
Martin Saska

B
a
n
d
 3

Würzburger Forschungsberichte
in Robotik und Telematik

Institut für Informatik
Lehrstuhl für Robotik und Telematik

Prof. Dr. K. Schilling

Trajectory planning and
optimal control for
formations of autonomous
robots

Uni Wuerzburg Research Notes
in Robotics and Telematics

Zitation dieser Publikation

Die Schriftenreihe

wird vom Lehrstuhl für Informatik VII: Robotik und Telematik
der Universität Würzburg herausgegeben und präsentiert
innovative Forschung aus den Bereichen der Robotik und
der Telematik.

Die Kombination fortgeschrittener Informationsverar-
beitungsmethoden mit Verfahren der Regelungstechnik
e rö f fne t h ie r i n te res san te Fo rschungs - und
Anwendungsperspektiven. Es werden dabei folgende
interdisziplinäreAufgabenschwerpunkte bearbeitet:

Robotik und Mechatronik: Kombination von Informatik,
Elektronik, Mechanik, Sensorik, Regelungs- und
Steuerungstechnik, um Roboter adaptiv und flexibel ihrer
Arbeitsumgebung anzupassen.

Telematik: Integration von Telekommunikation, Infor-
matik und Steuerungstechnik, um Dienstleistungen an
entfernten Standorten zu erbringen.

Anwendungsschwerpunkte sind u.a. mobile Roboter, Tele-
Robotik, Raumfahrtsysteme und Medizin-Robotik.

?

?

SASKA, M. (2009). Trajectory planning and optimal
control for formations of autonomous robots.
Schriftenreihe Würzburger Forschungsberichte in
Robotik und Telematik, Band 3. Würzburg: Universität
Würzburg.

Lehrstuhl Informatik VII
Robotik und Telematik
Am Hubland
D-97074 Wuerzburg

Tel.: +49 (0) 931 - 31 - 86678
Fax: +49 (0) 931 - 31 - 86679

schi@informatik.uni-wuerzburg.de
http://www7.informatik.uni-wuerzburg.de

Dieses Dokument wird bereitgestellt durch
den Online-Publikationsserver der
Universität Würzburg.

Universitätsbibliothek Würzburg
Am Hubland
D-97074 Würzburg

Tel.: +49 (0) 931 - 31 - 85917
Fax: +49 (0) 931 - 31 - 85970

opus@bibliothek.uni-wuerzburg.de
http://www.opus-bayern.de/uni-wuerzburg/

ISSN (Internet): 1868-7474
ISSN (Print): 1868-7466
eISBN: 978-3-923959-56-3

Würzburger Forschungsberichte
in Robotik und Telematik

Uni Würzburg Research Notes
in Robotics and Telematics

Herausgeber
Prof. Dr. K. Schilling
Universität Würzburg
Institut für Informatik
Lehrstuhl für Informatik VII: Robotik und Telematik
Am Hubland
D-97074 Würzburg
Tel.: +49-931-31-86647
Fax.: +49-931-31-86679
email: schi@informatik.uni-wuerzburg.de

ISSN (Internet): 1868-7474
ISSN (Print): 1868-7466

Trajectory planning and optimal

control for formations of

autonomous robots

Dissertation zur Erlangung
des naturwissenschaftlichen Doktorgrades

der Julius-Maximilians-Universität Würzburg

vorgelegt von

Martin Saska

aus

Kladno, Tschechische Republik

Würzburg, November 2009

Eingereicht am: 25.11.2009
bei der Fakultät für Mathematik und Informatik
1. Gutachter: Prof. Dr. Klaus Schilling
2. Gutachter: Prof. Dr. Hans Josef Pesch
Tag der mündlichen Prüfung: 29.11.2010

Acknowledgements

First of all, I would like to express my deepest gratitude to my wife, Romana,
whose support gave me strength for writing this dissertation, but mainly
during my studies in foreign country. She spent three long years without
her husband to enable me to fulfill my ambitions and dreams. She is the
love of my life and I want to dedicate this thesis to her.

I would like to thank my Ph.D. advisor Prof. Dr. Klaus Schilling for
providing me the opportunity to joint his team. I appreciate the guidance
and support he gave me. I would also like to thank Prof. Dr. Hans Josef
Pesch for his important comments and discussions during reviewing of this
thesis. His suggestions significantly improved scientific quality of my work.

My special thanks go to Martin Hess with whom I shared the office and
”party Schrank” in Wuerzburg. I closely cooperated with him for the whole
time and he influenced my research results a lot. I also want to thank Martin
Macas from Czech Technical University (CTU) for inspirational discussions
and scientific cooperation at the beginning of my Ph.D. studies. Besides, I
would like to thank colleagues at CTU for helping me in the final period of
writing this thesis.

My thanks also go to Prof. Stipanovic for the time he gave me during
my stay in his group at the University of Illinois at Urbana-Champaign
(UIUC). He provided me numerous suggestions and discussions about my
research topics. The three months I spent at UIUC have changed the course
of my research significantly. Regarding this stay, I would like to thank all
my colleagues from UIUC to help me with all administrative as well as
research matters. Namely, I want to thank Juan Mejia for introducing me
to the Receding Horizon Control problematic, but mainly for plenty of social
activities he invited me for. I thank all Columbian friends who allowed me
to be a member of their community.

My Ph.D. studies have been supported by the international doctorate pro-
gram ”Identification, Optimization and Control with Applications in Mod-
ern Technologies” within the Elite Network of Bavaria (ENB). This support
opened me the possibility of studying in Germany, but furthermore it en-
abled me participating in numerous international conferences and staying
three months at UIUC in United States. I am very proud that I can be
member of the big ENB family. I would like to thank the coordinator of the
doctorate program, Prof. Dr. Gunter Leugering, and the other professors in
the program for their inspiring comments on my work during our meetings

and winter/summer schools. I am grateful to my ENB colleagues Nils Alt-
muller, Michael Blume, Izabella Ferenczi, Tobias Gradl, Falk Hante, Anna
von Heusinger, Indra Kurniawan, Marcus von Lossow, Thorsten Spicken-
reuther, Alexander Thekale, Slobodan Veljovic, StefanWendl and Dr. Erik
Kropat. They enlarged my view on research in various disciplines, cooper-
ated with me on research tasks and mainly formed a nice companionship.

At the chair of Computer Science VII: Robotics and Telematics, I would like
to express my gratitude to all my colleagues, especially to Laszlo Lemmer,
Adam Cseh, Zhongyang Wu, Radu Barza, Pablo Baier, Lakshminarasimhan
Srinivasan, Zhihao Xu, Christian Herrmann, Rajesh Shankar Priya, Daniel
Eck, Marco Schmidt, Markus Sauer, Florian Zeiger, Dr. Frauke Driewer,
Dr. Lei Ma, Dr. Peter Hokayem, Florian Leutert, Kaipeng Sun, Dieter
Ziegler, Heidi Frankenberger, Edith Reuter, and Heidi Schaber. I enjoyed
day-to-day collaboration and a lot of private activities with them.

Finally, I would like to thank my mother for her unlimited support and
help, and all members of my family and my family in-law for their patience.

To my wife, Romana.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Literature survey . 4
1.3 Developed methods overview . 7
1.4 Contribution . 9

2 Formation coordination in dynamic environment using receding hori-
zon control 13
2.1 Preliminaries and problem definitions 14

2.1.1 Configuration space of robots . 14
2.1.2 Kinematic model and constraints 15

2.1.2.1 Model and controller parametrization 15
2.1.2.2 Controller constraints 16

2.1.3 Problem Formulation . 16
2.1.4 Receding Horizon Control concept 17

2.2 Description of general approach and proof of convergence 17
2.2.1 Finite time horizon optimal control of virtual leaders 17
2.2.2 Proof of convergence . 18

2.3 Implementation details . 20
2.3.1 Formation driving concept . 20
2.3.2 Leader trajectory planning and control 24

2.3.2.1 Objective function and constraints 24
2.3.2.2 Initialization . 26
2.3.2.3 Remark on convergence 28

2.3.3 Trajectory tracking for followers 28
2.3.3.1 Objective function and constraints 29
2.3.3.2 Initialization . 30
2.3.3.3 Notes on stability . 31

2.3.4 System overview . 32
2.4 Experimental results of formation to desired goal region problem 34

2.4.1 Parameters tuning . 34
2.4.2 Simulation with dynamic obstacles 38

2.5 Complicated maneuvers of formations 43
2.5.1 Concept of two alternating virtual leaders 45

i

CONTENTS

2.5.2 Experimental results . 48
2.5.2.1 Reverse driving . 48
2.5.2.2 Turning 180 degrees . 51

3 Formation coordination with path planning in space of multinomials 55
3.1 Literature review . 55
3.2 System overview . 60
3.3 Path planning for virtual leaders . 60

3.3.1 Method description . 60
3.3.2 Implementation details . 63
3.3.3 Experimental results . 64

3.4 Formation driving . 67
3.4.1 Method description . 67
3.4.2 Proof of convergence . 69
3.4.3 Simulation of failures tolerance 73

4 Advanced planning algorithms for virtual leaders 75
4.1 Voronoi Strains . 75

4.1.1 Method description . 75
4.1.2 Results and parameters tuning 78

4.2 Hierarchical approach . 80
4.2.1 Method description . 80
4.2.2 Objective functions . 82
4.2.3 Results and comparison with simple optimization method 82
4.2.4 Hierarchical concept for RHC approach 83

5 Application - airport snow shovelling 87
5.1 Introduction and motivation . 87
5.2 System overview . 90
5.3 Task allocation . 92

5.3.1 Complexity study . 93
5.3.2 Static route scheduling approach 96
5.3.3 Dynamic task allocation method 100

5.3.3.1 Heuristics . 100
5.3.3.2 Exploring the state of solution 101

5.3.4 Simulations and parameters tuning 104
5.4 Formation driving . 110

5.4.1 Method description . 110
5.4.2 Experimental results and parameters tuning 111
5.4.3 Splitting and merging . 121

5.4.3.1 Splitting . 123
5.4.3.2 Merging . 125

5.4.4 Formation turning . 128
5.5 Hardware experiment . 131

ii

CONTENTS

6 Conclusion and future work 135
6.1 Conclusion . 135
6.2 Future work . 136

A Utilized optimization techniques 137
A.1 Global optimization using Sparse Grids 137
A.2 Particle Swarm Optimization . 138

References 141

iii

CONTENTS

iv

1

Introduction

In this thesis, we present novel approaches for formation driving of nonholonomic robots
and optimal trajectory planning to reach a target region. The methods consider a static
known map of the environment as well as unknown and dynamic obstacles detected by
sensors of the formation. The algorithms are based on leader following techniques,
where the formation of car-like robots is maintained in a shape determined by curvilin-
ear coordinates. Beyond this, the general methods of formation driving are specialized
and extended for an application of airport snow shoveling. Detailed descriptions of
the algorithms complemented by relevant stability and convergence studies will be pro-
vided in the following chapters. Furthermore, discussions of the applicability will be
verified by various simulations in existing robotic environments and also by a hardware
experiment.

1.1 Motivation

The motivation of the research presented in this thesis is the application of multi-
robot formations driving in workspaces with dynamic obstacles. We will be focussing
on applications requiring variations of distance between the vehicles of the team or
even dynamic allocation of the robots to separate sub-formations during the mission.
A temporary deformation of the group’s shape enforced by the environment will be
enabled without any failure of the desired task. We would like to point out applications
of 3D cooperative mapping, cloud of toxic gas determination, and airport snow shoveling

as examples of such scenarios.
The idea of 3D mapping with multiple robots is motivated by utilization of cam-

era sensors, which are interesting due to their wide usage and low price. Two single
robots equipped by a monocular camera can form a stereo pair with optional base-
line length as is demonstrated in Fig. 1.1. Any other added robot allows to increase
the robustness of such a system, while it provides additional information and allows
to adjust the established correspondences of features extracted from obtained images.
Such a configuration enables to set the optimal distance and viewing angles between
cameras with respect to the observed environment and desired properties of the final
map. A too narrow baseline generates a less precise map, whereas too wide means

1

1. INTRODUCTION

a

b

α

Figure 1.1: Demonstration of 3D mapping using formation of mobile robots. The grey
intensity grows with the number of robots sensing the area.

less correspondences, less precise localization and thus lower map quality and relia-
bility. In case of larger groups of robots, one should also consider the advantages of
splitting and the subsequent merging of the groups e.g. in case of obstacles dividing
the explored environment. This application has been motivated by formation flying
of spacecrafts, which is utilized for the visual 3-D mapping, the time-varying gravity
field measurements, the magnetosphere and the radiation measurements as well as for
long baseline spacecraft interferometers in deep space (for more detailed description
of the applications see [175]). By sharing the individual measurements, the resolution
obtained using the spacecraft formation is potentially much higher than the resolution
of single spacecraft. Additionally, such a system is more reliable and fault tolerant due
to possible redundancy of measurement. The initial research in this field can be found
in [71; 184] and some more advanced methods are available in [15; 150]. Unfortunately,
these techniques applying a virtual structure approach for formation stabilization are
hard to modify for the car-like robots due to different spacecraft kinematics.

The second scenario is a part of the protection of civilians around possibly dan-
gerous factories. Nowadays, industrial zones are surrounded by a ring of stationary
sensors detecting escape of pollutants that are dangerous mainly to inhabitants in the
close neighborhood. For obtaining better information on the position of the poisson,
such a system could be supplemented by a group of autonomous mobile measurement
unites moving along the borders of the dangerous area. While a single vehicle can
only determine if the point of measurement lies in the ”forbidden” zone, a formation
of several robots can continuously follow the borders keeping one robot inside and one
robot outside the cloud. Furthermore, additional vehicles could provide an estimation
of the gas concentration gradient, which is important for the future formation move-
ment determination. Similarly as in the previous example, the distance between the
rovers can influence the functionality of the system. An approach with more compact
formations deals with the problem of keeping the desired threshold of concentration
within the formation and on the contrary bigger distances between the robots decrease
accuracy of the solution. A proposed schedule for such scenario is depicted in Fig. 1.2.

2

1.1 Motivation

I.

II.

III.

Figure 1.2: Three composed snapshots of gas-cloud position detection scenario.

In the step I., the complete group has to move as fast as possible from a car-shed to
the initial position given by the stationary nodes of the system. This is followed by
splitting to several sub-formations (denoted by II.) utilized for the measuring in the
phase III. The existing approaches relevant to this task are aimed mainly at the source
of pollution searching by following the gradient of gas concentration [35; 43; 128; 154].
This problem is simpler in terms of differences between the usual static source and the
highly dynamic cloud of gas. The few studies of the environmental hazard perimeter
mapping are focused on determination of the desired position of particles representing
the robots while the vehicles’ dynamics are neglected [74] or on building gas concen-
tration grid-maps in indoor windless environment [114]. A comprehensive survey of
existing odor sensing methods is available in [154].

The third scenario, airport snow shoveling by groups of autonomous ploughs, has
been chosen for a closer investigation in this thesis. The application includes formation
stabilization into variable shape depending on the width of runways, splitting and
coupling of formations for cleaning smaller auxiliary roads surrounding main runways
as well as specific maneuvers as is for example formation turning at the end of blind
routes. This project is the reason why we have adapted all methods in this thesis for
the kinematics of car-like robots. The snow-ploughs currently used at the airport are

3

1. INTRODUCTION

ordinary trucks with the same kinematic model. A more detailed description of this
application followed by an overview of existing relevant approaches and proposed novel
solutions are introduced in Section 5.

1.2 Literature survey

Multi-robot systems have been the subject of major interest over the last decades as
can be seen in this full-range survey of initial works [141] and they are still a hot topic
in leading robotics and control journals nowadays (see e.g.: [19; 48; 63; 88; 92; 144]).
Multi-robot systems are intensively studied to deal with complex tasks, which can be
solved faster and more robustly in comparison with utilization of a single powerful robot
[143]. The broad research is covering large systems employing 1000’s of autonomous
robots [37; 41] as well as small groups maintaining precisely defined formations [65; 174].

The large systems can be additionally represented by work published in [144] where
collision free trajectories are designed for a 100 robots. The method uses graph and
spanning tree representation and is developed for utilization in underground mine en-
vironment. In the next example [96], a large swarm of robots is controlled using a
hierarchical abstraction, where inter-robot collision avoidance and environment con-
tainment are guaranteed by the application of centralized communication architecture.
The work published in [140] offers a study of the problem of heterogeneity in teams
of more than hundred mobile robots. Relevant practical experiments including explo-
ration, mapping, deployment and detection are described in [80]. In [58], a method for
decentralized information exchange between vehicles in large formations is proposed.
Furthermore, you can see how the topology of the information flow affects the stability
and performance of the system. The work presented in [126] applies a Stochastic Hy-
brid Automation model for modelling and control of multi-agent population composed
of a large number of agents. A probabilistic description of the task allocation as well
as distribution of the population over the workspace is considered in this method. Also
traffic coordination should be mentioned as an example of common multi-robots appli-
cation with large number of vehicles. A decentralized approach using traffic rules for
control of tens of vehicles is presented in [138]. The method enables dynamic adding
and removing of the vehicles and is based only on a local communication which makes
the algorithm scalable.

This thesis is focussed on the formation driving of autonomous robots. In the
classical literature, formation driving approaches are divided into the three main groups:
virtual structure, behavioral techniques, and leader-follower methods.

In the virtual structure, the entire formation is regarded as a single structure where
a set of controls for following the desired trajectory of the formation as a rigid body is
given to each vehicle [15; 102; 150]. Virtual structures are often applied in spacecraft
formation flying due to the ability to maintain the fixed formation accurately [89; 151].
The high precision leads to using this method also in tasks of multi-robot box pushing
[112] or load carrying [178] where the object itself naturally forms the shape of the
formation. For example in [19], differentially-driven wheeled mobile robots are mov-
ing in the virtual structure for ultimate deployment in cooperative payload transport
tasks. In [108], formation and maneuver controls for multiple rigid bodies are obtained

4

1.2 Literature survey

by decomposition of the group dynamics of the multiple agents into two decoupled
systems: the shape system representing internal formation shapes, and the locked sys-
tem abstracting the overall group maneuver as a complex unit. A time-varying global
output-feedback controller that solves simultaneously path tracking and formation sta-
bilization for unicycle-type mobile robots at the torque level is presented in [50]. This
work was extended in [47; 48] where the virtual structure based method is introduced
for mobile agents with limited sensor range keeping guarantee of no collision between
the robots. The last contribution of this team we will mention is a novel interlaced ob-
server employed to estimate the robot velocities of each robot [49]. This approach uses
only position measurements of the robot itself and the robots within its communication
range.

In behavior based methods, the desired behavior is designated for each agent and
the final control is derived as a weighted sum with respect to the importance of each
task. The utilization of the behavior techniques is usually inspired by nature, e.g.
by flocks of birds [111] or molecules forming crystals [11]. Primarily, the behavior
approach has been applied for coordination of multi-robot systems [103; 142]. From
these basic techniques, formation driving algorithms have been derived using desired
patterns for maintaining of shape of formations [10; 106]. The advantages of the behav-
ioral approaches are an explicit feedback to the formation from each robot and a low
bandwidth communication enabled by simple decentralization. Nevertheless, a conver-
gence/stability proof of such a collective behavior is complicated in general and has to
be focused on concrete application. Typically, only the equilibria that correspond to
simple behaviors (e.g., constant heading [84]) are provable. Therefore, these approaches
are not easily adaptable for complicated formations and maneuvers (e.g., time-varying
formation). We should mention that the ability of the precise formation keeping is
limited mainly for car-like robots which is crucial in the airport snow shoveling being
our target application.

In the leader-follower approaches, a robot or even several robots are designated as
the leaders. The followers maintain their position in the formation relative to the leader
and the state of the leading vehicle needs to be distributed within the team [38; 153].
Utilization of the leader-follower approach is often motivated by the heterogeneity of the
multi-robot system with few well equipped vehicles designated as the leaders and several
cheap and simple followers [82]. Examples of the approach employing multiple leaders
are presented in [64] and [172] where a limited range of communication is applied and the
followers are led by their closest neighbors. The movement of a reference point is then
propagated to the members of the formation subsequently. The standard scheme with
one leader was applied e.g. in [42] or [82]. An improvement of these standard methods
is presented in [60] where a hybrid control switching between Discrete-state formation

control is employed to achieve desired positions and Continuous-state robot control

to maintain robots in the formation during the leader following task. In [113], Neural
Networks are utilized for stabilization of formations of differential drive robots following
predefined trajectories in an environment without obstacles. The same task is solved
in [31], where the control inputs of robots are forced to satisfy suitable constraints that
restrict the set of the leader’s possible paths and admissible positions of the followers

5

1. INTRODUCTION

with respect to the leader. A combination of the virtual structure and the leader-
follower methods is presented in [192]. The formation feedback in [192] is applied for
stabilization during prescribed formation maneuvers along a desired trajectory. The
feedback from the followers to the leader can avoid the breakaway of a robot that is
temporarily slowed-down from the formation. On the contrary, one not fully functional
follower can delay the complete formation that is unwanted in most of the time-critical
applications. As the last example dealing with the leader-follower approach we would
like to mention a theoretical work published in [179]. The article offers an interesting
study of stability (Leader-to-Formation Stability), which is used to characterize how
the motion of the leader can affect the motion of the group. Nevertheless, all these
results are focused on the following of the leader’s trajectory, which is assumed as an
input. It is supposed that the trajectory is designed by a human operator or by a
standard path planning method modified for requirements of the formation driving. In
literature, there is no adequate method providing flexible control inputs for the followers
as well as for the leader of the formation responding to the dynamic environment and
trying to solve the optimality as well as the stability of the leader-to-goal and the
followers-in-formation tasks together. In this thesis, we rely on the leader-follower
method that is most often used in applications of the car-like robots and we consider
all the specifications discussed above.

At the end of this survey, we will mention a few application focused papers to show
possible utilization of multi-robot systems. An interesting and already existing project
of the autonomous formations is the continuous observation of planetary surface using
cameras attached to a number of spacecrafts flying in the leader-follower constellation
[115]. In the future a swarm of cheap ”nano” or ”pico” satellites could provide the
same performance in cooperative mapping as one well equipped and expensive robot.
Additionally, such systems should provide an increase of robustness and some addi-
tional features done by possibility of formation size changing [169]. Another broad
area of applications includes aircraft formation flying, which is usually motivated by
airborne refueling, energy saving from vortex forces or fuel efficiency via induced drag
reduction [69; 197]. Systems employing autonomous formation can be found also afloat
(autonomous boats maintained in formations under sliding mode in [56]) or under water
(submarines in the project: Autonomous oceanographic sampling networks [36]). The
mobile oceanographic sensing networks, including underwater vehicles together with
buoys and nodes of the stationary network at bottom, are autonomously measuring
temperature and currents. The application of the formation driving within this project
is presented in [134; 135]. A stable coordination strategy for formation translation, rota-
tion, expansion and contraction is proposed in [134]. The entire group of submarines is
considered as a web of virtual leaders that move together like a rigid body. In [135], the
method is extended using artificial potentials for gradient climbing missions in which
the mobile sensor network seeks for local extremes in the ocean environment. Other fre-
quent applications of formations, which should be mentioned, are collective harvesting
[72], military projects for defending vulnerable vehicles by armored robots distributed
around (for details see[11]) or automated highway systems (existing methods are sum-
marized in [18]) using the leader-follower approach for reduction of space between the
vehicles moving in one lane [176; 177]. Frequently referred applications are also box

6

1.3 Developed methods overview

pushing [181] or load transport [178], where the carried object is too heavy or large
for a single robot and the shape of the load determines the structure of the formation.
A biologically inspired approach was presented in [193]. The method uses a modified
shunting neural network for automated path generation and a self-organization map for
multi-robot coordination in cooperative object pushing using swarms of nano-robots.
The last example of the applications, which is intensively investigated nowadays, is
cooperative localization using formations of autonomous rovers. This task is important
for missions in unknown environment without any external positioning system deployed
in advance. These can be search and rescue scenarios and especially fire-fighter support
by robots in partly collapsed buildings (see e.g. PeLoTe project [51; 166; 168]). The
task of cooperative localization was theoretically studied in [129], where a problem of
resource allocation is addressed. This approach provides the sensing frequencies, for
each sensor on every robot, required in order to maximize the positioning accuracy of
the group. This work is extended in [130] by a performance analysis providing up-
per bound on the robots’ expected positioning uncertainty, which is determined as a
function of the sensors’ noise covariance and relative position measurements.

1.3 Developed methods overview

The core of the thesis is an approach employing Receding Horizon Control (RHC) for
the leader trajectory planning to a desired goal area and for the followers stabilization
in desired positions behind the virtual leader. The method enables to obtain optimal
control inputs for the robots in near future as well as a complete trajectory of the
virtual leader to reach the target region in one entire optimization step. The commonly
used approaches obtaining optimal control inputs by the simple following of a desired
trajectory, that was computed separately beforehand, can only provide a suboptimal
solution. Our method can continuously respond to changes in the environment of
the robots while the cohesion of the immediate control inputs with direction of the
formation movement in future is kept. A similar concept that is used in the virtual
leader’s case is also applied for the stabilization of followers. Here, the RHC is employed
to maintain the desired position of the followers behind the virtual leader as well as
to prevent collisions within the team. The approach also enables to avoid collisions
with dynamic obstacles that could not be considered in the planned trajectory of the
virtual leader. The complete system is designed in a way that the computational tasks
are distributed to the appropriate robots with minimal required communication. Such
an approach increases robustness of the method in comparison to techniques utilizing
a calculating centrum carried by a well equipped robot that is sensitive to failures.

An interesting extension of the proposed structure is a method providing forma-
tion stabilization and trajectory planning during complicated maneuvers in limited
workspace. To our best knowledge, there is no general solution of the trajectory plan-
ning for formations of car-like robots turning on the spot or passing curves with a radius
smaller than a minimal turning radius of the robots in the literature. Our method based
on switching between two virtual leaders can provide a collision free solution of these
problems even in the environment with dynamic obstacles.

7

1. INTRODUCTION

The Receding Horizon Control (also known as Model Predictive Control) utilized
in this thesis is an optimization based method developed for stabilization of nonlin-
ear systems. This approach can achieve a desired system performance with handling
system constraints at the same time. As an appropriate optimization technique used
in the frame of RHC for the nonholonomic robots, the Sequential Quadratic Program-
ming (SQP)1 is recommended. The disadvantage of the SQP technique, which is a
generalization of Newton’s method, is missing ability to overcome local extremes in
the cost function. The solution of this problem could be the utilization of an artificial
uncertainty during the optimization process or applying a global optimization method.
Unfortunately both approaches increase the computational time necessary for one iter-
ation of the planning loop that needs to be as short as possible to respond to changes
in dynamic environment.

The second approach of the formation driving presented in the thesis deals with
this problem. This method, based on path planning for the virtual leader of the for-
mation in space of multinominals, was developed to reduce high complexity of the
optimization process in the previous algorithm. Furthermore, the design of the method
is adjusted for simple utilization of the existing global optimization methods that can
give an alternative to the local SQP. From the broad offer of optimization approaches
we implemented and compared one deterministic and one stochastic algorithm. Global
optimization based on sparse grids modified for robotic applications in [155] was cho-
sen as an example of the deterministic method. The results obtained by this technique
were compared with a commonly used stochastic method, Particle Swarm Optimization
(PSO).

In the theoretical part of the thesis, the description of these formation driving
methods is supplemented by proofs of convergence with specified restriction of practical
utilization. Beyond this, two approaches are proposed for better initialization of the
optimization methods applicable in both versions of the leader planning. These methods
should significantly reduce the high computational complexity of the optimization and
partly avoid the problem of multiple local extremes of the cost function. In the first
algorithm, the solution is initialized in the areas close to estimated promising solutions
of the problem. This approach reduces computational time but also the risk that the
optimization process gets stuck in a local minimum of the cost function. The second
algorithm is based on a hierarchical decomposition of the trajectory planning. The
more complicated parts of the trajectory are sequentially added in the regions with
more complicated structure of the environment. This process is done automatically
only by comparison values of the cost function in the appropriate segments with a
threshold. Beyond the computational time reduction, the dimension of the space of
solutions can be easily determined with this process which is a crucial problem of
common trajectory planning algorithms based on optimization.

In the last part of the thesis, an approach for airport snow shoveling using formations
of autonomous ploughs is introduced as an application of the presented methods. In
contrast to the general trajectory planning methods, here the plan for the robots should
be not only feasible and short, but it should also be optimal with respect to maximal
coverage of the cleaning roads. Furthermore, the structure of the airport environment

1One can find an overview of optimization methods recommended for MPC in [20; 149].

8

1.4 Contribution

is too complicated and it is not efficient to find a complete feasible solution covering all
runways by the general trajectory planning approaches. We propose to decompose the
cleaning of the airport to sub-tasks of single road shovelling. The formation driving
method using RHC is then utilized only to guide the formation between the way-points
corresponding with crossroads of the cleaning roads while the desired sequences of the
roads are obtained by a task allocation algorithm.

We developed two different approaches of the sub-task allocation to the ploughs
to propose a complete snow shoveling system. In the first method, a big formation
of ploughs used for shoveling of main runways is splitted to two static smaller forma-
tions for cleaning auxiliary roads. The plan for the sub-formations is obtained using a
thoroughly explored tree of solutions. The final result is time optimal, but the appli-
cability of the method is restricted to smaller airports and the algorithm runs off-line
without any possibility of on-line reaction to failures of ploughs or to changes in the
environment. The second approach is more robust and can be applied on-line even
for the biggest airports. The method is based on assignment of the cleaning tasks to
temporarily formed groups of the ploughs. These teams can be repeatedly splitted or
merged to formations with arbitrary sizes depending on the width of the cleaning road.
The method can provide only a local optimal solution but due to the bigger flexibility
in the formations assembling the total shoveling time is usually shorter than in the case
of the first approach.

The arbitrary splitting and reuniting of the formations require a general approach
of the lower level control for the ploughs during these specific tasks. The formation
splitting is relatively easy. The virtual leader of the original formation has to be mul-
tiplied for each sub-formation in an appropriate point as is presented in an extension
of the formation driving method. A bit more complicated situation can occur during
the formation merging, where the sub-formations have to be synchronized before the
coupling. We propose an approach of iterative adding of sub-formations to the rising
formation with determination of intervals where the leaders’ commands are fused to-
gether for the guidance of the group as a compact unit. All these abilities have been
verified by various simulations using a map of Frankfurt airport as well as by simple
hardware experiment in the laboratory environment.

1.4 Contribution

The main contributions of our work to mobile robotics and control research are sum-
marized in this section. As the most conspicuous contribution, we offer a full-scale
approach for trajectory planning (enforced by a convergence constraint) and stabi-
lization of the formations of nonholonomic car-like robots under the leader-follower
concept. The method is general enough to consider static as well as dynamic obstacles
of arbitrary shapes, but also collisions and dangerous proximity of neighboring vehi-
cles within the formation which increases robustness of the system in case of robots’
failures. The unique approach is the integration of momentary control together with
the trajectory planning to reach a desired target region in future. It allows to obtain
a solution by fusion both the image of local environment and the complex structure of
workspace.

9

1. INTRODUCTION

The utilization of RHC with variable differences ∆t(·) between adjacent transition
points collected in a supplementary time interval describing the future prediction of
the formation movement is the biggest contribution from the control perspective. In
comparison to the classical method involving only shot time interval with constant ∆t(·)
[53; 63; 70; 190], the values of ∆t(·) are in our approach obtained as a part of an entire
optimization vector. This provides an appropriate distribution of the transition points
in regions with higher density of obstacles or where the structure of the environment
requires complicated maneuvers. Furthermore, there is a ”bridge” connecting the short
interval of conventional model predictive control with the target region. The approach
gives also a meaningful estimation of the total time to the goal and it enables to clearly
specify assumptions of convergence according to Lyapunov’s second theorem.

The extension of the RHC method with variable ∆t(·) providing autonomously
designed maneuvers of the formation is another contribution of this thesis. This is a
unique system suitable for the kinematics of the formation of car-like robots offering
autonomous turning on the spot or other complicated driving including polarity of
speed changing in an environment with obstacles. The proposed method is based on
alternations of two virtual leaders, when the optimal plan for both leaders is obtained
in one optimization process which guarantees convergence to the target region. The
number and the time of alternations of leading roles are determined automatically
during the optimization process. The application is possible in a workspace with static
as well as dynamic obstacles and without any restrictions on the shape of the formation
or even number of the followers that can be dynamically changed.

Another novel algorithm presented in this thesis is the method based on path plan-
ning for the virtual leader of the formation in the space of multinominals. Using this
method, the path and the control inputs can be optimized separately via two segregate
planning loops. Usually, the information about the environment close to the robots is
updated by onboard sensors more often than the rest of the map that is more or less
static. Therefore, the rate of the path planning loop capturing mainly the progression
of the movement can be slower in the future. The price we pay for this option is only
a suboptimal solution due to process decomposition.

Both variations of the formation driving have been extended by an algorithm based
on a hierarchical decomposition of the optimization process. The contribution of such
an approach is the possibility to determine the optimal number of the transition points
forming the trajectory (resp. number of multinominals in the path). The dimension of
the space of solutions can be iteratively increased in areas of workspace where the cur-
rent dimension is insufficient. Furthermore, only the segments of solution covering the
part of environment with a detected dynamic obstacle can be corrected by replanning.
This together with reduced complexity of the optimization due to the decomposition
speed up the response to unexpected events.

From the application perspective, the biggest contribution of this thesis is the adapt-
ing of general approaches for the purpose of airport snow shoveling applying formations
of autonomous ploughs which has been never closely investigated in literature. We offer
a complete multi-robotic system including a task allocation module as the highest rea-
soning level, followed by the path planning optimal for runways’ coverage in the middle
level and by the formation stabilization providing control inputs for each vehicle in the

10

1.4 Contribution

lowest level. The last contribution we would like to highlight, is a novel general ap-
proach for continuous merging and splitting of the formations of car-like robots which
is optimal regarding the maximal coverage of runways. This approach, much like an
extended algorithm for formation turning on the road with similar width as is the width
of the formation, is applicable in an arbitrary workspace with static as well as dynamic
obstacles.

11

1. INTRODUCTION

12

2

Formation coordination in

dynamic environment using

receding horizon control

In this chapter, we will describe an approach for multiple car-like robots driving in a
desired formation to reach a target region in a dynamic environment. The method is
based on a receding horizon concept, which has been initially formulated in [147] and
for the control application extended as Model Predictive Control (MPC) in [152]. The
MPC approach has been used in the industry since the end of the 1970s and currently
only in Germany, there is more than 9000 industrial MPC applications in operation
(counted in [46]). A worldwide overview of commercially available MPC technologies
is provided in [148] while a survey of MPC theoretical works dealing with stability and
optimality issues is presented in [121].

An example of the utilization of MPC in robotics can be found in [101] where the
RHC method was applied to obtain local control for a single differential drive robot.
The global information about the static environment is added using a visibility graph
technique. Another method for tracking control of nonholonomic mobile robots with a
given time varying reference trajectory is proposed in [70]. The stability of the method
using RHC is guaranteed by adding a Lyapunov function to the cost function as the
terminal-state penalty. An algorithm for autonomous trajectory tracking of aircrafts is
presented in [124]. The planes there follow straight lines given by the air traffic control
and RHC is utilized for safe collision conflict resolution.

Development of RHC for applications of the formation driving is intensively studied
by the research community. An approach employing distributed RHC for stabilization
of robots in desired positions within the formation is presented in [52]. This paper,
which is extended in [53] by a stability analysis, is focused on reaching the formation
and the switching between two different shapes of the formation in obstacle-free envi-
ronments. Another approach is used in [23] for spacecraft formation flying where RHC
is applied to reduce effects of the noise of sensors and to increase robustness. The work
introduced in [75] is solving the problem of formation control to a predefined relative
position with limited communication. A formation control with obstacle avoidance is

13

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

introduced in [190]. The approach assumes a desired path predefined by a higher level
planning and the RHC technique is used to avoid detected static obstacles blocking
this path. The entire team is treated as a compact object which enables to keep the
robots in the given formation and automatically avoid collisions within the team. A
method of cooperative control of a team of distributed agents with decoupled nonlinear
discrete-time dynamics is addressed in [63]. The problem is formulated in a receding-
horizon framework, where the control laws depend on the local state variables and on
delayed information gathered from cooperating neighboring agents. A technique for
the coordination of autonomous organic air vehicles is proposed in [92]. The presented
scheme employs decentralized receding horizon controllers that reside on each vehicle to
achieve coordination among team members. The information about neighbors is used
to predict their behavior and plan conflict-free trajectories that maintain coordination
in a short future horizon.

In most of the previously mentioned works, the RHC is utilized for the optimal
formation driving with respect to the local environment. The information about the
global structure of workspace is unused or added by employing an additional global path
planning method producing a path that is followed by the formation. The method we
present offers an extension of these classical approaches by adding the global infor-
mation directly to the optimization process under RHC. The method considers static
obstacles with arbitrary shapes as well as dynamic obstacles but also a nonlinear kine-
matic model for car-like robots. We should mention that a shortened description of the
work presented in this chapter has been published in [163].

2.1 Preliminaries and problem definitions

The proposed approach for solving the formation to target zone problem is formulated
using RHC methodologies for both: i) the trajectory planning and control of the vir-
tual leader1 of formation F, and ii) the control of nr followers where each individual
robot performs the trajectory tracking of a specific path generated using the travelled
trajectory of the virtual leader. The results presented here are general enough to not
accommodate any assumptions regarding the homogeneity of the group of robots with
respect to geometric parameters as well as kinematic constraints.

2.1.1 Configuration space of robots

Let ψL(t) = {xL(t), yL(t), θL(t)} ∈ C denote the configuration of a leader RL at time
t, and ψi(t) = {xi(t), yi(t), θi(t)} ∈ C, with i ∈ {1, . . . , nr}, denote the configuration
of each of the nr followers Ri at time t, where C = R2 × [0, 2π) is the configuration
space. The Cartesian coordinates xj(t) and yj(t), where j ∈ {1, . . . , nr, L}, for an
arbitrary configuration ψj(t) ∈ C, define the position p̄j(t) of a robot Rj and θj(t)
denotes its heading. Let us assume that the environment of the robots contains a
finite number n0 of compact obstacles collected in a set of regions Oobs. This set is

1Leaders are considered as a virtual point placed in front of the formation in this thesis. In case of

a heterogenous formation, where a better equipped robot is placed on the position of the virtual leader,

this robot is considered as another follower led by a virtual leader in the same position.

14

2.1 Preliminaries and problem definitions

composed of self-intersecting polygons (static obstacles) and circles (radially bounded
dynamic obstacles). The configuration space C can be then divided into two segments,
Cobs representing the configurations of a robot colliding with an obstacle and Cfree

representing subspace of feasible configurations as Cfree = C\Cobs.

2.1.2 Kinematic model and constraints

The kinematics for any robots Rj , where j ∈ {1, . . . , nr, L}, is described by the simple
nonholonomic kinematic model:

ẋj(t) = vj(t) cos θj(t)

ẏj(t) = vj(t) sin θj(t)

θ̇j(t) = Kj(t)vj(t),

(2.1)

where velocity vj(t) and curvature Kj(t) represent control inputs ūj(t) = {vj(t),Kj(t)} ∈
R2.

2.1.2.1 Model and controller parametrization

Let us define a time interval 〈t0, tN+M 〉 containing a finite sequence with N +M +1 ele-
ments of nondecreasing times T(t0, tN+M) := {t0, t1, . . . , tN−1, tN , . . . , tN+M−1, tN+M},
such that t0 < t1 < . . . < tN−1 < tN < . . . < tN+M−1 < tN+M .1 Also, let us define a
controller for a robot Rj starting from a configuration ψj(t0) by Uj(t0, tN+M , T(·)) :=
{ūj(t0; t1 − t0), ūj(t1; t2 − t1), . . . , ūj(tN+M−1; tN+M − tN+M−1)}. Each element ūj(tk;
tk+1 − tk), where k ∈ {0, . . . , N + M − 1}, of the finite sequence Uj(t0, tN+M ,T(·))
will be held constant during the time interval 〈tk, tk+1) with length tk+1 − tk (not
necessarily uniform). In this spirit we notice how over a time interval 〈t0, tN+M 〉 a
controller can be parametrized with a minimal amount of information contained in
the sequences of constant control values Uj(·) and switching times T(·). In order to
simplify our notation, the relation between Uj(·) and T(·) becomes implicit such that
Uj(t0) ≡ Uj(t0, tN+M , T(·)) and T(t0) ≡ T(t0, tN+M).

