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1. Introduction

1.1. Measles

Measles is a highly transmittable disease that is mainly related to childhood. Acute measles is 

associated with high mortality rates. It can lead to rare but severe, even lethal, complications 

such as pneumonia, encephalitis, acute measles post-infection encephalitis (AMPE), and 

subacute sclerosing panencephalitis (SSPE). Although vaccine-preventable, measles is still a 

major challenge for global healthcare. According to WHO’s 2008 annual report, the disease 

causes approximately 164,000 deaths worldwide per annum and most of the cases occur in 

low-income countries where healthcare infrastructure is lacking (WHO 2009). Humans are 

the only existing reservoir for MV (Gerlier, Varior-Krishnan et al. 1995). Although the virus 

can infect monkeys, primates are not main vectors of transmission (Topley, Wilson et al. 

2005; de Swart 2009). It has been estimated that the vaccination of over 90 percent of 

community is required for prevention of transmission-free condition (Peltola, Heinonen et 

al. 1994; Biellik, Madema et al. 2002). 

The introduction of the global vaccination program against MV has shifted susceptible hosts

from infants to teenagers in industrialized countries. The scenario is still different in 

developing and low-income countries, where children up to 4 years of age are the main 

target of MV. In addition, malnutrition plus poor healthcare system increases the relative 

frequency of MV infection in children under 2 year-old there (Bellini, Rota et al. 1994). 

Therefore, maintaining high vaccine coverage is an accomplishable and efficient step to 

prevent measles outbreaks and spead.     
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1.1.1. MV morphology and genome structure

1.1.1.1. Virus morphology

The MV particle consists of a lipid envelope, acquired from the host cell membrane during 

the budding process, which encloses the viral RNP complex. The complex is comprised of 

N, P and L proteins associated with viral RNA genome. Surface spike-like projections are

made by the transmembrane fusion F and haemagglutinin H proteins (Figure 1-1). It has 

been shown that the cytoplasmic tails of both F and H functionally and physically interact 

with matrix proteins M (Cathomen, Mrkic et al. 1998; Cathomen, Naim et al. 1998; Moll, 

Klenk et al. 2001; Moll, Klenk et al. 2002). The full encapsidation of viral genome makes it 

resistant to RNase degradation.

The viral virions are pleomorphic with size range from 100 to 300nm and can package more 

than one genome per particle  accounts for its diversity in size (Rager, Vongpunsawad et al. 

2002).

1.1.1.2. Genome structure

MV is a prototypic species of Morbillivirus genus. It has a single negative stranded RNA 

genome of about 16kb, which encodes for six structural proteins, in order: 3’, nucleoprotein 

(N), phosphoprotein (P), matrix protein (M), fusion protein (F), haemagglutinin protein (H) 

and large protein (L) (Dowling, Blumberg et al. 1986), as well as three non-structural (V, R, 

C) proteins transcribed from the P gene. 

1.1.1.2.1. Nucleocapsid protein N

The most abundant 60kDa nucleocapsid protein encapsidates viral genomic and 

antigenomic RNA in a ‘rule of six’ manner (Calain and Roux 1993).

In the RNP complex, the N protein is phosphorylated at both serine and threonine in 



INTRODUCTION |  4

contrast to the free N which has only phosphorylated serine. The amino terminus of N is 

highly conserved among MV strains and its conservation was experimentally proven to be 

required for promoting binding to P protein and for self-assembling of RNP complex 

(Bankamp, Horikami et al. 1996). In stark contrast, the carboxyl terminus is highly diverse 

and officially used for genotype assignment.

1.1.1.2.2. Phosphoprotein P and non-structural proteins V, C and R

The 72kDa P protein is abundant in infected cells and a small amount is packed the into

infectious virion. Phosphorylation is mediated by cellular casein kinase II (Das, Schuster et 

al. 1995) and has been shown to be important for P function as polymerase cofactor 

(Horikami and Moyer 1995). The N interacting domains locate at both amino and carboxyl 

termini (Harty and Palese 1995) while the central region is shown to be crucial for 

cytoplasmic retention of N protein (Huber, Cattaneo et al. 1991).

The role of the three non-structural proteins V, C and R is not fully elucidated, particularly 

the R protein. The V protein contains the amino-terminal region of P but a different, 

cysteine-rich carboxy-terminal motif. This protein is translated from mRNAs in which one 

non-templated G residue has been inserted after three genomically encoded Gs (Cattaneo, 

Kaelin et al. 1989). The 40kDa V protein diffusely distributes in MV-infected cells, distinct 

from viral nucleocapsids (Wardrop and Briedis 1991).

The 28kDa C protein is translated from an overlapping P reading frame. This protein is 

abundantly located in the nucleus and in cytoplasmic inclusions of infected cells (Bellini, 

Englund et al. 1985). Its role in MV replication is not fully characterized. Silencing of this 

gene doese not affect virus growth in culture (Radecke and Billeter 1996). However, it may 

contribute to viral pathogenicity and virulence in vivo (Valsamakis, Schneider et al. 1998) as 

also seen in other closely related viruses (Young, Didcock et al. 2000). The defect in MV 
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protein C and/or protein V interferes with the cellular interferon response (Shaffer, Bellini 

et al. 2003; Yokota, Saito et al. 2003) as well as virus growth (Baron and Barrett 2000).   

1.1.1.2.3. Matrix protein M

The 37kDa M protein is translated from an 1,450 nt mRNA which contains 400 non coding 

nucleotides at its 3' ends (Bellini, Englund et al. 1986). In infected cells, it locates below the 

plasma membrane and interacts with the cytoplasmic tail of both glycoprotein F and H

(Cathomen, Mrkic et al. 1998; Cathomen, Naim et al. 1998; Moll, Klenk et al. 2001; Moll, 

Klenk et al. 2002). Its interaction with nucleocapsid is thought to negatively regulate 

transcriptional activity of RNP complex (Suryanarayana, Baczko et al. 1994). In addition, 

restricted expression of M by rapid posttranslational degradation or mutational disruption is 

typically associated with persistent infections in vivo (Sheppard, Raine et al. 1986; Billeter, 

Cattaneo et al. 1994).    

1.1.1.2.4. Fusion protein F

The type I glycoprotein F is synthesized as a precursor, then proteolytically cleaved by a host 

trans-Golgi resident protease to yield a disulfide-linked, biologically functional F1/F2

heterodimer. In addition to proteolytical cleavage, glycosylation is also required for its 

activity (Sato, Kohama et al. 1988; Bolt, Pedersen et al. 1999).

The fusion inhibitory peptide (FIP), which has a similar sequence as polypeptide F1 at the 

amino terminus, inhibits virus-induced cell fusion (Richardson and Choppin 1983). 

Moreover, interaction of a central, linear region of F with H is required for virus-induced 

fusion (Fournier, Brons et al. 1997) and hetero-dimerization of F and H in the ER (Plemper, 

Hammond et al. 2001). The strength of F/H dimerization and fusogenicity are modulated 

by their cytoplasmic tail interaction with M protein (Moll, Klenk et al. 2001; Moll, Klenk et 
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al. 2002; Plemper, Hammond et al. 2002).

1.1.1.2.5. Haemagglutinin H

The type II transmembrane glycoprotein H together with F presents on the surface of the 

virion as a spike-like protrusions. It mediates viral attachment to receptors (section 1.1.2) 

and F-dependent fusion. Unlike that of paramyxovirus, MV H has no neuraminidase activity

(Colf, Juo et al. 2007).  The crystal structure of the wild type H ectodomain reveals a 

membrane distal orbicular-shaped beta-propeller homodimer. Widely distributed N-linked 

glycosylation in the globular domain vertically bends the dimer apart and exposes the 

unshielded putative receptor binding site outwards (Hashiguchi, Kajikawa et al. 2007). 

Besides its receptor binding function, H has a helper function for F-induced fusion (Billeter, 

Cattaneo et al. 1994; Fournier, Brons et al. 1997; Plemper, Hammond et al. 2002). 

Furthermore, epitopes for neutralizing antibodies mostly contain putative binding sites for 

CD150, but not for CD46 explaning the lymphotropsim of the wild-type strain (Hashiguchi, 

Kajikawa et al. 2007; Santiago, Celma et al. 2010). 

1.1.1.2.6. Large protein L

The 220kDa protein L combined with P protein is a multifunctional RNP-specific RNA 

polymerase. It produces mRNA, replicative intermediates and progeny viral genomic RNAs 

(Bankamp, Kearney et al. 2002).
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Figure 1-1: An en face scheme of MV.

An MV virion is shown next to a target cell. MV consists of a single stranded, N-encapsidated 

genomic RNA and associated proteins, including phosphoprotein (P) and polymerase (L) protein, 

packaged in a pleomorphic core composed of matrix (M) protein, all surrounded by a lipids 

membrane envelope derived from host cell. Virally encoded membrane glycoproteins (fusion F and 

hemagglutinin H) are spanning the envelope. CD46 or CD150 on the host cell surface function as MV 

receptors.

1.1.2. MV receptor usage

The key parameter determining viral tropism is receptor distribution. Unlike other members

of Paramyxoviridae, MV does not utilize a sialic acid moiety for virus attachment and entry. In 

vivo MV pathogenesis largely segregates with CD150 as expressed on hematopoetic cells, 

while late in infection other recptor might also be used (Figure 1-1). 

1.1.2.1. CD46

CD46 was first identified as MV binding receptor (Naniche, Wild et al. 1992). This molecule 

is expressed on all cells except for human erythrocytes, which explains the inability of MV to 

agglutinate such cells. CD46 belongs to the regulator of complement activation (RCA) gene 

cluster, which plays a crucial role in innate immunity. 
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CD46 consists of 4 N-terminal short consensus repeats (SCRs), 1-3 serine/threonine-rich 

domains, a transmembrane domain and a cytoplasmic tail (Seya, Hirano et al. 1999). Only

the first two membrane-distal SCR1 and SCR2 participate in MV-H protein binding 

(Manchester, Liszewski et al. 1994; Casasnovas, Larvie et al. 1999). Particularly, two 

sequential proline residues (PP motif) on the protruding loop of SCR1 deeply penetrate into 

a hydrophobic pocket in MV-H protein (Santiago, Celma et al. 2010). CD46 requires N-

glycans on SCR2 to serve as virus receptor (Maisner, Schneider-Schaulies et al. 1994; 

Maisner, Alvarez et al. 1996). Furthermore, CD46 is down-modulated from the surface of 

MV-infected cells (Krantic, Gimenez et al. 1995; Bartz, Brinckmann et al. 1996) or 

uninfected cells contacted by MV particles (Schneider-Schaulies, Schnorr et al. 1996). It is 

clear that CD46 serves as entry receptor for mostly attenuated MV strains or wild-type 

strains that were adapted to grow on Vero cells. Lymphotropic wild-type and freshly isolated 

strains do not interact with and do not down-modulate CD46 (Bartz, Firsching et al. 1998; 

Hsu, Sarangi et al. 1998).

1.1.2.2. CD150

Based on a cDNA library approach, human signaling lymphocytic activation molecule 

(SLAM-CD150) was identified as MV-receptor on lymphoid cells (Ono, Tatsuo et al. 2001; 

Tatsuo, Ono et al. 2001; Erlenhofer, Duprex et al. 2002). This molecule is a CD-2 like 

molecule of the Ig superfamily and is upregulated upon T or B cell activation (Browning, 

Woodliff et al. 2004). CD150 is also found on mature DCs (Kruse, Meinl et al. 2001), 

memory T and B cells, but not on freshly isolated monocytes and immature DCs 

(Minagawa, Tanaka et al. 2001). The induction of CD150 on monocytes involves interaction 

with both wild-type MV-H and Toll-like receptor 2 (TLR2), which is not a MV entry

receptor (Bieback, Lien et al. 2002).
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CD150 consists of two Ig superfamily domains: a membrane-distal V and a membrane-

proximal C. The former domain mediates MV-H binding (Ono, Tatsuo et al. 2001). The 

molecule is down-modulated upon infection or exposure of cell to MV. Although mediating 

MV-H binding to lymphocytes, CD150 of T cell is not involved in contact-mediated 

proliferation inhibition (Erlenhoefer, Wurzer et al. 2001). The interactive site of CD150 

forms a positively charged area complementary to the negatively charged patch on MV-H β5 

blade (Hashiguchi, Kajikawa et al. 2007). In contrast, the CD46 binding site locates on the 

β4 blade, establishing a steric hindrance for coincident engagement of CD150 (Colf, Juo et 

al. 2007). Though positionally different from that of CD46, the PP motif on CD150 extends 

into the hydrophobic MV-H pocket just as efficiently as CD46, which is a likely explanation 

why the vaccine strains can use both structurally unrelated receptors (Santiago, Celma et al. 

2010).  

1.1.2.3. Unidentified cellular receptor(s)

There is accumulating evidence that wild-type MV infects CD150-negative epithelial, 

endothelial and neuronal cells (Hashimoto, Ono et al. 2002; McQuaid and Cosby 2002). In 

other words, the ability of MV to infect CD150-negative cells, albeit with low efficacy, 

suggests the existence of unidentified MV-receptor(s). 

1.1.3. MV-induced immunosuppression

The term anergy was first coined by Von Pirquet in 1908 to describe the loss of delayed-type 

hypersensitivity (DTH) to tuberculin in individuals infected with MV. Immunosuppression 

induced by MV can be described by several features: 1) lymphopenia, which is quickly 

resolved (Ryon, Moss et al. 2002); 2) a Th2-dominated response suppressing a Th1 response 

(Griffin and Ward 1993); and 3) unresponsiveness of PBL to mitogenic or polyclonal 

activation ex vivo (Schneider-Schaulies, Bieback et al. 2002). 
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1.1.3.1. Lymphopenia

MV-induced lymphopenia is transient, but severe, and lymphocyte loss mainly occurs by 

apoptosis (Okada, Sato et al. 2001) which may involve soluble Fas-Ligand (FasL) (Ryon, 

Moss et al. 2002) or surface expression of apoptosis-related molecules such as TNF-related 

apoptosis-inducing ligand (TRAIL), TRAIL-receptors, CD95 (Fas) and FasL (Okada, Sato et 

al. 2001; Ryon, Moss et al. 2002). 

However, the loss of T cells could also take place in secondary lymphatic organs via trans-

infection mediated by productively infected DCs or DCs carrying infectious virus (de Witte, 

de Vries et al. 2008).     

1.1.3.2. MV-driven modulation of DC viability and function 

Bridging innate and adaptive immunity, DCs are thought to be the first targets conveying 

MV to lymphoid tissues. There are several reasons making DCs the most MV-exploited 

vehicle. They are strategically located at sites of viral entry including epithelia of the skin and 

respiratory tract, which is primarily natural site for air-borne virus entry. In contrast to 

epithelial cells, DCs or Langerhans cells do express MV-receptor CD150 both in vitro and ex 

vitro (de Witte, Abt et al. 2006; de Witte, de Vries et al. 2008). Moreover, their capacity to 

migrate to draining lymph nodes upon virus encounter is another advantage for the virus

spread. In line with the hypothesis of MV being carried by DCs for transmission, MV-

infected CD11c+ myeloid DCs were seen in lymphoid tissues of experimentally infected 

monkeys (de Swart, Ludlow et al. 2007) as well as in human cryosections of tonsil and lymph 

node (de Witte, de Vries et al. 2008).

MV infection induces DC maturation comparable to that by LPS or TNF-α in terms of 

surface markers such as CD40, CD80, CD83, CD86 and cytokine release (Klagge, ter 

Meulen et al. 2000; Servet-Delprat, Vidalain et al. 2000). However, the infection affects 
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CD40L-mediated cytokine synthesis as seen in weak induction of IL-12p35 and IL-12p40 

and strong enhancement of IL-10 transcription (Servet-Delprat, Vidalain et al. 2000; 

Bieback, Lien et al. 2002). This, thereby, polarizes the Th response towards a Th2-type. 

Albeit only subtly different from LPS-matured DCs with regard to integrin activation, 

morphological and adhesive properties, MV-infected DCs showed a failure in CCR5 to 

CCR7 switching and chemotaxis which may result in prolongation of tissue residency and 

impairment of parafollicular zone migration (Shishkova, Harms et al. 2007; Abt, Gassert et 

al. 2009).

1.1.3.3. MV-infected DC-induced T cell suppression

DCs have a pivotal role in initiating naïve T cell responses. Virus can highjack DCs as a 

Trojan horses since the cells are able to actively migrate to draining lymph nodes where T 

cells recirculate. Whether DCs support MV transmission to T cells is not fully understood as 

CD150 is barely detectable on naïve T cells (Browning, Woodliff et al. 2004). MV-infected 

DCs are unable to stimulate allogeneic T cell proliferation. Actively replicating virus was 

claimed for this allogeneic inhibition (Grosjean, Caux et al. 1997; Servet-Delprat, Vidalain et 

al. 2000; Vidalain, Azocar et al. 2000).

1.1.3.4. Viral proteins modulating or silencing T cells

Although the percentage of infected PBMCs differs from stage to stage and does not exceed 

5% (Schneider-Schaulies, Kreth et al. 1991; Forthal, Aarnaes et al. 1992), total PBLs are 

unresponsive to mitogenic or polyclonal stimuli ex vivo. There is evidence supporting the role 

of viral proteins in T-cell modulating or silencing. Proliferative arrest can be reversed using 

antibodies against MV-proteins, but not IL-2,-10 or INF-γ (Dubois, Lamy et al. 2001; Laine, 

Bourhis et al. 2005).      
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1.1.3.4.1. The N protein

Cytosolic nucleocapsid protein (N), together with P protein, constitutes the major part of 

RNP complex which encapsidates the viral genome. Unexpectedly, upon release into the 

extracellular compartment after apoptosis and/or secondary necrosis of MV-infected cells in 

vitro, N protein becomes an inhibitory factor inducing cell proliferation and apoptosis via 

FcγRIIB (CD32) or an uncharacterized nucleocapsid receptor (Laine, Trescol-Biemont et al. 

