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Summary 
Over the past decades, awareness has increased of multiple health-promoting effects 

of diets rich in anthocyanins and proanthocyanidins and, specifically, of these 

compounds’ potential for conferring neuroprotection. The present study compiles 

evidence obtained in vitro that expands our understanding of anthocyanin and 

proanthocyanidin functionalities at multiple levels. 

Firstly, anthocyanin and anthocyanidin bioavailability was addressed using a 

combination of ATPase assays, dye extrusion assays and vesicular transport assays. 

This approach highlights the contribution made by efflux transporters MDR1 and BCRP 

to the absorption of berry polyphenols and to their distribution to target tissues 

including the central nervous system. All test compounds interacted with the BCRP 

transporter in vitro, seven emerged as potential BCRP substrates and 12 as potential 

inhibitors of BCRP. Two anthocyanidins, malvidin and petunidin, exhibited bimodal 

activities, serving as BCRP substrates at low micromolar concentrations and, at higher 

concentrations, as BCRP inhibitors. Effects on MDR1, in contrast, were weak, as only 

aglycones exerted mild inhibitory activity in the high micromolar range. Distinct affinities 

of several anthocyanins and the respective aglycones for BCRP suggest that they may 

be actively transported out of endothelia. Agents that interfere with BCRP activity are 

therefore likely to facilitate crossing of the intestinal and blood-brain barriers and to 

augment anthocyanin bioavailability.  

Secondly, novel modes of action were sought to rationalize berry polyphenols’ direct 

modulation of neuronal transmission as opposed to their non-specific antioxidant 

activities. The candidate effectors include cellular monoamine oxidases (MAO) A and 

B, hypoxia inducible factor (HIF), the proteasome, and phospholipase A2 (PLA2). 

Elevated MAO activity has long been implicated in the etiology of depression, anxiety 

and neurodegenerative illness. MAO inhibiting compounds may thus hold promise in 

the prevention of behavioral symptoms and cognitive decline. For both MAO isoforms, 

inhibitory effects of anthocyanins and anthocyanidins are illustrated by IC50 values in 

the low micromolar range whereas proanthocyanidins and phenolic metabolites were 

less effective inhibitors. Kinetic analyses, performed with cyanidin and cyanidin-3-

glucoside, indicated a competitive interaction of cyanidin in terms of MAO A, plus a 

mixed competitive and non-competitive mode of interaction of cyanidin in terms of MAO 

B as well as of cyanidin-3-glucoside with respect to both enzyme isoforms. Thus MAO 

inhibition by anthocyanins and their aglycones in vitro lends support to central nervous 

functionalities of diets rich in berry polyphenols and opens new opportunities in the 

prevention of neuronal pathologies. 
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Effects on HIF expression were examined to assess candidate compounds’ role in 

enhancing cellular resistance to oxidative stress. By inducing a dose-dependent 

increase in HIF expression, delphinidin may initiate a variety of cellular survival 

processes that are inhibited by free iron. This finding argues in favor of iron-chelating 

properties as a further means of mediating neuroprotection. Other inducers of HIF 

expression in neuroblastoma cells included gallic acid, cyanidin and bilberry extract, all 

of which may modulate HIF-dependent transcription of downstream genes.  

Inhibition of chymotrypsin-like proteasome activity by test compounds was investigated 

in HL-60 cells. By its role in mediating the degradation of misfolded proteins and cell 

cycle regulatory proteins among others, the proteasome is closely involved in pathways 

that may increase the risk of neurodegeneration e.g. in Parkinson’s disease and in 

Alzheimer’s disease. Based on a chemiluminescent assay, anthocyanins and their 

aglycones achieved IC50 values for inhibition of proteasome activity ranging from 

7.8 µM for kaempferidinidin and pelargonidin to 32.4 µM for delphinidin. This adds to 

our understanding of further cellular effectors that may control anthocyanins’ 

antiinflammatory, antioxidative and neuroprotective activities.  

Finally, secretory phospholipase A2 (sPLA2)-modulating effects of berry polyphenols 

were studied. The anthocyanidins cyanidin, malvidin, peonidin, petunidin, and 

delphinidin inhibited sPLA2, achieving Ki values < 18 µM, and thus may meditate 

neuroprotection by counteracting inflammatory processes, whereas tested glycosides 

proved to be less effective. These results suggest that anthocyanidins may serve to 

develop treatments for brain disorders that involve oxidative stress, changes in 

phospholipid metabolism, accumulation of lipid peroxides, and inflammation, including 

ischemia, multiple sclerosis, epilepsy, and Alzheimer’s disease. 

Safety of anthocyanins and related compounds is the third focus of this work. Although 

health-promoting effects of berry polyphenols advocate dietary supplementation with 

anthocyanin-rich fruit extracts and functional foods, limited data exist on compounds’ 

pharmacokinetics and on possible adverse effects as a consequence of interactions 

with xenobiotics and other food ingredients. As cytochrome P450 3A4 (CYP3A4) 

controls the metabolism of about 60% of all drugs, its inhibition may dramatically affect 

drug safety. In addition, cytochrome P450 2D6 (CYP2D6) inhibitors may provoke 

adverse effects and limit the use of psychoactive drugs. Addressing berry constituents’ 

cytochrome P450 inhibitory effects, test polyphenols featured IC50 values from 12 µM 

up to 7,842 µM in terms of CYP3A4. In the order of decreasing effect size, 

anthocyanidins were followed by anthocyanins, proanthocyanidins, and phenolic acids. 

For CYP2D6 inhibition, IC50 values ranging from 55 µM to > 800 µM were obtained. 

When compared to earlier data on grapefruit furanocoumarins, cytochrome P450 
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inhibitory activity of tested anthocyanins and anthocyanidins was shown to be 1,000- to 

10,000-fold weaker. To judge by these findings, anthocyanins, anthocyanidins, 

proanthocyanidins and phenolic acids therefore should pose only a limited risk of food–

drug interactions mediated by these cytochrome P450 isoenzymes.  
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Zusammenfassung 
Im Laufe der letzten Jahrzehnte wurde die Vielzahl gesundheitsfördernder Effekte einer 

Anthocyan- und Proanthocyanidin-reichen Ernährung verstärkt wahrgenommen, 

insbesondere das Potenzial dieser Substanzen neuroprotektive Wirkungen zu erzielen. 

Die im Rahmen der vorliegenden Arbeit zusammengetragenen in vitro-Befunde 

belegen dies und erweitern unser Verständnis über die facettenreiche Funktionalität 

von Anthocyanen und Proanthocyanidinen. 

Zunächst wurde mit einer Kombination indirekter und direkter Transporter-Assays die 

Bioverfügbarkeit von Anthocyanen und Anthocyanidinen thematisiert. Dieser Ansatz 

betont, dass die Efflux-Transporter MDR1 und BCRP einen wichtigen Beitrag zur 

Absorption von polyphenolischen Beereninhaltsstoffen und zu deren anschließender 

Verteilung auf Zielgewebe, einschließlich des Zentralnervensystems, leisten können. 

Alle Testsubstanzen traten in vitro in Wechselwirkung mit dem BCRP-Transporter, 

wobei sich sieben als potenzielle BCRP-Substrate und 12 als potenzielle Inhibitoren 

herausstellten. Zwei Anthocyanidine, Malvidin und Petunidin, zeigten bimodale 

Aktivitäten, indem sie in niedrigen mikromolaren Konzentrationen als BCRP-Substrate 

dienten und in höheren Konzentrationen als Hemmstoffe. Im Gegensatz dazu waren 

die Effekte auf den MDR1-Transporter nur gering, wobei lediglich die Aglykone nur 

schwache hemmende Wirkungen im höheren mikromolaren Konzentrationsbereich 

zeigten. Die ausgeprägten Affinitäten einiger Anthocyane und Aglykone zum BCRP-

Transporter legen nahe, dass diese Verbindungen aktiv aus Endothelien transportiert 

werden. Somit könnten Substanzen, die mit BCRP wechselwirken aller Voraussicht 

nach den Transport von Anthocyanen und Anthocyanidinen über die Blut-Hirn-

Schranke und die gastrointestinale Barriere begünstigen und somit deren 

Bioverfügbarkeit steigern. 

Der zweite Schwerpunkt der vorliegenden Arbeit lag in der Suche nach neuen 

Wirkmechanismen, die sich für eine direkte Modulation der neuronalen 

Signalübertragung durch polyphenolische Beereninhaltsstoffe eignen, im Gegensatz zu 

bereits bekannten nicht-spezifischen antioxidativen Aktivitäten. Als mögliche Effektoren 

kommen hier die Monoaminoxidasen (MAO) A und B, der Hypoxie-induzierbare Faktor 

(HIF), das Proteasom und die Phospholipase A2 (PLA2) in Betracht. 

Einer erhöhten Monoaminoxidase-Aktivität wird schon seit langem eine Rolle in der 

Ätiologie depressiver, Angst- und neurodegenerativer Erkrankungen zugeschrieben. 

Somit könnten Monoaminoxidase-hemmende Stoffe vielversprechende präventive 

Wirkungen auf krankheitsbedingte Verhaltenssymptome und kognitive Abbauprozesse 

ausüben. Für beide MAO-Isoformen zeigten Anthocyane und Anthocyanidine 
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hemmende Wirkungen im niedrigen mikromolaren Bereich, wohingegen sich 

Proanthocyanidine und phenolische Metabolite als weniger effektive Inhibitoren 

herausstellten. Mit Cyanidin und Cyanidin-3-glucosid durchgeführte Untersuchungen 

zur Enzymkinetik gaben Hinweise auf kompetitive Wechselwirkungen von Cyanidin 

bezüglich MAO A. Gemischt kompetitive und nicht-kompetitive Wechselwirkungen 

wurden für Cyanidin bezüglich MAO B, sowie für Cyanidin-3-glucosid hinsichtlich 

beider Isoenzme ermittelt. Somit befürworten diese MAO-hemmenden Eigenschaften 

von Anthocyanen und deren Aglykonen eine Ernährung, die reich an polyphenolischen 

Beereninhaltsstoffen ist, und eröffnen neue Möglichkeiten bei der Prävention 

neuronaler Erkrankungen. 

Zur Beurteilung einer Wirkung von Beereninhaltsstoffen im Hinblick auf die Steigerung 

der zellulären Widerstandsfähigkeit gegenüber oxidativem Stress wurden ferner Effekte 

der Testsubstanzen auf die HIF-Expression untersucht. Die Ergebnisse weisen darauf 

hin, dass Delphinidin aufgrund konzentrationsabhängiger Erhöhung der HIF-

Expression eine Reihe zellulärer Überlebensprozesse einleiten könnte, die durch freies 

Eisen gehemmt werden. Auf diese Weise könnten Anthocyane durch ihre Eisen-

chelierenden Fähigkeiten Neuroprotektion vermitteln. Gallussäure, Cyanidin und 

Heidelbeerextrakt bewirkten ebenfalls eine Induktion der HIF-Expression in 

Neuroblastom-Zellen und gelten somit als weitere Kandidaten, welche die HIF-

abhängige Transkription nachgeschalteter Gene modulieren könnten.  

Die Hemmung der Chymotrypsin-ähnlichen Proteasomaktivität durch die 

Testsubstanzen wurde in HL-60-Zellen untersucht. Dadurch dass das Proteasom unter 

anderem eine Rolle bei der Degradierung fehlgefalteter Proteine und regulatorischer 

Proteine des Zellzyklus spielt, ist dieses Enzym eng eingebunden in Stoffwechselwege 

die möglicherweise das Risiko neurodegenerativer Erkrankungen erhöhen, so 

beispielsweise bei Morbus Parkinson oder Alzheimer. In einem Chemilumineszenz-

Assay erreichten Anthocyane und deren Aglykone IC50-Werte zwischen 7,8 µM 

(Kaempferidinidin und Pelargonidin) und 32,4 µM (Delphinidin). Diese Resultate tragen 

zu unserem Verständnis weiterer möglicher zellulärer Effektoren bei, die 

antiinflammatorische, antioxidative und neuroprotektive Eigenschaften von 

Anthocyanen vermitteln. 

Abschließend wurden die modulierenden Effekte polyphenolischer Beereninhaltsstoffe 

auf die sekretorische Phospholipase A2 (sPLA2) studiert. Die Anthocyanidine Cyanidin, 

Malvidin, Peonidin, Petunidin und Delphinidin hemmten die sPLA2 mit Ki-Werten 

< 18 µM und könnten neuroprotektiv wirken, indem sie inflammatorischen Prozessen 

entgegensteuern. Die geprüften Glykoside erwiesen sich als weniger effektiv. Diese 

Ergebnisse deuten darauf hin, dass Anthocyanidine Einsatz finden könnten bei der 
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Entwicklung von Behandlungsmöglichkeiten für Gehirnerkrankungen, die einhergehen 

mit oxidativem Stress, Veränderungen im Phospholipid-Metabolismus, Akkumulation 

von Lipidperoxiden und Entzündungen, wie Ischemie, Multiple Sklerose, Epilepsie und 

Alzheimer. 

Den dritten Schwerpunkt dieser Arbeit bildete der Sicherheitsaspekt von Anthocyanen 

und strukturverwandten Verbindungen. Obwohl die gesundheitsfördernden 

Eigenschaften von polyphenolischen Beereninhaltsstoffen für eine Nahrungsergänzung 

mit Anthocyan-reichen Fruchtextrakten und funktionellen Lebensmitteln sprechen, sind 

nur begrenzte Daten verfügbar über die Pharmakokinetik dieser Substanzen und über 

mögliche Beeinträchtigungen die als Konsequenz von Wechselwirkungen mit 

Xenobiotika oder anderen Lebensmittelinhaltsstoffen auftreten könnten. Da das 

Cytochrom P450 3A4 (CYP3A4) den Metabolismus etwa 60% aller Medikamente 

kontrolliert, könnte dessen Hemmung die Sicherheit von Arzneimitteln dramatisch 

gefährden. Zudem könnten Inhibitoren des Cytochrom P450 2D6 (CYP2D6) negative 

Effekte hervorrufen und die Anwendung psychoaktiver Arzneimittel einschränken. Die 

durchgeführte Untersuchung möglicher hemmender Effekte polyphenolischer 

Beereninhaltsstoffe auf Cytochrom P450-Enzyme ergab IC50-Werte zischen 12 µM und 

7842 µM hinsichtlich CYP3A4. Dabei nahm die Effektstärke von den Anthocyanidinen 

über die Anthocyane und Proanthocyanidine bis zu den phenolische Säuren ab. 

Bezüglich der Hemmung des CYP2D6-Isoenzyms lagen die IC50-Werte zwischen 

55 µM und > 800 µM. Im Vergleich mit Daten aus früheren Studien über 

Furanocumarine aus Grapefruit waren die hemmenden Eigenschaften der geprüften 

Anthocyane und Anthocyanidine auf Cyrochrom P450-Enzyme 1000- bis 10000-mal 

schwächer ausgeprägt. Diesen Ergebnissen nach zu urteilen, stellen Anthocyane, 

Anthocyanidine, Proanthocyanidine und phenolische Säuren somit nur ein 

eingeschränktes Risiko für Nahrungsmittel-Arzneimittel-Interaktionen dar, die über 

Cytochrom P450-Enzyme vermittelt werden. 
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1 Introduction 
The growing burden of chronic diseases related to aging and neurodegeneration poses 

a major challenge to nutritional strategies for prevention. One such strategy may 

consist in increasing the consumption of plant-derived foods that confer a variety of 

health benefits [1-3], including a reduction in risk for developing Alzheimer’s disease 

[4]. Such benefits have been associated, at least in part, to the occurrence of 

secondary plant metabolites (phytochemicals), in particular polyphenols, which exert a 

wide range of biological activities. While many phytochemicals lack the potency of 

synthetic pharmaceutical drugs, they may still possess long-term physiological effects 

when ingested regularly as part of the diet. Some of the most popular nutritional 

supplements also contain polyphenols such as anthocyanins, proanthocyanidins, 

flavonols, stilbenes, hydroxycinnamates, coumarins, ellagic acid and ellagitannins, 

isoflavones, lignans, etc. [5]. Of these, berry constituents as anthocyanins and 

proanthocyanidins have emerged as powerful neuroprotectants over the last decade 

[6-9].  

However, limited data exist on anthocyanin bioavailability. Especially information on 

central nervous system bioavailability is limited and investigations with respect to 

anthocyanin transport across the blood-brain barrier are scarce.  

Among the multilevel bioactivities of anthocyanins, their aglycones and phenolic 

metabolites count neuroprotection and neurorescue mechanisms. Specifically, these 

compounds may reduce oxidative stress and exert antiinflammatory effects by 

modifying signal transduction and, ultimately, central nervous plasticity [10].  

Although results from in vitro and animal studies advocate supplementation with 

anthocyanin-rich fruit extracts in the light of multiple health-promoting effects, limited 

data exist on anthocyanin metabolism and on possible adverse effects as a 

consequence of food–drug interactions. As both foods and nutritional supplements may 

induce or inhibit drug-metabolizing enzymes [11,12], more information on possible 

interactions is essential to better estimate the safety of dietary anthocyanins and 

related compounds.  

The present thesis focuses on berry polyphenols’ bioavailability, neuroprotective 

mechanisms and safety. Specifically, in vitro interactions with ABC transporters, effects 

on activities of monoamine oxidases A and B, proteasome and phospholipase A2, 

expression of hypoxia inducible factor and CYP3A4 and CYP2D6 activities are 

addressed.  

On the grounds of positive effects of grapes, strawberries and bilberries in rodent 

studies of neuroprotection [13-19], these fruits’ major polyphenolic constituents, namely 
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anthocyanins and proanthocyanidins, were focused in the present thesis. Moreover, 

test compounds were selected so as to include structurally diverse and yet common 

representatives abundant in dietary sources, such as malvidin-glucoside (malvidin-glc) 

from red grapes and cyanidin-glc from elderberries and blackberries [20-22]. Finally, 

phenolic acids were examined as potential in vivo anthocyanin metabolites [23,24]. 
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2 State of knowledge 

2.1 The family of flavonoids 
Plant polyphenols comprise a large variety of compounds that may be grouped by their 

carbon skeleton: Major classes include phenolic acids, flavonoids and the less common 

stilbenes and lignans [25]. 

Of these, flavonoids are the most abundant polyphenols in our diets [26]. They are 

constituents of most vegetables and fruits, various seeds, nuts, grains, spices, tea, and 

medicinal plants [27]. Flavonoids comprise approximately 9,000 naturally occurring 

compounds, most of which are found as glycosylated derivates in plants [28]. 

Chemically, the term “flavonoid” is generally used to describe a broad collection of 

natural products that include a C6-C3-C6 carbon framework. More specifically, they 

share a phenylbenzopyran functionality, consisting of two aromatic rings A and B and a 

heterocyclic C ring [29]. Except for isoflavonoids and neoflavonoids, the flavan (2,3-

dihydro-2-phenylbenzopyran) represents the basic flavonoid structure (figure 2-1). 
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Figure 2-1 Basis flavan structure. 
 
 
Based on the degree of oxidation and saturation of the heterocyclic C-ring [26], 

flavonoids may be further devided into the six subclasses, i.e. flavanones, flavones, 

flavonols, isoflavones, flavan-3-ols and anthocyanins [30]. Varying patterns of 

hydroxylation, methylation, glycosylation and acylation with phenolic acids plus the 

occurrence of stereoisomers [25] and polymers [31] allow for significant structural 

diversity of flavonoids. 

Flavonoids are synthesized via the phenylpropanoid metabolic pathway. In the 

beginning, p-coumaroyl-CoA is produced from the amino acid phenylalanine and 

malony-CoA is generated during carbohydrate metabolism. Both components are 

merged to yield a chalcone, the flavonoid backbone. Conjugate ring-closure of 

chalcones leads to the class of flavonoids. Following a series of enzymatic 

modifications, further subclasses of flavonoids are formed (figure 2-2) [30,32-36]. 
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Carbohydrates Malonyl-CoA (3x) p-Coumaryl-CoA Phenylalanine 

CHS

Chalcone 

 
 
Figure 2-2 Pathways and basic structures involved in flavonoid biosynthesis: For 
proanthocyanidins, procyanidins B1 (2,3-cis configuration of lower flavan-3-ol unit) and B2 
(2,3-trans configuration of lower flavan-3-ol unit) are shown exemplarily. ANR, anthocyanidin 
reductase; ; ANS, anthocyanidin synthase; AT, acyltransferase; CHI, chalcone isomerase; CHS, 
chalcone synthase; CoA, coenzyme A; DFR, dihydroflavonol 4-reductase; F3’H, flavonoid 
3’-hydroxylase; F3’5’H, flavonoid 3’,5’-dihydroxylase; FLS, flavonol synthase; FNS, flavone 
synthase; GT, glycosyl transferase; IFS, isoflavone synthase; LAR, leucoanthocyanidin 
4-reductase; MT, methyltransferase, * chiral centers [30,32-36]. 
 
 
Within the great structural variety of flavonoids, the current work focused on two 

subclasses of flavonoids, namely anthocyanins and proanthocyanidins. 

The term anthocyanin is derived from “anthos” and “kyanos”, Greek for “flower” and 

“blue”, respectively, and was first introduced by Ludwig C. Marquart in 1835 [37]. 

Today, over 500 different anthocyanins have been isolated from plants [38]. 

Anthocyanins confer cyanic colors ranging from salmon pink through red and violet to 

dark blue to many flowers, fruits and leaves [38]. With respect to dietary sources, 

anthocyanins are particularly abundant in berries, grapes, and red cabbage among 

other foodstuffs. When expressed per 100 g fresh weight, approximately 1,480 mg of 
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anthocyanins may be obtained from chokeberries, 1,380 mg from elderberries, 687 mg 

from black raspberries [39], 588 mg from bilberries [40], and 322 mg from red cabbage 

[39]. 

The average dietary per capita and day consumption of anthocyanins was originally 

estimated at 180 to 215 mg in Western societies [41]. More recent calculations from 

U.S. American surveys have concluded to a daily intake of only 12.5 mg [39], but the 

actual amount has been shown to vary considerably with sociodemographic and life-

style factors [42], plus the seasonal availability of anthocyanin-rich fruits and 

vegetables [39]. 

Chemically, anthocyanins are water-soluble, glycosylated polyhydroxyl and 

polymethoxyl derivatives of flavylium salts. The variety of different glycosyl (i.e., mono-, 

di- and trisaccharides based on different sugars) and acyl constituents (mainly the 

phenolic acids p-coumaric, caffeic, ferulic and sinapic acids) contributes to the large 

number of anthocyanins in nature [43], while the aglycone, named anthocyanidin, is 

limited to only few structural variants, namely delphinidin, cyanidin, petunidin, 

pelargonidin, peonidin and malvidin [44] (figure 2-3). 
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Figure 2-3 Structures of the most common anthocyanidins. 
 
 
Proanthocyanidins are condensed tannins that are converted to colored anthocyanidins 

on acid hydrolysis [45]. The wide presence of proanthocyanidins in plants makes them 

an important part of the human diet, and specifically of fruits, sorghum, beans, nuts, 

cocoa, and wine [46]. By forming complexes with salivary proteins, proanthocyanidins 

account for the astringent character of fruits and beverages and for the bitterness of 

chocolate [47]. 

Proanthocyanidin (PA) contents of dietary sources per 100 g fresh weight may amount 

to 330 mg for wild blueberries, 660 mg for chokeberries, 500 mg for hazelnuts, 790 mg 

for Pinto beans, 1,630 mg for unsweetened chocolate, 1,900 mg for sorghum, 

3,500 mg for grape seeds, and 8,100 mg for cinnamon. Red wine and grape juice may 

yield concentrations of 310 and 524 mg per liter, respectively [46]. 
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Information on the daily intake of oligomeric and polymeric flavan-3-ols is scarce due to 

the lack of appropriate analytical methodology and commercially available standards 

for these oligomers. Discrepancies in PA contents have also arisen from differences in 

cultivars [48], in food processing, in ripening of fruits and vegetables, and in the parts of 

fruits chosen for analysis. As a result, dietary PA intake may range from several tens to 

several hundreds of mg per day [47]. With these uncertainties in mind, recent surveys 

estimate the intake in the US population at 54 mg per day, with tetramers and PAs of 

higher degrees of polymerization (DPs) amounting to 80% [46].  

Chemically, PAs are oligomeric or polymeric flavan-3-ols with elementary units linked 

by C-C and occasionally C-O-C bonds [49]. They differ structurally according to the 

number of hydroxyl groups, the stereochemistry of the asymmetric carbons of the 

heterocycle, the nature of the interflavan bond, the degree of polymerization [48], and 

acylation and glycosylation patterns [50]. 

The most common PAs in food are procyanidins (pcs) with a 3',4'-dihydroxy 

substitution on the B-ring, followed by  prodelphinidins (pds) with a 3',4',5'-trihydroxy 

substitution, which can also occur as mixed pc/pd polymers [51]. The three carbons 

C2, C3 and C4 of the flavan-3-ol heterocycle are asymmetric and may occur in different 

configurations. With some very rare exceptions, the configuration of C2 is R [48]. The 

stereochemistry of the C2-C3 linkage may be either trans (2R, 3S) or cis (2R, 3R) as in 

(+)-(gallo)catechin and (-)-epi(gallo)catechin polymers, respectively. The interflavan 

bond at C4 is always trans with respect to the hydroxy group at C3 [47]. The most 

common interflavanol linkages are C-C bonds established between the C4 of one 

flavanol unit and the C8 or C6 of another. The respective PAs are referred to as B-type 

(dimeric) and C-type (trimeric) PAs [49]. 

Degrees of polymerization for proanthocyanidins vary markedly. With respect to apple 

cider, DPs have been reported in the range of 7 to 190 [52] whereas DPs of up to 28 

have been described for grape seed extract [53]. 

Procyanidins B1 and B2 represent C4-C8 linked (-)-epicatechin-(+)-catechin and 

(-)epicatechin-(-)-epicatechin dimers (figure 2-2). They are considered the main dimeric 

proanthocyanidins in dietary PA sources [47], with procyanidin B1 occurring in grapes, 

sorghum and cranberries and procyanidin B2 in apples, cocoa beans and cherries, 

among others [54]. 

 

 



2 State of knowledge 7
 

2.2 Stability, bioavailability and metabolism 

2.2.1 Anthocyanins 

2.2.1.1 Anthocyanin stability 

For anthocyanins’ protective action in human health to be fully understood, their 

stability, bioavailability and bioactive metabolites must be known. Anthocyanins are not 

stable in aqueous solutions and undergo rapid, pH-dependent, reversible 

transformations. They may exist in at least 4 different pH-dependent structural 

isoforms, namely flavylium cations, hemiketals, quinoidal bases, and chalcones, arising 

at pH values of 1 to 3, 3 to 5, 6 to 8 and 7 to 8, respectively [55].  

 
Flavylium ions Hemiketals

 
Figure 2-4 Hypothetical pH-dependent structural changes and degradation of cyanidin-
glycosides [36,55-62]. 
 
 
Regarding pH-dependent stability of black currant anthocyanins in aqueous solutions, a 

local minimum stability was detected at pH 3.8 and a rapid decrease in stability at 

pH > 4.5 [60]. Moreover, upon heating to 95 °C at pH 3.5, anthocyanin half lives of 2 to 

3 h were observed [61]. In phosphate buffer and cell culture media at physiological pH 

and 37 °C, anthocyanins and anthocyanidins were shown to decompose 
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spontaneously, generating phloroglucinol aldehyde and their corresponding phenolic 

acids such as gallic acid, syringic acid, vanillic acid and p-hydroxybenzoic acid 

[55,57,59,63]. Glycosides were more stable than aglycones, suggesting that the sugar 

moiety may prevent degradation of the highly unstable α-diketone, and the number of 

hydroxyl and methoxy substituents was proportional to the rate of degradation 

[55,57,59]. 

 

Using an in vitro model of gastro-intestinal break-down, anthocyanin concentrations did 

not change after pepsin digestion. Following pancreatic digestion and dialysis, serum 

available anthocyanins were estimated at 15 to 21% and colon-available anthocyanins 

at 52 to 67% with respect to frozen cherries [64].  

In vitro incubation of anthocyanins with human faecal microflora to simulate microbial 

and chemical degradation generated corresponding phenolic acids, 3-monoglucoside 

intermediates for diglucosides [57], plus small amounts of aglycone [56], suggesting 

microbial degradation via the aglycone [65]. However, generated phenolic acids did not 

completely account for degenerated parent anthocyanins and phenolic acids were not 

or only slightly degraded to further metabolites [56,57].  

A similar approach using pig caecum microflora confirmed generation of aglycones, 

phenolic acids, aldehydes and small amounts of aglycones upon anthocyanin 

incubations. While a low rate of chemical degradation to phenolic acids, but not 

phloroglucinol aldehyde, was observed for anthocyanins, anthocyanidins exhibited a 

high rate of chemical degradation generating phenolic acids and phloroglucinol 

aldehyde. Therefore it cannot be distinguished whether ring fission of anthocyanidins 

was caused primarily by microbial cleavage or by chemical decay. For chemically quite 

stable phenolic acids microbial degradation was observed and for phloroglucinol 

aldehyde chemical and microbial degradation may occur [58].  

 

With respect to animal and human studies administrating complex polyphenol mixtures, 

phenolic acid metabolites may also derive from metabolism of other flavonoids and 

ascribing them to anthocyanin degradation is speculative. However, some data on 

anthocyanin stability in vivo can be obtained from animal feeding studies. Cyanidin-

glycosides from black raspberry were shown to be relatively stable in the gastric and 

small intestinal lumens of fasted rats, with 75-79% of administered anthocyanins being 

recovered from stomach and small intestine 120 min post administration. Cyanidin 

aglycone was identified in stomach and small intestine contents, suggesting 

involvement of acidic hydrolysis, brush border membrane enzymes and microbial 
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activity. Since protocatechuic was not detected, phenolic acids may be promptly 

degraded or primarily produced in the large intestine [66].  

When rats were fed with raspberry juice by gavage, after 1 h 32% and 59% were 

recovered from stomach and ileum, respectively, after 2 h 86% were found in ileum, 

after 3 h 40% and 7% were detected in ileum and other parts of the digestive tract, 

respectively, after 6 h 2% were identified in caecum and colon and after 24 h 1.5% 

were excreted with faeces. This suggests that significant amounts pass into the large 

intestine where degradation occurs due to the action of colonic bacteria [67]. In pigs, 

42% of administered anthocyanins were recovered in the gastrointestinal tract, 

primarily in the ileum, caecum and colon [68], with anthocyanin stability during gut 

passage greatly depending on sugar moieties [69]. 

 

2.2.1.2 Anthocyanin bioavailability and metabolism 

Bioavailability may be defined as the proportion of a nutrient or bioactive component 

that is absorbed from the gastrointestinal tract and that reaches systemic circulation, as 

characterized by plasma concentrations [70]. More generally, bioavailability may be 

defined as the extent to which a compound becomes available at the site of action [71], 

and may be further specified in terms of metabolism, excretion, utilisation and efficacy 

[70]. 

Basic information on anthocyanin bioavailability has derived from in vitro models. Thus 

it was demonstrated that blueberry and red grape skin anthocyanins can cross a model 

of the absorptive intestinal epithelium, albeith at an efficacy of only 1 to 4% [72,73]. 

Ethanol and chronic anthocyanin exposure may increase anthocyanin transport [72]. 

However, not all studies have been able to confirm transport across the monolayer, 

implying that additional factors may need to be considered, e.g. cellular metabolism 

and translocation across the basolateral membrane [74]. Comparatively high rates of 

anthocyanin absorption were observed in mouse jejunal tissues and in duodenum, but 

no uptake from ileum or colon tissues was detected [75]. 

Results from in vivo studies are less conclusive owing to marked interindividual 

variability.  
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Figure 2-5 Absorption and bioavailability of anthocyanins in animals and humans. Blue letters 
denote evidence from human studies. A, anthocyanin. 
 
 
Upon administration of black raspberry anthocyanins to rats by stomach intubation, 

total anthocyanins in the gastric lumen and tissue steadily decreased, whereas 

anthocyanin contents in the small intestinal lumen and tissue were highest at 120 min 

before decreasing. At 120 min, 7.5% of administered anthocyanins were found in small 

intestinal tissues, but anthocyanins were neither extensively delivered into the blood 

nor cumulatively retained [66].  

Animal studies have revealed that anthocyanins are absorbed mainly in their intact 

glycosidic forms from the stomach and the small intestine [76-78]. Plasma levels of 

anthocyanins are governed by gastrointestinal uptake process, tissue distribution, 

degradation rate, and excretion to urine and bile, among other factors. Plasma 

concentrations peak between 15 and 30 min after oral uptake. With few exceptions, 

maximal plasma concentrations do not exceed nanomolar ranges and less than 1% of 

administered anthocyanins are found in urine, mainly as unmetabolized forms [70]. 

Moreover, anthocyanins, methylated forms and further metabolites were recovered 

from rat bile within 20 min, suggesting that liver metabolites are preferentially 

eliminated by bile [77]. Within 4 h post intravenous administration of anthocyanins, only 

31% were recovered from urine and 13% from bile, which implies that considerable 

decomposition and tissue accumulation occurs [79]. Following 12 to 15 days of feeding 
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an anthocyanin enriched diet, anthocyanins distributed to rat stomach, jejunum, liver, 

kidney, heart, adipose, bladder, prostate, testes and brain tissues. In addition to native 

forms, methylated forms were identified in urine, plasma, jejunum, kidney, liver, 

adipose and bladder tissues, glucuronides were identified in urine, plasma, jejunum, 

liver, kidney, heart, prostate and testes tissues, and aglycones in jejunal tissues and 

plasma, suggesting the involvement of catechol-O-methyl-transferases, UDP-

glucuronosyl transferases, and β-glucosidases [80,81]. Glucuronides were also found 

as pelargonidin main metabolites in rat plasma, urine, kidney, liver and lung, while 

p-hydroxybenzoic acid was identified as a phenolic metabolite in plasma and urine [82]. 

In rats receiving cyanidin-glc per stomach intubation, protocatechuic acid was detected 

in an eight-fold concentration in plasma compared to the native anthocyanin. Moreover, 

it was demonstrated that in rat plasma protocatechuic acid can only be efficiently 

generated from cyanidin and not from cyanidin-glc. Therefore, phenolic acids produced 

from anthocyanins or their aglycones in the intestine may be absorbed or aglycones 

may be degraded due to their instability in plasma [23]. In pigs receiving a blueberry 

supplemented diet for four weeks, anthocyanins were shown to accumulate in liver and 

eye tissues, and substances were not detectable in plasma or urine following fasting for 

18-21 h. Anthocyanin accumulation was even shown for animals fed the basal diet, 

implying that low levels of anthocyanins may be highly bioavailable and well-retained in 

tissues [83]. Finally, absorption and metabolism of anthocyanins may be substantially 

determined by their aglycone structures and sugar moieties [84,85]. 

