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Summary 

BAD (Bcl-2 antagonist of cell death, Bcl-2 associated death promoter) is a pro-apoptotic member 

of the Bcl-2 protein family that is regulated by phosphorylation in response to survival factors. 

Although much attention has been devoted to the identification of phosphorylation sites in murine 

BAD (mBAD), little data are available with respect to phosphorylation of human BAD (hBAD) 

protein. In this work, we investigated the quantitative contribution of BAD targeting kinases in 

phosphorylating serines 75, 99 and 118 of hBAD (Chapter 3.1). Our results indicate that RAF kinases 

phosphorylate hBAD in vivo at these established serine residues. RAF-induced phosphorylation of 

hBAD was not prevented by MEK inhibitors but could be reduced to control levels by use of the RAF 

inhibitor Sorafenib (BAY 43-9006). Consistently, expression of active RAF suppressed apoptosis 

induced by hBAD and the inhibition of colony formation caused by hBAD could be prevented by 

RAF. In addition, using surface plasmon resonance technique we analyzed the direct consequences of 

hBAD phosphorylation by RAF with respect to complex formation of BAD with 14-3-3 proteins and 

Bcl-XL. Phosphorylation of hBAD by active RAF promotes 14-3-3 protein association, whereby the 

phosphoserine 99 represents the major binding site. Furthermore, we demonstrate in this work that 

hBAD forms channels in planar bilayer membranes in vitro. This pore-forming capacity is dependent 

on phosphorylation status and interaction with 14-3-3 proteins. Additionally, we show that hBAD 

pores possess a funnel-shaped geometry that can be entered by ions and non-charged molecules up to 

200 Da (Chapter 3.2). Since both lipid binding domains of hBAD (LBD1 and LBD2) are located 

within the C-terminal region, we investigated this part of the protein with respect to its structural 

properties (Chapter 3.3). Our results demonstrate that the C-terminus of hBAD possesses an ordered 

β-sheet structure in aqueous solution that adopts helical disposition upon interaction with lipid 

membranes. Additionally, we show that the interaction of the C-terminal segment of hBAD with the 

BH3 domain results in the formation of permanently open pores, whereby the phosphorylation of 

serine 118 proved to be necessary for effective pore-formation. In contrast, phosphorylation of serine 

99 in combination with 14-3-3 association suppresses formation of channels. These results indicate 

that the C-terminal part of hBAD controls hBAD function by structural transitions, lipid binding and 

phosphorylation.  

Using mass spectrometry we identified in this work, besides the established in vivo 

phosphorylation sites at serines 75, 99 and 118, several novel hBAD phosphorylation sites (serines 25, 

32/34, 97, 124 and 134, Chapter 3.1). To further analyze the regulation of hBAD function, we 

investigated the role of these newly identified phosphorylation sites on BAD-mediated apoptosis. We 

found that in contrast to the N-terminal phosphorylation sites, the C-terminal serines 124 and 134 act 

in an anti-apoptotic manner (Chapter 3.4). Our results further indicate that RAF kinases and PAK1 

effectively phosphorylate BAD at serine 134. Notably, in the presence of wild type hBAD, co-

expression of survival kinases, such as RAF and PAK1, leads to a strongly increased proliferation, 
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whereas substitution of serine 134 by alanine abolishes this process. Furthermore, we identified hBAD 

serine 134 to be strongly involved in survival signaling in B-RAF-V600E containing tumor cells and 

found phosphorylation of this residue to be crucial for efficient proliferation in these cells. 

Collectively, our findings provide new insights into the regulation of hBAD function by 

phosphorylation and its role in cancer signaling. 
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Zusammenfassung 

BAD (Bcl-2 antagonist of cell death, Bcl-2 associated death promoter) ist ein pro-apoptotisches 

Mitglied der Bcl-2 Proteinfamilie und wird in Abhängigkeit von Wachstumsfaktoren durch 

Phosphorylierung reguliert. Obwohl der Identifizierung von Phosphorylierungsstellen in murinem 

BAD (mBAD) in den vergangenen Jahren viel Aufmerksamkeit gewidmet wurde, ist die 

Phosphorylierung des humanen BAD (hBAD) Proteins kaum charakterisiert. In der vorliegenden 

Arbeit wird der quantitative Beitrag unterschiedlicher Kinasen in Bezug auf die Phosphorylierung der 

etablierten Phosphorylierungsstellen Serin 75, 99 und 118 von hBAD dargestellt (Kapitel 3.1). Unsere 

Ergebnisse deuten darauf hin, dass RAF-Kinasen hBAD in vivo an diesen etablierten Stellen 

phosphorylieren. Die RAF-bedingte Phosphorylierung konnte nicht durch MEK-Inhibitoren 

beeinflusst werden, dagegen bewirkte die Gabe des RAF-Inhibitors Sorafenib (BAY 43-9006) eine 

Reduktion der Phosphorylierung auf das Niveau der Kontrollproben. Übereinstimmend konnte durch 

die Expression von aktiven RAF-Kinasen die BAD-induzierte Apoptose sowie die BAD-bedingte 

Inhibierung der Koloniebildung unterdrückt werden. Zusätzlich verwendeten wir Oberflächen-

Plasmon-Resonanz-Spektroskopie um die Auswirkungen der RAF-bedingten BAD-Phosphorylierung 

auf die Komplexbildung von hBAD mit 14-3-3-Proteinen und Bcl-XL zu analysieren. Dabei wurde 

festgestellt, dass die Phosphorylierung von hBAD durch aktive RAF-Kinasen die Assoziierung von 

14-3-3 begünstigt, wobei Phosphoserin 99 die Hauptbindungsstelle darstellt.  

Weiterhin gelang der Nachweis, dass hBAD in vitro Poren in Lipid-Doppelschicht-Membranen 

bilden kann. Wir wiesen nach, dass die Fähigkeit von hBAD Poren zu bilden 

phosphorylierungsabhängig ist und durch die Interaktion mit 14-3-3-Proteinen beeinflusst wird. 

Außerdem demonstrieren wir in dieser Arbeit, dass die BAD-Poren eine zylinderförmige Geometrie 

aufweisen und sowohl für Ionen als auch für ungeladene Moleküle mit einer Größe von bis zu 200 Da 

zugänglich sind (Kapitel 3.2). Da beide Lipid-Bindungsstellen (LBD1 und LBD2) am C-Terminus des 

hBAD lokalisiert sind, charakterisierten wir des Weiteren diesen Teil des Proteins in Hinblick auf 

seinen strukturellen Aufbau (Kapitel 3.3). Unsere Ergebnisse demonstrieren, dass der hBAD-C-

Terminus in wässriger Lösung eine geordnete β-Faltblattstruktur aufweist und bei Eintritt in eine 

Lipidumgebung helikale Elemente ausbildet. Zusätzlich zeigen wir in dieser Arbeit, dass die 

Interaktion des C-terminalen hBAD-Segments mit der BH3-Domäne zur Ausbildung von permanent 

offenen Poren führt, wobei die Phosphorylierung an Serin 118 eine Notwendigkeit für effektive 

Porenbildung darstellt. In Gegensatz dazu bewirkte die Phosphorylierung von Serin 99 in 

Kombination mit der Assoziierung von 14-3-3-Protein eine Inhibierung der Porenbildung. Diese 

Ergebnisse weisen darauf hin, dass der C-terminale Teil von hBAD durch strukturelle Veränderungen, 

Lipidbindung und Phosphorylierung entscheidend die Funktion von hBAD reguliert.  

Mit Hilfe von Massenspektroskopie konnten wir im Rahmen dieser Arbeit, zusätzlich zu den 

etablierten Phosphorylierungsstellen Serin 75, 99 und 118, einige neue in vivo 
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Phosphorylierungsstellen von hBAD identifizieren (Serin 25, 32/34, 97, 124 und 134, Kapitel 3.1). 

Um die Regulierung der Funktion von hBAD weiter zu analysieren, untersuchten wir die Rolle dieser 

neu identifizierten Phosphorylierungsstellen in Bezug auf die BAD-induzierte Apoptose (Kapitel 3.4). 

Wir fanden heraus, dass im Gegensatz zu den N-terminalen Phosphorylierungsstellen, die 

Phosphorylierungsstellen am C-Terminus an der Apoptoseregulation mitwirken. Weiterhin weisen 

unsere Ergebnisse darauf hin, dass RAF-Kinasen, neben PAK1, an der Phosphorylierung von Serin 

134 von hBAD beteiligt sind. Interessanterweise bewirkte die Co-Expression von RAF oder PAK1 mit 

dem wildtypischen hBAD eine erhebliche Verstärkung der Zellproliferation. Diese verstärkte 

Proliferation konnte durch einen Serin-zu-Alanin-Austausch in hBAD an der Stelle 134 vollständig 

verhindert werden. Weiterhin entdeckten wir, dass die Phosphorylierung dieser Stelle in B-RAF-

V600E enthaltenden Tumorzellen bei der Regulation der Zellproliferation mitwirkt und für eine 

effiziente Proliferation entscheidend ist. Zusammenfassend gewähren unsere Ergebnisse neue 

Einblicke in die Regulierung der Funktion von hBAD durch Phosphorylierung sowie in die Rolle von 

hBAD bei der Krebsentwicklung. 
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1. General Introduction 

1.1.  Apoptosis 

Apoptosis is a genetically encoded program leading to cell death that is essential for normal 

development and homeostasis in multicellular organisms. Deregulation of this process has far-reaching 

effects by causing illnesses such as tumor development and autoimmune diseases (Danial and 

Korsmeyer 2004; Reed et al. 2004; Wang and Youle 2009). The morphological characterization of 

apoptosis includes cell shrinkage, chromatin condensation, nuclear fragmentation, and membrane 

blebbing. All of these phenomena are due to the proteolytic activity of the caspase proteases (Kerr et 

al. 1972; Taylor et al. 2008).  

Apoptotic caspases can be divided into two classes, termed initiator and executioner caspases. 

Initiator caspases (caspases 2, 8, and 9) play an apical role during the process of apoptosis and their 

activation is typically required for the activation of executioner caspases (caspase 3, 6, and 7). Initiator 

caspases have a limited number of substrates including self-cleavage, the Bcl-2 family protein Bid as 

well as executioner caspases. In contrast, executioner caspases target hundreds of different substrates 

and are largely responsible for the phenotypic changes observed during apoptosis. The caspase-

mediated protein cleavage ultimately leads to the phagocyte recognition and engulfment of the dying 

cell.  

In apoptosis progression, mitochondria constitute a convergence point (Wang and Youle 2009; 

Wang 2001; Youle and Strasser 2008). However, the importance of this organelle differs, since in 

vertebrates apoptosis can occur through two different signaling pathways: the intrinsic or the extrinsic 

pathway (Fig. 1). Both Pathways converge on activating the executioner caspases 3 and 7 (Tait and 

Green 2010).  

Figure 1 (right): Intrinsic and extrinsic pathways of apoptosis.  

Intrinsic apoptotic stimuli, such as endoplasmic reticulum (ER) stress or DNA damage, activate BH3-only 

proteins which, in turn, activate Bak and Bax leading to mitochondrial outer membrane permeabilization. 

Anti-apoptotic Bcl-2 proteins inhibit this process by binding BH3-only proteins as well as Bak or Bax. 

Mitochondrial outer membrane permeabilization enables the release of various proteins from the 

mitochondrial intermembrane space promoting caspase activation and apoptosis. Cytochrome C binds 

apoptotic protease-activating factor 1 (APAF1) and induces its oligomerization resulting in the formation 

of a structure termed the apoptosome. The apoptosome recruits and activates the initiator caspase 9 that 

cleaves and activates the executioner caspases 3 and 7, leading to apoptosis. Mitochondrial release of the 

proteins SMAC (also known as DIABLO) and OMI (also known as HTRA2) antagonizes the caspase 

inhibitory function of XIAP. The extrinsic apoptotic pathway is initiated by stimulation of death receptors 

resulting to the recruitment of adaptor molecules such as FADD and then caspase 8. The consequence is 

dimerization and activation of caspase 8, which subsequently cleaves and activates the caspases 3 and 7, 

leading to apoptosis. Crosstalk between the extrinsic and intrinsic pathway is required in some cell types to 

induce receptor-induced apoptosis and occurs through caspase 8-mediated cleavage and activation of Bid. 

FasL, Fas ligand; tBid, truncated Bid; PM, plasma membrane; TNF, tumour necrosis factor; TRAIL, 

TNF-related apoptosis-inducing ligand. Adapted from Tait and Green (2010). 
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In the intrinsic pathway, the crucial event driving initiator caspase activation and apoptosis 

represents the permeabilization of the outer mitochondrial membrane, which leads to the release of 

pro-apoptotic proteins from the mitochondrial intermembrane space (Tait and Green 2010). One of 

these proteins is cytochrome C (Liu et al. 1996), which subsequently binds to apoptotic protease 

activating factor-1 (APAF1) and thereby induces conformational change and oligomerization of this 

protein (Li et al. 1997; Tait and Green 2010). The result is the formation of a caspase activation 

platform termed the apoptosome. The apoptosome recruits, dimerizes and activates the initiator 
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caspase 9, which, in turn, cleaves and activates the executioner caspases 3 and 7. Additionally, 

inhibition of caspase activity by X-linked inhibitor of apoptosis protein (XIAP) is blocked by 

mitochondrial release of second mitochondria-derived activator of caspase (SMAC; also known as 

DIABLO) (Du et al. 2000; Verhagen et al. 2000) and OMI (also known as HTRA2)(Yang et al. 2003). 

Mitochondrial outer membrane permeabilization is a highly regulated process that is primarily 

controlled through interactions between pro- and anti-apoptotic members of the Bcl-2 family of 

proteins.  

In the extrinsic pathway, death receptor stimulation causes the recruitment of adaptor molecules, 

such as Fas-associated death domain protein (FADD), which bind, dimerize and activate the initiator 

caspase 8. Adjacent, activated caspase 8 cleaves and activates the executioner caspases 3 and 7 (Fig. 

1). In so-called type I cells, caspase 8-mediated activation of the executioner caspases is sufficient for 

apoptosis induction (Barnhart et al. 2003). In contrast, type II cells require mitochondrial outer 

membrane permeabilization to induce apoptosis. In the extrinsic cascade, mitochondrial outer 

membrane permeabilization can be initiated though crosstalk between the extrinsic and intrinsic 

pathway by caspase 8-mediated activation of the Bcl-2 family protein Bid (Barnhart et al. 2003). The 

difference between type I and type II cells in death receptor-mediated apoptosis could be ascribed to 

the requirement for mitochondrial outer membrane permeabilization to antagonize the protein XIAP 

(Jost et al. 2009; Yin et al. 1999). 

Normally, mitochondrial outer membrane permeabilization leads to a rapid activation of caspases 

and apoptosis. However, in the absence of caspase activity (for example in caspase 9- and APAF1- 

deficient backgrounds), certain cells undergo caspase-independent cell death (Cecconi et al. 1998; 

Hakem et al. 1998; Yoshida et al. 1998). During this process, the mitochondrial outer membrane 

permeabilization represents a point of no return that causes cell death either by the release of 

intermembrane space proteins, like Endonuclease G and AIF, or through a progressive decline of 

mitochondrial function leading, among other effects, to ATP depletion (Tait and Green 2008).  

1.2.  The Bcl-2 Family of Proteins 

Proteins of the Bcl-2 (B-cell lymphoma 2) family are crucial regulators of apoptosis at the level of 

mitochondria. Bcl-2 proteins are characterized by the presence of at least one of the four Bcl-2 

homology (BH) domains: BH1-BH4. The multi-BH domain family members of the Bcl-2 proteins are 

either anti- or pro-apoptotic (Adams and Cory 1998; Gross et al. 1999; Youle and Strasser 2008) (Fig. 

2A). In general, the anti-apoptotic members (e.g. Bcl-2, Bcl-XL, Mcl-1 or Bcl-w) display sequence 

homology in all four BH domains, whereas the pro-apoptotic multi-BH domain Bcl-2 proteins (e.g. 

Bak, Bax or Bok) have homologous BH1-3 domains. Deletion and mutagenesis studies demonstrated 

that the BH3 domain is critical for the pro-apoptotic and heterodimerization function of pro-apoptotic 

Bcl-2 proteins (Opferman and Korsmeyer 2003). The importance of the BH3 domain for mediating 
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pro-apoptotic function is further supported by the discovery of a subset of the pro-apoptotic Bcl-2 

family members collectively known as the BH3-only proteins (e.g. Bid, Bik, Bim, Bmf, Puma, Noxa, 

Hrk/DP5, and BAD) that share sequence homology only in the BH3 domains (Huang and Strasser 

2000; Youle and Strasser 2008) (Fig. 2A). Several Bcl-2 family proteins contain a carboxy-terminal 

membrane anchor that may facilitate binding to plasma- or intracellular membranes.  

Upon activation by apoptotic stimuli, the pro-apoptotic Bcl-2 family proteins are capable of 

forming heterodimers with anti-apoptotic Bcl-2 family members. Solution structure of Bcl-XL reveals 

that the BH1-3 domains form an elongated hydrophobic groove, which is the docking site for the BH3 

domains of its pro-apoptotic binding partners (Sattler et al. 1997) (see also Fig. 2A). There is a 

growing body of evidence that anti-apoptotic Bcl-2 family proteins function, at least in part, by 

interacting with and antagonizing pro-apoptotic family members (Cory and Adams 2002; Opferman 

and Korsmeyer 2003). The pro-apoptotic Bcl-2 family proteins can be sub-divided into effector 

proteins that actually cause mitochondrial outer membrane permeabilization and the BH3-only 

proteins as sensors that relay the apoptotic signal to the effectors. Two prominent models of the 

activation of Bak and Bax have been proposed:  the direct (or neutralization) and the hierarchy model 

(Letai et al. 2002; Willis et al. 2005) (Fig. 2B). In the direct model, Bak and Bax are bound in a 

constitutively active state by anti-apoptotic Bcl-2 proteins and can be released through competitive 

Figure 2: The Bcl-2 family of proteins.  

A, The organization of the four Bcl-2 homology (BH) domains among the family members is illustrated. 

Many Bcl-2 family proteins also harbor a carboxy-terminal hydrophobic region that is thought to act as a 

transmembrane domain (TM) to facilitate association of the proteins with membranes. B, Two models of 

the activation of Bak and Bax have been proposed, the direct and the hierarchy model (Letai et al. 2002; 

Willis et al. 2005). For details see text. Adapted from Tait and Green (2010). 
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interactions of BH3-only proteins with these anti-apoptotic Bcl-2 family members resulting in 

induction of apoptosis. The hierarchy model asserts that Bak and Bax are activated following 

interaction with a subset of BH3-only proteins, the direct activators. According to this model, anti-

apoptotic Bcl-2 family members prevent mitochondrial outer membrane permeabilization either by 

sequestering the activating BH3-only proteins or by inhibiting activated Bak and Bax. Additionally, a 

second subset of BH3-only proteins, the sensitizers, cannot directly activate Bak and Bax but 

neutralize anti-apoptotic Bcl-2 proteins. Definitive evidence for one of these models has proved to be 

challenging since aspects of both models are correct.  

The exact modes and the mechanisms of the pathways that involve Bcl-2 family proteins are still 

not completely elucidated (Youle and Strasser 2008). Beyond apoptosis control, several proteins of the 

Bcl-2 family contribute in the regulation of various other physiological processes such as autophagy, 

mitochondrial respiration and glucose metabolism (for Review see (Danial 2008)).  

1.2.1. Pore-Forming Activity of the Bcl-2 Family Proteins 

During apoptosis, Bcl-2 family proteins, such as Bak and Bax, have been shown to induce 

permeabilization of the outer mitochondrial membrane, allowing proteins from the mitochondrial 

intermembrane space to escape into the cytosol, where they can initiate caspase activation and cell 

death (Antignani and Youle 2006; Kuwana et al. 2002; Opferman and Korsmeyer 2003; Wolter et al. 

1997; Zamzami and Kroemer 2003). The mechanism whereby Bcl-2 proteins affect outer membrane 

permeability is still under investigation (Antignani and Youle 2006). Based on its crystal structure 

(Muchmore et al. 1996) it has been found that Bcl-XL bears a resemblance to the translocation domain 

of diphtheria toxin (Choe et al. 1992), a domain that can form pores in artificial lipid bilayers. This 

observation provoked the predominant view that upon commitment to apoptosis, pro-apoptotic Bcl-2 

family proteins form channels in the outer mitochondrial membrane (Martinou and Green 2001). 

Indeed, Bcl-XL was shown to form pores in synthetic lipid membranes (Minn et al. 1997). Since then, 

a number of pro- and anti-apoptotic Bcl-2 family proteins like Bcl-2, Bax and the BH3-only protein 

Bid have been reported to have channel-forming activity (Minn et al. 1997; Schendel et al. 1999; 

Schendel et al. 1997). The question how many molecules of Bak or Bax are required to induce 

mitochondrial outer membrane permeabilization is controversially discussed. One study describes that 

four Bax molecules are sufficient to permeabilize an artificial membrane, whereas another report 

identified much larger Bax oligomers in apoptotic cells (Nechushtan et al. 2001; Saito et al. 2000). 

Recently, using single-cell imaging, the number of Bax molecules in a complex that induces 

mitochondrial membrane permeabilization was estimated to more than one hundred (Zhou and Chang 

2008). However, limits of optical resolution prevented the detection of smaller complexes in this 

study.  
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In general, the channels formed by the different members of the Bcl-2 protein family can be 

divided into two different types: proteinaceous channels of defined size and ion specificity (Antonsson 

et al. 1997; Minn et al. 1997; Polzien et al. 2009; Schendel et al. 1999; Schendel et al. 1997; 

Schlesinger et al. 1997) and large lipid pores that allow free diffusion of up to 2-megadalton 

macromolecules (Basanez et al. 1999; Kuwana et al. 2002).  

1.2.2. BH3-only Proteins as Sensors for Distinct Apoptotic Pathways 

The BH3-only proteins are a sub-class of the pro-apoptotic Bcl-2 family proteins that share 

sequence homology only at the BH3 domain. The BH3 domain (and flanking residues) forms an 

amphipathic helix that associates with a hydrophobic groove of several members of the Bcl-2 family 

proteins (Fesik 2000; Petros et al. 2004). The large number of BH3-only proteins exhibit unique 

subcellular localization and diverse modes of activation suggesting a high level of specialization of 

their pro-apoptotic function.  

BH3-only proteins react quickly to changes of cellular health and reach their pro-apoptotic 

potential by several means. These mechanisms include the increase of the protein level through 

transcriptional control, regulation of the protein stability (Domina et al. 2004; Oda et al. 2000), post-

Figure 3: Schematic diagram of the putative function and regulation of selected Bcl-2 family members in 

apoptosis signaling.  

The BH3-only proteins are sensors for various apoptotic stimuli and serve to transmit signals to the 

mitochondria upon activation. At the mitochondria, the BH3-only proteins act directly on the 

multidomain pro-apoptotic proteins or antagonize the function of the anti-apoptotic proteins, such as Bcl-

2 or Bcl-XL. Multidomain pro-apoptotic Bak and Bax oligomerize and facilitate permeabilization of the 

mitochondrial outer membrane and the release of apoptogenic factors like cytochrome C (CytC), 

apoptosis-inducing factor (AIF), endonuclease G (Endo-G), and SMAC/DIABOLO. Subsequently, these 

factors execute cell death through caspase dependent or -independent mechanisms. APAF-1, apoptotic 

protease activating factor-1; LC, light chain. Adapted from Chan and Yu (2004). 
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translational protein modifications (Zha et al. 1996; Zha et al. 2000), and changes in their subcellular 

distribution (Galmiche et al. 2008; Puthalakath et al. 1999). Therefore, BH3-only proteins were 

proposed to function as sentinels of the cellular health status by connecting proximal death signals to 

the core apoptotic pathway. Interestingly, individual BH3-only proteins are regulated by distinct 

mechanisms (Fig. 3). The genes of the BH3-only proteins Puma and Noxa, for instance, are 

transcription targets of the transcription factor p53 (Nakano and Vousden 2001; Oda et al. 2000; Yu et 

al. 2001), which is thought to induce or repress gene products that have a role in regulating apoptosis 

(Vousden 2000). Another BH3-only protein that was demonstrated to be regulated transcriptionally is 

Hrk/DP5. During embryogenesis, expression of Hrk/DP5 is induced in neuronal tissues that contain a 

relatively large number of apoptotic cells (Imaizumi et al. 1999).  

The BH3-only proteins Bmf and Bim sense intracellular damage by their localization to distinct 

cytoskeletal structures. Three isoforms of Bim were described initially (BimEL, BimL and BimS) 

(O'Connor et al. 1998). In healthy cells, BimEL and BimL are maintained in an inactive status through 

binding to the microtubule-associated dynein motor complex. Certain damage signals, such as 

cytokine removal or exposure to taxol, a microtubule-polymerizing drug, can trigger that these 

proteins are released from microtubules, translocate to mitochondria and associate with Bcl-2 and Bcl-

XL to presumably neutralize their anti-apoptotic activity (Puthalakath et al. 1999). Additionally, Bim 

was demonstrated to be essential for the execution of trophic factor-induced apoptosis in the lymphoid 

cell lineage (Bouillet et al. 1999) as well as for the initiation of apoptosis during thymocyte negative 

selection (Bouillet et al. 2002). BimS as well as BimAD isoform (Marani et al. 2002) are normally not 

found in healthy tissue and may be controlled at the transcriptional level. Bmf has been described to be 

sequestered to myosin V motors in healthy cells. Some apoptotic stimuli, such as loss of cell 

attachment (anoikis), unleash Bmf, allowing it to translocate to the mitochondria and bind pro-survival 

Bcl-2 proteins (Puthalakath et al. 2001).  

Under non-apoptotic conditions, the BH3-only protein Bid is localized in the cytosol. There, Bid is 

kept in its inactive form via an intramolecular bridge between the BH3 domain and the C-terminus of 

the protein (Tan et al. 1999). Binding of specific ligands to death receptors leads to an activation of 

caspase-8, that cleaves the inactive Bid conformer (Li et al. 1998; Luo et al. 1998). Caspase cleavage 

of Bid leads to the exposition of a glycine that is N-myristoylated (Zha et al. 2000). This cleaved Bid 

targets mitochondria with dramatically enhanced efficiency to trigger apoptosis (Zha et al. 2000). In 

addition to binding anti-apoptotic members of Bcl-2 family, Bid is able to induce allosteric activation 

and homo-oligomerization of Bak and Bax resulting in permeabilization of the outer mitochondrial 

membrane and the release of cytochrome C (Wei et al. 2000). Beside caspase-8, other proteases, such 

as lysozyme, granzyme B, and calpain have been shown to cleave and activate Bid (Heibein et al. 

2000; Stoka et al. 2001; Sutton et al. 2000) indicating that multiple pathways exist in cells to activate 

this protein. The kinase JNK was demonstrated to induce caspase-8-independent cleavage of Bid at a 
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specific site to generate the Bid cleavage product jBid that translocates to mitochondria and leads to 

the release of SMAC/DIABLO, but not cytochrome C (Deng et al. 2003).  

Since the different BH3-only proteins have very distinct modes of regulation, for many of these 

proteins it is not completely known which apoptotic signals they „sense‟ and how their „activities‟ are 

regulated. In addition, different cell types may require specific BH3-only proteins to regulate the 

apoptosis machinery in response to distinct conditions of stress (Chan and Yu 2004).  

1.2.3. The BH3-only Protein BAD 

The BH3-only protein BAD (Bcl-2 antagonist of cell death, Bcl-2 associated death promoter) was 

originally described to promote apoptosis by forming heterodimers with the pro-survival proteins Bcl-

2 and Bcl-XL, thus, preventing them from binding to Bax (Yang et al. 1995). In this process, 

phosphorylation of BAD protein plays a crucial role and leads to inactivation of its pro-apoptotic 

function. The importance of  phosphorylation events was demonstrated by a knock-in approach in 

mice using a mutant of BAD that was non-phosphorylatable at serines 112, 136 and 155 (Datta et al. 

2002). In cells expressing this BAD mutant, growth factors were unable to block apoptosis induced by 

either the intrinsic or extrinsic death pathway. Amino acid sequence of the human BAD protein 

(hBAD), all identified phosphorylation sites and the most important regulatory domains are illustrated 

in Fig. 26.   

A death stimulus, such as growth factor withdrawal, results in dephosphorylation of BAD by 

calcineurin (Chiang et al. 2001) or protein phosphatase 2A (Zha et al. 1996) (Fig. 3). 

Dephosphorylated BAD translocates to mitochondria and associates with the anti-apoptotic proteins 

Bcl-2 or Bcl-XL leading to induction of apoptosis. Therefore, the non-phosphorylated status of BAD 

was described to be its active state. Phosphorylation of murine BAD (mBAD) at Ser-155 (that 

corresponds to Ser-118 of human BAD) within its BH3 domain disrupts the complex formation with 

Bcl-2 or Bcl-XL promoting cell survival (Datta et al. 2000). Accordingly, phosphorylation of Ser-112 

and Ser-136 of mBAD or the corresponding phosphorylation sites Ser-75 and Ser-99 of hBAD results 

in association with 14-3-3 proteins and subsequent cytoplasmic sequestration of BAD (Hekman et al. 

2006; Zha et al. 1996). Therefore, the phosphorylation status of BAD regulates its subcellular 

localization as well as the association with other proteins and reflects a checkpoint for cell death or 

survival (see also Fig. 38). 

Although C-RAF was the first reported BAD kinase (Wang et al. 1996), its target sites were not 

clearly defined. In the meantime, there is a growing body of evidence for direct participation of RAF 

in regulation of apoptosis via BAD (Jin et al. 2005; Kebache et al. 2007; Panka et al. 2006). In 

addition, also other kinases, such as PKA (Harada et al. 1999), Akt/PKB (Datta et al. 1997), PAK 

(Gnesutta et al. 2001; Jin et al. 2005; Schurmann et al. 2000), Cdc2 (Konishi et al. 2002), RSK (She et 

al. 2002; Shimamura et al. 2000), CK2 (Klumpp et al. 2004) and PIM (Macdonald et al. 2006) were 
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shown to be involved in BAD phosphorylation. Also JNK is discussed to participate in BAD 

phosphorylation (Donovan et al. 2002; Yu et al. 2004; Zhang et al. 2005). Taken together, five serine 

phosphorylation sites (at positions 112, 128, 136, 155 and 170) and two threonines (117 and 201) have 

been identified and characterized in murine BAD so far. On the other hand, only few data were 

available regarding the role of phosphorylation in regulation of human BAD protein.  

Presently, there is no crystallographic or NMR-based structural data for the full length BAD 

available. The only structural analysis of BAD describes the mode of molecular association between 

the anti-apoptotic protein Bcl-XL and a 25-residue peptide derived from its BH3 domain (Petros et al. 

2000). Recently, Hinds et al. (2007) suggested that in the absence of binding partners, BAD is an 

intrinsically unstructured protein. However, Yang et al. (1995) showed that the amino-terminus of 

BAD contains two PEST-sequences, suggestive of a high protein turnover (Rogers et al. 1986). 

Moreover, Hekman et al. (2006) observed that hBAD associates with unchanged efficiency with non-

treated and protein-depleted mitochondria. Although the amino acid sequence of hBAD does not 

reveal a typical C-terminal transmembrane domain, hBAD was found to bind to model membranes 

with high affinity, predominantly to negative charged phospholipids and cholesterol-rich membranes 

(see also Fig. 38). These authors identified two lipid binding domains (LBD1 and LBD2) with 

different binding preferences, both located in the C-terminal part of the hBAD protein (Hekman et al. 

2006). Interestingly, addition of the 25-residue peptide derived from the BAD BH3 domain increased 

considerably the association of Bcl-XL with lipid vesicles (Hekman et al. 2006). This observation 

underlines recent findings concerning the role for BAD in mitochondrial targeting and membrane 

insertion of Bcl-XL (Billen et al. 2008; Jeong et al. 2004).  

1.3.  RAF Kinases 

Protein kinases play a central role in almost every aspect of cell biology. In humans, the family of 

protein kinases consists of 518 genes thereby making it one of the largest gene families (Manning et 

al. 2002). These enzymes are classified as serine/threonine kinases (385 members), tyrosine kinases 

(90 members), and tyrosine-kinase like proteins (43 members). RAF kinases are serine/threonine 

kinases that regulate the highly conserved Ras-RAF-MEK-ERK pathway (Daum et al. 1994; Mark and 

Rapp 1984; Rapp et al. 2006; Roskoski 2010; Wellbrock et al. 2004). This cascade mediates 

transduction of extracellular mitogenic signals through activated Ras GTPases to a MAP kinase 

module. Diverse cellular processes important for development including proliferation, survival, 

metabolism, migration and senescence are coordinated by this pathway. Consequently, deregulation is 

frequently found in tumors (Yeang et al. 2008). The first identified isoform of the RAF kinase family 

was C-RAF. It was discovered by retrovirus transduction experiments that led to isolation of the 

acutely transforming virus carrying the v-raf oncogene (3611-MSV) (Rapp et al. 1983). Mammalian 

RAF kinases belong to a family that includes A-, B-, and C-RAF. Team work between these enzymes 
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as well as specific interaction partners refines RAF signaling by targeting the mitogenic cascade to 

different subcellular compartments (Rapp et al. 2006; Udell et al. 2011).  

All three RAF kinase isoforms are ubiquitously expressed in mammals, but they differ in their 

expression levels (Storm et al. 1990). Differential regulation of RAF kinase activity (Wellbrock et al. 

2004) and varying phenotypes of RAF knockout mice indicate specialized functions of each isoform 

(Pritchard et al. 1996; Wojnowski et al. 2000; Wojnowski et al. 1997). Whereas C-RAF
-/-

 as well as 

B-RAF
-/-

 mice die early in embryonic development, A-RAF
-/-

 animals are viable although they display 

neurological and intestinal abnormalities (Pritchard et al. 1996). The knockout of B-RAF in mice leads 

to overall growth retardation and increased apoptosis in endothelial tissues resulting in death from 

vascular hemorrhage between day 10.5 and 12.5 (Wojnowski et al. 1997). C-RAF
-/-

 embryos exhibit 

disturbed development of the placenta and embryonic organs, in particular of the liver and the 

hematopoietic compartment (Huser et al. 2001; Mikula et al. 2001; Wojnowski et al. 2000). 

Embryonic lethality of C-RAF
-/-

 mice occurred in midgestation and may be due to a high apoptosis 

rate in the liver (Huser et al. 2001; Mikula et al. 2001) that is also observed in cell culture experiments 

(Zhong et al. 2001).  

1.3.1. Structure of the RAF Kinases 

All RAF kinase isoforms share three conserved regions (CR1, CR2 and CR3) and two functional 

parts: the regulatory and the catalytic part (Daum et al. 1994; Roskoski 2010; Wellbrock et al. 2004). 

CR1 comprises a Ras-binding domain (RBD) and a cysteine-rich domain (CRD), which can bind two 

zinc ions. CR1 interacts with Ras as well as with membrane phospholipids. CR2 is a serine/threonine 

Figure 4: Organization of the RAF kinases.  

CR1, CR2, and CR3 indicate the location of the three conserved regions that occur in all three enzymes. 

CR3 represents the protein kinase domain that contains an activation segment. Numbers indicate the 

location of selected serine (S), threonine (T), and tyrosine (Y) phosphorylation sites. In B-RAF, pS446 is 

a constitutively phosphorylated serine residue. Two independent 14-3-3 binding sites have been 

confirmed in all RAF kinase isoforms. See text for details. Adapted from Roskoski (2010). 
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rich domain containing a specific serine residue that can bind to 14-3-3 proteins in its phosphorylated 

state. Binding of 14-3-3 proteins to this phosphorylated site is inhibitory with respect to the kinase 

activity of the RAF kinases. CR3, which is located near the C-terminus, represents the protein kinase 

domain (Fig. 4).  

The RAF protein kinase domain contains a large C-terminal lobe that is found in all protein 

kinases and an additional characteristic small N-terminal lobe (Fig. 5) (Wan et al. 2004). The large C-

lobe is mainly α-helical and binds to the substrates of the RAF kinases. The N-terminal lobe exhibits 

an antiparallel β-sheet structure and anchors as well as orients ATP. It comprises a glycine-rich ATP-

phosphate-binding loop, the so-called P-loop. The catalytic site lies in the cleft between the large and 

small lobes. In Fig. 5, the catalytic site is occupied by Sorafenib, an ATP-competitive inhibitor of RAF 

that has been approved for the treatment of advanced kidney and liver cancer (Wilhelm et al. 2008). 

Movement of the two lobes leads to opening or closing of the catalytic cleft. The open state allows 

access of ATP and release of ADP. The closed state brings residues into the catalytically active 

position. Each lobe contains a polypeptide segment that can switch between active and inactive 

conformations (Seeliger et al. 2009). This segment represents the major α-helix of the small lobe, the 

so-called αC-helix. Within the large lobe, the activation segment adjusts to make or break part of the 

ATP-binding site.  

Figure 5: Ribbon diagram of the structure of human B-RAF kinase domain (CR3) associated to the RAF 

inhibitor Sorafenib.  

The activation loop is displayed in its inactive conformation. Sorafenib (in the ball and stick format) is 

located in the catalytic cleft between the N- and C-lobes. Part of the activation segment, which is 

disordered, is shown by the dotted lines connecting its N-terminal (top) and C-terminal (bottom) 

components. The ribbon diagram was prepared from protein data bank file 1UWH. Adapted from Wan 

et al. (2004). 
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1.3.2. Regulation of RAF Kinase Activity 

The basal activity of B-RAF is greater than that of C-RAF, which is greater than that of A-RAF. 

The regulation of activity of RAF kinases involves several steps including conformational changes, 

protein-protein interactions, phosphorylations and dephosphorylations (Rapp et al. 2006; Udell et al. 

2011; Wellbrock et al. 2004). Under non-stimulatory conditions, two serine residues within the 14-3-3 

binding domains are phosphorylated and occupied by 14-3-3 proteins (Fig. 4). Beside interaction of 

Ras-GTP with the RBD, that is necessary but not sufficient to activate RAF, each RAF isoform reveals 

additional specific activation mechanisms (see bottom).  

The RAF kinases can form both homo- and heterodimers (Roskoski 2010; Rushworth et al. 2006; 

Weber et al. 2001). Concerning B- and C-RAF, it was reported that B-RAF/C-RAF heterodimers are 

more active than either homodimers (Rushworth et al. 2006). The dimerization of RAF kinase 

domains involves the αC-helix, an important determinant of active and inactive conformations 

(Rajakulendran et al. 2009). In cell lines and xenografts that harbor activated mutant B-RAF-V600E, 

some RAF kinase inhibitors effectively block MEK and ERK phosphorylation and activation 

(Hatzivassiliou et al. 2010; Heidorn et al. 2010; Poulikakos et al. 2010). Heidorn et al. (2010) found, 

however, that the B-RAF specific inhibitor 885-A leads to an unexpected increase in ERK 

phosphorylation in four human melanoma cell lines bearing activated N-Ras mutations. Two 

additional studies address this issue, and the common finding is that the binding of ATP competitive 

inhibitors to RAF kinases promote Ras-dependent C-RAF homo- or heterodimerization and leads to 

the so-called paradoxical activation (Hatzivassiliou et al. 2010; Poulikakos et al. 2010).  

1.3.2.1. Regulation of C-RAF Activation 

The regulation of C-RAF involves inter- and intramolecular protein interactions as well as direct 

phosphorylation (Chong et al. 2003; Dhillon and Kolch 2002; Roskoski 2010). In quiescent cells, C-

RAF is located in its inactive state in the cytosol. The inactive conformation of C-RAF is maintained 

by autoinhibitory interactions occurring between the regulatory N-terminal and the catalytic C-

terminal domains as well as by binding of 14-3-3 proteins to phosphorylated Ser-259 and Ser-621 

(Fig. 4). In contrast to these inhibitory sites, phosphorylation of Ser-491 and Ser-494, which occur 

within the activation segment, as well as Ser-338 and Tyr-341, that are located in the N-region, is 

stimulatory for C-RAF activity (Chong et al. 2001). In addition, phosphorylation of Ser-471, which is 

located within the catalytic loop, is required for the interaction of C-RAF with its substrate MEK (Zhu 

et al. 2005). Active C-RAF can be down-regulated by ERK-mediated inhibitory feedback 

phosphorylation in positions Ser-29, Ser-43, Ser-289, Ser-296, Ser-301 and Ser-642 (Dougherty et al. 

2005) 
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1.3.2.2. Regulation of A-RAF Activation 

Perhaps due to its relatively low basal and inducible activity, little attention has been devoted to 

the regulation of A-RAF activation. Recently, Baljuls et al. (2008) investigated A-RAF 

phosphorylation and identified 35 phosphorylation sites in human A-RAF. Two of these newly 

identified phosphorylation sites could be ascribed as the inferred 14-3-3 binding sites (Ser-214 and 

Ser-582, Fig. 4). The authors showed that the degree of Ras/Lck-induced activation of serine 582 to 

alanine mutant was lower than that of A-RAF wild type. In addition, they found that A-RAF kinase 

activity is considerably increased in the serine 214 to alanine mutant when compared with the A-RAF 

wild type. Both results support a crucial role for 14-3-3 binding in the regulation of A-RAF kinase 

activity. Furthermore, Baljuls et al. (2008) found that Ser-432 within the potential MEK binding 

domain is essential for A-RAF signaling, whereas the importance of phosphorylation within the 

activation segment (Thr-452 and Thr-455) is restricted to the Ras/Lck-mediated stimulation of A-

RAF. Additionally, seven novel phosphorylation sites within a tryptic peptide corresponding to A-

RAF(248–267) were identified in this study. This regulatory domain was designated as the IH segment 

(Isoform-specific Hinge segment). The authors discovered three of the phosphorylation sites within 

this segment to be strongly involved in the positive regulation of A-RAF activity (Ser-257, 262, and 

264). A spatial model of an A-RAF fragment, including residues between Ser-246 and Gln-277, 

revealed a switch of charge at the molecular surface of the IH region upon phosphorylation. This 

indicates a mechanism in which the high accumulation of negative charges leads to an electrostatic 

destabilization of protein-membrane interaction resulting in depletion of A-RAF from the plasma 

membrane upon prolonged stimulation (Baljuls et al. 2008). 

1.3.2.3. Regulation of B-RAF Activation 

In B-RAF, phosphorylation of Ser-365 within the CR2 region and Ser-729 near the C-terminus is 

required for 14-3-3 binding (Fig. 4). Phosphorylation of Thr-599 and Ser-602, which are located 

within the activation segment, is essential for B-RAF activation (Chong et al. 2003; Wellbrock et al. 

2004). In addition, phosphorylation of Ser-579, which occurs in the catalytic loop, is essential for 

anchoring of RAF substrate MEK (Zhu et al. 2005). Activation of A-RAF and C-RAF requires 

protein-kinase catalyzed phosphorylation of residues in the N-region. In contrast, the N-region of B-

RAF contains Asp-448 and Asp-449, which bear negative charges. Moreover, in B-RAF, Ser-446 is 

constitutively phosphorylated. Consequently, the N-region of B-RAF contains negative charges and 

does not require additional modifications to become negatively charged during activation. 

Deactivation of B-RAF can be achieved by feedback inhibition through ERK-induced phosphorylation 

of Ser-151, Thr-401, Ser-750, and Thr-753 (Ritt et al. 2010).  

B-RAF mutants occur in a variety of human cancers while mutants of the other two RAF isoforms 

in cancers are rare. The majority of B-RAF mutations occur in the glycine-rich loop or in the 

activation segment (Davies et al. 2002). These mutations disrupt the inactive state to favor the active 
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one. A valine to glutamic acid exchange in position 600 accounts for ≈90% of all known B-RAF 

mutations. This mutation occurs within the activation segment of B-RAF where the introduction of 

negative charges favors the formation of an active conformation. 

1.4. The Family of 14-3-3 Proteins 

14-3-3 proteins are ubiquitous eukaryotic adapter proteins involved in the regulation of a variety 

of cellular processes such as protein trafficking, cell-cycle control, signal transduction and apoptosis 

(Aitken 2006; Hermeking and Benzinger 2006). 14-3-3 proteins regulate cellular processes through 

several different mechanisms such as altering protein localization, modulating enzymatic activity, 

promoting protein stability, preventing dephosphorylation and inhibiting or mediating protein 

interactions (Aitken 2006; Dougherty and Morrison 2004). For example, 14-3-3 proteins stabilize the 

tumor suppressor p53 (Rajagopalan et al. 2010; Schumacher et al. 2010) and regulate the activity of 

the cell-cycle phosphatase Cdc25 (Conklin et al. 1995; Peng et al. 1997), the transcriptional modulator 

TAZ (Hong et al. 2005) and RAF (Fantl et al. 1994; Fischer et al. 2009; Freed et al. 1994; Fu et al. 

1994; Hekman et al. 2004; Light et al. 2002). Importantly, 14-3-3 proteins have been implicated in a 

variety of human diseases. They were shown to participate in diverse cancers (Hermeking 2003; 

Tzivion et al. 2006) and have been associated with the virulence of human pathogenic organisms (Fu 

et al. 1993; Ottmann et al. 2007) and the development of neurodegenerative diseases (Berg et al. 

2003).  

Mammals contain at least seven 14-3-3 isoforms each encoded by a distinct gene (Aitken 2006). The 

crystal structures of the seven different human isoforms reveal that all 14-3-3 proteins share a similar 

tertiary structure which consists of nine α-helices (Gardino et al. 2006). Two 14-3-3 protein molecules 

form biologically functional homo- and heterodimers, resembling a U-shaped structure (see Fig. 6). 