2003; Laine, Bourhis et al. 2005). FcγRIIB is exclusively expressed on B cells as an inhibitory 

feedback receptor, thus it apparently explains the negative effect of antibody production 

seen on the B lymphocytes (Ravanel, Castelle et al. 1997). The immunosuppression role of 

N protein, however, is still a matter of debate since its putative receptor is not expressed on 

T cells.

1.1.3.4.2. The gp complex

There is evidence of the immunosuppressive role of MV glycoproteins in vitro. Bona fide MV-

gp, but not VSV-G, induced proliferation arrest in α/β T lymphocytes in dose- and contact-

dependent manner (Schlender, Schnorr et al. 1996; Bieback, Breer et al. 2003). The gp

complex, but neither single protein, led to immunosuppression. Neither glycosylation nor

fusogenicity is required for proliferative inhibition effect (Weidmann, Fischer et al. 2000; 

Weidmann, Maisner et al. 2000) and human sera or polyclonal antibodies against H, and to a 

lesser extent F, reversed immunosuppression induced by MV-infected DCs in mixed 

lymphocyte reactions (MLRs) (Dubois, Lamy et al. 2001). 

In line with in vitro findings, intraperitoneal inoculation of cells transiently expressing MV 

glycoproteins in cotton rat (Sigmodon hispidus) was sufficient to induce proliferative 

suppression of lymphocytes (Niewiesk, Eisenhuth et al. 1997). The immunosuppression is 
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related to cell cycle retardation or arrest rather than apoptosis (Schnorr, Seufert et al. 1997; 

Engelking, Fedorov et al. 1999; Niewiesk, Ohnimus et al. 1999).  

1.1.3.5. Surface receptor(s) involved in silencing of T cells

MV-induced immunosuppression requires the gp complex, which is also the ligand for 

cellular receptor CD150 and CD46. These are not required for T cell arrest, because this is 

not prevented by CD46 or CD150 specific antibodies (Erlenhoefer, Wurzer et al. 2001).

Thus, it is generally agreed that gp complex interacts with receptor(s) other than 

CD46/CD150 in mediating immune suppression.

1.1.3.6. Signaling pathways targeted by MV

Activation of the phosphatidylinositol-3 kinase (PI3K) triggers Akt activation and 

subsequently cell cycle initiation in T cells. Phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-

dependent activated Akt is recruited into detergent-resistant membrane microdomains 

(DRMs) in close proximity to phosphoinositide-dependent kinase 1 (PDK1), which 

phosphorylates Akt (Waugh, Sinclair et al. 2009). The MV gp inhibited IL-2 or anti-

CD3/CD28 driven Akt kinase activation (Avota, Avots et al. 2001; Avota, Muller et al. 

2004) and hence stable expression of a catalytically active Akt prevented MV-induced 

negative signal to proliferation (Avota, Avots et al. 2001). 

Dampening PI3K activity through phosphatase-mediated depletion of the PIP3 pool can 

negatively regulate lymphocyte activation. SIP110, an alternatively spliced mRNA isoform of 

the lipid phosphatase SHIP145, is found as a consequence of the interaction of MV-gp and 

T cells. When transiently expressed in primary or Jurkat T cells, SIP110 is constitutively 

localized at membrane independently of TCR activation (Avota, Harms et al. 2006). In 

addition, MV contact abrogates Rho kinases activation of the Rac1, Cdc42, but not of 

RhoA, thereby impeding actin cytoskeletal rearrangements in primary T cells upon TCR 
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activation. Consequently, filopodia and lamellopodia formation are completely altered, as are 

fibronectin adhesion and TCR-activated phosphorylation of ezrin/radixin/moesin (ERM). 

Strikingly, actin-based protrusion collapses on MV exposure (Muller, Avota et al. 2006). In 

summary, MV – through its gp complex – targets most survival initiation pathways, which 

renders T cell functionally and physically paralysed. 

1.2. DC-T cell interaction 

1.2.1. Immunological synapse

The term lymphocytic synapse was first coined by Norcross (1984) to describe the similarity 

between T cell-recognition activation process and cell-communication process found in the

neuronal system. It was renamed immunological synapse (IS) by Monks, Freiberg et al. 

(1998) and Grakoui, Bromley et al. (1999). Literally, synapse is a Greek word meaning to 

fasten together. The word is thus used to illustrate the stable junctions of IS, in contrast to 

the promigratory junctions of kinapse (Dustin 2007). Due to limitation of imaging 

technologies, the IS first image was published more than a decade after the term was coined

(Monks, Freiberg et al. 1998). In that image the three-dimensional contacting region 

between a T cell and an APC was revealed as a bulk’s-eye-like structure containing dynamic 

but well-segregated receptor clusters. Anatomically, an IS consists of three distinguishable 

clusters including central-, peripheral- and distal-supramolecular activation cluster (c-, p- and 

d-SMAC, respectively) that physically and functionally promote T cell activation and 

differentiation (Figure 1-2).

A c-SMAC is comprised of central phosphorylated inactive TCR microclusters (MCs), CD28 

and protein kinase C (PKC)-θ locating in close proximity to the p-SMAC (Figure 1-2). The 

continually formed nascent MCs move from d-SMAC towards c-SMAC in a F-actin-

dependent manner and often end up in TCR signal termination (Varma, Campi et al. 2006). 
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Size exclusion of bulky molecules like CD45 occurs simultaneously with MC formation 

because of topological hindrance of TCR-pMHC interactions (Choudhuri, Wiseman et al. 

2005; Varma, Campi et al. 2006).

An annular structure enclosing the c-SMAC is defined as p-SMAC, which constitutes of 

Leukocyte Function associated Antigen (LFA)-1, CD2 and the cytoskeletal linker talin 

(Figure 1-2). The interaction of LFA-1 with its ligand Inter-Cellular Adhesion Molecule 

(ICAM)-1 on an APC facilitates and enhances TCR-pMHC interactions (Bachmann, 

McKall-Faienza et al. 1997). 

CD2 serves both as an intercellular adhesion and a signal transducer since some 

engagements of CD2 in combination with anti-CD3 enhance cytokine secretion and other 

engagements block conjugate formation between T cells and its ligand LFA-3 expressing 

cells (Zhu, Dustin et al. 2006; Espagnolle, Depoil et al. 2007). 

The outermost region of SMAC was lately named d-SMAC, which is enriched for the large 

and bulky phosphatase CD45, (Figure 1-2) which dephosphorylates inhibitory tyrosine 

residue requiring for activating Lck and regulatory tyrosine residue.

The role of cytoskeleton has been recognized in cellular dynamics quite early. Together with 

microtubule network, it plays a crucial role in spatial organization of the IS as disruption or 

inhibition of filamentous actin impairs synapse formation and function (Gomez and 

Billadeau 2008). TCR-induced F-actin reorganization via LAT1 and SLP-6 recruits Vav1-

driven activating Cdc42 and Rac1 which interact with WASp (Wiskott-Aldrich Syndrome 

protein) and WAVE2 complex, respectively. WASp/WAVE2-activated Arp2/3 (actin-

related protein 2/3) coupling to talin and vinculin nucleates newly branched F-actin 

formation (Barda-Saad, Braiman et al. 2005; Nolz, Medeiros et al. 2007). 
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Table 1-1: Components of the IS

SMAC T cell APC

Central (c-SMAC), inner TCR, LBPA*, ESCRT** MHC-peptide

Central (c-SMAC), outer PKC-θ, CD28 CD80/86

Peripheral (p-SMAC) LFA-1, CD2, Talin, F-actin ICAM-1, CD58

Distal (d-SMAC) CD45, F-actin

* LBPA: lysobisphosphatidic acid, a marker for multivesicular body (MBV) formation (Varma, Campi 

et al. 2006)

** ESCRT: endosomal sorting complex required for transport (Vardhana, Choudhuri et al. 2010)

Figure 1-2: Anatomical view of a mature DC-T cell synapse.

The scheme depicts key molecules and ligand pairs that are involved in DC-T cell synapse formation.

In descending order, the central region of the supra-molecular activation complex (c-SMAC)

characterized by MHC-peptide-TCR complex, enhanced by CD4/8. The intracellular domain of TCR is 

associated with CD3ζ, which is phosphorylated via Lck-mediated ZAP70. An annular structure of 

CD28 interacting with CD80/86 is located at the outer c-SMAC, distinct from PKC-θ foci. CTLA-4 can 

compete with CD28 for CD80/86 binding. At the peripheral region of SMAC (p-SMAC), two ligand 

pairs of CD58-CD2 and ICAM-1-LFA-1 are located. The outmost of SMAC (d-SMAC) are occupied by 

CD45 and an actively maintained retrograde flow of actin. APC: antigen-presenting cell, TCR: T-cell 

receptor, MHC: major histocompatibility complex, ZAP70: ζ-chain associated protein 70, Lck: 

leukocyte-specific protein tyrosine kinase, PKC-θ: protein kinase C isoform θ, CTLA-4: cytotoxic T 

lymphocyte antigen 4, ICAM-1: intercellular adhesion molecule 1, LFA-1: leukocyte function-

associated antigen 1.
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1.2.2. Termination of immune response

Following expansion phase, antigen-driven T cell responses wane to maintain lymphocyte

homeostasis. This contraction phase mainly results from “programmed cell death” or 

apoptosis of formerly activated lymphocytes. This also involves the extrinsic (death 

receptor) pathways, since previously activated lymphocytes highly express TNF- family 

receptors such as Fas, CD40 and RANK. 

Recently, semaphorin3A (SEMA3A) has been implicated for promoting Fas translocation 

into DRMs and thus sensitizing leukemic T cells to Fas-mediated apoptosis. (Moretti, 

Procopio et al. 2008).    

1.3. Semaphorins and their role in cell morphology and immune modulation

Since the identification of semaphorins as repulsive neuronal guidance cues in the early 

1990s, more than 20 types of these proteins have been characterized which regulate 

neuronal outgrowth,  cardiogenesis, angiogenesis, vasculogenesis, embryogenesis, 

immunomodulation and tumorigenesis (Neufeld and Kessler 2008; Suzuki, Kumanogoh et 

al. 2008).

Semaphorins (SEMAs) are secreted, transmembrane, and glycosylphosphatidylinositol 

[GPI]-linked proteins that are divided into 8 subclasses - two in invertebrates, five in 

vertebrates and one in viruses - based on their structural homology (1999). All SEMAs 

possess a highly distinct and conversed ~500 amino-acid extracellular (Sema) domain, which 

is also present in their primary receptor plexin family. 

Most membrane-bound SEMAs use plexin for binding and signal transduction, whereas 

secreted SEMAs, in particularly the SEMA-3 subclass, require additionally neuropilin (NP) 

as an obligatory binding moiety (Takahashi, Fournier et al. 1999; Tamagnone, Artigiani et al. 

1999). Furthermore, SEMA4A also interacts with TIM2 on T cells (Kumanogoh, Marukawa 
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et al. 2002), SEMA4D with CD72 (Kumanogoh, Watanabe et al. 2000) or SEMA5A with 

proteoglycans (Kantor, Chivatakarn et al. 2004). 

1.3.1. SEMA receptors

1.3.1.1. The plex family

Nine members of plexins (plex) family constitute the major receptors for vertebrate SEMAs 

and are divided into 4 groups, designated with letters from A to D, which can be further 

subdivided eg. plexA4, plexB3, plexC1 and plexD1 (Figure 1-3).

A typical plexin molecule possesses, in addition to the Sema domain, three PSI domains and 

three IPT (Ig-like, plexins and transcription factors) domains. In its cytoplasmic tail, the 

molecule contains two GAP domains segmented by a Rho GTPase-binding domain (RBD) 

which is hidden in the non-signaling state and becomes conformationally changed upon 

SEMA binding (He, Yang et al. 2009; Tong, Hota et al. 2009). The RBD in B-type plexin is 

shown to physically interact with RhoD, Rhn1 and Rac1 (Tong, Chugha et al. 2007). The 

regulation of Rho GTPase is mediated through its C-terminal binding site including PDZ 

(PSD-95/Dlg/ZO-1)-RhoGEF and RhoGEF (LARG) (Perrot, Vazquez-Prado et al. 2002; 

Swiercz, Kuner et al. 2002).   

1.3.1.2. The NP family

The NP family consists of two members, neuropilin-1 (NP-1) and neuropilin-2 (NP-2). The 

former was first identified as a neuronal recognition molecule (Takagi, Hirata et al. 1991)

and lately as a co-receptor for the SEMA-3 subclass (He and Tessier-Lavigne 1997; 

Kolodkin, Levengood et al. 1997). These two members share about 44% homology in 

amino acid, and contain extracellularly two complement binding (CUB) domains (or a1 and 

a2 domains), two coagulation factor V/VIII homology-like domains (or b1 and b2 domains) 
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and a merphin A5 (MAM) domain (or c domain) (Figure 1-3). The a1/a2 and b1/b2 

ectodomains mediate ligand binding, whereas the c domain is throught to mediate NP 

oligomerization (Kolodkin, Levengood et al. 1997).   

Figure 1-3: Semaphorin receptors.

In vertebrates, there are nine members of plexin and two of neuropilins (NP). The plexin consists of 

four A-types, three B-types, one C-type and one D-type. Plexins are transmembrane receptor

characterized by a Sema domain, followed by three repeated PSI domains and three repeated IPT 

domains. The intracellular domain of plexin possesses a GAP domain which is segmented by a 

GTPase-binding domain. Some plexins also have PDZ binding sites and convertase-cleavage sites.

Neuropilin is characterized by two CUB domains, two FV/FVIII domains and followed by a MAM 

domain. The interactive partner(s) of a particular semaphorin species can be plexin alone or 

neuropilin as coreceptor. s stands for semaphorin, the number signifies the subclass and the 

following letter specifies the subclass member.

1.3.2. Cellular morphology regulation

The hallmark of SEMAs as repulsive cues in neuronal development is well documented. 

However, depending on the target cell and receptors SEMAs also act as an attractive 

guidance molecule (Castellani, De Angelis et al. 2002; Chen, Sima et al. 2008) (Figure 1-4).
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1.3.2.1. SEMA-mediated cellular detachment to ECM via plexin

In resting state, the Sema ectodomain of plexin auto-inhibits constitutive activation of 

plexA1. Upon SEMA3A binding via coreceptor NP-1, plexA1 undergoes a conformational 

change that releases inhibition (Takahashi and Strittmatter 2001), simutaneously with GEF 

FARF2 discharge. The binding promotes conversion of GTPase Rac1 to its active (GTP 

bound) state (Toyofuku, Yoshida et al. 2005). The recruiment of active Rac1 to the Rho 

GTPase binding site in the RGD in turn promotes translocation of the constitutively active 

GTPase Rnd1 to the Rho GTPase binding site where GTPase RhoD can also dock to and 

atagonizes the effect of plexA1-induced collapse (Zanata, Hovatta et al. 2002). Furthermore, 

the open conformation of GAP domains induces intrinsic function of the active integin-

regulator-GTPase R-Ras that leads to GTP hydrolysis. SEMA4D  ligation also induces

integrin-mediated ERM detachment, similar to the mode of action of SEMA3A (Figure 1-4).    

1.3.2.2. Induction of cytoskeletal dynamics by plexin-mediated SEMA

Engagement of SEMA to plexin also contributes to cytoskeletal dynamics including actin 

and microtubule organization in neuronal cells (Figure 1-4). SEMA-induced Rac1 activation 

spatially isolates phosphorylated PAK1 (p21- activated kinase 1) from its downstream 

effector, LIMK1, that decreases phosphorylated level of cofilin required for actin assembly. 

Moreover, SEMA ligation activates p190RhoGAP which in turn inactivates RhoA thus leading

to Rho kinase inactivation. The inactive Rho kinase dephosphorylates cofilin via Rho-

associated coiled-coil containing kinase (ROCK) and LIMK1 (Barberis, Casazza et al. 2005)

both of which mediate cofilin-mediated actin diassembly.     

In addition to actin, SEMA3A/4D also regulates microtubule dynamics by exploiting 

different signaling pathways. Cyclin-dependent kinase 5 (CDK5) is recuited to Fyn kinase 

upon plexA2 activation. The recruiment activates collapsin response mediating protein-2 
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(CRMP2), a downstream subtrate of CDK5,  that leads to dissociation of CRMP2 with 

tubulin dimer and microtubules, thereby disrupting microtuble organization (Fukata, Itoh et 

al. 2002; Arimura, Menager et al. 2005; Uchida, Ohshima et al. 2005; Ito, Oinuma et al. 

2006). A group of proteins, MICAL (molecule interacting with CasL) family, has also been 

implicated in SEMA class 3-mediated axonal guidance via CRMP2.      

In contrast to plexA1, plexB1 does not recruit Fyn upon activation but R-Ras instead. R-

Ras, in addtion to regulating integrin inside-out signaling, can activate PI3K/Akt pathway to 

negate GSK3β activity. Thus, inactivation of R-Ras via intrinsic function of plexin GAP 

attenuates PI3K/Akt pathway, thereby phosphorylates CRMP2 in GSK3β-dependent 

manner and consequently disassembes microtuble dynamics (Fukata, Itoh et al. 2002; Ito, 

Oinuma et al. 2006) (Figure 1-4).

