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Summary 

The Nuclear Factors of Activated T cells (NFATs) are critical transcription factors 

playing major roles in the control of the cell cycle, apoptosis and, probably, also 

cancerogenesis. Of all the four genuine NFATc family members, NFATc1 has the unique 

induction property which appears to be essential for T and B cell development, along 

with its considerable role in cytokine gene expression and function in non-lymphoid 

tissues and during organ development (such as in the development of muscle and heart 

cells). A number of studies have proved the potential role of NFATc1 protein in 

development of lymphomas and leukemias and provided evidence of differential 

expression of the same gene in different tumours (Suppression in classical Hodgkin 

lymphomas but overexpression in T-ALLs). Although the most commonly accepted 

pathway is the dephosphorylation of NFAT by calcineurin upon a rise in intracellular 

Ca++  leading to nuclear translocation followed by transcription of Il2 gene and related 

cytokines, it is quite possible that signaling mechanisms other than (or in addition to) 

calcineurin activation lead  to NFATc1 induction as well.   
 

One of the major isoforms of NFATc1, NFATc1/αA, is the short inducible factor, 

produced upon full T and B cell activation. Here we used two different conditional 

knock-out mice as our study model. Inactivation of the murine Nfatc1 gene in bone 

marrow (of Cd79a/mb-1-cre x Nfatc1flx/flx mice) and spleen (of Cd23-cre x Nfatc1flx/flx 

mice) resulted in complete ablation of NFATc1 expression in splenic B cells. Although 

no severe developmental defects were found for the generation of ‘conventional’ B2 

cells, NFATc1 inactivation in bone marrow B-cells led to a strong decrease in the 

peritoneal B1a cell population. 

 

In-vitro studies showed a clear-cut decrease in proliferation and an increase in Activation 

Induced Cell Death (AICD) of NFATc1-/- splenic B cells upon BCR stimulation. While 

NFATc1 appears to control directly the AICD of peripheral B cells, further studies 

revealed an effect of NFATc1 on proliferation by a sustained differentiation program 

controlling Ca++ flux and calcineurin activity which are needed to maintain transcription 
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and proliferation of primary B cells. Re-expression of NFATc1 at a low dose could 

protect cells against AICD, whereas at a higher dose it initiated AICD. These data 

suggest an important dual role of NFATc1 in controlling proliferation and apoptosis of 

peripheral B lymphocytes.  

 

NFATc1 ablation also impaired the Ig class switch to IgG3 by T cell-independent (TI) 

type II antigens and impaired IgG3+ plasmablast formation when studied in-vivo by NP-

Ficoll immunization or in-vitro using an in-vitro class-switch model. Contrary to the 

immunizations with TI-type II antigen, no significant differences were documented in Ig 

class switch upon immunization with NP-KLH, a T-cell dependent (TD) antigen. Taken 

together, the data indicate NFATc1/αA as a crucial player in the activation and function 

of splenic B cells upon BCR stimulation. Missing or incomplete NFATc1/αA induction 

appears to be one reason for the generation of B cell unresponsiveness, whereas 

uncontrolled NFATc1/αA expression could lead to unbalanced immune reactions and 

autoimmune diseases. 
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Zusammenfassung  
Die Transkriptionsfaktoren der NFAT-Proteinfamilie (Nuclear Factor of Activated T 

cells, NFATc1-4) sind an entscheidender Stelle in die Regulation des Zellzyklus, des 

programmierten Zelltodes und der Kanzerogenese involviert. NFATc1 nimmt innerhalb 

dieser Familie eine Sonderrolle ein, da dessen Aktivität auch durch eine stark 

induzierbare Expression gesteigert werden kann. Dies ist insbesondere für die 

Differenzierung und Funktion von T- und B-Lymphozyten von Bedeutung. Weiterhin ist 

NFATc1 für die Muskel- oder Herzentwicklung notwendig. Eine Reihe von Arbeiten 

belegen darüber hinaus eine Beteiligung dieses Transkriptionsfaktors an der Entstehung 

von Leukämien und Lymphomen. Während klassische Hodgkin-Lymphome allerdings 

durch eine abgeschaltete NFATc1-Expression gekennzeichnet sind, wird für T-ALL 

(Akute Lymphatische Leukämie der T-Zelle) eine Überexpression beschrieben. Die 

Kernlokalisation dieses Transkriptionsfaktors erfolgt nach Dephosphorylierung des 

zytoplasmatischen Proteins durch die Phosphatase Calcineurin. Deren 

Phosphataseaktivität wird durch einen Anstieg des intrazellulären Ca++-Spiegels aktiviert. 

Inwiefern die Calcineurin-abhängige Kerntranslokalisation den einzigen 

Aktivierungsmechanismus für NFAT-Faktoren darstellt, ist noch nicht eindeutig geklärt.   

 

Nach optimaler Aktivierung von T- bzw. B-Zellen ist die kurze, induzierbare Isoform 

NFATc1/αA das Hauptprodukt des Nfatc1-Gens. In dieser Arbeit wurden für die gezielte 

Deletion des Nfatc1-Gens in der Maus zwei verschiedene konditionelle Systeme 

verwandt. Hierzu wurden Tiere, die ein mit „flox“-Sequenzen versehenes drittes Exon 

des Nfatc1-Gens in der Keimbahn tragen, mit verschiedenen Cre-Rekombinase 

expremierenden Linien verkreuzt. Der Verlust funktionellen NFATc1-Proteins erfolgt 

dann früh in der B-Zell-Differenzierung im Knochenmark (Cd79a/mb-1-cre x Nfatc1flx/fl) 

bzw. in reifen B-Zellen (Cd23-cre x Nfatc1flx/flx). Während in keiner dieser Linien 

signifikante Defekte in der Differenzierung “konventioneller B2” B-Lymphozyten 

beobachtet wurden, hatte die frühe Inaktivierung des Nfatc1-Gens im Knochenmark den 

Verlust der B1a-Zell-Population im Peritoneum zur Folge.  
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In vitro zeigten Nfatc1-/--B-Zellen aus der Milz nach Aktivierung über den B-Zell-

Rezeptor deutliche Defekte in der Zellteilung bei einer gleichzeitigen Zunahme des 

aktivierungsinduzierten Zelltodes (AICD, activation induced cell death). Die 

vergleichende Transkriptomanalyse identifizierte wichtige Gene des Ca++/Calcineurin-

Signalweges als NFATc1-Zielgene und mitverantwortlich für die Proliferationsdefekte.   

In NFATc1-defizienten B-Zellen konnte Re-Expression von NFATc1 in geringer 

Konzentration den aktivierten Zelltod inhibieren, wohingegen hohe Konzentrationen 

diesen noch weiter förderten. Zusammengenommen lässt sich daher schließen, dass 

NFATc1 entscheidend an der Kontrolle von Proliferation und Zelltod peripherer B-

Lymphozyten beteiligt ist. 

 

Eine weitere wichtige Funktion kommt NFATc1 beim Klassenwechsel im 

Immunglobulin-Lokus zu. In den untersuchten Mäusen war die IgG3-Produktion nach 

Immunisierung mit NP-Ficoll (einem T-Zell-unabhängigen Antigen des Typs II) deutlich 

reduziert, wenn das Nfatc1-Gen in den B-Lymphozyten funktionslos war. Auch die 

Bildung  von IgG3+-Plasmablasten war gehemmt. Zu ähnlichen Ergebnissen führten 

Untersuchungen an isolierten B-Lymphozyten in einem in vitro Klassenwechsel-Modell. 

Demgegenüber zeigten Immunisierungen der Tiere mit NP-KLH (einem T-Zell-

abhängigen Antigen) keine signifikanten Abweichungen im Klassenwechsel.  

 

Zusammengefasst zeigen diese Daten die große Bedeutung des Transkriptionsfaktors 

NFATc1 für das Überleben und die Funktion peripherer B-Lymphozyten.   
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1. Introduction 

“It stands to the everlasting credit of science that by acting on the human mind it has 
overcome man's insecurity before himself and before nature.”  
                                                                                                              Albert Einstein  
 

 

The concept of humoral immunity dates back to the 1900s when the German scientist 

Paul Ehrlich postulated the “side chain theory”. He argued that cells have specific 

receptors with a unique structure that work like locks for the cell, and only substances 

identical to this structure could penetrate the cell (Schwartz 2004). As the research 

progressed, humoral immunity got its recognition as a major source of the body’s defense 

mechanism where a specialized type of white blood cell called the B cell, or B 

lymphocyte, could produce humoral substances, i.e. antibodies or the immunoglobulins 

upon stimulation.  

 

The primary purpose of B cell development is to introduce a diverse population of 

peripheral B cell pool in the immune system that is both self tolerant and reactive to 

invaders by the means of antibody production. The bone marrow is the primary site of B 

lymphopoiesis. This process is generally divided into four chronological phases:  

1) Early development in the bone marrow 

2) Maturation of transitional B cells during their transit to the periphery 

3) Entry into the mature B-cell compartments 

4) Antigen-dependent differentiation into plasma cells and/or memory B cells (Cain, 

Kondo et al. 2009) 

 

 

1.1 B-cell developmental stages  

B cells are originated from multipotent, self-renewing hematopoietic stem cells (HSC) in 

the fetal liver and bone marrow and transit through a series of maturation steps and 

developmental checkpoints before leaving the bone marrow for the spleen or other 

http://www.brainyquote.com/quotes/quotes/a/alberteins122793.html


 6

peripheral lymphoid tissues where they complete their development (Cain, Kondo et al. 

2009) 

 

 
 

Fig.1 B cell differentiation scheme (Kurosaki, Shinohara et al. 2010)  

 

Pre-pro-B cells, as the name indicates, are the precursor cells for Pro-B cells with 

unarranged germline configuration of IgH and IgL genes. The recombination activating   

genes (Rag1 and Rag2) are also found in low levels at this stage (Kurosaki, Shinohara et 

al. 2010).  

 

Pro-B cells are the first to initiate the DH-to-JH rearrangements on one Igh allele (Cain, 

Kondo et al. 2009) followed by VH→DHJH recombination with the help of cytokine IL-7, 

the transcription factors Pax5 and YY1 (a zinc-finger protein), and high levels of 

Rag1/Rag2 (Kurosaki, Shinohara et al. 2010).  If the initial VHDHJH rearrangements fail, 

a second VHDHJH rearrangement attempt takes place on the alternative allele to 

compensate the failure (Cain, Kondo et al. 2009). Increases in surface expression of 



 7

CD19 and HSA along with Igα/Igβ heterodimers in association with calnexin (Pro-BCR) 

mark the pro-B cell stage (Kurosaki, Shinohara et al. 2010). Both activation of B-lineage 

specific genes (such as BLNK, CD19 and Igα) and suppression of non-lineage genes 

(Notch1) by PAX5 are crucial for the lineage commitment at this stage (Wang and Clark 

2003). 

 

Pre-B cells express the surface pre-BCR which is composed of the transmembrane form 

of µHC (mIg µ) as a result of a successful VHDHJH rearrangement, the invariant surrogate 

light chain (comprising the VpreB and λ5 polypeptides) and Igα/Igβ heterodimers 

(Kawano, Yoshikawa et al. 2006) .   

 

Fig.2 Schematic diagram of the pre-BCR (Holmes, Pridans et al. 2008) 

 

The primary role of pre-BCR includes allelic exclusion at the heavy-chain locus and 

clonal expansion of the pre-B cells (Kurosaki, Shinohara et al. 2010) by providing 

constitutive survival and proliferation signals. As large pre-B cells, they show a 

coincident reduction in RAG1/2 expression before they become small pre-B cells 

followed by G1 cell cycle arrest (Cain, Kondo et al. 2009). Small pre-B cells express an 

elevated level of RAG1/2 to drive Vκ-to-Jκ light (L)-chain rearrangements in an IL-7 

independent manner, resulting in the cell surface expression of IgM BCR by the 

replacement of SLC with an Igκ or Igλ polypeptide (Wang and Clark 2003).  
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Immature B cells are typically IgM+ and IgD lo/- cells, capable of recognizing exogenous 

antigens, and reside in the immature compartment for 3.5 days on average before 

migrating into splenic red pulp via the bloodstream, where they are referred to as 

transitional B cells (Kurosaki, Shinohara et al. 2010). At this stage, immature B cells are 

subjected to receptor-mediated negative selection to ensure complete removal of the 

auroreactive B cells from the immune repertoire. The three mechanisms of 

immunological tolerance usually include (1) apoptotic deletion, in response to high-

avidity ligands (or without any ligand: “death by neglect”), (2) anergy, in response to 

low-avidity ligands, whereas (3) receptor-editing stimulates secondary immunoglobulin 

gene arrangement to substitute the autoreactive receptors (Wang and Clark 2003).  

 

Fig.3 Mechanisms of negative selection during B-cell development (Wang and Clark, 
2003)  
 
The final stages of B-cell maturation take place in the spleen, where transitional B cells, 

an intermediate form between immature and mature phenotypes, undergo selection in 

peripheral B-cell compartments (Cain, Kondo et al. 2009). Based on their surface-marker 

expressions, they can be sub-divided into populations, referred to as T1 (AA4+CD23-

sIgMhigh), T2 (AA4+CD23+sIgMhigh), and T3 (AA4+CD23+sIgMlow)  (Allman, Lindsley et 

al. 2001). T1 B cells are unable to carry out receptor editing on exposure to self-antigen 

ligands but endure apoptosis following BCR ligation. T2 B cells, on the other hand, 

proliferate and differentiate upon BCR-mediated signalling (Cain, Kondo et al. 2009). 

