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1 Abstracts 

1.I Summary 

Despite marked progress in development and improvement of cancer therapies the rate of 

cancer related death remained stable over the last years. Especially in treating metastases 

alternative approaches supporting current therapies are required. Bacterial and viral vectors 

have been advanced from crude tools into highly sophisticated therapeutic agents detecting 

and treating neoplastic leasions. They might be potent enough to fill in this therapeutic 

demand.  

In this thesis Listeria monocytogenes was investigated as carrier for targeted bacterial 

cancer therapy. One part of the study focussed on modification of a functional bacterial 

mRNA delivery system. Genomic integration of T7 RNA polymerase driving mRNA 

production allowed reduction to an one-plasmid-system and thereby partially relieved the 

growth retardation exerted by mRNA delivery. Importantly the integration allowed metabolic 

attenuation of the mRNA delivery mutant potentially enabling in vivo applications. Further 

expansion of the bacterial RNA delivery system for transfer of shRNAs was examined. 

Bacterial mutants producing high amounts of RNA containing shRNA sequences were 

constructed, however a functional proof of gene silencing on delivery in eukaryotic cell lines 

was not achieved.  

The second part of this thesis focussed on increasing tumor colonization by Listeria 

monocytogenes in vivo. Coating bacteria with antibodies against receptors overexpressed on 

distinct tumor cell lines enabled specific bacterial internalization into these cells in vitro. 

Optimization of the bacterial antibody coating process resulted in an up to 104-fold increase 

of intracellular bacteria. Combination of this antibody-mediated targeting with the delivery of 

prodrug-converting enzymes showed a cytotoxic effect in cell lines treated with the 

corresponding prodrug. Since incubation in murine serum completely abrogated antibody-

mediated bacterial internalization the antibodies were covalently linked to the bacteria for 

application in xenografted tumor mice. Bacteria coated and crosslinked in this manner 

showed enhanced tumor targeting in a murine tumor model demonstrating antibody-

mediated bacterial tumor targeting in vivo. Independent of antibody-mediated tumor targeting 

the intrinsic tumor colonization of different Listeria monocytogenes mutants was examined. 

Listeria monocytogenes ΔaroA ΔinlGHE colonized murine melanoma xenografts highly 

efficient, reaching up to 108 CFU per gram of tumor mass 7 days post infection.  

Taken together the presented data shows highly promising aspects for potential bacterial 

application in future tumor therapies. Combination of the delivery systems with antibody-

mediated- and intrinsic bacterial tumor targeting might open novel dimensions utilizing 

Listeria monocytogenes as therapeutic vector in targeted tumor therapy.  
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1.II Zusammenfassung 

Die Weiterentwicklung der Therapiemöglichkeiten bei Krebserkrankungen hat trotz deutlicher 

Fortschritte nicht zu einer grundsätzlichen Verringerung der krebsbedingten Sterberate 

geführt. Besonders in der Behandlung von Metastasen werden alternative Therapieansätze 

zur Unterstützung der etablierten Standardmethoden benötigt. Insbesondere bakterielle und 

virale Vektoren wurden von groben Werkzeugen zu hochtechnischen therapeutischen 

Instrumenten verfeinert und könnten in der Zukunft diese therapeutische Lücke schliessen. 

In dieser Arbeit wurden verschiedene Aspekte der Anwendung von Listeria monocytogenes 

in der bakteriellen Tumortherapie untersucht. Im ersten Teil der Arbeit wurde das bereits 

publizierte System zur bakteriellen Übertragung von mRNAs modifiziert. Die genomische 

Integration der T7 RNA Polymerase, welche die mRNA herstellt, erlaubte die Reduktion der 

Plasmidzahl und verringerte die Stoffwechselbelastung auf die RNA-übertragenden 

Bakterien. Diese Integration erlaubte zum ersten Mal die metabolische Attenuation von RNA-

übertragenden Listerien und ermöglicht damit den in vivo Einsatz dieser Stämme. Als 

Erweiterung zur bakteriellen mRNA Übertragung wurde die Übetragung von shRNAs 

untersucht. Obwohl große Mengen an bakteriellen RNAs nachgewiesen wurden, die die 

shRNA Sequenz enthielten, konnte nach Infektion eukaryotischer Zellen mit diesen 

Bakterienmutanten keine funktionale Genregulation nachgewiesen werden.  

Im zweiten Teil dieser Arbeit wurde mit verschiedenen Methoden die Kolonisierung von 

Tumoren durch Listeria monocytoges verbessert. Durch Beladung der Bakterien mit 

Antikörpern gegen Rezeptoren, die auf bestimmten Tumorzellen überexprimiert werden, 

wurde die bakterielle Internalisierung in diese Zelllinien ermöglicht. Durch Optimierung des 

Antikörper-Beladungsprozesses konnte die Antikörper-vermittelte bakterielle Internalisierung 

auf das 104 fache der Kontrollen gesteigert werden. In Verbindung mit der Übertragung von 

Enzymen, die Medikamentenvorstufen in cytotoxische Medikamente umwandeln, konnten in 

Zellen, die mit der Medikamentenvorstufe inkubiert wurden, zytotoxische Effekte beobachtet 

werden. Da aber die Behandlung Antikörper-beladener Bakterien mit murinem Serum die 

spezifische Internalisierung vollständig verhindert, wurden die Antikörper für die Anwendung 

in Xenograft Tumormäusen kovalent an die Bakterien gebunden. Auf diese Weise 

behandelte Bakterien zeigten eine verbesserte Tumorzielsteuerung bei Beladung mit 

tumorbindenden Antikörpern. Unabhängig von der Antikörper-vermittelten 

Tumorzielsteuerung wurde die Tumorkolonisation verschiedener Listeria monocytogenes 

Mutanten untersucht. Insbesondere Listeria monocytogenes ΔaroA ΔinlGHE kolonisierte 

Melanom-Xenograft Tumoren sehr effizient und erreicht bis zu 108 CFU pro Gramm 

Tumormasse.  

Zusammengefasst zeigt diese Arbeit verschiedene vielversprechende Aspekte der 
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bakteriellen Tumortherapie, die möglicherweise in Zukunft angewandt werden können. Durch 

Verbindung der RNA-Transfersysteme mit Antikörper-vermittelter- und intrinsischer 

Tumorzielsteuerung können neue Möglichkeiten für den Einsatz von Listeria monocytogenes 

als therapeutischer Vektor geschaffen werden. 
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2 Introduction 

2.I Cancer 

Cancer is one of the ten leading causes of death worldwide (WHO, 2008). In developed 

countries approximately 20-25 % of disease related death toll is caused by transformed 

tissue (Jemal et al., 2007; WHO, 2008). In spite of highly advanced therapeutics and 

chemotherapeutic drugs, cancer related death rate has remained stable over the last years 

(Jemal et al., 2007). Although the standard therapies including surgery, radiation- and 

chemotherapy are constantly being improved, additional novel approaches are needed. Life 

prolonging therapies are available for treatment of many types of primary tumors, but 

metastases are still a major therapeutic problem. There is a great demand for specific 

treatments for metastases which are responsible for around 90% of cancer related deaths 

(Weinberg, 2006). 

Almost every tissue in the human body can be transformed into neoplastic lesions and 

progress into malignancy. Prostate and breast, together with lung and bronchus are the most 

affected organs in humans (Jemal et al., 2009; Jemal et al., 2007). Tissue transformation is 

caused by unrestricted cellular proliferation together with a loss of endogenous and 

exogenous homeostatic regulation (Hanahan and Weinberg, 2000). Cells initiating neoplastic 

growth have to acquire several characteristics, while others have to be lost during 

transformation. The most popular list of those was expressed by Hanahan and Weinberg in 

2000 (Hanahan and Weinberg, 2000). Cells transforming into neoplastic lesions need self-

sufficiency in growth signals, insensitivity to anti-growth signals, evade apoptosis, promote 

angiogenesis and require a limitless replicatory potential together with a loss of homeostatic 

regulation of cell division. 

  

2.II Current cancer therapy 

Treatment of cancer is a complex task, because the differences betweeen healthy cells and 

tumor cells are minimal (Klausner, 1999; Ratain and Relling, 2001). Metastases and 

resistance of cancer cells to chemotherapeutic agents make therapeutic interventions less 

efficient and decrease the chance of complete patient recovery (Di Nicolantonio et al., 2005). 

The occurrence of side effects during chemotherapy often limits drug application and leads to 

application of suboptimal dosages in the treatment regimen or premature treatment 

discontinuation (Huang and Ratain, 2009; Schrama et al., 2006). These limitations led to the 

development of novel therapeutic approaches supporting current therapies including 

strategies using microorganisms.  
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2.III Cancer and infection 

Almost one hundred years ago Ellermann and Bang and a few years later Peyton Rous were 

the first to describe a virus causing neoplastic transformations in chicken (Ellermann and 

Bang, 1908; Rous, 1910, , 1911). Several decades later scientists finallty accepted these 

initial findings and today many more viruses like HPV, HBV, HHV-8 or HTLV-1 have been 

proven to initiate tissue transformation (reviewed in Javier and Butel, 2008; Klein and 

Silverman, 2008). In addition to viral agents, bacteria like Helicobacter pylori have been 

shown to promote tissue transformation (reviewed in Ferreira et al., 2008). Other microbial 

pathogens or parasites, which promote chronic inflammations, also are believed to be 

involved in tissue transformation (Huang et al., 2007; Klein and Silverman, 2008). It is 

estimated that about 20% of worldwide cancer incidence is caused by infections (Parkin, 

2006). Despite the potential of some microorganisms to induce or promote tumor growth, 

viruses and bacteria have also been investigated for their application in tumor diagnosis and 

therapy.  

At the end of the 19th century, Busch, Fehleisen and Richter were the first to describe the 

enhanced survival of cancer patients infected with Streptococcus pyogenes and Serratia 

marcescens (Busch, 1866; Fehleisen, 1882; Richter, 1896). The American surgeon Coley 

was the first to investigate these observations in detail for cancer treatment (Coley, 1896; 

Coley, 1991). Although the mechanism of action was unclear at this time, this applications 

represent the first reports of bacterial anti-cancer therapies. At the same time an initial report 

on tumor regression after rabies virus vaccination was published (de Pace, 1912). It took four 

to five decades until first clinical trials using different viruses and bacteria were performed 

(Carey et al., 1965; Huebner et al., 1956; Southam and Moore, 1952; Webb et al., 1966). 

The beneficial outcome of these approaches was marginal, leading to a reduction in 

microbial cancer therapy research for the next decades. Given the immense potential of 

genetic manipulation of microorganisms, these therapeutic approaches have reemerged and 

are at present being intensively investigated. Alternative cancer therapies using 

microorganisms can be classified based on their mechanism of action. Immunologic 

approaches aim on the induction of specific or non-specific immune responses to tumors, 

while targeted approaches utilize the specific accumulation of microorganisms in tumor 

tissue for tumor disruption.  

 

2.III.1 Application of bacteria in cancer immunotherapy  

Cancer immunotherapy is based on the induction of potent immune response directed 
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against tumor tissue finally resulting in tumor regression (Guinn et al., 2007). In addition to 

immediate effects, the generation of an immunologic memory is required for prevention of 

cognate tumors.  

An efficient immunologic anti-tumor response is composed of a wide variety of cellular and 

humoral components of the immune system (IS). Parts of the innate IS like macrophages, 

natural killer cells (NK) and neutrophils as well as parts of the adaptive IS like cytotoxic and 

helper T-cells are required to jointly interact against neoplastic lesions. In different mouse 

models, the cellular rather than the humoral immune responses caused rejection and 

regression of transplanted tumors (Rosenberg, 2001). Although the intrinsic humoral immune 

response seems to be rather unimportant in animal models, the therapeutic application of 

antibodies showed significant successes in clinical studies (Reichert et al., 2005). 

In addition to cell transfers and vaccinations using peptides or DNA, several microorganisms 

have been used in immunologic cancer therapies. Initial approaches, based on the 

nonspecific induction of inflammation were performed by Coley, more than a hundred years 

ago; nevertheless the initial formulation consisting of inactivated bacteria is still in use for 

cancer treatment (Coley, 1896; Tang et al., 1991). The most prominent example of bacterial 

immunotherapy is the treatment of superficial bladder cancer using Mycobacterium bovis 

BCG (BCG) (reviewed in Lockyer and Gillatt, 2001; Morales et al., 1976). Application of 

viable BCG into the bladder leads to infiltration of macrophages and T-cells and is followed 

by a massive secretion of cytokines (Chakrabarty, 2003). The resulting inflammation 

prevents disease progression and reduces tumor recurrence (Lockyer and Gillatt, 2001). 

Several studies indicate inflammation as the main- but not sole cause for therapeutic effect of 

BCG as induction of inflammation alone is less efficient in therapy (Kleef and Hager, 2006; 

Lockyer and Gillatt, 2001).  

In addition to non-specific immune-stimulation by bacterial agents intracellular bacteria have 

been used for delivery of tumor antigens to elicit a directed immune response. The specificity 

of therapy is determined by the choice of the tumor associated antigen (TAA), as the 

distinction in between cancer cell and healthy cell is made on presence or absence of this 

TAA (Lewis et al., 2003; Wang and Rosenberg, 1999). If a non-specific antigen is chosen 

and the immune tolerance broken, severe autoimmune reactions may occur (Selvaraj et al., 

2008).  

Bacteria have been used as therapeutic cancer vaccines for surface presentation or 

secretion of TAAs to prime T-cells against cancer antigens. Genetically modified strains of 

L. monocytogenes and Salmonella enterica sp. have been evaluated for delivery of 

heterologous antigens (Gentschev et al., 2000). Initially it was shown, that both strains were 

able to initiate an immune response in mice against heterologous model antigens, preventing 

tumor growth after challenge with cancer cells expressing these antigens (Paglia et al., 1998; 
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Schafer et al., 1992). The bacterial carriers displayed an intrinsic adjuvant effect, which could 

be boosted by additional delivery of cytokines (reviewed in Vassaux et al., 2006).  

In the group of Yvonne Paterson endogenous TAAs like HER2/erbB2, PSA or virally 

originating E7 were fused to the highly immunogenic listeriolysin and used as bacterial 

cancer vaccines. After immunization, potent immune responses against the TAA were 

induced in mice preventing tumor growth after challenge and reducing tumor load under 

therapeutic conditions (reviewed in Paterson and Maciag, 2005). Using attenuated 

Salmonella enterica serovar Typhimurium strains, similar results were obtained on secretion 

of the melanoma TAA NY-ESO-1 or PSA (Fensterle et al., 2008; Nishikawa et al., 2006). 

Use of bacteria as carrier for heterologous antigen presentation in cancer therapy has shown 

promising results in animal models and the transfer into clinical applications is currently 

underway. Completely different chracteristics of bacteria and viruses are used making them 

shuttles for tumor targeted delivery of therapeutic agents as discussed in the next section.  

 

2.III.2 Targeted cancer therapy using bacteria and viruses 

One of the major challenges in cancer treatment is the distinction between healthy and 

transformed cells. Commonly applied chemotherapy acts systemic on every cell of a patients 

body, usually leading to cytotoxic effects in all rapidly dividing cells (Brown and Giaccia, 

1998). Although most cancer cells are more sensitive to chemotherapeutics, severe side 

effects often limit the application of cytotoxic drugs and lead to the premature discontinuation 

of treatment (Huang and Ratain, 2009; Schrama et al., 2006). Limitation of cytotoxic effects 

to the tumorsite or metastases would limit the side-effects and make the application of more 

potent drugs possible.  

Targeted cancer therapies use TAAs or other parameters correlating with neoplastic 

transformation as target structure to restrict therapies to the tumorsite and metastases. Using 

bacteria or viruses in targeted cancer therapy utilizes the differential colonization behavior of 

these pathogens in cancer bearing patients. Some organisms or viruses intrinsically 

accumulate in neoplastic tissues after systemic infection and could be used as therapeutic 

agents. Once these pathogens have reached the tumor tissue, they selectively replicate, 

accumulate, and elicit locally restricted cytotoxic effects optimally leading to a lasting tumor 

regression.  

 

2.III.2.a Viral accumulation in tumors 

Accumulation of bacterial- as well as viral strains has been shown in transformed tissue after 

systemic infection. Several viruses depend during their infection cycle to some degree on 
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activated RAS pathways, which are activated in many human tumors (Barbacid, 1987; Sears 

and Nevins, 2002). While the vaccinia virus is able to infect many cell lines in tissue culture, 

efficient intracellular multiplication takes place only if the mitogen-activated protein kinase 

(MAPK) pathway is activated (Andrade et al., 2004; de Magalhaes et al., 2001). Other 

members of the poxviridae require a delicate balance of MAPK activation and inactivation for 

virus multiplication (Wang et al., 2004). The viral infection behavior can also be influenced by 

intracellular signalling. The Reovirus depends on an activated RAS pathway for efficient 

infection (Coffey et al., 1998).  

Interferons are involved in mediation of growth inhibitory signals as well as the cellular 

antiviral response (Stark et al., 1998). Interferon non-responding cells have acquired a 

growth advantage combined with a higher susceptibility to viral infections. The vesicular 

stomatitis virus (VSV) is especially sensitive to interferon and was used for tumor treatment 

experiments based on selective replication in interferon non-responding tumors (Belkowski 

and Sen, 1987; Stojdl et al., 2000).  

Other viruses were genetically engineered to selectively target tumor cells or replicate in 

tumors. An adenovirus was genetically altered to be dependent on cellular upregulation of 

E2F with concurrent p53 downregulation (Bischoff et al., 1996; McCormick, 2003). In a 

different approach, a dependence of the viral multiplication on the G1-S-phase checkpoint 

was incorporated into an adenoviral strain by mutating the E1A early viral protein (Heise et 

al., 2000). Different deletions and modifications were made in herpes simplex virus type 1 

(HSV-1) limiting replication selectively to dividing cells (Mineta et al., 1994; Mineta et al., 

1995).  

In addition to modification of endogenous viral proteins, some viruses were equipped with 

heterologous proteins for cancer targeting. In the fiber and envelope proteins of an 

adenovirus and a sindbis virus, the antibody binding domains derived from Staphylococcus 

aureus protein A were inserted to enable viral coating with immunoglobulins (Ohno et al., 

1997; Volpers et al., 2003). Using different antibodies bound to the viral particles these 

viruses were be enabled to infect cancer cell lines in an antibody-dependent manner.  

 

2.III.2.b Bacterial accumulation in tumors 

Bacterial carriers have been investigated with respect to their tumor targeting capacity as 

well, though the reasons for increased tumor colonization differ from those of viral carriers. 

Bacterial accumulation is related to a great extent to the metabolic and physical properties of 

tumor tissue rather than the presence or absence of the surface receptors involved in the 

viral tumor targeting. Commonly tumor growth proceeds faster than the vascularization 

system is able to build up a sufficient network of supporting vessels (Fukumura and Jain, 
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2007). In addition the vascular architecture in tumors is often disorganized leading together 

with the elevated interstitial tissue pressure to a suboptimal blood flow. The resulting 

shortage of sufficient oxygen and nutrients leads to hypoxic and necrotic regions in tumor 

areas remote from the vessels (Fukumura and Jain, 2007). The lack of oxygen in anoxic 

areas and the reprogramming of immune cells prevents efficient immune responses leading 

to immunological sanctuaries (Brown and Giaccia, 1998; Espey, 2006; Lambin et al., 1998). 

The listed characteristics differ between healthy and tumor tissue and are discussed as 

reasons facilitating bacterial accumulation in tumors after systemic infection (reviewed in 

Brown, 1999; Ryan et al., 2006; St Jean et al., 2008).  

Obligate anaerobic bacteria like Clostridia are unable to bear oxygen in their vegetative form 

and only spores are tolerant to aerobic conditions (Paredes et al., 2005). On systemic 

infection of humans with Clostridia spores, germination followed by replication is restricted to 

anaerobic areas of the body (Carey et al., 1965; Lambin et al., 1998). Different Clostridia 

species have been investigated as tumor-accumulating therapeutic vectors since the initial 

reports published in 1947 (Malmgren and Flanigan, 1955; Parker R. C. et al., 1947). 

Clostridium histolyticum, Clostridium butyricum, Clostridium sporogenes, Clostridium 

acetobutylicum and even Clostridium tetani have been employed as targeting vectors 

yielding varying therapeutic efficiencies (reviewed in Wei et al., 2008a). Recently an 

attenuated strain of Clostridium novyi devoid of its α-toxin, showed promising tumor targeting 

properties in several animal models (Dang et al., 2001).  

Other obligate anaerobic bacteria belonging to the apathogenic Bifidobacteria were used for 

targeted delivery into tumor tissue. Bifidobacterium bifidum showed lasting but locally 

restricted growth in hypoxic tumor areas while being eliminated after 24-48h in blood, bone 

marrow, muscle, liver, spleen, kidney and lung (Kimura et al., 1980). Several other species of 

this genus were examined in detail and especially Bifidobacterium longum is currently used 

in cancer gene therapy (Fujimori et al., 2002; Yazawa et al., 2001). 

Various other facultative anaerobic bacteria have also been shown to accumulate in tumor 

tissue after systemic infection. Vibrio cholerae, different Salmonella enterica serovars and 

Escherichia coli were used as targeted carriers in various cancer therapy approaches 

(Cunningham and Nemunaitis, 2001; Nemunaitis et al., 2003; Pawelek et al., 1997; Stritzker 

et al., 2007; Toso et al., 2002; Yu et al., 2004). The reason for bacterial tumor accumulation 

by facultative anaerobes, with exception of Salmonella enterica serovar typhimurium, is 

currently unknown. As indicated at the beginning of this chapter, several properties of tumor 

tissue are discussed as reason for bacterial accumulation, but only recently the mechanism 

of tumor accumulation by a facultative anaerobic bacterium has been proposed. Chemotaxis 

for ribose, serine and aspartate was pinpointed as cause for tumor colonization of S. 

typhimurium (Kasinskas and Forbes, 2006; Kasinskas and Forbes, 2007). Mutants lacking 
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the corresponding chemotaxis receptors were shown to colonize only distinct regions of 

tumor cell cylindroids in vitro (Kasinskas and Forbes, 2007).  

Tumor accumulation of S. typhimurium was artificially enhanced by chemical mutagenesis 

resulting in a leucine and arginine auxotroph mutant (Zhao et al., 2005). Organ colonization 

of this mutant strain was shown to be limited to tumor tissue, as the amino acid supply in 

other tissues was not sufficient for bacterial replication. In vivo passaging in tumor bearing 

mice further improved tumor cell invasion and caused tumor regression in nude mice (Zhao 

et al., 2006). In a different approach, bacterial tumor targeting was synthetically improved by 

expression of tumor specific single-chain-antibodies (scFv) bound to the bacterial surface. 

Expression of a scFv directed against the carcinoembryonic antigen (CEA) led to a doubling 

of bacterial counts in tumor tissue compared to bacteria without scFV expression (Bereta et 

al., 2007). In addition to preferential tumor colonization after systemic infection, several 

studies were performed by injecting the bacteria into solid tumors to increase bacterial tumor 

colonization. Using this technique colonization of liver and spleen, commonly colonized after 

systemic infection, can be reduced (Sasaki et al., 2006).  

 

Depending on bacterial strains, animal tumor models and the examined time points, the ratio 

of bacterial tumor- to healthy tissue colonization differs a lot. Initial studies using S. 

typhimurium reported a 250- to 9000-fold higher bacterial count in tumor tissue than in the 

liver two to four days after systemic infection (Pawelek et al., 1997). Similar ratios were found 

using scFv guided S. typhimurium (Bereta et al., 2007). In xenografted tumor mice S. 

choleraesius was found to colonize tumors 1.000 to 100.000 fold better than liver and spleen 

(Lee et al., 2004; Lee et al., 2005). The higher these ratios of bacterial titers are between 

colonizatation of healthy tissues and tumors, the better these strains can be employed for 

therapeutic purposes.  

 

2.III.2.c Approaches in tumor therapy using targeted bacteria 

Once the bacteria and viruses are enriched in the tumors, antitumor effects are to be initiated 

for therapy. Several bacterial and viral strains intrinsically cause oncolysis, while others have 

been genetically manipulated to destroy tumor cells. Beside direct cytotoxic effects, bacteria 

and viruses have been used for tumor targeted delivery. Using tumor targeted carriers, gene 

therapy, suicide-gene therapy, immuno-gene therapy, anti-angiogenic approaches or gene 

silencing have been achieved (reviewed in Wei et al., 2008b). 

Historically, bacterial induced tumor lysis was shown for the first time in xenografted tumor 

mice by injection of Clostridium histolyticum spores into tumor tissue (Parker R. C. et al., 

1947). Clostridial secretion of kininases, proteases, peptidases, nucleases and 
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phospholipase A resulted in liquefaction of the tumor center (Brantner and Schwager, 1979, , 

1980; Fischer et al., 1975; Haller and Brantner, 1979; Mose et al., 1972; Schmidt et al., 

2006). In addition oncolysis was shown in experiments using Bifidobacterium adolescentis, 

but not on application of Bifidobacterium longum (Fujimori, 2006; Kimura et al., 1980; Wang 

et al., 1999). This strain was used for delivery of prodrug-converting enzymes in transplanted 

as well as autochthonous tumors in rats. On intratumoral injection of 108 prodrug-converting 

bacteria followed by systemic application of the prodrug, regression of tumor growth was 

observed (Sasaki et al., 2006). Using attenuated Salmonella typhimurium VPN2009 for 

delivery of carboxypeptidase G2, profound bacterial colonization and prodrug conversion 

was observed in xenografted murine tumors. Cytotoxic effects of the converted prodrug led 

to significant tumor regression in murine tumor models (Friedlos et al., 2008). In addition to 

applications in suicide gene therapy, S. typhimurium has been employed for delivery of the 

pro-apoptotic Fas ligand (FasL). Tumor colonization with simultaneous FasL expression by 

the bacterial carriers resulted in marked tumor regression and less aggressive metastatic 

spread in the tumor mice (Loeffler et al., 2008).  

Delivery of an eukaryotic expression cassette encoding endostatin, an angiogenesis inhibitor, 

was accomplished using B. longum, B. adolescentis and S. choleraesius. The different 

approaches were able to induce endostatin expression in tumor tissue, reduce tumor 

vascularization and growth but failed in curing the tumors (Lee et al., 2004; Li et al., 2003; Xu 

et al., 2006).  

