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Preface: Handling of Uncertainty

The first course of Stochastikon Magister is devoted to quantification and modeling of uncertainty
which both are necessary for handling appropriately uncertainty. Handling uncertainty means to
exploit or apply the stochastic model for developing procedures to solve the uncertainty related prob-
lems. Recently, uncertainty is vividly discussed in many conferences all over the world and many new
“uncertainty theories” are developed. However, these discussions are not based on an unambiguous
explanation about the nature of uncertainty. Consequently, an adequate quantification is not possible,
and the proposed models have no unique interpretation.

As already stated in the first course there are two classes of procedures namely one which aims at
throwing light on the future and the other one which aims to detecting unknown quantified facts. The
second aim is dealt with in metrology, i.e., the science of measurement. Performing measurements is
one of the most important activity in any human civilization and it is therefore not surprising that
measurements belong to the sovereign tasks of states, where the national bodies of metrology supervise
all measurement activities.

In Germany, for example, the Physikalisch-Technische Bundesanstalt (PTB) is the national metrology
institute which provides scientific and technical services for questions releted to measurements. The
PTB claims to measure with the “highest accuracy and reliability”, but according to von Collani1 fails
to define both accuracy and reliability in a comprehensible way.

One of the main reasons for the shortcomings of conventional metrology, is the fact that randomness
has not been taken account in the International System of Units (SI) that is used for quantification and
measurement. As a direct consequence, measurement uncertainty cannot be dealt with in a scientific
way. The International System of Units has been devised particularly by the Bureau International
des Poids et Mesures (BIPM) in Paris. About the development of the SI is described by the BIPM as
follows:

Following an international inquiry by the BIPM,
which began in 1948, the 10th CGPM2, in 1954,
approved the introduction of the ampere, the
kelvin and the candela as base units, respectively,
for electric current, thermodynamic temperature
and luminous intensity. The name International
System of Units, with the abbreviation SI, was
given to the system by the 11th CGPM in 1960.
At the 14th CGPM in 1971, after lengthy discus-
sions between physicists and chemists, the cur-
rent version of the SI was completed by adding
the mole as the base unit for amount of sub-
stance, bringing the total number of base units
to seven.

 

Figure 1: The BIPM courtyard in Sèvres,
France.

Unfortunately, randomness was not considered as a physical characteristics, although it can be ob-

1Collani, E.v. (2010): A Note on the XIX IMEKO World Congress Fundamental and Applied Metrology. EQC 24,
287 – 307.

2Conférence Générale des Poids et Mesures (General Conference on Weights and Measures).
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served during any physical experiment and measurement process. This is surprising, since randomness
was already quantified by Jakob Bernoulli 300 years ago, when there were no units for many of the
characteristics that are included in the SI. As a consequence of neglecting randomness, the so-called
measurement uncertainty could not be adequately taken into account.

Only in 1993, a preliminary guide3 for handling measurement uncertainty was released by the ISO4

after many years of preparation. Since then some revisions have been made, but still the provisional
guide has not been acknowledged as an authoritative standard. The reasons are many weaknesses of
the guide which lead to doubtful results and cause a lot of disputes. The here developed measure-
ment procedures may be looked upon as a first but decisive step in the development of a sustainable
stochastic metrology.

Actually, it is planned to further develop Stochastikon Magister and add in near future a third course
which will be devoted to a stochastic metrology.

3Guide to the Expression of Uncertainty of Measurement.
4ISO = International Organization of Standardization.
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Course 2: Application

Content and Aim of the Course Application

In Course 1 “Modeling Uncertainty” the general stochastic model of a real-word process as a part
of evolution is introduced and named Bernoulli Space. The stochastic model covers ignorance as
characteristic feature of mankind and randomness as characteristic feature of evolution. Of course, the
derivation of the Bernoulli Space should not end in itself, but it should be applied for solving problems.
However, applying an intricate mathematical model like a Bernoulli Space assumes extensive support
by elaborated procedures, algorithms and software programs. The content of the second course of
Stochastikon Magister consists of the procedures necessary for applying, i.e., utilizing a Bernoulli
Space.

The possible problems related to uncertainty are identified in the course and adequate solution pro-
cedures are established. As a matter of fact, the two sources of uncertainty, i. e., ignorance and
randomness define two types or classes of problems and, hence, two types of solution procedures.
However, surprisingly, it turns out that any stochastic procedure is based on a prediction procedure,
which, therefore, constitute the core of stochastics and of this entire course.

The course aims at enabling the learners in case of a
given problem to identify the appropriate stochastic
procedure and to find the necessary algorithmic sup-
port. It is assumed that the situation has been quan-
tified by a Bernoulli Space as described in Course 1.
A successful participation in this course will lead to a
better understanding and handling of uncertainty. As
an immediate consequence the decision making pro-
cess is improved, which will ultimately have an effect
in any field of the human society.

Unfortunately the conventional statistical software packages can hardly be used for solving adequately
problems which involve uncertainty. In particular the important prediction problems cannot be
handled by the offered algorithms, because statistics does not cover the stochastic model and con-
sequently no prediction procedures can be derived. This fact can be viewed as the main difference
between statistics and stochastics. Bernoulli Stochastics aims at predictions taking into account
adequately the inherent variability, while statistics tries to remove or at least to reduce variability in
order to make statements about the past.

The past is dealt with in Bernoulli Stochastics by reliable and accurate measurement procedures, which
are developed based on suitable prediction procedures. Thus, Bernoulli Stochastics is developed as a
unified scientific approach based on the Bernoulli Space and prediction procedures.

This second course dealing with stochastic procedures has not been completed so far, since the proce-
dures to be used for verifying a given Bernoulli Space have not been developed. Verification procedures
are therefore only indicated here. The corresponding modules and learning units will be added in a
future version.

1
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STOCHASTIC PROCEDURES APPLICATION

Module 2.1: Stochastic Procedures

Content and Aim of the Module Stochastic Procedure

This module explains the general concept of stochastic procedures and distinguishes important classes
of procedures. The classes refer to the aim, which might be to look into the future or to look into the
past. The former means to predict the future event, while the latter means to identify an event which
has already happened.

Moreover, the question about the relevant fea-
tures of a stochastic procedure is discussed.
Stochastic procedures are looked upon as prod-
ucts, which should meet certain specifications.
The answer to the above question allows to spec-
ify meaningful requirements for stochastic pro-
cedures, which make sure that the respective
goal is reached.

The module’s aim is to give a preliminary idea of stochastic procedures and to prepare the reader for
the subsequent modules which introduce explicitly a number of stochastic procedures.

This module should not only lead to a better understanding of stochastic procedures, but should also
enable to evaluate systematically any other solution procedure, for example, statistical procedures. As
illustrated in Course 1, Bernoulli Stochastics may be looked at as an alternative to statistics and, one
of the aims of this module is to make the learner competent in order to judge statistical procedures.

2



STOCHASTIC PROCEDURES GENERAL CLASSES OF PROCEDURES

Unit 2.1.1: General Classes of Procedures

Target

The main goal of Learning Unit 2.1.1 is
to show that the Bernoulli Space allows
to investigate the indeterminate future
as well as the determinate past and to
identify three classes of procedures.

Content

Introduction

The classes mentioned in the title refer to different types of stochastic procedures, which may
be derived from the different categories involved. The uncompleted evolution constitutes the
first category and the second one is the completed evolution. The Bernoulli Space itself yields
the description of the connection between these two categories and, thus, represents a third
one.

The target of a procedure with respect to the above given categories is used as classification
criterion. One class consists of procedures centered on the uncompleted evolution, another one
on the completed evolution and, finally, a third one on the Bernoulli Space.

Note that any procedure is mathematically represented by a function, where the codomain
determines the direction or the target and the domain the starting point.

Future and Past or Uncompleted and Completed Evolution

The Bernoulli Space BX,D of the pair of variables (X, D) describes mathematically the relation
between the completed evolution (past) represented by the deterministic variable D and the
uncompleted evolution (future) represented by random variable X. Although, the relation is
not at all one-to-one, i. e., deterministic, it nevertheless allows based on D to have a glance into
the future represented by X or to look from the future X back into the past D.

Procedures which are based on the existing knowledge and aiming at reducing the uncertainty
about the uncompleted evolution build up the

• Prediction Class.

On the other hand, procedures which are based on the future outcome attempting to reduce
the ignorance about the determinate past, i. e., about facts build up the

• Measurement Class.

The word “measurement” is traditionally used for a procedure aiming at determining a fixed,
but unknown value of a quantified characteristic. Note that quantification is the first necessary
step, while measuring is only the second one. Without quantification there is no measurement.

Finally, procedures used for examining the Bernoulli Space itself build up the

3
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GENERAL CLASSES OF PROCEDURES STOCHASTIC PROCEDURES

• Verification Class.

A Bernoulli Space is the result of various exclusion procedures with respect to facts repre-
senting the relevant initial conditions. An erroneous exclusion of an actual fact leads to a
wrong Bernoulli Space. A wrong Bernoulli Space yields results which are wrong with certainty.
Therefore, a verification procedure aims at assuring that the Bernoulli Space covers the actual
facts.

In contrast to the procedures of the prediction or measurement class, a verification procedure
does not aim at controlling uncertainty or reducing ignorance. The only aim is to ensure that
the Bernoulli Space covers the given situation.

Any procedure of the prediction class is completely based on a specified Bernoulli Space. No
further experiments or observations are necessary. The entire relevant knowledge is used for
developing the Bernoulli Space, which forms the basis for deriving the desired procedures of
the prediction class.

Any procedure of the measurement class is used to reduce ignorance about facts. Reducing
ignorance is tantamount to learning, which means that a learning process has to be performed.
Thus, in contrast to procedures of the prediction class any procedure of the measurement class
is based on a learning or measuring experiment, which provides new insight and enables to
reduce the ignorance space by excluding further elements.

Analogously as in the case of the measurement class, the procedures of the verification class
require additional experiments, too. Because, the verification deals with the Bernoulli Space,
which describes facts, one could consider the verification class as part of the measurement class.
However, the goals are different and, therefore, it makes sense to distinguish a third class.

Examples

1. Prediction Class

The prediction class refers to the future and contains two types procedures. The first one
determines a future event which will occur with a specified probability, while the second
one determines the probability of a specified future event.

(a) Consider the light bulbs of a given production process. The marketing department
wants to make a TV advertisement for the bulbs by specifying its lifetime. Therefore,
the variable of interest is given by the following random variable:

X = lifetime of a light bulb (1)

For developing the TV advertisement, a statement about a guaranteed lifetime of the
bulbs is needed, which can be obtained by a stochastic prediction procedure.

(b) For having a sound basis for their decision, the European Central Bank would like
to be able to exclude the event of an inflation rate during the next year larger than
2%. The inflation rate is represented by the random variable X and of interest is
the future event E = {x |x > 2%}. What is needed is the probability of the event
E. The question refers to a future development and, therefore, the procedure for
determining the probability of the given event belongs to the prediction class.

4



STOCHASTIC PROCEDURES GENERAL CLASSES OF PROCEDURES

2. Measurement Class

The measurement class refers to the past and consists of procedures which are used for
reducing the ignorance space, i.e., for learning about the past.

(a) Consider you want to determine the actual weight. The weight is fixed and, therefore,
a fact, which can be represented by a deterministic variable:

D = weight at a given time point (2)

The actual value of D can be determined by means of a measurement process in
conjunction with a stochastic measurement procedure.

(b) Assume that you are the guide of a group of people and responsible that nobody gets
lost during the various activities. Therefore, after each activity the actual number
of people is of importance and must be determined. In this case the deterministic
variable D is given by:

D = number of people after a specified activity (3)

The counting process constitutes a measurement procedure.

(c) Consider a police speed control:

The police checks the actual speed of the
cars at a certain location on the highway
with a speed limit. The deterministic vari-
able D is given by:

D = actual speed of a specific car

The actual speed of a car is a fact
and, therefore a measurement procedure
is needed.

 

Figure 1: Speed measure-
ment device of the police.

(d) A pharmaceutical firm wants to prove that the efficiency of a new drug is higher
than the efficiency of an old one. The effect of the new drug is represented by a
random variable Xnew, while the effect of the old drug is represented by Xold. Let
the efficiency of a drug be defined by its first moment, which is commonly called
expectation. Therefor we have to consider the following two deterministic variables:

D1 = E[Xnew]
D2 = E[Xold]

(4)

The problem is to show that the actual value of D1 is larger than the actual value of
D2. Therefore, the problem refers to facts and the corresponding procedure belongs
to the measurement class.

5
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THE PREDICTION CLASS STOCHASTIC PROCEDURES

Unit 2.1.2: The Prediction Class

Target

The main goal of Learning Unit 2.1.2
is to prepare the learner for the more
mathematical treatment of prediction
procedures in the subsequent module.
As will become clear later prediction
procedures constitute the unifying el-
ement in Bernoulli Stochastics and un-
derstanding the concept of prediction
it therefore of utmost importance for
understanding the entire stochastic ap-
proach.

Content

Introduction

The procedures of the prediction class aim at reducing uncertainty about the future development
and, therefore, refer to the random variable X. They are based on the Bernoulli Space, i. e., on
the entire knowledge about the initial conditions.

From a more practical point of view a user may want to know what will occur or what will not
occur with respect to the random variable X, based on some knowledge or assumptions about
the initial conditions and on experience about the corresponding future development.

In Course 1, the first step of quantification consisted of representing each of the characteristics
of interest or relevance by a variable. The second step of quantification referred to the relations
between past and future, and the appropriate means for representing them were identified as
functions.

Application means to utilize the relations between past and future, which again is done by
functions.

Prediction Procedures as Functions

In this introductory module the functions representing stochastic procedures are not explic-
itly introduced. However, their main characteristics are briefly outlined for facilitating the
understanding of the more mathematical introductions in the subsequent modules.

A prediction procedure is a function that aims at forecasting the future development based
on some knowledge about the initial conditions. Any level of knowledge is represented by a
subset of the ignorance space D specified within the Bernoulli Space. Thus, the domain of any
element of the prediction class is given by a suitable system of subsets TD(D) of the ignorance
space, where the symbol T denotes throughout this course a function assigning to a given set
a suitable systems of subsets.

Note that the suitability of the system of subsets should be looked upon from a practical view
and not at all from a mathematical view. Therefore, the closesure of the system with respect
to certain mathematical operations is of no relevance at all. The only important factor for
selecting the different levels of knowledge and, thus, the system of subsets should refer to the
underlying aim of applying the procedure.

6
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STOCHASTIC PROCEDURES THE PREDICTION CLASS

The variability function X yields the entire variability of X for any given level of knowledge,
say D0 ∈ TD(D). Therefore, any meaningful forecast must necessarily be a subset of the range
of variability given by XX(D0), implying that the codomain of any element of the prediction

class must necessarily be a system of subsets TX

(
X (D0)

)
. Analogously as in the case of the

selection of TX(D) no mathematical arguments should be used for specifying TX

(
X (D0)

)
. The

elements should be selected in a way that they represent that type of event, which is most
suitable to reach the underlying aim.

Preliminary Result

Any prediction procedure is a function defined on a system of subsets TD(D) of the ignorance
space, where each element of the system represents a special level of knowledge or equivalently

a level of ignorance. The codomain of the function is a system of subsets TX

(
X (D)

)
of the

corresponding range of variability of X, where the elements of the system represent the possible
forecasts.

The diversity of prediction procedures is very limited, as the future with respect to a prediction
procedure is represented solely by the random variable X. Thus, there are only two types of
prediction procedures, which from a mathematical point of view are equivalent. The first type
answers the question

• What will happen with regard to X?

and the second type answers the question

• What will not happen with regard to X?

The two questions are answered by subsets of the given range of variability of X, which represent
the predictions. Note that in case of the first question a small event is preferred to a large one.
In contrast the second question is answered in a better way by a large event.

Example

1. Production process

Consider a production process with the number of nonconforming items of one day shift
being of interest. Assume that there is a Bernoulli Space describing the productions
process with respect to the number of nonconforming items of one day shift:

• pair of variables:

X = number of nonconforming items of one day shift

D = (Dn, Dp)

Dn = number of produced item per shift

Dp = nonconformity probability

• ignorance space:
D = {(n, p) |n ≤ n ≤ n, p(n) ≤ p ≤ p(n)}

• variability function:
X ({(n, p)}) = {0, 1, . . . , n}

• random structure function:

P({(n, p)}) =
{
PX|{(n,p)}

}
with X|{(n, p)} ∼ Bi(n, p)

7
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THE PREDICTION CLASS STOCHASTIC PROCEDURES

On the basis of the Bernoulli Space it is possible to make a reliable prediction about
the number of nonconforming items produced during a day shift. Moreover, it becomes
possible to meet any reliability requirement with respect to the predicted event.

2. Tensile strength

Consider the tensile strength of so-called M5 alloy tubes, which are used in the nuclear fuel
production. The aspect of interest is the tensile strength of the produced tubes yielding
the following Bernoulli Space:

• pair of variables:

X = tensile strength of a tube at a given temperature t0

D = (Dn, Dp)

Dµ1 = first moment of X

Dµ2 = second moment of X

• ignorance space:

D = {(µ1, µ2) |µ1
≤ µ1 ≤ µ1, µ2

(µ1) ≤ µ2 ≤ µ2(µ1)}

• variability function:

X ({(µ1, µ2)}) = {x |x(µ1, µ2) ≤ x ≤ x(µ1, µ2)}

• random structure function:

P({(µ1, µ2)}) = PX|{(µ1,µ2)} being a uni-model distribution

In this case one could make a reliable prediction with respect to the tensile strength of
the tubes.

8
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Unit 2.1.3: The Measurement Class

Target

Traditionally, measurements are looked
upon as the core of quantified sciences
and actually metrology, the science of
measurement, is a key discipline for
any human civilization. This learning
unit shall introduce the basic concepts
of stochastic measurements. Moreover,
the deficiencies of many conventional
measurement procedure shall be re-
vealed.

Content

Introduction

Making measurements possible constitutes the most striking result of quantification. Only mea-
surements guarantee unique and controllable statements about facts and, thus, measurements
form a prerequisite of any science, which wants to be more than a debating society.

Measurements refer to the past or in other words to the fixed values of certain characteristics,
which have been quantified. In the framework of a Bernoulli Space, measurement procedures
are related to the initial conditions, i. e., the actual value of the deterministic variable D, which
determines essentially the three components of the corresponding Bernoulli Space.

It should be reemphasized that a measurement with respect to a given characteristic, often called
measurand in metrology, requires quantification. Moreover, any measurement is necessarily
based on a process that depend on the unknown value of the measurand. The history of
mankind is tightly associated with the progress in measurement methods. In fact, measurement
procedures were and still are the basis of any technological progress.

Nowadays, almost everything in our daily life has been quantified and accurate measurement
devices have been developed and, therefore, quantification seems to be often a part of nature.
However, this is not at all true. Quantification is a genuine achievement of mankind based on
mathematics resulting in technology. Note that a majority of technical breakthroughs do not
date back very much. For instance, the first thermometer, which actually worked sufficiently
well, was developed only in the 18th century by the physicist Gabriel Fahrenheit (1686-1724).

Measurement Procedures as Functions

A measurement procedure aims at determining the actual value of a deterministic variable D
or a component of it, where “determination” means to exclude all those values of D which
are not consistent with the unknown value of the measurand. The consistency is determined
by a measurement process, which depends more or less closely on the unknown value d to be
determined.

The measurement process is modelled by a Bernoulli-Space, with the random variable X rep-
resenting the future outcome of the process and the deterministic variable D containing the
variable to be measured.

A measurement procedure assigns to each possible outcome of the measurement experiment a
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subset of the ignorance space as the measurement result. Thus, any measurement procedure
can be mathematically described by a function denote by CD.

A measurement function CD is defined on the observable outcomes of the measurement exper-

iment, which is given by a suitable system of subsets TX

(
X (D)

)
of the corresponding range of

variability of X. If the observations consist of single values, then TX

(
X (D)

)
is selected as the

system of singletons, each standing for an observed outcome of the measurement process.

The ignorance space D specifies the potential values of D. Therefore, any meaningful measure-
ment result must necessarily be a subset of the ignorance space implying that the codomain of
any meaningful measurement function CD must necessarily be a system of subsets of D denoted
by TD(D). The elements of the system should be selected in a way that they represent that
type of measurement, which is most suitable to reach the underlying aim. In the univariate
case the measurements are represented by intervals.

Preliminary Result

Any measurement procedure is defined as a function CD with domain being the system of subsets

TX

(
X (D)

)
of the range of variability of X|D, where each element of the system represents an

observed outcome of the measurement process. The codomain of a measurement function is
a system of subsets TD(D) of the ignorance space, where each elements represents a possible
measurement result.

Types of Measurement Procedures

In contrast to the prediction class, there are traditionally several different types of procedures
contained in the measurement class:

• Genuine measurement procedures: These procedures aim at reducing the ignorance space
as much as possible.

• Exclusion Procedures: This type of procedure aims at excluding a part of the ignorance
space, which has been specified beforehand.

• Classification Procedures: This type aims at determining the actual Bernoulli Space from
a set of given alternative Bernoulli Spaces.

Examples

1. Production process (1)

Consider Example 1 of the previous learning unit and assume that the ignorance about
the nonconformity probability is too big implying that the predictions are not very useful.
In such a case it is necessary to perform a measurement process in order to determine the
unknown value p of the nonconformity probability.

The measurement process may consist of producing a specified number of items and
determine how many nonconforming items are among the produced ones.

The Bernoulli Space for the measurement process is the same as in Example 1 except that
there is no ignorance about the number of produced items. The Bernoulli Space enables
to develop a stochastic measurement procedure CD assigning to each observable outcome
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STOCHASTIC PROCEDURES THE MEASUREMENT CLASS

a measurement result with respect to the unknown value of the nonconformity probability.
Moreover, it is possible to make the procedure as reliable as necessary.

2. Tensile strength

The M5 alloy tubes of Example 2 of the previous learning unit have to stand a certain
tensile strength, say t0, as otherwise it would be dangerous to use them. Therefor the
smallest value x(µ1, µ2) is important and must be determined. In fact, if the manufacturing
process is very good the specification t0 should always be met.

The measurement process consists of checking the tensile strength of a specified number
of M5 alloy tubes with the aspect of interest being the minimum tensile strength among
them.

As soon as a Bernoulli Space is available the value x(µ1, µ2) can be measured in order to
prove that the specification t0 is met with certainty.

3. Production process (2)

Consider the case that there is no interest to determine the unknown value of the non-
conformity probability, but it shall be shown that the probability does not exceed a given
value p0.

In this case the aim is to exclude all values larger than p0 and, therefore, an exclusion pro-
cedure is needed. If the exclusion process is modelled by a Bernoulli Space, the exclusion
procedure can be developed, which for each observable outcome gives the decision either
to exclude or not exclude all values larger than p0

11
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Unit 2.1.4: The Verification Class

Target

This learning unit aims at emphasiz-
ing the importance to verify the cor-
rectness of a Bernoulli Space. An in-
correct Bernoulli-Space does not cover
the actually given situation either with
respect ignorance or randomness and,
therefore, the claimed reliability of the
procedures may not be warranted.

Content

Introduction

Before a special Bernoulli Space is acknowledged as part of stochastic science and used as
basis for deriving predictions, it should be verified by application and by specially designed
verification procedures.

The aim of a verification procedure is to show that the Bernoulli Space meets its purpose to
provide β-predictions, i. e., predictions with a probability of occurrence not falling short of β.

Verification Procedures

Each of the components of a Bernoulli Space is the result of an exclusion operation. The aim
of an exclusion operation is to exclude as much values as possible, but not to exclude the true
ones. The true value of a deterministic variable, as well as the actual range of variability and
the uncertainty generated by randomness should be covered by the Bernoulli Space. Thus, the
task of a verification procedure is to assure that, the actual values have not been excluded.

If the Bernoulli Space does not cover the entire uncertainty generated by ignorance and ran-
domness, then the required reliability of the corresponding procedures cannot be warranted.
Therefore, verifying a Bernoulli Space means to verify the reliability requirements.

Any stochastic procedure derived from a Bernoulli-Space is based on a prediction procedure.
Hence, it suffices to check the reliability levels of prediction procedures.

A verification yields new knowledge and, therefore, it must based on a learning process or
better said on a verification process. A verification procedure aims at verifying the reliability
levels of prediction procedures. If the Bernoulli Space covers the given situation with respect
to uncertainty then the actual probabilities of predictions should always be larger then the
required reliability level.

Verification Procedures as Measurement Procedures

A verification procedure aims at assessing the probability of a given prediction and comparing
it with the claimed reliability level. The probability of a prediction is in any situation a fixed,
i. e. it is a determined value, implying that a verification procedure aims at assessing facts.
Thus, any verification procedure constitutes a special measurement procedure.
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The Bernoulli-Space of a Verification Procedure

A verification procedure can be looked upon as a stochastic measurement procedure which
is based on the Bernoulli Space of the verification process and a prediction procedure. The
deterministic variable to be measured is the unknown reliability of the prediction procedure.
The reliability of a prediction procedure is defined as the probability that the predicted events
with respect to the random variable of interest X will actually occur.

Verifying a Bernoulli-Space BX,D means to determine the probability of a predicted event
AX(D). The verification process consists of a number of independent copies (X1|{d}, X2|{d}, . . .)
of X|{d} of the random variable X. The random variable of interest Xv of the verification pro-
cess is the number of successes, i. e. the number of times the predicted event AX(D) will
actually occur, when performing the verification experiment. The relevant deterministic vari-
able Dv for the verification experiment is given by the number of copies of X|{d} and the
unknown probability of the predicted event AX(D).

Preliminary Result

A verification experiment consists of performing a number of experiments and determining how
many times a given prediction actually occurs. The aim is to show that the unknown value
of the success probability is not smaller than the required reliability of the prediction. The
Bernoulli-Space describing this situation is given by the well-known Binomial Bernoulli Space.

Example

1. Manufacturing process

Consider a manufacturing process of Uranium pellets for nuclear fuel. The pellets must
meet certain specifications as otherwise their safe performance cannot be guaranteed. The
conformance of the pellets produced shall be proved by means of a stochastic model, i. e.,
a Bernoulli Space, for the relevant features of the pellets.

The random variable refers to the features of the pellets to be produced:

X = a relevant feature of a pellet to be produced (5)

The deterministic variable refers to the moments of X. Assume that the probability
distribution of X is uni-modal, then according to the principle of minimum information
the following deterministic variable is obtained:

D = (E[X], V [X]) (6)

Let the Bernoulli Space for (X,D) be given by:

BX,D = (D,X ,P) (7)

Before, the Bernoulli Space can be used for guaranteeing the conformance of the produced
pellets, it must be verified that the Bernoulli Space covers the entire uncertainty generated
by ignorance and randomness. In particular, it must be proved that the ignorance space
contains the actual, but unknown values (µ, σ2) of the deterministic variable.
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Unit 2.1.5: Specification

Target

The main goal of Learning Unit 2.1.5
is to identify the relevant quality char-
acteristics of stochastic procedures and
define specifications for them. Stochas-
tic procedures are products and their
quality should therefore be safeguarded
by checkable specifications. To this end
the meaning of specifications with re-
spect to quality is clarified.

Content

Introduction

A specification is a set of requirements referring to the relevant features of an object, e.g. a
product, a system or a service. The specifications are often agreed in by the involved parties,
generally the supplier of the product and the purchaser of the product. Meeting the specifica-
tion should guarantee a certain performance of the product. Any violation of a specification
constitutes a shortcoming and gives reason for a warranty claim.

In fact, specifications are necessary for legal security for supplier and purchaser. Specifications
are often formulated in form of generally agreed standards which are produced by national and
international bodies of standardization.

However, before specifications can be formulated the relevant features have to be identified,
where a feature is called relevant, if it has a non-negligible impact on the performance of the
product. In industry the relevant features of a product are often called quality characteristics.

Quality Characteristics of Stochastic Procedures

Consider a pair of variables (X,D), a corresponding Bernoulli Space BX,D and a problem which
shall be solved by means of a stochastic procedure being an element of the prediction class,
an element of the measurement class or an element of the verification class, respectively. In
each case the procedure yields a statement, either about the indeterminate future, or about the
determinate past, or, finally, about the given Bernoulli Space.

Thus, a stochastic procedure is a system which produces statements and, therefore, for identi-
fying the relevant quality characteristics for a procedures the corresponding statements, which
constitute the performance of the stochastic products, have to be considered.

A procedure which more often yields correct statements than another procedure is called more
reliable. Thus, reliability constitutes a major quality characteristic of a stochastic procedure.

Consider two procedures which are equally reliable. In this case the procedure generating
statements which are more useful will be considered as better. Therefore, the second quality
characteristic of a procedure is its usefulness or precision.

Finally, the procedures of the measurement class and the verification class are based on a process
or experiment which afford certain expenses. Consider two procedures with the same reliability
and the same precision, then the procedure with the lower expense will be called the better
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one. Thus, the expense constitutes a third quality characteristic of stochastic procedures.

Specifications for Stochastic Procedures

A specification for a stochastic procedure must necessarily fix its reliability as an unreliable
procedure is worthless no matter whether it is precise or cheap.

The specification may additionally include also the other two quality characteristics. However,
one should have in mind that the quality characteristics depend on each other. A higher
reliability requirement necessarily leads to a decrease in precision or to a higher expense in the
case of the necessity of learning experiments.

The general understanding is that by setting specifications for a system or procedure a certain
quality shall be guaranteed in case the specifications are met. Often quality of an object is
defined by means of the corresponding specifications. This raises the question of the meaning
or definition of the concept “quality,” which shall be briefly examined in the following learning
unit.

Examples

1. Examination

Participating in an examination may lead to a success or a failure. Assume that the
maximum points which can be achieved during the examination is given by 100 and that
you take the test. The random variable is given by:

X = the number of points you will achieve (8)

The range of variability of X is given by:

X = {0, 1, 2, . . . , 100} (9)

You will be successful, if you can meet
the specification S for success, which is
a subset of X . For example, the success
requirements could be given by by the
following specification:

S = {60, 61, 62, . . . , 100}

 

Figure 1: A difficult exami-
nation.

2. Uranium pellet

The diameter of the Uranium pellets of Example 1 of the previous learning unit constitutes
a relevant feature for a safe use as nuclear fuel. Thus, the random variable is given by:

X = diameter of a produced Uranium pellet (10)

The range of variability is limited due to the production conditions:

X = {x |x ≤ x ≤ x} (11)

The specification S is again given by a subset of X :
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S ⊂ X (12)

If for a pellet the diameter falls into S, it meets the corresponding specification and is
called “conforming” otherwise it is called “non-conforming”.

3. Standards

Many technical specifications are developed by standards organizations, especially by the
International Organization of Standardization (ISO) which has developed thousands of
technical and statistical standards (specifications) which are used worldwide and which
enable global trade.

Specifications may be given by a mathematical description, by a software program, data
sheet (specification sheet), or a drawing. Specifications are used in engineering, manu-
facturing and business, and they are of eminent importance for suppliers, purchasers and
users of products, materials or services.
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Unit 2.1.6: Quality

Target

This learning unit aims at clarifying the
important concept of quality, which is
used in numerous confused and confus-
ing meanings. The learning unit shall
illustrate that also the concept quality
must be viewed stochastically.

Content

Introduction

The concept “quality” is used in all parts of human societies and, therefore, it should be defined
in an unambiguous way. Generally, good and bad quality is distinguished and, therefore, the
concept itself is not valuing. Quality is an attribute of an object with regards to certain features
of its performance when applied. The object could be a technical system, a human being, a
procedure, or almost anything else.

The quality of the object refers to the future result of an application in view of a specified
purpose. The result not only depends on the object itself, but also on the environmental
conditions, i. e., the quality of an object changes with the circumstance of its application.
Note, that the quality of an object generally elapses with the completion of the application,
e.g., the quality of a roast beef refers to the state before the meal and not after it.

Thus, it is clear that any definition of the concept of quality must include a pair of quantities,
one denoting the object and the other the characteristic of interest of its future performance.
Moreover, the environment has to be taken into account.

Preliminary Result

The following implications can be drawn from the above considerations:

1. Quality refers to a given object and some given features with respect to its ap-
plication in a given environment.

2. Quality makes a statement about the future performance of the object with respect
to a given purpose.

Thus, the question arises how the future performance of an object with respect to the features
of interest, which are called “quality characteristics” can be described using mathematical
concepts.

As already known, the difficulty of describing a future development is generated by uncertainty.

The future performance is subject of uncertainty and uncertainty is the subject of this e-learning
program. In the first course a stochastic model – the Bernoulli Space – for a process has been
developed, with focus on describing uncertainty.
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Stochastic Model of Quality

The Bernoulli Space is the stochastic model describing uncertainty about a future develop-
ment.The Bernoulli Space relates to a pair of variable (X, D), where X is a random variable
and D a deterministic variable.

The concept quality assumes the following quantities:

• a given object

• some performance characteristics of the object and

• the nature of the object with respect to the performance characteristics.

Considering quality, the two variables (X,D) of a corresponding Bernoulli Space have the
following interpretation:

• X: The random variable X stands for the performance characteristics.

• D: The deterministic variable D stands for the nature of the object with respect to the
performance characteristics.

The stochastic relation between nature of object/initial conditions and the performance of the
object/future development is described by the Bernoulli Space:

BX,D = (D,X ,P) (13)

As mentioned earlier quality is not valuing, but describes the future performance of an object.
The future outcome is, because of uncertainty, not determined by the nature of the object
and the initial conditions. However, the future performance is more or less strongly related to
them. This stochastic relation is given by the probability distribution as image of the random
structure function P . Thus, the following quantitative representation of quality is obtained:

The quality of a given object for specified initial conditions {d} with respect to its future
performance X is given by the probability distribution PX|{d}.

