die ungebundenen Proteine ausgewaschen. Anschließend wurde mit drei linearen NaCl-Gradienten von 0 – 100 mM in 15 ml, 100 - 300 mM in 70 ml und 300 - 1000 mM NaCl in 30 ml Phosphatpuffer eluiert. Die enzymatisch aktiven Fraktionen wurden mit Centriprep PM 30 Konzentratoren entsalzt und auf ein Endvolumen von 6 ml konzentriert. Nach Äquilibrierung der DEAE-Säule mit Phosphatpuffer wurde das Proteinkonzentrat erneut appliziert und die ungebundenen Proteine mit dem gleichen Puffer ausgewaschen. Zur Elution wurde ein NaCl-Gradient angelegt, von 0 - 100 mM in 7,5 ml, 100 - 130 mM in 200 ml und 130 - 300 mM NaCl in 30 ml Phosphatpuffer (Flußrate 0,5 ml/min, Fraktionen à 2,5 ml). Nach Austausch des Puffers gegen 1 mM Phosphatpuffer, pH 6.8, wurden die enzymatisch aktiven Fraktionen mit Centripreps PM 10 auf 8 ml konzentriert.

Abb. 3-3: HPLC-EM-DEAE-Chromatographie I zur Reinigung der humanen α -Methylacyl-CoA-Racemase.

Abb. 3-4: HPLC-EM-DEAE-Chromatographie II zur Reinigung der humanen α -Methylacyl-CoA-Racemase.

3.2.5.2 HPLC-Chromatographie an Hydroxylapatit

Im letzten Reinigungsschritt zur Aufreinigung der humanen α -Methylacyl-CoA-Racemase wurde der HPLC-DEAE-Pool auf einer Hydroxylapatit-HPLC-Säule Pentax HA, B54-Y390 (1 ml SV) aufgetrennt. Die HA-Säule wurde hierzu mit 1 mM Phosphatpuffer, pH 6.8 äquilibriert, das Konzentrat aufgetragen und mit vier aufeinander folgenden linearen Na/K/P_i -Gradienten eluiert: 1 – 10 mM in 7,5 ml, 10 – 100 mM in 22.5 ml, 100 – 200 mM in 7,5 ml und 200 – 1000 mM in 7,5 ml (Flußrate 0,25 ml/min, Fraktionen à 1,25 ml) (2.2.4.2). Die Fraktionen, die Enzymaktivität zeigten, wurden vereinigt und im Centricon-10 entsalzt und konzentriert.

Abb. 3-5: *HPLC-Chromatographie an Hydroxylapatit zur Reinigung der humanen* α -*Methylacyl-CoA-Racemase.*

3.2.6 Übersicht der Aufreinigung der humanen α-Methylacyl-CoA-Racemase

Die zur Reinigung der α -Methylacyl-CoA-Racemase eingesetzten Verfahren mit ihren jeweiligen Reinigungsfaktoren und Ausbeuten sind in der unten stehenden Tabelle schematisch zusammengestellt. Letztlich konnten aus 25 g Gesamtprotein einer Humanleber 162 µg hochreines Enzym mit einer Aktivität von 79 mU gewonnen werden, also einer spezifischen Aktivität von 486 mU/mg. Das entspricht einer Ausbeute von 2,3 % und einem Reinigungsfaktor von 3583.

	Protein	Aktivität	spezifische	Ausbeute	Reinigungs-
			Aktivität		faktor
	[mg]	[mU]	[mU/mg]	[%]	
Humanleber- homogenat	25000	3390	0,136	100,00	1,0
Rohextrakt	17040	3880	0,227	114,45	1,7
(NH ₄) ₂ SO ₄ -Fällung	12670	3830	0,302	112,98	2,2
DEAE- Chromatographie	383,7	3570	9,31	105,31	68,4
Hydroxylapatit- Chromatographie	86,50	1610	18,6	47,50	137,3
Gelfiltration	50,14	1300	26,0	38,50	192,0
Affinitätschromato- graphie an RB-72	12,53	580	46,3	17,40	342,0
HPLC-DEAE- Chromatographie (I)	3,060	200	65,5	5,92	483,0
HPLC-DEAE- Chromatographie (II)	1,360	192	141,0	5,57	1041,0
HPLC-HA- Chromatographie	0,162	78,7	485,8	2,32	3583,0

Tab. 3-2: *Reinigung der* α *-Methylacyl-CoA-Racemase aus menschlicher Leber.*

3.2.7 Analyse der Reinheit der präparierten α-Methylacyl-CoA-Racemase aus humaner Leber

3.2.7.1 HPLC-Chromatographie an WAEX-DEAE

Zur Überprüfung der Reinheit wurde ein Aliquot der konzentrierten HPLC-HA-Fraktionen auf eine Euramid WAEX-DEAE 1000/7-Säule (1 ml SV) appliziert. Auf die mit 0,1 mM Phosphatpuffer äquilibrierte DEAE-WAEX-Säule wurde das Konzentrat in 0,1 mM $[PO_4]^{3-}$ aufgetragen, mit 15 ml 0,1 mM $[PO_4]^{3-}$ ausgewaschen und mit einem linearen Na/K/P_i -Gradienten von 0,1 – 20 mM in 30 ml eluiert (Flußrate: 0,5 ml/min) (2.2.4.2). Das Elutionsprofil zeigt nur ein einziges Elutionsmaximum, das mit der Enzymaktivität korreliert.

Abb. 3-6: HPLC-Chromatographie an DEAE-WAEX zur Reinigung der humanen α -Methylacyl-CoA-Racemase.

3.2.7.2 SDS-PAGE-Analyse

Zur zusätzlichen Analyse der Reinheit wurden die Hauptfraktionen der HPLC-Hydroxylapatitchromatographie und der DEAE-Pool vor Auftrag auf einem 10 %igen SDS-Gel aufgetrennt (Abb. 3-7) und mit Coomassie Blue angefärbt (2.2.3.1). Parallel dazu wurden dieselben Proben auf einem nativen Polyacrylamidgel unter nicht denaturierenden Bedingungen aufgetrennt, das Gel in 0,5 cm breite Stücke geschnitten und nach Elution unter Schütteln (60 min, 4°C) in 10 mM Phosphatpuffer, pH 6.8 die enzymatische Aktivität mit dem Standardassay bestimmt. Von den Gelstücken wurde ein Teil parallel angefärbt, die einzelne sichtbare Bande korrelierte dabei mit der gemessenen Aktivität. Mit Hilfe des entsprechenden SDS-Gels konnte so überprüft werden, daß die einzige bei 45 kDa sichtbare Bande tatsächlich der aktiven Racemase entsprach.

Abb. 3-7: 10%ige SDS-PAGE der gereinigten α-Methylacyl-CoA-Racemase aus menschlicher Leber: Proteinmarker (ST), HPLC-HA-Fraktionen mit dem höchsten Reinheitsfaktor (1, 2, 3) und HPLC-DEAE-Pool vor HPLC-Hydroxylapatitchromatographie (4).

3.3 Biochemische Charakterisierung der humanen α-Methylacyl-CoA-Racemase

3.3.1 Molekulargewichtsbestimmung

3.3.1.1 Gelfiltration

Eichproteine: Triosephosphat-Isomerase (30 kDa), LDH (36 kDa), Ovalbumin (48 kDa), BSA (66 kDa), Cytochromoxidase (240 kDa)

Eine Ultrogel AcA 34-Säule (250 ml SV, 20 - 350 kD, 4°C) wurde nach Äquilibrierung mit 10 mM Phosphatpuffer, pH 6.8 zuerst mit verschiedenen Eichproteinen (0,5 ml, 1 mg/ml) bei einer Flußrate von 0,3 ml/min kalibriert. Die eingesetzten Eichproteine sind in der unten stehenden Tabelle aufgeführt. Anschließend wurde die Proteinprobe (HA-Pool) mit der gleichen Durchflußrate chromatographiert (0,5 ml Auftragsvolumen). Zur Bestimmung von V₀ (Ausschlußvolumen) und V_s (Salzvolumen) wurden je 0,5 ml p-Nitrophenol (5 mg/ml) und Dextranblau (2 mg/ml) mit aufgetragen. Die Elution erfolgte mit 0,5 M NaCl in 10 mM Phosphatpuffer, pH 6.8. Aus der photometrischen Bestimmung der Eichproteine und der Messung der Enzymaktivität in den erhaltenen Fraktionen (2,5 ml) konnten die R_{f} Werte¹ der Eichproteine anhand der charakteristischen Elutionsvolumina (V_e) errechnet werden (Abb. 3-8). Mittels der relativen Mobilität der Racemase ($R_{f} = 0,62$) wurde anschließend das Molekulargewicht der α -Methylacyl-CoA-Racemase von 47,7 kDa bestimmt (2.2.4.1.5).

¹ \mathbf{R}_{f} (relative Mobilität) = $\mathbf{V}_{e} - \mathbf{V}_{0} / \mathbf{V}_{s} - \mathbf{V}_{0}$

Abb. 3-8: Molekulargewichtsbestimmung einer aufgereinigten Proteinprobe mittels Gelfiltration auf einer Ultrogel AcA 34-Säule.

3.3.1.2 SDS-Polyacrylamidgelelektrophorese

Zur genaueren Molekulargewichtsbestimmung wurden nach Abschluß der Reinigung die aktiven HPLC-HA-Fraktionen auf einem 10 %igen SDS-Polyacrylamidgel aufgetrennt und das Molekulargewicht der α -Methylacyl-CoA-Racemase mittels des Proteinstandards (2.2.3.4) mitbestimmt (Abb. 3-7). Das durch die Gelfiltration erhaltene Molekulargewicht von 47,7 kDa korreliert sehr gut mit dem durch die SDS-Gelelektrophorese ermittelten Wert von 47,1 kDa.

Abb. 3-9: Molekulargewichtsbestimmung der gereinigten α -Methylacyl-CoA-Racemase mittels SDS-Gelelektrophorese.

3.3.2 Bestimmung des isoelektrischen Punktes

Zur Bestimmung des isoelektrischen Punktes wurde an der präparativen IEF-Zelle Rotofor eine isoelektrische Fokussierung eines nach DEAE- und HA-Chromatographie angereicherten Enzympräparates durchgeführt. Nach der Präfokussierung mit 1,5 ml Biolyte (Ampholyte, pH-Bereich 2-10, BIORAD) in 50 ml ddH₂O, erfolgte die elektrophoretische Auftrennung der Proteinprobe, an die sich eine Refokussierung der aktiven Fraktionen der IEF I anschloß. Alle Fokussierungen wurden bei 12 W, 20 mA und 570 V für 2,5 h durchgeführt (2.2.3.6). Der isoelektrische Punkt lag für die α -Methylacyl-CoA-Racemase bei pH 5,78 (+/-0,08).

Abb. 3- 10: Isoelektrische Fokussierung I der humanen α -Methylacyl-CoA-Racemase.

Abb. 3-11: Isoelektrische Fokussierung II der humanen α -Methylacyl-CoA-Racemase.

3.3.3 Bestimmung der spezifischen Enzymaktivität

Um die Abhängigkeit der α -Methylacyl-CoA-Racemase-Reaktion von der Enzymkonzentration zu bestimmen, wurde die Freisetzung von [³H]H₂O aus 0,4 nmol [2-³H] Pristanoyl-CoA bzw. 0,5 nmol [24,25-³H] THCA(Trihydroxycoprostanoyl)-CoA unter Standardbedingungen (2.2.5.1) (30 min, 37°C) durch gereinigte Racemase gemessen. Die Reaktionsrate steigt linear mit der Proteinkonzentration bis zu 45 ng pro Ansatz. 1 ng Racemase setzt pro Minute 0,008 pmol Pristanoyl-CoA bzw. 0,003 pmol THCA-CoA um (Abb. 3-12).

Abb. 3-12: Freisetzung von $[^{3}H]H_{2}O$ aus $[^{2-3}H]Pristanoyl-CoA$ und $[^{24},2^{5-3}H]THCA-CoA$ durch die humane α -Methylacyl-CoA-Racemase in Abhängigkeit von der Enzymkonzentration.

3.3.4 Thermostabilität

Der Rohextrakt von Humanleber (in Aliquots à 100 ml, 1,3 mg Protein, 1:100 verd.) wurde zeitabhängig bei verschiedenen Temperaturen vorinkubiert, die Proben anschließend auf Eis gekühlt und nach Abzentrifugieren des ausgefallenen Proteins die Aktivität im Standard-verfahren (2.2.5.1) bestimmt. Als Ergebnis ließ sich eine deutliche Temperatur-empfindlichkeit der Racemase feststellen. Das Enzym verliert schon merklich an Aktivität bei einer Erhöhung von 35°C auf 40°C. Bei einer Vorinkubation mit einer Temperatur von 50°C liegt die Halbwertszeit der α -Methylacyl-CoA-Racemase bei 15 min (Abb. 3-13).

Abb. 3-13: Thermostabilität der α -Methylacyl-CoA-Racemase im Temperaturbereich von 35° C bis 60°C.

3.3.5 pH-Abhängigkeit

Die Freisetzung von $[2-^{3}H]H_{2}O$ aus $[2-^{3}H]Pristanoyl-CoA$ und $[24,25-^{3}H]Trihydroxy$ $coprostanoyl-CoA durch die humane <math>\alpha$ -Methylacyl-CoA-Racemase ist bei einem pH-Wert von pH 8.0 am höchsten, wobei mehr als 80 % der maximalen Aktivität im pH-Bereich von pH 6.5 – 9.0 erreicht werden (Abb. 3-14). Bei pH-Werten unter 5.0 zeigt das Enzym keine Aktivität, bei einem pH-Wert über 9.5 konnte eine Aktivität aufgrund der schnellen Hydrolyse der Thioestersubstrate unter alkalischen Bedingungen nicht mehr nachgewiesen werden (Abb. 3-14).

Abb. 3-14: pH-Abhängigkeit der $[^{3}H]H_{2}O$ -Bildung aus $[2-^{3}H]Pristanoyl-CoA$ und $[24,25-^{3}H]$ THCA-CoA durch die α -Methylacyl-CoA-Racemase aus Humanleber.

3.3.6 Enzymkinetik der humanen α -Methylacyl-CoA-Racemase

Gereinigte Racemase (28 ng Protein) aus Humanleber wurde mit 0,4 nmol [2-³H]Pristanoyl-CoA bzw. mit 0,5 nmol [24,25-³H]THCA-CoA unter Standardbedingungen (Abb.3-14) inkubiert und die Bildung von [³H]H₂O in bestimmten Zeitabständen von 0 - 180 min gemessen. Die enzymatische Reaktion zeigt innerhalb der ersten 30 min eine lineare Zeitabhängigkeit, anschließend beginnt sich die Freisetzung von [³H]H₂O zu verlangsamen (Abb. 3-15).

Abb. 3-15: Zeitabhängigkeit der $[^{3}H]H_{2}O$ -Bildung aus $[2-^{3}H]Pristanoyl-CoA$ und $[24,25-^{3}H]THCA$ -CoA durch die α -Methylacyl-CoA-Racemase aus Humanleber.

Die enzymatische Reaktion mit [2-³H]Pristanoyl-CoA und [24,25-³H]Trihydroxyco-prostanoyl-CoA als Substrate für die humane α -Methylacyl-CoA-Racemase folgt einer einfachen Michaelis-Menten Kinetik, vergleichbar der Enzymkinetik des Rattenleberenzyms (Schmitz *et al.*, 1994). Für [2-³H]Pristanoyl-CoA liegt die $k_{\rm M}$ bei 172 μ M und die $V_{\rm max}$ bei 0,1 μ mol/min/mg (Abb. 3-16), die $k_{\rm M}$ für [24,25-³H]THCA-CoA beträgt 31,6 μ M und die $V_{\rm max}$ 0,3 μ mol/min/mg (Abb. 3-17).

Abb. 3-16: *Michaelis-Menten-Kinetik der humanen* α -*Methylacyl-CoA-Racemase für* [2-³H]Pristanoyl-CoA.

