yellow precipitate appeared. Addition of THF ($3-4 \mathrm{~mL}$) resulted in a clear solution and cooling in a $-20^{\circ} \mathrm{C}$ freezer for 10 h gave the product 2 as orangered crystals. Yield $0.37 \mathrm{~g}, 36 \%$; m.p. $140^{\circ} \mathrm{C}$ (dec. slow). ${ }^{11} \mathrm{~B}$ NMR: $\delta=74.9$.

Received: May 2, 1990 [Z 3940 IE]
German version: Angew. Chem. 102 (1990) 1061
[1] P. P. Power, Angew. Chem. 102(1990) 527; Angew. Chem. Int. Ed. Engl. 29 (1990) 449.
[2] J. A. Perri, S. La Placa, B. Post, Acta Crystallogr. 11 (1958) 310.
[3] K.-H. van Bonn, P. von R. Schreyer, P. Paetzold, R. Boese, Chem. Ber. 121 (1988) 1045.
[4] H.-G. von Schnering. M. Somer, M. Hartweg, K. Peters, Angew. Chem. 102 (1990) 63; Angew. Chem. Int. Ed. Engl. 29 (1990) 65.
[5] Crystal data for 1 and $2\left(T=130 \mathrm{~K}, \mathrm{Cu}_{\mathrm{K} \mu}\right.$ radiation, $(\hat{i}=1.54178 \AA)$: : $a=21.911(3), \quad b=15.974(3), \quad c=19.768(4) \AA$, orthorhombic, Pbcn, $Z=8.3817$ unique reflections observed $(I>2 \sigma(I)), R=0.069$. 2: $a=18.398(8), b=9.276(3), c=22.868(8) \AA, \beta=106.12(1)^{c}$, monoclinic, $P 2_{1} / c, Z=4,4873$ unique reflections observed ($I>2 \sigma(I)$), $R=0.097$. Further details of the crystal structure investigations may be obtained from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissen-schaftlich-technische Information $\mathrm{mbH}, \mathrm{D}-7514$ Eggenstein-Leopoldshafen 2 (FRG), on quoting the depository number CSD-54662, the names of the authors, and the journal citation.
[6] R. A. Bartlett. X. Feng. P. P. Rower, J. Am. Chem. Soc. 108 (1986) 6817.
[7] Covalent radii estimated from homonuclear bond lengths: L. Sutton (Ed.): Tables of Interatomic Distances and Configuration in Molecules and Ions (Spec. Publ.-Chem. Soc. 11 (1958); ibid. 18 (1965); J. C. Slater, J. Chem. Phys. 41 (1964) 3199.
[8] T. L. Allen, A. C. Scheiner, H. F. Schaefer III, Inorg. Chem. 29 (1990) 1930.
[9] ${ }^{1} \mathrm{H}$ NMR (in [D ${ }_{10}$]xylene, $27^{\circ} \mathrm{C}$): $1: \delta=1.4$ (m, THF), 2.25 (s, p-Me), 2.57 (s. $0 . \mathrm{Me}), 2.73(\mathrm{~s}, 0-\mathrm{Me}), 3.45(\mathrm{~m}, \mathrm{THF}), 6.77(\mathrm{~s}, \mathrm{~m}-\mathrm{H}), 6.9(\mathrm{~m}, \mathrm{Ph}), 7.42$ (m, Ph). 2: $\delta=1.86\left(\mathrm{~s}, \mathrm{Me}_{2} \mathrm{~N}\right), 1.896\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.24,2.25(\mathrm{~s}, \mathrm{p}-\mathrm{Me})$, 2.663, 2.868 (s, o-Me), 6.87, 6.93 (m-CH), 7.06 (m, Ph), 7.76 (d, Ph).
[10] It is possible to propose that the inequivalence of the mesityl resonances could be due to a restricted rotation around the $\mathrm{B}-\mathrm{C}$ bonds. Thus, if the mesityls were locked into a position perpendicular to the boron- $\mathrm{C} 10-\mathrm{C} 1$ plane and if the As-C bond were in the mirror plane (i.e., no B-As π interaction), inequivalent ortho- H and meta- H resonances would also be observed. This scenario is unlikely because (1) related studies [1] with B-P compounds fail to show any locking in of the mesityl orientations until a very low temperature $\left(-80^{\circ} \mathrm{C}\right)$ is reached, (2) the barrier observed, $20.9 \mathrm{kcal} \mathrm{mol}^{-1}$, is extremely high and incompatible with a rotation barrier around a B-C bond, (3) two para peaks are observed for the mesityl groups in the ${ }^{1} \mathrm{H}$ NMR spectrum of 2, and (4) the X-ray structure supports π interaction.
[11] D. Kost, E. H. Carlson, M. Raban, J. Chem. Soc. Chem. Commun. 656.
[12] P. A. Barfield, M. F. Lappert, J. Lee, Trans. Faraday Soc. 64 (1968) 2571.
[13] D. C. Pestana and P. P. Power, unpublished results.
[14] $\mathrm{Mes}_{2} \mathrm{BF}$ was synthesized by method of Pelter. The synthesis is identical to that described for $\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{2} \mathrm{BF}$: H. Chen, R. A. Bartlett, M. M. Olmstead, P. P. Power, S. C. Shoner, J. Am. Chem. Soc. 112 (1990) 1048.
[15] A. Tzschach, G. Pacholke, Chem. Ber. 97 (1964) 419.

