
Marco Schmidt

B
a
n
d
 6

Würzburger Forschungsberichte
in Robotik und Telematik

Institut für Informatik
Lehrstuhl für Robotik und Telematik

Prof. Dr. K. Schilling

Ground Station Networks
for Efficient Operation of
Distributed Small
Satellite Systems

Uni Wuerzburg Research Notes
in Robotics and Telematics

Zitation dieser Publikation

Die Schriftenreihe
wird vom Lehrstuhl für Informatik VII: Robotik und Telematik der Universität
Würzburg herausgegeben und präsentiert innovative Forschung aus den
Bereichen der Robotik und der Telematik.

Die Kombination fortgeschrittener Informationsverarbeitungsmethoden mit
Verfahren der Regelungstechnik eröffnet hier interessante Forschungs- und
Anwendungsperspektiven. Es werden dabei folgende interdisziplinäre Aufgaben-
schwerpunkte bearbeitet:

Robotik und Mechatronik: Kombination von Informatik, Elektronik, Mechanik,
Sensorik, Regelungs- und Steuerungstechnik, um Roboter adaptiv und flexibel
ihrer Arbeitsumgebung anzupassen.

Telematik: Integration von Telekommunikation, Infor-matik und Steuerungs-
technik, um Dienstleistungen an entfernten Standorten zu erbringen.

Anwendungsschwerpunkte sind u.a. mobile Roboter, Tele-Robotik, Raumfahrts-
ysteme und Medizin-Robotik.

Ÿ

Ÿ

SCHMIDT, M. (2011). Ground station networks for efficient operation of
distributed small satellite systems. Schriftenreihe Würzburger
Forschungsberichte in Robotik und Telematik, Band 6. Würzburg: Universität
Würzburg.

Lehrstuhl Informatik VII
Robotik und Telematik
Am Hubland
D-97074 Wuerzburg

Tel.: +49 (0) 931 - 31 - 86678
Fax: +49 (0) 931 - 31 - 86679

schi@informatik.uni-wuerzburg.de
http://www7.informatik.uni-wuerzburg.de

Dieses Dokument wird bereitgestellt durch den Online-
Publikationsserver der Universität Würzburg.

Universitätsbibliothek Würzburg
Am Hubland
D-97074 Würzburg

Tel.: +49 (0) 931 - 31 - 85917
Fax: +49 (0) 931 - 31 - 85970

opus@bibliothek.uni-wuerzburg.de
http://opus.bibliothek.uni-wuerzburg.de

ISSN (Internet): 1868-7474
ISSN (Print): 1868-7466
eISBN: 978-3-923959-77-8

Ground Station Networks for

Efficient Operation of

Distributed Small Satellite Systems

Dissertation zur Erlangung des

naturwissenschaftlichen Doktorgrades

der Julius-Maximilians-Universität Würzburg

vorgelegt von

Marco Schmidt

aus

Würzburg

Würzburg 2011

Eingereicht am: 13.5.2011

bei der Fakultät für Mathematik und Informatik

1. Gutachter: Prof. Dr. Klaus Schilling

2. Gutachter: Prof. Dr. Shinichi Nakasuka

3. Gutachter: Prof. Dr. Hakan Kayal

Tag der mündlichen Prüfung: 29.7.2011

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Outline . 4

2 Background 7

2.1 Small satellites in education and research 7

2.1.1 The small satellite concept . 7

2.1.2 Evolution of the pico and nano-satellite approach 10

2.1.3 The UWE satellite series . 12

2.2 A new concept of ground station networks 17

2.2.1 Classic and academic ground station networks 18

2.2.2 Projects establishing academic ground station networks 23

2.3 Distributed / multi satellite systems 26

2.3.1 Distributed satellite systems as a new paradigm for satellite
missions . 29

2.3.2 Application scenarios for distributed satellite systems 30

2.3.3 Example mission . 32

2.4 Challenges and technologies for distributed space missions 32

2.4.1 Challenges for highly distributed satellite missions 33

2.4.2 Technologies for distributed space missions 35

3 Redundant scheduling for ground station networks 39

3.1 State of the art . 41

3.1.1 Satellite Range Scheduling . 41

3.1.2 Earth Observation Scheduling (EOS) 45

iii

3.1.3 ESA tracking stations - ESTRACK 47
3.1.4 Summary . 48

3.2 Scheduling for low cost ground station networks 48
3.2.1 Scheduling requirements of academic ground station networks 51
3.2.2 Problem description . 52
3.2.3 Scheduling objective . 55
3.2.4 Classification . 56

3.3 Scheduling approach . 57
3.3.1 System overview . 58
3.3.2 Scheduling objective function 59
3.3.3 Behavior of the penalty function for two arbitrary requests . . 62
3.3.4 Redundancy distribution for more than two arbitrary requests 64
3.3.5 Search algorithms . 69
3.3.6 Implementation . 71

3.4 Performance evaluation . 74
3.4.1 Evaluation criteria . 75
3.4.2 Experiments . 76
3.4.3 Results . 79

3.5 Conclusion and discussion . 87

4 Data management for information recovery in ground networks 91

4.1 Problem definition and state of the art 93
4.1.1 Problem description . 94
4.1.2 Data and network management in computer networks 98
4.1.3 Data management for information recovery 99
4.1.4 Time synchronization . 102

4.2 Synchronization in academic ground station networks 103
4.2.1 Time synchronization between ground stations 106
4.2.2 Data synchronization on frame level 114

4.3 Data combination in academic ground station networks 118
4.3.1 Ground station majority voting approach 118
4.3.2 Brute force method for data recovery 122
4.3.3 Single bit error correction in AX.25 123

4.4 Performance analysis . 127
4.4.1 Performance of the data combination algorithm 127

iv

4.5 Hardware tests and results . 133
4.5.1 Ground station network simulation 133
4.5.2 Local ground station network with radio link 142

4.6 Conclusion and future work . 149

5 Conclusion 151

A Propagation delay in Low Earth Orbits (LEO) 155

B OSI layer model for satellite communication 159

C Satellite orbit data for evaluation of CUSS 163

v

Chapter 1

Introduction

1.1 Motivation

In the last 10 years emerged a new approach in the field of satellite engineering.
The idea of sending extremely small satellites into space originated from educa-
tional institutions and then adopted in diverse application fields. This paradigm
shift involved building satellites from commercial of-the-shelf components, designed
for restricted lifetime, but at affordable prices. Many of these pico and nano-satellites
were already brought into orbit. The University of Würzburg contributed in that
scope with the University of Wuerzburg Experimental satellites (UWE) and demon-
strated successfully how extremely small satellites can be used to perform innovative
space research.
A benefit of designing lightweight satellites is, that they can be launched ’piggyback’
as secondary payloads, and hence at moderate costs. This makes it possible to in-
stall networks of satellites, carried from a single launch vehicle into space. Many
researchers look at satellite networks (especially formations) as the next necessary
step to transfer successful terrestrial distributed system technology to the context
of space exploration, for example at utilizing virtual instruments or very long base-
line interferometry. The concept of networked satellites promises progress in diverse
application fields. Specifically from a computer scientists point of view, the network
aspect is very interesting, although it is known that handling and controlling dis-
tributed systems is very challenging.
To better illustrate such issues, let us assume a satellite cluster of 10 small satellites
is placed in similar low Earth orbits, acting together to achieve a common mission

1

2

goal. On the receiving side, 30 ground stations are available, geographically dis-
tributed over Europe. The starting point for this work was a simple question: How
can data from vehicles in space be transferred efficiently to an operator on Earth?
One could think of this as a simple deterministic problem, taking into account the
orbit geometry and the transmission rate of each satellite. However, a closer look
reveals many sophisticated theoretical and technical problems: For example, which
specific ground station should track a satellite when several are visible at the same
time? How can the restricted link capacity of a single satellite be compensated,
when a superior number of ground stations are available? In which way can ground
stations be efficiently synchronized with each other?
Starting from this point, a detailed investigation of current ground station networks
was performed with focus on established infrastructure at academic institutions.
These satellite receiving stations are built from low-cost devices and components,
the architecture being similar all over the world as they are primarily used for oper-
ation of small satellites. The actual transmission rate of these satellites are limited
to utilization of commercial of-the-shelf components and low frequency bands for
communication. Nevertheless, the lack of performance can be compensated with in-
telligent utilization of network resources and redundant communication links. The
central topic of this contribution are different strategies to improve the operation of
small satellites with ground station networks. In the following chapters are different
concepts that optimize the use of ground station resources in the scope of small
satellite missions proposed. Their performance is investigated in detail and results
from conducted experiments are presented.

1.2 Contributions

This contribution achieves progress for improved performance in ground station
networks by combining results from three major fields:

Scheduling for low cost ground station networks

An efficient utilization of ground station resources requires proper scheduling of
satellite contact windows. In this context, the particularities of low cost ground sta-
tion networks were analyzed and specific scheduling requirements were derived. The
limited applicability of state of the art satellite range scheduling algorithms to cur-

3

rent situation in small satellite scenarios leads to identification of a novel scheduling
problem, incorporating the issue of redundant contact window scheduling. This new
problem formulation reflects the high degree of flexibility and redundancy of such
missions. In this scope, a scheduling approach was developed to guarantee equal
distribution of redundant ground station resources between individual scheduling
requests. This innovative approach was implemented and tested extensively, with
the test results demonstrating the applicability and efficiency of the proposed system.

Data synchronization of satellite downlinks

The advantage of highly distributed ground station networks is the inherently high
degree of redundancy. This enables the reception of a satellite from multiple ter-
restrial stations, resulting in parallel received data streams. In this work a novel
concept is introduced, addressing the combination of redundant data streams to
enhance the limited capabilities of state of the art small satellite communication
systems. Crucial is the synchronization of parallel downlinks, which is a necessary
prerequisite to enable the utilization of redundant information. For this, a time syn-
chronization procedure for low cost ground station networks was developed, which
is independent of external time sources and is accurate enough for the purpose of
parallel data stream synchronization. Thus, taking into account the heterogeneous
nature of current ground networks. Using that developed concept of synchronization
has two major advantages: It significantly simplifies, on the one hand, the operation
of small satellites due to automated data reception from parallel data streams and
on the other hand, opens new possibilities for data recovery from redundant com-
munication links.

Data management in ground station networks - Transmission error iden-

tification and recovery in distributed space missions

The limited power budget of current small satellite platforms causes more error
prone communication links than in classic satellite engineering. To overcome this,
the available capacity of highly distributed ground station networks needs to be co-
ordinated in an efficient way: A novel concept was developed to use parallel downlink
channels from a satellite to identify and correct transmission errors. The proposed

4

system identifies the occurrence of transmission errors from redundant information
contained in parallel received data frames. This detection process is based on the
data synchronization algorithm mentioned before. When transmission errors are
detected, the system resolves the data inconsistency automatically. In this work
three algorithms were developed to decrease the bit error rate, each using a different
source of redundancy. This innovative data management system improves the effi-
ciency of small satellite communication and can be applied to any low cost ground
station network. The proposed algorithm was implemented and tested extensively.
Software simulations were used to identify the performance limits of the presented
approach, the benefits for low cost ground station networks are discussed in detail.
Furthermore, hardware in the loop experiments were conducted to validate the sys-
tem for the application in real world scenarios.

1.3 Outline

The remainder of this monograph is structured as follows: Chapter 2 provides an
overview and introduction to small satellites and distributed space systems. Small
satellites differ from traditional satellite engineering in many ways, e.g. in utilized
technology or application fields. This background chapter 2 intends to bring the
reader closer to the concept of small satellites, its advantages and drawbacks, op-
portunities and limitations. In the scope of small satellite projects, many low cost
ground stations were established, this work explains their particularities and special
demands. Furthermore, the emerging field of multi satellite systems is discussed
in detail, describing a paradigm change from single large satellites to distributed
systems in space.
Chapter 3 is dedicated to scheduling in ground station networks. After the presen-
tation of state of the art scheduling approaches and their problems, a new prob-
lem formulation from the special demands of small satellites is derived. A tailored
scheduling approach solving the derived problem formulation is presented in sec-
tion 3.2. The characteristics of the new approach are investigated in detail and
its proven capability of redundant scheduling is described in section 3.3. The im-
plemented scheduling system was used to evaluate the developed approach and to
determine its performance for different mission scenarios and problem sizes.

5

Data synchronization as well as transmission error identification and recovery are
handled within a single chapter, as both approaches are aligned with each other.
The beginning of chapter 4 covers the general issue of data management in ground
station networks and introduces similar concepts. A time and data synchronization
algorithm for low cost ground station networks is presented in section 4.2. Due to
the inherent high degree of redundancy and the available network topology of those
networks, a satisfying synchronization procedure can be realized. The downlinked
data is then used to identify and correct transmission errors, which is extensively
explained and analyzed in section 4.3. The chapter ends with results from the con-
ducted hardware experiments.
Chapter 5 concludes this work with a short summary and some remarks about fu-
ture developments in the field of ground station networks.

6

Chapter 2

Background

In this chapter a general overview on small satellites and ground station networks
is presented to sketch the necessary background for this work, which is related
to efficient operation in ground station networks. As the ground segment is the
complementary part to the space segment, it is useless to concentrate solely on
stations on Earth, rather the complete system consisting of ground stations and
satellites needs to be viewed in a holistic way. Therefore, this chapter introduces
the reader to the different aspects of small satellite missions. The chapter starts
with a general survey on the small satellite concept, its origin and development in
the last years. It is followed by a section dedicated to ground station networks, its
special role in small satellite projects as well as new architectures and concepts. The
third section discusses opportunities of the emerging field of highly distributed space
missions. The paradigm shift from large conventional satellites to multi satellite
systems will be addressed in detail and examples of new application fields will be
given. The chapter concludes with challenges and technologies for distributed space
missions.

2.1 Small satellites in education and research

2.1.1 The small satellite concept

The phrase small satellites was promoted in the last years as an important catchword
and expresses the ongoing miniaturization efforts in satellite engineering. Neverthe-
less, the term small satellite is not strictly defined, depending on the context it

7

8

is used for a wide range of space vehicles. In the last years the common under-
standing of a small satellite evolved to a spacecraft with less than 100 kilograms.
Especially in academia the terms pico, nano and micro-satellites were established to
describe different types of small satellites. Often is the following classification used
[Haeusler and Wiedemann, 2008]: The mass of a pico-satellite is less than 1 kilo-
gram, nano-satellites are space vehicles between 1 and 10 kg, micro satellites have a
maximum mass of 100 kg. This classification is meanwhile used quite consistently,
however, other definitions exist [Schilling and Brieß, 2008].
A large number of small satellites were launched successfully, first pico-satellites were
operated in orbit in 2000, nano-satellites were launched long before (e.g. OSCAR-1
in 1961), but in the last 10 years the number increased steadily due to advances in
miniaturization. In this work the term small satellites refers in general to pico and
nano-satellites, i.e. small space vehicle with limited mass and dimension, which can
be launched jointly to form swarms or formations.
One of the milestones in small satellite development is for sure the creation of the
CubeSat standard (respectively CubeSat specification), which initiated a huge num-
ber of pico-satellite projects worldwide. The concept of a CubeSat, a pico-satellite
with cubic shape, side length of 10 cm and a maximum mass of 1 kg (see figure
2.1), was first introduced by Professor Jordi Puig-Suari from California Polytech-
nic State University (CalPoly) [Puig-Suari et al., 2001a] [Nugent et al., 2008] and
Robert Twiggs from Stanford University [Puig-Suari et al., 2001b] [Twiggs, 2002],
the corresponding CubeSat Design Specification was already published in 1999. A
first batch of 5 CubeSats was launched with a Russian Rokot rocket in 2003, in the
last 7 years more than 30 CubeSats were brought into orbit, neglecting many more
projects currently under development or waiting for launch (mainly at university
level) [Schilling and Brieß, 2008].
One of the key issues for the success of the CubeSat specification is the standardized
structure, which is now a broadly adopted interface used in small satellites develop-
ment. Consequently, launch providers offer launch slots for CubeSats, several launch
adapter devices for piggyback launches exist, launch opportunities are granted from
the space agencies to universities.

9

Figure 2.1: CubeSat UWE-1 from the University of Würzburg

Benefits of the small satellite concept

Building extremely small satellites has several benefits: The most prominent argu-
ment for reducing the mass of a space vehicle are the reduced launch costs. The
price to bring an object into space directly correlates to the mass of that object,
therefore less mass means less costs [Karabeyoglu et al., 2005]. That is also the
main reason why the CubeSat standard is so successful in educational context, as
the launch cost for a 1 kg satellite is affordable for a university. Meanwhile many
funding sources are available to get an educational pico or nano-satellite into orbit
[Schilling and Brieß, 2008].
Another benefit, which is closely related to the reduced mass (and consequently
also reduced complexity), is the short development time. Several projects demon-
strated already the development of a pico-satellite in less than one year. For some
application fields, e.g. technology demonstrations, it is necessary to demonstrate or
test a component in space without large delays. The small satellite concept enables
realization in extremely short time frames, bottlenecks are currently rather launch
opportunities, which quite often delay the operation of a satellite much longer than
the actual development time.
Another important benefit is, that a costumer can conduct an experiment on a ded-
icated satellite and is therefore independent of other parties. This enables tailoring
the satellite bus individually for one specific experiment or mission. Typical mis-
sions are related to the demonstration of a enabling technology or component testing
[Barza et al., 2006].
Very interesting for future satellite missions is the usage of distributed satellite sys-

10

tems for new application fields. The innovative idea is the utilization of several small
satellites instead of a single large satellite to perform a task or mission. Possible
applications fields are for example multi-point measurements to increase the spatial
and temporal resolution of a measured parameter (e.g. in space weather research)
or efficiency improvement with interferometry (e.g. in astronomy). For a detailed
discussion of distributed space missions and applications refer to section 2.3. Such
distributed missions require the possibility to launch a large amount of vehicles into
the desired orbit, here the small satellite concept shows its strength. Due to re-
duced size and mass it is possible to deploy many satellites with a single launch
vehicle in orbit, like demonstrated already several times with the launch of CubeSat
batches. Currently are missions planned with 50 nano-satellites integrated into a
single launch vehicle [Muylaert, 2009].
Of course, the reduced size and weight of these satellites induces also restrictions:
The most obvious drawback is the fact that the payload budget is very restricted.
Therefore, huge devices or heavy components can not be accommodated on a pico-
satellite, for example high resolution cameras or large amounts of propellant. Thus,
current small satellite missions are restricted to low Earth orbits. Another issue is
the restricted lifetime, due to restricted power resources or missing redundancy con-
cepts. Admittedly, CubeSats have been operated for more than 5 years already, but
the lifetime of most small satellites lies only between 6 month and 2 years. Many
research groups try to overcome these issues be implementing more sophisticated re-
dundancy concepts, but for some applications is a lifetime of 1 year fully satisfying.
In summary, the small satellite concept is still a very new field of interest and many
researchers focus currently on miniaturization and enabling technology. Neverthe-
less, the scientific potential leads to a steadily increasing number of planned small
satellite missions, demonstrating the interest in this emerging field. This new con-
cept of small, lightweight, orbital vehicles complements the traditional approach of
satellite engineering and offers new strategies in niche applications, e.g. by utiliza-
tion of distributed satellite missions.

2.1.2 Evolution of the pico and nano-satellite approach

The introduction of the CubeSat specification in 1999 initiated worldwide a wave
of pico-satellite projects at universities. A short survey on national and worldwide
activities is given in the following.

11

Figure 2.2: Pico and nano-satellite projects in Germany

Small satellite projects in Germany

In the last years several pico and nano-satellites were launched from German uni-
versities. The first German pico-satellite, UWE-1, was already launched in 2005
(see figure 2.1, for more details about UWE-1 refer to section 2.1.3). Several
CubeSat missions followed in 2008 and 2009 (COMPASS-1 [Scholz et al., 2009],
UWE-2 [Schmidt et al., 2009] and BEESAT [Kayal et al., 2008]). Further projects
are currently under development (HEIDELSAT, SOMP) or are already acknowl-
edged for launch (MOVE) (see figure 2.2). The mission objectives of these satel-
lites comprise a wide range of experiments, ranging from technology demonstration
(BEESAT) to telecommunication experiments (UWE-1). Furthermore, the educa-
tional aspects are promoted from all these projects [Schmidt and Schiling, 2009].
More information about the corresponding projects and their objectives as well as
an extensive analysis of applications fields can be found in the PiNaNuPo study
[Schilling and Brieß, 2008].
Meanwhile a strong community originated from the above mentioned projects.

The yearly, betweenWürzburg and Berlin alternating, "pico and nano-satellite work-
shop" 1 brings researcher together and promotes knowledge exchange between them.
The strong interest from outside Germany turned the workshop in the last years into

1http://www7.informatik.uni-wuerzburg.de/conferences/pina2011/

12

an international event with participants from all over Europe. Additionally strength-
ening the small satellite development in Germany is the established funding program
2 from the German space agency (DLR), which provides funding for launch costs
and equipment for educational satellite projects. It is therefore expected that also
in future the number of small satellite projects in Germany will increase.

Small satellite development worldwide

A rapid growth of initiated small satellite projects was observed in the last ten
years. Beside advances in miniaturization also the publication of the CubeSat spec-
ification played a major role in this context. Currently, main contribution to the
small satellite community comes from North-America, Asia and Europe. The most
active community is located in the US, which launched so far more than half of
all pico-satellites [Schilling and Brieß, 2008]. From Asia mainly Japan and China
brought their own small satellites into orbit. Especially the robust CubeSats XI-VI
and XI-V from the University of Tokyo are very remarkable, which are meanwhile
operated for more than 5 years [Funase et al., 2005] [Funase et al., 2006]. In Europe
a wide range of institutions (from Denmark, Netherlands, France, Italy, Switzerland
etc.) are involved in small satellite projects, for more information about specific
activities please refer to [Schilling and Brieß, 2008].
A survey of launched pico-satellites of the last decade is depicted in figure 2.3. It is
easy to see that the number of launched pico-satellites raised significantly in the last
5 years. In this graph are only launched vehicles considered, the number of projects
started or in progress is significantly higher. It is in general not possible to deter-
mine this number exactly, estimations range from 50 [Nguyen, 2007] to 180 projects
[Schilling and Brieß, 2008]. Nevertheless, more than 50 launched pico-satellites in
the last 5 years emphasize the growing interest in this innovative satellite concept.

2.1.3 The UWE satellite series

The computer science department of the University of Würzburg develops small
satellites for education as well as for research purposes, they are the counterpart
to the ground segment which is subject of this work. The University of Würzburg

2http : //www.dlr.de/rd/desktopdefault.aspx/tabid− 2265/3376_read− 12596/

13

Figure 2.3: Launched pico-satellites from 1999 to 2009

Experimental satellite (UWE) project was started in 2003 and launched meanwhile 2
satellites successful into orbit, the third satellite is currently under development and
will be launched prospectively begin of 2012. Pico and nano-satellites are still a very
new field of interest, main focus of the research work in Würzburg are small satellite
components, robust system design and control of satellite swarms and formations
[Schilling, 2009c]. The UWE satellites are introduced here mainly for two reasons:
First, the satellites are a good example of state of the art technology, which is
beneficiary to understand the special requirements and needs for the corresponding
ground segment. For example is the limited link budget of current small satellites
one of the most important arguments for the usage of ground station networks.
Second, it gives a good survey on space related research activities at the University
of Würzburg, which are closely related to this work. Especially the future plan to
operate swarms of satellites in orbit is one of the driving forces of this work.

The pico-satellite UWE-1

UWE-1 was built at the Institute of Robotics and Telematics in Würzburg in about
1.5 years project time in the scope of an educational work. The UWE project from
Würzburg showed how a pico-satellite can be successfully used as an experimental
platform to test new hardware and software components. The satellite bus contains
the common subsystems, for example Onboard Data Handling (OBDH) and Power
Supply Subsystem (PSS). To enable a flexible and robust architecture design, it was
decided to use a microprocessor on UWE-1 instead of the commonly used solution of
a microcontroller. UWE-1 uses for this purpose a 16 bit Hitachi H8S 2674 processor,

14

which has low power consumption. Under normal conditions the complete OBDH
system requires less than 300 mW. The communication is handled from a modi-
fied commercial of-the-shelf (COTS) transceiver called PR430. The PR430 device
combines a TNC and radio equipment within a small device. As operating system
(OS) is the uClinux Linux distribution used. The complete UWE-1 architecture is
described in detail in [Herbst et al., 2005] and [Schilling et al., 2006]. Additional to
the satellite platform a complete ground station was implemented, which enables
communication with UWE-1 and other satellites communicating in the VHF/UHF
frequency bands. The ground station is mainly composed of COTS components and
is connected to the Internet. More details about the specific architecture of such a
ground station follows in section 2.2.1.

Mission objectives

The UWE-1 project had two major mission objectives: First objective was a tech-
nology demonstration of new hardware and software components. The integrated
triple junction GaAs solar cells from industry were tested first time under space con-
ditions [Barza et al., 2006]. The implemented OBDH software based on the uClinux
distribution was also first time utilized on a pico-satellite in orbit. Second mission
objective of UWE-1 was performing telecommunication experiments: The aim of
these experiments was the characterization and optimization of the communication
link. Especially the influence of disturbances on the radio link was investigated. The
UWE-1 platform is an ideal platform for a broad spectrum of telecommunication
experiments, as the system architecture is very flexible. The Linux OS provides
a huge amount of available software components and standardized protocols. The
optimization of the communication link was done in several steps: The first impor-
tant optimization was the elimination of driver inefficiencies. The next step was
than the optimization of the channel access algorithm regarding special radio link
parameters. The application layer protocols of the communication link were opti-
mized individually under consideration of cross layer dependencies with the AX.25
protocol. For more detailed information about the mission objectives of UWE-1 and
the conducted experiments refer to [Schmidt and Zeiger, 2006].

15

Internet Protocols (IP) in space

One of the key aspects of the UWE-1 mission was the demonstration of IP in space on
a pico-satellite. The terrestrial Internet grows more and more each day and therefore
acts as a global interface for all kinds of technical devices, like mobile phones, laptops
and TVs. Furthermore, many different components and protocols relying on IP are
freely available and standardized. This is one of the reasons why in the last years
a development towards IP in space was observed. Nevertheless, it is known that
performance problems with TCP are not avoidable in space and that new solutions
need to be found (compare section 2.4.2). The challenge for the UWE-1 mission was
to combine IP in space with the restricted resources of a pico-satellite. As UWE-
1 is running a Linux operating system, a complete IP protocol stack is provided
from the operating system. This is a basic requirement to integrate the satellite
in a global IP network. Additionally, several upper layer protocols are available to
realize more sophisticated communication links, e.g. TCP, UDP, HTTP and TFTP.
UWE-1 demonstrated successfully that it is possible to use small satellites for IP
communication experiments, the conducted experiments contain file transfer over
TFTP and HTTP data exchange [Schmidt et al., 2007]. This result advertises new
opportunities to integrate small space vehicles in a worldwide IP based network.

The pico-satellite UWE-2

The successor UWE-2 was developed in 2007 and had the objective to demonstrate
the capabilities of extremely small satellites in the field of attitude determination,
which is a preparatory step for Earth observation applications or for coordination of
satellite swarms. Because of the non-linearity of attitude dynamics and kinematics,
an Extended Kalman Filter (EKF) is used to fuse gathered sensor data. The design
of UWE-2 also follows the CubeSat specification, it includes all standard subsys-
tems (e.g. power, OBDH, telecommunication), but was optimized with respect to
size and weight. The architecture was inherited from UWE-1, the Hitachi H8 micro-
processor runs as well the uClinux operating system [Schmidt and Schilling, 2008a].
The communication subsystem also uses the amateur frequency bands (VHF/UHF).
Main emphasis of the UWE-2 mission was laid on the sensor suite for position and
attitude determination, including a space qualified GPS receiver.

16

Attitude determination system of UWE-2

Due to the limited dimensions of the satellite, it is not possible to integrate highly
accurate attitude determination sensors, like star trackers or horizon detectors, be-
cause of volume, mass and power consumption demands. Nevertheless, position and
attitude determination is a basic capability needed for many applications. To enable
an appropriate attitude determination on UWE-2, the pico-satellite was equipped
with redundant sensors. The sensor equipment is mainly based on commercial micro-
electromechanical system (MEMS) components, which were selected with respect to
low mass and power consumption.
The UWE-2 satellite carries six pairs of perpendicularly mounted individual sun
sensors, one on each panel. Therefore, the Sun will be continuously in the field of
view, when the satellite is not in eclipse. For complementary measurements three
miniature gyros are included, contributing changes in attitude and a direct measure-
ment of turn rates. An accelerometer complements the gyros to form the inertial
navigation system.
On-board the absolute position of UWE-2 is determined by a GPS receiver. It
provides position data at a higher accuracy compared to a accelerometer/TLE solu-
tion. A specialized Phoenix GPS receiver [Montenbruck et al., 2006] was integrated
in UWE-2 providing accurate time and position information. The mission objec-
tive was to demonstrate the performance of the ADS. More details about the ADS
system of UWE-2 are given in [Schmidt et al., 2009].

Future prospects of the UWE project

The third satellite of the UWE series was completely redesigned. The new modular,
standardized satellite bus supports rapid and robust development for future missions
[Busch and Schilling, 2010]. The scientific objective of UWE-3 is the in orbit demon-
stration of attitude control on a pico-satellite platform [Schmidt and Schilling, 2010a].
The ADCS is one prerequisite for the long term goal to use satellite formations and
swarms for advanced space missions. The upcoming satellites in the UWE series
will therefore extend the capabilities of the satellite bus in each generation to finally
achieve the realization of distributed space mission.

17

2.2 A new concept of ground station networks

The idea to combine ground stations in a network is of course not a new in-
vention. Since the first space missions the ground segment consisted of several
entities, exchanging information between these parts can be considered already
as networking. The aggregation of different stations was already performed in
the beginning of the space era to achieve better coverage or to increase redun-
dancy. A good example for this "classic" approach is the ESA ESTRACK system
[Maldari and Bobrinskiy, 2008], which was initiated already in the early 70’s. Also
NASA started quite early with the combination of different stations to networks, e.g.
the Deep Space Network (DSN) was established in 1958 [Fisher et al., 1999]. Never-
theless, a new approach respectively concept of ground station networks originated
from the small satellite community and developed in the last years. In this "new"
concept the ground stations from the individual small satellite projects are combined
to extend the access time to space vehicles. On the first glance the "classic" and the
"new" ground station network approach seem fairly similar, nevertheless significant
differences exist:
The most obvious difference between the classical and the new approach is the topol-
ogy. The classic ground station network contains only a few, but therefore highly
specialized stations, to support a broad spectrum of space missions. On the other
side possess the newly emerged networks a high degree of distribution, composed
of many low-cost ground stations (comparable to the architecture of the Internet),
supporting very similar types of space missions (namely small satellites in LEO).
This fundamental difference in topology affects the characteristics of the complete
network, with all its requirements and objectives, but also constraints and bottle-
necks.
Hence, the terms of "classic" and "academic" ground station networks are used
throughout this work to differentiate between the above mentioned network topolo-
gies respectively ground network concepts. These differences are handled in more
detail in section 2.2.1. Of course is the concept of academic ground station networks
not restricted to the academic environment, it rather indicates the origin from the
small satellite projects at universities.
Before addressing the new approach of Academic Ground Station Networks (AGSN),
an important aspect related to the taxonomy of the term ground station has to be

18

clarified: In literature is the space segment typically divided into mission control and
ground station network [Wertz and Larson, 1999] [Wittmann and Hanowski, 2008].
The mission control is aggregated in control center (Mission Control Center (MCC),
Spacecraft Operations Control Center (SOCC)) and is responsible for mission plan-
ning and mission operations, e.g. monitoring and commanding the spacecraft. The
ground station network, composed of different ground stations, is on the other side
dealing with signal reception and transmission, orbit tracking etc. The mission
control and the ground station network are not only logically divided, also often
geographically separated from each other. A typical ground station contains in this
context several receiving stations including different types of antennas as well as cor-
responding hardware equipment. Exemplary, the ground station in Weilheim (part
of the ESTRACK system) contains 6 different antennas ranging from 6 m to 30 m

to support deep space missions as well as near Earth missions. So, a ground station
describes in a classic sense a sophisticated system containing a larger number of
facilities for satellite communication.
Contrary, in the context of small satellites projects, a ground station is considered
rather as a single entity used to access one single satellite. This ground station is in
contrast to the classical definition a standalone system, comprising all components to
communicate with the satellite, i.e. antenna, transceiver, tracking hardware, data
distribution system, etc. There is no clear distinction any more between mission
control and ground stations. Furthermore, a ground station consists here typically
only of one antenna system and corresponding equipment for communication with
a single satellite in LEO.
This work refers in general to a ground station of the latter type, a complete sys-
tem, capable to communicate with one satellite at a time (such a ground station is
also available in Würzburg and was used in different parts of this work). The term
Academic Ground Station Network refers to a network of individual ground stations
interconnected through the Internet.

2.2.1 Classic and academic ground station networks

Architecture of academic ground station networks

The reason why academic ground stations are so similar in architecture is, that they
are designed for the communication links typically used in small satellites. Due to

19

Figure 2.4: Architecture of ground station in Würzburg

the limited mass and power budget and the restricted pointing capabilities are pri-
marily UHF and VHF transceivers used for communication. The utilized frequency
bands, 70cm and 2m, are part of the amateur radio bands and are under the super-
vision of the International Amateur Radio Union (IARU3). Higher frequency bands,
e.g. S-Band, will be the next step in the evolution process of small satellites, but
are still rarely used [Kayal, 2000] (compare section 2.4.2).
This effects of course the architecture of academic ground stations: As hardware
components for UHF and VHF are commercially available, many ground stations are
built up from low cost commercial of-the-shelf components. Typically are standard
radio transceiver and Terminal Node Controller (TNC) components used, which
are connected to simple desktop computers (example architectures are described
in [Hsiao et al., 2000], [Bester et al., 2003] and [Tuli et al., 2006]). That standard
computer is normally connected to the Internet for data exchange. A variety of an-
tennas and suitable tracking systems are offered. To control the antenna and radio
equipment, several software solutions are available (open source as well as propri-
etary). A schematic diagram of the ground station in Würzburg is shown in figure
2.4. For a more detailed description of the ground station in Würzburg please refer
to [Schmidt and Schilling, 2008b].
The ground stations of an academic network are connected through the Internet, i.e.

3http://www.iaru.org/

20

the Internet Protocol (IP) is used on the network layer, on the transport layer the
Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) is used,
depending on the application on top (see also appendix B). Each ground station in
the network can be seen as an access node to a satellite, which is in contact range.
Typically only one communication link to a satellite can be established at the same
time, but it is possible to track one satellite with several ground stations in parallel
to achieve a more robust connection or to increase redundancy. Currently, IP is only
for the data exchange between the ground station computers used, there is no real
end-to-end communication between satellites and distant ground stations on basis
of IP realized. IP in space is an approach pursued from several researches and will
be further discussed in section 2.4.2.
The primarily used protocol for data exchange between ground station and satel-
lite is AX.25 [Beech et al., 1997], which is conform to HDLC ISO standard 3309.
AX.25 originates from the X.25 protocol and was adapted for the special needs of
the radio amateur community. It is used as data link layer protocol in packet radio
mode. Error detection is possible due to a 2 byte checksum attached to each frame,
corrupted packets are discarded by default from a TNC device. In many ground
stations is the TNC replaced by a software modem, emulated by a standard sound
card [Rodriguez-Osorio et al., 2008]. This enables more control over the radio link
and delivers new opportunities for post processing of corrupted data. Combinations
of IP and AX.25 are possible and were demonstrated already with UWE-1 in space
[Schmidt and Zeiger, 2006]. Studies showed that a HDLC conform protocol in com-
bination with IP could perform equally to CCSDS standards [Schnurr et al., 2002]
and is therefore at the current stage a suitable alternative. Furthermore is AX.25
accepted in the small satellite community as standard communication protocol, i.e.
all major ground station network projects (see page 23) support AX.25. Neverthe-
less, a migration to CCSDS protocols might be on a long term view reasonable for
compatibility reasons.

