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2. Prüfer:

3. Prüfer:
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CHAPTER 1

INTRODUCTION

Electronic structure calculations represent potentially the most important

tool at hand for chemists to explain and predict experimental observations

of quantum phenomena in molecules. The methods that are routinely used

in chemistry can be divided in two main categories: wave function methods

and Density Functional Theory (DFT). The former offer the advantage that

they can systematically converge to more accurate results, at the expense of

a dramatic increase in the computational cost associated with the methods.

The latter, based on an approximate representation of the electron density,

provides an efficient alternative and has so far offered the best compromise

between accuracy and efficiency. Finding its roots in theoretical physics,

where it is typically used to represent extended systems, DFT has become

very popular amongst chemists in the last twenty years. The importance

of the method was recognized in 1998, when the Nobel Prize for chemistry

was awarded to Walter Kohn [1] and John A. Pople for the development

of density-functional theory and computational methods in quantum chem-

istry, respectively. Although a formally exact method, DFT as specified by

Kohn and Sham in their seminal paper [2] is approximate in practice. In

this theory, all non-classical electron-electron interactions and parts of the

correlated kinetic energy are gathered in the so-called exchange-correlation

energy functional. While the exact form of the exchange-correlation func-

tional is unknown, several exact physical and mathematical constraints have

been found to guide the development of increasingly sophisticated and accu-

rate approximations.
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A wide choice of density functionals allows thus for the efficient calculation

of molecular properties, such as enthalpies of formation, molecular structures,

kinetics etc. Some properties remain more challenging, e.g., the s−d transfer

energies in atoms, the dissociation behavior of small radical cations or charge-

transfer excitations, and a general functional that performs equally well for

all the aforementioned problems has yet to be found. Functionals based in the

generalized-gradient approximation (GGA) such as BLYP, [3,4] BPW91, [5]

PBE, [6] or or the more elaborate meta-GGA TPSS [7] are usually outper-

formed by global hybrid functionals. The latter contain a constant fraction

of the exact-exchange energy from Hartree-Fock theory and are still the most

widely used functionals in present-day chemical applications of DFT. There

is considerable flexibility in the definition of the optimal amount of exact

exchange to be included in the hybrid functional and there is evidence that

it depends strongly on the property under investigation. [8–12] It thus be-

came common practice to fit the global mixing coefficient, as well as other

parameters, to empirical data so as to achieve better agreement with the

desired experimental properties. The most popular global hybrid functional,

B3LYP, [13] was optimized to reproduce thermochemical data and contains

20% exact exchange. Based on a systematic prodecure for refining gradient

corrections proposed by Becke [14] several extensively parameterized hybrid

functionals have been introduced in the last years: Some representatives are

the HCTC (Hamprecht-Cohen-Tozer-Handy) family, the MO6 suite by Truh-

lar and coworkers, [15] the BMK (Boese-Martin for Kinetics) [15] and the

Becke98 [16] functional. The exact exchange admixtures in the correpond-

ing functionals ranges between 20 and 54%. Additional inclusion of second

order perturbation corrections as in the double hybrid functional B2PLYP

improves properties that require a more accurate description of dynamical
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correlation effects. [17]

Some failures of pure density functionals, e.g., in the calculation of charge-

transfer excitation energies [18] and dissociation of 3-electron bonds have

been attributed to missing long-range exchange and correlation effects. This

observation lead among others to the introduction of range-separated hybrid

functionals where the exchange component is separated into a short-range

and a long-range part. Using exact exchange at large interelectronic dis-

tances, as in the LC-PBE [19] and CAM-B3LYP [20] functional, has been

shown to improve the above-mentioned properties at the expense of poorer

results for atomization energies and vibrational frequencies as compared to

global hybrid functionals. [21–23]

Local hybrid functionals [24] represent another avenue towards the design

of more flexible, and thus potentially more universal density functionals. The

concept consists in including more or less exact exchange in the functional

as a function of the position in the molecule. The level of admixture is

controlled by a position-dependent local mixing function (LMF) in real-space,

thus yielding molecule-specific amounts of exact exchange.

Previous studies demonstrated how such local mixing functions could be

derived from physical considerations, employing for example an adiabatic

connection approach [25] or the one-particle density matrix. [26] At the same

time, other authors have introduced the PSTS local hybrid functional us-

ing TPSS meta-GGA exchange and correlation. The corresponding LMF

is derived from considerations on the exchange-correlation hole associated

with the chosen meta-GGA ingredients, but it includes nonetheless several

empirical parameters. [27]

Pursuing a clearly semi-empirical approach, physically justified parame-

terized LMFs are employed im this work. The corresponding parameters are
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subsequently fitted to atomization energies and barrier heights. The result-

ing local hybrid functionals are assessed for thermochemistry and kinetics

of main group test sets. Further, the performance for dissociation energies,

equilibrium bond lengths and s − d transfer energies of 3d transition metal

compounds is studied. In the self-consistent implementation of the new func-

tionals, the local hybrid potential is computed as the functional derivative

of the exchange-correlation energy with respect to the orbitals. To reduce

the computational cost of the local hybrid functionals, the calculation of the

exact-exchange energy-density and all terms with the LMF-weighted exact-

exchange potential are commonly simplified using a resolution of identity

approximation. Deviations from the numerically exact potential will be dis-

cussed for isotropic hyperfine coupling constants as well as the total and the

orbital energies.



CHAPTER 2

THEORETICAL BACKGROUND

In the non-relativistic limit, the ground state of many-particle systems such as

atoms, molecules or solids is represented by the time-independent Schrödinger

equation

ĤΨ = EΨ , (2.1)

where the Hamilton operator Ĥ includes quantum-mechanical operators for

all interactions that occur in the system. They are more specifically the

kinetic energy of the electrons and the nuclei as well as the nuclear repulsion,

electron-electron repulsion and Coulomb attraction between electrons and

nuclei. The wave function Ψ contains all information about the system.

The Born-Oppenheimer approximation allows for separating the move-

ment of the electrons from those of the nuclei and thus in electronic struc-

ture calculations just the electronic Hamiltonian is used while the nuclei are

fixed. For a system with N electrons and A nuclei, the electronic Hamilton

operator in atomic units (a.u.) is given as

Ĥel. = T̂ + V̂ne + V̂ee =
N∑
i=1

(
−1

2
∇2
i

)
−

N,A∑
i=1,α=1

Zα
riα

+
N∑
i<j

1

rij
. (2.2)

Even after separating the movement of the electrons from the movement of

the nuclei, an analytically exact solution to the Schrödinger equation with the

electronic Hamilton operator is possible only for one-electron systems such

as the hydrogen atom. Consequently several approaches to find an approxi-

mate solution to the Schrödinger equation are available and even numerically
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almost exact solutions are possible but restricted to very small systems. For

larger N -electron systems, the wave function depending on 3N coordinates

becomes increasingly complicated and its calculation is a rather extensive

task. In the framework of Kohn-Sham density functional theory (DFT) this

problem is circumvented by considering the electron density that depends

only on 3 coordinates instead of the whole wave function. In this work im-

proved approximations in the framework of DFT are sought. Therefore the

basic ideas of the theory will be summarized before turning towards a detailed

description of the density functionals under investigation.

The first Hohenberg-Kohn [28] (HK) theorem constitutes a one-to-one

mapping between the ground-state electron density ρ0 and a given external

potential vext as e.g. that of the nuclei. Since the ground-state density is

directly related to the corresponding wave function, the later is also mapped

to the external potential. The theorem states that a universal functional

of the density exists that describes electronic interactions in any system.

Following from the second HK theorem

E0[ρ0] ≤ E[ρ] = FHK [ρ] +

∫
vext(r)ρ(r) , (2.3)

with

FHK [ρ] = T [ρ] + Vee[ρ] =
〈

Ψ|T̂ + V̂ee|Ψ
〉
, (2.4)

defining the universal HK functional, also the variational principle holds.

That is, the electronic energy from a trial density will always be greater than

the true ground state energy obtained from the true ground state density

Applying the Levy constraint-search method, the energy can be mini-

mized by searching over a restricted space of wave functions. [29] Although
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this approach proves that technically the total energy is a functional of the

ground state density, in principal, a wave function has to be constructed,

and there is no gain in efficiency. In order to bypass the construction of

wave functions, a mathematical expression for the HK energy functional has

to be derived. Considering the two respective contributions in equation 2.4,

the major challenge represents the kinetic energy functional T [ρ]. This is a

rather large part of the total energy as compared to, e.g., the non-classical

electron-electron interaction, and first approximations to the kinetic energy

functional have shown poor performance in atoms and molecules. [29] Only

with the introduction of Kohn-Sham theory DFT became a viable tool in

quantum chemistry and physics.

In this chapter, Hartree-Fock and Kohn-Sham theory are introduced,

compared to each other, and similarities in the corresponding pseudo-eigenvalue

equations are discussed. As the local hybrid functionals investigated in this

work employ existing approximations to pure density functionals some of the

well-known underlying assumptions and physical constraints will be sum-

marized. Note that spin variables are dropped for most of the equations

assuming closed shell systems. Also spatial variables are suppressed if not

essential for understanding.

2.1 Kohn-Sham and Hartree-Fock theory

In Kohn-Sham (KS) theory the largest part of the kinetic energy problem

is circumvented by shifting a small positive kinetic energy contribution into

the exchange-correlation functional and calculating the largest part exactly.

This is done by introducing a non-interacting reference system of N electrons
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as described by a Slater determinant [2, 28]

ΨS (r1, r2, . . . rN) =

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1 (r1) ϕ1 (r2) · · · ϕ1 (rN)

ϕ2 (r1) ϕ2 (r2) · · · ϕ2 (rN)
...

...
. . .

...

ϕN (r1) ϕn (r2) · · · ϕn (rN)

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.5)

that yields by definition the correct ground state density of the interact-

ing system. The kinetic energy of a Slater determinant can be calculated

straightforwardly

TS [{ϕi}] =

〈
ΨS

∣∣∣∣∣
N∑
i

∇2
i

∣∣∣∣∣ΨS

〉
= −1

2

N∑
i

∫
ϕi(r)∇2ϕi(r)dr , (2.6)

and it covers a large part of the total kinetic energy.

Then the total electronic KS energy can be assembled in the following way,

including the above defined kinetic energy of our non-interacting reference

system

EKS = TS
[
ϕKSi

]
+ Vne [ρ] + J [ρ] + EXC [ρ] , (2.7)

the nuclear-electron attraction term

Vne [ρ] =

∫
vne(r)ρ(r)dr , (2.8)

where vne represents an external potential arising from the nuclei, and the

Coulomb repulsion between electrons

J [ρ] =
1

2

∫ ∫
ρ(r1)ρ(r2)

r12
dr . (2.9)
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The remaining non-classical electronic contributions are gathered in the exchange-

correlation functional EXC , that constitutes the workhouse of KS DFT. This

term also includes the difference between the kinetic energy of the fully in-

teracting and the non-interacting reference system arising from electron cor-

relation effects that are not described by a Slater determinant.

Assuming orthonormalized one-electron wave functions {ϕi} (usually de-

noted molecular orbitals), the electron density is obtained by taking the sum

over the square of all occupied orbitals

ρ(r) =
Nocc.∑
i

|ϕi(r)|2 . (2.10)

Although this would be an exact theory in principle, the exchange-correlation

functional is not known exactly, and there is no route for systematic improve-

ment available. Also, the variational principle does not hold fully for an

approximate exchange-correlation functional in the sense that lower energies

than the exact ground state energy may be obtained with a given ground-

state density. However, many physical constraints have been revealed about

the functional itself and even more about the associated exchange-correlation

hole which will be briefly introduced in section 2.3. The exchange-correlation

energy EXC is commonly expressed in terms of an exchange-correlation en-

ergy density εXC(ρ(r)) weighted by the electron density

EXC [ρ] =

∫
dr ρ(r) εXC (ρ (r)) . (2.11)

A similar energy expression to Eq. 2.7 is obtained in HF theory, where the

Slater determinant is used as an approximation to the correct wave function.

Assuming it is normalized, the total electronic Hartree-Fock energy is given
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as

EHF [{ϕi}] = TS [{ϕi}] + VN [{ϕi}] + J [{ϕi}] + EX [{ϕi}] . (2.12)

Here, the only non-classical electron-electron interaction term arises in the

last term

EHF
X [{ϕi}] = −1

2

∑
ij

∫
ϕi(r1)ϕj(r1)ϕi(r2)ϕj(r2)

r12
dr1dr2 . (2.13)

It is related to the Pauli principle that requires anti-symmery of the electronic

wave function and seems to describe an interchange of electrons from one

orbital to another. Therefore this part of the HF energy is called the exchange

energy.

The kinetic energy is denoted TS indicating that it related to a Slater

determinant that does not describe sufficiently a system of interacting elec-

trons. Although both kinetic energy expressions in Eqs. 2.7 and 2.12 coincide

mathematically, different orbitals enter the expression in 2.6, thus yielding

different values for the kinetic energy in KS as compared to HF. Just the

same holds for the two Coulomb terms. Both are genuine functionals of the

electron density in contrast to the kinetic energy functional and the HF ex-

change energy. If KS orbitals are used to evaluate expression 2.13, the result

is usually termed exact-exchange energy rather than HF exchange energy,

emphasizing the difference in the resulting energy value.

Based on historical rather than physical reasons, the exchange-correlation

functional is conveniently divided into an exchange and a correlation part

EXC [ρ(r)] = EX [ρ(r)] + EC [ρ(r)] . (2.14)
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With wave function methods, the correlation energy EWF
C is defined as the

difference between the exact ground state energy and HF

EWF
C = Eexact − EHF (2.15)

. But this definition is not entirely transferable to density functionals, since

the known (approximate) exchange functionals include usually also part of

the electron correlation and, consequently, the DFT correlation functional

does not correspond to the above defined correlation energy.

2.1.1 Kohn-Sham equations and the exchange-correlation poten-

tial

According to the variational principle, for a given external potential the

ground state density minimzes the total energy. Besides, the density is an

expansion of molecular orbitals. Thus, the total energy expression may be

subjected to a variation with respect to the orbitals in order to obtain the

ground state density. Simultaneously imposing orthonormality of the corre-

sponding KS orbitals

∫
ϕi(r)ϕj(r)dr = δij , (2.16)

and applying a unitary transformation to the molecular orbitals yields the

KS equations in their canonical form

f̂KSϕi = εiϕi , (2.17)
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where the KS operator is given through

f̂KS(r1) = ĥi +

∫
ρ(r2)

r12
dr2 + vXC(r1) , (2.18)

and the eigenvalues εi correspond to orbital energies. Note that the orthonor-

mality condition 2.16 also implies that the electron density (cf. Eq. (2.10))

is normalized to the number of electrons

∫
ρ(r)dr = N . (2.19)

The KS operator f̂KS in Eq. (2.17) contains the one-electron operator ĥi

(including the kinetic energy operator and the nuclear Coulomb potential), a

repulsive electronic Coulomb potential and the exchange-correlation potential

defined as the functional derivative of the exchange-correlation energy with

respect to the density

vXC =
δEXC
δρ

. (2.20)

If the exchange-correlation energy EXC depends only on the density and its

gradient, the corresponding potential is fully local and multiplicative. A

non-local operator is, e.g., the exchange operator from HF theory.

v̂exactX ϕi(r1) =
∑
j

∫
ϕj(r2)ϕi(r2)

r12
dr2ϕj(r1) . (2.21)

The HF equations differ from Eq. (2.17) only in the last term of the one-

electron operator and are obtained accordingly by variation of the HF energy

(Eq. (2.12) with respect to the orbitals. If the exchange-correlation energy

in KS becomes orbital dependent (as in hybrid functionals through the exact
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exchange), the corresponding potential is obtained through the functional

derivative of EXC with respect to the orbitals (FDO). The latter is related

to the derivative with respect to the density via

vKSX ϕi =
δEXC
δρ

ϕi =
1

2

δEXC
δϕi

. (2.22)

So far, we have only considered closed-shell systems with an equal number

of α and β electrons. For open-shell systems, unrestricted KS is performed,

that is the α and β electron of the same shell may occupy different spatial

wave functions and the orbital coefficients are obtained from two coupled KS

matrices. They are coupled because information about β electrons enters

the Coulomb as well as the correlation potential acting on the α electrons

and vice versa. Exchange interactions arise by definition between same-spin

electrons only and in DFT a spin-scaling relationship can be used to derive

the exchange energy for open-shell systems from the corresponding closed-

shell case.

2.1.1.1 The Kohn-Sham matrix - introduction of an atomic orbital

basis

In principle, the KS equations (Eq. (2.17)) could be solved numerically, but

mostly the KS orbitals are expanded in a finite atomic orbital (AO) basis of

NBF basis functions

ϕi(r) =

NBF∑
ν

Ciνχν(r) (2.23)

and only the coefficients Ciν are varied to minimize the total energy.

This done by first calculating the KS operator in a given AO atomic
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orbital basis set yielding the KS matrix with elements

FXC
µν =

∫
χµ(r)f̂KSχν(r)dr . (2.24)

The corresponding matrix equation has to be solved iteratively, because the

KS matrix itself depends through the Coulomb and exchange-correlation

potential on the density which in turn is calculated from the orbitals (cf.

Eq. (2.18)). In each iteration the (transformed) KS matrix is diagonalized

yielding a new set of orbitals and thus a new density. This procedure is re-

peated until self-consistency is reached, i.e. when from one cycle to another

the change in energy and density lies below a given threshold. Therefore, this

approach is also referred to as self-consistent field (SCF) method. It has been

introduced in connection with HF where all the elements of the correspond-

ing Fock matrix can be computed analytically. This does not hold for the

exchange-correlation part of the KS matrix in DFT and the corresponding

integrals

∫
χµ(r)vXCχν(r)dr (2.25)

as well as the exchange-correlation energy (cf. Eq. (2.11)) itself have to be

evaluated numerically on a grid.

2.1.2 Self-interaction error

In the expression for the Coulomb repulsion (Eq. (2.9)) between electrons,

the interaction of an electron with itself emerges. This can be seen easily by
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replacing the density by the orbital expansion from Eq. (2.10)

J =
1

2

∑
ij

∫
ϕi(r1)ϕi(r1)ϕj(r2)ϕj(r2)

r12
dr1dr2 . (2.26)

Due to the double summation, terms with i = j arise. Comparison with the

expression for the exact exchange (Eq. (2.13)) shows that this so-called self-

interaction is cancelled by exact exchange and HF is thus self-interaction free.

Most of the density functionals, however, do not accomplish this, and many

failures such as dissociation of one-electron systems and radicals, treatment

of fractional numbers of electrons, charge transfer processes, underestima-

tion of reaction barriers, and overestimation of polarizabilities have been

attributed to the self-interaction error. Based on the adiabatic connection

one-electron self-interaction free functionals have been proposed [30] but it

has been shown that such a functional is not necessarily many-electron self-

interaction free. [31] An explicit treatment has been proposed by Perdew

and Zunger (PZ) in 1981 [32] but the corresponding energy functional is

not invariant under orbital transformation rendering a self-consistent imple-

mentation complicated. This correction provides little or no improvement

for reaction energies and results in too short bond lenghts in molecules. It

was observed that many-electron systems are overcorrected by using the PZ

approach. [33,34]

2.2 Adiabatic connection

The concept of the non-interacting reference system that yields the correct

ground state density constitutes a basis for the KS approach. It is possible

to connect such a non-interacting system to the physical and thus interact-

ing system via a coupling strength parameter λ. This parameter scales the
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electron-electron interaction Vee in the corresponding Hamilton operator

Ĥλ = T̂ + λV̂ee + V̂λ , (2.27)

where λ goes smoothly from zero to one. In order to keep the density constant

upon variation of λ, the potential

V̂λ =

∫
drvλ(r)ρ(r) , (2.28)

becomes coupling-strength dependent while the electron-electron repulsion

operator V̂ee is not, per definition

V̂ee =
∑
i<j

1

|ri − rj|
. (2.29)

Note that for λ = 1, the potential vλ becomes the external potential only

whereas for the uncoupled system (λ = 0) it includes as well the classi-

cal Coulomb and the non-classical exchange operator leading to the non-

interacting reference system, i.e. a Slater determinant. [35]

Therefrom follows an Adiabatic Connection (AC) formalism [36] for the

exchange-correlation energy

EXC =

∫
EXC,λdλ , (2.30)

where the coupling-strength dependent interaction energy is defined as the

difference between the expectation value of the electron-electron repulsion

operator and the Coulomb energy.

EXC,λ = Vee,λ − J . (2.31)
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In the non-interacting limit (λ = 0), only exchange contributes to the non-

classical electron-electron interaction, i.e. Eλ=0
XC = EX . Additionally, in the

non-interacting limit, the gradient of the exact AC with respect to λ is known

as a functional of the KS orbitals (the Görling-Levy second-order perturba-

tion theory correlation energy). [37, 38] The AC provides a general justifi-

cation for hybrid functionals that mix the exact-exchange energy with DFT

exchange and correlation. [35, 39] Approximate functionals for the systems

H2 and He were derived using parametrized functions of λ and fitting to

the exact full CI energies of the corresponding molecules. [40] Similarly local

mixing functions for local hybrids were deduced from the AC [25] but will

not be further addressed in this work.

2.3 Exchange-correlation hole

In the KS total energy expressions of Eq. (2.7) the exchange-correlation en-

ergy is a purely quantum mechanical feature. It stems from the fact that

electrons are correlated and, as compared to a purely classical interaction

between charged particles, they avoid each other in order to lower repulsion.

Thus the exchange-correlation energy as well as exchange in HF (Eq. (2.12))

constitute a negative contribution to the total electronic energy. Having this

in mind, the entire electron-electron interaction (Coulomb and exchange-

correlation energy) can be written as a repulsion between the charge density

ρ(r1) and another charge density ρ(r2) reduced by the so-called exchange-

correlation hole ρXC

J + EXC =
1

2

∫
ρ(r1) [ρ(r2) + ρXC(r1, r2)]

r12
dr1dr2 . (2.32)
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This hole function depends on both coordinates and reduces the charge den-

sity ρ(r2) around the reference electron at r1. The hole function is directly

related to the diagonal element of the second order density matrix ρ2(r1, r2)

which describes the probability of finding an electron at position r1 if the

other is located at r2

ρ2(r1, r2) = ρ(r1)ρ(r2) + ρ(r1)ρXC(r1, r2) . (2.33)

In the quest for improved approximations to the exchange-correlation

functional, considerable attention has been paid to the exchange-correlation

hole ρXC , [41,42] and consequently, many of its properties are known. Hence,

many density functionals are derived from models [43–45] for the exchange-

correlation hole or at least based on considerations about the underlying hole

function.