Abb. 3-17: *Michaelis-Menten-Kinetik der humanen* α -*Methylacyl-CoA-Racemase für* [24,25-³H]*Trihydroxycoprostanoyl-CoA.*

3.3.7 Inhibition der α -Methylacyl-CoA-Racemisierung

Zur Analyse der Substratspezifität der α -Methylacyl-CoA-Racemase, wurden verschiedene Acyl-CoAs eingesetzt und auf ihre Fähigkeit überprüft, die [³H]H₂O-Bildung aus [2-³H] Pristanoyl-CoA durch das gereinigte Enzym zu hemmen (Abb. 3-18). Eine signifikante kompetitive Inhibition konnte, wie schon für das Rattenenzym beschrieben (Schmitz *et al.*, 1994), nur mit 2-Methylacyl-CoAs mit Kettenlängen von mindestens acht Kohlenstoffatomen gezeigt werden. Die verzweigtkettigen Substrate 2-Methylmyristoyl-CoA und 2-(4-Isobutylphenyl)-Propionyl-CoA (Ibuprofenoyl-CoA) zeigten eine eindeutige kompetitive Inhibition mit K_i -Werten von 19 µM bzw. 25 µM. Wie auch für das Rattenenzym gezeigt werden konnte (Schmitz *et al.*, 1994), inhibiert Palmitoyl-CoA dagegen die Reaktion vermutlich nicht durch direkte Bindung an das Enzym, sondern nur indirekt durch die Bildung stabiler Mizellen, die eine Substratbindung an das Enzym verhindern.

Acyl-CoA	Konzentration	Reaktionsrate		
	[µM]	[% der Kontrollreaktion]		
Acetyl-CoA	400	106		
Butyryl-CoA	400	104		
Valeryl-CoA	400	100		
Octanoyl-CoA	400	102		
Palmitoyl-CoA	400	39		
2-Methylpropionyl-CoA	400	96		
2-Methylbutyryl-CoA	400	109		
2-Methylpentanoyl-CoA	200	91		
2-Methyloctanoyl-CoA	200	76		
2-Methylmyristoyl-CoA	200	9		
2-Methylmyrist-2-enoyl-CoA	400	105		
2-Methylbutyryl-CoA	400	116		
2-Ethylhexanoyl-CoA	200	100		
Ibuprofenoyl-CoA	200	13		

Abb. 3-18: Inhibition der Pristanoyl-CoA-Racemisierung durch verschiedene Acyl-CoAs (10 μ M [2-³H]Pristanoyl-CoA wurden mit 1 ng gereinigter α -Methylacyl-CoA-Racemase aus Humanleber und verschiedenen Acyl-CoAs für 30 min unter Standardbedingungen inkubiert).

3.3.8 Subzelluläre Verteilung der α -Methylacyl-CoA-Racemase

Die subzelluläre Lokalisation der α -Methylacyl-CoA-Racemase sollte in verschiedenen humanen Geweben und zum Vergleich auch in Rattenleberhomogenat untersucht werden. Zu diesem Zweck wurden Rattenleber, humane Hautfibroblasten (von Normalkontrollen und Patienten mit Zellweger-Syndrom) und Hep-G2-Zellen subzellulär fraktioniert. Die Fraktionierung erfolgte mit einem gegenläufigen Nycodenz-Saccharose-Gradienten (je 5,5 ml 34 % und 15 % Nycodenz in 8,5 % Saccharoselösung, 1 mM Tris/HCl, pH 7.0) (2.2.2.6).

Neben der Racemaseaktivität in den einzelnen Fraktionen wurden noch die Leitenzyme der verschiedenen Organellen gemessen (2.2.5). Zur Identifikation der peroxisomalen Fraktionen wurde die Aktivität der Katalase gemessen, für die Mitochondrien die Succinatdehydrogenase und Palmitoyl-CoA-Dehydrogenase bestimmt. Die folgenden Abbildungen (Abb. 3-19 - Abb. 3-23) zeigen anhand der unterschiedlich verteilten Enzymaktivitäten eine deutliche Trennung von mitochondrialen und peroxisomalen Fraktionen.

Es konnte gezeigt werden, daß in Rattenleber die α -Methylacyl-CoA-Racemase fast ausschließlich mitochondrial lokalisiert ist (Abb. 3-19). Eine geringe Restaktivität in den cytosolischen Fraktionen ist vermutlich auf zerstörte Organellen zurückzuführen.

Im Gegensatz dazu konnte in menschlichen Zellen, wie Hautfibroblasten (Abb. 3-20) und Hep G2 Zellen (Abb. 3-21) die Enzymaktivität zu mehr als 80 % in den Peroxisomen und nur zu knapp 20 % in den Mitochondrien lokalisiert werden. Die beobachtete Verteilung der Racemaseaktivität war in allen menschlichen Zellinien gesunder Probanden reproduzierbar.

Abb. 3-19: Subzelluläre Lokalisation der α -Methylacyl-CoA-Racemase in Rattenleber. (Frische Rattenleber wurde homogenisiert und nach Fraktionierung auf einem Nycodenz/ Saccharose-Gradienten die Racemaseaktivität (a) und die Leitenzyme (b) in den einzelnen Fraktionen bestimmt).

(a)

Abb. 3-20: Subzelluläre Verteilung der α-Methylacyl-CoA-Racemase in normalen Hautfibroblasten (Frisch geerntete Fibroblasten gesunder Probanden wurden homogenisiert und nach Fraktionierung auf einem Nycodenz / Saccharose-Gradienten die Racemaseaktivität (a) und die Leitenzyme (b) in den einzelnen Fraktionen bestimmt).

Abb. 3-21: Subzelluläre Verteilung der α -Methylacyl-CoA-Racemase in Hep-G2-Zellen (Frisch geerntete Hep-G2-Zellen wurden homogenisiert und nach Fraktionierung auf einem Nycodenz / Saccharose-Gradienten die Racemaseaktivität (a) und die Leitenzyme (b) in den einzelnen Fraktionen bestimmt).

Neben den verschiedenen menschlichen Normalzellinien wurde die subzelluläre Lokalisation der α -Methylacyl-CoA-Racemase in Zellinien mit einem generalisierten Defekt in der peroxisomalen Biogenese (*Zellweger-Syndrom*) untersucht.

Dazu wurden zuerst Zellweger-Fibroblastenhomogenate im Vergleich zu Kontroll-homogenaten mit [2-³H]Pristanoyl-CoA unter Standardbedingungen unterschiedlich lang inkubiert. Bei Zellen von ZS-Patienten wurden nur noch knapp 20 % [³H]H₂O im Vergleich zur Normalkontrolle freigesetzt (Abb. 3-22), aus [2,3-³H]Palmitoyl-CoA wurde dagegen gleich viel [³H]H₂O freigesetzt. Diese Reaktion findet ausschließlich in den Mitochondrien statt und stellt somit nur die Acyl-CoA-Dehydrogenase-Aktivität für langkettige Substrate dar (Rhead *et al.*, 1981).

Abb. 3-22: Bildung von $[{}^{3}H]H_{2}O$ aus $[2{}^{-3}H]Pristanoyl-CoA$ und $[2{},3{}^{-3}H]Palmitoyl-CoA$ durch menschliche Hautfibroblasten. (Frisch geerntete Hautfibroblasten von Patienten mit Zellweger-Syndrom im Vgl. zu Normalkontrollen wurden homogenisiert, je 100 µg Protein mit 10 µM $[2{}^{-3}H]Pristanoyl-CoA$ bzw. $[2{},3{}^{-3}H]$ Palmitoyl-CoA bei 37°C inkubiert und das freigesetzte $[{}^{3}H]H_{2}O$ mit dem Standardassay bestimmt).

Bei einer subzellulären Fraktionierung von Fibroblasten von ZS-Patienten konnte nur noch in den Mitochondrien eine Restaktivität der Racemase lokalisiert werden (Abb. 3-23). Eine Defizienz der α -Methylacyl-CoA-Racemase-Aktivität konnte auch in Chorionzyten, in Chorionzottenhomogenaten

und Amnionzyten von Feten mit Zellweger-Syndrom anhand der [³H]H₂O-Freisetzung aus [2-³H]Pristanoyl-CoA nachgewiesen werden (Tab. 3-3), die Palmitoyl-CoA-Aktivität wurde jeweils als interne Kontrolle mitgemessen.

Abb. 3-23: Subzelluläre Verteilung der α -Methylacyl-CoA-Racemase in Hautfibroblasten von Patienten mit Zellwegersyndrom (Frisch geerntete Zellwegerfibroblasten wurden homogenisiert und nach Fraktionierung auf einem Nycodenz/Saccharose-Gradienten die Racemaseaktivität (a) und die Leitenzyme (b) in den einzelnen Fraktionen bestimmt).

3.3.9 Gewebsspezifische Aktivität der humanen α-Methylacyl-CoA-Racemase

Um zu untersuchen, inwieweit die Aktivität der α -Methylacyl-CoA-Racemase in verschiedenen Zellen und Geweben spezifisch ausgeprägt ist und dieser Nachweis auch für diagnostische Zwecke einsetzbar ist, wurde die Racemaseaktivität in Gewebshomogenaten gesunder Probanden und an einem generalisierten peroxisomalem Defekt (ZS, *Zellweger-Syndrom*) erkrankter Patienten durchgeführt. Neben [2-³H]Pristanoyl-CoA wurde auch [2,3-³H]Palmitoyl-CoA als Kontrolle eingesetzt und für den Vergleich der Racemaseaktivität das Verhältnis von Pristanoyl-CoA zu Palmitoyl-CoA bestimmt.

Bei den Patienten mit Zellweger-Syndrom war im Vergleich zu den Normalkontrollen die Racemaseaktivität deutlich reduziert (Tab. 3-3). Da Peroxisomen in allen Zelltypen (abgesehen von Erythrozyten) vorkommen, konnte, wie erwartet, diese Reduktion in allen untersuchten Geweben nachgewiesen werden. Allerdings ist die Häufigkeit der Peroxisomen vom jeweiligen Zelltyp abhängig, während z.B. die Leber peroxisomenreich ist, sind in Amnionzellen relativ wenige Peroxisomen zu finden (Roels *et al.*, 1991). Wie aus Tab. 3-3 zu ersehen ist, läßt die Messung jedoch in allen Geweben eine deutliche Abnahme der [³H]H₂O -Freisetzung erkennen, so daß die Messung der Racemaseaktivität auch im Hinblick auf diagnostische Zwecke einsetzbar ist.

Die eindeutige Verringerung der [³H]H₂O-Bildung in Zellen und Geweben fetaler Herkunft, sowohl in Amnionzyten und Chorionzyten als auch direkt im Chorionzottenbiopsat, ist in diesem Zusammenhang für Pränataldiagnosen von besonderem Interesse. Für die Pränataldiagnostik ist es von entscheidender Bedeutung, die Zeit bis zum Erhalt des Untersuchungsergebnisses möglichst gering zu halten. Eine Amniozentese kann erst in der 16. Schwangerschaftswoche p.m. (postmenstruum) erfolgen, wobei die Anzucht der Zellen die Untersuchung noch weiter verzögert. Das Ergebnis liegt durch eine Chorionbiopsie schon viel früher vor, da diese schon ab der 9. Schwangerschaftswoche p.m. gelingt und sich unmittelbar, d.h. ohne vorherige Zellzüchtung, mit dem Chorionzottenbiopsat ein sicheres Ergebnis erzielen läßt. Mit dem Anzüchten der Chorionzyten kann das Untersuchungsergebnis dann zusätzlich bestätigt werden.

Die Bestimmung der Racemaseaktivität im Chorionzottenbiopsat, in Chorion- und Amnionzyten, ermöglicht ein schnelles und sicheres Untersuchungsergebnis. Die Aktivitätsbestimmung der α -

Methylacyl-CoA-Racemase	kann	somit	auch	in	der	Pränataldiagnostik	zur	Untersuchung	von
Defekten der Peroxisomenbi	ogenes	se einge	esetzt	wer	den.				

Gewebe	Probe	[2- ³ H]Pristanoyl-	[2,3-	Pris-CoA/Palm-
		СоА	³ H]Palmitoyl-	СоА
			СоА	
		[pmol/min/mg Protein]	[pmol/min/mg Protein]	[pmol/min/mg Protein]
Leber	Kontrolle	40,56	10,0	4,06
	ZS-Fall 1 (fetal)	0,46	3,94	0,12
	ZS-Fall 2 (fetal)	3,40	3,16	1,08
Нер-G2-		5,14	0,76	6,76
Haut-	Kontrolle	2,94	0,87	3,38
Fibroblasten	Kontrolle	4,62	2,61	1,77
	Kontrolle	10,41	6,85	1,52
	ALD	1,62	1,15	1,41
	ZS-Fall 2	0,69	2,74	0,25
	ZS-Fall 4	1,70	2,05	0,83
	ZS-Fall 6	2,54	9,98	0,26
	ZS-Fall 7	2,39	8,96	0,27
Amnionzvten	Kontrolle	0,76	0,60	1,26
	Kontrolle	0,70	0,51	1,38
	ZS-Fall 2	0,12	0,47	0,25
Chorionzotten	Kontrolle	3,53	2,03	1,74
	Kontrolle	2,32	2,07	1,12
	Kontrolle	6,77	2,17	3,13
	ZS-Fall 2	1,28	6,68	0,19
	ZS-Fall 5	2,69	23,19	0,12
	ZS-Fall 8	2,37	13,65	0,17
Chorionzvten	Kontrolle	3,34	1,76	1,90
	ZS-Fall 1	0,06	1,53	0,04
	ZS-Fall 2	0,13	1,58	0,08
	ZS-Fall 5	1,23	13,33	0,09
	ZS-Fall 8	0,65	3,87	0,17

Tab. 3-3: [³H]H₂O-Bildung aus [2-³H]Pristanoyl-CoA und [2,3-³H]Palmitoyl-CoA in verschiedenen menschlichen Geweben (Fälle 2/3 und 4/5 waren Zwillingsfeten mit Zellweger-Syndrom (ZS)).

3.3.10 Immunchemische Charakterisierung der humanen α -Methylacyl-CoA-Racemase

Für die immunchemische Untersuchung des menschlichen Enzyms wurde ein polyklonales Antiserum gegen das gereinigte Rattenenzym aus Kaninchen gewonnen (Schmitz *et al.*, 1994).

3.3.10.1 Westernblot

Das polyklonale Antiserum gegen die α -Methylacyl-CoA-Racemase wurde zuerst im Westernblot (2.2.3.7) gegen Homogenate aus Human-, Maus- und Rattenleber eingesetzt (Abb. 3-24), wobei der Antikörper zwar stärker mit dem Rattenantigen als mit dem menschlichen bzw. dem Mausenzym reagierte, aber die Reaktion dennoch einen eindeutigen Nachweis zuließ (2.2.6.3).

Abb. 3-24: Westernblot mit Antiserum gegen α -Methylacyl-CoA-Racemase aus menschlicher Leber (1), Rattenleber (2) und Mausleber (3), als Marker (St) wurde ein low range prestained Marker eingesetzt (2.2.3.4).

3.3.10.2 Immunopräzipitation

In einem Immunopräzipitationsversuch mit Rohextrakten aus Ratten- bzw. Humanleber (2.2.6.2) verhinderte das Antiserum gegen die α -Methylacyl-CoA-Racemase aus Rattenleber die [³H]H₂O-Bildung aus [2-³H]Pristanoyl-CoA und [24,25-³H]Trihydroxycoprostanoyl-CoA fast vollständig (Tab. 3-4). Nach Behandlung mit Präimmunserum, d.h. in Gegenwart der Racemase, kam es zu einer signifikanten Bildung von [³H]H₂O aus beiden genannten Substraten und das sowohl in Rattenals auch in Humanleber. In Abwesenheit der Racemaseaktivität (nach Präzipitation mit Antiserum) kam die [³H]H₂O-Freisetzung dagegen in beiden Geweben fast vollständig zum Erliegen.

	Immunserum (IS)	Substrat	[³ H]H ₂ O-Bildung [pmol/min]
Humanleber	Prä-IS	Pristanovl-CoA	0,219
	Anti-IS	Pristanovl-CoA	0,012
	Prä-IS	THCA-CoA	0,055
	Anti-IS	THCA-CoA	0,000
Rattenleber	Prä-IS	Pristanovl-CoA	2,170
	Anti-IS	Pristanovl-CoA	0,070
	Prä-IS	THCA-CoA	0,210
	Anti-IS	THCA-CoA	0,000

Tab. 3-4: Präzipitation der $[{}^{3}H]H_{2}O$ -Bildung aus Human- und Rattenleberextrakten mit Antiserum gegen Rattenleber-Racemase. Experimentelles: 100 µl postnukleäre Überstände aus Human- und Rattenleber wurden mit Antiserum bzw. Präimmunserum und Protein A-Sepharose behandelt und 150 µl der Überstände nach Immunpräzipitation mit $[2-{}^{3}H]$ Pristanoyl-CoA bzw. mit $[24,25-{}^{3}H]$ THCA-CoA unter Standardbedingungen inkubiert. Das gebildete $[{}^{3}H]H_{2}O$ wurde mit Hilfe des Standardassays bestimmt (2.2.5.1).