Figure 1-4: The molecular mechanism of SEMA3A induced cellular morphology.

Semaphorin can modulate cellular morphology via microtubule, actin dynamics or integrin affinity. In 

integrin-mediated detachment, the active GAP of plexA1 induces intrinsically enzymatic R-Ras, 

resulting in hydrolyzing of GTP-R-Ras, inactivating the regulator, and thus does not sustain inside-out 

signaling required for integrin-mediated adhesion to ECM. Alternatively, plexA1 or -B1 via its RBD 

domain inhibits actin assembly though Rho-ROCK-LIMK1 pathway. The inhibition exploits PAK or 
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p190RhoGAP, which can be counteracted by LARG and RhoGEF via PDZ domain. The ligation of 

respective semaphorin to plexA1 or -B1 also affects microtubule organization. Although using CRMP-

mediated microtuble pertubation, these plexins use distinct pathways eg. plexA1 exploits CDK5 and 

MICAL in contrast to PI3K/Akt/GSK3β in plexB1 action mode.

1.3.3. Immunomodulatory semaphorins

A gross body of evidence suggests an immunomodulatory role of SEMAs in the immune 

system. However, the mode of action, receptor usage as well as associated molecules are to 

some extent different from those in neuronal cells (Suzuki, Kumanogoh et al. 2008). Thus, 

further investigations are needed to shed light on the roles of immunomodulatory

semaphorins.

1.3.3.1. Semaphorin in DC functions

Although plexins have been well documented in neuronal system, the role of the molecules 

in immune system is not fully elucidated. Recently, the important role of plexA1 has been 

deduced from study of class II transactivator (CIITA) where plexA1 was markedly reduced 

in DCs isolated from CIITA-/- mice in comparison to control littermates and the kinetic of 

plexA1 expression resembled that of MHC-II with some delay. PlexA1 has also been found 

accummulated in the murine IS. Genetic ablation of the molecule results in a poorly 

allostimulatory function of DCs in priming Ag-specific T cells without impairing their 

antigen processing capacity (Wong, Brickey et al. 2003). The effect is due to a reduction in 

actin polarization as well as RhoA activation in DCs that reduces T cell activation (Eun, 

O'Connor et al. 2006). The data clearly demostrate an important role of plexA1 on the IS 

formation and stability, at least on DC side.

1.3.3.2. Semaphorin-mediated T cell activation, differentiation and termination 

response

Recently, secreted SEMA3A has also been reported as a negative immunomodulator. This 
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repulsive ligand is secreted by human mature DCs, activated T cells at the late stage of an 

immune response (Lepelletier, Moura et al. 2006) as well as by tumor cells (Catalano, Caprari 

et al. 2006). SEMA3A exerts its proliferative inhibiton directly on T cells since it blocks actin 

cytoskeletal rearrangement, TCR polarization, and early signals of T cell activation such as 

ZAP-70 and FAK phosphotylation. Importantly, SEMA3A has been proposed to terminate 

normal T cell response by acting on DC-induced T cell proliferation, though receptors 

involved are not really known (Lepelletier, Moura et al. 2006). Hence, the data suggest that 

SEMA3A secretion is spatially and timely controlled for a normal immune response. The 

molecules are also attributed to T cell dysfunction exploiting by tumor cells since T cell 

proliferation and cytokine secretion are inhibited in the presence of SEMA3A, which 

accounts for mitogen-activated protein kinase (MAPK) signaling inhibition (Catalano, 

Caprari et al. 2006).

1.4. Aims

It has been shown that MV-exposed T cells aberrantly regulate actin binding proteins and 

this is associated with microvillar collapse. These cells show a marked reduction in 

phosphorylated levels of ERM and cofilin proteins, both of which are key mediators of actin 

reorganization. In line with this notion, when being analyzed by scanning EM, the majority 

of MV-exposed T cells do not show a typical finger-like projection surface and are unable to 

spread on stimulatory slide (Muller, Avota et al. 2006).  Although immunological synapse 

(IS) structures formed between T cells and MV-infected DCs are indistinguishable from 

those of functional IS in term of CD3 clustering and MHC-II surface recruitment, the 

infected DCs do not support synapse stability as seen in a live cell imaging approach. The 

majority of analyzed conjugates are highly unstable, quickly dissolve within 2 minutes and 

fail to sustain T cell activation. MV glycoproteins on DC surface are most likely involved 
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since swapping of the glycoproteins with VSV-G partially rescues T cell activation 

(Shishkova, Harms et al. 2007). Thus, the data indicate that MV does strongly affect integrity 

of actin dynamics. Since this is a property of SEMA/plexins/NPs interactions which are 

known to regulate IS function and stability, it raises a question whether MV affects 

expression levels of SEMA receptors, in particular plexA1 and NP-1, and impairs IS 

recruitment of these receptors. The effects of MV infection on secretion of the repulsive 

plexin ligand, SEMA3A, are also of interest. To address these questions, the consequences 

of MV infection or exposure on plexA1/NP-1 expression on DCs and T cells, respectively,

were investigated. The role of these molecules was analyzed regarding to IS recruitment and 

stability. In particular, the kinetics of SEMA3A secretion and the effects of this ligand on 

cell motility, cellular collapse and actin dynamics were also studied.
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CHAPTER II
MATERIALS AND METHODS
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2. General methodologies

2.1. Laboratory safety

All experimental procedures were subject to the safety regulations provided by Institut für 

Virologie und Immunbiologie (VIM) safety manual. Attendance at a safety course provided 

by VIM was annually compulsory. Protective gloves and a laboratory coat were worn when 

working with all toxic chemicals or biological agents. All procedures involving living 

uninfected and infected tissue culture cells and human blood samples were carried out in 

Class II laminar biological safety cabinet (NUAIRE Ltd, Germany). Liquid biological waste 

was inactivated with 5% (w/v) sodium hypochlorite overnight prior to disposal. Solid 

biological waste was placed into autoclave bags and inactivated by autoclaving. Radioactivity 

and ethidium bromide wastes were disposed according to Bayerische Julius-Maximilians-

Universität Würzburg instructions. 

2.2. Chemical reagents

The majority of chemicals used were of analytical or molecular biology grade and were 

obtained from Sigma Aldrich or Invitrogen Ltd., Germany. Organic solvents were obtained 

from A. Hartenstein, Germany.

2.3. Sterilization

Glassware and media were sterilized by autoclaving at 1.02 atm (15psi) for 15 minutes at 

115-1200C in a S300 autoclave (Münchener Medizin Mechanik GmbH, Germany). Heat 

labile solutions were sterilized by passage through a 0.22 μm Millex-GV filter sterilizing unit 

(Millipore Ltd., Billerica, USA).
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2.4. Commonly used solutions and buffers

2.4.1. Water

Unless otherwise stated, solutions were prepared in distilled de-ionized water (ddH2O). 

Deionization was achieved by passing distilled water through a Milli-Q2 system (Millipore 

Ltd., Billerica, USA). 

2.4.2. Standard buffers

The pH of all solutions was ascertained using a pH meter (FE20 FiveEasyTM pH meter, 

Metteler Toledo Ltd., USA).

(i) Phosphate buffered saline complete (PBS) (0.136 mM NaCl, 2.7 mM KCl, 1.5 mM 

KH2PO4, 8 mM Na2HPO4, 1 mM MgCl2, 1 mM CaCl2) was sterilized at 1150C.

(ii) Phosphate buffered saline minus (PBS -/-) was prepared as a complete PBS without 

MgCl2 and CaCl2 added.

2.5. Tissue Culture

2.5.1. Solutions and media

All media and tissue culture solutions were obtained from Invitrogen unless otherwise 

stated.

2.5.1.1. Growth media

The growth medium was supplemented with fetal calf serum (FCS), antibiotics (Penicillin 

and Streptomycin) and sodium hydro-carbonate as a pH indicator prior to use. The medium 

was stored at 40C and pre-warmed to 370C prior to use. 

B95a and BJAB cells (section 2.6.1) were grown in RPMI 1640. Prior to use, the growth 

medium was supplemented with FCS, which was added to yield a final concentration of 10% 
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(RPMI-10) for BJAB and 5% (v/v) (RPMI-5) for B95a cell lines.

Human peripheral blood leukocytes (PBL) were maintained in RPMI-10. Additional 

cytokines were supplied if required. 

All cells were incubated at 370C in a 5% (v/v) CO2 humidified incubator with an appropriate 

cell density or until the required level of confluency was attained.

2.5.1.2. Serum

Fetal calf serum (FCS), which had been heat inactivated and screened for the presence of 

mycoplasma, was purchased from Invitrogen.

2.5.1.3. Anticoagulant solution

Anticoagulant solution was prepared by adding 0.14 M NaCl, 2.7 mM KCl, 1.5 mM 

KH2PO4, 4 mM Na2HPO4 and 0.54 mM disodium EDTA into ddH2O and was filter 

sterilized.

2.5.1.4. Trypsin solution

A trypsin solution was prepared by addition of 0.14 M NaCl, 5.36 mM KCl, 5.55 mM 

Glucose, 0.32 mM EDTA, 6.54 mM NaHCO3, 0.25% (w/v) trypsin powder (Sigma-Aldrich, 

Germany) and 0.2% (v/v) Penicillin/Streptomycin to 10 liters of deionized water. Phenol 

red indicator (Sigma-Aldrich) was added to a final concentration of 0.01% (v/v). The 

solution was filter sterilized and stored at -200C.

2.5.1.5. Freezing medium

Freezing medium was prepared by the addition of 10% (v/v) DMSO to FCS. 
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2.5.2. Miscellaneous 

2.5.2.1. Poly-L-lysine

A 0.01% (w/v) solution of poly-L-lysine (PLL) was prepared from 0.1% (w/v) solution of 

PLL (Sigma) in HPLC grade water. This solution was filter sterilized and dispensed in 1 ml 

aliquots into cryotubes (Nunc, Denmark), which were stored at -200C. 12mm cover slip or 

8-chamber slide was coated with 150 μl of PLL per slip or chamber, washed twice with an 

excess PBS, which was air-dried in a flow cabinet for 40 minutes.

2.5.2.2. Lubria-Bertani broth (LB broth)

Tryptone [1% (w/v)], NaCl [1% (w/v)], yeast extract [0.5% (w/v)], and casamino acids were 

dissolved in deionized water, adjusted to pH 7.0. LB was autoclaved and stored at 40C.

2.6. Tissue culture techniques

2.6.1. Cultured cell lines

2.6.1.1. B95a

The B95a cell line is an Epstein Barr virus-transformed marmoset B cell line (Kobune et al., 

1990) and was obtained from Prof. Dr. Jürgen Schneider-Schaulies, University of Würzburg, 

Germany.

2.6.1.2. BJAB

The BJAB is an Epstein-Barr virus (EBV)-negative lymphoblastoid cell line (LCL), 

establishing from an African Burkitt's lymphoma (BL). The cell line contains no detectable 

EBV and the EBV specified antigen EBNA and can be maintained in EBV-independent 

manner (Menezes, Leibold et al. 1975). The cells were obtained from Prof. Dr. Jürgen 

Schneider-Schaulies, University of Würzburg, Germany.
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2.6.2. Maintenance and sub-culturing of B95a and BJAB 

A confluent B95a cell monolayer cultured in a T-175 flask (Bio-Greiner, Germany) was 

trypsinized by first rinsing the cell monolayer with 5 ml of trypsin. After incubation for 20 

seconds at room temperature, the trypsin was decanted into a waste container and another 5 

ml of trypsin was added. The flask was incubated at 370C for 5 minutes. After the cells had 

detached from the plastic, growth medium (20 ml) was added to the cell suspension and the 

cell suspension was passed rapidly through a 10 ml pipette to produce a homogenous cell 

suspension. The cell suspension was equally divided into three T-175 flasks containing 

growth medium (20 ml). 

For virus titration, 5x104 B95a cells were seeded into half area 96-well plate (Costar, 

Corning, USA) one day prior to titration. All flasks and wells were incubated at 370C until 

the cells attained the required level of confluency.

A suspension of BJAB was cultured in T-175 flask (Bio-Greiner) and equally distributed into 

two T-175 flasks containing growth medium every two days of culturing.

2.6.3. Maintenance of stocks of frozen cells

Stocks of BJAB and B95a cells were stored in an -800C freezer. A stock of frozen 

homogenous cell suspension was prepared by adding an appropriate freeze medium (section 

2.5.1.5). The cell suspension was aliquoted into cryotubes (1 ml per tube) (Nunc, Denmark), 

which were transferred to an -800C freezer.

2.6.4. Recovery of cells from storage at -80˚C

A cryotube (Nunc) containing cell suspension (1 ml) was removed from storage (section 

2.2.2.6) and was quickly defrosted by incubation at 370C. This cell suspension was 

transferred to a T-75 tissue culture flask to which the appropriate growth medium (20 ml) 

was previously added. After 24 hours incubation at 370C the flask was examined by phase 
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contrast microscopy. Upon observing attachment of cells to the plastic for B95a and floating 

for BJAB, the growth medium was removed and replaced with additional growth medium 

(20 ml). The cells were incubated until the required level of confluency or density had been 

attained.

2.6.5. Cultured primary cells

Human blood obtained from healthy donors at the Institute for Transfusion medicine and 

Immune hematology, University hospital Würzburg served as a source for peripheral blood 

leukocyte (PBL) isolation. Human PBLs were obtained by density gradient centrifugation.

Briefly, 10 ml of filter-condensed blood were diluted in 30 ml of anticoagulant solution. The 

mixture was overlaid to 9 ml of lymphocyte separation medium (PAA, Germany). Cell layer 

was obtained after 30 minutes centrifugation with low acceleration and de-acceleration. 

Separation medium and anticoagulant solution were removed by two additional PBS -/-

wash steps before adhering on T-75 flask took place. Non-adherent cells were subjected to 

RPMI-5 equilibrated nylon wool for T cell enrichment. The adherent cells were cultured 

over night in RPMI-10 and served as a monocyte source. 

2.6.5.1. Maintenance and sub-culturing of human T cells

Human primary T cells collected from enrichment step (section 2.6.5 ) were ascertained by 

flow cytometry using CD3 antibody as a T cell marker and were kept in RPMI-10 and used 

within 3 days.

2.6.5.2. Maintenance and sub-culturing of human monocyte-derived dendritic cells 

(MDDCs)

Supplemented RPMI-10 containing 250 U/ml IL-4 (Miltenyi Biotech, Germany) and 500 

U/ml GM-CSF (Berlex, Germany) was added to monocytes (section 2.6.5). Freshly 
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supplemented RPMI-10 was replaced every two days of culturing. Immature DCs can be 

collected after 3 day culturing. Mature dendritic cells can be generated from immature 

monocyte derived dendritic cells by adding 100 ng/ml LPS (Sigma-Aldrich) to the culture 

and incubating for one more day. CD11c+ immature and mature dendritic cells were 

ascertained by flow cytometry using CD83, HLA-DR, CD80 and CD86.

2.6.6. Culturing cells on coverslips

For immunocytochemistry of fixed cells, it was necessary to culture cells on 12 mm diameter 

borosilicate glass coverslips (A. Harstenstein, Germany). Coverslips were autoclaved and 

each one was placed into individual wells of a 24-well plate using a sterile forceps. A cell 

suspension of MDDCs (sections 2.6.5.2) was added to each well. The 24-well tray was 

placed into a humidified, airtight container and the atmosphere was adjusted to 5% (v/v) 

CO2. The container was sealed and the cells were incubated at 370C until the required time 

point had been reached. 

For scanning electron microscopy (SEM) of fixed cells, 12-mm glass coverslips were 

chemically modified as described (Crowley and Horwitz 1995). Coverslips were washed 

overnight in 20% H2SO4, rinsed three times in water, neutralized in 0.1 M NaOH, and dried 

for 30 minutes by leaning against the wall of a sterile tissue culture dish lid. The coverslips 

were incubated in 3-aminopropyltriethoxysilane (Sigma-Aldrich) for 10 minutes at room 

temperature, rinsed three times with deionized water, and then incubated in deionized water 

containing 0.5% glutaraldehyde (Sigma-Aldrich) for 30 minutes. The coverslips were rinsed 

in deionized water, placed on parafilm and conjugated with 100 μl of 20 μg/ml fibronectin 

(Sigma-Aldrich) for 1 hour at room temperature. The coverslips were then washed in PBS, 

blocked with 1% (w/v) BSA in PBS for 30 minutes at 370C, placed fibronectin side up in a 

24-well plate and washed three times with sterile pre-warmed PBS before adding T cells or 
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MDDCs (section 2.6.5.1 and 2.6.5.2).

2.6.7. Trypan blue staining

Trypan blue was prepared by mixing trypan blue 0.4% (w/v) in PBS. Trypan blue is a vital 

stain used to selectively color dead tissues or cells blue. It is a diazo dye. Live cells or tissues 

with intact cell membranes are not colored. Since cells are very selective in the compounds 

that pass through the membrane, in a viable cell Trypan blue is not absorbed; however, it 

traverses the membrane of a dead cell. Hence, dead cells are shown in a distinctive blue 

color under a microscope. Since live cells are excluded from staining, this staining method is 

also described as a Dye Exclusion Method.

2.7. Viruses

2.7.1. Virus strains

The lymphotropic wild-type MV strain WTF was isolated in 1990 from peripheral blood 

mononuclear cells (PBMCs) of a patient suffering from acute measles in Germany (Rima, 

Earle et al. 1995), and propagated in the human B-cell line BJAB.

