Aus der Neurologischen Klinik und Poliklinik der Universität Würzburg Direktor: Professor Dr. med. Klaus V. Toyka

# Der Einfluß von Virusinfektion und Impfung auf autoreaktive T-Lymphozyten bei der Multiplen Sklerose

Inaugural-Dissertation

zur Erlangung der Doktorwürde der Medizinischen Fakultät der

Bayerischen Julius-Maximilians-Universität zu Würzburg

vorgelegt von

Neville Fairdoon Moriabadi aus Bad Kissingen

Würzburg, Dezember 2002

Referent:Prof. Dr. med Peter RieckmannKoreferent:Prof. Dr. med Volker ter Meulen

Dekan:

Prof. Dr. med Stefan Silbernagl

Tag der mündlichen Prüfung: 11. Juni 2003

Der Promovend ist Arzt

Dem Katerchen, der Toskana, meiner Frau, meinen Eltern und Brüdern gewidmet, sowie den tapferen Patienten, die uns zur aufrechten und unermüdlichen Suche nach Ursache und Behandlung ihrer Erkrankung verpflichten.

"evidence of absence is not absence of evidence!"

| T 1 1/      |         |
|-------------|---------|
| Inhaltsverz | erchnis |
|             |         |
|             |         |

| Inhalts  | sverzeichnis                                                   | i     |
|----------|----------------------------------------------------------------|-------|
| Verzei   | chnis der Abkürzungen                                          | vi    |
| 1        | Einleitung                                                     | Seite |
| 1.1      | Multiple Sklerose                                              | 1     |
| 1.2      | Multiple Sklerose und T-Zellimmunologie                        | 2     |
| 1.3      | Virusinfektionen und Multiple Sklerose                         | 3     |
| 1.3.1    | Hinweise für eine Infektassoziation                            |       |
| 1.3.1.1  | Historische Vorbemerkungen                                     |       |
| 1.3.1.2  | 2 Epidemiologie                                                | 4     |
| 1.3.1.3  | Experimentelle autoimmune Enzephalomyelitis                    | 5     |
| 1.3.1.4  | Demyelinisierende Virusinfektionen bei Tieren                  |       |
| 1.3.1.5  | 6 (Para-/Post-)Infektiöse Entmarkung beim Menschen             | 6     |
| 1.3.1.6  | Klinisch-immunologische Untersuchungen                         | 7     |
| 1.3.1.6. | 1 Erhöhte Antikörpertiter bei MS-Patienten                     |       |
| 1.3.1.6. | 2 MS-Schübe nach IFNγ-Behandlung                               |       |
| 1.3.1.6. | 3 MS-Schübe bei Infektionen der oberen Luftwege                |       |
| 1.3.2    | Mögliche Wirkmechanismen der Krankheitsentstehung              | 8     |
| 1.3.2.1  | Direkte Schädigung durch Virusinfektion der Oligodendrozyt     | ten   |
| 1.3.2.2  | 2. Immunvermittelte Schädigung infizierter Oligodendrozyten    |       |
| 1.3.2.3  | Indirekte Schädigung bei unspezifischer ZNS-Infektion          | 9     |
| 1.3.2.3. | 1 Erleichterte Zellmigration (Lymphocyte Homing)               |       |
| 1.3.2.3. | 2 Kreuzreaktivität (Molecular Mimicry) und Epitope Spreading   |       |
| 1.3.2.3. | 3 Lokale Begleitreaktion (Local Bystander Activation)          | 10    |
| 1.3.2.4  | Aktivierung autoreaktiver Zellen bei systemischer Infektion    |       |
| 1.3.2.4. | 1 Kreuzreaktivität (Molecular Mimicry)                         |       |
| 1.3.2.4. | 2 Unspezifische Begleitreaktivität (Systemic Bystander Effect) |       |
| 1.3.2.4. | 3 Mikrobielle Superantigene                                    | 12    |
| 1.3.2.5  | Mehrfachinfektion / Pathogenwechselwirkungen                   |       |
| 1.4      | Viren mit möglicher Relevanz                                   | 13    |
| 1.4.1    | Humanes Herpesvirus 6                                          |       |
| 1.4.1.1  | Taxonomie                                                      |       |
| 1.4.1.2  | Pathogenität                                                   | 14    |

<u>i</u>\_\_\_\_\_

| <b>1.4.2</b><br>1.4.2.1 | <b>Influenzavirus</b><br>Taxonomie                                             |    |
|-------------------------|--------------------------------------------------------------------------------|----|
| 1.4.2.2<br>1.4.2.3      | Virusstruktur und Antigenität (Shift/Drift)<br>Pathogenität und Krankheitsbild | 15 |
| 1.5 Ir                  | ıfektionsprophylaxe                                                            | 16 |
| 1.5.1<br>1.5.2          | Impfung<br>Influenzaschutzimpfung und Multiple Sklerose                        |    |
| 1.6 A                   | ufgabenstellung und Zielsetzung                                                |    |
| 2 M                     | laterial und Methoden                                                          |    |
| 2.1 M                   | laterial                                                                       | 18 |
| 2.1.1                   | Materialien für Biochemie                                                      |    |
| 2.1.1.1                 | Reagenzien und Chemikalien                                                     |    |
| 2.1.1.2                 | Ansatz der Lösungen und Puffer                                                 |    |
| 2.1.1.3                 | Proteine und Antikörper                                                        | 20 |
| 2.1.1.4                 | Weitere Materialien, Glas- und Plastikware                                     |    |
| 2.1.2                   | Material für Zellkultur                                                        | 21 |
| 2.1.2.1                 | Puffer, Zellkulturmedien und Lösungen                                          |    |
| 2.1.2.2                 | Zellkulturantigene und Reagenzien                                              | 22 |
| 2.1.2.3                 | Zellinien, Virusisolate und Impfstoff                                          |    |
| 2.1.2.4                 | Antikörper, Puffer und Reagenzien für ELISA                                    |    |
| 2.1.2.5                 | Puffer und Antikörper- / Substratkits für ELISPOT                              | 23 |
| 2.1.2.6                 | FACS-Puffer und Antikörper                                                     | 24 |
| 2.1.2.7                 | Antikörper und Lösungen für Virus-Serologie                                    |    |
| 2.1.2.8                 | Materialien für Blutentnahme und Zellkultur                                    | 25 |
| 2.1.3                   | Material für Molekularbiologie                                                 |    |
| 2.1.3.1                 | Chemikalien, Puffer und Reagenzien                                             |    |
| 2.1.3.2                 | Zytokinstandards und Oligonukleotide                                           | 26 |
| 2.1.4                   | Allgemeine Materialien und Geräte                                              |    |
| 2.1.5                   | Oligonukleotid- und Peptidsequenzen                                            | 29 |

| 2.2     | Methoden                                                       | 31 |
|---------|----------------------------------------------------------------|----|
| 2.2.1   | Methoden der ViMS-Studie                                       |    |
| 2.2.1.  | 1 Patienten-/Probandenauswahl und Probengewinnung              |    |
| 2.2.1.  | 2 Impfstoff                                                    | 32 |
| 2.2.1.  | 3 Klinische und virologische Verlaufsbeobachtungen             |    |
| 2.2.1.  | 4 Allgemeines zum Umgang mit Zellkulturen                      | 33 |
| 2.2.1.  | 5 Blutentnahme und Lymphozytenisolierung                       | 34 |
| 2.2.1.  | 6 Zellzahlbestimmung und Vitalfärbung                          | 35 |
| 2.2.1.  | 7 Quantifizierung antigenspezifischer T-Zellen mit ELISPOT     |    |
| 2.2.1.  | 8 Quantifizierung von Zytokin-mRNA mit RT-PCR                  | 37 |
| 2.2.1.8 | .1 RNA-Isolation                                               |    |
| 2.2.1.8 | .2 Reverse Transkription (RT)                                  | 38 |
| 2.2.1.8 | .3 Quantitative Polymerase-Ketten-Reaktion (PCR)               |    |
| 2.2.1.8 | .4 Standardisierung der cDNA-Konzentration                     | 39 |
| 2.2.2   | Methoden des virologisch-immunologischen Teils                 |    |
| 2.2.2.  | 1 Humanes basisches Myelinprotein (hMBP)                       |    |
| 2.2.2.1 | .1 Präparation von humanem basischen Myelinprotein (hMBP)      |    |
| 2.2.2.1 | .2 Quantitative Proteinbestimmung                              | 41 |
| 2.2.2.1 | .3 SDS-Polyacrylamid-Gelelektrophorese (PAGE)                  | 42 |
| 2.2.2.1 | .4 Western-Immunoblot                                          |    |
| 2.2.2.1 | .5 Hochdruckflüssigkeitschromatographie (HPLC)                 |    |
| 2.2.2.1 | .6 Ansequenzierung des humanen basischen Myelinproteins (hMBP) |    |
| 2.2.2.  | 2 Autoreaktive T-Zellinien                                     | 43 |
| 2.2.2.2 | .1 Etablierung von autoreaktiven T-Zellinien                   |    |
| 2.2.2.2 | .2 Proliferationsmessung und Stimulationsindex (SI)            | 45 |
| 2.2.2.2 | .3 Bestimmung der Peptidspezifität (Epitope Mapping)           |    |
| 2.2.2.2 | .4 Phänotypisierung und FACS                                   | 46 |
| 2.2.2.2 | .5 Charakterisierung der Zytokinsekretion und ELISA            |    |
| 2.2.2.2 | .6 Kryokonservierung und Rekultivierung                        | 47 |
| 2.2.2.  | 3 In vitro-Infektionsversuche                                  | 48 |
| 2.2.2.3 | .1 Virusisolation und –konzentrierung                          |    |
| 2.2.2.3 | .2 Virustiterbestimmung                                        |    |
| 2.2.2.3 | .2.1 Hämagglutinationstest (HAT)                               |    |
| 2.2.2.3 | .2.2 Zytofluorometrie (FACS)                                   |    |
| 2.2.2.  | <b>3.3</b> Virusinfektion von PBMC                             | 49 |

| 2.2.2.3.4    | Koinkubationsmodelle                                            |    |
|--------------|-----------------------------------------------------------------|----|
| 2.2.2.3.5    | Virusinfektion von antigenspezifischen T-Zellinien              |    |
| 2.2.2.3.6    | Virusinfektion von APC für die spezifische T-Zellstimulation    |    |
| 2.2.2.4      | Untersuchungen zu HHV-6-Reaktivierung im Serum                  | 50 |
| 2.2.2.4.1    | Probenmaterial                                                  |    |
| 2.2.2.4.2    | Virus-Serologie                                                 |    |
| 2.2.2.4.3    | Virus-DNA-Isolation und semi-nested PCR                         | 51 |
| 2.2.3        | Auswertung und Statistik                                        |    |
| 3 E          | rgebnisse                                                       |    |
| 3.1 V        | akzinierung und Immunreaktion bei MS (ViMS-Studie)              | 52 |
| <b>3.1.1</b> | Basisdemographische Daten                                       |    |
| 3.1.2        | Immunreaktion nach Impfung und Infektion                        | 53 |
| 3.1.2.1      | T-Zellquantifizierung und ELISPOT                               |    |
| 3.1.2.2      | Quantifizierung von Zytokin-mRNA und RT-PCR                     | 55 |
| 3.1.2.3      | β-Aktin-cDNA-Konzentrationen                                    |    |
| 3.1.2.4      | Methodenvergleich zwischen RT-PCR und ELISPOT                   |    |
| 3.1.2.4.1    | Antigenunabhängiger Vergleich im Rahmen der ViMS-Studie         |    |
| 3.1.2.4.2    | Methodenvergleich nach Influenzastimulation (ViMS-Studie)       | 56 |
| 3.1.2.4.3    | Immunitätsäquivalenz zwischen Flu A/PR/8/34 und den Impfstämmen |    |
| 3.1.2.5      | Methodenvergleich zwischen RT-PCR und ELISA                     |    |
| 3.1.3        | T-Zellantworten nach Influenzaschutzimpfung                     | 57 |
| 3.1.4        | T-Zellantworten nach natürlicher Atemwegsinfektion              | 59 |
| 3.1.5        | Virus-Serologie nach Impfung und Atemwegsinfektion              | 63 |
| 3.2 V        | irologisch-immunologische Untersuchungen                        | 65 |
| 3.2.1        | Humanes basisches Myelinprotein (hMBP)                          | 65 |
| 3.2.2        | MBP-spezifische T-Zellinien                                     | 69 |
| 3.2.2.1      | Vorexperimente und Kulturoptimierung                            | 70 |
| 3.2.2.2      | T-Zellspezifität und –klonalität                                | 71 |
| 3.2.2.3      | Phänotypisierung durch FACS                                     | 72 |
| 3.2.2.4      | Charakterisierung der Zytokinsekretion und ELISA                | 73 |
| 3.2.3        | In vitro-Infektion humaner T-Zellen                             | 75 |
| 3.2.3.1      | Proliferation von PBMC nach Virusinfektion                      |    |
| 3.2.3.1.1    | In vitro-Infektion von PBMC mit Influenza A/PR/8/34 (H1N1)      |    |

| 3.2.3.1 | .2 In vitro-Infektion von PBMC mit HHV-6B (Z29)                          |             |
|---------|--------------------------------------------------------------------------|-------------|
| 3.2.3.  | 2 Koinkubationsmodell mit HHV-6B-infizierten MT-4 Zellen                 | 77          |
| 3.2.3.  | 3 Proliferation Ag-spezifischer T-Zellinien nach Virusinfektion          | 1 <b>78</b> |
| 3.2.3.3 | .1 In vitro-Infektion antigenspezifischer Zellen mit Flu A/PR/8/34 (H1N) | 1)          |
| 3.2.3.3 | .2 In vitro-Infektion antigenspezifischer Zellen mit HHV-6B (Z29)        | 80          |
| 3.2.4   | Untersuchungen zu HHV-6-Reaktivierung im Serum                           |             |
| 3.2.4.  | 1 HHV-6-Serologie                                                        | 81          |
| 3.2.4.  | 2 HHV-6-DNA-Nachweis mit semi-nested PCR                                 | 82          |
| 4       | Diskussion                                                               |             |
| 4.1     | Impfung und Infektion bei der MS (ViMS-Studie)                           | 83          |
| 4.1.1   | Frequenz und Reaktivität autoreaktiver T-Zellen im Blut                  |             |
| 4.1.2   | ELISPOT, ELISA und quantitative RT-PCR                                   | 86          |
| 4.1.3   | Zelluläre und humorale Impfantworten                                     | 87          |
| 4.1.4   | MBP-spezifische T-Zellen während Atemwegsinfektion                       |             |
| 4.1.5   | Autoimmunität nach Impfung oder Infektion                                |             |
| 4.2     | Virologisch-Immunologische Untersuchungen                                | 88          |
| 4.2.1   | Humanes Zellkulturmodell für die Multiple Sklerose                       | 89          |
| 4.2.2   | In vitro-Infektionsversuche mit Influenzavirus A                         |             |
| 4.2.3   | In vitro-Infektionsversuche mit HHV-6B                                   | 90          |
| 4.2.4   | Klinische Untersuchung zur HHV-6-Reaktivierung                           | 91          |
| 4.3     | Zusammenfassung                                                          |             |
| 5       | Literatur                                                                | 93          |
| 6       | Anhang                                                                   | 107         |
|         | Danksagung                                                               |             |

Lebenslauf

# Verzeichnis der Abkürzungen

| Δ                  |                                                         |
|--------------------|---------------------------------------------------------|
| Ab                 | Antikörner (antihody)                                   |
| Abb                | A bbildung                                              |
| Abk                | Abbindung<br>Abkürzung(en)                              |
| ADK.               | 2.2' Azino bis(3 Ethylbenzthiazoline 6 Sulfonic acid)   |
| ADIS<br>aCD2       | anti CD3 Antikörpor                                     |
|                    | Alguta Dissominiarta Enzonhalomvalitis                  |
|                    | Artigon                                                 |
| Ag                 | Antigen                                                 |
| D APC              | Anugenprasentierende Zene(n) (anugen presenting cen(s)) |
|                    |                                                         |
| BCIP               | 5-Brom-4-Chior-3-Inositoipnosphat                       |
| bdH <sub>2</sub> O | zweifach (bi-) quarzdestilliertes Wasser ( $H_2O$ )     |
| BSA                | Rinderserumalbumin (bovine serum albumine)              |
| C                  |                                                         |
| CD                 | Cluster of differentiation                              |
|                    | (Nomenklatur für Antigene auf Zelloberflächen)          |
| cDNA               | komplementäre (complementary) DNA                       |
| Ci                 | Curie (Einheit der Strahlungsaktivität)                 |
| CPE                | Zytopathischer Effekt (cytopathic effect)               |
| cpm                | gemessene radioaktive Zerfälle (counts per minute)      |
| D                  |                                                         |
| DAB                | Diaminobenzidintetrahydochlorid                         |
| DEPC               | <b>D</b> iethylpyrocarbonat                             |
| DMSO               | Dimethylsulfoxid                                        |
| DNA                | Desoxyribonukleinsäure (desoxyribonucleinic acid)       |
| dATP               | Desoxy-Adenosintriphosphat                              |
| dCTP               | Desoxy-Cytosintriphosphat                               |
| dGTP               | Desoxy-Guanosintriphosphat                              |
| dUTP               | Desoxy-Uraciltriphosphat                                |
| dNTP               | Desoxynukleosintriphosphat                              |
| Ε                  |                                                         |
| EAE                | experimentelle autoimmune Enzephalomyelitis             |
| EBV                | Epstein-Barr-Virus                                      |
| EC                 | Endkonzentration (endconcentration)                     |
| EDTA               | <b>E</b> thylendiamintetraacetat                        |
| ELISA              | enzyme linked immunosorbent assay                       |
| ELISPOT            | enzyme linked immunosorbent spot assay                  |

| F     |                                                                     |
|-------|---------------------------------------------------------------------|
| FACS  | Zytofluorometrie (fluorescence activated cell scan)                 |
| FAM   | 6-carboxy-fluorescein                                               |
| FCS   | Fötales Rinderserum (fetal calf serum)                              |
| Flu   | Influenzavirus                                                      |
| G     |                                                                     |
| g     | Fallbeschleunigung (gravity) = $9,81 \text{ m} \cdot \text{s}^{-2}$ |
| Η     |                                                                     |
| HAE   | Hämagglutinierende Einheit(en)                                      |
| HAT   | Hämagglutinationstest                                               |
| HHV-6 | humanes Herpesvirus 6                                               |
| HPLC  | Hochdruckflüssigkeitschromatographie                                |
|       | (high pressure liquid chromatography)                               |
| Ι     |                                                                     |
| IFNγ  | Interferon gamma                                                    |
| Ig    | <b>I</b> mmunglobulin                                               |
| IL    | Interleukin (z. B. IL2, IL4)                                        |
| K     |                                                                     |
| kD    | Kilodalton                                                          |
| L     |                                                                     |
| Lf    | Laufende Flockungseinheit (limit of flocculation) für TT            |
| Μ     |                                                                     |
| М     | Molar (=mol/l)                                                      |
| MBP   | basisches Myelinprotein (myelin basic protein)                      |
| MHC   | Haupthistokompatibilitätskomplex                                    |
|       | (major histocompatibility complex)                                  |
| MOG   | Myelin-Oligodendrozyten-Glykoprotein                                |
| MOI   | multiplicity of infection                                           |
| mRNA  | Boten-Ribonukleinsäure (messenger ribonucleic acid)                 |
| MS    | Multiple Sklerose                                                   |
| Ν     |                                                                     |
| NBT   | Nitroblautetrazoliumsalz                                            |
| n d   | nicht bestimmt (not determined)                                     |
| 0     |                                                                     |
| OD    | optische Dichte                                                     |
| Р     |                                                                     |
| PAGE  | Polyacrylamid-Gelelektrophorese                                     |
| PBMC  | Lymphozyten im Blut (peripheral blood mononuclear cells)            |
| PBS   | Phophatgepufferte Salzlösung (phosphate buffered saline)            |
| PCR   | Polymerasekettenreaktion (polymerase chain reaction)                |

| PFA                | <b>P</b> ara <b>f</b> orm <b>a</b> ldehyd                     |
|--------------------|---------------------------------------------------------------|
| PFU                | Plaquebildende Einheiten (plaque forming units)               |
| pН                 | "pondus Hydrogenii" Maß f. Wasserstoffionenkonzentration      |
| PHA                | Phytohämagglutinin                                            |
| POD                | Peroxidase                                                    |
| R                  |                                                               |
| $R_0$              | RPMI-Medium + Antibiotika/Glutamin ohne Serumzusatz           |
| R <sub>5</sub>     | $R_0 + 5 \%$ Eigenserum                                       |
| R <sub>ab</sub>    | $R_0 + 5 \% AB$ -Serum                                        |
| rpm                | Umdrehungen (rounds) pro Minute                               |
| RT                 | Raumtemperatur                                                |
| RT-PCR             | reverse Transkriptase-PCR                                     |
| S                  |                                                               |
| SDS                | Natriumdodecylsulfat (sodium dodecyl sulphate)                |
| SI                 | <b>S</b> timulations <b>i</b> ndex                            |
| Т                  |                                                               |
| Tab.               | Tabelle                                                       |
| TAMRA              | 6-carboxy-tetramethyl-rhodamine                               |
| TCID <sub>50</sub> | tissue culture infective dose 50                              |
| TCL                | T-Zell-Linie ( <b>T c</b> ell <b>l</b> ine)                   |
| Th                 | <b>T-H</b> elferzelle oder Subpopulation (Th1/Th2)            |
| TNFα               | Tumor <b>n</b> ekrose <b>f</b> aktor <b>a</b> lpha            |
| TRIS               | <b>Tris</b> [hydroxymethyl] aminomethan                       |
| TT                 | Tetanustoxoid                                                 |
| U                  |                                                               |
| U                  | internationale Einheit (unit)                                 |
| $\mathbf{V}$       |                                                               |
| Vac                | trivalenter Influenza Spaltimpfstoff (Influvac <sup>®</sup> ) |
| ViMS               | Impfung in MS (Vaccination in Multiple Sclerosis)-Studie      |
| $\mathbf{W}$       | · /                                                           |
| wpI                | Woche(n) nach Infektion (week(s) post infection)              |
| wpV                | Woche(n) nach Impfung (week(s) post vaccination)              |
| •                  |                                                               |

#### 1 Einleitung

#### 1.1 Multiple Sklerose

Die Multiple Sklerose ist weltweit die häufigste entzündlich demyelinisierende Erkrankung des zentralen Nervensystems und betrifft vor allem junge Erwachsene mit einem Altersgipfel zwischen 20-45 Jahren.<sup>1</sup> Die Prävalenz beträgt in Nordeuropa etwa 1:1000. Bei ca. 85% der Patienten beginnt die Erkrankung schubförmig, d. h. mit Episoden von neurologischen Funktionsausfällen, die für einige Wochen anhalten und sich danach komplett zurückbilden können.<sup>2</sup> Während des natürlichen Verlaufes kommt es mit zunehmenden Schüben häufig zu unvollständigen Rückbildungen der Symptome, so daß eine allmähliche, schubunabhängige Verschlechterung eintritt (sekundär progrediente Verlaufsform). Bei einem geringen Anteil (ca. 15%) nimmt die Erkrankung bereits von Beginn an einen schleichenden (primär progredienten) Verlauf. Diese Form betrifft häufig Personen, deren Erstsymptome nach dem 40. Lebensjahr auftreten.

Beim schubförmigen Verlauf ist das weibliche Geschlecht im Verhältnis von ca. 1,6:1 häufiger betroffen, wohingegen am primär progredienten Verlaufstyp etwas mehr Männer erkranken.

Histopathologisch ist die MS durch entzündliche und demyelinisierende Herde in der weißen Substanz des ZNS charakterisiert.<sup>3</sup> Neuere immunhistologische Untersuchungen weisen auf eine deutliche Heterogenität der MS-Plaques hin. Während Entmarkungen in nahezu allen Läsionen nachweisbar sind, ist das Ausmaß von Oligodendrozytenverlust, Remyelinisierung und Axondegeneration sehr variabel. Einige Autoren unterteilen die MS anhand des immunpathologischen Musters in vier Gruppen, wobei für jede Gruppe ein unterschiedlicher Pathomechanismus angenommen wird.<sup>4</sup> Diese Klassifkationsversuche unterstreichen die Komplexität des vorliegenden Krankheitsbildes und werfen die Frage auf, ob die klinisch häufig sehr unterschiedlichen Muster verschiedene Entitäten widerspiegeln. Ebenso ungewiß ist, inwiefern eine Verbindung zu der seltenen akuten disseminierten Enzephalomyelitis (ADEM) besteht, für die eine postinfektiöse Ätiologie angenommen wird.<sup>5</sup>

1

#### 1.2 Multiple Sklerose und T-Zell-Immunologie

Immunhistologisch lassen sich zelluläre Infiltrate nachweisen, die hauptsächlich aus eingewanderten T-Zellen und Makrophagen bestehen. Den vielfach in Blut und Liquor von MS-Patienten nachgewiesenen, gegen bestimmte Myelinbestandteile gerichteten T-Zellen fällt dabei eine wichtige immunpathogenetische Rolle zu.<sup>3</sup> Es ist das basische Myelinprotein (MBP) eines der bestuntersuchten potentiellen Autoantigene bei der MS.<sup>6, 7</sup> Wenngleich hinsichtlich der Vorläuferfrequenzen MBP-spezifischer T-Zellen zwischen MS-Patienten und gesunden Kontrollspendern keine signifikanten Unterschiede gezeigt werden konnten<sup>7-10</sup>, geht man heute davon aus, daß nicht die alleinige Anwesenheit autoantigen-spezifischer T-Zellen im peripheren Repertoire, sondern ihr Aktivitätsgrad <sup>11-13</sup> und Phänotyp <sup>14-16</sup> pathogenetisch von Bedeutung sind.

Die über *in vitro*-Versuche und das Tiermodell der EAE (s.u.) hinausgehende Relevanz dieses Autoantigens für den Menschen, wird unterstützt durch Ergebnisse einer aktuellen Phase II-Studie mit dem immunogenen, zu therapeutischen Zwecken veränderten MBP-Peptid (83-99). Die Verabreichung einer Dosis von 50 mg s.c./Woche führte bei 3 von 8 Patienten zu einem Schub mit hoher Krankheitsaktivität und einer drastischen Zunahme neuer, großer kontrastmittelaufnehmender Herde in der Kernspintomographie, welche Ausdruck einer gestörten Bluthirnschranke sind. Parallel fand sich ein Anstieg der MBP-spezifischen T-Zellen in Blut und Liquor um das 1000-fache.<sup>17</sup>

Mit dem klassischen Tiermodell der aktiven (Rückenmarkshomogenat, MBP) bzw. später adoptiven Transfer-EAE (MBP-spezifische T-Zellen) konnte bereits 1933 die Bedeutung von Autoantigenen und somit die Autoimmunhypothese erarbeitet werden.<sup>18</sup> Neuerdings können in entsprechenden Tierstämmen durch Verwendung verschiedener Myelin-Antigene oder deren immundominanter Peptide (vgl. Tab. 1) und Adjuvantien zum Teil inflammatorische, zum Teil überwiegend demyelinisierende Läsionen, entweder monophasische oder relapsierende Verläufe erzeugt werden, die den distinkten klinischen Entitäten der MS näherkommen.<sup>19</sup>

| Autoantigen             | Abk.   | Anteil am                   | Funktion/Relevanz                          |
|-------------------------|--------|-----------------------------|--------------------------------------------|
|                         |        | Gesamtmyelin                |                                            |
| Proteolipidprotein      | PLP    | 50%                         | Myelinkompaktierung <sup>20, 21</sup>      |
| Basisches Myelinprotein | MBP    | 30%                         | Myelinkompaktierung <sup>7-9, 14, 22</sup> |
| Zyklonukleotid-         | CNPase | 3-4%                        | Hydrolyse cyclischer                       |
| phosphodiesterase       |        | Retina, PBMC                | Nukleotide <sup>23</sup>                   |
| Myelin-assoziiertes     | MAG    | 1%                          | Myelin-Axon-Interaktion <sup>24, 25</sup>  |
| Glykoprotein            |        |                             |                                            |
| Myelin-Oligodendro-     | MOG    | 0,1%                        | unbekannt <sup>26</sup>                    |
| zyten-Glykoprotein      |        |                             |                                            |
| S-100β                  | S-100β | Astrozyten, Auge,           | Kalziumbindendes Signal-                   |
|                         | -      | Thymus, Lymphknoten         | protein <sup>27</sup>                      |
| αB-Crystallin           | -      | konstitutiv, Auge,          | Hitzeschockprotein hsp27 <sup>29</sup>     |
|                         |        | EBV-induziert <sup>28</sup> |                                            |
| Transaldolase           | -      | Mitochondrien               | Enzym des Pentose-                         |
|                         |        |                             | phosphatzyklus <sup>30</sup>               |

Tabelle 1: Zusammenfassung putativer Autoantigene bei der MS

Hierbei gewinnt neben MBP das unlängst beschriebene Myelin-Oligodendrozyten-Glykoprotein (MOG) zunehmend an Bedeutung. Während sich MBP und PLP in tiefer gelegenen Myelinschichten befinden, liegt das am Gesamtmyelin anteilsmäßig geringere MOG an der Oberfläche und ist somit für immunologische Wechselwirkungen mit Lymphozyten leichter verfügbar. Auch wurden MOG-spezifische Antikörper bei MS-Patienten gefunden, was der mittlerweile pathogenetisch wieder mehr beachteten Rolle des humoralen Immunsystems Rechnung trägt.<sup>31 32</sup> Über das sogenannte "Epitope Spreading" kommt es während des Krankheitsverlaufes vermutlich zu einer Ausweitung unterschiedlicher Antigenspezifitäten.<sup>33, 34</sup>

## 1.3 Virusinfektionen und Multiple Sklerose

## **1.3.1** Hinweise für eine Infektassoziation

#### 1.3.1.1 Historische Vorbemerkungen

Im Jahre 1868 beschrieb Jean Martin Charcot die klinischen Merkmale der ersten menschlichen Entmarkungskrankheit und faßte diese zu einer Krankheitsentität zusammen, die er "Sclérose en Plaques" nannte. In den folgenden zwei Jahrzehnten begründeten Koch und Pasteur eine neue Ära der Infektionskrankheiten und damit der Mikrobio-

logie. Es war also ein Zeichen der Zeit, daß 1884 Pierre Marie, einer der Schüler Charcots und dessen Nachfolger auf dem Lehrstuhl des damals wohl bedeutendsten Instituts für Neurologie in Paris, eine infektiologische Ursache der MS vermutete.<sup>35</sup> In einer ausführlichen Abhandlung betont Pierre Marie den zeitlichen Zusammenhang zwischen Erstmanifestation der MS und vorangegangenen akuten Infektionskrankheiten (les maladies aiguës), wie dem epidemischen Fleckfieber (Rickettsiose, fièvre typhoïde).<sup>36</sup> Auch traten später in Folge der Tollwutimpfungen mit Pasteur's "virus fixe" jedoch aufgrund der präparationsbedingt enthaltenen Myelinbestandteile vermehrt Enzephalomyelitiden im Sinne einer ADEM auf.

#### 1.3.1.2 Epidemiologie

Deutliche Hinweise für einen Zusammenhang zwischen MS und Infektionskrankheiten lassen sich aus epidemiologischen Studien ableiten. So fanden Kurtzke und Mitarbeiter weltweit drei geographische Regionen mit hoher (> 30/100000), mittlerer(5-30/100000) und niedriger Prävalenz.(< 5/100000) mit Abnahme der Prävalenz zum Äquator.<sup>37</sup>

Weiterhin folgerte man aus zahlreichen Migrationsstudien, daß ein Umweltfaktor das Krankheitsrisiko vor der Pubertät beeinflussen muß, da Erwachsene über 14 Jahren, die von hohen in niedrigere Prävalenzregionen auswanderten, das Erkrankungsrisiko ihres Geburtslandes beibehielten. Immigranten von niedrigen in hohe Prävalenzgebiete nahmen hingegen sogar ein über das der einheimischen Bevölkerung des Einwanderungslandes hinausgehendes Risiko an, wenn sie den Wohnort zwischen 11 und 45 Jahren änderten.<sup>38</sup>

Da zudem lediglich 20-30% monozygote Zwillinge krankheitskonkordant sind und nur in etwa weiteren 10% der Fälle klinisch gesunde Zwillinge kernspintomographische Auffälligkeiten zeigen, können oben erwähnte Zusammenhänge nicht rein genetisch erklärt werden.<sup>39-41</sup> Interessanterweise ergab eine Konkordanzstudie bei Poliomyelitis vergleichbare Zahlen (monozygote Zwillinge 36%, dizygote Zwillinge 6%).<sup>42</sup> Dieser Vergleich könnte vermuten lassen, daß auch bei der MS in genetisch prädisponierten Individuen ein möglicherweise ubiquitär vorkommendes Virus für die Krankheitsentstehung von Bedeutung sein kann. Berichte über lokal begrenzte Krankheitsausbrüche, v. a. auf den Faröer-Inseln<sup>43</sup>, aber auch in Island<sup>37</sup> und Key West<sup>44</sup> bieten durchaus Vergleichsmöglichkeiten mit typischen Infektionsepidemien, werden jedoch aufgrund ihrer statistisch grenzwertigen Befunde vielfach angezweifelt.<sup>45-48</sup>

## 1.3.1.3 Experimentelle Autoimmune Enzephalomyelitis (EAE)

Ein diesbezüglich bemerkenswerter Ansatz wurde durch Joan Goverman verfolgt, die bei transgenen B10.PL-Mäusen mit spezifischen T-Zellrezeptoren (TCR) für das immundominante MBP-Epitop im Gegensatz zu den gängigen induzierten EAE-Formen eine spontane Variante fand. Dabei erkrankten ausschließlich Tiere, die Kontakt zu mikrobiellen Keimen hatten, nicht solche, die unter keimfreien Bedingungen gehalten wurden.<sup>49</sup> Diese Beobachtung bestätigt die Rolle von mikrobiellen Einflüssen, ohne die es - trotz genetischer Prädisposition - nicht zur Krankheitsentstehung kam.