Hieraus wird deutlich, daß das polyklonale Antiserum gegen das Rattenenzym mit der humanen Racemase kreuzreagiert, und zwar sowohl mit dem peroxisomalen als auch mit dem mitochondrialen Enzym. Außerdem zeigt sich, daß die [³H]H₂O-Bildung in menschlichen Geweben, wie auch im Fall des Rattenenzyms fast ausschließlich auf die α -Methylacyl-CoA-Racemase zurückgeht.

Insofern konnte eindeutig nachgewiesen werden, daß die Racemase in der Tat das einzige Enzym ist, das in der Lage ist, aus den oben beschriebenen Substraten [³H]H₂O freizusetzen. Der Effekt möglicher konkurrierender Enzyme, wie Oxidasen oder Dehydrogenasen bleibt damit vernachlässigbar. Somit ist dieser sensitive Standardtest als Enzymnachweis auch für Messungen im Rohextrakt geeignet.

Bei einem analogen Präzipitationsversuch wurde das Modellsubstrat α -Methyltetradecanoyl-CoA zum direkten Nachweis der Racemisierung eingesetzt. Nach einer Behandlung von Extrakten aus Human- und Rattenleber mit Anti-Immunserum und Protein A-Sepharose und anschließender Inkubation mit (*R*)- und (*S*)- α -Methyltetradecanoyl-CoA wurde die α -Methylacyl-CoA-Racemase-Aktivität fast vollständig entfernt, während das Präimmunserum keinen Effekt auf die Racemaseaktivität hatte (Tab. 3-5).

	Immunserum (IS)	Substratkonfiguration	Produ	kte [%]
			(S)	(R)
	Prä-IS	(R)	23	77
	Prä-IS	(S)	70	30
Humanleber	Anti-IS	(R)	7	93
	Anti-IS	(S)	95	5
	Prä-IS	(R)	45	55
Rattenleber	Prä-IS	(S)	56	44
	Anti-IS	(R)	2	98
	Anti-IS	(S)	95	5

Tab. 3-5: Präzipitation der α -Methylacyl-CoA-Racemase-Aktivität aus Human- und Rattenleberextrakten mit Antiserum gegen Rattenleber-Racemase. Experimentelles: 100 µl postnukleäre Überstände aus Human- und Rattenleber wurden mit Antiserum bzw. Präimmunserum und Protein A-Sepharose behandelt und nach Immunpräzipitation 150 µl der Überstände entweder mit 200 nmol (R)- oder (S)-2-Methyltetradecanoyl-CoA für eine Stunde unter Standardbedingungen inkubiert. Nach Derivatisierung mit (R)-1-Phenylethylamin wurden die relativen Ausbeuten der (R)- und (S)-Enantiomere mittels GLC detektiert. Mittels gaschromatographischer Analyse der Produkte wurde in den mit Präimmunserum behandelten Ansätze die Racemisierung des jeweils eingesetzten (R)- bzw. (S)-CoA-Esters gezeigt. Bei den mit Antiserum behandelten Extrakten, d.h. nach Inaktivierung der Racemase, wurden die eingesetzten Enantiomere nahezu vollständig wiedergefunden. In Gegenwart der Racemase konnte eine Abnahme beider Stereoisomere gezeigt werden, ein Hinweis auf die Stereospezifität der für die weitere β -Oxidation zuständigen Enzyme.

3.4 Molekularbiologische Charakterisierung der humanen α-Methylacyl-CoA-Racemase

3.4.1 Ermittlung der cDNA-Sequenz

3.4.1.1 Allgemeine Strategie

Zur Ermittlung der cDNA-Sequenz der menschlichen α -Methylacyl-CoA-Racemase wurde zunächst anhand der bereits bekannten Sequenzen der entsprechenden Enzyme von Ratte und Maus (Schmitz *et al.*, 1997) in der Merck/Washington University EST (*expressed sequence tags*) Sequenz-Datenbank nach humanen cDNAs mit ähnlichen Sequenzen gesucht. Die entsprechenden Klone wurden, soweit erhältlich, amplifiziert und vollständig sequenziert.

Parallel dazu konnten anhand der aus den EST-Datenbanken erhaltenen Sequenzinformationen geeignete Primer synthetisiert werden, um mittels PCR aus mehreren cDNA-Banken (Marathon-ReadyTM und λ GT11 cDNA von ClonTech, Uni-ZAPTM XR Library von Stratagene) eigene, möglichst vollständige cDNA-Klone zu isolieren. Diese Primer sind in der Tabelle 3-6 mit ihren jeweiligen Sequenzpositionen, Schmelzpunkten und Nucleotidsequenzen aufgeführt. Zur besseren Orientierung sind die Sequenzpositionen der Primer und der sukzessive ermittelten Sequenzen auf die resultierende Gesamtsequenz der Racemase bezogen, die in Abb. 3-31 dargestellt ist. Des weiteren wurde genomische DNA aus Leukozyten präpariert und für die PCR eingesetzt. Auf diese Weise gelang es, die vollständige 5'-UTR-Region zu amplifizieren, die in keiner anderen cDNA-Bank gefunden werden konnte.

Primer	Position	Sequenz $(5' \rightarrow 3')$	Smp.[°C]
	[bp]		(2°+4°C)
H-18f	1- 18	GGCGCCGGGATTGGGAGG	64,0°C
H- 5f	6- 24	CGGGATTGGGAGGGCTTCT	62,0°C
H- 1f	21- 39	TCTTGCAGGCTGCTGGGC	60,0°C
H-20f	25- 42	TGCAGGCTGCTGGGCTGG	62,0°C
H-16f	68- 86	GCGGGGCACTGGGAAGCG	64,0°C
H-16r	87- 68	GCGCTTCCCAGTGCCCCGC	68,0°C
H- 6f	97- 114	GCAGGCATCTCGGTCGT	60,0°C
H-Int-1r	332- 315	GGCGGAAGGGCTCCAGCA	62,0°C
H-Int-1f	333- 352	GCGGTGTCATGGAGAAACTC	62,0°C
H-RacII-Int-IIr	476- 454	ACAAAGGCAAATAGTTGATATCG	62,0°C
H-RacII-Int-IIf	477- 497	TCAGGTGTTCTCTCAAAAATTG	60,0°C
H-RacII-1f	548- 568	GCTGGTGGTGGCCTTATGTGT	66,0°C
H-RacII-1r	568- 548	ACACATAAGGCCACCACCAGC	66,0°C
H-RacII-2f	597- 617	ACCGCACACGCACTGACAAGG	68,0°C
H-RacII-2r	617- 597	CCTTGTCAGTGCGTGTGCGGT	68,0°C
H-RacII-Int-IIIr1	640- 619	CATATCTGCATCAATGACCTGA	62,0°C
H-RacII-Int-IIIr2	640- 619	CATATTTGCGTCAATGACCTGA	62,0°C
H-RacII-Int-IIIf	641- 663	GTGGAAGGAACAGCATATTTAAG	64,0°C
H-RacII-Int-IVr	827- 817	CTTTGATCAGCAGCTCGTAGA	62,0°C
H-Int-4f	828- 848	GACTTGGACTAAAGTCTGATG	60,0°C
H-RacII-Stop-1f	1215-1237	ATAAGGTAAAAGCTAGTCTCTAA	60,0°C
H-RacII-Stop-1r	1237-1215	TTAGAGACTAGCTTTTACCTTAT	60,0°C
H-RacII-Stop-2r	1257-1238	TTGAGCCGTGGGCCTGGAAG	66,0°C
H-RacII-Stop-3f	1980-2002	GTTCTGGATCTTATACCCAACAC	66,0°C
H-RacII-Stop-3r	2041-2021	TTGGGGGGGTCCTGAGATCTTT	64,0°C

Tab. 3-6: Darstellung der spezifischen Primer zur Amplifikation der α -Methylacyl-CoA-Racemase aus verschiedenen cDNA-Banken.

3.4.1.2 Marathon-ReadyTM cDNA

Bei der Marathon-ReadyTM cDNA von ClonTech handelt es sich um eine cDNA-Bank aus Humanleber, deren DNA-Stücke in spezifische Adaptoren (AP 1, AP 2) kloniert sind (2.4.1). Die Amplifikation der cDNA-Sequenz der humanen α -Methylacyl-CoA-Racemase gelang mit Hilfe von *nested PCR*, bei der erst der vektorspezifische äußere AP1-Primer und anschließend der innere AP 2-Primer kombiniert mit genspezifischen Primern (2.4.2) eingesetzt wurde.

Für die PCR-Amplifikation (2.4.11) wurden Reaktionsansatz und Temperaturprogramm wie folgt gewählt:

<u>PCR-Ansatz</u> :	PCR-Programm:	
3,0 µl 10x PCR-Puffer	Denaturierung:	94°C, 1 min
1,0 μ l AP1- bzw. AP2-Primer (10 μ M)	Schmelzen:	94°C, 30 sec
1,0 μ l spez. Primer (10 μ M)	Annealing: $x^{\circ}C^{2}$, 50	sec
4,0 µl dNTPs (2 mM)	Elongation: 72°C, 3	min
1,0 μ l McDNA-Template (10 μ g/ml)	Zyklenzahl:	32
19,8 µl ddH ₂ O		

0,2 µl Taq-Polymerase (4 U/µl) (Sigma)

Insgesamt wurden fünf cDNA-Klone mit Längen von 295 bis 1172 Basenpaaren erhalten. Alle Klone wurden mehrfach in beide Richtungen sequenziert. Der längste Klon (HSM 3.3) enthielt die vollständige codierende Sequenz (ORF, *open reading frame*) mit einer Gesamtlänge von 1146 bp. Die Sequenzen der anderen Klone waren in HSM 3.3 enthalten und bestätigten die ermittelte cDNA-Sequenz. Durch Vergleich aller fünf Sequenzen wurde eine Konsensus-Sequenz (McDNA-kon) erhalten (Abb. 3-25).

² spez. Annealing-Temperatur, siehe 2.4.2

Bezeichnung		BP	A	С	G	T/U	Seque	enzpos	ition ³
1 McDNA-kon		1172 5	522	441	529	549	e	59 -	1240
2 HSM 3-3		1172 2	280	273	344	274	6	59 -	1240
3 н 12-13		295	34	91	116	53	6	59 -	363
4 HSP 5		229	25	73	90	40	7	1 -	299
5 н 1-11		817 1	164	204	257	188	e	;9 -	885
6 Н 2-5		741 1	151	177	233	176	11	_4 –	854
5' McDNA-kon HSM 3-3 H 12-13	51 -18 -18			70 GC **	GGGG * * * * * * * *	80 CACTGG *****	90 GAA-GCGCC A ***A***** ***-*****	TG GCAC ***** *****	100 TGCA ****
HSP 5 H 1-11	-20 -18			* *	* * * * * * * *	* * * * * * *	* * * ₋ * * * * * * * * * ₋ * * * * * *	* * * * * * *	* * * *
McDNA-kon HSM 3-3 H 12-13	101 33 33	11 GGGCATCTC ********	10 CG G' ** * ** *	120 TCATGGAGC ******* **G*****	TGTC **** ****	130 CGGCCT *****	140 GGCCCCGGGC *********	CCGTTC ***** *****	150 TGTG ****
HSP 5 H 1-11 H 2-5	31 33 -13	* * * * * * * * * * * * * * * * * * *	** *	********* ********* ******	* * * * * * G *	***** ****** A*****	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * *
McDNA-kon HSM 3-3 H 12-13 HSP 5 H 1-11 H 2-5	151 83 83 81 83 38	16 CTATGGTCC ********* ********* **********	50 CT G ** * ** * ** * ** *	170 GCTGACTTC ******* ******** ********* ********	GGGG * * * * * * * * * * * * * * * *	180 CCGCGTG ***** ***** ***** *****	190 TGGTACGCGT ********* ********** *************	GGACCG ***** ****** ****** ******	200 GCCC **** **** **** **** A***
McDNA-kon HSM 3-3 H 12-13 HSP 5 H 1-11 H 2-5	201 133 133 131 133 88	21 GGCTCCCGC ******** ********* ********* ********	10 CT A ** * ** * ** * ** *	220 CGACGTGAG ******* ******** ******** ********	CCGC * * * * * * * * * * * * * * * *	230 ***** ***** ***** *****	240 CGGGGCAAGC ********* ********** **********	GCTCGC ****A* ****** ****** ******	250 TAGT **** **** **** ****
McDNA-kon HSM 3-3 H 12-13 HSP 5 H 1-11 H 2-5	251 183 183 181 183 138	26 GCTGGACCT ******** ********* ********** ********	50 FG A ** * ** * ** * ** *	270 AGCAGCCGC ******** ******** ********* ********	GGGG * * * * * * * * * * * * * * * *	280 AGCCGC ***** ***** ***** *****	290 CGTGCTGCGG ********* ********* **********	CGTCTG ***** ***** ***** *****	300 TGCA **** **** ***T ***T

³ Sequenzposition auf die vollständige Sequenz (Abb. 3-31) bezogen

		310	320	330	340	350
McDNA-kon	301	AGCGGTCGGA	TGTGCTGCTG	GAGCCCTTCC	GCCGCGGTGT	CATGGAGAAA
HSM 3-3	233	*******	******	******	******	******
н 12-13	233	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
н 1-11	233	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
н 2-5	188	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
11 2 3	100					
		360	370	380	390	400
McDNA-kon	351	-CTCCAGCTG	GGCCCAGAGA	TTCTGCAGCG	GGAAAATCCA	AGGCTTATTT
HSM 3-3	283	_ * * * * * * * * *	* * * * * * * * * *	***C*****	* * * * * * * * * *	* * * * * * * * * *
н 12-13	283	A*******	**G	-		
н 1–11	283	_********	******	* * * * * * * * * * *	* * * * * * * * * * *	******
н 2-5	238	_ * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
11 2 3	250					
		410	420	430	440	450
McDNA-kon	401	ATGCCAGGCT	GAGTGGATTT	GGCCAGTCAG	GAAGCTTCTG	CCGGTTAGCT
HSM 3-3	333	* * * * * * * * * *	* * * * * * * * * *	A******	* * * * * * * * * *	* * * * * * * * * *
н 1-11	333	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
н 2-5	288	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
	200					
		460	470	480	490	500
McDNA-kon	451	GGCCACGATA	TCAACTATTT	GGCTTTGTCA	GGTGTTCTCT	CAAAAATTGG
HSM 3-3	383	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
Н 1-11	383	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
н 2-5	338	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
		510	520	530	540	550
McDNA-kon	501	CAGAAGTGGT	GAGAATCCGT	ATGCCCCGCT	GAATCTCCTG	GCTGACTTTG
HSM 3-3	433	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
н 1-11	433	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
Н 2-5	388	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
		560	570	580	590	600
McDNA-kon	551	CTGGTGGTGG	CCTTATGTGT	GCACTGGGCA	TTATAATGGC	TCTTTTTGAC
HSM 3-3	483	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
H 1-11	483	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
Н 2-5	438	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
		610	620	630	640	650
McDNA-kon	601	CGCACACGCA	CTGACAAGGG	TCAGGTCATT	GATGCAAATA	TGGTGGAAGG
HSM 3-3	533	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
H 1-11	533	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	**C******	* * * * * * * * * *
Н 2-5	488	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	*****G***	* * * * * * * * * *
		660	670	680	690	.700
McDNA-kon	651	AACAGCA'I'A'I'	'I''I'AAG'I''I'C'I''I'	TTCTGTGGAA	AAC'I'CAGAAA	TCGAGTCTGT
HSM 3-3	583	*********	*********	*********	*********	*********
H 1-11	583	*********	*********	*********	*********	********
Н 2-5	538	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
		710	7 0 0	7 2 0		750
	701					
HCDINA-KOII	/UL	333445CACC	1 CGAGGACAG	AACAIGIIGG	***********	ACCITICIAT
лом 3-3 11 1 11	033 677	*********	* * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * *	*****
н 1-11 н 2-г	633	****	****	****	****	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
н 2-5	588	~ ^ ^ ~ ~ ~ * * * * * *	~ ^ ^ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ^ ^ <i>K</i> X X X X X X X X	~ ^ ^ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ^ ^ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