 

About 50 studies have been conducted on humans with respect to anthocyanin 

bioavailability, which are tabularized in the appendix. Inter-study comparisons, 

however, are complicated by differences in raw materials, administered doses, study 

conditions and lengths, and parameters of interests, e.g. the occurrence of metabolites 

and degradation products. As anthocyanin sources served blueberries, elderberries, 

chokeberries, boysenberries, lingonberries, blackberries, black raspberries, black 

currants, strawberries, cranberries, acai berries, red grapes, hibiscus, blood oranges, 

red cabbage, purple carrots, purple sweet potatoes and red onions, and among 

administration forms counted native fruits, juices, concentrates, powders, extracts and 

filled capsules. With few exceptions, single doses were administered, usually ranging 

from three-digit mg amounts to several grams of anthocyanins. It has consistently been 

observed that aglycone structures, sugar moieties, acylation patterns, concentrations 

and sources of individual compounds and coadministration of other food compounds 

impact the absorption, metabolism and excretion of anthocyanins. Moreover, great 

interindividual variations have been found.  
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Some indication for the fate of anthocyanins upon oral uptake is given by studies on 

ileostomy patients. Substances recovered from ileostomy fluids would reach the colon 

under physiological circumstances. Recovery rates of anthocyanins after the oral 

ingestion of lowbush blueberries ranged between 28 and 85% [86] and upon 

consumption of raspberries between 6 and 93% [87]. All anthocyanins passed the 

small intestine within 6-8 h after consumption and aglycones [86], sulfates or 

glucuronide metabolites were not identified [87]. Regarding sugar moieties, glucosides 

seem to be metabolized or absorbed most extensively, followed by galactosides (gal) 

and arabinosides (ara). In terms of the aglycones, cyanidin and delphinidin glycosides 

disappeared from the small intestine to a larger extent compared to petunidin and 

malvidin glycosides [86].  

Maximal anthocyanin plasma concentrations are achieved between 0.5 and 4 h after 

ingestion, but primarily between 1 and 2 h, advocating a rapid absorption from the 

stomach. Peak plasma concentrations range from one-digit up to three-digit nanomolar 

values and anthocyanin clearance from circulation occurs readily with plasma half-lives 

of 1.3 to 7 h. Predominantly native glycosylated anthocyanins are detected in plasma. 

As exceptions, small amounts of methylated derivates were identified after 

administration of chokeberry extract [88,89], cyanidin aglycone was discovered upon 

elderberry extract treatment [90,91], and glucuronidated anthocyanins were found upon 

intake of chokeberry extract [88,89] and red wine extract [92]. After strawberry 

consumption, glucuronides even constituted the main anthocyanins recovered from 

plasma [93]. Upon blood orange consumption, 44% of ingested anthocyanins were 

found as protocatechuic acid in plasma [24]. With respect to phenolic metabolites, 

however, precursor molecules other than anthocyanins have to be considered as well. 

Although correlations between plasma bioavailability and structural features are 

inconclusive, nonacylated forms appear to become more efficiently absorbed than 

acylated anthocyanins [24,94-96]. 

It was also shown that cereal and rice cake can delay and cream and milk can 

additionally decrease plasma absorption [93,97-99], whereas phytic acid was able to 

enhance and increase anthocyanin absorption [100]. Moreover, it was demonstrated 

that with rising doses ingested, anthocyanin plasma bioavailability may become 

reduced as well as increased [95,98,101,102].  

While the majority of studies describe that less than 0.1% of ingested anthocyanins are 

recovered from urine, 10 studies find values between 0.1 and 5%. Maximal urinary 

concentrations are detected between 0.5 and 12 h, and most frequently between 2 and 

4 h. In contrast to plasma results, many studies detect the occurrence of different 

metabolites along with the native glycosylated forms. Anthocyanin glucuronides are 
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described in 13 studies, constituting up to 90% of excreted anthocyanins [103,104]. 

Moreover, methylated forms are reported in eight studies, five surveys find aglycone 

forms, three trials discover sulphated anthocyanins, and oxidized forms and loss of 

hydroxyl groups are described as well. This suggests that kidney may be a site of 

extensive anthocyanin metabolism. Distinct preferences for urinary excretion of certain 

anthocyanin chemical structures have not been observed, except of a higher 

elimination of nonacylated compared to acylated forms [95,105]. With respect to 

influence of other food ingredients, urinary elimination was delayed by cream [93], 

reduced and delayed by sucrose [106], increased by phytic acid [100], and no influence 

was described for rice cake [98]. Similar to plasma findings, contrary results have been 

described on the effect of the administered dose on the percent anthocyanin excretion, 

with higher anthocyanin doses giving rise to increased [98], unchanged [103,107] or 

decreased percent excretion values [95,101,105]. As concerns faecal elimination, 

along with 1.9 nmol/g native blood orange anthocyanins the 150-fold amount of 

protocatechuic acid was recovered, which may at least in part derive from anthocyanin 

precursors [24]. Thus, a majority of liver metabolites may be excreted with bile before 

entering systemic circulation. 

 

2.2.1.3 Anthocyanin brain bioavailability 

Brain bioavailability of anthocyanins is essential for in vivo neuroprotection and is 

determined to a large extent by the blood-brain barrier (BBB). The blood–brain barrier 

is formed by the endothelium of brain microvessels under the inductive influence of 

associated cells, especially astrocytes. Features that distinguish the brain endothelium 

from that of other organs include complex tight junctions, a low density of pinocytotic 

vesicles, and the expression of specific uptake and efflux transport systems and 

metabolic enzymes [108,109]. The blood-brain barrier ensures that neurotoxic 

metabolites are excluded from the brain, but allows essential nutrients to pass across, 

and presents a major hurdle that must be overcome for a potential therapeutic 

substance targeting a neurological condition [110]. 

Indications for anthocyanin brain bioavailability are given from studies on endothelial 

cell lines. Upon exposure times exceeding 6 h, cyanidin-rutinoside (rut) and 

pelargonidin-glc were taken up by mouse and rat brain endothelial cells. Moreover, 

both anthocyanins crossed an in vitro model of the BBB [111], suggesting transcellular 

permeability of anthocyanins. 

In vitro evidence substantiates anthocyanin permeation through the blood-brain barrier. 

In mice, a single oral dose resulted in trace amounts of anthocyanins in brain tissue 
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[112]. Anthocyanidins may cross the blood-brain barrier as well, as pelargonidin 

aglycone was detected in brain after oral administration of pelargonidin on rats [82]. 

Anthocyanins were shown to reach the rat brain within 30 min after administration. 

Following a 15 day anthocyanin supplemented diet, native anthocyanins plus one 

methylated form were recovered in brain. Cyanidin-glc brain concentration (210 pmol/g) 

even exceeded plasma concentration (150 pmol/ml), suggesting anthocyanin 

accumulation in brain tissues [80]. A study on anesthetized rats corroborated these 

findings. Within few minutes, anthocyanins reached the brain and were detected at 

concentrations averaging 192 ng/g tissue. Malvidin-glc concentrations in brain, ranging 

from 0 to 236 ng/g tissue, were similar to plasma concentrations ranging from 23 to 

380 ng/ml, and its brain p-coumarate ester concentrations of 0 to 357 ng/g even 

exceeded plasma concentrations of 0 to 34 ng/ml [113]. Correlation of plasma and 

brain levels were also reported in a study on rats applying a 3 months blueberry 

supplemented diet. In plasma, 480 pmol/ml anthocyanins were found, whereas 

hippocampus and cortex concentrations amounted to 450 and 460 pmol/g tissues, 

respectively [19]. Moreover, a variety of anthocyanins were detected in rat cerebellum, 

cortex and hippocampus after a 8-10 week blueberry-enriched diet, including 

glucosides, galactosides and arabinosides of cyanidin and malvidin, plus peonidin-ara 

and delphinidin-ara [114].  

An accumulation of anthocyanins was also confirmed for pigs receiving a blueberry 

enriched diet for four weeks. Although no anthocyanins were found in plasma and urine 

after pigs were fasted for 18-21 h, they were identified in cortex and cerebellum at 0.88 

and 0.66 pmol/g tissue [83]. Similar anthocyanin concentrations were detected in pig 

cortex, cerebellum, midbrain and diencephalon after an eight week blueberry 

supplementation and 18-21 h fasting, suggesting a longer residence time of 

anthocyanins in brain tissues compared to plasma.  

As structural features of anthocyanins may be major determinants for compounds’ 

stability, metabolism and brain uptake, they may finally affect anthocyanin brain 

bioavailability. Malvidin-glc and malvidin-gal were the predominant anthocyanins found 

in pig brains, which may be due to preferential brain uptake, relative stability or 

additional generation from delphinidin and petunidin glycosides catalyzed by liver or 

brain catechol-O-methyltransferases. Furthermore, glucuronides were identified in all 

brain regions investigated, reaching approximately one tenth of the levels observed for 

their parent glycosides, with delphinidin glucuronide being the most prevalent 

conjugate. Surprisingly, various anthocyanins and glucuronide metabolites were 

detected in all four brain regions in pigs receiving the control diet, being supportive of a 

high brain bioavailability of anthocyanin traces [115]. 
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2.2.2 Proanthocyanidins 

2.2.2.1 Proanthocyanidin stability 

In terms of proanthocyanidin gastrointestinal stability, inconclusive results derive from 

in vitro and in vivo studies. Incubation of cocoa PAs (tetramers to hexamers) with 

simulated gastric juice in vitro showed that PAs are hydrolyzed to mixtures of 

epicatechin monomers and dimers [116]. Further in vitro fermentation of purified B-type 

proanthocyanidin dimers with human microflora yielded phenolic acids as main 

metabolites. Among those count 3,4-dihydroxyphenylacetic acid, 

3-hydroxyphenylacetic acid (3-HPA), 4-hydroxyphenylacetic acid (4-HPA), 3-(3-

hydroxyphenyl)propionic acid (3-HPP), plus various hydroxylated phenylvaleric acids 

and phenylvalerolactones, whereas flavan-3-ol monomers (+)-catechin and 

(-)-epicatechin were not formed by microbial degradation [117]. Similarly, in vitro 

degradation of PAs with DPs of 4 and higher by human colonic microflora generated 

4-HPA, 3-HPA, 3-phenylpropionic acid, 3-HPP, 3-(4-hydroxyphenyl)propionic acid 

(4-HPP) and 5-(3-hydroxyphenyl)valeric acid (3-HPV) [118]. 

In vivo, upon oral administration of grape seed proanthocyanidin extract (GSPE) to 

rats, no indication for PA depolymerization was given [119]. In accordance, 

proanthocyanidins up to pentamers from cocoa beverage were demonstrated to be 

stable during stomach transit in humans. This implies that cocoa PAs reach the 

intestine intact and may be degraded to metabolites by the intestinal microflora [120]. 

 

2.2.2.2 Proanthocyanidin bioavailability and metabolism 

Bioavailability is a major requirement for native proanthocyanidins or their metabolites 

to exert physiological effects on humans. Since PAs in general are very high molecular 

weight molecules, it is unlikely that they are absorbed as intact native forms [48].  

In vitro absorption of PAs was investigated with a model of the absorptive intestinal 

epithelium. While PA dimers and trimers had similar permeability coefficients, 

permeability of PAs with a DP of 6 was about 10 times lower [121]. 

In vivo, PA dimers and trimers were found in rat plasma after administration of GSPE 

[122], as were orally administered proanthocyanidins B2 and B3 [123]. A further study 

detected PA dimers, trimers, tetramers and pentamers in rat plasma, peaking at 2 h. 

Interestingly, polymeric PAs were shown to favor absorption of PA oligomers without 

being absorbed themselves [124]. Moreover, ex vivo perfusion of rat jejunum with B2 

and B5 epicatechin dimers led to high levels of unmetabolized and unconjugated 
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epicatechin on the serosal side of enterocytes, suggesting an energy-dependent 

cleavage during transfer [125].  

PA dimers and trimers were also identified in rat urine after GSPE consumption [119], 

as were proanthocyanidin B2, epicatechin and 3’-O-methyl-epicatechin in plasma and 

urine after administration of proanthocyanidin B2 [126]. Further it was demonstrated 

that the degree of polymerization exerts a major impact on PA degradation in rats, with 

higher pds leading to less metabolites identified in urine. Among main metabolites 

counted vanillic acid, p-hydroxybenzoic acid, 3-HPP and 3-hydroxycinnamic acid 

(3-HC) with respect to proanthocyanidin B3, and 3-HPP, 3-HPV and 3-HC with respect 

to C2 and higher polymers [127]. 

Contrary results were obtained from studies finding neither parent PAs, nor conjugates 

or monomers in rat plasma or urine upon administration of a diet supplemented with 

dimeric and trimeric PAs or GSPE [127,128]. These findings suggest that PAs are not 

hydrolyzed into monomers in the rat stomach or intestine. In line with these results, 

only trace amounts of PA metabolites were detected in rat colon upon GSPE feeding, 

and PAs were excreted in faeces without any indications for depolymerization [119].  

In humans, only dimeric PAs have been detected in plasma. Proanthocyanidin B2 was 

identified in human plasma 0.5 h after cocoa consumption, yielding peak 

concentrations of 41 nM and 100 nM after 2 h [129,130], and B1 was detected in 

human serum 2 h after GSPE intake at 11 nM [131]. Potential metabolites cannot 

conclusively be assigned to proanthocyanidin precursors, since only complex flavonoid 

mixtures have been administered and phenolic acids identified may also derive from 

other polyphenols [132,133]. 

 

2.2.2.3 Proanthocyanidin brain bioavailability 

In terms of proanthocyanidin brain bioavailability, available data are scarce. While 

passive diffusion of substances through the BBB is unlikely due to their size, crossing 

mediated by active transporters has not been investigated to date. Upon oral 

administration of epicatechin to rats, a study reported the presence of the epicatechin 

glucuronide and 3'-O-methyl epicatechin glucuronide in the rat brain tissue [134], 

suggesting that proanthocyanidin metabolites found in plasma may be further 

candidates to pass the blood-brain barrier. 
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2.2.3 Transport theories 
Anthocyanins are unique compared with other flavonoids in that they are absorbed 

intact as glycosides, although the mechanism of absorption is not known. Since 

passive diffusion is unlikely due to their molecule size and charge, carrier mediated 

transcellular transport may be hypothesized [135]. 

Bilitranslocase, an organic anion membrane carrier, is proposed to be involved in 

anthocyanin absorption, since uptake of malvidin-glc into human endothelial cell 

monolayers was inhibited with impaired bilitranslocase function [136]. Moreover, 

anthocyanins appeared as competitive inhibitors of bilitranslocase transport activity in 

membrane vesicles. Therefore, it is hypothesized that at the gastric level interaction 

with bilitranslocase may promote anthocyanin transport from the intestinal lumen into 

the epithelial layers of the gastric mucosa, favoring their transfer to the portal blood, 

and at the hepatic level from the portal blood into liver cells [137]. Since bilitranslocase 

activity was also competitively inhibited by malvidin-glc in kidney membrane vesicles, 

anthocyanin uptake from blood into kidney tubular cells is likely to be mediated by 

kidney bilitranslocase as well [138]. A bilirubin-binding motif identified in bilitranslocase 

has also been found in the central nervous system (CNS), advocating that 

anthocyanins may enter the brain by means of a carrier similar to bilitranslocase 

[80,139]. This hypothesis is also supported by the fact that anthocyanin tautomers of 

anionic quinoidal bases at physiological pH values meet structural requirements for 

bilitranslocase substrates [137]. 

Further evidence for possible mechanisms of absorption is given by a study applying a 

Caco-2 monolayer as a model of the absorptive intestinal epithelium. Enhancement of 

anthocyanin transport upon preincubation with anthocyanins raises the hypothesis that 

anthocyanins may interfere with the transporters responsible for their own transport. 

While sodium-dependent glucose cotransporter 1 (SGLT1) and facilitative glucose 

transporter 5 (GLUT5) expression did not change, anthocyanins increased facilitative 

glucose transporter 2 (GLUT2) expression by 60%. Moreover, anthocyanins were 

demonstrated to decrease glucose uptake, in contrast to an aglycone, suggesting a 

competition between glucose and anthocyanins for GLUT2 transport rather than 

glucose cotransport [72]. These in vitro findings are in line with results of a human 

bioavailability study, showing that sucrose can lead to a reduced and delayed excretion 

of anthocyanins upon elderberry juice consumption [106]. Nevertheless, transport of 

anthocyanins across Caco-2 monolayers was not efficient [72,73] or not observed at all 

[74]. Possible explanations derive from quercetin-glc transport studies across Caco-2 

monolayers. Quercetin-glc was absorbed across the apical membrane, but 

accumulated within cells without further translocation to the basolateral side [140]. 
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Subsequently, it was demonstrated that apical multidrug resistance-associated 

protein 2 (MRP2) mediated quercetin-glc efflux, thus limiting absorption across the 

monolayer [141].  

Accordingly, studies addressing possible mechanisms of anthocyanin transport indicate 

that permeability of the intestinal barrier and BBB for anthocyanins may also be 

affected by efflux transporters expressed at the endothelial surfaces. Efflux 

transporters of the ATP-binding cassette (ABC) gene family are major determinants of 

drug distribution to, and elimination from the CNS, of intestinal absorption, and of 

hepatobiliary excretion [142,143]. Localized in the apical membranes of BBB 

endothelial cells, enterocytes and hepatocytes [144,145] (figure 2-6), they mediate the 

active extrusion of nutrients, toxins, drugs and many metabolites back into the capillary 

lumen and intestine [146-150]. Among ABC efflux transporters count the multidrug 

resistance protein 1 (MDR1, P-glycoprotein) and the breast cancer resistance protein 

(BCRP). Both are prominently expressed in organs important for absorption (small 

intestine), distribution (placenta and BBB) and elimination (liver, kidney, small intestine) 

of drugs [151,152], and are also found in several tumors [153,154]. 

Therefore, further investigations are demanded to establish possible roles of ABC 

efflux transporters in poor anthocyanin absorption and anthocyanin brain bioavailability. 
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Figure 2-6 Localization of ABC transporters MDR1 and BCRP in intestinal epithelial cells and 
brain capillary endothelial cells [144,145,147,148,152]. 
 
 
More recent research has demonstrated that in addition to phase I and II metabolism, 

transport mechanisms are critical lines in xenobiotic defense [155]. Thus, ABC 

transporters not only limit the oral availability of xenobiotics, but may cause food-drug 

interactions depending on the presence of inducers or inhibitors of drug transport. 

Specific information on anthocyanins’ potential to interact with ABC transporters should 

therefore help to gauge the likelihood of adverse effects from dietary intake of berry 

products and related nutritional supplements [156-158]. 
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2.3 Health benefits of anthocyanins and 
proanthocyanidins 

2.3.1 General health benefits 

2.3.1.1 Clinical and preclinical observations 

Beyond the neuroprotective effects that have been ascribed to anthocyanins and 

proanthocyanidins, berry constituents may possess additional functionalities, e.g. in 

preventing cardiovascular disease. Prospective studies have reported statistically 

significant inverse associations between flavonoid intake and the incidence of 

cardiovascular disease or mortality [159-161]. With respect to anthocyanins, a 

blueberry-enriched diet effectively prevented myocardial infarction in rats [162]. In 

atherosclerotic patients with carotid artery stenosis or coronary artery disease, 

pomegranate juice and red grape juice supplementation have helped reduce 

endothelial dysfunction, systolic blood pressure and stress-induced ischemia [163-166]. 

In a prospective study on more than 34,000 postmenopausal women, significant 

inverse associations between anthocyanin intake and coronary heart disease, 

cardiovascular disease and total mortality have emerged [167]. Proanthocyanidins’ 

cardioprotective effects have been addressed and confirmed in a clinical trial of high 

proanthocyanidin dark chocolate intake [168]. Taken together, there is increasing 

evidence of berry constituents’ potential to promote cerebrovasular circulation and 

cardiovascular health. 

Finally, animal studies have argued in favor of anthocyanins’ and proanthocyanidins’ 

anticancer properties following dietary supplementation [169-171]. While a pilot clinical 

trial of anthocyanin-rich bilberry extract slowed tumor proliferation, with anthocyanins 

found in tumor tissues at 180 ng/g [172], epidemiological studies have, however, failed 

to ascertain such effects in larger populations [173,174]. 

 

2.3.1.2 Cellular functionalities 

General health benefits associated with diets rich in anthocyanins’ and 

proanthocyanidins’ may be ascribed to multi-level biological activities. A majority of 

protective effects have been related to berry substituents’ antioxidant properties 

[102,175-191]. 

Since oxidative damages have been discussed as precursors to heart disease, 

hypertension and atherosclerosis [192], anthocyanins may exert beneficial effects by 
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reducing lipid and protein oxidation [16], increasing levels of antioxidant enzymes 

superoxide dismutase and glutathione peroxidase in blood [192], and increasing blood 

glutathione levels and glutathione reductase activity [193,194]. In clinical trials, 

pomegranate juice consumption decreased susceptibility to plasma lipid peroxidation 

and low density lipoprotein (LDL) aggregation [195], and red grape juice reduced 

plasma oxidized LDL [196]. In blood of haemodialysis patients, red fruit juice decreased 

malondialdehyde (MDA) and protein carbonyls, markers of lipid and protein 

peroxidation, respectively [193]. As GSPE mitigated oxidative damage in a rodent 

atherosclerosis model [197], proanthocyanidins may also promote human 

cardiovascular health by reducing LDL oxidation [198].  

Beside exerting antioxidative activities, anthocyanins are suggested to mediate 

protection from atherosclerosis and cardiovascular disease by inhibition of angiotensin 

converting enzyme [199-201], reduction of plasma total cholesterol and elevation of 

high density lipoprotein (HDL) cholesterol [196,202,203], prevention of platelet 

aggregation [195,204,205], and elevation of serum activity of LDL oxidation 

counteracting paraoxonase-1 [163]. Finally, proanthocyanidins may provide protection 

from cardiovascular disease by downreglulation of proapoptotic genes, reduction of 

cardiomyocyte apoptosis [190,191], modulation of total cholesterol and triglyceride 

levels [197] and prevention of platelet aggregation [206]. 

 

As oxidative damage has also been considered as a precursor for cancer [192], berry 

constituents may exert anticancer effects by attenuating oxidative chromosomal 

damage [193,207-209]. Protection from cadmium chloride-induced nephrotoxicity by 

GSPE further suggests that berrry constituents defend target organs from carcinogenic 

agents by means of an antioxidative mechanism [210]. Moreover, an antioxidative 

mechanism of photoprotection by GSPE was revealed [171]. 

Alongside employing antioxidative mechanisms, anthocyanins may exert anticancer 

effects [211-214] by inhibition of angiogenesis [176], induction of apoptosis [215], 

blocking of different cell cycle phases and affecting regulator proteins [216,217]. 

Among these, inhibition of various receptor tyrosine kinases [218] and prevention of 

mitogen-activated protein kinase (MAPK) pathway activation have been discussed 

[217,219]. 

Further mechanisms by which proanthocyanidins may mediate antiproliferative 

activities may involve arrest of cell cycle in G1 and G2 phases [220,221], 

downregulation of antiapoptotic and upregulation of proapoptotic effectors [222]. 

Finally, inhibition of epidermal growth factor receptor (EGFR) [223], MAPK protein 
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activation, nuclear factor κB (NF-κB) activation and expression of its target genes have 

been suggested [224], as well as inhibition of topoisomerases I and II [223]. 

 

2.3.2 Neuroprotection  

2.3.2.1 Neuroprotective effects 

2.3.2.1.1 Target pathologies 

Neurodegenerative disease is defined by the progressive loss of neurons leading to 

functional impairment as in Alzheimer’s disease (AD), Parkinson’s disease, 

Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), among others 

[225]. In vitro and in vivo models of neurodegenerative disease can help assess 

neuroprotection that is conferred by candidate xenobiotics.  

AD and PD are the most prevalent neurodegenerative diseases and warrant intensive 

research on effective strategies to counteract these age-related disorders. AD 

manifests clinically as a progressive impairment in episodic memory and intellectual 

functioning, affecting language, perceptual, and perceptuomotor skills [226]. Among the 

primary cardinal lesions associated with Alzheimer’s disease count neurofibrillary 

tangles and senile plaques. Neurofibrillary tangles consist of accumulations of 

abnormally phosphorylated tau proteins in certain neurons, while senile plaques consist 

of a central core of β-amyloid (Aβ), surrounded by abnormally configured neuronal 

processes or neurites. This is accompanied by the loss of synaptic components [227]. 

PD presents with a classical triad of motor symptoms: akinesia, rigidity and tremor. 

Many patients also suffer from non-motor symptoms, including disturbances of 

autonomic and cognitive functions [228]. The progressive degeneration of midbrain 

dopaminergic neurons in the substantia nigra pars compacta is a cardinal feature of 

Parkinson’s disease pathology [229]. Intraneuronal inclusions and Lewy neurites are 

the defining neuropathological characteristics and hallmark of PD, with α-synuclein 

forming the major filamentous component [230]. 

 

2.3.2.1.2 Neuroprotection mediated by anthocyanins and 
proanthocyanidins 

Various anthocyanin and proanthocyanidin neuroprotective effects on cellular and 

tissue levels have been described. While cyanidin-glc exerted cytoprotective effects in 

neuronal cells [7], blueberry constituents reduced neuronal loss induced by excitotoxic 
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kainic acid [13] and GSPE partially protected the neuronal tissue upon O-ethyl-S,S-

dipropyl phosphorodithioate (MOCAP) induced neurotoxicity in rodents [210]. 

Regarding Alzheimer’s disease, cyanidin-glc was demonstrated to inhibit Aβ-induced 

neuronal viability loss in vitro [231]. 

 

Several efforts have been made to find nutritional strategies based on berry fruit 

constituents to combat age-related deficits observed in neurodegenerative disorders. A 

growing number of behavioral investigations report neuroprotective effects of berry 

constituent. In rats, blueberries have provided protection against age-related 

decrements in cognitive and learning performance [13,14,232] and have enhanced 

short-term and working memory [17]. Moreover, in aged rats, blackberries and red 

grape juice have improved cognitive function [9,18]. While blueberry constituents have 

benefited object recognition and spatial working memory [19,233], plum juice has 

equally exerted positive effects on memory [234]. In a further study, mulberry extract 

improved learning and memory in senescence-accelerated mice [235], confirming 

earlier findings on blueberry and strawberry supplementation with regard to spatial 

learning and memory [236]. Beneficial effects on long-term memory are indicated by 

behavioral studies on blueberry supplemented mice [237]. Similarly, GSPE rich in 

proanthocyanidins has exhibited memory enhancing effects [238].  

In humans, daily supplementation with blueberry juice for 12 weeks resulted in 

improved memory performance of subjects with early memory decline [6]. In contrast, 

effects of six weeks’ supplementation with cranberry juice on neurocognitive 

performance did not reach significance. These negative results may, however, be due 

to study duration or the superior baseline performance of a healthy elderly population 

[239].  

Finally, nutritional epidemiology data confine to behavioral effects induced by mixtures 

of flavonoids. Studies indicate that inclusion of antioxidant-rich foods in the diet can 

improve cognitive functioning in humans [240]. Thus, in elderly non-demented subjects, 

elevated dietary intake of flavonoid-rich foods was associated with better cognitive 

function and attenuation of cognitive decline over a period of 10 years [241]. In aging 

women, vegetable consumption was inversely associated with cognitive decline [242]. 

Other studies have revealed that attention to daily fruit and vegetable consumption and 

adherence to a “Mediterranean diet”, mainly based on vegetables, fruits, beans and 

nuts, can effectively decrease the risk of developing dementia in aging humans [243]. 

In summary, these results suggest that berry supplementation has considerable 

potential to retard or even prevent the age-related decline in cognitive function. 
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Additional central nervous functionalities include improvements of motor performance 

in rodents following blueberry [14,237], blackberry and red grape juice supplementation 

[9,18]. 

Oral administration of blueberry constituents has also been associated with protection 

from ischemia-induced damage in rats [244-246]. A further study on mice showed that 

mulberry fruit extract and cyanidin-glc decreased infarct volume, corroborating that 

anthocyanins are the active principles of berry fruits [7]. This is backed by a meta-

analysis of prospective observational studies showing that risk of stroke decreased by 

11% for each additional portion of fruit per day [247].  

Neuroprotection by berry constituents in animals is also illustrated by the prevention of 

N-methyl-D-aspartic acid (NMDA)-induced retinal damage [15] and the enhancement of 

hippocampal plasticity [248]. Moreover, reversal of age-related changes in temporal 

processing speed in the rat primary auditory cortex was found upon dietary 

supplementation with berry constituents, which may forestall age-related hearing loss 

[249]. 

Preliminary data point at antianxiety effects of blueberry supplementation in mice [237] 

and at antidepressive effects in humans [6]. Furthermore, proanthocyanidins may 

account for antinociceptive effects [250]. 

It would appear that berry constituents hold promise in ameliorating sensory perception 

although the evidence remains conflicting for certain modalities, e.g. night vision [251]. 

 

Neuroprotection by berry constituents is rationalized by anthocyanin brain 

bioavailability (see chapter 2.2.1.3). For instance, demonstration of anthocyanins’ 

uptake into rat cerebellum, cortex and hippocampus following dietary supplementation 

with blueberries [114] further corroborates anthocyanins’ potential to improve cognitive 

performance including learning and memory. Despite the spectrum of neuroprotective 

effects elicited by anthocyanin-rich berry fruits in animals, further clinical research is 

warranted to firmly establish the utility of anthocyanins and other berry constituents in 

the prevention of chronic central nervous disease. 

 

2.3.2.2 Neuroprotective mechanisms 

2.3.2.2.1 Pathomechanisms of neurodegenerative diseases and 
aging 

In sporadic forms of neurodegenerative diseases common findings include alterations 

in the homeostasis of antioxidants and oxidation, elevations of iron and nitric oxide 
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levels, inflammation, activation of apoptosis pathways and glutamatergic toxicity [252]. 

Usually, these processes do not appear independently, but are rather closely 

interrelated. Aging is considered a major risk factor for neurodegenerative disease 

[253], as are recurrent or chronic systemic infections [254], and environmental agents 

such as heavy metals, pesticides and organic solvents [255].  

The imbalance between cellular production of reactive oxygen species (ROS) and the 

ability of cells to defend themselves against ROS is referred to as oxidative stress 

[256]. Of all explanatory factors, oxidative stress-related processes likely represent the 

most widely accepted common feature of neurodegenerative diseases and aging. The 

brain – an organ that requires high metal ion concentrations to maintain many of its 

functions – is particularly vulnerable to oxidative stress, and demonstrates only little 

regenerative capacity [110]. ROS may oxidize cell membrane lipids, DNA, proteins and 

enzymes involved in neuronal survival and communication, causing cellular damage 

and death [8,253]. Many neurodegenerative disorders are associated with the 

accumulation of abnormal protein assemblies that can act as triggers of cellular stress 

and neuroinflammation [257]. Other consequences of oxidative stress comprise the 

disruption of calcium homeostasis, alterations in cellular signalling cascades, and 

changes in gene expression. As a result, neurotransmitter receptors and other 

structures may become even more vulnerable to oxidative stress [258]. The long-term 

effects of oxidative stress and inflammatory insults are equally seen in normal aging, 

but would appear to be more extensive in the progression of neurodegenerative 

disease [236].  

 

Brain iron has also been implicated in neurodegeneration. Both elevated tissue iron 

and miscompartmentalization of copper and zinc have been observed in 

neurodegenerative diseases [259], with an age-related increase in iron staining and 

ferritin immunoreactivity primarily in microglia and astrocytes of the hippocampus, 

cortex, cerebellum, basal ganglia and amygdala [260]. Neurons in the aged brain 

exhibit alterations in the ability to regulate intracellular iron concentrations, leading to 

deficits in neuronal communication and synaptic plasticity [8]. Overall, iron localization 

coincides with the production of ROS, which may place these areas of the brain at 

increased risk of neurodegeneration [260,261]. As ROS were found to induce the 

heme-degrading enzyme heme oxygenase 1 (HO-1) in rat astrocytes, the subsequent 

liberation of free cytosolic Fe2+ [262] may therefore exacerbate brain aging processes 

by engaging in a neuropathological vicious cycle of ROS generation [263].  

Free iron is a potential source of oxidative stress in that it catalyzes the conversion of 

hydrogen peroxide into highly reactive hydroxyl radicals by the Fenton reaction. In 
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addition, iron-dependent lipid peroxidation may generate potentially toxic peroxyl and 

alkoxyl radicals [264], and free ferrous iron may convert neutral catechols (e.g. 

dopamine) to neurotoxic o-semiquinone intermediates [265]. Furthermore, aberrant 

redox metal interactions with key proteins promote protein aggregations, oxidative 

stress and neuronal death [110].  

 

Besides oxidative stress-linked processes, CNS inflammatory events may play a major 

role in functional impairment related to aging [258] and chronic CNS disease [257,266]. 

Inflammation can be triggered by infectious agents, injurious chemicals or physical 

insults. It can also be initiated from within the organism, e.g. by diseases affecting the 

immune system or the nervous system [257,266]. Conditions such as ischemic brain 

injury, traumatic brain and spinal cord injuries, epileptic seizures, AD, PD, HD, multiple 

sclerosis and ALS all feature an inflammatory component [267,268].  

The term “inflammation” refers to complex series of active defense reactions executed 

by a host against diverse insults designed to remove or inactivate noxious agents and 

to inhibit and reverse their detrimental effects such as tissue damage. In 

neurodegenerative disorders, this reaction may be induced by protein aggregates and 

other abnormally modified cellular constituents that are byproducts of oxidative stress. 

Other triggers include molecules released from or associated with injured neurons or 

synapses, and disregulation of inflammatory control mechanisms [257]. In aging and 

neurodegenerative disease, neuronal deficits arise with concomitant activation of glia 

cells [8,257] and the production of cytokines, growth factors, and complement proteins 

[258].  

 

Excitatory neurotransmission has emerged as a further mechanism of neuronal 

damage, causing excitotoxic necrosis of cortical and subcortical neurons, a 

phenomenon commonly known as excitotoxicity [226]. 

However, despite significant progress in the field, the primary events in 

neurodegeneration and age-related decline remain to be determined [252]. In order to 

develop strategies for prevention and, ultimately, for the treatment of these conditions, 

there is a pressing need to identify protective agents and to understand their mode of 

action. 
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2.3.2.2.2 Neuroprotection mediated by anthocyanins and 
proanthocyanidins 

2.3.2.2.2.1 Antioxidative mechanisms 

The contribution made by berry constituents’ antioxidative properties to neuroprotection 

is substantiated by many in vitro and in vivo studies. In vitro, purple sweet potato 

extract attenuated ROS generation, lipid peroxidation and DNA fragmentation [269], 

while anthocyanin-rich fractions from boysenberry and black currant protected against 

H2O2-induced oxidative stress and cytotoxicity [270]. Moreover, anthocyanins inhibited 

oxidation of the neurotoxic dopamine metabolite 6-hydroxydopamine in vitro [271], and 

anthocyanins and potential metabolites counteracted cytosolic and membrane ROS 

formation [272]. In vitro evidence suggests that iron chelation may also prevent 

oxidative death [273]. As for proanthocyanidins, an antioxidant activity of GSPE has 

been demonstrated in neuronal cell cultures [188].  