Differences between classic and new ground station approach

The distinction between "classic" and "academic" ground station networks is very
important, due to crucial differences in architecture and topology and therefore
different capabilities and characteristics. To express these differences in facts and
numbers, the ESA ESTRACK system [Maldari and Bobrinskiy, 2008] as a typical

21

(a) European core network of the ES-
TRACK ground segment (Santa Maria
Island, Azores not on map)

(b) Involved ground station of
the GENSO system according to
[Melville, 2009] [Page et al., 2010]

Figure 2.5: Comparison of ESTRACK and GENSO

representative of a classic ground station network is compared to the actual stage of
the GENSO system, to illustrate the contrast between both ground station network
types.
Comparing the size of academic and classic ground station networks is difficult,

as a classic ground station network, like ESTRACK, evolved more than 40 years
under the supervision of a space agency, while GENSO is still in the final develop-
ment phase. Nevertheless, some numbers can highlight the difference in size: The
ESTRACK core ground network consists currently of 9 ground stations located in
Australia, Africa, Europe and South America. Since 1968, ESTRACK supported
more than 60 missions. In contrast to that, more than 20 ground stations will be
already involved in the testing phase of GENSO [Gil Biraud et al., 2009]. Mission
concepts like QB50 foresee the operation of 50 nano-satellites, launched within a
single mission [Muylaert, 2009]. So, it can be expected that in the next years a
considerable amount of stations will cooperate in the GENSO platform. An illustra-
tion of geographical ground station distribution in Europe is shown if figure 2.5. In
summary one can say that academic ground networks might support more missions
in total, but those missions have typically only a short lifetime and do not require

22

a certain level of service, while classic ground station networks are used for less
missions, but predefined services and support is guaranteed.
As pointed out in the previous section, ground stations at universities are low-cost
standalone systems, mainly composed of COTS components. The individual nodes
of the network can therefore be exchanged, as almost all small satellite missions are
in LEO and the communication links use nearly the same frequency bands. Of course
the ground stations are not replaceable when considering contact times, which are
depending on the location of the ground stations, but in general it is possible to
replace one ground station with another when the hardware enables access to the
desired satellite. This effects for example scheduling requirements. On the other
side, classic ground station networks contain highly specialized stations. Thus, ded-
icated stations for deep space missions and geostationary satellites exist and can in
general not be replaced with each other. The ESTRACK system has for example
dedicated 35m diameter antennas for deep space missions, for near-Earth missions
15m diameter antennas are provided. The frequency bands range from S-Band to
Ka-Band [Maldari and Bobrinskiy, 2008], thus all kind of missions can be supported
by ESTRACK, but dedicated stations for specific type of missions need to be re-
quested.
Major emphasis in academic networks is placed on the need for flexibility. For classic
ground station networks are operation plans created for long time spans to maintain
a high utilization and to satisfy the needs of the customers. In the field of aca-
demic ground station networks the situation is totally different: Most participants
are from non-commercial institutions, involved personnel is not available 24 hours
a day, ground stations are sometimes unexpectedly not available. The result is a
high dynamic topology in academic ground station networks, the need for flexibility
results for example in different scheduling objectives compared to classical ground
station networks.
Classic ground station networks are centrally organized, i.e. there is typically one
controlling organization on top, for example ESOC in the case of the ESA ESTRACK
system, which is able to manage or control the complete network. For example is
maintenance or migration to new software or hardware managed centrally by ESOC
[Maldari and Bobrinskiy, 2008]. For academic ground station networks this is not
the case, the nodes of the network belong to individual organizations, therefore the
coupling between the nodes is much weaker. So, there is no central entity able to

23

take decisions for the global network. That means, if a ground station has a failure,
only the corresponding organization can undertake any actions. Also the usage of
policies, standards and protocols is not always properly defined. Migration to new
hardware or software is only possible if participating ground stations are willing to
react. Therefore, controlling an academic ground station network is a more complex
task, which imposes additional measures for new soft- and hardware solutions.
Another crucial point is, that classic ground station networks are open to paying
customers. To run a huge ground station network a large part of the available bud-
get comes from facility fees. Thus, the typical average cost of a tracking hour ranges
between 300 and 450 Euros [Maldari and Bobrinskiy, 2008]. At the current stage
in academic ground station networks there is no commercial interest, participants
are contributing with their own ground station and can use other stations of the
network free of charge. Costs occurring for a ground station, e.g. maintenance, are
directed to the owning institution. This influences of course the objectives of the
network: Rather than increasing the utilization of the network (which makes sense
if it has to be commercially successful), the aim of academic networks is to share
the sparse resource of ground stations hardware respectively access time. Therefore,
also scheduling needs differ a lot (for more details related to scheduling see section
3.2.1). Finally, all peculiarities of both ground station network types are summa-
rized in table 2.1 for a better overview.
Due to all this differences, it is not possible to simply transfer strategies for efficiency
improvement from classic to academic ground networks. The topologic difference
leads to new objectives and problems in data management, the altered requirements
in flexibility and redundancy bring up new challenges in satellite scheduling. The
main focus of this work is related to such efficiency improvements and is handled in
detail in chapter 3 and 4.

2.2.2 Projects establishing academic ground station networks

Finally, some examples will present the current state of the art in academic ground
station networks, technical issues will be handled in a short manner to emphasize
the special characteristics of these networks.

24

Classic Ground Station Net-

work (CGSN)

Academic Ground Station

Network (AGSN)

Clustered in operation center Highly distributed network

Supports wide range of satellite
missions

Supports mainly small satellite
LEO missions

High end devices and stations Low-cost stations

Specialized, dedicated stations Generic, replaceable stations

Strictly defined network topology Dynamic topology

Centrally controlled and managed Distributed organized

Provided to paying customers No commercial interest

Utilization increase desired Sharing resources to extend com-
munication time desired

Table 2.1: Comparison of ground station network concepts

Global Education Network for Satellite Operations (GENSO)

The Global Education Network for Satellite Operations (GENSO) was started in
2006 from the International Space Education Board (ISEB), which consists of the
educational departments of CSA, JAXA, NASA and ESA. Objectives of the GENSO
project are to allow remote access for operators to their satellites over the network,
provide remote control of the participating ground stations and to define and im-
plement a global standard for educational ground stations.
The GENSO software provides a distributed platform based on a client and server
architecture. A server application, the so called Ground Station Server (GSS) is in-
stalled on each ground station participating in the network, Mission Control Clients
(MCC) are used from the satellite operators to bring the data from the satellite
back to the owner [Page et al., 2008]. Secure access is granted from Authentication
Servers.
From a technical point of view is the GSS software responsible for handling the
interfaces to the hardware devices, i.e. rotor and radio equipment. Software li-
braries like the Ham Radio Control Libraries4 were integrated to support a broad
spectrum of COTS components [Shirville and Klofas, 2007]. The current software
release supports already standard equipment like ICOM transceivers or Yaesu rotor

4http://sourceforge.net/apps/mediawiki/hamlib/index.php?title=Main_Page

25

controllers [Melville, 2009]. The MCC software is used from an operator to control
the configuration of a connected GSS server. It contains a graphical user interface,
but also provides interfaces for customized software solutions for satellite operation.
The public response to GENSO is very remarkable and many small satellite de-
velopers announced their interest to join the GENSO network. More than 30 uni-
versities and radio amateurs are currently involved in the early operational phase
[Page et al., 2010]. The project issued already a first version of its software, but is
still under testing phase. For further information about GENSO and participation
possibilities please refer to [Shirville and Klofas, 2007] and [Gil Biraud et al., 2009].

Ground Station Network (GSN) from the UNISEC group

The ground station Network project of the UNISEC group was already initiated
in 1998. As JAXA also takes part in the ISEB, there is close cooperation be-
tween developers from the GSN and the GENSO projects. The GSN network
was established on a national level in Japan. Objective of GSN is to construct
a network-based ground station system with functionalities for remote control via
Internet. More than 10 ground stations in Japan are participating in the project
[Nakamura and Nakasuka, 2006]. Conducted experiments demonstrated already suc-
cessful how the operation of pico-satellites can be improved by the usage of several
ground stations [Oda et al., 2008].
The GSN system bases on the Ground Station Management Server (GMS), a pack-
age of software functions which are necessary to remotely control ground station
hardware. As each ground station has a different hardware architecture, specific de-
vice drivers need to be implemented to interface the GMS client software, a detailed
description can be found in [UNISEC-GSN, 2006]. The data exchange between client
and local ground station hardware uses the Web Services technology, a W3C term
for communication between devices using web standards, in this way is a platform
independent remote control concept realized. An operator using GMS can directly
control hardware devices like TNC or radio equipment.

Mercury

The Federated Ground station Network (FGN), initiated at Stanford University,
envisions an autonomous, global distributed ground station installation to increase
coverage and redundancy as well as enabling multi satellite support. The proto-

26

type implementation of FGN is called Mercury Ground Station Network (MGSN)
[Cutler et al., 2002] and was published as open source project. It combines a three-
tiered web architecture to enable remote control over the Internet.
A very interesting approach of Mercury is the concept of ground station virtualiza-
tion [Cutler, 2003]. Here, virtualization describes the encapsulation of the provided
functions of a single ground station, the result is reduced complexity of the overall
system. Main driver for this design is the idea of transferring the end-to-end prin-
ciple to ground networks. The end-to-end principle is a very common strategy for
data exchange in distributed systems and handles protocol communication between
end nodes in a network. The close relationship to the Internet is obvious: Ground
stations could act similar as routers in the Internet and open new possibilities for
space operations. The end-to-end principle enables a more flexible architecture for
end user applications in space context. [Cutler and Bhasin, 2002].

A new approach of the ground segment, introduced as academic ground station
networks, is still in an early stage. Ambitious projects like GENSO are progressing
fast, but are still at the beginning. Currently the networks focus mainly on infras-
tructure and interfaces, the resources are shared with a kind of reservation system,
which is ineffective with respect to utilization. This work starts from this points
and proposes improvements for such networks on a global scale. Only with proper
data management as well as scheduling, a more efficient usage of ground resources is
possible. Especially for the operation of satellite swarms or formations, i.e. a highly
distributed environment, such approaches are vital.

2.3 Distributed / multi satellite systems

The previous sections introduced the small satellite concept as well as the academic
ground stations established in their scope. New opportunities due to reduced size
and mass were pointed out and efforts in the ground segment to establish networks
were discussed. Altogether are these developments strong indications towards a new
generation of distributed space missions in the future.
What exactly is a distributed system? Andrew S. Tanenbaum defines a distributed
system as network of independent computers that interact with each other to achieve
a common goal [Tanenbaum, 2003]. A distributed system everyone is familiar with

27

is the Internet, but also a group of cooperating robots is a distributed system. Of
course, this term can also be applied to space context, thinking of several satellites
in orbit to perform a common task (e.g. the GPS satellite constellation). Meanwhile
several applications were realized in space with distributed systems and topological
terms exist to distinguish different kinds of distributed systems in space.
Most important terms describing the topology of distributed satellite systems are
formations, constellations, clusters and swarms [Sandau, 2009], unfortunately these
terms are not used consistently in literature. Especially in the scope of satellite
range scheduling (see chapter 3), the topology of a distributed satellite system in-
fluences the difficulty of a problem instance.
Formation: Describes a multi-satellite system, which motion is controlled on-board
with a closed loop to maintain relative distances between the vehicles in the same
or very similar orbit [Scharf et al., 2003] [Leitner, 2004] [Schilling, 2009b]. In this
way coordinated measurements can be performed or a single large instrument can be
emulated by several small instruments (e.g. by interferometry). Formations are envi-
sioned by many scientists as opportunity to realize new innovative mission concepts,
as the size and mass of a single satellite is limited by launch vehicle restrictions. Up
to now only small formations were demonstrated in space and mainly with satellites
in the same orbit, flying behind each other (e.g. [Guinn, 2002][Serrano et al., 2009]).
Constellation: Is related to a multi-satellite system with its satellites distributed
in different orbits. The vehicles are placed in space to achieve better coverage or
higher temporal resolution. They are typically controlled individually from ground
to maintain a coordinated ground coverage, the relative distance between the satel-
lites is not controlled. Most prominent example of a satellite constellation is the
GPS system, consisting of 32 satellites in 6 orbit planes. But also telecommunica-
tion and Earth observation constellations are already implemented (e.g. Iridium,
Disaster Monitoring Constellation).
Cluster or swarm: Is used for a distributed system of spacecrafts cooperating to
achieve a common goal without fixed absolute or relative position. The term swarm
originates from flocks or school of fish, having in mind individuals acting together
to achieve a common behavior. Satellites flying very close together and moving in
almost the same orbit are often considered as swarms or clusters.

Throughout this work are the terms multi-satellite systems, distributed satellite

28

Figure 2.6: Distributed space system

systems and satellite networks used interchangeable, and describe in general a space
segment with more than one space vehicle, which are used to achieve a common
goal. When referring to a formation, constellation or cluster, the definitions above
are used to distinguish between different topologies or control strategies.
Beside the space segment also the ground segment is integral part of each space
mission. In a simple view, one could already see one satellite and one ground station
as a distributed system (consisting of two nodes communicating with each other
during contact). But considering a more general case, having a multi satellite system
connected to a ground station network, is more suitable. Therefore, one can identify
two different distributed systems, one in space and another one on ground, both in
close relationship with each other (see figure 2.6). This viewing angle is sometimes
neglected when multi-satellite systems are discussed, but of course the topology of
the ground segment plays an important role for telemetry and telecommand. Due
to the movement of the satellites on their orbits, the communication links between
ground stations and satellites change frequently. These adds new challenges to the
operation of a satellite network, careful planning and scheduling is necessary (see
also section 2.4).

29

2.3.1 Distributed satellite systems as a new paradigm for

satellite missions

In the last years a paradigm change in satellite engineering was observed worldwide.
Since the first satellites have been launched, the dimensions and mass of space ve-
hicles steadily increased. But in the last 10 years a new strategy of reducing the
size of space vehicles has been pursued. Tiny satellite buses, like the SSTL micro
satellites platforms [Jason et al., 2000], are commercially available and demonstrate
the advances in miniaturization techniques. The reduction of size and mass was
not only an effect of advances in miniaturization of electronic components (like in
computers or mobiles), it also relates to the benefits of reduced launch costs (see
section 2.1.1).
Beside the cost savings, a very interesting side effect of reducing the mass is the
ability to launch several satellites together with a single launch vehicle, which is
an important ability for future space infrastructure [Raymond et al., 2004]. This
was performed already several times in the CubeSat community, several of these 1
kg satellites were piggybacked on the primary payload to further lower the launch
costs. It is still a very common strategy to attach small satellites to larger ones as
a dedicated launch vehicle would be to expensive. Meanwhile this launch strategy
was extended to bring multi satellites into space.
The result is, that distributed satellite systems can be realized now by affordable
costs. The current evolution to extremely small satellites will promote even more
to highly distributed systems. The paradigm change from single large satellites to
distributed space missions with a large number of satellites is currently going on
[Schilling, 2009a]. An often envisioned scenario is a fully connected terrestrial and
space Internet [Burleigh et al., 2002][Hogie et al., 2005]. The most critical question
is now, why should we use distributed systems in space? A simple answer is, to
realize distributed applications! Two exemplary applications fields are discussed in
section 2.3.2. Main drivers for a distributed application in space is higher spatial or
temporal resolution, or the usage of concepts like interferometry.
But not only new application scenarios are the driver for establishing networks in
space, the concept of distributed intelligence was successfully demonstrated in the
last years in various fields, for example Internet or sensor networks. The idea is
always to have a huge number of nodes, each with restricted capabilities and knowl-

30

edge about the environment, but the complete network behaves "intelligent" and
can fulfill a task more effective than one single complex system. Furthermore, the
decentralized organization or control makes the system robust and reliable. Graceful
degradation is a capability strongly desired in the case of failures.
Altogether this paradigm shift from large single satellites to distributed small satel-
lites is apparent in many fields and a hot research topic discussed in many work-
shops and conferences .The concept of distributed satellite systems will not replace
the classical approach of launching single satellites, it will be rather a possibility for
specific mission scenarios.

2.3.2 Application scenarios for distributed satellite systems

The most critical question is of course what benefits have distributed systems in
space? As it was already indicated, main driver for multi satellite systems are
distributed applications. There are many good reasons why an application should
be implemented in a distributed way, for example to achieve higher robustness if a
failure occurs or to increase resolution. Additionally, approaches like interferometry
can be used to achieve better performance than achievable with only a single satellite.
Two exemplary applications will be discussed in the next sections to emphasize the
benefits of distributed space applications. Of course many more applications and
algorithms take advantage of distributed systems, but will not be elaborated in this
work. For a more comprehensive overview of applications for distributed satellite
systems please refer to [Schilling and Brieß, 2008], which contains a more extensive
description of possible applications fields.

Distributed satellite systems for Earth observation

One application field with high potential for improvement through swarms of small
satellites is Earth observation. Satellites in Low Earth Orbit (LEO) are able to
monitor environmental changes without large delays. The low height of the orbit
enables high spatial resolution on Earth and provides therefore huge potential for
applications like disaster monitoring. Even with small satellites can environmental
changes like natural disasters be observed. But due to the orbit, these satellites are
orbiting with a high velocity around Earth, resulting in short observation periods in
desired areas and large gaps until the ground track repeats. The solution for that

31

problem is a higher temporal resolution, achievable through several satellites in the
same orbit. This can be easily achieved with the launch of several pico or nano-
satellites. The reduced launch costs enable a high temporal resolution, resulting in
a contact time roughly every 10 minutes. The future development of small satellites
for Earth observation is therefore very promising [Sandau, 2009].
Another interesting application could be the creation of 3-dimensional images out of
data collected by a swarm of satellites [Schilling, 2009a]. Through different viewing
angles of satellites in the same orbit, flying in a leader-follower constellation, this
could be achieved with simple means. A formation which demonstrated already
such a constellation was implemented in 2000 with the Landsat-7 and EO-1 mission
[Guinn, 2002]. Originally it was not intended to use these satellites for a formation,
but by accident it was possible to demonstrate a formation flying due to the ex-
tended lifetime of Landsat-7. The next step is now to demonstrate a small satellite
swarm for Earth observation purposes, challenges are especially the demonstration
of accurate formation keeping in space.

Multi point measurements for space weather research

A very interesting application field for small satellite swarms is space weather re-
search. Current missions related to that topic face two problems: To better approx-
imate atmospheric models, a more detailed knowledge about relevant parameters is
necessary. A single satellite delivers only single measurements at a given time, to
increase the accuracy of current atmospheric models, the spatial resolution of the
measurement has to be increased. The simplest way to realize that kind of multi-
point measurements is a multi satellite system. A second crucial problem is the
severe environment of the lower atmospheric layers, which reduces the lifetime of
a satellite in low altitude Earth orbits dramatically. Hence, the usage of low-cost
satellites to obtain information about the composition of these lower atmospheric
layers is favorable.

32

2.3.3 Example mission

To illustrate the potential of distributed satellite systems an example missions is
introduced. Of course many more missions are planned, but can not be described
in detail within this work. More distributed mission concepts can be found in
[Schilling and Brieß, 2008] [Sandau, 2009] and [Curtis et al., 2003].

QB50

A very promising mission relying on a multi satellite system is the QB50 project
[Muylaert, 2009], initiated from the Karman institute and supported from many
European experts. The scientific objective of QB50 is the in situ measurement of
spatial and temporal variations of key parameters in the lower thermosphere. The
measurements are performed from 50 double CubeSats, launched together and sep-
arated consecutively from the launch vehicle. All satellites are equipped with iden-
tical sensors, which obtain data approximately 100 km separated from each other.
Furthermore, the re-entry process of the distributed satellite system is studied. In-
teresting is the fact that the 50 satellites are provided from 50 different institutes,
so the satellite swarm itself is very heterogeneous. For operation is the academic
ground station network GENSO foreseen (for more details see page 25). The project
is a promising mission with scientific value, nevertheless suitable strategies for its
operation are not available yet. One key aspect for the proper operation of 50
satellites flying near to each other in nearly the same orbit is efficient scheduling.
Additionally, communication between such a highly distributed system and proper
data transmission of measurements to Earth has to be addressed.

2.4 Challenges and technologies for distributed space

missions

The potential of distributed applications was already pointed out in section 2.3.2.
Nevertheless, from a technological point of view are still several challenges to be
faced to realize such distributed missions in orbit. To conclude this chapter, major
challenges as well as existing related technologies are discussed.

33

2.4.1 Challenges for highly distributed satellite missions

Formation flying

Many experts consider formation flying as the next necessary step to progress in
application fields like VLBI or x-ray astronomy, which benefit from long base-
lines between sensor devices and are needed to establish so called virtual instru-
ments [Raymond et al., 2004] [Xiang and Jorgensen, 2005]. Coordinated space ve-
hicles can realize in that way performance unachievable using a monolithic approach
[Sandau, 2009]. But on the other side, formation flying is due to stringent system
requirements a very challenging research field [Scharf et al., 2004] [Schilling, 2009b].
Formations of conventional satellites would be to expensive for implementation in
space. The small satellite concept is more cost-efficient due to reduced launch costs,
but limited mass and power budgets restrict the utilization of state of the art com-
ponents and subsystems to provide necessary capabilities: Especially attitude and
orbit control functions are mandatory to enable precise formation flying. Miniatur-
ized AOCS components designed for small satellites are indeed in focus of different
research teams, but only have been rarely demonstrated in orbit. Also relative
distance measurements are required to efficiently control formations, but advanced
sensors and actuators are required to achieve the desired accuracy (and still, desired
accuracy for missions like DARWIN are not realizable).
Beside hardware devices, proper control algorithms are needed to maintain a for-
mation. Here, the individual satellites as well as the complete formation need to
be controlled with respect to attitude and orbit, to keep the relative distances be-
tween the vehicles constant. For more details related to formation control refer
to [Alfriend et al., 2010], [Wang and Hadaegh, 1996] and [Radice et al., 2010]. A
major issue for formations as well as for swarms is communication in highly dis-
tributed networks [Raymond et al., 2004]. Especially inter satellite communication
rises several problems in a highly dynamic environment, for example routing, data
flow optimization and link interruption handling.

Self organization and autonomy

The term self organization is used in various research fields, for example computer
science (decision algorithms, neural networks) and economics (socio-spatial systems),
to describe a coordination process in complex systems [Unsal, 1993]. In technical

34

context summarizes self-organization functions or techniques, which increase the
performance, efficiency or flexibility of (distributed) systems through autonomous
behavior or reactions. Furthermore, self organization is an important issue for scal-
ability and robustness. This can be applied to robot agents, sensor networks or
satellites.
A distributed satellite system does not necessarily need self organization capabilities,
for example does the GPS constellation contain more than 30 satellites, neverthe-
less are they individually controlled from ground. But with a growing number of
vehicles, the effort for individual operation increases dramatically. Even with only a
small number of assets in the network it might be necessary to include self organiza-
tion techniques, if fast actions or decisions are desired, e.g. for collision avoidance.
Only a few aspects of self organization in distributed satellite systems are highlighted
here, more details can be found in [Wang and Hadaegh, 2000] [Pinciroli et al., 2008].
Self organization is an important topic in the context of communication, which needs
to be adapted due to topology changes, transmission errors and link failures. An-
other important aspect is collision detection and avoidance in swarms or formations.
A manually controlled satellite might not be able to detect a critical situation early
enough to avoid the collision. Therefore, autonomous reactions should be imple-
mented to guarantee safe modes, e.g. in close distance formations. Autonomous
reactions are also desired in the case of failures: If a single satellite of the sys-
tem can no longer provide a service, the distributed system should self organize to
compensate the missing resource (soft degradation capability).

Operation of distributed satellite systems

Having a highly distributed formation or constellation in space also induces require-
ments for the ground segment. Missions with a large number of satellites impose a
lot of work for operators. Considering a future space mission, which contains more
than 100 nano-satellites, would increase the workload enormously. Commanding
100 different satellites individually from ground, which in case of a satellite cluster
have almost the same contact times on a local ground station, is nearly impossible.
Additionally, interferences between them might even more perturb proper mission
operations. A possible solution could be a fully autonomous satellite network with
no interaction of any human operator. Due to several reasons is a fully autonomous
system not foreseen for the next years, at least an operator monitoring the scenario

35

to interact in failure cases is desired. Nevertheless, such a semi-autonomous strategy
brings up new challenges and tasks for operation: Which satellites should establish a
communication link with the ground stations? What happens if dedicated downlink
satellites fail? How can data be collected from a distributed space system and trans-
ferred efficiently to a network of ground stations? All such issues are summarized
in this work under the term "distributed satellite operation".
While section 2.4.1 is dedicated to general challenges of distributed satellite systems,
this work contributes in the field of distributed small satellite operation. Especially
problems from the field of scheduling and data management are handled to increase
the efficiency and performance of distributed space missions. Scheduling issues, i.e.
assignment of satellites to ground stations are handled in chapter 3. Aspects re-
lated to data management to coordinate data streams in ground station networks
are discussed in chapter 4.

2.4.2 Technologies for distributed space missions

Enabling Technology

The ability to launch a satellite formation or swarm on a single launch vehicle was en-
abled by the decreasing mass and size of actual satellite platforms. On the other side,
the small satellite concept suffers from limited capabilities due to mass and power
restrictions. Even if the research focus of many teams lies on further miniaturization
of satellite components, there is still a strong need for enabling technologies:
In nowadays pico and nano-satellite platforms two major bottlenecks origin from the
mass and power restrictions: First, the Attitude and Orbit Control System (AOCS)
contains not yet the capabilities of conventional large space vehicles. The tasks of
the AOCS include attitude determination and control as well as orbit determination
and control. For all these disciplines exist flight proven subsystem solutions, unfor-
tunately not in the scale of a pico or nano-satellite: State of the art star trackers
for highly accurate attitude determination are too large for small satellites, COTS
propulsion systems for attitude or orbit control are to heavy for small satellites.
Many researchers from the small satellite community try to overcome that issues
by the development of miniaturized components and subsystems especially designed
for small scale space vehicles. Meanwhile a variety of innovative systems are avail-
able even for CubeSats, including miniaturized star trackers, micro reaction wheels

36

or tiny propulsion systems (e.g. cold-gas thrusters or pulsed plasma thrusters). A
dedicated investigation of enabling technology in the context of AOCS is given in
[Schmidt and Schilling, 2010a].
The second above mentioned critical bottleneck is the communication subsystem.
The limited power budget in combination with less accurate pointing accuracy led
to the utilization of lower frequency bands (mainly UHF or VHF) in current satel-
lite platforms. Furthermore, a broad spectrum of COTS radio amateur hardware
is available and proved its performance in several missions. Main drawback is the
low transmission rate provided from those COTS components, many pico and nano-
satellites are restricted to 9600 bps or even less. Migration to higher frequency bands
are planned, but ongoing activities are still in development phase. Most developers
envisage S-band communication as possible technology for higher data rates, single
missions already accommodated such systems [Minelli et al., 2008]. Furthermore,
there was no Inter Satellite Link (ISL) demonstrated so far in a pico or nano-satellite,
but especially for satellite formations is an ISL essential. More information about
communication issues in small satellites are presented in [Marszalek et al., 2011] and
[Klofas et al., 2009]

Communication protocols and IP in space

Beside the hardware devices for the physical communication link, also a suitable
protocol for communication between network entities is needed to enable efficient
data exchange, i.e. communication protocols need to be utilized. Of course net-
work communication and protocols for distributed systems were addressed already
in various other fields, but due to the special peculiarities of the space environment
they can not directly be transferred. Migration of state of the art protocols to space
context was therefore investigated extensively from many research groups.
An approach already tested in simulations and in real space missions is the uti-

lization of Internet Protocol (IP) for space vehicles. When speaking about Internet
protocols, one mainly refers to the TCP/IP protocol stack, which works on the net-
work and the transport layer of the ISO/OSI reference model (see appendix B). The
network layer is in all cases occupied from the Internet Protocol (IP), which guar-
antees the interoperability in the network. Beside the interoperability, the routing
mechanism of IP made it so successful worldwide. The routing mechanism is in
most cases not directly transferable for usage in space environment, due to the high

37

dynamics of the vehicles in orbit. But interoperability is a major argument for uti-
lization of IP, as many other protocols use the IP interface to exchange information.
A second, but quite simple reason to utilize IP in space is a commercial aspect:
Designing a communication link is time intensive, referring to an existing solution
reduces development time and costs (and IP is a good candidate as its interface is
accepted worldwide as a standard). The last point is more or less the vision to have
in future a global network, enabling the exchange of data between arbitrary nodes
via IP (computers, mobiles, cars, space vehicles). This complies with the paradigm
of having highly distributed space missions, each representing a small network in
space, which is again connected to one global network. Of course this vision will
not be realizable in near future, but the evolution of the Internet in the last years
demonstrated very impressive the capabilities of highly distributed systems.
Problematic for the usage in space missions is in general not IP, rather connec-
tion oriented higher layer protocols. Especially the Transmission Control Protocol
(TCP), occupying the transport layer, is susceptible to performance decrease. Main
reasons for that are delays and transmission errors: The performance of TCP is re-
stricted by its bandwidth delay product, requiring a transmission window buffer of
equal or greater size [Hogie et al., 2005]. Therefore large delays decrease the maxi-
mum throughput. Nevertheless, for satellites in LEO this is not a problem at all, as
the signal propagation delay is only a few milliseconds. Currently, small satellites
are only used in LEO orbits and the delay is here not an issue for the application of
TCP in space.
A second restricting factor of TCP is the misbehavior of the congestion avoidance
algorithm in space. As there is currently no mechanism to distinguish loss due to
congestion from loss due to noise, the flow control interprets the loss of an individ-
ual packet as a congestion situation and reduces the transmission rate. This means
that increasing noise will reduce throughput as retransmission timeouts increase
[Hogie et al., 2005]. To avoid the affects of the flow control, proper FEC algorithms
need to be employed or a connection-less protocol like UDP has to be used.
Additionally, issues like path asymmetry and slow start performance should be
mentioned in this context, for more information regarding IP in space with an
extensive discussion of the influence on the complete ISO/OSI layer is given in
[Hogie et al., 2005], [Akan, 2002] and [Steele, 2004].
To overcome the performance problems of TCP in space links, several protocol ex-

38

tensions were proposed. For example is a better delay handling implemented in
the TCP Westwood Extension. Other extensions try to make TCP less sensitive
to transmission errors, for example TCP/Peach. The concept of TCP extensions
remedies some of the performance limitations, but the compatibility is not longer
guaranteed. An survey on TCP extensions is given in [Durst et al., 1996].
First experiments with Internet protocols on satellite links were conducted in 1996
[Blott and N., 1996]. In the scope of the Operating Missions as Nodes on the In-
ternet (OMNI) project a TCP/IP implementation was uplinked on UoSAT-12, a
small satellite developed by SSTL [Jackson et al., 2001]. The first satellite solely
relying for the communication on IP was the CHIPSat satellite from the University
of Berkeley [Janicik and Wolff, 2003]. The IP protocol was here mainly employed
to save development and implementation time. The provided FTP/TCP file trans-
fer satisfied the needs of the mission operators [Hogie et al., 2005]. Advanced IP
experiments were conducted in the scope of the Communication And Navigation
Demonstration on Shuttle (CANDOS) mission, including protocols like SSH, SCP,
FTP, MDP and Mobile IP [Israel et al., 2004]. The first experiments related to IP
in space on a pico-satellite were conducted in the scope of the UWE-1 project (see
section 2.1.3).
For all these mission experiments was static IP routing used (except for CAN-
DOS), which is always problematic in highly dynamic network topologies. Solutions
like Mobile IP are used in terrestrial scenarios to overcome the routing problem, a
promising solution for space application are Mobile Ad-hoc Network (MANet) proto-
cols, which were already utilized successful in robot formations [Zeiger et al., 2008]
[Zeiger et al., 2009b] [Zeiger et al., 2009a].

Chapter 3

Redundant scheduling for ground

station networks

One of the most limited resource of a satellite in a low Earth orbit is for sure the
communication time. The contact window between a satellite and ground station
can be determined from the orbit elements and the location of the ground station.
For a LEO satellite are typically 6 to 8 [Cakaj et al., 2007] contact windows between
5 and 15 minutes available each day. This implies two major drawbacks: First, the
satellite is only visible for a few minutes each day, which limits the amount of trans-
ferable data dramatically. Moreover, the ground station is not utilized for a large
fraction of each day. Second, the contact windows have fixed start and end times
due to orbit geometry and an academic ground station can serve only a single satel-
lite at a time. Therefore, overlapping contact windows of individual satellites (see
figure 3.1) lead to the question which of these satellites should be operated first.
To handle conflicts respectively overlapping contact windows, scheduling comes into
play. The term scheduling describes in general the assignment of scarce resources
to activities, with the objective to optimize one or more performance measures
[Leung, 2004]. Throughout this work it is distinguished between planning and
scheduling, even if in literature sometimes both fields become indistinct. Planning is
a very general term and involves formulating a sequence of actions to achieve a de-
sired objective, for example path or task planning. According to [Smith et al., 2000],
scheduling is a special case of planning, where the actions are already chosen, leav-
ing only the problem of determining a feasible order. This is consistent with the
definition of scheduling in [Leung, 2004].

39

40

Many systems and applications make use of scheduling, e.g. process scheduling in

Figure 3.1: Overlapping contact windows for adjacent ground stations

operating systems or job scheduling in manufacturing processes. Within this work,
scheduling is considered as the problem of finding an assignment of satellites to
ground stations, i.e. to schedule contact windows in a given time horizon. This kind
of problem is in general referred as Satellite Range Scheduling, or just SRS problem.
The general aim in this context is to optimize the scheduling process for better uti-
lization of restricted resources. In the case of academic ground station networks,
scheduling follows the objective to share ground station resources and to extend com-
munication time. In classic ground station networks, the main objective is rather to
increase the utilization of the ground stations.
This chapter starts with the introduction of state of the art scheduling approaches
used in current space systems. A new scheduling problem was derived from the
demand of recent satellite missions and is presented in section 3.2. An approach
tailored for academic ground station networks, which is able to satisfy the special
requirements of distributed satellite missions, is proposed in section 3.3. The chapter
concludes with an evaluation of the implemented scheduling system.

41

3.1 State of the art

In the following, several problems and systems are introduced, which deal with the
problem of scheduling in space applications. Scheduling is in space context mainly
used to assign contact or observation windows to one or more resources. Several
studies related to optimal assignment of contact windows to ground station net-
works were conducted in the last years.
In certain environments is the process of scheduling still performed manually and
is therefore very time consuming. It takes for example already 5 hours to create
a preliminary schedule for a small number of tracking stations of the Air Force
[Howe et al., 2000]. In larger networks, the creation and optimization of suitable
schedules can take weeks. The presented approaches in this work focus exclusively
on autonomous creation of schedules.
A variety of systems for automatic scheduling in space applications were already
investigated in the past, the following sections concentrate on the satellite range
scheduling domain. But also the Earth observation scheduling problem has similar-
ities to the problem definition and will be introduced briefly.

3.1.1 Satellite Range Scheduling

The term scheduling is used on wide field of problems, in space context the Satel-
lite Range Scheduling (SRS) problem was investigated in deep. It is defined as the
generic problem of scheduling task requests for communication antennas, introduced
from Schalck [Schalck, 1993]. A satellite can only communicate with a ground sta-
tion when it is within the transmitting horizon of the ground station, depending on
the orbit geometry this occurs periodically. Creating an efficient schedule is very
sophisticated due to the huge number of combinatorial possibilities of satellites and
ground stations. Furthermore, resolving conflicts of overlapping contact windows is
a major issue. Also a problem is, that the SRS problem is typically oversubscribed.
Oversubscribed scheduling means, that there are not enough resources available to
satisfy all requests for resources, so a certain number of requests are suspended from
the schedule.
The SRS domain can be further divided into the Single Resource Range Schedul-
ing Problem (SiRRSP) and Multi Resource Range Scheduling Problem (MuRRSP),
where SiRRSP describes the case of a single ground station (respectively antenna)

42

allocation to several satellites. The general problem of assigning a ground network
to several satellites is contained in the MuRRSP domain.
It was shown from Burrowbridge, that the SiRRSP (i.e. only one ground station)
can be solved in polynomial time when only LEO satellites are considered. Fur-
ther details to the algorithm and a comparison of different scenarios can be found
in [Burrowbridge, 1999]. In contrary, in the MuSRRSP domain (i.e. more then
one ground station needs to be assigned), the contained problems are NP complete
[Barbulescu et al., 2004c]. The scheduling problem in academic ground station net-
works can be ranked as MuRRSP problem, thus it is also NP complete.
Currently, there is no accepted state of the art algorithm for the SRS problem
[Barbulescu et al., 2002], due to the unsteady performance of promising algorithms
on individual problems. Two real world applications and its problem characteristics
are discussed in the following, the oversubscribed AFSCN and AMC scheduling prob-
lems. Other relevant works in the scope of SRS domain are [Preindl et al., 2010],
[Zufferey et al., 2008] and [Pemberton and Galiber, 2000]

Air Force Satellite Control Network (AFSCN)

An extensive investigated problem from the SRS domain is the AFSCN schedul-
ing problem. The Air Force Satellite Control Network (AFSCN) is responsible
for the communication needs between users on the ground and satellites in space
[Barbulescu et al., 2002]. Key mission is to accommodate the requests from users
into a consistent schedule. The AFSCN scheduling problem involves on average
more than 100 satellites, which have to be assigned to 9 stations containing in total
16 antennas. Typically about 500 requests for communication windows are issued
each day and need to be accommodated in a 24 hour schedule. Due to the restricted
resources the problem is oversubscribed.
The main objective in the AFSCN scheduling system is to reduce the number of
unsatisfied requests for a given day. Unsatisfied requests describe the number of
requests, which can not be accommodated into the final schedule due to conflicts.
A special characteristic of this scheduling domain is the distinction in low altitude
and high altitude requests: A requested communication window for a low altitude
satellite, i.e. LEO, is characterized by fixed start and end times, while the high
altitude (GEO) communication windows can be scheduled more flexible, as GEO
satellites are permanently visible.