Let us integrate the model in (2.1) over a given interval 〈t0, tN+M 〉 with constant
control inputs from Uj(t0) in each time interval 〈tk, tk+1), where tk+1, tk ∈ T(t0) and
k ∈ {0, 1, . . . , N + M − 1} (from this point we may refer to tk using its index k). By
this integrating, we can obtain the following model for the transition points at which
control inputs change:

xj(k + 1) =





xj(k) + 1
Kj(k+1) [sin (θj(k)+ Kj(k + 1)vj(k + 1)∆t(k + 1))−

sin (θj(k))] , ifKj(k + 1) 6= 0;
xj(k) + vj(k + 1) cos (θj(k)) ∆t(k + 1), ifKj(k + 1) = 0

yj(k + 1) =





yj(k)− 1
Kj(k+1) [cos (θj(k)+ Kj(k + 1)vj(k + 1)∆t(k + 1))−

cos (θj(k))] , ifKj(k + 1) 6= 0;
yj(k) + vj(k + 1) sin (θj(k))∆t(k + 1), ifKj(k + 1) = 0

θj(k + 1) = θj(k) + Kj(k + 1)vj(k + 1)∆t(k + 1),

(2.2)

1The meaning of constants N and M will be explained in Section 2.3.2.

15

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

where xj(k) and yj(k) are the rectangular coordinates and θj(k) the heading angle for
the configuration ψj(k) at the transition point with index k. Control inputs vj(k + 1)
and Kj(k + 1) are extracted from ūj(k + 1) := ūj(tk; tk+1 − tk) at time index k + 1,
and ∆t(k + 1) := (tk+1 − tk) is the sampling time. For simplification, we will gather
the control inputs ūj(k), for k ∈ {1, . . . , N + M}, under vector Uj,NM ∈ R2(N+M) and
values ∆t(k), for k ∈ {1, . . . , N + M}, under vector T∆

j,NM ∈ RN+M .
This notation allows us to describe the long trajectories exactly using a minimal

amount of information such as: i) the initial configuration ψj(t0), ii) the sequence of
switching times T∆

j,NM , and iii) the sequence of control actions Uj,NM .

2.1.2.2 Controller constraints

In applications, the control inputs are limited by vehicle mechanical capabilities (i.e.,
chassis and engine). These constraints can be taken into account for each robot Rj

limiting their control inputs by the following inequalities:

vmin,j ≤ vj(k) ≤ vmax,j

|Kj(k)| ≤ Kmax,j ,
(2.3)

where vmax,j is the maximal forward velocity of the j-th vehicle, vmin,j is the limit on
the backward velocity and Kmax,j is the maximal control curvature. These values can
be different for each robot Rj besides the additional introduction of a time dependency
as will be shown in Section 2.3.1. Notice that restrictions in equation (2.3) represent a
convex compact set Uj for each vehicle j. We will denote the set of admissible controls
for each follower Ri and the virtual leader RL by Ui and UL, accordingly.

2.1.3 Problem Formulation

The control for a formation F of nr nonholonomic car-like mobile robots reaching a
target zone is defined as our main goal. To accomplish such a task the target zone
must be clearly defined by a higher control entity or planner, so as the task allocation
approach presented in Section 5.3.

Definition 2.1.1. (Target Region) A target region SF is a convex compact region
such that for any robot Rj , j ∈ {1, . . . , nr, L}, with position p̄j(·) ∈ SF , ψj(·) ∈ Cfree.

Now, we need the following assumption which is not restrictive in order to develop
the methodology.

Assumption 1. (Desired Reachability) The virtual leader RL can get from any initial
configuration ψL(t0) ∈ Cfree at time t0 to any other configuration ψL(tf), tf > t0, inside
a defined compact ball B(p̄f , ε) in some finite time tf−t0. The ball B(p̄f , ε) is centered at
the point p̄f ∈ Projp̄(Cfree) with radius ε > rmin > 0, such {B(p̄f , ε)∩Projp̄(Cobs)} = ∅.
Projp̄(·) is a projection operator on the Cartesian coordinates of a given set. The radius
bound rmin is chosen based on some of the constraints associated with the maximal
control curvature Kmax,j of the robots.

16

2.2 Description of general approach and proof of convergence

Remark 2.1.2. A target region SF can be reassigned to another place in environment
only by a higher control entity once p̄L(·) ∈ SF . The procedure of reassigning SF once
p̄L(·) ∈ SF allows the robots to complete higher complexity missions by solving simpler
tasks. Such an approach is utilized in the airport snow shoveling presented in Chapter 5
where the complete task is splitted to subtasks of separated runway cleaning.

2.1.4 Receding Horizon Control concept

The main idea of the receding horizon control is to solve a finite horizon optimization
control problem for a system (represented by a dynamic model) starting from current
states or configuration ψ(t0) over the time interval 〈t0, t0 + N∆t〉 under a set of con-
straints on the system states and control inputs. In this framework, the duration N∆t

of the time interval 〈t0, t0 + N∆t〉 is known as the control horizon (for simplification
later called TN). ∆t is a constant sampling time, and N is number of transition points
in the control horizon. After a solution from the optimization problem is obtained on
a control horizon, a portion of the computed control actions is applied on the interval
〈t0, t0 + n∆t〉, known as the receding step. Parameter n is the number of transition
points applied in one receding step. This process is then repeated on the interval
〈t0 + n∆t, t0 + N∆t + n∆t〉 as the finite horizon moves by time steps n∆t, yielding a
state feedback control scheme strategy. Advantages of the RHC scheme become evident
in terms of adaptation to new events such as obstacles appearing in an environment.
These characteristics make the receding horizon control scheme appealing for the robot
control and trajectory planning in a feedback fashion.

In this thesis, we propose a modified version of the standard approach to receding
finite time horizon with constant sampling time. In our approach, the horizon is divided
into two segments: i) the first segment that has a constant sampling rate used for
obtaining a refined immediate control input for the virtual leader who generates desired
trajectories for the followers, and ii) the second segment where the length of the time
intervals between instances where control inputs change are also variables taking part
of the planning problem to reach the target region. Details on such construction are
presented in Section 2.3. Regarding the RHC of the followers a standard approach of
the trajectory tracking problem is taken [97].

2.2 Description of general approach and proof of conver-

gence

2.2.1 Finite time horizon optimal control of virtual leaders

Here, we need to denote the formation to target zone problem starting at time t0 as
P(t0). The cost of the required solution of P(t0) designed for the virtual leader RL can
be specified as:

JL(ψL(t0),U◦L(t0);T)◦ = min
UL





t0+T∫

t0

L(ψL(s), UL(s), s)ds



 . (2.4)

17

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

In this formulation, U◦L(t0) ∈ UL denotes the optimal controller that generates optimal
predicted states ψ◦L(·). The minimization of the predicted cost J(·) is subjected to a
set of equality constraints h(·) = 0 representing the system model in (2.2) over a finite
time horizon of length T (initially chosen arbitrary large at t0) and a set of inequality
constraints g(·) ≤ 0 that impose system’s state and control input constraints1 as well
as artificially introduced constraints to guarantee stability properties (for more details
see [121]). The proposed stability constraint, gSF

(·) ≤ 0, represents the condition that
the last position state of the horizon enters SF .

Function L(ψL(·),UL(·), ·) penalizes elapsed time for the leader until reaching SF

and local proximity of ψL(·) with unsafe regions in the environment (proximity penalties
are only active in vicinity of static or dynamic obstacles). L(ψL(·),UL(·), ·) is chosen
as a time-invariant, positive definite function. Making this choice is a key element
in the developing stability properties for the leader-follower control scheme. Now, for
regularity purposes we need the following trivial assumption.

Assumption 2. Once ψL(·) enters SF at some time t̄ ∈ 〈t0,∞), no additional cost will
be acquired. In other words, the desired target equilibrium is not a point instead it
is the region SF . Then, we can assume that L(ψL(·), UL(·), ·) = 0 for all p̄L(·) ∈ SF ,
while L(ψL(·), UL(·), ·) > 0 for all p̄L(·) /∈ SF .

Remark 2.2.1. Once the first optimization problem has been solved, the time t̄ is iden-
tified as the minimum time to reach SF .

2.2.2 Proof of convergence

In this section we present proof of convergence for the virtual leader receding horizon
scheme based on the presented framework.

Theorem 2.2.2. Under Assumptions 1-2, given a target region SF , and a feasible
solution of P(t0), the receding time horizon control scheme iteratively solves the op-
timal control problem in equation (2.4) to obtain control inputs U◦L(·) for the vir-
tual leader. These control inputs stabilize and guide RL toward the target region
SF if perturbations on J(·)◦, due to obstacles penalties for L(·), denoted by D(k),

satisfy D(k) <
τ2∫
τ1

L◦(ψL(s), UL(s), s)ds, between any two times τ1 = kn∆t + t0 and

τ2 = (k + 1)n∆t + t0, for k ∈ Z+ where k < (t̄− t0)/n∆t.

Proof. The convergence of RL to the target region SF can be proven according to
Lyapunov’s second stability theorem [93] by choosing the optimal cost JL(·)◦ as a
candidate Lyapunov function. The desired equilibrium, which is needed for the stability,
is considered as the whole SF where the JL(·)◦ is equal to zero. Within this region a
local controller working in an obstacle free environment can be applied to reach a state,
which becomes a new equilibrium for such a controller, if it is desired. In this thesis we

1Detailed description of the constraints h(·) and g(·) is provided in Section 2.3.2

18

2.2 Description of general approach and proof of convergence

are focused on the task to reach SF . We are not considering the inner local controller
and stabilization of the system inside SF . The only property that has to be shown to
prove the convergence of the method is the decrease of JL(·)◦. This can be transformed
to the following inequality that needs to be verified:

JL(ψL(n∆t + t0), U◦L(n∆t + t0);T2)◦ − JL(ψL(t0),U◦L(t0);T1)◦ < 0, ∀p̄L(·) /∈ SF . (2.5)

The second part of the left hand side, JL(ψL(t0), U◦L(t0);T1)◦, is the cost of the optimal
solution of P(t0). We will assume that the solution is feasible and therefore T1 ≥ t̄− t0.
The first term of the left hand side, JL(ψL(n∆t+ t0),U◦L(n∆t+ t0);T2)◦, is the optimal
cost obtained solving problem P(n∆t+ t0) again by starting from the initial conditions
ψL(n∆t + t0) yet. The initial state ψL(n∆t + t0) was reached after applying the first n

elements of the sequence U◦L(t0) during n∆t units of time. Again we can assume that
the solution is feasible and therefore T2 ≥ t̄− n∆t− t0.

The term JL(ψL(t0), U◦L(t0);T1)◦ can be rewritten, according to principle of opti-
mality [8] as

JL(ψL(t0), U◦L(t0);T1)◦ = JL(ψL(t0),U◦L(t0); t̄− t0)◦

+ JL(ψL(t̄),U◦L(t̄);T1 − t̄ + t0)◦.
(2.6)

Similarly, the term JL(ψL(n∆t + t0), U◦L(n∆t + t0);T2)◦ can be rewritten as

JL(ψL(n∆t + t0),U◦L(n∆t + t0);T2)◦ = JL(ψL(n∆t + t0), U◦L(n∆t + t0); t̄− n∆t− t0)◦

+ JL(ψL(t̄), U◦L(t̄);T2 − t̄ + n∆t + t0)◦.

(2.7)

Now we can apply Assumption 2 to get equalities

JL(ψL(t̄),U◦L(t̄);T2 − t̄ + n∆t + t0)◦ = 0 (2.8)

and
JL(ψL(t̄), U◦L(t̄);T1 − t̄ + t0)◦ = 0. (2.9)

Considering these observations together with equations (2.7) and (2.6) we arrive to
equality

JL(ψL(n∆t + t0),U◦L(n∆t + t0);T2)◦ − JL(ψL(t0), U◦L(t0);T1)◦ =

= JL(ψL(n∆t + t0), U◦L(n∆t + t0); t̄− n∆t− t0)◦ − JL(ψL(t0), U◦L(t0); t̄− t0)◦.

(2.10)

The terms on the right hand side of the last equality can be subtracted in the case of
an unchanged environment and missing disturbances as

JL(ψL(n∆t + t0), U◦L(n∆t + t0); t̄− n∆t− t0)◦ − JL(ψL(t0),U◦L(t0); t̄− t0)◦ =

= −
t0+n∆t∫

t0

L(ψL(s),U◦L(s), s)ds. (2.11)

19

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

Collecting the equations (2.10) and (2.11) we get

JL(ψL(n∆t + t0), U◦L(n∆t + t0);T2)◦ − JL(ψL(t0), U◦L(t0);T1)◦ =

= −
t0+n∆t∫

t0

L(ψL(s), U◦L(s), s)ds. (2.12)

Comparing the equations (2.5) and (2.12), and considering the part of Assumption 2,
L(ψL(·),UL(·), ·) > 0, ∀ p̄L(·) /∈ SF , one can easily see that the equation (2.5) is satisfied.

2.3 Implementation details

The previously introduced general framework will be adjusted and implemented to the
control of the virtual leader as well as of the followers in this section. The applied
optimization methods can be decentralized and computed independently on board of
the appropriate vehicles. In the case of the virtual leader we expect that a follower
will be equipped by an additional computational power for computing both, the leader
plan as well as its own control inputs. This robot can also be carrying better sensors
for obstacle detections or a device for fusion data from formation F. First of all, it is
necessary to describe a concept in which the whole formation will be kept.

2.3.1 Formation driving concept

The formation driving methods described in this thesis are based on a leader-follower
approach, in which the followers Ri, where i ∈ {1, . . . , nr}, track the leader’s trajectory.
For a better explanation the trajectory will be divided into two parts according to an
actual position of the virtual leader.

Definition 2.3.1. (Leader’s trajectory) Let us define the part of the trajectory
that was followed by the virtual leader in the past as

←−
ΨL(t) := {ψL(t̂) : t0 ≤ t̂ ≤ t}

and similarly the actual plan that represents the part of the trajectory that should be
followed by the virtual leader in the future as

−→
ΨL(t) := {ψL(t̂) : t < t̂ ≤ tf}. Then, the

complete leader’s trajectory is simply the union Ψ(t) := {←−ΨL(t) ∪ −→ΨL(t)}.

The shape of the formation and consequently states of the followers relative to the
state of the virtual leader are usually determined by specific applications. Furthermore,
most of the applications require a dynamically changing shape of formations during
missions to respond to changes in the environment or in the tasks (for details see
Section 1.1). The approach presented in this thesis enables the utilization of formations
with generally varying shape with restrictions given only by kinematic and dynamic
limitations of the car-like robots. It is evident that the position of a robot within the
formation cannot be changed suddenly and such transition must be feasible for the
robot. An exact analysis and determination of the feasible and unfeasible changes of

20

2.3 Implementation details

1 2 3

L

1

2

3

L

1

2

3

L

1

2

3

L

?

ICR

(a) Cartesian coordinates.

L

L

L

L

2

2

2

2

3

3

3

3

1

1

1

1

ICR

(b) Curvilinear coordinates.

Figure 2.1: Four subsequent snapshots of the formation with fixed relative positions
between the followers in (a) Cartesian and (b) curvilinear coordinates. Solid lines denote
paths of the virtual leader while paths of the followers are denoted by dashed lines.

the formation that depend on the leader’s trajectory will not be addressed in this thesis
and can be found in [157].

A less evident, but more important problem for formation driving of car-like robots
is caused by the impossibility to change heading of the robot on the spot. That is why
the formations with fixed relative distance in Cartesian coordinates cannot be used.
Such structure makes smooth movement of the followers impossible as is shown in a
simple example presented in Fig. 2.1. To solve this problem, we utilized an approach in
which the followers are maintained in relative distance to the virtual leader in curvilinear
coordinates with two axes p and q, where p traces ΨL(t) and q is perpendicular to p

as is demonstrated in Fig. 2.2. The positive direction of p is defined from RL back to
the origin of the movement RL and the positive direction of q is defined in the left half
plane from the robots perspective.

The shape of the formation is then uniquely determined by states ψL(tpi(t)), where

i ∈ {1, . . . , nr}, in travelled distance pi(t) from RL along
←−
ΨL(t) and by offset distance

qi(tpi(t)) between p̄L(tpi(t)) and p̄i(t) in perpendicular direction from
←−
ΨL(t). tpi(t) is

the time when the virtual leader was at the travelled distance pi(t) behind the actual
position. The parameters pi(t) and qi(t), defined for each follower i, can vary during
the mission.

To convert the state of the followers in curvilinear coordinates to the state in rect-
angular coordinates, the following equations can be applied:

xi(t) = xL(tpi(t))− qi(tpi(t)) sin(θL(tpi(t)))

yi(t) = yL(tpi(t)) + qi(tpi(t)) cos(θL(tpi(t)))

θi(t) = θL(tpi(t)),

(2.13)

21

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

L

31

654

987

2

q
1

p = p = p
1 2 3

q
3

q

p

q =0
2

(a) Constant curvature.

p = p = p

q

1

1

L3

2

1

6
5

4

9
8

7

q
3

2
3

p

q

q 0=
2

(b) Variable curvature.

Figure 2.2: Equivalent formations with time invariant curvilinear coordinates p and q,
following different trajectories.

where ψL(tpi(t)) =
{
xL(tpi(t)), yL(tpi(t)), θL(tpi(t))

}
is state of the virtual leader at time

tpi(t).

Remark 2.3.2. Positions of Ri, where i ∈ {1, . . . , nr}, can be determined only if pi(t) ≥
0, t0 ≤ t ≤ tf , since

←−
ΨL(t) that is necessary for defining Ri is defined only for the past

time.

By applying the leader-follower approach using pi(t) and qi(t) coordinates we can
easily determine admissible controls sets UL based on

Kmax,L(t) = min
i=1,...,nr

(
Kmax,i

1 + qi(t)Kmax,i

)

Kmin,L(t) = max
i=1,...,nr

(−Kmax,i

1− qi(t)Kmax,i

)

vmax,L(t) = min
i=1,...,nr

(
vmax,i

1 + qi(t)KL(t)

)

vmin,L(t) = max
i=1,...,nr

(
vmin,i

1 + qi(t)KL(t)

)
.

(2.14)

These restrictions must be applied to satisfy the different curvatures and speeds of the
robots in different positions in F during turning. From the Fig. 2.1(b), it may be clear
that the robot following the inner track should go slower but with a bigger curvature
than the robot further from the center of turning.1 Control inputs of the leading robot

1For an explanation of motivation of equations (2.14), let us suppose that followers 1, 2 and 3 in

22

2.3 Implementation details

vL(t) and KL(t) will then be bounded by the inequalities:

Kmin,L(t) ≤ KL(t) ≤ Kmax,L(t)

vmin,L(t) ≤ vL(t) ≤ vmax,L(t).
(2.15)

Similarly, the obstacle avoidance behavior of the virtual leader can differ from the
behavior of the follower robots. Firstly, we should define a circular detection boundary
with radius rs and a circular avoidance boundary with radius ra for a single robot.
Single robots should not respond to obstacles detected outside the region with radius
rs. On the contrary, the distance between the robots and obstacles less than ra is
considered as inadmissable. Since the leader’s trajectory has to be collision free for the
virtual leader but also for the followers, the shape of the formation should be included
to the avoidance behavior of the virtual leader. The extended detection and unsafe
zones for the virtual leader can be expressed as

rs,L(t) = rs + max
i∈{1,...,nr}

|qi(t)|

ra,L(t) = ra + max
i∈{1,...,nr}

|qi(t)|,
(2.16)

where rs,L(t) is the detection zone of RL and ra,L(t) is the unsafe zone of RL. These
concepts are based on the concept of avoidance control [32; 33; 109; 110] and will be
used in this thesis for the collision avoidance guaranties.

In order to simplify our presentation and without any particular loss of generality,
we will assume that the regions are time invariant, that is,

rs,L = max
0<t<tf

rs,L(t)

ra,L = max
0<t<tf

ra,L(t).
(2.17)

Generally, the detection and unsafe zones of the virtual leader can be asymmetric in
the case of an asymmetric formation [173]. In this thesis, this problem is solved using
the approach with a virtual leader that is always positioned at the axe of the formation.
Furthermore the utilization of the virtual leader can handle the case pi(t) ≤ 0 forbidden
in Remark 2.3.2 by placing the leader in front of the formation. The virtual leader RL

should be during the mission situated within the formation in such a position that the
following equations are satisfied for all i ∈ {1, . . . , nr}:

max
i=1,...,nr

qi(t) = − min
i=1,...,nr

qi(t)

pi(t) ≥ 0.
(2.18)

Fig. 2.1(b) have the same controller constraints. During the turning right, the maximal curvature of

the leader, Kmax,L(t), must be lower than the maximal curvature of robot 3, Kmax,3, otherwise robot 3

may not be able to follow a leader’s movement and to stay in its desired position within the formation.

The maximal velocity vmax,L(t) must be lower than vmax,1 (resp. the minimal velocity vmin,L(t) must

be higher than vmin,3) otherwise follower 1 gets behind the formation (resp. follower 3 foreruns the

formation). If the formation is turning left, the minimum curvature Kmin,L(t) must be higher than

−Kmax,1 and the roles of robots 1 and 3 are swopped for the leader’s velocity limitations. All these

effects grows with the distance of followers from the leader in q direction and furthermore the the

leader’s velocity limits depend on the actual curvature of leader KL(t).

23

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

2.3.2 Leader trajectory planning and control

In the presented approach we propose to solve two usually separated problems: collision
free trajectory planning and a computation of control sequence, in one optimization
step. The aim of the method is to find a control sequence which could control the
virtual leader to the target region by minimizing a given cost function. The main
idea of the approach is to divide such a sequence into two finite time intervals TN

for k ∈ {1, . . . , N} and TM for k ∈ {N + 1, . . . , N + M}. The first time interval TN

should provide control inputs for RL regarding local environment of the formation. By
applying this portion of the control sequence, the group should be able to respond to
changes in workspace that can be dynamic or newly detected static obstacles. The
difference ∆t(k + 1) = tk+1 − tk is kept constant (later denoted only ∆t) in this time
interval. Value of ∆t should satisfy the requirements of the classical receding horizon
control scheme, because this part of control will be directly used as an input of the
vehicles.

The second interval TM takes into account information about global characteristics
of the environment to navigate the formation to the goal optimally. The transition
points in this part of

−→
ΨL(t) can be distributed irregularly to effectively cover the

environment. During the optimization process, more points should be automatically
allocated in the regions with higher density of obstacles or in places where a complicated
maneuver of the formation is needed. This is enabled due to the varying values of
∆t(k + 1) = tk+1− tk that will be for the compact description collected into the vector
T∆

L,M := {∆t(N +1), . . . , ∆t(N +M)}. The total time from actual position of the robot
to the target region will be then

tf − t = N∆t +
N+M∑

k=N+1

∆t(k). (2.19)

To define the trajectory planning problem with two time intervals in a compact
form we need to gather states ψL(k), where k ∈ {1, . . . , N}, and ψL(k), where k ∈
{N + 1, . . . , N + M}, into vectors ΨL,N ∈ R3N and ΨL,M ∈ R3M . Similarly the control
inputs ūL(k), where k ∈ {1, . . . , N}, and ūL(k), where k ∈ {N + 1, . . . , N + M}, can
be gathered into vectors UL,N ∈ R2N and UL,M ∈ R2M . All variables describing the
complete trajectory from the actual position of the virtual leader until target region are
collected into the optimization vector ΩL = [ΨL,N ,UL,N ,ΨL,M , UL,M , T∆

L,M] ∈ R5N+6M .

2.3.2.1 Objective function and constraints

The trajectory planning and the static as well as dynamic obstacle avoidance problem
for the virtual leader can be transformed to the minimization of cost function JL(·)
subject to sets of equality constraints hTN

(·), hTM
(·) and inequality constraints gTN

(·),
gTM

(·), gSF
(·), gra,L(·), that is

minJL(ΩL) (2.20)

24

2.3 Implementation details

s.t. hTN
(k) = 0, ∀k ∈ {0, . . . , N − 1}

hTM
(k) = 0, ∀k ∈ {N, . . . , N + M − 1}

gTN
(k) ≤ 0, ∀k ∈ {1, . . . , N}

gTM
(k) ≤ 0, ∀k ∈ {N + 1, . . . , N + M}

gSF
(ψL(N + M)) ≤ 0

gra,L(ΩL, Oobs) ≤ 0.

(2.21)

The cost function JL(·) is given by

JL(ΩL) =
N+M∑

k=N+1

∆t(k) + α

n0∑

j=1

(
min

{
0,

distj(ΩL, Oobs)− rs,L

distj(ΩL, Oobs)− ra,L

})2

, (2.22)

where the endeavor of the trajectory planning to reach a desired goal as soon as possible
is expressed in the first part of JL(·) and the influence of the environment on the final
solution is added to the cost function in the second term. This second part of JL(·),
which is the sum of modified avoidance functions, contributes to the final cost when an
obstacle from Oobs (static or dynamic) is closer to the trajectory than rs,L and it will
approach infinity if distance ra,L to the obstacle is reached. Function distj(ΩL,Oobs)
providing Euclidean distance between obstacle j and

−→
ΨL(t) cannot influence optimiza-

tion if the obstacle is sufficiently far. The utilization of these avoidance functions is
motivated by [45] and [173], where similar approaches have been used for a cooperative
collision avoidance in multi-agent systems.

The influence of both parts of the cost function is adjusted by constant α. An
increase of α results in longer trajectories with larger distances from obstacles which
can be in highly dynamic environments applications more safety. On the contrary, even
zero value of α does not lead to collisions due to the constrain gra,L . One can find a
more detailed description of the influence of α in our previous works [161; 164]

The kinematic model (2.2) with initial conditions given by the actual state of the
virtual leader is represented using equality constraints hTN

(k), where k ∈ {0, . . . , N−1},
and hTM

(k), where k ∈ {N, . . . , N + M − 1}, from (4.7) as

hTN
(k) := hTN

(ψL(k), ψL(k + 1), ūL(k + 1)) =




hx(k)
hy(k)
hθ(k)


 (2.23)

and

hTM
(k) := hTM

(ψL(k), ψL(k + 1), ūL(k + 1), ∆t(k + 1)) =




hx(k)
hy(k)
hθ(k)


 . (2.24)

The first set of constraints hTN
(k), where k ∈ {0, . . . , N−1}, is applied for the first part

of the trajectory with constant ∆t, while the set hTM
(k), where k ∈ {N, . . . , N+M−1},

should be satisfied for the second part where ∆t(k), where k ∈ {N + 1, . . . , N + M}, is
a variable.

25

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

Similarly, for the intervals TN and TM , we define different sets of inequality con-
straints gTN

(k), where k ∈ {1, . . . , N}, and gTM
(k), where k ∈ {N + 1, . . . , N + M},

as

gTN
(k) := gTN

(ψL(k), ūL(k)) =




gvmin,l(k)
gvmax,l(k)
gKmin,l(k)
gKmax,l(k)


 (2.25)

and

gTM
(k) := gTM

(ψL(k), ūL(k),∆t(k)) =




gvmin,l(k)
gvmax,l(k)
gKmin,l(k)
gKmax,l(k)
g∆tmin(k)




. (2.26)

In both sets the constraints gvmin,l(·), gvmax,l(·), gKmin,l(·) and gKmax,l(·) characterize
bounds on the velocity and curvature given by (2.14). The constraints g∆tmin(k) in
gTM

(k) ensure that inequalities ∆t(k) ≥ 0, where k ∈ {N +1, . . . , N +M}, are satisfied.
The avoidance inequality constraints gra,L(ΩL,Oobs) that characterize safety avoid-

ance regions are defined as:

gra,L(ΩL, Oobs) := r2
a,L − distj(ΩL, Oobs)2, j ∈ {1, . . . , n0}. (2.27)

Finally, gSF
(ψL(N + M)) is a stability constraint guaranteeing that

−→
ΨL(t) will enter

target region SF . For simplification it is supposed that the target region is a circle with
radius rSF

and center CSF
. The stability constraint is then given by

gSF
(ψL(N + M)) := rSF

− ‖p̄L(N + M)− CSF
‖. (2.28)

2.3.2.2 Initialization

The experimental results presented in this chapter were obtained using sequential
quadratic programming, which is a generalization of Newton’s method [139]. The out-
come of such a local optimization process with the cost function that was introduced
in Section 2.3.2.1 is strongly dependent on the initialization of the optimizer. The cost
function contains a lot of local extremes in which the process can easily get stuck.

A solution of such a phenomena could be the utilization of a global optimization
method or the addition of a stochastic part to the local optimization which can help
to disengage from a local minima. For both approaches, it is difficult to prove an
ability to find the global minimum and in addition the optimization is significantly
slower which cannot be accepted for our purposes. Thus, we suggest an approach
based on an appropriate initialization of the optimization. The idea is to initialize the
planning process as close to the global optimum as possible in the first optimization
run. We propose a path planning approach using Voronoi Diagrams as an appropriate
method for finding an estimation of the position of the global minimum. The proposed
algorithm is based on a distribution of the vectors ΨL,N and ΨL,M along the shortest
feasible Voronoi paths. A detailed description of this approach, which is used only for
the first initialization of the planning loop, is presented in Section 4.

26

2.3 Implementation details

In this section we will focus on the re-initialization of the planning method applied
in the next steps of the loop which is important for a fast response to problems ap-
pearing suddenly. Once we have the optimal solution of the task, it is useful for the
decreasing of the computational rate to initialize the next run using this result. In a
static environment without disturbances, we can even easily prove, using the principle
of optimality as shown in Section 2.2.2, that the optimal plan from the new position
of the robot will be part of the previous plan. In real applications, the solution should
be adapted for the new situation but usually the optimal solution needs to be changed
only slightly and the previous result can be successfully used for the re-initialization.

Based on the receding horizon control used in this thesis, only part of the optimal
solution Ω◦L = [Ψ◦

L,N , U◦L,N , Ψ◦
L,M ,U◦L,M , T∆◦

L,M] can be utilized for the re-initialization
without any modification. As we have explained in Section 2.1.4, the sequence Ψ◦

L,N

(resp. U◦L,N) can be divided into two parts. In the first part, we have ψ◦L(k), for
k ∈ {1, . . . , n}, (resp. ū◦L(k), for k ∈ {1, . . . , n}) and in the second part, we have ψ◦L(k),
for k ∈ {n + 1, . . . , N}, (resp. ū◦L(k), for k ∈ {n + 1, . . . , N}). Only the inputs from
the first part, ū◦L(k), for k ∈ {1, . . . , n}, will be used as the immediate control. This is
why ψ◦L(k), where k ∈ {n + 1, . . . , N}, (resp. ū◦L(k), where k ∈ {n + 1, . . . , N}) can be
utilized directly as the beginning of the new initialization as ψL,init(k) := ψ◦L(k + n),
for k ∈ {1, . . . , N −n}, (resp. ūL,init(k) := ū◦L(k + n), for k ∈ {1, . . . , N −n}). Now we
have to initialize states ψL,init(k), where k ∈ {N − n + 1, . . . , N}, and control inputs
ūL,init(k), where k ∈ {N − n + 1, . . . , N}. Here we must ensure that the trajectory
is continuous in both intervals, TN and TM . Therefore, this part of the initialization
should be extracted from the optimal plan to target region capturing the states and
control inputs at times t + (k + n)∆t, where k ∈ {N − n + 1, . . . , N}. Finally, we
have to create the vectors ΨL,M,init, UL,M,init and T∆

L,M,init. The suitable initialization
is to use the vectors Ψ◦

L,M , U◦L,M and T∆◦
L,M with a modification necessary due to the

overlapping of the trajectory that is described by vectors ΨL,N,init and UL,N,init, and
the trajectory that is described by vectors Ψ◦

L,M , U◦L,M and T∆◦
L,M . This overlapping is

caused by the concept of RHC. Therefore, the first ke transition points must be from
the vectors Ψ◦

L,M , U◦L,M and T∆◦
L,M extracted and the first element of such obtained

vector T∆
L,M,init must appropriately be shortened. Number ke is the maximal integer

satisfying inequality n∆t >
∑N+ke

i=N ∆t◦(i). Then the remaining part of the initialization
is ψL,init(k) := ψ◦L(k+ke), where k ∈ {N +1, . . . , N +M−ke}, ūL,init(k) := ū◦L(k+ke),
where k ∈ {N + 1, . . . , N + M − ke}, ∆tinit(N + 1) :=

∑N+ke
i=N ∆t◦(i) − n∆t and

∆tinit(k) := ∆t◦(k+ke), where k ∈ {N+2, . . . , N+M−ke}. The complete initialization
vector will be composed as ΩL,init = [ΨL,N,init,UL,N,init,ΨL,M,init, UL,M,init, T

∆
L,M,init]

after this step.
Finally, it is important to mention that the repeated usage of the previous plan as

the initialization of the new optimization is not always appropriate. Unseemly moving
obstacles crossing the trajectory of the formation can push the formation away from
the desired target region under special condition. In such a case the proof of the
optimality presented in Section 2.2.2 can fail, because the cost of the new plan will
be bigger then the previous one. A similar situation can also happen, if the map
of the environment is changed significantly which can produce new local extremes.
Fortunately, both examples can be simply detected by the increasing of the cost and

27

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

the easiest solution of this problem is to initialize the optimization from the beginning
with the approach using the Voronoi Diagram.

2.3.2.3 Remark on convergence

The proof of convergence of formation F to target region SF presented in Section 2.2.2
can be utilized for an arbitrary cost function satisfying the Assumption 2 (such can
be e.g. a function describing the fuel consumption, the minimum operation time or
the optimal coverage). In the case of the cost function described in equation (2.22),
the satisfaction of the Assumption 2 is not explicitly described but it results from
the structure of the cost function. Considering the first term of equation (2.22) and
the convergence constraint gSF

(·), we can assume that the equality T1 = t̄ − t0 (resp.
T2 = t̄− n∆t− t0) is held for the total time of the optimal solution from state ψL(t0)
(resp. ψ◦L(n∆t + t0)). In other words, a feasible plan that contains a part of the
trajectory inside the target region cannot be optimal, because such a plan can be
divided to two parts: the part reaching the border of SF and the remainder. Let us
suppose a shortened plan that consists from the first part of the complete one. Such a
shortened plan is cheaper than the previous plan (the value of the first term of the cost
function is decreased and value of the second term is decreased or unchanged) and as a
part of the feasible plan also satisfies all the constraints. Therefore, the Assumption 2
does not need to be included into the cost function.

2.3.3 Trajectory tracking for followers

The trajectory Ψ◦
L(·) computed for the virtual leader of the formation as the result

of the previous section can be directly used via the equations (2.13) for navigation of
the followers to SF . Unfortunately, this plan is not able to respond to events behind
the actual position of the leader. In terms of applications, it cannot be assumed that
the environment stays static until the last member passes a sector in which previously
collision free plan was created by the virtual leader moving at the head of the group. We
also cannot expect that each follower will follow its optimal plan faultlessly. Incorrect
driving direction or velocity can be dangerous for the neighbors, which should be able
to avoid possible collisions.

The idea of our approach is to use the leader’s trajectory, which consists from←−
ΨL(·) and from the part of

−→
Ψ◦

L(·) on interval TN , as an input for the formation driving
approach described in Section 2.3.1. The desired states for each of the followers can
be obtained as ψd,i(k) := FormationDrivingi(t + k∆t), for k ∈ {1, . . . , N} and i ∈
{1, . . . , nr}, where FormationDrivingi(t̂) represents equations (2.13) applied on state
ψL(tpi(t̂)

) with coordinates pi(t̂) and qi(tpi(t̂)
). The states ψd,i(k) = (p̄d,i(k), θd,i(k)), for

k ∈ {1, . . . , N} and i ∈ {1, . . . , nr}, will be utilized for trajectory tracking algorithm
with obstacle avoidance functions in this section.

The states and the control vectors ψi(k), where k ∈ {1, . . . , N}, and ūi(k), where
k ∈ {1, . . . , N}, can be gathered as vectors Ψi ∈ R3N and Ui ∈ R2N for each follower i

similarly to the leader planning in Section 2.3.2. These vectors can be collected into a
unique optimization vector Ωi = [Ψi, Ui] ∈ R5N . The vector Ωi will be used to represent
the dynamic behavior of the discrete trajectory tracking with collision avoidance and to

28

2.3 Implementation details

capture it as a static optimization process under the receding horizon scheme described
in Section 2.1.4.

2.3.3.1 Objective function and constraints

Discrete-time trajectory tracking for followers Ri, where i ∈ {1, . . . , nr}, is in this
section transformed to an optimization problem with cost function Ji(·) subject to a
number of equality constraints hi(·) and inequality constraints gi(·), gra(·), and gra,i(·).
The optimization process for each follower is decentralized. The only necessary commu-
nication within the group is used for propagation of the appropriate part of the leader’s
trajectory and for sharing the positions of the obstacles detected by the members of
the team. The complete optimization scheme can be presented in the form:

minJi(Ωi), i ∈ {1, . . . , nr} (2.29)

s.t. hi(k) = 0,∀k ∈ {0, . . . , N − 1}
gi(k) ≤ 0,∀k ∈ {1, . . . , N}

gra(Ωi, Oobs) ≤ 0

gra,i(Ωi,Ω◦j) ≤ 0,∀j ∈ n̄n,

(2.30)

where

Ji(Ωi) =
N∑

k=1

‖(p̄d,i (k)− p̄i (k))‖2 + α

n0∑

j=1

(
min

{
0,

distj(Ωi, Oobs)− rs

distj(Ωi, Oobs)− ra

})2

+ β
∑

j∈n̄n

(
min

{
0,

di,j(Ωi,Ω◦j)− rs,i

di,j(Ωi,Ω◦j)− ra,i

})2

,

(2.31)

hi(k) := hi(ψi(k), ψi(k + 1), ūi(k + 1)) =




hx(k)
hy(k)
hθ(k)


 , ∀k ∈ {0, . . . , N − 1} (2.32)

and

gi(k) := gi(ψi(k), ūi(k)) =




gvmin,l(k)
gvmax,l(k)
gKmin,l(k)
gKmax,l(k)


 , ∀k ∈ {1, . . . , N}. (2.33)

The proposed cost function Ji(·) consists of three components with their influence
adjusted by constants α and β. The first component represents deviations of the
position p̄i(k), for k ∈ {1, . . . , N}, from the desired position p̄d,i(k), for k ∈ {1, . . . , N},
and so it is crucial for the effort of the trajectory tracking. The second summation in
Ji(·) is equivalent to the second term used in (2.22) and should ensure that dynamic
or lately detected obstacles will be avoided. Only difference is that the avoidance
regions for single robots can be smaller than the avoidance regions for the virtual
leader as was explained in Section 2.3.1. The third component of Ji(·) is the sum
of avoidance functions in which the other members of the team are considered also

29

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

as dynamic obstacles. This part has to protect the robots in cases of an unexpected
behavior of defective neighbors. Function di,j(Ωi, Ω◦j) is the minimal distance between
the planned trajectory of Ri and the actually exercised plan of Rj , for j ∈ n̄n, where
n̄n = {1, . . . , i − 1, i + 1, . . . , nr}. It is evident from the idea of the leader following
motion planning that the planning loops of the followers are synchronized by the time
at which the plan of the virtual leader is prepared. Then, all robots are computing
their controls concurrently and only the previously computed plans Ω◦j can be utilized
to obtain the value of di,j(Ωi,Ω◦j) as

di,j(Ωi, Ω◦j) := min
k∈{1,...,N−n}

∥∥p̄◦j (k + n)− p̄i(k)
∥∥ , (2.34)

where p̄◦j (·) is an assumed position of the robot Rj if the plan stays unchanged. The
detection radius rs,i is usually smaller than basic rs, because the follower should not
try to avoid a close neighbor if both are at the desired position. The constant rs,i then
can be defined as

rs,i := min
(

rs, min
j∈n̄n

(
min

k∈{1,...,N}
‖p̄d,j(k)− p̄d,i(k)‖

))
. (2.35)

The avoidance radius ra,i is simply defined as ra,i = min(rs,i, ra) in our case. In general
the independently moving obstacles can be considered as more dangerous and difference
between ra,i and ra can be increased appropriately.

