Aus der Orthopädischen Klinik und Poliklinik der Universität Würzburg

Direktor: Professor Dr. med. Maximilian Rudert

Vergleichende Genexpressions-Analyse unterschiedlicher Populationen mesenchymaler Stammzellen

Inaugural-Dissertation
zur Erlangung der Doktorwürde der Medizinischen Fakultät
der
Julius-Maximilians-Universität Würzburg

vorgelegt von Jörg Arnholdt aus Haßfurt Referent: Prof. Dr. med. Franz Jakob

Koreferent: Priv.-Doz. Dr. med. Ulrich Nöth

Dekan: Prof. Dr. med. Matthias Frosch

Tag der mündlichen Prüfung: 17.12.2010

Der Promovend ist Arzt.

Abkürzungsverzeichnis:

A Adenosin
Ak Antikörper

ALP Alkaline Phosphatase

bhMSZ Humane mesenchymale Stammzellen aus

Knochentrabekeln

BMP Bone morphogenetic protein

bp Basenpaar

BSP Bone Sialo Protein

C Cytosin

cDNA Complementäre Desoxyribonukleinsäure

CFU Colony forming units

CHRDL Chordin-like
CO₂ Kohlendioxid

COMP Cartilage oligomeric matrix protein

DAPI 4',6-D Foetales Kälberserum

DKK Dickkopf

DLX Distal-less homeobox

DMEM / HAM'S F-12 Dulbecco's Modified Eagels Medium

DNA Desoxyribonukleinsäure

dNTP Desoxyribonukleosid-5`-Triphosphat

E. coli Eschericha coli

EDTA Ethylendiamintetraacetatsäure

EF1-α1 Eukaryotic translation elongation factor 1 alpha 1

EMT Epitheliale mesenchymale Transition

ESZ Embryonale Stammzellen

Et al. Et altera EtOH Ethanol

FABP2 Fatty acid—binding protein 2

FACS Flourescence activated cell sorting (Durchflusszytometrie)

FBS Foetales Kälberserum

FGF Fetal growth factor

G Guanosin

H₂O Wasser

 H_2O_2 Wasserstoffperoxid

HCl Salzsäure

HE Hämatoxylin/Eosin

HSZ Hämatopoetische Stammzellen IPTG Isopropyl-ß-D-thiogalactoside

L1CAM hom L1 cell adhesion molecule homolog

LPL Lipoprotein lipase

MgCl₂ Magnesiumchlorid

mhMSZ Humane mesenchymale Stammzellen des Knochenmark

mRNA Messenger RNA

MSZ Mesenchymale Stammzellen

NaCl Natriumchlorid

NSAR Nichtsteroidale Antirheumatika

O₂ Sauerstoff

OPN Osteopontin

PBS Phosphat buffered saline

PCR Polymerase-Kettenreaktion

PCSK Proprotein convertase subtilisin/kexin type

PPAR γ 2 peroxisome proliferation-activated receptor γ 2

RNA Ribonukleinsäure

RT-PCR Reverse Transkriptase-Polymerase Kettenreaktion

SAM Significance analysis of microarrays

SZM Stammzellmedium

T Thymin

TBE Tris-Borat-EDTA

TGF Transforming growth factor

TR Thyroxin receptor

UV Ultraviolett

VEGFC Vascular endothelial growth factor C

VNR Vitronectin receptor

WISP Wnt-induced secreted proteins

INHALTSVERZEICHNIS

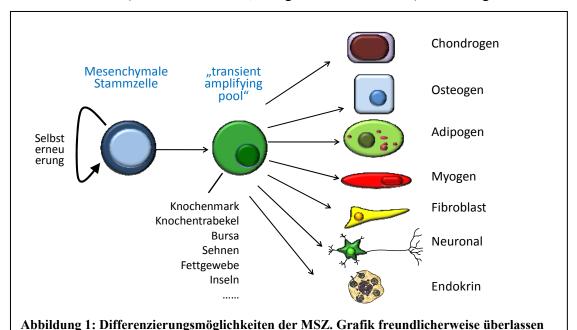
1. Einleitung	1
1.1. Geschichte der mesenchymalen Stammzellen (MSZ)	1
1.2. Die MSZ und ihre Einordnung innerhalb der Stammzellen	1
1.3. Verschiedene Lokalisationen der MSZ im Gewebe	3
1.4. "Epitheliale mesenchymale Transition" (EMT)	4
1.5. Die "Nische" der MSZ	5
1.6. Differenzierung	6
2. Material und Methoden	8
2.1. Materialien	8
2.2. Methoden	17
2.2.1. Zellen und Zellkultur	17
2.2.2. RNA- Isolation mit dem Kit "Nucleospin® RNA II"	19
2.2.3. cDNA Synthese	20
2.2.4. Array-Analyse	21
2.2.5. RT-PCR	21
2.2.5.1. Konventionelle Reverse Transkriptase-Polymere Kettenreaktion (RT-PCR).	21
2.2.5.2. Real-Time Reverse Transkriptase-Polymere Kettenreaktion (RT-PCR)	23
2.2.6. Klonierung von Standards für die Durchführung einer quantitativen RT-PCR.	25
2.2.6.1. Ligation	25
2.2.6.2. Transformation und Mini-Präp	25
2.2.6.3. Sequenzierung	26
2.2.6.4. Transformation und Maxi-Präp	27
2.2.7. Immunhistologie	28
2.2.7.1. Immunhistologische Färbungen für FGF5 und L1 CAM	29
2.2.7.2. Immunhistologische Färbungen für TR beta	30
2.2.8. Protein Labeling	31

3. Ergebnisse	33
3.1. Spenderauswahl	33
3.2. Array-Analysen	33
$3.3.\ Technische\ PCR-Evaluation\ ausgewählter\ Targets\ mittels\ originaler\ cDNA$	38
3.4. Übereinstimmung SAM/PCR	39
3.5. Immunzytochemische Analysen einzelner Kandidaten	41
3.5.1. FGF5 (mit Proteinlabeling)	41
3.5.2. TR beta	44
3.5.3. L1 CAM	45
3.6. FACS-Analyse	46
4. Diskussion	48
4.1. Technische Evaluation des Arrays	48
4.1.1. Differentiell exprimierte Gene	49
4.1.2. Aussagekraft des Affymetrix Arrays	56
4.2. Reinheit und Homogenität der MSZ in Passage 0 und 1	57
4.3. Immunhistologische Auswertung der Rehybridisierung	65
4.4. Schlussfolgerungen.	65
5. Zusammenfassung	68
6. Literaturverzeichnis	71

Danksagung

Lebenslauf

1. Einleitung


1.1. Geschichte der mesenchymalen Stammzellen (MSZ)

Im Jahre 1867 vermutete der deutsche Pathologe Julius Cohnheim erstmals, dass die Gewebereparatur über Zellen, die über den Blutkreislauf verteilt werden, gesteuert wird. Alexander Friedenstein beschrieb in den 70iger Jahren des 20. Jahrhundert erstmals an Plastik adhärente, koloniebildende, fibroblastenähnliche Zellen, die er CFU-Fs nannte (Friedenstein, Chailakhjan et al. 1970; Friedenstein, Chailakhyan et al. 1987). Diese später mesenchymale Stammzellen (MSZ) genannten Zellen zeigten in weiteren Versuchen dann eine enorme Differenzierungsmöglichkeit und Plastizität. Trotz der Fortschritte der Forschung konnte bislang kein zuverlässiger Oberflächenmarker zur Diagnosesicherung entdeckt werden, auch wenn sich die MSZ durch einige Oberflächenmarker wie STRO-1, HOP-26, CD49a and SB-10/CD166 von den meisten anderen Zellsorten abheben (Stewart, Monk et al. 2003). So bleiben weiterhin das typische spindelförmige Wachstumsmuster und die sich retrospektiv zeigende Differenzierung die typischen Diagnosekriterien (Vaananen 2005).

1.2. Die MSZ und ihre Einordnung innerhalb der Stammzellen

Von den multipotenten MSZ müssen die omnipotenten embryonalen Stammzellen (ESZ) abgegrenzt werden. Diese befinden sich im Inneren der Blastozysten, und können sich unbegrenzt teilen, und in jede beliebige Zellsorte differenzieren (Thomson, Itskovitz-Eldor et al. 1998). Die Regulation der Entwicklung wird durch viele Faktoren beeinflusst und gesteuert. Hier ist unter anderem der Transkriptionsfaktor Oct4 zu nennen, der bei der Erhaltung der Pluripotenz von ESZ eine Schlüsselfunktion einnimmt. Je mehr sich die ESZ zu einem der drei Keimblatttypen entwickeln, umso stärker verringert sich die Aktivität von Oct4. Einige Gene und Regulatoren wie Sox2, Nanog (erhöhte Expression) und Cdx2, BMP4, Dlx5 (erniedrigte Expression), die eine wichtige Rolle im Rahmen der Differenzierung spielen, werden durch Oct4 induziert (Babaie, Herwig et al. 2007).

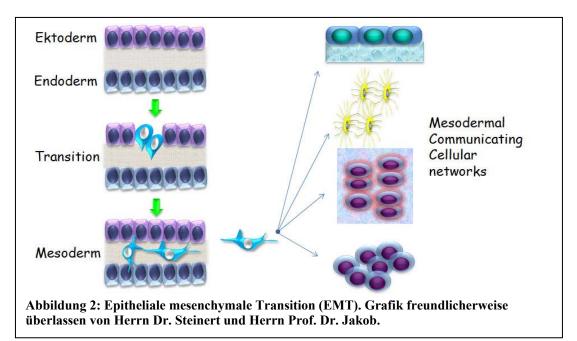
Die multipotenten MSZ, adulte mesenchymale Stammzellen, sorgen neben der Entwicklung der mesenchymalen Organe auch für die Entwicklung des umgebenden Bindegewebes. Diese Zellen, die sowohl über mesenchymale als auch mesodermale Eigenschaften verfügen, sind über den gesamten Organismus in mesenchymalen Geweben verteilt (da Silva Meirelles, Chagastelles et al. 2006). Hier sorgen sie für die

von Frau Dr. Ebert und Herrn Prof. Dr. Jakob.

Erneuerung des Gewebes auf Grund von Altersdegenerationen, Erkrankungen oder Unfällen. So spielen sie bei der Frakturausheilung eine wichtige Rolle. Verschiedene zelluläre und molekulare Signalwege, die durch die Hämatomausbildung oder inflammatorische Kaskade ausgelöst werden, regulieren die MSZ-Aktivität und führen zur Frakturheilung und Wiederherstellung der Integrität des Skelettsystems (Bielby, Jones et al. 2007). Diese verschiedenen MSZ stellen jedoch keine homogene Gruppe dar, sondern sind in ihrer Signatur different und abhängig von der Lokalisation. Sie zeigen jedoch sowohl in vivo und auch in vitro ein ähnliches Differenzierungsverhalten (Kassem and Abdallah 2008). Die MSZ-Populationen, die aus dem lateralen Mesoderm stammen, zeigen hingegen ein deutlich unterschiedliches Differenzierungspotential, wie am Beispiel Pankreas-Insel-assoziierter MSZ gezeigt werden konnte (Limbert, Ebert et al. 2009).

Das adulte Knochenmark nimmt eine Sonderstellung ein, da in ihm zwei unterschiedliche Stammzellsorten beheimatet sind. Zum einen das Hämatopoetische Stammzellsystem (HSZ), welches das Vorläufersystem für die Blutzellen darstellt, als

auch das bereits erläuterte mesenchymale Stammzellsytem (MSZ) (Bianco, Riminucci et al. 2001). Aus den MSZ können sich viele Zellsorten der Osteogenese, Chondrogenese, Adipogenese, Myogenese (Wakitani, Saito et al. 1995), Tendogenese (Young, Butler et al. 1998), aber auch des Knochenmarkstromas (Majumdar, Thiede et al. 1998) und der Neurogenese (siehe Abbildung 1) entwickeln (Pittenger, Mackay et al. 1999). Die MSZ gelten daher im Gegensatz zu den omnipotenten embryonalen Stammzellen als multipotent. Da sie aus dem Knochenmark von lebenden Menschen gewonnen werden, werden sie als ethisch unbedenklich betrachtet. Derzeit wird intensiv die Rolle der MSZ bei der Geweberegeneration und ihre Einsatzmöglichkeiten im Rahmen des Tissue Engineerings erforscht. Die aus dem Knochenmark gewonnen MSZ werden bereits in klinischen Therapieverfahren, wie z.B. der Gewebeheilung, eingesetzt. Komplexe Konstrukte mit artifiziell hergestellten Scaffold und MSZ werden derzeit im Rahmen der Tissue Engineering Forschung entwickelt, um in Zukunft Knochen- oder Knorpeldefekte zu ersetzen. Auf Grund ihrer immunsupressiven Wirkung auf T-Zellen und dendritische Zellen wird auch ein Einsatz bei Autoimmunerkrankungen und der Graft-versus-Host-Reaktion diskutiert (Barry, Murphy et al. 2005; Dazzi and Horwood 2007). Eine Verlängerung des Überlebens von autologen Hauttransplantaten und die Verringerung des Ausmaßes bei Graft-versus-Host-Reaktionen bei gleichzeitiger Transplantation mit HSZ konnte bereits nachgewiesen werden (Le Blanc and Ringden 2005). Aber auch an Reprogrammierung von MSZ zur Entwicklung von Neuronen oder Insulinproduzierenden ß-Zellen des Pankreas (Limbert, Path et al. 2008) wird gearbeitet.

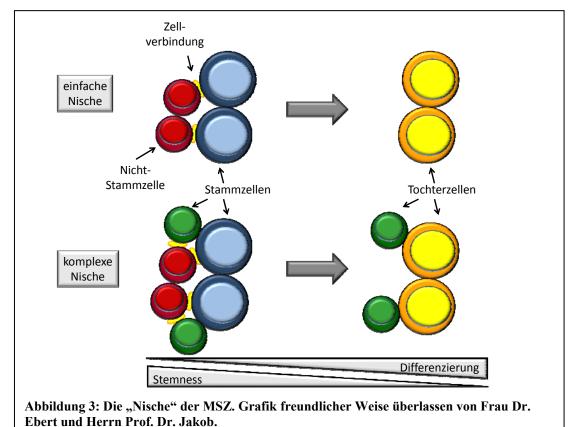

1.3. Verschiedene Lokalisationen der MSZ im Gewebe

Neben dem Knochenmark sind MSZ-artige Stammzellen, wie im vorherigen Absatz bereits diskutiert, in weiteren Geweben angesiedelt. Über deren unterschiedliche Eigenschaften wird derzeit noch teils Widersprüchliches berichtet. Musina verglich 2005 MSZ-artige Zellen aus menschlichem Knochenmark, Fettgewebe, Haut, Plazenta und Thymus anhand ihrer Oberflächenmarker (CD10, CD13, CD31, CD44, CD90, CD105). Dabei konnten keine unterschiedlichen Expressionen festgestellt werden

(Musina, Bekchanova et al. 2005). Sakaguchi verglich 2005 die Eigenschaften von MSZ-artigen Stammzellen aus Knochenmark, Synovia, Periost, Skelettmuskulatur und Fettgewebe an Hand ihrer Kompetenz zur Koloniebildung und Differenzierung. In der Versuchsreihe zur Osteogenese war der Anteil der Alizarin rot-positiven Kolonien am höchsten in den Zellen aus Knochenmark, Synovia und Periost, wohingegen die synovialen Zellen die größte Kompetenz zur Chondrogenese besaßen. Die Adipogenese war am stärksten bei den aus Fettgewebe und Synovia gewonnenen Zellen ausgeprägt, was sich in der hohen Anzahl an Ölrot O-positiven Kolonien zeigte (Sakaguchi, Sekiya et al. 2005). So scheinen die aus verschiedenen Nischen isolierten MSZ trotz gleicher Oberflächenbeschaffenheit unterschiedliche Differenzierungseigenschaften zu besitzen. Ob dies in der Zukunft zur Bevorzugung einer Gruppe dieser Nischenzellen zur therapeutischen oder wissenschaftlichen Nutzung führt, bleibt abzuwarten. Eine weitere aus den Knochentrabekeln selbst herangezüchtete MSZ-Sorte sind die bhMSZ (bone chip derived mesenchymal stem cells) (Noth, Osyczka et al. 2002). Diese zeigen ein den aus dem Knochenmark gewonnen normalen MSZ (im weiteren Verlauf mhMSZ genannt) ähnliches Differenzierungsverhalten. Diese bhMSZ werden im Rahmen dieser Arbeit mit den mhMSZ aus dem Knochenmark verglichen.

1.4. "Epitheliale mesenchymale Transition" (EMT)

Der Prozess der "epithelialen mesenchymalen Transition" (EMT) im Rahmen der Embryogenese (siehe Abbildung 2) zeigt, dass mesodermale respektive mesenchymale Zellen ursprünglich aus epithelialen Zellen enstehen. Bei diesem Prozess scheint es sich um einen unverzichtbaren Prozess der Morphogenese zu handeln, da es ohne mesenchymale Zellen zu keiner Organ- oder Gewebeausbildung kommen kann (Thiery and Sleeman 2006). Auch das Keimblatt Mesoderm entsteht durch EMT. Der Prozess spielt sowohl in der Entwicklung als auch in der Regeneration des erwachsenen Organismus eine Rolle. Zudem ist er für die Metastasierung epithelialer Tumore ein relevantes Phänomen. Weiterhin gibt es auch Hinweise für eine umgekehrte



Entwicklung, die so genannte "mesenchymale epitheliale Transition" (MET).

1.5. Die "Nische" der MSZ

Nach derzeitigen Forschungsstand sind die MSZ in einer geschützten "Nische" von somatischen Zellen umgeben und teilen sich nur selten (Fuchs, Tumbar et al. 2004). Hierbei gibt es komplex und einfach aufgebaute "Nischen", die eine oder mehrere Subpopulationen von MSZ beherbergen (siehe Abbildung 3). In den frühen Stadien der menschlichen Entwicklung wird durch verschiedene Prozesse eine eher homogene Stammzellpopulation gesteuert, wohingegen in späteren Abläufen bereits determinierte Stammzellpopulationen hervorgebracht werden, auch als "transient amplifying compartment" bezeichnet. Hierbei handelt es sich vermutlich auch um die Stammzellpopulationen, die später als MSZ im Labor gewonnen werden (Bianco and Robey 2001; Kassem and Abdallah 2008). Obwohl die eigentliche "Nische" der MSZ noch nicht identifiziert werden konnte, zeigt sich jedoch, dass die MSZ und auch ihre osteogenen Differenzierungsstufen die so genannte hämatopoetische Stammzellnische begründen (Ho and Wagner 2007). Derzeit ist noch unklar, ob sich MSZ mit verschiedenem Ursprung in den identischen "Nischen" versammeln, oder ob auch die "Nischen" stark heterogen sind. Aktuelle Veröffentlichungen beschreiben einen

perivaskulären Charakter der MSZ-Nische. Die Oberflächenantigenanalyse zeigte mit einer Expression von CD146, Stro-1, Sca-1 und Thy-1 und fehlender Expression für

CD11b, CD34, CD45, CD117 und CD31, ein MSZ-ähnliches Expressionsmuster, welches allerdings einer weiteren Charakterisierung bedarf. CD146 als Oberflächenmarker, sowie die Kombination von Stro-1, CD106 und CD73 werden von verschiedenen Autoren als charakteristisch für MSZ beschrieben (Kolf, Cho et al. 2007; Sacchetti, Funari et al. 2007).

1.6. Differenzierung

Die adipogene Differenzierung der MSZ wird durch die Behandlung mit 1-Methyl-3-Isobutylxanthine, Dexamethason, Insulin, und Indomethacin induziert (Pittenger, Mackay et al. 1999). Hierunter kommt es zu einer vermehrten Bildung von fettreichen Vakuolen innerhalb des Zytoplasmas und zu einer vermehrten Expression der Proteine PPAR γ 2 (peroxisome proliferation-activated receptor γ 2), LPL (lipoprotein lipase) und

FABP2 (fatty acid-binding protein 2). Die erhöhte mRNA-Expression kann durch PCR nachgewiesen werden. In der Histologie können die fettreichen Vakuolen durch Anfärben mit Alizarinrot und Ölrot dargestellt werden.

Für die chondrogene Differenzierung werden die MSZ zuerst vorsichtig zu kleinen, verdichteten Zell-Pellets zentrifugiert, und danach unter Zusatz von TGF-beta 3 (transforming growth factor-b3) kultiviert (Pittenger, Mackay et al. 1999). Hierunter entwickeln die Pellets einen mehrschichtigen, matixreichen Interzellulärraum, der einen erhöhten Proteoglykan-Anteil zeigt. Des Weiteren kann in der extrazellulären Matrix immunhistologisch als auch mittels PCR das für Gelenksknorpel typische Kollagen II nachgewiesen werden. Johnstone et al. zeigten 1998 auch beim Einsatz von TGF-beta1 eine chondrogene Differenzierung mit Zellen, die in der Histologie den hypertrophen Chondrozyten ähneln (Johnstone, Hering et al. 1998).

Unter Inkubation mit Dexamethason, β-Glycerophosphat, Ascorbat und 10% v/v FBS kommt es zur osteogenen Differenzierung der MSZ (Pittenger, Mackay et al. 1999). Statt Dexamethason kann auch BMP2 hinzugegeben werden (Noth, Osyczka et al. 2002). Dabei zeigt sich eine erhöhte Expression der Alkalischen Phosphatase, die sowohl mittels PCR als auch durch Anfärbung in der Histologie nachgewiesen werden kann. In der Histologie zeigte sich zudem eine Ausbildung von Zellhaufen und Knoten mit einer Kalziumpräzipitation. Im Gegensatz dazu kommt es bei Fibroblasten, bei denen es sich um bereits differenzierte reife Zellen handelt, zu keiner Differenzierung nach Zugabe der Differenzierungslösung.

Daneben existieren weitere noch nicht ausreichend erforschte Differenzierungsfaktoren und mechanische Faktoren, die bei der Differenzierung eine wichtige Rolle spielen. Hier sind unter anderem die Proteine der CCN-Familie zu nennen, die die Mitose, Adhäsion, Apoptose, Synthese von extrazellulärer Matrix und vieles mehr zu modulieren scheinen (Lechner et al., 2000; Schütze et al., 2001; Brickstock, 2003).