The above representation of quality illustrates the fact that it makes no sense to talk about the
quality of an object without stating its purpose and the underlying situation.

Examples

1. Quality of Cars

A Mercedes car is thought to be of a better quality than a Korean Kia car. In fact a
Mercedes car is much more expensive than a Kia car, however, this is not the reason for
believing that it is of better quality. The reason is different.

The probability that a Mercedes car
will have a good performance with
respect to serving well its purpose
is believed to be higher than for a
Kia car. Thus, the future perfor-
mance determines the quality of a
car or any product. The future per-
formance is adequately described by
a probability distribution.

Figure 1: An expensive Mercedes
sportscar.
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The question whether or not the belief in the Mercedes cars is justified could be answered
by determining the probability distributions about the future performance of a Mercedes
car and a Kia car, respectively.

2. Quality assurance

Nowadays, quality assurance strategies are implemented not only in enterprises, but also
in hospitals and even in universities. However, there are at least two problems which
should be solved before a quality assurance strategy can be developed for a university.
The first one refers to the definition of the quality of a university and the second one to
procedures for determining the actual value of the quality. As long as these problems are
not solved satisfactory, any quality assurance strategy must be looked at with suspicion.
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Unit 2.1.7: Reliability

Target

The reliability of stochastic procedures
has already been mentioned in preced-
ing learning units. This learning unit
aims at introducing reliability as the
most important quality characteristic
particularly for stochastic procedures
but in general for any object that is
used for some given purpose.

Content

Introduction

The more frequently a procedure yields correct results, the more it will be regarded as being
reliable. The observed frequency of correct results reflects the probability of the event of a
correct result. Hence, the probability of a correct result when applying a stochastic procedure
is called its reliability.

Reliability Specification

Any application of a procedure includes the risk of obtaining a false result. Therefore, the
reliability or at least a lower bound for the reliability must be known before a procedure may
be applied, as otherwise the risk is unknown and the results are more or less meaningless. The
controlled reliability of stochastic procedures distinguish them from unscientific procedures.
Because of the fundamental importance of reliability, it will generally be imposed on the pro-
cedure as a specification, implying that it is not reasonable to compare different procedures, if
they do not meet the same reliability specification.

Reliability Level

A reliability specification of a stochastic procedure is given by the reliability level, the value
of which is generally denoted β. The reliability level β constitutes a lower bound for the
probability of obtaining a correct result when applying the procedure in question.

Thus, any result of a stochastic procedure must necessarily come along with the procedure’s
reliability. Note that the reliability refers to the procedure and not to the statement. Even
a highly reliable procedure may eventually produce a wrong result, just as in case of a highly
reliable machine or person.

Reliability in Science

It is a surprising fact that scientific procedures are generally not secured by reliability specifica-
tions. Consequently, it is hardly possible to evaluate scientific procedures. Statistics represents
one exception, as in statistics some procedures are safeguarded by a reliability requirements
given as “confidence level” or “significance level.”

In almost any other part of science the reliability of procedures is not stated, maybe because
in the majority of cases the reliability is zero or close to zero. Consider as an example the
well-known “Laws of Nature” derived in physics which constitute procedures of the prediction
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class as in general they make a statement about a future development based on some given
initial conditions. The procedures are simple mathematical function yielding exactly one value
for any given initial conditions. Thus, the precision of the Natural Laws is maximum. However,
anybody who has made physical experiments knows that the calculated, i. e., predicted outcome
differs with certainty from the observed one. Consequently the reliability of these procedures
is zero and the achieved precision worthless.

Note that the reassuring remark that the difference between the predicted outcome and the
observed one is not very big, is not helpful in many cases. Sometimes even a small difference
may lead to a disaster. And not knowing how much the difference might be, is tantamount
of using a procedure and not knowing the risks. Evidently, even in gambling the situation is
better.

Examples

1. Product Brand

A product brand is called more reliable than another if the products delivered operate
more often well than the products from the second brand.

Generally, specifications for certain relevant features of the products are defined. Meeting
these specifications shall assure a good performance of the product with high probability.

If a reliability level is fixed, then the specifications could be selected accordingly.

2. Measurement Procedure

Any measurement procedure can be compared with a production process, where each
application of the procedure yields a product in form of the measurement result. If the
measurement procedure produces too frequently wrong results, it should not be used. In
order to know the risk of getting a wrong result, each measurement procedure should state
its reliability level, i. e., a lower bound for the probability of getting a correct result, when
applying the procedure.

3. Prediction Procedure

There are many types of prediction pro-
cedure. There are people who use pro-
cedures based on astrology, others be-
lieve in fortune tellers and others rely
on scientific predictions. However, as
long as no reliability level of the predic-
tion procedure is stated, the risk that
the predicted event will not occur is un-
known and, therefore, relying on the
prediction is hazardous.

 

Figure 1: Fortune telling by a
crystal ball.
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Unit 2.1.8: Precision

Target

Learning Unit 2.1.8 shall explain that
the procedure’s quality characteristic
“precision” is only meaningful for spec-
ified reliability of the procedure. More-
over, it should become clear that preci-
sion quantifies the usefulness of a pro-
cedure.

Content

Introduction

In the previous learning unit, the reliability of a procedure was introduced as the probability of
getting a correct result when applying a given procedure. In the case of a prediction procedure
a correct result consists of a predicted event that actually occurs. In the case of a measurement
procedure a correct measurement result covers the true value.

A result of a stochastic procedure may be correct, but completely useless, because it is too
imprecise and, therefore, cannot serve the underlying purpose sufficiently well. The precision
of a procedure is defined as a measure how well the underlying aim is reached by applying the
procedure. Different aims need different procedures and different measures of precision.

Procedure’s Precision

Explaining quality of something as the degree of meeting its purpose suggests that the precision
of a procedure may serve as optimality criterion for procedures meeting the same reliability
specification.

If the underlying purpose requires a certain minimum precision, then a corresponding precision
specification may be formulated and the procedure is selected accordingly.

Note that similar as in the case of reliability, precision refers to the procedure, too. Require-
ments for single stochastic statements, i. e., results of applying a procedure, make often not
much sense. For example, in the case of a measurement procedure, the results are subject
to randomness and, therefore, the achieved precision is generally also subject to randomness,
which also shows that the quantification of precision of a stochastic procedure might constitute
a difficult task.

Precision and Science

Reliability and precision are two quality characteristics of stochastic procedures, which are to
be considered because of the inherent uncertainty about any future development. In classical,
deterministic science the inherent uncertainty is neglected. As a consequence neither reliability
nor precision are considered for scientific procedures, i. e., laws of nature. It is assumed that
they represent truth and, therefore, must be correct. The belief in the truth of the laws of
nature seems to imply that the procedures have a reliability of 1, and, moreover, the results are
given by one point and, therefore, most precise.
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STOCHASTIC PROCEDURES PRECISION

The fact that the predictions made on the bases of laws of nature will never occur and the
measurements never yield the true value is explained by stating that observations do not show
the truth, but are always biased by an error.

Abandon the belief in truth yields the necessity of regarding the reliability of a procedure and
its precision. The imprecision of a given result of a stochastic procedure is given by its size.
The smaller the measurement result or prediction, the more precise it is, implying that the
precision of a procedure’s result is given by the reciprocal value of its size.

Examples

1. Measurement

Consider to measure the length of an object by means of a ruler, which has a millimeter-
scale. Assume that the result of the measurement is stated to be 15.6 cm. Then with
almost certainty the result obtained is not correct. It follows that this measurement
procedure based on the ruler, has a reliability of almost zero. On the other hand, the
wrong measurement result is given by a single value, i. e., has optimum precision.

However, achieving good precision for a procedure with low reliability is meaningless, as
a decision based on a wrong result may lead to a disaster.

In fact the ruler admits with a relative high reliability only results of a precision of at
most 0.5mm. Therefore, the result 15.6 cm should have been stated in the following form:

{x | 15.55 ≤ x ≤ 15.65}

The imprecision of such a measurement procedure would be 15.65−15.55 = 0.1 cm, while
the reliability should be determined by a suitable stochastic procedure.

2. Prediction

It is easy to make a correct prediction by predicting an event which covers all the future
developments. However, such a prediction would be generally useless. Therefore, the
problem is to predict an event, which meets a given reliability specification and is as
precise as possible.

A weather forecast about tomorrow’s temperature
which covers a large interval is meaningless. On
the other hand a forecast of one value will be wrong
with certainty. Nevertheless, most weather fore-
casts consist of one value only.

In Figure 1 a typical six-day weather forecast is
displayed. For each day and each night a certain
temperature (in Fahrenheit) is given. It remains
unclear how to interpret the given values. For ex-
ample, for Saturday daytime a temperature of 83◦

is given, is it the maximum temperature at noon,
a mean temperature or anything else? Figure 1: Weather forecast

for night and day.
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EXPENSE STOCHASTIC PROCEDURES

Unit 2.1.9: Expense

Target

Generally the expense for applying a
procedure must be limited because of
the available resources. This learning
unit shall show the consequences of lim-
iting the expense on the two other qual-
ity characteristics of a stochastic mea-
surement procedure.

Content

Introduction

The expense of a stochastic procedure quantifies the efforts which have to be made in order to
execute it. For a procedure of the prediction class the efforts refer to the calculations needed
to obtain the desired result based on the Bernoulli Space. If adequate tools are available, the
expense should be negligible. In the case of a procedure of the measurement and the verification
class, an additional process is needed.

If there are specifications with respect to the reliability and the precision of the procedure,
then a minimum expense must be raised for meeting the specifications. In other words, the
requirements with respect to the quality of a procedure determine the expense.

Expense and Sample Size

In statistics, procedures are always based on samples and the expense depends on the sample
size. For given reliability level (confidence level) a large sample size, i.e., a large expense, leads
to a precise result, while a small sample size, i.e., a small expense, yields an imprecise result.

Expense Specification

If the resources for performing the learning process in the frame of a procedure from the
measurement or the verification class are limited, then an expense specification has to be
imposed. The expense specification together with a reliability specification limits the attainable
precision of the procedure.

Expense as Objective Function

The expense, for example the sample size for statistical procedures, may serve as the objective
function, with side conditions with respect to reliability and precision. This case would lead to
a optimization problem with two side conditions.

Example

1. Measurement Devices

Measuring a length by means of a ruler is cheap but rather imprecise. Using a laser based
measurement device is much more costly, but the precision obtained is much higher. Note
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STOCHASTIC PROCEDURES EXPENSE

that generally the reliability of technical measurement procedures are not stated on the
measurement devices.

2. Sample Size

In stochastics (just as in statistics) samples are generally used as measurement processes.
The larger the sample the more reliable and precise is the measurement procedure, because
the inherent variability can be reduced for example by considering the arithmetic mean of
the random variables comprising the sample. A more reliable procedure will yield more
often correct results, and a more precise measurement procedure will yield results that
are less imprecise.
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PREDICTION PROCEDURES APPLICATION

Module 2.2: Prediction Procedures

Content and Aim of the Module Prediction Class

The ultimate purpose for deriving a Bernoulli Space is
to predict the future development. Therefore, predic-
tion procedures based on a Bernoulli Space build the
core of Bernoulli Stochastics. The characteristic feature
of stochastic prediction procedures consists of the reli-
ability of the predictions made. These will occur with
a probability which is not less than a required lower
bound.

In this module various types of prediction procedures are introduced, where the type refers to
the aim of the prediction and the level of ignorance assumed.

There are prediction procedures probably since mankind came into existence and in fact any
decision made by a human being is based explicitly or implicitly on a prediction. Most of
the prediction procedures developed by mankind is mysterious and doubtful, especially those
which are in the context of science developed and known as Laws of Nature. Therefore, a
more rational clarification about necessary and desirable properties of a prediction procedure
should be elaborated. Moreover, a closer look to so-called scientific predictions as produced,
for example in physics, reveals that they are - strictly speaking - meaningless and, therefore,
useless.

A successful passing of this module should lead to a better understanding of the stochastic
concept of predictions, which, as will be shown in the subsequent modules, are not only useful
for disclosing the future, but are also the only way for learning about the past.
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PREDICTION PROCEDURES β-PREDICTION PROCEDURES

Unit 2.2.1: β-Prediction Procedures

Target

Learning Unit 2.2.1 aims at introduc-
ing a necessary requirement for reli-
able prediction procedures. This is im-
portant as the results of a prediction
procedure with unknown reliability are
more or less meaningless. Therefore, it
is of utmost importance to understand
the concept of reliable prediction pro-
cedures.

Content

Introduction

The nature of the stochastic relationship between X and D resides in the probability dis-
tribution PX|{d}, i.e., the probability distribution of the random variable X under the initial
condition {d} ⊂ D. It is easily appreciated that there are reciprocal relationships between the
range of variability X (D) and the ignorance space D; between subsets of these spaces, and
therefore between so-called predictions and measurements, as defined previously. In Bernoulli
Stochastics, these reciprocal relations are used for the development of a unified approach - based
exclusively on predictions with respect to the random variable X - towards the development
of any stochastic procedure, whether it belongs to the prediction, measurement or verification
class.

Reliable Prediction Procedures

A prediction procedure utilizes knowledge about initial conditions contained in D and the
relation between past and future, to generate a prediction for the future outcome in form of a
subset of the range of variability X (D) of the random variable X.

More specifically, a prediction procedure denoted by AX defines a mapping

AX : TD(D) → TX

(
X (D)

)
(14)

where TD(D) and TX

(
X (D)

)
are appropriately selected systems of subsets of the ignorance

space and the corresponding range of variability, respectively. The elements of TD(D) represent

appropriately selected levels of ignorance, while the elements of TX

(
X (D)

)
represent the events

to be predicted.

For a given prediction procedure and a given subset D0 ∈ TD(D), a prediction is an element

AX (D0) ∈ TX

(
X (D)

)
. A prediction error is committed, if the future realization x of X does

not fall into the predicted event, i.e., x 6∈ AX (D0).

To control the reliability of the procedure, a lower bound - denoted by β and called reliability
level - for the probability of a correct prediction is selected. As to the range of possible
values for β, theoretically it could be the entire unit interval. However, a β value less than or
equal to 0.5 does not make much sense. Therefore, β shall be restricted here to the interval
{β | 0.5 < β ≤ 1.0}.The value selected for β, will reflect the consequences of an error. If the
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β-PREDICTION PROCEDURES PREDICTION PROCEDURES

consequences are serious, then a value close to 1.0 or even the value 1.0 is indicated; otherwise,
a smaller value may be sufficient. The lower bound β constitutes a requirement which must
be taken into account when designing a procedure. The result is a general quality concept
for procedures, which applies directly to the intended use, and which may be quantified and
embedded in the derivation of procedures.

The Procedure’s Reliability

A prediction procedure is called β-prediction procedure denoted by A
(β)
X if its images A

(β)
X (D0)

meet the following requirement for any D0 ∈ TD(D):

PX|{d}
(
A

(β)
X (D0)

)
≥ β for d ∈ D0 (15)

From (15) it immediately follows that any prediction produced by a β-prediction procedure

A
(β)
X has a reliability of at least β, i. e., will occur with a probability of at least β.

On an average a β-prediction procedure A
(β)
X will generate predictions, which will occur in at

least 100 · β % of all cases of application.

Graphical Illustration of a β-Prediction Procedure

In Figure 1 below, a β-prediction procedure

A
(β)
X : TD(D) → TX (X (D))

is schematically given:

Figure 1: The β-Uncertainty Space U (β)
X and the β-prediction procedure A

(β)
X .

Figure 1 shows two predictions plotted on the x-axis: The first one A
(β)
X (D0) is based on the

level of ignorance D0 ∈ TD(D) while the second one A
(β)
X ({d0}) assumes complete knowledge.
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PREDICTION PROCEDURES β-PREDICTION PROCEDURES

The two levels of ignorance are plotted on the d-axis, where d0 ∈ D0 ⊂ D. The light grey area
represents the uncertainty space UX,D, which for d ∈ D shows all values x(d) which might be

observed. The smaller dark grey area is the so-called β-uncertainty space U (β)
X which is given

by the following set:

U (β)
X =

{
(d, x(d)) | d ∈ D, x(d) ∈ A

(β)
X ({d}

}

The β-uncertainty space U (β)
X shows for d ∈ D all values x(d) with

x(d) ∈ A
(β)
X ({d}), i.e., which might be observed with probability β. Finally the black area

within the β-uncertainty space illustrates how the predictions A
(β)
X ({d0}) and A

(β)
X (D0) ar ob-

tained:

• The prediction A
(β)
X ({d0}) can directly taken from the β-uncertainty space.

• The prediction A
(β)
X (D0) is the result of optimization, which starts with the event:

⋃

d∈D0

A
(β)
X ({d})

with

PX|{d}

( ⋃

d∈D0

A
(β)
X ({d})

)
> β

by stepwise reducing the set, the desired prediction A
(β)
X (D0) is obtained.

Example

1. Special subsets of a prediction procedure

The simplest system of subsets of D is the system containing only D itself. In this case

the prediction procedure degenerates to only one single prediction namely A
(β)
X (D). There

are two cases with respect to the amount of ignorance:

(a) If the actual value d0 of D is known, each set of the Bernoulli Space has just one
element and the uncertainty space UX,D reduces essentially to the corresponding range
of variability X ({d0}) as uncertainty is due to randomness only. Clearly, in this case
TD(D) is necessarily given as {D} with D = {d0}.
Let AX({d0}) denote the prediction when d0 is known, and let β represent the reli-
ability requirement. The prediction procedure is a β-prediction procedure denoted

A
(β)
X if (16) holds.

PX|{d0}
(
AX({d0})

)
≥ β (16)

(b) In the general case, i.e., with ignorance), it is only known that the actual value d0 is
an element of a given set D that contains more than one element. Then uncertainty
is not only due to randomness but also due to ignorance.

In this case a prediction procedure A
(β)
X meets the reliability requirement given by β

if the following condition holds.

PX|{d}
(
AX(D)

)
≥ β for d ∈ D (17)
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OPTIMUM β-PREDICTION PROCEDURES PREDICTION PROCEDURES

Unit 2.2.2: Optimum β-Prediction Procedures

Target

In Learning Unit 2.2.2 the precision
of a prediction procedure is introduced
as optimality criterion. The aim is to
show that evaluating the precision of a
prediction procedure is only meaning-
ful in combination with the procedure’s
reliability.

Content

Measuring Sets

Evaluating a stochastic procedure or its results is tantamount to ’measuring’ certain subsets of
the uncertainty space and, therefore, appropriate measure functions are needed, which have to
be derived in accordance with the given situation and with respect to the two variables X and
D.

As shown in previous learning units there are three aspects of importance when evaluating a
stochastic procedure: reliability, precision and expense. The third aspect, expense, is beyond
the scope of this course and it is assumed that the expense is fixed.

The probability measure is appropriate, and has already been adopted, for the evaluation of
the reliability aspect, which constitutes one side of uncertainty. However, for assessing the
precision aspect of stochastic procedures another measure must be derived.

Measuring Precision

A predictions AX(D0) is a non-empty subset of the range of variability X (D). The smaller the
set, i. e., the predicted event, the more precise is the prediction. The most precise prediction
is a set containing exactly one element. The most imprecise prediction consists of the entire
range of variability X (D). Thus, precision of a prediction can be assessed by simply measuring
the ’size’ of the set that represents a predicted event.

The Size of a Set

There are two types of sets, discrete and continuous ones. The discrete sets contain a countable
number of elements. The number may be finite or infinite. For example, {1, 2, 3, 4, 5} is a
discrete finite set, while the set of integers N = {1, 2, . . .} is an infinite countable set. A
continuous set contains an uncountable number of elements, as for example the set {x ∈ R | 0 ≤
x ≤ 1}.
Obviously, for a discrete and finite set an appropriate measure function for evaluating its size
is given by the number of elements. This measure is called the counting measure in probability
theory.

In case of a continuous set, the so-called Lebesgue5 measure is appropriate, which in case of an
interval, say {x ∈ R | a ≤ x ≤ b} reduces to the interval length ` = b− a.

5Henri Léon Lebesque (1975 – 1941), French mathematician.
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PREDICTION PROCEDURES OPTIMUM β-PREDICTION PROCEDURES

Let A
(β)
X (D0) be a predicted event. The size or precision of A

(β)
X (D0) is denoted by

∣∣∣A(β)
X (D0)

∣∣∣
and it is given by:

∣∣∣A(β)
X (D0)

∣∣∣ =





number of elements of A
(β)
X (D0) in the discrete case

Lebesgue-measure of A
(β)
X (D0) in the continuous case

(18)

The Optimality Criterion

Any stochastic procedure belonging to a pair of variables (X, D) has a geometric representation
as a subset of the corresponding uncertainty space UX,D. The precision of any given result is
assessed by the size of the corresponding set.

A prediction procedure has two quality characteristics namely its reliability and its precision.
The reliability of a β-prediction procedure is taken care by the reliability requirement given by
the reliability level β. Hence, the only quality criterion left is the procedure’s precision.

Optimum β-Prediction Procedures

The quality of a β-prediction procedure is given by its precision. Therefore, a β-prediction
procedure is called optimal, if the predicted events are most precise or if their size is minimum.

The precision of a β-prediction A
(β)
X (D0) ⊂ X (D), which determines its quality, is given by its

size

∣∣∣A(β)
X (D0)

∣∣∣ =





∑
x∈A

(β)
X (D0)

1 for the discrete case

∫
A

(β)
X (D0)

dx for a continuous approximation
(19)

A β-prediction procedure A
(β)
X is optimal or most precise, if for any D0 ∈ TD(D) the size of

A
(β)
X (D0) is minimum among all β-prediction procedures.

Note that the continuous case represents always an approximation. The variability range of a
realistic random variable is necessarily finite. If nevertheless a continuous approximation shall
be used, it must be shown beforehand that the obtained results are useful.

The β-Uncertainty Space of a Prediction Procedure

A β-prediction procedure does not take into account those outcomes of the process in question,
which occur with a sufficiently small probability. Neglecting these outcomes means to reduce
the considered uncertainty or the resulting uncertainty space.

In the special case

TD(D) = {{d} | d ∈ D} (20)

the uncertainty considered by a β-prediction procedure defines the β-uncertainty-space U (β)
X

(see preceding learning unit).

In this case the quality of the β-prediction procedure may be evaluated by the volume of the

corresponding β-uncertainty-space U (β)
X .

∣∣∣U (β)
X

∣∣∣ (21)
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OPTIMUM β-PREDICTION PROCEDURES PREDICTION PROCEDURES

since
U (β)

X =
⋃

d∈calD

{
(d, x(d)) | x(d) ∈ A

(β)
X ({d})

}

is formed by the totality of the β-predictions of A
(β)
X .

Example

1. Determining an optimal prediction

Let the probability mass function fX|{d} be given as in Figure 1:

 

Figure 1: The probability mass function fX|{d} for X|{d} with range of variability
X ({d}) = {x1, . . . , x13}.

Consider the problem of determining an optimal, i. e., a most precise β-prediction A
(β)
X ({d})

for X|{d} and reliability level β = 0.80.

The first elements to be selected for A
(β)
X ({d}) is the outcome x9 which occurs with largest

probability, namely with PX|{d}({x9}) = 0.155. Next x8 is selected, because it has the the
second largest probability PX|{d}({x8}) = 0.140; then the third x10 with PX|{d}({x10}) =
0.125, the forth x7 with PX|{d}({x7}) = 0.120, the fifth x6 with PX|{d}({x6}) = 0.100,
the sixth x11 with PX|{d}({x11}) = 0.09, and with the seventh x5 having a probability of
PX|{d}({x5}) = 0.080 the sum of probabilities of the selected outcomes exceeds for the
first time the required reliability of β = 0.80.

Taking any of the outcomes out of the predicted event, would lead to a occurrence probabil-
ity smaller that the required reliability level. Therefore, the event {x5, x6, x7, x8, x9, x10, x11}
is a desired optimum β-prediction.

Note that the optimum β-prediction is not unique. If x5 is replaced by x12, the event
{x6, x7, x8, x9, x10, x11, x12} also meets the reliability requirement given by β = 0.80 and is
also most precise. However, the actual reliability of the prediction {x5, x6, x7, x8, x9, x10, x11}
is larger and, therefore, it makes sense to select it.
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PREDICTION PROCEDURES MINIMUM PREDICTION WITHOUT IGNORANCE

Unit 2.2.3: Minimum Prediction Without Ignorance

Target

A β-prediction procedure derived from
a Bernoulli Space based on com-
plete knowledge constitutes the sim-
plest case. In this learning unit a
simple method is proposed for deter-
mining an optimum β-prediction proce-
dure, i. e., a prediction procedure which
yields the most precise predictions, in a
situation without ignorance.

Content

The System of Subsets TD

Any β-prediction procedure A
(β)
X depends on the two involved systems of subsets, TD and

TX , where the former specifies the level of ignorance to be taken into account and the latter
determines the shape of the predictions.

In the case of a β-prediction procedure without ignorance, complete knowledge is assumed for
each single predictions. Complete knowledge is represented by an ignorance space containing

exactly one element. Therefore, in this case the domain of the prediction function A
(β)
X is given

by the system of singletons:
TD(D) = {{d} | d ∈ D} (22)

This case refers to the situation, where the future variability as function of the deterministic
variable D is of interest.

The System of Sets TX

The sets to be predicted build up the system TX (X (D)), which is a system of subsets of X (D).
Generally, the system of sets TX is specified according to the underlying aim of the predictions.
In such a case the images of a β-prediction procedure must be elements of the given system of
sets TX . In case of a minimum β-prediction procedure, the system of sets TX is not specified
beforehand, but determined by the requirement to have minimum size, i.e., maximum precsion.

In order that the prediction procedure yields minimum β-predictions, the images A
(β)
X ({d}),

i. e., the elements of the system of sets TX , must meet the following two conditions:

• The predictions must have the required reliability, i. e., they must be β-predictions for
d ∈ D.

• The predictions must have minimum size among all β-predictions for X|{d} and d ∈ D.

Determination of A
(β)
X ({d})

The above given conditions are met by determining the predictions A
(β)
X ({d}) in the following

way:

1. For d ∈ D let |X ({d})| = N(d); order the elements of the range of variability X ({d}) in
descending order of the probability of the corresponding singletons yielding the ordered
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MINIMUM PREDICTION WITHOUT IGNORANCE PREDICTION PROCEDURES

set {x(1), x(2), . . . , xN(d)} with

PX|{d}({x(i)}) ≥ PX|{d}({x(i+1)}) for i = 1, . . . , N(d)− 1 (23)

where the index of an element is called its rank (with respect to the probability of occur-
rence). If two or more singletons have the same probability the corresponding ranks are
assigned appropriately6.

2. The event to be predicted is filled with the elements x(k) ∈ X ({d}) in the order of their
ranks starting with rank-number 1, i. e., x(1).

3. The procedure is stopped as soon as the cumulative probability of all selected outcomes
reaches for the first time the reliability level β.

Proceeding like above described yields a prediction A
(β)
X ({d}) which on the one hand meets

the required reliability level β and has minimum size on the other. The set of all minimum
β-predictions builds the system of sets TX .

The Shape of Minimum β-Predictions

The shape of the elements of TX depends on the situation. In the case that X represents a
simple and not compound process, the probability distribution is a member of the constant, the
monotonic or the uni-modal family. In this case the optimal predictions are intervals, where
the lower and the upper bounds, say x(k1) and x(k2), are determined by the above optimization
algorithm and the elements of the system of sets TX have the following form:

A
(β)
X ({d}) =

{
x |x(k1) ≤ x ≤ x(k2), x(k1), x(k2), x ∈ X (D)

}

for any {d}. The size of a prediction

∣∣∣A(β)
X ({d})

∣∣∣ = |k2 − k1|

is given by the number of its elements which is minimum among all β-predictions for the given
Bernoulli Space.

If the probability distribution is a member of a more complex family, then the elements of TX

might consist of not connected intervals, i.e., if X represents a compound process, then the
minimum β-predictions might adopt a variety of different shapes.

Examples

1. Number of Female Customers

As part of a sales campaign a shop wants to give each female customer of the first 100
customers entering the shop after 1 p.m. a red rose and each male customer a blue forget-
me-not. In order not to provide too many or too less roses and forget-me-nots a reliable
prediction about the number of female customers among the 100 customers shall be made
based on a Bernoulli Space. The reliability level is set to be β = 0.95.

• The random variable X is given by:

X = number of female customers among the first 100 customers

6‘Appropriately’ means that the ranks are assigned in a way which yields reasonable predictions.
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• The deterministic variable D has two component D1 and D2 is given by

Dn = Number of customers who are taken into account for
getting a rose.

Dp = Probability that a customer is female.

• The actual value Dn, i. e., the number of customers to be taken into account, is
known to be n = 100. The actual value of the probability of a female customer is
also assumed to be known, namely p = 0.65. Thus the following ignorance space for
Dp is obtained:

D = {(100, 0.65)}
• The variability function X is known exactly and is given by:

X ({(100, 0.65)}) = {x | 0 ≤ x ≤ 100, x ∈ N}

• The random structure function is also known exactly. The probability distribution
of X|{(100, 0.65)} is given by the binomial distribution Bi(100, 0.65).

Next the elements x ∈ X ({(100, 0.65)}) of the range of variability are ordered according
to the probability of occurrence and at the same time accumulated in order to check when
the reliability level β = 0.95 is reached.

x 65 66 64 67 63
PX|{(100,0.65)} 0.0834047 0.082141 0.0810879 0.0774122 0.0755247∑
PX|{(100,0.65)} 0.0834047 0.165546 0.246634 0.324046 0.39957

x 68 62 69 61 70
PX|{(100,0.65)} 0.0697685 0.0674218 0.0600905 0.0577142 0.0494214∑
PX|{(100,0.65)} 0.469339 0.536761 0.596851 0.654566 0.703987

x 60 71 59 72 58
PX|{(100,0.65)} 0.0473922 0.0387814 0.0373447 0.0290091 0.0282479∑
PX|{(100,0.65)} 0.751379 0.79016 0.827505 0.856514 0.884762

x 73 57 56 74
PX|{(100,0.65)} 0.020664 0.0205164 0.0143112 0.0140021∑
PX|{(100,0.65)} 0.905426 0.925943 0.940254 0.954256

The most probable singleton is {65}, which, therefore, is the first element put into the

prediction A
(0.95)
X ({(100, 0.65)}). In order to meet the reliability requirement given by the

reliability level β = 0.95 the prediction is stepwise filled with elements larger and smaller
than x = 65 yielding the prediction:

A
(0.95)
X ({(100, 0.65)}) = {x | 56 ≤ x ≤ 74}

for the number of female customers which has a reliability

PX|{(100,0.65)}
(
A

(0.95)
X ({(100, 0.65)})

)
= 0.954256 > β

which exceeds the required reliability. In Figure 1 the probability mass function fX|{(100,0.65)}
is displayed.

35



MINIMUM PREDICTION WITHOUT IGNORANCE PREDICTION PROCEDURES

Fig. 1: The probability mass function of X|{(100, 0.65)} and the optimal

prediction A
(0.95)
X ({(100, 0.65)}) = {x | 56 ≤ x ≤ 74} meeting the reliability
requirement given by the reliability level β = 0.95.

For the campaign the shop orders 74 red roses and 44 forget-me-nots. The risk that there
will be more than 74 female customers is smaller than 5%.

2. Final Inspection of Product

A company produces a mass product and ships it in lots of N = 10000 items to certain
customers all over the world. According to the shipping agreement the number of non-
conforming items in a lot should not be larger than 20. The company has investigated the
manufacturing process and concludes that the probability of producing a nonconforming
item is p = 0.001.

In order to decide whether or not to inspect the outgoing lots, a prediction shall be made
for the number of nonconforming items in a series of 10000 subsequently produced items.

a) The Bernoulli Space for the situation described above assumes complete knowledge
and is given as follows:

– Random Variable:

X = number of nonconforming items among the

considered production run

– Deterministic Variable:
D = (D1, D2)

with
D1 = Size of the production run.
D2 = Probability of producing a nonconforming item.
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– Ignorance Space:
D = {(10.000, 0.0001)}

– Variability Function:

X (D) = X ({(10.000, 0.0001)}) = {0, 1, 2, . . . , 10.000}
– Random Structure Function:

P({(10.000, 0.0001)})) = PX|{(10.000,0.0001)}

with
PX|{(10.000,0.0001)} ∼ Bi(10.000, 0.0001)

b) The company decides that there will be no costly final inspection if the prediction
shows that the number of nonconforming items in a lot will be less than 20 items.
Moreover it is decided that the reliability of the prediction should be not less than
β = 0.90. It appeared that a 10% risk could be born, because not every delivered
nonconforming item would be detected.

Entering Stochastikon Calculator, the following buttons have to be clicked:

– Binomial Distribution

– Prediction

– Without ignorance

– Minimum interval

then the following input-window opens:

Figure 2: Input-window of Stochastikon Calculator for calculating an
optimal prediction in case of the Binomial Distribution.

The input values for the sample size n = 10.000, the nonconforming probability
p = 0.001 and the confidence level β = 0.90 have to be inserted as shown in the
Figure 2. After the Start Calculation button has been clicked, it takes some moments
to calculate the prediction and produce the report, which contains a description of
the situation, i.e., the entire Bernoulli Space, the posed problem and and the solution,
i.e., the prediction given as a set. Moreover, the prediction is also illustrated by a
graphical representation with relevant part of the probability mass function. The
minimum β-prediction for the described case is given by

A
(0.90)
X ({(10.000, 0.001)}) = {5, 6, . . . , 15}

Because the predictions does not include the number 20 or higher, it was decided to
abandon the costly final inspection of the lots.
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In Figure 3, which is part of the report provided by Stohastikon Calculator, the
predicted event and the relevant part of the probability mass function are displayed.