The equality constraints hi(k), defined in (2.32), are identical to the equality con-
straints hTN

(k), given in (2.23), where k ∈ {0, . . . , N − 1}. Similarly, the inequality
constraints gi(k), defined in (2.33), are identical to the inequality constraints gTN

(k),
given in (2.25), where k ∈ {1, . . . , N}, and finally the avoidance inequality constraints
gra(Ωi, Oobs) and gra,i(Ωi, Ω◦j) are given by equations

gra(Ωi, Oobs) := r2
a − distj(Ωi, Oobs)2, j ∈ {1, . . . , n0}

gra,i(Ωi, Ω◦j) := r2
a,i − di,j(Ωi,Ω◦j)

2, j ∈ n̄n,
(2.36)

similarly as gra,L(ΩL, Oobs) in equation (2.27).

2.3.3.2 Initialization

The advantage of the leader-follower method described in Section 2.3.1 consists in the
possibility to compute U◦i , where i ∈ {1, . . . , nr}, analytically directly from Ω◦L. Such
a solution would be obtained faster than by the optimization method presented in the
previous section, but these results can be applied only in an obstacle free environment
and with ideal robots without failures and disturbances.

We propose a combination of both approaches as an ideal solution. The analytically
obtained result can be utilized in the first step as an efficient and fast initialization of
the optimization based method. In the second step of the planning approach, the op-
timization technique is applied to solve the problems with obstacles, failures of robots
and disturbances of sensors. Such an architecture of the system can significantly de-
crease the total computational time and furthermore it can reduce the problem of the
local minima of the cost function.

30

2.3 Implementation details

The initialization of the vector Ψi,init directly results from the concept of the trajec-
tory tracking and we can use ψi,init(k) := ψd,i(k), for k ∈ {1, . . . , N}. The initialization
of the second part of Ωi,init, the vector Ui,init, can be simply computed only if param-
eters pi(t) and qi(t) are time invariant. A more advanced formation driving method
must be applied for applications with variable shapes of the formation.

The initial work in this field has been described by Barfoot and Clark in [14] and
[13]. Their approach, developed only for trajectories with piecewise constant curvatures,
has been later generalized by Hess et al. in [78]. The idea of their method is similar
to the approach introduced in Section 2.3.1, where the actual ψi(t) is computed using
ψL(tpi(t)) in the travelled distance pi(t) backwards. They propose that ūi(t) is obtained
from ūL(tpi(t)) which was applied when the virtual leader was at distance pi(t) from

the actual position along
←−
ΨL(t). In general, if the shape of the formation is changing,

the control inputs ūi(t) = {vi(t),Ki(t)} can be computed according to [78] using

vi(t) = Qi(tpi(t))vL(tpi(t))

Ki(t) =
1

Qi(tpi(t))


KL(tpi(t)) +

KL(tpi(t))
(

dqi
dt (tpi(t))

)2

Qi(tpi(t))2

+

(
1− qi(tpi(t))KL(tpi(t))

)
d2qi

dt2
(tpi(t)) + qi(tpi(t))

dqi

dt (tpi(t))
dKL
dt (tpi(t))

Qi(tpi(t))2


 ,

(2.37)

where

Qi(tpi(t)) =

√(
dqi

dt
(tpi(t))

)2

+
(

1− qi(tpi(t))KL(tpi(t))
)2

.

The initial control inputs for the first planning step gathered under the vector Ui,N,init

can be then computed as ūi,init(k) := Hessi(t + k∆t), for k ∈ {1, . . . , N}, where
Hessi(t̂) represents equations (2.37) applied on control inputs ūL(tpi(t̂)

) with coordi-
nates pi(t̂) and qi(tpi(t̂)

).
At the end, we will describe the re-initialization of Ωi,init which can differ from the

initialization for the first step of the optimization described above. Due to the RHC
method applied for the driving of the followers, a part of the vector Ωi is computed
repeatedly. We can assume that the environment is changed only slightly between two
iterations of the planning loop. Then the appropriate approach is to re-initialize the
beginning of the optimization vector using the values obtained in the previous iteration
as the optimal solution. Concretely ψi,init(k) := ψ◦i (k + n) and ūi,init(k) := ū◦i (k + n),
for k ∈ {1, . . . , N − n}. The rest of the vectors must be obtained using the same
approach as for the initialization of the first step: ψi,init(k) := ψd,i(k) and ūi,init(k) :=
Hessi(t + k∆t), for k ∈ {N − n + 1, . . . , N}.

2.3.3.3 Notes on stability

The convergence results proposed in Section 2.2.2 for the virtual leader trajectory
planning and control should be completed by the proof of stability of the formation
behind the leader. One can find several studies showing stability properties of the

31

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

trajectory tracking using RHC in literature and therefore the development of a new
concept would be useless. We will just briefly refer to a few of them and then select an
approach suitable for our algorithm.

Most of the approaches assume that the optimal cost function over the finite horizon
is a valid Lyapunov function or elaborate on idea that the last state in the horizon N

must reach the equilibrium. In [90; 122], an equality constraint is applied to guarantee
that the last state of horizon N reaches the equilibrium. This is achieved by the
utilization of sufficiently big N , which is due to the high computational demand hardly
practicable. A terminal region (similar to our target region SF) is introduced in a
neighborhood of the required origin in [40; 125]. A complete trajectory as the input
and a local linear control law KL, which is applied once the system enters the terminal
region, are assumed in this approach. These assumptions together with the necessity
to extend N to reach the region are omitted in the work published in [123] where the
idea of a static terminal region is extended to the variable set EF (t) contracting with
time. Furthermore an additional horizon of length P = n is utilized in the paper. This
horizon, used first in [61], is called prediction horizon and it is used to describe the
future behavior of the plant. This ”virtual” horizon is considered only for the proof
of stability and the implementation of the method can be used with the standard two
horizons.

In Theorem 1. of [123] and in the attached proof, an asymptotical stability of
the system, which is equivalent to our system described in equations (2.1), is shown.
Two necessary assumptions are applied in the proof: the state feedback of the system
is available at all sampling instances and no disturbances are considered in the system
environment. The second assumption cannot be always satisfied in our application due
to dynamic and unknown obstacles. Similarly as in the Proposition 2.2.2 for the
virtual leader, we have to accommodate a restriction on the perturbations caused by
the obstacles. In practical application a threshold of the cost function has to be settled.
If the cost for a follower exceeds the threshold, the virtual leader of formation should
interrupt the mission or the follower has to be removed from the group.

2.3.4 System overview

A general architecture of the overall system is presented in this section to highlight the
relations between independent modules as well as the necessary communication within
the team of robots.

The entire system can be logically divided into two blocks as you can see in the
scheme depicted in Fig. 2.3. The first block, called Virtual Leader, can be physically
placed onboard a sufficiently equipped follower within the formation. Such an approach
increases the robustness of the system, because in case of the failure of such a robot, the
same package can be initialized in a backup robot and the formation can continue to
accomplish the task. In the Virtual Leader part, the formation to target zone problem
(see Section 2.3.2) and the formation driving task (see Section 2.3.1) are iteratively
solved. Concretely, the Trajectory Planning block should provide control inputs for the
virtual leader but also the complete trajectory to the target zone which is collision free
for the whole formation. The trajectory is described by a sequence of configurations of
the virtual leader ψL(k) and by constant control inputs ūL(k), where k ∈ {1, . . . , N +

32

2.3 Implementation details

Leader
Initialization

Trajectory
Planning

MAP,
C
Target region

onfiguration of

Virtual Leader

1 ... n n+1 ... N N+1 ... N+M

Formation Driving

Follower
Initialization

Trajectory
Following

MAP,
Position of
neighbors

Follower 1

1 ... n n+1 ... N

Actuators

1 ... n n+1 ... N

Follower
Initialization

Trajectory
Following

MAP,
Position of
neighbors

Follower n

1 ... n n+1 ... N

Actuators

1 ... n n+1 ... N

...

r

Figure 2.3: Diagram of the entire planning system with denoted communication channels.

33

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

M}, that are applied in between the transition points. The output of the Trajectory
Planning block is used as an input for Leader Initialization and Formation Driving
modules. In the Formation Driving module, the first N components of the leader plan
are transformed to the desired configurations of the followers. This planning process is
then repeated under the RHC concept, where only the first n samples of the solution are
really implemented in the controller of the robots. Nevertheless, the rest of the solution
can be used for the initialization of the planning task in the next step via the Leader
Initialization module. The plan will be significantly altered only in case of the changed
topology of the environment. For details of the initialization see Section 2.3.2.2.

The core of the second main block, which is multiplied for each of the followers, is
the Trajectory Following module designing appropriate collision free control inputs for
the vehicles (see Section 2.3.3). This part is responsible for the avoiding of impending
collisions with obstacles or other members of the team and it should correct deviations
from the desired trajectory provided by the virtual leader. Due to the RHC concept
again only the first n components of the optimal solution will be applied to the real
system and the rest can be recycled in the Follower Initialization module. In the
initialization, this part of the final solution is combined with part of the new desired
trajectory designed by the Formation Driving module which enables to obtain the new
solution faster (for details see Section 2.3.3.2).

No explicit feedback from the followers to the virtual leader planning is depicted
in the scheme from Fig. 2.3. Nevertheless, we should mention that the map of the
environment, which is used in Trajectory Planning, is updated by the sensors on board of
the followers. Based on this, the positions of the newly detected obstacles as well as the
positions of the team members need to be shared within the formation. Beyond this, the
plan provided by the Formation Driving module is the only necessary communication
in the presented approach. A direct feedback from the followers that could enable the
leader to wait for delayed or broken robots is not considered. The aim of the system
presented in this chapter is to reach the target region as soon as possible even in the
case of the robots’ failures.

2.4 Experimental results of formation to desired goal re-

gion problem

2.4.1 Parameters tuning

The crucial problem of the methods using the RHC schema is to find an appropriate
number of samples (variables n and N) used in the optimization. By the increasing of n,
the planning loop is enlarged and the time interval usable for computing of the optimal
solution is longer, but the ability to respond to changes in the dynamic environment
is logically reduced. With the growing value of N , the necessary computational time
of optimization is increased and contrariwise a too small N can cause undesirable
oscillation as shown in Section 5.4.2 where the parameters n and N are tuned for the
application of airport snow shoveling.

This subsection will be focused on the proper setting of parameter M , which is
employed in the novel incorporation of the trajectory planning and the optimal control

34

2.4 Experimental results of formation to desired goal region problem

Table 2.1: Values of the cost function and required computational times for one planning
step of the algorithm using a different value of parameter M and fixed constants N = 4,
n = 2. First row: Time needed for the first step. Second row: Maximum time needed for
the other steps. Third row: Cost of the final solution obtained in the first step. The results
have been obtained by computer with Pentium 4 CPU 3.2GHz using function fmincon of
Matlab [62].

M [-] 1 2 3 4 5 6 7 8

time [s] (1.step) 17.8 34.7 34.9 43.4 54.7 68.4 82.5 99.3
max. time [s] (≥ 2.steps) 0.15 0.28 0.29 0.36 0.49 0.61 0.75 0.93
cost function [-] (1.step) ∞ ∞ 38.8 27.8 21.1 15.7 13.1 11.6

under the receding horizon concept. Similarly as the constant N , also the value of
M has significant influence on the computational time needed for the optimization as
shown in Table 2.1. There are presented results of the situation from Fig. 2.4 which
has been solved by the algorithm with different values of parameter M . The first row
of the table shows the time at which the result was obtained in the first step of the
planning loop. In the next steps of the planning loop, the computational time is notably
decreased. The reduction is more than a hundred times in the case of static obstacles
as shown in the second row of the table. These values are maximum times that are
needed for the computation of the planning steps with a sequential number bigger than
1. The decrease of the task complexity is achieved by the utilized initialization, where
the major part of the solution is reused for the new optimization and the modified result
only responds to changes in the environment and to disturbances of the sensors. The
values presented in the second row of the table together with product n∆t determine an
upper bound of M . The optimization process must be prepared before the formation
accomplishes the part of the previous plan described by the first n transition points.
It is clear, that in the case of a significant change of workspace, the new plan must be
created from scratch. Then the optimization process is longer and the formation has
to interrupt its movement similarly as the system has to wait at the beginning for the
first plan.

The third row of the Table 2.1 presents costs of the final solutions in the first
iteration obtained using the function introduced in equation (2.22). As expected the
quality of the results increases with the increase of parameter M . This effect can be
simply observed in Fig. 2.4 presenting solutions obtained by the algorithm with different
values of M . Using the first setting, M = 2, the space of solutions is insufficient and
the obtained optimal trajectory is colliding with borders of the road (Fig. 2.4(a)). The
optimal trajectory obtained using M = 3, presented in Fig. 2.4(b), is feasible for the
virtual leader but is to close to the roadside for the formation whose shape would need
to be deformed. The first feasible solution for the entire formation was achieved with
M = 4 (Fig. 2.4(c)) but the trajectories designed by the algorithm using a bigger M

(e.g. M = 7 in Fig. 2.4(d)) lead the formation to the target region faster.

35

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

TARGET

Initialization

Actual time: 0

Leader's plan
Transition points
Plan of followers

Ψ
Ψ
Ψ

(t)

L,M

←

L

i

(a) M = 2.

TARGET

Actual time: 0

Leader's plan
Transition points
Plan of followers

Ψ
Ψ
Ψ

(t)

L,M

←

L

i

(b) M = 3.

TARGET

Actual time: 0

Leader's plan
Transition points
Plan of followers

Ψ
Ψ
Ψ

(t)

L,M

←

L

i

(c) M = 4.

TARGET

Actual time: 0

Leader's plan
Transition points
Plan of followers

Ψ
Ψ
Ψ

(t)

L,M

←

L

i

(d) M = 7.

Figure 2.4: Solution of the formation to target zone problem with different setting of
parameter M .

36

2.4 Experimental results of formation to desired goal region problem

TARGET

Actual time: 0

Leader's plan
Transition points
Planned states of followers
Passed trajectories

Ψ
Ψ

Ψ
Ψ

(t)

(t)

L,M

i

←

L

i
←

In
iti
al

iz
at

io
n

1

3 2

5 4

Figure 2.5: A plan of the leader and the followers to reach the desired target zone SF

from initial positions with delineated initialization of the trajectory planning for leader.

A speculation about a sufficient value of M is possible only in such a well structured
environment like the one we used in this section. We can expect that a trivial sequence
like: go straight, turn right, go straight, turn left, go straight will be feasible and
therefore also any plan with M ≥ 5 is feasible. In most of the examples this approach
is too pessimistic. Even in our simple case the possibility of the feasible solution using
M = 4 cannot be found by our simple speculation. In more complicated environments,
such a better estimation is difficult. Therefore the parameter M has to be adjusted
close to the upper bound determined by the computational resources, except simple
environments or specific applications where the estimation of the appropriate length
of the optimization vector is possible. Nevertheless, this will not guarantee a feasible
result. The approach based on a hierarchical decomposition of the optimization task,
which will be introduced in Section 4.2, could be a solution of this problem. The basic
idea of the method is to initialize the planning into a small space of solutions, similarly
as in Fig. 2.4(a) or Fig. 2.4(b). In the case of no collision the result can be followed by
the team. Contrariwise, if a collision is detected, the appropriate part of the solution
is replaced by a more detailed plan. This procedure can be iteratively repeated until
a final feasible solution is reached and the knowledge of the variable M is not needed
beforehand.

37

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

2.4.2 Simulation with dynamic obstacles

A simulation of the proposed method applied to the formation movement in a dy-
namically changing environment is provided in this section. The example has been
designed to illustrate the approach and to present features and abilities of the algo-
rithm in multiple car-like robotic scenarios. As the workspace for the robots, the map of
the Computer Science building at the University of Wuerzburg, Germany, was chosen.
This map, depicted in Fig. 2.5, is known by the robots at the beginning of the mission,
whereas inner obstacles (static as well as dynamic) are unknown and will be detected
during the mission. The range of the leader’s sensors will be wider than the range
of the followers’ sensors (as is shown by dot-dash cones in Fig. 2.6 and Fig. 2.9)1 to
follow the idea of the heterogeneously equipped robots. The information obtained from
different sensors will be fused and shared within the formation. Four followers (robots
2-5) led by one leader (robot 1) will be used in the experiment. Nevertheless, due to
the architecture of the trajectory planning, robot 1 will be considered as a follower with
distance q1 = 0 and p1 = 0 from the virtual leader. The parameters for the algorithm
defined in Section 2.3.2 are given by N = 4, M = 4, n = 2 and ∆t = 0.25s.

The task of the robots in the following simulation is to achieve the desired target
region, while maintaining predefined position with respect to the virtual leader. The
shape of the formation can be temporarily changed only in the case of an imminent
collision with obstacles. The dot-dash map of the building indicates original borders
dilated by the radius of the formation. Then, the feasible trajectory of the virtual
leader should be within this polygon. A straight line connecting actual position of the
virtual leader and the center of the target region was used as the initialization of the
Sequential Quadratic Programming (SQP) which was applied as optimization method.
Such a trajectory is intersecting with walls of the building and therefore it is unfeasible.
Nevertheless, the plan presented in the first snapshot of the simulation (see Fig. 2.5) is
applicable which shows robustness of the algorithm. The plans sequentially obtained
for the followers are highlighted in the zoomed area. The optimality of the obtained
plans is restricted by the utilized optimization method. Generally, we cannot prove
that the SQP algorithm found the desired optimum of the utilized cost functions but
we can easily check using the value of the cost function whether the solution is feasible
for the formation or not.

In the second snapshot of the simulation (zoomed part of the snapshot in Fig. 2.6(a)),
a moving obstacle is coming from a neighboring room in a colliding course behind the
virtual leader that already cannot appropriately react. The ability of the followers to
avoid such a collision is shown in the following zoomed snapshot in Fig. 2.6(b). The
followers close to the obstacle (robots 3 and 5) are leaving desired trajectories to avoid
the crash, but also plans of the other robots are slightly changed to keep sufficient
distances within the team.

In Fig. 2.7, where the formation is again brought back to the desired shape, a new
obstacle is detected by the leader on the previously planned trajectory and the plan

1It is assumed that a set of sensors can completely cover the region around the robots with radius

rs,L resp. rs. For simplification, only the area covered by the sensor that detected an obstacle are

depicted in the visualization.

38

2.4 Experimental results of formation to desired goal region problem

TARGET

Actual time: 9.5

Leader's plan
Transition points
Planned states of followers
Passed trajectories

Ψ
Ψ

Ψ
Ψ

(t)

(t)

L,M

i

←

L

i
←

1

3

2

5
4

(a) Adapted plan as a response to the moving obstacle detected by the followers.

Actual time: 10.5 Actual time: 11.5

1

3

2

5

4

1

3

2

5

4

(b) Zoomed details of the dynamic obstacle avoidance manoeuvre. Shaded contour denotes

position of the obstacle one second ago.

Figure 2.6: Snapshots of the formation deformation as a reaction to the observed robot
with colliding course.

39

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

TARGET

Actual time: 13.5

Leader's plan
Transition points
Planned states of followers
Passed trajectories

Ψ
Ψ

Ψ
Ψ

(t)

(t)

L,M

i

←

L

i
←

1

3

2

5
4

Figure 2.7: Leader’s plan is adaptively changed with respect to the newly detected
obstacle situated on the previously planned trajectory.

is modified for the following step. The new trajectory is feasible for all the robots
until the obstacle stays static. In Fig. 2.8(a), a movement of the object was detected
(previous static position is denoted by the shadow contour) which forces the followers
to an avoidance maneuver. In the following snapshots (see Fig. 2.8(b)), the moving
obstacle is avoided without collisions.

The last obstacle (group of robots detected in Fig. 2.9) is blocking the way to goal
almost completely. The small passage along the wall is too narrow for the formation
with desired shape. Nevertheless, the plan of the followers can be changed to avoid the
obstacles at the price of a temporary contracting the formation as can be seen in the
trajectories depicted in Fig. 2.10 where the desired task is accomplished.

The history of values of the cost function for the virtual leader is shown in Fig. 2.11.
The perpendicular dot-dash lines denote times of the snapshots presented in Figures 2.5-
2.10. The course of the value is smoothly decreasing which matches the theoretical
results except for the points where the plan of the virtual leader was changed to avoid
a newly detected obstacle. In the first case, when the obstacle is observed at time
t = 13.5s (see Fig. 2.7), the trajectory was changed significantly. Nevertheless, the
increase of time to goal was smaller than the step between two iterations of the planning
loop and so the inequality (2.5) holds.

A slight increase of the time to goal can be seen also at the time of the multiple

40

2.4 Experimental results of formation to desired goal region problem

TARGET

Actual time: 17.5

Leader's plan
Transition points
Planned states of followers
Passed trajectories

Ψ
Ψ

Ψ
Ψ

(t)

(t)

L,M

i

←

L

i
←

1

3

2

5

4

(a) Beginning of the maneuver to avoid a dynamic obstacle. Shaded contour denotes position

of the obstacle in Fig. 2.7.

Actual time: 18.5 Actual time: 19.5

1

3
2

5

4

1

3

2

5

4

(b) Zoomed details of the manoeuvre fulfilment. Shaded contour denotes position of the ob-

stacle one second ago.

Figure 2.8: Snapshots of the reaction to unexpected movement of an obstacle that could
not be avoided by the leader’s plan.

41

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

TARGET

Actual time: 21.5

Leader's plan
Transition points
Planned states of followers
Passed trajectories

Ψ
Ψ

Ψ
Ψ

(t)

(t)

L,M

i

←

L

i
←

1

3

2

5

4

Figure 2.9: Solution of the situation with partly blocked corridor by a group of obstacles.

obstacle detection in Fig. 2.9. However in this case, mainly the second term in equa-
tion (2.22) is contributing which creates the peak in the course of final values. This
effect, which is caused by the narrow passage between the obstacles and borders, does
not influence practical implementation of the method yet it was not included in the
theoretical part of this chapter.

Values of the cost function evaluating solutions computed by the followers are de-
picted in Fig. 2.12. It can be observed that in the cases of formation deformations
caused by a dynamic obstacle, the value of the cost function increases rapidly which
is followed by the fast convergence to the desired position. Let us analyze the first
maneuver beginning at time t = 9.5s. At first, robot 3 is threatened by the obstacle
which results in the first peak. In the next step, also the following robot 5 is forced to
a jink. Here, the corresponding peak in the cost values is much higher. The obstacle
continues in the collision course and so the deviation of robot 5 from the desired plan
which is penalized by the first term in function (2.31) becomes bigger. The small peak
in the cost values of robot 4 is contribution of the third term in cost function (2.31)
penalizing the approach of robot 5. The same courses can be found during the second
avoidance maneuver beginning at time t = 17.5s. The third interesting place that needs
to be explained is the area of two peaks around t = 22s. At this time the formation
is passing the narrow corridor between the group of obstacles and the wall of corridor.
Although the formation is guided in the axis of the passage, only the followers closer to
the detected obstacles (robots 2 and 4) are forced to keep bigger spacing. This is based
on an assumption that the position of the newly detected objects could be determined

42

2.5 Complicated maneuvers of formations

TARGET

Actual time: 31.5

Leader's plan
Transition points
Planned states of followers
Passed trajectories

Ψ
Ψ

Ψ
Ψ

(t)

(t)

L,M

i

←

L

i
←

1

3
2

5
4

Figure 2.10: Accomplished task with denoted trajectories of the robots.

imprecisely or that the obstacles are not static. This feature is optional and can be
utilized according to the application.

Finally, we should analyze the costs of solutions obtained for robot 1. This follower
is placed on the position of the virtual leader and its plan should deviate from the
desired one only in the case of an endangerment by another member of the team.
External obstacles are already avoided by the plan of the virtual leader and they are
not contributing to the cost which remains close to the x-axis in Fig. 2.12 during the
complete simulation.

2.5 Complicated maneuvers of formations

The experimental scenarios presented in the previous section have been solvable without
the necessity to reverse the movement of the formation. To offer a complete and general
solution of the formation to target zone problem, we should also consider the situation
where the backward movement of the formation is needful.

The optimization problem that we have defined in Section 2.3.2 is general enough
to provide a complete plan for the virtual leader including changes of the polarity
of velocity vL(·) without any modification. Furthermore, the negative velocity of the
leader is also allowed by the controller constraints from equation (2.3). Unfortunately,
such a plan, which is feasible for the virtual leader, can be applied only for the followers
with pi(t) = 0, t0 ≤ t ≤ tf . The problem with the followers situated behind the
leader comes from the principle of the formation driving method as we have defined

43

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

0 5 10 15 20 25 30 35
0

5

10

15

20

25

time [s]

c
o

s
t

[-
]

Figure 2.11: Values of the cost function of solutions obtained for the virtual leader.
Dot-dash vertical lines denote the times of snapshots presented in Figures 2.5-2.10.

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

robot 2

robot 3
robot 4
robot 5

time [s]

c
o

s
t
[-

]

Figure 2.12: Values of the cost function of solutions obtained for the followers. Dot-dash
vertical lines denote the times of snapshots presented in Figures 2.5-2.10.

44

2.5 Complicated maneuvers of formations

S

1

4

2

3

1
2

4
3

(a) The formation in the initial

position (shaded contours)

and in the position where the

sign of the leader’s velocity is

changed.

S

1
24

3 1
2

4
3

(b) Collisions of the vehicles that

are simply following the de-

sired path. The shaded con-

tours denote the final posi-

tion from Fig. 2.13(a).

S

1
2

4
3

1
2

4
3

max(p)
ii=1..nr

(c) Feasible solution using

modified desired path. The

shaded contours denote

the final position from

Fig. 2.13(a).

Figure 2.13: Motivation for development of the 2 virtual leaders approach.

in Section 2.3.1. The trajectory of the followers is determined by states ψL(tpi(t)) in

travelled distance pi(t) from RL(ψL(t)) along
←−
ΨL(t) (for details see equation (2.13)).

It means that the followers behind the leader continue with forward movement until
the state where the leader changed the polarity of its velocity has been reached. The
natural conception of the formation movement supposes that the entire group keeps a
compact shape and therefore all members should change the polarity of their velocity
in the same moment. This is not described in the formation driving concept published
in Section 2.3.1, because each follower with different value of variable pi(t) approaches
the state where the leader changed the polarity of its velocity in a different time. In
addition the application of this concept could cause collisions or unacceptable disordered
motion as demonstrated in the sequence of snapshots in Fig. 2.13(a)-2.13(b). An idea of
a proposed solution of this problem is shown in Fig. 2.13(c). The desired path there has
been modified in such a way that the formation can smoothly continue with a backward
movement while keeping the desired shape. Nevertheless, such subsequence changes of
the optimal leader’s trajectory can be difficult in an environment with obstacles and
the feasibility of the obtained solution is not guaranteed.

2.5.1 Concept of two alternating virtual leaders

To prevent the problems specified above, the basic method for the virtual leader has
been extended to an approach employing two virtual leaders, one for forward movement
and one for backward movement. Their leading role is always switched when the sign
of the leader’s velocity is changed and the virtual leader that is suspended temporarily

45

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

becomes a virtual follower. The virtual follower traces the virtual leader similarly as
the other followers to be able to undertake his leading duties at the time of the next
switching.

The plan for both leaders should be designed in one optimization step to guarantee
that the solution of the formation to target zone problem is consistent and feasible.
The easiest way is to employ a similar approach like the one we have presented in
Section 2.3.2. The sequences of control inputs and states UL,N , UL,M , ΨL,N , ΨL,M

as well as the vector T∆
L,M can contain necessary information for both leaders. The

decision, which part of the vectors will be assigned to which leader can be simply done
using the value of vL(·) that can be collected in the vector UL,MN = [UL,N , UL,M] ∈
R2(N+M). Let us define an ordered set of indexes of samples where the polarity of
velocity is changed as Isw := [i : vL(i)vL(i + 1) < 0], where i ∈ {1, . . . , N + M − 1}.
The control inputs used for the first virtual leader can then be collected as

UL1,MN = [ūL(1), ūL(2), . . . , ūL(Isw(1)), ūApp1(1), ūF1(1), ūL(Isw(2) + 1),

ūL(Isw(2) + 2), . . . , ūL(Isw(3)), ūApp1(2), ūF1(2), . . . , ūL(Isw(2nsw1 − 2) + 1),

ūL(Isw(2nsw1 − 2) + 2), . . . , ūL(Isw(2nsw1 − 1)), ūApp1(nsw2), ūF1(nsw2)],

if nsw1 = nsw2

UL1,MN = [ūL(1), ūL(2), . . . , ūL(Isw(1)), ūApp1(1), ūF1(1), ūL(Isw(2) + 1),

ūL(Isw(2) + 2), . . . , ūL(Isw(3)), ūApp1(2), ūF1(2), . . . , ūApp1(nsw2), ūF1(nsw2),

ūL(Isw(2nsw1 − 2) + 1), ūL(Isw(2nsw1 − 2) + 2), . . . , ūL(N + M)],

if nsw1 6= nsw2

(2.38)

and the control inputs for the second virtual leader as

UL2,MN = [ūF2(1), ūL(Isw(1) + 1), ūL(Isw(1) + 2), . . . , ūL(Isw(2)), ūApp2(1),

ūF2(2), ūL(Isw(3) + 1), ūL(Isw(3) + 2), . . . , ūL(Isw(4)), ūApp2(2), ūF2(3), . . . ,

ūApp2(nsw1 − 1), ūF2(nsw1), ūL(Isw(2nsw2 − 1) + 1), ūL(Isw(2nsw2 − 1) + 2),

. . . , ūL(N + M)], if nsw1 = nsw2

UL2,MN = [ūF2(1), ūL(Isw(1) + 1), ūL(Isw(1) + 2), . . . , ūL(Isw(2)), ūApp2(1),

ūF2(2), ūL(Isw(3) + 1), ūL(Isw(3) + 2), . . . , ūL(Isw(4)), ūApp2(2), ūF2(3),

. . . , ūL(Isw(2nsw2 − 1) + 1), ūL(Isw(2nsw2 − 1) + 2), . . . , ūL(Isw(2nsw2)),

ūApp2(nsw1 − 1), ūF2(nsw1)], if nsw1 6= nsw2 ,

(2.39)

where nsw1 (resp. nsw2) is the number of time intervals in which the first (resp. the
second) virtual leader has the leadership. This value can be computed as nsw1 =
floor (lI/2 + 1) (resp. nsw2 = floor ((lI + 1) /2)). The function floor(X) rounds the
value of X to the nearest integer towards minus infinity and constant lI is length
of the vector Isw. Control inputs ūF1(j), where j ∈ {1, . . . , nsw2}, (resp. ūF2(j),
j ∈ {1, . . . , nsw1}) are collected in the vector UF1 (resp. UF2). This control scheme
is obtained by the formation driving method when the first (resp. the second) virtual
leader is the virtual follower. The control inputs ūApp1(j), where j ∈ {1, . . . , nsw1},

46

2.5 Complicated maneuvers of formations

S

u ()1L

u ()2L

App
1

u ()1

F1
u ()1

u ()5L

ψ (1)
L

Ψ (2)
L

ψ (4)
L

ψ (5)
L

(a) Trajectory of the first virtual leader.

u ()3L

u ()4L

ψ (2)
L

ψ (3)
L

ψ (4)
L

S

F2
u (2)

F2
u ()1

App
2

u ()1

(b) Trajectory of the second virtual leader.

Figure 2.14: Trajectories and appropriate control inputs of the two virtual leaders going
from the initial point S. The solid black curves denote trajectories where the virtual
leader is leading the formation while the dotted gray curves denote the trajectories where
the virtual leader is the virtual follower. The initial positions of the robots are depicted
by gray shadows.

(resp. ūApp2(j), where j ∈ {1, . . . , nsw2 − 1}) gathered in vector UApp1 (resp. UApp2)
are applied for the formation driving in the appendixes to the continuous path. This
movement is important to satisfy constraints (2.23) and (2.24) applied for the origi-
nal vectors UL,N , UL,M , ΨL,N , ΨL,M , T∆

L,M . This means that the formation has to
travel forward from the states ψL(Isw(j)), where j ∈ {1, . . . , nsw1 + nsw2 − 1}, to the
distance dApp = maxi∈nr(|pi|) and thereby to shift the new leader to the position of
the old one. An example illustrating this approach is presented in Fig. 2.14 where the
parameters and outputs of the optimization are: N = 0, M = 5, Isw = {2, 4}, UL1 =
[ūL(1), ūL(2), ūApp1(1), ūF1(1), ūL(5)], UL2 = [ūF2(1), ūL(3), ūL(4), ūApp2(1), ūF2(2)].1

The shape of the appendixes, which are introduced above, does not influence the
total driving time. Nevertheless, in the environment with obstacles also the movement
of the formation along such a part of the trajectory must be collision free which has to
be considered in the cost function during the optimization. The minimal length of this
additional trajectory is defined by the size of the formation and therefore only the curva-
ture of the leading robot is not uniquely determined. The extended optimization vector
describing the complete trajectory from the actual position of the first virtual leader
to the target region is then defined as ΩL = [ΨL,N ,UL,N ,ΨL,M , UL,M , T∆

L,M ,KApp] ∈
R5N+6M+lI . The variables KApp1(j), where j ∈ {1, . . . , nsw2}, and KApp2(j), where j ∈
{1, . . . , nsw1−1}, applied for the movement of the virtual leaders in the appendixes, are
collected in the vector KApp = [KApp1 , KApp2]. The remaining control inputs vApp1(j),

1The new vector T∆
L1,MN (resp. T∆

L2,MN) will be compiled similar as the vector UL1,MN (resp.

UL2,MN), because the variables ū(·) and ∆t(·) are inseparably joined.

47

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

where j ∈ {1, . . . , nsw2}, and vApp2(j), where j ∈ {1, . . . , nsw1−1}, as well as the values
∆tApp1(j), where j ∈ {1, . . . , nsw2}, and ∆tApp2(j), where j ∈ {1, . . . , nsw1 − 1}, are
uniquely determined by the distance dApp, controller constraints, and by the effort to
minimize the total performance time.

Remark 2.5.1. The length of such an optimization vector can vary during the opti-
mization because of the last component KApp whose size depends on variable lI . This
requires the utilization of an optimization method with variable length of the solution
or setting of lI as lI = N+M−1, which is the maximal amount of possible changes. The
unused variables in the case of a smaller number of switching will be not contributing
to the cost function.

2.5.2 Experimental results

2.5.2.1 Reverse driving

A passage of sharp curves on narrow roads is one of the most frequent examples of
the car-like robot driving which is solvable by the utilization of the reverse driving.
This phenomenon is even more obvious in applications of the formation driving where
the maximum turning radius is increased as shown in equations (2.14). Two such
situations extracted from scenarios of indoor mobile robotics have been chosen to verify
the functionality, robustness and general applicability of the proposed method. The
first task is to navigate a formation from one room to the neighboring room through a
narrow corridor. In the scenario, the relative position of entrance doors of the rooms
and the width of the corridor do not allow to simply turn the formation and a more
complicated movement is necessary. In the first snapshot of the simulation presented
in Fig. 2.15(a), a solution of the formation to the target zone problem is shown. As
highlighted in the following sequences of the formation movement, the formation is
led by the first virtual leader to safely pass trough the first door. The heading of the
robots is optimally oriented to reach the second door after a sequence of backward and
forward movements. In Fig. 2.15(b), the leading role is switched from the first leader
to the second one and the formation heads backwards with approximately half speed.
In Fig. 2.15(c), the movement is reversed again and the group is guided by the first
leader through the door to the second room. A final snapshot with denoted trajectories
of the followers is presented in Fig. 2.15(d).

In Fig. 2.16, values of the heading of all followers during the movement are plotted.
It provides, together with the perpendicular dot-dash lines denoting times of snapshots
in Fig. 2.15(b)-2.15(c), complete information about the entire maneuver of the forma-
tion. One can see that the plotted curves conspicuously form groups accordant with
belonging to particular rows (followers with identical parameter pi(t)) of the forma-
tion. In each row the followers should keep the same heading at the same time. The
previous fact arises from the basic fundamentals of the formation driving explained
in Section 2.3.1. In reality, the formation driving is influenced by all factors collected
in cost function (2.31) and the values of heading are more or less deviating. In the
picture, one can also see the shift of the grouped curves which depends on the space
in between of the rows. Finally, the short intervals with constant heading or even with

48

2.5 Complicated maneuvers of formations

TARGET

Actual time: 0

(a) The initialization of the task with denoted complete plan.

Actual time: 4.75

(b)

Actual time: 9.5

(c)

TARGET

Actual time: 13.5

(d) Final snapshots of the accomplished mission.

Figure 2.15: Snapshots of simulations of the formation driving in an office environment.
The task requires the switching of leading rules two times. Positions of the vehicles in time
of switching is shown in (b) and (c).

49

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

Followers - first row
Followers - second row
Followers - third row

0 2 4 6 8 10 12 14
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

time [s]

h
e

a
d

in
g

 [
-]

Figure 2.16: The values of the followers’ heading during the simulation presented in
Fig. 2.15.

Followers - first row
Followers - second row

0 2 4 6 8 10

-2.5

-2

-1.5

-1

-0.5

0

time [s]

h
e
a
d
in

g
 [
-]

Figure 2.17: The values of the followers’ heading during the simulation presented in
Fig. 2.18.

50

2.5 Complicated maneuvers of formations

slightly growing values of heading are caused by the movement of the followers in the
appendixes added to the trajectory.

The second example of the composed maneuver, which was completely designed in
one optimization step, is shown in Fig. 2.18. The goal of the mission is to follow a
narrow corridor with a sharp curve and to keep the compact shape of the formation.
The optimal solution of this problem contains a four times changed velocity of the
leader which is enforced by the structure of the workspace. The initial position of the
formation and a schematic plan of the movement is presented in Fig. 2.18(a). The
following snapshots show zoomed parts of the simulation at times when the leadership
was changed (see Fig. 2.18(c)-2.18(f)). The last snapshot of the simulation with plotted
passed trajectories of the followers is presented in Fig. 2.18(b). Finally, the sequential
change of the followers’ heading from the initial values θj(t0) = 0 to the desired values
θj(tf) = −3π/4, where j ∈ {1, . . . , 6}, with denoted times of snapshots from Fig. 2.18
is plotted in Fig. 2.17.

2.5.2.2 Turning 180 degrees

Turning 180 degrees (also called a U-turn) is one of the most challenging tasks in the
utilization of car-like robots and mainly formations of car-like robots that cannot simply
turn on the spot and require a more complicated maneuver. To our best knowledge,
there is no general method providing an optimal solution in environment with arbitrary
static as well as dynamic obstacles available in literature since now.

In the scenario presented in Fig. 2.19 a formation of 4 robots is aimed to reach the
target region, which is situated behind the group. In accordance with real application,
the maximum forward and backward velocities of the virtual leader of the formation
were set unsymmetrically: vmin,L = −vmax,L/2. Putting the final region sufficiently far
behind the formation, the optimal solution of the formation to target zone problem,as
is defined in this thesis, is to turn the formation and then continue forward to reach
the desired area. Such a maneuver, which contains two switching between the virtual
leaders, is denoted by dashed curves in Fig. 2.19(a). The movement of the rovers
following the obtained plan is presented in snapshots of the simulation in Fig. 2.19(b)
and in Fig. 2.19(c), while the complete trajectories passed during the turning can be
seen in Fig. 2.19(d).

The same situation that was solved in the previous simulation is modified in Fig. 2.20
using obstacles with known positions. The new solution of the task keeps the formation
outside the obstacles during the whole maneuver. Beyond this, the ability to avoid dy-
namic obstacles with a collision course detected by the rear sensors of the robots during
the moving backwards is demonstrated in the simulation (see snapshots in Fig. 2.20(b)
and in Fig. 2.20(c)). The simulation was interrupted when the vehicles reached the
same distance from the target zone like in the simulation from Fig. 2.19. By the com-
parison of the snapshots presented in Fig. 2.19(d) and Fig. 2.20(d), one can see that the
total time of the solution in the environment with obstacles was increased only slightly.

51

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

Actual time: 0

(a) The initialization of the formation.