Synthesis and NMR Spectra of 2,3-Dihydro-1,3-methanoindene Derivatives and 1,2,3,5-Tetrahydro-1,3-methanopentalene **

By Manfred Christl* and Horst Reuchlein

1,3-Bridged cyclobutanes are interesting models for theoretical ${ }^{[1]}$ and spectroscopic ${ }^{[1 \mathrm{~b}, \mathrm{c}, 2]}$ studies as well as for comparisons of reactivity. ${ }^{\left[1 c,{ }^{3]}\right.}$ Nonetheless, little is known about bicyclo[2.1.1]hexene and its derivatives, since they are accessible only with difficulty. The benzo derivative 1 (2,3-

[^0][**] This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.
dihydro-1,3-methanoindene) is formed as minor product in the reaction of bicyclo[1.1.0]butane with dehydrobenzene ${ }^{\text {[42] }}$ and has also been synthesized in seven steps from benzonorbornadiene. ${ }^{[4 b]}$ Its ${ }^{13} \mathrm{C}$ NMR data are still unknown; however, they were recently calculated. ${ }^{[5]}$
1

 2

Here we report a route to this system and to 1,2,3,5-te-trahydro- 1,3 -methanopentalene (2). The relatively readily accessible bicyclo[2.1.1]hexan-2-one (3) ${ }^{[6]}$ can be converted, via 2 -vinylbicyclo[2.1.1]hexene (6), into the dimethyl dicarboxylate 1 a , as shown in Scheme 1. The key intermediate is 2-lithiobicyclo[2.1.1]hexene (4), formed by reaction of the 2,4,6-triisopropylbenzenesulfonyl hydrazone of 3 with n butyllithium. ${ }^{[7]}$

Scheme 1.[8] a) $2,4,6-(i \mathrm{Pr})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SO}_{2} \mathrm{NHNH}_{2}, \mathrm{MeOH}, \mathrm{HCl}$ (cat.), $20^{\circ} \mathrm{C}, 54 \%$. b) 2 equiv. $n \mathrm{BuLi}$, hexane/tetramethylethylenediamine (1:1), -55 to $20^{\circ} \mathrm{C}$. c) 1 equiv. ethylene oxide, $0-20^{\circ} \mathrm{C}, 49 \%$ based on the hydrazone. d) TosCl , pyridine, 90%. e) $\mathrm{KO} t \mathrm{Bu}, \mathrm{DMSO}, 75^{\circ} \mathrm{C}, 20 \mathrm{Torr}, 82 \%$. f) R-C $\equiv \mathrm{C}-\mathrm{R}$ ($\mathrm{R}=\mathrm{CO}_{2} \mathrm{CH}_{3}$), $\mathrm{CHCl}_{3}, 20^{\circ} \mathrm{C}, 75 \%$. g) 1 equiv. 2,3-dichloro-5,6-dicyano-1,4benzoquinone, $\mathrm{C}_{6} \mathrm{H}_{6}, 80^{\circ} \mathrm{C}, 89 \%$.