The lymphotropic wild-type MV strain IC-B was isolated in Japan during the outbreaks 

from 1984 to 1988 (Kobune, Sakata et al. 1990). The strain was recovered, tagged with 

enhanced enhanced green fluorescent protein (EGFP), thus designated as IC323-EGFP

(Hashimoto, Ono et al. 2002), and propagated in the human B-cell line BJAB. This strain 

was provided by Prof. Yusuke Yanaki, Kyushu University, Japan.

2.7.2. Virus stock preparation

For primary infection, 5x107 BJAB cells were cultured in a T-75 flask and the virus was 

added to the flask to get a multiplicity of infection (MOI) of 0.01. The flask was then placed 

onto a platform shaker for one hour at 370C to allow the virus to attach to cells. Following 
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this incubation, unbound virus was removed and growth medium was added. Virus-infected 

cells were incubated at 370C and regularly monitored by phase contrast microscopy for the 

development of cythopathic effect (CPE).

For main infection, two day infected BJAB cells in the T-75 flask above were equally 

distributed into ten flasks containing approximately 108 BJAB cells. Cell-associated virus was 

collected by centrifugation. After a quick freeze and thaw step, cell-associated virus was 

collected from the supernatant of thawed cells. The supernatant was aliquoted into 

cryotubes (1 ml per tube) (Nunc), which were transferred to an -800C freezer and served as 

virus stock.

Mock was prepared identical to virus infection except the cells were given an appropriate 

volume of PBS instead of virus.

2.7.3. Tissue culture infectious dose assay

Virus tires were obtained using the 50% tissue culture infectious dose assay (TCID50) using 

the Spearman–Karber method (Ballew 1992). A confluent B95a cell monolayer cultured in a 

T-75 flask was split into two 96-well microtitre plates, which were transferred to a 370C

incubator for 24 hours. The 96-well trays were examined by phase contrast microscopy to 

ensure that a 90% confluent B95a cell monolayer was visible in a representative number of 

wells. The virus aliquot was diluted logarithmically (10-1 to 10-8) in maintenance medium 

(RPMI) and was immersed into ice rack. After the growth medium was removed, each virus 

dilution (800 μl) was added to each of eight adjacent wells. Maintenance medium (800 μl) 

was added to eight adjacent wells as a negative control for cell viability. The microtitre plate 

was incubated at 370C for four days. After this time the number of wells showing CPE at 

each virus dilution was recorded, as were those not showing CPE. The proportion of 

infected to uninfected wells at each virus dilution was recorded and the titre of the virus 
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sample was taken as the reciprocal of the dilution which has infected 50% of the wells.

2.7.4. Inhibition of MV mediated cell-to-cell fusion

Fusion inhibitory peptide (Z-D-Phe-L-Phe-Gly-OH) (FIP) has previously been shown to 

inhibit cell-to-cell fusion in MV infected cells (Norrby 1971; Richardson and Choppin 1983). 

A 1000X stock solution of FIP (0.2 M) was prepared by dissolving FIP (0.5 g) (BACHEM, 

Germany) in DMSO (446 μl). 

2.7.5. Infection of MDDCs

For the purpose of infection, MDDCs (section 2.6.5.2) were infected at an MOI of 1.0 for 1 

hour at 370C. After this time, virus was removed and growth medium containing 250 U/ml 

IL-4 and 500 U/ml GM-CSF plus 200 μM FIP was added. Mock was used as a negative 

control. Cells were monitored by phase microscopy for morphology. At 28 h.p.i. and 48 

h.p.i. supernatant from infected cells were collected, stored at -800C for further analysis. The 

cells then were stained and subjected to flow cytometry for surface marker detection 

(section 2.8.3).

2.7.6. Virus exposure assay

For exposure, UV inactivated virus (1.5J/cm2) was given to T cells at amounts 

corresponding to a live virus MOI of 0.5 for 2 hours at 40C. After this time, virus was 

removed and maintenance medium containing 200 μM FIP was added. Mock was used as a 

negative control. Under these conditions, infection of T cells throughout the experiment 

was completely abolished (Avota, Muller et al. 2004). The cells were used for further analysis 

(section 2.14).
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2.8. Detection of molecules of interest by flow cytometry

2.8.1. Solutions

2.8.1.1. Paraformaldehyde (PFA) fixation buffer

Paraformaldehyde [4% (w/v)] was added to PBS and heated at 650C over night. The 

solution was cooled to room temperature and the pH was adjusted to 7.4 before use.

2.8.1.2. FACS buffer

BSA pH 7 fraction [0.5% (w/v)] was added to PBS -/- plus 0.02 % (w/v) sodium acid for 

longer storage. The pH was adjusted to 7.4

2.8.1.3. Saponin buffer

Permeabilized buffer was prepared by adding 0.33 % (w/v) saponin to FACS buffer pH 7.4.

2.8.2. Monoclonal antibodies and polyclonal antisera

All antibodies, antisera and dyes used, their specificity and the sources from which they were 

obtained are summarized below.

Table 2-1: List of antibodies using in this research

Antibody Dilution Isotype Clone Conjugate Provider

CD3 1:50 (FACS)
Mouse 

IgG1, 
UCHT1 PE BD Pharmingen

CD11c 1:50 (FACS)
Mouse 

IgG1, 
B-ly6 PE BD Pharmingen

CD80 1:50 (FACS)
Mouse 

IgG1, 
MAB104 PE

Immunotech, 

Beckman Coulter

CD86 1:50 (FACS)
Mouse 

IgG1, 

2331 

(FUN-1)
FITC BD Pharmingen

MHCII 1:50 (FACS) Mouse B.8.12.2 FITC Immunotech, 
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(HLA-DR) monoclonal Beckman Coulter

CD71 1:500 (IF)
Mouse 

IgG1
PAL-M1 none Santa Cruz

PLEXA1

(23391)

1:50 (FACS, 

living cells)

Rabbit 

polyclonal
none Abcam

PLEXA1
(32960)

1:50 (FACS, 

fixed cells)

1:500 (IF)

Rabbit 

polyclonal
none Abcam

PLEXA1
(0.1 mg/ml)

1:20-50

(blocking)

Rabbit 

polyclonal
none ECMbiosciences

PLEXA4
(39350)

1:50 (FACS)

1:500 (IF)

Rabbit 

polyclonal
none Abcam

NP-1 

(CD304)

1:50 (FACS)

1:250 (IF)

Mouse 

IgG1

AD5-

17F6
none Miltenyi Biotec

CD43 1:200 (IF)
Mouse 

IgG1
DF-T1 none Santa Cruz

SEMA3A 1:100 (IP)
Rabbit 

polyclonal
H300 none Santa Cruz

SEMA3A 1:500 (WB)
Mouse 

IgG2b
215803 none R&D

Rabbit serum

(0.1-0.2

mg/ml)

1:20-50 

(FACS, 

blocking)

Rabbit 

polyclonal
none Gibco, Invitrogen

Goat serum

(0.1-0.2

mg/ml)

1:20-50 

(FACS, 

blocking)

Goat 

polyclonal
none Gibco, Invitrogen

Goat anti 

Mouse
1:250 (FACS)

Goat 

polyclonal
FITC

Immunotech, 

Beckman Coulter

Goat anti 

Mouse
1:1000 (IF)

Goat 

polyclonal
Alexa 488

Goat anti 

Rabbit

1:500 (FACS)

1:1000 (IF)

Goat 

polyclonal
Alexa 488 Invitrogen
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Chicken anti 

Rabbit

1:300 (FACS)

1:500 (IF)

Chicken 

polyclonal
Alexa 488 Invitrogen

DND99

(Lysotracker)

1:2000 (IF, 

living cells)
Invitrogen

Phaloidin 1:100 (IF) Invitrogen

Anti-H (MV) 1:50 (FASC)
Mouse 

monoclonal
K83 none Our lab.

FACS: Fluorescence activated cell sorting

IF: Immunofluorescence

IP: Immunoprecipitation

WP: Western blot

2.8.3. Immunofluorescent staining of primary T cells or MDDCs

2.8.3.1. Immunofluorescent staining of live cells

Living cells cultured on wells were collected, rinsed three 5-minute times with FACS buffer 

and then incubated in a primary antibody diluted in FACS buffer (50 μl) for 30 minutes at 

40C. Cells were then rinsed for 5 minutes in FASC buffer to remove any non-specifically 

bound primary antibody. The cells were then incubated with the appropriate secondary 

antibody diluted in FACS buffer (50 μl) for 30 minutes at 40C. Following another 5-minute 

wash in FASC buffer to remove any non-specifically bound secondary antibody, cells were 

kept in FACS buffer and subjected to flow cytometry (Calibur, BD). 

2.8.3.2. Immunoflourescent staining of fixed cells

Immature or mature MDDCs grown in 24-well plate were collected and directly applied 4% 

PFA (250 μl per well) to get the final of 2% for 15 minutes. Following fixation, cells were 

carefully washed twice with PBS (250 μl) for 5 minutes before they were stained.

Primary T cells (section 2.6.5.1) were collected and directly applied 4% PFA to get the final 

of 2% for 15 minutes. Following fixation, cells were carefully washed twice with PBS for 5 
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minutes before they were stained.

For extra-cellular staining, fixed cells above were incubated in a primary antibody diluted in 

FASC buffer (50 μl) for 30 minutes at 40C. Non-specifically bound primary antibody was 

removed during a 5-minute wash in FASC buffer. The cells were then incubated in the 

appropriate secondary antibody in FASC buffer (50 μl) for 30 minutes at 40C. At this point, 

non-specifically bound secondary antibody was removed by a 5-minute wash step in FASC 

buffer. The cells were kept in FACS buffer and subjected to flow cytometry (Calibur, Becton 

Dickinson). 

For intra-cellular staining, fixed cells above were permeabilized in Saponin buffer for 10 

minutes. The cells were then carefully washed twice with Saponin buffer for 5 minutes 

before they were stained using the same procedure as extra-cellular staining except that all 

steps were done in Saponin buffer at room temperature.

2.8.4. Immunocytochemical staining of human primary T cells or MDDCs

2.8.4.1. Paraformaldehyde fixation 

Immature or mature MDDCs grown in 24-well plate were collected and spun onto PLL-

coated chamber slides and were incubated for 30 minutes at 40C following by a direct 

application of 4% PFA (250 μl per well) solution to get the final of 2% for 15 minutes. After 

fixation, chamber slides were carefully washed twice with PBS (250 μl) for 5 minutes before 

they were stained or stored at 40C.

Primary T cells (section 2.6.5.1)  were collected and spun onto PLL-coated chamber slides 

and were incubated for 30 minutes at 40C following by a direct application of 4% PFA 

solution to get the final of 2% for 15 minutes. After fixation, chamber slides were carefully 

washed twice with PBS for 5 minutes before they were stained or stored at 40C.
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2.8.4.2. Immunocytochemical staining of fixed cells

Fixed cells cultured on a chamber slides were incubated in a primary antibody diluted in PBS 

(250 μl) containing 1.0% (w/v) BSA for one hour at 40C.

Non-specifically bound primary antibody was removed during three 5-minute washes in 

excess of PBS. The chamber slides was then incubated in the appropriate secondary 

antibody diluted in PBS (250 μl) containing 1.0% (w/v) BSA for 1 hour at 40C.

Non-specifically bound secondary antibody was removed by three 5-minute washes in 

excess of PBS. The chamber was removed and slides were mounted face down on a glass 

slide covered with Fluoromount-G (SoutherBiotech, Germany) and sealed with nail polish. 

2.8.4.3. Detection of filamentous actin in fixed cells

Actin microfilaments were detected using Alexa 594-conjugated phallodin (Sigma), a 

fluorescently conjugated phallotoxin from Amanita phalloides, which specifically binds to F-

actin. 

Fixed cells cultured on a coverslip or wells after treatment (section 2.9) were incubated in 66 

nM Alexa 594 conjugated phallodin (100 μl) in PBS containing 1% BSA (w/v) for 1 hour at 

40C. Excess phallodin was removed by rinsing the cells three times for 5 minutes in excess 

PBS. 

2.9. Tracker and inhibitors

Lysotracker® Red DND-99 (Invitrogen) was dissolved in DMSO and directly applied to 

living DCs at final concentration of 0.5µM for 5min at 370C. The cells were then fixed and 

stained with the molecules of interest as described (section 2.8.4)

Chloroquine(CQ)/phenylarsine oxide(PAO) (Sigma) was dissolved in water/DMSO and 

applied at final concentration of  50µM and 0.1µg/ml, respectively for 24 hrs at 370C. The 

cells were then stained with the molecules of interest as described (section 2.8.3.1)
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2.10. Semaphorin treatment

Human recombinant SEMA3A fused to human Fc fragment (SEMA3A-Fc) and SEMA6A-

Fc (R&D Systems) were dissolved in PBS containing 0.1% (w/v) BSA, aliquoted and kept at 

-200C. Upon treatment, semaphorins were reconstituted in serum-free medium (RPMI-0) at 

a concentration of 150 ng/ml. Human IgG was used as a negative control at the same 

concentration. Culture medium containing semaphorin was carefully added to the cells. 

After 15 minute- or 60 minute-period, cells were fixed with PFA at the final concentration 

of 2%. Three times of 5-minute PBS wash were performed and filamentous actins were 

stained using Alexa 594 conjugated phallodin as described (section 2.8.4.3).

2.11. Mixed leukocyte reaction (MLR)

In these assays, 96-well tissue culture plates (Falcon, CA) were used for co-culturing of DC 

and T cells (ratio 1:10). Cells were pre-incubated with antibodies (ECM Biosciences, USA). 

The culture was performed in the presence of blocking antibodies raised against synthetic 

peptide corresponding to a region within the semaphorin domain in human plexin-A1 (at 

various concentrations) with an appropriate isotype-matched control. After 5 days, 

allogeneic T lymphocyte proliferation was measured by thymidine incorporation after 18-h 

pulses with 1 Ci/well (0.037 MBq/well) [3H]thymidine (Amersham). Cells were then 

harvested with a 96-well harvester (Pharmacia, Germany), collected on filters (Pharmacia), 

and the incorporation of [3H]thymidine was measured using a -plate microscintillation 

counter (Pharmacia) 

2.12. Scanning electron microscopy

T cells were washed in PBS, resuspended in RPMI, transferred onto 12 mm glass coverslips 

chemically coated with human fibronectin (20 g/ml in PBS) (section 2.6.6) and incubated 
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for 45 to 60 minutes at 370C. The cells treated with 150 ng/ml of human IgG served as 

negative control or chimeric human Fc-fused semaphorin-3A (Sema-3A) and Sema-6A for 

15 minutes and 60 minutes. Following treatment, cells were subsequently fixed with 6.25 % 

glutaraldehyde in 50 mM phosphate buffer (pH 7.2) for 50 min at room temperature and 

subsequently stored at 40C overnight. After a washing step in phosphate buffer, samples 

were dehydrated stepwise in acetone, critical point dried, and sputtered with platin/paladium 

before analyzed on ascanning electron microscope (SEM) (Zeiss DSM 962).

2.13. Conjugate formation between DC and T cells

PLL-coated chamber slides were seeded with 105 DCs resuspended in 200 μl RPMI-0. Cells 

were incubated for 30 minutes at 40C. DCs were left untreated or pulsed with a superantigen 

solution [a combination of Staphylococcus enterotoxin A (SE-A) 5 μg/ml and SE-B 5 μg/ml in 

RPMI-10], incubated at 370C for 30 minutes. 4x105 allogenic or autologous T cells 

resuspended in culture medium or superantigen solution, respectively, were added to the 

DCs. Conjugation was performed by incubation for 30 minutes at 370C and stopped by 

fixation with 4% PFA at room temperature for 20 minutes. Cells were then washed twice 

with an excess PBS and blocked with 1.0% (w/v) BSA in PBS for 30 minutes at 40C. The 

fixed cells were incubated with primary antibody diluted in PBS (250 μl) containing 1.0% 

(w/v) BSA for one hour at 40C. Non-specifically bound primary antibody was removed 

during three 5-minute washes in excess PBS. The cells were then incubated with the 

appropriate secondary antibody diluted in PBS (250 μl) containing 1.0% (w/v) BSA for 1 

hour at 40C. Non-specifically bound secondary antibody was removed by three 5-minute 

washes in excess PBS. The chambers were then mounted with 100 μl of Fluoromount-G 

(SoutherBiotech, Germany), covered by a glass slide and sealed with nail polish. 
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2.14. Pseudo immunological synapse formation using CD3/28 DYNAL®

bead

The desired volume of Dynabeads® Human T-Activator CD3/CD28 was washed with an 

excess volume of PBS by keeping on a roller for 5 minutes. Beads were collected by 

centrifugation at 10,000 rpm for 2 minutes and resuspended in RPMI-10. A total of 107 T 

cells in RPMI-10 medium were stimulated by 2x105 resuspended beads for 30 minutes at 

370C in a water bath. The cell suspension was then seeded onto a PLL-coated chamber slide 

for 30 minutes at 40C. Cells were subsequently fixed using 4% (w/v) PFA in PBS at room 

temperature for 20 minutes. The fixed cells were washed twice with an excess PBS and 

blocked with 1.0 % (w/v) BSA in PBS for 30 minutes at 40C. The fixed cells were incubated 

with primary antibody diluted in PBS (250 μl) containing 1.0 % (w/v) BSA for one hour at 

40C. Non-specifically bound primary antibody was removed during three 5-minute washes in 

excess PBS. The appropriate secondary antibody diluted in PBS (250 μl) containing 1.0% 

(w/v) BSA was then added to the chambers and incubated for 1 hour at 40C. Non-

specifically bound secondary antibody was removed by three 5-minute washes in excess 

PBS. The chambers were mounted with 100 μl of Fluoromount-G (SoutherBiotech, 

Germany), covered by a glass slide and sealed with nail polish. 