Figure 3: The probability mass function of X|{(10.000, 0.001)}
and the optimal prediction

A
(0.90)
X ({(10.000, 0.001)}) = {x | 5 ≤ x ≤ 15}.
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Unit 2.2.4: Minimum Upper Bound Prediction Without Ignorance

Target

Learning Unit 2.2.4 aims at develop-
ing β-predicting procedures in the case
that only a maximum is of interest and
shall be predicted with given reliability
level β. This case is relevant in many
safety related situations.

Content

Introduction

In the previous learning unit a method is given for deriving minimum
β-prediction procedures assuming complete knowledge, but making no restricting assumption
with respect to the random variable X. Thus, the described method is valid irrespective of the
dimension of the characteristic of interest X.

Often, the random variable X is one-dimensional and, therefore, the possible outcomes follow
the natural order of their size. In such a case the interest about the future outcome of X may
be centered on the maximum possible outcome, while smaller outcomes are of less or even no
significance. For example, if a decision shall be made upon the height of an embankment of a
river, only the maximum height of a future flood is of interest.

The System of Subsets TX

If only the maximum of the possible values of the future development is of interest, then there
is no need to predict simultaneously an upper and a lower bound for the future outcome. It is
sufficient to predict an upper bound only. The lower bound is set for each d to the minimum
value of the corresponding range of variability X ({d}). Thus, the following system TX is
obtained:

TX(X ({d})) =
{

x ∈ X ({d}) |x ≤ u
(β)
X|{d}

}
(24)

Clearly, the system of sets TX given by (24) means less freedom for the selection of its elements.
Each of the elements of TX contains for example the smallest possible outcome of X. The only
freedom refers to the largest element of the event to be predicted.

Optimum β-Prediction Procedure

Just as before, the optimum β-predictions with shape given by (24) shall have minimum size

or, equivalently, a minimum upper bound u
(β)
X|{d}. The determination of the minimum upper

bound is straightforward:

1. Order the elements of the range of variability X ({d}) in ascending order of their values.

2. Fill the event to be predicted with elements starting from the smallest and proceeding to
the larger ones.

3. Stop as soon as the cumulative probability of all selected outcomes equals or exceeds the
required reliability level β for the first time.
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Obviously, the above algorithm yields for each d a prediction

A
(β)
X ({d}) =

{
x ∈ X ({d}) | x ≤ u

(β)
X|{d}

}
(25)

which meets the reliability requirement and has a minimum upper bound.

Example

1. Maximum Load of a Wind Turbine

In Example 3 of Learning Unit 1.3.8 the probability distribution of the maximum load for
wind turbines has been derived. The random variable of interest was given by:

Xi = maximum load during one load cycle at wind condition wi

and the corresponding deterministic variable by:

Di = (E[Xi], V [Xi]) (26)

Once the Bernoulli Space BXi,Di
is

available and a reliability level is de-
termined, predictions can be made. In
the case of the wind load the only
prediction of interest is the maximum
load which the turbines will have to
stand. Of course, the maximum load
should not be unrealistically large, as
otherwise the production cost would in-
crease. Therefore, the smallest load
shall be predicted which will not be ex-
ceeded with a probability of at least the
required reliability level, where the reli-
ability level is a very large number close
to 1.

Figure 1: A wind turbine with the
points of possible loads.

The smallest maximum load for given reliability level β is obtained by means of the upper
quantile function of Xi|{d}. Thus, the wanted prediction is given as follows:

A
(β)
Xi

({d}) =
{

x |x ≤ Q
(u)
Xi|{d}(β)

}

This prediction is also the optimum prediction with respect to the precision, as the upper
quantile function is defined as:

Q
(u)
Xi|{d}(β) = min

x∈Xi({d})

{
x |FXi|{d}(x) ≥ β

}
(27)
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Unit 2.2.5: Maximum Lower Bound Prediction Without Ignorance

Target

Often it is necessary to predict a mini-
mum of an aspect of interest given by a
random variable X. For example, the
minimum life time of products is im-
portant for fixing the warranty time.
This learning unit shows how a mini-
mum can be predicted in a reliable way.

Content

Introduction

In the previous learning unit a method is introduced for deriving minimum upper bound β-
prediction procedures assuming complete knowledge. Such predictions are needed, if only the
maximum outcome of X is of interest.

Besides, there are other cases in which only the minimum outcome is of interest. For example
in order to make financial decisions the minimum income to be expected in future is of utmost
importance and, hence, a reliable prediction would be very useful.

The System of Subsets TX

If only the minimum outcome of the future development is of interest, then – just as in the
preceding learning unit – there is no need to predict simultaneously an upper and lower bound
of the future development. It is sufficient to predict a lower bound only. The upper bound is
set for each d to the maximum value of the corresponding range of variability X ({d}). Thus,
the following system TX is obtained:

TX(X ({d})) =
{

x ∈ X ({d}) | `(β)
X|{d} ≤ x

}
(28)

Clearly, the system of sets TX given by (28) means a restriction in the selection of its elements.
Each of the elements of TX contains for example the largest possible outcome of X. The only
freedom refers to the smallest element of the event to be predicted.

Optimum β-Prediction Procedure

Just as before the optimal β-predictions of shape given by (28) have minimum size or, equiv-

alently, maximum lower bound `
(β)
X|{d}. The determination of the maximum lower bound is

straightforward:

1. Order the elements of the range of variability X ({d}) in descending order of their values.

2. Fill the event to be predicted with elements starting from the largest and proceeding to
the smaller ones.

3. Stop as soon as the cumulative probability of all selected outcomes equals or exceeds for
the first time the required reliability level β.
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Obviously, the above algorithm yields for each d a prediction

A
(β)
X ({d}) =

{
x ∈ X ({d}) | `(β)

X|{d} ≤ x
}

(29)

which meets the reliability requirement and has a minimum upper bound.

Example

1. Prediction of the State Income

Each year an expert committee engaged by the Federal Republic of Germany produces a
prediction of the next years state income. The outcome of the prediction is the basis for
the expense strategy of the state and, therefore, it has an decisive influence on the state
development.

Generally the prediction has to be amended during the course of the year and in fact the
realized income of the next year differs sometimes considerably from the predicted one.
The error is not dramatic, if the income is higher than predicted, but if the actual income
is much less than the predicted one the consequences may be serious.

Obviously, what is needed is a prediction of a lower bound of the future income, which is
guaranteed by a required and met reliability level β fixed by the government. An early
prediction will yield a smaller lower bound than a late prediction, because of the larger
uncertainty, unless something extraordinary happens, which changes fundamentally the
future course of the economy.

Let Xi be the ith type of state income and Di the corresponding deterministic variable,
the value d of which specifies the probability distribution PX|{d}. Moreover, let BXi,Di

be
a Bernoulli Space for (Xi, Di). Then for given d the prediction for the state income is
obtained as follows:

A
(β)
Xi

({d}) =
{

x |x ≤ Q
(`)
Xi|{d}(β)

}
(30)

i. e., the lower bound for the state income of type i in case of the initial condition d is

obtained as the lower quantile Q
(`)
Xi|{d}(β). This lower bound will not be exceeded with

probability β.
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Unit 2.2.6: Minimum Prediction With Ignorance

Target

Learning Unit 2.2.6 shall illustrate the
way how minimum β-prediction proce-
dures are determined for the case of
ignorance with respect to the actual
value of the deterministic variable D.
Clearly, in most real cases there is ig-
norance.

Content

Introduction

In case of ignorance, the arguments of a β-prediction procedure A
(β)
X , i. e., the elements of

the system TD are not singletons anymore, but have more than one element. In this case the

derivation of appropriate β-predictions A
(β)
X (D0) for D0 ∈ TD(D) becomes more cumbersome

than in the case without ignorance.

If a optimal β-prediction procedure Ã
(β)
X without ignorance is available, a β-prediction procedure

with ignorance is obtained by setting:

A
(β)
X (D0) =

⋃

d∈D0

Ã
(β)
X ({d}) (31)

Clearly, the predictions obtained by (31) are β-predictions, because for d ∈ D0 the following
relations hold:

PX|{d}
(
A

(β)
X (D0)

)
≥ PX|{d}

(
Ã

(β)
X ({d})

)
≥ β (32)

i. e., the resulting prediction procedure (31) meets the reliability requirement given by the
reliability level β.

However, in general a prediction given by (31) is not optimal. If the predictions Ã
(β)
X ({d}) are

not identical for each d ∈ D0, then

PX|{d}
(
A

(β)
X (D0)

)
> β for d ∈ D0 (33)

The reliability is larger than required implying that the size of the predicted event can be
reduced without violating the reliability requirement.

Minimum β-Prediction Procedure

If the random variable X is one-dimensional and the predicted event A
(β)
X (D0) is an interval, then

a minimum β-prediction is obtained by alternately increasing the lower bound and decreasing
the upper bound of the interval until any further reduction would lead to a violation of the
reliability requirement given by β.

In the general case the determination of a minimum β-prediction procedure constitutes a
technical-mathematical search problem, which will not be discussed here. The result will be a

prediction A
(β)
X (D0) with two properties:
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• Any further reduction of the size of A
(β)
X (D0) leads to a violation of the reliability require-

ment.

• Replacing any element of A
(β)
X (D0) by a different element leads does not lead to an increase

of the reliability of the prediction.

The second condition considers the fact that β-predictions with minimum size are not neces-
sarily unique. In such a case a minimum prediction with highest reliability should be selected
as the optimal one.

Example

1. Prediction of Number of Conforming Products

Consider the production run of n = 100 of a complex product. Of interest is the number
of products produced which are conforming with the specifications. Hence, the random
variable if interest is the following:

X = number of conforming items among the 100 produced ones (34)

The items are produced independent of each other and under the same production con-
ditions. Therefore, the process can be represented by a Bernoulli chain of length n = 100
and the deterministic variable D in this case is the probability of producing a conforming
item:

D = probability of producing a conforming item (35)

Then the corresponding Bernoulli Space BX,D be given by the following components:

D = {p | 0.8 ≤ p ≤ 0.9}
X ({p}) = {0, 1, 2, . . . , 100}
P({p}) = PX|{p} with X|{p} ∼ Bi(100, p)

(36)

The prediction shall have a reliability of at least β = 0.8 and shall be most precise, i. e.,
the following mathematical problem has to be solved:

Determine a set A
(0.80)
X (D) satisfying the following two conditions:

PX|{d}
(
A

(0.80)
X (D)

)
≥ 0.8 for d ∈ D∣∣∣A(0.80)

X (D)
∣∣∣ !
= Minimum

(37)

This problem can easily be solved by means of Stochastikon Calculator. After the input
values have been entered, the calculator produces a report, which describes the situation
by the corresponding Bernoulli Space and gives the wanted prediction:

A
(0.80)
X (D) = {77, 78, . . . , 93} (38)

i. e., the production run will yield at least 77 conforming items and not more than 93
conforming items. The report also includes a graphical representation of the predicted
event, which is given in Figure 1.
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Figure 1: Graphical representation of A
(0.80)
X (D)

Figure 1 shows the uncertainty space, the ignorance space on the abscissa and the range
of variability of the random variable X|{d} on the ordinate. Note that in case of the
binomial distribution with fixed value of n, the range of variability of X|{d} does not
depend on d. The prediction itself is highlighted in red.
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Unit 2.2.7: Minimum Upper Bound Prediction With Ignorance

Target

The Learning Unit 2.2.7 aims at show-
ing that even in the case of ignorance,
a reliable prediction of a maximum of
X does not constitute a big problem.
This case is of special importance in all
safety-relevant situations, which can-
not be dealt with appropriately with
conventional methods used in engineer-
ing science.

Content

Introduction

While the determination of minimum β-predictions in case of ignorance causes some technical
troubles, there are no difficulties to determine optimal β-predictions for upper bounds. There
are two reasons:

1. A prediction of an upper bound is meaningful only in the case of one-dimensional random
variable X.

2. Generally, it is possible to identify exactly one value in D0 ∈ TD(D), which is most
unfavorable for the upper bound, i.e., if the reliability level is met for this value then it is
met for all other values of D0.

If the second condition holds then the determination of the minimum upper bound prediction
with ignorance reduces to the case “without ignorance”.

Determination of a β-Prediction in Case of Ignorance

The level of ignorance is given by the set D0 ∈ TD(D). The β-prediction for the upper bound

u
(β)
X (D0) is obtained in two steps:

• Identify the element d̄ ∈ D0, which is most unfavorable for an upper bound in the sense
that d̄ requires the largest upper bound:

u
(β)
X ({d̄}) ≥ u

(β)
X ({d}) for d ∈ D0 (39)

• Next proceed as in the case without ignorance for determining u
(β)
X ({d̄})

The minimum upper bound β-prediction is given by

A
(β)
X (D0) =

{
x ∈ X (D0) |x ≤ u

(β)
X ({d̄})

}
(40)

At the time being, there are only software programs to determine the minimum upper bound
β-predictions in the vase of the binomial distribution. IT is, of course, planned to develop
programs that cover all types of probability distributions.
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PREDICTION PROCEDURES UPPER BOUND PREDICTION WITH IGNORANCE

Example

1. Number of Successes

A gambler knows that the success probability in a certain game of chance is between
p = 0.20 and p = 0.25. He plans to play n = 100 times and would like to know how many
times at most he will win.

The situation is quantified by the following variables and corresponding Bernoulli Space:

Pair of variables:
X = number of wins
D = success probability

(41)

Bernoulli Space:
D = {p | 0.20 ≤ p ≤ 0.25}
X ({p}) = {0, 1, 2, . . . , 100}
P({p}) = PX|{p} with XP |{p} ∼ Bi(100, p)

(42)

The problem is to determine a minimum upper bound for the number of future wins,
which will be exceeded with a probability not of less than 1 − β, where β denotes the
reliability level. This problem can be solved by means of Stochastikon Calculator, which
yields the following prediction for β = 0.90:

A
(0.90)
X (D) = {0, 1, 2, . . . , 31} (43)

The graphical representation of the predicted event is given in Figure 1 below:

Figure 1: Graphical representation of the minimum upper

bound prediction A
(0.80)
X (D)

The graphical representation can be obtained by Stochastikon Calculator or by entering
the Graphical Laboratory of Stochastikon Magister.
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Unit 2.2.8: Maximum Lower Bound Prediction With Ignorance

Target

The Learning Unit 2.2.8 aims at show-
ing how in the case of ignorance given
by D0 ⊂ D, a reliable prediction of
a minimum of X is obtained that will
be undercut only with prescribed small
probability.

Content

Introduction

The determination of β-predictions for a lower bound of a random variable X is carried out
analogously to determining an upper bound. The problem is simple because

1. A prediction of a lower bound is meaningful only in the case of a one-dimensional random
variable X.

2. Generally, it is possible to identify one value within D0 ∈ TD(D) that is most unfavorable
for the lower bound, i.e., yields the smallest upper bound of all values in D0.

Determination of a β-Prediction in case of Ignorance

The level of ignorance is given by the set D0 ∈ TD(D). The β-prediction for the lower bound

`
(β)
X (D0) is obtained in two steps:

• Identify the element d̄ ∈ D0, which is most unfavorable for a lower bound in the sense
that d̄ requires the smallest lower bound for meeting the reliability requirement:

`
(β)
X ({d̄}) ≤ `

(β)
X ({d}) for d ∈ D0 (44)

• Next proceed like in the case without ignorance for determining `
(β)
X ({d̄})

The required β-prediction is given by

A
(β)
X (D0) =

{
x ∈ X (D0) | `(β)

X ({d̄}) ≤ x)
}

(45)

Example

1. Number of Successes

Consider the same situation as given in Example 1 of the previous learning unit. The
gambler plans to play n = 100 games and knows that his success probability is between
p = 0.20 and p = 0.25.

He is interested in a lower bound of the number of wins. Of course, the lower bound
should be as large as possible without violating the required reliability level of β = 0.80.

48

http://132.187.98.10:8080/encyclopedia/index.jsp?subsystem=encyclopedia&lang=en&start=topic-0000126-00.html
http://132.187.98.10:8080/encyclopedia/index.jsp?subsystem=encyclopedia&lang=en&start=topic-0000043-00.html
http://132.187.98.10:8080/encyclopedia/index.jsp?subsystem=encyclopedia&lang=en&start=topic-0000316-00.html
http://132.187.98.10:8080/encyclopedia/index.jsp?subsystem=encyclopedia&lang=en&start=topic-0000124-00.html


PREDICTION PROCEDURES LOWER BOUND PREDICTION WITH IGNORANCE

The variables as well as the Bernoulli Space are the same as in Example 1 of Learning
Unit 2.2.7:

Pair of variables:
X = number of wins
D = success probability

(46)

Bernoulli Space:
D = {p | 0.20 ≤ p ≤ 0.25}
X ({p}) = {0, 1, 2, . . . , 100}
P({p}) = PX|{p} with X|{p} ∼ Bi(100, p)

(47)

In contrast to the previous learning unit, in this case a lower bound shall be predicted
with reliability level β = 0.80. Again this problem is solved by means of Stochastikon
Calculator, which for the case of the binomial distribution contains all types of prediction
procedures.

After entering the values of the input parameters the following prediction with lower
bound x = 17 is obtained:

A
(0.80)
X (D) = {17, 18, . . . , 100} (48)

The following graphical representation is obtained by means of the Graphical Laboratory:

Figure 1: Graphical representation of the maximum

lower bound prediction A
(0.80)
X (D)
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MEASUREMENT PROCEDURES APPLICATION

Module 2.3: Measurement Procedures

Content and Aim of the Module Measurement Procedures

When Jakob Bernoulli introduced the concept of proba-
bility, he noted in his masterpiece Ars conjectandi that
“To predict something is to measure its probability.”
Bernoulli wanted to say that a prediction is meaning-
less, if the probability that it actually will occur, is un-
known. The probability is fixed by the initial condi-
tions and determining a probability means to measure
it. Measurement procedures are therefore the comple-
ment of prediction procedures.

The aim of this module is to develop and introduce a stochastic metrology, i. e., a stochastic
science of measurement. This stochastic metrology could replace the conventional metrology
which emerged as a branch of physics and therefore is not able to consider appropriately the
inherent uncertainty in measurements. The quality of a measurement procedure depends es-
sentially on the way that measurement uncertainty is taken into account. This module aims at
developing general rules how to consider and model and finally how to compensate measurement
uncertainty.

This module makes it possible to develop better measurement procedures, i.e., measurement
procedures that meet a prescribed reliability requirement and are optimal with respect to
measurement precision.

This module wants also to lay the founda-
tion for a scientific handling of measurement
uncertainty which could replace the already
mentioned ISO Guide to the Expression of
Uncertainty in Measurement. This guide was
issued in 1993 and since then the the disputes
about its appropriateness have not stopped.
Since measurements are one of the most im-
portant issues for human civilizations, mea-
surement uncertainty should be taken into
account adequately. The fact that the GUM
contains many different expressions for mea-
surement uncertainty should be sufficient to
abandon it. Moreover, even fundamental
concepts used in the guide are not explained
in a way that a user could understand them.
For example, the concept “probability” is de-
fined with the following words:
probability: a real number in the scale 0 to 1
attached to a random event.

 

 

 

 

 

JCGM 100:2008 
GUM 1995 with minor corrections 

Evaluation of measurement 
data — Guide to the expression 
of uncertainty in measurement 
 
Évaluation des données de mesure — 

Guide pour l’expression de l’incertitude de 

mesure 

 

 

 

 

 

 

 

 

 

 

First edition  September 2008 

© JCGM 2008 

 

Figure 1: Cover of the GUM as
reprinted by the JCGM7.

7JCGM = Joint Committee for Guides in Metrology.
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MEASUREMENT PROCEDURES β-MEASUREMENT PROCEDURES

Unit 2.3.1: β-Measurement Procedures

Target

Learning Unit 2.3.1 aims at introducing the nec-
essary requirements for developing reliable and
precise measurement procedures. Any learn-
ing process aims at revealing unknown facts,
which is possible only by by means of a measure-
ment procedure. However, any measurement
procedure is necessarily based on an appropri-
ate prediction procedure showing that without
Bernoulli Stochastics it is not possible to de-
velop a rational metrology.

Content

Introduction

The ignorance space D represents the existing ignorance about the initial conditions given by
d0. If the ignorance space is too large, any β-prediction procedure will yield more or less useless
predictions. In order to obtain more precise predictions, the existing ignorance about the actual
value d0 must be reduced based on a measurement process and a suitably selected observable
random variable X|{d0}.
A procedure for determining the actual value d0 of D by reducing the ignorance space D is
called measurement procedure. It is based on X|{d0} in the sense that those values of D are
excluded which are not consistent with the observed outcome x of X|{d0}, while those values
which are consistent with the outcome constitute the measurement result and form the new
reduced ignorance space.

Thus, a measurement procedure is a function denoted CD with

CD : TX(X (D)) → TD(D) (49)

A measurement procedure assigns to each observation given by an element of TX (X (D)) a
measurement result given by an element of TD(D).

The system of subsets TX consists of the observations made with respect to the random variable
X. If the realizations of X are observable, the observations are the singletons of X (D). Because
this case is generally encountered in praxis, it shall be considered here, i.e.:

TX (X (D)) = {{x} | x ∈ X (D)}

Reliability of Measurement Procedures

A measurement procedure should yield measurement results CD({x}) which contain the un-
known actual value d0. The more frequently a measurement result obtained by a measurement
procedure contains d0, the more reliable is the measurement procedure.

Let d0 ∈ D be the true, but unknown value of D. Then the reliability of a measurement
procedure CD is defined by the probability of obtaining a correct measurement result, i. e., a
result CD({x}), which contains d0. This probability is given by:

PX|{d0} ({x | d0 ∈ CD({x})}) (50)
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β-Measurement Procedures

In an analogous manner as in the case of a prediction procedure, a reliability specification for
measurement procedures is introduced by the reliability level β. The reliability level β specifies a
lower bound for the procedure’s reliability. A measurement procedure meeting the specification
given by β, i.e.:

PX|{d} ({x | d ∈ CD({x})}) ≥ β for d ∈ D (51)

is called β-measurement procedure denoted C
(β)
D .

A β-measurement procedures yields correct results C
(β)
D ({x}) with a probability not less than

β, where a correct measurement result is defined as one that contains the actual value of the
deterministic variable.

β-Measurement Procedures and β-Prediction Procedure

Any measurement procedure can be looked upon as a method for excluding elements of D which
are not consistent with the observation {x}. Not consistent means that those values d of D
can be excluded which would not lead to a prediction of the observed outcome {x}. Therefore,
for each d ∈ D a prediction of the future outcome is needed for deciding which d ∈ D may be
excluded.

For predicting the future development a prediction procedure is necessary. Requiring a relia-

bility level of β for the measurement procedure means that a β-prediction procedure A
(β)
X must

be used.

Assuming that the outcome {x} ∈ TX(X (D)) of X has been observed, then the measurement

C
(β)
D ({x}) consists of all those d ∈ D for which the observed outcome {x} had been predicted:

C
(β)
D ({x}) =

{
d ∈ D

∣∣∣ x ∈ A
(β)
X ({d})

}
(52)

Next, it is shown that applying a measurement procedure as defined by (52) will, in fact, yield
a correct result with probability of at least β. Let d0 ∈ D be the actual but unknown value

of D and A
(β)
X ({d0}) the corresponding β-prediction. Then, d0 is an element of C

(β)
D ({x}) if

and only if x ∈ A
(β)
X ({d0}) implying that the occurrence of A

(β)
X ({d0}) is equivalent with the

occurrence of a correct measurement for d0. It follows:

PX|{d0}
({

x | d0 ∈ C
(β)
D ({x})

})
= PX|{d0}

({
x |x ∈ A

(β)
X ({d0})

})

= PX|{d0}
(
A

(β)
X ({d0})

)

≥ β

where the latter inequality holds by definition of A
(β)
X .

From (52) is is seen that any measurement procedure is based on a prediction procedure.
Using a β-prediction procedure for defining the measurement procedure yields a β-measurement
procedure.

Completeness of a β-Measurement Procedure

Clearly, it is desirable that any possible observation {x} yields a non-empty measurement result

C
(β)
D ({x}). A measurement procedure which meets this requirement is called a complete mea-

surement procedure. In order to guarantee the completeness property each possible observation

{x} ∈ TX(X (D)) must be contained in at least one of the predictions A
(β)
X ({d}) obtained by
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MEASUREMENT PROCEDURES β-MEASUREMENT PROCEDURES

the prediction procedure used for defining C
(β)
D . Therefore, the defining prediction procedure

A
(β)
X must meet the following completeness requirement:

⋃

d∈D
A

(β)
X ({d}) = X (D) (53)

β-Uncertainty Space for D

Consider the following subset of the uncertainty-space UX,D:

U (β)
D =

{
(x, d(x)) |x ∈ X (D), d(x) ∈ C

(β)
D ({x})

}
(54)

U (β)
D shows the region of consistent pairs (x, d(x)) within the uncertainty-space. The set of

values d(x) belonging to the observation {x} cannot be excluded and, therefore, represent

the ignorance after the learning or measurement process has been performed. The set U (β)
D is

referred to as the β-uncertainty-space of D.

Graphical Illustration of a β-Measurement Procedure

In Figure 1 below, a β-measurement procedure

C
(β)
D : TX (X (D) → TD(D))

is schematically given:

Figure 1: β-Uncertainty Space U (β)
D and β-measurement procedure C

(β)
D .

Note that the β-Uncertainty Space U (β)
D could be called the calibration region for the mea-

surement procedure C
(β)
D , where A

(β)
X ({d}) constitutes the predicted response for each d ∈ D.

If there is no reliability requirement, i. e., β = 0, then the calibration region shrinks to a
calibration curve as assumed in conventional metrology. This last fact illustrates the serious
shortcomings in conventional metrology and the necessity to replace it by a more rational
stochastic metrology.
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Example

1. Success Probability

A frequently arising problem is to de-
termine the success probability for a
given experiment or process. Assume
that one wishes to know the success
probability of a certain medical treat-
ment for more or less comparable cases.
The measurement process consists of a
clinical study with n = 80 patients,
who undergo the identical treatment.
In order to quantify the situation a pair
of variables has to be defined and sub-
sequently a Bernoulli Space has to be
developed.

 

Figure 2: Clinical study with n = 80
patients.

Pair of variables:

X = number of treatment successes among the n = 80 patients
D = success probability

(55)

Bernoulli Space:
D = {p | 0 ≤ p ≤ 1.0}
X ({p}) = {0, 1, 2, . . . , 80}
P({p}) = PX|{p} with X|{p} ∼ Bi(80, p)

(56)

The ignorance space is selected assuming that there is no knowledge at all about the
efficiency of the treatment. This will rarely be the case, as in general, preliminary studies
have already indicated its effectiveness.

The stochastic measurement procedure C
(β)
D is a mapping of the observed result onto a

subset of the ignorance space. Of course, any measurement procedure should be derived
before the measurement experiment is performed. There are two important conditions to
be considered when deriving a measurement procedure. The first refers to meeting the
reliability level and the second to assure that each possible observation yields a meaningful
measurement result.

The reliability level is met by C
(β)
D , if the following holds:

C
(β)
D ({x}) =

{
p |x ∈ A

(β)
X ({p})

)
(57)

The second requirement is met, if the predictions used for the measurement procedure
meet the following condition:

⋃
p∈D

A
(β)
X ({p}) = {0, 1, 2, . . . , 80} (58)
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MEASUREMENT PROCEDURES OPTIMUM β-MEASUREMENT PROCEDURES

Unit 2.3.2: Optimum β-Measurement Procedures

Target

Any measurement procedure is characterized
by three properties: reliability, precision and
expense. The specified reliability level β pro-
vides the necessary reliability, while the pre-
cision or more precisely said the imprecision
serves as an optimality criterion for given ex-
pense of the procedure. This learning unit
derives a mathematical expression for the
mean imprecision of a β-measurement pro-

cedure C
(β)
D .

Content

Introduction

Any β-measurement procedure

C
(β)
D :

{
{x}

∣∣∣x ∈ X (D)
}
→ TD(D) (59)

is completely determined by the set of measurement results:

{
C

(β)
D ({x})

∣∣∣ x ∈ X (D)
}

(60)

where the measurement results are obtained by means of the predictions A
(β)
X ({d}) provided by

a β-prediction procedure A
(β)
X .

Measurement precision is besides the reliability of a measurement procedure the most impor-
tant feature. Because of reasons which will become obvious below, not the precision, but the
imprecision of a measurement is used for optimization. The imprecision of a measurement

result C
(β)
D ({x}) is simply defined by its size:

∣∣∣C(β)
D ({x})

∣∣∣ =

{
number of elements of C

(β)
D ({x})

Lebesgue measure of C
(β)
D ({x}) (61)

The larger the size of C
(β)
D ({x}), the less precise is the measurement result. The most precise

measurement result is given by a singleton.

Imprecision of a β-Measurement Procedure

Defining the imprecision of a measurement procedure constitutes a problem, because the mea-
surement result that will be obtained is subjected to randomness as it depends on the future
outcome {x} of the random variable X|{d0} and in general the size of the different measurement
results depends on the observed event {x}.
Let the random size of a measurement result be given by the random variable S:

S =
∣∣∣C(β)

D ({X})
∣∣∣ (62)
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and let d0 be the actual but unknown value of D. Then we have

S|{d0} =
∣∣∣C(β)

D ({X|{d0}})
∣∣∣ (63)

and the mean imprecision of the β-measurement procedure is given by the corresponding value
of the first moment of S|{d0}:

E [S|{d0}] =
∑

x∈X ({d0})

∣∣∣C(β)
D ({x})

∣∣∣PX|{d0}({x}) (64)

Since the actual value is not known and each of the elements of the ignorance space must be

considered equally when applying the β-measurement procedure C
(β)
D , the mean imprecision of

a measurement procedure is obtained straightforwardly:

1

|D|
∑

d∈D
E [S|{d}] =

1

|D|
∑

d∈D

∑

x∈X ({d})

∣∣∣C(β)
D ({x})

∣∣∣ PX|{d}({x}) (65)

Optimum β-Measurement Procedure

An optimum β-measurement procedure ∗C(β)
D is defined by a β-measurement procedure with

minimum mean imprecision, which is equivalent with maximum mean measurement precision.

Let C(β)
D be the set of all β-measurement procedures for the actual value of the deterministic

variable D. Then the optimum β-measurement procedure ∗C(β)
D meets the following relation:

∑
d∈D

∑
x∈X ({d})

∣∣∣∗C(β)
D ({x})

∣∣∣ PX|{d}({x}) ≤
∑
d∈D

∑
x∈X ({d})

∣∣∣C(β)
D ({x})

∣∣∣PX|{d}({x})

for C
(β)
D ∈ C(β)

D

An optimum β-measurement procedure ∗C(β)
D guarantees a reliability of β and simultaneously

a minimum mean imprecision or equivalently a maximum mean precision of the measurement
procedure.

Example

1. Kidney Cancer

Kidney cancer appears as Type 1 and
Type 2 where the latter is accompanied
by an abnormal rise of the interleukin-6
level (IL-6 is a certain protein). From
preliminary past studies it is known
that the probability of Type 2 cancer
is not smaller than 0.25 and not larger
than 0.90.

 

Figure 1: A human kidney with
cancer.

A study8 is performed to improve the knowledge about the probability of Type 2 cancer. A
group of 23 kidney cancer patients are randomly selected and checked for their interleukin-
6 level. The probability of Type 2 cancer shall be determined by means of a stochastic
measurement procedure with required reliability level β = 90%.

The Bernoulli Space in this example refers to the variables:
8The study was performed by the Urological University Clinic of Tübingen.
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MEASUREMENT PROCEDURES OPTIMUM β-MEASUREMENT PROCEDURES

• Random variable X: number of Type 2 cancer.

• Deterministic variable D: probability of Type 2 cancer.

The preliminary Bernoulli Space BX,D = (D,X ,P) that shall be improved by the study
is given as follows:

• Ignorance space: D = {p | 0.25 ≤ p ≤ 0.90}

• Variability function: X ({p}) = {0, 1, 2, ..., 23} for p ∈ D

• Random structure function: P({p}) =
{
PX|{d}

}
where PX|{p} is the Binomial distri-

bution Bi(23; p) with:

PX|{p}({x}) =

(
n

x

)
px(1− p)n−x for x ∈ X ({p})

The study resulted in x = 10 cases of Type 2 kidney cancer in the group of n = 23 cancer
patients. Applying an optimum 0.90-measurement procedure yields the following result
for the probability of Type 2 cancer:

C
(0.90)
D ({10}) = {p | 0.34 ≤ p ≤ 0.61}

which constitutes a rather large improvement of the so far available knowledge.

The complete stochastic 0.90-measurement procedure applied in the cancer study is dis-
played in Figure 1 below:

 2

 4
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 12

 14
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 18
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 22

 24

 0.4  0.6  0.8  1

x

d

Figure 2: Graphical representation of the optimum
β-measurement procedure for the example with kidney cancer.

Note that the measurement procedure is available independently whether or not the mea-
surement experiment is performed. Performing a measurement process and only subse-
quently develop a measurement procedure, which yields the expected or desired result, is
at least a doubtful proceeding.
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Unit 2.3.3: Minimum Measurement Without Ignorance

Target

The value of the mean imprecision of a
measurement procedure depends heav-
ily on the subset TD(D) containing
the measurement results. This learn-
ing unit introduces the minimum β-
measurement procedure, which have
the smallest mean imprecision among
all optimum β-measurement procedure.