Studies have revealed the significance of factors regulating the development of T1 into 

T2 B cells and finally, to the mature B cell pool. These are tonic BCR signals, along with 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=An%20external%20file%20that%20holds%20a%20picture%2C%20illustration%2C%20etc.%0AObject%20name%20is%20imm0110-0411-f3.jpg%20%5BObject%20name%20is%20imm0110-0411-f3.jpg%5D&p=PMC3&id=1783068_imm0110-0411-f3.jpg
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BAFF-mediated survival signals (Kurosaki, Shinohara et al. 2010) and the 

microenvironment of the adult spleen (Loder, Mutschler et al. 1999).  

 

Mature B cells down-regulate AA4.1 and co-express IgM and IgD on their surface. Out 

of the 2 x 107 IgM+ B cells that develop in the mouse bone marrow at a regular basis, 

10% arrive at the spleen and only 1–3% enter the long-lived mature B cell compartment 

(Loder, Mutschler et al. 1999). Mature B cells exist in three major forms: B-1, follicular 

(FO), and marginal zone (MZ) B cells (Carey, Moffatt-Blue et al. 2008). 

 

Depending on the differential BCR signaling strength (signal strength hypothesis), either 

FO or MZ B cells develop. It is hypothesized that FO cells are a product of strong BCR 

signaling, whereas a weak signal results in MZ cells (Giles, Bender et al. 2009). BAFF-

receptor (BAFF-R) mediated signals are also crucial for the maturity of both FO and MZ 

B cells, along with the transcription factors c-Myb for FO B cells, Notch-2 and Aiolos for 

MZ B cells and Aiolos and c-Myb for B-1 cells (Yu, Quinn et al. 2008).  

 

 

1.2 B-cell subsets 

B cell subsets are composed of two sub-populations,  B-1 and B-2 cells, based on their 

anatomical location, surface marker expression, and function (Duber, Hafner et al. 2009). 

They are competent to undergo class switch recombination (CSR) to generate IgG, IgE 

and IgA antibody subclasses (Babbe, McMenamin et al. 2009). In principle, follicular 

(FO) and marginal zone (MZ) B cells are collectively referred to as B-2 B cells, whereas 

B-1 cells are again divided into B-1a (CD5+) and B-1b (CD5-) cells (Babbe, McMenamin 

et al. 2009).  

 

Unlike B2 cells, which develop in BM after birth, B1 cells are thought to be generated 

predominantly in the fetal liver (Carey, Moffatt-Blue et al. 2008) and maintained via self-

renewal (Hardy 2006).  The origin of B-1 cells has been interpreted by two different 

models: the lineage model and the selection model. According to the lineage model, B-1 

and B-2 B cells are derived from distinct progenitors, while the selection model suggests 
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the existence of one common progenitor with differences in antigen recognizing pattern 

(Montecino-Rodriguez and Dorshkind 2006).  

 

 
 

Fig.4 Models of B-1 B-cell development (Montecino-Rodriguez and Dorshkind 2006)  

 

FO B cells (IgMloIgDhiCD21+CD23+CD19+) reside in the follicles of spleen and lymph 

nodes and circulate through the body including the bone marrow (Babbe, McMenamin et 

al. 2009). MZ B cells (IgMhiIgDloCD21hiCD23lo/-CD19+), on the other hand, are restricted 

to the marginal zone (Carey, Moffatt-Blue et al. 2008). Although B-1a cells 

(IgMhiIgDloCD43+) are predominantly found in the peritoneal cavity and pleural body 

serosa (Babbe, McMenamin et al. 2009), a small population also exists in the spleen and 

in various parts of the intestine (Montecino-Rodriguez and Dorshkind 2006).  

 

B-1a cells are well-known for their capacity to produce “natural IgM antibodies” without 

antigen challenge, whereas B-1b cells can only manifest antibody production in response 

to antigenic stimulation (Duber, Hafner et al. 2009). Both B-1a and MZ B cells provide a 

rapid “first line of defense” against bacterial pathogens (Babbe, McMenamin et al. 2009). 

MZ B cells produce short-lived plasma cells in response to T cell-independent antigens 
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(TI), while FO B cells recognize T cell-dependent antigens (TD), participate in the 

germinal centre reaction (discussed later), and give rise to long-lived plasma cells and 

memory B cells (Yu, Quinn et al. 2008).  TI antigens are again of two types, TI type-1 

(TI-1) and TI type-2 (TI-2). TI-1 antigens are polyclonal B-cell activators and essentially 

mitogenic whereas TI-2 antigens are non-mitogenic and include pathogens like 

Haemophilus influenzae b, Streptococcus pneumoniae and Nisseria meningitides (Fairfax, 

Kallies et al. 2008). Activated B1 cells migrate to the spleen or gut, loose CD5 expression 

and become plasma cells upon up-regulation of Blimp1 expression (Shapiro-Shelef and 

Calame 2005).  

 

Fig.5 Participation of B cell subsets in immune response (Shapiro-Shelef and Calame 
2005).  
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1.3 B-cell receptor signaling 

The B-cell antigen receptor (BCR) was first identified in 1970 (Wang and Clark 2003). It 

is a multimeric complex composed of membrane immunoglobin (mIg) heavy and light 

chains and is non-covalently coupled with Igα/Igβ (CD79a/CD79b) heterodimers 

(Harwood and Batista 2008). The signal-transducing unit is located inside the 

cytoplasmic domains of the heterodimers which transduces signals followed by antigen 

binding to the mIg subunits (Patterson, Kraus et al. 2006).  

 

 

Fig.6 B-cell receptor-mediated signaling pathways (Wang and Clark 2003)  

 

Only the cytoplasmic tails of membrane IgG contain signaling capacity. Antigen 

recognition leading to receptor aggregation stimulates phosphorylation of the two ITAM 

tyrosines (Wang and Clark 2003) by Src-family kinases, such as Lyn, Fyn, Blk, or Lck 

(Dal Porto, Gauld et al. 2004). Upon BCR engagement, a supramolecular complex, also 

known as B cell signalosome, is formed by the coordinated assembly of a definite 

proximal BCR signaling molecules, such as Vav, Bruton’s tyrosine kinase (Btk), 

phosphoinositide 3-kinase (PI3K) and phospholipase C-γ2 (PLCγ2), along with the 

tyrosine-phosphorylated form of adaptor proteins, such as BLNK, SLP-65, or BASH.  

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=An%20external%20file%20that%20holds%20a%20picture%2C%20illustration%2C%20etc.%0AObject%20name%20is%20imm0110-0411-f1.jpg%20%5BObject%20name%20is%20imm0110-0411-f1.jpg%5D&p=PMC3&id=1783068_imm0110-0411-f1.jpg
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The signalosome initiates a multitude of cellular responses including regulation of gene 

expression, re-organization of the cytoskeleton, and BCR mediated antigen 

internalization (Patterson, Kraus et al. 2006).   

 

1.4 BCR engagement and B-cell activation  

After binding of exogenous antigen to the BCR, the antigen-dependent activation of 

naïve mature B cells takes place. At this stage, each B cell gets a chance to “decide” and 

choose between survival and death, finally leading to the formation of germinal centre 

(GC) B-cells, plasma cells or memory B-cells (Goodnow, Vinuesa et al. 2010). 

 

 1.4.1 Development of GC and role of Bcl-6  

Within 1-6 hours after antigen binding, B cells move to the T-cell zone of the peripheral 

lymphoid tissues in spleen, lymph nodes or Peyer’s patches (Goodnow, Vinuesa et al. 

2010) and get fully activated once CD40(on B-cells)-CD40L(on helper T-cells)-mediated 

interactions take place (Klein and Dalla-Favera 2008). Activated B cells also interact via 

CD86-CD28 and initiate T cell-mediated synthesis of pro-survival cytokines, which not 

only protect B cell from FasL-induced apoptosis but also support its proliferation by a 

weak proliferative signal, delivered by FasL (Goodnow, Vinuesa et al. 2010). These cells 

can either directly develop into antibody-secreting cells or mature into GC-precursor B 

cells which undergo vigorous proliferation for a few days to form GC (Klein and Dalla-

Favera 2008). Early GC B cells are IgD+ and as they enter the GC, a rapid down-

regulation of IgD, increase in Fas expression and in receptor specificity to PNA are 

observed (Carter and Myers 2008). Bcl-6, the master transcriptional regulator of GC B 

cells, plays a major role by (1) supporting the high proliferation rate of these B cells 

while inhibiting (2) pre-mature B cell activation as well as (3) differentiation into plasma 

cells and memory B cells (Klein and Dalla-Favera 2008). 

 

Within 3 days after antigen encounter, fully developed GCs are formed with anatomically 

distinct dark and light zones (Natkunam 2007). The dark zone contains densely packed 

proliferating B cells, known as centroblasts, which undergo somatic hypermutation 

(SHM), the basis for affinity maturation (Klein and Dalla-Favera 2008). SHM can also 
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occur outside GCs. This has been shown by a number of studies where GC formation was 

impaired; for example mice deficient for lymphotoxin-alpha (Matsumoto, Lo et al. 1996) 

or the TNF-receptor1 (TNFR1) fail to form GCs. However, they produce high affinity 

antibodies (Kim, Kim et al. 2006). The light zone, on the other hand, harbors 

differentiated B cells known as non-dividing centrocytes that undergo clonal selection 

based on antigen affinity. A subset of centrocytes goes through immunoglobulin class-

switch recombination (CSR) in the light zone followed by differentiation into plasma 

cells or memory B cells (Klein and Dalla-Favera 2008). 

 
 

Fig.7 Development of GC (Klein and Dalla-Favera 2008) 

 

In mice, the classical “dark-zone light-zone pattern” is less well-defined (Klein and 

Dalla-Favera 2008) and B cells are found to transit both intra-zonally and bi-directionally 

between the zones with well-observed capacity to proliferate (Natkunam 2007). It takes 

approximately two weeks for the GC to attain its maximal size before undergoing slow 

involution and disappearance over several weeks (Klein and Dalla-Favera 2008).  
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1.4.2 Post-GC events: Generation of memory B cells and plasma cells 

Generation of plasmablasts, long-lived plasma cells and long-lived memory B cells are 

crucial for the maintenance of serum concentration of specific antibodies. GC-derived 

memory B cells that are produced late in the immune response are supposed to be more 

efficient, exhibiting an increased affinity for antigen and contributing to the critical 

memory B-cell population (Tarlinton 2006). Co-existence of both short-lived and long-

lived memory B cells have also been documented (Dorner and Radbruch 2005). Plasma 

cells exit GC by down-regulating the chemokine receptors CXCR5 and CCR7 and 

migrate to different sites according to the expression of different chemokine receptors 

(Fairfax, Kallies et al. 2008). In order to receive survival signals, including CXCL12, IL-

6, BAFF and/or APRIL, and TNF it is important for plasmablasts to migrate to survival 

niches in the bone marrow within a week to become long-lived plasma cells. Both 

memory B cells and long-lived plasma cells express class switched, affinity matured 

antibodies. However, memory B cells do not secrete antibody but can respond quickly to 

a subsequent antigen challenge by differentiating into plasmablasts (Radbruch, 

Muehlinghaus et al. 2006). 

 

 

 
Fig.8 Generation of plasmablasts, and short-lived and long-lived plasma cells from 
memory B cells upon antigen stimulation and/or cytokine signaling (Radbruch, 
Muehlinghaus et al. 2006) 
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Plasma cell development depends on several factors, which includes IL-21 and the 

activation of PRDM1 encoding the transcription factor BLIMP1 (Radbruch, 

Muehlinghaus et al. 2006). Blimp1 represses PAX5 and Bcl6, allowing the expression of 

XBP1 and IgJ. In order to escape from apoptosis, plasma cells are also found to up-

regulate anti-apoptotic genes encoding Bcl2, Mcl and Bclw (Fairfax, Kallies et al. 2008).  

 

 

Fig.9 Genetic regulation of plasma cell differentiation (Fairfax, Kallies et al. 2008) 

 

On the basis of Blimp1 expression levels on their surface and at a given time, plasma 

cells can be subdivided into two sub-populations. Both populations, Blimp1-high 

(Blimp1hi), also known as the long-lived plasma cells, and Blimp1-intermediate 

(Blimp1int), the short-lived plasma cells, co-exist in the spleen of naïve adult mice In 

general, bone marrow plasma cells, which form the long-lived population, are Blimp1hi 

missing B cell markers, while plasma cells which are found in blood, are Blimp1int and 

retain the surface expression of B220, CD19, CD22 and MHCII (Fairfax, Kallies et al. 

2008).   

 

1.5 Nuclear Factor of Activated T-cells (NFAT)    

NFATs are critical transcription factors having major roles in the control of the cell cycle, 

apoptosis and, probably, carcinogenesis. NFAT was first identified as a nuclear protein in 

Jurkat T leukemia cells which binds to the human IL-2 promoter upon activation (Shaw, 

Utz et al. 1988). Not only immune cells, such as T cells, B cells, mast cells, basophils, 

macrophages and NK cells express NFATs (Rao, Luo et al. 1997), non-immune cells, 
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like skeletal muscle, osteoclasts, cardiac muscle cells and many others are also known to 

express NFATs (Hogan, Chen et al. 2003). 

 

 

1.5.1 NFAT family members 

The NFAT family of transcription factors comprises NFATc1 (also designated as 

NFAT2/NFATc), NFATc2(NFAT1/NFATp), NFATc3(NFAT4/NFATx), 

NFATc4(NFAT3) and NFAT5 (Rao, Luo et al. 1997; Serfling, Klein-Hessling et al. 

2006). These proteins share with the Rel/NF-kB factors the so-called Rel-like DNA 

binding domain which spans approximately 300 amino acids (aa) (Rao, Luo et al. 1997) .  