Four amino-terminal α-helices mediate dimerization and form a platform to which five carboxy-

terminal helices have a rectangular orientation, representing the walls of the U-shaped dimer (Obsil et 

al. 2001). The 14-3-3 dimer forms an amphipathic groove, wherein most of the conserved amino acids 

are located in the interior side and the variant chains point towards the outside.  

 

Figure 6: Dynamic nature of the 14-3-3 protein dimers.  

Crystal structure of 14-3-3 β, looking down the peptide binding grooves, which are demonstrated open 

and closed for the individual monomers. Adapted from Yang et al. (2006). 
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14-3-3 proteins bind to defined peptide motifs, two of which (RS-X-pS-X-P and R-XXX-pS-X-P) 

are highly conserved and recognized by all 14-3-3 isoforms. Normally, binding occurs only if a 

specific site within the motif is phosphorylated, but some 14-3-3 interactions are independent of 

phosphorylation (Aitken 2006). The phosphorylated serine/threonine residue of the ligand contacts 

amino acids that form a basic pocket in the otherwise acidic 14-3-3 molecule, explaining the ability of 

substrate phosphorylation to act as a molecular switch, controlling ligand binding (Aitken 2006; Obsil 

et al. 2001).  

1.4.1. 14-3-3 Proteins as Key Regulators of RAF Kinases 

RAF kinases contain two high-affinity phosphoserine sites that mediate binding to a 14-3-3 dimer. 

These are in C-RAF Ser-259 in the CR2 and Ser-621 at the C-terminal end of the kinase domain. In A-

RAF, they correspond to Ser-214 and Ser-582, respectively, whereas in B-RAF these sites are Ser-365 

and Ser-729. In C-RAF, an additional 14-3-3 binding site surrounding Ser-233 has been proposed 

(Dumaz and Marais 2003). Additionally, an atypical 14-3-3 binding site positioned at the C-terminal 

part of C-RAF-CRD and close to RBD (comprising the residues RKT in position 143–145) has been 

identified (Clark et al. 1997). Near this 14-3-3 binding site, in the hydrophobic region LAF (positions 

149–151), occurs a contact domain for farnesyl residue of Ras proteins. Therefore, it is feasible that 

the interaction of the farnesyl residue with this domain is necessary to remove sterical hindrances 

caused by 14-3-3 proteins.  

Hekman et al. (2004) analyzed 14-3-3 interaction with purified full-length RAF kinases and 

showed that RAF isozymes differ in their 14-3-3 association rates. They demonstrated that the C-

terminal 14-3-3 binding site (pSer-621) represents the high-affinity binding site, whereas the pSer-259 

epitope mediates lower affinity binding. Importantly, they visualized the dynamic changes of C-RAF 

phosphorylation events, including 14-3-3 binding, that occur in response to growth factor stimulation 

(Hekman et al. 2004). Hagemann and Rapp (1999) suggested a hypothetical model, in which 14-3-3 

proteins stabilize the inactive as well as the fully active conformation of RAF. In this model, a 14-3-3 

dimer binds to the conserved 14-3-3 binding sites to keep RAF in a closed inactive conformation. 

Binding of Ras-GTP to the RBD displaces 14-3-3 from the phosphoserine site in the CR2 domain. 

This results in a conformational rearrangement, which subsequently, could cause a basal activation of 

RAF. Finally, the fully active RAF conformation might be stabilized by binding of 14-3-3 dimers 

(Hagemann and Rapp 1999). More recent studies provide additional details to this regulation model. It 

has been demonstrated that serine dephosphorylation within the CR2 domain represents a prerequisite 

for RAF activation in growth factor-stimulated cells (Ory et al. 2003). Thus, an additional function of 

14-3-3 dimer might be to mask regions on RAF that are required for translocation and subsequent 

activation of RAF by Ras. In addition, it was demonstrated that, during the C-RAF activation process, 

the 14-3-3 dimer can be replaced from the internal binding site of C-RAF by the scaffold prohibitin 

(PHB) (Fischer et al. 2009). Although the discussed regulation mechanism was conceptualized on the 
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basis of interaction studies with 14-3-3 and C-RAF, the highly conserved 14-3-3 binding sites 

presented in A- and B-RAF suggest that this mechanism can be generalized for all RAF kinases. 

Concerning A-RAF, co-immunoprecipitation of overexpressed 14-3-3 with A-RAF (Hagemann 1999) 

as well as isolation of the 14-3-3 isoforms β, ε, δ, τ and ε in a two-hybrid screen using A-RAF as a bait 

reinforce the assumption that A-RAF, just like B- and C-RAF, might be regulated by 14-3-3 proteins. 

Indeed, our group demonstrated recently that A-RAF associates in vivo with at least two 14-3-3 

isoforms, epsilon and tau (Fischer et al. 2009).  

Mutations within the internal 14-3-3 binding domain of C-RAF (surrounding the Ser-259) have 

been shown to cause severe human disorders, such as Noonan and LEOPARD syndrome (Pandit et al. 

2007; Razzaque et al. 2007). Recently, in collaboration with our group, Molzan et al. (2010) further 

characterized the nature of Noonan syndrome. We showed that the reported mutations in the N-

terminal 14-3-3 binding site mediate plasma membrane recruitment of C-RAF by wild-type Ras, 

thereby confirming the essential negatively regulatory role of 14-3-3. These observations are of prime 

importance, since they suggest the possibility of addressing the 14-3-3/C-RAF complex in diseases 

that involve an overactive Ras-RAF-MAPK pathway. 

1.4.2. 14-3-3 Proteins Control Apoptosis 

The ability of 14-3-3 proteins to stimulate protein–protein interactions as well as the control that 

14-3-3 proteins exert on the subcellular localization of their binding partners is crucial for apoptosis 

regulation (Fig. 7). 14-3-3 proteins sequester various pro-apoptotic proteins. For example, they interact 

with Fkhrl1 (Brunet et al. 1999), Bax (Nomura et al. 2003), Ask1 (Zhang et al. 1999), Yap (Basu et al. 

2003) and BAD (Zha et al. 1996).  Phosphorylated Fkhrl1 associates with 14-3-3 proteins and is 

therefore retained in the cytoplasm. Upon deprivation from survival signals, dephosphorylation of 

Fkhrl1 leads to its dissociation from 14-3-3 and translocation to the nucleus, resulting in the activation 

of apoptotic genes. Phosphorylated Yap is also retained in the cytoplasm by binding to 14-3-3, 

resulting in a displacement from the nucleus where it functions as a co-activator of p73-mediated 

apoptosis (Basu et al. 2003). Similarly, association with 14-3-3 antagonizes the death-promoting 

activity of Ask1 independent of Ask1 kinase activity (Zhang et al. 1999). Interaction of Bax with 14-

3-3 occurs in a phosphorylation-independent manner, negatively regulating pro-apoptotic activity of 

Bax (Nomura et al. 2003). 

During apoptosis control, 14-3-3 proteins play an important role in the regulation of the BH3-only 

protein BAD as well. As mentioned above, phosphorylation of Ser-112 and Ser-136 of mBAD or the 

corresponding phosphorylation sites Ser-75 and Ser-99 of hBAD results in association with 14-3-3 

proteins and subsequent cytoplasmic sequestration of BAD preventing the association of BAD with 

the mitochondrially localized Bcl-2 and Bcl-XL, and therefore inhibiting apoptosis (Hekman et al. 

2006; Zha et al. 1996). Furthermore, in this work we show that 14-3-3 proteins are able to terminate 

the pore-forming activity of hBAD (Polzien et al. 2009).  
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Whereas 14-3-3 promotes the cytoplasmic localization of Fkhrl1, Yap and BAD, interaction of 14-

3-3 with the catalytic subunit of telomerase that prevents apoptosis, Tert, promotes its retention in the 

nucleus (Seimiya et al. 2000; Zhang et al. 2003). Additionally, a role of 14-3-3 proteins as adapter 

molecules has been implicated for the binding of A20, a zinc-finger protein that inhibits apoptosis 

induced by TNFα. It was demonstrated that A20 and RAF do not interact directly, but require 14-3-3 

for their interaction to take place (Vincenz and Dixit 1996). Furthermore, 14-3-3 influences the 

subcellular localization of A20 by keeping it in the cytoplasm (Muslin and Xing 2000; van Hemert et 

al. 2001). 14-3-3 proteins seem also to be involved in promoting apoptosis, since interaction of Nade 

with p75 neurotrophin receptor (p75NTR) might recruit 14-3-3 proteins, resulting in an induction of 

caspase-3 activation and cell death (Kimura et al. 2001).  

 

 

Figure 7: Regulation of apoptosis by 14-3-3 proteins.  

By binding to various interaction partners involved in apoptosis, 14-3-3 proteins (green) modulate the 

apoptotic process through various mechanisms, such as sequestration and control of the subcellular 

localization of phosphorylated and non-phosphorylated pro- and anti-apoptotic proteins. The pro-

apoptotic protein BAD binds to the anti-apoptotic proteins Bcl-2 and Bcl-XL resulting in cell death. Once 

phosphorylated, BAD can be complexed by 14-3-3 proteins in the cytoplasm, which prevents the 

association with Bcl-2 and Bcl-XL and therefore inhibits apoptosis. Similarly, phosphorylated Fkhrl1 and 

phosphorylated Yap are retained in the cytoplasm. On the other hand, interaction of 14-3-3 with the 

catalytic subunit of telomerase that prevents apoptosis (Tert) promotes its retention in the nucleus. In 

addition, the death-promoting activity of Ask1 and Bax is antagonized by its binding to 14-3-3 proteins. 

Ligand-dependent binding of the p75 neurotrophin receptor (p75NTR)-associated cell death executor 

(Nade) to p75NTR has been demonstrated to occur. Interaction of Nade and p75NTR might recruit 14-3-3 

proteins, leading to an induction of caspase-3 activation and apoptosis. A role of 14-3-3 proteins as 

adapter molecule has been implicated for the binding of A20 that inhibits apoptosis induced by TNFα. 

A20 and RAF do not interact directly, but require 14-3-3 for their interaction to take place. Additionally, 

14-3-3 influences the subcellular localization of A20, keeping it in the cytoplasm. Adapted from Berg et al. 

(2003). 
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1.5.  Bcl-2 Proteins are Substrates of RAF and Play a Role in Human Diseases 

The proteins of the Bcl-2 family display important targets of the RAF pathway. The Ras-RAF-

MEK-ERK cascade was suggested to directly phosphorylate the anti-apoptotic protein Bcl-2 and 

thereby enhance its apoptosis suppressing properties (Deng et al. 2000). Moreover, pro-apoptotic Bcl-

2 proteins like Bim and BAD were shown to be targets of the RAF pathway as well. The 

phosphorylation of these proteins results in an inactivation of their pro-apoptotic properties. 

Concerning Bim, phosphorylation can lead to degradation of the protein (Ewings et al. 2007; Ley et 

al. 2003; Luciano et al. 2003). As mentioned above, the phosphorylation of BAD leads to its 

sequestration into the cytosol (Scheid et al. 1999; Zha et al. 1996).  

Table 1: Involvement of Bcl-2 proteins in selected human diseases. 

Disease and involvement of Bcl-2 proteins Ref. 

Neurodegenerative disease 

Bax expression is increased in the brain of Parkinson patients and 

ablation of Bax prevents dopaminergic neurodegeneration in a mouse 

model of Parkinson disease. 

 

(Tatton 2000; Vila et 

al. 2001) 

Atherosclerosis 

A high level of Bax and p53 was identified in smooth muscle cells 

from the atherosclerotic plaque. 

 

 

(Kockx et al. 1998) 

Cancer 

1. Bcl-2 is frequently overexpressed in many types of cancers. 

 

2. Studies of patients with acute lymphoblastic leukemia, acute 

myelogenous leukemia, non-Hodgkin‟s lymphomas, chronic 

lymphocytic leukemia, and multiple myeloma indicate that a high-

level expression of anti-apoptotic Bcl-2 family members, such as 

Bcl-2, Bcl-XL, and Mcl-1, represents a clinically important 

chemoresistant phenotype on cancer cells.  

 

3. The Bax gene was shown to exhibit a frameshift mutation or a 

decreased expression in colon, gastric and haematopoietic cancers. 

The frameshift mutation within the Bax gene was demonstrated to 

confer a selection advantage during tumor clonal evolution. 

 

4. The Bak gene is mutated in some human gastric and colorectal 

cancers.  

 

5. Amplification of Akt/PKB gene was observed frequently in solid 

tumors. Since it phosphorylates BAD and renders it non-apoptotic, 

hyperactivation of Akt/PKB induces resistance to apoptotic drugs. 

 

6. BAD was identified to be a direct target of B-RAF that was 

demonstrated to be activated through mutation in many types of 

cancer. In addition, it was demonstrated that BAD plays an exclusive 

role in survival signaling of cancer cells harboring mutated B-RAF 

(B-RAF-V600E).  

 

(Reed 1999) 

 

(Reed 1999) 

 

 

 

 

 

 

(Brimmell et al. 

1998; Rampino et al. 

1997) 

 

 

(Ionov et al. 2000; 

Kondo et al. 2000) 

 

(Datta et al. 1999) 

 

 

 

This work (Polzien et 

al. 2011, J. Biol. 

Chem. [Epub ahead 

of print]) 
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Analogous to Bim, phosphorylation via C-RAF can also promote BAD polyubiquitination leading 

to an increase of the turn-over of this protein through proteasomal degradation (Fueller et al. 2008).  

The finding that BAD is phosphorylated by RAF is of particular importance, since highly active 

B-RAF has been demonstrated to represent one of the crucial players in cancer development (Davies 

et al. 2002). Importantly, deregulation of specific proteins of the Bcl-2 family was also demonstrated 

to be involved in many human diseases, especially during development of cancer (Table 1). 

Unfortunately, for many pathological conditions, it is difficult to decipher the cause and effect 

relationship. Further studies are required to unravel function and regulation of the Bcl-2 family of 

proteins. 

1.6.  Aim of the Project 

The mammalian RAF kinases (A-, B- and C-RAF) play a central role in the conserved Ras-RAF-

MEK-ERK signaling pathway and mediate cellular responses induced by growth factors (Daum et al. 

1994; Rapp et al. 2006; Wellbrock et al. 2004). Consequently, aberrant regulation of this cascade is 

frequently found in tumors (Yeang et al. 2008). The proteins of the Bcl-2 family are crucial regulators 

of apoptosis that have been shown to be involved in various human diseases as well, especially during 

development of cancer (see Table 1). Direct involvement of C-RAF in inhibition of pro-apoptotic 

properties of BAD established the first link between signal transduction and apoptosis control (Rapp et 

al. 2004; Troppmair and Rapp 2003). However, whether BAD is a direct substrate of RAF kinases as 

well as the exact RAF target sites within BAD protein have not been investigated so far (Wang et al. 

1996).  

In my work, I examined whether hBAD serves as a direct substrate of RAF isoforms. A main 

focus of my project was to investigate the quantitative contribution of RAF kinases to hBAD 

phosphorylation in vivo. Therefore, I examined hBAD phosphorylation by RAF and other kinases like 

PKA, Akt/PKB and PAK1 concerning phosphosite specificity and their phosphorylation efficiency. As 

RAF kinases make crucial contributions to hBAD phosphorylation, I further explored whether hBAD 

phosphorylation by RAF is accompanied by decreased apoptosis. Additionally, I investigated whether 

phosphorylation of hBAD by RAF regulates the interaction of BAD with 14-3-3 proteins and Bcl-XL. 

To unravel whether other serines contribute to the regulation of hBAD in addition to the established 

phosphorylation sites serines 75, 99 and 118, I analyzed the whole hBAD protein by mass 

spectrometry and examined whether the newly identified phosphorylation sites are involved in the 

regulation of apoptosis. Subsequently, a main focus of this work was to investigate whether specific 

phosphorylation of hBAD plays a role in survival signaling in naturally occurring tumor cell lines.  

To further elucidate the mechanisms of BAD mediated apoptosis, another goal of this work was to 

examine whether hBAD is able to form channels in planar bilayer membranes. In this respect, I 

explored whether this pore-formation is dependent on BAD‟s phosphorylation status and interaction 
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between BAD and 14-3-3 proteins. Additionally, I decided to elucidate the origin of the extraordinary 

high affinity of the C-terminal part of hBAD for membrane lipids. Toward this end, I deciphered the 

secondary structure of a peptide corresponding to the C-terminal part of hBAD and containing the 

lipid binding domain LBD1 by use of CD and NMR spectroscopy. An important feature of hBAD is 

that, depending on its phosphorylation state, it changes its location from the cytoplasm to membranes. 

Therefore, I analyzed the structure of the hBAD C-terminal part in both, aqueous solution and lipid 

environment. In addition, I examined whether the C-terminal part of hBAD is sufficient for formation 

of open pores in lipid bilayers.  

Knowledge derived from the understanding of the function and regulation of the Bcl-2 family of 

proteins may allow us to develop novel therapeutic strategies for human diseases with inaccurate 

apoptosis signaling. Therefore, in summary, the aim of this work was to provide new insights into the 

regulation of BAD function by phosphorylation and its role in cancer signaling. 
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2. General Experimental Procedures 

The methods described in this section are all based upon today's standard molecular and cellular 

biology techniques.  

2.1.  Materials  

2.1.1. Instruments  

Hardware       Manufacturer  

Bacterial incubator shaker     TR-125, Infors AG, Bottingen  

BIAcore-X or BIAcore-J system    Biacore AB, Uppsala, Sweden  

Bruker APEX II FT-ICR mass spectrometer   Bruker Daltonic GmbH, Bremen  

Cell culture hood      M630, Ceag Schirp Reinraumtechnik, Selm-

       Bork 

Cell culture incubator      Heraeus Instrument   

Centrifuges       Centrifuge 5417 R, Eppendorf;  

  Megafuge 1.0R, Heraeus Instrument   

Electrophoresis power supply     EV202, Peqlab  

Film developing machine     Ecomax X-Ray Film Processor, Protec GmbH 

       & Co. KG, Oberstenfeld  

LTQ XL mass analyzer     Thermo Scientific, Dreieich  

Magnetic stirrer      SB161, Bibby Scientific, Staffordshire, UK 

PCR machine       T3 Thermocycler, Biometra 

pH meter       pH 720, InoLab, Weinheim  

Protein gel system     Mini Trans Blot, Biorad 

Qstar Elite mass analyzer     Applied Biosystems, Darmstadt  

Semi dry blotting system     PerfectBlue Semi-Dry Electro Blotter, Peqlab  

Shakers       See-saw rocker SSL4, Bibby Scientific, 

       Staffordshire, UK  

Spectrophotometer     NanoDrop NP-1000, Peqlab 

Thermoshaker for microfuge tubes    Mixing Block MB-102, Bioer, Hangzhou, 

       China 

Typhoon 9200 imager     GE Healthcare 

UV/Visible Spectrophotometer     Ultrospec 3000, Pharmacia Biotech  

Vortex        Vortex-genie 2, Scientific Industries, New 

       York, USA 

Western Blot Imager     ChemoCam HR16-3200, Intas, Göttingen 
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2.1.2. Chemical Reagents and General Materials  

Reagent      Purchased from  

Acrylamide (30%)/Bisacrylamide (0.8%)   Roth  

Adenosin-5'-triphosphate (ATP)   Sigma  

Agarose (ultra pure)      Roth  

Ammonium peroxydisulfate (APS)    Roth  

Ampicillin       Roth  

Antipain       AppliChem  

Aprotinin       Sigma 

Asolectin      Sigma 

Sorafenib (BAY-43-9006)     Bayer 

Benzamidine      Sigma 

β-Glycerophosphate      Roth  

β-Mercaptoethanol      Roth  

Bovine serum albumin (BSA)     Roth  

Bromphenol Blue      Roth  

1-Butanol       Roth  

C18 ZipTip      Millipore 

Cardiolipin      Sigma 

CHAPS      Sigma 

CI1040       Axon Medchem 

Coomassie Protein Assay Reagent    Pierce  

Coumaric acid       Sigma  

dNTP Mix (2mM)      Fermentas  

Dimethyl sulfoxide (DMSO)    Roth  

Diphytanoylphosphatidylcholine   Avanti Polar Lipids 

Dithiothreitol (DTT)      Sigma  

EDTA (Ethylenediaminetetraacetic  

acid-disodium salt)      Roth  

EGTA (Ethylene glycol-bis-(-aminoethylether)-  

N,N,N',N'-tetraacetic acid)     AppliChem  

Empigen BB       Calbiochem  

Ethanol (p. A.)       AppliChem  

Ethanol (denatured with 1% MEK)    AppliChem  

Ethidium bromide      Roth  

Glutathione       Sigma  

Glutathione Sepharose      Amersham Bioscinces  
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Glycerol       Roth  

Glycine       Roth  

H-89       Sigma 

HEPES       Roth  

Hydrochloride (HCl)     AppliChem  

Hydrogen peroxide      Sigma  

Isobutylmethylxanthine (IBMX)   Sigma 

Isopropanol       Roth  

Lambda DNA/Eco91I Marker, 15    Fermentas 

LB-Agar       Roth  

Leupeptin       Sigma  

Lipofectamine      Invitrogen 

Lipofectamine 2000     Invitrogen 

Luminol       Biomol 

LY294002      Promega 

Magnesium chloride hexahydrate  

(MgCl2×6H2O)       Roth  

Magnesium sulfate heptahydrate  

(MgSO4×7H2O)      Roth  

Manganese (II) chloride tetrahydrate  

(MnCl2×4H2O)       Roth  

Methanol      Roth 

Milk powder (nonfat)      AppliChem 

MitoTracker Deep Red      Invitrogen 

Ni
2+

-nitrilotriacetic acid-agarose   Quiagen 

Nitrocellulose membrane     Protran, Whatman 

Nonidet P40 (NP-40)      Sigma 

PD98059      Promega 

PD0325901       Santa Cruz Biotechnology 

PepMap trapping column    Dionex 

PepMap nano-LC column    Dionex 

Pepstatin       Roth  

Phenylmethylsulfonyl fouoride (PMSF)   Sigma 

Phosphatidylcholine     Sigma 

Phosphatidylehanolamine    Sigma 

Phosphatidylinositol     Sigma 

Phosphatidylserine     Simga 
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PIPES        Sigma 

Potassium chloride (KCl)     Roth  

Prestained Protein Ladder PageRuler,    Fermentas  

Protein G-Agarose      Roche  

Sucrose       Roth  

Sodium chloride (NaCl)     Roth 

Sodium dodecyl sulfate (SDS, ultra pure)  Roth      

Sodium fluoride (NaF)      Roth  

Sodium hydroxide (NaOH)     Roth  

Sodium orthovanadate (Na3VO4)    Sigma  

Sodium pyrophosphate (Na4P2O7)    Roth  

Sphingomyelin      Sigma 

TEMED (N,N,N',N'-Tetramethylethylenediamine) Roth  

Thrombin      Sigma 

Trifluoroethanol (TFE)     Sigma 

Tris (Tris-(hydroxymethyl)-aminomethan)   Roth  

Tween 20       Roth  

U0126       Promega 

Whatman 3MM Paper     Schleicher & Schüll 

Wortmannin      Santa Cruz Biotechnology  

X-ray film       Pierce  

Xylene cyanol       Roth 

2.1.3. Cell Culture Materials  

Reagent       Source  

Dulbecco‟s Modified Eagle Medium (DMEM)   Invitrogen  

Epidermal growth factor (EGF)    Invitrogen  

Fetal calf serum (FCS)      Invitrogen  

Forskolin      Alexis 

Giemsa dye      Sigma 

jetPEI and 150 mM NaCl     Biomol  

L-Glutamine       Invitrogen 

Neomycin      Calbiochem  

OptiMEM      Invitrogen 

Phosphate buffered saline (PBS)    Invitrogen  

Penicillin/streptomycin      Invitrogen  

Puromycin      Calbiochem 



General Experimental Procedures 

 

32 

Trypsin-EDTA       Invitrogen  

Trypan blue       Sigma  

2.1.4. Antibodies used for Western Blotting and Immunoprecipitation  

Antibody       Source  

Anti-phospho-ERK antibodies     #9106; Cell Signaling Technology and sc-

       7393; Santa Cruz Biotechnology 

Phosphospecific antibodies against mBAD 

phosphoserines 112, 136 and 155   #9296S, 9295S and 9297S; Cell Signaling 

       Technology  

Phosphospecific antibody against hBAD  

phosphoserine 134     Abnova 

Anti-actin      A2066; Sigma 

Anti-Akt/PKB       #9272; Cell Signaling Technology 

Anti-BAD antibodies     sc-943 and sc-8044; Santa Cruz  

       Biotechnology 

Anti-PAK antibody      sc-881; Santa Cruz Biotechnology  

Anti-B-RAF antibody      sc-166; Santa Cruz Biotechnology 

Anti-PKA antibody     sc-903; Santa Cruz Biotechnology 

Pan-RAF antibody      30K; Institute for Medical Radiation and Cell 

       Research 

Anti-Myc      sc-40; Santa Cruz Biotechnology 

Horseradish peroxidase conjugated 

polyclonal anti-rabbit and anti-mouse IgG   Amersham Biosciences 

2.1.5. Enzymes  

Items        Source 

Phusion high fidelity DNA polymerase    Finnzymes  

EcoRI restriction enzyme    New England BioLabs 

Not I restriction enzyme     New England BioLabs  

Sac II restriction enzyme     New England BioLabs  

StuI restriction enzyme     New England BioLabs 

T4 DNA ligase       New England BioLabs  

PfuUltra DNA polymerase     Stratagene  

Dpn I restriction enzyme     Stratagene  
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2.1.6. Kits  

Items       Source  

ProteoExtract subcellular proteome extraction kit  Calbiochem    

QIAquick gel extraction kit     Qiagen  

QIAquick PCR purification kit     Qiagen  

QIAprep spin miniprep kit     Qiagen  

QIAGEN plasmid midi kit     Qiagen  

QIAGEN plasmid maxi kit     Qiagen  

QuikChange sitedirected mutagenesis kit   Stratagene 

2.1.7. Plasmids  

Human origin of genes within the plasmids is indicated by “h” prior to the respective gene name. 

Site-specific mutations were introduced using QuikChange site-directed mutagenesis kit (Stratagene) 

according to the manufacturer‟s instructions. The accuracy of mutants was confirmed by DNA 

sequencing using standard sequencing oligonucleotides for the respective plasmid.  

Plasmid      Source  

pcDNA3.1 (vector)     Invitrogen 

pcDNA3/hC-RAF-myc-His    U.R. Rapp 

pcDNA3/HA-hBAD     U.R. Rapp 

pcDNA3/hBAD     U.R. Rapp 

pcDNA3/Flag-hBAD     U.R. Rapp 

pcDNA3/hBAD(S99A/FAA)    U.R. Rapp 

pcDNA3/hBAD-His     U.R. Rapp 

pcDNA3/hBAD(S25A)-His    L. Polzien 

pcDNA3/hBAD(S32A)-His    L. Polzien 

pcDNA3/hBAD(S34A)-His    L. Polzien 

pcDNA3/hBAD(S75A)-His    L. Polzien 

pcDNA3/hBAD(S91A)-His    L. Polzien 

pcDNA3/hBAD(S97A)-His    L. Polzien 

pcDNA3/hBAD(S99A)-His    L. Polzien 

pcDNA3/hBAD(S118A)-His    L. Polzien 

pcDNA3/hBAD(S124A)-His    L. Polzien 

pcDNA3/hBAD(S134A)-His    L. Polzien 
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pcDNA3/hBAD(S75A/S99A)-His   L. Polzien 

pcDNA3/hBAD(S75A/S118A)-His   L. Polzien 

pcDNA3/hBAD(S99A/S118A)-His   L. Polzien 

pcDNA3/hBAD(S75A/S99A/S118A)-His  L. Polzien 

pcDNA3/hBAD(S75A/S118A/S134A)-His  L. Polzien 

pcDNA3/His-hC-RAF      U.R. Rapp  

 pcDNA3/hH-Ras12V      U.R. Rapp 

pcDNA3/myc-His-hA-RAF     A. Baljuls 

pcDNA3/myc-His-hC-RAF    A. Baljuls  

pcDNA3/myc-His-hA-RAF(Y301D/Y301D)  A. Baljuls 

pcDNA3/hBcl-2     U.R. Rapp 

pcDNA3/hBcl-XL     U.R. Rapp 

pcDNA3myc (vector)     U.R. Rapp 

pcDNA3myc/hA-Raf     U.R. Rapp 

pcDNA3myc/hA-Raf(YY301/302DD)   U.R. Rapp 

pcDNA3myc/His-hB-RAF    U.R. Rapp 

pcDNA3myc/His-hC-RAF    U.R. Rapp 

Fast Bac1/h14-3-3 epsilon    U.R. Rapp 

Fast Bac1/h14-3-3 zeta     U.R. Rapp 

Fast Bac/GST 4T-2 hA-RAF(YY301/302DD)  U.R. Rapp 

Fast Bac/GST 4T-1 hC-RAF    U.R. Rapp 

Fast Bac/GST 4T-2 hB-RAF-His   U.R. Rapp 

Fast Bac/GST 4T-2 hB-RAF-His(K482A)  U.R. Rapp 

Fast Bac/GST 4T-2 hB-RAF(V600E)   U.R. Rapp 

Fast Bac/GST 4T-2 hC-RAF-His   U.R. Rapp 

Fast Bac HTa/hC-RAF     U.R. Rapp 

Fast Bac HTa/hC-RAF-His    U.R. Rapp 

Fast Bac HTb/hPAK1(T423E)- His   U.R. Rapp 

Fast Bac HTb/hPKB(T308D/S473D)   U.R. Rapp 

pAC2GT GST/hC-RAF-BXB    U.R. Rapp 

pAC2GT GST/hC-RAF-BXB(YY340/341DD)  U.R. Rapp 
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pAdenoX/hBAD     U.R. Rapp 

pAdenoX/hBAD(S136A)    U.R. Rapp 

pAdenoX/hBAD(S136A/S155A)   U.R. Rapp 

pAdenoX/hC-RAF- BXB-301(K375W)   U.R. Rapp 

pBabePuro/hBclXL     U.R. Rapp 

pBabePuro/hBcl-2     U.R. Rapp 

pBabePuro/hC-RAF-BXB    U.R. Rapp 

pBabePuro/Ha-hRas     U.R. Rapp 

pBabePuro/hC-RAF( R89L)    U.R. Rapp 

pBabePuro/hC-RAF(YY340/341DD)   U.R. Rapp 

pBI-5/hC-RAF-HA-BXB    U.R. Rapp 

KRSPA/hLck       U.R. Rapp 

KRSPA/HA-hC-RAF     U.R. Rapp 

pGEX2T (vector)      Pharmacia  

pGEX-4T1/hBAD     U.R. Rapp 

pGEX-4T1/hBAD(S75A)    U.R. Rapp 

pGEX-4T1/hBAD(S99A)    U.R. Rapp 

pGEX-4T1/hBAD(S118A)    U.R. Rapp 

pGEX-4T1/hBAD(S75A/S99A)    U.R. Rapp 

pGEX-4T1/hBAD(S75A/S99A/S118A)   U.R. Rapp 

pcMV5/hB-RAF     U.R. Rapp 

pCMV5/hPKBα(308/473DD)    U.R. Rapp 

pcMV5/hPKBα(K179A)    U.R. Rapp 

2.1.8. Oligonucleotides  

Name    Sequence  

hBAD-S25A-for GAGAGGGGCCTGGGCCCCGCCCCCGCAGGGGAC 

hBAD-S25A-rev GTCCCCTGCGGGGGCGGGGCCCAGGCCCCTCTC 

hBAD-S32A-for CAGGGGACGGGCCCGCAGGCTCCGGCAAGCATCATC 

hBAD-S32A-rev GATGATGCTTGCCGGAGCCTGCGGGCCCGTCCCCTG 

hBAD-S34A-for GACGGGCCCTCAGGCGCCGGCAAGCATCATC 

hBAD-S34A-rev GATGATGCTTGCCGGCGCCTGAGGGCCCGTC 

hBAD-S75A-for GAGTCGCCACAGCGCCTACCCCGCGGGGAC 
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hBAD-S75A-rev GTCCCCGCGGGGTAGGCGCTGTGGCGACTC 

hBAD-S91A-for GATGGGGGAGGAGCCCGCCCCCTTTCGGGGCCGCTC 

hBAD-S91A-rev GAGCGGCCCCGAAAGGGGGCGGGCTCCTCCCCCATC 

hBAD-S97A-for CTTTCGGGGCCGCGCGCGCTCGGCGCC 

hBAD-S97A-rev GGCGCCGAGCGCGCGCGGCCCCGAAAG 

hBAD-S99A-for GGCCGCTCGCGCGCGGCGCCCCCCAAC 

hBAD-S99A-rev GTTGGGGGGCGCCGCGCGCGAGCGGCC 

hBAD-S118A-for GCGAGCTCCGGAGGATGGCTGACGAGTTTGTGGACTC 

hBAD-S118A-rev GAGTCCACAAACTCGTCAGCCATCCTCCGGAGCTCGC 

hBAD-S124A-for GAGTGACGAGTTTGTGGACGCCTTTAAGAAGGGACTTCCTCG 

hBAD-S124A-rev  CGAGGAAGTCCCTTCTTAAAGGCGTCCACAAACTCGTCACTC 

hBAD-S134A-for GACTTCCTCGCCCGAAGGCCGCGGGCACAGCAACGC 

hBAD-S134A-rev GCGTTGCTGTGCCCGCGGCCTTCGGGCGAGGAAGTC 

hBAD-S157A-for CCAGTCCTGGTGGGATGCGAACTTGGGCAGGGGAAGC 

hBAD-S157A-rev GCTTCCCCTGCCCAAGTTCGCATCCCACCAGGACTGG 

2.1.9. siRNAs for RNA Interference 

Name  Target     Sequence 

siBAD-CDS hBAD, coding sequence (CDS)  5‟-ACGAGTTTGTGGACTCCTTTA-3‟ 

siBAD-UTR hBAD, 3‟UTR    5‟-TCACTACCAAATGTTAATAAA-  

siLuci  Luciferase    5‟-AACUUACGCUGAGUACUUCGA-3‟

   

2.1.10. Cell Lines and Bacterial Strains  

Cell lines      Source  

HEK-293      ATCC #CRL-1573  

HeLa 229     ATCC #CCL-2.1 

NIH3T3     ATCC #CRL-1658 

Sf9       PTA-3099 

A375       ATCC #CRL-1619 

SK-MEL-28      ATCC #HTB-72 

DX3      Daniela Haug (University of Würzburg, Germany) 

MEL-Juso      Daniela Haug (University of Würzburg, Germany) 

PC3       Joachim Fensterle (Æterna Zentaris, Germany) 

HCT 116     Joachim Fensterle (Æterna Zentaris, Germany)  
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Bacterial strains     Source  

Escherichia coli (E. coli) DH5α   Bethesda Research Laboratories. Optimized  

      for DNA transformation and replication  

2.2.  Solutions and Buffers  

LB-Medium (Luria/Miller)  

The ready-to-use LB-medium powder was purchases from Roth (Ingredients: 10 g/l Bacto-

tryptone, 5 g/l Yeast extract, and 10 g/l NaCl pH 7.0). Disperse 25 g of ready-to-use powder in 1 l of 

deionized water. Swirl to mix and sterilize by autoclaving at 121°C for 15 min. Cool to ca. 47°C and 

add filter sterilized antibiotic if required.  

 

LB-Agar (Luria/Bertani)  

The ready-to-use LB-agar powder was obtained from Roth (Ingredients: 10 g/l Bacto-tryptone, 5 

g/l Yeast extract, 10 g/l NaCl, and 15 g/l Agar pH 7.0). Disperse 40 g of ready-to-use powder in 1 l of 

deionized water. Swirl to mix and sterilize by autoclaving at 121°C for 15 min. Cool to ca. 47°C and 

add filter sterilized antibiotic if required. Pour into Petri dishes, allow to set and dry the surface prior 

to inoculation.  

 

TB-Buffer  

      final concentration  

PIPES       10 mM  

CaCl2       15 mM  

KCl       250 mM  

Adjust pH to 6.7 with KOH and add 2.7 g MnCl2 (55 mM, final concentration). Sterilize the solution 

by filtering and store at 4°C.  

 

5 × HF-Buffer 

 The 5 × HF-buffer was obtained together with Phusion DNA polymerase from Finnzymes. It contains 

7.5 mM MgCl2, which supplies 1.5 mM MgCl2 in final reaction conditions.  

 

10 × TBE-Buffer  

The Rotiphorese ready-to-use 10 × TBE-buffer was obtained from Roth. It contains 1 M Tris-Borat 

(pH 8.3) and 20 mM EDTA in deionized water.  
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6 × DNA Gel Loading Buffer  

      final concentration  

Sucrose      40% (w/v)  

Bromphenol Blue     0.25% (w/v)  

Xylene cyanol      0.25% (w/v)  

 

10 × T4 DNA Ligase Buffer  

The buffer was obtained together with T4 DNA ligase enzyme from New England BioLabs. 

(Ingredients: 500 mM Tris-HCl, pH 7.5, 100 mM MgCl2, 100 mM DTT, 10 mM ATP, and 250 µg/ml 

BSA)  

 

10 × PfuTurbo DNA Polymerase Reaction Buffer  

The buffer was obtained together with PfuTurbo DNA polymerase from Stratagene. (Ingredients: 200 

mM Tris-HCl (pH 8.8), 20 mM MgSO4, 100 mM KCl, 100 mM (NH4)2SO4, 1% Triton X-100, and 1 

mg/ml nuclease-free BSA) 

 

1 × MC Lysis Buffer  

       final concentration  

Tris-HCl, pH 8.0     50 mM  

NaCl       137 mM  

Sodium pyrophosphate     10 mM  

β-Glycerophosphate     25 mM  

EDTA        2 mM  

EGTA       2 mM  

Glycerol       10% (v/v) 

β-Mercaptoethanol      0.1% (v/v)  

NaF       25 mM  

 

The buffer was aliquoted in 50 ml samples and stored at –20°C. Following reagents were added before 

use:  

      final concentration  

Sodium orthovanadate    1 mM  

Antipain      10 µg/ml  

Aprotinin      10 µg/ml  

Leupeptin       1 µg/ml  

Pepstatin      1.4 µg/ml  

PMSF        200 µg/ml  
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NP-40       desired concentration  

 

IC Lysis Buffer  

      final concentration  

Tris-HCl, pH 7.6     25 mM  

NaCl      150 mM  

Sodium pyrophosphate     10 mM  

β-Glycerophosphate     25 mM  

NaF       25 mM  

Glycerol      10%  

 

Following reagents were added before use:  

      final concentration  

Sodium orthovanadate     1 mM  

Antipain       10 µg/ml  

Aprotinin      10 µg/ml  

Leupeptin     1 µg/ml  

Pepstatin     1.4 µg/ml  

PMSF      200 µg/ml  

NP-40       desired concentration  

 

PBS Buffer  

The phosphate buffered saline (PBS) Ready-Mixed Powder was obtained from BioAtlas. Ready-mixed 

PBS powder was dissolved in distilled water. On dilution, the resultant PBS will have final 

concentrations: 137 mM NaCl, 10 mM Phosphate, pH 7.4, and 2.7 mM KCl.  

 

5 × SDS-Loading Buffer 

      final concentration  

Tris-HCl, pH 6.8      70 mM  

β-Mercaptoethanol     5% (v/v)  

Glycerol      40% (v/v)  

SDS       3% (w/v)  

Bromphenol Blue     0.05% (w/v)  

 

SDS-PAGE Buffer  

The ready-to-use Rotiphorese 10 × SDS-PAGE buffer was obtained from Roth. It contains 1.92 M 

glycine, 0.25 M Tris, and 1% (w/v) SDS.  
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SD Buffer I  

      final concentration  

Tris, pH 10.4     25 mM  

Methanol      10% (v/v)  

 

SD Buffer II  

      final concentration  

Tris, pH 10.4      300 mM  

Methanol      10% (v/v)  

 

SD Buffer III 

       final concentration  

Tris, pH 9.4      25 mM  

Glycine      40 mM  

Methanol      10% (v/v)  

 

10 × TBST Buffer 

       final concentration  

Tris-HCl, pH 7.6     400 mM  

NaCl       2.75 M  

Tween 20     1% 

Prior to use, 10 x TBST buffer was dissolved to 1 x TBST buffer with distilled water. 

 

ECL Solution I  

      final concentration 

Tris-HCl, pH 8.5     0.1 M 

Luminol       2.5 mM  

Coumaric acid       0.4 mM 

 

ECL Solution II  

      final concentration 

Tris-HCl , pH 8.5     0.1 M   

Hydrogen peroxide      0.019% 

ddH2O     

 

Stripping Buffer  
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      final concentration  

Tris-HCl, pH 6.7     62.5 mM  

SDS        2% (w/v)  

Before use, 345 µl β-mercaptoethanol per 50 ml buffer was added.  

 

10 × Kinase Buffer  

       final concentration  

HEPES, pH 7.4     250 mM  

NaCl        1.5 M  

β-Glycerophosphate      250 mM  

 

GST Elution Buffer  

      final concentration 

Tris-HCl, pH 7.6     25 mM 

Glycerol     10% 

 Glutathione     20 mM 

  

IC Transfection Buffer 

      final concentration  

HEPES, pH 7.1     25 mM 

NaCl       140 mM 

CaCl2       125 mM 

(filter sterilized)  

 

Biosensor Buffer  

      final concentration 

HEPES, pH 7.4     10 mM 

NaCl       150 mM 

NP-40      0.01% 
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2.3.  Methods  

2.3.1. Microbiological Methods  

2.3.1.1. Preparation of Chemocompetent Bacteria (CaCl2 Method)  

Bacteria were streaked on a LB-Agar plate and incubated for 24 h in 37°C. The next day, 10–12 

colonies were picked, inoculated in 250 ml SOB-medium (2 l Erlenmeyer flask), and left to grow at 

18°C  shaking (180 rpm) until OD600 of 0.6 was reached. Then the culture was cooled down on ice for 

at least 10 min. The following procedures were carried out at 4°C in pre-cooled sterile tubes. The cells 

were transferred into 50 ml tubes and harvested in a centrifuge (Megafuge 1.0) at 1900 g for 10 min. 

The supernatant was discarded. The bacterial pellets were resuspended thoroughly in 80 ml ice cold 

TB-buffer and incubated on ice for 10 min. Then the cells were harvested as before and the bacterial 

pellets were resuspended carefully in 20 ml ice cold TB-buffer. The bacteria suspension was 

supplemented with 1.4 ml DMSO (7%, finale concentration) and left on ice for 10 min. The 

suspension was aliquoted in 100 to 200 μl samples, shock-frozen, and stored at –80°C.  

2.3.1.2. Transformation of Chemocompetent Bacteria  

Chemocompetent bacteria were thawed on ice for 20 min. A maximum of 20 ng ligated DNA or 

purified plasmid DNA were added to 100 μl cells in a pre-cooled 1.5 ml microfuge tube. The bacteria 

were mixed carefully and kept on ice for 30 min. Then the bacteria were heat-shocked at 42°C for 45 

sec and 750 µl pre-warmed antibiotic-free LB-medium was added. The cells were aerate at 37°C for 1 

h. Selection of transformed bacteria was done by plating the hole bacterial suspension on antibiotic 

containing LB-agar plates. Only bacteria that have taken up a plasmid containing an antibiotic 

resistance cassette can grow on the LB-agar plates. Single colonies were expanded in LB-medium and 

used for DNA preparation.  

2.3.2. Molecular Biological Methods  

2.3.2.1. Amplification of DNA by PCR  

The polymerase chain reaction (PCR) is a method for an oligonucleotide primer directed 

enzymatic amplification of a specific DNA sequence. This technique is capable of amplifying a 

sequence up to 106-fold from ng amounts of template DNA within a large background of irrelevant 

sequences (e.g. from total genomic DNA). A prerequisite for amplifying a sequence through PCR is to 

know unique sequences flanking the DNA segment of interest, so that applicable oligonucleotides can 

be designed. The PCR product is amplified from the DNA template using a heat-stable DNA 

polymerase and an automated thermal cycler to put the reaction through cycles of denaturation, 

annealing of primers and polymerization.  
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Recommendations for Choosing Oligonucleotide Primers  

The first primer is complementary to the sense DNA strand upstream and the second primer is 

complementary to the antisense strand downstream of the sequence to be amplified. Both primers 

should be 20–30 bp long and ideally contain a sequence with a relatively balanced GC vs. AT content 

(e.g. 45–55% GC) and no long stretches of any one base. Caution should also be taken that the two 

oligonucleotides of the primer pair do not contain complementary structures >2 bp to avoid “primer 

dimer” formation resulting from annealing of the two primers (especially at their 3'-ends). The melting 

temperature (Tm) of flanking primers should not differ by more than 5°C. Therefore, the GC content 

and length must be chosen accordingly. It can be calculated using the following formula:  

 

Tm = 69.3 + 41 × (nC + nG) / S – 650 / S  

nC, number of cytosine nucleotides in the primer  

nG, number of guanine nucleotides in the primer  

S, number of all nucleotides in the primer  

 

Procedure for Polymerase Chain Reaction  

The PCR reaction was performed in volume of 50 μl. The following components were mixed on ice: 

 

      for 50 µl reaction volume  final concentration 

Sterile ddH2O      29 µl  

Reaction buffer (5 × HF-buffer)   10 µl     1 ×  

dNTPs (2 mM)      5 µl     200 µM  

Primer 1 (10 pmol/l)     2.5 µl     0.5 µM  

Primer 2 (10 pmol/l)     2.5µ      0.5 µM  

Plasmid DNA (10 ng/l)     0.5 µl     0.1 ng/µl  

Phusion DNA polymerase (2 U/l)   0.5 µl     0.02 U/µl  

 

Cycling Conditions  

The PCR machine must be programmed for the specific reaction conditions desired. Each cycle in the 

polymerase chain reaction involves three steps (denaturation, primer annealing, polymerization), and 

the products are amplified by performing many cycles one after the other with the help of the 

automated thermal cycler.  