To synthesize 2, we first added dibromocarbene to 6 $\left(\mathrm{CHBr}_{3}, \mathrm{KO} t \mathrm{Bu}\right.$, pentane, $-30^{\circ} \mathrm{C}, 90 \%$; endocyclic: exocyclic addition 1:3) and obtained the rearranged product 8 together with unrearranged $9 .{ }^{[8]}$ As expected, ${ }^{[98]}$ reaction of 9 (containing 8) with methyllithium in ether resulted in a Skattebøl rearrangement to give $2^{[8]}$ (4% yield, isolation by preparative gas chromatography).

8
66.3

9

If the behavior of isodicyclopentadiene and related compounds ${ }^{[9 b]}$ can be extrapolated to 2 , then 1,4 additions to the 1,3 -cyclopentadiene system of 2 should lead to polycyclic
olefins with a strongly pyramidalized double bond between two bridgehead C atoms. An interplanar angle of 145°, instead of 180° as found for normal olefin geometry, was calculated for the parent hydrocarbon of $10 .{ }^{[10]}$ The hope that, owing to steric hindrance of $[2+1]$ cycloaddition by the CH_{2} groups of the bicyclohexane system, 2 and dibromocarbene ($\mathrm{CBr}_{4}, \mathrm{MeLi},-78^{\circ} \mathrm{C}$) might undergo rare, but known, ${ }^{[1]]}[4+1]$ cycoladdition to 10 was not fulfilled. Instead, we isolated the bromo derivative $1 b^{[8]}$ in 23% yield. Compound $\mathbf{1 b}$ is presumably formed by $[2+1]$ cycloaddition and ring expansion of the resulting dibromocyclopropane derivative followed by elimination of HBr . Compound 2 also undergoes 1,2 addition with 4 -methyl-1,2,4-tri-azole-3,5(4H)-dione (MTAD) $(2 \rightarrow 11)^{[8]}$ as well as with tetracyanoethylene. However, (E)-1,2-bisphenylsulfonylethylene undergoes slow Diels-Alder reaction with 2 to give 13, which, because of its lability, could not be isolated and was only characterized by an ${ }^{1} \mathrm{H}$ NMR spectrum.

Of particular interest is the ${ }^{13} \mathrm{C}$ NMR spectrum of the cycopentadienyl anion 12, which we generated by treatment of 2 with n-butyllithium. $\mathrm{C}-2,7(\delta=66.4)$ absorb at lower field than $\mathrm{C}-2,7$ of $2(\Delta \delta=16.1)$ and than $\mathrm{C}-2, \mathrm{C}-11$ of 11 ($\Delta \delta=22.3$ and 24.2). The latter effect resembles that observed for the C-2, C-8 signals when 7 is converted into 1 a . Remarkably, the methylene C atoms of the tropylium ion 14 ($\delta=69.0^{[12]}$) are only slightly more deshielded than those of 12 despite the difference in two units of charge.

The annelation of arenes to bicyclo[2.1.1]hexane (C-5: $\delta=39.4^{(2 b)}$) thus causes the methylene C atoms to be strongly deshielded by an amount similar to the difference between the chemical shifts of C-5 in bicyclo[2.1.1]hexane and -hexene $(\Delta \delta=28.7){ }^{[2 b]}$ This effect is correctly reproduced by calculations using the IGLO method. ${ }^{[13]}$ The result

Table 1. Selected physical data for $12,2,6$, and $11-13 ; 200$ or $400-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra and 50 - or $100-\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectra (δ values, coupling constants in Hz). $\mathrm{H} a=\mathrm{Hanti}, \mathrm{H} s=\mathrm{H} s y n, \mathrm{H} c=\mathrm{H} c i s, \mathrm{H} t=\mathrm{H} t r a n s$.