#### 1.3.1.4 Demyelinisierende Virusinfektionen bei Tieren

Obschon keine der im Folgenden zusammengefaßten Entmarkungskrankheiten bei Tieren (Tab. 2) und Menschen (Tab. 3, s. Kap. 1.3.1.4) dem klinischen Verlauf mit Schüben und Remissionen oder den neuropathologischen Eigenschaften bei der MS unmittelbar entsprechen, werden diese dennoch als Modelle zur Untersuchung direkter und indirekter Mechanismen der virus-vermittelten Entmarkung verwendet. Für Einzelheiten wird auf Übersichtsarbeiten hingewiesen.<sup>35, 50, 51</sup>

| Virusfamilie                      | Virus              | Wirt                                | Referenz     |
|-----------------------------------|--------------------|-------------------------------------|--------------|
| Papovaviridae                     | SV40               | Meerkatzen                          | 52           |
| Paramyxoviridae                   | CDV                | Hunde                               | 53           |
| Coronaviridae                     | JHM-MHV            | Mäuse / Ratten                      | 54-56        |
| Picornaviridae                    | TMEV               | Mäuse                               | 57, 58       |
| Togaviridae                       | SFV                | Mäuse                               | 59           |
| Rhabdoviridae                     | Chandipura         | Mäuse                               | 60           |
| Lentiviridae                      | Visnavirus         | Schafe                              | 61           |
| Abk.: SV <sub>40</sub> : Simian-V | virus 40, CDV: Car | nines Distemper Virus (Hunde        | staupe), JHM |
| MHV· IHM <b>-</b> Stamm           | des Maus-Her       | patitis-Virus TMFV <sup>.</sup> The | iler Murine  |

Tabelle 2: Virusinduzierte Demyelinisierung bei Tieren

MHV: JHM-Stamm des Maus-Hepatitis-Virus, TMEV: Theiler Murin Enzephalomyelitis Virus, SFV: Semliki Forest Virus, modifiziert nach Johnson<sup>35</sup> 1.3.1.5 (Para-/Post-)Infektiöse Entmarkungskrankheiten beim Menschen Analog zu Kap. 1.2.1.4 sind in Tabelle 3 die wesentlichen Erkrankungen mit virusinduzierter Demyelinisierung und bisweilen langen Inkubationszeiten beim Menschen subsumiert. Auch hier bestehen große Unterschiede zu den typischen MS-Verläufen und -Pathologien. Allenfalls läßt sich die Akute Disseminierte Enzephalomyelitis (ADEM) klinisch zunächst kaum von einer schweren MS unterscheiden.

| Erkrankung                         | Abk.  | Pathogen                     | Referenz |
|------------------------------------|-------|------------------------------|----------|
| Akute disseminierte                | ADEM  | Masernvirus, VZV, Flu, RTI,  | 18, 62   |
| Enzephalomyelitis                  |       | Impfungen, etc.              |          |
| Subakute Sklerosierende            | SSPE  | Masernvirus (Morbilliviri-   | 63       |
| Panenzephalitis                    |       | dae)                         |          |
| Progressive Röteln Panenzephalitis | PRP   | Rötelnvirus (Rubeolaviridae) | 64       |
| Progressive Multifokale            | PML   | JC-Virus                     | 65       |
| Leukenzephalopathie                |       | (Papovaviridae)              |          |
| HHV-6-Leukenzephalitis             | -     | HHV-6 (Herpesviridae)        | 66       |
| HIV-Enzephalopathie                | -     | HIV (Lentiviridae)           | 67, 68   |
| HTLV-I assoziierte Myelopathie /   | HAM / | HTLV I (Retroviridae)        | 69, 70   |
| Tropische spastische Paraparese    | TSP   |                              |          |

Tabelle 3: Virusinduzierte Demyelinisierung beim Menschen

Abk: VZV: Varicella-Zoster-Virus, Flu: Influenzavirus, RTI: Respirationstrakt-Infektionen (unspezifisch, meist viral), HHV-6: Humanes Herpesvirus 6, HIV: Humanes Immundefizienz-Virus, HTLV I: Humanes T-Zell-Leukämie-Virus

## 1.3.1.6 Klinisch-immunologische Untersuchungen

#### 1.3.1.6.1 Erhöhte Antikörpertiter bei MS-Patienten

In Seren und Liquores von MS-Patienten wurden in mehreren Studien konsistent im Vergleich zu Kontrollpersonen ebenfalls höhere Antikörpertiter gegen Masern-Virus (Adams, Imigawa, 1962) und andere virale Antigene (Mumps, Parainfluenza 1, Influenza C, Herpes Simplex, Varicella Zoster, Röteln, Vaccinia, Epstein-Barr, Paramyxovirus SV<sub>5</sub><sup>71</sup>, etc.) gefunden, wenngleich dies von anderen auf eine erhöhte aber unspezifische Immunoreaktivität im Rahmen allgemeiner Infektionen zurückgeführt wurde (Zusammenfassung bei Norrby 1978)<sup>72</sup>. Der Begriff MRZ (Masern, Röteln, Zoster)-Reaktion beschreibt eine bei der MS häufige Konstellation der polyspezifischen Antikörperantwort durch möglicherweise eingewanderte B-Lymphozyten.<sup>73</sup>

#### 1.3.1.6.2 MS-Schübe nach IFNγ-Behandlung

Im Rahmen einer Phase-II-Studie mit Interferon  $\gamma$  ergaben sich bei intravenöser Applikation von 1, 30 oder 1000 µg deutlich mehr Schübe als unter Placebo, was dosisunabhängig war und unter anderem auf den beobachteten Anstieg der MHC Klasse II-positiven Monozyten zurückgeführt wurde.<sup>74</sup> Da große Mengen IFN $\gamma$  vor allem nach viralen Infektionen sezerniert werden, wurde dies als eine mögliche Erklärung für die Schubauslösung nach viralen Infektionskrankheiten gedeutet.<sup>75</sup>

#### 1.3.1.6.3 MS-Schübe bei Infektionen der oberen Luftwege

Sibley und Mitarbeiter untersuchten über einen Zeitraum von 8 Jahren prospektiv 170 Patienten mit MS und 134 gesunde Probanden. Dabei fanden sie, daß bei den MS-Patienten Schübe in der Zeit um einen Infekt ("at risk" = 2 Wochen vor und 5 Wochen nach Infektionsbeginn) etwa 3 mal häufiger auftraten, als außerhalb des sogenannten Risikozeitraums ("not at risk"). Zusätzlich standen 8,6% der überwiegend viralen, respiratorischen bzw. gastrointestinalen Infektionen in einem zeitlichen Zusammenhang zu Schüben, während 27% der Schübe zeitlich Infektionen zugeordnet werden konnten.<sup>76</sup> Ähnliche Ergebnisse erzielten auch andere Gruppen, ohne daß ein einzelnes spezifisches Virus identifiziert wurde.<sup>75, 77, 78</sup> Während einer Influenza-Epidemie in Holland hatten von 180 untersuchten Patienten mit schubförmigen Verlauf 36 eine InfluenzaInfektion, die bei 12 (33%) innerhalb von 6 Wochen von einem Schub gefolgt wurde. Dahingegen hatten von 80 Patienten nach Influenza-Schutzimpfung nur 4 (5%) einen Schub.<sup>79</sup>

#### 1.3.2 Mögliche Wirkmechanismen der Krankheitsentstehung

Als Hypothesen einer virus-assoziierten Pathogenese der MS kommen verschiedene Mechanismen in Betracht, die ihre Grundlagen aus experimentellen Ergebnissen beziehen. Prinzipiell können direkte, primär virale (bei akuter / lytischer Infektion von Oligodendrozyten) oder immunvermittelte (bei persistierender Infektion von Oligodendrozyten) Mechanismen (Kap. 1.3.2.1-2), und indirekte, autoimmune Mechanismen (Reaktion auf Infektionen innerhalb und außerhalb des ZNS, Kap. 1.3.2.3-4) unterschieden werden.<sup>80</sup>

## 1.3.2.1 Direkte Schädigung durch Virusinfektion der Oligodendrozyten

Viren mit zytopathischem Effekt auf die myelinbildenden Oligodendrozyten sind z. B. beim Menschen das JC-Virus (Progressive Multifokale Leukenzephalopathie), sowie bei anderen Spezies in geringerem Ausmaß das JHM-Maus-Hepatitis-Virus (JHM-MHV) und Theiler-Maus-Enzephalomyelitis-Virus (TMEV).

#### 1.3.2.2 Immunvermittelte Schädigung virusinfizierter Oligodendrozyten

Durch die virus-spezifische Immunantwort kann es zu einer sekundären Demyelinisierung kommen. Beispielhaft seien TMEV und Semliki Forest Virus (SFV) genannt, bei denen infizierte Oligodendrozyten entweder direkt durch zytotoxische T-Lymphozyten (CTL), indirekt über eine DTH-Reaktion (delayed type hypersensitivity), wenn virale Peptide auf der Oligodendrozytenoberfläche präsentiert werden, oder über lösliche Faktoren in der Umgebung dieser Entzündungsreaktion (Komplement, Proteinasen, TNF $\alpha$ , Stickstoffmonoxid (NO), etc.) geschädigt werden.<sup>81</sup>

Hierbei kann es zur Wechselwirkung viraler und autoimmuner Prozesse im ZNS kommen, so daß eine scharfe Trennung nicht sicher möglich ist.<sup>82</sup> So begünstigen die zytokinvermittelt hochregulierten MHC-Klasse I/II- und kostimulierenden Moleküle die Präsentationsfähigkeit von freigesetzten kryptischen (verborgenen) Epitopen, die entweder direkt nach virusbedingter Zell-Lyse oder indirekt über zytokinvermittelte Aktivierung von Proteasen entstehen. Dies kann zur Aktivierung ruhender autoreaktiver Lymphozyten führen.<sup>83</sup> Angedacht wurde sogar die Integration von Selbstantigenen (Glykolipide / MHC-Moleküle) in die Virushülle im Zuge des "virus budding".<sup>84, 85</sup>

#### 1.3.2.3 Indirekte Schädigung bei unspezifischer ZNS-Infektion

Bei einer persistierenden viralen Infektion im ZNS können über autoimmune Mechanismen auch nicht-infizierte Zellen geschädigt werden. Hierbei kommen generell ähnliche Prozesse in Frage, wie sie in Kap. 1.3.2.2 behandelt wurden. Zum Zeitpunkt der Schädigung müssen Viren nicht notwendigerweise nachweisbar sein.

#### 1.3.2.3.1 Erleichterte Zellmigration (Lymphocyte Homing)

Da im Gehirn als immunprivilegiertem Organ, geschützt durch die Immunbarriere der Bluthirnschranke, normalerweise kaum immunkompetente Zellen vorliegen oder MHC Klasse II-Moleküle exprimiert werden, kommt es natürlicherweise nicht zur Aktivierung und Proliferation autoreaktiver T-Zellen über den sogenannten trimolekularen Komplex (T-Zellrezeptor, MHC-Klasse II-Molekül der antigenpräsentierenden Zelle mit dem spezifischen Autoantigen). Daher ist für eine entzündliche Demyelinisierung im ZNS die Einwanderung und Aktivierung von autoreaktiven Zellen pathogenetisch entscheidend. Es ist vorstellbar, daß auf dem Boden einer Bluthirnschrankenstörung (z. B. durch eine Virusinfektion des Endothels) oder getrieben durch das entzündliche Milieu mit Chemokinen / Adhäsionsmolekülen in der Umgebung einer Infektion vermehrt autoreaktive Lymphozyten einwandern. Aktivierte Zellen können auch bei intakter Bluthirnschranke ins Gehirn einwandern.<sup>86</sup> Es ist bekannt, daß myelin-spezifische Zellen, wie auch andere aktivierte Zellen, nur bei lokaler Expansion durch Zielantigenerkennung im ZNS verweilen, ansonsten wie Zellen anderer Spezifität dieses Kompartiment wieder verlassen.<sup>87</sup>

#### 1.3.2.3.2 Kreuzreaktivität (Molecular mimicry) und Epitope Spreading

Bei strukturellen Ähnlichkeiten zwischen immunogenen Epitopen neurotroper Viren und Myelinbestandteilen können im ZNS virus-spezifische T-Lymphozyten zusätzlich Oligodendrozyten schädigen. Hierbei kann es auch zur erwähnten Ausweitung der Antigenerkennung auf mehrere Epitope eines Myelinantigens (intramolekulares epitope spreading) oder verschiedener Myelinbestandteile (intermolekulares epitope spreading) kommen.

#### 1.3.2.3.3 Lokale Begleitreaktion im ZNS (Local Bystander Activation)

In der unmittelbaren Umgebung einer ZNS-Infektion kann es durch unspezifische Aufregulierung von proentzündlichen Faktoren zu einer Mitaktivierung myelinspezifischer T-Zellen und somit einer direkten oder indirekten Demyelinisierung kommen.

#### 1.3.2.4 Aktivierung autoreaktiver Zellen bei systemischer Infektion

Entsprechend den Mechanismen bei zerebralen Infektionen gelten vergleichbare Prinzipien auch bei systemischen Infektionen, wenn autoreaktive Zellen außerhalb des ZNS aktiviert werden und wie in Kap. 1.3.2.3.1 beschrieben durch die Bluthirnschranke ins Gehirn einwandern.

#### 1.3.2.4.1 Kreuzreaktivität (Molecular Mimicry)

Das Prinzip der Molecular Mimicry wurde erstmals 1985 beschrieben, als gezeigt werden konnte, daß MBP-spezifische T-Zellen mit sequenzhomologen Epitopen von viralen Antigenen (HBV-Polymerase) kreuzreagierten.<sup>88</sup> Später gelang eine Aktivierung MBP-spezifischer T-Zellklone auch durch Stimulation mit nicht ausschließlich sequenzhomologen, jedoch strukturverwandten viralen und bakteriellen Peptiden.<sup>89</sup> Nach aktuellem Verständnis einer degenerierten Antigenerkennung von T-Zellen wird bei Würdigung des schlüssigen Grundprinzips einer höheren TCR-Flexibilität als früher angenommen Rechnung getragen.<sup>90 91</sup> (Abb. 1A, vgl. Kap. 1.3.2.3.2)

#### 1.3.2.4.2 Unspezifische Begleitreaktivität (Systemic Bystander Effect)

Tough et al. konnten zeigen, daß CD8+ T-Zellen unabhängig von T-Zellrezeptorsignalen (CD25/CD69), stimuliert durch IFN Typ I oder dessen Induktor Polyinosin-Polycytidylsäure (poly(I:C)), über längere Zeiträume *in vivo* überlebten. Außerdem konnte die klonale Expansion und das Überleben von antigen-spezifischen T-Zellen durch diese unspezifische Stimulation potenziert werden. Abbildung 1: Übersichtsschemata von Molecular Mimicry (A) und Bystander Effect (B) A: Durch Kreuzreaktivität zwischen Autoantigen und Fremdantigen (Viruspeptid) können autoreaktive (z. B. MBP-spezifische) T-Zellen im peripheren Immunsystem über den trimolekularen Komplex aktiviert werden. Diese Zellen können durch die Bluthirnschranke ins ZNS einwandern und erneut z. B. über organspezifische antigenpräsentierende Zellen mit dem eigentlichen Autoantigen aktiviert werden.

**B**: Im Rahmen einer virus-spezifischen Immunreaktion können auch autoreaktive (z. B. MBP-spezifische) T-Zellen mitaktiviert werden und somit zu einer Autoimmunreaktion beitragen. Abbildungen modifiziert nach Delves und Roitt<sup>92</sup>.



Die Autoren deuten die Langlebigkeit von CD8<sup>+</sup>-Gedächtnis-T-Zellen (Memory Cells) nach virusinduzierter Freisetzung von Typ I-IFN in zweierlei Richtung. Zum einen benötigen bereits vorhandene Gedächtniszellen nicht den ständigen Kontakt zu ihrem spezifischen Antigen oder kreuzreagierender Antigene, sondern es genügen gelegentliche Kontakte zu IFN Typ I, welches durch zwischenzeitliche Virusinfekte freigesetzt wird.

#### Einleitung

Zum anderen können während der Erstantwort auf Virusinfektionen im Sinne einer Adjuvansfunktion durch lokal sezerniertes IFN Typ I frühe Gedächtniszellen besser stimuliert werden und länger überleben. <sup>93</sup>

Im Rahmen einer Autoimmunität würden diese Ergebnisse einen virusinduzierten Mechanismus der unspezifischen Aktivierung autoreaktiver Gedächtniszellen bedeuten. Dies könnte auch erklären, warum aktive Virusinfektionen starke Immunantworten auslösen können, während Virus-Peptide ohne Zusatz künstlicher Adjuvantien nur schwach immunogen sind. Daneben können Mikroorganismen durch proliferative / supprimierende Wirkung auf distinkte T-Zellsubtypen bzw. durch Beeinflussung bestimmter Zytokinprofile das Immungleichgewicht stören, was möglicherweise zu einer Aktivierungskaskade latenter Autoimmunität führt.<sup>94</sup> Dies wurde durch Coxsackie-Virusinfektion in einem transgenen Mausmodell bereits für die Entstehung des ebenfalls autoimmunbedingten Typ-I Diabetes gezeigt.<sup>95</sup>

#### 1.3.2.4.3 Mikrobielle Superantigene

Beim Typ I-Diabetes wurde ein dem Maus-Mammary-Tumorvirus (MMTV) verwandtes, humanes endogenes Retrovirus (HERV) isoliert, welches ein MHC Klasse IIbindendes Superantigen kodiert. Es wurde postuliert, daß es durch Überbrückung von leeren Antigenbindungsstellen zwischen Vβ-Kette des T-Zellrezeptors (TCR) und MHC-Molekül der antigenpräsentierenden Zellen zu einer systemischen Aktivierung autoreaktiver T-Zellen kommen könnte.<sup>96</sup> Ende der 80er Jahre wurden retrovirale Sequenzen auch in einer Leptomeningeal-Zellinie eines MS-Patienten<sup>97</sup> und später wiederholt auch in Zellen des Plexus choroideus und EBV-immortalisierten B-Zellen gefunden.<sup>98</sup> Da zusätzlich Superantigene häufig als Adjuvantien für die Auslösung der EAE eingesetzt wurden,<sup>99</sup> wäre über die superantigene Eigenschaft der sogenannten MSassoziierten Retroviren (MSRV)<sup>98</sup> eine unspezifische Aktivierung autoreaktiver T-Zellen im ZNS vorstellbar.

#### 1.3.2.5 Mehrfachinfektion / Pathogenwechselwirkungen

In Anlehnung an die epidemiologischen Erkenntnisse aus den Migrationsstudien und der höheren Prävalenz in Ländern mit gehobenem hygienischen Standard wird versucht, der multifaktoriellen Genese bei fehlendem Nachweis eines einzelnen Umweltfaktors durch komplexere Theorien gerecht zu werden. So vermutet man bislang nicht bekannte Viren mit langer Latenzphase oder eine Reaktivierung retroviraler Elemente durch z. B. Herpesinfektionen<sup>100, 101</sup>

#### 1.4 Viren mit möglicher Relevanz

#### **1.4.1** Humanes Herpesvirus 6 (HHV-6)

Erstmals 1986 aus peripheren Blutlymphozyten von 6 immunsupprimierten Patienten isoliert, wurde das humane Herpesvirus 6 zunächst als humanes B-lymphotropes Virus (HBLV) bezeichnet,<sup>102</sup> bevor man den bevorzugten T-Zelltropismus erkannte.

#### 1.4.1.1 Taxonomie

Aufgrund seiner genetischen Verwandtschaft zum Cytomegalievirus (CMV) wird es den beta-Herpesviren zugeordnet. Anhand der Sequenz unterscheidet man zwischen den beiden Varianten HHV-6A und HHV-6B. HHV-6A konnte bislang keiner Krankheit zugeordnet werden, während HHV-6B als das ätiologische Agens des Dreitagefiebers (Exanthema subitum, Roseola infantum) gilt. Die Seroprävalenz beträgt weltweit > 95% bei einem Alter > 2 Jahren.<sup>103</sup> Etwa 5% sind dauerhaft HHV-6-IgM-seropositiv.

Das umhüllte DNA-Virus ist 160-200nm groß, das Genom ist 167kbp lang. Wirtszellen (CD4+/CD8+T-Zellen, NK-Zellen, Makrophagen) entwickeln bei Infektion einen typischen zytopathischen Effekt (CPE) mit Anschwellung und gelegentlich Synzytienbildung.<sup>104</sup> Weitere Auswirkungen auf Immunzellen, wie eine CD4-Expression an der Oberfläche von T-Zellinien und CD8+T-Zellen/NK-Zellen wurden mit früher Genexpression oder einem Virion Protein, die Suppression von CD3/TCR mit der Replikation viraler DNA in Verbindung gebracht.<sup>105</sup> HHV-6 reduziert wachstumsfaktor-abhängiges Aussprossen von Makrophagen<sup>106</sup> und hemmt die Lymphoproliferation, ebenfalls über ein Virion Protein.<sup>107</sup> Die virusinduzierte IFNα-Sekretion erfolgt möglicherweise über Signaltransduktion durch Zell-zell-Interaktionen. Außerdem werden TNFα- und IL-1b-Expression auf transkriptioneller Ebene unabhängig von Virusinaktivierung induziert.<sup>108</sup>

#### 1.4.1.2 Pathogenität

Aufgrund der Nachweisbarkeit in Speichel und Mundspeicheldrüsen geht man von einer oralen Tröpfcheninfektion mit primärer Oropharynxbeteiligung aus. Das Virus persistiert in T-Lymphozyten und Oligodendroglia. HHV-6 ist mit kindlichen Fieber-krämpfen assoziiert und es gibt HHV-6-Enzephalitiden von milden bis hin zu letalen Verläufen mit disseminierter Demyelinisierung.<sup>109, 110</sup> Über differentielle PCR-Technologie konnte HHV-6 DNA in aktiven MS-Plaques, jedoch in geringerer Menge auch in gesundem Gewebe und Nicht-MS-Patienten nachgewiesen werden.<sup>111</sup> Ferner konnten gegenüber gesunden Kontrollpersonen und solchen mit anderen neurologischen Erkrankungen erhöhte Antikörpertiter und DNA im Plasma nachgewiesen werden.<sup>112-114</sup> Andere Arbeitsgruppen konnten diese Assoziation zur MS jedoch nicht reproduzie-ren.<sup>115-121</sup> Eine gute Gegenüberstellung der veröffentlichten Daten geben Knox et al.<sup>122</sup>

#### 1.4.2 Influenzavirus<sup>123</sup>

Bereits 412 v. Chr. wurden von Hippokrates Influenzaepidemien berichtet; die berühmte "Spanische Influenza"-Epidemie 1918-19 war weltweit für den Tod von 20-40 Millionen Menschen verantwortlich. Isoliert wurde das Virus erst 1933.<sup>124</sup>

#### 1.4.2.1 Taxonomie

Auf der Grundlage von Antigenitätsunterschieden ihrer Nukleoprotein- (NP) und Matrixprotein- (M) Antigene werden Isolate in die Gruppen A, B und C eingeteilt und weiter nach ihrem ursprünglichen Wirt, geographischen Ursprung, der Stammidentifikation und dem Jahr ihrer Isolation benannt. Üblicherweise wird bei menschlichen Virusisolaten der Wirtsname weggelassen. Die antigenen Determinanten Hämagglutinin (HA) und Neuraminidase (NA) werden in Klammern angegeben. Ein Beispiel für den 1934 in Puerto Rico isolierten, in Forschungslaboren weltweit meistverwendeten humanen Influenza A-Referenzstamm ist: A/PR/8/34 (H1N1).

## 1.4.2.2 Virusstruktur und Antigenität (Shift/Drift)

Das Hämagglutinin (HA) macht 25% der viralen Proteine aus und ist an der Oberfläche des Virions gleichmäßig verteilt. Es ist für das Anheften an Sialoglykolipide/-proteine und Eindringen in die Zelle verantwortlich.

Die Neuraminidase (NA) ist aus einer einzelnen Polypeptidkette zusammengesetzt, und sitzt als pilzförmige Struktur mit vier Untereinheiten ebenfalls der Virionoberfläche auf. Das Nukleoprotein (NP), das Matrixprotein (M) mit seiner hochkonservierten Gensequenz und andere Nicht-Strukturproteine(NS1/2) spielen hier eine untergeordnete Rolle. Ab 1933 gerechnet, traten bedeutsame Antigenitätsverschiebungen (antigenic shifts) durch Gen-Rekombinationen auf. 1957 löste die asiatische Influenza (H2N2) den bisherigen Stamm H1N1 ab, 1968 das Hong Kong (H3N2) Virus; 1977 kehrte H1N1 zurück. Zu einem Antigendrift (antigenic drift) kommt es durch Anhäufung einer Serie von Punktmutationen im HA-Gen überwiegend bei Influenza A, seltener auch bei B und C. Dadurch kann es sogar während eines Krankheitsausbruchs zu einer antigenen Mikroheterogenität und somit verringerten Immunerkennung kommen.

#### 1.4.2.3 Pathogenität und Krankheitsbild

Nach epidemiologischen und experimentellen Untersuchungen wird das Influenzavirus über hochkontagiöse Aerosole von Mensch zu Mensch übertragen. Dabei sind alle Subtypen sehr effiziente Interferon-Induktoren. Bei Symptombeginn läßt sich in Speichelsekret und Serum vor allem Interferon γ nachweisen, dessen höchste Sekretion ca. 1 Tag nach dem Höhepunkt des damit gut korrelierten Virustiters gemessen wird. Bei Infektion werden Antikörper gegen HA, NA, NP und M gebildet, wobei nur HA-/NA-Antikörper schützen.

Bei natürlichen Infektionen kommt es in 80% zu einer Antikörperantwort, einer kurzfristigen Leukozytose mit relativer Lymphopenie bis zum 3.-6. Tag nach Inokulation. Während der akuten Krankheitsphase und frühen Rekonvaleszenz kann eine Influenza A-Infektion auch DTH-Reaktionen und die Aktivierbarkeit von Blutlymphozyten unterdrücken. Dennoch können sich influenzavirusspezifische Zellantworten bilden.<sup>125</sup> Das klinische Bild umfaßt Husten, Schnupfen, Fieber, Hals-, Kopf- und Gliederschmerzen, Abgeschlagenheit, sowie die Influenza-Pneumonie und bakterielle Superinfektionen als mögliche Komplikationen.

#### 1.5 Infektionsprophylaxe

Influenzaepidemien sind jährlich für rund 20000 Todesfälle allein in den Vereinigten Staaten verantwortlich, so daß die Verhütung der Influenzainfektion und ihrer schweren Komplikationen eine vordringliche Aufgabe der Infektiologie darstellt.

## 1.5.1 Impfung

Die Influenzaschutzimpfung wird vor allem Menschen mit einem erhöhten Risiko für Komplikationen einer Influenza-Infektion empfohlen. Dazu gehören ältere Personen ( $\geq$ 60 Jahren), Patienten mit chronischen Erkrankungen oder immunsuppressiver Therapie, sowie diejenigen, die in engem Kontakt mit diesen Personen wohnen oder arbeiten. Aufgrund der oben beschriebenen hohen Antigenvariabilität muß entsprechend der aktuellen Empfehlungen für die Impfstoffzusammensetzung durch die WHO jährlich geimpft werden. Während in den Vereinigten Staaten inaktivierte Influenzavirusstämme verwendet werden, werden in Europa Virusbestandteile (HA und NA) als sogenannte Spalt-Vakzine eingesetzt. Der Impfschutz besteht in der Regel 1-2 Wochen nach Impfung und kann vor der Erkrankung in 70-90 % schützen oder die Symptome wesentlich mildern. Da die Influenza-Saison jährlich etwa von November bis März geht, sollte eine Schutzimpfung zwischen September bis spätestens Mitte November erfolgen. <sup>126</sup>

#### 1.5.2 Influenzaschutzimpfung und Multiple Sklerose

Da man bei Patienten, die an einer Multiplen Sklerose erkrankt sind, durch virale Atemwegsinfektionen eine Gefahr der Schubauslösung oder Verschlechterung sieht (vgl. Kap. 1.3.1), wurde aus theoretischer Überlegung und nach Nutzen-Risikoabwägung die Influenzaschutzimpfung für MS-Patienten empfohlen (s. auch die Empfehlungen der ständigen Impfkommission des Robert Koch Instituts (STIKO)).<sup>127</sup> In klinischen Studien konnte überzeugend gezeigt werden, daß diese Impfung keine Verschlechterung der MS auslöste.<sup>79, 128-132</sup>

# 1.6 Aufgabenstellung und Zielsetzung

Ein Hauptanliegen dieser Studie war die Untersuchung der Frage, wie und warum Infektionen anders als Impfungen bei Patienten mit klinisch gesicherter MS schubauslösend bzw. krankheitsverschlechternd wirken. In der diesbezüglich konzipierten Studie zur T-Zell-Autoimmunität während Influenza-Impfung und natürlich auftretender Atemwegsinfektionen bei MS-Patienten und gesunden Kontrollpersonen (ViMS-Studie) sollte dieser Unterschied klinisch und immunologisch systematisch überprüft werden. Zu weiterführenden Untersuchungen auf zellulärer Ebene führten wir *in vitro*-Infektionen an dem etablierten Zellkultur-Modell MBP-spezifischer T-Zellen durch. Hierfür wurde das derzeit als "Viruskandidat" aktuell diskutierte humane Herpesvirus 6 und das Influenzavirus A/PR/8/34 (H1N1) verwendet.

#### 2 Material und Methoden

#### Material 2.1

#### 2.1.1 Materialien für Biochemie

# 2.1.1.1 Reagenzien und Chemikalien

| Aceton (ca. 300 ml)                                            | J.T. Baker, Deventer, Holland     |
|----------------------------------------------------------------|-----------------------------------|
| Ammoniumhydroxid NH4OH                                         | Merck, Darmstadt                  |
| Ammoniumsulfat (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> | Merck, Darmstadt                  |
| bdH <sub>2</sub> O (aus Seralpur / -dest-Anlage)               | Neurologische Uniklinik, Würzburg |
| Chloroform* (500 ml / 100 g Gehirn)                            | J.T. Baker, Deventer, Holland     |
| Methanol* (250 ml / 100 g Gehirn)                              | J.T. Baker, Deventer, Holland     |
| Salzsäure (HCl) 12N                                            | Merck, Darmstadt                  |
| Natronlauge (NaOH) 5N                                          | Merck, Darmstadt                  |
| Coomassie <sup>®</sup> Protein Assay                           | Pierce, Rockford, IL, USA         |
| * vorgekühlt bei -20°C                                         |                                   |

# 2.1.1.2 Ansatz der Lösungen und Puffer

| ~                    | ( The second sec |                               |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| <u>Gel-Färbelösu</u> | ing (Coomassie <sup>®</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |
| 0,12 %               | (v/v) Serva-Blau R 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Serva, Heidelberg             |
| 9,00 %               | (v/v) Essigsäure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Roth, Karlsruhe               |
| 45,00 %              | (v/v) Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J.T. Baker, Deventer, Holland |
| 45,88 %              | bdH <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
| Gel-Entfärbel        | ösung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |
| 18 %                 | (v/v) Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J.T. Baker, Deventer, Holland |
| 6 %                  | (v/v) Essigsäure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Roth, Karlsruhe               |
| 76 %                 | (v/v) bdH <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| HPLC - Laufr         | <u>nittel A</u> (als Ionenbildner)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
| 0,1 %                | (v/v) Trifluoressigsäure (TFA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Merck-Schuchardt, Hohenbrunn  |
| 99,9 %               | (v/v) bdH <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| HPLC - Laufr         | nittel B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| Acetonitril          | (ACN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Merck, Darmstadt              |

| Immunoblot -  | Färbemittel (gebrauchsfertig)    | Sigma-Aldrich, Deisenhofen    |
|---------------|----------------------------------|-------------------------------|
| 0,1 %         | (w/v) Ponceau S                  |                               |
| 5 %           | (v/v) Essigsäure                 |                               |
| Immunoblot-7  | Transfer-Puffer 10x konzentriert |                               |
| 144,0 g       | Glycin                           | Merck, Darmstadt              |
| 30,30 g       | TRIS                             | Merck, Darmstadt              |
| ad 1000 ml    | bdH <sub>2</sub> O               |                               |
| Immunoblot-7  | Transfer-Gebrauchspuffer         |                               |
| 100 ml        | Puffer 10x                       | siehe oben                    |
| 200 ml        | Methanol                         | J.T. Baker, Deventer, Holland |
| 700 ml        | bdH <sub>2</sub> O               |                               |
| SDS-PAGE-E    | lektrodenlaufpuffer              |                               |
| 25 mM         | TRIS                             | Merck, Darmstadt              |
| 192 mM        | Glycin                           | Merck, Darmstadt              |
| 0.1 %         | (w/v) SDS                        | Merck, Darmstadt              |
| SDS-Trenngel  | <u>l (12 %) = 10 ml</u>          |                               |
| 3,3 ml        | bdH <sub>2</sub> O               |                               |
| 4,0 ml        | Rotipherese Gel 30               | Roth, Karlsruhe               |
| 2,5 ml        | TRIS (1,5 M) pH 8,8              | siehe unten                   |
| 0,1 ml        | SDS 10 %                         | Merck, Darmstadt              |
| 0,1 ml        | Ammoniumpersulfat 10 % (w/v      | ) Merck, Darmstadt            |
| 4 µl          | TEMED                            | Sigma-Aldrich, Deisenhofen    |
| SDS-Sammelg   | gel(5%) = 3 ml                   |                               |
| 2,1 ml        | bdH <sub>2</sub> O               |                               |
| 0,5 ml        | Rotipherese Gel 30               | Roth, Karlsruhe               |
| 0,38 ml       | TRIS (1,0 M) pH 6,8              | siehe unten                   |
| 30 µl         | SDS 10 %                         | Merck, Darmstadt              |
| 30 µl         | Ammoniumpersulfat 10 % (w/v      | ) Merck, Darmstadt            |
| 3 µl          | TEMED                            | Sigma-Aldrich, Deisenhofen    |
| Reduzierender | r Probenladepuffer               |                               |
| 62,5 mM       | TRIS / HCl pH 8.8                |                               |
| 8 %           | (w/v) SDS                        |                               |
| 15 %          | (w/v) Glycerin                   |                               |
| 0.01 %        | (v/v) Bromphenolblau             |                               |

Molekulargewichtsmarker, leicht (LMW)94,0 kDaPhosphorylase b67,0 kDaAlbumin43,0 kDaOvalbumin30,0 kDaCarbonanhydrase20,1 kDaTrypsin-Inhibitor

- 14,4 kDa α Laktalbumin
- 2.1.1.3 Proteine und Antikörper

| goat-amIgG(H+L)-Peroxidase (POD)       | Jackson Immunotech / Dianova           |
|----------------------------------------|----------------------------------------|
| goat-arlgG-POD                         | Jackson Immunotech / Dianova           |
| m(IgG1)arabbit/hMBP                    | Prof. Dr. C. Linington, München        |
| mar/hMOG                               | Dr. S. Jung, Neurologische Klinik      |
| m(IgG1)ar/hP <sub>0</sub>              | Dr. J. Archelos, Neurologische Klinik  |
| m(IgG1)ahGFAP (G-A-5)                  | Böhringer, Mannheim                    |
| m(IgG2a)\ah/bMBP (129-138)             | Natutec/Labgen, Frankfurt (#CTS 710)   |
| r(IgG)ab/hS100 A,B (polyklonal)        | Immunotech / Dianova, Hamburg          |
| P <sub>0</sub> , rekombinantes humanes | Dr. A. Weishaupt, Neurologische Klinik |

## 2.1.1.4 Weitere Materialien, Glas und Plastikware

| Dialyse-Schlauch (Visking, Typ 36/32) | Roth, Karlsruhe             |
|---------------------------------------|-----------------------------|
| Filterpapier Whatman 41               | Schleicher & Schüll, Dassel |
| Mikroliterspritze 100 µl              | Hamilton                    |
| Nitrozellulose-Membran BT 85          | Schleicher & Schüll, Dassel |
| Plastik-Küvetten 1 ml                 | Sarstedt, Nümbrecht         |
| Porzellanfilternutsche 180/110        | Rosenthal, Selb             |
| Scheidetrichter mit Teflonhahn 2 l    | Schott, Mainz               |
| Teflon-Kamm, Teflon-Spacer            | Renner, Dannstadt           |
| Vydac C4 Säule (250mm x 4mm i. D.)    | Altech, Hohenbrunn          |
| Waschflasche 2-3 1                    | Schott, Mainz               |
| Zentrifugenröhrchen 50 ml             | Sarstedt, Nümbrecht         |

# Pharmacia, Freiburg

#### 2.1.2 Material für Zellkultur

#### Puffer, Zellkulturmedien und Lösungen 2.1.2.1

## <u>PBS 10x</u>

| 80,0 g                                       | NaCl                                                |                               | Merck, Darmstadt        |
|----------------------------------------------|-----------------------------------------------------|-------------------------------|-------------------------|
| 2,0 g                                        | KCl                                                 |                               | Roth, Karlsruhe         |
| 14,4 g                                       | Na <sub>2</sub> HPO <sub>4</sub> x H <sub>2</sub> O |                               | Merck, Darmstadt        |
| 2,4 g                                        | KH <sub>2</sub> PO <sub>4</sub>                     |                               | Merck, Darmstadt        |
| ad 1000 ml                                   | bdH <sub>2</sub> O                                  | рН 7,2                        |                         |
| <u>PBS</u>                                   |                                                     |                               |                         |
| 100 ml                                       | PBS 10x                                             |                               | siehe oben              |
| ad 1000 ml                                   | bdH <sub>2</sub> O                                  | sterilfiltriert               |                         |
| Grundmediur                                  | <u>n (R<sub>0</sub>)</u>                            |                               |                         |
|                                              | RPMI 1640                                           | рН 7,4                        | Gibco, Eggenstein       |
| 100 U/ml                                     | Penicillin                                          |                               | Biochrom, Berlin        |
| 100 µg/ml                                    | Streptomycin                                        |                               |                         |
| 2 mM                                         | L-Glutamin                                          |                               | Gibco, Eggenstein       |
| <b>Stimulationsr</b>                         | nedium, autolog                                     | <u>(R<sub>5</sub>)</u>        |                         |
| $R_0$                                        |                                                     |                               | siehe oben              |
| 5 % (v/v) Eigenserum                         |                                                     | von entsprechenden Probanden  |                         |
| Stimulationsr                                | nedium, xenolog                                     | <u>(R<sub>FCS</sub>)</u>      |                         |
| R <sub>0</sub>                               |                                                     | siehe oben                    |                         |
| 5 % (v/v) fötales Kälberserum (FCS)          |                                                     | PAA, Cölbe                    |                         |
| MT-4-Zellku                                  | lturmedium (R <sub>10</sub> )                       | )                             |                         |
| R <sub>0</sub>                               |                                                     | siehe oben                    |                         |
| 10 % (v/v) fötales Kälberserum (FCS)         |                                                     | PAA, Cölbe                    |                         |
| Einfriermediu                                | <u>ım (EM)</u>                                      |                               |                         |
| 50 % (v/v)                                   | R <sub>0</sub>                                      |                               | siehe oben              |
| 40 % (v/v)                                   | Fötales Kälbers                                     | serum (FCS)                   | PAA, Cölbe              |
| 10 % (v/v)                                   | DMSO                                                |                               | Roth, Karlsruhe         |
| Lymphoprep                                   | Dichte 1,077                                        | 7 g / ml                      | Nycomed, Oslo, Norwegen |
| [methyl]- <sup>3</sup> H - Thymidin 1 mCi/ml |                                                     | ICN, Irvine, CA, USA (#24070) |                         |
| Trypanblau                                   | 50 mg / 100                                         | ml PBS                        | Roth, Karlsruhe         |