Except NFAT5 which is already found in Drosophila (Hogan, Chen et al. 2003) and 

regulated by osmotic stress (Ranjbar, Tsytsykova et al. 2006), all the other NFATc family 

members are regulated by the Ca++/calmodulin-dependent  phosphatase,  calcineurin 

(CN) (Serfling, Klein-Hessling et al. 2006).  

 

The Nfatc1 gene has two promoters, P1 and P2, which direct transcripts encoding either 

the N-terminal α peptide of 42 aa, starting at exon 1, or the β peptide of 29 aa, starting at 

exon 2, respectively. Due to alternative splicing and poly A site usage, C-terminal 

peptides of varying lengths are generated, which in turn get polyadenylated at one of the 

two polyadenylation sites (pA1 and pA2) to form three isoforms: Isoform A, isoform B 

or isoform C. Among the six isoforms (NFATc1/αA, αB, αC, and βA, βB and βC), 

NFATc1/αA, the short isoform, is strongly induced upon activation (Serfling, Chuvpilo et 

al. 2006).  
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Fig. 10 A model of Nfatc1 gene expression (Serfling, Chuvpilo et al. 2006)  

 

1.5.2 The calcium (Ca2+)/calcineurin/NFAT signaling pathway 

Ligation of cell surface receptors, such as immunoreceptors, activate  tyrosine protein 

kinases and  PLCγ, while G-protein-coupled receptors (GPCR) activate PLCβ. Activated  

PLC  hydrolyses  phosphatidylinositol-4,5-bisphosphate  (PIP2)  to  generate  

diacylglycerol  (DAG) and inositol-1,4,5-trisphosphate (InsP3)  that activate RasGRP, 

protein kinase C (PKC), Ras, MAP kinases (MAPK), PI-3 kinase (PI3K) etc. InsP3 binds 

to the InsP3R, located on the endoplasmic reticulum (ER), to release calcium from 

internal stores (Hogan, Chen et al. 2003). Store depletion leads to the opening of store-

operated calcium-release-activated calcium channels (CRAC, e.g. the ORAI/STIM 

complex) in the plasma membrane (Gachet and Ghysdael 2009) allowing constant “store-

operated” Ca++ entry (Hogan, Chen et al. 2003). Finally, calcium binds to calmodulin and 

activates calcineurin (Macian 2005), which in turn dephosphorylates multiple 

phosphoserines on NFAT  (Hogan, Chen et al. 2003) and exposes their nuclear-

localization signal (NLS) (Gachet and Ghysdael 2009). The two most common 

immunosuppressants used in clinics, namely CsA and FK506, can inhibit NFAT 

translocation by inhibiting calcineurin (CN) activity (Serfling, Klein-Hessling et al. 

2006). In the nucleus, NFAT factors participate in the regulation of numerous genes 

which are important for cell survival, proliferation and apoptosis.  
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Fig. 11 Schematic view of the regulation of NFAT activation (adapted from (Hogan, 
Chen et al. 2003) 
 

The shuffling of NFATs between cytoplasm and nucleus is known to be regulated by 

several protein kinases, such as casein kinase 1 (CK1), glycogen synthase kinase 3 

(GSK3) and dual-specificity tyrosine-phosphorylation regulated kinase (DYRK) 

(Serfling, Klein-Hessling et al. 2006).  

 

1.5.3 Role of NFATs  

It is well documented that the inactivation of the Nfatc1 gene can lead to early embryonic 

death.  This shows the importance of NFATc1s as an endocardial transcription factor 

(Zhou, Wu et al. 2005). Severe defects in heart and thymocyte development are also 

observed in these mice, in contrast to NFATc2-/- mice, in which normal heart and thymus 

development is not impaired (Hodge, Ranger et al. 1996; de la Pompa, Timmerman et al. 

1998; Ranger, Grusby et al. 1998). The short inducible isoform NFATc1/αA also plays 

an important role in osteoclast formation, while NFATc2 is necessary for their further 

differentiation (Asagiri, Sato et al. 2005). They are also known to play a significant role 

in TCR-mediated FasL induction (Latinis, Norian et al. 1997) and mice deficient for 

NFATc1 fail to resist rapid AICD, leading to cell death and impaired proliferation 

(Bhattacharyya, Deb et al. 2011). A number of cytokine genes (IL-2, IL-3, IL-4, IL-5, IL-

13, INF-γ, TNF-α, GM-CSF) as well as membrane receptors (CD40L and CTLA-4) are 

known to be NFAT targets (Kuklina and Shirshev 2001).   



 20

Aim of the project 
NFAT factors are well known for their major role in controlling the immune response, 

NFATc1 and NFATc2 being the most prominent players in lymphocyte activation. 

Induction of NFATc1 upon TCR stimulation in CD4+ T cells has been known for years. 

In this study we focused mainly on B-cell fate following BCR engagement and tried to 

address the following points using B cell stage-specific NFATc1 knockout mice: 

                             1)  Role of NFATc1 in B-cell development 

                             2)  Role of NFATc1 in B cell survival and proliferation 

                             3)  Role of NFATc1 in B cell function, such as in antibody production. 
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2. Materials and Methods 
 
2.1 Generation and maintenance of mice for the conditional inactivation of NFATc1 
in B cells 
 
A Cre-IRES-hCd5t expression cassette was inserted into exon 2 of a Cd23 BAC to make 

Cd23-cre transgenic mice (Kwon, Hutter et al. 2008). 

 

 
 

 

mb1-cre transgenic mice were created by inserting hCre into the mb-1 WT locus between 

exon 2 and 3 (Hobeika, Thiemann et al. 2006) 

 

 
 

Nfatc1flx mice were generated by K. Mark Ansel, M. Mueller and A. Rao (Harvard 

Medical School) by flanking Nfatc1 exon 3 with loxP sites. The cre lines mentioned 

above were crossed with Nfatc1flx mice and continued to breed in our mice facility until 

the generation of mb1-cre x Nfatc1flx/flx and Cd23-cre x Nfatc1flx/flx mice, respectively. 

Other knock-out mice (Pdcd1-/-, Tnfsf14-/-, Slp65-/-, Cd22-/-, OT-II) used in this study were 

kindly provided by our collaborative groups: Dr. M. Busslinger (Vienna), G. and P. 

Matthias (Basel), M. Reth (Freiburg), S. Scheu (Düsseldorf), L. Nitschke (Erlangen), H. 

Wiendl (Würzburg) and M.Lutz (Würzburg).  

All the mice are of C57BL/6 background.  

 

2.2 Genotyping of mice bearing Nfatc1-/- B cells 

Genotyping was done on 4 weeks old mice. The male and female pups were separated 

from their parents and kept in separate cages. The tip of the tail was cut using a scalpel 

and put in an eppendrof tube. 30 µl of proteinase K (Fermentas; #EO0491) was added per 
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1 ml genomic lysis buffer and 20 µl of the cocktail was added to each tail sample 

following overnight incubation at 56°C.  The next day 480µl of water was added to each 

sample and incubated for another 10 min at 95°C. Following centrifugation, 3 µl of DNA 

sample was used to run PCR using the following primer pairs: 

 

Detection of Cre gene 
                             for 5’-ACCTCTGATGAAGTCAGGAAGAAC-3’ 
                             rev 5’-GGAGATGTCCTTCACTCTGATTCT-3’ 
 
Detection of NFATc1 flx/flx allele 
                             for 5’-CCTATTTAAACACCTGGCTCCCTGCG-3’ 
                             rev 5’-CCATCTCTCTGACCAACAGAAGCCAG-3’ 
 
Detection of mb1 WT locus 
                             for 5’-CTGCGGGTAGAAGGGGGT-3’ 
                             rev 5’-CCTTGCGAGGTCAGGGAGCC-3’ 
 
 

Genomic lysis buffer: 
300mM     NaCl 
25mM       EDTA 
50mM       Tris (pH 8.0) 
0.2%         SDS 
 

 

2.3 Lymphocyte isolation, surface marker staining and cell sorting 

Age (6-8 weeks old) and sex matched animals were sacrificed and dissected to obtain 

peritoneal cells using PBS and glass pipettes followed by the removal of spleen and bone 

marrow (BM). Using a cell strainer (Hartenstein), single splenic cell populations were 

obtained and erythrocytes were lysed with TAC buffer (Roth). Naïve splenic B cell 

isolation was done using Miltenyì’s B cell isolation kit (#130-090-862) according to 

manufacturer’s instructions with a yield of 95-98% pure B cell population. BM cells were 

flushed out using a syringe and PBS.  

Cells were blocked with mouse Fc receptor specific mAb (BD, #553142) and 

stained with the following antibodies for flowcytometric analysis: CD22-APC (BD, 

#533145), IgG1-Bio (BD, #553952), IgG3-Bio (BD, #553401), CD138-PE (BD, 

#553714), CD19-Bio/FITC/PE (BD, #553784/557398/557399), B220-Bio/PE (BD, 
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#553085/553090), CD43-FITC (BD, #553270), BP1-PE (BD, #553735), CD24-Bio (BD, 

#555296), IgD-PE (Southern Biotech, #112009), IgM-FITC (BD, #553437), 

CD21/CD35-PE (BD, #552957), CD23-FITC (BD, #553138), CD5-PE (eBioscience, 

#12-0051-82), AA4.1-Bio (eBioscience, #13-5892-81), GL7-FITC (BD, #553666), PNA-

Bio (Vector laboratories, #B-1075), CD38-FITC (BD, #553714), Fas-PE (BD, #554258),  

Strptavidin APC (BD, #554067).  

 

In order to sort GC B cells and plasma cells, SRBC-immunized mice (200 µl i.p; Dunn 

Labortechnik GmbH, #IC100-0210-15) were sacrificed on day 10 and subjected to B cell 

purification. Purified B-cells were stained with B220-PE and GL7-FITC, marker for GC 

B cells, while to sort plasma cells, CD19 FITC-CD138 PE staining was done.  The 

following populations: B220+GL7+, B220+GL7- and CD19+CD138+, CD19+ CD138-,             

were sorted using FACSVantage (BD Biosciences) in lysis buffer containing 

dithiothreitol, BSA, 10% Triton, RNAsin, oligo(dT) primers, and distilled H2O(Roche).   

 

2.4 Cell culture, protein extraction and western blotting 

5x106 cells were cultured in 1 ml X-vivo 15 medium (BE04-418Q; Lonza) and stimulated 

by LPS (10 µg/ml; Sigma, #L5293), α-IgM (10 µg/ml; Jackson Lab., #115-006-020), α -

CD40 (2 µg/ml; R&D, #MAB440) or TPA (Sigma, #79346) and ionomycin (Invitrogen, 

#I24222) for different time periods. The cells were harvested and washed twice with cold 

PBS.  

 

PBS  
8 g         NaCl 
0.2 g      KCl 
1.44 g    Na2HPO4 
0.24 g    KH2PO4 
Dissolved in 800 ml ddH2O; adjust pH to 7.4 with HCl, add ddH2O to 1 Liter.  
 

Whole protein extract was prepared by incubation of cells on ice with a cocktail of RIPA 

and PMSF (Sigma) followed by centrifugation.  
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RIPA buffer  
150 mM       NaCl 
1.0%            NP-40 (Sigma) 
0.5%            sodium deoxycholate 
0.1%            SDS 
50 mM        Tris, pH 8.0  
  
 

Bradford Assay (BIORAD) was done to estimate the protein concentration. A minimum 

of 25-30 µg protein was loaded per sample per lane for the separation on SDS-PAGE 

gels. Nitrocellulose membranes (WHATMAN, #BA 85) were used for transfer of protein.  

Membranes were blocked using 4% non-fat dry milk for 45 min-1 hr. The membranes 

were incubated with primary antibodies over night at 4oC on a shaker. The following 

primary antibodies were used in this study: NFATc1 (7A6 mAb; BD, #556602), 

NFATc1/αA (IG-457 pAb; ImmunoGlobe), PLCγ2 (Sc-407 pAb; Santa Cruz). Secondary 

antibodies (α-mouse or α-rabbit) were used based on the source of primary antibodies. 

Signals were developed in dark room using Super SignalTM kit (Pierce Chemical 

Company, CA). To confirm equal loading, the filters were re-blotted with β-actin (AC-15 

mAb; Sigma, #A1978) or ERK (mAb; Santa Cruz, #Sc-154).  

 
 
10% Resolving gel (10 ml) 
H2O                                                               4.0 ml 
30% Polyacrylamide (Applichem)                3.3 ml 
1.5 M Tris (pH 8.8)                                       2.5 ml 
10% Ammonium persulfate (APS) (Sigma) 0.1 ml 
10% Sodiumdodecyl sulfate (SDS) (Roth)   0.1 ml  
TEMED (Sigma)                                           0.004 ml 
 

 

Stacking gel (3 ml) 

H2O                                                               2.1ml 
30% Polyacrylamide (Applichem)                0.5 ml 
1.5 M Tris (pH 6.8)                                       0.25 ml 
10% Ammonium persulfate (APS) (Sigma) 0.3 ml 
10% Sodiumdodecyl sulfate (SDS) (Roth)   0.3 ml  
TEMED (Sigma)                                           0.003 ml 

1.5 M Tris (Roth)  
90.825g    Tris 
300ml       ddH2O 
pH adjusted to 6.8 and 8.8 with conc. 
Hcl 
ddH2O added to 1 Liter 
 

10% SDS 
100g     SDS 
900ml   ddH2O 
Heat to 68°C to assist dissolution  
pH adjusted to 7.2 with conc. Hcl 
ddH2O added to 1 Liter  
 

PMSF 
0.1 M in 100 % Ethanol  
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Running buffer (1X TG Buffer)   

10x TG buffer                                  
30.2g           Tris                                  
188g            Glycine  (Roth)               
100ml         10% SDS 
ddH2O added to 1 Liter  
 

1 x transfer buffer (store at 4° C) 
72.5g               Glycine  
14.5g               Tris  
1 Liter              methanol  
ddH2O added to 5 Liter and chill to 4° C  
 

Wash buffer (TBS Tween) 
2.42g             Tris 
8g                  NaCl 
ddH2O added to 1 Liter and add 450µl of Tween.  
  