1a: oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.32$ (AA^{\prime} part of an $\mathrm{AA}^{\prime} \mathrm{XX}$ ' spectrum, $J(2 s y n, 8 s y n)=-10.0, J(2,2)=-6.1, J(2 s y n, 8 a n t i)=+0.6 ; 2.8-\mathrm{Hs}) 2.73(\mathrm{~m} ;$ $2,8-\mathrm{Ha}), \quad 3.17 \quad(\mathrm{dt}, \quad J(1,3)=7.2, \quad J(2 a n t i, 3)=2.5 ; \quad 3-\mathrm{H}), \quad 3.33 \quad$ (br.dt, $(J 1,2 a n t i)=2.5 ; 1-\mathrm{H}), 3.78,3.82\left(\right.$ seach $\left.2 \mathrm{CH}_{3}\right), 7.19($ br.d, $J(6,7)=7.3 ; 7-\mathrm{H})$ $7.46(\mathrm{~d} ; 6-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 44.9,45.7$ (deach; $\mathrm{C}-1.3$), $52.2,52.3$ (q each $2 \mathrm{CH}_{3}$), 62.5 (t ; C-2,8), 119.8, 127.0 (d each; C-6. 7), 124.9, 125.5 (s each; C-4. 5), 152.8, 158.1 (s each; C-3a. 7a), 167.5, 168.6 (s each; $2 \mathrm{C}=0$)