 

2.III.2.d  Limitations of bacterial and viral use in tumor therapy 

Although targeted bacterial and viral cancer therapy approaches have been intensively 

studied and reached first clinical trials, several disadvantages still limit the broad clinical 

application of these carriers. Clearly one of the major problems in targeted therapies is the 

cancer targeting itself. Only by using the obligate anaerobic Clostridia as a carrier, high 

numbers of bacteria colonize the tumor tissue. The second bacterial strain of strictly 

anaerobic bacteria used in targeted cancer therapy, the Bifidobacteria, show much lower 

tumor colonization. Bacterial titers of some Clostridia reach 108-109 CFU/g tumor mass, in 

comparison to the highest published titers of Bifidobacteria which range between 105 to 106 

CFU/g (Sasaki et al., 2006; Wei et al., 2008b). Published anti-tumor effects of Bifidobacteria 

therefore often relied on intratumoral injection of the carrier bacterium, avoiding intrinsic 

bacterial targeting. The tumor lysis syndrome is another common problem of Clostridia and 

several oncolytic viruses on application in cancer therapy. After successful tumor breakdown, 

there is a mass of cell debris, electrolytes and carrier particles released into the surrounding 

tissue leading to severe clinical symptoms (reviewed in Tiu et al., 2007). Another critical 
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issue on application of Clostridia is the obligate need for anoxia for spore germination. 

Obligate anaerobic bacteria are unable to colonize small metastases as long as these are 

sufficiently supplied with oxygen. They are unable to trigger their cytotoxic effects, even in 

the well oxygenized outer rim of solid tumors, and that is propably the reason why tumors 

often regrow from cells of the outer rim following clostridial tumor therapy (Minton, 2003; 

Nuyts et al., 2002; Wei et al., 2008a). 

The facultative anaerobic carriers of the genera Salmonella, Escherichia or Listeria are 

basically able to grow in the whole tumor including the outer rim, but the application of these 

bacteria has other downsides. Noninvasive E. coli strains in cancer therapy are limited to 

extracellular delivery of therapeutic agents but e.g. suicide-gene therapy requires intracellular 

bacteria. The invasive Salmonella and Listeria mutants currently under investigation show 

low tumor to liver infection ratios. Ratios range between 100:1 to 100.000:1 of bacterial tumor 

to liver titers and average ratios below 10.000:1 are reported (Forbes et al., 2003; Kim et al., 

2009; Lee et al., 2005; Low et al., 1999; Pawelek et al., 1997). Especially the presence of the 

highly immunogenic LPS on the bacterial surface poses an additional problem on application 

of gram-negative bacteria and the amount of LPS has to be reduced when using gram-

negative carrier bacteria. This is the reason why many gram-positive bacteria are 

investigated for use in tumor therapy. These described limitations in the various approaches 

are the reasons why clinical use of targeted bacterial tumor therapy is still in early trial 

phases. 

 

2.IV Listeria monocytogenes 

2.IV.1 Epidemiology and Pathogenesis 

Listeria monocytogenes is a pathogenic gram-positive bacterium, commonly found in 

environmental, human and animal samples (Seeliger et al., 1965; Vazquez-Boland et al., 

2001). Frequent occurrence in spoiled food products like raw milk and meat results in broadly 

spread immune memory in the human population (Hof, 2003; Schuchat et al., 1991). Though 

severe pathologic symptoms are rather rare on infections of healthy individuals, 

L. monocytogenes may cause encephalitis, septicemia and stillbirth in immuno-compromised 

humans. Especially pregnant women, elderly people and patients suffering from leukemia or 

AIDS are prone to develop severe listeriosis on L. monocytogenes infection (Hof, 2003; 

Vazquez-Boland et al., 2001). 

Following ingestion of contaminated food, bacteria surviving the gastric acid reach the 

intestinal tract. After active crossing of the epithelial cell layer, the bacteria enter into 

lymphatic and blood vessels and are carried to liver and spleen, were they are taken up by 
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resident macrophages (Ebe et al., 1999; Marco et al., 1992; Pron et al., 1998). Bacteria 

evading the killing by macrophages spread to proximate cells and replicate particularly in 

hepatocytes. During early infection, neutrophils are recruited mediating destruction of 

infected hepatocytes (Mackaness, 1962; Rogers and Unanue, 1993). Later mononuclear 

cells and lymphocytes mediate granuloma formation confining infected cells. Finally the 

infection is cleared by infiltrating IFNγ-activated macrophages and CD8+ lymphocytes 

(Gregory and Liu, 2000; Harty et al., 1992; Kaufmann, 1993; Mielke et al., 1988; Vazquez-

Boland et al., 2001). If L. monocytogenes is not cleared from liver and spleen, a secondary 

release of bacteria into the blood stream leads to infection of brain and placenta leading to 

severe pathologic symptoms (Cossart, 2002).  

 

2.IV.2 Infection cycle  

L. monocytogenes is a faculative intracellular bacterium entering non-phagocytic cells via the 

zipper mechanism. Active invasion was shown for various different cell types including 

epithelial-, endothelial- and neuronal cells and also for fibroblasts and hepatocytes (Dramsi 

et al., 1998; Drevets et al., 1995; Gaillard et al., 1987; Guzman et al., 1995; Kuhn et al., 

1988; Wood et al., 1993). L. monocytogenes is taken up by phagocytic cell types like 

macrophages and neutrophils (Hamon et al., 2006; Mackaness, 1962).  

Following cell invasion, the bacteria lyse the acidifying phagosome using Listeriolysin O 

(LLO) and replicate within the cytosol using nutrients acquired from the host cell (Beauregard 

et al., 1997; Gaillard et al., 1987; Joseph and Goebel, 2007; Joseph et al., 2006). Actin 

polymerisation at one bacterial cell pole pushes L. monocytogenes through the cytosol in an 

undirected manner. Polar expression of ActA leads to recruitment of the Arp2/3 complex via 

VASP mediating the generation of actin fibers (Cossart and Lecuit, 1998; Domann et al., 

1992; Kocks et al., 1992). When the bacterium is propelled against the host cell membrane, 

a protrusion into the adjacent cell with the bacterium at the tip develops. The protrusion 

becomes a secondary endosome which is rapidly lysed by the bacterial phospholipase C 

(PlcB) and LLO (Vazquez-Boland et al., 2001). Once the bacteria arrive inside the host cell 

cytosol the replication cycle starts over again.  

Active bacterial invasion into non-phagocytic cells is mediated by two proteins of the 

internalin family. Internalin A (InlA) interacts with epithelial cadherin (E-cadherin) and is 

mainly responsible for the initial crossing of the intestinal barrier following ingestion 

(Mengaud et al., 1996). Interaction with transiently exposed E-cadherin on enterocytes of 

intestinal villi mediates bacterial invasion into these epithelial cells (Pentecost et al., 2006). 

Internalin B (InlB) is able to interact with two different cellular receptors. MET/HGFR 

(mesenchymal-epithelial transition factor / hepatocyte growth factor receptor) and the 
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complement receptor gC1qR represent the main InlB receptors and invasion is enhanced by 

interactions with glucosaminoglycans (Braun et al., 2000; Jonquieres et al., 2001; Shen et 

al., 2000). The interaction of InlB and MET is important for infection of hepatocytes allowing 

colonization of the murine liver following infection (Khelef et al., 2006; Shen et al., 2000). 

Several additional internalins have been described to be involved in the bacterial infection 

and colonization process in vivo. L. monocytogenes harbouring deletions in the three 

membrane bound internalins InlG, H and E (InlG/H/E) shows reduced virulence in vivo 

following oral infection (Raffelsbauer et al., 1998). In contrast inlG/H/E deletions leads to an 

upregulation of InlA/B resulting in an hyperinvasive bacterial phenotype in vitro (Bergmann et 

al., 2002).  

In addition to these cell wall associated internalins the secreted internalin C (InlC) was found 

to be involved in the late phase of L. monocytogenes infection in vitro (Engelbrecht et al., 

1996). The LD50 of L. monocytogenes ΔinlC is elevated 50-fold in mice in comparison to 

wildtype bacteria on i.v. infection, indicating an important function in bacterial pathogenicity. 

The molecular mechanisms how InlC increased pathogenicity remained unclear till today. 

 

2.IV.3 Use of L. monocytogenes as targeted carrier 

L. monocytogenes has been attenuated by deletions of different virulence genes like actA, 

actA mpl plcB, actA plcB or actA inlB (Angelakopoulos et al., 2002; Brockstedt et al., 2004; 

Dietrich G. et al., 1998; Wallecha et al., 2009). In targeted tumor therapy, bacterial virulence 

factors are desirable for efficient tumor colonization, and hence other attenuations have been 

made for this application. In the past, genes involved in bacterial amino acid metabolism or 

cell wall synthesis were deleted to attenuate the bacteria while simultaneously keeping all 

virulence factors functional (Dougan et al., 1987; Stritzker and Goebel, 2004; Stritzker et al., 

2004; Thompson et al., 1998). But even the knockout of non-virulence genes like the dal, dat 

genes involved in the generation of D-alanine for cell-wall synthesis can render the bacteria 

unsuitable for targeted tumor therapy. As the dal dat deletion leads to an almost complete 

abrogation of intracellular replication in vitro and the mutant is cleared in vivo in less than two 

days post infection, this attenuation is inappropriate for the desired application (Thompson et 

al., 1998).  

Bacterial attenuation by deletion of the aroA and aroB genes, involved in the aromatic amino 

acid metabolism, leads to a significant reduction of pathogenicity, too. The LD50 in mice is 

increased more than five orders of logarithmic magnitude despite of the bacteria still being 

able to infect, replicate and spread (Stritzker and Goebel, 2004; Stritzker et al., 2004). Using 

attenuated L. monocytogenes mutants, several systems for delivery of functional molecules 

into eukaryotic cells were developed (Dietrich G. et al., 1998; Loeffler et al., 2006; Pilgrim et 
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al., 2003; Schoen et al., 2005; Stritzker et al., 2008). L. monocytogenes were used for 

delivery of prokaryotic and eukaryotic expression cassettes into the cytosol of different cell 

lines. In the mouse model different delivery systems were proven functional in delivery of the 

heterologous antigens (Loeffler et al., 2006). Colonization of tumor tissue using these 

L. monocytogenes mutants has not been published so far. Experiments investigating tumor 

colonization of L. monocytogenes ΔaroA in xenografted tumor mice following i.v. infection 

were done, but the overall bacterial numbers reached only a maximum of 106 CFU per gram 

of tumor mass (Fensterle, personal communication; Heisig, unpublished data). These 

bacterial titers are too low for efficient therapeutic delivery approaches, as the amount of 

delivered cargo is too small. 
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3 Aim of study 

The use of bacteria in targeted tumor therapy requires several criteria to be met by the 

carrier bacterium. An absolute prerequisite for utilization of pathogenic strains as carriers, the 

strains have to be adequately attenuated to avoid disease outbreak. Apart from this, two 

main factors will influence the later therapeutic outcome. On the one hand, the bacterial 

tumor colonization especially in relation to colonization of healthy organs is crucial for 

efficiency and circumvention of side effects. On the other hand, the therapeutic component 

delivered as payload significantly influences the anti-tumor effects.  

This PhD thesis focused on characterization and improvement of the two latter aspects of 

bacterial tumor therapy. Different approaches for enhancement of bacterial tumor 

colonization were analyzed. In addition to the improvement of bacterial titers in tumor tissue, 

the delivery of functional RNAs as potential therapeutic component was investigated. As 

future goal, a combination of both would potentially allow tumor therapeutic applications 

using L. monocytogenes.  

 

3.I RNA delivery by L. monocytogenes 

The delivery of functional mRNAs by L. monocytogenes into mammalian cell lines was 

shown for the first time in 2005 (Schoen et al., 2005). The T7RNAP based delivery system 

was encoded on two plasmids harbouring the polymerase gene and the expression cassette 

respectively. Expression of the T7RNAP was under the control of the actA promotor, 

resulting in strongly enhanced expression following phagosomal escape of the bacteria. The 

T7RNAP transcribed an EGFP gene preceded by a viral ribosome entry site. Following 

mRNA expression and release into the eukaryotic cytosol, the host cell translated the mRNA 

into functional proteins. In vitro this RNA delivery resulted in significant EGFP production 

already 4h p.i. (Schoen et al., 2005). In vivo, the RNA delivery by non-attenuated 

L. monocytogenes was used for delivery of heterologous antigens (Loeffler et al., 2006). The 

application of RNA delivering bacteria in targeted tumor therapy was not researched until 

now, as the amount of bacteria needed for initial tumor colonization exeeded the LD50 in 

mice. In addition, it proved to be impossible to attenuate the RNA delivering strains by aroA 

deletion (Pilgrim, personal communication). Beside the inability for aromatic amino acid 

production the aroA mutant was devoid of a functional electron carrier, therefore dependent 

on anaerobic energy generation (Stritzker et al., 2004). Presumably the overall energy 

demand exerted by the two expression plasmids and the highly active T7RNAP was too high 

to be covered by the aroA mutant. Consequently, one goal of this study was increasing the 

growth rate efficiency by integration of the T7RNAP gene into the genome of 
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L. monocytogenes. The copy number reduction from plasmid- to genomic expression 

reduced the amount of active T7RNAP molecules consuming energy. Following this 

integration, the RNA delivery system was encoded on a single plasmid additionally reducing 

the growth retardation. The final aim of this approach was the attenuation of the one-plasmid 

RNA delivery strain for application in vivo.  

 

In addition to the established delivery systems of nucleic acids encoding proteins or 

heterologous antigens, L. monocytogenes was sought to be engineered as carrier for small 

interfering RNA (siRNA) mediating gene silencing. Silencing of gene expression by RNA 

interference (RNAi) was initially discovered in C. elegans on injection of double stranded 

RNAs (Fire et al., 1998). Though these siRNAs offer promising opportunities in gene therapy 

the application of siRNA is difficult in vivo (Takeshita and Ochiya, 2006). The challenging 

problem of silencing specificity has been solved and therefore the remaining main problem of 

siRNA treatment in living organisms is the targeted delivery to the site of disease because of 

RNA degradation in vivo (Carthew and Sontheimer, 2009; Kurreck, 2009; Takeshita and 

Ochiya, 2006). Currently, the only siRNA therapies investigated for clinical application are 

performed in easily accessible organs like the eyeball, liver and lung (Fattal and Bochot, 

2006; Thomas et al., 2007). Expansion of therapeutic use to other organs depends on the 

development of novel delivery systems in addition to the current viral and chemical methods.  

Delivery of siRNAs by intracellular bacteria represents one possible approach, but the 

bacteria would have to synthesize these siRNAs prior to delivery. For application of 

L. monocytogenes in siRNA, a shRNA expression cassette was designed connecting the 

RNA sense- and antisense strand with a short linker sequence. This expression cassette 

was placed under control of the T7RNAP promotor for timed expression in the host cell 

cytosol. The aim of this project was to test the feasibility of shRNA delivery by 

L. monocytogenes for future applications.  

 

3.II Improvement of L. monocytogenes tumor colonization 

3.II.1 Antibody-mediated tumor targeting by 

L. monocytogenes 

Tumor-specific epitopes have been used as targets in cancer therapy in various of 

therapeutic approaches (reviewed in Neller et al., 2008; Schietinger et al., 2008). In addition 

to these mainly immune based approaches, extracellular tumor associated antigens (TAAs) 

offer a possible targeting structure for direct guidance of therapeutic agents.  

A L. monocytogenes mutant expressing cell-wall anchored S. aureus protein A, which 
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enabled bacterial immunoglobulin binding was constructed and characterized (Frentzen, 

2008). Coating of L. monocytogenes expressing protein A (L. monocytogenes ΔaroA/trpS 

ΔinlAB int::Phly-spa + pFlo-trpS, Lm-spa+) with an antibody recognizing a TAA, enables 

bacteria to bind cancer cells expressing the corresponding antigen. Initial in vitro experiments 

investigating the functionality of antibody-mediated cell targeting were performed using 

bacteria coated with Trastuzumab. Trastuzumab (® Herceptin) is a humanized monoclonal 

antibody directed against the HER2/neu protein which is clinically used for therapy of 

HER2/neu overexpressing metastatic breast cancer (reviewed in Hudis, 2007). HER2/neu is 

overexpressed in approximately 30% of all breast cancer patients making it a valid TAA 

(McCann et al., 1991; Thor et al., 1989; Venter et al., 1987).  

Infection experiments performed in the human breast cancer cell line SK-BR-3, showed the 

proof of principle for antibody-mediated cancer cell internalization of Lm-spa+ as shown in 

figure 3.1.  

 

 

figure 3.1:  Relative internalization of L. monocytogenes mutants into SK-BR-3 cells following 

incubation with and without Trastuzumab (Frentzen, 2008; modified) 

 

In comparison to uncoated bacteria, the Trastuzumab coated L. monocytogenes expressing 

protein A internalized about 20-fold better into this cell line. The amount of intracellular 

bacteria was even twice as high as the wildtype bacteria. As expected, no difference 

between coated and uncoated bacteria was observed when protein A negative strains were 

examined.  

These promising results laid the groundwork for further improvement and expansion of the 

antibody-mediated tumor targeting as examined in this study. Several aspects of the delivery 

were to be examined in detail. First of all, the specificity of the approach had to be tested with 

cell lines expressing the antibody ligand in comparison to the isogenic ligand-negative cell 

line. With a functional system, several parameters were to be optimized to increase the 

bacterial internalization rate specifically. Finally, the application of antibody-mediated 
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targeting was to be investigated in vivo in tumor bearing mice.  

 

3.II.2 Evaluation of two L. monocytogenes mutants as tumor 

targeting vectors 

Two L. monocyogenes mutants were examined with regards to their colonization and 

accumulation behavior in tumors.  

The mutant carrying a deletion in the putative hexose phosphate transporter hpt was found to 

show decreased liver colonization in ICR mice following systemic infection (Chico-Calero et 

al., 2002). The inability to take up phosphorylated hexoses results in a sustained bacterial 

growth disadvantage in liver cells as these sugars are the predominant carbohydrates in 

hepatocytes. In applications utilizing the bacteria for tumor targeted delivery of toxic agents, 

the reduction of liver colonization would be beneficial for reduction of adverse reactions. 

Consequently the hpt mutant was examined in a murine melanoma model regarding tumor 

colonization and tumor to liver ratio.  

The invasion properties of different internalin mutants published earlier were examined and it 

was found that the L. monocytogenes mutant comprising deletions of the internalins G, H 

and E showed a distinct invasion increase into a murine melanoma cell line as shown in 

figure 3.2 (Bergmann et al., 2002; Duechs, 2007). 

 

 

figure 3.2:  Invasion of L. monocytogenes EGD wildtype and the corresponding internalin 

G/H/E deletion mutant into the murine B78/D14 melanoma cell line (Duechs, 2007) 

 

Deletion of ΔinlGHE leads to pronounced upregulation of the to major internalins A and B 

resulting in a hyper invasive phenotype of this mutant (Bergmann et al., 2002). This evidence 

encouraged investigation of tumor colonization by this mutant in murine tumor models. 

Enhancing tumor targeting on the one hand and delivery on the other hand was intended to 

improve key bacterial properties involved in tumor therapy. Generation of L. monocytogenes 

strains harbouring both attributes might allow future therapeutic use.
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4 Material 

4.I Bacterial strains 

name relevant genotype source 

L. monocytogenes EGDe  wildtype Jürgen Kreft 

L. monocytogenes EGDe ΔtrpS 

x pFlo-trpS 

deletion of trpS (Pilgrim et al., 2003) 

L. monocytogenes EGDe 

ΔtrpS/Δint::PactA-T7RNAP 

x pFlo-trpS 

deletion of trpS, genomic 

substitution of int by PactA-

T7RNAP 

this study 

L. monocytogenes EGDe ΔaroA deletion of aroA (Stritzker and Goebel, 2004) 

L. monocytogenes EGDe 

ΔtrpS/ΔaroA/Δint::PactA-T7RNAP 

x pFlo-trpS 

deletion of aroA, trpS; 

genomic substitution of int by 

PactA-T7RNAP 

this study 

L. monocytogenes EGD Δhpt deletion of hpt (Chico-Calero et al., 2002) 

L. monocytogenes EGD ΔaroA 

Δhpt 

deletion of aroA, hpt this study 

L. monocytogenes EGD ΔinlGHE deletion of inlGHE (Raffelsbauer et al., 1998) 

L. monocytogenes EGD ΔaroA 

ΔinlGHE 

deletion of aroA, inlGHE this study 

L. monocytogenes EGDe ΔtrpS 

ΔaroA ΔinlA ΔinlB  

x pFlo-trpS (Lm- spa-) 

deletion of aroA, trpS,inlA, 

inlB 

(Frentzen, 2008) 

L. monocytogenes EGDe ΔtrpS 

ΔinlA ΔinlB Δint::Phly-spa  

x pFlo-trpS (Lm-aroA+ spa+) 

deletion of trpS,inlA, inlB; 

genomic substitution of int by 

spa 

(Frentzen, 2008) 

L. monocytogenes EGDe ΔtrpS 

ΔaroA ΔinlA ΔinlB Δint::Phly-spa  

x pFlo-trpS (Lm-spa+) 

deletion of aroA, trpS,inlA, 

inlB; genomic substitution of 

int by spa 

(Frentzen, 2008) 

   

table 4.1: Bacterial strains 
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4.II Plasmids 

name relevant properties source 

pFlo-trpS trpS expression cassette with PtrpS (Pilgrim et al., 2003) 

pLSV101-IntAB-PactA-

T7RNAP 

vector for genomic substitution of int by 

PactA-T7RNAP 

this study; (Heisig, 2005) 

pLSV101-ΔaroA plasmid for aroA deletion (Stritzker and Goebel, 2004) 

pCSAI vector harbouring a T7RNAP expression 

cassette under control of the actA 

promotor, stabilized in trpS deficient 

L. monocytogenes 

(Schoen et al., 2005) 

pCSA-IRES/EGFP vector harbouring an EGFP expression 

cassette with a viral IRES element under 

control of the T7RNAP promotor, stabilized 

in trpS deficient L. monocytogenes 

this study 

pCSA-IRES/FCUI vector harbouring a FCU1 expression 

cassette with a viral IRES element under 

control of the T7RNAP promotor, stabilized 

in trpS deficient L. monocytogenes 

this study 

pCSB1 RNA delivery vector harbouring a EGFP 

expression cassette under control of the 

T7RNAP promotor 

(Schoen et al., 2005) 

pCSB-IRES/EGFP vector harbouring an EGFP expression 

cassette with a viral IRES element under 

control of the T7RNAP promotor 

(Heisig, 2005) 

pCSB-IRES/FCUI vector harbouring a FCU1 expression 

cassette with a viral IRES element under 

control of the T7RNAP promotor 

(Heisig, 2005) 

pCSB-shSmac RNA delivery vector harbouring an anti-

SMAC/DIABLO shRNA expression 

cassette under control of the T7RNAP 

promotor 

this study 

   

table 4.2: Bacterial plasmids 
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4.III Oligonucleotide sequences 

4.III.1 PCR primer 

name sequence [5' -> 3'] application 

aroA check 3' GTCTGCTTCGATAGCTAGAGC 

aroA check 5' GCTTAACACGATTCTTGCAGC 

detection of 

L. monocytogenes aroA 

aroA check -1 CAGGCAAATTAGCTGATACCG 

aroA check -4 AATCCCACGAGCAAGTTCAGC 

detection of 

L. monocytogenes aroA

aroB check 3' GCTAAATCGAAATCCAGTCCG 

aroB check 5' CGTTCCGTGTGTATGAAGAC 

detection of 

L. monocytogenes aroB

b-actin 3' mouse TGGATGGCTACGTACATGGCTGGG 

b-actin 5' mouse TTCTTTGCAGCTCCTTCGTTGCCG 

detection of murine β-

actin 

GFP check 3' GCCATGTGTAATCCCAGCAGC 

GFP check 5' CCAACACTTGTCACTACTTTCG 

detection of gfp 

hpt check 3' CTCCTGCTATTATGGGTGTCC 

hpt check 5' CTCGCAACGATTAAACATGCC 

detection of 

L. monocytogenes hpt  

InlA check 3' GCTCTAAGTTAGTGAGTGCGG 

InlA check 5' CTTCAGGCGGATAGATTAGGG 

detection of 

L. monocytogenes inlA  

InlB check 3' TGCTTTTTCGGTCGTTTCCGC 

InlB check 5' AGGACCTAAGTTCGCTCAAGG 

detection of 

L. monocytogenes inlB  

InlC check 3' ACCATCTACATAACTCCCACC 

InlC check 5' AGCTGAGAGTATTCAACGACC 

detection of 

L. monocytogenes inlC 

InlE check 3' CGCTAATAGTATCCGGTGCAA 

InlE check 5' TGCTCGGAAAAGCGGATGTAA 

detection of 

L. monocytogenes inlE  

InlG check 3' TCGGTTCTTGTAGCAGAGCTT 

InlG check 5' TGGGTAAATGCAAGTCATGGG 

detection of 

L. monocytogenes inlG 

InlH check 3' GCAAGTGGGCTAACATCACTA 

InlH check 5' ATGGTAACTGCTATTCTCGGG 

detection of 

L. monocytogenes inlH 

Integrase check -1 GATGAATATGTAGAAGATGGT 

Integrase check -4 CTTATACATACTCAGAGGATG 

detection of 

L. monocytogenes int  

Integrase screen 3' CGATGAACAAACCCTAATCCGC 

Integrase screen 5' GAAAAGCTAACAGCCTTGTGCC 

detection of 

L. monocytogenes int  

LSV3 AGTACCATTACTTATGAG 

LSV-4380 rev AGGGTTTTCCCAGTCACG 

screening of mcs in 

pLSV101 
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name sequence [5' -> 3'] application 