 
2.5 Proliferation and apoptosis assay 

Purified splenic B cells were incubated with CFSE (Invitrogen, #C34554) at 37oC for 3 

min. The cells were then washed with RPMI 1640 (Invitrogen), re-suspended in X-vivo 

15 medium (BioWhittaker) and cultured in a 96-well plate with various stimuli including 

LPS (10 µg/ml), α-IgM (10 µg/ml) or α-CD40 (2 µg/ml) for 72hr at 37oC. To measure the 

effect of Ca2+ and Cn inhibitors, cells were co-cultured with α-IgM (10 µg/ml) and CaCl2 

(10 mM/ml), and/or CsA (100 ng/ml, Sigma; #C3662) and NCI3 (1 µM and 10 µM/ml). 

The NFAT inhibitor 11R-Vivit (Calbiochem, #480401), dissolved in DMSO (Sigma), 

was also added to the cell culture along with α-IgM (10 µg/ml).  T cells from WT and 

OT-II mice were isolated using a CD4+ T cell isolation kit (Miltenyi; #130-090-860) and 

co-cultured (B: T= 50,000:50,000) with WT or KO B cells with or without Ova protein 

(75 µg/ml; Sigma).   

 

For apoptosis assay, the cells were cultured under the same conditions  for 48 hr and 

stained with Annexin V (BD, #550475) for 15 min at RT followed by staining with 

1x TG buffer 
100ml         10X TG Buffer 
ddH2O added to 1 Liter  
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propidium iodide (PI, 125µg/ml, Sigma). FACS Calibur (BD) was used to measure CFSE 

dilution and Annexin V positive cells.  

 

 
10x Binding buffer  
0.1 M            HEPES 
1.4 M            NaCl  
25mM           CaCl2 
 

 

2.6 Calcium flux: Measurement of intracellular Ca2+       

Freshly prepared splenic B cells (1x107) were re-suspended in 1400µl RPMI 1640 

containing 5% FCS. 14µl Indo-Mix was mixed with the cell suspension and incubated 

for 25 min on a shaker at 30oC. Then, 1400µl RPMI medium containing 10% FCS was 

added to the solution and re-incubated for another 10 min at 37oC. The cells were washed 

twice with 2 ml Krebs-Ringer (Molecular Probes) solution and re-suspended in 800µl 

Krebs-Ringer solution. Prior to measurement, the tubes were pre-warmed using a 37oC 

water-bath and a baseline measurement of 50 second was recorded per sample. Further 2 

min recordings were done after the addition of α-IgM (10 µg/ml) followed by Ca++ (1 

mM). LSR II (BD Biosciences) was used for data acquisition and 5 µl ionomycin was 

used to check proper loading.  

 
 
 
Indo-Mix 
1 Stubb   Indo-1-AM (Molecular Probes; #I1223) 
458µl      DMSO 
37µl        20% Pluronic F-127 (Molecular Probes, #P3000MP) 
 

 

 

 

 

0.5 M HEPES             5 M NaCl                       0.5 M CaCl2 
11.915g HEPES          292.2 g NaCl                   7.351g CaCl2 
100ml    ddH2O           800 ml ddH2O               100ml ddH2O  
pH adjusted to 7.4       ddH2O added to 1 Liter  
 

Krebs Ringer 
10mM  HEPES (pH 7.0) 
140mM NaCl 
4mM     KCL 
1mM     MgCl2 
1mM     CaCl2 
10mM   Glucose 
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2.7 Gene expression profiling 

The GeneChip® Mouse Genome 430 2.0 Array from Affymetrix (Affymetrix, Santa 

Clara, CA, USA), which supports identification of over 39,000 transcripts on a single 

array, was used to study the gene expression profiling of splenic B cells from wild type 

and NFATc1-deficient mice. Splenic B cells were incubated with or without α-IgM (10 

µg/ml) for 3, 8 or 16 h and subjected to the following steps: 

                                                           
The experiments were performed in triplicates and data analysis was done by the Gene 

Chip Operating Software (GCOS). Genes with at least two-fold difference in expression 

profiling, as determined by overlap analysis using Access, were further analyzed with 

Gene set enrichment analysis (GSEA) which is a  computational method for interpreting 

gene expression data.-These experimentes were performed in collaboration with Dr. Ellen 

Leich in Prof. Dr. A. Rosenwald’s Laboratory at the Institute of Pathology.                                                      

 
 

2.8 Nucleofection of primary B cells 

Either empty vector or caNFATc1/αA of varying concentrations was used to transfect 

isolated KO B cells using Mouse B Cell Nucleofector Kit (Lonza, #VPA-1010) as per 

instruction. Briefly, isolated murine splenic B cells were stimulated for 24 hours in pre-

Nucleofection medium supplemented with 10 µg/ml α-IgM. 1 ml of plating medium was 

added per well in a 12-well plate and allowed to get pre-incubated. 3x106 cells/100 µl 

Nucleofector Solution was then combined with 2 µg DNA, transferred into certified 
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cuvette and subjected to Nucleofector program Z-001 (NuFe II).  Approximately 500 µl 

of the pre-equilibrated plating medium was added to the cuvette and immediately 

transferred into the 12-well plate using the pipettes supplied. The cells were then 

stimulated with α-IgM and LPS and incubated at 37°C /5% CO2 for additional 24 hrs.  

 

2.9 RT-PCR and qRT-PCR 

            Stimulated or un-stimulated B cells were harvested after specified time periods, and RNA 

isolation was done using Trizol reagent (Invitrogen). In brief, cells were suspended into 1 

ml Trizol and stored at -70°C. Prior to RNA extraction, the tubes were allowed to thaw at 

RT and 200 µl of chloroform (Roth) was added to the samples. The tubes were vortex for 

10 s following 5 min incubation at RT and then subjected to centrifugation in the cold 

room at the maximum speed for 10 min. The aqueous upper phase was then carefully 

transferred into a new autoclaved (RNase free) eppendrof tube and 500 µl of isopropanol 

(Roth) was added. After a short vortex, the cells were incubated at RT for 10 min and 

centrifuged at the maximum speed for 30 min. The supernatant was removed and the 

pellet was washed with 1 ml of 75% Ethanol (Roth) and air-dried before dissolving in 10-

12 µl of DEPC (Roth) water. The newly extracted RNA was mixed with 1 µl of 6x 

loading dye and run on 1% agarose gel to check for any degradation.    

  

1% agarose gel 

1g           Agarose (Applichem) 
100 ml   TAE Buffer (1x) 
10 µl      Ethidium bromide (Roth)  
 
 

         

1 µg of total RNA was used to synthesize cDNA using the iScript™ cDNA Synthesis Kit 

(BIO-RAD). cDNA preparation from sorted cells was done using Titan One Tube RT-

PCR System (Roche Diagnostics, Mannheim,Germany). 

PCR Master Mix (2x; #K0171) and Gene Ruler™ 100bp ladder were purchased from 

MBI Fermentas. FastStart Universal Probe master (ROX, Roche; #04913949001) was 

used for qRT-PCR studies. 

50x TAE buffer  
242 g                       Tris base 
57.1 ml                    Acetic Acid 
100ml                      0.5 M EDTA  
ddH2O added to 1 Liter  
 

6x DNA loading dye  
3ml glycerol (30%)  
25mg bromophenol blue (Roth) 
ddH2O added to 10 ml  
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RT-PCR Primers          

Cd22:        for  5’-TCCCAGACTTTCCCCTCCCTA-3’ 
      rev  5’ -CAACCACTTTTACCCACTGA-3’ 
Nfatc2:     for  5’-GGGTTCGGTGAGTGACAGTT-3’ 
                 rev 5’-CTCCTTGGCTGTTTGGGATA-3’ 
Nfatc3:     for  5’- CACGCCGATGACTACTGCAAACTG-3’ 
                 rev  5’-CCTTGGAGCTGAAATGATGGTGAC-3’  
Mcl-1:      for 5’-TCCGGAAACTGGACATTAAA-3’ 
                 rev 5’-AGTCCCCTATTGACATCACA-3’ 
β-actin:     for  5′-CCCAACTTGATGTATGAAGG-3′ 
                 rev  5′-TTGTGTAAGGTAAGGTGTGC-3′ 

  

qRT-PCR TaqMan Assay (Applied Biosystems) 

Universal Probe Library, Probe #15 (Roche) 
Fasl:          Mm00438864_m1 
Pdcd1:       Mm01285676_m1 
Rcan1:       Mm00627762_m1 
Spp1:         Mm00436767_m1 

   Tnfsf14:     Mm00444567_m1 
GAPDH:   VIC-MGB 

 

2.10 Immunization and enzyme-linked immunosorbent assay (ELISA) 

Age and sex-matched WT and KO mice (4 in each group) were immunized with NP-

Ficoll (10 µg/mouse in PBS; Bioresearch Technologies, #F-1300-10-27), NP-KLH (100 

µg/mouse, Alum precipitated; Bioresearch Technologies, #N-5060-5) or SRBC by 

intraperitoneal injection (i.p.). The immunized mice were re-challenged either after 21 

days or 4 months, except for SRBC. All mice were bled prior to immunization, or as 

specified, and serum samples were collected. They were sacrificed on different time 

points and flowcytometric analysis was performed to study the generation of B-cell 

populations before or after immunization. 

 

For ELISA based studies, maxisorb plates (Nunc), coated with NP (16)-BSA or NP (4)-

BSA (10 µg/ml; Bioresearch Technologies), were used to detect the NP-specific antibody 
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level, whereas polysorb plates (Nunc) coated with isotype specific Abs were used to 

detect total Ig titers from non-immunized mice. Samples were serially diluted and a pool 

of sera from day 7 and day 21 was used as a standard for NP-specific antibody detection. 

Monoclonal isotype Abs (Southern Biotech; IgM, #1021-01; IgG1, #1035-01; IgG2a, 

#1080-04; IgG2b, #109-04; IgG3, #1041-03) were used for total Ig measurement in naïve 

mice.  

 

The plates were coated with coating solution and kept at 4°C overnight. Followed by 2hr 

incubation at 37°C with blocking solution and 3 times washing with wash buffer, samples 

were added to the plates. A serial dilution of sera was done using dilution buffer and 

incubated for another 2hr at 37°C. Secondary antibodies were then added to the plates 

and left overnight at 4°C. Next day, substrate was added to each plate and allowed to 

develop colour. The plates were read using a plate reader (Molecular Devices) and 

quantifications were done against the standard curve. 

 

Coating solution                 NP-BSA in PBS; working conc. 10µg/ml 
Blocking solution               1% BSA (Sigma) in PBS + 0.05% sodium azide (Sigma) 
Dilution buffer                   0.1% BSA in PBS + 0.05% sodium azide  
Wash buffer                       PBS+0.05% Tween 20 
Substrate                            p-Nitrophenylphosphate (Sigma)/1 ml diethanolamine buffer 
             
 
 
Diethanolamine buffer (pH 9.8) 
 
0.1g                   MgCl2 
0.2g                   NaAzide 
97ml                  Diethanolamine 
ddH2O added to 1 Liter  
 
 

2.11 In-vitro generation of GC B cells and plasma cells followed by class-switching 
assays  
 
Induction of GC B cells were achieved by stimulating splenocytes with anti-CD3 (BD) 

pre-coated plates for 2 days. FACS analysis was done after staining with CD19-PE, GL7-

FITC and PNA-Bio (Vector Laboratories).  
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LPS (10 µg/ml) stimulated splenocytes were harvested after 3 days and stained with 

CD19, CD138 and IgG1 and/or IgG3 for the detection of in-vitro plasma cell formation 

and class switched antibodies using flowcytometry. The same study was also done by 

ELISAs in which 2.5 x 105 splenic cells/ ml in X-vivo medium were stimulated with or 

without LPS (10 µg/ml) for 6 days and supernatants were used to perform ELISA using 

unlabelled goat anti-mouse IgM (Southern Biotech, # 1220-01) and IgG3 (Southern 

Biotech, #1100-01) coated plates. Mouse IgM (0.1 mg/ml, Southern Biotech; #0101-01) 

and mouse IgG3 (0.1 mg/ml, Southern Biotech; #0105-01) were used as standards along 

with alkaline phosphatase coupled isotype specific Abs for detection.   

 

In order to identify circular transcripts, murine splenocytes were cultured at a 

concentration of 1 x 106 cells/ ml in X-vivo medium and incubated with or without LPS 

(10 µg/ml) and LPS (10 µg/ml) + IL-4 (10ng/ml; PeproTech; #315-05) for 2 days at 

37°C.  Followed by RNA extraction and c-DNA synthesis, PCR reactions were carried 

out with the following primers as described by Kinoshita et al (Kinoshita, Harigai et al. 

2001).  