2. Material und Methoden

2.1. Materialien

Verbrauchsmaterialien

Auto-Seq G50-Säulen	Amersham Bioscienes Europe GmbH, Freiburg, Deutschland	
Cellstar Tissue culture dish 627160	Greiner Bio-One GmbH, Frickenhausen, Deutschland	
Deckplättchen	Marienfeld Laboratory Glassware, gekauft bei A. Hartenstein GmbH, Würzburg, Deutschland	
20-Gauge Nadel	B. Braun, gekauft bei A. Hartenstein GmbH, Würzburg, Deutschland	
Lab-Tek Chamber Slides, Permanox, (2-	Nunc, gekauft bei A. Hartenstein GmbH,	
, 4-, and 8-well)	Würzburg, Deutschland	
Objektträger	Marienfeld Laboratory Glassware, gekauft bei A. Hartenstein GmbH, Würzburg, Deutschland	
Pasteurpipetten	A. Hartenstein GmbH, Würzburg, Deutschland	
PCR Gefäße	Biozym, Hess. Oldendorf, Deutschland	
Plastikpipetten, serologisch	Sarstedt AG & Co., Nümbrecht, Deutschland	
Reaktionsgefäß (1.5 ml)	Sarstedt AG & Co., Nümbrecht, Deutschland	
RT-PCR-Gefäße (0,2 ml thin- wall-	ll- Biozym, Hess. Oldendorf, Deutschland	
tubes, white; ultra-clear-caps, clear;)		
Skalpell	Bayha, gekauft bei A. Hartenstein GmbH, Würzburg, Deutschland	
Sterile Filter (0.2 μm)	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland	
UVetten	Eppendorf AG, Hamburg, Deutschland	
Zellkulturflasche (175 cm ²)	Greiner Bio-One GmbH, Frickenhausen, Deutschland	
Zellkulturflasche (25 cm ² , 150 cm ²)	TPP, gekauft bei Biochrom AG, Berlin, Deutschland	
Zellkulturplatten (6-, 12-, 24-, and 96-well)	Greiner Bio-One GmbH, Frickenhausen, Deutschland	
Zellsieb (70 μm)	BD Falcon, gekauft bei A. Hartenstein GmbH, Würzburg, Deutschland	
Zentrifugenröhrchen (15 ml, 50 ml)	TPP, gekauft bei Biochrom AG, Berlin, Deutschland	

Tabelle 1: Verbrauchsmaterialien mit Herstellerangabe

Chemikalien und Reagenzien

Aceton	AppliChem, gekauft bei A. Hartenstein

	GmbH, Würzburg, Deutschland	
Agar	Merck KGaA, Darmstadt, Deutschland	
Agarose (Mehrzweck-)	Bioline GmbH, Luckenwalde, Deutschland	
Antikörperverdünnungspufferlösung	DCS, Hamburg, Deutschland	
Aquatex®	Merck KGaA, Darmstadt, Deutschland	
Bovines Serum Albumin BSA 0,5 %	Amersham Bioscienes Europe GmbH, Freiburg, Deutschland	
DAPI (4',6-Diamidino-2-Penylindol- Dhydrochlorid)	Invitrogen, Karlsruhe, Deutschland	
dNTP Mix	PEQLAB Biotechnologie GmbH, Erlangen, Deutschland	
Ethanol	AppliChem, gekauft bei A. Hartenstein GmbH, Würzburg, Deutschland	
Ethanol vergällt	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland	
Ethidiumbromid	AppliChem, gekauft bei A. Hartenstein GmbH, Würzburg, Deutschland	
Ethylendiamintetraacetatsäure (EDTA)- Tetranatriumsalzhydrat	Calbiochem, gekauft bei A. Hartenstein GmbH, Würzburg, Deutschland	
Fluoromount-G TM	SouthernBiotech, gekauft bei Biozol, Eching, Deutschland	
Glycerolgelatine	Sigma-Aldrich Chemie GmbH, Schnelldorf, Deutschland	
Hematoxylin	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland	
HPLC-Wasser	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland	
HPLC- Wasser Rotisolv® (RNAse-frei)	Carl Roth GmbH & Co. KG, Karlsruhe, Deutschland	
Kaninchenserum	PAA Laboratories GmbH, Pasching, Österreich	
L-Ascorbatsäure-2-Phosphate SesquimagnesiumSalz	Sigma-Aldrich Chemie GmbH, Schnelldorf, Deutschland	
LE-Agarose	Biozym Scientific GmbH, Hessisch- Oldendorf, Deutschland	
Levamisol	DakoCytomation GmbH, Hamburg, Deutschland	
Mausserum	PAA Laboratories GmbH, Pasching, Österreich	
Methanol	AppliChem, gekauft bei A. Hartenstein GmbH, Würzburg, Deutschland	
β-Mercaptoethanol	AppliChem, gekauft bei A. Hartenstein GmbH, Würzburg, Deutschland	
Natriumchlorid	AppliChem, gekauft bei ein GmbH, Würzburg, Deutschland	
Natriumhydroxidlösung	AppliChem, gekauft bei ein GmbH,	

	Würzburg, Deutschland	
PBS Dulbecco with Ca ²⁺ , Mg ²⁺	PAA Laboratories GmbH, Pasching,	
	Österreich	
peqGOLD 100 bp DNA Leiter Plus	PEQLAB Biotechnologie GmbH,	
	Erlangen, Deutschland	
Tris(hydroxymethyl)-aminomethan	AppliChem, gekauft bei ein GmbH,	
(Trisbase)	Würzburg, Deutschland	
Triton X-100	Carl Roth GmbH & Co. KG, Karlsruhe,	
	Deutschland	
Trypanblau (0,4 %)	Sigma-Aldrich Chemie GmbH,	
	Schnelldorf, Deutschland	
Tween 20	Merck KgaA, Darmstadt, Deutschland	
Wasserstoffperoxid	Merck KGaA, Darmstadt, Deutschland	
Ziegenserum	PAA Laboratories GmbH, Pasching,	
	Österreich	

Tabelle 2: Chemiekalien und Reagenzien mit Herstellerangabe

Zellkulturmedien und -additive

Basismedien:	
DMEM/Ham's F-12 mit L-Glutamin	PAA Laboratories GmbH, Pasching,
	Österreich
Foetales Kälberserum (FBS)	PAA Laboratories GmbH, Pasching,
	Österreich
Penicillin/Streptomycin 100x	PAA Laboratories GmbH, Pasching,
	Österreich
Verwendete Zellkulturmedien:	
Stammzellmedium (SZM)	DMEM/Ham's F-12 mit L-Glutamin
	10% fetales Kälberserum (FBS)
	100 U/mL Penicillin
	100 μg/mL Streptomycin
	50 μg/mL L-Ascorbinsäure-2-Phosphat
Ca ²⁺ -freies SZM	Zusammensetzung wie normales SZM,
	jedoch Ca ²⁺ frei

Tabelle 3: Zellkulturmedien und -additive mit Herstellerangabe

Kompetente Zellen zur Vermehrung von Plasmid DNA

Zelltyp	Hersteller
E. coli DH5a	Invitrogen, Karlsruhe, Deutschland
E. coli TOP 10F	Invitrogen, Karlsruhe, Deutschland

Tabelle 4: Kompetente Zellen mit Herstellerangabe

Plasmide für die Amplifizierung im Rahmen der Klonierungen

Vektor	Hersteller
pCRII	Invitrogen, Karlsruhe, Deutschland

Tabelle 5: Plasmide für die Amplifizierung im Rahmen der Klonierungen

Antikörper

Antikörper	Antikörperentität	Bestellnummer	Hersteller
FGF5	Maus	Katalog Nr: AB371,	R& D Systems,
	monoklonal IgG	Clone: 221903; Lot Nr:	Wiesbaden,
		UDP02	Deutschland
L1 CAM	Ziege polyklonal	Katalog Nr: AF277, Lot	R& D Systems,
	IgG	Nr: DEL01	Wiesbaden,
			Deutschland
TR beta	Kaninchen	Katalog Nr: 06-539, Lot	Upstate biotechnology,
	polyklonal IgG	Nr: 14822	Lake Placid, NY, USA
Polyklonaler	Polyklonales	Code Nr. P 0449	Dako Deutschland
Kaninchen	Kaninchen Anti-		GmbH, Hamburg,
Anti-Ziege	Ziege		Deutschland
Ak	Immunoglobulin,		
	mit Peroxidase		
	konjugiert		

Tabelle 6: Antikörper für die Immunhistologischen Färbungen

Proteine

Protein	Bestellnummer	Hersteller
Rekombinantes,	Katalog Nr: 237-F5,	R& D Systems, Wiesbaden,
humanes FGF5	Lot Nr: GQ19	Deutschland

Tabelle 7: Proteine zum Proteinlabeling

Enzyme

Kollagenase XI	Sigma-Aldrich Chemie GmbH, Schnelldorf, Deutschland
Restriktionsenzyme für Plasmidverdau bei Klonierung	New England Biolabs Inc., Beverly, MA USA
Reverse Transkriptase	Promega GmbH, Mannheim, Deutschland
Taq DNA Polymerase	PEQLAB Biotechnologie GmbH, Erlangen, Deutschland
2,5% Trypsin (10x konzentriert)	PAA Laboratories GmbH, Pasching, Österreich

Tabelle 8: Enzyme mit Herstellerangabe

Oligonukleotide

Einige Primer waren schon im Labor etabliert, für andere mussten die Bedingungen erst ausgetestet werden. Diese wurden, wenn möglich, so ausgewählt, dass sie verschiedene Exons überspannen, um falsch positive Nachweise von Verunreinigungen aus genomischer DNA in den RNA-Proben zu vermeiden. Dabei wurden alle Oligonukleotide (siehe Tabelle 8) außer den gesondert genannten von der Firma Biomers, Ulm bezogen. EF1-α1 wurde von der Firma Carl Roth GmbH, Karlsruhe bezogen. Die Oligonukleotide wurden dann gemäß den Angaben der Hersteller in HLPC-Wasser gelöst.

Primersequenz		Produktgröße (bp)	Sequenz ID ¹
Gen			
EF1-α1 (Eukar	yotic translation elongation factor	225	ND 4 001402
1 alpha 1)		235	NM_001402
sense: anitsense:	5'-AGGTGATTATCCTGAACCATCC-3' 5'-AAAGGTGGATAGTCTGAGAAGC-3'		
ALP (Alkaline		490	NM 000478
sense:	5'-TGGAGCTTCAGAAGCTCAACACCA-3'		-
anitsense:	5'-ATCTCGTTGTCTGAGTACCAGTCC -3'		
BMP2 (Bone m	orphogenetic protein-2)	343	NM_001200.2
sense: anitsense:	5'-CAAGCCAAACACAACAGCG -3' 5'-TAGCGACACCCACAACCCT -3'		
BMP2R (Bone type II)	morphogenetic protein receptor	214	U20165.1
sense: anitsense:	5'-GGAGATCCCCAAGAGTGTCA-3' 5'-CAGAGACTGATGCCAAAGCA-3'		
CD51 (= Vitror	nectin receptor (VNR))	586	AA228366
sense:	5'-GGCAGATCTTCCTAAGTTGC-3'		
anitsense:	5'-AATTTGATATACTACACAGCTTCCA-3'		
CHRDL2 (Cho	rdin-like 2)	389	NM_015424
sense:	5'-CTCGAGCCCGCCCAGACAT-3'		
anitsense:	5'-GGTTGTGAGGCCGCAGTAGA-3'	210	ND 5 000005
,	ge oligomeric matrix protein)	310	NM_000095
sense: anitsense:	5'-AGCATGCAGACTGCGTCC-3' 5'-CTTCTGGGACCGGCAGT-3'		
DKK1(Dickkop		800	NM 012242.1
sense:	5'-ATGATGGCTCTGGGCGCAG-3'		<u></u>
anitsense:	5'-TTAGTGTCTCTGACAAGTGTGA-3'		
DLX2 (Distal-le	ess homeobox-2)	381	NM 004405
sense:	5'-CCAGCCAACAACGAGCCTGA-3'		_
anitsense:	5'-ACCACCGCCGCCCAT-3'		
FGF2R (Fetal growth factor-2 receptor)		394	HSFGFR2MR
sense:	5'-TGCCTGGTCGTGGTCACCAT-3'		
	anitsense: 5'-CACCATCGGTGTCATCCTCAT-3'		ND 6 004464
FGF5 (Fetal growth factor-5)		359	NM_004464
sense: 5'-GGTCTCAATCCTGGCCTCTT-3'			
anitsense:	5'-GAGATGTTTGTCACCTATAGAC-3'	500	ND (0000014.1
LICAM hom (I	L1 cell adhesion molecule	520	NM_006614.1

homolog)			
sense: anitsense:	5'-CACTCGTGATAAGTCAACAG-3' 5'-TGTATAGCAAAGACCCTGCTTA-3'		
NOTCH4		343	AI743713
sense: anitsense:	5'-CTCCCGGCCAACCGCT-3' 5'-GGCGTCTGCTCCCTGTT-3'		
OPN (Osteo	pontin)	483	NM 000582
sense:	5'-ACGCCGACCAAGGAAAACTC-3' 5'-GTCCATAAACCACACTATCAG-3'		_
PCSK5 (Proprotein convertase subtilisin/kexin type 5)		341	AU152579
sense: anitsense:	5'-GGTATTTCAACGGCCAGGA-3' 5'-AAGAACCTTCCGTTGGCACA-3'		
TR beta (Th	yroxin receptor beta)	339	BG494007
sense:	5'-GAACTCTAACCTATTCGTGTC-3' 5'-GGCAAATCCTTACCTGGATAA-3'		
VEGFC (Va	ascular endothelial growth factor C)	435	U58111.1
sense: anitsense:	5'-TTCGGCCTGCCAGCTGT-3' 5'-TCTTTGTTAGCATGGACCCAC-3'		
WISP2 (Wnt-induced secreted proteins-2)		75	NM_003881.1
sense: anitsense:	5'-CCACCATGCAGAACACCAATAT-3' 5'-AGGTCTTGCACCTCTGCCATA-3'		

Tabelle 9: Primersequenzen mit Produktgröße; ¹Referenzsequenz ID der NCBI Datenbank

Puffer- und andere Lösungen

Blockierungslösung	1 g BSA 2,5 mL Pferdeserum 47,5 mL 1x TBS	
1% Eosinlösung	1 g Eosin 100 ml destilliertes Wasser 1 Tropfen Essigsäure	
Hämalaunlösung	6 g Hämatoxylin 1 g Natriumiodid 250 g Aluminiumkaliumsulfat 250 g Chlorhydrat 5 g Zitronensäure 5 L destilliertes Wasser 4 Wochen offene Lagerung bis Gebrauch	
IPTG	100 mM isopropyl-β-D-thiogalactoside	
Kollagenasemischung	5 mg Kollagenase XI 5 ml DMEM/F12+ PenStrep-Medium Mischung	
LB-Medium	10g Bacto-Trypton 5 g Bacto-Yeast Extract 10 g NaCl auf 1 l pH auf 7,0 eingestellt	
LB _{AMP}	LB-Medium mit Ampicillin (50 μg/ml)	
Loading buffer, 5-fach konzentriert	0,25% Bromphenolblau (w/v) 0,25% Xylencyanol (w/v) 30% Glycerin (w/v)	

	1mM EDTA
1x PBS/EDTA	9,55 g PBS Dulbecco w/o Ca ²⁺ , Mg ²⁺
	0,2 g EDTA-Tetranatriumsalzhydrat
	1 l destilliertes Wasser
	pH auf 7,4 eingestellt und autoklaviert
SOC	2% Bacto-Trypton
	0,5% Bacto-Yeast Extract
	10 mM NaCl
	2,5 mM KCl
	10mM MgCl ₂ -6H ₂ O
	20 mM Glukose
	pH auf 7,0 eingestellt
10x TBE (Tris-Borat-EDTA)	108 g Trisbase
TOX TDE (THS-BOIAL-EDTA)	55 g Borsäure
	9,05 g EDTA-Tetranatriumsalzhydrat
	1 l destilliertes Wasser
	pH auf 8,3 eingestellt und autoklaviert
1 M Tris-HCl; pH 2,0	121,14 g Trisbase
1 W 1118-11C1, p11 2,0	1 l destilliertes Wasser
	Mit Salzsäure auf pH 2,0 einstellen
Tris-Puffer	6,057g Tris(hydroxymethyl)aminomethan
Tris-runei	8,010 g NaCl
	, ,
	1 l aqua dest
0.250/ Ti	pH auf 7,4 eingestellt
0,25% Trypsin	5 ml 2,5% Trypsin (steril) 50 ml 1x PBS
W/ 1 CC 1	
Waschpufferlösung	Vorratslösung: 10x TBS (0,5 M); pH 7,6
	60,6 g Trisbase
	87,66 g Natriumchlorid
	1 l destilliertes Wasser
	pH-Einstellung auf 7,6; Autoklavieren
	Arbeitslösung: 1x TBS (0,05 M); pH 7,6
	10x TBS wird 1:10 verdünnt mit dest. Wasser
	Ergänzen mit 0,5% Tween 20
X-Gal	40 mg/ml 5-bromo-4-chloro-3-indolyl-β-D-
	galactoside

Tabelle 10: Lösungen mit Inhaltsstoffen

Kits

ABI PRISM BigDye® Terminator Cycle	Applied Biosystems, Forster City,			
Sequencing Ready Reaction Kit CA USA				
Cy TM 2 bisfunctional reactive dye to label 1.0 mg Amersham Bioscienes Europe				
antibody or other protein	GmbH, Freiburg, Deutschland			
Dako Advance™ HRP K4069	Dako Deutschland GmbH,			
	Hamburg, Deutschland			

Dako REAL TM Detection System, APAAP,	Dako Deutschland GmbH,
Mouse	Hamburg, Deutschland
Dako REAL TM DAB+ Chromogen	Dako Deutschland GmbH,
	Hamburg, Deutschland
NucleoBond® PC 500 Kit	Macherey-Nagel GmbH & Co.
	KG, Düren, Deutschland
NucleoSpin® Plasmid Kit	Macherey-Nagel GmbH & Co.
	KG, Düren, Deutschland
Nucleospin® RNA II Kit	Macherey-Nagel GmbH & Co.
	KG, Düren, Deutschland
NucleoTrap [®] Kit	Macherey-Nagel GmbH & Co.
-	KG, Düren, Deutschland
SYBR Green	BMA, BioWhittaker Molecular
	Applications, Rockland, ME, USA
TA® Cloning- Kit Dual Promoter,	Invitrogen, Karlsruhe,
mit: pCR II Dual Promoter Vektor und	Deutschland
Subcloning Efficiency DH 5a oder TOP 10F	

Tabelle 11: Kits mit Herstellerangabe

Geräte

ABIPrism 310 Genetic Analyzer	Applied Biosystems, Foster City, CA, USA
Accu-jet Pipettierer	Brand, gekauft bei A. Hartenstein GmbH, Würzburg, Deutschland
Autoclave H+P Varioclave Dampfsterilisator	Thermo Electron GmbH, Oberschleißheim, Deutschland
AxioCam MRc Digitalkamera	Carl Zeiss Jena GmbH, Jena, Deutschland
BioPhotometer 6131	Eppendorf AG, Hamburg, Deutschland
CO ₂ Incubator Heraeus B5060	Thermo Electron GmbH, Oberschleißheim, Deutschland
DNA Engine Opticon TM System, mit: PTC-200 DNA Engine TM Cycler, CFD- 3200 Opticon TM Detector, Opticon Monitor TM Software Version 1.4	MJ Research, Alameda, CA, USA
Elektrophorese Stromversorgung	Bio-Rad Laboratories GmbH, München, Deutschland
Glassware	Schott, gekauft bei A. Hartenstein GmbH, Würzburg, Deutschland
Heizblock	Boekel Scientific, gekauft bei A. Hartenstein GmbH, Würzburg, Deutschland
Heißluftsterilisator Heraeus	Thermo Electron GmbH, Oberschleißheim, Deutschland

Horizontal-Gelträger für Elektrophorese	Peqlab Biotechnologie GmbH, Erlangen, Deutschland
Laboratorspülmaschine	Miele & Cie. KG, Gütersloh, Deutschland
Laminar airflow cabinet HERA safe	Thermo Electron GmbH, Oberschleißheim, Deutschland
Luminometer	Berthold Detection Systems, Pforzheim, Deutschland
Magnetrührer und -heizer	A. Hartenstein GmbH, Würzburg, Deutschland
Micropipetten	ABIMED Analysentechnik GmbH, Langenfeld, Deutschland
Microskope: Axiovert 25, Axioskop, und Axioskop 2 MOT	Carl Zeiss Jena GmbH, Jena, Deutschland
Microtom RM2125RT	Leica, Wetzlar, Deutschland
Neubauer Zellzählkammer	Marienfeld Laboratory Glassware, gekauft bei A. Hartenstein GmbH, Würzburg, Deutschland
pH-Meter Inolab pH level 1	WTW, gekauft bei A. Hartenstein GmbH, Würzburg, Deutschland
Photometer SLT Spectra Classic	Tecan Deutschland GmbH, Crailsheim, Deutschland
Kühlschrank Fresh Center	Bosch GmbH, Gerlingen- Schillerhöhe, Deutschland
Qubit TM Fluorometer	Invitrogen GmbH, Karlsruhe, Deutschland
Tiefkühltruhe Bosch Economic (-20°C)	Bosch GmbH, Gerlingen- Schillerhöhe, Deutschland
Tiefkühltruhe IIShin (-80°C)	Nunc GmbH & Co. KG, Wiesbaden, Deutschland
Thermocycler Primus	MWG- Biotech AG, Ebersberg, Deutschland
Thermodrucker	Seico, gekauft bei -ltf- Labortechnik GmbH & Co. KG, Wasserburg, Deutschland
Vakuumpumpsystem	Vacuubrand, gekauft bei A. Hartenstein GmbH, Würzburg, Deutschland
Vakuum-Zentrifuge UNIVAPO 150 aH	UNIEQUIP, Martinsried, Deutschland
Vortexer Vortex-Genie 2 G560	Scientific Industries, gekauft bei A. Hartenstein GmbH, Würzburg, Deutschland
Wasserbad WB7	Memmert, gekauft bei A. Hartenstein GmbH, Würzburg, Deutschland
Zentrifuge Heraeus Biofuge pico	Thermo Electron GmbH, Oberschleißheim, Deutschland

Zentrifuge Heraeus Labofuge 400	Thermo	Electron	GmbH,
-	Oberschleißh	eim, Deutschlan	d

Tabelle 12: Verwendete Geräte mit Herstellerangabe

Software und Onlinedatenquellen

AxioVision 4.4.1.0	Carl Zeiss Jena GmbH, Jena, Deutschland
Bio ID/Capt MW Software	LTF, Wasserburg, Deutschland
Bio Profile Software	LTF, Wasserburg, Deutschland
e! Ensembl Human	http://www.ensembl.org/Homo_sapiens
Endnote 9	Thomson ResearchSoft, Carlsbad, CA USA
NCBI Blast	http://www.ncbi.nlm.nih.gov/BLAST
NCBI Pubmed	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB =pubmed
Office Excel 2007	Microsoft Deutschland GmbH, Unterschleißheim, Deutschland
Office Powerpoint 2007	Microsoft Deutschland GmbH, Unterschleißheim, Deutschland
Office Word 2007	Microsoft Deutschland GmbH, Unterschleißheim, Deutschland
Photoshop Elements 4.0	Adobe, gekauft bei der Universität Würzburg, Deutschland
SeqMan TM II	DNASTAR Inc., Madison, WI USA

Tabelle 13: Verwendete Software und Onlinedatenquellen

2.2. Methoden

2.2.1. Zellen und Zellkultur

Die MSZ wurden aus den Hüftköpfen von 6 Patienten, die auf Grund einer Coxarthrose einen künstlichen Hüftgelenksersatz (Implantation einer Hüftgelenks-Totalendoprothese) bekamen, gewonnen. Die Zellgewinnung und Zellkultivierung erfolgte dabei gemäß dem modifizierten Haynesworth Protokoll nach Nöth (Haynesworth, Goshima et al. 1992; Noth, Osyczka et al. 2002). Im folgenden werden die beiden verschiedenen Isolationswege für mhMSZ und bhMSZ nochmals getrennt voneinander dargestellt.