Since the angular dependence is irrelevant for the calculation of exchange-

correlation energies (cf. Eq. (2.32) ) usually only the angle-average of the

hole function is considered. Hence, the exchange-correlation energy density

(Eq. (2.11)) can be represented in terms of the angle-averaged exchange-

correlation hole

εXC (ρ(r)) =

∫
du 2π u ρXC(ρ(r), u) , (2.34)

where u is the interelectronic distance

u = |r− r′|. (2.35)

According to the the exchange-correlation functional, the hole function
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can be divided into an exchange and a correlation part

ρXC(ρ(r), u) = ρX(ρ(r), u) + ρC(ρ(r), u) , (2.36)

and the focus will henceforth lie on the exchange hole and the exchange

functional.

In open-shell systems spin polarization

ζ =
ρα − ρβ

ρ
(2.37)

has to be considered, where the total electron density is the sum over the

respective spin-densities (ρ = ρα+ρβ) . Since by definition exchange interac-

tion only occurs between same-spin electrons, the exchange hole for open-shell

systems is obtained from two separate α and β exchange holes. For the ex-

change hole an exact spin-scaling relationship is available. [46–49] Thus, only

the spin-unpolarized case (ζ = 0) needs to be considered for exchange hole

models and spin polarization can be introduced later on.

As pointed out before, several properties of the exchange and correlation

holes are well stablished. Three of them have been shown to be crucial for

the success of approximate densitiy functionals. [41, 50] First, the exchange

hole is normalized to a unit charge

4π

∫
u2ρX(ρ(r), u)du = −1 . (2.38)

Second, it is bound to be negative for any interelectronic distance u, and

thirdly it possesses a finite on-top value [41]

ρX(ρ(r), u = 0) =
1

2
ρ(r) (2.39)
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for vanishing interelectronic distances u. The curvature of the exchange hole

at small u is zero

dρX
du
|u→0 = 0 , (2.40)

while the correlation hole exhibits a cusp. [51] In the high-density limit, the

exact exchange-correlation hole reduces to exchange only .

The exact exchange-hole (from HF theory) can be calculated from the

one-particle density-matrix. It may be strongly delocalized, e.g. in stretched

systems, and just in combination with the exact correlation hole a rather

localized hole is obtained. [52] By contrast, approximations to the exchange

and correlation functionals are based on localized holes around the reference

electron. Due to the missing non-locality of the underlying exchange hole in

common density functionals, the electrons are sometimes described as short-

sighted. A localized exchange hole in DFT also corresponds to the finding

that the exchange functional includes some static correlation. It should be

noted that, starting from the exchange hole for the homogeneous electron gas,

gradient corrections usually make the hole deeper and thus more localized

around the reference electron.

A few models [43, 45, 53–55] for the exchange and correlation hole exist

and progress in this area is expected to be quite useful for the developement

of new density functionals or at least for replacing empirical parameters in

existing approaches.

2.4 Approximations to the exchange and correlation functional

The earliest approximation to the exchange correlation energy density is

based on the homogeneous electron gas model, [2,28] a system with constant
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density which may be described using periodic boundary conditions similar

to the particle in a box. [29] The analytical form for the exchange-energy

density, also called Slater exchange [56] is given through

εSlaterX (ρ(r)) = Cx

∫
ρ

4
3 (r)dr , (2.41)

with the coefficient Cx = 3
4

(
3
π

) 1
3 . For the correlation energy, which has to be

evaluated numerically, several fits exist, [47,57] the most popular ones being

those by Vosko, Wilk and Nusair [57] (VWN). Another fit frequently used

is the one by Perdew and Wang. [47] Since in the homogeneous electron gas

exchange and correlation depend on the density only and no gradients ap-

pear, it is also called the local density approximation (LDA) or for open-shell

systems, the local spin density approximation (LSDA). Slater exchange and

VWN correlation are the corresponding functionals, if the LSDA is employed.

Although LSDA yields reasonable results for solid metals that are naturally

closer to the homogeneous electron gas due to their band structure, it is not

satisfying for atoms and molecules: Binding energies are, e.g., systemati-

cally overestimated and total atomic energies usually too high (magnitude

too low). [58]

A straightforward way of improvement over such a local functional would

be a Taylor expansion in the density. Indeed, a gradient expansion of the

exact exchange hole exists and has been used as a basis to introduce a gra-

dient correction to the LDA exchange energy density. However, if higher

gradients of the density are neglected, the exchange hole is not normalized to

a unit charge any more and furthermore the negativity condition is violated.

Among others, these constraints have been shown to be the major reason

for the former success of LSDA. [36, 59] Actually, simply adding a gradient
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correction according to the gradient expansion in some cases even detoriated

results. [29] In order to restore the important properties of the exchange hole,

a so called generalized-gradient approximation (GGA) has been introduced

independently by Perdew [60, 61] and Becke [62]. Their approaches differ in

the underlying gradient expansion: while Perdew has used the expansion in

the density, Becke employed the exact behavior of the sphercially averaged

exchange hole at small interelectronic distances u

ρX (u) =
1

2
ρ+

1

12

(
∇2ρ+ 2τ +

1

2

[
(∇ρ)2

ρ

])
u2 . (2.42)

Obviously this expression reduces to the correct on-top value for vanishing

values of u.

In the GGA real-space cut-offs applied to the exchange hole guarantee

that it is negative everywhere and restores normalization. Via integration of

the interelectronic distance (cf. Eq. (2.34)) the exchange energy density is

obtained from the modified hole. The latter is related to the exchange energy

through integration over space (cf. Eq. (2.11)). That is why the Laplacian of

the density that emerges in the exact gradient expansion of the exchange hole

can be suppressed by partial integration over r. As will be discussed later,

this procedure gives rise to part of the gauge problem of the exchange-energy

density in local hybrid functionals. [63] Note that the correlation functional

by Lee, Yang and Parr (LYP) [4, 13] which is typically called a GGA, has

been derived from the Colle-Salvetti correlation energy formula that employs

the HF second-order density matrix rather than the gradient expansion of the

correlation hole. The correlation functional by Perdew and Wang (PW91) [5]

and its simplified follow-up,the PBE functional, [6] on the other hand are

based on a similar procedure as described above for exchange, but for the
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correlation hole instead.

Quite often such GGA functionals contain one or more empirical pa-

rameters, such as three fitted to the helium atom in the LYP correlation

functional or one in the B88 exchange functional [3] obtained from a least-

squares fit to the HF exchange energies of noble gas atoms. In the PW91

and PBE exchange and correlation functionals, parameters are fitted to con-

straints such as the slow and rapidly varying density limits or the high density

limit. [5, 6, 53,64]

In the Jacob’s ladder hierarchy of density functionals introduced by Perdew

[46] the LSDA constitutes the first step, GGAs the second and on the third

functionals such as meta-GGAs that depend not only on the density and its

gradient but additionally on explicitly orbital-dependent quantities as the

kinetic energy density or the Laplacian of the density

τ =
1

2

∑
i

|∇ϕi|2 . (2.43)

Hybrid functionals incorporate a constant fraction of exact exchange as

defined in Eq. (2.13), which is an orbital dependent and non-local quantity.

These functionals are therefore assigned to the fourth rung of Jacob’s ladder,

also termed hyper-GGAs: The first hybrid functional introduced by Becke

includes 50% exact-exchange energy mixed with 50% Slater exchange and

this mixing scheme is therefore referred to as Becke’s half and half functional

SH&HSVWN. Its GGA based descendent, BH&HLYP, employs the same

scheme. One of the most popular and commonly used density functinals,

B3LYP, [13,65] is based on a semi-empirical parametrization scheme (with 3

parameters fitted to the atomization energies of the small G2-1 set), incor-

porating 20% exact exchange. Despite such a semi-empricial procedure, its
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universal applicability has been questionned only in the last years after ef-

fectively being the default density functional in quantum chemistry for more

than 10 years. Since the exact-exchange admixture is constant throughout

the whole system, the above described functionals are often called global hy-

brids and in a general form may be given through

EXC = a0E
exact
X +(1−a0)ELSDA

X +b∆E
(meta−)GGA
X +ELSDA

C +c∆E
(meta−)GGA
C .

(2.44)

Here ∆E
(meta−)GGA
X and ∆E

(meta−)GGA
X denote either meta- or simpler GGA

corrections to the LSDA exchange and correlation respectively. In the B3-

scheme [65] the parameters have been optimized to a = 0.2, b = 0.72 and

c = 0.81. After their inital success, several limitations of global hybrid func-

tionals have been revealed. In particular varying amounts of exact-exchange

admixture were suggested depending on physical considerations or simple fits

to molecular properties.

Functionals that are located on the fifth and final rung of Jacob’s ladder

towards density functional heaven include additional information on the vir-

tual orbital space. According to the Jacob’s ladder terminology, this rung

is called generalized random phase approximation. Representatives are, e.g.,

double local hybrid functionals, such as the B2-PLYP functional [17] that

includes some MP2 correlation energy additionally to exact exchange, Becke

exchange and LYP correlation.

Another classification of functionals proposed by Kaupp and Arbuznikov

[66] consists of only three categories and reflects a more implementational

viewpoint. The lowest category includes only the density and its derivatives

and gives rise to a local and multiplicative potential. Functionals belonging
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to the second class contain ingredients that depend on occupied orbitals

such as the kinetic-energy density and the exchange-energy density. The

corresponding potentials are non-multiplicative and usually non-local. In the

third class, functionals contain information about the virtual orbital space as

well. Meta-GGAs may belong to either the first if they include the Laplacian

of the density or the second category if the kinetic-energy density is involved.

A systematic procedure for refining gradient corrections to the LSDA

exchange and correlation energy densities introduced by Becke [14] has paved

the way for a whole series of extensively parametrized GGA, meta-GGA and

global hybrid functionals. In this approach GGA exchange and correlation

correction factors are expanded in a power series in a mapping of the the

reduced density gradient squared s2, where

s (r) =
|∇ρ (r)|

2 (3π2)1/3 ρ (r)4/3
. (2.45)

The corresponding GGA global-hybrid functional [14] (B98) contains 10 em-

pirical parameters fitted to thermochemical data. Since the parameters have

been fitted in basis set free calculations, its performance can be exceeded

by other functionals when atomic basis sets are employed. Using the same

ansatz, the HCTC functional [67] has been obtained and by including infor-

mation about the exchange-correlation potential it was possible to increase

the number of parameters up to 15 without problems of overparameterization.

By including the kinetic energy density and the exact-exchange energy, the re-

lated meta-GGA τ -HCTC and the τ -HCTC hybrid [68] have been developed

by Handy et al. The meta-GGA global hybrid M05 [69, 70] by Truhlar and

coworkers includes 25 parameters, their follow-up functionals that constitute

the M06 suite [15] even more. Another meta-GGA hybrid, the BMK func-
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tional, [71] based on the form of the τ -dependent HCTC hybrid functional

includes 42% exact exchange and in total 17 parameters. Obviously, most

of these functionals yield impressive results for their underlying training sets

and related properties. For other test sets, however, performance may deto-

riate and as a consequence different functionals have been recommended for

different properties and molecule classes. [72, 73] Also, the constant amount

of exact exchange in global hybrids of this series of functionals varies between

19 and 54%. Since the global mixing parameter appears to be non-unique

the concept of mixing exact exchange with density functional exchange was

generalized pursuing two different routes.

One route leads to range-separated hybrid functionals that are based on

a partitioning of the r12 operator in the exchange interaction into different

ranges, using DFT at one and exact exchange at the other range. An error

function is generally employed to go smoothly from DFT to exact exchange

and at least one parameter is required that determines the slope of this

function.

In the Coulomb-attenuated method, exact exchange is used at long range,

improving properties that suffer from the incorrect potential. These include

the polarizability of long chains, excitations for Rydberg states and charge

transfer excitations using time-dependent DFT. One representative of this

class would be CAM-B3LYP [20] which improves the above-mentioned prop-

erties as well as classical reaction barriers. [23] By appropriately fitting the

parameter inside the error function, s − d-transfer energies have been im-

proved considerably with a long-range corrected GGA functional. [74] Stud-

ies on long-range corrected hybrids with PBE exchange and correlation have

revealed that an improvement over the PBE global hybrid with 25% exact

exchange is attained for barrier heights and for dissociation of two-center
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three-electron systems. Atomization energies for the small G2-1 set are still

more acurate with the global hybrid. For the full G2 and G3 set the range-

separated hybrid, however, performs better. [19,22]

A hybrid functional based on a screened Coulomb potential by Heyd,

Scuseria and Ernzerhof (HSE) on the other hand uses a fraction of exact

exchange at short range only. It has been developed explicitly for metallic

systems that require periodic boundary calculations. The latter become quite

expensive if hybrid functionals are employed due to the long-range exchange

interaction. The HSE functional has therefore the advantage over the cor-

responding global hybrid of being more efficient for extended systems while

maintaining a given accuracy. Both functionals, CAM-B3LYP and HSE yield

worse enthalpies of formation than B3LYP.

In addition to the long- and short-range corrected functionals, a PBE

based functional with exact exchange in the middle range of the interelec-

tronic distance has been investigated; the results are very similar to those

obtained from the long-range corrected PBE. [75]

2.5 Local hybrid functionals

Another natural generalization of global hybrid functionals are local hybrids

where the constant mixing parameter a0 (cf. Eq. (2.44)) is replaced by a

real-space function yielding thus a position dependent admixture

ELh
XC =

∫
g (r) εexactX (r) dr +

∫
(1− g (r)) εDFTX (r) dr + EC . (2.46)

The local mixing function (LMF) g (r) should be bound between zero and

one. (If not a physically unjustified negative exchange hole may, for example,

occur.) Possible choices for g(r) will be addressed in section 4. Since the
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correlation part of a global or local hybrid functional is just a pure density

functional, the corresponding potential remains unaffected by the LMF. In

the following, basic equations will thus be derived with focus on the exchange

part only.

2.5.1 The local hybrid potential

Hybrid functionals are explicitly orbital-dependent, and the associated po-

tential is clearly non-local due to the exact-exchange part. It has been ar-

gued that this represents a step outside the original KS scheme where the

potential is assumed to be purely local and multiplicative. [2, 76] Actually,

an optimized effective potential [77–80] (OEP) could be derived from the

non-local and non-multiplicative one but the procedure often suffers from

numerical instabilities and is computationally more expensive. In this work,

the potential has thus been evaluated as a functional derivative with respect

to the orbitals (FDO) (cf. Eq. (2.22)) without further localization of the po-

tential. For the exchange part of local hybrid functionals, the FDO is given

by

δEX
δϕi (r)

= g (r) v̂exactX ϕi (r) + v̂exactX (g (r)ϕi (r))

+ [1− g (r)]
∂εDFTX

∂ϕi
−∇

(
[1− g (r)]

∂εDFTX

∂∇ϕi

)
+
∂g (r)

∂ϕi
∆εX −∇

(
∂g (r)

∂∇ϕi
∆εX

)
, (2.47)

where

∆εX = εexactX − εDFTX . (2.48)

The first two terms in Eq. (2.47) are a result of the variation in the exact-
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exchange energy density weighted by the local mixing function∫
g (r) δεexactX (r) dr . They have to be evalutated numerically on the grid

or analytically using an auxiliary basis set and the resolution of the identity.

The next two terms in the potential are essentially identical to the well-known

DFT potential weighted by the local mixing function. In the last two terms

derivatives of the local mixing functions are needed, and in this implemen-

tation they are evaluated employing partial derivatives with respect to the

density, the absolute square of the density gradient |∇ρ|2, and the kinetic

energy density τ .

∂g

∂ϕi
=
∂g

∂ρ

∂ρ

∂ϕi
+

∂g

∂ |∇ρ|2
∂ |∇ρ|2

∂ϕi
= 2

∂g

∂ρ
ϕi + 4

∂g

∂ |∇ρ|2
∇ρ · ∇ϕi (2.49)

∂g

∂∇ϕi
=

∂g

∂ |∇ρ|2
∂ |∇ρ|2

∂∇ϕi
+
∂g

∂τ

∂τ

∂∇ϕi
= 4

∂g

∂ |∇ρ|2
(∇ρ) ϕi +

∂g

∂τ
∇ϕi (2.50)

Applying several times partial integrations in order to avoid second-order

derivatives of the basis functions and gradients of the LMF or the DFT

exchange-energy density, the following integrals are obtained

FX
µν =

1

2

(∫
χµgv̂

exact
X χν +

∫
χµv̂

exact
X (gχν)

)
+

∫
χµ [1− g]

∂εDFTX

∂ρ
χν + 2

∫
[1− g]

∂εDFTX

∂ |∇ρ|2
∇ρ · ∇ (χµχν)

+

∫
χµ∆εX

∂g

∂ρ
χν + 2

∫
∆εX

∂g

∂ |∇ρ|2
∇ρ · ∇ (χµχν)

+
1

2

∫
∆εX

∂g

∂τ
∇χµ · ∇χν . (2.51)

They constitute the exchange part of the Kohn-Sham matrix.
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2.6 Exact-exchange energy-density and potential

In local hybrid functionals due to the real-space weighting one has to deal

with exchange-energy densities derived from different approximations. In

contrast to the integrated exchange energy, the exchange energy per particle

is not well-defined and any function integrating to zero could be added. This

fact has been addressed in the literature as the gauge-problem. Furthermore,

for the potential in self-consistent calculations, non-standard exchange inte-

grals have to be evaluated, where the exact exchange potential is additionally

weighted by the local mixing function. Just as any exact-exchange energy

density these would have to be calculated by numerical integration which is

rather costly. A more efficient, yet approximate solution is found by applying

a resolution of the identity which is a common procedure to speed up elec-

tronic structure calculations with HF, DFT or relativistic approaches. After

briefly outlining the gauge problem, more details on the resolution of the

identity will be given below.

2.6.1 The gauge problem

The relation between the exchange energy and its energy density per particle

shows that any function F (r) integrating to zero can be added to the latter

without changing the energy

EX =

∫
drεX (ρ(r)) + F (r) , (2.52)

where
∫
F (r)dr = 0.

In global hybrids this problem does not arise as integrated exchange en-

ergies are combined by a factor outside the integrated quantities. Local

hybrids, however, yield an unrecoverable error if two energy densities with
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different gauges are mixed. Since the expression for the exchange energy in

the LSDA (Slater exchange) can be derived from the HF approximation of a

unifrom electron gas, the exact-exchange energy density and the Slater coun-

terpart appear to share by definition the same gauge. [81] This could explain

partly the success of local hybrid functionals without gradient correction in

the DFT part.

But GGA functionals loose this gauge due to the integration by parts

as outlined above. Since they yield the homogeneous limit in regions of

constant density, a larger error occurs most likely in inhomogeneous regions

with GGAs as compared to the LSDA. [66] Or, as has been pointed out by

Mattson and Armiento [82], there is no analytic gradient expansion for the

exchange energy per particle but only for the total exchange energy or the

exchange hole. Nevertheless, it is possible to calculate an unambiguous en-

ergy density or so-called virial energy densities. But, in the case of exact

exchange, both require calculation of the corresponding optimized effective

potential [63] which is computationally more demanding and also often nu-

merically unstable. [80] Moreover, additional errors can be introduced in such

a gauge correction through an approximation to the OEP.

For a recently proposed local hybrid functional with TPSS meta-GGA ex-

change and correlation, [27] a gauge has been constructed from the divergence

of a vector field. This gauge function includes three adjustable parameters

found by making the TPSS exchange-energy density as close as possible to

the exact exchange in appropriately chosen systems. In the homogeneous

limit, the gauge function tends to zero. It has been discussed that the gauge

has a larger influence on atomization energies than on barrier heights.

The gauge presented in Ref. [83] contains additionally second-order deriva-

tives of the density, and a self-consistent implementation using the corrected
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gauge is thus rather elaborate. Consequently, in a recent assessment, only

self-consistent results for the conventional gauge have been presented. [84]

Other suggestions to convert the exact-exchange energy density to the gauge

of a semi-local functional (GGA or meta-GGA) employ a coordinate trans-

formation of the exact-exchange hole, [83] which is costly to calculate.

2.6.2 Resolution of the identity approximation

It is possible to reduce computational cost of HF and DFT calculations by

approximating the two-electron integrals (µν|ηλ) which constitute a signifi-

cant bottleneck in many types of electronic structure calculations. The cor-

responding procedure is sometimes referred to as density fitting although

mostly only basis function pairs are fitted. The same result can be obtained

by inserting a complete basis leading to the term resolution of the identity

(RI) approximation. Note that the underlying algorithm to both methods

are identical. For Coulomb integrals the formal scaling can be reduced by

applying the RI approximation while just a smaller prefactor is obtained for

the calculation of exchange integrals. The fundamental idea is to expand a

product of basis functions in a new auxiliary basis

χµ(r)χν(r) ≈
Naux∑
u

dµνu αu(r) , (2.53)

which is approximate if the new basis is finite (with Naux basis functions).

Such an expansion can be employed in principle for any function and it is

also the underlying principle of the AO expansion of MOs (Eq. (2.23)). A

residual function measures the difference between the exact quantity and the
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basis set expansion

Rµν(r) = χµ(r)χν(r)−
∑
u

dµνu αu(r) . (2.54)

The coefficients dµνu in Eq. (2.53) are obtained by minimizing either the over-

lap integral also called the norm

∫
Rµν(r)Rµν(r)dr , (2.55)

or the self-repulsion

∫ ∫
Rµν(r1)r

−1
12 Rµν(r2)dr1dr2 (2.56)

of the residual function. From minimization of the overlap integral follows

an expressionfor the coefficients

dµνu =
∑
t

∫
χµ(r)χν(r)αt(r)dr (S−1)tu (2.57)

that involves the overlap integral Stu =
∫
αt(r)αu(r)dr. Minimizing the self-

repulsion yields

dµνu =
∑
t

∫
χµ(r1)χν(r1)r

−1
12 αt(r2)dr1dr2 (V−1)tu , (2.58)

where Vtu =
∫ ∫

αt(r1)r
−1
12 αu(r2)dr1dr2 denotes a two-electron repulsion in-

tegral.