		760	770	780	790	800
McDNA-kon	751	ACGACTTACA	GGGACAGCAG	ATGGGGAATT	CATGGCTGTT	GGAGCAATAG
HSM 3-3	683	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
н 1-11	683	* * * * * * * * * *	**_*****	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
Н 2-5	638	********	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
		810	820	830	840	850
McDNA-kon	801	AACCCCAGTT	CTACGAGCTG	CTGATCAAAG	GACTTG-ACT	AAAGTCTGAT
HSM 3-3	733	*******	*******	*******	*****G***	* * * * * * * * * *
H 1-11	733	*******	*******	*******	*****_**	* * * * * * * * * *
Н 2-5	688	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	*****	* * * * * * * * * *
		860	870	880	890	900
McDNA-kon	851	GAACTTCCCT	CTCAGATGAG	CACGGATGAT	TGGCCAGAAA	TGAAGAAGAA
HSM 3-3	783	********A	A*******	**T******	* * * * * * * * * *	* * * * * * * * * *
H 1-11	783	****C****	*C******	* * * * * * * * * *	*****	
Н 2-5	738	****				
		910	920	930	940	950
McDNA-kon	901	GTTTGCAGAT	GTATTTGCAA	AGAAGACGAA	GGCAGAGTGG	TGTCAAATCT
HSM 3-3	833	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
-		960	970	980	990	1000
McDNA-kon	951	TTGACGGCAC	AGATGCCTGT	GTGACTCCGG	TTCTGACTTT	TGAGGAGGTT
HSM 3-3	883	********	*******	*******	* * * * * * * * * * *	* * * * * * * * * *
		1010	1000	1020	1040	1050
NaDNA laan	1001					
MCDNA-KOII	TOOT	GIICAICAIG	AICACAACAA	GGAACGGGGC	ICGIIIAICA	CCAGIGAGGA
HSM 3-3	933					
		1060	1070	1090	1090	1100
MaDNA-kon	1051	CCACCACCTC	ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC			ACCCACCA
HCDNA-KON	7021	*********	********	*********	*********	****
11614 5 5	202					
		1110	1120	1130	1140	1150
McDNA-kon	1101		CAAAAGGGAT	COTTTCATAG	GAGAACACAC	ТСАССАСАТА
HSM 3-3	1033	*******	********	*********	*****	****
	1000					
		1160	1170	1180	1190	1200
McDNA-kon	1151	CTTGAAGAAT	TTGGATTCGG	CCGCGAAGAG	ATATATCAGC	TTAACTCAGA
HSM 3-3	1083	******	******	******	*****	* * * * * * * * * *
		1210	1220	1230	1240	1250
McDNA-kon	1201	TAAAATCATT	GAAAGTAATA	AGGTAAAAGC	TAGTCTC TAA	
HSM 3-3	1133	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	

Abb. 3-25: Sequenzvergleich der mittels Marathon-ReadyTM cDNA erhaltenen Klone (HSM 3-3, H 12-13, HSP 5, H 1-11, H2 -5) und der daraus resultierenden Konsensus-Sequenz McDNAkon (die übereinstimmenden Basen sind mit * markiert).

3.4.1.3 Uni-ZAPTM XR Library

Zur Überprüfung der bis zu diesem Zeitpunkt vorliegenden cDNA-Sequenz bezüglich ihrer Vollständigkeit und Fehlerfreiheit wurde mit der Uni-ZAPTM XR Library auch eine λ -PhagencDNA-Bank aus humaner Leber eingesetzt. Bei dieser Bank ist die cDNA in den Uni-ZAP-Vektor kloniert, das pBluescript Sk Phagemid (Abb. 2.1) kann im ZAP-System amplifiziert werden (2.4.1) und nach Reinigung der Phagen-DNA direkt als Template in der PCR zum Einsatz kommen. Als vektorspezifische Primer wurden T 3- und T 7-Primer (2.4.2.2) verwendet.

Die PCR-Amplifikation (2.4.11) wurde mit folgendem speziell abgestimmten Protokoll durchgeführt:

<u>PCR-Ansatz</u> :	PCR-Programm:	
3,0 µl 10x PCR-Puffer	Denaturierung:	94°C, 4 min
2,0 µl T3- bzw. T7-Primer (10 µM)	Schmelzen:	94°C, 40 sec
2,0 μ l spez. Primer (10 μ M)	Annealing:	$x^{\circ}C^{4}$, 50 sec
4,0 µl dNTPs (2 mM)	Elongation:	72°C, 3 min
1,0 μ l ZAPcDNA-Template (10 μ g/ml)	Zyklenzahl:	32
17,8 µl ddH ₂ O		

0,2 µl Taq-Polymerase (4 U/µl) (Sigma)

Im ganzen wurden vier cDNAs mit einer Länge von 295 bis 1172 bp amplifiziert, die kloniert und mehrfach in beide Richtungen sequenziert wurden. Der Klon HS Z 3 mit einer Länge von 1169 bp enthielt die vollständige codierende Sequenz (ORF, Gesamtlänge 1146 bp). Die Sequenzen der drei anderen Klone waren in HS Z 3 enthalten, ein Vergleich aller Sequenzen führte zu der Konsensus-Sequenz Zap-kon (Abb. 3-26). Diese bestätigte die aus der Marathon-Ready cDNA-Bank erhaltene Sequenz für die humane α -Methylacyl-CoA-Racemase.

⁴ spez. Annealing-Temperatur, siehe 2.4.2

Abb. 3-26: 1% iges Agarosegel mit den full length-Klonen Z3 (aus λ -Zap-Bank) und M3 (aus Marathon cDNA-Bank): H16 f/ H-RacII Stop1r = 1169 bp.

Bezeich	nnung	BP	A	С	G	T/U	Sequenzpo	osition
1 Zap-]	con	1169	277	273	343	276	1 -	1169
2 HS Z	3	1169	277	273	343	276	1 -	1169
3 HS ZZ	2	759	149	191	244	175	1 -	759
4 HSRZ	14	500	77	137	173	113	1 -	500
5 HSZPI	13	167	49	29	46	35	572 -	738
			10	20		30	40	50
Zap-kon	1	GCGGGGC.	ACT G	GGAAGCGCC	ATG G	CACTGC	AGGGCATCTC	GGTCATGGAG
HS Z3	1	* * * * * * *	* * * *	* * * * * * * * *	* * * *	*****	* * * * * * * * * *	* * * * * * * * * *
HS Z2	1	* * * * * * *	* * * *	* * * * * * * * *	* * * *	*****	* * * * * * * * * *	* * * * * * * * * *
HSRZ14	1	* * * * * * *	*** *	* * * * * * * * *	* * * *	*****	* * * * * * * * * *	* * * * * * * * * *

		60	70	80	90	100
Zap-kon	51	CTGTCCGGCC	TGGCCCCGGG	CCCGTTCTGT	GCTATGGTCC	TGGCTGACTT
HS Z3	51	*******	* * * * * * * * * *	* * * * * * * * * *	******	*******
HS 72	51	*****	* * * * * * * * * *	* * * * * * * * * *	*****	******
UCD71/	51	* * * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	*****	* * * * * * * * * *
NSK214	TC					
		110	120	130	140	150
Zap-kon	101	CGGGGGCGCGT	GTGGTACGCG	TGGACCGGCC	CGGCTCCCGC	TACGACGTGA
НС 73	101	*********	*******	********	*********	******
	101	******	* * * * * * * * * * *	******	******	********
HS ZZ	101	****	*****	*****	******	*********
HSRZ14	TOT	* * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * *
		160	170	180	190	200
Zap-kon	151	GCCGCTTGGG	CCCCCCCCAAC	CGCTCGCTAG	TGCTGGACCT	GAAGCAGCCG
UC 72	151	*********	*********	*****	*********	*********
	151	* * * * * * * * * * *	* * * * * * * * * * * *	*****	* * * * * * * * * * * *	· · · · · · · · · · · · · · · · · · ·
HS ZZ	151					
HSRZ14	151	*******	********	*******	*******	********A
		210	220	230	240	250
Zap-kon	201	CGGGGAGCCG	CCGTGCTGCG	GCGTCTGTGC	TAGCGGTCGG	ATGTGCTGCT
UC 7)	201	*********	*********	*********	*********	********
	201	* * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * *	→ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	· · · · · · · · · · · · · · · · · · ·
HS Z3	201	* * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * *	A********	* * * * * * * * * * *
HSRZ14	201	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
		260	270	280	290	300
Zan-kon	251					CCCCCACACA
	251	GGAGCCCIIC	CGCCGCGGIG	1CA166A6AA	ACICCAGCIG	44444444444444444444444444444444444444
HS Z3	251					
HS Z2	251	* * * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * * *	*******
HSRZ14	251	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
		310	320	330	340	350
7an-kon	301	TTCTCCACCC	CCANATCCA	λααστηλητη		CACTCCATT
	201	11C1GCAGCG	4++++++++	AGGCIIAIII	AIGCCAGGC1	GAGIGGAIII
HS Z3	301					
HS Z2	301	* * * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * * *	*******
HSRZ14	301	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
		360	370	380	390	400
7an-kon	351	CCCCACTCAC		CCCCTTACCT	CCCCACCATA	
	251	*********	********	*********	**********	********
H5 45	201		* * * * * * * * * * *			*******
HS ZZ	351	* * * * * * * * * * *	*******	******	******	*******
HSRZ14	351	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
		410	420	430	440	450
Zan-kon	401				CACAACTCCT	CACAATCCCT
	401	*********	*********	*********	********	*******
H5 45	401		* * * * * * * * * * *			
HS ZZ	401 401	*******	****	****	****	****
HSKZ14	401					
		460	470	480	490	500
Zap-kon	451	ATGCCCCGCT	GAATCTCCTG	GCTGACTTTG	CTGGTGGTGG	CCTTATGTGT
HS Z3	451	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
HS 72	451	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	******	* * * * * * * * * *
	451	******	* * * * * * * * * * *	******	******	********
HSKZ14	491					
		510	520	530	540	550
Zap-kon	501	GCACTGGGCA	TTATAATGGC	TCTTTTTGAC	CGCACACGCA	CTGACAAGGG
- HS Z3	501	*******	*******	********	*******	*******
	501	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
	JUT					
		560	570	580	590	600
Zap-kon	551	TCAGGTCATT	GATGCAAATA	TGGTGGAAGG	AACAGCCTAT	TTAAGTTCTT
HS Z3	551	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
HS Z2	551	* * * * * * * * * *	**C******	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *

HSZP	-21			.T******	* * * * * * * * * *	* * * * * * * * * *
		610	620	630	640	650
Zap-kon	601	TTCTGTGGAA	AACTCAGAAA	TCGAGTCTGT	GGGAAGCACC	TCGAGGACAG
HS Z3	601	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
HS 72	601	*****	******	******	*******	******
HSZP13	30	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
110 21 10	50					
		660	670	680	690	700
Zap-kon	651	AACATGTTGG	ATGGTGGAGC	ACCTTTCTAT	ACGACTTACA	GGACAGCAGA
HS Z3	651	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
HS Z2	651	* * * * * * * * * *	*******	* * * * * * * * * *	* * * * * * * * * *	**T******
HSZP13	80	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	*******	* * * * * * * * * *
		710	720	730	740	750
Zap-kon	701	TGGGGAATTC	ATGGCTGTTG	GAGCAATAGA	ACCCCAGTTC	TACGAGCTGC
HS Z3	701	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
HS Z2	701	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
HSZP13	130	_******	*-***-*A-*	****-***	****-*-*	
		760	770	780	790	800
Zap-kon	751	TGATCAAAGG	ACTTGGACTA	AAGTCTGACG	AACTTCCCAA	TCAGATGAGC
HS Z3	751	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
HS Z2	751	********.				
		810	820	830	840	850
Zap-kon	801	ATGGATGATT	GGCCAGAAAT	GAAGAAGAAG	TTTGCAGATG	TATTTGCAAA
HS Z3	801	* * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * *
		860	870	880	890	900
Zan-kon	951	CAACACCAAC	CCACACTCCT		талассалал	
	051	GAAGACGAAG	3CAGAGIGGI	GICAAAICII	1GACGGCACA	GAIGCCIGIG
HS 23	100					
		910	920	930	940	950
Zap-kon	901	TGACTCCGGT	тстсасттт	GAGGAGGTTG	ттсатсатса	тсасаасаас
нс 73	901	********	********	*********	*******	*****
110 20	J 01					
		960	970	980	990	1000
Zap-kon	951	GAACGGGGCT	CGTTTATCAC	CAGTGAGGAG	CAGGACGTGA	GCCCCCGCCC
HS Z3	951	******	******	******	******	******
		1010	1020	1030	1040	1050
Zap-kon	1001	TGCACCTCTG	CTGTTAAACA	CCCCAGCCAT	CCCTTCTTTC	AAAAGGGATC
HS Z3	1001	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
		1060	1070	1080	1090	1100
Zap-kon	1051	CTTTCATAGG	AGAACACACT	GAGGAGATAC	TTGAAGAATT	TGGATTCAGC
HS Z3	1051	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
			1100	1100	11/0	1160
		1110	1120	1130	1140	1150
Zap-kon	1101	CGCGAAGAGA	'I''I''I'A'I'CAGCT	TAACTCAGAT	AAAA'I'CATTG	AAAG'I'AATAA
HS Z3	1101	*******	********	********	*******	*******
		1160	1170	1180	1190	1200
Zap-kon	1151	GGTAAAAGCT	AGTCTC TAA .			
HS Z3	1151	* * * * * * * * * *	* * * * * * * * *			

Abb. 3-27: Sequenzvergleich der erhaltenen Klone aus der Uni-ZAPTM XR Library (HS Z3 HS Z2, HSRZ14, HSZP13) und der daraus resultierenden Konsensus-Sequenz Zap-kon (die übereinstimmenden Basen sind mit * gekennzeichnet).

3.4.1.4 Genomische DNA aus Leukozyten

Um die aus den cDNA-Banken Marathon-ReadyTM cDNA und Uni-ZAPTM XR Library bisher erhaltene cDNA-Sequenz zu überprüfen und zusätzliche Sequenzinformationen über die untranslatierten Bereiche zu erhalten, wurde auch humane genomische DNA aus Leukozyten präpariert (2.4.4) und für die PCR eingesetzt. Das hierzu angepaßte Protokoll ist nachfolgend aufgeführt:

<u>PCR-Ansatz</u> :	PCR-Programm:	
3,0 µl 10x PCR-Puffer	Denaturierung:	94°C, 4 min
je 2,0 μ l spez. Primer (10 μ M)	Schmelzen: 94°C, 4	40 sec
4,0 µl dNTPs (2 mM)	Annealing: $x^{\circ}C^{5}$, 5	0 sec
1,0 μ l DNA-Template (10 μ g/ml)	Elongation: 72°C, 2	2 min
17,8 µl ddH ₂ O	Zyklenzahl: 32	
0,2 µl Taq-Polymerase (4 U/µl) (Sigma)		

Da die Exon-/Intronstruktur des Racemase-Gens zum Zeitpunkt dieser Arbeiten noch unbekannt war, wurde versucht, relativ kleine DNA-Stücke (100 –300 bp) zu amplifizieren. Es gelang, zwei DNA-Stücke mit Längen von 332 und 122 Basenpaaren zu erhalten, die kloniert und mehrfach sequenziert wurden. Der Klon H 1813 (122 bp) befand sich innerhalb der codierenden Region, der längere Klon H 1-4 enthielt die vollständige Sequenz der 5'-UTR (Abb. 3-28).

Die aus den cDNA-Banken und der genomischen DNA resultierende Konsensus-Sequenz für die humane α -Methylacyl-CoA-Racemase (human cDNA) ist in Abb. 3-28 dargestellt.