43

First deeper investigation of that problem was performed by Gooley [Gooley, 1993]
and Schalck [Schalck, 1993]. Both approached the scheduling problem with a Mixed
Integer Programming (MIP) algorithm. Gooley reported with his system a ratio
of successfully scheduled requests of at least 91 %. An extension of the approach
presented from Schalck increased the ratio to a success rate between 96 % and 99
%.
For better comparison of the developed algorithms, a set of benchmark problems
were defined [Barbulescu et al., 2007b], containing the requests submitted to the
AFSCN administration in a 7 day period, each day occupied with approximately
300 requests. Barbulescu et al. [Barbulescu et al., 2004a] [Barbulescu et al., 2004b]
performed an extensive comparison of search algorithms on the AFSCN benchmark
problems, with focus on hill climbing, heuristic search and genetic algorithms. The
first obtained results reveal strong performance of the genetic algorithm GENITOR
[Barbulescu et al., 2002]. In further research, the effectiveness of large leaps in the
search space was shown [Barbulescu et al., 2004c], which applies for the GENITOR
algorithm as well as for the squeaky wheel optimization. The research of Kramer
et al. [Kramer et al., 2007a] [Kramer et al., 2007b] compared, similar to the work
of Barbulescu, search strategies for the AFSCN problem and derived hypothesis to
explain their performance. Barbulescu at al. addressed later the issue of finding
suitable benchmark problems for the AFSCN scheduling problem, which are needed
to compare the performance of individual scheduling algorithms. Generating arti-
ficial benchmark problems is very difficult, since the produced problem instances
have to reflect the complexity (e.g. level of oversubscription) of real world scenarios
[Barbulescu et al., 2007b]. In summary, the following characteristics were shown for
the AFSCN problem: Main difficulty in creating a schedule are the high altitude
requests, because their flexible start and end times enlarge the search space expo-
nentially. The conducted experiments show furthermore, that the performance of
the individual algorithms strongly depend on the benchmark problem instances and
the problem representation. The problem instances have to be chosen carefully to
obtain expressive results, especially interesting is the result that problem instances
from the real world scenario were solved from the split heuristic algorithm with a
small number of unsatisfied requests, while artificial benchmark problem instances
revealed for the same algorithm poor results [Barbulescu et al., 2002]. Nevertheless,
problem generators are necessary to evaluate an algorithm statistically, a large num-

44

ber of problem instances is needed to obtain average values.

Air Mobility Command (AMC)

The scheduling problem faced by the USAF Air Mobility Command (AMC) is re-
ferred as the AMC scheduling problem, which is as well oversubscribed and very
similar to the AFSCN scenario. Indeed, the AMC problem is not directly a satel-
lite range scheduling problem, nevertheless it has very similar characteristics and
the techniques applied to the AMC problem are transferable to problems in space
[Kramer and Smith, 2004b]. Moreover is the AMC problem especially interesting, as
it utilizes a priority scheme for task assignment. In the context of academic ground
station networks is a priority scheme often desired, as the ground station resources
belong to individual institutions, and those want to assign a higher priority to their
own satellites than to other satellite missions.
The objective in the AMC scheduler is the allocation of resources to missions to min-
imize the no-productive flying time [Becker and Smith, 2000], or from a more theo-
retical point of view to increase resource utilization, which is equivalent to accommo-
date as many tasks as possible [Kramer and Smith, 2003]. Kramer and Smith pre-
sented a task swapping algorithm to solve the oversubscribed problems of the AMC
domain and showed that the contained retraction heuristic [Kramer and Smith, 2003]
is suitable for dynamic scheduling domains. Later they further improved the algo-
rithms with respect to runtime and search efficiency [Kramer and Smith, 2004a]. A
problem generator for the AMC domain was introduced in [Kramer and Smith, 2005].
Kramer concludes, that the proposed task swap algorithm shows good performance
at comparatively moderate runtime. Unfortunately, the obtained results can’t be
transferred to similar scheduling problems like the EOS domain, due to different
problem characteristics [Kramer and Smith, 2004b]. In a comparison between the
very similar AFSCN and AMC scheduling domain it was shown that algorithm per-
formance depends also on problem representation itself [Barbulescu et al., 2007a].
Small changes in the problem formulation change the performance of an algorithm
significantly. The AFSCN and AMC domains differ by a priority scheme applied to
the contact windows. It was shown that repair based algorithms outperform prior-
ity based algorithms in AFSCN, in the AMC domain the situation is vice versa, i.e.
repair based strategies perform worse [Barbulescu et al., 2007a].

45

3.1.2 Earth Observation Scheduling (EOS)

Another scheduling problem faced in space context is the Earth Observation Schedul-
ing (EOS) problem (or just observation scheduling problem). The objective of the
EOS domain is to accommodate a number of predefined observation targets on a
restricted number of resources (satellites). Because of the movement of the satel-
lites, the targets are only observable during a time window, to satisfy all imaging
requests from customers and researchers a schedule needs to be created. The daily
management of one Earth observation satellite is already a challenging combinato-
rial optimization problem [Bensana et al., 1999]. The ground segment is often only
indirect involved (as an additional constraint with respect to downlink capacity).
Nevertheless, the problem is very similar to the SRS domain.
The EOS problem appears in different application fields, for example in commer-
cial services, where imaging orders coming from clients need to be accommodated
[Bensana et al., 1999] or in science observations, when astronomers request observa-
tion targets from space telescopes. Therefore, different variations of the EOS prob-
lem are described in literature, differing in modeling or complexity of constraints, a
short survey is given in the following:
Wolfe and Sorensen compared the performance of three algorithms for the EOS do-
main. The EOS problem instances were modeled with a window constrained packing
(WCP) problem, i.e. how jobs can be packed on a time-line in a factory schedule
[Wolfe and Sorensen, 2000]. They used in their investigation a simple dispatch al-
gorithm and a look-ahead algorithm in comparison to a novel genetic algorithm.
They come to the general conclusion that the simple dispatch scheduler is relatively
fast but obtains only poor schedules. The more sophisticated strategies (like genetic
algorithms) deliver much better performance, but increase the runtime significantly.
Therefore a tradeoff between performance and runtime needs to be defined.
A different aspect was handled from Bensana et al. for the daily management of
a larger EOS scenario. In [Bensana et al., 1996] describes Bensana the scheduling
problem of the Spot5 satellites, which need to take photographs from a predefined
set of locations on Earth and are limited by a number of physical constraints. The
scheduling problem is formulated here as a Variable Valued Constraint Satisfac-
tion Problem (VVCSP). The main objective is to find a schedule which maximizes

46

the number of taken photographs, which are incorporated with different weights
in an objective function. Bensana distinguishes between exact and approximated
methods and compares for given problem instances a tabu search, multi greedy and
branch and bound algorithm [Bensana et al., 1996]. He concludes that the exact
methods are not applicable to large problems, approximate methods find solutions
of good quality, but waste time to further improve the result to an optimal solution
[Bensana et al., 1999].
A very similar problem from the EOS domain was investigated by Damiani et
al. [Damiani et al., 2004] [Damiani et al., 2005a] [Damiani et al., 2005c]: An Earth
watching satellite constellation consisting of identical satellites is proposed to detect
and observe forest fires and volcanic eruptions. In contrast to Bensana, the focus is
rather on planning methods. The goal is to realize an autonomous on board planning
system which can satisfy the requirements of a global satellite detection system. The
objective is not to create optimal schedules, rather to optimize the observation pro-
cess by autonomous decision planning of the satellite agents [Damiani et al., 2005b].
From the field of telescope observation scheduling is especially the research work
of Drummond [Drummond et al., 1994] [Drummond et al., 1995] and from Bresina
[Bresina et al., 1995] [Bresina et al., 1996] relevant: Their work deals with manage-
ment and scheduling of ground-based, remotely located, fully automatic telescopes.
The objective is to accommodate observation requests submitted from astronomers
for desired targets [Bresina et al., 1996]. The proposed strategy is to create an initial
schedule with a dispatch algorithm, and to utilize the Heuristic-Biased Stochastic
Sampling (HBSS) method [Bresina, 1996] for further improvement. Bresina showed,
that the HBSS method outperforms greedy search for the investigated problem in-
stances. Later he further optimized the schedule generation process by improving
the search heuristic with the GenH technique [Bresina et al., 1997].
Globus et al. initially investigated for a constellation of Earth observation satellites
the usage of genetic algorithms [Globus et al., 2002] and compared later genetic
algorithms, simulated annealing, squeaky wheel optimization and a stochastic hill
climbing search strategy [Globus et al., 2003]. A very interesting result is, that the
genetic algorithm performs worse than the other investigated search algorithms on
the underlying EOS problem. The results are in strong contrast to the results from
the AFSCN problem, where the genetic algorithms outperform other algorithms
[Globus et al., 2004]. This demonstrates the dependence on problem modeling, even

47

when the problem domains are very similar.
Further research related to scheduling in the context of the EOS domain can be
found in [Lin et al., 2005], [Ruan et al., 2005] and [Wang et al., 2007].

3.1.3 ESA tracking stations - ESTRACK

Even for large ground station systems like the ESA ESTRACK system (see sec-
tion 2.2.1) was planning and scheduling performed manually from operators until
2006 [Damiani et al., 2006], only supported by a set of tools, for example to build
initial allocation plans. Meanwhile, a very sophisticated planning and scheduling
system was implemented in order to coordinate the growing number of missions to
be operated by the ESTRACK system. Due to the variety of supported satellite
missions, ranging from Earth observation over interplanetary to high elliptic orbit
missions, an automated planning system demands a variety of functionalities and
services. Responsible for these tasks is the ESA Management System (EMS), which
is further divided in the ESTRACK Planning System (EPS), ESTRACK Coordi-
nation System (ECS) and ESTRACK Scheduling System (ESS). Objective of the
EPS planning system is the creation of a valid plan, which implements the Mission
Agreements of all missions on a finite planning period. An extensive description of
the different entities of the complete system can be found in [Damiani et al., 2006].
Damiani et al. use as basis for scheduling the mission needs of each supported
mission and formulate them as a constraint network. The resulting Constraint Sat-
isfaction Problem (CSP) contains temporal binary constraints, linear constraints
and disjunctions of binary constraints. The consistency is checked by solving Dis-
junctive Temporal Problems (DTP) with a branch and bound approach, Linear
Programming algorithms are utilized to manage remaining linear constraints. More
information about the algorithmic part is given in [Hoffmann and Theis, 2009].
The first operational results obtained with the EPS system are promising: The used
scenario for demonstration contained 7 satellites in a 10 days scheduling horizon.
The resulting problem contains more than 325 contact windows creating more than
2800 constraints [Damiani et al., 2007]. The EPS system was able to solve the prob-
lem with 23 repair steps on the created schedule, but the consistency checks are very
time consuming.
Unfortunately it is not possible to estimate the capacity of the system, i.e. the
number of missions which can be supported, at the current stage, as it is still un-

48

der development. Furthermore is the modeling of the scheduling problem relatively
complex, due to huge number of mission types involved in the ESTRACK system.

3.1.4 Summary

The problem of creating allocation schedules for satellite or ground station resources
was investigated for different applications and scenarios in space context. Due to
the complexity of such problems it is not possible to obtain an optimal solution in
reasonable time. In general one has to make a tradeoff between solution quality and
runtime. Another important point is, that the performance of an algorithm depends
strongly on the problem formulation and structure. Some algorithms proved to ob-
tain good results in a specific domain and fail to get comparable results in similar
scheduling problems, so heuristics and strategies can not be transferred from one
application to a modified one. There is no state of the art algorithm which delivers
good average result on all scheduling problems in space context.
For the special needs of scheduling in low cost ground station networks was no ded-
icated investigation performed, yet. The GENSO network plans to use scheduling
mechanisms to improve the utilization of the participating ground stations. In this
scope compared Preindl [Preindl et al., 2010] different scheduling algorithms. He
uses in his comparison a reservation system as basis, which restricts the efficiency
of the overall system. A dedicated investigation for scheduling in academic ground
station networks still needs to be done to better utilize available resources. To cope
with the specific particularities of small satellite missions and highly distributed,
low-cost ground station networks, a more detailed view on the scheduling require-
ments as well as the underlying problem structure is necessary.

3.2 Scheduling for low cost ground station networks

Various scheduling approaches for the SRS domain exist and were introduced in
the previous section. Unfortunately they can not be transferred to the scheduling
problem occurring in academic ground station networks. The main reason why state
of the art algorithms are not suitable, is the fundamental differences in topology,
application and organization (compare section 2.2.1). These differences result in
scheduling objectives and requirements, which can not be satisfied from the current

49

available systems. A short example illustrates that: The UWE-2 satellite from the
University of Würzburg was launched in September 2009 together with 3 other pico-
satellites (BEESat, Swisscube and ITUpSat). All operators requested directly after
launch to track their satellites to collect beacons for health monitoring. The opera-
tors did not specify how much communication time is requested for their satellites,
they rather asked to track their satellites as often as possible. From the scheduling
point of view this implies an important problem: The jobs (tasks) to be scheduled
are not strictly defined, neither in number nor in length. Current approaches (see
section 3.1) refer always to a predefined set of jobs for schedule creation. A second
problem is, that those satellites were launched with the same launch vehicle and
the ejection sequence was only a few minutes in total, therefore all satellites are in
nearly the same position in orbit. Thus, all satellites have during the first weeks the
same contact times to all ground stations.
This example illustrated the particularities in academic networks, a detailed elab-
oration of scheduling requirements and their differences to the classic scheduling
approach is described in the next section. The mathematical formulation of the pro-
posed problem is given in section 3.2.2 in terms of the Redundant Request Satellite
Scheduling (RRSS) problem.
The policy of the operators, to request as much communication time as possible, is
denoted as redundant scheduling : This term expresses that at least one contact win-
dow is desired per request from a user, more windows should be assigned if possible.
Or in other words, one communication window is mandatory, redundant scheduled
windows are welcome. The example visualized in figure 3.2 explains this strategy:
The scenario contains three satellites, for each of them was a request issued. On
ground station 1 are satellite 1 and satellite 2 in conflict (contact windows are col-
ored red and blue). The classic scheduling approach would try to assign exactly
one contact window to each satellite. For an academic ground station network this
solution would not be satisfying, as more contact windows are available and not
used. Therefore the remaining contact windows need to be assigned. The objective
is now to avoid an arbitrary assignment of free windows to requests, rather should
the redundant windows be distributed fairly between the individual requests. Fig-
ure 3.3 shows a situation where this was not done appropriately, satellite 2 received
three contact windows while satellite 1 and 3 received only a single window each.
A fairer schedule is depicted in figure 3.4, where two of the satellites received two

50

contact windows, the remaining window was assigned to the third satellite.

Figure 3.2: Redundant scheduling example scenario

Figure 3.3: Unfair assignment of redundant contact windows

Figure 3.4: One example of a fair assignment of redundant contact windows

In summary, redundant scheduling means that the requests of the scheduling prob-
lem are not automatically satisfied when a single contact window for communication
was assigned, it is desired to assign redundant windows if possible. Furthermore,
a fair distribution of redundant windows should be achieved. The term redundant
scheduling is used throughout this work to describe this special scheduling demand
of academic ground station networks.

51

3.2.1 Scheduling requirements of academic ground station

networks

In classic satellite range scheduling is the objective to increase the utilization of the
ground network, this holds not necessarily for low cost ground station networks,
here the objective is rather to extend the contact time with the satellites by sharing
resources. The participants of these academic ground station networks are faced
with the following problem: Very often the ground stations were built up in the
scope of small satellite projects, but as these satellites are normally launched to low
Earth orbit (LEO), the available communication time is restricted to a few minutes a
day. By sharing the ground stations between two institutions, the contact time with
the satellites can be doubled on both sides. This results in an important difference
to classical ground station networks, which are sharing the ground stations with
commercial interest, increasing the utilization is therefore necessary for economic
reasons. Sharing ground stations in academic networks has no financial benefit, the
educational and research aspects play the leading role.
Major emphasis in academic ground station networks is placed on flexibility, i.e. a
flexible scheduling process is desired. Classical ground station networks on the other
side have to create schedules for long time horizons, which results in a lot of work
for operators, sometimes still working with paper to accommodate all requests in
the schedules. A replanning is very complicated when such a schedule changes or a
ground station failure occurs. In the field of academic ground station networks the
situation is quite different: Most participants are associated with non-commercial in-
stitutions and also students are very often involved, so a more dynamic environment
is present. A need for rescheduling in such an environment is very likely. The experi-
ence from the satellite projects at the University of Würzburg [Schmidt et al., 2007]
showed this behavior many times, almost every day a ground station joined or left
the network. Thus, the need for flexibility results in different scheduling objectives
compared to classic ground station networks: It is more important to be able to
reschedule in a fast manner than to find an optimal solution to a given scheduling
problem.
As already pointed out before, a very critical aspect is the capability of redundant
scheduling. This means to integrate redundant contact windows for all requests of
the participants. In classic ground station networks a request is satisfied if exactly

52

one contact window of desired duration was assigned in the final schedule, the al-
located time slot is enough to perform the suggested experiment or to download
data. In academic ground station networks the standard scenario differs. Many
small satellite developers want to have as much communication time as possible,
especially in the first days of operation a seamless monitoring of the satellite is nec-
essary, but this is hardly realizable due to contact windows of only a few minutes.
By sharing of ground stations it is possible to retrieve data each orbit. Therefore,
many satellite operators in the small satellite community formulate their request as
"every free station should track my satellite". This behavior was introduced before
as redundant scheduling. Classic scheduling algorithms in the SRS domain totally
neglect this aspect. Classical ground station networks try to satisfy a scheduling
request by assigning exactly one contact window as specified in the request.
Furthermore, the commercial character of classic ground networks obliges the net-
work provider to maximize the number of satisfied requests. In academic ground
station networks the participants share resources to have access to their satellites.
Thus, it is not necessary to satisfy as many participants as possible, rather the re-
sources should be shared equally. Especially when redundant scheduling is desired,
a fair distribution of assigned contact windows should be assured.

3.2.2 Problem description

The problem of ground station scheduling can be simply described with a few words:
To find an optimal assignment of ground stations to a number of satellite requests,
submitted by different users. This very vague description will be more formalized
in this section. The entities of a problem instance are ground stations, users and
satellites, which are related to each other through communication requests. The
most important entity and central to this problem description is the definition of a
communication request R (further only referred as request), it describes the request
of an user U for a contact window with a satellite S. The ground station, on which
this contact takes place is not defined from the user beforehand, the ground station
network itself guarantees seamless data flow through the connected ground stations
(for example over Internet). Therefore, a request Ri is clearly defined by

Ri = {S, U, ts, te, dur, Rd} (3.1)

53

Figure 3.5: Calculated contact windows Cij

with the index i numbering consecutively all requests. The parameters of a
request Ri are the requested satellite S, which is moving on its orbit, an user U ,
who submitted the request, an earliest start time ts and a latest end time te, which
describe the time horizon desired from the user (for example in the next two days).
The duration dur describes the minimum required length of the requested contact
window (in minutes), i.e. this length determines if an available contact window
is suitable, for example to perform a specific experiment. The intention of the
parameter dur is to exclude too short contact windows from the schedule, this could
be necessary when a command needs to be send to the spacecraft and a certain
length of the contact window has to be guaranteed to ensure a safe telecommand
within that time interval. If only beacons should be collected from a satellite, the
parameter dur can be set to a minimum value, which qualifies all available contact
window for assignment. The last parameter Rd describes the maximum degree
of redundancy and determines how many contact windows should be assigned at
maximum. As explained in section 3.2.1, the aspect of including redundant contact
windows is essential for this problem formulation. It is possible to define an upper
bound for the number of redundant scheduled contact windows. If no upper bound
is defined, it is possible to assign as many contact windows as available to a given
request. The possible values for Rd are defined as

Rd =

{
n ∈ N+ maximum of n contact windows
−1 if no upper bound is set

(3.2)

All basic entities of the problem description, i.e. users, ground stations, satellites
and requests, are associated with priorities. A priority scheme was introduced to

54

weight the contribution of an user or satellite to the ground station network. In
the further text is the priority P marked with a subscript for the corresponding
component, so PS stands for the priority value of the satellite, PR for the request,
PG for the ground station and PU for the user respectively. With these definitions of
requests, satellites and users it is possible to calculate all available contact windows
Cij. Each request Ri has a certain number of contact windows associated, the
contact windows are numbered with the subscript j. Each request has a start and
end time (ts and te), the orbit geometry and the location of the ground station
determines when a contact is possible. The j contact windows of a request Ri are
distributed over several ground stations, a contact window Cij is defined through

Cij = {Ri, tAOS, tLOS, G} (3.3)

Each contact window Cij has an associated request Ri and can be used to ac-
commodate a time interval of dur minutes. Furthermore is Cij only valid for ground
station G. The values tAOS (acquisition of signal) and tLOS (loss of signal) describe
the time interval when contact between the satellite S and ground station G is pos-
sible. It should be emphasized that tAOS and tLOS are not the same as the start and
end times ts and te of the request: For example, a request could be related to a 10
minute contact time in the time from now (ts) until next week (te), an appropriate
contact window Cij could start tomorrow morning (tAOS) and end 15 minutes later
(tLOS). Figure 3.5 illustrates a scenario with 3 satellites, the contact windows are dis-
tributed over 3 ground stations. The first index describes the associated request (e.g.
all blue contact windows belong to request number 3), the second index numbers
consecutively the contact windows belonging to the same request. The calculation
of these contact windows can be performed automatically with an orbit prediction
software (for example STK 1 or predict 2). After calculation of the available contact
windows Cij, the objective is to find an assignment of these contact windows to
the requests Ri. The difficulty originates from the fact that normally many contact
windows overlap, i.e. are in conflict with each other. This assignment is not trivial
and an algorithm to find an optimal solution in reasonable time is not known, due
to the NP-complete characteristic of that problem [Barbulescu et al., 2004b].
An important issue, which should be emphasized again, is the assignment policy for

1http://www.agi.com/products/by-product-type/applications/stk/
2http://www.qsl.net/kd2bd/predict.html

55

the contact windows Cij. In classical ground station networks, a request is satis-
fied as soon as one contact window out of the j available contact windows Cij was
included in the final schedule. In the RRSS problem domain the aim is to include
more than one contact window (if possible) in the final schedule.

3.2.3 Scheduling objective

The scheduling objective of the introduced RRSS problem is twofold: The first ob-
jective (similar to the SRS domain) is to minimize the number of unsatisfied requests,
i.e. as many requests as possible should be included in the final schedule. That is
reasonable, as contact time to a satellite is a valuable resource and should be utilized
as efficient as possible. An important difference to other scheduling problems from
this domain is an integrated priority scheme. In the scope of academic ground sta-
tion networks share many participants their resources free of charge. Nevertheless,
each participant wants at least his own satellite reliably tracked from a ground sta-
tion, which can be resolved with the assignment of a higher priority. Additionally,
one could think of higher priorities for participants contributing with a ground sta-
tion, participants which use only the network without bringing own resources to the
network could get a lower priority. Hard priorities are not required, soft priorities
satisfy the needs of small satellite missions.
The second objective deals with the distribution of redundant contact windows. The
special property of the RRSS problem is the desired equal distribution of redundant
contact window (compare section 3.2). Hence, additionally to including as many
contact windows as possible it is also important to assign the ground station re-
sources in a fair way. Both objectives are integrated into an objective function γ,
which is used to compare the quality of individual schedules with each other or to
optimize the schedules to a given criteria.
As already pointed out in the previous section, the focus is to find a solution to
the specified objective function within reasonable time. It is rather important to
create a new schedule within a short time frame, to react on sudden changes in
the network topology, than to create an optimal solution for a given scenario. The
runtime aspect is not included in the objective function γ, but it is used at the end
of this chapter as a criterion for evaluation.

56

3.2.4 Classification

To distinguish different kinds of scheduling problems, they are grouped in problem
classes. A common notation to describe scheduling problems respectively classes
was introduced by Graham et al. [Graham et al., 1979]. The notation consists of
three fields and is primarily used to classify theoretical scheduling problems. The
notation has the form α | β | γ, where

• α describes the machine environment and contains only a single entry

• β provides details about job characteristics and scheduling constraints. This
field can contain several entries

• γ contains the objective function to optimize

The machine environment α specifies number and type of available processing units,
e.g. single machine, Parallel and Identical Machines, Job Shop, Flow Shop etc. Pos-
sible job characteristics of the β field could be Preemption, Release Dates, Processing
Times etc. The objective function γ describes an optimization variable, like mini-
mizing the Maximum Lateness or Total Completion Time. For an extensive survey
of scheduling classes and further parameters of the Graham notation please refer to
[Leung, 2004].
In literature, the classic SiRRS satellite range scheduling problem (compare section
3.1.1) is considered as a 1 | rj |

∑
Uj problem, i.e. jobs are processed on a single

machine, release time of each job is denoted by rj and the objective is to reduce the
number of not scheduled jobs (

∑
Uj) [Barbulescu et al., 2004b]. It is known that

the decision version of the 1 | rj |
∑
Uj problem is NP-complete and therefore it

can be shown that also the MuRRS case is NP-complete, as SiRRS is a subproblem
of MuRRS with Rm unrelated machines (Rm | rj |

∑
Uj).

The introduced RRSS problem in section 3.2.2 complies with respect to machine
environment and job characteristic with the classification of Barbulescu, main dif-
ference is the objective function. Additionally to minimizing the number of not
scheduled jobs are priorities introduced, which act as weights w for requests and
satellites to favor individual participants (see explanation in previous section). Fur-
thermore, a second objective is introduced, which is responsible for an equal distri-
bution of redundant contact windows. The penalty value P is added if redundant
windows are not equally distributed. In this case the introduced RRSS problem can

57

be denoted as Rm | rj |
∑
wjUj + P .

However, the Graham notation is a bit problematic when applied to satellite range
scheduling. The principle difficulty is the assignment of an appropriate process-
ing time to each job. For a satellite can the processing time be calculated from
the amount of data to be transferred to Earth. The fixed transmission rate of the
communication system determines the average time needed to transfer that data.
Unfortunately, this time can not be used in the same sense as the processing time in
the Graham notation, as the orbit geometry of the satellites restrict the assignment
to an arbitrary ground station. Hence, it is in general not possible to exchange
two equal ground station resources, as the visibility to the satellites differs (except
when both ground stations are located at nearly the same longitude and latitude).
The notation of Graham is here only used to refer to the complexity of equivalent
problems.
Also important in this context is the formulation of the scheduling problem. Very
common is the problem representation as a Constraint Satisfaction Problem (CSP),
which comes from the field of Constraint logic Programming (CP) to solve combi-
natorial optimization problems. A CSP consists of a given set of variables together
with finite domains and a set of constraints. Each constraint is related to a subset
of the variables, the objective is to satisfy all constraints. A detailed survey on
CP can be found in [Leung, 2004]. The implementation of the proposed scheduling
approach uses also a CSP representation of the objective function γ, more details
are presented in section 3.3.6. Open source solvers and libraries dedicated to CSP
solving are available.

3.3 Scheduling approach

The previous described RRSS problem was derived from the scheduling needs of
current small satellite projects. To satisfy these needs, a comprehensive system was
designed and implemented to create consistent schedules for real world scenarios.
This section focuses rather on the scheduling approach for the RRSS domain, than
on the implemented scheduling system. To express the origin from the small satellite
environment, the scheduling system was called CUbesat Scheduling System (CUSS).
The heart of the CUSS system is the objective function γ, which is used to evaluate
the performance of a given schedule. The novelty of the proposed scheduling ap-

58

proach is the capability of redundant scheduling. Therefore only the relevant parts,
the problem formulation (see section 3.2) and the objective function (see section
3.3.2) are handled in detail within this work. Nevertheless, a short overview on the
complete system is given to better illustrate the relationship between the different
components of the CUSS system. The utilized search algorithms are explained in
section 3.3.5 and a few important implementation details are discussed in 3.3.6.

3.3.1 System overview

The CUSS scheduling system is divided in different modules, but in principle is
only the core module needed to create for a given problem a corresponding schedule.
Additional modules were developed for visualization and to support operators (see
block diagram in figure 3.6). The core module gets as input a number of contact
windows and a list of requests. The contact windows are clearly defined by the
satellites and ground stations (c.f. problem description in section 3.2). This input
defines the search space of a problem instance. Further integral parts of the core
module are the search algorithms and the already mentioned objective function γ.
An important component required is the orbit predictor module: The calculation

Figure 3.6: Block diagram of CUSS scheduling system

of contact windows, defined by the satellite orbits and the ground station locations,
is not performed by the CUSS core module itself, it relies on open source software
and standardized orbit element sets (more details about the format are presented in
the implementation section 3.3.6).
Additionally, there is a module provided for visualization and a GUI module for
facilitating the operation. The visualization module is only intended to show the
obtained result to a human operator (see figure 3.6). The GUI module is needed to
control and parametrize the schedule creation process, for example by choosing the
desired search algorithm or to modify the priority weights. Both, the visualization

59

and GUI module, are not subject to this work and are not further addressed, for
more information to those refer to [Schmidt et al., 2008].

3.3.2 Scheduling objective function

The objective of the CUSS scheduling system is defined as a cost function γ (see
equation 3.4), which is to be maximized. This cost function calculates a value for
a given schedule σ, consisting of all calculated contact windows Cij. Each available
contact window Cij has an attribute, which determines if it is part of the final
schedule. The cost function γ contains two terms, γ1 and γ2, representing two
different scheduling objectives.

γ(σ) = γ1 − γ2 (3.4)

γ1 is the weighted sum of assigned priority values. Maximizing γ1 means to
include as many contact windows Cij as possible, it is defined as

γ1 =
∑
∀Cij

(
π(Cij) · Cb

ij

)
(3.5)

with Cb
ij specified as

Cb
ij =

{
1, if Cijwas integrated into the final schedule
0, otherwise

(3.6)

and

π(Cij) = wR · PR + wG · PG + wS · PS + wU · PU (3.7)

The function π(Cij) calculates the total priority value from the weighted en-
tity priorities (PR, PG, PS, PU). Thus, it is possible to control the contribution of
the different scheduling entities in a very fine grain. For this work the weights
(wR,wG,wS,wU) were chosen to a value of 1.

Maximizing γ1 implies to prefer high priority contact windows, low priority re-
quests are only included if not overlapping with higher priority requests. As the
problem formulation states, it is possible that a request gets more than one con-
tact window assigned. Therefore, it could be possible that one request receives all
available contact windows and a conflicting request not even one, even if both re-
quest could be accommodated in the final schedule. The problem is, that redundant

60

scheduled contact windows of high priority requests will preempt contact windows
of low priority requests. To avoid this "unfair" distribution of contact windows, the
γ2 term is introduced: The aspect of fairness, here interpreted as an equal distribu-
tion of contact windows for requests, is integrated by subtraction of γ2 (see equation
3.4). So, γ2 can be interpreted as a penalty for unfair distribution of redundant
contact windows. In this way are situations avoided, where two equal requests are
treated unfair with respect to overlapping windows. The scenario depicted in figure
3.2 shows a situation where two satellites fly almost in the same orbit shortly after
each other, which results in conflicting contact windows each revolution at ground
station 1 (GS 1). If both satellites have the same priority, the γ2 term guarantees
that the associated requests receive the same amount of contact windows. The γ2

term is defined as:

γ2 =
∑

1≤k≤i

(
λκ(Rk)

)
(3.8)

where λ is a positive integer > 1 and the function κ(Rk) is defined as

κ(Ri) = Rb
max −Rb

i (3.9)

Rb
i =

∑
j

(Cb
ij) (3.10)

Rb
i describes the actual number of assigned contact windows Cij for request Ri

in a schedule. The value Rb
max describes the maximum number of available contact

windows of a single request, with respect to the complete set of requests R1, .., Ri.
So Rb

max is a specific constant for a set of given requests: Or in other words, from the
set of given requests (R1,..,Ri), the request having the maximum number of contact
windows available, that value is defined as Rb

max. For better illustration, an example
is given below. Therefore, it is obvious that κ(Ri) will be always ≥ 0 as the actual
amount of assigned contact windows of Ri will never be greater than the maximum
amount of available contact windows over all requests.
So far not mentioned is the parameter λ, which influences the "importance" of the
γ2 term on the overall objective function γ. If λ is selected as a small integer,
the objective to distribute the redundancy equally between requests has only small
influence, γ2 will be small in comparison to γ1 . But if λ is set to a large integer, the

61

objective to equally distribute redundancy overwhelms the γ1 objective. Therefore
a tradeoff between these two objectives has to be found, in the experiments was a
suitable value of λ empirically determined as 3.

Example

To illustrate the introduced terms and definitions a short example is given: Lets con-

Figure 3.7: Example with two requests

sider two request, Rk with 3 possible contact windows (Ck1, Ck2, Ck3) and another
request Rl with 5 possible contact windows (Cl1, Cl2, Cl3, Cl4, Cl5). One conflict can
be observed between Rk and Rl, the contact windows Ck3 and Cl1 are overlapping
and only one of these two contact windows can be assigned in the final schedule
(see figure 3.7). In this scenario the constant Rb

max is equal to 5, as request Rl has
the maximum number of 5 available contact windows. For the final schedule two
options are possible:
Schedule 1: Rk gets all of his 3 available contact windows assigned, so Rb

k = 3

and κ(Rk) = 5 − 3 = 2. Due to the conflict in one of the contact windows, only 4
windows can be assigned to Rl, which results in Rb

l = 4 and κ(Rl) = 5− 4 = 1 (see
schedule option 1 in figure 3.8). The penalty value for this schedule would then be
calculated as γ2 = λ2 + λ1 = 12.
Schedule 2: The conflict will be resolved with the other option, Rk receives only 2
contact windows, therefore 5 contact windows will be assigned to Rl (see schedule
option 2 in figure 3.8). The parameter Rb

max is again equal to 5 (this value is a
constant for a given set of requests). Now one can calculate κ(Rk) = 5 − 2 = 3

(only 2 assigned contact windows for Rk → Rb
k = 2) and κ(Rl) = 5−5 = 0 (because

5 assigned contact windows for Rl → Rb
l = 5). As a result, γ2 is determined as

λ3 +λ0 = 28. The value of γ1 is neglected in this example, assuming equal priorities
for all requests, satellites and ground stations and considering the same amount of
contact windows assigned (7 in total), which leads to an equal value of γ1 for both

62

scheduling alternatives.
So in this scenario it is clear that schedule option 1 is preferred, due to its lower
penalty value γ2. In the further section will be analyzed, if the penalty function γ2

is suitable to achieve an equal distribution of redundancy in general. In the next

Figure 3.8: Schedule options for the example

section it is shown, that the penalty function γ2 can be used for any combination
of two requests Ri and Rj, i.e. that γ2 will be in any case minimal if the redundant
contact windows are equally distributed.

3.3.3 Behavior of the penalty function for two arbitrary re-

quests

The aim of this section is to prove that the penalty value γ2 is minimal, if two
requests Ri and Rj have equally distributed redundant contact windows. Two arbi-
trary requests Ri and Rj are assumed, with a number of n, respectively m, contact
windows available. The proof can be divided in two distinct cases:
Case 1: Both requests Ri and Rj have no overlapping contact windows. This case
can be handled quite simple, because the absence of conflicts means, that the max-
imum amount of contact windows can be assigned (Rb

i = n and Rb
j = m, both are

maximal), therefore κ(Ri) and κ(Rj) are both minimal. Thus, also the result of the
penalty value γ2 is minimal.
Case 2: Both requests Ri and Rj have at least one conflict, i.e. overlapping contact
window. Thus, for a conflicting pair of contact windows, only one of these will be
assigned in the final schedule. Lets assume w.l.o.g. that the request Ri gets in total
k contact windows, which leads to κ(Ri) = Rb

max − k = a. Request Rj on the other

63

side receives l contact windows, resulting in κ(Rj) = Rb
max − l = b, with a, b ≥ 0.

The penalty for this assignment is calculated as

γ2 = λa + λb (3.11)

When the assignment of contact windows is changed by transferring exactly one
conflicting contact window to Rj instead of Ri, the penalty function will change to

γ2 = λa+1 + λb−1 (3.12)

The explanation is, that an additional contact window for Rj decreases the κ
value by 1 (This was also the case for the example in section 3.3.2, where the
penalty altered from λ2 + λ1 to λ3 + λ0). Equations 3.11 and 3.12 are now used
to derive how the penalty function behaves in general, when the contact window
assignment is changed. The following inequality is the starting point:

λa + λb < λa+s + λb−s (3.13)

It will be shown here, that for a given schedule the penalty increases, when the
distribution of contact windows is changed in an unfair assignment. This is expressed
in equation 3.13, where the penalty value of a schedule should be greater (<), if an
unfair distribution of contact windows was created by removing a contact window
from request Ri to Rj. Furthermore it will be proven, that equation 3.13 holds, if
a fair distribution of redundant contact windows was integrated in the schedule. In
the first step, the inequality in equation 3.13 is modified to

λa · (1− λs) < λb · (λ−s − 1) (3.14)

furthermore holds

λa−b · (1− λs) < (
1

λs
− 1) (3.15)

and finally is formed to

λa−b · (1− λs) < (
1− λs

λs
) (3.16)

the term 1− λs < 0, as the parameters λ > 1 and s > 0. The last step is

λa−b >
1

λs
(3.17)

64

To show under which condition inequality 3.17 is satisfied, one has to distinguish
three further cases:
Case 2.1: a > b. Then inequality 3.17 is always true, because λ > 1 and s > 0.
This means, if request Ri has less contact windows assigned than Rj (which is equal
to a > b), then a further decrease of contact windows for Ri (is equal to an increase
of a) leads automatically to a higher penalty, due to the simultaneous increase of
contact windows for Rj. Or in other words, if Ri has already less contact windows
than Rj, the distribution will be even more unfair when additional contact windows
will be assigned to Rj instead to Ri

Case 2.2: a < b. Assuming that a is smaller than b, equation 3.17 can be modified
to

1

λb−a
>

1

λs
(3.18)

which holds for the case that a−b < s. This means, that the amount of s contact
windows can be assigned to Rj instead Ri without an increase of the penalty value.
a < b means, that Rj has less contact windows assigned than Ri, i.e. the redundancy
is not yet equally distributed. By moving one contact window from Ri to Rj, the
schedule becomes more fair, the penalty value decreases.
Case 2.3: a = b. Then inequality 3.17 is again always true, as 1 > 1

λs . So, if Ri and
Rj have an equal amount of contact windows assigned, any further rearranging of
assigned contact windows will raise the penalty due to unfair distribution of contact
windows.

It was shown in this section, that the penalty function γ2 can be used to prevent
an unfair distribution of redundant contact windows. A minimal value for γ2 is
always achieved, when redundant contact windows are equally assigned over two
requests.