Formally, evaluation of Coulomb and exchange matrices scales with the

fourth power of the number of basis functions NBF . When using the RI-

approximation, scaling for the evaluation of the Coulomb matrix reduces to



35

O(N2
BFNaux). The formal scaling behavior for the exchange matrix remains

unchanged but the cost is reduced due to a smaller prefactor. [85]

2.6.2.1 Approximated quantities in local hybrid calculations

The goal of the RI-approximation to the Coulomb and exchange part of the

electronic-interaction part of the KS matrix is reduction of computational

cost. In case of the local hybrid functionals the RI is applied to avoid even

more expensive numerical integration as some integrals or quantities can

simply not be calculated analytically. Numerical integration of the LMF-

weighted exchange integrals would have to be done on every grid point and

the impact of the RI is thus even larger for local hybrid functionals. Consid-

ering e.g. the first integral in Eq. (2.51)

K̃µν =

∫
χµ (r) g (r) v̂exactX χν (r) dr , (2.59)

which includes additionally to the exact-exchange potential the LMF and

therefore would have to evaluated numerically. Similar to fitting the basis

function pairs, the exact-exchange potential acting on a basis function may

be expanded in an auxiliary basis {fa}

v̂exactX χν (r) =
naux∑
a

dνafa (r) . (2.60)

Minimizing the overlap of the residue function

Rν = v̂exactX χν (r)−
∑
a

dνafa (r) (r) , (2.61)
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the expansion coefficients are found to be

dνa =
∑
b

S−1ab

∫
fb (r) v̂exactX χν (r) dr , (2.62)

where S denotes the (rectangular) overlap matrix between auxiliary basis

functions {fa} and the atomic basis set {χν}. Inserting the expression

for the expansion coefficients (eq. 2.62) into expansion 2.60 yields the RI-

approximation to the exchange potential

v̂exactX χν (r) =
∑
a,b

S−1)ab

∫
fb (r′) v̂exactX χν (r′) dr′ fa (r) . (2.63)

There are two caveats: (i) the basis set expansion does not yield the cor-

rect asymptotic behavior for the potential and (ii) rather large and weakly

contracted basis sets of high quality are needed. [79]

Suppose an AO basis with nbas contracted and naux auxiliary basis func-

tions. The formal scaling for the calculation of the exact-exchange energy-

density would be (nbas)
2 (naux)

2. Hence, the cost is increased as compared to

global hybrid functionals due to the larger number of auxiliary basis func-

tions. Furthermore the exact-exchange energy-density and the correspond-

ing potential would have to be calculated numerically further away from the

molecule in order to obtain the correct asymptotics.

As compared to the overlap norm, the error is reduced by one order of

magnitude if the Coulomb norm is employed. In the context of OEP approx-

imations, Hesselmann and Manby therefore proposed the use of the Coulomb

norm together with Poisson functions as an auxiliary basis in Eq. (2.60). This

would yield correct asymptotics and increase the accuracy with a normal-

sized basis. Poison functions are, however, not readily available in any quan-
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tum chemical programs, and the corresponding integrals are more expensive.

By choosing the more feasible overlap norm, even for energy calculations large

uncontracted basis sets should be used in order to minimize errors due to the

RI approximation. Based on studies with OEP approximations a thorough

validation with different basis sets and under consideration of the numerically

exact potential is strongly recommended.

If instead of the overlap norm, the Coulomb norm was employed for the

expansion coefficients, the error in the potential would be one order of mag-

nitue smaller. Indeed, Hesselmann and Manby [86] proposed the use of the

Coulomb norm together with Poisson functions as a basis. This would yield

correct asymptotics and reasonable accuracy with a normal sized basis. But

again higher accuracy is bought by increasing computational cost and while

the effects in property calculations with local hybrids remain to be analyzed,

total energies are likely to be less sensitive.

If the atomic orbital basis is used as an auxiliary basis, the above expres-

sion for the potential simplifies to

v̂exactX χν (r) =
∑
γ,σ

χγ (r) S−1γσKσν , (2.64)

where K is the matrix representation of the exchange operator in the AO

basis

Kµν =

∫
χµ (r) v̂exactX χν (r) dr (2.65)

and S−1 the inverse of the overlap matrix in the orbital basis with elements

Sµν =

∫
χµ (r)χν (r) dr . (2.66)
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Inserting the resulting expression for the exact-exchange potential from

Eq. (2.64) into Eq. (2.59), yields an analytical expression for the LMF weighted

exact-exchange integral

K̃µν =
∑
γ,σ

GµγS
−1

γσKσν , (2.67)

where the LMF weighted overlap matrix

Gµν =

∫
χµ (r) g (r)χν (r) dr (2.68)

is calculated on a grid together with the other DFT integrals without further

increasing the costs.

Finally, the integral related to the second term in Eq. (2.47) is just the

transpose of the first, and both terms together are simply two times the

symmetric part of the K̃ matrix.

∫
χµ (r) g (r) v̂exactX χν (r) dr+

∫
χµ (r) v̂exactX (g (r)χν (r)) dr = K̃µν +K̃νµ .

(2.69)

In a similar way to the above-discussed potential terms, the exact-exchange

energy-density

εexactX (r1) = −1

2

∑
ij

ϕi (r1)ϕj (r1)

∫
r−112 ϕi (r2)ϕj (r2) dr2 (2.70)

can be calculated analytically based on the relation in Eq. (2.64) as follows

[78]

εexactX (r) = Tr
(
X (r) S−1KP

)
, (2.71)
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where the matrix X contains products of basis functions

Xµν = χµ(r)χν(r) . (2.72)

Since this matrix is clearly symmetric and the product of an antisymmetric

matrix with a symmetric matrix has zero trace, only the symmetric part of

the product matrix S−1KP is needed.

For both of these RI approximations, the assumption has been made

that the atomic orbital basis constitutes a complete set for the exchange

potential Eq. (2.64). But even a decontraction of the AO basis does not

provide a reliable solution in all cases. The employment and development of

an auxiliary basis for future use of local hybrid functionals is mandatory.

Another solution might be an RI approximation to the product between

the local mixing function and a basis function in Eq. (2.59) instead. Espe-

cially if it g(r) includes empirical parameters, possible inaccuracies in the

basis set expansion would be absorbed. As a result, however, the parameters

would be only valid for a given auxiliary basis set and thus not transferable.



CHAPTER 3

TRAINING AND ASSESSMENT SETS

Despite the continuous success of density functional methods for the calcula-

tion of various properties, such as molecular geometries, magnetic properties,

excitation energies etc. most studies are preceded by a thorough calibration.

In this way, for almost any quantum chemical problem an appropriate den-

sity functional can be found, but the result is far from being universal. It is

therefore desirable that new functionals that may be constructed for a given

purpose are also applicable to properties that are known to be well described

by established and popular functionals. The B3LYP functional is, e.g., com-

monly used as a reference, although an increasing number of examples for

its limitations has been revealed in the last years. This chapter provides an

overview over several relevant and established test sets. They include thermo-

chemical properties such as atomization energies or dissociation energies as

well as kinetics and structural parameters. For each of them merely general

trends in the performance of density functionals will be outlined leaving a

detailed discussion on the performance of local hybrid functionals, including

their limitations, to section 7.

3.1 Atomization energies

The atomization energy is defined as the energy required to break a molecule

into its component atoms. It is a quite sensitive test for any quantum chem-

ical method as a balanced description of atoms and molecules is imperative.

Furthermore, quantum chemical calculations often benefit from error can-

cellation, especially if as many bonds are broken as formed. In the case of
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atomization energies, no such compensation occurs, as all bonds are broken.

Atomization energies are directly related to enthalpies of formation ∆fH
0

which can be measured experimentally. Here, atomization energies from the

so-called G3/99 [10] set are used. Historically it is divided into the G2-1, G2

and G3 subsets. For a given molecule AxByHz the atomization energy De,

excluding the zero point energy (ZPE), is calculated via

De = xE(A) + y E(B) + z E(H)− Ee(AxByHz) . (3.1)

The corresponding zero-point corrected atomization energy D0 is obtained

by adding the ZPE to the molecular energy

D0 = De − ZPE(AxByHz) . (3.2)

Experimental enthalpies of formation at 0K can be converted into atom-

ization energies under consideration of experimental enthalpies of formation

at 0K for gaseous atoms as in Ref. [87]

D0 = x∆fH
0(A) + y∆fH

0(B) + z∆fH
0(H)−∆fH

0(AxByHz) . (3.3)

Here rather large uncertainties occur for the atoms Be, B and Si (2.0, 1.2

and 1.0 kcal/mol respectively).

Theoretical enthalpies of formation at 298 K are calculated by thermal

correction to ∆fH
0 at 0 K. For simpler comparison with calculated at-

omization energies, instead of correcting the latter to 298 K, experimental

∆fH
0(298K) for the G3 subsets have been converted to De values. For this

purpose scaled HF ZPEs and thermal corrections based on HF frequencies

have been taken from the literature [88]. The accordingly converted and ZPE
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exclusive atomization energies for the G2 and G2-1 subset have been taken

from Ref. [89].

While the LSDA strongly overbinds such molecules, GGAs already im-

prove atomization energies. Hybrid functionals with 20 to 25% exact ex-

change as in B3LYP or PBE hybrid have been shown to be best for these ther-

mochemical properties. However, mean errors increase especially for B3LYP

when going from the G2-1 over G2 to the G3 test set, which is most prob-

ably due to the increasing number of larger hydrocarbons that give rise to

cumulative errors in the atomization energy.

3.2 Barriers heights

Standard GGA and meta-GGA functionals tend to underestimate reaction

barriers due to an overstabilization of the transition state. [90] Incorpora-

tion of exact exchange as in global hybrid functional improves this tendency

but as compared to thermochemical properties, it has been shown that a

higher exact-exchange admixture around 50 % is required for barrier heights

(BH). This fact usually points towards a more pronounced self interaction

error which is cancelled only by exact exchange (or computationally more

demanding self-interaction corrected KS theory). Expecting a higher flexi-

bility for local hybrid functionals, they are thus tested for reaction barriers

as well. In this work, a test set introduced by Truhlar and coworkers [9, 91]

that comprises 19 non-hydrogen transfer (NHT) and 19 hydrogen-transfer

(HT) forward and backward barrier heights will be employed. It is part of

the larger set used for optimization of density functionals known as the M05

and M06 suite. Their benchmark values are mostly so-called best estimates

based on a combination of experimental rate constants and dynamical sim-

ulations. [9] Some quantities from the hydrogen-transfer set and most of the
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non-hydrogen transfer barriers are based on CCSD(T) calculations extrapo-

lated to the complete basis set limit. Reverse barriers were calculated from

the forward barrier and either experimental or computed ZPE-exclusive at-

omization energies. More details on how the best estimates were obtained,

and explicit explanations on each reaction can be found in Refs. [9, 91–94].

Density functionals such as BMK, [71] M05-2X or M06-2X that have been

shown to perform well for these reaction barriers incorporate at least 40% of

exact exchange and yield mean absolute errors below 2 kcal/mol. Pure GGA

functionals on the other hand were clearly inferior with MAEs up to more

than 8 kcal/mol and could not be recommended. [15]

3.3 AE6/BH6 set

Especially for parameter optimization, a smaller fit or training set is to be

preferred over large ones that contain probably a large number of molecules.

The AE6/BH6 set [95] consisting of 6 atomization energies and 6 barrier

heights (forward and backward) has been assembled by Truhlar et al. as a

small representative subset of the much larger database 3. [96] It has been ob-

tained by minimizing the root-mean-square deviation between standard error

measures (mean signed, mean absolute and root mean square error) calcu-

lated using the full database and the subset only. For a better transferability

to other methods, the errors have been averaged over 80 quantum chemi-

cal methods beforehand. As benchmark values for the atomization energies,

experimental enthalpies of formation ∆fH
0(298K) have been converted to

electronic atomization energies using MP2/cc-pVDZ geometries and the cor-

responding frequencies scaled by 0.9790 . [97] Only hydrogen-transfer barrier

heights enter this smaller set and are marked in table 3.1
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Reaction Forward Reverse Barrier

Cl + H2 → HCl + H 8.7 5.7

OH + H2 → H + H2O 5.1 21.2

CH3 + H2 → H + CH4 12.1 15.3

OH + CH4 → CH3 + H2O
b 6.7 19.6

H + H2 → H2 + H 9.6 9.6

OH + NH3 → H2O + NH2 3.2 12.7

HCl + CH3 → Cl + CH4 1.7 7.9

OH + C2H6 → H2O + C2H5 3.4 19.9

F + H2 → H + HF 1.8 33.4

OH + CH33 → O + CH4 8.1 13.7

H + PH3 → PH2 + H2 3.1 23.2

OH + H → H2 + Ob 10.7 13.1

H + H2S → H2 + HSb 3.5 17.3

O + HCl → OH + Cl 9.8 10.4

CH4 + NH → NH2 + CH3 22.4 8.0

C2H6 + NH → NH2 + C2H5 18.3 7.5

C2H6 + NH2 → NH3 + C2H5 10.4 17.4

NH2 + CH4 → CH3 + NH3 14.5 17.8

cis-C5H8 → cis-C5H8 38.4 38.4

Table 3.1: Benchmark values in kcal/mol for 19 forward and reverse
hydrogen-transfer barrier heights mostly based on experimental values if not
stated otherwise. a From CCSD(T) calculations. bThese reactions are also
included in the smaller AE6/BH6 fit set.
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Reaction Forward Reverse Barrier

6 Heavy atom transfer

H + N2O → OH + N2 18.14 83.22

H + FH →HF + H 42.18 42.18

H + ClH → HCl + H 18.00 18.00

H + FCH3 → HF + CH3 30.38 57.02

H + F2 → HF + F 2.27 106.18

CH3 + FCl → CH3F + Cl 7.43 60.17

8 Nucleophilic Substitution

F- + CH3F → FCH3 + F- -0.34 -0.34

F-...CH3F → FCH3...F
- 13.38 13.38

Cl- + CH3Cl → ClCH3 + Cl- 3.10 3.10

Cl-...CH3Cl → ClCH3...Cl- 13.61 13.61

F- + CH3Cl → FCH3 + Cl- -12.54 20.11

F-...CH3Cl → FCH3...Cl- 2.89 29.62

OH- + CH3F → HOCH3 + F- -2.78 17.33

OH-...CH3F → HOCH3...F
- 10.96 47.20

5 Unimolecular and Association Reactions

H + N2 → HN2 14.69 10.72

H + CO→ HCO 3.17 22.68

H + C2H4 → CH3CH2 1.72 41.75

CH3 + C2H4 → CH3CH2CH2 6.85 32.97

HCN → HNC 48.16 33.11

Table 3.2: Benchmark values in kcal/mol of 19 forward and reverse non-
hydrogen transfer barrier heights based on to the basis set limit extrapolated
CCSD(T) calculations.
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Molecule De

SiH4 322.4

SiO 192.08

S2 101.67

C3H4 (propyne) 704.79

C2H2O2 (glyoxal) 633.345

C4H8 (cyclobutane) 1149.01

Table 3.3: Molecules in the small AE6 test set and corresponding benchmark
values for atomization energies in kcal/mol based on experimental enthalpies
of formation taken from Ref. [95].

3.4 Dissociation of symmetric radical cations

Several studies have shown a failure of GGA or even meta-GGA density func-

tionals in the description of small radical dimer cations. [98–102] Considering,

e.g., the He2
+ molecule, they reproduce total energies of the He atom and

of the He+ ion rather accurately while they consistently underestimate (too

negative) the total energy of the radical cation dimer. [98, 101] A compari-

son between pure density functionals and HF reveals that the former usually

strongly overbind such systems while HF tends to underbind. Thus not too

surprisingly the BH&HLYP functional which includes 50% exact exchange

has been shown to be superior with respect to the pure density functionals.

It performs also better than B3LYP or other hybrids based on the B3 scheme.

Equilibrium bond lengths are usually found too long with the common den-

sity functionals which seems to be contradicting the overbinding. As a reason

for this shortcoming an overestimation of nondynamical correlation directly

related to the too localized exchange hole in pure density functionals has
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been argued. [98, 101] Another interpretation mostly preferred by chemists

corresponds to the self-interaction error present in all approximate density

functionals. Indeed a self-interaction error corrected approach where the KS

operator explicitly depends on the orbitals yields the correct dissociation be-

havior. [102] Introduction of more exact exchange in hybrid functionals or

local hybrid functionals [24] provides a cure for the same reason. However,

100% exact exchange together with LYP correlation did not improve results

for He2
+, Ne2

+ and Ar2
+ as compared to BH& HLYP.

The overall incorrect dissociation behavior does not seem to influence

the dissociation energies De which are calculated using separated cation and

neutral fragments and the equilibrium structure

De

(
A+

2

)
= E (A) + E

(
A+
)
− Eeq.

(
A+

2

)
. (3.4)

The first local hybrid functional employing the unscaled quantity τW
τ

as LMF

improves the description of such 2-center-3-electron systems to a large extent

[24] and the same molecules are included as a test set in the assessment of

new local hybrid functionals. The seven systems include H2
+, He2

+, Ne2
+,

Ar2
+, (HF)2

+, (H2O)2
+ and (NH3)2

+. CCSD(t) benchmark values will be

given together with local hybrid results in chapter 7.

3.5 Transition metal compounds

For structural investigations of large transition metal (TM) complexes, DFT

represents the only feasible tool and in particular carbonyl complexes have

served in the past as calibration systems because reliable experimental data

is available. [52] Most of the parameterized density functionals are however

fitted to common test sets that are biased towards main group compounds
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such as the G3 set. [10] Even the extensive training set for the parameteri-

zation of new density functionals developed by Truhlar contains only a few

transition metal dimers. [103] The test set remains to be dominated by main

group compounds. [73] For coordinatively saturated transition metal com-

pounds, some gradient-corrected and hybrid functionals have been shown to

give reliable structures and energies and the BP86 and the B3LYP functional

have become the preferred ones for this purpose. [52, 104] As a more sensi-

tive test for the performance of semilocal and hybrid density functionals,

the bonding situation in coordinatively unsaturated transition-metal com-

punds, such as dimers and monohydrides, have been investigated by different

groups. [103,105]

3.5.1 Atomic s-d transfer energies

Upon bond formation of TM atoms s-d hybridization occurs to some extent,

and excitation of an electron from one atomic orbital to another prior to

bond formation is thus included in the resulting bonding energy. On account

of this, s-d excitation energies are an interesting subject of investigation, and

a systematic underestimation with pure density functionals has been pointed

out a long time ago. [106] Introduction of hybrid functional did not provide a

cure and interconfigurational energies in 3d metals remain rather challenging

for DFT. [105] Almost all functionals predict, e.g., the wrong ground state

for the Co atom. On average, B3LYP outperforms the pure density func-

tionals while the hybrid TPSSh [107] is only marginally better than other

tested functionals. Based on these results it was concluded that errors in

s-d transfer energies are mainly self-interaction errors. [105] HF without any

correlation yields slightly too small s-d transfer energies though close to ex-

perimental values for the 3d atoms Sc through Cr, but it largely overestimates
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s-d transfer energies for the remaining 3d elements, being overall inferior to

DFT. [106] This behavior has been explained by the strength of correlation

depending on spin pairs in a given configuration, considering that correlation

effects are entirely missing in HF: for the first half row, correlation effects

are stronger in the 4s13dn−1 configuration leading to an overstabilization of

this state with HF. In the other half row the correlation effects due to 3d

opposite spin pairs are predominant and the 4s13dn−1 configuration is thus

destabilized as compared to 4s23dn−2. For our assessment set experimental

benchmark values (corrected for relativistic effects) for s-d transfer energies

of Sc through Cu are taken from Ref. [105] and we followed the procedure

described therein for calculation of the relative energies.

3.5.2 Transition metal dimers

Going back to small sized TM compounds such as dimers, several studies [105,

106, 108, 109] showed that no functional exists that yields satisfying results

for equilibrium bond lengths and dissociation energies of 3d TM dimers and

some dimer cations. Even assigning the correct ground state to the particular

dimers already poses a challenge and the result depends to a large extent

on the density functional. These difficulties in the theoretical treatment

of transition metal systems result partly from strong dynamical correlation

that are due to the tightly packed electrons in the d-shell. Additionally, TM

dimers usually exhibit several low lying excited or nearly degenerate spin-

states that emerge upon formation of d bonds. Description of such near-

degeneracy effects with a single-determinant method such as KS DFT is a

rather tricky task. [106] A study by Schaeffer and coworkers [108] revealed

slightly improved dissociation energies for the dimers Sc2 through Cu2 (Mn2

is usually treated as a van-der-Waals complex and excluded here) when using
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B3LYP as compared to BLYP without exact exchange while augmenting the

exact exchange admixture as in BH&HLYP rather deteriorate the results.

Furche and Perdew showed that the meta-GGA hybrid TPSSh performed

best for dissociation energies followed by the pure meta-GGA TPSS and

pure GGAs and B3LYP. Experimental bond lengths on the other hand were

reproduced more accurately with pure gradient-corrected density functionals.

[105, 108] Altogether 3d TM dimers provide a sensitive test for the accurate

treatment of nondynamical correlation in density functionals.