2: oil. MS (70 eV): $\mathrm{m} / \mathrm{z}(\%) 118$ (35, M^{\oplus}), 117 (100), 116 (11), 115 (48), 103 (14), 91 (32), 77 (10), 65 (11), 51 (11), $39(18) .{ }^{1} \mathrm{H}^{\mathrm{NM}} \mathrm{MR}\left(\mathrm{CDCl}_{3}\right): 1.80\left(\mathrm{AA}^{\prime}\right.$ part of an AA'XX' spectrum, $J(2 s y n, 7 s y n)=-9.8, J(2,2)=-5.9, J(2 s y n, 7 a n t i)=$ $+0.4 ; 2-\mathrm{Hs}), 2.54(\mathrm{~m} ; 2-\mathrm{Ha}), 3.18$ (br.t, $J(1,2 a n t i)=2.7 ; 1-\mathrm{H}), 3.32$ (pseudoqui, line separation $1.7 \mathrm{~Hz} ; 5-\mathrm{H}$); 5.65 (br. pseudo-t, line separation 1.7 Hz 4-H)[a]. ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): 42.2 (d;C-1,3), $46.1(\mathrm{t} ; \mathrm{C}-5), 50.3(\mathrm{t} ; \mathrm{C}-2,7), 111.5$ (d; C-4.6). 155.6 (s; C-3a, 6a)
6: oil. MS (70 eV): $\boldsymbol{m} / \bar{z}(\%) 106\left(30, M^{\oplus}\right), 105(36), 91(100), 79(41), 78(43)$, 77 (34), 65 (22), 51 (24), 39 (35), 27 (23). ${ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.28$ (m; 5,6-Hs). $2.62(\mathrm{~m} ; 5,6 \cdot \mathrm{Ha}, 4-\mathrm{H}), 2.97(\mathrm{~m} ; 1-\mathrm{H}), 4.99(\mathrm{ddd}, J(7,8 c i \mathrm{~s})=10.6, J(8,8)=1.5$, $J(3,8 c i s)=0.6 ; 8-\mathrm{Hc}), 5.18($ ddd, $J(7,8$ trans $)=17.4, J(3,8$ trans $)=0.9 ; 8-\mathrm{H} t)$, $6.54(\mathrm{dd} ; 7-\mathrm{H}), 6.69(\mathrm{br} . \mathrm{s} ; 3-\mathrm{H})[\mathrm{a}] .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $42.2(\mathrm{~d} ; \mathrm{C}-1), 43.2$ (d; C-4), 64.6 (t; C-5,6), 111.1 (t; C-8), 131.8 (d; C-7), 139.3 (d; C-3), 156.2 (s; C-2): assignment based on a ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ correlation
11: m.p. $74-76^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 0.95$ (dd, $J(2 s y n, 11$ syn $)=10.3$. $J(11,11)=6.7 ; 11-\mathrm{H} s), 2.25(\mathrm{br} . \mathrm{dt}, J(1,11 a n t i)=J(3,11$ anti $)=3.2 ; 11-\mathrm{Ha})$, $2.30(\mathrm{dt}, J(2,2)=7.4, J(1.2 a n t i)=J(2 a n t i, 3)=2.7 ; 2-\mathrm{Ha}), 2.63(\mathrm{dd} ; 2-\mathrm{Hs}), 2.90$ $($ dddd, $J(5,5)=19.1, J(5 \alpha, 5 \mathrm{a})=7.9, J(4,5 \alpha)=3.4 ; J(3,5 \alpha$ or 11 anti, $5 \alpha)=$ $\left.0.9 ; 5-\mathrm{H}_{*}\right), 3.00(\mathrm{~m} ; 3-\mathrm{H}), 3.03\left(\mathrm{~s} ; \mathrm{CH}_{3}\right), 3.12(\mathrm{dt}, J(1,3)=5.9 ; 1-\mathrm{H}), 3.32(\mathrm{br} . \mathrm{dt}$, $\left.J(4,5 \beta) \approx 2 ; 5-\mathrm{H}_{\beta}\right), 4.86(\mathrm{dd} ; J(5 \beta .5 \mathrm{a})=1.9 ; 5 \mathrm{a}-\mathrm{H}) .5 .64(\mathrm{br} . \mathrm{d} ; 4-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 25.9\left(\mathrm{q} ; \mathrm{CH}_{3}\right), 42.2,44.1,44.4$ (t each; $\left.\mathrm{C}-2,5,11\right) .43 .1,44.1$ (d each; C-1,3), 66.8 (d; C-5a), 94.0 ($\mathrm{s} ; \mathrm{C}-10 \mathrm{a}$), 121.9 ($\mathrm{s} ; \mathrm{C}-4$), 152.7 (s; C-3a), 161.2, 161.9 (s each; C-7.9)

12: ${ }^{13} \mathrm{C}$ NMR ($\left[\mathrm{D}_{10}\right)^{-1,2-d i m e t h o x y e t h a n e): ~} 43.5(\mathrm{~d} ; \mathrm{C}-1,3), 66.4(\mathrm{t} ; \mathrm{C}-2.7), 94.9$ (d; C-5), 96.1 (d; C-4,6), 133.9 ($;$ C-3a, 6a)
13: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.65(\mathrm{dq}, J(9,9)=9.0, J(4,9 \mathrm{syn}) \approx J(7,9 \mathrm{syn}) \approx 1.7 ; 9-$ $\mathrm{Hs}), 2.18(\mathrm{br} . \mathrm{d} ; 9-\mathrm{H} a), 2.31(\mathrm{dd}, J(2 \mathrm{syn}, 8 \mathrm{syn})=10.0, J(2,2$ or 8.8$)=5.1), 3.19$ (dd, $J(8,8$ or 2,2$)=6.1$) $(2,8-\mathrm{H} . s), 2.68,2.87$ (dt, each $J(1,3)=7.1$. $J(1,2 a n t i)=J(1,8 a n t i)=J(2 a n t i, 3)=J(3,8 a n t i)=2.3 ; 1,3-\mathrm{H}), 2.82(\mathrm{dt}, J(2.2$ or 8,8$)=5.1$), $3.05(\mathrm{br} . \mathrm{dt}, \mathrm{J}(8,8$ or 2,2$)=6.1)(2,8-\mathrm{Ha}), 3.64(\mathrm{br} . \mathrm{s} ; 4-\mathrm{H}), 3.66$ $(\mathrm{m} ; 7-\mathrm{H}), 3.72(\mathrm{dd}, J(5,6)=5.6, J(5,9 s y n)=2.0 ; 5-\mathrm{H}), 4.35(\mathrm{dd}, J(6,7)=3.1$: $6-\mathrm{H}), 7.50-7.90\left(\mathrm{~m} ; 2 \mathrm{C}_{6} \mathrm{H}_{5}\right)$
[a] Assignment on the basis of NOE measurements.
of the above-mentioned calculation for the value of C-2 in $\mathbf{1}^{[5]}$ is 30% too small if $\mathbf{1 a}, \mathbf{b}$ are accepted as models.