 

Initial denaturation step:  

The initial denaturation was done at 98°C for 30 sec.  

Denaturation step:  

The denaturation was done at 98°C for 10 sec.  
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Primer annealing step:  

The primers longer than 20 nucleotides were annealed for 30 sec at a Tm +3°C. For primers shorter 

than 20 nucleotides an annealing temperature equal to the Tm was used. If nonspecific PCR products 

were obtained, the first 5 cycles were performed at the annealing temperature equal to the Tm or Tm 

+3°C, whereas the remaining cycles were done at the temperature of 68°C.  

Extending step:  

The extending step was performed at 72°C. The extension time of 15 sec per 1 kb was used.  

Number of cycles:  

The number of PCR cycles depends on the amount of template DNA in the reaction mix and on the 

expected yield of the PCR product. As the initial quantity of template DNA used in this work was 

high, 16 cycles were sufficient.  

Final extending step:  

After the last cycle, the samples were incubated at 72°C for 7 min to fill-in the protruding ends of 

newly synthesized PCR products. After amplification, the products were separated accordingly to size 

by agarose gel electrophoresis and were directly visualized after staining with ethidium bromide.  

2.3.2.2. Agarose Gel Electrophoresis of DNA  

Agarose gel electrophoresis is a method for separating and visualizing DNA fragments. The 

fragments are separated by charge and size by forcing them to move through an agarose gel matrix, 

which is subjected to an electric field. The electric field is generated by applying potential (voltage) 

across an electrolytic solution (buffer). To pour a gel, 1 g agarose powder was mixed with 100 ml 

electrophoresis buffer (TBE-buffer) to obtain a final concentration of 1% and heated in a microwave 

oven until completely melted. After cooling the solution to about 60°C, ethidium bromide was added 

(0.5 g/ml, final concentration) to facilitate visualization of DNA after electrophoresis. Then the 

solution was poured into a casting tray containing a sample comb and allowed to solidify at room 

temperature. After the gel has solidified, the comb was removed. The gel, still in its plastic tray, was 

inserted horizontally into the electrophoresis chamber and covered with TBE-buffer. Samples, 

containing DNA mixed with 6 × DNA gel loading buffer, were filled into the sample wells. DNA 

electrophoresis was performed at 120 V until adequate separation of DNA fragments has occurred. 

The DNA fragments were visualized under UV-light.  

2.3.2.3. Isolation of DNA Fragments from an Agarose Gel  

DNA fragments were isolated from agarose gel using the QIAquick gel extraction kit according to 

the manufacturer‟s protocol. 
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2.3.2.4. Purification of DNA Fragments  

DNA fragments were purified using QIAquick PCR purification kit according to the 

manufacturer‟s protocol.  

2.3.2.5. Digestion of DNA with Restriction Endonucleases  

The following components were mixed in a 1.5 ml microfuge tube on ice: 

       for 20 µl  

Nuclease-free ddH2O      16 µl  

10 × Recommended buffer for restriction enzyme  2 µl  

Substrate DNA (in ddH2O)     1 µl (~ 1 g)  

Restriction enzyme      0.2–0.5 µl (2–5 U)  

The restriction reaction was incubated at the optimum temperature for 1–16 h. 

2.3.2.6. DNA Ligation  

The ligation reaction was performed in a total volume of 20 µl. The plasmid and/or DNA fragment 

was prepared by cutting it with suitable restriction enzymes, which was followed by purification. To 

ligate an insert DNA molecule into a plasmid a 3:1 molar ratio of insert to vector was used.  

 

Following components were mixed in a 1.5 ml microfuge tube on ice:  

      for 20µ l 

 Nuclease-free ddH2O     add to 16 µl  

10 × T4 DNA ligase buffer    2 µl  

Purified linearized vector (in ddH2O)   25 ng  

Purified linearized insert (in ddH2O)   75 ng  

T4 DNA ligase (400 U/µl)    2 µl (800 U)  

The reaction was incubated at RT for 2 h or at 16°C overnight. To inactivate the enzyme the mixture 

was heated at 65°C for 10 min.  

2.3.2.7. Purification of Plasmid DNA  

Plasmid DNA was purified by using the QIAprep spin miniprep kit, the QIAGEN plasmid midi kit 

or the QIAGEN plasmid maxi kit according to the manufacturer‟s protocols.  

2.3.2.8. Determination of DNA Concentration and Quality  

The quality as well as the concentration of a DNA sample was determined by a Spectrophotometer 

(NanoDrop NP-1000, Peqlab) according to the manufacturer`s instruction. 
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2.3.2.9. Site-Directed Mutagenesis  

Site-specific mutations were introduced using the QuikChange sitedirected mutagenesis kit 

(Stratagene) according to the operating manual. 

2.3.3. Biochemical Methods  

2.3.3.1. Preparation of Cell Lysates  

Preparation of cell lysates was performed on ice.  

Lysis of Adherent Mammalian Cells 

 Cells were washed twice with PBS buffer (2 ml for 35 mm diameter Petri dish), scraped off in ice 

cold AC lysis buffer (1 ml for 10 cm diameter Petri dish) containing 1% NP-40, transferred into an 

microtube and lysed by rotating at 4°C for 45 min. The lysate were used for Western blotting.  

Lysis of Sf9 Insect Cells  

 Baculovirus-infected Sf9 cells were transferred into 15 ml tubes, pelleted at 200 g (Megafuge 

1.0R) for 2 min and washed with 3 ml PBS buffer. The pelleted cells were resuspended in 1 ml PBS 

and transferred into 1.5 ml microfuge tubes. The cell suspension was centrifuged at 200 g for 3 min 

and the supernatant was discarded. The cell pellet was resuspended in 1 ml IC lysis buffer containing 

0.75% NP-40 and incubated at 4°C for 45 min with gentle rotation. Every 5 min, the cell suspension 

was mixed by vortexing for few seconds. The cell lysate was then clarified by centrifuging at 21,000 g 

for 10 min at 4°C. The supernatant was transferred into a clean microfuge tube, and the pellet 

containing cell nuclei and membranes was discarded. The lysate was used for protein purification. 

2.3.3.2. Determination of Protein Concentration (Bradford Assay)  

1 ml of Bradford reagent (ready-to-use Coomassie Blue G-250 based reagent, Pierce) was mixed 

with 10 µl of the protein solution (cell lysate). After 5 min of incubation, the extinction was measured 

at 595 nm versus respective controls in a photometer. Absolute values were determined by correlation 

to known amounts of BSA.  

2.3.3.3. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)  

Proteins can be easily separated on the basis of mass by electrophoresis in a polyacrylamide gel 

under denaturing conditions. Proteins in lysate or eluate samples were denaturated in 4 × SDS-loading 

buffer and then heated at 100°C for 7 min. SDS is an anionic detergent that disrupts nearly all non-

covalent interactions in native proteins. β-Mercaptoethanol is also included in the sample buffer to 

reduce disulfide bonds. The SDS complexes with the denatured proteins were electrophoresed in a 

polyacrylamide gel. Vertical gels are set in between two glass plates with an internal thickness of 0.8-

1.5 mm between the two plates. In this chamber, the acrylamide mix was poured and left to 

polymerize for at least 30 min at RT. The gels are composed of two layers: a 6–15% separating gel 
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(pH 8.8) that separates the proteins according to size and a lower percentage (5%) stacking gel (pH 

6.8) that insures the proteins simultaneous entry into the separating gel at the same height.  

 

     for 50 ml separating gel  for 10 ml stacking gel  

ddH2O      26.5-11.4 ml    3.09 ml  

30% Acrylamide mix   10-25 ml   1.7 ml  

1.5 M Tris-HCl, pH 8.8   12.5 ml    - 

250 mM Tris pH 6.8   -    5 ml 

10% SDS    0.5 ml    0.1 ml 

10% APS     0.5 ml    0.1 ml 

TEMED     0.04-0.02 ml   0.01 ml 

 

The separating gel was poured in between two glass plates, leaving a space of about 1cm plus the 

length of the teeth of the comb. 1-Butanol was added to the surface of the gel to exclude air. After the 

separating gel was polymerized, the 1-butanol was removed. The stacking gel was poured on top of 

the separating gel, the comb inserted and allowed to polymerize. The samples were loaded into the 

wells of the gel and electrophoresis buffer (SDS-PAGE buffer) was added to the chamber. A cover 

was then placed over the gel chamber and 160 V was applied.  

2.3.3.4. Immunoblotting  

Proteins were separated using gel electrophoresis under denaturing conditions. In order to make 

the proteins accessible to antibody detection, they were moved from within the gel onto a membrane 

made of nitrocellulose using a semidry electroblotter. The gel was removed from its glass cassette and 

any stacking gel was trimmed away. The gel was immersed in SD buffer 3 for 15 min. The 

nitrocellulose membrane was equilibrated in SD buffer I for at least 5 min. Two pieces of filter paper 

soaked in SD buffer II were placed in the center of the anode electrode plate. One piece of filter paper 

soaked in SD buffer I were placed on top of the first two sheets. The nitrocellulose membrane was 

placed on top of the filter papers. The gel was placed on top of the membrane. Three pieces of filter 

paper soaked in SD buffer 3 were placed on top of the membrane. To ensure an even transfer, air 

bubbles between layers were removed by carefully rolling a pipette or stirring rod over the surface of 

each layer in the stack. 

The protein transfer was performed at 2.5 mA/cm
2
 for 2 h. For immunodetection, the membrane 

was incubated in TBST buffer and 5% milk and 1% BSA (unless otherwise indicated) for 1 h at RT or 

overnight at 4°C on a shaker. Then the membrane was washed three times with TBST buffer by 

vigorous shaking, each time for 5 min. The first antibody was diluted in TBST buffer (unless 

otherwise indicated) and added to the membrane. The membrane was incubated with the first antibody 

overnight at 4°C on a shaker. After incubation, the membrane was washed again three times with 
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TBST buffer by vigorous shaking, each time for 5 min. The appropriate peroxidase-conjugated 

secondary antibody was dilute in TBST buffer (or according to manufacturers' instructions) and added 

to the membrane. The membrane was incubated with the secondary antibody at RT for 1 h and washed 

three times with TBST buffer by vigorous shaking, each time for 5 min. This step was followed by the 

standard enhanced chemiluminescence reaction (ECL system).The membrane was incubated in a 1:1 

mixture of ECL solutions I and II. This reaction is based on a peroxidase-catalyzed oxidation of 

luminol, which leads to the emission of light photons that can be detected on X-ray film. 

2.3.3.5. Immunoblot Stripping  

After the enhanced chemiluminescence reaction, the membrane was washed with TBST buffer for 

5 min by vigorous shaking and subsequently incubated in stripping buffer for 1 h at 60°C. Every 20 

min the membrane was vigorously shaken for 5 sec. Then the membrane was washed three times with 

TBST buffer by vigorous shaking, each time for 10 min. The membrane was then reprobed as 

described above.  

2.3.3.6. Kinase Activity Assay  

To measure activity of purified RAF kinases as well as the RAF kinase activity in crude cellular 

extracts, the ability of these kinases to phosphorylate substrates such as MEK or BAD was analyzed. 

In respect of MEK, the phosphorylation signal was amplified by detection of its unique substrate ERK. 

The kinase reaction was performed in a total volume of 50 µl. The reaction mixture for the kinase 

activity assay was prepared on ice as indicated below:  

      for 50 µl  

ddH2O       add to 50 µl  

10 x kinase buffer     5 µl  

MgCl2 (1 M)      0.5 µl  

DTT (100 mM)     0.5 µl  

ATP (10 mM)      5 µl  

Na3VO4 (100 mM)     0.5 µl  

Purified RAF kinase or cell lysate   1–10 µl  

 

Purified recombinant MEK and ERK2 

(1.5 µg/µl, respectively)    3 and 2 µl, respectively  

 or 

Purified recombinant BAD (1 µg/µl)  8 µl 

 

The appropriate amount of the reaction mixture was added to the RAF kinase sample, still on ice, 

mixed well and transferred to the thermoshaker for microfuge tubes. The reaction mixture was 

incubated at 30°C for 30 min at 700 rpm. The assay was terminated by adding 20 µl 4 × SDS-loading 
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buffer. The kinase reaction was monitored by Western blotting analysis with a monoclonal anti-

phospho-ERK1/2 antibody that recognizes phosphorylated ERK. 

2.3.3.7. Purification of Proteins 

GST-hBAD, GST-hBADΔN131, GST-14-3-3 and GST-Bcl-XL were expressed in E. coli using 

pGEX-2T vector and purified by glutathione-Sepharose affinity chromatography as described 

(Hekman et al. 2006). 14-3-3 proteins and Bcl-XL were released from GST by thrombin cleavage. 

Expression and purification of RAF kinases, PAK1, Akt/PKB, 14-3-3 proteins and Bcl-XL from Sf9 

insect cells were performed as described previously (Fischer et al. 2009; Hekman et al. 2006; Hekman 

et al. 2002; Hekman et al. 2004). For expression and purification of phosphorylated His-hBAD, Sf9 

cells were infected with baculoviruses at the multiplicity of infection of 5 and incubated shaking for 48 

h at 27°C in the dark. The Sf9 cell pellet (2×10
8
 cells) was lysed in 10 ml lysis buffer containing 50 

mM sodium phosphate, pH 8.0, 150 mM NaCl, 10 mM sodium pyrophosphate, 25 mM NaF, 25 mM 

-glycerophosphate, 10% glycerol, 0.5% NP-40 and a cocktail of standard protease inhibitors for 30 

min with gentle rotation at 4°C. The cell lysate was centrifuged at 27,000 g for 30 min at 4°C. The 

supernatant (10 ml, containing His-hBAD) was incubated with 0.5 ml Ni
2+

-nitrilotriacetic acid-agarose 

beads for 2 h at 4°C with rotation. After incubation, beads were washed 3 times with lysis buffer 

containing 0.2% NP-40, 300 mM NaCl and 20 mM imidazole and hBAD was eluted with an imidazole 

step gradient. For lipid bilayer experiments, GST-hBAD was ancillary purified by ion exchange 

chromatography using an ÄKTA-System (GE Healthcare). The purity of the proteins was evaluated by 

SDS-PAGE and staining with Coomassie Blue. For some approaches, phosphorylated His-hBAD was 

separated from the non-phosphorylated fraction by incubation with recombinant GST-14-3-3  on 

glutathione-Sepharose beads (300 µl) for 40 min at room temperature. After washing with 10 mM 

Hepes, pH 7.4, 150 mM NaCl and 0.01% NP-40, the phosphorylated hBAD fraction was released 

from the complex by 1% Empigen.   

2.3.4. Biophysical Methods 

2.3.4.1. Surface Plasmon Resonance (SPR) Technique  

Biosensor measurements presented in this work were carried out either on a BIAcore-X or 

BIAcore-J system at 25°C using Pioneer L1 sensor chip (Biacore AB, Uppsala, Sweden). To monitor 

interaction between two protein components, usually GST- and his-tagged purified components were 

used. For that purpose, the biosensor chip CM5 was first loaded with an anti-GST antibody using 

covalent derivatization. Purified and GST-tagged protein was injected in BIAsensor buffer (10 mM 

HEPES, pH 7.4, 150 mM NaCl, and 0.01% NP-40) at a flow rate of 10 μl/min. Next, the purified his-

tagged interacting partner was injected at increasing concentrations. The values for unspecific binding 

measured in the reference cell were subtracted. To measure the competition between the binding of a 

full length protein and peptides to the same ligand, the GST-tagged ligand was first captured to the 
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anti-GST antibody. Next, the purified protein was injected in the absence and presence of increasing 

concentrations of the peptide and the competition between the full length protein and the peptide of 

interest for binding was monitored.  

To determine the interaction between different BAD segments in the presence of lipid vesicles, 

large unilamellar vesicles consisting of 47% phosphatidylcholine, 28% phosphatidylethanolamine, 9% 

phosphatidylserine, 9% phosphatidylinositol, and 7% cardiolipin were prepared. Therefore, a 

LiposoFast extrusion apparatus (Avestin Inc., Canada) was used as described (Hekman et al. 2006). 

To this end, the surface of the Pioneer L1 sensor chips was first cleaned with 20 mM CHAPS followed 

by the injection of mitochondrial liposomes (0.4 mM lipid concentration) at a flow rate of 10 µl/min in 

10 mM Hepes, pH 7.4, 150 mM NaCl, and 0.1 mM DTT which resulted in a deposition of 

approximately 5-6000 RU. Next, proteins were immobilized at a flow rate of 10 l/min resulting in 

approximately 1000-2000 RU of bound protein. Following injection of the analytes, the association-

dissociation curves were monitored. To monitor the dissociation of Bcl-XL/GST-BAD complex 

induced by BAD phosphorylation, the biosensor chip was treated with active C-RAF in the presence 

of 0.5 mM ATP. The modified biosensor buffer contained 5 mM MgCl2 and 0.5 mM DTT. The 

working temperature was set to 30°C. At the end of the binding assays, the sensor chip surface was 

regenerated by injection of 20 mM CHAPS.  

The evaluation of kinetic parameters was performed by non-linear fitting of binding data using the 

BiaEvaluation 2.1 software. The apparent association (ka) and dissociation rates constant (kd) were 

evaluated from the differential binding curves (Fc2-Fc1) assuming a A+B=AB association type for the 

protein-protein interaction. The affinity constant KD was calculated from the equation KD = kd/ka.  

2.3.4.2. Mass Spectrometry Analysis of BAD Phosphorylation  

Purified His-hBAD samples (about 100 pmol of each) were applied to SDS-PAGE. Proteins were 

visualized by Coomassie Blue staining applying the method of Neuhoff et al. (Neuhoff et al. 1988). 

In-gel reduction, acetamidation, tryptic and/or GluC digestion were done according to Wilm et al. 

(Wilm et al. 1996). After elution of the peptides, solutions were desalted using Millipore C18 ZipTip 

according to the manufacturer‟s instructions. ESI-MS was performed on a Bruker APEX II FT-ICR 

mass spectrometer (Bruker Daltonic GmbH Bremen) equipped with an Apollo-Nano-ESI ion source in 

positive ion mode.  

To determine the exact positions of phosphates within the peptides, the nano-LC-MS/MS analysis 

was carried out as follows: purified hBAD samples were separated by SDS-PAGE, protein bands were 

excised, washed, and in-gel digested as described (Reinders et al. 2007). Afterwards, generated 

peptides were extracted using 15 µL 0.1% TFA and samples were analyzed by nano-LC-MS/MS on an 

LTQ Orbitrap XL mass analyzer (Thermo Scientific, Dreieich, Germany) coupled to an Ultimate 3000 

(Dionex, Amsterdam, The Netherlands) using multistage activation as described (Zahedi et al. 2008). 



General Experimental Procedures 

 

51 

To this end, peptides were preconcentrated on a PepMap trapping column (100 µm ID, 5 µm particle 

size, 100 Å pore size, 1 cm length, Dionex) and separated on a PepMap nano-LC column (75 µm ID, 3 

µm particle size, 100 Å pore size, 15 cm length, Dionex) at a flow rate of 270 nl/min, using a gradient 

ranging from 5-50% of 86% acetonitrile and 0.1% formic acid. Raw data were transformed into mgf 

format using extract_msn.exe as part of the Bioworks package and generated peak lists were searched 

against an SGD database with concatenated standard protein and BAD sequences (6319 entries) using 

Mascot 2.2. The following search parameters were used: trypsin as protease with a maximum of one 

missed cleavage site, 10 ppm mass tolerance for MS, 0.5 Da for MS/MS, oxidation of Met (+15.99 

Da), and phosphorylation of Ser/Thr/Tyr (+79.96 Da) as variable modifications, and 
13

C was set to 

one. All identified phosphopeptides were manually validated to correct for potentially false 

phosphorylation site assignments. 

2.3.4.3. Circular Dichroism  

Circular Dichroism (CD) measurements were carried out using peptide solutions ranging in 

concentration from 0.1 to 0.2 mg/ml, in 20 mM sodium phosphate buffer, pH 8.0, at 25°C, in the 

presence or absence of 50 µM lipid micelles and/or 1 mM CHAPS. Some samples were supplemented 

with 30% of TFE. Samples containing lipids were sonicated for 5 min prior to analysis. Measurements 

were taken using an Jasco J-810 Circular Dichroism spectrophotometer using Jasco Spectra Manager 

data processing software.  

2.3.4.4. NMR Spectrometry  

NMR measurements were taken at 298 K on a BrukerAvance 600 MHz spectrometer. For that 

purpose, peptides were dissolved in H2O containing 10% D2O in the concentration range between 0.5 

and 2 mM. 

2.3.4.5. Lipid Bilayer Experiments  

The channel-forming ability of proteins was assessed in artificial lipid bilayer membranes using a 

teflon chamber as described previously (Benz 1994; Benz et al. 1992). Briefly, to form the membranes 

a 1% (w/v) solution of diphytanoylphosphatidylcholine (DiphPC) (Avanti Polar Lipids) in n-decane 

was used. Purified hBAD peptides (phosphorylated and non-phosphotylated), purified hBAD proteins 

(phosphorylated and non-phosphotylated) or Bcl-XL were injected alone or combined into the 1 M 

KCl buffer in both compartments of the chamber and the single-channel conductance was measured 

after application of a fixed membrane potential. To test the effects of 14-3-3 proteins on pore-forming 

abilities of hBAD, purified heterodimeric 14-3-3 proteins (14-3-3 /14-3-3ε) were incubated with 

phosphorylated hBAD for 30 min at RT prior to channel formation. To examine the geometry of 

channels, the single channel conductances G were measured in the presence of different sized 

nonelectrolytes at a concentration of 20% (w/v) in the bathing solution. 
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2.3.5. Cell Biology Methods 

2.3.5.1. Cultivation and Passaging of Eukaryotic Cells 

Cultivation and Passaging of Mammalian Adherent Cells  

HeLa 229, HEK-293, MEL-Juso, DX3, SK-MEL-28, A375 and NIH3T3 cells were cultivated in 

DMEM (Invitrogen) supplemented with 10% fetal calf serum, 2 mM L-glutamine, and 100 units/ml 

penicillin/streptomycin. For the cell lines PC3 and HCT 116, we used RPMI (Invitrogen) and Mc 

Coy´s 5a medium (Invitrogen), respectively, that were supplemented with 10% fetal bovine serum, 2 

mM L-glutamine, and 100 units/ml penicillin/streptomycin. All cells were stored in humidified air 

with 5% CO2 at 37°C. For passaging, cells were washed once with PBS after removing the medium 

and 2 ml trypsin/EDTA solution was added. After an incubation of maximal 5 min at 37°C cells were 

detached from culture plates via throbbing and trypsin was inactivated by addition of serum-

containing media. An appropriate volume of cell suspension was then aliquoted into freshly prepared 

T-flasks with media.  

 

Cultivation and Passaging of Insect Cells  

Sf9 insect cells grow well in suspension or monolayer culture. They exhibit a doubling time of 

approximately 20 h at 27°C. They require 10% FCS in an appropriate medium and constant 

temperature but they do not require CO2, since their growth media are buffered at a pH of 

approximately 6.2. As Sf9 cells adhere relatively loosely to tissue culture vessels, they can be 

conveniently subcultured without the use of trypsin. Sf9 cells of monolayer culture are normally 

subcultured two or three times per week. Therefore, resuspended cells are diluted 4- to 8-fold in fresh 

medium. The insect cells do not become contact-inhibited. Thus, they should be subcultured at 90% 

confluency or below.  

For protein expression, Sf9 cells were grown in suspension. The cells were seeded at density of 

approximately 2.5 × 10
5
 cells per ml in to a total volume of 250 ml of complete medium in a 1000 ml 

spinner flask. Subsequently, the cells were incubated at 27°C with constant stirring at 50–60 rpm until 

the cell density reaches approximately 2 × 10
6
 cells/ml. Then the cells were subcultured by removing 

200 ml of the suspension and replacement of 200 ml of fresh complete medium, reaching a cell density 

of approximately 0.4 ×10
6
 cells/ml.  

2.3.5.2. Cell Counting  

Trypsinized cells were counted by using a hemocytometer (Bürker´s cell counting chamber). To 

distinguish living and dead cells, Trypan blue staining was used. Trypan blue is excluded from viable 

cells, so the blue cells are dead ones, and the white colored cells are alive. A small amount of cell 

suspension was diluted 2:1 with Trypan blue and incubated for 5 min.  
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2.3.5.3. Freezing, Long-Term Storage and Thawing of Cells  

For long-term storage, eukaryotic cells were frozen down in their appropriate medium containing 

10% DMSO and 20% serum. Trypsinized cells were harvested by centrifuging at 200 × g for 10 min at 

RT. The cell pellet was resuspended in the freezing medium to achieve a final concentration of 2-4 × 

10
6
 cells/ml and 1 ml of this cell suspension was aliquoted into each cryovial. Before transferring into 

liquid nitrogen, the cells were at first incubated at -20°C for 2 h followed by overnight incubation at -

80°C. For thawing, cells were hand warmed or placed in a 37°C water bath, until all ice clusters were 

melted. Then 1 ml serum was added to the cryovial and the cell suspension was transferred into the 15 

ml tube. The cells were pelleted at ca. 200 × g for 10 min at RT. After removal of supernatant cells 

were carefully resuspended in their appropriate medium and taken into general tissue culture.  

2.3.5.4. Transfection of Mammalian Cells   

Mammalian cells were seeded at 3 x 10
5
 cells/well in a 6-well plate and grown for 24 h before 

transfection by jetPEI (Polyplus). 16 h post-transfection, some preparations were washed with PBS 

buffer and cultivated for the indicated time in medium supplemented with 0.1-0,3% serum with or 

without addition of specific kinase inhibitors. The specific kinase inhibitors PD98059, U0126, 

PD0325901, CI1040, Wortmannin, LY294002, and BAY 43-9006 were dissolved in DMSO. 

Forskolin and isobutylmethylxanthine (IBMX) were also dissolved in DMSO whearas H-89 was 

dissolved in ethanol. 

Prior to harvest, cells were washed once with PBS and lysed by the direct addition of SDS loading 

buffer or in MC lysis buffer containing 1% Nonidet P-40.  

2.3.5.5. Infection of Insect Cells  

Transfection of Insect Cells with Baculovirus DNA using Calcium Phosphate  

Approximately 1 × 10
6
 Sf9 cells were seeded (from a long-phase culture) per 35 mm tissue culture 

dish in 2 ml of complete medium and allowed to attach to the surface for 1 h at 27°C. Subsequentliy, 

the medium was aspirated and replaced with 1 ml fresh medium. 200 ng linearized baculovirus DNA 

and 2 µg recombinant transfer vector were diluted in 1ml of the IC transfection buffer. The mixture 

was added drop-wise to the cells wile swirling to the medium in the dish. The plate was incubated 5 h 

at 27°C without shaking. After this incubation, the medium was aspirated and the cells were washed 

with 2 ml of complete medium. Finally, 2 ml of complete medium were added to the cells and the cells 

were incubated at 27°C for 4–5 days without shaking. Subsequently, the medium from the plate was 

transferred to a sterile centrifuge tube and centrifuged at 1000 g for 5 min to clarify the virus-

containing supernatant fluid. The resultant virus stock was stored at 4°C prior to plaque assay or 

amplification.  
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Plaque Assay  

A suspension culture of Sf9 cells was grown to a density of at most 3 × 10
6
. This culture was 

diluted to a density of 5-6 × 10
5
. 2 ml of this cell suspension were transferred into each well of a 6-

well culture dish. The cells were left to settle to bottom of the plate for 1 h at RT. Subsequently, the 

monolayers were observed under the inverted microscope to confirm cell attachment and 50% 

confluence. Meanwhile, an eight-log serial dilution of the harvested viral supernatant was produced by 

sequentially diluting 0.5 ml of the previous dilution in 4.5 ml of complete medium. Eight tubes 

containing each of a 10
-1

 to 10
-8

 dilution of the original virus stock were prepared. The supernatant 

from each well was removed and immediately replaced with 1 ml of the respective virus dilution. The 

plate was incubated for 1 h at RT. 30 ml of the complete medium (incubated at 40°C in a water bath 

before use) and 10 ml of a 4% liquid agarose gel (incubated at 70°C in a water bath before use) were 

mixed in a bottle. The virus liquid was removed from the wells and replaced with 2 ml of the diluted 

agarose. The plates were incubated at RT for 10 to 20 min to allow gel to harden. Then the plates were 

incubated at 27°C in a humidified incubator for 4 to 10 days. Recombinant virus produces milky/gray 

plaques of slight contrast. The plates were monitored daily until the number of plaques counted did not 

change for two consecutive days. To stain the plates, an overlay agarose solution was prepared: 1/100 

volume of the 1% Neutral Red solution was added to the molten agarose (e.g. 100 µl Neutral Red to 

10 ml agarose). 1 ml of the overlay agarose was then added to each well and the plate was incubated at 

27°C for at least 4 h. The titer (plaque forming unit (pfu)/ml) was calculated by the following formula:  

Pfu/ml (of original stock) = number of plaques per ml of inoculum × (dilution factor)
-1

  

Preparation of Clonal Virus Stocks  

In wells containing just a few plaques, well-isolated ones were marked by circling with a pen on 

the underside of the plate. About 10 of the marked plaques were picked by pushing a Pasteur pipette 

through the agarose into the plaque, and gently sucking an agarose plug into the pipette tip. Each plug 

was transferred into 1 ml of complete medium in a separate microcentrifuge tube. The medium was 

vortexed gently and left overnight at 4°C to elute the virus particle from the agarose. Subsequently, 35 

mm wells were seeded with 5 × 10
5
 Sf9 cells in 2 ml of complete medium. The cells were incubated 

for 1 h at 27°C to allow the cells to settle and attach. Afterwards, the medium was aspirated and 100 µl 

eluted virus suspension was added to the middle of the dish. After incubation of the cells for 1 h at R 1 

ml of complete medium was added. The cells were incubated at 27°C for 3–4 days. Thereafer, the 

medium was transferred to the sterile centrifuge tube and centrifuged at 100 g for 5 min to clarify the 

virus containing supernatant fluid. The resultant virus stock was stored at 4°C prior to plaque assay or 

amplification. Expression of the desired recombinant protein was confirmed by Western blotting 

analysis of the cell lysate. 
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Estimation of Viral Titre by Cell-Lysis Assay 

 Sf9 cells were harvested from exponentially growing culture, sedimented at 1000 g for 5 min at 

RT and resuspended gently at a density of 0.25 × 10
6
 cells/ml in complete medium. A sample of viral 

stock was serially diluted in sterile cryovials, making dilutions (200 µl volume) in complete medium 

from 10
-1

 to 10
-10

. One volume of cell suspension was added to each virus dilution and mixed gently. 

Triplicate 10 µl aliquots of each mixture were added to a well of a Nunc HLA plate resulting in approx. 

50% confluency after setting. To maintain humidity within the plate, medium was added to the empty 

wells or a drop (100 µl) in each corner. The lid of the plate was replaced and the plate was placed in a 

sealed humid box inside of a 27°C incubator. The cells were incubated at 27°C until no further 

increase in cell lysis was observed (approximately 6 days). At the end of the experiment, the viral titre 

was approximated using the following approach: Consider the situation where there is lysis in all wells 

of dilution 10
-(x-1)

, but not in all of 10
-x

. For this to occur, there must be less than 1 virus particle in 10 

µl of the 10
-x

 dilution, but more than 0.1 particles. Correspondingly, there must be less than 1 x 10
x
 

virions in 10 µl of the mixture of original virus stock plus cell suspension, but more than 1 x 10
(x-1)

. It 

follows, that there are less than 2 × 10
x
 particles in 10 µl of the original virus stock, and more than 2 × 

10
(x-1)

. Therefore, the titre lies between 2 × 10
(x+1)

 and 2 × 10
(x+2)

 virus particles/ml.  

Amplification and Storage of Recombinant Baculovirus  

Virus containing supernatant fluid was transferred to sterile tubes. The fluid was clarified by 

centrifugation at 1000 g for 5 min at RT. The clarified medium was transferred to fresh tubes and the 

titre was determined. To amplify the virus, a monolayer exponential culture of Sf9 cells was infected 

at a ratio of infective virion to Sf9 cells (MOI) of 0.01–0.1. The virus was harvested after 72–120 h. 

This resulted in an at least 100-fold amplification of the virion. The virus was stored at 4°C in the 

dark. To estimate the viral inoculum required the following formula was used:  

Inoculum required (ml) = (total number of cells) × (MOI in pfu/ml) / (viral titer of inoculum in 

pfu/ml). 

2.3.5.6. siRNA Transfection  

The function of cellular proteins can be investigated by the delivery of small interfering RNAs 

(siRNAs) into cells, which then leads to the degradation of respective complementary mRNA 

transcripts (Elbashir et al. 2001). In order to deplete host cells of specific proteins, siRNA transfection 

was performed with Lipofectamine 2000. One day before transfection, cells were seeded into 12‐well 

plates to gain 70% confluency. 20 pmol siRNAs were incubated in 200 μl OptiMEM transfection 

medium containing 2 μl Lipofectamine 2000 for 25 min at RT before dropwise addition to each well. 

For cotransfecting plasmid DNA and siRNA, 20 pmol siRNA as well as 400 ng plasmid DNA were 

incubated in 200 µl OptiMEM transfection medium containing 3 µl Lipofectamine for 25 min at RT 

before dropwise addition to each well.  

3 h post transfection, 600 µl fresh cell cultivation medium was added to each well. Two days after 
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transfection, cells were harvested for analyses as indicated. 

2.3.5.7. Cell Survival Assay  

To examine cell survival, cells were transiently transfected in triplicates. 16 h post-transfection, 

cells were washed twice with PBS and grown for additional 30 h in medium supplemented with 0.1% 

serum. Subsequently, cell viability was assessed by Trypan blue staining.  

2.3.5.8. Colony Yield Assay  

NIH 3T3 cells were transfected with the indicated plasmids. One day after transfection, cells were 

splitted and around 50 cells of each set of transfection were seeded in 6 cm dishes. Colony assays were 

performed in triplicates by scoring number of colonies (consisting of at least 20 cells) in the dishes 

grown for 14-18 days with appropriate antibiotic selection (450 g/ml neomycin and 6 g/ml 

puromycin, Calbiochem). To visualize the growing colonies, cells were washed with PBS, fixed with 

methanol and adjacent stained with Giemsa dye. 

2.3.5.9. Analysis of Cell Proliferation and Growth Inhibition  

To monitor cell proliferation, HEK-293 and HeLa cells were transiently transfected in triplicates. 

16 h post-transfection, cells were washed twice with PBS and grown in medium supplemented with 

0.3% serum. SK-MEL-28, A375, PC3, HCT 116, MEL-Juso and DX3 cells were incubated with and 

without the indicated kinase inhibitors or transfected with the named siRNAs for 48 h. Cell 

proliferation and growth inhibition were analyzed by photographing and counting of the cells as well 

as by counting living cells by use of Trypan blue in a hemicytometer at different time points (2, 3 and 

6 days following transfection). To visualize cell proliferation, mitochondria of viable cells were 

stained by MitoTracker Deep Red according to manufacturer's instructions and fluorescence intensity 

was measured at 633 nm excitation and 670/30 nm emission by the Typhoon 9200 imager.  
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3. Manuscripts 

 

3.1. Identification of Novel in vivo Phosphorylation Sites of the Human 

Pro-Apoptotic Protein BAD: Pore-Forming Activity of BAD is 

Regulated by Phosphorylation  

 

BAD is a pro-apoptotic member of Bcl-2 family proteins that is regulated by 

phosphorylation in response to survival factors. Although much attention has been devoted to 

the identification of phosphorylation sites in murine BAD, little data are available with respect 

to phosphorylation of human BAD protein. Using mass spectrometry we identified here besides 

the established phosphorylation sites at serines 75, 99 and 118 several novel in vivo 

phosphorylation sites within human BAD (serines 25, 32/34, 97 and 124). Furthermore, we 

investigated the quantitative contribution of BAD targeting kinases in phosphorylating serine 

residues 75, 99 and 118. Our results indicate that RAF kinases represent, besides PKA, PAK and 

Akt/PKB, in vivo BAD phosphorylating kinases. RAF-induced phosphorylation of BAD was 

reduced to control levels using the RAF-inhibitor BAY 43-9006. This phosphorylation was not 

prevented by MEK inhibitors. Consistently, expression of constitutively active RAF suppressed 

apoptosis induced by BAD and the inhibition of colony formation caused by BAD could be 

prevented by RAF. In addition, using surface plasmon resonance technique we analyzed the 

direct consequences of BAD phosphorylation by RAF with respect to association with 14-3-3 and 

Bcl-2/Bcl-XL proteins. Phosphorylation of BAD by active RAF promotes 14-3-3 protein 

association, in which the phosphoserine 99 represented the major binding site. Finally, we show 

here that BAD forms channels in planar bilayer membranes in vitro. This pore-forming capacity 

was dependent on phosphorylation status and interaction with 14-3-3 proteins. Collectively, our 

findings provide new insights into the regulation of BAD function by phosphorylation.  

3.1.1. Introduction 

Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be 

triggered by a variety of physiological and pathological stimuli (Danial and Korsmeyer 2004; Letai 

2006; Reed et al. 2004). This form of cellular suicide is widely observed in nature and is not only 

essential for embryogenesis, immune responses and tissue homeostasis, but is also involved in 

diseases such as tumor development and progression. Bcl-2 family proteins play a pivotal role in 

controlling programmed cell death. The major function of these proteins is to directly modulate outer 

mitochondrial membrane permeability and thereby regulate the release of apoptogenic factors from the 

intermembrane space into the cytoplasm (for recent review see (Youle and Strasser 2008)). On the 
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basis of various structural and functional characteristics, the Bcl-2 family of proteins is divided into 

three subfamilies, including proteins which either inhibit (e.g. Bcl-2, Bcl-XL or Bcl-w) or promote 

programmed cell death (e.g. Bax, Bak or Bok) (Adams and Cory 1998; Gross et al. 1999). A second 

sub-class of pro-apoptotic Bcl-2 family members, the BH3-only proteins, comprises BAD, Bik, Bmf, 

Hrk, Noxa, tBid, Bim and Puma (Youle and Strasser 2008). BH3-only proteins share sequence 

homology only at the BH3 domain. The amphipathic helix formed by the BH3 domain (and 

neighboring residues) associates with a hydrophobic groove of the anti-apoptotic Bcl-2 family 

members (Fesik 2000; Petros et al. 2004). Originally, truncated Bid (tBid) has been reported to 

interact with Bak and Bax (Wei et al. 2000) suggesting that some BH3-only proteins promote 

apoptosis via at least two different mechanisms: inactivating Bcl-2-like proteins by direct binding 

and/or by inducing modification of Bax-like molecules. BAD (Bcl-2 associated death promoter, Bcl-2 

antagonist of cell death) was described to promote apoptosis by forming heterodimers with the pro-

survival proteins Bcl-2 and Bcl-XL, thus, preventing them from binding with Bax (Yang et al. 1995). 

More recently, two major models have been suggested, how BH3-only proteins may induce apoptosis. 

In the direct model, all BH3-only proteins promote cell death by directly binding and inactivating their 

specific anti-death Bcl-2 protein partner (Galonek and Hardwick 2006; Willis et al. 2007). In this 

model the relative killing potency of different BH3-only proteins is based on their affinities for anti-

apoptotic proteins. Thus, the activation of Bax/Bak would be mediated through their release from anti-

apoptotic counterparts. Contrary to this model, Kim et al. (2006) provided support for an alternative 

hierarchy model, in which BH3-only proteins are divided into two distinct subsets. According to this 

model, the inactivator BH3-only proteins, like BAD, Noxa and some others, respond directly to 

survival factors resulting in phosphorylation, 14-3-3 binding and suppression of the pro-apoptotic 

function. In the absence of growth factors, these proteins engage specifically their preferred anti-

apoptotic Bcl-2 proteins. The targeted Bcl-2 proteins then release the other subset of BH3-only 

proteins designated the activators (tBid, Bim and Puma) that in turn bind to and activate Bak and Bax.  

Non-phosphorylated BAD associated with Bcl-2/Bcl-XL is found at the outer mitochondrial 

membrane. Phosphorylation of specific serine residues, Ser-112 and Ser-136 of mouse BAD (mBAD) 

or the corresponding phosphorylation sites Ser-75 and Ser-99 of human BAD (hBAD), results in 

association with 14-3-3 proteins and subsequent relocation of BAD (Hekman et al. 2006; Zha et al. 

1996). Phosphorylation of mBAD at Ser-155 (Ser-118 of hBAD) within its BH3-domain disrupts the 

association with Bcl-2 or Bcl-XL promoting cell survival (Datta et al. 2000). Therefore, the 

phosphorylation status of BAD at these serine residues reflects a checkpoint for cell death or survival. 

Although the C-RAF kinase was the first reported BAD kinase (Wang et al. 1996), its target sites were 

not clearly defined. However, there is a growing body of evidence for direct participation of RAF in 

regulation of apoptosis via BAD (Jin et al. 2005; Panka et al. 2006). In addition, Kebache et al. 

(Kebache et al. 2007) reported recently that the interaction between adaptor protein Grb10 and C-RAF 

is essential for BAD-mediated cell survival. On the other hand, numerous reports suggest that PKA 
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(Harada et al. 1999), Akt/PKB (Datta et al. 1997), PAK (Gnesutta et al. 2001; Jin et al. 2005; 

Schurmann et al. 2000),  Cdc2 (Konishi et al. 2002), RSK (She et al. 2002; Shimamura et al. 2000), 

CK2 (Klumpp et al. 2004) and PIM kinases (Macdonald et al. 2006) are involved in BAD 

phosphorylation as well. The involvement of JNK in BAD phosphorylation is controversially 

discussed. Whereas Donovan et al. (Donovan et al. 2002) reported that JNK phosphorylates mBAD at 

serine 128, Zhang et al. (Zhang et al. 2005) claimed that JNK is not a BAD-serine-128 kinase. On the 

other hand, it has been shown that JNK is able to suppress IL-3 withdrawal-induced apoptosis via 

phosphorylation of mBAD at threonine 201 (Yu et al. 2004). Thus, taken together, with respect to 

regulation of mBAD by phosphorylation, five serine phosphorylation sites (at positions 112, 128, 136, 

155 and 170) and two threonines (117 and 201) have been identified so far. Intriguingly, only few data 

are available regarding the role of phosphorylation in regulation of hBAD protein, although significant 

structural differences between these two BAD proteins exist. 

During apoptosis, some members of the Bcl-2 family of proteins such as Bax or Bak have been 

shown to induce permeabilization of the outer mitochondrial membrane, allowing proteins in the 

mitochondrial intermembrane space to escape into the cytosol where they can initiate caspase 

activation and cell death (for review see (Antignani and Youle 2006; Zamzami and Kroemer 2003)). 

Despite intensive investigation, the mechanism whereby Bak and Bax induce outer membrane 

permeability remains controversial (Antignani and Youle 2006). Based on crystal structure 

(Muchmore et al. 1996), it became evident that Bcl-XL has a pronounced similarity to the translocation 

domain of diphtheria toxin (Choe et al. 1992), a domain that can form pores in artificial lipid bilayers. 

This discovery provoked the predominant view, that upon commitment to apoptosis, the pro-apoptotic 

proteins Bak and Bax also form pores in the outer mitochondrial membrane (Martinou and Green 

2001). As expected from the structural considerations, Bcl-XL was found to form channels in synthetic 

lipid membranes (Minn et al. 1997). Since then, other Bcl-2 family members like Bcl-2, Bax and the 

BH3-only protein Bid have been reported to have channel-forming ability. These pores can be divided 

into two different types: proteinaceous channels of defined size and ion specificity (Antonsson et al. 

1997; Minn et al. 1997; Schendel et al. 1999; Schendel et al. 1997; Schlesinger et al. 1997) and large 

lipidic pores that allow free diffusion of 2 megadalton macromolecules (Basanez et al. 1999; Kuwana 

et al. 2002). With respect to the BH3-only protein BAD, no pore forming abilities have been reported 

so far, although human BAD has been found to possess per se high affinity for negatively charged 

phospholipids and liposomes mimicking mitochondrial membranes (Hekman et al. 2006).  

The RAF kinases (A-, B- and C-RAF) play a central role in the conserved Ras-RAF-MEK-ERK 

signaling cascade and mediate cellular responses induced by growth factors (Daum et al. 1994; Rapp 

et al. 2006; Wellbrock et al. 2004). Direct involvement of C-RAF in inhibition of pro-apoptotic 

properties of BAD established a link between signal transduction and apoptosis control (Rapp et al. 

2004; Troppmair and Rapp 2003). However, the early works did not identify the exact RAF 
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phosphorylation sites on BAD (Wang et al. 1996). Here we demonstrate that hBAD serves as a 

substrate of RAF isoforms. With respect to hBAD phosphorylation by PKA, Akt/PKB and PAK1 in 

vivo, we observed different specificity compared to RAF kinases. hBAD phosphorylation by RAF was 

accompanied by reduced apoptosis in HEK293 and NIH 3T3 cells. Furthermore, we show that in vitro 

phosphorylation of hBAD by RAF at serines 75, 99 and 118 regulates the binding of 14-3-3 proteins 

and association with Bcl-2 and Bcl-XL. By use of mass spectrometry we detected several novel in vivo 

phosphorylation sites of hBAD in addition to the established phosphorylation sites serine 75, 99 and 

118. Finally, we show here that hBAD forms channels in planar bilayer membranes in vitro. This 

pore-forming capacity was dependent on phosphorylation status and interaction with 14-3-3 proteins. 