2.15. Western blotting

2.15.1. Sample preparation

Immunocomplex (section 2.23) was equally mixed with 2X of sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer. Samples were boiled in a 

dry heater for 5 minutes at 1000C and were subjected to SDS-PAGE or stored at -200C.
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2.15.2. Gel electrophoresis

Protein sample were loaded onto a 10% tricine gel, immersed in tricine running buffer and 

placed within a vertical electrophoresis unit (Hoefer, USA). The approximate size of bands 

was determined by the addition of PageRulerTM pre-stained markers (10 μl) onto either side 

of the tricine gel. Proteins were separated at a constant current of 45 mA for 3 hours. The 

tricine gel and nitrocellulose membrane (Protran, Whatman, GE) were transferred to a semi-

dry transfer cassette (Hoefer, USA) and immersed in transfer buffer. Proteins were electro-

blotted onto nitrocellulose membrane for 1 hour. After this time, the nitrocellulose was 

immersed in skim milk blocking buffer [5% (w/v) in PBS] for 20 minutes to reduce non-

specific antibody binding. The nitrocellulose was rinsed twice for 5 minutes in excess PBS-T 

[PBS containing 0.1% (v/v) Tween 20]. The nitrocellulose was incubated overnight at 40C

with the appropriate primary antibody. Following this incubation, non-specifically bound 

primary antibody was removed by rinsing the nitrocellulose three times for 5 minutes in 

excess PBS-T. The gel was then incubated for 1 hour at RT with the appropriate secondary 

antibody. After the gel was rinsed three times for 5 minutes in excess PBS-T, positive bands 

were visualized by immersing the membrane for 1 minute in developing substrate 

(Amersham Biosciences, GE). The bands were then recorded either by a sensitive 

chemiluminescent camera (LAS 3000, Fujifilm) or on an X-ray film (Fuji).

2.16. Amplification of Plasmids

2.16.1. Transformation

100 μl aliquot of E. coli competent cells (Top10 strain) was thawed on ice, then 

homogenously mixed with 50 ng of plasmid DNA and incubated for 5 minutes on ice. 

Transformation was perfomed by a heat shock step at 370C for 5 min followed by 5-minute 

incubation on ice. The bacteria were then resuspened in 1 ml LB-medium without 
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antibiotics. After 30-minute incubation at 370C, 100 μl of bacterial suspension were spread 

onto an agar plate with the appropriate antibiotic. The plate was incubated overnight at 370C

and single colony was picked up for further mini or maxi cultivation.

2.16.2. Endo-free plasmid preparation

Maxi-preparation was performed according to the instruction from the Qiagen EndoFree 

Plasmid Maxi Kit (Qiagen, Germany). This method is to obtain endotoxin-free grade 

plasmid requiring for human-origin cell transfection. The DNA concentration was 

determined by a spectrophotometer.

2.17. Handling and disposal of ethidium bromide

A 100 mg ethidium bromide tablet (Sigma-Aldrich, Germany) was dissolved in 10 ml 

ddH2O to give a solution with the final concentration of 10 mg/ml. The solution was stored 

at 40C and protected from light. Care was taken when handling and disposing of this 

chemical due to its carcinogenic properties. Solid waste contaminated with ethidium 

bromide was transferred to chemical waste bags for incineration.

2.18. Spectrophotometry

A spectrophotometer was used to determine the concentration and purity of double 

stranded DNA at the wavelength of 260 nm (BioPhotometer, Eppendorf). An absorbance 

reading of 1.0 is approximately equal to 50 μg/ml of double stranded DNA or 40 μg/ml of 

RNA. The A260/A280 ratio indicates the purity of isolated DNA. The range from 1.7 to 2.1 

indicates a relatively pure and protein free DNA solution.

2.19. DNA gel electrophoresis

DNA molecules of different sizes were separated and visualized using gel electrophoresis. 
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Agarose gels were prepared by the addition of agarose [0.8% (w/v) A.Hartenstein, 

Germany] to 1X TAE buffer (100 ml). TAE buffer was prepared as a 10X concentrated 

solution using 48.4 g Tris, 20 ml of 0.5 M EDTA pH 8.0 and 11.42 ml glacial acetic acid 

dissolved in 1l ddH2O. The agarose/buffer solution was heated to fully dissolve. The gel was 

cooled to 450C and 5 μl of ethidium bromide (section 2.17) was added. The liquid gel was 

poured into a casting cassette with a 14-well comb. After the gel solidified, it was 

horizontally placed in an electrophoresis tank (Model H5, Series 1087, Gibco BRL). TAE 

running buffer was added to the tank, submerging the gel by 2-3 mm. DNA samples were 

mixed with 1/6th volume of loading buffer [50% glycerol, 0.1% (w/v) bromophenol blue, 

0.1% (w/v) xylene cyanol] and loaded into the well. DNA size markers (Fermentas, 

Germany) were added to the outermost lanes of the gel and the gel was electrophoresed at 

the current of 80 mA until the desired migration was reached.

2.20. Documentation of gel images

DNA fragments in agarose gels were stained by ethidium bromide, which intercalates into 

the double helix. The DNA bands were visualised on an U.V. transilluminator (Intas, 

Germany). The image was digitized using a high-resolution 12-bit CCD camera (Intas, 

Germany).

2.21. Preparation of total RNAs from MDDCs

MDDCs were culture as described (section 2.6.5.2). When indicated the cells were infected 

with IC323-EGFP strain at a MOI of 1.0. At 24 h.p.i, the cells were collected and washed 

once with PBS. RNA isolation was carried out using an RNeasy® isolation kit (Qiagen, 

Germany). Briefly, cells were lysed then the genomic DNA was sheared by passing through 

a 20-gauge needle.  Total RNAs containing in the passed through solution was selectively 

adsorbed on silica-gel membrane. Contaminants were simply removed by sequential wash 
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steps. Optionally, DNase treatment can be added directly to the membrane for complete 

DNA removing. The RNA was then eluted from the membrane and purified RNA was 

quantified (section 2.18) and was stored at -700C.

2.22. RT-PCR amplification of SEMA3A 

2.22.1. Primers

Primers were synthesised Sigma and were supplied in 100 μM solution stock.

β-actin primers were used as referential controls:

Forward 5’-GCA CTC TTC CAC CTT CCT TC-3’

Reverse 5’-TCA CCT TCA CCG TTC CAG TT-3’

The primer for SEMA3A gene was described elsewhere (Kigel, Varshavsky et al. 2008).

5’-AAC GGG GGC TTT TCA TCC-3’ 

5’-CCC TTC TCA CAT CAC TCA TGC T-3’ 

2.22.2.RT-PCR

The Transcriptor one-step RT-PCR kit (Roche, Switzerland) was used to amplify cDNA 

copies of the Sema-3A gene from total RNA extracted from MDDCs. 100ng of isolated 

RNA was used per 25 μl PCR reaction as followed. 

5X buffer reaction 5 μl

Fwd primer 0.4 μM

Rev primer 0.4 μM

Transcriptor enzyme mix 1 μl

Template RNA 100 ng

Water, PCR grade fill up to 25 μl

The RT-PCR reactions were performed as followed 
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1. Denaturation 940C, 30s

2. Annealing 550C, 30s

3. Elongation 720C, 60s

4. Denaturation 940C, 10s

5. Repeated cycles 35X

6. Final elongation 720C, 10min

PCR products were kept at 40C for subsequent analysis by agarose gel electrophoresis 

(section 2.19 and 2.20).

2.23. Immuno-precipitation of soluble SEMA3A in supernatants

Supernatants of DC or DC/T cell co-cultures were harvested at the time intervals indicated 

and immuno-precipitated using 2 μg/ml rabbit polyclonal anti-Sema-3A antibody (H300, 

Santa Cruz). Immune complexes were precipitated using 10 μl/ml protein A/G Plus-agarose 

25% (Santa Cruz), then were washed sequentially in PBS plus protease inhibitors (Sigma) 

containing 0.5 M LiCl and 1% (v/v) Triton, PBS plus protease inhibitors containing 1% 

(v/v) Triton  X100, PBS plus protease inhibitors and analyzed by Western blot (section 

2.15) using 0.4 μg/ml mouse anti-Sema-3A mAb (R&D Systems) followed by an anti-mouse 

HRP-conjugated antibody (Dianova, Hamburg, Germany). Signals obtained after ECL 

development were digitalized and quantified using the AIDA software program.

2.24. Under agarose assay

2.24.1. Experimental setups

Under-agarose assays have been performed as described elsewhere (Lammermann, 

Renkawitz et al. 2009). Briefly, 2.5% UltraPure agarose (Invitrogen) in distilled water was 

heated and mixed with 560C prewarmed RPMI/20% FCS and 2X Hank buffered salt 
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solution (Sigma-Aldrich) at a 1:2:1 ratio, resulting in an agarose concentration of 6.25 

mg/ml. 2 ml of warm agarose-medium mixture was cast in 3.5-cm cell-culture dishes (BD 

Falcon) and allowed to polymerize at room temperature. An attractor hole was punched into 

the agarose and a mixture 1:1 of 1.2 μg/ml CCL19 and 1.2 μg/ml CCL21 was filled into the 

attractor hole. After 30 minutes of equilibration at 370C, 5% CO2, 1x104 DC or 2x104  T cell 

suspension (2 μl) was injected beneath the agarose with a fine pipette tip and 5mm away 

from the attractor hole. Time-lapse video microscopy recording started immediately.

2.24.2.Tracking and quantification of migrating cells

All moving cells in observed field were tracked using ImageJ software, plug-in Manual 

tracking. For DCs, the cells were monitored every one minute for 2 hrs. For T cells, the cells 

were monitored every 20 seconds for 30 mins. Tracked data were transformed into 

trajectory plots and speeds were calculated using plug-in Chemotaxis tool. Mean velocity 

plot and statistic were performed using Graphpad 4.0. Unpaired student t-test was applied, if 

not indicated otherwise.

2.25. FACS-based conjugate analysis

For conjugate formation analyses, DCs were labeled with 1 μM R18 dye in RPMI-5 for 

20min at 370C in incubator. T cells were labeled with 1 μM CSFE in RPMI-5 for 5min at 

370C in incubator. DCs and T cells were left untreated or treated with SEMA3A/6A (150

ng/ml) for 15min at 370C and human IgG at the same concentration was used as negative 

control. Treated DCs and T cells were used directly or washed prior to co-culture in a FACS 

tube. At indicated time points, co-culturing cells were fixed with PFA at the final 

concentration of 2% (w/v).  The cells were washed once with FACS buffer in low speed 

centrifugation manner (400rpm) and subsequently analyzed by flow cytometry. A double 

positive population determined a conjugate.
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Percent of control was calculated using one sample t-test with hypothetical value set as 100.

2.26. siRNA-mediated plexA1 knockdown

For silencing of plexA1, human T cells were transfected according to the manufacturer's 

protocol (DharmaFECT, Thermal Scientific) with siRNA targeting plexA1 (Santa Cruz) or, 

for control, a scrambled siRNA (Sigma, Germany). Two days post transfection, cells were 

recruited into the respective experiments. Aliquots of transfected cells were harvested for 

nucleic acid extraction (Qiagen, RNAeasy Kit) and subsequent RT-PCR analyses (section 

2.21 and 2.22). Forward 5’-CTG CTG GTC ATC GTG GCT GTG CT-3’ and reverse 5’-

GGG CCC TTC TCC ATC TGC TGC TTG A-3’ primers were used for specific plexA1 

amplification (Kigel, Varshavsky et al. 2008). Signals obtained after electrophoresis were 

digitalized and quantified using the AIDA software program (Raytest, Straubenhardt, 

Germany).

2.27. Statistic

All statistics were performed using Graphpad 4.0. Unpaired student t-test was applied, if 

not indicated otherwise.
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CHAPTER III
RESULTS
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3. Results

3.1. Expression of SEMA3A prototypic receptors on human primary T cells

is not grossly altered by MV exposure

It has been previously shown that MV induces microvillar loss on T cells and these cells do

not respond to CD3/28 stimulation (Muller, Avota et al. 2006). Since SEMA/plexA1/NP-1 

interactions are known to regulate actin dynamics and are implicated in IS function 

(Tordjman, Lepelletier et al. 2002; Eun, O'Connor et al. 2006), it raises a question whether

these molecules may account for the loss of actin-based protrusion seen on MV-exposed T 

cells.

It has been suggested that the two prototypic receptors of SEMA3A, plexA1 and NP-1, are 

expressed by human primary T cells (Tordjman, Lepelletier et al. 2002; Catalano, Caprari et 

al. 2006) although plexA1 expression is not directly addressed (Tordjman, Lepelletier et al. 

2002; Catalano, Caprari et al. 2006) and only being confimed on leukemic Jurkat T cells

(Moretti, Procopio et al. 2008). Thus, the first aims were to confirm the expression profile 

of these molecules on human primary T cells and to analyze whether plex-A1/NP-1 can 

contribute to functional IS and are modulated by MV/MV-gp.   

3.1.1. Expression profile of plexA1 and NP-1

In line with the published data, the expression level of NP-1 was low to negligible on freshly 

isolated human primary T cells (Figure 3-1B) as measured by flow cytometry. The 

expression of plexA1 was also low (Figure 3-1A). Interestingly, the expression pattern of 

plexA1, but not NP-1, drastically changed with differently assessed methods. The 

percentages of positive cells as well as mean fluorescent intensities (MFIs) increased upon 

fixation and permeabilization (Figure 3-1, middle and right panels) indicating plexA1 was 
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stored intracellularly. In contrast, NP-1 did not show a marked difference with the tested 

methods. Thus, the data indicate that plexA1 is mostly intracellularly located, where as NP-1

is not.

Figure 3-1: Semaphorin-3A prototypic receptors, plexA1 and NP-1, are expressed on 

human primary T cells.

Expression levels of plexA1 (A) or NP-1 (B) were analyzed on living human primary T cells by flow 

cytometry with different staining methods including living (left panel) fixed (middle panel) or 

permeabilized (right panel) cells. Insert numbers show the percentage of positive cells and mean 

fluorescent intensities (MFI) (percent|MFI). Filled histograms: isotype matched control, open 

histograms: specific antibodies.

3.1.2. PlexA1 and NP-1 expression patterns is not grossly altered by MV 

exposure

The next question was to investigate whether MV exposure affects surface expression levels 

of these molecules. To exclude MV-induced fusion and productive replication, UV-

inactivated MV was used and the experiments were performed in the presence of fusion 

inhibitory peptide (FIP). Human primary T cells were exposed to UV-inactivated MV at 4˚C 
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for 2 hrs in the presence of FIP. For control, mock extract was used. After extensive 

washing, the cells were analyzed by flow cytometry. As shown in Figure 3-2, expression 

levels of both plexA1 and NP-1 were not detectably affected within 2 hrs of MV exposure.

Taken together, the data indicate that both plexA1 and NP-1 are expressed on human 

primary T cells and their expression levels are not altered by MV exposure.

Figure 3-2: PlexA1 and NP-1 expression levels are not detectably affected upon UV-MV 

exposure

Expression levels of plexA1 (A) or NP-1 (B) were analyzed on living human primary T cells by flow

cytometry after 2 hrs exposure to UV-inactivated MV at 4˚C in the presence of FIP. Insert numbers 

show the percentage of positive cells and mean fluorescent intensities (MFI) (percent|MFI). Filled 

histograms: isotype matched control, open histograms: specific antibodies.
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3.2. Polyclonal CD3/28 stimulation causes short-term translocation of 

plexA1 to the T cell surface and increases the percentage of plexA1 as 

well as NP-1 expressing cells on long-term culturing

As shown in Figure 3-1A, the plexA1 is mostly cytoplasmic and it raises a question whether 

it can be shifted to different locations such as the membrane surface. To ensure that all 

experimentally tested T cells were activated, polyclonal CD3/28 stimulation, which mimics

an APC engagement to T cells, was used. The stimulation was monitored over a time course 

of 96 hrs. 

Indeed CD3/28 ligation caused a transient shift of plexA1 to the cell surface indicated by 

MFI increase (Figure 3-3). 30-min stimulation led to a short-lived induction of plexA1 on 

the T cell surface (Figure 3-3A, second from the left). Interestingly, the percentage of 

plexA1 expressing cells was drastically elevated to up to 40% 96 hrs post activation which 

was not seen after 72 hrs (Figure 3-3B). The kinetic expression of NP-1 on T cells is similar 

to that of plexA1 despite it is initially nearly undetectable as determined by

immunofluorescent staining (Figure 3-3C).   
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Figure 3-3: CD3/28 ligation causes a translocation of plexA1 to the T cell surface in

short-term and increases the percentage of plexA1 as well as NP-1 in long-term culture.

(A) Human primary T cells were assessed by flow cytometry for their surface expression of plexA1 

after CD3/28 cross-linking for 0 hour (left), 0.5 hour (second), 1 hour (third) and 2 hours (right). 

Insert numbers show the percentage of positive cells and mean fluorescent intensities (MFI) 

(percent|MFI). Filled histogram: isotype matched control, open histogram: specific antibodies.

(B) Surface expression of plexA1 of T cells was monitored over a time-course of 96 hours. 