MhMSZ:

Mittels einer scharfen Bürette wurden trabekuläre Knochenfragmente und -mark aus den Hüftköpfen entnommen. Davon wurden jeweils 20 ml in ein 50 ml fassendes Zentrifugenröhrchen gegeben, dass mit normalem SZM auf 50 ml Inhalt aufgefüllt und mittels Schütteln durchmischt wurde. Danach wurde das Gemisch bei 1200 g für 5 Minuten zentrifugiert, und der danach bestehende Überstand abgesaugt und verworfen. Im Anschluss wurde das Zentrifugenröhrchen erneut mit normalen SZM aufgefüllt und gemischt, um die mhMSZ vom Knochen zu trennen. Nach Absetzen der schweren Sedimente wurde die überstehende Zellsuspension, nach Filterung der Knochenstücke durch ein Zellsieb, in ein neues Zentrifugenröhrchen überführt und danach zentrifugiert. Der Überstand wurde dann verworfen, und durch erneutes Auffüllen des Zentrifugenröhrchens, wurde der Vorgang viermal wiederholt, um auch die restlichen mhMSZ herauszulösen. Der Überstand wurde danach erneut verworfen, und das nun bestehende Zellsediment mit 30 ml normalem SZM aufgefüllt und vorsichtig auf- und abpipettiert. Von der nun vorhandenen Zellsuspension wurden mittels Pipette 50 µl zur Auszählung in der Zählkammer entnommen. Diese wurden mit 50 µl Trypanblau gemischt, und die Mischung nochmals 1:400 mit PBS verdünnt. Danach wurden jeweils ca. 8 x 10⁸ Zellen in 175 cm² große Gewebekulturflaschen ausgesät. Die Zellen wurden bei 37°C unter feuchter Atmosphäre (95% Luft, 5% CO₂) kultiviert. Nach 72 Stunden wurden nicht adhärente Blutzellen durch Aspiration des SZM mittels Pipette entfernt, und die adhärenten Zellen zweimalig mit PBS gewaschen. Alle drei Tage erfolgte ein Mediumwechsel mit normalen SZM, bis die Flaschen nach ca. 2 Wochen eine Konfluenz von ca. 80 % erreicht hatten und abgeerntet werden konnten. Dabei wurden die Zellen 5 Minuten mit PBS und anschließend 2 Minuten mit 0,25% Trypsin/EDTA bei 37°C inkubiert. Im Anschluss wurden die Zellen nochmals mit SZM bedeckt, um das Trypsin zu inaktivieren.

BhMSZ:

Die Isolierung der bhMSZ erfolgte aus Knochentrabekeln. Die, mittels scharfer Bürette gewonnenen, Knochenblöckchen wurden in gebackene Glasgefäße gegeben, die mit DMEM/F12+ PenStrep-Medium aufgefüllt wurden. Der Inhalt wurde dann mit einer gebackenen Schere zerkleinert, und nach Absetzen der Knochensuspension wurde der

Überstand abgesaugt. Dieser Vorgang wurde insgesamt dreimal wiederholt und dann das Sediment in ein, mit DMEM/F12+ PenStrep-Medium aufgefülltes, 50 ml Zentrifugenröhrchen gegeben. Das Kollagenasegemisch (Kollagenase XI) wurde zur Suspension gegeben, und das nun entstandene Gemisch mittels Rührfisch eine Stunde umgerührt. Danach wurde nach Absetzen der Knochenbälkchen der Überstand abgesaugt und verworfen. Auf die Knochenbälkehen wurde dann PBS gegeben, und die Suspension geschüttelt. Der sich hierbei bildende Überstand wurde solange schnell abgesaugt und verworfen, bis der Überstand klar war. Auch dieser wurde dann ein letztes Mal verworfen und das Zentrifugenröhrchen mit Ca²⁺-freien SZM aufgefüllt und geschüttelt. Die dabei entstandene Suspension wurde jeweils zur Hälfte zusammen mit 23 ml Ca²⁺-freien SZM in insgesamt zwei 175 cm² große Zellkultur-Flaschen geben. Die Zellen wurden dann bei 37°C unter feuchter Atmosphäre (95% Luft, 5% CO₂) kultiviert. Alle 3 - 4 Tage erfolgte der Wechsel des Ca²⁺-freien SZM. Nach ca. 2 Wochen wurden die Knochenbälkchen, nachdem die bhMSZ bereits erkennbar herauswuchsen, unter vorsichtigem Schütteln der Zellkulturflasche entfernt. Nach Zugabe von Ca²⁺-haltigem SZM erreichten die bhMSZ nach ca. 4 Wochen eine Konfluenz von ca. 80 %, und wurden nach dem gleichen Verfahren wie die mhMSZ abgeerntet.

2.2.2. RNA- Isolation mit dem Kit "Nucleospin® RNA II"

Zur RNA-Ernte wurde zuerst das Medium aus der 175 cm² großen Zellkultur-Flasche absaugt. Dann wurden auf jede Zellkultur-Flasche jeweils 700μl RA1 (Lysispuffer aus dem Kit "Nucleospin® RNA II") und 7μl Mercaptoethanol pipettiert. Danach wurden die Zellen abgekratzt und die Zellsuspension in ein Reaktionsgefäß abpipettiert. Um die Zellen zu zerstören, wurde die Zellmasse danach mehrmals durch eine 20 Gauge Nadel gezogen und gemischt. Anschließend wurde die RNA nach Herstellerangaben mit dem Kit "Nucleospin® RNA II" weiterverarbeitet. Dabei wurde die lysierte Zellsuspension, zur Entfernung von groben Verunreinigungen, in ein mit einem Filter ausgestattetes Zentrifugenröhrchen gegeben und zentrifugiert. Danach wurde das Filtrat nach Zugabe

von 350 µl 70 % EtOH über eine Silicatmembran zentrifugiert. Dabei sorgte der Lysispuffer für eine optimale Bindung der RNA an die Membran. Im Anschluss wurde die Membran durch die Inkubation mit einer DNAse von DNA-Resten gereinigt. Mehrmalige Waschvorgänge mit den im Kit enthaltenen Pufferlösungen entfernten Salz, Metabolite und makromolekulare Zellbestandteile von der Silicatmembran. Danach wurde die Membran in ein nukleasefreies Reaktionsgefäß gestellt, und die gespeicherte RNA durch Zugabe von 60 µl RNAsefreiem H2O (liegt dem Kit bei) unter Zentrifugation eluiert. Bei einer Wellenlänge von 260 nm wurde dann der RNA-Gehalt im Eppendorf-Biophotometer 6131 bestimmt. Hierfür wurde 1 ul der mit 49ul HLPC-H₂O verdünnten RNA in eine UV-durchlässige Küvette gegeben und im Vergleich zu einer nur mit HLPC-H₂O gefüllten Küvette gemessen. Kohlenhydrat-Peptidverunreinigungen absorbieren Licht der Wellenlänge Proteinverunreinigungen hingegen Licht der Wellenlänge von 280 nm. Daher wird die Reinheit der RNA über die Quotienten E₂₆₀/E₂₃₀, bzw. E₂₆₀/E₂₈₀ ermittelt. Dabei sollten die Werte für E₂₆₀/E₂₃₀ größer als 2,0, bzw. für E₂₆₀/E₂₈₀ zwischen 1,8 und 2,0 sein. Bis zur Weiterverarbeitung wurde die RNA bei -80°C tiefgefroren.

2.2.3. cDNA Synthese

Zuerst wurde die bei -80°C tiefgefrorene RNA auf Eis wieder aufgetaut. Dann wurde das Volumen von 2 μg RNA errechnet, und dieses nach Zugabe von 1 μl OligodT (50 pmol) mit autoklaviertem HLPC-H₂O auf 12 μl aufgefüllt. Durch Erhitzen für 10 Minuten auf 70°C und darauf folgendem Abkühlen für 2 Minuten auf Eis wurden die Sekundärstrukturen der DNA aufgelöst und dem OligodT ermöglicht, sich anzulagern. Danach wurden 8 μl Mastermix (4μl 5x Reaktionspuffer, 0,5μl dNTP (20mM), 2,5μl HLPC-H₂O, 1μl Reverse Transkriptase) hinzugegeben, und der Ansatz für 10 Minuten bei Raumtemperatur inkubiert. Unter Inkubation für 60 Minuten bei 42°C im Heizblock bildeten sich durch Elongation cDNA-Einzelstränge. Die Reaktion wurde dann durch Denaturierung der Reversen Transkriptase mittels 10-minütigem Erhitzen auf 95°C gestoppt, und die cDNA, nach Zugabe von 30μl HLPC-H₂O, bis zur Weiterverarbeitung bei -20°C tiefgefroren.

2.2.4. Array-Analyse

Zu einer erneuten Überprüfung der Reinheit der RNA wurden 2µg RNA mit 5µl RNA Ladepuffer vermischt, und mittels Agarose-Gel-Elektrophorese überprüft. Danach wurden 10 µg RNA zu Herrn Priv.-Doz. Dr. Klein-Hitpass (Institut für Zellbiologie, Universitätsklinikum Essen) geschickt. Dort wurde die Genexpression beider Zellsorten mittels eines Affymetrix GeneChips HG-U 133 Plus 2.0 (High Wycombe, Großbritannien) und den für die Analyse üblichen Kits analysiert, gemäß den Verfahrensanweisungen des "Affymetrix GeneChip Expression Analysis Handbuches" (www.affymetrix.com). Dabei wurden aus dem RNA-Gesamtmaterial biotinylierte cRNA hergestellt, und diese auf den mit Proben für 47,400 Transkripte und 38,500 Genen beladenen GenChips hybridisiert (http://www.affymetrix.com/support/technical/datasheets/human datasheet.pdf). Die bei der Hybridisierung entstandenen Signale wurden mit einem Affymetrix GeneChip Scanner 3000 registriert und mittels Affymetrix GeneChip Operating Software 1.2 und Data Mining Tool 3.1 analysiert. Die dabei entstandenen Signalstärken eines Gens wurden dann immer paarweise den mhMSZ und bhMSZ eines jeden Patienten gegenübergestellt. Die Bestimmung der Transkriptmengen innerhalb der zwei Zellproben wurde mittels der "significance analysis of microarrays (SAM)" (http://www-stat.stanford.edu/~tibs/SAM/) (Tusher, Tibshirani et al. 2001) bewerkstelligt.

2.2.5. RT-PCR

2.2.5.1. Konventionelle Reverse Transkriptase-Polymere Kettenreaktion (RT-PCR)

Die Amplifikation der cDNA-Abschnitte erfolgte unter Verwendung der Taq DNA-Polymerase, sowie der in Tabelle 14 genannten Primer mittels Polymerase-Kettenreaktion im Thermocycler Primus. Zuerst wurde für jeden Primer ein Mastermix ohne cDNA (für jede Probe jeweils: 1 μl Primer (sense+ antisense 25 pmol/μl), 5 μl 10x Puffer [Der rote und der blaue Puffer wurden zusammen mit der Taq DNA Polymerase

geliefert. Der blaue Puffer erhöhte die Spezifität des PCR Produktes, wohingegen der rote Puffer die Produktausbeute erhöhte.], 1 μl dNTP (20 mM), Volumen für MgCl₂ (50 mM) siehe Tabelle 14, 0,5 μl Taq DNA Polymerase, mit HPLC-H₂O wurde das Volumen auf insgesamt 49 μl aufgefüllt) für jede cDNA- Probe und die Negativkontrolle (HLPC- H₂O) angefertigt. Zu den 49 μl Mastermix wurde dann 1 μl der jeweiligen cDNA-Probe in ein PCR-Reaktionsgefäß gegeben, so dass das Gesamtvolumen 50 μl betrug. Danach kamen die Reaktionsgefäße in den Thermocycler, und durchliefen gemäß den PCR-Programmen die Zyklen.

Primer	MgCl ₂ in μl	Annealing	Abweichende Zykluslänge in	Puffer
		Temperatur in	Sekunden	
		°C		
EF1-α1	2	55	30- 30- 45 (30 Zyklen gesamt)	b
ALP	2	51		b
BMP2	1	58	30	r
BMPR2	1	54	30	r
CHRDL2	1	61	30	r
DKK1	2	60		r
DLX2	1	61	30	r
FGF2R	3	61	30	r
L1CAM	3	62		r
hom				
OPN	3	51		b
TR beta	1	62		r
WISP2	1	55	30	r

Tabelle 14: Bedingungen für die Konventionelle RT-PCR; r= roter Puffer, b= blauer Puffer

Standardprogramm für Konventionelle RT-PCR:

95°C 4 min initiale Denaturierung der DNA 95°C Denaturierung 1 min ⁻ Annealing Temperatur (siehe Tab.14) 1 min 40x Anlagerung 72°C ر 1 min Elongation 72°C 10 min letzte Elongation 12°C Abkühlung

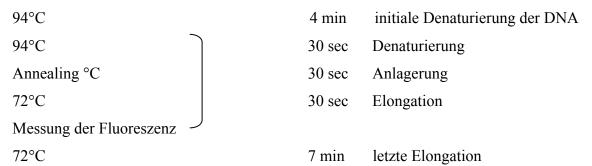
Insgesamt immer vierzig Zyklen mit Ausnahme EF1-α1 (siehe auch Tabelle 14)

Agarose-Gel-Elektrophorese:

Die PCR Produkte wurden dann in einem ethidiumbromidhaltigen Agarose-Gel aufgetrennt. Zur Herstellung des Agarose-Gels wurden 0,5 g Agarose und 50 ml 0,5x

TBE in einen 100 ml Erlenmeyer-Kolben vermischt, und 3 Minuten bei 400 W in der Mikrowelle erhitzt. Dann wurden 20 µl Ethidiumbromid hinzugeben (Endkonzentration 10 μg/ml; das hinzugegebene Ethidiumbromid interkaliert in die doppelsträngige RNA oder DNA und leuchtet unter UV-Licht.) und durch Schwenken des Kolbens vermischt. Danach wurde die Flüssigkeit auf einen Horizontal-Gelträger gegossen und 1 Stunde bei Raumtemperatur abgekühlt. Die Proben wurden dann vermischt mit einem Loading-Buffer in die Gelkammern gegeben. Das Probenvolumen betrug 9 ul mit 1 ul Loading-Buffer. Zur Bestimmung der Probengröße liefen 100 bp oder 1 kbp DNA-Marker mit. Die elektrophoretische Auftrennung erfolgte in einem TBE-Bad bei einer Spannung von 90 V über eine Zeit von ca. 50 Minuten. Die Gele wurden abschließend unter UVeinem UV-Leuchttisch mit Dunkelkammer Beleuchtung auf und Video-Dokumentationssystem fotografiert.

2.2.5.2. Real-Time Reverse Transkriptase-Polymere Kettenreaktion (RT-PCR)


Neben der konventionellen PCR wurde auch eine Real-Time RT-PCR durchgeführt, die eine quantitative Bestimmung der PCR-Produkte ermöglichte. Dabei bindet SYBR-Green, ein Fluorophor, an die Doppelstrang-DNA, und emittiert dabei ein Fluoreszenzsignal, das durch einen Real-Time Thermocycler erfasst wird. Hierbei korreliert die Fluoreszenz mit den Produkten der PCR, die in der exponentiellen Phase gebildet wurden. Auch hier erfolgt die Amplifikation der cDNA-Abschnitte unter Verwendung einer Taq Polymerase, sowie der in Tabelle 15 genannten Primer mittels Polymerase-Kettenreaktion jedoch im Real-Time Thermocycler. Zuerst wurde für jeden Primer ein Mastermix ohne cDNA (für jede Probe jeweils: 1 µl Primer (sense+ antisense 25 pmol/µl), 5 µl 10x Puffer (rot oder blau siehe Tabelle 15), 1 µl dNTP (20 mM), Volumen für MgCl₂ (50 mM) siehe Tabelle 15, 1 µl des 1:800 verdünnten SYBR Greens, 0,5 µl Taq DNA Polymerase, mit HPLC-H₂O wurde das Volumen auf insgesamt 49 µl aufgefüllt) für jede cDNA-Probe und die Negativkontrolle (HLPC-H₂O) angefertigt. Weiterhin wurden zusätzliche Mengen an Mastermix hergestellt, wenn ein Standard zur Verfügung stand. Zu den 49 µl Mastermix wurde dann 1 µl der jeweiligen cDNA-Probe in ein Real-time-PCR-Gefäß (lichtundurchlässig, um das stark

lichtempfindliche SYBR-Green zu schützen) gegeben, so dass das Gesamtvolumen 50 µl betrug. Danach kamen die Reaktionsgefäße in das "DNA Engine Opticon TM System", und durchliefen gemäß den PCR-Programmen die Zyklen. Am Ende von jedem Zyklus wurde die Fluoreszenz gemessen. Bei einigen Genen erfolgte vor der Fluoreszenzmessung noch ein zusätzlicher Schmelzschritt (siehe Tabelle 15: Schmelzschritt vor dem plate read). Zudem wurde am Ende jeder PCR im Temperaturbereich von 55°C bis 95°C (Messung alle 0,3°C für 1 Sekunde) eine Schmelzkurve erstellt, die der Kontrolle von Reinheit und Spezifität des Produktes diente.

Primer	MgCl ₂ in μl	Annealing Temperatur	Schmelzschritt vor dem plate read	Puffer
EF1-α1	2	60		b
ALP	2	57		b
BMP2	1	58		r
BMP2R	1	54	10s bei 80°	r
CD51	2	60		r
CHRDL2	1	63		r
COMP	1	60		r
DKK1	2	60		r
DLX2	1	63		r
FGF2R	1	59		r
FGF5	1	60	10s bei 82°	r
L1CAM	3	62		r
hom				
NOTCH4	1	60	10s bei 86°	r
OPN	3	51		b
PCSK5	1	60	10s bei 86°	r
TR beta	1	62		r
VEGFC	1	60		r
WISP2	1	55		r

Tabelle 15: Bedingungen für die Real-time RT-PCR; r= roter Puffer, b= blauer Puffer

Standardprogramm für Real-Time RT-PCR:

Messung der Fluoreszenz

Erstellen der Schmelzkurve von 55°C bis 95,1°C, Ablesen alle 0,3°C für eine Sekunde.

2.2.6. Klonierung von Standards für die Durchführung einer quantitativen RT-PCR

Die Durchführung der Klonierung erfolgte nach den Anweisungen des TA[®] Cloning-Kits. Zur Klonierung wurden frische PCR-Produkte von ALP, BMP2R, DLX2, EF1-α, FGF2R, OPN und WISP2 herangezogen. Für einige Gene waren bereits dankenswerterweise Vorarbeiten durch Frau Sabine Zeck durchgeführt worden, so dass hierbei nur noch die Restschritte durchgeführt werden mussten.

2.2.6.1. Ligation

Zuerst wurde das frische PCR-Produkt des jeweiligen Gens in einer Microspin-Säule des TA[®] Cloning-Kit durch Zentrifugation aufgereinigt, und im Anschluss mittels einer T4-DNA Ligase über Nacht bei 14°C in einen pCR II-Vektor eingebracht.

2.2.6.2. Transformation und Mini-Präp

Jeweils 1 μl Plasmid-DNA wurden nach der Ligation mit 50 μl kompetenter E. coli DH5a gemischt, für 30 Minuten auf Eis inkubiert und für 20 Sekunden bei 42°C erhitzt. Nach Abkühlung für ca. 2 Minuten auf Eis wurden jeweils 250 μl SOC-Medium pro Probe hinzugegeben und für 1 Stunde bei 37°C inkubiert. Danach wurden die E.coli auf LB_{AMP}-Agarplatten ausplattiert, auf denen 1 Stunde zuvor 100 μl X-Gal 2%+ 10 μl IPTG ausplattiert worden waren, damit am nächsten Tag die Blau-Weiß-Selektion möglich war. Die Platten wurden dann über Nacht bei 37°C inkubiert. Am nächsten Tag wurden pro Platte jeweils sechs rekombinante (weiße) Klone mit einer Pipettenspitze

gepickt und in ein Reaktionsgefäß mit 2 ml LB_{AMP}- Medium geben. Diese Röhrchen wurden über Nacht bei locker anliegendem Deckel und 37°C in einen Schüttelinkubator gegeben. Am nächsten Tag erfolgte die Isolation der Plasmid DNA nach Herstellerangaben mit dem NucleoSpin® Plasmid-Kit. Dabei wurden zuerst die Zellen lysiert, dann die DNA an die NucleoSpin Plasmid-Säule gebunden, und schließlich die Plasmid-DNA aus der Siliziummembran wieder eluiert. Daran schloss sich die Restriktion der DNA aus dem Plasmid mittels Plasmidverdau an. Hierfür wurden Restriktionsenzyme der Firma New England Biolabs und Puffer nach Herstellerangeben verwendet. Für die Gene BMP2R, DLX2 und WISP2 wurden jeweils 30 µg Plasmid DNA mit 1 µl EcoRI- Puffer, 0,5 µl EcoRI (Restriktionsenzym) und 3,5 µl H₂O über 2 Stunden bei 37°C im Heizblock inkubiert. Der Plasmid-Verdau wurde dann mittels Agarose-Gel-Elektrophorese aufgetrennt. Dabei wurde die unter UV-Licht sichtbare DNA-Bande des schneller gelaufenen, kleineren DNA-Stückes mittels Skalpell unter UV-Beleuchtung herausgeschnitten. Die in dem Agarosegel befindliche DNA wurde dann mit dem NucleoTrap® Kit nach Herstelleranweisungen aufgereinigt und eluiert.

2.2.6.3. Sequenzierung

Die Sequenzierung der DNA-Banden aus dem Plasmidverdau der Mini-Präp erfolgte nach der Cycle-Sequencing-Methode im "ABIPrism 310 Genetic Analyzer". Bei diesem System wird zu Beginn eine RT-PCR durchgeführt, bei der neben herkömmlichen Desoxynukleotiden (dNTPs) auch farbstoffmarkierte Didesoxynukleotide verwendet werden. Diese Didesoxynukleotide führen zu einem Kettenabbruch, und fungieren damit als Terminatoren. Alle vier Basen (A, C, G, T) sind an einen fluoreszierenden Farbstoff gekoppelt, der nach Anregung Licht einer charakteristischen Wellenlänge emittiert. Im Sequenzer erfolgt die Anregung und Detektion der emittierten Wellenlängen bei simultaner elektrophoretischer Auftrennung. Zur Durchführung der Sequenzierung wurden 5 μl des DNA Produktes, 2 μl Big Dye Terminator 5x Sequenzing Buffer, 4 μl Big Dye Terminator, 1 μl Primer (5 pmol/μl) und 8 μl H₂O gemischt. Die Versuchsanordnung wurde für jedes DNA-Produkt jeweils mit einem T7-

und SP6-Primer durchgeführt. Danach wurde im Thermocycler eine RT-PCR mit 30 Zyklen durchgeführt.