3.5.3 Transition metal monohydrides

In Ref. [105] additionally TM monohydrides were investigated, and it has

been pointed out that due to the fundamentally different bonding situation

self-interaction errors play a larger role in these systems. In contrast to the

metal-metal bond in TM dimers, the bonding situation here may be described

either as an ordinary 2-electron bond or, depending on the s-d-transfer en-

ergies, as a 3-electron-bond. The former is based on an 4s2 configuration

in the TM atom and the latter results from a 4s1 configuration. Equilib-

rium bond lengths were predicted reliably by most of the functionals with

a mean absolute error of 1.5 pm for B3LYP. The maximum error of 4.1 pm

was obtained for NiH with B3LYP. The same functional gave, not too sur-

prisingly considering the above described bonding situation, the best results

for the dissociation energies of TM monohydrides. In Table 3.4 the TM

dimers and monohydrides are listed together with benchmark values taken

from Ref. [105].
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Molecule De (kcal/mol) re (pm) Molecule De (kcal/mol) re (pm)

K2 12.0 390.5 KH 42.2 224.3

Sc2 38.4 - CaH ≤ 41.0 200.3

Ti2 36.1 194.3 ScH 47.5 -

V2
+ 73.2 173.5 TiH 50.0 177.9

V2 64.3 177.0 VH 51.4 -

Cr2 33.9 167.9 CrH 46.8 165.6

Fe2 26.9 202.0 MnH 31.1 173.1

Co2 39.4 - FeH 39.2 158.9

Ni2
+ 52.2 222.3 CoH 48.4 152.0

Ni2 48.1 215.5 NiH 61.3 147.5

Cu2 46.7 221.9 CuH 63.4 146.3

Table 3.4: Experimental benchmark values for dissociation energies De and
equilibrium bond lengths re of transition metal dimers and monohydrides.
All values are taken from Ref. [105], for detailed information see references
therein.

3.6 Isotropic hyperfine coupling constants

So far, the thermochemical and kinetic properties associated with the above

described test sets require only the unperturbed total molecular energy.

Hence, evaluation of the latter without relaxation of the orbitals is sufficient

for the calculation of atomization energies and barrier heights. Furthermore,

the differences between self-consistent and post-SCF results are rather small,

as will be shown below. In order to assess the local hybrid potential or the

self-consistent implementation, respectively, the isotropic hyperfine coupling

constants Aiso (HFCCs) of 13 small main group radicals [110] are calculated

and compared to experimental data. The isotropic HFCC is chosen because,

in the absence of spin-orbit corrections, it is a first order property and thus

the simplest quantity that depends on the relaxed SCF orbitals without the
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need of a perturbative treatment. Also in some cases, it has been shown that

this magnetic property is very sensitive to the underlying potential. The

isotropic HFCC is directly proportional to the electronic spin densities at a

nucleus K

Aiso =
4π

3
µBµNgegK

〈
Ŝz

〉−1
(ρα(rK)− ρβ(rK)) , (3.5)

where µB denotes the Bohr magneton, ge and gK the nuclear and electronic

g-values respectively. Ŝz represents the expectation value of the z-component

of the total electronic spin.

In other studies [110,111] hybrid functionals based on the B3-scheme have

been shown to be an improvement over GGAs in the calculation of isotropic

HFCCs. In particular the B3LYP functional was repeatedly confirmed to

outperform other GGA and hybrid functionals which is why it will be used

as a reference in this work. The same test set of 13 small main group radicals

(listed together with benchmark data in Table 3.5) will be used in this work.

A more recently introduced test set by Hermosilla et al. [112] consists of

75 molecules providing in total 241 theoretical HFCC values which are com-

pared to 174 experimental ones. An extensive study using hybrid functionals

showed the B3LYP functional to be superior to B3P86 and B3PW91. This

larger test set might be useful for future, more thorough validation of local

hybrid functionals. For a first validation of the SCF implementation in this

work, the smaller one is considered to be sufficient.

The HFCCs of the nitrogen and the phosphorus atom in their 4S ground

state represent a particular challenge not only for density functional methods.

Especially for the phosphorus atom, no standard functional even reproduces

the correct sign of Aiso. It was pointed out that special attention has to be

paid when using optimized-effective potentials (OEPs) in combination with
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Molecule Nucleus Aiso (MHz) Nucleus Aiso (MHz) Nucleus Aiso (MHz)

Cl2
- 35Cl 109.0

CN 14N -12.6 13C 588.5

F2
- 19F 750.8

FCl 19F 586.6 35Cl 152.2

FCN 13C 647.7 19F 1363.0 14N 17.9

FCO 13C 803.2 19F 905.8 17O -

H2CO+ 13C -108.7 1H 371.9 17O -

H2O
+ 1H -73.1 17O -83.2

HCN- 13C 211.3 1H 384.5 14N 19.9

HCO 13C 371.3a 1H 367.4a 17O -

NO2
17O -54.1a 14N 153.3

OH 17O -68.0a 1H -68.7a

CH3
13C 106.5a 1H -64.5

Table 3.5: Experimental isotropic hyperfine coupling constants of 13 small
main group radicals taken from Ref. Ref. [110]. aaverage value of an experi-
mental range
.

basis-set expansions giving rise to significant deviation from the exact OEP

result. If an approximation to the exact OEP is employed it can introduce

additional errors. [113]
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CHOICE OF LOCAL MIXING FUNCTION

As outlined earlier, suitable LMFs for known approximations to the exchange

and correlation functional represent the key quantity in this work. While the

basic concept of local hybrid functionals has been suggested earlier, [114] the

first LMF to be proposed by Jaramillo et al. was based on the ratio of the

von Weizsäcker kinetic-energy density

τW (r) =
|∇ρ(r)|2

8ρ(r)
(4.1)

and the kinetic-energy density τ (cf. Eq. (2.43) )

t(r) =
τW (r)

τ(r)
, (4.2)

in the following denoted by t. This function is per definition restricted to the

range [0, 1]. It was combined in the original work with either Becke exchange

and LYP correlation or PBE exchange and PKZB correlation. The LMF

brings in 100% exact exchange in one-electron regions (this was thought to

be favorable to reduce self-interaction) but no exact exchange in homoge-

neous regions which are usually well described by pure density functionals.

The corresponding local hybrid GGA functional with B88 exchange and LYP

correlation provides an improvement over BLYP or B3LYP for the dissocia-

tion behavior of two-center, three-electron symmetric radicals and for reac-

tion barriers in linear hydrogen abstraction, but overall very poor atomization

energies. This failure can be ascribed to an overall to high amount of exact

exchange. Simple powers of t reduce the average exact-exchange admixture
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but provide no significant improvement. Furthermore, they deteriorate the

description of hydrogen bonds. [115]

Other approaches for ab initio LMFs have been introduced parallel to

this work. E.g., it has been shown that LMFs for the LSDA and GGA

can be derived from the adiabatic connection. [25] In another approach the

density matrix has been employed for the construction of a LMF [26] which

has been subsequently parametrized. [116] And a recently proposed local

hybrid functional mixes exact exchange with the meta-GGA TPPS where

the local mixing function has been derived based on considerations about

the underlying exchange-correlation hole. [27]

4.1 Local mixing functions

In this work a clearly semi-empirical approach is pursued, and while ap-

proximations to the local mixing function are sought, we rely on existing

approximations to the density functional exchange and correlation energies.

Although some physical limits can be assigned, and experience with molec-

ular properties provides a rough guideline, in regions between these given

limits the LMFs are not defined by any physical constraint. Hence, fitting

to experimental data is appropriate. Thus all our LMFs contain at least

one parameter which is fitted to the mean absolute error of either the small

AE6/BH6 set or the larger G3 set of atomization energies. In the following

we will distinguish three different families of LMFs: (i) LMFs based on the

down scaled quotient of kinetic energy densities t mentioned above, referred

to as t-LMF, (ii) so called s-LMFs which are functions of the reduced density

gradient(iii) LMFs that depend additionally on the spin polarization ζ (cf.

Eq. (2.37)). Their distinctive properties will be discussed in this section by

visualization of LMFs that were optimized with local density functional ex-
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change and correlation (Slater and VWN, respectively). Plots are provided

for the CS, the F2, the HF and the CN molecule at equilibrium distance. For

N2 and HFH LMFs are plotted for varying distances allowing for evaluation

of the dissociation behavior.

4.1.1 Local mixing functions based on kinetic energy densities and

the reduced density gradient

It will be shown [115] that, as compared to global hybrid functionals with one

or more parameters, the properties investigated in this work are improved to

a large extent with a simple one-parameter t-LMF of the form

g(r) = a t(r) , (4.3)

combined with only local density functional exchange and correlation. In

equation 4.3, the quantity t is simply down scaled in order to obtain lower

exact-exchange admixtures. By doing so we sacrifice the correct limit of 100%

exact exchange in the high-density limit and in one-electron regions. It should

be noted, however, that most of our succesful local hybrid functionals are

based on LSDA exchange and correlation or incorporate only partial gradient

corrections, and that LSDA correlation violates both of these conditions. [46]

Such a down-scaled t-LMF allows thus for error cancellation between the

exchange and correlation density functional even in the high-density limit and

one-electron regions that are not correctly described by 100% exact exchange

together with LSDA correlation. Furthermore, the potential does not yield

the correct asymptotics in the tail of the electron density far away from the

molecule, which does not seem to affect the properties tested in this work.

Another possible variable that appears as well in the gradient expansion
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of the exchange hole is the reduced or dimensionless density gradient, defined

in Eq. (2.45). It goes from zero to infinity and has to be mapped onto the

range [0,1] in order to use it as a local mixing function. Several possibilities

have been proposed by Arbuznikov et al. [117], each including one parameter

to determine the slope. In this work, local hybrid functionals with s-LMFs

based on the error function

g(r) = erf (a s (r)) , (4.4)

and a Padé mapping

g(r) =

(
s(r)

a+ s(r)

)2

(4.5)

will be discussed.

From fig. 4.1 can be seen that both, the t- and the s-LMF attain lower

values in the bonding region and increase in the core regions. [115, 117] At

the nuclei, the t-LMF yields a maximum whereas the s-LMF drops to a cusp.

It should be mentioned that at some plots, t-LMFs may exhibit a negative

spike; this is a numerical artifact due to the Gaussian basis functions having

unphysical zero derivatives at the nuclei. As a consequence, according to

the definitions for τ and τW in Eqs. 2.43 and 4.1 a numerical uncertainty

“0/0” is produced. This effect is most pronounced for hydrogen and becomes

negligible for heavier atom basis sets that include functions with sufficiently

large Gaussian exponents to recover the electron-nuclear cusp. [76] This nu-

mercial uncertaintity could be taken care of inside the source code by adding

thresholds.

We presume that the inner part of the core region is not important for

thermochemistry and barriers since both LMF types yield similar results,
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the reduced density gradient (s), plotted along the bond axis in the CS
molecule.
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whereas the outer-core region may well be. Both LMFs reflect the shell

structure around each atom but the s-LMF dips a little less betweent core

and valence shells. Along the C-S bond (cf. Fig. 4.1) very small local maxima

are found in the t-LMF where for the s-LMF only weak shoulders appear.

In contrast, the local maxima in the bond region are much more pronounced

for F2 (Fig. 4.2); again the features are less clear for the s-LMF. As has

been discussed in detail by Grüning et al. [90] for the dimensionless density

gradient and related quantities, these local maxima in the bond region are

indicative of some occupation of antibonding orbitals.

The local maxima in the bonding region are particularly important for

the following discussion of reaction barriers. Figs. 4.4 shows how both the

t- and s-LMF change when the bond in N2 is stretched from the equilibrium

position to intermediate distances of 4 Bohr, to near dissociation of 6 Bohr.

At equilibrium position, local maxima in the bonding region are essentially

absent for this strong bond. They develop notably at 4 Bohr and increase
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still further and get wider at 6 Bohr. What is most interesting is that the t-

LMF exhibits the local maxima rather more pronouncedly at the intermediate

distance of 4 Bohr than the s-LMF. In contrast, at the still larger distance of

6 Bohr, the two LMFs exhibit local maxima of relatively similar height and

width for the dissociated atoms. The transition state in the reaction H + FH

→HF + H exhibits similar maxima along the stretched bond (cf. Fig. 4.5.

4.1.2 LMFs with explicit dependence on spin polarization

As pointed out above, the exchange functional in DFT somehow models

parts of the nondynamical correlation. But following from its definition,

exchange interaction is restricted to electrons of like spin. As a result, in

most functionals, opposite-spin nondynamical correlation is only mimicked

by terms involving same-spin quantities. An exception are models, such

as Becke’s coordinate-space model of nondynamical correlation, [118, 119]

that separately treat non-classical interactions between same-spin electrons

as well as opposite-spin correlation explicitly. The implementation of such a

model is, however, rather challenging. In this approach spin-dependent cross-

terms that implicitly account for nondynamical correlation are introduced by

extending the t- and s-LMFs by the spin density ζ as an additional variable.

[81] Ensuring mathematically equivalent potentials for α and β spin electrons

and thus avoiding spurious spin polarization during an SCF calculation leads

to the following spin polarized t-LMF

g(r)α = (a+ b ζ(r)) t(r)α (4.6)

g(r)β = (a− b ζ(r)) t(r)β , (4.7)
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and the respective s-LMF

g(r)α = erf[(a+ b ζ(r)) s (r)α] (4.8)

g(r)β = erf[(a− b ζ(r)) s (r)β] . (4.9)

The function ζ(r) is restricted to the interval [−1, 1] but overall is predom-

inantly positive (as a result of the α-spin density being greater than the

β-spin density) except for strongly spin-contaminated SCF solutions. Fig-

ure 4.6 illustrates t- and s-LMFs as well as their spin-polarized counterparts

along the bond axis of the CN molecule. Additionally, the spin polarization

itself is plotted in the upper picture together with the t-LMFs. At the nuclei,

ζ goes to zero due to high densities and takes larger values only in regions

with a lower total electron density such as the bonding region and outside of

the molecule. With a = 0.455, the optimized same-spin scaling parameter a

in the spin-polarized version of our t-LMF is slightly smaller than the 0.48

in the best ordinary LMF for Slater exchange and VWN correlation. The

opposite-spin scaling parameter b is about one magnitude smaller than a.

As a result, at the nuclei where α and β LMF coincide, the spin-polarized

alpha and beta LMFs take smaller values than their simpler counterparts.

Differences between the optimized spin-polarized and the simple t-LMF are

rather subtle in the bonding region due to the LMF being generally small

in this area. The minima of the LMFs are located at the same position.

Although the same-spin parameter a is slightly smaller in the spin-polarized

LMF, the α-spin LMFs overlap for high values of ζ due to the additional

ζ-dependent term in the spin-polarized LMF. While outside of the molecule,

for the t-LMF, the α function is larger than it’s β counterpart, the contrast

holds for the s-LMFs. Since the maximum in the β t-LMF at the nuclei is
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broader, density averaging of the LMFs yields still larger values for the β-spin

function as will be discussed later.

4.2 Optimization procedure

In order to obtain the optimal local mixing function in combination with

fixed exchange and correlation energy functional for a given training or fit

set, the mean absolute error of a given test set was minimized with respect to

one or more parameters. Thus, in general the global minimum is requested.

But if appropriate starting values are known, e.g., from a former fit, a local

optimization procedure is sufficient. In this work, a Simulated Annealing

algorithm [120, 121] was employed for global optimizations followed by a

Nelder-Mean Simplex procedure. [122, 123] Since the local optimization in-

volves less function calls, the Simplex algorithm was also taken if the starting

values were known to be close to the optimum.

If the LMF depends linearly on the empirical parameter as, e.g., the

simple or ζ-dependent t-LMF the scaling coefficients can be excluded from

the integration in the energy expression. Consider, for instance, the exchange

energy with the one-parameter t-LMF

ELh
X = a

∫
t(r)εexactX (r)dr +ESlater

X [ρ(r)]− a
∫
t(r)εSlaterX (r)dr , (4.10)

as the simplest example. Then the atomization energies of all molecules in

the whole fit set and subsequently the deviations from benchmark data are

calculated for a = 0 and a = 1. Two error vectors are obtained: The one with

a = 0 represents simply LSDA results and is denoted ∆EAE
LSDA. The other

one with a = 1 contains deviations with a local hybrid functional based on

the unscaled t-LMF, Slater exchange and VWN correlation (∆EAE
Lh−SVWN).
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Finally, an error vector depending on the empirical parameter a is computed

by combining the two precalculated vectors

∆E(a) = ∆EAE
LSDA + a

(
∆EAE

Lh−SVWN −∆EAE
LSDA

)
, (4.11)

such that the MAE as a functional of a is given as the sum over all absolute

values divided by the number of molecules Nmols

MAE(a) =
1

Nmols

∑
i

|∆E (a)|i , (4.12)

In case of a two-parameter LMF as the spin-polarized t-LMF, a total of

three error vectors are needed in order to assemble the MAE as a function

of the parameters. If the non-local exchange or correlation admixture are to

be fitted additionally to one parameter in the LMF, at least 5 vectors are

required.

For s-LMFs and their spin-polarized counterparts the parameters are in-

side of an error function and for them and in general local mixing functions

that do not depend linearly on the empirical parameter(s), the optimization

is more costly. This is due to the fact that each function call (calculation

of the MAE) involves calculation of the total energy for all molecules and

atoms present in the fit set. And although several systems may be calculated

in parallel, this step constitutes the bottleneck in optimization procedures.



CHAPTER 5

IMPLEMENTATION

The implementation of local hybrid functionals for electronic structure cal-

culations has been done stepwise. First, as only a few selected density func-

tionals are available in Turbomole, [124,125] the possibility to use customized

hybrid functionals has been enabled. The option functional hybrid allows for

user-defined exchange and correlation density functionals as well as weights

for non-local corrections and the amount of exact exchange. Such customized

hybrids are also enabled for structure optimizations and frequency calcula-

tions as well as for TD-DFT in our local version of Turbomole 5.10. They

are highly useful for comparison and debugging the subsequent local hybrid

implementation. More general, such custom hybrids allow for systematic

studies on the exact-exchange admixture for various molecular properties.

In the second step, local hybrid functionals were implemented in a non-

self-consistent fashion. That is, for a given density and KS orbitals, only

the energy expression according to Eq. (2.46) is evaluated. Finally, in the

third step, the local-hybrid potential was implemented as a FDO giving rise

to a non-local potential (cf. Eqs. 2.22 and 2.47). The integrals involving

the LMF weighted exact-exchange potential (Eq. (2.59)) were chosen to be

computed either following the RI approximation given in section 2.6 or nu-

merically for comparison. In figure 5.1 a flow-chart gives an overview over

the most important subroutines that have been modified or that are added.

Merely algebraic operations such as transformation of a matrix from SAO

to CAO representation or matrix multiplication and symmetrization are left

out. Mostly, unmodified subroutines present in the program were employed
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for these purposes.

5.1 Post-SCF local hybrid functionals

Here the major step was to obtain the exact-exchange energy-density on

a grid which is evaluated according to the RI approximation in Eq. (2.71).

Therefore, the overlap matrix of the AO basis, which is evaluated generally in

any self-consistent DFT calculation, has to be inverted. This has to be done

equally with the auxiliary basis set in a DFT calculation with the RI option

and the corresponding subroutine was employed. Attention should be paid if

some of the basis functions are linearly dependent, especially if decontracted

basis sets are used. Small linear dependencies can be projected out but

for strong linear dependencies, the inversion fails. This can be checked by

comparing the numerically integrated exact-exchange energy to the exact

expression obtained from the exchange and the density matrix

∫
εexactX (r)dr = Eexact

X = −1

2

∑
µν

PµνKµν . (5.1)

with the matrix elements Kµν as defined in Eq. (2.65).

Usually, in the dscf module the Coulomb part and the exchange part

of the KS matrix are calculated as a sum in the shloop module. I.e. each

two-electron integral is evaluated only once and used for construction of the

Coulomb and exchange matrix simultaneously. For local hybrids, only the

Coulomb part to the KS matrix is calculated analytically, and the exchange

part is obtained via numerical integration on a grid analogous to the DFT

exchange-correlation potential. However, for the RI approximation to the

exact-exchange energy density the exchange matrix K is needed separately.

In a modified version shloop lhyb of the original two-electron integral rou-
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tine, where each integral is evaluated just once (or in each cycle depending

on whether a direct approach is used), the Coulomb and exchange matrices

are still computed simultaneously but simply stored separately. The den-

sity matrix P is evaluated anyway at the beginning of each SCF cycle and

is handed over to the driver subroutine for numerical integration on a grid

xclhyb together with the inverse overlap matrix S−1 and the exchange matrix

K. Thereafter the symmetric part of the product matrix S−1KP is calcu-

lated and, finally, the RI approximation to the exact-exchange energy-density

defined as

εexactX (r) =
1

2

∑
µν

χν (r)
(
S−1KP + PKS−1

)
νµ
χµ (r) , (5.2)

is computed by using the same subroutine that calculates the density on a

grid and handing over the matrix product 1
2

(S−1KP + PKS−1).

Batchwise, the density, its gradients, and the kinetic energy density are

evaluated on the grid. In order to avoid recompiling for every new local

mixing function, they are handed over to a python script that calculates the

LMF which is specified as a string in the dscf program. As this involves

a lot of input/output operations, this procedure is rather time-consuming.

However, it is highly useful for quick tests of new local mixing functions and

parameter fitting. Some local mixing functions such as the spin-polarized

ones (that include as well simple t- and s-LMFs as a special case by setting

the second parameter to zero) have been hard-coded.

5.2 Self-consistent implementation of local hybrid functionals

RI approximations to Coulomb and exchange integrals have been established

[85,126] as a major speed up and the corresponding auxiliary basis sets could
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be optimized using a variational procedure. [127] For the exact-exchange

potential, several studies [78,86] showed that a fit based on the overlap norm

requires quite large uncontracted basis sets. Although errors in the total

energy are expected to be rather small, the inaccuracies in the potential could

lead to larger discrepancies for orbital-dependent properties. Thus, rigorous

tests on the basis set dependence and especially comparison with results

obtained from the numerically exact local hybrid potential are mandatory.

For this reason, the numerical local hybrid potential has been implemented

additionally to the RI potential.

5.2.1 RI approximation

The bottleneck in a SCF calculation is evaluation of the two-electron inte-

grals (µν|ηλ), as this step scales with the number of basis functions to the

fourth. Efficiency is thus mostly achieved through a rigorous integral pre-

screening. Additionally, the Coulomb and exchange part of the KS matrix are

constructed recursively in the dscf module, in order to reduce computational

cost. [128] As for the RI approximations in the self-consistent implementation

of local hybrid functionals, the full exchange matrix has to be recovered and

therefore small modifications had to be introduced into the scf subroutine

with respect to the post-SCF version.