Actual time: 10.5

(b) The turning maneuver accomplished.

Actual time: 4

(c)

Actual time: 5

(d)

Actual time: 5.5

(e)

Actual time: 6.5

(f)

Figure 2.18: The formation turning in a sharp curve. The snapshots of the leadership
switching between the virtual leaders are depicted in (c)-(f).

52

2.5 Complicated maneuvers of formations

Actual time: 0

(a) The initial position of the formation with a complete plan for both virtual leaders denoted by a

dashed curve.

Actual time: 2

(b) The second virtual leader undertakes the lead-

ership.

Actual time: 6.75

(c) The leadership is returned to the first virtual

leader.

Actual time: 14

(d) The accomplished task with denoted trajectories of the robots.

Figure 2.19: Snapshots of turning 180 degrees on the obstacle free road.

53

2. FORMATION COORDINATION IN DYNAMIC ENVIRONMENT
USING RECEDING HORIZON CONTROL

Actual time: 0

(a) The initial position of the formation with a complete plan for both virtual leaders denoted by a

dashed curve.

Actual time: 6

(b) The detection of the movement of one obstacle

and the consequential reaction of the followers.

Actual time: 7.5

(c) The followers successfully passed by the obsta-

cle and they are going back to their positions

within the formation.

Actual time: 15.75

(d) The accomplished task with denoted trajectories of the robots.

Figure 2.20: Snapshots of turning 180 degrees with the same initialization like in Fig. 2.19
but in an environment with static as well as dynamic obstacles.

54

3

Formation coordination with

path planning in space of

multinomials

In this chapter we will describe a method developed to simplify the complexity of the
problem solved in Chapter 2 with a great number of variables that need to be optimized.
The overall trajectory of formation F will not be defined by the states and control inputs
of the leader, but by a string of multinomials that are determined by a reduced amount
of information. The equality constraints hTN

(·) and hTM
(·) from equation (4.7) that are

difficult to satisfy for most of the optimization methods are excluded in the proposed
approach and the controller constraints defined in Section 2.1.2 are penalized within
the cost function. Therefore in this method, only absolute values of the optimized
variables will be constrained, which extends the group of optimization techniques that
are applicable for the formation to target zone problem. Finally, this approach provides
a general frame that can be later utilized for the airport snow shoveling which is our
target application.

3.1 Literature review

The core of the formation driving method presented in this chapter is a path planning
algorithm for the virtual leader of the formation. Before the detailed description of the
method, we will provide a short survey of existing path planning approaches that have
been our guidance during the development. A comprehensive overview of standard
path planning and obstacle avoidance methods can be found in [104] or in the first
part of [105]. Algorithms presented there can be divided into two main groups: local
methods and global methods.

Local approaches only find an optimal direction from the actual position using an
image of the local area of the robot. While the limited amount of information processed
by these approaches leads to a low computational time, generated trajectories are not
guaranteed to be globally optimal. Moreover, the unavailability of a full path from

55

3. FORMATION COORDINATION WITH PATH PLANNING IN
SPACE OF MULTINOMIALS

the beginning can cause problems to higher-level strategy planning methods that can
require an estimation of time to achieve the goal for their decision process. The most
widely used local path planning method is Potential Field (PF) [94]. This approach
is based on the description of the scenario using a function that consists of two parts:
one inspired with the repulsive force and one inspired with the attractive force. The
repulsive part describes the influence of the obstacles in the workspace, while the at-
tractive part expresses the intention to go to the desired point. In other words, the
repulsive function has a maximum (usually infinity) in the collision distance to each
obstacle and decreases with the growing distance from the obstacles. The attractive
function has a global minimum in the goal of the robot and uniformly grows with the
distance from the goal. The optimal direction of the movement is then chosen in the
direction of the gradient descent of the sum of these functions. The biggest problem of
this basic approach is that the movement can get stuck in a local minimum and also a
global optimal path is not guaranteed to be found. In the formation driving techniques
proposed in this thesis, modifications of the repulsive part of PF, which is employed for
obstacle avoidance behavior, are included in the trajectory planning. The second local
technique we would like to mention, is a so-called Vector Field Histogram (VFH) [21],
which was originally developed for obstacle avoidance of robots equipped with a sonar.
VFH uses a histogram of distances to the closest obstacle in each direction much like
the rotating sonar exploring a space in 360 range. The directions whose distance to
the closest obstacle is smaller than a threshold are selected from this histogram. The
heading with the smallest declination to the line connecting of the actual and desired
positions of the robot is chosen from this selection. VFH cannot solve situations with
a high density of obstacles and with U-shape obstacles. Both types of the workspace
configurations cause movement oscillations.

The global path planning approaches construct a complete path from the actual
position to the goal position of the robot. They utilize the all available information
about the workspace that is gathered to the known map as their input. The process-
ing of the data on the map and the searching in a generally bigger space of solutions
increase the total computational time in comparison with the local path planning tech-
niques. We selected three the most important representatives from the global path
planning methods. All of them are based on a planar graph and on a searching for
the shortest path connecting the actual position of the robot with the desired one. In
the first approach, Visibility Graph (VG) [136], the nodes of the graph are vertices
of polygons representing obstacles and the edges are lines connecting each pair of the
nodes whenever it is possible without any intersection with obstacles. It means that
two vertices are connected if there is a direct visibility between them. The path found
by this algorithm is typically close to the obstacles, which can raise the probability
of collisions. The second approach, Occupancy Grid (OG) [22], divides the workspace
into disjoint cells that cover the environment completely. The nodes of the graph are
the centers of the cells that are not overlapping with any obstacle and the edges of the
graph connect the nodes that are next to each other in the grid. As the third example
we have chosen Voronoi Diagram (VD) method [9]. In this approach, the workspace is
divided into disjoint cells too. Here, each cell represents a region around an obstacle.
For the points within the region, it counts that the Euclidean distance from the point

56

3.1 Literature review

to the obstacle is smaller than the distance to the other obstacles. The edges of the
graph are then the borders of the cells and the nodes are the crossings of the borders.
The VD method will be utilized for the advanced initialization of the formation driving
algorithms presented in Section 4.1.

One can find several extensions and combinations of these standard algorithms as
well as their modifications for special applications. For example in [28], authors pro-
posed a method for finding a Euclidean shortest path between two distinct locations
in a planar environment. In the paper, OG and VD approaches are combined within
a framed-quadtree. This method provides the accuracy of high resolution grid-based
path planning methods and the efficiency of quadtree-based techniques together. An
approach combining a modified probabilistic road-map method with a potential based
variational technique is applied for a path planning of hyper-redundant manipulators
in [39]. The optimal path planning algorithm presented in [86] is based on a higher
geometry maze routing algorithm. It applies a pixel-based plane for the navigation of
a single differential drive robot. In [185], a grid-based method is presented. This algo-
rithm is designed for real-time path planning in dynamic environments applicable to
situations in which targets and barriers are permitted to move. The robot’s workspace
is represented by a topologically organized map where each grid point has only local
connections to its neighboring grid points from which it receives information in real
time. The approach is extended in [186] by incorporated safety margins around obsta-
cles using local penalty functions. In [81], a global path planning in a dynamic partly
known manufacturing environment is proposed. The approach uses a deterministic
cost for the known part of the robot’s workspace, and an uncertainty cost dynamically
updated by available sensor data for the unknown part of the workspace. Finally, a
collision-free path planning for diamond-shaped robots based on the retraction of free
space onto the VD is presented in [180].

Another frequent direction of research of the path planning methods is a tendency
to employ nature inspired algorithms for the inclusion of artificial intelligence to au-
tonomous decision making. The proposed algorithm enables learning from a previous
experience (Neural Networks (NN) techniques) as well as global searching in a usually
large space of solutions that contains local extremes (Evolutionary Algorithms (EA)).
A combination of both approaches is shown in [132]. Here, a NN method is employed
to identify unstationary robot’s dynamics, and a Genetic Algorithm (GA) is utilized
to search in a space of solutions for a suboptimal path planning of an agricultural mo-
bile robot. In [7], a path planning algorithm using GA for mobile robots operating in
cluttered environments is described. A path planning method using a dynamic wave
expansion NN is proposed in [107]. This algorithm is developed for mobile robots as
well as for robotic manipulators working in a dynamic environment. An approach using
an advanced EA called the memetic algorithm is presented in [171]. The method offers
an optimal collision free path for mobile robots. The paper [194] focuses on the problem
of point-to-point trajectory planning for flexible redundant robot manipulators in joint
space.

A logical extension of the 2-D path planning methods is required for the utilization
of autonomous systems in a 3-D environment. An approach for Autonomous Underwa-
ter Vehicles (AUVs) is proposed in [25]. The method uses a precomputed look up table

57

3. FORMATION COORDINATION WITH PATH PLANNING IN
SPACE OF MULTINOMIALS

of 3D-routes that are modified according to the current situation. A more advanced
algorithm for AUVs using a GA for path planning in an ocean environment with strong
currents is presented in [6]. The third and the most up-to-date AUVs’ path planning
method is described in [145]. The approach uses a continuous version of the A? algo-
rithm to find an optimal solution for nonholonomic torpedo-like vehicles in anisotropic
environments with currents. The application of path planning in a 3-D environment is
not limited to UAVs but the utilization of Unmanned Aerial Vehicles (UAVs) is even
more common. The present state of the art of path planning algorithms for UAVs can
be found for example in [95; 131]. These approaches must take into account not only
the maximum but also the minimum possible speed determined by the aerodynamic of
the aircraft which sets bounds to robots’ maneuverability. Two real-time path planning
schemes employing limited information for fully autonomous UAVs in a hostile envi-
ronment are offered in [95]. In both algorithms, a convergence to a given target point
is proven and series of safe waypoints whose risk is always less than a given threshold
value are produced. Finally, a differential EA to produce 3-D B-Spline trajectories for
the off-line as well as the on-line cooperative UAVs path planning is applied in [131].

Several studies are interesting not only in the optimal path of the robot, but they
produces also an optimal velocity profile along the path. These trajectory planning
approaches usually differ with a different type of robot. For example in the algorithm
presented in [187], a time optimal trajectory consisting from lines and circles has been
designed for differential drive robots. Besides this the outputs of the method are limits
of velocity and bounds on acceleration depending on path features in the considera-
tion of robots’ dynamics. An approach of a collision-free, optimal trajectory planning
problem for a point-robot moving between two configurations inside a convex polygon
is presented in [2]. Another method for the time-optimal trajectory planning of om-
nidirectional vehicles in environment without obstacles can be found in [12]. The last
example of a time-optimal trajectory planning algorithm developed for a high-speed
cable-based parallel manipulators is presented in [16].

Unfortunately, the approaches mentioned above are not directly applicable for the
path planning of the car-like robots’ formations with a time variant shape. Such a
method has to produce a collision free path with characteristics feasible for the kine-
matics of the formation (e.g.: continuous second derivative, radius satisfying the con-
dition (2.15)). In addition it should provide an optimal output even if a feasible path
for the complete formation does not exist. This ability requires to incorporate the skill
that enables a shrink of the formation directly to the path planning. The temporary de-
crease of maxi∈{1...nr}(qi(t)) weakens the condition (2.15) and enables to pass passages
that are too narrow for the wide-spread formation in the desired shape. Furthermore
even a short, ”slightly” unfeasible path can be preferable in some applications to a
feasible, but longer solution (e.g. shortcut using a narrow tunnel through a hill where
the formation needs to be shrinked). Our proposed algorithm incorporates all these
requirements.

58

3.1 Literature review

Leader
Initialization

Path
Following

MAP

Virtual Leader

Formation Driving

Follower
Initialization

Trajectory
Following

MAP,
Position of
neighbors

Follower 1

1 ... n n+1 ... N

Actuators

1 ... n n+1 ... N

Follower
Initialization

Trajectory
Following

MAP,
Position of
neighbors

Follower n

1 ... n n+1 ... N

Actuators

1 ... n n+1 ... N

...

r

p ,qi i coordinates

1 ... n n+1 ... N

Desired
pathPath

Planning

MAP,
Target

Figure 3.1: A diagram of the entire formation driving system based on the following of
a preplanned path.

59

3. FORMATION COORDINATION WITH PATH PLANNING IN
SPACE OF MULTINOMIALS

3.2 System overview

In the following section, the differences between the presented approach using path
planning in a space of multinomials and the system described by the diagram in Fig. 2.3
will be highlighted. It is obvious from the Fig. 2.3 and Fig. 3.1, that the entire block
which is multiplied for each follower is equivalent in both methods and so the only
divergence lies in the first block, Virtual Leader. In the first approach introduced in
Chapter 2, the trajectory planning and the optimal control design for the virtual leader
is solved together in one optimization step. The obtained leader’s trajectory consists of
two main parts: i) ΨL,N , UL,N used for the optimal control, and ii) ΨL,M , UL,M ,T∆

L,M

used for the path planing to the desired target region. In the algorithm proposed in
this chapter, the formation coordination is splitted into two separate modules: Path
Planning and Path Following. This enables to reduce the complexity of the optimization
but such a structure can only provide suboptimal solutions, because the direct inclusion
of the kinematic model to the path planning is missing.

In general, the module Path Planning can be realized using any path planning
method feasible for the formation of car-like robots. In this thesis, two original path
planning approaches will be proposed. The first algorithm presented in Section 3.3.1
offers an optimal solution for a formation going to desired state in scenarios with various
obstacles. The second path planning approach is adapted to the specific application of
the airport snow shoveling, which will be described in Chapter 5.

The module Path Following, described in Section 3.4, is based on the RHC con-
cept derived from the approach presented in Chapter 2. Here, the obtained leader’s
trajectory is formed only by the sequences ΨL,N ,UL,N that are used for the Formation
Driving module and partly recycled in the Leader Initialization module similarly as in
the previous method from Fig. 2.3.

3.3 Path planning for virtual leaders

3.3.1 Method description

The path planning approach presented in this section is based on a searching through
a space of positions p̄L(·). This is the biggest difference from the approach presented in
Section 2 where the space contains the complete states of the virtual leader ψL(·) but
also the control inputs ūL(·). Here, the final path of the robot is determined by tran-

sitions p̄L(k − 1)
ϕ(k,·)→ p̄L(k), where k ∈ {1, . . . , ñ}, between each pair of neighboring

positions. The paths ϕ(·, ·) have been chosen as ϕ(k, ·) ∈ C1, for k ∈ {1, . . . , ñ}, where
C1 is the set of cubic splines with a smooth first derivation and ñ denotes the amount
of splines in the string.

In the same way as in the approach introduced in Section 2, the first position p̄L(0)
is equal to the actual position of the robot. Furthermore, here the last position p̄L(ñ)
is fixed in a desired position of the virtual leader of formation. Usually, it is the center
of the target region SF or a point on the border of SF . Therefore, the desired position
of the formation needs to be determined as an input of the method.

60

3.3 Path planning for virtual leaders

The mathematic notation of the k-th cubic spline in the string is

ϕ(k, s) = Aks
3 + Bks

2 + Cks + Dk, (3.1)

where s is within the interval 〈0, 1〉 and the constants Ak, Bk, Ck, Dk can be computed
according to [191] as

Ak = 2Pk−1 − 2Pk + P ′
k−1 + P ′

k

Bk = −3Pk−1 + 32Pk − 2P ′
k−1 − P ′

k + 1

Ck = P ′
k−1

Dk = P ′
k.

(3.2)

The control points of the splines Pk are defined as Pk := p̄L(k), where k ∈ {0, . . . , ñ}.
In 2D case, the whole string of the splines is uniquely identified by 8ñ variables as
ϕ(k, ·) = {ϕx(k, ·), ϕy(k, ·)}, k ∈ {1, . . . , ñ}, but some of the variables are determined by
the path planning requirements. 8 variables, P0, P ′

0, Pñ and P ′
ñ (x and y coordinates for

each position) are determined due to known initial and desired states of the formation1.
The continuity of the first and the second derivative in the whole path is guaranteed by
6(ñ−1) equations. Therefore, only 8ñ−8−6(ñ−1) = 2(ñ−1) degrees of freedom define
the whole path. This conforms to the positions of the points Pk, where k ∈ {1, . . . , ñ−
1}, in the spline connections that need to be used as variables in the optimization
method. The optimization vector describing the complete path will later be denoted−→x . The whole path representation used in our method is shown in Fig. 3.2.

n splineth1 splinest

2 splinend

P1,x P1,y P2,x P2,y
P3,x P3,y P

n- ,x2 P
n- ,y2

P
n- x1, P

n ,y-1
...

3 splinerd

n-1 splineth

(a) Sequence of variables obtained as a result of opti-

mization process.

0
P2

P1 P3 Pn-2 Pn-1 nS P≡ G P≡

(b) Path composed from ñ multinomials.

Figure 3.2: The representation of the solution with a corresponding path.

Having defined the optimization vector, we can transform the path planning problem
to the minimization of cost function f(−→x), which is

min f(−→x), (3.3)
1The desired state is determined as p̄L(ñ), which was introduced above, and an arbitrary desired

heading θL(ñ). This is usually specified as a direction of the next movement from the desired state in

case of complex missions composed from simple path planning tasks (see Chapter 5) for details.

61

3. FORMATION COORDINATION WITH PATH PLANNING IN
SPACE OF MULTINOMIALS

without any equality or inequality constraints.
The cost function should penalize unfeasible solutions too close to the obstacles

similarly as in the previous approach. Furthermore, also the required feasibility of the
final path for formation F which supposes a limited minimal radius of turning will
be included to the cost function here. The third objective included in the presented
cost function should penalize the length of the path which is correlating with the time
to the goal.1 This leads to the path planning with multiple objectives which was
first investigated in [66] as an inclusion of three requirements: safety, expected time
required to traverse the path and energy consumption to terrain navigation. Inspired
by the approach in [66] we propose the cost function including all requirements of the
path planning for formations as

f(−→x) = flength(−→x) + αfdistance(−→x) + βfradius(−→x), (3.4)

where their influence is adjusted by constants α and β.2 The part flength(−→x) in the
cost function matches the length of the path that can be analytically computed by

flength(−→x) =
ñ∑

k=1

1∫

0

√
(ϕ′x(k, s))2 + (ϕ′y(k, s))2ds. (3.5)

The component fdistance(−→x) (see Fig. 3.3(a)) penalizes paths close to an obstacle and
it is defined by the equation

fdistance(−→x) =





d(ϕ(·, ·), Oobs)−2, if ra,L < d(ϕ(·, ·), Oobs)

d(ϕ(·, ·), Oobs)−2 + pdf , if ra < d(ϕ(·, ·), Oobs) < ra,L

d(ϕ(·, ·), Oobs)−2 + pdf + pdr, if d(ϕ(·, ·),Oobs) < ra,

(3.6)

where pdf penalizes solutions leading to a collision of the followers with obstacles that
can be avoided by a change in the formation and pdr penalizes paths leading to a
collision of the virtual leader. The solutions penalize by pdr are unfeasible even for a
single robot and cannot be repaired by a change of the shape of the formation. Function
d(ϕ(·, ·), Oobs) is providing the minimal distance of the path to the closest obstacle and
a guideline for its cheap computation will be given in the following subsection.

The part of the cost function fradius(−→x) (see Fig. 3.3(b)), which is necessary be-
cause of the usage of car-like robots as well as due to the presented formation driving
approach, is computed likewise:

fradius(−→x) =





r(ϕ(·, ·))−2, if rf < r(ϕ(·, ·))
r(ϕ(·, ·))−2 + prf , if rr < r(ϕ(·, ·)) < rf

r(ϕ(·, ·))−2 + prf + prr, if r(ϕ(·, ·)) < rr,

(3.7)

1Here the total time to goal is difficult to estimate due to unknown control inputs.
2The appropriate values of the constants have to be experimentally identified. One can find an

example of such a study in our papers [161; 164]. We used the setting: α = 0.1, β = 10 for the results

presented in this thesis.

62

3.3 Path planning for virtual leaders

distance

fdistance

d

dr

df

p

p

frd

(a) Function fdistance(·).

rr

rf

radius

radius

p

p

rrr f

f

(b) Function fradius(·).

Figure 3.3: An illustration of components of cost function with denoted penalization.

where
rr = max

i={1,...,nr}
K−1

max,i (3.8)

and

rf = max

(
max

τ∈〈t,tf〉
K−1

max,L(τ),− min
τ∈〈t,tf〉

K−1
min,L(τ)

)
. (3.9)

Solutions penalized only by prf can be repaired by a change of the shape of the for-
mation, while paths with a radius smaller than rr do not even meet the criteria of the
equation (2.3) for a single robot.1 Function r(ϕ(·, ·)) is providing minimal radius along
the whole path and it is defined by

r(ϕ(·, ·)) = min
k∈{1,...,ñ}

min
s∈<0;1>

∣∣∣∣
ϕ′x(k, s) ϕ′y(k, s)
ϕ′′x(k, s) ϕ′′y(k, s)

∣∣∣∣
(ϕ′x(k, s)2 + ϕ′y(k, s)2)

3
2

. (3.10)

The crucial problem of the method is to find a result with a minimum or nearly
minimum value of the cost function usually in the vast set of solutions.. The complexity
of the task grows with the parameter ñ, which has similar meaning to the variable M

in the method presented in Chapter 2. Solutions with small ñ can be found faster but
a collision free path may not exist in such a limited space if the workspace of the robot
is too complicated.

3.3.2 Implementation details

A great number of evaluations is required by available optimization methods and there-
fore the computational complexity of the cost function is a key factor for real time
applications. The most calculation-intensive part of the equation (3.4) is fdistance(−→x).
It is done by an amount of obstacles from which the distance needs to be computed.
In the presented approach, a distance grid map of the environment is precomputed to

1Here, we should mention that the optimization is not sensitive to exact values of the penalizations.

The only assumptions that need to be satisfied are prf < prr and pdf < pdr. We used values: prf = 10,

pdr = 100, pdf = 10 and prr = 100 in the experiments.

63

3. FORMATION COORDINATION WITH PATH PLANNING IN
SPACE OF MULTINOMIALS

S1

G
1

Situation 1

Situation 2

S
2 G2

(a) Schematic map of robot workspace with denoted

zoomed areas of the scenarios: Situation 1 and Sit-

uation 2.

(b) Distance map used for computing of the

cost function.

Figure 3.4: Illustration of compilation of data structure to time consuming cost function.

deal with this problem. Each cell in such a matrix denotes the minimum distance of
the relevant place to the closest obstacle according to equation (3.6). A big advantage
of such an approach is the possibility to use obstacles with an arbitrarily complicated
shape, which is often provided by autonomous mapping techniques. An occupancy grid
that is obtained by a range finder can be used as well. In our approach, a partly known
map is assumed, where only new or moving obstacles will be added during the path
planning.

In this chapter we will again use the computer science building in Wuerzburg, which
was used for the experiment in Chapter 2, as an example of the robot workspace with
static obstacles. The map of the building with two highlighted scenarios (Situation 1
and Situation 2), that are applied for the verification of the methods in this section, is
depicted in Fig. 3.4(a) and the appropriate distance map is drawn in the Fig. 3.4(b).

3.3.3 Experimental results

At the beginning of this section, we would like to present a set of experiments de-
scribing different behavior of different optimization methods used for finding the global
optimal solution of cost function (3.13). We have chosen a technique combining the
Sparse Grids (SG) method in the global part of the optimization together with the
Nelder-Mead method in the local part of the optimization as an appropriate approach
representing deterministic algorithms. An overall description of the algorithm is of-
fered in Appendix A.1. The second global optimization method, employed for obtain-
ing results in this section, is stochastic, a nature inspired evolutionary technique called
Partical Swarm Optimization (PSO), which is described in Appendix A.2. The param-
eters of the PSO method were adjusted in agreement with [162], where the algorithm
was used in a similar application. We should mention that the following study is only
a small portion of results we have obtained. More comprehensive tests of available

64

3.3 Path planning for virtual leaders

optimization methods including the comparison of several evolutionary as well as de-
terministic methods have been published in a chapter of book [120] and in conference
papers [155; 162].

Both optimization techniques here will be confronted by solving Situation 1. In
the first experiment, the initial and the desired states of the robot are fixed. The
deterministic SG algorithm offers a reproducable solution in static environments, while
the comparable results of the stochastic PSO method can be obtained only through a
statistic set of runs1. In Fig. 3.5, mean objective values of feasible solutions obtained
by PSO technique are compared with the progress of the solution obtained by the SG
method. Infeasible solutions that are highly penalized by the cost function make in
statistic steps preclusive of an interpretation and they are excluded from the statistics.
The fluctuations at the beginning of the mean values in Fig. 3.5 are caused by an
insufficient number of feasible solutions that were added to the statistics.

The progress of the mean cost of the solutions reflects a faster convergence of the
evolutionary method at the beginning of the optimization while the deterministic ap-
proach offers better solutions with the increasing number of evaluations. This is caused
by the utilization of the Nelder-Mead method for the local optimization initialized in
the results of global SG. The feasible solution was obtained by SG after about 1450
evaluations (it is approximately 0.6 second using Pentium 4, 3.2GHz, 504 MB), which
enables a real application only in such a simple scenario.

A set of 200 randomly generated initial and desired positions was prepared for the
second experiment. Each situation was once solved by PSO and once by SG. The mean
costs of feasible solutions are compared in Fig. 3.6. The results are highly influenced by
the adding of only feasible solutions to the statistics which makes the unsmooth curves.
Nevertheless, the behavior of both algorithms is similar to the previous experiment and
we can conclude that the PSO method is useful in situations where the fast response
is preferred to the perfect solutions.

The second aim of this section is to highlight the problem of local extremes in the
cost functions used in both formation driving algorithms that are presented in this
thesis. To deal with this phenomena is one of the crucial tasks, because available
optimization methods with a sufficiently fast response can easily get stuck in a minima
that matches with an unfeasible solution. The result presented in this part has been
obtained by the PSO technique, but the same behavior has been observed during the
utilization of the SG method too.

Situation 1 and Situation 2 from Fig. 3.4(a), which contain several local extremes
corresponding to feasible as well as unfeasible paths for the virtual leader, have been
chosen as the test scenario. In Fig. 3.7, two solutions of the Situation 1 were presented.
The path evaluated by cost f = 13.02 is feasible for the formation maintaining the fixed
shape. Contrariwise the second path (f = 28.71) is feasible only for a single robot. This
means that the shape of formation F must be temporarily changed during the passage
around the obstacles as well as in the loop replacing a sharp unfeasible curve next to the
corner of the room. We should note that the loop was created automatically by the path
planning method. Such maneuvers could be useful for example in crossroads of narrow

11000 runs of PSO were used in the experiment.

65

3. FORMATION COORDINATION WITH PATH PLANNING IN
SPACE OF MULTINOMIALS

0 1000 2000 3000 4000 5000 6000 7000 8000
10

20

30

40

50

60

70

80

Evaluations [-]

O
b

je
c
ti
v
e

 v
a

lu
e

 [
-]

PSO (mean value)

Sparse grids

Figure 3.5: Objective values. (fixed initial and desired position of the formation)

2000 3000 4000 5000 6000 7000 8000

13

14

15

16

17

18

19

20

21

22

23

10000

PSO

Sparse grids

Evaluations [-]

O
b

je
c
ti
v
e

 v
a

lu
e

 [
-]

Figure 3.6: Objective values. (variable initial and desired position of the formation)

66

3.4 Formation driving

corridors where the straightforward movement is impossible due to the restriction of
the turning radius.

Results of the second scenario, Situation 2, are shown in Fig. 3.8. The solution with
f = 13.82 is feasible for the complete formation whereas the second solution (f = 18.31)
requires small changes of the positions of outer followers. The second path is shorter
than the first one and it could be preferred in the application where the shape of F can
easily be modified.

S1

G1

f = 13.02

f = 28.71

Figure 3.7: Two different solutions of the Situation 1 obtained by PSO.

S2
G

2

f = 13.82

f = 18.31

Figure 3.8: Two different solutions of the Situation 2 obtained by PSO.

3.4 Formation driving

3.4.1 Method description

As announced in Section 3.2, the formation driving method presented in this chapter
is equivalent to the approach from Chapter 2 except for the leader’s control. Here
the second time interval TM , considering the global character of the environment, is
not necessary, because the information about the future direction of the formation is
included in the designed path and all variables describing the trajectory can be collected
in an shorter optimization vector, ΩL,2 = [ΨL,N , UL,N] ∈ R5N .

The trajectory planning for the virtual leader is then transformed to the minimiza-
tion of cost function JL,2 subject to sets of equality constraints hTN

(·) and inequality

67

3. FORMATION COORDINATION WITH PATH PLANNING IN
SPACE OF MULTINOMIALS

constraints gTN
(·), gra,L(·), that is

min JL,2(ΩL,2) (3.11)

s.t. hTN
(k) = 0, ∀k ∈ {0, . . . , N − 1}

gTN
(k) ≤ 0, ∀k ∈ {1, . . . , N}

gra,L(ΩL, Oobs) ≤ 0.

(3.12)

The constraints hTN
(·), gTN

(·) and gra,L(·) can be used in the same way as proposed in
equations (2.23), (2.25) and (2.27). The cost function JL,2(ΩL,2) is presented as

JL,2(ΩL,2) =
N∑

k=1

d (ϕ(·, ·), p̄L (k))2

+ α

n0∑

j=1

(
min

{
0,

distj(ΩL,2, Oobs)− rs,L

distj(ΩL,2, Oobs)− ra,L

})2

+ β




1∫

inds

√
(ϕ′x(indk, s))2 + (ϕ′y(indk, s))2ds

+
ñ∑

k=indk+1

1∫

0

√
(ϕ′x(k, s))2 + (ϕ′y(k, s))2ds



−1

+ γ

N∑

k=1

(
v2
L (k) + K2

L (k)
) ‖p̄L (k)− p̄L (k − 1)‖2 ,

(3.13)

where the first term penalizes solutions with states deviated from the desired trajectory
and the second term is identical to the second part of equation (2.22). The function
d (ϕ(·, ·), p̄L (k)) is providing the minimal distance between the path ϕ(·, ·) and the
position p̄L (k). The third term of the objective function utilized in this approach is
important for the convergence of the method. It replaces the inequality convergence
constraint in equation (2.28) which due to missing time interval TM cannot be applied
here. This part of equation (3.13), which is inversely proportional to the length of the
path ϕ(·, ·) between the closest point on ϕ(·, ·) to the last state ψL(N) and the desired
end of ϕ(·, ·), ”pulls” via the constraints hTN

(k), where k ∈ {0, . . . , N − 1}, all states
ψL(k), where k ∈ {1, . . . , N}, along ϕ(·, ·) to the end of ϕ(·, ·). The variables indk and
inds indexing the closest point on ϕ(·, ·) can be determined by

(indk, inds) :=
{

(k, s) : dd(ϕ(k, s), p̄L (N))2 = d(ϕ(·, ·), p̄L (N))2
}

,

∀k ∈ {1, . . . , ñ}, ∀s ∈ 〈0; 1〉 ,
(3.14)

where the function dd(ϕ(k, s), p̄L(N)) is providing distance between the point ϕ(k, s)
and the position p̄L(N). The last term of equation (3.13) penalizes aggressive control
inputs and is analogous to the minimization of energy consumption. The influence of
this part on the stabilization of the plant will be shown in Section 5.4.2. Finally, the
constants α, β and γ are utilized for the balancing of frequently antagonistic endeavors:

68

3.4 Formation driving

i) closely follow the desired path, ii) avoid dynamic obstacles, iii) reach the desired goal
as soon as possible and iv) save energy. The weights of the cost function are α = β = 1,
γ = 0.4 in the experiments presented in Section 3.4.3 and in Chapter 5, if it is not
explicitly changed.

Remark 3.4.1. Since the result of the path planning method presented in this chapter
is feasible for the formation of car-like robots, the leader’s control based on RHC
can be replaced by the work of Barfoot and Clark [13; 14]. The states ψL(k), for
k ∈ {1, . . . , N}, are uniquely defined by the solution of the path planning and so the
vector ΩL,2 can be directly obtained using equations (2.13) and (2.37). The advantage of
the RHC based method, as we have presented in this section, consists of the possibility
to run the more time-consuming path planning in a slower loop or only if it is required
by a significant change of workspace. The ordinary dynamic obstacle avoidance in
between the path planning interventions is provided by the RHC method, concretely by
the contribution of the third term in the cost function in equation (3.13). Furthermore,
the proposed RHC schema can deal with unfeasible paths as we will demonstrate in
Chapter 5.

3.4.2 Proof of convergence

In this section, we will present proof of convergence to the desired state ψG for the
virtual leader robot following the predefined path under the receding horizon scheme.
To show the convergence properties in a compact way, we should first rewrite the
optimization problem from equation (3.11) in accordance with equation (2.4) in the
form

P2(t0) : JL,2(ψL(t0), U◦L(t0);N∆t)◦ = min
UL





t0+N∆t∫

t0

L2(ψL(s), UL(s), s)ds





+ F (ψ◦L(t0 + N∆t|t0), ψG),

(3.15)

where the integral is a running cost and the component F (ψ◦L(t0 + N∆t|t0), ψG) is a
final cost between the last state of horizon TN and the desired final state ψG. The state
ψ◦L(t0 + N∆t|t0) is an optimal state of the virtual leader in time t0 + N∆t obtained as
a result of the optimization problem P2(t0), which has been applied in time t0. The
final cost is expressed using the third part of the cost function in the equation (3.13).
Generally, the physical meaning of the term F (ψ1, ψ2) is the length of ϕ(·, ·) in between
the closest points on ϕ(·, ·) to states ψ1 and ψ2.

Theorem 3.4.2. Having the feasible preplanned path ϕ(k, ·), where k ∈ {1, . . . , ñ},
with target state ψG, and a feasible solution of P2(t0), the receding time horizon control
scheme, which iteratively solves the optimal control problem to obtain control inputs
U◦L(·) for the virtual leader, converges and guides RL(ψL(·)) toward the target state
ψG. The claim holds as long as the perturbations on JL,2(·)◦, denoted by D2(k), satisfy

69

3. FORMATION COORDINATION WITH PATH PLANNING IN
SPACE OF MULTINOMIALS

D2(k) < F (ψ◦L(t0+(kn+N)∆t|t0+(k+1)n∆t), ψ◦L(t0+((k+1)n+N)∆t|t0+(k+1)n∆t)),
for all k ∈ Z+ where k < (t̄ − t0 − N∆t)/n∆t. The perturbations are caused by
unexpected obstacles or system disturbances (acting on proximity penalties for L2(·)).
Proof. Let us assume that the preplanned path ϕ(k, ·), where k ∈ {1, . . . , ñ}, is time
invariant for t ∈ 〈t0, t̄〉. To satisfy the assumption in the theorem on feasibility of
ϕ(·, ·) with respect to a sufficient space between the path and the obstacles in the
environment, we must presume the utilization of a static environment for the proof.
The difficulties with choosing the dynamic environment will be mentioned at the end
of the convergence analysis. Similarly as in the proof in Section 2.2.2, we can choose
the optimal cost JL,2(·)◦ as a candidate Lyapunov function and the state ψG as an
equilibrium.

Subtracting the optimal costs obtained solving the problem P2(t0) with initial con-
dition ψL(t0) and the problem P2(t0 + n∆t) with initial condition ψL(t0 + n∆t), which
has been reached after applying the first n elements of U◦L(t0), the following equality
can be written

JL,2(ψL(t0 + n∆t), U◦L(t0 + n∆t);N∆t)◦ − JL,2(ψL(t0), U◦L(t0);N∆t)◦ =

=

t0+(N+n)∆t∫

t0+n∆t

L2(ψL(s),U◦L(s), s)ds−
t0+N∆t∫

t0

L2(ψL(s), U◦L(s), s)ds

+F (ψ◦L(t0 + (N + n)∆t|t0 + n∆t), ψG)− F (ψ◦L(t0 + N∆t|t0), ψG).

(3.16)

In the static environment without disturbances, we can suppose that the part of the
optimal solution ψ◦L(τ |t0), where τ ∈ 〈t0 + n∆t; t0 + N∆t〉, which is repeated in the
next iteration, stays unchanged between two steps of the planning loop. Therefore we
can rewrite the last term in the right hand side of (3.16) as

F (ψ◦L(t0 + N∆t|t0), ψG) = F (ψ◦L(t0 + N∆t|t0 + n∆t), ψG). (3.17)

As we have mentioned above, the running cost F (ψ◦L(t0 + N∆t|t0 + n∆t), ψG) is
the length of ϕ(·, ·) between the points on ϕ(·, ·) that have minimum distance to states
ψ◦L(t0 + N∆t|t0 + n∆t) and ψG. Let us now split the path ϕ(·, ·) to two parts in a
point on ϕ(·, ·) that is closest to ψ◦L(t0 + (N + n)∆t|t0 + n∆t). The length F (ψ◦L(t0 +
N∆t|t0 + n∆t), ψG) can then be obtained as a sum of lengths of the splitted parts:

F (ψ◦L(t0 + N∆t|t0 + n∆t), ψG) = F (ψ◦L(t0 + (N + n)∆t|t0 + n∆t), ψG)

+F (ψ◦L (t0 + N∆t|t0 + n∆t) , ψ◦L (t0 + (N + n)∆t|t0 + n∆t)) .
(3.18)

Including the observations (3.17) and (3.18) together with the substitution

t0+(N+n)∆t∫

t0+n∆t

L2(ψL(s), U◦L(s), s)ds−
t0+N∆t∫

t0

L2(ψL(s),U◦L(s), s)ds = D2(0) (3.19)

70

3.4 Formation driving

into the equation (3.16) we arrive to an equality:

JL,2(ψL(t0 + n∆t),U◦L(t0 + n∆t);N∆t)◦ − JL,2(ψL(t0), U◦L(t0);N∆t)◦ =

= D2(0)− F (ψ◦L (t0 + N∆t|t0 + n∆t) , ψ◦L (t0 + (N + n) ∆t|t0 + n∆t)) .
(3.20)

By choosing the optimal cost as a candidate Lyapunov function and according to
Lyapunov’s second theorem of stability [93], the following relation must be held to
obtain a convergence to the desired state ψG:

D2(0) < F (ψ◦L (t0 + N∆t|t0 + n∆t) , ψ◦L (t0 + (N + n)∆t|t0 + n∆t)) , (3.21)

for the first step of the planning loop and

D2(k) < F (ψ◦L (t0 + (nk + N)∆t|t0 + (k + 1)n∆t) , ψ◦L (t0 + (nk + N + n)∆t|
t0 + (k + 1)n∆t)) , ∀ψ◦L (t0 + (nk + N + n)∆t|t0 + (k + 1)n∆t) ∈ C̆

(3.22)

in general. C̆ ⊂ C is a set of states C̆ = {ψL(t) ∈ C|F (ψL (t) , ψG) > ε̆}, where constant
ε̆ has to satisfy relation ε̆ > D2(k) during the whole planning process. Once the optimal
solution ψ◦L(·) enters the region surrounding the position of ψG with radius ε̆ the value
N is shortened as N := min(n,N − n) and the convergence can then be easily proven
using the principle of optimality [8].

To choose the value of ε̆ correctly let us analyze the equation (3.19) where the

physical meaning of D2(0) is shown. The running cost
t0+N∆t∫

t0

L2(ψL(s), U◦L(s), s)ds,

which keeps the virtual leader on the desired path, is in a discrete form composed from
the first two sums in equation (3.13). The second sum penalizes positions of formation
F that are too close to obstacles. This function contributes to the cost of the optimal
solution only in the case of an unfeasible path ϕ(·, ·) or a change of environment. Both
possibilities have been excluded by the initial assumptions. The contribution of the
first sum is influenced mainly by disturbances of unprecise actuators and sensors for
position determination which forces the virtual leader to deviate from the desired path.
The value of ε̆ is therefore influenced by these disturbances, which must be identified
experimentally.

Considering dynamic and unexpected obstacles or an unfeasible path ϕ(·, ·) we can
claim, similarly as in the Proposition 2.2.2, that the optimality holds as long as the
difference of the perturbations of the running cost on intervals 〈t0 + N∆t, t0 + (N + n)∆t〉
and 〈t0, t0 + n∆t〉, denoted D2(0), satisfy the equation (3.22). Contrariwise, the vio-
lated inequality (3.22) enforces the restarting of the path planning process in an updated
environment.