# 2.1.2.2 Zellkulturantigene und Reagentien

| hMBP 1 r             | ng / ml PBS steril  | Präparation s. u. (Methoden)           |
|----------------------|---------------------|----------------------------------------|
| IL2, rekomb.human10  | ug / ml PBS steril  | Prof. Dr. W. Sebald, Phys.Chemie, Wü.  |
| m(IgG2a)ahCD3 (X35)  | lyo., ohne Azid     | Coulter-Imunotech (#0178)              |
| MOG, rekomb. humane  | s 3ng / ml          | Dr. A. Weishaupt, Neurologische Klinik |
| PHA                  | 5 μg / ml steril    | Sigma-Aldrich, Deisenhofen             |
| Tetanus-Toxoid (4100 | Lf/ml, 427,3 µg/ml) | Chiron-Behring, Marburg                |
| Endotoxin-Test ETOXA | ATE <sup>®</sup>    | Sigma-Aldrich, Deisenhofen (#210-A1)   |
|                      |                     |                                        |

2.1.2.3 Zellinien, Virusisolate und Impfstoff

| MT-4-Zellinie                                     |  | ATCC, Rockville, Maryland, USA    |
|---------------------------------------------------|--|-----------------------------------|
| Primäre T-Zellinien spezifisch für MBP / TT       |  | eigene Bestände                   |
| HHV-6B (Isolat des Instituts)                     |  | B. Weißbrich, Virologie, Würzburg |
| Influenza A (strain PR8/34)                       |  | S. Niewiesk, Virologie, Würzburg  |
| Influvac $^{\textcircled{R}}$ 98 / 99 und 99 / 00 |  | Solvay, Hannover                  |
| Überstand EBV-infizierter B98.2 Zellen            |  | C. Jassoy, Virologie, Würzburg    |
|                                                   |  |                                   |

2.1.2.4 Antikörper, Puffer und Reagenzien für ELISA

| m(IgG1 $\kappa$ )- $\alpha$ hIFN $\gamma$ (Klon 2G1) | Endogen, Woburn, MA (#M700A)        |
|------------------------------------------------------|-------------------------------------|
| m(IgG1)-ahIFNy-Biotin (B133.5)                       | Endogen, Woburn, MA (#M701B)        |
| m(IgG1)-ahTNFa (Klon MAb1)                           | Pharmingen, Hamburg (#18631D)       |
| m(IgG1)-αhTNFα-Biotin (Mab11)                        | Pharmingen, Hamburg (#18642D)       |
| r(IgG2a)-ahIL2 (MQ1-17H12)                           | Pharmingen, Hamburg (#18951D)       |
| m(IgG1)-ahIL2-Biotin (B33-2)                         | Pharmingen, Hamburg (#23112D)       |
| m(IgG1)-ahIL4 (8D4-8)                                | Pharmingen, Hamburg (#18651D)       |
| r(IgG1)-ahIL4-Biotin (MP4-25D2)                      | Pharmingen, Hamburg (#18502D)       |
| r(IgG1)-ah/viral IL10 (JES3-9D7)                     | Pharmingen, Hamburg (#18551D)       |
| r(IgG2a)-αh/viral IL10-Biotin (JES3-12G8)            | Pharmingen, Hamburg (#18562D)       |
| IFNy, rekombinantes humanes                          | Endogen, Woburn, MA (#R-IFNG-50)    |
| TNF $\alpha$ , rekombinanter humaner                 | Pharmingen, Hamburg (#19761T)       |
| IL2, rekombinantes humanes (4 ng / ml)               | Pharmingen, Hamburg (#19621T)       |
| IL4, rekombinantes humanes                           | Pharmingen, Hamburg (#19641V)       |
| IL10, rekombinantes humanes                          | Pharmingen, Hamburg (#19701V)       |
| Albumin, bovin, Fraktion V, low endotoxin            | Sigma-Aldrich, Deisenhofen (#A4919) |
| Peroxidase-konjugiertes EW-Avidin (POD)              | Jackson Immunotech / Dianova        |
|                                                      |                                     |

| Carbonat-E                                                      | Beschichtungspuffer 5x konzentrier                                       | t (Coating Buffer, $EC = 0.5 M$ ) |
|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------|
| 4,2 g                                                           | NaHCO <sub>3</sub>                                                       | Merck, Darmstadt                  |
| 100 ml                                                          | bdH <sub>2</sub> O pH 8,2                                                |                                   |
| PBS-Milch                                                       | pulver 2 % (w/v) (PBS-MP) Lager                                          | ung in 50 ml - Aliquots bei -20°C |
| 20 g                                                            | Magermilchpulver (250 g)                                                 | Heirler, Radolfzell               |
| 100 ml                                                          | PBS 10x                                                                  | siehe 2.1.2.1                     |
| 900 ml                                                          | bdH <sub>2</sub> O                                                       |                                   |
| ELISA-Sul                                                       | <u>ostrat für 1 Platte (100 μl / Napf = 1</u>                            | <u>l 1 ml)</u>                    |
| 6,05 mg                                                         | ABTS (1 mM = $0,55$ mg / ml)                                             | Sigma-Aldrich, Deisenhofen        |
| 11 ml                                                           | Zitratpuffer                                                             | siehe unten                       |
| 11 µl                                                           | Perhydrol (H <sub>2</sub> O <sub>2</sub> ) 30%                           | Merck, Darmstadt                  |
| Waschpuff                                                       | <u>er (PBS-T)</u>                                                        |                                   |
| 100 ml                                                          | PBS 10x                                                                  | siehe 2.1.2.1                     |
| 900 ml                                                          | bdH <sub>2</sub> O                                                       |                                   |
| 0,5 ml                                                          | Tween 20 (= 0,05 %)                                                      | Merck-Schuchardt, Hohenbrunn      |
| Zitratpuffe                                                     | r (0,1 M) Lagerung in 50 ml - Aliqu                                      | uots bei -20°C                    |
| 21 g                                                            | Zitrat (C <sub>6</sub> H <sub>6</sub> O <sub>7</sub> x H <sub>2</sub> O) | Merck, Darmstadt                  |
| 1000 ml                                                         | bdH <sub>2</sub> O pH 4,35                                               |                                   |
| 2.1.2.5                                                         | Puffer, Antikörper-und Subst                                             | ratkits für ELISPOT               |
| Carbonat-/                                                      | Bicarbonat-Beschichtungspuffer (0.                                       | ,1 M) Lagerung bei 4°C            |
| 4,24                                                            | g Na <sub>2</sub> CO <sub>3</sub>                                        |                                   |
| 5,04                                                            | g NaHCO <sub>3</sub>                                                     |                                   |
| ad 1000 m                                                       | l bdH <sub>2</sub> O pH 9,6 sterilfiltriert                              |                                   |
| ELISPOT -                                                       | - kit für IFNγ                                                           | Mabtech, Nacka, Schweden          |
| m(IgG1                                                          | $\kappa$ )αhIFNγ (1D1-K) 4°C                                             | 15 μg /ml EC                      |
| m(IgG1                                                          | $\kappa$ )αhIFNγ-Biotin (7B61) 4°C                                       | 1 µg / ml EC                      |
| Alkalisc                                                        | the Phosphatase 4°C                                                      | 1:1000 EC                         |
| Alkalische                                                      | Phosphatase-Substrat-Kit                                                 | Biorad, München (#170-6432)       |
| Farbrea                                                         | gens A (NBT, Dimethylformamid, I                                         | $MgCl_2) -20^{\circ}C$            |
| Farbrea                                                         | gens B (BCIP, Dimethylformamid)                                          | -20°C                             |
| Farbent                                                         | wicklungs-Puffer $25x (EC = 0, 1 M)$                                     | TRIS pH 9,5) 4°C                  |
| Substrat-Gebrauchslösung bei Raumtemperatur (5 ml für 1 Platte) |                                                                          |                                   |
| Puffer 2                                                        | 5x 200 μl                                                                |                                   |
| bdH <sub>2</sub> O                                              | 4800 µl                                                                  |                                   |

| Farbreagens A | 50 µl |
|---------------|-------|
| Farbreagens B | 50 µl |

# 2.1.2.6 FACS-Puffer und Antikörper

#### PAB-Puffer

| PBS               |                                        | siehe oben                          |
|-------------------|----------------------------------------|-------------------------------------|
| 0.5 %             | (w/v) BSA                              | Roth, Karlsruhe                     |
| 0,1 %             | (w/v) Natrium-Azid (NaN <sub>3</sub> ) | Merck, Darmstadt                    |
| PFA (Parafor      | maldehyd zum Fixieren und Vir          | usinaktivieren)                     |
| 4 g               | PFA                                    |                                     |
| ad 100 ml         | PBS                                    | siehe oben                          |
| leicht erhitze    | n, evtl. NaOH nachtröpfeln             |                                     |
| <u>Antikörper</u> |                                        |                                     |
| m(IgG1κ)-FI       | TC (MOPC-21)                           | Pharmingen, Hamburg (#33814X)       |
| m(IgG1κ)-PI       | E (MOPC-21)                            | Pharmingen, Hamburg (#33815X)       |
| m(IgG1ĸ)-Cy       | yC (MOPC-21)                           | Pharmingen, Hamburg (#33028X)       |
| т(IgG2aк)-Р       | PE (UPC 10)                            | Sigma-Aldrich, Deisenhofen (#P4810) |
| m(IgG1κ)αh        | CD3-CyC (UCHT1)                        | Pharmingen, Hamburg (#30108X)       |
| m(IgG1κ)αh        | CD4-FITC (RPA-T4)                      | Pharmingen, Hamburg (#30154X)       |
| m(IgG1κ)αh        | CD4-PE (13B8.2)                        | Coulter Immunotech, München (#0449) |
| m(IgG1κ)αh        | CD4-CyC (RPA-T4)                       | Pharmingen, Hamburg (#30158X)       |
| m(IgG1)ahC        | D8-FITC (B9.11)                        | Coulter Immunotech, München (#0451) |
| m(IgG1κ)αh        | CD8-PE (HIT8A)                         | Pharmingen, Hamburg (#33295X)       |
| m(IgG1κ)αh        | CD8-Cy (RPA-T8)                        | Pharmingen, Hamburg (#30328X)       |
| m(IgG1)ahC        | D19-R-PE (SJ25-C1)                     | Sigma-Aldrich, Deisenhofen (P-7437) |
| m(IgG2a)ah        | CD25-FITC (B1.49.9)                    | Coulter Immunotech, München (#0478) |
| m(IgG2b)ah        | CD69-PE (TP1.55.3)                     | Coulter Immunotech, München (#1943) |
| m(IgG2a) a M      | IHC-I-FITC (B9.12.1)                   | Coulter Immunotech, München         |
| m(IgG1)aMI        | HC-II-PE (Immu-357)                    | Coulter Immunotech, München         |
|                   |                                        |                                     |

# 2.1.2.7 Antikörper und Antigene für Virus-Serologie

Der im FACS verwendete, ployklonale Maus-Antikörper gegen HHV-6B wurde von PD Dr. Christian Jassoy, Virologie Würzburg, bereitgestellt. Die serologischen Tests für Influenza, HHV-6 und andere respiratorische Viren wurden vom Institut für Virologie und Immunbiologie der Universität Würzburg durchgeführt.

# 2.1.2.8 Materialien für Blutentnahme und Zellkultur

| Butterfly-Venenpunktionssystem (G19)       | Braun                                 |
|--------------------------------------------|---------------------------------------|
| ELISA-Platten (96 Näpfe, Maxisorb)         | Nunc, Wiesbaden                       |
| FACS-Röhrchen                              | Falcon / Becton Dickinson, Heidelberg |
| EDTA-Monovette (9 ml)                      | Sarstedt, Nümbrecht                   |
| Serum-Monovette (9ml)                      | Sarstedt, Nümbrecht                   |
| Nitrozelluloseplatten (96 Näpfe, steril)   | Millipore, Eschborn (MAHA S 4510)     |
| Reaktionsgefäße (0,5 / 1,5 / 2 ml)         | Eppendorf, Hamburg                    |
| Rotrand-Sterilfilter (0,2 µm)              | Schleicher & Schüll, Dassel           |
| Bottle-Top Sterilfilter (0,2 µm)           | Nunc / Nalgene, Wiesbaden             |
| Styroporständer, Styro-rack (5 x 10)       | Hartenstein, Würzburg                 |
| Zellkulturflaschen (50 / 260 / 800 ml)     | Nunc, Wiesbaden                       |
| Zellkulturplatten (6/12/24/48/96U/F Näpfe) | Nunc, Wiesbaden                       |
| Zentrifugenröhrchen (15 / 50 ml)           | Falcon / Becton Dickinson / Sarstedt  |
|                                            |                                       |

#### Material für Molekularbiologie 2.1.3

#### Chemikalien, Puffer und Reagenzien 2.1.3.1

| RNA-Isolationskit RNeasy Mini                                   |             | Qiagen, Hilden         |                               |
|-----------------------------------------------------------------|-------------|------------------------|-------------------------------|
| RNeasy Sä                                                       | ulen        |                        |                               |
| RLT-Puffe                                                       | r           |                        |                               |
| 1 % (v/v) $\beta$ -Mercaptoethanol                              |             |                        | Roth, Karlsruhe               |
| RW1-Wase                                                        | chpuffer    |                        |                               |
| RPE-Puffe                                                       | r           |                        |                               |
| Ethanol                                                         |             |                        | J.T. Baker, Deventer, Holland |
| RNase-frei                                                      | es Wasser   |                        |                               |
| TRIS-Puffer                                                     |             |                        |                               |
| 1,21 g                                                          | TRIS (10 mM | )                      | Merck, Darmstadt              |
| ad 100 ml                                                       | bdH2O       | pH 8,8                 |                               |
| DEPC-Wasse                                                      | <u>r</u>    |                        |                               |
| 0,1 %                                                           | (w/v) DEPC  |                        | Merck, Darmstadt              |
| in bdH2O für mehrere Stunden rühren, anschließend autoklavieren |             |                        |                               |
| Oligo (dT)                                                      |             | $500 \ \mu g \ / \ ml$ | Pharmacia, Freiburg           |
| Superscript I | Reverse Trans            | <u>skriptase - kit</u>       | LifeTechnologies, Eggenstein |  |  |  |
|---------------|--------------------------|------------------------------|------------------------------|--|--|--|
| Superscrip    | ot II RT                 | 200U / µl                    |                              |  |  |  |
| First Stran   | d Puffer                 | 5x                           |                              |  |  |  |
| DTT           |                          | 0,1 M                        |                              |  |  |  |
| dNTPs         |                          | 10 mM                        | Pharmacia, Freiburg          |  |  |  |
| PCR - Prämiz  | <u>k pro Platte (4 1</u> | <u>nl)</u>                   |                              |  |  |  |
| ad 4000 µl    | H <sub>2</sub> O LiChros | olv <sup>®</sup> (Chromatogr | .)Merck, Darmstadt           |  |  |  |
| 1200 µl       | MgCl <sub>2</sub> 25mM   | 1                            | PE Biosystems, Weiterstadt   |  |  |  |
| 500 µl        | TaqMan <sup>™</sup> 10   | )x Puffer A                  | PE Biosystems, Weiterstadt   |  |  |  |
| 150 U / ml    | dATP                     |                              | PE Biosystems, Weiterstadt   |  |  |  |
| 150 U / ml    | dCTP                     |                              | PE Biosystems, Weiterstadt   |  |  |  |
| 150 U / ml    | dGTP                     |                              | PE Biosystems, Weiterstadt   |  |  |  |
| 300 U / ml    | dUTP                     |                              | PE Biosystems, Weiterstadt   |  |  |  |
| s. 2.1.5      | Primer, Sense            | 2                            | PE Biosystems, Weiterstadt   |  |  |  |
| s. 2.1.5      | Primer, Antis            | ense                         | PE Biosystems, Weiterstadt   |  |  |  |
| s. 2.1.5      | Sonde                    |                              | PE Biosystems, Weiterstadt   |  |  |  |
| 25 µl         | AmpliTaq Go              | old <sup>TM</sup>            | PE Biosystems, Weiterstadt   |  |  |  |
| 50 µl         | AmpErase™                | UNG*                         | PE Biosystems, Weiterstadt   |  |  |  |
|               |                          |                              |                              |  |  |  |

\* Uracil-*N*-Glykosylase

## 2.1.3.2 Zytokinstandards und Oligonukleotide

| Zytokinstandards                            | Dr. N. Kruse, Würzburg     |
|---------------------------------------------|----------------------------|
| Oligonukleotide                             | PE Biosystems, Weiterstadt |
| Sequenzen sind in Abschnitt 2.1.5 angeführt |                            |

# 2.1.4 Allgemeine Materialien und Geräte

| Analysenwaage AE 160 (Histologie)  | Mettler, Gießen                |
|------------------------------------|--------------------------------|
| Analysenwaage BP 61 (Flachbau)     | Sartorius, Göttingen           |
| Autoklav (Vakulab HP)              | Münchner Medizin Mechanik GmbH |
| Bestrahlungsanlage RT 250          | Philips, Hamburg               |
| Betaplate                          |                                |
| Wallac-Skatron-Erntegerät 1295-004 | Pharmacia, Freiburg            |

| Wallac Einschweiß     | gerät 1295-012          | Pharmacia, Freiburg          |  |  |  |
|-----------------------|-------------------------|------------------------------|--|--|--|
| Wallac-Szintilations  | szähler 1205            | Pharmacia, Freiburg          |  |  |  |
| Software (UltroTerr   | n/MultiCalc)            | Pharmacia, Freiburg          |  |  |  |
| Begasungsbrutschrank  | mit 5 % CO <sub>2</sub> | Heraeus, Hanau               |  |  |  |
| Diafilm Ektachrome    |                         | Kodak, Stuttgart             |  |  |  |
| ELISA                 |                         |                              |  |  |  |
| Pentium PC Peakoo     | ck, Wünnenberg - Haar   | en                           |  |  |  |
| Reader Multiskan E    | X                       | Labsystems, Frankfurt        |  |  |  |
| Programm Genesis      |                         | Labsystems, Frankfurt        |  |  |  |
| Waschkamm Immu        | nowash 12               | Nunc, Wiesbaden              |  |  |  |
| Elektrophorese und We | estern-Immunoblot       |                              |  |  |  |
| Elektrophoresekam     | mer, Protean 2          | Biorad, München              |  |  |  |
| Immunoblotgerät Tr    | rans-Blot SD            | Biorad, München              |  |  |  |
| Power Pac 3000        |                         | Biorad, München              |  |  |  |
| Schüttler Swip KS-    | 10-A                    | Edmund Böhler                |  |  |  |
| FACScan               |                         | Becton Dickinson, Heidelberg |  |  |  |
| PowerPC, Mac OS       | 7.5.3                   | Apple, Ismaning              |  |  |  |
| Software CellQuest    | v3.0f (1996)            | Becton Dickinson, Heidelberg |  |  |  |
| Speichermedium 10     | 0 MB Zip Disk           | Iomega, Roy, Utah, USA       |  |  |  |
| HPLC                  |                         |                              |  |  |  |
| HPLC-Controller       | LKB 2152                | Pharmacia, Freiburg          |  |  |  |
| HPLC-Pump             | LKB 2150                | Pharmacia, Freiburg          |  |  |  |
| Recorder              | LKB 2210                | Pharmacia, Freiburg          |  |  |  |
| Superrac              | LKB 2211                | Pharmacia, Freiburg          |  |  |  |
| UV-Monitor 655 A,     | , variable Wellenlänge  | Merck-Hitachi                |  |  |  |
| <u>Kühltechnik</u>    |                         |                              |  |  |  |
| Flüssigstickstoff     |                         | Tyczka, Würzburg             |  |  |  |
| Flüssigstickstoffbeh  | nälter                  | Messer, Griesheim            |  |  |  |
| Flüssigstickstoffvor  | ratstank                | Messer, Griesheim            |  |  |  |
| Gefrierschrank (-22   | °C) Öko-Super           | Liebherr, Biberach           |  |  |  |
| Gefrierschrank (-80   | °C) Sepatech            | Heraeus, Hanau               |  |  |  |

| Kühlschrank (4°C)                       | Bauknecht, Schorndorf                 |
|-----------------------------------------|---------------------------------------|
| Latexhandschuhe Satin Plus, puderfrei   | Safeskin, San Diego, CA, USA          |
| Lyophilisator Lyovac GT 2               | Amsco/Finn-Aqua, Hürth                |
| Magnetrührer IKAMAG RCT                 | IKA, Janke & Kunkel, Staufen i. Br.   |
| Mikroskope                              |                                       |
| Durchlichtmikroskop IM                  | Zeiss, Oberkochen                     |
| Zählmikroskop                           | Zeiss, Oberkochen                     |
| Objektiv Plan 40/0,65                   | Zeiss, Oberkochen                     |
| Okular +Kpl-W 10x/18                    | Zeiss, Oberkochen                     |
| Photomikroskop IX 70                    | Olympus, Hamburg                      |
| Objektiv HMC10LWD CPlan0,25na∞/1        | Olympus, Hamburg                      |
| Objektiv HMC20LWD LCA 0,40na∞/1         | Olympus, Hamburg                      |
| Okular WH 10x / 22 $\infty$             | Olympus, Hamburg                      |
| Photo-Automat MPS 30                    | Leica, Bensheim                       |
| Stereomikroskop M3Z (ELISPOT)           | Wild, Heerbrugg (Schweiz)             |
| Lichtquelle KL-1500-T                   | Schott, Mainz                         |
| Strichplatte (Okulareinsatz) 100 x 1 mm | <sup>2</sup> Leica, Bensheim          |
| pH-Meter pH 530                         | Wissenschaftl.Techn.Werkst., Weilheim |
| Pipetten                                |                                       |
| Pipettierhilfe Akku pipetus             | Hirschmann, Eberstadt                 |
| 8-Kanalpipette Titerman 4908            | Eppendorf, Hamburg                    |
| Multipette <sup>®</sup> plus            | Eppendorf, Hamburg                    |
| Pipette Research 100                    | Eppendorf, Hamburg                    |
| Pipetman <sup>®</sup> P10, P200, P1000  | Gilson (Abimed, Langenfeld)           |
| Pasteurpipetten                         | Flow Laboratories,                    |
| Pipetten Glas 5/10/20 ml                | Brand, Wertheim                       |
| Pipettenspitzen (gelb, blau)            | Eppendorf, Hamburg                    |
| Pipettenspitzen (weiß)                  |                                       |
| Spektralphotometer Uvikon 930           | Kontron, Eching                       |
| Statistik - Programme                   |                                       |
| Excel®                                  | Microsoft, Redmeond, WA, USA          |

| StatView <sup>®</sup>                      | SAS, Cray, NC, USA                     |
|--------------------------------------------|----------------------------------------|
| Sterilbank, Laminarflow GELAIRE BSB 6A     | Flow Lab, Meckenheim                   |
| Sterilbank, Laminarflow NUAIRE             | Zapf, Sarstedt                         |
| Taqman 7700 Sequence Detector System       | ABI PRISM, Perkin Elmer, Weiterstadt   |
| PowerPC, Mac OS 7.5.3                      | Apple, Feldkirchen                     |
| PowerBook 1400cs, Mac OS 8.0.1             | Apple, Feldkirchen                     |
| Software SDS 1.6.3 (1998)                  | Perkin Elmer, Weiterstadt              |
| Speichermedium 1 GB Jaz Cartridge          | Iomega, Roy, Utah, USA                 |
| Thermoblock (120°C)                        | Liebisch, Bielefeld                    |
| Ultrafiltration Seralpur / -dest           | Seral, Rausbach - Baumbach             |
| Ultra-Turrax                               | IKA, Janke & Kunkel, Staufen i. Br.    |
| Video-Dokumentations-System                | Intas, Göttingen                       |
| Vortexer L 46                              | Gesellschaft für Laborbedarf, Würzburg |
| Wasserbad                                  | Köttermann, Fa. Röwa, Heimsheim        |
| Zählkammer, Neubauer improved, bright line | Superior / Marienfeld, Bad Mergentheim |
| Zentrifugen                                |                                        |
| Biofuge 15 (Rotor #3754)                   | Heraeus, Hanau                         |
| Biofuge 15R (Rotor #3042)                  | Heraeus, Hanau                         |
| Centrikon T-42K (Rotor #A18C)              | Kontron, Eching                        |
| Megafuge 1.0R (Rotor #2705)                | Heraeus, Hanau                         |
| Varifuge 3.0R (Rotor #8074)                | Heraeus, Hanau                         |
| Tischzentrifuge (Viro)                     | Eppendorf, Hamburg                     |

#### Oligonukleotid- und Peptidsequenzen 2.1.5

| Oligonukleoti | de (Prime | er) für | RT- | <u>PCR</u> |     |      |          |         |        |
|---------------|-----------|---------|-----|------------|-----|------|----------|---------|--------|
| β-Aktin S2    | 5´-ATT    | GCC     | GAC | AGG        | ATG | CAG  | AA-31    |         | 200 pM |
| β-Aktin AS2   | 5´-GCT    | GAT     | CCA | CAT        | CTG | CTG  | GAA-31   |         | 100 nM |
| IL2 S2        | 5´-TCA    | CCA     | GGA | TGC        | TCA | CAT  | TTA AGT- | -31     | 200 nM |
| IL2 AS2       | 5´-GAG    | GTT     | TGA | GTT        | CTT | CTT  | CTA GAC  | ACT G-3 | 300 nM |
| IL4 S2        | 5´-CAA    | GCA     | GCT | GAT        | CCG | ATT  | CC-31    |         | 300 nM |
| IL4 AS2       | 5´-GGA    | ATT     | CAA | GCC        | CGC | CA-3 | 31       |         | 300 nM |

| IL10 S3             | 5'-AGG C              | CTA CG  | G CGC  | TGT   | CAT  | C-31   |       |      |                | 300 nM         |
|---------------------|-----------------------|---------|--------|-------|------|--------|-------|------|----------------|----------------|
| IL10 AS3            | 5 <sup>-</sup> -GGC A | ATT CT  | r cac  | CTG   | CTC  | CA-3   | 3     |      |                | 300 nM         |
| IFNy S2             | 5´-CGA G              | GAT GA  | C TTC  | GAA   | AAG  | CTG    | AC-3  | 31   |                | 200 nM         |
| IFNy AS2            | 5´-GGC G              | GAC AG  | r tca  | GCC   | ATC  | A-3´   |       |      |                | 200 nM         |
| TNFa S2             | 5'-AGG C              | CGG TG  | C TIG  | TTC   | CTC  | A-3´   |       |      |                | 100 nM         |
| TNFα AS2            | 5´-GIT C              | CGA GA  | A GAT  | GAT   | CTG  | ACT    | GCC-  | -31  |                | 100 nM         |
| $\beta$ -Aktin Son2 | 5'-FAM-C              | CAA GA  | r cat  | TGC   | TCC  | TCC    | TGA   | GCG  | CA-TAMRA-3'    | 200 nM         |
| IL2 Son             | 5'-FAM-A              | ACA TGO | C CCA  | AGA   | AGG  | CCA    | CAG   | AAC  | TG-TAMRA-3     | 100 nM         |
| IL4 Son2            | 5'-FAM-C              | CCC AG  | A GGT  | TCC   | TGT  | CGA    | GCC   | GTT- | -TAMRA-31      | 100 nM         |
| IL10 Son3           | 5'-FAM-C              | CTT CCC | C TGT  | GAA   | AAC  | AAG    | AGC   | AAG  | GCC-TAMRA-3    | 100 nM         |
| IFNy Son2           | 5´-FAM-T              | TG AA   | r gtc  | CAA   | CGC  | AAA    | GCA   | ATA  | CAT GA-TAMR    | A 100 nM       |
| TNFα Son2           | 5´-FAM-C              | CCA GA  | G GGA  | AGA   | GTT  | CCC    | CAG   | GGA  | C-TAMRA-3      | 100 nM         |
|                     |                       |         |        |       |      |        |       |      |                |                |
| <u>Überlappende</u> | Peptidsequ            | uenzen  | (1-13) | von l | ıMBI | P 17,2 | 2 kDa | , No | menklatur nacł | <u>n Ota</u> 7 |
| 1-20 AS             | SQKRPSQR              | RHGSKY  | LATA   | ST    |      |        |       |      |                |                |
| 11-30               |                       | GSKY    | LATA   | STM   | DHAR | HGFI   | ΓP    |      |                |                |

| 11-30       | GSKYLATASTMDHARHGFLP                                                      |
|-------------|---------------------------------------------------------------------------|
| 21-40       | MDHARHGFLPRHRDTGILDS                                                      |
| 31-50       | RHRDTGILDSIGRFFGGDRG                                                      |
| 41-60       | IGRFFGGDRGAPKRGSGKDS                                                      |
| 51-70       | APKRGSGKDSHHPARTAHYG                                                      |
| 61-82       | HHPARTAHYGSLPQKSHGRT                                                      |
| 71-92       | SLPQKSHGRTQDENPVVHFF                                                      |
| 83-102      | QDENPVVHFFKNIVTPRTPP                                                      |
| 93-112      | KNIVTPRTPPPSQGKGRGLS                                                      |
| 113-132     | LSRFSWGAEGQRPGFGYGGR                                                      |
| 124-143     | RPGFGYGGRASDYKSAHKGF                                                      |
| 143-168     | FKGVDAQGTLSKIFKLGGRD                                                      |
| (17 kDa)    | Kursivgedruckte Aminosäuren fehlen bei Ota und wurden ergänzt.            |
| Zusätzliche | Peptide (14-16) mit Berücksichtigung der 18,5 kDa - Haupt-Splice-Variante |
| 50-69       | GAPKRGSGKVPWLKPGRSPL                                                      |
| 60-79       | PWLKPGRSPLPSHARSQPGL                                                      |
| 70-89       | PSHARSQPGLCNMYKDSHHP                                                      |
| (21,5 kDa)  | Konsensus-Nomenklatur nach Proteindatenbank                               |

| 1                                      | 11                              | 21                                   | 31                              | 41                           |
|----------------------------------------|---------------------------------|--------------------------------------|---------------------------------|------------------------------|
| ASQKRPSQRH                             | GSKYLATAST                      | MDHARHGFLP                           | RHRDTGILDS                      | IGRFFGGDRG                   |
| ASQKRPSQRH                             | GSKYLATAST                      | MDHARHGFLP                           | RHRDTGILDS                      | IGRFFGGDRG                   |
| ASQKRPSQRH                             | GSKYLATAST                      | MDHARHGFLP                           | RHRDTGILDS                      | IGRFFGGDRG                   |
|                                        |                                 |                                      |                                 |                              |
| 51                                     | 61                              | 71                                   | 81                              | 91                           |
| APKRGSGK                               |                                 |                                      | DSHHPA                          | RTAHYGSLPQ                   |
| APKRGSGKVP                             | WLKPGRSPLP                      | SHARSQPGLC                           | <i>NMYK</i> DSHHPA              | RTAHYGSLPQ                   |
| APKRGSGKVP                             | WLKPGRSPLP                      | SHARSQPGLC                           | <i>NMYK</i> DSHHPA              | RTAHYGSLPQ                   |
|                                        |                                 |                                      |                                 |                              |
| 101                                    | 111                             | 121                                  | 131                             | 141                          |
| KSHGRTQDEN                             | PVVHFFKNIV                      | TPRTPPPSQG                           | KGRGLSLSRF                      | <i>S</i> WGAEGQRPG           |
| KSHGRTQDEN                             | PVVHFFKNIV                      | TPRTPPPSQG                           | K                               | GAEGQRPG                     |
| KSHGRTQDEN                             | PVVHFFKNIV                      | TPRTPPPSOG                           | KGRGLSLSRF                      | <i>S</i> WGAEGORPG           |
|                                        |                                 | ~                                    |                                 | ~                            |
|                                        |                                 | ~                                    |                                 | ~                            |
| 151                                    | 161                             | - 171                                | 181                             | 191                          |
| <u>151</u><br>FGYGGRASDY               | 161<br>KSAHKGFKGV               | -<br>171<br>DAQGTLSKIF               | 181<br>KLGGRDSRSG               | -<br>191<br>SPMARR           |
| <u>151</u><br>FGYGGRASDY<br>FGYGGRASDY | 161<br>KSAHKGFKGV<br>KSAHKGFKGV | -<br>171<br>DAQGTLSKIF<br>DAQGTLSKIF | 181<br>KLGGRDSRSG<br>KLGGRDSRSG | -<br>191<br>SPMARR<br>SPMARR |

Drei Splice-Varianten (17200, 18500 und 21500 kDa) von hMBP

### 2.2 Methoden

### 2.2.1 Methoden der ViMS-Studie

### 2.2.1.1 Patienten-/Probandenauswahl und Probengewinnung

An der ViMS-Studie der Neurologischen Poliklinik der Universität Würzburg nahmen 12 MS-Patienten mit schubförmigem Verlauf, ohne immunmodulatorische Behandlung in den letzten 6 Monaten, und 28 gesunde Kontrollspender teil, die in Alter und Geschlecht vergleichbar waren. Nach Begutachtung der Studie durch die örtliche Ethikkommission und Einverständniserklärung zur Teilnahme an dieser Studie (s. Kap. 6), wurde den Spendern 27 ml EDTA-Blut und 18 ml Serum abgenommen (vgl. Kap. 2.2.1.5), bevor diese mit 0,5 ml Influenza-Impfstoff Influvac<sup>®</sup> intramuskulär in den M. gluteus med. geimpft wurden. Bis auf gelegentliche Myalgien und Hautrötungen im Sinne von lokalen Impfreaktionen, sowie vereinzelt leichten Temperaturerhöhungen gab es keine primären Impfkomplikationen, wie dem Impftagebuch und gezielten Fragen bei den Kontrollterminen zu entnehmen war (vgl. Kap. 2.2.1.3).

### 2.2.1.2 Impfstoff

Der Spaltimpfstoff Influvac<sup>®</sup> enthielt inaktive Bestandteile der nach Empfehlung der Weltgesundheitsorganisation (WHO) für 1998/99 und 1999/2000 relevanten Influenza-Virusstämme. Im Einzelnen setzte sich der Impfstoff aus je 15 µg Hämagglutinin, sowie Neuraminidasen folgender Stämme zusammen: A/Sydney/5/97 (H<sub>3</sub>N<sub>2</sub>) - ähnlich

A/Beijing/262/95 (H<sub>1</sub>N<sub>1</sub>) - ähnlich B/Beijing/184/93 - ähnlich

und pro Dosis (0,5 ml) aus

0,05 mg Thiomersal

max. 50,00 µg Natriumdesoxycholat

max. 0,010 mg Formaldehyd

max. 0,015 mg Cetyltrimethylammoniumbromid,

in Spuren enthalten: Polysorbat 80, Gentamycin und Saccharose, sowie Kaliumchlorid, Kaliumdihydrogensulfat, Dinatriumhydrogenphosphat, Natriumchlorid, Calciumchlorid, Magnesiumchlorid-Hexahydrat, Wasser für Injektionszwecke.