Danach wurden 20 µl des PCR-Produktes zusammen mit 2µl 3M Na-Acetat (pH 4,6) und 50 µl 96% EtOH für 10 Minuten auf Eis ausgefällt. Im Anschluss wurde die DNA über eine AutoSeq G-50-Säule für 30 min mit 13000 g bei 4°C zentrifugiert und aufgereinigt. Zur weiteren Aufreinigung wurden 250 µl 85% EtOH auf das Pellet gegeben, dann wieder abgekippt, und das Pellet luftgetrocknet. Danach wurde das Pellet in 50 µl TSR-Reagenz (Template Suppression Reagent) aufgelöst, und 2 Minuten in kochendem Wasser denaturiert. Nach erneuter Abkühlung über 2 Minuten auf Eis wurde das Produkt dann in Spezialcaps für den Sequencer gegeben, und im "ABI PRISM 310 Genetic Analyzer" analysiert. Mit Hilfe des Computerprogramm SeqMan II wurden die Rohdaten dann verglichen und zusammengestellt.

2.2.6.4. Transformation und Maxi-Präp

Nach erfolgreicher Sequenzierung wurden die rekombinanten (weißen) Klone von der Agarplatte gepickt, und in ein mit 2 ml LB_{AMP}-Medium gefülltes SNAP-CAP gegeben. Nach 4 Stunden Bebrütung bei 37°C in einen Schüttelinkubator wurde der Inhalt dann in einen mit 200 ml LB_{AMP}-Medium gefüllten Schikane-Kolben gekippt, und über Nacht bei 37°C im Schüttelinkubator weiterinkubiert. Bei bereits ausgetesten und aufgereinigten Plasmiden können selbige auch in E.coli TOP 10F eingebracht werden, für die die gleichen Verfahrensbedingungen gelten. Am nächsten Tag wurde das Medium mit 5000 g bei 4°C über 15 Minuten abzentrifugiert, und der Überstand

verworfen. Die Plasmid-DNA wurde dann mit dem NucleoBond[®] Kit nach Herstellerangaben isoliert. Dabei wurden zuerst wieder die Zellen lysiert, dann die DNA an die NucleoBond AX 500 Säule gebunden, und schließlich die Plasmid-DNA wieder eluiert. Daran schloss sich erneut die Restriktion der DNA aus dem Plasmid mittels Plasmidverdau an. Hierfür wurden wieder Restriktionsenzyme der Firma New England Biolabs und Puffer nach Herstellerangeben verwendet. Für die Gene ALP, DLX2, EF1-α1, FGF2R und WISP2 wurden jeweils 30 μg Plasmid DNA mit 3 μl EcoRI-Puffer, 2 μl EcoRI (Restriktionsenzym) vermischt und mit H₂O auf insgesamt 30 μl aufgefüllt. Der Ansatz wurde dann über 3 Stunden bei 37°C im Heizblock inkubiert. Für das Gen OPN wurden 30 μg des Plasmid mit 3 μl Puffer II, 2 μl Hind-III, 2 μl XhoI und 0.003 μl BSA gemischt und mit H₂O auf 30 μl aufgefüllt. Der Ansatz wurde dann ebenfalls für 3 Stunden bei 37°C im Heizblock inkubiert.

Die hieraus erhaltenen Produkte wurden erneut auf ein Agarosegel aufgetragen, und die entsprechenden (schnellerlaufenden, kleineren) Banden unter UV-Beleuchtung ausgeschnitten. Die sich hierin befindliche DNA wurde dann wieder mit dem NucleoTrap[®] Kit nach Herstellerangaben aufgereinigt und eluiert.

Photometrisch wurde dann der DNA-Gehalt gemessen, und mittels Excel-Programm die genaue Kopienzahl pro µl Probe bestimmt. Für jedes Gen wurde eine Verdünnungsreihe mit 6 verschiedenen Konzentrationen angelegt.

2.2.7. Immunhistologie

Für die Immunhistologie wurden 5.000 mhMSZ bzw. bhMSZ der Passage 1 auf Chamber-Slides (8 Well) ausgesät, und einen Tag bei 37°C unter feuchter Atmosphäre (95% Luft, 5% CO₂) inkubiert.

Zur Vorbereitung der Immunhistologie wurden die Zellen dann fixiert. Dabei wurde das SZM entfernt, die Zellen mit PBS gewaschen, kurz mit Ethanol/Aceton bedeckt, und

zum Abschluss mit PBS abgespült. Die so fixierten MSZ wurden dann bis zur Verwendung bei -20°C tiefgefroren.

Bei der immunhistologischen Färbung wurden die Antikörper und ihre dazugehörigen Negativkontrollen nach den Angaben in Tabelle 16 verdünnt.

Antikörper	gegen	Verdünnung	Negativkontrolle	Verdünnung
(Konzentration in μg/μl)			(Konzentration in μg/μl)	
FGF5 (500)		1:50	Maus-Serum (330)	1:33
L1 CAM (100)		1:5	Ziegen-Serum (836)	1:42
TR beta (1)		1:200	Kaninchen-Serum (200)	1:400
		1:300		1:600

Tabelle 16: Verdünnung der Antikörper und ihrer Negativkontrollen für die immunhistologischen Färbungen

2.2.7.1. Immunhistologische Färbungen für FGF5 und L1 CAM

Zuerst wurden die auf den Chamber-Slides fixierten Zellen 15 Minuten mit dem Waschpuffer inkubiert, um die Zellen zu rehydrieren und die Zellwand permeabel zu machen. Nach Absaugen des Waschpuffers wurden die Zellen 20 Minuten mit Blockierungslösung inkubiert, um unspezifische Bindungsstellen zu blockieren. Nach erneutem Absaugen erfolgte dann eine Inkubation über 10 Minuten mit TBS und 1% H_2O_2 . Im Anschluss daran wurde die Flüssigkeit erneut abgesaugt, die Zellen mit TBS gewaschen, und dann über Nacht mit den in der Blocklösung verdünnten Antikörpern, bzw. Negativkontrolle, in einer Feuchtekammer bei 4°C inkubiert. Am darauf folgenden Tag wurde mit jeweils unterschiedlichen Systemen für FGF5 und L1 CAM die Immunhistologie fortgeführt.

Die mit FGF5-Antikörpern beladenen MSZ wurden mit dem Dako REAL™ Detection System, APAAP, Mouse nach Herstellerangabe weiterverarbeitet. Dabei wurden zuerst die Antikörper abgesaugt, und die Zellen 3x mit Waschpuffer abgewaschen. Dann wurden Kaninchen-Anti-Maus-Immunglobuline (1:25 verdünnt mit der

Blockierungslösung) für 30 Minuten auf die Zellen gegeben. Danach wurden die Zellen erneut 3x mit Waschpuffer abgespült, und anschließend mit APPAP (einem aus der alkalischen Phosphatase des Kalbsdarms und monoklonalen Mausantikörpern gegen die alkalische Phosphatase des Kalbsdarms gebildete, lösliche Immunkomplexe in einer Verdünnung von 1:50 mit der Blockierungslösung) für 30 Minuten überschichtet. Dann wurde die Färbung Chromogen fast red angemischt. Dabei wurde 1 Fast-Red-Tablette in 2 ml Substratpuffer gelöst und ein Tropfen Levamisol zur Blockierung der zelleigenen Phosphataseaktivität hinzugegeben. Der Farbstoff, der ein Substrat für die alkalische Phosphastase ist, verblieb solange aus den MSZ, bis es nach ca. 2 - 3 Minuten zu einer Rotverfärbung kam. Nun wurde der Farbstoff abgesaugt, und die Zellen 3x mit destilliertem H₂O gewaschen. Danach wurden die Zellen 30 Sekunden mit Hämalaun (hierdurch werden alle basophilen Zellbestandteile, wie z.B. das Chromatin im Nukleus, blau eingefärbt) gegengefärbt, mit destilliertem H₂O abgewaschen, und zum Blaufärben für 1 Minute in Leitungswasser gestellt, bevor sie mit Glycerolgelantine auf einer Wärmeplatte eingedeckt wurden.

Die mit L1 CAM Antikörper beladenen MSZ wurden nach Absaugen der Antikörperlösung 3x mit Waschpuffer abgespült. Danach wurde ein polyklonales Kaninchen-Anti-Ziege-Immunoglobulin (Dako P 0449) mit konjugierter Peroxidase (Verdünnung 1:150 mit Blockierungslösung) für 1 Stunde auf die Zellen gegeben. Nach Abkippen dieses Sekundärantikörpers und einmaligen Abwaschen mit TBS, wurden die MSZ mit dem Dako REALTM DAB+ Chromogen Kit (1 ml DAB Substrate Puffer [enthält Wasserstoffperoxid]+ 1 Tropfen DAB-Chromogen [Diaminobenzidinlösung]) inkubiert. Nachdem es nach ca. 10 Minuten zu einer Braunverfärbung gekommen war, wurde der Farbstoff mit destilliertem H₂O abgewaschen. Danach wurden die Zellen nach dem gleichen Verfahren wie bei FGF5 noch gegengefärbt und eingedeckt.

2.2.7.2. Immunhistologische Färbungen für TR beta

Zuerst wurden die auf den Chamber-Slides fixierten Zellen wieder 15 Minuten mit dem Waschpuffer inkubiert, um die Zellen zu rehydrieren und die Zellwand permeabel zu machen. Die immunhistologische Färbung mit den TR-beta-Antikörpern wurde mit Hilfe von Dako Advance HRP K4069 durchgeführt. Zuerst wurden die MSZ über 10 Minuten mit Triton X-100 (0,5 % in PBS) bei Raumtemperatur inkubiert. Danach wurde H₂O₂ (3% in PBS) für 20 Minuten auf die Zellen aufgebracht, die danach mit PBS abgewaschen wurden. Dies förderte die Permeabilität der Zellwände. Danach wurde der TR-beta-Antikörper und die Negativkontrolle in der in Tabelle 16 genannten Verdünnung für 1 Stunde auf die MSZ aufgetragen. Im Anschluss wurde die Antikörperlösung abgekippt und die Zellen mit PBS gewaschen. Danach wurde der Antikörper-Link (sekundäre Anti-Maus- und Anti-Kaninchen-Antikörper) für 20 Minuten aufgebracht und danach erneut mit PBS gespült, bevor das Antikörper-Enzym (mit Meerrettichperoxidase polymerisierte Antikörper) für 20 Minuten aufgetragen wurde. Dann erfolgte eine erneute Spülung mit PBS, bevor die MSZ für 10 Minuten mit DAB Chromogen (Dako Advance K3465) inkubiert wurden, wobei sich eine Braunfärbung zeigte. Anschließend wurden die Zellen mit destilliertem H₂O abgewaschen, bevor sie auf die bekannte Art und Weise gegengefärbt und eingedeckt wurden.

Im Anschluss wurden die mit Glycerolgelantine eingedeckten Objektträger unter dem Mikroskop inspiziert und photographiert.

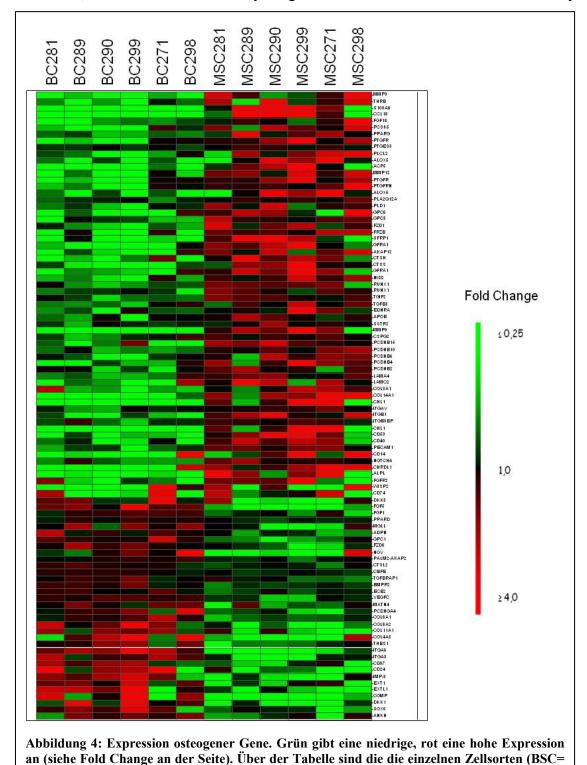
2.2.8. Protein Labeling

Zur Überprüfung der Aufnahme von FGF5 in Zelle und Zellkern wurde rekombinantes, humanes FGF5 mit einem Fluoreszenzfarbstoff markiert. Hierzu wurden zuerst zwei Säulen mit einem Durchmesser von 0,5 cm mit Sephadex G 50 und G 25 aufgefüllt, und mit PBS (pH 7,2 0,1 % Na-Azid) äquilibriert. Dann wurde FGF5 in insgesamt 50 μl Carbonatpuffer (Na Carbonat/ Na bicarbonat 0,1 M, pH 9,36) aufgelöst (Endkonzentration 1 mg/ml). Die 50 μl wurden komplett in ein mit "CyTM2 bisfunctional reactive dye to label 1.0 mg antibody or other protein" (Amersham Bioscienes Europe GmbH, Freiburg, Deutschland) beladenes Reaktionsgefäß gegeben und gemischt. Danach wurde das Reaktionsgefäß für eine halbe Stunde in völliger Dunkelheit aufbewahrt, und alle 10 Minuten gemischt. Der Inhalt wurde vorsichtig auf

die Säule gegeben, damit er einlaufen konnte. Danach wurde von oben weiterer PBS auf die Säule gegeben, um den Durchtritt zu beschleunigen. Die erste durchgelaufene Bande (markiertes FGF5) wurde in einem Reaktionsgefäß aufgefangen. Anschließend erfolgte die Konzentrationsbestimmung für Proteine nach Bradford.

Im Anschluss wurde die Lösung mit dem markierten FGF5 (50 µl gelabeltes FGF5+ 50 µl PBS) auf 100.000 am Vortag ausgesäte mhMSZ in ein Cellstar Tissue culture dish gegeben (diese wurden zuvor einmalig nach Abnahme des Mediums mit PBS gewaschen), und für 1,5 Stunden im Brutschrank inkubiert. Anschließend wurde der Zellträger 2x mit PBS gewaschen, 10 Minuten mit Methanol eingedeckt, 10 Minuten trocknen gelassen. Danach wurde dieser mit Fluoromont G von Southern Biotech eingedeckt. Die so fixierten Zellen wurden dann unter dem Mikroskop inspiziert und photographisch festgehalten.

3. Ergebnisse


3.1. Spenderauswahl

Bei sechs Patienten mit Coxarthrose wurden im Rahmen einer Hüftgelenk-Totalendoprothesenimplantation die Hüftköpfe entnommen. Aus diesen wurden sowohl mhMSZ (Stammzellen aus dem Knochenmark) als auch bhMSZ (Stammzellen aus Knochentrabekeln) isoliert. Die Spender waren 41 bis 59 Jahre alt (Mittelwert 45 Jahre) und jeweils zur Hälfte männlich, bzw. weiblich. Bei keinem der Patienten lag eine internistische Vorerkrankung vor, die eine systemische Medikamenteneinnahme mit möglichem Einfluss auf den Knochenstoffwechsel erfordert hätte. Nur NSAR zur Analgesie wurden von den Spendern eingenommen.

3.2. Array-Analysen

Zur Berücksichtigung der Spendervariabilität wurden insgesamt 6 Spender herangezogen. Nach Gewinnung der MSZ, Anzucht und Abernten derselben, wurde die RNA der Zellen isoliert. Hierzu wurden ausschließlich Zellen der Passage 0 herangezogen. Danach wurden jeweils 10 µg RNA von den mhMSZ als auch bhMSZ jedes Patienten, zu Herrn PD Dr. Klein-Hitpass (Institut für Zellbiologie, Universitätsklinikum Essen) geschickt. Dort wurde die Genexpression beider Zellsorten mittels eines Affymetrix GeneChips HG-U 133 Plus 2.0 (High Wycombe, Großbritannien) und den für die Analyse üblichen Kits gemäß Verfahrensanweisungen des Herstellers analysiert. Insgesamt erfolgten somit jeweils sechs Array-Analysen (Affymetrix HG U133 Plus 2.0 Array) für mhMSZ und bhMSZ. Dabei wurden insgesamt 792 Gene differentiell exprimiert (cutoff 2.0-facher Expressionsunterschied). 484 Gene waren hierbei in den mhMSZ höher exprimiert, und 308 Gene in den bhMSZ. Aus diesen Genen wurden, nach Prüfung der bislang bekannten Eigenschaften und Funktionen, einzelne Gene einer für verschiedene Stoffwechselgruppen angelegten Heat-Map zugeteilt. Einige dieser, sowie einige stammzellbiologisch interessante Gene wurden dann zur technischen Evaluierung des

Arrays einer RT-PCR unterzogen. Hierfür wurde wieder exakt dieselbe cDNA verwendet, die bereits für den Array eingeschickt wurde. Es konnte aus den Array-

Daten eine Zusammenstellung von Heat-Maps mit 96 osteogenen (siehe Abbildung 4),

der

und

individuelle

Spender

genannt (271,

mhMSZ)

bhMSZ, und

281,289,290,298,299).

16 myogenen (siehe Abbildung 5) und 12 neurogenen (siehe Abbildung 6) Genen erfolgen, die im Array unterschiedlich exprimiert waren (cutoff 2.0-fold difference). Hierbei gibt ein helles Rot die hohe Expression eines Gens in der MSZ Sorte an, wohingegen ein helles Grün eine niedrige Expression anzeigt (siehe auch Fold Change

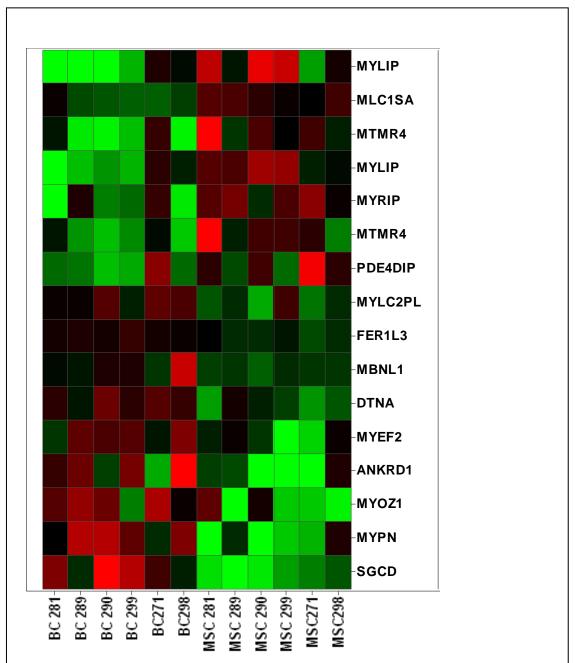


Abbildung 5: Expression myogener Gene. Grün gibt eine niedrige, rot eine hohe Expression an. Unter der Tabelle sind die einzelnen Zellsorten (BSC= bhMSZ, und MSC= mhMSZ) und der individuelle Spender genannt (271, 281,289,290,298,299).

in Abbildung 4, der auch den Übergang von hoher zu niedriger Expression mittels abgestufter Farbgebung darstellt). Bei den osteogenen Genen (Abbildung 4) waren fast zwei Drittel der osteogenen Genen in den bhMSZ höher exprimiert, wohingegen das

restliche Drittel in den mhMSZ vermehrt exprimiert wurde. Es zeigten sich allerdings auch innerhalb der mhMSZ der einzelnen Spendern Unterschiede. So kam es bei den

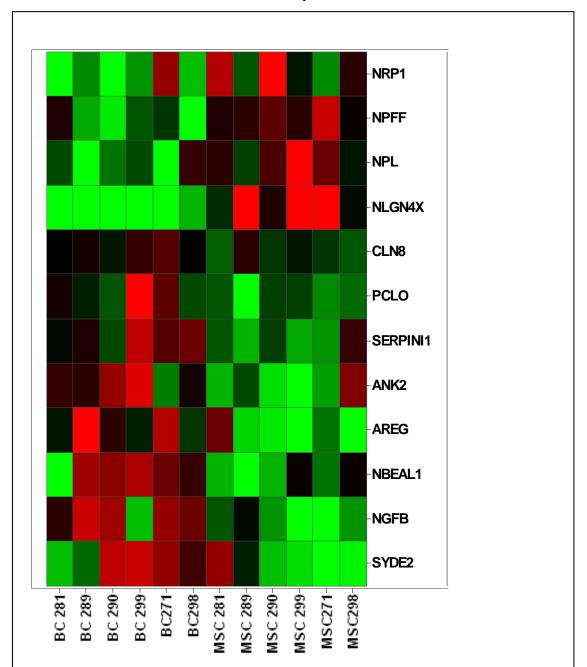
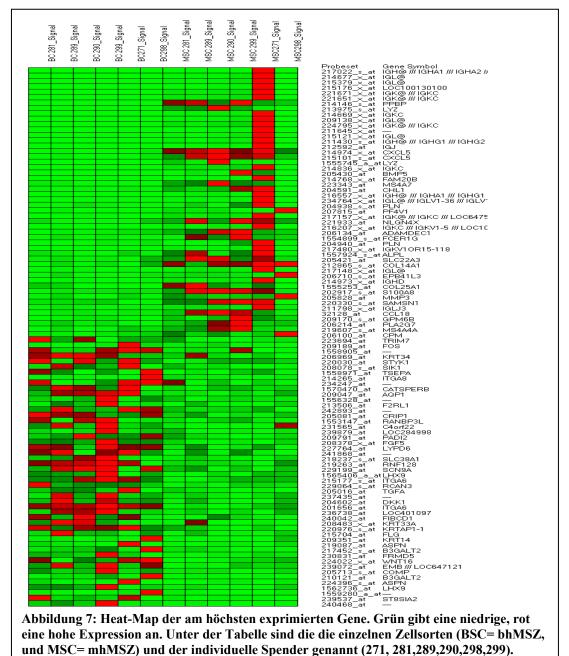



Abbildung 6: Expression neurogener Gene. Grün gibt eine niedrige, rot eine hohe Expression an. Unter der Tabelle sind die einzelnen Zellsorten (BSC= bhMSZ, und MSC= mhMSZ) und der individuelle Spender genannt (271, 281,289,290,298,299).

Proben, des mit der Nummer 298 kodierten Spenders, im Vergleich zu den restlichen Spenderproben zu einigen Abweichungen, wie die unterschiedlichen Farbexpressionen in Abbildung 4 zeigen. Bei den neurogenen Genen hielten sich die mhMSZ und bhMSZ in etwa die Waage, und hatten damit fast gleich viele höher exprimierte Gene. Hier fällt

die Spenderprobe 281 etwas aus der ansonsten relativ homogen Verteilung heraus (siehe Abbildung 6). Bei der Expression der myogenen Gene zeigt sich auch eine ausgeglichene Verteilung zwischen den mhMSZ und den bhMSZ, wobei auch hier die

Spenderprobe 298 ein relativ unspezifisches Verhalten zeigt, das auf eine Spendervariabilität hinweist (siehe Abbildung 5). Im Array zeigte sich jedoch die höchste Expression für die in Abbildung 7 aufgezeigten Gene. Unter den zehn am höchsten exprimierten Genen handelt es sich fast vollständig um leichte und schwere Ketten von Immunglobulinen, die in der Regel durch Plasmazellen synthetisiert werden.