Bezeichnung	BP	A	С	G	T/U	Sequenzpo	osition
1 human cDNA	1238	282	290	372	293	1 -	1238
2 H 1-4	332	35	101	132	64	1 -	332
3 McDNA-kon	1170	275	274	345	275	69 -	1238
4 ZAP-kon	1170	276	273	344	276	69 -	1238
5 н 1813	122	25	28	35	34	526 -	647
		10	2	20	30	40	50

⁵ spez. Annealing-Temperatur, siehe 2.4.2

human c	DNA	1	GGCGCCGGGA	TTGGGAGGGC	TTCTTGCAGG	CTGCTGGGCT	GGGGCTAAGG
H 1-4		1	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
			60	70	80	90	100
human c	DNA	51	GCTGCTCAGT	TTCCTTCAGC	GGGGCACTGG	GAAGCGCC AT	G GCACTGCAG
H 1-4		51	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
McDNA-k	con	-18		**	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
ZAP-kor	ı	-18		**	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
			110	120	130	140	150
human c	DNA	101	GGCATCTCGG	TCATGGAGCT	GTCCGGCCTG	GCCCCGGGCC	CGTTCTGTGC
H 1-4		101	* * * * * * * * * *	**G******	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
McDNA-k	ton	33	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
ZAP-kor	1	33	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
			160	170	180	190	200
human c	DNA	151	TATGGTCCTG	GCTGACTTCG	GGGCGCGTGT	GGTACGCGTG	GACCGGCCCG
H 1-4		151	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
McDNA-k	con	83	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
ZAP-kor	ı	83	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
			210	220	230	240	250
human c	DNA	201	GCTCCCGCTA	CGACGTGAGC	CGCTTGGGCC	GGGGCAAGCG	CTCGCTAGTG
н 1-4		201	* * * * * * * * * *	*A******	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
McDNA-k	ton	133	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
ZAP-kor	1	133	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
			260	270	280	290	300
human c	DNA	251	CTGGACCTGA	AGCAGCCGCG	GGGAGCCGCC	GTGCTGCGGC	GTCTGTGCAA
Н 1-4		251	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
McDNA-k	ton	183	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
ZAP-kor	1	183	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	*******T*
			310	320	330	340	350
human c	DNA	301	GCGGTCGGAT	GTGCTGCTGG	AGCCCTTCCG	CCGCGGTGTC	ATGGAGAAAC
H 1-4		301	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	**	
McDNA-k	ton	233	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
ZAP-kor	1	233	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
			360	370	380	390	400
human c	DNA	351	TCCAGCTGGG	CCCAGAGATT	CTGCAGCGGG	AAAATCCAAG	GCTTATTTAT
McDNA-k	ton	283	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
ZAP-kor	1	283	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
			410	420	430	440	450

human cDNA	401	GCCAGGCTGA	GTGGATTTGG	CCAGTCAGGA	AGCTTCTGCC	GGTTAGCTGG
McDNA-kon	333	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
ZAP-kon	333	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
		460	470	480	490	500
human cDNA	451	CCACGATATC	AACTATTTGG	CTTTGTCAGG	TGTTCTCTCA	AAAATTGGCA
McDNA-kon	383	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
ZAP-kon	383	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
		510	520	530	540	550
human cDNA	501	GAAGTGGTGA	GAATCCGTAT	GCCCCGCTGA	ATCTCCTGGC	TGACTTTGCT
McDNA-kon	433	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
ZAP-kon	433	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
H1813KO.SEQ	-25			••••	* * * * * * * * * *	*******GC
		560	570	580	590	600
human cDNA	551	GGTGGTGGCC	TTATGTGTGC	ACTGGGCATT	ATAATGGCTC	TTTTTGACCG
McDNA-kon	483	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
ZAP-kon	483	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
H1813KO.SEQ	26	****A***	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
		610	620	630	640	650
human cDNA	601	CACACGCACT	GACAAGGGTC	AGGTCATTGA	TGCAAATATG	GTGGAAGGAA
M	E 2 2	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
MCDNA-KON	555					
MCDNA-KON ZAP-kon	533	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
MCDNA-Kon ZAP-kon H1813KO.SEQ	533 533 76	********	********** *T*******	*******C**	********* *T***	* * * * * * * * * *
MCDNA-Kon ZAP-kon H1813KO.SEQ	533 533 76	*********	********* *T*******	******C**	********* *T***	*******
MCDNA-Kon ZAP-kon H1813KO.SEQ	533 533 76	********** ********** 660	********** *T******** 670	*********** *******C** 680	********** *T*** 690	************
MCDNA-Kon ZAP-kon H1813KO.SEQ human cDNA	533 533 76 651	********** ********** 660 CAGCATATTT	**************************************	**************************************	********** *T*** 690 CTCAGAAATC	********* 700 GAGTCTGTGG
MCDNA-Kon ZAP-kon H1813KO.SEQ human cDNA McDNA-kon	533 533 76 651 583	********** ********** 660 CAGCATATTT ********	**************************************	**************************************	********** *T*** 690 CTCAGAAATC *****	********** 700 GAGTCTGTGG *****
MCDNA-Kon ZAP-kon H1813KO.SEQ human cDNA McDNA-kon ZAP-kon	533 533 76 651 583 583	**************************************	**************************************	**************************************	**************************************	********** 700 GAGTCTGTGG ********* *******
MCDNA-Kon ZAP-kon H1813KO.SEQ human cDNA McDNA-kon ZAP-kon	533 533 76 651 583 583	**************************************	**************************************	**************************************	********** *T*** 690 CTCAGAAATC ********* *********	********** 700 GAGTCTGTGG ********* *********
MCDNA-KON ZAP-kon H1813KO.SEQ human cDNA McDNA-kon ZAP-kon	533 533 76 651 583 583 583	********** ********** 660 CAGCATATTT ********* ********* 710 GAAGCACCTC	**************************************	**************************************	********** *T*** 690 CTCAGAAATC ******** ********* 740 GGTGGAGCAC	********** 700 GAGTCTGTGG ********* ********* 750
MCDNA-KON ZAP-kon H1813KO.SEQ human cDNA McDNA-kon ZAP-kon human cDNA	533 533 76 651 583 583 701 633	**************************************	**************************************	**************************************	**************************************	**************************************
MCDNA-KON ZAP-kon H1813KO.SEQ human cDNA McDNA-kon ZAP-kon McDNA-kon ZAP-kon	533 533 76 651 583 583 701 633 633	**************************************	**************************************	**************************************	**************************************	**************************************
MCDNA-KON ZAP-kon H1813KO.SEQ human cDNA McDNA-kon ZAP-kon human cDNA McDNA-kon ZAP-kon	533 76 651 583 583 701 633 633	**************************************	**************************************	**************************************	**************************************	**************************************
MCDNA-KON ZAP-kon H1813KO.SEQ human CDNA McDNA-kon ZAP-kon McDNA-kon ZAP-kon ZAP-kon	533 533 76 651 583 583 701 633 633	********** 660 CAGCATATTT ********* ********* 710 GAAGCACCTC ********** *********	********** *T******** 670 AAGTTCTTTT ********* ********* 720 GAGGACAGAA ********** *********	**************************************	********** *T*** 690 CTCAGAAATC ********* ********* 740 GGTGGAGCAC ********** *********	********** 700 GAGTCTGTGG ********* ********* 750 CTTTCTATAC ********* *********
MCDNA-KON ZAP-kon H1813KO.SEQ human cDNA McDNA-kon ZAP-kon McDNA-kon ZAP-kon ZAP-kon	533 533 76 651 583 583 701 633 633 751	********** 660 CAGCATATTT ********* ********* 710 GAAGCACCTC ********* ********* 760 GACTTACAGG	********** *T******** 670 AAGTTCTTTT ********* ********** 720 GAGGACAGAA ********* ********* 770 -ACAGCAGAT	**************************************	**************************************	********** 700 GAGTCTGTGG ********* ********* 750 CTTTCTATAC ********* ********* 800 AGCAATAGAA
MCDNA-KON ZAP-kon H1813KO.SEQ human CDNA MCDNA-kon ZAP-kon MCDNA-kon ZAP-kon Amman CDNA human CDNA MCDNA-kon	533 533 76 651 583 583 701 633 633 751 683	********** 660 CAGCATATTT ********* ********* 710 GAAGCACCTC ********* ********* 760 GACTTACAGG ********	**************************************	**************************************	**************************************	********** 700 GAGTCTGTGG ********* ********* 750 CTTTCTATAC ********* ********* 800 AGCAATAGAA ********
MCDNA-KON ZAP-kon H1813KO.SEQ human CDNA MCDNA-kon ZAP-kon MCDNA-kon ZAP-kon human CDNA MCDNA-kon ZAP-kon	533 533 76 651 583 583 701 633 633 751 683 683	********** ********** 660 CAGCATATTT ********* ********** 710 GAAGCACCTC ********** 760 GACTTACAGG *********	********** *T******** 670 AAGTTCTTTT ********* ********** 720 GAGGACAGAA ********* ********** 770 -ACAGCAGAT G********	**************************************	**************************************	**************************************
MCDNA-KON ZAP-kon H1813KO.SEQ human cDNA McDNA-kon ZAP-kon ZAP-kon ZAP-kon Auman cDNA human cDNA McDNA-kon ZAP-kon ZAP-kon	533 76 651 583 583 701 633 633 751 683 683	**************************************	**************************************	**************************************	**************************************	********** 700 GAGTCTGTGG ********* ********* 750 CTTTCTATAC ********* 800 AGCAATAGAA *********
MCDNA-KON ZAP-kon H1813KO.SEQ human cDNA McDNA-kon ZAP-kon McDNA-kon ZAP-kon human cDNA McDNA-kon ZAP-kon ZAP-kon	533 533 76 651 583 583 701 633 633 751 683 683	**************************************	**************************************	**************************************	**************************************	**************************************
MCDNA-KON ZAP-kon H1813KO.SEQ human cDNA McDNA-kon ZAP-kon ZAP-kon ZAP-kon Auman cDNA McDNA-kon ZAP-kon ZAP-kon	533 533 76 651 583 583 701 633 633 751 683 683 801	**************************************	**************************************	**************************************	**************************************	********** 700 GAGTCTGTGG ********* ********* 750 CTTTCTATAC ********* 800 AGCAATAGAA ********* ********** 850 AGTCTGATGA
MCDNA-KON ZAP-kon H1813KO.SEQ human CDNA McDNA-kon ZAP-kon McDNA-kon ZAP-kon human CDNA McDNA-kon ZAP-kon kuman CDNA McDNA-kon	533 533 76 651 583 583 701 633 633 751 683 683 801 733	**************************************	**************************************	**************************************	**************************************	**************************************
MCDNA-KON ZAP-kon H1813KO.SEQ human cDNA McDNA-kon ZAP-kon McDNA-kon ZAP-kon human cDNA McDNA-kon ZAP-kon human cDNA McDNA-kon ZAP-kon	533 533 76 651 583 583 701 633 633 751 683 683 801 733 733	**************************************	**************************************	**************************************	**************************************	**************************************

human	CDNA	851	ACTTCCCTCT	CAGATGAGCA	CGGATGATTG	GCCAGAAATG	AAGAAGAAGT
McDNA-	kon	783	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
ZAP-ko	n	783	******* <u>A</u> A*	* * * * * * * * * *	T*******	* * * * * * * * * *	* * * * * * * * * *
			910	920	930	940	950
human	CDNA	901	TTGCAGATGT	ATTTGCAAAG	AAGACGAAGG	CAGAGTGGTG	TCAAATCTTT
McDNA-	kon	833	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
ZAP-ko	n	833	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
			960	970	980	990	1000
human	CDNA	951	GACGGCACAG	ATGCCTGTGT	GACTCCGGTT	CTGACTTTTG	AGGAGGTTGT
McDNA-	kon	883	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
ZAP-ko	n	883	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
			1010	1020	1030	1040	1050
human	CDNA	1001	TCATCATGAT	CACAACAAGG	AACGGGGGCTC	GTTTATCACC	AGTGAGGAGC
McDNA-	kon	933	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
ZAP-ko	n	933	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
			1060	1070	1080	1090	1100
human	CDNA	1051	AGGACGTGAG	CCCCCGCCCT	GCACCTCTGC	TGTTAAACAC	CCCAGCCATC
McDNA-	kon	983	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
ZAP-ko	n	983	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
			1110	1120	1130	1140	1150
human	CDNA	1101	CCTTCTTTCA	AAAGGGATCC	TTTCATAGGA	GAACACACTG	AGGAGATACT
McDNA-	kon	1033	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
ZAP-ko	n	1033	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
			1160	1170	1180	1190	1200
human	CDNA	1151	TGAAGAATTT	GGATTCAGCC	GCGAAGAGAT	TTATCAGCTT	AACTCAGATA
McDNA-	kon	1083	* * * * * * * * * *	*****G***	* * * * * * * * * *	A*******	* * * * * * * * * *
ZAP-ko	n	1083	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *
			1210	1220	1230	1240	1250
human	CDNA	1201	AAATCATTGA	AAGTAATAAG	GTAAAAGCTA	GTCTCTAA	
McDNA-	kon	1133	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	********	
ZAP-ko	n	1133	* * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * *	********	

Abb. 3-28: Sequenzvergleich der cDNA-Sequenzen der Uni-ZAPTM XR Library (ZAP-kon), der Marathon-ReadyTM-cDNA (McDNA-kon), genomischer DNA (H 1-4, H 1813) und der daraus resultierenden Konsensus-Sequenz (human cDNA) für die humane α -Methylacyl-CoA-Racemase (die übereinstimmenden Basen sind mit * markiert).

3.4.1.5 EST-Sequenzvergleich

Bei einem Vergleich mit verschiedenen EST-Sequenzen (*expressed sequence tags*) aus der Merck/Washington University EST Sequenz-Datenbank konnte die aus den cDNA-Banken ermittelte Sequenz für die humane α -Methylacyl-CoA-Racemase bestätigt werden. Mit Hilfe des BLAST-Programms (Altschul *et al.*, 1990) wurde nach Übereinstimmungen mit der cDNA-Sequenz der Racemase gesucht. Hierbei wurden mehrere Klone identifiziert, deren Sequenzen Ähnlichkeiten zur α -Methylacyl-CoA-Racemase aufwies. Diese EST-Sequenzen sind in der nachfolgenden Tabelle (Tab. 3-7) aufgeführt, ihre jeweiligen Sequenzpositionen und -bereiche sind in Abb. 3-29 dargestellt.

u-Methylaryl- CoA-Recement cDNA	1 ⊢	Start —————	ORF	Stop	204 0
EST-Sequer	VCI	.:			
H1 927 1	⊢		\rightarrow		
AR453562			 		
AI373634				· · · · · · · · · · · · · · · · · · ·	
AI142083				<i< td=""><td></td></i<>	
AI335875				←────	
AA779782				←	
AA996010				←I	
AA216065				\longmapsto	
AI244669				←────	
AI245832				·	
AA969459				←I	
H 19272				←────	
77357593				\vdash	
AI476210				<	
AI080267				<	
AI369058				\leftarrow	
AA453310					<i< td=""></i<>
AA666340					\leftarrow
AA 53 48 57					\leftarrow
AI468850					\leftarrow

Abb. 3-29: Sequenzbereiche der zum Vergleich mit der humanen α -Methylacyl-CoA-Racemase herangezogenen EST-Sequenzen.

Mit Hilfe dieser Sequenzen wurde die cDNA-Sequenz der humanen α -Methylacyl-CoA-Racemase unabhängig überprüft. Die entsprechenden EST-Klone wurden bestellt, amplifiziert und vollständig sequenziert, so daß die Fehler der veröffentlichen Sequenzen eliminiert werden konnten.

Zwar reichte keiner der erhaltenen EST-Sequenzen über die gesamte cDNA-Sequenz (Abb. 3-29), durch die mehrfachen Überlappungen kann die so erhaltene Konsensus-Sequenz jedoch als gesichert angesehen werden. Die noch fehlende Sequenzinformation über die untranslatierte Region am 3'-Ende wurde vollständig bis zur polyA-Sequenz ermittelt. Für die 5'-UTR und den Anfang des ORF stand jedoch nur die bruchstückhafte und fehlerbehaftete veröffentliche EST-Sequenz H19271 zur Verfügung, der entsprechende Klon war leider nicht vorhanden. Es gab zwar für diesen Bereich noch weitere Klone, es stellte sich aber später heraus, daß diese falsch zugeordnet waren und zur Sequenz des murinen Enzyms gehörten.