3.3.4 Redundancy distribution for more than two arbitrary

requests

Before proving the correct behavior of the penalty function for more than two re-
quests, a formal definition of equal distributed redundancy with respect to a schedule
is necessary. When considering only two requests, an equal distribution of redun-

65

dant windows is simply achieved by balancing the number of assigned, conflicting
contact windows. But how can equal distribution be assessed for more than two re-
quests? This is achieved by introducing the term distance: The distance of schedule
σ (see equation 3.19) refers to the maximum number of assigned contact windows
rmax (with respect to all requests from schedule σ) minus the minimum number of
assigned contact windows rmin(considering all requests from schedule σ).

Dist(σ) = rmax − rmin (3.19)

rmax = max
(
Rb
i ,∀i

)
(3.20)

rmin = min
(
Rb
i , ∀i

)
(3.21)

Using this equation makes it possible to define that the redundancy of schedule
σ1 is more balanced than schedule σ2, if distance of schedule σ1 is smaller than the
distance of schedule σ2

Dist(σ1) < Dist(σ2) (3.22)

As this definition seems not so clear from the first impression, an example is given
for illustration.

Equal redundancy distribution for an example scenario

Figure 3.9: Example Scenario with 3 requests

The scenario in figure 3.9 depicts a situation with three requests. The conflicts
between these requests are expressed with the overlapping, hatched areas. Therefore,
it is not possible to assign all 9 available contact windows. Two schedules, which

66

could be a result from the scheduling process are shown in figures 3.10 and 3.11. It
can be seen quite easily, that the amount of assigned contact windows for schedule
σ1 and σ2 are equal (5 in total). The question is now, which of these schedules better
satisfies the criterion of equal distributed redundancy? From the upper definition of
distance this is the case for schedule σ2, because Dist(σ1) can be calculated as the
maximum amount of contact windows rmax = 3 (satellite 2) minus the minimum
amount of contact windows rmin = 1 (satellite 1 and 3), so Dist(σ1) = 3 − 1 = 2.
The same evaluation for schedule σ2 leads to a value of Dist(σ2) = 2 − 1 = 1

(satellite 1 and 3 have two contact windows assigned). Therefore, schedule σ2 has a
fairer distribution of redundant contact windows. It has to be shown now, that the
penalty value is minimal, if the distance in a schedule with more than two requests
is minimal.

Figure 3.10: Schedule σ1

Figure 3.11: Schedule σ2

Relation between the penalty function and distance

With the mathematical formulation of the term distance (see equation 3.19) it will
be proven now, that the penalty function is minimal, if the distance of a schedule is
minimal, i.e the redundancy is equally distributed for a given problem instance with

67

more than two requests. In a real world scenario, each orbit results in an unique
pattern of available contact windows, thus the number of available contact windows
for each request is different. The interesting question is then, how the total amount
of assigned contact windows interacts with the objective to equally distribute re-
dundant contact windows. Therefore, two cases are distinguished to prove that the
objective function behaves correct, i.e. it is minimal if the redundancy is equally
distributed between the requests:

Case 1: Schedules σ1 and σ2 have the same total amount of n assigned contact
windows. To prove that the penalty function behaves correctly, it has to be shown
that the penalty value of schedule σ2 is smaller than the penalty value of schedule
σ1, if the distance of schedule σ2 is smaller than the distance of schedule σ1. Math-
ematically formulated:

γ2(σ2) < γ2(σ1) (3.23)

if Dist(σ2) < Dist(σ1) (3.24)

These equations express the intuitive expectation, that the penalty value is smaller,
if the redundancy is fairly distributed, i.e. the distance between the schedules is
smaller.

Case 2: Schedule σ1 has in total n contact windows assigned, Schedule σ2 has m
contact windows assigned, with n 6= m. For this case it has to be shown, that there
exists at least one penalty value for schedule σ2, which is smaller than the penalty
value of schedule σ2, if n < m. Expressed in equations:

∃γ2(σ2) < γ2(σ1) (3.25)

if
∑
i

κ(Ri) <
∑
j

κ(Rj) (3.26)

Note: Equation 3.26 expresses, that schedule σ2 has more contact windows in
total assigned than schedule σ1. Intuitively one expects, that the penalty value for

68

schedule σ1 should be greater, as it has less contact windows in total assigned. But
having more contact windows assigned does not necessarily imply a fair distribution
of redundant contact windows, for example could many conflicts in the calculated
contact windows result in a very unfair redundancy distribution. But when the
conflicts are neglected, there should exist at least a schedule σ2, which has a smaller
penalty value then schedule σ1, as it has more contact windows assigned than σ1.

Proofs

This section proves the correct behavior of the penalty function for the two cases
above:

Case 1: If Dist(σ2) < Dist(σ1), then the penalty value γ2(σ2) < γ2(σ1):

This proof uses the fact, that a decrease of Dist(σ1), automatically results in a
decrease of the penalty γ2(σ1). The penalty value of schedule σ1 can be calculated
by

γ2 = λa1 + λa2 + λa3 + ...+ λan (3.27)

It is assumed without the loss of generality, that a2 = Rb
max − rmax and a1 =

Rb
max − rmin. That means Dist(σ1) is given by a2 − a1. If the distance of that

schedule is reduced be removing one contact windows from R2 to any other request,
one obtains a new schedule σ2, and the penalty is altered from a2 → a2 + 1 and
an → an−1. That means in equation 3.27 exactly two terms of the sum are altered,
namely λa2 changes to λa2+1 and λan to λan−1. As it was already shown in section
3.3.3, the inequality

λa2+1 + λan−1 < λa2 + λan (3.28)

is true when the redundancy is distributed fair. This means that also the penalty
value for schedule σ1 will decrease, as the following characteristic holds

λa + λb < λa+s + λb−s (3.29)

Thus, γ2(σ1) will be reduced by decreasing the distance by 1. Therefore, γ2(σ2)

is also smaller than γ2(σ1), as Dist(σ2) < Dist(σ1).

69

Case 2: For the second case it has to be shown now, that there exists at least
one schedule σ2, which has a smaller penalty value than schedule σ1, if the total
amount of assigned contact windows for schedule σ2 is greater than the amount of
assigned contact windows for schedule σ1.
This is shown through proof by contradiction. If there would exist no γ2(σ2), that is
smaller than γ2(σ1), the penalty value of schedule σ1 is minimal and can be expressed
as

γ2(σ1) = λb1 + λb2 + λb3 + ...+ λbn (3.30)

The schedule is now modified to yield a new penalty value of

γ2(σ′1) = λb1−1 + λb2 + λb3 + ...+ λbn (3.31)

It can be seen easily, that γ2(σ′1) < γ2(σ1), because λb1−1 < λb1 . Furthermore,∑
i κ(Ri) <

∑
i′ κ(R′i) holds, as the redundancy distribution was changed from b1 to

b1 − 1. This means a schedule σ′1 exists, which fulfills the requirements in equation
3.25 and 3.25 and is therefore a contradiction.

In summary, the proofs of section 3.3.3 and 3.3.4 show that the proposed schedul-
ing objective function γ2 guarantees an equal distribution of redundant contact win-
dows. While the γ1 objective tries to maximize the number of contact windows
included in the final schedule, the γ2 objective prefers the schedules where a fair
distribution of contact windows exists. This capability is a novel concept, which is
not available in other state of the art scheduling systems. This characteristic better
satisfies the demands of the small satellite community (compare section 3.2.1).

3.3.5 Search algorithms

The before described objective function is needed to compare schedule solutions of
a problem instance in the search space. The implementation of the approach, the
CUSS system, contains currently two search algorithms, a hill climbing algorithm
and a branch and bound strategy using depth first search. The choice for this
algorithms was made from a practical point of view, the search algorithms do not
need to find an optimal solution for a given problem formulation. In the scope
of academic ground station networks is optimality a less important criterion, it is

70

rather desired to fulfill the special scheduling requirement described in section 3.2.1,
i.e. flexibility and short runtimes. Thus, simple search strategies were chosen, which
delivered in the very similar SRS domain reasonable results.

Hill climbing

A very popular and often implemented search strategy is the hill climbing algorithm
[Michalewicz and Fogel, 2004]. It is a simple, heuristic optimization method which
tries to improve an initial guess by local search. This process runs until no further
improvement can be achieved. In the case of the RRSS problem domain, the system
starts with an initial schedule and assigns next the contact window, which increases
the objective function γ most. This is repeated until no further increase of the ob-
jective function is achievable.
The hill climber search was chosen for mainly two reasons: First, it is a very sim-
ple search strategy and short runtimes can be expected due to limited search space
traversal. The second reason is, that in similar scheduling domains very good results
were obtained with that strategy (compare with EOS problem on page 45). Nev-
ertheless, the hill climbing algorithm has a major drawback, it normally finds only
local minima. An investigation of that phenomenon is discussed in section 3.4.3.
The problem of local minima can be attenuated by integrating random steps in the
schedule to reach different plateaus in the search space.

Branch and Bound / Depth First Search

The second algorithm utilized from the CUSS system is a combination of the Branch
and Bound (B&B) strategy and Depth First Search (DFS). The well known B&B

strategy [Michalewicz and Fogel, 2004] is a general algorithm for optimization prob-
lems utilizing decision trees. The idea behind B&B is the division of the search
space in several subproblems (branch) and to define a upper (respectively lower
bound) of the quantity being optimized (bound), to identify which subproblems will
not lead to a reasonable result. In this way is the optimization problem only limited
to a subset of problems and only a fraction of the search space needs to be traversed,
i.e. runtime is reduced.
Finding a solution to a given subproblem requires a search algorithm: For the pro-
posed RRSS problem is the DFS algorithm a reasonable candidate. It is an un-
informed search which creates a search tree starting from an initial root and adds

71

child nodes along each branch before backtracking. A more detailed description of
DFS is given in [Cormen et al., 2009].
The branching step is realized using the priority scheme. A priority is defined for
each contact window (see page 59, the priority is used from the B&B algorithm to
decide which contact should be included next after branching). The upper bounds
for the bound condition are described with the objective function γ, i.e. a sub-
problem is not further traversed if the resulting objective function value γ is to
low. For more details about the realization of the search algorithms refer to the
implementation section 3.3.6.

3.3.6 Implementation

A system overview of the CUSS system was already given in section 3.3.1, this sec-
tion describes important details about the software implementation. Nevertheless,
the implementation is only cursory described in here, but it might be helpful to
understand how the different modules interact with each other to create a sched-
ule for a given problem instance. Furthermore, knowing the implementation details
illustrates the boundaries of the scheduler from a systematic point of view.

Core module

The core module was implemented in Java 3, it is therefore platform independent. It
was implemented as a standalone system which creates for a given problem instance
a schedule satisfying the demands defined in section 3.2.1. The input of the system
is the problem instance in XML format, the corresponding schedule is also saved
in XML and forms the output of the system. The problem formulation contains
a list of satellites, ground stations, requests and contact windows. If the contact
windows are not given inside the input XML file, the orbit predictor module is used
to calculate all available contact windows for the specified requests. The output file
contains the same information as the input file. Additionally, each contact window
has an attribute assigned, which determines if it is contained in the final schedule.
The search procedure uses a default parameter set to obtain a schedule (search algo-
rithm, orbit predictor, etc.), the parameters can be changed with the GUI module.
Second important component of the CUSS system is the objective function, which

3http://java.sun.com/docs/overviews/java/java-overview-1.html

72

is directly integrated in the core source code. Due to the definition of the objective
function (see equation 3.4), the resulting value of the function grows with increasing
problem sizes. Especially the size of the penalty values can increase dramatically,
hence, the implementation of the objective function was slightly modified: The λ
value of equation 3.8 is scaled down for large scenarios to prevent overflows during
the calculation process. The characteristics of the objective function are not affected
from this rescaling procedure.
The last integral part of the CUSS core module is the implementation of the search
algorithms. As the hill climber search strategy is relatively simple, the implemen-
tation details are not further addressed. More interesting is the implementation
of the branch and bound strategy. To benefit from the performance of special-
ized solver software, it was decided to translate the RRSS problem formulation
for the CHOCO framework. CHOCO is a Java library for solving CSP prob-
lems and uses an event-based propagation mechanism with backtrackable structures
[Menana and Demassey, 2009]. It is open source software and can be obtained from
the CHOCO website 4. The translation of the objective function γ in a CSP repre-
sentation originated from this step.

Orbit predictor module

The orbit predictor module is required to calculate for a given set of satellites, ground
stations and requests the contact windows. The available contact time is defined
by the orbit geometry of the satellites, a orbit predictor can derive from the orbit
elements and the locations of the ground stations the visibility. A broad spectrum of
orbit predictor software is available, the CUSS system relies on on the open-source
solution predict. The latest version is only available for Linux operating systems, it
can be downloaded freely from the Internet 5. Main reason to use predict for orbit
calculations was the provision of a very simple UDP interface for orbit calculation
requests. The predict application can run on any machine in server mode and the
CUSS core module asks per Internet for any desired contact windows. To satisfy
the demands of CUSS, the predict UDP interface was slightly modified to support
multiple ground stations in the orbit prediction process.

4http://www.emn.fr/z-info/choco-solver/
5http://www.qsl.net/kd2bd/predict.html

73

For the calculation of contact times are accurate orbit elements needed. Like many
other orbit predictors relies predict on orbit elements in the form of TLE data
sets [Hoots and Roehrich, 1998], i.e. uses the SGP4 model [Vallado, 2008] for orbit
propagation. TLE data sets are only valid for 30 days, therefore it is recommended
to create schedules with the CUSS system for time horizons less than 30 days. From
the accuracy point of view are the deviations of the contact times after 30 days still
acceptable, but the system was anyway designed to cope with flexible scheduling
and short time horizons. The aimed time horizon is approximately one day, a more
detailed discussion about implications on appropriate time horizons is presented in
section 3.4.2.

GUI and visualization module

To support operators of academic ground stations two modules are provided: The
first one, the so called visualization module, is only responsible for graphical inter-
pretation of the created schedules, which are contained in the output XML files.
The resulting bar diagrams (see figure 3.12(b)) helps the operator to have a quick
overview on the contact window assignment in the complete network. Furthermore,
the visualized schedules can be used to distribute the scheduling information on a
website of a ground network.
The second module is used to control and parametrize the CUSS core module, the so
called GUI module is the direct interface to the core. It can be used to initialize the
schedule creation process, it provides functionalities to adapt the search parameters
and can modify the problem instance by adding and removing satellites, ground
stations and requests. The GUI module is as well implemented in Java, a picture is
shown in figure 3.12(a). The communication to the CUSS core module was realized
via event sockets based on TCP, so the software can be remotely controlled through
the Internet.
The GUI interface implements so far no dedicated authentication service. Any-

way should CUSS rather be seen as a scheduling system aiding academic ground
station networks with providing a service for scheduling. Moreover, it would be
reasonable to connect the CUSS system for authentication issues with already es-
tablished infrastructure, e.g. the authentication server used in the GENSO network
([Page et al., 2010]). Further critical points related to operation of a scheduling
system by a group of heterogeneous institutions are provided in section 3.5.

74

(a) GUI module (b) Visualization module

Figure 3.12: CUSS operator interface

3.4 Performance evaluation

To assess the applicability and limitations of the developed approach, the perfor-
mance of the CUSS scheduling system was extensively evaluated. The first step is of
course the definition of the evaluation criteria, which were derived from the schedul-
ing requirements in section 3.2.1. The experiments focus mainly on the schedule
creation time and the number of unsatisfied requests, a description of both criteria
follows in the next subsection. A fair redundancy distribution of contact windows is
already guaranteed from the objective function γ (compare section 3.3.2), therefore
no dedicated experiments for its evaluation are necessary. Furthermore, the number
of available redundant windows depends on the orbit geometry. Hence, it can be
hardly expressed what degree of redundancy can be realized in a given problem in-
stance. For more information on the redundancy distribution behavior, please refer
to section 3.3.3.
A variety of different experiments were created to test the developed approach on
typical small satellite mission scenarios. Here it is on the one hand important to
cover different problem sizes and types and on the other hand to investigate the in-
fluence of different scheduling parameters (e.g. choice of scheduling algorithm etc.).
The obtained results as well as a conclusion is presented at the end of this chapter.

75

3.4.1 Evaluation criteria

For evaluation of the CUSS scheduling system different performance criteria were
defined, these are: The total schedule creation time (runtime) and the number of
unsatisfied requests. It is important not to rely on a single criterion for evaluation to
get a comprehensive overview of the performance. Moreover, the calculated sched-
ule is often a tradeoff between different objectives. Depending on the application
it might be rather important to have a short schedule creation time instead of an
optimal schedule. In the following the utilized criteria are described in more detail:
Schedule creation time (runtime): Describes simply the time needed from CUSS
to generate a schedule for a given scenario. This sounds like a trivial issue, but due
to the NP-complete nature of the ground station scheduling problem is this mea-
sure very important [Barbulescu et al., 2004b]. Especially in the field of academic
ground station networks, which are consisting of ground stations belonging to differ-
ent institutions, flexibility is a strong demand, especially with respect to scheduling.
Sudden failures of single ground stations might require a fast re-scheduling without
long time delays. Therefore, the needed time to create a schedule is an important
performance parameter.
Number of unsatisfied requests: This criteria describes the number of requests,
which could not be included in the generated schedule. This could be the case if the
scenario is very oversubscribed and it is not enough time available to accommodate
a contact window for each request. Furthermore, situations are imaginable where
low priority requests are preempted due to collision with high priority requests. In
many publications related to the field of ground station scheduling is the objective
to minimize the number of unsatisfied requests (e.g. [Barbulescu et al., 2007b]).
Background is the wish of commercial ground networks to include as many users
as possible in a given time horizon. In academic ground station networks is the
number of unsatisfied requests an important measure, but not that critical as in
classic networks as the participants of academic networks are more flexible and have
no financial interest. Nevertheless, the criterion of unsatisfied requests can be used
to compare the implemented system with other scheduling systems.
Other research works refer sometimes as performance criterion to an absolute per-
centage value of scheduled tasks. This was not done in this work for two reasons:
First, an absolute value of scheduled tasks is in this case not very expressive, as it
strongly depends on the level of oversubscription (see analysis in section 3.5). It is

76

more suitable to use the number of unsatisfied requests to have a relative perfor-
mance measure of scheduled tasks (for example to compare two search algorithms).
Second, a percentage measure of scheduled tasks is not always applicable to the
RRSS domain, especially for the scenarios with a superior number of ground sta-
tions where redundant scheduling is desired.

3.4.2 Experiments

To get an comprehensive view on the performance and limitations of the system,
it is necessary to evaluate the before mentioned criteria on various problems. To
cover different aspects, like problem size and resource distribution, several exper-
iments classes were designed, which reflect the conditions of individual mission or
application scenarios. The experiments are divided in three problem classes (A, B
and C).

Experiments class A

This class of experiments contains problems with a constant number of ground sta-
tions and increasing number of satellites, the problem size grows with increasing
experiment. Experiment A.1 starts with 4 satellites and 4 ground stations, the last
experiment evaluates the performance of the scheduler with 36 satellites on 4 ground
stations (see also table 3.1). This problem instances correspond to scenarios where
a distributed satellite system is launched and only a limited number of ground re-
sources is available. For example, when a mission like QB50 is launched and the
principal investigator owns only a small number of ground stations, which he can
continuously use without restrictions.
The difficulty in this scenario is to include all satellites into the final schedule, while
only a limited time horizon is available, i.e. these problems are oversubscribed.

Experiments class B

Very similar is the second experiment class B defined, but instead of increasing
the number of satellites, the number of ground stations is increased (see table 3.2).
The number of satellites is kept fix in class B at a value of 4. This corresponds to
a situation nowadays observed in academic ground station networks like GENSO,

77

Experiment

No.

of Satel-

lites

of GS

A.1 4 4

A.2 6 4

A.3 8 4

A.4 10 4

A.5 12 4

A.6 14 4

A.7 16 4

. . .

. . .

. . .

A.17 36 4

Table 3.1: Class A experiments

Experiment

No.

of Satel-

lites

of GS

B.1 4 4

B.2 4 6

B.3 4 8

B.4 4 10

B.5 4 12

B.6 4 14

B.7 4 16

. . .

. . .

. . .

B.17 4 36

Table 3.2: Group B Experiments

where only a small number of satellites is operated, but many institutions are sharing
their resources on a voluntary basis. Currently, only a small number of pico and
nano-satellites are active, due to short lifetimes and irregular launch opportunities.
In this scenario it is less difficult to accommodate all satellites within a schedule, it
is rather desired to distribute the redundant contact windows equally between the
space vehicles. Here, the novel concept of redundant scheduling comes into play.

Experiments class C

The last experiment class contains problems with increasing number of satellites
and ground stations, i.e. those problems have a much larger search space than
experiment class A and B. This represents a combination of the previous described
application scenarios. Also, it can be expected that in future the number of small
satellite missions will grow (compare section 2.1.2).The largest experiment of class
C comprises 36 satellites and 36 ground stations (see table 3.3)
This experiment class was designed to test the performance of the CUSS scheduling
system on large scenarios and to identify limits of the system.

78

Experiment
No.

of Satel-
lites

of GS

C.1 4 4
C.2 6 6
C.3 8 8
C.4 10 10
C.5 12 12
C.6 14 14
C.7 16 16
. . .
. . .
. . .
C.17 36 36

Table 3.3: Group C Experiments

Ground station locations and satellite orbit data

Important for the experiments of the three classes is also the choice of satellites
and ground stations. Satellites in similar orbits in combination with geographically
adjacent ground stations lead to more difficult scheduling problems due to overlap-
ping footprints, than other combinations with more separated orbits and locations.
Therefore, different data sets were created to test the performance on equal problem
sizes in dependence of different orbits and ground station locations. In the following
evaluation of the experiments, three different data sets are used to illustrate the
influence on orbit geometry, these data sets differ only in the input set of satellites
and ground stations. Many more data sets were used for an extensive evaluation
of the CUSS system, the presented graphs represent only a subset of performed
experiments, which were chosen to visualize certain aspects of the obtained results.
The satellite orbit data was obtained from NORAD in the form of TLE files, ground
stations with various locations were used, taking into account the distribution in
current academic ground networks with concentrations in US, Europe and Asia. It
would be possible to use any satellites from LEO orbits, but pico and nano-satellites
are often launched in batches or clusters comprising several satellites, the corre-
sponding orbit elements are almost equal and vary only slowly over time (a detailed

79

discussion can be found in [Ravandoor et al., 2010]). Thus, for the conducted ex-
periments only the orbit data of pico and nano-satellites was included (even if not
active anymore), as they better reflect real world problems, like clustered satellite
structures in polar orbits. A list of the satellites used for the experiments can be
found in appendix C.

Scheduling time horizon

Finally, the dependence of the scheduling time horizon needs to be evaluated, i.e. the
time span a schedule is valid for. The time horizon was chosen to values between
5 and 30 hours, which is relatively short compared to other scheduling systems.
But in the case of redundant scheduling it is especially important to evaluate the
performance in such short time frames: First, the system was designed to be used in a
very dynamic environment, so it should be able to react immediately if a new ground
station joins or leaves the network. One could think of a situation where a ground
station can not be used due to technical problems and a fast replanning is needed
to have a valid schedule for the same day. Therefore, a short time horizon correlates
directly with the flexibility of the system. Second, it is easier to accommodate all
requests in the schedule when a large time horizon is used, as more contact windows
will be available. Hence, the problems with short time horizons are more constraint
and needs to be investigated. The last point for choosing short time horizons was
already indicated in section 3.3.6: As the CUSS scheduling system uses TLE sets for
orbit propagation, the accuracy of the contact window calculations decreases with
time. This is especially true for the time directly after launch, where the TLE sets
are updated typically every 12 hours, as the identified orbit elements are not very
accurate at this stage. A new schedule creation process would be anyway initialized
when new orbit sets are available. So, the schedule time horizon should be in the
order of the minimum update rate of the TLE data sets.

3.4.3 Results

This section summarizes the most important results from the performed experi-
ments. All the experiments were conducted on a desktop machine, equipped with
an Intel Core 2 Duo processor and 2 GB RAM, running Windows XP. The CUSS
system uses no multi threading, therefore only one core of the processor is utilized.

80

The priority of all entities (see equation 3.7) was set to the same value, thereby it is
easier to interpret the obtained results. All requests refer to a desired contact time
of at least 10 minutes, as it is assumed that a certain minimum contact length is
required to transfer data during the contact window. Furthermore, it is allowed to
assign as many redundant contact windows as possible (i.e. the maximum degree of
redundancy is infinite, compare section 3.2.2).
All results were obtained by averaging each value over 30 trials. Both search algo-
rithms of the CUSS system (HC and B&B) contain random steps in the search
process. Using average values was especially important as the HC search algorithm
is affected by local minima.

Runtime evaluation

The runtime of a scheduling system is an important performance parameter, but
many factors influence the time needed to search for a valid schedule, which can
not be directly controlled. Not only the hardware characteristics (like processor
and RAM) play a major role, also the used programming language and the imple-
mentation of the algorithms itself influences to a large extend the result. Hence,
the intention of this section is rather to elucidate the relation between runtime and
problem size than to determine exact absolute values.
In all experiments conducted with the hill climbing algorithm was the runtime negli-
gible. Even in the largest scenario (C.17) was the total time to create a schedule less
than one second. The explanation is, that the number of available contact windows
in the largest experiment is still manageable for the hill climbing strategy (about
3500 contact windows on average in a 10 hour time horizon, containing ca. 18000
conflicts). As the hill climbing strategy is not backtracking for better solutions, the
search process terminates relatively fast. Thus, also in larger scenarios the runtime
will be relatively small as the hill climbing algorithm is neither complete nor opti-
mal.
The further evaluation of runtime properties is dedicated to the search process based
on the B&B algorithm.

Class A: The measured runtime of the B&B algorithm is significantly higher: The
CSP solver of the CHOCO library needs adequate time to find a good performing
solution. In figure 3.13, the runtime of experiment class A is depicted for a time

81

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

20

40

60

0

experiment number [Class A]

ru
n
ti
m
e
[s
]

Data set 1
Data set 2

(a) Schedule creation time for 5 hour time hori-
zon

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

20

40

60

0

experiment number [Class A]

ru
n
ti
m
e
[s
]

Data set 1
Data set 2

(b) Schedule creation time for 10 hour time hori-
zon

Figure 3.13: Runtime comparison for experiments of class A

horizon of 5 hours and 10 hours. One can see, that the resulting runtimes in both
graphs stay relatively constant for experiment A.1 to A.12, but increase dramatically
when more than 30 satellites are involved (experiment A.13 and higher). This is
owed to two factors, on the one side, the number of calculated contact windows is
steadily increased by the larger number of satellite. On the other side, it gets more
and more difficult to accommodate all satellites in the schedule when only a small,
constant number of ground stations can be utilized. The different data sets (input
satellite orbits and ground station locations) have only a minor influence, as both
data sets have almost equal amount of possible contact windows. The reason for
the similar amount of contact windows is, that most of the satellites were launched
into low Earth, sun synchronous polar orbits, which results in characteristic contact
window patterns each day. Thus, also the search space of data set 1 and data set
2 have comparable size. The runtime shown in graph 3.13(b) is significant higher
than the runtime in graph 3.13(a), both differ only with respect to the time horizon
(5 versus 10 hours). Here, a strong influence of the time horizon on the runtime is
observed, as doubling the time horizon doubles also the amount of contact windows.

Class B: In contrast to the experiments in class A, the task to find a good solution
in class B is less difficult. The superior number of ground stations provide enough
receiving points on Earth to accommodate all satellites in the final schedule. So,

82

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

20

40

60

0

experiment number [Class B]

ru
n
ti
m
e
[s
]

Data set 1
Data set 2

(a) Schedule creation time for 20 hour time hori-
zon

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

20

40

60

0

experiment number [Class B]

ru
n
ti
m
e
[s
]

Data set 1
Data set 2

(b) Schedule creation time for 30 hour time hori-
zon

Figure 3.14: Runtime comparison for experiments of class B

a schedule satisfying all requests can be obtained relatively simple, the remaining
task is then to distribute redundant contact windows fairly between the requests.
It is surprising how strong this different condition affects the runtime of class B.
In figure 3.14 is the runtime depicted for time horizons of 20 and 30 hours. The
average result of the B&B algorithm for the largest scenario (B.17) is less than 2
seconds, which is comparable with the hill climber search performance. So, in this
context is the runtime not a limiting factor, especially when the system is used for
short time horizons of only a few hours.
Fortunately, this situation also reflects the environment in current academic ground
station networks. This makes the presented approach a very promising candidate
for recently initiated space missions and applications.

Class C: The results from this section are very interesting, as this class contains
the largest problem instances (increasing number of satellites and ground stations).
Indeed, enough ground station resources are available to accommodate all the re-
quests, but the search space is significantly larger than experiment class A and B.
This is also the explanation for the extremely high runtime values shown in figure
3.15. Compared to the previous results, they are more than an order of magnitude
larger and constitute the constraints of the system, as it is not practical to solve
large problems with the B&B algorithm. But it should be remarked, that the hill
climbing strategy finds a solution also for this large scenarios in a few seconds. For

83

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

0.5

1
·104

0

experiment number [Class C]

ru
n
ti
m
e
[s
]

Data set 1
Data set 2

(a) Schedule creation time for 5 hour time hori-
zon

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

0.5

1
·104

0

experiment number [Class C]

ru
n
ti
m
e
[s
]

Data set 1
Data set 1

(b) Schedule creation time for 10 hour time hori-
zon

Figure 3.15: Runtime comparison for experiments of class C

the application in a real ground station network environment, it is therefore impor-
tant to consider the problem size and find a tradoff between flexibility (i.e. runtime)
and fairness (i.e. optimality).

Runtime for larger time horizons Finally, the runtime of the B&B algorithm
for even larger time horizons was investigated, as it might be desired to create
schedules for whole days to simplify the management of a ground station network.
The results from experiment class C showed already, that the schedule creation time
for the 10 hour time horizon exceeds 1 hour, the resulting runtime for even larger
time horizons restricts the flexibility of the system to much for application in real
world scenarios. The runtime in experiments of class B is also for large time horizons
negligible when the B&B algorithm is used (see graphs 3.14(a) and 3.14(b)). Thus,
the influence of larger time horizons on the runtime was performed for experiment
A.17, the largest problem size from class A. In figure 3.16, the results for a time
horizon up to 24 hours are shown. From this point of view, the B&B algorithm
is still a reasonable candidate for experiments of class A, as the runtime does not
exceed critical limits.

Unsatisfied request evaluation

Unsatisfied requests, i.e. requests which have no contact windows assigned in the
final schedule, occur if not enough ground station resources are available. This is

84

5 10 15 20 24

0

500

1,000

0

time horizon [h]

ru
n
ti
m
e
[s
]

Data set 1
Data set 2

Figure 3.16: Runtime comparison for larger time horizons

also reflected in the following results, where mainly the experiments from class A
are affected by unsatisfied requests. The evaluation of unsatisfied requests is rea-
sonable to compare the performance of different search algorithms with each other.
Furthermore, it is used as the main optimization criteria in similar scheduling appli-
cations from the SRS domain (compare section 3.1), the following evaluation gives
an insight of the relevance for the RRSS problem domain.

Class A: In figures 3.17 and 3.18, the results from experiment class A are depicted
for time horizons of 5 and 10 hours. The B&B algorithms performs better than the
hill climbing strategy on all problem instances. It was expected, that the number of
unsatisfied requests increases with growing number of satellites, when the number
of ground stations is fixed. For example in problem A.1 only 4 satellites need to be
incorporated in the final schedule, which can be solved from both search algorithm
without observing any unsatisfied requests. In contrary, in problem A.10 it is not
possible to integrate all requests in the final schedule (in data set 1 theHC algorithm
suffers 6 unsatisfied requests on average, the B&B algorithm only 3, compare figure
3.17(a)). A simple way to reduce the number of unsatisfied requests is to enlarge
the time horizon, which is depicted on figures 3.17(b) and 3.18(b). In this way more
resources are available and the B&B strategy accommodates unsatisfied requests
in the resulting gaps. Unfortunately, this is not the case for the HC algorithm,
the obtained schedules are also for larger time horizons frequently affected from
unsatisfied requests.

85

Very interesting is the performance of the hill climber algorithm in certain problem

5 10 15
0

10

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Experiment number [Class A]

U
n
sa
ti
sfi
ed

re
q
u
es
ts

HC
BnB

(a) Unsatisfied requests for 5 hour time horizon
(Data set 1)

5 10 15
0

10

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Experiment number [Class A]

U
n
sa
ti
sfi
ed

re
q
u
es
ts

HC
BnB

(b) Unsatisfied requests for 10 hour time horizon
(Data set 1)

Figure 3.17: Unsatisfied request class A

5 10 15
0

10

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Experiment number [Class A]

U
n
sa
ti
sfi
ed

re
q
u
es
ts

HC
BnB

(a) Unsatisfied Requests for 5 hour time horizon
(Data set 2)

5 10 15
0

10

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Experiment number [Class A]

U
n
sa
ti
sfi
ed

re
q
u
es
ts

HC
BnB

(b) Unsatisfied Requests for 10 hour time horizon
(Data set 2)

Figure 3.18: Unsatisfied request class A

sets. A major drawback of the hill climber search is, that it resides in local minima.
Such a situation is depicted in figure 3.18(b), where the problem A.14 is subject
to a relatively high number of unsatisfied requests. Surprisingly, experiment A.15
is affected by less unsatisfied requests, although it contains more satellites and the
same amount of ground stations. This performance of the hill climber search yields
to counterintuitive situations, the vulnerability of the hill climber becomes obvious,

86

as enforcing the problem with more satellites can lead to better results. Nevertheless,
in some problem instances also the HC algorithm obtains very good schedules with
a negligible number of unsatisfied requests (see figure 3.19(b))

5 10 15
0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Experiment number [Class A]

U
n
sa
ti
sfi
ed

re
q
u
es
ts

HC
BnB

(a) Unsatisfied Requests for 5 hour time horizon
(Data set 3)

5 10 15
0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Experiment number [Class A]

U
n
sa
ti
sfi
ed

re
q
u
es
ts

HC
BnB

(b) Unsatisfied Requests for 10 hour time horizon
(Data set 3)

Figure 3.19: Unsatisfied requests class A

Class B: All experiments of this class showed no occurrence of unsatisfied requests,
as the increasing number of ground stations provide enough resources to accommo-
date all satellites. This is again a very comfortable situation, as both search algo-
rithms are applicable without restrictions to the scheduling problem faced nowadays.

Class C: The last presented bar diagrams are from experiment class C, i.e. with
increasing number of satellites and increasing number of ground stations. As shown
in figure 3.20, unsatisfied requests are only observed sporadic when the hill climber
search is used. The explanation is again the problem of local minima. The branch
and bound strategy was able to accommodate in all experiments at least one contact
window from each satellite.
In conclusion it should be mentioned, that the number of unsatisfied requests is a
good indicator for the performance of the implemented algorithms. It can be used to
identify the bottlenecks of a given problem instance. Nevertheless, it is problematic
for a performance comparison with other scheduling systems, as the resulting value

87

5 10 15
0

2

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Experiment number [Class C]

U
n
sa
ti
sfi
ed

re
q
u
es
ts

HC
BnB

(a) Unsatisfied Requests for 5 hour time horizon

5 10 15
0

2

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Experiment number [Class C]

U
n
sa
ti
sfi
ed

re
q
u
es
ts

HC
BnB

(b) Unsatisfied Requests for 10 hour time horizon

Figure 3.20: Unsatisfied requests class C

strongly depends on the given mission scenario. In other scheduling systems is the
objective mainly to optimize the number of unsatisfied requests. The problem cases
of the RRSS domain are typically flexible enough to avoid unsatisfied requests by
increasing the time horizon. A more detailed discussion follows in the conclusion.

3.5 Conclusion and discussion

This chapter introduced a novel scheduling approach for academic ground station
networks. It was tailored for the special demands of small satellite projects and
better satisfies their special demands in flexibility and redundancy, than other state
of the art satellite scheduling algorithms. The proposed algorithm incorporates the
assignment of redundant contact windows, which is necessary to better utilize the
resources of academic ground networks. So, additional value from the distributed
architecture of academic ground station networks can be obtained.
The implemented CUSS system is the first scheduler adopting the concept of re-
dundant request satellite scheduling (RRSS). It provides all functionalities to create
schedules for highly distributed ground station networks and can be remotely oper-
ated via Internet. The CUSS system itself is a standalone system to create schedules
for small satellite missions, but its application is intended in a broader context of a
comprehensive ground station management system.
The performance of the system in the evaluated scenarios (based on real satellite

88

orbit data) is very promising: With respect to current academic ground station
network implementations (like GENSO or GSN) is the proposed approach and the
CUSS system applicable without restriction. The results from the experiments were
evaluated regarding two main aspects: First, the time to create a new schedule
(runtime) was measured, which is necessary when changes in the network topology
occur or new orbit data was issued. The hill climbing search algorithm is able to
create a new schedule within less than 5 seconds for all the conducted experiments.
This is especially useful if sudden events enforce the creation of a new schedule,
for example when a ground station fails due to technical problems. The obtained
runtime values for the hill climber strategy fully comply with the requirement of a
flexible scheduling system. The branch and bound strategy is also able to calculate
new schedules within short time spans, but the applicability is limited to scenarios
of moderate problem size. For very large scenarios with more than 30 satellites and
30 ground stations, the measured runtime is particularly larger than 1 hour. This
might be still suitable when a new schedule is regularly created in a 24 hour interval,
but might not by appropriate to react flexibly on sudden changes. Nevertheless, the
real world problem sizes imposed nowadays on academic ground station networks
are still small enough to rely on the branch and bound algorithm. The second inves-
tigated evaluation aspect was the number of unsatisfied requests, which describes
how many requests could not be integrated in the final schedule. Unsatisfied re-
quests are only observed when a problem is heavily oversubscribed, i.e. when many
satellites need to be accommodated on a small number of ground stations within a
short time horizon. The branch and bound strategy performs here better than the
hill climber search, due to the more extensive search strategy. Additionally, the hill
climber search stucks sometimes in local minima, which leads sometimes to unex-
pected unsatisfied requests in some problem instances. Thus, it is recommended to
use the branch and bound strategy for schedule creation if no runtime limitations
apply. Furthermore it should be mentioned, that the operator of the scheduling
system can choose the time horizon arbitrarily, so it is in general possible to avoid a
high number of unsatisfied requests by enlarging the time horizon. But one has to
take into account, that extending the time horizon will also increase the runtime of
the schedule creation process.
The presented approach opens new opportunities for small satellite missions as re-
dundant windows are incorporated in the final schedule, which can be used e.g. for

89

data management (see chapter 4). For larger distributed space missions, containing
more than 100 space assets, a tradeoff between runtime and performance (unsatis-
fied requests) has to be found. More sophisticated search strategies (like branch and
bound) obtain better schedules, but have a significant higher runtime. However, in
the context of academic ground station networks is the optimality of the generated
schedules not required, so one might rather prefer short runtimes.