*In vitro* eingesetzter Impfstoff wurde vor Verwendung in ELISPOT-Stimulationsassays mit einem Dialyseschlauch (cut-off 18 - 20 kDa) 3 mal gegen 2 l PBS dialysiert. Die so entsalzte Präparation wurde in Zellkultur in einer Endverdünnung von 1:20 eingesetzt, entsprechend einer Endkonzentration von 3 µg Hämagglutinin (je Virus-Stamm) / ml.

### 2.2.1.3 Klinische und virologische Verlaufsbeobachtungen

Patienten und Probanden kamen wiederholte Male (d. h. 2 Wochen, 4 Wochen und 16 Wochen) nach Impftermin und zusätzlich im Falle eines natürlich erworbenen Infektes der oberen Luftwege (Tage, 2 Wochen, 4 Wochen, 16 Wochen) nach diesem Ereignis, um für weitere Verlaufsuntersuchungen Blut zu spenden (Abb. 2).

Dafür wurden jeweils 18 ml EDTA-Blut und 9 ml Serum abgenommen. Die Lymphozytenisolation, sowie Serumgewinnung und Lagerung erfolgte nach Standardprotokoll (Kap. 2.2.1.5). Die Verteilungsmuster und Variationen spezifischer T-Zellen wurde *ex vivo* mit dem IFNγ-ELISPOT durchgeführt, die von der Platte eingesammelten PBMC wurden in RLT-Puffer lysiert und zum Teil in PCR-Experimenten zur Quantifizierung von IFNγ- und IL4-mRNA weiterverwendet. Abbildung 2: Zu den Zeitpunkten 0, 2, 4 und 16 Wochen nach Impfung (wpV, weiße Pfeile), bei zufällig aufgetretenen Atemwegsinfektionen zusätzlich in zeitlicher Nähe zum Infekt, sowie 2, 4, 16 Wochen danach (wpI, graue Pfeile) erfolgten Blutentnahmen zur Bestimmung spezifischer T-Zellantworten mit IFNγ-ELISPOT, RT-PCR und Virus-Serologie.



Serum-Fraktionen wurden bei -20°C gelagert und Antikörpertiter gegen Influenza durch Dr. S. Niewiesk, Antikörpertiter gegen CMV, EBV, sowie an ausgewählten Seren von Patienten/Probanden mit Infekt gegen Influenza A/B, Parainfluenza I/III, Adeno-, RS-, Echo-, Coxsackieviren von der virologischen Diagnostik unter Leitung von Dr. B. Weißbrich durchgeführt. Zusätzlich dokumentierten die Probanden in einem standardisierten Fragebogen mögliche Impfreaktionen und Infektionszeichen, sowie bei MS-Patienten neurologische Symptome, welche am Ende ausgewertet wurden.

### 2.2.1.4 Allgemeines zum Umgang mit Zellkulturen

Bei der Zellkultur eukaryontischer Zellinien sind sterile Arbeitsbedingungen sehr wichtig, um Kontaminationen mit Mikroorganismen zu vermeiden. Deshalb sind besondere Vorsichtsmaßnahmen genau einzuhalten. Sämtliche Mediumbestandteile sowie die zur Arbeit verwendeten Pipetten und Zellkulturgefäße müssen keimfrei sein, was durch Sterilfiltration bzw. Autoklavieren erzielt wurde. Außerdem wurden alle Arbeitsschritte in einer Laminar-flow Sterilbank durchgeführt, die für einen keimfreien Luftstrom sorgte. Die Arbeitsfläche der Sterilbank wurde vor und nach jeder Benutzung mit 70 % igem vergällten Ethanol gereinigt. Glaspipetten wurden vor Benutzung mit einem in der Sterilbank befindlichen Bunsenbrenner abgeflammt, sowie die Flaschenhälse der benutzten Mediumflaschen und Zellkulturgefäße vor und nach Öffnen des Deckels. Die Deckel wurden, falls nötig, mit der Öffnung nach unten auf die Arbeitsfläche abgelegt, um eine

#### Material und Methoden

Verunreinigung durch versehentliches Darübergreifen zu vermeiden. Die Hände - bei potentiell infektiösen Arbeiten entsprechend die Handschuhe - wurden mehrfach, jedenfalls vor jedem Arbeitsbeginn mit Händedesinfektionsmittel gereinigt.

Weiterhin sind für quantitative Bestimmungen immunbiologischer Parameter möglichst standardisierte Techniken der Probengewinnung und *in vitro*-Untersuchungen essentiell, da vor dem Hintergrund einer Vielzahl von biochemischen, mikro- oder immunbiologischen Faktoren jede Variation der komplexen Systeme zu einer Potenzierung von Fehlermöglichkeiten führen kann. Daher wurden in sämtlichen Arbeitsschritten von der Blutentnahme über Stimulations- und Kulturbedingungen von *in vitro*-Assays (alle Zellkulturen wurden in feuchter Atmosphäre bei 37°C und 5 % CO<sub>2</sub> inkubiert) bis hin zur Analyse möglichst einheitliche Versuchsabläufe eingehalten.

### 2.2.1.5 Blutentnahme und Lymphozytenisolierung

Entsprechend der benötigten Lymphozyten-Zellzahl wurden den Probanden / Patienten für die Zellinienetablierung / -fortführung (36 - 90 ml EDTA, 9 - 18 ml Serum), in vitro Stimulations- (ViMS-Studie 18 - 27 ml EDTA, 9 ml Serum) bzw. Infektionsversuche (36 - 54 ml EDTA) Blut abgenommen. Dazu wurde bei den Probanden möglichst zwischen 8 und 9 Uhr morgens unter sterilen Bedingungen mit einer 20G Butterfly-Kanüle (Braun) die Vena cubita media punktiert und Blut durch langsames Ziehen und leichtes Schwenken vorsichtig entnommen. Nach Blutentnahme standen die Serummonovetten für mindestens 10 min bei RT, bevor sie bei 3000 x g für 10 min bei RT abzentrifugiert wurden. 3 - 8 ml des so gewonnenen Serums wurde in einem 3,5 ml Kryoröhrchen für 30 min im 56°C temperierten Wasserbad hitzeinaktiviert und zum Teil für die Herstellung des autologen Serums verwendet oder bei -20°C eingefroren. Der nicht-inaktivierte Rest wurde für weitere serologische Tests aliquotiert und ebenfalls bei -20°C tiefgefroren. Das Blut in den EDTA-Monovetten wurde innerhalb von 1-2 h weiterverarbeitet. Für ViMS-Probanden wurden 500 µl Vollblut in 2 ml Reaktionsgefäßen in flüssigem Stickstoff schockgefroren und bei -80°C gelagert. Aus dem restlichen EDTA-Blut wurden PBMC mittels der Lymphoprep-Dichtegradientenzentrifugation gereinigt.

Dazu wurden 20 - 60 ml gerinnungsinaktiviertes (EDTA) Blut 1:1 mit PBS verdünnt. Je 20 ml des verdünnten Blutes wurden auf 10 ml Lymphoprep überschichtet. Durch Zentrifugation bei 483 x g für 25 min bei 20°C (ohne Bremse) erfolgte die Anreicherung von Lymphozyten, Monozyten, Makrophagen in der Interphase, wonach die Zellen von jeweils zwei Interphasen mit einer 5 ml Plastikpipette in kreisenden Bewegungen eingesammelt und in ein 50 ml Zentrifugenröhrchen vereinigt wurden. Diese Zellen wurden 2 mal mit 50 ml PBS gewaschen (272 x g 10 min 4°C) und gegebenenfalls in einem Zentrifugenröhrchen vereinigt, bevor sie in 1 ml  $R_0 / R_5$  gezählt und für weitere Versuche eingesetzt wurden.

### 2.2.1.6 Zellzahlbestimmung und Vitalfärbung

Die genaue Ermittlung der Zellkonzentration ist für Zellkulturversuche unerläßlich und gerade bei ELISPOT-Assays kommt es auf exakte Zellverdünnungen an. Die Standardmethode hierfür ist die manuelle Auszählung mit der Neubauerkammer. Dazu wurden die Zellpellets mit einer 1000  $\mu$ l Pipette in 1 ml R<sub>0</sub> bzw. R<sub>5</sub> gut resuspendiert. Dann wurden 10  $\mu$ l Zellsuspension, 10  $\mu$ l Trypanblaulösung (EC = 0,5 % (w/v)) und 80  $\mu$ l PBS mit einer 200  $\mu$ l Pipette gut gemischt, bevor nach einer kurzen Inkubation eine der beiden Zählkammern gefüllt wurde. Es wurden jeweils nur lebendige, also nicht blauangefärbte Zellen, in 16 Quadraten ausgezählt und die Zellzahl nach folgender Formel berechnet:

Lymphozyten /  $V = z x d x V x 10^4$ 

V = Volumen der Suspension (hier 1 ml)

z = ausgezählte Zellen (ohne blauangefärbte Zellen und ohne Erythrozyten)

d = Verdünnungsfaktor (hier 10, da die Zellen 1:10 verdünnt sind)

### 2.2.1.7 Quantifizierung antigenspezifischer T-Zellen mit ELISPOT

Zur Etablierung eines Assays, mit dessen Hilfe der Anteil antigenspezifischer T-Zellen aus dem Blut unterschiedlicher Spender ermittelt werden kann, wurden im ELISPOT zahlreiche Antigenkonzentrationen, Zellverdünnungsreihen von sowohl spezifischen T-Zellinien als auch PBMC, Blockierungsschritte und Inkubationszeiten ausgetestet, die hier nicht alle im Einzelnen aufgeführt werden können. Insbesondere für die ViMS-Studie wurde nach folgendem Protokoll gearbeitet: Pro Spender wurden 24 bzw. 48 Näpfe einer sterilen Nitrozelluloseplatte mit 37,5  $\mu$ g 1. Antikörper (1-D1-K) / 2,5 ml (= 50  $\mu$ l / Napf) Carbonat-Bicarbonat-Puffer beschichtet. Nach einer 4 h Inkubation bei RT wurde die Platte 3 mal mit 200  $\mu$ l sterilem PBS gewaschen, bevor die, in R<sub>5</sub> vorverdünnten Lymphozyten (200  $\mu$ l / Napf) nach dem in Abb. 5a/b aufgeführten Pipettierschema ausplattiert und durch Antigenzugaben stimuliert wurden.

Tabelle 5a: 1. Pipettierschema des ELISPOT-Ansatzes (1998/99). Zur Veranschaulichung sind in Spalten 1-6 die Zellzahl x  $10^5$  PBMC / 200µl, in Spalten 7-12 die entsprechenden Antigene dargestellt. Zwei Spender pro Platte. Verschiedene Kontrollen (*Kursivschrift*) wurden anfangs wenigstens 1 x / Spender mitgeführt (s. Tab. 6, Kap. 3.1.1)

|   | 1   | 2   | 3   | 4   | 5   | 6   | 7          | 8      | 9 | 10             | 11 | 12 |
|---|-----|-----|-----|-----|-----|-----|------------|--------|---|----------------|----|----|
| Α | 5,0 | 5,0 | 5,0 | 5,0 | 1,7 | 0,6 | Medium     |        |   | Influenza A    |    |    |
| В | 5,0 | 5,0 | 5,0 | 5,0 | 1,7 | 0,6 | hMBF       | )      |   | Influenza A    |    |    |
| С | 5,0 | 5,0 | 5,0 | 5,0 | 1,7 | 0,6 | rhMO       | G      |   | Influenza A    |    |    |
| D | 5,0 | 5,0 | 5,0 | 5,0 | 1,7 | 0,6 | rhMBP      |        |   | Tetanus Tox    |    |    |
| E | 5,0 | 5,0 | 5,0 | 5,0 | 1,7 | 0,6 | rhP0       |        |   | Tetanus Tox    |    |    |
| F | 5,0 | 5,0 | 5,0 | 5,0 | 1,7 | 0,6 | DMSO       |        |   | Tetanus Tox    |    |    |
| G | 5,0 | 5,0 | 5,0 | 5,0 | 1,7 | 0,6 | Essigsäure |        |   | PHA / aCD3     |    |    |
| Η | 5,0 | 5,0 | 5,0 | 5,0 | 1,7 | 0,6 | Eiweij     | 3 1:10 |   | Influvac 98/99 |    |    |

Tabelle 5b: 2. Pipettierschema des ELISPOT-Ansatzes (1999/2000). Vier Spender pro Platte. Keine Negativkontrollen außer Mediumwert.

|   | 1   | 2   | 3   | 4      | 5       | 6  | 7 | 8 | 9 | 10 | 11 | 12 |
|---|-----|-----|-----|--------|---------|----|---|---|---|----|----|----|
| Α | 5,0 | 5,0 | 5,0 | Mediu  | ım      |    |   |   |   |    |    |    |
| В | 5,0 | 5,0 | 5,0 | hMBP   | )       |    |   |   |   |    |    |    |
| С | 5,0 | 5,0 | 5,0 | rhMO   | G       |    |   |   |   |    |    |    |
| D | 5,0 | 5,0 | 5,0 | Tetanı | ıs Tox  |    |   |   |   |    |    |    |
| Ε | 1,7 | 1,7 | 1,7 | Tetanı | ıs Tox  |    |   |   |   |    |    |    |
| F | 1,7 | 1,7 | 1,7 | Influe | nza A   |    |   |   |   |    |    |    |
| G | 1,7 | 1,7 | 1,7 | Influv | ac 98/9 | 99 |   |   |   |    |    |    |
| Н | 1,7 | 1,7 | 1,7 | Influv | ac 99/0 | )0 |   |   |   |    |    |    |

Nach genau 24 h Inkubation bei 37°C und 5 %  $CO_2$  in einem wegen Rüttelgefahr wenig frequentierten Begasungsbrutschrank wurden die Zellen der unstimulierten, bzw. mit TT, Flu, hMBP stimulierten Triplikatansätze, sowie unterschiedlicher Kontrollansätze in RNase-freie 1,5 ml Reaktionsgefäße eingesammelt, bei 3000 rpm für 6 min pelletiert und nach Absaugen des Überstands und Auffüllen mit 300 µl RLT-Puffer bei -80°C tiefgefroren, bis sie zur weiteren Aufarbeitung (siehe Abschnitt 2.2.1.8) eingesetzt wurden. Die ELISPOT-Platte wurde mit einer 8-Kanalpipette 6 mal mit 200 µl PBS-T kräftig gewaschen und ausgeklopft. Nach Zugabe von 2,5 µg Biotin-gekoppelten 2. Antikörper (7-B6-1) / 2,5 ml PBS-T (50 µl / Napf), wurde die Platte bei 4°C über Nacht inkubiert. Die Platte wurde wiederum 6 mal mit PBS-T gewaschen und bei RT für 1 h mit 1:1000 in PBS-T verdünnter Streptavidin-gekoppelter Alkalischer Phosphatase inkubiert. Nach erneutem Waschen mit 6 mal 200 µl PBS-T wurde die Platte mit frisch angesetzter Substrat-Gebrauchslösung (RT !) für etwa 15 - 20 min inkubiert (blaue Farbentwicklung in der αCD3-Positivkontrolle) und 3 mal mit bdH<sub>2</sub>O nachgewaschen. Die über Nacht getrocknete Platte wurde mit einem Stereomikroskop und Zählstrichplatte bei einer Vergrößerung von 25 x ausgezählt, wobei unspezifische Punkte (Spots) durch ihre unregelmäßige Form und Farbtiefe (kontrolliert bei einer Vergrößerung von 40 x) ausgeschlossen wurden.

### 2.2.1.8 Quantifizierung von Zytokin-mRNA mit RT-PCR

#### 2.2.1.8.1 RNA-Isolation

Gesamt-RNA aus PBMC- und T-Zellkulturen wurde mittels Qiagen RNeasy mini kit gemäß den Empfehlungen des Herstellers präpariert. Dazu wurden die eingefrorenen, in 300 µl RLT-Puffer gelösten und bei -80°C tiefgefrorenen Zellpellets (7 - 8 x  $10^5$  Zellen / Reaktionsgefäß und Ansatz, siehe 2.2.1.7) bei RT aufgetaut und mit einer 1 ml Insulinspritze über eine 20G Kanüle 5 - 6 mal komplett geschert. Nach Zugabe des gleichen Volumens (300 µl) 70% Ethanol wurde das Gemisch in den RNeasy-Säulen für 15 sec bei 8000 x g zentrifugiert. Danach wurde die Säulenmembran mit 700 µl der RW1-Waschlösung und nach Verwendung eines neuen Auffangröhrchens zwei weitere Male mit je 500 µl der RPE-Lösung gewaschen, wobei beim letzten Schritt mit der maximalen Drehzahl (15000 rpm) für 2 min zentrifugiert wurde. Die über den gesamten Reinigungsprozeß an die Säulenmembran gebundene RNA wurde nun mit 33 µl RNasefreiem Wasser für 1 min bei 10000 rpm in ein 1,5 ml Reaktionsgefäß eluiert. Die RNA wurde sofort danach zu cDNA transkribiert (siehe 2.2.1.8.2)

### 2.2.1.8.2 Reverse Transkription (RT)

Die RNA (siehe 2.2.1.8.1) wurde nach Zugabe von 3  $\mu$ l Oligo (dT) (500  $\mu$ g/ml) für 10 min bei 70°C inkubiert und anschließend auf Eis gekühlt. Nach Zugabe von 12  $\mu$ l First Strand Buffer, 6  $\mu$ l 0.1 M DTT und 3  $\mu$ l 10mM dNTPs wurde der Ansatz für weitere 50 min bei 42°C inkubiert, wobei ca. 2 min nach Beginn dieser Zeitspanne die Transkription mit 3  $\mu$ l hinzugegebener Superscript II reverser Transcriptase (200 U/ml) aktiviert wurde. Das Enzym wurde schließlich 10 min bei 70°C denaturiert. Für die  $\beta$ -Aktin-Bestimmung und Normierung auf 10<sup>6</sup>  $\beta$ -Aktin-Moleküle wurden 2  $\mu$ l der erhaltenen cDNA-Lösung mit 198  $\mu$ l DEPC-Wasser (Analysequalität) verdünnt und zusammen mit der unverdünnten cDNA bis zur weiteren Verwendung bei -20°C eingefroren.

#### 2.2.1.8.3 Quantitative Polymerase-Ketten-Reaktion (PCR)

Bestimmung der β-Aktin und Zytokin-mRNA Konzentrationen

PCR-Reaktionen für β-Aktin-cDNA (1:100 verdünnt) und Zytokin-cDNA (eingestellt auf 1 x 10<sup>6</sup> β-Aktinmoleküle, s. 2.2.1.8.4) wurden nach den Ausführungen von Kruse et al.<sup>133</sup> durchgeführt, mit leichten Abweichungen in der Wahl der Oligonukleotide zugunsten der Sensitivität (vgl. 2.1.5). Verwendete Zytokinstandards wurden von Dr. N. Kruse unter Verwendung des pCR-Script<sup>TM</sup> Amp SK(+) - Vektorsystems (Stratagene, Heidelberg) aus PBMC konstruiert und freundlicherweise zu Verfügung gestellt. Die Standardreihe für eine Zytokin- bzw. β-Aktin-PCR-Serie von zumeist 3 bis 4 Läufen, wurde am Vormittag eines PCR-Versuchstages folgendermaßen hergestellt:

In einem separaten, plasmid-/DNAfreien Prä-PCR-Raum wurden 7 x 1,5 ml Reaktionsgefäße mit 450  $\mu$ l TRIS-Puffer pH 8,2 gefüllt und anschließend im PCR-Raum 90  $\mu$ l aus dem ersten Röhrchen auf 10  $\mu$ l des entsprechenden Standardaliquots (1 x 10<sup>8</sup> Moleküle) pipettiert. Im Weiteren wurden nach 6 sec Vortexen und kurzem Anzentrifugieren (ca. 6 sec, bis 2000 rpm) 50  $\mu$ l in das nächste Reaktionsgefäß pipettiert, bis 7 x 10er Verdünnungen zwischen 10 und 1 x 10<sup>7</sup> Molekülen / 10  $\mu$ l vorlagen. Diese Standardreihe wurde für den Versuchstag, max. für fünf PCR-Läufe (12 h), verwendet und erwies sich innerhalb dieses Zeitraums bei 4°C als stabil. Sämtliche PCR-Reaktionen wurden mit dem Taqman / ABI PRISM 7700 Sequence Detector unter folgenden Reaktionsbedingungen durchgeführt: 2 min bei 50°C, 10 min bei 95°C, 40 Zyklen mit 15 sec bei 95°C und 1 min bei 60°C, und einer abschließenden 5 min Inkubation bei 25°C. Oligonukleotid-Sequenzen und Zusammensetzung des PCR-Ansatzes sind in Abschnitt 2.1.3 zusammengefaßt. Die auf der Festplatte des Aufnahmecomputers (Macintosh PowerPC) gespeicherten Rohdaten und Meßdateien wurden zur weiteren Analyse auf ein 1 GB-Speichermedium übertragen und an einem PowerBook 1400 cs mit der gleichen Software (Sequence Detection Software 1.6.3, Perkin Elmer, 1998) ausgewertet.

#### 2.2.1.8.4 Standardisierung der cDNA-Konzentration

Gemäß der aus Triplikaten gemittelten  $\beta$ -Aktin-Konzentrationen (s. Formel) wurden in dem Datenverarbeitungsprogramm Excel<sup>®</sup> Verdünnungen berechnet, anhand derer entsprechend ihrer cDNA-Ausgangskonzentration 2 - 4 Aliquots zu je 3,5 x 10<sup>6</sup> Moleküle  $\beta$ -Aktin / 35 µl DEPC-Wasser aus den ursprünglichen cDNA-Präparationen angefertigt wurden. In einigen Präparationen war die cDNA-Ausbeute so gering, daß die  $\beta$ -AktincDNA-Konzentration auf 5 x 10<sup>5</sup> bzw. 2 x 10<sup>5</sup> / µl eingestellt werden mußte. Die hieraus gewonnenen Zytokinergebnisse wurden daraufhin rechnerisch bereinigt und sofern möglich in graphischen Darstellungen mit einem Stern gekennzeichnet.

|   | m      | = a x b x c;   | m = Mittelwerte der $\beta$ -Aktin PCR |
|---|--------|----------------|----------------------------------------|
| ⇒ | b      | = m / (a x c); | a = eingesetztes Volumen (=10 $\mu$ l) |
| ⇒ | b / µl | = m x 10       | $b = erwartete \beta$ -Aktinmoleküle   |
|   |        |                | c = cDNA (1:100) (= 1 / 100)           |

### 2.2.2 Methoden des virologisch-immunologischen Teils

### 2.2.2.1 Humanes basisches Myelinprotein (hMBP)

2.2.2.1.1 Präparation von humanem basischen Myelinprotein (hMBP)

Die Lipid-Extraktion aus weißem Hirngewebe wurde modifiziert nach der Methode von Eylar <sup>134</sup>. Das Prinzip der biochemischen Aufreinigung von MBP beruht auf der Trennung von basischen Proteinanteilen von den übrigen, sauren Bestandteilen des Myelins und wird durch die folgenden 5 Schritte erreicht:

- 1) Entfetten mit Chloroform / Methanol
- 2) Saure Extraktion bei pH 2
- 3) Neutralisation bei pH 5,5
- 4) Ammoniumsulfat-Fällung
- 5) Acetonpräzipitation

Das Gehirn eines nicht an einer ZNS-Erkrankung (Unfall) Verstorbenen wurde unmittelbar nach Entnahme in kaltem PBS transportiert und gewaschen, bevor Teile der weißen Substanz bei -80°C tiefgefroren wurden. Für die Präparation wurden 100g weiße Substanz (-80°C, < 7 h post mortem), eingewickelt in Alufolie, mit einem Hammer zerkleinert. Die Gewebestückchen wurden gewogen und in einem Becherglas unter schrittweiser Zugabe 200 ml vorgekühlten Methanols (-20°C) mit Hilfe des Ultra-Turrax weiter homogenisiert. Dabei wurde über 3-5 min abwechselnd jeweils 15 sec homogenisiert und abgewartet, um eine Erwärmung des Gewebematerials zu vermeiden. Nach Zugabe von 500 ml vorgekühltem Chloroform (-20°C) wurde wieder für 3-5 min homogenisiert. Zur Abtrennung des Chloroforms wurde das Homogenat in einen Scheidetrichter gefüllt. Bei 4°C bildeten sich nach 3-5 h zwei klar getrennte Phasen, eine trübe obere und eine klare untere Phase. Die klare, chloroformhaltige Phase wurde verworfen und die trübe Phase mittels Waschflasche und Wasserstrahlpumpe in einer Porzellanfilternutsche mit 2 Whatman 41-Filterpapieren filtriert. Es wurde mit ca. 100-200 ml Aceton nachgewaschen und vorsichtig mit einem kleinen Spatel umgerührt, um letztendlich sandfarbenes Pulver zu erhalten. Die getrocknete Masse wurde mit dem Spatel vom Filter gekratzt und mit 400 ml Wasser 3 min homogenisiert. Das Homogenat wurde angesäuert (pH < 2) und über Nacht bei 4°C unter ständigem Rühren extrahiert.

Schließlich wurde der saure Extrakt bei 3000 rpm für 30 min bei 4°C zentrifugiert, der Überstand mit NH<sub>4</sub>OH auf einen pH von 5,5 eingestellt und bei 4°C für 1 h gerührt. Nach einem erneuten Zentrifugationsschritt bei 3000 rpm für 30 min bei 4°C wurden die basischen Proteinanteile durch Zugabe von Ammoniumsulfat bis zur 50% Sättigung (= 354 g/l umgerechnet auf das Gesamtvolumen) gefällt. Dabei wurde nach 20 min Rühren mit 5 N NaOH ein pH von 6 eingestellt und die Fällung unter ständigem Rühren über Nacht bei 4°C durchgeführt. Die gefällte Lösung wurde bei 3000 rpm für 30 min bei 4°C abzentrifugiert und das Pellet anschließend nochmals mit einer 50 % igen Ammoniumsulfatlösung (H<sub>2</sub>O+(NH<sub>4</sub>)SO<sub>4</sub>) gewaschen. Die Pellets wurden in 10-20 ml bdH<sub>2</sub>O resuspendiert und mit der 9 fachen Menge (180 ml) eiskaltem Aceton aufgefüllt, danach mit 1 ml/l konzentrierter HCl angesäuert, um Proteindegradation zu verhindern. Nach Überführung in 50 ml Röhrchen und kurzer Reaktion bei RT (weiße Ausfällung), wurde mit halb geöffneten Deckeln bei 1800 rpm und 4°C für 20 min zentrifugiert. Die Pellets mit dem gereinigten MBP wurden in 30 ml H<sub>2</sub>O resuspendiert und in einen Dialyseschlauch gefüllt. Die Dialyse gegen 2 mal 10 l bdH<sub>2</sub>O erfolgte bei 4°C über Nacht. Das Dialysat wurde bei 1800 rpm für 20 min bei 4°C abzentrifugiert, der Überstand in einer mit Parafilm bedeckten Glasschale bei -80°C tiefgefroren. Nach einem Tag wurde der Parafilm mehrfach durchlöchert und die tiefgefrorene Lösung lyophilisiert.

#### 2.2.2.1.2 Quantitative Proteinbestimmung

Für Proteinbestimmungen wurde der Coomassie<sup>®</sup> Protein Assay (Pierce, Rockford, IL, USA) verwendet. Wenn Coomassie Protein bindet, verschiebt sich das Absorptionsspektrum von 465 nm auf 595 nm und gleichzeitig ändert sich die Farbe des Reagens von grün/braun nach blau. Wegen der nicht-linearen Abhängigkeit des Farbumschlags bei steigenden Proteinkonzentrationen, wurden die Absorptionswerte mit einer BSA-Standardkurve verglichen. Für die hMBP-Proteinbestimmung wurden im Einzelnen 5 mg des lyophilisierten Proteins in 1 ml bdH<sub>2</sub>O aufgenommen. Lösungen mit unbekanntem Proteingehalt wurden unverdünnt eingesetzt. 1 ml raumtemperierte Coomassie<sup>®</sup>-Lösung wurde nach Zugabe folgender Proteinlösungen / Kontrollen gemischt und der Farbumschlag unmittelbar an einem Spektralphotometer bei einer Wellenlänge von  $\lambda = 595$  nm gemessen:

Referenzküvetten 1/2: 20 µl PBS bzw. entsprechendes Lösungsmittel

Probenküvette 3: 10 µl Probe

Probenküvette 4: 20 µl Probe

Probenküvette 5: 40 µl Probe

Bei Abweichen der auf die 20  $\mu$ l - Probe bereinigten Konzentrationen um mehr als 10 % der Standardabweichung, wurde die Meßreihe mit angepaßten Verdünnungen wiederholt.

2.2.2.1.3 SDS-Polyacrylamid-Gelelektrophorese (PAGE, nach Maniatis)

Das lyophilisierte MBP wurde gewogen und ein Teil zu 1 mg / ml in PBS gelöst. Zwischen 5 und 20  $\mu$ l der Proteinlösung wurden mit reduzierendem Probenladepuffer im Wasserglas gekocht durch ein 12 % iges SDS-Polyacrylamidgel getrennt. Die Proteinelektrophorese wurde in einer Protean 2 Elektrophorese-Kammer bei einer Spannung von 100 V für ca. 90 min durchgeführt. Das Gel wurde für 30 min bei RT in eine Färbelösung gelegt und leicht geschwenkt.

#### 2.2.2.1.4 Western-Immunoblot

Zwei Minigele wurden in einer Blotvorrichtung auf Nitrozellulose-Membranen übertragen. Der Transfer des Proteins aus dem SDS-Gel erfolgte in einem luftblasenfreien Sandwich aus drei Lagen Whatman-Filterpapier, dem SDS-Gel, der Nitrozellulose-Membran BT 85 und drei Lagen Whatman-Filterpapier. Der Transfer erfolgte mittels eines Gebrauchspuffers, der immer frisch aus einem 10 fach konzentrierten Puffer angesetzt wurde. Der Transfer dauerte 30 min bei einer maximalen Stromstärke von 100 mA pro Gel. Nach Markierung der rechten oberen Ecke, Waschen und Ponceau-S - Färbung der Membran, wurden mit einem Skalpel jeweils zwei Streifen aus einer Laufbahn geschnitten, die nach Beschriftung in je 2 ml PBS für 1 - 2 h auf dem Schüttler wieder entfärbt wurden. Erstantikörper (gegen MBP, MOG, S100, P<sub>0</sub>) wurden 1:1000 gelöst, außer anti-GFAP (1:100) und für 2 Stunden inkubiert. Danach wurde mit 2% Milchpulver in PBS-T für 2-3 Stunden geblockt, bevor in allen Versuchen außer für S100präinkubierte Streifen (Ziege-anti-Ratte IgG) mit POD-konjugiertem Ziege-anti-Maus IgG (Zweitantikörper) in einer (1:3000)-Verdünnung bei RT 2 - 3 h geschüttelt wurde. Nach dreimaligem Waschen mit PBS-T wurde dann mit frisch angesetztem, gefiltertem (0,45 µm) und mit 10 µl H<sub>2</sub>O<sub>2</sub> zugesetztem 0,1 % (w/v) Diaminobenzidin (DAB) gefärbt.

### 2.2.2.1.5 Hochdruckflüssigkeitschromatographie (HPLC)

Das Prinzip der Hochdruckflüssigkeitschromatographie beruht auf der unterschiedlichen Bindungsfähigkeit einzelner Proteinfraktionen an eine Säule über hydrophobe Wechselwirkungen. Die hier beschriebene umgekehrte Phasen (RP) HPLC wurde mit der Unterstützung von C. Söder im Institut für Physiologische Chemie nach folgendem Protokoll von G. Giegerich<sup>135</sup> durchgeführt:

Eine MBP-Lösung von 100  $\mu$ g / 5 ml wurde auf eine mit Vydac C4 - Material gefüllte, mit 0,1 % Trifluoressigsäure (TFA) equilibrierte Säule aufgetragen. Die Zusammensetzung der mobilen Phase wurde von einem Pumpenprogramm gesteuert, durch Mischung von reinem Laufmittel A (bdH2O mit 0,1% (v/v) TFA) von Pumpe A und reinem Laufmittel B (ACN) von Pumpe B. Die Elution des Proteins erfolgte mit folgendem verkürzten, mehrstufig linearen Gradienten:

| 0  | - | 25  | % ACN | in | 5 min  |
|----|---|-----|-------|----|--------|
| 25 | - | 45  | % ACN | in | 50 min |
| 45 | - | 100 | % ACN | in | 10 min |

Die Flußrate betrug 0,7 ml / min

2.2.2.1.6 Ansequenzierung des humanen basischen Myelinproteins (hMBP) Das gereinigte MBP wurde im Institut für Physiologische Chemie (Prof. Hoppe) ansequenziert.

### 2.2.2.2 Autoreaktive T-Zellinien

#### 2.2.2.2.1 Etablierung von autoreaktiven T-Zellinien

Die schrittweise Selektion für ein bestimmtes Antigen spezifischer T-Zellen durch Auswahl der spezifisch proliferierenden T-Zellen und wiederholte Stimulationen wurden sich bei der hier verwendeten Split-well-Methode zu Nutze gemacht. Für eine Primärstimulation wurden, wie im vorigen Abschnitt beschrieben, aus 20ml EDTA-Blut eines freiwilligen Spenders mit der Lymphoprep - Dichtegradientenzentrifugation ca. 2 x  $10^7$  PBMC isoliert, die in einem Verhältnis von 2 x  $10^5$  / 100 µl R<sub>5</sub> und Napf auf einer 96-Napf-Rundbodenplatte ausgesät und mit 20 µg hMBP bzw. 20 Lf TT pro ml stimuliert wurden. Die Zellen wurden nach drei Tagen mit 100 µl frischen Medium (R<sub>5</sub>) versorgt, das 10 ng / ml rekombinantes humanes IL2 enthielt. Bis zu 14 - 21 Tage nach Primärstimulation wurden alle 3 - 4 Tage jeweils 100 µl des verbrauchten Mediums abgesaugt und die Zellen mit 100 µl frischem IL2-haltigen Medium versorgt. Für die 1. Restimulation wurden aus 40 ml EDTA-Blut des gleichen Spenders ca. 4 x  $10^7$  PBMC isoliert, um entsprechend für zwei Zellkulturplatten ausreichend APC zu haben. Diese

Zellen wurden 20 min bei 40 Gy bestrahlt, damit sie noch Antigen präsentieren, nicht jedoch weiter proliferieren konnten. Die Zellen aus der Primärstimulation wurden auf der Platte bei 272 x g und 4°C für 10 min abzentrifugiert, zweimal mit R<sub>0</sub> gewaschen und nach Resuspension in 100  $\mu$ l R<sub>5</sub> mit einer Mehrkanalpipette auf zwei neue 96-Napf-Rundbodenplatten in jeweils zwei benachbarte Näpfe zu 50  $\mu$ l aufgeteilt. Nach Zugabe von 2 x 10<sup>5</sup> bestrahlten APC / 50  $\mu$ l in jeden Napf wurden die jeweils rechten Näpfe der zugehörigen Paare mit dem spezifischen Antigen in derselben Konzentration versorgt, wie bei der Primärstimulation, die jeweils ungeraden Spalten der beiden Platten blieben ohne Antigen (Abb. 3, links).

Abbildung 3: Schema der Split-well-Methode (links): Etwa 14 Tage nach Primärstimulation (PSt) wurden die T-Zellen im Rahmen der 1. Restimulation auf zwei benachbarte Näpfe einer neuen Zellkulturplatte aufgeteilt und der jeweils rechte Napf mit Antigen (Ag) versorgt. Zur 1. IL2-Versorgung (3 Tage später) wurden nur die antigenspezifischen, im Vergleich zur Negativkontrolle proliferierenden Näpfe selektiert. Der Lichtmikroskopische Ausschnitt (rechts, 400x) einer proliferierenden T-Zellkultur im Rundboden-Napf zeigt Proliferationshaufen (Cluster) und am Rand erkennbare T-Zellblasten (Selektionskriterien). Die Negativkontrolle bildet keine Cluster aus.



Nach drei Tagen wurden alle Näpfe mit frischem IL2-haltigen Medium versorgt, und beginnend mit dem nächsten Tag wurden in den folgenden drei Tagen diejenigen antigenstimulierten Näpfe markiert, die im Vergleich ihrer zugehörigen Negativkontrolle mikroskopisch erkennbar mehr oder größere Zellanhäufungen (Cluster, Abb.3, rechts) bildeten oder besser proliferierten. Zur nächsten IL2-Versorgung wurden dann nur die Zellen der markierten Näpfe auf eine neue Platte überführt und bei starker Proliferation nötigenfalls geteilt. Bei jeder folgenden IL2-Versorgung wurde versucht, die Zellen weiter aufzuteilen und zu vermehren.