In rodents, bilberry extract led to a decline in parameters of lipid and protein oxidation 

in cortex, midbrain and cerebellum, and suppressed stress-induced changes of 

dopamine levels [16]. In senescence-accelerated mice, mulberry extract augmented 

antioxidant enzyme activity and diminished lipid peroxidation in brain [235]. It has been 

proposed that berry fruits’ neuroprotective potential may partly be ascribed to 

enhanced expression of antioxidant heat shock proteins [274] and of other antioxidant 

enzymes [235]. Pretreatment of mice with GSPE conferred protection against 

12-O-tetradecanoylphorbol-13-acetate (TPA)-induced lipid peroxidation and DNA 

damage in brain tissue [207]. Moreover, processed lychee extract rich in PA 

monomers, dimers and trimers reduced lipid peroxidation in mouse brain [275]. These 

results provide further indication of antioxidant mechanisms in proanthocyanidin 

neuroprotection. 

Antioxidative effects may also be achieved by lowering brain iron levels as 

demonstrated with the orally administrated, blood-brain barrier-permeable chelator 

(R)-α-lipoic acid in rodents [276]. Chelators of iron have been found to prevent injury in 

animal models of neurological conditions and in a small pilot clinical trial in Alzheimer’s 

disease [273]. Thus anthocyanins’ and proanthocyanidins’ chelating properties 

[277,278] warrant further research as putative mediators of antioxidant defense. 
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2.3.2.2.2.2 Antiinflammatory mechanisms 

It has long been hypothesized that berry constituents’ antiinflammatory properties play 

an essential role in counteracting inflammation-induced damage associated with 

neurological disorders and aging [10,16,235].  

These properties are illustrated in vitro, by anthocyanins’ inhibition of human neutrophil 

granulocyte 5-lipoxygenase (5-LOX) [279], anthocyanidins’ suppression of calcium-

insensitive nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA 

expression [280], and anthocyanins’ and anthocyanidins’ inhibition of COX-1 and 

COX-2 activities [281,282]. Moreover, anthocyanins reduced the release of 

inflammatory mediators such as interleukin-8 (IL-8), intercellular adhesion molecule-1 

(ICAM-1) and monocyte chemoattractant protein-1 (MCP-1) in human microvascular 

endothelial cells [283]. Grape seed proanthocyanidins displayed inhibitory effects on 

expression of vascular cell adhesion molecule (VCAM-1), which contributes to the cell 

adhesion process important in inflammation [284]. 

Limited data are currently available on berry constituents’ antiinflammatory properties 

in vivo with regard to the CNS. One study suggests that anthocyanins may mediate 

neuroprotection by enhanced expression of antiinflammatory heat shock proteins in 

rats [274]. Assuming that anthocyanins’ and proanthocyanidins’ effects on inflammation 

in blood and non-neuronal tissues extend to the brain, a range of target effectors can 

be identified. Inhibitory effects on COX-2 activity were elicited upon dietary 

supplementation with sour cherry juice in rodents [192], while blueberry powder 

supplementation attenuated upregulation of tumor necrosis factor-α (TNF-α), IL-6, 

IL-10, iNOS, and MCP-1 in adipose tissue [285]. In a rat model of acute lung 

inflammation, blackberry anthocyanins led to a decrease in all test parameters of 

inflammation [286]. Orally administered cyanidin-glc, cyanidin, and protocatechuic acid 

successfully inhibited histamine-induced scratching behavior in mice [65]. GSPE 

proanthocyanidins, in turn, exhibited favorable effects on collagen-induced arthritis, an 

animal model of rheumatoid arthritis. Antiarthritic activities were associated with a 

reduction in the production of type-II-collagen specific immunoglobulin G2a (IgG2a) 

and inflammatory cytokines, plus the suppression of osteoclastogenesis [287]. 

In humans, consumption of red grape juice and grape peel anthocyanin extract lowered 

circulating MCP-1 levels [92,182], while dealcoholized red wine reduced MCP-1 

stimulated monocyte migration ex vivo [288]. Dietary supplementation with bilberry and 

blackcurrant anthocyanins decreased levels of circulating proinflammatory chemokines, 

cytokines and inflammatory mediators such as IL-8, IL-4, IL-13 and interferon-α (IFN-α) 

[266]. Finally, red grape juice suppressed the release of platelet-dependent superoxide 

and soluble CD40L, a marker of platelet activation [289]. Proanthocyanidins’ 
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antiinflammatory effects are corroborated by the outcome of a clinical trial involving 

systemic sclerosis patients supplemented with GSPE. In these subjects, the expression 

of adhesion molecules in plasma was attenuated and oxidative stress was reduced 

[290]. 

 

2.3.2.2.2.3 Further candidate mechanisms 

Many additional cellular mechanisms are being discussed, by which berry constituents 

may exert neuroprotective activities.  

Among these counts the direct impact on neuronal cell signalling [19,258,291] that may 

cause reductions in NF-κB expression, stress and apoptosis signalling [233]. These 

observations are complemented by attenuated caspase-3 activation and intracellular 

calcium increase from exposure to purple sweet potato extract [269]. Delphinidin 

effects on signalling are also shown by its ability to counteract the elevation of 

intracellular calcium levels and tau protein phosphorylation [292], and cyanidin and 

protocatechuic acid reduced apoptotic events including mitochondrial functioning loss 

and DNA fragmentation [272]. 

As berry constituents were shown to prevent or reverse declines in cerebellar 

noradrenergic receptor function [293] and blueberry and strawberry supplementation 

reduced changes in striatal dopamine release induced by radiation [236], anthocyanin 

effects on CNS signal transduction may also involve interactions with muscarinic 

cholinergic and striatal dopamine systems, receptor sensitivities [14,16,236,294] and 

cerebellar noradrenergic receptor function [293,295]. 

Brain acetylcholinesterase (ACE) may present a further target of neuroprotective berry 

polyphenols. Agonists at cholinergic receptors and inhibitors of acetylcholinesterase 

have long been used in the prevention and treatment of cognitive deficiencies and 

recent evidence suggests that blueberry extract may also act as an ACE inhibitor [296].  

Neuroprotection by proanthocyanidins and GSPE may involve the expression of heat 

shock, neurofilament, and cytoskeletal proteins plus proteins involved in energy 

generation. The direction of PA-induced changes is contrary to changes observed in 

diseased brain and suggests that ingestion of GSPE is neuroprotective [297,298].  

Inhibition of β-amyloid spontaneous aggregation by cyanidin-glc in vitro [231] and 

decrease of Aβ protein levels by mulberry extract in senescence-accelerated mice 

[235] point to further neuroprotective mechanisms of anthocyanins in terms of AD. 

Finally, proanthocyanidins may influence the permeability of the blood-brain barrier as 

indicated by a study on rats administrating proanthocyanidin oligomers. They were 

demonstrated to prevent the permeability increase of brain microvessels induced by 
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collagenase injection, presumably by increasing the resistance of constituents of the 

capillary baseline lamina to proteolytic degradation [299]. 

 

2.3.2.2.2.4 Monoamine oxidases inhibition 

The role of monoamine oxidases in neuroprotection is firmly established and 

monoamine oxidase inhibitors count among agents with a long tradition in the 

treatment of PD [300]. Monoamine oxidases are flavin-containing enzymes embedded 

in the outer mitochondrial membranes of neuronal and non-neuronal cells [301,302]. 

They catalyze the oxidative deamination of amines from both endogenous and 

exogenous sources, and thereby regulate concentrations of neurotransmitter amines, 

neurotoxins, xenobiotics and amines from food sources [303-305]. 
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Figure 2-7 Pathways of dopamine synthesis in dopaminergic neurons and metabolism by MAO 
A and B in the human brain. Tyrosine passes the blood–brain barrier, is hydroxylated by 
tyrosine hydroxylase (TH) to L-3,4-dihydroxyphenylalanine (L-DOPA) and then decarboxylated 
by DOPA decarboxylase (DDC) to dopamine (DA) within the neuron. DA is metabolized by 
intraneuronal monoamine oxidase A (MAO A), and by glial and astrocyte MAO A and MAO B. 
Selective inhibitors of MAO A and MAO B do not alter the steady-state striatal dopamine levels, 
although chronic treatment with these drugs does enhance dopamine release. However, non-
selective MAO A/B inhibitors increase the levels of dopamine in the striatum and other regions. 
D1, D2, dopamine receptors; COMT, catechol-O-methyltransferase. Figure adapted by 
permission from Macmillan Publisher Ltd: Nature Reviews Neuroscience [306], copyright 
(2006). 
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End products of these enzymatic reactions, aldehydes and hydrogen peroxide, play 

key roles in oxidative cellular injury [303,305]. Therefore, MAO inhibitors may mediate 

neuroprotection by modulating neurotransmitter concentrations in particular 

neurodegenerative conditions and by preventing oxidative events induced by hydrogen 

peroxide. 

MAO inhibitorsMAO inhibitors

 
 
Figure 2-8 Model of neurodegeneration in PD and AD. MAO generates hydrogen peroxide and 
reactive aldehydes. H2O2 participates in the Fenton reaction with ionic iron, producing reactive 
hydroxyl radicals. The resulting effect is oxidative stress leading to protein oxidation and 
misfolding, lipid peroxidation and DNA damage. Oxidative stress has consistently been 
implicated in the pathogenesis of AD, PD and other neurodegenerative diseases. Aβ, amyloid-β; 
BBB, blood-brain barrier; GSH, reduced glutathione; GSSG, oxidized glutathione; IRPs, iron 
regulatory proteins. Figure adapted by permission from Macmillan Publisher Ltd: Nature 
Reviews Neuroscience [260], copyright (2004). 
 
 
Monoamine oxidases occur as two subtypes, MAO A and MAO B, that can be 

distinguished by pharmacological and biochemical characteristics [307]. Both are 

encoded by genes on the X chromosome and share 70% identity in amino acid 

sequence [301]. The ratio of MAO A:B is specific to tissues [308,309] and cell types 

[310].  

Brain MAO A is expressed in catecholaminergic neurons and glia cells [311-313] where 

it catalyzes the oxidation of serotonin and norepinephrine. It is selectively inhibited by 

clorgyline [314] and has long been implicated in the etiology and treatment of 

depression and anxiety disorders [315,316].  

Brain MAO B occurs primarily in serotonergic neurons, and also in glia cells [310]. 

MAO B exhibits high affinity for phenylethylamine and benzylamine, and is selectively 
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inhibited by L-deprenyl [317,318]. In clinical practice, selective inhibitors of MAO B are 

routinely used to alleviate symptoms, or to slow the progression of Parkinson’s disease 

[319,320]. MAO B inhibitors may also prove beneficial in managing Alzheimer’s 

disease or other neurodegenerative disorders [321-325]. 

Among the naturally occurring polyphenolic inhibitors of MAO A and B that have been 

identified in vitro count (+)-catechin, (−)-epicatechin, quercetin and resveratrol 

[307,326,327]. However, little is known about the effects of anthocyanins and 

proanthocyanidins on MAO enzymes. 

 

2.3.2.2.2.5 Induction of hypoxia inducible factor (HIF) expression 

A further strategy in disease prevention by polyphenolics addresses brain iron 

homeostasis. While the prevailing view is that iron chelating anthocyanins and related 

flavonoids prevent oxidative injury by suppressing Fenton chemistry and the formation 

of highly reactive hydroxyl radicals, recent data suggest a key role for the hypoxia 

inducible factors [273,328]. HIFs control the expression of genes involved in diverse 

processes such as angiogenesis, vascular tone, metal transport, glycolysis, 

mitochondrial function, cell growth and survival, emphasizing HIF’s central involvement 

in oxygen homeostasis [329]. The heterodimer HIF is a transcription factor composed 

of HIF-α and HIF-β subunits [330]. Three distinct and non-redundant HIF-α subunits 

[HIF-1α, HIF-2α/EPAS1, and HIF-3α], as well as three HIF-β subunits [HIF-1β/ARNT1, 

ARNT2, and ARNT3] are currently known [331], with both HIF-α and ARNT subunits 

being members of the basic helix-loop-helix Per/ARNT/Sim (PAS) family of DNA 

binding proteins [332]. While the β subunit is constitutively and stably expressed, 

expression of the α subunits is contingent on hypoxic conditions within the cell [333]. 

Under normoxia, HIF-1α subunits are hydroxylated [334] at specific proline residues 

(positions 402 and 564) [335] and at asparagine 803 [336], whereas HIF-2α is 

hydroxylated at proline 531 [337]. Hydroxylation of specific amino acids in proteins is 

an enzyme catalyzed posttranslational modification that can lead to changes in protein 

stability and interactions between proteins. The group of enzymes that can catalyze 

HIF-α hydroxylation reaction are the dioxygenases prolyl 4-hydroxylase (PHD) [335] 

and factor inhibiting HIF-1 (FIH-1). Upon hydroxylation, HIF-α protein is rapidly 

degraded via an ubiquitination mechanism involving the Hippel-Lindau tumor 

suppressor protein, and HIF-mediated transcription is prevented [334].  

This process may explain a decrease in expression of HIF-dependent cell survival 

genes in neurodegenerative disease [338]. Moreover, studies on the expression of HIF 

and its target genes in the adult rodent brain have shown that after focal cerebral 

ischemia, accompanied by shortage of oxygen, mRNAs encoding HIF-1α, HIF-2α and 
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downstream genes are up-regulated in the areas around the infarction [331,339-341]. 

As HIF is at the center of adaptive responses to ischemic and oxidative stress, the 

regulation of HIF hydroxylation becomes a viable strategy for engaging its homeostatic 

functions in a host of tissues, particularly the brain [335]. Treatment of isolated neurons 

and animals with PHD inhibitors may prevent degradation of HIF and may lead to an 

increase in the expression levels of target genes downstream of HIF [342]. As many 

HIF-1- or HIF-2-regulated genes, e.g. erythropoietin (EPO), vascular endothelial growth 

factor (VEGF) and fibroblast growth factor receptor-1 (FGFR-1), prevent oxidative 

stress-induced death [343-345], HIF-dependent gene expression may provide 

resistance to oxidative stress and neuronal damage. Importantly, HIF-1 and HIF-2 each 

appear to regulate a distinct subset of target genes [346,347]. 
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Figure 2-9 Model of HIF-1 pathways: Determined by several factors, HIF-1α may become 
hydroxylated and degraded via an ubiquitination mechanism in cytoplasma or may form a HIF 
heterodimer in the nucleus, promoting expression of HIF-dependent target genes. CBP/p300, 
transcriptional coactivator; FIH-1, factor inhibiting HIF-1; HRE, hypoxia responsive element; 
2-OG, 2-oxoglutarate; PHD, prolyl 4-hydroxylase; pVHL, von Hippel-Lindau tumor suppressor; 
Ub, ubiquitin [335,337,342,348]. 
 
 
In addition to oxygen, ascorbate and 2-oxoglutarate, Fe2+ has been shown to enhance 

PHD and FIH-1 activity [335,336]. The ability of iron to regulate PHD and FIH-1 activity 

suggests that activity of these dioxygenases can be modulated under conditions of iron 

deficiency [335]. Ion chelators may stabilize HIF-1α, which would heterodimerize with 

its partner HIF-1β in the nucleus, bind to a hypoxia-responsive element in regulatory 

genes, and then transactivate the expression of established protective genes [338]. 

The inhibition of PHD activity in immortalized cells and primary neurons upon treatment 
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with iron chelators such as desferrioxamine (DFO) indicates that these enzymes rely 

on the cellular labile iron pool for their activity [342,349]. In addition to causing HIF-1α 

upregulation, preconditioning with DFO 24 h before hypoxia-ischemia afforded brain 

protection in neonatal rats [350]. DFO also induced robust tolerance against focal 

cerebral ischemia in adult mice and rats and increased HIF-1 DNA binding and EPO 

transactivation [351]). The role of iron chelation in neuroprotective transcriptional 

pathways thus warrants further research into inhibiting HIF prolyl hydroxylases and 

activating HIF under conditions of normoxia, and into augmenting HIF activation under 

conditions of ischemia [352]. Anthocyanins’ iron-chelating properties offer a rationale 

for investigating HIF-1α and HIF-2α induction as a further pathway in neuroprotection. 

 

2.3.2.2.2.6 Proteasome inhibition 

The ubiquitin-proteasome system is the major non-lysosomal pathway of proteolysis in 

human cells and plays a key role in maintaining cellular homeostasis [353]. Specifically, 

proteasome activity controls the degradation of cell cycle regulatory proteins such as 

cyclins and cyclin-dependent kinase inhibitors [354], transcription factors, such as 

nuclear factor κB and its inhibitors (IκB) [354,355], tumor suppressor proteins [354], 

misfolded and damaged proteins [356,357] and foreign antigens, among others [358]. 

As a result of these functionalities, the proteasome is closely implicated in signal 

transduction, development, cell cycle progression, apoptosis and cancer [359], antigen 

processing and immune response [360], protection from oxidative stress [361] and 

inflammation [354,355]. There is little doubt that the proteasome pathway plays a role 

in diseases associated with oxidative stress and inflammation [362,363] such as brain 

ischemia, Alzheimer’s disease and Parkinson’s disease. The identification of novel 

proteasome inhibitors may therefore open new windows of opportunity in prevention 

and treatment. 

Mammalian cells feature two large proteolytic complexes [364]. The larger structure is 

the 26S complex (2,000 kDa) that selectively degrades ubiquitinated proteins by an 

ATP-dependent process [365] and the smaller one is the 20S proteasome (700 to 

900 kDa) [366]. The latter degrades peptides independently of ATP and their 

conjugation to ubiquitin [367,368]. 
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Figure 2-10 The cytoplasmic ubiquitin proteasome system. Ubiquitin (Ub) is activated in an 
ATP-dependent reaction by the E1 ubiquitin-activating enzyme and is appended to target 
proteins by the successive action of E2 ubiquitin-conjugating enzymes, E3 ubiquitin ligases, and 
E4 chain elongation factors. Conjugation of multiubiquitin chains targets proteins for 
degradation by the 26S proteasome, whereas deubiquitinating enzymes (DUBs) oppose 
ubiquitination by cleaving ubiquitin molecules from targeted proteins and maintain cellular pools 
of free ubiquitin by recycling ubiquitin monomers. ADP, adenosine diphosphate; ATP, 
adenosine triphosphate. Figure adapted from [369,370].  
 
 
In eukaryotic cells, the physiologically relevant form of the proteasome is the 26S 

complex [371], which is present both in the cytoplasma and the nucleus of all cells 

[364]. The eukaryotic proteasome, a multicatalytic protease, is characterized by distinct 

specificities for short synthetic peptides: a “chymotrypsin-like” activity which cleaves 

after large hydrophobic residues, a “tryptsin-like” activity, which cleaves after basic 

residues, and a “postglutamyl” hydrolyzing activity with a preference for acidic residues 

[372]. Two additional specificities have been identified in mammalian proteasomes, one 

for cleaving after branched chain residues and another for cleavage between small 

neutral amino acids [373]. 

While apple and grape extracts have already been described as proteasome inhibitors 

[374] and inhibition of the chymotrypsin-like proteasome activity in human cells has 

been reported for various flavonoids [375,376], similar properties of anthocyanins have 

not been addressed to date. 
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2.3.2.2.2.7 Phospholipase A2 inhibition 

Phospholipases A2 count among further potential effectors of neuroprotection. PLA2s 

form a superfamily of esterases that specifically cleave the acyl ester bond at the sn-2 

position of membrane phospholipids, generating free fatty acids and lysophospholipids 

[377] (figure 2-11). 

 

O

 
 
Figure 2-11 General structure of a glycerophospholipid-type phospholipid with cleavage sites 
for phospholipases A1, A2, C and D indicated as dashed lines. R1, R2: fatty acids; R3: choline, 
ethanolamine, serine or inositol; PLA, phospholipase A; PLC, phospholipase C; PLD, 
phospholipase D. 
 
 
These hydrolases are involved in a complex network of signalling pathways, linking 

receptor agonists, oxidants, and proinflammatory cytokines to the release of 

arachidonic acid and to eicosanoid synthesis [378]. Eicosanoids include 

prostaglandins, thromboxanes, prostacyclins, and leukotrienes [379], which act as 

inflammatory mediators. Moreover, oxidative metabolism of arachidonic acid and 

disruption of the mitochondrial respiratory chain, mediated by phospholipase A2 

cardiolipin hydrolysis, may contribute to the generation of ROS and oxidative stress 

[380]. 

PLA2s may be grouped into at least three major classes, Ca2+-dependent cytosolic 

PLA2 (cPLA2), Ca2+-independent cytosolic PLA2 (iPLA2) and secretory PLA2 (sPLA2) 

[381], which are expressed in the central nervous system [378]. Of these, sPLA2 is a 

major contributor to the excessive production of arachidonic acid in inflammatory 

conditions [382] and comprises the 14 kDa ‘‘group V’’ PLA2 with high affinity for 

phosphatidylcholine-rich plasma membranes [383]. In the mammalian brain, group V 

sPLA2 is found primarily in cortical neurons [384] and in the hippocampus [385]. 

Inhibitors of PLA2 hold promise in the treatment of brain disorders that are associated 

with oxidative stress, changes in phospholipid metabolism, accumulation of lipid 

peroxides, and inflammation, e.g. ischemia, multiple sclerosis, epilepsy, and 

Alzheimer’s disease [386]. Modulation of antioxidant and antiinflammatory activities by 
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PLA2 [387], suggests that PLA2 may be targeted by berry constituents with 

neuroprotective effects. 

 

2.4 Toxicology and safety 

2.4.1 Legal classification and EU safety assessment 
strategies 

When advocating health promoting effects of anthocyanins and proanthocyanidins, it is 

a major requirement that oral administration of these substances is safe. For a long 

time, foods from plant origin such as berry fruits, grapes and cocoa have been the only 

sources of dietary anthocyanins and proanthocyanidins. However, in the past few 

years, many food bioactive constituents have been commercialized in the form of 

dietary supplements and functional foods containing berry extracts or grape seed 

proanthocyanidins.  

According to the European Commission, food supplements are concentrated sources 

of nutrients or other substances with a nutritional or physiological effect, whose 

purpose is to supplement the normal diet. Food supplements are marketed 'in dose' 

form, for example as pills, tablets, capsules or liquids in measured doses [388]. In 

terms of functional food, there is no official definition. One view is that any food is 

indeed functional because it provides nutrients and has a physiological effect. Others 

maintain that only fortified, enriched or enhanced foods that confer a health benefit 

beyond basic nutrition should be considered as functional. Most definitions also 

suggest that a functional food should be, or look like, a traditional food and must be 

part of our normal diet. According to a working definition proposed by the European 

Community (EC) Concerted Action on Functional Food Science in Europe (FUFOSE), 

functional food describes a food that benefits one or more target functions in the body 

beyond adequate nutritional effects in a way that is relevant to either an improved state 

of health and well-being and/or reduction of risk of disease. It is consumed as part of a 

normal food pattern and is not a pill, a capsule or any form of dietary supplement [389]. 

Although promising effects on human health may argue in favor of dietary supplements 

and functional foods, growing evidence questions the beneficial value of dietary 

supplements such as antioxidant vitamin pills in generally well-nourished populations 

[390] and underscores the possibility that antioxidant supplements could have 

unintended consequences for human health. 
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As a basis for toxicological assessments of plant extracts as active principles of dietary 

supplements and functional foods, distinct legal classifications of these preparations 

are required within the European Union. Currently, the use of botanicals and botanical 

preparations in food is regulated under the General Food Law [391], which attributes 

the primary legal responsibility for the safety of the products placed on the market to 

business operators [392]. Due to legal loopholes and broad scopes of interpretation, 

presently no distinct regulations exist with respect to concentrations of plant extracts to 

be allowed in dietary supplements and functional foods. For dietary supplements, the 

European Community Directive 46/2002/EC [393] only regulates the use of vitamins 

and minerals, while specific rules concerning other substances with physiological 

effects will be laid down at a later stage. However, the directive notes that “there is a 

wide range of nutrients and other ingredients that might be present in food 

supplements including, but not limited to, vitamins, minerals, amino acids, essential 

fatty acids, fibre and various plants and herbal extracts”.  

In consequence, prior to enactment of further community regulations, the present 

national food laws need to be considered in terms of dietary supplements and 

functional foods. In accordance with EC law, the German Regulation on Food 

Supplements [394] only classifies vitamins and minerals as nutrients and additives for 

dietary supplements. Thus, no generally valid rules exist regarding other substances. 

The situation is similar for functional foods, e.g. foods enriched with berry extracts. In 

both cases, a major challenge is posed by classification of plant extracts either as 

conventional foods or as food additives, which currently still requires an individual 

decision in every single case. According to § 2 (3) of the German Food and Feed Code 

[395], substances that are usually not consumed as foods by themselves and that are 

not used as characteristic food ingredients either, are considered equivalents of food 

additives if they lack a nutritive value and are added for other than technological 

reasons, e.g. for physiological purposes. Plant extracts for use in functional foods may 

be regarded as food additive equivalents according to this definition. However, when 

such extracts are considered for use as part of a dietary supplement, additional 

limitations must be taken into account. Generally, the classification will depend on 

whether the extract preparation can preserve the food character, e.g. a typical odor or 

taste, and also the relative concentrations of constituents present in the original food 

item. Should plant extracts be added to supplements at concentrations that consumers 

would not usually incorporate by consuming the original source, restrictions are 

imposed. At present, the existing positive list of authorized food additives limits the use 

of anthocyanins to coloring purposes and does not include proanthocyanidins or 

standardized extracts from berry fruits. 
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Future legal regulations may include concentration limits and more detailed 

specifications of bioactive substances in functional foods and dietary supplements. 

Initial EC-wide progressions are sketched out in Regulation 1925/2006/EC [396], 

introducing planned proceedings with respect to substances or ingredients “…added to 

foods or in the manufacture of foods under conditions that would result in the ingestion 

of amounts of this substance greatly exceeding those reasonably expected to be 

ingested…” Based on assessments of available information, the Commission plans to 

include substances in the annex of the above regulation; notably, in part A, 

substances/ingredients to be prohibited in foods, in part B, compounds to be allowed in 

foods under certain conditions and in part C, possibly harmful substances with respect 

to human health. Category C may include substances causing negative effects only 

under certain circumstances, e.g. when consumed in combination with certain drugs. 

However, pending the release of final EC regulations, safety evaluations of all extracts 

to be marketed will depend on a classification by (a) food, including food supplement, 

or medicine status, (b) novel food status according to regulation EC 258/97 [397] or (c) 

food additive status.  

To facilitate toxicological assessments, the European Food Safety Authority (EFSA) 

recently published a “Guidance on safety assessment of botanicals and botanical 

preparations intended for use as ingredients in food supplements” [392]. In this text, 

EFSA’s Scientific Committee provides guidance on the scientific data needed to carry 

out a safety evaluation of a botanical or a botanical preparation. Using a two-level 

tiered scientific approach, safety assessment is meant to build on the available 

knowledge for a given botanical and the substance(s) it contains (level A). This 

information may then be complemented by newly generated data (level B) (figure 

2-12). 
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No safety concern Safety concern 

Evaluation of additional data related to the preparation (level B assessment) 

Need for further data No safety concern Safety concern 

Assessment of existing data related to the preparation (level A assessment) 

 
 
Figure 2-12 Proposed tiered approach for the safety assessment of botanicals and botanical 
preparations. Figure adapted from [392].  
 
 
Moreover, the EFSA has compiled the available information on a large number of 

botanicals which may be of health concern when used in food or food supplements 

[398]. The resulting compendium, which will be regularly updated, is intended to assist 

manufacturers and food safety authorities. While neither anthocyanins nor 

proanthocyanidins are listed as chemicals of concern in the compendium up to date, 

they cannot automatically be considered devoid of hazards for human health. As it is 

not the objective of the EFSA to produce a list of safe botanicals and botanical 

preparations intended for food supplement use, the compendium may only serve as an 

aid to assess the safety of botanical ingredients. 

In summary, legal regulations regarding plant extracts are still being developed and a 

range of restrictions may be applied to marketing such products. Current guidelines for 

toxicological assessments highlight a growing awareness of extracts’ safety issues. 

Despite these efforts, the market for dietary supplements has exploded and many 

products contain berry extracts or proanthocyanidins as active principles. An improved 

understanding of the respective functionalities can make a significant contribution to 

enhancing the safety of these agents. 

 

2.4.2 Safety assessment 
Safety assessment of plant extracts and isolated compounds is dependent on the level 

of evidence available from studies of bioactivity. Due to the many constraints in clinical 

research, most scientific evidence derives from in vitro assays and animal testings, 
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despite their limitations [399]. Common toxicological investigations of candidate 

compounds in animals include absorption, distribution, metabolism and excretion 

(ADME) characteristics, acute, subchronic (90 days) and chronic toxicities, covering 

cancerogenesis, reproductive toxicity, and genotoxicity issues among others. 

For non-carcinogens, a so-called no-observed-adverse-effect level or NOAEL can be 

determined under the assumption of a threshold in dose response [400]. The most 

common approach to estimating the NOAEL from animal data relies on safety factors. 

Traditionally, many international regulatory bodies apply a safety factor of 10 when 

extrapolating animal data to humans. These animal NOAELs that are expressed per 

body weight are divided by the safety factor to derive the “safe” level of human 

exposure. In order to account for interindividual variability, a further safety factor of 10 

is frequently applied [401,402]. If toxicity data from human studies are available, these 

take priority over animal data. In such cases, a safety factor of 10 rather than 100 is 

judged appropriate [401]. Further factors may be applied, e.g. for extrapolation of short-

term to long-term studies [399] and to correct for possible synergistic effects of multiple 

compounds in the human body [403]. Final safety factors for extrapolations of data to 

humans may thus range between 10 and 10,000, depending on the situation. Greater 

factors also imply that the information is very imprecise and may not allow reliable 

conclusions on risks for human health [399].  

The safe human exposure is usually termed “acceptable” for food additives or 

“tolerable” for food contaminants. An approach based on a daily intake yields the 

prevailing terms “acceptable daily intake” (ADI) and “tolerable daily intake” (TDI). 

According to World Health Organization / International Programme on Chemical Safety 

(WHO / IPCS) criteria, the ADI is defined as the estimated maximum amount of an 

agent, expressed on a body mass basis, to which individuals in a (sub)population may 

be exposed daily over their lifetimes without appreciable health risk. TDI is used 

analogous to ADI for agents that are not deliberately added, such as contaminants in 

food [404]. Regarding food ingredients, including anthocyanins and proanthocyanidins, 

and food contaminants, the Joint Food and Agriculture Organization (FAO) / WHO 

Expert Committee on Food Additives (JECFA) evaluates risk potentials and calculates 

ADI values [405]. 

 

2.4.2.1 Anthocyanin toxicity 

The number of toxicological studies on anthocyanins is limited [406]. An ADI for 

anthocyanins from grape skin was determined earlier at 0 to 2.5 mg/kg body weight 
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(bw)/day based on short-term toxicity studies of grape-skin extract. For anthocyanins in 

general, no ADI was allocated due to the lack of sufficient toxicological data [407].  

For cyanidin and delphinidin no signs of mutagenicity were reported in the Ames assay 

system using five different bacterial strains in vitro [408]. In vivo, an extremely low 

acute oral toxicity of mixed anthocyanin extract from currants, blueberries and 

elderberries (cyanidin, delphinidin, petunidin) is illustrated by mouse and rat LD50 

values greater than 25 and 20 g/kg bw, respectively [409]. However, some minor side 

effects have been observed in vivo. At oral doses of 500 mg/kg bw anthocyanins may 

produce a sedative effect in mice. Intravenous administration of 100 to 200 mg/kg bw 

anthocyanins may elicit transient hypotension and a decrease in respiratory amplitude. 

Finally, at 25 mg/kg bw, diuretic effects were reported [409].  

Subchronic toxicity studies over a period of three months did not show any overt signs 

of toxicity in animals, e.g. in rats given mixed anthocyanin extract at oral doses of 

6 g/day [409]. Using anthocyanins from purple corn, NOAELs of 0.94 and 1.02 g/kg 

bw/day for male and female rats were obtained, respectively [410]. No adverse 

subchronic effects emerged in beagle dogs on a diet containing 7.5 or 15% grape color 

powder [411]. Moreover, anthocyanin extract from currants, blueberries and 

elderberries was reported not to be teratogenic in rats, mice or rabbits when given at 

oral dose levels of 1.5, 3 or 9 g/kg bw over three successive generations [409]. 

So far, about 300 prospective studies have been conducted in humans with respect to 

bioavailability and health promoting effects, of which the majority refers to single-dose 

and short-term regimens. Anthocyanins have been administered at doses ranging up to 

several g per day. At single oral doses of 1 to 2.4 g anthocyanins, no adverse effects 

have been recorded [86,88,106,183,184,412]. In 7-day studies, 1.4 g/day and 2.7 g/day 

were well tolerated [413,414], and no signs of subchronic toxicity were observed in 

humans consuming 500 mg anthocyanins from elderberry extract per day for 12 weeks 

[415]. With regard to safety of a standardized anthocyanin extract, reference has been 

made to a post-marketing surveillance study on 2,295 subjects, of which the majority 

consumed 115 mg anthocyanins per day for one to two months. In most cases, 

anthocyanin extract was reportedly tolerated well or very well at a 4% rate of minor side 

effects concerning the gastrointestinal tract, skin, cutaneous annexes and the nervous 

system [416]. It should be noted, however, that the authors have not published this 

safety information.  

In summary, studies performed with isolated compounds are rare and available data on 

the toxicity of anthocyanin preparations are incomplete. Of those clinical trials that have 

monitored adverse effects of anthocyanins only a fraction fulfills current standards of 

randomization or blinding, and many were uncontrolled. 
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2.4.2.2 Proanthocyanidin toxicity 

According to in vitro evidence, grape seed proanthocyanidins are neither mutagenic 

[417], nor do they cause chromosomal damage [209]. 

From acute oral toxicity studies, the GSPE LD50 has been estimated greater 5 g/kg rat 

bw, corresponding to a dosage of about 300 g in a human with 60 kg bw [417,418]. For 

rats, a NOAEL of 2 g GSPE/kg bw was observed for systemic toxicity [418] and a 

NOAEL of 4 g/kg bw was reported for oral toxicity [419]. 

From subchronic (three months’) oral toxicity studies, NOAELs of approximately 1.78 

and 2.15 g/kg bw/day (2.5% diet) were derived for male and female rats, respectively 

[420]. A 2% GSPE diet reportedly decreased serum iron levels of animals, but did not 

otherwise cause any adverse effects [421]. Due to their o-dihydroxyphenyl groups, PAs 

are excellent chelators of iron (III) and known to form stable complexes with metal ions 

[47]. This property may be an issue in developing countries where the majority of the 

population relies on diets rich in beans for protein nitrogen [422]. Long-term (six 

months’) administration of GSPE at 500 mg/kg bw/day to mice failed to produce any 

signs of chronic toxicity [418].  