Ig3F: 5'-TGGGCAAGTGGATCTGAACA-3' 
Ig1F: 5'-GGCCCTTCCAGATCTTTGAG-3' 
CuR:  5'-AATGGTGCTGGGCAGGAAGT-3' 
 
 

2.12 Intracellular IL-10 staining 

Splenocytes were stimulated in the absence or presence of LPS for 4 days. Then, they 

were treated with T+I and Golgiplug (BD) for the final 6 h. The cells were harvested, 

washed and blocked with mouse Fc receptor specific mAb (BD) and stained with CD19 

and CD138 antibodies (BD). Cells were fixed and permeabilized (eBioscience fixing and 

permeablizing kit) and washed followed by staining with anti-mouse IL-10 APC Ab 

(eBioscience). Prior to FACS measurement, they were re-washed and re-suspended in 

FACS buffer.  
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2.13 Statistical analysis 

Error bars in figures represent ±SEM (standard error of mean). Unpaired t-test was 

performed to evaluate the statistical significance of the data set. A value of p < 

0.001(***) is considered highly significant, while p<0.05(*) as well as p<0.005(**) are 

known to be statistically significant. The statistical analysis was done using GraphPad 

Prism.  

 
Instruments/accessories 
  

Balance machine                     Chyo  
Centrifuge                               Eppendorf 
Cold centrifuge                       Heraeus 

Culture plates                          Greiner 
Cuvettes                                  Brand 
Gel documentation system      Herolab  
Heating blocks                        Hartenstein 
Light microscope                    Olympus, Leica 
Microcentrifuge                      Eppendorf  
Multichannel pipette               Eppendorf 
Nucleofector II                        Amaxa 
Pipette tips                               Eppendorf  
PCR machine                           Primus 96  
pH meter                                  WTW  
Real-Time RCR machine        ABI Prism 7000 
SDS-PAGE apparatus              Hoefer 

Spectrophotometer                   Pharmacia 
Vortexer                                   Eppendorf  
Waterbath                                 Heidolph  
Western blot apparatus             Hoefer  

Whatman filter paper               Hartenstein 
X-ray film                                 Kodak 
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3. Results 

3.1 NFATc1/ααααA isoform is highly inducible upon BCR stimulation 

It is established that expression of NFATc1 is highly inducible in T cells upon 

stimulation with TPA/ionomycin (T/I) or anti-CD3+CD28. In order to characterize the 

induction of  NFATc1 in B cells, splenic B cells from 6-8 weeks old WT mice were 

stimulated by LPS or α-IgM (Fig. 3.1A) and α-CD40 or T/I (Fig. 3.1B) for 8, 24 and 48h. 

In-vitro stimulation with both α-IgM and T/I led to a stronger NFATc1 induction after 

24h, whereas LPS and α-CD40 appeared to be weak stimuli.  

 

Figure 3.1 Induction of NFATc1. Western blots of whole cell protein extracts showing 
induction of NFATc1 expression upon stimulation with LPS or α-IgM (A) and α-CD40 or T/I 
(B). For each (A) and (B) one typical blot out of three is represented. 
 

α-IgM mediated induction of short NFATc1 protein reacted upon stimulation with an 

antibody raised against the NFATc1-α peptide, a component of NFATc1/αA, which, 

however, failed to react with LPS-induced NFATc1 protein (Fig. 3.2).  

                          

Figure 3.2 Induction of NFATc1/ααααA upon BCR stimulation. Western blot of whole cell 
protein extract showing the induction of NFATc1/αA upon α-IgM stimulation using an antibody 
specific for the N-terminal α peptide of NFATc1/αA proteins. Figure shows one blot out of more 
than three experiments. 

A B 



 34

 
Antigen cross linking of BCR leads to activation of a number of adaptor proteins 

including SLP-65. Mice lacking SLP-65 in B cells, a key component of BCR transducer 

complex, fail to induce NFATc1 upon LPS or α-IgM stimulation, confirming the role of 

BCR signals in NFATc1 induction (Fig. 3.3).  

 

 

 

 

 

                                  

 

Figure 3.3 NFATc1 induction is mediated via BCR cross linking. Western blot showing 
abolished expression of NFATc1 in SLP65-/- B cells compared to WT. Figure represents one 
typical blot out of two experiments. 
 

3.2 Complete loss of NFATc1 in splenic B cells from mb1-Cre x Nfatc1flx/flx and Cd23-
Cre x Nfatc1flx/flx mice 
 
To study the role of NFATc1 in B cell physiology, we created B cell stage-specific KO 

mice as described in “Material and Methods”. BM specific KO (mb1-Cre x Nfatc1flx/flx) 

(Fig. 3.4A) and splenic B cell specific KO (Cd23-Cre x Nfatc1flx/flx) mice (Fig. 3.4B) had 

a complete loss of NFATc1 in splenic B cells, as detected by western blot analysis after 

stimulating splenic B cells with α-IgM.  

 
 
 
 
 
 
 
 
 
 
Figure 3.4 Complete ablation of NFATc1 upon inactivation of the Nfatc1 gene in 
bone marrow or spleen. Western blots showing complete loss of NFATc1 expression in B 
cells from mb1-Cre x Nfatc1flx/flx (A) and Cd23-Cre x Nfatc1flx/flx mice (B).  For (A) and (B), figure 
represents one typical blot out of more than three experiments. 

A B 
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3.3 NFATc1 is essential for peritoneal B1a cell generation when deleted in BM B 
cells 
 
To investigate the role of NFATc1 in B cell development, next we studied the B cell 

compartments from WT and mb1-cre x Nfatc1flx/flx by flow cytometry. Cells, isolated 

from BM, spleen and lymph nodes (LN), were stained with specific surface markers 

followed by flow cytometric analysis. No significant differences were found between the 

two mice with respect to their BM precursor B cells (B220+ CD43hi) and BM immature 

and mature B cells (B220+ CD43lo) (Fig. 3.5A), percentage of peripheral B cells in LN 

(IgD+ IgM+)(Fig. 3.5B) splenic MZ (CD21+ CD23-), FO (CD21lo CD23+) (Fig. 3.5C) or 

splenic immature (B220+ AA4.1+) and mature (B220+ AA4.1-) B cell population (Fig. 

3.5D). As described previously (Berland and Wortis 2002), we also observed a 5-10 fold 

decrease in peritoneal B1a (CD5 lo IgM+) cells in mb1-cre x Nfatc1flx/fl mice compared to 

WT mice (Fig. 3.5E).  

                                            

Figure 3.5 Effect of NFATc1 ablation on B cell development. Flowcytometric analysis 
represents percentage of BM precursor, immature and mature B cells (A), peripheral B cells from 
LNs (B), splenic MZ and FO B cells (C), or splenic immature and mature B cells (D) and 
peritoneal B1a cells (E) from WT and mb1-cre x Nfatc1flx/flx mice. Each experiment was 
performed with more than three animals. 
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3.4 NFATc1 deficiency leads to impaired BCR-mediated proliferation and increased 
AICD of splenic B cells 
 
In CFSE dilution assays we observed an impaired B cell proliferation for NFATc1-/- 

compared to WT B cells, when stimulated with α-IgM for 72h. In contrast, stimulation 

with LPS and α-CD40 had no significant effect on proliferation suggesting a role of 

NFATc1 in BCR-mediated cell proliferation (Fig. 3.6).  

 

 

 

 

                                          

 
 
 
 
 
 
 
 
 
Figure 3.6 NFATc1 plays an important role in BCR-mediated proliferation. Isolated 
B cells were stained with CFSE and stimulated with or without α-IgM, LPS and α-CD40 for 3 
days. Histograms represent flowcytometric detection of CFSE dilution for proliferating WT and 
mb1-cre x Nfatc1flx/flx B cells. Figure shows one typical example out of three. 
 
 

 

In parallel to defective proliferation of α-IgM-induced B cells we detected an increase in 

cell death as evidenced by the appearance of higher number of Annexin V positive 

apoptotic cells in mb1-cre x Nfatc1flx/flx B cell cultures when stimulated with α-IgM rather 

than LPS or α-CD40. These observations confirm a role of NFATc1 in AICD (Fig. 3.7).  
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Figure 3.7 NFATc1 deficiency supports AICD. Isolated WT and mb1-cre x Nfatc1flx/flx B 
cells were cultured with or without α-IgM, LPS or α-CD40 for 48 hr. Cells were stained with 
Annexin V and PI, dot plot represents percentage of apoptotic cells detected by flow cytometry. 
Figure represents one typical experiment out of three. 
 

In order to address the issue of impaired proliferation of B cells from mb1-cre x 

Nfatc1flx/flx mice, we measured the calcium influx in WT and mb1-cre x Nfatc1flx/flx B 

cells. BCR engagement activates signaling pathways that initiate Ca2+ flux required for 

proliferation and survival of B cells. To determine the status of store operated Ca2+  

release in WT and mb1-cre x Nfatc1flx/flx B cells, we measured Ca2+ flux using cells 

suspended in Krebs-Ringer solution supplemented with EGTA (in order to chelate 

external Ca2+). On the other hand, extracellular Ca2+ influx was measured by addition of 

1 mM Ca2+ in medium devoid of EGTA. A significant decrease was observed in 

intracellular (store operated) (Fig. 3.8A) as well as extracellular (Fig. 3.8B) Ca++ influx 

upon α-IgM stimulation in mb1-cre x Nfatc1flx/flx B cells.  
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Figure 3.8 Impaired calcium flux is observed in NFATc1 deficient B cells. Isolated WT and 
mb1-cre x Nfatc1flx/flx B cells were stained with Indo-1 and stimulated with an indicated concentration 
of α-IgM. Intracellular (A) and extracellular (B) Ca2+ levels were measured by flow cytometry. Each 
experiment was conducted with minimum of three animals in each group. 
 

The positive effect of calcium in B cells was further evaluated by culturing splenic B cells in 

X-vivo medium, in a 1:1 mixture of X-vivo and RPMI media (the latter is a Ca++-poor 

medium) or by supplementing the culture medium with CaCl2.  The selective use of RPMI 

which contains about one third of Ca2+ of X-vivo resulted in impaired proliferation in WT and 

mb1-cre x Nfatc1flx/flx B cells, the later being more severely affected. Addition of Ca2+ in the 

form of CaCl2 could restore their proliferative capacity, while addition of CsA, a well known 

calcineurin inhibitor, had a strong suppressive effect on B cell proliferation when added at the 

start of the experiment or one day later (Fig. 3.9).  

A 

B 
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Figure 3.9 Effect of calcium and calcineurin on B cell proliferation. Splenic B cells 
from WT or mb1-cre x Nfatc1flx/flx mice were stained with CFSE and treated with 10 µg/ml α-
IgM in the absence or presence of Ca2+ or CsA in X-vivo medium or 1:1 X-vivo+RPMI medium 
which contains less Ca2+. Numbers indicate the percentage of cycling cells. Experiments were 
repeated at least three times 
 
We used also NCI3 to inhibit calcineurin and to study its effect on B cells. NCI3 is an 

inhibitor that binds to calcineurin but does not interfere with its phosphatase activity. It 

inhibits NFAT dephosphorylation and blocks NFAT signaling (Sieber, Karanik et al. 2007). 

When B cells were incubated with higher doses of NCI3, strong suppression of proliferation 

was observed in a dose dependent manner (Fig. 3.10A). The VIVIT peptide, Vivit-11R, is a 

selective inhibitor of NFAT-calcineurin interaction. Like NCI3, it also does not inhibit 

calcineurin phosphatase activity as CsA while inhibiting NFAT activation. Therefore, Vivit 

allows  the progression of other calcineurin-independent pathways while inhibiting the activity 

of NFATs  (Aramburu, Yaffe et al. 1999). B cells incubated with different doses of VIVIT 

peptide resulted in decreased proliferation (Fig.3.10B) and increased B cell death (Fig.3.10C). 
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Figure 3.10 Inhibition of calcineurin and of NFATs results in decreased 
proliferation and increased cell death of splenic B cells. (A) Histogram represents flow 
cytometric detection of CFSE dilution in isolated splenic B cells treated with different 
concentrations of NCI3, a novel Cn inhibitor, and 10 µg/ml of α-IgM for 3 days. Numbers 
represent percentage of proliferating cells. Experiments were repeated twice. (B)  Isolated splenic 
B cells were left un-stimulated or stimulated by α-IgM in presence of 0.5-5 µM Vivit-11R for 3 
d. Proliferation of B cells was detected using the CFSE dilution assay. (C) Isolated splenic B cells 
were incubated with 10 µg/ml of α-IgM in absence or presence of Vivit-11R as indicated, for 48 
hr. AICD was determined by flowcytometry of annexin-V/PI staining. Figure (B) and (C) 
represents one typical example out of three such experiments. 
 
 

3.5 Most prominent NFATc1 target genes in splenic B cells 

DNA microarray studies were done to identify NFATc1 target genes having role in 

proliferation and/or apoptosis of splenic B cells. The following set of genes, known to 

encode apoptosis regulators and having a role in cell signalling, were detected amongst 

the enhanced “top ten” genes in B cells from wild type mice versus mice bearing 

NFATc1-deficient B cells: Spp1 / osteopontin, Rcan1 / calcipressin, Pdcd1 / PD-1, 

Tnfsf14 / LIGHT and Fasl (Fig. 3.11A) . They were undetected in naïve B cells and 

induced upon α-IgM stimulation. A rapid induction of Spp1 and Rcan1 expression was 

noticed in samples treated for 3h with α-IgM, following a decrease in Spp1 RNA level 

with no notable change in Rcan1 expression in NFATc1-/- B cells in respect to WT. On 

A 

B C 



 41

the other hand, expression of Pdcd1, Tnfsf14 and Fasl genes increased strongly after 16h 

of α-IgM stimulation in WT with little to no induction in NFATc1-/- B cell (Fig. 3.11B). 