3.3. Technische PCR-Evaluation ausgewählter Targets mittels originaler cDNA

Die technische Evaluation der Arrays erfolgte an Hand ausgesuchter Gene mittels

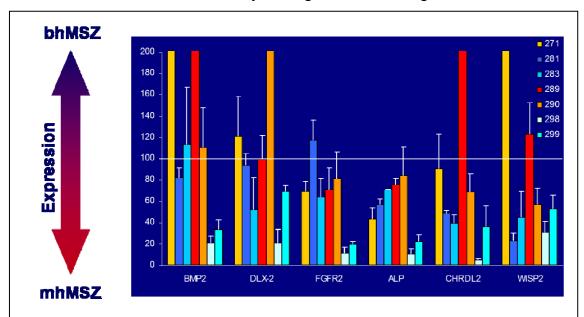


Abbildung 8: Unterschiedliche Genexpression in den MSZ von bhMSZ im Vergleich zu mhMSZ bei der Evaluation durch eine absolute Quantifikation mittels Realtime RT-PCR mit Standard (Weiße Linie 100%).

konventioneller (siehe Abbildung 9) und mittels Real-time RT-PCR (siehe Abbildung 8, weitere Daten nicht abgedruckt). Hierbei wurde die cDNA aus derselben RNA hergestellt, die auch für die Array-Analysen verwendet wurde. Die Auswahl der Gene erfolgte unter dem Gesichtspunkt, Gene zu evaluieren, die einerseits bei allen Patienten in der gleichen Stammzellsorte höher exprimiert waren, aber denen auch andererseits bei der Differenzierung oder Zellregulation, wie bereits im vorherigen Abschnitt beschrieben, eine Bedeutung zugeschrieben wurde. Daneben wurden auch die Gene OPN, BMP2 und DLX-2 evaluiert, da diese nach der vorläufigen Analyse der ersten beiden Patienten interessant erschienen. Insgesamt wurden pro Gen und Spenderprobe drei PCRs durchgeführt, die miteinander verrechnet wurden, um somit ein aussagekräftiges Ergebnis zu erreichen. Dabei wurde cDNA aus der RNA derselben Patientenproben hergestellt und verwendet, deren **RNA** für den Array

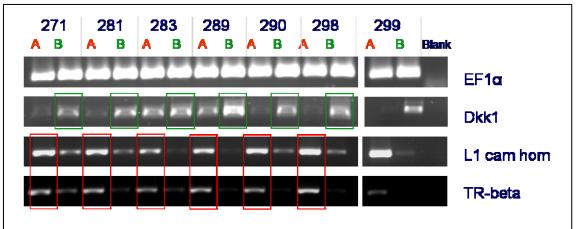


Abbildung 9: Expression von Dkk1, L1 cam hom und TR-beta in den verschiedenen MSZ Populationen (kodiert durch verschiedene Nummern) in mhMSZ (A) im Vergleich zu bhMSZ (B). Als Kontrolle dient das Housekeeping Gene EF1a. (Bei Spenderprobe 283 handelte es sich um eine nicht für den Array eingeschickte Patientenprobe, die dennoch beim der PCR Analyse mitlief.)

eingeschickt wurde. Bei den zur Aufreinigung der RNA benutzten Zellen handelte es sich ausnahmslos um Zellen der Passage 0.

3.4. Übereinstimmung SAM/PCR

Im Vergleich zwischen Array-Analysen und PCRs zeigte sich, dass Gene, die bei mehreren Patienten im Array in derselben MSZ-Sorte höher exprimiert waren, dies auch in den PCRs waren. Allerdings traten auch bei den einzelnen Patienten Unterschiede zwischen Array und PCR hervor, diese hielten sich jedoch immer im Rahmen (siehe Tabelle 17). So war das Endresultat nach Analyse mehrerer Patienten in der Zusammenschau meist kongruent (ca. 80% Übereinstimmung). Als Beispiele seien hier TR beta, FGF5, DKK1 oder WISP2 genannt, die sich in jeder Spenderprobe bestätigten. Auch FGFR2, COMP, ALP, CHRDL2, VEGFC und L1 CAM hom bestätigten sich bei fünf der sechs Patienten. NOTCH4 und PCSK5 hatten in der PCR-Evaluation zwei Abweichungen, die allerdings bei PCSK5 die Anzahl der Gesamtausrichtung nicht veränderten. Eine Ausnahme stellte hierbei CD 51 dar, dessen Ergebnisse bei 4 der 6 Spender in Mikroarray und PCR abwichen. Gene, die bereits im Array eine sehr unterschiedliche Expression zeigten wie OPN, BMP2 oder DLX-2, bestätigten dies auch in der PCR, wobei die Abweichungen von Patient zu Patient variierten. Hieraus

zeigte sich, dass ein Array von einem kleinem Patientenkollektiv in der Aussage zu

Gene	Array	PCR
FGFR2	$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$	$\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow$
COMP	\	1
ALP	$\uparrow\uparrow\uparrow\uparrow\downarrow\uparrow$	<u> </u>
NOTCH4	$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$	$\uparrow\downarrow\uparrow\uparrow\uparrow\downarrow$
TR beta	$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$
CHRDL2	$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$	$\uparrow\uparrow\downarrow\uparrow\uparrow\uparrow$
VEGFC	\	1
FGF 5	++++++	\\\\\
L1 CAM hom	$\uparrow\uparrow\uparrow\uparrow\downarrow\uparrow$	$\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow$
DKK 1	++++++	\\\\\
PCSK5	↓ ↑↑↑↑	<u>↑</u> ↑↑↑↓
CD 51	$\uparrow\uparrow\uparrow\uparrow$ \rightarrow \uparrow	$\uparrow\uparrow\downarrow\downarrow\downarrow\downarrow$
WISP2	$\downarrow\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow$	$\downarrow\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow$
OPN *	$\downarrow \to \uparrow \downarrow \downarrow \uparrow$	↓↓↓↓↓
BMP2 *	$\downarrow\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow$	$\uparrow\downarrow\uparrow\uparrow\downarrow\downarrow$
DLX2 *	$\uparrow\uparrow\uparrow\downarrow\downarrow$ \rightarrow	$\downarrow \uparrow \rightarrow \downarrow \uparrow \uparrow$

Tabelle 17: Jeder Pfeil kodiert die Expression bei einem der sechs Spender (Reihenfolge: 271, 281, 289, 290, 298, 299). ↑ höher in mhMSZ, ↓ niedriger in mhMSZ. Rote Pfeile zeigen ein abweichendes Ergebnis zwischen RT-PCR und Array an. * Laut Array keine unterschiedliche Expression zwischen mhMSZ und bhMSZ.

stark eingeschränkt ist, und sich klare Ergebnisse erst durch Zusammenschau mehrerer Patientenproben zeigen können.

3.5. Immunzytochemische Analysen einzelner Kandidaten

Nach der Diskussion der Kontamination der Populationen der Passage 0 mit Plasmazellen, wurden im Folgenden für die immunzytochemische Analyse ausgewählter Kandidatengene nur noch Populationen ab Passage 1 aufwärts gewählt, bei denen die Kontamination mit Plasmazellen nicht mehr festgestellt werden konnte.

3.5.1. FGF5 (mit Proteinlabeling)

Bei der immunhistologischen Anfärbung mit FGF5-Antikörpern der Maus zeigte sich bei den beiden MSZ-Populationen eine relativ ähnliche Anfärbbarkeit. Sowohl mhMSZ

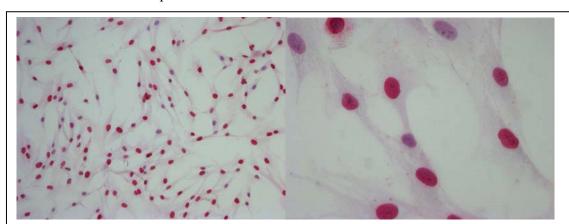


Abbildung 10: MhMSZ die mit Anti-FGF5 Antikörpern der Maus immunhistologisch angefärbt wurden.

(siehe Abbildung 10) als auch bhMSZ (siehe Abbildung 11) wurden ausschließlich als Zellen der Passage 1 auf 8er Chamber Slides ausgesät, eingefärbt und photographiert. Dabei zeigte sich das für MSZ typische spindelförmige Zellwachstum. Stets war bei beiden Zellpopulationen das Cytoplasma leicht rosa angefärbt. Die Zellkerne waren hingegen bei beiden MSZ-Populationen in einer großen Bandbreite von kräftig rot, über rosa, bis hin zu gar nicht angefärbt (blau auf Grund der Gegenfärbung mit Hämalaun). Die Kontrollfärbungen mit Mäuseserum blieben stets negativ (siehe Abbildung 12). Immunhistologisch ließ sich somit kein Unterschied zwischen beiden

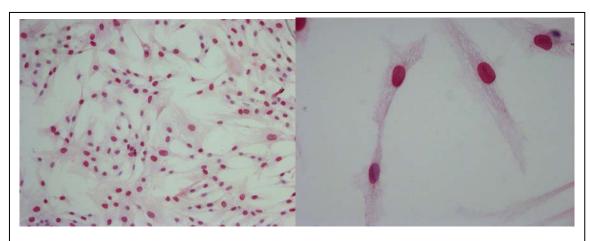


Abbildung 11: BhMSZ die mit Anti-FGF5 Antikörpern der Maus immunhistologisch angefärbt wurden.

Stammzellpopulationen für die Markierung mit FGF5-Antikörpern feststellen, wenn auch das Erscheinungsbild beider Typen selbst jeweils stark heterogen wirkte. Es fanden sich auch jeweils Zellen, die man als negativ für die FGF5-Expression

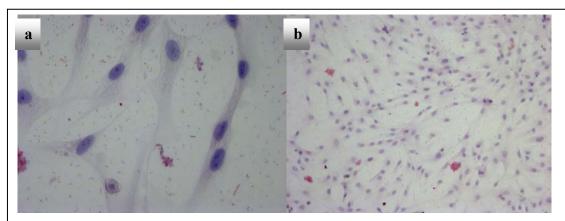


Abbildung 12: Negativkontrolle der MhMSZ (a) und BhMSZ (b) für FGF5 mittels Mausserum.

bezeichnen würde, und desweiteren solche, die eine Färbung im Zellkern oder nur im Zytoplasma zeigten. Man kann hieraus die Arbeitshypothese erstellen, dass FGF5 möglicherweise ein Marker für Subpopulationen von MSC ist, deren spezifische Eigenschaften noch zu klären blieben.

Aufgrund der auffällig starken Anfärbbarkeit der Kerne, wurde zur Lokalisation des FGF5 in der Zelle eine weitere Versuchsanordnung durchgeführt. Hierfür wurde FGF5 mit einem Fluoreszenzfarbstoff markiert, und danach mhMSZ mit PBS inkubiert, in dem das gelabelte FGF5 gelöst war. Die Aufnahme des FGF5 in die Zellen wurde

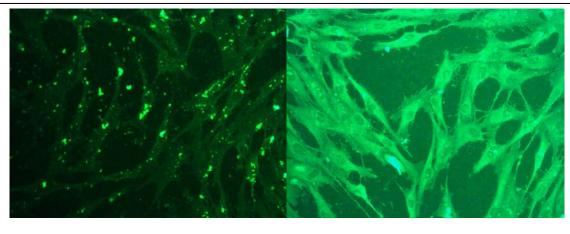


Abbildung 13: MhMSZ mit 50 μ l gelabeltem FGF5+ 50 μ l PBS bedeckt.

mikroskopisch festgehalten. Dabei zeigte sich eine Aufnahme von FGF5 in das Zytoplasma, und bei einigen Zellen eine Anreicherung des Proteins im Zellkern (siehe Abbildung 13 und 14).

Abbildung 14: MhMSZ mit 50 µl gelabeltem FGF5+ 50 µl PBS bedeckt.

3.5.2. TR beta

Auch bei der Anfärbung mit TR beta Antikörper des Kaninchens zeigte sich sowohl bei den mhMSZ (siehe Abbildung 15), als auch bei den bhMSZ (siehe Abbildung 16) eine

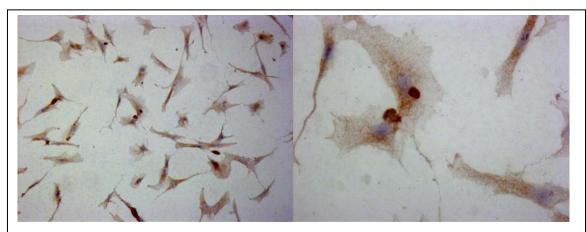


Abbildung 15: MhMSZ die mit Anti-TR beta Antikörpern des Kaninchens immunhistologisch (Verdünnung 1:200) angefärbt wurden.

sehr ähnliche, homogene, leicht bräunliche Anfärbung der Zellstruktur. Hierbei verfärbte sich das Zytoplasma der Zellen besonders stark im Bereich um den Zellkern, wobei sich bei einigen Zellkernen eine massive punktförmige Braunfärbung zeigte. Da es sich bei TR beta um den im Zellkern lokalisierten Schilddrüsenhormon-Rezeptor beta handelt, ist die Verfärbung im Bereich um den Zellkern doch eher verwunderlich. Auch

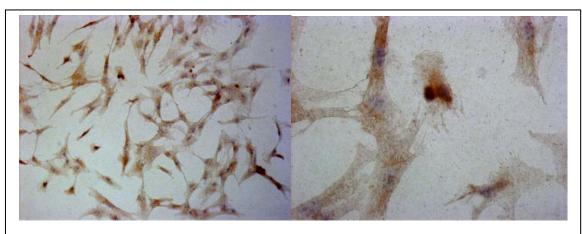


Abbildung 16: BhMSZ die mit Anti-TR beta Antikörpern des Kaninchens immunhistologisch (Verdünnung 1:200) angefärbt wurden.

hätte man mit einer deutlich häufigeren Färbung des Zellkerns gerechnet. Die mit Kaninchenserum durchgeführt Negativkontrolle war negativ (siehe Abbildung 17).



Abbildung 17: Negativkontrolle der MhMSZ (a) und BhMSZ (b) für TR beta mittels Kaninchenserum.

3.5.3. L1 CAM

Da keine Antikörper für den L1 CAM homolog zu erhalten waren, wurde die Immunhistologie mit Antikörpern für L1 CAM selbst durchgeführt. Bei der Anfärbung der mhMSZ (siehe Abbildung 18) und bhMSZ (siehe Abbildung 19) mit L1 CAM

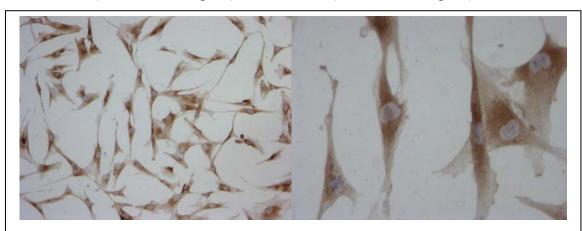


Abbildung 18: MhMSZ die mit Anti-L1 CAM Antikörpern der Ziege immunhistologisch angefärbt wurden.

Antikörpern der Ziege zeigten beide Sorten erneut eine sehr ähnliche, homogene, recht kräftige bräunliche Anfärbung des um den Zellkern gelegenen Zytoplasmas. Die mit Ziegenserum durchgeführte Negativkontrolle blieb negativ (siehe Abbildung 20).

Wie bereits in der Einleitung erörtet, verglich Musina bereits im Jahre 2005 MSZ-artige Zellen aus menschlichem Knochenmark, Fettgewebe, Haut, Plazenta und Thymus

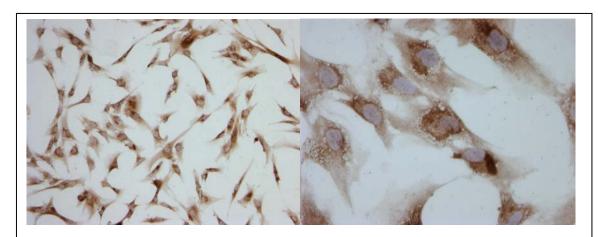


Abbildung 19: BhMSZ die mit Anti-L1 CAM Antikörpern der Ziege immunhistologisch angefärbt wurden.

anhand ihrer Oberflächenmarker (CD10, CD13, CD31, CD44, CD90, CD105). Auch bei diesen Versuchen konnten zwischen diesen Zellen keine unterschiedlichen Expressionen festgestellt werden (Musina, Bekchanova et al. 2005). Auch bei unseren beiden MSZ-Sorten trifft dies wahrscheinlich zu.

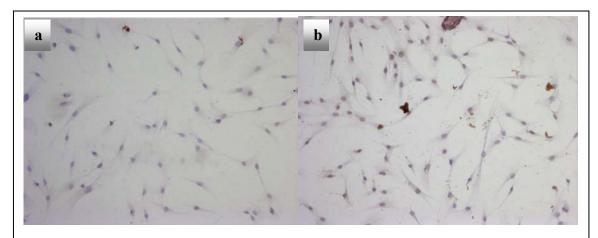


Abbildung 20: Negativkontrolle der MhMSZ (a) und BhMSZ (b) für L1 CAM mittels Ziegenserum.

3.6. FACS-Analyse

FACS-Analysen, die im Labor durch Frau Dr. Limbert in Zusammenarbeit mit der Rheumatologie der Medizinischen Klinik II (Prof. Tony) durchgeführt wurden, sprechen dafür, dass reifen Plasmazellen die MSZ-Populationen kontaminieren.

Diese FACS-Analysen zur Bestimmung der Oberflächenmarker zeigten bei mhMSZ Passage 0 eine erhöhte Expression von Oberflächenmarkern, die typisch für

mhMSZ	Passage 0	Passage 1
NK-Zellen (= Natürliche Killerzellen):	10-50%	0,9%
CD56+		
Plasmazellen: CD138	1,2%	0,5%
Leukozyten: CD45		1,4%

Tabelle 18: FACS-Messung von mhMSZ Passage 0 und 1 freundlicherweise zur Verfügung gestellt durch Frau Dr. Catharina Limbert.

Lymphozyten sind (siehe Tabelle 18, mit freundlicher Genehmigung durch Frau Dr. Limbert). So konnten bei 10 - 50% der mhMSZ Passage 0 Oberflächenmarker für natürliche Killerzellen, und bei 1,2% für reife Plasmazellen nachgewiesen werden. Diese Werte waren bei mhMSZ der Passage 1 deutlich reduziert, und belegen damit eine Kontamination der mhMSZ Passage 0 durch die Lymphozyten.

4. Diskussion

In der vorliegenden Arbeit wurde eine SAM-Analyse von MSZ-Populationen aus dem korrespondierenden Populationen den aus gewaschenen Knochenfragmenten verglichen. Es wurden Zellen der Passage 0 verwendet, um möglichst frühzeitig zu analysieren, und den Einfluss einer länger dauernden Zellkultur gering zu halten. Die Zellen wurden nach in der Literatur gängigen Protokollen isoliert, die besonders, was die Knochenmarks-MSZ angeht, mit der schon sehr lange als klassisch bekannten Anreicherungsmethode mittels Plastikadhärenz durchgeführt wurden. Bei der erst später durch die Arbeitsgruppe Nöth/Tuan beschriebene Methode (Noth, Osyczka et al. 2002) handelt es sich im Grunde um die Methode zur Generierung so genannter primärer Osteoblasten, die nach der zitierten Arbeit als multipotente Vorläuferzellen neu definiert werden mussten. Die Arbeitshypothese bestand darin, dass sich diese Population in ihrem Genexpressionsmuster wesentlich von den im Knochenmark befindlichen Zellen unterscheiden würde.

4.1. Technische Evaluation des Arrays

Die technische Evaluation eines Array respektive der zugehörigen SAM-Analyse dient dazu, die Verlässlichkeit der Aussage der Hybridisierungsverfahren zu überprüfen. Dies wurde mit einem Set an ausgewählten Genen durchgeführt, die signifikant differentiell exprimiert schienen. Die Analyse zeigte, dass die Übereinstimmung der Aussage im Array in über 80 % mit den Ergebnissen der RT-PCR kongruent war. Dieses Ergebnis ist zufriedenstellend, wenn auch nicht optimal und dürfte neben verschiedenen technischen Aspekten der Hybridisierungstechnik in der Hauptsache auf individuelle Unterschiede bei den Spendern zurückzuführen sein. Im Folgenden soll die Biologie einzelner ausgewählter Kandidatengene diskutiert werden.

4.1.1. Differentiell exprimierte Gene

Exemplarisch sollen nachfolgend einige Gene erläutert werden, die im Array differentiell exprimiert waren, und später nochmals mittels RT-PCR technisch evaluiert wurden.

FGF5 (Fibroblast growth factor 5)

Fibroblastenwachstumsfaktoren (FGF) bilden eine Familie von homologen Heparinbindenden Polypeptiden, die aus 22 Mitgliedern bestehen (McKeehan, Wang et al. 1998). Diese ubiquitär vorkommenden Peptide regulieren Wachstum, Differenzierung, Überleben und Migration einer Vielzahl von Zelltypen, und sind aber auch an der Entwicklung einiger menschlicher Tumore beteiligt (Allerstorfer, Sonvilla et al. 2008). Bei Mäusen konnte nachgewiesen werden, dass FGF5 als Inhibitor auf das Haarwachstum wirkt (Hebert, Rosenquist et al. 1994). Bei so genannten Angora-Mäusen ließ sich eine autosomal rezessive vererbte Mutation nachweisen, die durch die Deletion von ca. 2 Kilobasen im FGF5 Gen bedingt ist (Sundberg, Rourk et al. 1997). Daneben wird FGF5 auch ein Einfluss in der Differenzierung und Aktivitätssteuerung von Neuronen zugeschrieben (Lindholm, Harikka et al. 1994). Für Glioblastomzellen ist autokrines FGF5 ein vorherrschender Überlebens- und Migrationsfaktor, der zudem in astrozytären Hirntumoren die Neoangiogenese durch Unterstützung des Wachstums, Migration und Differenzierung von Endothelzellen fördert (Allerstorfer, Sonvilla et al. 2008). Einige Adenokarzinome, die eine erhöhte Expression von FGF5 aufweisen sind das Nierenzell-Karzinom, Prostata-Karzinom und einige Mamma-Karzinome (Hanada, Perry-Lalley et al. 2001). In weiteren Arbeiten konnte gezeigt werden, dass FGF5 auch bei der Entwicklung der Gliedmaßen bei Mäusen in Mesenchym- und Muskelzellen exprimiert wird. Hierbei stimuliert es die Fibroblastenproliferation und unterdrückt die Ausbildung des differenzierten Muskelgewebes (Clase, Mitchell et al. 2000). Insofern ist die Expression von FGF5 von hohem putativen Interesse für die Biologie derjenigen Zellen, die FGF5 exprimieren. Die Tatsache, dass FGF5 im Zellkern eine Färbung gibt und in unseren Experimenten zudem in dynamischer Untersuchung als nukleotrop gefunden wurde, ist in diesem Sinne neu und deutet darauf hin, dass FGF5 – vielleicht mit seinem gesamten Rezeptor – internalisiert wird und möglicherweise nach nukleärem Transfer weitere nukleäre Funktionen ausübt. Hierzu sind weiterführende Experimente sicher sinnvoll.

WISP2 (Wnt-induced secreted proteins-2)

Dieses Mitglied der CCN Familie ist wichtig für die Proliferation, Migration, Adhäsion und das Überleben von Zellen. Bei der adipogenen Differenzierung in vitro wird es herunter reguliert (Schutze, Noth et al. 2005). Bei Rheumatoider Arthritis wird eine Hochregulierung in den Fibroblasten beschrieben, so dass es am Pathomechanismus der Erkrankung beteiligt sein könnte (Tanaka, Morikawa et al. 2005).