Of course, the mean imprecision also depends on the amount of ignorance about those
components of the deterministic variable, which are not subject of the measurement. In this
learning unit it is assumed that there is ignorance only with respect to the component of the
deterministic variable which shall be determined, while there is complete knowledge with
respect to all other components of D.

Content

Introduction

From the previous learning unit it is known that any β-measurement procedure is determined by
a β-prediction procedure which is the solution of an optimization problem under side conditions.

The side-conditions refer to the required procedure’s reliability and the necessary completeness
of the procedure, i. e. the procedure shall yield a non-empty measurement for any possible
observation. The objective function is given by the procedure’s mean imprecision.

A prediction procedure is given by a function

AX : TD(D) → TX(X (D))

where the two subsets essentially determine the properties of the procedure.

Formulation of the Problem

In case that there is no ignorance about other components of the deterministic variable, the set
of arguments of the prediction procedure is given by the singletons {d}:

TD(D) =
{
{d}

∣∣∣ d ∈ D
}

Because a minimum β-measurement procedure shall be derived, the elements of the image set
TX(X (D)) of the prediction procedure must not be subjected to any restrictions. Thus, we
obtain:

TX(X (D)) = P(X (D))

where P denotes the power set, i. e., the system of all subsets of a given set.

The problem may be formulated as follows: Determine a prediction procedure ∗A(β)
X with fol-
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lowing properties:

PX|{d}
(
∗A(β)

X ({d})
)
≥ β for d ∈ D

⋃
d∈D

∗A(β)
X ({d}) = X (D)

∑
d∈D

∑
x∈X ({d})

∣∣∣
{

d |x ∈ ∗A(β)
X ({d})

}∣∣∣PX|{d}({x}) = min

(66)

with no restrictions whatsoever being made with respect to the form of the predictions ∗A(β)
X ({d})

and, hence, of the form of the measurement results ∗C(β)
D ({x}). Both are determined by the

optimization procedure.

In the one-dimensional case the predictions as well as the measurement results are in general
intervals (at least for simple, i.e., not compound measurement processes):

∗A(β)
X ({d}) =

{
x ∈ X (D) |x(d) ≤ x ≤ x(d)

}
(67)

∗C(β)
D ({x}) =

{
d ∈ D | d(x) ≤ d ≤ d(x)

}
(68)

Note that in this case a lower and an upper bound for the unknown value d0 of the deterministic
variable have to be determined for each observable event {x}.
The set of all measurements ∗C(β)

D ({x}) represents the entire measurement procedure.

Determination of Minimum β-Measurement Procedures

Minimum β-measurement procedures will be made available by Stochastikon Calculator, which
presently is under construction. However, it already covers the case of Bernoulli Spaces gener-
ated by binomial random variables X ∼ Bi(n, p). Therefore, the proceedings for determining
a measurement result will be demonstrated here by means of a binomial random variable.

Consider a production process, which produces under more or less identical conditions. In
order to determine the nonconformace probability, n = 1000 items shall be produced, where
the aspect of interest X is the number of nonconforming items among them. This number has
a binomial probability distribution Bi(1000, p) and, therefore, Stochastikon Calculator can be
used for determining the nonconformance probability. The reliability level is set to be β = 0.90
and it can be excluded by past experience that the nonconformance probability exceeds the
value 0.1. Thus, the ignorance space for the nonconformance probability is given by

Dp = {p | 0 ≤ p ≤ 0.1}

The nonconformance probability shall be determined as precisely as possible and, therefore, a
minimum β-measurement procedure is needed on the basis of the observed outcome x = 3. After
the values characterizing the situation have been entered, Stochastikon Calculator determines

the optimum β-measurement procedure and the measurement result C
(0.90)
Dp

({3}) and produces
a report which summarizes the Bernoulli Space and specifies the measurement result:

C
(0.90)
Dp

({3}) = {p | 0.0012 ≤ p ≤ 0.0085}

Moreover, the following graphical representation of the entire optimum 0.90-measurement pro-
cedure is displayed in the report.
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Figure 1: Graphical representation of the optimum
(0.90)-measurement procedure.

Example

1. Success Probability

Example 1 in Learning Unit 2.3.1 treated the success probability of a medical treatment.
The problem was to develop a measurement procedure for the success probability. The
situation was quantified in the following way:

Pair of variables:

X = number of treatment successes among the 80 patients
D = success probability

(69)

Bernoulli Space:
D = {p | 0 ≤ p ≤ 1.0}
X ({p}) = {0, 1, 2, . . . , 80}
P({p}) = PX|{p} with X|{p} ∼ Bi(80, p)

(70)

The measurement procedure shall have a reliability level of β = 0.85.

The clinical study is performed and for x = 66 patients a significant improvement was

observed. The measurement procedure C
(0.85)
D and the corresponding measurement result

are displayed in Figure 1. Note that for any possible observation there is a measure-
ment result. The reliability level β = 0.85 implies that applying the given measurement
procedure will yield with probability of at least 0.85 a correct measurement result, i. e.,
the actual, but unknown value of the success probability is covered by the measurement
result.

The measurement yields the following result for the success probability of the given treat-
ment:

C
(0.85)
D ({66}) = {p | 0.76 ≤ p ≤ 87} (71)
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A graphical representation of the entire measurement procedure including the obtained
measurement result is readily obtained by means of the Graphical Laboratory.

Figure 1: Graphical representation of the stochastic

measurement C
(0.85)
D ({66})
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Unit 2.3.4: Minimum Upper Bound Measurement Without Ignorance

Target

This case refers to the one-dimensional case,
i. e., there is only one component of the deter-
ministic variable with ignorance. Moreover,
one is not interested how small the unknown
value d0 is, but only how large it can be.

This learning unit answers the question of
how large the unknown value d0 of a deter-
ministic variable is by determining an upper
bound for d0.

Content

Introduction

In this learning unit it is assumed that there is complete knowledge about the components of
the deterministic variable except for one univariate component, say D, with unknown value d0

and ignorance space D.

The question shall be answered how large d0 is, while there is no interest in the question how
small d0 might be.

For answering the question an upper bound for the unknown value d0 must be determined
implying that the measurement results have the following form:

C
(β)
D ({x}) = {d ∈ D | d ≤ d(x)}

Note the difference between the minimum β-measurement procedure and the minimum upper
bound β-measurement procedure. In the former case an lower and upper bound for d0 must be
determined, while in the latter only an upper bound is needed.

Analogously to the case of a minimum β-measurement procedure, an appropriate prediction
procedure has to be derived.

AX : TD(D) → TX(X (D))

where the domain of A
(β)
X is again given by the set of singletons {d} ⊂ D. The co-domain of

A
(β)
X , however, is different, because only an upper bound d(x) must be determined. In this case

the needed predictions are of the following form:

A
(β)
X ({d}) = {x ∈ X (D) |x(d) ≤ x} (72)

i. e., the co-domain of the prediction procedure consists of intervals with lower bounds.

Assume that a prediction procedure A
(β)
X of the form given by (72) is available, then the corre-

sponding measurement results are given as follows:

C
(β)
D ({x}) = {d ∈ D |x ∈ A

(β)
X ({d})}

= {d ∈ D | d ≤ d(x)} (73)

where d(x) is the largest value d ∈ D for which the observed event {x} has been predicted. Note
that the problem of determining a stochastic procedure can always be reduced to determining
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a corresponding measurement procedure. This fact makes the development of a unified theory
of uncertainty possible.

Formulation of the Problem

A minimum upper bound β-measurement procedure is based on predictions which have a lower
bound, but no upper one. Thus the problem may be formulated as follows:

Determine a prediction procedure ∗A(β)
X of the form given by (72) with following properties:

reliability: PX|{d}
(∗

A
(β)
X ({d})

)
≥ β for d ∈ D0

completeness: mind∈D0{x(d)} = minX (D0)

precision:
∑

d∈D0

∑
x∈X ({d})

|{d ∈ D0 | x(d) ≤ x}|PX|{d}({x}) = min

(74)

Note that the problem of determining a minimum upper bound β-measurement procedure is
much simpler compared with that of determining a minimum β-measurement procedure as
described in the previous learning unit.

Example

1. Failure Probability

Consider a case that a new medical treatment might lead to failure. In order to judge the
risk an upper bound for the probability of a failure of the treatment shall be determined.
To this end n = 35 treatments shall be performed with the number of failures being the
quantity of interest. Moreover, it is decided to set the reliability level to be β = 0.80.

Quantification leads to the following Bernoulli Space:

Pair of variables:

X = number of treatment failures among the 35 patients
D = failure probability

(75)

Bernoulli Space:

D = {p | 0 ≤ p ≤ 0.50}
X ({p}) = {0, 1, 2, . . . , 20}
P({p}) = PX|{p} with X|{p} ∼ Bi(20, p)

(76)

In this case, it is known that values exceeding 0.50 for the failure probability p can be
excluded. The measurement experiment is performed and x = 3 failures are observed.

The measurement result is again obtained by means of the Stochastikon Calculator along

with a report and a graphical illustration of the entire measurement procedure C
(0.80)
D ,

which is given in Figure 1.
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Figure 1: Graphical representation of the stochastic

measurement procedure C
(0.80)
D .

From Figure 1, the following measurement result C
(0.80)
D ({3}) is obtained:

C
(0.80)
D ({3}) = {p | 0 ≤ p ≤ 0.15} (77)

This measurement result means that the risk of a treatment failure is not larger than 15%.
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Unit 2.3.5: Maximum Lower Bound Measurement Without Ignorance

Target

This learning unit refers to the same
situation as the previous one, i.e., there
is only one component of the deter-
ministic variable with ignorance, while
the values of any other component is
known. In contrast to the previous
learning unit, however, it is not of in-
terest how large the unknown value d0

might be, but how small it is.

Content

Introduction

The situation considered in this learning unit is similar as that in the previous one. There is
complete knowledge about the deterministic variable except for one univariate component, say
D with unknown value d0 and ignorance space D.

The question shall be answered how small d0 is, while there is no interest in the question how
large d0 might be.

For answering the question a lower bound for the unknown value d0 must be determined im-
plying that the measurement results have the following form:

C
(β)
D ({x}) = {d ∈ D | d(x) ≤ d}

Note the difference between the minimum β-measurement procedure and the maximum lower
bound β-measurement procedure. In the former case an lower and upper bound for d0 must be
determined, while in the latter only a lower bound is needed.

Analogously to the previous cases, an appropriate prediction procedure has to be derived.

AX : TD(D0) → TX(X (D))

where the domain of A
(β)
X is again given by the singletons {d} ⊂ D, because there is no

ignorance about possibly further components of the deterministic variable. The co-domain of

A
(β)
X , however, is different, because only a lower bound d(x) must be determined. In this case

the needed predictions are of the following form:

A
(β)
X ({d}) = {x ∈ X (D) |x ≤ x(d)} (78)

i. e., the co-domain of the prediction procedure consists of intervals with upper bounds.

Assume that a prediction procedure A
(β)
X with predictions of the form given by (78) is available,

then the corresponding measurement results are given as follows:

C
(β)
D ({x}) =

{
d ∈ D | x ∈ A

(β)
X ({d})

}

= {d ∈ D | d(x) ≤ d} (79)

where d(x) is the largest value of the deterministic variable for which the observed event {x}
had been predicted.
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LOWER BOUND MEASUREMENT WITHOUT IGNORANCE MEASUREMENT PROCEDURES

Formulation of the Problem

A maximum lower bound β-measurement procedure is based on predictions which have an
upper bound, but no lower one.

Thus the problem may be formulated as follows: Determine a prediction procedure ∗A(β)
X of the

form given by (78) with following properties:

reliability: PX|{d}
(∗

A
(β)
X ({d})

)
≥ β for d ∈ D0

completness: maxd∈D0{x(d)} = maxX (D0)

precision:
∑

d∈D0

∑
x∈X ({d})

∣∣∣C(β)
D0

({x})
∣∣∣PX|{d}({x}) = min

(80)

Note that the problem of determining a maximum lower bound β-measurement procedure is
similar as in the case of a minimum upper bound β-measurement procedure and much simpler
than that of determining a minimum β-measurement procedure.

Example

1. Success Probability

Example 1 in Learning Unit 2.3.1 deals with the success probability of a medical treatment.
The problem was to develop a measurement procedure for the success probability. The
situation was quantified in the following way:

Pair of variables:

X = number of treatment successes among the 80 patients
D = success probability

(81)

Bernoulli Space:

D = {p | 0 ≤ p ≤ 1.0}
X ({p}) = {0, 1, 2, . . . , 80}
P({p}) = PX|{p} with X|{p} ∼ Bi(80, p)

(82)

The measurement procedure shall have a reliability level of β = 0.85 and shall yield a
guaranteed success probability, which is obtained as a maximum lower bound for the true
success probability. A graphical representation of the corresponding measurement pro-
cedure is readily obtained by means of the Graphical Laboratory. The clinical study is
performed and for x = 66 patients a significant improvement was observed. The measure-

ment procedure C
(0.85)
D and the corresponding measurement result are displayed in Figure

1 below.
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Figure 1: Graphical representation of the stochastic

measurement C
(0.85)
D with the highlighted measurement

result C
(0.85)
D ({66}).

The measurement yields a maximum lower bound of p = 0.78 for the success probability
of the given treatment. Note that the probability statement of obtaining a correct result

hold only for the procedure, but not hold for the given measurement result C
(0.85)
D ({66}),

as the result is either correct or not.
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Unit 2.3.6: Minimum Measurement With Ignorance

Target

The mean imprecision of a measurement pro-
cedure depends also on the amount of igno-
rance about those components of the deter-
ministic variable, which shall not be mea-
sured. In this learning unit it is assumed
that there is ignorance not only with respect
to the component of the deterministic vari-
able which shall be determined, but also to
some of the other components of the deter-
ministic variable.

Content

Introduction

From the previous learning units it is known that any β-measurement procedure is determined
by a β-prediction procedure which is the solution of an optimization under side conditions. By
the way, this is true for any stochastic procedure. Every stochastic procedure can be reduced
to certain prediction procedures.

Just as in the case without ignorance, the side-conditions here refer to the required procedure’s
reliability and the necessary completeness of the procedure. The objective function is given by
the procedure’s mean imprecision.

A prediction procedure is given by a function

AX : TD(D) → TX(X (D))

where the two systems of subsets TD(D) and TX(X (D)), respectively, determine essential the
properties of the procedure.

Formulation of the Problem

In the case of ignorance about several components of the deterministic variable, the set of
arguments of the prediction procedure is not anymore given by singletons, but by larger sets.

Consider a deterministic variable with k components, i. e.

D = (D1, . . . , Dj0 , . . . , Dk) (83)

with Dj0 being the component of interest with actual value d
(j0)
` , which shall be determined by

a β-measurement procedure.

Let the ignorance space D have N elements:

D = {d1, . . . , dj0 , . . . , dN} with di = (di,1, . . . , di,j0 , . . . , di,k) (84)

for i = 1, . . . , N . Moreover, consider the situation that the there are n potential values with
respect to the component Dj0 of interest given by the set:

Dj0 = {d(j0)
1 , . . . , d

(j0)
` , . . . , d(j0)

n } (85)
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which includs the actual, but unknown value d
(j0)
` .

As shown in the previous learning units, the measurement procedure with respect to Dj0 is

developed based on a prediction procedure A
(β)
X . The domain of the prediction procedure A

(β)
X

is given by the following system of n subsets of D, where each of the n subsets relates to one
of the possible values of Dj0 :

TDj0
(D) =

{
{di ∈ D | di,j0 = d

(0)
h }

∣∣∣ 1 ≤ h ≤ n
}

=
{
Dj0,h

∣∣∣ 1 ≤ h ≤ n
}

with the set Dj0,h representing the hth possible value (h = 1, 2, . . . , n) of the component of
interest Dj0 . The set Dj0,h consists of all those elements of the overall ignorance space D which

have the value d
(j0)
h for the component of interest Dj0 .

Because a minimum β-measurement procedure shall be derived, the elements of the image set

TX(X (D)) of the prediction procedure A
(β)
X must not be subjected to any restrictions. Thus,

we select
TX(X (D)) = P(X (D))

where P denotes the power set, i. e., the system of all subsets of a given set.

The problem to be solved may be formulated as follows:

Determine a prediction procedure ∗A(β)
X on TDj0

(D) with following properties:

reliability: PX|{d}
(
∗A(β)

X (Dj0,h)
)
≥ β for d ∈ Dj0,h and h = 1, . . . , n

completeness:
⋃n

h=1
∗A(β)

X (Dj0,h) = X (D)

precision:
n∑

h=1

1
|Dj0,h|

∑
d∈Dj0,h

∑
x∈X ({d})

∣∣∣
{

d
(j0)
k |x ∈ ∗A(β)

X (Dj0,k)
}∣∣∣ PX|{d}({x}) = min

No restrictions are made with respect to the form of the predictions ∗A(β)
X (Dj0,h), which is

determined by the optimization procedure.

Minimum β-Measurement Procedure

Once the prediction procedure ∗A(β)
X is available, the minimum β-measurement procedure for

Dj0 is given by the measurement results:

∗C(β)
Dj0

({x}) =
{

dj0
k |x ∈∗ A

(β)
X (Dj0,k)

}
(86)

In the one-dimensional case for X and for Dj0 , respectively, the predictions as well as the
measurement results are in general intervals:

∗A(β)
X (Dj0,h) =

{
x ∈ X (D) |x(Dj0,h) ≤ x ≤ x(Dj0,h)

}
(87)

∗C(β)
Dj0

({x}) =
{

d
(j0)
k ∈ Dj0 | d(j0)(x) ≤ d

(j0)
k ≤ d

(j0)
(x)

}
(88)

In this case a lower and an upper bound for the unknown value d
(j0)
` have to be determined

using (86).
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Example

1. Success Probability

Consider the Example 1 of Learning Unit 2.3.3 which assumed that the number of patients
were exactly known to be n = 80. Consider now the case that the exact number of
treatments has been lost. It is only known, that the number of treatments is between
n = 80 and n = 86. In this case there is also ignorance about the number of Bernoulli trials
and, therefore, the deterministic variable has to cover not only the success probability,
but also the number of treatments.

Pair of variables:

X = number of successes among the treated patients
D = (D1, D2) with

D1 = number of treatments
D2 = success probability

(89)

Bernoulli Space:

D = {(n, p) | 80 ≤ n ≤ 86, 0 ≤ p ≤ 1.0}
X ({(n, p)}) = {0, 1, 2, . . . , n}
P({(n, p)}) = PX|{(n,p)} with X|{(n, p)} ∼ Bi(n, p)

(90)

Note that in this case, the range of variability X ({(n, p)}) depends on the argument
{(n, p)}. The range of variability of X|{(n, p)} increases with increasing value of n.

Just as in the case in Learning Unit 2.3.3, the measurement procedure C
(β)
D2

for the success
probability shall have a reliability level of β = 0.85. The clinical study is performed and
for x = 66 patients a significant improvement was observed.

The measurement procedure C
(0.85)
D2

and the corresponding measurement result are ob-
tained by means of Stochastikon Calculator. Because of the additional ignorance with
respect to the number of patients, it is to be expected that the measurement results have
a larger size.

The measurement result for the success probability of the treatment is obtained by
Stochastikon Calculator and given as follows:

C
(0.85)
D2

({66}) = {p | 0.71 ≤ p ≤ 0.87} (91)

Comparing the result above with that obtained with exact knowledge about the number
of trials shows how the measurement is enlarged due to the additional ignorance.

A graphical representation of the entire measurement procedure including the obtained
result is either obtained by Stochastikon Calculator or by using the Graphical Laboratory.
The graphical representation is given by Figure 1:
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Figure 1: Graphical representation of the stochastic

measurement C
(0.85)
D2

({66}) in the case of ignorance with
respect to the number of treatments.
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Unit 2.3.7: Minimum Upper Bound Measurement With Ignorance

Target

This learning unit investigates a similar
situation as that of Learning Unit 2.3.4
with the difference that now there is
ignorance also about those components
which are of no interest with respect to
the measurement procedure. Similar as
in Unit 2.3.4 one is not interested how
small the unknown value of interest is,
but only how large it is.

Content

Introduction

In this learning unit the situation is considered that not only the value of the component of
interest is unknown, but there is also ignorance about the values of some other components of
the deterministic variable.

The situation is identical to that of Learning Unit 2.3.6. It is assumed that the deterministic
variable has k components, i. e.

D = (D1, . . . , Dk) (92)

The ignorance space D has N elements:

D = {d1, . . . , dN} with di = (di,1, . . . , di,k), i = 1, . . . , N (93)

The component of interest is Dj0 with actual value d
(j0)
` , for which an upper bound shall be

determined by a β-measurement procedure C
(β)
Dj0

.

Let the ignorance space with respect to the component Dj0 of interest contain n elements, given
by

Dj0 = {d(j0)
1 , . . . , d(j0)

n } (94)

including the actual value d
(j0)
` . The question shall be answered how large d

(j0)
` is, while there

is no interest in the question how small d
(j0)
` is.

For answering the question an upper bound for the unknown value d
(j0)
` must be determined

implying that the measurement results have the following form:

C
(β)
Dj0

({x}) = {d(j0)
h ∈ Dj0 | d(j0)

h ≤ d
j0

(x)}

Note the difference between the minimum β-measurement procedure and the minimum upper

bound β-measurement procedure. In the former case an lower and upper bound for d
(j0)
` must

be determined, while in the latter only an upper bound is needed.

Analogously to the case of a minimum β-measurement procedure, an appropriate prediction
procedure has to be derived.

AX : TDj0
(D) → TX(X (D))
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where the domain of A
(β)
X is the same as in Unit 2.3.6 given by the sets Dj0,h, h = 1, . . . , n. The

co-domain of A
(β)
X , however, is different, because only an upper bound d(x) must be determined.

In this case the needed predictions are of the following form:

A
(β)
X (Dj0,h) = {x ∈ X (D0) |x(Dj0,h) ≤ x} (95)

i. e., the co-domain of the prediction procedure consists of intervals with only lower bounds.

Assume that a prediction procedure A
(β)
X of the form given by (95) is available, then the corre-

sponding measurement results are given as follows:

C
(β)
Dj0

({x}) = {d(j0)
k ∈ Dj0 |x ∈ A

(β)
X (Dj0,k)}

= {d(j0)
k ∈ Dj0 | d(j0)

k ≤ d
(j0)

(x)} (96)

where d
(j0)

(x) is the largest value in Dj0 foe which the observed event {x} had been predicted.

Formulation of the Problem

A minimum upper bound β-measurement procedure is based on predictions which have a lower
bound, but not an upper one.

Thus the problem may be formulated as follows: Determine a prediction procedure ∗A(β)
X of the

form given by (95) with following properties:

reliability: PX|{d}
(
A

(β)
X (Dj0,h)

)
≥ β for d ∈ Dj0,h and h = 1, . . . , n

completeness:
⋃n

h=1 A
(β)
X (Dj0,h) = X (D)

precision:
n∑

h=1

1
|Dj0,h|

∑
d∈Dj0,h

∑
x∈X ({d})

∣∣∣{d(j0)
k |x ∈ A

(β)
X (Dj0,k)}

∣∣∣PX|{d}({x}) = min

The properties guarantee that the procedure’s reliability is at least equal to the required relia-
bility level β, that the resulting measurement procedure is complete, and that it has minimum
mean imprecision.

Example

1. Failure Probability

Consider Example 1 of Learning Unit 2.3.4, where knowledge about the number of treat-
ments was assumed. Now we consider the case that there is ignorance about the number
of trials and, therefore, the deterministic variable has to be extended. We obtain:

Pair of variables:

X = number of failures among the treatments
D = (D1, D2) with

D1 = number of treatments
D2 = failure probability

(97)

Bernoulli Space:

D = {(n, p) | 18 ≤ n ≤ 22, 0 ≤ p ≤ 0.50}
X ({(n, p)}) = {0, 1, 2, . . . , n}
P({(n, p)}) = PX|{(n,p)} with X|{(n, p)} ∼ Bi(n, p)

(98)
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The measurement experiment is performed and x = 3 failures are observed. The cor-

responding measurement result C
(0.80)
D2

({3}) is obtained by means of the Stochastikon
Calculator:

C
(0.80)
D ({3}) = {p | 0 ≤ p ≤ 0.28} (99)

A graphical representation of the measurement procedure is given in Figure 1. It is
contained in the report of Stochastikon Calculator or can be obtained by means of the
Graphical Laboratory.

Figure 1: Graphical representation of the stochastic

measurement procedure C
(0.80)
D with the highlighted

measurement result C
(0.80)
D ({3})
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Unit 2.3.8: Maximum Lower Bound Measurement With Ignorance

Target

This learning unit refers just as the pre-
vious one to a one-dimensional variable
of interest and considers the same situ-
ation as that in Learning Unit 2.3.7 and
Learning Unit 2.3.6. Here the question
is answered, how small the unknown
value of a component of interest is by
determining a lower bound.

Content

Introduction

In this learning unit the same situation is considered as in the Learning Units 2.3.6 and 2.3.7.
The deterministic variable has k components, i. e.

D = (D1, . . . , Dk) (100)

with ignorance space D having N elements:

D = {d1, . . . , dN} with di = (di,1, . . . , di,k), i = 1, . . . , N (101)

Let Dj0 be the component of interest with actual value d
(j0)
` . It is required to determine a lower

bound for d
(j0)
` by means of a β-measurement procedure.

The ignorance space with respect to the component Dj0 of interest contains n elements and is
given by

Dj0 = {d(j0)
1 , . . . , d(j0)

n } (102)

with d
(j0)
` ∈ Dj0 .

For determining a lower bound for the unknown value d
(j0)
` a measurement procedure is needed

with measurement results of the following form:

C
(β)
Dj0

({x}) = {d(j0)
h ∈ Dj0 | dj0(x) ≤ d

(j0)
h }

Note the difference between the minimum β-measurement procedure and the maximum lower

bound β-measurement procedure. In the former case a lower and an upper bound for d
(j0)
` must

be determined, while in the latter only an lower bound is needed.

Analogously to the case of a minimum upper bound β-measurement procedure, an appropriate
prediction procedure has to be derived.

AX : TDj0
(D) → TX(X (D))

where the domain of A
(β)
X is again given by the sets Dj0,h, h = 1, . . . , n. The co-domain of A

(β)
X ,

however, is not the power set of X (D). Since only a lower bound for the unknown value d
(j0)
`

must be determined, the predictions are of the following form:

A
(β)
X (Dj0,h) = {x ∈ X (Dj0,h) | x ≤ x(Dj0,h)} (103)
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i. e., the co-domain of the prediction procedure consists of intervals which are bounded above.

Assume that a prediction procedure A
(β)
X of the form given by (103) is available, then the

corresponding measurement results are given as follows:

C
(β)
Dj0

({x}) = {d(j0)
h ∈ Dj0 |x ∈ A

(β)
X (Dj0,h)}

= {d(j0)
h ∈ Dj0 | d(j0)

h ≥ d(j0)(x)} (104)

where d(j0)(x) is the smallest value in Dj0 for which the observed event {x} had been predicted.

Formulation of the Problem

A maximum lower bound β-measurement procedure is based on a prediction procedure A
(β)
X

with predictions that are bounded above. The problem to be solves may be formulated as
follows:
Determine a prediction procedure ∗A(β)

X of the form given by (103) with the following properties:

reliability: PX|{d}
(
A

(β)
X (Dj0,h)

)
≥ β for d ∈ Dj0,h and h = 1, . . . , n

completeness:
⋃n

h=1 A
(β)
X (Dj0,h) = X (D)

precision:
n∑

h=1

1
|Dj0,h|

∑
d∈Dj0,h

∑
x∈X ({d})

∣∣∣
{

d
(j0)
k | x ∈ A

(β)
X (Dj0,k)

} ∣∣∣PX|{d}({x}) = min

The properties guarantee that the procedure’s reliability is at least equal to the required relia-
bility level β, that the resulting measurement procedure is complete, and that it has minimum
mean imprecision.

Example

1. Success Probability

Again Example 1 of Learning Unit 2.3.1, which was also considered Learning Unit 2.3.5
shall be investigated, however, now there is ignorance also about the number of trials.
The situation is quantified in the following way:

Pair of variables:

X = number of successes among the treated patients
D = (D1, D2) with

D1 = number of treatments
D2 = success probability

(105)

Bernoulli Space:

D = {(n, p) | 70 ≤ n ≤ 80, 0 ≤ p ≤ 1.0}
X ({(n, p)}) = {0, 1, 2, . . . , n}
P({(n, p)}) = PX|{p} with X|{(n, p)} ∼ Bi(n, p)

(106)

A measurement procedure with reliability level β = 0.85 is required. The clinical study is
performed and for x = 66 patients a significant improvement was observed.
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MEASUREMENT PROCEDURES LOWER BOUND WITH IGNORANCE

The measurement procedure C
(0.85)
D ({66}) can be obtained by means of Stochastikon Cal-

culator:

C
(β)
D2

({66}) = {p | 0.78 ≤ p}
In Figure 1 a illustration of the entire measurement procedure is given. Such an illustration
can be obtained by the Graphical Laboratory.

Figure 1: Graphical representation of the stochastic

measurement C
(0.85)
D with highlighted measurement result

C
(0.85)
D ({66}).

The measurement yields a maximum lower bound of p = 0.78 for the success probability
of the given treatment, which is the same as in Example 1 of Learning Unit 2.3.5. The
reason that the additional ignorance does not change the measurement result is the fact
that the upper bound n = 80, which was assumed in Learning Unit 2.3.5, represents the
worst case with respect to the measurement result.
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Unit 2.3.9: Measurement of the First Moment

Target

The central problem in stochastic mod-
eling is the determination of the vari-
ability function and the random struc-
ture function for a given pair of vari-
ables (X, D). In many cases this can
be achieved in good approximation by
identifying a probability distribution
which agrees with the true distribution
in the range of variability, the value of
the first moment and the value of the
variance.

In this learning unit a stochastic procedure for measuring the value of the first moment of
a random variable X is introduced. Actually, this procedure is well-known in statistics, but
it will be derived here, as a stochastic β-measurement procedure for E[X] in the framework
given by the Bernoulli Space.

Content

Introduction

The first moment E[X] of a random variable X is, besides its range of variability, the most im-
portant deterministic quantity, and the development of an appropriate stochastic measurement
procedure for E[X] has therefore a high priority. This is particularly true, because procedures
for determining the range of variability are based on the known values of the first moments
(see Learning Units 2.3.11 and 2.3.12). Therefore, a measurement procedure for E[X] must be
developed, which does not assume that the corresponding range of variability is known.

In fact, since the beginnings of statistics, the problem of determining the actual value µ of E[X]
built the center of the joint efforts. When in 1908 William S.Gosset succeeded to derive the
so-called t-distribution, the problem was solved in an approximate, but rather general way.

Measurement Experiment

Let a pair of variables (X, D) be given, and assume that the first moment of X is one of
the components of D. The problem is to determine the unknown value µ of the first moment
E[X|{d}] of the random variable X|{d}, where d is the actual value of the deterministic variable
D in the given situation.

The measurement process consists of a number of independent copies of X|{d}, which are called
random sample of size n of X|{d}:

(X1|{d}, X2|{d}, . . . , Xn|{d})

The following approximation is based on the normal distribution, i. e., on the Central Limit
Theorem, which refers to a suitably normalized sum of random variables. If the probability
distribution PX|{d} is of constant or uni-modal type, then already a small number of copies is
sufficient for using the normal distribution as an approximation, since the probability distri-
bution of the normalized sum of Xi|{d}, i = 1, . . . , n, converges very rapidly to the normal
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distribution. If the probability distribution is of any other type, the number of copies must
generally be much larger, because the convergence is slower.

The Normal Distribution

The normal or Gauss distribution is the most frequently assumed probability distribution in
statistics, since a majority of statistical methods are based on the normal distribution. The
normal distribution is a continuous approximation P̂X|{d} of a probability distribution PX|{d}
of a random variable X|{d}. Originally, it has been derived as a limit for the probabilities
of a binomial distribution by Abraham Moivre. The continuous distribution function is given
below:

F̂X|{d}(x) =

x∫

−∞

1√
2πσ2

e−
(y−µ)2

2σ2 dy for x ∈ R (107)

The integral is analytical not solvable, however, there are tables and software programs pro-
viding the solutions. The value µ stands for the first moment and the value σ2 for the variance
of P̂X|{d}. Note that the true range of variability is not approximated but just replaced by the
set of real numbers.

The Observational Variable

For the measurement process (X1|{d}, X2|{d}, . . . , Xn|{d}) an observational (random) variable
must be defined. The observed value of this variable will be used for determining the measure-
ment result with respect to the unknown value µ of E[X|{d}].
The observational variable is defined on the random sample and represents the result of the
measurement experiment, which is the input value for the stochastic measurement procedure
to be developed.

• Random observational variable:

T (µ)|{(n, d)} =
X|{(n, d)} − µ

S|{(n, d)}
√

n

with

X|{(n, d)} = 1
n

n∑
i=1

Xi|{d}

S2|{(n, d)} = 1
n−1

n∑
i=1

(Xi|{d} −X|{(n, d)})2

For each realization (x1, . . . , xn) one obtains the following quantity t(µ) as realization of T (µ)|{(n, d)}:

t(µ) =
x− µ

s

√
n for µ ∈ R

where

x =
1

n

n∑
i=1

xi and s2 =
1

n− 1

n∑
i=1

(xi − x)2

It follows that the range of variability of T (µ)|{(n, d)} consists of decreasing straight lines t(µ)
in µ:
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XT (µ) = {t(µ) |µ ∈ R}

As to the random structure of T (µ)|{(n, d)}, William Gosset and later Ronald A. Fisher showed
that a generally good approximation of the true probability distribution is given by the Student
t-distribution, which is independent of the actual value d of D, which is therefore abandoned
in the notation of T (µ):

T (µ)|{n} ∼ tn−1

where tn−1 denotes the t-distribution with (n− 1) degrees of freedom.