                            

 

 

 

  

 

 

 

 

 

 

Figure 3.11 NFATc1 target genes in murine splenic B cells. (A) WT and mb1-cre x 
Nfatc1flx/flx splenic B cells were stimulated with α-IgM as indicated. Gene expression was 
analyzed by DNA microarray assays. Key at the bottom indicates the fold changes in gene 
expression (log2 values). (B) Induction of 10 NFATc1 target genes by α-IgM stimulation in WT 
and NFATc1-/- splenic B cells. Experiments were repeated three times. 
 

We then performed a qRT-PCR analysis with WT B cells to support the DNA microarray 

studies. The findings also indicate a time dependent induction pattern of the genes as 

indicated in data of DNA microarray assays (Fig. 3.12).  

 

 

 

 

 
 
 
 
 
 
Figure 3.12 qRT-PCR supports DNA microarray data. Splenic B cells were left 
unstimulated or treated with α-IgM (10µg/ml) for indicated time period and subjected to qRT-
PCR analysis. Graph showing differential regulation of five genes among the enhanced “top-ten” 
gene set which was determined in DNA microarray studies. Figure shows one typical RT-PCR 
result out of two.  

A B 
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In order to determine the functional aspects of PD1 and LIGHT, two of the most 

prominent NFATc1 targets - as confirmed by DNA microarray and qRT-PCR analyses - 

we used Pdcd1-/- and Tnfsf14-/- animals. Mice lacking PD-1 (Pdcd1-/- mice) and LIGHT 

(Tnfsf14-/- mice) showed a strong reduction in AICD (Fig. 3.13A) with no defect in 

proliferation (Fig 3.13B) when treated with α-IgM, indicating their pro-apoptotic function 

in B cells.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13   PD-1 and LIGHT are pro-apoptotic proteins. Splenic B cells from WT, 
mb1-cre x Nfatc1 flx/flx, Pdcd1-/- and Tnfsf14-/- mice were left unstimulated or treated with α-IgM 
(10 µg/ml) for 48 hr and subjected to Annexin V/PI staining for flowcytometric detection of 
AICD (A) or CFSE dilution assay to assess proliferation (B). Each experiment was repeated three 
times. 
 

It is noteworthy that the most prominent target genes that are positively regulated by 

NFATc1 (Fasl, Pdcd1 and Tnfsf14) are pro-apoptotic in nature, which seems to be in 

stark contrast to the phenotype of NFATc1 mb1-cre x Nfatc1flx/flx B cells that are highly 

susceptible to AICD.  When we analyzed our DNA microarray data to look for the 

suppressed genes by NFATc1, we identified Cd22 among the most strongly suppressed 

A 
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genes (Fig. 3.14). Cd22 is a negative regulator of BCR signaling and known to inhibit 

BCR-mediated Ca2+ signaling (Nitschke 2009).   

 

 

 

 

 

 

 

 

 

 

Figure 3.14 NFATc1 negatively regulates CD22. (A) DNA microarray assay showing 10 
genes whose expression was enhanced in B cells from mb1-cre x Nfatc1flx/flx mice, compared to 
WT B cells. Expression analysis was done with B cells from three WT and three KO animals. 
 

Our finding that NFATc1 suppresses CD22 expression is supported by RT-PCR and 

flowcytometric analysis. CD22 expression was much higher in NFATc1-/- B cells 

compared to the WT in either at RNA level as observed by RT-PCR (Fig. 3.15 A) or 

protein level as measured by flowcytometry (Fig. 3.15B).  It is notable that CD22 

expression declined upon BCR engagement in WT B cells but not in NFATc1 Cd23-cre x 

Nfatc1flx/flx B cells. 

 

 

 

 

 

 

 
Figure 3.15 NFATc1 suppresses CD22 expression. Semi-quantitative RT-PCR assay 
showing the generation of CD22 RNA in WT and Cd23-cre x Nfatc1flx/flx splenic B cells (A) 
and graph representing the flowcytometric detection of CD22 expression on WT and Cd23-cre x 
Nfatc1flx/flx splenic B cells left unstimulated or stimulated with LPS or α-IgM for 24 h (B). 
Experiments were repeated twice. 
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Western blot analysis of splenic B cells from CD22-/- mice revealed strong NFATc1 

expression in basal level compared to the WT B cells. The induction of the short isoform 

NFATc1/αA was also found in LPS treated CD22-/- B Cells in contrast to the WT B cells 

which upregulated NFATc1/αA expression only after α-IgM treatment (Fig. 3.16).  

 

 

 

 

 

 

 

Figure 3.16 NFATc1 expression is high in CD22-/- mice. Immunoblots of whole cell 
extract, showing expression of NFATc1/αA in un-stimulated, IgM and LPS-treated splenic B 
cells from two WT and CD22-/- mice.  
 

As we know sustained level of calcium entry is important for cells and also required for 

NFAT activation, we wanted to find out if impaired Ca2+ flux in NFATc1-/- B cells had 

any considerable effect on the generation of other NFATs. RT-PCR studies showed no 

difference in NFATc2 RNA level between WT and NFATc1-/- B cells. However, a slight 

decrease in NFATc3 RNA level was observed in Cd23-cre x Nfatc1flx/flx splenic B cells 

(Fig. 3.17). In view of the fact that no significant increase in NFATc3 RNA level was 

identified in stimulated WT B cells, NFATc1 emerges as an indirect regulator of Nfatc3 

expression. 

 

 

 

 

 

 

Figure 3.17 NFATc1 affects Nfatc3 expression. Semi-quantitative RT-PCR assay showing 
Nfatc2 and Nfatc3 expression level in WT and Cd23-cre x Nfatc1flx/flx splenic B cells.  Figure 
represents one typical result out of three. 
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The apparent discrepancy between the DNA microarray data and phenotype of NFATc1-

deficient B cells prompted us to closely scrutinize the microarray data. In addition to the 

Ccnb1/Cyclin B1 gene  amongst the list of top 53 genes whose expression was twofold or 

more increased upon BCR stimulation in WT compared to NFATc1-/-   B cells we did not 

identify genes which directly control cell cycle and proliferation. However, when we 

subjected the DNA microarray data to gene set enrichment analysis (GSEA), eleven most 

prominent signatures among numerous other gene signatures that regulates cell cycle and 

proliferation, were found to be significantly enriched in WT B cells compared to 

NFATc1-/- B cells (Table 1). Therefore, our findings imply that even though NFATc1 

augments the expression of genes associated with proliferation only to moderate levels, 

the cumulative effect of these genes on B cell survival and/or proliferation is much more 

prominent.  

 

Pathways/ 
Signatures 

References Enriched in WT Enriched in 
Nfatc1-/- 
B cells 

Nominal p-
value 

FDRq value 

Cell Cycle (Brentani, Caballero et al. 
2003) 
(Cho, Huang et al. 2001) 
(Whitfield, Sherlock et al. 
2002) 
(Liu, Umbach et al. 2004) 

YES NO <0.0001 <0.07 

Proliferation (Shaffer, Wright et al. 
2006) 
(Rosenwald, Wright et al. 
2002) 
(Su, Wiltshire et al. 2004) 

YES NO <0.0001 <0.09 

Myc targets (Zeller, Jegga et al. 2003) 
(Yu, Cozma et al. 2005) 

YES NO <0.01 <0.08 

Anti-
Apoptosis 

(Wu, Kirschmeier et al. 
2002) 

YES NO ≤0.01 <0.08 

Wnt signaling (Kenny, Enver et al. 2005) YES NO <0.031 0.24 
 
Table 1. NFATc1 enhances expression of numerous genes linked to proliferation 
only to moderate levels.  Gene set enrichment analysis (GSEA) of microarray data of splenic 
B cells from WT and mb1-cre x Nfatc1flx/flx mice stimulated for 16 h by α-IgM using 81 
lymphoma associated signatures from the signature data base of the Staudt laboratory 
(http://lymphochip.nih.gov/signaturedb) and 1.687 curated gene sets (c2) from the Molecular 
Signatures Database (MSigDB) 

http://lymphochip.nih.gov/signaturedb
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3.6 Ectopic expression of NFATc1 can protect B cells from AICD 

In order to determine the reason for the apparent contrast between the anti apoptotic 

property of NFATc1 as evidenced by increased AICD in NFATc1-/- B cells on the one 

hand and identification of pro-apoptotic genes as most prominent NFATc1 target in DNA 

microarray assays on the other, we introduced increasing amounts of a constitutively 

active (ca) version of NFATc1/αA and an extra Egfp marker gene into splenic B cells via 

nucleofection. The cells were cultured in α-IgM (and low dose of LPS for survival)–

containing medium for 24 h and analysed for apoptotic cells. GFP+ cells but not GFP- 

cells had pronounced changes in AICD induction depending on the concentrations of 

caNfatc1/αA plasmid. Cells transfected with low plasmid concentrations (0.1-0.75 µg/ml) 

showed protection against AICD whereas at high concentrations (2µg/ml) an increase in 

AICD was observed among the transfected cells (Fig. 3.18). These findings imply that (i) 

in the absence of any NFAT activity B cells are prone to apoptosis and (ii) at moderate to 

high levels NFATc1 supports B cell proliferation and protects against AICD, whereas 

(iii) at very high concentrations, NFATc1 can also eliminate B cells by supporting AICD.   

 

 

. 

 

 

 

 

 

Figure 3.18 NFATc1 plays dual role in B cell survival. B cells pre-activated by α-IgM Ab 
treatment overnight were nucleoporated with increasing amounts of a constitutive active version 
of NFATc1 (caNFATc1/αA) and EGFP, and after a second α-IgM Ab+LPS stimulation for 24 hr, 
their apoptosis was determined by annexin V staining. Data represents one typical example 
out of three such experiments. 
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3.7 NFATc1 deficiency leads to defective immune response upon T cell-independent 
type-II antigenic challenge 
 
To asses the functional aspects of Cd23-cre x Nfatc1flx/flx B cells, we first measured the 

normal serum titer in naïve non-immunized mice. Our data indicated presence of 

somewhat higher amounts of IgM antibody in serum from mice bearing NFATc1-/- B 

cells compared to WT B cells. In contrast, no considerable differences in the titer of other 

antibodies were found (Fig. 3.19).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.19 NFATc1-deficient mice demonstrate a significantly high IgM serum 
titer in basal level. ELISA data showing Ab serum titer in non-immunized WT and Cd23-cre 
x Nfatc1flx/flx mice.  Each symbol represents one mouse. 
 

 

To investigate T cell-independent or dependent antigen responses, next we immunized 

mice with either NP-Ficoll to asses its response against T cell-independent antigens or 

with NP-KLH to study T cell-dependent antigen responses. We found a somewhat higher 

IgM titer in WT mice 14 days after primary immunization with NP-Ficoll, whereas the 

IgG3 titer was already significantly less in Cd23-cre x Nfatc1flx/flx mice by day 7 as well 

as on day 14 after primary immunization (Fig. 3.20).   
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Figure 3.20 NFATc1-deficient mice show a marked less serum IgG3 Ab titer after 
primary immunization with TI type II antigen. ELISA data showing serum IgM and IgG3 
titers in WT and Cd23-cre x Nfatc1flx/flx mice after primary immunization with NP-Ficoll. Each 
symbol represents one mouse. 
 
 
From the ELISA assay, it was evident that Cd23-cre x Nfatc1flx/flx mice can mould 

immune responses against TD antigens. Cd23-cre x Nfatc1flx/flx mice immunized with NP-

KLH had no defect in Ig class switch - except a weak decrease in switch to IgG2a -  after 

primary immunization (Fig 3.21A).   

 

To address the possibility of having altered affinity of anti-NP antibodies in Cd23-cre x 

Nfatc1flx/flx mice, we also performed experiments using high affinity NP-BSA (NP4-BSA) 

to coat the ELISA plates and capture more specific antibodies generated upon NP-KLH 

immunization. Mice were re-challenged on day 14 after primary immunization to assess 

secondary immune response. However, no considerable differences were found in the 

affinity of IgG1 antibody after primary or secondary challenge (Fig 3.21B).  

 

In a third approach, we measured Ab titers about 4 months after primary challenge to 

monitor differences in population of long-lived B cells in bone marrow or the memory B 

cell response. But again, we did not observe any defect in class switched Ig Abs. 

However, Cd23-cre x Nfatc1flx/flx mice showed higher IgM serum titer compared to the 

WT control groups (Fig. 3.21C). 
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Figure 3.21 NFATc1-deficient mice can mould a sufficient immune response against 
TD antigen. ELISA data showing serum titers of IgM, IgG1, IgG2a and IgG2b (A) or higher 
affinity IgG1 (B) in NP-KLH-immunized WT and Cd23-cre x Nfatc1flx/flx mice. ELISA data 
showing serum titer of IgM, IgG1, IgG2a and IgG2b in WT and Cd23-cre x Nfatc1flx/flx mice 4 
months after the primary challenge with NP-KLH (C). Each symbol represents one mouse. 
 

3.8 B cell specific NFATc1-/- mice immunized with NP-Ficoll generate a reduced 
number of antigen-specific long-lived plasma cells and memory B cells 
 
The defective production of class switched IgG3 antibodies in B cell specific NFATc1-/- 

mice, after NP-Ficoll immunization, led us to investigate the number of total plasma cells 

in these mice before and after antigen challenge. We found appearance of GC B cells 

(CD19+GL7+PNA+) after immunization. However, no substantial difference between WT 

A 
B 

C 



 50

and Cd23-cre x Nfatc1flx/flx mice were observed in day 7 post-immunized mice (Fig. 

3.22A). We further analyzed splenic B cells and BM B cells to quantify the percentage of 

short-lived and long-lived plasma cell (PC) population, respectively.  The data suggested 

a markedly diminished population of splenic short-lived (CD19+CD138+) (Fig. 3.22B) 

and BM long-lived (CD19-CD138+) (Fig. 3.22C) plasma cells in Cd23-cre x Nfatc1flx/flx 

mice compared to control group.  