Myko check 5' ACTCCTACGGGAGGCAGCAGTA 

Myko check 3' TGCACCATCTGTCACTCTGTTAACCTC 

detection of 

mycoplasma  

pFLO 5' CAGGAAACAGCTATGACCATG 

pFLO IRES 3' CCATTGTATGGGATCTGATCT 

screening of mcs in 

pFlo and derivates 

pLVTHM mcs 3' GCAAAAAGCAGCATAACTTCG 

pLVTHM mcs 5' AGGAATTCGAACGCTGACGTC 

screening of mcs in 

pLVTHM and derivates 

pSP0 mcs 3' ACACGAACCGTCTTATCTCCC 

pSP0 mcs1 check 

5' 

GATACCTGTCCGCCTTTCTCC 

screening of mcs in 

pSP0 and derivates 

PtrpsS end 3' TAGGGACGAACGGTTATCCGC 

Tet R end 5' CCAGCCAACTAATGACAATGA 

detection of aroA  

trpS check gen 3' AAGCAACTCGTGGTAACATCG 

trpS check gen 5' TATCTGAATTAGTCGGCCTGC 

detection of genomic 

trpS in Lm 

trpS check int 3' CACTAGAATCGGTCACAGCGC 

trpS check int 5' CGAACATGCTATTACGGTTCC 

detection of 

L. monocytogenes trpS 

trpS end 5' AGAAAAAGCAGCTCGCGTGGC  

InlC gen 1 5' GGATGGTATACTATACAAGCG 

InlC gen 4 3' GTCGATCAATCTTACTTCACG 

detection of genomic 

inlC copy in Lm 

InlC mut2 170 5' CTATTCGTAATAATGCATTAAAAAGTATTGTG 

InlC mut2 170 3' CACAATACTTTTTAATGCATTATTACGAATAG 

mutagenesis of inlC 

(K173A, additional 

introduction of NsiI site)

InlC mut2 204 5' GGTGGACTAACTGCACTTAAGAAAGTTAACTGG 

InlC mut2 204 3' CCAGTTAACTTTCTTAAGTGCAGTTAGTCCACC 

mutagenesis of inlC 

(R204A, additional 

introduction of AflII site)

InlC bef start 

BamHI 5' 

TAAATAGGATCCGAGTGAGGTGTAATATGGGG 

InlC start2 BamHI 5' AAGTACGGATCCAGAGTATTCAACGACCAACG 

InlC aft end Cfr9I 3' GTTTCTCCCGGGGGTAACCTTATACGAATAAACG

amplification of inlC 

   

table 4.3: PCR primer 
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4.III.2 shRNA DNA oligomers 

name sequence [5' -> 3'] application 

sh LDHA1 s CCGGACCCCTCTAAAGGATCAGCTGATTTATTCAAGAGATA

AATCAGCTGATCCTTTAGATTTTTCCCGGGG 

sh LDHA1 as GATCCCCCGGGAAAAATCTAAAGGATCAGCTGATTTATCTC

TTGAATAAATCAGCTGATCCTTTAGAGGGGT 

silencing of 

LDH A subunit 

sh LDHB1 s CCGGACCCCGGCAACAGTTCCAAACAATAATTCAAGAGAT

TATTGTTTGGAACTGTTGCCTTTTTCCCGGGG 

sh LDHB1 as GATCCCCCGGGAAAAAGGCAACAGTTCCAAACAATAATTC

AAGAGATTATTGTTTGGAACTGTTGCCGGGGT 

silencing of 

LDH B subunit 

Smac shRNA 

BamHI/XmaI s 

TTTTTTCCTAGGCCCCGTCTTATTTACGTCGTCAATTCAAGA

GATTGACGACGTAAATAAGACTTTTTGGATCCTTTTTT 

Smac shRNA 

BamHI/XmaI 

as 

AAAAAAGGATCCAAAAAGTCTTATTTACGTCGTCAATCTCTT

GAATTGACGACGTAAATAAGACGGGGCCTAGGAAAAAA 

silencing of 

SMAC/DIABLO 

   

table 4.4: shRNA DNA oligomers 

 

4.III.3 qRT-PCR primer 

name sequence [5' -> 3'] application 

shSmac RT (F) CAGCCAACTCAGCTTCCTTT 

shSmac RT (R) CAATCTCTTGAATTGACGACGTA 

quantitation of SMAC/DIABLO 

mRNA amount  

RpoB RT (F) AAGTAACTGGCGGAATCGATA 

RpoB RT (R) GGAATCCATAGATGGACCGTT 

quantitation of rpoB mRNA 

amount as housekeeping 

gene in L. monocytogenes 

Hprt2 RT (F) TGACACTGGCAAAACAATGCA 

Hprt2 RT (R) GGTCCTTTTCACCAGCAAGCT 

quantitation of HPRT mRNA 

amount as eukaryotic 

housekeeping gene 

b-actin RT (F) GCTCGTCGTCGACAACGGCTC 

b-actin RT (R) CAAACATGATCTGGGTCATCTTCT 

quantitation of β-actin mRNA 

amount as eukaryotic 

housekeeping gene 

   

table 4.5: qRT-PCR primer 
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4.IV Eukaryotic cell lines 

name origin propagation medium source 

4T1 Mus musculus -  

mammary gland tumor 

RPMI  

+ 10% FCS  

+ 1% L-Glutamin 

Institut für med. 

Strahlenkunde und 

Zellforschung,  

Universität Würzburg 

4T1-erbB2 4T1 derivate DMEM  

+ 10% FCS  

Phil Darcy  

(Kershaw et al., 2004) 

B16 Mus musculus -  

melanoma 

RPMI  

+ 10% FCS  

+ 1% L-Glutamin 

Institut für med. 

Strahlenkunde und 

Zellforschung,  

Universität Würzburg 

B16-Ova B16 derivate RPMI  

+ 10% FCS  

+ 1% L-Glutamin 

+ 40µl/ml G418 (50µg/ml) 

Jürgen Hess,  

responsif GmbH, 

Erlangen 

B78-D14 B16 derivate RPMI  

+ 10% FCS  

+ 1% L-Glutamin 

+ 8µl/ml G418 (50µg/ml)  

+ 1µl/ml Hygromycin 

(50µg/ml) 

Jürgen Becker,  

Hautklinik, Universität 

Würzburg 

COS-1 Cercopithecus aethiops - 

kidney fibroblast 

RPMI  

+ 10% FCS  

+ 1% L-Glutamin 

Institut für Mikrobiologie,  

Universität Würzburg 

J774 Mus musculus -  

macrophage sarcoma 

DMEM  

+ 10% FCS 

Institut für Mikrobiologie,  

Universität Würzburg 

SKOV3 Homo sapiens –  

mammary gland 

carcinoma 

McCoy  

+ 10% FCS 

ATCC Promochem 

SKBR3 Homo sapiens –  

ovary carcinoma 

McCoy  

+ 10% FCS 

ATCC Promochem 

    

table 4.6: Eukaryotic cells line 
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4.V Antibodies 

name recognized antigen source 

α-serum albumin murine serum albumin [native], polyclonal 

rabbit 
Abcam, ab34807 

α-serum albumin murine serum albumin [denatured], 

polyclonal rabbit 
Abcam, ab19196-2 

Trastuzumab 

(Herceptin) 
HER2/neu, humanized Universitätsklinikum Würzburg

Trastuzumab-

AlexaFluor 488 HER2/neu, humanized 

labeled using Invitrogen 

'APEX Alexa Fluor® 488 

Antibody Labeling Kit' 

Cetuximab 

(Erbitux) 
EGFR, chimeric mouse/human Universitätsklinikum Würzburg

α-GFP green fluorescent protein, rabbit polyclonal Santa Cruz, sc-8334 

α-human-Cy5 goat polyclonal to human IgG - H&L Abcam, ab6561 

pan macrophage α F4/80, rat monoclonal, clone BM8 Acris Antibodies GmbH 

   

table 4.7: Antibodies 

 

4.VI Buffers and solutions 

4.VI.1 Media 

name composition 

BHI  37 g brain heart infusion broth  

 ad 1l  desalted water  

SOC  20 g bacto – tryptone 

 5 g  bacto-yeast extract 

 0.5 g NaCl (sodium chloride) 

 2.5 ml KCl (1M) (potassium chloride) 

 20 ml glucose (1M) 

 ad 1l  desalted water  

  

table 4.8: Cultivation media 
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4.VI.2 Buffers 

name (source) composition 

3,5 x SMHEM  

 

 952 mM glucose 

 3,5 mM MgCl2 (magnesium chloride) 

 7 mM HEPES pH 7,2 

 solvent : desalted water 

DNA loading dye 

(Roche labFAQs) 

 250 mg bromphenol blue 

 250 mg xylene cyanol 

 33 ml Tris-HCl (150mM, pH 7.6) 

 60 ml glycerol 

 7 ml desalted water 

SDS PAGE sample 

buffer 

(Roche labFAQs) 

 10 ml Tris-HCl (1.5 M, pH 6.8) 

 6 ml SDS (20%) 

 30 ml glycerol 

 15 ml β-mercaptoethanol 

 1.8 mg bromphenol blue 

 ad 100 ml  desalted water

Oligo annealing 

buffer 

(tronolab.epfl.ch) 

 100 mM CH3COOK (potassium acetate) 

 30 mM HEPES (pH 7.4) 

 2 mM  (CH3COO)2 Mg 

 solvent : desalted water 

MACS buffer 

(Miltenyi biotech) 

 0.5 g bovine serum albumin 

 4 ml EDTA (25 mM) 

 ad 50 ml  PBS 

  adjust to pH 7.2 

PEG lysis buffer 

(Chomczynski and 

Rymaszewski, 2006) 

 60 g PEG 200 

 until pH > 13.3 KOH (2 M) (potassium hydroxide) 

 ad 100 ml desalted water 

PBST  0.05%  Tween 20 

 solvent : PBS 

PBSt  0.02%  Tween 20 

 solvent : PBS 

  adjust to pH 7.4 

   

table 4.9: Buffers 
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4.VI.3 Solutions 

applied concentration  name solvent 

E.coli  L. monocytogenes 

Ampicillin desalted water 100 µg/ml  

Tetracycline 50% EtOH p.A. 20 µg/ml 5 µg/ml 

Erythromycin EtOH p.A. 300 µg/ml 5 µg/ml

Menaquinone 

(vitamin K2) 
EtOH p.A.  50µg/ml 

     

table 4.10: Solutions 

 

4.VII Animals 

All animals were bought from Harlan-Winkelmann (Germany) and housed in the animal 

facility of the Institut für medizinische Strahlenkunde und Zellforschung or the Biozentrum, 

Universität Würzburg. Balb/c (OlaHsd), Balb/c SCID (JHanHsd-Prkdc), C57BL/6 (JOlaHsd) 

and Foxn1 nu/nu mice (Hsd: Athymic) were used for experiments.  

 

4.VIII Consumables and chemicals 

name manufacturer 

chemicals Sigma-Aldrich, Applichem, Roth, Difco 

kits Qiagen, Fermentas, Ambion, Miltenyi, Amersham, 

Finnzymes 

cell culture media / reagents Gibco, PAN 

other reagents Thermo Scientific, Pierce 

plastic consumables Nunc, Greiner Bio-One, Millipore, Bio-Rad, Braun, Sarstedt, 

Amersham, Schleicher & Schuell 

table 4.11: Consumables and chemicals 
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4.IX Enzymes and special reagents 

name manufacturer 

restricion endonucleases, ligase, 

phosphorylase, kinase 
Fermentas 

polymerases Genecraft, Finnzymes, Stratagene 

Agarose, dNTPs, molecular weight 

marker 
Invitrogen 

  

table 4.12: Enzymes 
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5 Methods 

5.I Microbiology 

5.I.1 General bacterial culture 

All bacterial strains were cultivated in Brain Heart Infusion broth (BHI) at 37°C unless 

mentioned otherwise. All liquid overnight cultures were inoculated from a single colony. For 

harvesting bacterial cultures in defined growth phases, cultures were inoculated from 

overnight cultures. Addition of antibiotics was performed as required for maintenance of 

plasmids. Induction of prfA regulated genes in vitro was performed by addition of 1% 

Amberlite XAD to the bacterial cultures.  

 

5.I.2 Electrotransformation 

E.coli and L. monocytogenes are intrinsically not competent, therefore DNA transformation 

has to be facilitated by physical techniques. Different methods are available for 

transformation, but the mediation of DNA uptake by application of an electrical field is the 

most efficient. Therefore this method was used by default as described below. 

An E.coli culture of 50 ml was grown to OD600nm= 0,6-0,8 and chilled on ice for at least 15 

min. Bacteria were pelleted at 3,345 x g for 15 min at 4°C and serially washed in 50~, 25~ 

and 10 ml 10% glycerol. Finally bacteria were resuspended in 500 µl 10% glycerol and 

stored in aliquots at -80°C until transformation. 

L. monocytogenes is a gram+ bacterium with a strong cell wall, which impedes efficient DNA 

uptake. Partial digestion of the cell wall permits the electrotransformation, albeit at a much 

lower efficiency than E.coli. 

L. monocytogenes culture of 50 ml was grown to OD600nm = 0,6-0,8 and Penicillin G was 

added to a final concentration of 5 µg/ml. The Bacteria were incubated for an additional hour 

and subsequently chilled on ice for at least 15 min. Bacteria were pelleted at 3,345 x g for 15 

min at 4°C and washed twice with 5 ml of 3,5 x SMHEM buffer. Finally bacteria were 

resuspended in 500 µl 3,5 x SMHEM buffer and stored in aliquots at -80°C until 

transformation. 1-5 µl of DNA was mixed with 100 µl electrocompetent bacteria and pulsed 

with the Micropulser Electroporator. Immediately after transformation bacteria were mixed 

with 1 ml of SOC medium and incubated without antibiotics. The duration of this interim 

incubation before plating on antibiotic agar plates was dependent on the resistance gene and 

the transformed bacterium (see table 5.1). 
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 E.coli L. monocytogenes 

Ampicillin 1 h not applied 

Erythromycin 3 h 6 h 

Tetracycline 1 h 2 h 

table 5.1 

 

5.I.3 Preparation of infection aliquots 

Bacterial cultures of 50 ml were grown to OD600nm = 1,0 for wildtype bacteria and 

OD600nm = 0,8 for ΔaroA mutants. Bacteria were chilled on ice at least for 15 min and pelleted 

at 3,345 x g at 4°C. Bacteria were then washed twice in 0,9 % sodium-chloride solution and 

finally resuspended in 10 ml 0,9 % sodium-chloride / 20 % glycerol. Aliquots were stored at -

80°C. 

After a minimum of 24h cold storage, three aliquots were thawed and the bacterial titer was 

determined by plating serial dilutions. The calculated mean value of the three aliquots was 

later on used as bacterial titer for infection experiments. 

 

5.I.4 Quick lysate of L. monocytogenes 

A single picked bacterial colony or the pellet of 20 µl overnight (o/n) culture were vortexed 

with 100 µl PEG lysis buffer and heated to 80°C for 10 min. 1 µl of the crude lysate served as 

template for PCR screening.  

 

5.II Molecular biology 

After generation of new DNA constructs, all modified sequences were confirmed by 

sequencing. In silico cloning was performed with VectorNTI advance 10 (Invitrogen, USA).  

 

5.II.1 Isolation and purification of DNA 

All DNA isolations were performed with commercial Qiagen Kits. Plasmid DNA from gram- 

and gram+ bacteria was isolated with Qiagen Plasmid Kits (QIAGEN Plasmid Kit). Genomic 

DNA was isolated from 2ml o/n culture with the Qiagen DNAeasy Blood & Tissue Kit 

(QIAGEN DNeasy Blood & Tissue Kit). Gel elution and DNA purification was performed with 

the QIAquick PCR Purification Kit (QIAquick PCR Purification Kit). All preparations were 

performed according to manufacturers protocols. 
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5.II.2 Agarose gel electrophoresis 

DNA is charged negatively because of the phosphate residues in the sugar-phosphate 

backbone. Therefore DNA migrates in a constant electric field towards the positive pole. DNA 

was separated in size by electrophoresis in 0,5 x TBE agarose gels. DNA was mixed with 

loading dye and inserted into pockets of the agarose gels. The density of agarose gels was 

adjusted to the expected size of DNA fragments. For fragments below 500bp 2%agarose 

gels were used, for fragments between 500bp and 3Kbp 1% gels were used and larger DNA 

fragments were separated in 0.5% gels. For staining of DNA Ethidium bromide was added at 

a final concentration of 0,45µg/ml. DNA bands were visualized under UV-light. 

  

5.II.3 Polymerase chain reaction (PCR) 

Polymerase chain reaction was used to amplify specific DNA sections for screening or 

cloning purposes. Taq DNA polymerase was used for screening of bacterial clones, as it has 

no 3'->5' exonuclease (proofreading) activity. For cloning of DNA, DNA polymerases with 

proofreading activity like Pfu DNA polymerase and Phusion Taq were used. 

The PCR can be divided into three parts: the first part being the denaturation of the double 

stranded DNA template into single stranded DNA. In the annealing phase specific DNA 

oligomers (primers), flanking the sequence to be amplified with their 3' ends directed towards 

this sequence, bind to the DNA and serve as an initiation point for the polymerase. Finally 

the polymerase elongates the primer until the template strand ends or it falls off 

spontaneously. Cycling of these three steps was performed 30-35 times depending on the 

initial amount of DNA template used.  

Phusion Taq polymerase amplifies approximately 4kb of DNA per minute from an abundant 

template like plasmid DNA, and 2kb from genomic DNA. common Taq polymerase amplifies 

1kb per minute, Pfu polymerase only 0,5kb per minute. Therefore the elongation time was 

chosen suitable for the expected product.  

 

5.II.3.a Colony PCR 

Colony PCR was performed for screening of bacterial colonies after cloning, plasmid 

insertion or mutagenesis. Gram- bacteria like E.coli do not have a rigid cell wall, therefore 

these bacteria can be lysed during PCR to release sufficient DNA as template. Parts of a 

bacterial colony and the components for the PCR reaction were transferred into the PCR 

reaction tube. A typical PCR for screening of colonies was performed according to the 

following protocol: 
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 amount 

10 x buffer 2,0µl 

dNTPs 10pmol 

primer 1 1pmol 

primer 2 1pmol 

template picked colony 

Taq DNA polymerase 1u 

H2O ad 19µl 

final volume 19 

table 5.2 PCR reaction composition 

 

no duration [sec] temperature cycling step 

1 180 94°C  initial denaturation 

2 60 94°C cyclic denaturation 

3 30 48 - 60°C 
primer annealing (temperature depending 

on polymerase, buffer and primer) 

4 15 - 72°C 

30 - 35 

elongation (duration depending on 

polymerase and amplicon length) 

5 45 - 72°C  
final elongation (at least three fold longer 

than elongation time) 

table 5.3 Standard PCR protocol 
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5.II.3.b PCR for cloning 

For cloning of DNA fragments the accuracy of the amplified sequence is crucial. Therefore 

for cloning purposes DNA was amplified with DNA polymerases capable of proof reading. 

Pfu DNA polymerase and Phusion Taq were used following thee protocols: 

 

Pfu DNA polymerase  Phusion Taq DNA polymerase 

 amount   amount 

10 x buffer 5,0µl  5 x HF buffer 10,0µl 

dNTPs 10pmol  dNTPs 10pmol 

primer 1 1pmol  primer 1 1pmol 

primer 2 1pmol  primer 2 1pmol 

template 1,0µl  template 1,0µl 

polymerase 0,5u  polymerase 0,5u 

H2O ad 50µl  H2O ad 50µl 

final volume 50  final volume 50 

table 5.4 Pfu / Phusion PCR reaction composition 

 

Pfu DNA polymerase  Phusion Taq DNA polymerase

no 
duration 

[sec] 
temperature cycling  

duration 

[sec] 
temperature cycling

1 180 94°C  initial denaturation 30 98°C  

2 60 94°C cyclic denaturation 10 98°C 

3 30 48 - 60°C primer annealing 20 51 - 63°C 

4 30 - 72°C 

30 - 35

elongation 15 - 72°C 

30 - 35

5 90 - 72°C  final elongation 45 - 72°C  

table 5.5 Pfu / Phusion PCR protocol 

 

5.II.4 Site directed mutagenesis 

Exchange of single nucleotides was performed by site directed mutagenesis. Genes to be 

mutated were cloned in small plasmid vectors like puc18 for subsequent mutagenesis. A 

special PCR was performed with this plasmid as template, which amplifies the full plasmid 

with mutating primers. The two primers were located on the nucleotides to be mutated and 

reverse complementary. The base exchange is performed in a PCR with linear amplification 

using these mutating primers. The PCR conditions for site directed mutagenesis differ from 

the common PCR protocols (table 5.6 and table 5.7). 
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Pfu DNA polymerase 

 amount [µl] 

10 x buffer 5,0µl 

dNTPs 10pmol 

primer 1 1pmol 

primer 2 1pmol 

template 1,0µl 

polymerase 0,5u 

H2O ad 50µl 

final volume 50 

table 5.6 Site directed mutagenesis 

reaction composition 

 

no duration [sec] temperature cycling step 

1 30 95°C  initial denaturation 

2 30 95°C cyclic denaturation 

3 60 55°C 
primer annealing (temperature depending 

on polymerase, buffer and primer) 

4 600 68°C 

18 

elongation (duration depending on 

polymerase and amplicon length) 

table 5.7 Site directed mutagenesis reaction protocol 

 

After the amplification of the plasmid strands, the strands annealed spontaneously to dsDNA. 

After the PCR, 1µl of the restriction enzyme DpnI, which specifically cleaves methylated 

DNA, was added into the reaction tube. The template plasmid, isolated from E.coli and 

therefore bearing methylations, was digested, leaving only mutated dsDNA in the reaction. 

Direct transformation of this reaction mixture into electrocompetent E.coli yielded clones 

which were screened for the mutated sequences. 

 

5.II.5 Annealing of DNA oligomers for cloning 

For cloning of small artificial DNA sequences (<120 nucleotides) encoding multiple cloning 

sites or shRNAs, the desired sequences were ordered as complementary single strand 

oligomers. For later insertion into a plasmid vector, the single strand sequences were not 

completely complementary but had specific overhangs. At their ends after annealing, non-

complementary bases remained, building distinct restriction site overhangs. The oligomers 
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were ordered lyophilized and reconstituted in H2O to a final concentration of 100pmol/µl. In a 

first step 2µl of two oligomers were mixed in annealing buffer, heated for 5min to 95°C, 10 

min to 70°C and then cooled down slowly at 0.1°C/sec to room temperature (RT). The single 

stranded complementary oligomers were thereby annealed to double stranded oligomers 

which can be phosphorylated for subsequent cloning.  

 

5.II.6 Enzymatic DNA modifications 

5.II.6.a DNA restriction 

DNA restriction digests for specific assembly of DNA sequences were performed with 

purified type II endonucleases. These enzymes cut DNA at characteristic palindromic 

sequences of 4-8 bp length. 

DNA restriction digestion was performed with approximately 1-2µg of purified DNA. One 

enzyme digestion reactions were performed in 20µl volume with 5-10u restriction enzyme. 

Simultaneous double digestion reactions were performed in 30µl volume with 5-10u of each 

restriction enzyme. The digestion buffers were chosen as recommended by the manufacturer 

(Fermentas restriction digestion). The digestion reaction was performed for 2-3h at 37°C 

unless noted otherwise. 

 

5.II.6.b Ligation 

The connection of the sugar-phosphate backbones of two double stranded DNAs is called 

ligation. Ligases catalyze the bond between the 3'-Hydroxylgroup of one DNA to the 5'-

Phosphate of another. In ligation reactions usually one DNA fragment, most often the vector, 

was dephosphorylated before the reaction to prevent the religation of the empty vector.  

 

 volume [µl] 

vector DNA 1,00 

insert DNA 11,75 

ligase buffer (10 x) 1,50 

ligase (1u/µl) 0,75 

final volume 15 

table 5.8 Ligation reaction composition 

 

Ligation was performed at 16°C or at RT for 2-3h. Purified DNA fragments to be ligated were 

used to adjust the volume of the ligation reaction to 15µl. Unless mentioned otherwise, the 3- 

to 5-fold amount of plasmid with respect to the amount of insert was used in one reaction.  
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5.II.6.c Phosphorylation 

DNA oligomers were supplied in the unphosphorylated form by the manufacturer. For direct 

cloning of ordered oligomers after annealing, they were phosphorylated to allow ligation. 

 

 volume [µl] 

annealed oligomers 

(20pmol/µl) 
5,0 

water 12,0 

T4 polynucleotide 

kinase buffer (10 x) 
2,0 

T4 polynucleotide 

kinase (10u/µl) 
1,0 

final volume 20 

table 5.9 Phosphorylation reaction 

composition 

 

Phosphorylation was performed for 30min at 37°C and enzyme was inactivated for 10min at 

70°C.  

 

5.II.6.d Dephosphorylation 

The dephosphorylation of 5' phosphate of the plasmid vector was performed before ligation 

to prevent religation of the empty vector. 

Purified and digested vector DNA was dephosphorylated in the buffer supplied by the 

manufacturer. Into 50µl of purified plasmid DNA, the calf intestine alkaline phosphatase 

(CIAP) and the corresponding buffer were added and the mixture was incubated for 1h at 

37°C.  

 

5.II.7 Construction of L. monocytogenes mutants 

Genomic insertions and deletions in L. monocytogenes were performed by homologous 

recombination using a modified protocol of (Wuenscher et al., 1991).  

For deletions of specific genomic sequences, flanking upstream and downstream regions of 

about 300-500bp were amplified by PCR and cloned into the plasmid pLSV101. The plasmid 

pLSV101 was a shortened derivative of the published pLSV1 integration vector (kindly 
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provided by Thilo Fuchs, ; Wuenscher et al., 1991). Functional moieties on the plasmid were 

a gram- origin of replication for propagation and cloning purposes in E.coli, an erythromycin 

resistance cassette for positive selection on plasmid carrying clones and a temperature 

sensitive gram+ origin of replication. The gram+ origin of replication allowed propagation of 

the plasmid only at incubation temperatures of about 30°C and lower, at higher temperatures 

the plasmid was lost by gram+ bacteria like L. monocytogenes.  