The degree of freedom is fixed by the sample size, which completely determines the correspond-
ing t-distribution. Thus, the deterministic variable N denoting the sample size with actual
value n is selected as deterministic variable with respect to the random observational variable
T (µ).

The density function of the t-distribution resembles very much the density function of the
standardized normal distribution. The difference is that density function of the t-distribution
is slightly flatter than that of the standardized normal distribution.

-4 -2 2 4
x

0.1

0.2

0.3

0.4

fHxL

Figure 1: Density functions of the
t-distribution t5 and the standardized

normal distribution N(0, 1)

The two first moments of T (µ)|{n} are given as follows:

E[T (µ)|{n}] = 0 for n > 2
V [T (µ)|{n}] = n−1

n−3
for n > 3

Next, a relation between the value n of the deterministic variable N , which constitutes the initial
condition, and the future outcome of T (µ)|{n} has to be established by means of prediction

procedure A
(β)
T (µ).

Lemma 1: An prediction procedure A
(β)
T (µ) determining a minimum β-measurement procedure

for E[X] is given as follows:

A
(β)
T (µ)({n}) =

{
t(µ)

∣∣∣ Q
(`)
t(n−1)

(
1 + β

2

)
≤ t(µ) ≤ Q

(u)
t(n−1)

(
1 + β

2

)}
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where Q
(`)
t(n−1) denotes the lower quantile function and Q

(u)
t(n−1) the upper quantile function of

the t-distribution with (n− 1) degrees of freedom.

Proof: The t distribution is symmetric, i. e.:

fT (µ)|{n}(−x) = fT (µ)|{n}(x) for x ∈ R
It follows that the probability of exceeding the upper bound of the prediction and the probability
of falling short the lower bound must be equal for an optimal, i. e., minimum β-measurement
procedure.

The overall error probability must not exceed 1− β, as otherwise the reliability requirement is
not met. Thus, the probability of exceeding the upper bound must not go beyond 1−β

2
and the

same holds for the probability for falling short the lower bound.

Hence, the upper bound is given by the upper quantile of order 1− 1−β
2

= 1+β
2

, while the lower
bound is given by the lower quantile of the same order.

A measurement procedure is complete, if for any possible observation there is at least one
prediction having a non-empty intersection with the observation. The observations are given

by the decreasing straight lines t(µ) for µ ∈ R, while the predictions A
(β)
T (µ)({n}) for µ ∈ R

are given as two horizontal parallels. Obviously, each straight line t(µ) intersects a number of
predictions, which completes the proof.

Note that the completeness requirement is not met, if the value µ is restricted to a bounded
set. However, since is was assumed that there is complete ignorance about µ, the completeness
requirement is met. •

Figure 2, below, displays the predictions A
(β)
T (µ)({n}) for 5 ≤ µ ≤ 10.

6 7 8 9 10
Μ

-1.5

-1

-0.5

0.5

1

1.5

tHΜL

Figure 2: The predictions A
(β)
T (µ)({n})

depending on µ given as two parallels for
n = 30 and β = 0.90

The Bernoulli Space BT (µ),N

For illustration the Bernoulli Space for the measurement experiment given by the variables
(T (µ), N) shall be stated here.

• Ignorance space:
DN = {n}
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i. e., there is complete knowledge about the initial conditions.

• Variability function:
XT (µ)({n}) = {t(µ) |µ ∈ R}

The elements of the range of variability are decreasing straight lines.

• Random structure function:

PT (µ)({n}) = PT (µ)|{µ} with T (µ)|{n} ∼ tn−1 for µ ∈ R

The elements of the images of the random structure function are approximated by the
corresponding t-distribution with (n− 1) degrees of freedom.

The t-distribution has the following density function, i.e., the derivative of the distribution
function:

fT (µ)|{n}(x) =
Γ

(
n+1

2

)
√

nπΓ
(

n
2

)
(

1 +
x2

n

)−n+1
2

for x ∈ R

By means of the predictions, which are available for each possible value µ of E[X|{d}], it

becomes possible to derive the measurement procedure C
(β)
E[X] by the corresponding measurement

results.

Measurement Procedure for E[X]

As soon as the predictions are available, the problem of deriving a measurement procedure

C
(β)
E[X] for given reliability level β for the unknown value µ of E[X] is solved by setting:

C
(β)
E[X]({t(µ)}) =

{
µ | t(µ) ∈ A

(β)
T (µ)({n})

}
(108)

where
PT (µ)|{n}

(
A

(β)
T (µ)({n})

)
≥ β for µ ∈ R

Since the prediction procedure meets the completeness requirement, there is for any observation
t(µ) a non-empty measurement result.

Replacing t(µ) by x−µ
s

√
n and by inserting the predictions A

(β)
T (µ)({n}) the following measure-

ment results are obtained:

C
(β)
E[X]({t(µ)}) = C

(β)
E[X]

({
x−µ

s

√
n
})

=
{

µ |x + Q
(`)
T (µ)|{n}

(
1+β

2

)
s√
n
≤ µ ≤ x + Q

(u)
T (µ)|{n}

(
1+β

2

)
s√
n

}

Graphical Representation of C
(β)
E[X]

Let n = 30 and β = 0.95, then the following prediction is obtained:

A
(0.95)
T (µ) ({30}) = {t(µ) | − 1.99 ≤ t(µ) ≤ 1.99}

Consider a realization (x1, x2, . . . , x30) yielding x = 7 and s2 = 0.5.
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Figure 3 displays the observation t(µ) as function of µ, which is given by the straight line

running from top left to bottom right, and the prediction A
(β)
T ({30}) given by the two parallels.

6 7 8 9 10
Μ

-10

-5

5

tHΜL

Figure 3: Graphical representation of the

measurement result of the procedure C
(0.95)
E[X]

for t(µ) = 7−µ
0.5

√
30.

The measurement result contains all those values of µ ∈ R, for which t(µ) is within the predic-
tion given by the parallels in Figure 1.

The measurement result for the above given realization of the measurement experiment is as
follows:

C
(0.95)
E[X]

(
7− µ

0.5

√
30

)
= {µ | 6.743 ≤ µ ≤ 7.257}

Example

1. First Moment of a Wind Load

Figure 4: Offshore wind turbines have
to stand high load values.

The design of wind turbines is
mainly determined by the maximum
loads the turbines have to with-
stand. In order to determine the
maximum loads, the probability dis-
tributions of different load types
have to be determined. Let the load
X be of Type Mx, which represents
the momentum in x-direction. It is
known that for given wind condi-
tions the random variable X has a
uni-modal probability distribution.

The first moment E[X] is the most important deterministic variable with respect to a
given probability distribution. The determination of the actual value µ0 of the wind load
X|{d} for given wind conditions is based on a sample (X1|{d}, X2|{d}, . . . , Xn|{d}) and
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the two sample functions:

X|{(n, d)} = 1
n

n∑
i=1

Xi|{d}

S2|{(n, d)} = 1
n−1

n∑
i=1

(Xi|{d} −X|{(n, d)})2

Because an erroneously too low value of the first moment could lead to safety problems,
the reliability requirement is set to be β = 0.995 and the sample size to n = 250. The
problem is to determine an upper bound for the unknown value µ0 of E[X|{d}].

For determining an upper bound, the observational variable is given by T (µ)|{n} with the
predictions procedure given by the predictions of the following form:

A
(0.995)
T (µ) ({µ}) =

{
t(µ) | t(µ) ≥ Q

(`)
T (µ)|{250}(0.995)

}

where T (µ)|{n} = X|{(n,d)}−µ
S|{(n,d)}

√
250 is distributed according to the t-distribution with 249

degrees of freedom, and Q
(`)
T (µ)|{250} is the lower quantile function of T (µ)|{250}.

6600 6700 6800 6900 7000
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Figure 5: The predictions A
(0.995)
T (µ) ({250})

defining the measurement procedure

C
(0.995)
E[X] ({t(µ)})

The measurement experiment is performed with n = 250 and yields the following values
x̄ = 6784 and s2 = 423.5 by means of which the observation t(µ) is obtained.

In Figure 6 the predictions, which do not depend on µ, are displayed by the line parallel

to the µ-axes through (0,−2.596), which represents the lower bound of A
(0.995)
T (µ) ({250}).

The realization t(µ) of T (µ)|{250} is represented by the decreasing straight line.
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Figure 6: The predictions A
(0.995)
T (µ) ({250}) =

{t(µ) | t(µ) ≥ Q
(`)
T (µ)|{250}(0.995)} and the

realization of the measurement variable t(µ)

The value of µ where t(µ) leaves the predicted area is the upper bound of the measurement
result:

C
(0.995)
E[X] ({t(µ)}) = {µ |µ ≤ 6805.99}

This result means that the value of the first moment of the considered wind load does not
exceed the value 6805.99.
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Unit 2.3.10: Measurement of the Variance

Target

Besides the range of variability and
the first moment, the variance of a
random variable is extremely impor-
tant, as it reflects size of the variability
and, hence, the underlying uncertainty.
Therefore, a β-measurement procedure
for V [X] is necessary. Similar as in the
case of the first moment, a measure-
ment procedure is needed, which does
not assume knowledge about the actual
probability distribution.

In this learning unit a measurement procedure is introduced based on the χ2-distribution,
which was proposed in 1876 by the German geodesist and mathematician Friedrich Robert
Helmert9.

Content

Introduction

According to the minimum information principle, for deriving an appropriate approximation for
a uni-modal probability distribution, the value of the corresponding variance must be known.
As many random variables X have a uni-modal probability distribution, the development of an
appropriate stochastic measurement procedure for V [X] is extremely important.

This is also important, because the procedure for determining the range of variability of a
random variable assumes that the value σ2 of the variance is known.

Similar as in the case of a measurement procedure for the first moment E[X], the problem to
determine the actual value σ2 of the variance V [X] is one of the oldest problems dealt with
in statistics. The German geodesist and mathematician Friedrich Robert Helmert derived the
χ2-distribution as the probability distribution for a sum of squares of random variables each
having a standardized normal probability distribution10. In the following the χ2-distribution
is used for deriving a generally applicable measurement procedure for determining the actual
value of the variance of a random variable.

Measurement Process

Analogously as in the preceding learning unit, let a pair of variables (X,D) be given, and
assume that the variance of X is one of the components of D. The problem is to determine
the unknown value σ of the variance V [X|{d}] of the random variable X|{d}, where d is the
actual value of the deterministic variable D in the given situation.

The measurement process consists of n independent copies of X|{d}, i.e., of a random sample
of size n of X|{d}:

(X1|{d}, X2|{d}, . . . , Xn|{d})
9Friedrich Robert Helmert born 1843 in Freiberg (Sachsen) and death in 1917 in Potsdam). Helmert is considered

the founder of the mathematical theory of geodesy.
10A normal distribution with µ = 0 and σ2 = 1 is called “standardized normal distribution”.
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Similar as the approximation used in the preceding learning unit, also the following approx-
imation is based on the normal distribution, i. e., on the Central Limit Theorem. Therefore,
again, if the probability distribution PX|{d} of X|{d} is of constant or uni-modal type, already a
small number of copies is sufficient for obtaining a sufficiently good approximation, because the
probability distribution of a suitably normalized sum of the random variables will tend rapidly
to the normal distribution. If the probability distribution is of any other type, the number of
copies must be larger, because the convergence is slower.

For the measurement process (X1|{d}, X2|{d}, . . . , Xn|{d}) an observational (random) variable
must be defined. The observed value of this variable will be used for determining the measure-
ment result with respect to the unknown value of V [X|{d}].

The Observational Variable

The observational variable is defined on the sample and represents the result of the measurement
process, which is the input value for the stochastic measurement procedure to be developed.

• Random observational variable:

R(σ2)|{(n, d)} = (n− 1)
S2|{(n, d)}

σ2

with

S2|{(n, d)} = 1
n−1

n∑
i=1

(Xi|{d} −X|{(n, d)})2

For each realization (x1, . . . , xn), the quantity r(σ2) is obtained as realization of R(σ2)|{(n, d)}:

r(σ2) = (n− 1)
s2

σ2
for σ2 ∈ R+

where

s2 =
1

n− 1

n∑
i=1

(xi − x)2

It follows that each element r(σ2) of the range of variability of R(σ2)|{(n, d)} is a decreasing
and concave curve in σ2:

XR(σ2) =
{
r(σ2) |σ2 ∈ R+

}

The following limits are obtained for the function r(σ2):

lim
σ2→0

r(σ2) = ∞
lim

σ2→∞
r(σ2) = 0

As to the random structure of R(σ2)|{(n, d)}, a generally very good approximation of the true
probability distribution, is given by the χ2-distribution which is independent of the actual value
d of D. Hence we set:

R(σ2)|{n)} ∼ χ2
n−1

where χ2
n−1 denotes the χ2-distribution with (n− 1) degrees of freedom.

87



MEASUREMENT OF THE VARIANCE MEASUREMENT PROCEDURES

The degree of freedom determined by the sample size n is the only deterministic variable of
the χ2, which completely determines the χ2-distribution. Thus, the deterministic variable N
denoting the sample size with actual value n is selected as deterministic variable for the random
observational variable R(σ2).

The density function of the χ2-distribution resembles already for moderate large values of n
much the density function of the corresponding standardized normal distribution. The dif-
ference is that density function of the χ2-distribution is not symmetric like the standardized
normal distribution and slightly moved to the left with range of variability R+.
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Figure 1: Density functions of the
χ2-distribution χ2

50 and the standardized
normal distribution N(50, 10)

The two first moments of R(σ2)|{n} are given as follows:

E[R(σ2)|{n}] = n− 1 for n > 1
V [R(σ2)|{n}] = 2(n− 1) for n > 1

Next, a relation between the value n of the deterministic variable N , which constitutes the
initial conditions, and the future outcome of R(σ2)|{n} has to be established by means of a

prediction procedure A
(β)

R(σ2).

Lemma 1: For any y with β ≤ y ≤ 1, a β-prediction procedure A
(β)

R(σ2) is given by the following

predictions:

A
(β)

R(σ2)({n}) =
{

r(σ2)
∣∣∣Q

(`)

χ2(n−1) (1− y + β) ≤ r(σ2) ≤ Q
(u)

χ2
n−1

(y)
}

where Q
(`)

χ2
n−1

denotes the lower quantile function and Q
(u)

χ2
n−1

the upper quantile function of the

χ2-distribution with (n− 1) degrees of freedom.

Proof:
The probability that the upper bound of the prediction A

(β)

R(σ2)({n}) is exceeded is given by the

value 1 − y, while the probability that the lower bound is not exceeded is given by the value
1− (1− y + β). Hence the overall error probability is obtained as:

(1− y) + 1− (1− y + β) ≤ 1− β

Thus, the given predictions meet the reliability requirement β.
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The measurement procedure is complete, if for any possible observation there is at least one pre-
diction having a non-empty intersection with the observation. The observations are given by the
decreasing concave curves r(σ2) for

σ2 ∈ R+, while the predictions A
(β)

R(σ2)({n}) for µ ∈ R are given as two parallels. Obviously,

each of the curves r(σ2) intersects a prediction which completes the proof.

Note that, similar as in the case of E[X], the completeness requirement is not met, if the
possible values σ2 are restricted to a bounded set. •

Figure 2, below, displays the predictions A
(β)

R(σ2)({n}) and the observation r(σ2).
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Figure 2: The predictions A
(0.90)

R(σ2)({30}) for

y = 0.975 and the observation r(σ2) for
s2 = 65.

The Optimization Problem

By Lemma 1, any β-measurement procedure C
(β)
V [X] for V [X] is given as follows:

C
(β)
V [X]({r(σ2)}) =

{
σ2 | r(σ2) ∈ A

(β)

R(σ2)({n})
}

(109)

An equivalent formulation based on the random variable S2 instead of R(σ2) is given by:

C
(β)
V [X]({s2}) =

{
σ2 | s2 ∈ A

(β)

S2 ({(n, σ2)})
}

=



σ2

∣∣∣
Q

(`)

χ2(n−1) (1− y + β)

n− 1
σ2 ≤ s2 ≤

Q
(u)

χ2
n−1

(y)

n− 1
σ2





=



σ2

∣∣∣ n− 1

Q
(u)

χ2
n−1

(y)
s2 ≤ σ2 ≤ n− 1

Q
(`)

χ2(n−1) (1− y + β)
s2



 (110)

With the above representation of C
(β)
V [X] as function of the observations s2 of the random vari-

able S2|{n, σ2}, the following result with respect to an optimal β-measurement procedure is
obtained:

Lemma 2: The β-measurement procedure

∗C(β)
V [X]({s2}) =



σ2

∣∣∣ n− 1

Q
(u)

χ2(n−1)(y
∗)

s2 ≤ σ2 ≤ n− 1

Q
(`)

χ2
n−1

(1− y∗ + β)
s2




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for the variance V [X|{d}] of a random variable X|{d} is optimal with respect to the accuracy,
if y∗ is a solution of the following optimization problem:

y∗ = arg min
β≤y≤1


 1

Q
(`)

χ2(n−1) (1− y + β)
− 1

Q
(u)

χ2
n−1

(y)


 (111)

Proof: The proof of Lemma 2 is straightforward. The β-measurement procedure is optimal, if
the mean length of the measurement results is minimum. Here, however, (see (110)), it is pos-
sible to minimize the results simultaneously, which can be seen by the following representation:

|C(β)
V [X]({s2})| =

n− 1

Q
(`)

χ2
n−1

(1− y∗ + β)
s2 − n− 1

Q
(u)

χ2(n−1)(y
∗)

s2

=


 1

Q
(`)

χ2(n−1) (1− y + β)
− 1

Q
(u)

χ2
n−1

(y)


 (n− 1)s2 (112)

Thus, the length of the measurement results for any observation s2 gets minimum, if y∗ given
by (111) is used. •.

Comparison of Measurement Procedures for V [X]

1. Traditional Statistical Method

Here a brief numerical comparison between the traditional statistical method denoted by
trC

(β)
V [X], a β-measurement procedure based on the shortest predictions denoted by shC

(β)
V [X]

and the optimal β-measurement procedure ∗C(β)
V [X] obtained according to Lemma 2 shall

illustrate the differences.

The measurement procedure for V [X] in traditional statistics is defined by symmetric
error probabilities as follows:

trC
(β)
V [X]({s2}) =



σ2

∣∣∣ n− 1

Q
(u)

χ2
n−1

(
1+β

2

) s2 ≤ σ2 ≤ n− 1

Q
(`)

χ2(n−1)

(
1+β

2

) s2



 (113)

Consider the special case n = 40 and β = 0.95 and assume that the measurement process
yields the observation s2 = 0.2, then the following measurement result is obtained by
means of the traditional statistical method:

trC
(β)
V [X]({s2}) =

{
σ2 | 0.134 ≤ σ2 ≤ 0.330

}
(114)

with length: ∣∣∣ trC
(β)
V [X]({s2})

∣∣∣ = 0.196

2. Measurement Procedure Based on Shortest Predictions

In statistical textbooks it is sometimes mentioned that the measurement procedure (113) is
not optimal, because the χ2-distribution is not symmetric and, therefore, fixing symmetric
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error probabilities do not yield a shortest prediction interval. However, it is also mentioned
that the differences are small and may be neglected.

In a first step the value y in (109) is determined, which minimizes the length of the

prediction interval A
(β)

R(σ2)({n}) for given values of n and β.

The obtained value of y is used for calculating the measurement results according to
(110). Consider the same example of n = 40 and β = 0.95 as in the case of the traditional
method.

shC
(β)
V [X]({s2}) =

{
σ2 | 0.138 ≤ σ2 ≤ 0.346

}
(115)

with length: ∣∣∣ shC
(β)
V [X]({s2})

∣∣∣ = 0.208

Surprisingly, the shortest predictions do not yield an improvement over the traditional
method, but contrary a change to the worse. This clearly shows that optimizing a predic-
tion procedure is a different problem than optimizing a measurement procedure.

3. Optimal Measurement Procedure

By solving the optimization problem (111), the optimal value y∗ is obtained yielding with
(110) optimal, i. e., shortest measurement results.

Taking again the example of n = 40 and β = 0.95 as in the preceding cases, the optimal
β-measurement procedure yields:

∗C(β)
V [X]({s2}) =

{
σ2 | 0.125 ≤ σ2 ≤ 0.312

}
(116)

with length: ∣∣∣ ∗C(β)
V [X]({s2})

∣∣∣ = 0.187

The improvement of the optimal measurement result when compared with the result of the
traditional method is with almost 5% astonishing large. If the optimal result is compared
with the result based on shortest predictions, the improvement is even larger than 11%.
Thus, the use of the optimal β-measurement procedures leads generally to non-negligible
advantages.

Bernoulli Space BR(σ2),N

For completeness, the Bernoulli Space BR(σ2),N generated by the pair of variables (R(σ2), N) is
given below:

• Ignorance space:
DN = {n}

Just as in the case of the measurement process for E[X], there is complete knowledge for
the approximation.

• Variability function:
XR(σ2)({σ2})) = {r(σ2) |σ2 ∈ R+}
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• Random structure function:

PR(σ2)({n}) = PR(σ2)|{n} with R(σ2)|{n} ∼ χ2
n−1

The actual probability distributions are approximated by the χ2-distribution with (n− 1)
degrees of freedom. The density function of the χ2-distribution with (n − 1) degrees of
freedom is given below:

fR(σ2)|{n}(x) =
x

k
2
−1 e−

x
2

2
k
2 Γ

(
k
2

) for x ∈ R+

Graphical Representations of C
(β)
V [X]

Let n = 30 and β = 0.90, then we obtain the following predictions with the traditional (sym-
metric) approach and the optimal stochastic approach

• Traditional approach:

trA
(0.95)

R(σ2)({σ2)}) =
{
r(σ2) | 17.708 ≤ r(σ2) ≤ 42.557

}

which is equivalent to:

trA
(0.95)

S2 ({σ2)}) =
{
s2 | 0.610634σ2 ≤ s2 ≤ 1.46748σ2

}

and

• Stochastic approach:

∗A(0.95)

R(σ2)({σ2)}) =
{
r(σ2) | 18.3635 ≤ r(σ2) ≤ 44.022

}

which is equivalent to:

∗A(0.95)

S2 ({σ2)}) =
{
s2 | 0.633224σ2 ≤ s2 ≤ 1.518σ2

}

Consider a realization (x1, x2, . . . , x30) yielding s2 = 2.1. Then Figure 3 displays the observation
r(σ2) as function of σ2, which is given by the curve from top left to bottom right, and the

prediction trA
(β)
R ({σ2}) given by the two parallels.
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Figure 3: Graphical representation of the
traditional measurement procedure for V [X]

in case of the observation r(σ2) = 29 2.1
σ2 .
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In Figure 4, the same situation as in Figure 3 is shown, however, by means of the random
variable S2|{n, σ2} with the realization given by s2 = 2.1.

1 2 3 4 5 6
Σ^2

2

4

6

8

s^2

Figure 4: Graphical representation of the
traditional measurement procedure for

V [X] in case of the observation s2 = 2.1.

The measurement result contains all those values of σ2, for which r(σ2) is within the prediction
trA

(0.95)

R(σ2)({σ2)}) given by the parallels in Figure 3.

The measurement result for the above given realization of the measurement experiment is as
follows:

trC
(0.95)
V [X]

(
29

2.1

σ2

)
=

{
σ2 | 1.43 ≤ σ2 ≤ 3.44

}

with length: ∣∣∣∣trC
(0.95)
V [X]

(
29

2.1

σ2

)∣∣∣∣ = 2.008

The measurement result using the optimal measurement procedure ∗C(0.95)
V [X] is as follows:

∗C(0.95)
V [X]

(
29

2.1

σ2

)
=

{
σ2 | 1.3824 ≤ σ2 ≤ 3.31636

}

with length: ∣∣∣∣∗C
(0.95)
V [X]

(
29

2.1

σ2

)∣∣∣∣ = 1.933

Also in this example, the improvement is not at all negligible.

Concluding Remarks

The result of this learning unit shows the advantages of the stochastic approach, when compared
with the statistical one. Just by applying the principles of the stochastic approach rigorously,
a statistical method could be improved. This is in particular surprising, because the method,
which is improved here, refers to one of the central results in statistics.

Besides the possibility to improve conventional procedures, the stochastic approach also leads
to new procedures which have been not considered in statistics so far. This includes procedures
which solve new problems and procedures which solve old problems, however, based on different
more realistic conditions.
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Example

1. Variance of a Wind Load

Consider the example of the previous learning unit, which deals with a wind load X of
Type Mx referring to a wind turbine. In order to specify a Bernoulli Space for X, not
only the value of the first moment, but also the value of the variance V [X] has to be
determined based on a sample (X1|{d}, X2|{d}, . . . , Xn|{d}) and the sample function:

R(σ2)|{n} = (n− 1)
S2|{(n, d)}

σ2

=
1

n− 1

n∑
i=1

(Xi|{d} −X|{(n, d)})2

If only an upper bound for the unknown value σ0 of the variance V [X] is required, the

predictions procedure A
(β)

R(σ2) is of the following form:

A
(β)

R(σ2)({n}) =
{

r(σ2) | r(σ2) ≥ Q
(`)

R(σ2)|{n}(β)
}

The required reliability level is set to β = 0.95. Moreover, it is decided to have a sample
size of n = 250. Next the predictions are determined by means of the χ2-distribution
with 249 degrees of freedom. In Figure 5 the predictions, which do not depend on σ2,
are displayed by the line parallel to the σ2-axes through (0, 213.465), which represents the

lower bound of A
(0.95)

R(σ2)({σ2}).
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Figure 5: The lower bound Q
(`)

R(σ2)|{250}(0.95)

of the predictions A
(0.95)

R(σ2)({σ2}).

The measurement process is performed with sample size n = 250 and results in s2 =
342.98. This result yields the observation r(σ2). In Figure 6 the predictions, which do
not depend on σ2, are displayed by the line parallel to the σ2-axes through (0, 213.465),

which represents the lower bound of A
(0.95)

R(σ2)({σ2}). Moreover, the realization r(σ2) of

R(σ2)|{249} is represented by the decreasing curve from the left top to the right bottom.
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Figure 6: The predictions A
(0.95)

R(σ2)({σ2}) and

the observation r(σ2).

The value of σ2 for which r(σ2) crosses the lower bound Q
(`)

R(σ2)|{250}(0.95) is the upper

bound of the measurement result:

C
(0.95)
V [X] ({r(σ2)}) = {σ2 |σ2 ≤ 400.075}

95



MEASUREMENT OF THE SMALLEST VALUE MEASUREMENT PROCEDURES

Unit 2.3.11: Measurement of the Smallest Value

Target

One of the most important problems
concerning uncertainty refers to the ex-
treme values which might occur in fu-
ture. An extreme value is often related
to a danger and only if the extreme
value is known, an appropriate preven-
tion strategy can be implemented. In
this learning unit a method is intro-
duced to measure the smallest value of
a random variable X, i.e., the smallest
value of its range of variability.

Content

Introduction

The problem of determining the extreme values of the range of variability are not considered
so far in statistical literature. One reason for this surprising fact might be that in statistics
generally an unbounded range of variability is assumed. This assumption is necessary, because
a majority of statistical methods has been developed based on probability distribution with
unbounded support.

Besides the moments E[Xn], n = 1, 2, . . ., of a random variable X, the range of variability X is
of special importance and, therefore, measurement procedures for the smallest value minX and
the largest value maxX of the range of variability of X should be derived and made available.
Actually, in many cases only these extreme values are of interest.

In the previous learning units measurement procedures for E[X] and V [X] were introduced,
which can be extended to other moments, if necessary. These measurement procedures are
based on the normal approximation for sums of random variables and, therefore, can be applied
without knowing the true probability distribution of X. Therefore, we assume in the following
that not only the family of the unknown probability distribution is known, but also the values
of the moments to be considered.

As to the range of variability X of the random variable X, it is assumed that it is known except
for its smallest value, which shall be determined by a stochastic β-measurement procedure.

Measurement Process

Any process refers to a pair of variables (X,D), where X represents the future indeterminate
outcome and D the determinate initial conditions. In a given situation the actual value d of
the deterministic variable D determines the range of variability X ({d}) and the probability
distribution P({d}) = PX|{d} of the random variable X|{d}.
The measurement process for determining minX ({d}) is the same as in the case of determining
the moments and is given by a random sample, i. e., by a number of independent copies of
X|{d}:

(X1|{d}, X2|{d}, . . . , Xn|{d})
where n is the actual value of the sample size, represented by the deterministic variable N .
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Next, the observational random variable X must be defined on the measurement experiment
(X1|{d}, X2|{d}, . . . , Xn|{d}).

The Observational Variable

The sample moments or transformations of them emerged as natural observational variables for
the moments, which according to the law of large numbers tend for n →∞ to the true values.
Analogously, the sample minimum is the natural observational variable for the deterministic
variable minX ({d}), since it tends to the true value for n →∞.

As stated in the introduction, it is assumed that the probability distribution of X|{d} is known
except for minX ({d}). Thus, we obtain the following pair of variables representing the mea-
surement process for determining the value of minX :

• Random observational variable:

Xmin|{(n, d)} = min(X1|{d}, X2|{d}, . . . , Xn|{d})

• Deterministic variable:
D = minX

Since values of all other distributional parameters (except for minX ({d})) are assumed to be
known, there is no need to include them as further components in the deterministic variable D.

The Bernoulli Space BXmin,minX

It is always possible to specify a lower bound alow for minX , while the known value µ(d) of the
first moment E[X|{d}] represents a global upper bound for minX . However, this global upper
bound can often be improved considerably by utilizing the close relations between the bounded
range of variability, the moments and the type of the probability distribution of X. Let amax be
the largest value of minX preserving the given type of the probability distribution of X. Then
an upper bound for minX is given by min{bµ(d)c, amax}, where bµ(d)c is the largest value in
X ({d}) smaller than µ(d). Hence, the following Bernoulli Space BXmin,minX is obtained:

• Ignorance space:
D = {d | alow ≤ d ≤ min{bµ(d)c, amax}

• Variability function:
X ({d}) = {x | d ≤ x ≤ b} for d ∈ D

• Random structure function:

P({d}) = PXmin|{d}

with

PXmin|{d} ({x | x ≥ y}) =
(
PX|{d} ({x | x ≥ y}))n

for y ∈ X ({d})
where the probability distribution PX|{d} is known.

Measurement Procedure

The problem is to derive a β-measurement procedure C
(β)
minX ({d}) for the unknown value of

minX ({d}), where the measurement procedure is defined by an appropriate prediction proce-

dure A
(β)
Xmin

.
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Lemma 1: The measurement procedure C
(β)
minX is defined by its measurement results as follows:

C
(β)
minX ({x}) =

{
d |x ∈ A

(β)
Xmin

({d})
}

(117)

where

A
(β)
Xmin

({d})=





{
x | alow ≤ d ≤ x ≤ Q

(u)
Xmin|{d}(β)

}
for d < d

{
x | d ≤ x ≤ b

}
for d = d

(118)

with d = min{bµ(d)c, amax} and Q
(u)
Xmin|{d} is the upper quantile function of Xmin|{d}.

Proof: We have to show that C
(β)
minX fulfills the reliability requirement β, that it is complete

and that it is optimal.

• Reliability:
The measurement procedure is a β-measurement procedure, if the defining predictions
meet the reliability requirement given by β. This is trivially fulfilled, because by definition
of the upper quantile function we have for alow ≤ d < d:

PXmin|{d}
(
A

(β)
Xmin

({d})
)

= PXmin|{d}
({

x | x ≤ Q
(u)
Xmin|{d}(β)

})

≥ β

The prediction for d = d occurs with certainty implying that the reliability requirement
is met in this case, too.

• Completeness: The completeness requirement means that for any observation x ∈ X (D),

i.e., x ∈ {x | alow ≤ x ≤ b} there is at least one prediction A
(β)
min X({d}) with

x ∈ A
(β)
min X({d}).

We have to show that the union of all predictions cover the entire range of variability X (D).

For any realistic reliability level β, i.e., a not too small value, we have Q
(u)
Xmin|{d}(β) ≥ µ ≥

min{bµ(d)c, amax} = d. Thus, from (118) we obtain:

⋃

d∈D
A

(β)
min X({d}) = {x | alow ≤ x ≤ b} = X (D)

• Optimality: The measurement procedure (121) is optimal, because it is a lower bound
measurement procedure and any optimal lower bound measurement procedure is defined
by predictions given by the upper quantile function. •

With (118) the following measurement procedure for minX is obtained:

C
(β)
minX ({x}) =





{
d | d(x) ≤ d ≤ min(d, x)

}
for d(x) < min(d, x)

{d} for d(x) ≥ min(d, x)

where d(x) is obtained as the solution of the following equation:

Q
(u)
Xmin|{d(x)}} (β) = x
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Concluding Remarks

The here derived procedure for determining a bound of the range of variability X ({d}) of a
given random variable X|{d} represents a new class of measurement procedures with a great
potential for application.

The bounds of the range of variability are the extreme values, which can be adopted by the
random variable. The extreme values play an important role in many areas of application. Thus,
the here outlined approach could replace the so-called extreme value theory, which generally
starts with the unrealistic assumption of an unbounded range of variability of the considered
random variable.

Similar as in the case of the measurement procedure for the variance of a random variable, the
result concerning the smallest value of a random variable illustrates the benefits of the unified
stochastic approach, when compared with the statistical approach.