3.1.2. Experimental Procedures 

Cell culture, transfection and immunoblotting – HEK-293 cells and NIH 3T3 cells were cultivated 

in DMEM supplemented with 10% FCS (fetal calf serum; heat inactivated at 56 C for 45 min), 2 mM 

L-glutamine and 100 units/ml penicillin/streptomycin at 37 C in humidified air with 5% CO2. U0126 

(Promega), PD98059 (Promega), BAY 43-9006, Forskolin (Alexis), IBMX (Sigma), CI1040 (Axon 

Medchem), Wortmannin (Santa Cruz) and LY294002 (Promega) were dissolved in DMSO (Sigma), 

whereas H-89 (Sigma) was dissolved in ethanol. NIH 3T3 fibroblasts were seeded at 2 10
5
 cells/well 

of a 6-well plate and grown for 24 h before transfection by lipofectamine (Invitrogen). HEK293 cells 

were seeded at 7.5 10
5
 cells/well on a 6-well plate and grown for 24 h before transfecting them with 

expression plasmids by the calcium phosphate method (Chen and Okayama 1987). 16 h post 

transfection, cells were washed twice with PBS (phosphate buffered saline) and cultivated for 

indicated time in medium supplemented with 0.3% serum to avoid activity of endogenous kinases. 

Cells were washed once in PBS and equal amounts of cells were lysed by direct addition of Laemmli 

buffer or in NP-40 buffer (10 mM Hepes, pH 7.5, 142.5 mM KCl, 5 mM MgCl2, 1 mM EGTA and 

0.2% NP-40 supplemented with a cocktail of standard protease inhibitors). Protein concentration was 

determined by Bradford method. SDS-PAGE and immunoblotting were performed as described 

previously (Hekman et al. 2006). The following primary antibodies were used: monoclonal anti-

phospho-ERK antibody (#9106, Cell Signaling Technology), phosphospecific antibodies against 

mBAD phosphoserines 112, 155 (#9295 and #9297, Cell Signaling Technology) and phosphoserine 

136 (44-524Z, Biosource), polyclonal anti-actin (A2066, Sigma) polyclonal anti-Akt/PKB (#9272, 

Cell Signaling Technology), polyclonal anti-BAD antibody (sc-943 and sc-8044, Santa Cruz), anti-

PAK antibody (sc-881, Santa Cruz), anti-B-RAF antibody (sc-166, Santa Cruz), anti-PKA antibody 

(sc-903, Santa Cruz) and pan-RAF antibody (30K, MSZ). 

Cell survival assay – For the analysis of cell survival, HEK-293 cells were transiently transfected 

in triplicates. 16 h post transfection, cells were washed twice with PBS and grown for 30 h in medium 

supplemented with 0.3% serum. Cell viability was assessed by staining cells in Trypan blue (Sigma).  
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Colony yield assay – NIH 3T3 cells were transfected with the indicated plasmids using 

Lipofectamine. The day after transfection cells were splitted and around 50 cells of each set of 

transfection had been seeded in 6 cm dishes. Colony assays were performed in triplicate by scoring 

number of colonies (consisting of at least 20 cells) in the dishes grown for 14-18 days with appropriate 

antibiotic selection (450 g/ml neomycin and 6 g/ml puromycin, Calbiochem). To visualize the 

growing colonies, cells were washed once with PBS, fixed with methanol and stained with Giemsa 

dye (Sigma). 

DNA expression plasmids – Human BAD cDNA (kind gift of John Reed, La Jolla, California) and 

cDNAs mutated at serine 75 (S75A), serine 99 (S99A), serine 118 (S118A), serines 75/99 

(S75A/S99A) and serines 75/99/118 (S75A/S99A/S118A) were cloned into pGEX-4T-1 (Pharmacia). 

Deletion mutants of hBAD were PCR-amplified, with primer overhangs containing restriction sites 

and cloned into GST fusion vector pGEX-TT cleaved with the appropriate enzymes. Site-directed 

mutagenesis has been performed by using QuikChange (Stratagene). To generate N-terminal His-

tagged hBAD, the cDNA was released by EcoRI/NotI from pGEX-4T-1 and ligated in the EcoRI/NotI 

sites of pFastBac H1 (Invitrogen). Human Bcl-XL (John Reed, La Jolla, California) was isolated from 

pcDNA3 using EcoRI and ligated with blunt-ends in pFastBac-GST linearized by StuI. PAK1 

constructs were from Jonathan Chernoff (Philadelphia, Pennsylvania). Akt/PKB plasmids were kindly 

provided by Jakob Troppmair (Innsbruck, Austria). pGEX-Bcl-2 was kindly donated by John Reed 

(La Jolla, California).  

Purification of kinases, BAD, Bcl-XL and 14-3-3 proteins – Expression and purification of RAF 

kinases, PAK1, Akt/PKB, 14-3-3 proteins and Bcl-XL from Sf9 insect cells were performed as 

previously described (Fischer et al. 2009; Hekman et al. 2006; Hekman et al. 2002; Hekman et al. 

2004). For purification of phosphorylated His-hBAD, Sf9 cells were infected with baculoviruses at the 

multiplicity of infection of 5 and incubated for 48 h at 27°C. The Sf9 cell pellet (2×10
8
 cells) was 

lysed in 10 ml lysis buffer containing 50 mM sodium phosphate, pH 8.0, 150 mM NaCl, 10 mM Na-

pyrophosphate, 25 mM -glycerophosphate, 25 mM NaF, 10% glycerol, 0.5% NP-40 and a cocktail of 

standard proteinase inhibitors for 30 min with gentle rotation at 4°C. The lysate was centrifuged at 

27,000 g for 30 min at 4°C. The supernatant (10 ml) containing His-hBAD was incubated with 0.5 ml 

Ni
2+

-nitrilotriacetic acid-agarose for 2 h at 4°C with rotation. After incubation, the beads were washed 

3 times with lysis buffer containing 0.2% NP-40, 300 mM NaCl and 20 mM imidazole and hBAD was 

eluted with an imidazole step gradient. GST-tagged 14-3-3 proteins and GST-hBAD were expressed in 

E. coli using pGEX-2T vector (Pharmacia) and purified by glutathione-Sepharose affinity 

chromatography. For lipid bilayer experiments, GST-hBAD was additionally purified by ion exchange 

chromatography using an ÄKTA-System (GE Healthcare). 14-3-3 proteins were released by thrombin 

(Sigma) cleavage using standard protocols. The purity of the proteins was assessed by SDS-PAGE and 

staining with Coomassie Blue. To enrich and separate phosphorylated His-hBAD from the non-
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phosphorylated fraction, His-hBAD purified from Sf9 cells (0.5 mg) was incubated with 0.5 mg of 

recombinant GST-14-3-3  on glutathione-Sepharose beads (300 µl) for 40 min at room temperature. 

After excessive washing with 10 mM Hepes, pH 7.4, 150 mM NaCl and 0.01% NP-40, the 

phosphorylated hBAD fraction was released from the complex by 1% Empigen (Calbiochem).  

Kinase activity assay – Human GST-BAD was incubated with purified preparations of RAF 

kinases, PKA, Akt/PKB or PAK1 in 50 mM Hepes buffer, pH 7.6 in the presence of 10 mM MgCl2, 1 

mM DTT and 500 µM ATP. The mixture was incubated at 30°C for 30 min and the reaction was 

terminated by addition of Laemmli buffer. The proteins were separated by SDS-PAGE and transferred 

to nitrocellulose membranes. The extent of BAD phosphorylation at serine 75, 99 and 118 was 

detected by phosphospecific antibodies. To inhibit kinase activity in vitro, purified kinases were pre-

incubated with BAY 43-9006 or H-89 at room temperature for 30 min.  

Mass spectrometry analysis of BAD phosphorylation – Purified His-hBAD samples (about 100 

pmol of each) were applied to SDS-PAGE. Proteins were visualized by Coomassie Blue staining 

applying the method of Neuhoff et al. (Neuhoff et al. 1988). In-gel reduction, acetamidation, tryptic 

and/or GluC digestion were done according to Wilm et al. (Wilm et al. 1996). After elution of the 

peptides, solutions were desalted using Millipore C18 ZipTip according to the manufacturer‟s 

instructions. ESI-MS was performed on a Bruker APEX II FT-ICR mass spectrometer (Bruker 

Daltonic GmbH Bremen) equipped with an Apollo-Nano-ESI ion source in positive ion mode.  

To determine the exact positions of phosphates within the peptides, the nano-LC-MS/MS analysis 

was carried out as follows: purified hBAD samples were separated by SDS-PAGE, protein bands were 

excised, washed, and in-gel digested as described previously (Reinders et al. 2007). Afterwards, 

generated peptides were extracted using 15 µL 0.1% TFA and samples were analyzed by nano-LC-

MS/MS on an LTQ Orbitrap XL mass analyzer (Thermo Scientific, Dreieich, Germany) coupled to an 

Ultimate 3000 (Dionex, Amsterdam, The Netherlands) using multistage activation as described 

previously (Zahedi et al. 2008). To this end, peptides were preconcentrated on a PepMap trapping 

column (100 µm ID, 5 µm particle size, 100 Å pore size, 1 cm length, Dionex) and separated on a 

PepMap nano-LC column (75 µm ID, 3 µm particle size, 100 Å pore size, 15 cm length, Dionex) at a 

flow rate of 270 nl/min, using a gradient ranging from 5-50% of 86% acetonitrile and 0.1% formic 

acid. Raw data were transformed into mgf format using extract_msn.exe as part of the Bioworks 

package and generated peak lists were searched against an SGD database with concatenated standard 

protein and BAD sequences (6319 entries) using Mascot 2.2. The following search parameters were 

used: trypsin as protease with a maximum of one missed cleavage site, 10 ppm mass tolerance for MS, 

0.5 Da for MS/MS, oxidation of Met (+15.99 Da) and phosphorylation of Ser/Thr/Tyr (+79.96 Da) as 

variable modifications, and 
13

C set to one. All identified phosphopeptides were manually validated to 

correct for potentially false phosphorylation site assignments. 
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Lipid bilayer experiments – The channel-forming ability of proteins was assessed in artificial lipid 

bilayer membranes using a teflon chamber as described previously (Benz 1994; Benz et al. 1992). 

Briefly, to form the membranes a 1% (w/v) solution of diphytanoylphosphatidylcholine (DiphPC) 

(Avanti Polar Lipids) in n-decane was used. Purified hBAD proteins (phosphorylated and non-

phosphotylated) or Bcl-XL were added to the KCl buffer in both compartments of the chamber and the 

single-channel conductance of the pores was measured after application of a fixed membrane 

potential. To test the effects of 14-3-3 proteins on pore-forming abilities of hBAD, purified 

heterodimeric 14-3-3 protein (14-3-3 /14-3-3 ) were incubated with phosphorylated form of BAD for 

30 min at room temperature prior to channel formation. Samples were applied on both sides of the 

DiphPC membrane in KCl buffer and single-channel formation was measured. 

Biosensor measurements – The biosensor measurements were carried out either on BIAcore-X or 

BIAcore-J system (Biacore AB, Uppsala, Sweden) at 25°C. The biosensor chip CM5 was loaded with 

anti-GST antibody using covalent derivatization according to the manufacturer‟s instructions. Purified 

and GST-tagged proteins (GST-BAD wt and substitution mutants) were immobilized in biosensor 

buffer (10 mM Hepes, pH 7.4, 150 mM NaCl and 0.05% NP-40) at a flow rate of 10 l/min, which 

resulted in a deposition of approximately 1000 response units (RU). Next, the purified analytes (14-3-

3  or Bcl-XL) were injected at indicated concentrations. The values for unspecific binding measured in 

the reference cell were subtracted. To monitor the dissociation of Bcl-XL/GST-BAD complex induced 

by BAD phosphorylation the biosensor chip was treated with active C-RAF in the presence of 0.5 mM 

ATP. The modified biosensor buffer contained 5 mM MgCl2 and 0.5 mM DTT. The working 

temperature was set to 30°C. The evaluation of kinetic parameters was performed by non-linear fitting 

of binding data using the BiaEvaluation 2.1 analysis software. The apparent association (ka) and 

dissociation rates constant (kd) were evaluated from the differential binding curves (Fc2-Fc1) 

assuming a A+B=AB association type for the protein-protein interaction. The dissociation constant KD 

was calculated from the equation KD = kd/ka.  

3.1.3. Results 

Detection of novel in vivo phosphorylation sites of human BAD by mass spectrometry – Besides 

the highly conserved murine BAD phosphorylation sites at serines 112, 136 and 155 (corresponding to 

serine 75, 99 and 118 in human BAD) that are crucial for 14-3-3 binding and interaction with Bcl-

2/Bcl-XL, four other murine phosphorylation sites (positioned at serines 128 and 170 and threonines 

117 and 201) have been reported (for ref. see Introduction). Although human BAD compared to 

murine BAD shows striking differences in the length of its amino acid sequence (168 versus 204 

residues) and in the number and locations of putative phosphorylation sites no systematic analysis of 

in vivo phosphorylation of this pro-apoptotic protein has been performed.  
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As phosphospecific antibodies directed against the putative 14-3-3 binding sites (serine 75 and 99) 

and docking segment of Bcl-2/Bcl-XL proteins (surrounding serine 118) are available, we examined 

first the phosphorylation status at these established positions. As shown in Fig. 8A, all three of these 

sites were detectable in purified hBAD by use of phosphospecific antibodies, indicating that a fraction 

of hBAD expressed in Sf9 cells is associated with 14-3-3 proteins and decoupled from Bcl-2/Bcl-XL 

proteins. Such a complex is predicted to be excluded from mitochondria and, consequently, to act in 

an anti-apoptotic manner (Zha et al. 1996). To analyze the complete phosphorylation status of human 

BAD, we performed a detailed mass spectrometry analysis of the protein purified from Sf9 cells. For 

that purpose, we digested purified hBAD by trypsine and/or GluC and the selective detection of 

phosphopeptides was carried out by both ESI-MS and nano-LC-MS/MS technique. Two independent 

measurements provided almost 89% coverage of the entire protein sequence. The combined results 

obtained for hBAD phosphorylation are summarized in Fig. 8B and Table 2 revealing several novel in 

Figure 8: Analysis of in vivo phosphorylation of purified human BAD protein.  

A, purification of human BAD from Sf9 insect cells. The upper panel shows Coomassie Blue staining after 

SDS-PAGE of human BAD obtained by elution from nickel-agarose beads by 100 and 200 mM imidazole, 

respectively. The phosphorylation of serines 75, 99, and 118 was verified by use of phosphospecific 

antibodies. B, sequence alignment of human and murine BAD protein and mass spectrometry analysis of 

phosphopeptides obtained by tryptic and GluC digestion of hBAD. For detailed list of identified 

phosphopeptides see also Table 2. The putative phosphorylation sites of human BAD are highlighted in 

green, and their positions within the sequence are indicated by numbers. The published phosphorylation 

sites of murine BAD are highlighted in magenta. The conserved regions between human and murine BAD 

are shown in pink. The putative 14-3-3 binding sites are indicated by blue rectangles and the conserved 

BH3 domain by a red rectangle. 
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vivo phosphorylation sites. To compare the mass spectrometry results obtained for human BAD with 

the known phosphorylation sites in murine BAD, we aligned the amino acid sequences of both BAD 

proteins (Fig. 8B). Remarkably, with exception of two novel phosphorylation sites localized closely to 

the N-terminus (serines 25 and 32/34), most of the phosphorylated peptides obtained by mass 

spectrometry were localized in the C-terminal half of the protein. The last 20 residues at the very C-

terminal sequence bear no phosphate molecules, whereby it should be noted that human BAD does not 

possess threonine 201that was found to be phosphorylated in murine BAD.  

Two N-terminal phosphorylation sites were identified within the tryptic peptide 21-36 and the 

positions of the phosphates (25 and 32/34) were verified via fragmentation analysis using nano-LC-

MS/MS approach (see Table 2). Next, we identified a peptide corresponding to hBAD (73-94) 

sequence carrying one phosphate. The fragmentation analysis of this peptide did not provide 

unambiguous result: it suggested phosphorylation of either serine 74 or 75. We propose, however, that 

this phosphate could be ascribed to phosphoserine 75, as the phosphospecific antibody directed against 

the homologous site in mBAD identified also the hBAD protein (Fig. 8A). Interestingly, fragmentation 

analysis of the tryptic peptide 71-94 revealed phosphorylation at serine 91 but not at serine 75. As the 

homologous serine in murine BAD (serine 128) has been reported to be phosphorylated we can 

conclude that this serine in front of the putative 14-3-3 binding region may also play a regulatory role 

in human BAD signaling. The next two peptides (peptide 97-109 and 99-109) carrying one phosphate, 

respectively, cover the sequence of the putative 14-3-3 binding domain that has been described to be 

phosphorylated at serine 99. The antibody directed against the analogous site in mouse recognized the 

position Ser-99 within the purified hBAD protein (Fig. 8A). In accordance with this, the fragmentation 

analysis identified phosphoserine 99 within the tryptic peptide 99-109. Surprisingly, the peptide 97-

109 carried the phosphate molecule at serine 97 revealing a novel phosphorylation site in hBAD. Of 

note, we identified also a peptide comprising the segment between residues 95 and 112 in which both 

serines (in positions 97 and 99) were phosphorylated (Table 2). This finding suggests a novel 

regulatory mechanism regarding 14-3-3 binding to their association partners.  

The next two peptides (peptide 116-126 and 117-126) carrying one phosphate, respectively, 

comprise the C-terminal part of BH3 domain of BAD where the serine 118 (corresponding to serine 

155 in mBAD) is located. The phosphorylation of this residue regulates the interaction of BAD with 

Bcl-2/Bcl-XL proteins. The fragmentation analysis localized a phosphate molecule at serine 118 within 

both peptides. This finding documents that a fraction of BAD expressed in Sf9 cells does not appear 

associated with the anti-apoptotic proteins Bcl-2/Bcl-XL. Importantly, the peptide 117-133 revealed 

two phosphorylation sites (serine 118 and 124). Because the number of phosphates within the peptide 

117-133 corresponds to the number of phosphorylation possibilities, we conclude that besides the 

well-characterized serine 118, serine 124 represents a novel regulatory site in hBAD. Phosphorylation 
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of serine 124 may be of particular importance due to its vicinity to the lipid binding domain of human 

BAD comprising the FKK motif that is located in the close proximity to this serine (see Fig. 18). 

The alignment of human and murine BAD reveals that both BAD proteins contain the conserved 

segment RPKSAG that represents an appropriate consensus sequence for some kinases. The 

phosphorylation of murine BAD at serine 170 within this segment has been previously reported 

(Dramsi et al. 2002). Our MS analysis revealed two tryptic peptides (132-142 and 134-143) carrying 

one phosphate each. This phosphorylation site was ascribed unambiguously to the serine 134 which is 

homologous to murine serine 170. Finally, we detected a peptide that was cleaved by GluC and trypsin 

carrying five phosphates (Fig. 8B and Table 2). This peptide has been ascribed to the C-terminal BAD 

region located between residues 128 and 149. However, this sequence stretch bears up to eight 

possible phosphorylation sites. Unfortunately, we were not successful in specifying the exact positions 

of all of the phosphates detected by MS analysis within this fragment. Nevertheless, the 

phosphorylation of serines 124 and 134 is probable, since it has been detected within several peptides 

listed in Table 2.  

Taken together, we present here for the first time a detailed analysis of human BAD 

phosphorylation. We confirm several phosphorylation sites that are common to both human and 

murine BAD and identified in addition a number of novel phosphorylation sites that are specific for 

human BAD. These novel sites may be involved in regulation of 14-3-3 binding and membrane 

anchoring of BAD.  

Human BAD is a direct substrate of RAF kinases – Next, we investigated whether RAF kinases 

are directly involved in phosphorylation of human BAD in vivo. It was previously shown that C-RAF 

phosphorylates hBAD (Wang et al. 1996). In these preliminary reports, the precise sites of RAF-

mediated BAD phosphorylation have not been determined. More recent reports support the view that 

C-RAF participates in BAD phosphorylation either in conjunction with PAK (Jin et al. 2005) or the 

adaptor protein Grb10 (Kebache et al. 2007). The role of other RAF isoforms (A- and B-RAF) has not 

been evaluated in this context. Particularly, the quantitative contribution of the RAF kinases in 

phosphorylating serine residues 112, 136 and 155 and the direct comparison of RAF isoforms with 

other BAD targeting kinases has not been performed so far.  
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Table 2: Human BAD phosphopeptides obtained by trypsin and/or GluC digestion. The putative 

phosphorylation sites and the number of the phosphates detected in each of the peptides by mass 

spectrometry are indicated. 

hBAD 

Peptides 
Amino acid sequence 

Phosphates/ 

Peptide 

Phosphorylation 

site(s) 

21-36 GLGPpSPAGDGPSGSGK 1 Ser25 

21-36 GLGPSPAGDGPSGSGK 1 Ser32 or Ser34 

73-94 HSSYPAGTEDDEGMGEEPSPFR 1 Ser74 or Ser75 

71-94 SRHSSYPAGTEDDEGMGEEPpSPFR 1 Ser91 

73-94 HSSYPAGTEDDEGMGEEPpSPFR 1 Ser91 

95-112 GRpSRpSAPPNLWAAQRYGR 2 Ser97 and Ser99 

97-109 pSRSAPPNLWAAQR 1 Ser97 

97-109 SRpSAPPNLWAAQR 1 Ser99 

99-109 pSAPPNLWAAQR 1 Ser99 

116-126 RMpSDEFVDSFK 1 Ser118 

117-126 MpSDEFVDSFK 1 Ser118 

117-133 MpSDEFVDpSFKKGLPRPK 2 Ser118 and Ser124 

132-142 PKpSAGTATQMR 1 Ser134 

134-142 pSAGTATQMR 1 Ser134 

124-149 SFKKGLPRPKSAGTATQMRQSSSWTR 5 ND 
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Figure 9: Comparative analysis of hBAD phosphorylation in HEK-293 cells by PKA, Akt/PKB, PAK1, 

and RAF kinases.  

HEK-293 cells were transiently transfected with the indicated expression vectors. A, C- and A-RAF 

kinases were activated in cells by co-transfecting Ras12V and Lck. In the case of Akt/PKB and PAK1, 

activating mutants (T308D/S473D and T423E, respectively) were used. In B endogenous PKA was 

stimulated for 30 min with 25 M Forskolin and 500 M IBMX. Pre-treatment with 10 M H-89 for 30 

min prevented PKA activity. In C B-RAF-WT and various constitutively active mutants of RAF kinases 

(B-RAF-V600E; C-RAF-Y340D/Y341D, termed as C-RAF-DD; truncated C-RAF lacking N-terminal 

regulatory domains: BxB wt and BxB-DD) were transfected. As a negative control kinase-dead B-RAF 

(B-RAF-K483A) mutant was chosen. 16 h post transfection, cells were cultivated for additional 30 h in 

medium supplemented with 0.3% serum. Total cell lysates were separated on a 15% SDS polyacrylamide 

gel, blotted onto nitrocellulose membrane and phosphorylation of human BAD at serine 75, 99 and 118 as 

well as BAD expression was analyzed. Endogenous actin was used as a loading control. Presence of 

different RAF proteins was verified with anti pan-RAF antibody. Representative blots from A and C 

were quantified by optical densitometry. These experiments were repeated three times with the same 

results. 
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In order to address these open issues, we monitored the phosphorylation pattern on critical serine 

residues (serine 75, 99 and 118 of human BAD) by different RAF isoforms in vivo and in vitro and 

performed a comparative analysis involving other BAD phosphorylating kinases such as PAK, PKA 

and/or Akt/PKB. Due to the fact that the sensitivity of the phosphospecific BAD antibodies is too low 

to analyze phosphorylation status of endogenous BAD in HEK293, NIH 3T3 or HeLa cells, we 

decided to overexpress hBAD. Analyzing co-transfected HEK-293 cells we found that the exogenous 

BAD has been efficiently phosphorylated at the critical positions not only by active PAK1 and 

Akt/PKB mutants (PAK1-T423E and Akt/PKB-T308D/S473D) but also in the presence of activated 

RAF isoforms (Fig. 9A). 

 In the absence of RAF kinases Ras12V and Lck did not lead to significant phosphorylation of 

hBAD (data not shown). To exclude the participation of kinases other than RAF in BAD 

phosphorylation that may have been activated by overexpression of Ras12V and Lck, we co-expressed 

BAD with a variety of constitutively active A-, B- and C-RAF mutants (Fig. 9C). While inactive B-

RAF-K483M (KD) or un-stimulated A- and C-RAF failed to phosphorylate BAD significantly, 

mutants of RAF kinases with elevated kinase activity revealed the same phosphorylation pattern as 

presented in Fig. 9A. Similar results were obtained by stimulating endogenous PKA with Forskolin in 

combination with isobutylmethylxanthine (Fig. 9B). Quantification of the results obtained by 

phosphospecific antibodies directed against serine 75, 99, and 118 revealed that active PAK1 and 

Akt/PKB were most efficient in the phosphorylation of the putative 14-3-3 binding site of BAD 

localized at the serine 99 (see bar graph in Fig. 9A). Compared with these data, the activated or 

constitutively active forms of RAF kinases were more efficient in phosphorylation of serines 75 and 

118. To investigate, whether these results are HEK-293 cell specific, we co-transfected also NIH 3T3 

and HeLa cells with BAD and activated forms of RAF, PAK1 and Akt/PKB. The results obtained with 

these cell lines were consistent among all three cell lines (data not shown). In contrast to in vivo data, 

more efficient phosphorylation of recombinant GST-BAD by activated PAK1 or Akt/PKB was 

observed using the intact cell lysates comprising the over-expressed active kinases from the 

experiment described in Fig. 9A (Fig. 10). Whereas cell lysate containing activated PAK1 was able to 

phosphorylate recombinant GST-BAD to low levels at serine 75, 99 and to a higher extent at serine 

118, activated Akt/PKB again showed efficient phosphorylation of BAD predominantly at serine 99 

and more weakly at serine 118 and 75 (Fig. 10). These in vitro data are in accordance with findings 

published earlier (Datta et al. 1997; Schurmann et al. 2000; Tang et al. 2000). BAD phosphorylation 

by RAF kinases exhibited consistent data in vivo and in vitro.  

 



Manuscript I: Regulation of BAD Function by Phosphorylation 

70 

To demonstrate that BAD is a direct substrate of RAF kinases, several inhibitors were applied to 

exclude the possible influence of endogenous kinases. Importantly, we observed no reduction of BAD 

phosphorylation after treatment of HEK-293 cells co-transfected with hBAD and B-RAF using three 

different MEK inhibitors (U0126, PD98059 and CI1040) or the PI3K inhibitors Wortmannin and 

LY294002 (Fig. 11, A and B). An involvement of autocrine loops could be excluded, since treatment 

with Suramin, an inhibitor blocking the activation of growth factor receptors at the plasma membrane 

through interference with receptor-ligand binding (Hosang 1985; Huang et al. 1990), did not prevent 

phosphorylation of BAD by B-RAF (Fig. 11C). Importantly, the RAF kinase inhibitor BAY 43-9006 

reduced BAD phosphorylation at all three serine residues already at 1 M (Fig. 11D). The results 

presented here (using RAF and MEK inhibitors) are in accordance with data published by Jin et al. 

(Jin et al. 2005). Finally, the PKA inhibitor H-89 reduced considerably the phosphorylation degree at 

all three sites (Fig. 9B). 

Figure 10: In vitro phosphorylation of recombinant GST-BAD by kinases overexpressed in HEK-293 cells. 

HEK-293 cells were transiently transfected with the indicated plasmids. Inactive mutants of PAK1 and 

Akt/PKB (K299R and K179A, respectively) were used as negative controls. 16 h post transfection, cells 

were cultivated for additional 30 h in medium supplemented with 0.3% serum. Afterwards cells were 

washed once in PBS and lysed by direct addition of NP-40 buffer. For kinase assay, 35 g of the protein 

lysates containing the desired kinases were mixed with 1 g recombinant GST-BAD (purified from E. coli) 

in kinase buffer. Proteins were separated on a 12% SDS polyacrylamide gel and blotted. Phosphorylation 

of BAD was visualized with phosphospecific BAD antibodies. Expression levels of RAF kinases, PAK1 and 

Akt/PKB are shown in the lower panels. This experiment was repeated three times with the same results. 
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In vitro phosphorylation of BAD by purified B- and C-RAF kinases – To further explore whether 

BAD is a direct substrate of RAF, we analyzed phosphorylation of recombinant BAD by purified RAF 

kinases in vitro. For C-RAF, we tested several activated forms including constitutively active C-RAF 

(C-RAF-Y340D/Y341D, termed C-RAF-DD), highly activated C-RAF (co-expressed in the presence 

of Ras12V and Lck, called here C-RAF-R/L) and truncated C-RAF lacking N-terminal regulatory 

domains (BxB wt and BxB-DD). In experiments with B-RAF, the wild-type (wt) kinase was chosen 

because of its high basal activity compared to A- and C-RAF wt. As illustrated in Fig. 12A, all active 

RAF preparations phosphorylated hBAD at Ser-75 and Ser-118. Only C-RAF-R/L additionally 

phosphorylated BAD at Ser-99. Of note, kinase dead mutants of C- and B-RAF (C-RAF-K375M and 

B-RAF-K483M) failed to phosphorylate hBAD in vitro (Fig., 12, A and B). In the presence of 

Akt/PKB, we observed phosphorylation at Ser-75, -99 and -118, whereas Ser-118 was the main target 

Figure 11: Kinase inhibitors indicate direct involvement of RAF kinases in BAD phosphorylation.  

HEK-293 cells were transiently transfected with BAD and B-RAF expression vectors. 16 h post 

transfection cells were cultivated in medium supplemented with 0.3% serum. During that time cells were 

additionally treated with various concentrations of MEK inhibitors PD98059, U0126 and CI1040 (A), 

with PI3K inhibitors Wortmannin and LY294002 (B), Suramin (C) and RAF inhibitor (BAY 43-9006) 

(D) for 22 h respectively. Phosphorylation of BAD was detected with phospho-specific BAD antibodies. 

The efficiency of the PI3K inhibitors has been verified by abolishment of Akt-S473 phosphorylation in 

stimulated HEK-293 cells (B). Treatment with RAF inhibitor BAY 43-9006 prevented both BAD and 

ERK phosphorylation in a concentration-dependent manner. These experiments were repeated three 

times with the same results. 
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of PKA. PAK phosphorylated Ser-75 and Ser-118 (Fig. 12C). In accordance with in vivo data obtained 

by use of RAF inhibitor BAY 43-9006, we also observed in vitro effective inhibition of RAF-mediated 

hBAD phosphorylation by BAY 43-9006 (Fig. 12B). 

BAD phosphorylation by RAF promotes survival of mammalian cells – BAD protein has to be 

phosphorylated in order to neutralize its pro-apoptotic properties (Danial and Korsmeyer 2004; Green 

and Kroemer 2005). To demonstrate that active RAF prevents BAD-mediated apoptosis we performed 

different cell survival assays using HEK-293 and NIH 3T3 cells. HEK-293 cells were transiently 

transfected with the indicated expression plasmids and starved for 30 hours in medium supplemented 

with 0.3% serum. Number of apoptotic cells was determined by Trypan blue exclusion (Fig. 13A). As 

demonstrated in Fig. 13A, BAD-induced apoptosis was effectively inhibited by B-RAF 

overexpression. About 24% of BAD overexpressing cells were apoptotic, whereas co-expression of B-

RAF reduced the percentage of apoptotic cells to a level comparable to control cells. Under starvation 

conditions, substitution mutants of human BAD, S75A, S118A or S75A/S118A, induce apoptosis to 

the same extend as it was observed for wild type. However, in contrast to co-expression with BAD-

WT, B-RAF did not inhibit BAD-mediated apoptosis, when it was co-expressed with BAD-S75A, 

BAD-S118A or BAD-S75A/S118A mutants (Fig. 13B). Of importance, expression of the kinase dead 

form of B-RAF did not prevent the BAD-induced apoptosis of the cells as well (Fig. 13A). 
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Figure 12: In vitro phosphorylation of recombinant GST-BAD by purified PKA, PAK1, Akt/PKB and 

RAF kinases.  

A, B and C, phosphorylation of non-phosphorylated BAD purified from E. coli was carried out as 

described in Experimental Procedures. Recombinant GST-BAD (20 pmol) was phosphorylated by 

purified B- and C-RAF and corresponding RAF mutants (2 pmol each) as indicated, catalytic subunit 

of PKA, constitutively active Akt/PKB or PAK1 (4 pmol each). B, whereas the RAF inhibitor BAY 43-

9006 prevented BAD phosphorylation in the concentration range between 1 and 100 µM, the PKA 

inhibitor H-89 had no effect on BAD phosphorylation demonstrating that purified B-RAF was not 

associated with PKA. Following SDS-PAGE and immunoblotting, BAD phosphorylation was visualized 

by phosphospecific antibodies directed against phosphoserines 112, 136 and 155 of mouse BAD 

(corresponding to phosphoserines 75, 99 and 118 of human BAD). These experiments were repeated 

five times with comparable results. 
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Figure 13: Expression of B- and C-RAF delays BAD-mediated apoptotic death of HEK-293 cells 

following growth factor removal.  

A and B, HEK-293 cells were transiently transfected in triplicates with the indicated expression vectors 

(ratio 1:1). 16 h post transfection, cells were cultivated for additional 30 h in medium supplemented with 

0.3% serum. Cell viability was assessed by Trypan blue staining. Mean values and standard deviations 

are shown. Experiment was repeated twice. C, colony formation assay shows reproductive survival of 

triplicate cultures of NIH 3T3 cells stably expressing either empty vectors, BAD alone, BAD in 

combination with B-RAF or activated C-RAF (C-RAF-DD) as well as B-RAF and C-RAF-DD alone. 

BAD phosphorylation by RAF protected cells from apoptosis and led to an increased number of colonies. 
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In order to corroborate the importance of B- and C-RAF-mediated BAD phosphorylation for the 

survival of mammalian cells, we additionally performed colony yield assays (Fig. 13C). BAD 

overexpressing cells seeded at low density in Petri dishes have difficulties to form clonogenic 

colonies, clear evidence that they are not protected against its pro-apoptotic activity. On the other 

hand, co-expression with active B- or C-RAF is expected to improve colony yields. In our 

experimental set we generated stable expression of the transfected DNA by double selection with 

different antibiotics. As a result, we found that the number  of colonies formed by control cells and 

cells continuously expressing BAD in combination with C-RAF-DD or B-RAF was at least three times 

higher compared to cells expressing BAD only (Fig. 13C).  

The associations of BAD with 14-3-3 proteins and Bcl-2/Bcl-XL is affected by RAF kinases – 

Following pro-survival signaling BAD becomes phosphorylated, which enables complex formation 

with 14-3-3 proteins. To analyze the putative 14-3-3 binding site(s) of hBAD, particularly with respect 

to phosphorylation by RAF, purified hBAD and its mutants (S75A, S99A, S118A, S75A/S99A and 

S75A/S99A/S118A) have been treated in an in vitro kinase assay with active C-RAF-R/L as described 

in the legend to Fig. 12A. The real time association with 14-3-3 proteins has been performed by use of 

BIAcore technique. For that purpose, phosphorylated GST-BAD samples were captured on a chip 

surface and interactions with purified 14-3-3  were monitored. In contrast to S75A and S118A 

mutants, no 14-3-3  binding was observed for BAD-S99A mutant, indicating that the domain 

surrounding pS99 represents the major 14-3-3 binding site. The double mutant (S75A/S99A) and the 

triple mutant (S75A/S99A/S118A) did not interact with 14-3-3 as well (Fig. 14). GST-BAD wt 

revealed highest 14-3-3 binding efficiency indicating that a further binding site may enhance or 

stabilize this association. These data suggest that in vivo interaction of BAD with active C-RAF may 

result in 14-3-3 association and depletion of the BAD/14-3-3 complex from mitochondrial 

membranes.  

 

Table 3: Association of BAD with Bcl-2 and Bcl-XL. Purified full-length Bcl-2 and Bcl-XL were 

immobilized on the Biosensor chip (approximately 1200 RU) that was coated with anti-GST antibody. His-

BAD was injected in the concentration range between 40-320 nM. 

 

 kd 

(s
-1

) 
ka 

(M
-1

s
-1

) 
KD 

(nM) 

Bcl-2 1.96×10
-4

 ± 4.02×10
-6

  9.06×10
4
 ± 1.38×10

3
  2.16 

Bcl-XL 7.82×10
-5

 ± 3.55×10
-6

 1.27×10
5
 ± 1.53×10

3
 0.62 
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Next, we examined in more detail the interaction between BAD and Bcl-2 or Bcl-XL, respectively. 

In a direct comparison of association-dissociation kinetics (Table 3), we have measured that Bcl-

XL/BAD complex (KD=0.65 nM) was more stable than Bcl-2/BAD (KD=2.16 nM). Notably, similar 

values have been reported for interaction between Bcl-XL and synthetic peptide representing BH3 

domain of BAD (Petros et al. 2001). In contrast, the affinity of BAD-BH3 peptide to Bcl-2 was much 

lower (KD=15 nM) indicating that the binding parameters using full-length proteins may differ 

considerably from those using peptide samples (Petros et al. 2001). Due to the higher binding affinity, 

we used in the following experiments Bcl-XL as a binding partner of BAD. 

To investigate the relevance of phosphorylation of hBAD with respect to Bcl-XL association, we 

first phosphorylated hBAD (purified from E. coli) in vitro with various kinases such as PKA, 

Akt/PKB, B-RAF and C-RAF-R/L. Next, the phosphorylated hBAD samples were immobilized on the 

Biosensor chip and interactions with Bcl-XL were monitored. As depicted in Fig. 15A, 

phosphorylation by C-RAF-R/L, B-RAF and Akt/PKB led to ~25% decrease in Bcl-XL association. 

Incubation with PKA resulted in ~50% reduction. This result is in agreement with earlier reports, 

suggesting that PKA phosphorylates BAD preferentially at serine 155 (Datta et al. 2000; Virdee et al. 

2000).  

Figure 14: Phosphorylation of BAD wt and BAD mutants by C-RAF promotes association with 14-3-3 

proteins.  

Interactions of BAD with 14-3-3  were monitored by SPR technique. GST-BAD samples (200 pmol) were 

phosphorylated by highly activated C-RAF-R/L (10 pmol) as described in Experimental Procedures. 

Approximately 1000 RU of phosphorylated BAD were captured onto anti-GST chip. 14-3-3  (200 nM) was 

injected and the association-dissociation curves were monitored. For better understanding we used here 

(and in Fig. 15) the mouse nomenclature. 
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Finally, we asked whether RAF-mediated phosphorylation of BAD reported above is able to 

trigger the dissociation of the pre-existing Bcl-XL/BAD complex. For that purpose, different 

complexes of Bcl-XL with the following hBAD variants were used (see inset of Fig. 15B): BAD wt, 

mutated BAD-S75A/S99A and truncated BAD(∆N102) consisting of the C-terminal fragment 

harboring the BH3 domain. We used BAD(∆N102) because it lacks phosphorylation sites S75 and S99 

that are involved in 14-3-3 binding. The complexes were formed on the surface of the biosensor chip 

(Fig. 15B). To monitor the effect of hBAD phosphorylation by RAF, C-RAF-R/L was injected in the 

presence of ATP. Whereas the complex with wild type BAD dissociated readily, the complex with the 

C-terminal part of BAD(∆N102) remained stable. The double mutant (S75A/S99A) dissociated 

slowly, indicating that phosphorylation sites other than S75A and S99A are involved (Fig. 15B). From 

these experiments we conclude that RAF kinases do not only prevent the formation of the complex 

between BAD and Bcl-XL, but also possess the ability to mediate the disruption of existing BAD/Bcl-

XL complexes. 
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Figure 15: Phosphorylation of recombinant BAD inhibits complex formation between BAD and Bcl-XL 

and disrupts pre-existing complex.  

A, Purified GST-BAD (200 pmol) was phosphorylated by purified and active B- and C-RAF, Akt/PKB 

and PKA (20 pmol each) as described in Experimental Procedures. Association of phosphorylated BAD 

with full-length Bcl-XL was monitored using SPR technique. Approximately 800 RU of GST-BAD 

phosphorylated with respective kinases were immobilized by anti-GST coated surface. Bcl-XL (200 nM) 

was injected and the association-dissociation curves were monitored. B, Approximately 1000 RU of 

GST-tagged BAD wt, BAD-S75A/S99A (here termed as BAD-S112A/S136A) and BAD(∆N102) were 

immobilized and Bcl-XL (200 nM) was injected. After saturation, the formed complexes were treated 

with C-RAF-R/L in the presence of ATP. The structure of BAD samples used in this assay is illustrated 

in the inset. 
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Channel-forming activity of human BAD in planar lipid bilayers is influenced by phosphorylation 

and 14-3-3 proteins – Most Bcl-2 family proteins contain a C-terminal hydrophobic transmembrane 

domain, indicating that these proteins may exist as integral membrane proteins (del Mar Martinez-

Senac et al. 2001; del Mar Martinez-Senac et al. 2000; Martinez-Senac Mdel et al. 2002). Some of 

them, including pro- and anti-apoptotic members as well as BH3-only protein Bid, show the ability to 

form pores in lipid bilayers (Antonsson et al. 1997; Basanez et al. 1999; Kuwana et al. 2002; Minn et 

al. 1997; Schendel et al. 1999; Schendel et al. 1997; Schlesinger et al. 1997). 

Regarding the BH3-only protein BAD, Hekman et al. (Hekman et al. 2006) reported pronounced 

lipophilic properties and identified two lipid binding regions (LBD1 and LBD2) in hBAD. Therefore, 

Figure 16: Channel-forming activity of hBAD. Single-channel recordings of purified hBAD or Bcl-XL (30 

ng/ml, respectively) in a DiphPC membrane were monitored.  

The aqueous phase contained 1 M KCl.  The temperature was 20°C and the applied voltage 20 mV. 

Phosphorylated hBAD forms large permanent open pores (A) as well as small channels that show a 

flickering behavior between a closed and an open state (B). Non-phosphorylated hBAD has no pore-

forming ability (C). Preincubation of phosphorylated hBAD with the 14-3-3 /14-3-3  heterodimer (1:2, 

mol/mol) for 30 min at 22°C resulted in a disruption of hBAD´s assembly into the lipid membrane and 

caused removal or closing of existing BAD channels (D). 14-3-3 proteins alone had no measurable effect on 

the lipid bilayer (data not shown). E, Bcl-XL was used as a positive control. Vertical bars indicate 

conductance of 2.5 nS. DiphPC, diphytanoylphosphatidylcholine. These measurements were repeated 

three times with the same results. 
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we supposed that BAD, like several other Bcl-2 family members, may possess channel-forming 

ability. To test this issue, we investigated whether human BAD is able to form pores in artificial lipid 

bilayers. Here we used a planar bilayer configuration, where two teflon chambers are separated by a 

septum having a small (800 µm diameter) aperture in which the membrane bilayer is formed (Benz 

1994; Benz et al. 1992). This or similar configurations are commonly used for the characterization of 

channels formed by Bcl-2 family proteins, mitochondrial porins or bacterial toxins (Antonsson et al. 

1997; Le Mellay et al. 2002; Manich et al. 2008; Minn et al. 1997; Schendel et al. 1999; Schendel et 

al. 1998; Schendel et al. 1997; Schlesinger et al. 1997). It has been previously shown, that Bcl-XL 

forms channels in synthetic lipid membranes (Minn et al. 1997). Thus, we applied this measurement as 

a positive control (Fig. 16E). For the measurements with hBAD, we used two different preparations 

that differ in their phosphorylation states. Beside the complete dephosphorylated protein (produced 

and purified from E. coli), we utilized hBAD expressed in Sf9 cells that was also analyzed by mass 

spectrometry and was shown here to be phosphorylated at several serine residues (Fig. 8). In the case 

of dephosphorylated hBAD, we did not detect any pore formation (Fig. 16C). In contrast, 

approximately 7 min after injection of phosphorylated hBAD into both chambers, step-like current 

fluctuations representing channel openings to various discrete conductance states were observed. 

These channels can be classified in two groups: small channels that show a flickering behavior 

between a closed and an open state (Fig. 16B) and larger permanent open pores (Fig. 16A). The small 

flickering pores had a single-channel conductance of about 500 pS. The large permanent open pores 

occur to a lesser frequency and showed single-channel conductance states of about 0.75 and 3.75 nS. 

Two histograms of the probability P(G) for the occurrence of specific conductivity states for 91 (Fig. 

17A) and 341 (Fig. 17B) single-conductance events that were observed within the same experiment 

with phosphorylated hBAD are shown in Fig. 17. It has been reported that phosphorylation of serines 

112 and 136 of mBAD (corresponding to serines 75 and 99 of hBAD) leads to cytoplasmic 

sequestration by 14-3-3 proteins (Zha et al. 1996). To test the functional consequence of this 

interaction with respect to hBAD pore-forming abilities, phosphorylated hBAD was pre-incubated 

with heterodimeric 14-3-3 protein (14-3-3 /14-3-3 ) before analyzing the channel activity. The 

consequence was a disruption of hBAD´s assembly into the lipid membrane. Furthermore, 14-3-3 

proteins cause removal or closing of existing BAD channels (Fig. 16D). 14-3-3 proteins alone had no 

measurable effect on the lipid bilayer (data not shown). 
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3.1.4. Discussion 

The phosphorylation of BAD provides an important connection between cell survival signaling 

and the apoptotic death machinery. A current model of BAD function implicates phosphorylation of at 

least three serine residues (using mouse nomenclature these are serine 112, 136 and 155). The 

consequence of phosphorylation of thee sites is complex formation of BAD with 14-3-3 proteins and 

removal of pro-survival Bcl-2 members at the outer mitochondrial membrane. Besides these highly 

conserved phosphorylation domains, four other phosphorylation sites of murine BAD (positioned at 

serine 128 and 170 and threonine 117 and 201) have been identified. Remarkably, although much 

attention has been devoted to the phosphorylation-mediated regulation of murine BAD function, with 

some exceptions the regulation of human BAD by phosphorylation has so far not been investigated. 