In each SCF cycle n, the density matrix P(n) is calculated from the orbital

coefficients. Then the difference between the density matrix from the current

and the previous cycle is obtained via

∆P(n) = P(n) −P(n−1) . (5.3)

The Coulomb and exchange matrix elements are subsequently calculated from
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the difference density matrix ∆P(n) and assembled from previous matrices

which yields the following expression for the full exchange matrix

K(n) = K(n−1) + K
[
∆P(n)

]
. (5.4)

Evidently, the difference-density matrix-elements become successively smaller

near convergence. A major speed-up is thus achieved by using the difference

density matrix, instead of the total density matrix, during the integral pre-

screening (in direct SCF). [128] As a consequence, for SCF calculations with

local hybrid functionals, the exchange and Coulomb matrices from previous

cycles have to be stored and reassembled separately as well.

In the numerical integration routine xclhyb, after computation of the den-

sity, its gradients and the kinetic energy density, at first, the LMF is cal-

culated by use of the scflmf subroutines. Besides the function itself, its

derivatives with respect to the density, the gradient of the density and the

kinetic energy density is calculated as well and handed over to the lochyb

subroutines.

Additionally to the usual integrals, the G matrix (representation of the

LMF in the AO basis, cf. Eq. (2.68)) has to be evaluated. This is done

numerically and in the same fashion, the exchange-correlation part of the

KS matrix is computed by handing over the LMF instead of a multiplicative

potential. Subsequent calculation of the symmetrized K̃ matrix (cf. Eqs.

2.69 and 2.67 ) is carried out in the same manner as the symmetrized matrix

product for the exact-exchange energy-density.

At the end of the numerical integration part, the LMF weighted exact-

exchange matrix (Eq. 2.69) is assembled. Note that the corresponding matrix

manipulations are done in the SAO basis, thus fully exploiting symmetry,

while numerical integration is generally performed in the CAO basis.
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5.2.2 Numerical local hybrid potential

For the numerical exact solution to the exact-exchange energy-density and

numerical integration of the LMF weighted exact-exchange potential (rhs of

Eq. (2.59)), the one-electron Coulomb integrals

Vµν(r1) =

∫
χµ(r2)χν(r2)r

−1
12 dr2 . (5.5)

have to to be evaluated on each grid point. This is conventionally done fol-

lowing a Rys scheme that allows for the exact solution based on a Gauss

quadrature. [129] The corresponding driver subroutine numpot has been de-

rived from the one that computes the numerical Slater potential in the frame-

work of the localized Hartree Fock method. [78]

As the evaluation of Vµν(r) is very time-consuming, each matrix element

is calculated just once and used simultaneously for the exact-exchange energy

density and the integrals K̃µν .

5.2.3 Timings

From the matrix expression for the RI approximation to the local hybrid po-

tential follows that the overall scaling is equal to global hybrid calculations

in the same basis. Depending on the auxiliary basis, a larger prefactor may

occur for local hybrid functionals. Since a local hybrid run uses additional

subroutines to the ones for global hybrid calculations the prefactor is slightly

larger. This is confirmed by the CPU time per iteration which is given in

Table 5.1 for the molecules in the AE6/BH6 set. Timings with a local hybrid

with Slater exchange, VWN correlation and a t-LMF are compared to TPSS

hybrid calculations since both functionals require kinetic energy densities and

the density gradient. Independent of the system size, the local hybrid calcu-
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lation is slower by a factor of only 1.14 per iteration on average confirming

the identical scaling behavior. Given that the emphasis of the implementa-

tion was not efficiency the prefactor can be further reduced by optimizing

system calls, matrix manipulations and reducing I/O operations for a given

local hybrid functional. This clearly contradicts former statements that local

hybrid functionals are significantly more expensive than global hybrid cal-

culations. [130] It should be noted, however, that so far large uncontracted

basis sets are required with the RI option for the potential thus rendering

local hybrid functionals rendering more expensive in practice.

5.2.4 Summary of the options with local hybrid functionals

If the total energy only of a local hybrid functionals is requested, a customized

LMF with the variables r, s and t can be used. Due to the system call and

especially I/O operations the gain in flexibility is accompagnied by a loss of

efficiency. Therefore, several LMFs were hard-coded as well. Those available

LMFs in post-SCF runs include the two-parameter spin polarized t-LMF and

s-LMF (cf Eqs. 4.7 and 4.9) and a two-parameter mixed LMF of the form

g(r) = at(r) + (1− a)erf(λs) . (5.6)

For efficiency the LMF cannot be customized in self-consistent calculations

and only three types of LMFs are currently available: the simple one-parameter

t- and s-LMFs and the above mentioned mixed LMF. Besides specifying the

LMF parameters, one can choose between the numerically exact potential or

the more efficient RI approximation.
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Based on the general form of a local hybrid functional

ELh
XC =

∫
g (r) εexactX (r) dr (5.7)

+

∫
(1− g (r))

(
εSlaterX (r) + b∆ε

(meta−)GGA
X (r)

)
dr (5.8)

+ EVWN
C + c∆E

(meta−)GGA
C , (5.9)

additionally to the LMF, the amount of gradient correction to density func-

tional exchange (b) and correlation (c) may be varied.
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Molecule
t/iteration (iterations) t(Local Hybrid)

t(TPSSh)
Local hybrid TPSSh

S 1.82 (6) 1.61 (6) 1.13

C 1.17 (6) 1.04 (6) 1.13

SH 7.23 (6) 6.11 (6) 1.18

OH 5.01 (7) 4.36 (6) 1.15

H2 0.19 (5) 0.18 (5) 1.07

H 0.34 (5) 0.35 (5) 0.98

HSHHts 17.65 (7) 15.88 (6) 1.11

Si 1.81 (6) 1.59 (6) 1.14

C3H4 (propyne) 94.89 (8) 89.13 (8) 1.06

H2S 3.39 (7) 3.09 (6) 1.09

HOHts 11.52 (7) 9.72 (8) 1.19

C4H8 (cyclobutane) 540.64 (8) 466.28 (8) 1.16

CH3HOHts 107.60 (8) 95.49 (8) 1.13

CH3 5.28 (6) 4.72 (6) 1.12

CH4 2.14 (6) 2.00 (6) 1.07

O 1.12 (6) 1.01 (6) 1.11

S2 4.86 (7) 4.60 (6) 1.06

C2H2O2 (glyoxal) 38.76 (7) 35.26 (7) 1.10

SiO 4.75 (6) 4.39 (7) 1.08

H2O 2.48 (7) 2.12 (8) 1.17

SiH4 7.20 (6) 6.26 (6) 1.14

Σ 859.84 755.19 1.14

Table 5.1: CPU time t in seconds per iteration for self-consistent energy
calculations of the molecules in the AE6/BH6 test set. The local hybrid
functional is based on Slater exchange and VWN correlation with the LMF
g(r) = 0.48t(r).



CHAPTER 6

COMPUTATIONAL DETAILS

If not stated otherwise all energy as well as the self-consistent calculations

have been carried out using a local version of the Turbomole program pack-

age [124, 125] (version 5.10). Open-shell species have been calculated at

spin-unrestricted Kohn-Sham level. Non self-consistent energy calculations

are based on previously obtained B3LYP [4, 13, 65] orbitals for which the

convergency threshold has been set to 6 in order to ensure well relaxed or-

bitals. For consistency the same threshold was applied for self-consistent

local hybrid calculations.

For the large G3 set (including subsets G2-1 and G2) of atomization

energies, MP2/6-31G structures were taken from Refs. [87, 88, 131, 132] and

supplementary materials therein. Their experimental atomization energies

were calculated by subtracting HF/6-31G thermal corrections and zero-point

energies from experimental enthalpies of formation.

For the barrier heights QCISD/MG3 structures were used [9, 94, 95] and

our theoretical values were compared to best estimates from Refs. [9, 94]

for the HTBH38 hydrogen-transfer barrier set and from Ref. [95] for the

NHTBH38 heavy-atom transfer reaction set. QCISD/MG3 molecular struc-

tures for barrier heights and additional structures for the molecules in the

AE6 set were downloaded from the Minnesota Database Collection [133]. A

large grid (size 6) was used for thermochemistry and reaction barriers.

Isotropic hyperfine coupling constants were calculated using the con-

tracted and decontracted IGLO-II, IGLO-III and IGLO-IV basis sets [134].

For all other properties and generation of the orbitals the QZVP [135] basis
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set was employed. Because the exact-exchange energy density is computed

based on a resolution of the identity, the QZVP basis has been decontracted

beforehand. In order to avoid linear dependencies, one s-function with the

exponent 32.9926 had to be removed from the silicon QZVP basis set.

Dissociation curves of the 2-center 3-electron systems have been obtained

by computing the energies non-self-consistently (see above, based on B3LYP

orbitals using the uncontracted QZVP basis). Following previously suggested

procedures, [24] the structures of the fragments taken from Ref. [136] were

kept constant varying only the inter-fragment distance. The equilibrium

distance was then determined by a least-squares-fit of a polynomial to at least

six points on the dissociation curves. Corresponding dissociation energies

were subsequently calculated for the optimized equilibrium structure in each

case relative to separated cation and neutral fragments. They refer thus to

the correct asymptote.

The isotropic hyperfine coupling constants were calculated with experi-

mental structures taken from Ref. [110]. While the orbitals were obtained

using the Turbomole package with a grid of size 5, the MAG-ReSpect [137]

suite of programs has been employed the computation of magnetic properties.

The s-d transfer energies have been calculated following a procedure sug-

gested in Ref. [105]. That is, atomic orbitals were obtained in Oh symmetry

in order to suppress mixing of s and d orbitals. If this results in fractional

occupation numbers, as e.g. in case of the d6s2 state of Fe a subsequent

transformation to C1 symmetry and non-self consistent calculation for the

two possible states are performed.

Some post-SCF local hybrid results that were obtained with an imple-

mentation in the ReSpect program package will be marked specifically. In

these cases the cc-pVQZ basis (omitting g-functions) has been used, and the



79

orbitals have been obtained from a global hybrid with Slater exchange, VWN

correlation and 10% exact exchange.

For each test set a python script is provided which, starting from a B3LYP

calculation replaces the functional in the control file by a given local hybrid

and launches a dscf run. From the resulting total energies, the properties (e.g.

atomization energies, barrier heights, equilibrium distances for TM dimers or

hydrides etc.) are computed with the help of one or several other Python

scripts. Usually, the same program also evaluates deviations from benchmark

values as well as mean errors. To simplify discussions for whole sets of nmols

molecules the mean signed error (MSE)

MSE =
1

nmols

nmols∑
i

Ecalc
i − Ebenchmark

i (6.1)

and the mean absolute error (MAE)

MAE =
1

nmols

nmols∑
i

∣∣Ecalc
i − Ebenchmark

i

∣∣ (6.2)

are calculated according to their definitions.



CHAPTER 7

ASSESSMENT

In this chapter several local hybrid functionals with at least one semi-empirical

parameter fitted to empirical data will be presented and their performance

for thermochemical and kinetic properties will be evaluated. As a preface to

a more detailed discussion of the fit results and the assessment, the devel-

opment of the first competitive local hybrid functional shall be summarized

briefly.

Most of the successful and the first thermochemically competitive local

hybrid functionals presented in this work are based on Slater exchange and

VWN correlation. One reason for starting from the LSDA rather than from

a GGA functional can be traced back to error cancellation. Considering

atomization energies, the limiting cases of pure LSDA (S-VWN) and of 100%

exact exchange combined with LSDA correlation (EXX-VWN) lead - not

unexpectedly - to dramatic over- and underbinding respectively, resulting in

similarly large MAEs of around 30 kcal/mol. Note also the mean signed

deviations in Table 7.1 that express better under-/overbinding tendencies.

Functional
G2-1

MAE MSE

S-VWN 35.92 35.83

EXX-VWN 28.47 -24.58

S-EXX-VWN with a0 = 0.5 9.87 3.43

Table 7.1: Errors in (kcal/mol) obtained with ReSpect and the corresponding
procedure described in chapter 6. At the same level, the MAE for B3LYP is
3.17 (kcal/mol) and for B3PW91 it is 3.27 (kcal/mol)

.
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One expects an appreciable improvement already for a global hybrid of

the underlying components, which is indeed the case: The best overall per-

formance is obtained with exactly 50% exact exchange (cf. Fig. 7.1, leading

to a reduction of the overall MAE by a factor of 3 to less than 10 kcal/mol.

This corresponds actually to the very first hybrid functional published by

Becke, [39] “the half-and-half” functional that mixes 50% LSDA exchange

with 50% exact exchange. Turning now to local hybrids with the simple

LMF g = at(r) (see plots in Fig. 7.1), we see a remarkable improvement of

the MAE over the best global hybrid by another factor of almost 3 when the

parameter a approaches values around 0.5 (the best value found is a = 0.48).

Obviously, the dependence on the scaling parameter is more pronounced for

local than for global hybrids.

The MAE of 3.73 kcal/mol for the G2-1 set of atomization energies with

a = 0.48 is in the range of the best state-of-the-art global hybrid functionals

and this is obtained only by position-dependent admixture of exact exchange

to local exchange, without any GGA involved! Notably, this functional with

scaled LMF and thus one semi-empirical parameter improves performance

dramatically over the unscaled t-LMF by dropping the requirement of 100%

exact-exchange admixture in one-electron regions. Now one-electron regions

exhibit 48% exact exchange. This appears reasonable when considering the

H2 molecule: Here t(r) would yield 100% exact exchange everywhere in space,

independent of, e.g., a stretching of the H-H bond. This does clearly not

account for the necessary nondynamical correlation contributions in this case

and in related situations, e.g., for bonds between hydrogen and other atoms.

[76] The LMF plots along the bond axes in chapter 4 in Figs. (4.1, 4.2,

4.4) show that this scaled LMF yields 48% exact exchange around the nuclei

and in asymptotic regions and exclusively local exchange in homogeneous
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regions as should be the case. Obviously, this position dependence of exact-

exchange admixture has a strikingly favorable effect on the thermochemical

performance of the functional. On the other hand, it is clear that performance

for a one-electron system like H2
+ will be worse than with the unscaled t-LMF

as the resulting hybrid with 48% exact-exchange admixture will not eliminate

self interaction completely but, of course, better than typical global hybrids

with a global factor between 0.2 and 0.25.

We may obtain an average exact-exchange admixture g for a local hybrid

functional by density averaging [76]

gσ =
1

Nσ

∫
ρσ(r)gσ(r)dr . (7.1)

For open shell systems, a spin-averaged admixture a is calculated from

g =
Nαgα +Nβgβ
Nα +Nβ

, (7.2)

where Nσ is the number of electrons with σ spin. For the SVWN local hybrid

with SVWN and g(r) = 0.48t(r), this procedure followed by averaging the

g values over the G2-1 set provides a=0.293, i.e., a value that is consider-

ably lower than the best constant exact-exchange admixture of a0 = 0.5.In

conclusion, the position-dependent exact-exchange admixture with only local

exchange and correlation gives a simple local hybrid functional with no GGA

component that provides thermochemical accuracy competitive with the best

state-of-the-art functionals

7.1 Fit results and dependency on the training set

It has been argued in the literature that some failures of B3LYP could be

attributed to the limited size of the fitting set. [138] However, we have used
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Figure 7.1: MAE for the 55 atomization energies of the G2-1 set with a
SVWN global and local hybrid functional as a function of the mixing param-
eters a0 (constant) and a (scaling parameter inside the t-LMF).

the same, namely the small G2-1 set of atomization energies. Fig. 7.2 shows

that the optimal parameter for the scaled t-LMF (cf. Eq. (4.2)) obtained

from the small G2-1 set corresponds overall also to the best parameter of

the G3 set. Considering the molecule types, (cf. Fig. 7.2) only the non-

hydrogen systems would be improved significantly with a smaller scaling

parameter. Obviously the optimal value depends much more on the property

under investigation which can be seen from Fig. 7.3 where the MAEs for

barrier heights are plotted as a function of the scaling parameter a: a larger

value of a leads to an only slightly better description of hydrogen transfer

barriers. A more pronounced improvement for non-hydrogen transfer barriers

is observed and possible reasons will be discussed below.

In Table 7.2 the local hybrid functionals including between one and three

optimized parameters are summarized, and a name is assigned to each func-

tional, in order to facilitate the following discussion. Mainly the G2-1 and

the AE6/BH6 set have been employed as training sets in this work. The
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AE6/BH6 set includes only 6 atomization energies (as compared to 55 in the

G2-1 set) and additionally barriers. But, at least in case of the one-parameter

t- and s-LMFs, the fit results are equivalent for the two training sets. Ac-

tually, the one-parameter functionals tLMF-SVWN and sLMF-SVWN orig-

inate from a previous fit to the G2-1 set using the ReSpect program and

corresponding settings (cc-pVQZ basis, for details see chapter 6). Optimiza-

tion with the current settings (Turbomole implementation and decontracted

QZVP basis set) yields slightly increased scaling parameters of 0.49 and 0.23

for the t- and s-LMF, respectively. However, for consistency, we will usually

refer to the former LMFs as the ”best” t- and s-LMF for Slater exchange and

VWN correlation and use the corresponding local hybrid functionals for the

assessment. This is all the more justifiable considering that (with the current

settings) they perform better for the complete G3 set of atomization energies

than their updated versions (see Table 7.2). Even the discrepancies in the

G2-1 MAE due to a re-optimization of the scaling parameters are marginal,

especially as compared to deviations in the MAEs due to different types of

functionals. One other local hybrid functional, sLMF1-SLYP, that has been

previously optimized by A. et al. is included as well. It uses full LYP gradient

correction in the correlation functional, LSDA exchange and a Padé mapping

of the reduced density gradient as a local mixing function (cf. Eq. (4.5)).

Based on these results and for efficiency, LMFs with a non-linear depen-

dency on the parameter are optimized for the smaller fit set only. If possible,

as e.g. for the t-LMF and its spin-polarized counterpart also the larger G3 set

is used as a reference. As expected, the optimized spin-polarized t-LMFs dif-

fer only slightly depending on the fit set: In the SPt1-SVWN functional, that

was fitted to the G3 set, the first parameter a (see definition of parameters in

Eq. (4.7)) turns out to be larger by roughly 0.01 as compared to the optimal
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value for the AE6/BH6 set in the SPt2-SVWN functional. The situation is

reversed for the second parameter in the LMF, probably balancing out the

amount of exact exchange between the two local hybrid functionals. Cor-

responding to the above-discussed results for the optimized one-parameter

LMFs, the two functionals SPt1-SVWN and SPt2-SVWN yield MAEs that

differ only marginally for any of the test sets in Table 7.2.

7.2 Local hybrids with gradient-corrected functionals

The first local hybrid functional presented by Jaramillo et al. had gradient-

corrected DFT exchange and correlation included and performed rather poorly

for thermochemistry. It has been explained above why a local hybrid with-

out gradient-correction is expected to yield better atomization energies. Still,

our first tests also included fitting more complex LMFs to gradient corrected
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density functionals. But the resulting τ -dependent LMF that was optimized

to Becke exchange and PW91 correlation (cf. Fig. 7.4) exhibits a rather un-

physical or counterintuitive behavior: At long range this local hybrid goes to

100% GGA exchange, which is not desirable, given the large self-interaction

error of GGA exchange. The LMF also drops to zero at the nuclei and adds

a considerable amount of exact exchange along the bond axes. As compared

to the best LMF for SVWN (which is essentially the scaled t-LMF), the den-

sity averaged LMF is reduced by a factor of two, suggesting an overall low

exact-exchange admixture. Consequently it does not provide any improve-

ment over standard global hybrid functionals for atomization energies and

barriers. [139]

Instead of allowing for higher exponents of t and thus a more flexible LMF

while keeping full gradient correction, a possible parametrization, similar to

the B3-scheme, would be to adjust the scaling factor in the simple t-LMF
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Exchange-
LMF

MAE (kcal/mol)
Functional

Correlation G2-1 G3 AE6/BH6 BH

B3LYP - 2.53 6.17 4.36 4.7 -

S-VWNa 0.48 t(r) 3.73 3.84 3.12 2.5 tLMF-SVWN

S-VWNb,c 0.49 t(r) 3.68 4.09 3.31 - -

TPSS-TPSSd

0.50 t(r) 3.65 3.63 3.24 2.5 tLMF-STPSSnlx = 0.00
nlc = 0.17

B-LYPd

0.45 t(r) 2.38 2.68 2.71 3.5 tLMF-BLYPnlx = 0.25
nlc = 0.49

S-VWNa erf [0.22 s(r)] 4.90 5.28 4.41 3.9 sLMF-SVWN

S-VWNb,c erf [0.23 s(r)] 4.79 5.83 4.40 - -

S-LYPc

erf [0.2383 s(r)] 2.94 3.45 4.17 5.3 sLMF2-SLYP

S-LYPc (
s(r)

0.73+s(r)
)2 2.58 6.08 4.83 5.8 sLMF1-SLYP

nlc = 0.77

S-VWNd (0.455± ζ0.0423)tσ 2.77 2.84 2.54 2.7 SPt1-SVWN

S-VWNc (0.446± ζ0.0531)tσ 2.66 2.96 2.40 2.8 SPt2-SVWN

S-VWNc erf [(0.197 + ζ0.0423) sσ)] 3.30 3.15 3.58 4.4 SPs-SVWN

Table 7.2: MAEs for different test sets with local hybrid functionals. Pa-
rameters in the LMFs and for gradient corrections are fitted to the aG2-1
set with ReSpect and cc-pVQZ, the bG2-1 set, the cAE6/BH6 set or the
dG3 set. The G2-1 and the full G3 set include 55 and 223 atomization en-
ergies, respectively. In the first column the functional is given in the format
Exchange-Correlation functional.

(cf. Eq. (4.3)) together with the amount of gradient correction within the

DFT exchange and correlation part (cf. Eq. (5.9)). Table 7.2 includes two

accordingly obtained three-parameter local hybrids based on the t-LMF and

s-LMF, respectively.