Example

1. Constant Probability Distribution

The constant (or uniform) probability distributions represent the simplest case with re-
spect to the random structure. Let X be a random variable with constant probability
distribution over its range of variability X . The maximum value of X is known with
maxX = 100. The minimum value minX = a is unknown except for the fact that
0 ≤ a ≤ 50 holds. The problem is to determine the smallest value that X may adopt, i.e.,
minX , by means of a stochastic measurement procedure.

The reliability specification is set to β = 0.99 and the measurement process (= random
sample) (X1|{a}, X2|{a}, . . . , Xn|{a}) has a sample size of n = 50.

The observational random variable and the corresponding deterministic variable are as
follows:

Xmin = min(X1, X2, . . . , X50)
D = minX

with the following Bernoulli Space BXmin,minX :

D = {a | 0 ≤ a ≤ 50}
X ({a}) = {x | a ≤ x ≤ 100}
P({a}) =

{
PXmin|{a}

}

Determination of PXmin|{a}

The survival function of X|{a} is given as follows:

FX|{a}(x) =
100− x

100− a
for x ∈ X ({a})

implying that the survival function of Xmin|{a}, which determines the images PXmin|{a}
of the random structure function, is given by:
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FXmin|{a}(x) =

(
100− x

100− a

)50

for x ∈ X ({a})

which gives the following distribution function:

FXmin|{a}(x) = 1−
(

100− x

100− a

)50

for x ∈ X ({a})

with the upper quantile function:

Q
(u)
Xmin|{a}(p) = 100− (100− a)(1− p)

1
50 for 0 < p ≤ 1

The Prediction Procedure A
(0.99)
Xmin

The upper quantiles define the prediction procedure A
(0.99)
Xmin

, which are used to derive the

measurement procedure C
(0.99)
minX :

A
(0.99)
Xmin

({a}) =
{

x |x ≤ 100− (100− a)(1− 0.99)
1
50

}

The Measurement Procedure C
(0.99)
min X

The prediction procedure defines the measurement procedure. For x ≤ 50 the measure-
ment results are as follows:

C
(0.99)
minX ({x}) =

{
a | x ∈ A

(0.99)
Xmin

({a})
}

=

{
a | 100− 100−x

(1−0.99)
1
50
≤ a ≤ x

}

= {a | − 9.64782 + 0.912011x ≤ a ≤ x}

Figure 1 shows a graphical representation of the measurement procedure C
(0.99)
minX , which

is given by the two straight lines. For given observation x, the measurement interval is
obtained by the points of intersection of the horizontal line through (0, x) and the two
straight lines in Figure 1.
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Figure 1: The measurement procedure

C
(0.99)
minX for the smallest value.

For example, assume that the measurement experiment results in the observation x = 23,
then the following measurement result with respect to minX is obtained:

C
(0.99)
minX ({23}) = {a | 15.57 ≤ a ≤ 23} (119)

By means of (119) it is shown that the smallest value that can be adopted by X is not
less than 15.57.

2. Monotonic Probability Distribution

Let X be a random variable with a monotonic increasing probability distribution. More-
over, it is assumed that the range of variability together with the values of the first
moment and of the variance determine completely the probability distribution. Let the
actual values of the first moment and the variance be given as:

µ = 700
σ2 = 2502

Moreover, it is known that X can adopt only non-negative integers smaller than or equal
to b = 1000.

The only unknown value characterizing the initial conditions refers to the deterministic
variable D = minX , the actual value of which shall be measured by a β-measurement
procedure.

In a first step the ignorance space D of the deterministic variable D is determined as sharp
as possible. A lower bound of D is given by 0, an upper bound by µ = 700. However, the
type of distribution function with given values µ and σ2 = 2502 depends on the range of
variability. It can be shown that for d ≥ 95 the type of PX|{d} changes from a monotonic
increasing probability distribution to a U -shaped probability distribution and, finally, if
d is further increased to a monotonic decreasing probability distribution.

Thus, the initial ignorance space with respect to D = minX , which shall be reduced by

the β-measurement procedure C
(β)
minX , is given by:

D = {d | 0 ≤ d ≤ 94}
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Consider a measurement process with sample size n = 250 and a reliability level of β =
0.95. Then according to (118) the prediction procedure that defines the measurement

procedure C
(0.95)
minX is given as follows:

A
(0.95)
Xmin

({d}) =





{
x | d ≤ x ≤ Q

(u)
Xmin|{d}(0.95)

}
for 0 ≤ d ≤ 93

{x | 94 ≤ x ≤ 1000} for d = 94

(120)

Once the predictions are available, the measurement procedure is obtained by the mea-
surement results:

C
(β)
minX ({x}) =




{d | d(x) ≤ d ≤ min(94, x)} for d(x) < 94

{94} for d(x) ≥ 94

where d(x) is defined as solution of the following equation:

Q
(u)
Xmin|{d(x)}(0.95) = x

In order to derive the prediction procedure A
(0.95)
Xmin

, the probability distributions PX|{d} and

PXmin|{d} have to be determined. Subsequently, the corresponding value Q
(u)
Xmin|{d}(0.95)

of the upper quantile function of Xmin|{d} can be calculated.

For each value d ∈ D and given values of the first moment and the variance of X|{d}, the
probability distribution can be determined by solving the system of equations:

E[X0|{d}] = 1

E[X1|{d}] = µ

E
[
(X2|{d} − µ)2

]
= σ2

For example, for d = 0 we obtain:

PX|{0}({x}) =
0.014119211280766233

250
√

2π
e0.029924737665377777

(x+2195.6998165057234)2

2502

In Figure 2 the monotonic increasing probability mass function of X|{0} is displayed.
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Figure 2: Monotonic increasing probability
mass function fX|{0} of the random variable

X|{0}
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In contrast to the monotonic increasing probability distribution of the given random vari-
able X|{0}, the random observational variable Xmin|{(250, 0)} has for a sufficiently large
sample size n, a monotonic decreasing probability distribution, i. e., the smallest value
minX occurs with largest probability.

In Figure 3, the probability distribution of Xmin|{(250, 0)} is displayed.
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Figure 3: Monotonic decreasing probability
mass function fXmin|{(250,0)} of the random

variable Xmin|{(250, 0)}
The predictions are given by the upper quantiles of order β = 0.95. In other words, for
each value of d ∈ D and the given values of n, µ and σ2, the probability mass function
fXmin|{(n,d)} has to be determined. Subsequently the upper quantiles of order β = 0.95 are
calculated, by means of which the measurement results are obatined.

In the case of d = 0 the following value is obtained:

Q
(u)
Xmin|{(250,0)}(0.95) = 49

Thus, if the observed value x does not exceed the limit 49 then the value d = 0 cannot
be excluded from the set of possible values. However, if the observation exceeds 49, it is
concluded that the lower bound of X is larger than 0.

The measurement result C
(0.95)
minX ({x}) contains all those values of d ∈ D, for which the

observation x is an element of the prediction A
(0.95)
Xmin

({d}).

The entire measurement procedure C
(0.95)
minX is given in Table 1. For example, if the mea-

surement experiment yields the result x = 56, then the following measurement result is
obtained:

C
(0.95)
minX ({56}) = {d|10 ≤ d ≤ 56}

The obtained measurement result represents the new ignorance space for the deterministic
variable minX .

Note extreme values are not subject to randomness but are fixed by the given initial
conditions. Therefore, extreme values must be represented by deterministic variables and
not by random variables as done in the extreme value theory. Modeling extreme values by
random variables means not to regard the actual “extreme value”, but something different
which is not really explained.
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Table 1: Complete measurement procedure C
(0.95)
minX for minX

x C
(0.95)
minX ({x}) x C

(0.95)
minX ({x}) x C

(0.95)
minX ({x})

x ≤ 49 {d|0 ≤ d ≤ x} 73 {d|35 ≤ d ≤ 73}74 97 {d|67 ≤ d ≤ 94}
50 {d|1 ≤ d ≤ 50} 74 {d|36 ≤ d ≤ 74} 98 {d|68 ≤ d ≤ 94}
51 {d|2 ≤ d ≤ 51} 75 {d|37 ≤ d ≤ 75} 99 {d|70 ≤ d ≤ 94}
52 {d|4 ≤ d ≤ 52} 76 {d|39 ≤ d ≤ 76} 100 {d|71 ≤ d ≤ 94}
53 {d|5 ≤ d ≤ 53} 77 {d|40 ≤ d ≤ 77}7 101 {d|72 ≤ d ≤ 94}
54 {d|7 ≤ d ≤ 54} 8 {d|42 ≤ d ≤ 78} 102 {d|74 ≤ d ≤ 94}
55 {d|8 ≤ d ≤ 55} 79 {d|43 ≤ d ≤ 79} 103 {d|75 ≤ d ≤ 94}
56 {d|10 ≤ d ≤ 56} 80 {d|44 ≤ d ≤ 80} 104 {d|76 ≤ d ≤ 94}
57 {d|11 ≤ d ≤ 57} 81 {d|46 ≤ d ≤ 81} 105 {d|77 ≤ d ≤ 94}
58 {d|13 ≤ d ≤ 58} 82 {d|47 ≤ d ≤ 82} 106 {d|79 ≤ d ≤ 94}
59 {d|14 ≤ d ≤ 59} 83 {d|48 ≤ d ≤ 83} 107 {d|80 ≤ d ≤ 94}
60 {d|16 ≤ d ≤ 60} 84 {d|50 ≤ d ≤ 84} 108 {d|81 ≤ d ≤ 94}
61 {d|17 ≤ d ≤ 61} 85 {d|51 ≤ d ≤ 85} 109 {d|83 ≤ d ≤ 94}
62 {d|19 ≤ d ≤ 62} 86 {d|52 ≤ d ≤ 86} 110 {d|84 ≤ d ≤ 94}
63 {d|20 ≤ d ≤ 63} 87 {d|54 ≤ d ≤ 87} 111 {d|85 ≤ d ≤ 94}
64 {d|22 ≤ d ≤ 64} 88 {d|55 ≤ d ≤ 88} 112 {d|86 ≤ d ≤ 94}
65 {d|23 ≤ d ≤ 65} 89 {d|56 ≤ d ≤ 89} 113 {d|88 ≤ d ≤ 94}
66 {d|25 ≤ d ≤ 66} 90 {d|58 ≤ d ≤ 90} 114 {d|89 ≤ d ≤ 94}
67 {d|26 ≤ d ≤ 67} 91 {d|59 ≤ d ≤ 91} 115 {d|90 ≤ d ≤ 94}
68 {d|27 ≤ d ≤ 68} 92 {d|60 ≤ d ≤ 92} 116 {d|92 ≤ d ≤ 94}
69 {d|28 ≤ d ≤ 69} 93 {d|62 ≤ d ≤ 93} 117 {d|93 ≤ d ≤ 94}
70 {d|30 ≤ d ≤ 70} 94 {d|63 ≤ d ≤ 94} x ≥ 118 {94}
71 {d|32 ≤ d ≤ 71} 95 {d|64 ≤ d ≤ 94}
72 {d|33 ≤ d ≤ 72} 96 {d|66 ≤ d ≤ 94}
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Unit 2.3.12: Measurement of the Largest Value

Target

This learning unit extends the result
obtained in the previous learning unit
to the case that the largest value maxX
of the range of variability X of a ran-
dom variable X shall be determined.
The measurement procedure C

(β)
maxX is

derived analogously to C
(β)
minX . There-

fore, this learning unit can be taken as
a repetition and exercise of the previous
one.

Content

Introduction

In many situations the maximum value, which a random variable X may adopt, is of utmost
importance. For example in order to decide about the height of a river embankment, knowledge
about the largest value of future floods would be very valuable. Especially in the area of safety,
there are many situations in which the maximum value is of great significance.

Analogously as in the case of a measurement procedure for minX , it is assumed that the
probability distribution of X is known except for the upper bound of the range of variability.

Measurement Process

The measurement process is the same as in the case of C
(β)
minX and is given by a random sample

of size n, i. e., by n independent copies of X|{d}:
(X1|{d}, X2|{d}, . . . , Xn|{d})

For the given number n of copies, a random observational variable must be defined having a
probability distribution, which is essentially related to the unknown value of maxX .

The Observational Variable

Clearly, the sample maximum constitutes a natural observational variable for determining the
actual value of the deterministic variable maxX . Thus, we obtain the following pair of variables
representing the measurement experiment for the value of maxX :

• Random observational variable:

Xmax = max(X1, X2, . . . , Xn

• Deterministic variable:
D = maxX ({d})

The values of all other distributional parameters (except for maxX ({d})) are assumed to be
known. Hence, there is no need to include them as further components in the deterministic
variable.
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The Bernoulli Space BXmax,maxX

It is always possible to specify an upper bound bup for maxX ({d}), while the value µ(d) of the
first moment E[X|{d}] represents a global lower bound for maxX . However, the global lower
bound can often be improved considerably by utilizing the close relations between the range
of variability, the moments and the type of the probability distribution of X. Let bmax be the
smallest value of maxX preserving the given type of the probability distribution of X. Then a
lower bound for maxX is given by max{dµ(d)e, bmin}, where dµe denotes the smallest element
of X larger than or equal µ(d). Hence, the following Bernoulli Space BXmax,maxX is obtained:

• Ignorance space:

D =
{

d
∣∣∣ max{dµe, bmin} ≤ d ≤ bup}}

• Variability function:

X
(
{d}

)
= {x | a ≤ x ≤ d} for d ∈ D

• Random structure function:

P
(
{d}

)
= PXmax|{d}

with

PXmax|{d} ({x |x ≤ y}) =
(
PX|{d} ({x |x ≤ y}))n

where the probability distribution PX|{d} is known.

Measurement Procedure

The problem is to derive a β-measurement procedure C
(β)
maxX for the unknown value of maxX ({d}),

where the measurement procedure is defined by an appropriate prediction procedure A
(β)
Xmax

.

Lemma 1: The measurement procedure C
(β)
maxX is defined by its measurement results as follows:

C
(β)
maxX ({x}) =

{
d |x ∈ A

(β)
Xmax

({d}
}

(121)

where for d ∈ D:

A
(β)
Xmax

({d})=





{
x |Q(`)

Xmax|{d}(β) ≤ x ≤ d
}

for d < d ≤ bup

{x|a ≤ x ≤ d} for d = d

(122)

with d = max{dµe, bmin} and Q
(`)
Xmax|{d} is the lower quantile function of Xmax|{d}.

Proof: We have to show that C
(β)
maxX fulfills the reliability requirement β, that it is complete

and that it is optimal.

• Reliability:
The measurement procedure is a β-measurement procedure, if the defining predictions
meet the reliability requirement given by β. This is trivially fulfilled, because by definition
of the lower quantile function we have for max{dµe, bmin} < d ≤ bup:
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PXmax|{d}
(
A

(β)
Xmax

({d})
)

= PXmax|{d}
({

x |Q(`)
Xmax|{d}(β) ≤ x

})

≥ β

The prediction for d = max{dµe, bmin} occurs with certainty and, thus, the reliability
requirement is fulfilled.

• Completeness: The completeness requirement is proved, if we show that for any obser-

vation x ∈ X (D) = {x | a ≤ x ≤ bup} there is at least one prediction A
(β)
max X({d}) with

x ∈ A
(β)
max X({d}). This is achieved, if we show that the union of all predictions cover the

entire range of variability X (D). For any realistic reliability level β, i.e., a not too small
value, we have:

Q
(l)
Xmax|{d}(β) ≤ µ ≤ max{dµ(d)c, bmin} = d

and thus, from (122) we obtain:

⋃

d∈D
A

(β)
max X({d}) = {x | a ≤ x ≤ bup} = X (D)

• Optimality: The measurement procedure (121) is optimal, because it is a upper bound
measurement procedure and any optimal upper bound measurement procedure is defined
by predictions given by the lower quantile function. •

With (122) the following measurement procedure for maxX is obtained:

C
(β)
maxX ({x}) =

{ {d | max(d, x) ≤ d ≤ d(x)} for d(x) > max(d, x)
{d} for d(x) ≤ max(d, x)

where d(x) is obtained as the solution of the following equation:

Q
(`)
Xmax|{d(x)}} (β) = x

Remark on Extreme Value Theory

In order to cope with the problem to determine the extreme values (smallest and largest values)
a random variable may adopt, the so-called extreme value theory has been developed. However,
in contrast to the here proposed method to measure an extreme value by an upper or lower
bound directly by means of a stochastic measurement procedure, extreme value theory looks at
the limiting distributions of extreme values within a sample. The main result in extreme value
theory is due to the Russian mathematician Boris V. Gnedenko11, who in 1943 showed that the
limiting distribution, if it exists, has one of three possible forms. The here proposed method
gets by without asymptotics and avoids the difficulty to judge how much the limit departs from
reality. Therefore, stochastic measurement procedures for determining the smallest or largest
values of a range of variability of a random variable should at least in some instances replace
the methods based on extreme value theory. Particularly, for safety-related situations, where a
violation of a limit might lead to a catastrophe, one should not rely on asymptotic developments,
but on a model that is derived using only the available knowledge about the situation and which
guarantees the required reliability level. Moreover, the here proposed procedures are adaptable
to new experience and the results may thus improved with each new observation.

11Gnedenko, B.V. (1943): Les extreêmes des distributions statistiques. Ann. Inst. H. Poincaré 5, 115–158.
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Examples

1. Constant Probability Distribution

Let X be a random variable with a constant probability distribution and known minimum
a = 0 of the range variability and unknown value maxX of the maximum. As to the max-
imum, a global upper bound is known and given by bup = 150 and a global lower bound
is given by blow = 30, i.e., it is known that 30 ≤ maxX ≤ 150. The measurement proce-
dure shall meet the reliability specification given by β = 0.999. Finally, the measurement
experiment shall consist of n = 100 independent copies of X.

The initial ignorance space with respect to D = maxX is given by:

D = {d | 30 ≤ d ≤ 150}
it shall be reduced by the measurement procedure C

(β)
maxX .

The β-measurement procedure C
(0.999)
maxX is defined by a prediction procedure given by the

following predictions:

A
(0.999)
Xmax

({d}) =

{ {
x |Q(`)

Xmax|{d}(0.999) ≤ x ≤ d
}

for 30 < d ≤ 150

{x | 0 ≤ x ≤ 30} for d = 30

In order to derive the prediction procedure A
(0.999)
Xmax

, the lower quantile function of Xmax|{d}
has to be known, which is no problem here, since the distribution function of X|{d} is
given by:

FX|{d}(x) =
x

d
for 0 ≤ x ≤ d

With FX|{d}, the probability distribution of PXmax|{d} is immediately obtained. Sub-

sequently, the corresponding value Q
(`)
Xmax|{d}(0.999) of the lower quantile function of

Xmax|{d} is calculated by means of the survival function of Xmax|{d} given by:

FXmax|{d}(x) = 1−
(x

d

)100

(123)

The survival function yields the following lower quantile function:

Q
(`)
Xmax|{d}(p) = d(1− p)

1
n

Hence, for 30 < d ≤ 150 we obtain:

A
(0.999)
Xmax

({d}) =
{

x |Q(`)
Xmax|{d}(0.999) ≤ x ≤ d

}

=
{

x | 0.001
1

100 d ≤ x ≤ d
}

Note that the predictions for obtaining an upper bound measurement procedure for maxX
are lower bound predictions, while the predictions for determining a lower bound mea-
surement procedure for minX were upper bound predictions.
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Figure 1: Predictions A
(0.999)
Xmax

({d}) for
30 < d ≤ 150

From the predictions, the measurement procedure is immediately obtained:

C
(0.999)
maxX ({x}) =

{
d | x ≤ d ≤ x

0.001
1

100

}

For example the observation x = 67 yields the following measurement interval for the
upper bound maxX of the range of variability of the considered random variable X:

C
(0.999)
maxX ({67}) = {d | 67.0 ≤ b ≤ 71.8}

2. Binomial Distribution

This example shall not illustrate the procedure introduced in Learning Unit 2.3.12, but
show that the problem of measuring maxX may occur in situations, which can hardly be
handled by extreme value theory. However, even then it is possible to solve the problems
by applying the same principles given in this learning unit.

Consider n identical units, which operate during one time unit independently of each
other. Each of them fails during the time with a certain probability. Assume that the
number n of units is unknown, except for the fact that it is larger than 400 and smaller
than 500.

The number of units shall be determined by means of a stochastic measurement procedure.
The measurement experiment is to have the units operate one time unit and observe the
number of failed units X, which is binomial distributed with parameters n and p. Assume
that it is known that the value of the failure probability of a unit is at least 0.05 and at
most 0.06.

The Pair of Variables (X, D)

The observational random variable X is defined as follows:

X = number of failed units
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The deterministic variable D determines the distribution of X, which is binomial. Thus,
the following two-dimensional deterministic variable is obtained:

D = (D1, D2)

with
D1 = number of operating units
D2 = probability of failure

Bernoulli Space BX,D

The three components of the Bernoulli Space are as follows:

D = {(n, p) | 400 ≤ n ≤ 500 , 0.05 ≤ p ≤ 0.06}
X ({(n, p)}) = {0, 1, . . . , n}
P({(n, p)}) = PX|{(n,p)} with X|{(n, p)} ∼ Bi(n, p)

Measurement Procedure

The measurement procedure is based on a prediction procedure A
(β)
X , which assigns to

each element of an appropriate system TD(D) of subsets of D an event, which will occur
with a probability not falling short of β.

The system of subsets TD(D) is given by the following elements:

Dn = {(n, p) | 0.05 ≤ p ≤ 0.6} for n = 400, 401, . . . , 500

Because the upper bound of X shall be determined, the predictions have the following
form:

A
(β)
X (Dn) =

{
x | q(β)

n ≤ x
}

where q
(β)
n is determined so that the corresponding prediction meets the reliability condi-

tion:

PX|{d}
(
A

(β)
X (Dn)

)
≥ β for d(n, p) ∈ Dn

Once the predictions are available, the measurement procedure is given by:

C
(β)
D1

({x}) =
{

n |x ∈ A
(β)
X (Dn)

}

Prediction Procedure A
(β)
X

The prediction procedure A
(β)
X assigns to each possible value of n a prediction. The deriva-

tion of the prediction procedure is difficult, because of the ignorance with respect to the
failure probability p. However, the problem can be solved by means of the computer al-
gebra system Stochastikon Calculator. The desired predictions calculated by Stochastikon
Calculator are displayed in Table 1 below.
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Dn A
(0.9)
X (Dn)

{(n, p) |n = 400, 0.05 ≤ p ≤ 0.06} {x | 0 ≤ x}
{(n, p) |n, 0.05 ≤ p ≤ 0.06} for 401 ≤ n ≤ 422 {x | 15 ≤ x}
{(n, p) |n, 0.05 ≤ p ≤ 0.06} for 423 ≤ n ≤ 445 {x | 16 ≤ x}
{(n, p) |n, 0.05 ≤ p ≤ 0.06} for 446 ≤ n ≤ 470 {x | 17 ≤ x}
{(n, p) |n, 0.05 ≤ p ≤ 0.06} for 471 ≤ n ≤ 491 {x | 18 ≤ x}
{(n, p) |n, 0.05 ≤ p ≤ 0.06} for 492 ≤ n ≤ 500 {x | 19 ≤ x}

Table 1: Predictions A
(0.9)
X (Dn) for n = 400, 401, . . . , 500

With Table 1, the measurement procedure for an upper bound of the number of units is immediately
obtained:

x C
(0.9)
D ({x}

x ≤ 15 C
(0.9)
D ({x}) = {400}

15 C
(0.9)
D ({15}) = {n | 400 ≤ n ≤ 422}

16 C
(0.9)
D ({16}) = {n | 400 ≤ n ≤ 445}

17 C
(0.9)
D ({17}) = {n | 400 ≤ n ≤ 470}

18 C
(0.9)
D ({18}) = {n | 400 ≤ n ≤ 491}

19 C
(0.9)
D ({19}) = {n | 400 ≤ n ≤ 500}

x ≥ 20 C
(0.9)
D ({x}) = {500}

Table 2: Measurements C
(0.9)
D ({x}) for x = 0, 1, . . . , 500

If, for example, x = 17 failures are observed, then the measurement result is given by

C
(0.9)
D ({17}) = {n | 400 ≤ n ≤ 470}

and we conclude that there were not more than 470 units.
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EXCLUSION PROCEDURES APPLICATION

Module 2.4: Exclusion Procedures

Content and Aim of the Module Exclusion Procedures

The significance test constitutes the most fre-
quently used statistical method. This fact
must surprise as significance tests are rather
inefficient as they use only partially the infor-
mation provided by a random process. More-
over, the result of an significance test is often
misunderstood and misinterpreted.

The following entry can be found in the well-known Encyclopedia of Statistical Sciences:

A satisfactory significance test must (1) stipulate a suitable hypothesis of chance,
(2) find a test statistic to rank possible experimental outcomes, (3) determine the
level of significance of the experimental outcome from the test statistics probability
distribution, and (4) reject or fail to reject the hypothesis of chance. The history of
significance tests may be viewed as a concerted effort to construct tests that satisfy
these criteria. Much controversy remains today over the degree to which tests can
and do satisfy these four criteria.

This citation indicates some fundamental difficulties with significance tests. One of the reasons
for these difficulties is the fact that not the aim of a significance test is stated, but only four
vague properties. Accordingly a test is based on a hypothesis, however, what is the meaning of
a hypothesis of chance and what justifies the ordering provided by the test statistics?12

This learning unit introduces the stochastic analogue of a (statistical) significance test, which
is called exclusion procedure. An exclusion procedure is imbedded into a Bernoulli Space, and
starts with formulating its purpose allowing to deduce necessary and desirable properties.

The aim of this module is threefold:

• The module introduces and explains a stochastic procedure for reducing the ignorance
space by excluding a certain specified part of it.

• The second aim of the module is to enable a better understanding of statistical significance
tests.

• Passing this module should enable to successfully apply the exclusion procedures provided
by Stochastikon Calculator for solving related problems in an optimal way.

In contrast to significance tests, which are mainly restricted to null-hypotheses given as single-
tons, exclusion procedures can be applied to any subset of the ignorance space. Moreover, the
result of an exclusion procedure is given in a way that any misinterpretation is hardly possible.

This module provides not only a clarification of the role of significance tests and their weak-
nesses, but also offers an alternative which is developed on a clear and sound basis.

References

[1 ] Kotz, S. and Johnson N.L. (Eds.) (1988): Encyclopedia of Statistical Sciences, Vol. 8,
p. 466.

12Question posed by Jerzy Neyman cited according to the Encyclopedia of Statistical Sciences, Vol. 8, p. 469.
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Unit 2.4.1: Exclusion Procedure and Measurement Procedure

Target

In this learning unit the difference be-
tween a stochastic measurement proce-
dure and a stochastic exclusion proce-
dure is shown. Both procedures have
in common that they aim at reducing
the ignorance space. However, a mea-
surement procedure yields the largest
reduction, while in case of an exclusion
procedure the desired reduction is spec-
ified beforehand.

Content

Introduction

There are situations, when the actual value d0 of a deterministic variable D is not of primary
interest, but one wants to prove that the actual value d0 is not an element of a specified subset
D0 of the ignorance space D.

In such a situation an exclusion procedure may be applied instead of a measurement procedure.
An exclusion procedures answers only the question whether the subset D0 can be excluded or
not. It does not at all aim at determining the unknown value d of D as precisely as possible.

An exclusion procedure consists of an random process which yields an observation and a stochas-
tic procedure which answers the question whether or not D0 may be excluded.

The process to be performed is related to the pair of variables (X, D), with X being the random
variable which will be observed, and D the deterministic variable. The exclusion procedure aims
at showing that the actual value of D is not an element of D0.

The stochastic model of the process represented by (X,D) is given by the corresponding
Bernoulli Space BX,D. If the evaluation of the observed value x results in an exclusion of D0

and, hence, in an reduction of the ignorance space, then the procedure was applied successful,
otherwise it was a failure.

In the following section it is shown, how a given measurement procedure can be utilized for
excluding D0.

Measurement Procedure as Exclusion Procedure

A measurement procedure aims at reducing as much as possible the given ignorance space, i. e.,
the measurement process shall be utilized in an optimal way to learn about the unknown value
of the deterministic variable.

Any β-measurement procedure C
(β)
D is based on a β-prediction procedure A

(β)
X defined for each of

the potential values d of the deterministic variable D. After having performed the measurement
experiment resulting in an observation x, each value d of D is abandoned from the ignorance

space, for which the respective prediction A
(β)
X ({d}) does not contain the observed value x. The

β-prediction procedure is selected so that:
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• the reliability requirement for the measurement procedure is met,

• the completeness of the measurement procedure is given, and

• the measurement results are on an average most precise.

Let the set to be excluded denoted by D0 and let the measurement result be given by C
(β)
D ({x}).

If
D0 ∩ C

(β)
D ({x}) = ∅

holds, then none of the predictions A
(β)
X ({d}) for d ∈ D0 contains the observation x and,

therefore, the set D0 can be excluded. Exactly this is the aim of an exclusion procedure. If the
subset D0 can be excluded, one obtains the reduced ignorance space D \ D0.

If D0 can be excluded on the basis of the measurement result, the measurement procedure
allows to exclude additionally the following part of the ignorance space:

C
(β)

D ({x} \ D0 (124)

where C
(β)

D ({x}) = D\C(β)
D ({x} is the complement of the measurement result. The measurement

result C
(β)
D ({x} constitutes the new ignorance space, which is generally much smaller thanD\D0.

Note that even if D0 cannot be excluded on the basis of the measurement result, a measurement
procedures yields in general a reduction of the ignorance space. Therefore, a measurement
procedure is more efficient for reducing the ignorance space than an exclusion procedure.

Exclusion Procedure

An exclusion procedure is derived very similar as a measurement procedure. Let D be the
ignorance space and D0 ⊂ D the subset to be excluded on the result of a random process
represented by the random variable X. The exclusion procedure is based on a prediction
procedure and the prediction AX(D0). The hypothesis D0 is excluded, if the observed event
{x} of the random process has not been predicted, otherwise it cannot be excluded.

Reasons for Applying an Exclusion Procedure

The reason for applying an exclusion procedure instead of a measurement procedure has already
been indicated in the introduction. Whenever one does not want to disclose the true value of a
deterministic variable, but only show that it is not an element of a given set, then an exclusion
procedure is indicated.

Such situations occur often in the pharmaceutical industry, when a new medicine shall be
introduced. Then the aim is to prove that the new medicine is more effective than the old one,
but often not to disclose the true value of the effectiveness.

Example

1. Marketing Campaign

A company that makes Brand B laundry detergent knows that the proportion of house-
wives favoring Brand B over all other detergents is p = 0.20. For increasing the proportion
the marketing department launched an intensive and costly advertising campaign. In or-
der to show the success of the campaign, it was decided to apply a β-exclusion procedure
with β = 0.90 for excluding the set D0 = {p | p ≤ 0.2}.
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By random, n = 300 housewives are to be selected and asked about their favorite laundry
detergent. The variable of interest is the number of housewives in favor of Brand B.

The process represented by the questionnaire is modelled by a Bernoulli Space with ran-
dom structure given by the binomial distribution and with the deterministic variable given
by the success probability, which equals the proportion of housewives favoring Brand B.
A suitable exclusion procedure is offered by Stochastikon Calculator.

The questionaire was performed and re-
sults in x = 72 housewives favoring
Brand B. Inserting the input-values
into the corresponding exclusion proce-
dure of Stochastikon Calculator leads to
an exclusion of D0 = {p | p ≤ 0.2} and,
thus, proving the success of the adver-
tisement campaign.

Figure 1: Housewife filling a
questionnaire.

The graphical representation of the corresponding exclusion procedure is readily obtained
by the Graphical Laboratory. In Figure 1 the prediction AX(D0) in case D0 is highlighted
in dark blue. As can be seen the observation represented by the red line does not cross
the prediction and, therefore, the set D0 can be excluded.

Figure 1: Graphical representation of the stochastic
exclusion procedure for the set D0 = {p | p ≤ 0.2}

The company’s management decides to get more detailed information about the new
situation by applying a 0.90-measurement procedure, which is also offered by Stochastikon
Calculator. The 0.90-measurement procedure yields the following result:

C
(0.90)
D ({72}) = {p | 0.21 ≤ p ≤ 0.28}
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Based on this result management can judge the effects of the advertisement better, since
the result not only shows that the marketing campaign was successful, but it also quantifies
the success. Thus, the measurement result provides a sound basis for any decisions with
respect to Brand B.

The graphical representation of measurement procedure used for getting the above result
can easily be generated by the Graphical Laboratory:

Figure 2: Graphical representation of the stochastic

measurement C
(0.90)
D and the measurement result

C
(0.90)
D ({72})
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Unit 2.4.2: β-Exclusion Procedure

Target

The aim of a exclusion procedure is to
reduce the ignorance space D by show-
ing that a given subset D0 ∈ TD(D)
can be excluded, thus reducing the ig-
norance space to D \D0. In this learn-
ing unit the reliability level β for an
exclusion procedure is introduced and
it is shown how the corresponding pro-
cedures are derived.

Content

Introduction

A β-exclusion procedure on the basis of an exclusion process may be used for excluding a
specified subset D0 of the ignorance space D of a certain deterministic variable D. An exclusion
procedure is given by a decision procedure ϕ with two possible outcomes, namely to exclude or
not exclude the given subset D0 ⊂ D. If the decision function adopts the value 1, the set D0 is
excluded, if the value 0 is adopted, D0 is not excluded.

An exclusion procedure defined on a set of subsets TD(D) of the ignorance space is called β-

exclusion procedure denoted ϕ
(β)
D0

, if the probability of a correct decision when applied is at
least β.

The decision to exclude a considered subset D0 ∈ TD(D) means to reduce the ignorance space
from D to D \D0 and, clearly, the decision is wrong, if the true value of D is an element of D0.