In humans, no subchronic toxicity was noted following daily consumption of 400 mg 

proanthocyanidins from grape seeds [198]. During long-term administration of GSPE at 

1 g/day and 300 mg/day for six weeks and six months, respectively, no side effects 

were reported [133,423].  

However, unresolved questions remain in that the monitoring of adverse effects has 

varied and available data on proanthocyanidin toxicity are mostly based on GSPE 

administration rather than on isolated proanthocyanidins. 

 

2.4.3 Interactions with xenobiotic metabolism 
Although available studies on acute, subchronic and chronic toxicities of anthocyanins 

and proanthocyanidins have not shown any serious side effects, we cannot conclude 

that consumption of anthocyanin- and proanthocyanidin-rich products is generally safe. 

Since flavonoids may interact with metabolism of other food compounds and drugs, 

changes in xenobiotics’ uptake, excretion and metabolism rates may cause adverse 

effects and toxicities. Possible hazards to human health are not predictable, especially 

if various dietary supplements are consumed in combination with pharmaceuticals. An 

example of known interactions is given by the ability of phytic acid to increase 

anthocyanins’ absorption and urinary excretion in rats and humans [100]. Conversely, 

an anthocyanin-rich Hibiscus beverage may reduce plasma bioavailability of the 

antimalaria drug chloroquine [424]. These observations highlight the importance of 

 



2 State of knowledge 43
 

studying in more detail those metabolomic pathways that may be utilized by both berry 

constituents and prescription drugs. 

 

2.4.3.1 Cytochrome P450 enzymes 

Cytochrome P450 enzymes play key roles in the detoxification of xenobiotics, including 

toxins, carcinogens, and drugs [155]. Typically, most lipophilic drugs and chemicals 

that enter the body are biotransformed into inactive, more hydrophilic, readily 

excretable metabolites [425]. This transformation can be divided into two steps: phase I 

and phase II metabolism [426]. Phase I metabolism usually results in the introduction, 

modification or liberation of functional groups via oxidation, reduction, isomerisation or 

hydrolysis reactions [427]. In phase II metabolism, conjugation of functional groups 

occurs with hydrophilic biochemicals of endogenous origin [426], so as to render the 

respective metabolites inactive and more readily excreted [425]. 

Cytochrome P450 enzymes are active during phase I and represent a large family of 

microsomal heme-containing monooxygenase isoenzymes. They are primarily 

expressed on smooth endoplasmic reticulum membranes by liver hepatocytes and by 

cells along the intestinal tract mucosal surface [428], where they act as catalyzers of 

hydroxylations and other oxidation reactions [155]. Cytochrome P450 enzymes are 

involved in the detoxification of a wide variety of xenobiotics such as drugs, biogenic 

amines from food sources, environmental toxins, and chemical carcinogens. Other 

functionalities comprise the oxidation of steroids, fatty acids, prostaglandins, 

leukotrienes, and fat-soluble vitamins [429-431]. In addition, they play key roles in 

activating many toxins and procarcinogens that are turned into powerful alkylating 

substances [155,432]. 

With regard to dietary compounds, cytochrome P450 enzymes have been implicated in 

numerous food-drug interactions [433]. The opportunity for such interactions is an 

everyday occurrence, of which grapefruit juice provides a prominent example. 

Coadministration of grapefruit juice with many therapeutic agents is known to increase 

the oral bioavailability of common drugs by altering presystemic metabolism, 

particularly in the intestine [434]. Interactions with enzyme inhibitors have been shown 

to affect both pharmacokinetic and pharmacodynamic parameters of drugs [435,436], 

and to augment drug toxicity. Recognition of food–drug interactions has raised 

concerns about risks that may be posed by functional foods, and specifically, by food 

enriched with secondary plant metabolites. 
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Figure 2-13 Model of Cytochrome P450 (CYP) enzyme-mediated xenobiotic metabolism in the 
liver and intestine (A), and impact of cytochrome P450 inhibition (B) and induction (C) on 
xenobiotic pharmacokinetics. Figure adapted from [437] and used with kind permission of 
Schweizerischer Ärzteverlag AG (http://www.medicalforum.ch). 
 
 
In isolated human liver microsomes, grapefruit furanocoumarins acted as inhibitors of 

isoenzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 [438]. With respect 

to dietary anthocyanins and proanthocyanidins, weak inhibitory interactions of 

anthocyanins and aglycones  have emerged with CYP2C19 [439], CYP2C9 [440] and 

CYP1A2 [441], and of GSPE with cytochrome CYP2E1. In support of these data, a 

40% inhibition of aniline hydroxylation was observed in rats receiving GSPE at 100 

mg/kg bw/day for four weeks [442]. As CYP2C19, CYP2C9 and CYP2E1 may oxidize 

environmental chemicals, such as nitrosamines, acrylamide, benzo-[a]-pyrene, and 

various organic solvents, an improved understanding of enzyme inhibitors may also 

serve to prevent the formation of carcinogens. 

 

2.4.3.1.1 Cytochrome P450 3A4 

The CYP3A subfamily comprises 30% of the total liver cytochrome P450 enzyme pool 

in humans [443] and an estimated 70% of CYP protein in the small intestinal epithelium 

[444]. 60% of all drugs metabolized are targeted by the 3A4 isoenzyme [445]. 

Coadministration of multiple CYP3A4 substrates, inducers, or inhibitors, including 

compounds from food sources, may result in adverse effects of commonly prescribed 

drugs [435,436]. A prominent example of food–drug interactions mediated by CYP3A4 

is provided by the inhibitory effects of grapefruit juice on presystemic metabolism, 

particularly in the intestine [434]. Constituents of grapefruit juice with CYP3A4 inhibitory 

activities include furanocoumarins and the flavonoids naringin, quercetin, and 

kaempferol [438]. With respect to dietary anthocyanin sources, in vitro CYP3A 

inhibitory potential has been described for black raspberry juice, wild grape juice, black 

mulberry juice [446], pomegranate juice [447], and red wine [448], and has been 

suggested for cranberry juice [449]. With drug safety in mind, more detailed 

investigations of berry polyphenols are urgently warranted. 

 

http://www.medicalforum.ch/
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2.4.3.1.2 Cytochrome P450 2D6 

Within the cytochrome P450 superfamily, the cytochrome P450 2D6 isoenzyme plays a 

key role in the metabolism of centrally acting drugs [450]. These include many 

neuroleptics [451], selective serotonin reuptake inhibitors (SSRIs) [452], selective 

norepinephrine reuptake inhibitors (SNRIs) [453] and tricyclic antidepressants (TCAs) 

[454] that are metabolised via hydroxylation [455], demethylation [456] or dealkylation 

reactions [431]. The human brain’s CYP2D6 expression pattern maps to the 

dopaminergic system [457], where CYP2D6 converts the endogenous substrate 

tyramine, which is formed from tyrosine or phenylalanine, to dopamine. This implies 

that inhibitors may alter tyrosine and dopamine levels via brain CYP2D6. 

In an estimated 10% of the general population, CYP2D6 substrate metabolism may be 

seriously compromised owing to an innate deficiency in enzymatic activity [458,459]. 

CYP2D6 inhibitors from food sources may also interfere with the metabolism of 

psychoactive drugs and limit the use of medication. Furanocoumarins [438], 

polyphenol-rich green tea and grape seed extracts [460], plus the flavonoids 

naringenin, vitexin and quercetin [461], have already been identified as CYP2D6 

inhibitors. However, anthocyanins’ ability to interfere with the metabolism of centrally 

acting drugs via inhibition of CYP2D6 has not been examined. 
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3 Results and discussion 

3.1 Anthocyanin bioavailability: transport mechanisms 
To date, limited data are available on transport mechanisms that may control 

anthocyanin absorption and brain bioavailability. In order to determine whether 

anthocyanins are substrates for ABC transporters, and whether anthocyanins may 

interfere with the transport of other substrates, 16 anthocyanidins and anthocyanins 

were tested for in vitro effects on the human efflux transporters BCRP and MDR1. 

Interactions were studied in dye extrusion and ATPase assays as well as in vesicular 

transport assays for BCRP. In combination, these assays give insight into different 

types of transporter interaction and specify substances’ affinities for the ABC 

transporters under study. 

None of the test compounds showed any affinity for either the BCRP or the MDR1 

transporter in dye efflux assays. Passive permeability is a prerequisite for eliciting a 

response in dye extrusion assays as has previously been shown for other compounds 

[462,463]. The absence of effects in the calcein acetoxymethyl ester (calcein-AM) and 

Hoechst 33342 assays suggests that anthocyanins and their aglycones cannot cross 

the cell membrane passively and, therefore, will not reach the substrate binding site of 

the transporter. 

For all other BCRP and MDR1 assays performed, calculated reaction parameters are 

shown in table 3-1. 

 
Table 3-1 Reaction parameters derived from MDR1 plus BCRP ATPase and BCRP vesicular 
transport assays. With kind permission from John Wiley and Sons [464]. 
 

MDR1 ATPase BCRP ATPase BCRP VT Test compound 
Inhib [IC50] (eff) Inhib [IC50] (eff) Activ [EC50] (eff) Inhib [IC50] (eff)  

Cyanidin 58  (100) 7.6  (100) - (-) 5  (100) 

Delphinidin 104  (100) 87 (100) - (-) 13  (98) 

Malvidin 220  (62) 49 (100) 1.1 (59) 3  (98) 

Pelargonidin 83  (100) 76 (79) - (-) 17  (97) 

Peonidin 100  (100) 30 (100) - (-) 4  (96) 

Petunidin 230  (65) 193 (87) 3.3 (125) 5  (100) 

Cyanidin-3-glc -  (-) - (-) 119 (142) 49  (87) 

Cyanidin-3-gal -  (-) - (-) 15 (237) 25  (89) 

Cyanidin-3-rut -  (-) - (35) - (-) 95  (73) 

Cyanidin-3,5-diglc -  (-) 43 (100) - (-) 83  (76) 

Delphinidin-3-glc -  (-) - (44) - (-) 47  (93) 
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Malvidin-3-glc -  (42) - (35) - (-) 43  (94) 

Malvidin-3-gal -  (24) - (14) 6.3 (73) 31  (88) 

Malvidin-3,5-diglc -  (-) - (-) 12 (87) 23  (81) 

Pelargonidin-3,5-diglc -  (14) - (24) - (-) 130  (66) 

Peonidin-3-glc -  (20) - (-) 45 (133) 24  (93) 
 
Half-maximal inhibition and activation values are displayed in µM. Efficacies (eff) are given in brackets at 
the highest anthocyanidin/anthocyanin concentration tested. “-“ no effect observed; activ, activation; inhib, 
inhibition; VT, vesicular transport.  
 
 
In BCRP ATPase assays, baseline ATPase activity was stimulated by seven 

anthocyanidins and their glycosides, with half-maximal activation in the low micromolar 

range for two anthocyanidins. The presence or absence of a sugar moiety failed to 

predict half-maximal ATPase activation values in this assay (P = 0.1504, t = 1.78, 

df = 4). For four flavonoids, stimulation of baseline ATPase activity exceeded 100% as 

defined by the reference activator substrate sulfasalazine. As this was in part a non-

specific effect that was also observed in the defBCRP negative control for cyanidin-3-

gal and cyanidin-3-glc, the net activation may be less pronounced for these 

compounds. In contrast, petunidin and peonidin-3-glc emerged as genuine stimulants 

of BCRP ATPase activity that led to a higher level of activation than was achieved with 

10 µM sulfasalazine. Stimulation of ATPase activity by substrates is considered a direct 

correlate of the actual transport process [152,465] and therefore an indicator of 

substrate functionality. However, stimulation of BCRP- and MDR1-associated ATPase 

activity may, on occasion, occur independently of substrate transport [466,467]. In 

other cases, induction of ABC transporter activity has been observed [468]. This 

appears unlikely for anthocyanins and anthocyanidins, as reporter substrate transport 

was not increased in the vesicular transport assay. 

In addition to some stimulators of BCRP ATPase, potent inhibitors were also identified, 

with IC50 values of cyanidin, peonidin, cyanidin-3,5-diglc and malvidin ranging from 7.6 

to 49 µM. With only one exception, cyanidin-3,5-diglc, the absence of sugar moieties 

was associated with higher levels of BCRP ATPase inhibition, as compared with those 

achieved by other compounds. Intermediate inhibitors comprised pelargonidin and 

delphinidin, and minimal inhibition was observed for cyanidin-3-rut, delphinidin-3-glc, 

malvidin-3-glc, pelargonidin-3,5-diglc, malvidin-3-gal (eff. < 44%). Of the identified 

inhibitors, delphinidin, cyanidin, malvidin and peonidin inhibited both the maximal 

ATPase activity after sulfasalazine stimulation, and the baseline ATPase activity at 

higher concentrations. Interestingly, two compounds, malvidin and petunidin, which 

stimulated the BCRP ATPase at low concentrations (EC50 of 1.1 and 3.3 µM, 

respectively), displayed bimodal activities, inhibiting sulfasalazine-stimulated ATPase 
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activity at higher concentrations (IC50 = 49 µM and 193 µM, respectively). It cannot be 

entirely ruled out, however, that these two anthocyanidins are not true inhibitors, but 

rather slowly transported substrates which compete with the assay substrate for 

transport.  

In contrast to results for BCRP ATPase, the effects of the test compounds on MDR1 

ATPase activity were weak. Cyanidin-3-glc, cyanidin-3-gal and delphinidin-3-glc 

showed weak stimulation of both baseline and verapamil-induced activity (eff. = 35%, 

23% and 24% respectively). The latter effect is rarely observed in practice and findings 

are best explained by nonspecific interactions with the MDR1 transporter, such as 

stimulation of an endogenous ATPase. For these flavonoids, a slight stimulation of 

ATPase activity in the beta-gal control membranes was also observed. All tested 

aglycones reached IC50 values from 58 to 230 µM for MDR1 ATPase inhibition, but only 

cyanidin, pelargonidin, peonidin and delphinidin fully inhibited verapamil-stimulated 

ATPase activity within the tested concentration range (< 300 µM). Partial and very 

weak MDR1 inhibition was observed for malvidin, petunidin, malvidin-3-glc, malvidin-3-

gal, peonidin-3-glc and pelargonidin-3,5-diglc. Finally, cyanidin-3-rut, cyanidin-3,5-diglc 

and malvidin-3,5-diglc did not exhibit any measurable inhibitory effects on MDR1 

ATPase. Thus, anthocyanidins are either moderate MDR1 inhibitors or slowly 

transported MDR1 substrates, while even lower levels of inhibition were observed for 

glycosylated compounds. 

In view of the overall poor affinities of these compounds for MDR1, further 

characterizations by transport assays to rule out non-specific stimulation of ATPase 

were conducted only for BCRP. Since all test compounds inhibited BCRP-mediated 

transport of 3H-oestrone-3-sulphate into vesicles dose dependently (far right hand 

column, table 3-1), vesicular transport assays served to verify affinities of all tested 

compounds for BCRP. Effects were most pronounced for malvidin, peonidin, petunidin 

and cyanidin with essentially identical IC50 values and full efficacy. The remainder of 

the compounds tested were less potent with IC50 values ranging from 13 µM to 130 µM 

and efficacies from 98% to 66%. With regard to structural features, results of the 

vesicular transport assay confirmed significantly higher affinities of anthocyanidins for 

BCRP (mean IC50 = 7.8 µM) when compared with affinities of glycosylated test 

compounds (mean IC50 = 55.0 µM, p = 0.0029, t = 4.05, df = 9). Moreover, none of the 

tested anthocyanins or aglycones enhanced transport of the reporter substrate. This 

further supports the hypothesis that the seven compounds activating BCRP ATPase 

are true BCRP substrates, rather than mere stimulants of BCRP activity. 

A variety of dietary polyphenols have been described to interact with BCRP or MDR1 in 

vitro. Of these, the stilbene resveratrol, the flavanones hesperetin [469] and naringenin 
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[470], the flavones luteolin and chrysin [471], and the flavonols kaempferol and 

quercetin [472] have emerged as inhibitors of BCRP, among others. The isoflavone 

genistein is considered a natural substrate that competitively inhibits drug efflux by 

BCRP [471]. With respect to MDR1, resveratrol [473], hesperetin, naringenin, chrysin 

[474] the tea catechins epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), 

plus the anthocyanidin cyanidin [475] have previously displayed inhibitory activities. 

Regarding bimodal functions, as observed for malvidin and petunidin with respect to 

BCRP ATPase activity, similar effects have been noted for quercetin and kaempferol 

on MDR1 activity [474,476]. Polyphenolic MDR1 stimulants include (-)-epicatechin 

[477] and the flavonol galangin [478]. 

Owing to the mostly semi-quantitative and heterogenous assays employed in many 

earlier studies [479], however, a cautious comparison of flavonoids’ affinities for BCRP 

and MDR1 is warranted. Among the consistent findings is the modulatory role of sugar 

moieties on efflux transporter activity. Thus, for most flavonoids that interacted with 

either BCRP or MDR1, the corresponding glycosides proved either inactive or less 

active [471,472,474-476]. In a further parallel to earlier studies on other polyphenols 

[471,480-482], prominent effects of anthocyanidins on BCRP were noted in this work 

(figure 3-1). As BCRP ATPase inhibition was up to sevenfold that for MDR1, and 

substrate-like behavior was limited to BCRP, BCRP-specific functions may be exhibited 

by anthocyanidins and anthocyanins. 

 

B A 

 
Figure 3-1 Dose-response curves for cyanidin with respect to BCRP and MDR1 ATPase 
inhibition (A), and for cyanidin, cyanidin-3-glc and cyanidin-3-diglc with respect to inhibition of 
BCRP vesicular transport (B). BCRP, breast cancer resistance protein; MDR1, multidrug 
resistance protein 1. With kind permission from John Wiley and Sons [464]. 
 
 
This may be relevant to the intestinal barrier and to brain microvessels where BCRP is 

expressed at higher levels than MDR1 [483-485]. Despite the difference in transporter 
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expression, however, the role played by BCRP in substrate efflux at the BBB in vivo is 

less firmly established [486,487].  

While substrate-type affinity of anthocyanidins and anthocyanins for BCRP is liable to 

limit their intestinal absorption and, possibly, brain uptake, the moderate levels of 

interaction with MDR1 would appear not to be able to reduce bioavailability. On the 

other hand, substrate-type or inhibitor-type affinities of anthocyanidins, anthocyanins, 

and other dietary compounds may also facilitate crossing of the intestinal and blood-

brain barriers by other anthocyanidins and anthocyanins and thereby may augment 

berry flavonoids’ bioavailability.  

However, for anthocyanidin interactions with BCRP and MDR1 transporters to take 

effect, it is required that anthocyanidins enter intestinal epithelial and brain endothelial 

cells at micromolar concentrations. Existing data point to relatively high anthocyanin 

concentrations in the human intestine [86], whereas peak plasma concentrations have 

been described in the nanomolar range [70,93,488]. Although anthocyanin brain 

bioavailability is not sufficiently elucidated to date and raises several questions, results 

from animal studies would appear to rationalize interactions with ABC transporters in 

brain endothelial cells in vivo as these agents rapidly cross the blood-brain barrier 

[80,83,112-114]. Favorable changes in central nervous parameters of oxidative stress 

following administration of anthocyanins further corroborate this hypothesis [16] but 

detailed tissue quantitations of anthocyanins and anthocyanidins have yet to be 

performed and concentrations in brain endothelial cells still need to be elucidated.  

Moreover, estimates on anthocyanin bioavailability may be considered conservative in 

that analytical challenges are posed by anthocyanin accumulation in tissues as shown 

for rats [82], by metabolic transformation to molecular structures that are not routinely 

detected, and by protein binding [115,489,490]. 

For extrapolations to the in vivo situation, functional genetic variation in transporter 

proteins must also be taken into account as a likely confounder of the functionalities 

addressed [491-493]. More detailed investigations of anthocyanin and anthocyanidin 

transporter binding sites and interaction mechanisms are desirable, including studies 

on reversibility of effects. Possible mechanisms include competitive inhibition or steric 

blockage of substrate binding to the transporter or ATPase, and allosteric effects on 

substrate recognition, translocation, dissociation or ATP hydrolysis. Moreover, it cannot 

be excluded that anthocyanins’ interactions with ABC transporters in the human body 

may be different from those observed during the present in vitro testings, since 

complex food matrices may also exhibit unknown synergistic or quenching effects in 

vivo and since compounds’ metabolism needs to be considered as well. Therefore, 

other areas of future research may include effects of combinations of anthocyanins, as 
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in standardized extracts, and of anthocyanin degradation products such as phenolic 

acids on ABC transporters. Finally, direct transport assays and studies on BCRP 

knockout mice to rationalize this works’ assumptions and comparative studies involving 

other members of the ABC transporter family are warranted. 

In summary, results of the present work demonstrate moderate to high affinities of 

anthocyanins and anthocyanidins for the human efflux transporter BCRP, and 

moderate to low affinities for MDR1. These results add to our understanding of 

anthocyanin plasma and brain bioavailability. 

 

Finally, anthocyanins and anthocyanidins may also have potential to alter bioavailability 

of other compounds. Therefore investigations on interactions of anthocyanins and their 

aglycones with ABC transporters BCRP and MDR1 add to a better understanding of 

safety concerns in terms of these berry flavonoids. Regarding polyphenols, the 

isoflavone genistein is considered a natural substrate that competitively inhibits drug 

efflux by BCRP [471]. Similarly anthocyanins and anthocyanidins may be able to 

interfere with transport of other BCRP or MDR1 substrates. Distinct affinities of 

xenobiotics for BCRP are also discussed for the substrates flavopiridol, mitoxantrone 

and topotecan [494-496], plus the inhibitory fumitremorgin C analogue Ko143 and 

tariquidar analogues [497,498]. However, other food constituents may be BCRP 

substrates as well. In consequence, targeting of BCRP by dietary compounds such as 

anthocyanins may affect barriers in the placenta [499], secretory organs [500], the 

digestive tract and the brain [501] with regard to permeability for toxins [502], other 

dietary compounds [152,503,504] and environmental carcinogens [505]. Moreover, 

BCRP has been implicated in multidrug resistance of tumors [153,480], and co-

determines responsiveness to the treatment of CNS disease [506,507].  

Results of the present work suggest that anthocyanidins may alter the 

pharmacokinetics of above mentioned xenobiotics, especially by competing with and 

thereby limiting transport of drugs with high affinities for BCRP. These berry flavonoids 

causing efflux transporter inhibition may on the one hand dismantle protection against 

toxins [491], or may pose a risk of interactions with xenobiotics and other food 

ingredients including those deriving from dietary supplements [156,472]. On the other 

hand, transporter inhibitors can restore chemosensitivity to tumor cells [154,472] and 

may enhance brain uptake of drugs. As adjuvants to therapy, identified inhibitors thus 

hold promise in the pharmacotherapy of epilepsy [506-508] and primary brain tumors 

[147,508,509]. 

These results put into perspective the potential of berry anthocyanidins to interfere with 

the transport and the pharmacokinetics of other MDR1 and BCRP substrates. More 
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detailed toxicity profiles will help to unveil the related benefits and novel dietary or 

medical applications of anthocyanins. Since bioactive compounds may be ingested 

regularly and in significant amounts when consumed in form of dietary supplements 

and functional foods, especially long-term toxicology studies of pure anthocyanins and 

of anthocyanins embedded in complex matrices are warranted. 

 

3.2 Neuroprotective effects 

3.2.1 Effects on monoamine oxidases A and B 
In the light of neuroprotective properties described for berry constituents with 

mechanisms being for the most part still unknown, studies on potential effectors of 

neuroprotection conferred by anthocyanins, anthocyanidins and proanthocyanidins is in 

great demand. Considering low brain tissue concentrations anthocyanins reach in 

animal studies, it is unlikely that direct radical quenching presents their primary mode 

of action. Since emerging neuroprotective effects of anthocyanins from berry fruits may 

also be explained by an affinity of these polyphenols for monoamine oxidases [510], 

MAO isoforms A and B count among novel candidate effectors mediating health effects 

on the human brain. Therefore 10 anthocyanins’, six anthocyanidins’, two 

proanthocyanidins’ and seven phenolic metabolites’ impact on MAO A and MAO B 

activities was examined. 

Test compounds inhibited MAO A and B enzyme activities in a concentration-

dependent manner and exhibited significant differences in IC50 values between 

substance groups (table 3-2, table 3-3, figure 3-2). For MAO A, IC50 values indicated 

strongest inhibition by anthocyanidins (mean 29.2 +/- 4.4 µM SD), followed by 

anthocyanidin-3-glycosides (mean 36.9 +/- 5.8 µM SD), and anthocyanidin-3,5-

diglucosides (mean 97.3 +/- 31.0 µM SD) and finally, by phenolic acids 

(mean 11,489 +/- 7,022 µM SD). IC50 values of proanthocyanidins B1 and B2 could not 

be calculated as these compounds did not achieve 50%-inhibition at maximum 

concentrations of 1,000 and 2,000 µM, respectively. The known MAO A inhibitor 

clorgyline achieved an IC50 value of 5.4 nM.  
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Table 3-2 IC50 values calculated for inhibition of MAO A activity by anthocyanidins, 
anthocyanins, procyanidins, phenolic acids and clorgyline. 
 

Test compound IC50 in µM (95% confidence interval) 

Malvidin 22 (21-23) 

Pelargonidin 27 (26-28) 

Delphinidin-3-glc 29 (29-30) 

Cyanidin 30 (29-31) 

Peonidin 31 (29-32) 

Petunidin 32 (30-33) 

Cyanidin-3-rut 33 (32-34) 

Cyandin-3-glc 34 (33-35) 

Delphinidin 35 (33-37) 

Cyanidin-3-gal 36 (35-37) 

Peonidin-3-glc 38 (36-40) 

Malvidin-3-gal 39 (37-42) 

Malvidin-3-glc 48 (45-51) 

Malvidin-3,5-diglc 62 (58-65) 

Cyanidin-3,5-diglc 113 (108-118) 

Pelargonidin-3,5-diglc 117 (113-122) 

Procyanidin B1 > 1,000 (-) 

Procyanidin B2 > 2,000 (-) 

Vanillic acid 3,885 (3,703-4,076) 

Syringic acid 4,159 (3,894-4,442) 

3-(4-Hydroxyphenyl)propionic acid 5,591 (5,251-5,953) 

4-Hydroxybenzoic acid 11,522 (10,906-12,172) 

Protocatechuic acid 17,229 (16,287-18,224) 

3-Hydroxyphenylacetic acid 17,755 (16,807-18,757) 

4-Hydroxyphenylacetic acid 20,282 (19,093-21,545) 

Clorgyline 5.4 nM (4.4-6.6 nM) 
 
 
For MAO B, in turn, IC50 values testified to strongest inhibition by anthocyanidins 

(mean 32.7 +/- 10.5 µM SD), followed by anthocyanidin-3-glycosides (mean 36.8 +/-

 5.2 µM SD), and anthocyanidin-3,5-diglucosides (mean 155.7 +/- 84.4 µM SD). 

Proanthocyanidins B1 and B2 failed to achieve 50%-inhibition at a maximum 

concentration of 400 µM, while an IC50 value of 135 nM was determined for the known 

MAO B inhibitor R-(-)-deprenyl. 
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Table 3-3 IC50 values calculated for inhibition of MAO B activity by anthocyanidins, 
anthocyanins, procyanidins, phenolic acids and deprenyl. 
 

Test compound IC50 in µM (95% confidence interval) 

Malvidin 19 (18-20) 

Peonidin 22 (20-25) 

Delphinidin-3-glc 31 (29-34) 

Cyanidin 32 (30-33) 

Cyanidin-3-glc 33 (30-36) 

Malvidin-3-gal 34 (32-37) 

Cyanidin-3-rut 35 (34-37) 

Malvidin-3-glc 37 (35-39) 

Delphinidin 38 (36-41) 

Peonidin-3-glc 41 (38-43) 

Pelargonidin  43 (40-45) 

Petunidin 43 (41-46) 

Cyanidin-3-gal 46 (45-48) 

Malvidin-3,5-diglc 73 (67-80) 

Cyanidin-3,5-diglc 152 (139-166) 

Pelargonidin-3,5-diglc 242 (221-265) 

Procyanidin B1 > 400 (-) 

Procyanidin B2 > 400 (-) 

R-(-)-deprenyl 135 nM (119-153 nM) 
 
 
MAO A inhibition by anthocyanins and anthocyanidins falls within the range of IC50 

values previously determined for other polyphenols, e.g. quercetin (50 µM), trans-

resveratrol (17.4 µM), apigenin (1.7 µM), and kaempferol (0.7 µM) [327,511,512]. 

Likewise, for MAO B, findings are in close agreement with published IC50 values for 

quercetin (90 µM), (+)-catechin (88.6 µM), (−)-epicatechin (58.9 µM), trans-resveratrol 

(30.8 µM) and apigenin (12.8 µM) [307,327,511]. Owing to methodological issues, e.g. 

different sources of MAO enzymes, a direct comparison of results on compounds 

investigated with above flavonoid IC50 values must be conducted cautiously. When 

compared to known selective inhibitors, MAO A inhibition by anthocyanidins was 

4,000-fold weaker than that achieved by clorgyline and MAO B inhibition was 200-fold 

weaker compared to inhibition from R-(−)-deprenyl. Proanthocyanidins B1 and B2 

displayed only minimal enzyme inhibitory effects. In view of anthocyanins’ and 

proanthocyanidins’ instability in the intestinal environment [24,56,118], the role of 

phenolic acid metabolites was also addressed for MAO A. To judge by the present in 

vitro data, however, their activity is negligible (IC50 values > 3.9 mM), which further 

emphasizes the need to examine the bioavailability of parent compounds. 
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Overall, compounds under study featured little specificity with regard to inhibition of a 

particular enzyme isoform. For MAO A and B, maximum inhibition was achieved by 

anthocyanidins reaching IC50 values of < 23 µM, followed by monoglycosides and 

diglucosides. Anthocyanins’ sugar moiety thus proved predictive of test compounds’ 

potential for inhibiting MAO, in analogy to findings on other glucosylated flavonoids 

[511], albeit to a lesser extent. For both enzyme isoforms, the number of sugar 

moieties predicted IC50 values of anthocyanidins and their glycosides (MAO A, 

p < 0.0001, F = 29.79, R2 = 0.82 and MAO B, p = 0.0004, F = 15.51, R2 = 0.71). When 

a Bonferroni correction for multiple testing was applied, differences remained 

significant between anthocyanidins and anthocyanidin-3,5-diglucosides and between 

anthocyanidin-3-glycosides and anthocyanidin-3,5-diglucosides (p < 0.001) with 

respect to both MAO isoenzymes. In contrast, proanthocyanidins were weak inhibitors 

of both monoamine oxidases, and phenolic acids poorly inhibited MAO A. 
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Figure 3-2 IC50 values (µM) of anthocyanidins, anthocyanidin-3-glycosides, anthocyanidin-3,5-
diglucosides, phenolic acids, and the known inhibitors clorgyline (MAO A) and R-(−)-deprenyl 
(MAO B). Asterisks indicate significant differences between substance groups after Bonferroni 
correction at p < 0.001. Figure adapted from [513] and reprinted with permission from Elsevier. 
 
 
Regarding qualitative effects on monoamine oxidases, for cyanidin-3-glucoside and its 

corresponding aglycone cyanidin, effects on MAO-catalyzed reactions were measured 

using three different inhibitor concentrations at increasing concentrations of substrate.  
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Kinetic data (table 3-4) and Lineweaver-Burk plots (LB plot) (figure 3-3) indicate 

competitive and mixed competitive and non-competitive modes of MAO A inhibition for 

cyanidin and cyanidin-3-glucoside, respectively. Whereas cyanidin showed a 

pronounced effect on the Michaelis-Menten constant (Km) compared to the glucoside 

(increase by 426% versus 28%, respectively, at 80 µM), maximum enzyme velocity 

(Vmax) was only marginally affected (decrease by 3.7% at 80 µM). In contrast, cyanidin-

glucoside induced a major change in Vmax (decrease by 48%). This suggests that 

cyanidin mediates inhibition of MAO A in a competitive manner, and the corresponding 

glucoside mediates inhibition in a mixed fashion. Dissociation constants of the enzyme-

inhibitor complex, named Ki values, reached 20.4 µM and 47.4 µM for cyanidin and its 

glucoside, respectively. As for MAO B kinetics, cyanidin and cyanidin-3-glucoside acted 

as mixed competitive and non-competitive inhibitors. Unlike the differences seen in 

MAO A parameters, effects of the glucoside on MAO B Km were comparable to those of 

cyanidin (increase by 23% and 27%, respectively, at 80 µM) as were effects on MAO B 

Vmax (decrease by 59% and 57%, respectively). For cyanidin and cyanidin-glc Ki values 

of 58.6 µM and 61.1 µM, respectively, were obtained. 

 
Table 3-4 Kinetic characteristics of cyanidin and cyandin-3-glucoside interactions with MAO A 
and MAO B. Km and Ki values are expressed in µM. Mean values were formed from two 
separate experiments performed in duplicate. 
 

 Control   Cyanidin   Cyanidin-3-glc 

 Km Vmax  Ki Type of inhibition  Ki Type of inhibition 

MAO A 25.6 2245  20.4 competitive  47.4 mixed 

MAO B 5.2 242  58.6 mixed  61.1 mixed 
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Figure 3-3 Inhibition-dissociation kinetics of cyanidin (left) ( □ ) and cyanidin-3-glucoside (right)  
( ○ ) for MAO A (top) and MAO B (bottom) relative to control values in the absence of test 
compounds ( , ). [V] = velocity of MAO-catalyzed reaction, [S] = substrate concentration. 
Reprinted from [513] with permission from Elsevier. 
 
 
These data suggest that anthocyanins may hold promise in conditions where increased 

brain levels of biogenic amines are desirable [514], including deficiencies in 

norepinephrine and serotonin [515]. Specifically, MAO A inhibitory activity warrants 

further investigations of antidepressant and antianxiety functionalities. No effects were 

reported on anxiety levels of rats fed lyophilized berries in an elevated plus-maze 

paradigm [17]. More recent investigations using an anthocyanin extract, however, 

contradict this observation and argue in favor of anxiolytic properties [237]. Referring to 

available literature, antidepressant effects of anthocyanins have not been addressed. 

However, a study on older adults supplemented with wild blueberry juice for 12 weeks 

suggested reduced depressive symptoms and provided further corroboration of 

neurocognitive benefits associated with berry constituents [6]. 

In addition to their prominent role in the central nervous system, MAO enzymes may 

alter endogenous amine turnover in multiple peripheral tissues [516-518]. In the 

treatment of depression, nonselective and irreversible MAO inhibition has been 

associated with side effects outside the CNS [519]. For instance, when tyramine and 

other sympathicomimetic amines from fermented foods such as cheese enter the 

circulation and accumulate as a consequence of MAO inhibition in the intestine, 

sympathetic cardiovascular activity is potentiated by the release of norepinephrine 

[306]. Pending work on dissociation of anthocyanins from MAO A and B, food–drug 

interactions therefore cannot be excluded. As a significant number of subjects suffering 
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from depression consume dietary supplements [520], supplementation with large 

amounts of compounds from berry fruits may, in theory, predispose to adverse 

reactions in these individuals. 