Percentage of positive cells following subtraction of isotype control values is shown. 

(C) CD3/28 cross-linked T cells were captured on PLL-coated-slides and stained for NP-1 with various 

intervals indicated.

Experiments were performed in triplicates and one representative out of three experiments is shown.

3.3. PlexA1 is involved in DC-induced T cell proliferation

The engagement of CD3/28 causes a transient shift of plex-A1 to the cell surface (Figure

3-3) indicating the role of this molecule for T cell activation. The importance of 

plexA1/NP-1 in IS function has predominantly been addressed in murine cells (Wong, 

Brickey et al. 2003; Eun, O'Connor et al. 2006). Given its important role in the IS function, 

blockage or interference with its expression and distribution could show an effect on 
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synapse formation, stability or function. To this end, the molecule was manipulated by 

several modes such as exogenous blocking, genetic knock-down and overexpression.

3.3.1. Exogenous blockage of plexA1 directly inhibits T cell proliferation 

As shown in Figure 3-5, plexA1 staining reveals that both DC and T cells express the 

molecule. This raises a question whether plexA1 plays a role in IS function.

To answer the question, T cells and DCs were pretreated with different concentrations of 

neutralizing antibodies prior to onset of the MLR. A rabbit polyclonal serum was used as 

control. As shown in Figure 3-4A, immature DCs stimulated T cells not as efficiently as 

LPS-matured DCs (white and black bar, respectively). The presence of rabbit polyclonal 

serum decreased T cell proliferation but not that pronounced as plexA1 blocking antibodies

did, albeit with differential efficiency.

3.3.2. siRNA-mediated knockdown of plexA1 significantly decreases T cell 

proliferation 

To further strengthen the important role of plexA1 in T cell expansion, human primary T 

cells were transfected for two days with siRNA targeting plexA1 or, for control, a scrambled 

siRNA. The knockdown efficiency was evaluated by RT-PCR with  specific primers for 

plexA1 (section 2.26) as shown in the insert. About 50% of plexA1 mRNA was reduced by 

specific, but not scrambled siRNA two days post transfection. The T cells were then used 

for a functional assay in MLR (Figure 3-4B).

Scrambled siRNA transfected T cells showed a decrease in proliferation to some extent, 

however, plexA1 silencing significantly strengthened the effect.  These data clearly show 

that plexA1 played an important role in the IS, at least on the T cell side.
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3.3.3. Ectopic expression of cytoplasmic tailless, but not full length, plex-A1 

reduces T cell proliferation

To extend our results, human primary T cells were transfected with VSV-G-tagged full 

length plexA1 or a dominant negative version, which lacks the cytoplasmic domain. 

Transfection efficiency was assessed using a VSV-G-specific antibody as shown in the insert 

(about 25%). Similar to siRNA-mediated silencing, ectopic expression of cytoplasmic tailless 

but not the full length of plexA1 abrogated allogeneic T cell expansion to 70%. Although 

overexpression of native plexA1 slightly decreased T cell proliferation, the effect is not 

significantly different from T cells transfected with GFP-coding plasmic used as a control.

Taken together, the data demonstrated that plexA1 on T cells had an important role in DC-

T cell interaction as siRNA-mediated knockdown, exogenous blockage or ectopic 

expression of dominant negative of plexA1 reduced the efficiency of T cell expasion.

Figure 3-4: PlexA1 is involved in T cell proliferation assessed by MLR.
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(A) MLR assays were performed using T cells co-cultured with mDCs left untreated (black bar), 

exposed to a rabbit polyclonal serum (hatched bars) or plexA1 neutralizing antibodies (grey bars) at 

the concentrations indicated for 30 mins at 40C. 

(B) T cells were transfected with scrambled (inset RT-PCR, left lane, and graph, hatched bar) or 

plexA1-specific siRNA (inset RT-PCR, right lane, and graph grey bar) 48 hrs prior to co-culture with 

allogenic mDCs. 

(C) T cells were used for co-cultures with mDCs 6 hrs following transfection of plasmids encoding for 

GFP (black bar), or VSV-G tagged full length (hached bar) or DN plexA1 (grey bar) (see inset for flow 

cytometry using VSV-G by specific (open histograms) or an isotype (filled histograms) with the 

respective percentage of expression indicated), 

A to C: iDCs co-cultured with unmodified T cells (each white bar) were also included into the MLRs 

where T cell proliferation was determined by 3H-thymidine incorporation. Experiments were 

performed in triplicates and means and SEM are indicated. For each, one representative out of three 

experiments is shown.

3.4. PlexA1 and NP-1 are recruited to the IS

The role of plexA1 and NRP-1 on immune cells, in particular T cells and DCs, is not well 

understood. They are implicated in T cell activation by murine or human DCs (Tordjman, 

Lepelletier et al. 2002; Wong, Brickey et al. 2003; Eun, O'Connor et al. 2006) as also evident 

from their recruitment to the IS. 

As having shown in the previous experiments, plexA1 surface expression is transiently 

increased upon CD3/28 ligation, peaks at 30min and is sustained for up to 2 hrs. The 

following experiments were performed to address the fate of plexA1 involved in the 

synapse formation. 

3.4.1. PlexA1 translocates towards the interface formed between T cells and DCs

On murine DCs, plexA1 has been first documented to polarize to the DC-T cell interface 

with a non-punctate distribution (Eun, O'Connor et al. 2006). In line with this finding, 

immunofluorescent staining of autologous/allogeneic DC-T conjugates revealed that there 

was a strong accumulation of plexA1 at the IS between T cell and DCs (Figure 3-5).
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Immature DCs infrequently conjugated to T cells and immature synapses were 

characterized by a homogeneous distribution of TCR (Figure 3-5A-B, upper panels), and by 

diffuse location of plexA1 in DCs and T cells. In contrast, mature DCs established, with 

allogeneic T cells, efficiently ISs where plexA1 strongly co-localized (about 80% of analyzed 

conjugates) at the contact plane and with CD3 as depicted in the histogram plot (Figure

3-5A, right). 

In an autologous system, IS formation is rare in the absence of super-antigen (SA). On

mature DC pulsed with SA, plexA1 and CD3 co segregation was identical to that seen in the 

allogeneic system (Figure 3-5B).

Because both T cells and DCs express plexA1 (Figure 3-5), it is hard to discriminate 

whether the molecule locates to the T cell or DC side. Thus anti-CD3/28 coated beads 

were used to mimic antigen presenting cells (APCs). Evidently, plexA1 was translocated to 

the stimulatory interfaces between T cells and conjugating beads (Figure 3-5C, left), 

indicating that plexA1 in the IS is at least from the T cell side (Figure 3-5A-B).

3.4.2. NP-1 on T cells is recruited to the IS

It has been shown that NP-1 is polarized to the IS on T cells and DCs, and this is beneficial 

for DC-induced proliferation of resting T cell (Tordjman, Lepelletier et al. 2002). In

agreement with that finding, NP-1 on T cells was seen translocated to the contact plane 

formed between these cells and pseudo APCs, anti-CD3/28 coated beads, (Figure 3-5C, 

right) and co-detected with its co-receptor plex-A1 (Figure 3-5D) in allogenic DC co-

cultures. Furthermore, fluorescent staining revealed DCs do express NP-1, also confirmed 

by flow cytometry (section 3.6), the molecule did not translocate towards the contact plane 

(Figure 3-5D).
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Altogether, plexA1 as well as NP-1 is recruited to the stimulatory interfaces in T cells and 

this may potentially play a role in synapse stability and function.

Figure 3-5: PlexA1, but not NP-1 on DC side, translocates towards the immunological 

synapse (IS).
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Immunofluorescent staining of plexA1 labeled in green, and CD3 labeled in red on allogenic (A) and 

SA-pulsed autologous (B) fixed synapses. The intensity profiles for distribution are shown in right

histograms (red line, indicated by white arrows). The frequency of conjugates revealing IS 

translocation of plexA1 in mDC/T cell conjugates was 80% of a total of 35 conjugates analyzed.

Immunofluorescent staining of plexA1 (C, left) or NP-1 (C, right) on T cells activated by CD3/28 

beads (indicated by asterisks).

(E) Immunofluorescent staining of NP-1 (labeled in green), CD3 (labeled in red), and plexA1 (labeled 

in pseudo color blue) of allogenic fixed synapses. The intensity profiles for distribution are shown in 

right histograms (red line, indicated by white arrows). One out of 20 conjugates analyzed is shown.

Scale bar, 5 m. Magnification, 40X.

3.5. MV-driven abrogation of plexA1/NP-1 translocation to the IS

It has already been shown that MV exposure prevents cytoskeletal rearrangement in T cells 

and this is thought to contribute to IS instability (Muller, Avota et al. 2006). PlexA1 and 

NP-1 are translocated towards the IS (section 3.3), playing a crucial role in DC-T cell 

interaction (section 3.3), it raises a question whether plexA1/NP-1 translocation in T cells is 

modulated by MV.

To this end, MV-exposed T cells were stimulated with CD3/28 coated beads and the 

translocation of plexA1/NP-1 to the stimulatory interface formed between cells and the

beads was assessed (Figure 3-6). The plexA1/NP-1 induced shift was scored into three 

different categories. In a nonpolarized-pattern, plexA1/NP-1 showed a rather diffuse 

staining with barely detectable accumulation at the stimulatory interface. In a polarized-

pattern, the molecules depicted a strong accumulation at the interface and the partial-

pattern is an intermediate phenotype. In untreated T cells, the majority of cells showed a 

polarized-pattern of plexA1. In stark contrast, MV-exposed cells mainly had an unpolarized-

pattern. Although mock treatment had an effect on plexA1 redistribution, this was not 

pronounced (Figure 3-6A, plot). Similarly, NP-1 distribution on MV-exposed T cells mainly 

exhibited a nonpolarized-pattern in comparison to untreated and mock-exposed T cells 

(Figure 3-6B, plot).
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Altogether, MV exposure abrogates plexA1/NP-1 translocation towards the stimulatory 

interface in T cells. 

Figure 3-6: Recruitment of plexA1 and NP-1 to stimulatory interfaces are affected by MV 

exposure to T cells. 

MV exposure T cells were activated with CD3/28 beads for 30min, and then stained for plexA1 (A) or 

NP-1 (B). Asterisks indicated beads. Scale bar, 5 m. Magnification, 40X.

Quantitative analysis of plexA1 (A, bottom graph) or NP-1 (B, bottom graph) translocation in T cells 

treated as described above. Cells were scored into three staining patterns (black bar: nonpolarized,

grey bar: partially, white bar: polarized). At least, 30 cells were counted for each experiment.  

3.6. PlexA1 and NP-1 surface expression on maturing DCs is regulated by 

endocytosis 

Aberrant signaling by DCs is thought to account for MV T cell silencing during 

immunosuppression. To analyse as to whether in addition to prevent plexA1/NP-1 IS 

recruitment on T cells, MV infection of DCs impairs T cell activation at the level of 

semaphorin receptors as well, the expression profiles of plexA1/NP-1 on DCs were first 

analysed. Expectedly NP-1 (Tordjman, Lepelletier et al. 2002; Chabbert-de Ponnat, Marie-
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Cardine et al. 2005) (in around 60%) and, so far only described to be expressed on murine 

DCs (Eun, O'Connor et al. 2006), plexA1 were readily detectable on the surface of about 

45% of iDCs (with MFIs of 41.61 and 85.84, respectively), and both were downregulated 

within 24 hrs on LPS maturation (Figure 3-7A). Interestingly, mock or MV-infection caused 

moderate (for plexA1) or no (for NP-1) downregulation confirming earlier observations that 

DC maturation by MV may not be complete (Servet-Delprat, Vidalain et al. 2000). To 

address the mechanisms underlying LPS-dependent plexA1 and NP-1 downregulation, 

markers for endo/lysosomal compartments iDCs and mDCs were used. In iDCs, plexA1 

and NP-1 localized both at the cell surface and in cytosolic compartments not labeled by 

lysotracker (Figure 3-7B, upper row). In mDCs, NP-1, but not plexA1, efficiently co-

localized with lysotracker indicating that its surface downregulation may involve lysosomal 

degradation (Figure 3-7B, middle row). In line with this hypothesis, chloroquine (CQ) 

present during LPS maturation partially rescued surface detection of NP-1 as detected also 

by flow cytometry (in a typical example, percentages of iDCs, mDCs and mDCs+CQ were 

40.1, 13.8 and 23.6, respectively). In contrast, partial co-localization of plexA1 with CD71 in 

iDCs was strongly enhanced in mDCs, indicating surface expression of plexA1 is regulated 

by shuttling through recycling endosomal compartments (Figure 3-7C). Thus, inclusion of 

PAO stabilized and even enhanced surface expression of plexA1, but not NP-1, on mDCs 

(51.3, 12.0, 75.4% on iDCs, mDCs and mDCs+PAO, respectively). Altogether, LPS but not 

MV infection (Figure 3-7D) downregulates surface expression of both plexA1 and NP-1 on 

DCs by endocytosis.  
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Figure 3-7: Both plexA1 and NP-1 are down modulated on LPS-matured DCs.

(A) Surface expression of plexA1 and NP-1 on MDDCs was assessed 24-hour post LPS maturation. 

Percentage of positive cells following subtraction of isotype control values are means of three 

independent experiments with SEMs.

(B) Immunofluorescent staining of NP-1 (labeled in pseudo color blue), plexA1 (labeled in green) and 

lysosomal compartments (labeled in red) in DCs 24-hour post LPS maturation. Right graph: 
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chloroquine (CQ, 10 μM) was simultaneously applied to LPS-containing medium and surface 

expression of NP-1 on DCs was assessed 24-hour post treatment. 

(C) Immunofluorescent staining of plexA1 (labeled in green) and recycling compartments (CD71, 

labeled in red) in DCs 24-hour post LPS maturation. Right graph: phenylarsine oxide (PAO, 0.1

μg/ml) was simultaneously applied to LPS-containing medium and surface expression of plexA1 on 

DCs was assessed 24-hour post treatment. DMSO served as vehicle control.  

(D) Surface expression of plexA1 (first bar each pair) or NP-1 (second bar each pair) on immature (i), 

mature (m), mock or MV-infected DCs was assessed after 24 hrs. 

Scale bar, 5m. Magnification, 40X. Data are representative of 3 independent experiments.  

3.7. Upregulation and early secretion of SEMA3A by MV-DCs

The plexA1/NP-1 ligand SEMA3A released late after activation of T cells or DCs or in 

DC/T cell cocultures acts to block T cell proliferation, and has thus been proposed to avoid 

overactivation or to terminate T cell responses (Lepelletier, Moura et al. 2006). Therefore, 

it’s worth investigating whether MV-DCs could differ from mDCs with regard to SEMA3A 

production. As revealed by RT-PCR experiments, MV-DCs upregulated transcripts 

encoding for SEMA3A over time, and these, though not quantitatively determined, 

accumulated somewhat more efficiently than in LPS-matured cells (Figure 3-8A). 

Supernatants from the very same cultures were used for immunoprecipitation to determine 

levels of secreted SEMA3A (sSEMA3A). Except for iDCs, all cultures produced within 48 

hrs the 110 kD sSEMA3A species (Figure 3-8B) representing the repulsive isoform. In 

addition, a lower molecular weight species was also detected the nature of which is 

unknown as, unlike for other SEMAs (Adams, Lohrum et al. 1997), production of isoforms 

differing in activity has not been described for SEMA3A as yet. Production of sSEMA3A 

from MV-DCs, however, by far exceeded that by mDCs both with regard to kinetics and 

magnitude, with high levels produced already after 24 hrs levels that were not reached by 

mDCs within the entire observation period (Figure 3-8B, bottom graph). To reveal if early 

sSEMA3A secretion also occurred in co-cultures involving MV-DCs, these (as were the 
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control DC cultures) were extensively washed prior to addition of allogenic T cells and 

levels of sSEMA3A were determined over time. Indeed, 110 kD sSEMA3A was detectable 

already 6 hrs after onset of the MV-DC/T cell co-culture, and continuously rose until 48 

hrs where it entered a plateau phase, while, in agreement with published observations, 

release of sSEMA3A in LPS-DC/T cell cultures was seen only after 72 hrs (Figure 3-8C). 

For unknown reasons, the mock prepation also caused some sSEMA3A production from 

DCs (Figure 3-8B and C). Collectively, MV infection of DCs promotes early 

overproduction of a repulsive plexA1/NP-1 ligand SEMA3A, especially in the presence of 

allogenic T cells. 
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Figure 3-8: MV infected DCs promote early production of soluble SEMA3A, particularly in 

the presence of allogeneic T cells.

A. RT-PCR analysis of SEMA3A transcripts (or, for normalization, β-actin).

B. SEMA3A (110 kD; indicated by the arrows) was detected in immunoprecipitates of supernatants of 

the different DC species (MV infection was 65% after 48 hrs). Quantification of SEMA3A secretion 

was determined by comparison of band intensities to a defined SEMA3A-fused-Fc protein. 

C. SEMA3A (110 kD; indicated by the arrows) was detected in immunoprecipitates of pooled 

supernatants of three independent co-cultures of the indicated allogeneic DC species and T cells. 

Infection levels for MV-DCs ranged between 60 and 80% after 48 hrs.  Data were quantified as in B. 

A-C. Lanes represent iDCs alone (each lane 1), or exposed to LPS (mDCs; each lane 2), mock (each 

lane 3) or MV (each lane 4) analyzed at the time intervals indicated. Quantifications were done using 

AIDA software (each bottom graphs). In A and B, each one out of three independent experiments is 

shown.