Therefore, we performed a systematic analysis of in vivo phosphorylation sites in human BAD by 

combined use of phosphospecific antibodies and mass spectrometry.  

Figure 17: Histogram of the probability for the occurrence of a given conductivity unit.  

The histogram was observed with membranes formed using 1% DiphPC in the presence of 30 ng 

phosphorylated hBAD. P(G) is the probability that a given conductance increment G is observed in the 

single-channel experiments. It was calculated by dividing the number of fluctuations with a given 

conductance increment by the total number of conductance fluctuations. A, shows large and permanent 

open pores (91 single-channel events were integrated). B, displays small channels that show a flickering 

behavior between a closed and an open state (341 single-channel events were considered). DiphPC, 

diphytanoylphosphatidylcholine.   
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MS analysis of human BAD phosphorylation and identification of novel in vivo phosphorylation 

sites – As shown in Fig. 8A phosphorylation of all three highly conserved serines in purified hBAD 

were detectable by use of phosphospecific antibodies indicating that a fraction of human BAD 

expressed in Sf9 cells is associated with 14-3-3 proteins. Such a complex is predicted to be cytosolic 

or relocated to lipid rafts and not to be associated with Bcl-2/Bcl-XL proteins (Hekman et al. 2006; Zha 

et al. 1996). To investigate, whether hBAD is phosphorylated on more than the three established 

phosphorylation sites (serines 75, 99 and 118), the purified hBAD samples were analyzed by both 

ESI-MS and nano-LC-MS/MS technique. The results obtained by MS analysis revealed numerous 

novel phosphorylation sites (Fig. 8B and Table 2). Interestingly, with exception of serine 25 and 32/34 

most of the phosphorylated peptides are clustered within a 75 amino acid stretch comprising also the 

BH3-like domain. In contrast, the last 20 residues at the very C-terminal sequence bear no phosphate 

molecules. 

Three peptides (peptide 95-112, 97-109 and 99-109) carrying one or two phosphates, comprise the 

sequence of the putative 14-3-3 binding domain RSRS
99

AP. By use of phosphospecific antibodies, the 

serine 99 has been found to be phosphorylated in the hBAD sample (see Fig. 8A). Surprisingly, in 

addition to serine 99, the peptide 95-112 was phosphorylated also at serine 97, indicating a novel 

regulatory mechanism regarding association of 14-3-3 proteins with BAD. Possibly, the 

phosphorylation of the second serine in the position 97 within the 14-3-3 binding motif (RS
97

RSAP) 

inhibits the association of BAD with 14-3-3 proteins. Similar accumulation of phosphates has been 

observed within the C-terminal 14-3-3 binding motif of A-RAF kinase (RS
580

AS
582

EP) where both 

serines 580 and 582 were found to be phosphorylated (Baljuls et al. 2008). We have proposed that the 

multiple phosphorylation of the C-terminal 14-3-3 binding region in A-RAF may be one of the reasons 

for the relative low activity of this RAF isoform. On the other hand, perturbations within the internal 

14-3-3 binding domain of C-RAF (RSTS
259

TP) have been reported to be a reason for severe cardio-

facio-cutaneous disorders called Noonan and LEOPARD syndrome (Pandit et al. 2007; Razzaque et 

al. 2007). Displacement of the serine 259 by phenyl alanine abolished the autoinhibitory mechanism 

of C-RAF resulting in a permanent active kinase form. In conclusion, we suggest that phosphorylation 

of the serine in position –2 relative to the obligatory phosphorylated serine within the 14-3-3 binding 

motif (e.g. serine 99 in hBAD) is sufficient to displace 14-3-3 from BAD. In this scenario previous 

dephosphorylation of the crucial serine within the 14-3-3 binding domain would be dispensable. 

The binding motif surrounding serine 75 (RHSS
75

YP) fulfils criteria for a typical 14-3-3 binding 

site as well (Aitken 2002). In human BAD, phosphorylation of serine 75 has been detected by use of 

phosphospecific antibody (see Fig. 8A). Also the fragmentation of the tryptic peptide 73-94 suggests 

phosphorylation of this residue (see Table 2). However, binding data presented in Fig. 14 obtained by 

mutated BAD proteins do not support a significant contribution of this domain for association of 14-3-

3 proteins. We propose that phosphorylated serine 75 is functioning as a gatekeeper for the association 
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to dimeric 14-3-3 molecules. In other words, the heterodimeric 14-3-3 proteins may occupy both 

functional 14-3-3 binding sites, with a region surrounding serine 99 representing the high affinity 

binding site. Besides displacement of 14-3-3 protein from the internal binding site, also other functions 

of the phosphoserine 75 should be taken into account. Indeed, Fueller et al. (Fueller et al. 2008) 

reported recently that the transient phosphorylation of serine 75 in hBAD protein mediated by the 

activated catalytic domain of C-RAF promotes poly-ubiquitylation of hBAD and increases the turn-

over of this protein by proteosomal degradation. The alignment of the amino acid sequences of several 

mammalian BAD proteins reveals two PEST regions, which constitute a marker for proteins that 

undergo proteosomal degradation. Interestingly, one of these PEST regions overlap with the 14-3-3 

binding domain surrounding phosphoserine 75, thus, indicating a competition between 14-3-3 binding 

and the ubiquitylation machinery. 

Four other phosphopeptides (114-127, 116-126, 117-126 and 117-133) carrying either one or two 

phosphates, partially cover the BH3 domain where the serine 118 (corresponding to serine 155 in 

mBAD) is located. Phosphorylation of this residue regulates the interaction of BAD with Bcl-2/Bcl-XL 

proteins. Importantly, within the peptide 117-133 two phosphates were detected (see Fig. 8B and 

Table 2). Because the number of phosphates within the peptide 117-133 corresponds to the number of 

phosphorylation possibilities, both serine residues (serine 118 and 124) within this peptide appear to 

be phosphorylated in vivo. Thus, we propose that besides the well-characterized serine 118, the serine 

124 represents a novel phosphorylation site in hBAD possibly regulating the interaction with 

membrane lipids. In our previous attempts to characterize the translocation of BAD to mitochondria, 

we made an unexpected observation that BAD associates with the same efficiency with non-treated 

and protein-depleted mitochondria (Hekman et al. 2006). By use of plasmon resonance-based 

measurements, two lipid-binding domains (termed LBD1 and LBD2) were identified in C-terminal 

region of human BAD. While LBD2 overlaps with helix-5 localized at the very C-terminus, LBD1 

Figure 18: Amino acid sequences of BAD fragment surrounding BH3 domain from different mammalian 

species.  

Amino acid sequences were aligned using the ClustalW algorithm 

(http://www.ebi.ac.uk/Tools/clustalw2/index.html). The BH3 domain is highlighted in pink and the vicinal 

FKK/FK regions are in turquoise. This alignment reveals that in contrast to the highly conserved BH3 

domain, the neighboring FKK lipid binding motif exists only in humans. 

 



Manuscript I: Regulation of BAD Function by Phosphorylation 

84 

encompasses the C-terminal half of BH3 helix. The LBD1 segment covers also the short FKK motif 

that has been shown to be necessary for lipid binding of hBAD because mutations within this motif led 

to dysfunction of BAD and reduced significantly the association with liposomes (Hekman et al. 2006). 

Therefore, we suggest that the phosphorylation of serine 124 may be of regulatory importance due to 

its close proximity to the FKK motif (S
124

-FKK
127

). It is reasonable to speculate that the negative 

charge of the phosphate molecule may serve to neutralize the influence of the positively charged 

lysines 126 and 127, with the consequence of reduced affinity of BAD for certain membrane lipids or 

membrane lipid micro domains. Importantly, the proposed regulation of BAD function by 

phosphorylation of serine 124 seems to be unique for human BAD protein since most of the 

mammalian homologues do not contain the complete FKK motif (see also the sequence alignment of 

several mammalian species illustrated in Fig. 18).  

Finally, we detected a peptide carrying five phosphates overlapping partially with the peptide 117-

133 (see Fig. 8B). This peptide has been ascribed to the C-terminal BAD region located between 

residues 128 and 149. At present, we cannot definitively specify the exact positions of all of the 

phosphates found by MS analysis. Nevertheless, the phosphorylation of serine 124 is very probable 

since it has already been detected within the peptide 117-133. Also the phosphorylation of murine 

BAD at the serine 170 (corresponding to serine 134 in hBAD) has been previously reported (Dramsi et 

al. 2002). As the alignment of human and murine BAD shows that both BAD proteins contain the 

conserved segment RPKS
134/170

AG, it appears probable that this position is phosphorylated in both 

proteins. Indeed, two other phosphopeptides (132-142 and 134-142) confirmed this assumption. 

Nevertheless, the role of multiple phosphorylations at the C-terminal end of the BAD protein remains 

unclear. Such an accumulation of negative charged residues may support the 14-3-3 depletion of BAD 

from mitochondria. 

Inhibition of BAD-mediated apoptosis by RAF kinases – The pro-apoptotic protein BAD has been 

reported to be a substrate for a broad spectrum of kinases. Here, we demonstrate that BAD is 

phosphorylated in vivo and in vitro by RAF kinases as well. However, the role of RAF kinases in BAD 

phosphorylation is still controversially discussed (Harada et al. 1999; Jin et al. 2005; Kebache et al. 

2007; Zha et al. 1996). B-RAF has so far not been considered as a BAD phosphorylating kinase. Our 

results here indicate that RAF kinases (particularly B- and C-RAF) play an active role in BAD 

phosphorylation and regulation of apoptosis. Due to quality limitations of the phosphospecific BAD 

antibodies it was almost impossible to analyze the phosphorylation status of endogenous BAD in cell 

lines like HEK-293, NIH 3T3 or HeLa. To avoid immunoprecipitation experiments where 

phosphorylated BAD fractions are highly enriched in vitro, we decided to perform forced expression 

experiments. An advantage of this method is that it allows direct testing of RAF kinases, Akt/PKB or 

PAK1 on BAD phosphorylation and avoids broad activation of effector kinases that normally occurs 

after stimulation with growth factors like EGF or PDGF.  
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It has been previously demonstrated that active C-RAF is involved in BAD phosphorylation 

(Wang et al. 1996). However, the exact position of BAD phosphorylation by RAF has not been 

elucidated. Here we resolved BAD phosphorylation mediated by all three RAF kinases and compared 

it with data obtained by PKA, Akt/PKB and PAK1. In vitro experiments are in accordance with 

previously published reports (Datta et al. 2000; Harada et al. 1999; Schurmann et al. 2000) that PKA, 

Akt/PKB and PAK1 phosphorylate BAD to different extents at serines 75, 99 and 118 (Fig. 10 and 

12). Under the same conditions, B-RAF phosphorylated BAD predominantly at Ser-75 and Ser-118, 

whereas highly active C-RAF-R/L phosphorylated BAD at all of these positions (Fig. 12). In contrast, 

in vivo experiments show that RAF kinases and PKA possess the ability to phosphorylate BAD at all 

three crucial serines (75, 99 and 118) whereas Akt/PKB and PAK1 were more efficient in 

phosphorylation of the serine 99 that is involved in association of 14-3-3 proteins (Fig. 9). These 

findings indicate that besides kinase specificity intracellular localization may be important for 

substrate recognition.  

Blocking of autocrine loops by Suramin, e.g. NF- B pathway or stress kinase cascades (Fig. 11) to 

downregulate BAD phosphorylation suggests that these pathways do not play an essential role in BAD 

regulation. Cultivating cells with three different MEK inhibitors (U0126, PD98059 and CI1040) we 

observed no differences in BAD phosphorylation in the presence of B-RAF (Fig. 11). In contrast, cells 

grown in the presence of RAF inhibitor BAY 43-9006 or PKA inhibitor H-89 showed significant 

reduction of BAD phosphorylation in vivo and in vitro, suggesting that RAF kinases and PKA are 

involved directly in suppression of BAD-mediated apoptosis. Although BAY 43-9006 was initially 

developed as a RAF kinase inhibitor, it can additionally target the MAP kinase p38, several tyrosine 

kinases including VEGFR-2, Flt-3 and c-Kit but none of the reported BAD kinases (Fabian et al. 

2005; Wilhelm et al. 2004). Importantly, Jin et al. (Jin et al. 2005) showed, in accordance with our 

results, that C-RAF/PAK-mediated BAD phosphorylation could be effectively inhibited in vivo in the 

presence of 2 M RAF inhibitor BAY 43-9006. In contrast, the use of MEK inhibitor PD98059 (20 

M) did not prevent BAD phosphorylation. Also consistently with our data it has been shown by using 

the same cell line that Akt/PKB phosphorylates BAD efficiently at serine 136 (Datta et al. 1997). 

Collectively, we compare here in the same experiment BAD phosphorylation by RAF and other 

kinases and show that Akt/PKB and PAK1 phosphorylate BAD with different specificity compared to 

RAF and PKA. Furthermore, we demonstrated that BAD-induced apoptosis can be inhibited by B- and 

C-RAF and showed that this inhibition is dependent on the phosphorylation of serines 75 and 118 of 

hBAD (Fig. 13).    

Based on data presented here, we suggest that in vivo phosphorylation of BAD by RAF kinases 

represents an important pathway in the phosphorylation of BAD domains, that are involved either in 

14-3-3 protein association or mediate coupling/decoupling of BAD with Bcl-2 and Bcl-XL proteins. To 

corroborate these findings we performed binding studies with purified components by use of BIAcore 
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technique. In Fig. 14, we demonstrate that in vitro phosphorylation of BAD by activated C-RAF 

promotes association of BAD with 14-3-3 . We used 14-3-3 , since of the seven 14-3-3 isoforms 

analyzed this isoform bound phosphorylated BAD most efficiently (Hekman et al. 2006). While 

serines 75 and 118 are essentially not required for 14-3-3 binding, the domain surrounding serine 99 

represents the preferential 14-3-3 binding site. However, a second binding site may enhance or 

stabilize this association. Quantitative interactions of BAD with truncated Bcl-2 and Bcl-XL had 

previously been investigated only using peptide samples derived from BH3 domain of BAD (Chen et 

al. 2005; Petros et al. 2001). Consistent with these data we detected a preference for the interaction 

between BAD and full length Bcl-XL suggesting that Bcl-XL is the preferential binding partner of 

BAD (Table 3). 

C-RAF has been found to colocalize with mitochondria markers, indicating a high proportion of 

C-RAF located at mitochondria (Galmiche et al. 2008). The presence of activated C-RAF at 

mitochondria is also supported by the contribution of Jin et al. (Jin et al. 2005) who demonstrated that 

PAK mediates C-RAF activation and its subsequent translocation to the mitochondria. At present, we 

cannot completely exclude the possibility that RAF kinases and PKA act simultaneously or 

synergistically, as it has been reported that C-RAF and PKA form a complex in vivo (Dumaz and 

Marais 2003). However, the C-RAF/PKA complex was found to be stable only in non-stimulated 

cells. It is possible that Akt/PKB and C-RAF also act as a complex in vivo. In this scenario, C-RAF 

would phosphorylate mBAD mainly at serines 112 and 155 and Akt/PKB might be responsible for 

Ser-136 phosphorylation. These combined phosphorylations would enable effective association of 14-

3-3 with BAD and separation from the BAD/Bcl-XL. She et al. (She et al. 2005) proposed that BAD 

might represent the convergence point of the RAF- and the PI3K/Akt kinase pathway. According to 

this report, BAD protein acts as a switch that integrates the anti-apoptotic effects of the EGFR/MAPK 

and PI3K/Akt pathways (as detected in MDA-468 cancer cells). This model is further supported by the 

observation that BAD can associate with PKB and B-RAF in conjunction with the co-chaperone BAG-

1 on the mitochondrial level (Gotz et al. 2005). 

Pore-forming activity of human BAD is regulated by phosphorylation and 14-3-3 Proteins – 

Within the Bcl-2 family of proteins Bcl-XL, Bcl-2, Bax, Bak and the BH3-only protein Bid have been 

reported to possess channel-forming ability in artificial lipid bilayers (Antonsson et al. 1997; Minn et 

al. 1997; Schendel et al. 1999; Schendel et al. 1997; Schlesinger et al. 1997). In addition, it was 

observed by confocal and electron microscopy that Bak and Bax coalesce during apoptosis into large 

clusters on the surface of mitochondria (Karbowski et al. 2002). Here we present biophysical evidence 

that the pro-apoptotic BH3-only protein BAD forms channels in artificial membranes. To form pores 

such proteins must contain helices that are long enough to span the membrane bilayer and these 

helices must be largely devoid of charged residues (Schendel et al. 1998). As an average lipid bilayer 

has a hydrophobic cross-section of ≈30 Å (Montal and Mueller 1972), the -helix needs to be ≈20 
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residues long in order to span a membrane bilayer and to be able to participate in channel formation 

(Schendel et al. 1998). A helix probability plot of human BAD exhibited a C-terminal region of about 

20 residues with a high probability of a helical structure and only two charged residues (Hekman et al. 

2006). This region is surrounded by positively charged residues, which may additionally facilitate the 

association of the protein with membranes. Although one helix is insufficient to form a channel, some 

molecules could come together, each contributing their hydrophobic helix to create a pore. 

Furthermore, in the vicinity of this putative C-terminal helix a second lipid binding domain in human 

BAD comprising the FKK motif has been identified (Hekman et al. 2006).  

We show here that human BAD is able to form ion channels, which exhibit multiple conductance 

states with complex opening kinetics. Similar properties have been also reported for other Bcl-2 

family members including Bcl-XL, Bcl-2, Bax and Bid (Antonsson et al. 1997; Dejean et al. 2006; 

Minn et al. 1997; Schendel et al. 1997; Schlesinger et al. 1997). The presence of three different 

channel activities with progressively greater conductances (≈500 pS, ≈750 pS and ≈3750 pS) but 

occurring with progressively lesser frequency raises the possibility of step-wise oligomerization of 

BAD protein molecules in planar bilayers. The BAX channel progresses within 2-4 min of its initial 

appearance (Schlesinger et al. 1997). This includes an early low-conducting channel, followed by a 

transition phase with multiple sub-conductance levels and finally achieves an apparently stable ohmic 

pore of large conductance. Our findings that the lower conductive hBAD channels are flickering 

between a closed and an open state and the higher conductive hBAD channels persist open raises the 

question of what factors may control opening and closing of hBAD channels in vivo. Although it was 

demonstrated, that phosphorylation of BAD does not affect membrane binding (Hekman et al. 2006) 

dephosphorylated hBAD fails to form discrete channels in lipid bilayers. Possibly, some specific 

phosphorylation patterns of hBAD are responsible for the formation of particular conductance states. 

Furthermore, we observed that 14-3-3 proteins disrupt hBAD´s assembly into the lipid membrane and 

that 14-3-3 is able to remove or close existing hBAD channels. Based on these data we propose that 

the formation of hBAD pores is a reversible process that is regulated by phosphorylation and 14-3-3 

proteins. This fits well to the suggested model that BAD is a membrane associated protein that has the 

hallmarks of a receptor rather than a ligand which shuttles in a phosphorylation-dependent manner 

between mitochondria and other membranes with 14-3-3 as a key regulator of this relocation (Hekman 

et al. 2006). Additionally, our results emphasize that phosphorylation alone is insufficient to release 

BAD from membranes, because the depletion process depends on 14-3-3 proteins. In vivo, the 

formation of hBAD pores may also be affected by other proteins that have been reported to interact 

with BAD. Two candidates are Akt/PKB and B-RAF that were demonstrated to co-immunoprecipitate 

with BAD (Gotz et al. 2005). It is possible that these kinases affect hBAD´s pore-forming ability 

beside their BAD phosphorylating activity. Another open issue is the putative influence of other pore-

forming members of the Bcl-2 family of proteins, like Bcl-2 and Bcl-XL that have been shown to 

interact with BAD (Minn et al. 1997; Schendel et al. 1997; Yang et al. 1995). Do they merely shut off 
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their own and hBAD´s pore-forming activity by heterodimerization or do they alternatively form 

counteracting pores? Our preliminary data suggest that Bcl-XL does not abolish pore formation of 

hBAD (data not shown). Similar observations were reported with respect to the effects of Bax on the 

pore-forming ability of Bcl-2. Although it was recently demonstrated that Bax interacts preferentially 

with the membrane-inserted form of Bcl-2 (Dlugosz et al. 2006), it was reported that Bax does not 

merely abrogate pore formation of Bcl-2 (Schendel et al. 1997). These authors suggested that Bcl-2 

allows the transport across membranes in a direction that is cytoprotective, whereas Bax does the 

opposite. Bcl-XL and hBAD may also be involved in controlling such a homeostasis. In this regard it 

should be mentioned that hBAD forms pores in its phosphorylated and non-apoptotic state. Therefore 

it is possible that it cooperates with anti-apoptotic proteins instead of counteracting them.  

Results presented here raised the question, what could be the physiological role of BAD channels? 

BAD has been found to localize at the outer mitochondrial membrane and cholesterol rich rafts at the 

plasma membrane (Fleischer et al. 2004; Hekman et al. 2006). Therefore, the ion-conducting BAD 

channels could contribute to the regulation of the mitochondrial permeability transition (Zoratti and 

Szabo 1995), a process that has been suggested to be critical in apoptosis (Zamzami et al. 1996; 

Zamzami et al. 1996). Recently, it was demonstrated that BAD targets the permeability transition pore 

and sensitizes it to Ca
2+

 in a phosphorylation dependent manner (Roy et al. 2009). It is also possible 

that hBAD conducts other molecules than ions, such as cytochrome c or further apoptogenic factors. 

Also Bax was originally described to form ion-conducting channels (Schlesinger et al. 1997), whereas 

cell-free studies on isolated mitochondria demonstrated that it can accelerate the release of cytochrome 

c (Jurgensmeier et al. 1998). Another function of BAD channels could be to influence metabolic 

processes apart from apoptosis. It was already suggested that mitochondrial ion channels such as those 

regulated by Bcl-2 family members may control the export of metabolites including ATP under 

normal physiological conditions (Gottlieb et al. 2002; Jonas et al. 2003; Vander Heiden and 

Thompson 1999). An example for a Bcl-2 family member that may regulate a non-apoptotic process 

by the formation of pores is the naturally occurring proteolytic cleavage fragment of Bcl-XL (Bcl-XS). 

There is evidence that during hypoxia Bcl-XS results in the formation of large conductance channels 

(Jonas et al. 2004), which contribute to the run-down of synaptic transmission in the squid presynaptic 

terminal (Jonas et al. 2005).  

Other interesting aspects that could unravel the function of pore-formation by Bcl-2 proteins are 

observations that link apoptosis to mitochondrial morphogenesis. Bax/Bak were found to colocalize 

with mitochondrial fission sites and dynamin family GTPases, Drp1 and Mfn2 (Karbowski et al. 

2002). Additionally, it was found that during apoptosis close in time to Bax translocation and 

cytochrome c release, mitochondria fragment into small units (Frank et al. 2001). This indicates that 

cytochrome c release may occur through Bax-modified mitochondrial scission machinery. It is also 

feasible that the insertion of hBAD into membranes is of greater importance to its function as adaptor 
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or docking protein than for pore formation, as it has been suggested for Bcl-2, Bax and Bcl-XL 

(Schendel et al. 1998).  

Concluding remarks – Generally, BH3-only proteins are proposed to function as sentinels of the 

cellular health status. Data presented by She et al. (She et al. 2005) indicate that BAD might represent 

the convergence point of the RAF- and the PI3K/Akt kinase pathway. According to this report, BAD 

protein acts as a switch integrating the anti-apoptotic effects of the central mitogenic and PI3K/Akt 

pathways. This model is further supported by the observation that BAD can associate with both PKB 

and RAF kinases at the mitochondrial level. Data presented here suggest also that there is interplay 

between RAF- and the PKB-pathway and that BAD can function as a node of these two signaling 

pathways. Thus, C-RAF might coordinate the assembly, recruitment and possibly the activity of other 

kinases resulting in the correct signaling output. Identification of novel hBAD phosphorylation sites 

indicates another type of regulation for human BAD compared to murine (and some other mammalian) 

BAD proteins. The finding that human BAD exhibits pore-forming activities opens new insights into 

the regulation of apoptotic mechanisms mediated by Bcl-2 family of proteins.  
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3.2. Can BAD Pores be Good? New Insights from Examining BAD as a 

Target of RAF Kinases 

 

RAF kinases work from a number of localizations within the cell such as mitochondria, 

endosomes, cytoplasm/cytoskeleton and the plasma membrane. BAD is a pro-apoptotic member 

of the Bcl-2 family of proteins that has been described to be targeted directly by RAF. We show 

here that RAF not only neutralizes BADs pro-apoptotic activity but activates it for a new 

function as a pore. These geometric pores are permeable for ions and many other signaling 

molecules and may function in a positive feedback loop to support mitogenic cascade signaling 

and transformation.  

3.2.1. Introduction 

RAF kinases are serine/threonine kinases (Mark and Rapp 1984; Moelling et al. 1984). They 

regulate the highly conserved Ras-RAF-MEK-ERK cascade that mediates transduction of 

extracellular mitogenic signals through activated Ras GTPases to a MAP kinase module (reviewed in 

Daum et al. 1994). This cascade coordinates diverse cellular processes important for development 

including proliferation, survival, metabolism, migration and senescence. Deregulation on the other 

hand is frequently found in tumors (www.sanger.ac.uk/genetics/CGP/) (Yeang et al. 2008).  

C-RAF, the first isoform of the RAF kinase family, was discovered by retrovirus transduction 

experiments that led to isolation of the acutely transforming virus carrying the v-raf oncogene (3611-

MSV) (Rapp et al. 1983). v-mil was independently isolated from the chicken carcinoma virus MH2 in 

a related retrovirally transduced sequence, (Jansen et al. 1983) that additionally carried the oncogene 

v-myc. The cooperation between RAF/Mil and MYC led to the identification of MYC as an apoptosis 

inducer and RAF as a survival kinase  (Blasi et al. 1985; Cleveland et al. 1986; Principato et al. 1990; 

Principato et al. 1988; Rapp 1994; Rapp et al. 1985; Rapp et al. 1985; Rapp et al. 2009; Sutrave et al. 

1984) As in the case of MYC (Eisenman 2001) RAF kinases belong to a family that includes A- B- 

and C-RAF. Team work between these enzymes refines RAF signaling by targeting the mitogenic 

cascade to different subcellular compartments (Rapp et al. 2006). Recently, the B-RAF isoform 

shaped up as an important player of cancer development. This is underlined by the observation that a 

single amino-acid exchange in B-RAF represents one of the most commonly found mutations in 

several types of cancer (the  valine to glutamic acid exchange in position 600) (Davies et al. 2002). 

The isoforms of RAF kinases are ubiquitously expressed within an organism, but they differ in their 

expression levels (Storm et al. 1990). Specialized functions of each isoform are reflected in 

differential regulation of RAF kinase activity (Wellbrock et al. 2004) and varying phenotypes of RAF 

knockout mice (Pritchard et al. 1996; Wojnowski et al. 2000; Wojnowski et al. 1997). Embryos of C-

RAF
-/-

 as well as B-RAF
-/-

 mice die early in development, whereas A-RAF
-/-

 animals are viable 
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although they display neurological and intestinal abnormalities (Pritchard et al. 1996). B-RAF
-/-

 

embryos exhibit overall growth retardation and increased apoptosis in endothelial tissues resulting in 

death from vascular hemorrhage between day 10.5 and 12.5 (Wojnowski et al. 1997). The knockout 

of C-RAF in mice leads to disturbed development of the placenta and embryonic organs, in particular 

of the liver and the hematopoietic compartment (Huser et al. 2001; Mikula et al. 2001; Wojnowski et 

al. 2000). Embryonic lethality occurred in midgestation and may be due to a high apoptosis rate in the 

liver (Huser et al. 2001; Mikula et al. 2001) that is also observed in cell culture experiments (Zhong 

et al. 2001).  

Growth factor regulation of RAF kinases is highly complex and still not completely elucidated. The 

regulation comprises binding by active Ras at the membrane, phosphorylations and heterodimer 

formation with other proteins. There is also evidence for control of the RAF kinases at the protein level 

(Dogan et al. 2008; Schulte et al. 1996; Stancato et al. 1997) and through microRNAs 

(http://microrna.sanger.ac.uk/). The existence of four Ras (H-RAS, N-RAS, K-RASa, K-RASb), three 

RAF, two MEK (MEK1 and MEK2) and two ERK (ERK1 and ERK2) isoforms introduces additional 

complexity. Therefore, the signaling output must be strongly regulated by the assembly of different 

complexes in a temporal and spatial fashion (Kyriakis 2007). To enable the formation of the right 

complex for the respective stimulation, components of the RAF cascade associate with different 

scaffold proteins, such as KSR (kinase suppressor of Ras), CNK (connector enhancer of KSR), MP-1 

(MEK-Partner 1) and SUR-8 (suppressor of Ras-8) to form a functional cascade (Claperon and Therrien 

2007; Morrison and Davis 2003). MP1, for instance, selectively interacts with MEK1 and ERK1 and 

facilitates their activation, but it does not to bind to MEK2 and ERK2 (Schaeffer et al. 1998). The 

pseudokinase KSR shares high homology to RAF kinases and associates with the same binding partners 

as RAF, like 14-3-3, Hsp90 and Cdc37 (Claperon and Therrien 2007), which facilitates the interaction 

to each other. Furthermore, mouse KSR was shown to interact constitutively with MEK and in a Ras 

dependent manner with RAF and ERK. KSR localizes in the cytoplasm of quiescent cells (Morrison 

2001) and becomes recruited to the cell membrane upon specific dephosphorylation of an internal 14-3-

3 binding site (Morrison 2001; Muller et al. 2001). These results demonstrate that these scaffold 

proteins not only localize and stabilize the Ras-activated RAF-MEK-ERK module to the plasma 

membrane but also coordinate interactions between the individual components of the pathway and 

regulate their activation (Raabe and Rapp 2002). By restricting interactions between the different 

components of the cascade, scaffold proteins increase the efficiency of signaling and maintain fidelity 

(Raabe and Rapp 2002). So, although the precise molecular mechanisms leading to activation of the 

RAF-MEK-ERK module are still not completely understood, compartmentalization of signaling 

complexes by scaffold proteins might be one way to ensure proper cellular responses to different 

extracellular stimuli (Raabe and Rapp 2002). 
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Important targets of the RAF pathway that were described to be highly involved in apoptosis 

control are proteins of the Bcl-2 family. The RAF-ERK module may directly phosphorylate the anti-

apoptotic protein Bcl-2 and thereby enhance its apoptosis suppressing properties (Deng et al. 2000). 

Moreover pro-apoptotic Bcl-2 proteins, like BIM and BAD are targets of the RAF pathway. The 

phosphorylation of these proteins results in an inactivation of their pro-apoptotic properties. The 

phosphorylation of BIM can lead to the degradation of the protein (Ewings et al. 2007; Ley et al. 

2003; Luciano et al. 2003). The phosphorylation of BAD results in its sequestration into the cytosol 

(Scheid et al. 1999; Zha et al. 1996). Analogous to BIM, phosphorylation via C-RAF can also 

promote BAD polyubiquitylation resulting in an increase of the turn-over of this protein through 

proteasomal degradation (Fueller et al. 2008). Recently, our group showed that BAD binds to lipids 

with high affinities, predominantly to negatively charged phospholipids and cholesterol-rich 

liposomes (Hekman et al. 2006). These data led to a model in which BAD shuttles in a 

phosphorylation-dependent manner between mitochondria and other membranes and where 14-3-3 is 

a key regulator of this relocation. Furthermore, we identified that in its phosphorylated, non-apoptotic 

state, BAD forms ion conductive channels in planar bilayer membranes (Polzien et al. 2009) (Fig. 

19). These observations indicate that beside its pro-apoptotic activity, BAD exhibits a vital function 

under survival conditions.  

3.2.2. Material and Methods 

Plasmid construction – Human BAD (hBAD) cDNA (kind gift of John Reed, La Jolla, California) 

was cloned into pGEX-4T-1 (Pharmacia). To generate N-terminal His-tagged hBAD, the cDNA was 

released by EcoRI/NotI from pGEX-4T-1 and ligated in the EcoRI/NotI sites of pFastBac H1 

(Invitrogen).  

Purification of human BAD protein – For purification of phosphorylated His-hBAD, Sf9 cells 

were infected with baculoviruses at the multiplicity of infection of 5 and incubated for 48 hr at 27°C. 

The Sf9 cell pellet (2×10
8
 cells) was lysed in 10 ml lysis buffer containing 50 mM sodium phosphate, 

pH 8.0, 150 mM NaCl, 10 mM Na-pyrophosphate, 25 mM ß-glycerophosphate, 25 mM NaF, 10% 

glycerol, 0.5% NP-40 and a cocktail of standard proteinase inhibitors for 30 min with gentle rotation at 

4°C. The lysate was centrifuged at 27000 g for 30 min at 4°C. The supernatant (10 ml) containing His-

hBAD was incubated with 0.5 ml Ni
2+

-nitrilotriacetic acidagarose for 2 hr at 4°C with rotation. After 

incubation, the beads were washed 3 times with lysis buffer containing 0.2% NP-40, 300 mM NaCl 

and 20 mM imidazole and hBAD was eluted with an imidazole step gradient.  

Lipid bilayer experiments – The channel forming by human BAD was assessed in artificial lipid 

bilayer membranes using a teflon chamber as described previously (Benz 1994; Benz et al. 1992). 

Briefly, to form the membranes a 1% (w/v) solution of diphytanoyl phosphatidylcholine (DiphPC) 

(Avanti Polar Lipids) in n-decane was used. Purified hBAD was applied on both sides of the DiphPC 
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membrane in 1 M KCl buffer and single channel formation was measured after application of a fixed 

membrane potential. The single channel conductances G were expressed as conductance steps in the 

presence of the corresponding nonelectrolyte at a concentration of 20% (w/v) in the bathing solution. 

3.2.3. Results and Discussion 

RAF kinases localize to mitochondria and control mitochondrial associated processes – In 

collaboration with the Reed lab, we detected for the first time a RAF-isoform at the mitochondrial 

level (Wang et al. 1996) (Fig. 19). In this study, we showed that a stably expressed active C-RAF 

localizes to mitochondria upon overexpression of the anti-apoptotic protein Bcl-2. These observations 

provoked other studies that confirmed the localization of C-RAF at mitochondria in cancer and normal 

tissues (Alavi et al. 2003; Cornelis et al. 2005; Majewski et al. 1999; Peruzzi et al. 2001; Salomoni et 

al. 1998). However, the underlying mechanisms of the mitochondrial recruitment of RAF kinases are 

still not entirely resolved. Some reports suggest phosphorylation of one residue on C-RAF, Ser-338, 

via the p21-activated kinase (PAK), as a prerequisite for the localization to mitochondria and 

conferring a protective effect to apoptosis (Jin et al. 2005). Other studies suggest this phosphorylation 

as an activation marker (Mason et al. 1999) and not involved in mitochondrial binding (Galmiche et 

al. 2008). There is also evidence that C-RAF recognizes some components of the mitochondrial 

membrane that promote the recruitment to mitochondria as C-RAF interacts with certain lipids 

(Hekman et al. 2002) and proteins (Wang et al. 1996). RAF-binding partners that are established on 

the mitochondrial level, are  prohibitin (Rajalingam et al. 2005), the voltage dependent anion channel 

(VDAC) (Le Mellay et al. 2002), members of the small Ras GTPases (Bivona et al. 2006; Wolfman et 

al. 2006) and other molecules involved in signaling processes like Grb10 (Nantel et al. 1999). Beside 

C- RAF, there are also indications that B-RAF might be present at the mitochondrial level (Gotz et al. 

2005; Wiese et al. 2001). B-RAF might be localized to mitochondria through recruitment by C-RAF, 

since heterodimer formation is a common feature for RAF kinases (Garnett et al. 2005; Rushworth et 

al. 2006; Weber et al. 2001). Concerning A-RAF a controversial study describes that, via interacting 

with the transport machinery of mitochondria, A-RAF could localize inside this organelle (Yuryev et 

al. 2000). 

Recently, our group identified that the local activation of C-RAF on mitochondria is sufficient to 

initiate an intense mitochondrial remodeling, creating small spherical elements clustered around the 

nucleus (Galmiche et al. 2008). The reason could be that C-RAF intervenes with the mitochondrial 

fission and fusion, two highly regulated processes (Chan 2006; Lackner et al. 2009). The clustering of 

small units of cellular compartments in the cell center, as it was seen for mitochondria upon C-RAF 

activation, is also observed in the process of cell division to ensure the appropriate sequestration and 

inheritance of organelles. Components of the RAF pathway are involved in this regulation for other 

organelles, like the Golgi-apparatus and endosomes (Shaul and Seger 2006; Teis et al. 2006). 

Therefore, the effect of active C-RAF on mitochondria could establish a comparable regulation. 
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Changes in mitochondrial distribution display well-known features observed in various cancer cells 

(Alirol and Martinou 2006). Keeping in mind the fact that cancer cells have a reduced susceptibility 

to apoptosis the mitochondrial remodeling might represent a further mode in establishing and/or 

maintaining cancerous properties.  

A variety of key events in apoptosis take place at the mitochondrial level (Green and Reed 1998). 

As mentioned before, C-RAF exhibits intrinsic binding to mitochondria (Galmiche et al. 2008). These 

results are in agreement with the observation that the RAF cascade is one of the signaling pathways 

that inactivate the apoptotic machinery upon growth factor stimulation (Cleveland et al. 1994; Letai 

2006). The constitutive activation of the RAF-cascade increases the survival rate, even in the absence 

of growth factors (Cleveland et al. 1994; von Gise et al. 2001). The importance of the RAF pathway 

in the mediation of pro-survival and anti-apoptotic effects was also demonstrated in knock-out 

Figure 19: The RAF isoforms display individual localizations and specific functions.  

The activation of a receptor tyrosine kinase (here EGF receptor) results in RAS-mediated activation of 

RAF kinases. A-RAF signals on endosomes and leads to ARF6 activation. Endosome signaling is inhibited 

by a negative feedback loop through DA-RAF witch blocks ERK activation in this compartment. B- and 

C-RAF target substrates at various localizations including cytoplasm and mitochondria and provoke cell 

growth, differentiation, proliferation and survival by multiple mechanisms. These mechanisms include 

direct activation or neutralization of apoptosis related proteins and transcriptional control of a number of 

genes. See the main text for details. EE, early endosomes; RC, recycling compartment; PM, plasma 

membrane ((Nekhoroshkova et al. 2009), highly modified). 
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experiments since knock-out mice exhibit an enhanced apoptosis rate as described in a previous 

chapter. C-RAF was shown to modulate cell survival on several levels (Chen et al. 2001; O'Neill et 

al. 2004; Piazzolla et al. 2005; Wang et al. 1998). The mechanisms   include a direct regulation of the 

proteins that are important for apoptosis as well as the transcriptional regulation of such proteins (Fig. 

19). As mentioned above, the RAF pathway also targets proteins of the Bcl-2 family that control 

apoptosis via several mechanisms. BAD is a member of that family that was shown to be targeted 

directly by RAF kinases (Polzien et al. 2009).  

Furthermore, in the publication in hand we present new insights of BAD regulation that indicate 

opposed functions of BAD in dependence of its phosphorylation state. We will go into more detail on 

this topic in a later chapter.  

The RAF cascade also intervenes with the progression of apoptosis downstream of 

mitochondria. ERK-mediated phosphorylation of the initiator caspase-9 blocks its activity and 

thereby disrupts the execution of apoptosis (Allan et al. 2003). Furthermore, C-RAF does not only 

rely on its kinase activity to counteract apoptosis. Through its binding, C-RAF can modulate the 

activity of crucial apoptosis regulating kinases, like apoptosis stimulating kinase 1 (ASK1) (Wang et 

al. 2001) or the mammalian sterile20-like kinase (MST2) (O'Neill et al. 2004). Additionally, 

activation of the RAF cascade affects the transcriptional regulation of various genes (Fig. 19). The 

ERK kinase is able to shuttle inside the nucleus where it regulates several transcription factors 

directly by phosphorylation (Treisman 1996). Two important target transcription factor families are 

Ets and AP-1(Bruder et al. 1992). Thereby the RAF pathway suppresses apoptosis induction through 

the direct transcriptional regulation of pro- and anti-apoptotic proteins (Shinjyo et al. 2001; 

Townsend et al. 1998). Furthermore, through the activation of the kinase MEKK1, the RAF pathway 

can also activate NF- B, another transcription factor central in cell survival and transformation 

(Baumann et al. 2000). Of importance, the RAF cascade transcriptionally regulates also members of 

the inhibitor of apoptosis proteins (IAP) (Gotz et al. 2005; Pahl 1999; Wang et al. 1998) (Fig. 19). 

The first discovered proteins of the IAP family are the baculovirus IAPs Cp-IAP and Op-IAP that 

were identified based on their ability to complement the cell death inhibitor p35 in mutant viruses and 

directly inhibit caspases of the host (Clem et al. 1991; Clem and Miller 1994; Crook et al. 1993). 

Afterwards a multitude of related proteins have been described in virtually all eukaryotes and it was 

shown that IAPs are able to inhibit the caspases of many organisms including nematodes, flies and 

mammals. IAPs can be considered as major modulator of caspase activity which target the enzymes 

directly in a selective manner. The human IAPs, XIAP, cIAP-1, cIAP-2 and survivin, for example, 

have been shown to bind and potently inhibit selectively caspases 3,7 and 9 (Deveraux et al. 1997; 

Roy et al. 1997), but not caspases 6, 10 or 8. Interestingly, IAP family proteins also contribute to 

signal transduction (Chu et al. 1997; Wang et al. 1998). Furthermore, we identified that XIAP binds 

strongly to C-RAF and promotes the ubiquitylation of C-RAF (Dogan et al. 2008). In addition, XIAP 
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or c-IAP-1/2 knockdown cells show enhanced cell migration in a C-RAF-dependent manner (for 

review see Rajalingam et al., in prep.)  

Further targets of the RAF pathway are polycomb group proteins (Voncken et al. 2005) and 

histones (Dyson et al. 2005). This indicates the contribution of RAF kinases in the epigenetic control 

of transcription. In summary, RAF kinases have been shown to localize on mitochondria and 

intensely interfere with various mitochondrial associated mechanisms including the subcellular 

distribution of this organelle and apoptosis control.   

RAF kinases localize to the cytoskeleton and interfere with cellular metabolism and 

reorganization – We discussed in a previous chapter that C-RAF directly provokes movement of 

mitochondria. Intracellular transport of mitochondria and other cellular organelles uses the 

cytoskeleton as “railroads“ (Boldogh and Pon 2007; Frederick and Shaw 2007). Indeed, C-RAF was 

shown to interfere with the organization of the cytoskeleton (Kerkhoff et al. 2002; Khosravi-Far et al. 

1995; Lovric et al. 1998; Mavria et al. 2006; Prendergast et al. 1995; Qiu et al. 1995; Qiu et al. 1995; 

Roux et al. 1997).  

A cytosolic/cytoskeletal localization of RAF kinases is also a prerequisite for the interaction with 

cytosolic proteins. A-RAF was shown to bind the cytosolic glycolytic isoenzyme M2-PK thereby 

increasing its activity (Le Mellay et al. 2002). This is in accordance with the finding that introduction 

of an activated version of C-RAF into NIH3T3 cells is sufficient to increase the content of glycolytic 

metabolites (Le Mellay et al. 2002). So the RAF pathway also affects the metabolism of cells. In 

cancer, cells often exhibit a modified metabolic state, which is commonly called the “Warburg effect”. 

These cells use glycolysis as major energy supply route rather than the oxidative phosphorylation of 

mitochondria even in the presence of O2 (Gottlieb and Tomlinson 2005). Therefore the involvement of 

RAF kinases in metabolic processes could provide an additional step to facilitate cell transformation. 

In the last years it emerged that the actin organization and the intracellular transport are 

functionally linked. One example is the involvement of the Spir actin organizer in vesicle transport 

processes (Kerkhoff et al. 2001). Therefore it is not surprising, that RAF kinases also play a role in 

endocytosis control as described in the next chapter. 

A-RAF localizes to endosomes and highly interferes with the execution of endocytosis – 

Endocytosis is a process essential for many aspects of cellular life, including receptor internalization 

and recycling. Recently, our group identified a role of A-RAF regulated ERK signaling in membrane 

trafficking (Nekhoroshkova et al. 2009). In this study, we ascertained A-RAF to accumulate at 

punctate cortical structures that are known to contain proteins associated with early steps of 

endocytosis (Nekhoroshkova et al. 2009; Pelkmans et al. 2005). Additionally, a C-terminally 

truncated version of A-RAF, AR149, that is nearly identical with inhibitory A-RAF splice variant 

DA-RAF2 (Yokoyama et al. 2007) was discovered in this work (Nekhoroshkova et al. 2009; 
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Yokoyama et al. 2007). AR149 was demonstrated to be targeted to tubular endosomes where it 

colocalizes with the endocytosis regulator ARF6. Furthermore, the results obtained suggest that 

endocytosis regulation involves feedback regulation by DA-RAF2. Additionally, this work shows that 

activity of A-RAF kinase in the mitogenic cascade on endosomes is a prerequisite for the shuttling of 

Tfn-positive endosomes to the pericentriolar region (Nekhoroshkova et al. 2009). A model of the role 

of A-RAF in endocytosis control in illustrated in Fig. 19 Previous reports demonstrated that A-RAF 

participates in regulation of caveolae/raft-mediated endocytosis by stabilizing the caveolar coat 

(Pelkmans et al. 2005; Pelkmans and Zerial 2005). These results are reinforced by several reports that 

demonstrate crosstalk between endocytosis and signal transduction (Polo and Di Fiore 2006; Rapp et 

al. 2003) like the finding that scaffold protein KSR1 localizes to endosomes as well (Robertson et al. 