The scaling parameters a as well as the amount of gradient-correction to

Becke or TPSS exchange (nlx)and LYP or TPSS correlation (nlc) respec-

tively are fitted to the G3 set. Especially a local hybrid functional with

meta-GGA would be of great interest since the corresponding pure density
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functionals fulfill more exact constraints such as the one-electron limit. How-

ever, the fit results shows that in combination with a scaled t-LMF only a

small amount (nlc = 0.17) of TPSS correlation is used and no correction at

all to local exchange is applied. The corresponding functional is referred to as

tLMF-STPSS. Fitting the amount of meta-gradient correction within TPSS

correlation together with the scaling parameter in the s-LMF using Slater

exchange simply reduces to the functional sLMF-SVWN. The improvement

with tLMF-STPSS for atomization energies over the best S-VWN local hy-

brid with g(r) = 0.48t(r) is marginal. A larger improvement of more than 1

kcal/mol in the MAE of the G2-1 and the G3 set is provided by the tLMF-

BLYP local hybrid. It exhibits a slightly smaller scaling factor of a = 0.45 in-

side the LMF than tLMF-SVWN. With a factor of 0.25 for gradient-correction

to exchange and 0.49 to correlation, respectively, this functional is so far the

best local hybrid GGA functional presented in this work and yields overall

the best results for atomization energies.
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7.3 Thermochemistry

Shortly after the introduction of global hybrid functional in 1993, the nowa-

days very popular B3LYP functional has been assessed to perform remarkably

well thermochemical properties such as the atomization energies in the G2

set. [87] Since then, numerous studies have revealed that B3LYP leads to in-

creasing errors in the atomization energies upon enlargening the test set. [88]

This behavior is illustrated in Fig. 7.5 that depicts the MAE in the atom-

ization energies as a function if test-set size. For B3LYP an overall increase

in the MAE from below 3 kcal/mol to more than 6 kcal/mol with a clear

tendency towards underbinding (see mean deviations in Table 7.3) can be

observed.

The G3 subset contains a majority of large organic molecules and on

one hand the above described tendency could be attributed to an accumu-

lation of systematic errors. Similar errors have been identified indeed, in

particular, for many chemical reactions and isomerizations in organic chem-

istry. [140,141] However, such a systematic error is not as well defined as, e.g.,

in wave function methods and it is important to consider that DFT largely

benefits from error cancellation. [142] Deterioration of atomization energies

upon going to larger molecules (which appears to hold for all standard GGA

or global hybrid functionals) has been explained on the other hand by an

incorrect description of medium-range interpair correlation effects. [143] On

this basis semi-empirical dispersion corrections have been introduced which

are also expected to cure the increasing errors in atomization energies for

larger systems. Following an approach suggested by Grimme et al. [144] a

dispersion correction has been fitted to several local hybrid functionals that

are also discussed here. [145] For most of the resulting functionals the MAE

of the full G3 set even deteriorates. A positive exception is the spin-polarized
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t-LMF with dispersion correction that shows slightly improved atomization

energies, especially for the G3 subset. We aim thus for local hybrid func-

tionals that yield accurate atomization energies regardless of the system size.

It is furthermore assumed that a consistent performance for all molecules in

the G3 set also reflects a physically reasonable common ground for the local

hybrid functionals presented in this work.

For the one-parameter local hybrid functionals tLMF-SVWN and sLMF-

SVWN, the MAE of the G2-1 set is slightly larger as compared to the B3LYP

results. When the additional molecules of the G2 subset are included the

MAE increases only slightly. Adding the G3 subset even lowers the MAE

marginally for these two simple local hybrid functionals. Note that the cor-

responding parameters were fitted to the small G2-1 test set only. For the

SP1-SVWN functional and the tLMF-BLYP that have been optimized for

the complete G3 set, the MAE increases slightly with test set size, although

by less than 0.5 kcal/mol. Only the SPs-SVWN functional shows the op-

posite tendency of a decreasing MAE upon including more molecules in the

test set. With the MAEs not varying by more than 0.5 kcal/mol for any of

our functionals as compared to more than 3 kcal/mol for B3LYP, the local

hybrids do not appear to suffer from a systematic error buildup for larger

molecules in contrast to B3LYP which they all clearly outperform for the

full G3/99 set. So far our best MAE of 2.68 kcal/mol for the whole set

of atomization energies is obtained with the gradient-corrected local hybrid

functional tLMF-BLYP.

The almost constant MAE in the atomization energies is also related to

a more statistical error distribution as can be seen from the signed errors

in Tables 7.3 and 7.4. In this context, it should also be noted that the

maximum deviation is not necessarily reduced with local hybrid functionals
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For details on the functionals see Table 7.2

as compared to B3LYP and with the sLMF2-SLYP functional even takes

larger values (see results for the G2 subset in Table 7.3). The MSE in the

atomization energies indicate a tendency towards overbinding for most of the

subclasses with local hybrids in contrast to the B3LYP functional that usually

underestimates enthalpies of formation. One exception is the sLMF2-SLYP

functional that yields negative MSEs or smaller positive MSEs for parts of

the G2-1 set. This can be attributed to the correlation functional since the

LMF does not differ much from the s-LMF that was optimized for VWN

correlation, and both local hybrids use only local exchange.

Also the non-hydrogen compounds seem to be tricky: they tend to be

underbound for the one-parameter local hybrids based on LSDA exchange

and correlation while the other functionals yield a more balanced description

(a MSE closer to zero) or rather overbind (i.e. the sLMF2-SLYP functional).

Since the local hybrid functionals under investigation in this work allow for

more flexibility in the exchange functional only, the large correlation effects

that occur in some of these molecules such as F2, SF6 or O3 still remain a

challenge and probably specifically designed correlation functionals will be

required at some point.
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In general atomization energies are better with local hybrid functionals

based on a τ -dependent LMF as compared to local hybrids with s-LMFs.

Comparing the two simplest functionals tLMF-SVWN and sLMF-SVWN,

the latter yields about 1 kcal/mol larger MAEs. For the spin-polarized LMFs

that yield improved results for thermochemistry as compared to their simpler

one-parameter counterparts, the same effect is observed on a smaller scale.

Concentrating on different subclasses of molecules within the different

subsets, no particularly large variation of MAEs is found. In the G3 subset

the, especially for B3LYP problematic hydrocarbons, are usually well de-

scribed except for the one-parameter sLMF-SVWN functional. For the two

functionals that were fitted to the AE6/BH6 training set (SPt1-SVWN and

SPs-SVWN respectively) the additional radicals in the G3 subset stand out

with a larger absolute deviation of more than 6 kcal/mol.

Starting from simple t- and s-LMFs, inclusion of spin polarization, as

in the SPs-, SPt1- and SPt2-SVWN functionals further improves thermo-

chemistry significantly which is illustrated in Fig. 7.5 and Table 7.2. The

improvement is particularly notable for the s-LMF, where the mean absolute

error for the full G3 set drops by 40%. However, even for the t-LMF, the

MAE is reduced by about 1 kcal/mol. Given their very simple structure

with only LSDA exchange and correlation and exact exchange and only two

adjustable parameters, all three local hybrids based on spin-polarized LMFs

provide G3 set atomization energies that are a remarkable improvement over

standard functionals like B3LYP. To our knowledge, the obtained mean ab-

solute errors around 3.0 kcal/mol (given the MP2-optimized structures; cf.

chapter 6) are competitive those of known occupied-orbital-dependent func-

tional (and close to ”double hybrids” like B2PLYP, [17] which incorporate

electron correlation via inclusion of the virtual orbital space in a MP2- like
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correlation term). The ζ-dependence makes an effect exclusively for open-

shell systems. While the small G2-1 test set includes 18 open-shell species

out of 55 molecules, this number drops to 12 for the additional molecules of

the G2 set (totally 93 molecules) and becomes very small (only 2) for the

subset of 75 species constituting the rest of the full G3 set. Yet, the improve-

ment of the atomization energies by inclusion of the ζ-dependence is notable

for all of the subsets. This points to an improvement predominantly of the

reference valence atomic energies (13 of 14 atoms involved in the G3 test set

are open shell species). Note that here we specifically do not refer to the

quality of the total energies as these are appreciably affected by the LMF in

the core region, which we have not attempted to optimize so far. [81]
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Functional sLMF-SVWN sLMF2-SLYP SPs-SVWN

G2-1

Hydrocarbons 5.43 ( 4.05) 2.37 (-1.73) 2.63 ( 0.20)

Radicals 4.75 ( 2.89) 3.43 ( 1.68) 3.80 ( 2.30)

Substituted hydrocarbons 5.59 ( 2.61) 3.05 (-0.42) 3.37 ( 0.64)

Inorganic hydrides 4.94 ( 4.94) 1.43 ( 0.68) 2.01 ( 1.79)

Non-hydrogen 4.62 (-4.19) 3.87 (-2.50) 4.07 (-2.54)

MAE(55 molecules) 4.90 2.94 3.30

MSE(55 molecules) 1.65 -0.12 0.60

max. deviation 15.21 (si2h6) -12.05 (n2) -12.36 (n2)

G2

Hydrocarbons 5.78 ( 5.61) 1.88 ( 0.81) 1.84 ( 1.46)

Radicals 6.11 ( 5.00) 2.78 ( 1.73) 3.57 ( 2.73)

Substituted hydrocarbons 5.32 ( 3.06) 3.53 ( 1.95) 3.26 ( 1.75)

Inorganic hydrides 5.68 ( 5.68) 0.32 (-0.32) 1.95 ( 1.95)

Non-hydrogen 5.29 (-4.39) 5.40 ( 3.35) 4.05 ( 1.37)

MAE(93 molecules) 5.50 3.52 3.20

MSE(93 molecules) 2.12 2.00 1.74

max. deviation 21.90 (ch3cocl) 25.74 (ch3cocl) 21.13 (ch3cocl)

G3

Hydrocarbons 7.08 ( 2.69) 2.25 (-1.38) 3.00 (-2.72)

Radicals 1.19 (-0.38) 6.36 ( 6.36) 4.34 ( 4.34)

Substituted hydrocarbons 4.43 ( 0.26) 2.96 (-0.16) 2.76 (-1.89)

Non-hydrogen 6.19 (-4.13) 7.76 ( 7.34) 3.43 ( 2.01)

MAE(75 molecules) 5.22 3.73 2.97

MSE(75 molecules) 0.00 1.05 -1.23

max. deviation -17.04 (c4h4n2) 16.79 (cl2s2) -14.56 (c4h4n2)

MAE (223 molecules) 5.26 3.45 3.15

MSE (223 molecules) 1.29 1.16 0.46

Table 7.4: Mean absolute errors and mean signed errors in parenthesis in kcal/mol for molecule types in

the G2-1, G2 and G3 set for local hybrid functionals with s-LMFs and their spin-polarized counterparts.

To allow for comparison with exact-exchange admixtures of global hy-

brids, the density-averaged LMFs for a t-LMF, s-LMF and their spin-polarized

versions are provided in Table 7.5. Since, the same orbitals are used for all

post-SCF results discussed here, only one representative of each class of LMF

(namely, t-LMF, s-LMF and a spin-polarized version for each) is depicted.

Higher average values can be deduced from larger scaling parameters and

vice versa. The average values for subclasses of molecules in the G3/99

set and the whole set respectively as compared to the average over atoms

give some idea about how much exact exchange has been included overall.
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Considering the LMF plots in chapter 4 differences between subsets as for

example the larger average for hydrocarbons as compared to non-hydrogen

compounds are most like to be dominated by the inner-core region given that

the latter subset contains more second-row elements. Note that for all LMFs

the average exact-exchange admixture is significantly larger in atoms than in

molecules. Given that more nondynamical correlation as represented through

DFT exchange occurs in molecules this effect is desirable and supports the

good thermochemical performance of our local hybrid functionals. Interest-

ingly, the difference is most pronounced for the t-LMF, which also provides

the best atomization energies.

Comparison between different types of LMF reveals an overall larger

exact-exchange admixture in t-LMFs which is most likely due to the strong

weighting of the core region were the s-LMFs exhibit a dip and t-LMFs a max-

imum (cf. Figs. 4.1, , 4.2, 4.3,4.4 and 4.5). The t-LMF optimized for Slater

exchange and TPSS correlation consequently provides the largest amount of

exact exchange due to the higher scaling parameter. Variation of the aver-

age values between different subclasses of molecules are very moderate. A

significant outlier on the large side is the value for the inorganic hydrides of

the G2 subset represented only by the H2 molecule. Although the effect can

be observed for all LMFs, it is less pronounced for functions based on the

reduced density gradient. Actually, for this molecule the t-LMF degenerates

into a global hybrid with a constant exact-exchange admixture equal to the

scaling parameter. From Fig. 4.3 can be seen that the t-LMF takes large val-

ues around the hydrogen atom in other molecules as well. The lowest average

exact-exchange admixtures are therefore seen for non-hydrogen molecules, in

particular for ones in the G3 extension set.
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Functional tLMF-SVWN sLMF-SVWN SPt2-SVWN SPs-SVWN

G2-1

Hydrocarbons 0.314 0.253 0.292 0.229

Radicals 0.300 0.247 0.280 0.225

Substituted hydrocarbons 0.282 0.235 0.262 0.212

Inorganic hydrides 0.291 0.241 0.271 0.218

Non-hydrogen 0.282 0.238 0.262 0.215

All (55 molecules) 0.293 0.243 0.272 0.220

G2

Hydrocarbons 0.289 0.235 0.268 0.212

Radicals 0.289 0.238 0.269 0.216

Substituted hydrocarbons 0.278 0.231 0.258 0.208

Inorganic hydrides 0.480 0.342 0.446 0.312

Non-hydrogen 0.260 0.223 0.242 0.201

All(93 molecules) 0.280 0.232 0.260 0.209

G3

Hydrocarbons 0.283 0.231 0.263 0.208

Radicals 0.276 0.230 0.256 0.208

Substituted hydrocarbons 0.277 0.228 0.257 0.206

Non-hydrogen 0.244 0.212 0.227 0.191

All(75 molecules) 0.273 0.226 0.253 0.204

Mean Average (223 molecules) 0.281 0.233 0.261 0.210

Mean Average (14 Atoms) 0.330 0.268 0.314 0.251

Table 7.5: Density-weighted average local mixing functions further averaged
over type of molecules and subsets of the G3 set.
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An important feature of spin-polarized LMFs is the difference between

averaged α- and β- LMFs

∆g = gβ − gα . (7.3)

The calculated values for the quantity ∆g are given in Table 7.6 and as

already mentioned in chapter 4 for almost all open-shell systems studied

the beta LMF takes larger values on average. Considering the definition

for spin-polarized LMFs (cf. Eqs. 4.7 and 4.9) one might expect that the

difference will be reduced upon inclusion of the explicit dependence on spin

polarization. This is indeed the case as can be seen from the third and

fifth column in Table 7.6. Apparently, the decrease of ∆g is significantly

larger than one would expect from the reduction of the same-spin scaling

factor a (cf. definitions in Eqs. 4.7 and 4.9). For spin-polarized s-LMFs, the

difference between β and α average is reduced by more than a factor of 2

while the effect is less pronounced for t-LMFs. This adjustment of different

spin-averaged LMFs correlates with the observed improved thermochemical

performance although reasons for this remain to be studied in more detail.

7.4 Reaction barriers

Table 7.7 lists MAEs and MSEs for the two classical barrier height test sets.

For comparison, results obtained with B3LYP and Becke’s half and half func-

tional that combines 50% exact exchange with Slater exchange and local

correlation are given as well. As pointed out before, GGA functionals un-

derestimate barriers significantly and systematically. While exact-exchange

admixture in global hybrids increases and thus overall improves barriers it

has been demonstrated before, that the relatively small mixing parameters
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atom/radical,
tLMF-SVWN SPt2-SVWN sLMF-SVWN SPs-SVWN

multiplicity

Li, 2 0.0579 0.0307 0.0235 -0.0046

C, 3 0.0964 0.0665 0.0630 0.0262

N, 4 0.1356 0.0986 0.0885 0.0417

O, 3 0.0929 0.0718 0.0570 0.0295

F, 2 0.0392 0.0303 0.0259 0.0138

Si, 3 0.0138 0.0030 0.0143 -0.0012

P, 4 0.0282 0.0140 0.0254 0.0048

S, 3 0.0274 0.0181 0.0206 0.0072

Cl, 2 0.0141 0.0098 0.0109 0.0045

BeH, 2 0.0405 0.0218 0.0276 0.0070

CH, 2 0.0581 0.0445 0.0312 0.0148

CH2, 3 0.1126 0.0896 0.0583 0.0304

CH3, 2 0.0595 0.0488 0.0299 0.0167

ClO, 2 0.0071 0.0044 0.0058 0.0020

CN, 2 0.0103 0.0050 0.0112 0.0033

HCO, 2 0.0103 0.0051 0.0082 0.0013

NH, 3 0.1004 0.0786 0.0576 0.0300

NH2, 2 0.0470 0.0374 0.0277 0.0152

NO, 2 0.0134 0.0085 0.0098 0.0033

O2, 3 0.0240 0.0155 0.0197 0.0080

OH, 2 0.0418 0.0327 0.0266 0.0144

PH2, 2 0.0186 0.0137 0.0119 0.0051

S2, 3 0.0083 0.0041 0.0084 0.0021

Si2, 3 0.0157 0.0148 0.0130 0.0062

SiH2, 3 0.0268 0.0166 0.0177 0.0040

SiH3, 2 0.0169 0.0115 0.0101 0.0032

SO, 3 0.0121 0.0064 0.0113 0.0031

Average 0.0418 0.0297 0.0265 0.0108

Table 7.6: Difference between averaged α- and β- LMFs for SVWN local
hybrid functionals with one-parameter t- and s-LMFs as well as their spin-
polarized counterparts.
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in thermochemically optimized global hybrids such as B3LYP or PBE0 is not

sufficient to cure the tendency of underestimation. The LSDA-based global

hybrid with 50% exact-exchange improves barrier heights as compared to

B3LYP, but performs poorly for thermochemistry (see above). It has already

be discussed that the thermochemically optimized parameter in the simplest

LSDA-based local hybrid tLMF-SVWN is not far from the optimal values

for barriers either or that, at least no large improvement can be obtained

upon variation of the scaling parameter in the tLMF. With a MAE of 2.5

kcal/mol for both test sets the tLMF-SVWN functional is superior to B3LYP

although it was optimized for thermochestry. The mean signed errors indi-

cate a similar systematic underestimation of barriers though. For the same

database, the BMK functional with 42% exact-exchange and the M06-2X

functional including 54% exact exchange attain MAEs of 1.3 kcal/mol and 1.1

kcal/mol, respectively. [15] As compared to the simple one-parameter local

hybrid functional tLMF-SVWN, these global hybrid functionals are, however,

highly parameterized and include a larger amount of exact exchange. The

long-range corrected PBE hybrid functional yields a MAE of 1.3 kcal/mol

for hydrogen-transfer barriers and 2.4 kcal/mol for non-hydrogen transfer

reactions. The performance of our local hybrid is thus not far from the best-

performing functionals for reaction barriers. Incorporation of GGA or even

meta-GGA correction into a local hybrid functional based on a t-LMF does

unfortunately not improve the barrier heights: The tLMF-STPSS performs

similarly to tLMF-SVWN. The tLMF-BLYP yields MAEs of 3.6 kcal/mol

and 3.3 kcal/mol for the hydrogen-transfer and the non-hydrogen-transfer

barrier heights, respectively and thus inferior to the tLMF-SVWN functional

discussed above. This is most likely due to the smaller exact-exchange ad-

mixture in the GGA-based local hybrid functional.
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Local hybrid functionals with s-LMFs yield larger deviations from exper-

imental barrier heights than t-LMFs. Especially the MAEs with the simplest

representative of this family, the sLMF-SVWN functional, are 1 (HTBH) and

1.3 (NHTBH) kcal/mol larger than the MAEs of tLMF-SVWN and repre-

sent only a small improvement over B3LYP. Again, combination with GGA

correction rather worsens the MAEs of more than 5 kcal/mol.

The superiority of t-LMFs over s-LMFs for barrier heights can be ex-

plained by their larger sensitivity in the bond region as discussed in chapter

4. It has already been pointed out that the t-LMF exhibits more pronounced

local maxima at an intermediate position along the bond-dissociation path-

way than the s-LMF. Such an electronic structure is according to Grüning

et al. [90] a sign of occupation of antibindung orbitals and corresponds to

weaker nondynamical correlation as compared to a normal two-center two

electron bond. This is also the reason why GGA functionals overstabilize

transition states and thus underestimate barrier heights. Since in our local

hybrid model the LMF establishes the balance between nondynamical cor-

relation in the exchange density functional and exact exchange, at the tran-

sition state structure more exact exchange is traded in for Slater exchange.

Thereby, the tLMF corrects the overstabilization of the transition state. For

normal two-center two-electron bond situations where nondynamical corre-

lation is stronger, no such corrections are introduced with our LMFs and the

net computed barrier is thus increased and typically improved.

Although explicitly fit to barrier heights within the AE6/BH6 set, the

ζ-dependent local hybrids SPt2-SVWN and SPs-SVWN moderately deteri-

orate barriers as compared to the simpler s- and t-LMFs. While the mean

absolute errors for non-hydrogen transfer barriers remain essentially unmodi-

fied upon inclusion of spin polarization, results are clearly worsened by up to
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Functional
Hydrogen-transfer Non-hydrogen transfer

MAE MSE MAE MSE

B3LYP 4.3 -4.3 5.0 -4.8

S-HandH-VWNa 2.5 -2.1 2.8 0.0

tLMF-SVWN 2.5 -2.1 2.5 -1.5

tLMF-STPSS 2.5 -2.2 2.4 -1.3

tLMF-BLYP 3.6 -3.5 3.3 -2.8

sLMF-SVWN 3.5 -3.4 4.3 -3.7

sLMF2-SLYP 5.2 -5.2 5.3 -5.0

SPt1-SVWN 2.9 -2.6 2.5 -1.8

SPt2-SVWN 3.0 -2.9 2.6 -1.9

SPs-SVWN 4.3 -4.3 4.4 -4.4

Table 7.7: Mean absolute and mean signed errors in kcal/mol for 38 hydrogen-
transfer and 38 non-hydrogen transfer reaction barriers. a SCF calculation
with a global hybrid functional that mixes 50% exact exchange with Slater
exchange and VWN correlation (Becke’s half-and-half functional).
.

0.8 kcal/mol for the hydrogen transfer barriers. This observation reflects the

overall lower exact-exchange admixture as discussed in the previous section.

In this context, it was also concluded that the improved thermochemistry

could be traced back to a better description of atoms relative to the molecules

which does not affect reaction barriers.