DKK1 (Dickkopf-1)

DKK1 ist ein löslicher Inhibitor des Wnt-Signalwegs. Der Wnt-Signalweg beeinflusst die Zellentwicklung in der Embryogenese und beim Erwachsenen, u.a. durch Keimblattinduktion, und die Erneuerung und Proliferation der Stammzellen (Angers and Moon 2009). Bei Patienten mit Plasmozytom wird es höher exprimiert, und korreliert mit der Schwere des osteolytischen Knochenschadens. Eine Inhibition von DKK1 könnte einen weiteren therapeutischen Ansatz zur Bekämpfung von osteolytischen Erkrankungen darstellen (Pinzone, Hall et al. 2009). Im Kontext mit der von uns festgestellten Kontamination der Passage 0-Zellen müsste man zunächst sicherstellen, dass die Expression in mhMSZ nicht von den Plasmazellen herrührt, da eine Expression von DKK1 in Myelomzellen beschrieben wird. Die eindeutig festgestellten Unterschiede in der Expression mit einer Aufregulation der Expression in bhMSZ könnten darauf hindeuten, dass die bhMSZ tatsächlich ein weiter gehendes osteogenes Committment aufweisen im Vergleich zu mhMSZ, da im Verlauf der osteogenen Differenzierung die DKK1 Expression zunimmt (van der Horst, van der Werf et al. 2005)(Vaes, Dechering et al. 2005). Auch hier müsste man verläßliche Einzelzellanalysen durchführen, um zu verifizieren, ob dies ein über die Population homogener Effekt ist, oder ob man möglicherweise eine Kontamination mit Osteozytenähnlichen Zellen feststellen kann.

FGFR2 (Fibroblast growth factor receptor Typ 2)

FGFR2 ist einer von 4 verschiedenen FGF Rezeptoren, an die 22 unterschiedliche FGFs mit unterschiedlicher Affinität binden. Bei einem der möglichen Bindungspartner, dem FGF2, berichtet die Literatur z.B. sowohl bei Überexpression als auch Knock-out über Osteopenie. Des weiteren ist FGF2 an der enchondralen und intramembranösen Knochenentwicklung beteiligt (Marie, Coffin et al. 2005), und FGFR2 als möglicher Rezeptor damit auch in diese Differenzierungswege involviert.

VEGFC (vascular endothelial growth factor C)

VEGFC ist ein Mitglied der VEGF-Familie, die die Angiogenese regulieren. Hypoxie ist hierbei ein wichtiger Stimulus zur Produktion von VEGF. Dabei spielt allerdings VEGFA, der an den Rezeptor VEGFR2 bindet, die wichtigste Rolle (Kerbel 2008). In einer anderen Arbeit wurde gezeigt, dass VEGFC bei Einfluss von BMP2 hoch exprimiert ist, und damit scheinbar die Chondrogenese beeinflusst (Bluteau, Julien et al. 2007)

NOTCH4

NOTCH4 ist Mitglied einer Familie von Zelloberflächenrezeptoren, die, vor allem an den Endothelzellen der Gefäße ausgeprägt, die Neoangionese fördern (Shawber, Das et al. 2003). Auch in anderen Geweben beeinflusst NOTCH4 die Entwicklung von Gewebe und Zellen durch seinen Signalweg. Erst nach Stimulation von Osteoblasten mit Dexamethason und Vitamin D, die beide die osteogene Differenzierung stimulieren, wurde NOTCH4 in Osteoblasten nachgewiesen (Schnabel, Fichtel et al. 2002). Auch bei der Knorpelentwicklung war NOTCH4 nachweisbar, jedoch mit zunehmender Entwicklung und Alter nur noch in tieferen Schichten (Hayes, Dowthwaite et al. 2003).

COMP (Cartilage oligomeric matrix protein)

Bei COMP handelt es sich um ein nicht-kollagenes, extrazelluläres Matrixprotein, das hauptsächlich in Sehnen, Bändern und Knorpel synthetisiert wird. Pseudoachondrodysplasie und die multiple Epiphysendysplasie sind zwei durch Mutationen des COMP Genes ausgelöste Erkrankungen. Hierbei kann COMP nicht mehr ausgeschieden werden, und häuft sich im rauen Endoplasmatischen Retikulum an.

Die veränderte Matrixstruktur des Knorpels führt dann zu einem verfrühten Gelenkverschleiß (Posey and Hecht 2008).

PCSK5 (Proprotein convertase subtilisin/kexin type 5)

PCSK5 ist Mitglied einer Familie von Enzymen, die noch inaktive Vorläuferproteine durch Spaltung aktivieren. Dabei scheinen sie durch Einflussnahme auf Hox, einen Transkriptionsfaktor, die Entwicklung von Niere, anorektalem System, anteriorposteriorer Körperachse und Skelettsystem zu regulieren (Szumska, Pieles et al. 2008).

BMP-Rezeptor 2

Hierbei handelt es sich um einen transmembranen Serin-/Threoninkinaserezeptor für BMP. Bei BMP (Bone morphogenetic proteins) wiederum handelt es sich um ein Mitglied der TGF-(Transforming growth factor) Superfamilie, die verschiedenste Prozesse von der frühen embryonalen Entwicklung bis zur Zellhomöstase beim Erwachsenen steuern. BMP induziert die chondrogene und osteogene Differenzierung, wohingegen die myogene Differenzierung durch die Proteinfamilie inhibiert wird (Li and Cao 2006).

CD 51 (= Vitronectin receptor (VNR))

CD 51 ist ein Mitglied der Integrin-Superfamilie. Hierbei handelt es sich um adhäsive Proteinrezeptoren, die vielfältige zellvermittelte Adhäsionen bewerkstelligen, so zum Beispiel von Fibrinogen, Thrombospondin oder dem Von-Willebrand-Faktor (Charo, Nannizzi et al. 1990).

CHRDL2 (Chordin-like 2)

CHRDL2 gehört zu einer Gruppe von sezernierten Proteinen, die eine dem Chordin ähnliche CR-Domäne besitzen. Vermutlich findet eine Beteiligung an der osteogenen und myogenen Differenzierung statt (Oren, Toporik et al. 2004). Die Knorpelheilung und –reifung in hyalinem Knorpel scheint es durch seine Wirkung als BMP-Inhibitor jedoch zu unterbinden (Nakayama, Han et al. 2004).

DLX2 (Distal-less homeobox-2)

DLX2 ist an der Entwicklung des Branchialbogens, des Vorderhirns und vermutlich auch an der kraniofazialen Entwicklung (Qiu, Bulfone et al. 1995), sowie der Knochenentwicklung beteiligt. Innerhalb von 30 Minuten nach Zugabe von BMP2 zu aus Mäusen, bzw. Ratten gewonnen Osteoblasten kam es zu einer Aktivierung von DLX2 über bis zu 5 Tage (Harris, Guo et al. 2003).

OPN (Osteopontin)

OPN ist ein von Osteoblasten im Rahmen der Herstellung der Knochenmatrix produziertes Phosphoprotein, das 2% der nicht-kollagenen Proteine des Knochens stellt. Es unterstützt die Anheftung der Osteoklasten bei der Knochenresorption, und ist an der Matrixbildung und Mineralisation im Rahmen der Osteogenese beteiligt. Runx2 (Runtrelated transcription factor 2), ein Transkriptionsfaktor der osteogenen Differenzierung, steuert genauso wie 1,25(OH)2D3 und der NOTCH-Signalweg die OPN-Bildung, und damit den Knochenumbau (Shen and Christakos 2005).

ALP (Alkaline Phospatase)

ALP ist ein Phosphorsäureester hydrolysierendes Enzym. Bei Versuchen zur osteogenen Differenzierung von MSZ wird es als Kontrollparameter bestimmt (erhöhte Expression) (Pittenger, Mackay et al. 1999).

L1 CAM homolog

L1 CAM homolog ist ein Transmembranrezeptor aus der CAMs-(Cell adhesion molecules) Gruppe, die eine wichtige Rolle in der Entwicklung des Nervensystems spielt. Dabei reguliert es das Auswachsen, die interneuronale Verbindung und die Faszikulation von Nervenzellen in der Embryogenese (Kallunki, Edelman et al. 1997). Mutationen im menschlichen L1 CAM Gen werden als Ursache von drei heriditären neurologischen Erkrankungen gesehen: X-linked Hydrocephalus, X-linked spastische Paraplegie (SPG1) und das MASA-(Mentale Retardierung, Aphasie, Schlurfender Gang, Adduzierte Daumen) Syndrom (Jouet, Rosenthal et al. 1994). Die L1 CAM vermittelte Zelladhäsion und das Auswachsen der Neuriten wird durch Ethanol inhibiert, und scheint so zumindest eine mitwirkende Komponente beim Fetalen

Alkohol-Syndrom zu sein (Bearer 2001). Eine lösliche Form von L1 CAM (sL1) wird von einigen Tumoren, wie dem Uterus- oder Ovarial-Karzinom freigegeben, und scheint eine wichtige Rolle bei der Tumor-Angiogenese zu spielen (Friedli, Fischer et al. 2009). Erste Versuche zeigen, dass eine Tumortherapie durch L1 CAM-Antikörper vielversprechend ist. So konnte unter Zugabe von Antikörpern gegen die L1 CAM Ektodomäne die Proliferation der Tumorzellen in der Zellkultur und die Tumorlast in einer L1 CAM exprimierenden tumorkranken Maus gesenkt werden (Gavert, Ben-Shmuel et al. 2008). Desweiteren wird L1 CAM mit bösartigen Tumoren der Lunge, Pankreas, Niere, Colon, Mamma, Melanomen und dem Gliom in Verbindung gebracht (Herron, Hill et al. 2009).

TR beta

Das Schilddrüsenhormon Thyroxin spielt eine wichtige Rolle bei Entwicklung, Wachstum und Substanzerhalt des Knochens. Eine unbehandelte juvenile Hypothyreose führt so zu einem Wachstumsstillstand, herabgesetzter Knochenreifung, und einer Schädigung der Epiphyse. Auch nach Thyroxin Substitution kann nur noch eine verringerte Körpergröße erreicht werden, da die Knochenalterung schneller voranschreitet als das Längenwachstum (Rivkees, Bode et al. 1988). Eine juvenile Hyperthyreose führt hingegen zu einem beschleunigten Längenwachstum und schnellerer Knochenreifung mit gleichzeitig reduzierter Endkörpergröße auf Grund des zu frühen Epiphysenschlusses. Beim Erwachsenen führt die Hyperthyreose zu einem erhöhten Knochenstoffwechsel und stellt damit eine mögliche Ursache für eine sekundäre Osteoporose dar (Bassett and Williams 2009).

Die Wirkung von Thyroxin, respektive des hormonell aktiven Metaboliten Trijodthyronin T3, wird über die verschiedenen Schilddrüsenhormon-Rezeptoren (TR) vermittelt, die alle Mitglieder einer Familie von im Zellkern beheimateten Rezeptoren sind, und als durch das Schilddrüsenhormon induzierbare Transkriptionsfaktoren fungieren. Die Gene von TR alpha und beta werden in der Herstellung als unterschiedlichste mRNA-Isoformen transkribiert. Dabei werden sie später als fertige Rezeptoren durch die Thyroxin-Bindung aktiviert, indem sie primär mit dem 9-cis Retinsäurerezeptor (RXR) Heterodimere bilden. Auch ist eine Bildung von Homodimeren möglich. Während TR alpha 1, TR alpha 2, TR beta 1 and TRbeta 3 in

verschiedensten Geweben vorkommen, kommt TR beta 2 überwiegend in der Hypothalamus-Hypophysen-Achse vor, wo er die Schilddrüsenstimulation inhibiert (Bassett and Williams 2003). Eine Untersuchung von Epiphysenfugen bei Ratten zeigte,

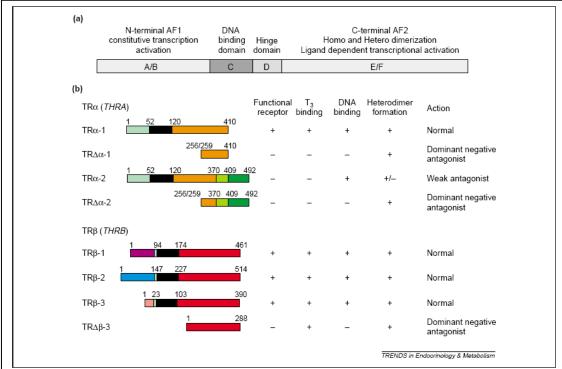


Abbildung 21: Isoformen des Thyroid Hormon Rezeptors. A) Darstellung der vier funktionellen Domänen B) Durch das Gen kodierte Proteinprodukte für den Thyroxin Rezeptor a und b (THRA und THRB). TR beta hat drei unterschiedliche Promotoren. Die Nummerierung gibt die Position der Aminosäuren innerhalb der TR Isoform (in der Maus, ausgenommen b3 und Db3 die aus der Ratte stammen) an. Die Farben zeigen identische oder unterschiedliche Regionen an, die das Ergebnis eines alternativen mRNA Splicings darstellen. Schwarz stellt die DNA Bindungsstelle dar (Entnommen aus (Bassett and Williams 2003)).

dass TR alpha 1, TR alpha 2 und TR beta 1 in der intramembranösen und enchondralen Knochenbildung, in den Osteoblasten und in ruhenden und proliferativen Chondrozyten gebildet wird. In hypertrophen Chondrozyten waren TR alpha 1 und TR beta 1 jedoch nicht nachweisbar (Stevens, Hasserjian et al. 2000). In einem TR beta Knock-out Modell der Maus zeigte sich ein vermehrter Umbau und Substanzverlust des Knochens, wenn auch die Schwere der Ausprägung von der Genetik abhängt und der TR alpha im Knochen eine prädominante Rolle einnimmt (Bassett and Williams 2009). Bei Chondrozyten der Rippen einer Maus kam es hingegen nur TR beta 1-vermittelt durch Thyroxin-Stimulation zu einer vermehrten Differenzierung in vitro (Rabier, Williams et al. 2006).

4.1.2. Aussagekraft des Affymetrix Arrays

Im Institut für Zellbiologie, Universitätsklinikum Essen, wurde bei Herrn Priv.-Doz. Dr. Klein-Hitpass mittels eines "Affymetrix GeneChips HG-U 133 Plus 2.0" (High Wycombe, United Kingdom) die Expression von 38,500 Genen in den mhMSZ und bhMSZ, jeweils Passage 0, ausgewertet. In Zusammenschau aller 6 Spender zeigten sich hierbei insgesamt 792 Gene differentiell exprimiert (cutoff 2.0-fold difference). Dabei waren 484 Gene in den mhMSZ höher und 308 Gene niedriger exprimiert. Wir wählten aus dieser Liste 13 Gene aus, die uns im Rahmen der Stammzellbiologie relevant erschienen, und fertigten für diese konventionelle oder Real-Time RT-PCR zur Evaluierung an. Desweiteren hatten wir bereits vor Erhalt der endgültigen Array-Ergebnisse drei weitere Gene (BMP2, DLX2 und OPN) aus zellbiologischen Erwägungen ausgewählt, die ebenfalls mittels RT-PCR überprüft wurden. Bei 12 der 13 in den Arrays höher exprimierten Gene zeigte sich, dass diese mit geringen Abweichungen auch in den RT-PCR bei den gleichen MSZ-Populationen höher exprimiert waren. DKK1, FGF5, TR beta und WISP2 zeigten hierbei sogar eine Übereinstimmung der Ergebnisse bei allen 6 Spenderproben. Bei ALP, CHRDL2, COMP, FGF2R, L1 CAM hom und VEGFC zeigte sich bei jeweils einer Spenderprobe ein abweichendes Ergebnis zwischen mhMSZ und bhMSZ. Ansonsten waren die Resultate kongruent. NOTCH4 und PCSK5 zeigten bei 2 der 6 Spenderproben ein unterschiedliches Ergebnis, wobei PCSK5 sowohl in Array als auch RT-PCR bei 5 Patienten in den mhMSZ höher exprimiert war. CD 51 zeigte sich im Array bei 5 der 6 Spender in den mhMSZ höher exprimiert (einmal ausgeglichen exprimiert). In der RT-PCR war das Gen allerdings bei 4 Spendern in den bhMSZ höher ausgeprägt. Die bereits in den Arrays stark different ausgeprägten Gene BMP2, DLX2 und OPN waren schließlich auch in der RT-PCR bei den einzelnen Spendern unterschiedlich ausgeprägt. Hierbei ließen sich für DLX2 und OPN nur bei zwei Spendern identische Ausprägungen in Array und RT-PCR nachweisen. Bei BMP2 war dies sogar nur in einem Fall möglich. Insgesamt läßt sich somit feststellen, dass die Aussagekraft des Arrays nur durch die Verfügbarkeit von mehreren Spenderproben gut war. Insgesamt ließ sich aus den Einzelproben eine etwa 80%ige Übereinstimmung zwischen RT-PCR und Array nachweisen. Die starke interindividuelle Schwankung des Expressionsniveaus war in beiden Verfahren zu erkennen. Die Ergebnisse bestätigen, dass die Anzahl der Spender 5 nicht unterschreiten sollte. Eine 100%ige Aussagekraft für ein Individuum ist aus den Ergebnissen nicht ableitbar.

4.2. Reinheit und Homogenität der MSZ in Passage 0 und 1

<u>Immunzytochemie zur Einzelzell-Analyse</u>

Da sich die in den Arrays gezeigten Expressionsunterschiede der MSZ-Populationen Passage 0 in den RT-PCRs bestätigten, wurden mittels Antikörpern für FGF5 und TR beta immunhistologische Färbungen angefertigt. Diese wurden auch mit Antikörpern für L1 CAM durchgeführt, da für L1CAM hom selbst keine Antikörper zu erhalten waren. Diese Immunhistologien wurden mit MSZ-Populationen der Passage 1 angefertigt. Dabei sollten L1 CAM und TR beta in den mhMSZ und FGF5 in den bhMSZ höher exprimiert sein. Die von uns durchgeführten immunhistologischen Färbungen zeigten im Falle von L1CAM stets einheitliche Anfärbungsverhalten von bhMSZ und mhMSZ, ohne Hinweis auf eine unterschiedliche Expression. Die Immunhistochemie mit FGF5 und TR beta erbrachte dagegen Hinweise auf eine Heterogenität der Population, da besonders im Falle von FGF5 einzelne Zellen eine nur sehr flaue Expression zeigten, respektive in vielen Zellen eine starke nukleäre Färbung zu sehen war, die in anderen Zellen definitiv fehlte. Ähnliches, wenn auch weniger ausgeprägt, musste man für die Proteinexpression von TR beta feststellen. Die beobachteten Phänomene zeigen die Schwierigkeit auf, bei einer heterogenen Population von Zellen mit unterschiedlichem Committment oder gar unterschiedlicher Provenienz durch Array-Analysen deren Biologie zu beschreiben. Die Ergebnisse zeigen, dass man im Zweifel mit den beschriebenen Kandidatengenen durch proteinbasierte Einzelzell-Analysen die biologische Bedeutung sichern muss. Besondere Aufmerksamkeit verdient auch die nukleäre Anreicherung von FGF5 sowohl in der Färbung des endogen gebildeten Proteins als auch bei Experimenten, die eine nukleäre Translokation des markierten rekombinanten Wachstumsfaktors zeigen. Dieses Phänomen ist nach unserer Kenntnis für FGF5 nicht beschrieben, für andere Liganden und ihre Membran-assoziierten Rezeptoren wie z.B. PTHRP durchaus ebenfalls

bekannt. Um die biologische Bedeutung weiter zu charakterisieren sind hier weitergehende Experimente notwendig.

Kontamination mit Zellen des blutbildenden Systems in Passage 0

Die Unterschiede der Array-Analysen und der RT-PCR sind zum Teil bekanntermaßen durch Hybridisierungsprobleme bedingt, die z.B. durch die Spezifität der Probesets als auch durch andere technische Probleme bedingt sein können. Ein weiteres Problem stellt die offenbar in der Passage 0 vorliegende Kontamination der MSZ mit Plasmazellen dar. Bei der rein technischen Evaluation des Array sollte dies kein Problem sein, sofern die identische mRNA verwendet wird. Bei der biologischen Evaluation der differentiellen Expression ist dies hingegen ein sehr unwägbares und störendes Problem. Es kann im Einzelnen noch weniger in den bereits ohnehin heterogenen Populationen von MSZ-Präparationen eine Aussage gemacht werden, inwiefern die vermeintlich in den bhMSZ und mhMSZ differentiell exprimierten Gene tatsächlich diesen oder eben der Kontamination zuzuordnen sind. So konnten im Array vermehrt Immunglobuline (Abbildung 7 und Tabelle 19) nachgewiesen werden, die diesen Verdacht erhärten. Diese Leicht- und Schwerketten stellten im Array unter anderem die 10 am höchsten exprimierten Gene dar (Abbildung 7). Bei Zellen der Passage 1, wie die mit denen die immunhistologen Färbungen durchgeführt wurden, war die mRNA für leichte und schwere Ketten von Immunglobulinen nicht mehr relevant exprimiert (Tabelle 20). FACS-Analysen, die im Labor in Zusammenarbeit mit der Rheumatologie der Medizinischen Klinik II (Prof. Tony) durchgeführt wurden, sprechen dafür, dass die kontaminierenden Zellen reifen Plasmazellen entsprechen (Daten nicht gezeigt).

In Konsequenz aus diesen Ergebnissen mussten somit die gesamten Array-Analysen noch einmal mit Zellen aus Passage 1 erneut durchgeführt werden, um die vermeintlichen Unterschiede in der Biologie sicherer beschreiben zu können. Die Wiederholung der SAM-Analyse mit MSZ der Passage 1 zeigte unter Anwendung hoch stringenter Kriterien rein rechnerisch praktisch nur noch CD 24 als verwertbar differentiell exprimiertes Gen, da alle weiteren Gene mit einem Q-value von über 10 nicht signifikant unterschiedlich exprimiert waren. In Tabelle 19, welche die 50 am höchsten exprimierten Gene der MSZ Passage 0 darstellt, zeigen sich völlig andere

Gene hoch expirimiert als in Tabelle 20, welche die 50 am höchsten exprimierten Gene in MSZ Passage 1 zeigt. Bei dem in Passage 1 als einzigem Gen verwertbaren CD24 handelt es sich um ein Oberflächenantigen der Hämatopoese, das bei Zell-Zell-Kontakten, und der Regulierung von Proliferationen und Adhäsionen eine Rolle spielt. Bei einer großen Anzahl von Tumoren, u.a. gastrointestinalen Tumoren konnte eine hohe Expression nachgewiesen werden (Sagiv and Arber 2008). Aus diesen Daten kann man schließen, dass beide MSZ-Populationen bezogen auf ihr Transkriptom über nahezu identische Eigenschaften verfügen. Diese Aussagen können allerdings nur in Bezug auf die angelegten Kriterien gedeutet werden. Bedingt z.B. durch unterschiedliche schnellen mRNA Turnover, durch unterschiedliche Translationseffizienz oder durch niedriges Expressionsniveau mit hoher biologischer Bedeutung kann die Relevanz einer zweifach unterschiedlichen mRNA-Expression auch sehr hoch sein, ein biologischer Unterschied, den man mit diesem Approach nicht beschreiben kann und der eher proteinchemisch angegangen werden müsste.