In etwa 2 - 3 wöchigen Abständen wurden die T-Zellen stets nach dem gleichen Ablauf restimuliert. Dazu wurden wieder autologe APC in der benötigten Anzahl präpariert (2 x  $10^5$  / Napf) und ausplattiert. Es wurden oligoklonale T-Zellen (also solche aus gleichen Ursprungsnäpfen) eingesammelt, zweimal gewaschen und in einem Verhältnis von 2 - 4 x  $10^4$  / Napf mit den APC und dem spezifischen Antigen kultiviert. Nach der 3. Restimulation wurde die Antigenspezifität ermittelt (s. 2.2.2.2.2) und bei Reproduzierbarkeit und ausreichender Expansion unter regelmäßiger mikroskopischer Kontrolle vor jeder nächsten Restimulation ein Teil der Zellen für spätere Versuche eingefroren (s. 2.2.2.2.6).

### 2.2.2.2.2 Proliferationsmessung und Stimulationsindex (SI)

Für Proliferationsstudien wurden ruhende T-Zellen in einer Konzentration von 2 - 4 x  $10^4$  Zellen pro Napf mit 2 x  $10^5$  bestrahlten (40 Gy) autologen PBMC und Antigen in 100 µl R<sub>5</sub> / Napf in 96-Napf-Rundbodenmikrotiterplatten ausgesät. Alle getesteten Antigene wurden als Dreifachansätze in einer Konzentration von 20 µg Antigen / ml, mit Ausnahme von Tetanus Toxoid (20 Lf / ml = 2,08 µg / ml) eingesetzt. Die Zellen wurden 72 h in feuchter Atmosphäre mit 5 % CO<sub>2</sub> bei 37°C kultiviert und nach 16 - 18 h Inkubation mit 0.2 µCi <sup>3</sup>H - Thymidin / Napf mit einem Betaplate-Erntegerät auf Glasfaser - Filtermatten geerntet. Die an den, für mindestens 2 1/2 h bei 60°C getrockneten Filter gebundene Radioaktivität wurde mit einem Betaplate Flüssigszinillationszähler gemessen. Das Verhältnis der Zerfälle pro Minute bei den antigen- / peptidstimulierten Zellen bezogen auf vergleichbare Zellen ohne Stimulation, wurde als Stimulationsindex (SI) bezeichnet. Dieser für die Antigenspezifität einer Zellinie bezeichnende Faktor gibt somit an, um das Wievielfache diese Zellinie durch das spezifische Antigen proliferiert.

### 2.2.2.2.3 Bestimmung der Peptidspezifität (Epitope Mapping)

Für die Charakterisierung der Peptidspezifität einer Zellinie, die sich im Proliferationstest als für Gesamt-MBP spezifisch erwies (vgl. 2.2.2.5), wurde beschriebener Test zum nächsten Restimulationszyklus mit 16, sich meist um 10 Aminosäuren überlappenden, synthetisierten MBP-Peptiden (Sequenzen s. Material 2.1.) wiederholt. Das jeweilige Peptid wurde in einer Konzentration von 10  $\mu$ g / ml verwendet, und die so, bei Dreifachansätzen gemessene Einbaurate des <sup>3</sup>H- Thymidins wurde mit der einer unstimulierten Kontrolle verglichen. Dieser Test wurde für jede Zellinie zum nächstmöglichen Zeitpunkt einmal wiederholt.

#### 2.2.2.2.4 Phänotypisierung und FACS

T-Zellinien wurden 2 bzw. 3 Tage nach Antigenstimulation im Vergleich mit nicht restimulierten Zellen gefärbt. 2 x  $10^5$  Zellen pro Ansatz wurden in PAB-Puffer gewaschen (272 x g, 5 min 4°C) und anschließend 30 min auf Eis im Dunkeln mit dem in PAB-Puffer (90 µl) verdünnten Antikörpern (10 µl) inkubiert. Die optimalen Antikörperkonzentrationen wurden durch vorherige Verdünnungsreihen evaluiert. Gelegentlich war es bei Dreifachfärbungen nötig, den Phycoerythrin (PE)-gekoppelten Antikörper nach den anderen Antikörpern und einem weiteren Waschschritt zu inkubieren, zumeist konnten alle Antikörper und Isotypen jedoch gleichzeitig zugegeben werden. Anschließend wurden die Zellen mit PBS gewaschen und in 300 µl PBS resuspendiert. Die Messung erfolgte in einem FACScan-Gerät, wobei jeweils 10000 Zellen gemessen wurden. Die erhaltenen Daten wurden mit dem Programm CellQuest<sup>®</sup> analysiert.

### 2.2.2.2.5 Charakterisierung der Zytokinsekretion und ELISA

Zur Bestimmung des für die jeweilige Zellpopulation typischen Zytokinprofils wurden 12, 48 und 72 h nach Antigenstimulation Überstände von Replikaten einer Zellinie, sowie entsprechende, unstimulierte Kontrollen gesammelt und bis zum Gebrauch bei -80°C gelagert. In verschiedenen Zytokin-ELISAs wurden dann unverdünnte 50  $\mu$ l Aliquots der Verlaufsuntersuchung einer Zellinie und möglichst der übrigen Zellinien einer Stimulation auf der gleichen Platte getestet. Dafür wurde eine ELISA-Platte für 1 h bei 37°C mit in Puffer verdünntem 1. Antikörper beschichtet. Nach 2 maligem Waschen mit PBS-T und einem Immuno-Waschkamm, sowie nachfolgendem kräftigem Ausklopfen, wurden mit PBS-MP (250  $\mu$ l / Napf) 30 min bei 37°C freie Bindungsstellen blockiert. Danach wurde 2 mal gewaschen und die zuvor aufgetauten, auf einer extra Zellkulturüberstände in 50  $\mu$ l Volumina auf die Platte übertragen. Die Platte wurde für 30 (IFN $\gamma$ , TNF $\alpha$  und IL2) - 45 min (IL4 und IL10) bei 37°C inkubiert, bevor nach 4 maligem Waschen mit dem in PBS-MP verdünnten, biotinylierten 2. Antikörper für 30 - 45 min bei 37°C inkubiert wurde. Nach 4 maligem Waschen wurde die in PBS-MP verdünnte Avidin-Peroxidase aufgetragen, die 30 min bei 37°C belassen wurde. Nach 5 maligem Waschen mit PBS-T und einmaligem mit Zitratpuffer reagierten 100µl ELI-SA-Substrat (1mM ABTS) / Napf für 2 - 5 min (IFN $\gamma$ , TNF $\alpha$ , IL2) bzw. bis zu einer Stunde (IL4, IL10) bei RT, bevor bei einer Wellenlänge von  $\lambda = 405$  nm (Referenzfilter bei  $\lambda = 492$  nm) an einem ELISA-Photometer gemessen wurde. Da wegen der variablen Farbentwicklungszeiten die Reaktion nicht gestoppt wurde, galt der Farbumschlag der hohen Standardkonzentrationen als Richtwert für die Messung. Bei mehrfachen Messungen in 5 - 10 min Abständen erwies sich dieses Vorgehen als konsistent.

#### 2.2.2.2.6 Kryokonservierung und Rekultivierung

Da sich Zellinien bei höherer Restimulationszahl differenzieren und wichtige Eigenschaften verlieren können, zudem eine längere Kultivierung die Gefahr der mikrobiellen Kontamination in sich birgt, wurden Teile der T-Zellen jeweils vor Restimulation eingefroren. Hierzu wurden T-Zellen eingesammelt und pelletiert. Die Zellen wurden zu einer Dichte von 0,4 - 1 x 10<sup>7</sup> T-Zellen in 1 ml kaltem EM resuspendiert und in Kryoröhrchen gefüllt, welche zwischen zwei Styroporständern sofort bei -80°C eingefroren wurden. Durch die Styroporisolation fiel die Temperatur im Kryoröhrchen innerhalb von Stunden langsam auf -80°C ab. Am nächsten Tag wurde das Röhrchen in flüssigen Stickstoff gelagert. Das Auftauen erfolgte standardisiert nach einem schonenden, von der Ulmer Transfusionsimmunolgie entwickelten Verfahren. Dabei wurde ein Kryoröhrchen direkt aus dem flüssigen Stickstoff im 37°C warmen Wasserbad zügig (1-2 Minuten) angetaut. Der Inhalt des Kryoröhrchens wurde mit einer 1000er Pipette vorsichtig in ein mit 100 µl kaltem R<sub>0</sub> vorbereitetes 50 ml Röhrchen überführt. Innerhalb von 10 min wurde in Minutenabständen das Röhrchen durch Zugabe von ansteigenden Volumina (120 µl, 150 µl, 190 µl, 260 µl, 360 µl, 520 µl, 860 µl, 1690 µl, 4750 µl, 10 ml) aufgefüllt, um das im EM enthaltene DMSO auszuverdünnen, jedoch nicht die Zellen durch einen zu raschen Anstieg des osmotischen Gradienten zu schädigen. Nach einer Zentrifugation bei 272 x g und 4°C für 8 - 10 min, gefolgt von einmal Waschen in R<sub>0</sub> konnten die meist über 85 % vitalen T-Zellen unmittelbar restimuliert werden. Auch andere Zellen, wie PBMC wurden ebenso aufgetaut, bevor sie bestrahlt und als APC eingesetzt wurden.

### 2.2.2.3 In vitro-Infektionsversuche

### 2.2.2.3.1 Virusisolation und -konzentrierung

Das in Hühnereiweiß vermehrte Influenza-Virusisolat A/PR/8/34 (bis zum Einsatz konstant bei -20°C gelagert) wurde von Dr. Stefan Niewiesk, das HHV-6B-Isolat von Dr. Benedikt Weißbrich, beide Virologie Würzburg, freundlicherweise zu Verfügung gestellt. Michaela Götzelmann, Virologie, vermehrte das humane Herpesvirus 6 in MT-4-Trägerzellkulturen durch regelmäßiges Passagieren auf nicht-infizierten MT-4-Zellen in R<sub>10</sub>. Durch mehrmaliges Einfrieren und Auftauen entstand ein Lysat HHV-6B infizierter MT-4-Zellen, welches durch Ultrazentrifugation durch ein Sukrosekissen (60%) konzentriert wurde.

### 2.2.2.3.2 Virustiterbestimmung

Die Viruskonzentrationen der Virus-Stammlösungen wurden für Influenza mit dem Hämagglutinationstest und für HHV-6 zytofluorimetrisch bestimmt.

### 2.2.2.3.2.1 Hämagglutinationstest (HAT)

Die Konzentration der Influenzavirus-Stammlösungen wurde in hämagglutinierenden Einheiten (HAE) angegeben. Hierbei wurde im sogenannten HAT die minimal nötige Verdünnung bestimmt, um eine Agglutination von Gänse-Erythrozyten zu erreichen. Die verwendeten Virus-Stammlösungen hatten Infektionspartikeldichten von 1,3 x  $10^6$  HAE / ml (Aliquot #7) und 2,5 x  $10^7$  HAE / ml (Aliquot #6).

#### 2.2.2.3.2.2 Zytofluorometrie (FACS)

Auf 24-Napf-Microtiterplatten wurden MT-4-Zellen als Monolayer ausplattiert und in Serienverdünnungen HHV-6-Stammlösung zugegeben. In Titrationsversuchen wurde diejenige Viruskonzentration bestimmt, die nötig war, um eine MT-4-Zellkultur zu infizieren. Hierzu wurde nach vorheriger Membranpermeabilisierung mit einem HHV-6-spezifischen polyklonalen Antikörper aus der Maus (freundlicherweise erhalten von PD Christian Jassoy, Virologie) gefärbt. Die daraufhin im FACS ermittelte TCID<sub>50</sub> betrug für das Lysat 1 x  $10^2$  / ml, für das Viruskonzentrat nach Ultrazentrifugation 1x  $10^7$  / ml.

### 2.2.2.3.3 Virusinfektion von PBMC

Für die Virus-Infektionsversuche mit Influenza (Flu) und HHV-6B wurden PBMC von HHV-6-seropositiven gesunden Spendern aufgereinigt (vgl. 2.2.1.5). In 15 ml Zentrifugenröhrchen wurden in 1 ml R<sub>0</sub> 1 x 10<sup>6</sup> Zellen mit unterschiedlichen Konzentrationen von Flu (MOI zwischen 1 und 10<sup>-5</sup> HAE / Zelle) bzw. HHV-6 (MOI zwischen 10<sup>-2</sup> und  $10^{-6}$  TCID<sub>50</sub> / Zelle) bei 37°C + 5 % CO<sub>2</sub> für 1 h inkubiert. Nicht-infizierte Kontrollen wurden stets gleich inkubiert. Nach einmaligem Waschen mit R<sub>0</sub> wurden die Zellen in einer Dichte von 2 x 10<sup>5</sup> Zellen / 100 µl R<sub>FCS</sub> und Napf, mit oder ohne Zugabe von 10 µg / ml Phytohämagglutinin (EC) kultiviert. Die Zellen wurden mikroskopisch inspiziert und deren Proliferation nach 3 Tagen bestimmt (vgl. 2.2.2.2).

#### 2.2.2.3.4 Koinkubationsmodelle

Unter der Vorstellung einer möglichen Relevanz des Infektionsmodus, wurden >80% durchinfizierte MT-4 Zellen, anhand des zytopathischen Effekts (CPE) mikroskopisch beurteilt, und nicht-infizierte MT-4 Zellen mit PBMC zusammen in Kultur gehalten. Die eingesetzten Kombinationen reichten von einem Verhältnis (MT-4-Zellen : PBMC) zwischen 1:1 und 1:900. Analog zu Abschnitt 2.2.2.11.3 wurden die Proliferationswerte nach 3 Tagen gemessen.

### 2.2.2.3.5 Virusinfektion von antigenspezifischen T-Zellinien

T-Zellen wurden üblicherweise aus Kultur verwendet, und zwar zumeist 14 - 21 Tage nach der letzten Restimulation. Die Zellen wurden eingesammelt und zweimal gewaschen, bevor sie in entsprechenden Mengen (zumeist 8 x  $10^4$  - 3 x  $10^5$ ) auf 15 ml Röhrchen verteilt wurden und im Institut für Virologie mit entsprechend in 1 ml R<sub>0</sub> vorverdünnten Virus-Konzentrationen zwischen MOI 1 bis  $10^{-5}$  HAE / Zelle bei Flu und  $10^{-2}$  bis  $10^{-6}$  TCID<sub>50</sub> / Zelle bei HHV-6B mit halb aufgeschraubten Deckeln bei 37°C und 5 % CO<sub>2</sub> für 1 h inkubiert wurden. Danach wurden die Zellen einmal mit R<sub>0</sub> gewaschen und als Triplikate in einer Konzentration von 2 x  $10^4$  / 100 µl R<sub>5</sub> bzw. R<sub>FCS</sub> und Napf ausgesät.

### 2.2.2.3.6 Virusinfektion von APC für die spezifische T-Zellstimulation

Als APC wurden für die T-Zellinien PeR frische PBMC isoliert, während für alle übrigen aufgetaute Zellen verwendet wurden, die vorwiegend nach Leukapherese eingefroren worden waren. Die für die Infektion benötigten Zellen (unter Einbeziehung eines 15% igen Verlusts durch den folgenden Inkubationsvorgang mit dem Virus) wurden in Aliquots mit Zellzahlen zwischen 8 x  $10^5$  - 4 x  $10^6$  in 15 ml Röhrchen gleichzeitig und unter gleichen Bedingungen wie die T-Zellen vorinkubiert (vgl. 2.2.2.3.5). Um auf gleiche MOIs zu kommen, mußten wegen der 10fachen Zellzahl auch die Virusverdünnungen für die APC 10fach konzentrierter sein. Nach Waschen wurden die infizierten T-Zellen (vgl. 2.2.2.3.5) mit nicht-infizierten APC (2 x  $10^5 / 100 \mu l R_5$  bzw.  $R_{FCS}$ ), umgekehrt die in unterschiedlichen MOIs infizierten Zellen wurden stets unter gleichen Inkubationsund Mediumbedingungen gehalten. Als Kontrollen wurden nicht-infizierte T-Zellen mit nicht-infizierten APC zusammengegeben. Alle Kombinationen wurden auf einer 96-Napf-Rundbodenplatte in Triplikaten, der Virusversuch VCPA 21 in Sechsfachansätzen jeweils mit und ohne Antigen (TT bzw. MBP) kultiviert. Die Proliferation wurde nach Protokoll gemessen (vgl. 2.2.2.2. und 2.2.2.3.5)

### 2.2.2.4 Untersuchungen zu HHV-6-Reaktivierung im Serum

#### 2.2.2.4.1 Probenmaterial

Es wurden Serumproben u. a. von einer Therapiestudie (Pentoxyphillin (PTX) bei schubförmiger MS) auf HHV-6 Reaktivierung untersucht. Die ca. 3 Jahre konstant bei -80°C gelagerten Proben wurden im Institut für Virologie und Immunbiologie der Universität Würzburg auf HHV-6-Antikörper und HHV-6-DNA untersucht. Das Kontingent setzte sich zusammen aus Proben von 62 MS-Patienten mit schubförmigem Verlauf, zum Zeitpunkt der Blutentnahme aber stabiler Phase. 20 Patienten aus dieser Gruppe waren mit PTX behandelt und 23 erhielten Placebo. Es wurden Serumproben von 19 Patienten mit schubförmigen Verlauf eingeschlossen, die nicht an besagter Studie teilgenommen hatten und 12 von gesunden Kontrollspendern.

#### 2.2.2.4.2 Virus-Serologie

Anti-HHV-6-Antikörper wurden vom Institut für Virologie und Immunbiologie durch einen indirekten Immunfluoreszenztest mit HHV-6-infizierten MT-4 Zellen getestet. Für die IgG-Bestimmung wurde, angefangen mit 1:10, jede Serumprobe in einer 4-fach-Verdünnungsreihe aufgetragen. Für IgM-Bestimmungen wurden die Serum-Aliquots mit RF-Absorbens (Dade Behring, Marburg) vorbehandelt, um Rheumafaktoren und HHV-6-spezifische IgG zu entfernen, und anschließend als 1:10 - Verdünnung eingesetzt.

2.2.2.4.3 Virus-DNA-Isolation und semi-nested PCR

DNA wurde aus 200  $\mu$ l Serum mit Hilfe des QIAamp Blood kits (Qiagen, Hilden) nach den Empfehlungen des Herstellers extrahiert. Im letzten Schritt wurde die DNA in 50  $\mu$ l bdH<sub>2</sub>O eluiert. Für die PCR-Analyse wurden 10  $\mu$ l der extrahierten Proben zu 40  $\mu$ l PCR Prämix pipettiert. Primer-Sequenzen für die äußere PCR:

HH61 (CAGTGTGTAG TTCGGCAGCC CCGAG) HH62 (AAGCTTGCAC AATGCCAAAA AACAG)

Die Primer wurden von den übrigen Bestandteilen des Prämixes durch eine Wachsschicht getrennt, um auf diese Weise die "Hot-Start"-Technik verwenden zu können. Die Amplifikation wurde mit 42 Zyklen bei 55°C Anlagerungstemperatur durchgeführt. Für größere Sensitivität wurde eine semi-nested PCR durchgeführt. Dazu wurden 1,5 µl des PCR-Produkts aus dem ersten Lauf zu 50 µl PCR-Prämix gegeben, der das Primer-Paar HH62 und HH63 (CTCGAGTATG CCGAGACCCC TAATC) enthielt. Die Reaktion lief in 25 Zyklen bei einer Anlagerungstemperatur von 55°C ab. PCR-Produkte wurden durch Agarose-Gelelektrophorese und Ethidiumbromid-Färbung bestimmt. Negativkontrollproben und Kontrollen des Reagens wurden in jeden PCR-Lauf einbezogen. Niedrige Konzentrationen von Plasmidkontrollen (0,1 fg pro Reaktion) wurden in allen Extraktions- und Amplifikationsschritten eingeschlossen.

### 2.2.3 Auswertung und Statistik

Die graphischen Darstellungen und statistischen Berechnungen wurden mit dem Datenverarbeitungsprogramm Excel<sup>®</sup> durchgeführt, die Auswertungen der ViMS-Studie zudem mit StatView<sup>®</sup>. Die verwendeten Testverfahren wurden im Text der jeweiligen Abbildungen genannt.

### 3 Ergebnisse

### **3.1** Vakzinierung und Immunreaktion bei MS (ViMS-Studie)

### **3.1.1** Basisdemographische Daten

Zwischen 10/98 und 4/99 wurden 5 MS-Patienten und 26 alters- und geschlechtzugeordnete, gesunde Kontrollpersonen, zwischen 10/99 und 3/00 weitere 7 Patienten mit der gesicherten Diagnose einer MS und 3 gesunde Kontrollpersonen (eine von ursprünglich 4 Kontrollpersonen wurde nicht geimpft) mit der Influenza-Spaltvakzine (Influvac®) geimpft und nachuntersucht. Hiervon hatten 6 Patienten und 4 Kontrollpersonen einen Infekt der oberen Luftwege, wobei ein Kontrollspender mit Infekt nicht in die Auswertung miteinbezogen wurde, da er als Labormitarbeiter häufig Kontakt zu Myelinantigenen hatte. Von den übrigen 9 Studienteilnehmern mit Infekt, gab es nur von zwei Patienten und einer Kontrollperson komplette Daten zu allen 7 Zeitpunkten. Aus diesen Gründen konnte keine statistische Auswertung erfolgen. Dennoch sei exemplarisch im Kapitel ein Fall veranschaulicht.

Von den 12 untersuchten Patienten hatten sieben einen schubförmigen Verlauf mit einer medianen Krankheitsdauer von 11,9  $\pm$ 7 Jahren. Ein Patient hatte während des Untersuchungszeitraums von 16 Wochen nach Impfung einen Schub, dieser Patient und vier weitere hatten Atemwegsinfektionen. Der mittlere EDSS bei Studienbeginn und –ende war 2,0 (1,0 – 3,5). Weitere fünf Patienten hatten einen sekundär chronischen Krankheitsverlauf mit einer medianen Dauer von 17,8  $\pm$  5,5 Jahren. Ein Patient mit sekundär chronischem Verlauf hatte einen Infekt der Atemwege. Der mediane EDSS war bei Studienbeginn 6,0 (3,0 – 6,5) und unverändert bei Studienende 6,0 (3,5 – 6,5).

| Spender         | n  | Alter $\pm$ SD |   | Geschlecht (%) | Infektionen |
|-----------------|----|----------------|---|----------------|-------------|
| MS-Patienten    | 12 | $41.1 \pm 9.9$ | f | 8 (66.7)       | 6           |
|                 |    |                | m | 4 (33.3)       |             |
| Kontrollspender | 28 | $31.1\pm6.5$   | f | 15 (53.6)      | 3           |
|                 |    |                | m | 13 (46.4)      |             |
|                 |    |                |   |                |             |

Tabelle 6: Basisdemographische Daten der ViMS-Studie:

### 3.1.2 Immunreaktion nach Impfung und Infektion

Im Folgenden wurden in Kurzzeitkulturen im Rahmen der ViMS-Studie zelluläre Immunantworten gegen myelin-spezifische Autoantigene, Influenzavirus A/PR/8/34 (H1N1) und dialysierte Impfantigene, TT als Referenzantigen und  $\alpha$ CD3-Antikörper als Positivkontrolle, vor und zu mehreren Zeitpunkten nach Influenzaschutzimpfung, sowie natürlich aufgetretenen Atemwegsinfektionen untersucht. Mit dem ELISPOT wurde die zelluläre IFN $\gamma$ -Sekretion auf Einzelzellebene bestimmt (Abb. 4), um so Rückschlüsse auf die Frequenz der im Blut zirkulierenden antigenspezifischen T-Zellpopulationen zu ziehen. Mit der quantitativen Echtzeit-RT-PCR konnte die antigen-induzierte Expression von IFN $\gamma$ -mRNA bestimmt werden, welche sehr frühe und geringgradige Veränderungen der T-Zellaktivierung anzeigt.

Abbildung 4: IFN $\gamma$ -Einzelzellsekretion auf Nitrozellulosemembranen des ELISPOT-Assays (x 16) nach Kurzzeitstimulation von 1,67 x 10<sup>5</sup> PBMC mit Influenza A/PR/8/34 (links ca. 80 spots) und 5 x 10<sup>5</sup> PBMC mit einem Antigen wie MBP, gegen das weniger spezifische Zellen reagieren (rechts 4 spots).



### 3.1.2.1 T-Zellquantifizierung und ELISPOT

In Vorexperimenten konnte ein ELISPOT-Assay zur sicheren Detektion und Quantifizierung IFN $\gamma$ -sezernierender Zellen entwickelt werden. In Etablierungs-Assays ergaben sich bei adäquater Antigen-/ $\alpha$ CD3-/PHA-Stimulation verläßliche Werte mit einem ü-

#### Ergebnisse

berwiegend sehr niedrigen Hintergrund. Für Negativkontrollen und Antigenstimulationen, deren spezifische Zellen in einer erwarteten Frequenz unter 10<sup>-5</sup> vorliegen (MBP, MOG) erwies sich eine Ausgangsverdünnung von 5 x 10<sup>5</sup> PBMC / Napf, für TT, Flu-Stimulationen eine 1:3-Verdünnung (ca. 1,67 x 10<sup>5</sup> PBMC / Napf), für αCD3 bzw. PHA eine 1:9-Verdünnung (ca. 5,56 x 10<sup>4</sup> PBMC / Napf) als sinnvoll. Über eine Verdünnungsreihe mit MBP-spezifischen T-Zellen (1 – 10000) konnte für einen weiten Bereich (10-1000 eingesetzte Zellen) eine lineare Abhängigkeit zwischen IFNγ-spots (3-300) und spezifisch aktivierten Zellen gezeigt werden. Die für TT und Flu konsequent durchgeführte Triplikats-Dreifachverdünnungsreihe zeigte eine Korrelation von r<sup>2</sup> > 0,96 zwischen ermittelten Spots und eingesetzten PBMC (5 x 10<sup>5</sup>, 1,67 x 10<sup>5</sup>, 5,56 x 10<sup>5</sup>) für Zellpopulationen mit hohen Vorläuferfrequenzen im Blut von > 20/10<sup>5</sup> PBMC und r<sup>2</sup> > 0,85 für niedrigere Frequenzen.

Zur Etablierung des ELISPOT-Assays wurden verschiedene Untersuchungsbedingungen getestet, bevor die oben beschriebene Standardmethode (s. Kap. 2.2.2.10) für weitere Experimente durchgehend verwendet wurde.

Dies gelang aufgrund einer insgesamt schwachen Antikörperfärbung und unspezifischer Hintergrundsignale nicht für Th2-Zytokine. Trotz Verwendung der von zwei verschiedenen Herstellern (Mabtech, Pharmingen) empfohlenen Antikörperpaare waren sowohl die Sekretion von Il-4 oder IL-10 als auch die Antikörperbindung an diese Zytokine bedeutend schlechter.

Die in der ViMS-Studie auf denselben Platten mitgetesteten Lösungsmittel (Tab. 7) zeigten kaum Hintergrundaktivität, weshalb deren Einfluß auf die Immunogenität der in diesen Lösungsmitteln gelösten Antigene vernachlässigt werden konnte.

| Tabelle 7 | Lösungsmittel | gelöstes Antigen |
|-----------|---------------|------------------|
|           | EW 1:10       | Flu 1:10         |
|           | Essigsäure    | rhMOG 20µg/ml    |
|           | DMSO          | Peptide          |

## 3.1.2.2 Quantifizierung von Zytokin-mRNA und RT-PCR

### 3.1.2.3 β-Aktin-cDNA-Konzentrationen

Nach Einsammeln der für 12, 48 und 72 Stunden kultivierten Zellen aus 3 Kulturnäpfen, Zellyse, RNA-Isolation, reverser Transkription und Verdünnung konnten mit der quantitativen RT-PCR für unstimulierte MBP-spezifische T-Zellen  $\beta$ -Aktin-Konzentrationen von 6,6 – 622 x 10<sup>4</sup>/µl, für MBP-stimulierte 340 - 20800 x 10<sup>4</sup>/µl gemessen werden. Aus den PBMC-Primärkulturstimulationen der ViMS-Studie lagen die  $\beta$ -Aktin-Konzentrationen zwischen 1,9 x 10<sup>4</sup> und 7,6 x 10<sup>6</sup>, das Mittel war 1,1 x 10<sup>6</sup>.

### 3.1.2.4 Methodenvergleich zwischen RT-PCR und ELISPOT

#### 3.1.2.4.1 Antigenunabhängiger Vergleich im Rahmen der ViMS-Studie

Im direkten Vergleich zwischen IFN $\gamma$ -Expression (RT-PCR) und Anzahl der IFN $\gamma$ sezernierenden Zellen (ELISPOT) aus den gesammelten Proben der ViMS-Studie (s. Kap. 2.2.2.10) war der Korrelationskoeffizient niedrig (0,44). Betrachtet man die Proben der einzelnen Spender getrennt voneinander, kann nach Ausschluß vereinzelter Ausreißer bei 7/12 Spendern eine lineare Korrelation > 70%, bei 9/12 noch > 60% ermittelt werden. Die einzelnen Assays (n=16) für sich betrachtet sind abgesehen von einer Ausnahme mit Koeffizienten von r<sup>2</sup> > 0,65, allerdings mitunter divergenten Steigungen in den Trendlinien, gut korreliert. 3.1.2.4.2 Methodenvergleich nach Influenzastimulation (ViMS-Studie)

Bei einer Auswahl von Ansätzen (n=23), in welchen mit Influenzaprotein und den beiden Impfchargen stimuliert wurde, ergaben sich zwischen IFN $\gamma$ -mRNA (RT-PCR) und IFN $\gamma$ -spots (ELISPOT) gute Korrelationen nach Influenzastimulation (r<sup>2</sup>=0,63), nach Stimulation mit dem Impfstoff 98/99 (r<sup>2</sup>=0,63) und 99/00 (r<sup>2</sup>=0,77) (Abb. 5).

Abbildung 5: Methoden-Vergleich zwischen RT-PCR (IFN $\gamma$ -mRNA-Expression) und ELISPOT (IFN $\gamma$  Sekretion) an Ergebnissen von 13 Spendern im Rahmen der ViMS-Studie. r<sup>2</sup> = 0.766, p< 0.0001



3.1.2.4.3 Immunitätsäquivalenz zwischen Flu A/PR/8/34 und den Impfstämmen Im Vergleich der beiden Impfpräparationen (98/99 und 99/00) mit dem durchgehend verwendeten Influenzavirusprotein nach UV-Inaktivierung konnte im ELISPOT eine hoch signifikante Korrelation (p<0,0001) mit Koeffizienten von r<sup>2</sup>=0,89 für Influvac<sup>®</sup> 98/99 und r<sup>2</sup>=091 für Influvac<sup>®</sup> 99/00 ermittelt werden. Dabei war die Übereinstimmung zwischen beiden Impfchargen 97.8%. Mit RT-PCR ergaben sich etwas schwächere Korrelationen hinsichtlich IFNγ-Expression nach Stimulation mit Influenzaprotein und Influvac<sup>®</sup> 98/99 (r<sup>2</sup>=0,78) bzw. Influvac<sup>®</sup> 99/00 (r<sup>2</sup>=0,82), sowie zwischen beiden Impfchargen (87,1%).

### 3.1.2.5 Methodenvergleich zwischen RT-PCR und ELISA

Unter verschiedenen Gesichtspunkten wurde die Korrelation zwischen Zytokin-Expression mit RT-PCR und Zytokin-Produktion mit ELISA untersucht. Im Rahmen der Immunphänotypisierung der antigen-spezifischen T-Zellinien wurden die mRNA- und entsprechenden Zytokinproteinprofile zu verschiedenen Zeitpunkten direkt miteinander verglichen. Generell gab es trotz standardisierter Untersuchungsbedingungen keine gute Korrelation zwischen den untersuchten Parametern. Für TNFα hingegen entsprachen zu jedem Zeitpunkt die gemessenen mRNA-Moleküle gut den im Überstand von MBP-spezifischen T-Zellkulturen ermittelten Zytokinmengen (Abb. 6)

Abbildung 6: Vergleich zwischen TNF $\alpha$ -mRNA Expression und TNF $\alpha$  Sekretion, gezeigt an vier MBP-spezifischen T-Zellinien eines Spenders, jeweils zu verschiedenen Zeiten nach Restimulation gemessen. Fehlerbalken: + SD (Doppelbestimmungen)



### 3.1.3 T-Zellantworten nach Influenzaschutzimpfung

Bereits 2 Wochen nach Impfung konnte bei den MS-Patienten im ELISPOT ein Anstieg der influenza-spezifischen T-Zellen gemessen werden (p = 0,008), während bei den gesunden Kontrollspendern schon vor Impfung ein hoher Ausgangswert vorhanden war (Abb. 7).

Abbildung 7: Häufigkeiten antigen-spezifischer T-Zellen für Flu, TT, MOG, MBP (IFN $\gamma$ -ELISPOT) vor (preV) bzw. 2 und 4 Wochen nach Influenzaschutzimpfung (wpV) von MS-Patienten und gesunden Spendern. Fehlerbalken: + SEM, \*\* p = 0,008 (Student *t*-Test)



Individuelle T-Zellantworten wurden nach Ausprägung weiter untergliedert in starke Antworten gegen Influenza-Antigenstimulation (mindestens 2facher Anstieg der IFN $\gamma$ spots, und zwar 2 oder 4 Wochen nach Impfung im Vergleich zu dem Ausgangswert vor Impfung) und schwache Antworten (weniger als 2facher Anstieg der IFN $\gamma$ -spots). Die Ansprechraten der MS-Patienten mit 5/12 (stark) und 6/12 (schwach) unterschieden sich nicht wesentlich von denen der gesunden Kontrollgruppe mit 5/28 (stark) und 18/28 (schwach). Ein MS-Patient und fünf gesunde Kontrollspender zeigten überhaupt keinen

Anstieg der Influenza-spezifischen IFN $\gamma$ -spots nach Impfung. Bei 13 Spendern, teilweise aus der Infektgruppe, wurden mit RT-PCR für die IFN $\gamma$ -mRNA-Expression nach *in vitro*-Stimulation mit Influenzaprotein ähnliche Ergebnisse beobachtet, was für eine gute Korrelation der beiden Methoden spricht. Ein solcher Zusammenhang konnte für IL4 nicht gefunden werden. An ausgewählten Überständen wurde die IFN $\gamma$ -Sekretion untersucht. Sogar in Proben von Näpfen, die im ELISPOT eine hohe IFN $\gamma$ -Antwort zeigten, konnte mit einem sensitiven IFN $\gamma$ -ELISA kein IFN $\gamma$  nachgewiesen werden. Dies spricht für die nahezu vollständige Bindung von IFN $\gamma$  an die antikörperbeschichtete Nitrozellulosemembran des ELISPOT. Spezifische Antworten im IFN $\gamma$ -ELISPOT gegen TT, MBP und MOG blieben in beiden Gruppen während des gesamten Beobachtungszeitraumes unverändert (vgl. Abb. 7).

### **3.1.4** T-Zellantworten nach natürlicher Atemwegsinfektion

Im Gegensatz dazu ließen sich um oder bis zu zwei Wochen nach einer zufälligen Atemwegsinfektion vermehrt MBP-spezifische T-Lymphozyten nachweisen (Abb. 8). Nicht weiter gestiegen ist die Zahl Influenza-spezifischer Zellen. Die geringfügig erhöhte mittlere Antwort auf MBP um vier Wochen nach Impfung kann teilweise durch einen Spender erklärt werden, der kurz nach Impfung eine in der Patientenaufzeichnung dokumentierte, Infektion mit leichten Infektzeichen durchgemacht hatte. Abbildung 8: Antigen-spezifische T-Zellantworten dreier Impflinge, die vor dem 16-Wochentermin an einem Atemwegsinfekt erkrankten. Bis zu 4 Wochen danach zeigt sich ein nicht signifikanter Anstieg MBP-spezifischer T-Zellen. Fehlerbalken: + SEM.