7.5 Dissociation of symmetric radical cations

So far, it is shown that some of the local hybrids investigated in this work per-

form rather accurately for both thermochemistry and reaction barriers due to

a more balanced description of nondynamical correlation and cancellation of

self-interaction. The latter is also the predominant problem in symmetrical
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two-center three-electron dimer systems, while nondynamical correlation is

essentially absent. In order to further test the flexibility of local hybrid func-

tionals, bond lengths and dissociation energies for the seven radical cations

introduced in chapter 3 have been calculated. Table 7.8 shows computational

results with local hybrids, B3LYP and the S-HandH-VWN functional. For

comparison, CCSD(T) benchmark values are given as well.

Overall, the results bond lengths and dissociation energies are improved

with local hybrid functionals as compared to B3LYP. The latter is, how-

ever, known to yield poor results for these properties. Better results are

generally obtained with S-HandH-VWN, a global hybrid including 50% ex-

act exchange (with the dissociation energy of He2
+ being a peculiar outlier).

Yet, all functionals substantially overestimate bond lengths as well as disso-

ciation energies. The differences of 1.5 to 3 kcal/mol between dissociation

energies with different local hybrid functionals are rather small as compared

to more than 10 kcal/mol deviation from the benchmark values for most of

the systems. H2
+ is an exception since most of the existing functionals are

quite close to the CCSD(T) energy (within 3.5 kcal/mol), and it is a one-

electron system with no correlation whatsoever. Comparing the two different

families of LMFs, functionals based on τ -dependent LMFs usually perform

better than local hybrids with local mixing functions of the reduced den-

sity gradient. Among the t-LMF-based local hybrids including ζ-dependent

LMFs, the tLMF-STPSS functionals yields the lowest and thus best disso-

ciation energies which can be ascribed to the largest scaling factor in the

t-LFM yielding a slightly larger exact-exchange admixture. Surprisingly the

s-dependent one-parameter functional sLMF-SVWN performs similarly ex-

cept for the H2
+ and He2

+ dissociation energies. Interestingly, for the cations

Ne2
+, Ar2

+, (HF)2
+, (H2O)2

+, (NH3)
+ the best equilibrium distances are ob-
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tained with sLMF2-SLYP which is neither optimal for thermochemistry nor

for barriers. Bond lengths of the lighter H2
+ and He2

+ are less sensitive in

general and usually better described with t-LMF based local hybrid func-

tionals. The spin-polarized LMFs give essentially the same distances as their

unpolarized counterparts and marginally larger binding energies (likely due

to the overall somewhat lower exact exchange, given the slightly lower scaling

parameter a).

These results suggest that the flexibility of the present local hybrid func-

tionals with one- and two-parameter LMFs is not sufficient to extend the

good performance for general thermochemical and barrier data to these sys-

tems with rather special bonding situations. Other variables than kinetic

energy densities and the reduced density gradient and more parameters will

probably be required in order to provide the higher amount of exact exchange

that is clearly needed in this case.
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7.6 Transition metal compounds

When going down the periodic table, the reliability of density functionals be-

comes even more problematic. Although transition metal complexes can be

calculated fairly accurately with B3LYP, transition metal dimers, hydrides

and s-d interconfigurational energies remain challenging. Results for these

three properties reflect different particular shortcomings of existing density

functionals. The inferiority of hybrid functionals as compared to GGAs and

meta-GGAs for predicting binding energies of covalently bonded transition

metal dimers has been attributed to the importance of nondynamical corre-

lation. Underestimation of s-d transfer energies on the other hand has been

related to self-interaction errors. The purpose of these preliminary tests for

transition metal is thus not a thorough assessment but rather to get an idea of

the applicability range and possible limits of local hybrid functionals that are

designed to balance nondynamical correlation and self-interaction correction

in real-space.

7.6.1 Atomic s-d Transfer energies

Table 7.9 displays the calculated s-d transfer energies for all local hybrid

functionals and B3LYP together with benchmark values. A severe under-

estimation tendency can be seen from the mean signed error for all density

functionals. Only B3LYP yields slightly too large 4s-3d interconfigurational

energies for the atoms Ni and Cu. Wrong ground states are predicted for

the Co atom with any functional in Table 7.9 and for the Fe atom with the

sLMF-VWN and SPs-SVWN functional. Among the local hybrids, two func-

tionals with LYP correlation but different LMFs perform best with MAEs of

0.42 and 0.52 eV for sLMF1-SLYP and tLMF-BLYP respectively. Consid-

ering that the local hybrid based on the t-LMF yields impressively accurate
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enthalpies of formation this result is quite surprising although B3LYP with

an MAE of 0.33 eV remains superior. The other local hybrid functionals yield

MAEs almost twice as large. Comparing LSDA-based local hybrid function-

als suggests that the s-LMFs are inferior to t-LMFs. Introduction of spin

polarization into local hybrid functionals has a small negative effect on the

s-d transfer energies. In contrast to barrier heights and thermochemistry

where t-LMFs usually performed better, it can not be deduced whether a t-

or a s-LMF is to be preferred for the calculation of s-d transfer energies.

It can be concluded that further studies of s-d transfer energies with lo-

cal hybrid functionals are mandatory. In particular the basis set dependence

should be investigated considering the underlying resolution of identity in our

calculations. In other studies, it was discussed that underestimation of s-d

interconfigurational energies with pure GGA functionals is probably due to

a lack of long-range exchange interaction between 4s and 3d electrons. [106]

Subsequently, a long-range corrected GGA was specifically optimized to yield

energies close to experiment exceeding the performance of B3LYP, although

the overall amount of exact exchange is similar. [74] Based on the results

with long-range corrected hybrid functionals, comparison of average exact-

exchange admixture with the local hybrid functionals would be worthwhile.

LMFs that are specifically optimized to transition metals and interconfigu-

rational energies might give further insight into the requirements on more

flexible local hybrid functionals. Finally, self-consistent calculation may be

more appropriate for this sensitive property. It becomes evident that none

of the local hybrid functionals fitted to thermochemical and kinetic data

are an improvement over B3LYP for 4s-3d interconfiguration energies in 3d

transition metal atoms. However, keeping in mind that the second best local

hybrid functional for s-d transfer energies yields an average absolute error be-
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low most of the established GGA and meta-GGA functionals (such as PBE,

TPSS or TPSSh) also happens to be outstanding for thermochemistry and

further development of local hybrid functionals seems promising.
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7.6.2 3d transition metal dimers and monohydrides

Since a more detailed discussion of the performance of local hybrid functionals

will be presented in another context, [147] only average errors for the 11

dissociation energies and 9 respectively 8 equilibrium distances of transition

metal dimers and monohydrides are given in Table 7.10. For the same reason

and as mentioned above, a reduced number of local hybrid functionals is

considered. Turning to the atomization energies of 3d metal dimers, it can be

seen that the τ -dependent one-parameter functional tLMF-SVWN gives only

slightly worse results than B3LYP while both local hybrids based on s-LMFs

yield considerably larger mean absolute errors. The MSE reveals strong

underbinding of the dimers with all functionals in Table 7.10. Although

the small and positive MSE for equilibrium bond length points towards a

more random error distribution, the order in the performance of local hybrid

functionals is the same as for dissociation energies. Apparently too much

nondynamical correlation is lost with the present local hybrid functionals in

regions that are crucial for a better description of 3d transition metal dimers.

For 3d transition metal monohydrides hybrid functionals such as B3LYP

were observed to perform best. This has been related to the partly can-

celed self-interaction error. [105] Even better results for the same systems

are obtained with local hybrid functionals. The MAE for dissociation ener-

gies is reduced by more than 1 kcal/mol with the sLMF1-SLYP functional as

compared to B3LYP. The local hybrid functional without gradient correction

based on a t-LMF gives results only slightly better than B3LYP and the cor-

responding functional based on a s-LMF performs worse. Again, the same

holds for the equilibrium distances.

Keeping in mind that not all density functionals predict the correct ground

state for some of the dimers, self-consistent calculations with local hybrids
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might be helpful in order to consider the symmetry of the ground state in a

more quantitative and detailed discussion of these results.

Functional
M2 MH

De re De re

B3LYP
12.4 0.094 8.3 0.015

(-10.7) (0.043) (8.1) (0.005)

tLMF-SVWN
13.8 0.095 7.9 0.015

(-12.3) (0.030) (7.9) (-0.003)

sLMF-SVWN
18.1 0.104 10.6 0.044

(-16.4) (0.0038) (10.6) (-0.038)

sLMF1-SLYP
17.4 0.099 7.1 0.012

(-17.4) (0.031) (6.5) (-0.004)

Table 7.10: Mean absolute errors for 11 dissociation energies De (in kcal/mol)
and 9 equilibrium distances re (in Bohr) of 3d transition metal dimers and
monohydrides. Mean signed errors are given in brackets. The molecules and
benchmark data are given in Table 3.4.

7.7 Conclusion

In a thorough assessment of semi-empirical local hybrid functionals for atom-

ization energies and barrier heights, it is shown that quite accurate results

close or better than those of the best state-of-the-art density functionals

are obtained for both properties. This is even more interesting given that

some functionals were fit to atomization energies exclusively. Fit results

were nearly independent from the size of the underlying training set. Thus

rather simple one- or two-parameter local hybrid functionals which are pre-
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dominantly based on LSDA exchange and correlation are able to compete

with the best state-of-the-art functionals for thermochemistry and barriers.

This result is even more impressive considering the large amount of empiri-

cal parameters in other successful global hybrids such as B98 and BMK, for

example. Concerning the different types of LMFs, it has been shown that

t-LMFs are superior for thermochemistry and reaction barriers of main group

compounds. No such statement can be made for transition metals. Further

investigation for the latter is necessary in order to discuss performance of lo-

cal hybrids for dissociation energies and equilibrium bond length of transition

metal dimers and monohydrides more quantitatively.

Parallel to this work, another local hybrid functional (PSTS) has been

introduced by Perdew et al. [27] It is based on TPSS exchange and correla-

tion and contains five empirical parameters that are fitted to enthalpies of

formation and barrier heights. The corresponding local mixing function itself

depends on the LSDA exchange energy density and the TPSS correlation en-

ergy density in the high density limit. The LMF uses 100% exact exchange

in one-electron regions, rapidly varying density regions and for non-uniform

high densities. In the PSTS functional, the spin polarization is employed to

distingish between the stretched H2
+ and the stretched neutral H2 which re-

quire full exact exchange and density functional exchange, respectively. For

the atomization energies of the full G3 set a MAE of 4.9 kcal/mol was ob-

tained with this local hybrid functional. It performed similarly to B3LYP for

barrier heights. [84] The PSTS contains thus more parameters but performs

less well than the local hybrid functionals presented in this work. Since it

fulfills a more exact constraints, it may be considered physically more mean-

ingful.



CHAPTER 8

THE LOCAL HYBRID POTENTIAL

In this chapter, the self-consistent implementation of local hybrid functionals

into the Turbomole package is validated. Following previous work, the FDO

potential has been implemented using an RI approximation, for efficiency.

However, no rigorous tests are available that allow estimation of the error

introduced by such an approximation. Hence, as explained in chapter 5 the

numerically exact potential has been implemented as well. In order to assess

the accuracy of the RI potential, orbital energies, total energies and isotropic

hyperfine coupling constants obtained with the tLMF-SVWN local hybrid

functional will be compared for different basis sets.

8.1 Total energies

According to the variational principle, the total energy obtained from a trial

density that differs from the true ground state density for a given energy

functional has to be larger than the energy from a self-consistent calcula-

tion. Thus by comparing total energies obtained from post-SCF calculations

with the SCF energy for a given functional, the implementation of the cor-

responding potential can be validated. As an example energies from local

hybrid functionals based on Slater exchange and VWN correlation with the

optimized t- and s-LMF are listed in Table 8.1. The total energy is lowered

by 10 to 100 meV during a self-consistent calculation. The energy difference

is slightly larger for the t-LMF as compared to the s-LMF. A possible reason

for this could be that the B3LYP orbitals (that are used for post-SCF calcu-

lations) are closer to the orbitals obtained with the s-LMF-based functional.
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The s-LMF post-SCF energies could also be fortuitously closer to the SCF

energies since the value Epost−SCF−Enumerical
SCF also contains errors in the total

post-SCF energies due to the RI approximation to the exact-exchange energy

density.

In order to get more insight into the accuracy of the RI approximation to

the potential and the exact-exchange energy density, the difference between

SCF energies from the RI potential and SCF energies from the numerical

potential are given in the third and fourth columns of Table 8.1. The dif-

ferences go up to ca. 11 meV but are typically much smaller. Strikingly,

the RI energies are with one exception lower than the numerically exact one

indicating that an auxiliary basis cannot be optimized variationally but has

to be fitted explicitly to the numerical potential. Overall, the error in the

total energy due to the RI approximation is larger for the s-LMF. This find-

ing suggests that an erroneous energy lowering occurs as well in post-SCF

calculations leading to the above discussed smaller differences between post-

SCF and SCF energies with the s-LMF. Furthermore, the largest deviations

are observed for the carbon atom, the oxygen atom and the OH radical de-

spite their smaller (absolute) total energies as compared to e.g. the heavier

sulfur atom and sulfur containing molecules. While the difference between

post-SCF and SCF energies depends clearly on the total energy, the error in

total SCF energies due to the RI approximations appears thus to be more

random. It might be related somehow to the amount of exact exchange since

the density-weighted averaged LMFs are smaller in heavier atoms which are

therefore probably less affected by small discrepancies in the corresponding

terms of the potential.

If highly accurate energies are sought such unsystematic errors might be-

come problematic and moreover lead to a stronger basis set dependence of
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Molecule
Epost−SCF − Enumerical

SCF ERI
SCF − Enumerical

SCF (meV)

s-LMFa t-LMFb s-LMFa t-LMFb

C 14.7 28.7 -7.68 -4.00

CH3 30.1 48.5 -3.83 -2.98

CH4 38.4 57.6 -1.33 -1.42

H2 4.6 10.1 0.03 0.00

H2O 30.5 46.5 -2.29 -1.95

H2S 42.7 63.9 -2.27 -0.96

H 2.7 4.6 0.06 0.00

O 13.4 31.4 -11.22 -6.53

OH 19.0 37.5 -9.32 -5.33

S2 69.1 92.4 -3.69 -2.96

S 33.9 48.8 -0.37 0.78

SH 37.6 55.8 -1.47 -0.18

Si 36.3 45.3 0.21 -0.73

SiH4 44.6 79.1 -3.94 -4.24

SiO 58.0 78.2 -3.45 -2.74

Table 8.1: Differences in total energies for some molecules ofthe AE6/BH6
set. Epost−SCF denotes the non-SCF total energy obtained with B3LYP or-
bitals. Enumerical

SCF and ERI
SCF are self-consistent total energies from the numeri-

cally exact potential and the RI approximation respectively. The local hybrid
functionals employed are based on Slater exchange and VWN correlation .
ag = erf(0.22s). bg = 0.48 ∗ t
.
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calculations with local hybrids than with density functionals that do not rely

on a RI approximation. The t-LMF reduces to a constant value through-

out the hydrogen molecule and the hydrogen atom which explains why the

RI approximation is highly accurate for this particular molecule. Given the

small dimension of energy differences the RI approximation seems to be quite

accurate. It should be kept in mind, however, that these values have been

obtained with the rather large decontracted QZVP basis set. The respective

configurations are 15s8p3d2f1g and 20s14p4d2f1g for first row elements B

through F and second row elements Al through Cl. Parts of the quite un-

systematic errors might by compensated by empirical parameters fitted with

a given basis. Attention should therefore be paid when other basis sets are

employed or the overall basis set size is reduced.

8.2 Isotropic hyperfine coupling constants

Since the focus of this chapter is rather validation of the RI approximation

than assessment of local hybrids for isotropic hyperfine coupling constants,

the following discussion concentrates mostly on the sensitivity of RI results

towards basis set size and contraction. However, Fig. 8.1 illustrates a regres-

sion analysis for the calculation of isotropic HFCCs with our two simplest

local hybrid functionals tLMF-SVWN and sLMF-SVWN (using the numer-

ically correct potential) in comparison to B3LYP. The tLMF-SVWN func-

tional yields results only slightly inferior to B3LYP: While the MAE of ca.

33 MHz is increased by less than 4 MHz with the local hybrid functionals and

the slope deteriorates by 0.02, the (positive) inception drops by 1 MHz. Ac-

cording to other studies including GGA, meta-GGA and hybrid functionals,

B3LYP is the most suitable functionals for isotropic HFCCs of main group

compounds. [110,112] It can thus be concluded that the one-parameter local
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hybrid that has been optimized for thermochemistry is competitive not only

for thermochemical properties and barrier heights but also close to the best

functionals for the calculation of isotropic hyperfine coupling constants of

small radicals. Keeping in mind its simplicity there seems to be room for

improvement through inclusion of other variables and additional adjustable

parameters. Results for the tLMF-BLYP are not shown but similar. With

the local hybrid functional based on a local mixing function of the reduced

density gradient the deviations from experimental values are considerably

larger which can be seen both from the regression analysis and the MAE

of over 40 MHz. This could be related to the negative cusp of s-LMFs at

the position of the nuclei leading to small exact-exchange admixtures in this

region.

8.2.1 Validation of the RI approximation

In order to avoid additional errors or even error cancellation due to the reso-

lution of the identity for the exact-exchange parts in the local hybrid poten-

tial, the results discussed above were obtained with the numerical potential.

Turning to the validation of the RI approximation, the mean deviations of

calculated isotropic HFCCs between the RI and the numerical results in per-

cent are shown in Figs. 8.2 to 8.4 for the IGLO-II, IGLO-III and IGLO-VI

basis set respectively. The average over all atomic values has been calculated

for each molecules ,and the corresponding values for the decontracted are

shown as well for comparison. These values were obtained with the tLMF-

SVWN functional and will be considered representative for all local hybrid

functionals investigated in this work.

With the medium-sized IGLO-II basis, the percentage deviation in the

isotropic hyperfine coupling constants for individual molecules amounts to
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Figure 8.1: Linear regression analysis for 26 isotropic hyperfine coupling
constants. Calculations were performed with the IGLO-IV basis set and
numerical local hybrid potentials.
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over 20%. The error range is decreased significantly to 4% with the IGLO-

III and further down to 2% with the large IGLO-IV basis set. The accuracy

of the RI results with respect to the numerical values is thus improved sub-

stantially by an increasing number of contracted basis functions. With some

exceptions the deviation from numerical results with the RI approximation

are reduced as well upon decontraction of the basis, to a much smaller extent

though. The improvement is most pronounced for the IGLO-II and barely

visibly for the larger IGLO-IV basis set. This is not too surprising consider-

ing that all IGLO basis sets employed in this work are only loosely contracted

and the ratio between decontracted basis functions and contracted one is sim-

ply the largest for IGLO-II. For all basis sets, the OH and the H2O
+ molecule

seem to suffer most from errors in the RI approximation and, with IGLO-III

and IGLO-IV the deviation from the numerically exact solution is even in-

creased upon decontraction of the basis. Possibly, the percent errors appear

to be large in these two cases because the corresponding isotropic HFCCs are

comparatively small. Following from the MSE bars, there is no systematic

under- or overestimation of the isotropic hyperfine coupling constants due to

the RI approximation which contrasts with the observation for total energies

that were systematically underestimated.

Potential
Contracted Decontracted

IGLO-II IGLO-III IGLO-IV IGLO-II IGLO-III IGLO-IV

Numerical 44.87 32.82 33.14 43.16 33.60 33.51

RI 44.49 32.36 33.01 42.19 32.93 33.34

Table 8.2: MAE in isotropic 26 HFCCs. The molecules and benchmark values
are given in Table 3.5. Results from SCF calulations with the numerically
exact and the RI potential are given for each basis set.

.

Since fitting procedures and assessments are generally performed for test
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set averaged errors, the mean absolut error over all 26 isotropic HFCCs with

the RI potential are compared to numerical results in Table 8.2. For a given

basis, the RI and the numerical MAEs differ by less than 1 MHz. The

largest deviation of 0.93 MHz occurs with the decontracted IGLO-II basis.

As compared to the isotropic HFCCs of a single molecule, the average error

is thus less sensitive to inaccuracies in the RI potential due to an incomplete

basis. The RI MAE is generally smaller than the numerical MAE indicating

that fortuitously more accurate results may be obtained due to an incomplete

basis set when the RI approximation is used in the local hybrid potential.

Fig. 8.5 illustrates the difference between RI and numerical energies for

the α orbitals of the CN molecule. Based on the previous observation that

decontraction of a given basis has considerably smaller effects on the results

than augmenting the number of contracted basis functions, only the con-

tracted IGLO basis sets are considered in this context. The energy differences

for individual orbitals due to the RI approximation are of the same magnitude

or slightly smaller than total energy differences (see discussion above). With

the contracted IGLO-IV basis set all occupied orbital energies and the first

eight virtual orbital energies are reproduced within 10 meV accuracy. Con-

sidering the magnitude of total orbital energies, the error introduced by the

RI approximation seems to be negligible. However, supporting the results for

isotropic hyperfine coupling constant no clear tendency in the orbital energy

differences can be observed. The HOMO energy for instance is overestimated

by almost 3 meV using the IGLO-II basis set and underestimated by 7 meV

with the larger IGLO-III basis.
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8.3 Conclusion

For mean average errors of whole test sets the RI error seems to be negli-

gible, even if medium-sized basis sets are employed. Individual molecular

properties on the other hand may be subject to a stronger basis set depen-

dence. Especially too small basis sets for the RI approximation may lead

to fortuitously more accurate results. In the assessment of new local hybrid

functionals large and unconctracted basis sets should therefore be used.

In a parallel work, local hybrid functionals have been assessed among

other properties for the total energies of the first 18 elements. With all local

hybrid functionals tested in that work, the mean absolute error in the total

energies of the first 18 elements is by more than two orders of magnitude

larger than the above-discussed RI error in total energies. The inaccuracies

in total energies due to the RI approximation are thus minor as compared to

the attainable deviations from experimental values.

Finally, the introduction of an auxiliary basis set for the RI approximation

to exact-exchange terms in the local hybrid potential is recommended in

order to avoid decontraction of the atomic basis set and to reduce the visibly

stronger basis set dependence of calculations with local hybrid functionals.