Plasmid pLSV101 with integrated homologous regions was transformed into the parental 

L. monocytogenes strain and clones were screened for plasmid presence after incubation at 

30°C. An overnight culture of the positive clone was plated in serial dilutions on selective 

agar plates and incubated at 42°C. In this step, only bacteria with the integrated plasmid can 

survive because their antibiotic resistance cassette is stably inserted, while bacteria 

harbouring the plasmid outside the chromosome are thinned out as they can not replicate the 

plasmid at this elevated temperature. The insertion of the plasmid occurs by homologous 

recombination. Bacterial clones were screened for genomic plasmid insertion by PCR. 

Bacteria with integrated plasmid were serially passaged in medium without erythromycin 

selection at RT and screened periodically for resistance loss. Bacterial clones without 

antibiotic resistance had a second homologous recombination event which cut out the 

integrated plasmid. If this event took place at the second flanking region, the plasmid 

together with the gene to be deleted has been cut out of the genome and a mutant was 

generated.  

Genomic insertions and replacements were performed with the same technique but with the 

gene to be inserted cloned in between the genomic flanking regions comprised in the 

integration plasmid. 

 

5.II.8 Analysis of bacterial growth kinetics 

Measurement of bacterial growth was assessed in autoclaved BHI medium. Bacterial starter 

cultures were grown overnight at 37°C and 180 rpm. The cultures were diluted 1:500 in 50ml 

fresh medium with required supplements like antibiotics. Bacterial growth was assessed by 

measuring absorption of the growth culture at 600 nm using a photometer at regular 

intervals.  

 

5.II.9 RNA analysis 

5.II.9.a RNA isolation with DNAse digestion 

For RNA isolation, the bacterial strains or mammalian cells were cultured under the required 



Chapter 5  Methods 

 

 - 39 - 

conditions, pelleted and shock frozen in liquid nitrogen. RNA was isolated using Quiagen Kit 

according to manufacturers protocols with some modifications. Samples of 

L. monocytogenes were resuspended in 350 µl RLT buffer (Qiagen RNeasy Mini Kit) and 

transferred into a matrix D shredder tube (QBioGene). Bacteria were crushed three times for 

45 sec in a Fast Prep FP120 shredder at level 6.5 with incubations on ice in between. After 

crushing the supernatant was mixed with 250 µl ethanol and transferred on the RNA isolation 

column and RNA was isolated as described by the manufacturers protocol (QIAGEN 

RNAeasy Mini Kit). Eukaryotic RNAs were isolated as described by the manufacturers 

protocol (QIAGEN RNAeasy Mini Kit). Contaminating DNA was digested on column with the 

Qiagen RNase-free DNase Set (QIAGEN RNase-free DNase Set). After RNA isolation, the 

presence of residual DNA contaminations was assessed by PCR with genomic 

housekeeping primers. PCR is not functional with RNA as template, therefore the reaction 

yielded a product only on presence of DNA. Residual DNA was digested with the Ambion 

DNA-free kit as described by the manufacturers protocol (Ambion DNA-free). 

RNAs shorter then ~150 nucleotides was isolated following an abridged protocol. After cell 

lysis, the bacteria were mixed with 1 volume (~350 µl) of 2-propanol and transferred on a 

RNA isolation column. The flowthrough containing the small RNAs was precipitated with by 

addition of 2 volumes (~700 µl) of 2-propanol and transferred on a second RNA isolation 

column. The first column was isolated as described in the manufacturers protocol. The 

column containing the small RNAs was washed twice with 500 RPE buffer, residual buffer 

was removed in an additional centrifugation step and the RNA was eluted using RNAse free 

water.  

5.II.9.b RNA polyacrylamide gel electrophoresis 

The quality of the isolated RNA was determined by RNA polyacrylamide gel electrophoresis. 

TBE buffered urea gels were uses to separate the RNA. Gels were prepared after following 

protocol. 

 

 amount 

acrylamide:bisacrylamide solution 

(19:1), 40% 

7,5 ml 

urea 7.2 g 

10x TBE buffer 1.5 ml 

table 5.10 RNA acrylamide gel composition 

 

Components were mixed until the urea was completely dissolved. The solution was heated to 

60°C and water was added to a final volume of 15 ml to facilitate dissolution. 60µl of 
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ammonium persulphate (10% w/v) and 15µl Temed were added to the mixture to activate the 

polymerization process and gels were cast. 

Before electrophoretic separation of RNA, the gel was prerun without samples for 30min at 

300V in 1 x TBE buffer.  

RNA was mixed with 2 x RNA loading buffer (for urea polyacrylamide gels) and separated at 

300V for 3h. Gels were fixed for 5 min in 50% ethanol, washed once in dH2O and stained in 1 

x TBE with 10µl of ethidium bromide stock solution (10mg/ml) for 5 min. Bands were 

visualized using UV light.  

 

5.II.9.c Reverse transcription of RNA 

For quantitation of relative mRNA amounts by qRT-PCR the RNA was transcribed into 

complementary DNA. Reverse transcription was performed with M-MuLV reverse 

transcriptase. Bacterial cDNA was generated using random hexamers and eukaryotic cDNA 

using oligo (dT)18 primers. Transcription was performed with 0.5µg of total RNA using first 

strand cDNA synthesis kit as described by the manufacturer (Fermentas first strand cDNA 

synthesis kit). 

 

5.II.10 Quantitative Real Time-PCR (qRT-PCR) 

Transcriptional expression of genes was quantified by comparing amounts of the mRNA of 

interest with the mRNA of housekeeping genes in the same sample. mRNA was reversely 

transcribed as described in 5.II.9.c and cDNA was used as template for the qRT-PCR 

reaction. For gene expression analysis in eukaryotic samples the expression of the 

Hypoxanthine-guanine phosphoribosyltransferase gene (HPRT; primer: Hprt2 RT (F) & Hprt2 

RT (R)) and the β-actin gene (ACTB; primer: b-actin RT (F) & b-actin RT (R)) were used as 

housekeeping controls. Transcriptional analysis in L. monocytogenes was performed in 

relation to the RNA polymerase beta subunit expression (rpoB; primer: RpoB RT (F) & RpoB 

RT (R)). 

qRT-PCR was performed on the Rotorgene2000 using Finnzymes DyNAmo™ HS SYBR® 

Green qPCR Kit as described in the manual (see table 5.11 ) (Finnzymes DyNAmo™ HS 

SYBR® Green qPCR Kit). The included SYBR-green is a dye intercalating into dsDNA and  
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no duration [sec] temperature cycling step 

1 900 95°C  
initial denaturation, 

activation of hot start polymerase 

2 10 94°C cyclic denaturation 

3 20 56°C 

primer annealing, fluorescence 

acquisition 

(temperature depending on used oligos) 

4 30 72°C 

40 

elongation  

5 300 72°C   

6 600 25°C   

7  70-95°C  melt curve 

table 5.11 Standard qRT-PCR protocol 

 

The optimal annealing temperature was evaluated once for each primer using a PCR with a 

gradient in the annealing temperature and protocols as described in 5.II.3.a.  

qRT-PCR data was analyzed using Rotor-Gene Analysis Software V4.6.70. All reactions 

were performed in triplicate. After the qRT-PCR run, the melting curve of the samples was 

examined to confirm the amplification of a single fragment. If the melting curve of samples 

amplified with the same primer pair differed, the qRT-PCR was repeated with elevated 

annealing temperature. On occurrence of multiple maxima in the melt curve of one sample 

the reaction was repeated with adjusted conditions, too. The threshold for quantitation was 

set in the logarithmic fluorescence graph just above the lag phase. The software then 

calculated the intersection point between the fluorescence curve of each sample and this 

threshold line. This value was called the Ct-value and relative mRNA amounts were 

calculated by elevating 2 by the power of the Ct values. These calculated values were linear 

variables representing the initial mRNA amount in each sample. The later the fluorescence in 

the sample was detected, the higher these values were, corresponding to a low amount of 

initial cDNA portion. The differences in the amount of template for cDNA synthesis and the 

applied amount for qRT-PCR reaction were compensated by dividing the amount of specific 

mRNA by the amount of a housekeeping mRNA for each sample. 
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5.II.11 Treatments of live L. monocytogenes for antibody 

coating 

5.II.11.a Coating 

Coating of L. monocytogenes was performed with bacterial infection aliquots which were 

diluted and washed in PBS (pH=8,2). Unless mentioned otherwise 1*108 CFU were 

incubated in 100µl PBS (pH=8,2) for 45min with 2-3µg of antibody. The antibody loading was 

performed at 23°C under vigorous shaking in a benchtop thermoshaker (500rpm). After the 

incubation 900µl PBS (pH=8,2) were added and the bacteria were pelleted for 2' and 16.000 

x g. The supernatant was removed and the bacteria were again resuspended to a final 

volume of 1ml in PBS (pH=8,2). 

 

5.II.11.b Crosslinking 

Crosslinking of antibodies to SPA on the surface of L. monocytogenes was carried out with 

dimethyl pimelinediimidate dihydrochloride (DMP). Unless mentioned otherwise freshly 

prepared DMP in PBS (pH 8.2) was added to a final concentration of 0,65 mg/ml to the 

antibody coating reaction and incubated under vigorous shaking for 45 min at RT. The 

bacteria were washed with 900µl PBS (pH 8.2) and the crosslinking procedure was repeated 

for additional 45 min with a freshly prepared DMP stock solution at a final concentration of 

0,65 mg/ml. The bacteria were washed twice with 900µl PBS (pH 8.2) and resuspended at a 

final volume of 1ml in PBS (pH=8,2). 

 

5.II.11.c Serum treatment of L. monocytogenes 

Bacteria were incubated with serum after antibody coating and crosslinking as described 

below. The bacteria were pelleted for 2min at 16.000 x g and RT and the supernatant was 

discarded. 100µl freshly isolated murine or human serum was added and the bacteria were 

incubated in a thermoshaker at 23°C with 500rpm for 45min. The bacteria were washed 

twice with PBS (pH=8,2) and finally the volume was adjusted to 1ml with PBS (pH=8,2).  

 

5.II.12 Haematoxilin Eosin staining 

Mouse organs were fixed in buffered 4% paraformaldehyde solution for 24h at 4°C. Organs 

were stored in 50% ethanol until paraffin embedding and sectioning. Staining of sections for 

was performed with Haematoxilin Eosin (H/E). This staining colors the structures in purple-

blue and pink and allows a general overview of the tissue structure of the section. Tissues 
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were cut in 4-5 µm thick slices and mounted on a microscope slide. The H/E staining protocol 

is shown in table 5.12. After staining, tissue sections were mounted in Entellan and analysed 

microscopically 

 

step reagent incubation time  step reagent incubation time

1 Xylol I 10 min  10 dH2O 2-5 min 

2 Xylol II 10 min  11 Eosin 0,5 - 1 min 

3 Ethanol I 2-5 min  12 dH2O 2-5 min 

4 Ethanol II 2-5 min  13 70 % Ethanol 3 min 

5 Ethanol III 2-5 min  14 Ethanol I 3 min 

6 70 % Ethanol 5-10 min  15 Ethanol II 5 min 

7 dH2O 5 min  16 Ethanol III 5 min 

8 Haematoxilin 0,5-2 min  17 Xylol I 10 min 

9 Tap Water 5-10 min  18 Xylol II 10 min 

table 5.12: H/E staining protocol   

 

5.III Protein analysis 

5.III.1 Protein isolation 

5.III.1.a Cellular proteins 

Cultures of gram negative bacteria or suspensions of eukaryotic cells were pelleted and 

resuspended in Laemmli buffer (Laemmli, 1970). The buffer volume was chosen to 

concentrate the bacterial sample hundredfold and the eukaryotic cells to a final concentration 

of 108 cells/ml. The crude protein extracts were denatured for 5-10 min at 100°C and stored 

at -20°C. 

Cultures of L. monocytogenes were pelleted, resuspended in 500µl PBS and shreddered as 

described in 5.II.9.a to lyse the bacteria. Tubes were centrifuged briefly and supernatant 

containing the lysed bacteria was mixed with Laemmli buffer and denatured for 5-10 min at 

100°C and used for further analysis. 

 

5.III.1.b Secreted proteins  

Secreted proteins were isolated from culture supernatant by precipitation. Bacterial cultures 

were pelleted and 40 ml of supernatant were removed without disturbing the pellet. This 

supernatant was centrifuged again for 20 min at 3345 x g and 4°C. 20ml supernatant were 

mixed with 10% TCA and incubated on ice o/n for precipitation. After centrifugation for 1h at 
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4000rpm at 4°C, the liquid was decanted and the tube was rinsed with 1ml acetone. 

Following the drying of the tube walls they were rinsed thoroughly with 200µl Laemmli buffer 

(Laemmli, 1970). The tube was incubated on a rotator for 10-20 min to increase the protein 

yield. If the buffer color changed to yellow, indicating a low pH, 1µl of saturated Tris was 

added to adjust the pH. The protein samples were denatured for 5-10 min at 100°C and 

stored at -20°C for further use. 

 

5.III.1.c Membrane proteins 

The rigidy of the gram positive cell wall of L. monocytogenes allows a simple protocol for 

extraction of membrane proteins in this bacterium. The bacterial cultures were pelleted and 

resuspended in Laemmli buffer (Laemmli, 1970). After boiling for 5-10 min the protein 

extracts were centrifuged at 16.000 x g for 2 min at RT and supernatant containing the 

membrane proteins was used for further experiments. 

 

5.III.2 Polyacrylamide gel electrophoresis 

The isolated proteins were resuspended and boiled in Laemmli buffer containing β-

mercaptoethanol and sodium-dodecylsulfate (SDS). Thereby secondary to quaternary 

structure was destroyed and binding of dodecyl-residues mediated a negative charge of 

different proteins.  

Proteins were separated in size by polyacrylamide gel electrophoresis (SDS-PAGE). SDS 

gels were cast in Mini-Protean cells (BioRad) as described in table 5.13. 

 

separation gel [ml]  

5% 10% 12,5% 

stacking gel [ml] 

Acrylamide/Bisacrylamide 40% 2,7 5 6,5 1,1 

dH2O 14,4 12,1 10,6 7,55 

Tris-Cl  2,5 [3M pH 9,0] 1,25 [1M pH 6,8] 

20% SDS 0,1 0,05 

TEMED 0,02 0,01 

10% APS 0,2 0,1 

table 5.13: SDS-polyacrylamide gel composition 

 

Separation of proteins smaller than 50kDa was performed on 12,5% separation gels, 

proteins up to a size of approximately 100kDa were separated on 10% gels and larger 

proteins on 5% gels. SDS-PAGE was performed in 0,5 x TBE buffer at 180V for 1h or until 
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the blue dye reached the end of the gel. Protein detection was performed by Western blot 

analysis or by coomassie staining with Bradford-Coomassie-Kit (Pierce). 

 

5.III.3 Western blot analysis 

After SDS-PAGE, the gels were equilibrated for 10 min in Towbin buffer at 4°C and proteins 

were transferred on nitrocellulose membranes by western blotting. Semi-dry blotting 

technique was performed at 25 V for 30-100 min depending on size of the target protein. 

Protein transfer and approximate protein amounts on the membrane were confirmed by 

Ponceau red staining. The membranes were washed with destilled water and blocked in PBS 

/ 5 % milk with shaking for 45 min at RT. Primary antibodies were diluted in PBS/milk 1:1000 

to 1:5000 and incubated o/n at 16°C or for 2h at RT. Following incubation membranes were 

washed three times for 10 min with PBS/0,05 % Tween 20 and incubated with horseradish-

peroxidase labeled secondary antibodies for 2 h at RT. Membranes were washed again for 

three times and western blots were developed using ECL Western Blotting detection kit (GE 

Healthcare). 

 

5.IV Eukaryotic cell biology 

5.IV.1 General eukaryotic cell culture 

Eukaryotic cell lines were maintained at 37°C under 5 % CO2 atmosphere. Media containing 

10 % FCS and 2 mM L-glutamine were used for propagation. Cells were passaged every 2-3 

days at 1:1 to 1:10 ratios in the respective growth media as described in table 4.6. 

 

5.IV.2 Infection assay using bacteria 

Between 1 x 104 and 2 x 105 eukaryotic cells per well were seeded at least 16h before 

infection experiments. The cell density was chosen depending on the cell size, growth rate 

and the timepoints to be investigated after infection. Prior to infection, cells were washed 

once with medium lacking FCS and bacteria were diluted in the same medium. Infection was 

performed in a volume of 500µl per well for 1h at 37°C. The timepoint of bacterial addition to 

the cells was termed 0 h post infection (p.i.). 1 h p.i. the supernatants containing the bacteria 

were discarded and 1 ml of medium containing 100 µg/ml gentamicin was added to kill the 

extracellular bacteria. After 1 h, the supernatant was substituted with medium containing 10 

µg/ml gentamicin. Intracellular CFU was determined by lysing the cells in 1 ml 0.1 % triton X-

100 and plating serial dilutions on agar plates.  
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The number of adherent / early invasive bacteria was determined by washing infected cells 

five times with PBS and plating the cells lysed in 0.1 % triton X-100 in serial dilutions. 

Infection experiments for determination of CFUs were performed in triplicates for each 

bacterial strain and repeated three times.  

1/10 of each sample was plated, so the counted CFU had to be multiplicated by 10 to acquire 

the final bacterial count per sample. If no bacterial colonies were detected after infection, the 

CFU was artificially set on 1, to allow calculation of strain differences.  

 

5.IV.3 Treatment of eukaryotic cells using magnetic beads 

Eukaryotic cells were seeded in 24 well plates at a density of 1.2 x 105 cells per well at least 

16h before incubation with magnetic beads. Immediately before bead treatment, cells were 

washed once with medium lacking FCS, treatment was performed in 500µl volume of the 

same medium.  

5µl protein A coated Dynabeads® (Invitrogen) were removed from a carefully mixed stock 

vial and the liquid phase was aspirated while holding the beads close to a magnet. Following 

washing using 100µl PBSt the beads were incubated in 100µl PBSt with addition of 

antibodies. Approximately 1µg of unlabeled antibodies was added, fluorescently labeled 

antibodies were diluted 1:30. Following 10 min incubation at 23°C in a benchtop shaker at 

800rpm in the dark, the beads were washed twice using 100µl PBSt. Following removal of 

the supernatant the beads were finally resuspended in 30µl PBSt and 5µl of this suspension 

was used for treatment of one well in a 24 well plate.  

 

5.IV.4 Quantitation of prodrug conversion in vitro (prodrug 

assay) 

Delivery of prodrug-converting enzymes was quantified indirectly through conversion of 

prodrugs into cytotoxic drugs. The viability of infected eukaryotic cells was used to grade 

delivery efficiency after infection with and without prodrug addition. Eukaryotic cells were 

infected in duplicates as described in 5.IV.2 but with some modifications. Following infection 

the eukaryotic cells were not lysed, but instead detached from the well by trypsin addition 4 h 

p.i. and the duplicates were pooled.  

The cells were diluted to 2.5 x 104 cells/ml and 100µl was transferred into 96 well plates 

prepared with gentamycin and prodrug suspension. Gentamycin was used at a final 

concentration of 10µg/ml, while the prodrug 5-FC was used at a final concentration of 1mM. 

Each strain was dispensed in triplicate in wells with and without prodrug and the plates were 

incubated at 37°C under a 5% CO2 atmosphere. At 3 d, 5 d and 7 d post prodrug addition the 
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number of viable eukaryotic cells in each well was determined in a MTT viability assay. 

Therefore the culture medium was substituted by 100 µl of MTT solution. Viable cells 

quantitatively convert in their mitochondria water soluble MTT dye into the non water soluble 

formazan. 2-4 h after MTT addition the supernatant was discarded and 100 µl of 10% HCl in 

2-propanol was added resolving the precipitated dye. The absorption at 405 nm subtracted 

by the reference wave length of 650 nm was measured photometrically and used for 

quantitation of formazan conversion. 

 

5.IV.5 Fluorescence imaging of GFP positive cells 

Eukaryotic cells were seeded in 24 well plates with desinfected glass coverslips on the 

bottom of the wells. Cells were infected in duplicates as described in 5.IV.2 with the 

exception that the eukaryotic cells were not lysed after infection. At the investigated 

timepoints, coverslips with attached cells were mounted upside-down in Mowiol on 

microscopic slides. The slides were stored in the dark at RT and observed by 

immunofluorescence microscopy.  

 

5.IV.6 Immunofluorescence staining 

Eukaryotic cells were seeded and infected on glass coverslips. Following treatment using 

bacteria or magnetic beads, coverslips were washed three times by dipping them 

consecutively into three petridishes filled with PBS. Cells were fixed in 4% paraformaldehyde 

solution for 10 min at RT and washed again as described before. Following fixation, cells 

were either permeabilized using 1% Triton X100 for 1h at RT or directly blocked using 10% 

of serum of the same species as the primary antibody. Blocking was performed for 1h at RT. 

Following washing, cells were incubated with the fluorescently labeled primary antibody at an 

dilution of 1: 500 for 2h at RT in the dark. Again the coverslips were washed three times, 

dried on a papertowel and mounted using mowiol or Slowfade antifade reagent (Invitrogen). 

Samples were examined using a confocal laser scanning microscope (Leica).  
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5.IV.7 Flow cytometry 

Detached cell after treatment were washed once in FACSFlow sheat fluid (BD, Germany) 

and approximately 1 x 106 cells were stained in a volume of 50 µl FACSFlow. Cells were 

incubated with primary antibody for 1 h at 4°C, washed once with FACSFlow and spinned 

down for 2 min at 200 x g. Antibodies were diluted 1:50 up to 1:300 for use. Incubation with 

secondary antibody was performed for 30 min at 4°C in the dark. Cells were washed before 

analysis in a FacsCalibur (BD, Germany).  

 

5.V Animal experiments 

5.V.1 General animal handling 

Animals were housed in the animal facility of the MSZ. Animals were purchased aged 5-9 

weeks from Harlan Winkelmann, Germany and housed for at least one week before 

commencing the experiments. Mice were sacrificed by cervical dislocation or decapitation 

and all experiments were conducted according to the german animal protection guidelines.  

 

5.V.2 Induction and measurement of tumor growth 

 Xenograft tumor growth was induced by injection of cells into each flank of shaven 

abdominal skin. Cells were washed twice in PBS prior to injection. 1 x 104 to 5 x 106 cells 

were injected subcutaneously in a volume of 50 µl using Omnican insulin syringes with 0.3 x 

12 mm needles. Tumor diameters were measured using a caliper and volume was calculated 

using the formula: 

 Vtumor  > tumor volume [mm3] 

 a, b > orthogonal tumor diameters [mm] 

 

5.V.3 Determination of the bacterial count in murine tissues 

5.V.3.a Bacterial load per gram organ mass 

Mice were infected with bacteria by intravenous (i.v.) injection into one lateral tail vein. At 

different timepoints p.i. mice were sacrificed and organs were removed aseptically. Bacterial 

organ load per gram was determined by weighing the organs followed by plating serial 

dilutions of the ground organs. Organs were sheared in Whirl-Paks (Nasco, USA) and diluted 

in 0.1 % Triton X-100.  

babaVtumor 


 2

6
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5.V.3.b Bacterial load per cell population 

Mice were i.v. infected as described in 5.V.3.a and organs removed at distinct timepoints 

post infection. Weight was determined before organs were cut into small pieces. Enzymatic 

digestion followed for 30-45 min at 37°C using 500 u/ml DNAse and 2 µg/ml dispase in 5 ml 

MACS buffer. After digestion the suspension was pipetted several times using a 10 ml glass 

pipette for further disruption. The cell suspension was filtered consecutively using 70 µm and 

40 µm cell strainers. Cell numbers were determined after tenfold dilution in Trypane blue 

(Sigma-Aldrich, Germany) using a counting chamber. One part of the suspension was 

removed and stored at 4°C until plating in serial dilutions. The rest of the cells was incubated 

for 1 h at 37°C with 100 µg/µl gentamicin. Again one aliquot was removed for further plating 

and the remnant was separated in a macrophage enriched and depleted cell population 

using MACS Kit (Miltenyi Biotech, Germany). The cells were incubated with primary antibody 

directed against F4/80 for 20 min at 4°C. 10µl of anti-IgG antibody conjugated with magnetic 

beads per 106 cells was added and the suspension was incubated for 10 min. The cells were 

finally separated using the MACS columns in a magnetic field. Different eukaryotic cell 

fractions were counted in a counting chamber and plated in serial dilutions together with the 

temporarily stored fractions. The CFU was normalized to the number of plated eukaryotic 

cells. 

 

5.V.4 Isolation of murine serum 

Murine blood was drawn into a serum vial and incubated on ice for 45 min. After 

centrifugation for 2 min at 16000 x g at RT, the supernatant serum was transferred in fresh 

tubes and stored -20°C for further use.  
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6 Results 

6.I Reduction of cell-membrane tension by L. monocytogenes 

virulence factor InlC and influence on cell-to-cell spread  

6.I.1 Generation of L. monocytogenes inlC mutants 

To further investigate which of the specific InlC amino acid residues is responsible for binding 

to distinct cellular proteins different InlC mutants were generated. Amino acids at position 

173 (K) and/or 204 (R) were exchanged to alanine to examine the protein-protein 

interactions. 

InlC was amplified using genomic DNA of L. monocytogenes EGD as template. Primers InlC 

start2 BamHI 5' and InlC aft end Cfr9I 3' were used for amplification of this fragment which 

was ligated into the pUC18 vector following BamHI and Cfr9I restriction digestion. The insert 

of 909bp was mutated using the primers InlC mut2 170 5' and InlC mut2 170 3' in single site 

mutagenesis. The basepairs 419 to 421 were exchanged from AAG to GCA resulting in a 

K173A exchange in the final InlC protein. Another mutation was performed using primers 

InlC mut2 204 5' and InlC mut2 204 3'. The basepairs 511 to 514 were exchanged from AGA 

to GCA resulting in a R204A exchange in the final InlC protein. The mutated inlC genes were 

inserted into the BamHI and Cfr9I restriction sites of the plasmid pLSV101 and used for 

generation of genomic mutants as described in 5.II.7. Mutants comprising either of the single 

mutations and a double mutant strain were generated and verified by sequencing.  