EST-Sequenz	mRNA-Sequenz			Definition	
		Sequenz von [bp]	position bis [bp]	Homo sapiens cDNA-Klone:	
H19271	5'	1	482	yn50d10.r1 Gehim, N2b5HB55y, IMAGE:171859	
AI335875	3'	570	1013	qt25g10.x1, NCI-CGAP-GC4, IMAGE: 1948674	
AA453562	5'	677	1044	zx32c11.r1 Fötus, Nb2HF8-9w, IMAGE:788180	
AI373634	3'	881	1568	qz53d12.x1 Niere, NCI-CGAP-Kid11, IMAGE: 2030615	
AI142083	3'	965	1457	oo25h07.x1, NSF-F8-9w, OT-PA-P-S1, IMAGE:1567261	
AA779782	3'	1043	1676	af44b01.s1 Fötus, Nb2HF8-9w, IMAGE:1034473	
AA996010	3'	1163	1663	os26c11.s1 Niere, NCI-CGAP, IMAGE:1606484	
AA216065	5'	1174	1387	$hp0475.seq$. fötales Herz, λ ZAP Express cDNA	
AI244669	3'	1204	1662	qj97b11.x1 Niere, NCI-CGAP, IMAGE:1867389	
AI245832	3'	1211	1662	qk32e07.x1 Niere, NCI-CGAP, IMAGE:1870692	
W37077	5'	1226	1632	zb20g09.r1 fötale Lunge, NbHL19w, IMAGE:302656	
AA969459	3'	1252	1663	oo81c02.s1 Niere, NCI-CGAP, IMAGE:1572578	
H19272	3'	1255	1662	yn50d10.s1 Gehim, N2b5HB55y, IMAGE:171859	
AA357593	3'	1363	1626	zx32c11.r1 Fötus, Nb2HF8-9w, IMAGE:788180	
AI476210	3'	1548	2049	ti72a07.x1 Niere, NCI-CGAP-Kid11, IMAGE:2137524	
AI080267	3'	1613	2041	oz47h05.x1 NhHMPu-S1, IMAGE:1678521	
AI369058	3'	1629	2040	qw29e12.x1 Uterus, NCI-CGAP-Ut4, IMAGE: 1992526	
AA453310	3'	1697	2050	zx32c11.s1 Fötus, Nb2HF8-9w, IMAGE:788180	
AA666340	3'	1717	2016	ac39e06.s1 Stratagene hNTneuron, IMAGE:858850	
AA534857	3'	1821	2049	nf78d12.s1 Darm, NCI-CGAP-Co3, IMAGE:926039	
AI468850	3'	1849	2048	ti42f08.x1 Lymphknoten, NCI-CGAP-Lym12, IMAGE:2133159	

Tab. 3-7: Liste der verwendeten EST-Klone zum Sequenzvergleich mit der humanen cDNA-Sequenz der α -Methylacyl-CoA-Racemase.

Bei der Untersuchung der EST-Klone, die vom poly A-Ende aus sequenziert werden, wurde festgestellt, daß die cDNA in zwei verschieden langen Versionen vorlag. Neben den EST-Klonen, deren 3'-Ende bei 2039 bp (ohne poly A) beginnt, fand man eine relativ große Anzahl von EST-Klonen, deren 3'-Ende nicht bei 2039 bp, sondern erst bei ungefähr 1660 bp beginnt (Tab. 3-7 und Abb. 3-29). Diese verschieden langen 3'-Enden sind vermutlich auf zwei unterschiedlich starke Polyadenylierungssignale zurückzuführen (Sheets, 1990). Neben dem klassischen Signal *AATAAA* bei 2020 bp könnte das etwas oberhalb von 1660 bp liegende *GATAAA* ein verkapptes Polyadenylierungssignal darstellen (Abb. 3-30).

EST-Sequenz

Sequenzposition

1	Racemase.SEQ	5 '	1 -	2039
2	AA779728.SEQ	3 '	1043 -	1678
3	AA996010.SEQ	3 '	1163 -	1665
4	AI244669.SEQ	3 '	1204 -	1662
5	AI245832.SEQ	3 '	1213 -	1662
6	AA969459.SEQ	3 '	1252 -	1668
7	AI288257.SEQ	3 '	1271 -	1666
8	H 19272.SEQ	3 '	1255 -	1662
9	AI080267.SEQ	3 '	1613 -	2041
10	AI369058.SEQ	3 '	1629 -	2039

		1610	1620	1630	1640	1650
RACEMASE.SEQ	1601	CTACAATGTA	GAAAATGAGG	AAATGCCACA	AATTGTATGG	T GATAAA AGT
AA779728.SEQ	559	CTACAATGTA	GAAAATGAGG	AAATGCCACA	AATTGTATGG	T GATAAAA GT
AA996010.SEQ	439	CTACAATGTA	GAAAATGAGG	AAATGCCACA	AATTGTATGG	T GATAAAA GT
AI244669.SEQ	398	CTACAATGTA	GAAAATGAGG	AAATGCCACA	AATTGTATGG	T GATAAAA GT
AI245832.SEQ	389	CTACAATGTA	GAAAATGAGG	AAATGCCACA	AATTGTATGG	T GATAAAA GT
AA969459.SEQ	350	CTACAATGTA	GAAAATGAGG	AAATGCCACA	AATTGTATGG	T GATAAAA GT
AI288257.SEQ	331	TTACAATGTA	GAAAATGAGG	AAATGCCCCA	AATTGTATGG	T GATAAAA GT
H 19272.SEQ	347	CTACAATGTA	GAAAATGAGG	AAATGCCACA	AATTGTATGG	T GATAAAA GT
AI080267.SEQ	-12		AAATGAGG	AAATGCCACA	AATTGTATGG	T GATAAAA GT
AI369058.SEQ	-28			CA	AATTGTATGG	T GATAANA GT
		1660	1670	1680	1690	1700
RACEMASE.SEQ	1651	CACGTGAAAC	AGAGTGATTG	GTTGCATCCA	GGCCTTTTGT	CTTGGTGTTC
AA779728.SEQ	609	CACGTGAAAC	AGAGTGATTG	GTTG CAAA		
AA996010.SEQ	489	CACGTGAAAC	A gaaa			
AI244669.SEQ	448	CACGTGAAAC	A GAA			
AI245832.SEQ	439	CACGTGAAAC	A GAA			
AA969459.SEQ	400	CACGTGAAAC	A gaaaaaa			
AI288257.SEQ	381	CACGTGAAAC	AGAGT <i>GAA</i>			
H 19272.SEQ	397	CACGTGAAAG	CA G			
AI080267.SEQ	39	CACGTGAAAC	AGAGTGATTG	GTTGCATCCA	GGCCTTTTGT	CTTGGTGTTC
AI369058.SEQ	23	CACGTGAAAC	AGAGTGATTG	GTTGCATCCA	GGCCTTTTGT	CTTGGTGTTC
		δ // δ				
		2010	2020	2030	2040	2050
Racemase.SEO	2001	CACACAGCAA	CATCCAGAAA	TAAAGATCTC	AGGACCCCCC	AA
AI080267.SEO	363	CACACAGCAA	CATCCAGAAA	TAAAGATCTC	AGGACCCCCC	A
AI369058.SEQ	389	CACACAGCAA	CATCCAGAAA	TAAAGATCTC	AGGACCCCC.	

Abb. 3-30: 3'-Enden verschiedener EST-Klone (Die Sequenzierung erfolgte vom poly A-Ende bis zur jeweils oben aufgeführten Sequenzposition).

3.4.1.6 Vollständige cDNA-Sequenz der humanen α-Methylacyl-CoA-Racemase

Nach Auswertung aller zur Verfügung stehender Informationen kann die nachfolgende Sequenz als gesicherte cDNA-Sequenz für die humane α -Methylacyl-CoA-Racemase angesehen werden. Die vollständige Sequenz hat eine Gesamtlänge von 2039 Basenpaaren (ohne poly A) mit einem offenen Leseraster (ORF, *open reading frame*) von 1146 bp. Die Sequenz beginnt mit einer 5'-UTR-Sequenz (*untranslated region*) von 88 bp. Das Startcodon ATG ist in eine klassische Kozak-Sequenz zum Translationsstart (Kozak, 1986) eingebettet. Das folgende ORF endet mit –KASL am C-Terminus und ähnelt dem PTS (*peroxisomal targeting signal*) -KANL einiger Katalasen von Säugetieren (Purdue & Lazarow, 1996). Die untranslatierte Region (UTR) am 3'-Ende besteht aus 802 Basenpaaren, 16 bp vor dem poly A-Ende liegt ein AATAAA-Polyadenylierungssignal. Zusätzlich liegt zwischen den Nukleotiden 1642 und 1647 mit der Sequenz GATAAA ein weiteres, weniger effizientes Polyadenylierungssignal (vgl. 3.4.1.5 und Abb. 3-30) vor.

cDNA-Sequenz der humanen α -Methylacyl-CoA-Racemase:

1	GGCGCCGGGA	TTGGGAGGGC	TTCTTGCAGG	CTGCTGGGCT	GGGGCTAAGG
51	GCTGCTCAGT	TTCCTTCAGC	GGGGCACTGG	GAAGCGCC AT	$\mathbf{G} \texttt{G} \texttt{G} \texttt{C} \texttt{A} \texttt{C} \texttt{T} \texttt{G} \texttt{C} \texttt{A} \texttt{G}$
101	GGCATCTCGG	TCATGGAGCT	GTCCGGCCTG	GCCCCGGGCC	CGTTCTGTGC
151	TATGGTCCTG	GCTGACTTCG	GGGCGCGTGT	GGTACGCGTG	GACCGGCCCG
201	GCTCCCGCTA	CGACGTGAGC	CGCTTGGGCC	GGGGCAAGCG	CTCGCTAGTG
251	CTGGACCTGA	AGCAGCCGCG	GGGAGCCGCC	GTGCTGCGGC	GTCTGTGCAA
301	GCGGTCGGAT	GTGCTGCTGG	AGCCCTTCCG	$CCGC\mathbf{G}\mathbf{G}\mathbf{T}G\mathbf{T}C$	ATGGAGAAAC
351	TCCAGCTGGG	CCCAGAGATT	CTGCAGCGGG	AAAATCCAAG	GCTTATTTAT
401	GCCAGGCTGA	GTGGATTTGG	CCAGTCAGGA	AGCTTCTGCC	GGTTAGCTGG
451	CCACGATATC	AACTATTTGG	CTTTGTCAGG	TGTTCTCTCA	AAAATTGGCA
501	GAAGTGGTGA	GAATCCGTAT	GCCCCGCTGA	ATCTCCTGGC	TGACTTTGCT
551	GGTGGTGGCC	TTATGTGTGC	ACTGGGCATT	ATAATGGCTC	TTTTTGACCG
601	CACACGCACT	GACAAGGGTC	AGGTCATTGA	TGCAAATAT G	$\mathbf{G} T G G A A G G A A$
651	CAGCATATTT	AAGTTCTTTT	CTGTGGAAAA	CTCAGAAATC	GAGTCTGTGG
701	GAAGCACCTC	GAGGACAGAA	CATGTTGGAT	GGTGGAGCAC	CTTTCTATAC
751	GACTTACAGG	ACAGCAGATG	GGGAATTCAT	GGCTGTTGGA	GCAATAGAAC
801	CCCAGTTCTA	CGAGCTGCTG	ATCAAA GG AC	TTGGACTAAA	GTCTGATGAA
851	CTTCCCTCTC	AGATGAGCAC	GGATGATTGG	CCAGAAATGA	AGAAGAAGTT
901	TGCAGATGTA	TTTGCAAAGA	AGACGAAGGC	AGAGTGGTGT	CAAATCTTTG
951	ACGGCACAGA	TGCCTGTGTG	ACTCCGGTTC	TGACTTTTGA	GGAGGTTGTT
1001	CATCATGATC	ACAACAAGGA	ACGGGGCTCG	TTTATCACCA	GTGAGGAGCA
1051	GGACGTGAGC	CCCCGCCCTG	CACCTCTGCT	GTTAAACACC	CCAGCCATCC
1101	CTTCTTTCAA	AAGGGATCCT	TTCATAGGAG	AACACACTGA	GGAGATACTT
1151	GAAGAATTTG	GATTCAGCCG	CGAAGAGATT	TATCAGCTTA	ACTCAGATAA

1201	AATCATTGAA	AGTAATAAGG	TA AAAGCTAG	TCTCTA	A			
			-	K	А	S	L *	stop
					CTT	CCA	GGCC	CAC
1251	GGCTCAAGTG	AATTTGAATA	CTGCATTTAC	AGTGTA	GAGT	AAC	ACAT.	AAC
1301	ATTGTATGCA	TGGAAACATG	GAGGAACAGT	ATTACA	GTGT	CCI	ACCA	CTC
1351	TAATCAAGAA	AAGAATTACA	GACTCTGATT	CTACAG	TGAT	GAT	'TGAA'	TTC
1401	TAAAAATGGT	TATCATTAGG	GCTTTTGATT	TATAAA	ACTT	TGG	'GTAC	TTA
1451	TACTAAATTA	TGGTAGTTAT	TCTGCCTTCC	AGTTTG	CTTG	ATA	TATT	ΓGT
1501	TGATATTAAG	ATTCTTGACT	TATATTTTGA	ATGGGT	ТСТА	GTG	AAAA	AGG
1551	AATGATATAT	TCTTGAAGAC	ATCGATATAC	ATTTAT	TTAC	ACT	CTTG	ATT
1601	CTACAATGTA	GAAAATGAGG	AAATGCCACA	AATTGT	ATGG	TGA	TAAA	AGT
1651	$\texttt{CACGTGAAA}{\textbf{C}}$	A	poly A (I)					
1652		GAGTGATTG	GTTGCATCCA	GGCCTTT	ГТGТ	CTT	GGTGI	TC
1701	ATGATCTCCC	TCTAAGCACA	TTCCAAACTT	TAGCAA	CAGT	TAT	CACA	CTT
1751	TGTAATTTGC	AAAGAAAAGT	TTCACCTGTA	TTGAAT	CAGA	ATG	CCTT	CAA
1801	CTGAAAAAAA	CATATCCAAA	ATAATGAGGA	AATGTG	TTGG	CTC	ACTA	CGT
1851	AGAGTCCAGA	GGGACAGTCA	GTTTTAGGGT	TGCCTG	TATC	CAG	'TAAC	TCG
1901	GGGCCTGTTT	CCCCGTGGGT	CTCTGGGCTG	TCAGCT	TTCC	TTT	CTCC.	ATG
1951	TGTTTGATTT	CTCCTCAGGC	TGGTAGCAAG	TTCTGG	ATCT	TAT	ACCC.	AAC
2001	ACACAGCAAC	ATCCAGA AAT	AAA GATCTCA	GGACCC	CC CA	AAA	AAAA	A
						poly	7 A (II)

Abb. 3-31: *cDNA-Sequenz der humanen* α*-Methylacyl-CoA-Racemase, Gesamtlänge: 2039 bp* (*ohne poly A II*) *bzw. 1661 bp* (*ohne poly A I*).

3.4.2 Proteinsequenzanalyse der α -Methylacyl-CoA-Racemase

Die cDNA-Sequenz der humanen α -Methylacyl-CoA-Racemase enthält ein offenes Leseraster von 89-1237 bp, das entspricht einer Länge von 1146 bp, incl. des Stop-Codons TAA. Die Translation beginnt mit ATG in einer klassischen Kozak-Sequenz und endet mit –KASL als C-Terminus. Das ORF codiert ein Protein aus 382 Aminosäuren mit einem theoretischen Molekulargewicht von 42,4 kDa. Die Sequenz des daraus resultierenden Proteins ist in der folgenden Abbildung (Abb. 3-32) dargestellt.