Received: April 17, 1990 [Z 3915 IE]
German version: Angew: Chem. 102 (1990) 1090
CAS Registry numbers
1a, 128600-87-3; $1 \mathrm{~b}, 128600-95-3 ; 2,128600-88-4 ; 3,5164-64-7 ; 4,128600-89-$ $5 ; 5,128600-90-8 ; 6,128600-91-9 ; 7,128600-92-0 ; 8,128600-93-1 ; 9,128600-$ $94-2 ; 11,128600-96-4 ; 12,128600-97-5 ; 13,128600-98-6 ;$ CBr $_{4}, 558-13-4$: $\mathrm{HCBr}_{3}, 75-25-2 ; \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}, 762-42-5$.
[1] a) W. L. Jorgensen, W. T. Borden, J. Am. Chem. Soc. 95 (1973) 6649; b) R. Gleiter, P. Bischof, K. Gubernator, M. Christl, L. Schwager, P. Vogel, J. Org. Chem. 50 (1985) 5064, and references cited therein; c) L. A. Paquette, J. Dressel in A. de Meijere, S. Blechert (Eds.): Strain and its Implications in Organic Chemistry, Kluwer, Dordrecht 1989, p. 77, and references cited therein.
[2] a) M. Christl, R. Herbert, Chem. Ber. 112 (1979) 2022; b) M. Christl, C. Herzog, ibid. 119 (1986) 3067, and references cited therein.
[3] a) R. Huisgen, P. H. J. Ooms, M. Mingin, N. L. Allinger, J. Am. Chem. Soc. 102 (1980) 3951; b) F. Lanzendörfer, M. Christl, Angew. Chem. 95 (1983) 896; Angew. Chem. Int. Ed. Engl. 22 (1983) 871, and references cited therein.
[4] a) M. Pomerantz, R. N. Wilke, G. W. Gruber, U. Roy, J. Am. Chem. Soc. 94 (1972) 2752; b) Y. Hata, H. Tanida, ibid. 91 (1969) 1170.
[5] C. F. Wikox, Jr., R. Gleiter, J. Org. Chem. 54 (1989) 2688.
[6] F. T. Bond, H. L. Jones, L. Scerbo, Org. Photochem. Synth. I (1971) 33; W. Trautmann, Dissertation, Universität Karlsruhe 1976.
[7] For the method, see: A. R. Chamberlin, E. L. Liotta, F. T. Bond, Org. Synth. $6 /$ (1983) 141; R. M. Adlington, A. G. M. Barrett, Acc. Chem. Res. 16 (1983) 55.
[8] The structures of the new compounds are in agreement with the analytical and spectroscopic data.
[9] a) L. A. Paquette, M. Gugelchuk, M. L. McLaughlin, J. Org. Chem. 52 (1987) 4732: b) L. A. Paquette, C.-C. Shen, J. Am. Chem. Soc. 113 (1990) 1159, and references cited therein.
[10] C. A. Johnson, J. Chem. Soc. Chem. Commun. 1983, 1135.
[11] H. Mayr, U. W. Heigl, Angew. Chem. 97 (1985) 567; Angew. Chem. Int. Ed. Engl. 24 (1985) 579; L. W. Jenneskens, W. H. de Wolf, F. Bickelhaupt, ibid. 97 (1985) 568 and 24 (1985) 585.
[12] K. Komatsu, H. Akamatsu, K. Okamoto, Tetrahedron Letl. 28 (1987) 5889.
[13] W. Kutzelnigg, U. Fleischer, M. Schindler in P. Diehl, E. Fluck, H. Günther. R. Kosfeld, J. Selig (Eds.): NMR - Basic Principles and Progress, Vol. 23. Springer, Berlin, in press. We thank Dr. Schindler for providing us with these results before publication.