Das Beispiel eines MS-Patienten (Spender 17) mit Atemwegsinfektion und Fieber genau am 16-Wochentermin nach Impfung spiegelt im Zeitverlauf und in direkter Gegenüberstellung der verwendeten Methoden (IFNγ-RT-PCR und IFNγ-ELISPOT) die Immunantworten gegen Influenza, MOG und MBP wider (Abb. 9ab), wobei MS-Patienten und gesunde Kontrollspender keine erkennbaren Unterschiede zeigten. Zum Zeitpunkt der Infektion stellt sich im ELISPOT-Assay ein deutlicher Anstieg der zellulären Antwort gegen MBP dar, nicht jedoch gegen andere Proteine oder in der sonst gut korrelierten RT-PCR. Zwar kam es auch bei den anderen beiden Spendern zu einem Anstieg der MBP-reaktiven T-Zellen innerhalb von 2 Wochen nach Infekt (Abb. 8D), doch war diese Reaktion nicht konsistent bei allen Probanden mit Infektion nachzuweisen. Bei vier MS-Patienten mit leichten Atemwegsinfektionen ohne Fieber, die außerhalb der Studie untersucht wurden, es also keine Ausgangswerte vor Infektion gibt, waren überhaupt keine MBP-spezifischen Zellen detektierbar, obwohl die PBMC zur gleichen Zeit, gelegentlich auf der gleichen Platte getestet wurden wie PBMC mit nachweisbarer Antwort auf MBP (Daten nicht gezeigt).
Abbildung 9a: Antigen-spezifische T-Zellantworten gegen MBP und MOG bei einem MS-Patienten (Spender #17), der genau am 16-Wochentermin der Nachbeobachtungszeit einen fieberhaften Infekt der oberen Atemwege erlitten hatte. Inf: Infektion, wpV: Wochen nach Impfung, wpI: Wochen nach Infektion, n d: nicht bestimmt. Fehlerbalken kennzeichnen +SD.



Abbildung 9b: Antigen-spezifische T-Zellantworten gegen Flu und TT bei einem MS-Patienten (Spender #17), der genau am 16-Wochentermin der Nachbeobachtungszeit einen fieberhaften Infekt der oberen Atemwege erlitten hatte. Inf: Infektion, wpV: Wochen nach Impfung, wpI: Wochen nach Infektion. Fehlerbalken kennzeichnen +SD.



# 3.1.5 Virus-Serologie nach Impfung und Atemwegsinfektion

Das Verhältnis zwischen hohen (Titeranstieg mindestens auf das Zweifache des Ausgangswertes) und niedrigen Antikörperantworten gegen Influenzavirus A/PR/8/34 (H1N1) war zwischen MS-Patienten (8/12 niedrig, 3/12 hoch) und Kontrollpersonen (15/28 niedrig, 8/28 hoch) gleich (Tab. 8). Ein anhand des Titeranstiegs beurteiltes Impfversagen betraf 8 % der MS-Patienten und 18 % der Kontrollpersonen. Ergebnisse

Tabelle 8: Impfantwortraten gemessen am Flu-Antikörpertiter-Anstieg bei MS-Patienten (MS, n = 12) und gesunden Kontrollpersonen (HD, n = 28) nach Grippeschutzimpfung.

| Kollektiv | gute Imp                  | fantwort | mäßige Impfantwort      |      | Keine Impfantwort   |      |
|-----------|---------------------------|----------|-------------------------|------|---------------------|------|
|           | (Titeranstieg $\ge 2 x$ ) |          | (Titeranstieg $< 2 x$ ) |      | (Titer unverändert) |      |
| MS = 12   | 3                         | 25 %     | 8                       | 67 % | 1                   | 8 %  |
| HD = 28   | 8                         | 28 %     | 15                      | 54 % | 5                   | 18 % |

Die mittleren Antikörpertiter zeigten in beiden Gruppen einen signifikanten Anstieg ab zwei Wochen nach Impfung (Abb. 10).

In keiner Serumprobe von Probanden, die während der Nachbeobachtungszeit an einer zufälligen Infektion der Atemwege erkrankt sind, fanden sich erhöhte Antikörpertiter gegen die untersuchten respiratorischen Viren.

Abbildung 10: Mittlere anti-Flu-Antikörpertiter vor (preV), 2, 4 und 16 Wochen nach Impfung (wpV) mit der Spaltvakzine Influvac<sup>®</sup> bei MS-Patienten (MS, n = 12) und gesunden Kontrollpersonen (HD, n = 28). Die Fehlerbalken kennzeichnen SD. \* p < 0.05; \*\* p < 0.01 (Student *t*-Test).



# 3.2 Virologisch-immunologische Untersuchungen

Die oben gezeigten Ergebnisse einer Immunaktivierung nach vorausgegangener Virusinfektion (s. Kap. 3.1.4) sollten im Folgenden anhand myelin-spezifischer T-Zellen überprüft werden. Hierzu war es zunächst nötig, spezifische T-Zellinien zu generieren und zu charakterisieren, bevor *in vitro*-Infektionen mit dem humanen Herpesvirus-6 (HHV-6) und Influenzavirus (Flu) durchgeführt werden konnten.

## **3.2.1** Humanes basisches Myelinprotein (hMBP)

Das in den folgenden Experimenten verwendete humane Myelinprotein (hMBP) wurde aus der weißen Substanz eines menschlichen Gehirns (7 h post mortem) aufgereinigt. Das SDS-Polyacrylamid-Gel zeigte zwei Banden, entsprechend der beiden Hauptsplicevarianten 18,5 kDa und 21,5 kDa (Abb. 11). Die Spezifität des MBP gegenüber anderen Hirnbestandteilen wurde mittels Western-Blot nachgewiesen (Abb. 12). Keiner der gegen andere Hirnbestandteile gerichteten Antikörper erkannte das geblottete Protein. Somit enthält die Präparation keine Verunreinigungen durch Oligodendrozytenglykoprotein (MOG), Astrozyten (S100), Mikroglia (GFAP). Als weitere Negativkontrolle wurde ein gegen das periphere Myelin P<sub>0</sub> gerichteter Antikörper verwendet, der ebenfalls nicht anfärbte.

Darüberhinaus kam in der HPLC ein schmaler, hoher Gipfel an der für hMBP typischen Stelle des Acetonitril-Gradienten zur Darstellung (s. a. Giegerich 1990<sup>135</sup>). Es konnte eine über 99%ige Reinheit des MBP mit nur einem geringen Bestandteil einer anderen Bindungsfähigkeit als MBP nachgewiesen werden (Abb. 13).

Eine Ansequenzierung des gereinigten Proteins durch Dr. Viviane Hoppe am Institut für Physiologische Chemie II scheiterte aufgrund einer Blockierung am amino-terminalen Ende. Auf eine erneute Sequenzierung einzelner Peptide (interne Sequenzen) nach vorheriger Spaltung (z. B. mit Cyanbromid (CNBr) nach Methionin, tryptisch nach Lysin und Arginin oder mit der sogenannten V8-Spaltung nach Glutaminsäure) wurde im Hinblick auf die oben erwähnten, eindeutigen Ergebnisse verzichtet. Abbildung 11: SDS-Polyacrylamid-Gelelektrophorese. 10  $\mu$ g des gereinigten humanen basischen Myelinproteins auf ein 12,5 %iges Gel geladen (Spuren 1-3). M bezeichnet die Spur mit dem Leichtmolekularmarker.



Abbildung 12: Western-Blot zum Ausschluß von Verunreinigung durch andere Hirnbestandteile als MBP. Die auf dem Gel in Abb. 11 erhaltenen Banden wurden auf eine Nitrozellulosemembran geblottet und einzelne Streifen mit folgenden Antikörpern gefärbt:  $\alpha$ rabMBP 1:300 (A), 1:1000 (B und 1), m $\alpha$ MOG 1:1000 (2), r $\alpha$ S100 1:1000 (3), m $\alpha$ GFAP 1:100 (4), m $\alpha$ P<sub>0</sub> 1:1000 (5), nur mit PBS-T (6). Banden der ersten (MBP<sub>1</sub>) und zweiten (MBP<sub>2</sub>) Präparation werden lediglich durch MBP-spezifische Antikörper angefärbt (schwarze Pfeile), nicht durch Antikörper, die gegen andere Hirnbestandteile (MOG, S100, GFAP) bzw. peripheres Myelin (P<sub>0</sub>) gerichtet sind.



Abbildung 13: Analytische Hochdruckflüssigkeitschromatographie (HPLC) des gereinigten humanen basischen Myelinproteins. Zur Darstellung kommt eine schmale, hochgipflige Hauptfraktion (MBP) bei 28,5 % NAC, entsprechend etwa 99% des eingesetzten Materials.



### 3.2.2 MBP-spezifische T-Zellinien

Nach der Split-well-Methode wurden von 3 gesunden Spendern insgesamt 8 MBPspezifische T-Zellinien und von zahlreichen anderen Spendern auch TT-spezifische T-Zellinien erfolgreich etabliert. Diese ließen sich über einen Zeitraum von einigen Monaten und bis zu 9 Restimulationen in etwa 2-4 wöchigen Abständen kontaminationsfrei in Kultur halten und nach schonendem Einfrieren jeweils vor einer bevorstehenden Restimulation und raschem Auftauen mit sofortiger oder nach Übernachtkultur erfolgter Antigenstimulation wieder in Kultur halten, ohne ihre im folgenden beschriebenen Eigenschaften zu verlieren. Zwischen den Restimulationen wurden in dreitägigen Abständen frisches Medium und rekombinantes humanes IL2 zugegeben, welches in mindestens 4 unabhängigen Vorversuchen auf seine optimale Konzentration getestet wurde.

#### 3.2.2.1 Vorexperimente und Kulturoptimierung

Als minimale optimale Endkonzentration für IL2 wurde  $300pM = 4,65 \ge 10^{-9} \text{ g/ml}$  (Molekulargewicht 15500 g/l = 1M) = ca. 4 Units (1U = 80pM) ermittelt (Abb. 14).

Abbildung 14: Über Verdünnungsreihen von rekombinantem humanen IL2 (rhIL2) in zwei voneinander unabhängigen Testserien wurde anhand der Proliferation von PBMC, welche drei Tage zuvor mit PHA vorstimuliert wurden, die spezifische Aktivität (1 Unit (U) = 80 pM bei 50% der maximalen Proliferation (ca. 35000 cpm)) und minimale Konzentration (300 pM = ca. 4 U) für eine optimale Proliferation ermittelt. Fehlerbalken:  $+ 2 \times SD$  (Dreifachbestimmungen).



#### Ergebnisse

In vergleichbaren Versuchsansätzen mit MBP-spezifischen T-Zellinien zeigte sich, daß eine Zugabe von IL2 am Tag 5 nach Restimulation keine zusätzliche Proliferationssteigerung brachte, wohl aber am Tag 7 nach obiger Konzentrationsabhängigkeit, bzw. wesentlich früher bei unstimulierten Zellen. Erwähnenswert ist, wie sich nach initialen Experimenten und, bestätigt im weiteren Verlauf, an etablierten Linien zeigte, daß nur autologes Serum als Medienzusatz optimale Generierungs- und Kultivierungsbedingungen gewährte. Sowohl xenogene (FCS) als auch allogene (allogenes oder AB-Serum) Fremdproteine führten zu einer unspezifischen Stimulation menschlicher T-Zellen. Bei der 9. Restimulation der MBP-spezifischen T-Zellinie PeR2.7 ergab sich mit autologem Serum ein Stimulationsindex von 257, während dieser mit AB-Serum nur 96 betrug. In einem anderen Ansatz verhinderten Plasma (Zitratzusatz) oder PBS die mitogeninduzierte Proliferation; ohne jeglichen Serumzusatz war diese vermindert (Abb. 15).

Abbildung 15: Austestung der Stimulationsbedingungen unterschiedlicher Serumzusätze (jeweils 5%, außer Pl (1:1)), exemplarisch an PBMC eines Spenders. Die Zahlen über den Balken geben den Stimulationsindex als Grad der Spezifität der jeweiligen Stimulation an. Die größte Spezifität (SI=397) wurde durch die Verwendung von autologem Serum erzielt. Fehlerbalken + 2 x SD (Dreifachbestimmungen)



Medienzusätze

# 3.2.2.2 T-Zellspezifität und –klonalität

In jeweils 2 mal wiederholten Proliferationsmessungen ergaben sich für die 8 MBPspezifischen T-Zellinien Stimulationsindices ( $\pm 2 \times SD$ ) zwischen  $28 \pm 2$  und  $918 \pm 30$ . Ein hoher Stimulationsindex, in der Regel 3-10 nach ersten Restimulationen, bedeutet eine hohe Spezifität der T-Zellinie. Bei der Bestimmung der Feinspezifität mit überlappenden Peptiden fiel auf, daß jede T-Zellinie ein einzelnes Hauptpeptid erkannte (Abb. 16) und somit von einer oligoklonalen Linie ausgegangen werden kann.

Abbildung 16: Die Feinspezifität von 8 verschiedenen T-Zellinien wurde mit Hilfe von überlappenden Peptiden untersucht. Die ersten beiden Graphen geben zwei aufeinanderfolgende Proliferationsmessungen (5. bzw. 6. Restimulation) derselben Linien wieder. In der rechten Graphik fällt bei drei Zellinien (AlB) eine hohe Hintergrundaktivität auch bei den nichtstimulierenden Peptiden auf, die auf die Verwendung von FCS als Medienzusatz zurückzuführen ist. Fehlerbalken:  $+ 2 \times SD$  (Doppelbestimmungen)



Etwa ab der 6. Restimulation wurden neben dem Hauptepitop keine anderen Peptide mehr erkannt, dafür wurden zum Teil die Stimulationsindices geringer.

In Abb. 16 wird der unspezifische Stimulationseffekt durch Fremdserum deutlich. Nur bei T-Zellinien mit der Bezeichnung AlB mußte für diesen Versuch auf FCS umgestellt werden, was sich durch einen überaus hohen Hintergrund der Negativkontrolle und der nicht erkannten Peptide bemerkbar machte. Dennoch konnte unabhängig von der dadurch geringeren Spezifität des Assays bei zwei von drei T-Zellinien das stimulierende MBP-Epitop festgestellt werden. In folgenden Versuchen wurde für rekultivierte AlB-Linien entweder wieder Eigenserum oder im Vergleich zu FCS weniger störendes AB-Serum verwendet.

# 3.2.2.3 Phänotypisierung durch FACS

Drei Tage nach Antigenstimulation grenzte sich durchflußzytometrisch am klarsten eine Blastenpopulation spezifischer CD4<sup>+</sup>-T-Helferzellen ab (Abb. 17), die im Vergleich zu unstimulierten Zellinien eine 3-25fache Aufregulierung ihres IL-2-Rezeptors ( $\alpha$ -Kette, CD25) zeigten und eine leichte Herunterregulierung von VLA-4 (CD49d). Abbildung 17: Phänotypisierung der Th1-T-Zellinie PeR1.2 mittels Einzelzell-Fluorozytometrie (FACS). Nach der 7. Restimulation zeigten sich ohne Zugabe des spezifischen Antigens (MBP) wenig aktivierte Blasten (Polygon, links) und sowohl CD4<sup>neg</sup> als auch CD4<sup>pos</sup> T-Zellen (unten links), mit MBP (rechts) war eine deutliche Blastenpopulation erkennbar, sowie 97% CD4<sup>pos</sup> Zellen (rechts unten).



3.2.2.4 Charakterisierung der Zytokinsekretion und ELISA

Zu Beginn dieser Arbeit konnten sensitive und spezifische ELISA-Assays zu Th1-(IFN $\gamma$ , TNF $\alpha$ , IL-2) und Th2-Zytokinen (IL-4, IL-10) etabliert werden. Die Standardreihen und Interassay-Kontrollen wurden stabil und zuverlässig detektiert, die Konfidenzintervalle lagen für die gezeigten Daten (Duplikatsbestimmungen) deutlich unter 10%. Von insgesamt 8 MBP-spezifischen T-Zellinien sezernierten vier (AIB5, AIB8, BoK4.1, PeR1.2) dominant Th1-Zytokine (IFN $\gamma$ , TNF $\alpha$ ) und zwei (PeR2.7, PeR2.10) deutliche Mengen von Th2-Zytokinen (IL-4, IL-10). Zwei weitere Linien (AIB4, PeR2.1) wurden aufgrund ihres gleichmäßig verteilten Zytokinprofils (IFN $\gamma$ , TNF $\alpha$ , IL-4 und IL10) als Th0-Linien bezeichnet (Tab. 9). Abbildung 18 zeigt diese Muster in direkter Gegenüberstellung der Zytokine IFN $\gamma$  und IL-4 für die vier MBP-spezifischen T-Zellinien des Spenders PeR nochmals graphisch und verdeutlicht, daß dieses Th1/Th2-Verhältnis zu verschiedenen Zeitpunkten (Überstände wurden 12, 48 und 72 Stunden nach Restimulation eingesammelt) unterschiedlich ausfällt (vgl. \* in Tab. 9). Ergebnisse

Tabelle 9: Einteilung der 8 MBP-spezifischen T-Zellinien anhand der im Zellkulturüberstand (48 Stunden nach 4./5. Restimulation) durch ELISA bestimmten Zytokine. Das Verhältnis zwischen dem Th1-Zytokin IFN $\gamma$  und dem Th2-Zytokin IL4 führte zur Einteilung in Th1- (>1), Th2- (<1) oder Th0-Zellinien (ca. 1). Restim.: Restimulation.

| Linie | Spender | Restim. | IFN $\gamma \pm SD$ | IL4 $\pm$ SD   | IFNy:IL4 | Phänotyp |
|-------|---------|---------|---------------------|----------------|----------|----------|
| 1     | PeR1.02 | 5       | 11100 ± 349         | 962 ± 3,3      | 11,5     | Th1      |
| 2     | PeR2.01 | 5       | 2347 ± 528          | 2047 ± 194     | 1,2      | Th0*     |
| 3     | PeR2.07 | 5       | $63 \pm 76$         | 3475 ± 24      | 0,02     | Th2      |
| 4     | PeR2.10 | 5       | $75 \pm 27$         | 383 ± 13       | 0,2      | Th2*     |
| 5     | BoK4.1  | 4       | $10100 \pm 1400$    | 554 ± 14       | 18,2     | Th1      |
| 6     | AlB4    | 4       | $8170 \pm 145$      | $6207 \pm 341$ | 1,3      | Th0      |
| 7     | AlB5    | 4       | $11000 \pm 162$     | 220 ± 39       | 50       | Th1      |
| 8     | AlB8    | 4       | $11548 \pm 2049$    | $2124 \pm 112$ | 5,4      | Th1      |

Abbildung 18: Charakterisierung der T-Zellinien anhand Zytokinsekretion. Gegenübergestellt sind die im Überstand zu den angegebenen Zeitpunkten gemessenen IFNγund IL4-Konzentrationen bei vier T-Zellinien. Ein Überwiegen der IFNγ-Sekretion weist die Linie PeR1.02 als Th1-Zellinie aus, während die anderen Linien aufgrund des eher immunmodulatorischen Profils (IL4) als Th2- bzw. anhand des ausgewogenen Verhältnisses zwischen Th1- und Th2- Zytokinen als noch nicht eindeutig differenziert (Th0) einzustufen sind (vgl. Tab. 9). Negativkontrollen <2%, Fehlerbalken: + SD



# 3.2.3 In vitro-Infektion humaner T-Zellen

# 3.2.3.1 Proliferation von PBMC nach Virusinfektion

#### 3.2.3.1.1 *In vitro*-Infektion von PBMC mit Influenza A/PR/8/34 (H1N1)

Die Proliferation von unstimulierten PBMC wurde durch Infektion mit MOI zwischen 2 und 0,1 gesteigert. Dabei waren unabhängig vom Influenza-Antikörpertiter des einzelnen Spenders geringere Virusmengen bis zum Erreichen eines individuellen Titers bessere Stimulatoren (Abb. 19). Die mitogen-induzierte Proliferation war abhängig vom Spender in demselben Titerbereich geringfügig herabgesetzt. Abbildung 19: Proliferationssteigerung unstimulierter PBMC nach *in vitro*-Infektion mit Influenza A/PR/8/34 in einem Dosisbereich zwischen 0,1 bis 2 MOI. Beispielhaft an zwei Infektionsversuchen V4 und V8. Fehlerbalken: 2 x SD.



FACS-Analysen von MHC-Klasse I und II Molekülen an Tag 1, 2 und 3 nach Influenzainfektion von PBMC ergaben im Zeitverlauf eine leichte Aufregulierung der Klasse II-Moleküle, was sich aber im Schwankungsbereich der nichtinfizierten Kontroll-PBMC bewegte (Abb. 20).

Abbildung 20: FACS-Analyse (Histogramme) mit leicht hochregulierter MHC-I- (links) und MHC-II- (rechts) Expression 24 Stunden nach *in vitro*-Infektion von PBMC mit Influenza A/PR/8/34 (grau) im Vergleich zu nicht infizierten Zellen (Umriß).



#### 3.2.3.1.2 *In vitro*-Infektion von PBMC mit HHV-6B

Nach Infektion mit zellfreiem HHV-6B kam es bei allen durchgeführten Experimenten zu einer Proliferationshemmung im Bereich von 1 - 0,001 MOI und bei niedrigen Titern (0,0001 - 0,00001 MOI) zu einer virusinduzierten Stimulation der PBMC von seropositiven Spendern. Die mitogen-induzierte Proliferation war nach HHV-6B-Infektion in einem vergleichbaren Titerbereich nicht signifikant inhibiert (s. Abb. 21).

Abbildung 21: Proliferation von PBMC eines seropositiven Spenders durch *in vitro*-HHV-6B-Infektion in niedriger Dosis (MOI  $1x10^{-5}$ ). Bei hohen Dosen kommt es zur Hemmung der Zellproliferation. Fehlerbalken: 2 x SD, \* p < 0.05 (Student *t*-Test)



#### 3.2.3.2 Koinkubationsmodell mit HHV-6B-infizierten MT-4 Zellen

Durch die Kokultur mit bestrahlten MT-4-Zellen (infiziert oder nicht infiziert) wurde generell die spontane Zellproliferation von PBMC gehemmt. Dieser Effekt war bei entsprechend höherem Anteil PBMC (1:90 - 1:900) geringer. Allenfalls kam es bei einem Verhältnis HHV-6B-positiver MT-4-Zellen : PBMC von 1:9 – 1:30 zu einer nichtsignifikant erhöhten Proliferation gegenüber der PBMC-Reinkultur (Abb. 22).

Abbildung 22: Hemmung der spontanen Proliferation von PBMC eines seropositiven Spenders durch Kokultur mit HHV-6B-infizierten (schwarze Balken) und nicht infizierten MT-4-Zellen (graue Balken). Bei der HHV-6B<sup>pos</sup> MT-4-Zell-Kokultur läßt dieser immunsuppressive Effekt bei geringerem MT-4-Verhältnis (< 1:9) deutlicher nach, als bei den nicht infizierten MT-4-Zellen. Zwischen 1:9 und 1:30 HHV-6B<sup>pos</sup> MT-4-Zellen : PBMC kam es zu einer leichten Zunahme der Zellproliferation. Fehlerbalken: 2 x SD



3.2.3.3 Proliferation antigenspezifischer T-Zellinien nach Virusinfektion

3.2.3.3.1 *In vitro*-Infektion antigenspezifischer Zellen mit Flu A/PR/8/34 (H1N1) Nach Influenzainfektion kam es bei allen 5 untersuchten TT-spezifischen T-Zellinien zu einer deutlichen Suppression der antigenspezifischen Proliferation in einem Titerbereich von MOI 1 – 0,0001. Dieser Effekt war stärker ausgeprägt, wenn isoliert die antigenpräsentierenden Zellen (bestrahlte autologe PBMC) infiziert wurden, im Vergleich zu isoliert infizierten TT-spezifischen T-Zellen mit nicht-infizierten APC (Abb. 23). Abbildung 23: Hemmung der Proliferation am Beispiel der TT-spezifischen T-Zellinie OmU4.5.3 nach differentieller Infektion von APC (deutlicherer Effekt) bzw. T-Zellen mit Influenza A/PR/8/34 während der 4. Restimulation. Fehlerbalken: 2 x SD.



14 Tage nach der 5. Restimulation der TT-spezifischen T-Zellinie OmU4.5.3 ergab sich nach getrennter Infektion der T-Zellen bzw. APC folgendes Bild (Abb. 24)

Abbildung 24: Gesteigerte Proliferation der TT-spez. T-Zellinie OmU4.5.3 nach Infektion mit Influenza A/PR/8/34 während der 5. Restimulation, allerdings auch der PBMC (APC) ohne T-Zellen (vorletzte Spalten) als Hinweis für eine nicht ausreichende Bestrahlung. Fehlerbalken: 2 x SD (Doppelbestimmungen); lg MOI ( $10^{-4}$ ;  $10^{-2}$ ;  $10^{-1}$ ;  $10^{0} = 1$ ); +/- TT; TC inf. = T-Zellen infiziert; APC inf. = bestrahlte PBMC infiziert; keine Angabe / non / N = nicht infiziert.



Infektions- und Stimulationsbedingungen

3.2.3.3.2 In vitro-Infektion antigenspezifischer Zellen mit HHV-6B

Abgesehen von einer Steigerung der MBP-spezifischen Proliferation bei isolierter T-Zell-Infektion der Th1-T-Zellinie PeR1.2 mit einer Infektionsdosis (MOI) von 1 x  $10^{-5}$  TCID<sub>50</sub> (p = 0,044) in einem einzigen Experiment (Abb. 25), wurde die antigenspezifische Stimulation in zwei weiteren Versuchen mit der Th2-T-Zellinie PeR2.1 kaum von der vorherigen Infektion mit HHV-6B beeinflußt.

Abbildung 25: Gesteigerte antigen-spezifische Proliferation der MBP-spezifischen Th1-T-Zellinie PeR1.2 (5. Restimulation) durch differentielle Infektion der T-Zellen (SI = 45) mit HHV-6B, Infektion der APC (SI = 88) ohne Effekt. Fehlerbalken: 2 x SD (Dreifachbestimmungen), \* p < 0.05 (Student *t*-Test).



#### 3.2.4 Untersuchungen zu HHV-6-Reaktivierung im Serum

Neben den Infektionsversuchen sollte zusätzlich in der nachfolgenden klinischvirologischen Studie die aktuell diskutierte Assoziation zwischen HHV-6 und MS überprüft werden. Hierzu wurden serologische und molkulargenetische Befunde von unterschiedlichen MS-Patienten mit denen von gesunden Kontrollspendern verglichen.

# 3.2.4.1 HHV-6-Serologie

Von 74 Serumproben konnten 71 Anti-HHV-6-IgG-Titer bestimmt werden, da von einer Probe die Kodierung nicht zugeordnet werden konnte und bei zwei weiteren eine Bestimmung aufgrund antizellulärer Antikörper nicht erfolgte. Die 71 auswertbaren Proben wurden vier Gruppen zugeteilt: 23 MS-Patienten erhielten 1994 im Rahmen einer PTX-Therapiestudie der Neurologischen Universitätsklinik Göttingen<sup>136</sup> Placebo, 21 Patienten den Phosphodiesterasehemmer Pentoxifyllin (PTX). Unabhängig von dieser Studie waren 1992 Serumproben von 15 Patienten in einer akuten Krankheitsphase und 12 gesunden Kontrollpersonen gesammelt worden (Abb. 26). Im Mann-Whitney-U-Test ergaben sich unberücksichtigt einer unteren Grenztiterschwelle nur zwischen der Kontrollgruppe (n = 12) und der PTX behandelten Gruppe signifikante Unterschiede (*p* = 0,01). Aus keiner der untersuchten Serumproben konnte Anti-HHV-6-IgM nachgewiesen werden.

Abbildung 26: IgG-Titer gegen HHV-6 in Seren von 4 verschiedenen Populationen: Die Gruppen MS Placebo, MS PTX sind 44 Patienten, die an einer Medikamenten-Studie mit/ohne PTX teilgenommen haben, MS akut während einer akuten Krankheitsphase und HD sind gesunde Kontrollspender. Zahlen: *p*-Werte (Mann-Whitney-U-Test)



# 3.2.4.2 HHV-6-DNA-Nachweis mit semi-nested PCR

Sowohl mit dem Standard-Primer-Paar der Virologie und Immunbiologie der Universität Würzburg als auch unter Verwendung des Primer-Paars der aktuellen Arbeiten über HHV-6<sup>137, 138</sup> konnte in einer bis 0,1 fg Kontrollplasmid sensitiven semi-nested PCR in keiner der untersuchten Proben Virus-DNA nachgewiesen werden (Abb. 27).

Abbildung 27: Agarose-Gelelektrophorese der Amplifikationsprodukte einer seminested PCR für HHV-6 aus Patientenserum (in zwei Reihen) und HHV-6-Kontrollplasmid mit/ohne vorherige DNA-Extraktion (Ende der zweiten Reihe).  $M_1$ : DNA-Marker der Reihe 1;  $M_2$ : DNA-Marker der Reihe 2.



#### 4 Diskussion

Vor dem Hintergrund der komplexen Autoimmunhypothese der Multiplen Sklerose und Hinweisen für eine mögliche Virusassoziation, wurden in der vorliegenden Arbeit zwei Teilaspekte untersucht. Zum einen sollten in der sogenannten ViMS-Studie klinischimmunologische Unterschiede in der Reaktion antigenspezifischer T-Lymphozyten nach viralen Atemwegsinfektionen und der Influenzaschutzimpfung herausgearbeitet werden.

Zum anderen sollten in einer klinisch-virologischen Studie die aktuell diskutierte Assoziation der MS mit dem lympho- und neurotropen humanen Herpesvirus 6 (HHV-6) überprüft, sowie mögliche Interaktionen des aktiven Influenza- und HHV-6-Virus in einem etablierten Autoimmun-Zellkulturmodell untersucht werden.

#### 4.1 Impfung und Infektion bei der MS (ViMS-Studie)

Aufgrund der Krankheitsverschlechterung im Rahmen von viralen Atemwegsinfektionen (vgl. Kap. 1.3.1.6.3) bestand bezüglich verschiedener Schutzimpfungen Unsicherheit bei MS-Patienten und behandelnden Ärzten, inwieweit diese eine ungünstige Wirkung auf den Krankheitsverlauf haben könnten. In einigen zum Teil aktuellen Arbeiten,<sup>79, 130, 132</sup> konnte unabhängig voneinander gezeigt werden, daß bei der Influenzaschutzimpfung kein erhöhtes Risiko für Multiple-Sklerose-Patienten in Bezug auf eine Krankheitsverschlechterung oder Auslösung von Schüben besteht. Über diese epidemiologischen Daten hinaus stellte sich die Frage, welche Unterschiede zwischen Impfung und Infektion bezüglich autoreaktiver Immunreaktionen bestehen. In der mit diesem Ziel konzipierten ViMS-Studie wurden insbesondere die Auswirkungen der Influenzaschutzimpfung, sowie natürlich auftretender Infektionen der oberen Luftwege auf autoreaktive T-Zell-Antworten bei gesunden Probanden und MS-Patienten untersucht. Hierzu waren sensitive Nachweismethoden zur seriellen Untersuchung der Zahl und funktionellen Reaktivität autoantigen-spezifischer T-Zellen nötig, wie sie im folgenden beschrieben werden.

#### 4.1.1 Frequenz und Reaktivität spezifischer T-Zellen im Blut

Zur Untersuchung der im Blut zirkulierenden Vorläuferfrequenz autoreaktiver T-Zellen wurde früher auf umständliche Weise die Klonierungsfrequenz mit einem auf Selektion basierenden *in vitro*-Verdünnungs-Assay (LDA) ermittelt, um auf die tatsächlich *in vivo* vorliegende Zahl rückschließen zu können. Aufgrund der Kulturbedingungen waren die Ergebnisse oft artefiziell und ungenau.<sup>14</sup> Durch die einfache Bestimmung der in Primär-kultur *(ex vivo)* spezifisch stimulierbaren Gedächtniszellen ist heute eine genauere Abschätzung der tatsächlichen Verhältnisse auch seltener autoreaktiver T-Zellen möglich, was mit verschiedenen Methoden (ELISPOT, intrazelluläre Zytokin- / Tetramerfärbung im FACS) gezeigt werden konnte.<sup>139 140</sup>

In dieser Arbeit wurde der sensitive IFNγ-ELISPOT als funktionelles Nachweisverfahren autoreaktiver T-Zellfrequenzen auf Einzelzellebene mit der hierzu gut korrelierten, quantitativen RT-PCR kombiniert, um selbst minimale Veränderungen bei seltenen antigen-spezifischen T-Zellen zu erkennen. Zusätzlich konnten gemäß Studiendesign durch häufige Untersuchungszeitpunkte auch kurzzeitige Veränderungen antimyelinspezifischer T-Zellantworten im Blut einzelner Patienten oder Spender nach Impfung oder Infektion untersucht werden, wenngleich aktivierte T-Zellen möglicherweise nur kurz in diesem Kompartiment verweilen.<sup>86,87</sup>

Für das Autoantigen MBP wurde bei den meisten Spendern im Blut eine Frequenz von etwa 1 x 10<sup>-5</sup> (MBP-spezifische T-Zellen pro PBMC) bestimmt. Dies lag somit im unteren Bereich der methodischen Nachweisgrenze, was sich auch mit Angaben aus der Literatur deckt.<sup>141</sup> Olsson und Mitarbeiter fanden im Blut von MS-Patienten 2,7-5,2 MBP-spezifische T-Zellen / 10<sup>5</sup> PBMC, im Liquor sogar bis zu 185 / 10<sup>5</sup> mononukleäre Liquor-Zellen.<sup>14</sup> Kleinere Unterschiede der Nachweisgrenzen und ermittelten Größenangaben antigen-spezifischer T-Zellen zwischen den Arbeitsgruppen werden methodisch u. a. durch Antikörperauswahl, Stimulationsbedingungen, einschließlich Qualität des eingesetzten Antigens, vor allem aber auch von den laborinternen Ausschlußkriterien unspezifischer spots durch Untersucher oder Lesegerät beeinflußt. Neben der hohen interindividuellen Variabilität, wie sie bei vielen funktionellen Assays der klinischen Immunologie ein statistisches Problem darstellt, fielen diese Unterschiede durch individuelle Verlaufsuntersuchungen mit einem streng konstant gehaltenen und kontrollierten

Assay-System nicht ins Gewicht. Entgegen der Kritik der ELISPOT-Methodik bei niedrigen T-Zell-Vorläuferfrequenzen<sup>141</sup> konnten wir mit einer MBP-spezifischen T-Zellinie zeigen, daß in einem Bereich von 10-1000 pro Napf eingesetzte Zellen durch den ELIS-POT-Assay linear abgebildet werden. Zusätzlich konnten wir bei einzelnen Spendern nach durchgemachter Infektion mit dieser Methode durchaus einen deutlichen Anstieg MBP-spezifischer T-Zellen nachweisen (vgl. Kap. 3.5.4). Auch andere generierten mit Hilfe des ELISPOT-Assays verläßliche Daten von seltenen, (auto)reaktiven T-Zellen, welche bei Goulder et al. ebenfalls eine hohe Korrelation zu der Tetramer-Technologie aufwiesen.<sup>14, 140, 142, 143</sup>

Wie schon andere Arbeitsgruppen konnten auch wir keinen zahlenmäßigen Unterschied MBP-spezifischer T-Lymphozyten zwischen MS-Patienten und gesunden Kontrollspendern finden.<sup>7-11, 144, 145</sup> Auch Zellzahl oder Reaktivität anderer Spezifitäten unterschied sich während Impfung oder Atemwegsinfektion in beiden Gruppen nicht. Ungeachtet seiner pathogenetischen Relevanz spiegelt jedoch der in der Literatur beschriebene hohe Liquoranteil möglicherweise die Tatsache wieder, daß sich ein Großteil der myelinspezifischen Zellen in diesem Kompartiment befindet, und somit der Nachweis im Blut häufig nur in einem sehr engen Zeitfenster gelingt, wenn man von einer Aktivierung autoantigenspezifischer Zellen im Blut ausgeht. <sup>86,87</sup>

T-Zellen, die gegen die verwendete Präparation des rekombinant in E. coli hergestellten humanen MOGs in Zellkultur reagierten, wurden im ELISPOT durchwegs in hoher Frequenz und interindividueller Variabilität von 7,4  $\pm$  10 / 10<sup>5</sup> PBMC nachgewiesen. Ähnliche Ergebnisse (2,6  $\pm$  1,4 / 10<sup>5</sup>) erzielten auch andere in gesunden Primaten. <sup>146</sup> Bei vielen rekombinant hergestellten Proteinen, wie auch bei der verwendeten MOG-Präparation, ist es ein bekanntes Phänomen, daß bakterielle oder andere immunogene Bestandteile die proteinspezifische Immunantwort überlagern können (persönliches Gespräch mit Dr. C. G. Haase, Neurologie Essen). Dabei handelt es sich vor allem um His-Tag-Residuen, welche im Aufreinigungsprozeß nicht abspaltbar waren, weniger um hochimmunogene Lipopolysaccharide (LPS), wie im ETOXATE-Test ausgeschlossen werden konnte. Abgesehen von möglicherweise falsch hohen Absolutzahlen waren hierfür die intraindividuellen, relativen Verläufe MOG-spezifischer Antworten in der ViMS-Studie nicht betroffen, da der Anteil immunogener Kontaminanten in der für alle

#### Diskussion

Experimente verwendeten identischen Präparation konstant blieb. Für die Generierung MOG-spezifischer Langzeitkulturen war dieses rekombinante Protein aus genannten Gründen allerdings nicht verwendbar, was auch dazu führte, daß aufgrund der geringen Verfügbarkeit des natürlichen Proteins in neueren Arbeiten stets ausschließlich synthetische MOG-Peptide Verwendung finden.<sup>142</sup> Hingegen ist MBP in hoher Reinheit und Menge aus menschlichem Gehirn aufzureinigen (vgl. Kap. 3.2.1). Für die Fragestellung der impf- bzw. infektgetriggerten Stimulierbarkeit autoreaktiver Zellen wurden beide Proteine als relevant angesehen und im ELSIPOT-Assay eingesetzt. Trotz einer ebenso hohen Reinheit und Endkonzentration der verwendeten Peptide gelang es im ELISPOT-Assay nicht, peptidspezifische Antworten zu messen. Möglicherweise sind hierfür Unterschiede in der Prozessierung und Präsentation durch antigenpräsentierende Zellen verantwortlich, da T-Zell-Peptide und bestimmte Proteine unabhängig von intrazellulärer Prozessierung an MHC-II-Moleküle gebunden werden.<sup>147</sup>

# 4.1.2 ELISPOT, ELISA und quantitative RT-PCR

Im Rahmen der ViMS-Studie zeigte sich insbesondere für Kurzzeitstimulationen mit gut definierten und immunogenen Antigenen wie das Influenzaprotein oder die Impfstoffpräparation eine sehr gute Korrelation zwischen der Anzahl IFNy-sezernierender Zellen – gemessen mit IFNy-ELISPOT – und der Menge an exprimierter IFNy-mRNA der korrespondierenden Ansätze - gemessen mit RT-PCR. Unterschiede bei anderen Antigenen sind möglicherweise auch darin begründet, daß im ELISPOT-Assay nicht die rein quantitative IFNy-Sekretion des Gesamtansatzes, wie bei RT-PCR oder ELISA, sondern vor allem die Anzahl der IFNy-sezernierenden Zellen bestimmt wird. Die Sekretionsmenge jeder einzelnen Zelle wurde zwar grob miterfaßt (große versus kleine spots), diese Größe ging jedoch nicht in die Auswertung mit ein. In der Literatur sind für IFNy und IL4 mit murinen Splenozyten vergleichbare Korrelationen gezeigt worden<sup>148</sup>, wobei die Korrelation zwischen RT-PCR für IFNy-mRNA und dem IFNy-ELIS-POT wohl aufgrund höherer Sensitivität im Vergleich zum ELISA besser war. Auch wurde bereits zwischen ELISPOT und der direkten Tetramer-Technologie eine hohe Korrelation  $(r^2=0.9)$  gezeigt.<sup>140</sup> Der Methodenvergleich zwischen Zytokinproteinkonzentration im ELISA und entsprechenden Zytokin-mRNA-Mengen in der quantitativen RT-

PCR wurde entsprechend an MBP-spezifischen Zellkulturüberständen bzw. Zellen durchgeführt, da aufgrund der geringeren Sensitivität des ELISA Primärkulturen nicht geeignet gewesen wären. Bei der Untersuchung zahlreicher Zytokine zeigte sich v. a. für TNF $\alpha$  (vgl. Abb. 6) eine gute Korrelation beider Methoden, was gerade aufgrund der posttranslationellen Regulation von TNF $\alpha$  eine hohe Methodenreliabilität erkennen läßt. Da dies allerdings nur einen Teilaspekt der vorliegenden Arbeit darstellt, sei auf die Arbeit von Dr. Nils Kruse in unserem Labor verwiesen.<sup>133</sup>

# 4.1.3 Zelluläre und humorale Impfantworten

Die erhobenen Daten belegen, daß nach Impfung mit der Influenzaspaltvakzine weder bei MS-Patienten noch bei gesunden Kontrollspendern erhöhte T-Zellantworten gegen die Autoantigene MBP oder MOG auftreten, obwohl nach Impfung durchwegs gute zelluläre und humorale Reaktionen gegen das Influenzavirus beobachtet wurden.