An extension of the CUSS system with additional search algorithms is planned,
promising seems the HBSS algorithm from Bresina [Bresina, 1996]. In other SRS ap-
plication fields have genetic algorithms proved to obtain better solutions than other
standard search methods. An interesting comparison would be, if these algorithms
perform as well on the RRSS problem, as it differs in the scheduling objectives and
problem representation.
A very important issue, which was not handled within the scope of this work, is
organization and administration of scheduling in academic ground station networks.
The proposed system focuses only on the scheduling approach itself and does not
consider any administrative issues. Nevertheless, the coordination of a scheduling
system is from an administrative view a very critical point, and should be handled
from one or more operators for the complete ground network. These operators have
to initiate scheduling and rescheduling processes, define priorities for satellites and
ground stations, add new participants etc. Basically there are two choices how the
administration could be organized: A centralized administration from a single orga-
nization or a distributed solution where several participants coordinate and manage
the scheduling system. In a decentralized organization arises the question, who has
the permission to modify or parametrize the scheduling process. Especially when the
participants share their resources on a voluntary basis, a centralized coordination
instance might be difficult to realize. First attempts with a centralized administra-
tion was implemented in the GENSO project.
Another point for discussion is the integration and automation of scheduling sys-
tems in ground network infrastructure. An automated execution of the generated
schedules is feasible from a technical point of view, but from a legal point of view
can be problematic: For example requires the Amateurfunkgesetz (AFuG 6), which
is valid in Germany for ground stations using the amateur radio bands (UHF/VHF),

6http://www.gesetze-im-internet.de/afug_1997/index.html

90

that an registered station needs to be operated or supervised from a licensed radio
amateur. Such administrative issues need to be taken into account for the migration
to fully autonomous ground station networks, compliance with international regu-
lations should be further elaborated.

Chapter 4

Data management for information

recovery in ground networks

In classic ground station networks, mission operation center are responsible for col-
lecting science and operations data. In academic ground station networks, the highly
distributed topology makes it more sophisticated to bring the data from the source
to the destination (satellite data has to find its route back to the operator), which is
realized in different ways (solutions are for example provided by the GENSO project
[Shirville and Klofas, 2007] [Page et al., 2008]).
The term data management is used in a broad context and comprises all disci-
plines related to optimal usage of data resources. In this chapter, a special aspect
from the field of data management is handled: Due to the restricted size and mass of
small satellites, this communication systems are rather simple, using lower frequency
bands in UHF/VHF or S-Band, than state of the art technologies available for larger
space vehicles (e.g. Ka-Band and X-Band). UHF/VHF systems utilize often dipole
antennas, which typically have a limited directivity, therefore the footprint of those
satellites is very large (see figure 4.1 with the footprint of UWE-2). Thus, for a
satellite over Europe a large number of ground stations are able to receive its signals
in parallel at the same time. Quite often, several ground stations track in parallel a
satellite and forward the received data to the satellite operator (like performed from
Oda et al. [Oda et al., 2008]). In classic ground station networks, parallel tracking
is not performed, on the one hand because the satellite beam is relatively narrow
and on the other hand, reserving several ground stations from a space agency can
be very expensive. Academic ground station networks share their resources without

91

92

Figure 4.1: Footprints of UWE-2, BEESAT, ITUpSAT-1 and Swisscube, launched
together on 23. September 2009

commercial interest and promote in this way the parallel reception of a data stream
from a singe satellite. Receiving downlinks from a satellite in parallel contains op-
portunities as well as challenges: The opportunity is to take advantage of redundant
ground station links, e.g. for robustness. The challenge is the realization of such a
system, using proper data management and synchronization methods, which is the
content of this chapter.

The data management system introduced in this chapter evolved from the idea
to combine several data streams from the same satellite, received at geographically
distributed ground stations. Theoretically, these data streams received in parallel
on terrestrial stations should be identical, in reality received data differs mainly due
to two factors:

• The contact time between the satellite and individual ground stations differs
for overlapping footprints. When two overlapping, but geographically distant
ground stations are taken into account, there is still a small period of time
where only one of these will be in contact with the satellite. This results in
different sets of data frames received at the individual stations.

• The received data can be corrupted, resulting in bit errors or even missing
packets. Transmission errors are caused by atmospheric disturbances, low

93

signal to noise ratio or inaccuracies at the receiver side. So, the content of the
data frames can differ, even if corresponding to the same data packet.

This leads to the situation that the received data streams (or data packets) are in a
large fraction identical for overlapping ground stations, only a small portion differs
in corrupted or lost information.

Starting from the previously described circumstances, the idea was to develop a
system which automatically combines the different data streams received in a ground
station network to one single data stream using proper data management. A satellite
operator would then monitor only a "virtual" single data stream, composed from
the information of the streams received in the network. Combining several data
streams from the same satellite received at geographically distributed, overlapping
ground stations opposes the following challenges:

• Bringing data frames in the correct order on a global timescale. Due to un-
synchronized clocks on the ground stations and transmission delays in space
and on Earth, the temporal ordering of the packets can be altered.

• Identifying identical data packets, if redundant packets were received from the
ground network.

• Reconstruct data gaps with redundant information.

These challenges comprise further problems, which need to be addressed: Ordering
data frames on a global timescale implies proper synchronization procedures. Re-
constructing data gaps relies on redundancy identification. Such issues are handled
in this chapter under the context of data management, the focus lies on the problem
of time and data synchronization as well as data combination in academic ground
station networks.

4.1 Problem definition and state of the art

The motivation of the proposed data management system was described before in
a general way, a more formalized representation of the problem statement will be
developed in this section. Additionally, suitable state of the art approaches to handle
the problem of data management in academic ground station networks are presented
and their applicability and restrictions are analyzed.

94

4.1.1 Problem description

The formalization of the problem statement is presented in this section. The problem
itself can be divided in two separated subproblems, which are handled separately:
First, participating ground stations of the network have to be synchronized with
each other. Synchronicity between participating ground stations is required to order
the received data frames on a global timescale. Synchronization is here related
to synchronizing computer clocks, as well as synchronizing data streams. Second,
the information from the synchronized data streams (respectively frames) has to
be combined to reconstruct data gaps. In the following is the term data stream
considered as a sequence of data packets transmitted from the satellite to the ground
station. Furthermore,the terms data packet and data frame are used interchangeable
(but the correct term for data on the link layer is data frame, see also appendix B).
The underlying scenario contains a single satellite, which transmits data frame F1

to frame Fl to Earth. A network of n ground stations is able to communicate with
that satellite, the stations are consecutively numbered with capital letters A,B,C...

Synchronization problem

It is assumed that a certain fraction of the n ground stations in the network is
able to receive the data frames simultaneously. Nevertheless, these simultaneoulsy
(or duplicate) received frames can be corrupted by transmission errors, therefore
the data content of the duplicate frames might differ. The data content of a re-
ceived data frame is denoted by F gs

i , which describes the frame number i received
at ground station gs. The ground stations are numbered in alphabetical order, i.e.
gs = A,B,C, For example describes FA

2 the data content of the second frame re-
ceived from ground station A. Each ground station is furthermore able to record the
time of reception for each frame F gs

i (denoted as timestamp T (F gs
i)). The recorded

timestamp refers to the local computer clock available in each ground station.
The data synchronization problem is, to relate the obtained time of receptions
T (F gs

i) to an estimated time of transmission T̃(F
gs
i) = fsync(T (F gs

i)), which can
be used to identify duplicate frames. Duplicate frames were transmitted at the
same time from the satellite, but were received at different times due to orbit posi-
tion and system delays in the ground stations. The data content itself is not enough
information to identify duplicates, due to transmission errors. The ordering of the

95

Figure 4.2: Data management problem in ground station networks

96

received frames might also not be consistent, for example could the second frame of
ground station C (i.e. FC

2) be the same as the first packet of ground station B (i.e.
FB

1), if their was a frame lost or not received before (compare figure 4.2). Therefore,
it is necessary to derive from the time of reception T (F gs

i) the estimated time of
transmission T̃ (F gs

i), to determine how the received data frames correspond to the
transmitted data frames. In summary, the objective is to derive an assignment fsync:

fsync : T (F gs
i)→ T̃ (F gs

i) (4.1)

To estimate the time of transmission, several delays on the receiving chain need to
be compensated, a more detailed analysis is provided in section 4.2. It is in general
not possible to determine the time of transmission exactly.
Additionally, as each ground station in the network has its own computer clock, an
important prerequisites is to synchronize these clocks with each other, to compare
the timestamps T (F gs

i) on a global timescale. In the following, synchronizing the
local computer clocks is referred as time synchronization, estimating the time of
transmission to identify duplicate frames is referred as data synchronization.
With a suitable strategy to estimate the time of transmission, it is possible to identify
duplicate frames and combine them in data sets Sk:

Sk =
{
F gs
i

∣∣fsync (T (F gs
i)) ∈ [Tmink , Tmaxk]

}
(4.2)

The time of transmission fsync (T gsi) = T̃ (F gs
i) can only be estimated with a cer-

tain accuracy. Therefore, an upper and lower bound (Tmink and Tmaxk) for a data
set k has to be found, which determines identical frames respectively duplicates (see
also figure 4.3). So, the main problem for grouping the received data frames in sets
using equation 4.2 is the appropriate choice of Tmink and Tmaxk . If the time interval
[Tmink , Tmaxk] is to small, two identical frames might be considered as not identical,
if the time interval [Tmink , Tmaxk] is to large, different frames might be considered as
identical. Therefore, the careful choice of [Tmink , Tmaxk] is critical. As a reminder:
The data content of the frames in a data set Sk are not necessarily identical, as the
data can be corrupted by transmission errors. This circumstance is then used for
data combination to recover from transmission errors.
To solve the data synchronization problem, an assignment fsync has to be devel-

oped to construct the data sets Sk. These data sets are the input for the second
subproblem, the data combination.

97

Figure 4.3: Synchronization of parallel received frames

Data combination problem

The second subproblem is the combination of the identified data sets Sk to single
data frames. The idea is to compensate transmission errors by comparing the data
content of duplicate frames. From the operators view the combined data frames can
be treated like a single, virtual data stream received from the satellite, created from
n data streams received from the n ground stations. So, the objective is to derive a
function fcomb, with

fcomb(Sk)→ F ′k (4.3)

The obtained data frames F ′k should in the ideal case match the frames transmit-
ted from the satellite, or expressed mathematically:

F ′k = Fk,∀k = 1− l (4.4)

where Fk , k = 1 to l describe the frames sent from the satellite. The chal-
lenge of combining the received data is the detection and correction of transmission
errors. The key aspect for the data combination procedure is the high degree of
redundancy introduced through the simultaneous reception of data frames. This
redundant information can be used to obtain the original sent data frames. Beside
the redundancy inherent due to parallel reception of data frames, another source of
redundancy can be used: The frame structure is mainly defined by the communica-
tion protocol on the satellite link and provides additional information to reconstruct
corrupted data frames.
Before addressing the developed algorithms, other state of the art approaches for
data recovery and synchronization are discussed in sections 4.1.2, 4.1.3 and 4.1.4.

98

4.1.2 Data and network management in computer networks

As already discussed in the beginning of this chapter, data management is a broad
research field and contains many more disciplines than mentioned in this section.
The focus of this work are approaches respectively mechanisms for data synchro-
nization and combination in distributed ground station systems to achieve error
robustness. Nevertheless the general terms of data and network management are
introduced here to provide a better overview of special problems and needs in space
applications.
Under the context of data management are several disciplines grouped together, es-
pecially relevant for space applications is data quality management, database and
content management as well as data security management. Montenegro discusses
in [Montenegro, 2008] data management with special focus on orbit systems and
describes their special requirements, like reliability, error robustness, etc. Tenden-
cies to more autonomy, distributed systems and more sophisticated software can be
observed in the last years. In ground systems typical data management functions
comprise among others data compression, data quality monitoring and payload data
handling [Whitworth, 2003]. Data management is also an important aspect with re-
spect to efficient resource utilization. Especially in the context of small satellite
missions is communication time a valuable resource, restricted to a few minutes
each day. Therefore proper data management to increase throughput is a crucial
task [Schilling, 2009c].
The term network management comprises operation, administration and mainte-
nance of computer and telecommunication networks. The International Organi-
zation of Standardization (ISO) developed the FCAPS model as a framework for
network management, which comprises Fault Management, Configuration Manage-
ment, Accounting Management, Performance Management and Security Manage-
ment (ISO/IEC 10040). A good overview on network management is given in
[Leinwand and Fang, 1993], which contains a very general description of disciplines
related to network management. A very popular implementation is the Simple Net-
work Management Protocol SNMP, which provides services to operate and admin-
istrate computer networks remotely [Stallings, 1993]. New approaches extend the
FCAPS concept also for Ad-hoc networks, which is especially interesting for ground
station networks to cope with the high dynamics of LEO satellites. Such an Ad-hoc
Network Management Protocol (ANMP) was proposed by [Chen et al., 1999].

99

Current implementations of academic ground station networks rely only rarely on
these standards, they incorporate often individual solutions for achieving proper
data management. The simple strategy followed by the GENSO network is the dis-
tribution of satellite data by a hybrid peer-to-peer network, which is supervised from
an authentication server [Shirville and Klofas, 2007]. The data exchange takes only
place between the client peer (Mission Control Center) and the server peer (GSS).
The japanese GSN network uses a similar server client structure to exchange data
in the network. The implemented software bases on Web Services technology for
remote operations [Nakamura and Nakasuka, 2006] [UNISEC-GSN, 2006].
The next sections describe state-of-the-art approaches for data combination and
synchronization, i.e. algorithms related to the problem description in section 4.1.1.

4.1.3 Data management for information recovery

Majority voting

Majority voting is a well known redundancy concept in space systems to ensure error
robustness [Fortescue, 2003]. The algorithm itself is rather a simple decision rule
for hardware devices, for example processors or microcontrollers. A good example
is the main processor (CPU) of a spacecraft, which is often available in 3 identical
versions. If for any reason, e.g. radiation damage, one of these processors is not
working properly anymore, the correct result of a processor operation can be checked
by comparing the calculated values from all 3 CPUs for that operation. The correct
result of the operation is then considered as the result calculated by the majority of
the CPUs (i.e. 2 out of 3 CPUs).
This procedure can be easily transferred to other systems, for example satellite

Figure 4.4: Majority voting for parallel received data frames

100

communication: When a satellite passes over a ground station, also the neighboring
ground stations are able to receive the same signals from the satellite. A majority
voting algorithm for such a ground station network can be implemented by just
comparing the received data streams from the different ground stations bit by bit.
An example is illustrated in figure 4.4, where the data streams of 3 ground stations
are compared with each other to obtain an uncorrupted data frame. A majority
voting algorithm is a fairly simple approach to achieve error robustness, a first con-
cept in that direction was proposed from Stolarski [Stolarski and Winiecki, 2006]
and Dabrowska [Dabrowska and Stolarski, 2007]. They proposed to compare the
data streams from radio links bit by bit to reduce the Bit Error Rate (BER). Their
approach focused on the comparison of the physical layer of radio links. In con-
trast, this work uses data link layer information to recover information gaps. Sto-
larski conducted hardware experiments on a stratospheric balloon [Stolarski, 2009]
to demonstrate the occurrence of local transmission errors at different ground sta-
tions. The obtained error ratios show the applicability of majority voting to satellite
communication channels.
Another system, which uses a different principle of majority voting, was proposed
from Lai [Lai et al., 2009]. In contrast to the work discussed before, Lai uses sequen-
tial transmissions for bit comparison. The proposed approach is only applicable to
communication links using the Automatic Repeat reQuest (ARQ) mechanism, which
requests automatically a corrupted data frame again from the sender, until the data
frame was received correctly or a certain number of trials were not successful. The
basic idea of Lai is to keep the corrupted data frames stored in memory, until a
specified threshold of corrupted packets was received. The system tries then to
reconstruct the correct packet by majority voting bit by bit. As traditional error
correction is divided in Forward Error Correction and ARQ schemes, the method of
combining both approaches is also called Hybrid ARQ schemes.
The performance of the proposed system was evaluated with simulations, the algo-
rithm exceeds the classical ARQ scheme in error correcting performance as well as
throughput efficiency [Lai and Lu, 2010]. Nevertheless, additional memory is needed
to keep corrupted data frames in memory, data processing time is negligible.

101

Forward Error Correction for satellite communication links

A field which is closely related to the data combination problem presented in sec-
tion 4.1.1 is the discipline of error correction. The principle of error correction
is to reduce the amount of transmission errors through proper usage of artifi-
cially added redundancy. This kind of error correction is called Forward Error
Correction (FEC). FEC is a very common strategy in satellite communications to
guarantee error robustness on the communication channel. The principle relies on
adding redundancy to enable the correction of transmission errors on the receiver
side. This is reasonable for wireless communication in general, i.e. also in satel-
lite communication. An overview of different error correction algorithms can be
found in [Klimant and Piotraschke, 2003], they can be distinguished in two main
groups, block codes and convolutional codes. A popular block code family is Reed
Solomon, which was used for example in the Voyager and Magellan satellite missions.
Prominent mission examples utilizing convolutional codes are the SMART-1 and
ROSETTA missions. Also the CCSDS recommends error correction codes on basis of
of these techniques [CCSDS, 2003a][CCSDS, 2003b]. For a more extensive overview
of error correction in satellite communications please refer to [Richharia, 1999].
Also in academic ground station networks are forward error correction capabilities
desired, but are not supported from the primarily used communications protocol
AX.25. Of course, it is in general possible to use other protocols, which support er-
ror correction, but the drawback is that the interoperability with a standard ground
station equipment is then not given any more. Such a solution is used from in
the AAUSAT-II project [Alminde et al., 2003], the integrated communication de-
vice MX909 uses a block code for telemetry encoding. Furthermore, interleaving is
used to protect the transmission from burst errors. The AX.25 structure is then
not longer identifiable with a standard TNC device. To overcome the problem of
interoperability, other approaches are proposed: McGuire et al defined an extension
for AX.25, which integrates an FEC mechanism without altering the AX.25 frame
structure. The so called FX.25 protocol [McGuire et al., 2006] adds a preamble and
postamble to each AX.25 frame, which is then still identifiable for a standard AX.25
device, but can be corrected from a receiver which implements the FX.25 proto-
col. First tests with the FX.25 protocol were implemented and performed with the
AO-40 satellite [Karn, 2002]. A similar approach was presented in the scope of the
UWE-1 project at the University of Würzburg. The observed PER in the AX.25

102

communication link was main driver for the development of a FEC extension for
AX.25 [Zeiger et al., 2006]. The strategy is to neglect the FCS field of the TNC and
adding redundancy in the AX.25 drivers at the physical and link layer (e.g. 6pack
or kiss protocol) to stay consistent with the AX.25 specification.

4.1.4 Time synchronization

This last state-of-the-art section is dedicated to time synchronization. The presented
approaches are totally independent from the data combination problem discussed
before. Nevertheless, proper synchronization is a necessary prerequisite for a solu-
tion to the data synchronization problem (see section 4.2.2). Therefore, the most
important contributions of computer clock synchronization are introduced:
Time synchronization in networks is a widely known problem and occurs in everyday
life. Especially in the context of the Internet computer synchronization were such
issues studied in detail. Current network clock synchronization methods are dis-
tinguished in linear systems [Lindsay and Kantak, 1980] and byzantine agreement
[Lamport and Melliar-Smith, 1985] algorithms.
The most famous clock synchronization implementation is the Network Time Pro-
tocol (NTP), developed and maintained from David Mills. The NTP protocol ex-
changes timestamps between time servers and client to estimate the offset between
them. A clock filter algorithm is used to identify clients with large delays producing
large errors. The intersection and clustering algorithm [Mills, 1996] is then em-
ployed to identify appropriate reference clocks and to calculate time corrections to
discipline the local clock. The achievable accuracy of the NTP protocol depends on
many parameters (e.g. network delay, hardware, number of available time servers,
etc.), but can be assumed to be a few milliseconds. For more information about
the working principle of NTP please refer to [Mills, 2006]. Meanwhile four gen-
erations of the NTP protocol were issued: Version 1 was documented already in
1988 [Mills, 1988], only a few years later NTP version 2 [Mills, 1998] and version 3
[Mills, 1992] were published. The new versions introduced a broadcast mode as well
as new features and algorithm revisions [Mills, 2003]. The latest generation, NTP
version 4, contains a simplified protocol standard, the Simple Network Time Pro-
tocol (SNTP) [Mills et al., 2005]. Main difference of SNTP is, that it uses only one
time server for synchronization, while the NTP standard uses several time servers
to determine an accurate time (byzantine agreement). SNTP is compatible with

103

NTP and is available for almost all operating systems. A detailed description of the
different milestones of the NTP development, from the first RFC documents until
the latest NTP version, can be found in [Mills, 2003].
Several other protocols are also available for distributing time in a network, for ex-
ample the Daytime protocol [Postel, 1983], or the Time [Postel, 1983] protocol, but
these protocols are only used rarely, due to the high performance and wide accep-
tance of the NTP protocol. Further protocols for time recording and transmitting
are listed in [Mills, 1991].
In recent years another technique became very popular for time synchronization, us-
ing GPS (respectively GNSS) satellites for clock synchronization. The basic principle
of time and frequency dissemination uses a telecommunication system to distribute
time from a precise clock, a good general overview on radio time and frequency
dissemination is presented in [Blair, 1974], a more satellite specific survey is given
in [Somayajulu, 1980]. The problem of these approaches is in general that they are
subject to gross error [Mills, 1991]. Due to the recent advances in satellite navigation
systems, many devices for computer synchronization are now available. An inves-
tigation on achievable accuracy and performance of such devices was performed
in [Tu et al., 2000] [Lombardi et al., 2001] and [Jefferson et al., 1996]. A general
problem for the applicability in academic ground station networks is, that special
hardware (at least a GPS receiver) is required for this type of time synchronization,
the accuracy of the time synchronization depends on the quality of the hardware.
It can be assumed that there will not be a dedicated GPS device at each ground
station in an academic network available.

4.2 Synchronization in academic ground station net-

works

This section presents an approach to solve the synchronization problem described
in section 4.1.1. The objective is to synchronize different data streams on link layer
level to identify parallel received frames, received from one satellite at several ground
stations. The parallel received frames are then used to identify and resolve infor-
mation gaps. As the content of the received data frames could be corrupted by
transmission errors, only the time of reception can be used to relate the different

104

frames with each other. A very simple approach is to have timestamps on each re-
ceived frame from the corresponding ground station and to use these timestamps to
identify the duplicate packets. In the following the term duplicate is used for frames
which were received in parallel. In figure 4.5 is the scenario depicted, where two
ground station receive the same frame from a satellite. Ground station A receives
the signal from the satellite at time TA′ and records the corresponding time of recep-
tion at time TA (i.e. there is a small system delay between the physical reception of
the satellite signal and the recorded timestamp of the digital data frame). Ground
station B stores the according timestamp TB. It can be seen in the figure, that
TA 6= TB, the reasons for that are discussed later in this section. It is now necessary
to relate these times of reception to a signal sent from the satellite at time T0.
One problem is, that the a signal from the satellite will not reach the individ-

ual ground stations at exactly the same time, there can be a difference of a few
milliseconds. How is this delay induced? A deeper look at the receiving chain in
figure 4.5 reveals two major influences: The time needed from the satellite to the
ground station and the processing time of the ground station hard- and software:
The time from the satellite to the ground station (i.e. signal propagation delay) only
relates to the slant range and depends on the actual position of the satellite. For
a LEO satellite it is a relatively short time interval between 3 and 13 milliseconds
(depending if the satellite is at the horizon or at zenith, see also appendix A), it is
a deterministic value and can be calculated from the satellite orbit. Unfortunately,
the processing time of the ground station is not deterministic, it is rather a varying
delay which is not known beforehand. Furthermore, the processing delay might be
different on each individual ground station, because the processing of data frames
can be realized on different layers (e.g. directly in hardware or on a high level op-
erating system). Last point which needs to be considered is the transmission delay
from the time of reception at the client stations (TA, TB) and the reception at the
data management server (T InternetA , T InternetB). One might consider this delay as neg-
ligible, as the timestamps TA and TB contain already the required time of reception,
but as it will be explained in more detail in section 4.2.1, the transmission delay
over the network influences indirectly the time synchronization. This leads finally
to the twofold, formalized synchronization problem:
Problem 1: The time of reception at the client stations (TA, TB,...) have to

be used to identify the time T0, when the signal was sent from the satellite. This

105

Figure 4.5: Synchronization problem in academic ground station networks

106

includes the determination of the propagation delay and the estimation of the pro-
cessing time (respectively system delay) at each client stations. This problem is
handled under the context of data synchronization in section 4.2.2 in detail.
Problem 2: If the time of receptions need to be correlated with each other, an im-
portant prerequisite is the synchronicity of the computer clocks on the client ground
stations. Several mechanisms to synchronize computer clocks were introduced al-
ready in section 4.1.4. The accuracy of the synchronization process is typically
influenced by the latency δ, therefore the transmission delays (T InternetA , T InternetB ,
etc.) also need to be taken into account. This problem is handled under the context
of time synchronization in section 4.2.1 in detail.
Before the developed approaches are presented, a last remark about synchronization
in ground station networks is necessary: Of course, there exist various, well proven
solutions for clock synchronization, nevertheless they do not fully solve the prob-
lem of time synchronization in this scenario. The main reason for that is, that the
ground stations of the network belong to individual institutes, they will not adapt
or implement software just by request from another research institute. So, it could
be possible that a ground station does not rely on any synchronization technique
and it is just not possible to control this issue from the outside. Additionally, there
is always the problem of trusting a timestamp if no control over the system itself is
available. From that point of view it was decided to develop a time synchronization
method, tailored for the usage in academic ground station networks, which does not
need any external source for the required time synchronization.

4.2.1 Time synchronization between ground stations

Prerequisites

Before addressing in more detail time synchronization, some definitions related to
synchronizing clocks in computer networks need to be introduced: The definitions
are mainly taken from [Mills, 1993] [Mills, 1995] and [Moon et al., 1998].
The time of an event is an abstraction, which determines the ordering of events in
a given timescale [Mills, 1993]. Computer clocks are often used in technical systems
to compare the time of different events. The term clock refers here in general to
computer clocks. Different representations for clocks exist, a simple model from
David Mills is the representation as an oscillator in combination with a counter,

107

Figure 4.6: Synchronization procedure with timestamps

which records the number of oscillator cycles since initialization. The counter at any
given time t is called its epoch or timestamp T (t). Other researchers use a piecewise
continuous function to describe a clock [Moon et al., 1998]. This continuous function
is twice differentiable (except for a finite set of points) and can be used to determine
the frequency and drift of a clock.

A standard method to synchronize two computer clocks exchanges data packets
over an available network (typically the Internet). In figure 4.6 is such a synchro-
nization attempt depicted, initialized from the client station GS B. The synchro-
nization request contains the timestamp T1, which was attached before transmitting
the packet to the server (GS A). The time of reception on the server side is recorded
in T2 and a synchronization acknowledgement is prepared with its time of transmis-
sion T3 added. The synchronization attempt is finalized when the client receives the
acknowledgement and obtains T4. The four timestamps (T1,T2,T3,T4) are now used
to calculate the required parameters for synchronization.
The most important parameters of this scenario are the latency δ and the offset Θ.
The latency is indicated in figure 4.7 as the end-to-end delay and is given through
the timestamps by

δ = (T4 − T1)− (T3 − T2) (4.5)

The offset describes the absolute difference between two clocks. Typically the
true offset Θ is distinguished from the estimated offset θ. The accuracy of the
estimated offset depends on the size of the latency δ, which introduces a systematic
delay when asymmetric transmission path are present. For more information about
this issue please refer to [Mills, 1995]. The estimated offset can be calculated from

108

Figure 4.7: Synchronization procedure

a synchronization attempt by

θ =
(T2 − T1) + (T3 − T4)

2
(4.6)

Deeper analysis of the time synchronization problem takes also into account other
clock characteristics and try for example to remove the skew (difference in oscillator
frequency) [Moon et al., 1998].

It is well known [Mills, 1993], that the true offset Θt between two clocks for a
synchronization attempt at epoch t lies between

θt −
δt
2
≤ Θt ≤ θt +

δt
2

(4.7)

In the context of NTP the two endpoints of a synchronization attempt are called
client and server, where the servers run at a very accurate time (e.g. attached to an
atomic clock), the clients try to synchronize their own clocks with these servers (the
so called NTP server). The role allocation is a bit different for the entities in aca-
demic ground station networks: The client stations are ground stations contributing
received data frames to the network. Each client station has an own computer clock
which is used to obtain timestamps for received data frames. On the other side
there is a central server, which is responsible for collecting received data frames in
the network and for processing the retrieved data. The central server can be con-
nected to a ground station, but can be in principle any computer connected to the
ground station network. The central server as well has its own clock. In the further
text, the terms client station and central server are used to distinguish these roles.
In the scenario assumed in this work, the clocks of the central server and the client
systems are not synchronized by a protocol like NTP or SNTP. The introduced data

109

Figure 4.8: Offset estimation process

management system tries to estimate the offset θ between the different clocks in the
ground network with the algorithm presented in the following section. This is nec-
essary to correlate the timestamps of the received frames with each other. Thus, the
first objective is to estimate the offset of each client station to be able to synchronize
the received data frames from the satellite.

Offset estimation algorithm

This section presents an approach to determine the offset between a client station
clock and the central server clock. The procedure described in the following is ap-
plied to one single station, in the complete network the whole procedure has to be
performed for each client station. The algorithm works in three different steps (see
figure 4.8) and starts in Step 1 with the derivation of the estimated minimum offset
θmint and estimated maximum offset θmaxt from to the last synchronization attempt
at time t.

Step 1: Offset estimation from synchronization attempt at time t:

The estimated offset is derived from the synchronization attempt at time t, which
delivers the four timestamps T1,T2,T3 and T4 as described before. To obtain the
minimum offset θmint and the maximum offset θmaxt the following equations are

110

−5 0 5 10 15 20 25 30 35

−5

0

5

10

0

System time [s]

O
ffs
et

[m
s]

[θmint−1 , θmaxt−1]
[θmint , θmaxt]

Figure 4.9: Offset estimation based on current sample

used:

θmint ≡ θt −
δt
2

= T3t − T4t (4.8)

θmaxt ≡ θt +
δt
2

= T2t − T1t (4.9)

It is obvious from equations 4.8 and 4.9 that

|θmaxt − θmint | = δt (4.10)

This estimation is only based on the last synchronization attempt at time t (see
figure 4.9). As the accuracy of the estimation depends mainly on δt, the algorithm
tries in the next step to correct this estimation with the information obtained from
the previous synchronization attempt. To use the information from the previous
synchronization attempt, the last offset estimation at time t− 1 is propagated and
the current sample at time t accordingly corrected. The result of the correction is
a time interval

[
θ̃mint , θ̃maxt

]
, which is closer to the true offset Θ between the client

station and central server. In the following denotes "̃ " the corrected offset. The
propagation of the previous estimated offset

[
θ̃mint−1 , θ̃maxt−1

]
is performed in Step 2 :

Step 2: Propagation of the last estimated and corrected offset at time t− 1:

To update the actual offset estimation, the information from the previous offset
estimation is used. It has to be considered, that the local clock might have drifted

111

since last synchronization at time t − 1, therefore the last estimated and corrected
offset [θ̃mint−1 , θ̃maxt−1] is propagated to

θ̃′mint−1
= θ̃mint−1 +mmint−1

(
T4t − T4t−1

)
(4.11)

θ̃′maxt−1
= θ̃maxt−1 +mmaxt−1

(
T4t − T4t−1

)
(4.12)

where mmint−1 and mmaxt−1 describe the minimum and maximum approximation
of the drift. The approximation of the drift is calculated with

mmint = min

(
mavgt ,

mmint−1 +m′mint

2

)
(4.13)

mmaxt = min

(
mavgt ,

mmaxt−1 +m′maxt

2

)
(4.14)

with a given average drift of

mavgt =
mmint−1 +mmaxt−1

2
(4.15)

and the helping variables m′maxt
and m′mint

:

m′maxt
= min

(
θ̃maxt − θ̃maxt−1

T4t − T4t−1

, (mavgt +mmax0)

)
(4.16)

m′mint
= max

(
θ̃mint − θ̃mint−1

T4t − T4t−1

, (mavgt +mmin0)

)
(4.17)

The average drift of the clock in equation 4.15 is used as a lower limit for the
approximated maximum drift mmaxt to avoid negative values. Similar is the value
in equation 4.16 used as an upper limit for the drift, depending on the initialization
value mmax0 . For the approximated minimum drift in equation 4.13 is the interpre-
tation analogue.
For initialization the following values are used: θ̃min0 = θmin0 and θ̃max0 = θmax0 ,
i.e. the first estimated and corrected offset relies only on the first synchroniza-
tion attempt at time t = 0. The minimum and maximum drift is initialized with
mmax0 = 5 · 10−5, respectively mmin0 = −5 · 10−5, which is equal to a drift of 5
milliseconds within a time interval of 10 seconds. This is a worst case assumption,
which is not a restriction for any computer clock [Murdoch, 2006].

112

−5 0 5 10 15 20 25 30 35
−10

−5

0

5

10

0

System time [s]

O
ffs
et

[m
s]

[θmint−1 , θmaxt−1]
[θmint , θmaxt]
θmaxt−1 +mmaxt−1 · t
θmint−1 +mmint−1 · t

Figure 4.10: Offset propagation from last sample

−5 0 5 10 15 20 25 30 35

−5

0

5

10

0

System time [s]

O
ffs
et

[m
s]

[θmint−1 , θmaxt−1]
[θmint , θmaxt]

[θ̃mint , θ̃maxt]

θ̃maxt +mmaxt · t
θ̃mint +mmint · t

Figure 4.11: Estimated and corrected offset at time t

With the propagated offset (see figure 4.10) from the last synchronization, the algo-
rithm corrects in Step 3 the estimated offset:

Step 3: Correction of the estimated offset:

The last step of the algorithm corrects the estimated minimum offset θ̃mint and
maximum offset θ̃maxt to

θ̃mint = min
(
θmint , θ̃

′
mint−1

)
(4.18)

θ̃maxt = max
(
θmaxt , θ̃

′
maxt−1

)
(4.19)

113

The algorithm compares the estimated offset (which might be relatively large
due to high latency δ), with the propagated offset from the last estimation, which
considers only the drift of the clock (see figure 4.11).
Remark: If the estimated offset is disjunct with the last estimated and corrected
offset estimation, i.e. [θmint , θmaxt] ∩

[
θ̃mint , θ̃maxt

]
= ∅, it can be assumed that

the computer clock was affected by a time correction from another source (for ex-
ample a time synchronization protocol like NTP). In this case, the value for the
estimated offset [θmint , θmaxt] will not be corrected and the approximated drift will
be initialized to mmint = mmint−1 + mmin0 respectively mmaxt = mmaxt−1 + mmax0 .
For a more detailed investigation of the synchronization algorithm please refer to
[Schmidt et al., 2010].
The result of this section is an estimated and corrected offset

[
θ̃mint , θ̃maxt

]
for one

client station, i.e. an estimated time difference between the central server clock and
a client ground station clock. The proposed offset estimation algorithm is not as
susceptible to delay variations as the SNTP estimation procedure, because informa-
tion from the previous estimations is included. The offset has to be estimated for
each client station separately in the network. The estimated offset is a very critical
parameter, as it is used from the central server to estimate the time of reception of
each data frame at each client station.

Estimated time of reception

In the next step, the estimated offset for a ground station A is used to determine
the estimated time of reception. The estimated offset describes only the "difference"
between two clocks, now this knowledge is used to derive the time of reception in a
global timescale. If a data frame Fi is received at ground station A at epoch T (FA

i),
an estimated time of reception can be obtained from

Tmin(FA
i) = T (FA

i) + θ̃mint +mmin

(
T (FA

i)− T4t

)
(4.20)

Tmax(F
A
i) = T (FA

i) + θ̃maxt +mmax

(
T (FA

i)− T4t

)
(4.21)

In summary, this section presented an algorithm for time synchronization in
ground station networks. The outcome of this section is on the one hand an es-
timated offset θ for each client station in the network, which is used to obtain a

114

synchronized global timescale in the ground station network. On the other hand,
the synchronized timescale is used to derive the time of reception T (F gs

i) of each
data frame on that global timescale. More specifically, an estimated time of re-
ception in terms of a time interval

[
Tmin(FA

i), Tmax(F
A
i)
]
is calculated. Referring

to the formalized problem in section 4.1.1, this solves the demand for proper time
synchronization (see also Problem 2 on page 106). The next section discusses how
that approach is used to synchronize the data frames respectively how the time of
reception can be used to estimate the time of transmission.