MAO B inhibition causes slowing of dopamine turnover in the mammalian brain [521] 

and limits the formation of hydrogen peroxide [522]. MAO B inhibitors may also reduce 

the secretion of neurotoxins and prevent generation of the toxic metabolite 1-methyl-4-

phenylpyridinium (MPP+) from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 

guarding against dopamine depletion in substantia nigra neurons [523]. Oxidative 

stress, depletion of antioxidants in the brain, and an increase in MAO B activity in 

reactive microglia are closely related risk factors in neurodegenerative disease 

[524,525]. Compounds that combine MAO B inhibitory with antiinflammatory and 

antioxidant properties may therefore offer significant advantages in arresting the 

underlying pathophysiological process [524,526]. Pending replication of the present 

findings in animal studies, anthocyanins may qualify as multifunctional agents by 

limiting the formation of free radicals, reducing the activation of environmental protoxins 

and by minimizing the generation of neurotoxic aldehydes. 

In summary, MAO A and B inhibition by anthocyanins lends support to central nervous 

functionalities of diets rich in these polyphenols and opens new windows of opportunity 

in the prevention of neuronal pathologies. More research is invited to assess in detail 

the benefits to be derived from nutritional interventions with anthocyanins in vivo. 

 

3.2.2 Effects on hypoxia inducible factors 
Activation of a hypoxia signal transduction pathway presents an emerging target for 

neuroprotection associated with iron chelation. It is closely related to the expression of 

the transcriptional activator HIF and to increased transcription of genes mediating 

compensatory survival processes in response to oxidative stress. With respect to their 

modulatory effects on HIF-1α and HIF-2α expression, selected test substances were 

investigated in two neuroblastoma cell lines. As the presence of vicinal di-hydroxyl 

groups was shown to be a requirement for efficient iron-binding of phenolic compounds 

[527], anthocyanidins cyanidin and delphinidin plus their corresponding glucosides and 

possible phenolic metabolites were chosen as test substances. Procyanidin B2, 

anthocyanin-rich bilberry extract and the known HIF-1α inducers desferrioxamine and 

quercetin were also investigated. 
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3.2.2.1  Effects on SH-SY5Y viability 

The influence of compounds under investigation on SH-SY5Y cell viability was 

assessed using the MTT test. When effects on MTT reduction were compared, a 

significant difference between test compounds was revealed (p = 1.3·10-5, F = 16.74, 

df = 11, R2 = 0.94). After Dunnett correction for multiple comparisons, significant 

differences were observed for cyanidin-glc (p = 0.0073), cyanidin (p = 0.0023), 

procyanidin B2 (p = 3.5·10-5), protocatechuic acid (p = 0.019), gallic acid (p = 0.018) 

and DFO (p = 0.024) compared to control effects. As shown in figure 3-4, all test 

substances except gallic acid improved cell viability after a 4 h period of incubation.  
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Figure 3-4 Effects of test substances on SH-SY5Y viability after 4 h incubation. Data points are 
means from two independent experiments with standard deviations shown as error bars. 
Asterisks indicate cell viabilities that differ from control viabilities after Dunnett correction for 
multiple testing at p < 0.05.  
 
 
The MTT viability test implies that test substances with the exception of gallic acid do 

not exert cytotoxic effects on SH-SY5Y cells at concentrations of 91 µM during the 4 h 

incubation experiments. 

 

3.2.2.2 Effects on HIF-α expression and cellular uptake 

With regard to test substances’ effects at 100 µM on HIF-1α protein expression after 

incubation for 4 h, significant differences compared to control were observed for both 

SH-SY5Y (p = 3.3·10-14, F = 500.2, df = 11, R2 = 0.998) and IMR-32 cells (p = 3.3·10-11, 
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F = 156.8, df = 11, R2 = 0.99) (figure 3-5). When Dunnett correction for multiple testing 

was applied, differences compared to control were significant for cyanidin 

(p = 5.6·10-4), delphinidin (p = 3.7·10-4), gallic acid (p = 1.2·10-4), bilberry extract 

(p = 0.0019), and the known HIF-1α inducers DFO and quercetin (p = 8.8·10-6) with 

respect to SH-SY5Y cells, and merely for DFO and quercetin (p = 8.8·10-6) in IMR-32 

cells. With the exception of gallic acid, which reduced HIF-1α expression in SH-SY5Y 

cells, other substances with significant modulatory effects increased HIF-1α protein 

concentrations. 
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Figure 3-5 Effects of test substances on HIF-1α expression after 4 h of incubation. Data points 
are means from two independent incubation experiments with standard deviations shown as 
error bars. Asterisks indicate HIF-1α expression levels that differ from control levels after 
Dunnett correction for multiple testing at p < 0.05. 
 
 
Likewise, test compounds’ effects were significantly different from control for HIF-2α 

expression in both SH-SY5Y (p = 0.015, F = 3.83, df = 11, R2 = 0.78) and IMR-32 cells 

(p = 0.0024, F = 5.88, df = 11, R2 = 0.84) (figure 3-6). Following Dunnett correction for 

multiple testing, only bilberry extract exerted significantly different effects compared to 

controls in SH-SY5Y (p = 0.011) and IMR-32 cells (p = 0.023). In both cell lines, 

bilberry extract decreased HIF-2α protein concentrations.  
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Figure 3-6 Effects of test substances on HIF-2α expression after 4 h of incubation. Data points 
are means from two independent incubation experiments with standard deviations shown as 
error bars. Asterisks indicate HIF-2α expression levels that differ from control levels after 
Dunnett correction for multiple testing at p < 0.05. 
 
 
In this first round of substance screening experiments, the anthocyanidin delphinidin 

was the most promising compound regarding induction of HIF-1α expression. Since its 

potential to influence HIF-1α expression has not been previously addressed, 

delphinidin was selected for a second series of experiments. When effects of three 

delphinidin concentrations on HIF-1α protein expression were examined during 4 h of 

incubation, significant differences were observed in both SH-SY5Y (p = 0.065, 

F = 5.56, df = 3, R2 = 0.81) and IMR-32 cells (p = 0.00078, F = 63.89, df = 3, R2 = 0.98) 

compared to control (figure 3-7). For both cell lines a concentration-dependent increase 

of HIF-1α expression was found. Following Dunnett correction for multiple 

comparisons, HIF-1α expression was significantly different from control expression 

levels for delphinidin at 100 µM in SH-SY5Y cells (p = 0.043), and also for delphinidin 

at concentrations of 50 µM (p = 0.0092) and 100 µM (p = 0.00060) in IMR-32 cells. 
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Figure 3-7 Concentration-dependent effects of delphinidin on HIF-1α expression after 4 h 
incubation. Data points are means from two independent incubation experiments with standard 
deviations shown as error bars. Asterisks indicate HIF-1α expression levels that differ from 
control levels after Dunnett correction for multiple testing at p < 0.05. 
 
 
Since HIF-1α expression inducing effects were most conclusive for the highest 

delphinidin concentration tested, experiments were continued with delphinidin at 

100 µM. Finally, a modulatory role of incubation time on HIF-1α intracellular protein 

levels was addressed. At all incubation times tested, increases in HIF-1α expression 

were significant compared to controls for SH-SY5Y cells (3 h: p = 0.015, t = 8.02, 

df = 2, R2 = 0.97, 4 h: p = 0.032, t = 5.44, df = 2, R2 = 0.94, 5 h: p = 0.049, t = 4.36, 

df = 2, R2 = 0.91). In IMR-32 cells, pairwise t-tests revealed most pronounced and 

significant delphinidin effects at an incubation time of 4 h (p = 0.0041, t = 15.62, df = 2, 

R2 = 0.99), followed by 3 h (p = 0.012, t = 9.13, df = 2, R2 = 0.98). 
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Figure 3-8 Incubation time-dependent effects of delphinidin on HIF-1α expression. Data points 
are means from two independent incubation experiments with standard deviations shown as 
error bars. Asterisks indicate HIF-1α expression levels that differ from the corresponding 
controls at p < 0.05, determined by pairwise t-tests. 
 
 
As delphinidin turned out as potent modulator of HIF-1α expression in contrast to its 

glucoside, the question arose whether there may be differences in cellular uptake 

between those compounds and the known HIF-1α inducer quercetin. 

Employing HPLC-VIS analyses, quercetin was identified and quantified in both 

SH-SY5Y and IMR-32 cell lysates following incubations at 100 µM for 4 h. Confirmation 

of the compound’s identity was successfully conducted for both cell lines by means of 

HPLC-MS/MS, detecting the parent ion m/z 301.0 and the product ion m/z 151.2 in the 

single reaction monitoring (SRM) modus. While quercetin concentration amounted to 

3.00 nmol/mg protein for SH-SY5Y cells, the IMR-32 sample yielded 4.52 nmol/mg 

protein. 

With respect to delphinidin-glc, inconsistent results were obtained for the two cell lines. 

While no delphinidin-glc or other compounds were detected using HPLC-VIS in IMR-32 

cells, the anthocyanin could be identified and quantified in SH-SY5Y cells 

(0.82 nmol/mg protein). However, substance identity could not be confirmed using 

HPLC-MS/MS since the concentration was below the detection limit as verified with a 

similarly concentrated delphinidin-glc standard. In addition, two unknown peaks 

appeared in the chromatogram with retention times of 27 and 43 min. Concerning 

identification of these unknown peaks, however, the sample amount was not sufficient 

to perform further HPLC-MS/MS analyses. 
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The anthocyanidin delphinidin was recovered from neither cell line. Again, unknown 

peaks with retention times of 27 min were found in lysates of both cell lines applying 

HPLC-VIS. From HPLC-DAD-MS analysis of the IMR-32 sample, generating a total ion 

chromatogram, predominantly an m/z of 204 emerged at the corresponding retention 

time of the unknown peak. However, delphinidin uptake cannot be entirely excluded in 

view of the low signal intensity and pending further HPLC-MS/MS experiments. 

Finally, focus was specifically laid on identifying the previously described metabolites 

phloroglucinol and gallic acid [528] in delphinidin and delphinidin-glc samples of both 

cell lines, performing HPLC-MS/MS. While phloroglucinol was found in neither sample, 

gallic acid was identified in IMR-32 cells incubated with delphinidin-glc (figure 3-9). The 

presence of gallic acid in SH-SY5Y cells incubated with delphinidin is speculative since 

the compound concentration ranged around the limit of detection. 
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Figure 3-9 HPLC-MS/MS chromatograms measuring the ion transition of m/z 169.0 to m/z 
125.1 characteristic for gallic acid. Areas under peaks at the retention time of gallic acid (10.5 
min) are colored grey. 
 
 
Findings on quercetin in cellular extracts upon incubations imply that the native flavonol 

may function as intracellular iron chelator and thus exert effects on HIF-1α expression. 

Since anthocyanidins were found to induce HIF-1α expression, in contrast to 

anthocyanins, HIF induction may depend on the capability of test substances to 

penetrate the IMR-32 and SH-SY5Y cell membrane by passive diffusion or active 

transport before binding of intracellular iron. Since lipophilicity is directly linked to the 
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absence of hydrophilic sugar moieties, passive uptake of anthocyanidins may be more 

efficient and faster compared to uptake of their glucosides, leading to higher 

intracellular concentrations of anthocyanidins, and potential metabolites available for 

iron chelation. 

The absence of delphinidin in lysates of both cell lines was not surprising, since 

aglycones are known to rapidly degrade at assay conditions during the incubation time 

of 4 h [55,63]. Therefore, delphinidin metabolites formed in the course of the incubation 

may mediate observed effects on HIF-1α expression. However, it cannot be 

determined whether delphinidin was degraded extracellularly followed by cellular 

absorption of HIF-1α active metabolites, or rather absorbed as intact molecule prior to 

intracellular degradation to active compounds. Identification of gallic acid in SH-SY5Y 

cells upon incubation with delphinidin suggests that this phenolic acid may be an 

HIF-1α modulatory metabolite. However, this seems unlikely given the presence of the 

phenolic acid in the IMR-32 lysate incubated with delphinidin-glc, which exerted no 

effect on HIF-1α expression. Therefore, delphinidin metabolites with modulatory effects 

on HIF-1α expression still need to be identified. 

Although delphinidin-glc did not exert modulatory effects on HIF-1α expression, in 

SH-SY5Y cells this may not be due to prevention of anthocyanin uptake, as it may be 

possible in IMR-32 cells. This implies that in SH-S5Y cells, delphinidin-glc and extra- 

and intracellularly formed metabolites were ineffective at modulating HIF-1α expression 

at the concentrations they achieved in cells. Assuming that besides delphinidin 

aglycone its glucoside also became degraded to a great extent during the 4 h 

incubation period, it is surprising that no effect on HIF-1α expression was observed in 

samples incubated with the anthocyanin. One explanation may be the generation of 

different metabolites from the anthocyanin and its aglycone.  

Various flavonoids have been identified as inducers of HIF-1α in various cell lines, 

including the flavones baicalein [529] and luteolin [530], the tea catechins EGCG [531] 

and ECG [532] and the flavonols galangin [533], fisetin [530] and quercetin [533-535]. 

HIF-1α inducing properties of quercetin at normoxic conditions are corroborated by the 

present results. Of above mentioned flavonoids, baicalein [529], quercetin [534,535], 

and ECG [532] also activated the angiogenic HIF downstream gene VEGF. As for 

HIF-2α, induction of expression was reported for quercetin and galangin [533]. In line 

with these findings on other flavonoids, anthocyanidins cyanidin and delphinidin or 

more likely their unknown metabolites induced HIF-1α expression in experiments 

conducted during the present work. 

Anthocyanidins or emerging metabolites may be able to induce HIF-1α owing to their 

iron chelating properties [328]. Since iron constitutes a cofactor for prolyl-4-hydroxylase 
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activity, these phenolic substances may prevent HIF-1α hydroxylation and degradation. 

Then, HIF-1α subunits can dimerize with HIF-1β subunits and induce HIF-1-responsive 

genes. This iron-dependent mechanism has been substantiated by findings on the tea 

catechin ECG, demonstrating that induction of HIF-1α may be blocked by the addition 

of iron ions [532]. 

In consequence, tested anthocyanidins may exert beneficial effects on human health 

by transcriptional activation of downstream neuroprotective genes. As HIF-1α is 

thought to be one of the most crucial signalling molecules in tissue responses to 

hypoxia, regulating many downstream genes that are important in promoting cell 

survival such as EPO [344,536], glucose transporters [537], and vascular endothelial 

growth factor [538], anthocyanidins cyanidin and delphinidin and potential metabolites 

may protect neurons from ischemic damage as well as from other diseases associated 

with oxidative stress [344]. Therefore, HIF prolyl hydroxylase inhibition may, in addition 

to inhibition of Fenton chemistry, be a further mechanism by which iron chelators such 

as anthocyanidins and their phenolic metabolites may meditate protection from hypoxic 

injury and oxidative stress. 

The well established role of prolyl hydroxylases in the scheme of HIF regulated gene 

transcription presents researchers a distinct therapeutic target to combat oxidative 

stress. The strategy of activating HIF by small molecule “drugs” such as anthocyanidins 

and potential degradation products has an advantage over prior “antioxidants”: Single 

substances may selectively target a single molecule such as PHD, mediating activation 

of more than seventy genes and thereby providing adaptation to ischemia and 

oxidative stress [342,345,352]. 

Nevertheless, further investigations are warranted to elucidate if anthocyanidins’ or 

their metabolites’ iron chelating properties can be associated with observed HIF-1α 

inducing effects and if HIF-1α induction by these substances has consequences for the 

expression of neuroprotective downstream genes, including EPO and VEGF. In this 

context, some flavonoidic compounds were demonstrated to stabilize HIF-1α, but at the 

same time to impair its nuclear accumulation and consequently HIF-1 transcriptional 

activity [530]. 

As opposed to these HIF-1α inducing results, the flavones apigenin [539-541] chrysin 

[542], the tea catechin EGCG [543] and grape seed extract [544] inhibited HIF-1α 

expression at low micromolar concentrations. In contrast to HIF-1α-inducing effects 

observed in colon epithelial cell lines in a normoxic environment [534], the flavonol 

quercetin suppressed HIF-1α accumulation during hypoxia in various cancer cell lines 

[545]. Flavonoids were also reported to downregulate the expression of the HIF 

downstream gene VEGF. In rats, chronic intake of red wine powder prevented the 
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stimulatory effect of angiotensin II on the ischemia-induced neovascularization and the 

accompanying augmented expression of proangiogenic factors including HIF-2α, 

VEGF and endothelial nitric-oxide synthase (eNOS) [546]. 

Findings on HIF inhibitory effects as shown for gallic acid with respect to HIF-1α and 

for bilberry extract, procyanidin B2 and phenolic acids with respect to HIF-2α add new 

insight into the potential mechanisms of substances’ and their metabolites’ anticancer 

activities. Since HIF-1 is overexpressed in many human cancers [547] and the levels of 

its activity in cells was shown to correlate with tumorigenicity and angiogenesis [548], 

these polyphenols may be effective in attenuating tumor cell proliferation and may 

reveal potencies in cancer treatment. In line with these findings, gallic acid exerted 

antiangiogenic effects in a xenograft mouse model [549]. In addition, these HIF 

downregulating compounds may prove protective in conditions of diabetic retinopathy, 

as VEGF expression seems to be implicated in the abnormal vascularization observed 

in pathological conditions including diabetic retinopathy [550,551]. 

In summary, protective effects of anthocyanidins or presumably of possible metabolites 

may benefit from substances’ properties to antagonize oxidative stress in the brain at 

multiple levels. Besides their activities as direct radical scavengers, iron chelating 

properties may inhibit hydroxyl radical formation via Fenton chemistry and may induce 

expression of HIF and downstream neuroprotective genes. Therefore anthocyanins 

may be recognized as novel multifunctional therapeutics that can prevent or delay 

neuronal death in the degenerating human brain. However, the brain therapeutic future 

of active berry constituents relies on whether their neuroprotective actions can be 

successfully translated into prospective human studies. 

 

3.2.4 Effects on the proteasome 
The proteasome counts among further targets multifunctional berry flavonoids may 

interact with to exert neuroprotective functions. In continuation of earlier research 

focusing on the inhibition of proteasome activity by grape extract [374], this experiment 

was conceived to examine 10 anthocyanins’, seven anthocyanidins’, and two 

proanthocyanidins’ in vitro impact on the chymotrypsin-like (ChT-L) proteasome 

activity. Table 3-5 summarizes IC50 values of all flavonoids under study. 
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Table 3-5 IC50 values calculated for inhibition of proteasomal chymotrypsin-like activity in HL-60 
cells by anthocyanidins, anthocyanins and procyanidins. 
 

Test substances IC50 in µM (95% confidence interval) 

Kaempferidinidin 7.8 (7.1-8.4) 

Pelargonidin 7.8 (7.2-8.4) 

Peonidin 9.0 (8.1-10.0) 

Cyanidin-3,5-diglc 11.0 (9.8-12.4) 

Cyanidin-3-glc 12.6 (10.9-14.5) 

Peonidin-3-glc 12.8 (11.5-14.2) 

Delphinidin-3-glc 13.0 (11.9-14.2) 

Cyanidin-3-gal 13.5 (11.8-15.6) 

Malvidin-3,5-diglc 17.1 (15.7-18.6) 

Cyanidin-3-rut 18.1 (15.9-20.6) 

Cyanidin 18.4 (16.4-20.7) 

Malvidin-3-gal 21.7 (19.6-23.9) 

Malvidin-3-glc 23.2 (21.1-25.6) 

Petunidin 23.7 (20.8-27.0) 

Malvidin 32.0 (29.7-34.4) 

Pelargonidin-3,5-diglc 32.3 (28.1-37.1) 

Delphinidin 32.4 (29.4-35.8) 

Procyanidin B1 > 100 (-) 

Procyanidin B2 > 100 (-) 
 
 
Considering anthocyanins and anthocyanidins investigated, IC50 values for inhibition of 

the proteasomal chymotrypsin-like activity differed by a factor of 4. Anthocyanins and 

their aglycones inhibited proteasome activity in a concentration-dependent manner and 

achieved IC50 values between 7.8 and 32.4 µM. Overall, the anthocyanidins 

kaempferidinidin, pelargonidin and peonidin acted as powerful inhibitors with IC50 

values of 7.8, 7.8, and 9.0 µM, respectively. The least potent inhibitors were identified 

as malvidin, pelargonidin-3,5-diglucoside and delphinidin, featuring IC50 values above 

30 µM. 

These data imply that the previously reported proteasome inhibitory activity of grape 

extract [374] was at least in part mediated by anthocyanins, and also suggest that 

anthocyanin concentration may aid in predicting the activity of other fruit and vegetable 

extracts. Anthocyanins and their aglycones achieved IC50 values comparable to those 

of other flavonoids. For the flavone apigenin, the flavonols quercetin, kaempferol and 

myricetin [375], and the tea flavanol EGCG [376], IC50 values ranged from 1 to 18 µM. 

Although the absence of sugar moieties from these flavonoids would appear to suggest 

a higher inhibitory potency of aglycones, this cannot be confirmed by the present 
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results. When compounds are grouped according to the presence or the absence of a 

sugar moiety, no trend is seen with regard to proteasome inhibition. Mean IC50 values 

of anthocyanins (IC50 = 17.5 +/− 6.6 µM SD) and anthocyanidins (IC50 = 18.7 

+/− 11.0 µM SD) show only a marginal difference (p = 0.78, t = 0.28, df = 15). This 

finding is further illustrated by the inhibitory profiles of the two anthocyanins 

pelargonidin-3,5-diglucoside and delphinidin-3-glucoside and their corresponding 

aglycones (figure 3-10). For the first pair of compounds, pelargonidin, the aglycone, 

acted as a powerful proteasome inhibitor (IC50 = 7.8 µM), whereas pelargonidin-3,5-

diglucoside showed more moderate inhibition (IC50 = 32.3 µM). For the second pair, 

however, inhibition by the aglycone delphinidin was less pronounced (IC50 = 32.4 µM) 

than that achieved by the corresponding delphinidin-3-glucoside (IC50 = 13.0 µM). For 

the procyanidin dimers B1 and B2, no inhibitory effects on proteasome activity were 

observed at any of the concentrations tested. 
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Figure 3-10 Inhibition of the chymotrypsin-like proteasome activity by pelargonidin, delphinidin, 
and the respective glucosides, pelargonidin-3,5-diglucoside and delphinidin-3-glucoside: Data 
points are means with standard deviations shown as vertical error bars of three independent 
experiments performed in triplicate. Reprinted from [552], with permission from Elsevier. 
 
 
Regarding the substitution-pattern of anthocyanins’ B-ring, mixed effects were noted on 

proteasome inhibition. Since the majority of effective inhibitors carries only one or two 

hydroxyl or methoxyl substituents on their B-ring, as opposed to three substituents in 
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most of the remaining compounds, inhibitory potency may be sensitive to this structural 

feature. 

For the dimeric procyanidins B1 and B2, the absence of effects in the present study 

does not imply that these substances cannot inhibit the proteasome. The chymotrypsin-

like activity is generally considered the rate-limiting activity in protein breakdown [553], 

but dimeric procyanidins may inhibit other catalytically active sites of the proteasome, 

e.g. the “trypsin-like” or the “postglutamyl hydrolyzing” activity [372], or may exhibit 

proteolytical activities independent of the proteasome [554]. 

It should also be noted that cells were permeabilized to minimize any impact of 

transport parameters on measurements of proteasome inhibition. Only few data are 

currently available on anthocyanins’ cellular uptake, intestinal absorption and transport 

across the BBB, which limits extrapolations to in vivo effects. 

Clinical applications of proteasome inhibition have focused on tumor suppression [555], 

and a growing body of evidence supports additional roles in neuroprotection. Among 

the downstream effects of proteasome inhibition already identified counts the 

upregulation of heat shock proteins (HSP) [556] and of enzymes involved in antioxidant 

defense [557], plus the suppression of the proinflammatory immune response [558]. 

Specifically, the expression levels of HSP22 and HSP70 were reported to be increased 

following proteasome inhibition [559], an effect believed to prevent protein misfolding 

and the formation of protein aggregates. These cytoprotective qualities allow cells to 

survive under otherwise lethal conditions [560] and may slow the course of 

neurodegenerative disorders by refolding denatured proteins, as shown in models of 

Huntington’s disease [561]. 

Furthermore, multiple antioxidant enzymes have been shown to be highly expressed 

following proteasome inhibition, including superoxide dismutase I [557], thioredoxin 

reductase I, peroxiredoxins I and VI, and metallothioneins I and II [559]. Moreover, it 

has been demonstrated that proteasomal inhibition affords cytoprotection against 

oxidative stress by inducing glutathione synthesis in animal models of Parkinson’s 

disease [361]. Of all organs, the brain is most susceptible to oxidative damage due to 

its high oxygen demand [562]. Here, by protecting against oxidative and nitrosative 

stress [563,564], anthocyanins and anthocyanidins likely limit damage of brain cells at 

the protein, membrane lipid, and DNA levels.  

Inhibitors of the proteasome may also affect the immune response by repressing 

antigen presentation on major histocompatibility complex (MHC) class I receptors 

[565], by suppressing cytokine secretion, cell-cell-interactions, migration and 

chemotaxis of lymphocytes, and by inducing apoptosis in activated T-cells. 

Downregulation of cytokine secretion [566] and cell adhesion molecule expression 
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[567] occurs via NF-κB inactivation mediated by the proteasome [362]. It is suggested 

that activation of the NF-κB pathway may play a role in a number of acute and chronic 

diseases with an inflammatory component, such as atherosclerosis, asthma, 

rheumatoid arthritis, inflammatory bowel disease [568], and neurodegenerative 

disorders such as cerebrovascular disease, Parkinson’s disease and Alzheimer’s 

disease. In line with this assumption, rats fed a blueberry diet showed a decline in age-

related cognitive deficits and a reduction in NF-κB expression compared to non-

supplemented controls [233,274]. 

Finally, it appears that rapidly dividing cells are more sensitive to proapoptotic effects of 

proteasome inhibitors than differentiated or non-proliferating cells [569], which can be 

advantageous in tumor therapy. 

In summary, dietary supplementation with berry constituents may serve to prevent a 

number of common diseases by interfering with the proteasome pathway. Inhibition of 

the proteasome by anthocyanins and anthocyanidins adds to our understanding of 

cellular effectors that may control antiinflammatory, immunomodulatory and 

neuroprotective activities of these substances. Further research is invited to address 

effects of possible anthocyanin metabolites and downstream mechanisms upon 

proteasome inhibition. 

 

3.2.4 Effects on Phospholipase A2 
Due to associations between PLA2 activity and oxidative stress and inflammation, berry 

constituents may also confer neuroprotection by interacting with these enzymes. Thus 

berry constituents’ in vitro impact on PLA2-V activity was assessed by screening nine 

anthocyanins and six anthocyanidins, procyanidin B2, protocatechuic acid and 

catechin. Of the compounds examined, anthocyanidins exhibited the best inhibitory 

effects on PLA2 in a first round of experiments providing dose-response relationships, 

whereas inhibitory properties of anthocyanins, in contrast, were less pronounced. For 

anthocyanins, corresponding aglycones and procyanidin B2, inhibition could not be 

quantified as absorption interfered with the photometric assay at millimolar 

concentrations and for some compounds dose-response curves implied incomplete 

sPLA2-V inhibition. Catechin, the flavan-3-ol analog of cyanidin, and protocatechuic 

acid, a potential cyanidin metabolite, reached 50% inhibition at concentrations of 

2.5 mM and 3.3 mM, respectively. Further investigations of enzyme kinetics were 

therefore restricted to the aglycones cyanidin, malvidin, peonidin, petunidin, delphinidin 

and pelargonidin. 
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From LB plots Km (0.3 mM) and Vmax (14 µmol/min/ml) were determined, and kinetic 

parameters are summarized in table 3-6. With regard to the mode of interaction with 

PLA2, only the reference compound thioetheramide phosphatidylcholine (Ki = 0.59 µM) 

exhibited complete competitive inhibition. For malvidin (Ki = 6.4 µM), a hyperbolic slope 

LB plot versus inhibitor concentration [I] replot was obtained, indicating partial 

competitive PLA2 inhibition at α = 1.8 and assuming β = 1. LB plots for pelargonidin 

(Ki = 325 µM) and delphinidin (Ki = 18 µM) meet criteria for mixed competitive and non-

competitive PLA2 inhibition. For both compounds, linearity of the LB plot slope versus 

[I] replot confirms complete inhibition at α values of 14.8 and 1.6 for delphinidin and 

pelargonidin, respectively. Petunidin (Ki = 14 µM), peonidin (Ki = 10 µM) and cyanidin 

(Ki = 2.1 µM) can also be identified as mixed competitive and non-competitive inhibitors 

from LB plots. However, their LB plot slope versus [I] replots indicate a partial 

(hyperbolic) type of inhibition. For these flavonoids, the ternary complex rate 

coefficients α and β (figure 4-10) were calculated from the linear plots of 1/Δslope 

versus 1/[I] and 1/Δordinate intercept versus 1/[I] [570], yielding values of 1.6, 1.6 and 

2.9 (α) and 0.62, 0.79 and 0.7 (β) for petunidin, peonidin and cyanidin, respectively. 

 
Table 3-6 Kinetic parameters of PLA2 inhibition by anthocyanidins. Thioetheramide 
phosphatidylcholine (PC) served as a reference inhibitor. Table adapted from [571] and used 
with kind permission from Springer Science + Business Media 
(http://www.springerlink.com/content/e673663778663761). 
 

Test substance type of inhibition Ki (µM) α β 

Thioetheramide-PC competitive 0.59   

Cyanidin partial mixed 2.1 2.9 0.70 

Malvidin partial competitive 6.4 1.8  

Peonidin partial mixed 10 1.6 0.79 

Petunidin partial mixed 14 1.6 0.62 

Delphinidin mixed 18 14.8  

Pelargonidin mixed 325 1.6  
 
 
These results demonstrate sPLA2-V inhibition by anthocyanidins in the low micromolar 

range (Ki = 2.1–18 µM), with the exception of pelargonidin (Ki = 325 µM). For cyanidin, 

inhibition approached that of the reference sPLA2 inhibitor, thioetheramide 

phosphatidylcholine, with Ki values differing by a factor of 4. Anthocyanidin-glycosides, 

in contrast, were weak PLA2-V inhibitors for which Ki values could not be estimated as 

anthocyanins’ absorption at higher concentrations interfered with the photometric 

assay. Thus, with the exception of pelargonidin, the aglycones of prevalent 

anthocyanins from food sources are potent PLA2 inhibitors. 

 

http://www.springerlink.com/content/e673663778663761
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Other than anthocyanidins, a limited number of flavonoids have been tested for PLA2 

inhibitory activity. Among these, the flavonols quercetin, quercetagetin and kaempferol- 

3-O-galactoside, plus the flavone scutellarein inhibited PLA2-II with IC50 values ranging 

from 2 to 18 µM [572,573]. For PLA2-V, the flavonol derivate papyriflavonol A and the 

biflavonoids amentoflavone and ochnaflavone showed 50% inhibition at concentrations 

between 5 and 42 µM [574,575], but Ki values are lacking. Four of the six tested 

anthocyanidins exerted only partial inhibition of PLA2, as has also been observed for 

PLA2-I with the flavonol quercetin and its 3-rutinoside rutin [573,576]. 

With regard to structural features, similar Ki values for most anthocyanidins 

investigated argue against a major role of anthocyanidins’ B-ring substitution pattern in 

predicting sPLA2-V inhibitory potential. To judge by weak inhibitory activity of catechin, 

the flavan-3-ol analogon of cyanidin (IC50 = 2.5 mM), anthocyanidins’ unsaturated 

C-ring or their electric charge may prove more informative. With respect to the type of 

PLA2 inhibition, however, B-ring substitution patterns deserve further study.  

As natural anthocyanins are reportedly unstable in the intestinal environment, the role 

of phenolic acid metabolites generated by intestinal microflora and metabolic 

degradation is of particular interest [24,56,70]. However, follow-up experiments 

conducted with protocatechuic acid, a potential cyanidin metabolite, elicited only very 

weak sPLA2-V inhibition (IC50 = 3.2 mM). Bioavailability of individual parent compounds 

therefore requires further study prior to assuming in vivo inhibitory effects. 

For those agents that exhibit in vitro activities in the low micromolar range, a number of 

possible CNS functionalities may be discussed. Recent studies implicate increased 

PLA2 activity and PLA2-generated mediators in the acute inflammatory response of the 

brain, e.g., to ischemia [386], in kainic acid-induced neurotoxicity [577], and in chronic 

pathologies associated with Alzheimer’s disease, Parkinson’s disease, multiple 

sclerosis [386], schizophrenia [578,579], and bipolar affective disorder [580]. PLA2 

cellular effects may manifest at multiple levels. Phospholipid breakdown may increase 

membrane permeability and, consequently, Ca2+ influx, lipolysis, and proteolysis [581]. 

Lysophospholipids, in turn, may exert detergent-like effects on neuronal membranes 

[582] and act as precursors of the platelet-activating factor (PAF), a strong mediator of 

the inflammatory process [382]. Free fatty acids released from phospholipids can alter 

mitochondrial polarization state [583], cause mitochondrial dysfunction and may trigger 

an uncontrolled arachidonic acid cascade, followed by synthesis of inflammatory 

mediators, production of ROS [581] and neurotoxic 4-hydroxynonenal [387]. Released 

arachidonic acid, finally, may alter membrane fluidity [584], inhibit glutamate uptake 

[585], and modulate activities of protein kinases [586]. 
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Neuroinflammation, oxidative stress, and altered phospholipid metabolism are involved 

in the pathophysiology of neurodegenerative diseases such as Alzheimer’s disease, 

Parkinson’s disease, Huntington’s disease, and multiple sclerosis, leading to neuronal 

loss via a complex sequence of events that comprise an upregulation of complement, 

cytokines, and acute phase reactants among other mediators [386,587-589]. In this 

context, there is growing support for strategies that prevent inflammatory reactions 

during neurodegeneration. Mixed results have been achieved by inhibiting selective 

pathways of eicosanoid production, i.e. LOX and COX pathways [382]. Control of 

arachidonic acid production currently holds promise in the treatment of phospholipid 

pathologies. A challenge in maintaining basal levels of arachidonic acid, 

lysophospholipids, and PAF, however, is posed by the multiplicity of PLA2s, the 

interplay among downstream mediators and the recognition that many PLA2 

functionalities are also essential for normal cell function [590]. 

Moreover, with regard to the etiology of most disorders, it remains to be established 

whether phospholipid breakdown is present early in neurodegenerative disease or 

whether it is only an epiphenomenon of cell death [591]. Pending an improved 

understanding of cause and effect, the utility of candidate PLA2 inhibitors in 

counteracting phospholipid degradation is difficult to predict by in vitro data. 