71

3. FORMATION COORDINATION WITH PATH PLANNING IN
SPACE OF MULTINOMIALS

Actual time: 4

1

2
3

4 5

(a) The beginning of the fol-

lower 3 failure.

Actual time: 5.5

1

2

3
4 53

3

3

(b) Robot 4 is avoiding the

problematic robot 3. The

history of the movement

of robot 3 is depicted by

shaded contours for each

planning step.

Actual time: 6

1

2

3

4

5

3

3

3

3

(c) Robot 3 has been succes-

sively avoided by robot 4,

which is going back to de-

sired position within F.

Actual time: 20

i

i
←

Actual position of robots
Initial position of robots
Planned states of followers
Passed trajectories

Ψ
Ψ (t)

(d) The accomplished task with denoted trajectories of the incomplete forma-

tion. The dashed square designates the region zoomed in Fig. 3.9(a)-3.9(c)

Figure 3.9: A sequence of snapshots presenting the failure tolerance of the system during
the following of a path that consists of three smoothly connected multinomials.

72

3.4 Formation driving

3.4.3 Simulation of failures tolerance

The feasible solution of Situation 1 (path in Fig. 3.7 denoted by f = 13.02) has been
chosen as an example verifying the functionality of the method developed for the fol-
lowing predefined path by the formation F with a fixed desired shape. Furthermore,
during the movement of the robots a failure of one follower has been simulated to
demonstrate the ability of collision avoidance within F. The beginning of the robot’s
problem is shown in Fig. 3.9(a). Follower 3 with blocked steering has slowly left its de-
sired position in the formation which has detected robot 4. Due to the contribution of
the third term in equation (2.31) the plan of robot 4 has been slightly deviated to avoid
the defective vehicle. In the second snapshot in Fig. 3.9(b), rover 3 has started to slip
leftwards because one of the robot’s wheel has been stopped. This behavior has forced
robot 4 to increase the avoidance maneuver which has been successfully completed in
Fig. 3.9(c). For a better overview of the failure tolerance, the history of the movement
of robot 3, which is considered as an obstacle, is denoted by the shaded contours. The
incomplete formation at the end of the task is depicted with the trajectories from the
initial positions of the robots in Fig. 3.9(d).

73

3. FORMATION COORDINATION WITH PATH PLANNING IN
SPACE OF MULTINOMIALS

74

4

Advanced planning algorithms

for virtual leaders

The common denominator of the approaches introduced in this section is an ability to
reduce the computational time of the optimization methods applied within the algo-
rithms presented in Chapters 2 and 3. In addition these approaches are able to solve
the problem of a large quantity of local extremes as well as to avoid the necessary
knowledge of the length of the optimal solution which is already required during the
initialization of the trajectory planning. To shorten the description, the algorithms in
this chapter are only described for the usage in the approach introduced in Chapter 3.
Nevertheless, the same ideas can be applied for the method from Chapter 2 without
any significant changes as you will be able to find in Section 4.2.4.

4.1 Voronoi Strains

An algorithm developed to solve the problem of a large number of unfeasible solutions
in the initial population of the optimization methods is proposed in this section. The
approach is based on a combination of the VD method and a method inspired by
strains of bacteria. Strains whose evolution is stuck in a dead end die out because
of the influence of strains whose progress is more successful. Only the strain located
close to the global optimum or close to the best known local optimum will survive the
evolutionary process.

4.1.1 Method description

Generally, the space of feasible solutions occupies a small part of the space of all
possible solutions of the planning approaches introduced in Chapters 2 and 3. Almost
a 100% of randomly initialized solutions of the simple path planning problem with few
static obstacles is unfeasible as shown in the experimental comparison of the different
optimization methods in Section 3.3.3.

We propose an algorithm in which the planning for the virtual leader is initialized
as close as possible to the expected optimal solution. This approach increases the

75

4. ADVANCED PLANNING ALGORITHMS FOR VIRTUAL LEADERS

probability to reach the feasible space. A classical path planning method can be utilized
as a tool providing such an estimation of the solution. Such a path planning algorithm
should provide a fast response but the solution may not be optimal or even feasible for
the kinematics of formations because this problem is solved using our method.

As an appropriate path planning method for the initialization, the algorithm based
on finding the shortest path in Voronoi Diagram (VD) [9] was chosen. This technique
has been introduced in the literature review in Section 3.2. The advantage of this ap-
proach is that the obtained path is situated far away from the obstacles and it may
be assumed that the initialization in such a denoted space is feasible. It is important
to mention that the space of paths in VD is not equal to the space of smoothly con-
nected multinomials. The solution of the VD method can only be a guidance to find
a feasible solution of the spline approach. Furthermore, it cannot even be guaranteed
that the corresponding optimal solution of VD will be a global optimum in the space
of multinomials. A path containing a sharp turn can be the shortest in VD, but the
path that matches with the global minimum of the cost function in equation (3.4) can
be situated in a completely different part of environment. To increase the probability
that the global optimal solution is reached, we take the advantage of the evolution-
ary algorithms using a population of several particles that had to be initialized.1 In
the proposed method, the initial population is splitted to several sub-groups that are
initialized along several promising paths found in VD.

Such an approach should deal with the problem of a multiple local extreme of the
cost function that was introduced in Section 3.3.3 as well as it should reduce the time
of the optimization process. Using this method the particles are initialized close to
the desired solution and so the exploration part of the optimization process can be
shortened. This enables to extend the exploitation part, when the area close to the
desired solution has already been found and the final result is improving.

The VD algorithm cannot be utilized in the standard form with edges evaluated by
their length for our purpose. In the presented Voronoi Strains (VS) method, the edges
are supplemented with a number correlating with the fitness function in equation (3.4).
This approach decreases the difference between the minimum of the fitness function
and the cheapest path in VD. The proposed evaluation of the edges of VD, collected
in a set E, is

f(e) = l(e) +
(

α

mino∈Oobs
d(e, o)

)2

, e ∈ E (4.1)

where α has a similar meaning as in equation (3.4), l(e) is the length of edge e and
d(e, o) is the shortest distance between edge e and obstacle o. The shortest path in
such evaluated graph connecting the actual and desired positions of the formation is
still needlessly long and also not smooth, but it is a good estimation of the region where
the optimal trajectory could be situated.

Instead of a randomly generated initial population uniformly covering the whole
search space, which is usually used in evolutionary algorithms, we would like to generate
the population close to such a region. As a result, the algorithm converges faster but the
population diversity is lost which causes problems when the estimation of the solution

1The PSO technique is employed in this section as the appropriate evolutionary method chosen in

Section 3.3.3, but any population based optimization algorithm can be utilized with the same concept.

76

4.1 Voronoi Strains

1210 1212 1216 1218 1220

1395

S

G
1206 1208

first path

second path

third path

bridge

obstacles center

Figure 4.1: A Voronoi diagram and the cheapest paths used for the initialization of the
strains.

is not correct. As mentioned above, we propose to create new strains in the population
that are identified in areas of alternative solutions (the second cheapest path, the third
cheapest path, etc) of the evaluated VD to solve this problem. Concretely, the price of
the edges of the cheapest path is always risen two times and the next strain is located
along the new cheapest path in such a changed graph. The obtained different solutions
can contain the same edges, but these ”bridges” are usually short. A simple example
of the cheapest paths in a Voronoi graph is shown in Fig. 4.1.

Then the population of the evolutionary algorithm is initialized so that the number
of particles in each strain is

s(i) = stotal
2m̃−i

2m̃ − 1
, i ∈ {1, · · · , m̃} (4.2)

where stotal is the total number of particles in the population and m̃ is the number of
strains. Using this approach, the first obtained Voronoi paths, where the probability
of the global solution is the highest, have the biggest strains.

In the end, we should shortly describe how the particles are placed along the paths
found in the diagram. In the first step of the initialization, the paths are divided into
ñ− 1 parts of identical length (ñ is the number of splines in the string). In the second
step, The control points of the splines Pk, where k ∈ {1, . . . , ñ − 1}, are randomly
generated on each part in consideration of their order in a geometric representation.1

1In the same way, the positions p̄L(k), k = {1 . . . N + M} of transition points gathered in vectors

ΨL,N and ΨL,M can be distributed during initialization of the method presented in Chapter 2.

77

4. ADVANCED PLANNING ALGORITHMS FOR VIRTUAL LEADERS

Table 4.1: The mean values of the fitness function of the best particle after 50 iterations
for different values of Vmax and wstart.

Vmax

wstart 10 70 150 220 300

0.1 14.51 11.10 11.21 11.65 11.86
0.2 14.34 11.03 11.18 11.52 11.57
0.4 13.43 10.98 11.24 11.43 11.65
0.6 12.28 11.00 11.43 11.80 12.00
0.8 11.82 11.23 11.82 12.06 12.39

4.1.2 Results and parameters tuning

The Voronoi Strains algorithm has been verified in two experiments. Both experiments
are based on a statistically processed set of runs, because each run of evolutionary
approaches is unique and thus the final trajectories are different. Each value presented
in this subsection has been obtained from 400 runs of the algorithm.

The first experiment has been performed to study the influence of different param-
eters of the PSO algorithm on the quality of the resulting trajectories obtained by VS.
In the second experiment, we have compared the VS algorithm with a simple PSO
method using different initializations.

All these results have been obtained by the PSO algorithm using parameters wend =
0.05, Υ1 = 2 and Υ2 = 2. The resulting trajectories are composed from 10 splines
(dim(−→x) = 18) and the population consists of 28 particles (16 particles in the 1th
strain, 8 in the 2nd strain and 4 in the 3rd strain). Each optimization process has been
interrupted after 50 iterations and 150 obstacles have been distributed randomly in the
workspace.

The mean costs of the solutions of the VS algorithm with different settings of wstart

and Vmax in equations (A.2) and (A.4) are presented in Table 4.1. The best results
have been obtained with wstart = 0.4 and Vmax = 70. It is interesting to compare
these results with the simple PSO method using random initialization [162], where the
optimal values are wstart = 0.6 and Vmax = 250. The most significant is the difference
of Vmax. Particles in the VS algorithm are initialized close to the optimal solution
and they are kept in this position by the low value for the maximal velocity. If Vmax

is too big, the particles start to explore the whole space and the advantage of the
initialization is lost. Contrariwise the simple PSO algorithm with a too low value of
Vmax can converge only slowly and the optimal trajectory cannot be found during 50
iterations. The lower value of wstart is advantageous to the VS approach, because thus
the exploratory process is skipped (due to better initialization) and the optimization
starts directly in an exploitative mode, where the space is searched already close to the
most promising solution.

The progression of the mean cost of the best particle is presented in Fig. 4.2 for
different numbers of splines used to evolute the trajectory. The lowest mean value of
the best particle was achieved with dim(−→x) = 18 (10 splines in the string) after 50

78

4.1 Voronoi Strains

→

4

6

10

18

28

Evaluations [-]

O
b

je
c
ti
v
e

v
a

lu
e

[-
]

Figure 4.2: Progression of the best particle with different length of particle.

iterations. A higher dimension results in a better initial population (a higher mean
value of the best particle), but also slows down the optimization process. Contrariwise
the PSO is sped up if the value of dim(−→x) is low, but the space is reduced and the
optimal solution can be of poor quality (e.q. not free of collisions).

Three different algorithms were compared in two dissimilar scenarios in the exper-
iments described in this section. The first algorithm (PSO-simple) only uses a basic
initialization. Particles in the initial population are generated randomly and so the
control points of the splines cover the complete workspace and the trajectories possi-
bly contain loops. In the second approach (PSO-line) it is supposed that the optimal
trajectory is short and without loops or backwards motion. Therefore, the line con-
necting the points p̄S and p̄G is divided into ñ same parts and the control points Pi are
randomly generated close to the dividing points.

The first scenario is identical to the situation with 150 obstacles used in the previous
experiment and demonstrates the ability of the VS algorithm to work in complicated
environments. The mean value and covariance of the fitness function of the best particle
after 50 iterations is presented in Table 4.2. The mean value of solutions achieved by
the VS approach is much better than the mean value of solutions found by the other
methods, but the most significant fact is found by comparing the covariances. The
low covariance in the VS approach shows its high robustness in comparison to the
PSO-simple and the PSO-line methods.

The second scenario consists of only 10 obstacles in a workspace of identical size to
the one in the first experiment. The results presented in the second column of Table 4.2
illustrate a low effect of the initialization on the optimization process in such a simple
situation. The biggest advantage of the VS approach (missing exploratory mode) is
lost, because in this case the exploratory mode in the simple PSO approach is very

79

4. ADVANCED PLANNING ALGORITHMS FOR VIRTUAL LEADERS

Table 4.2: The mean fitness values and covariances (in brackets) of the fitness function
of the best particle after 50 iterations.

method 150 obstacles 10 obstacles

PSO-simple 56.56 (444.53) 1.68 (0.0047)
PSO-line 21.31 (44.57) 1.67 (0.0039)
Voronoi Strains 10.98 (0.89) 1.67 (0.0035)

short. Additional experiments and a more detailed decription of the VS method can
be found in [158].

4.2 Hierarchical approach

One of the crucial problems of the approaches that are solving the formation to target
zone problem is to decide how big the dimension of space of solution is optimal before
the optimization. For the approach in Chapter 2 it means to find the optimal value of
M , while for the approach in Chapter 3 it is the optimal number of multinomials in
the string ñ. A too big value of the parameters causes the growth of the computational
time and contrariwise if a too small value is used a feasible solution may not exist (e.g.
see study in Section 2.4.1). The optimal setting of these variables is impossible in most
applications and it can change as new obstacles are detected during the task executing.

A solution proposed in this section is a hierarchical decomposition of the planning
process to smaller tasks. The hierarchical plunge is iteratively realized only in the
part of solution where it is required by the complexity of the environment. At the
beginning the formation can follow a simple plan that represents a coarse structure of
the map. In the part of the map where such result is insufficient (this can be easily
detected using the value of cost function), the appropriate piece of solution is replaced
by a more complicated path. The formation therefore does not have to wait for the
complete plan before the beginning of the movement and in addition the detailed plan
is obtained when the robots approach to the concerned area. It has no sense to compute
a particular solution when the exact position of dynamic obstacles is not known. The
provided description of the method is adapted to the approach in Chapter 3, but the
utilization of the method in Chapter 2 is similar as you can see in a short note at the
end of this section.

We should mention that only an epitome of the method is presented here, while the
complete version can be found in [156] which is supplemented by a formation driving
simulation in [157].

4.2.1 Method description

In the hierarchical approach proposed in this section the optimization task is decom-
posed to multiple subtasks. The basic idea of the algorithm can be seen in Fig. 4.3.
The actual state of the robot and the desired state generated by a higher Task plan-
ning module are the inputs for a global optimization method analogous to the basic

80

4.2 Hierarchical approach

approach presented in Chapter 3. The obtained path is checked in the Collision detec-
tion module and a collision free solution is sent to the Control module, where the path
is executed. If a collision is detected, the string of splines is divided and the control
points of each unfeasible spline are used as a new input for the optimization. These
sets of control points are put into the memory of the Global optimization module. For
the following optimization processes, the piece of path that has minimum distance to
the virtual leader is always chosen as the first. The remaining parts will be optimized
during the robot’s movement. Therefore the time needed for the initial planning before
the start of the mission is reduced several times.

Task planning Global
optimization

Feasibility
checking

Control
module

Cost
function

Path
planning

Control
points

Start
Goal

Control
points

Collision spline

Figure 4.3: Schema of the presented hierarchical method.

S

GA B

S GA B

G

S

A B

BA

A B

CD

E F

H I

J C

C

D

D

E

E

F

F

H

H

I

I

K

LM

NO

PQ

R T

UV

WX

Y Z

a b

Figure 4.4: Example of the path decomposition.

An example of the path decomposition is shown in Fig. 4.4. Each optimization
vector used in the optimization processes contains only two positions p̄L(k), where
k ∈ {1, 2} which correspond to three splines in the string, ñ = 3. In this simplified
example the hierarchical process is always stopped in the third level, independently
from the number of collisions. The input states for each optimization are printed with
a dark background (e.g. S and G in the first level) whereas the optimized positions
are represented by letters in white rectangles (e.g. A and B in the first level). As we
have explained in Chapter 3 the spline optimization method provides only a sequence of
positions p̄L(·), but the complete states ψS and ψG are needful for its input. Fortunately
the missing values of θS and θG are uniquely defined by the function ϕ(·, ·) that can
be easily derived from the obtained solution. The final path in the lowest level consists
of 27 splines and it is characterized by actual and desired states and by positions of

81

4. ADVANCED PLANNING ALGORITHMS FOR VIRTUAL LEADERS

the virtual leader in between of them. Such a path can be found as a minimum of
the nonlinear cost function in a 52-dimensional space (26 optimized points multiplied
by 2 numbers describing each position). This procedure is difficult (or impossible) in
real applications with a limited computational time. The scanned space is reduced 13
times and the separate optimization subtask can be done in tens of iterations in the
hierarchical approach. Furthermore only three optimization processes (in the Fig. 4.4
marked by SABG, SCDA, SJKC) are necessary for the beginning of the mission.

4.2.2 Objective functions

Two different cost functions are used in the presented hierarchical approach. The
solutions found in the last hierarchical level (the lowest big rectangle in Fig. 4.4) are
evaluated by the cost function, which is equivalent to the cost function applied in the
simple method introduced in Chapter 3,

f1(−→x) = flength(−→x) + αfdistance(−→x) + βfradius(−→x). (4.3)

The paths in the other levels are evaluated by the extended cost function

f2(−→x) = f1(−→x) + γfextension(−→x), (4.4)

where the component fextension(−→x) pushes the control points of the splines Pk ≡ p̄L(k),
where k ∈ {1, . . . , ñ − 1}, to the obstacle free space. These points are fixed for a
lower level planning and therefore collisions close to these points cannot be repaired
afterwards. The function fextension(−→x) is defined as

fextension(−→x) =





δ(ϕ(·, ·), Oobs)−2, if ra,L < δ(ϕ(·, ·),Oobs)

δ(ϕ(·, ·), Oobs)−2 + pin, else
(4.5)

where the constant pin strongly penalizes solutions with a state whose position pL(·)
is situated inside a region created by the dilatation of obstacles with radius ra,L.1

The function δ(ϕ(·, ·), Oobs) returns the minimum distance of any point pL(k), for k ∈
{1, . . . , ñ − 1}, to the border of any obstacle o ∈ Oobs. Finally, the value of constant
γ, which adjusts the influence of the term fextension(−→x) on the optimization, should
satisfy the inequality γ > α. In the experiments, we utilized values of constants α and
β in accordance with the simple method introduced in Section 3.3.1 and γ = 1.

4.2.3 Results and comparison with simple optimization method

The described method has been tested in a scenario with 3000 randomly generated
obstacles in a quadratic field. The scenario is depicted and described in detail in [156],
where a similar method was applied to a single robot. To solve the global optimization
problem we have used the PSO technique again. In Table 4.3, the hierarchical approach
has been compared with the simple method introduced in Section 3.3.1. Each resulting

1The value of penalization was set in the experiments as pin = 100.

82

4.2 Hierarchical approach

Table 4.3: The number of paths unfeasible for an unchanged formation. (The number of
paths that can be executed by formation changing.)

maximum level I II III IV V

iterations 30 117 272 568 1103

hierarchical 954(382) 521(210) 189(76) 121(51) 97(43)
simple (n = 2) 843(340) 622(252) 511(205) 489(196) 442(181)
simple (n = 3) 954(382) 667(268) 538(218) 475(193) 438(178)
simple (n = 4) 998(413) 852(342) 677(272) 633(255) 560(226)

value was obtained by 1000 runs of the algorithms. Such a statistic is necessary due
to the indeterministic PSO method. The second row of the table contains the amount
of iterations executed by the PSO modules in the hierarchical algorithm with different
settings of the maximum level. These values acted as inputs for the relevant runs of
the simple PSO algorithm that was executed with a different number of splines in the
string. The amount of solutions including a collision with an obstacle is listed in the last
four rows. The number of solutions with collisions that remain even after the changing
of the formation is depicted in brackets. The obtained results were several times better
than by utilization of all modifications of the simple PSO algorithm already in the third
hierarchical level. This accrues from the reduction of the search space. Additionally,
the number of situations in which the modification of the shape of the formation is
required is reduced by the hierarchical process.

An example of a randomly generated situation with a solution found by the hi-
erarchical algorithm is shown in Fig. 4.5. The decreasing amount of collisions in the
path at different hierarchical levels can be observed in the zoomed parts of the overall
scenario in Fig. 4.5(b) and Fig. 4.5(c). The solution found in the first level (dotted line)
contains 21 collisions along the whole path, but the control points are situated far away
from the obstacles and the big clusters are avoided. Only 4 collisions are contained in
the corrected path at the second level (dashed line) and the final solution (solid line),
which was obtained after three hierarchical optimizations, is collision free.

4.2.4 Hierarchical concept for RHC approach

The hierarchical approach can be utilized for the method based on RHC presented in
Chapter 2 in the same way as we have shown for the algorithm with a solution in the
space of multinominals. This paragraph will be focused on slight differences of the
application of the hierarchical concept for the algorithm from Chapter 2 and a general
description will be omitted to prevent unnecessary repetitions.

The hierarchical decomposition of the optimization problem from Section 2.3.2 is
possible only within the second time interval TM , because the distance between the
sampling points on interval TN is constant and it is determined by control demands.
Based on this, collisions with the environment in the interval TN are considered as
unavoidable using the current dynamics of the system. Contrariwise, collisions in the

83

4. ADVANCED PLANNING ALGORITHMS FOR VIRTUAL LEADERS

S

G

(a) A complete trajectory of the leading robot with denoted zoomed areas depicted in

Fig. 4.5(b) and Fig. 4.5(c).

G

(b) A zoomed part close to the goal position. (c) A zoomed part of Fig. 4.5(a).

Figure 4.5: A situation with 3000 randomly generated obstacles. Dotted line - the path
found in the first level, dashed line - the path found in the second level, solid line - the
final solution found in the third level. The radius of the obstacles is dilated by the size of
the formation.

84

4.2 Hierarchical approach

interval TM can be caused by an insufficiently small dimension of the space of solution
as we have investigated in Section 2.4.1. Similarly as the number of splines ñ also the
value of parameter M can be increased by iteratively adding additional states ψL(·)
into the part of the optimal trajectory Ψ◦

L(t) where a collision with the obstacles is
detected.

Let us suppose that the avoidance inequality constraint gra,L(Ω◦L, Oobs), which is
defined by equation (2.27), is violated between the states ψ◦L(i−1) and ψ◦L(i), for i ∈ Z+,
where N < i ≤ N + M , and the constraint is satisfied in the rest of the trajectory.
Then the states ψ◦L(i − 1) and ψ◦L(i) can be used as inputs of a new optimization
process P?(·) starting from ψ◦L(i − 1). Here, the optimization vector will be defined
as Ω?

L = [Ψ?
L,M? ,U?

L,M? , T
∆,?
L,M?] ∈ R6M , where M? is constant that characterizes the

hierarchical process.
The trajectory planning and the obstacle avoidance problem can again be trans-

formed to the minimization of cost function JL(·) subject to sets of inequality con-
straints gTM

(·) (equation (2.26)), gra,L(·) (equation (2.27)) and equality constraints
hTM

(·) (equation (2.24)), constraint hcon(·), that is

minJL(Ω?
L) (4.6)

s.t. hTM
(k) = 0, ∀k ∈ {N, . . . , N + M − 1}

hcon(ψ◦L(i), ψ?
L(M?)) = 0

gTM
(k) ≤ 0, ∀k ∈ {N + 1, . . . , N + M}

gra,L(Ω?
L,Oobs) ≤ 0.

(4.7)

The cost function JL(·) can be used in the form presented in equation (2.22) with
constants N := 0 and M := M?. The constraint hcon(·), which replaced the stabiliza-
tion constraint gSF

(·) from equation (2.28), keeps the new part of the trajectory Ω?
L

consistent with the previous solution Ω◦L. It is defined as

hcon(ψ◦L(i), ψ?
L(M?)) :=




x◦L(i)− x?
L(M?)

y◦L(i)− y?
L(M?)

θ◦L(i)− θ?
L(M?)


 . (4.8)

The new optimal trajectory for the virtual leader can be obtained by integration
Ω?,◦

L into Ω◦L as Ψ◦
L,M = [ψ◦L(N + 1), . . . , ψ◦L(i − 1),Ψ?,◦

L,M , ψ◦L(i + 1), . . . , ψ◦L(N + M)],

U◦L,M = [ū◦L(N + 1), . . . , ū◦L(i− 1), U?,◦
L,M , ū◦L(i + 1), . . . , ū◦L(N + M)], T

∆,◦
L,M = [∆t◦(N +

1), . . . , ∆t◦(i − 1), T∆,?,◦
L,M and ∆t◦(i + 1), . . . ,∆t◦(N + M)]. This process can be itera-

tively repeated for the remaining collisions in the new Ω◦L using the concept presented
in Fig. 4.4.

Finally, we should discuss an appropriate initialization of the optimization prob-
lem P?(·). The best available information about the desired solution is included in
Ω◦L, concretely it is the trajectory defined by the states ψ◦L(i − 1) and ψ◦L(i), control
inputs ū◦L(i) and time ∆t◦L(i). The optimal initialization could then be to equally dis-
tribute the states along such a trajectory. We propose the complete initialization as
K?

L,init(k) := K◦
L(i), where k ∈ {1, . . . ,M?}, v?

L,init(k) := v◦L(i), where k ∈ {1, . . . , M?},
∆t?L,init(k) := ∆t◦(i)/M?, k ∈ {1, . . . ,M?}, ψ?

L,init(1) := KinMod(ψ◦L(i− 1), ū?
L,init(1),

85

4. ADVANCED PLANNING ALGORITHMS FOR VIRTUAL LEADERS

∆t?L,init(1)) and ψ?
L,init(k) := KinMod(ψ?

L,init(k− 1), ū?
L,init(k), ∆t?L,init(k)), where k ∈

{2, . . . , M?}. The function KinMod(·) represents the discrete kinematic model de-
scribed by equations (2.2).

86

5

Application - airport snow

shovelling

5.1 Introduction and motivation

A complete multi-robot system for efficiently removing snow from an airport will be
presented in this chapter. This application was chosen as an interesting utilization of the
theoretical approach presented in Chapter 2. Such an application is essential to show
the procedure of appropriate tuning of crucial parameters which could be complicated
in the general case. Furthermore, we are convinced of the usefulness and feasibility of
such a project which has been confirmed by positive feedback given from the scientific
community at several international conferences [77; 159; 160].

The main task of the ground staff at the airport is to maintain airports’ operations
safe and uninterrupted. One of the critical periods for the safeness of air traffic is snowy
weather. This is not because of the reduced visibility during landing, but mainly due to
runway conditions. It is a complicated task to remove the snow from the huge surface
of the main runways and the big amount of auxiliary roads that are necessary for the
planes as well as for the ground vehicles.

Today the tracks of airports are freed from snow by utilizing a fleet of human driven
snowploughs (see Fig. 5.1). An increase of efficiency, but also the saving of expenses
(now the crew of ploughs must be on alert day and night all winter) could be achieved
using an autonomous system of mobile robots. Due to the fact that the big airports
are already equipped by the essential sensors, i.e. a global positioning system and
automatic detection of runway conditions, such a system can be set up relatively easily.
Also the periodicity of the task and low presence of the obstacles during the cleaning
process (e.g. in comparison to highways) predestinate the use of autonomous robots.

A description of an appropriate autonomous system is provided in this thesis. The
basic idea is motivated by current approaches commonly used for shoveling of runways
by human driven snowploughs. Since partly cleaned paths could be dangerous especially
in emergency situations, it is required that the main runways as well as the auxiliary
roads have to be cleaned up at once. Thus we avoid forced landing planes as well as
rescue and fire fighting vehicles facing roads with an irregular snow surface. The main

87

5. APPLICATION - AIRPORT SNOW SHOVELLING

Figure 5.1: Commercial snowploughs from the Norwegian company Øveraasen. (Source:
[137])

runway should be therefore cleaned up by a big group with sufficient numbers of vehicles.
This approach enables to clean such a large surface quickly and a possibility that some
snow remains in the landing area is decreased. When the cleaning of the runway is
accomplished the big group is splitted into smaller teams with sizes appropriate for the
shoveling of smaller roads. In our case the advantage of such an approach could be an
opportunity to use the formation driving method that can easily arrange the ploughs
into positions optimal for shoveling, but also simplify the robotic system and increase
its robustness.

In this chapter we provide an overview of several achievements we have obtained
during the investigation of the airport sweeping problem. Note that parts of it have
been published before in an international journal [79] and in proceedings of international
conferences [77; 159; 160]. In these publications one can find additional information
about the methods described in this chapter and also relevant approaches developed
by other members of our team.

For the purpose of airport snow shoveling, the conventional point-to-point path
planning presented in Chapter 3 needs to be extended to so called coverage path plan-
ning that determines a path for the robots visiting all points (in our application all
roads) in the workspace. The coverage by mobile robots is a quite large domain includ-
ing e.g. robotic demining, mobile sensing networks, lawn mowing, car-body painting,
field harvesting or floor cleaning. An inexhaustible amount of coverage approaches
have been developed for these scenarios. We would like to mention only few of the
most cited. In the first of them, the differential drive robots are used for application of
mobile sensing networks without any guarantee of collision avoidance [34]. The authors

88

5.1 Introduction and motivation

introduce control and coordination algorithms for the optimal coverage using gradient
descent algorithms. Another sensor networks application provides an effective cover-
age control for bidirectional partially connected mobile structures [83]. A cooperative
based strategy using neural networks for complete coverage path planning of multiple
cleaning robots is presented in [117; 118]. This work has been followed by an approach
proposed in [189] using the neural network for complete coverage path planning of
cleaning robots with obstacle avoidance in nonstationary environments. For a better
overview of coverage path planning methods we recommend well-arranged surveys pub-
lished in [30] and in the literature review of [34]. A comprehensive survey of existing
projects in this field is published in [26] while 30 different prototypes designed for this
specific application are listed in [146].

Multi-robot coverage techniques can be generally divided into two branches: off-
line and on-line coverage. In the off-line coverage, the robots have a-priori knowledge
of the workspace and the path planning is done beforehand [76] while in the on-line
coverage the map of the environment is obtained during the task accomplishing and
the plan is adaptively built [183]. In this thesis, both approaches are discussed. In the
static route scheduling method (Section 5.3.2) a known map is assumed and the path
is obtained off-line completely before the mission, while the dynamic task allocation
method (presented in Section 5.3.3) enables an on-line response to detected changes in
the airport environment.

From the applications perspective, the snow shoveling task addressed in this chap-
ter is related to the field of autonomous sweeping. The task sweeping has been defined
as a motion with aim to cover a 2-dimensional area by robots’ effecters (in our case
the snowploughs’ shovels). An approach of path planning for a single robot followed
by a decomposition of the obtained path for the multiple robots has been applied in
the initial work of cooperative sweeping by multiple mobile robots (see [98; 99]). The
application of this method in a real environment without any global positioning system
has been enabled by work in [100] improving the autonomous floor cleaning system by a
novel cooperative positioning system. From the work of other teams, we will refer to a
decentralized method based on partitioning a cleaning area into polygons dynamically
allocated to the robots in [85]. Another example is an approach inspired by cooperative
behavior of ants introduced in [182]. In this decentralized cleaning algorithm only using
local interactions between the robots without a central supervisor, the task completion
with an upper bound on the time complexity is guaranteed. A behavior based approach
for multi-robot cooperative cleaning is also proposed in [87]. Here, the authors use a
distributed action selection mechanism that unifies path planning, cooperative inter-
actions and reactive behavior. In [170], ethological-inspired behaviors are applied on a
swarm of agents for the cleaning tasks. In the method, the robots are assigned to indi-
vidual territories that can be dynamically resized. Another decentralized approach of
the on-line cooperative sweeping using a market-like structure and a negotiation mech-
anism to resolve the task sharing is published in [127]. On-line cooperative cleaning
is also discussed in [73] where a method using an internal spiral coverage is published.
In [5], the problem of sweeping is extended to a more dynamic variant considering the
spreading of contamination that needs to be cleaned. This work is completed by a

89

5. APPLICATION - AIRPORT SNOW SHOVELLING

theoretical study [188] discussing the effect of geometric features of the dirty region on
the cleaning time of the robot swarm.

The most relevant approach to our application is presented in [3] where authors
introduced a task of continuous area sweeping. In the method, a group of robots must
repeatedly visit all points in fixed areas, while the rate of visiting separate parts of the
cleaning sequence is non-uniform and even non-stationary. This perfectly corresponds
with our application where the airport during the snow-fall must be cleaned repeatedly,
the rate of cleaning of particular runways depends on their importance (the auxiliary
roads for ground staff can be freed from snow less frequently than the landing areas)
and the cleaning frequency rests with intensity of snowing.

Projecting the problem of cooperative sweeping onto the airfield, the snow shoveling
task generates some problems that have not yet been solved. Our approach considers
the nonholonomic kinematics of usual snowploughs as well as the position and orienta-
tion of the ploughs’ shovels. Furthermore, the working space is more structured due to
the airfield environment.

In the airport sweeping scenario, the first problem to solve is to assign tasks for
each snowplough so that a short total execution time is achieved. Two different task
allocation approaches with different features and areas of application are proposed in
this chapter. The first, static method, is based on a completely explored tree of solu-
tions of the task allocation problem. The obtained result is globally optimal regarding
the total time needed for shoveling. The second, dynamic multi-agent based approach,
effectively manages the partitioning of the vehicles into formations resulting in a lo-
cally optimal execution time. The introduced method applies simple heuristics and an
algorithm for the reduction of the tree of possible solutions. The task list is computed
online and can be adjusted immediately e.g. in order to react on unforeseen events.

Another subproblem is how to translate the instructions from the task list to the
commands for the low level control of the vehicles. As a solution of this problem
we introduce a method that constructs desired paths for the virtual leaders of the
formations as a string of line segments connecting centers of crossroads. To track
these paths with the snowplough formations we apply a leader-follower approach that
maintains the arrangement of the group in curvilinear coordinates. Low level control
inputs for the virtual leader as well as for the followers are then obtained using the RHC
method described in Chapter 3 (the virtual leader) and in Chapter 2 (the followers).

The remainder of this chapter is organized as follows. Section 5.2 gives an overview
of the snow shoveling system and the necessary communication channels. In Section 5.3,
both task allocation approaches are described and compared. After this, we introduce
suitable motion coordination techniques for the vehicle formations based on RHC in
Section 5.4. Finally, results from the hardware experiments are presented in Section 5.5.

5.2 System overview

In this section we introduce the system structure of our approach. We decided to rely
on a central supervision for the high level coordination of the system. The main reason
for this is safeness, since a central command center (usually placed on an airport control
tower) has a complete overview of the whole system and it is the appropriate place for

90

5.2 System overview

GRAPH

MAP
+

Task
Allocation

Robot
1I.

Robot
I.2

Robot
I.

Robot
1II.

Robot
II.2

Robot
II.

Robot
1.

...

...

Leader

... ...
I II

Closing roads
by operator

Priority setting
by operator

Formation I Formation II Formation n

Command Center

Leader Leader

F

nF

Robot
.nF n

r

nF

Robot
.2nFn

r
nr

Figure 5.2: Scheme of the complete snow shoveling system. The arrows denote commu-
nication links between the different modules.

operator intervention in case of trouble. The single point of failure problem, which rises
from a single command center can be dealt with one or two redundant command center
units that take over in case of a failure. Another reason for the centralized approach
is that the workspace of the robots is well known in size and structure. Therefore, the
scalability provided by a decentralized approach with agents exchanging parts of the
map etc. is not necessary.

The highest level of the proposed scheme (see Fig. 5.2) is divided into two types of
units. The first one, which we call the Command Center, is responsible for the central
tasks. The second kind of units (blocks denoted as Formation I - Formation nF)
represents the current constellation of vehicles where each unit corresponds to one
formation. These units, which are independent from the Command Center most of
the time, are primarily responsible for putting the assigned task into the appropriate
formation motion.

The core of the Command Center is the Task Allocation module that utilizes two
data structures: MAP and GRAPH. The GRAPH data structure is prepared off-line
from the MAP by assigning nodes for every crossroad and edges for every road in
between. Furthermore, we assign two numbers to the edges of the graph: the first
one is an integer value equal to the number of ploughs needed for the sweeping of
the corresponding road and the second number is equal to the road’s length, which is
assumed to be proportional to the needed cleaning time. These values are used by the
Task Allocation module in order to generate a reasonable output. Additionally, a flag
marking the roads that are already cleaned is assigned to each edge. In contrast to the
static MAP, the GRAPH structure can be adjusted by a human operator closing and
reopening roads according to the current airport traffic. Also ploughs that detect an
obstacle on the road are meant to update the GRAPH structure.

91

5. APPLICATION - AIRPORT SNOW SHOVELLING

The current GRAPH structure is used as an input for the Task Allocation module
that will be described in detail in Section 5.3. An execution step of the Task Allocation
module is triggered by snowploughs that have just accomplished (or failed) their cur-
rent task, so they are waiting for new instructions. Besides the GRAPH, the module
maintains actual plans of all coalitions as well as a priority setting for each road, which
depends on the airport traffic as well as on the snowing intensity. Note that the priority
setting is not investigated in detail in this thesis, which is focused on the formation
driving and path planning but further information on this topic can be found in [160].

In the Formation I - Formation nF units the Leader module is responsible for
generating a reference trajectory at the beginning of each task. This is done with
the information received from the Task Allocation module and with the appropriate
coordinates from the MAP structure. The leader is just one designated robot in the
formation, usually the one in front of the unit. Besides the snow shoveling the leader
acts as a connection between the robots and the Command Center. It informs the
Command Center about detected obstacles, finished or aborted tasks as well as the need
of additional robots to compensate failures. Note that the leader is not meant to be the
reference point in terms of the formation movement, in which it acts like the other robots
of the group. The individual control inputs are calculated separately by each follower
in order to follow the reference trajectory while maintaining the formation. Necessary
signals for synchronization are provided by the leader. As a result the Formation I -
Formation nF units are independent of the Command Center most of the time. Further
details about the motion coordination of the formation will be presented in Section 5.4.

5.3 Task allocation

The highest reasoning level in the system is an algorithm for designing an optimal
sequence of cleaning tasks for the autonomous snowploughs. This is also the level
where human operators are allowed to influence the shoveling process. Concretely the
operator can adjust the sweeping priorities of the routes, which depend on current
airport operations and weather conditions.

This section differs from the rest of the thesis that is focused on the formation
control, but it is necessary to get the complete overview of the snow shovelling project.
Furthermore it can explain relations and communication links between the ploughs
which is the key factor of multi-robot systems. Finally, using the results of the task
allocation we can identify all specific situations and maneuvers that can occur during
the complete snow shovelling. These cooperative sub-tasks (e.g. formations’ splitting,
merging, turning, shrinking or obstacle avoidance within the formations) will be utilized
in the experimental results demonstrating abilities of the formation driving method.

Two different task allocation algorithms have been designed for the specific appli-
cation of autonomous multi-vehicle snow shoveling. The first approach provides results
off-line, but the global optimum of the solution with respect to the total cleaning time
needed for all ploughs can be easily proven. The core of the algorithm is a graph de-
scribing all roads that need to be cleaned up and a tree of solutions used for designing
the optimal cleaning sequences. The second method is based on forming temporary

92

5.3 Task allocation

coalitions of ploughs for each specific task and has been developed for the biggest air-
ports with highly dynamic environment. The decision which route will be cleaned by
which robots is based on a heuristic approach combined with a partly explored tree of
solutions. There is no guarantee that this method will find the global optimal solution,
but the fact that the decisions are made immediately allows the system to respond to
sudden changes in the environment.

According to the commonly used taxonomy of the task allocation methods in multi-
robot systems published in [68], the problem mentioned above is ST-MR-TA: Single-
Task robots, Multi-Robot tasks, Time-extended Assignment. ST means that each robot
is capable of performing one task at a time, MR means that tasks require multiple robots
and TA means that information for future planning is available, like e.g. the set of all
tasks needed for completing a mission. This class of tasks includes coalition formation
and scheduling and it belongs to the class of NP-hard problems (cf. [67]). An example
for cooperative coalition formation can be found in [1] where an underlying organization
is used to guide the formation process. Moreover a reinforcement learning technique is
applied to increase the quality of local decisions as agents gain more experience. A local
learning strategy for improving the aggregate performance of sensor network agents has
also been used in [24].