A control strain was generated by reconstituting L. monocytogenes ΔinlC with the wildtype 

inlC gene. For this purpose inlC was amplified of genomic DNA of L. monocytogenes EGD 

using primers InlC bef start BamHI 5' and InlC aft end Cfr9I 3'. The 1413bp fragment was 

ligated into pLSV101 following BamHI and Cfr9I restriction digestion. The reconstituted inlC 

L. monocytogenes mutant was generated as described in 5.II.7 and verified by sequencing.  

 

6.I.2 Influence of InlC on apical cell junctions and cell-to-cell 

spread by L. monocytogenes 

Already in the original publication describing InlC for the first time, InlC was thought to be 

involved in the intercellular spreading of L. monocytogenes (Engelbrecht et al., 1996). Using 

mutants generated in this work as described in 6.I.1, the distinct molecular functions of InlC 

during the infection process of L. monocytogenes were resolved in the lab of Keith Ireton 

(Rajabian et al., 2009). The major results of this publication are reported in this paragraph.  

Yeast two-hybrid experiments revealed the interaction of InlC with Tuba, a protein involved in 
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regulation of the actin cytoskeleton. Tuba contains four SH3 domains located at the N-

terminus mediating Dynamin binding, and two domains close to the C-terminus, responsible 

for interaction with N-WASP (Salazar et al., 2003). A Bar domain enables interaction with 

lipid bilayers, especially curvature-sensing and curvature-generation (Cestra et al., 2005). 

Interaction of InlC with Tuba SH3 domain 6 (SH36) was shown in immunoprecipitation 

experiments using purified Tuba-fragments or InlC (Rajabian et al., 2009). On incubation of 

GST-tagged InlC with lysates of Caco-2 BBE1 cells, Tuba was immunoprecipitated. 

Interactions of InlC with Tuba isoforms of 150 and 180 kDa were detected. Using GST-

tagged Tuba SH3 domains one to four or the single SH36 domain, InlC precipitation was 

examined. Only the Tuba SH36 domain bound InlC from lysates of Caco-2 BBE1 cells 

infected with the L. monocytogenes wildtype strain. The SH3 domains one to four mediated 

no protein-protein interaction with InlC. 

The distinct InlC amino acids responsible for interaction with tuba were examined by 

generation of single amino acid exchanges in the InlC SH36 domain. The putative interacting 

RxxK motif at position 170 to 173 of InlC was disrupted by exchange of a conserved Lysin 

residue by Alanin in the L. monocytogenes InlC.K173A mutant.  

On comparison of cell-to-cell spreading of the novel InlC.K173A mutant with an inlC knockout 

strain and the L. monocytogenes wildtype in Caco-2 BBE1 cells, spreading of the novel 

mutant resembled the ΔinlC mutant. This indicated the importance of the InlC RxxK motif for 

InlC function.  

N-WASP, a key protein involved in regulation of the actin cytoskeleton, interacts with the 

Tuba SH36 domain. The influence of InlC on this known interaction partner was analyzed. In 

vitro wildtype InlC efficiently displaced N-WASP from Tuba SH36, while InlC.K173A failed to 

do so. Along the same line additional evidence of InlC acting by N-WASP displacement from 

Tuba was obtained on knockdown of either Tuba or N-WASP. This RNAi mediated 

knockdown restored the reduced protrusion formation of L. monocytogenes ΔinlC in Caco-2 

BBE1 cells to wildtype level.  

As Tuba is involved in regulation of cellular membrane tension the influence of InlC on this 

protein function was examined. Membrane tension was graded microscopically by measuring 

the membrane linearity (Otani et al., 2006). Only the infection with L. monocytogenes wt 

lowered the membrane tension of Caco-2 BBE1 cells. Using the ΔinlC - or the inlC.K173A 

mutant had no influence on membrane linearity. A similar reduction of membrane tension 

was observed on treatment of Caco-2 BBE1 cells using siRNA for silencing of Tuba or N-

WASP. 

Taken together these results indicate involvement of InlC in bacterial spreading by reduction 

of membrane tension.  
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6.II RNA delivery into eukaryotic cells by L. monocytogenes 

6.II.1 Integration of T7 RNA polymerase into the genome of 

L. monocytogenes 

6.II.1.a Generation of T7 RNA polymerase integration vector and genomic 

integration 

For integration of the T7RNAP under control of the actA promotor into the genome of 

L. monocytogenes, the plasmid pLSV101-IntAB-PactA-T7RNAP was generated. The actA 

promotor was chosen for regulation of polymerase expression because this promotor is 

strongly upregulated after arrival of L. monocytogenes in the host cell cytosol leading to a 

high transgene expression (Vazquez-Boland et al., 2001). Integration into the bacterial 

genome was performed according to Wuenscher et al., 1991 using the plasmid pLSV101 

(Wuenscher et al., 1991). Homologous regions required for integration were placed adjacent 

to the genomically integrated phage A118 integrase / recombinase gene LMO02332 

(Loessner et al., 2000). Upon knockout of this gene, the phage presumably looses the 

capability to re-enter into lytic cycle and therefore the integrated gene can not be lost 

following insertion. The integration vector backbone pLSV101-IntAB has been generated 

before as published (Heisig, 2005). 

In between the homologous regions, NcoI and SacI restriction sites are located which were 

used for insertion of the T7RNAP gene. The functional T7-RNA polymerase expression 

cassette under control of actA promotor (PactA) was cut out of pCSA1 by restriction digestion 

using PstI and SacI. The plasmid pLSV101-IntAB was linearized using SacI and sticky DNA 

ends of vector and insert were blunted using Klenow DNA polymerase. Following blunt end 

ligation and transformation, clones were screened by PCR using primers LSV-4380 rev and 

LSV3. The final integration vector pLSV101-IntAB-PactA-T7RNAP was confirmed by 

sequencing. 

The integration plasmid was electroporated into L. monocytogenes EGDe ΔtrpS and a 

homologous insertion/replacement was performed as described in 5.II.7. Flanking regions of 

the genomic insertion were confirmed by sequencing a PCR fragment generated using 

primers integrase check -1 and integrase check -4. 

 

6.II.1.b Cloning of stabilized expression vectors for RNA delivery 

For reduction of the RNA delivery system to a system encoded on a single plasmid, the 

T7RNAP expression cassette was cloned into the stabilized pCSAI plasmid (Schoen et al., 
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2005). For evaluation of functionality of the system, an expression cassette mediating EGFP 

expression and an expression cassette encoding FCUI expression was cloned. The inserted 

cassettes were generated by digestion of pCSBI and pCSB-IRES-FCUI using PstI and SacI 

followed by agarose gel extraction of the PT7-IRES-EGFP and PT7-IRES-FCUI fragments. 

The stabilized vector backbone was generated from the plasmid pCSA1. pCSAI was 

digested with PstI and SacI likewise and the backbone lacking the T7RNAP gene was 

purified using agarose gel extraction. The backbone was ligated with both fragments, 

respectively and after transformation, the plasmids were confirmed by sequencing. 

Sequencing of the newly generated plasmid pCSA-PT7-IRES-EGFP was performed using 

primers Screen H1 EPK-anti' and 'pFLO IRES 3' while plasmid pCSA-PT7-IRES-FCUI was 

sequenced using Screen H1 EPK-anti and FcuI Seq 2. Vector maps of the newly generated 

plasmids are depicted in figure 6.1. 

 

figure 6.1:  Vector map of pCSA-IRES-EGFP and pCSA-IRES/FCUI 

 

6.II.1.c Analysis of the trimmed RNA delivery strain 

Integration of the T7RNAP into the genome of L. monocytogenes resulted in generation of a 

trimmed RNA delivery strain labeled L. monocytogenes ΔtrpS Δint::PactA-T7RNAP x pFlo-

trpS. This strain was attenuated by aroA deletion as described in Stritzker et al. resulting in 

L. monocytogenes ΔtrpS ΔaroA/int::PactA-T7RNAP x pFlo-trpS (Stritzker and Goebel, 2004). 

Growth kinetics of both strains was analyzed in BHI medium at 37°C (figure 6.2).  
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figure 6.2:  Growth kinetics of the novel strains in BHI medium 

 

Integration of the T7RNAP (■) into L. monocytogenes ΔtrpS x pFlo-trpS (○, concealed by ■) 

did not alter growth kinetics in comparison to the parental strain, when no additional T7RNAP 

driven expression cassette was present. The ΔaroA-attenuated strain L. monocytogenes 

ΔtrpS ΔaroA/int::PactA-T7RNAP x pFlo-trpS (□) likewise without T7RNAP driven expression 

cassette showed severe growth retardation. In comparison to the ΔaroA-attenuated strain 

without integration (▲) replication rate was strongly reduced on T7RNAP integration. This 

attenuated strain was not investigated further as transformation of plasmids containing 

T7RNAP driven expression constructs was not realizable. Addition of 50µg/ml menaquinone 

was not sufficient to revert the growth attenuation in this strain (data not shown).  

 

RNA delivery of EGFP encoded on one plasmid was examined by flow cytometry. Infection 

of COS-1 cells was performed in vitro using L. monocytogenes ΔtrpS x pCSAI x pCSBI and 

L. monocytogenes ΔtrpS Δint::PactA-T7 RNA pol x pCSA-IRES/EGFP at an MOI of 100 in 

comparison to uninfected cells. Following infection, cells were detached by trypsinisation and 

fluorescence was analyzed by flow cytometry. The relative percentage of GFP expressing 

cells is shown in figure 6.3. 
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figure 6.3:  Flow cytometric analysis of COS-I cells after infection with L. monocytogenes 

delivering EGFP mRNA 

 

Comparison of GFP positive cells after infection shows a pronounced difference between the 

cells infected with either of the two RNA delivery strains. While the two plasmid encoded 

system is able to elicit up to 10% of fluorescent cells, the system based on one plasmid 

yields only a maximum of 2% fluorescent cells. In the timecourse GFP positive cells peak 

between 50h and 60h p.i. in both systems followed by reduction of fluorescence. Taken 

together a metabolically more robust bacterial mutant delivering functional mRNAs was 

established.  

 

6.II.2 shRNA delivery 

6.II.2.a Cloning of SMAC/DIABLO shRNA delivery vector 

The L. monocytogenes RNA delivery system was modified for delivery of shRNAs by 

introducing a shRNA expression cassette into plasmid pCSBI. The EGFP expression 

cassette was removed from pCSBI using Cfr9I followed by BamHI digestion. The vector 

backbone was eluted after agarose electrophoresis and dephosphorylated before ligation. 

The shRNA expression cassette silencing SMAC/DIABLO was generated by annealing of the 

purchased oligomers 'Smac shRNA BamHI/XmaI s' and 'Smac shRNA BamHI/XmaI as'. The 

two oligomer sequences were reverse complementary with additional overhangs mimicking 

Cfr9I and BamHI overhangs. The shRNA design for SMAC/DIABLO silencing including the 

loop structure was kindly provided by Krishna Rajalingam as published in (Rajalingam et al., 

2007). Annealed oligomers were phosphorylated using T4 polynucleotide kinase and ligated 

into the pCSBI vector backbone. Bacterial clones were screened by PCR using primers 'T7 

EPK s' and 'T7 EPK a' and analyzed using a 2% agarose gel as depicted in figure 6.4. 

Plasmid DNA isolated from clone 5 and 6 was sequenced for confirmation of pCSB-shSmac.  
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figure 6.4:  Agarose gel electrophoresis of PCR products using pCSB-shSmac clones as 

template 

  

6.II.2.b Purification and analysis of small RNAs  

The plasmid pCSB-shSmac was electroporated into E.coli BL21/DE3, expressing the 

T7RNAP under control of the lacUV5 promoter. Detection of shRNAs was attempted by RNA 

acrylamide gel electrophoresis. 

RNA was isolated from bacterial cultures after induction of T7RNAP expression by adding 

1mM IPTG during 2h of incubation at 37°C. RNAs were distinguished in small and large 

RNAs during RNA isolation. The separation of 1 µg of RNA per sample and 0,5µg of RNA 

marker was performed using TBE acrylamide gel electrophoresis as shown in figure 6.5. 

  

 

figure 6.5:  TBE acrylamide gel electrophoresis of RNA isolated from E.coli BL21/DE3 ± pCSB-

shSmac after IPTG induction (1 µg RNA per lane) 
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Separation of bacterial RNAs showed a distinct band pattern depending on the isolation 

protocol. Boundary value between the two different protocols ranged between 100 and 200 

nucleotides of ssRNA, but a partial carryover of ribosomal RNAs into the small RNA fraction 

was observed in both the samples.  

On production of shRNAs by the bacteria, an additional band at approximately 200 

nucleotides should appear following IPTG induction in the strain carrying pCSB-shSmac. 

This additional band would only show up, if the amount of produced shRNA exceeded 0,01 

µg. Otherwise the sensitivity of the acrylamide gel would be insufficient. Gel separation 

showed no additional RNA band in the plasmid transformed strains on IPTG induction. As 

the sensitivity of acrylamide electrophoresis is limited a qRT-PCR approach with higher 

detection limit was employed.  

 

The quantification of shRNA amounts by qRT-PCR in L. monocytogenes was performed 

using primers 'shSmac RT (F)' and 'shSmac RT (R)'. Relative RNA amounts were normalized 

to mRNA levels of the housekeeping gene rpoB (analyzed using primers 'RpoB RT (F)' and 

'RpoB RT (R)'. L. monocytogenes ΔtrpS was transformed with pCSAI and pCSB-shSmac, 

RNA was isolated from a bacterial culture induced with 1% XAD for 2h at 37°C, reverse 

transcribed and investigated by qRT-PCR. XAD addition to the growth medium was used to 

induce the major bacterial virulence regulator prfA resulting in increased virulence gene 

transcription. The T7RNAP in this bacterial mutant was transcribed under control of the prfA-

dependent actA promotor resulting in increased amounts of T7RNAP on induction with XAD. 

 

 

figure 6.6:  qRT-PCR analysis of shSmac amount in L. monocytogenes ΔtrpS x pCSAI ± pCSB-

shSmac after XAD induction 

 

The relative amount of shRNA was arbitrarily set to 1 (100) in L. monocytogenes ΔtrpS x 

pCSAI without pCSB-shRNA and the relative amounts in comparison thereof were calculated 

for the other strains. No increase of shSmac was detected in the control strain on XAD 
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induction; while the shSmac amount was increased in the plasmid bearing strain 100-fold on 

induction.  

The shRNA expression cassette was approximately 200 nucleotides in size and showed 

highest abundance in the large RNA fraction of the plasmid bearing strain. In comparison, 

shSmac was present in the small RNA fraction at a 10-fold lower level indicating that size 

separation of RNAs during RNA isolation had no clear cutoff value but showed a gradual 

transition. Increase of the relative shRNA amount on XAD induction indicated a functional 

expression cassette leading to expression of shSmac on promotor induction.  

Functional experiments investigating SMAC/DIABLO silencing on shSmac delivery by 

L. monocytogenes were conducted in vitro as well. Following infection of HeLa- and COS-I 

cells, alterations in relative SMAC/DIABLO transcript amounts were detected, but showed no 

reproducible and consistent pattern of regulation (data not shown). 

 

6.III Protein A mediated antibody coating of L. monocytogenes 

6.III.1 Characterization of bacterial antibody coating 

6.III.1.a Quantitation and specificity of antibody binding 

Antibody binding specificity of Lm aroA+spa+ was compared to Lm aroA+spa- by western blot 

analysis. 5 x 108 bacteria were incubated in 100µl PBS containing 1µg of polyclonal antibody 

directed against native murine serum albumin. 200ng of purified murine serum albumin were 

added and the coating procedure was performed for 1h at RT under vigorous shaking. 

Following coating, excess albumin was removed by washing the bacteria. Samples in lane 1 

to 4 were washed 5 times using 1 ml PBS, bacteria shown in lane 5 to 6 were washed three 

times using 0.05% Tween 20 in PBS (PBST) before resuspending and boiling in Laemmli 

buffer. Samples were analyzed by western blot analysis using polyclonal antibody directed 

against denatured murine serum albumin (figure 6.7). 10 ng of purified murine serum albumin 

(69 kDa) was loaded as positive control in lane 7.  
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figure 6.7: Western blot analysis detecting the amount of albumin bound to Lm-aroA+-spa+ 

 

Incubation of protein A expressing L. monocytogenes together with the antibody directed 

against native albumin resulted in a side band at about 50 kDa (lane 2,3,5). Specific bacterial 

albumin binding was observed only on addition of antibody and albumin (lane 3, 5). Lm-

aroA+-spa+ showed a slight antibody independent serum albumin binding as seen in lane 4. 

This intrinsic binding capacitiy was abrogated by washing with buffered detergent solution as 

shown in lane 6. The amount of antibody-mediated serum albumin binding was not altered 

after the washing.  

In comparison to the distinct amount of albumin in the control lane the size of bacterial bound 

serum albumin allowed a rough calculation of the amount of attached albumin per bacterial 

cell. Computer aided band quantitation of the membrane shown in figure 6.8 estimated 70 ng 

of albumin bound to 5 x 108 bacteria (Rosenman R.). 70 ng of protein with a weight of 69 kDa 

correspond to 8.7 x 109 molecules of serum albumin bound to the bacteria. By division of the 

number of molecules by the bacterial count the number of albumin molecules per bacterial 

cell was calculated. About 120 albumin molecules corresponding to at least 60 molecules of 

antibody were bound on the surface of each bacterial cell. 

 

Dependence of albumin binding on bacterial protein A expression was examined comparing 

Lm aroA+spa+ and Lm aroA+spa- simultaneously (figure 6.8). Lanes 1 to 4 show albumin 

binding of Lm aroA+spa+, Lm aroA+spa- was assessed in lanes 5 to 8. 10 ng of purified 

murine serum albumin (69 kDa) were loaded as positive control in lane 9.  
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figure 6.8: Western blot analysis detecting the amount of albumin bound to Lm-aroA+-spa+ 

 

The unspecific band at 50 kDa was detected only in samples containing protein A expressing 

bacteria, protein A deficient bacteria did not show this band. Western blot analysis of Lm 

aroA+spa- using a serum albumin specific antibody detected a side band at approximately 32 

kDa.  

Protein A expressing bacteria incubated with antibody and albumin show specific albumin 

binding (lane 3), as expected protein A deficient bacteria are unable to bind albumin (lane 7). 

 

6.III.1.b Kinetics of antibody coating 

Kinetics of bacterial antibody coating was investigated by western blot analysis as shown in 

figure 6.9. As described in 6.III.1.a bacteria were incubated with antibody directed against 

albumin followed by detection of the bound albumin by western blot analysis. Antibody 

coating was interrupted after different incubation times ranging from 5 to 60 minutes. After 

coating, bacteria were washed three times using 0.05% Tween 20 in PBS and analyzed as 

described in 6.III.1.a. Coating of bacteria analyzed in lane 7 was performed with double 

amounts of antibody and albumin compared to lanes 2-6 and 8 for investigation of coating 

saturation. Positive control shown in lane 9 consists of 10 ng of purified albumin.  
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figure 6.9:  Western blot analysis showing the kinetics of albumin binding to Lm-aroA+-spa+ 

 

Antibody-mediated albumin binding of Lm-aroA+-spa+ was saturated already after 15 

minutes. Coating for as little as 5 min was sufficient to mediate 80% of final albumin binding 

(computer aided band quantitation using Rosenman R. (Rosenman R.).  

 

6.III.2 Antibody-mediated internalization of L. monocytogenes 

in vitro 

Antibody-mediated cell targeting of Lm-aroA+-spa+ and Lm-spa+ has already been shown 

(Frentzen, 2007). The results revealed a 20-fold increased internalization of protein A 

expressing L. monocytogenes into SKBR3 cells on coating with Trastuzumab. The 

intracellular behavior of bacteria after antibody-mediated uptake was also analyzed. It was 

shown that the bacteria, internalized in an antibody-mediated manner and show a similar 

intracellular behavior like the wildtype with regards to phagosomal escape and replication. 

Following these initial observations, antibody-mediated targeting was further characterized 

and optimized in this study as described below.  

 

6.III.2.a Evaluation of optimal antibody concentrations for antibody-

mediated internalization 

Influence of antibody concentrations on the efficiency of Lm-spa+ to internalize into SK-BR-3 

and SK-OV-3 cells was evaluated in in vitro infection experiments. SK-BR-3 is a human 

breast cancer cell line overexpressing EGFR and HER2/neu receptors. The SK-OV-3 cell 

line was isolated from human ovarian carcinoma and overexpressed both receptors likewise 

(Heisig, data not shown; Warnberg et al., 2006). 

The bacteria were coated with antibodies using different antibody concentrations during the 

coating reaction. Antibody coated bacteria were employed in in vitro infections determining 
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the number of intracellular bacteria following infection and gentamicin assay. Relative 

internalization rates of the differentially treated bacteria in comparison to untreated bacteria (-

ab) are shown in figure 6.10. 

 

 

figure 6.10:  In vitro infection of cell lines investigating the optimal antibody concentrations for 

bacterial internalization 

 

With increasing amounts of antibody addition the number of intracellular bacteria also 

increased until reaching a maximal value. In SK-BR-3 cells, coating with 237 ng/ml antibody 

was sufficient for maximal bacterial internalization rate. In contrast, internalization into SK-

OV-3 cells requires about 100-fold more antibody for maximal internalization. The overall 

internalization rate differs in between the two cell lines by approximately 20-fold. This 

difference is presumably caused by different amounts of HER2/neu receptor on the surface 

of the two cell lines (Heisig, data not shown; Warnberg et al., 2006). 

In subsequent experiments 1µl Herceptin (equaling 2,37µg antibody) was used for coating of 

1*10^8 CFU bacteria.  

 

6.III.2.b Comparison of bacterial internalization into isogenic cell lines 

Specificity of antibody-mediated bacterial internalization was examined in two isogenic cell 

lines. 4T1 mouse mammary gland cells and HER2/neu transduced 4T1-HER2 cells were 

infected with antibody coated Lm-spa- and Lm-spa+ (Kershaw et al., 2004). Infection was 

performed for 1h using an MOI of 100 bacteria per cell followed by gentamicin treatment of 

1h. The raw number of CFUs is depicted in the left diagram, while internalization rate of 

antibody coated bacteria divided by the number of uncoated bacteria from the identical 

experiment is shown on the right. In figure 6.11, the results of infection using antibody coated 

Lm-spa- are shown.  
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figure 6.11:  In vitro infection of 4T1 and 4T1-HER2 cells using antibody coated Lm-spa- 

 

The amounts of intracellular Lm-spa- are close to the detection limit, indicating a very low 

intrinsic invasion property of inlA and inlB deficient Listeria monocytogenes into both cell 

lines. In 4T1- as well as 4T1-HER2 cells nearly no intracellular bacteria were detected. 

Despite of the low overall bacterial count, no antibody-mediated effects on bacterial 

internalization were observed. Coating the bacteria with the chimeric mouse-human antibody 

Cetuximab (® Erbitux) directed against the EGF-receptor was used as negative control in 

this experiment, as neither 4T1 nor 4T1-HER2 cells overexpress the EGFR.  

Results of antibody coated Lm-spa+ on infection of these cell lines are shown in figure 6.12. 

 

 

figure 6.12:  In vitro infection of 4T1 and 4T1-HER2 cells using antibody coated Lm-spa+ 

 

Internalization of Lm-spa+ into 4T1 cells showed no antibody-dependent alterations in the 

number of intracellular bacteria. In contrast, a major increase was detected on infection of 

4T1-HER2 cells using Trastuzumab coated Lm-spa+. Comparing uncoated and Trastuzumab 

coated bacteria, the number of intracellular bacteria is increased approximately 1000-fold as 

shown in the right graph of figure 6.12. 

Combining the results of figure 6.11 and figure 6.12, antibody-dependent internalization is 

strictly dependent on presence of protein A on the bacterial surface, receptor expression on 
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the eukaryotic target cells and coating with the appropriate antibody. Only combination of 

these three properties permits antibody-mediated bacterial internalization.  

 

6.III.2.c Influence of cell density and bacterial MOI during infection on 

antibody-mediated internalization 

The influence of cell density on antibody-mediated internalization in vitro was determined by 

infection of 4T1-HER2 cells. Different amounts of cells were seeded into 24 well plates and 

infected with differentially coated Lm-spa+ using 100 bacteria per cell as MOI and 2 h p.i. the 

intracellular bacterial count was determined. The raw CFU values are shown in the left graph 

of figure 6.13 and the relative internalization rates of antibody coated bacteria divided by the 

number of uncoated bacteria are shown on the right side.  

 

 

figure 6.13:  In vitro infection of 4T1-HER2 cells using antibody coated Lm-spa+ 

 

The number of intracellular bacteria correlated with the amount of infected cells, indicating 

that antibody-mediated internalization is functional in principal with different cell counts. The 

internalization rates however differed significantly depending on cellular confluence. The 

highest internalization rate was observed upon infection of 5*104 cells, but this rate was 

calculated using CFU values of uncoated bacteria below the detection limit. Infection of 1*105 

cells marked the lowest cell number allowing internalization of uncoated bacteria using a MOI 

of 100. Infecting more than 1*105 cells increased antibody-independent internalization and 

decreased the internalization ratio.  

 

Influence of bacterial MOI applied during infection on internalization was investigated in 4T1-

HER2 cell as shown in figure 6.14.  



Chapter 6  Results 

 

 - 65 - 

 

figure 6.14:  In vitro infection of 4T1-HER2 cells using antibody coated Lm-spa+ 

 

A total number of 1.2*105 4T1-HER2 cells were infected with differentially coated Lm-spa+ 

using MOI values ranging from MOI 10 to MOI 500. 2 h p.i. the intracellular bacterial count 

was determined. 

In the CFU data, internalization of differentially coated bacteria increased with higher MOI 

values independent of the antibody coating. The internalization rate was highest on infection 

using MOI of 50, but this internalization rate was calculated using CFUs below the detection 

limit. Using a higher MOI of 100 or 500 resulted in a lower infection rate, but was calculated 

using measured CFU values.  

 

Following the experiments shown above all in vitro infection experiments were performed 

using a MOI of 100 and 1.2*105 cells per well. 