Should PLA2 inhibition occur at the concentrations achieved by dietary intake of 

anthocyanins, this may help explain certain fruits’ role in lowering age-related 

neurodegenerative disease [252,258]. Although oxidative stress [592] and inflammatory 

reactions [254] both contribute to age-related pathologies, antioxidant activity alone 

does not explain the potency of berry constituents in protecting against 

neurodegeneration [10]. Anthocyanin effects on phospholipid metabolism may help 

explain such benefits as does inhibition of lipid peroxidation [277] and modulation of 

inflammatory mediators COX I and II [62]. Partial inhibition of PLA2-V by most 

compounds under study may prove advantageous in vivo in that basal levels of 

phospholipid-derived mediators could be maintained for normal brain function. 

Taken together, beneficial effects of fruit antioxidants on aging and neurodegeneration 

warrant investigations at multiple levels. The present findings on sPLA2-V inhibition by 

anthocyanidins provide further evidence to rationalize antioxidative and 

antiinflammatory activities. More studies are invited to explore PLA2 isoform specificity 

of these properties, and to define their behavioral correlates. 

 

For interactions with brain enzymes and neuroprotective mechanisms including 

monoamine oxidases A and B, hypoxia inducible factor, proteasome and 

phospholipase A2 to take effect, anthocyanidins and anthocyanins need to enter the 
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brain at micromolar concentrations. Existing data from human trials point to peak 

plasma concentrations in the nanomolar range [70,93,488]. Although anthocyanin brain 

bioavailability is not sufficiently elucidated to date and raises several questions, results 

from animal studies would appear to rationalize interactions with brain monoamine 

oxidases A and B, hypoxia inducible factor, proteasome and phospholipase A2 in vivo, 

as these agents rapidly cross the blood-brain barrier [80,83,112-114]. Favorable 

changes in central nervous parameters of oxidative stress following administration of 

anthocyanins further corroborate this hypothesis [16] but detailed tissue quantitations 

of anthocyanins and anthocyanidins have yet to be performed. 

Moreover, available estimates on anthocyanin bioavailability may be considered 

conservative in that analytical challenges are posed by anthocyanin accumulation in 

tissues as shown for rats [82], by metabolic transformation to molecular structures that 

are not routinely detected, and by protein binding [115,489,490]. 

Assuming anthocyanins’ low stability under assay condition at neutral pH values and in 

the human body, reflected by low recovery rates from human plasma and urine and 

different animal tissues, native anthocyanins, aglycones and phenolic compounds 

tested in the present work may be different from compounds primarily generated during 

in vitro assays and in the human body upon oral uptake. In consequence, anthocyanins 

and anthocyanidins may not exclusively be accountable for positive effects observed in 

vitro and in vivo. Therefore, extrapolations of anthocyanins’ and anthocyanidins’ in vitro 

neuroprotective effects to the in vivo situation do advocate caution. Although a first 

approach was undertaken by investigating effects of phenolic acids, as they are known 

metabolites, further research is invited to address identification of additional in vivo and 

in vitro metabolites. 

Moreover, substance uptake into cells may be different for various cells in the human 

body and for cell lines used in vitro, as exemplified upon incubations of two 

neuroblastoma cell lines with delphinidin-glc. This also needs to be kept in mind for 

extrapolation of compounds’ in vitro cellular effects to other systems such as the 

human body. 

In vitro studies performed within the current work have the advantage over in vivo 

studies that pure anthocyanins can be tested in contrast to complex matrices usually 

applied in vivo. For instance, caution should be advised, when health benefits observed 

during in vivo studies upon administration of grape seed extracts are ascribed to 

proanthocyanidins constituting up to 75-90% of GSPE [209,419,593]. In contrast, in 

vitro results of the present work can be exclusively attributed to the single compounds 

under investigation. On the other hand, when extrapolating in vitro neuroprotective 
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effects to humans, food matrices’ effects should not be underestimated. These may 

include synergistic and quenching effects caused by other food ingredients. 

 

3.3 Effects on xenobiotic metabolism and safety 

3.3.1 Effects on cytochrome P450 3A4 
It has been shown that anthocyanins themselves are not metabolized by cytochrome 

P450 enzymes [57], but the rapidly growing interest in dietary anthocyanins calls for a 

more thorough understanding of their cellular targets and possible hazards posed by 

interference with the metabolism of common drugs. To extend earlier studies of 

grapefruit and polyphenolic green tea, wine, and apple constituents and to further 

elucidate substances’ potential to interact with xenobiotics metabolism, 

10 anthocyanins’, six anthocyanidins’ and seven phenolic acids’ modulatory effects on 

cytochrome P450 3A4 activity were investigated, along with effects of procyanidins B1 

and B2. 

Test compounds inhibited CYP3A4 activity in a concentration-dependent manner and 

gave distinct profiles for the substance groups under study. An overview on IC50 values 

is given in table 3-7. For anthocyanidins, IC50 values ranged from 12 to 47 µM 

(mean 22 +/− 13 µM SD), for anthocyanidin-monoglycosides from 74 to 105 µM 

(mean 86 +/− 11 µM SD), for anthocyanidin-diglucosides from 166 to 249 µM 

(mean 214 +/− 41 µM SD), for phenolic acids from 472 up to 7,842 µM 

(mean 5,546 +/− 3,130 µM SD) and for procyanidins B2 and B1 540 and 780 µM 

(mean 660 +/− 170 µM SD). Thus, phenolic acids acted as the weakest inhibitors, 

followed by procyanidins, anthocyanins and anthocyanidins. Ketoconazole, a widely 

used inhibitor that had been chosen for a reference, reached an IC50 value of 18.4 nM. 

 
Table 3-7 IC50 values calculated for inhibition of CYP3A4 activity by anthocyanidins, 
anthocyanins, procyanidins, phenolic acids and ketoconazole. 
 

Test compound IC50 in µM (95% confidence interval) 

Pelargonidin 12 (12-13) 

Malvidin 14 (13-16) 

Peonidin 16 (15-18) 

Cyanidin 21 (19-22) 

Petunidin 23 (22-25) 

Delphinidin 47 (43-51) 

Delphinidin-3-glc 74 (68-81) 
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Peonidin-3-glc 79 (74-85) 

Malvidin-3-glc 80 (73-88) 

Cyanidin-3-gal 80 (75-86) 

Malvidin-3-gal 84 (77-92) 

Cyanidin-3-rut 96 (87-106) 

Cyanidin-3-glc 105 (96-115) 

Cyanidin-3,5-diglc 168 (154-183) 

Malvidin-3,5-diglc 226 (203-250) 

Pelargonidin-3,5-diglc 249 (206-301) 

Procyanidin B2 540 (472-618) 

Procyanidin B1 780 (628-968) 

Vanillic acid 472 (441-506) 

Syringic acid 1,622 (1,442-1,824) 

3-Hydroxyphenylacetic acid 6,558 (6,364-6,759) 

3-(4-Hydroxyphenyl)propionic acid 6,841 (6,528-7,170) 

Protocatechuic acid 7,666 (7,435-7,904) 

4-Hydroxybenzoic acid 7,821 (7,633-8,014) 

4-Hydroxyphenylacetic acid 7,842 (7,520-8,177) 

Ketoconazole 18 nM (16-21 nM) 
 
 
Of the polyphenolic compounds previously investigated, naringenin, EGCG, quercetin, 

ECG, curcumin and resveratrol exhibited IC50 values of approximately 87 µM [594], 

40 µM [595], 38 µM [596], 20 µM [595], 16 µM [597] and 4 µM [598], respectively. 

Furanocoumarins from grapefruit juice, however, set an activity benchmark in the 

nanomolar range. Specifically, bergamottin, 6’,7’-dihydroxybergamottin and the 

dimerics GF-I-1 (4-[[6-hydroxy-7-[[1-[(1-hydroxy-1-methyl)ethyl]-4-methyl-6-(7-oxo-7H-

furo[3,2-g][1]benzopyran-4-yl)-4-hexenyl]oxy]-3,7-dimethyl-2-octenyl]oxy]-7H-furo[3,2-

g][1]benzopyran-7-one) and GF-I-4 (4-[[6-hydroxy-7-[[4-methyl-1-(1-methylethenyl)-6-

(7-oxo-7H-furo[3,2-g][1]benzopyran-4-yl)-4-hexenyl]oxy]-3,7-dimethyl-2-octenyl]oxy]-

7H-furo[3,2-g][1]benzopyran-7-one) exhibited IC50 values as low as 1,000 nM, 250 nM, 

3 nM and 3 nM for CYP3A4, respectively [438]. 
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   (22 +/− 13)        (86 +/− 11)      (214 +/− 42)    (660 +/− 170)  (5546 +/− 3130) (0.31 +/− 0.47) 
 

Figure 3-11 IC50 values of anthocyanidins, anthocyanidin-3-glycosides (anth-mono-gly), 
anthocyanidin-3,5-diglucosides (anth-diglc), anthocyanidins, procyanidins and phenolic acids 
compared to IC50 values of furanocoumarins [438]. Mean IC50 values +/- SD (µM) are given in 
brackets. Asterisks indicate differences between substance groups after Bonferroni correction at 
p < 0.001. Figure adapted from [599], copyright Wiley-VCH Verlag GmbH & Co. KGaA, 
reproduced with permission. 
 
 
In comparison, CYP3A4 inhibitory effects of anthocyanins, their aglycones, dimeric 

procyanidins and phenolic acids are weaker by several orders of magnitude (figure 

3-11). Relative to ketoconazole, an antifungal and known inhibitor, the flavonoids 

investigated here feature a 1,000 to 10,000-fold lower potential for interactions 

(> 100,000-fold lower for phenolic acids). Thus, these results suggest that 

anthocyanins, procyanidins and phenolic acids pose only a limited risk of food-drug 

interactions mediated by CYP3A4 as compared to other grapefruit, wine, green tea and 

apple juice constituents. Therefore, anthocyanins’ and their metabolites’ contribution to 

CYP3A4 inhibitory activity in wine and berry juices may only be minor [446,448,600]. 

When the number of sugar moieties per compound is used to predict IC50 values of 

anthocyanins, a significant impact is noted on CYP3A4 inhibitory functionality 

(p < 0.0001, F = 94.69, R2 = 0.94). When a Bonferroni correction for multiple testing is 

applied to one-way analysis of variance (ANOVA) for differences between compounds 
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with an unequal number of sugar moieties, p values remain significant at the level of 

0.001. However, substances’ B-ring substitution pattern is not predictive of their 

CYP3A4 inhibitory properties. Anthocyanidins’ glycosylation may play a dual role with 

regard to in vivo effects. In addition to impacting the absorption of compounds [91,601], 

sugar moieties have been shown to enhance cytochrome inhibitory activity of some 

flavonoids [602]. In contrast, in the present investigations, the number of sugar 

moieties predicted a decline in anthocyanidins’ effects on CYP3A4, which underscores 

the need for more detailed data on structure-activity relationships. 

Before an extrapolation of in vitro data to in vivo effects can be attempted, additional 

parameters must be taken into account. For instance, CYP3A4 may be more 

susceptible to inhibition by food constituents than other mainly hepatic cytochrome 

P450 isoforms. As high levels of CYP3A4 expression in the intestine allow interactions 

during the digestive process [603], substances need not cross the intestinal barrier in 

order to interfere with metabolism. Even when oral bioavailability is low, compounds 

may act as potent inhibitors, provided that they are able to penetrate epithelial cells in 

the intestine. Therefore, anthocyanins’ and anthocyanidins’ impact on metabolic drug 

processing by CYP3A4 is also dependent on transport into intestinal epithelium cells. 

Finally, further characterization of anthocyanins’ and their metabolites’ effects on 

CYP450 isoforms other than CYP3A4 is invited to add to our understanding of 

polyphenolics’ multiple functionalities and to promote the safe use of these compounds 

in food supplementation. 

 

3.3.2 Effects on cytochrome P450 2D6 
Amid growing safety concerns, the present study also addressed in vitro interactions 

with CYP2D6, an isoform highly relevant to the metabolism of many psychoactive 

drugs [459,604-607]. In continuation of earlier studies with grapefruit, green tea and 

grape seed extract [438,460] and the polyphenolic apple constituent quercetin 

[608,609], modulatory effects of 16 anthocyanins and anthocyanidins on cytochrome 

P450 2D6 activity were investigated, as was the effect of procyanidin B2. 

Test compounds inhibited CYP2D6 activity in a concentration-dependent manner and 

determined IC50 values are summarized in table 3-8. Anthocyanidins’ IC50 values 

ranged from 55 to 150 µM (mean 79 +/- 35 µM SD), and the four most potent inhibitors 

pelargonidin, peonidin, delphinidin and cyanidin emerged from this group. For 

anthocyanidin-monoglycosides IC50 values of 70 to 266 µM (mean 162 +/- 82 µM SD) 

were obtained. Finally, the least potent inhibitors were identified as the diglucosidic 

anthocyanins pelargonidin-3,5-diglucoside, cyanidin-3,5-diglucoside and procyanidin 
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B2, all of which featured IC50 values > 800 μM. Quinidine, a widely used inhibitor that 

had been selected as a reference, displayed an IC50 value of 6 nM. 

 
Table 3-8 IC50 values calculated for inhibition of CYP2D6 activity by anthocyanidins, 
anthocyanins, procyanidin B2 and quinidine. Table adapted from [610], copyright 2009 Prous 
Science, S.A.U. or its licensors, all rights reserved.  
 
 

Test compound IC50 in µM (95% confidence interval) 

Pelargonidin 55 (51-59) 

Peonidin 59 (51-67) 

Delphinidin 66 (65-68) 

Cyanidin 69 (64-74) 

Malvidin-3-glc 70 (68-72) 

Malvidin-3-gal 73 (67-80) 

Malvidin 77 (69-85) 

Delphinidin-3-glc 109 (87-137) 

Malvidin-3,5-diglc 145 (133-157) 

Petunidin 150 (138-162) 

Cyanidin-3-glc 151 (114-199) 

Peonidin-3-glc 217 (199-237) 

Cyanidin-3-gal 245 (217-278) 

Cyanidin-3-rut 266 (169-420) 

Pelargonidin-3,5-diglc > 800 (-) 

Cyanidin-3,5-diglc > 800 (-) 

Procyanidin B2 > 800 (-) 

Quinidine 6 nM (5-7 nM) 
 
 
Only few data are available on CYP2D6 inhibitory effects of defined polyphenolic 

compounds. Of these, quercetin exhibited an IC50 value of 24 µM [609], while flavonols 

and flavonol glycosides from wild ginger exhibited IC50 values ranging from 5 to 51 µM 

[611]. In contrast, furanocoumarins from grapefruit juice achieved 50% inhibition in the 

nanomolar range. Specifically, bergamottin, 6’,7’-dihydroxybergamottin and the 

dimerics GF-I-1 (4-[[6-hydroxy-7-[[1-[(1-hydroxy-1-methyl)ethyl]-4-methyl-6-(7-oxo-7H-

furo[3,2-g][1]benzopyran-4-yl)-4-hexenyl]oxy]-3,7-dimethyl-2-octenyl]oxy]-7H-furo[3,2-

g][1]benzopyran-7-one) and GF-I-4 (4-[[6-hydroxy-7-[[4-methyl-1-(1-methylethenyl)-6-

(7-oxo-7H-furo[3,2-g][1]benzopyran-4-yl)-4-hexenyl]oxy]-3,7-dimethyl-2-octenyl]oxy]-

7H-furo[3,2-g][1]benzopyran-7-one) reached IC50 values of 190 nM, 900 nM, 200 nM 

and 300 nM, respectively [438]. For comparison, psychoactive drugs yielded IC50 
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values of 1.2 (paroxetine), 1.5 (perphenazine), 2.7 (thioridazine) and 6.5 nM 

(haloperidol) for CYP2D6 inhibition [612-614]. 

 
                  (79 +/- 35)             (160 +/- 76)           (3.0 +/- 2.4)           (0.40 +/- 0.34)         
Figure 3-12 IC50 values of anthocyanidins, anthocyanins, psychoactive drugs (haloperidol, 
thioridazine, perphenazine, paroxetine) [612-614], and furanocoumarins [438]. Only those 
compounds are shown, for which IC50 values were available, i.e., excluding cyanidin-3,5-
diglucoside and pelargonidin-3,5-diglucoside. Mean IC50 values +/- SD (µM) are given in 
brackets. Asterisk indicates difference between substance groups at p < 0.05. Figure adapted 
from [610], copyright 2009 Prous Science, S.A.U. or its licensors, all rights reserved. 
 
 
Inhibitory effects of anthocyanins on CYP2D6 were weaker by several orders of 

magnitude, ranging from 70 μM to > 800 μM (figure 3-12). According to in silico 

prediction models, structural features required for effective CYP2D6 inhibition comprise 

a tertiary amine fragment plus a positive charge on nitrogen and flat hydrophobic 

region [615]. These ligand descriptors are not met by the compounds investigated 

here, and relative to the cinchona alkaloid quinidine, the inhibitory potential of 

anthocyanins and their aglycones was at least 10,000-fold lower. This suggests that 

anthocyanins pose a limited risk of food–drug interactions mediated by CYP2D6 as 

compared to the above-mentioned grapefruit, green tea and grape seed constituents, 

or other phytochemicals. 

Following investigation of the modulatory effects of substances’ sugar moieties on 

inhibitory potential, excluding cyanidin-3,5-diglc and pelargonidin-3,5-diglc for which 

IC50 values can not be calculated (> 800 μM), anthocyanidins were significantly better 
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CYP2D6 inhibitors than anthocyanins (p = 0.0344, F = 5.695, t = 2.386, df = 12). In a 

second approach, in addition to the presence of a sugar moiety, the numbers of B-ring 

substituents (2 or 3) and an interaction term (sugar moiety*substituents) are included in 

the model, excluding pelargonidin which is the only substance with one substituent on 

its B-ring. Again, a modulatory role of the sugar moieties is observed (p = 0.0093, 

F = 10.86). Fitting is similar when the sugar moiety*substituents interaction term is 

included in the model (p = 0.0105, F = 10.39), although the B-ring substitution pattern 

itself did not have a modulatory effect. Specifically, CYP2D6 inhibition decreased with 

more substituents on the B-ring of anthocyanidins, whereas it increased with more 

substituents on the B-ring of anthocyanins. Following Bonferroni correction for multiple 

testing, differences remain significant for anthocyanins with 2 B-ring substituents 

versus anthocyanidins with 2 B-ring substituents (p = 0.0112), anthocyanins with 2 

substituents versus anthocyanins with 3 substituents (p = 0.0158) and anthocyanins 

with 2 substituents versus anthocyanidins with 3 substituents (p = 0.0231). 

For an extrapolation of in vitro data to in vivo effects, additional parameters must be 

taken into account. Thus, CYP2D6-inhibitory effects have been observed for grapefruit 

furanocoumarins in vitro but not in vivo [438,616]. Similarly, in vivo effects of extracts 

rich in flavonol glycosides, biflavones and flavonolignans from Ginkgo biloba and milk 

thistle contrast with in vitro evidence of CYP2D6 inhibition [617-624]. It has also been 

proposed that CYP2D6 may be less susceptible to inhibition by food constituents than 

other isoforms, since substances must cross the intestinal barrier before they can act 

on hepatic CYP2D6, whereas high-level expression of other cytochromes in the 

intestine allows interactions during digestion [603]. 

In animal studies, anthocyanin concentrations of 0-640 nmol/kg have been obtained 

from liver tissue after oral administration [23,67,79,80,138,625]. As anthocyanin 

concentrations in the rat liver are suggested to be roughly at equilibrium with systemic 

plasma concentration for at least 30 min post ingestion [138], storage of anthocyanins 

in the liver is unlikely. If equilibrium of liver and systemic plasma concentrations is also 

assumed for the human body, anthocyanin concentrations in the liver may not reach 

the micromolar range at which CYP2D6 inhibition of 50% was observed in vitro. 

Therefore, depending on the in vivo portal availability of anthocyanins in humans, 

which has yet to be determined, the impact on metabolic processes may be even 

smaller than anticipated. 

The clinical relevance of CYP450 inhibition is subject to individual differences in 

enzyme activity, i.e., the prevalence of functional genetic variants. The present data 

obtained with recombinant human CYP2D6 count against CYP2D6-modulatory effects 

of anthocyanins and anthocyanidins for subjects carrying the CYP2D6*1 allele [626], 
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i.e., for the majority of the Caucasian population. Whether similar effects can be 

expected in carriers of other CYP2D6 alleles remains to be determined. 

As for the physicochemical underpinnings of anthocyanin–cytochrome interactions, 

molecular modelling investigations are encouraged to supplement the present 

exploratory approach to structure–function relationships. 

Finally, characterization of anthocyanin effects on additional CYP450 isoforms is 

warranted to foster our understanding of the biological activity of berry polyphenolics. 

Thus, inhibitors of procarcinogen-activating isoforms (e.g. CYP1A or CYP1B) may limit 

the generation of harmful metabolites from estradiol, aromatic amines, heterocyclic 

amines and polycyclic aromatic hydrocarbons. 
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4 Material and methods 

4.1 Chemicals 
Unless noted otherwise, chemicals were obtained in p.a. quality from Sigma-Aldrich 

(Steinheim), Fluka (Deisenhofen), Carl Roth (Karlsruhe), Merck (Darmstadt), Fisher 

Scientific (Schwerte), ICN Biomedicals (Eschwege), USB (Staufen), Cayman Europe 

(Tallinn, Estonia), Extrasynthese (Genay, France).  

Chemicals for cell culture experiments such as media, serums and antibiotics were 

purchased from Gibco (Eggenstein), Invitrogen (Karlsruhe), PAA (Cölbe) and PAN 

(Aidenbach), and Protease Inhibitor Cocktail was obtained from Sigma-Aldrich 

(Steinheim). Hoechst 33342, Ko143, calcein-AM, verapamil and sulfasalazine were 

provided by Solvo Biotechnology (Budaörs, Hungary) and radiochemicals were 

purchased from Perkin Elmer (Waltham, MA). 

Ultrapure water was obtained upon filtration with Millipore cartridges (MilliQ biocel, 

Millipore, Schwalbach). 

 

4.2 Consumables 
Consumables were provided by Roth (Karlsruhe), Fisher-Scientific (Schwarte), Nunc 

(Wiesbaden), Nalgene (Hamburg), Sarstedt (Nümbrecht), Eppendorf (Hamburg), 

Falcon (Heidelberg), Becton Dickinson (Heidelberg), Biozym (Oldendorf) and VWR 

(Nürnberg). 

 

4.3 Membrane preparations and enzymes 
Membrane preparations from human BCRP transporter- and human MDR1 transporter-

expressing Spodoptera frugiperda Sf9 ovarian cells, membrane vesicles in the inside-

out orientation prepared from baculovirus-infected Sf9 cells overexpressing human 

BCRP transporters, Beta-gal and defBCRP membranes were supplied by SOLVO 

Biotechnology (Budaörs, Hungary). 

Membrane preparations containing recombinant human CYP3A4 or CYP2D6 obtained 

from baculovirus expression systems were purchased from Promega (Mannheim). 

Recombinant human PLA2-V was obtained from Cayman Europe (Tallinn, Estonia) and 

human MAO A and MAO B enzymes, expressed in baculovirus-infected insect cells 

(BTI-TN-5B1-4), were obtained from Sigma–Aldrich (Steinheim). 
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4.4 Cell lines 
BCRP transporter-overexpressing MCF7-MX cells and MDR1-overexpressing K562-

MDR cells were provided by Solvo Biotechnology (Budaörs, Hungary). HL-60 human 

acute myeloid leukaemia cells, SH-SY5Y human neuroblastoma cells and IMR-32 

human neuroblastoma cells were obtained from the German Resource Centre for 

Biological Material (DSMZ, Braunschweig). 

 

4.5 Assay kits 
CYP3A4 activity:  P450-GloTM CYP3A4 Screening System (Luciferin-PPXE) 

DMSO Tolerant Assay (Promega, Mannheim)  

CYP2D6 activity:  P450-Glo™ CYP2D6 Screening System (Promega, 

Mannheim) 

HIF-1α ELISA: SurveyorTM IC (R & D Systems, Wiesbaden) 

HIF-2α ELISA: HIF-2α ELISA Kit (Cusabio, Newark, DE) 

MAO A and B activities:  MAO-GloTM Assay (Promega, Mannheim) 

Mycoplasma test:  Venor®GeM (Minerva Biolabs, Berlin) 

Proteasome activity: Proteasome-Glo™ Cell-Based Assay (Promega,    

Mannheim) 

Protein quantification:  Pierce® Micoplate BCA Protein Assay Kit-Reducing Agent 

Compatible (Thermo Scientific, Bonn) 

 

4.6 Instruments 

4.6.1 Miscellaneous 
Autoclave: Varioklav steam sterilizer (H+P Labortechnik, 

Oberschleißheim) 

Centrifuges:  Heraeus Megafuge 1.0, Megafuge 2.0R, Biofuge pico, 

Biofuge fresco (Heraeus, Hanau) 

Compartment dryer:   WTB Binder (Binder, Tuttlingen) 

Electrophoresis chamber:  PeqLab 40-1214 (PeqLab, Erlangen) 

Fluorimeter:  BMG Labtech FluoStar Optima fluorescence photometer 

(BMG Labtech, Offenburg). 

Gel documentation system:  MWG-Biotech (MWG Biotech, Ebersberg) 

Incubator:  Hera cell (Heraeus, Hanau) 
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Luminometer: Anthos lucy 1 microplate luminometer (Anthos, Wals/ 

Salzburg, Austria) 

Lyophilizer:   Christ alpha 1-2 (Christ, Osterode) 

Lyophilizer pump: Rotary vane vacuum pump RZ 2 (Vacuubrand, Wertheim) 

Microscope:  Olympus IX70 (Olympus, Hamburg) 

Orbital Shaker:  IKA-VIBRAX-VXR Type VX7 (Janker & Kunkel, Staufen) 

PCR cycler:  Trio Thermoblock Biometra (Biometra, Göttingen) 

pH meter:  WTW pH 540 GLP (WTW, Weilheim) 

Photometer:  Molecular Devices Emax precision microplate reader 

(MDS, Ismaning) 

Tecan Spectra Mini Photometer (Tecan, Crailsheim) 

Scales:    Sartorius BL 1500, Sartorius BP 221S (Sartorius, 

Göttingen) 

Scintillation counter: Perkin Elmer MicroBeta Trilux liquid scintillation counter 

(Perkin Elmer, Waltham, MA) 

Sterile workbench:   Hera safe Type HS9 (Heraeus, Hanau) 

 

4.6.2 High performance liquid chromatography with diode 
array detection (HPLC-DAD) 

HPLC system 1 (quercetin) 

 

Instrument: Photodiode array Hewlett Packard 1100 Series (Hewlett Packard, 

Waldbronn) 

Pump:  Hewlett Packard high pressure pump for binary high pressure 

gradients, 1100 Series (Hewlett Packard, Waldbronn) 

Autosampler:  Wisp 712b (Waters, Eschborn) 

Column: Synergy-Hydro-RP: 4.6 x 250 mm i.d., particle size 4 µm 

(Phenomenex, Aschaffenburg)  

Eluent:  A  0.1% formic acid in H2O 

 B acetonitrile 

Flow:  0.8 ml/min 

Gradient:  linear, 1 - 45% B in 45 min 

Injection:  25 µl 

Detector:  Hewlett Packard Photodiode array (DAD), 1100 Series, 

200-600 nm (Hewlett Packard, Waldbronn)   

Wavelength: 360 nm 
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Software:  Hewlett Packard ChemStation© Software (Hewlett Packard, 

Waldbronn)  

 

HPLC system 2 (delphinidin, delphinidin-glc) 

 

Instrument: Alexys 100 LC-EC System (Antec Leyden, Zouterwoude, 

Netherlands) 

Pump:  Alexys LC100 (Antec Leyden, Zouterwoude, Netherlands) 

Autosampler:  Alexys AS100 (Antec Leyden, Zouterwoude, Netherlands) 

Column:  Hypersil ODS: 4.0 x 125 mm i.d., particle size 5 µM (Thermo 

Fisher Scientific, Dreieich) 

Eluent:  A 10% formic acid in H2O (v/v): acetonitrile (1:1, v/v) 

 B 10% formic acid in H2O (v/v)  

Flow:  0.5 ml/min 

Gradient:   Time (min) Eluent B (%) 

0 94 

40 78 

60 56 

63 6 

68 6 

71 94 

80 94 

 

 

 

Injection:  100 µl 

Detector:   SPA-10A UV-Vis Detector (Shimadzu, Duisburg) 

Wavelength:  520 nm  

Software:  Alexys data system (Antec Leyden, Zouterwoude, Netherlands)  

 

4.6.3 High performance liquid chromatography mass 
spectrometry and tandem mass spectrometry 
(HPLC-MS, HPLC-MS/MS) 

HPLC system 3 (quercetin, gallic acid, phloroglucinol) 

 

HPLC: Photodiode array Hewlett Packard 1100 Series (Hewlett Packard, 

Waldbronn) 
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Pump:  Hewlett Packard high pressure pump for binary high pressure 

gradients, 1100 Series (Hewlett Packard, Waldbronn) 

Autosampler:  Triathlon (Spark, Emmen, Netherlands) 

Column: Symmetry C18: 2.1 x 150 mm, particle size 5 µm (Waters, 

Eschborn) 

Eluent:  A       0.1% formic acid in H2O 

 B acetonitrile 

Flow:  0.2 ml/min 

Gradient:  linear, 1 - 40% B in 40 min 

Injection:  25 µl 

Detector:  Hewlett Packard Photodiode array (DAD), 1100 Series,   

200-600  nm (Hewlett Packard, Waldbronn) 

Software:  Hewlett Packard ChemStation© Software (Hewlett Packard, 

Waldbronn) 

Instrument:  Finnigan TSQ 7000 Triple-stage quadrupol tandem mass 

spectrometer (Finnigan MAT, Bremen) with Finnigan electrospray 

ionisation interface (ESI)  

ESI capillary: deactivated fused-silica capillary: 50 µm i.d (J&W Scientific, 

Folsom, CA) 

Ion source: atmospheric pressure, room temperature   

Inlet capillary:  250 °C  

Modus:   negative 

Capillary voltage: 3.2 kV 

Sheath gas:  N2 5.0 (70 psi) 

Auxiliary gas:  N2 5.0 (10 l/min) 

Scan range:  m/z 150 - 1000 (Full scan mode) 

Collision gas:  Argon 5.0, pressure 0.27 Pa (2.0 mTorr) 

Collision energy: 20 - 30 eV 

Multiplier voltage: 1600 V (ESI-MS), 1950 V (ESI-MS/MS) 

Software: Xcalibur™ Software Version 1.2 (Thermo Electron, Dreieich) 

 

HPLC system 4 (delphinidin, delphinidin-glc) 

 

HPLC: Photodiode array Hewlett Packard 1100 Serie (Hewlett Packard, 

Waldbronn) 

Pump:  Hewlett Packard high pressure pump for binary high pressure 

gradients, 1100 Series (Hewlett Packard, Waldbronn) 
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Autosampler:  Triathlon (Spark, Emmen, Netherlands)  

Column: Symmetry C18: 2.1 x 150 mm, particle size 5 µm (Waters, 

Eschborn) 

Eluent:  A       1% formic acid in H2O 

 B acetonitrile 

Flow:  0.2 ml/min 

Gradient:  linear, 1 - 40% B in 40 min 

Injection:  25 µl 

Detector:  Hewlett Packard Photodiode array (DAD) 1100 Series, 

200-600 nm (Hewlett Packard, Waldbronn) 

Wavelength:  520 nm 

Software:  Hewlett Packard ChemStation© Software (Hewlett Packard, 

Waldbronn) 

Instrument:  Finnigan TSQ 7000 Triple-stage quadrupol tandem mass 

spectrometer (Finnigan MAT, Bremen) with Finnigan electrospray 

ionisation interface (ESI) 

ESI capillary: deactivated fused-silica capillary: 50 µm i.d (J&W Scientific, 

Folsom, CA) 

Ion source: atmospheric pressure, room temperature   

Inlet capillary:  250 °C  

Modus:   positive 

Capillary voltage: 3.5 kV 

Sheath gas:  N2 5.0 (70 psi) 

Auxiliary gas:  N2 5.0 (10 l/min) 

Scan range:  m/z 150 - 1000 (Full scan mode) 

Collision gas:  Argon 5.0, pressure 0.27 Pa (2.0 mTorr) 

Collision enery: 20 eV 

Multiplier voltage: 1600 V (ESI-MS), 1950 V (ESI-MS/MS) 

Software: Xcalibur™ Software Version 1.2 (Thermo Electron, Dreieich) 

 

4.7 Programs 
ISIS/Draw V2.1.4 (MDL Information Systems, CA, USA) served to illustrate chemical 

structures. Prism V 4.00 (GraphPad Software, La Jolla, CA, USA) was applied for 

generation of dose-response curves and for calculations of IC50 and EC50 values. 

Analyses of variance were performed with Prism V 4.00 and Statistica V 8.0 (StatSoft, 
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Tulsa, OK, USA). Microsoft Office Excel 2003 (Microsoft Corporation, WA, USA) was 

used for enzyme kinetics analyses. 

 

4.8 Methods 

4.8.1 General proceedings with cell lines 

4.8.1.1 Thawing 

Ampules with respective cells were collected from liquid nitrogen storage and placed in 

a 37 °C water bath. They were allowed to thaw until a small amount of ice remained. 

Cells were slowly pipetted into 5 ml of icecold culture medium and centrifuged at 

1,200 rpm for 5 min. After supernatant was discarded, the cell pellet was resuspended 

in warm medium and transferred to a cell culture flask. The following day, culture 

medium was changed.  

 

4.8.1.2 Culture 

HL-60 and SH-SY5Y cells were cultured in Dulbecco’s Modified Eagle’s Medium 

(DMEM) supplemented with 10% foetal calf serum (FCS), 2 mM L-glutamine, 

100 units/ml penicillin plus 100 µg/ml streptomycin, and IMR-32 cells were cultured in 

RPMI-1640 supplemented with 10% FCS, 100 units/ml penicillin plus 100 µg/ml 

streptomycin. Cells were maintained in an atmosphere of 5% CO2 at a temperature of 

37 °C. Depending on the cell line, passages were carried out every three to five days. 

Passage of suspension cells 

An aliquot of HL-60 cells in suspension were diluted with fresh medium. After removal 

of spent medium, weakly adherent IMR-32 cells were carefully washed with phosphate-

buffered saline (PBS), rinsed off with fresh medium and the obtained suspension was 

further diluted with culture medium after a cell count was performed.  

Passage of adherent cells 

For SH-SY5Y cells, spent medium was aspirated and cells were washed with PBS. The 

cell monolayer was covered with trpsin/EDTA (1 ml/25 cm² flask) and incubated for 

1-2 min at 37 °C. Remaining attached cells were released by gently tapping the flask, 

followed by resuspension in 7 ml fresh medium. Upon centrifugation at 1,200 rpm for 

5 min, supernatant was discarded and an aliquot of cells was resuspended in fresh 

culture medium after determination of cell number. 
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4.8.1.3 Freezing 

For long-term storage, cells were cryoconserved in liquid nitrogen at -196 °C. Where 

applicable, cells were detached and suspended, separated from the spent medium by 

centrifugation at 1,200 rpm for 3 min, the supernatant was discarded and the cell pellet 

was resuspended in 500 µl of icecold fresh medium. Then 500 µl of freezing medium 

(FCS: dimethyl sulfoxide (DMSO) = 9:1) was added and resuspended cells were filled 

into cryovials. Cells were gently frozen applying a two-step procedure. After vials were 

stored in a cryobox filled with isopropanol at -70 °C for 24 h, guaranteeing a uniformly 

decreasing temperature, they were transferred into liquid nitrogen for long-term 

storage.  