2006).  

RAF target BAD forms geometric pores at the plasma membrane upon phosphorylation – BAD is 

a pro-apoptotic Bcl-2 family protein that is regulated by phosphorylation in response to survival 

factors. The Bcl-2 family of proteins is divided into subfamilies, including proteins which either 

inhibit or promote programmed cell death (Adams and Cory 2001; Gross et al. 1999). BAD belongs to 

a sub-class of pro-apoptotic Bcl-2 family proteins, the BH3-only proteins, which share sequence 

homology only at their BH3 domain (Youle and Strasser 2008). C-RAF was the first reported BAD 

kinase (Wang et al. 1996), a finding that provided first evidence for a link between signal transduction 

and the intrinsic apoptosis machinery. There is a growing body of evidence for a direct participation of 

RAF kinases in the regulation of apoptosis via BAD (Jin et al. 2005; Panka et al. 2006; Polzien et al. 

2009). Non-phosphorylated BAD associates with Bcl-2/Bcl-XL and localizes to the outer 

mitochondrial membrane. Phosphorylation of murine BAD at Ser-155 (Ser-118 of human BAD) 

disrupts the association with Bcl-2 or Bcl-XL and promotes cell survival (Datta et al. 2000). Whereas 

the current view suggests that BAD exerts its pro-apoptotic function solely by displacing and thereby 

activating “activator” BH3-only proteins it has to be considered that phosphorylated BAD may 

actively contribute to survival preservation in cells. Recently, our group identified that human BAD 

forms channels in planar bilayer membranes in vitro (Polzien et al. 2009). BAD forms these pores 

only in its phosphorylated and for 14-3-3 proteins accessible form. In this state, BAD is located at 

cholesterol-rich domains (rafts) of the plasma membrane (Hekman et al. 2006). We identified that 

human BAD contains at least nine phosphorylation sites (Polzien et al. 2009). So whether 

phosphorylation of BAD leads to proteasomal degradation of BAD (Fueller et al. 2008) or gives the 

protein a second life as a pore depends presumably on the phosphorylation signature of BAD. Here we 

show that these BAD pores are not only permeable for ions but also for non-charged molecules. 

Furthermore, we identified that BAD pores posses a funnel-shaped geometry with a water lumen 

diameter of 1 nm which can conduct substances up to a molecular weight of 200 Da.  
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To evaluate the inner structure of the water lumen of BAD channels we used a method based on 

the determination of channel filling by different nonelectrolyte molecules (NE) (Krasilnikov et al. 

1998). NEs can give results concerning the size of the ion channel entrance as well as the presence 

and apparent localization of structural constrictions inside an ion channel water lumen. This method 

has been used in various studies to determine the size and geometry of proteinous single ion channels 

(Krasilnikov et al. 1998; Nablo et al. 2008).  

According to our previously published data (Polzien et al. 2009), the conductance of the largest 

channel formed by human BAD is  3.75 nS, in symmetrical 1 M KCl (Table 4). We measured the 

conductance of the BAD channel in the presence of different NEs. The NEs applied ranging from the 

highly permeating ethylene glycol up to impermeate NE molecules with large hydrodynamic radii 

(Table 4 and Fig. 20A). In the presence of different small NEs the single channel conductances 

decrease to a different extend, as evidenced in Table 4 and Fig. 20A. By contrast, large impermeate 

NEs like PEG3000 produces no effect on the single channel conductance at all (Table 4, Fig. 20A). 

For a better understanding of the measurements one can use the filling (F) witch is given by:  

F = [(g0 - gi)/gi]/[ 0 - i)/ i]  (1)  

Where g0 is the single channel conductance in the presence of an impermeate NE or the single 

channel conductance in a solution without NEs; gi is the single channel conductance in the presence 

of a solution containing 20% (w/v) of an NE with access to the channel interior; 0 is the conductivity 

of the solution without NEs or the conductivity of the virtual volume free of NEs in a solution with 

NEs; and i is the conductivity of the solution containing 20% (w/v) of a given NE (for further 

information see (Krasilnikov et al. 1998). 

Table 4: Single-channel conductances of human BAD in the presence of different nonelectrolytes in the 

bath solution. Mr = molecular mass; r = hydrodynamic radius; = conductivity of the solution, 24,5°C for 

measurements of  

Nonelectrolyte Mr (g/mol) r (nm) G (pS) mS x cm  

none none 0 3750 110,3 

Ethylene glycol 62 0,26 3500 57,2 

Glycerol 92 0,31 3250 49,1 

PEG200 200 0,5 3000 46,1 

PEG300 300 0,6 2500 45,5 

PEG400 400 0,7 2250 46,4 

PEG600 600 0,8 1750 54,1 

PEG1000 1000 0,94 1250 49,5 

PEG2000 2000 1,22 1500 62,4 
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PEG3000 3000 1,44 3750 48,9 

PEG4000 4000 1,92 3750 61,39 

 

Assuming the filling of the channel by the two smallest NEs, namely ethylene glycol and 

glycerol, is close to the maximum possible level, allowing calculation of the filling in terms of 

percentage (F%) as follows:  

F% = 2Fi /(F1 + F2) x 100%      (2)  

where Fi is the filling in the presence of a given NE and F1 and F2 represent filling in the presence 

of ethylene glycol and glycerol in the bathing solutions, respectively.  

The geometrical parameters of the BAD channel can be derived from out data by comparing two 

possible structures for an ion channel pore, cylindrical and funnel-shaped. Then for an ideal cylindrical 

structure all permeant NEs should fill the channel to the same maximum extent. This fact will hold up 

to the point where the radius of a particular NE becomes equal to the radius of the channel. After this 

point, we expect a sharp decrease in the extent of filling. Hence for an ideal cylindrical structure the 

NE used in this study should behave as two distinct groups; one which will fill the channel completely 

and another that will not fill the channel at all. By the same reasoning, for a funnel-like structure we 

expect to find several NEs able to completely fill the channel, given that the hydrodynamic sizes of the 

molecules are smaller than the size of the narrowest part of the channel (Fig. 20, B and C; 

hydrodynamic radii  0,5 nm). On the other hand, when the hydrodynamic size of the NE molecules 

becomes larger than the size of the largest entrance of the channel, the NEs will not fill the channel at 

all (Fig. 20, B and C; hydrodynamic radii  1,44 nm) and intermediate-sized NE will fill the channel 

to an extent inversely related to their sizes (Fig. 20, B and C; hydrodynamic radii = 0,5 - 1,44 nm) (for 

more details see (Krasilnikov et al. 1998)). The theoretical considerations for a funnel-shaped channel 

agree with the results obtained for the BAD pore indicating that the BAD channel has a funnel-like 

structure as illustrated in Fig. 20 C. 
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Figure 20: Determination of the geometry of BAD channels with the aid of nonelectrolytes (NEs).  

Single-channel conductances of human BAD protein were recorded in the presence of different sized NEs. The 

aqueous phase contained 20% of the respective NE in 1 M KCl. The temperature was 20°C and the applied 

voltage 20 mV. Single channel conductance (A) and channel filling (B) depend of the hydrodynamic radii of 

the nonelectrolytes added to both sides of the bilayer. C, Model of the geometry of BAD channels. See the main 

text for details. Hydrodynamic radii of NEs were taken from Table 4.   
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What could be the physiological role of BAD pores at the plasma membrane? The finding that 

BAD channels conduct ions as well as non-charged molecules entails a broad spectrum of potential 

functions. For instance, BAD pores could act as ion channels and contribute to the regulation of 

various cellular processes. Ca
2+

 for instance, is regulating the mitogenic cascade at multiple positions 

(Ren et al. 2008). The BAD pores conduct molecules up to 200 Da, so they are permeable for many 

signaling molecules beside ions like nitric oxide, glutamate, γ-aminobutyric acid (GABA) and 

histamine and may contribute to positive feedback loops. In its pore forming phosphorylation status, 

BAD was found to be located at rafts of the plasma membrane (Hekman et al. 2006). Rafts and 

caveolae (which can be considered as a subclass of rafts (Anderson 1998; Smart et al. 1999)) play an 

important role for the interactions of a number of signaling molecules. Several signaling associated 

proteins such as heterotrimeric and small G-proteins, Src kinases, eNOS, Shc, Nck MAPK and RAF 

kinases have been found to be attached to the rafts/caveolae microdomains (Hekman et al. 2002). So it 

is feasible that BAD pores and RAF kinases cooperate in signaling processes in rafts of the plasma 

membrane. The close proximity between BAD and RAF kinases at the plasma membrane might also 

be a hint for a contribution of BAD pores in the mechanism of endocytosis. Indeed, BAD has been 

shown to play a role in cellular membrane trafficking. Beside its contribution to glucose metabolism, 

the regulation of autophagy displays a further non-apoptotic function of BAD (Danial et al. 2003; 

Maiuri et al. 2007).  

 Another aspect to discuss in this respect is the observation that phosphorylation of Ser-170 of 

murine BAD (corresponding to Ser-134 of human BAD) has a proliferative effect under non-

starvation conditions (Dramsi et al. 2002). To express human BAD protein, we used Sf9 insect cells. 

We recently published that Sf9 cells phosphorylate human BAD at multiple sites, including Ser-134 

(Polzien et al. 2009). Therefore it is also feasible, that the BAD pores contribute to cell cycle 

progression and thereby facilitate oncogenic transformation. Keeping in mind that BAD is a relatively 

weak inducer of apoptosis one should consider if the primary function of BAD is associated with non-

apoptotic processes. Although the function of BAD channels is incompletely understood at this point, 

we suggest that BAD phosphorylation by the survival kinase C-RAF switches its function from Bcl-

2/Bcl-XL blocker to a transformation facilitating pore.  
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3.3. Pore-Forming Activity of BAD is Regulated by Specific 

Phosphorylation and Structural Transitions of the C-Terminal 

Part  

 

Background: BAD protein (Bcl-2 antagonist of cell death) belongs to the BH3-only subfamily 

of proapoptotic proteins and is proposed to function as the sentinel of the cellular health status. 

Physiological activity of BAD is regulated by phosphorylation, association with 14-3-3 proteins, 

binding to membrane lipids and pore-formation. Since the functional role of the BAD C-

terminal part has not been considered so far, we have investigated here the interplay of the 

structure and function of this region.  

Methods: The structure of the regulatory C-terminal part of human BAD was analyzed by 

CD spectroscopy. The channel forming activity of full-length BAD and BAD peptides was 

carried out by lipid bilayer measurements. Interactions between proteins and peptides were 

monitored by the surface plasmon resonance technique. 

Results: In aqueous solution, C-terminal part of BAD exhibits a well-ordered structure and 

stable conformation. In a lipid environment, the helical propensity considerably increases. The 

interaction of the C-terminal segment of BAD with the isolated BH3 domain results in the 

formation of permanently open pores whereby the phosphorylation of serine 118 within the BH3 

domain is necessary for effective pore-formation. In contrast, phosphorylation of serine 99 in 

combination with 14-3-3 association suppresses formation of channels.  

Conclusions: C-terminal part of BAD controls BAD function by structural transitions, lipid 

binding and phosphorylation. Conformational changes of this region upon membrane 

interaction in conjunction with phosphorylation of the BH3 domain suggest a novel mechanism 

for regulation of BAD.  

General Significance: Multiple signaling pathways mediate inhibition and activation of cell 

death via BAD. 

3.3.1. Introduction 

Apoptosis or programmed cell death is an evolutionary widely conserved suicidal process by 

which multicellular organisms remove or replace undesirable cells and it is essential for normal 

embryonic development. This form of coordinated cell death is widely observed in nature and is not 

only critical for proper execution of developmental processes, immune responses, and tissue 

homeostasis but disruptions of this process also have far-reaching effects causing diseases such as 

tumor development and autoimmune disorders (Danial and Korsmeyer 2004; Reed et al. 2004; Wang 

and Youle 2009).  

Mitochondria constitute a convergence point in apoptosis progression. Proteins of the Bcl-2 family 
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are crucial regulators of the onset of apoptosis at the level of mitochondria (Wang and Youle 2009; 

Youle and Strasser 2008). There, apoptosis proceeds through a complex interplay between anti- and 

pro-apoptotic proteins of Bcl-2 proteins. However, the exact modes and the mechanisms of the 

pathways involved in this process are still not completely understood (Youle and Strasser 2008). In 

addition, several proteins of the Bcl-2 family contribute to the regulation of various other 

physiological processes beyond regulation of apoptosis, such as autophagy, mitochondrial respiration 

and glucose metabolism (Danial 2008). All Bcl-2 proteins contain at least one of the four so-called 

Bcl-2 homology domains: BH1-BH4. Several Bcl-2 family proteins contain a carboxy-terminal 

membrane anchor that may be involved in their binding to plasma- or different intracellular 

membranes. On the basis of various structural and functional characteristics, the Bcl-2 family of 

proteins is divided into three subfamilies, including proteins which either inhibit (e.g. Bcl-2, Bcl-XL or 

Bcl-w) or promote programmed cell death (e.g. Bax, Bak or Bok) (Adams and Cory 1998; Gross et al. 

1999; Youle and Strasser 2008).  

A second sub-class of pro-apoptotic Bcl-2 family members, the BH3-only proteins, comprises 

BAD, Bik, Bmf, Hrk, Noxa, tBid, Bim and Puma (Youle and Strasser 2008). BH3-only proteins share 

sequence homology only at the BH3 domain. The amphipathic helix formed by the BH3 domain (and 

flanking residues) associates with a hydrophobic groove of several members of the Bcl-2 family 

proteins (Fesik 2000; Petros et al. 2004).  

BAD (Bcl-2 associated death promoter, Bcl-2 antagonist of cell death) was originally described to 

promote apoptosis by forming heterodimers with the pro-survival proteins Bcl-2 and Bcl-XL, thus, 

preventing them from binding to Bax (Yang et al. 1995). Phosphorylation plays a crucial role in 

regulation of BAD function and modulates the association with other proteins as well as its subcellular 

localization. In the non-phosphorylated state BAD associates with Bcl-2 or Bcl-XL via its BH3 domain 

and localizes to mitochondria, representing the active state of BAD. Phosphorylation of specific serine 

residues, Ser-112 and Ser-136 of murine BAD (mBAD)
 
or the corresponding phosphorylation sites 

Ser-75 and Ser-99 of human BAD (hBAD), results in association with 14-3-3 proteins and subsequent 

relocation of BAD (Hekman et al. 2006; Zha et al. 1996). Supporting data of Ayllon et al. (Ayllon et 

al. 2002) who showed that BAD segregation from the lipid rafts at the plasma membrane is implicated 

in the regulation of apoptosis, we provided evidence that the BAD/14-3-3-complex possesses high 

affinity for cholesterol-rich membranes (lipid rafts) indicating a 14-3-3 driven shuttling of BAD 

between cholesterol-rich and mitochondrial membranes (Hekman et al. 2006). Phosphorylation of 

mBAD at Ser-155 (Ser-118 of hBAD) within its BH3-domain disrupts the association with Bcl-2 or 

Bcl-XL promoting cell survival (Datta et al. 2000). Therefore, the phosphorylation status of BAD at 

these serine residues reflects a checkpoint for cell death or survival.  

Several members of the Bcl-2 family were shown to form pores in lipid bilayers (Antignani and 

Youle 2006; Antonsson et al. 1997; Basanez et al. 1999; Kuwana et al. 2002; Minn et al. 1997; 
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Schendel et al. 1999; Schendel et al. 1997; Schlesinger et al. 1997; Zamzami and Kroemer 2003). 

However, it has not been clarified yet whether this pore-formation is an apoptosis- or survival-

associated event, since this process was observed for both pro- and anti-apoptotic proteins. Keeping in 

mind that Bcl-2 proteins were demonstrated to be involved in the regulation of other events than 

apoptosis (Danial 2008), one cannot exclude a vital function for channel-formation. Recently, we 

identified BAD also as a pore-forming Bcl-2 protein (Polzien et al. 2009; Polzien et al. 2009). Its 

pore-forming capacity was dependent on phosphorylation and interaction with 14-3-3 proteins. 

Although the amino acid sequence of human BAD does not reveal a typical C-terminal transmembrane 

domain, we found that BAD binds to model membranes with high affinity, predominantly to negative 

charged phospholipids and cholesterol-rich membranes (Hekman et al. 2006). Two lipid binding 

domains (LBD1 and LBD2) with different binding preferences were identified, both located in the C-

terminal part of the hBAD protein.  

To elucidate the origin of the extraordinarily high affinity of the C-terminal part of BAD for 

membrane lipids we studied in this report the secondary structure of a 32-residue peptide 

corresponding to the C-terminus of the proapoptotic protein BAD and containing the lipid binding 

domain 2 (LBD2) (see Fig. 21). Our results obtained by use of CD spectroscopy indicate a well-

defined structure for this region that undergoes structural transitions in the presence of artificial 

membranes. Importantly, the interaction of the C-terminal part of hBAD with the phosphorylated BH3 

region proved to be sufficient for formation of open pores in lipid bilayers. Similar to full-length BAD 

association with 14-3-3 proteins suppresses channel formation. The binding studies performed with 

the C-terminus and peptides comprising the BH3 domain of hBAD allow us to conclude that an 

intermolecular bridge between these two moieties could be established.  

 

  

Figure 21: Amino acid sequence of human BAD protein and peptides covering the BH3 domain, the 14-3-

3 binding motif surrounding serine 99 and the C-terminal part of the protein.  

The BH3 domain is shown in blue and the putative lipid binding domains (LBD1 and LBD2) are indicated 

by yellow and green rectangles, respectively. The sequences of Peptide1, -2 and -3 are depicted in bold and 

the regulatory serines 99 and 118 are highlighted in magenta. 



Manuscript III: Pore-Forming Activity of BAD is Regulated by it’s C-terminus 

 

106 

3.3.2. Materials and Methods 

Materials – Benzamidine, leupeptin, aprotinin, phenylmethylsulfonyl fluoride, Nonidet P-40, 

CHAPS and trifluoroethanol (TFE) were obtained from Sigma. Glutathione-Sepharose was purchased 

from Amersham Biosciences and Ni
2+

-nitrilotriacetic acid-agarose was from Qiagen. The 

phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, 

phosphatidylinositol and cardiolipin), sphingomyelin and asolectin (soybean lipid extract) were from 

Sigma. All synthetic peptides used in this study were purified by high pressure liquid chromatography, 

and the sequences were verified by mass spectrometry analysis. The purity of the preparations was 

greater than 90%. The sequences of the peptides used are shown in Fig. 21.  

DNA expression plasmids and purification of proteins – The purification of hBAD was carried out 

as published (Polzien et al. 2009). GST-hBAD, GST-hBADΔN131, GST-14-3-3 zeta and GST-Bcl-XL 

were expressed in E. coli using pGEX-2T vector and purified by glutathione-Sepharose affinity 

chromatography as described (Hekman et al. 2006). Bcl-XL was released by thrombin cleavage. His-

tagged 14-3-3 zeta was purified from E. coli by Ni
2+

-agarose (Quiagen) affinity chromatography 

according to the manufactur´s protocol.  

Circular dichroism – CD analyses were conducted at 20°C using peptide solutions ranging in 

concentration from 0.1 to 0.2 mg/ml in the presence or absence of unilamellar asolectin vesicles (50 

µM total lipid concentration) and/or 1 mM CHAPS. Some samples were measured in the presence of 

30% TFE. Samples containing lipids were sonicated for 5 min prior to analysis. Each measurement 

was carried out in buffer containing 20 mM sodium phosphate, pH 8.0. CD spectra were registered in 

a 1 mm cuvette employing a J-810 spectropolarimeter (Jasco) at wavelength from 260 to 185 nm with 

a data pitch of 1 nm and a scan speed of 20 nm/min using standard sensitivity. The band width was 2 

nm and response was 1 sec. 

NMR spectroscopy – One dimensional 
1
H-NMR spectra were recorded on a Bruker Avance 800 

MHz NMR spectrometer using a sample temperature of 298 K. Peptides (concentration 0.5 - 2 mM) 

were dissolved in H2O (pH 3) containing 10% D2O for field/frequency lock. 

Lipid bilayer (black lipid) experiments – The channel-forming ability of proteins was assessed in 

artificial lipid bilayer membranes using a teflon chamber as described previously (Benz 1994; Benz et 

al. 1992). Briefly, to form the membranes a 1% (w/v) solution of diphytanoylphosphatidylcholine 

(DiphPC) (Avanti Polar Lipids) in n-decane was used. Purified full-length hBAD as well as different 

hBAD peptides (phosphorylated and non-phosphorylated, 100 nM each) were added alone or 

combined to the KCl buffer in both compartments of the chamber and the single-channel conductance 

of the pores was measured after application of a fixed membrane potential. To test the effects of 14-3-

3 proteins on pore-forming abilities of hBAD peptides, purified 14-3-3 proteins were incubated with 

peptides (1.4:1, mol/mol) for 30 min at room temperature prior to channel formation.   
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Preparation of model membranes and biosensor measurements – Unilamellar vesicles were 

prepared by extrusion method using a LiposoFast extrusion apparatus (Avestin Inc., Canada) as 

described (Hekman et al. 2006). To determine quantitatively the interaction between different BAD 

segments (in the presence of lipid vesicles mimicking mitochondrial membranes) and association of 

BAD with Bcl-XL or 14-3-3 proteins (in solution) the surface plasmon resonance (SPR) technique was 

applied. The biosensor measurements were carried out either on BIAcore-X or BIAcore-J machines 

(Biacore AB, Uppsala, Sweden) at 25°C. The interactions of C-terminal BAD segment (GST-

BADΔN131) with peptides corresponding to BH3 region in the presence of model membranes was 

monitored using Pioneer L1 sensor chip (Biacore AB, Uppsala, Sweden). To this end, the surface of 

the sensor chips was first cleaned with 20 mM CHAPS followed by the injection of mitochondrial 

liposomes consisting of 47% phosphatidylcholine, 28% phosphatidylethanolamine, 9% 

phosphatidylserine, 9% phosphatidylinositol and 7% cardiolipin (0.4 mM total lipid concentration) at a 

flow rate of 10 µl/ min in 10 mM Hepes, pH 7.4, 150 mM NaCl and 0.1 mM DTT which resulted in a 

deposition of approximately 6000 RU. Next, purified GST-BADΔN131 (200 nM) was applied to the 

captured liposomes at a flow rate of 10 µl/min resulting in approximately 2000 RU of bound protein. 

To detect the interaction of phosphorylated and non-phosphorylated forms of BH3 domain with the C-

terminal part of BAD the corresponding peptides (1000 nM) were injected at a flow rate of 10 µl/min 

and the association-dissociation curves were monitored. At the end of the binding assay, the sensor 

chip surface was regenerated by injection of 20 mM CHAPS. Inhibition of GST-BAD binding to Bcl-

XL by BH3 peptides was monitored by use of CM5 biosensor chip as described (Hekman et al. 2006). 

Briefly, the biosensor chip CM5 was loaded with anti-GST antibody using covalent derivatization 

according to the manufacturer‟s instructions. Purified GST-tagged hBAD wt was immobilized in 

biosensor buffer (10 mM Hepes, pH 7.4, 150 mM NaCl, and 0.05% Nonidet P-40) at a flow rate of 10 

µl/min resulting in approximately 800 RU of bound protein. Next, the purified analyte Bcl-XL was 

injected in the presence and absence of BH3 peptides as indicated in Fig. 24. The evaluation of kinetic 

parameters was performed by non-linear fitting of binding data using the BiaEvaluation 2.1 software. 

The apparent association (ka) and dissociation rates constant (kd) were evaluated from the differential 

binding curves (Fc2-Fc1) assuming a A+B=AB association type for the protein-protein interaction. 

The affinity constant KD was calculated from the equation KD = kd/ka.  

3.3.3. Results 

To analyze structure and function of BAD regulatory C-terminal part bearing BH3 domain, lipid 

binding motifs and several other regulatory sites we used in this study CD spectroscopy, black lipid 

experiments and biosensor measurements.  

Membrane interaction leads to redistribution of the secondary structure of the C-terminal part of 

human BAD – To study the secondary structure of the C-terminal part of hBAD protein by means of 

CD spectroscopy, synthetic peptides (referred here as Peptide1 and Peptide3, see also Fig. 21) 
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covering regulatory BH3 domain as well as lipid binding domains LBD1 and LBD2 (Hekman et al. 

2006) were used. The synthetic peptides were either non-phosphorylated (Peptide1 and Peptide3) or 

selectively phosphorylated at position 118 (Peptide1-pS118). As previously reported, the secondary 

structure of hydrophobic regions can be stabilized by addition of model membranes (del Mar 

Martinez-Senac et al. 2001; del Mar Martinez-Senac et al. 2000; Martinez-Senac Mdel et al. 2002). 

Therefore, we carried out the CD measurements also in the presence of liposomes. To avoid putative 

interference of lipid vesicles with the assay we used also micellar lipid samples that were prepared by 

sonication of a mixture consisting of unilamellar liposomes and detergents exhibiting high CMC 

values such as CHAPS.  

Table 5: Secondary structure of peptides corresponding to BH3 domain (Peptide1/Peptide1-pS118) and C-

terminal part (Peptide3) of human BAD. CD spectra were obtained as described in Experimental 

Procedures.  Measurements were performed in aqueous solution, with and without addition of liposomes 

and/or lipid-CHAPS micelles. The secondary structural elements were calculated using the Jasco 

secondary structure prediction software included with the spectropolarimeter. 

Peptide  Liposomes CHAPS      α-helix β-sheet      turn       random 

Peptide1  -  -      7.2%  47.9%      5.7%  39.2% 

Peptide1  +  -      26.1% 8.1%      22.5% 43.4% 

Peptide1  +  +      23.2% 30.3%      6.0%  40.6% 

Peptide1-pS118 -  -      0.0%  51.9%      4.7%  43.4% 

Peptide1-pS118 +  -      1.0%  51.7%      3.4%  43.9% 

Peptide1-pS118 +  +      0.1%  49.0%      0.0%  50.9% 

Peptide3  -  -      3.4%  47.6%      6.3%  42.7% 

Peptide3  +  -      14.6% 36.4%      12.9% 36.1% 

Peptide3  +  +      24.1% 21.5%      10.3% 44.1%  

 

The CD data presented in Fig. 22 and Table 5 were acquired using a 0.2 mg/ml aqueous (buffer) 

solution of Peptide1, Peptide1-pS118 and Peptide3. To investigate the influence of lipid environment 

on the secondary structure measurements were taken also in the presence of liposomes or lipid-

CHAPS micelles as indicated in Table 5. The results obtained by CD measurements indicate clearly a 

structural transition depending on immediate environment. The CD spectrum of the C-terminal peptide 

comprising the last 32 residues of hBAD revealed in aqueous solution a predominance of an extended 

β-sheet structure (while 48% of β-sheet structure was detected only 3% helical structure was present). 

Surprisingly, upon addition of liposomes or lipid-CHAPS micelles the extent of α-helical structure 

significantly increased (up to 24%) whereas the percentage of β-sheet structure dropped down to a 

value of 21%. Further addition of TFE did not change significantly the helix propensity (data not 

shown). Regarding CD spectra of phosphorylated (Peptide1-pS118) and non-phosphorylated Peptide1 

we observed dual effects. In the case of non-phosphorylated BH3 peptide the formation of helical 

structures was strongly stimulated following the addition of model membranes (up to 26%). 

Unexpectedly, the phosphorylated BH3 peptide (Peptide1-pS118) behaved completely different. It did 
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not reveal any helical structures, even upon addition of lipid vesicles (Table 5). Instead, high 

proportion of β-sheet structure (approx. 50%) was detected in both aqueous and lipid environment 

(Fig. 22 and Table 5). Thus, taken together, results presented here illustrate that the introduction of 

phosphate molecule in position serine 118 within the BH3 domain dramatically changes the secondary 

structure of this segment. This result might explain the in vivo observation that BAD dissociates 

rapidly from its coupling partner Bcl-XL upon phosphorylation of serine 118 (see also (Petros et al. 

2000; Petros et al. 2004)). In addition, data presented here document that the C-terminus of hBAD 

possesses an ordered secondary β-structure in aqueous solution that adopts partly helical disposition 

upon interaction with lipid membranes. These observations are in agreement with our previous data 

(Hekman et al. 2006) and support the existence of distinct lipid binding domains within the C-terminal 

part of hBAD.  

  

Figure 22: Circular dichroism spectra of peptides corresponding to BH3 domain (Peptide1/Peptide1-

pS118) and C-terminal part (Peptide3) of human BAD.  

Spectra were obtained as described in Experimental Procedures. A and B, CD spectra of Peptide1, 

Peptide1-pS118 and Peptide3 in aqueous solution without (A) and with addition of lipid-CHAPS micelles 

(B). All three peptides exhibited high structural stability in a temperature range between 20 and 95°C 

(data not shown). Each graph shows the average of 5 spectra without smoothing. [nm] means wavelength 

in nm. 
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C-terminal region of hBAD protein possesses per se and in conjunction with BH3 domain the 

ability of pore-formation within model membranes – Recently, we reported that hBAD forms channels 

in planar bilayer membranes (Polzien et al. 2009). As both lipid binding domains of hBAD (LBD1 and 

LBD2) are localized at the C-terminal region, we reasoned that this part of the protein may be 

responsible for channel formation. To test this issue, we investigated whether the Peptides1, -2 and -3 

(see Fig. 21) are able to form pores in artificial lipid bilayers comparable to full-length hBAD (Fig. 

23C). Toward this end, we performed the lipid bilayer measurements (black lipid) as described 

(Polzien et al. 2009). Surprisingly, following injection of the hBAD C-terminal peptide (Peptide3) into 

the teflon chambers (Benz 1994; Benz et al. 1992) current fluctuations representing channel openings 

were observed. The channels formed by this BAD fragment exhibited a flickering behavior between a 

closed and an open state (Fig. 23B). Injection of peptides covering the phosphorylated and non-

phosphorylated BH3 domain provoked larger and more stable pores (Fig. 23A). The peptide 

representing the phosphorylated BH3 domain led to more solid channels than its non-phosphorylated 

counterpart, indicating different structural compositions of the formed pores (Fig. 23A, compare 

Peptide1-pS118 with Peptide1). More importantly, the combination of these peptides with the BAD C-

terminus (Peptide3) led to opposite effects. While the combination of the Peptide3 and peptides with 

the phosphorylated BH3 domain resulted in large, fast accumulating and permanent open pores (Fig. 

23A), the physical contact between the Peptide3 and peptides comprising the non-phosphorylated BH3 

domain completely abolished the formation of channels (Fig 23A).  

These results are in accordance with data obtained with the full-length hBAD protein, 

demonstrating that only the phosphorylated protein was able to form pores (Fig. 23C and (Polzien et 

al. 2009)). Thus, data presented here allow the conclusion that specific phosphorylation in position 

serine 118 within the BH3 domain contributes to intermolecular interactions facilitating channel 

formation. The opposite results using phosphorylated and non-phosphorylated BH3 domains are also 

supported by NMR spectroscopy. 
1
H-NMR spectra of the BH3 peptides used for pore-formation 

experiments show changes in the amide and aromatic proton region upon phosphorylation of S118 

(data not shown).  

Figure 23 (right): Channel-forming activity of hBAD peptides comprising the BH3 domain (with and 

without the 14-3-3 binding motif surrounding serine 99) and the C-terminal segment of the protein. 

Single-channel formation of the indicated peptides (see also Fig. 21) was monitored in a 

diphytanoylphosphatidylcholine membrane. The aqueous phase contained 1 M KCl. The temperature 

was 20°C, and the applied voltage was 20 mV. Pore formation of the hBAD Peptide1, -2 and -3 are shown 

in A, B and D. For direct comparison of the hBAD peptides with the full-length hBAD regarding their 

channel-forming ability also the effects monitored with full-length protein are also shown (C). Whereas 

combination of non-phosphorylated Peptide1 and Peptide2 with Peptide3 resulted in complete 

abolishment of pore-formation activity (A and D), phosphorylation of serine 118 led to the formation of 

fast accumulating, large and permanently open pores (A and D). Depending on phosphorylation in 

position serine 99, the treatment of the Peptide2 with 14-3-3 zeta caused total disruption of the pores (D), 

similar to effects monitored with full-length hBAD (C). Notably, the addition of 14-3-3 proteins to the 

combination of Peptide2-pS118 and Peptide3 did not influence the rapid formation of the pores (D). The 

vertical bars indicate conductance of 2 nanosiemens, the horizontal bars indicate time of 12 seconds. 

These measurements were repeated three times with the same results. 
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Next, we investigated whether association with 14-3-3 proteins disrupts the pore-formation 

monitored with peptides corresponding to the BH3 domain and C-terminus as previously observed 

with full-length BAD protein (Fig. 23C and (Polzien et al. 2009)). To this end, we used prolonged 

BH3 peptides containing the 14-3-3 binding motif surrounding the serine 99 (Peptide2, Peptide2-

pS118 and Peptide2-pS99-pS118, see also Fig. 21). Without addition of 14-3-3 proteins, peptides 

Figure 24: Functionality of the synthetic hBAD peptides used in this study.  

A, the non-phosphorylated Peptide1 and -2 inhibit the interaction between BAD and Bcl-XL. The 

interaction between purified GST-BAD and Bcl-XL was monitored by SPR technique as described in 

Experimental Procedures. To this end, GST-BAD was captured by anti-GST antibody and Bcl-XL was 

injected in the absence and presence of BH3 peptides (2 μM) as indicated. B, inhibition of the BAD 

interaction with 14-3-3 proteins by Petide2-pS99/pS118. The interaction between GST-14-3-3 zeta and 

his-tagged hBAD was monitored using SPR technique essentially as described (Hekman et al. 2006). For 

that purpose, GST-14-3-3 zeta was captured by anti-GST antibody and purified hBAD was applied in the 

absence and presence of BH3 peptides (10 M) as indicated. Due to phosphorylation at serine 99 within 

the 14-3-3 binding motif (RSRS
99

AP) only the Peptide2-pS99/pS118 displayed inhibitory potency. In both 

assays control peptides (phosphorylated and non-phosphorylated) did not show any effect (data not 

shown).  
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comprising the non-phosphorylated and phosphorylated 14-3-3 binding site (Peptide2, Peptide2-pS118 

and Peptide2-pSer-99-pS118) behaved in the same manner as their shorter counterparts (Fig. 23D).  

Of note, effective binding of 14-3-3 dimers to its client proteins can be achieved only in the case 

that the 14-3-3 binding motif becomes phosphorylated (for review see (Aitken et al. 2002)). Indeed, in 

the presence of phosphoserine 99, 14-3-3 proteins disrupt pore-formation in the same way as they did 

with phosphorylated full-length hBAD (compare Fig. 23C and D). These effects were observed in the 

presence (Fig. 23D) and absence (data not shown) of Peptide3. Importantly, pore-formation was not 

affected by 14-3-3 proteins in the case that serine 99 was not phosphorylated (Fig. 23D). 

In general, the most effective pore formation was achieved by use of equimolar concentrations 

between C-terminal and BH3 peptides indicating primarily intramolecular contact points within the 

BAD protein. Change of buffer compositions did not influence the channel formation (data not 

shown). These data, in summary, suggest that phosphorylation of serine 99 alone (that is a prerequisite 

for 14-3-3 binding) would not prevent the putative pore-formation of BAD in vivo. Apparently, only a 

rapid complex formation between 14-3-3 proteins and BAD (possibly resulting in BAD depletion from 

mitochondria) would terminate the process. 

Figure 25: Differential interaction between BH3 peptides (Peptide1 and Peptide1-pS118) and C-terminal 

part of hBAD in lipid environment.  

The interaction between these two segments of hBAD was monitored by SPR technique using Pioneer L1 

sensor chip as described in Experimental Procedures. First, liposomes mimicking mitochondrial lipids 

were injected, resulting in a deposition of approximately 6000 RU. Next, purified GST-BADΔN131 (200 

nM) that represents the C-terminal part of hBAD was applied to the captured liposomes leading to 

approximately 2000 RU of bound protein (not shown in the diagram). To detect the interaction of 

phosphorylated and non-phosphorylated forms of BH3 domain (Peptide1 and Peptide1-pS118, A and B, 

respectively) with the C-terminal part of BAD the corresponding peptides (1000 nM) were injected and 

the association-dissociation curves were monitored. Control measurements (C and D) were performed in 

the absence of GST-BADΔN131. Of note, BH3 peptides containing the LBD1 possess poor affinity for 

mitochondrial membranes. Instead, as previously documented (Hekman et al. 2006) hBAD missing the 

LBD2 associates preferentially with cholesterol-rich membranes (rafts like liposomes).  

Due to the continuous slow dissociation of GST-BADΔN131 from liposomes the baseline in A and B 

(contrary to C and D) does not appear to be horizontal. Analogous results were obtained with Peptide2 

and Peptide2-pS118 in combination with GST-BADΔN131 (data not shown).  
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The functional efficiency of the BH3 peptides used for pore-formation experiments has been 

validated by SPR technique. In the first assay (Fig. 24A) we took advantage of the ability of the 

phosphorylated BH3 domain to inhibit the interaction between BAD and Bcl-XL protein. Binding 

between purified GST-BAD and Bcl-XL was monitored essentially as described (Polzien et al. 2009). 

For that purpose, GST-tagged BAD was captured by immobilized anti-GST antibody and Bcl-XL was 

injected in the absence and presence of phosphorylated and non-phosphorylated BH3 peptides. As 

demonstrated in Fig. 24A the non-phosphorylated BH3 peptides inhibited almost quantitatively the 

association of BAD with Bcl-XL. In contrast, the BH3 fragments phosphorylated at serine 118 did not 

significantly affect the interaction between BAD and Bcl-XL (Fig. 24A). To test the functionality of 

the Peptide2 regarding its association with 14-3-3 proteins, we used an indirect assay as well. To this 

end, the ability of Peptide2-pS99-pS118, Peptide2-pS118 and non-phosphorylated Peptide2 to inhibit 

the interaction between GST-14-3-3 zeta and full-length hBAD was utilized. As shown in Fig. 24B 

only the Peptide2 carrying phosphate in position serine 99 exhibited inhibitory potency in this regard.  

Differential interaction between the C-terminal part of hBAD and BH3 peptides supports the 

effects monitored by pore-formation experiments – To elucidate the reason for diametrically opposed 

effects obtained by interaction of the C-terminal part of hBAD with phosphorylated and non-

phosphorylated BH3 peptides with respect to pore-formation we investigated the mode of binding 

between these fragments in the presence of model membranes. Toward this end, we performed 

quantitative binding studies using SPR technique. Purified GST-BADΔN131 protein representing the 

C-terminal part of hBAD was used as the coupling partner for BH3 domain peptides. As previously 

reported BADΔN131 associated effectively with liposomes mimicking the lipid composition of 

mitochondrial membranes (Hekman et al. 2006). On the other hand, in accordance with published data 

(Hekman et al. 2006)  the BH3 peptides (Peptide1 and Peptide1-pS118) did not exhibit significant 

binding to mitochondrial liposomes (Fig. 25). Instead, as previously stated, the BH3 domain 

containing the lipid binding domain 1 (LBD1) associates preferentially with cholesterol-rich 

membranes (Hekman et al. 2006). Thus, the use of experimental conditions applied here allowed 

detection of putative interaction between C-terminal part and BH3 region. As depicted in Fig. 25 we 

observed association of both BH3 peptides with BADΔN131 fragment, however, with essential 

differences regarding their kinetic parameters. While the non-phosphorylated BH3 peptide revealed a 

fast association with BADΔN131 and rapid dissociation resulting in a KD value of 242 nM, the 

phosphorylated BH3 peptide (Peptide1-pS118) exhibited a slower association to BADΔN131. 

However, due to the very slow dissociation a high affinity binding with a KD value of 11 nM could be 

calculated. Thus, these data may explain the finding that only the phosphorylated BH3 domain 

possessed the ability of pore-formation.  
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3.3.4. Discussion 

Due to the fact that the amino acid sequence of BAD does not allow an exact prediction for the 

existence of a C-terminal transmembrane domain, most of the studies dealing with BAD function did 

not take into consideration that lipophilic properties of BAD may also play a role in its function. Our 

studies dealing with interaction of BAD with model membranes revealed that BAD possesses high 

affinity for particular negatively charged phospholipids and raft microdomains (Hekman et al. 2006). 

Two lipid binding domains (termed LBD1 and LBD2, respectively), both located at the C-terminal 

part of the protein, were identified. Moreover, the functional studies showed that BAD mutants 

compromised in lipid binding confer resistance to apoptosis. The functional importance of lipid 

binding of BAD is additionally underlined by the observation that hBAD forms channels in lipid 

bilayers (Polzien et al. 2009). To define a precise connection between pore-forming activity and 

structure of BAD, we analyzed in this study the secondary structure of the C-terminal part of hBAD 

including the putative helix region located within the conserved BH3 domain. Regarding the 

secondary structure of hBAD contradictory data exist. While Yang (Yang 2009) predicted seven α-

helices for hBAD, Hinds et al. (2007) provided evidence that BH3-only proteins such as Bim, Bmf 

and BAD are intrinsically unstructured in the absence of binding partners. The results presented here 

demonstrate that the C-terminal part of hBAD reveals dynamic structural elements conditioned by its 

immediate environment. In principle, our data presented here are not contradictory to the results 

reported by Hinds et al. (2007). However, it is difficult to make a correlation between our data and 

results published in Hinds et al. (2007) because they used for their NMR measurements a BAD 

construct missing the C-terminal part. Nevertheless, these authors showed that BAD undergoes 

localized conformational changes upon binding to Bcl-2 targets. Contrary to this study, we observed in 

solution (i.e. in the absence of lipid vesicles) a high degree of β-sheet elements within the BH3 and C-

terminal fragment. In the presence of liposomes or lipid micelles we detected dramatic changes of the 

secondary structure. As summarized in Table 1 the helix and β-sheet propensity was considerably 

increased in the presence of liposomes or lipid micelles. This holds for C-terminal segment of BAD 

and non-phosphorylated BH3 domain. Surprisingly, phosphorylation of serine 118 within the BH3 

domain strongly reduces the formation of α-helical structures. The consequence of the phosphate 

introduction in this position was a complete abolishment of helical structure, as documented by CD 

measurements performed in absence or presence of lipids (Table 5). Considering these observations 

and keeping in mind that the BAD lipid binding domains are localized within the C-terminal part of 

the protein, we hypothesized that the elements responsible for pore-forming activity of BAD may be 

located within the Peptides1 and -3 that cover the C-terminal part and the BH3 region (see also Fig. 

21). Indeed, the measurements regarding channel-forming ability using these peptides confirmed this 

assumption. Moreover, as shown in Fig. 23 our data demonstrates that only the interaction of the C-

terminal Peptide3 with peptides covering the phosphorylated form of BH3 domain (Peptide1-pS118, 

Peptide2-pS118 and Peptide2-pS99-pS118) allows the formation of large, fast accumulating and 
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permanently open pores. In lipid environment BAD C-terminus as well as the phosphorylated BH3 

domain exhibits a high proportion of β-sheet structure (Peptide3 and Peptide1-pS118, Table 5). 

Accordingly, only the combination of peptides that display a high amount of β-sheet structure in lipid 

environment were shown to possess pore-forming activity. This observation indicates that BAD pores 

might be composed of β-barrels similar to VDAC channels as reported by Hiller et al. (Hiller et al. 

2008). Notably, in the absence of the BAD C-terminus, the non-phosphorylated BH3 domain 

(Peptide1) was also able to form channels. In contrast to the phosphorylated BH3 domain, this peptide 

showed a high proportion of α-helical structures in lipid environment (Table 5). Consequently, it 

assembled to less stable pores than its phosphorylated counterpart (Fig. 23). Therefore, pores formed 

by the non-phosphorylated BH3 domain seem to possess another secondary structure, probably 

consisting of α-helices.   

Leber et al. (2007) recently discussed an embedding together model that emphasizes the 

importance of the interaction of Bcl-2 family proteins with and within membranes. Additionally, the 

model proposes that interactions between pro- and antiapoptotic Bcl-2 proteins are governed by 

membrane-dependent conformational changes. Our results regarding conformational changes of the C-

terminal part of hBAD dependent on the presence of membranes and the fact that translocation of Bcl-

XL to the mitochondrial membrane occurs by complex formation with BAD (Jeong et al. 2004) are 

consistent with the embedded together model. 

Together, we show here that the C-terminal part of hBAD (comprising BH3 domain and C-

terminus) is per se sufficient to form ion channels. We identified phosphorylation of serine 118 within 

the BH3 domain to be essential for the formation of pores in the presence of the C-terminus. 

Furthermore, we disclosed that serine 99 serves an important role in controlling pore-formation via 

interaction of 14-3-3 proteins.  