		Fold	
Gene ID	Gene Name	Change	q-value(%)
	immunoglobulin heavy constant alpha 1 ///		
	immunoglobulin heavy constant alpha 2		
	(A2m marker) /// hypothetical protein		
217022_s_at	MGC27165	1457,671	13,38577
	immunoglobulin lambda locus ///		
	immunoglobulin lambda constant 1 (Mcg		
	marker) /// immunoglobulin lambda constant		
	2 (Kern-Oz- marker) /// immunoglobulin		
	lambda variable 3-25 /// immunoglobulin		
	lambda variable 2-14 /// immunoglobulin		
214677_x_at	lambda joining 3	558,8934	13,38577
	immunoglobulin lambda locus ///		
	immunoglobulin lambda constant 1 (Mcg		
	marker) /// immunoglobulin lambda constant		
	2 (Kern-Oz- marker) /// immunoglobulin		
	lambda variable 3-25 /// immunoglobulin		
045070	lambda variable 2-14 /// immunoglobulin	004 7004	5 504000
215379_x_at	lambda joining 3	394,7861	5,521632
045470	Immunoglobulin kappa light chain variable	000.5	45.0707
215176_x_at	region (IGKV gene), clone 25	303,5	15,3767
004074	immunoglobulin kappa constant ///	040.0044	E E04000
221671_x_at	immunoglobulin kappa variable 1-5	242,6341	5,521632
004054	immunoglobulin kappa constant ///	4 47 7005	E E04000
221651_x_at	immunoglobulin kappa variable 1-5	147,7825	5,521632
04.44.40 0 04	pro-platelet basic protein (chemokine (C-X-C	420 5005	0
214146_s_at	motif) ligand 7)	139,5985	0
	lysozyme (renal amyloidosis) /// leukocyte		
212075 a at	immunoglobulin-like receptor, subfamily B	105 2250	E 501600
213975_s_at	(with TM and ITIM domains), member 1	105,3259	5,521632
214669_x_at	Immunoglobulin kappa variable 1-5	98,27358	26,93479

209138_x_at	Immunoglobulin lambda joining 3	98,19877	15,3767
00.4705	immunoglobulin kappa constant ///	00 00005	45.0707
224795_x_at	immunoglobulin kappa variable 1-5	86,69805	15,3767
	Immunoglobulin kappa light chain (IGKV)		
	mRNA variable region, joining region, and constant region /// Immunoglobulin kappa		
	light chain (IGKV) mRNA variable region,		
211645_x_at	joining region, and constant region	74,81319	47,7069
211045_X_at	immunoglobulin lambda locus ///	74,01319	47,7009
	immunoglobulin lambda constant 1 (Mcg		
	marker) /// immunoglobulin lambda constant		
	2 (Kern-Oz- marker) /// immunoglobulin		
	lambda variable 3-25 /// immunoglobulin		
215121_x_at	lambda variable 2-14	72,43392	44,99107
	immunoglobulin heavy locus ///		
	immunoglobulin heavy constant gamma 1		
	(G1m marker) /// immunoglobulin heavy		
	constant gamma 2 (G2m marker) ///		
	immunoglobulin heavy constant gamma 3		
0444001	(G3m marker) /// immunoglobulin heavy	70 70 100	00 00 470
211430_s_at	constant mu	70,79486	26,93479
	Immunoglobulin J polypeptide, linker protein		
212592_at	for immunoglobulin alpha and mu polypeptides	63,54953	21,88755
214974 x at	chemokine (C-X-C motif) ligand 5	24,26642	0
			<u> </u>
215101_s_at	chemokine (C-X-C motif) ligand 5	22,89989	5,521632
1555745_a_at	lysozyme (renal amyloidosis)	21,65981	26,93479
	Immunoglobulin kappa light chain VJ region (ID POM010) /// Immunoglobulin kappa light		
	chain VJ region (ID POM022) /// (clone		
	TR1.6VL) anti-thyroid peroxidase		
214836_x_at	monoclonal autoantibody IgK chain, V region	20,01335	15,3767
205430 at	bone morphogenetic protein 5	17,83946	86,56638
214768 x at	immunoglobulin kappa variable 1-5	15,72794	44,99107
214700_X_at	membrane-spanning 4-domains, subfamily	13,72734	44,99107
223343 at	A, member 7	15,56901	15,3767
220010_01	cell adhesion molecule with homology to	10,00001	10,0101
204591_at	L1CAM (close homolog of L1)	13,74824	35,55392
	immunoglobulin heavy constant alpha 1 ///	-, -	, , , , , , , , , , , , , , , , , , , ,
	immunoglobulin heavy constant gamma 1		
	(G1m marker) /// immunoglobulin heavy		
	constant gamma 3 (G3m marker) /// similar		
	to Ig heavy chain V-III region VH26		
216557_x_at	precursor	13,50142	35,55392
	Ig lambda mRNA V-region (V-J)		
	heterohybridoma /// Immunoglobulin lambda		
00.4704 v. 64	joining 3 /// Immunoglobulin lambda constant	40.04540	04 70000
234764_x_at	1 (Mcg marker)	12,81543	81,73289
204938_s_at	phospholamban	10,57343	77,89634
207815_at	platelet factor 4 variant 1	9,194969	57,73463
217157 v 21	IGK mRNA for immunoglobulin kappa light	9 020000	25 55200
217157_x_at	chain VLJ region, partial cds, clone:K142	8,930996	35,55392
221933_at	neuroligin 4, X-linked	8,754926	5,521632
216207_x_at	immunoglobulin kappa variable 1D-13	8,356973	86,56638
206134_at	ADAM-like, decysin 1	8,263026	15,3767
1554899_s_at	Fc fragment of IgE, high affinity I, receptor	7,779503	15,3767

	for; gamma polypeptide		
204940_at	phospholamban	7,581699	86,56638
217480_x_at	similar to Ig kappa chain	7,331084	73,02611
1557924_s_at	alkaline phosphatase, liver/bone/kidney	7,033018	52,97175
	solute carrier family 22 (extraneuronal		
205421_at	monoamine transporter), member 3	6,90801	18,02982
212865_s_at	collagen, type XIV, alpha 1 (undulin)	6,850656	5,521632
217148_x_at	immunoglobulin lambda variable 2-14	6,802146	73,02611
	erythrocyte membrane protein band 4.1-like		
206710_s_at	<u>3</u>	6,535229	39,47191
214973_x_at	immunoglobulin heavy constant delta	6,481047	62,78696
1555253_at	collagen, type XXV, alpha 1	6,295327	77,89634
	S100 calcium binding protein A8 (calgranulin		
202917_s_at	<u>A)</u>	6,280006	13,38577
	matrix metallopeptidase 3 (stromelysin 1,	0.440000	4-0-0-
205828_at	progelatinase)	6,143882	15,3767
220220	SAM domain, SH3 domain and nuclear	0.000000	CO 70505
220330_s_at	localisation signals, 1	6,088369	68,73595
211798_x_at	immunoglobulin lambda joining 3	5,8938	47,7069
32128_at	chemokine (C-C motif) ligand 18 (pulmonary and activation-regulated)	5 660707	15,3767
		5,669707	
209170_s_at	glycoprotein M6B phospholipase A2, group VII (platelet-	5,664005	21,88755
	activating factor acetylhydrolase, plasma) ///		
	phospholipase A2, group VII (platelet-		
206214_at	activating factor acetylhydrolase, plasma)	5,430774	15,3767
	membrane-spanning 4-domains, subfamily	3,133111	. 0,0. 0.
219607_s_at	A, member 4	5,324171	44,99107
206100_at	carboxypeptidase M	5,266265	52,97175
223694_at	tripartite motif-containing 7	0,341065	106,1043
	v-fos FBJ murine osteosarcoma viral		·
209189_at	oncogene homolog	0,337596	106,1043
	Homo sapiens, clone IMAGE:3827252,		
1558905_at	mRNA	0,337412	68,73595
206969_at	keratin, hair, acidic, 4	0,328102	73,02611
220030_at	serine/threonine/tyrosine kinase 1	0,326542	106,1043
208078_s_at	SNF1-like kinase /// SNF1-like kinase	0,324489	106,1043
1558971_at	chromosome 6 open reading frame 190	0,321442	106,1043
214265_at	integrin, alpha 8	0,320706	106,078
234247_at	<u></u>	0,318538	106,1043
1570470_at	chromosome 14 open reading frame 161	0,317295	106,1043
	aquaporin 1 (channel-forming integral		
209047_at	protein, 28kDa)	0,317186	39,47191
1556328_at	CDNA clone IMAGE:5301690	0,315545	106,1043
	coagulation factor II (thrombin) receptor-like		
213506_at	1	0,311648	106,1043
242893_at	<u></u>	0,311534	47,7069
205081_at	cysteine-rich protein 1 (intestinal)	0,30877	26,93479
1553147_at	hypothetical protein FLJ25422	0,30803	106,1043
231565_at	hypothetical protein MGC35043	0,306733	47,7069
239879_at	hypothetical protein LOC284998	0,304232	106,1043
209791 at	peptidyl arginine deiminase, type II	0,29514	30,80489
208378_x_at	fibroblast growth factor 5	0,291091	9,602838

227764_at	hypothetical protein MGC52057	0,284551	52,97175
241868_at	RAB6C, member RAS oncogene family	0,284288	106,1043
218237_s_at	solute carrier family 38, member 1	0,283698	106,1043
219263_at	ring finger protein 128	0,283483	106,1043
	Transcribed locus, weakly similar to		
	NP_872601.1 tetratricopeptide repeat		
	protein isoform 1; ubiquitously transcribed		
	tetratricopeptide repeat gene, Y		
	chromosome; ubiquitously transcribed TPR		
229199_at	gene on Y chromosome [Homo sapiens]	0,282891	106,1043
1565406_a_at	LIM homeobox 9	0,27662	106,1043
215177_s_at	integrin, alpha 6	0,275598	35,55392
229064_s_at	<u></u>	0,267334	18,02982
205016_at	transforming growth factor, alpha	0,260184	106,1043
237435_at	Transcribed locus	0,259673	86,56638
204602_at	dickkopf homolog 1 (Xenopus laevis)	0,25357	30,80489
201656_at	integrin, alpha 6	0,252783	9,602838
236738_at	Similar to LOC166075	0,252663	86,56638
240042_at	fibrinogen C domain containing 1	0,247657	47,7069
208483_x_at	keratin, hair, acidic, 3A	0,242981	81,73289
	keratin associated protein 1-1 /// keratin	,	,
220976_s_at	associated protein 1-1	0,242607	16,10476
215704_at	filaggrin	0,240877	106,1043
	keratin 14 (epidermolysis bullosa simplex,		
209351_at	Dowling-Meara, Koebner)	0,238325	106,1043
219087_at	asporin (LRR class 1)	0,230735	106,1043
	UDP-Gal:betaGlcNAc beta 1,3-		
217452_s_at	galactosyltransferase, polypeptide 2	0,219792	86,56638
230831_at	FERM domain containing 5	0,217849	106,1043
	wingless-type MMTV integration site family,		
224022_x_at	member 16	0,214698	106,1043
239072_at	LOC440609	0,211041	26,93479
205713_s_at	cartilage oligomeric matrix protein	0,194588	39,47191
	UDP-Gal:betaGlcNAc beta 1,3-		
210121_at	galactosyltransferase, polypeptide 2	0,172759	73,02611
	asporin (LRR class 1) /// asporin (LRR class		
224396_s_at	1)	0,16875	106,1043
1562736_at	LIM homeobox 9	0,164641	62,78696
1559280_a_at	CDNA FLJ35259 fis, clone PROST2004251	0,132856	106,1043
	ST8 alpha-N-acetyl-neuraminide alpha-2,8-	0.460.476	100 1015
239537_at	sialyltransferase 2	0,122478	106,1043
240468_at	<u>Transcribed locus</u>	0,12007	24,63497

Tabelle 19: Die 50 am stärksten regulierten Gene im Array der MSZ Passage 0. Der Fold Change gibt an, um ein Wievielfaches ein Gen höher in einer Stammzellsorte exprimiert ist. Ein Q-value von über 10 zeigt an, dass dieses Ergebnis nicht signifikant ist.

Gene ID	Gene Name	Fold Change	q-value(%)
208650_s_at	CD24 /// LOC647456	8,95228144	0
209772_s_at	CD24	7,77305008	0
217428_s_at	COL10A1	7,29359271	62,435258
266_s_at	CD24	7,22877121	0

210302_s_at M 209771_x_at 0 216379_x_at 0 218723_s_at F 209875_s_at S 223523_at T	COL10A1 MAB21L2 CD24 CD24 RGC32 SPP1 TMEM108	7,21719095 7,1602968 6,80675854 6,56435689 6,23344709	74,8942178 49,4730138 9,99767153 0
209771_x_at (216379_x_at (218723_s_at (223523_at (22352	CD24 CD24 RGC32 SPP1	6,80675854 6,56435689 6,23344709	9,99767153
216379_x_at 0 218723_s_at F 209875_s_at S 223523_at T	CD24 RGC32 SPP1	6,56435689 6,23344709	_
218723_s_at F 209875_s_at S 223523_at T	RGC32 SPP1	6,23344709	0
209875_s_at	SPP1	,	
223523_at		,	69,9318993
	TMEM108	5,81450108	74,8942178
210303 at	TIVILIVITOO	5,53774929	15,3810331
[- · · · · · · · · · · · · · · · · · ·	MAB21L2	5,1591555	37,4912682
205907_s_at	OMD	5,09824523	49,4730138
208651_x_at	CD24	5,07290282	0
205249_at E	EGR2	4,98344494	34,9918504
209189_at F	FOS	4,625716	74,8942178
201690_s_at	TPD52	4,3538224	74,8942178
1562736_at	LHX9	4,24526877	74,8942178
226145_s_at F	FRAS1	4,14798562	56,7724919
38037_at	HBEGF	3,90651885	50,9782261
235281_x_at	AHNAK	3,90305852	9,99767153
1562836_at -		3,86985924	28,5647758
235275_at (OXCT2	3,72509631	73,60923
209047_at	AQP1	3,66116671	47,9055094
214043_at F	PTPRD	3,63597796	49,4730138
227332_at	SF3A2	3,52726388	9,99767153
203821_at	HBEGF	3,50978697	52,7654886
236028_at	BSP	3,47134235	69,9318993
207370_at	BSP	3,39755487	69,9318993
228762_at L	LFNG	3,37316944	56,7724919
205375_at	MDFI	3,32472039	49,4730138
206924_at	L11	3,32347852	74,8942178
205048_s_at F	PSPH	3,30614777	74,8942178
219355_at (CXorf57	3,24186737	74,8942178
205065_at -		3,10430929	94,0380397
204967_at	SHROOM2	3,06124735	39,9906861
229380_at -		3,01533997	74,8942178
239784_at	SMYD3	2,98155327	59,6273683
232805_at (COL11A1	2,953717	56,7724919
229199_at -		2,92772861	74,8942178
222557_at	STMN3	2,9170105	71,8142603
208078_s_at	SNF1LK	2,91444942	74,8942178
205712_at F	PTPRD	2,87294096	56,7724919
244190_at	THAP5	2,83398565	74,8942178
210643_at	TNFSF11	2,82785426	74,8942178
228010_at F	PPP2R2C	2,82627721	74,8942178
212624_s_at (CHN1	2,82094783	34,9918504
		2,81479777	61,349348
	KCNS3	2,75972671	34,9918504
	ZNF595	2,72839063	94,0380397
	FLJ10159	0,31341796	67,2409767
	COL14A1	0,31179344	94,5605768
		0,31149775	94,5605768
	СРМ	0,31126307	94,5605768

244163_at	SEMA3A	0,30914513	94,5605768
	STMN2	0,29826447	69,9318993
217767_at	C3 /// LOC653879	0,29743538	94,5605768
206765_at	KCNJ2	0,29659637	94,5605768
57588_at	SLC24A3	0,29486517	94,3635018
238577_s_at		0,29427116	61,349348
208191_x_at	PSG4	0,29346462	94,5605768
205828_at	MMP3	0,29306994	94,5605768
231213_at	PDE1A	0,2902039	94,5605768
	KAL1	0,2887309	94,5605768
205067_at	IL1B	0,2887104	94,5605768
219837_s_at	CYTL1	0,28777219	94,5605768
209738_x_at	PSG6	0,2818118	67,2409767
210432_s_at	SCN3A	0,278786	94,5605768
213979 s at		0,2771906	94,5605768
203180_at	ALDH1A3	0,27548482	61,349348
207992_s_at	AMPD3	0,27491023	67,2409767
204614 at	SERPINB2	0,27336577	94,5605768
209594_x_at	PSG9	0,27258435	67,7904793
219090_at	SLC24A3	0,2716006	67,2409767
202156_s_at	CUGBP2	0,26820797	94,5605768
226047_at	MRVI1	0,2663803	71,8142603
202157_s_at	CUGBP2	0,26386066	67,2409767
204591_at	CHL1	0,25925733	94,5605768
202158_s_at	CUGBP2	0,24729782	67,2409767
204580_at	MMP12	0,24415426	94,5605768
209395_at	CHI3L1	0,2404751	67,2409767
222592_s_at	ACSL5	0,23748376	61,349348
228335_at	CLDN11	0,23515808	67,2409767
211776_s_at	EPB41L3	0,23151751	67,2409767
207103_at	KCND2	0,2284264	67,2409767
227265_at	FGL2	0,22419857	94,5605768
206100_at	СРМ	0,22339518	94,5605768
209396_s_at	CHI3L1	0,22128806	69,9318993
204830_x_at	PSG5	0,21173222	69,9318993
204470_at	CXCL1	0,20231399	94,3169305
226281_at	DNER	0,16672496	67,2409767
212681_at	EPB41L3	0,16114611	73,60923
205590_at	RASGRP1	0,15815235	67,2409767
205421_at	SLC22A3	0,1488062	67,2409767
1553454_at	RPTN	0,13069173	94,5605768
214974_x_at	CXCL5	0,10687153	61,349348
206710_s_at	EPB41L3	0,10146708	61,349348
229831_at	CNTN3	0,08890021	38,4525828
	PF4V1	0,08576052	71,8142603

Tabelle 20: Die 50 am stärksten regulierten Gene im Array der MSZ Passage 1. Der Fold Change gibt an, um ein Wievielfaches ein Gen höher in einer Stammzellsorte exprimiert ist. Ein Q-value von über 10 zeigt an, dass dieses Ergebnis nicht signifikant ist.

4.3. Immunhistologische Auswertung der Rehybridisierung

Die unterschiedlichen Kernanfärbungsmorphologien, insbesondere bei FGF5-Färbungen, in den mhMSZ und bhMSZ selbst legen den Verdacht auf unterschiedliche Zellsubgruppen nahe. Diese waren allerdings in beiden MSZ-Sorten gleich stark ausgeprägt, und weisen darauf hin, dass damit alle MSZ-Sorten über solche verschiedenen Subgruppen verfügen, die ggf. unterschiedliche Aufgaben in Regeneration und Entwicklung übernehmen. Auch in FACS-Analyen zur Bestimmung von Oberflächenmarkern von mhMSZ und bhMSZ durch Herrn Priv.-Doz. Dr. Nöth zeigten sich einige Oberflächenmarker wie STRO-1, ALP und FGF-R3 nur bei einer

Antigen	mhMSZ	bhMSZ
CD29 (Integrin β1)	99,0% (± 0,7)	98,8% (± 0,7)
CD44	96,3% (± 1,7)	97,5% (± 1,0)
CD49 (Integrin α3)	97,2% (± 2,4)	97,8% (± 1,1)
CD73	98,3% (± 1,2)	98,6% (± 0,3)
CD90 (Thy-1)	97,3% (± 2,0)	96,7% (± 2,2)
CD105 (Endoglin)	97,0% (± 0,6)	3,5% (± 2,7)
CD106 (VCAM)	36,6% (± 13,5)	$0.5\% (\pm 0.4)$
CD146	89,4% (± 7,2)	92,7% (± 2,7)
CD166 (ALCAM)	97,5% (± 2,3)	97,8% (± 0,8)
STRO-1	7,1%	0,1%
ALP	56,1% (± 2,3)	$4.6\% (\pm 2.3)$
FGF-R3	14,0% (± 4,9)	16,9% (± 4,6)

Tabelle 18: FACS Analyse von mhMSZ und bhMSZ Passage 0 freundlicherweise zur Verfügung gestellt durch Herrn PD Dr. Nöth.

begrenzten Anzahl beider MSZ-Sorten nachweisbar. Dies unterstützt die Theorie der MSZ-Subgruppen innerhalb der einzelnen MSZ-Populationen. Eine große Anzahl weiterer Oberflächenmarker war jedoch nahezu identisch ausgeprägt (Tabelle 18) und belegt damit die große Übereinstimmung von mhMSZ mit bhMSZ.

4.4. Schlussfolgerungen

Die in biologischen Tests bereits als gleichermaßen pluripotent beschriebenen MSZ-Populationen aus Knochenmark und Knochentrabekeln zeigen sich schlussendlich auch in einer stringenten SAM-Analyse bezüglich ihres Transkriptoms nicht unterschiedlich. Unserer stringenten SAM-Auswertung können aber bis zu zweifache Unterschiede in der mRNA-Expression entgehen, so dass man die RT-PCR-Analysen mit den knochenrelevanten Genen durchaus noch einmal in Populationen aus Passage 1 wiederholen könnte, um feine Unterschiede zu verifizieren.

Es ist für weitere wissenschaftliche und klinische Experimente wichtig zu wissen, dass besonders die kontaminierenden Zellen der B-Zell-Reihe offenbar eine gewisse Adhäsionsaffinität zu den MSZ zeigen, da sie durch das alleinige Spülen der Kultur im Rahmen des Mediumwechsels nicht abgespült und aus der Kultur entfernt werden. Erst das Passagieren der Zellen entfernt sie weitgehend aus der Kultur.

Wir fanden Hinweise auf unterschiedliche Subgruppen innerhalb der beiden MSZ Populationen sowohl im Rahmen der immunhistologischen Färbungen (insbesondere FGF5) als auch im Rahmen der FACS-Oberflächenanalyse bei Passage 1 Zellen. Ob man damit eine Subpopulation mit höherer Differenzierungskapazität identifizieren kann, bleibt weiteren Analysen überlassen. Wünschenswert für eine Isolation einer Subpopulation wäre die Koinzidenz der differentiellen Expression mit einem Oberflächenmarker, da intrazelluläre Targets zwar in beschränktem Ausmaß für eine FACS-Sortierung der Zellen geeignet sind, im Zweifelsfall aber wegen der hierfür notwendigen Perforation der Zellmembran nur noch eingeschränkt für die weitere Expansion und klinische Verwendung eingesetzt werden können. Daher kann man bislang auch keine Aussage treffen, ob sich eine der beiden Zellpopulationen besser für eine bestimmte Differenzierung eignet, und sich damit für eine klinische Anwendung empfiehlt. Allerdings scheinen die bhMSZ auf Grund der aufwendigeren Isolierung, und des dennoch eher geringen Zellgewinns nicht so stark für klinische Anwendungen geeignet wie mhMSZ.