 

4.8.1.4 Determination of cell number and vitality 

Cell numbers were determined with a Neubauer counting chamber. Therefore 50 µl cell 

suspension was mixed with 50 µl trypan blue solution (0.5%) and 100 µl PBS, and an 

aliquot of the mixture was fed into the counting chamber. As the trypan blue dye can 

permeate damaged cell membranes, death cells appear blue under the microscope. 

Since the area of one large square amounts to 1 mm², considering the 0.1 mm depth of 

the chamber the volume under one large square amounts to 0.1 µl. All four large 

squares were counted and the cell number calculated as follows:  

ml0004.0
nCells/ml D⋅

=  

where n is the number of cells counted and D the dilution factor. 

 

4.8.1.5 Mycoplasma test 

Mycoplasma test Venor®GeM was performed according to the manufacturer’s protocol. 

Briefly, 100 µl supernatant of confluent cell cultures was transferred to a tightly sealed 

tube and incubated at 95 °C for 5 min. Following centrifugation at 13,000 rpm for 5 sec 

to pellet cellular debris, tubes were kept on ice prior to use for polymerase chain 

reaction (PCR). For PCR reaction, total volume per reaction was 25 µl, composed as 

follows: 

 

Reagent Volume (µl) 

PCR grade water 15.3 

10 x Reaction buffer 2.5 

Primer/Nucleotide mix 2.5 
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Internal control 2.5 

Sample DNA / Positive control DNA / Negative control (water) 2  

Taq polymerase 0.2 

 
When setting up reactions, positive and negative controls were always included and 

the following PCR program was applied:  

 
1 cycle  94 °C 2 min 

35 cycles Denaturation 94 °C 30 sec 

 Annealing 55 °C 30 sec 

 Elongation 72 °C 30 sec 
 
Results were analyzed after gel electrophoresis, where a 191 bp band was seen as 

internal control band and a 267 bp band was visible in the positive control lane. 

 

4.8.2 Interactions with ABC efflux transporters 

4.8.2.1 Assays 

4.8.2.1.1 Dye extrusion assay 

For assessing effects on BCRP, Hoechst fluorescent dye 33342 was added to BCRP 

transporter-overexpressing MCF7-MX cells. Modulators of BCRP transporter activity 

reduce the rate of Hoechst 33342 extrusion and cause its accumulation inside the cells. 

Following DNA intercalation, a fluorescent signal may be detected that is proportional 

to BCRP transporter inhibition. Briefly, cells (1x105 per well of standard 96-well tissue 

culture plates) were incubated with Hoechst 33342 (50 µM) plus the test compound or, 

alternatively, with DMSO for non-inhibited controls, or Ko143 (1 µM) as a reference 

inhibitor, at 37 °C for 15 min in Hank’s Balanced Salt Solution (HBSS). Fluorescence of 

accumulated Hoechst 33342 inside cells was measured in real time at excitation and 

emission wavelengths of 355 and 460 nm, respectively. 

 

 



4 Material and methods 93
 

 
Figure 4-1 Principle of the dye extrusion assay for MDR1. Image courtesy of SOLVO 
Biotechnology (www.solvo.com, 2011). 
 

For quantification of effects on MDR1, calcein-AM was added to MDR1-overexpressing 

K562-MDR cells. Modulators of MDR1 activity cause accumulation of calcein-AM inside 

the cell, whereupon it is cleaved by non-specific esterases to form the fluorescent low 

permeability dye calcein (figure 4-1). The increase of fluorescent signal inside the cell 

is proportional to MDR1 inhibition. Briefly, K562-MDR cells (8x104 cells per well) and 

calcein-AM (0.25 µM) were incubated with the test compound or, alternatively, with 

DMSO for non-inhibited controls, or verapamil (60 µM) as a reference inhibitor, at 

37 °C for 8 min in HBSS. Fluorescence of accumulated calcein inside cells was 

measured at excitation and emission wavelengths of 485 and 538 nm, respectively. 

After the incubation period, propidium iodide was added to all wells (0.01 mg/ml) and 

fluorescence was measured at 530 and 630 nm excitation and emission wavelengths, 

respectively, to assess potential cytotoxic effects of the substances tested.  

 

4.8.2.1.2 ATPase assay 

ATPase activity of wild-type human BCRP and MDR1 was measured, according to a 

protocol modified from [465], by colorimetric detection of inorganic phosphate, the 

byproduct of ABC transporter function (figure 4-2). Membrane preparations from 

human BCRP transporter- and human MDR1 transporter-expressing Spodoptera 

frugiperda Sf9 ovarian cells were applied.  

 

http://www.solvo.com/
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Figure 4-2 Principle of the ATPase assay. Image courtesy of SOLVO Biotechnology 
(www.solvo.com, 2011). 
 
 
For assessing BCRP and MDR1 transporter-related ATPase activity, incubations were 

carried out in the presence and absence of sodium o-vanadate (Na3VO4) (1.2 mM), a 

known ABC transporter inhibitor, to distinguish between background ATPase activity 

and transporter-related ATPase activity. The ATPase assay was performed according 

to the manufacturer’s protocol. Briefly, membranes (20 µg/well) were preincubated at 

37 °C for 10 min with the test substance or the solvent DMSO in the absence and 

presence of vanadate, and reactions were started by adding MgATP. Sulfasalazine at 

10 µM and verapamil at 40 µM served for activation of BCRP and MDR1 membranes, 

respectively. Final concentrations of assay compounds amounted to 10 mM MgCl2, 

40 mM 3-(N-morpholino)propanesulfonic acid (MOPS)-Tris (pH 7.0), 50 mM KCl, 5 mM 

dithiothreitol, 0.1 mM ethylene glycol tetraacetic acid (EGTA), 4 mM sodium azide, 

1 mM ouabain, and 5 mM ATP. Reactions were stopped after 10 min at 37 °C by the 

addition of the color-developing agent followed by a blocking reagent. Another 30 min 

later, absorbance at 620 nm was detected using a fluorescence photometer. 

Phosphate standards (0.4 and 0.8 pmol/well) for optical density (OD) calibration were 

included on each 96-well plate. For calculation of relative ATPase activity, baseline 

ATPase activity (ctrl 1), Na3VO4-insensitive ATPase activity (ctrl 2), ATPase activity of 

fully activated membranes (ctrl 3), and Na3VO4-insensitive ATPase activity of fully 

activated membranes (ctrl 4) were also determined. Beta-gal and defBCRP 

membranes served as negative controls for MDR1 and BCRP, respectively. 

 

 

 

 

http://www.solvo.com/
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4.8.2.1.3 Vesicular transport assay 

Vesicular transport assays were performed as previously described [627], using 

membrane vesicles in the inside-out orientation prepared from baculovirus-infected Sf9 

cells overexpressing human BCRP transporters.  

 

 
Figure 4-3 Principle of the vesicular transport assay. Image courtesy of SOLVO Biotechnology 
(www.solvo.com, 2011). 
 
3H-estrone-3-sulfate was used as a radiolabeled, low-permeability reporter substrate 

which is transported into the vehicles by the transporters (figure 4-3). Incubations were 

carried out in the absence and presence of 4 mM ATP to distinguish between 

transporter-related uptake and passive diffusion into the vesicles. The reference 

inhibitor Ko143 (300 nM) served as a positive control and defBCRP as negative 

control. Briefly, membrane vesicle preparations were preincubated with reporter 

substrate and the test substance or, alternatively, the solvent DMSO at 37 °C for 

10 min in assay buffer, containing 10 mM MgCl2, 10 mM Tris-Cl (pH 7.0) and 250 mM 

sucrose. Addition of MgATP, or assay buffer for background controls, started the 

reaction. After one min, reactions were stopped by the addition of icecold assay buffer. 

Vesicles were separated by immediate filtration on a 96-well filter plate (0.65 µm, 

Millipore, Billerica, MA), filter plates were washed, dried and reporter substrate inside 

the filtered vesicles was quantified by liquid scintillation.  

Stock solutions of the flavonoids (15 mM) and serial dilutions were prepared in DMSO. 

Final assay concentrations were 0.07, 0.21, 0.62, 1.85, 5.55, 16.67, 50, 150 µM for the 

dye extrusion assays and 0.41, 1.2, 3.7, 11, 33, 100, 300 µM for ATPase and vesicular 

transport assays. For each concentration step tested, assays were performed in 

triplicate. 

 

http://www.solvo.com/
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4.8.2.2 Data analysis  

GraphPad Prism 4.03 (GraphPad Software Inc., San Diego, CA) was used for curve 

fitting, determination of reaction parameters and statistical analysis. 

 

4.8.2.2.1 Dye extrusion assay 

The rate of dye accumulation was defined as the slope fitted onto the data points of the 

fluorescence versus time plot. For calculation of relative transporter inhibition (%), 

values from DMSO and control inhibitors (Ko143 and verapamil) were defined as 0% 

and 100% inhibition, respectively, by the following equation: 

 
100

DMSO inhibitor control
DMSOflavonoid

⋅
−

−  

 
IC50 was defined as the test substance concentration required for inhibiting the 

transport of the reporter substrate by 50%. Efficacy describes the maximal inhibition 

achieved by a test compound in percent of the maximal inhibition observed in the 

presence of the reference inhibitors Ko143 and verapamil. 

 

4.8.2.2.2 ATPase assay 

For calculation of relative activation and inhibition, the vanadate-sensitive baseline 

ATPase activity and the maximal vanadate-sensitive ATPase activity after stimulation 

with 10 µM sulfasalazine, for BCRP, or 40 µM verapamil, for MDR1, were defined as 

0% and 100% transporter ATPase activity, respectively. Relative activation (%) was 

calculated as follows: 

 
( )( ) ([ ]
( ) ( )

) 100
 ctrl2-ctrl1-ctrl4-ctrl3

ctrl2-ctrl1-vanadateflavonoidflavonoid
⋅

+−  

 
EC50 was defined as the test substance concentration needed to reach 50% of its own 

maximal activation and efficacy was defined as the compounds’ maximal activation, as 

compared to the activation by the respective reference. Relative inhibition values (%) 

were obtained as follows:   

 
( ) ( )( ) ( )[ ]

( ) ( ) 100
 ctrl2ctrl1--ctrl4-ctrl3

ctrl2ctrl1--vanadateactivator  referenceflavonoidactivator  referenceflavonoid
⋅

++−+  
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IC50 was defined as the test substance concentration at which half-maximal inhibition 

occurred and efficacy was defined as the maximal inhibitory effect achieved by the test 

substance relative to the baseline activity. 

 

4.8.2.2.3 Vesicular transport assay 

Substrate transport relative to the non-inhibited control (%) was calculated according to 

the following equation: 

 
( )
( ) 100

DMSO-ATPDMSO
flavonoid-ATPflavonoid

⋅
+
+  

 
IC50 was defined as the test substance concentration required for inhibiting transport of 

the reporter substrate by 50%. Efficacy specifies the maximal inhibition achieved by the 

test compound in percent of the maximal activity.  

 

4.8.2.2.4 Statistics 

To address a putative structural effect of tested anthocyanins’ sugar component on 

BCRP ATPase activation and vesicular transport, substances were grouped by the 

presence or absence of sugar moieties, i.e. anthocyanins versus anthocyanidins. EC50 

and IC50 values, respectively, were compared with an unpaired t-test following 

confirmation of Gaussian distributions. To correct for unequal variances (F-test), 

Welch’s correction was performed. Statistical significance was set at p = 0.05.  

 

4.8.3 Interactions with monoamine oxidases A and B 

4.8.3.1 Monoamine oxidases A and B activity assay 

Effects of test substances on MAO activities were determined using the MAO-GloTM 

chemiluminescent assay according to the manufacturer’s protocol (table 4-1).  

 
Table 4-1 MAO assay protocol. 

Reagent Volume (µl) Incubation time (min) MAO A / B 

Substrate solution 12.5  

MAO buffer 11.5  

Test substance / DMSO 1  

Enzyme solution in buffer / buffer 25 90 / 120 

Luciferin detection reagent 50 30 
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Briefly, MAO substrate was incubated for 90 (MAO A) and 120 min (MAO B) at room 

temperature with the test compounds and the respective MAO enzyme (20 µg/ml). 

Assays were performed in 96-well microtiter plates in 4-(2-hydroxyethyl)piperazine-

1-ethanesulfonic acid (HEPES) buffer. Based on preliminary investigations, 

compounds’ final concentrations in the assay were chosen to range from 4 to 400 µM 

for anthocyanins and anthocyanidins, from 100 to 1,000 or 2,000 µM (MAO A) and 

from 20 to 400 µM (MAO B) for procyanidins, from 400 to 25,000 µM for phenolic acids, 

from 100 pM to 2 µM for clorgyline, and from 0.1 to 10 µM for R-(-)-deprenyl. Since test 

compounds were dissolved and diluted with DMSO, an equivalent volume of DMSO 

was used as a negative control. MAO substrate, an aminopropylether analog of 

luciferin methyl ester, was used at concentrations of 40 µM and 4 µM, corresponding to 

Km values determined by the manufacturer for MAO A and MAO B, respectively. To 

initiate a luminescent signal, the detection reagent was added, containing an esterase 

and a luciferase, and after another 30 min, chemiluminescence values, displayed as 

relative light units (RLUs), were recorded with a measuring time of 12 s for each well.  

Since cyanidin-glycosides are by far the most prevalent anthocyanins in fruits, the 

kinetics underlying the effects of cyanidin and cyanidin-3-glucoside on the oxidative 

deamination of a MAO substrate by MAO A and MAO B were studied. Inhibition was 

measured at test compound concentrations of 20, 40 and 80 µM for cyanidin and 20, 

40 and 80 µM (MAO A) plus 40, 80 and 120 µM (MAO B) for cyanidin-3-glucoside. For 

each test compound concentration, five concentrations of luminogenic substrate were 

used, i.e. 12.5-150 µM (MAO A) and 2-40 µM (MAO B), and an equivalent volume of 

buffer as a non-enzyme control. 

 

4.8.3.2 Data analysis  

For quantification of MAO inhibition, enzyme activity was calculated using the light 

signal generated by oxidation of D-luciferin which, in turn, is produced by MAO 

deamination of the substrate and subsequent spontaneous hydrolysis and 

β-elimination reactions (figure 4-4).  
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Figure 4-4 MAO catalyzed and subsequent reactions. 
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As the amount of light is directly proportional to the amount of luciferin released in the 

reaction with MAO enzyme, the following equation applies: 
 

DMSO

I

A
A100%A ×=  

 

where %A is the percentage of the MAO activity remaining after the exposure to test 

substances, AI is the activity in the presence of an inhibitor, and ADMSO is the enzyme 

activity in the absence of inhibitors. 

For each substance tested, mean values were analyzed from three separate 

experiments performed in triplicate at up to seven concentration steps, using a non-

linear regression model to determine the concentration inhibiting 50% of maximum 

MAO activity. Inhibition kinetics of cyanidin and the corresponding glucoside were 

analyzed by Lineweaver-Burk plots. Ki values were determined from secondary plots of 

the inhibitor concentration [I] versus the slope in Lineweaver-Burk plots. Mean values 

were formed from two separate experiments performed in duplicate. 

To address a putative structural effect of test anthocyanins’ sugar component, 

substances were grouped by the number of sugar moieties, i.e. (i) anthocyanins, (ii) 

anthocyanidin-3-glycosides, and (iii) anthocyanidin-3,5-diglucosides for analysis of 

variance (Prism V4.00, GraphPad Software, CA, USA). Statistical significance was set 

at p = 0.05. 

 

4.8.4 Influence on HIF-1α and HIF-2α expression 

4.8.4.1 Cell incubation with test substances  

All HIF-α expression experiments were performed on SH-SY5Y and IMR-32 

neuroblastoma cells, cultivated as described in section 4.8.1.2. In a first round of 

experiments, cells were incubated with various test substances. Since phorbol-

12-myristate-13-acetate (PMA) increased HIF-1α expression in preliminary 

experiments, it was employed throughout all experiments. PMA and compounds under 

study were dissolved and diluted with DMSO, with the exception of desferrioxamine 

which was dissolved in H2O.  When cells reached half to three-quarter confluency, 

fresh medium was added to culture dishes, containing 0.01% PMA and the respective 

substance to be tested. Under these conditions, cells were incubated at 37 °C for 4 h. 

Final substance concentrations amounted to 100 µM for anthocyanins, anthocyanidins, 

phenolic acids, procyanidin B2, quercetin and DFO, while bilberry extract was applied 

at 50 mg/l. DMSO concentrations were adjusted to 0.1% for all experiments. All 

incubations were performed in duplicate in both cell lines.  
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Based on findings during incubation experiments with these test substances, 

experiments were continued with delphinidin. In a second and third level of 

experiments, time- and concentration-dependent effects were under investigation. 

Therefore, incubations were performed with varying incubation times of 3, 4 and 5 h 

and with delphinidin concentrations of 25, 50 and 100 µM. 

 

4.8.4.2 MTT cell viability assay 

Moreover, the present work aimed to determine potential harmful effects test 

substances may exert on cells upon incubation experiments. As the reduction of 

tetrazolium salts is now widely accepted as a reliable way to examine cell proliferation, 

the MTT assay was applied to study cytotoxicity of test compounds on SH-SY5Y cells. 

The yellow 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) is 

reduced by metabolically active cells, in part by the action of mitochondrial 

dehydrogenase enzymes, to generate reducing equivalents. The resulting intracellular 

purple formazan dye is directly related to the number of live cells and can be 

solubilized and quantified spectrophotometrically (figure 4-5).  
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Figure 4-5 MTT assay: In metabolically active cells, MTT is converted to a formazan dye by 
mitochondrial dehydrogenase enzymes. 
 
 
On the day prior to assay performance, SH-SY5Y cells were transferred to 96-well 

plates at a density of 3.6x104 cells/well in phenol red free RPMI medium supplemented 

with 10% FCS, 100 units/ml penicillin, plus 100 µg/ml streptomycin. After cells were 

allowed to attach for 24 h, test substances diluted with the same RPMI medium were 

added to yield final concentrations of 91 µM (bilberry extract 46 mg/l), with DMSO 

concentrations of 0.09%. DMSO in RPMI medium served as control, as did incubations 

for all test substances without cells aiming to subtract compounds distinct absorptive 

properties. After 4 h of incubation at 37 °C, an MTT solution prepared with PBS was 

added at a final concentration of 0.5 mg/ml, followed by another 3 h period of 

incubation at 37 °C. Medium was carefully removed to avoid cell detachment from 
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surface and intracellularly generated crystal needles of formazan were dissolved in 

DMSO-ethanol (4:1). Upon complete formazan solution, absorption was measured 

photometrically at 540 against 650 nm. For each compound tested, MTT assay was 

performed in duplicate and corrected values were compared to the control value. 

 
Table 4-2 MTT assay protocol. 
 
Reagent Volume (µl) Incubation time (h)  

Cell suspension 100 24 

Test substance solution 10  4 

MTT solution 12.2 3 

DMSO-ethanol solution 120  
 
 
To address effects of substances on cell viability compared to control values, analysis 

of variance was performed (Prism V 4.00, GraphPad Software, La Jolla, CA, USA, 

Statistica V 8.0, StatSoft, Tulsa, OK, USA). As all compounds’ effects were compared 

to the same control group, Dunnett test was applied to correct p values for multiple 

comparisons. 

 

4.8.4.3 Preparation of protein lysates 

Following incubation with test substances, cells were detached, lysed and a protein 

extract was prepared. Therefore culture medium was removed and cells were carefully 

washed (at least three times) with warm PBS. Upon addition of icecold PBS, SH-SY5Y 

cells were scraped off and IMR-32 cells were rinsed off the dish and transferred to 

centrifugation tubes. After this suspension was centrifuged at 500 rpm for 5 min at 

4 °C, pelleted cells were resuspended in 30 or 200 µl lysis buffer, depending on the 

experimental size. Lysis buffer was composed as follows and adjusted to pH 7.9 with 

HCl: 

 
 

Substance Concentration 

NaCl 300 mM 

Tris 10 mM 

EDTA 1 mM 

Nonidet P-40 0.1% (v/v) 

Protease Inhibitor Cocktail 1% 
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This lysis buffer had the advantage over two concurring, reducing agent dithiothreitol 

containing lysis buffers since it achieved high protein recoveries and showed minimal 

interaction with assays for determination of protein and HIF-1α concentrations. 

Cell suspensions were vortexed at maximal speed for 10 sec, tubes were placed in an 

icecold rack and put on an orbital shaker for 20 min, vortexed at maximal speed for 

30 sec and centrifuged at 9,000 rpm for 10 min at 4 °C. Finally the protein containing 

supernatant was carefully separated from the cell debris pellet and immediately stored 

at -80 °C. 

 

4.8.4.4 Determination of protein concentrations 

Protein quantification in cell lysates was performed with the BCA protein assay 

according to the manufacturer’s instructions (table 4-3). This assay is based on the 

reduction of Cu2+ to Cu+ by proteins in an alkaline medium and the subsequent 

sensitive and selective colorimetric detection of the cuprous cation chelate complex 

with bicinchoninic acid (BCA) (figure 4-6).  
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Figure 4-6 BCA protein assay: Chelation of BCA with the cuprous ion results in an intense 
purple color. 
 
 
Briefly, samples or bovine serum albumine (BSA) protein standards were incubated 

with assay reagents, containing NaOH, Na2CO3, NaHCO3, CuSO4, bicinchoninic acid, 

and sodium tartrate, for 30 min at 37 °C and upon cooling to room temperature, 

absorption at 540 nm was measured photometrically. BSA standards were used at five 

concentrations ranging from 25 to 500 µg/ml. All samples were diluted with 0.9% NaCl 

containing 0.05% NaN3, which also served as control sample. 
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Table 4-3 BCA assay protocol. 
 

Reagent Volume (µl) Incubation time (min)  

Sample / BSA standard solution 9  

Compatibility reagent solution 4 30 

Working reagent 260 30 
 
 
To exclude possible interactions of the lysis buffer with the assay, lysis buffer in 

standard samples and control samples was adjusted to concentrations in the test 

samples. Interference of other extract components with the assay demanded highest 

possible dilution of samples. For each sample, protein content was determined in 

duplicate. A standard curve was generated by plotting the corrected net absorptions for 

BSA standards versus its concentrations, and the resulting equation was applied to 

calculate protein concentrations of samples. 

 

4.8.4.5 Determination of HIF-1α concentrations 

HIF-1α concentrations of cellular protein extracts were determined with the SurveyorTM 

IC Immunoassay according to the manufacturer’s protocol (table 4-4). This assay 

employs a two-site sandwich enzyme-linked immunosorbent assay (ELISA) and was 

performed at room temperature (figure 4-7). 

 
Figure 4-7 Principle of HIF-1α ELISA. Image courtesy of Epitomics, Inc. (www.epitomics.com, 
2011). 
 
 
An antibody specific for HIF-1α has been precoated onto a microplate, standards and 

samples were added and HIF-1α present was bound by the immobilized antibody. After 

washing away unbound material, a biotinylated detection antibody recognizing HIF-1α 

was used to detect HIF-1α utilizing a standard streptavidin-horseradish peroxidase 

(HRP) format. 3,3’,5,5’-Tetramethylbenzidine (TMB) substrate solution was added to 

the wells and color developed in proportion to the amount of HIF-1α present in the 

http://www.epitomics.com/
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sample. Color development was stopped and absorption was measured 

photometrically at 450 against 540 nm.  

 
Table 4-4 HIF-1α ELISA protocol. 
 

Reagent Volume (µl) Incubation time (min)  

Test substance / standard solution 100 120 

Remove solution, wash buffer 3 x 400  

HIF-1α detection antibody 100 120 

Remove solution, wash buffer 3 x 400  

Streptavidin-HRP solution 100 120 

Remove solution, wash buffer 3 x 400  

TMB substrate solution 100 20 

Stop solution 50  
 
 
HIF-1α standards were used at 8 concentrations, ranging from 40 to 8,000 pg/ml. 

Samples were adjusted to uniform protein contents, ranging from 43 to 100 µg/ml for 

SH-SY5Y and from 100 to 150 µg/ml for IMR-32 incubations. For each sample, HIF-1α 

concentration was determined in duplicate. A nonlinear regression model was used to 

create standard curves and to calculate sample HIF-1α concentrations.  

 

4.8.4.6 Determination of HIF-2α concentrations 

HIF-2α concentrations of cellular protein extracts were determined with the Human 

HIF-2 ELISA Kit according to the manufacturer’s protocol (table 4-5). The sandwich 

ELISA principle corresponds to the one described for HIF-1α, except that avidin-HRP 

was applied instead of streptavidin-HRP and the performance at 37 °C.  

 
Table 4-5 HIF-2α ELISA protocol 
 

Reagent Volume (µl) Incubation time (min)  

Test substance / standard solution 100 120 

Remove solution   

HIF-2 α detection antibody 100 60 

Remove solution, wash buffer 3 x 400  

Avidin-HRP solution 100 60 

Remove solution, wash buffer 3 x 400  

TMB substrate solution 90 30 

Stop solution 50  
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HIF-2α standards were used at 7 concentration steps ranging from 156 to 

10,000 pg/ml. Samples were adjusted to the same protein content of 142 µg/ml for 

SH-SY5Y and of 300 µg/ml for IMR-32 incubations. Since the lysis buffer interfered 

with the assay, its concentrations in samples and standards were equalised and kept at 

a minimum by sample dilution.  For each sample, protein content was determined in 

duplicate. A nonlinear regression model was used to create standard curves and to 

calculate sample HIF-2α concentrations. 

 

4.8.4.7 HIF statistics 

To address modulatory effects of test compounds on HIF-1α and HIF-2α expression, 

analysis of variance was performed (Prism V 4.00, GraphPad Software, La Jolla, CA, 

USA, Statistica V 8.0, StatSoft, Tulsa, OK, USA). Since all test substances’ effects 

were compared to the same control, Dunnett test was applied to correct for multiple 

comparisons. When incubation time-dependent variations in modulatory effects on 

HIF-1α for delphinidin were monitored, t-tests were run for each incubation time 

comparing delphinidin effects to the respective controls’. To consider concentration-

dependent effects of delphinidin on HIF-1α expression, ANOVA followed by Dunnett 

correction were used. 

 

4.8.4.8 Cell uptake of substances under study  

To address uptake of compounds with modulatory effects on HIF-1α expression by 

SH-SY5Y and IMR-32 cells, recoveries of quercetin, delphinidin and delphinidin-glc 

from cell lysates were investigated and compared to control incubations. Therefore 

cells were incubated with substances as described in chapter 4.8.4.1. Then cells were 

washed five times with warm PBS to prevent that extracellular test substances get into 

cell lysates and falsify results. After cells lysis according to section 4.8.4.3, an aliquot 

was used for quantification of protein content and the remaining lysate was adjusted to 

pH 1 with 1N HCl to favor stability of test substances. Upon freezing and lyophilisation 

of samples, dried extracts were thrice extracted with methanol containing 5% formic 

acid. Samples were centrifuged at 1,000 rpm for 10 min and supernatants were 

separated and dried under a stream of nitrogen. While quercetin containing samples 

were redissolved in 50% methanol and 3,4,5-trihydroxycinnamic acid was added as an 

internal standard, the remaining extracts were redissolved in 10% formic acid. These 

solutions were subsequently used for HPLC analyses. 
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To investigate recovery of native test substances, HPLC-VIS analyses were performed 

detecting quercetin absorbance at 360 nm (system 1) and delphinidin and delphinidin-

glc absorbance at 520 nm (system 2). Identified compounds were quantified based on 

peak areas, applying an internal standard method for quercetin and an external 

standard method for delphinidin-glc.  

Subsequently, HPLC-MS/MS analyses were performed to corroborate findings on 

quercetin and delphinidin-glc recoveries from cell lysates and to specifically search for 

potential delphinidin and delphinidin-glc metabolites phloroglucinol and gallic acid. 

While HPLC system 4 was used for delphinidin-glc, system 3 was applied for the 

remaining compounds. Single reaction monitoring was performed for specific detection 

of parent and product ions. Collision energies and characteristic ion transitions were 

chosen as follows: 

 

Test compound Parent ion (m/z) Product ion (m/z) Collision energy (eV) 

Quercetin 301.0 151.2 30  

Delphinidin-glc 465.1 302.9 20 

Phloroglucinol 124.9 57.5 30 

Gallic acid 169.0 125.1 20 
 
Finally, HPLC-DAD-MS (system 4) analysis, generating a total ion chromatogram 

(TIC), was performed to address the identity of an unknown peak detected with HPLC-

VIS in the delphinidin IMR-32 sample.  

 

4.8.5 Interactions with the proteasome 

4.8.5.1 Proteasome activity assay 

For the proteasome activity assay, an aliquot of the cell suspension was drawn from 

the cell culture flask and centrifuged at 1,200 rpm for 5 min. The supernatant was 

removed and the cell pellet was resuspended in the culturing medium. Effects of the 

test substances on the proteasomal chymotrypsin-like activity were determined using 

the chemiluminescent Proteasome GloTM Cell-Based Assay according to the 

manufacturer’s protocol (table 4-6).  
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Table 4-6 Proteasome assay protocol 
 
Reagent Volume (µl) Incubation time (min) 

HL-60 cells in culturing medium 100  

Test substance / DMSO 1 7 

Assay buffer with substrate and luciferase 100 7 
 
 
HL-60 cells in culturing medium were dispensed into 96-well microtiter plates at 

1x104 cells per well and flavonoid solutions were instantly added. An equivalent volume 

of DMSO was used as a negative control. Anthocyanins, anthocyanidins and 

procyanidins were dissolved and diluted in DMSO to yield final concentrations of 2, 5, 

10, 50, and 100 µM in the assay. After incubation at room temperature for 7 min, assay 

buffer, containing the luminogenic proteasome substrate succinyl-leucine-leucine-

valine-tyrosine-aminoluciferin and a recombinant firefly luciferase were added. Final 

substrate concentration amounted to 20 µM. Subsequent to further incubation at room 

temperature for 7 min, chemiluminescence, expressed as relative light units, was 

measured with a measuring time of 12 s for each well. 

 

4.8.5.2 Data analysis 

To quantify proteasome inhibition by test substances, the chymotrypsin-like activity of 

the proteasome was obtained using a coupled-enzyme system, with proteasome 

cleavage of the substrate releasing aminoluciferin and a luciferase reaction generating 

a chemiluminescence signal (figure 4-8).  
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Figure 4-8 Proteasome catalyzed and subsequent reaction.  
 
 
Chymotrypsin-like activity was calculated according to the following equation: 
 

DMSO

I

A
A100%A ×=  

 

where %A is the percentage of the ChT-L proteasome activity remaining after 

treatment with test substances, AI is the activity of the chymotrypsin site in the 
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presence of an inhibitor, and ADMSO is the activity of the proteasome in the absence of 

inhibitors. 

For each substance tested, mean values from three separate experiments performed in 

triplicate at five concentrations were analyzed with Prism v. 2.01 (GraphPad Software, 

CA, USA), using a non-linear regression model to determine the concentrations 

inhibiting 50% of the chymotrypsin-like proteasome activity. Mean IC50 values for 

anthocyanins and anthocyanidins were compared using an unpaired t-test. Statistical 

significance was set at p = 0.05. 

 

4.8.6 Interactions with phospholipase A2 

4.8.6.1 Phospholipase A2 activity assay 

Studies on sPLA2 enzyme inhibition were performed using a photometric assay based 

on the Ellman method [628]. Briefly, hydrolysis of the sn-2 ester bond of the substrate 

1,2-bis(heptanoylthio)-glycerophosphocholine by PLA2-V is followed by the exposure of 

free thiols. These trigger the conversion of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) to 

2-nitro-5-thiobenzoic (NTB) acid which is detected photometrically at 405 nm (figure 

4-9). 
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Figure 4-9 Ellman reaction: Colorless DTNB is converted to yellow 2-nitro-5-thiobenzoic acid in 
the presence of sn-2-thiols released upon PLA2-V mediated substrate hydrolysis. 
 
Prior to performing inhibition studies, linearity of product formation was investigated 

with regard to incubation time and various substrate, DTNB and enzyme 

concentrations to optimize assay conditions. Thereupon, the assay was carried out in 

an aqueous buffer solution (pH 7.5) containing KCl, CaCl2, Tris and Triton-X 100 at 

final assay concentrations of 94 mM, 9 mM, 24 mM and 280 µM, respectively. 

Immediately before the assay was performed, substrate and PLA2-V were resuspended 

in assay buffer and DTNB was dissolved in an aqueous solution of Tris-HCl (pH 8) with 

enzyme and DTNB yielding final concentrations of 100 ng/ml and 87 µM, respectively.  

Assays were performed in 96-well microtiter plates at room temperature, containing 

DTNB, substrate solution plus the respective test substance. Thioetheramide 

phosphatidylcholine was used as a reference PLA2 inhibitor and DMSO served as a 
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negative control. This solvent was shown to be inactive at the concentration used in the 

assay (1.7% v/v). Flavonoids were dissolved and diluted with DMSO. From the 

ethanolic solution of thioetheramide phosphatidylcholine, the solvent was evaporated 

under a stream of nitrogen and a DMSO solution was reconstituted and vortexed 

vigorously before further dilution. In terms of regression analysis, concentrations of 

anthocyanidins ranged from 0.3 to 160 µM, of anthocyanins from 3 to 700 µM, of 

procyanidin B2 from 2 to 1,500 µM, of catechin from 1 to 1,700 µM, of protocatechuic 

acid from 20 to 17,400 µM, and of thioetheramide phosphatidylcholine from 32 nM to 

79 µM. In preliminary experiments, non-linear regression analysis was performed 

applying substrate at 0.3 mM.  

For enzyme kinetic analyses, at least five substrate concentrations between 0.15 and 

1.2 mM were used per concentration step and inhibition was measured at test 

compound concentrations ranging from 4 to 80 µM for anthocyanidins, and from 32 nM 

to 5 µM for thioetheramide phosphatidylcholine.  

The phospholipase reaction was initiated by adding PLA2-V, or assay buffer for control 

measurements. Absorption at 405 nm was recorded at intervals of 30 sec between 5 

and 10 min thereafter. 

 
Table 4-7 sPLA2 assay protocol. 
 