4.2.2 Data synchronization on frame level

When the clocks of the individual ground stations are synchronized, i.e. the offset
with respect to the central server is estimated for each client station, the data frames
need to be synchronized. That means, identical frames should be identified only
based on their time of reception. As explained on page 103, the time of reception is
biased by a system delay, which has to be compensated:

System delay compensation

The system delay is estimated for each frame. Hence, in the first step the average
time of reception TA(i) of a frame FA

i is calculated. This is done with the equations
for the estimated time of reception derived in section 4.2.1.

T
A

(i) =
Tmin(FA

i) + Tmax(F
A
i)

2
(4.22)

Without the loss of generality it is assumed that ground station A was not the first
station which received frame Fi. Another ground station submitted this data frame
to the central server at T 0

(i). Now the difference in time of reception between ground
station A and the first station, which submitted the identical frame, is calculated as

∆A(i) = T
A

(i)− T 0
(i) (4.23)

The ∆A(i) value is a first estimation of the system delay at ground station A,
consisting of the time needed to receive, process and forward the received frame Fi
(offset and propagation delay are already included in T

A
(i)). But of course, this

system delay changes over time due to changes in slant range and processing load.
Therefore, the variable SAdelay is introduced to propagate the system delay over a

115

period of time. A moving average filter is used to adapt the system delay SAdelay for
ground station A:

SAdelay(k) =
α(k) · SAdelay(k − 1) + ∆A(k)

α(k) + 1
(4.24)

with

α(k) =
∣∣∆A(k)−∆A(k − 1)

∣∣+ 1 (4.25)

k represents the number (or counter) of received frames at ground station A, i.e.
after each new frame the system delay SAdelay is updated. The weight α prevents the
system delay to be influenced from large peaks, which can appear for single frames.
For the case that A was itself the first ground station which submitted frame i, the
term ∆A(i) reduces to 0 and decreases the system delay SAdelay by factor ∆A(k−1)+1

∆A(k−1)+2
.

One restriction has be mentioned: In equation 4.23 is the difference of two identical
frames, received at different ground stations, determined. This implies that it is
known that these two frames are identical, which is only the case if the data content
was not corrupted. If there is a bit error in one of these frames, it is not possible
to identify them as identical. Therefore, the system delay variable SAdelay is only up-
dated, when two correct identical frames are received in the network. It is assumed
that at least a few frames are received correctly during the contact window, the
system delay SAdelay will then be adapted by the moving average filter.
The result of this section is the variable SAdelay(k), which represents the system delay
of a ground station A. This delay includes the transmission time from the satel-
lite to Earth as well as the processing time at the ground station, which might be
influenced strongly by several factors, like hardware devices or operating system
components. Using this approach, the proposed system is now able to compensate
the system delay, i.e. to estimate if frames were received nearly at the same time
(unbiased by data processing and forwarding). Finally, in the last step of the data
synchronization approach, the data frames are grouped in different data sets.

Data frame synchronization

In the last step, the algorithm identifies identical data frames only based on the
time of reception and estimated delays. If a data frame Fj is received at ground

116

station B, the average time of reception T
B

(j) of that frame is given by equation
4.22. Additionally, for ground station B is a system delay SBdelay(j−1) available (see
equation 4.24). From these parameters the time interval Tsearch(j) is determined,
which is used to identify duplicate frames:

Tsearch(j) =
[(
T
B

(j)− SBdelay(j − 1)−DLEO

)
,
(
T
B

(j)− SBdelay(j − 1) +DLEO

)]
(4.26)

where DLEO describes the maximum transmission delay when the satellite is
at the horizon (maximum slant range) and is for a LEO orbit approximately 15
milliseconds (see appendix A). This time interval Tsearch(j) is used to search for
other data frames, which were received in parallel from another ground stations. If
this is the case, i.e. the average time of reception of a second data frame l received
at ground station C (TC(l)) lies within Tsearch(j), it is assumed that these frames
are identical. The algorithm groups these in the same data set S, respectively if

TB(j)− SBdelay(j − 1)−DLEO ≤ TC(l)∧ (4.27)

TC(l) ≥ TB(j)− SBdelay(j − 1) +DLEO

is fulfilled, both data frames are assigned to the same data set S, which contains
then

S =
{
FB
j , F

C
l

}
(4.28)

The two frames in data set S are assumed to be duplicate frames received from
two different ground stations in parallel. To search for more duplicate respectively
identical frames, a common average time of reception of data set S is calculated
with

T S =

∑gs [T gs − Sgsdelay]
m

(4.29)

where m is the number of frames in data set S and T gs is the average time of
reception for all frames in that data set S.
For the case that several frames lie within Tsearch(j), the closest frame to the center
of that interval is used for initial search. After that, the average time of reception

117

Figure 4.12: Identifying of data sets containing duplicate frames

T S is calculated with equation 4.29, the algorithm searches iteratively for the closest
data frame until no more frames lie within Tsearch. From equation 4.29 it is obvious,
that the search interval Tsearch(j) is decreased steadily with each new data frame
assigned to the data set.
The result of the proposed data synchronization algorithm are data sets S1 to

Sp, each containing at least one data frame. All data frames comprised in a single
data set were identified as "identical", here identical means that these frames were
assigned to the same time of transmission, but might differ in data content due to
transmission errors (c.f. figure 4.12). These data sets are used as input for the data
combination algorithm introduced in section 4.3. Referring to the formalized prob-
lem in section 4.1.1, this solves the issue of data synchronization (see also Problem
1 on page 104).

Finally, a short summary of the complete synchronization approach is presented:
In section 4.2.1, a time synchronization algorithm was developed. Its main benefit
is the ability to synchronize ground station computers without the need of external
time sources (like NTP). This algorithm guarantees synchronicity of the computer
clocks, which is required to compare the timestamps of the received frames. A
data synchronization algorithm was presented in section 4.2.2, it is divided in two
approaches to solve the subproblems of system delay compensation and data frame
synchronization. System delay compensation delivers a solution to the problem state-
ment of equation 4.1, i.e. it derives an estimated time of transmission T̃ (F gs

i) from
the time of reception T (F gs

i). The data frame synchronization problem is related
to the identification of duplicate frames from the estimated time of transmission

118

T̃ (F gs
i) to group them in data sets (see equation 4.2 in the problem description).

The proposed approach is the basis for the data combination approach described
in the next section. Performance analysis of the time and data synchronization
approaches are handled in the experiment section 4.5.

4.3 Data combination in academic ground station

networks

The term data combination is used here in a very abstract way and was introduced
in section 4.1.1 to clarify the problem scope. The underlying scenario assumes a
single satellite, which sends data frames to multiple ground stations connected to
a network. These stations receive the data frames in parallel and forward them to
the central server, which uses the time of reception to identify duplicate frames to
group them in data sets. If transmission errors have affected the data frames, the
objective of the data combination algorithm is to retrieve the original data frame
from the available data frames. It is avoided to use for that approach the term
"data fusion" as it is often used in the context of sensor data fusion. Sometimes
the term also appears in database modeling. The work of Stolarski [Stolarski, 2009]
uses for a similar approach the term data comparison. Throughout this work the
process of combining data frames received in parallel from a satellite is referred as
data combination.
In the following, three different approaches for data combination are presented:

• Ground station majority voting, GSNV (section 4.3.1)

• Brute force correction, BFC (section 4.3.2)

• Single bit error correction in AX.25, SBEC (section 4.3.3)

4.3.1 Ground station majority voting approach

To combine the information of the obtained data sets (each set Sk contains duplicate
data frames), a simple strategy is pursued to reconstruct the original data content:
Each ground station is subject to local transmission errors, it is possible to use du-
plicate, i.e. in parallel received, data frames to detect and correct local errors. Local
errors are only observed at single ground stations and have different error sources,

119

e.g. hardware performance, different slant range etc. Experiments by Stolarski
showed already the occurrence of such local bit errors in a radio transmission from
a weather balloon (see section 4.1.3). The working principle behind the proposed
Ground Station Majority Voting (GSMV) algorithm is relatively simple: Compare
the received data frames bit by bit to detect flipped bit errors. In contrast to the
work of Stolarski [Stolarski, 2009], the novel approach in this work is the usage of
information contained in the data link layer, not only the bit stream itself. Hence,
the proposed GSMV algorithm compares the data frames on a higher protocol layer
to reconstruct information gaps more efficiently. The input for the GSMV algorithm
are the data sets Sk identified from the data synchronization algorithm described in
section 4.2.2. These sets contain only duplicate, but maybe corrupted data frames.
If a data set Sk has n duplicate frames assigned, the bit value of bit i is calculated
by

Bit(i) =

{
0 if d(i) < 0.5

1 if d(i) ≥ 0.5
(4.30)

where d(i) counts the sum of the bits divided by the number of frames:

d(i) =

∑n
j=1 Bitj(i)

n
(4.31)

Bitj(i) describes the i-th bit of frame j. It should be mentioned, that for the case
that an even number of ground stations collect data from the same satellite, it is
possible that no unique majority for a bit value exists (this corresponds to the case
of d(i) = 0.5). As a result, the algorithm assumes for that case with a probability
of 0.5 the wrong bit value. This issue is discussed in more detail in the performance
analysis of the algorithm in section 4.4.1. If an odd number of data frames were
assigned to a data set, d(i) 6= 0 per definition.
Key aspect of this algorithm is now, that the FCS field of the AX.25 protocol can
be used to check if the obtained data frame is correct. This is only possible as the
GSMV algorithm scans data frames on the link layer instead of pure bit streams.
The FCS field is calculated in a standard AX.25 link from a TNC device before
transmission and is automatically attached to each frame leaving the sender. The
FCS calculation procedure of AX.25 uses the CRC-16-CCITT standard to obtain a
value of size 2 byte. When a frame is obtained at the receiver side, it is possible to
detect transmission errors by calculating the FCS bytes. Hence, for the complete

120

frame (including the attached FCS field from the sender), the FCS procedure is
performed to obtain the FCS value at the receiver side (denoted as FCSR). The
CRC-16-CCITT algorithm assumes the frame to be error free when equation 4.32 is
fulfilled.

FCSR & 0xFFFF = 0x0F47 (4.32)

This property is used from the GSMV algorithm to test if the data combination
procedure (equation 4.30 and 4.31) was successful, i.e. whether the bits of the data
set Sk were combined to a single correct data frame. If the combined frame does
not fulfill equation 4.32, the frame is marked as corrupted.
The presented GSMV approach is a solution to the problem description specified in
equation 4.3. A deeper analysis of the performance of this algorithm is presented in
section 4.4.1.

Applicability and implementation

The GSMV algorithm takes advantage of the observation that transmission errors
affect the parallel received data frames particularly only locally. The occurrence of
local bit errors has several reasons: The first reason is, that the measured strength of
the radio signal at the ground station (signal to noise ratio, SNR) varies over time.
The SNR depends on the distance between ground station and satellite, which is
different for geographically distributed ground stations. Furthermore, the signal is
affected by different atmospheric disturbances. A second reason for local transmis-
sion errors (and probably more critical factor) is the inhomogeneous hardware used
in the participating stations. Especially in the context of academic ground station
networks, the hardware shows quite different performance characteristics, due to
variety of antennas, modems and radio equipment used. Additionally pointing in-
accuracies, cable losses and other noise sources influence the reception of the signal
at each station. Therefore, a distinct bit error rate can be expected for each of the
individual stations.
Also the satellite projects UWE-1 and UWE-2 from Würzburg confirm this ob-
servation, as the rate of successfully decoded beacons varied strongly between the
different ground stations. The variance of the measured bit error rate from UWE-1
at the ground station in Würzburg was relatively high [Schmidt and Zeiger, 2006]
[Schmidt, 2006] and indicates the strong influence of error sources. Furthermore,

121

experiments conducted in cooperation between University of Würzburg and Univer-
sity of Tokyo [Oda and Nishikawa, 2007] showed that the set of received data frames
in overlapping regions differ significantly.
One of the major influences for local errors (as discussed above) is the performance
characteristics of the ground station components. The performance of a software
modem (for example [Sailer, 2000]) depends strongly on the soundcard used, which
is not the most suitable device for software demodulation of a satellite signal. Nev-
ertheless, software modems are used more and more in academic ground stations
as they provide a high degree of flexibility [Rodriguez-Osorio et al., 2008]. Using
low performance COTS components is a very uncommon strategy in classic space
technology engineering, where typically only the highest standard components are
used for reliability reasons. Also in ground systems primarily robust and qualified
(but also expensive) equipment is employed. The approach presented in this work
tries to combine the limited capabilities of many low-cost stations to increase the
performance. This is an important aspect, as the presented approach tries to opti-
mize the operation of a satellite by using low performance entities, the increase in
performance is achieved by combining their performance in an intelligent way. Of
course it would be possible to increase the performance even more by using high-
end components, but it is assumed that only low cost components are available and
utilized.

An important issue, which has to be addressed for the implementation of the
GSMV algorithm, is the discarding function of a standard TNC device, which is
in many academic ground stations integral part of the receiving chain: A TNC dis-
cards by default data frames, when transmission errors are detected. This is realized
through a simple FCS procedure: If the calculated 2 byte checksum is not valid, the
complete frame will be discarded (i.e. not forwarded to the connected computer).
Of course, it is then not possible to correct bit errors, because no access to the
corrupted data exists. This problem can be solved in different ways: One solution
is the usage of a TNC which is able to forward also corrupted frames. A second
solution is the replacement of the TNC with a software modem, which provides more
access to the incoming data frames. For more details related to this issue refer to
[Zeiger et al., 2006] and [Schmidt and Schilling, 2010b].

122

4.3.2 Brute force method for data recovery

A second mechanism to correct errors in a received data frame, uses the redundancy
contained in the communication protocol AX.25. The proposed Brute Force Cor-
rection (BFC) algorithm takes advantage of the fact that each AX.25 frame has a
FCS attached, which enables the receiver to detect errors in the data frame. The
working principle behind the BFC algorithm is relatively simple: The bits of the
data frames are altered systematically until the correct FCS is obtained. For ex-
ample, if a single bit error appears in a data frame of size n bytes, one can obtain
the correct data frame by inverting all of the 8 · n bits of the frame after each other
and check if it leads to the originally received FCS field. If more errors are in the
frame (unfortunately it is not known before how many errors are in the frame), the
BFC algorithm has to try in the worst case all 28n possible bit combinations to get
the correct FCS. This implies two major limitations for the BFC algorithm: First,
as the number of possible combinations increases exponentially, the method is time
consuming and not appropriate for large data sets. For AX.25 the maximum frame
size of 512 byte fortunately restricts already the search space. The second, more
critical limiting factor is the uniqueness of the obtained FCS field. As only 216 FCS
patterns (2 bytes) exist, it is not possible to allot 28n different error patterns in a
bijective assignment. Therefore, it is possible to create the same FCS bits from two
different data frames and there is theoretically no possibility to identify the original
frame (except parts of the frame are fixed, like the protocol header). Hence, the
applicability of the BFC algorithm strongly depends on the number of errors in the
data frame.
To overcome the problem of exponential growth of correction possibilities, a strat-
egy is applied to limit the search space of the BFC algorithm. This is achieved
by restricting the bit positions, which are altered to obtain the correct FCS. It is
assumed, that bits are correct, when all frames in the same data set are equal (all
bits 0 or all bits 1), only the bit positions with diverging values are considered for
the brute force correction (see figure 4.13). Thus, the runtime can be reduced sig-
nificantly.
In conclusion, the BFC mechanism enables the reconstruction of data gaps, es-

pecially when a frame is only affected by a small number of bit errors. A detailed
analysis of the correction capability is presented in section 4.5. Main issue is, that
the number of bit errors must not exceed a certain threshold. Due to the limited

123

Figure 4.13: Reduced search space for BFC algorithm

frame size of the AX.25 specification and the strategy to reduce the search space, it
is possible to correct errors within reasonable time (see analysis in 4.5.1).
One of the main advantages of the BFC algorithm is, that it can be used inde-
pendently from the the GSMV algorithm. The proposed approach uses a two step
approach: In a first step, the GSMV algorithm of section 4.3.1 is utilized to obtain
a data frame from several parallel received frames. This reduces already the number
of bit errors for the combined data frame. If the FCS field indicates, that bit errors
are still in the frame, the BFC algorithm is used in the second step to search in the
defined search regions for a possible solution. In the experiments in section 4.5.1 an
upper threshold was derived, which restricts the runtime of the BFC algorithm by
a maximum number of bits to be corrected.

4.3.3 Single bit error correction in AX.25

Forward error correction through frame checking sequence processing

The proposed GSMV data combination algorithm takes advantage of the redundancy
induced through parallel data reception in the ground network. In the previous sec-
tion the BFC algorithm was introduced, which uses the Frame Checking Sequence
(FCS) bytes of the communication protocol to correct transmission errors. In this
section is another approach presented, which uses the characteristics in the FCS
calculation to identify transmission errors.
AX.25, the primarily used communication protocol in current academic ground sta-
tion networks, is conform to the HDLC standard and implements the FCS procedure

124

Figure 4.14: Transmission error in radio link

like described in section 4.3.1. Cyclic Redundancy Check (CRC) algorithms are often
used for error detection. In the case of a transmission error, the corrupted data frame
is requested again (ARQ mechanism). Nevertheless, the new algorithm presented in
this work is able to correct errors by proper usage of the redundancy contained in
the CRC bits. This is only possible if the generator polynomial was chosen appro-
priately. The error correction capability is of course limited and the correction of
a bit error is only possible under certain conditions. The CRC-16-CCITT standard
uses the generator polynomial GP (X) = x16 + x12 + x5 + 1 and it will be shown in
the following, how it can be used for single bit error correction. The algorithm is
only elaborated in detail for the AX.25 protocol, for more information about error
correction with CRC algorithms refer to [Shukla and Bergmann, 2004]. The basic
principle of the proposed algorithm is an error correction based on a look-up table,
which contains characteristic bit error patterns. These patterns can be generated
from the generator polynomial offline and will be used to correct occurring single
bit transmission errors online with the generated look-up table.

The working principle of a CRC algorithm bases on polynomial division: A
given message M(X), which is transmitted from a sender to a receiver, can be
represented in polynomial notation (for example 101100 is expressed as M(X) =

1 ·x5 + 0 ·x4 + 1 ·x3 + 1 ·x2 + 0 ·x1 + 0 ·x0) and divided by the generator polynomial
GP (X). As already mentioned before, the CRC-16-CCITT standard uses the gen-
erator polynomial GP (X) = x16 +x12 +x5 +x0. The remainder M(X) mod GP (X)

is appended to the message as checksum, the so called CRC bits (or alternatively
in AX.25 called FCS). The remainder is smaller than the the generator polynomial,
if the polynomial degree of GP (X) is 16, the checksum polynomial has a maximum
degree of 15 (i.e. 2 bytes in binary representation). The standard procedure in a
AX.25 supporting TNC is the division of the outgoing message M(X) of length l

bits by GP (X). The calculated checksum bits (CRC) are attached to the message
before transmission (see figure 4.14). The transmitted message has then a length of
l + 16 bits.

125

It can be shown now, that a single bit error in the data frame leads to a characteris-
tic error pattern in the CRC field. It is possible with the error pattern to locate the
position of the corrupted bit and retrieve the original data frame. The error pattern
can be calculated beforehand and stored in a look-up table. Such a procedure is
often realized in hardware [Pan et al., 2007].
When a data frame of length l bit is sent, it is possible to calculate l different error
patterns with only a single bit error. To show that the error patterns are unique, the
transmitted message M(X).CRC is considered (the “.” operator describes a simple
concatenation). The CRC bits are calculated by

CRC = M(X) mod GP (X) (4.33)

First, the case of a single bit error in the message field M(x) is investigated. The
receiving ground station obtains then M ′(X).CRC (see figure 4.14). The received
message is just a combination of the original message M(X) with an error sequence
Ei(X), which is 0 everywhere except the i-th bit (i.e. xi in polynomial notation).
So, at the receiver side the message is

M ′(X) = M(X) + Ei(X) (4.34)

and one can calculate for the received message M ′(X) the checksum CRCError

with equation 4.33. This can be transferred to

CRCError = [(M(X) mod GP (x)) + (Ei(X) mod GP (X))] (4.35)

So, one obtains

CRCError = CRC + Ei(x) mod GP (X) (4.36)

and can be modified to

CRC ⊕ CRCError = Ei(x) mod GP (X) (4.37)

It is easy to see, that this equation can be used to determine the position of a
single error, as CRC is the transmitted checksum and CRCError is the calculated
one (so both are known from the receiver). By comparison with all possible error
patterns Ei(X) mod GP (X), the position of the error is obtained.
The second case, which has to be handled, is a single bit error in the CRC field.

126

Due to the structure of the generator CRC-16-CCITT polynomial, the calculated
CRC field changes at minimum 3 bits when a single bit error in the message field
occurs. If there is only a single bit failure in the CRC field, this indicates that no
transmission error occurred in the message field.

Error correction capabilities of CRC-16-CCITT

The error correction with a CRC respectively FCS field is only possible under cer-
tain circumstances: All error patterns are required to be unique. As the number
of available single bit error patterns is defined by the length l of the frame (in the
case of AX.25 l = 4096, defined by the maximum frame length of 512 byte) and the
possibility to define with a checksum of 2 byte a number of 216 = 65536 distinct
patterns, it is possible to assign the patterns bijective. Therefore, single bit forward
error correction is possible when the AX.25 protocol is used. Due to the character-
istics of the CRC-16-CCITT generator polynomial all these patterns are unique.
To create the look-up table, the following characteristic error patterns are calculated
with i = 1...l:

Patterni = {M(X) · xi} mod GP (X) (4.38)

All calculated error patterns Patterni are stored in a table at the central server,
if only a single bit is flipped in a data frame, the proposed algorithm can reliably
obtain the original data frame. The strength of this approach is again, that it can
be used in combination with the GSMV algorithm. The implemented system (see
figure 4.15) tries in the first step to reduce bit errors with the GSMV algorithm.
After combination of the different data frames, the system checks if the frame still
contains bit errors. This would be the case if CRC ⊕ CRCError 6= 0. Lets assume
the result of CRC ⊕CRCError = c, the systems tries then to obtain a solution with
the BFC algorithm. If it is not possible to derive a unique solution through BFC,
the look-up table of the single bit error correction is used to search for a possible
solution, i.e. the algorithm checks if an entry Patterni = c exists. If this is the
case, a single bit error might have affected the data and forward error correction
is possible by altering the bit at position i. This algorithm is named Single Bit
Error Correction (SBEC). Nevertheless, the solution of the SBEC algorithm has to
be marked as "possible solution", as this approach works only reliable when only a
single bit error occurs. A deeper analysis of the performance of the SBEC algorithm

127

Figure 4.15: Combined error correction system

is presented in section 4.5.1.

The presented approaches for data combination and correction were tailored to
the special needs of academic ground station networks. The presented GSMV algo-
rithm is a solution to the problem description of section 4.1.1. The introduced BFC
and SBEC algorithms further increase the performance of the GSMV algorithm by
eliminating remaining transmission errors. A detailed analysis of the performance
of the GSMV algorithm is presented in the next section. A performance evalu-
ation of the complete implemented system (time and data synchronization, data
combination) is presented in section 4.5.

4.4 Performance analysis

An estimation of the achievable performance of the proposed data management
approach is presented in this section. Especially the performance of the GSMV data
combination algorithm can be estimated with statistical means, which is explained
in the following.

4.4.1 Performance of the data combination algorithm

To evaluate the performance of system, the performance criterion has to be defined
in the first place. In this work, the performance is measured as the decrease of the
Packet Error Rate (PER) after application of the GSMV algorithm. The decrease
in PER is a reasonable criterion, as the communication link between satellite and
ground station is affected stronger by transmission errors than in terrestrial commu-
nication. Therefore, the PER is significant higher in wireless communication links.

128

Moreover, a direct relation between SNR and the Bit Error Rate (BER) exists. To
calculate the PER of a communication link, one method is to use the probability
p, which describes the probability that a single bit is corrupted (0 < p < 1). The
probability that a complete data frame with the length of l bits is received incorrect
(i.e. the frame contains at least one bit error) is

PER(p, l) =
(
1− (1− p)l

)
(4.39)

The BER p of a satellite link is influenced from many parameters, for example
transmit power, distance, noise, antenna gain, frequency, etc. Typical desired values
for satellites range between 10−4 to 10−7 [Turner, 2008]. Especially in the research
field of small satellites, the observed BER can be even worse, as the limited power
and restricted attitude control capabilities have an influence on the link quality
[Schmidt et al., 2007]. The algorithm described in section 4.3.1 reduces the bit error
rate by conducting the correct bit value by majority voting. Nevertheless, a bit can
still be corrupted if the majority of the involved ground stations received the bit
incorrect. The probability that a number of m ground stations received a bit not
correct can be calculated for a total number of n ground stations as

BER(n,m, p) =

(
n

m

)
pm (1− p)n−m (4.40)

A bit is only determined incorrect, when more then half of the ground stations
received the bit incorrect. If one considers an odd number n of ground stations in
the network, this would be the case for m = n+1

2
. To obtain the BER value, one

has to add the probability from m = n+1
2

up to m = n, as for all these cases the bit
is calculated incorrect. Hence, the probability for an incorrect bit using the GSMV
algorithm is

BER(n, p) =

n−1
2∑
i=0

(
n

n+1
2

+ i

)
p

n+1
2

+i (1− p)
n−1

2
−i (4.41)

It is now possible to calculate the PER for a data frame with the result from
equation 4.41. Again, the case with an odd number of ground stations in the net-
work is considered first. The PER is then determined as

129

PERodd(n, p, l) =

1−
n−1

2∑
i=0

(
n

n+1
2

+ i

)
p

n+1
2

+i (1− p)
n−1

2
−i

l

(4.42)

If the number of ground stations in the network is an even number, the PER can
be calculated very similar, but a special case exists if exactly half of the received
bits are corrupted (i.e. m = n

2
):

PEReven(n, p, l) =

1−

(n
n
2

)
p

n
2 (1− p)

n
2

1

2
+

n
2∑
i=1

(
n

n+1
2

+ i

)
p

n
2

+i (1− p)
n
2
−i

l

(4.43)
In this case of m = n

2
, the same amount of votes for both solutions exist and no

majority can be determined. This uncertainty is expressed in equation 4.43 by the
factor 1

2
.

The results from equation 4.42 and 4.43 are combined in

PERGSMV (n, p, l) =

{
PERodd(n, p, l) if n mod 2 = 0

PEReven(n,p,l) else
(4.44)

Using equation 4.44, it is possible to calculate the decrease of the PER for a
ground station network of n stations, assuming an average BER of value p and a
predefined frame length of l bits. It is obvious from equation 4.39, that a larger
frame length l increases the PER. In figure 4.16 and 4.17 the estimated performance
for different sizes of ground station networks, ranging from n = 3 to 9, is shown. The
graph n = 1 depicts the original PER expected, if only one single ground station
is available to receive the data frames. In this case, the PER increases already
dramatically if the BER grows larger than 10−4. If the GSMV algorithm is used,
the packet error rate is still nearly 0 for a BER of 10−2, even if only 5 ground stations
contribute to the network. The performance can be increased even more by using
7 or more ground stations. The difference between figure 4.16 and 4.17 is only the
used data frame length (256 respectively 512 byte), which represent typical values
of data frames in AX.25 connections (the maximum frame size is restricted to 512
byte).
The graphs show, that it is possible to decrease the PER by data comparison in a

130

10−4 10−3 10−2 10−1

0

0.2

0.4

0.6

0.8

1

0

BER

(1
-P

E
R
)

n = 1
n = 3
n = 5
n = 7
n = 9

Figure 4.16: PER for a frame length of 256 byte for different sizes n of ground
networks

10−4 10−3 10−2 10−1

0

0.2

0.4

0.6

0.8

1

0

BER

(1
-P

E
R
)

n = 1
n = 3
n = 5
n = 7
n = 9

Figure 4.17: PER for a frame length of 512 byte for different sizes n of ground
networks

131

ground station network dramatically. The originally experienced PER on a single
ground station drops slowly over a large BER range, i.e. the quality of the link
is already strongly affected at low BER values of 10−4. The GSMV algorithm
overcomes this problem by keeping the PER relatively constant until a certain BER
threshold is reached, after that point the PER drops very fast to 0 within a relatively
short BER range. Thus, the link quality is only affected when large BER values arise.
The spacing between the graphs of larger values of n indicate furthermore, that it
is not possible to sustain BER values larger than 10−1. Nevertheless, the estimated
performance of the GSMV algorithm is very promising, the PER is constant also in
relatively small ground networks, even for BER values close to 10−2. Of course, this
statistical performance evaluation should be rather seen as the performance limit
of the GSMV approach, as beside the BER itself also the bit error patterns are
important for the performance of the algorithm.

Improvement through single bit error correction (SBEC)

As it is possible to correct with the SBEC algorithm a single error in the retrieved
data frames, the performance increase can be calculated relatively simple. The prob-
ability of a single bit error in a data frame is

PERsingle(n, p, l) =

(
l

1

)
BER(n, p)(1−BER(n, p))l−1 (4.45)

The parameter p denotes again the BER of a single ground station, which is
needed to calculate the BER of the complete ground station network. The PER of
the GSMV algorithm in combination with SBEC is

PERSBEC(n, p, l) = PERGSMV (n, p, l)− PERsingle(n, p, l) (4.46)

The result from equation 4.46 is shown in figure 4.18 and 4.19. The dashed
graphs describe the PER performance of the GSMV algorithm, the solid graphs of
corresponding color the additional improvement by applying the SBEC algorithm.

Compared to the PER observed for a single ground station, the quality in terms
of PER of the reconstructed data frames can be improved by more than a order of
magnitude, also if only a small amount of ground stations is involved in the network.

132

10−3 10−2 10−1

0

0.2

0.4

0.6

0.8

1

0

BER

(1
-P

E
R
) GSMV n = 3

SBEC n = 3
GSMV n = 5
SBEC n = 5
GSMV n = 7
SBECn = 7

GSMV n = 9
SBEC n = 9

Figure 4.18: PER after applying GSMV and SBEC for a frame length of 256 byte

10−3 10−2 10−1

0

0.2

0.4

0.6

0.8

1

0

BER

(1
-P

E
R
) GSMV n = 3

SBEC n = 3
GSMV n = 5
SBEC n = 5
GSMV n = 7
SBECn = 7

GSMV n = 9
SBEC n = 9

Figure 4.19: PER after applying GSMV and SBEC for a frame length of 512 byte

133

Furthermore, the algorithm can be implemented with simple means. This promising
result advertises the potential for current ground station networks.

4.5 Hardware tests and results

The experiments presented in the following were conducted to show the applicabil-
ity of the developed data management approaches and to determine performance
limits. The proposed data management system handles time synchronization and
data synchronization for ground station networks. In the first part of this section,
a simulated ground station network on a distributed computer system was used
to evaluate the different approaches. A simulated ground station network is more
suitable for investigating the performance limits of the implemented system. Deter-
mining performance limits in experiments with real satellite links is very difficult,
because the communication time is too restricted and valuable to perform statis-
tical expressive experiments with a scientific satellite in orbit. Nevertheless, some
aspects of the proposed data management system had to be analyzed with a real
radio link to induce realistic delays and transmission errors. Thus, in the second
part of this section were experiments performed, which contain real radio links to
emulate the parallel reception of data frames. Hence, the approaches were investi-
gated in a different order than presented in the previous sections, due to different
experiment setups. The appertaining results are presented in section 4.5.2. The per-
formed hardware-in-the-loop experiments rather demonstrate the applicability and
benefits of the proposed data management system in a real ground station network
than investigating performance limits.

4.5.1 Ground station network simulation

Experiment setup

To simulate the ground network on a computer network, the implemented software
was installed on several PCs at the computer science institute in Würzburg. These
computers are connected through a LAN to exchange information. Additionally,
further computers outside the institute, connected through the Internet, were used
to emulate the typical traffic occurring in IP connections.
A single computer in the network acts as the central server, it is responsible for

134

collecting, synchronizing and combining data frames. All other computers act as
client stations, they receive frames from a virtual satellite and forward the obtained
data to the central server. To simulate the satellite, the client stations are sending
virtually received AX.25 frames to the central server. Virtually received frame de-
notes frames, which were requested from the central server to simulate the parallel
reception of the frames at the client stations (see figure 4.20).
Moreover, each client station adds a configurable amount of random errors to the

Figure 4.20: Experiment setup

data frames, simulating transmission errors. The central server synchronizes and
combines the received data frames with the developed algorithms. Individual ex-
periments for time and data synchronization as well as for data combination are
described in the next sections.

Time synchronization evaluation

The aim of this experiment is to compare the offset estimation algorithm of section
4.2.1 with other state of the art synchronization procedures. The offset estimation
is necessary to compare the timestamps of the client stations with each other on a
global timescale. For comparison, the SNTP protocol [Mills et al., 2005] is used to
determine the reference offset between the central server and a client station.

In figure 4.21, the synchronization procedure between the central server and a
client station in the same LAN is depicted. The blue intervals represent the mini-
mum and maximum values from the SNTP offset estimation (see section 4.2.1). The
red surface depicts the measurements from the proposed synchronization algorithm,
which propagates the offset with estimated drift and obtains therefore continuous

135

2 2.5 3 3.5 4 4.5

·105

−3.5

−3

−2.5

·106

System time [ms]

O
ffs
et

[n
s]

Figure 4.21: Time synchronization performance over LAN

0 0.5 1 1.5 2 2.5 3

·104

−1

−0.5

·108

System time [ms]

O
ffs
et

[n
s]

Figure 4.22: Time synchronization performance over Internet

136

values. The red line depicts the mean values between estimated minimum and max-
imum offset. From the figure it is easy to see, that the estimated offset from SNTP
(blue) is equal or larger than the values obtained with the proposed algorithm (red).
The explanation are delay peaks in the network, which increase the estimated time
interval of SNTP significantly. The presented algorithm compensates these peaks
with the approximated drifts of the computer clocks and is able to keep the esti-
mated offset relatively stable. The same experiment was performed with an Internet
connection between the central server and a client station, the result is depicted in
figure 4.22. The main difference of this experiment is, that the delay peaks over the
Internet are larger than in a local environment (LAN). Hence, SNTP (blue) delivers
large varying estimations for the offset.
The main effect of the presented time synchronization algorithm is filtering delay
peaks to deliver a better estimation of the offset. If for any reason (e.g. congestion
on the Internet link), the data frame arrives delayed at the central server, the offset
estimation gets worse with SNTP. By approximation of the clock drift, the presented
approach is able to obtain a less variant estimation of the offset. This is an essential
point, as the estimation of the offset is used to search for duplicate data frames
from other ground stations. Therefore, compensation of the delay peaks is needed
to guarantee appropriate search intervals for the data synchronization procedure.
Keeping the search intervals at appropriate size is especially important, if the data
frame rate of the satellite is high and the corresponding times of reception at the
client stations are close together. If the search interval of the data synchronization
procedure is too large, data frames will be assigned to the wrong data sets. To avoid
this false identification of duplicate frames, the delay peaks can be filtered with the
presented data synchronization approach.
The results of these experiments show, that the performance of the presented offset
estimation algorithm is comparable with other state of the art techniques for time
synchronization (at least in the required order of magnitude of a few milliseconds).
The accuracy of the proposed synchronization procedure might not satisfy the high
demands of hard realtime requirements, but in the scope of academic ground sta-
tion networks the obtained offset fully satisfies the desired synchronization of data
frames on link layer. To express the accuracy of the presented offset estimation
in absolute values is not possible, because the magnitude depends on the observed
network latency between the ground stations.

137

The most important advantage has not been mentioned yet: Using the presented
synchronization algorithm does not need external sources for time determination. A
heterogeneous network, like current academic ground station networks, face always
the problem of restricted system access from the outside. If a NTP server would be
required for the proposed system, the additional effort to guarantee a proper NTP
synchronization on all participating ground stations is tremendous. In contrast, the
proposed system only relies on the local computer clock and needs no other time
resources for proper operation. This is an important feature, which will increase the
acceptance of that system at other research institutes operating a ground station.

Data combination evaluation

In this section, the data combination capabilities of the proposed system are inves-
tigated. The intention of the experiments is twofold: First, the equations for the
network performance in section 4.4.1 are to be verified with empirical data. Second,
the performance limits of the proposed system for high bit error rates are to be
identified.
To identify these performance limits, it is necessary to add transmission errors ar-
tificially to observe the system under high bit error conditions. Adding artificial
transmission errors has benefits and drawbacks: The benefit is, that the amount of
transmission errors can be increased to a desired rate. Furthermore, the statistical
evaluation is easier, as it is known which errors were added artificially. The draw-
back is, that the error patterns of a real radio link to a satellite can not be simulated
accurate enough. Many parameters influence the behavior of the radio link, which
are partially not known or can not be simulated accurately enough. The experiments
in this section were performed with a simulated satellite link with artificial added
errors. Supplementary experiments were conducted with a real radio link integrated
(c.f. in section 4.5.2). The transmission errors in these experiments are closer to a
real mission scenario, however the rate of transmission errors in a real radio link can
not be controlled directly.