Another approach designed for reconnaissance scenarios, where a team of scout
robots observe several areas of interest, solves the task allocation problem using a
market-based strategy [196]. In the investigated scenario, each area can be seen from
a set of observation points, thus enabling a task decomposition. In contrast to our
algorithm each task does not necessarily need to be accomplished at once, but different
observation points of the same area could be visited subsequently. The problem of
multiple tasks with multiple robots investigated in [181] is more related to our work.
The objective in [181] was to assign teams of robots to certain tasks in the way that the
system’s overall efficiency is maximized. The authors used heuristics to find approxi-
mate solutions and adjusted them for an application in box pushing, room cleaning or
sentry duty applications.

The remainder of this section is structured as follows: a complexity study will be
introduced in Section 5.3.1. This part should clarify the needfulness of the assumptions
applied in the static graph approach as well as the necessity of applying the sub-optimal
agent method for large airports. The basic ideas of the proposed static algorithm will be
presented in the following Section 5.3.2, while a more detailed description can be found
in [77; 159]. The next Section 5.3.3 gives an overview of the second approach, which is
not influenced by the complexity of the airfield structure and it allows online changes to
the road priorities by operator intervention. Detailed descriptions and additional results
of the second approach have been published in [79; 160]. Finally, both algorithms will
be compared in the last Section 5.4.2. The comparison is supplemented by results that
verify robustness and applicability of the presented system.

5.3.1 Complexity study

A natural description of the complicated airport structure could be a graph. All run-
ways as well as smaller roads can be described by multiple edges where the multiplicity
is equal to the number of ploughs needed for their shoveling. Similarly crossings of the

93

5. APPLICATION - AIRPORT SNOW SHOVELLING

roads or places where the runway changes to a narrower path can be replaced by nodes
in the graph.

In such a well defined structure an optimal coverage by multiple robots can be found
using a graph method. The optimal coverage means that each simple edge is visited by
a robot at least once and the total time needed for the complete cleaning is minimal.
Let us analyze the utilization of a simple ”breath first” algorithm where the ability to
find the global optimal solution can be easily proven.

Fig. 5.3 shows a scenario with two runways a, e connected by three smaller roads b,
c, d. We postulated for the simplification of the description that the field is composed
of two identical squares and the time needed for shoveling each side is identical and
does not depend on the cleaning track. An extension caused by different radii of the
curves as well as time lost by turning on the spot are vanished in this case. It means
that e.g. the way from node 3 to 4 along the big runway is always two times longer (in
both tracks) than the shortest way from 1 to 3.

4

3

12

a

d

b

c

e

Figure 5.3: Shoveling scenario containing 4 nodes, 2 bigger roads and 3 auxiliary roads.

1

1

2

3

3

4

1

1

2

3

3

4

4

4

42

2

3

1

4

4

4

1

3

2

3

43

4

3

3

1

3

3

2

2

34

4

2

3

3

1

4

24

1

4

2

3

3

1

4

2

1

3

1

4

1

3

4

1

44

2

3

3

4

2

1

2

1

44

3

2

1

4

1

1

44

3

2

4

3

1

4

24

1

3

2

4

3

1

3

2

1

3

1

3

2

4

3

2

34

b

d

a

e

d

b

c

b

b

c

a

e

d

c

e

a

a

a

d

b

c

c

b

d

e

b

b

d

e

e

c

a

b

d

d

b

c

c

a

e

b

c

a

e

d

b

e

a

b
a

e
c

c

Figure 5.4: Reduced tree with an optimal schedule in the middle column.

94

5.3 Task allocation

Let us analyze the situation where two robots are coming to node 1 facing the
arrow. The vehicles are approaching to the node one after another in a short interval.
This state is labelled by vector 11 in the root of the tree depicted in Fig. 5.4. The first
underlined digit represents the robot that is already prepared in the crossroad 1 while
the second component of the vector without underline means that the second robot is
still coming to the node. On the assumption that both robots can shovel the airport
independently, the first robot can immediately continue to one of the following nodes
2, 3, or 4 using roads a, b, or c. The new possible states created by the expansion of
the root are depicted in the second level of the tree. Similarly, the level 3 is achieved
by using the roads a, b, or c by the second plough. In our simple case the complete
tree of depth equal to 8 must be explored to find the optimal solution. On the picture
of the tree most of the branches are replaced by dots due to size of figure, because the
complete tree contains about a 1000 leaves. The path from the root to a leaf, which
matches the complete cleaning sequence with minimal total time, will be the desired
solution. In Fig. 5.4 an optimal solution can be found in the middle column of the tree,
but also in the middle columns of the left branch or the right branch.

Now we would like to find an estimation of the number of leaves that have to
be explored in general. Let us suppose that the total time of the best solution of
the cleaning problem is equal to the sum of the times needed for cleaning all tracks
separately. It is obvious that a tree, whose total cleaning time of corresponding solution
is less than or equal to the time of the best solution, has to be explored completely to
prove the optimality of the found schedule. The minimal depth of the tree will then be
equal to the number of tracks in our simplified example. The total number of tracks
that need to be cleaned is

W =
nE∑

e=1

We, (5.1)

where nE is number of all edges in the graph and We is the number of robots that are
necessary for cleaning the edge e. We are now able to define a simple lower bound of
the number of leaves in the tree as

nl = bW
min, (5.2)

where bmin is the minimal branching factor of the tree. In our simple example

nl = 27 = 128, (5.3)

which is much lower than the actual number of leaves in Fig. 5.4.1 Nevertheless for our
purpose such a lower bound is sufficient. The estimated number of schedules that must
be explored for finding an optimal complete coverage of the Frankfurt international
airport (for the map of airport see Fig. 5.5), which was chosen as an example for the
verification of the results, is

nl = 3761 ≈ 10363. (5.4)

The number of tracks that should be cleaned by the robots was obtained taking width
of all roads from the airport map and width of the runway sweeper RS 200 (for technical

1Number of adjacent branches is higher than the minimal branching factor of the tree in most of

the nodes which increases the amount of the leaves.

95

5. APPLICATION - AIRPORT SNOW SHOVELLING

date refer to [137]) usually used for the cleaning of airports. It is obvious that a complete
tree with the number of leaves equal to 3761 cannot be created.

An idea how to reduce the problem mentioned above is to consider several tracks
covering each road as one edge. This means that shovelling of each road will be de-
scribed as one task that must be accomplished by a sufficient number of robots at one
time.1 Such a simplification makes sense, because each runway should be shovelled at
once. The minimal number of ploughs used for the scenario of the Frankfurt airport is
then equal to 17, because the width of the biggest runway is about 60 meters and the
working width of the sweepers is 3.6 meters.

Using this restriction the exponent in equation (5.2) will be equal to the number of
tasks and therefore significantly lower. Nevertheless the estimated number of successors
of each state (the branching factor of the tree) has to be changed. In the previous case
this number was equal to the number of roads adjacent to the crossroads, because only
one robot could be on the crossroad at the same time. Now up to 17 robots can be on
the same crossroad (e.g. after cleaning a main runway which needs all ploughs) and the
successors must cover all possible options of how the robots can continue. The total
number of successors can be computed by

S =
nr+1∑

i1=1

i1∑

i2=1

. . .

ib−3∑

ib−2=1

ib−2, (5.5)

where b is the number of adjacent roads and nr is the number of ploughs. For example,
696 successors should be expanded if a group of 17 robots comes to a crossing point
with three adjacent roads. This amount together with the still unsatisfactory length
of the plan (147 roads need to be cleaned at the Frankfurt airport) make the problem
still unsolvable in real time. Therefore, we have to accommodate some restrictions of
the task which will be described in the next section.

5.3.2 Static route scheduling approach

The static route scheduling approach for snow shoveling of the airport by autonomous
mobile robots is introduced in this section. The core of the algorithm is the graph
describing all roads that need to be cleaned up by edges and whose nodes represent
the centers of all crossings. The final schedules, which are an output of the algorithm,
should cover all edges at least once. Moreover the result should be optimal with respect
to the total time needed and it should fulfill the constraint that the robots do not take
the edge from where they came from.

As shown in the previous subsection 5.3.1, the complete tree of solutions cannot be
explored due to the high complexity of the task allocation problem. Fortunately not
all of the states of the tree are feasible with respect to safety regulations applied on
the airport. Usually each airport has several parallel runways with appropriate service
roads. In order to prevent collisions between snowploughs and the airport traffic, such
parts should be shoveled separately. During the cleaning phase, the airport traffic is
not allowed to enter the area and the other parts of the airport are forbidden for the

1Each task is defined as a movement of a group of robots from node to node.

96

5.3 Task allocation

ploughs at this time. The Frankfurt airport usually utilizes two parallel runways, called
A and B. We divide all roads surrounding the runways to the three non-overlapping
set for the task allocation algorithms. These sets will be denoted A, B and AB as can
be seen in Fig. 5.5. The edges of set A (resp. B) need to be cleaned up completely
while runway A (B) is in shoveling mode. The corresponding roads are used by the
airport traffic, when the appropriate runway is in active mode. Edges of the set AB

will be cleaned up with set A or B, or with both of them. These auxiliary roads are
only used by the ground crew that is able to avoid the snowploughs. Therefore they
do not need to be closed for the robots.

Another indispensable simplification of the searched space is enabled by the safety
regulations, which require shoveling each road at once and by the specific character of
the airport: the service roads are almost two times narrower than the main runways.
Due to this we can expect that the optimal solution will be to clean the runway by a
big formation firstly and to divide it into two equal parts afterwards in order to clean
up the remaining roads. Hence, in the final solution there is no time wasted for robots
waiting for others to form up.

The reduced number of states needed for scheduling both parts is unfortunately still
unsatisfactory. To improve the algorithm the selection rule that determines the state
that will be expanded in the next step was changed. In the ”breadth first” algorithm
the first found state that is still unexpanded is usually chosen. But if instead the
unexpanded state with the lowest waste time1 would be expanded, the most promising
solutions are favored. Furthermore, once a complete solution is found, we can prove
its optimality because all states with lower waste time than in the first found solution
are already evaluated. This approach has been motivated by work in [27], where the
branch and bound algorithm has been utilized for scheduling thermal generation units
in power system economic operations.

A pseudo code of such an algorithm proposed for airport snow shoveling can be
found in Algorithm 1. The cleaning loop for the complete Frankfurt airport can then
be summarized in the following 6 steps:

1. All robots clean the runway of Area A in a big formation. The schedule is a
sequence of the edges from node 2 to node 31.

2. Two smaller formations clean the remaining edges of Area A. The edges of
Area AB can also be used. The schedule of this step depicted in Fig. 5.6 was
found by Algorithm 1.

3. Both formations move to node 19. The shortest path in the graph is calculated
by the Dijkstra algorithm [44].

4. The reunited formation cleans the runway of Area B from node 19 to node 79.

5. The newly divided formations clean all edges of Area B and Area A+B that were
not cleaned up in steps 2.-4. The edges of Area B and Area A+B that are already
cleaned can be used during this step too.

1Wasted time is defined as the time lost by ploughs moving without sweeping or by waiting for

additional vehicles.

97

5. APPLICATION - AIRPORT SNOW SHOVELLING

Figure 5.5: Map of Frankfurt Airport with roads and runways partitioned into 3 sets.

98

5.3 Task allocation

6. Both formations move to node 2 and the sequence is restarted with step 1.

Algorithm 1: Pseudo code of the scheduling algorithm.
SOLUTIONS ←− ∅
UNEXPANDED ←− initialState

expandingState ←− ShortestTime(UNEXPANDED)

while UNEXPANDED 6= ∅ && UncleanedRoads(expandingState) 6= ∅ do
UNEXPANDED ←− UNEXPANDED − expandingState

node ←− StaticNode(expandingState)

NEWNODES ←− Successors(node)

foreach newNode of NEWNODES do
newState ←− AdvancedState (newNode,expandingState)

UNEXPANDED ←− UNEXPANDED + newState

if UncleanedRoads(newState) = 0 then
SOLUTIONS ←− SOLUTIONS + newState

expandingState ←− ShortestTime(UNEXPANDED)

if UNEXPANDED = ∅ then
return NoSolution

else
return ShortestTime(SOLUTIONS)

ShortestTime returns the state with the lowest wasted time.

UncleanedRoads creates a list of uncleaned roads in the current state.

StaticNode returns the node (of the graph) where a formation recently finished its task.

Successors returns all feasible nodes that can be reached from the actual node in one
step.

AdvancedState returns the new state which results from moving the formation from
StaticNode towards the specified node.

The total number of states that were evaluated during the scheduling of part A is
equal to 61520. The optimal solution, which is depicted in Fig. 5.6, was found during 32
minutes using a Pentium 4 CPU 3.2GHz, 512MB of RAM. Such a run time is sufficient
in the case of a static map and a constant number of ploughs, where the plan can be
prepared off-line before the mission.1 The problem occurs if the schedule has to be
changed. In reality the map of an airport can be changed due to obstacles blocking
a road and also the number of ploughs can be reduced by failures. The scheduling
approach should be able to respond to the new situation promptly which should reduce
time when the ploughs are waiting for a new plan.

1The computational time of the scheduling for Area B and the time of the path planning necessary

for moving between the areas are significantly shorter than time needed for the Area A.

99

5. APPLICATION - AIRPORT SNOW SHOVELLING

0 100 200 300 400

8631 2529 171920

21

22 23

27

26 18

283031 2520222326

Time [sec]

3 2 4 6

9

10

1113

112

7498505214

3 255255

1012 9 8 6

500 600 700 800 900

Figure 5.6: Time schedule for cleaning the service roads in Area A. The sequences for
two formations show order and time in which each node should be visited.

5.3.3 Dynamic task allocation method

In this method, which is designed to provide the dynamic response to sudden changes
in the environment, a multi-agent approach is used to describe the behavior of the
ploughs. In the Task Allocation module, introduced in Fig. 5.2, each Formation unit
is considered to be one object (agent) with an assigned task. When a cleaning task is
finished, the same agent can only be used for another road, if the number of ploughs
is still sufficient. If a bigger group is needed for the new task, the agent has to ask
the remaining robots for help. Contrariwise, if the new road is narrower, so much that
the group could be reduced, the surplus ploughs will be offered to the other agents as
available robots. The crucial part of this approach is to assign which road should be
swept by which agent.

5.3.3.1 Heuristics

The idea of the presented method can be described in two steps. In the first step a
sorted list Lt is generated. This list consists of all uncleaned roads (tasks) ordered by
the distance from the beginning of sweeping of the area to the intersection where the
cleaning of the corresponding road would be started. This guarantees that no road will
be omitted during the cleaning process and that the ploughs will not have to move too
far before they continue to sweep. In the second step free robots are allocated to the
most prioritized roads. For this we choose the first nF roads from Lt, where nF is the
biggest integer satisfying

nF∑

i=1

Wi ≤ nfr. (5.6)

Thereby Wi denotes the number of ploughs needed for accomplishing the i-th task in
Lt and nfr denotes the number of robots that are currently free1. After this the free

1Free robots are ploughs that just finished the task or redundant robots offered by other agents.

100

5.3 Task allocation

robots are assigned to groups Fi, where i ∈ {1, . . . , nF}, in a way that the term

max
i∈{1,...,nF}

(
max

j∈{1,...,ni
r}

(timei,j)
)

(5.7)

is minimal. Constant timei,j denotes the time needed for plough j to move from its
actual position to the beginning of road i and ni

r is the number of ploughs in Fi.
The application of this method provides one solution of the task allocation problem

for the momentary free robots. This solution is optimal with respect to the used
informations, but from the global point of view it may not be. Unfortunately, the
heuristics mentioned above cannot solve all possible situations in a satisfactory manner.
An example of an obviously wrong decision is shown in Fig. 5.7. In the first snapshot
of the simulation the big formation of robots I is coming to the end of the main runway
and should be splitted for shoveling smaller auxiliary roads. A situation after applying
the heuristics is depicted in the second snapshot (see Fig. 5.7(b)). While the sub-
formation II is shoveling the road between crossroads 31 and 30 and the sub-formation
I is shoveling the road between 31 and 29, the sub-formation III is going to clean up
road 29-26. In the following snapshot (see Fig. 5.7(c)) the formation II is cleaning the
road between 30 and 28 and the formation I is going back to the crossroad 31, which
is the shortest way to the road 27-28 that is the next in the sorted list of tasks. It
is obvious that a more optimal solution could be to continue with the formation I to
clean the road 29-26 and to use freed III for shoveling another uncleaned way.

Such a smarter result can be obtained using more ”sophisticated” heuristics or using
an approach, which enables to expand the local information about the actual state of
ploughs. The biggest disadvantage of the heuristics’ extension is the impossibility
to cover all situations that can happen. The heuristics become too complicated and
a debugging of the scheduling process is troublesome. On the contrary the second
approach could solve the problem more generally and transparently. An improvement
of the method will therefore be achieved by selecting the most promising solution within
a certain set.

5.3.3.2 Exploring the state of solution

First we will generate all possible sets of tasks that satisfy the inequality (5.6). Af-
ter this the sets are put in a list Ls ordered by the sum of the tasks’ indeces in the
sorted list Lt. The lowest index in the set is decisive for elements with an identi-
cal sum of indeces. Note that for the planning only the first bt sets from Ls will
be used, where the parameter bt is an input of the algorithm that depends on the
available computation capability. If the number of elements of Ls is less than bt all
sets from Ls will be used. To illustrate this approach with an example we assume
that each task from a list Lt = (A1, B2, C3, D4) requires exactly one plough (the sub-
scripts correspond to the task’s index within the sorted list Lt). We assume that there
are just two ploughs available for sweeping at the moment. As a result we receive
Ls = (AB1+2=3, AC1+3=4, AD1+4=5, BC2+3=5, BD2+4=6, CD3+4=7). It is obvious that
in general the whole tree cannot be explored, but due to the heuristics described in
Section 5.3.3.1 it is not necessary, since the most promising solutions will be preferred.

101

5. APPLICATION - AIRPORT SNOW SHOVELLING

I

2

1
17

16
15

141312
11

10

9
8
7
6

5 4
3

28 30

31

26 29

27

(a) One formation of 17 snowploughs sweeps the main runway.

28 30

26 29

27

17

III

16

15

II
9

10

5 4
3

2

1

31

I

6
11

128

7

14
13

(b) Formations I and II are shoveling auxiliary roads. Formation

III is moving to clean road 29-26.

28 30

26 29

27

17

III

16

15

II
9

10

5 4
3

2

1

31

14
13

I

6
11

128

7

(c) Formations I and III are shoveling uncleaned roads 30-28 and

29-26. Formation I is coming to shovel road 27-28.

Figure 5.7: Suboptimal solution of the route scheduling task. Each small bubble denotes
one robot. Roads that are already cleaned are depicted by solid line. The positions
of robots in the circles denoting the formations are only illustrative. The real shape of
shoveling formations will be shown in Section 5.4.

102

5.3 Task allocation

34

44 33 21

33

2222 34

11

22

33342222 1 211

a

a

d c,d
e

b,db,c
b

b,c

d

e,(

a,(b)

c)

(a) step 1

34

33 14

34

4424 44

11

22

33

44464 421

d

a

e

c,d

b

b,c
b d

ec e

(b) step 2

44

41

11

22

33

44

33 2

a

b d

c e

4

e c

(c) step 3

Figure 5.8: Stepwise partial exploration of the tree of solutions. The actual state of the
ploughs is marked by a dashed circle and the evaluated states are encircled with a solid
line. The state with the shortest wasted time in the lowest level is marked by a dotted
circle. The subscript numbers denote the summed amount of wasted time.

Notice that without the extension presented in this section only the first element AB3

would be chosen automatically. In contrast, the extended method also examines other
promising solutions, which could be closer to the global optimum for the complete
sweeping task.

In the second step of this extended task allocation one set of tasks has to be chosen
from the first bt elements of Ls. Here, we designed a decision-making process that
is based on the partial exploration of the tree of possible solutions. To explain the
idea of the method, we look at the scenario depicted in Fig. 5.3 and at the steps of
exploring the tree of solutions that are shown in Fig. 5.8. We assume that two robots
are employed in this example. The depth of explored sub-trees is set to dt = 2 and the
parameter bt = 3. Furthermore, the edges a and e are meant to require two robots for
the sweeping.

The tree depicted in Fig. 5.8(a) reflects the beginning of the decision-making pro-

103

5. APPLICATION - AIRPORT SNOW SHOVELLING

cess. Both ploughs are located at the initial node 1 and the lists for the decision process
are Lt = (a1, b2, c3, d4, e5) and Ls = (a1, bc5, e5, bd6, cd7). The initial state is expanded
using the first bt elements of Ls. This procedure is repeated until the obtained subtree
has depth equal to dt + 1. Then a state with the shortest wasted time (34) is chosen
in the lowest level of the sub-tree. If there are multiple states with equally wasted
time, one of them is chosen randomly. Note that these states are optimal with respect
to the limited information obtained by the partial exploration of the tree. Now, the
snowploughs can continue to the next state, towards the one with the lowest wasted
time. Once the next state (22) is reached, the planning process is restarted from this
state as depicted in Fig. 5.8(b). The local optimal state 44 is selected in the third level
of the new sub-tree (fourth level of the tree). In the third decision step (cf. Fig. 5.8(c))
the sub-tree’s root is at node 33 and the selected node with the shortest wasted time is
41, which completes the sweeping of the whole field. Note that the final schedules for
the robots R1 = (1 − 2− 1− 3− 4) and R2 = (1 − 2 − 3− 4 − 1) have been obtained
by the evaluation of only 15 states. For comparison, more than 1000 states need to be
evaluated to explore the whole tree in this small scenario as is shown in the complexity
study in Section 5.3.1.

Finally, we should make an estimation of complexity of the dynamic task allocation
approach presented in this section, which is necessary to setup the parameters bt and
dt appropriately and with respect to the available computational power. Since, in each
step of the algorithm there is at least one road that will be cleaned, an upper bound
for the states that have to be evaluated is given by

n = nroadsb
dt
t , (5.8)

where nroads denotes the number of roads that need to be shoveled.

5.3.4 Simulations and parameters tuning

In this section we present the results of the simulation of the developed task allocation
approaches with their comparison at the end. Thereby we use the area of the Frankfurt
international airport as the sweeping scenario with all roads divided into the three non-
overlapping sets A, B and AB as was introduced in Section 5.3.2. Such an assumption
is necessary for the utilization of the static algorithm and is also required by the safety
rules.1

The number of vehicles needed for each road has been derived from the roads’ width
and the shovel’s width of the runway sweeper RS 200 which was shown in Section 5.3.1.
Based on this the following results were obtained by utilizing a group of 17 ploughs,
because minimal number of ploughs needed for the sweeping of runways at the Frankfurt
airport is equal to 17.

First, let us analyze the dynamic algorithm, which is more sensitive to the appro-
priate setting of variables. The important problem is to find values for the algorithm’s
branching factor bt and its sub-tree size dt. The results of the simulations with differ-
ent settings can be found in Table 5.1. In the table the quality of the cleaning process

1In a general case the partitioning of the airport is not necessary for the dynamic approach, which

is independent of the complexity of the map.

104

5.3 Task allocation

Table 5.1: Total time in seconds needed for cleaning Area A using schedules found by the
algorithm with different parameters dt and bt.

time [s] dt = 2 dt = 3 dt = 4 dt = 7

bt = 2 1385 1289 1071 1071
bt = 3 1385 1138 898 898
bt = 4 1161 1132 898 898
bt = 7 1161 898 898 898

refers to the time needed for the complete sweeping of Area A. It is easy to see that
better solutions are found with the increasing depth of the explored sub-tree dt, which
matches the planning horizon. The same relation holds for the branching factor bt.
Unfortunately both parameters significantly influence the computational time of the
algorithm as you can see in the equation (5.8). The best solution has been found by
setting the parameters to bt ≥ 3 and dt ≥ 4. For bt = 3 and dt = 4 only 81 states
have been evaluated every time a new agent was created or new tasks were distributed
among existing agents. Hence a decision was found within fractions of milliseconds.
This shows that the decision-making process can quickly respond to sudden changes in
the workspace.

Snapshots from the simulation of the best solution are depicted in Fig. 5.9 and
Fig. 5.10. An animation of the complete sweeping process can be found on the web-
site [55]. Fig. 5.9(a) shows formation I with all 17 robots that shovel the last part of
the runway in Area A. Note that the figures represent the current state of the Task
Allocation module, while the vehicles actually move along the trajectories designed in
the level of the formation unit as it was described in Section 3.4.1 As depicted in
Fig. 5.9(b) the shoveling process continues by dividing the big formation at the end
of the runway into three groups denoted by I, II and III with corresponding tasks
31-29, 27-26 and 31-30. In contrast to the Fig. 5.7 the robots are distributed optimally
and the redundant movement of two formations along the road 31-29 is corrected. The
formations are independent from the Command Center after the tasks are assigned.
They will report to the Task Allocation module once the task is accomplished or in
case of a failure (e.g. blocked road, defect plough). Note that formation II consists of
7 ploughs, even though the cleaning of the road 27-26 requires only 5 vehicles. This is
a result of the task allocation algorithm that also considers the progress of the cleaning
process in the near future. Two additional robots in formation II increase the solution’s
value, since the task allocation plans to assign the formation to road 26-24 afterwards,
which requires 7 ploughs. The sequence of snapshots depicted in Fig. 5.10 shows the
appropriately sized formations, which continue with the sweeping of the auxiliary roads.
One can see that the coalitions have changed compared to the preceding situation in
Fig. 5.9(c).

1The agents are depicted as circles with identification numbers of ploughs for an illustration of the

scheduling process. The real shape of the shoveling formation will be shown in Section 5.4.

105

5. APPLICATION - AIRPORT SNOW SHOVELLING

Table 5.2: Comparison of the static and dynamic task allocation methods. − denotes
insufficient attribute, + sufficient attribute and ++ very good quality

Static method Dynamic method

Computational complexity − ++
Response to changes − ++

Total time of scheduling + +
Proof of optimality ++ −

Accommodated restrictions − ++
Environment complexity + ++

Fig. 5.11 shows snapshots from the same time interval as in Fig. 5.10 with the
difference being the road 21-20 that is blocked by an obstacle. When formation III

detects the obstacle, the group’s leader reports its coordinates to the Command Center.
After the GRAPH structure has been updated the Task Allocation module computes
and assigns a new task to the robots of formation III. As one can see in Fig. 5.11(b),
formation III heads back to node 21 in order to continue towards node 19 where for-
mation II is waiting for additional vehicles. Formation I has been extended with two
ploughs from formation II in order to clean the wider road 20-25, which originally
should have been cleaned by formation III. Fig. 5.11(c) shows the extended forma-
tion II shoveling the road 19-18 and the remainder of formation III is coming to clean
the road 17-25.

A direct comparison of both task allocation methods is difficult due to the different
applied assumptions. In the static approach the ploughs have to be splitted into two
equivalent groups and it is assumed that such formations will be sufficient for cleaning
the auxiliary roads. On the contrary in the static approach the ploughs cannot turn on
the spot which could have provided better solutions. The only exact comparison of the
approaches can be obtained from Table 5.1 and from Fig. 5.6 where the method was
applied for the scheduling of the Area A of the Frankfurt international airport. The
total time needed for the realization of the plan obtained by the static approach is 962
seconds which is slightly worse then the result designed by the dynamic approach with
setting bt ≥ 3 and dt ≥ 4. Nevertheless, such confrontation cannot show the practical
advantages of the algorithms. We will try to give a better overview of the features of
the methods by a summary in Table 5.2

The first row in the table ”Computational complexity” is quite obvious. While the
required computational time for the static approach is more than 30 minutes, using the
dynamic approach the complete schedule for all ploughs can be designed in less than
one second. Furthermore, in the static method the ploughs have to wait the whole
time even for the first part of the plan, whereas in the dynamic method the plan is
designed subsequently and the first result is available in less than 20ms. This fact is
crucial for the second row of the table ”Response to changes”, where the immediate
result of planning is essential. Additionally, an immediate reaction to robot failures as

106

5.3 Task allocation

I

2

1
17

16
15

141312
11

10

9
8
7
6

5 4
3

28 30

31

26 29

27

(a) One formation of 17 snowploughs sweeps the main runway.

17

28 30

26 29

27

I

III

II

14

13
16

15

6
11

12

9

10

5 4
3

2
1

31

8

7

(b) Formation I and formation III sweep roads 31-29 and 31-30.

Formation II is preparing to clean road 27-26.

28

III

31

I

29

30

26

27

17

14

13
16

15

II
9

10

5 4
3

2
1

6
11

128

7

(c) Three formations with a variable number of ploughs are shoveling

a part of the international airport in Frankfurt.

Figure 5.9: The division of a big formation into 3 formations that start cleaning the
auxiliary roads at the end of the runway A. Numbered circles in the intersection denote
the nodes of the GRAPH. All other numbered circles correspond to one robot. Roads that
are already cleaned are depicted by a solid line.

107

5. APPLICATION - AIRPORT SNOW SHOVELLING

I

II

III

21

25 20

19

18

17

2

1

5
4

3

8

7

6
10

9

12
11

1716
15

14
13

(a) Formation I sweeps road 20-19, formation III sweeps road 21-20 and formation II is

preparing to clean road 19-18.

I

II

III

21

25 20

19

18

17

2

1

5
4

3

8

7

6
10

9

12
11

1716
15

14
13

(b) Formation II sweeps road 19-18, formation III sweeps road 20-25 and formation I is

preparing to clean road 17-25.

I

II

III

21

25 20

19

18

17

2

1

5
4

3

8

7

6
10

9

12
11

1716
15

14
13

(c) Formations are cleaning roads 18-17, 17-25 and 20-25.

Figure 5.10: Snapshots from the task allocation simulation for Area A of Frankfurt
airport.

108

5.3 Task allocation

8

7

6
10

9

2

1

5
4

3

12
11

1716
15

14
13

I

II

III

21

20

1917

18

25

(a) Formation III detected a blocked road and is waiting for a new task. Formation

I is sweeping road 20-19 and formation II is moving towards node 19 in order to

extend formation I.

II

I

21

25 20

19

18

17
5 4

3

6
1

210
9

8
7

III
12
11

1716
15

14
13

(b) Formation I is preparing to clean road 20-25, while formation II is waiting for

additional robots and formation III is going to support formation II in the sweeping

of roads 19-18 and 17-25.

III

II

25 20

19

18

17

17

16

5
4

3

12

11

15
14

13

I

6
1

210
9

8
7

21

(c) Formation I is sweeping road 20-25, formation II is sweeping road 19-18 and for-

mation III is preparing to clean road 17-25.

Figure 5.11: Snapshots from the task allocation simulation for Area A of the Frankfurt
airport where road 21-20 is blocked by an obstacle.

109

5. APPLICATION - AIRPORT SNOW SHOVELLING

well as to sudden changes in the environment like e.g. detected obstacles or blocked
roads increase the robustness of the algorithm.

The quality of the solution is compared in the rows 3 and 4. As presented above,
the ”Total time of scheduling” is comparable for both method and is sufficient for the
application at the airport. Nevertheless we cannot say anything about the optimality
of the result obtained by the dynamic method. The solution, which is sent back by
the static approach, is always optimal with respect to applied restrictions. We should
mention that the property ”Accommodated restrictions” is one of the biggest disad-
vantages of the static method that derogates the applicability to the existing safety
regulations. Contrariwise the dynamic method is very flexible and it is not restricted
by the present conditions on the airport. The last quality index ”Environment com-
plexity” is satisfactory for both methods, but in the case of the static approach only
at the cost of necessary decomposition of the airport to sufficiently small areas. The
utilization of the dynamic method is independent of the airport structure at all without
any restrictions.

5.4 Formation driving

5.4.1 Method description

The formation driving algorithm for the airport snow shoveling can be easily imple-
mented using the approach introduced in Section 3.4. The only difference can be found
in the desired path which is provided by the Path Planning module (see Fig. 3.1). In
the previous approach the input was a smooth and feasible path composed from a se-
quence of multinomials. Here, the formation should follow axes of the runways to cover
the surface that is mainly used by the airplanes. The desired path is then a sequence of
connected axes of roads provided by the Task Allocation module, which was introduced
in Fig. 5.2. Such a path composed from line segments is not feasible for the formation
of car-like robots, but an appropriately adjusted RHC method, that is described in
Section 3.4, can overcome any unsmooth connections.

To reutilize the description as well as the proof of convergence from Section 3.4 the
k-th line segment will be described by equation

ϕ(k, s) = (Pk − Pk−1) s + Pk−1, (5.9)

where parameter s is within the interval 〈0, 1〉, the points Pk, where k ∈ {1, . . . , ñ −
1}, are crossings of axes of neighboring roads, P0 is the beginning of the first axis
and Pñ is the end of the last axis. The whole string of the segments is expressed as
ϕ(k, ·) = {ϕx(k, ·), ϕy(k, ·)}, where k ∈ {1, . . . , ñ}, in the case of 2D. Parameter ñ is the
number of roads provided by the Task Allocation module. The rest of the description
in Section 3.4.1 and the proof in Section 3.4.2 can be used without any changes.

110

5.4 Formation driving

Actual time: 0

Desired path for leader

Virtual leader

Plough

Figure 5.12: Workspace of ploughs with the depicted desired path for the formation
and with denoted area which will be closely investigated in the snapshots presented in
Fig. 5.14-5.16.

5.4.2 Experimental results and parameters tuning

In this section, results obtained applying the RHC method for the driving of formations
of ploughs in an airport environment will be presented. We will investigate an influence
of the length of planning horizons on the characteristics of solutions. Furthermore, we
will verify an usefulness of the part of the cost function penalizing control inputs that
are too aggressive.

An environment of two parallel runways connected with several roads with the same
width was chosen as the test scenario (see Fig. 5.12). The task of the ploughs is to
follow a preplanned path tracking the axes of the roads that need to be cleaned. The
crucial problem of the path following method is to overcome unsmooth connections of
the line segments and still to maintain the optimal coverage of the runways. The initial
position of five ploughs and the dashed line representing the desired path is depicted
in Fig. 5.12. The dot-dash rectangle borders region around one of the path breaks
that will be closely investigated in the study of lengths of time horizons. Finally, we
should remark that the robots are initialized with their maximum velocity and with
their position randomly generated around the desired position within the formation.
This initialization should bring the simulation close to real application.

The optimal setting of the length of the planning horizon N as well as the number
of states n that will be applied in each optimization loop should satisfy contending
claims as mentioned in Section 2. Intuitively the number of states N used for planning
significantly increases time needed for obtaining desired control inputs for the ploughs.
The maximal time Tmax that can be used for computing can be easily defined by the
parameter n as Tmax = n∆t, because the new plan should be prepared during the
pursuit of the n control inputs. The time interval ∆t is in the proposed approach fixed
as ∆t = 0.25s1. Experimental measurements of the maximal time required during the

1The maximal working speed of the runway sweeper RS 200 usually used for the snow shoveling of

airports is 65km/h (see [137]) and so the distance between the two states in the plan with ∆t = 0.25s

is less than 4.5m. This is approximately one third of the total length of the sweeper which is proposed

as an optimal setting in literature (see e.g. [148]).

111

5. APPLICATION - AIRPORT SNOW SHOVELLING

Table 5.3: Maximal computational time needed for leader planning and maximal com-
putational time required for the followers during the mission using different setting of
parameter N . The algorithm was implemented in Matlab environment and the results
were obtained using a Pentium 4 CPU 3.2GHz, 512MB of RAM.

N [-] 2 3 4 5 6 7 8 9 10

time [s] (leader) 0.02 0.05 0.11 0.27 0.47 0.67 1.02 1.74 2.23
time [s] (followers) 0.02 0.05 0.06 0.09 0.11 0.12 0.16 0.18 0.21

Th

IS
(T

h
)

Figure 5.13: Explanation of the interval of stabilization used for the evaluation of results.

formation driving in the airport environment (Fig. 5.12) are presented in Table 5.3.
An interesting result can be seen in comparison of the time complexity of the opti-
mization process for the virtual leader and for the followers. While the time necessary
for the virtual leader grows more than quadratically, the time used by the followers
is only linearly dependent on the parameter N . This fact is caused by the formation
driving method used for the initialization of the followers’ planning as introduced in
Section 2.3.3.2. The optimization is then used only for suppression of the sensors and
actuators uncertainty or to avoid possible collisions with obstacles and within the team.
For the tuning of the horizons’ length, only the time required for the virtual leader must
be considered, because the shorter optimization for the followers is done in parallel.

The aim of the path following approach presented here is to overcome the con-
nections of the line segments so that the center of the formation is deviated from the
desired position minimally and for the shortest possible interval. We will use an interval
of stabilization to evaluate the different combination of values N and n. The interval,
which is graphically introduced in Fig. 5.13, is defined as follow.

112

5.4 Formation driving

Table 5.4: Values of IS(dr/4) of solutions obtained by the algorithm with a different
setting of parameters N and n. The sign ∞ denotes simulations in which the position of
the virtual leader does not satisfy the conditions in the definition of IS(Th) for Th = dr/4.
Constant dr is the width of the plough’s shovel. Unfeasible settings of parameters are
marked by the sign x.

n \ \N 2 3 4 6 8

1 ∞ 2.44 2.19 1.50 1.50
2 ∞ 2.35 1.99 1.48 1.44
3 x ∞ 2.44 2.05 1.50
4 x x ∞ 2.16 1.49
5 x x x 2.72 2.69

Definition 5.4.1. Interval of stabilization Let us define the interval of stabilization
IS(Th) as the length of the desired path between the connection of line segments and
the point from which the difference between the virtual leader position and the desired
position on the followed path stays less than or equal to a threshold Th as long as the
planning interval N does not reach the next connection of line segments.

The values of IS(Th) obtained from simulations of formation driving using the
method with different settings of parameters N and n are presented in Table 5.4. The
obvious result is the correlation of solutions’ quality with the value of N . Longer
time horizon can response to the sudden change of the formation heading better as
well as suppress the consequence oscillations better. For the lowest values of N the
process can even be unstable. The sign ∞ denotes solutions of the algorithm where the
position of the virtual leader did not satisfy the conditions in the definition of IS(Th)
for Th = dr/4 (e.g. see Fig. 5.17). Contrariwise a too big value of the parameter n

causes a long period of the robots’ driving without any possibility to respond to the
obstacles or to the breakage of the desired path. Problematic settings are mainly the
values of n similar to values to N . In the case of n = N , the system is unstable even
for a bigger value of N . This observation shows the usefulness of the RHC approach
with two time horizons which is presented in this work.

Combining both, the table with computational time complexity and the table eval-
uating the quality of results, parameters n = 2 and N = 6 were chosen as the optimal
setting. The higher value of N can improve the properties of the method only slightly,
but at the cost of the considerable extension of computational demands1. Similarly,
the lower value of n does not guarantee better results, but it can significantly reduce
the threshold Tmax.

1Notice that the code used for obtaining the result presented in this section was not optimized

with respect to computational efficiency and also to the environment Matlab, which is well suitable

for research purposes, is not time efficient. Nevertheless the setting n = 2, N = 6 requires at the most

0.47s which is less than Tmax = n∆t = 0.5s, in which the plan has to be provided.

113

5. APPLICATION - AIRPORT SNOW SHOVELLING

Actual time: 2

(a) First response to the path break.

Actual time: 2.5

(b) Optimal plan for the passage through the path

break.

Actual time: 3.5

(c) The virtual leader just returned to the desired

path.

Actual time: 4.5

(d) The formation follows the turning of the vir-

tual leader.

Actual time: 14.5

Desired path for leader

Trajectory passed by robots

Actual plans of ploughs and leader

(e) The robots after the mission accomplishment with depicted passed trajectories.

Figure 5.14: Formation driving with the setting of the algorithm: N = 6 and n = 2.

114

5.4 Formation driving

Actual time: 2

(a) The last optimization result before the path

break.

Actual time: 2.5

(b) Response to the path break.

Actual time: 3.5

(c) The ploughs turn with minimal turning radius.

Actual time: 4.5

(d) The virtual leader just returned to the desired

path.