CHAPTER 9

CONCLUSION AND OUTLOOK

In this work, the implementation, development and assessment of new

density functionals with a position-dependent admixture of exact exchange

has been disussed. The presented local hybrid functionals contain up to three

empirical parameters fitted to atomization and barrier heights. It has been

verified that the optimized values for the parameters are mostly independent

of the underlying fit set. For a spin polarized t-LMF two slightly different sets

of parameters have been obtained. But the performance of the corresponding

functionals coincides, considering the properties discussed in this work. For

atomization energies and reaction barriers the local hybrid functionals per-

form better than or similarly to the best state-of-the art functionals, which

are often highly parameterized. Local mixing functions based on the kinetic

energy densities usually yield better results for both properties than local

mixing functions that depend on the reduced density gradient. The best

results for atomization energies have been obtained by inclusion of spin po-

larization in t-LMFs. The local hybrid functionals yield overall better results

for the dissociation energies and bond lengths of 2-center-3-electron radical

cations than B3LYP. Global hybrid functionals with thermochemically too

large exact-exchange admixtures are still more accurate for these systems.

The description of 3d transition metal dimers and monohydrides is compara-

ble to B3LYP. For isotropic hyperfine coupling constants, the one-parameter

local hybrid functional tLMF-SVWN performs similarly to B3LYP. This func-

tional is thus competitive with the best state-of-the-art density functionals

although it is based on LSDA exchange and correlation and contains only
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one adjustable parameter. The assessment for transition metal compounds

should be extended to other local hybrid functionals.

For efficiency the local hybrid potential has been implemented using the

RI approximation. In order to validate the accuracy of this approximation,

the numerically exact potential has been implemented as well. With the

uncontracted QZVP basis set, the errors in total energies due to the RI ap-

proximation are marginal. The impact of the RI approximation on average

deviations of isotropic HFCCs from experimental data is insignificant even

with a medium-sized basis. A direct comparison of the isotropic HFCCs of

single molecules calculated with the RI potential to those obtained from the

numerical potential revealed larger percentage errors of the RI approxima-

tion. Especially the IGLO-II basis set was shown to be insufficient in this

case.

Based on these results, more studies on the accuracy of the RI approx-

imation are recommended. Properties such as atomic s-d transfer energies,

ionization potentials, and electron affinities could give more insight on pos-

sible shortcomings of the RI approximation. In the context of other studies

on local hybrid functionals, [145, 148] it has been revealed that most of the

above-discussed functionals yield large errors in total atomic energies. The

observed underestimation is typical for the LSDA and confirms the necessity

for local hybrid functionals with GGA or meta-GGA exchange and corre-

lation. Probably due to the gauge problem and the fact that only certain

combinations of exchange and correlation functionals work well, we were,

however, not able to optimize a local hybrid functional with a sufficiently

large meta-GGA correction in the correlation functional. Further studies on

the different gauges of the exchange energy densities might thus be worthwile.

A specifically designed correlation functional to be combined with a local hy-
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brid exchange functional based on the LSDA could provide an alternative

solution. Modifications of the current implementation to allow for auxiliary

basis sets with the RI potential are recommended as well. The auxiliary basis

sets that are used for RI-DFT might be sufficient. Otherwise, auxiliary basis

sets have to be designed and optimized for local hybrid functionals. Other

LMFs recently introduced and tested in a work parallel to this one, and spin-

polarized LMFs shall be implemented self-consistently as well allowing for

their assessment for orbital-dependent properties.



CHAPTER 10

SUMMARY

In order to describe complex molecular systems theoretically, an efficient and

reliable solution to the underlying quantum mechanical equations of motion

is required. Density functional theory (DFT) represents in most cases the

best compromise between accuracy and efficiency for the treatment of elec-

tronic interactions. In Kohn-Sham DFT, the non-classical contribution to

electron-electron interactions is gathered in the exchange-correlation func-

tional, which has to be approximated in practice. While a large number

of exchange-correlation functionals are of semi-empirical nature, some have

been derived from physical considerations exclusively. In so-called global hy-

brid functionals a constant amount of the integrated DFT exchange-energy

density is replaced by the exact-exchange energy from Hartree-Fock theory.

The most popular functional, B3LYP, contains 20% exact exchange and sev-

eral empirical parameters. It has been discovered that the optimal amount

of exact exchange depends to a large extent on the molecular property to be

computed. A possible solution to this problem is to use local hybrid func-

tionals. Therein, the admixture of exact exchange is controlled by a position-

dependent local mixing function (LMF), leading to molecule-specific amounts

of exact exchange.

In this work a semi-empirical approach is pursued for the development

of new local hybrid functionals. Parameterized LMFs are introduced in the

exchange-energy density integrals, for which the DFT contributions are taken

from established approximations to the exchange-correlation functional. The

LMFs developed here contain at least one empirical parameter and a variable
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that depends on the ratio of the von-Weizsäcker single-particle kinetic energy

density to the correlated kinetic-energy density (the so-called t-LMFs), or on

the reduced density gradient (referred to as s-LMF). Additional LMFs are

obtained by inclusion of the spin polarization. All parameters are fitted

to atomization energies and reaction barriers of well-established test sets.

Visualization of the LMFs provides an additional tool for analyzing their

physical and chemical behavior, potentially leading to further developments.

As a general trend, an increasing exact-exchange admixture is observed

upon bond stretching for all LMFs, with a more pronounced effect for t-LMFs.

This observation correlates with a better performance for reaction barriers of

t-LMF-based local hybrid functionals. Most of the local hybrid functionals

discussed in this work are based on the exchange and correlation functional

from the local spin density approximation (LSDA) and contain therefore no

gradient correction such as in the generalized gradient approximation (GGA).

The new functionals were initially implemented non-self-consistently into a

development version of the quantum chemical Turbomole program package.

That is, only the total energy is calculated for a given set of molecular orbitals

or electron density, respectively. This is a reliable approximation that allows

for significant time savings especially during parameter optimizations.

In order to calculate orbital-dependent molecular properties, the local

hybrid potential corresponding to the local hybrid energy is required as well.

It is obtained as a functional derivative of the exchange-correlation energy

with respect to the orbitals. Some of the resulting integrals contain the

LMF-weighted non-local exact-exchange potential. These terms as well as

the exact-exchange energy density itself cannot be calculated analytically.

Following a well-established approach, they have been approximated using

a basis set expansion of the exact-exchange potential. For simplicity, the
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underlying atomic basis set is employed in this resolution of the identity

(RI) approximation. For comparison and in view of the optimization of

auxiliary basis sets, the optional calculation of the potential by numerical

integration has also been implemented in this work. The computational cost

of local hybrid calculations for a given basis set, using the RI approximation is

comparable to the one of gobal hybrid functionals: a slightly larger prefactor

applies to a calculation with a local hybrid functional as compared to a meta-

GGA global hybrid, while the scaling of computational effort as a function

of system size is the same.

Several molecular test sets including atomization energies, barrier heights,

dissociation energies and equilibrium distances have been considered for the

assessment. Some of them represent particular challenges for current density

functional approximations. All of the discussed local hybrid functionals yield

significantly better results for the 223 atomization energies of the G3 test set

than the B3LYP functional. Especially local hybrid functionals with spin-

polarized t-LMFs gives impressively small mean absolute errors for the G3

set. Most of our functionals are in addition significantly superior to B3LYP

for the calculation of barrier heights. Some other global hybrid function-

als perform even better than our functionals for barriers, but their intrinsic

amount of exact exchange is inappropriately high for thermochemical prop-

erty calculations. For the first time, LSDA-based local hybrid functional have

thus been presented that gives accurate results for thermochemistry and reac-

tion barriers simultaneously. The dissociation behavior of symmetric radical

cations remains a challenge for the local hybrid functionals presented here.

Dissociation energies are significantly overestimated, and the equilibrium dis-

tances are too short. The results are overall only slightly better than those

obtained using the B3LYP functional. A larger amount of exact exchange is
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most likely needed for these systems to reduce self-interaction errors.

Additionally, the performance of local hybrid functionals for 3d transition

metal dimers and monohydrides has been studied. An accurate description of

dynamical and nondynamical correlation is essential for the former. The poor

performance of most exchange-correlation functionals for transition metal

monohydrides can be attributed to self-interaction errors. Our local hybrid

functionals perform similarly to B3LYP for the dimers and marginally better

for the monohydrides. They do not provide any improvement for the atomic

s-d transfer energies of 3d metals. The most suitable local hybrid functional

for this particular property uses a s-LMF in the exchange functional and the

LYP correlation functional. It yields, however, only average-quality results

for thermochemistry and kinetics. Satisfactory results similar to B3LYP are

obtained for the isotropic hyperfine coupling constants (HFCCs) of small

main group compounds with a t-LMF-based local hybrid functional.

The RI approximation to the local hybrid potential has been validated by

comparing it to the numerically exact potential for the calculation of total

energies, isotropic HFCCs and orbital energies. The error in total energies

due to the RI approximation is comparatively small considering the rather

large deviations from experimental values. Comparison of mean absolute

errors from experimental values of the 26 isotropic HFCCs reveals only small

differences between the RI and the numerically exact local hybrid potential.

Further analysis shows that inaccuracies in the RI potential may have a

larger impact on the isotropic HFCCs or the orbital energies of a particular

molecule, especially if only small or medium-sized basis sets are employed.

Several of the local hybrid functionals are suitable for the calculation

of thermochemical and kinetic properties. Different functionals yield also

results similar to other commonly used functionals for isotropic HFCCs of
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small main group compounds, as well as for the dissociation energies and

equilibrium distances of 3d transition metal dimers and monohydrides. The

local hybrid functionals studied in this work represent therefore an important

step towards the development of universal approximations to the exchange-

correlation functional. For a more accurate description of certain transition

metal properties and the dissociation behavior of symmetric radical cations

while maintaining a good performance for thermochemistry and kinetics,

more complex LMFs will have to be considered. Ultimately a local hybrid

functional with meta-GGA exchange and correlation energy densities that

fulfills more exact constraints is desirable. Therefore further studies on the

different gauges of the exchange energy densities are necessary. Another

possibility would be the development of a specifically designed correlation

functional to be combined with a local hybrid exchange functional based on

the LSDA.

More detailed studies on the quality of the RI approximation are recom-

mended. Possible properties for this purpose include, e.g., ionization energies

and electron affinities. Auxiliary basis sets should be implemented and op-

timized for the expansion of the exact-exchange potential in order to avoid

additional deviations due to the RI-approximation or even fortuitously good

results in the assessment of local hybrid functionals with normally contracted

basis sets. Since density functional methods are applied extensively for struc-

ture optimizations, the gradient of the local hybrid energy with respect to the

nuclear coordinates should be implemented to enable this feature in future

versions of the code.



KAPITEL 11

ZUSAMMENFASSUNG

Für die Lösung der quantenmechanischen Bewegungsgleichungen, die kom-

plexe, molekulare Systeme beschreiben, sind effiziente und verlässliche Nä-

herungsverfahren erforderlich. Die Dichtefunktionaltheorie (DFT) stellt für

die Behandlung der Elektronenwechselwirkung in vielen Fällen den besten

Kompromiss zwischen Effizienz und Genauigkeit dar. Im Rahmen der DFT

wird die gesamte nicht-klassische Elektron-Elektron-Wechselwirkung im so

genannten Austausch-Korrelationsfunktional angenähert. Viele solcher Nähe-

rungen sind semi-empirischer Natur, andere wurden ausschließlich von phy-

sikalischen Überlegungen abgeleitet. In globalen Hybridfunktionale wird ein

konstanter Anteil der integrierten DFT-Austauschenergiedichte durch exak-

ten Austausch aus der Hartree-Fock Näherung ersetzt. Das populärste Funk-

tional B3LYP enthält 20% exakten Austausch und mehrere empirische Para-

meter. Der optimale Prozentsatz hängt allerdings sehr stark von den zu be-

rechnenden Systemen und molekularen Eigenschaften ab. Eine Lösung dieses

Problems sollten lokale Hybridfunktionale liefern, in denen die Beimischung

der exakten Austauschenergiedichte über eine lokale Mischfunktion (LMF)

gesteuert wird und daher positions- und molekülabhängig ist.

In dieser Arbeit wird ein semi-empirischer Ansatz für die Entwicklung

neuer lokaler Hybridfunktionale verfolgt: während die Energiedichten un-

verändert aus etablierten Näherungen zum Austauschkorrelationsfunktional

übernommen werden, stehen parametrisierte LMFs im Zentrum der Untersu-

chungen. Die verschiedenen LMFs beinhalten neben mindestens einem em-

pirischen Parameter eine Variable die vom Quotienten der von-Weizsäcker
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kinetischen Energiedichte und der korrelierten kinetischen Energiedichte (so-

genannte t-LMFs) bzw. dem reduzierten Dichtegradienten (bezeichnet als

s-LMFs) abhängt. Weitere LMFs werden durch zusätzliche Berücksichtigung

der Spinpolarisation erhalten. Alle Parameter werden an Atomisierungsener-

gien bzw. Reaktionsbarrieren bekannter molekularer Testsätze gefittet. Durch

Visualisierung der LMFs können zusätzlich Einblicke in den physikalischen

Hintergrund und in Möglichkeiten der Weiterentwicklung gewonnen werden.

Es wurde beispielsweise beobachtet, dass entlang einer gedehnten Bindung

höhere Werte der LMF und damit größere Beimischungen exakter Austausch-

energie in Übergangszuständen einhergehen. Dieser Effekt ist für t-LMFs am

ausgeprägtesten und korreliert mit besseren Ergebnissen für Reaktionsbar-

rieren mit lokalen Hybridfunktionalen, die auf einer t-LMF basieren. Bis auf

wenige Ausnahmen leiten sich die lokalen Hybridfunktionale in dieser Arbeit

aus dem Austausch- und Korrelationsfunktional der lokalen Dichtenäherung

(LSDA) ab und enthalten keine Gradientenkorrektur im Sinne der GGA (ge-

neralized gradient approximation).

Die neuen Funktionale wurden zunächst nicht-selbstkonsistent in eine

Entwicklerversion des quantenchemischen Programmpaketes Turbomole im-

plementiert. Das bedeutet, für gegebene Molekülorbitale bzw. eine gegeben

Elektronendichte kann lediglich die Gesamtenergie berechnet werden. Dies ist

eine anerkannte Näherung, die vor allem für die Optimierung der Parameter

eine große Zeitersparnis darstellt.

Um letztlich orbitalabhängige, molekulare Eigenschaften berechnen zu

können wird neben der Gesamtenergie auch noch das zugehörige lokale Hy-

bridpotential benötigt. Für die Implementierung wird die funktionale Ablei-

tung der Austauschkorrelationsenergie nach den Orbitalen bestimmt. Daraus

resultierend müssen neben den üblichen lokalen Austauschkorrelationspoten-
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tialtermen auch Integrale berechnet werden, die das mit der LMF gewichtete

nicht-lokale exakte Austauschpotential enthalten. Die entsprechenden Ter-

me kann man, genauso wie die exakte Austauschenergiedichte an sich, nicht

analytisch berechnen. Früheren Ansätzen folgend wurden sie in der vorliegen-

den Arbeit in einer Basissatzentwicklung angenähert, wobei der Einfachheit

halber die atomaren Basisfunktionen verwendet wurden. Um die Genauig-

keit dieser sogenannten RI (resolution of the identity)-Näherung validieren

zu können und auch schon im Hinblick auf die Anpassung einer Hilfsbasis,

wurde darüber hinaus die numerische Berechnung aller Integrale, die das

exakte Austauschpotential und die entsprechende Energiedichte enthalten,

implementiert. Unter Verwendung der RI-Näherung ist der Rechenaufwand

lokaler Hybride vergleichbar mit dem globaler Hybridfunktionale: Während

die formale Skalierung in Abhängigkeit der Systemgröße gleich ist, ergab sich

ein etwas höherer Vorfaktor für die lokalen Hybride.

Verschiedene Literatur-bekannte Testsätze mit Atomisierungsenergien, Re-

aktionsbarrieren, Dissoziationsenergien oder Gleichgewichtsabständen, die teil-

weise einige Schwächen bisheriger Dichtefunktionalnäherungen aufdecken,

wurden berücksichtigt. Für die 223 Atomisierungsenergien des G3 Testsat-

zes stellen alle unsere Funktionale eine signifikante Verbesserung gegenüber

B3LYP dar. Atomisierungsenergien sind insofern ein sensibler Test, da alle

Bindungen gebrochen werden und Fehlerkompensation eine untergeordnete

Rolle spielt. Vor allem lokale Hybridfunktionale, deren LMFs neben der ki-

netischen Energiedichte explizit von der Spinpolarisation abhängen, lieferten

hervorragende Resultate. Obwohl im Vergleich zu Atomisierungsenergien für

die korrekte Berechnung von Reaktionsbarrieren im Allgemeinen mehr exak-

ter Austausch benötigt wird, sind unsere Funktionale auch für zwei Testsätze

mit jeweils 38 Reaktionsbarrieren besser als B3LYP. Zwar kann mit einem
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globalen Hybrid mit 50% exaktem Austausch eine geringere Abweichung von

den Richtwerten erzielt werden, aber ein solches Funktional ist für thermoche-

mische Daten unzureichend. Hier wurde erstmals gezeigt, dass lokale Hybrid-

funktionale ohne Gradientenkorrektur sowohl für Thermochemie als auch für

Kinetik zufrieden stellende Ergebnisse liefern können. Das Dissoziationsver-

halten symmetrischer Radikalkationen stellt für die hier diskutierten Dichte-

funktionale nach wie vor eine Herausforderung dar: Die Dissoziationsenergien

von sieben Modellsystemen werden mit unseren Funktionalen stark über-

schätzt und Gleichgewichtsabstände unterschätzt. Insgesamt sind die Werte

nur marginal besser als mit B3LYP. Neben Eigenschaften von Hauptgrup-

penverbindungen wurden zudem Übergangsmetalldimere und -monohydride

untersucht. Für erstere ist eine gute Beschreibung dynamischer sowie stati-

scher Elektronenkorrelation ausschlaggebend. In den Hydriden andererseits

dominiert mit gängigen Dichtefunktionalen die unphysikalische Selbstwech-

selwirkung eines Elektrons mit sich selbst. Für die 3d-Übergangsmetalldimere

sind die getesteten Funktionale genauso gut wie B3LYP und für die Hydride

etwas besser. Atomare s-d Transferenergien von 3d Übergangsmetallen ver-

bleiben auch für unsere lokalen Hybridfunktionale, die insgesamt schlechtere

Ergebnisse erzielen als B3LYP, noch problematisch. Das hierfür geeignetste

lokale Hybridfunktional basiert auf einer s-LMF und beinhaltet LYP Kor-

relation. Für die isotropen Hyperfeinkopplungskonstanten (HFCCs) kleiner

Hauptgruppenverbindungen wurden zufriedenstellende Ergebnisse (ähnlich

wie B3LYP) mit einem t-LMF basierten lokalen Hybrid erzielt.

Die RI Näherung zum lokalen Hybridpotential wurde dem numerisch ex-

akten Potential für die Berechnung von Gesamtenergien, isotrope HFCCs

und Orbitalenergien für verschiedene Basissätze gegenübergestellt. Wie er-

wartet ist der Fehler für Gesamtenergien mit der RI-Näherungen vergleichs-
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weise gering, vor allem relativ zu den verbleibenden Abweichungen von ex-

perimentellen Energien. Der Vergleich der mittleren absoluten Abweichung

von experimentellen Werten für 26 isotrope HFCCs zeigt sogar für mittel-

große und kontrahierte IGLO Basissätze nur geringe Unterschiede zwischen

dem RI-Potential und dem numerisch exakten lokalen Hybridpotential. Die

Analyse der HFCCs einzelner Moleküle und der Orbitalenergien des CN Mo-

leküls offenbart allerdings, dass Ungenauigkeiten aufgrund der RI-Näherung

hier eine größere Rolle spielen, vor allem wenn zu kleine atomare Basissätze

verwendet werden.

Von den untersuchten lokalen Hybriden stellen sich einige als hervorragen-

de Kandidaten für die Berechnung thermochemischer und kinetischer Eigen-

schaften heraus. Jeweils unterschiedliche Funktionale erzielen darüber hinaus

mit den besten bekannten Funktionalen vergleichbare Ergebnisse für isotrope

Hyperfeinkopplungskonstanten und ausgewählte Eigenschaften kleiner Über-

gangsmetallverbindungen. Die in dieser Arbeit präsentierten lokalen Hybrid-

funktionale stellen daher einen wichtigen Schritt in der Entwicklung uni-

verseller Näherungen zum Austauschkorrelationsfunktional dar. Zur akkura-

ten Beschreibung molekularer Eigenschaften von Übergangsmetallkomplexen

und dem Dissoziationsverhalten von Radikal-Kation-Dimeren neben Thermo-

chemie und Kinetik, werden in Zukunft wohl komplexere LMFs benötigt. Um

konkurrenzfähige lokale Hybride mit gradientenkorrigierter Austausch- und

Korrelationsenergiedichte zu entwickeln, müssen darüber hinaus weitere Stu-

dien zum Einfluss des abweichenden Eichursprungs der miteinander kombi-

nierten Austauschenergiedichten durchgeführt werden. Eine andere Möglich-

keit ist die Entwicklung speziell abgestimmter Korrelationsfunktionale für

lokale Hybride. Außerdem sollte die Qualität der RI-Näherung zum lokalen

Hybridpotential detaillierter untersucht werden. Hierfür könnten zum Bei-



137

spiel Ionisierungsenergien und Elektronenaffinitäten herangezogen werden.

Um zusätzliche Abweichungen oder sogar fälschlicherweise ßu guteËrgebnis-

se bei Validierungsrechnungen zu vermeiden, sollten Hilfsbasen für die Ent-

wicklung des nicht-lokalen exakten Austauschpotentials implementiert und

optimiert werden. Einer der nächsten Implementierungsschritte sollte auch

Gradienten bezüglich der Kernkoordinaten beinhalten, um die Validierung

der neuen lokalen Hybridfunktionale auf Strukturoptimierungen auszuwei-

ten.
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[101] M. Grüning, O. V. Gritsenko, S. J. A. Gisbergen, and E. J.

Baerends, J. Phys. Chem. A 105, 9211 (2001).



146
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