Error correction capability of GSMV

This experiment was simulated with the setup described on page 134. Each client

138

10−3 10−2 10−1

0

0.2

0.4

0.6

0.8

1

0

BER

(1
-P

E
R
)

GSMV n = 7
GSMV n = 5
GSMV n = 3

Figure 4.23: Determination of PER in simulated network with n ground stations for
a frame size of 256 byte

station adds to the data frames (containing random data payload) artificially trans-
mission errors. A predefined bit error rate of value BER was defined, i.e. each bit
of the frame was flipped with a certain probability. The central server collects the
corrupted data frames and tries to correct them with the GSMV algorithm. This
procedure was performed for each bit error rate m times to determine an average
packet error rate PER. The results were obtained with m = 100. To calculate the
corresponding confidence intervals α was set to 5 % .
The graphs in figure 4.23 and 4.24 show the bit error rate for different frame sizes
for the GSMV algorithm. The obtained values are consistent with the equations
derived in section 4.4.1 (dashed graphs). Even for large ground station networks,
the PER drops fast when the bit error rate approaches 0.5, due to the concept of the
GSMV algorithm, which assumes that the majority of the client stations received
the bit correct.
The result of this experiment is, that even a small number of ground stations in the
network decreases the packet error rate dramatically, when the GSMV approach is
applied. The experience from the UWE-1 mission showed [Schmidt and Zeiger, 2006],
that the packet error rate varies significantly, even within a single contact window.
Hence, it is useful to combine the data streams from different ground stations to
overcome high packet error rates. Especially if COTS hardware components are

139

10−3 10−2 10−1

0

0.2

0.4

0.6

0.8

1

0

BER

(1
-P

E
R
)

GSMV n = 7
GSMV n = 5
GSMV n = 3

Figure 4.24: Determination of PER in simulated network with n ground stations for
a frame size of 512 byte

used, the proposed procedure helps to improve the communication significantly.

Correction rate of SBEC and BF

Similar to the experiments in the previous section, the correction capability was
tested for the single bit error correction (SBEC) and Brute Force Correction (BFC)
algorithm. SBEC decreases in principle the bit error rate further, but is effected
by the "wrong corrections" phenomenon. When more then a single bit error affects
the frame, the algorithm might detect a wrong bit position (i.e. a correct bit). The
explanation is, that the error patterns are not unique when the number of bit errors
is greater than 1. So, only a fraction of the corrected data frames can be corrected
reliably.
Of course, the same holds for the BFC algorithm, but here it is possible to check if
the obtained solution is unique or if a second solution (i.e. wrong correction) exists.
It is trivial that the system can only compensate transmission errors up to a certain
bound, so the BFC algorithm is not able to correct a large amount of bit errors
due to the restricted error detection capability of the CRC-16-CCITT standard. If
too many bit errors affect the data, the BFC algorithm might obtain two different
solutions with exactly the same FCS field. Thus it is not always possible to identify

140

0 5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0

Number of bit errors

co
rr
ec
ti
on

ra
te

rate
sum

Figure 4.25: Achievable correction rate of the BFC algorithm

which is the correct solution. The following experiment shows which fraction of data
frames can be obtained correctly with the BFC algorithm.
A data frame was artificially corrupted with a predefined number of bit errors. The
BFC algorithm was used to obtain the original data frame. The fraction of data
frames, which the system was able to correct, is expressed in terms of the correction
rate.
The graph in figure 4.25 shows on the x-axis the number of bit errors in the data
frame, the y-axis describes the average fraction of correct data frames obtained from
the BFC algorithm. The green graph depicts the absolute fraction of correctable
frames for a given number of bit errors. The red graph contains the correction rate
of the summed corrected frames. The sum of the correction rate does not further
increase when more than 20 bit errors corrupted the data frame. In these cases
the BFC algorithm obtains typically more than one solution for the frame, i.e. a
correction is not possible. In combination with the results from the runtime experi-
ments (see next section), it is recommended to restrict the search space of the BFC
algorithm to a threshold of 16 bits, because it can be expected that the correction
rate increases only marginally and the runtime of the procedure is still in reasonable
dimension.
In summary, the overall performance of the BFC algorithm is better than the SBEC
with respect to PER improvement. This is obvious, as the BFC algorithm can
correct more than single bit errors. Both algorithms are affected by the problem
of "wrong corrections", which is especially critical for SBEC, because there is no
way to identify the wrong correction. The BFC algorithm faces the same problem,

141

but is able to go through all possible solutions and identify if the found solution
is unique. Hence, the BFC algorithm outperforms the SBEC algorithm in general.
Unfortunately, the BFC procedure is much more time consuming, due to the large
number of error patterns to be evaluated. Therefore, the runtime was investigated
in the next section. For general purpose, the BFC fits better the requirements of
academic ground station networks, the SBEC algorithm is only recommended for
post processing when BFC is not applicable (for example when only a single frame
is available in a data set).

Runtime comparison

The runtime is a very critical parameter for the applicability of the proposed data
management system. Performing the GSMV algorithm does not involve calculation
intensive steps, but the BFC algorithm is expected to take more processing time
due to the exponential number of error patterns involved in the algorithm. Thus,
the runtime of the data combination process was investigated in detail.
The runtime of the pure GSMV algorithm is compared to a combination of GSMV
and BFC (BF16 and BF32). The main difference between BF16 and BF32 is the
number of bit errors the system tries to correct, i.e. BF16 tries to obtain the uncor-
rupted frame by altering maximum 16 bits, on the other hand BF32 changes up to
32 bit to search for the uncorrupted data frame (the number of error pattern grows
exponentially with the number of bits). The SBEC algorithm of section 4.3.3 was
not evaluated in this experiment, as the algorithm uses a lookup table for determin-
ing the result, which yields negligible runtimes.
In figure 4.26 the total number of bit errors in a combined data set (x-axis) is plot-
ted against the average runtime of the algorithm (y-axis). Bit errors in a combined
data set denotes the number of errors in a frame after application of the GSMV al-
gorithm. The plotted runtime is the execution time until the correct data frame was
obtained. For the case that no correction was possible, another frame with the same
error characteristics was put into the data set and the algorithm was invoked again,
until a successful correction was possible. In this way a worst case scenario was
created. The reason for the correlation of the increasing runtime and the increasing
number of bit errors is, that more data frames were needed to obtain the correct
data frame from the data set. More interesting is the runtime difference between the

142

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

100

102

104

106

Average number of bit errors

R
un

ti
m
e
[m

s]
BF32 avg
BF32 max
BF16 avg
BF16 max
GSMV avg
GSMV max

Figure 4.26: Runtime comparison of data combination algorithm

GSMV and the BFC algorithms. This difference is almost constant and is mainly
influenced from the execution time of the BFC algorithm. The explanation is, that
the BFC algorithm has to evaluate all possible error pattern combinations for each
iteration, to ensure if an obtained solution is unique. Therefore, the difference in
runtime between the GSMV and the BFC algorithm seems almost constant.
The result from this experiment indicates, that a search space restriction of the
BFC algorithm to a maximum number of bit errors is reasonable. The maximum
measured values of BF32 exceed 104 milliseconds and are problematic for online
processing. The maximum values of the BF16 algorithm are unproblematic, due to
the parametrization of the AX.25 protocol. Protocol specific timers of the AX.25
protocol are preset to relatively large values, for example the acknowledgment timer
is per default 3000 ms [Beech et al., 1997]. Thus, the observed runtime of the BF16
algorithm is small enough to apply the correction procedure to AX.25 connections
without modifications. It is recommended with respect to runtime to restrict the
search space of the BFC algorithm to 16 bit.

4.5.2 Local ground station network with radio link

The experiments conducted in the previous section were intended to identify lim-
itations of the proposed approaches, the experiments in this section validate the
implemented system on a small ground station network with hardware-in-the-loop.
In this way, it is possible to observe more realistic transmission errors on the com-

143

munication link, otherwise transmission errors of a radio link are complicated to
simulate.
Additionally to the transmission errors, the characteristic system delays of ground
station hardware can not be simulated properly. Hence, the following experiments
were performed on typical COTS hardware components used in a state-of-the-art
ground station.

Experiment setup

A small local ground station network, consisting of three receiving stations, was
established. Each of the receiving stations is connected to the local network. A
dedicated server runs the implemented central server software, which collects the
data from the receiving client stations. A sending station was used instead of a real
satellite, otherwise the experiments would have been too restricted by the visibility
of the satellite.
The sending station consists of the same COTS components used in the UWE-1
and UWE-2 satellites for communication. The PR430 transceiver device can be
used for communication in 2m and 70cm band and supports the 6pack protocol
[Zeiger et al., 2006]. A transmission rate of 1200 bps was used throughout the ex-
periments. The receiving stations utilize an ICOM 910 receiver connected to a
desktop computer through the soundcard. For demodulation of the received signals,
the soundmodem software from Thomas Sailer [Sailer, 2000] (installed on a linux
operating system) is utilized. The implemented client station software retrieves the
data frames from the AX.25 network device of the linux kernel and forwards the
data, including recorded timestamps, to the central server. The complete experi-
ment setup is shown in figure 4.27 and 4.28.

Data Synchronization Test

The time synchronization between central server and client station was tested al-
ready in section 4.5.1 and is also not directly related to the behavior of the radio
link, as only the clocks on the local computers are affected from the time synchro-
nization procedure. Therefore, the experiments of this section are related to the
delay compensation algorithm and the data frame synchronization.

144

Figure 4.27: Local GS network experiment setup

Figure 4.28: Hardware setup with 3 receiving stations using the ICOM 910 device.
Transmitting station with PR430 transceiver

145

0 1 2 3 4 5 6 7 8

·105

−200

−150

−100

−50

0

50

100

0

System time [ms]

Sy
st
em

de
la
y
[m

s]
measured delay
averaged delay
corrected delay

Figure 4.29: System delay correction for a client stations

System delay compensation

To synchronize the data frames, received from the different ground stations, it
is necessary to compensate the system delay at each client station (see algorithm
in section 4.2.2). The system delay is mainly influenced by the computing speed
of the client station and the used radio hardware (transceiver, TNC). Thus, it is
necessary to determine the system delay for each individual station to correct the
timestamps of the client station properly. In this experiment the system delay Sgsdelay
(see equation 4.24) was investigated for the scenario shown in figure 4.27.
Figure 4.29 shows the system delay in milliseconds for client station A. The mea-
sured delay values (blue) describe the time difference between the frame received
first from an other client station in comparison to client station A, i.e. the system
delay is here always a relative value (the exact definition of the system delay and its
calculation are given in equations 4.23 and 4.24). The graph shows, that the system
delay stabilizes at a value of about -200 ms, which means client station A submitted
the received data frame 200 ms later than the first client station in the network.
This experiment was performed within a LAN, therefore it is known that the ob-
served time difference between parallel frames is not caused by the Internet protocol.
Client station B observed a stabilized system delay of 380 ms, client station C sub-
mitted always the frame first. The client stations in this experiment setup are very

146

inhomogeneous with respect to processor speed and available memory, which is the
main reason for the different system delays. In a real ground network it is expected
to have even more inhomogeneous ground station setups. The dotted line in figure
4.29 contains the averaged values calculated from equation 4.24, the corrected val-
ues are related to the corrected timestamps, which are used to identify duplicate
frames. The objective of the proposed algorithm is to compensate the system delay
near to values around 0 ms, only in this case it is possible to identify which data
frames belong together. The algorithm was able to correct in all hardware-in-the-
loop experiments the system delay to a satisfying value smaller than 5 ms after the
initialization phase.

Data frame synchronization

When the time between the client stations and the central server is synchronized
appropriately and the system delay at the client stations is compensated, it is now
possible to synchronize in the last step the data frames itself. The approach pre-
sented in section 4.2.2 is used to identify which data frames belong to each other,
i.e. are duplicates. The corrected time of receptions are used to create the search
interval Tsearch (c.f. equation 4.26). Only if the offset estimation and the system de-
lay compensation work accurate enough, it is possible to find duplicate data frames
within that time interval.
The time of reception of two exemplary frames received from client stations A and
C are shown in figure 4.30(a), where the clocks of the client stations were synchro-
nized already, but the system delay was not yet compensated. In figure 4.30(b)
also the system delay was corrected. The time of receptions are now close to each
other. When the corrected timestamps lie within Tsearch, the frames are assigned
to the same data set Sk. This would be the case for both frames in figure 4.30, as
their time differences are 5 ms and 13 ms. This example demonstrates the order of
magnitude of the delay and the search interval.

For a more extensive analysis, 1000 data frames were transmitted from the sender
to the client stations. To evaluate the performance of the data frame synchronization
approach, the time difference between parallel frames was determined after applying
the synchronization and delay compensation. The frequency distribution of the

147

SA
delay SA

delay

1,000 1,500 2,000

GS A

GS B

System time [ms]

TA
TB

(a) System delay determination

Tsearch Tsearch

1,000 1,500 2,000

GS A

GS B

System time [ms]

TA
TB

(b) Corrected system delay

Figure 4.30: Data frame synchronization

determined time difference is depicted in figure 4.31 for all possible client station
combinations (A ↔ B , A ↔ C , B ↔ C). On the x-axis, the absolute time
difference between frames is given in milliseconds, the y-axis shows the obtained
frequency for a total value of 1000 sent frames.
The average absolute time differences are 1.268ms , 7.879ms and 6.519ms, i.e the
average synchronization accuracy was less then 10 milliseconds. The worst result
was observed for the client station A to C, here the amount of the absolute values
smaller than 21 milliseconds was 5.9%, which means in the worst case 94.1% of the
frames are assigned to the correct data set. The implemented system validates the
correct assignment of parallel frames through an ID, which is contained in the data
field of the frames. The 5.9% percent of the frames were the absolut difference was
larger than 21 milliseconds were mainly contributed in the initialization phase of the
experiment, where the system delay was not yet stabilized (compare the initialization
phase in figure 4.29). Neglecting the first 50 data frames, which were received during
the initialization phase, a much smaller fraction of the frames exceeded the search
interval Tsearch. Cutting the intialization phase yields a correct frame assignment
rate of 97.5% in the worst case.
An important point, which has to be mentioned is, that the signal propagation

delay was not taken into account here, as the sender and the client stations were
extremely near located to each other. In a real world scenario, a maximum signal
propagation delay of 21 milliseconds could occur. Therefore it is proposed to extend
the range value of the search interval Tsearch from 21 ms to 40 ms. This would

148

0

100

200

300

400

<
-2
1m
s

<
-1
5m
s

<
-1
0m
s

<
-5
m
s

<
0m
s

<
5m
s

<
10
m
s

<
15
m
s

<
21
m
s

>
21
m
s

Time difference between A and B

0

100

200

300

400

<
-4
0m
s

<
-3
5m
s

<
-3
0m
s

<
-2
5m
s

<
-2
0m
s

<
-1
5m
s

<
-1
0m
s

<
-5
m
s

<
0m
s

<
5m
s

<
10
m
s

<
15
m
s

<
20
m
s

<
25
m
s

<
30
m
s

<
35
m
s

<
40
m
s

>
40
m
s

Time difference between A and B without starting phase

0

50

100

150

200

<
-2
1m
s

<
-1
5m
s

<
-1
0m
s

<
-5
m
s

<
0m
s

<
5m
s

<
10
m
s

<
15
m
s

<
21
m
s

>
21
m
s

Time difference between B and C

0

50

100

150

200

<
-4
0m
s

<
-3
5m
s

<
-3
0m
s

<
-2
5m
s

<
-2
0m
s

<
-1
5m
s

<
-1
0m
s

<
-5
m
s

<
0m
s

<
5m
s

<
10
m
s

<
15
m
s

<
20
m
s

<
25
m
s

<
30
m
s

<
35
m
s

<
40
m
s

>
40
m
s

Time difference between B and C without starting phase

0

100

200

<
-2
1m
s

<
-1
5m
s

<
-1
0m
s

<
-5
m
s

<
0m
s

<
5m
s

<
10
m
s

<
15
m
s

<
21
m
s

>
21
m
s

Time difference between A and C

0

100

200

<
-4
0m
s

<
-3
5m
s

<
-3
0m
s

<
-2
5m
s

<
-2
0m
s

<
-1
5m
s

<
-1
0m
s

<
-5
m
s

<
0m
s

<
5m
s

<
10
m
s

<
15
m
s

<
20
m
s

<
25
m
s

<
30
m
s

<
35
m
s

<
40
m
s

>
40
m
s

Time difference between A and C without starting phase

Figure 4.31: Accuracy of data frame synchronization

149

further increase the rate of correct assignment in this experiment to 99.5%. The
range value is a suitable parameter to optimize the performance in future work.
In summary the experiment showed, that the system is capable to synchronize data
frames only based on their time of reception. Tuning the search interval Tsearch and
the system delay compensation, it is possible to assign 99% of the parallel received
frames to the correct data set.

4.6 Conclusion and future work

This chapter introduced a new operation concept for academic ground station net-
works. The concept originated from the idea to combine a large number of low cost
communication nodes, which act together in an efficient way to improve the quality
of a single communication link. The implemented and evaluated system uses the
redundant communication links available in academic ground networks to detect
and correct transmission errors. Even if the research in the field of small satellites
focuses on the development of more powerful communication devices, there is still a
strong need to better utilize the existing resources. Furthermore, the infrastructure
is already existing and can be employed to overcome the communication bottleneck
of current small satellite technology.
The developed algorithms for data synchronization and data combination were in-
troduced and analyzed extensively. The data synchronization procedure is divided
into the time synchronization and frame synchronization steps. Within this work
were offset estimation and system delay compensation algorithms developed, to en-
sure proper synchronization inside the ground station network. The GSMV, BFC
and SBEC strategies were introduced for the data combination problem to detect
and correct transmission errors. A data management system adopting all those al-
gorithms was implemented, especially tailored to the communication demands and
applicability in small satellite projects. Extensive experiments were performed to
evaluate the proposed approach: In simulations the system specific limitations were
identified, in hardware-in-the-loop experiments the performance in a real world sce-
nario was validated.
The main contribution of the data synchronization approach is the detection of par-
allel received data frames, based only on the times of reception. Thus, it is possible
to identify from several data streams, received in parallel from a single satellite,

150

which frames belong together. The system works fully autonomously and processes
the data frames online, which makes it applicable to scenarios with ground networks
for parallel signal reception and a dedicated single station for uplink. The data syn-
chronization algorithm is theoretically independent of the communication protocol,
the implementation was validated with the AX.25 protocol.
Under the context of data combination, a system for transmission error detection
and correction was presented. The data synchronization of the proposed approach
uses the redundancy contained in parallel received data frames to recover data gaps.
The algorithms were derived and analyzed, the implemented system demonstrated
how the packet error rate can be decreased in academic ground station networks.
Especially for the error-prone communication links of pico-satellites, the introduced
concept promises great potential.

Future work in this direction will focus on the optimization of the data synchro-
nization process: The initialization phase of the system delay compensation should
be shortened to increase the success rate of the frame synchronization procedure.
Additionally, the time synchronization algorithm will be approached in a hybrid so-
lution: When the central server, which is not necessary a ground station, is located
far away from the client stations, the delay variations due to distance can influence
the time synchronization significantly. In that case the central server might rather
synchronize its own clock with a NTP server and the client stations synchronize
their clocks themselves with a second NTP time server. This violates the policy of
being independent from external sources, but might be the most effective solution
when the ground station network is highly distributed.

Chapter 5

Conclusion

The field of small satellite formations and constellations attracted growing atten-
tion, based on recent advances in small satellite engineering. An overview on current
developments and achievements was presented in chapter 2, properties and require-
ments of such distributed space system were derived to outline the challenges of this
new strategy in space research. The utilization of distributed space systems allows
the realization of innovative applications and will enable improved temporal and
spatial resolution in observation scenarios. On the other side, this new paradigm
imposes a variety of research challenges. This contribution proposes new network-
ing concepts for space missions, using networks of ground stations. The developed
approaches combine ground station resources in a coordinated way to achieve more
robust and efficient communication links.
Within this thesis, two specific topics were elaborated to improve the performance in
distributed space missions: On the one hand scheduling and on the other hand data
management, both in the scope of low cost ground station networks. Appropriate
scheduling of contact windows in a distributed ground system is a necessary pro-
cess to avoid low utilization of ground stations. Additionally is an efficient resource
utilization only possible if proper scheduling algorithms are applied. Unfortunately,
for the special requirements of small satellite missions is no appropriate scheduling
system available. This work entered new ground with the development of a tailored
scheduling approach introduced in chapter 3, which is capable of satisfying the spe-
cial needs of small satellite missions. The theoretical basis for the novel concept
of redundant scheduling was elaborated in detail, an approach to handle its pecu-
liarities was developed within this thesis. Additionally to the presented algorithm

151

152

was a scheduling system implemented, its performance was tested extensively with
real world scheduling problems. It was shown, that the implemented scheduling
approach fully applies to the needs in current ground station network structures,
it creates schedules in reasonable time and is very flexible. Furthermore, interfaces
for remote operation are integrated, which facilitate a future integration in avail-
able network infrastructure, like GENSO or GSN. Applying the scheduling system
increases the contact time with the individual satellites.
In the scope of data management, a system was developed which autonomously
synchronizes data frames in ground station networks and uses this information to
detect and correct transmission errors. The realization requires the solution of sev-
eral subproblems: First, the ground stations in the network need to be synchronized
with each other to have a common time base. A time synchronization algorithm
dedicated to academic ground station networks is presented in section 4.2.1. The
second step is the synchronization of the received data frames, a sophisticated algo-
rithm taking into account the orbit geometry and compensating the system delay
of each ground station is presented in section 4.2.2. Finally, the system identifies
transmission errors in parallel received data frames and applies different strategies
for error recovery, which are analyzed in detail in section 4.3. The system was val-
idated with hardware in the loop experiments, demonstrating the benefits of the
developed approach, i.e. increasing the robustness and efficiency of small satellite
communication links by decreasing the bit error rate.
The developed approaches presented in this work can be applied to single satellites
as well as multi satellite systems. The first satellite mission integrating the obtained
results in the operation phase will be UWE-3, the third satellite from the University
of Würzburg, which is currently developed. But especially future missions, con-
sisting of more than one satellite will benefit from the presented approaches. In
particular the scheduling system unfolds its potential when applied to distributed
space systems. Upcoming missions like QB50, consisting of a large number of satel-
lites in a single mission, even need advanced coordination strategies to fully adept
its advantages.
Looking into the future of satellite applications and space exploration is difficult, but
an ongoing miniaturization trend in aerospace engineering is foreseeable. A number
of multi satellite systems were launched in the last years, many projects dedicated to
distributed space systems are on the way. The presented approaches are only a first

153

step in the direction of coordination strategies for such missions. To take advantage
of the distributed nature and to finally realize intelligent behavior of networks in
space, it is necessary to improve techniques and strategies to increase robustness,
efficiency and scalability. Many interesting ideas have been brought up already, for
example using distributed ground station systems for accurate orbit determination.
Other promising fields for further investigation are high precision formation control
and fully self configuring communication in satellite networks.

154

Appendix A

Propagation delay in Low Earth

Orbits (LEO)

To synchronize the data frames on geographically distributed ground stations from
a single satellite, one has to consider the varying propagation delay affecting the
transmission (see figure A.1). The magnitude of the propagation delay depends
mainly on the slant range (distance between ground station and satellite). According
to Wertz [Wertz and Larson, 1999] the minimum distance can be calculated by

Dmin = RE
sin(λmin)

sind(ηmin)
(A.1)

the maximum distance is analogue defined as

Dmax = RE
sin(λmax)

sind(ηmax)
(A.2)

where λmin, λmax describe the minimum and maximum Earth central angle and
ηmin, ηmax the corresponding nadir angles. The maximum angles are calculated with

λmax = 90◦ − εmin − ηmax (A.3)

sin(ηmax) = sinρ · cosεmin (A.4)

where the Earth angular radius ρ is the only parameter which depends on the
orbit height h

sinρ =
RE

RE + h
(A.5)

155

156

Figure A.1: Minimum and maximum slant range

157

for the worst case scenario εmin is taken as 0, i.e. the satellite has the maximum
distance when directly crossing the horizon. The average radius of Earth RE is 6378
km. How to calculate the minimum distance Dmin using the parameters λmin, ηmin
is described in detail in [Wertz and Larson, 1999], in our case one can simplify the
calculation as the minimum possible distance occurs when the satellite is exactly in
zenith of the ground station, i.e. Dmin = h.
Assuming an orbit height between 200 and 1000 km for a LEO orbit [Brown, 1992]
and a propagation velocity of 300000km

s
, this results in a maximum propagation

delay of 13 ms or a minimum propagation delay 3 ms, respectively. The proposed
data management approach in chapter 4 accounts for that by adding a margin of 20
ms to the interval calculated in equation 4.26.

158

Appendix B

OSI layer model for satellite

communication

The OSI reference model (sometimes also called ISO/OSI model) is used to model
the communication in computer networks in a layered structure, each layer is re-
sponsible for a dedicated service or task. The model contains 7 distinguished layers,
not each layer is necessarily implemented in a communication link between two
nodes. The layers of the ISO/OSI model are typically governed from communica-
tion protocols, providing the required functionalities of the corresponding layer. A
protocol can also take over the responsibilities of several or only partial layers, but
its communication is restricted to the protocols of the adjacent layers. Extensive
documentation about the OSI reference model is available as the X.200 series of
recommendations from the ITU-T webpage 1.

The layers of the ISO/OSI model and their corresponding functions are described
from bottom up, an extensive description can be found in [Tanenbaum, 2003]:

• Physical layer: Is responsible for transmission of raw bit data on the com-
munication channel. The physical layer deals with mechanical and electrical
properties of communication devices.

• Data link layer: This layer guarantees that transmission errors are detected
and corrected if possible. Network nodes can exchange information reliably
through the data link layer.

1http://www.itu.int/rec/T-REC-X/en

159

160

• Network layer: Main task of the network layer is to bring the data from the
source to the destination, i.e. performs routing in the network.

• Transport Layer: It splits data from the session layer in smaller parts for the
network layer. Furthermore, the transport layer provides reliable data transfer
to upper layers.

• Session Layer: Brings users on different machines together in sessions. Higher
level services like access to restricted resources are provided from the session
layer.

• Presentation layer: The presentation layer is the only layer which is related to
the syntax and semantics of the transmitted data. For example are different
coding standards converted for the application layer.

• Application Layer: Is the closest layer to the end user and provides access to
the network.

Figure B.1: OSI reference layers in typical small satellite mission

In current small satellite projects are only the first two layers occupied from the
AX.25 protocol, which provides the services of the physical and data link layer,
supported from hardware specific protocols like KISS or 6pack (see figure B.1). A
more sophisticated protocol structure was realized in the UWE-1 satellite, where an

161

IP protocol suite was stacked on top of AX.25 (for a more detailed description of
KISS, 6pack and AX.25 in combination with IP refer to [Schmidt et al., 2007] and
[Zeiger et al., 2006]). In that way it is possible to realize an end-to-end communi-
cation to satellite over an academic ground station network.
From the distinction in layers originates also the distinction of data packets and
data frames. Both carry digital data moving through a network, by definition ex-
ists a packet on layer 3 (network layer) of the OSI model, a frame corresponds to
data on layer 2 (data link layer) Thus, data exchanged with the AX.25 protocol are
denoted as frames, data send over IP are denoted as packets. On the other side is
often the term AX.25 packet used, as the AX.25 standard is a transmission mode
from the field of packet radio [Beech et al., 1997]. This leads sometimes to confu-
sion, throughout this work the distinction in packet and frames is consistently made.

162

Appendix C

Satellite orbit data for evaluation of

CUSS

The orbit data of the following satellites was used to evaluate the scheduling sys-
tem of chapter 3. All TLE data sets were obtained from the United States Space
Surveillance Network 1.

AAU CUBE-

SAT

1 27846U 03031G 11048.99489955 .00000067 00000-0 50874-4 0 9447

2 27846 098.7002 060.1735 0009186 156.1226 204.0393 14.21082946396099

AAUSAT

CUBESAT 2

1 32788U 08021F 11048.63905960 .00000696 00000-0 93504-4 0 9010

2 32788 097.8624 114.8156 0015050 203.4186 156.6295 14.82308357151863

AMSAT

ECHO

1 28375U 04025K 11047.47785605 +.00000034 +00000-0 +22586-4 0 08983

2 28375 098.0843 032.3546 0084944 075.7919 285.2698 14.40724001348681

APRIZESAT

1

1 28372U 04025G 11047.55399643 .00000094 00000-0 36124-4 0 8677

2 28372 097.9861 055.6328 0047343 355.0842 004.9876 14.48249515350691

BEESAT 1 35933U 09051C 11048.73803045 .00007830 00000-0 19109-2 0 9026

2 35933 098.3220 149.8764 0004142 213.9289 146.1341 14.52893295 74417

CANX-1 1 27847U 03031H 11052.53293795 +.00000099 +00000-0 +65859-4 0 09622

2 27847 098.6987 063.6383 0009735 147.4830 212.6940 14.21060904396545

CANX-2 1 32790U 08021H 11048.71498687 .00000113 00000-0 20995-4 0 9079

2 32790 097.8629 114.6846 0014979 202.8371 157.2155 14.81794699151828

CANX-6 1 32784U 08021B 11047.65875462 +.00000007 +00000-0 +76484-5 0 09228

2 32784 097.8658 113.2422 0015326 201.6261 158.4312 14.81342051151649

1http://www.space-track.org/

163

164

CAPE 1 1 31130U 07012P 11047.73124128 +.00000256 +00000-0 +69447-4 0 01077

2 31130 097.9144 078.6530 0102027 194.7618 165.0591 14.52290982203151

COMPASS 1 1 32787U 08021E 11048.72868898 .00000491 00000-0 68268-4 0 9121

2 32787 097.8620 114.7154 0015091 202.6807 157.3740 14.82143203151861

CP3 1 31129U 07012N 11049.10626444 .00000107 00000-0 35075-4 0 8001

2 31129 097.9119 080.1432 0102018 190.2196 169.6964 14.52376371203557

CP4 1 31132U 07012Q 11048.62168840 .00000194 00000-0 52434-4 0 1177

2 31132 097.9094 086.4917 0085518 170.9161 189.3603 14.55423948203816

CSTB 1 1 31122U 07012F 11049.07043084 .00000558 00000-0 13192-3 0 1450

2 31122 097.9124 087.2739 0085729 169.5855 190.7132 14.55535839204017

CUBESAT

XI-IV

1 27848U 03031J 11052.53860630 +.00000115 +00000-0 +73897-4 0 09979

2 27848 098.7146 062.0654 0009674 172.5228 187.6093 14.20555601396441

CUBESAT

XI-V

1 28895U 05043F 11047.65615684 +.00000252 +00000-0 +61818-4 0 08040

2 28895 097.9870 288.5849 0016880 236.8685 123.0926 14.60008153282653

CUTE-1 1 27844U 03031E 11047.54239525 -.00000676 +00000-0 -29307-3 0 00480

2 27844 098.7083 057.9922 0009710 182.9252 177.1880 14.20766987395786

CUTE1.7

+APD II

1 32785U 08021C 11049.10630057 .00000504 00000-0 70410-4 0 9178

2 32785 097.8642 115.2119 0014445 200.4056 159.6568 14.81830235151909

DELFI C3 1 32789U 08021G 11049.15225101 .00001669 00000-0 21352-3 0 9181

2 32789 097.8708 116.1180 0015009 199.9922 160.0715 14.82605664151946

DTUSAT 1 27842U 03031C 11048.71328243 .00000060 00000-0 47490-4 0 472

2 27842 098.7004 059.9067 0009527 155.8617 204.2996 14.21085251396059

ITUPSAT 1 1 35935U 09051E 11048.72839354 .00001938 00000-0 48744-3 0 4924

2 35935 098.3342 149.9509 0009093 152.2340 207.9286 14.52298958 74379

LATINSAT

A

1 27612U 02058H 11052.59738937 +.00000112 +00000-0 +36299-4 0 04108

2 27612 064.5569 253.5289 0046267 319.4573 040.3079 14.76124968440162

LATINSAT

B

1 27606U 02058B 11047.33644883 +.00000205 +00000-0 +56004-4 0 03774

2 27606 064.5604 003.2826 0065171 357.5775 002.5003 14.69498779437714

LIBERTAD

1

1 31128U 07012M 11048.64426039 -.00000046 00000-0 00000+0 0 1502

2 31128 097.9120 079.4611 0102297 192.1605 167.7157 14.52265586203494

MAST 1 31126U 07012K 11047.58295247 +.00000158 +00000-0 +45917-4 0 00870

2 31126 097.9085 081.5554 0094265 185.5863 174.4285 14.53673993203560

NCUBE-2 1 28897U 05043H 11047.22570521 +.00000213 +00000-0 +53398-4 0 03737

2 28897 097.9820 288.0575 0016186 239.8688 120.0912 14.60201225274890

165

QUAKESAT 1 27845U 03031F 11048.70025337 .00000038 00000-0 38054-4 0 440

2 27845 098.7162 058.7191 0008616 197.8438 162.2417 14.20432451395830

SAUDICOM

SAT 1

1 28369U 04025D 11048.62098061 .00000169 00000-0 53310-4 0 8761

2 28369 097.9650 066.1545 0033700 327.7477 032.1679 14.50739664351454

SAUDICOM

SAT 2

1 28370U 04025E 11048.99540177 .00000108 00000-0 41565-4 0 8866

2 28370 098.0150 049.1306 0059691 015.3896 344.9097 14.45833092350328

SAUDICOM

SAT 3

1 31125U 07012J 11047.65827067 +.00000412 +00000-0 +88749-4 0 01827

2 31125 097.9180 102.5006 0046116 125.6647 234.8854 14.62697397204836

SAUDICOM

SAT 4

1 31127U 07012L 11052.69934971 .00000382 00000-0 89803-4 0 1752

2 31127 097.9062 096.4111 0070985 139.7687 220.8779 14.58096112204920

SEEDS 1 32791U 08021J 11048.72229905 .00000212 00000-0 33412-4 0 9029

2 32791 097.8641 114.6830 0015499 201.4495 158.6071 14.81883220151816

SWISSCUBE 1 35932U 09051B 11048.72689784 .00005244 00000-0 12986-2 0 8332

2 35932 098.3294 149.6460 0008973 152.0133 208.1384 14.52339170 74373

UNISAT 1 26547U 00057C 11047.91887838 +.00000393 +00000-0 +66429-4 0 07995

2 26547 064.5567 018.0320 0019850 166.6686 193.4953 14.82724635561902

UNISAT 2 1 27608U 02058D 11048.79157460 .00000113 00000-0 37439-4 0 4003

2 27608 064.5598 287.2013 0049333 331.1823 028.6565 14.74594474439421

UNISAT 3 1 28373U 04025H 11049.00621794 .00000139 00000-0 52030-4 0 8679

2 28373 098.0489 042.0539 0071896 042.2348 318.4353 14.43452638350252

UWE-1 1 28892U 05043C 11049.14687096 .00000219 00000-0 54916-4 0 8593

2 28892 097.9801 289.1399 0016385 232.9851 126.9852 14.59987695282984

UWE-2 1 35934U 09051D 11048.72719583 .00003315 00000-0 81574-3 0 7049

2 35934 098.3225 149.6995 0006896 170.1002 189.9896 14.52889913 74414

166

Bibliography

[Akan, 2002] Akan, O. (2002). Performance of tcp protocols in deep space commu-
nication networks. IEEE Communications Letter, 6:478–481.

[Alfriend et al., 2010] Alfriend, R., Vadali, S., Gurfil, P., How, J., and Breger, L.
(2010). Spacecraft Formation Flying. Elsevier.

[Alminde et al., 2003] Alminde, L., Bisgaard, M., Vinther, D., Viscor, T., and Os-
tergard, K. (2003). Educational value and lessons learned from the aau-cubesat
project. In Recent Advances in Space Technology (RAST 2003), Istanbul.

[Barbulescu et al., 2002] Barbulescu, L., A. Howe, A., Watson, J., and Whitley, D.
(2002). Satellite range scheduling: A comparison of genetic, heuristic and local
search. In Seventh International Conference on Parallel Problem Solving from
Nature 2002, pages 611–620.

[Barbulescu et al., 2004a] Barbulescu, L., How, A., Whitley, D., and Roberts, M.
(2004a). Trading places: How to schedule more in a multi-resource oversubscribed
scheduling problem. In International Conference on Automated Planning and
Scheduling 2004, pages 227–234.

[Barbulescu et al., 2007a] Barbulescu, L., Howe, A., Whitley, D., and Roberts, M.
(2007a). Understanding algorithm performance on an oversubscribed scheduling
application. In Conference on Artificial Intelligence 2007 AAAI, pages 577–615.

[Barbulescu et al., 2007b] Barbulescu, L., Kramer, L., and Smith, S. (2007b).
Benchmark problems for oversubscribed scheduling. In The 17th International
Conference on Automated Planning & Scheduling.

167

168

[Barbulescu et al., 2004b] Barbulescu, L., Watson, J., Whitley, D., and Howe, A.
(2004b). Scheduling space-ground communication for the air force satellite control
network. Journal of Scheduling, 7(1):7–34.

[Barbulescu et al., 2004c] Barbulescu, L., Whitley, D., and How, A. (2004c). Leap
before you look: An effective strategy in an oversubscribed scheduling problem.
In International Workshop on Scheduling a Scheduling Competition AAAI 2004,
pages 143–148.

[Barza et al., 2006] Barza, R., Aoki, Y., and Schilling, K. (2006). Cubesat uwe-1 -
technology tests and in orbit results. In 57th International Astronautical Congress
Valencia, number IAC-06-B5.3.07.