The decision not to exclude D0 means that no reduction of the ignorance space D is made and
this decision is, of course, always correct. However, not to exclude D0 represents a failure of the
attempt to exclude D0. Consequently, a false decision can happen only in case of an exclusion,

i. e., in case the decision function ϕ
(β)
D0

adopts the value 1.

The exclusion process is modelled by a Bernoulli Space BX,D, where X represents the variable
to be observed and D the deterministic variable related to the set D0 to be excluded. The
Bernoulli Space enables the development of prediction procedures, which are necessary for

deriving the required exclusion procedure ϕ
(β)
D0

.

Formal Representation

An exclusion procedure is given by a decision function ϕD0 :

ϕD0 :
{
{x} | x ∈ X (D)

}
→ {0, 1} (125)

with the following meaning:

ϕD0({x}) = 1 ⇒ D0 can be excluded and D \ D0 is accepted
ϕD0({x}) = 0 ⇒ D0 cannot be excluded and D is maintained

(126)

Thus, a false decision occurs if:

ϕD0({x}) = 1 for d ∈ D0
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In order to have the probability of a correct decision, when applying the exclusion procedure,
sufficiently high, a reliability specification is set by means of the reliability level β. An exclusion
procedure meets the reliability level β, if the probability for a correct decision is at least equal
to β.

An exclusion procedure meeting the reliability specification is called β-exclusion procedure

denoted ϕ
(β)
D0

. The probability of a wrong decision is smaller then 1− β:

• PX|{d} ({x |ϕD0({x}) = 1}) < 1− β for d ∈ D0

From the above we obtain the following probabilities of correct decisions:

• Case 1: d ∈ D0

A correct decision is made if ϕD0({x}) = 0 with probability:

PX|{d} ({x |ϕD0({x}) = 0}) ≥ β

• Case 2: d ∈ D \ D0

In this case either of the two possible decisions is correct. Thus:

PX|{d} ({x |ϕD0({x}) ∈ {0, 1}}) = 1

β-Exclusion Procedure for D0

A β-exclusion procedure refers to the past which is represented by the deterministic variable
D. Hence, exclusion procedures are members of the measurement class of procedures.

Analogous to β-measurement procedures, it is based on a β-prediction procedure with respect
to the outcome of the exclusion process X.

A
(β)
X : TD(D) → TX(X (D) (127)

where the system of subsets TX(X (D)) is not the system of singletons as in the case of a
measurement procedure, but the system containing only one element namely D0. Exactly this
is the characteristic difference between a measurement procedure and an exclusion procedure.
A measurement procedure has the highest possible resolution expressed by the domain of the
corresponding prediction procedure, consisting of all the singletons of D. The domain of the
prediction procedure of a exclusion procedure for D0 is the system of subsets which contains
only one element, namely D0, i.e.:

TD(D) = {D0} in case of an exclusion procedure fro D0

The β-prediction procedure for a β-exclusion procedures is therefore completely specified by
one prediction:

A
(β)
X (D0)

Once a β-prediction A
(β)
X (D0) is available, the decision function ϕ

(β)
D0

is obtained in a straight-
forward manner:

ϕD0({x}) =

{
0 for x ∈ A

(β)
X (D0)

1 for x /∈ A
(β)
X (D0)

(128)
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The set D0 is excluded, if the observed event {x} is not a subset of the predicted event A
(β)
X (D0).

If the observation falls into the prediction, the set D0 can, of course, not be excluded.

A Note on Significance Tests

In many significance tests the set to be excluded is a singleton. However, generally a continuous
approximation for the deterministic variable D is used, and excluding one single point and
admitting all adjacent neighbors makes therefore no sense at all.

This is the reason that Stochastikon Calculator does not accept such a situation (continuous
deterministic variable D, singleton to be excluded) and will record an error.

Example

1. Pharmaceutics

Exclusion procedures (as given by significance tests – see Learning Unit 2.4.5) – are the
most frequently used stochastic methods in the pharmaceutics. Whenever a new drug
shall be put on market, it has to be proved that it is more effective than an already
existing one.

Let the efficacy of the drugs been given by the probability of being effective with the
following ignorance spaces for the old and the new drug:

old drug: D0 = {p | p ≤ p0}
new drug: D = {p | p ≤ p1}

Because of the experience with the old drug, the value p0 is generally known, while the
value p1 is only anticipated to be larger than p0. In order to prove that the new drug is
actually more efficient than the old one, it is necessary to show that D0 can be excluded
from the ignorance space D with respect to the new drug.

The exclusion experiment consists of administering the new drug to a set of n more or
less equal patients. Thus, the exclusion experiment represents a Bernoulli-chain of length
n. The number of successes Xn among the n trials has a binomial probability distribution
with a two-dimensional deterministic variable D = (D1, D2) with:

D1 = number of trials
D2 = success probability

The resulting Bernoulli Space is the so-called Binomial Bernoulli Space, which is covered
by Stochastikon Calculator. Assume here the following case:

Number of trials: n = 50
Ignorance space with resepect to the success probability of new drug:
D = {p | p ≤ 0.85}

Ignorance space with respect to the success probability of old drug:
D0 = {p | p ≤ 0.55}

Required reliability level: β = 0.95

Entering the above input values into Stochastikon Calculator yields the following β-
prediction for D0:

A
(0.95)
Xn

(D0) = {x |x ≤ 33}
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and, hence, the following decision function with respect to D0 is obtained:

ϕ
(β)
D0

({x}) =

{
1 if x ≥ 34
0 if x ≤ 33

The exclusion process is performed and yields x = 45 successes.

Inserting the number of successes into ϕ
(β)
D0

({x}), yields the following decision:

ϕ
(β)
D0

({45}) = 1

i. e., the set D0 may be excluded showing that the new drug is superior to the old one.
The graphical representation of the above derived exclusion procedure is given in Figure 1.
The prediction area for D0 is highlighted in dark blue, while the observation is represented
by the red line. Because the line does not cross the prediction area, the set D0 is excluded.

Figure 1: Graphical representation of the exclusion

procedure ϕ
(0.95)
D0

.
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Unit 2.4.3: Optimum β-Exclusion Procedure

Target

In the previous learning unit the relia-
bility specification for exclusion proce-
dures has been introduced, which rep-
resents a necessary side condition.

In this learning unit a natural objective
function for β-exclusion procedures is
derived and optimal β-exclusion proce-
dures are defined meeting the reliability
requirement.

Content

The Mean Exclusion Probability

A β-exclusion procedure ϕ
(β)
D0

aims at excluding a subset D0 of the ignorance space D on
condition that the probability of a correct decision is not less than the reliability level β. There
are two possibilities of a correct decision:

1. The exclusion fails and the given ignorance space is maintained.

2. The set D0 is excluded from the ignorance space for d ∈ D \ D0.

The search for an optimal exclusion procedure is restricted on the set of β-exclusion procedures,
i. e., those procedures which meet the reliability side condition. The procedure’s reliability is
taken care of by the side condition and, thus, it needs not be considered by the objective
function.

Any β-exclusion procedure which leads more frequently to the desired exclusion than another
β-exclusion procedure will be judged as being the better one.

In other words, a β-exclusion procedure with a higher probability of exclusion is better than
one with a lower exclusion probability. The problem is that the exclusion probability of any set
D0 ∈ TD(D) depends on the unknown value d ∈ D of the deterministic variable D. Therefore,
not the exclusion probability for a given d can be selected as objective function, but the mean
exclusion probability, with the mean taken over all the possible values of d ∈ D.

Let the ignorance space consists of N elements, i. e., D = {d1, . . . , dN}. Let the actual value of
the deterministic variable D be given by di. Then, the exclusion probability for D0 is equal to
the probability that an observation x will be made, which is not an element of the corresponding

prediction A
(β)
X (D0). The exclusion probability may also be represented by the first moment of

the corresponding decision function ϕ
(β)
D0

:

EX|{di}
[
ϕ

(β)
D0

]
= PX|{di}

(
{x ∈ X (D) |x /∈ A

(β)
X (D0)}

)
(129)

= PX|{di}
(
{x ∈ X (D) |ϕ(β)

D0
({x}) = 1}

)
(130)

In case the actual value di is not known, the mean exclusion probability for the entire ignorance
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space denoted by EX|D
[
ϕ

(β)
D0

]
must be considered. It is given as follows:

EX|D
[
ϕ

(β)
D0

]
=

1

|D|
∑

di∈D
PX|{di}

(
{x ∈ X (D) |x /∈ A

(β)
X (D0)}

)

=
1

N

N∑
i=1

PX|{di}
(
{x ∈ X (D) |ϕ(β)

D0
({x}) = 1}

)
(131)

If a continuous approximation is used, the sum is replaced by the corresponding integral.

The Optimality Criterion

The aim of a β-exclusion procedure is to exclude a specified element of TD(D) based on an
exclusion experiment. Thus, the quality of a β-exclusion procedure is determined by its success
probability. Because the actual value of the deterministic variable and hence the actual prob-
ability distribution is unknown, the mean success probability is taken as optimality criterion.

A β-exclusion procedure ∗ϕ(β)
D0

is called optimal, if

EX|D
[
∗ϕ(β)

D0

]
= max

ϕ
(β)
D0

EX|D
[
ϕ

(β)
D0

]
(132)

Remarks:

• Note that the optimality criteria directly reflects the objective of an exclusion procedure
taking into account that the actual value of the deterministic variable D is unknown.
Thus, whatever situation with respect to d is the true one, the procedure will perform
well.

• Note also that the optimality criterion does not take into account the correctness of
decisions, since this is done by the reliability requirement, which is specified by the user
and which represents an admissible risk of 1− β for making a wrong decision.

Optimality Criteria of Significance Tests

A significance test refers to a so-called null hypothesis, which sometimes goes along with a so-
called alternative hypothesis. The aim is often not mentioned clearly. However, safeguarding by
means of the significance level α refers only to the case of a wrongly rejected null hypothesis.
Therefore, the null hypothesis may be regarded as the set D0 within an (1 − α)-exclusion
procedure aiming at excluding D0 on the condition of the reliability level β = 1 − α. By the
way, erroneously rejecting the null hypothesis is called the Type I Error in statistics.

The generally used optimality criterion for significance tests is its power, which is based on
the so-called Type II Error. This error is defined as the probability of not excluding the null
hypothesis on the condition that d 6∈ D0.

Evidently, the Type II Error is not a decision error, because the decision not to exclude D0

only means to maintain the given ignorance space D which is correct by assumption.

The Type II Error refers to the failure of the procedure due to a too small sample size n. The
power of a test is given by the probability of not committing a Type II Error and, therefore,
depends heavily on the unknown actual value d of the deterministic variable.
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Note that the correctness of a decision and a failure of the procedure are two very different
things, which should not be confused. Putting the Type I Error side by side to the Type II
Error must almost necessarily lead to misunderstandings and misinterpretations. Particularly,
an exclusion procedure just as a significance test is not able to classify a given situation to one
of two or more alternatives, which would make a Type II Error meaningful.

The frequent misuse of significance tests is illustrated by the following citation13:

Because SSTs (statistical significance tests) have been so frequently misapplied, some
reflective researchers (e.g. Carver, 1978; Meehl, 1978; Schmidt, 1996; Shulmann,
1970) have recommended that SSTs be completely abandoned as a method for eval-
uating statistical results. In fact Carver (1993) not only recommended abandoning
statistical significance testing, but referred to it as a “corrupt form of the scientific
method” (p. 288).

Example

1. Gambling

The exclusion procedures used in the examples of the previous learning units were already
optimum exclusion procedures. Here the concept shall be illustrated by a series of games
of chance (e.g. throwing a coin), where each of the two participants A and B win with
probability p = 0.5.

A and B play a number of games, but at the end this number has not be documented;
however, player A knows exactly that he has won x = 45 times. B insists that they have
played at least 120 time but not more than 140 times. A believes that they played less
than 120 times, but at least 100 times. In order to answer the question, A decides to use
a stochastic exclusion procedure in order to exclude the claim D0 = {n | 120 ≤ n ≤ 140}.
The situation is quantified in the following way:

Pair of variables:
X = number of successes of A
D = number of games

(133)

Bernoulli Space:

D = {n | 100 ≤ n ≤ 140}
X ({n}) = {0, 1, 2, . . . , n}
P({n}) = PX|{n} with X|{n} ∼ Bi(n, 0.50)

(134)

The aim is to exclude the setD0 = {n | 120 ≤ n ≤ 140} by means of an exclusion procedure

ϕ
(0.90)
D0

. The result of the exclusion process is x = 45. The optimal decision function is
obtained by the Stochastikon Calculator:

ϕ
(0.90)
D0

({45}) = 1 (135)

i. e., the set D0 is excluded from the ignorance space.

By means of the Graphical Laboratory the following representation of the exclusion pro-
cedure is obtained:

13Larry G. Daniel (1998): Statistical Significance Testing: A Historical Overview of Misuse and Misinterpretations
with Implications for the Editorial Policies of Educational Journals. Research in Schools 5, 23-32.
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Figure 1: Graphical representation of the stochastic

exclusion procedure ϕ
(0.90)
D0

for
D0 = {n ∈ N | 120 ≤ n ≤ 140}
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Unit 2.4.4: Graphical Representation

Target

A β-exclusion procedure is to some ex-
tent comparable with a significance test
on significance level α = 1 − β. This
learning unit aims at illustrating aim
and mode of operation of a β-exclusion
procedure by means of a graphical rep-
resentation, which also can be used for
illustrating significance test and their
results.

Content

Introduction

Actually, a β-exclusion procedure is one of the simplest stochastic procedures, which can be

seen from the fact that the domain of ϕ
(β)
D0

consists of one element {D0} and the codomain of
only two element namely {0, 1}.
Nevertheless, it seems to be indicated to explain an exclusion procedure by means of a graphical
representation, because of the frequent malpractice of significance tests in all fields of appli-
cations and the fact that statistical significance tests and stochastic exclusion procedures are
relatively similar.

The graphical representation will be restricted to the case that the random structure is given
by a binomial probability distribution.

The Binomial Case

The general problem is to exclude a certain part D0 of a given ignorance space D with respect
to a deterministic variable D based on an exclusion process described by the random variable
X.

Let the deterministic variable D be defined as the probability of a certain event. In this case
the exclusion process consists of n independent repetitions of the process in question with X
being the number of times the specified event will occur.

Let n = 130 be the number of repetitions, and consider the case that from past experience it
is known that the probability of occurrence of the certain event is positive but does not exceed
the value 0.5. Then the pair of variables is given as follows:

X = number of successes

D = (Dn, Dp)

with

Dn = number of repetitions

Dp = probability of the specified event
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The Bernoulli Space BX,D for (X, D) is given by

D = {130, p) | 0 < p ≤ 0.5}
X ({(130, p)}) | = {0, 1, . . . , 130} for (130, p) ∈ D
P({(130, p)}) = PX|{(130,p)} with X|{(130, p)} ∼ Bi(130, p)

The problem is to exclude the set D0 = {p | 0 < p ≤ 0.2} by a β-exclusion procedure with
β = 0.95.

The optimal β-exclusion procedure is given by a prediction A
(β)
X|D0

, which maximizes the mean

exclusion probability.

Graphical Representation

The graphical representation should refer to the involved sets and points. Thus, it should
include the ignorance space Dp with respect to p, the subset to be excluded D0, the prediction

A
(β)
X|D0

and finally the realization x indicating whether D0 can be excluded or not. Below, the

graphical representation for the special case given above is displayed.

The abscissa refers to the deterministic variable D. The elements of the ignorance space
(0 < p ≤ 0.5) are marked in light blue. The ordinate refers to the outcome x of the exclusion
experiment and runs from 0 to 130.

The uncertainty space is given by the light blue area in the (p, x)-plane:

UX,Dp = {(p, x) | 0 < p ≤ 0.5, x ∈ N, 0 ≤ x ≤ 130}

The set D0 = {p | 0 < p ≤ 0.2} to be excluded is marked dark blue on the abscissa. While the

optimal prediction A
(β)
X (D0) = {x | 0 ≤ x ≤ 34} is indicated by the dark blue area D0×A

(β)
X (D0).

Figure 1: The set D0 × A
(β)
X (D0) within the uncertainty space
UX,Dp .
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If the line {(p, x0) | 0 < p ≤ 0.2} where x0 denotes observation of the exclusion process has no
common element with the above direct set product, then D0 can be excluded.

The observation x0 = 81 is indicated by the corresponding horizontal line in the uncertainty
space. If this line would cross the dark blue area, then it would not be possible to exclude D0,
otherwise it can be excluded.

In the example the observation lies far outside of the prediction A
(β)
X (D0) and, therefore, the

set D0 can be excluded.

Example

1. Uncertainty Space and Prediction

An exclusion procedure is given by an decision function ϕ
(β)
D0

, where D0 constitutes the
subset of the ignorance space, which shall be excluded, while β represents the reliability
level of the stochastic procedure.

The decision is based on a prediction for the set of initial conditions D0. If the predicted
event actually occurs, the exclusion procedures results in a failure and D0 cannot be
excluded.

However, if the predicted event does not occur, then D0 can be excluded and the procedure
results in a success.

The graphical representations shows the uncertainty space with the horizontal axes re-
served for the deterministic variable and the vertical axes for the random variable. The set
D0 and the predicted event A

(β)
X (D0) form a rectangle in the uncertainty space. The obser-

vation of the exclusion experiment is represented by a red line; if it crosses the rectangle
representing the prediction, the set D0 cannot be excluded, otherwise it can.

In the following some exclusion procedures are illustrated by their graphical representa-
tions:

(a) Pair of variables:

X = number of successes among n = 65 trials
D = success probability

(136)

Bernoulli Space:

D = {p | 0.50 ≤ p ≤ 0.80}
X ({p}) = {0, 1, 2, . . . , 65}
P({p}) = PX|{p} with X|{p} ∼ Bi(65, p)

(137)

Problem:
The subset D0 = {p | 0.60 ≤ p ≤ 0.70} shall be excluded from the ignorance space D
by means of an exclusion procedure with reliability level β = 0.80.

Graphical Representation:
Let the exclusion process yield the observation x = 25, then Figure 2 is produced by
the Graphical Laboratory, it displays the following quantities:

• The ignorance space D is displayed on the horizontal axes.
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• The range of variability X (D) is displayed on the vertical axes.

• The entire uncertainty space is highlighted in light blue.

• The rectangle D0 × A
(β)
X (D0) is highlighted in dark blue.

• The observation x = 25 is represented by the red line.

Figure 2: Graphical representation of an exclusion
procedure and the observation x = 25.

The set D0 is excluded, because the red line does not cross the dark blue area, i. e.,
the exclusion function adopts the value 1:

ϕ
(0.80)
D0

({25}) = 1 (138)

(b) Let the exclusion experiment yield the observation x = 40, then the following graph
is produced by the Graphical Laboratory:

Figure 3: Graphical representation of an exclusion
procedure and the observation x = 40.

In this case it is not possible to exclude D0, because the red line crosses the dark blue

area, i. e., the prediction. In other words the prediction A
(0.80)
X (D0) actually occurred

and, thus, D0 cannot be excluded:

ϕ
(0.80)
D0

({40}) = 0 (139)
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Unit 2.4.5: Exclusion Procedure and Significance Test

Target

A significance test with significance
level α = 1− β and null hypothesis H0

can be regarded as a special β-exclusion
procedure for H0 : D0. This learn-
ing unit aims at showing the differences
between a statistical significance test
and a stochastic exclusion procedure.
The comparison shall help to under-
stand the two concepts and facilitate
their correct application.

Content

Significance Test

The introduction of a statistical significance test in textbooks does in general nor start with
stating the problem to be solved, but with lists of the components of the test (null hypothesis,
applied statistic, significance level, p-value) and a directive what to do in order to perform the
test. The consequence is hat the user often apply the test for solving wrong problems. For
example, in many cases s significance test is used to answer the question, which one of two
specified alternatives with respect to the initial conditions is the true one. Unfortunately, a
significance test i not suitable in this case as the risk of a wrong decision is not controlled and
may be extremely large.

The many misunderstandings of users about significance tests reflect the vagueness of the
professional description of the essentials of a significance test. In order to clarify the situation
the four “criteria” stated in the citation of the Encyclopedia of Statistics given in Learning Unit
2.4.1 shall be looked at from the viewpoint of a stochastic exclusion procedure:

(1) The mentioned “suitable hypothesis of chance” represents a subset D0 ⊂ D, with D of the
ignorance space. Calling the set D0 a “suitable hypothesis of chance” is indeed misleading
as there is no indication of the meaning of “suitable.” Moreover, the meaning of “chance”
is unclear! The set D0 or any other “hypothesis” is fixed, i. e., not at all subject to
randomness or chance. It is also not selected by chance as otherwise it would hardly be
called “suitable”.

(2) The “test statistic” stands for the observational random variable X, which describes the
outcomes of the exclusion process. Why and how X should rank the possible experimental
outcomes, is a disputed matter, as any ranking includes some arbitrariness.

(3) The “level of significance” is the equivalent to (1 − β), i. e., the complement of the reli-
ability level and, therefore, an upper bound for making a wrong decision to exclude D0.
Unfortunately, the Encyclopedia of Statistical Sciences does not explain that a significance
test must not be used in order to confirm D0 as it is often done in practice.

(4) From (4) it can be seen that a significance test is similar to an exclusion procedure, as the
results of a significance test are either to reject (exclude) the null hypothesis, i. e., D0, or
not to reject the null hypothesis, i. e., not to exclude D0.

The only safeguarded aim, which can be reached with a significance test, is to reject the
hypothesis, i. e., to exclude a given subset D0 of the ignorance space D. However, this aim is
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hardly mentioned in any statistical textbooks. Therefore, users apply significance tests having
in mind different aims and do not know that the obtained results are not safe at all.

Exclusion Procedure Versus Significance Test

Despite the similarity, there are some principle differences between a statistical significance test
and a stochastic exclusion procedure.

• One of the striking differences is the fact that nothing is explained clearly with respect
to a significance test. The vagueness starts with its name “test,” which has hundreds
of different meanings. While a β-exclusion procedure is clearly defined by a function
meeting certain side conditions and being the result of optimization with respect to the
aim, a significance test is explained by means of some construction details.

• In a significance test it is often demanded to formulate two hypotheses, the null hypothesis
to be rejected and an alternative hypothesis. This suggest a kind of symmetry between
the two hypotheses, which actually does not exist. In contrast, in a stochastic exclusion
procedure only the set or hypothesis to be excluded (rejected) as an element of a system
of subsets of D has to be specified, which makes misinterpretations more difficult.

• Significance tests are more or less restricted to hypotheses, which uniquely determine the
probability distribution implying that the hypotheses are singletons or can be treated by
means of singletons (one-sided case). Stochastic exclusion procedures are applied for any
hypothesis. Note that excluding only one single value and admitting the values in any
neighborhood of the excluded one makes clearly not much sense.

• Significance tests are generally introduced by means of examples distinguishing between
the small sample case and the large sample case. In contrast, there is a general definition
of stochastic exclusion procedures which covers all distribution functions and all samples
sizes.

• In statistics, there are many approaches for constructing a significance test and defining
good or optimal tests. In contrast, there is only one approach for constructing a stochastic
exclusion procedure, namely by deriving an appropriate prediction procedure.

• While the optimality criteria used for defining “optimal significance tests” are obscure and
hardly connected with the not clearly stated purpose of a significance test, the optimality
criterion for a stochastic β-exclusion procedure is given by the probability of a successful
application of the test, i. e., of the exclusion of D0.

When to Use an Exclusion Procedure

Exclusion procedures aim at reducing the ignorance space. Any measurement procedure has
the same aim. Comparing exclusion procedure and measurement procedure by means of the
degree of reduction of the ignorance space shows that there is always a measurement proce-
dure, which performs at least as well as the exclusion procedure. In other words, using an
exclusion procedure (or a significance test) instead of a measurement procedure is tantamount
of abandoning information being obtained by the experiment.

The reason for the above is simply the better resolution of a measurement procedure with
respect to the set TD(D) which is maximum for a measurement procedure. The better resolution
yields more precise results and, therefore, a measurement procedure is always better than a
exclusion procedure with respect to the achieved precision.
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An exclusion procedure might be of advantage, if it is not intended to reveal the true value of
the deterministic variable D, but only wants to show that it is not an element of a “critical”
set of values.

Examples

The following example of a significance test is taken from Statistics Tutorial on Significance
tests which available in internet (http://stattrek.com/Lesson5/HypothesisTesting.aspx).
The example shall illustrate the methodology as well as the the terminology used in statistical
hypothesis testing. Subsequently, the same example is formulated and solved by means of
Bernoulli Stochastics.

1. Statistical Significance Test

The CEO of a large electric utility claims that at least 80 percent of the company’s
1,000,000 customers are very satisfied. 100 customers are surveyed using simple ran-
dom sampling. The result: 73 percent are very satisfied. Based on these results, should
we accept or reject the CEO’s hypothesis? Assume a significance level of 0.05.

Solution: The solution to this problem takes four steps: (1) state the hypotheses, (2)
formulate an analysis plan, (3) analyze sample data, and (4) interpret results. We work
through those steps below:

• State the hypotheses. The first step is to state the null hypothesis and an alternative
hypothesis.

Null hypothesis: P ≥ 0.80
Alternative hypothesis: P < 0.80

Note that these hypotheses constitute a one-tailed test14. The null hypothesis will be
rejected only if the sample proportion is too small.

• Formulate an analysis plan. For this analysis, the significance level is 0.05. The test
method, shown, is a one-sample z-test15.

• Analyze sample data. Using sample data, we calculate the standard deviation (σ) and
compute the z-score test statistic (z).

σ =

√
P (1− P )

n
=

√
0.8 · 0.2

100
=
√

0.0016 = 0.04

z =
p− P

σ
=

0.73− 0.80

0.04
= −1.75

where P is the hypothesized value of population proportion in the null hypothesis, p
is the sample proportion, and n is the sample size.

Since we have a one-tailed test, the P -value is the probability that the z-score is less
than -1.75. We use the Normal Distribution Calculator to find P (z < −1.75) = 0.04.
Thus, the P -value = 0.04.

14The “one-tailed” situation is deliberately selected here, because the “two-tailed” situation leads to a singleton as
null hypothesis, which makes hardly any sense.

15The z-test is explained as follows: “A one-sample z-test is used to test whether a population parameter is significantly
different from some hypothesized value. The test statistic is a z-score (z) defined by the following equation.

z = (x−M)/[σ/sqrt(n)]

where x is the observed sample mean, M is the hypothesized population mean (from the null hypothesis), and sσ is the
standard deviation of the population.”

131

http://132.187.98.10:8080/encyclopedia/index.jsp?subsystem=encyclopedia&lang=en&start=topic-0000042-00.html
http://stattrek.com/Lesson5/HypothesisTesting.aspx


EXCLUSION PROCEDURE AND SIGNIFICANCE TEST EXCLUSION PROCEDURES

• Interpret results. Since the P -value16 (0.04) is less than the significance level (0.05),
we cannot accept the null hypothesis.

2. Stochastic Exclusion Procedure

In order to illustrate the difference between a stochastic exclusion procedure and a statis-
tical significance test, the same question as stated above shall be answered by applying
an adequate stochastic exclusion procedure.

The exclusion process consists of drawing by random n = 100 customers from the set of
N = 1000000 customers. The random observational variable is given by:

X = number of very satisfied customers in the smaple.

The deterministic variable D is given by:

D = proportion of very satisfied customers among all the customers.

Next the Bernoulli Space for the pair of variables (X, D) must be derived. Consider the
case that no sure information about the true value of the D is available, except for the
fact that there are very satisfied customers as well as there are unsatisfied customers. In
this case we obtain:

D = {p | 0 < p < 1}
X ({p}) = {x ∈ N0 | 0 ≤ x ≤ n}
P({p}) = {PX|{p}} with X|{p} ∼ H(1000000, p, 100)

Since the number of customers N is by far larger than the sample size n, the binomial
distribution is a very good approximation of the hypergeometric distribution and we may
replace the random structure function given above by:

P({p}) = {PX|{p}} with X|{p} ∼ Bi(p, 100)

Since the CEO aims at proving that more than 80% of the customers are very satisfied,
the complement must be excluded. Consequently the subset D0 ⊂ D of the ignorance
space to be excluded is given by:

D0 = {p | p < 0.8}

The reliability level is given by β = 1 − α. Since the significance level in the example is
assumed to be 5%, we obtain β = 0.95.

After entering the Stochastikon Calculator, case binomial distribution, case exclusion of p,
an input mask opens for inserting the corresponding values. Subsequently the Calculator
provides a report with the exclusion result, which also contains a graphical illustration of
the procedure and the result which is given in Figure 1.

16The p-value is explained as follows: “A P -value measures the strength of evidence in support of a null hypothesis.
Suppose the test statistic in a hypothesis test is equal to S. The P -value is the probability of observing a test statistic
as extreme as S, assuming the null hypothesis is true. If the P -value is less than the significance level, we reject the null
hypothesis.”
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uncertainty space U and the indifference region A
(β

Figure 1: Graphical representation of the exclusion
procedure with the dark blue area representing the

prediction A
(0.95)
X (D0) and the red line representing the

process outcome.

From Figure 1 it is seen that the observation had been predicted under the condition of
D0 and therefore it can not be excluded and the claim of the CEO has not been confirmed
by the sample result.

In the above example, the significance test and the exclusion procedure yield the same result,
however, in order to understand the approximations and concepts made in course of the formu-
lation and execution of the statistical significance test, one would need several learning units.
Moreover, consider the formulation of the test problem and the test result. Accordingly, not
the rejection of the null hypothesis is the aim, but the acceptance of H0. Although an rejection
of the alternative hypothesis is equivalent with an acceptance of H0, formulating the problem
in this way must be confusing since in general the rejection of H0 is the aim of a significance
test.

133



CLASSIFICATION PROCEDURES APPLICATION

Module 2.5: Classification Procedures

Content and Aim of the Module Classification Procedures

Consider an operational system subject to
a number of different faults. Each fault re-
sults in a certain operational state and often
the problem is to identify the actual state
of the system. The above outlined problem
is solved by a stochastic classification pro-
cedure allowing to assign or classify a given
situation to one of m specified alternatives
each modelled by a Bernoulli Space.

The analogous statistical procedure would be an alternative test, which is sometimes called bi-
nary classification procedure. In contrast to a stochastic classification procedure an alternative
test is restricted to two alternatives.

Classification problems occur for instance

• in medicine, where a patient can have one of several diseases,

• in quality control, where different faults may lead to different quality states of a system.

Classification problems are often dealt with in artificial intelligence aiming at developing so-
called expert system or knowledge based systems which are realized often by decision trees,
Bayesian networks, and neural networks. In general these solution methods do not take into
account sufficiently well the inherent random variation and are based on subjective belief, rather
than on objective reasoning. Consequently, it is generally impossible to make any founded
statement on the reliability of the considered procedure.

This module has, similar as the previous modules, two aims. The first one is to introduce
and make available the stochastic classification procedure. The second one is to compare a
stochastic classification procedure with a statistical alternative tests in order to make both
concepts better understood.

Classification problems are of great importance in medical diagnosis, where the concepts sen-
sitivity and specificity are often used for evaluating the performance of a medical test. These
concepts are closely related to the so-called errors of Type I and Type II considered in the frame-
work of significance test. Stochastic classification can be applied not only in the case of binary
classification, but also in the often occurring case of several alternative. Moreover, stochastic
classification procedures are designed in order to meet specified reliability requirements with
respect to the possible decisions, which make stochastic classification procedures superior to
the analogous statistical methods.
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Unit 2.5.1: Alternatives and Classification

Target

In real life there are many situations
in which one has to classify an object,
a system or a human being accord-
ing to a number of given alternatives.
This learning unit aims at introducing
a stochastic procedure called classifica-
tion procedure which aims at assigning
the state of a given situation to one of
several alternatives by means of a clas-
sification process.

Content

Alternatives

Consider the problem of making a diagnosis about the disease of a patient. Although the
possible alternatives are known, they cannot be observed directly.

The actual state can be detected only by means of tests subject to randomness. Thus, in
order to determine the actual disease the random process has to be modelled by a Bernoulli
Space. Each of the distinct diseases (or alternatives) is represented by different initial conditions
and, therefore, each of the states yields a different Bernoulli Space. Assume that m different
alternatives with respect to the actual state are possible, then m different Bernoulli Spaces
must be considered for the diagnosis test.

Note that the different alternatives refer to a given deterministic variable D and each alterna-
tive is represented by a separate ignorance space Di. In order to make a unique classification
meaningful, the sets of values representing the m different alternatives must be disjoint. Oth-
erwise a given situation could belong to several alternatives and a decision for one would be
meaningless.

Di ∩ Dj = ∅ for i 6= j

The deterministic variable D of a Bernoulli Space is generally represented by the corresponding
distributional parameters of PX . It follows that the deterministic variable D is the same for
each of the alternatives, if the random variable X and, hence, the classification process, is the
same for each of the alternatives. However, the situations themselves might well be represented
by different situation-related deterministic variables.

Bernoulli Space

There is only one random variable X to be observed when performing the classification test
in order to decide about the actual alternative. Moreover, let the deterministic variable D be
given by the corresponding distributional parameters. Hence the classification process refers
independently of the actual alternative to the same pair of variables (X,D).

The m alternatives have different ignorance spaces, i. e. the Bernoulli Space corresponding to
the ith alternative, i = 1, . . . ,m is characterized by the ignorance space Di and it is denoted
by:
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B(i)
X,D, i = 1, . . . , m. It is given by:

B(i)
X,D = (Di,X ,P) for i = 1, . . . , m

While the ignorance spaces are different for each of the considered alternatives, the variability
function X and the random structure function P may be the same for each partial Bernoulli

Space B(i)
X,D.