What could be the physiological function of BAD channels? Dephosphorylated BAD was found to 

be localized at mitochondria (Hekman et al. 2006; Wang and Youle 2009). Therefore, BAD pores 

could possibly play a role in the regulation of the mitochondrial permeability transition (Zoratti and 

Szabo 1995), a process that has been identified to be important in apoptosis (Zamzami et al. 1996; 

Zamzami et al. 1996). Indeed, it was discovered that BAD targets the permeability transition pore and 

furthermore, sensitizes it to Ca
2+

 in a phosphorylation dependent manner (Roy et al. 2009). A relevant 

aspect regarding the function of pores formed by Bcl-2 proteins is the observation that both pro- and 

anti-apoptotic Bcl-2 proteins exhibit pore-forming activity. Concerning the putative interplay between 

pores formed by different Bcl-2 proteins it was reported that in combination pro-apoptotic Bax does 

not abrogate pore-formation of anti-apoptotic Bcl-2 (Schendel et al. 1997). The authors suggested that 

Bcl-2 channels allow the transport across membranes in a direction that is cytoprotective, whereas the 

channels of Bax do the opposite. hBAD pores may also be involved in the control of such 

homeostasis. In this regard, it should be emphasized that hBAD forms channels in its phosphorylated 
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and non-apoptotic state. Therefore, it is likely that hBAD pores cooperate with anti-apoptotic proteins 

instead of counteracting them. It was also suggested that mitochondrial channels such as those 

regulated by proteins of the Bcl-2 family may control the export of mitochondrial metabolites like 

ATP under non-apoptotic conditions (Gottlieb et al. 2002; Jonas et al. 2003; Vander Heiden and 

Thompson 1999). Notably, results presented here show that the pore-forming BH3 domain of BAD 

has no binding affinity to mitochondrial membranes indicating that BAD channels may be located also 

at membranes other than mitochondria (Fig. 25). Indeed, as shown previously a high proportion of 

BAD was found to be localized at the cholesterol-rich microdomains (rafts) of the plasma membrane 

(Ayllon et al. 2002; Fleischer et al. 2004; Garcia et al. 2003; Hekman et al. 2006). Rafts play an 

important role for the interactions of a several signaling molecules (Hekman et al. 2002; Simons and 

Toomre 2000). In a previous study, we identified that ions as well as non-charged molecules with sizes 

of up to 200 Da can enter the BAD channel (Polzien et al. 2009). Therefore, hBAD pores might be 

permeable for many signaling molecules beside ions like γ-aminobutyric acid (GABA), nitric oxide or 

histamine. So it is feasible that BAD pores contribute to signaling processes in rafts of the plasma 

membrane.  

A previous model of BAD inactivation proposed sequential phosphorylation including 

phosphorylation of serine 118 and consequently disruption of the BAD/Bcl-XL complex (Datta et al. 

2000). This process may finally result in inactivation and depletion of BAD from mitochondria by 

complex formation with 14-3-3 proteins. The alternative mechanism proposed in this study implies 

that the phosphorylation of serine 118 does not necessarily lead to inactivation of BAD. In the case of 

selective phosphorylation in this position the formation of large pores at mitochondria may take place 

(Fig. 23). On the other hand, the translocation model, first presented by the group of Rebollo (Ayllon 

et al. 2002; Fleischer et al. 2004; Garcia et al. 2003) and extended by our results (Hekman et al. 2006; 

Rapp et al. 2007) involves recruitment of BAD to the lipid rafts. This process is regulated by growth 

factor stimulation and is dependent on phosphorylation of the 14-3-3 binding motif. In this model we 

have suggested (see also Fig. 38) that the BAD/14-3-3 complex is of transient nature. Due to its 

preferential affinity for cholesterol rich membranes (Hekman et al. 2006) the BAD/14-3-3 complex 

translocates readily to rafts, whereby dissociation of 14-3-3 occurs. Thus, the pore-formation of 

phosphorylated BAD protein would take place rather at rafts located at plasma membrane than 

mitochondria. Pore-formation data presented here (see Fig. 23) with doubly phosphorylated Peptide2 

(Peptide2-pS99-pS118) supports strongly this pathway.  

3.3.5. Concluding Remarks 

The multifunctional role of the C-terminal part of the BAD protein and in particular its lipid 

binding properties have not yet been considered sufficiently. Based on our observations, we propose 

that only in the presence of membranes does a close interaction between the phosphorylated BH3 helix 

and the C-terminal part of hBAD take place. Furthermore, selective phosphorylation at serine 118 
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within the BH3 domain results in activation of BAD by induction of pore-formation. However, the 

signaling cascades that determine whether BAD becomes a sentinel or executioner protein is at the 

present time matter for speculation. The same holds for activation of Bak and Bax; the precise 

biochemical mechanisms that lead to translocation and pore-formation of Bak and Bax are not 

sufficiently understood. 
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3.4. BAD Contributes to RAF-Mediated Proliferation and Cooperates 

with B-RAF-V600E in Cancer Signaling 

 

BAD (Bcl-2 antagonist of cell death) belongs to the pro-apoptotic BH3-only subfamily of Bcl-

2 proteins. Physiological activity of BAD is highly controlled by phosphorylation. To further 

analyze the regulation of BAD function, we investigated the role of recently identified 

phosphorylation sites on BAD-mediated apoptosis. We found that in contrast to the N-terminal 

phosphorylation sites the serines 124 and 134 act in an anti-apoptotic manner since the 

replacement by alanine led to enhanced cell death. Our results further indicate that RAF kinases 

represent, besides PAK1, BAD serine 134 phosphorylating kinases. Importantly, in the presence 

of wild type BAD co-expression of survival kinases, such as RAF and PAK1 leads to a strongly 

increased proliferation, whereas substitution of serine 134 by alanine abolishes this process. 

Furthermore, we identified BAD serine 134 to be strongly involved in survival signaling of B-

RAF-V600E containing tumor cells and found that phosphorylation of BAD at this residue is 

critical for efficient proliferation in these cells. Collectively, our findings provide new insights 

into the regulation of BAD function by phosphorylation and its role in cancer signaling. 

3.4.1. Introduction 

Apoptosis is a programmed cell death mechanism that regulates the destruction of cells. This is 

crucial for multicellular organisms in processes such as development and tissue homeostasis (Danial 

and Korsmeyer 2004; Reed et al. 2004; Wang and Youle 2009). Mitochondria constitute a 

convergence point in the process of apoptosis (Wang and Youle 2009; Youle and Strasser 2008). 

Crucial regulators of apoptosis at the level of mitochondria are the proteins of the Bcl-2 family that are 

characterized by the presence of Bcl-2 homology domains (BH1-BH4). The Bcl-2 family of proteins is 

divided into three subfamilies, including proteins which either inhibit (e.g. Bcl-XL, Bcl-2 or Bcl-w) or 

promote (e.g. Bak, Bax or Bok) programmed cell death (Adams and Cory 1998; Gross et al. 1999; 

Youle and Strasser 2008). A second sub-class of pro-apoptotic Bcl-2 family members consists of the 

BH3-only proteins that share sequence homology only at the BH3 domain. This sub-class comprises 

BAD, Bmf, Bik, Noxa, Hrk, Bim, Bid, and Puma (Youle and Strasser 2008). A complex interplay 

between anti- and pro-apoptotic proteins of this family mediates induction and execution of 

programmed cell death. Surprisingly, several proteins of the Bcl-2 family shaped up as regulators of 

various physiological processes other than apoptosis, such as autophagy, mitochondrial respiration and 

the glucose metabolism (Danial 2008).  

BAD (Bcl-2 associated death promoter, Bcl-2 antagonist of cell death) is a BH3-only protein that 

promotes apoptosis by forming heterodimers with the pro-survival proteins Bcl-2 and Bcl-XL (Yang et 

al. 1995). Phosphorylation of specific serine residues, Ser-112 and Ser-136 of murine BAD (mBAD) 
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or the corresponding phosphorylation sites Ser-75 and Ser-99 of human BAD (hBAD) leads to 

complex formation with 14-3-3 proteins and subsequent relocation of BAD (Hekman et al. 2006; Zha 

et al. 1996). Phosphorylation of mBAD at Ser-155 (Ser-118 of hBAD) disrupts the association with 

Bcl-XL or Bcl-2 provoking cell survival (Datta et al. 2000). Therefore, the phosphorylation status of 

BAD at specific serine residues reflects a checkpoint for cell death or survival. Numerous kinases 

were shown to phosphorylate BAD (Datta et al. 1997; Gnesutta et al. 2001; Harada et al. 1999; Jin et 

al. 2005; Klumpp et al. 2004; Konishi et al. 2002; Macdonald et al. 2006; Schurmann et al. 2000; She 

et al. 2002; Shimamura et al. 2000) including RAF kinases (Jin et al. 2005; Kebache et al. 2007; 

Panka et al. 2006; Polzien et al. 2009; Wang et al. 1996). Regarding RAF kinases, we demonstrated 

that B-RAF phosphorylates BAD in a direct manner leading to inhibition of BAD induced cell death 

(Polzien et al. 2009). This finding is of particular importance, since highly active B-RAF has been 

demonstrated to represent one of the crucial players in cancer development (Davies et al. 2002). In 

total, five serine phosphorylation sites (at positions 112, 128, 136, 155 and 170) and two threonines 

phosphorylation sites (117 and 201) have been reported so far for murine BAD. In human BAD we 

recently identified several novel in vivo phosphorylation sites (serines 25, 32/34, 97, 124, and 134) 

besides the established phosphorylation sites at Ser-75, Ser-99, and Ser-118 (Polzien et al. 2009).  

In this study, we investigated the putative role of hBAD phosphorylation sites located at the N- 

and C-terminus and demonstrate that, contrary to the N-terminal part of hBAD, the residues serines 

124 and 134 are directly involved in regulation of apoptosis. Additionally, our results indicate that 

RAF kinases represent, besides PAK1, in vivo BAD Ser-134 phosphorylating kinases. Furthermore, 

we demonstrated that phosphorylation of BAD Ser-134 by RAF kinases and PAK1 triggers cell 

proliferation and disclose that BAD cooperates with RAF in promoting proliferation in B-RAF mutant 

cancer cells. 

3.4.2. Experimental Procedures 

Reagents and antibodies – Benzamidine, leupeptin, aprotinin and Nonidet P-40 were obtained 

from Sigma. Glutathione-Sepharose was purchased from GE Healthcare and Ni
2+

-nitrilotriacetic acid-

agarose was from Qiagen. Monoclonal anti-phospho-ERK antibody (sc-7383), polyclonal anti-B-RAF 

antibody (sc-166), polyclonal anti-BAD antibodies (sc-943 and sc-8044), anti-Myc antibody (sc-40) 

and polyclonal anti-actin antibody (sc-1616) were from Santa Cruz Biotechnology (Santa Cruz, CA) 

and polyclonal anti-Akt/PKB antibody was from Cell Signaling Technology. Phosphospecific 

antibody directed against phosphoserine 134 of human BAD (or corresponding phosphoserine 170 in 

murine BAD) was from Abnova. Phosphospecific antibodies directed against phosphoserines 75 and 

118 of human BAD (or corresponding phosphoserines 112 and 155 in murine BAD) were obtained 

from Cell Signaling Technology (#9296 and #9297, respectively). Horseradish peroxidase-conjugated 

polyclonal anti-rabbit and anti-mouse IgG were obtained from GE Healthcare.  
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Cell culture, transfection and immunoblotting – HEK-293 (ATCC #CRL-1573), HeLa 229 (ATCC 

#CCL-2.1), A375, SK-MEL-28, DX3 and MEL-Juso cells (kindly provided by Daniela Haug, 

University of Würzburg, Germany) were cultivated in DMEM supplemented with 10% fetal bovine 

serum (Biochrom), 2 mM L-glutamine, and 100 units/ml penicillin/ streptomycin at 37°C in 

humidified air with 5% CO2. The cell lines PC3 and HCT 116 (kindly provided by Joachim Fensterle, 

Æterna Zentaris, Germany) were cultivated in RPMI and Mc Coy´s 5a medium, respectively, that 

were supplemented with 10% fetal bovine serum (Biochrom), 2 mM L-glutamine, and 100 units/ml 

penicillin/ streptomycin. Prior to transfection cells were seeded at 3 x 10
5
 cells/well of a 6-well plate 

and grown for 24 h before transfection by jetPEI (Polyplus). 16 h post-transfection, cells were washed 

twice with phosphate-buffered saline (PBS) and cultivated for 22 h in medium supplemented with 0.1-

0.3% serum. To investigate the putative involvement of different survival kinases, the following 

kinase inhibitors were used: U0126 (Promega), PD0325901, Wortmannin (Santa Cruz Biotechnology, 

Santa Cruz, CA) and Sorafenib (Bayer, Leverkusen). All inhibitors were dissolved in DMSO and used 

at indicated concentrations. After harvesting, the cells were washed once with PBS and than lysed in 

Nonidet P-40 buffer (50 mM Tris-HCl, pH 8.0, 137 mM NaCl, 2 mM EDTA, 2 mM EGTA, 10% (v/v) 

glycerol, 0.1% (v/v) β-mercaptoethanol, 25 mM β-glycerophosphate, 10 mM sodium pyrophosphate, 1 

mM Na3VO4, 25 mM NaF, 1% Nonidet P-40, and a mixture of standard proteinase inhibitors). Protein 

concentration was determined by Bradford method. SDS-PAGE and immunoblotting were performed 

as described previously (Hekman et al. 2006).  

siRNA transfection – One day prior to transfection, cells were seeded into 12-well plates to a 

confluency of 60%. Transfection of siRNAs targeting the coding sequence (5‟-

ACGAGTTTGTGGACTCCTTTA-3‟) or the 3‟-UTR (5‟-TCACTACCAAATGTTAATAAA-3‟) of 

BAD or luciferase as control (5‟-AACUUACGCUGAGUACUUCGA-3‟) was performed with 

Lipofectamine 2000 reagent (Invitrogen) and Optimem medium (Gibco) with a final siRNA 

concentration of 100 nM. After 48 h, cells were harvested and used for Western blotting and 

monitoring of the number of viable cells by Trypan blue (Sigma) exclusion. 

DNA expression plasmids and purification of proteins – The hBAD expression plasmid was 

generated as described (Polzien et al. 2009). Site-specific mutations of hBAD were introduced using 

QuikChange site-directed mutagenesis kit (Stratagene) according to the manufacturer‟s instructions. 

The accuracy of the BAD mutants was confirmed by DNA sequencing. PAK1 constructs were from 

Jonathan Chernoff (Philadelphia, PA). Akt/PKB plasmids were kindly provided by Jakob Troppmair 

(Innsbruck, Austria). Expression and purification of RAF kinases, PAK1 and Akt/PK from Sf9 insect 

cells were performed as previously described (Fischer et al. 2009; Hekman et al. 2002). GST-tagged 

hBAD was expressed in E. coli using pGEX-2T vector (GE Healthcare) and isolated by glutathione-

Sepharose affinity chromatography. Further purification was achieved by ion exchange 

chromatography using an ÄKTA system (GE Healthcare). The purity of the proteins was assessed by 
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SDS-PAGE and Coomassie Blue staining (see also Fig. 29).  

Cell survival assay – For the analysis of cell survival, cells were transiently transfected in 

triplicates. After 16 h, cells were washed twice with PBS and grown for 30 h in medium supplemented 

with 0.1% serum. Cell viability was assessed by staining cells with Trypan blue.  

Analyzes of cell proliferation and growth inhibition – To monitor cell proliferation, HEK-293 and 

HeLa cells were transiently transfected in triplicates. 16 h post-transfection, cells were washed twice 

with PBS and grown in medium supplemented with 0.3% serum. SK-MEL-28, A375, PC-3, HCT 116, 

MEL-Juso and DX3 cells were incubated with and without the indicated kinase inhibitors or 

transfected with the named siRNAs for 48 h. Cell proliferation and growth inhibition were analyzed by 

photographing and counting of the cells as well as by counting living cells by use of Trypan blue in a 

hemicytometer at different time points (2, 3 and 6 days following transfection). To visualize cell 

proliferation, mitochondria of viable cells were stained by MitoTracker Deep Red FM (#M22425, 

Invitrogen) according to manufacturer's instructions and fluorescence intensity was measured at 633 

nm excitation and 670/30 nm emission by the Typhoon 9200 imager (GE Healthcare). 

Kinase activity measurements – Kinase activity of RAF-containing samples was monitored using 

recombinant MEK and ERK-2 as substrates. For that purpose, HeLa cell lysates (5 µg) or purified 

proteins (1 µg) were mixed with 0.5 mM ATP in 25 mM Hepes, pH 7.6, 150 mM NaCl, 25 mM β-

glycerophosphate, 10 mM MgCl2, 1 mM dithiothreitol, and 1 mM sodium vanadate buffer (50 µl final 

volume). Following addition of MEK and ERK-2 the reaction mixture was incubated for 30 min at 

30°C. The incubation was terminated by addition of Laemmli sample buffer, and the proteins were 

separated by 10% SDS-PAGE and transferred to nitrocellulose membranes. The extent of ERK 

phosphorylation was determined with anti-phospho-ERK antibodies.  

3.4.3. Results 

In contrast to the N-terminal phosphorylation sites, Ser-124 and Ser-134 of hBAD contribute to 

apoptosis control – BAD function is regulated by phosphorylation at several residues in response to 

survival factors. Phosphorylation of mBAD at serines 112, 136 and 155 (corresponding to serines 75, 

99 and 118 in hBAD) was a subject of numerous studies. In contrast, little is known about the function 

of the recently published phosphorylation sites (Polzien et al. 2009). As the function of the internal 

phosphoserines, regulating the interactions of BAD with 14-3-3 proteins, has been thoroughly 

investigated (Datta et al. 2000; Hekman et al. 2006; Masters et al. 2001; Subramanian et al. 2001; Zha 

et al. 1996; Zhang et al. 2005), we examined in this study the role of phosphorylation of serines 

located at the N- and C-terminal parts of hBAD. For that purpose, we analyzed the role of 

phosphorylation of serines 25, 32 and 34, located at the N-terminus as well as phosphorylation sites 

located at the C-terminal part of hBAD protein, i.e. serines 124 and 134 with respect to survival 

regulation (Fig. 26A). The functional role of these novel phosphorylation sites was assessed by site-
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directed mutagenesis, where the serines of interest were replaced by alanine. The analysis of the pro-

apoptotic function of hBAD and hBAD mutants was carried out in HeLa cells. The cells were 

transiently transfected with the indicated expression plasmids and starved for 30 h in medium 

supplemented with 0.1% serum. The number of apoptotic cells was determined by Trypan blue. 

As displayed in Fig. 27A, the substitution of the N-terminal Ser-25, Ser-32 and Ser-34 by alanine 

did not result in significant changes of the pro-apoptotic activity of BAD. In contrast, the substitution 

of Ser-124 or Ser-134 by alanine led to enhanced cell death indicating that phosphorylation at these 

positions plays a pivotal role in the regulation of cell survival. In these experiments, BAD was 

expressed to the same levels (Fig. 27B). These results were also verified by PARP cleavage (data not 

shown). 

Characterization of hBAD Ser-134 phosphorylation – The proapoptotic protein BAD has been 

reported to be a substrate for a wide spectrum of kinases (see references in (Polzien et al. 2009)). 

Recently, we and others demonstrated that mammalian RAF isoforms represent direct BAD-

phosphorylating kinases (Jin et al. 2005; Kebache et al. 2007; Panka et al. 2006; Polzien et al. 2009; 

Wang et al. 1996). However, in our previous study (Polzien et al. 2009) we restricted our efforts to the 

regulatory serines 75, 99 and 118. In this study, we focused our efforts on characterization of human 

BAD serine 134 phosphorylation. To monitor the in vivo phosphorylation at this critical serine residue 

we co-expressed different RAF isoforms (B- and C-RAF) and performed a comparative analysis 

involving other BAD-phosphorylating kinases, such as PAK1 or Akt/PKB. By analyzing co-

transfected HeLa cells we found that Ser-134 of hBAD becomes efficiently phosphorylated by B- and 

C-RAF and PAK1 (Fig. 28A). As the co-expression of active Akt/PKB caused relative low extents of 

Figure 26: Amino acid sequence of human BAD protein (A) and of the BAD fragment surrounding the 

BH3 domain in human and mouse BAD (B).  

Amino acid sequences were aligned using the ClustalW algorithm (www.ebi.ac.uk/Tools/clustalw2). All 

published phosphorylation sites are highlighted in magenta, and their positions within the sequence are 

indicated by numbers. The BH3 domain is shown in blue and the putative lipid binding domains (LBD1 

and LBD2) are indicated by orange and green rectangles, respectively. In B, the FKK/FK regions vicinal 

to the BH3 domain are indicated in yellow. 
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Ser-134 phosphorylation (in the range of about 25% of the value obtained by RAF) we concluded that 

Akt/PKB is less involved in this process. To investigate whether the replacement of Ser-134 by 

alanine influences the phosphorylation of the survival sites Ser-75 and Ser-118 by B-RAF, we 

monitored also the extent of phosphorylation at these sites. As demonstrated in Fig. 28A (below) no 

difference was observed between S134A mutant and hBAD wild type. RAF kinases appear to be able 

to phosphorylate BAD serine 134 directly since two different MEK inhibitors (U0126 and 

PD0325901) did not affect the phosphorylation signal by RAF (Fig. 28C).  

 

Figure 27: Serines 124 and 134 located at the C-terminal part of hBAD contribute to apoptosis control. 

HeLa cells were transiently transfected with the indicated expression vectors. 16 h post-transfection, cells 

were cultivated for 30 h in medium supplemented with 0.1% serum. A, The extent of apoptotic cells was 

detected by Trypan blue staining. B, Expression levels of BAD wild type and BAD variants in transfected 

cell lysates were detected with an antibody directed against BAD. The experiments were repeated three 

times with the same results.  

  

Figure 28 (right): Comparative analysis of hBAD phosphorylation by Akt/PKB, PAK1, and RAF kinases 

using anti-BAD-pS134 antibody.  

HeLa cells were transiently transfected with the indicated expression vectors. In the case of Akt/PKB and 

PAK1, activating mutants (T308D/S473D and T423E, respectively) were used. 16 h post-transfection, 

cells were cultivated for 30 h in medium supplemented with 0.3% serum with (C) or without (A) of the 

indicated MEK inhibitors (10 µM). Total cell lysates were separated on a 15% SDS-polyacrylamide gel 

and blotted onto nitrocellulose membrane. Phosphorylation of human BAD at serine134 as well as BAD 

expression was analyzed. Phosphorylation degrees of the survival serines 75 and 118 are also included 

(see lower lines). The expression of different kinases was verified by use of specific antibodies. The 

phosphorylation degree of BAD at serine 134 by kinases shown in A was quantified by optical 

densitometry (B). In C, the efficiency of MEK inhibitors was analyzed by an antibody directed against 

phosphorylated ERK. These experiments were repeated three times with comparable results. 
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To monitor the direct phosphorylation of Ser-134 by the indicated kinases (Fig. 28), we 

investigated also the in vitro phosphorylation of hBAD by purified kinases (Fig. 29). To this end, non-

phosphorylated hBAD has been purified from E. coli whereas RAF kinases, PAK1 and Akt/PKB were 

expressed and isolated from Sf9 insect cells. The purity of the isolated proteins was assessed by SDS-

PAGE and Coomassie Blue staining (Fig. 29). The phosphorylating kinases PAK1, Akt/PKB and B-

RAF provided similar results in vivo and in vitro (Fig. 28A and Fig. 29). In contrast, although C-RAF 

proved to be a potent in vivo Ser-134 phosphorylating kinase, in vitro it failed to phosphorylate this 

site significantly. The reason for this discrepancy could be explained by the ability of C-RAF to build 

an active heterodimeric complex with B-RAF (Garnett et al. 2005; Rushworth et al. 2006; Weber et 

al. 2001) in vivo. 

As previously reported (Polzien et al. 2009) we demonstrated that co-expression of B-RAF (or 

activated C-RAF) inhibits BAD-mediated apoptosis following growth factor removal. These effects 

were ascribed to RAF-mediated phosphorylation of serine 75 and 118 in human BAD because the 

substitution of these residues by alanine led to increased apoptotic levels even in the presence of B-

RAF (Polzien et al. 2009). In this study we investigated the putative impact of serine 134 

Figure 29: In vitro phosphorylation of recombinant BAD by purified PAK1, Akt/PKB, and RAF kinases. 

 Purified GST-BAD (20 pmol) was incubated in the presence of RAF kinases, constitutively active PAK1 

(T423E) and Akt/PKB (T308D/S473D) (2 pmol of each). The highly active C-RAF-R/L was co-expressed 

with Ras12V (R) and Lck (L). C-RAF-DD represents the active C-RAF mutant C-RAF-Y340D/Y341D 

and C-RAF (K375W) is a kinase inactive form. Following SDS-PAGE and immunoblotting, BAD 

phosphorylation was visualized by a phosphospecific antibody directed against BAD phosphoserine 134. 

The activity of RAF kinases was analyzed by an antibody directed against phosphorylated ERK. The 

kinases were expressed in Sf9 insect cells and purified either by glutathione-Sepharose (GST-tagged RAF 

kinases) or nickel chelate affinity chromatography (PAK1 and Akt/PKB) as described in Experimental 

Procedures. The purified proteins were visualized by Coomassie Blue staining (below). The RAF kinases 

shown are constitutively associated with 14-3-3 proteins (see arrows at approx. 30 kDa). The other co-

purified proteins were recently identified as EF1, Cdc37, HSP40, HSP70 and HSP90 (not indicated in this 

illustration) (Fischer et al. 2009). 
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phosphorylation on apoptosis degree in the presence of active RAF, such as B-RAF.  

As exhibited in Fig. 30A the single mutation of serine 134 to alanine does not influence the pro-

apoptotic activity of BAD as much as observed in Fig. 27A. The reason of this effect might be, that 

BAD-induced apoptosis is regulated through an interplay between the serine residues 75, 118, and 134 

that is controlled by B-RAF. In the presence of B-RAF, single mutation of serine 134 to alanine barely 

affects the pro-apoptotic activity of BAD because co-expression of B-RAF leads to increased 

Figure 30: BAD-induced apoptosis is regulated by interplay between serines 75, 118, and 134.  

HeLa cells were transiently transfected in triplicates with the expression vectors as indicated. 16 h post-

transfection, cells were washed and grown in medium supplemented with 0.1% serum.  A, The extent of 

apoptotic cells was detected by trypan blue staining. B, Expression levels of BAD constructs and B-RAF 

in transfected cell lysates were detected via specific antibodies. 
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phosphorylation of BAD serines 75 and 118 (Fig. 28A). In a previous report (Polzien et al. 2009) we 

demonstrated that B-RAF-mediated phosphorylation of BAD serines 75 and 118 leads to inhibition of 

BAD-induced apoptosis. Without co-expression of B-RAF, the phosphorylation levels of the 

regulatory serines 75 and 118 are low resulting in strong induction of apoptosis. The degree of 

apoptosis induction can even be strengthened by mutation of serine 134. This situation was simulated 

by using a triple BAD mutant (BAD-S75A-S118A-S134A) that resulted in intense induction of 

apoptosis, even in the presence of B-RAF (Fig. 30A). These results, together, indicate that residues 75 

and 118 are crucial for regulation of BAD proapoptotic activity whereas serine 134 mediates the fine 

tuning of BAD induced apoptosis.  

 These observations, together, indicate that residues 75 and 118 are crucial for the regulation of 

BAD proapoptotic activity whereas serine 134 mediates the fine tuning of BAD induced apoptosis.       

Phosphorylation of hBAD Ser-134 enhances cell proliferation – Data shown in Fig. 28 reveals that 

RAF kinases and PAK1 phosphorylate BAD at position serine 134. Since these survival kinases play a 

crucial role in several types of cancer, we analyzed here in more detail the role of BAD 

phosphorylation on cell proliferation. To this end, we co-expressed RAF kinases and PAK1 with wild 

type BAD or BAD-S134A mutant in HeLa cells and induced apoptosis through starvation conditions. 

Cell proliferation was analyzed by counting of living cells (Fig, 31A and C) as well as by staining of 

mitochondria of viable cells and detection of fluorescence intensity by a laser scanner (Fig. 31B and 

C).  

Results obtained by both methods support the finding that RAF and PAK1 serve as 

phosphorylating kinases for hBAD serine 134. Surprisingly, proliferation activity of cells expressing 

RAF and PAK1 was considerably elevated in the presence of wild type hBAD (Fig. 31). On the other 

hand, in the presence of BAD-S134A mutant the degree of cell proliferation was reduced to control 

levels. The measured fluorescence intensities reflect the amount of viable cells since they correlate 

with counted cell numbers (Fig. 31C). The change of mitochondrial activity may play a minor role in 

this context.  

Figure 31 (right): BAD stimulates RAF-mediated cell proliferation.  

HEK-293 and HeLa cells were transiently transfected in triplicates with the expression vectors as 

indicated. 16 h post-transfection, cells were washed and grown in medium supplemented with 0.3% serum. 

A, Cell proliferation was analyzed by counting living cells by Trypan blue exclusion two days following 

transfection. B, To visualize cell proliferation, mitochondria of viable cells were stained by MitoTracker 

and fluorescence intensity of the wells was measured by Typhoon 9200 imager. C, Combination of results 

obtained in A and B. To show that the measured fluorescence intensities correlate with counted cell 

numbers the results presented in A and B were quantitatively compared. BAD constructs and kinases were 

expressed to comparable levels in each sample (data not shown). These experiments were repeated three 

times with comparable results. 
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Of note, the induction of cell proliferation by the co-expression of BAD with survival kinases is 

not only due to an inhibition of apoptosis as the percentage of apoptotic cells is similar to the vector 

control (Fig. 30A). These observations are not cell type specific since comparable results were 

obtained using HEK-293 cells (data not shown). 

Taken together, we show here that serine134 has two functions during survival signaling. On the 

one hand this site controls intensity of BAD-mediated apoptosis and on the other hand it is involved in 

the regulation of proliferation.   

Phosphorylation of BAD serine 134 plays an exclusive role in B-RAF mutant tumor cells – In 

experiments performed with cells containing wild type RAF or Ras we showed by overexpression that 

RAF kinases effectively phosphorylate BAD at position serine 134 whereas Akt/PKB caused relative 

low extents of Ser-134 phosphorylation (Fig. 28A). To test whether this observation is valid in 

naturally occurring tumor cells we investigated cancer cell lines possessing endogenously mutated 

RAF and Ras proteins. Two melanoma cell lines used in this study (A375 and SK-MEL-28) carry a 

valine-to-glutamic acid mutation at residue 600 of B-RAF (B-RAF-V600E) which leads to elevated 

RAF signaling in these cell lines (Davies et al. 2002) (see also Fig. 37). In contrast, the cell lines HCT 

116, DX3 and MEL-Juso are known to harbor activating mutations within the Ras genes. Ras has been 

reported to activate a variety of cellular targets beside RAF, such as Ras-GDS, Tiam-1 and PI3K (for 

review see (Shaw and Cantley 2006)). Concerning driving tumorigenesis, one of the most probable 

targets of Ras is PI3K. This is known to activate the pro-survival Akt/PKB pathway (Amaravadi and 

Thompson 2005) (see also Fig. 37).  As control we also used the tumor cell line PC3 that carries 

neither a RAF nor a Ras mutation. Surprisingly, the phosphorylation of BAD serine 134 was only 

observed in the cell lines containing B-RAF mutant (Fig. 32A). These results are in agreement with 

the experiments presented in Fig. 28A where we overexpressed RAF kinases and Akt/PKB in HeLa 

cells. The RAF Inhibitor Sorafenib (also known as BAY 43-9006 or Nexavar®) has been reported to 

decrease proliferation in B-RAF mutant tumor cells (Karasarides et al. 2004) (see also Fig. 32B). 

Interestingly, impaired proliferation goes along with a diminished phosphorylation of hBAD serine 

134 in Sorafenib treated A375 and SK-MEL-28 cells (Fig. 32B and C). In contrast, the PI3K inhibitor 

Wortmannin had a minor effect on cell proliferation and phosphorylation of hBAD serine 134 (Fig. 

32B and C). To investigate the putative synergistic effects between Sorafenib and Wortmannin, we 

also incubated the cells with both inhibitors together. Since Wortmannin barely impaired the effects of 

Sorafenib alone we could exclude the possibility that inhibition of PI3K leads to enhanced RAF 

signaling that would mask the effect of Wortmannin (Fig. 32B and C). 
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Figure 32: BAD serine 134 plays an exclusive role in B-RAF mutant tumor cells.  

A, To monitor the phosphorylation degree of BAD at serine 134 in naturally occurring cancer cells,  two 

cell lines that carry B-RAF-V600E mutant (A375 and SK-MEL-28), three cell lines that harbor 

activating mutations within the RAS genes (HCT 116, DX3 and MEL-Juso) and a control tumor cell line 

that carries neither RAF nor RAS mutation (PC3) were investigated. The amounts of the endogenous 

BAD protein, phosphorylation of BAD at serine 134 as well as endogenous actin were detected by 

immunoblotting. B and C, A375 and SK-MEL-28 cells were treated with the indicated kinase inhibitors 

and cell growth (B), expression levels of endogenous BAD and actin as well as phosphorylation of BAD 

serine 134 (C) were analyzed. The efficiency of the kinase inhibitors Wortmannin, Sorafenib or 

PD0325901 has been verified by change of Akt serine 473 and ERK phosphorylation, respectively. 
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Inhibition of MEK by PD0325901 affects proliferation and phosphorylation of hBAD serine 134 

similar to inhibition of RAF by Sorafenib (Fig. 32B and C). This leads to the conclusion that although 

RAF kinases are potentially able to phosphorylate hBAD serine 134 directly (Fig. 28C), in naturally 

occurring tumor cell lines proliferation and phosphorylation of BAD serine 134 is apparently mediated 

through the RAF-MEK-ERK cascade. In agreement with published data (Boisvert-Adamo and Aplin 

2008), inhibition of MEK or RAF leads to a slight increase of the whole amount of BAD protein (Fig. 

32C), indicating a dual role of BAD in MAPK-mediated survival signaling. The efficiency of 

Wortmannin, Sorafenib or PD0325901 has been verified by change of Akt serine 473 and ERK 

phosphorylation, respectively. In cell lines containing mutated Ras, proliferation was more inhibited 

by Wortmannin than by Sorafenib or PD0325901 (Fig. 35). All three inhibitors barely caused 

inhibition of proliferation in cells containing neither a RAF nor Ras mutation (Fig. 35). 

To analyze whether BAD directly contributes to cell proliferation in B-RAF mutant melanoma 

cells we used BAD-specific siRNA to downregulate the endogenous BAD protein (Fig. 33A). 

Compared to mock cells and control cells that were transfected with siRNA directed against luciferase, 

knock-down of BAD led to marked inhibition of proliferation in A375 and SK-MEL-28 cells (Fig. 

33B). 

Figure 33: BAD is required for efficient proliferation in B-RAF mutant melanoma cells.  

A375 and SK-MEL-28 cells were transfected with siRNAs against human BAD or luciferase as control. 

Two days post transfection knock-down of BAD at protein level (A) as well as the effect of BAD knock-

down on cell growth (B) was analyzed. In A, actin levels show equal loading. 
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Figure 34: Phosphorylation of BAD at the position serine 134 is critical for B-RAF driven proliferation. 

A375 (A) and SK-MEL-28 (B) cells were co-transfected with siRNAs against the 3’-UTR of endogenous 

BAD (but not against exogenous BAD) or luciferase and the indicated expression vectors. Two days post 

transfection, knock-down of endogenous BAD and overexpression of BAD wild type as well as BAD-S134A 

mutant was monitored by immunoblotting. Actin levels show equal loading. The resulting growth inhibition 

is presented below (see bar graph). 
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This growth inhibition could be abrogated by overexpression of wild type BAD (Fig. 34). 

Importantly, overexpression of BAD serine 134 to alanine mutant was not able to rescue efficient 

proliferation upon knock-down of endogenous BAD. In cell lines containing mutated RAS and in cells 

containing neither a RAF nor RAS mutation, knock-down of BAD did not affect cell proliferation 

(Fig. 36).    

3.4.4. Discussion 

Post-translational modifications of BH3-only proteins, such as phosphorylation, proteolytic 

processing and lipid modifications emerged as regulatory elements that integrate extracellular survival 

signals with the apoptotic machinery. Regarding regulation of BAD function, phosphorylation plays 

perhaps the most important role among these post-translational events. Recently, using mass 

spectrometry we identified ten distinct phosphorylation sites within the human BAD protein ((Polzien 

et al. 2009), see also Fig. 26A). While some of these phosphoserines have been found to be located at 

Figure 35: BAD serine 134 plays a minor role regarding cell growth in RAS mutant and B-RAF/RAS wild 

type tumor cells.  

The tumor cell line HCT 116 that harbors mutated RAS and the tumor cell line PC3 that carries neither a 

RAF nor RAS mutation were treated with the indicated kinase inhibitors. Cell growth, expression levels of 

endogenous BAD, its phosphorylation at serine 134 and actin were analyzed. The efficiency of the kinase 

inhibitors Wortmannin, Sorafenib or PD0325901 has been verified by change of Akt serine 473 and ERK 

phosphorylation, respectively. Results obtained with RAS mutant tumor cell lines MEL-Juso and DX3 

were analogous to results gained with HCT 116 cells (data not shown). 



Manuscript IV: Enhancement of RAF-Mediated Proliferation by BAD 

 

135 

the N-terminus of hBAD (serines 25, 32 and 34) three other phosphorylation sites are positioned at the 

C-terminal part of the protein, i.e. serines 118, 124 and 134. The third group of hBAD phosphorylation 

sites (serines 75, 91, 97
 
and 99) are either directly or indirectly involved in binding of 14-3-3 proteins. 

As the function of the phosphoserines that regulate the interactions of BAD with 14-3-3 proteins has 

been thoroughly investigated so far (Datta et al. 2000; Hekman et al. 2006; Masters et al. 2001; 

Subramanian et al. 2001; Zha et al. 1996; Zhang et al. 2005), we examined in this study the role of 

serine phosphorylation at the N- and C-terminal parts of hBAD in more detail.  

Substitution of Ser-124 and/or Ser-134 by alanine led to increase of apoptotic activity indicating 

that phosphorylation at these positions is actively involved in the control of apoptotic pathways (Fig. 

27A). By contrast, substitution of N-terminal serines 25, 32 and 34
 
by alanine did not significantly 

Figure 36: (right): BAD is not required for efficient proliferation in RAS mutant (HTC 116, MEL-Juso, 

and DX3) and B-RAF/RAS wild type (PC3) tumor cells.  

The indicated tumor cell lines were transfected with siRNAs against BAD or luciferase. Two days post 

transfection, endogenous actin, knock-down of endogenous BAD at protein level (see inserts) as well as the 

effect of BAD knock-down on cell growth was monitored. 
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change the proapoptotic activities of BAD allowing the conclusion that the phosphorylation of the N-

terminus does not play a decisive role in the regulation of cell survival. Although mutation of Ser-134 

to alanine led to an increased apoptotic activity (Fig. 27A), in the presence of B-RAF this effect was 

less pronounced (Fig. 30A). This observation is in accordance with our previous results showing that 

B-RAF phosphorylates also serines 75 and 118 of human BAD, thereby inhibiting BAD mediated 

apoptosis (Polzien et al. 2009). Thus, the inhibition of hBAD-induced apoptosis by B-RAF could be 

realized mostly through phosphorylation of serines 75 and 118 whereas serine 134 mediates the fine 

tuning of BAD induced apoptosis.  

In our previous attempts to characterize the translocation of BAD to mitochondria, we identified 

two lipid-binding domains (termed LBD1 and LBD2) within the C-terminal region of human BAD 

(Hekman et al. 2006). While LBD2 overlaps with helix-5 localized at the very C-terminus, LBD1 

encompasses the C-terminal half of BH3 helix and covers also the short S
124

FKK
127

 region (Fig. 26A). 

Thus, due to its close proximity to the FKK motif it is feasible that the phosphorylation of Ser-124 

may regulate BAD function by modulating the interaction of BAD with membrane lipids. However, 

the proposed regulation of BAD function by phosphorylation of Ser-124 seems to be unique for the 

human BAD protein since most of the mammalian homologues (e.g. murine BAD) do not contain the 

complete FKK motif (Fig. 26B). On the other hand, the alignment of human and murine BAD reveals 

that both BAD proteins contain the conserved segment PRPKS
134/170

AG comprising either Ser-134 in 

human or Ser-170 in murine BAD (Fig. 26B). Ser-170 has previously been identified as a BAD 

phosphorylation site in murine BAD (Dramsi et al. 2002). The recent availability of the 

phosphospecific antibodies against phosphoserine 134/170 allows the search for potential kinases that 

can phosphorylate Ser-134. Although the consensus sequence RXXS makes Akt/PKB probable as a 

potential phosphorylating kinase the two proline residues present in the motif PRPKSAG render this 

possibility unlikely. Indeed, co-expression of hBAD with Akt/PKB did not result in significant 

phosphorylation of Ser-134. 

Instead, as shown in Fig. 28A we identified PAK1 and RAF as the most potent BAD-

phosphorylating kinases under both, in vivo and in vitro conditions. Concerning PAK1 one should take 

into consideration that this kinase was described to phosphorylate BAD in an indirect manner targeting 

RAF as downstream effector kinase (Jin et al. 2005).  
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Intriguingly, our data display that co-expression of wild type BAD with RAF kinases and PAK1 

strongly increases cell proliferation (Fig. 31) whereas BAD-S134A mutant abolishes this effect. As 

generally accepted the Ras-RAF-MEK-ERK pathway regulates cellular survival, differentiation and 

proliferation (Peyssonnaux and Eychene 2001; Rajalingam et al. 2007; Schreck and Rapp 2006; 

Wellbrock et al. 2004). Enhanced activation of this cascade, often caused through activating mutations 

in the composite proteins, is found in many tumors (Brose et al. 2002; Cohen et al. 2002). In human 

cancer, mutated RAF (mainly B-RAF) was identified in 60% of melanomas (Brose et al. 2002) and 

with lower incidence in papillary thyroid cancers (Cohen et al. 2003), colorectal carcinomas (Brose et 

al. 2002; Davies et al. 2002; Rajagopalan et al. 2002), and lung cancers (Brose et al. 2002). Ras 

mutations were found in about 15-30% of human cancers overall (Bos 1989; Brose et al. 2002; Pavey 

et al. 2004). Activating Ras and B-RAF mutations typically show mutual exclusivity in tumors (Brose 

et al. 2002; Davies et al. 2002; Gorden et al. 2003). Notably, although either mutated Ras or B-RAF is 

required for tumor development it was demonstrated that both mutations do not result in similar 

Figure 37: Schematic presentation of BAD serine 134 phosphorylation in RAF and Ras mutant tumor 

cells.  

Stimulation of receptor tyrosine kinase (TRK) at the plasma membrane (PM) leads to activation of Ras 

GTPases and RAF kinases. The cell lines HCT 116, DX3 and MEL-Juso carry mutated Ras genes 

resulting in enhanced activation of the PI3K/Akt pathway. Although Akt was shown to be a BAD 

targeting kinase it has minor contribution in phosphorylating BAD at serine 134. The cell lines A375 and 

SK-MEL-28 harbor an activating mutation within B-RAF (V600E) that leads to elevated phosphorylation 

of BAD serine 134, mainly through the MEK-ERK cascade. The specific inhibitors of RAF, MEK and 

PI3K are highlighted in blue boxes. Phosphorylation of BAD at serine 134 affects efficiency of apoptosis 

and proliferation. Thick arrows indicate enhanced activation or phosphorylation. For more details see 

main text. 
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downstream effects (Cragg et al. 2008; Solit et al. 2006). In this study we disclose an additional 

parameter that is apparently involved in tumor progression. In this regard, we demonstrate that the 

phosphorylation of BAD serine 134 is increased in cell lines with elevated RAF activity but not in 

cells harboring a high Ras or Akt/PKB activity (Fig. 28A and Fig. 32A). Additionally, we found that 

in melanoma cells the phosphorylation of this site is preferentially realized through the RAF-MEK-

ERK cascade (Fig. 32C) although RAF kinases are potentially able to phosphorylate this site directly 

(Fig. 28C). This result underlines the former observation that mutation of B-RAF leads to an exquisite 

dependency on MEK activity (Cragg et al. 2008; Solit et al. 2006) where the authors demonstrated 

that B-RAF mutant tumor cells are considerably more sensitive to MEK inhibition than either Ras 

mutant or B-RAF/RAS WT cells. These studies showed that only in B -RAF mutant cells MEK 

inhibition caused potent inhibition of proliferation (Cragg et al. 2008; Solit et al. 2006). The increased 

sensitivity to MEK inhibitors of B-RAF mutant cells was observed to be based on a different 

regulation of Bcl-2 proteins in these cell lines (Cragg et al. 2008). The aberrant regulation of Bcl-2 

proteins in B-RAF mutant tumor cells may be realized by a specific mitochondrial localization of B-

RAF-V600E compared to wild type B-RAF as recently reported (Lee et al. 2010). Concerning BAD 

phosphorylation, Eisenmann et al. demonstrated that the enhanced sensitivity to MEK inhibition is 

based on a melanoma-specific MAPK-mediated survival signaling (Eisenmann et al. 2003). In normal 

melanocytes BAD was shown to be phosphorylated at serines 75, 99 and 118, leading to insensitivity 

to MEK inhibition (Eisenmann et al. 2003). In contrast, in B-RAF mutant melanoma cells, BAD was 

only phosphorylated at serine 75. MEK inhibition resulted in dephosphorylation of this site and 

induction of apoptosis (Eisenmann et al. 2003). Another study linked resistance to anoikis in 

melanoma cells to phosphorylation of BAD serine 75 (Boisvert-Adamo and Aplin 2008). Accordingly, 

the MAPK dependent phosphorylation of BAD serine 75 seems to represent an important mechanism 

to escape from apoptosis, especially in melanoma cells. However, all former studies considered BAD 

to be only an inducer of apoptosis that is inactivated through phosphorylation, especially at serine 75. 