Aufgrund der klinisch schwer zu überprüfenden Impfeffizienz wird diese häufig anhand der serologischen und zellulären Antworten rückgeschlossen.<sup>149, 150</sup> Der Antikörper-Titeranstieg gegen Influenza in unserer Studie gleicht den Ergebnissen der oben erwähnten Multicenter-Studie von Miller<sup>130</sup>, die zellulären Influenza-spezifischen Antworten darüberhinaus den Angaben von Mokhtarian<sup>131</sup>, was für einen guten Impferfolg spricht.

Da nur Patienten ohne immunmodulierende / -suppressive Therapie geimpft wurden, können bezüglich Wirksamkeit bei Patienten unter immunmodulatorischer Therapie keine direkten Rückschlüsse gezogen werden. Unter Berücksichtigung anderer Studien mit guten Antikörperantworten nach Influenzaimpfung bei AIDS-Patienten oder Patienten unter dauerhafter immunsuppressiver Therapie (Asthma, Nieren-/ Leber-/ Herztransplantation, usw.) wäre eine Ausweitung dieser Indikation auch auf MS-Patienten mit immunsuppressiver Therapie vorstellbar.<sup>151</sup>

#### 4.1.4 MBP-spezifische T-Zellen während Atemwegsinfektion

Dahingegen beobachteten wir eine milde Reaktion MBP-spezifischer T-Zellen nach respiratorischen Infekten. Der früheste Zeitraum war bei einem MS-Patienten 1 Tag nach Beginn der im Impftagebuch dokumentierten Erkältungskrankheit. Dieser Unterschied zwischen der im Vergleich zur gleichbleibend niedrigen MBP-Reaktivität während Vakzinierung und der erhöhten MBP-spezifischen T-Zellfrequenz im Zusammenhang mit Atemwegsinfektionen läßt sich z. B. mit einer stärkeren Immunantwort gegenüber dem invasiven Lebendvirus, sowie Unterschieden hinsichtlich Infektionsort, Umgebungsreaktion und "lymphatischer Rachenring" erklären. Diese Hypothese wird durch die Tatsache unterstützt, daß virale Infektionen, unter anderem über Interferoninduktion zu einer generellen Immunaktivierung (vgl. Abb. 2) bzw. Aufregulierung costimulierender Moleküle führen.<sup>74, 81, 93</sup>

## 4.1.5 Autoimmunität nach Impfung oder Infektion

In Kontrast zu infektassoziierten Autoimmunreaktionen bekräftigen die Daten dieser Studie die Impfsicherheit der Influenzavakzinierung bei MS-Patienten, wie sie klinisch schon von zahlreichen anderen Autoren dokumentiert wurde.<sup>79, 128-132</sup> Außerdem konnten durch die hier vorliegende Untersuchung Befürchtungen über eine mögliche impfassoziierte Auslösung von Autoimmunreaktionen, wie Kreuzreaktivität (Molecular Mimicry) oder unspezifische Begleitreaktion (Bystander Effect) wenigstens für MBP und MOG vermindert werden.

Da man andererseits die Risiken einer Schubauslösung oder Verschlechterung der MS im zeitlichen Zusammenhang mit einer Infektion der oberen Luftwege kennt, wurde im epidemiologischen Bulletin 41/98 des Robert-Koch-Instituts, Berlin, darauf hingewiesen, daß bei Nutzen-Risiko-Abwägung der zu erwartende Nutzen der Influenzaschutzimpfung bei MS-Patienten in den Vordergrund trete und somit gemäß Empfehlungen der ständigen Impfkommission am Robert-Koch-Institut (STIKO) bei dieser Gruppe der chronisch Kranken zu empfehlen ist.<sup>127</sup>

## 4.2 Virologisch-Immunologische Untersuchungen

Vor dem Hintergrund der infektassoziierten Immunaktivierung schien es bedeutsam, den Einfluß von Virusinfektionen auf zellulärer Ebene zu betrachten. Es wurden das Influenzavirus A/PR/8/34 (H1N1) aufgrund des Bezuges zum ersten Teil der Arbeit, sowie das humane Herpesvirus 6 (HHV-6B) aufgrund der aktuellen Diskussion eines postulierten Zusammenhangs mit der Multiplen Sklerose <sup>111-113, 117, 119, 138, 152</sup> untersucht. Dabei wurde zunächst die spontane Proliferation peripherer Blutlymphozyten (PBMC), sowie die mitogeninduzierte Proliferationsrate nach *in vitro*-Infektion mit oben genannten Viren ermittelt. Im Folgenden wurde sowohl die unspezifische, als auch die antigenabhängige Proliferation spezifischer T-Zellen nach differentieller Virusinfektion der T-Zellen bzw. APC untersucht.

### 4.2.1 Humanes Zellkulturmodell für die Multiple Sklerose

Für die aus den Infektionsversuchen gewonnenen Ergebnisse waren die Etablierung und zuverlässigen Kulturbedingungen des verwendeten autoimmunen Zellkulturmodells essentiell. Wie in Kap. 3.2 gezeigt, waren die Voraussetzungen hinsichtlich Spezifität und Oligoklonalität erfüllt und eine Immun-Phänotypisierung nach Oberflächenmarkern und Zytokinprofil möglich.<sup>7, 9</sup> Darüberhinaus stellte sich die Verwendung von autologem Medium im Vergleich mit gepooltem AB-Serum oder FCS als optimaler Medienzusatz heraus. Mit der klassischen Split-well-Methode und bestrahlten PBMC als antigenpräsentierende Zellen gelang es, acht MBP-spezifische und zahlreiche TT-spezifische Langzeitkulturen zu generieren.

# 4.2.2 In vitro-Infektionsversuche mit Influenzavirus A

In den Infektionsversuchen mit Influenza kam es bei niedrigeren mehr als bei hohen Infektionsdosen in einem Bereich von MOI 0,1 bis 2 zu einer Proliferation der unstimulierten PBMC, was auf die Proliferation Influenza-spezifischer T-Zellen der seropositiven Spender zurückzuführen ist. Hingegen war sowohl die mitogenvermittelte (PBMC) als auch die antigen-spezifische (TT- und MBP-spezifische T-Zellinien) Proliferation durch die in vitro-Infektion mit Influenzavirus vermindert, unabhängig davon, ob Effektorzellen oder Präsenter infiziert wurden. Somit bestätigte sich in vitro die supprimierende Wirkung auf die mitogen- und antigen-induzierte Proliferation.<sup>153, 154</sup> Wenngleich es sich bei Influenza um ein Virus mit primärem respiratorischen Epithelzelltropismus handelt und die zum Teil lymphopenischen Effekte noch nicht hinreichend erklärt sind, so sind doch abortive Infektionen von Lymphozyten beschrieben.<sup>155</sup> Anhand dieser Daten kann keine lineare Erklärung einer postulierten Schub- oder sogar Krankheitsauslösung durch Infektion mit Influenzaviren abgeleitet werden. Dennoch ist eine sekundäre Immunaktivierung über die in vivo zu beobachtende IFNy-Ausschüttung<sup>153, 156, 157</sup> als Sekundärphänomen und möglicher Stimulus einer Bystander-Aktivierung autoreaktiver T-Zellen denkbar, zumal in einer klinischen Phase-II-Studie die Applikation von IFNy bei MS-Patienten deutlich schubauslösend wirkte. <sup>74</sup> Eine Aufregulierung myelinspezifischer T-Zellen konnte im Rahmen der ViMS-Studie nach Impfung nicht festgestellt werden, obwohl es zu einer impfbedingten Zunahme Influenza-spezifischer T-Zellen gekommen war. Nach den ELISA-Befunden und der ELISPOT-Hintergrundfärbung in dieser Arbeit zu schließen, welche bei Verwendung von 5%igem autologen Serum auch vom IFNγ-Gehalt des Serums abhängt, kam es nach Impfung nicht zu signifikant erhöhten Mengen IFNγ im Serum. Dies könnte an der wesentlich stärkeren Immunaktivierung und dem nachgewiesenermaßen höherem IFNγ-Anstieg einer natürlichen Infektion als unter Immunstimulierung mit attenuiertem Lebendvirus oder gereinigtem HA liegen.<sup>125</sup>

#### 4.2.3 In vitro-Infektionsversuche mit HHV-6B

In einem experimentellen Infektionsmodell konnte bei HHV-6B-Infektionsdosen (MOI) von über 10<sup>-4</sup> TCID<sub>50</sub> die Proliferation frisch isolierter PBMC gehemmt werden. Dies entspricht auch den Erfahrungen aus anderen Laboren, in denen mit HHV-6 gearbeitet wird. Dabei kommt es möglicherweise über eine Herabregulierung des T-Zellrezeptor-Komoleküls CD3<sup>105</sup>, durch Hemmung der IL2-Synthese<sup>158</sup> sowie über Apoptoseinduktion <sup>159</sup> zu einer Hemmung der T-Lymphozyten-Proliferation. Bemerkenswerterweise treten diese Effekte bei wesentlich niedrigeren Infektionsraten zwischen 10<sup>-6</sup> bis 10<sup>-5</sup> TCID<sub>50</sub> nicht auf. Hier wurde ein signifikanter Anstieg der spontanen Proliferationsrate beobachtet, was am ehesten durch Stimulation HHV-6-spezifischer T-Zellen bei seropositiven Spendern erklärbar ist. Diese HHV-6-spezifische Proliferation konnte von anderen durch Monozytendepletion oder antikörpervermittelte IL2-Rezeptor-Blockade gehemmt werden. <sup>160</sup> Man könnte hypothetisieren, daß bei hohen Virusmengen die intrinsische immunsuppressive Wirkung des Virus die Stimulation virusspezifischer T-Zellen übertrifft. Da die unspezifische Mitogenstimulation von PBMC antigenunabhängig funktioniert, ist hier ein Überwiegen des immunsuppressiven Effekts nachzuvollziehen, was in unseren Experimenten bei allen Infektionsdosen der Fall war. Eine autoantigenspezifische Stimulation konnte also weder über einen unspezifischen Bystander-Effekt noch über Molecular Mimicry gezeigt werden. Dies wurde in einer sehr aktuellen Arbeit bestätigt.161

#### 4.2.4 Klinische Untersuchungen zur HHV-6-Reaktivierung

Gemäß der kontrovers diskutierten Assoziation zwischen HHV-6 und Multipler Sklerose und der Fähigkeit des Virus, in menschlichen CD4+ T-Zellen und Monozyten zu persistieren, sowie dessen hohe Prävalenz in Oligodendrozyten und Mikroglia legen eine mögliche Rolle in der postulierten Viruspathogenese der MS nahe.

In einer klinischen und laborunterstützten Studie zur Evaluierung von HHV-6-Durchseuchung bzw. möglicher Hinweise auf eine Reaktivierung wurden Serumproben auf anti-HHV-6-Antikörper und Virus-DNA hin untersucht. Hierbei konnten bei 62 MS Patienten und 12 Kontrollspendern weder IgM-Antikörper gegen HHV-6 noch Virus-DNA nachgewiesen werden. Darüberhinaus fanden sich zwischen den untersuchten Gruppen keine signifikanten Unterschiede der IgG-Titer gegen HHV-6, außer bei dem Pentoxifyllin-behandelten MS-Kollektiv, welches im Vergleich zu gesunden Probanden erhöhte Titer aufwies. Diese Titererhöhung ließe sich durch den postulierten PTXvermittelten Th2-shift<sup>136</sup>, entweder über den Mechanismus unspezifisch erhöhter Antikörperproduktion oder einer spezifischen humoralen Antwort auf eine latente HHV-6-Reaktivierung durch vorübergehende Immunsuppression erklären. Der fehlende Nachweis von HHV-6-DNA im Serum der untersuchten Populationen spricht gegen eine maßgebliche Rolle als einzelnes Virus in der Pathogenese der MS, zumal im Vergleich zu einer Vielzahl von Negativ-Ergebnissen<sup>117, 119, 121, 161</sup> die wenigsten Forschergruppen<sup>112,</sup> <sup>113, 115, 138</sup> einen signifikanten Unterschied zu gesunden Kontrollpersonen nachweisen konnten.

# 4.3 Zusammenfassung

In der sogenannten ViMS-Studie, bei der MS-Patienten und gesunde Kontrollpersonen mit einer Influenza-Spaltvakzine geimpft und für einen zum Teil viermonatigen Zeitraum im Verlauf nachbeobachtet wurden, ergab sich weder mit dem sensitiven IFNγ-ELISPOT noch mit der quantitativen RT-PCR ein Anhalt für erhöhte Autoimmunreaktivität gegen die zwei untersuchten Myelin-Antigene MBP und MOG. Im Gegensatz dazu konnten mit dem IFNγ-ELISPOT-Assay bei einigen gesunden Spendern und MS-Patienten nach natürlichen Atemwegsinfektionen eine erhöhte Frequenz autoreaktiver MBP-spezifischer T-Lymphozyten beobachtet werden.

#### Diskussion

Im zweiten Teil dieser Arbeit konnten durch Zellkulturinfektionen mit Influenzavirus oder HHV-6 weder an Primärzellkulturen noch in einem etablierten *in vitro*-Modell für MS-Autoimmunität an MBP-spezifischen T-Zellen eine immunstimulierende Wirkung gezeigt werden. Bei niedrigen Infektionsdosen kam es zur Proliferation einer wahrscheinlich virus-spezifischen Zellpopulation, bei höheren Dosen wurde dieser Effekt durch die bekannte Immunsuppression der *in vitro*-Infektion mit HHV-6 übertroffen.

In einer umfassenden Untersuchung von Serumproben von gesunden Spendern und MS-Patienten in unterschiedlichen Krankheitsphasen wurden trotz sensitiver Nachweismethoden keine erhöhten Antikörper-Titer (IgG/IgM) gegen HHV-6 oder HHV-6-DNA nachgewiesen, woraus geschlossen werden darf, daß die untersuchten Viren keine intrinsische Pathogenität für die Entstehung von Autoimmunität bei der MS aufweisen. Im Vergleich zu der Kontrollgruppe erhöhte Anti-HHV-6-IgG-Titer bei PTXbehandelten MS-Patienten lassen sich als mögliches Epiphänomen durch die immunmodulatorische (Th2-vermittelte) Wirkung des Medikaments deuten.

In Zusammenschau aller Ergebnisse dieser Arbeit lassen sich die anfangs angedeuteten Modelle einer virusvermittelten Autoimmunpathogenese der MS nicht eindeutig einordnen. Die Ergebnisse der ViMS-Studie, unterstützt durch zahlreiche Untersuchungen anderer Gruppen, weisen in Bezug auf Schubauslösung oder Verschlechterung auf einen generellen immunaktivierenden Mechanismus im Sinne einer unspezifischen Begleitreaktion durch Infektion aber nicht durch Influenzaschutzimpfung hin (vgl. Abb. 1b). Dabei spielt wohl nicht eine einzelne Virusinfektion (vgl. Antikörperbefunde, Kap. 3.1.5) die maßgebliche Rolle in einem schon auf immunologischer Ebene recht komplexen Netzwerk, sondern können prinzipiell verschiedene (beliebige) Viren zum Anstoßen einer Autoimmunkaskade beitragen, wenn sie auf einen konstitutionell oder temporär empfänglichen Wirtsorganismus treffen. Dies ist auch vom Infektionsort und –milieu abhängig. Bei der vorliegenden Multifaktorialität und Heterogenität der Subpopulationen sind monolineare Erklärungsansätze bislang zum Scheitern verurteilt gewesen. Aber aus dem Fehlen eines Beweises kann nicht der Beweis für das Fehlen eines Zusammenhangs zwischen Virusinfektionen und Autoimmunreaktionen geschlossen werden.

# 5 Literatur

- 1. Martyn, C. The epidemiology of multiple sclerosis. In: Matthews, W.B., editor. McAlpine's multiple sclerosis. New York: Churchill Livingstone; 1991. p. 3-40.
- 2. Weinshenker, B.G., Bass, B., Rice, G.P., Noseworthy, J., Carriere, W., Baskerville, J., et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain 1989;112(Pt 1):133-146.
- 3. Martin, R., McFarland, H.F. and McFarlin, D.E. Immunological aspects of demyelinating diseases. Annu Rev Immunol 1992;10:153-187.
- 4. Lucchinetti, C., Bruck, W., Parisi, J., Scheithauer, B., Rodriguez, M. and Lassmann, H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000;47(6):707-717.
- 5. Noseworthy, J.H. Progress in determining the causes and treatment of multiple sclerosis. Nature 1999;399(6738 Suppl):A40-47.
- Martin, R., Jaraquemada, D., Flerlage, M., Richert, J., Whitaker, J., Long, E.O., et al. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J Immunol 1990;145(2):540-548.
- Ota, K., Matsui, M., Milford, E.L., Mackin, G.A., Weiner, H.L. and Hafler, D.A. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 1990;346(6280):183-187.
- 8. Burns, J., Rosenzweig, A., Zweiman, B. and Lisak, R.P. Isolation of myelin basic protein-reactive T-cell lines from normal human blood. Cell Immunol 1983;81(2):435-440.
- 9. Pette, M., Fujita, K., Kitze, B., Whitaker, J.N., Albert, E., Kappos, L., et al. Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology 1990;40(11):1770-1776.
- Muraro, P.A., Vergelli, M., Kalbus, M., Banks, D.E., Nagle, J.W., Tranquill, L.R., et al. Immunodominance of a low-affinity major histocompatibility complex- binding myelin basic protein epitope (residues 111-129) in HLA-DR4 (B1\*0401) subjects is associated with a restricted T cell receptor repertoire. J Clin Invest 1997;100(2):339-349.
- Zhang, J., Markovic-Plese, S., Lacet, B., Raus, J., Weiner, H.L. and Hafler, D.A. Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 1994;179(3):973-984.

- 12. Scholz, C., Patton, K.T., Anderson, D.E., Freeman, G.J. and Hafler, D.A. Expansion of autoreactive T cells in multiple sclerosis is independent of exogenous B7 costimulation. J Immunol 1998;160(3):1532-1538.
- 13. Burns, J., Bartholomew, B. and Lobo, S. Isolation of myelin basic proteinspecific T cells predominantly from the memory T-cell compartment in multiple sclerosis. Ann Neurol 1999;45(1):33-39.
- 14. Olsson, T., Zhi, W.W., Hojeberg, B., Kostulas, V., Jiang, Y.P., Anderson, G., et al. Autoreactive T lymphocytes in multiple sclerosis determined by antigeninduced secretion of interferon-gamma. J Clin Invest 1990;86(3):981-985.
- 15. Voskuhl, R.R., Martin, R., Bergman, C., Dalal, M., Ruddle, N.H. and McFarland, H.F. T helper 1 (Th1) functional phenotype of human myelin basic proteinspecific T lymphocytes. Autoimmunity 1993;15(2):137-143.
- Muraro, P.A., Pette, M., Bielekova, B., McFarland, H.F. and Martin, R. Human autoreactive CD4+ T cells from naive CD45RA+ and memory CD45RO+ subsets differ with respect to epitope specificity and functional antigen avidity. J Immunol 2000;164(10):5474-5481.
- Bielekova, B., Goodwin, B., Richert, N., McFarland, H.F. and Martin, R. Antigen-specific immunomodulation confirms the encephalitogenic potential of myelin basic protein peptide (83-99) in multiple sclerosis (abstract). Neurology 2000;54 (Suppl 3)(7):A 148.
- 18. Rivers, T., Sprunt, D. and Berry, G. Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J Exp Med 1933;58:39-53.
- 19. Gold, R., Hartung, H.P. and Toyka, K.V. Animal models for autoimmune demyelinating disorders of the nervous system. Mol Med Today 2000;6(2):88-91.
- 20. Sun, J.B., Olsson, T., Wang, W.Z., Xiao, B.G., Kostulas, V., Fredrikson, S., et al. Autoreactive T and B cells responding to myelin proteolipid protein in multiple sclerosis and controls. Eur J Immunol 1991;21(6):1461-1468.
- 21. Trotter, J.L., Hickey, W.F., van der Veen, R.C. and Sulze, L. Peripheral blood mononuclear cells from multiple sclerosis patients recognize myelin proteolipid protein and selected peptides. J Neuroimmunol 1991;33(1):55-62.
- 22. Burns, J.B. and Littlefield, K. Human T lymphocytes reactive with whole myelin recognize predominantly myelin basic protein. J Neuroimmunol 1989;24(1-2):67-74.
- 23. Rösener, M., Muraro, P.A., Riethmuller, A., Kalbus, M., Sappler, G., Thompson, R.J., et al. 2',3'-cyclic nucleotide 3'-phosphodiesterase: a novel candidate autoantigen in demyelinating diseases. J Neuroimmunol 1997;75(1-2):28-34.

| 24. | Zhang, Y., Burger, D., Saruhan, G., Jeannet, M. and Steck, A.J. The T-      |
|-----|-----------------------------------------------------------------------------|
|     | lymphocyte response against myelin-associated glycoprotein and myelin basic |
|     | protein in patients with multiple sclerosis. Neurology 1993;43(2):403-407.  |

- 25. Link, H., Sun, J.B., Wang, Z., Xu, Z., Love, A., Fredrikson, S., et al. Virusreactive and autoreactive T cells are accumulated in cerebrospinal fluid in multiple sclerosis. J Neuroimmunol 1992;38(1-2):63-73.
- 26. Kerlero de Rosbo, N., Hoffman, M., Mendel, I., Yust, I., Kaye, J., Bakimer, R., et al. Predominance of the autoimmune response to myelin oligodendrocyte gly-coprotein (MOG) in multiple sclerosis: reactivity to the extracellular domain of MOG is directed against three main regions. Eur J Immunol 1997;27(11):3059-3069.
- Kojima, K., Berger, T., Lassmann, H., Hinze-Selch, D., Zhang, Y., Gehrmann, J., et al. Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the S100 beta molecule, a calcium binding protein of astroglia. J Exp Med 1994;180(3):817-829.
- 28. van Sechel, A.C., Bajramovic, J.J., van Stipdonk, M.J., Persoon-Deen, C., Geutskens, S.B. and van Noort, J.M. EBV-induced expression and HLA-DRrestricted presentation by human B cells of alpha B-crystallin, a candidate autoantigen in multiple sclerosis. J Immunol 1999;162(1):129-135.
- 29. van Noort, J.M., van Sechel, A.C., Bajramovic, J.J., el Ouagmiri, M., Polman, C.H., Lassmann, H., et al. The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature 1995;375(6534):798-801.
- Banki, K., Colombo, E., Sia, F., Halladay, D., Mattson, D.H., Tatum, A.H., et al. Oligodendrocyte-specific expression and autoantigenicity of transaldolase in multiple sclerosis. J Exp Med 1994;180(5):1649-1663.
- 31. Kerlero de Rosbo, N. and Ben-Nun, A. T-cell responses to myelin antigens in multiple sclerosis; relevance of the predominant autoimmune reactivity to myelin oligodendrocyte glycoprotein. J Autoimmun 1998;11(4):287-299.
- 32. Wekerle, H. Remembering MOG: autoantibody mediated demyelination in multiple sclerosis? Nat Med 1999;5(2):153-154.
- 33. Lehmann, P.V., Forsthuber, T., Miller, A. and Sercarz, E.E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 1992;358(6382):155-157.
- 34. Tuohy, V.K., Yu, M., Yin, L., Kawczak, J.A., Johnson, J.M., Mathisen, P.M., et al. The epitope spreading cascade during progression of experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol Rev 1998;164:93-100.

| 35. | Johnson, R.T. The virology of demyelinating diseases. Ann Neurol 1994;36<br>Suppl:S54-60.                                                                                                                              |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 36. | Marie, P. Sclérose en plaques et maladies infectieuses. Prog Med 1884;12:287-289.                                                                                                                                      |
| 37. | Kurtzke, J.F. Epidemiologic contributions to multiple sclerosis: an overview. Neurology 1980;30(7 Pt 2):61-79.                                                                                                         |
| 38. | Kurtzke, J.F. Multiple sclerosis in time and space - geographic clues to cause. J Neurovirol 2000;6 Suppl 2(5):S134-140.                                                                                               |
| 39. | Ebers, G.C., Bulman, D.E., Sadovnick, A.D., Paty, D.W., Warren, S., Hader, W., et al. A population-based study of multiple sclerosis in twins. N Engl J Med 1986;315(26):1638-1642.                                    |
| 40. | Sadovnick, A.D., Armstrong, H., Rice, G.P., Bulman, D., Hashimoto, L., Paty, D.W., et al. A population-based study of multiple sclerosis in twins: update. Ann Neurol 1993;33(3):281-285.                              |
| 41. | Mumford, C.J., Wood, N.W., Kellar-Wood, H., Thorpe, J.W., Miller, D.H. and Compston, D.A. The British Isles survey of multiple sclerosis in twins. Neurology 1994;44(1):11-15.                                         |
| 42. | Eldridge, R., Herndon, C.N. and al, e. Multiple sclerosis in twins. N Engl J Med 1987;317:50.                                                                                                                          |
| 43. | Kurtzke, J.F. and Hyllested, K. Multiple sclerosis in the Faroe Islands: I. Clini-<br>cal and epidemiological features. Ann Neurol 1979;5(1):6-21.                                                                     |
| 44. | Sheremata, W.A., Poskanzer, D.C., Withum, D.G., MacLeod, C.L. and Whitesi-<br>de, M.E. Unusual occurrence on a tropical island of multiple sclerosis. Lancet<br>1985;2(8455):618.                                      |
| 45. | Poser, C.M., Hibberd, P.L., Benedikz, J. and Gudmundsson, G. Analysis of the 'epidemic' of multiple sclerosis in the Faroe Islands. I. Clinical and epidemiolo-<br>gical aspects. Neuroepidemiology 1988;7(4):168-180. |
| 46. | Poser, C.M. and Hibberd, P.L. Analysis of the 'epidemic' of multiple sclerosis in the Faroe Islands. II. Biostatistical aspects. Neuroepidemiology 1988;7(4):181-189.                                                  |
| 47. | Cooke, R.G. MS in the Faroe Islands and the possible protective effect of early childhood exposure to the "MS agent". Acta Neurol Scand 1990;82(4):230-233.                                                            |
| 48. | Benedikz, J., Magnusson, H. and Guthmundsson, G. Multiple sclerosis in Ice-<br>land, with observations on the alleged epidemic in the Faroe Islands. Ann Neu-<br>rol 1994;36 Suppl 2:S175-179.                         |

| 49. | Goverman, J., Woods, A., Larson, L., Weiner, L.P., Hood, L. and Zaller, D.M.     |
|-----|----------------------------------------------------------------------------------|
|     | Transgenic mice that express a myelin basic protein-specific T cell receptor de- |
|     | velop spontaneous autoimmunity. Cell 1993;72(4):551-560.                         |

- 50. ter Meulen, V. and Katz, M. The proposed viral etiology of multiple sclerosis and related demyelinating diseases. In: Raine, C., McFarland, H. and Tourtellotte, W., editors. Multiple sclerosis: clinical and pathogenetic basis. London: Chapman & Hall; 1997. p. 287-305.
- 51. Stohlman, S.A. and Hinton, D.R. Viral induced demyelination. Brain Pathol 2001;11:92-106.
- 52. Horvath, C.J., Simon, M.A., Bergsagel, D.J., Pauley, D.R., King, N.W., Garcea, R.L., et al. Simian virus 40-induced disease in rhesus monkeys with simian acquired immunodeficiency syndrome. Am J Pathol 1992;140(6):1431-1440.
- 53. Zurbriggen, A., Yamawaki, M. and Vandevelde, M. Restricted canine distemper virus infection of oligodendrocytes. Lab Invest 1993;68(3):277-284.
- 54. Bailey, O.T., Pappenheimer, A.M., Cheever, F.S. and Daniels, J.B. A murine hepatitis virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin. II. Pathology. J Exp Med 1949;90:195-212.
- 55. Weiner, L.P. Pathogenesis of demyelination induced by a mouse hepatitis. Arch Neurol 1973;28(5):298-303.
- 56. Yokomori, K., Asanaka, M., Stohlman, S.A., Makino, S., Shubin, R.A., Gilmore, W., et al. Neuropathogenicity of mouse hepatitis virus JHM isolates differing in hemagglutinin-esterase protein expression. J Neurovirol 1995;1(5-6):330-339.
- 57. Theiler, M. Spontaneous encephalomyelitis of mice, a new virus disease. J Exp Med 1937;65:705-719.
- 58. Jakob, J. and Roos, R.P. Molecular determinants of Theiler's murine encephalomyelitis-induced disease. J Neurovirol 1996;2(2):70-77.
- 59. Fazakerley, J.K. and Webb, H.E. Semliki Forest virus-induced, immunemediated demyelination: adoptive transfer studies and viral persistence in nude mice. J Gen Virol 1987;68 (Pt 2):377-385.
- 60. Dal Canto, M.C., Rabinowitz, S.G. and Johnson, T.C. Virus-induced demyelination. Production by a viral temperature-sensitive mutant. J Neurol Sci 1979;42(1):155-168.
- 61. Narayan, O. and Clements, J.E. Biology and pathogenesis of lentiviruses. J Gen Virol 1989;70 (Pt 7):1617-1639.
- 62. Haase, C.G., Faustmann, P.M. and Diener, H. Idiopathic inflammatory demyelinating diseases of the central nervous system: differentiating between acute disseminated encephalomyelitis and malignant multiple sclerosis. J Clin Neurosci 1999;6(3):221-226.
- 63. ter Meulen, V., Stephenson, J.R. and Kreth, W.H. Subacute sclerosing panencephalitis. In: Fraenkel-Conrat, H. and Wagner, R.R., editors. Comprehensive Virology. New York: Plenum Press; 1983. p. 105-159.
- 64. Frey, T.K. Neurological aspects of rubella virus infection. Intervirology 1997;40(2-3):167-175.
- 65. Padgett, B.L. and Walker, D.L. New human papovaviruses. Progr Med Virol 1976;22:1-35.
- 66. Carrigan, D.R., Harrington, D. and Knox, K.K. Subacute leukoencephalitis caused by CNS infection with human herpesvirus-6 manifesting as acute multiple sclerosis. Neurology 1996;47(1):145-148.
- 67. Ho, D.D., Rota, T.R., Schooley, R.T. and al, e. Isolation of HTLV-III from cerebrospinal fluid and neural tissues of patients with neurologic syndromes related to the acquired immunodeficiency syndrome. N Engl J Med 1985;313:1493-1497.
- 68. Levy, J.A., Shimabukuro, J., Hollander, H. and al, e. Isolation of AIDSassociated retroviruses from cerebrospinal fluid and brain of patients with neurological symptoms. Lancet 1985;2:586-588.
- 69. Osame, M., Usuku, K., Izumo, S. and al, e. HTLV-I associated myelopathy, a new clinical entity. Lancet 1986;2:1031-1032.
- 70. Moore, G.R.W., Traugott, U., Scheinberg, L.C. and Raine, C.S. Tropical spastic paraparesis: a model of virus-induced cytotoxic T cell mediated demyelination. Ann Neurol 1989;26:523-530.
- 71. Goswami, K.K., Randall, R.E., Lange, L.S. and Russell, W.C. Antibodies against the paramyxovirus SV5 in the cerebrospinal fluids of some multiple sclerosis patients. Nature 1987;327(6119):244-247.
- 72. Norrby, E. Viral antibodies in multiple sclerosis. In: Melnich, J.L., editor. Progress in medical virology. Basel: Karger; 1978.
- 73. Reiber, H., Ungefehr, S. and Jacobi, C. The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis. Mult Scler 1998;4(3):111-117.
- Panitch, H.S., Hirsch, R.L., Haley, A.S. and Johnson, K.P. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1987;1(8538):893-895.