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.22 NFATc1 deficiency results in reduced plasma cell population after TI-II 
antigen challenge. Flowcytometric analysis showing percentage of germinal centre B cells (A), 
short-lived splenic plasma cells (B) and long-lived BM plasma cells (C) in WT and Cd23-cre x 
Nfatc1flx/flx mice after NP-Ficoll immunization. Experiments were conducted on two mice in each 
group. 

A 

B C 
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Marginal zone (MZ) B cells are known to be important for modulating first hand 

response against TI-II antigens (Guinamard, Okigaki et al. 2000). The suppressed 

immune response of Cd23-cre x Nfatc1flx/flx mice against NP-Ficoll directed us to 

consider substantial developmental defects in MZ B cell compartment. We observed no 

reduction in the frequency of MZB (CD19+CD23-CD21/35+) cells in naïve Cd23-cre x 

Nfatc1flx/flx mice compared to WT. The percentage of follicular (FO) B cells 

(CD19+CD23-CD21/35+) appeared to be quite normal as well (Fig. 3.23).  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.23 NFATc1 ablation does not cause a reduction in the percentage of 
marginal zone B cells. Data showing percentage of MZB cells in naïve Cd23-cre x 
Nfatc1flx/flx and WT mice. Figure represents one typical example out of more than three such 
experiments. 
 
We then analyzed cellular responses of Cd23-cre x Nfatc1flx/flx and WT mice 21 days after 

TNP-Ficoll immunization. No significant difference in the frequency of total (Fig. 3.24A) 

or antigen-specific (TNP+) (Fig. 3.24B) plasma cells in spleen was detected in contrast 

with our findings on day 7 (Fig.3.22B). On the other hand, although the numbers of 

splenic short-lived plasma cells were normal at day 21, the frequency of total (Fig. 

3.24C) as well as TNP-specific (Fig. 3.24D) long-lived plasma cells in the BM was 

distinctly reduced. We further examined the memory B cell pool and detected a decrease 

in the number of antigen-specific memory B cells in Cd23-cre x Nfatc1flx/flx mice (Fig. 

3.24F) as compared to controls while the number of total memory B cells remained 

comparable in both types of animals (Fig. 3.24E). All these findings support our in-vivo 

ELISA data which also showed the impaired immune response of NFATc1-deficient 

mice towards TI-II antigen, such as NP or TNP-Ficoll.  



 52

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.24 Development of antigen-specific long-lived plasma cells and memory B 
cells are impaired in NFATc1-deficient mice after immunization with TI-II antigen. 
Flowcytometric analysis showing frequency of total or antigen-specific short-lived and long 
lived plasma cells in spleen and BM ( A,B,C,D) of WT and Cd23-cre x Nfatc1flx/flx mice 
on day 21 after NP-Ficoll immunization, Percentage of total and antigen specific memory 
B cells in same mice are shown in E and F. Experiments were conducted on three mice from 
each group. 
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   3.9 Mice bearing NFATc1-/- B cells fail to evoke immune responses to TI antigen 
in-vitro 
 
In order to critically analyse our in-vivo findings that the immune response against TI 

antigen is diminished in Cd23-cre x Nfatc1flx/flx mice, we performed a series of in-vitro 

assays. While no defect in IgG1 switch was observed among cultured splenic B cells 

from WT and Cd23-cre x Nfatc1flx/flx mice as expected a significantly low frequency of 

IgG3+ plasmablasts were detected in cultures of splenic B cells from  Cd23-cre x 

Nfatc1flx/flx mice (Fig. 3.25A). These findings were also true when we performed an in-

vitro ELISA using supernatants from 6 day cultured cells. Approximately 50% reduction 

in secreted IgG3 Ab level was observed in Cd23-cre x Nfatc1flx/flx cells compared to the 

WT (Fig. 3.25B).  

 

Isotype-specific “circle transcripts” (CTs) which are transcribed from excised looped-out 

circular DNA (CD) during Ig class switch recombination (CSR), are considered to be a 

hallmark for active CSR (Kinoshita, Harigai et al. 2001). In our study, we detected CTs 

of IgG1 region in both mice, whereas CTs of IgG3 region were found only in WT but not 

in Cd23-cre x Nfatc1flx/flx B cells (Fig. 3.25C). This shows again the defect of CSR to 

IgG3 upon immunisation with TI type II antigen in NFATc1-deficient B cells 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.25 B cell specific NFATc1-deficient mice fail to mould an adequate immune 
response against TI type II antigen in vitro. Data showing the generation of IgG3+ 
plasmablasts (A) and IgG3 titer in cultured WT and Cd23-cre x Nfatc1flx/flx cells (B), 
experiments were repeated three times. RT-PCR showing, circular IgG3 and IgG1 transcripts in 
WT and Cd23-cre x Nfatc1flx/flx splenic B cells after in vitro culture for 48 hr in the presence of 
LPS (C), Figure represents one out of two such experiments.  

B 
C 
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The incapability of moulding sufficient cellular response against TI antigen could be due 

to increased cell death, as evidenced by apoptosis assay. Plasmablasts generated in vitro 

failed to proliferate well and showed relatively higher rate of apoptosis in NFATc1-

deficient B cells (Fig. 3.26).  

 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.26 NFATc1 deficiency leads to increased rate of plasma cell death in vitro. 
Flowcytometric detection of proliferation (A) and AICD (B) of CD138+ plasmablasts generated 
from splenocytes of WT and Cd23-cre x Nfatc1flx/flx mice upon 3 day culture in presence of 
LPS. Experiments were repeated at least twice.  
 

 

3.10 NFATc1-deficient B cells need T cell help for survival 

We co-cultured WT and Cd23-cre x Nfatc1flx/flx B cells stimulated with Ova protein with 

or without OT- II T cells bearing an Ova-specific T cell receptors. The addition of Ova 

protein to the culture - instead of Ova peptide - was to direct the B cells towards antigen 

processing and presentation, as we know T cells can only recognize peptide and not 

protein. A higher rate of apoptosis was evident when Cd23-cre x Nfatc1flx/flx B cells were 

cultured in the absence of any T cells compared to the culture condition where T cell help 

was eminent (Fig 3.27). This data strongly indicates that T cell help subsequent to antigen 

engagement is crucially important to prevent AICD in NFATc1-deficient B cells. 
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Figure 3.27 NFATc1-deficient B cells need T cell help for their survival.  Splenic B 
cells from WT and Cd23-cre x Nfatc1flx/flx mice treated or not with ova protein were co-cultured 
with OT-II T cells or left alone for 48 hr. Cells were stained with α-CD19 and Annexin V/PI for 
flowcytometric detection of AICD. Histogram showing percentages of Annexin V + cells among 
CD19 gated cells. This experiment was repeated twice. 
 

 

3.11 NFATc1-deficiency results in higher amount of IL-10 secretion by splenic B 
cells 
 
In order to mediate immune reactions, B cells play an important role in cytokine 

production. The anti-inflamatory cytokine IL-10 produced by B cells exerts a suppressive 

effect on immune system and is known to prevent autoimmune pathologies (Saraiva and 

O'Garra 2010). In our study we detected IL-10 secreting plasma cells after LPS treatment 

in vitro and found the percentage of such cells higher in Cd23-cre x Nfatc1flx/flx mice 

compared to the WT B cells suggesting a possible role of NFATc1 in autoimmune 

diseases (Fig. 3.28).    

 
 
 
 
 
 
 
 
 
 
Figure 3.28. High frequency of IL-10-secreting plasma cells in NFATc1-deficient 
mice. Flowcytometric analysis showing the percentage of IL-10-producing CD138+CD19+ 
plasmablasts after 3 d in culture with LPS (and T+I for the last 6 h) in preparations of splenocytes 
from WT and Cd23-cre x Nfatc1flx/flx B cells. This Experiment was repeated twice. 
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3.12 Mcl-1 expression is down-regulated in plasma cells from B cell specific 
NFATc1-deficient mice  
 
One of the most common antigens of choice for immunization of mice is SRBC. Upon 

immunization with SRBC, the following populations were sorted from WT and B cell 

specific NFATc1-/- mice after 10 days: GC (GL7+), non-GC (GL7-) B cells, plasma cells 

(CD138+) and non-plasma cells (CD138-). These cells were sorted in a ‘single cell sorting 

mode’ for higher purity. Mcl-1 is an anti-apoptotic member of the Bcl-2 family and has 

been implicated to play a vital role in B cell survival. We observed slightly higher level 

of Mcl-1 RNA in sorted GC B cells from NFATc1-deficient mice, while the level was 

much reduced in NFATc1-/- plasma cells compared to WT mice.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27 Decreased expression of Mcl-1 in NFATc1 deficient plasma cells. Dot plot 
showing FACS sorted GC or non-GC B cells and PC and non-PC population (A). RT- PCR 
showing expression of Mcl-1 RNA in wild type or NFATc1-/- GC/non-GC and PC/non-PC 
population. This experiment was repeated twice. 
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4. Discussion 
 
Transcription factors play an important role in gene regulation leading to differential 

cellular responses against biological and environmental stimuli. The importance of 

NFATc1 transcription factor in early embryonic development (Zhou, Wu et al. 2005), 

heart and thymus development (Hodge, Ranger et al. 1996; de la Pompa, Timmerman et 

al. 1998; Ranger, Grusby et al. 1998) and osteoclast formation (Asagiri, Sato et al. 2005) 

have been known for years. Here we report the role of NFATc1 in B cell development, 

survival and cellular response against antigenic stimulation.  

 

By using mb1-cre x Nfatc1flx/flx mice we show that NFATc1 plays no significant role in 

the development of peripheral B cells, with the exception of CD5+ B1a cells in the 

peritoneum. During early B cell development the expression level of the mb-1 gene is 

much higher than that of the Cd19 gene  (Hobeika, Thiemann et al. 2006). This makes 

mb1-cre mice a better choice to study effects of cre-mediated deletion of NFATc1-floxed 

genes in early B cell stages than in Cd19-cre mice which have widely been used for this 

purpose in former experiments (Rickert, Roes et al. 1997). However, mb1 is expressed in 

the pro-B cell stage, and the mb1-cre x Nfatc1flx/fl mice model can not depict the role of 

NFATc1 in B cell development prior to pro-B cell stage.   

 

Although peripheral B cell development was not hindered in mb1-cre x Nfatc1flx/fl mice, 

in vitro proliferation of B cells upon BCR cross-linking and induction of AICD was 

significantly altered. It is known that sustained level of “store-operated” Ca2+ entry  is 

important for the function of lymphocytes (Hogan, Chen et al. 2003). NFATc1-deficient 

B cells showed a considerable defect in intracellular Ca2+ level and extracellular Ca2+ 

influx, which could well justify the impaired proliferation and increased AICD found in 

these cells. Interestingly, addition of Ca2+ to the culture medium could compensate the 

adverse effect of NFATc1 loss in these cells. In gene expression profiling assays,  among 

the negatively regulated NFATc1 target genes we identified the Cd22 gene and found an 

increased CD22 expression in NFATc1-/- B cells. On the other hand, inactivation of Cd22 

gene directed a strong NFATc1 expression in both unstimulated and LPS-stimulated B 

cells. The Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1) 
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positively regulates AICD in B cells (Mizuno, Tagawa et al. 2002). Upon BCR-

engagement, SHP-1 binds to tyrosine-phosphorylated CD22 (Doody, Justement et al. 

1995) leading to inhibition of BCR-induced Ca2+ signaling (Nitschke 2009). Therefore, 

we conclude that NFATc1 affects Ca2+ flux in peripheral B cells by suppressing Cd22 

transcription. However, it remains to be shown whether this is a direct or indirect effect 

of NFATc1 on the Cd22 gene. Preliminary chromatin immunoprecipitation (ChIP) assays 

did not reveal a binding of NFATc1 to the 5’ (promoter) region of Cd22 gene (S. 

Bhattacharyya, personal comm.) 

 

We also detected the three pro-apoptotic genes  Pdcd1 (Ishida, Agata et al. 1992), Tnfsf14 

(Zhai, Guo et al. 1998) and Fasl  as the most prominent NFATc1 targets whose 

expression was significantly suppressed in NFATc1-/- B cells. It has been shown in  ChIP 

experiments that NFATc1 can bind to the Pdcd1, FasL and Tnfsf14 promoters regulating 

their expression (Bhattacharyya, Deb et al. 2011). It is suggested that Pdcd1 (PD-1) 

activation is involved in the “classical type of programmed cell death” (Ishida, Agata et 

al. 1992), and down-regulation of CD5 expression is reported in PD-1-/- mice (Nishimura, 

Minato et al. 1998), similar to situation in mb1-cre x Nfatc1flx/fl mice. Transcription of the 

Tnfsf14 (LIGHT) gene is  CsA-sensitive and requires Ca2+ signaling (Castellano, Van 

Lint et al. 2002), and the NFATc1-mediated Ca2+ flux could be essential for expression of 

LIGHT. Studies have also suggested that “LIGHT-mediated cell killing” requires 

involvement of both LTβR and TR2/HVEM receptors, and cell surface expression of 

only one of these receptors fails to induce LIGHT-mediated cell death (Zhai, Guo et al. 

1998). Moreover, one of the most prominent pathways regulating AICD is the FasL-Fas-

mediated pathway. Similar to T cells, B cells are also known to express both Fas 

(Kavurma and Khachigian 2003) and, if activated, its ligand (FasL) on their surface. 