[Becker and Smith, 2000] Becker, M. and Smith, S. (2000). Mixed-initiative re-
source management: The amc barrel allocator. In 5th Int. Conf. on AI Planning
and Scheduling, pages 31–41.

[Beech et al., 1997] Beech, W., Nielsen, D., and Taylor, J. (1997). Ax.25 link access
protocol for amateur packet radio, version 2.2.

[Bensana et al., 1999] Bensana, E., Lemaitre, M., and G., V. (1999). Earth obser-
vation satellite management. Constraints, 4(3):293–299.

[Bensana et al., 1996] Bensana, E., Verfaillie, G., Agnese, J., Bataille, N., and
Blumstein, D. (1996). Exact and inexact methods for the daily managment of an
earth observing satellite. In SpaceOps, pages 507–514.

[Bester et al., 2003] Bester, M., Lewis, M., Quinn, T., and Rauch-Leiba, J. (2003).
Automation of operations and ground systems at u.c. berkeley. In 5th Interna-
tional Symposium on Reducing the Cost of Spacecraft Ground System Operations,
Pasadena.

[Blair, 1974] Blair, B. (1974). Time and Frequency Theory and Fundamentals, chap-
ter Time and frequency dissemination: an overview of principles and techniques,
pages 233–313. National Bureau of Standards Monograph.

[Blott and N., 1996] Blott, R. and N., W. (1996). The space technology research ve-
hicles: Strv-1a, b, c and d. In 10th annual AIAA/USU Small Satellite Conference,
Logan.

169

[Bresina, 1996] Bresina, J. (1996). Heuristic-biased stochastic sampling. In Thir-
teenth National Conference on Artificial Intelligence, pages 1260–1266.

[Bresina et al., 1995] Bresina, J., Drummond, M., and Swanson, K. (1995). Ex-
pected solution quality. In IJCAI, pages 1583–1591.

[Bresina et al., 1996] Bresina, J., Edgington, W., Swanson, K., and Drummond, M.
(1996). Operational closed-loop observation scheduling and execution. In AAAI-
96 Workshop on Theories of Planning, Action, and Control, pages 29–33.

[Bresina et al., 1997] Bresina, J., Morris, R., and Edgington, W. (1997). Optimizing
observation scheduling objectives. In International Workshop for Planning and
Scheduling in Space 2007.

[Brown, 1992] Brown, C. (1992). Spacecraft Mission Design. AIAA Education Se-
ries.

[Burleigh et al., 2002] Burleigh, S., Cerf, V., Durst, R., Fall, K., Hooke, A., Scott,
K., and Weiss, H. (2002). The interplanetary internet: A communications infras-
tructure for mars exploration. In Acta Astronautica, number 53, pages 4–10.

[Burrowbridge, 1999] Burrowbridge, S. (1999). Optimal allocation of satellite net-
work resource. Master’s thesis, Virginia Polytechnic Institute and State Univer-
sity.

[Busch and Schilling, 2010] Busch, S. and Schilling, K. (2010). A modular and flex-
ible design for a picosatellite bus. In 1st International SPACE World Conference.

[Cakaj et al., 2007] Cakaj, S., Keim, W., and Malaric, K. (2007). Communications
duration with low earth orbiting satellites. In IASTED, 4th International Con-
ference on Antennas, Radar and Wave Propagation, Montreal, pages 85–88.

[CCSDS, 2003a] CCSDS (2003a). TM Space Data Link Protocol. Blue Book. Issue
1. Number 132.0-B-1. CCSDS Secretariat.

[CCSDS, 2003b] CCSDS (2003b). TM Synchronization and Channel Coding. Blue
Book. Issue 1. Number 131.0-B-1. CCSDS Secretariat.

170

[Chen et al., 1999] Chen, W., Jain, N., and Singh, S. (1999). Anmp: Ad hoc network
network management protocol. In IEEE Journal on Selected Areas in Communi-
cations, volume 17, pages 1506–1531.

[Cormen et al., 2009] Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2009).
Introduction to Algorithms. MIT Press.

[Curtis et al., 2003] Curtis, A., Rilee, M. L., Clark, P., and Marr, G. (2003). Use
of swarm intelligence in spacecraft constellations for the resource exploration of
the asteroid belt. In Third International Workshop on Satellite Constellation and
Formation Flying, Pisa, pages 24–26.

[Cutler, 2003] Cutler, J. (2003). Ground station virtualization. In The Fifth In-
ternational Symposium on Reducing the Cost of Spacecraft Ground Systems and
Operations, Pasadena.

[Cutler and Bhasin, 2002] Cutler, J. and Bhasin, K. (2002). Applying the lessons
of internet services to space systems. In Proceedings of the IEEE Aerospace Con-
ference, Montana.

[Cutler et al., 2002] Cutler, J., Lindner, P., and Fox, A. (2002). A federated ground
station network. In SpaceOps 2002, Houston.

[Dabrowska and Stolarski, 2007] Dabrowska, K. and Stolarski, M. (2007). Ground
segment of distributed ground station system. In EUROCON 2007, Warsaw.

[Damiani et al., 2006] Damiani, S., Dreihahn, H., Noll, J., Niezette, M., and Calzo-
lari, G. P. (2006). Automated allocation of esa ground station network services.
In International Workshop on Planning and Scheduling for Space,.

[Damiani et al., 2007] Damiani, S., Dreihahn, H., Noll, J., Niezette, M., and Calzo-
lari, G. P. (2007). A planning and scheduling system to allocate esa ground station
network services. In The International Conference on Automated Planning and
Scheduling, Providence, Rhode Island.

[Damiani et al., 2004] Damiani, S., Verfaillie, G., and Charmeau, M. (2004). Au-
tonomous management of an earth watching satellite. In 5th IFAC Symposium
on intelligent autonomous vehicles, Lisbon.

171

[Damiani et al., 2005a] Damiani, S., Verfaillie, G., and Charmeau, M. (2005a). An
anytime planing approach for the management of an earth watching satellite. In
International Conference on Autonomous Agents.

[Damiani et al., 2005b] Damiani, S., Verfaillie, G., and Charmeau, M. (2005b). A
continuous anytime planning module for an autonomous earth watching satel-
lite. In The International Conference on Automated Planning and Scheduling,
Providence, Monterey.

[Damiani et al., 2005c] Damiani, S., Verfaillie, G., and Charmeau, M. (2005c). An
earth watching satellite constellation: How to manage a team of watching agents
with limited communications. In Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems, pages 455 – 462.

[Drummond et al., 1995] Drummond, M., Bresina, J., Edgington, W., Swanson, K.,
Henry, G., and Drascher, E. (1995). Flexible scheduling of automatic telescopes
over the internet. In Henry & Eaton (eds). Robotic Telescopes: Current Capabil-
ities, Present Developments, and Future Prospects for Automated Astronomy.

[Drummond et al., 1994] Drummond, M., Bresina, J., and Swanson, K. (1994).
Just-in-case scheduling. In Twelfth National Conference on Artificial Intelligence,
pages 1098–1104.

[Durst et al., 1996] Durst, R. C., Miller, G. J., and Travis, E. J. (1996). Tcp exten-
sions for space communications. In ACM MobiComm, pages 15–26.

[Fisher et al., 1999] Fisher, F., Mutz, D., Estlin, T., Paal, L., Law, E., Golshan, N.,
and Chien, S. (1999). The past, present, and future of ground station automation
within the dsn. In Aerospace Conference, pages 315–324.

[Fortescue, 2003] Fortescue, P. (2003). Spacecraft Systems Engineering. Wiley.

[Funase et al., 2006] Funase, R., Nakamura, Y., Nagai, M., Sako, N., Eishima, T.,
Enokuchi, A., Miyamura, N., Hatsutori, Y., Yoo, I. Y., Komatsu, M., and Naka-
suka, S. (2006). Technology demonstration results on university of tokyo’s pico-
satellite xi-v. In 25th International Symposium on Space Technology and Science,
number 2006-f-07, pages 767–773.

172

[Funase et al., 2005] Funase, R., Takei, E., Nakamura, Y., Nagai, M., Enokuchi,
A., Yuliang, C., Nakada, K., Nojiri, Y., Sasaki, F., Funane, T., Eishima, T.,
and Nakasuka, S. (2005). Technology demonstration on university of tokyo’s
picosatellite ‘xi-v’ and its effective operations result using ground station network.
In IAC, number IAC-05-B5.3/B5.5.02.

[Gil Biraud et al., 2009] Gil Biraud, M., Page, H., and Kurahara, N. (2009). Global
educational network for satellite operations. In IAC.

[Globus et al., 2002] Globus, A., Crawford, J., Lohn, J., and Morris, R. (2002).
Scheduling earth observing fleets using evolutionary algorithms: Problem descrip-
tion and approach. In IWPSS.

[Globus et al., 2003] Globus, A., Crawford, J., Lohn, J., and Pryor, A. (2003).
Scheduling earth observing satellites with evolutionary algorithms. In Space Mis-
sion Challanges for Information Technology.

[Globus et al., 2004] Globus, A., Crawford, J., Lohn, J., and Pryor, A. (2004). A
comparison of techniques for scheduling earth observing satellites. In 16th Con-
ference on the Innovative Applications of Artificial Intelligence, pages 836–843.

[Gooley, 1993] Gooley, T. (1993). Automating the satellite range scheduling pro-
cess. Master’s thesis, Graduate School of Engineering of Air Force Institute of
Technology.

[Graham et al., 1979] Graham, R., Lawler, E., Lenstra, J., and Rinnooy Kan, A.
(1979). Optimization and approximation in deterministic sequencing and schedul-
ing: A survey. Annals of Discrete Mathematics, 5:287–326.

[Guinn, 2002] Guinn, J. (2002). Autonomous navigation flight demonstration re-
sults for the new millenium program eo-1 mission. In AIAA/AAS Astrodynamics
Specialist Conference.

[Haeusler and Wiedemann, 2008] Haeusler, M. and Wiedemann, K. (2008). Hand-
buch der Raumfahrttechnik, chapter Bodenstationsnetzwerk, pages 464–483. Num-
ber 6.3. Hanser.

173

[Herbst et al., 2005] Herbst, B., Zeiger, F., Schmidt, M., and K., S. (2005). Uwe-1:
A pico-satellite to test telecommunication protocols. In International Astronau-
tical Congress.

[Hoffmann and Theis, 2009] Hoffmann, A. and Theis, G. (2009). Improving per-
formance and interoperability of the estrack planning system. In International
Workshop of Planning and Scheduling in Space.

[Hogie et al., 2005] Hogie, K., Criscuolo, E., and Parise, R. (2005). Using standard
internet protocols and applications in space. Computer Networks, 47(5):603–650.

[Hoots and Roehrich, 1998] Hoots, F. and Roehrich, R. (1998). Spacetrack report
no. 3: Models for propagation of norad element sets. Technical report, NORAD.

[Howe et al., 2000] Howe, A., Whitley, D., Barbulescu, L., and Watson, L. (2000).
A study of air force satellite access scheduling. In World Automation Kongress.

[Hsiao et al., 2000] Hsiao, F.-B., Liu, H.-P., and Chen, C.-C. (2000). The develop-
ment of a low-cost amateur microsatellite ground station for space engineering
education. Global Journal of Engineering Education, 4:83–88.

[Israel et al., 2004] Israel, D., Parise, R., and Hogie, K. (2004). Demonstration of
internet technologies for space communication. Technical report, NASA GSFC.

[Jackson et al., 2001] Jackson, C., Smithies, C., and Sweeting, M. (2001). Ip demon-
stration in orbit via uosat 12 minisatellite. In Proceedings of the 52nd International
Astronautical Congress.

[Janicik and Wolff, 2003] Janicik, J. and Wolff, J. (2003). The chipsat spacecraft
design - significant science on a low budget. In SPIE.

[Jason et al., 2000] Jason, S., Ward, J., Curiel, A., Phipps, A., Gomes, L., and
Sweeting, M. (2000). Low cost planetary exploration: Surrey lunar minisatellite
and interplanetary platform missions. In Small Satellite Conference, pages 669–
680.

[Jefferson et al., 1996] Jefferson, D., Lichten, S., and Young, L. (1996). A test of
precision gps clock synchronization. In IEEE International Frequency Control
Symposium, pages 1206–1210.

174

[Karabeyoglu et al., 2005] Karabeyoglu, A., Falconer, T., Cantwell, B., and Stevens,
J. (2005). Design of an orbital hybrid rocket vehicle launched from canberra
air platform. In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference,
number AIAA-2005-4096.

[Karn, 2002] Karn, P. (2002). Proposal for a fec-coded ao-40 telemetry link. In
AMSAT Annual Meeting, pages 60–73.

[Kayal, 2000] Kayal, H. (2000). An experimental low-cost ground station for the
small satellite project bird. Acta Astronautica, 46:213–220.

[Kayal et al., 2008] Kayal, H., Baumann, F., and Brieß, K. (2008). Beesat - a pico
satellite of tu berlin for the in-orbit verification of miniaturised wheels. In 59th
International Astronautical Congress, number IAC-08-B4.4.B10.

[Klimant and Piotraschke, 2003] Klimant, K. and Piotraschke, R. Schönfeld, D.
(2003). Informations- und Kodierungstheorie. Teubner B.G. GmbH.

[Klofas et al., 2009] Klofas, B., Anderson, J., and Leveque, K. (2009). A survey of
cubesat communication systems. The AMSAT Jounal, November/December:23–
30.

[Kramer et al., 2007a] Kramer, L., Barbulescu, L., and Smith, S. (2007a). Ana-
lyzing basic representation choices in oversubscribed scheduling problems. In
MISTA.

[Kramer et al., 2007b] Kramer, L., Barbulescu, L., and Smith, S. (2007b). Under-
standing performance tradeoffs in algorithms for solving oversubscribed schedul-
ing. In Conference on Artificial Intelligence IAAA, pages 1019–1024.

[Kramer and Smith, 2003] Kramer, L. and Smith, S. (2003). Maximizing flexibility:
A retraction heuristic for oversubscribed schedule problems. In Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence, pages 1218–
1223.

[Kramer and Smith, 2004a] Kramer, L. and Smith, S. (2004a). Task swapping for
schedule improvement: A broader analysis. In ICAPS, pages 235–243.

175

[Kramer and Smith, 2004b] Kramer, L. and Smith, S. (2004b). Task swapping:
Making space in schedules for space. In Fourth International Workshop on Plan-
ning and Scheduling for Space (IWPSS ’04).

[Kramer and Smith, 2005] Kramer, L. and Smith, S. (2005). The amc scheduling
problem: A description for reproducibility. Technical Report CMU-RI-TR-05-75,
Robotics Institute, Carnegie Mellon University.

[Lai and Lu, 2010] Lai, H.-K. and Lu, E.-H. (2010). Hybrid coding gain and hybrid
arq based on conception of majority voting. International Journal of Computer
Networks and Communications, 2(1):98–105.

[Lai et al., 2009] Lai, H.-K., Ma, C.-C., and Lu, E.-H. (2009). Error control scheme
of hybrid arq based on majority voting bit by bit. In 3rd International Conference
and Workshops on Advances in Information Security and Assurance, pages 563–
569.

[Lamport and Melliar-Smith, 1985] Lamport, L. and Melliar-Smith, P. (1985). Syn-
chronizi.ng clocks in the presence of faults. Journal of the Ascciation for Com-
puting Machinery, 32 No.1:52–78.

[Leinwand and Fang, 1993] Leinwand, A. and Fang, K. (1993). Network manage-
ment: a practical perspective. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

[Leitner, 2004] Leitner, J. (2004). Formation flying - the future of remote sensing
from space. In 2nd International Symposium on Formation Flying - Missions &
Technologies, pages 621–626.

[Leung, 2004] Leung, J. (2004). Handbook of Scheduling. Chapman & Hall/CRC.

[Lin et al., 2005] Lin, W.-C., Liao, D.-Y., Liu, C.-Y., and Lee, Y.-Y. (2005). Daily
imaging scheduling of an earth observation satellite. IEEE Transactions on Sys-
tems, Man, and Cypernetics, 35(2):213–223.

[Lindsay and Kantak, 1980] Lindsay, W. and Kantak, A. (1980). Network syn-
chronization of random signals. EEE Transactions on Communications,, COM-
28:1260–1266.

176

[Lombardi et al., 2001] Lombardi, M., Nelson, L., Novick, A., and Zhang, V. (2001).
Time and frequency measurements using the global positioning system. Interna-
tional Journal of Metrology, Jul-Sep:pp. 2633.

[Maldari and Bobrinskiy, 2008] Maldari, P. and Bobrinskiy, N. (2008). Cost efficient
evolution of the esa network in the space era. Space Operations Communicator,
5:10–18.

[Marszalek et al., 2011] Marszalek, M., Kurz, O., Drentschew, M., Schmidt, M., and
Schilling, K. (2011). Intersatellite links and relative navigation: Pre-conditions
for formation flights with pico- and nanosatellites. In IFAC World Congress.

[McGuire et al., 2006] McGuire, J., Galysh, I., Doherty, K., Heidt, H., and Neimi,
D. (2006). Forward error correction extension to ax.25 link protocol for amateur
packet radio. Technical report, Stensat Group LLC.

[Melville, 2009] Melville, N. (2009). Genso project - concept, progress and demon-
stration. In AMSAT-UK Colloquium.

[Menana and Demassey, 2009] Menana, J. and Demassey, S. (2009). Sequencing
and counting with the multicost-regular constraint. In 6th International Con-
ference on Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, volume 5547, pages 178–192.

[Michalewicz and Fogel, 2004] Michalewicz, Z. and Fogel, D. (2004). How to Solve
It: Modern Heuristics. Springer-Verlag.

[Mills, 1988] Mills, D. (1988). Network time protocol (version 1) specification and
implementation. Network Working Group Report.

[Mills, 1991] Mills, D. (1991). Internet time synchronization: the network time
protocol. IEEE Trans. Communications, COM-39, 10:1482–1493.

[Mills, 1992] Mills, D. (1992). Network time protocol (version 3) specification, im-
plementation and analysis. Network Working Group Report.

[Mills, 1993] Mills, D. (1993). Precision synchronization of computer network clocks.
Technical Report Report 93-11-1, Electrical Engineering Department.

177

[Mills, 1995] Mills, D. (1995). Improved algorithms for synchronizing computer net-
work clocks. IEEE/ACM Trans. Netw., 3(3):245–254.

[Mills, 1996] Mills, D. (1996). The network computer as precision timekeeper. In
Precision Time and Time Interval (PTTI) Applications and Planning Meeting.

[Mills, 1998] Mills, D. (1998). Network time protocol (version 2) specification and
implementation. Network Working Group Report.

[Mills, 2003] Mills, D. (2003). A brief history of ntp time: confessions of an internet
timekeeper. ACM Computer Communications Review, 33:9–22.

[Mills, 2006] Mills, D. (2006). Computer Network Time Synchronization: the Net-
work Time Protocol. CRC Press.

[Mills et al., 2005] Mills, D., Plonka, D., and Montgomery, J. (2005). Simple net-
work time protocol (sntp) version 4 for ipv4, ipv6 and osi. Network Working
Group Report.

[Minelli et al., 2008] Minelli, G., Kitts, C., Ronzano, K., Beasley, C., Rasay, R.,
Mas, I., Williams, P., Mahacek, P., Shepard, J., Acain, J., Hines, J., Agasid, E.,
Friedericks, C., Piccini, M., Parra, M., Timucin, L., Henschke, M., Luzzi, E.,
Mai, N., McIntyre, M., Ricks, R., Squires, D., Storment, C., Tucker, J., Yost,
B. andDefouw, G., and Ricco, A. (2008). Extended life flight results from the
genesat-1 biological microsatellite mission. In 22nd Annual AIAA/USU Confer-
ence on Small Satellites, number SSC-08-II-4.

[Montenbruck et al., 2006] Montenbruck, O., Gill, E., and Markgraf, M. (2006).
Phoenix-xns - a miniature real-time navigation system for leo satellites. In 3rd
ESA Workshop on Satellite Navigation User Equipment Technologies.

[Montenegro, 2008] Montenegro, S. (2008). Handbuch der Raumfahrttechnik, chap-
ter Datenmanagement, pages 356–387. Hanser.

[Moon et al., 1998] Moon, S., Skelly, P., and Towsley, D. (1998). Estimation and
removal of clock skew from network delay measurements. Technical report, Uni-
versity of Massachusetts.

178

[Murdoch, 2006] Murdoch, S. (2006). Hot or not: revealing hidden services by their
clock skew. In CCS ’06: Proceedings of the 13th ACM conference on Computer
and communications security, pages 27–36.

[Muylaert, 2009] Muylaert, J. (2009). An international network of 50 double cube-
sats for multi-point, in-situ, long-duration measurements in the lower thermo-
sphere (90 - 320 km) and for re-entry research. QB50 Workshop.

[Nakamura and Nakasuka, 2006] Nakamura, Y. and Nakasuka, S. (2006). Ground
station networks to improve operations efficiency of small satellites and its oper-
ation scheduling method. In IAC.

[Nguyen, 2007] Nguyen, M. (2007). University cubesat projects sector overview.
Online Report.

[Nugent et al., 2008] Nugent, R., Munakata, R., Chin, A., Coelho, R., and Puig-
Suari (2008). The cubesat: The picosatellite standard for research and education.
In AIAA SPACE Conference, number AIAA-2008-7736.

[Oda and Nishikawa, 2007] Oda, J. and Nishikawa, K. (2007). Results of experiment
2 on cubesat operation in irv kiruna. Technical report, University of Tokyo.

[Oda et al., 2008] Oda, Y., Komatsu, M., Kurahara, N., Nakamura, Y., and
Sakamoto, Y. (2008). Improvement in university satellite operation using ground
station network. In 26th International Symposium on Space Technology and Sci-
ence, number TU31-TU34.

[Page et al., 2010] Page, H., Biraud, M., Beavis, P., and Aguado, F. (2010). Genso:
A report on the early operational phase. In International Astronautical Congress,
number IAC-10.B4.3.8.

[Page et al., 2008] Page, H., Preindl, B., and Nikolaidis, V. (2008). Genso: The
global educational network for satellite operations. In IAC, number B4.3.

[Pan et al., 2007] Pan, Y., Ge, N., and Dong, Z. (2007). Crc look-up table optimiza-
tion for single-bit error correction. Tsinghua Science and Technology, 12:620–623.

[Pemberton and Galiber, 2000] Pemberton, J. and Galiber, F. (2000). A
constrained-based approach to satellite scheduling. In DIMACS workshop on
on Constraint programming and large scale discrete optimization, pages 101–114.

179

[Pinciroli et al., 2008] Pinciroli, C., Birattari, M., Tuci, E., Dorigo, M., Zapatero,
M., Vinko, T., and Izzo, D. (2008). Self-organizing and scalable shape formation
for a swarm of pico satellites. In NASA/ESA Conference on Adaptive Hardware
and Systems, pages 57–61.

[Postel, 1983] Postel, J. (1983). Daytime protocol. DARPA NetworkWorking Group
Report.

[Preindl et al., 2010] Preindl, B., Seidl, M., Mehnen, L., Krinninger, S., Stuglik,
S., and Machnicki, D. (2010). A performance comparison of different satellite
range scheduling algorithms for global ground station networks. In International
Astronautical Congress, number IAC-10.B4.7.1.

[Puig-Suari et al., 2001a] Puig-Suari, J., Turner, C., and Ahlgren, W. (2001a). De-
velopment of the standard cubesat deployer and a cubesat class picosatellite. In
Aerospace Conference, pages 1/347–1/353.

[Puig-Suari et al., 2001b] Puig-Suari, J., Turner, C., and Twiggs, R. (2001b). Cube-
sat: The development and launch support infrastructure for eighteen different
satellite customers one one launch. In SSC.

[Radice et al., 2010] Radice, G., Yang, T., and Zhang, W. (2010). Robust algo-
rithms for formation flying reconfiguration. In International Workshop on Satellite
Constellations and Formation Flying.

[Ravandoor et al., 2010] Ravandoor, K., Drentschew, M., Schmidt, M., and
Schilling, K. (2010). Orbit and drift analysis for swarms of picosatellites. In
1st International SPACE World Conference.

[Raymond et al., 2004] Raymond, C., Bristow, J., and Schoeberl, M. (2004). Needs
for an intelligent distributed spacecraft infrastructure. In Nasa Earth Science
Technology Workshop.

[Richharia, 1999] Richharia, R. (1999). Satellite Communication Systems: Design
Principles (Telecommunications). McGraw-Hill Inc.

[Rodriguez-Osorio et al., 2008] Rodriguez-Osorio, R. M., Diaz-Miguel Coca, S., and
Vedal, F. (2008). Educational ground station based on software defined radio. In
IAC, number IAC-08-E1.1.12.

180

[Ruan et al., 2005] Ruan, Q., Tan, Y., He, R., and Chen, Y. (2005). Simulation-
based scheduling for photo-reconnaissance satellite. In Winter Simulation Con-
ference, pages 2585–2589.

[Sailer, 2000] Sailer, T. (2000). Soundmodem on modern operating systems. Tech-
nical report, BayCom.

[Sandau, 2009] Sandau, R. (2009). Distributed satellite systems for earth observa-
tion and surveillance. In RTO Lecture Series, volume RTO-EN-SCI-209.

[Schalck, 1993] Schalck, M. (1993). Automating satellite range scheduling. Master’s
thesis, Graduate School of Engineering of the Air Force Institute of Technology.

[Scharf et al., 2003] Scharf, D., Hadaegh, F., and Ploen, S. (2003). A survey of
spacecraft formation flying guidance. In Amer. Contr. Conf., pages 2976–2985.

[Scharf et al., 2004] Scharf, D., Hadaegh, F., and Ploen, S. (2004). A survey of
spacecraft formation flying guidance and control (part ii): Control. In American
Control Conf.

[Schilling, 2009a] Schilling, K. (2009a). Earth observation by distributed networks
of small satellites. In ICICI-BME.

[Schilling, 2009b] Schilling, K. (2009b). Mission analysis for low-earth-observation
missions with spacecraft formations. NATO Lecture Series SCI-209. Small Satel-
lite Formations For Distributed Suveillance: System Design and Optimal Control
Considerations.

[Schilling, 2009c] Schilling, K. (2009c). Networked distributed pico-satellite sys-
tems for earth observation an telecommunication applications. In IFAC Workshop
Aerospace Guidance, Navigation and Flight Control Systems, Samara.

[Schilling and Brieß, 2008] Schilling, K. and Brieß, K. (2008). Analyse der anwen-
dungsfelder und des nutzungspotentials von pico- und nanosatelliten. Endbericht,
FKZ: 50RU0701.

[Schilling et al., 2006] Schilling, K., Schmidt, M., and Barza, R. (2006). In orbit
experiences from the picosatellite uwe-1. In Small Satellite Systems and Services.

181

[Schmidt, 2006] Schmidt, M. (2006). Entwurf und durchfuehrung von experimenten
zur charakterisierung der kommunikationsverbindung von uwe-1 mit der anpas-
sung und optimierung der benoetigten protokolle. In Deutscher Luft- und Raum-
fahrtkongress, Braunschweig.

[Schmidt et al., 2010] Schmidt, M., Bolvansky, J., and Schilling, K. (2010). Satel-
lite operation improvement through efficient data combination in ground station
networks. In IFAC Symposium on Automatic Control in Aerospace, Nara.

[Schmidt et al., 2009] Schmidt, M., Ravandoor, K., Kurz, O., Busch, S., and
Schilling, K. (2009). Attitude determination for the nano-satellite uwe-2. In
Space Technolog, number 28, pages 67–74.

[Schmidt et al., 2008] Schmidt, M., Rybysc, M., and Schilling, K. (2008). A schedul-
ing algorithm for ground station networks related to small satellites. In SpaceOps,
Heidelberg.

[Schmidt and Schiling, 2009] Schmidt, M. and Schiling, K. (2009). Small satellites
for educational purposes. In 60th International Astronautical Congress, pages
81–87.

[Schmidt and Schilling, 2008a] Schmidt, M. and Schilling, K. (2008a). An extensible
on-board data handling software platform for pico satellites. Acta Astronautica,
63, Issues 11-12:1299–1304.

[Schmidt and Schilling, 2008b] Schmidt, M. and Schilling, K. (2008b). Internet-
based ground station networks for pico-satellites. In SpaceOps, Heidelberg.

[Schmidt and Schilling, 2010a] Schmidt, M. and Schilling, K. (2010a). Formation
flying techniques for pico-satellites. In 6th International Workshop on Satellite
Constellation and Formation Flying, Taipeh.

[Schmidt and Schilling, 2010b] Schmidt, M. and Schilling, K. (2010b). Ground sta-
tion majority voting for communication improvement in ground station networks.
In SpaceOps, Huntsville.

[Schmidt et al., 2007] Schmidt, M., Shankar, R., and Schiling, K. (2007). The pi-
cosatellite uwe-1 and ip based telecommunication experiments. In Automatic
Control in Aerospace IFAC, Toulouse.

182

[Schmidt and Zeiger, 2006] Schmidt, M. and Zeiger, F. (2006). Design and imple-
mentation of in orbit experiments for the pico satellite uwe-1. In International
Astronautical Congress, number IAC-06-E2.1.07. 2006.

[Schnurr et al., 2002] Schnurr, R., Wesdock, J., Criscuolo, E., Hogie, K., and Parise,
R. (2002). Hdlc link framing for future space missions. In SpaceOps 2002 Con-
ference, pages 1–11.

[Scholz et al., 2009] Scholz, A., Miau, J.-J., Dachwald, B., Plescher, E., Ley, W.,
and Juang, J.-C. (2009). Flight results of the compass-1 picosatellite mission. In
60th International Astronautical Congress, number IAC-09-B4.3.10, pages 1289–
1298.

[Serrano et al., 2009] Serrano, M. A., Garcia Matatotos, M. A., and Engdahl, M.
(2009). Achieving the ers-2 - envisat intersatellite inter-satellite interfermetry
tandem constellation. In 21st International Symposium on Space Flight Dynamics.

[Shirville and Klofas, 2007] Shirville, G. and Klofas, B. (2007). Genso: A global
ground station network. In AMSAT Symposium.

[Shukla and Bergmann, 2004] Shukla, S. and Bergmann, N. (2004). Single bit error
correction implementation in crc-16 on fpga. In In International Conference on
Field Programmable Technolog, pages 319–322.

[Smith et al., 2000] Smith, D., Frank, J., and Jonsson, A. (2000). Bridging the gap
between planning and scheduling. The Knowledge Engineering Review, 15:47–83.

[Somayajulu, 1980] Somayajulu, Y. (1980). Time and frequency dissemination using
satellite transmissions. In Indian natn. Sci. Acad., pages 268–274.

[Stallings, 1993] Stallings, W. (1993). SNMP, SNMPv2, and CMIP. The practical
guide to network management standards. Addison-Wesley.

[Steele, 2004] Steele, B. (2004). Internet protocol (ip) in space. Technical report,
University of Maryland University College.

[Stolarski, 2009] Stolarski, M. (2009). Distributed ground station system experimen-
tal theory confirmation. In The European Ground System Architecture Workshop
(ESAW), pages 1–12.

183

[Stolarski and Winiecki, 2006] Stolarski, M. and Winiecki, W. (2006). Building dis-
tributed ground station system with radio amateurs. In Space Technology Work-
shop (MIKON 2006), pages 49–54.

[Tanenbaum, 2003] Tanenbaum, A. S. (2003). Computer Networks. Pearson, Upper
Saddle River, NJ, 4. edition.

[Tu et al., 2000] Tu, K., Pen, H., and Liao, C. (2000). Clock synchronization us-
ing gps,glonass carrier phase. In 32nd Annual Precise Time and Time Interval
Meeting, pages 171–179.

[Tuli et al., 2006] Tuli, T., Orr, N., and Zee, R. (2006). Low cost ground station
design for nanosatellite missions. In AMSAT-NA Space Symposium.

[Turner, 2008] Turner, P. (2008). Handbuch der Raumfahrttechnik, chapter Kom-
munikation, pages 372–387. Hanser.

[Twiggs, 2002] Twiggs, R. (2002). The next generation of innovative space engineers:
University students are now getting a taste of space experience building, launching
and operating their own space experiments with low-casts picosatellites. In 5th
ESA International Conference on Spacecraft Guidance, Navigation and Control
Systems, pages 409–422.

[UNISEC-GSN, 2006] UNISEC-GSN (2006). GS Management Service Manual. Uni-
versity of Tokyo.

[Unsal, 1993] Unsal, C. (1993). Self-organization in large populations of mobile
robots. Master’s thesis, Virginia Polytechnic Institute and State University.

[Vallado, 2008] Vallado, D. (2008). Sgp4 orbit determination. In AIAA/AAS As-
trodynamics Specialist Conference, number AIAA-2008-6670.

[Wang et al., 2007] Wang, J., Jing, N., and Li, J. (2007). A multi-objective imaging
scheduling approach for earth observing satellites. In Genetic And Evolutionary
Computation Conference, pages 2211–2218.

[Wang and Hadaegh, 1996] Wang, P. and Hadaegh, F. (1996). Coordination and
control of multiple microspacecraft moving in formation. Journal of Astronautical
Science, 44(3):315–355.

184

[Wang and Hadaegh, 2000] Wang, R. and Hadaegh, G. (2000). Self-organizing con-
trol of multiple free-flying miniature spacecraft in formation. In AIAA Guidance,
Navigation and Control Conference, number AIAA-2000-4437.

[Wertz and Larson, 1999] Wertz, J. and Larson, W. (1999). Space Mission Analysis
and Design. Microcosm Press.

[Whitworth, 2003] Whitworth, G. (2003). Space Mission Analysis and Design, chap-
ter Ground System Design and Sizing, pages 621–644. Microcosm Press and
Kluwer Academic Publishers.

[Wittmann and Hanowski, 2008] Wittmann, K. and Hanowski, N. (2008). Hand-
buch der Raumfahrttechnik, chapter Raumfahrtmissionen, pages 41–67. Number 1.
Hanser.

[Wolfe and Sorensen, 2000] Wolfe, W. and Sorensen, S. (2000). Three scheduling
algorithms applied to the earth observing systems domain. Management Science,
46:148–166.

[Xiang and Jorgensen, 2005] Xiang, W. and Jorgensen, J. L. (2005). Formation
flying: A subject being fast unfolding in space. In 5th IAA Symposium, number
IAA-B5-0309P.

[Zeiger et al., 2008] Zeiger, F., Kraemer, N., and Schiling, K. (2008). Parameter
tuning of routing protocols to improve the performance of mobile robot teleopation
via wireless ad-hoc networks. In 5th International Conference on Informatics,
Automation and Robotics (ICINCO), pages 53–60.

[Zeiger et al., 2009a] Zeiger, F., Krämer, N., Sauer, M., and Schilling, K. (2009a).
Mobile Robot Teleoperation via Wireless Multihop Networks - Parameter Tuning
of Protocols and Real World Application Scenarios, pages 139–152. Springer.

[Zeiger et al., 2006] Zeiger, F., Schmidt, M., and Schilling, K. (2006). A flexible
extension for pico-satellite communication based on orbit operation results of
uwe-1. In International Astronautical Congress, number IAC-06-B5.2.05.

[Zeiger et al., 2009b] Zeiger, F., Schmidt, M., and Schilling, K. (2009b). Remote
experiments with mobile robot hardware via internet at limited link capacity.
IEEE Transactions on Industrial Electronics, 56(12):4798–4805.

185

[Zufferey et al., 2008] Zufferey, N., Amstutz, P., and Giaccari, P. (2008). Graph
colouring approaches for a satellite range scheduling problem. Journal of Schedul-
ing, 11:263–277.

	Introduction
	Motivation
	Contributions
	Outline

	Background
	Small satellites in education and research
	The small satellite concept
	Evolution of the pico and nano-satellite approach
	The UWE satellite series

	A new concept of ground station networks
	Classic and academic ground station networks
	Projects establishing academic ground station networks

	Distributed / multi satellite systems
	Distributed satellite systems as a new paradigm for satellite missions
	Application scenarios for distributed satellite systems
	Example mission

	Challenges and technologies for distributed space missions
	Challenges for highly distributed satellite missions
	Technologies for distributed space missions

	Redundant scheduling for ground station networks
	State of the art
	Satellite Range Scheduling
	Earth Observation Scheduling (EOS)
	ESA tracking stations - ESTRACK
	Summary

	Scheduling for low cost ground station networks
	Scheduling requirements of academic ground station networks
	Problem description
	Scheduling objective
	Classification

	Scheduling approach
	System overview
	Scheduling objective function
	Behavior of the penalty function for two arbitrary requests
	Redundancy distribution for more than two arbitrary requests
	Search algorithms
	Implementation

	Performance evaluation
	Evaluation criteria
	Experiments
	Results

	Conclusion and discussion

	Data management for information recovery in ground networks
	Problem definition and state of the art
	Problem description
	Data and network management in computer networks
	Data management for information recovery
	Time synchronization

	Synchronization in academic ground station networks
	Time synchronization between ground stations
	Data synchronization on frame level

	Data combination in academic ground station networks
	Ground station majority voting approach
	Brute force method for data recovery
	Single bit error correction in AX.25

	Performance analysis
	Performance of the data combination algorithm

	Hardware tests and results
	Ground station network simulation
	Local ground station network with radio link

	Conclusion and future work

	Conclusion
	Propagation delay in Low Earth Orbits (LEO)
	OSI layer model for satellite communication
	Satellite orbit data for evaluation of CUSS
	WFRT-Schmidt-Front-A4_Corel_X5.pdf
	Seite 1

	WFRT-Schmidt-Back-A4_Corel_X5.pdf
	Seite 1