3.8. SEMA3A and, to a greater extent, SEMA6A causes a transient loss of F-

actin and microvillar extension in T cells

So far, SEMA3A-induced collapse has been described only for neuronal outgrowth (Aizawa, 

Wakatsuki et al. 2001; Brown and Bridgman 2009). Recently, interference with TCR 

polarization and early signal transduction has indicated SEMA3A-dependent inhibiton of 

actin cytoskeleton reorganization (Lepelletier, Moura et al. 2006). Therefore, it remains to 

be determined whether a similar effect as already seen in neuronal system does apply to T 

cells.

3.8.1. SEMA3A and -6A cause a transient loss of F-actin, while front-rear

polarization remains unaffected 

To answer this question, FN seeded T cells were exposed for various intervals to IgG 

(included for control) or recombinant SEMA3A (SEMA3A-Fc) and analysed F-actin 

content of the cells. SEMA3A, but not IgG significantly decreased the average mean 

intensity of F-actin in T cells within 15 mins which then returned to normal within 60 mins 

(Figure 3-9A upper row, and graph). Strikingly, T cells exposed to recombinant SEMA6A 
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(SEMA-6A-Fc), initially included as a further negative control, also revealed a transient loss 

in F-actin, identical to that induced by SEMA3A (Figure 3-9A, bottom row and graph). 

SEMA6A binds plexA4 rather than plex-A1, and in line with its biological effect in our 

system, we readily detected expression of plexA4 on a substantial fraction of primary 

human T cells (Figure 3-9A, bottom left panel).

The next step was to analyze the front-rear polarized phenotype of SEMA-treated T cells 

since transient defect on F-actin could lead to a mislocalization of receptors required for 

cellular function. After application of SEMAs for different intervals, FN seeded T cells were 

stained for F-actin and CD43, to visualize lamellipodia and uropods, respectively. Despite 

SEMA treatment caused a temporal loss of F-actin, the treatment had no effect on front-

rear formation in FN-seeded T cells (Figure 3-9B). 

3.8.2. SEMA3A and SEMA-6A cause transient loss of microvillar extensions in T 

cells

The data presented in Figure 3-9A raises a question whether a transient effect on F-actin 

content correlates with an alteration in actin-based protrusion. To obtain higher resolution 

for image documentation, treated cells were analyzed by scanning electron microscopy. This 

method revealed that, in agreement with immunofluorescent staining, SEMA3A and 

SEMA6A exposure did not interfere with the ability of T cells to retain their polarized 

phenotype on the FN substrate (Figure 3-9C, upper right graph). However, in accordance 

to their loss of F-actin (Figure 3-9A), the integrity of their microvillar extensions was 

effectively lost with 15 mins, which fully recovered within 60 mins (Figure 3-9C, lower right 

graph). Thus, ligation of SEMA3A and -6A receptors on T cells causes a rapid, transient 

loss of actin-based protrusions. 
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Taken together, ligation of SEMA3A and -6A receptors on T cells affects actin turnover 

and dynamics in T cells transiently causing loss of membrane protrusions, yet not of front-

rear polarization on FN.

Figure 3-9: SEMA3A and SEMA6A cause transient loss of F-actin and microvillar 

extensions in T cells. 

A. T cells seeded onto FN-coated slides were exposed to SEMA3A (left panel, upper row), SEMA6A 

(left panel, bottom row) or, for control, IgG, for the time intervals indicated, fixed and stained for F-

actin using binding phalloidin-Alexa 594. Scale bar, 5 m. Magnification, 40X. In addition, plexA4 was 
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detected on living, primary T cells by flow cytometry (filled histogram; open histogram showing the 

isotype control antibody staining; left bottom panel). Quantification of F-actin intensity was 

performed using ImageJ software, function Measure (right panel). At least, 30 cells were counted for 

each experiment. p values from Student's unpaired t-test are indicated.

B. One hour following seeding onto FN, T cells were left untreated (left panels) or exposed to IgG 

(second panels), SEMA3A (third panels) or SEMA6A (right panels) for 15 (upper row) or 60 (bottom 

row) mins prior to fixation and detection of F-actin and CD43. Representative examples of each 20 

analyzed are shown. Scale bar, 5 m. Magnification, 63X.

C. T cells seeded onto FN-coated slides were fixed after 15 mins (left panels and right graph) or 60 

mins exposure to SEMA3A, SEMA6A or IgG (right graph) and analyzed by SEM. Cells (examples are 

shown in the left panels) were scored into morphological categories (round versus polarized and null 

versus microvillar). Each 100 cells were recruited into the analysis (right graph). Scale bar, 2 m. 

Magnification, 5000X.

3.9. SEMA3A reduces the mean velocities of DCs but not T cells under 

“semi-3D” migratory condition

It has been shown that leukocyte migration can be integrin-dependent or -independent. In a

semi-3D setup, migratory leukocytes are solely driven by an anterior actin flow. The data 

presented above show a transient loss of F-actin and microvilli upon SEMA treatment. 

Therefore, it raises a question whether this impairs the migratory capacity of treated cells. 

To answer this question, SEMA-preincubated DC/T cells were injected under an agarose 

layer (Figure 3-10A), triggered active movement using chemokines, CCL19 and CCL21, and 

monitored the movement of cells for 30 mins (T cells) or 2 hrs (DCs). As a control, we used 

IgG-treated cells.

Although pretreatment with IgG reduced the mean velocities of DCs (Figure 3-10B, bottom 

graph, black triangles) and T cells (Figure 3-10C, bottom graph, black triangles), the 

reduction is not significant in comparison to untreated cells (Figure 3-10B-C, bottom graph,

black squares). Both SEMA3A and-6A treatments led to a significant reduction of DC 

speed (Figure 3-10B, bottom graph, open circles and diamonds), with a greater extent on 

SEMA6A treatment (Figure 3-10B, bottom graph, open diamonds). Similarly, SEMA6A 
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treated T cells also showed a marked retardation in mean velocity (Figure 3-10C, bottom 

graph, open diamonds). Unexpectedly, SEMA3A pretreated T cells, which transiently lost 

F-actin, did not dectectably reduce speed, though the differed significantly from untreated 

cells (Figure 3-10C, bottom graph, open circles). Hence, SEMA treatment reduces the mean 

velocities of DCs but not T cells treated with SEMA3A under semi-3D migratory condition.     

Figure 3-10: SEMA3A and SEMA6A affect on DC migration but not T cells.

A. Schematic set-up of under agarose assay, adapted from (Renkawitz, Schumann et al. 2009)
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B. Montage micrographs obtained in under agarose migration assays  depicting migrating T cells left 

untreated (bottom panels, black squares) or pre-exposed to IgG (bottom panels, black trinagles), 

SEMA3A (bottom panel, open circles) or SEMA6A (bottom panels, open diamonds) for 15 mins under 

agarose within the indicated time schedule (mins) in response to CCL19/21(each at 1.25 μg/ml). 

Cells (at least, 30 to 90 cells for each experiment) were traced using ImageJ, plugin Manual tracking, 

and mean velocities were calculated using ImageJ, plugin Chemotaxis tool. Graphs showed the speed 

of tracked DCs (B, bottom graph) or T cells (C, bottom graph), with mean velocities indicated [X] in 

m/min. One representative out of three independent experiments is shown. Scale bar, 10 m. 

Magnification, 10X.

3.10. DC/T cell conjugate formation decreases in the presence of SEMAs

SEMA3A secretion has been shown to inhibit early events in TCR-induced signaling via the 

interference with actin cytoskeletal rearrangement and kinase phosphorylation (Lepelletier, 

Moura et al. 2006). It’s worth determining whether this negative regulation could result in a 

decrease in DC-T cell conjugate frequency. To address this question, R18 labeled DCs and 

CSFE-labeled T cells were pre-exposed to IgG (served as control) and SEMA3A or -6A for 

15 min and set up an allogenic reaction with or without a washing step. Conjugate 

formation was determined by flow cytometry gated on the DC population which is 

simultaneously positive for CSFE. IgG treated cells were set as 100%.

Over time, the frequency of the double positive population increased, reaching the plateau 

at 20 min. The difference between treatments was only visible at 30-min time point (Figure

3-11A-C, all left graphs). At this point, the presence of SEMA3A or, with a greater extent, 

SEMA6A significantly inhibited conjugate formation (p<0.005) (Figure 3-11A, right graph). 

Although DCs or T cells only pretreated with SEMA3A/6A slightly decreased in the 

percentage of conjugate, it did not receive statistically relevance as compared to the IgG 

control (Figure 3-11B-C). Strikingly, the presence of SEMA6A but not SEMA3A in DC-T 

cell co-culture significantly inhibited a MRL and the effect was not synergistic when these 

two SEMAs were combined (Figure 3-11D).
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Figure 3-11: SEMA3A and SEMA6A affect DC/T cell conjugate formation and only 

SEMA6A has an effect on MLR. 

A. Conjugate formation between CFSE-labeled T cells and R18-labeled DCs pre-exposed to for 15 

mins and in the presence of IgG (right panel, black triangles, left panel, white bar), SEMA3A (right

graph, open squares, left graph, black bar) or SEMA6A (right graph, open triangles, left graph, grey 

bar) for the time intervals indicated was determined after fixation by flow cytometry (gating of 

double positive DCs) (left graph). For quantification, IgG treated controls were set as 100% (right

graph).  

Either R18-labeled DCs (B) or CFSE-labeled T cells (C) was pre-exposed for 15 mins to IgG (right

graph, black triangles, left graph, white bar), SEMA3A (right graph, open squares, left graph, black 

bar) or SEMA6A (right graph, open triangles, left graph, grey bar). The cells were extensively washed 

and conjugate formation with indicated time intervals was determined after fixation by flow 

cytometry (gating of double positive DCs) (left graph). For quantification, IgG treated controls were 

set as 100% (right graph). 

D. T cells were co-cultured with mDCs (m) in the absence (black bar) or presence of IgG (hatched

bar), SEMA3A (grey bar), SEMA6A (hatched grey bar) or combination of SEMA3A/6A (striped bar). 

iDCs (i) co-cultured with T cells (white bar) were also included into the MLRs where T cell 

proliferation was determined by 3H-thymidine incorporation. 

Experiments were performed in triplicates and means and SEMs are indicated for each one 

representative out of three experiments. p values (student's unpaired t-test) are indicated.
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4. Discussion

It has been shown that T cells which have been exposed to MV do not expand on 

stimulatory slides and lack surface microvillar structures (Muller, Avota et al. 2006). DCs 

infected with MV do not support synapse stability and are thus unable to sustain T cell 

activation (Shishkova, Harms et al. 2007). This suggests that MV strongly affects the 

integrity of actin dynamics. But the cellular mechanism by which MV alters actin dynamics is 

incompletely understood.   

Bridging innate and adaptive immunity, DCs are able to mount and determine viral immune 

responses, but also to support viral transmission to T cells and to be targets for viral 

immunomodulation, thereby being thought to be the first targets conveying MV to 

lymphoid tissues. Albeit only subtly different from LPS-matured DCs with regard to integrin 

activation, morphological and adhesive properties (Shishkova, Harms et al. 2007), MV-

infected DCs show a functional impairment (Klagge, ter Meulen et al. 2000; Servet-Delprat, 

Vidalain et al. 2000; Abt, Gassert et al. 2009). Recently, it has been shown that mature DCs

alone release repulsive SEMA3A and this secretion is delayed in the presence of allogenic T 

cells (Lepelletier, Moura et al. 2006).

Since interference with actin dynamics is a property of SEMA/plexin/NP interactions 

which are known to regulate IS function and stability, it raised a question whether 

plexA1/NP-1 could contribute to MV-induced collapse of T cell protrusion. To address this 

question, the first aims were to understand the mode of regulation and basic functions of 

the two receptors - plexA1 and NP-1 - in IS formation and function by analyzing their 

expression profile on T cells and DCs. Then the next questions were to investigate on how 

MV modulates these two receptors in T cells after exposure to the virus and whether MV 

infection modifies the kinetic of secretion of repulsive plexA1/NP-1 ligand, SEMA3A.
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4.1. Basic regulation of plexA1 and NP-1

4.1.1. Basic regulation of plexA1 and NP-1 in T cells

To approach these questions, the expression patterns and basic regulations of plexA1 and 

NP-1 in T cells and DCs were first investigated. Although there are some indirect evidences 

of plexins being expressed on primary T cells and it is also shown on leukemic Jurkat T cells 

that plexA1 is expressed at least at mRNA level, the expression patterns of plexA1 has not 

been directly studied (Catalano, Caprari et al. 2006; Moretti, Procopio et al. 2008). In this 

present study, the data indicated that plexA1 was expressed on human primary T cells 

(Figure 3-1A) although its expression patterns were different from those generated by other 

methods such as fixation or permeabilization. On living cells, the expression of the molecule

was low, while expression levels in fixed cells were high. This indicated that the majority of 

plexA1 was stored intracellularly (Figure 3-1A). 

So far, little is known about the role of plexA1 in the function of T cells. The presented data 

are now showed that plexA1 was an important component of IS function. By using CD3/28 

ligation activation, it demonstrated that this molecule translocated transiently to the surface 

of T cells. The translocation exhibited a peak at 30 min after activation (Figure 3-3). The 

localization of plexA1 was further investigated using allogenic DCs. This interaction showed 

an accumulation of plexA1 at the stimulatory interface between T cells and DCs. To 

corroborate that plexA1 was indeed contributed by T cells, we used CD3/28 coated beads,

which mimic antigen-presenting cells - (APCs). This method showed that plexA1 is also 

accumulated at the interface between T cells and the beads (Figure 3-5). Due to technical 

limitation, spatial location of this molecule within IS, however, could not be elucidated, so 

that it remains elusive whether it is part of the c-SMAC or p-SMAC. Furthermore, the 

disruption of T cell expansion via several methods including siRNA-mediated knockdown, 
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exogeneous blockage or overexpression of dominant negative version of plexA1 (Figure 3-4) 

indicated the important role of plexA1 in IS stability and function. This study is the first to 

document the important role of plexA1 in human primary T cells.

The importance of NP-1 in the IS has been established in murine and human system. In line 

with published data, surface expression level of NP-1 remained very low (Figure 3-1B) and 

NP-1 was co-detected with CD3 at the interface between human T cells and DCs, as well as 

between human T cells and stimulatory beads (Figure 3-5). Unlike murine system, NP-1 on 

human T cells is not a Treg marker since it can be upregulated on up to 20% of cells after 

24-48 hrs of CD3/28 or PMA/ionomycin activation [Milpied, Renand et al. (2009), and 

unpublished observations]. Notably, both plexA1 and NP-1 were upregulated at very late 

stage of CD3/28 activation on T cells (Figure 3-3) which timely coincided with the secretion 

of the plexA1/NP-1 ligand SEMA3A (Lepelletier, Moura et al. 2006). Since the repulsive 

role of SEMA3A in IS formation has been suggested (Lepelletier, Moura et al. 2006), it 

seems that the late upregulation of plexA1/NP-1 on activated T cells plays a role in 

terminating a normal immune response.

Accumulating evidence suggests that semaphorin receptors, plexA1/NP-1, known to act as 

guidance cues in neuronal pathfinding, play an important role in regulating immune 

functions, especially at the level of the IS (Takahashi, Fournier et al. 1999; O'Connor and 

Ting 2008). Due to their ability to regulate adhesion, their expression profiles and ligands 

determine if they have a stabilizing or repulsive activity and, for immune cells, this is of 

particular importance in cell migration and conjugate formation, efficiency and duration

(Casazza, Fazzari et al. 2007). This has been specifically highlighted for the plexA1/ NP-1 

complex for which a dual role in the IS has been evidenced, generally by supporting initial 

formation and IS function, potentially by self-interactions or with unknown ligands (Ohta, 

Mizutani et al. 1995; Tordjman, Lepelletier et al. 2002), while, at late stages, as receptors for 
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the repulsive ligand SEMA3A which has been linked to termination of T cell activation

(Catalano, Caprari et al. 2006; Lepelletier, Moura et al. 2006).

The self-interactions of NP-1 has been proposed and experimentally proven. This is thought 

to mediate the interactions between human DCs and T cells that are essential for initiation 

of the primary immune response (Tordjman, Lepelletier et al. 2002) or between murine 

iDCs and Treg during antigen recognition leading to a “default” suppression of immune 

response in the absence of danger signals (Sarris, Andersen et al. 2008). In contrast to the 

murine system, NP-1 in humans is not restricted to Treg (Milpied, Renand et al. 2009) and 

in agreement with this the molecules was found expressed low to negligible in 3 to 5 % of 

freshly isolated T cells (Figure 3-1). 

Like NP-1, plexA1 expression was also low (Figure 3-1), ranging between 4 to 10% of 

human PBLs. The molecule was expressed on both T cells and DCs, and translocated 

towards the interfacial plane of DC/T cell interactions. Because it has already been shown in 

neuronal cells that plexA1 is homotypic interactions (Ohta, Mizutani et al. 1995), this raises a 

question whether plexA1 could, like NP-1, self-interact to support initial formation and IS 

function. 