5 '	1	ATG	GCA	CTG	CAG	GGC	ATC	TCG	GTC	ATG	GAG	CTG	TCC	GGC	CTG	GCC	CCG
	1	<u>M</u>	A	L	Q	G	I	S	V	M	E	L	s	G	L	A	P
	49	GGC	CCG	TTC	TGT	GCT	ATG	GTC	CTG	GCT	GAC	TTC	GGG	GCG	CGT	GTG	GTA
	17	G	P	F	C	A	M	V	L	A	D	F	G	A	R	V	V
	97	CGC	GTG	GAC	CGG	CCC	GGC	TCC	CGC	TAC	GAC	GTG	AGC	CGC	TTG	GGC	CGG
	33	R	V	D	R	P	G	S	R	Y	D	V	S	R	L	G	R

Proteinsequenz der α -Methylacyl-CoA-Racemase:

145	GGC	AAG	CGC	TCG	CTA	GTG	CTG	GAC	CTG	AAG	CAG	CCG	CGG	GGA	GCC	GCC
49	G	K	R	S	L	V	L	D	L	K	Q	P	R	G	A	A
193	GTG	CTG	CGG	CGT	CTG	TGC	AAG	CGG	TCG	GAT	GTG	CTG	CTG	GAG	CCC	TTC
65	V	L	R	R	L	C	K	R	S	D	V	L	L	E	P	F
241	CGC	CGC	GGT	GTC	ATG	GAG	AAA	CTC	CAG	CTG	GGC	CCA	GAG	ATT	CTG	CAG
81	R	R	G	V	M	E	K	L	Q	L	G	P	E	I	L	Q
289	CGG	GAA	AAT	CCA	AGG	CTT	ATT	TAT	GCC	AGG	CTG	AGT	GGA	TTT	GGC	CAG
97	R	E	N	P	R	L	I	Y	A	R	L	S	G	F	G	Q
337	TCA	GGA	AGC	TTC	TGC	CGG	TTA	GCT	GGC	CAC	GAT	ATC	AAC	TAT	TTG	GCT
113	S	G	S	F	C	R	L	A	G	H	D	I	N	Y	L	A
385	TTG	TCA	GGT	GTT	CTC	TCA	ААА	ATT	GGC	AGA	AGT	GGT	GAG	AAT	CCG	TAT
129	L	S	G	V	L	S	К	I	G	R	S	G	E	N	P	Y
433	GCC	CCG	CTG	AAT	CTC	CTG	GCT	GAC	TTT	GCT	GGT	GGT	GGC	CTT	ATG	TGT
145	A	P	L	N	L	L	A	D	F	A	G	G	G		M	C
481	GCA	CTG	GGC	ATT	ATA	ATG	GCT	CTT	TTT	GAC	CGC	ACA	CGC	ACT	GAC	AAG
161	A	L	G	I	I	M	A	L	F	D	R	T	R	T	D	K
529	GGT	CAG	GTC	ATT	GAT	GCA	AAT	ATG	GTG	GAA	GGA	ACA	GCA	ТАТ	TTA	AGT
177	G	Q	V	I	D	A	N	M	V	E	G	T	A	Ү	L	S
577	TCT	TTT	CTG	TGG	AAA	ACT	CAG	AAA	TCG	AGT	CTG	TGG	GAA	GCA	CCT	CGA
193	S	F	L	W	K	T	Q	K	S	S	L	W	E	A	P	R
625	GGA	CAG	AAC	ATG	TTG	GAT	GGT	GGA	GCA	CCT	TTC	ТАТ	ACG	ACT	TAC	AGG
209	G	Q	N	M	L	D	G	G	A	P	F	Ү	T	T	Y	R
673	ACA	GCA	GAT	GGG	GAA	TTC	ATG	GCT	GTT	GGA	GCA	ATA	GAA	CCC	CAG	TTC
225	T	A	D	G	E	F	M	A	V	G	A	I	E	P	Q	F
721	TAC	GAG	CTG	CTG	ATC	AAA	GGA	CTT	GGA	CTA	AAG	TCT	GAT	GAA	CTT	CCC
241	Y	E	L	L	I	K	G	L	G	L	K	S	D	E		P
769	AAT	CAG	ATG	AGC	ACG	GAT	GAT	TGG	CCA	GAA	ATG	AAG	AAG	AAG	TTT	GCA
257	N	Q	M	S	T	D	D	W	P	E	M	K	K	K	F	A
817	GAT	GTA	TTT	GCA	AAG	AAG	ACG	AAG	GCA	GAG	TGG	TGT	CAA	ATC	TTT	GAC
273	D	V	F	A	K	K	T	K	A	E	W	C	Q	I	F	D
865	GGC	ACA	GAT	GCC	TGT	GTG	ACT	CCG	GTT	CTG	ACT	TTT	GAG	GAG	GTT	GTT
289	G	T	D	A	C	V	T	P	V	L	T	F	E	E	V	V
913	CAT	CAT	GAT	CAC	AAC	AAG	GAA	CGG	GGC	TCG	TTT	ATC	ACC	AGT	GAG	GAG
305	H	H	D	H	N	K	E	R	G	S	F	I	T	S	E	E
961	CAG	GAC	GTG	AGC	CCC	CGC	CTT	GCC	CCT	CTG	CTG	TTA	AAC	ACC	CCA	GCC
321	Q	D	V	S	P	R	L	A	P	L	L	L	N	T	P	A
1009	ATC	CCT	TCT	TTC	ААА	GGG	GAT	CCT	TTC	ATA	GGA	GAA	CAC	ACT	GAG	GAG
337	I	P	S	F	К	G	D	P	F	I	G	E	H	T	E	E
1057	ATA	CTT	GAA	GAA	TTT	GGA	TTC	AGC	CGC	GAA	GAG	ATT	ТАТ	CAG	CTT	AAC
353	I	L	E	E	F	G	F	S	R	E	E	I	Ү	Q	L	N
1105	TCA	GAT	AAA	ATC	ATT	GAA	AGT	AAT	AAG	GTA	AAA	GCT	AGT	CTC	TAA	3
369	S	D	K	I	I	E	S	N	K	V	K	A	S	L	*	

Abb. 3-32: cDNA-Sequenz (oben) und Proteinsequenz der α -Methylacyl-CoA-Racemase.

Anhand der über die cDNA-Sequenz bestimmten Aminosäuresequenz läßt sich die humane α -Methylacyl-CoA-Racemase wie folgt biochemisch charakterisieren:

Aminosäurenzahl: 382

Aminosäurenzusammensetzung:	Ala (A) 29	7.6 %
	Arg (R) 25	6.5 %
	Asn (N) 11	2.9 %
	Asp (D) 22	5.8 %
	Cys (C) 6	1.6 %
	Gln (Q) 13	3.4 %
	Glu (E) 27	7.1 %
	Gly (G) 35	9.2 %
	His (H) 5 1.3 %	
	Ile (I) 18	4.7 %
	Leu (L) 44	11.5 %
	Lys (K) 21	5.5 %
	Met (M) 11	2.9 %
	Phe (F) 20	5.2 %
	Pro (P) 20	5.2 %
	Ser (S) 26	6.8 %
	Thr (T) 15	3.9 %
	Trp (W) 4	1.0 %
	Tyr (Y) 9 2.4 %	
	Val (V) 21	5.5 %

Anzahl negativ geladener Reste (Asp + Glu): 49 Anzahl positiv geladener Reste (Arg + Lys): 46

Molekulargewicht: 42,366 kD

Theoretischer pI: 6,06

Die theoretisch berechnete Molekülmasse von 42,4 kDa ist etwa kleiner als die mittels SDS-PAGE bestimmte Größe von 47,1 kDa. Die α -Methylacyl-CoA- Racemase aus Ratte zeigt im SDS-PAGE ebenfalls ein langsameres Laufverhalten als theoretisch erwartet. Bei der Expression definierter Konstrukte, deren Größen also exakt vorhersagbar waren, zeigte sich, daß die exprimierten Proteine im SDS-PAGE stets einige kDa größer erschienen als erwartet (W.Schmitz, persönliche Mitteilung).

3.4.3 Northern Blot

Um zu überprüfen, ob die in Kapitel 3.4.1.5 erwähnten unterschiedlich langen Transkripte der α -Methylacyl-CoA-Racemase mit einer Gesamtlänge von 1661 bp bzw. 2039 bp (Abb. 3-31) möglicherweise gewebsspezifisch vorkommen, wurde ein Northern Blot mit mRNAs verschiedener menschlicher Gewebe durchgeführt (2.4.14).

Pro Spur enthielt der eingesetzte MTN (Multiple Tissue Northern) Blot je 2 µg mRNA aus Herz, Gehirn, Plazenta, Lunge, Leber, Skelettmuskel, Niere und Pankreas. Zur Hybridisierung wurde das mit [α -³²P]dCTP radioaktiv markierte PCR-Podukt H1.4 eingesetzt, welches dem Abschnitt 1-332 bp der α -Methylacyl-CoA-Racemase-cDNA-Sequenz entspricht (2.4.13).

Abb. 3-33: Northern Blot (Human MTN Blot), pro Spur sind je 2 µg isolierte humane mRNA aus Herz (H), Gehirn (G), Plazenta(Pl), Lunge (Lu), Leber (Le), Skelettmuskel (M), Niere (N) und Pankreas (P) aufgetragen. Blot (a): hybridisiert mit dem Oligonukleotid [α -³²P]H1.4 (1-332 bp), Blot (b): hybridisiert mit humaner β-Actin cDNA-Kontrollprobe.

Anhand der Northern Blot–Analyse konnte gezeigt werden, daß die humane α -Methylacyl-CoA-Racemase gewebsspezifisch exprimiert wird. In Geweben, wie Leber und Niere, von denen bekannt ist, daß sie besonders peroxisomenreich sind, konnte eine sehr starke Expressionen der mRNA nachgewiesen werden. In den weiteren untersuchten menschlichen Geweben, wie Herz, Gehirn, Skelettmuskel und Pankreas, fällt die Expression deutlich niedriger aus, in Plazenta und Lunge wird die Racemase nur in äußerst geringem Umfang exprimiert.

In allen Geweben sind mehrere Transkripte der α -Methylacyl-CoA-Racemase zu finden. Wie nach der Sequenzanalyse erwartet worden war, entsprachen die Banden Transkripten der Größen 1,6 und 2,0 kb, zusätzlich findet noch bei 3,1 kb eine vermutlich unspezifische Hybridisierung statt. Obwohl die Expression in den einzelnen Geweben unterschiedlich stark ausfällt, betrifft dies alle Transkripte in gleichem Umfang, es liegt keine spezifische Expression eines einzelnen Transkripts vor.

3.4.4 Genomische Analyse des humanen α-Methylacyl-CoA-Racemase-Gens

3.4.4.1 Genomischer Aufbau

Zur Untersuchung der genomischen Struktur des α -Methylacyl-CoA-Racemase-Gens wurde mit Hilfe der aus genomischer DNA erhaltenen Klone H 1-4 (1-332 bp) und H 18-13 (526-647 bp) (3.4.1.4) über das DHG-Projekt (Resource Center of the German Human Genome Projekt, Heidelberg) nach genomischen Klonen gesucht, die mit diesen Sequenzen hybridisiert werden konnten. Untersucht wurden dazu humane genomische DNA PAC-Banken (pCYPAC2-Bank: *RPCI1, 3-5 Human PAC, No. 704*, konstruiert von P. de Jong und P. Ioannou am Roswell Park Cancer Institut). Insgesamt konnten elf Klone identifiziert werden (siehe Tab. 3-8), die mit den genomischen DNA-Sequenzen hybridisierten (2.4.1.2).

Zur weiteren Charakterisierung wurden Informationen über die genomische Organisation des entsprechenden Racemase-Gens bei der Maus herangezogen, die freundlicherweise von T. Kotti und K. Hiltunen (Universtät Oulu, Finnland) zur Verfügung gestellt wurden.

Nr.	PAC-Klone
(A1)	RPCIP704O01181Q25
(A2)	RPCIP704P01181Q25
(A4)	RPCIP704B8394Q2
(A6)	RPCIP704H15649Q2
(B1)	RPCIP704M05720Q2
(B2)	RPCIP704L21804Q2
(B4)	RPCIP704K03969Q2
(B5)	RPCIP704M03969Q2
(B6)	RPCIP704O01181Q25
(C1)	RPCIP704N17985Q2
(C3)	RPCIP704B041122Q2

Tab. 3-8: PAC-Klone der Genbank RPCI1, 3-5 Human PAC, Nr. 704, hybridisiert mit H 1-4 und H 18-13.

Nach Reinigung der DNA aus den PAC-Klonen (2.4.5) wurde zuerst überprüft, ob die Klone auch tatsächlich Inserts enthielten. Dazu wurde eine Restriktionsanalyse mit EcoRI durchgeführt (Abb. 3-34). Die Klone A6 und C1 wurden als negativ identifiziert und blieben deswegen für weitere Untersuchungen unberücksichtigt.

Abb. 3-34: 0,6% iges Agarosegel: EcoRI-Restriktion der genomischen Klone A1-C3 (1U/µg EcoRI, 4 h, 37°C), HMS (high molecular standard).

Die positiven genomischen Klone A1, A2, A4, B1, B2, B4, B5, B6 und C3 wurden anschließend dahingehend überprüft, ob das Racemase-Gen tatsächlich vollständig vorlag. Hierzu wurde zuerst versucht, das mögliche Exon 1 mittels PCR in den aus der Maus-Racemase bekannten Grenzen (T. Kotti, persönliche Mitteilung) zu amplifizieren.

Touch down PCR:

Denaturierung: 94°C, 5 min

7 x Schmelzen: 94°C, 40 sec / Annealing: 60°C, 1 min / Elongation: 72°C, 2 min

10 x Schmelzen: 94°C, 40 sec / Annealing: 57°C, 50 sec / Elongation: 72°C, 2 min

15 x Schmelzen: 94°C, 40 sec / Annealing: 55°C, 50 sec / Elongation: 72°C, 2 min

Elongation: 72°C, 8 min

Reaktionsansatz: 0,1 μ l DNA-Template (100 ng/ μ l) 3,0 μ l 10x PCR-Puffer je 2,0 μ l spez. Primer 4,0 μ l dNTPs (2 mM) 18,7 μ l ddH₂O 0,2 μ l Taq-Polymerase (4 U/ μ l) (Sigma)

Abb. 3-35: 1% iges Agarosegel zur Überprüfung der genomischen Klone A1-C3 anhand des Exons 1 (5'-Ende) (332 bp) mittels touch down PCR mit den Primern H 18f und Int 1r.

Es zeigte sich, daß mit Ausnahme von Klon A1 (*RPCIP704001181Q25*) in allen anderen untersuchten Klonen das 5'-Ende enthalten war (Abb. 3-35). Anschließend wurde dann unter gleichen PCR-Bedingungen eine *touch down* PCR mit den Primern Int 4f und Stop 3r zur Amplifikation des Exons 5 durchgeführt, um zu überprüfen, ob das Gen vollständig vorlag (Abb. 3-36). Bis auf den Klon B6 (*RPCIP704001181Q25*) war das 3'-Ende in allen übrigen Klonen vorhanden. Für die weiteren Untersuchungen konnten somit die Klone A2, A4, B1, B2, B4, B5 und C3 eingesetzt werden.

HMS A1 A2 A4 B1 B2 B4 B5 B6 C3 HMS DNA-Leiter

Abb. 3-36: 1% iges Agarosegel zur Überprüfung der genomischen Klone A1-C3 anhand des Exons 5 (3'Ende) (1214 bp) mittels touch down PCR mit den Primern Int 4f und Stop 3r.

Zum Vergleich der bisher erhaltenen humanen cDNA-Sequenz der α -Methylacyl-CoA-Racemase wurde zuerst versucht, aus dem Klon B2 (*RPCIP704L21804Q2*) die Exons an den zu erwartenden Exon/Intron-Grenzen (T. Kotti, persönliche Mitteilung) mittels PCR zu amplifizieren. Fünf Exons konnten erfolgreich amplifiziert werden (Abb. 3-37). Die humane DNA-Sequenz enthält demzufolge im Vergleich zur Maus keine zusätzlichen Introns.

Alle fünf Exons wurden kloniert und mehrfach sequenziert. Die 3'-UTR, die bislang nur aus den EST-Sequenzvergleichen bestimmt worden war, konnte durch die Sequenzanalyse der genomischen DNA verifiziert werden. Die so ermittelte DNA-Sequenz stimmte vollständig mit der bisher bekannten cDNA-Sequenz der humanen Racemase überein (Abb. 3-40).

HMS Exon 1 Exon 2 Exon 3 Exon 4 Exon 5 HMS DNALeiter

Abb. 3-37: 1% iges Agarosegel mit den Exons 1-5 aus dem genomischem Klon B2(RPCIP704L21804Q2): Exon I (H18f/H-Int1r) = 332 bp, Exon II (H-Int1f/H-Int2r) = 144 bp, Exon III (H-Int2f/H-Int3r1) = 164 bp, Exon IV (H-Int3f/H-Int4r) = 187 bp, Exon V (H-Int4f/ H-Stop3r) = 1214 bp. Die Exons 1-5 wurden mittels touch down PCR amplifiziert: 4´ 94°C [7x (40" 94°C, 1´60°C, 2´72°C), 10x (40" 94°C, 1´57°C, 2´72°C), 15x (40" 94°C, 1´ 55°C,2´72°C)] 8´72°C.

3.4.4.1.1 Exon-/ Intronstruktur

Wie im vorangegangenen Abschnitt gezeigt werden konnte, enthält das humane Gen im Vergleich zum murinen Gen keine weiteren Introns. Des weiteren wurde überprüft, ob beim Menschen an den entsprechenden Stellen tatsächlich Introns vorliegen und diese auch an exakt den gleichen Sequenzpositionen zu finden sind.