 

6.III.2.d Adherence, internalization and replication of protein A expressing 

L. monocytogenes 

In addition to antibody-mediated internalization, adhesion / early internalization and 

replication of protein A expressing L. monocytogenes were examined in vitro. The 

internalization process of bacteria coated with polyclonal α-GFP antibody (α-GFP ab) as non-

binding control or Trastuzumab was compared to uncoated bacteria. Non-attenuated Lm-

aroA+spa+ and ΔaroA attenuated Lm-spa+ were used for infection of 4T1 and 4T1-HER2 

cells. The raw bacterial count was determined and the relative values in relation to uncoated 

bacteria were calculated thereof. The raw bacterial counts are shown on the left side, the 

calculated relative values on the right side of figure 6.15 and figure 6.16 for Lm-aroA+spa+ 

and Lm-spa+ respectively. Adhesion / early internalization 1h p.i., internalization 2h p.i. and 

replication 24h p.i. are shown top down. Experiments shown in figure 6.15 and figure 6.16 

were performed once in triplicates.  
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figure 6.15:  In vitro infection of 4T1 and 4T1-HER2 cells using antibody coated Lm-aroA+spa+  

 

Adhesion of Lm-aroA+spa+ to 4T1 cells was independent of bacterial antibody coating. In 

contrast bacteria loaded with α-GFP antibody or Trastuzumab attached better to 4T1-HER2 

cells than uncoated bacteria. While the increase in adhesion after Trastuzumab coating was 

expected, the 10-fold increase on α-GFP antibody coating was astonishing. 4T1-HER2 cells 

express GFP, because this protein was used as marker for viral transduction of HER2. Lm-

spa+ showed no α-GFP antibody-mediated increase in adhesion in the same experiment as 

shown in figure 6.16. 

The overall internalization rate of differentially coated bacteria was comparable to the results 

shown in figure 6.12. Coating of the bacteria using α-GFP antibody showed a similar 

internalization rate as coating using Cetuximab shown in figure 6.12. Both coatings caused 
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no alteration in internalization into 4T1 or 4T1-HER2 cells in comparison to uncoated 

bacteria. As shown before, bacterial coating using Trastuzumab increased internalization in 

4T1-HER2 cells more than 100-fold. 

24 h p.i. the absolute intracellular bacterial counts were increased by 3 orders of logarithmic 

magnitude in comparison to the bacterial counts 2 h p.i., but the relative proportion in 

between the differentially coated bacteria remained identical. The different antibody coatings 

thus had no specific effect on intracellular replication of Lm-aroA+spa+. 

 

 

figure 6.16:  In vitro infection of 4T1 and 4T1-HER2 cells using antibody coated Lm-spa+ 

 

Results obtained after infection of 4T1 and 4T1-HER2 cells using Lm-spa+ as shown in figure 

6.16 were similar to the results obtained using Lm-aroA+spa+ albeit with minor differences. 
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Adhesion of α-GFP antibody coated Lm-spa+ was not significantly increased on infection of 

4T1-HER2 cells and replication rate of the carrier strains differed. Because of the attenuation 

of Lm-spa+ the bacterial counts between 2 h p.i. and 24 h p.i. increased only 2-fold, while the 

unattenuated Lm-aroA+spa+ showed an increase of approximately 1000-fold in the same time 

span. Antibody-mediated bacterial internalization was shown in these isogenic cell lines 

using metabolicly attenuated and non-attenuated L. monocytogenes mutants.  

 

6.III.2.e Cetuximab-mediated internalization into human cancer cell lines 

Antibody-mediated internalization of Lm-spa+ into murine cell lines expressing HER2/neu 

was shown in the experiments above. In this part, of the thesis expansion of targeting was 

investigated by infection of two human cancer cell lines using the EGF receptor specific 

antibody Cetuximab (® Erbitux) in addition to Trastuzumab. Infection of both cell lines was 

performed using Lm-spa- and Lm-spa+ coated with Cetuximab or Trastuzumab in comparison 

to uncoated bacteria. The results are shown in figure 6.17 

 

 

figure 6.17:  In vitro infection of SK-BR-3 and SK-OV-3 cells using antibody coated Lm-spa- and 

Lm-spa+ 

 

Lm-spa- as well as Lm-spa+ are able to infect SK-BR-3 and SK-OV-3 cells intrinsically without 

antibody coating at a low level. Internalization of Lm-spa- into both cell lines is unaffected by 

additional antibody coating. In contrast, internalization of protein A expressing 

L. monocytogenes is massively increased upon Cetuximab- or Trastuzumab coating. Both 
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antibodies, directed against members of the EGFR family mediated internalization. Increase 

of intracellular bacteria is approximately 100- to 10.000-fold, depending on the cell line and 

antibody coating. 

This experiment exemplifies the versatility of antibody-mediated internalization by protein A 

expressing L. monocytogenes, as two different antibody coatings mediate bacterial 

internalization.  

 

6.III.2.f Antibody-mediated internalization of prodrug-converting 

L. monocytogenes 

Utilization of bacterial tumor targeting in therapeutic approaches can be accomplished either 

by exploitation of intrinsic effects the bacteria exert on the tumor tissue, or by delivery of 

therapeutic agents. One possible approach is the delivery of prodrug-converting enzymes 

causing cytotoxicity at site of infection. Prodrug-converting enzymes catalyze non-toxic drug 

precursors (prodrugs) into potent cytotoxic drugs. Transferring the chimeric yeast enzyme 

FCU1 catalyzes conversion of 5-Fluorocytosine (5-FC) into the cytotoxic 5-Fluorouracil (5-

FU) and further into 5-Fluorouridinemonophosphate (5-FUMP) (Erbs et al., 2000). RNA 

delivery of FCU1 into eukaryotic cells by L. monocytogenes was described by combination of 

plasmids published in Schoen et al., 2005 and Stritzker et al., 2008 (Heisig, 2005; Schoen et 

al., 2005; Stritzker et al., 2008). Combination of a plasmid encoding the T7RNAP (pCSA1) 

and a plasmid harbouring a T7RNAP driven expression cassette of FCU1 (pCSb-FCU1) in 

L. monocytogenes efficiently mediated cytotoxicity on prodrug addition in vitro (Heisig, 2005). 

In this study these plasmids were transformed into Lm-spa+ and first infection experiments in 

4T1-HER2 cells were performed with the novel strains. Following infection, the medium of 

half of the samples was supplemented with 1mM 5-FC and eukaryotic cell viability was 

measured at three timepoints p.i.. The efficiency of prodrug conversion was measured using 

a cell viability assay and comparing the samples with prodrug addition to the control samples 

without prodrug addition. If no prodrug is converted, the viability ratio would be around 100%, 

while lower ratios indicated cytotoxicity.  

In figure 6.18 the survival ratio of 4T1-HER2 cells following infection by L. monocytogenes 

mutants delivering FCU1 mRNA and the corresponding control strains are shown. All strains 

were incubated with Trastuzumab as described in chapter 5.II.11.a. The survival ratio was 

calculated by division of viable cells with prodrug addition by the number of viable cells 

without prodrug addition. L. monocytogenes strains harbouring pCSA1 and pCSB1 were 

used as negative controls unable to mediate prodrug conversion.  
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figure 6.18:  Eukaryotic cell survival ratio of 4T1-HER2 cells infected with Trastuzumab 

incubated L. monocytogenes with and without prodrug addition 

 

The L. monocytogenes ΔtrpS x pCSA1, pCSB-FCU1 mutant was included as control, as this 

strain showed prodrug conversion in COS-1 cells (Heisig, 2005). In the experiment shown 

here, this strain exerted no cytotoxic effects in the 4T1-HER2 cells. Trastuzumab coated Lm-

spa+ x pCSA1, pCSB-FCU1 (■) exerted a cytotoxic effect on the eukaryotic cells in 

comparison to the control strain Lm-spa+ x pCSA1, pCSB1 (□). Eight days after infection, 

about 25% of the Lm-spa+ x pCSA1, pCSB-FCU1 infected cells had died on prodrug 

treatment. Survival after day 6 and 8 p.i. differed significantly from the control strain as 

calculated using two-way ANOVA followed by Bonferroni post-test.  

Results of this experiment demonstrated the functional application of antibody-mediated 

bacterial internalization in delivery of prodrug converting enzymes for the first time. 

Consequently the failure of the intended positive control to mediate cytotoxic effects was 

investigated further.  

An infection experiment using an attenuated L. monocytogenes strain harbouring all 

internalin genes in comparison to Lm-spa+ with and without antibody coating was performed. 

Bacterial adhesion and the number of intracellular bacteria were investigated following 

infection at an MOI of 100. Results of the experiment are shown in figure 6.19 
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figure 6.19:  Adhesion and internalization of L. monocytogenes ΔaroA ΔaroB ΔtrpS x pFlo-trpS 

and Lm-spa+ with and without Trastuzumab coating on infection of 4T1-HER2 cells 

 

While the three bacterial mutants adhered to 4T1-HER2 cells in a similar fashion, the 

invasion behavior differed drastically. As shown before, uncoated Lm-spa+ is almost unable 

to internalize into 4T1-HER2 cells. In contrast, the same mutant coated with Trastuzumab 

enters the cells efficiently. Surprisingly the metabolically attenuated, but otherwise wildtypic 

strain showed the same invasion as the uncoated internalin A and B deficient Lm-spa+. This 

result explains the lack of cytotoxicity in the control strain as seen in figure 6.18. The strain is 

unable to efficiently enter into the investigated cell line.  

 

6.III.3 Mechanistic insights into antibody-mediated 

internalization 

6.III.3.a Antibody-mediated internalization of Lm-spa+ using fluorescent 

antibodies 

In addition to infection experiments investigating intracellular CFU, antibody-mediated 

bacterial internalization was investigated using immunofluorescence microscopy (figure 

6.20).  
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figure 6.20: Infection of 4T1-HER2 cells using Lm-spa+ coated with fluorescently labeled 

antibodies. 

 

Incubation of Lm-spa+ with Alexa488-labeled Trastuzumab marks almost 100% of the 

bacteria with the fluorescent dye (Heisig, data not shown). Using these labeled bacteria for 

infection of 4T1-HER2 cells, the bacteria were detected by immunofluorescence microscopy 

(I; figure 6.20). Direct bacterial labeling using a Cy5 labeled goat α-human antibody was 

impossible as protein A has a low affinity to goat antibodies. (II; figure 6.20). Incubation of the 

bacteria with non-labeled Cetuximab prior to treatment with Cy5 labeled goat α-human 

antibody allowed secondary antibody binding (III; figure 6.20).  

Infection of 4T1-HER2 cells using bacteria coated with Alexa488-coupled Trastuzumab and 

incubated after fixation with Cy5 labeled goat α-human antibody revealed bacteria showing 

both fluorescence signals (▲; IV ; figure 6.20) and bacteria with a single fluorescence signal 

(∆; V ; figure 6.20). As the cells were not permeabilized following infection, antibody-
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incubation after fixation corresponds to an extracellular staining. Therefore bacteria labeled 

only with the initial Alexa488 staining are located intracellularly, while double stained bacteria 

are located extracellularily. This experiment confirmed the internalization of Lm-spa+ into 

4T1-HER2 cells on Trastuzumab coating as shown in chapter 6.III.2. In addition this 

experiment proves, that Alexa488 labeled Trastuzumab is able to mediate internalization of 

Lm-spa+ as already shown using unlabeled Trastuzumab.  

The experimental settings evaluated in this experiment were used in the following section to 

assess whether listerial virulence factors are involved in antibody-mediated internalization.  

 

6.III.3.b Coating beads with fluorescent antibodies 

Antibody-mediated internalization of Trastuzumab- or Erbitux-coated Lm-spa+ was shown 

already in chapter 6.III.2. Although internalization was characterized regarding several 

aspects, the mechanism of internalization still remains unknown. As Lm-spa+ is deficient in 

inlA and inlB the main invasion factors of L. monocytogenes can not be involved in antibody-

mediated internalization. To rule out the involvement of other bacterial virulence factors in 

antibody-mediated bacterial internalization, studies with antibody-coated Dynabeads® 

Protein A (beads) were performed (figure 6.21).  
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figure 6.21: Coating protein A covered beads using fluorescently labeled and unlabeled 

Trastuzumab and Erbitux  

 

Bead diameter was specified by the manufacturer to be 2,4µm, but no size range was 

declared. Investigating beads without antibody treatment revealed a homogenous particle 

size and almost no intrinsic fluorescence at the investigated wavelength (I; figure 6.21). Bead 

incubation using Alexa488-coupled Trastuzumab showed a strong fluorescence signal on 

excitation using a 488nm laser, indicating efficient antibody binding to the bead surface (II; 

figure 6.21). In contrast the Cy5 labeled goat α-human antibody was unable to bind to the 

beads, because of the low affinity of protein A to goat antibodies (III; figure 6.21). Incubation 

using non-labeled Cetuximab prior to incubation with Cy5 labeled goat α-human antibody 

allowed indirect bead-binding (IV; figure 6.21). Sequential bead-incubation with labeled 

Trastuzumab and goat α-human antibody showed a clear fluorescence signal in both 

excitation wavelengths (V; figure 6.21).  
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6.III.3.c Antibody-mediated internalization of Dynabeads® 

By incubation of 4T1-cells with differentially coated beads, the antibody-mediated 

internalization was investigated independent of bacterial virulence factors. As shown in 

chapter 6.III.3.a, beads were coated with Trastuzumab and Cetuximab allowing experiments 

similar to the infection experiments with bacteria (figure 6.22).  

 

 

figure 6.22:  Treatment of 4T1-HER2 cells with differentially coated beads 

 

To simulate an infection-assay-like experiment, beads were treated with the antibody 

indicated under the 'bead'-label in figure 6.22 before incubation with the cells. Incubation with 

the second antibody in picture row III and IV was performed following cell fixation. Here the 

beads were labeled to 100% with the first antibody, while the second antibody marked 

extracellular beads only, as the cells were not permeabilized. 

Beads labeled with Alexa488-coupled Trastuzumab were clearly visible in the fluorescence 

image, beads were labeled to 100% as examined by investigating optical layers of the 

sample (II; figure 6.22; image stack data not shown). Coating the beads with unlabeled 
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Trastuzumab allowed later binding of goat α-human antibody as already shown for 

Cetuximab coating in figure 6.21 (III;figure 6.22). Investigating optical layers, several 

fluorescent (▲) and non-fluorescent (∆) beads were found (III; figure 6.22; image stack data 

not shown). Obviously some beads were internalized (∆), while most of them remained 

extracellular (▲).  

Treating cells with beads labeled with Alexa488-coupled Trastuzumab and incubating them 

after fixation with Cy5 labeled goat α-human antibody revealed some beads labeled with 

Alexa488 but not Cy5 (∆). Although most beads showed both fluorescence signals (▲) some 

beads with a single fluorescence signal (∆) were visible, indicating intracellular positioning. In 

conclusion, Trastuzumab with or without fluorescent labeling mediated internalization of 

beads into 4T1-HER2 cells.  

 

6.III.4 Examination of antibody-mediated tumor targeting 

in vivo  

6.III.4.a Generation of a xenograft tumor model using cell lines 

overexpressing HER2/neu 

For examination of antibody-mediated tumor targeting in vivo several mouse xenograft tumor 

models were analyzed. The initially used SK-BR-3 cell line was published for tumor 

generation in nude mice (Hu et al., 2006). In our hands the subcutaneous injection of this 

ATCC derived cell line into Foxn1 nu/nu mice failed to induce a stable tumor growth as 

shown in figure 6.23. A total amount of 1 x 106 and 2 x 106 cells were injected 

subcutaneously into the abdomen and tumor growth was measured using a caliper.  

 

 

figure 6.23:  Growth of SK-BR-3 cell xenografts in Foxn1 nu/nu mice 
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The available SK-BR-3 cell line failed to induce reproducible tumor growth in nude mice. As 

an alternative the SK-OV-3 cell line was used for induction of tumor growth. 4 x 106 cells 

were injected subcutaneously into in Foxn1 nu/nu mice and tumor growth was measured 

using a caliper as shown in figure 6.24.  

 

 

figure 6.24:  Growth of SK-OV-3 cell xenografts in Foxn1 nu/nu mice 

 

Although xenograft tumor growth was observed on injection of SK-OV-3 cells in this mouse 

model, this tumor model comprises strong handling disadvantages during experimental 

procedure. On the one hand, a huge amount of cells has to be injected for a single tumor 

induction. On the other hand, tumor growth is very slow, requiring approximately two month 

until experimentally required tumor sizes of roughly 6-8 mm in diameter are grown.  

 

Tumor induction of the murine breast cancer cell line 4T1-HER2 was examined in Balb/c and 

Balb/c SCID mice (figure 6.25 and figure 6.26 respectively). A total number of 5 x 104 cells 

were injected subcutaneously into the abdominal skin of Balb/c and Balb/c SCID mice and 

tumor growth was measured using a caliper. 
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figure 6.25:  Growth of 4T1-HER2 cell xenografts in Balb/c mice 

 

 

figure 6.26:  Growth of 4T1-HER2 cell xenografts in Balb/c SCID mice 

 

In Balb/c mice, no persistent tumor growth was observed on injection of 4T1-HER2 cells. In 

contrast, 4T1-HER2 xenograft tumor growth was comparable to xenograft growth following 

injection of the parental cell line 4T1 into Balb/c SCID mice (figure 6.27).  

 

 

figure 6.27:  Growth of 4T1 cell xenografts in Balb/c SCID mice 
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Subcutaneous injection of 4T1-HER2 cells into Balb/c SCID mice induced persistent 

xenograft tumor growth. Tumors grew to an appropriate size for bacterial targeting 

experiments in approximately 2-3 weeks. All subsequent animal experiments investigating 

antibody-mediated bacterial tumor targeting were conducted in Balb/c SCID mice bearing 

4T1 or 4T1-HER2 induced xenograft tumors.  

 

6.III.4.b Antibody-mediated bacterial tumor targeting in vivo 

Following the successful in vitro internalization experiments, antibody-mediated bacterial 

targeting was investigated in vivo in murine xenograft tumors. Tumor growth was induced by 

s.c. injection of 4 x 104 4T1 cells into the left side- and 4T1-HER2 cells into the right side of 

the shaven abdominal skin of 4 Balb/c SCID mice per group. 19 days after tumor induction, 

the mice were injected i.v. with 1 x 108 CFU of Trastuzumab coated Lm-spa+ and the 

bacterial count in liver, spleen and tumors was determined 6h and 26h post infection. Later 

timepoints were also investigated, but as the overall number of colonizing bacteria increases 

initial antibody-mediated effects might be masked. If Trastuzumab coated bacteria 

preferentially colonized 4T1-HER2 tumors, this would indicate antibody-mediated bacterial 

tumor targeting.  

In figure 6.28 the CFU per organ divided by the organ weight is shown.  

 

 

The major share of bacteria was detected in liver and spleen at both time-points. Bacterial 

counts in the liver remained constant during the first day of infection while bacterial counts in 

spleen and tumors doubled their counts. Organ colonization by Lm-spa+ indicated 

approximately one bacterial replication during the first 26h although overall bacterial counts 

remained similar.  

 

figure 6.28:  I.v. infection of 4T1 and 4T1-HER2 xenograft bearing Balb/c SCID mice using 1 x 108 

CFU Trastuzumab coated Lm-spa+ 
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Although the 4T1-HER2 tumor xenografts contained more bacteria than the 4T1 xenografts, 

this difference was not statistically significant using two-sided Student's t-test. In contrast to 

the in vitro studies where specific antibody-mediated internalization was shown in a receptor 

dependent manner, no antibody-mediated bacterial targeting to tumor tissue could be shown 

in vivo in this experiment.  

In all subsequent animal experiments investigating antibody-mediated targeting the bacterial 

counts were determined 24h post infection. 

 

6.III.4.c Investigation of the non-functionality of antibody-mediated 

targeting in vivo 

Initial animal experiments revealed the failure of antibody-mediated bacterial tumor targeting 

in a murine xenograft model. Possible reasons for this observation were examined in 

different in vitro experiments allowing separation into particular potential causes. Infection 

experiments with additional treatments simulating distinct characteristics of the in vivo 

infection were performed.  

4T1-HER2 cells were infected using Trastuzumab-coated Lm-spa+ and additional treatments 

with murine serum, heat inactivated serum, proteinase inhibitors or Cetuximab were 

performed. Serum treatment reflects the bacterial blood passage following murine i.v. 

infection. Non-cellular components of the serum like the complement system, proteinases or 

antibodies might interfere with antibody coating inhibiting the targeting effect in vivo. The 

influence of the complement system on bacterial targeting was investigated by comparing 

treatments of fresh murine serum with heat inactivated serum. Addition of proteinase 

inhibitors was used to break down potential influences of serum proteinases by cleavage of 

the surface bound antibodies. By incubation with an excess of Cetuximab following 

Trastuzumab coating the exchange of protein A bound antibody by arbitrary antibodies was 

simulated. As already shown in figure 6.12, Cetuximab does not mediate internalization into 

4T1-HER2 cells and was used in this experiment as model for competing antibodies 

available in murine serum.  

In the left graph of figure 6.29 the intracellular CFU after infection is shown, in the right graph 

relative internalization of Trastuzumab coated Lm-spa+ divided by the count of uncoated 

bacteria is shown. 
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figure 6.29:  In vitro infection of 4T1-HER2 cells using antibody coated Lm-spa+ 

 

The first pair of bars depicts the control group showing 100-fold increased internalization of 

Trastuzumab coated Lm-spa+ in comparison to uncoated bacteria. 1h pretreatment of these 

bacteria in 50% murine serum abrogated the internalization difference between Trastuzumab 

coated bacteria and uncoated bacteria resulting in a relative internalization rate of almost 

one. Similar pretreatment using heat inactivated resulted in an intermediate internalization 

rate.  

In the same experiment the influence of proteinase inhibitors on antibody-mediated 

internalization was analyzed. In between coating and 4T1-HER2 infection, bacteria were 

incubated for 1h in PBS containing 50µg/ml PMSF, 0,25µg/ml Leupeptin, 0,35µg/ml 

Pepstatin, 0,5µg/ml Antipain and 10µg/ml Aprotinin or in 50% murine serum containing these 

inhibitors. After thorough washing, the infection experiment was performed. Proteinase 

inhibitors showed no influence on internalization regardless of murine serum presence.  

The exchange of protein A bound Trastuzumab by antibodies unable to mediate 

internalization into 4T1-HER2 cells was investigated by additional incubation of coated 

bacteria for 1h in an excess of Cetuximab. As shown in the two rightmost bars both graphs in 

figure 6.29 no influence was detected.  

 

Infection experiments in vitro revealed a marked effect of fresh murine serum on antibody-

mediated bacterial internalization into 4T1-HER2 cells. This might explain the missing 

functionality of antibody-mediated bacterial tumor targeting in vivo following i.v. infection. 

Though some components of murine serum were investigated, no particular causative agent 

was found in this study. The experiment shown in figure 6.29 was performed only once, 

because results shown in the following chapter (6.III.4.d) indicated a main cause for the 

effect of murine serum.  
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6.III.4.d Covalent crosslinking of antibodies to protein A on the surface of 

viable Lm-spa+  

In the experiment shown in figure 6.29 an excess of Cetuximab did not alter the 

internalization of Trastuzumab-coated L. monocytogenes into 4T1-HER2 cells. This clearly 

indicated that exchange of antibody bound to protein A on the surface of L. monocytogenes 

was not the reason for the effect of murine serum on bacterial internalization. In spite of this 

the covalent linkage of antibodies to protein A was investigated to tighten the connection 

between bacterium and antibody. Covalent connection of the antibodies to protein A using a 

chemical crosslinker would presumably prevent replacement and displacement. To date only 

Dimethyl pimelinediimidate dihydrochloride (DMP) was published to crosslink antibodies in a 

functional manner to protein A (Harlow and Lane, 1999; Kerrigan and Brooks, 1999; 

Schneider et al., 1982). The homobifunctional crosslinker DMP reacts at light alkaline pH 

with primary amines forming amidine bonds. At neutral pH DMP is hydrolyzed. The chemical 

structure of DMP is shown in figure 6.30.  

 

 

figure 6.30: Chemical structure of Dimethyl pimelinediimidate dihydrochloride (DMP) 

 

Crosslinking protocols for connection of protein A sepharose beads to antibodies were 

available and had to be adapted for application using viable bacteria instead of beads 

(Schneider et al., 1982). The bacterial viability on treatment with different DMP 

concentrations and various agents modifying the crosslinking process was investigated in the 

following (figure 6.31 and figure 6.32).  
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figure 6.31:  Influence of Triethanolamine, DMP, Acetic acid, Tris-Cl and Glycine during 

crosslinking on the viability of Lm-spa+  

 

Using available protocols protein A Sepharose-bead crosslinking to approximately 20µg 

antibody was performed after Triethanolamine (TEA) washing using DMP (20-25 mM) for 45 

min and stopped by addition of Acetic acid, Tris-HCl, Glycine or Ethanolamine (Harlow and 

Lane, 1999; Kerrigan and Brooks, 1999; Schneider et al., 1982).  

The initial experiment using viable bacteria was performed using 1 x 108 CFU Lm-spa+ 

coated with 2 µg Trastuzumab. Coated bacteria were washed in TEA 1 ml (TEA; 0.2 M, pH 

8.2), incubated for 45 min at RT in 100µl of DMP (250 µM, in 0.2 M TEA, pH 8.2) and the 

reaction was stopped by addition of 25µl Acetic acid (100%), Tris-HCl(200mM), 

Glycine(200mM). Relative survival was calculated after plating bacterial aliquots following 

each incubation step.  

The initial TEA washing step buffering the pH for efficient crosslinking lowered the number of 

viable bacteria slightly, treatment with 250 µM DMP reduced the CFU likewise. Stopping of 

the crosslinking procedure using Acetic acid killed all remaining bacteria while Glycine had 

no effect. Tris-HCl treatment and Ethanolamine showed intermediate effects on the viability 

of the bacteria (Ethanolamine data not shown).  

Titration of different DMP concentrations was examined dissolved in PBS (pH 8.2) because 

TEA as solvent caused an antibacterial effect . DMP titration results are shown in figure 6.32. 
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figure 6.32:  Influence of different DMP concentrations on the viability of Lm-spa+ during 

crosslinking  

 

Only the lowest DMP concentration of 2,5 pM caused no decrease in bacterial viability and 

was used for all further crosslinking experiments.  