Other researchers have also suggested a possible role of Fas-FasL interaction in AICD of 

B cells (Hahne, Renno et al. 1996),  

Our finding that most prominent NFATc1 target genes include pro-apoptotic genes is in 

stark contrast to the phenotype of NFATc1-deficient B cells which show an increased 

susceptibility to apoptosis. In order to resolve this apparent contradiction, we further 

analyzed the DNA microarray date using GSEA. A number of NFAT-regulated cell cycle 
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genes have been described for T cells (Baksh et al., 2002; Caetano et al., 2002; Carvalho 

et al., 2007). Our DNA microarray data, however, confirmed only the Ccnb1/Cyclin B1 

gene – which is known to control the cell cycle - as a putative NFATc1 target in B cells. 

But the GSEA analysis suggests that although NFATc1 enhances the expression of genes 

associated with proliferation only to moderate levels, the combined effect of these genes 

on B cell fate is much more prominent. Our data also imply a dual role for NFATc1 in B 

cells. By introducing increasing amounts of a constitutively active (ca) version of 

NFATc1/αA into splenic B cells, we have demonstrated that NFATc1 activity is needed 

to protect B cells against AICD, whereas at very high concentrations, NFATc1 can also 

eliminate the majority of B cells by apoptosis.   

 

Followed by antigen ligation, BCR-mediated signals initiate to transmit extracellular 

signals to a multitude of cellular responses. Several published studies have reported the 

importance of individual components of BCR signaling cascade in generating accurate 

cellular responses. Apart from developmental defects and impaired Ca2+ flux, one of the 

most prominent outcome of impaired BCR-signaling in NFATc1-deficient B cells seems 

to be the impaired immune response against TI-II antigens. NFATc1 deficiency in splenic 

B cells (from Cd23-cre x Nfatc1flx/flx mice) led to impaired Ig class switch to IgG3 upon 

NP-Ficoll (TI-II) immunization or LPS (TI-I) stimulation (in vitro), whereas no defect 

has been detected in IgG1 Ab production upon NP-KLH (TD) immunization or in vitro 

culture with LPS and IL-4 . A similar phenotype was detected for Btk, Pyk-2, PLC-γ2 

and SLP-65/BLNK `knockout (ko) or IgαY204F/Y204F `knock in (k.i.) mice. The major Ig 

isotype in response to TI-I or TI-II immunization is IgG3 (Mond, Lees et al. 1995), and 

both B-1a and MZ B cells are known to provide a rapid “first line of defense” against 

bacterial pathogens (Babbe, McMenamin et al. 2009) which belong to the group of TI 

antigens. It is also known that MZB cells can produce effector responses more quickly 

than FO B cells (Oliver, Martin et al. 1999). The most likely reason for the severe block 

in Ig class switch to IgG3 in Btk-/- and PLC-γ2-/- mice is the reduced number of B-1a cells 

(Hashimoto, Takeda et al. 2000). It is noteworthy that similar to our Cd23-cre x 

Nfatc1flx/flx mice,  Pyk-2-/- mice also have a normal number of peritoneal B-1a cells, and 

the diminished TI-II response in these mice could be due to reduced MZB cell population 
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observed in these mice (Guinamard, Okigaki et al. 2000). However, we did not notice any 

reduction in the percentage of MZB cells in Cd23-cre x Nfatc1flx/flx mice, but function of 

MZB cells in these animals were significantly impaired (Bhattacharyya, Deb et al. 2011). 

It was suggested that the reduced SLP-65/BLNK phosphorylation in IgαY204F/Y204F `knock 

in` mice leads to inhibition of T cell-independent B cell proliferation (Patterson, Kraus et 

al. 2006), whereas SLP-65/BLNK-/- mice exhibit an increased frequency of BM pre-B 

cells and lack of B-1b cells (Jumaa, Wollscheid et al. 1999), contrary to Cd23-cre x 

Nfatc1flx/flx mice. These observations put forward NFATc1 activity as a vital molecular 

mechanism which controls BCR signaling essential for the precise extracellar response of 

B cells.  

 

The defect in class-switched antibody titer upon immunization with TI antigen directed 

us to explore the plasma cell population in mice bearing NFATc1-deficient B cells.  

Generally, it is known that binding of B cells to protein-based antigens - which are 

known to be T-dependent - directs B cells to find their way to the T-cell zone. T cells are 

main players in GC formation as they typically provide CD40L to engage CD40 on B 

cells. This interaction is crucial for the development of fully maturated B cells (Klein and 

Dalla-Favera 2008). Generation of GC-derived long-lived plasma cells and memory B 

cells are vital for the maintenance of serum concentration of specific antibodies and also 

for an immediate recall response upon secondary challenge by the same antigen. Since  

upon primary and secondary challenge with TD antigen we observed comparable 

amounts of serum Ig Abs between WT and mice bearing NFATc1-/- B cells, we suggest 

that the frequency of GC B cells and GC-derived plasma cells as well as memory B cells 

remained unaffected in those mice. 

 

Surprisingly, surface expression of CD40L has also been reported in B cells (Wykes, 

Poudrier et al. 1998) which makes T cells dispensable for the initiation of GC reaction in 

certain situation (Wykes 2003) . Upon NP-Ficoll immunization, we have detected GL7+ 

and PNA+ B cells that resemble the GC B cell phenotype in  WT and mice bearing 

NFATc1-deficient B cells. This observation finds support by studies that have reported 

GC formation upon NP-Ficoll immunization following spontaneous abortion at the time 
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of high-affinity B cell selection (de Vinuesa, Cook et al. 2000). It was also documented 

that memory B cells can be generated against TI-II antigenic stimulation (Obukhanych 

and Nussenzweig 2006). We observed a reduced number of GC-derived long-lived 

plasma cells and antigen-specific memory B cells in mice bearing NFATc1-deficient B 

cells upon immunization with NP-Ficoll. In vitro stimulation of B cells with LPS, a TI-I 

antigen, failed to produce IgG3 Ab and IgG3+ plasmablasts. These plasmablasts showed 

an impaired proliferation and enhanced death, suggesting a possible explanation for the 

diminished cellular response against TI antigens in Cd23-cre x Nfatc1flx/flx mice.   

 

The main difference between TD and TI antigen in mounting an immune response is the 

involvement of T cells followed by BCR ligation. Apart from CD40-CD40L ligation, B 

cell-T cell interaction via CD86-CD28 is also vital for T-cell mediated synthesis of pro-

survival cytokines. These cytokines are essential for B cell survival and/or proliferation 

(Goodnow, Vinuesa et al. 2010). It is notable that NFATc1-/- B cells show increased 

apoptosis following stimulation with α-IgM, which acts as a TI antigen (Wortis, Teutsch 

et al. 1995). On the contrary, stimulation with α-CD40, which would act as a CD40L 

provided by T cells, enhanced the survival of NFATc1-deficient B cell in vitro. To 

confirm our hypothesis that the involvement of T cells is vital for the survival of 

NFATc1-/- B cells, we co-cultured WT and NFATc1-/- B cells with or without OT-II T 

cells and supplemented the culture media with ova-protein. OT-II mice are ova-specific 

transgenic mice (Barnden, Allison et al. 1998), their T cells can specifically recognize 

ova-protein. Interestingly, we observed a higher rate of apoptosis in NFATc1-deficient B 

cells cultured in the absence of OT-II. Alternatively, NFATc1-/- B cells that received T 

cell help in culture showed a better survival. These findings imply that NFATc1-

deficiency in splenic B cells does not hinder antigen internalization and antigen 

presentation by B cells to T cells, which is also reported for IgαY204F/Y204F `knock in (k.i.) 

mice (Patterson, Kraus et al. 2006). Therefore, we conclude that T cell help subsequent to 

antigen engagement is vital to prevent B cells from AICD.  

 

BCL-2 family members are well known for their pro or anti-apoptotic role in controlling 

the survival of immune cells. Mcl-1, an early-induction gene from the BCL-2 family, has 
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a  role in cell viability (Yang, Buchan et al. 1996) and short-term survival (Zhou, Qian et 

al. 1997) of otherwise dying cells. One of the most striking features of NFATc1-deficient 

B cells is increased apoptosis followed by BCR-engagement. As Mcl-1 has been 

suggested to be important in the generation of antigen-specific IgG B cells (Vikstrom, 

Carotta et al. 2010), we checked  Mcl-1 RNA expression in sorted GC and plasma cells 

from SRBC-immunized WT and Cd23-cre x Nfatc1flx/flx mice.  In NFATc1-/- plasma cells, 

we detected a marked reduction in Mcl-1 RNA level compared to WT plasma cells. On 

the contrary, Mcl-1 expression was not reduced in NFATc1-/- GC B cells.  To exert its 

anti-apoptotic effect in mature lymphocytes, Mcl-1 selectively inhibits pro-apoptotic 

members of Bcl-2 family, such as the activity of Bax, Bak and Bim proteins  (van Delft 

and Huang 2006) ; (Opferman, Letai et al. 2003). In addition, degradation of Mcl-1 

would account for functioning of these proteins in the induction of apoptosis.  

 

One possible explanation behind the relatively unchanged level of Mcl-1 in NFATc1-/- 

GC B cells could be related to the fact that in GC, B and T cells are in close physical 

contact that provides essential survival signals to otherwise vulnerable NFATc1 deficient 

B cells. A higher Mcl 1 expression in NFATc1-deficient GC B cells could be an 

indication of inherently stressed conditions of these cells as Mcl1 expression is known to 

be upregulated in cells that are stressed (Germain, Nguyen et al. 2011). On the other 

hand, diminished expression of Mcl 1 in NFATc1-deficient  plasma cells could indicate 

the fact that plasma cells generally do not interact with T cells once they exit the GC 

compartment.  The regulation of Mcl-1 expression is known to be mediated by the Serum 

Response Factor (SRF) (Townsend, Zhou et al. 1999). One potential mechanism by 

which NFATs might regulate Mcl-1 activation could be via direct physical interactions 

between the Serum Response Factor (SRF) and NFAT proteins (Gonzalez Bosc, Layne et 

al. 2005).  

 

The anti-inflammatory cytokine IL-10 which is produced by B cells and numerous other 

cells of the immune system has a suppressive role on immune cells and is known to 

prevent autoimmune pathologies (Saraiva and O'Garra 2010) , including the generation of 

an EAE (Fillatreau et al., 2002). Experimental autoimmune encephalomyelitis (EAE) 
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(Hur et al., 2007) is an established mouse model of human multiple sclerosis (MS) and 

has been extensively used by the researchers to study autoimmune pathologies of MS. It 

has recently been published that CD19+CD138+ plasmablasts, but not  CD138- cells, 

secrete IL-10 after Salmonella infection which specifically inhibits the CD4+ T cell 

response against the invading foreign antigen (Neves, Lampropoulou et al. 2010). In our 

study, we detected increased percentage of IL-10 producing splenic B cells and 

plasmablasts in cultured NFATc1-/- B cells.  The functional relevance of increased IL-10 

production by NFATc1-/- B cells has recently been reported by our group (Bhattacharyya, 

Deb et al. 2011). These studies have shown a much milder induction of EAE in mice 

deficient for NFATc1 in BM B cells than WT controls and a probable role for IL-10 in 

suppressing EAE by inhibiting T cell-mediated IFN-γ production. Apart from IL-10 

involvement, a role of IFN-γ and Osteopontin has also been suggested by previous 

studies (Hur, Youssef et al. 2007). Interestingly, we have reported Il10 (IL-10), Il10R, 

Ifng (IFN-γ) and Spp1 (Osteopontin) as NFATc1 target genes based on DNA microarray 

analysis. 

 

In summary, our study shows that BCR-mediated induction of NFATc1 controls (i) 

proliferation and AICD of splenic B cells and plasmablasts, (ii) intracellular Ca2+ release 

and extracellular Ca2+ influx by negatively regulating the Cd22 gene expression and, 

probably, by controlling further signaling molecules of BCR signaling pathway, (iii) Ig 

class switch to IgG3, the development of long-lived plasma cells and antigen-specific 

memory B cells upon TI-II antigenic stimulation, and (iv) IL-10 production by splenic B 

cells. 
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Ab             Antibody 

Ag             Antigen 

AICD        Activation-induced cell death 

BAC          Bacterial artificial chromosome 

BCR          B cell receptor 

BM            Bone marrow 

Btk            Bruton’s tyrosine kinase 

Ca2+          Calcium 

CaCl2        Calcium chloride 

CD            Cluster of differentiation 

CFSE        Carboxyfluorescein succinimidyl ester 

ChIP         Chromatin immunoprecipitation 

Cn             Calcineurin 

CsA          Cyclosporine A 

CSR          Class switch recombination 

CT             Circle transcript  

EAE         experimental autoimmune encephalomyelitis 

ELISA      Enzyme likend immunosorbent assay 

FCS          Fetal calf serum 

FO            Follicular B cell 

GC           Germinal center  

GFP         Green fluorescence protein 

GSEA      Gene set enrichment analysis  

IFN          Interferon 

IgG          Immunoglobuling G 

KI            Knock in 

KO          Knockout 

LPS         Lipopolysaccharide  

mAb        Monoclonal antibody 

MZB        Marginal zone B cell  
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NFAT      Nuclear factor of activated of T cells 

NP           4-Hydroxy-3-nitrophenylacetyl 

PC            Plasma cell  

PCR         Polymerase chain reaction 

PI             Propidium iodide 

PLC- γ2   Phospholipase Cγ2 

SRBC      Sheep red blood cell 

T+I           TPA (12-O-tetradecanoylphorbol-13-acetate) + ionomycin 

TCR         T cell receptor 

TD            T cell dependent 

TI             T cell independent 

TNP         2,4,6-Trinitrophenyl 
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