| 75. | Panitch, H.S. Influence of infection on exacerbations of multiple sclerosis. Ann Neurol 1994;36 Suppl:S25-28.                                                                                                                                                               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 76. | Sibley, W.A., Bamford, C.R. and Clark, K. Clinical viral infections and multiple sclerosis. Lancet 1985;1(8441):1313-1315.                                                                                                                                                  |
| 77. | Andersen, O., Lygner, P.E., Bergstrom, T., Andersson, M. and Vahlne, A. Viral infections trigger multiple sclerosis relapses: a prospective seroepidemiological study. J Neurol 1993;240(7):417-422.                                                                        |
| 78. | Edwards, S., Zvartau, M., Clarke, H., Irving, W. and Blumhardt, L.D. Clinical relapses and disease activity on magnetic resonance imaging associated with viral upper respiratory tract infections in multiple sclerosis. J Neurol Neurosurg Psychiatry 1998;64(6):736-741. |
| 79. | De Keyser, J., Zwanikken, C. and Boon, M. Effects of influenza vaccination and influenza illness on exacerbations in multiple sclerosis. J Neurol Sci 1998;159(1):51-53.                                                                                                    |
| 80. | von Herrath, M.G. Obstacles to identifying viruses that cause autoimmune di-<br>sease. J Neuroimmunol 2000;107(2):154-160.                                                                                                                                                  |
| 81. | Souberbielle, B.E., Szawlowski, P.W. and Russell, W.C. Is there a case for a virus aetiology in multiple sclerosis? Scott Med J 1995;40(2):55-62.                                                                                                                           |
| 82. | Hafler, D.A. The distinction blurs between an autoimmune versus microbial hypothesis in multiple sclerosis [comment]. J Clin Invest 1999;104(5):527-529.                                                                                                                    |
| 83. | Barnaba, V. Viruses, hidden self-epitopes and autoimmunity. Immunol Rev 1996;152:47-66.                                                                                                                                                                                     |
| 84. | Webb, H.E. and Fazakerley, J.K. Can viral envelope glycolipids produce au-<br>toimmunity with reference to the CNS and multiple sclerosis? Neuropathol Appl<br>Neurobiol 1984;10:1-10.                                                                                      |
| 85. | Dalgleish, A.G., Fazakerley, J.K. and Webb, H.E. Do human T-lymphotrophic viruses (HTLVs) and other enveloped viruses induce autoimmunity in multiple sclerosis? Neuropathol Appl Neurobiol 1987;13(4):241-250.                                                             |
| 86. | Wekerle, H., Engelhardt, B., Risau, W. and Meyermann, R. Interaction of T lymphocytes with cerebral endothelial cells in vitro. Brain Pathol 1991;1(2):107-114.                                                                                                             |
| 87. | Hickey, W.F. Migration of hematogenous cells through the blood-brain barrier and the initiation of CNS inflammation. Brain Pathol 1991;1(2):97-105.                                                                                                                         |
|     |                                                                                                                                                                                                                                                                             |

- 88. Fujinami, R.S. and Oldstone, M.B.A. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985;230:1043-1045.
- 89. Wucherpfennig, K.W. and Strominger, J.L. Molecular mimicry in T cellmediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 1995;80(5):695-705.
- Hemmer, B., Fleckenstein, B.T., Vergelli, M., Jung, G., McFarland, H., Martin, R., et al. Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J Exp Med 1997;185(9):1651-1659.
- 91. Gran, B., Hemmer, B., Vergelli, M., McFarland, H.F. and Martin, R. Molecular mimicry and multiple sclerosis: degenerate T-cell recognition and the induction of autoimmunity. Ann Neurol 1999;45(5):559-567.
- 92. Delves, P.J. and Roitt, I.M. The immune system. Second of two parts. N Engl J Med 2000;343(2):108-117.
- 93. Tough, D.F., Borrow, P. and Sprent, J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 1996;272(5270):1947-1950.
- Oldstone, M.B. Molecular mimicry and immune-mediated diseases. Faseb J 1998;12(13):1255-1265.
- 95. Horwitz, M.S., Bradley, L.M., Harbertson, J., Krahl, T., Lee, J. and Sarvetnick, N. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 1998;4(7):781-785.
- 96. Conrad, B., Weissmahr, R.N., Böni, J., Arcari, R., Schüpbach, J. and Mach, B. A human endogenous retroviral superantigen as candidate autoimmune gene in type I diabetes. Cell 1997;90:303-313.
- 97. Perron, H., Geny, C., Laurent, A., Mouriquand, C., Pellat, J., Perret, J., et al. Leptomeningeal cell line from multiple sclerosis with reverse transcriptase activity and viral particles. Res Virol 1989;140(6):551-561.
- 98. Perron, H., Garson, J.A., Bedin, F., Beseme, F., Paranhos-Baccala, G., Komurian-Pradel, F., et al. Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis. Proc Natl Acad Sci U S A 1997;94(14):7583-7588.
- 99. Torres, B.A. and Johnson, H.M. Modulation of disease by superantigens. Curr Opin Immunol 1998;10(4):465-470.
- 100. Sommerlund, M., Pallesen, G., Moller-Larsen, A., Hansen, H.J. and Haahr, S. Retrovirus-like particles in an Epstein-Barr virus-producing cell line derived

from a patient with chronic progressive myelopathy. Acta Neurol Scand 1993;87(2):71-76.

- 101. Haahr, S. and Munch, M. The association between multiple sclerosis and infection with Epstein-Barr virus and retrovirus. J Neurovirol 2000;6 Suppl 2:S76-79.
- Salahuddin, S.Z., Ablashi, D.V., Markham, P.D., Josephs, S.F., Sturzenegger, S., Kaplan, M., et al. Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science 1986;234(4776):596-601.
- 103. Braun, D.K., Dominguez, G. and Pellett, P.E. Human herpesvirus 6. Clin Microbiol Rev 1997;10(3):521-567.
- Pellett, P.E. and Black, J.B. Human herpesvirus 6. In: Fields, B.N., Knipe, D.M., Howley, P.M. and al., e., editors. Fields Virology. 3 ed. Philadelphia: Lippincott-Raven Publishers; 1996. p. 2587-2608.
- 105. Lusso, P., Malnati, M., De Maria, A., Balotta, C., DeRocco, S.E., Markham, P.D., et al. Productive infection of CD4+ and CD8+ mature human T cell populations and clones by human herpesvirus 6. Transcriptional down-regulation of CD3. J Immunol 1991;147(2):685-691.
- 106. Burd, E.M., Knox, K.K. and Carrigan, D.R. Human herpesvirus-6-associated suppression of growth factor-induced macrophage maturation in human bone marrow cultures. Blood 1993;81(6):1645-1650.
- 107. Horvat, R.T., Parmely, M.J. and Chandran, B. Human herpesvirus 6 inhibits the proliferative responses of human peripheral blood mononuclear cells. J Infect Dis 1993;167(6):1274-1280.
- 108. Flamand, L., Gosselin, J., DqAddario, M., Hiscott, J., Ablashi, D.V., Gallo, R.C., et al. Human herpesvirus 6 induces interleukin-1 beta and tumor necrosis factor alpha, but not interleukin-6, in peripheral blood mononuclear cell cultures. J Virol 1991;65(9):5105-5110.
- 109. Kamei, A., Ichinohe, S., Onuma, R., Hiraga, S. and Fujiwara, T. Acute disseminated demyelination due to primary human herpesvirus-6 infection. Eur J Pediatr 1997;156(9):709-712.
- 110. Novoa, L.J., Nagra, R.M., Nakawatase, T., Edwards-Lee, T., Tourtellotte, W.W. and Cornford, M.E. Fulminant demyelinating encephalomyelitis associated with productive HHV-6 infection in an immunocompetent adult. J Med Virol 1997;52(3):301-308.
- 111. Challoner, P.B., Smith, K.T., Parker, J.D., MacLeod, D.L., Coulter, S.N., Rose, T.M., et al. Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc Natl Acad Sci U S A 1995;92(16):7440-7444.

- 112. Sola, P., Merelli, E., Marasca, R., Poggi, M., Luppi, M., Montorsi, M., et al. Human herpesvirus 6 and multiple sclerosis: survey of anti-HHV-6 antibodies by immunofluorescence analysis and of viral sequences by polymerase chain reaction. J Neurol Neurosurg Psychiatry 1993;56(8):917-919.
- Wilborn, F., Schmidt, C.A., Brinkmann, V., Jendroska, K., Oettle, H. and Siegert, W. A potential role for human herpesvirus type 6 in nervous system disease. J Neuroimmunol 1994;49(1-2):213-214.
- 114. Ablashi, D.V., Lapps, W., Kaplan, M., Whitman, J.E., Richert, J.R. and Pearson, G.R. Human herpesvirus-6 (HHV-6) infection in multiple sclerosis: a preliminary report. Multiple Sclerosis 1998;4(in press).
- 115. Liedtke, W., Malessa, R., Faustmann, P.M. and Eis-Hubinger, A.M. Human herpesvirus 6 polymerase chain reaction findings in human immunodeficiency virus associated neurological disease and multiple sclerosis. J Neurovirol 1995;1(3-4):253-258.
- 116. Sanders, V.J., Felisan, S., Waddell, A. and Tourtellotte, W.W. Detection of herpesviridae in postmortem multiple sclerosis brain tissue and controls by polymerase chain reaction. J Neurovirol 1996;2(4):249-258.
- 117. Martin, C., Enbom, M., Soderstrom, M., Fredrikson, S., Dahl, H., Lycke, J., et al. Absence of seven human herpesviruses, including HHV-6, by polymerase chain reaction in CSF and blood from patients with multiple sclerosis and optic neuritis. Acta Neurol Scand 1997;95(5):280-283.
- 118. Merelli, E., Bedin, R., Sola, P., Barozzi, P., Mancardi, G.L., Ficarra, G., et al. Human herpes virus 6 and human herpes virus 8 DNA sequences in brains of multiple sclerosis patients, normal adults and children. J Neurol 1997;244(7):450-454.
- 119. Mayne, M., Krishnan, J., Metz, L., Nath, A., Auty, A., Sahai, B.M., et al. Infrequent detection of human herpesvirus 6 DNA in peripheral blood mononuclear cells from multiple sclerosis patients. Ann Neurol 1998;44(3):391-394.
- 120. Rotola, A., Cassai, E., Tola, M.R., Granieri, E. and Di Luca, D. Human herpesvirus 6 is latent in peripheral blood of patients with relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 1999;67(4):529-531.
- Goldberg, S.H., Albright, A.V., Lisak, R.P. and Gonzalez-Scarano, F. Polymerase chain reaction analysis of human herpesvirus-6 sequences in the sera and cerebrospinal fluid of patients with multiple sclerosis. J Neurovirol 1999;5(2):134-139.

| 122. | Knox, K.K., Brewer, J.H., Henry, J.M., Harrington, D.J. and Carrigan, D.R.<br>Human herpesvirus 6 and multiple sclerosis: systemic active infections in pati-<br>ents with early disease. Clin Infect Dis 2000;31:894-903.                   |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 123. | Murphy, B.R. and Webster, R.G. Orthomyxoviruses. In: Fields, B.N., Knipe, D.M. and al., e., editors. Virology. 2 ed. New York: Raven Press, Ltd.; 1990. p. 1091-1151.                                                                        |
| 124. | Smith, W., Andrew, C.H. and Laidlaw, P.O. A virus obtained from influenza patients. Lancet 1933;1:66-68.                                                                                                                                     |
| 125. | Ennis, F.A. and Meager, A. Immune interferon produced to high levels by anti-<br>genic stimulation of human lymphocytes with influenza virus. J Exp Med<br>1981;154(5):1279-1289.                                                            |
| 126. | CDC. Prevention and control of influenza: recommendations of the Advisory<br>Committee on Immunization Practices (ACIP). MMWR 2001;50(RR-4).                                                                                                 |
| 127. | RKI. Hinweise zur Influenzaschutzimpfung bei Multipler Sklerose. Epidemiolo-<br>gisches Bulletin 1998;41/98:291.                                                                                                                             |
| 128. | Sibley, W.A., Bamford, C.R. and Laguna, J.F. Influenza vaccination in patients with multiple sclerosis. JAMA 1976;236(17):1965-1966.                                                                                                         |
| 129. | Salvetti, M., Pisani, A., Bastianello, S., Millefiorini, E., Buttinelli, C. and Pozzil li, C. Clinical and MRI assessment of disease activity in patients with multiple sclerosis after influenza vaccination. J Neurol 1995;242(3):143-146. |

- Miller, A.E., Morgante, L.A., Buchwald, L.Y., Nutile, S.M., Coyle, P.K., Krupp, L.B., et al. A multicenter, randomized, double-blind, placebo-controlled trial of influenza immunization in multiple sclerosis. Neurology 1997;48(2):312-314.
- Mokhtarian, F., Shirazian, D., Morgante, L., Miller, A., Grob, D. and Lichstein, E. Influenza virus vaccination of patients with multiple sclerosis. Mult Scler 1997;3(4):243-247.
- Confavreux, C., Suissa, S., Saddier, P., Bourdes, V. and Vukusic, S. Vaccinations and the risk of relapse in multiple sclerosis. Vaccines in Multiple Sclerosis Study Group. N Engl J Med 2001;344(5):319-326.
- 133. Kruse, N., Moriabadi, N.F., Toyka, K.V. and Rieckmann, P. Characterization of early immunological responses in primary cultures of differentially activated human peripheral mononuclear cells. J Immunol Methods 2001;247:131-139.
- 134. Eylar, E.H., Kniskern, P.J. and Jackson, J.J. Myelin basic proteins. Methods Enzymol 1974;32(Part B):323-341.

- 135. Giegerich, G., Pette, M., Fujita, K., Wekerle, H., Epplen, J.T. and Hinkkanen, A. Rapid method based on reversed-phase high-performance liquid chromatography for purification of human myelin basic protein and its thrombic and endoproteinase Lys-C peptides. J Chromatogr 1990;528(1):79-90.
- 136. Rieckmann, P., Weber, F., Gunther, A., Martin, S., Bitsch, A., Broocks, A., et al. Pentoxifylline, a phosphodiesterase inhibitor, induces immune deviation in patients with multiple sclerosis. J Neuroimmunol 1996;64(2):193-200.
- 137. Secchiero, P., Carrigan, D.R., Asano, Y., Benedetti, L., Crowley, R.W., Komaroff, A.L., et al. Detection of human herpesvirus 6 in plasma of children with primary infection and immunosuppressed patients by polymerase chain reaction. J Infect Dis 1995;171(2):273-280.
- 138. Soldan, S.S., Berti, R., Salem, N., Secchiero, P., Flamand, L., Calabresi, P.A., et al. Association of human herpes virus 6 (HHV-6) with multiple sclerosis: increased IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA. Nat Med 1997;3(12):1394-1397.
- 139. Murali-Krishna, K., Altman, J.D., Suresh, M., Sourdive, D., Zajac, A. and Ahmed, R. In vivo dynamics of anti-viral CD8 T cell responses to different epitopes. An evaluation of bystander activation in primary and secondary responses to viral infection. Adv Exp Med Biol 1998;452:123-142.
- 140. Goulder, P.J., Tang, Y., Brander, C., Betts, M.R., Altfeld, M., Annamalai, K., et al. Functionally inert HIV-specific cytotoxic T lymphocytes do not play a major role in chronically infected adults and children. J Exp Med 2000;192(12):1819-1832.
- McCutcheon, M., Wehner, N., Wensky, A., Kushner, M., Doan, S., Hsiao, L., et al. A sensitive ELISPOT assay to detect low-frequency human T lymphocytes. J Immunol Methods 1997;210(2):149-166.
- 142. Wallstrom, E., Khademi, M., Andersson, M., Weissert, R., Linington, C. and Olsson, T. Increased reactivity to myelin oligodendrocyte glycoprotein peptides and epitope mapping in HLA DR2(15)+ multiple sclerosis. Eur J Immunol 1998;28(10):3329-3335.
- 143. Pelfrey, C.M., Rudick, R.A., Cotleur, A.C., Lee, J.C., Tary-Lehmann, M. and Lehmann, P.V. Quantification of self-recognition in multiple sclerosis by single-cell analysis of cytokine production. J Immunol 2000;165(3):1641-1651.
- 144. Martin, R., Voskuhl, R., Flerlage, M., McFarlin, D.E. and McFarland, H.F. Myelin basic protein-specific T-cell responses in identical twins discordant or concordant for multiple sclerosis. Ann Neurol 1993;34(4):524-535.

- 145. Diaz-Villoslada, P., Shih, A., Shao, L., Genain, C.P. and Hauser, S.L. Autoreactivity to myelin antigens: myelin/oligodendrocyte glycoprotein is a prevalent autoantigen. J Neuroimmunol 1999;99(1):36-43.
- 146. Villoslada, P., Abel, K., Heald, N., Goertsches, R., Hauser, S.L. and Genain, C.P. Frequency, heterogeneity and encephalitogenicity of T cells specific for myelin oligodendrocyte glycoprotein in naive outbred primates. Eur J Immunol 2001;31(10):2942-2950.
- 147. Vergelli, M., Pinet, V., Vogt, A.B., Kalbus, M., Malnati, M., Riccio, P., et al. HLA-DR-restricted presentation of purified myelin basic protein is independent of intracellular processing. Eur J Immunol 1997;27(4):941-951.
- Favre, N., Bordmann, G. and Rudin, W. Comparison of cytokine measurements using ELISA, ELISPOT and semi- quantitative RT-PCR. J Immunol Methods 1997;204(1):57-66.
- Ghendon, Y. The immune response to influenza vaccines. Acta Virol 1990;34(3):295-304.
- 150. Süss, J., Schmidt, S., Kretschmar, M. and Wohanka, N. The modulation of the specific and non-specific host response in case of influenza virus infection and vaccination in man. Exp Pathol 1991;41(3):121-134.
- 151. Flachenecker, P., Moriabadi, N.F., Niewiesk, S. and Rieckmann, P. Immunization and multiple sclerosis: clinical and immunological implications. Int MSJ 2001;7(3):79-87.
- 152. Soldan, S.S., Leist, T.P., Juhng, K.N., McFarland, H.F. and Jacobson, S. Increased lymphoproliferative response to human herpesvirus type 6A variant in multiple sclerosis patients. Ann Neurol 2000;47(3):306-313.
- 153. Dolin, R., Murphy, B.R. and Caplan, E.A. Lymphocyte blastogenic responses to influenza virus antigens after influenza infection and vaccination in humans. Infect Immun 1978;19:867-874.
- Lewis, D.E., Gilbert, B.E. and Knight, V. Influenza virus infection induces functional alterations in peripheral blood lymphocytes. J Immunol 1986;137:3777-3781.
- 155. Brownson, J.M., Mahy, B.W.J. and Hazleman, B.L. Interaction of influenza A virus with human peripheral blood lymphocytes. Infect Immun 1979;25:749-756.
- Ennis, F.A., Meager, A., Beare, A.S. and al., e. Interferon induction and increased natural killer-cell activity in influenza infections in man. Lancet 1981;2:891-893.

- 157. Hertzog, P.J., Wright, A., Harris, G., Linnane, A.W. and Mackay, I.R. Intermittent interferonemia and interferon responses in multiple sclerosis. Clin Immunol Immunopathol 1991;58(1):18-32.
- 158. Flamand, L., Gosselin, J., Stefanescu, I., Ablashi, D. and Menezes, J. Immunosuppressive effect of human herpesvirus 6 on T-cell functions: suppression of interleukin-2 synthesis and cell proliferation [published erratum appears in Blood 1995 Jul 1;86(1):418]. Blood 1995;85(5):1263-1271.
- 159. Inoue, Y., Yasukawa, M. and Fujita, S. Induction of T-cell apoptosis by human herpesvirus 6. J Virol 1997;71(5):3751-3759.
- Koide, W., Ito, M., Torigoe, S., Ihara, T., Kamiya, H. and Sakurai, M. Activation of lymphocytes by HHV-6 antigen in normal children and adults. Viral Immunol 1998;11(1):19-25.
- 161. Cirone, M., Cuomo, L., Zompetta, C., Ruggieri, S., Frati, L., Faggioni, A., et al. Human herpesvirus 6 and multiple sclerosis: A study of t cell cross-reactivity to viral and myelin basic protein antigens. J Med Virol 2002;68(2):268-272.

#### 6 Anhang

## Ethik-Kommission der Medizinischen Fakultät der Universität Würzburg

Ethile-Kommission der Med. Fakultät + Josef Schneider-Str. 2 + 97090 Würzburg

Herm Priv -Doz. Dr. P. Rieckmann Neurologische Klinik u. Poliklinik d. Universität Josef-Schneider-Str. 11

97080 Würzburg

Studien-Nr: 97/98 Unawe Zeichen: GriSchm (bei Rückhagen immet angebert) Würzburg den 02.11.1998

Ihre Studie zum Thema: "Einfluß von Impfungen und Infektionen auf Immunreaktionen bei Patienten mit chronisch entzündlichen Erkrankungen des Zentralnervensystems"

Sehr geehrter Herr Doktor Rieckmann,

in der Sitzung der Ethik-Kommission vom 26. Oktober 1998 wurde o.g. Studie auf der Basis folgender Unterlagen beraten: Antrag vom 22. September 1998, Patienteninformation und Einverständniserklärung. Nach Vorlage einer revidierten Fassung der schriftlichen Patienteninformation bestehen seitens der Kommission keine Bedenken gegen die geplante klinische Studie.

Sie werden gebeten, Ihrem Antrag und Studienprotokoll entsprechend vorzugehen und die im Fragebogen zum Antrag aufgeführten Angaben bzw. Auflagen sowie die Deklaration des "Weltärztebundes von Helsinki und Tokio" hinsichtlich der ethischen und rechtlichen Aspekte biomedizinischer Forschung am Menschen zu beachten.

Entsprechend der ausschließlich beratenden Funktion der Ethik-Kommission betrifft unser Votum nur die ethische Beurteilung des Projektes und der beabsichtigten Patientenaufklärung. Die ärztliche und juristische Verantwortung verbleibt jedoch uneingeschränkt beim Projektieiter und seinen Mitarbeitern, so daß alle zivil- und haftrechtlichen Folgen, die sich ergeben könnten, von dieser Seite zu tragen sind.

Mit freundlichen Grüßen

i.V. Ko Grad

Prof. Dr. G. Nissen Vorsitzender der Ethik-Kommission





97080 Würzburg Josef-Schneider-Straße 2, Bau 11 Telefon (0931) 201 3856 Telefax (0931) 201 3860 Neurologische Universitätsklinik und Poliklinik im Kopfklinikum Direktor: Prof. Dr. Klaus Toyka

# **Patienteninformation zur Studie:**

Einfluß von Impfungen und Infektionen auf Immunreaktionen bei Patienten mit chronisch entzündlichen Erkrankungen des Zentralnervensystems

## Sehr geehrte, liebe Patienten,

im Rahmen der hier beschriebenen Studie sollen Erkenntnisse über den Einfluß von Impfungen und Infektionen auf die Immunreaktionen gegen körpereigenes Eiweiß gewonnen werden. Bei entzündlichen Erkrankungen des Nervensystems finden sich Immunreaktionen gegen Bestandteile von Nervengewebe, die zu klinischen Symptomen führen können. Oft kommt es nach Infektionen zum Auftreten neuer oder Verschlechterung bereits bestehender Symptome (Schub). Auf der anderen Seite treten diese Beschwerden im Rahmen von Impfungen sehr viel seltener auf. In mehreren Untersuchungen konnte z.B. gezeigt werden, daß eine Grippeschutzimpfung keinen Einfluß auf die Krankheitsaktivität oder das Voranschreiten von neurologischen Symptomen hat.

Bei der Krankheitsentstehung und -verschlimmerung, die durch Infektionskrankheiten mitbedingt wird, geht man davon aus, daß durch die Infektion Immunzellen aktiviert werden, die sich gegen körpereigene Eiweißverbindungen richten. Diese Zellen können dann in das Nervensystem einwandern und dort zur Zerstörung von Nervengewebe führen.

Diese Ausführungen betonen die negativen Einflüsse einer Virusinfektion auf eine bereits bestehende Autoimmunkrankheit, und verdeutlichen, welch wichtige Rolle der Beseitigung solch schädigender Faktoren zukommt. Nun gilt die Verhütung von Virusinfektionen bekannterweise als der beste Schutz, und die Impfung als wirksamste Form, um dies zu gewährleisten.

Die Grippeschutzimpfung ist diesbezüglich eine vorbeugende Maßnahme, von der man annehmen darf, daß sie sowohl aus unserem derzeitigen Verständnis, als auch nach vielen klinischen Beschreibungen für sinnvoll erachtet werden kann und schubauslösenden Infektionen vorbeugen soll.

## Ablauf der Studie:

Im Rahmen dieser Studie sollen direkt vor der Impfung oder bei einem bestehenden Infekt der oberen Luftwege sowie zu festgelegten Zeitpunkten danach Blutproben abgenommen und die Blutzellen untersucht werden.

Zu vier Zeitpunkten, nämlich am selben Tag, zwei und vier Wochen, sowie 4 Monate nach der Impfung werden Ihnen jeweils 30 ml Blut aus einer Armvene entnommen. Bei der ersten Blutentnahme, also am Tag der Impfung, werden insgesamt 60 ml Blut entnommen.

Die Influenza-Schutzimpfung wird mit einer sogenannten Spaltvakzine aus nicht mehr aktiven Bestandteilen verschiedener Virusstämme, wie sie nach den aktuellsten Berichten der Weltgesundheitsorganisation (WHO) empfohlen wird, durchgeführt. Der Impfstoff (Influvac®) ist in Deutschland zugelassen. Da sich Influenza-Viren aufgrund eines besonderen Mechanismus in ihrer Struktur verändern können, sollte eine Impfung immer saisonal an die entsprechenden Virus-Untergruppen angepaßt werden und sollte daher jährlich wiederholt werden. Der Impfschutz hängt auch von dem Abwehrsystem des Geimpften ab, weshalb in der hier dargestellten Studie aus einem Teil des entnommenen Blutes eine individuelle Erfolgskontrolle (Antikörper-Titer) durchgeführt wird.

Sollten Sie innerhalb von einem Jahr nach der Impfung an einem Infekt der oberen Luftwege erkranken, melden Sie sich bitte telefonisch in der Neurologischen Poliklinik der Universität Würzburg (Tel.: 0931-2015768), um Termine für die weiteren Blutentnahmen (2, 4 und 16 Wochen nach Beginn des Infektes) mit einem der Studienärzte zu vereinbaren.

## **Risiken und Komplikationen:**

Im Allgemeinen ist die Impfung gut verträglich. Ernste Nebenwirkungen sind bei Beachtung der Kontraindikationen für eine Grippeschutzimpfung nicht zu erwarten. Sie wird von den Gesundheitsbehörden für ältere Menschen und solche empfohlen, die aufgrund prädisponierender Vorerkrankungen oder aufgrund hoher Sozialkontakte besonders gefährdet sind. Wie eingangs erwähnt, ist nach neueren Untersuchungen kein negativer Einfluß der Grippeschutz-impfung auf den Verlauf der multiplen Sklerose bekannt. Gelegentlich kann es an der Impfstelle zu örtlich begrenzten Beschwerden kommen, z. B. Hautrötung, Juckreiz oder leichte Verhärtung. Selten tritt eine geringfügige Temperaturerhöhung oder Müdigkeit auf. Personen, bei denen eine Überempfindlichkeit gegen Hühnereiweiß oder Antibiotika bekannt ist, können an der Studie nicht teilnehmen, da bei ihnen die Gefahr einer allergischen Reaktion besteht.

Ihre Teilnahme an dieser Studie ist freiwillig. Sie können Ihre Einwilligung zur Teilnahme an dieser Studie jederzeit zurückziehen und aus der Studie ausscheiden, ohne daß Ihnen hieraus ein Nachteil für die weitere Behandlung entsteht.

# Einverständniserklärung:

Ich bin ausführlich über die Durchführung und Ziele dieser Studie aufgeklärt worden. Ich hatte ausreichend Zeit, mich über den Ablauf der Studie und die damit verbundenen Blutentnahmen im Rahmen der Grippeschutzimpfung sowie zum Zeitpunkt von Infektionen zu informieren. <u>Mit der wissenschaftlichen Auswertung der im Rahmen dieser Studie erhobenen Daten in anonymisierter Form bin ich einverstanden.</u> Meine Fragen wurden ausführlich und zufriedenstellend beantwortet. Über die seltenen, aber möglichen Nebenwirkungen bin ich eingehend aufgeklärt worden. Zur Vermeidung solcher Zwischenfälle, bestätige ich, daß bei mir keine Allergie gegen Hühnereiweiß oder Antibiotika bekannt ist. Sollte ein Zwischenfall während oder kurz nach der Impfung auftreten, bin ich mit den zur Abwendung gesundheitlicher Schäden notwendigen Maßnahmen einverstanden. Mir ist bekannt, daß ich jederzeit ohne Angabe von Gründen meine Teilnahme an dieser Studie widerrufen kann, ohne daß mir daraus Nachteile in meiner weiteren Behandlung entstehen.

Meine Fragen wurden vollständig und für mich verständlich beantwortet, es bestehen keine weiteren Fragen mehr.

Hiermit erkläre ich, ....., geb. am ...... meine Zustimmung zur Teilnahme an oben beschriebener Studie.

Würzburg, den .....

Unterschrift der Patientin/des Patienten

Unterschrift der Ärztin/des Arztes

### Danksagung

Diese Arbeit wurde im Rahmen des 3. Graduiertenkollegs "Infektiologie" der Julius-Maximilians-Universität Würzburg angefertigt und durch die Deutsche Forschungsgemeinschaft und die gemeinnützige Hertiestiftung, sowie durch Mittel der Deutschen Multiple Sklerose Gesellschaft (DMSG) gefördert

Herrn Prof. Dr. Peter Rieckmann danke ich für die freundliche und ausdauernde Betreuung dieser Arbeit, seine stete Präsenz und Diskussionswilligkeit, sowie die nötigen Freiheiten in Planung und Durchführung

Herrn Prof. Dr. Volker ter Meulen sei für die ehrenwerte Übernahme der Zweitbegutachtung herzlich gedankt, da ich mir kaum einen fachkundigeren Repräsentanten der Neurovirologie für das Thema dieser Arbeit vorstellen kann

Herrn Prof. Dr. Klaus Viktor Toyka für die gute Ausbildung in seiner Klinik, einschließlich der konsequenten Förderung meiner wissenschaftlichen Entwicklung

Herrn PD Dr. Stefan Niewiesk danke ich für seine intensive Betreuung des virologischen Teils der Arbeit, weiter für methodische Hilfestellungen und wertvolle Anregungen zur ViMS-Studie, sowie für die Bereitstellung des Influenzavirusstamms A/PR/8/34

Heike Menzel und Gabi Köllner sei für die unschätzbare Hilfe und ihr Verständnis bei meinen ersten Schritten der Zellkultivierung gedankt

Dr. Frank Straube danke ich für seine uneingeschränkt hilfreiche Diskussionsbereitschaft zu immunologischen Feinheiten und FACS

Bei Mio Lalic-Mülthaler bedanke ich mich für seine unermüdliche Hilfsbereitschaft und wertvollen Diskussionen

Dr. Oliver Grauer schätze ich für den Austausch neuroimmunologischer Zusammenhänge und wegen seiner tiefgehenden Kenntnisse über Dendritische Zellen

PD Dr. Stefan Jung gilt mein Dank für langjährige und beständige Diskussionsbereitschaft und methodische Unterstützung

Dr. Benedikt Weißbrich danke ich für seine offenen Diskussionen und Ermunterungen, sowie zahlreiche virologische Untersuchungen (PCR, Serologie) und die Überlassung des HHV-6B-stocks

Dr. Franz Weilbach sei für zahlreiche Anregungen und Aufmunterungen gedankt

Dr. Andreas Weishaupt und Susi Hellmig danke ich für die Unterstützung bei der Biochemie (Proteinaufreinigung, SDS-PAGE, Westernblot, Proteinbestimmung) und die Überlassung des rekombinanten MOG

#### Danksagung

Dr. Niels Kruse lehrte mich wesentliche Details der Molekularbiologie und Zytokinforschung, insbesondere die Technik der Taqman-RT-PCR

Prof. Dr. Walter Sebald sei gedankt für die großzügige Bereitstellung seines rekombinanten humanen IL2, ohne das nichts gelaufen wäre

Ralph Nanan sei für Tips und Hilfen bei der Etablierung des ELISPOTs gedankt

Dr. Boris Kallmann bin ich für Tips und Tricks der Zellkultur und des ELISA dankbar

Prof. Dr. Martin Pette danke ich für die Inspiration und seine bereitwillig offenbarten Erfahrungen zur T-Zellkultur

Prof. Dr. Paul Viktor Lehmann danke ich für Diskussionen über ELISPOT

Prof. Dr. Ralf Gold sei für das Gastrecht in seinem Labor gedankt

Dr. Werner Fries und Dr. Annette Kolb-Mäurer danke ich für Ihre Fähigkeiten bei der Generierung humaner Dendritischer Zellen

Dr. Axel Greiner danke ich für die Methodik der B-Zell-Generierung

Dr. Ursula Merschdorf (geb. Balling) bin ich für Diskussionen zur T-Zellkultur dankbar

Dr. C. G. Haase bin ich für Gespräche über MOG dankbar

Dr. Gisela Wohlleben sei gedankt für Neuerungen bei der Leukapherese

bei Michaela Götzelmann bedanke ich mich für die Hilfe bei der HHV-6- Vermehrung

PD Dr. Christian Jassoy und Inge bin ich für die Überlassung der EBV-Zellen und die Hilfe bei EBV-Transformationen dankbar

Dr. Christian Söder danke ich für seine spontane Hilfe bei der HPLC

zahlreichen anderen, deren Hilfe nicht in die Arbeit eingeflossen ist, doch insgesamt für das Verständnis der Immunologie unabkömmlich war, sei ebenfalls gedankt

bei vielen freiwilligen Spendern bedanke ich mich herzlich, insbesondere bei denen, die für die Etablierung der Zellkulturen in fast 2 wöchigem Abstand, manchmal über mehrere Monate diese Arbeit existentiell unterstützt haben

# Lebenslauf

Persönliche Daten

| Name                | Moriabadi                    |
|---------------------|------------------------------|
| Vorname             | Neville Fairdoon             |
| Geburtsdatum        | 29. März 1970                |
| Geburtsort          | Bad Kissingen                |
| Familienstand       | verheiratet                  |
| Staatsangehörigkeit | deutsch                      |
| Wohnung             | Langgasse 3, 97247 Eisenheim |

# Schulbildung

| 1976-1980 | Grundschule Passau-Neustift       |
|-----------|-----------------------------------|
| 1980-1989 | Adalbert-Stifter-Gymnasium Passau |

# Berufsausbildung

| 1990-1992  | Medizinstudium Erlangen-Nürnberg                              |
|------------|---------------------------------------------------------------|
| 1992-1995  | Klinisches Studium in Würzburg                                |
| 1995-1996  | Praktisches Jahr: Missionsärztliche Klinik, Würzburg          |
|            | Institute of Neurology, Queen Square, London                  |
| 1/97-5/00  | Graduiertenkolleg "Infektiologie", Promotion und              |
|            | Arzt im Praktikum, Neurologische Universitätsklinik, Würzburg |
| 8/00-8/02  | Assistenzarzt, Neurologische Universitätsklinik, Regensburg   |
|            | (Schlaganfall-, Überwachungsstation, Onkologie, Poliklinik)   |
| 8/02-heute | Assistenzarzt, Bezirksklinikum für Psychiatrie, Werneck       |

# Nebentätigkeiten

| 1992-1995 | Organisation von Vortragsreihen und             |
|-----------|-------------------------------------------------|
|           | interdisziplinären Seminaren zur Ethik          |
|           | in der Medizin (SEM)                            |
| 11/95     | Organisation eines überregionalen Medizinethik- |
|           | Kongresses zum Thema "Der medizinische          |
|           | Blick auf Behinderung"                          |

Untereisenheim, 12.12.2002