 

6.III.4.e Crosslinking partially prevents the effect of murine serum on 

antibody-mediated internalization 

Whether antibody crosslinking to Lm-spa+ was able to prevent the effect of murine serum on 

the antibody mediated internalization capacity was examined in vitro. Crosslinking of 

antibody coated bacteria prior to infection was performed either simultaneously with antibody 

coating of Lm-spa+, after coating or at both timepoints. Following antibody coating and 

crosslinking, the bacteria were incubated for 1h in 50% murine serum. Finally, bacteria were 

diluted and used for infection of 4T1-HER2 cells at an MOI of 100. The number of 

intracellular bacteria is shown in the upper graph of figure 6.33 while the lower graph depicts 

the internalization rate of coated bacteria relative to uncoated bacteria.  
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figure 6.33:  Influence of murine serum after antibody crosslinking on antibody-mediated 

bacterial internalization 

 

In the first group of three bars, the internalization of Lm-spa+ coated with Cetuximab or 

Trastuzumab in comparison to uncoated bacteria is shown as positive control. The second 

group depicts the data after additional incubation in murine serum. Antibody-mediated 

specific internalization was abrogated completely; the bacteria were unable to enter into the 

cells independent of their antibody treatment. Crosslinking during or after antibody coating 

had no effect on antibody-mediated internalization as seen in bar groups three and five. 

Unspecific internalization of Cetuximab coated or uncoated bacteria was also not altered by 

chemical crosslinking. However, antibody coated and crosslinked bacteria showed a specific 

internalization on incubation with murine serum. In contrast antibody-mediated internalization 

was completely abrogated using bacteria only coated with antibodies prior to serum 

treatment. Compared to serum treated bacteria, the specific internalization was increased 

approximately 10-fold upon single Trastuzumab crosslinking. Crosslinking twice, during and 
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after antibody coating, increased bacterial internalization on Trastuzumab coating and serum 

treatment more than 50-fold in comparison to uncoated bacteria as shown in the lower graph 

of figure 6.33 on the right. 

Crosslinking antibodies to protein A on the surface of viable bacteria reduced detrimental 

effects of murine serum on antibody-mediated internalization and allowed efficient bacterial 

internalization in spite of serum treatment. This newly generated serum stability of the 

antibody coating was investigated in a murine tumor model.  

 

6.III.4.f Tumor targeting of Lm-spa+ crosslinked to antibodies 

Targeting bacteria in an antibody-mediated fashion to tumors in a mouse xenograft model 

was shown to be unsuccessful in 6.III.4.b. In vitro, it was shown that antibody coating was 

not serum stable, but crosslinking of antibodies almost abolished the serum susceptibility of 

the antibody coating. 

In Balb/c SCID mice (n=7 per group) bearing 4T1-HER2 xenografts, tumor targeting of Lm-

spa+ crosslinked to antibodies was examined. Organ colonization of bacteria coated and 

crosslinked with Trastuzumab or Cetuximab was compared to uncoated but DMP treated 

bacteria following i.v. infection using 1 x 108 CFU. One day p.i. mice were sacrificed and 

bacterial counts in liver, spleen and tumors were determined. Bacterial colonization of livers 

and spleens was analyzed directly, while tumors were analyzed in four differentially treated 

fractions. Tumors were separated into single cell suspensions and were not treated, 

gentamicin treated, gentamicin treated and macrophage enriched as well as gentamicin 

treated and macrophage depleted. Macrophages were analysed differentially in this 

experiment to exclude active phagocytosis of the bacteria and assess predominantly 

antibody-mediated bacterial internalization. Subsequently, separated tumor cells were plated 

in serial dilutions. Bacterial tumor colonization was calculated relative to the amount of plated 

eukaryotic cells while CFU in liver and spleen was calculated per gram of organ mass. 

Tumor colonization data are shown in figure 6.35 and figure 6.36, liver and spleen data are 

depicted in figure 6.34.  
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figure 6.34:  Bacterial colonization of livers and spleens 24h p.i. using 1 x 108 CFU antibody 

crosslinked Lm-spa+ 

 

Compared to uncoated or Cetuximab crosslinked bacteria twice the amount of Trastuzumab 

crosslinked Lm-spa+ was found in livers and spleens. Although small, the colonization 

difference was highly significant.  

 

 

figure 6.35:  Overall tumor colonization 24h p.i. using 1 x 108 CFU antibody crosslinked Lm-spa+ 

 

In tumor tissue Lm-spa+ crosslinked with Trastuzumab showed a significantly higher CFU/cell 

ratio than the control groups. Overall bacterial counts in tumors, shown in the left graph of 

figure 6.35, were increased 8-fold on specific antibody crosslinking, while intracellular counts 

were increased only 3-fold as shown in the right graph. Comparison of gentamicin treated 

versus untreated tumor cells indicated an almost complete extracellular localization of the 

bacteria in the tumor tissue. The ratio of intracellular to extracellular bacteria was not altered 

in an antibody-dependent manner (data not shown). 

The tumor cell population comprising the intracellular bacteria was more precisely analyzed 

by MACS separation into macrophage enriched and macrophage depleted cells as shown in 

figure 6.36.  
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figure 6.36:  Bacterial colonization of enriched or depleted tumor macrophages 24h p.i. using 1 x 

108 CFU antibody crosslinked Lm-spa+ 

 

Intracellular bacteria preferentially resided in the macrophage depleted cell fraction of tumor 

tissue as seen on comparison of the two graphs in figure 6.36. In both fractions Trastuzumab 

crosslinked Lm-spa+ were significantly enriched compared to uncoated bacteria, although the 

difference was more pronounced in the macrophage enriched fraction.  

 

Infection of 4T1-HER2 xenograft tumor mice using Lm-spa+ crosslinked to Cetuximab or 

Trastuzumab in comparison to bacteria untreated with antibodies showed for the first time 

antibody-mediated bacterial tumor targeting of L. monocytogenes. Trastuzumab crosslinked 

bacteria showed increased bacterial counts in all examined organs including liver and spleen 

compared to control groups. The colonization behavior of bacteria crosslinked with 

Cetuximab was indistinguishable from uncoated bacteria in the examined organs. 

 

6.IV Bacterial colonization of murine organs after infection 

using different L. monocytogenes mutants 

6.IV.1 Colonization pattern of L. monocytogenes Δhpt 

mutants in a murine tumor model 

The intrinsic capacity of bacteria to accumulate in tumor tissue was investigated for 

L. monocytogenes Δhpt and ΔinlGHE mutants in comparison to wildtype strains. The Δhpt 

mutant, published in 2002 by Chico-Calero et al., carries a deletion in lmo0838 encoding a 

hexose phosphate transporter (Chico-Calero et al., 2002). This mutant was published to 

show reduced virulence on i.v. infection of ICR mice because of lowered liver colonization 

and earlier bacterial clearance in the spleen caused by the bacterial inability to take up 

phosphorylated hexoses (Chico-Calero et al., 2002). Lowered bacterial counts in liver and 

spleen would be beneficial for bacterial application in tumor therapy as a higher colonization 

rate of tumor to other organs would be advantageous for prevention of side effects.  
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6.IV.1.a The Δhpt mutant in a xenograft mouse tumor model 

The Δhpt mutant, which was generated in L. monocytogenes serovar 4b, strain P14 was 

compared to L. monocytogenes EGD wildtype (serovar1/2b) in a tumor mouse model. Three 

B78-D14 xenograft C57BL/6 mice per group were infected i.v. using 5 x 103 CFU. Four- and 

nine days p.i. the mice were sacrificed and the bacterial count in liver and spleen was 

determined. In figure 6.37 the results for the WT and Δhpt mutant are shown, data for 

infection using L. monocytogenes ΔinlGHE, performed simultaneous in the same experiment, 

are shown in figure 6.39. 

 

 

figure 6.37:  Bacterial colonization of liver, spleen and tumors four and nine days p.i. using 5 x 

103 CFU L. monocytogenes WT and L. monocytogenes Δhpt 

 

On the left, the organ colonization 4 days p.i. is shown for three mice (bearing two tumors 

each) per group. Colonization 9 days p.i. was examined similarily, but one mouse per group 

died before CFU determination, due to bacterial pathogenicity.  

In spite of the distinct serotypic background, 4d p.i. liver and spleen showed no differential 

colonization in between the two strains. In comparison to the data published by Chico-Calero 

et al. the Δhpt mutant exhibited an at least 100-fold higher bacterial titer in this mouse model 

in both organs at both investigated timepoints (Chico-Calero et al., 2002). In tumor tissue, the 

Δhpt mutant was detected to a lower extent than the EGD wt strain. Because of the high 

bacterial virulence the mice exhibited a severe infection and partially succumbed to the 

infection. The right diagram comprising the colonization of the remaining animals 9 days p.i. 

shows a very broad distribution of colonization values in between the animals without evident 

trends. 

This first experiment using the Δhpt mutant for investigation of tumor colonization produced 

no clear answer whether this mutant was suited for tumor therapeutic approaches. To allow 

higher infection doses without increasing the burden on the animals the Δhpt mutant was 

attenuated by ΔaroA deletion. 
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6.IV.1.b Attenuation of L. monocytogenes Δhpt 

L. monocytogenes Δhpt was attenuated by deletion of aroA as published in Stritzker et al. 

(Stritzker and Goebel, 2004). Briefly, the gene was removed by double crossover of the 

listerial genome with a plasmid bearing only the flanking regions of the aroA gene. The 

required deletion plasmid pLSV-aroA was provided by Jochen Stritzker. Strain attenuation 

was verified by sequencing the corresponding genomic area using primers aroA check -1 

and aroA check -4. 

 

6.IV.1.c The ΔaroA Δhpt mutant in a xenograft mouse tumor model 

The newly generated attenuated ΔaroA/hpt mutant was used for infection of tumor mice as 

described in 6.IV.1.a but using an infection dose of 1 x 108 CFU. The colonization of ΔaroA 

Δhpt was investigated together with L. monocytogenes ΔaroA (serovar 1/2b) and 

L. monocytogenes ΔaroA ΔinlGHE (serovar 1/2b) three and seven days p.i. Experimental 

results for ΔaroA and ΔaroA Δhpt are shown in figure 6.38, results for ΔaroA ΔinlGHE in 

figure 6.40. 

 

 

figure 6.38:  Bacterial colonization of liver, spleen and tumor three and seven days p.i. using 1 x 

108 CFU L. monocytogenes ΔaroA and L. monocytogenes ΔaroA Δhpt 

 

Compared to the control strain, the ΔaroA Δhpt mutant revealed an increased colonization in 

liver and spleen on both investigated time-points. In tumor tissue, no distinct colonization 

difference was observed. 

Using the attenuated hpt mutant the colonization pattern in a xenograft mouse tumor model 

was resolved. It was shown that this mutant is less suited for tumor therapeutic approaches 

than the control strain because of lower bacterial titers in tumor tissue.  
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6.IV.2 Colonization pattern of L. monocytogenes ΔinlGHE 

mutants in a murine tumor model 

The L. monocytogenes mutant lacking internalins G,H and E was generated and initially 

analyzed by Raffelsbauer et al. (Raffelsbauer et al., 1998). Bergmann et al. performed further 

analyses discovering the hyper invasive phenotype of the ΔinlGHE mutant in vitro in different 

cell lines including endothelial and epithelial cell lines (Bergmann et al., 2002). Additional 

information was also gathered illustrating increased invasion of the mutant into a melanoma- 

and a fibroblast cell line (Duechs, 2007). 

 

6.IV.2.a The ΔinlGHE mutant in a xenograft mouse tumor model 

The high infection rate of L. monocytogenes ΔinlGHE into (tumor) cell lines poses a 

promising property for delivery of functional DNA and RNA. Efficient invasion is one of the 

major prerequisites triggering a potent transcription and translation of the delivered nucleic 

acids.  

In C57BL/6 mice bearing B78-D14 xenografts the bacterial organ colonization was 

examined. Three mice per group were infected i.v. with 5 x 103 CFU L. monocytogenes 

ΔinlGHE and four and nine days p.i. the mice were sacrificed and the bacterial count was 

determined as shown in figure 6.39. Shown results were generated in one experiment with 

the data shown in figure 6.37. 

 

 

figure 6.39:  Bacterial colonization of liver, spleen and tumors four and nine days p.i. using 5 x 

103 CFU L. monocytogenes WT and L. monocytogenes ΔinlGHE 

 

Although the ΔinlGHE mutant showed higher bacterial loads in all examined organs at both 

timepoints, no significant differences were observed. Nine days p.i. one mouse of each group 

had succumbed to the bacterial infection indicating high bacterial virulence.  
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To allow higher infection doses without increasing the burden on the animals, the ΔinlGHE 

mutant was attenuated by aroA deletion as described for the Δhpt mutant in 6.IV.1.b. 

 

6.IV.2.b The ΔaroA ΔinlGHE mutant in a xenograft mouse tumor model 

The ΔaroA ΔinlGHE mutant was used for infection of B78-D14 tumor bearing C57BL/6 mice 

using 1 x 108 CFU for i.v. infection. Three and seven days p.i. the bacterial counts in liver, 

spleen and tumors were determined. Tumors of each mouse were pooled. The calculated 

CFU per gram of organ is depicted in figure 6.40. 

 

 

figure 6.40:  Bacterial colonization of liver, spleen and tumors three and seven days p.i. using 1 

x 108 CFU L. monocytogenes ΔaroA and L. monocytogenes ΔaroA ΔinlGHE 

 

Three days p.i. the ΔaroA ΔinlGHE mutant showed an increased colonization in all organs in 

comparison to L. monocytogenes ΔaroA (EGDe). While bacterial titers of the control strain 

were rather equal in all examined organs, the ΔaroA ΔinlGHE mutant colonized the tumors 

best. Seven days p.i. bacterial colonization in liver and spleen showed no difference between 

the strains. In contrast, bacterial counts in tumor tissue were elevated 40-fold compared to 

the control strain. A mean of 108 CFU per gram were detected in tumor tissue, an in vivo titer 

of L. monocytogenes never obtained in former experiments. The ratio of bacteria in tumor 

tissue to bacteria in liver and spleen exceeds 105:1, indicating efficient tumor accumulation.  

Although absolute values are promising, direct comparison of L. monocytogenes ΔaroA and 

L. monocytogenes ΔaroA ΔinlGHE is not fully appropriate as the control strain is in the EGDe 

background and the double mutant was generated in the EGD serotype.  
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7 Discussion 

7.I Influence of InlC on apical cell junctions and cell-to-cell 

spread by L. monocytogenes 

In this part the molecular mode of action of InlC during the infection process of 

L. monocytogenes was examined. In the first experiments the interaction of InlC with Tuba 

was characterized biochemically while in the following the functional aspects during infection 

were examined.  

 

The importance of inlC for pathogenicity and virulence of L. monocytogenes was already 

demonstrated in the initial publication by Engelbrecht et al. (Engelbrecht et al., 1996). 

Upregulation of inlC two hours p.i. was shown, indicating a function in the late stages during 

the infection process. Comparing replication of the inlC deletion mutant and the 

corresponding wildtype strain in macrophage- and epithelial cell lines showed no significant 

differences. Although the replication rate was similar in both strains, their virulence in mice 

differed markedly. The LD50 of the inlC deletion mutant on i.v. infection was 50-fold increased 

in mice, demonstrating the importance for bacterial virulence (Engelbrecht et al., 1996). 

These results are in accord with the data described in chapter 6.I. Interaction of InlC enables 

the bacteria to manipulate their host cell environment to enhance cell-to-cell spreading. This 

contributes to bacterial virulence without altering invasion or intracellular replication.  

Tuba seems to be involved in regulation of apical cell membrane tension of by linking 

proteins involved in endocytosis, actin polymerization and cell junction morphology (Cestra et 

al., 2005; Otani et al., 2006; Qualmann and Kessels, 2002; Salazar et al., 2003). As scaffold 

protein Tuba is interacting with dynamin and several actin regulatory proteins like N-WASP 

(Salazar et al., 2003). Downregulation of Tuba or N-WASP using RNAi leads to reduced 

membrane tension resulting in curved apical membranes measured by a elevated membrane 

linearity index (Otani et al., 2006). On infection of epithelial cell L. monocytogenes wildtype 

caused the same cellular phenotype, while inlC deletion mutants or the inlC.K173A mutant 

failed to do so (Rajabian et al., 2009). By displacing N-WASP from Tuba InlC interferes with 

a crucial protein-protein interaction resulting in reduction of membrane tension. This 

reduction allows L. monocytogenes a higher spreading efficiency by simplifying the 

generation of membrane protrusions. This report is the first description of a bacterial 

virulence factor altering host cell membrane tension to enhance bacterial tissue distribution 

on infection.  

While the interaction of InlC with Tuba resolved the L. monocyogenes phenotype observed 

already by Engelbrecht et al., the mechanism of membrane tension control by Tuba remains 
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to be investigated. It will be fascinating to examine other bacteria like Shigella or Rickettsia, 

which maintain an intracytosolic lifestyle and are capable of cell-to-cell spread, whether these 

bacteria express proteins with similar functions.  

 

7.II RNA delivery into eukaryotic cells by L. monocytogenes 

In this project a previously established L. monocytogenes-based mRNA delivery system was 

reengineered in several aspects. Reduction of the initially two-plasmid based RNA delivery 

system to one-plasmid expression was performed. In an associated project the delivery of 

shRNA using this RNA delivery system was examined. The first experiments comprised the 

construction of the carrier strains while in the following the constructed mutants were 

examined regarding their particular delivery behavior.  

 

In the past, two strategies were developed utilizing L. monocytogenes as carrier for delivery 

of nucleic acids into the cytosol of eukaryotic cells. The first delivery system transferred 

plasmid encoded eukaryotic expression constructs into macrophage cell lines (Dietrich G. et 

al., 1998). While showing for the first time DNA delivery using L. monocytogenes as carrier, 

the delivery of DNA comprised disadvantages for use in therapeutic settings. Plasmid-based 

transfer of eukaryotic expression constructs into the host cell cytosol requires translocation of 

the plasmid into the nucleus for transcription. This process is not well understood and rather 

inefficient in non-dividing cells limiting the overall delivery performance (Munkonge et al., 

2003). One of the major risks on application of this bacterial DNA delivery is integration of 

plasmid DNA into the host cell genome as observed in Dietrich et al. (Dietrich G. et al., 

1998). Construction of the L. monocytogenes RNA delivery system circumvented these 

problems and decreased the time interval between bacterial infection and delivery effects 

(Schoen et al., 2005). Following phagosomal escape the autolysing bacteria release mRNA, 

directly translated by the eukaryotic translation system. The described RNA delivery system 

resulted in protein expression as early as 4h p.i. in vitro.  

One of the major drawbacks regarding the RNA delivery system was the impossibility to 

attenuate the carrier strains for in vivo applications. While application of non-attenuated RNA 

delivery strains delivering heterologous antigens has shown promising results, tumor 

targeted therapies require much higher infective doses (Loeffler et al., 2006; Stritzker et al., 

2007). As described in chapter 6.II.1 of this thesis, the RNA delivery system was altered to a 

single-plasmid based system for reduction of the growth retardation caused in the carrier by 

the delivery system. The mutant with integrated T7RNAP showed comparable growth 

kinetics in BHI medium as the corresponding L. monocytogenes ΔtrpS x pFlo-trpS wildtype 

strain as shown in figure 6.2. By reduction of the the T7RNAP copy number the growth rate 
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efficiency was enhanced although no T7RNAP driven expression cassette was present. 

These results encouraged the metabolic attenuation of this trimmed RNA delivery system. 

The generation of the attenuated strain per se additionally indicated the metabolic 

downsizing of the system, as attenuation was not feasible using the published (2 plasmid) 

RNA delivery system (Pilgrim, personal communication; Schoen et al., 2005). The attenuated 

RNA delivery strain unfortunately did not fulfill the expectations because of pronounced 

growth retardation in BHI medium. As shown in figure 6.2. the attenuated strain needed more 

than 24h to reach an optical density (at 600nm) of 1.0, while the corresponding wildtype 

strain grew to this density in a third of the time.  

Comparison of RNA delivery efficiency between the two-plasmid system and the novel one-

plasmid system was performed by FACS analysis. The time course of GFP positive cells 

following infection with the two non-attenuated RNA delivery strains in figure 6.3 shows the 

pronounced performance difference. While infection using the published carrier resulted in up 

to 10% of fluorescent cells, the novel carrier peaked at a maximum of 2% positive cells. As 

the RNA delivery plasmids are high copy plasmids an efficiency reduction by an estimated 

factor between 50 and 100 would be expected if the copy number reduction would be the 

only factor influencing delivery efficiency. But the delivery decrease was only about five-fold, 

indicating the improved tolerance of the one-plasmid RNA by the carrier strain. Although the 

delivery carrier was trimmed for application in vivo, in the end this goal was not achieved. 

Even the downsized delivery system resulted in a pronounced growth retardation of the 

carrier strain that an in vivo use is not possible using the actual strains. The bilateral balance 

between safety (attenuation) and function (delivery efficiency) was shifted into the safety 

direction decreasing the applicability because of over-attenuation. As published in many 

other approaches using bacteria or viruses the optimal balance is crucial for overall 

performance (Hoft, 2008; Linde et al., 1991; Tijhaar et al., 1994). In case of the attenuation 

by aroA deletion the metabolic limitations can be abrogated by growing the bacteria in 

complete medium supplemented with menaquinone as described in Stritzker at al. (Stritzker 

et al., 2004). Interestingly supplementation of the attenuated novel RNA delivery strain using 

50µg/ml menaquinone was not sufficient to abrogate or even reduce growth retardation (data 

not shown). As an ΔaroA attenuated L. monocytogenes strain was not restored completely to 

wildtype growth behavior in the same experiment, the menaquinone might have been 

partially degraded resulting in application of too low concentrations. If the growth behavior of 

the attenuated novel RNA delivery strain could be restored, the strain might be saturated with 

menaquinone during in vitro cultivation prior to in vivo infection. This might allow aerobic 

energy generation during the first cycles of replication following in vivo infection and thereby 

enable experimental assessment in animal model systems.  
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Expansion of the RNA delivery system for transfer of shRNAs was examined in chapter 

6.II.2. As described earlier the targeted delivery of RNAs mediating gene silencing remains 

one of the main challenges in therapeutic in vivo applications (Carthew and Sontheimer, 

2009; Kurreck, 2009; Takeshita and Ochiya, 2006). Current clinical trials administering 

siRNAs in lung and eye diseases depend on topical application of the nucleic acids. Only two 

studies in phase one rely on a systemic siRNA application (reviewed in Pushparaj et al., 

2008; Whitehead et al., 2009). At present no targeted delivery systems are sufficiently 

advanced for examination in clinical studies but some approaches are currently evaluated 

preclinically. Non-viral siRNA targeting based on aptamers or antibodies is investigated in 

this context (reviewed in Aigner, 2008; Cerchia et al., 2009).  

L. monocytogenes as a facultative intracellular bacterium residing in the cytosol poses an 

interesting alternative carrier to the currently used systems. To evaluate the feasibility of 

modifying the published L. monocytogenes RNA delivery system for delivery of siRNAs a 

published shRNA sequence was inserted into the T7RNAP expression cassette. The shRNA 

sequence including the loop structure was provided by Krishna Rajalingam and was 

previously shown to efficiently silence the proapoptotic SMAC/DIABLO (Rajalingam et al., 

2007). Following construction of the required delivery plasmid the detection of shRNAs was 

performed in E. coli (data not shown) and L. monocytogenes. Using RNA-acrylamide gel 

electrophoresis shRNAs were not detected, presumably because the assay sensitivity was to 

low. A more sensitive approach using qRT-PCR was performed revealing a pronounced 

shRNA production in L. monocytogenes. Promotor induction by XAD addition increased 

shRNA levels approximately 100-fold in comparison to the control strain. Although the 

shRNA expression cassette has a length of slightly less than 200 nucleotides the largest 

amount of specific shRNA was detected in the large RNA fraction (figure 6.6). Isolation of 

shRNA containing sequences from the large RNA fraction was initially surprising, but in other 

systems employing T7RNAP based transcription leakiness of a T7RNAP terminator was also 

observed to a high extent (Magee et al., 2007). Hence, the presence of RNAs containing the 

shRNA sequence was shown in this experimental setup though additional nucleotides were 

presumably attached to the shRNA. The question whether these sequences can assemble 

the dsRNA hairpin structure required for DICER cleavage remains to be answered. Initial 

infection experiments using the α-SMAC shRNA delivery strains showed no reproducible 

silencing pattern (data not shown). Several parameters of the experiment would have to be 

standardardized and supported with the proper controls to finally answer the question of 

functionality. Silencing of SMAC/DIABLO was found out to be a complex task, as the 

proapoptotic function of the SMAC protein adds additional parameters to the investigation. 

Conclusively the shRNA delivery system was modified for delivery of shRNAs directed 

against the LDH subunit A and B which can be functionally detected by enzymatic assays 
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(data not shown). The strains have been constructed in this study but functional 

characterization remains to be examined.  

 

7.III Protein A mediated antibody coating of L. monocytogenes 

In this part of the study the impact of protein A mediated antibody coating on bacterial 

internalization and tumor targeting was investigated. Following the initial experiments 

antibody mediated bacterial internalization was improved and expanded in vitro in this study 

(Frentzen, 2008). Experiments performed in tumor bearing mice were used to assess the 

improvement of antibody-mediated tumor targeting in vivo. 

 

The experiments described in chapter 6.III.1, further characterized antibody binding by 

protein A expressing L. monocytogenes. Interaction of the bacteria with the antibodies was 

strictly dependent on bacterial protein A expression and was accomplished in a fast process. 

Already 5 to 15 min after antibody addition, the amount of bound antibody reached the 

maximal level. An average of at least 60 antibody molecules were bound per bacterial cell.  

Antibody binding kinetics of protein A expressing L. monocytogenes were comparable to 

established protocols of biochemical antibody binding to protein A sepharose in vitro 

(Schneider et al., 1982). The high speed of antibody binding is caused by the high affinity of 

protein A to IgG antibodies in general and rabbit, guinea pig and human antibodies in 

particular (Richman et al., 1982). During the coating experiments, the bacteria showed the 

same characteristics expected from sepharose beads. No influence of replication or other 

bacterial factors except the virulence regulator prfA was observed. Upon upregulation of prfA 

by XAD addition, the expression of protein A increased because of regulation via the hly 

promotor (Heisig, data not shown).  