Reagent Volume (µl) Incubation time (min) 

DTNB solution 10  

Substrate solution 200  

Test substance / DMSO 4  

Enzyme solution in buffer / buffer 16 5 
 

4.8.6.2 Data analysis 

For quantification of sPLA2-V inhibition, enzyme activity was calculated using the 

absorption of 2-nitro-5-thiobenzoic acid at 405 nm. As the absorption is directly 

proportional to the amount of thiol released in the reaction with sPLA2, the following 

equation applies:  
 

DMSO

I

A
A100%A ×=  

 

where %A is the percentage of sPLA2-V activity remaining after the exposure to test 

substances, AI is the activity in the presence of an inhibitor, and ADMSO is the enzyme 

activity in the absence of inhibitors (control). For each substance tested, mean values 

were analyzed from three separate experiments performed in triplicate at up to eight 
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concentration steps, using a nonlinear regression model to determine the concentration 

inhibiting 50% of maximum sPLA2 activity. 

For enzyme kinetics analyses, experiments were performed at least twice in duplicate. 

Following normalization, the absorption was plotted against the incubation time. The 

resulting slope served as a measure of enzyme initial velocity (v) and was plotted 

against the respective substrate concentration [S] to obtain a substrate concentration 

versus velocity curve. Curves were then linearized by creating a reciprocal plot, or 

Lineweaver-Burk plot, which gave a family of intersecting lines for results of inhibition 

and control experiments. From this plot, the Michaelis-Menten constant (Km) and 

maximum velocity (Vmax) were calculated, while the line intersection point served to 

determine the mode of inhibition. The linear fit of the negative control was extrapolated 

to the point of x-axis intersection, with the negative abscissa intercept equalling -1/Km 

and the ordinate intercept equalling 1/Vmax. 

Kinetic models considered for PLA2 inhibition by anthocyanidins are outlined in figure 

4-10. For calculation of further kinetic constants, i.e. the dissociation constant Ki, plus 

coefficients α and β for discrimination between complete and partial inhibition, 

secondary diagrams were generated plotting slope LB plot versus [I], 1/v versus [I] 

(Dixon plot), [S]/v versus [I] (Cornish-Bowden plot), 1/Δ y-axis intercept LB plot versus 

1/[I] and  1/Δ slope LB plot versus 1/[I].  
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Figure 4-10 Kinetic models used to obtain Ki for competitive (a), partial competitive (b), mixed 
partial competitive and non-competitive (c) and mixed partial competitive and partial non-
competitive (d) inhibition. Enzyme 'E' and substrate 'S' form the enzyme-substrate complex 'ES', 
enzyme and inhibitor 'I' form the enzyme-inhibitor complex 'EI'. Ks and Ki are the dissociation 
constants of 'ES' and 'EI', respectively. Dissociation constants αKs and αKi refer to the ternary 
complex 'ESI', coefficient β applies to functional 'ESI' when product formation is decreased 
[570]. 
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For enzyme kinetics analysis, rapid equilibrium of the enzyme-substrate binding 

reaction was assumed, allowing to use Km and Ks as equivalents [629]. 

 

4.8.7 Interactions with CYP3A4 

4.8.7.1 CYP3A4 activity assay 

Effects of test substances on CYP3A4 activity were determined using the P450-GloTM 

Screening Systems, according to the manufacturer’s protocol (table 4-8).  

 
Table 4-8 CYP3A4 assay protocol.  
 
Reagent Volume (µl) Incubation time (min)  

Luciferin-free water 11.5  

Test substance / DMSO 1  

Reaction Mix  12.5 
 Tris-HCl  11.975 
 Luciferin-PPXE  0.025 
 CYP3A4 membranes  0.5 

10 

NADPH regeneration system 25 
 Luciferin-free water  12 
 Phosophate buffer  10 
 Solution A  2.5 
 Solution B  0.5 

20 

Luciferin detection reagent 50 20 
 
 
Briefly, a membrane preparation containing recombinant human CYP3A4, cytochrome 

P450 reductase and cytochrome b5 as an enhancer, was preincubated for 10 min at 

room temperature with the compound under study and luciferin-6’ phenylpiperazinylyl 

ether (luciferin-PPXE), a luminogenic substrate. Assays were performed in 96-well 

microtiter plates in K3PO4 buffer. Ketoconazole and phenolic acids were dissolved in 

DMSO/H2O (1:1), and the remaining compounds in DMSO. Anthocyanins, 

anthocyanidins, phenolic acids, and procyanidins B1 and B2 were diluted with 

DMSO/H2O (1:1) to yield final concentrations ranging from 2 to 800 µM in the assay for 

tested polyphenols, and from 100 to 10,000 µM for phenolic acids. Ketoconazole was 

diluted to final concentrations ranging from 2 up to 200 nM.  

NADP+, glucose-6-phosphate, MgCl2, and glucose-6-phosphate dehydrogenase served 

as a NADPH regeneration system and were added to start the enzymatic reaction. 

Final substance concentrations in the assay were 200 mM K3PO4, 24 mM Tris-HCl, 

3.3 mM MgCl2, 10 pmol/ml CYP3A4, 25 µM luciferin-PPXE, 1.3 mM NADP+, 3.3 mM 
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glucose-6-phosphate and 0.4 U/ml glucose-6-phosphate dehydrogenase. Subsequent 

to further incubation at room temperature for 20 min, the reaction was stopped and a 

luminescent signal was initiated by adding a detection reagent, containing a firefly 

luciferase. After another 20 min, chemiluminescence values, displayed as RLUs, were 

recorded with a measuring time of 12 s for each well. 

 

4.8.7.2 Data analysis 

For quantification of CYP3A4 inhibition, enzyme activity was calculated using the light 

signal generated by oxidation of luciferin which, in turn, is produced by CYP3A4 

dealkylation of the substrate luciferin-PPXE (figure 4-11). 
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Figure 4-11 CYP3A4 catalyzed and subsequent reaction. 
 

As the amount of light is directly proportional to the amount of luciferin released in the 

reaction with CYP3A4, the following equation applies: 
 

DMSO

I

A
A100%A ×=  

 

where %A is the percentage of the CYP3A4 activity remaining after the exposure to 

test substances, AI is the activity in the presence of an inhibitor, and ADMSO is the 

enzyme activity in the absence of inhibitors (control). 

For each substance tested, mean values were analyzed from three separate 

experiments performed in triplicate at up to seven concentrations steps, using a 

nonlinear regression model to determine the concentration inhibiting 50% of maximum 

CYP3A4 activity. 

To address a putative structural effect of anthocyanins’ sugar component, substances 

were grouped by the number of sugar moieties, i.e., anthocyanins, anthocyanidin 

monoglycosides and anthocyanidin-diglucosides, and one-way ANOVA, followed by 

Bonferroni correction for multiple testing, was performed (Prism V 4.00, GraphPad 

Software, La Jolla, CA, USA, Statistica V 8.0, StatSoft, Tulsa, OK, USA). Moreover, 

two-way ANOVA was applied to investigate potential effects of B-ring substitution 

patterns and the presence or absence of sugar moieties. Statistical significance was 

set at p = 0.05. 
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4.8.8 Interactions with CYP2D6 

4.8.8.1 CYP2D6 activity assay 

The effects of test substances on CYP2D6 activity were determined using a validated 

and isoenzyme-specific P450-GloTM Screening Systems according to the 

manufacturer’s protocol (table 4-9).  

 
Table 4-9 CYP2D6 assay protocol. 
 
Reagent Volume (µl) Incubation time (min)  

Luciferin-free water 11.5  

Test substance / DMSO 1  

Reaction Mix  12.5 
 Luciferin-free water  7.1 
 Phosphate buffer  5 
 Luciferin-ME EGE  0.15 
 CYP2D6 membranes  0.25 

10 

NADPH regeneration system 25 
 Luciferin-free water  22 
 Solution A  2.5 
 Solution B  0.5 

45 

Luciferin detection reagent 50 20 
 
 
At room temperature, a membrane preparation containing recombinant human 

CYP2D6 and cytochrome P450 reductase was preincubated for 10 min with the 

compound under study and the ethylene glycol ester of luciferin-6’-methylether 

(luciferin-ME EGE), a luminogenic substrate. The assay was perfomed in 96-well 

microtiter plates in KPO4 buffer. Anthocyanins, anthocyanidins and procyanidin B2 

were dissolved and diluted with DMSO to yield final concentrations ranging from 20 to 

800 μM in the assay. Quinidine was diluted to final concentrations of 1, 10, 100 and 

1,000 nM. 

NADP+, glucose-6-phosphate, magnesium chloride (MgCl2) and glucose-6-phosphate 

dehydrogenase served as an NADPH regeneration system, and were added to start 

the enzymatic reaction. Final concentrations in the assay were 0.25 pmol CYP2D6, 

100 mM KPO4, 30 μM luciferin-ME EGE, 1.3 mM NADP+, 3.3 mM glucose-

6-phosphate, 3.3 mM MgCl2, 0.4 U/mL glucose-6-phosphate dehydrogenase and 

50 μM sodium citrate. Subsequent to incubation at room temperature for 45 min, the 

reaction was stopped and a luminescent signal was initiated by adding a detection 

reagent that contained an esterase and a firefly luciferase. After another 20 min, 



114 4 Material and methods
 

 

chemiluminescence values, displayed as RLUs, were recorded with a measuring time 

of 12 s for each well. 

 

4.8.8.2 Data analysis 

For quantification of CYP2D6 inhibition, enzyme activity was calculated using the light 

signal generated by oxidation of luciferin, which in turn is produced by CYP2D6 

demethylation of the substrate luciferin-ME EGE (figure 4-12). 
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Figure 4-12 CYP2D6 catalyzed and subsequent reactions. 
 
 
As the amount of light is directly proportional to the amount of luciferin released in the 

reaction with CYP2D6, the following equation applies: 
 

DMSO

I

A
A100%A ×=  

 

where %A is the percentage of CYP2D6 activity remaining after the exposure to test 

substances, AI is the activity in the presence of an inhibitor, and ADMSO is the enzyme 

activity in the absence of inhibitors (control). 

For each substance tested, mean values were analyzed from three separate 

experiments performed in triplicate at up to five concentration steps, using a nonlinear 

regression model to determine the concentration inhibiting 50% of maximum CYP2D6 

activity. To assess possible effects of structural features (anthocyanin sugar moiety 

and substitution pattern of the flavonoids’ B-ring) on CYP2D6 inhibition, unpaired t-test 

and two-way ANOVA (Prism V 4.00, GraphPad Software, La Jolla, CA, USA, Statistica 

V 8.0, StatSoft, Tulsa, OK, USA) were performed. Bonferroni adjustment of p values 

was applied to correct for multiple testing. Statistical significance was set at p = 0.05. 
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Table A1 Overview of clinical studies on anthocyanin bioavailability. 
 
 
 



 

Author Dietary Administration (form and duration) Anthocyanins 

Cao and Prior [630] 25 mg elderberry extr 1500 mg: cya-glc, cya-sam 

Murkovic et al. [489] 10 gel caps of 200 mg spray-dried elderberry j, breakfast 180 mg: cya-glc (66%), cya-sam (32%) 

Murkovic et al. [631] 10 gel caps of 200 mg spray-dried elderberry j 180 mg   

Cao et al. [90] 12 g elderberry extr, 500 ml w 720 mg: cya-3-sam, cya-3-glc 

Milbury et al. [91] 12 g elderberry extr, 500 ml w 720 mg: cya-sam and cya-glc (92.5%) 

Mülleder et al. [106] 11 g elderberry j concentr, w, w/wo 30 g sucr 1900 mg: mainly cya-glc and cya-sam 

Wu et al. [632] 12 g elderberry extr, 500 ml w 720 mg: cya-sam and cya-glc (>90%),  

Bitsch et al. [633] 150 ml elderberry j concentr, white rolls, cheese 3570 mg: cya-sam (63%), cya-glc (31%), cya-3,5-digly (6%) 

Bitsch et al. [634] 30 ml elderberry extr, 107 ml w 147 mg: cya-sam (70%), cya-glc (30%) 

Frank et al. [635] 150 ml elderberry j concentr  3569 mg: cya-sam (63%), cya-glc (31%), cya-diglc (6%) 

Frank et al. [101] 30 / 200 ml elderberry extr, rolls 278 mg / 1852 mg: cya-sam (75%), cya-glc (25%), cya-diglc (0.1%)  

Curtis et al. [415] 4 caps/d of elderberry extr, 12 weeks 500 mg/d: cya-sam-glc, cya-sam, cya-glc 

Curtis et al. [415] 4 caps of elderberry extr, breakfast 500 mg: cya-sam-glc, cya-sam, cya-glc 

Matsumoto et al. [488] 33 mg/kg bw black currant concentr, 150 ml w 3.58 mg (6.24 µmol)/kg bw: del-rut (47%), cya-rut (35%), del-glc (14%), cya-glc (4%) 

Netzel et al. [636] 200 ml black currant j 153 mg: del-rut (51%), cya-rut (27%), del-glc (19%), cya-glc (3%) 

Rechner et al. [412] 330 ml black currant j   1039 mg: del-rut (47%), cya-rut (34%), del-glc (10%), cya-glc (6%), unidentified (3%)  

McGhie et al. [601] 300 ml black currant concentr 189 mg: cya-rut, del-rut, del-glc, cya-glc 

Nielsen et al. [98] 4.4 g / 2.7 g black currant j concentr / 2.7 g with rice cake 1239 mg / 716 mg / 746: del-glc, del-rut, cya-rut, cya-glc 

Bitsch et al. [634] 137 ml black currant j 145 mg: del-rut (41%), cya-rut (31%), del-glc (22%), cya-glc (6%) 

Matsumoto et al. [100] 16.6 mg/kg bw black currant concentr, w, 1% phytic acid 4 mg/kg bw 

Nakamura et al. [637] 253 mg black current extr, 100 ml w 59 mg (88 µmol): del-rut (41%), cya-rut (40%), del-glc (13%), cya-glc (6%) 

Bub et al. [21] 500 ml red grape j, 150 g white rolls  117 mg malv-glc 

Bub et al. [21] 500 ml dealcohol red wine, 150 g white rolls  58 mg malv-glc 

Frank et al. [638] 400 ml red grape j, white rolls, 30 g cheese 284 mg: malv-glc (46%), peo-glc (29%), del-glc (18%), pet-glc (6%), cya-glc (1%) 

 



 

Author Dietary Administration (form and duration) Anthocyanins 

Bitsch et al. [639] 400 ml red grape j, white rolls, 30 g cheese 284 mg  

Garcia-Alonso et al. [92] 12 g red wine extr, 125 g yoghurt, sugar, toast, butter 184 mg: malv-glc (49%), del-glc (24%), pet-glc (18%), peo-glc (7%),cya-glc (2%), 
(24% acyl)  

Felgines et al. [104] 200 g strawberries, 15 g sugar, 60 g bread, 10 g butter 179 µmol: pel-glc, 3 minor 

Carkeet et al. [103] 100 / 200 / 400 g strawberries, mixed with w 6.7 / 13.4 / 26.8 mg: pel-glc (88%), cya-glc (8%), pel-rut (4%) 

Hollands et al. [107] 100 / 200 / 300 / 400 g strawberries, 72 g white toast, 10 g fat 57 / 114 / 171 / 228 mg: pel-glc (93%), minor cya-glc, pel-rut 

Mullen et al. [93] 200 g strawberries w/wo 100 ml double cream 222 µmol: pel-glc, minor cya-glc, pel-3-O-(6''-rhaglc) 

Mazza et al. [184] 100 g lowbush blueberry freeze-dried powder, 500 ml w, 
high-fat meal 1200 mg: gal, glc, ara of del, cya, pet, malv, plus acyl 

Wu et al. [632] 189 g frozen lowbush blueberries, 315 ml w 690 mg 

McGhie et al. [601] blueberry extr, 300 ml w 439 mg: gal, glc, ara of del, cya, pet, malv 

Kay et al. [88] 20 g chokeberry extr, 250 ml w 1321 mg cya-gly: cya-gal (68%), cya-ara (24%), cya-xyl (4%), cya-glc (4%) 

Kay et al. [89] 7.1 g chokeberry extr in gel caps, 250 ml w 721 mg cya-gly: cya-gal (68%), cya-ara (24%), cya-xyl (4%), cya-glc (4%) 

McGhie et al. [601] boysenberry extr, 300 ml w 345 mg: cya-glc, cya-soph, cya-3-O-2G-glcrut, cya-rut 

Cooney et al. [640] 2 x 30 g boysenberry extr, 300 ml w, 2 h interval cya-3-soph, cya-glc, little cya-3-O-2G-glcrut, cya-3-rut 

Lehtonen et al. [641] 300 g lingonberries, vanilla yoghurt 193 mg: cya-gal (92%), cya-glc (8%) 

Nurmi et al. [99] 50 g bilberry-lingonberry purée, w/wo 50 g oat cereals 650 mg (1435 µmol)  

Felgines et al. [20] 200 g blackberries, 15 g sugar, 60 g bread, 10 g butter 960 µmol: cya-glc (89.%),cya-pent (6%), acyl cya-glc (5%)  

Hassimotto et al. [97] blackberries homogenized, 200 ml w / defatted milk 400 mg/50 kg bw: cya-glc (91%) 

Stoner et al. [413] 45 g/d freeze-dried black raspberry powder, w, 7 d 1440 mg/d: cya-rut (67%), cya-xylrut (18%), cya-glc (9%), cya-sam (6%) 

Tian et al. [414] 45 g/d freeze-dried black raspberry powder, w, 7 d 2691 mg/d: cya-rut (61%), cya-xylrut (26%), cya-glc (8%), cya-sam (5%) 

González-Barrio et al. [87] 300 g raspberries homogenized 204 µmol: cya-soph (55%), cya-(2''-glc)-rut (22%), cya-glc (13%) 

Riso et al. [96] 600 ml/d blood orange j, 21 d 28.2 mg/d: cya-glc (74%), cya-(-6''-mal)-glc (26%) 

Vitaglione et al. [24] 1 l blood orange j 72 mg: cya-glc (60%), cya-(6''-mal)-glc (39%), pel-glc (1%) 

Ohnishi et al. [642] 200 ml cranberry j 651 µg: peo-ara (35%), peo-gal (27%), cya-gal (20%), cya-ara (16%), peo-glc (2%) 

Mertens-Talcott et al. [102] 7 ml/kg bw acai pulp, clarified acai j 304 mg/kg bw (pulp), 166 mg/kg bw (j) 



 

Author Dietary Administration (form and duration) Anthocyanins 

Frank et al. [643] 10 g Hibiscus sabdariffa L. extr, 150 ml w, white rolls 147 mg: cya-sam (42%), del-sam (56%),del-glc (2%), cya-glc (0.1%) 

Miyazawa et al. [625] 1.6 g spray dried fruit j (elderberry, black currant), 20 ml w 2.95 mg/kg bw: cya-glc (92%), cya-diglc (8%) 

Kurilich et al. [95] 250 g raw / 250 g cooked / 500 g cooked purple carrots 250 g raw: 416 mg (463 µM) / 250 g cooked: 321 mg (357 µM), cya-gly, acyl (86%) 

Charron et al. [94] 50 / 150 / 250 ml purple carrot j 65 / 194 / 323 mg, acyl (76%) 

Harada et al. [644] 125 ml purple sweet potato extr beverage 311 mg: cya-3-soph-5-glc and peo-3-soph-5-glc, 8 acyl 

Kano et al. [645] 375 ml purple sweet potato extr beverage 933 mg, 8 acyl 

Mullen et al. [646] 270 g fried red onions 75 µmol 

Charron et al. [105] 100 / 200 / 300 g steamed red cabbage, salt, margarine 138 /  277 / 415 µmol, acyl (79%) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

Author Compounds identified in plasma/serum Plasma/serum tmax Plasma/serum cmax 

Cao and Prior [630] original glycosylated forms N/D 30 min: >100 ng/ml 

Murkovic et al. [489] original glycosylated forms 3 h ≈1.4 ng/ml 

Murkovic et al. [631] original glycosylated forms 1 h 35 ng/ml 

Cao et al. [90] original glycosylated forms, low aglycone, no glucuron or 
sulfates  1.2 h  97 nM 

Milbury et al. [91] original gycosylated forms, aglycone, no glucuron or sulfates 1.2 h  97 nM 

Bitsch et al. [634] bioavailability: cya-glc>cya-sam 1.5 h 15.6 ng/ml 

Frank et al. [101] linear absorption with dose 1.5 h / 1.25 h 30 ng/ml / 220 ng/ml 

Curtis et al. [415] no anth or glucuron, sulfates (after overnight fast) N/D N/D 

Curtis et al. [415] original glycosylated forms, glucuron and sulfates ≥3 h 15 ng/ml, 20 ng/ml glucuron and sulfates 

Matsumoto et al. [488] original glycosylated forms 1.75 h del-rut, 1.5 cya-rut, 1.5 del-glc, 1.25 
cya-glc 121 nM 

Rechner et al. [412] original glycosylated forms 1 h 85 nM  

Nielsen et al. [98] increased with dose, not influenced by rice cake, but delayed 
absorption, bioavailability: rut>glc 0.75 / 0.75 / 1.5 h ≈50 ng/ml / ≈15 ng/ml / ≈30 ng/ml 

Bitsch et al. [634] bioavailability: cya-glc>del-glc>cya-rut=del-rut 1 h 2.9 ng/ml 

Matsumoto et al. [100] phytic acid increased anth concentr, enhanced absorption 1 h (2 h wo phytic acid) 5.2 ng/ml (0.46 ng/ml wo phytic acid) 

Nakamura et al. [637] original glycosylated forms, tmax rut>glc  0.75 h del-glc, cya-glc, 1.25 h del-rut, cya-
rut 6.9 nM 

Bub et al. [21] no aglycone, no sulfate, no glucuron 2 h 2.8 nM, 1.5 ng/ml 

Bub et al. [21] no aglycone, no sulfate, no glucuron, sugar may delay 
absorption 1.5 h 1.7 nM, 0.9 ng/ml 

Frank et al. [638] N/D 0.5 h 100 ng/ml 

Bitsch et al. [639] original glycosylated forms 0.5 h 100 ng/ml 

Garcia-Alonso et al. [92] malv-glc (53%), peo-glucuron, malv-glucuron, little del-glc, 
pet-glc, no cya-glc  

1.4 h peo-glc, 1.8 h malv-glc, 2.4 h peo-
glucuron, 2.6 malv-glucuron 7.9 nM 

Mullen et al. [93] main pel-glucuron, 3 minor pel-monoglucuron, pel-glc, 
decreased and delayed by cream wo 1.1 h, w 2.4 h   wo 274 nM, w 227 nM pel-glucuron 



 

Author Compounds identified in plasma/serum Plasma/serum tmax Plasma/serum cmax 

Mazza et al. [184] original glycosylated forms 4 h 13.1 ng/ml 

Wu et al. 2002 [632] below detection limit N/D N/D 

Kay et al. [88] glucuron, methlylated deriv of cya-gal and cya-glucuron 2 h 351 nM 

Kay et al. [89] glucuruon (63%), methlyated deriv of cya-gly 2.8 h 96 nM 

Nurmi et al. [99] cereal delayed a absorption, no difference in cmax w: 3 h, wo: 1.5 h w: 149 nM, wo: 138 nM 

Hassimotto et al. [97] milk prevented absorption (4 h) in w: 0.5-1 h in w: 140 µM 

Stoner et al. [413] original glycosylated forms, no glucuron, daily dosing did not 
enhance absorption 

1.1 h cya-glc, 1.6 h cya-rut, 2.2 h cya-sam, 
2.6 h cya-xylrut (day1, 7) 33.7 ng/ml (day1, 7) 

González-Barrio et al. [87] below detection limit N/D N/D 

Riso et al. [96] overnight fast: 8.33 nM cya-glc, no aglycone, no cya-mal-glc N/D N/D 

Vitaglione et al. [24] cya-glc, protocatechuic acid (44% of ingested), no cya-mal-
glc 0.5 h cya-glc, 2 h protocatechuic acid 1.9 nM cya-glc, 492 nM protocatechuic 

acid 
Mertens-Talcott et al. [102] higher dose caused lower bioavailability 2.2 h (pulp), 2 h (j) 2321 ng/ml (pulp), 1138 ng/ml (j) 

Frank et al. [643] cya-sam>del-sam 1.5 h 3.4 ng/ml 

Miyazawa et al. [625] 1 h: 29 nM cya-glc, minor cya-diglc, no aglycone, no 
glucuron or sulfate or methyl forms  N/D  N/D 

Kurilich et al. [95] nonacyl>acyl, for nonacyl increased by cooking, reduced 
with dose 2 h  5.8 / 5.3 / 5.0 nM 

Charron et al. [94] nonacyl>acyl, reduced with dose 2 / 1 / 2 h 2.5 nM / 6.6 nM / 9.6 nM  

Harada et al. [644] original glycosylated, acylated forms 1-1.5 h ≈2.4 nM 

Kano et al. [645] cya-cafsoph-glc, peo-cafsoph-glc 3 h 4.48 nM peo-cafsoph-glc 

Mullen et al. [646] below detection limit N/D N/D 

 
 
 
 
 

 



 

Author Compounds identified in urine Urinary tmax Urinary excretion Urinary excretion (% of ingested) 

Cao et al. [90] unknown metabolites N/D 397 µg (1-24 h) 0.055 

Milbury et al. [91] original glycosylated forms (cya-sam and cya-glc), 
aglycone N/D 397 µg (0-24 h) 0.055 

Mülleder et al. [106] cya-glc and cya-sam, unidentified metabolites, sucr 
reduced and delayed urinary excretion 

wo sucr: 1-2 h, w 
sucr: 3 h  N/D 0.003-0.012 

Wu et al. 2002 [632] cya-sam, minor: peo-glc, peo-sam, peo-monoglucuron, 
cya-glc-monoglucuron: methylated, glucuron N/D 554 µg (0-4 h) 0.077 

Bitsch et al. 2004 [633] glycosides, minor glucuron 1 h 1760 µg a, 116 µg cya-
glucuron 0.05 anth, 0.003 glucuron 

Bitsch et al. [634] cya-sam>cya-glc 1.5 h / 1 h 548 µg 0.37 (0.38 cya-sam, 0.25 cya-glc) 

Frank et al. [635] cya-diglc>cya-glc=cya-sam 1 h 2055 µg (0-24 h) 0.06 (0.16 cya-diglc, 0.06 cya-glc, 0.05 cya-
sam) 

Frank et al. [101] traces of metabolites, higher % excretion with smaller 
dose 1.5 h / 1 h 1070 µg / 5030 µg (0-7 h) 0.39 / 0.27 

Matsumoto et al. [488] all 4 recovered as intact glycosides, rut (cya, del)>glc N/D 143 nmol (82 µg) (0-8 h) 0.11 del-rut, 0.098 cya-rut, 0.066 del-glc, 
0.06 cya-glc  

Netzel et al. [636] cya-rut>del-glc>del-rut>cya-glc 2 h  53 µg (0-5 h) 0.026 del-rut, 0.05 cya-rut, 0.035 del-glc, 
0.02 cya-glc 

Rechner et al. [412] rut (cya, del)>glc 1 h 420 µg (32 h) 0.046 del-rut, 0.045 cya-rut, 0.039 del-glc, 
0.032 cya-glc 

McGhie et al. [601] rut (cya, del)>glc 2 h  120 µg 0.064 (0.067 del-rut, 0.063 cya-rut, 0.042 
del-glc, 0.04 cya-glc) 

Nielsen et al. [98] higher % excretion with higher dose, not influenced by 
rice cake N/D N/D 0.072 / 0.048 /  0.045 (0-4 h) 

Bitsch et al. [634] cya-glc>cya-rut=del-rut>del-glc 1.5 h 63.5 µg 0.043 (0.053 cya-glc, 0.048 cya-rut, 0.047 
del-rut, 0.025 del-glc) 

Matsumoto et al. [100] phytic acid increased anth excretion 0-2 h 356 µg (79 µg control) N/D 

Bub et al. [21] no aglycone, no sulfate, no glucuron N/D 27 µg (1-6 h) 0.023 

Bub et al. [21] no aglycone, no sulfate, no glucuron N/D 13.3 µg (1-6 h) 0.023 

Frank et al. [638] pet-glc>peo-glc>del-glc>malv-glc>cya-glc 0.5 h 654 µg (0-7 h) 0.23 (0.32 pet-glc, 0.29 peo-glc, 0.2 del-glc, 
0.18 malv-glc, 0.09 cya-glc) 

Bitsch et al. [639] only glycosides, pet-glc, peo-glc>cya-glc 0.5 h 654 µg 0.23 



 

Author Compounds identified in urine Urinary tmax Urinary excretion Urinary excretion (% of ingested) 

Garcia-Alonso et al. [92] peo-glucuron, malv-glucuron, 72% glc, 28% glucuron,  0-3 h, malv-
glucuron 3-6 h 74 µg 0.05 (0.03 pet-glc, 0.06 del-glc, 0.06 peo-glc 

and -glucuron, 0.06 malv-glc and glucuron) 

Felgines et al. [104] 
pel-glc and 5 metabolites (3 pel-monoglucuron, pel 
sulfate, pel aglycone), pel-glucuron (90%)>pel 
sulfate>pel-glc>pel 

0-2 h, main 
glucuron 2-4 h 3226 nmol (0-24 h) 1.8 (1.61 pel-glucuron, 0.066 pel-glc, 0.075 

pel sulfates, 0.044 pel) 

Carkeet et al. [103] pel-glc and 3 pel-glucuron (>90%) 2 h 321 nmol / 676 nmol / 
1163 nmol (0-24 h) 2.1 / 2.2 / 1.9  

Hollands et al. [107] pel-glc, 3 pel-monoglucuron, pel monosulfate, pel 
aglycone N/D N/D 1.71 (1.84 / 1.77 / 1.67 / 1.76) 

Mullen et al. [93] 
one main pel-glurcuron, minor 3 other pel-glucuron, pel-
glc, pel and pel sulfate, % excretion not influenced by 
cream, but delayed 

wo 0-2 h, w 2-5 h wo 1672 nmol, w 2217 
nmol (0-24 h) without 0.75, with 1 

Wu et al. [632] original glycosylated forms, ara of del, pet, malv at lower 
concentr compared to extract 2-4 h 23 µg (0-6 h) 0.004 

McGhie et al. [601] glc, gal>ara 2 h  87 µg 0.02 (0.03 del-glc, 0.027 pet-gal, 0.026 
malv-gal) 

Kay et al. [88] glucuron, methlylated, oxidized deriv of cya-gal and cya-
glucuron,  N/D N/D N/D 

Kay et al. [89] glucuron, methlyated deriv of cya-gly, 32.5% parent 
comp, 67.5% metabolites 3.7 h 1072 µg (0-24h) 0.15 (0.048 parent comp) 

McGhie et al. [601] cya glcrut≈soph>rut≈glc 2 h  99 µg 0.029 (0.03 cya-glcrut, 0.026 cya-soph) 

Cooney et al. [640] all comp recovered, metabolites: 2 peo-glucuron, cya-
glucuron, pel-glucuron, methylated, OH-loss N/D N/D N/D 

Lehtonen et al. [641] cya-gal (46.7%), peo-gal (=methyl, 30.7%), cya-glucuron 
(22.6%), trace: cya-glc, cya-ara, peo-ara 4-8 h N/D N/D 

Nurmi et al. [99] N/D N/D N/D <0.01 

Felgines et al. [20] peo-glucuron>cya-glucuron (64%)>cya-glc>cya>peo-
glc>peo, cya-diglucuron, methylated, deglycosylated 2-4 h 1537 nmol (0-24 h) 

0.16 (0.063 peo-glucuron, 0.040 cya-
glucuron, 0.023 cya-glc, 0.012 cya, 0.0098 
peo-glc, 0.0045 peo) 

Hassimotto et al. [97] N/D 2-4 h  N/D N/D  

Stoner et al. [413] no glucuron, cya-sam>cya-xylrut>cya-rut>cya-glc, 
predose concentr on day 7: 24 µg 0-4 h 492 µg (day 7) 0.058 cya-sam, 0.046 cya-xylrut, 0.032 cya-

rut, 0.016 cya-glc (rel to daily dose) 

 



 

Author Compounds identified in urine Urinary tmax Urinary excretion Urinary excretion (% of ingested) 

Tian et al. [414] 
all 4 recovered, 2 methyl deriv of cya-xyl-rut, 1 of cya-rut, 
traces: cya-sam, cya-glc, no sulfates, no glucuron, cya-
xylrut>cya-rut  

4-8 h 492 µg (day 7) N/D 

González-Barrio et al. [87] 3 principal recovered, cya-soph, cya-(2''-glc)-rut, cya-glc 0-4 h 78 nmol (0-48 h) 0.04 

Vitaglione et al. [24] cya-glc, cya-malonyl-glc, glucuron and methyl 
metabolites, no protocatechuic acid 2-12 h 1850 nmol 1.2 (0.02 cya-glc and cya-malonyl-glc, 0.8 

cya-glucuron, 0.3 cya-methyl-glucuron) 

Ohnishi et al. [642] 6 anth, no glucuron, high urinary excretion, peo-gal=peo-
glc>cya-gal=cya-ara>peo-ara>cya-glc 3-6 h 74 nmol 5 (11 peo-gal, 11 peo-glc, 3.7 cya-gal, 3.6 

cya-ara, 2 peo-ara, 1.4 cya-glc) 
Frank et al. [643] del-sam>cya-sam 1.5 h  27.2 µg (0-7 h) 0.018 (0.016 cya-sam, 0.021 del-sam) 

Kurilich et al. [95] 4 intact, cooking increased nonacyl, % excretion 
decreased with higher dose, nonacyl>acyl 4 h 140 nmol  / 135 nmol / 

146 nmol  
0.03 / 0.038 / 0.02 (0.013 / 0.014 / 0.008 
acyl, 0.14 / 0.19 / 0.1 nonacyl)  

Harada et al. [644] cya-cafsoph-glc, peo-cafsoph-glc N/D ≈8 nmol  0.01-0.03  

Kano et al. [645] cya-cafsoph-glc, peo-cafsoph-glc 2-6 h N/D  0.01 

Mullen et al. [646] below detection limit N/D  N/D  N/D  

Charron et al. [105] 
3 nonacyl, 8 acyl, 4 glucuron and methylated metabolites, 
nonacyl>acyl, an of acyl, % excretion decreased with 
higher dose 

2 to 4 h 115 / 138 / 178 nmol  0.073 / 0.042 / 0.036 (0.041 / 0.023 / 0.02 
acyl, 0.176 / 0.105 / 0.085 nonacyl) 

 
Abbreviations: acyl, acylated; anth, anthocyanin; ara, arabinoside; bw, body weight; caf, caffeoyl; comp, compound; concentr, concentration, 
concentrate; cya, cyanidin; d, day; dealcohol, dealcoholized; del, delphinidin; deriv, derivate; extr, extract; gal, galactoside; gel caps, gelatinous 
capsules; glc, glucoside; glucuron, glucuronide; gly, glycoside; j, juice; malv, malvidin; N/D, not determined, pel, pelargonidin; pent, pentose; peo, 
peonidin; pet, petunidin; rel, relative; rha, rhamnoside; rut, rutinoside; sam, sambubioside; soph, sophoroside; sucr, sucrose; w, water; w/wo, 
with/without; xyl, xyloside. 
Single doses were administered unless indicated otherwise.  
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