Auf Grund der Hinweise für verschiedene Subgruppen innerhalb der einzelnen MSZ-Populationen werden in den zukünftigen Forschungsarbeiten diese Subgruppen gezielt isoliert werden (z.B. FGF5-positive MSZ), um sie zu charakterisieren und in ihrem Differenzierungsverhalten zu untersuchen. Hierbei wird es von Bedeutung sein, dass man die Master-Gene identifizieren kann, die diese Zellen charakterisieren und sie zu speziellen Eigenschaften und Potentialen bemächtigen. Hierfür müssen nun geeignete

Wege gefunden werden, um die Subgruppen gezielt anzureichern (Buhring, Treml et al. 2009). Hierdurch werden sich in der Zukunft neue Anwendungmöglichkeiten für die regenerative Medizin eröffnen. Es könnte jedoch auch möglich sein, dass die MSZ einen stetigen, dynamischen Prozess durchlaufen, der es gar nicht zulässt eine "spezielle" MSZ-Subpopulation zu isolieren, da sich die MSZ in einem ständigen Fluss befinden, und dadurch immer wieder wechselnde Zustände und Eigenschaften erreichen. Auch könnten das Lebensalter und das Geschlecht die Eigenschaften der MSZ beeinflußen, so dass generelle Aussagen oder Anwendungsmöglichkeiten gar nicht möglich seien könnten.

Die von uns nachgewiesene hohe Expression von Leicht- und Schwerketten, sowie der Nachweis von Plasmazellen und natürlichen Killerzellen durch Oberflächenantigene mittels FACS-Analyse in den MSZ der Passage 0 werfen einige weitere Fragen auf. Der enge Kontakt von MSZ mit Zellen des Immunsystems kann durchaus für deren immunmodulatorische Fähigkeiten eine Bedeutung haben. Es ist bekannt, dass Zellpopulationen alleine durch ihren physischen Kontakt einen "Fingerprint" in der jeweils anderen Population hinterlassen. Auch dies muss bei der Analyse von MSZ-Populationen bedacht werden. Wir konnten auch feststellen, dass dieses Phänomen durchaus nicht in allen Individuen auftritt. Man muss sich zudem die Frage stellen, ob bei einer möglichen klinischen Anwendung von MSZ im xenogenen oder allogenen Setting Immunreaktionen durch die Interaktion der Zellen mit dem Immunsystem oder durch die nachgewiesen immunkompetenten Zellen selbst auftreten können. Dies muss vor der klinischen Anwendung noch intensiv erforscht werden, und ggf. müssen Strategien entwickelt werden, um diesen Vorgängen entgegenwirken zu können.

5. Zusammenfassung

Neben den omnipotenten embryonalen Stammzellen existieren im menschlichen Körper multipotente mesenchymale Stammzellen (MSZ), so genannte adulte mesenchymale Stammzellen. Diese Zellen sind in mesenchymalen Geweben über den gesamten Organismus verteilt und sorgen neben der Entwicklung der mesenchymalen Organe auch für die Entwicklung des umgebenden Bindegewebes. Weiterhin sind sie für die Erneuerung des Gewebes auf Grund von Altersdegenerationen, Erkrankungen oder Unfällen verantwortlich. Diese verschiedenen MSZ stellen keine homogene Gruppe dar, zeigen aber sowohl in vivo und auch in vitro ein ähnliches Differenzierungsverhalten. Aus ihnen können sich Zellen der Osteogenese, Chondrogenese, Adipogenese, Myogenese, Tendogenese, Neurogenese und auch des Knochenmarkstromas entwickeln. Daher gelten die MSZ im Gegensatz zu den omnipotenten embryonalen Stammzellen als multipotent.

In der vorliegenden Arbeit wurde nun eine aus den Knochentrabekeln selbst herangezüchtete MSZ-Population, so genannte bhMSZ mit MSZ aus dem Knochenmark, mhMSZ genannt, mittels Array-Analyse miteinander verglichen. Hierbei wurden Zellen der Passage 0 verwendet, um die Zellen möglichst frühzeitig zu analysieren, und um den Einfluss einer länger dauernden Zellkultur gering zu halten. Die Zellen wurden nach in der Literatur gängigen Protokollen isoliert. Die technische Evaluation des Array respektive der zugehörigen SAM-Analyse mittels konventioneller oder Real-Time RT-PCR diente dazu, die Verlässlichkeit der Aussage der Hybridisierungsverfahren zu überprüfen. Dies wurde mit einem Set an ausgewählten Genen durchgeführt, die signifikant differentiell exprimiert schienen, und die uns im Rahmen der Stammzellbiologie relevant erschienen. Die Analyse zeigte, dass die Übereinstimmung der Aussage im Array in über 80 % mit den Ergebnissen der RT-PCR kongruent war. In beiden Verfahren waren weiterhin starke interindividuelle Schwankungen des Expressionsniveaus zu erkennen. Die Ergebnisse zeigten, dass die Anzahl der Spender 5 nicht unterschreiten sollte. Eine 100%ige Aussagekraft für ein Individuum ist durch eine Array-Analyse nicht ableitbar.

Im Rahmen der Untersuchungen ergab sich, dass offenbar bei MSZ der Passage 0 eine Kontamination der MSZ mit Plasmazellen vorliegt. So konnten im Array vermehrt

Immunglobuline nachgewiesen werden, die diesen Verdacht erhärten. Diese Leicht- und Schwerketten stellten im Array unter anderem die 10 am höchsten exprimierten Gene dar. Bei der rein technischen Evaluation des Array sollte dies jedoch kein Problem darstellen, sofern die identische mRNA für Array und RT-PCR verwendet werden. Bei der biologischen Evaluation der differentiellen Expression ist dies hingegen ein sehr unwägbares und störendes Problem. Es kann daher in den bereits ohnehin heterogenen Population von MSZ-Präparationen im Einzelnen noch weniger eine Aussage gemacht werden, inwiefern die vermeintlich in den bhMSZ und mhMSZ differentiell exprimierten Gene tatsächlich diesen oder eben der Kontamination zuzuordnen sind. Bei MSZ der Passage 1, wie die mit denen die immunhistologischen Färbungen durchgeführt wurden, war die mRNA für leichte und schwere Ketten von Immunglobulinen nicht mehr relevant exprimiert. Erst das Passagieren der MSZ entfernte die kontaminierenden Plasmazellen weitgehend aus der Zellkultur. Es ist daher für weitere wissenschaftliche und klinische Experimente wichtig zu wissen, dass die kontaminierenden Zellen der B-Zell-Reihe offenbar eine gewisse Adhäsionsaffinität zu den MSZ zeigen, und durch das alleinige Spülen der Zellkulturen im Rahmen des Mediumwechsels nicht abgespült und aus der Kultur entfernt werden.

Die in biologischen Tests bereits als gleichermaßen pluripotent beschriebenen MSZ-Populationen aus dem Knochenmark und den Knochentrabekeln zeigten sich auch in einer stringenten SAM-Analyse bezüglich ihres Transkriptoms nicht unterschiedlich. Für klinische Anwendungen scheinen die bhMSZ daher auf Grund der aufwendigeren Isolierung und des dennoch eher geringen Zellgewinns nicht im gleichen Maß für klinische Anwendungen geeignet wie mhMSZ.

Da sich bei beiden Stammzellpopulationen Hinweise für verschiedene Subgruppen innerhalb der einzelnen MSZ-Sorten ergaben, sollten in den zukünftigen Forschungsarbeiten diese Subgruppen gezielt isoliert werden (z.B. FGF5 positive MSZ), um sie zu charakterisieren und in ihrem Differenzierungsverhalten zu untersuchen. Hierbei wird dann von Bedeutung sein, dass man die Master-Gene identifizieren kann, die diese Zellen charakterisieren und sie zu speziellen Eigenschaften und Potentialen bemächtigen. Um dies zu ermöglichen, müssen nun geeignete Wege gefunden werden um die Subgruppen gezielt anzureichern. Im Zweifel müssen durch protein-basierte Einzelzell-Analysen die biologische Bedeutungen mit

Hilfe von Kandidatengenen gesichert werden. Hierdurch werden sich in der Zukunft neue Anwendungsmöglichkeiten für die regenerative Medizin eröffnen, die sich in neuen Behandlungsmöglichkeiten für die Patientenversorgung niederschlagen werden.

6. Literaturverzeichnis

- Allerstorfer, S., G. Sonvilla, et al. (2008). "FGF5 as an oncogenic factor in human glioblastoma multiforme: autocrine and paracrine activities." Oncogene **27**(30): 4180-90.
- Angers, S. and R. T. Moon (2009). "Proximal events in Wnt signal transduction." <u>Nat</u>

 <u>Rev Mol Cell Biol</u> **10**(7): 468-77.
- Babaie, Y., R. Herwig, et al. (2007). "Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells." <u>Stem Cells</u> **25**(2): 500-10.
- Barry, F. P., J. M. Murphy, et al. (2005). "Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft." <u>Stem Cells Dev</u> **14**(3): 252-65.
- Bassett, J. H. and G. R. Williams (2003). "The molecular actions of thyroid hormone in bone." <u>Trends Endocrinol Metab</u> **14**(8): 356-64.
- Bassett, J. H. and G. R. Williams (2009). "The skeletal phenotypes of TRalpha and TRbeta mutant mice." J Mol Endocrinol **42**(4): 269-82.
- Bearer, C. F. (2001). "Developmental neurotoxicity. Illustration of principles." <u>Pediatr Clin North Am</u> **48**(5): 1199-213, ix.
- Bianco, P., M. Riminucci, et al. (2001). "Bone marrow stromal stem cells: nature, biology, and potential applications." <u>Stem Cells</u> **19**(3): 180-92.
- Bianco, P. and P. G. Robey (2001). "Stem cells in tissue engineering." Nature **414**(6859): 118-121.
- Bielby, R., E. Jones, et al. (2007). "The role of mesenchymal stem cells in maintenance and repair of bone." <u>Injury</u> **38 Suppl 1**: S26-32.
- Bluteau, G., M. Julien, et al. (2007). "VEGF and VEGF receptors are differentially expressed in chondrocytes." Bone **40**(3): 568-76.
- Buhring, H. J., S. Treml, et al. (2009). "Phenotypic characterization of distinct human bone marrow-derived MSC subsets." <u>Ann N Y Acad Sci</u> **1176**: 124-34.
- Charo, I. F., L. Nannizzi, et al. (1990). "The vitronectin receptor alpha v beta 3 binds fibronectin and acts in concert with alpha 5 beta 1 in promoting cellular attachment and spreading on fibronectin." <u>J Cell Biol</u> **111**(6 Pt 1): 2795-800.

- Clase, K. L., P. J. Mitchell, et al. (2000). "FGF5 stimulates expansion of connective tissue fibroblasts and inhibits skeletal muscle development in the limb." <u>Dev Dyn</u> **219**(3): 368-80.
- da Silva Meirelles, L., P. C. Chagastelles, et al. (2006). "Mesenchymal stem cells reside in virtually all post-natal organs and tissues." J Cell Sci **119**(Pt 11): 2204-13.
- Dazzi, F. and N. J. Horwood (2007). "Potential of mesenchymal stem cell therapy." <u>Curr Opin Oncol</u> **19**(6): 650-5.
- Friedenstein, A. J., R. K. Chailakhjan, et al. (1970). "The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells."

 <u>Cell Tissue Kinet</u> **3**(4): 393-403.
- Friedenstein, A. J., R. K. Chailakhyan, et al. (1987). "Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers." <u>Cell Tissue Kinet</u> **20**(3): 263-72.
- Fuchs, E., T. Tumbar, et al. (2004). "Socializing with the neighbors: stem cells and their niche." Cell 116(6): 769-78.
- Gavert, N., A. Ben-Shmuel, et al. (2008). "L1-CAM in cancerous tissues." Expert Opin Biol Ther **8**(11): 1749-57.
- Hanada, K., D. M. Perry-Lalley, et al. (2001). "Identification of fibroblast growth factor-5 as an overexpressed antigen in multiple human adenocarcinomas."

 <u>Cancer Res</u> **61**(14): 5511-6.
- Harris, S. E., D. Guo, et al. (2003). "Transcriptional regulation of BMP-2 activated genes in osteoblasts using gene expression microarray analysis: role of Dlx2 and Dlx5 transcription factors." Front Biosci 8: s1249-65.
- Hayes, A. J., G. P. Dowthwaite, et al. (2003). "The distribution of Notch receptors and their ligands during articular cartilage development." J Anat 202(6): 495-502.
- Haynesworth, S. E., J. Goshima, et al. (1992). "Characterization of cells with osteogenic potential from human marrow." <u>Bone</u> **13**(1): 81-8.
- Hebert, J. M., T. Rosenquist, et al. (1994). "FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations." Cell **78**(6): 1017-25.
- Herron, L. R., M. Hill, et al. (2009). "The intracellular interactions of the L1 family of cell adhesion molecules." <u>Biochem J</u> **419**(3): 519-31.

- Ho, A. D. and W. Wagner (2007). "The beauty of asymmetry: asymmetric divisions and self-renewal in the haematopoietic system." <u>Curr Opin Hematol</u> **14**(4): 330-6.
- Johnstone, B., T. M. Hering, et al. (1998). "In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells." <u>Exp Cell Res</u> **238**(1): 265-72.
- Jouet, M., A. Rosenthal, et al. (1994). "X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene."

 Nat Genet 7(3): 402-7.
- Kallunki, P., G. M. Edelman, et al. (1997). "Tissue-specific expression of the L1 cell adhesion molecule is modulated by the neural restrictive silencer element." <u>J</u>

 <u>Cell Biol</u> **138**(6): 1343-54.
- Kassem, M. and B. M. Abdallah (2008). "Human bone-marrow-derived mesenchymal stem cells: biological characteristics and potential role in therapy of degenerative diseases." Cell Tissue Res **331**(1): 157-63.
- Kerbel, R. S. (2008). "Tumor angiogenesis." N Engl J Med 358(19): 2039-49.
- Kolf, C. M., E. Cho, et al. (2007). "Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation."
 <u>Arthritis Res Ther</u> 9(1): 204.
- Le Blanc, K. and O. Ringden (2005). "Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation." <u>Biol Blood Marrow Transplant</u> **11**(5): 321-34.
- Li, X. and X. Cao (2006). "BMP signaling and skeletogenesis." Ann N Y Acad Sci **1068**: 26-40.
- Limbert, C., R. Ebert, et al. (2009). "Functional Signature of Human Islet-derived Precursor Cells compared to Bone Marrow-derived Mesenchymal Stem Cells." Stem Cells Dev.
- Limbert, C., G. Path, et al. (2008). "Beta-cell replacement and regeneration: Strategies of cell-based therapy for type 1 diabetes mellitus." <u>Diabetes Res Clin Pract</u> **79**(3): 389-99.
- Lindholm, D., J. Harikka, et al. (1994). "Fibroblast growth factor-5 promotes differentiation of cultured rat septal cholinergic and raphe serotonergic neurons: comparison with the effects of neurotrophins." <u>Eur J Neurosci</u> 6(2): 244-52.

- Majumdar, M. K., M. A. Thiede, et al. (1998). "Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells." J Cell Physiol **176**(1): 57-66.
- Marie, P. J., J. D. Coffin, et al. (2005). "FGF and FGFR signaling in chondrodysplasias and craniosynostosis." <u>J Cell Biochem</u> **96**(5): 888-96.
- McKeehan, W. L., F. Wang, et al. (1998). "The heparan sulfate-fibroblast growth factor family: diversity of structure and function." Prog Nucleic Acid Res Mol Biol 59: 135-76.
- Musina, R. A., E. S. Bekchanova, et al. (2005). "Comparison of mesenchymal stem cells obtained from different human tissues." <u>Bull Exp Biol Med</u> **139**(4): 504-9.
- Nakayama, N., C. Y. Han, et al. (2004). "A novel chordin-like BMP inhibitor, CHL2, expressed preferentially in chondrocytes of developing cartilage and osteoarthritic joint cartilage." <u>Development</u> **131**(1): 229-40.
- Noth, U., A. M. Osyczka, et al. (2002). "Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells." <u>J Orthop Res</u> **20**(5): 1060-9.
- Oren, A., A. Toporik, et al. (2004). "hCHL2, a novel chordin-related gene, displays differential expression and complex alternative splicing in human tissues and during myoblast and osteoblast maturation." Gene 331: 17-31.
- Pinzone, J. J., B. M. Hall, et al. (2009). "The role of Dickkopf-1 in bone development, homeostasis, and disease." Blood **113**(3): 517-25.
- Pittenger, M. F., A. M. Mackay, et al. (1999). "Multilineage potential of adult human mesenchymal stem cells." <u>Science</u> **284**(5411): 143-7.
- Posey, K. L. and J. T. Hecht (2008). "The role of cartilage oligomeric matrix protein (COMP) in skeletal disease." <u>Curr Drug Targets</u> **9**(10): 869-77.
- Qiu, M., A. Bulfone, et al. (1995). "Null mutation of Dlx-2 results in abnormal morphogenesis of proximal first and second branchial arch derivatives and abnormal differentiation in the forebrain." Genes Dev 9(20): 2523-38.
- Rabier, B., A. J. Williams, et al. (2006). "Thyroid hormone-stimulated differentiation of primary rib chondrocytes in vitro requires thyroid hormone receptor beta." <u>J</u>

 <u>Endocrinol</u> **191**(1): 221-8.

- Rivkees, S. A., H. H. Bode, et al. (1988). "Long-term growth in juvenile acquired hypothyroidism: the failure to achieve normal adult stature." N Engl J Med 318(10): 599-602.
- Sacchetti, B., A. Funari, et al. (2007). "Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment." Cell **131**(2): 324-36.
- Sagiv, E. and N. Arber (2008). "The novel oncogene CD24 and its arising role in the carcinogenesis of the GI tract: from research to therapy." Expert Rev Gastroenterol Hepatol **2**(1): 125-33.
- Sakaguchi, Y., I. Sekiya, et al. (2005). "Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source." <u>Arthritis Rheum</u> **52**(8): 2521-9.
- Schnabel, M., I. Fichtel, et al. (2002). "Differential expression of Notch genes in human osteoblastic cells." <u>Int J Mol Med</u> **9**(3): 229-32.
- Schutze, N., U. Noth, et al. (2005). "Differential expression of CCN-family members in primary human bone marrow-derived mesenchymal stem cells during osteogenic, chondrogenic and adipogenic differentiation." Cell Commun Signal 3(1): 5.
- Shawber, C. J., I. Das, et al. (2003). "Notch signaling in primary endothelial cells." <u>Ann N Y Acad Sci</u> **995**: 162-70.
- Shen, Q. and S. Christakos (2005). "The vitamin D receptor, Runx2, and the Notch signaling pathway cooperate in the transcriptional regulation of osteopontin." <u>J Biol Chem</u> **280**(49): 40589-98.
- Stevens, D. A., R. P. Hasserjian, et al. (2000). "Thyroid hormones regulate hypertrophic chondrocyte differentiation and expression of parathyroid hormone-related peptide and its receptor during endochondral bone formation." J Bone Miner Res **15**(12): 2431-42.
- Stewart, K., P. Monk, et al. (2003). "STRO-1, HOP-26 (CD63), CD49a and SB-10 (CD166) as markers of primitive human marrow stromal cells and their more differentiated progeny: a comparative investigation in vitro." Cell Tissue Res 313(3): 281-90.

- Sundberg, J. P., M. H. Rourk, et al. (1997). "Angora mouse mutation: altered hair cycle, follicular dystrophy, phenotypic maintenance of skin grafts, and changes in keratin expression." Vet Pathol **34**(3): 171-9.
- Szumska, D., G. Pieles, et al. (2008). "VACTERL/caudal regression/Currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5." Genes Dev 22(11): 1465-77.
- Tanaka, I., M. Morikawa, et al. (2005). "Expression and regulation of WISP2 in rheumatoid arthritic synovium." <u>Biochem Biophys Res Commun</u> **334**(4): 973-8.
- Thiery, J. P. and J. P. Sleeman (2006). "Complex networks orchestrate epithelial-mesenchymal transitions." Nat Rev Mol Cell Biol 7(2): 131-42.
- Thomson, J. A., J. Itskovitz-Eldor, et al. (1998). "Embryonic stem cell lines derived from human blastocysts." <u>Science</u> **282**(5391): 1145-7.
- Tusher, V. G., R. Tibshirani, et al. (2001). "Significance analysis of microarrays applied to the ionizing radiation response." Proc Natl Acad Sci U S A **98**(9): 5116-21.
- Vaananen, H. K. (2005). "Mesenchymal stem cells." Ann Med **37**(7): 469-79.
- Vaes, B. L., K. J. Dechering, et al. (2005). "Microarray analysis reveals expression regulation of Wnt antagonists in differentiating osteoblasts." <u>Bone</u> **36**(5): 803-11.
- van der Horst, G., S. M. van der Werf, et al. (2005). "Downregulation of Wnt signaling by increased expression of Dickkopf-1 and -2 is a prerequisite for late-stage osteoblast differentiation of KS483 cells." J Bone Miner Res **20**(10): 1867-77.
- Wakitani, S., T. Saito, et al. (1995). "Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine." <u>Muscle Nerve</u> **18**(12): 1417-26.
- Young, R. G., D. L. Butler, et al. (1998). "Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair." J Orthop Res **16**(4): 406-13.

Danksagung

Die Zusammenarbeit im Team der Orthopädischen Universitätsklinik "König-Ludwig-Haus" Würzburg war vorbildlich und hat mir sehr viel Freude gemacht. Von allen Seiten habe ich nachhaltig Unterstützung erfahren.

Mein Dank gilt dem Ärztlichen Direktor, Herrn Prof. Dr. med. Jochen Eulert, und seinem Nachfolger Herrn Prof. Dr. med. Maximilian Rudert, für die Möglichkeit, in der experimentellen Forschungsgruppe mitzuarbeiten und an ihrer Klinik wissenschaftlich und auch klinisch tätig zu sein.

Meinem verehrten wissenschaftlichen Lehrer, Herrn Prof. Dr. med. Franz Jakob, Leiter des Orthopädischen Zentrum für Muskuloskelettale Forschung, danke ich herzlich für die Überlassung des Themas und seine wertvolle Unterstützung bei der Durchführung der Arbeit.

Herrn Priv.-Doz. Dr. med. Ulrich Nöth danke ich für die stets ausgezeichnete Betreuung sowohl in der wissenschaftlichen als auch in der klinischen Arbeit. Weiterhin möchte ich ihm für die Übernahme des Koreferats danken.

Frau Dr. rer. nat. Regina Ebert danke ich für die vorbildliche, oft zeitintensive Betreuung und Beratung bei der Bearbeitung des Themas. Sie war mir stets eine hilfreiche Ansprechpartnerin.

Mein Dank gilt auch Frau Martina Regensburger für die Einführung in die Techniken der Zellkultur und PCR, Frau Sabine Zeck für die Anleitung bei der Klonierung, Frau Dr. Andrea Heymer für die Einführung in die immunhistologischen Färbungen und Frau Dr. Catharina Limbert für die Überlassung der FACS-Daten.

Allen Mitarbeiterinnen und Mitarbeitern des Teams danke ich herzlich für das freundliche und kollegiale Arbeitsklima, für ihre Geduld und ihre Hilfsbereitschaft.

Abschließend möchte ich noch meinen Eltern und meinem Bruder Stefan danken, ohne deren Unterstützung dieses Studium und diese Promotionsarbeit nicht möglich gewesen wären.