We demonstrate here for the first time that phosphorylation of serine 134 of hBAD is required for 

efficient proliferation in B-RAF-V600E containing tumor cells (Fig. 33 and 34). Serine 170 of murine 

BAD that corresponds to serine 134 of human BAD was previously connected to cell proliferation 

(Dramsi et al. 2002). However, one has to consider that the properties of murine BAD may differ from 

human BAD due to a large N-terminal extension. Additionally, in Dramsi et al. phosphorylation of 

serine 170 was mimicked by mutation of this residue to aspartic acid (Dramsi et al. 2002). Notably, in 

this study the kinases responsible for serine 134 phosphorylation as well as an involvement of this 

regulatory site in naturally occurring tumor cells has not been addressed. Here we disclose that BAD 

serine 134 is phosphorylated in a RAF-dependent manner and that BAD cooperates with RAF in 

promoting proliferation and therefore may play an active role during tumor development. The 

observation that MEK inhibition leads to a decrease in BAD serine 134 phosphorylation but to an 

increase in the amount of the whole BAD protein underlines the dual role of BAD. Under survival 
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conditions, BAD is phosphorylated at serine 134 and promotes proliferation in cells with elevated 

RAF activity. On the other hand, when entering apoptotic conditions, dephosphorylated BAD 

accumulates within the cell leading to complex formation with Bcl-2/XL and induction of apoptosis. 

Thus, apoptosis and proliferation seem to be regulated through interplay between the phosphorylation 

sites serine 75, 118 and 134.  

Conclusions – Results presented in this study open new insights regarding the function of BAD 

and are in accordance with studies pointing to alternative roles for BAD than apoptosis control (Danial 

et al. 2003). Furthermore, our findings showing that human BAD is actively involved in proliferation 

of B-RAF-V600E containing tumor cells may provide a new link between survival signaling and 

cancer development. 
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4.  General Discussion 

The phosphorylation of BAD provides an important connection between cell survival signaling 

and the apoptotic death machinery. A current model of BAD function implicates phosphorylation of at 

least three serine residues (using human nomenclature these are serine 75, 99, and 118). The 

immediate consequences of phosphorylation at these sites are complex formation of BAD with 14-3-3 

proteins and dissociation of BAD from the pro-survival Bcl-2 family members. Besides these highly 

conserved serine residues, four other phosphorylation sites of murine BAD (positioned at serines 128 

and 170 and threonines 117 and 201) have been identified. Remarkably, although much attention has 

been devoted to the phosphorylation-mediated regulation of mBAD function, with some exceptions 

the regulation of hBAD by phosphorylation has not been investigated yet. Therefore, we performed a 

systematic analysis of in vivo phosphorylation of hBAD protein by combined use of phosphospecific 

antibodies and mass spectrometry. 

4.1.  Identification of Novel hBAD in vivo Phosphorylation Sites by Mass 

Spectrometry  

As presented in Fig. 8A, phosphorylation of all three highly conserved serines in purified hBAD 

were detectable by use of phosphospecific antibodies indicating that at least a fraction of hBAD 

expressed in Sf9 cells is associated with 14-3-3 proteins. To investigate, whether hBAD is 

phosphorylated at more than these three established phosphorylation sites (serines 75, 99 and 118), the 

purified hBAD samples were analyzed by both ESI-MS and nano-LC-MS/MS technique. The results 

obtained by MS analysis revealed numerous novel phosphorylation sites (Fig. 8B and Table 2). 

Interestingly, with exception of serine 25 and 32/34 most of the phosphorylated peptides are clustered 

within a 75 amino acid stretch that comprises also the BH3 domain. In contrast, the last 20 residues at 

the very C-terminal sequence bear no phosphate molecules. 

Three peptides (peptide 95-112, 97-109 and 99-109) carrying one or two phosphates, include the 

sequence of the putative 14-3-3 binding domain RSRS
99

AP. By use of phosphospecific antibodies, the 

serine 99 has been found to be phosphorylated in the hBAD sample (Fig. 8A). Surprisingly, in 

addition to serine 99, the peptide 95-112 was phosphorylated also at serine 97, indicating a novel 

regulatory mechanism regarding association of 14-3-3 proteins with hBAD. Possibly, the 

phosphorylation of the second serine in the position 97 within the 14-3-3 binding motif (RS
97

RSAP) 

inhibits the association of hBAD with 14-3-3 proteins. Similar accumulation of phosphates has been 

observed within the C-terminal 14-3-3 binding motif of A-RAF kinase (RS
580

AS
582

EP) where both 

serines 580 and 582 were found to be phosphorylated (Baljuls et al. 2008). The authors proposed that 

the multiple phosphorylation of the C-terminal 14-3-3 binding region in A-RAF may be one of the 

reasons for the relative low activity of this RAF isoform. On the other hand, perturbations within the 

internal 14-3-3 binding domain of C-RAF (RSTS
259

TP) have been reported to be a reason for severe 

cardio-facio-cutaneous disorders called Noonan and LEOPARD syndrome (Pandit et al. 2007; 
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Razzaque et al. 2007). Displacement of the serine 259 by phenylalanine abolished the autoinhibitory 

mechanism of C-RAF resulting in a permanent active kinase form. In conclusion, we suggest that 

phosphorylation of the serine in position –2 relative to the obligatory phosphorylated serine within the 

14-3-3 binding motif (e.g. serine 99 in hBAD) is sufficient to displace 14-3-3 from hBAD. In this 

scenario, previous dephosphorylation of the crucial serine within the 14-3-3 binding domain would be 

dispensable. 

The binding motif surrounding serine 75 (RHSS
75

YP) fulfills criteria for a typical 14-3-3 binding 

site as well (Aitken 2002). In hBAD, phosphorylation of serine 75 has been detected by use of 

phosphospecific antibody (see Fig. 8A). In addition, the fragmentation of the tryptic peptide 73-94 

suggests phosphorylation of this residue (see Table 2). Fueller et al. (2008) reported recently that the 

transient phosphorylation of serine 75 in hBAD protein mediated by the activated catalytic domain of 

C-RAF promotes poly-ubiquitination of hBAD and increases the turn-over of this protein by 

proteosomal degradation. The alignment of the amino acid sequences of several mammalian BAD 

proteins reveals two PEST regions, which constitute a marker for proteins that undergo proteosomal 

degradation. Interestingly, one of these PEST regions overlaps with the 14-3-3 binding domain 

surrounding phosphoserine 75, thus, indicating a competition between 14-3-3 binding and the 

ubiquitination machinery. 

Four other phosphopeptides (114-127, 116-126, 117-126 and 117-133) carrying either one or two 

phosphates, partially cover the BH3 domain where the serine 118 (corresponding to serine 155 in 

mBAD) is located. Phosphorylation of this residue regulates the interaction of BAD with Bcl-2/Bcl-XL 

proteins. Importantly, within the peptide 117-133 two phosphates were detected (see Fig. 8B and 

Table 2). Because the number of phosphates within the peptide 117-133 corresponds to the number of 

phosphorylation possibilities, both serine residues (serine 118 and 124) within this peptide appear to 

be phosphorylated in vivo. Thus, we propose that besides the well-characterized serine 118, the serine 

124 represents a novel phosphorylation site in hBAD.  

Finally, we detected a peptide carrying five phosphates overlapping partially with the peptide 117-

133 (Fig. 8B). This peptide has been ascribed to the C-terminal BAD region located between residues 

128 and 149. At present, we cannot definitively specify the exact positions of all of the phosphates 

found by MS analysis. Nevertheless, the phosphorylation of serine 124 is very probable since it has 

already been detected within the peptide 117-133. In addition, the phosphorylation of murine BAD at 

the serine 170 (corresponding to serine 134 in hBAD) has been previously reported (Dramsi et al. 

2002). As the alignment of human and murine BAD shows that both BAD proteins contain the 

conserved segment RPKS
134/170

AG, it appears probable that this position is phosphorylated in both 

proteins. Indeed, two other phosphopeptides (132-142 and 134-142) confirmed this assumption. 

Nevertheless, the role of multiple phosphorylations at the C-terminal end of the hBAD protein remains 
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unclear. Such an accumulation of negative charged residues may support the depletion of hBAD from 

mitochondria. 

4.2.  Inhibition of hBAD-Induced Apoptosis by RAF Kinases  

The pro-apoptotic protein BAD has been reported to be a substrate for a broad spectrum of 

kinases. Here we demonstrate that BAD is phosphorylated in vivo and in vitro by RAF kinases. 

Although it has been demonstrated previously that active C-RAF is involved in the phosphorylation of 

BAD (Wang et al. 1996) the role of RAF kinases in BAD phosphorylation is still controversially 

discussed (Harada et al. 1999; Jin et al. 2005; Kebache et al. 2007; Zha et al. 1996). Furthermore, the 

exact target sites of RAF within BAD protein have not been elucidated yet and B-RAF has so far not 

been considered as a BAD phosphorylating kinase. Our results indicate that RAF kinases (particularly 

B- and C-RAF) play an active role in BAD phosphorylation and regulation of apoptosis.  

In the first part of this work, we investigated the role of RAF kinases in the phosphorylation of 

hBAD at the established phosphorylation sites Ser-75, 99, and 118. Therefore, we resolved BAD 

phosphorylation mediated by all three RAF kinases and compared it with data obtained by PKA, 

Akt/PKB and PAK1. In vivo experiments show that RAF kinases and PKA possess the ability to 

phosphorylate BAD at all three crucial serines (75, 99 and 118) whereas Akt/PKB and PAK1 were 

more efficient in phosphorylating the serine 99 that is involved in association of 14-3-3 proteins (Fig. 

9). These findings indicate that besides kinase specificity intracellular localization may be important 

for substrate recognition.  

Blocking of autocrine loops by Suramin, e.g. NF- B pathway or stress kinase cascades (Fig. 11) to 

downregulate BAD phosphorylation, suggests that these pathways do not play an essential role in 

BAD regulation. By cultivating cells with three different MEK inhibitors (U0126, PD98059 and 

CI1040), we observed no differences in BAD phosphorylation in the presence of B-RAF (Fig. 11). In 

contrast, cells grown in the presence of RAF inhibitor Sorafenib (BAY 43-9006) or PKA inhibitor H-

89 showed significant reduction of BAD phosphorylation, suggesting that RAF kinases and PKA are 

involved directly in suppression of BAD-mediated apoptosis (Figs. 9, 11 and 12). Although Sorafenib 

(BAY 43-9006) was initially developed as a RAF kinase inhibitor, it can additionally target the MAP 

kinase p38, several tyrosine kinases including VEGFR-2, Flt-3 and c-Kit but none of the reported 

BAD kinases (Fabian et al. 2005; Wilhelm et al. 2004). Importantly, Jin et al. (Jin et al. 2005) 

showed, in accordance with our results, that C-RAF/PAK-mediated BAD phosphorylation could be 

effectively inhibited in vivo in the presence of 2 µM RAF inhibitor Sorafenib (BAY 43-9006). In 

contrast, the use of MEK inhibitor PD98059 (20 µM) did not prevent BAD phosphorylation. Also 

consistently with our data, it has been shown by using the same cell line that Akt/PKB phosphorylates 

mBAD efficiently at serine 136 (Datta et al. 1997). Collectively, we compare here in the same 

experiment BAD phosphorylation by RAF and other kinases and show that Akt/PKB and PAK1 
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phosphorylate BAD with different specificity compared to RAF and PKA. Furthermore, we 

demonstrated that BAD-induced apoptosis can be inhibited by B- and C-RAF and showed that this 

inhibition is dependent on the phosphorylation of serines 75 and 118 of hBAD (Fig. 13). 

 Thus, based on data presented here, we suggest that in vivo phosphorylation of BAD by RAF 

kinases represents an important pathway in the phosphorylation of BAD domains, that are involved 

either in 14-3-3 protein association or mediate coupling/decoupling of BAD with Bcl-2 and Bcl-XL 

proteins. To corroborate these findings we performed binding studies with purified components by use 

of BIAcore technique. In Fig. 14, we demonstrate that in vitro phosphorylation of BAD by activated 

C-RAF promotes association of BAD with 14-3-3 . We used 14-3-3 , since of the seven 14-3-3 

isoforms analyzed this isoform bound phosphorylated BAD most efficiently (Hekman et al. 2006). 

While serines 75 and 118 are essentially not required for 14-3-3 binding, the domain surrounding 

serine 99 represents the preferential 14-3-3 binding site. However, a second binding site may enhance 

or stabilize this association.  

C-RAF has been found to colocalize with mitochondria markers, indicating that a high proportion 

of C-RAF is located at mitochondria (Galmiche et al. 2008). The presence of activated C-RAF at 

mitochondria is also supported by the study of Jin et al. (2005) who demonstrated that PAK mediates 

C-RAF activation and its subsequent translocation to the mitochondria. At present, we cannot 

completely exclude the possibility that RAF kinases and PKA act simultaneously or synergistically, as 

it has been reported that C-RAF and PKA form a complex in vivo (Dumaz and Marais 2003). 

However, the C-RAF/PKA complex was found to be stable only in non-stimulated cells. It is possible 

that Akt/PKB and C-RAF also act as a complex in vivo. In this scenario, C-RAF would phosphorylate 

hBAD mainly at serines 75 and 118 and Akt/PKB might be responsible for serine 99 phosphorylation. 

These combined phosphorylations would enable effective association of 14-3-3 with BAD and 

separation from the BAD/Bcl-XL complex. She et al. (2005) proposed that BAD might represent the 

convergence point of the RAF- and the PI3K/Akt kinase pathway. According to this report, BAD 

protein acts as a switch that integrates the anti-apoptotic effects of the EGFR/MAPK and PI3K/Akt 

pathways (as detected in MDA-468 cancer cells). This model is further supported by the observation 

that BAD can associate with PKB and B-RAF in conjunction with the co-chaperone BAG-1 at the 

mitochondrial level (Gotz et al. 2005). 

4.3. Channel-Forming Activity of hBAD is Controlled by Phosphorylation and 

14-3-3 Proteins  

Within the Bcl-2 family of proteins Bcl-2, Bcl-XL, Bak, Bax and the BH3-only protein Bid have 

been reported to possess channel-forming ability in artificial lipid bilayers (Antonsson et al. 1997; 

Minn et al. 1997; Schendel et al. 1999; Schendel et al. 1997; Schlesinger et al. 1997). In addition, it 

was observed by confocal and electron microscopy that Bak and Bax coalesce during apoptosis into 

large clusters on the surface of mitochondria (Karbowski et al. 2002). Here we present biophysical 
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evidence that the pro-apoptotic BH3-only protein BAD forms channels in artificial membranes (Fig. 

16). Additionally, we could show that BAD pores possess a funnel-shaped geometry and that ions as 

well as non-charged molecules with molecular weights up to 200 Da can enter the BAD pore (Fig. 20). 

To form pores such proteins must contain helices that are long enough to span the membrane bilayer 

and these helices must be largely devoid of charged residues (Schendel et al. 1998). As an average 

lipid bilayer has a hydrophobic cross-section of ≈30 Å (Montal and Mueller 1972), the α-helix needs 

to be ≈20 residues long in order to span a membrane bilayer and to be able to participate in channel 

formation (Schendel et al. 1998). A helix probability plot of human BAD exhibited a C-terminal 

region of about 20 residues with a high probability of a helical structure and only two charged residues 

(Hekman et al. 2006). This region is surrounded by positively charged residues, which may 

additionally facilitate the association of the protein with membranes. Although one helix is insufficient 

to form a channel, some molecules could come together, each contributing their hydrophobic helix to 

create a pore. Furthermore, in the vicinity of this putative C-terminal helix a second lipid binding 

domain in human BAD comprising the FKK motif has been identified (Hekman et al. 2006).  

We show here that hBAD is able to form channels which exhibit multiple conductance states with 

complex opening kinetics. Similar properties have also been reported for other Bcl-2 family members 

including Bcl-XL, Bcl-2, Bax and Bid (Antonsson et al. 1997; Dejean et al. 2006; Minn et al. 1997; 

Schendel et al. 1997; Schlesinger et al. 1997). The presence of three different channel activities with 

progressively greater conductances (≈500 pS, ≈750 pS and ≈3750 pS), but occurring with 

progressively lesser frequency, raises the possibility of step-wise oligomerization of hBAD protein 

molecules in planar bilayers. The Bax channel progresses within 2-4 min of its initial appearance 

(Schlesinger et al. 1997). This includes an early low-conducting channel, followed by a transition 

phase with multiple sub-conductance levels and finally achieves an apparently stable ohmic pore of 

large conductance. Our findings that the lower conductive hBAD channels are flickering between a 

closed and an open state and the higher conductive hBAD channels persist open (Figs. 16A and B) 

raises the question of what factors may control opening and closing of hBAD channels in vivo. 

Although it was demonstrated, that phosphorylation of BAD does not affect the membrane binding 

significantly (Hekman et al. 2006), dephosphorylated hBAD fails to form discrete channels in lipid 

bilayers. Possibly, some specific phosphorylation sites of hBAD are responsible for the formation of 

particular conductance states. Furthermore, we observed that 14-3-3 proteins disrupt hBAD's assembly 

into the lipid membrane and that 14-3-3 is able to remove or close existing hBAD channels. Based on 

these data we propose that the formation of hBAD pores is a reversible process that is regulated by 

phosphorylation and 14-3-3 proteins. This fits well to the suggested model that BAD is a membrane 

associated protein that has the hallmarks of a receptor rather than a ligand which shuttles in a 

phosphorylation-dependent manner between mitochondria and other membranes with 14-3-3 as a key 

regulator of this relocation (Hekman et al. 2006).  
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4.4. Structural Transitions of the hBAD C-Terminus Regulate its Pore- 

Forming Activity  

The amino acid sequence of BAD does not allow an exact prediction for the existence of a C-

terminal transmembrane domain. Thus, a prediction of the sterical conformation of the BAD pore is 

quite difficult. However, two lipid binding domains (LBD1 and LBD2) have been identified at the 

BAD C-terminus (Hekman et al. 2006). Therefore, to define a precise connection between pore-

forming activity and structure of BAD, we analyzed in this study the secondary structure of the C-

terminal part of hBAD including the helix region located within the conserved BH3 domain. Previous 

data regarding the secondary structure of hBAD are contradictory. While Yang (2009) predicted seven 

α-helices for hBAD, Hinds et al. (2007) provided evidence that BH3-only proteins such as Bim, Bmf 

and BAD are intrinsically unstructured in the absence of binding partners. The results presented here 

demonstrate that the C-terminal part of hBAD reveals dynamic structural elements conditioned by its 

immediate environment (Fig. 22 and Table 5). In principle, the data presented here are not 

contradictory to the results reported by Hinds et al. (2007). However, it is difficult to make a 

correlation between our data and results published in Hinds et al. (2007) because they used for their 

NMR measurements a BAD construct missing the C-terminal part. Nevertheless, these authors showed 

that BAD undergoes localized conformational changes upon binding to Bcl-2 targets. Contrary to this 

study, we observed in solution (i.e. in the absence of lipid vesicles) a high degree of β-sheet elements 

within the BH3 domain and the C-terminal fragment (Fig. 22 and Table 5). In the presence of 

liposomes or lipid micelles, we detected dramatic changes of the secondary structure. As summarized 

in Table 5 the helix and β-sheet propensity was considerably increased in the presence of liposomes or 

lipid micelles. This holds for C-terminal segment of hBAD and non-phosphorylated BH3 domain. 

Surprisingly, phosphorylation of serine 118 within the BH3 domain strongly reduces the formation of 

α-helical structures. The consequence of the phosphate introduction in this position was a complete 

abolishment of helical structure, as documented by CD measurements performed in absence or 

presence of lipids (Fig. 22 and Table 5). Considering these observations and keeping in mind that the 

BAD lipid binding domains are localized within the C-terminal part of the protein, we hypothesized 

that the elements responsible for pore-forming activity of hBAD may be located within the Peptides1 

and -3 that cover the C-terminal part and the BH3 region (see also Fig. 21). Indeed, the measurements 

regarding channel-forming ability using these peptides confirmed this assumption. Moreover, as 

shown in Fig. 23 our data demonstrate that only the interaction of the C-terminal Peptide3 with 

peptides covering the phosphorylated form of BH3 domain (Peptide1-pS118, Peptide2-pS118 and 

Peptide2-pS99-pS118) allows the formation of large, fast accumulating and permanently open pores. 

In lipid environment hBAD C-terminus as well as the phosphorylated BH3 domain exhibits a high 

proportion of β-sheet structure (Peptide3 and Peptide1-pS118, Table 5). Accordingly, only the 

combination of peptides that display a high amount of β-sheet structure in lipid environment were 

shown to possess pore-forming activity. This observation indicates that BAD pores might be 
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composed of β-barrels similar to VDAC channels as reported by Hiller et al. (2008). Notably, in the 

absence of the BAD C-terminus, the non-phosphorylated BH3 domain (Peptide1) was also able to 

form channels. In contrast to the phosphorylated BH3 domain, this peptide showed a high proportion 

of α-helical structures in lipid environment (see Table 5). Consequently, it assembled to less stable 

pores than its phosphorylated counterpart did (Fig. 23). Therefore, pores formed by the non-

phosphorylated BH3 domain seem to possess another secondary structure, probably consisting of α-

helices.   

Leber et al. (2007) recently discussed an embedding together model that emphasizes the 

importance of the interaction of Bcl-2 family proteins with and within membranes. Additionally, the 

model proposes that interactions between pro- and anti-apoptotic Bcl-2 proteins are governed by 

membrane-dependent conformational changes. Our results regarding conformational changes of the C-

terminal part of hBAD dependent on the presence of membranes and the fact that translocation of Bcl-

XL to the mitochondrial membrane occurs by complex formation with BAD (Jeong et al. 2004) are 

consistent with the embedded together model. 

Together, we show in this work that the C-terminal part of hBAD (comprising BH3 domain and 

C-terminus) is per se sufficient to form ion channels. We identified phosphorylation of the RAF target 

site serine 118 within the BH3 domain to be essential for the formation of pores in the presence of the 

C-terminus. Furthermore, we disclosed that serine 99 plays an important role in controlling pore-

formation via interacting with 14-3-3 proteins. Our results emphasize that phosphorylation alone is 

insufficient to release BAD from membranes, because the depletion process depends on 14-3-3 

proteins. In vivo, the formation of hBAD pores may also be affected by other proteins that have been 

reported to interact with BAD. Two candidates are Akt/PKB and B-RAF that were demonstrated to 

co-immunoprecipitate with BAD (Gotz et al. 2005). It is possible that these kinases affect hBAD's 

pore-forming ability beside their BAD phosphorylating activity. Another open issue is the putative 

influence of other pore-forming members of the Bcl-2 family of proteins, like Bcl-2 and Bcl-XL that 

have been shown to interact with BAD (Minn et al. 1997; Schendel et al. 1997; Yang et al. 1995). Do 

they merely shut off their own and hBAD's pore-forming activity by heterodimerization or do they 

alternatively form counteracting pores? Our preliminary data suggest that Bcl-XL does not abolish 

pore formation of hBAD (data not shown). Similar observations were reported with respect to the 

effects of Bax on the pore-forming ability of Bcl-2. Although it was demonstrated that Bax interacts 

preferentially with the membrane-inserted form of Bcl-2 (Dlugosz et al. 2006), it was reported that 

Bax does not merely abrogate pore formation of Bcl-2 (Schendel et al. 1997). These authors suggested 

that Bcl-2 allows the transport across membranes in a direction that is cytoprotective, whereas Bax 

does the opposite. Bcl-XL and hBAD may also be involved in controlling such a homeostasis. In this 

regard, it should be mentioned that hBAD forms pores in its phosphorylated and non-apoptotic state. 

Therefore, it is possible that it cooperates with anti-apoptotic proteins instead of counteracting them.  
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Results presented here raised the question: What could be the physiological role of hBAD 

channels? hBAD pores could act as ion channels and contribute to the regulation of various cellular 

processes. Ca
2+

 for instance, is regulating the mitogenic cascade at multiple positions (Ren et al. 

2008). Concerning Ca
2+

 signaling, it was demonstrated that BAD targets the permeability transition 

pore (that has been suggested to be critical in apoptosis (Roy et al. 2009; Zamzami et al. 1996; 

Zamzami et al. 1996)) and sensitizes it to Ca
2+

 in a phosphorylation dependent manner (Roy et al. 

2009). hBAD forms pores in its phosphorylated and non-apoptotic state. Therefore, BAD pores might 

play a role in processes that are not associated with apoptosis.  

A previous model of BAD inactivation proposed sequential phosphorylation including 

phosphorylation of serine 118 and consequently disruption of the BAD/Bcl-XL complex (Datta et al. 

2000). This process may finally result in depletion of BAD from mitochondria by complex formation 

with 14-3-3 proteins and inhibition of apoptosis. In this study, we show that the phosphorylation of 

serine 118 does not only lead to inhibition of BAD-induced apoptosis. Phosphorylation at this position 

results in formation of open pores (see Fig. 23). The translocation model, first presented by the group 

of Rebollo (Ayllon et al. 2002; Fleischer et al. 2004; Garcia et al. 2003) and extended by our results 

(Hekman et al. 2006; Rapp et al. 2007) involves recruitment of BAD to the lipid rafts. This process is 

regulated by growth factor stimulation and is dependent on phosphorylation of the 14-3-3 binding 

motif. In this model, it was suggested that the BAD/14-3-3 complex is of transient nature (see also Fig. 

38). Due to its preferential affinity for cholesterol rich membranes (Hekman et al. 2006) the BAD/14-

3-3 complex translocates readily to rafts, whereby dissociation of 14-3-3 occurs. Thus, the pore-

formation of phosphorylated BAD protein would take place rather at rafts located at plasma membrane 

than mitochondria. Pore-formation data presented here (see Fig. 23) with doubly phosphorylated 

Peptide2 (Peptide2-pS99-pS118) supports strongly this pathway.  

Rafts and caveolae (which can be considered as a subclass of rafts (Anderson 1998; Smart et al. 

1999)) play an important role for the interactions of a number of signaling molecules. Several 

signaling associated proteins such as heterotrimeric and small G-proteins, Src kinases, eNOS, Shc, 

Nck MAPK and RAF kinases have been found to be attached to the rafts/caveolae microdomains 

(Hekman et al. 2002). We showed in this work that formation of open pores requires phosphorylation 

of the RAF target site serine 118 (Fig. 23). Thus, it is feasible that hBAD pores and RAF kinases 

cooperate in signaling processes in rafts of the plasma membrane. We could demonstrate that ions as 

well as non-charged molecules up to 200 Da can enter the hBAD channel. Thus, BAD channels should 

be permeable for many signaling molecules and may contribute to positive feedback loops. The close 

proximity between hBAD and RAF kinases at the plasma membrane might also be a hint for a 

contribution of hBAD pores in the mechanism of endocytosis. Indeed, BAD has been shown to play a 

role in cellular membrane trafficking. Beside its contribution to glucose metabolism, the regulation of 

autophagy displays a further non-apoptotic function of BAD (Danial et al. 2003; Maiuri et al. 2007).  
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4.5. Serine 134 of hBAD is Phosphorylated by RAF Kinases and Contributes 

to Apoptosis Control 

Regarding regulation of hBAD function, phosphorylation plays perhaps the most important role 

among all post-translational events. Using mass spectrometry, we identified ten distinct 

phosphorylation sites within hBAD (Fig. 8B). While some of these phosphoserines have been found to 

be located at the N-terminus of hBAD (serines 25, 32 and 34) three other phosphorylation sites are 

positioned at the C-terminal part of the protein, i.e. serines 118, 124 and 134. The third group of 

hBAD phosphorylation sites consists of serines 75, 91, 97
 
and 99, that are either directly or indirectly 

involved in binding of 14-3-3 proteins. As the function of the phosphoserines that regulate the 

interactions of BAD with 14-3-3 proteins has been thoroughly investigated previously (Datta et al. 

2000; Hekman et al. 2006; Masters et al. 2001; Subramanian et al. 2001; Zha et al. 1996; Zhang et al. 

2005), we examined in this work the role of serine phosphorylation at the N- and C-terminal parts of 

hBAD in more detail. Substitution of Ser-124 or Ser-134 by alanine led to increase of apoptotic 

activity indicating that phosphorylation at these positions is actively involved in the control of 

apoptotic pathways (Fig. 27A). By contrast, substitution of N-terminal serines 25, 32 and 34
 
by alanine 

did not significantly change the pro-apoptotic activities of hBAD allowing the conclusion that the 

phosphorylation of the N-terminus does not play a decisive role in the regulation of cell survival. 

Although mutation of Ser-134 to alanine led to an increased apoptotic activity (Fig. 27A), in the 

presence of B-RAF this effect was less pronounced (Fig. 30A). This observation is in accordance with 

our previous results showing that B-RAF phosphorylates also serines 75 and 118 of human BAD, 

thereby inhibiting hBAD mediated apoptosis (Figs. 9-13). Thus, the inhibition of hBAD-induced 

apoptosis by B-RAF could be realized mostly through phosphorylation of serines 75 and 118 whereas 

serine 134 mediates the fine-tuning of BAD induced apoptosis.  

Figure 38: Model of BAD regulation involving phosphorylation by RAF and relocation mediated by 14-3-

3 binding. 

Phosphorylated BAD in complex with 14-3-3 proteins does not associate with mitochondrial membranes, 

but selectively binds to cholesterol rich (raft-like) membranes. Thus, the role of BAD as a receptor of Bcl-

2 like proteins at the mitochondrial outer membrane is abolished. Figure adapted from Rapp et al.(2007). 
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Within BAD protein, the lipid binding domain LBD1 encompasses the C-terminal half of BH3 

helix and covers the short S
124

FKK
127

 region (Fig. 26A). Thus, due to its close proximity to the FKK 

motif it is feasible that the phosphorylation of Ser-124 may regulate hBAD function by modulating the 

interaction of hBAD with membrane lipids. However, the proposed regulation of hBAD function by 

phosphorylation of Ser-124 seems to be unique for the human BAD protein since most of the 

mammalian homologues (e.g. murine BAD) do not contain the complete FKK motif (Fig. 26B). On 

the other hand, the alignment of human and murine BAD reveals that both BAD proteins contain the 

conserved segment PRPKS
134/170

AG comprising either Ser-134 in human or Ser-170 in murine BAD 

(Fig. 26B). Ser-170 has previously been identified as a BAD phosphorylation site in murine BAD 

(Dramsi et al. 2002). The recent availability of the phosphospecific antibodies against phosphoserine 

134/170 allowed the search for potential kinases that can phosphorylate Ser-134. Although the 

consensus sequence RXXS makes Akt/PKB probable as a potential phosphorylating kinase the two 

proline residues present in the motif PRPKSAG render this possibility unlikely. Indeed, co-expression 

of hBAD with Akt/PKB did not result in significant phosphorylation of Ser-134. Instead, as shown in 

Figs. 28A and 29 we identified PAK1 and RAF as the most potent hBAD serine 134-phosphorylating 

kinases under both, in vivo and in vitro conditions. Concerning PAK1, one should take into 

consideration that this kinase was described to phosphorylate BAD in an indirect manner targeting 

RAF as downstream effector kinase (Jin et al. 2005).  

4.6. BAD Contributes to RAF-Mediated Proliferation and Cooperates with B-

RAF-V600E in Cancer Signaling 

Unexpectedly, our data display that co-expression of RAF kinases and PAK1 with wild type BAD 

strongly increases cell proliferation whereas BAD-S134A mutant abolishes this effect (Fig. 31). As 

generally accepted the Ras-RAF-MEK-ERK pathway regulates cellular survival, differentiation and 

proliferation (Peyssonnaux and Eychene 2001; Rajalingam et al. 2007; Schreck and Rapp 2006; 

Wellbrock et al. 2004). Enhanced activation of this cascade, often caused through activating mutations 

in the composite proteins, is found in many tumors (Brose et al. 2002; Cohen et al. 2002). In human 

cancer, mutated RAF (mainly B-RAF) was identified in 60% of melanomas (Brose et al. 2002) and 

with lower incidence in papillary thyroid cancers (Cohen et al. 2003), colorectal carcinomas (Brose et 

al. 2002; Davies et al. 2002; Rajagopalan et al. 2002), and lung cancers (Brose et al. 2002). Ras 

mutations were found in about 15-30% of human cancers overall (Bos 1989; Brose et al. 2002; Pavey 

et al. 2004). Activating Ras and B-RAF mutations typically show mutual exclusivity in tumors (Brose 

et al. 2002; Davies et al. 2002; Gorden et al. 2003). Notably, although either mutated Ras or B-RAF is 

required for tumor development it was demonstrated that both mutations do not result in similar 

downstream effects (Cragg et al. 2008; Solit et al. 2006). In this work, we disclose an additional 

parameter that is apparently involved in tumor progression. In this regard, we demonstrate that the 

phosphorylation of hBAD serine 134 is increased in cell lines with elevated RAF activity but not in 

cells harboring a high Ras or Akt/PKB activity (Figs. 32A and 37). Additionally, we found that in 
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melanoma cells the phosphorylation of this site is preferentially realized through the RAF-MEK-ERK 

cascade (Fig. 32C) although RAF kinases are potentially able to phosphorylate this site directly (Fig. 

28C). This result underlines the former observation that mutation of B-RAF leads to an exquisite 

dependency on MEK activity (Cragg et al. 2008; Solit et al. 2006) where the authors demonstrated 

that B-RAF mutant tumor cells are considerably more sensitive to MEK inhibition than either Ras 

mutant or B-RAF/Ras WT cells. These studies showed that only in B-RAF mutant cells MEK 

inhibition caused potent inhibition of proliferation (Cragg et al. 2008; Solit et al. 2006). The increased 

sensitivity to MEK inhibitors of B-RAF mutant cells was observed to be based at least in part on a 

different regulation of Bcl-2 proteins in these cell lines (Cragg et al. 2008). The aberrant regulation of 

Bcl-2 proteins in B-RAF mutant tumor cells may be realized by a specific mitochondrial localization 

of B-RAF-V600E compared to wild type B-RAF as recently reported (Lee et al. 2010). Concerning 

BAD phosphorylation, Eisenmann et al. (2003) demonstrated that the enhanced sensitivity to MEK 

inhibition is based on a melanoma-specific MAPK-mediated survival signaling. In normal 

melanocytes BAD was shown to be phosphorylated at serines 75, 99 and 118, leading to insensitivity 

to MEK inhibition (Eisenmann et al. 2003). In contrast, in B-RAF mutant melanoma cells, BAD was 

only phosphorylated at serine 75. MEK inhibition resulted in dephosphorylation of this site and 

induction of apoptosis (Eisenmann et al. 2003). Another study linked resistance to anoikis in 

melanoma cells to phosphorylation of BAD serine 75 (Boisvert-Adamo and Aplin 2008). Accordingly, 

the MAPK dependent phosphorylation of BAD serine 75 seems to represent an important mechanism 

to escape from apoptosis, especially in melanoma cells. However, all former studies considered BAD 

to be only an inducer of apoptosis that is inactivated through phosphorylation, especially at serine 75. 

We demonstrate here for the first time that phosphorylation of serine 134 of hBAD is required for 

efficient proliferation in B-RAF-V600E containing tumor cells (Figs. 33 and 34). Serine 170 of murine 

BAD that corresponds to serine 134 of human BAD was previously connected to cell proliferation 

(Dramsi et al. 2002). However, one has to consider that the properties of murine BAD may differ from 

human BAD due to a large N-terminal extension. Additionally, in Dramsi et al. (2002) 

phosphorylation of serine 170 was mimicked by mutation of this residue to aspartic acid. Notably, in 

this study the kinases responsible for serine 134 phosphorylation as well as an involvement of this 

regulatory site in naturally occurring tumor cells has not been addressed. Here we disclose that hBAD 

serine 134 is phosphorylated in a RAF-dependent manner and that hBAD cooperates with RAF in 

promoting proliferation and therefore may play an active role during tumor development. The 

observation that MEK inhibition leads to a decrease in BAD serine 134 phosphorylation but to an 

increase in the amount of total BAD protein underlines the dual role of BAD. Under survival 

conditions, BAD is phosphorylated at serine 134 and promotes proliferation in cells with elevated 

RAF activity. On the other hand, when entering apoptotic conditions, dephosphorylated BAD might 

accumulate within the cell leading to complex formation with Bcl-2/Bcl-XL and induction of 
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apoptosis. Collectively, BAD-induced apoptosis and proliferation seem to be regulated through 

interplay between the phosphorylation sites serine 75, 118 and 134.  

4.7.  Concluding Remarks and Future Perspective 

Generally, BH3-only proteins are proposed to function as sentinels of the cellular health status. 

Data presented in this work suggest that interplay between the RAF and the Akt/PKB pathway takes 

place and that BAD functions as a node of these two signaling pathways. Additionally, we identified 

that hBAD is phosphorylated in vivo at several sites and enclosed that RAF kinases are directly 

involved in this process integrating mitogenic survival signals into the apoptotic death machinery. The 

C-terminal part of hBAD plays a more important role than appreciated so far. We show here that 

phosphorylation of serines 124 and 134 at the C-terminal part of hBAD participates actively in the 

regulation of apoptosis. Furthermore, our results suggest a new mode of function of hBAD: In lipid 

environment, phosphorylation of the BH3 domain does not necessarily lead to inactivation of hBAD 

function but rather activates hBAD's pore-forming activity. Although we made the important 

observation that phosphorylation of hBAD at serine 134 controls proliferation in B-RAF-V600E 

containing tumor cells, a lot critical questions remain. At present, elucidation of the mechanisms 

underlying involvement of hBAD in cancer signaling is a high priority. Single nucleotide 

polymorphism (SNP) databases could provide a connection between aberrant hBAD phosphorylation 

and cancer development.  

Under non-apoptotic conditions, pore-formation seems to be a mode of action of BAD. However, 

whether hBAD pores are significant regulators of cell fate is not elucidated yet. Does pore-formation 

play a role during cancer progression? Notably, results presented here show that the pore-forming 

(phosphorylated) BH3 domain of BAD has no binding affinity to mitochondrial membranes, 

indicating that BAD channels may be located at membranes other than mitochondrial. Indeed, a high 

proportion of BAD was found to localize to the cholesterol-rich microdomains (rafts) of the plasma 

membrane (Ayllon et al. 2002; Fleischer et al. 2004; Garcia et al. 2003; Hekman et al. 2006). Rafts 

play an important role for the interactions of various signaling molecules (Hekman et al. 2002; Simons 

and Toomre 2000). Several signaling associated proteins including RAF have been found to be 

attached to the raft microdomains. Importantly, we demonstrated that phosphorylation of the RAF 

target site serine 118 is a prerequisite for formation of open pores. Thus, it is feasible that, in rafts of 

the plasma membrane, hBAD pores and RAF cooperate in promoting proliferation. On the other hand, 

a proportion of endogenous and exogenous B-RAF-V600E, but not wild-type B-RAF, was detected in 

the mitochondrial fraction indicating that survival signaling mediated by B-RAF-V600E might take 

place in part at the mitochondrial level (Lee et al. 2010). Therefore, it is of prime importance to 

examine the location of hBAD within cancer cells, e.g. by use of cell fractionation or microscopy. 

Additionally, it remains questionable whether hBAD pores conduct ions or metabolites in vivo. To 

resolve this question, patch clamp measurements or specific staining methods should be applied.  
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What could be the molecular mechanism of BAD/RAF-induced proliferation? Does interplay 

between BAD and B-RAF-V600E influence RAF homo- or heterodimerization resulting in enhanced 

activity of mitogenic signaling and cell proliferation? In our view, another issue that still needs to be 

resolved is the identification of further interaction partners of BAD. Does phosphorylation of specific 

sites lead to association of distinct proteins that direct the cell to apoptosis or proliferation? Do cancer 

cells with elevated RAF signaling offer a specific set of BAD interaction partners? Mass spectrometry 

analyses might decipher these questions.        

In contrast to the C-terminus, we showed that the hBAD N-terminal phosphorylation sites play 

minor role during apoptosis control. Therefore, it would be of interest to further investigate the 

function and regulation of these N-terminally located phosphorylation sites. BAD has been shown to 

be involved in various non-apoptotic processes, such as glucose metabolism and the regulation of 

autophagy (Danial et al. 2003; Maiuri et al. 2007). Thus, it would be reasonable to examine whether 

overexpression of serine to alanine or serine to glutamate mutants of the hBAD N-terminal 

phosphorylation sites affect these mechanisms. To identify kinases that contribute to the 

phosphorylation of these sites, a kinase-probability-software could be applied. Following co-

expression of BAD with the putative kinases, the degree of phosphorylation should be analyzed via 

phosphospecific antibodies. Additionally, hBAD and the kinases could be co-expressed in the 

presence of specific kinase inhibitors to exclude the influence of endogenous kinases. Lipid bilayer 

(black lipid) experiments would provide more insight into the functional importance of all identified 

phosphorylation sites for pore-formation; therefore, purified serine to alanine mutants of hBAD could 

be used. 
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6. Appendix  

6.1.  Abbreviations 

AIF    Apoptosis inducing factor 

Akt/PKB   Acutely transforming retrovirus in rodent T cell lymphoma/ 

    Protein kinase B 

Apaf-1    Apoptotic protease activating factor-1 

APS     Ammonium peroxydisulfate  

ATP     Adenosine-5'-triphosphate  

BAD    Bcl-2 associated death promoter Bcl-2 antagonist of cell death 

Bak     Bcl-2 homologous antagonist/killer 

Bax     Bcl-2–associated X protein 

Bcl-2    B-cell lymphoma 2 

Bcl-XL    B-cell leukemia XL 

BH    Bcl-2 homology domain 

Bid    Bcl-2 interacting domain 

Bik     Bcl-2-interacting killer 

Bmf     Bcl-2-modifying factor 

Bok     Bcl-2-related ovarian killer 

bp     Base pairs  

BSA     Bovine serum albumin  

CD    Circular dicroism 

cDNA     Complementary DNA  

CDS    Coding sequence 

C-terminal    Carboxy-terminal  

CytC    Cytochrome C 

ca.     Circa  

cAMP     Cyclic adenosine monophosphate  

Da     Dalton  

ddH2O     Double distilled water  

DiphPC   Diphytanoylphosphatidylcholine 

DMEM    Dulbecco‟s Modified Eagle Medium  

DMSO     Dimethyl sulfoxide  

DNA     Deoxyribonucleic acid  

dNTP     Deoxyribonucleoside triphosphate  

dsDNA    Double-stranded DNA  

DTT     Dithiothreitol 

E. coli     Escherichia coli  

ECL     Enhanced chemiluminescence  

EDTA     Ethylenediaminetetraacetic acid-disodium salt  

e. g.     exempli gratia  

EGF     Epidermal growth factor  

EGFR     Epidermal growth factor receptor  

EGTA     Ethylene glycol tetraacetic acid 

ER     Endoplasmic reticulum  

ERK     Extracellular signal-regulated protein kinase  

ESI     Electrospray ionization  

FASL    Ligand of apoptosis stimulating factor 

FCS     Fetal calf serum  

et al.     et alii 

GCWN    Graduate college Würzburg Nice 

GDP     Guanosine diphosphate  

GEF     Guanine nucleotide exchange factor  

GPCR     G-protein-coupled receptor  

Grb2     Growth-factor-receptor-binding protein 2  
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GRE     Glucocorticoid response element  

GST     Glutathione S-transferase  

GTP     Guanosine-5'-triphosphate  

h     Hours  

hBAD    Human BAD 

Hrk    Harakiri 

IAP    Inhibitor of apoptosis protein 

IB     Immunoblot  

IP     Immunoprecipitation  

JNK     c-Jun N-terminal kinases  

kb     Kilobase  

kDa     Kilodalton  

L     Liter   

LB     Luria Bertani   

LBD    Lipid binding domain 

KSR     Kinase suppressor of Ras  

MALDI    Matrix Assisted Laser Desorption Ionization  

MAPK     Mitogen-activated protein kinase  

MAP2K    MAPK kinase  

MAP3K    MAPK kinase kinase  

mBAD    Mouse BAD 

MEK    Mitogen-activated protein kinase/extracellular signal-regulated  

    kinase kinase  

MEKK     MAPK kinase kinase  

min     Minutes  

MOI     Multiplicity of infection  

MP1     MEK-partner 1  

mRNA     Messenger RNA  

MS     Mass spectrometry  

MW     Molecular weight  

NMR    Nuclear magnetic resonace 

N-terminal    Amino-terminal  

NGF     Nerve growth factor  

NP-40     Nonidet P-40  

OD    Optical density  

PAK     p21-activated kinases  

PARP     Poly-[ADP-ribose]-polymerase  

PBS     Phosphate buffered saline  

PI3K     Phosphatidylinositol 3-kinase  

PKA     Protein kinase A  

PKB     Protein kinase B  

PKC     Protein kinase C 

PUMA     p53-upregulated modulator of apoptosis  

pS (pSer)    Phosphoserine  

PA     Phosphatidic acid  

PCR     Polymerase chain reaction  

pfu     Plaque forming unit 

PMSF     Phenylmethylsulfonylfluorid  

PVDF     Polyvinylidene difluoride  

RAS    Rat sarcoma 

RAF    Rapidly growing fibrosarcoma/rat fibrosarcoma 

RNA     Ribonucleic acid  

Rpm     Rotations per minute  

RSK     Ribosomal S6 kinase  

RT     Room temperature  

RTK     Receptor tyrosine kinase  
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RU     Resonance unit  

SAPK     Stress activated protein kinase  

SDS     Sodium dodecyl sulfate  

SDS-PAGE    Sodium dodecyl sulfate polyacrylamide gel electrophoresis  

sec     Seconds  

Ser    serine 

SFB    Sonderforschungsbereich 

Shc    Src homology and collagen 

SOS     “Son of sevenless”  

SPR     Surface plasmon resonance  

Src    Rous sarcoma oncogene cellular homolog 

SUR-8     Suppressor of Ras-8  

TEMED    N,N,N',N'-Tetramethylethylenediamine  

TERT     Telomerase reverse transcriptase  

TFE    Trifluoroethanol 

TGF-β     Transforming growth factor-β  

Tm     Melting temperature  

TM    Transmembrane domain 

U     Unit  

UV-light    Ultraviolet light  

vs.     versus  

v/v     Volume/Volume  

v     Viral  

WT     Wild type  

w/v     Weight/Volume 
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