Die präzisen Exon-/ Introngrenzen sowie die genauen Introngrößen wurden unter verschiedenen PCR-Bedingungen analysiert, wobei exemplarisch der PAC-Klon B2 (*RPCIP704L21804Q2*) verwendet wurde. Um die z.T. sehr großen DNA-Stücke zu erhalten, wurde die Taq Plus Precision-Polymerase von Stratagene eingesetzt. Diese besteht aus einem Gemisch von Taq-und Pfu-Polymerase, und erzielt bei relativ kurzer Elongationszeit (1min/kB) und langer Halbwertzeit (120 min bei 95°C) eine hohe Präzision. Bei der Amplifikation wurden die Primer so gewählt, daß die Introns jeweils zusammen mit den sie umgebenden Exons amplifiziert wurden, um die Exon-/ Introngrenzen genau zu bestimmen.

PCR-Ansatz:	PCR-Programm:	
3,0 µl 10x Taq Plus PrecPuffer	Denaturierung:	94°C, 4 min
je 2,0 μ l spez. Primer (10 μ M)	32x [Schmelzen:	94°C, 35 sec
8,0 µl dNTPs (2 mM)	Annealing:	7x 60°C, 1 min
0,2 µl DNA-Template (PAC-B2;100 ng/µl)		10x 57°C, 50 sec
14,3 µl ddH ₂ O		15x 55°C, 50 sec
0,5 µl Taq-Plus Precision (10 U/µl) (Stratagene)	Elongation:	72°C, 1 min / kb]
	Elongation: 72°C,	7 min

Die erhaltenen PCR-Produkte wurden z.T. kloniert und mehrfach sequenziert, wobei möglichst weit in den Intronbereich hinein sequenziert wurde (siehe Anhang). Es wurden, wie im murinen Gen, insgesamt vier Introns erhalten, die sich an ähnlichen Positionen befinden, vgl. Abb. 4-4. Alle Introns beginnen mit der Sequenz *GT* und enden mit *AG*. Die ermittelten exakten Exon-/ Introngrenzen sind in Abb. 3-40 und Tab. 3- 9 dargestellt. Die Größe der PCR-Produkte wurde durch die Auftrennung in einem 0,6% igen Agarosegel (Abb. 3-38 und Abb. 3-39) bestimmt. Durch Subtraktion der Exon-Anteile konnte damit die Größe der Introns festgestellt werden: Intron II = 1,8 kb, Intron III = 1,3 kb, Intron III = 8,8 kb, Intron IV = 2,2 kb (Tab. 3-9).

Abb. 3-38: 0,6% iges Agarosegel nach touch down PCR mit dem PAC-Klon B2 (RPCIP704L21804Q2) von Intron I (H16f/Int2r) und Intron III (Int2f/Int4r).

Abb. 3-39: 0,6% ige Agarosegele nach touch down PCR mit dem PAC-Klon B2 (RPCIP704L21804Q2) von Intron II (Int1f/Int3r) und Intron IV (Int3f/Stop 1r).

Amplifizierte Sequenz	Eingesetzte	Größe	Introngröße	Intronposition
	Primer	(inkl.		
		Exonanteile)		
Intron I	H 16f, Int 2f	2,2 kb	1,8 kb	335 bp ↔ 336 bp
Intron II	Int 1f, Int 3r	1,5 kb	1,3 kb	479 bp ↔ 480 bp
Intron III	Int 2f, Int 4r	9,0 kb	8,8 kb	640 bp ⇔ 641 bp
Intron IV	Int 3f, Stop 1r	2,7 kb	2,2 kb	827 bp ⇔828 bp

Tab. 3- 9: Bestimmung von Größe und Position der Introns des humanen α -Methylacyl-CoA-Racemase-Gen.

Genomischer Aufbau und DNA-Sequenz des humanen α -Methylacyl-CoA-Racemase-Gens

:

humRac-gen Ex-1 ko	1 1	10 GGCGCCGGGA ******	20 TTGGGAGGGC ******	30 TTCTTGCAGG *****	40 CTGCTGGGCT *******	50 GGGGCTAAGG *****
humRac-gen Ex-1 ko	51 51	60 GCTGCTCAGT *******	70 TTCCTTCAGC *****	80 GGGGCACTGG *****	90 GAAGCGCCAT *******	100 GGCACTGCAG *****
humRac-gen Ex-1 ko	101 101	110 GGCATCTCGG *****	120 TCGTGGAGCT *******	130 GTCCGGCCTG *****	140 GCCCCGGGCC *****	150 CGTTCTGTGC *****
humRac-gen Ex-1 ko	151 151	160 TATGGTCCTG *****	170 GCTGACTTCG *****	180 GGGCGCGTGT *****	190 GGTACGCGTG *******	200 GACCGGCCCG *****
humRac-gen Ex-1 ko	201 201	210 GCTCCCGCTA *****	220 CGACGTGAGC *****	230 CGCTTGGGCC *****	240 GGGGCAAGCG *****	250 CTCGCTAGTG *****
humRac-gen Ex-1 ko	251 251	260 CTGGACCTGA *****	270 AGCAGCCGCG *****	280 GGGAGCCGCC *****	290 GTGCTGCGGC *****	300 GTCTGTGCAA *******
humRac-gen Ex-1 ko	301 301	310 GCGGTCGGAT *******	320 GTGCTGCTGG *****	330 AGCCCTTCCG *****	$\begin{array}{c} 340 \\ \text{CCGCGGTGTC} \\ ****\psi \end{array}$	350 ATGGAGAAAC
Intron I					↓ <i>G</i> T	.→ →
Ex-2 ko	-35				$\psi^{\star \star \star \star \star}$	* * * * * * * * * *
humRac-gen Ex-2 ko	351 16	360 TCCAGCTGGG *****	370 CCCAGAGATT *******	380 CTGCAGCGGG ****	390 AAAATCCAAG *******	400 GCTTATTTAT *******
humRac-gen Ex-2 ko	401 66	410 GCCAGGCTGA *****	420 GTGGATTTGG *****	430 CCAGTCAGGA *****	440 AGCTTCTGCC ****	450 GGTTAGCTGG *****

humRac-gen Ex-2 ko	451 116	460 CCACGATATC *****	470 AACTATTTGG *****	$\begin{array}{c} 480\\ \text{CTTTGTCAGG}\\ *******\psi \end{array}$	490 TGTTCTCTCA	500 AAAATTGGCA
				↓	GT→	>
Intron II			. .	←AG ◊		
Ex-3 ko	-29			ψ^{\star}	* * * * * * * * * *	* * * * * * * * * *
humRac-gen Ex-3 ko	501 22	510 GAAGTGGTGA *****	520 GAATCCGTAT *****	530 GCCCCGCTGA *****	540 ATCTCCTGGC *****	550 TGACTTTGCT *****
humRac-gen Ex-3 ko	551 72	560 GGTGGTGGCC ****	570 TTATGTGTGC ****	580 ACTGGGCATT *******	590 ATAATGGCTC *******	600 TTTTTGACCG *****
humRac-gen Ex-3 ko	601 122	610 CACACGCACT ********	620 GGCAAGGGTC *****	630 AGGTCATTGA *******	640 TGCAGATATG *********	650 GTGGAAGGAA
						$\Downarrow GT \ldots \rightarrow \ldots \rightarrow$
Intron III					÷←AG <	>
Ex-4 ko	-40				y	p****
humRac-gen Ex-4 ko	651 11	660 CAGCATATTT ********	670 AAGTTCTTTT *****	680 CTGTGGAAAA ********	690 CTCAGAAATC ********	700 GAGTCTGTGG *****
humRac-gen Ex-4 ko	701 61	710 GAAGCACCTC *****	720 GAGGACAGAA ******	730 CATGTTGGAT *****	740 GGTGGAGCAC *****	750 CTTTCTATAC *****
humRac-gen Ex-4 ko	751 111	760 GACTTACAGG *****	770 ACAGCAGATG *****	780 GGGAATTCAT *****	790 GGCTGTTGGA *****	800 GCAATAGAAC *****
humRac-gen Ex-4 ko	801 161	810 CCCATTTCTA *****	820 CGAGCTGCTG *****	830 ATCAAAGGAC ***** <i>\</i>	840 TTGGACTAAA	850 GTCTGATGAA
				, ∦ <i>G</i> T	→→	
Intron IV				. ← AG ◊		
Ex-5 ko	-27			ψ***	* * * * * * * * * *	* * * * * * * * * *
humRac-gen Ex-5 ko	851 24	860 CTTCCCAATC ********	870 AGATGAGCAT ********	880 GGATGATTGG *****	890 CCAGAAATGA *******	900 AGAAGAAGTT ********
humRac-gen Ex-5 ko	901 74	910 TGCAGATGCA *****	920 TTTGCAAAGA ********	930 AGACGAAGGC *****	940 AGAGTGGTGT *****	950 CAAATCTTTG *****
humRac-gen Ex-5 ko	951 124	960 ACGGCACAGA *****	970 TGCCTGTGTG *****	980 ACTCCGGTTC *****	990 TGACTTTTGA *****	1000 GGAGGTTGTT *****
humRac-gen Ex-5 ko	1001 174	1010 CATCATGATC *****	1020 ACAACAAGGA *****	1030 ACGGGGGCTCG *****	1040 TTTATCACCA ********	1050 GTGAGGAGCA *****
humRac-gen Ex-5 ko	1051 224	1060 GGACGTGAGC *****	1070 CCCCGCCCTG *****	1080 CACCTCTGCT *****	1090 GTTAAACACC ******	1100 CCAGCCATCC *****
humRac-gen Ex-5 ko	1101 274	1110 CTTCTTTCAA ********	1120 AAGGGATCCT ****	1130 TTCATAGGAG *******	1140 AACACACTGA ****	1150 GGAGATACTT *****
humRac-gen Ex-5 ko	1151 324	1160 GAAGGATTTG *****	1170 GATTCAGCCG *****	1180 CGAAGAGATT *****	1190 TATCAGCTTA *****	1200 ACTCAGATAA ********

1210 1220 1230 1240 1250 humRac-gen 1201 AATCATTGAA AGTAATAAGG TAAAAGCTAG TCTCTAACCT TCCAGGCCCA 374 ******** Ex-5 ko 1260 1270 1280 1290 1300 humRac-gen 1251 CGGCTCAAGT GAAATTTGAA TACTGCATTT ACAGTGTAGA GTAACACATT Ex-5 ko 424 ******** ******* ********* 1320 1330 1350 1310 1340 humRac-gen 1301 AACATTGTAT GCCATGGAAA CATGGAAGGA ACAGTTATTA CAGTGTCCTA 474 ******** Ex-5 ko * 1370 1380 1400 1360 1390 humRac-gen 1351 CCACTCTAAT CAAGAAAAGA ATTACAGACT CTGATTCTAC AGTGATGATT 524 ******** Ex-5 ko 1410 1420 1430 1440 1450 humRac-gen 1401 GAATTCTAAA AATGGTTATC ATTAGGGCTT TTGATTTATA AAACTTTGGG 574 ** Ex-5 ko 1460 1470 1480 1490 1500 humRac-gen 1451 TACTTATACT AAATTATGGT AGTTATTCTG CCTTCCAGTT TGCTTGATAT 624 ********* * * * * * * * * * * Ex-5 ko * 1510 1520 1530 1540 1550 humRac-gen 1501 ATTTGTTGAT ATTAAGATTC TTGACTTATA TTTTGAATGG GTTCTAGTGA Ex-5 ko 674 ******** ******** ******* ******* 1560 1570 1580 1590 1600 humRac-gen 1551 AAAAGGAATG ATATATTCTT GAAGACATCG ATATACATTT ATTTACACTC Ex-5 ko 724 ******** ******** * * * * * * * * * * 1610 1620 1630 1640 1650 humRac-gen 1601 TTGATTCTAC AATGTAGAAA ATGAGGAAAT GCCACAAATT GTATGGTGAT 774 ******** Ex-5 ko ******** 1660 1670 1680 1690 1700 humRac-gen 1651 AAAAGTCACG TGAAACAGAG TGATTGGTTG CATCCAGGCC TTTTGTCTTG 824 ****** Ex-5 ko 1710 1720 1730 1740 1750 humRac-gen 1701 GTGTTCATGA TCTCCCTCTA AGCACATTCC AAACTTTAGC AACAGTTATC 874 ******* Ex-5 ko 1760 1770 1780 1790 1800 humRac-gen 1751 ACACTTTGTA ATTTGCAAAG AAAAGTTTCA CCTGTATTGA ATCAGAATGC Ex-5 ko 924 ******** ******* ******** ******* 1830 1810 1820 1840 1850 humRac-gen 1801 CTTCAACTGA AAAAAACATA TCCAAAATAA TGAGGAAATG TGTTGGCTCA Ex-5 ko 974 ******** ******** ******** 1860 1870 1880 1890 1900 humRac-gen 1851 CTACGTAGAG TCCAGAGGGA CAGTCAGTTT TAGGGTTGCC TGTATCCAGT 1024 ******** Ex-5 ko * 1910 1920 1930 1940 1950 Ex-5 ko 1074 ******* 1970 1960 1980 1990 2000 humRac-gen 1951 TCCATGTGTT TGATTTCTCC TCAGGCTGGT AGCAAGTTCT GGATCTTATA 1124 ******** Ex-5 ko 2010 2020 2030 2040 2050 humRac-gen 2001 CCCAACACAC AGCAACATCC AGAAATAAAG ATCTCAGGAC CCCCCAAAAA 1174 ******** Ex-5 ko

Abb. 3-40: DNA-Sequenz (humRac-gen) der humanen α -Methylacyl-CoA-Racemase aus dem genomischen PAC-Klon B2 (RPCIP704L21804Q2), die Introns sind entsprechend markiert.

3.4.5 Chromosomale Lokalisation des humanen α-Methylacyl-CoA-Racemase-Gens

Zur Feststellung der chromosomalen Lokalisation des α -Methylacyl-CoA-Racemase-Gens wurde die DNA des PAC-Klons B2 (*RPCIP 704 L21804 Q2*), wie in Abschnitt 2.4.5 beschrieben, gereinigt. Mit freundlicher Unterstützung von Dr. Nanda (Humangenetisches Institut der Universität Würzburg) konnte anschließend mittels FISH-Hybridisierung (*fluorescence in-situ hybridisation*) die Position des Racemase-Gens lokalisiert werden. Die fluoreszenzmarkierte DNA-Probe hybridisierte mit der Region 5p1.3. Das Gen der α -Methylacyl-CoA-Racemase liegt somit also auf dem Chromosom 5 p nahe am Centromer. Zusätzlich wurde mit der cDNA-Sequenz der Racemase nach Übereinstimmungen mit bereits chromosomal lokalisierten Gensequenzen gesucht. Tatsächlich konnte ein STS (*sequence tagged site*)-Klon *WI-16117* (Tab. 3-10), kartiert vom *International Hybrid Mapping Consortium*, identifiziert werden. Dieser ist mit dem EST-Klon H19272 identisch und zu der Racemasesequenz im Bereich von 1255 –1666 bp homolog (siehe Anhang).

	WI-161117
ID:	EST 279210 (H19272) yn50d10.s1 Homo sapiens cDNA Klon 171859 3'
Quelle:	WICGR: dbSTS Derivat aus dbEST-Sequenz (G21632)
Chromosom:	Chr 5
ysikalische Position:	121.56 cR3000 (P0.90)
Intervall:	D5S651-D5S634 (46.6-59.9 cM)
Genetische Größe:	13 Cm
Physikalische Größe:	24 cR3000
RH Details:	RHdb RH59978
Typisiert:	Whitehead
Whitehead-Kartierung:	Chr. 5, 132,3 cR

Tab. 3-10: Detailbeschreibung des dbSTS-Klon sWI-16117.

Der STS-Klon WI-16117 (STS-Derivat von G21632, genauere Beschreibung siehe Tab. 3-10) bestätigte die durch die FISH-Hybridisierung bekannte chromosomale Lokalisation auf dem Chromosom 5 p nahe des Centromers (Abb. 3-41): im Intervall von D5S651 (46,6 cM) und D5S634 (59.9 cM), genauer von dem Mikrosatellit-Anker D5S651 bei 46,6 cM (119,97 cR) zum Mikrosatellit-Anker D5S426 bei 51,6 cM (124,16 cR), zwischen dem humanen Transkriptionsfaktor SGC32812 bei 119,97 cR und dem EST-Klon stSG15058 bei 121,60 cR (Deloukas *et al.*,1998). Die Abbildung Abb. 3-41 zeigt schematisch die Lokalisation des STS-Klons WI-161117 auf dem kurzen Arm des Chromosoms 5.

Abb. 3-41: GB4-Kartierung: Chromosom 5: D5S651-D5S634.