Actual time: 15

(e) The formation after the mission accomplishment with depicted passed trajectories of the ploughs.

Figure 5.15: Formation driving with the setting of the algorithm: N = 3 and n = 2.

115

5. APPLICATION - AIRPORT SNOW SHOVELLING

Actual time: 1.25

(a) The last optimization result before the path

break.

Actual time: 2.5

(b) The first response to the path break.

Actual time: 3.75

(c) The first plough turns deviated from the opti-

mal way.

Actual time: 5

(d) The virtual leader just returned to the desired

path.

Actual time: 13.75

(e) The robots after the mission accomplishment with depicted passed trajectories.

Figure 5.16: Formation driving with the setting of the algorithm: N = 6 and n = 5.

116

5.4 Formation driving

Actual time: 16.25

Figure 5.17: Formation driving with the setting of the algorithm: N = 2 and n = 1.

0 5 10 15

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

v
e
lo

c
it
y
 [
-]

(a)

0 5 10 15
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time [s]

c
u
rv

a
tu

re
 [
-]

(b)

0 5 10 15
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time [s]

h
e

a
d

in
g

 [
-]

(c)

time [s]

c
o

s
t

fu
n

c
ti
o

n
 [

-]

0 5 10 15
0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

(d)

Figure 5.18: Formation movement characteristics of the virtual leader (velocity vL, cur-
vature KL, heading θL(t) and values of best solution of cost function designed for the
virtual leader) describing the simulation presented in Fig. 5.14 with setting α = β = 1,
γ = 0.4.

117

5. APPLICATION - AIRPORT SNOW SHOVELLING

0 5 10 15

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

v
e
lo

c
it
y
 [
-]

(a)

time [s]

c
u

rv
a

tu
re

 [
-]

0 5 10 15
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

0 5 10 15
time [s]

h
e

a
d

in
g

 [
-]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(c)

0 5 10 15
0.016

0.017

0.018

0.019

0.02

0.021

0.022

0.023

0.024

time [s]

c
o
s
t
fu

n
c
ti
o
n
 [
-]

(d)

Figure 5.19: Formation movement characteristics (vL(t), KL(t), θL(t) and the values
of cost function) of the simulation in the same environment as in Fig. 5.18, but with the
setting of the algorithm: α = β = 1, γ = 0

Snapshots of the simulation with the setting of parameters n = 2 and N = 6 are
presented in Fig. 5.14. In all of the pictures, the black points denote an actual plan for
the ploughs as well as for the virtual leader and the grey points denote states visited
by the robots during the previous movement. The dash line represents the desired path
that has to be followed by the virtual leader, which is drawn by a contour in front of
the formation.

In the first snapshot of the formation driving in Fig. 5.14(a), the plan of the virtual
leader is already slightly influenced by the second line segment of the path. Never-
theless, complete information about the expected change of heading is obtained in the
next planning step in Fig. 5.14(b) where the formation is guided through a curve with
minimal deviation from the desired path. In the next snapshot, the virtual leader
reaches the second segment of the path (see Fig. 5.14(c)). The fourth picture shows
small oscillations around the path, which has to be followed by the formation. These
perturbations will be promptly suppressed and the position of the virtual leader will
remain in the zone bordered by the distance Th = dr/4 from the desired path. The

118

5.4 Formation driving

trace of the complete movement can be seen in Fig. 5.14(e) where we depict the final
snapshot of the simulation.

In Fig. 5.15, the simulation with setting of algorithm n = 2 and N = 3 is presented
to demonstrate the effect of the insufficient long time interval N . The first snapshot
in Fig. 5.15(a) was captured at the same time of the simulation as the snapshot from
Fig. 5.14(a). Here, only the first line segment is contributing to the leader’s cost
function and the formation blindly continues to the line break. The first response to
the approaching change of heading is enabled in Fig. 5.15(b). Nevertheless, it is too
late to come through the curve optimally and so the deviation from the second path
segment produces an uncleaned part of the runway (see Fig. 5.15(c)). Beyond this, the
outer plough could get to close to the margin of the runway and due to the obstacle
avoidance part of the equation (3.13) width of the cleaned track would be narrower.

The second problem, the interval n being too long, is clarified in Fig. 5.16 where
the algorithm with n = 5 and N = 6 was utilized. In the first snapshot in Fig. 5.16(a),
the formation is still too far from the line break to predict the approaching curve. In
the next planning step in Fig. 5.16(b) the formation is already too close to the line
break due to the long period where the robots just blindly executed preplanned control
inputs. Therefore, the ploughs overshoot the desired path again (see Fig. 5.16(c)),
but using the longer interval N the return to the path is smoother than in the case
presented in Fig. 5.15.

The last example of the setting of the parameters, n = 1 and N = 2, presented in
Fig. 5.17, is obviously wrong. Here, the method converges to a local optimization of
the control inputs without a possibility to consider any situation in the near future.
We should mention that the ability of the followers to avoid the borders of the runways
was switched off in this simulation. This setting shows behavior of the virtual leader
without any compensation from the followers.

Another important parameter, which can significantly affect the behavior of the
algorithm, is the last part of the cost function presented in the equation (3.13) that
penalizes aggressive control inputs. The importance of this penalization is hard to see
from the results depicted in Fig. 5.14 - Fig. 5.17, but its influence changes the behavior
of the robots dramatically. The significant parameters of the virtual leader’s driving,
curvature KL(t), heading θL(t), velocity vL(t) and the value of the cost function of the
final solution in each planning step, are depicted in Fig. 5.18 - Fig. 5.20. The first set
of curves in Fig. 5.18 matches with the simulation presented in Fig. 5.14. Here, the
constants that adjusts the influence of the components in equation (3.13), are α = β = 1
and γ = 0.4. We should remark that the algorithm is sensitive mainly to the proportion
of the last component to the others. The values of velocity vL(t) in Fig. 5.18(a) remain
on the desired maximum during the complete task except for the region around the
first turn where the ploughs move slower. This deceleration could be reduced using a
smoother desired path which however makes the approach more complicated mainly
during the splitting and decoupling of the formations shown in Section 5.4.3. Since vL(t)
is equal to maximal value most of the time the only active control input is curvature
KL(t) (see Fig. 5.18(b)). It is obvious that the biggest absolute value of KL(t) is
required when the ploughs move through the breaks of the desired path. The height
of these peaks correlates with a difference in the heading of neighboring line segments.

119

5. APPLICATION - AIRPORT SNOW SHOVELLING

0 2 4 6 8 10 12 14 16
-0.5

0

0.5

1

time [s]

v
e
lo

c
it
y
 [
-]

(a)

0 2 4 6 8 10 12 14 16
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time [s]

c
u
rv

a
tu

re
 [
-]

(b)

0 2 4 6 8 10 12 14 16
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time [s]

h
e

a
d

in
g

 [
-]

(c)

0 2 4 6 8 10 12 14 16
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

time [s]

c
o
s
t
fu

n
c
ti
o
n
 [
-]

(d)

Figure 5.20: Formation movement characteristics (vL(t), KL(t), θL(t) and the values
of cost function) of the simulation in the same environment as in Fig. 5.18, but with the
setting of the algorithm: α = β = 1, γ = 1

Beyond the peaks, we can see slight oscillations in the values. These oscillations were
already described in Fig. 5.14 and can also be found in the graph of the heading θL(t)
(see Fig. 5.18(c)). The last picture in Fig. 5.18(d) presents values of the cost function
of the optimal solution. The value grows with the approaching of the virtual leader to
the connection of line segments due to the necessary deviation from the desired path
as well as due to the increase of the curvature as expected in the study of convergence.

To demonstrate usefulness of the curvature penalization, the same characteristics
like in Fig. 5.18 are presented in Fig. 5.19 using the algorithm setting: α = β = 1 and
γ = 0. Although the algorithm is still stable as you can see from the values of the cost
function in Fig. 5.19(d), the oscillations of the curvature and therefore also oscillations
of the heading are inadmissible. Such behavior could damage the steering of ploughs
and the movement could be dangerous on the slippery frostbitten runways.

The opposite problem of the curvature penalization is presented in Fig. 5.20, where
the same task was solved with the algorithm setting α = β = γ = 1. Such a bigger
value of constant γ can provide results almost without oscillations and with very smooth

120

5.4 Formation driving

Actual time: 0

L

Desired path for leader of formation

Desired path for leaders of splitted formations

Actual plans of ploughs and virtual leader

Figure 5.21: Big formation cleaning a runway with denoted paths necessary for splitting
to two sub-formations.

changes of the heading (see Fig. 5.20(c)). Unfortunately the algorithm does not work
satisfactorily during the sharper curves. In such cases the solution corresponding with
the minimum of the cost function may not just be a simple turning, but it could
be a plan with complicated maneuvers including stopping and reverse driving (see the
negative values of velocity in Fig. 5.20(a)). Such a result cannot be optimal with respect
to the total time needed for shoveling. Again the solution could be the utilization of a
smoother desired path with problems mentioned above.

5.4.3 Splitting and merging

The approach for splitting and merging of the formations of snow-ploughs presented in
this section is necessary for the completeness of the airport shoveling project. In this
part we do not need to build a new theory, because the techniques and convergence
studies developed in the previous chapters can be utilized without significant changes.
However, important technical details that cannot be left out for the successful applica-
tion will be presented here. Due to the strong application dependence, both skills, the
formation splitting as well as the formation merging, will be explained using specific
examples containing all problems that need to be solved during the snow-shoveling of
airports.

The results presented in these chapters have been obtained using the formation
driving algorithm introduced in Section 5.4.1 with the settings N = 6, n = 2, α = β = 1,
γ = 0.4 and ∆t = 0.25s. Therefore, the time difference between two subsequent
planning steps in the simulations splitting and merging is 0.5s.

121

5. APPLICATION - AIRPORT SNOW SHOVELLING

Actual time: 2.5

L

(a) Formation closely before the splitting.

L1

L2

Actual time: 3

(b) Formations that have just been split.

Figure 5.22: Splitting of the formation during an obstacle avoidance.

Actual time: 6

L2

L1

(a) Formation led by L2 is avoiding

an obstacle partly blocking the

cleaned road.

L2

L1

Actual time: 8

(b) The formation led by L2 is going

back to the desired shape.

Figure 5.23: Obstacle avoidance maneuver immediately after the formation splitting.

122

5.4 Formation driving

Actual time: 10.5

L1

L2

Desired path for leader of formation

Desired path for leaders of splitted formations

Actual plans of ploughs and virtual leaders

Trajectory passed by robots

Figure 5.24: Complete history of the formation movement during the simultaneous split-
ting and obstacle avoidance.

5.4.3.1 Splitting

The idea of the formation splitting mechanism presented in this chapter is using the
concept of formation driving relatively simply. The key problem of the splitting ap-
proach is to find an appropriate time when to transfer the leading tasks from a single
virtual leader to several virtual leaders that belong to the lately formed formations.
The simplest solution could be to consider the initial big formation as several subfor-
mations with assigned leaders from the very beginning of the shoveling. Unfortunately,
the forming of different coalitions during the complete airport cleaning would degrade
the method to a single robot driving. This approach decreases the robustness of the
method as well as it increases the complexity of planning and communication. The
ploughs connected to a team could avoid the collision better with the rest of the for-
mation and they can avoid obstacles in a more effective way. All these facts lead us to
postpone the splitting point to as late as possible.

Let us now analyze the problem from the opposite view. The desired path, which

123

5. APPLICATION - AIRPORT SNOW SHOVELLING

is followed by the virtual leader of the big formation, will differ from those used by the
new leaders as you can see from Fig. 5.21. In addition, we can suppose that during the
splitting the new formations have to change their heading for cleaning the following
road. To take advantage of the planning horizon, the new desired path should be
utilized when the new direction of movement can influence the optimization process.
For simplification we can say that the formation should be divided under the commands
of new virtual leaders in the distance of the former virtual leader from the center of
the crossroad greater than or equal to the length of the planning horizon. Due to the
prior knowledge of the maximal leader’s speed we can consider an upper bound lspl of
the length of the planning horizon as

lspl = N∆t max
τ∈〈t;t+N∆t〉

(vmax,L(τ)). (5.10)

The formation will be splitted in the distance from the center of the crossroad equal
to lspl to satisfy both requirements mentioned above: i) to keep the robots in the big
formation as long as possible and ii) to switch a desired path sufficiently far from the
crossroad. Perceive that both, the path for the big formation as well as the new desired
paths, must be overlapping to employ the RHC concept. Before the switch-point, the
previous path contributes to the cost function of the virtual leader. This virtual point
is situated on the axis of the formation and in the way that p1(·) coordinate of the
first plough in the sub-formation is zero. Once the formation reaches the switch-point,
the new virtual leaders are placed on the axes of established formations again next
to the first ploughs. In case the first plough of the new formation is the same as the
first plough in the previous formation the overlapping part will be equal to lspl. For
the formations created from ploughs moving at the back of the previous formation the
overlapping can be even bigger, because the new path must begin at the position of the
new virtual leader at the time of splitting.

An example of such desired paths is depicted in Fig. 5.21 where a formation splitting
is presented. At the beginning of the simulation, seven ploughs form one formation for
shoveling a wider runway. The formation is led by the virtual leader denoted L and
has to be divided into two smaller formations at the end of the runway. Two neckings
of the runway were added to the map to demonstrate an robustness of the algorithm
in the environment with obstacles. In our case the obstacles have been known before
the formation driving but similar results could be obtained using obstacles detected
by ploughs how it will be shown in the simulation of formations decoupling. The
first obstacle is situated close to the splitting point which should show an ability to
optimally split the formation even if the ploughs are not in the desired positions. The
formation shortly before the splitting is depicted in Fig. 5.22(a). The outer ploughs are
deviated from their desired positions to avoid the obstacle while the rest is following the
virtual leader L. The following snapshot in Fig. 5.22(b) presents the situation where
the robots are already led by two independent leaders L1 and L2. The switching of the
leadership has been realized just before this planning step. During the nonzero interval
needed for the switching of the communication topology, the ploughs can use the old
plans obtained by the former virtual leader and their movement is continuous. Once,
the ploughs get the sequence of states used for their planning from the new leader,

124

5.4 Formation driving

the coordinates pi(t) and qi(t), where i ∈ {1, . . . , nr}, must be adapted for the new
formations.1

The splitting maneuver continues in Fig. 5.23(a) where the ploughs led by the virtual
leader L1 are already maintained in the desired position while the second formation is
passing through the narrow corridor between the obstacle and the border of runway.
The snapshot of this simulation depicted in Fig. 5.23(b) presents the plans of the robots
in the second formation to reach the desired shape appropriate for snow shovelling. The
final snapshot with a delineated complete history of the ploughs movements is depicted
in Fig. 5.24.

5.4.3.2 Merging

The method for merging several sub-formation to one big formation guided by one
virtual leader will be introduced in the following paragraph. The core idea of the
approach is to iteratively divide the merging process to the simple jointing of two
formations as illustrated in the following simulation of three formation merging. In
Fig. 5.25, the formations F1, F2 and F3 guided by the virtual leaders L1, L2 and L3

are approaching to the point of merging in the middle of the crossroad. In addition,
there are depicted paths that will be followed by the subsequently formed groups.
The formations should pass through the crossroad in an order in which they will be
maintained in the big formation. This procedure should minimize snow remaining on
the runway as well as decrease the collision risk. Due to the shovels’ orientation, the
ploughs must be arranged in sequence F1, F2, F3 from the front to the back of the
composed shoveling column. Based on this, the formations F2 and F3 have to stop
and wait for the formation F1. In the first snapshot of the simulation in Fig. 5.25, the
formation F2 brakes from the initial velocity to reach the appropriate waiting position
which should happen before getting to the crossroad.

The snapshots presented in Fig. 5.26 could help to clarify the merging process as
well as the rules for creating the desired paths. In the first picture in Fig. 5.26(a), the
formation F3 also breaks to join the group as the last one. Before the suspension in
the waiting position, the formation F2 detected obstacles which caused deviation of the
ploughs from the desired shape. In the following snapshot in Fig. 5.26(b), the formation
led by L3 reached the waiting position while the formation led by L2 has accelerated to
continuously merge with the formation F1. It could be difficult to estimate the optimal
beginning of the acceleration in a real experiment. Fortunately, the inaccuracy in the
spacing between the sub-formations can be suppressed using the periodical replanning
and obstacle avoidance during the movement.

Similarly to the paths that should be followed by the virtual leaders during the for-
mation splitting also in this case the path for the virtual leaders of the small formations
and for the virtual leader of the merged formation have to be overlapping. As you can
see in Fig. 5.26(c), the position of the first plough in the newly merged formation F12

remains the same as in the previous formation F1. Therefore, the position of the new

1The coordinates of the ploughs for all formations are simply computed using the width of the

runway, the number of ploughs in the formation, the coverage of their shovels and the safety spacing

in p-direction.

125

5. APPLICATION - AIRPORT SNOW SHOVELLING

Actual time: 0

L1

L2

L3

Desired path for leaders of sub-formations

Desired path for leader of merged formation F12

Desired path for leader of merged formation F123

Actual plans of ploughs and virtual leaders

Crossroad axis defining the switch-points

Figure 5.25: Three small formations shoveling auxiliary roads with depicted paths needed
for merging to a big formation optimal for sweeping the main runway.

virtual leader L12 stays unchanged with respect to the direction of the movement. The
new position is only shifted from the former position of the leader L1 in the perpendic-
ular direction to the desired path. Physically, the planning module of the virtual leader
denoted L12 can be placed on board of the same plough as before. The formations,
similarly as for the splitting, are merged when the position of the second virtual leader
L2 is behind the crossroad.1 In this area, the virtual leaders of the formations that
have to be merged are already behind the break of the desired line and their heading
is parallel. All ploughs from that point can follow the same path that will be placed in
the axis of the new formation. Beside this, the idea of a time receding horizon must be
considered again in definition of the length of the paths utilized by the old formations
as well as by the merged one. The path followed by the formation F2 has to over-
lap the switch-point with length of lspl (defined in equation (5.10)), because the path
is contributing to the cost function used for planning until the leader L2 reaches the
switch-point. To determine the overlapping of the path followed by F1, we have to find
out the position of the virtual leader L1 at the time of switching. For simplification let
us suppose that the merging of the formation will be done exactly when the leader L2

reaches the switch-point.2 Then the distance of the leader L1 from the perpendicular
dot-dash line in the crossroad has to be p

n
F1
r

+ ∆p. The number nF1
r is the index of

1In Fig. 5.25 this point matches the crossing of the dash desired path and the perpendicular dot-dash

line.
2Because of the nonzero interval n∆t the physical switch-over will be executed behind that point,

but due to the necessary synchronization the optimal spacing between the formation should already be

kept.

126

5.4 Formation driving

Actual time: 1.5

L1

L3

L2

(a) Formations modify their velocities

with a goal to continuous connection.

The formation led by L2 is avoiding

the detected obstacle.

L3

L1

L2

Actual time: 3

(b) Formation F2 accelerates with an aim

to join the formation F1. Formation

F3 waits for the formations going by.

L12

L3

Actual time: 4.5

(c) Formations F1 and F2 are already

merged to formation F12 and forma-

tion F3 accelerates to join them.

Actual time: 5.5

L123

(d) All formations are just merged to one

big formation F1,2,3.

Figure 5.26: Zoomed snapshots of the simulation explaining the merging process.

the last robot in formation F1 and ∆p is the recommended spacing between two neigh-
boring ploughs. The desired line is extended again to satisfy the requirements of RHC
and so the total length of the path behind the crossroad has to be p

n
F1
r

+ ∆p + lspl.
The switch-over to the merged formation arrangement is done if the leader L1 (but
also the new leader L12) is in a distance from the crossroad that is equal to p

n
F1
r

+ ∆p.
Therefore, the new desired path should start in this distance.

The first plan of the ploughs after the formations connection can also be found in
Fig. 5.26(c). The last two robots of formation L12 are still avoiding the obstacle, but
the formation will be merged continuously using the periodical replanning even without
the slacking up of the first group. You can observe that the formation F3 is accelerating
to join with the new formation F12 in the same time in which the formations F1 and
F2 are in the process of merging into the formation F12. The complete formation
consisting of 8 ploughs is firstly employed in the snapshot shown in Fig. 5.26(d). From
that time, the ploughs are guided by one shared virtual leader and they are following
the same path. One can observe that the final formation was created even before the

127

5. APPLICATION - AIRPORT SNOW SHOVELLING

Actual time: 9

L123

Desired path for leaders of sub-formations

Desired path for leader of merged formation F12

Desired path for leader of merged formation F123

Actual plans of ploughs and virtual leaders

Trajectory passed by robots

Figure 5.27: The complete history of the formations movement during the merging.

last ploughs turned to the big runway. This is possible using the time delay between
the ploughs following the virtual leader’s trajectory and the virtual leader itself. The
continuous driving of the ploughs, originally from the formation F1, is then obtained
by a sequential following of the plans of the leaders L1, L12 and L123. This seemingly
too complicated structure of switching between several plans enables a much smoother
connection of the robots than with the application of independent plans. Our method
also provides a general approach independent from the number of merging formations.
The last snapshot of the simulation presented in Fig. 5.27 shows the merged formation
of ploughs that can be utilized for the shoveling of a big runway.

5.4.4 Formation turning

The remaining skill of the formation driving necessary for the fulfilment of an arbitrary
desired plan of the ploughs is the formation turning. The robots should be able to turn
on the spot in case of a blind runway or a road that is blocked by obstacles detected
during the task accomplishing. Furthermore, such a U-turn can be part of the ordinary
optimal schedule designed by the task allocation module.

The maneuver suitable for this purpose can be derived from the general concept
presented in the Section 2.5 as following: once the U-turn is required by the Task
Allocation module, the optimization problem P2(·), which is solved during the snow
shoveling in each sampling time n∆t, is replaced by the problem P(·) extended with
the concept of two alternating virtual leaders. Unfortunately, the cleaning formation
is too widespread in the directions of p as well as q and the U-turn of the formation
keeping the shoveling shape unchanged is impossible in the area bordered by the road-
sides. An obvious solution is to relocate ploughs from the actual formation to a more

128

5.4 Formation driving

Actual time: 0

(a) The initial formation optimal for the snow sweeping.

Actual time: 2.5

(b) The transformation between the sweeping and

the turning formations.

Actual time: 5

(c) The turning formation building.

Actual time: 8

(d) The compact shape appropriate for turning.

Actual time: 9.75

(e) The formation in the turning maneuver.

Figure 5.28: The U-turn of snowploughs at the end of runway. Part I.

compact shape for the turning. Once the U-turn is accomplished, the robots return to
the previous positions suitable for the shoveling.

In the first snapshot of the simulation presented in Fig. 5.28(a), we can see the
beginning of such a turning maneuver with 9 ploughs shoveling a runway of the airport.
The complete plan of the turning designed for the virtual leader in one optimization
step consists of the three parts that were introduced above: i) the transformation to
the more compact shape, ii) an optimal U-turn, iii) the transformation back to the
shoveling formation. In part i), the position of the virtual leader is shifted to the
upper part of the runway which is optimal for the turning in part ii) and the variables
which describe the position within the formation are changed from the initial values
optimal for snow shoveling p

i)
j (·), q

i)
j (·) to the values appropriate for turning p

ii)
j (·),

q
ii)
j (·), where j ∈ {1, . . . , nr}. The movement of the followers is planned autonomously,

129

5. APPLICATION - AIRPORT SNOW SHOVELLING

Actual time: 10.5

(a) Time of taking command by the second virtual

leader.

Actual time: 13

(b) Time of switching the leadership back to the

first virtual leader.

Actual time: 15

(c) The U-turn accomplished. The denoted plans

lead the robots back to the sweeping formation.

Actual time: 17.5

(d) The transformation between the turning and

the sweeping formations.

Actual time: 21

(e) The ploughs converge back to the previous formation.

Figure 5.29: The U-turn of snowploughs at the end of runway. Part II.

only the values p
ii)
j (·), q

ii)
j (·) are designed as an input of the turning maneuver.1

The switching between the two shapes of the formation is shown in the snapshots
in Fig. 5.28(b) and Fig. 5.28(c). The desired compact formation, which is more appro-
priate for the turning, is reached in the snapshot in Fig. 5.28(d). The accomplishing of
part ii), the turning, is similar to the simulation presented in Fig. 2.19 and it is depicted
by snapshots in Fig. 5.28(e), Fig. 5.29(a) and Fig. 5.29(b). The specific control inputs
for the forward and backward movement during the turning are also obtained here us-
ing the two virtual leaders approach presented in Section 2.5. The turning maneuver
is finished in Fig. 5.29(c) where the formation is oriented backwards and the ploughs
can return to the previous positions. A snapshot demonstrating this last part of the

1In practical applications, the same predefined values p
ii)
j (·), q

ii)
j (·) can be used for all U-turn

maneuvers and therefore the system can still be fully autonomous.

130

5.5 Hardware experiment

complete turning simulation is presented in Fig. 5.29(d).
A quite large part of the runway stays uncleaned using such an approach as you

can see from the Fig. 5.29(e) where the complete history of the robots movement is
denoted. Furthermore, during the backward movement the ploughs must go over the
snowy surface of the runway which could be dangerous. A simple solution of this
problem is to continue in the cleaning formation to the end of the runway and then to
move back to the sufficient distance needed for the transformation of the formation. In
addition, the ploughs can already change their positions to a compact formation during
the backward movement which reduces the total turning time.

5.5 Hardware experiment

The hardware experiment presented in this section was performed to verify the func-
tionality of the complete airport snow shoveling system that was developed by the sub-
group of the PhD program ”Identification, Optimization and Control with Applications
in Modern Technologies” allocated at University of Wuerzburg. The experiment was
set up for the utilization of indoor MERLIN-Testbed [165] that was developed within
the university. The MERLIN car-like robots are equipped with sensors for obstacle
detection (ultrasonic range finders) and also sensors for position determination (wheel
encoders, gyroscope), which are crucial in the presented task. Furthermore, a wireless
communication enables robots to receive commands as well as to inform the other vehi-
cles about their actual state which is important mainly for the formation stabilization
and the groups coordination. The possible communication between the robots and an
internal PC can simulate the commanding of vehicles from an airport control tower via
the Task Allocation module.

The chassis of the MERLINs has been slightly modified by adding a simple shovel in
front of the ”ploughs” for the experiment. Due to technical limitation the orientation
of the shovels has been fixed and cannot be turned to sweep the snow into the other
direction which must be considered in the planned schedule. Such equipped rovers
have a shoveling coverage of approximately 0.55m and the length 0.95m that results in
formations with distances between the centers of the robots 0.4m in the q coordinate
and 1.5m in the p coordinate.

The experiment scenario has been adapted for indoor application replacing the real
snow by small pieces of polystyrene. The size of runways have been decreased to fit
to the robotic hall of University Wuerzburg. The complete scenario consists of one big
runway that has to be cleaned by a formation of two robots and two auxiliary roads that
require shoveling by single ploughs (the ”indoor” airport can be seen in Fig. 5.30(a)).

An optimal schedule for such a simple scenario can be designed by the Task Alloca-
tion module in one step of the tree exploration, but due to the splitting and decoupling
parts included in the obvious solution the entire snow shoveling system needs to be
employed. A utilization of a more complex environment has been impossible due to the
space limitation of the hall but also because of employed position determination of the
ploughs which enables only short experiments. In our experiment the pose of the robots
during movements has been obtained by the fusion of data from wheel encoders and a
gyroscope. In real outdoor applications, an external global position system is necessary,

131

5. APPLICATION - AIRPORT SNOW SHOVELLING

because of the error accumulation in the applied ”dead reckoning”. An example of such
an approach solving the problem of wheel skidding and slipping by GPS-based tracking
is presented in [116].

On the first picture of the hardware experiment in Fig. 5.30(a), two ploughs are
waiting in the initial position for commands from the task allocation level. The next
picture in Fig. 5.30(b) shows the robots in the formation pushing the ”snow” into the
side following shovels’ orientation. The beginning of the splitting maneuver is pictured
in Fig. 5.30(c) where the wide runway verges into a narrower road. From this point
the vehicles are considered as independent unites and they clean the auxiliary roads
separately. The formation has to be built-up again to finished the main runway cleaning
and to be prepare for the next run of shoveling. The details of the merging process
have been explained in Section 5.4.3.2. In our experiment, the merging is shown in
Fig. 5.31(a), where the second rover of the big formation already finished its task and
is waiting for the first robot, which is cleaning the longer road. In the next snapshot
in Fig. 5.31(b), the first robot is passing by the waiting robot, which is accelerating to
complete the formation. Finally, the robots at the end of the first cleaning cycle are
shown in Fig. 5.31(c).

132

5.5 Hardware experiment

(a) Initial position of the ploughs.

(b) The robots cooperatively shoveling the main runway.

(c) The formation splitting to two independent units.

Figure 5.30: Snapshots from the snow shoveling hardware experiment. Part I.

133

5. APPLICATION - AIRPORT SNOW SHOVELLING

(a) The robot shoveling the middle road waits for the other one to compose the formation. The picture

was taken from the opposite side of the room unlike the picture in Fig. 5.30(a).

(b) The robot shoveling the middle road accelerates to join the first plough.

(c) The ploughs have completed one cleaning cycle.

Figure 5.31: Snapshots from the snow shoveling hardware experiment. Part II.

134

6

Conclusion and future work

6.1 Conclusion

This thesis described the stabilization and trajectory planning for formations of the
nonholonomic car-like robots based on the receding horizon control. The presented
methods offered general and robust solutions considering static as well as dynamic ob-
stacles, the dynamic allocation of the vehicles to variable groups and robots’ failures
tolerance. We proposed a novel general concept of the integration of the global infor-
mation describing the known structure of the environment and the local image of the
vehicles’ neighborhood, which is frequently updated by on-board sensors. We showed
that this optimization based method, which provides control inputs for all members of
the formation, converges to a given target region. As an extension of this approach,
we developed an algorithm employing two virtual leaders in the task of complicated
manoeuvring with a view to optimally manage a U-turn of the whole compact forma-
tion in arbitrary workspaces. Beside this, we proposed several methods based on path
planning for the virtual leader of the formation in the space of multinomials to reduce
the complexity of the optimization problem. The algorithms derive benefits from the
principle of the chosen optimization techniques and adjust them for the purpose of
robotics. Furthermore, they enable a decomposition of the optimization process which
is useful for the initial determination of the length of time horizons utilized in RHC.

In the part of the thesis focussed on applications, we proposed a compete system
designed for the task of airport snow shoveling using formations of autonomous ploughs.
Two different approaches were proposed in the highest reasoning level of the system,
which solves the task allocation problem with a view to optimally cover all runways and
auxiliary roads. The first method can be employed only for a static map of the airport,
but the optimality of the result is ensured. The second method is providing only sub-
optimal solutions, but with the possibility of an on-line respond to detected changes
in the environment. The output of the task allocation methods are performed by the
general formation driving approach that was adapted for the purpose of the optimal
coverage. Additionally, we extended the approach with abilities to form temporary
formations, to split formations to several smaller teams, to merge the sub-formations
and to turn wide-spread formations, which are required by the task allocation strategies.

135

6. CONCLUSION AND FUTURE WORK

All separate methods and their extensions as well as the complete systems were
verified by various simulations and hardware experiments. With the tests, we simulated
the real workspace of robots using existing maps of buildings and a map of the Frankfurt
airport. We studied the behavior of the proposed system in situations with static and
dynamic obstacles. We verified the robustness of the method in case of a vehicle failure
or in a situation where no feasible solution for the complete formation is possible.

6.2 Future work

The general formation driving method described in this thesis was adapted only for one
application of car-like robots’ formations, but as shown in the motivation presented in
Section 1.1, the other scenarios introduce additional research topics. The future work in
3D cooperative mapping could be an integration of the optimization of the stereo system
baseline length to the formation stabilization. Additionally, the information obtained
by the merging of images from different cameras could be utilized as a feedback for the
position determination of the robots within the formation.

In the second application, which is called the cloud of toxic gas determination, the
measurements of the concentration on each robot should influence not only a future
movement of the group, but also the size of the formation. This again leads to an
adapting of the cost function for the virtual leader (movement of the group) as well as for
the followers (resizing of the formation). Another extension could be motivated by the
gas cloud itself. The mathematic models describing the behavior of the clouds usually
require three-dimensional information [4; 57; 195] and therefore it is useful to utilize
heterogenous teams of mobile robots and helicopters. The high dynamic of the cloud can
also be better captured using unmanned aerial vehicles. This requires the combining of
different kinematic models and mainly an extension of the formation driving methods to
3D. Additional applications of formations of autonomous underwater vehicles, airplanes
or even satellites are a logical continuation of such an effort.

Also the third scenario, airport snow shoveling, needs to be further investigated and
improved. The optimal coverage of the surface on the crossroads of runways should be
considered in the task allocation. Now the remaining snow is neglected on the crossroads
and only the roads are completely cleaned as you can see from the simulations. Finally,
the complete system and mainly the task allocation strategies should be verified in a
long-term hardware experiment in a more realistic environment with moving obstacles
and with a structure comparable to the map of a real airport. This supposes the
utilization of robust outdoor robots (which can be e.g. outdoor MERLIN [54; 167]
developed within the University of Wuerzburg) equipped with an external positioning
system.

136

Appendix A

Utilized optimization techniques

A.1 Global optimization using Sparse Grids

The algorithm described in this appendix was originally presented in [59] and for uti-
lization in robotics and was extended in terms of collaboration within the group of
PhD students in program ”Identification, Optimization and Control with Applications
in Modern Technologies” supported by the Elite Network of Bavaria [155].

The key feature of the method is an adaptively working iterative technique that
only uses function evaluations at specific points inside a given box in order to find a
point that is in some way sufficiently close to a global solution. This part of the method
is an enhancement of the HCP-Algorithm presented in [133] by Novak and Ritter. A
clusteranalysis of the generated grid points is following this global part in order to find
suitable starting points for the subsequent local part of the algorithm. This approach
uses a Penalty-Barrier-Multiplier-method (PBM) [17] in order to find a more accurate
solution. Each optimization in this local part is done with the Nelder-Mead algorithm.

The optimization problem holds certain challenges, such as the non-smoothness
(even discontinuity) of the cost function and the expensiveness of each function evalu-
ation. We also assume the existence of many local solutions and we aim at finding a
global minimum. There are a few common methods able to deal with these difficulties.
Unfortunately, most of the known solvers require at least a gradient information and
provide only local solutions.

The optimization method described here is based on the algorithm presented in
[133], which is a deterministic global optimization method using Sparse Grids (SG) with
the aim to find a point that is in some sense close enough to the global optimum. The
method is also able to consider some nonlinear constraints and employs clusteranalysis
[29] and a PBM-algorithm [17] in order to find a solution with the required accuracy.

The core of the algorithm is the global part where a kind of sparse grid (see Fig. A.1
for examples) is built up iteratively.

Definition A.1.1. The one dimensional grid Gl with level l is given by

Gl =
{−→x i : i2−(l+1), i = ±{0, 1, 2, . . . , 2l − 1}

}
.

137

A. UTILIZED OPTIMIZATION TECHNIQUES

This is an equidistant grid1 with step size 2−(l+1). The corresponding d−dimensional
sparse grid of level n is defined as a certain combination of the cartesian product of
different one dimensional grids. Since we omit the points on the border this grid is also
called Noboundary-Grid.

Definition A.1.2. The d−dimensional sparse grid Gd
ln

with level ln is given by

Gd
ln =

⋃

l1+...+ld=ln

Gl1 × . . .×Gld .

The utilized method does not create a whole sparse grid but starts at the center
of the considered cube and successively adds new gridpoints by evaluating all existing
grid points, choosing the best one and adding the neighbors (i.e. the closest grid points
in the sparse grid of the next higher level) of this point. This evaluation of all existing
points takes place by the regarding of the value of the function βζ :

βζ(−→x) = (level(−→x) + degree(−→x))ζrank(−→x)1−ζ . (A.1)

Where ζ ∈ [0, 1] controls the adaptiveness of the algorithm. The level of a point −→x
is defined by the level of the grid in which the points appears. The degree of a grid
point counts how often this point was already chosen as ”best” point. The rank of the
point is important in order to allow the adaptiveness because it marks the number of
points with a smaller (or equal) objective value. So if ζ is close to zero we get a local
method, whereas when ζ = 1 the sparse grid is set up without considering the objective
function.

The first part of the algorithm, the global search, stops after a given number of func-
tion evaluations. Depending on the parameter ζ one can usually find certain clusters
in the set of the considered grid points. This is done by using a subtractive clus-
tering method. The minimum of each cluster is a suitable starting point for a local
method. Here a PBM-method is used in order to deal with the constraints. The local
optimization is done with the Nelder-Mead method.

A.2 Particle Swarm Optimization

The PSO method was developed for finding a global optimum of a nonlinear function
[91; 119]. This optimization approach has been inspired by the social behavior of birds
and fish. Each solution consists of a set of parameters and represents a point in a
multidimensional space. The solution is called ”particle” and the group of particles
(population) is called ”swarm”. The method has been adapted for the application in
mobile robotics in [162] and an abbreviated description will be provided here.

In the PSO technique, two kinds of information is available to the particles. The
first is their own experience, i.e. their best state and its fitness value so far. The
other information is their social knowledge, i.e. the particles know the momentary best
solution −→x g,b of the group found during the evaluation process.

1Only the cube [−0.5, 0.5]d is considered to simplify matters.

138

A.2 Particle Swarm Optimization

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(a) A two dimensional grid of level 3.

−0.5

0

0.5

−0.5

0

0.5
−0.5

0

0.5

(b) A three dimensional grid of level 3.

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(c) A two dimensional grid of level 4.

−0.5

0

0.5

−0.5

0

0.5
−0.5

0

0.5

(d) A three dimensional grid of level 4.

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(e) A two dimensional grid of level 5.

−0.5

0

0.5

−0.5

0

0.5
−0.5

0

0.5

(f) A three dimensional grid of level 5.

Figure A.1: Two and three dimensional Noboundary-Grids of different levels.

139

A. UTILIZED OPTIMIZATION TECHNIQUES

Each particle is represented as a D-dimensional position vector −→x i(ι) in discrete
time ι and has a corresponding instantaneous velocity vector −→v i(ι). Furthermore, it
remembers its individual best value of fitness function and position −→x i,b which has
resulted in that value.

During each iteration ι, the velocity update rule is applied on each particle in the
swarm as

−→v i(ι) = w−→v i(ι− 1) + Φ1(−→x i,b −−→x i(ι− 1)) + Φ2(−→x g,b −−→x i(ι− 1)), (A.2)

where parameter w is called inertia weight and it decreases linearly from wstart to wend

during all iterations. The symbols Φ1 and Φ2 are computed according to the equation

Φj = Υj




rj1 0 0

0
. . . 0

0 0 rjD


 , (A.3)

where j ∈ {1, 2}. The parameters Υi are constants that weight the influence of the par-
ticles’ own experience and of the social knowledge. In our experiments, the parameters
were set to Υ1 = 2 and Υ2 = 2. The rjk, where k ∈ {1, . . . , D}, are random numbers
drawn from a uniform distribution between 0 and 1.

The position of the particles is then computed according to the update rule

−→x i(ι) = −→x i(ι− 1) +−→v i(ι), (A.4)

where the following guideline is applied for the stabilization of the optimization process.
If any component of −→v i is less than −Vmax or greater than +Vmax, the corresponding
value is replaced by −Vmax or +Vmax, respectively, where Vmax is the maximum velocity
parameter.

The update formulas (A.2) and (A.4) are applied during each iteration and the
values of −→x i,b and −→x g,b are updated simultaneously. The algorithm is stopped if the
maximum number of iterations is reached or if any other predefined stopping criteria
is satisfied.

140

References

[1] S. Abdallah and V. Lesser. Organization-based

cooperative coalition formation. In Proc. of

IEEE/WIC/ACM International Conference on Intelli-

gent Agent Technology (IAT 2004), September 2004.

[2] P. K. Agarwal, T. Biedl, S. Lazard, Robbins S., Suri S.,

and S. Whitesides. Curvature-constrained shortest

paths in a convex polygon. SIAM journal on com-

puting, 31(6):1814–1851, 2002.

[3] M. Ahmadi and P. Stone. Multi-robot Learning for

Continuous Area Sweeping. Lecture Notes in Com-

puter Science, Learning and Adaption in Multi-Agent

Systems, 3898:47–70, 2006.