Following biochemical characterization the antibody-mediated bacterial internalization was 

examined in vitro. The antibody amount applied during the bacterial coating process was 

investigated after infection of SK-BR-3 and SK-OV-3 cells. Using at least 2 µg of antibody per 

108 CFU bacteria was sufficient for maximal bacterial internalization. Optimal antibody 

amounts used for bacterial coating resulted in 40 up to 900-fold increased internalization 

rates compared to uncoated bacteria. Specificity of antibody-receptor interaction and 

dependence of internalization on this interaction was examined by infection of isogenic cell 

lines thereof one overexpressing HER2/neu. Bacterial internalization was increased by 2-3 

orders of logarithmic magnitude due to coating with the HER2/neu specific Trastuzumab. The 

internalization increase mediated by specific antibody coating ranged in similar magnitudes 

as described for viral targeting relying on protein A expression. Protein A mediated infection 

of Adenovirus and Vesicular stomatitis virus was enhanced by specific antibody binding 
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about 100-fold in susceptible cell lines (Bergman et al., 2003; Volpers et al., 2003). Currently, 

there is no comparable report published investigating bacterial cell targeting or internalization 

mediated by protein A bound antibodies.  

In comparison to the antibody-mediated bacterial internalization investigated earlier the 

internalization rate following coating optimization as shown in this thesis was significantly 

increased (Frentzen, 2008). Internalization in comparison to the results of the previous study 

was improved by factor 10 to 50 depending on the investigated cell line (Frentzen, 2008). 

Further increase was even possible on artificial prfA activation by XAD addition. Adding 1% 

XAD to the bacterial growth medium increased the amount of antibody bound to Lm-spa+ 

approximately threefold (Heisig, data not shown). In a preliminary in vitro experiment XAD 

incubated Lm-spa+ coated with Trastuzumab displayed tenfold higher internalization into 

4T1-HER2 cells than the otherwise equally treated control strain (Heisig, data not shown). 

Ongoing experiments currently investigate whether the internalization increase by XAD 

addition can be fully added on top of the antibody-mediated targeting system as presented in 

this study. Performed experiments have to be repeated and the specificity of internalization 

has to be investigated to proof existing data.  

Bacterial coating using the EGFR specific Cetuximab did not alter internalization into cells 

lacking EGFR overexpression. Cells overexpressing EGFR and HER2/neu like the SK-BR-3- 

and SK-OV-3 cell line showed efficient bacterial internalization on coating with either 

antibody. Hence, in addition to the already mentioned requirement of protein A expression, 

bacterial internalization was thereby shown to be strictly dependent on coating with an 

antibody directed against an epitope overexpressed by the target cells. Antibodies 

recognizing epitopes absent on target cells were unable to mediate bacterial internalization. 

Similarily, these antibodies had no influence on bacterial adhesion whereas antibodies 

mediating internalization increased bacterial adhesion to receptor-overexpressing eukaryotic 

cells.  

 

While antibody-mediated internalization was considerably enhanced as shown in this study, 

only recently insights regarding the mechanism of the internalization process were gained. 

The coating of magnetic beads with Trastuzumab led to internalization of these beads into 

4T1-HER2 cells, while the coating with Cetuximab did not (Heisig, data not shown). 

Antibody-mediated internalization of beads indicates the independence of the internalization 

on bacterial virulence factors. Ligand binding to EGFR as well as Trastuzumab binding to 

HER2/neu was published to increase receptor endocytosis (Ceresa and Schmid, 2000; 

Opresko et al., 1995; Yarden, 2001). The bacteria might be taken up by receptor-mediated 

endocytosis and thereby enter target cells. Preliminary results using inhibitors of clathrin 

mediated endocytosis on infection of Trastuzumab coated Lm-spa+ into 4T1-HER2 cells 
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showed a distinct decrease of internalization (Heisig, data not shown). Currently, all 

experimental evidence indicates uptake of antibody-coated bacteria by receptor-mediated 

endocytosis. Further experiments are needed to clarify this internalization mechanism in 

detail. Coating the bacteria using an antibody directed against a region of HER2/neu which 

does not increase receptor dimerisation / endocytosis should not increase bacterial 

internalization. Pertuzumab (® Omnitarg) might be used for Lm-spa+ coating on infection of 

HER2/neu overexpressing cells as Pertuzumab does not induce receptor endocytosis like 

Trastuzumab. Additional hints regarding the internalization mechanism might be gained by 

using receptor-tyrosine-kinase (RTK) specific inhibitors like GW2974 or Lapatinib (® Tykerb) 

during infection (Burris, 2004; Rusnak et al., 2001). These experiments would reveal whether 

bacterial internalization is depending on RTK phosphorylation.  

 

Antibody-mediated bacterial cell targeting and internalization as described above were 

developed as tools for efficient and specific therapeutic delivery by bacterial carrier strains. 

First experiments using antibody mediated bacterial internalization in an in vitro therapeutic 

application were shown in chapter 6.III.2.f. Antibody-targeted L. monocytogenes were 

equipped with plasmids encoding prodrug-converting enzymes and used for infection of 4T1-

HER2 cells. Following infection using Trastuzumab-coated bacteria delivering the converting 

enzyme eukaryotic cell viability decreased following prodrug addition. Although only 25% of 

the cells were killed the proof of concept for functional delivery enabled by antibody-mediated 

bacterial internalization was shown. Future improvements have to elevate the bacterial killing 

rate to allow in vivo therapeutic applications. Infection experiments investigating RNA 

delivery of prodrug-converting enzymes by L. monocytogenes have previously achieved 

almost 90% killing rate in COS-1 cells, though without antibody-mediated internalization 

(Heisig, 2005). The results cannot be directly compared to the ones shown here because of 

the complete dissimilarity of cell lines and experimental protocols. Nevertheless confirmation 

of the possibility of high killing rates encourages further improvement of antibody-mediated 

delivery.  

 

In addition to the mentioned proof of the concept an interesting observation was made in the 

described experiment. The intended positive control for prodrug-conversion was unable to 

elicit any cytotoxic effects in 4T1-HER2 cells on prodrug addition. During further 

investigations, the almost complete inability of this strain for infection of 4T1-HER2 cells was 

revealed. While adhesion to this cell line by L. monocytogenes ΔaroA ΔaroB ΔtrpS x pFlo-

trpS and Lm-spa+ with and without Trastuzumab coating was similar, only the Trastuzumab 

coated Lm-spa+ was able to internalize into the cells (shown in figure 6.19). The amount of 

intracellular bacteria in both uncoated strains was close to the detection limit, despite one of 
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them possessing all internalins. As described in the introduction, L. monocytogenes is able to 

invade almost every cell line using the endogenous invasion proteins inlA and inlB. To date 

no reports of cell lines resistant to L. monocytogenes infection have been published. In 

contrast, in experimental settings every investigated cell line including epithelial-, endothelial- 

and neuronal cells but also fibroblasts and hepatocytes was actively infected so far (Dramsi 

et al., 1998; Drevets et al., 1995; Gaillard et al., 1987; Guzman et al., 1995; Kuhn et al., 

1988; Wood et al., 1993). The parental cell line 4T1 is readily infected by L. monocytogenes 

wt bacteria consequently the HER2 overexpression remains as sole cause for prevention of 

infection in 4T1-HER2 cells (Fensterle, personal communication; Lütkenhaus, 2005). As the 

4T1 cell line was isolated from a murine mammary cancer, inlA cannot be involved in the 

invasion process. The receptor of inlA, E-cadherin is mutated in mice at one critical 

aminoacid residue preventing inlA mediated infection of murine cells by L. monocyogenes 

(Lecuit et al., 1999).  

With inlA not beeing involved, the invasion has to be caused by inlB, the second major 

invasion factor in L. monocytogenes. As described above, InlB interacts with MET or gC1qR 

and either of them is sufficient to induce uptake in distinct cell lines (reviewed in Braun and 

Cossart, 2000). In transformed tissues, MET is overexpressed frequently and high MET 

levels correlate with bad prognosis in breast cancer patients (Lengyel et al., 2005). No 

reports of MET downregulation in neoplastic lesions are published so far. However, in vitro 

experiments using CaCo cells proved receptor translocation to the nucleus in cells growing at 

low density while densely growing cells showed membrane bound MET (Pozner-Moulis et 

al., 2006). The authors speculate that nuclear MET might represent a more mesenchymal or 

germinal cell phenotype, while the membrane bound receptor is found only in fully 

differentiated cells (Pozner-Moulis et al., 2006). Indeed, the 4T1-HER2 cells showed a 

distinct cell morphology different from the parental cell line in microscopic analysis. While the 

4T1 cells grew to a epithelial monolayer in cell culture, the 4T1-HER2 cells showed 

fibroblast-like cell shapes and grew on top of each other (Heisig, data not shown).  

HER2 transduction during generation of the 4T1-HER2 cell line might have induced a 

transition to less-differentiated cell type causing nuclear translocation of MET and thereby 

inhibiting infection by L. monocyogenes wt bacteria. This hypothesis might be proven by 

measuring the MET abundance and localization via qRT-PCR and western blot analysis, as 

well as histological studies.  

 

Tumor targeting of Lm-spa+ in xenografted tumor mice was investigated starting with chapter 

6.III.3.  

Finding a murine tumor model that can be easily induced by subcutaneous cell injection of a 

cell line overexpressing HER2/neu proved to be more difficult than initially estimated. Tumor 
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xenografts of SK-BR-3 cells and SK-OV-3 cells comprise disadvantages in several aspects. 

Tumor growth following SK-BR-3 cell injection was observed only in a small percentage of 

injected animals and penetrance remained low. Subcutaneous injection of SK-OV-3 cells 

resulted in tumor growth in all injected animals, but huge deviations were observed in 

between the individuals. As 4*106 cells had to be injected per tumor xenograft, the cell 

suspension had a high viscosity clogging the syringe needle. Additionally, the huge amount 

of required cells, cell cultivation for xenograft induction was laborious.  

 caused large efforts in the cell culture for cell cultivation prior to xenograft induction. Using 

4T1-HER2 cells for xenograft induction in Balb/c SCID mice, disposed these disadvantages 

and resulted in faster and more reproducible tumor induction. 

First experiments investigating antibody-mediated bacterial tumor targeting in 4T1-HER2 

tumor-bearing mice failed completely. Although the amount of Trastuzumab-coated Lm-spa+ 

was slightly increased in tumors expressing HER2/neu, the difference was statistically not 

significant. Several in vitro experiments were performed mimicking the in vivo environment 

affecting antibody-coated bacteria after intravenous injection. Explanation for missing 

antibody-mediated targeting functionality was narrowed down to the influence of murine 

serum on the coated bacteria (shown in figure 6.29). Incubation of coated bacteria in murine 

serum completely abolished specific targeting effects in 4T1-HER2 cells. Some components 

of murine serum were investigated in more detail but no correlation was found in these 

experiments. Neither the complement system nor serum proteinases showed an influence on 

antibody-mediated internalization. 

The final hint explaining the targeting inhibition by murine serum was given on covalent 

coupling of Trastuzumab to protein A. Chemical crosslinking of the antibody to protein A prior 

to serum incubation partially prevented the serum effect on antibody coated bacteria. The 

serum effect therefore had to be caused at least partially by antibodies contained in the 

serum. These serum antibodies compete for the bacterial protein A molecules and lead to 

dilution of internalization-mediating antibodies on the bacterial surface. Incubation of the 

antibody-coated bacteria with the chemical crosslinker covalently linked the coated 

antibodies to protein A and largely prevented antibody exchange during serum incubation. 

Protocols for crosslinking of viable bacteria had to be established and optimized to yield 

maximal crosslinking efficiency inherent with bacterial viability. Results shown in chapters 

6.III.4.d and 6.III.4.e show the progress of protocol development regarding crosslinker 

solvent, crosslinker concentrations, termination of the crosslinking process and finally timing 

of the crosslinking process. The optimization process finally resulted in maintenance of 

approximately 50% of the antibody-mediated bacterial internalization rate on crosslinking 

prior to serum incubation. Crosslinking could not prevent the effect of murine serum on 

antibody-coated bacteria completely leading to the conclusion that either antibody 
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crosslinking is incomplete or that other serum components influence targeting, too. Only 

about 10-6 of the crosslinker concentrations published in protocols for antibody binding to 

protein A sepharose beads could be used due to cytotoxic effects on the bacterial carrier. 

Therefore, an incomplete crosslinking penetrance is likely, but this does not rule out the 

influence of other serum components.  

Results contrasting the explanation of antibody exchange on the bacterial surface are 

depicted in the last treatment group of the experiment shown in figure 6.29. Trastuzumab-

coated bacteria incubated with an excess of Cetuximab internalize into 4T1-HER2 cells like 

bacteria coated only with Trastuzumab. As Cetuximab does not mediate internalization into 

this cell line potential exchanges of bound antibodies against serum antibodies were 

simulated in this experiment. The clear result shows no influence of Cetuximab incubation on 

specific internalization. Antibody crosslinking prior to serum incubation in contrast prevents 

antibody exchange in serum and clearly has an effect as discussed above. Addition of a 

homogenous solution of purified antibody like Cetuximab might not mirror the complex 

mixture of serum antibodies encountered by the coated bacteria on i.v. infection properly. 

Consequently, serum antibodies might be isolated by protein A sepharose and used in the 

same experimental protocol like Cetuximab. An explanation for the experimental discrepancy 

might be that coated antibodies are not directly displaced by other antibodies but the bond is 

weakened at first by antibodies recognizing protein A. On lateral binding to protein A the 

strong interaction with the bound antibody might be relaxed allowing antibody exchange. This 

might explain the stabilizing effect of antibody crosslinking, as lateral antibody binding should 

not weaken a covalent bond.  

 

Finally, antibody coated and crosslinked Lm-spa+ were used in vivo investigating antibody-

mediated tumor targeting in xenografted tumor mice. Following i.v. infection using antibody 

crosslinked Lm-spa+ the bacterial load in liver, spleen and tumors was examined. 

Colonization in all examined organs was significantly increased upon coating and 

crosslinking of the bacteria using Trastuzumab in comparison to Cetuximab- or uncoated 

bacteria. Though the differences in bacterial titers of liver and spleen were as low as twofold, 

statistical analysis showed high significance. The Trastuzumab specific increase of bacteria 

in the liver tissue might be caused by micrometastases spread from the primary tumor 

following tumor induction. A report investigating the metastatic potential of the 4T1 cell line in 

Balb/c mice showed a metastatic penetrance in 80 to 90% of the mice 30 days after 

subcutaneous tumor induction (Pulaski and Ostrand-Rosenberg, 1998). The number of 

micrometastases in the published study exhibited a broad range of up to 3700 metastases 

per liver. Transduction of HER2/neu into the 4T1 cell line presumably increased the 

metastatic potential even further, as HER2/neu overexpression correlates with increased 



Chapter 7  Discussion 

 

 - 103 - 

angiogenesis simplifying metastatic spreading (Kumar and Yarmand-Bagheri, 2001). The 

metastatic potential of the 4T1-HER2 cell line was not compared directly with the parental 

cell line, but in murine model system the HER2/neu transduced cell line induced massive 

amounts of micrometastases (Kershaw et al., 2004). As the 4T1 cell line is 6-Thioguanine 

resistant the absolute number of micrometastases in liver and spleen might be assessed in 

the 4T1-HER2 cell line, too. Histological HER2/neu stainings of liver and spleen tissue might 

give further hints why Trastuzumab crosslinked bacteria show an increased liver and spleen 

colonization.  

Extracellular bacterial titers in tumor tissue were elevated approximately 8-fold when using 

Trastuzumab-crosslinked Lm-spa+ while the intracellular increase was approximately 2-3 

fold. Although this colonization increase indicated the proof of principle for antibody-mediated 

bacterial tumor targeting, the sole targeting efficiency was rather low. The in vivo observed 

antibody-mediated internalization rate was astonishingly small, in comparison to the high 

efficiency in cell culture systems. But the environment encountered by the bacterial delivery 

strains in vivo is completely different from the standardized in vitro situation.  

In order to differentiate antibody-mediated effects from intrinsic bacterial infection the major 

bacterial internalins had been deleted in Lm-spa+. After the successful proof of principle the 

antibody-mediated tumor targeting might be investigated in combination with other bacterial 

tumor targeting mutants like the ones described in the following. Employing the antibody-

mediated targeting on top of other bacterial tumor targeting strains might add to the overall 

colonization efficiency because boosting an already functional system 8-fold, might make 

therapeutic approaches possible.  

Only one report is currently published investigating the improvement of bacterial tumor 

targeting in an scFv-mediated manner. In contrast to the approach described in this thesis, 

the published experiments were performed using S. enterica serovar typhimurium VNP20009 

expressing a single chain antibody directed against CEA (Bereta et al., 2007). The authors 

claim that 3000 to 4000 bacteria found per gram of CEA overexpressing tumor tissue 7 days 

p.i. completely block tumor growth. However, they fail to compare bacteria expressing the 

scFv against CEA with bacteria that do not express the scFv in the investigated therapeutic 

setting. In addition, bacterial colonization data showing the CEA expressing cell line in 

comparison to the corresponding cell line lacking CEA expression is absent. Therefore, the 

comparison of data presented in this thesis to the limited data regarding specificity and 

efficiency of scFv-mediated bacterial tumor targeting shown in the mentioned publication is 

difficult. The overall targeting efficiency as scales by raw bacterial titers in the tumor tissue 

seems to be superior on protein A mediated antibody coupling. Kinetics of bacterial tumor 

accumulation as well as the achieved targeting ratio shown in this thesis exceeded the 

published scFv based approach. But in contrast to the published data currently no functional 
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therapeutic information is available for the antibody-mediated targeting presented in this 

thesis. In comparison to the scFv based approach protein A based antibody coating is a 

highly versatile approach. It requires no genetic strain modification to switch the TAA, only 

another antibody has to be coated on the bacterial carrier strain.  

If the hypothesis of passive internalization by receptor-mediated endocytosis is valid, not all 

antibodies might allow bacterial internalization. Using intrinsically invasive bacterial mutants, 

antibody-mediated targeting would not be required to provoke internalization but rather be 

responsible for initial enrichment of the bacteria in the tumor vicinity. 

 

The antibody-mediated tumor targeting system as shown in this thesis improves tumor 

targeting by L. monocytogenes. Though the sole targeting is too small to allow direct 

therapeutic use, the system might be applicable to improve existing bacterial tumor targeting 

mutants. Connecting the targeting system with functional units like prodrug-converting 

enzymes would allow improved delivery of cytotoxic drugs to the site of disease. Targeted 

transport of functional shRNAs would even enlarge the range of possible applications 

towards gene therapy. In comparison to tumor targeting based on viral carriers the bacterial 

approach presented here is closer to basic research than to therapeutic applications. But the 

current perspectives look rather promising that future research might further improve the 

L. monocytogenes based delivery systems.  

 

7.IV Bacterial colonization of murine organs after infection 

using different L. monocytogenes mutants 

In the last part of this study two L. monocytogenes mutants were examined regarding their 

tumor colonization behavior in xenografted tumor mice. As described already the Δhpt 

mutant was analyzed because of the published reduction in liver colonization, while the 

ΔinlGHE mutant was investigated because of the hyper invasive phenotype in melanoma cell 

lines (Chico-Calero et al., 2002; Duechs, 2007). While the Δhpt mutant completely failed to 

show the published liver colonization phenotype in tumor mice, the ΔinlGHE mutant 

outranged all prior speculations. Following metabolic attenuation the internalin mutant 

reached 108 CFU/g of tumor mass 7 days p.i. wheras being almost absent in liver and 

spleen. Though comparison to the used control strain is not completely appropriate, the 

absolute L. monocytogenes titers in the tumor tissue are much higher than all bacterial tumor 

titers obtained before (Fensterle, personal communication). The ratio of colonization in 

tumor- to healthy tissue exceeds 105:1 and is thereby similar to the maximal accumulation 

ratios ever published for facultative anaerobe bacteria. Only studies applying S. choleraesius 

were able to report specific accumulation ratios in the same magnitude, reports investigating 
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other species of Salmonella or Vibrio showed lower tumor to liver ratios (Lee et al., 2004; Lee 

et al., 2005; Pawelek et al., 1997). The attenuated L. monocytogenes mutants replicated in 

the tumor tissue about once a day thereby doubling the overall bacterial count. Future 

experiments will investigate whether the maximal bacterial colonization is already reached 7 

days p.i., or whether the bacterial replication continues further. Histological tumor sections 

will elucidate where the bacteria reside in the tumor tissue and whether they spread to 

adjacent tissues. The results have to be consolidated in other tumor models to prevent 

concentration on one model system.  

Finally, tumor targeting might even further be enhanced by combination with the antibody-

mediated uptake system described above. Integration of functional entities like the delivery 

systems published for L. monocytogenes might allow therapeutic use of this bacterial mutant.  
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9 Appendix 

9.I Abbreviations 

5-FC  5-Fluorocytosine 

5-FU  5-Fluorouracil 

5-FUMP 5-Fluorouridinemonophosphate 

aa  amino-acid 

actA actin-assembly inducing protein precursor; LMO00204 

aroA 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase; 

LMO01600 

ATCC American tissue type culture collection  

BCG  Mycobacterium bovis BCG  

beads Dynabeads® protein A (Invitrogen) 

bp basepair 

CEA  carcinoembryonic antigen 

CMV  Cytomegalovirus 

DMP Dimethyl pimelinediimidate dihydrochloride  

DNA deoxyribonucleic acid 

dsRNA double strand RNA 

E-cadherin  epithelial cadherin 

EGFP enhanced green fluorescent protein 

EGFR epithelial growth factor receptor 

GFP  green fluorescent protein 

GST glutathione S-transferase 

h hour 

HBV Hepatitis B virus 

HER2/neu (ErbB2) Human epidermal growth factor receptor 2 

HGF/SF  hepatocyte growth factor / scatter factor 

HHV-8  Human herpes virus type 8 

HPV Human papilloma virus 

HTLV-1 Human T lymphocyte virus type 1 

i.v.  intravenous 

inlA Internalin A; LMO00433 

inlB Internalin B; LMO00434 

inlC Internalin C; LMO01786 

inlGHE Internalin G, H, E; LMO00262/ LMO00263/ LMO00264 
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int putative integrase [Bacteriophage A118]; LMO02332 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

IRES  internal ribosome entry site 

IS  immune system 

LD50 median lethal dose 

LDH  lactate dehydrogenase 

Lm-aroA+-spa+ L. monocytogenes ΔtrpS/inlA/inlB /int::Phly-spa x pFlo-trpS 

Lm-spa- L. monocytogenes ΔaroA/trpS/inlA/inlB / x pFlo-trpS 

Lm-spa+ L. monocytogenes ΔaroA/trpS/inlA/inlB /int::Phly-spa x pFlo-trpS 

MAPK  mitogen-activated protein kinase pathway 

mcs multiple cloning site 

MET/HGFR  mesenchymal-epithelial transition factor/hepatocyte growth 

factor receptor 

min minute 

M-MuLV RT Maloney Murine Leukemia Virus reverse transcriptase 

n.a. not assessed 

NK natural killer cells 

o/n over night  

p.i. post infection 

PactA  actA promotor 

PBS phosphate buffered saline 

PBST phosphate buffered saline, 0.05 % Tween 20 

PBSt phosphate buffered saline, 0.02 % Tween 20 

PCR polymerase chain reaction 

PMSF  phenylmethanesulphonylfluoride 

PT7 T7RNAP promotor 

qRT-PCR quantitative real time PCR 

RNA  ribonucleic acid 

RNAi RNA interference 

rpm revolutions per minute 

RT room temperature (approximately 23°C) 

RTK  receptor-tyrosine-kinase 

S. choleraesius Salmonella enterica serovar choleraesius 

S. typhi Salmonella enterica serovar typhi 

S. typhimurium Salmonella enterica serovar typhimurium 

s.c.  subcutaneous 

scFv  single chain fragment 
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SCID Severe combined immunodeficiency 

SDS sodium-dodecylsulfate 

shRNA  short hairpin RNAs 

SMAC/DIABLO second mitochondria-derived activator of caspases 

ssRNA single strand RNA 

T7RNAP  T7 RNA polymerase 

TAA  tumor associated antigen 

trpS tryptophanyl-tRNA synthetase; LMO02198 

u unit (enzyme amount required to digest 1µmol of DNA per min) 

VEGF vascular endothelial growth factor 

wt wildtype 

 

9.II Publications 

"The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell 
spread of Listeria." 
Rajabian T, Gavicherla B, Heisig M, Müller-Altrock S, Goebel W, Gray-Owen SD, Ireton K.  
Nat Cell Biol. 2009 Sep 20. [Epub ahead of print] 
 
"Improvement of the live vaccine strain Salmonella enterica serovar Typhi Ty21a for antigen 
delivery via the hemolysin secretion system of Escherichia coli." 
Hotz C, Fensterle J, Goebel W, Meyer SR, Kirchgraber G, Heisig M, Fürer A, Dietrich G, 
Rapp UR, Gentschev I.  
Int J Med Microbiol. 2009 Feb;299(2):109-19. 
 
"Regression of advanced human prostate tumors and metastases in nude mice after 
treatment with the recombinant oncolytic vaccinia virus GLV-1h68." 
Ivaylo Gentschev, Elisabeth Hofmann, Ulrike Donat, Stephanie Weibel, Marion Adelfinger, 
Martin Heisig, Nanhai Chen, Yong A. Yu, Jochen Stritzker and Aladar A. Szalay 
(in revision) 
 
"Antibody-mediated tumor cell targeting of Listeria monocytogenes triggering InlAB 
independent internalization (of tumor cells)." 
Martin Heisig, Alexa Frentzen, Birgit Bergmann, Katharina Galmbacher, Ivaylo Gentschev, 
Christian Hotz, Christoph Schoen, Jochen Stritzker, Joachim Fensterle, Ulf R Rapp and 
Werner Goebel 
(in submission) 
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