4.1.2. Basic regulation of plexA1 and NP-1 in DCs

Similar to the murine system, plexA1 was expressed on human DCs (Figure 3-7) although 

the expression pattern was quite different. In murine DCs, the molecule is detected as 

cytoplamic protein in immature DCs and becomes primarily membrane located upon 

TNF-α maturation (Eun, O'Connor et al. 2006) that is in contrast to what has been seen in 

this study. In humans, LPS-maturated DCs downmodulated plexA1 (Figure 3-7). This 

difference could be species or methodology specific. In the favor of the latter explanation, 

this study was performed to measure the surface expression of plexA1, but not the total 
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level like it was done in the study of Eun, O'Connor et al. (2006). Moreover, the expression 

level drastically increased when fixation was applied (data not shown). Despite being 

downmodulated from the cell surface on mDCs, plexA1 was not subjected to protein 

degradating but to recycling compartments, suggesting that the molecule might be needed 

for mDC function and can shuttle back to the membrane upon DC-T cell interactions. 

Hence, it remains elusive why mDCs downmodulate plexA1 after LPS treatment.

It has been shown that NP-1 is expressed on human DCs (Tordjman, Lepelletier et al. 2002; 

Chabbert-de Ponnat, Marie-Cardine et al. 2005). However, the fate of this molecule after 

DC maturation or upon pathogen encounter has not been fully characterized. LPS-driven 

maturation promoted the downregulation of NP-1 from DC surface (Figure 3-7), which is in 

contrast to what has been observed by Tordjman (2002). The disagreement between the 

presented data and theirs could be due to methodological differences since in Tordjman’s 

study, mature DCs were generated using TNF-α/IL-1β while LPS was used in this study 

instead. This raises a question whether NP-1 plays a redundant role in IS stability and 

function since DCs generated by both methods seem to be stimulatory. In stark contrast to 

plexA1, NP-1 on mDCs was routed to lysosomes for protein degradation (Figure 3-7C), 

supporting the idea of the redundant role of this molecule.

4.2. MV-driven modulation and consequences

Given the importance of plexA1 in T cell activation, the finding that its recruitment to 

interfaces with stimulator beads is impaired is likely to efficiently interfere with IS efficiency 

as well. The inability of MV-exposed T cells to organize a correct synapse architecture has 

previously been described (Muller, Avota et al. 2006) and the established interference of MV 

signaling with actin cytoskeletal dynamics expectedly accounts for aberrant sorting of 

receptors probably also including plexA1/NP-1 to this structure (Figure 3-6). This could, 
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however, not directly be confirmed in conjugates between MV-DCs and T cells because the 

majority of these is highly unstable (Muller, Avota et al. 2006; Shishkova, Harms et al. 2007).

A role for SEMA3A in termination of DC/T cell interactions by repulsive destabilization of 

the conjugates on NP-1 interaction has been proposed in the study of Lepelletier, Moura et 

al. (2006). In agreement with this notion, the kinetic secretion of SEMA3A was at a late 

stage after onset of an allogenic MLR, about 72-96 hrs (Figure 3-8), when its receptors, 

plexA1/NP-1, were also upregulated (Figure 3-3). Thus, the timely coordination between 

the ligand and its receptors seem to control a normal immune response. Notably, MV-DCs 

alone or, especially, in co-cultures with allogenic T cells promoted early (within few hours) 

and over secretion of the repulsive SEMA3A (Figure 3-8), by far exceeding those 

determined to actively inhibit T cell expansion stimulated by allogenic LPS-DCs or on TCR-

induced activation. The secreted SEMA3A then could act on T cells in paracrine fashion or 

on DCs in para-/autocrine manner. It has been shown that MV-DCs resemble a mature 

phenotype (Shishkova, Harms et al. 2007), these DCs, however, retain plexA1/NP-1 on 

their surface (Figure 3-7D). Thus, it remains to be determined whether MV impairs DC 

functions via the alteration the expression pattern of these two receptors.

In axon guidance, plexA1/NP-1/SEMA3A signaling modifies the growth cone cytoskeleton 

by causing retraction of filopodia and lamellopodia and rearrangement of the actin 

cytoskeleton (Casazza, Fazzari et al. 2007). The kinetics of actin rearrangement is dependent 

on the mode of application, gradient or bath. In gradient application, growth cones show a 

prolonged collapse phase. Bath application, however, induces a brisk but transient collapse 

and the growth cones eventually return to normal growth cone structure (Brown and 

Bridgman 2009). In line with this observation, bath application of SEMA3A and also 

SEMA6A depolymerizes F-actin of T cells (Figure 3-9), peaking at 15 mins. However, the 

effect is transient since the cells gained their F-actin content after 1hr (Figure 3-9). This 
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could be due to the receptor desensitization or degradation of SEMAs in bath application 

mode (Brown and Bridgman 2009). The transient abrogation of the integrity of the actin 

cytoskeleton as reflected by the loss of actin content correlates with the loss of microvillar 

extensions (Figure 3-9) which is similar to that in MV-exposed T cells (Muller, Avota et al. 

2006). Correlating with this effect, the phosphorylation level of both actin binding and 

connecting proteins, ERM and cofilin, is reduced in CD3/28 stimulated T cells pre-exposed 

to MV. Similarly, SEMA treated neuronal cells also reduce p-ERM and p-cofilin levels

(Mintz, Carcea et al. 2008; Shimizu, Mammoto et al. 2008). Furthermore, MV-H protein 

shows highly structural similar to Sema domain (unpublished analysis). Thus, it remains to 

be determined whether MV binds to plexA1/NP-1 to induce the collapse or to unidentified 

receptor(s) which share a common pathway with SEMA receptors. Interestingly, SEMA-

mediated cytoskeletal interference did not affect overall β1-integrin-stimulated front-rear 

polarization or receptor-segregation (Figure 3-9) thereby essentially differing from actin 

cytskeletal paralysis induced on MV exposure of these cells (Gassert, Avota et al. 2009). In 

line with hypothesis, induction of ceramides as found relevant for MV actin interference was 

not detectable on SEMA3A/6A exposure of T cells (data not shown) indicating the SEMA-

induced signaling may not involve SMase activation. 

In contrast to earlier studies (Catalano, Caprari et al. 2006; Lepelletier, Moura et al. 2006), 

SEMA6A was at least as efficient at interfering with IS stability and function as SEMA3A 

(Figure 3-11). IgG control did not have any effect on all parameters determined except for T 

cell motility (Figure 3-10). PlexA4 is known to prevent mossy fibers from entering Sema6A-

expressing regions (Suto, Tsuboi et al. 2007) and to negatively regulate T cell responses 

(Yamamoto, Suzuki et al. 2008). Furthermore, the molecule is readily detectable on a 

substantial fraction of freshly isolated human T cells (Figure 3-9), thus the activity of 

SEMA6A in the assay is considered as specific and thus, the obvious discrepancy cannot be 
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explained at present, and needs further experimentation to identify of the cellular source of 

SEMA6A. 

Similar to plexA1, plexA4 was found expressed in T cells and DCs and the molecule was 

translocated to the stimulatory interface between T cells and DCs as well as CD3/28 coated 

beads (data not shown). However, the role of the molecule in the IS could not further be 

investigated since reagents such as siRNA or neutralizing antibodies are not commercially 

available yet. Thus, it remains unclear whether human plexA4, like its member subclass 

plexA1, is required for IS formation and stability or, like its murine counterpart, negatively 

controls T cell responses (Yamamoto, Suzuki et al. 2008). 

Recently, it has been reported that SEMA6A expression is restricted to Langerhans cells 

(LC) and that SEMA6A protein in vivo is only detectable under pathological conditions such 

as LC histiocytosis or dermatopathic lymphadenitis (Gautier, de Saint-Vis et al. 2006). The 

upregulation of this molecule is only observed after IFN (interferon)-γ stimulation but not 

other stimuli such as IL-4, IL-10, IFN-α/β or LPS. In line with this notion, neither 

immature/mature nor MV-infected DCs express SEMA6A at least at transcriptional level 

(data not shown).

It has been shown that migration of leukocyte under agarose layer, a semi-3D migratory 

mode, is dependent on anterior actin-based flow and myosin-II mediated contraction 

(Lammermann, Bader et al. 2008). Despite of a transient loss of F-actin in T cells (Figure

3-9), SEMA3A treatment did not detectably affect on the actin-based migration of the cells. 

In contrast, SEMA6A treatment showed a pronounced effect on the mean velocities of 

treated T cells (Figure 3-10). Although did not address directly, mislocation of chemokine 

receptor could be excluded since SEMA-mediated cytoskeletal interference did not affect 

overall β1-integrin-stimulated front-rear polarization or receptor-segregation (Figure 3-9).
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By contrast to T cells, both SEMA3A and -6A application reduced the mean velocities of 

the treated DCs, with a greater extent for SEMA6A treatment (Figure 3-10). It has been 

recently proposed that plexA1 on murine DCs acts as posterior contractile mediator to 

squeeze its rigid nucleus through narrow gaps of lymphatic vessels (Takamatsu, Takegahara 

et al. 2010). It remains to be clarified in human DCs whether spatial distribution or surface 

levels of plexA1 determine the effect of SEMA-3A treatment since in this study, mature 

DCs downmodulated surface expression of plexA1 (Figure 3-5A). Notably, SEMA 

treatment retarded the mean velocities of migrating DCs. At the first glimpse, it seems to 

contradict Takamatsu’s study in which SEMA3A treated murine DCs show an 

indistinguishabe speed. However, this is likely due to the fact that Takamatsu’s experiments 

are designed to investigate integrin-dependent mode of migration while this present study

examined actin-dependent migration.   

Even though similar to LPS-matured DCs with regard to integrin activation, morphological 

and adhesive properties, MV-infected DCs showed a failure in chemotaxis which may result 

in prolongation of tissue residency and impairment of lymph node homing (Shishkova, 

Harms et al. 2007; Abt, Gassert et al. 2009). In this present study, SEMA-treated DCs 

showed impaired chemotaxis towards CCL19/21, the major chemokine sources found in 

lymph nodes (Luther, Bidgol et al. 2002). In addition, MV- infected DCs early secreted 

SEMA3A at the concentration (200ng/1x106 DCs) by far exceed the amount using in under 

agarose assay. Thus, SEMA3A probably accounts for the impairment of lymph node 

homing of MV-infected or bystander DCs.

As reported, inhibition of actin cytoskeletal rearrangement on NP-1 interaction with 

SEMA3A (the latter produced from mesenchymal stem cells or DCs late after activation) 

has been linked to human T cell immunosuppression (Lepelletier, Moura et al. 2006; 

Lepelletier, Lecourt et al. 2009). A role for SEMA3A in termination of DC/T cell 
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interactions by repulsive destabilization of the conjugates on NP-1 interaction has been 

proposed. Although exogenous addition of SEMA3A blocks actin and TCR polarization in 

DC/T cell interfacial zone and ZAP-10 and FAK phosphorylation, it does not affect on 

DC/T cell conjugates (Lepelletier, Moura et al. 2006). In contrast, lower frequencies of 

stable conjugates were observed on exogenous addition of SEMA3A (and also SEMA6A) 

(Figure 3-11A). These, however, do not fully correlate with the MRL results (Figure 3-11D) 

which are in contrast to what has seen in the study of Lepelletier (2006). The disagreement 

between the present data and theirs could be due to methodological differences as discussed 

above. 

While abrogation of NP-1/SEMA3A interaction reportedly significantly improved allogenic 

T cell expansion driven by LPS-DCs, this and conjugate stability in MV-DC/T cell co-

cultures could not detectably be rescued by SEMA-neutralizing antibodies (data not shown). 

This is, however, not surprising since the presence of the MV glycoprotein complex on the 

DC surface within the DC/T cell interface has previously been linked to IS destabilization 

and contact-mediated inhibition of T cell expansion (Schlender, Schnorr et al. 1996; Klagge, 

ter Meulen et al. 2000; Muller, Avota et al. 2006; Shishkova, Harms et al. 2007). It is also 

because MV particles displaying the inhibitory complex were likely present in conditioned 

supernatants of MV-DCs or MV-DC/T cell co-cultures containing high levels of SEMA3A 

that we did not directly prove their activity on anti-CD3/CD28-stimulated T cell expansion. 

In addition to adding to the current view on the role and regulation of human semaphorin 

receptors in the IS in general (such as plexA1 IS recruitment and its importance for IS 

function in T cells, plexA4 expression in human T cells, plexA1/NP-1 turnover in maturing 

DCs, SEMA3A and SEMA6A in regulation of T cell protrusions and chemotactic 

migration), this study is the first to address regulation of those by a pathogen and their 

importance in the established MV interference with IS function. Recruitment to and 
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concentration of semaphorin receptors to the IS might, however, also be of relevance for 

viral transmission there as indicated by the function of NP-1 as physical and functional 

partner of HTLV env proteins during transmission in the virological synapse (Tordjman, 

Lepelletier et al. 2002; Ghez, Lepelletier et al. 2006). 
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5. Summary

Measles virus (MV) infection causes approximately 164,000 deaths per year worldwide 

(WHO, 2008). The main cause of death is MV-induced immunosuppression but the 

underlying mechanisms are not fully understood. It has been suggested that MV renders T 

cells dysfunctional by disrupting the integrity of actin dynamics while MV infection of 

dendritic cells results in their inability to sustain T cell activation. During neuronal

development, semaphorins (SEMAs), especially SEMA3A, induce a collapse of growing 

dendrites via the binding to plexin-A1 (plexA1) and its coreceptor neuropilin-1 (NP-1). The 

collapse results from a disruption of actin dynamics. In this study, the roles of these three 

molecules were investigated in human immune cells and their possible role in MV induced

immunosuppression. 

The present data have shown that plexA1 is an important component of human 

immunological synapse (IS). It translocated transiently to the surface of T cells after 

CD3/28 ligation and accumulated at the stimulatory interface between T cells and DCs (or 

CD3/28 coated beads). When plexA1 expression was inhibited (RNAi) or its function was 

disrupted (exogenous blocking or dominant negative expression), T cell expansion was 

reduced. 

Upon MV exposure, translocation of plexA1 and NP-1, another important component of 

IS, towards the stimulatory interface in T cells was abrogated. Moreover, MV infection 

interfered with plexA1/NP-1 turnover in maturing DCs and promoted early and substantial 

release of SEMA3A from these cells, particularly in the presence of allogenic T cells. As 

revealed by scanning electron microscopy, the release of SEMA3A caused a transient loss of 

actin-based protrusions on T cells. SEMA3A affected chemotactic migration of T cells and 

DCs, and reduced formation of allogenic DC/T cell conjugates. 
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In conclusion, MV targeted SEMA receptor function both by disrupting their recruitment to

the IS and by promoting a premature release of their repulsive ligand, SEMA3A. Both of 

which could contribute to MV-induced immunosuppression.
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6. Zusammenfasung

Jährlich gehen ca. 164000 Todesfälle (WHO, 2008) auf eine Infektion mit Masernviren (MV) 

zurück. Die Hauptursache für den tödlichen Verlauf  der Krankheit ist die MV-induzierte 

Immunsuppression, deren zugrunde liegende Mechanismen noch nicht völlig aufgeklärt 

sind. Es gibt Hinweise darauf, dass MV einerseits die Funktionalität von T-Zellen 

beeinträchtigt, indem es die Aktindynamik behindert, und andererseits dendritische Zellen 

(DC) infiziert, was dazu führt, dass sie T-Zellen nicht mehr vollständig aktivieren können.

Während der Entwicklung bzw. des Wachstums von Neuronen kommt es zum Kollaps 

wachsender Dendriten, wenn Semaphorine (insbesondere SEMA3A) an den Rezeptor 

Plexin-A1 (plexA1) und seinem Korezeptor Neuropilin-1 (NP-1) binden. Dieser Kollaps 

wird durch interferenz mit der Aktindynamik verursacht. In dieser Studie wurde die 

Funktion dieser drei Moleküle in Immunzellen bzw. ihre Rolle in der MV-induzierten 

Immunsuppression untersucht.

Es konnte gezeigt werden, dass plexA1 eine wichtige Komponente der humanen 

immunologischen Synapse (IS) ist. Nach CD3/CD28-Ligation kommt es zur transienten 

Translokation zur T-Zelloberfläche und zur Akkumulation an der Kontaktfläche zwischen 

T-Zelle und  DC bzw. α-CD3/CD28 beschichteten Mikropartikeln. Wird die plexA1-

Expression inhibiert (RNAi) oder die plexA1-Funktion gestört (exogenes Blockieren oder 

Expression einer dominant negativen Mutante), ist die T-Zellexpansion reduziert. 

Nach MV-Exposition ist die Translokation von plexA1 und NP-1, ebenfalls einem

wichtigen Bestandteil der immunologischen Synapse, zur Kontaktfläche auf T-Zellseite 

gestört. Des Weiteren behindert eine MV-Infektion den plexA1/NP-1-Metabolismus in 

reifenden DC und führt zusätzlich zu einer frühen und starken Ausschüttung von SEMA3A 

durch DC, insbesondere in Gegenwart allogener T-Zellen. Durch 
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rasterelektronenmikroskopische Aufnahmen wurde gezeigt, dass SEMA3A einen transienten 

Verlust aktinbasierter Zellfortsätze bei T-Zellen zur Folge hat. Zusätzlich reduziert 

SEMA3A das chemotaktische Migrationsverhalten von DC und T Zell und die Frequenz 

ihrer Konjugat-Bildung.

Zusammenfassend stellt sich die Situation so dar, dass MV die Semaphorinrezeptorfunktion 

zum einen dadurch beeinträchtigt, dass es die Rekrutierung der Rezeptoren zur IS verhindert 

und zum anderen zur verfrühten Ausschüttung des kollapsinduzierenden Liganden 

SEMA3A führt. Beide Phänomene könnten einen wichtigen Beitrag zur MV-induzierten 

Immunsuppression leisten.
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