[4] V. N. Alexandrov, W. Owczarz, P. G. Thomson, and

Z. Zlatev. Parallel runs of a large air pollution

model on a grid of Sun computers. Mathematics

and Computers in Simulation, 65(6):557–577, 2004.

[5] Y. Altshuler, A.M. Bruckstein, and I.A. Wagner. Swarm

robotics for a dynamic cleaning problem. In

Proc. of the IEEE Swarm Intelligence Symposium, pages

209–216, June 2005.

[6] A. Alvarez, A. Caiti, and R. Onken. Evolutionary path

planning for autonomous underwater vehicles in

a variable ocean. IEEE Journal of Oceanic Engineer-

ing, 29(2):418–429, 2004.

[7] I. Ashiru, C. Czarnecki, and T. Routen. Characteris-

tics of a genetic based approach to path planning

for mobile robots. Journal of network and computer

applications, 19(2):149–169, 1996.

[8] M. Athans and P. L. Falb. Optimal Control: An Intro-

duction to the Theory and Its Applications. Sydney :

McGraw-Hill, 1th edition, 1963.

[9] F. Aurenhammer and R. Klein. Voronoi diagrams. Hand

book of Computational Geometry. Elsevier Science Pub-

lishers, Amsterodam, 2000.

[10] T. Balch and R. C. Arkin. Behaviour-based Forma-

tion Control for Multi-robot Teams. IEEE Trans-

actions on Robotics and Automation, 14(6):926–939, De-

cember 1998.

[11] T. Balch and M. Hybinette. Social potentials for scal-

able multi-robot formations. In Proc. of IEEE Con-

ference on Robotics and Automation, 1, pages 73–80,

April 2000.

[12] D. J. Balkcom, P. A. Kavathekar, and M. T. Ma-

son. Time-optimal Trajectories for an Omni-

directional Vehicle. International Journal of Robotics

Research, 25(10):985–999, 2006.

[13] T. D. Barfoot and C. M. Clark. Motion Planning

for Formations of Mobile Robots. Robotics and Au-

tonomous Systems, 46:65–78, February 2004.

[14] T. D. Barfoot, C. M. Clark, S. M. Rock, and G. M. T.

D’Eleuterio. Kinematic Path-planning for For-

mations of Mobile Robots with a Nonholonomic

Constraint. In Proc. of IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, October 2002.

[15] R.W. Beard, J. Lawton, and F.Y. Hadaegh. A coordi-

nation architecture for spacecraft formation con-

trol. IEEE Transactions on Control Systems Technology,

9(6):777 – 790, November 2001.

[16] S. Behzadipour and A. Khajepour. Time-optimal tra-

jectory planning in cable-based manipulators.

IEEE Transactions on Robotics, 22(3):559–563, 2006.

[17] A. Ben-Tal and M. Zibulevsky. Penalty/Barrier Mul-

tiplier Methods for convex Programming Prob-

lems. SIAM Journal on Optimization, 7(2):347 – 366,

1997.

[18] J.G. Bender. An overview of systems studies of

automated highway systems. IEEE Transactions on

Vehicular Technology, 40(1):82– 99, 1991.

[19] R. M. Bhatt, C. P. Tang, and V. N. Krovi. Formation

optimization for a fleet of wheeled mobile robots

- A geometric approach. Robotics and Autonomous

Systems, 57(1):102–120, 2009.

[20] L.T. Biegler. Advances in nonlinear programming

concepts for process control. Journal of Process

Control, 8(5):301–311, 1998.

[21] J. Borenstein and Y. Koren. The Vector Field His-

togram: Fast Obstacle Avoidance for Mobile

Robots. IEEE Journal of Robotics and Automation,

pages 278–288, 1991.

[22] T. Braunl and N. Tay. Combining configuration

space and occupancy grid for robot navigation.

Industrial Robot, 28(3):233–41, 2001.

[23] L. Breger, J. How, and A. Richards. Model predic-

tive control of spacecraft formations with sens-

ing noise. In Proc. of American Control Conference,

2005., 4, pages 2385–2390, 2005.

[24] B. Bulka, M. Gaston, and M. Desjardins. Local strat-

egy learning in networked multi-agent team for-

mation. Autonomous Agents and Multi-Agent Systems,

15(1):29 – 45, 2007.

[25] Vasudevan C. and Ganesan K. Case-Based Path Plan-

ning for Autonomous Underwater Vehicles. Au-

tonomous Robots, 3(2):79–89, 1996.

[26] C. G. Cassandras and W. Li. Sensor networks and co-

operative control. European Journal of Control, 11(4–

5):436–463, 2005.

[27] C. Chen and S. Wang. Branch-and-bound scheduling

for thermal generating units. IEEE transactions on

energy conversion, 8:184–189, 1993.

[28] D.Z. Chen, R.J. Szczerba, and J.J. Uhran. A framed-

quadtree approach for determining Euclidean

shortest pathsin a 2-D environment. IEEE Trans-

actions on Robotics and Automation, 13(5):668–681,

1997.

141

REFERENCES

[29] S.L. Chiu. Fuzzy Model Identification Based on

Cluster Estimation. Journal of intelligent and fuzzy

systems, 2:267–278, 1994.

[30] H. Choset. Coverage for robotics A survey of re-

cent results. Annals of Mathematics and Artificial In-

telligence, 31(1–4):113 – 126, 2001.

[31] L. Consolini, F. Morbidi, D. Prattichizzo, and

M. Tosques. Leader-follower formation con-

trol of nonholonomic mobile robots with input

constraints. Automatica, 44(5):1343–1349, 2008.

[32] M. Corless and G. Leitmann. Adaptive Controllers

for Avoidance or Evasion in an Uncertain Envi-

ronment: Some Examples. Computers & Mathemat-

ics with Applications, 18:161–170, 1989.

[33] M. Corless, G. Leitmann, and J. Skowronski. Adaptive

Control for Avoidance or Evasion in an Uncer-

tain Environment. Computers & Mathematics with

Applications, 13:1–11, 1987.

[34] J. Cortés, S. Mart́ınez, T. Karatus, and F. Bullo. Cov-

erage control for mobile sensing networks. IEEE

Transactions on Robotics and Automation, 20(2):243–

255, 2004.

[35] X. Cui, T. Hardin, R.K. Ragade, and A.S. Elmaghraby.

A swarm-based fuzzy logic control mobile sensor

network for hazardous contaminants localization.

In Proc. of IEEE International Conference on Mobile Ad-

hoc and Sensor Systems, 2004.

[36] T.B. Curtin, J.G. Bellingham, J. Catipovic, and D. Webb.

Autonomous oceanographic sampling networks.

Oceanography, 6(3):86–94, 1993.

[37] M. J. Daigle, X. D. Koutsoukos, and G. Biswas. Dis-

tributed Diagnosis in Formations of Mobile

Robots. IEEE Transactions on Robotics, 23(2):353 –

369, April 2007.

[38] A.K. Das, R. Fierro, V. Kumar, J.P. Ostrowski, J. Splet-

zer, and C.J. Taylor. A Vision-Based Formation

Control Framework. IEEE Transactions on Robotics

and Automation, 18(5):813–825, October 2003.

[39] B. Dasgupta, A. Gupta, and E. Singla. A variational

approach to path planning for hyper-redundant

manipulators. Robotics and Autonomous Systems,

57(2):194–201, 2009.

[40] G. De Nicolao, L. Magni, and R. Scattolini. Stabiliz-

ing receding-horizon control of nonlinear time-

varying systems. IEEE Transactions on Automatic

Control, 43(7):1030–1036, 1998.

[41] J.C. Derenick and J.R. Spletzer. Convex Opti-

mization Strategies for Coordinating Large-Scale

Robot Formations. IEEE Transactions on Robotics,

23(6):1252–1259, December 2007.

[42] J.P. Desai, J.P. Ostrowski, and V. Kumar. Modeling

and control of formations of nonholonomic mo-

bile robots. IEEE Transactions on Robotics and Au-

tomation, 17(6):905–908, December 2001.

[43] A. Dhariwal, G.S. Sukhatme, and A.A.G. Requicha.

Bacterium-inspired robots for environmental

monitoring. In Proc. of IEEE International Conference

on Robotics and Automation, 2004.

[44] E. Dijkstra. A note on two problems in connex-

ion with graphs. Numerische Mathematik, 1:269–271,

1959.

[45] D. V. Dimarogonas, S. G. Loizou, K. J. Kyriakopoulos,

and M. M. Zavlanos. A Feedback Stabilization and

Collision Avoidance Scheme for Multiple Inde-

pendent Non-point Agents. Automatica, 42(2):229–

243, 2006.

[46] R. Dittmar and B. M. Pfeiffer. Modellbasierte praedik-

tive Regelung. Oldenbourg Verlage GmbH, Muenchen,

2004.

[47] K. D. Do. Bounded Controllers for Formation Sta-

bilization of Mobile Agents With Limited Sens-

ing Ranges. IEEE Transactions on Automatic Control,

52(3):569–576, 2007.

[48] K. D. Do. Formation Tracking Control of Unicycle-

Type Mobile Robots With Limited Sensing

Ranges. IEEE Transactions on Control Systems Tech-

nology, 16(3):527–538, 2008.

[49] K. D. Do. Output-feedback formation tracking

control of unicycle-type mobile robots with lim-

ited sensing ranges. Robotics and Autonomous Sys-

tems, 57(1):34–47, 2009.

[50] K. D. Do, Z. Jiang, and J. Pan. A global output-

feedback controller for simultaneous track-

ing and stabilization of unicycle-type mobile

robots. IEEE Transactions on Robotics and Automa-

tion, 20(3):589–594, 2004.

[51] F. Driewer, H. Baier, and K. Schilling. Robot/Human

Rescue Teams: A User Requirement Analysis.

Advanced Robotics, 19(8):819–838, 2005.

[52] W.B. Dunbar and R.M. Murray. Receding hori-

zon control of multi-vehicle formations: A dis-

tributed implementation. In Proc. of 43rd IEEE

Conference on Decision and Control., 2004.

[53] W.B. Dunbar and R.M. Murray. Distributed receding

horizon control for multi-vehicle formation sta-

bilization. Automatica, 42(4):549–558, April 2006.

[54] D. Eck, M. Stahl, and K. Schilling. The Small Out-

door Rover MERLIN and its Assistance System

for Tele-Operations. In Proc of the 6th International

Conference on Field and Service Robotics, 2007.

[55] ENB. International Doctorate Program: Iden-

tification, Optimization and Control with Ap-

plications in Modern Technologies. Movies.

http://www2.am.uni-erlangen.de/elitenetzwerk-

optimierung/index en.php?page=movies&lang=en,

February 2009.

[56] F. Fahimi. Sliding-Mode Formation Control for

Underactuated Surface Vessels. IEEE Transactions

on Robotics, 23(3):617 – 622, June 2007.

[57] J. A. Farrell, J. Murlis, X. Long, W. Li, and R. T. Carde.

Filament-Based Atmospheric Dispersion Model

to Achieve Short Time-Scale Structure of Odor

Plumes. Environmental Fluid Mechanics, 2(1-2):143–

169, 2002.

[58] J. A. Fax and R. M. Murray. Information flow and

cooperative control of vehicle formations. IEEE

Transactions on Automatic Control, 49(9):1465–1476,

2004.

[59] I. Ferenczi. Globale Optimierung unter Nebenbedingun-

gen mit dunnen Gittern. Diploma thesis, Technische

Universitat Munchen, 2005.

142

REFERENCES

[60] R. Fierro, A.K. Das, V. Kumar, and J.P. Ostrowski. Hy-

brid Control of Formations of Robots. In Proc. of

IEEE Conference on Robotics and Automation, 1, May

2001.

[61] R. Findeisen and F. Allgower. An Introduction to

Nonlinear Model Predictive Control. In Proc. of

the 21st Benelux Meeting on Systems and Control, Veld-

hoven, 2002.

[62] FMINCON. Optimization Toolbox, Matlab.

http://www.mathworks.com/access/helpdesk/help/toolbox/

optim/ug/fmincon.html, April 2009.

[63] E. Franco, L. Magni, T. Parisini, M.M. Polycarpou, and

D.M. Raimondo. Cooperative Constrained Control

of Distributed Agents With Nonlinear Dynam-

ics and Delayed Information Exchange: A Sta-

bilizing Receding-Horizon Approach. IEEE Trans-

actions on Automatic Control, 53(1):324–338, February

2008.

[64] J. Fredslund and M.J. Mataric. A General Algo-

rithm for Robot Formations Using Local Sensing

and Minimal Communication. IEEE Transactions

on Robotics and Automation, special issue on Advances

in Multi-Robot Systems, 18(5):837–846, October 2002.

[65] C.H. Fua, S.S. Ge, K. Duc Do, and K.-W. Lim. Multi-

robot Formations Based on the Queue-Formation

Scheme With Limited Communication. IEEE

Transactions on Robotics, 23(6):1160–1169, 2007.

[66] K. Fujimura. Path planning with multiple ob-

jectives. IEEE Robotics and Automation Magazine,

3(1):33–38, 1996.

[67] B.P. Gerkey and M.J. Mataric. A framework for

studying multirobot task allocation. In Proc. of

the 2nd International Naval Research Laboratory Work-

shop on Multi-Robot Systems, March 2003.

[68] B.P. Gerkey and M.J. Mataric. A Formal Analy-

sis and Taxonomy of Task Allocation in Multi-

Robot Systems. The International Journal of Robotics

Research, 23(9):939–954, 2004.

[69] F. Giulietti, M. Innocenti, M. Napolitano, and L. Pollini.

Dynamic and control issues of formation flight.

Aerospace Science and Technology, 9(1):65–71, 2005.

[70] D. Gu and H. Hu. Receding horizon tracking con-

trol of wheeled mobile robots. IEEE Transactions

on Control Systems Technology, 14(4):743–749, 2006.

[71] F. Hadaegh, W. M. Lu, and P. Wang. Adaptive Con-

trol of Formation Flying Spacecraft for Interfer-

ometry. In Proc. of Large Scale Systems: Theory and

Applications, 1998.

[72] Y. Hao, B. Laxton, E. R. Benson, and S. K. Agrawal.

Differential flatness-based formation following of

a simulated autonomous small grain harvesting

system. Transactions of the ASAE, 47(3):933–941,

2004.

[73] Z. B. Hao, N. Sang, and H. Lei. Cooperative Cover-

age by Multiple Robots with Contact Sensors. In

Proc. of IEEE Conference on Robotics, Automation and

Mechatronics, 2008.

[74] C.T. Hardin, X. Cui, R.K. Ragade, J.H. Graham, and A.S.

Elmaghraby. A modified particle swarm algorithm

for robotic mapping of hazardous environments.

In Proc. of World Automation Congress, 2004.

[75] T. Hatanaka, N. Kitudmrat, and M. Fujita. Formation

Control via Receding Horizon Control : A Set

Theoretic Approach. In Proc. of international confer-

ence on Instrumentation, Control and Information Tech-

nology (SICE 2008), August 2008.

[76] N. Hazon and G. A. Kaminka. Redundancy, Efficiency

and Robustness in Multi-Robot Coverage. The In-

ternational Journal of Robotics Research, pages 735–741,

2005.

[77] M. Hess, M. Saska, and K. Schilling. Autonomous

multi-vehicle formations for cooperative airfield

snow shoveling. In Proc. of the 3rd European Confer-

ence on Mobile Robots (ECMR07), Freiburg, Germany,

2007.

[78] M. Hess, M. Saska, and K. Schilling. Enhanced Motion

Planning for Dynamic formations of Nonholo-

nomic Mobile Robots. In Proc. of the 6th IFAC Sym-

posium on Intelligent Autonomous Vehicles (IAV2007),

September 2007.

[79] M. Hess, M. Saska, and K. Schilling. Application of

Coordinated Multi Vehicle Formations for Snow

Shoveling on Airports. Inteligent Service Robotics,

2(4):205 – 217, October 2009.

[80] A. Howard, L. E. Parker, and G. S. Sukhatme. Experi-

ments with a Large Heterogeneous Mobile Robot

Team: Exploration, Mapping, Deployment and

Detection. International Journal of Robotics Research,

25(5–6):431–447, 2006.

[81] H. Hu and M. Brady. Dynamic global path planning

with uncertainty for mobile robots inmanufac-

turing. IEEE Transactions on Robotics and Automation,

13(5):760–767, 1997.

[82] J. Huang, S.M. Farritor, A. Qadi, and S. Goddard. Lo-

calization and follow-the-leader control of a het-

erogeneous group of mobile robots. IEEE/ASME

Transactions on Mechatronics, 11(2):205 – 215, April

2006.

[83] I. Hussein and D. M. Stipanović. Effective Coverage

Control for Mobile Sensor Networks. In Proc.

of the IEEE Conference on Decision and Control, pages

2747–2752, San Diego, CA, 2006.

[84] A. Jadbabaie, Jie Lin, and A.S. Morse. Coordination of

groups of mobile autonomous agents using near-

est neighbor rules. IEEE Transactions on Automatic

Control, 48(6):988 – 1001, June 2003.

[85] M. Jager and B. Nebel. Dynamic decentralized area

partitioning for cooperating cleaning robots. In

Proc. of the IEEE International Conference on Robotics

and Automation, 4, pages 3577–3582, 2002.

[86] G. Jan, K. Yin Chang, and I. Parberry. Optimal

Path Planning for Mobile Robot Navigation.

IEEE/ASME Transactions on Mechatronics, 13(4):451

– 460, August 2008.

[87] D. Jung, G. Cheng, and E. Zelinsky. Robot Clean-

ing: An Application of Distributed Planning and

Real-time Vision. In Proc. of International conference

on Field and Service Robotics, 1998.

[88] G.A. Kaminka, R. Schechter-Glick, and V. Sadov. Using

Sensor Morphology for Multirobot Formations.

IEEE Transactions on Robotics, 24(2):271 – 282, April

2008.

143

REFERENCES

[89] W. Kang, N. Xi, and A. Sparks. Formation control of

autonomous agents in 3D workspace. In Proc. of

IEEE International Conference on Robotics and Automa-

tion., 2000.

[90] S. S. Keerthi and E. G. Gilbert. Optimal infinite-

horizon feedback laws for a general class of

constrained discrete-time systems: stability and

moving-horizon approximations. J. Optim. Theory

Appl., 57(2):265–293, 1988.

[91] J. Kennedy and R.C. Eberhart. Particle Swarm Opti-

mization. In Proc. International Conference on Neural

Networks IEEE, 4, pages 1942–1948, 1995.

[92] T. Keviczky, F. Borrelli, K. Fregene, D. Godbole, and

G.J. Balas. Decentralized Receding Horizon Con-

trol and Coordination of Autonomous Vehicle

Formations. IEEE Transactions on Control Systems

Technology, 16(1):19–33, Jan. 2008.

[93] H.K. Khalil. Nonlinear Systems. Prentice Hall, Michi-

gan State University, MI, 3th edition, 2001.

[94] O. Khatib. Real-Time Obstacle Avoidance for Ma-

nipulators and Mobile Robots. The International

Journal of Robotics Research, 5:90–98, 1986.

[95] Y. Kim, D.-W. Gu, and I. Postlethwaite. Real-time

path planning with limited information for au-

tonomous unmanned air vehicles. Automatica,

44(3):696–712, 2008.

[96] M. Kloetzer and C. Belta. Temporal Logic Plan-

ning and Control of Robotic Swarms by Hierar-

chical Abstractions. IEEE Transactions on Robotics,

23(2):320 – 330, April 2007.

[97] W.H. Know and S. Han. Receding Horizon Control: model

predictive control for state models (Advanced Textbooks in

Control and Signal Processing). Springer, London, 1th

edition, 2005.

[98] D. Kurabayashi, J. Ota, T. Arai, S. Ichikawa, S. Koga,

H. Asama, and I. Endo. Cooperative Sweeping

by Multiple Mobile Robots with Relocating

Portable Obstacles. In Proc. of the IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems,

pages 1472 – 1477, Osaka, Japan, 1996.

[99] D. Kurabayashi, J. Ota, T. Arai, and E. Yoshida. Coop-

erative Sweeping by Multiple Mobile Robots. In

Proc. of the IEEE International Conference on Robotics

and Automation, Minneapolis, Minnesota, 1996.

[100] R. Kurazume and S. Hirose. Development of a Clean-

ing Robot System with Cooperative Positioning

System. Autonomous Robots, 9(3):237 – 246, 2000.

[101] Y. Kuwata and J.P. How. Stable trajectory design for

highly constrained environments using receding

horizon control. In Proc of American Control Confer-

ence, 1, pages 902– 907, 2004.

[102] E. Lalish, K. A. Morgansen, and T. Tsukamaki. Forma-

tion Tracking Control using Virtual Structures

and Deconfliction. In Proc. 42th IEEE Conference on

Decision and Control, 2006.

[103] D. Langer, J.K. Rosenblatt, and M. Hebert. A

behavior-based system for off-road naviga-

tion. IEEE Transactions on Robotics and Automation,

10(6):776–783, December 1994.

[104] J.C. Latombe. Robot Motion Planning. MA: Kluwer,

Norwell, 1991.

[105] S. M. LaValle. Planning Algorithms. Cambridge Uni-

versity Press, 2006.

[106] J.R.T. Lawton, R.W. Beard, and B.J. Young. A

Decentralized Approach to Formation Maneu-

vers. IEEE Transactions on Robotics and Automation,

19(6):933–941, December 2003.

[107] D. V. Lebedev, J. J. Steil, and H. J. Ritter. The dy-

namic wave expansion neural network model for

robot motion planning in time-varying environ-

ments. Neural networks, 18(3):267–285, 2005.

[108] D. Lee and P. Y. Li. Passive decomposition approach

to formation and maneuver control of multiple

rigid bodies. ASME Journal of Dynamic Systems, Mea-

surement and Control, 129(5):662–677, 2007.

[109] G. Leitmann. Guaranteed Avoidance Strate-

gies. Journal of Optimization Theory and Applications,

32:569–576, 1980.

[110] G. Leitmann and J. Skowronski. Avoidance Con-

trol. Journal of Optimization Theory and Applications,

23:581–591, 1977.

[111] N.E. Leonard and E. Fiorelli. Virtual leaders, artifi-

cial potentials and coordinated control of groups.

In Proc. of the 40th IEEE Conference on Decision and

Control., pages 2968– 2973, 2001.

[112] M.A. Lewis and K. Tan. High Precision Formation

Control of Mobile Robots Using Virtual Struc-

tures. Autonomous Robots., 4(4):387–403, 1997.

[113] Y. Li and X. Chen. Stability on multi-robot for-

mation with dynamic interaction topologies. In

Proc. of IEEE/RSJ International Conference on Intelli-

gent Robots and Systems on Systems and Control, 2005.

[114] A. J. Lilienthal and T. Duckett. Building gas concen-

tration gridmaps with a mobile robot. Robotics and

Autonomous Systems, 48(1):3–16, 2004.

[115] H. T. Liu, S. Jinjun, and S. Dong. Adaptive synchro-

nization control of multiple spacecraft formation

flying. Journal of dynamic systems, measurement, and

control, 129(3):337–342, 2007.

[116] C. B. Low and D. Wang. GPS-Based Tracking Con-

trol for a Car-Like Wheeled Mobile Robot With

Skidding and Slipping. IEEE/ASME Transactions on

Mechatronics, 13(4):480 – 484, August 2008.

[117] C. Luo and X. Yang. A Real-time Cooperative

Sweeping Strategy for Multiple Cleaning Robots.

In Proc. of the IEEE International Symposium on Intel-

ligent Control, Vancouver, Canada, 2002.

[118] C. Luo, X. Yang, and D. Stacey. Real-time Path

planning with Deadlock Avoidance of Multiple

Cleaning Robots. In Proc. of the IEEE International

Conference on Robotics and Automation, Taipei, Tai-

wan, 2003.

[119] M. Macas, D. Novak, and L. Lhotska. Particle swarm

optimization for hidden markov models with ap-

plication to intracranial pressure analysis. In

Proc. of Biosignal, 2006.

[120] M. Macas, M. Saska, L. Lhotska, L. Preucil, and

K. Schilling. Particle Swarm Optimization, chapter Path

Planning for Formations of Mobile Robots using PSO

Technique, pages 329–347. InTech Education and Pub-

lishing, 2009.

144

REFERENCES

[121] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M.

Scokaert. Constrained model predictive control:

Stability and optimality. Automatica, 36(6):789–

814, 2000.

[122] D.Q. Mayne and H. Michalska. Receding horizon con-

trol of nonlinear systems. IEEE Transactions on Au-

tomatic Control, 35(7):814–824, 1990.

[123] J. Mejia and D. M. Stipanović. Asymptotic Stabi-

lization Using a Constructive Approach to Con-

strained Nonlinear Model Predictive Control. In

Proc. of the 47th IEEE Conference on Decision and Con-

trol, Cancun, Mexico, 2008.

[124] J.S. Mejia and D.M. Stipanovic. Safe trajectory track-

ing for the two-aircraft system. In Proc. of IEEE

International Conference on Electro/Information Tech-

nology, 2007.

[125] H. Michalska and D.Q. Mayne. Robust receding hori-

zon control of constrained nonlinear systems.

IEEE Transactions on Automatic Control, 38(11):1623–

1633, 1993.

[126] D. Milutinovi and P. Lima. Modeling and Optimal

Centralized Control of a Large-Size Robotic Pop-

ulation. IEEE Transactions on Robotics, 22(6):1280 –

1285, December 2006.

[127] T.W. Min and H.K. Yin. A decentralized approach for

cooperative sweeping by multiple mobile robots.

In Proc. of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, Victoria, Canada, 1998.

[128] P. Moore and J. Crimaldi. Odor landscapes and an-

imal behavior: tracking odor plumes in different

physical worlds. Journal of marine systems, 49(1–

4):55–64, 2004.

[129] A.I. Mourikis and S.I. Roumeliotis. Optimal sensor

scheduling for resource-constrained localization

of mobile robot formations. IEEE Transactions on

Robotics, 22(5):917 – 931, october 2006.

[130] A.I. Mourikis and S.I. Roumeliotis. Performance anal-

ysis of multirobot Cooperative localization. IEEE

Transactions on Robotics, 22(4):666 – 681, August 2006.

[131] I. K. Nikolos and N. Tsourveloudis. Evolutionary path

planning for unmanned aerial vehicles coopera-

tion. In Proc of International Conference on Informatics

in Control Automation and Robotics, 2007.

[132] N. Noguchi and H. Terao. Path planning of an agri-

cultural mobile robot by neural network and ge-

netic algorithm. Computers and electronics in agricul-

ture, pages 187–204, 1997.

[133] E. Novak and K. Ritter. Global Optimization Us-

ing Hyperbolic Cross Points. In State of the Art

in global Optimization., pages 19–33. Kluver Academic

Publishers, Dordrecht, 1996.

[134] P. Ogren, E. Fiorelli, and N. E. Leonard. Formations

with a Mission: Stable Coordination of Vehicle

Group Maneuvers. In Proc. 15th International Sympo-

sium on Mathematical Theory of Networks and Systems,

2002.

[135] P. Ogren, E. Fiorelli, and N. E. Leonard. Coopera-

tive control of mobile sensor networks: Adaptive

gradient climbing in a distributed environment.

IEEE Transactions on Automatic Control, 49(8):1292–

1302, 2004.

[136] J. O’Rourke. Art Gallery Theorems and Algorithms. Ox-

ford University Press, 1987.

[137] Overaasen. Runway Sweepers from Over-

aasen Snow Removal Systems, Gjovik, Nor-

way. http://www.overaasen.no/runway-sweepers, Febru-

ary 2009.

[138] L. Pallottino, V.G. Scordio, A. Bicchi, and E. Fraz-

zoli. Decentralized Cooperative Policy for Con-

flict Resolution in Multivehicle Systems. IEEE

Transactions on Robotics, 23(6):1170 – 1183, December

2007.

[139] P. Papalambros and D. J. Wilde. Principles of optimal

design: Modeling and Computation, 2nd ed. Cambridge

University Press, 2000.

[140] L. Parker. The effect of heterogeneity in teams

of 100+ mobile robots. Multi-Robot Systems: From

Swarms to Intelligent Automata, 2:205–215, 2003.

[141] L. E. Parker. Current state of the art in dis-

tributed autonomous mobile robotics. In Inter-

national Symposium on Distributed Autonomous Robotic

Systems (DARS), 2000.

[142] L.E. Parker. ALLIANCE: an architecture for fault

tolerant multirobot cooperation. IEEE Transac-

tions on Robotics and Automation, 14(2):220–240, April

1998.

[143] L.E. Parker and F. Tang. Building Multirobot Coali-

tions Through Automated Task Solution Synthe-

sis. Proc. of the IEEE, 94(7):1289–1305, July 2006.

[144] M. Peasgood, C.M. Clark, and J. McPhee. A Complete

and Scalable Strategy for Coordinating Multiple

Robots Within Roadmaps. IEEE Transactions on

Robotics, 24(2):283 – 292, April 2008.

[145] C. Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans,

and D. Lane. Path Planning for Autonomous Un-

derwater Vehicles. IEEE Transactions on Robotics,

23(2):331–341, 2007.

[146] E. Prassler, A. Ritter, C. Schaeffer, and P. Fiorini. A

Short History of Cleaning Robots. Autonomous

Robots, 9(3):211–226, 2000.

[147] A.I. Propoi. Use of linear programming meth-

ods for synthesizing sampled-data automatic sys-

tems. Automatic Remote Control, 24(7):837–844, 1963.

[148] S. Joe Qin and Thomas A. Badgwell. A survey of

industrial model predictive control technology.

Control Engineering Practice, 11(7):733–764, 2003.

[149] C. V. Rao, S. J. Wright, and J. B. Rawlings. Appli-

cation of Interior-Point Methods to Model Pre-

dictive Control. Journal of Optimization Theory and

Applications, 99(3):723–757, 1998.

[150] W. Ren and R.W. Beard. Virtual structure based

spacecraft formation control with formation

feedback. In Proc. of AIAA Guidance, Navigation, and

Control Conference, 2002.

[151] W. Ren and R.W. Beard. A decentralized scheme for

spacecraft formation flying via the virtual struc-

ture approach. In Proc. of American Control Confer-

ence, 2, June 2003.

[152] J. Richalet, A. Rault, J. L. Testud, and J. Papon. Model

Predictive Heuristic Control: Applications to In-

dustrial Processes. Automatica, 14:413–428, 1978.

145

REFERENCES

[153] J. Rodrigues, D. Figueira, C. Neves, and M.I. Ribeiro.

Leader-Following Graph-Based Distributed For-

mation Control. In Proc. of Robotica 2008 - 8th Con-

ference on Autonomous Robot Systems and Competitions,

2008.

[154] R. A. Russell. Tracking chemical plumes in con-

strained environments. Robotica, 19(4):451–458,

2001.

[155] M. Saska, I. Ferenczi, M. Hess, and K. Schilling. Path

Planning for Formations Using Global Optimiza-

tion with Sparse Grids. In Proc. of The 13th IASTED

International Conference on Robotics and Applications

(RA 2007)., Wuerzburg, Germany, 2007.

[156] M. Saska, M. Hess, and K. Schilling. Hierarchical

Spline Path Planning Method for Complex Envi-

ronments. In Proc. of the 4th International Conference

on Informatics in Control, Automation and Robotics.,

Angers, France, 2007.

[157] M. Saska, M. Hess, and K. Schilling. Path Planning

and Motion Coordination for Compact Vehicle-

Formations. In Proc. of 13th Portuguese Conference on

Artificial Intelligence (EPIA’07), Guimaraes, Portugal,

December 2007.

[158] M. Saska, M. Hess, and K. Schilling. Voronoi Strains -

A Spline Path Planning Algorithm for Complex

Environments. In Proc. of the IASTED conference on

Artificial Intelligence and Applications, Innsbruck, Aus-

tria, January 2007.

[159] M. Saska, M. Hess, and K. Schilling. Efficient Air-

port Snow Shoveling by Applying Autonomous

Multi-Vehicle Formations. In Proc. of IEEE In-

ternational Conference on Robotics and Automation,

Pasadena, USA, May 2008.

[160] M. Saska, M. Hess, and K. Schilling. Route Schedul-

ing Approach for Airport Snow Shoveling using

Formations of Autonomous Ploughs. In Proc. of

10th International Conference on Control, Automation,

Robotics and Vision (ICARCV 2008), Hanoi, Vietnam,

December 2008.

[161] M. Saska, M. Kulich, G. Klančar, and J. Faigl. Trans-

formed net - collision avoidance algorithm for

robotic soccer. In Proc. of the 5th Vienna Symposium

on Mathematical Modelling. Vienna: ARGESIM, 2006.

[162] M. Saska, M. Macas, L. Preucil, and L. Lhotska. Robot

Path Planning using Partical Swarm Optimiza-

tion of Ferguson Splines. In Proc. of the 11th IEEE

International Conference on Emerging Technologies and

Factory Automation. ETFA 2006., 2006.

[163] M. Saska, J. S. Mejia, D. M. Stipanovic, and K. Schilling.

Control and Navigation of Formations of Car-

Like Robots on a Receding Horizon. In Proc of 3rd

IEEE Multi-conference on Systems and Control, 2009.

[164] M. Saska, L. Preucil, and M. Kulich. Elliptic Net A

Path Planning Algorithm for Dynamic Environ-

ments. In Proc. of the 3th International Conference on

Informatics in Control, Automation and Robotics, 2006.

[165] K. Schilling. Navigation by cooperating mobile

robots. In Proc of Intelligent robots and computer vi-

sion, pages 354–359, 2004.

[166] K. Schilling and F. Driewer. Remote Control of Mo-

bile Robots for Emergencies. In Proc of 16th IFAC

World Congress, Prague, Czech Republic, 2005.

[167] K. Schilling and Q. Meng. The MERLIN vehicles for

outdoor applications. In G. R. Gerhart, C. M. Shoe-

maker, and D. W. Gage, editors, Unmaned Ground Vehi-

cle Technology IV, Proc. of SPIE, 4715, pages 43–49,

2002.

[168] K. Schilling and L. Preucil. Tele-Presence Methods

Supporting Cooperation of Robots and Humans.

In Proc of IEEE International Workshop on Safety, Se-

curity and Rescue Robotics, Kobe, Japan, 2005.

[169] M. Schmidt, K. Ravandoor, O. Kurz, S. Busch, and

K. Schilling. Attitude Determination for the Pico-

Satellite UWE-2. In Proc. of the 17th World Congress,

2008.

[170] M. Schneider-Fontan and M.J. Mataric. Territorial

multi-robot task division. IEEE Transactions on

Robotics and Automation, 14(5):815–822, 1998.

[171] N. Shahidi, H. Esmaeilzadeh, M. Abdollahi, and C. Lucas.

Memetic Algorithm Based Path Planning for a

Mobile Robot. International journal of information

technology, 1(4):174–177, 2004.

[172] J. Shao, G. Xie, and L. Wang. Leader-following for-

mation control of multiple mobile vehicles. Con-

trol Theory and Applications, IET, 1(2):545–552, March

2007.

[173] D. M. Stipanović, P. F. Hokayem, M. W. Spong, and D. D.

Šiljak. Cooperative avoidance control for multi-

agent systems. Journal of Dynamic Systems, Measure-

ment, and Control, 129:699–707, 2007.

[174] D.M. Stipanović, R. Teo G. Inalhan, and C.J. Tomlin. De-

centralized overlapping control of a formation of

unmanned aerial vehicles. Automatica, 40(8):1285–

1296, 2004.

[175] C. Sultan, S. Seereram, and R. K. Mehra. Deep Space

Formation Flying Spacecraft Path Planning. In-

ternational Journal of Robotics Research, 26(4):405–430,

2007.

[176] D. Swaroop and J. K. Hedrick. String stability of in-

terconnected systems. IEEE Transactions on Auto-

matic Control, 41(3):349–357, 1996.

[177] D. Swaroop and J. K. Hedrick. Constant spacing

strategies for platooning in automated highway

systems. ASME Journal of Dynamic Systems, Measure-

ment and Control, 121(3):462–470, 1999.

[178] H.G. Tanner, S.G. Loizou, and K.J. Kyriakopoulos. Non-

holonomic navigation and control of cooperating

mobile manipulators. IEEE Transactions on Robotics

and Automation., 19(1):53–64, 2003.

[179] H.G. Tanner, G.J. Pappas, and V. Kumar. Leader-to-

Formation Stability. IEEE Transactions on Robotics

and Automation, 20(3):443–455, June 2004.

[180] P.G. Tzionas, A. Thanailakis, and P.G. Tsalides.

Collision-free path planning for a diamond-

shaped robot usingtwo-dimensional cellular au-

tomata. IEEE Transactions on Robotics and Automa-

tion, 13(2):237–250, 1997.

[181] L. Vig and J.A. Adams. Multi-Robot Coalition For-

mation. IEEE Transactions on Robotics, 22(4):637–

649, August 2006.

[182] I. A. Wagner, Y. Altshuler, V. Yanovski, and A. M.

Bruckstein. Cooperative Cleaners: A Study in

Ant Robotics. The International Journal of Robotics

Research, 27(1):127–151, 2008.

146

REFERENCES

[183] I.A. Wagner, M. Lindenbaum, and A.M. Bruckstein. Dis-

tributed covering by ant-robots using evaporat-

ing traces. IEEE Transactions on Robotics and Au-

tomation, 15(5):918–933, 1999.

[184] P. K. C. Wang, F. Y. Hadaegh, and K. Lau. Synchro-

nized Formation Rotation and Attitude Control

of Multiple Free-Flying Spacecraft. Journal of

Guidance, Control, and Dynamics, 22(1):28–35, 1999.

[185] A.R. Willms and S.X. Yang. An efficient dy-

namic system for real-time robot-path planning.

IEEE Transactions on Systems, Man, and Cybernetics,

36(4):755–766, 2006.

[186] A.R. Willms and S.X. Yang. Real-Time Robot Path

Planning via a Distance-Propagating Dynamic

System with Obstacle Clearance. IEEE Transac-

tions on Systems, Man, and Cybernetics, 38(3):884–893,

2008.

[187] W. Wu, H. Chen, and P. Y. Woo. Time optimal path

planning for a wheeled mobile robot. Journal of

Robotic Systems, 17(11):585–591, 2000.

[188] A.M. Bruckstein Y. Altshuler and I.A. Wagner. Shape

Factor‘s Effect on a Dynamic Cleaners Swarm.

In Proc. of International Conference on Informatics in

Control, Automation and Robotics, 2006.

[189] S.X. Yang and C. Luo. A neural network approach to

complete coverage path planning. IEEE Transac-

tions on Systems, Man, and Cybernetics, 34(1):718–724,

2004.

[190] T. T. Yang, Z. Y. Liu, H. Chen, and R. Pei. Forma-

tion Control and Obstacle Avoidance for Multi-

ple Mobile Robots. Automatica, 34(5):588–593, 2008.

[191] J. Ye and R. Qu. Fairing of parametric cubic splines.

In Mathematical and Computer Modelling, 30, pages

121–31. Elseviers, 1999.

[192] B.J. Young, R.W. Beard, and J.M. Kelsey. A con-

trol scheme for improving multi-vehicle forma-

tion maneuvers. In Proc. of American Control Con-

ference, 2002.

[193] Xiaobu Yuan and S.X. Yang. Multirobot-Based

Nanoassembly Planning with Automated Path

Generation. IEEE/ASME Transactions on Mechatron-

ics, 12(3):352 – 356, June 2007.

[194] S. Yue, D. Henrich, W. L. Xu, and S. K. Tso. Point-to-

Point trajectory planning of flexible redundant

robot manipulators using genetic algorithms.

Robotica, 20(3):269–280, 2002.

[195] Z. Zlatev. Computer Treatment of Large Air Pollution

Models. Springer Netherland, 1995.

[196] R. Zlot and A. Stentz. Complex Task Allocation For

Multiple Robots. In Proc. of the IEEE International

Conference on Robotics and Automation (ICRA 2005),

April 2005.

[197] Y. Zou, P. Pagilla, and R. Ratliff. Distributed For-

mation Flight Control Using Constraint Forces.

Journal of Guidance, Control, and Dynamics, 32(1):112–

120, 2009.

147