A classification means to decide in favor of one of the m alternatives, i. e., in determining, which
of the m Bernoulli Spaces is the actual one.

The Decision Alternatives

The problem is to select the actual ignorance space out of the m alternatives that are represented
by m disjoint sets Di. Each alternative Di is a non-empty and connected set resulting in an
overall ignorance space

D =
m⋃

i=1

Di (140)

The classification procedure as considered in this learning unit may lead to one of the following
decisions:

• Decision in favor of D1

• Decision in favor of D2

• · · ·
• Decision in favor of Dm

• Decision in favor of D
The last result means that no decision in favor of one of the alternatives is made. Deciding for
D0 is, of course, always correct, but constitutes a classification failure. A classification failure
occurs if the variability of the random variable X is too large in order to decide in a reliable
way for one of the alternatives. Note that a classification failure does not constitute a wrong
decision and, hence, should not be called an error.

Decision Function

Similarly to the case of an exclusion procedure, a classification procedure is given by a decision
function ϕ assigning to each of the observed events {x} ∈ X (D) an integer between 0 and m.
Formally the decision function is defined as follows:

ϕD1D2···Dm :

{
{x}

∣∣∣ x ∈
m⋃

i=1

X (Di)

}
→ {0, 1, 2, . . . , m} (141)

with the following meaning:

If ϕD1D2···Dm({x}) = i such that i 6= 0, then the decision is made in favour of Di, i. e. in
favor of the ith alternative, i = 1, 2, . . . , m.

If ϕD1D2···Dm({x}) = 0, then the decision is made in favour of D.

The aim of a stochastic classification procedure is to assign the given situation to one of the m
alternatives. This aim is reached, if the decision function yields an element of {1, 2, . . . , m}.
Note the following terminology:
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• The application of a classification procedure is successful and correct, if Di is true, and
ϕD1D2···Dm({x}) = i.

• The application of a classification procedure is successful but wrong, if Di is true, but
ϕD1D2···Dm({x}) = j /∈ {i, 0}

• The application of a classification procedure is a failure, if
ϕD1D2···Dm({x}) = 0

A failure of a stochastic classification procedure is not to be looked at as an error. It simply
indicates that the uncertainty is too large in order to decide about the true alternative by means
of the given classification process.

Classification Procedure and Measurement Procedure

Consider the case that a piece of literature is detected and the circumstance allow only three
known writers to be the authors of the text. In this case there are three distinct authors. Let
the writing style of the authors be characterized by a random variable X, which might, for
instance, represent the number of occurrences of a specific word within one page.

Clearly, the number of occurrences of the specified word within one written page is a random
variable for each of the three authors. However, the random pattern, i. e. the probability
distribution of using the word are different for the three authors. It follows that the values of
the distributional parameter D are different for the three writers.

By means of some works of the different authors and a β measurement procedure the potential
values of the deterministic variable D may be determined, leading to three different ignorance
spaces and, thus, to three different Bernoulli Spaces representing the three considered authors.

In order to identify the writer of the given text, n pages of the text are checked with respect
to the number of aforesaid occurrences and the writer is identified by means of a stochastic
classification procedure.

Examples

1. Medicine

For deciding whether or not a person has a specified disease medical tests are used. The
variable of observation X is represented by a random variable, while the initial condition
represented by the deterministic variable D are either characterized by the absence or the
presence of the disease, i.e., the deterministic variable is given by an indicator variable.

The resulting Bernoulli Spaces are

B(1)
X,D = (D1,X ,P)

B(2)
X,D = (D2,X ,P)

where the upper index (1) refers to the absence and (2) to the presence of the considered
disease.

2. Process Control

Processes are often monitored in order to detect and subsequently to remove disturbances.
Any process disturbance affects some process characteristic, which, therefore, are selected
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as observational variable. The disturbance alters process mechanics and, thus, the initial
conditions. Similar as in the above example of medical tests two Bernoulli Spaces are
obtained, the one representing a fault-free process and the other the process in the presence
of a disturbance.

B(1)
X,D = (D1,X ,P)

B(2)
X,D = (D2,X ,P)

3. Archeology

Consider an archaeological artifact with unknown origin. Assume that four different pos-
sible origins were identified. Each origin leads to a slightly different chemical composition
of the material, which is known by past experience. The variable of observation X reflects
the chemical composition and the deterministic variable is representative for the origin
of the artifact. In this case the result of stochastic modeling are four different Bernoulli
Spaces:

B(1)
X,D = (D1,X ,P)

B(2)
X,D = (D2,X ,P)

B(3)
X,D = (D3,X ,P)

B(4)
X,D = (D4,X ,P)
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Unit 2.5.2: β1, . . . , βm-Classification Procedure

Target

Reliability is a characteristic property
of any stochastic procedure. The relia-
bility of a stochastic procedure is given
by the probability of obtaining a cor-
rect result, when applying the proce-
dure. This learning unit is devoted
to the reliability of classification pro-
cedures.

Content

Introduction

Consider a situation as introduced in the previous learning unit. There are m different alter-
natives giving rise to m Bernoulli Spaces, whose ignorance spaces are pairwise disjoint.

B(1)
X,D = (D1,X ,P)

B(2)
X,D = (D2,X ,P)

. . .

B(m)
X,D = (Dm,X ,P)

with Di ∩ Dj = ∅ for i 6= j and let
m⋃

i=1

Di = D

A decision in favor of D is correct with certainty, because the true alternative is always included
in D. Deciding for a specific alternative may be incorrect. The reliability of the respective
decisions is controlled by specifying for each alternative a required reliability level. Employing
the same notation as in the case of exclusion procedures, and for the same reason, the required
values of the reliability levels are denoted by β1, . . . , βm. Thus, the value βi denotes the required
lower bound for the probability of a correct decision in the situation when the actual value d
is an element of Di.

Reliability Requirement

Let Di be true, then a correct decision means either to decide for Di or to decide for D, which
is always correct. Thus, the decision function ϕD1···Dm meets the reliability requirement given
by βi, if for i = 1, 2, . . . ,m, the following holds:

PX|{d}
({

x |ϕD1···Dm({x}) ∈ {0, i}
})

≥ βi for d ∈ Di (142)

A decision function ϕD1···Dm meeting all the requirements given by the reliability levels (β1, . . . , βm)
is denoted by

ϕ
(β1,...,βm)
D1D2···Dm

(143)
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The lower bound βi for the probability of a correct decision, when the ith alternative is true,
is called reliability level of the ith alternative.

Let Di be the true alternative. Then, the probability that the application of a classification
procedure is successful and correct, is given by:

PX|{d}
({

x |ϕ(β1,...,βm)
D1···Dm

({x}) = i
})

(144)

No general statement about the actual value of the probability (144) can be made. In contrast,
the probability that the application of a classification procedure is successful, but wrong, meets
the following condition:

PX|{d}
({

x |ϕ(β1,...,βm)
D1···Dm

({x}) = j /∈ {0, i}
})

< 1− βi (145)

The condition (145) means that all risks when applying a stochastic classification procedure

ϕ
(β1,...,βm)
D1D2···Dm

are explicitly known.

Derivation of a Stochastic Classification Procedure

A (β1, . . . , βm)-classification procedure Table 1: The most probable values of X|{(100, 0.65) are
derived by means of a prediction procedure for the outcome of the classification process. In
contrast to the prediction procedures introduced in the previous learning units, there is not one
reliability level for all predictions, but different reliability levels for different predictions:

A
(β1,...,βm)
X : {Di | i = 1, . . . ,m} → TX (X (D)) (146)

where TX (X (D)) denotes an appropriate system of subsets of X (D).

The prediction procedures A
(β1,...,βm)
X yields for each alternative Di, i = 1, 2, . . . , m, a prediction

A
(β1,...,βm)
X (Di) with

PX|{d}
(
A

(β1,...,βm)
X (Di)

)
≥ βi for d ∈ Di (147)

Classification Success and Classification Failure

The procedure is applied successfully, only if it yields one of the non-trivial alternatives Di,
i = 1, . . . ,m. As already mentioned, a decision in favor of D, though correct, constitutes a
classification failure.

Similar as in the case of a β-exclusion procedure, a necessary condition for a decision in favour

of Di is that the outcome x of X lies in a βi-prediction A
(β1,...,βm)
X (Di). However, if the observed

outcome x is an element of two or more of the βk-predictions, k = 1, . . . , m, then a decision
in favour of one of the alternatives meeting the reliability requirements is impossible and the
decision must be in favour of D constituting a classification failure.

Thus, the following two conditions are necessary and sufficient for a decision in favour of Di:

• x ∈ A
(β1,...,βm)
X (Di)

• x /∈ A
(β1,...,βm)
X (Dj) for j 6= i

(148)

A classification success is obtained, if for one i ∈ {1, . . . , m} the conditions (148) are fulfilled.

A classification failure occurs, if the observed value x is an element of at least two predictions,
i. e. there are i and j with:

x ∈ A
(β1,...,βm)
X (Di) ∩ A

(β1,...,βm)
X (Dj)
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Successful and Correct Classification

Let A
(β1,...,βm)
X (Di), i = 1, . . . , m, be the βi-predictions generated for a classification procedure.

Note that these predictions need not be disjoint, but may overlap. There are two cases to be

considered with respect to the βi-predictions of a classification procedure A
(β1,...,βm)
X .

• Case 1

In Case 1 the union of all βi predictions covers the entire range of variability:
m⋃

i=1

A
(β1,...,βm)
X (Di) = X (D) (149)

Define for i = 1, · · · ,m the following m disjoint sets:

A
(β1,...,βm)
X (Di) = A

(β1,...,βm)
X (Di) \




m⋃
j=1
j 6=i

A
(β1,...,βm)
X (Dj)


 (150)

Clearly, any x ∈ A
(β1,...,βm)
X (Di), i = 1, . . . , m, meets the sufficient conditions (148) for a decision

in favour of Di. Therefore, A
(β1,...,βm)
X (Di) is called βi-acceptance region for Di.

Those outcomes of X which are not contained in one of the acceptance regions are combined
to a set denoted AX(D)

AX(D) = X (D) \
(

m⋃
i=1

A
(β1,...,βm)
X (Di)

)
(151)

As any outcome x ∈ AX(D) leads to a classification failure, this set is called indifference region.

Then a (β1, . . . , βm)-classification procedure is defined by the following decision function:

ϕ
(β1,...,βm)
D1,D2...Dm

({x}) =

{
i if x ∈ A

(β1,...,βm)
X (Di), i = 1, · · · ,m

0 if x ∈ AX(D)
(152)

• Case 2

In Case 2, the union of all βi predictions does not cover the entire variability space:
⋃m

i=1 A
(β1,...,βm)
X (Di) ⊂ X (D)⋃m

i=1 A
(β1,...,βm)
X (Di) 6= X (D)

(153)

which equivalently means

X (D) \
m⋃

i=1

A
(β1,...,βm)
X (Di) 6= ∅ (154)

In this case the non-empty set (154) may be used for two purposes:

1. The elements of (154) are used for reducing a possible overlap of the βi-predictions and,
thus, for reducing the probability of a classification failure.

2. The elements of (154) are used for increasing the reliability of some of the predictions
and, thus, for reducing the probability of wrong decisions.

The first aim is reached by appropriately replacing elements of an overlap by elements of the
non-empty set (154). The reliability of βi-predictions is increased by simply adding elements

of (154) to the prediction A
(β1,...,βm)
X (Di).

141

http://132.187.98.10:8080/encyclopedia/index.jsp?subsystem=encyclopedia&lang=en&start=topic-0000126-00.html


β1, . . . , βm-CLASSIFICATION PROCEDURE CLASSIFICATION PROCEDURES

Optimal Classification Procedure A
(β1,...,βm)
X

The aim of a stochastic classification procedure is to assign in a reliable way a given situation
to one of several alternatives. The reliability of the procedure is given by the corresponding
reliability levels, which constitute side-conditions or specifications. The objective function is
given by the probability of reaching the aim, i. e., the probability for a successful classification.
The probability depends on the actual initial condition d ∈ D and, therefore, the mean success
probability is selected as objective function:

PX|D

(
m⋃

i=1

A
(β1,...,βm)
X (Di)

)
=

1

|D|
∑

d∈D
PX|{d}

(
m⋃

i=1

A
(β1,...,βm)
X (Di)

)
(155)

A stochastic classification procedure ∗A(β1,...,βm)
X is called optimal, if for any A

(β1,...,βm)
X the fol-

lowing holds:

PX|D

(
m⋃

i=1

∗A(β1,...,βm)
X (Di)

)
≥ PX|D

(
m⋃

i=1

A
(β1,...,βm)
X (Di)

)
(156)

Clearly, if the βi-predictions A
(β1,...,βm)
X (Di), i = 1, . . . , m, are disjoint, then any resulting

stochastic (β1, . . . , βm)-classification procedure is optimal.

Example

1. Process Control

A production process shall be monitored which produces a certain product with given
product specifications S. The monitoring process consists of taking a number of sub-
sequently produced items from the line and checking the specifications. Let IS denote
the indicator variable for the set S representing the specifications. Then the monitoring
variable is the sum of the indicator variables of the tested items:

X = number of conforming items among the tested items

The monitoring process is represented by a so-called Bernoulli-chain consisting of a num-
ber of independent and identical Bernoulli-Experiments implying that the number X of
conforming items is binomially distributed. From this we immediately obtain the deter-
ministic variable D:

D = (D1, D2)
with
D1 = number of tested items
D2 = probability PIS ({1})

The process is monitored in order to detect the occurrence of disturbances which decrease
the conforming probability.

It is known that the conforming probability is larger than p` = 0.995, if no disturbance
has been occurred. If a disturbance occurs the conforming probability drops at least to
the value of pu = 0.800. The two situations are described by the two Bernoulli Spaces:

B(1)
X,D = (D1,X ,P)

B(2)
X,D = (D2,X ,P)
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Let the number of items to be tested be known and given by n. Then we get:

D1 = {(n, p) | 0.995 ≤ p < 1.0}
D2 = {(n, p) | 0 < p ≤ 0.8}
X ({(n, p)}) = {0, 1, . . . , n}
P({(n, p)}) = PX|{(n,p)} with PX|{(n,p)}({k}) =

(
n
k

)
pk(1− p)n−k

There are two alternatives and, therefore, two reliability levels have to be fixed with respect
to the two substantial decisions. Assuming that a false alarm is extremely expensive leads
to the decision to require the high reliability level of β1 = 0.99, while the reliability level
for the second alternative is set β2 = 0.90 because not immediately detecting a disturbance
is considered as less serious compared with a false alarm.

If the number n of tested items is too small, then it is not always possible to obtain a
classification success. For instance, selecting n = 15 leads to following acceptance regions:

A
(0.99,0.90)
X (D1) = {15}

A
(0.99,0.90)
X (D2) = {0, 1, . . . , 13}

where in case of x = 14 no decision can be made.

In order to have the probability of a failure to be zero, the number of item has to be
increased. The minimum n for which the failure probability becomes zero is n = 18 with
the following acceptance regions:

A
(0.99,0.90)
X (D1) = {18}

A
(0.99,0.90)
X (D2) = {0, 1, . . . , 17}

Thus, the stochastic classification procedure for monitoring the process is given by the
following decision function:

ϕ
(0.99,0.90)
D1,D2

({x}) =

{
1 if x = 18
2 if x ≤ 17

The acceptance regions can be obtained by means of Stochastikon Calculator.
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Unit 2.5.3: Optimum Classification Procedure

Target

In the preceding learning unit optimum
classification procedures were briefly
outlined. In this learning unit the
objective function for determining op-
timum β1, . . . , βm-classification proce-
dure is introduced in more detail.

Content

Introduction

The reliability requirements of a (β1, . . . , βm)-classification procedure given by the reliability
levels (β1, . . . , βm) represent side conditions, which have to be met necessarily, as otherwise the
result would be more or less meaningless.

Applying a (β1, . . . , βm)-classification procedure is successful, if the decision is made in favour
of one of the given alternatives Di. A failure occurs, if the decision is made in favor of the
entire ignorance space D.

Therefore, the smaller the failure probability, the better the performance of a (β1, . . . , βm)-
classification procedure.

Objective Function

The procedure’s reliability (specified by the reliability levels β1, · · · , βm) constitutes a necessary
side condition, which has to be taken into account by the optimization procedure. The only
quality characteristic left is the success probability of the (β1, . . . , βm)-classification procedure,
or equivalently, its failure probability. Unfortunately, the failure probability depends on the
actual value d of the deterministic variable D, which is unknown. Therefore, the mean failure
probability is selected as objective function, where the mean is taken over all elements of the
entire ignorance space:

D =
m⋃

i=1

Di (157)

Thus, the objective function is given by:

PX|D
({

x |ϕ(β1,...,βm)
D1,...,Dm

({x}) = 0
})

=

1

|D|
∑

d∈D
PX|{d}

({
x |ϕ(β1,...,βm)

D1,...,Dm
({x}) = 0

})
(158)

Optimum (β1, . . . , βm)-Classification Procedure

A (β1, · · · , βm)-classification procedure ∗ϕ(β1,...,βm)
D1,...,Dm

given by the acceptance regions

(
∗A(β1)

X (D1), . . . ,
∗ A

(βm)
X (Dm),∗ AX(D)

)
(159)

144

http://132.187.98.10:8080/encyclopedia/index.jsp?subsystem=encyclopedia&lang=en&start=topic-0000124-00.html


CLASSIFICATION PROCEDURES OPTIMUM CLASSIFICATION PROCEDURE

is called an optimum (β1, . . . , βm)-classification procedure, if

• PX

({
x | ∗ϕ(β1,...,βm)

D1,...,Dm
({x}) = 0

})
=

min
ϕ

(β1,...,βm)
D1,...,Dm

PX

({
x |ϕ(β1,...,βm)

D1,...,Dm
({x}) = 0

})
(160)

where the minimum is taken over all (β1, . . . , βm)-classification procedure

ϕ
(β1,...,βm)
D1,...,Dm

for the alternatives D1, · · · ,Dm.

In terms of the prediction procedures an optimum (β1, . . . , βm)-classification procedure is ob-
tained, if the predictions meet the following conditions:

completeness:
m⋃

i=1

A
(βi)
X (Di) = X (D) (161)

reliability: PX|{d}
(
A

(βi)
X (Di)

)
≥ βi for i = 1, . . . , m (162)

precision:
1

|D|
∑

d∈D
PX|{d}

(⋃

i6=j

(
A

(βi)
X (Di) ∩ A

(βj)
X (Dj)

))
!
= min (163)

Clearly, any (β1, · · · , βm)-classification procedure ϕ
(β1,...,βm)
D1,...,Dm

with

⋃

i 6=j

(
A

(βi)
X (Di) ∩ A

(βj)
X (Dj)

)
= ∅ (164)

is an optimum one. Moreover, an optimum (β1, · · · , βm)-classification procedure meeting (164)
will with certainty lead to a positive decision, because the failure probability is zero. There-
fore, an optimum (β1, · · · , βm)-classification procedure meeting (164) may be called an ideal
classification procedure.

Example

1. Process Control

Consider the example of the previous learning unit with:

X = number of conforming items among the tested items

and

D = (D1, D2)
with
D1 = number of tested items
D2 = probability PIS ({1})

The classification procedure shall distinguish the following two Bernoulli Spaces given by
the respective ignorance spaces:

D1 = {(n, p) | 0.95 ≤ p < 1.0}
D2 = {(n, p) | 0 < p ≤ 0.8}
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The reliability levels for the first alternative is set to β1 = 0.99 and for the second alter-
native to β2 = 0.90. The classification process consists of n = 60 trials. The number of
observed successes is given by x = 52. The optimum (β1, β2)-classification procedure is
graphically illustrated in Figure 1.

Figure 1: Optimum (β1, β2)-classification procedure with

the result ϕ
(0.99,0.90)
D1,D2

({52}) = 2

As can be seen from the graph, the optimum classification procedure is also an ideal one,
because a positive decision is made with certainty. The graph shows the two acceptance
regions for the first and the second Bernoulli Space and the union of these two regions
cover the entire range of variability.
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Unit 2.5.4: Two Alternatives

Target

In this learning unit the simplest clas-
sification procedure is discussed, where
the simplicity refers to the number
of alternatives and the dimension of
the deterministic classification variable.
The simplest case is characterized by
two alternatives for a univariate vari-
able D.

Content

Introduction

In the case of two alternatives, there are two Bernoulli Spaces for a pair of variables (X, D)
differing only with respect to the ignorance space.

B(1)
X,D = (D1,X ,P)

B(2)
X,D = (D2,X ,P)

(165)

A stochastic (β1, β2)-classification procedure is based on an classification process (X1, . . . , Xn)
yielding the random variable X(n) = h(X1, . . . , Xn) with h selected appropriately.

The deterministic variable is assumed to be one-dimensional and, therefore, the two ignorance
spaces can be arranged as follows:

D1 = {d | d1 ≤ d ≤ d1}
D2 = {d | d2 ≤ d ≤ d2} (166)

with d1 < d2.

Predictions

Any stochastic procedure is either a prediction procedure or it is based on a prediction proce-
dure. In case of a classification problem with two alternatives, two prediction procedures are
needed, which yield two predictions, one for the first alternative and the other for the second
alternative.

In view of the objective function the two predictions should overlap as less as possible. If
they are disjoint, then the indifference region is the empty set and, hence, the corresponding
(β1, β2)-classification procedure is ideal.

The following prediction procedures guarantee obviously the smallest overlap of the two pre-
dictions:

A
(β1)

X(n) :
{
D1

}
→

{
{x | minX (D1) ≤ x ≤ x1}

}
(167)

A
(β2)

X(n) :
{
D2

}
→

{
{x |x2 ≤ x ≤ maxX (D2)}

}
(168)
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TWO ALTERNATIVES CLASSIFICATION PROCEDURES

where the non-trivial interval bounds are given by the respective values of the quantile functions:

x1 = Q
(u)

X|{d1}(β1)

x2 = Q
(`)
X|{d2}(β2)

If x1 < x2 the two predictions are disjoint and, hence, it is possible to derive an ideal (β1, β2)-
classification procedure by selecting a point x0 with x1 ≤ x0 ≤ x2 and taking the following
acceptance regions:

A
(β1)

X(n) (D1) = {x | minX (D1) ≤ x ≤ x0} (169)

A
(β2)

X(n) (D2) = {x | x0 < x ≤ maxX (D2)} (170)

Optimum (β1, β2)-Classification Procedure

If x1 ≥ x2, then there is no ideal classification procedure. In this case the optimum (β1, β2)-

classification procedure ∗ϕ(β1,β2)
D1,D2

for two alternatives is given as follows:

∗ϕ(β1,β2)
D1,D2

({x}) =





0 for x2 ≤ x ≤ x1

1 for x < x2

2 for x > x1

(171)

The (β1, β2)-classification procedure given by (171) may lead to a failure with mean failure
probability given by:

1

|D|
∑

d∈D
PX(n)|{d}

(
A

(β1)

X(n)(D1) ∩ A
(β2)

X(n)(D2)
)

(172)

Example

1. Bernoulli Chain

Consider the example of a Bernoulli Chain with

X = number of successes among the performed trials

and

D = (D1, D2)
with
D1 = number of trials
D2 = success probability

Consider the case of n = 50 trials implying that there is ignorance only with respect to
D2. The classification procedure shall distinguish the following two Bernoulli Spaces given
by the corresponding ignorance spaces:

D1 = {p | 0.2 ≤ p < 0.3}
D2 = {p | 0.4 < p ≤ 0.6}

The classification procedure with reliability levels β1 = 0.95 and β2 = 0.90 is illustrated
in Figure 1.
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CLASSIFICATION PROCEDURES TWO ALTERNATIVES

Figure 1: Graphical representation of the two acceptance
regions of a classification procedure with two alternatives

and the classification process result x = 18.

Figure 1 may be obtained by the Graphical Laboratory. The graph shows that a positive
decision cannot be made between the two alternatives without violating the reliability
requirements given by the reliability levels. Therefore, no decision is made and applying
the classification procedure was a failure.
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THREE ALTERNATIVES CLASSIFICATION PROCEDURES

Unit 2.5.5: Three Alternatives

Target

This learning unit investigates the
case of three alternatives leading to
some problems, which are not exist-
ing for the case of two alternatives
as studied in the previous learning
unit.

Content

Introduction

In the case of three alternatives, there are three Bernoulli Spaces for the pair of variables (X, D)
differing only with respect to the ignorance space. Let the three Bernoulli Spaces be given by:

B(1)
X,D = (D1,X ,P)

B(2)
X,D = (D2,X ,P)

B(3)
X,D = (D3,X ,P)

(173)

The deterministic variable is assumed to be one-dimensional and, therefore, the three ignorance
spaces can be arranged as follows:

D1 = {d | d1 ≤ d ≤ d1}
D2 = {d | d2 ≤ d ≤ d2}
D3 = {d | d3 ≤ d ≤ d3}

(174)

with d1 < d2 ≤ d2 < d3.

The stochastic (β1, β2, β3)-classification procedure is based on an classification process (X1, . . . , Xn)
yielding a random variable X(n) = h(X1, . . . , Xn) with h selected appropriately.

The Predictions

In case of a classification problem with three alternatives, three prediction procedures with
respect to X(n) are needed, yielding three predictions, one for each of the three alternatives.

In view of the objective function the three predictions should overlap as less as possible. If
they are disjoint, then the indifference region is the empty set and, hence, there is an ideal
(β1, β2, β3)-classification procedure.

For deriving an optimum or if possible an ideal (β1, β2, β3)-classification procedure the following
prediction procedures must be used:

A
(β1)

X(n) :
{
D1

}
→

{
{x | minX (D1) ≤ x ≤ x1}

}
(175)

A
(β3)

X(n) :
{
D3

}
→

{
{x |x3 ≤ x ≤ maxX (D3)}

}
(176)
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CLASSIFICATION PROCEDURES THREE ALTERNATIVES

where

x1 = Q
(u)

X(n)|{d1}(β1)

x3 = Q
(`)

X(n)|{d3}
(β3)

Ideal and Optimum (β1, β2, β3)-Classification Procedure

If the following condition is met, then an ideal (β1, β2, β3)-classification procedure exists.

• PX(n)|{d}
(
X (D) \

(
A

(β1)

X(n)(D1) ∪ A
(β2)

X(n)(D3)
))

≥ β2 (177)

for any d ∈ D2

Condition (177) implies that
x1 < x3 (178)

and that
PX(n)|{d} ({x | x1 < x < x3}) ≥ β2 for any d ∈ D2 (179)

An optimum, but not ideal, (β1, β2, β3)-classification procedure is obtained, if (177) is not met,
by solving the following optimization problem:

Determine
A

(β2)

X(n)(D2) = {x |x2 ≤ x ≤ x2}
that

PX(n)|{d}
(
A

(β2)

X(n)(D2)
)
≥ β2 for d ∈ D2

1
|D|

∑
d∈D

PX(n)|{d} ({x | x2 ≤ x ≤ x1} ∪ {x | x3 ≤ x ≤ x2}) !
= min

(180)

Example

1. Bernoulli Chain

Consider the example of a Bernoulli Chain with

X = number of successes among the performed trials

and
D = (D1, D2)
with
D1 = number of trials
D2 = success probability

The number of trials is given by n = 100 and, therefore, there is ignorance only with
respect to D2. The classification procedure shall distinguish the following three Bernoulli
Spaces given by the respective ignorance spaces:

D1 = {p | 0.201 ≤ p < 0.251}
D2 = {p | 0.4 < p ≤ 0.6}
D3 = {p | 0.809 < p ≤ 0.999}

The confidence levels shall be the same for each of the given alternatives with β = 0.90.
The classification procedure and the result for x = 52 is illustrated in Figure 1.
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THREE ALTERNATIVES CLASSIFICATION PROCEDURES

Figure 1: Graphical representation of the classification
procedure with three alternatives

Figure 1 shows the ignorance space of the three alternatives and the corresponding dark
blue acceptance regions. The observed result x = 52 is represented by the red line which
passes through the acceptance regions of the second alternative which therefore is ac-
cepted.
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CLASSIFICATION PROCEDURES GRAPHICAL REPRESENTATION

Unit 2.5.6: Graphical Representation

Target

This learning unit shall support
the understanding of a (β1, . . . , βm)-
classification procedure by display-
ing and discussing the corresponding
graphical representations.

Content

Introduction

Any stochastic procedure can be reduced to certain predictions, i. e., sets representing future
events. Therefore, any stochastic procedure can be represented graphically.

The graphics show the states of ignorance on the one hand and the corresponding predictions on
the other. As for classification procedures, the states of ignorance are given by the alternative
ignorance spaces Di, i = 1, . . . , m, while the future is displayed by the corresponding acceptance
regions.

Two Alternatives

Consider a similar case than in Learning Unit 2.4.4, where the pair of (X,D) generates a
Bernoulli Space based on the binomial distribution, i. e.:

X = number of successes
D = (Dn, Dp) with

Dn = number of Bernoulli Experiments
Dp = success probability

with the Bernoulli Spaces B(1)
X,D and B(2)

X,D:

B(1)
X,D = (D1,X ,P) with

D1 = {(80, p) | 0.29 ≤ p ≤ 0.39}
B(2)

X,D = (D2,X ,P) with
D2 = {(80, p) | 0.50 ≤ p ≤ 0.60}

The graphical representation of the optimum (0.90,0.92)-classification procedure is given in
Figure 1.

The figure shows that the procedure is not ideal, because the indifference region is not empty.
On the abscissa the two ignorance spaces with respect to the success probability are displayed.
Above each ignorance space the corresponding acceptance region is shown. The gap between
the two acceptance regions is the indifference region.
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GRAPHICAL REPRESENTATION CLASSIFICATION PROCEDURES

Figure 1: Graphical representation of the optimum
(0.90,0.92)-classification procedure.

The observation x = 31 yields a decision in favor of the first alternative since the red line that
represent the observation passes through the acceptance region of the first alternative.

Three Alternatives

We consider a similar case as above, namely a Bernoulli Space modeling an experiment consist-
ing of n = 100 independent and identical Bernoulli experiments with the following ignorance
spaces:

D1 = {(100, p) | 0.20 ≤ p ≤ 0.30}
D2 = {(100, p) | 0.50 ≤ p ≤ 0.60}
D6 = {(100, p) | 0.75 ≤ p ≤ 0.80}

A graphical representation of the optimum (0.90,0.92,0.80)-classification procedure is given by
Figure 2.

Figure 2: Graphical representation of the optimum
(0.90,0.92,0.80)-classification procedure.

The observation x = 67 yields a decision in favor of the second alternative since the red line
that represent the observation passes through the acceptance region of the second alternative.
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CLASSIFICATION PROCEDURES GRAPHICAL REPRESENTATION

Example

1. Uncertainty Space and Prediction

A classification procedure is given by an decision function ϕ
(β1,...,βm)
D1,...,Dm

, where each Di consti-
tutes an alternative for the ignorance space. The decision function shall decide on the basis
of predictions and the observation, which of the alternatives is the true one. The graphi-
cal representations shows the overall uncertainty space with the horizontal axes reserved
for the deterministic variable and the vertical axes for the random variable. The sets Di

and the corresponding acceptance events form rectangles in the uncertainty space. The
observation of the classification process is represented by a red line; if it passes through
one rectangle representing a certain alternative, then this alternative is chosen to be the
actual one.

Below, two classification procedures are illustrated by their graphical representations:

(a) Pair of variables:

X = number of successes among the 65 trials
D = success probability

(181)

Two alternatives:
D1 = {p | 0.50 ≤ p ≤ 0.70}
D2 = {p | 0.75 ≤ p ≤ 0.90} (182)

Problem:
The actual alternative shall be determined by requiring the reliability levels β1 =
β2 = 0.85. The number of trials to be performed is given by n = 45.

Graphical Representation:
Let the classification process yield the observation x = 25, then the following graph
is produced by the Graphical Laboratory:

Figure 3: Optimum (0.85, 0.85)-classification
procedure for D1 and D2.
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GRAPHICAL REPRESENTATION CLASSIFICATION PROCEDURES

Figure 3 displays the following quantities:

• The alternative ignorance spaces are displayed on the horizontal axes.

• The range of variability is displayed on the vertical axes.

• The different acceptance regions are highlighted in dark blue.

• The observation x = 25 is represented by a red line.

Classification Result:
The red line representing the observation passes through the acceptance region for
D1 and, therefore, the decision is made in favor of the first alternative.

ϕ
(0.80,0.80)
D1,D2

({25}) = 1 (183)

(b) For the same example, let the classification process yield now the observation x = 33,
then the following graph is produced by the Graphical Laboratory:

Figure 4: The (0.85, 0.85)-classification procedure
with x = 33.

Classification Result:
In this case the red line does not cross any of the acceptance regions and, therefore,
no positive decision can be made:

ϕ
(0.80,0.80)
D1,D2

({33}) = 0 (184)
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APPLICATION VERIFICATION PROCEDURES

Module 2.6: Verification Procedures

Content and Aim of the Module Verification Procedures

So far the modules aimed at utilizing or improving the
Bernoulli Space. This module is devoted to verify the
usefulness of a given Bernoulli Space, by comparing the
predictions and the corresponding reliabilities made on
the basis of the Bernoulli Space with the actually occur-
ring events.

A Bernoulli Space might be wrong, i. e., it does not cover the actual conditions or it might be a
too bad approximation. In the first case the predictions will be too often wrong, in the second
one the predictions will be of no great use. The verification procedure aims at disclosing the
quality of a Bernoulli Space.

Unfortunately, no verification procedures has been completely developed so far. Therefore, this
module is only announced here. Hopefully, Module 2.6 will be contained in the next version of
Stochastikon Magister.
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