(3,3-Diphenylallenylidene)trimethylphosphanetitanocene: The First Titanocene Carbene Complex with Three Cumulative Double Bonds

By Paul Binger,* Patrik Müller, Regine Wenz, and Richard Mynott

Titanocene carbene complexes are of interest in organic synthesis, especially for carbonyl olefination. Their use is limited, however, by a lack of suitable syntheses for substituted titanocene carbene complexes. ${ }^{[1]}$ We recently reported a novel method for preparing the titanocene vinylcarbene complexes $1 \mathbf{a - c}$ from 3,3-disubstituted cyclopropenes and bis(trimethylphosphane)titanocene. ${ }^{\text {[2] }}$
On attempting to carry out a one-pot synthesis of 1 a by treating $\left[\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right]$ with two equivalents of n-butyllithium at $-78^{\circ} \mathrm{C}$ and then allowing the solution to warm up in the presence of PMe_{3} and 3,3-diphenylcyclopropene, we found that, in addition to the vinylcarbene complex 1a, (3,3diphenylallenylidene)trimethylphosphanetitanocene (2) is also formed. ${ }^{[3]}$

Closer examination of this result showed that n-butyllithium lithiates 3,3 -diphenylcyclopropene under the conditions chosen. ${ }^{[4]}$ Reaction of the two starting materials in a molar ratio of $2: 1$ at $0^{\circ} \mathrm{C}$ for 1 h gives a mixture of the two dilithiated compounds 3 and 4 in a ratio of $14: 86$. At $25^{\circ} \mathrm{C}$, only the immediate formation of 4 (90% purity) is observed; 4 slowly decomposes at room temperature to unidentified products. Apparently, the dilithiocyclopropene derivative 3 rapidly rearranges to the dilithioallene derivative 4 . The lith-

[^1]ium derivatives 3 and 4 have not yet been isolated as pure substances; they were trapped by reaction with trimethylchlorosilane to give the corresponding trimethylsilyl derivatives 5 and 6, which were then characterized.

1,1-Dilithio-3,3-diphenylallene (4), prepared at $0^{\circ} \mathrm{C}$, reacts at this temperature with titanocene dichloride and trimethylphosphane to give the (3,3-diphenylalienylidene)titanocene complex 2 in 71% yield. The route of formation of complex 2 is thereby elucidated. At the same time, these results open up a way of synthesizing as yet unknown allenylidenetitanocene complexes.

Also new is the selective rearrangement of a 1,2 -dilithiocyclopropene to the corresponding 1,1 -dilithiopropadiene. Previously, it was known only that both acidic olefinic hydrogen atoms undergo ready lithiation, although almost all preparative applications have used the monometalated cyclopropene. ${ }^{[4,5]}$ Dilithiated 3,3-dimethylcyclopropene, prepared from 3,3-dimethylcyclopropene and lithium diisopropylamide/tetramethylethylenediamine (LDA/TMEDA) at $-60^{\circ} \mathrm{C}$ to $+20^{\circ} \mathrm{C}$, can be trapped as 3,3 -dimethyl-1,2bis(trimethylsilyl)cyclopropene by reaction with trimethylchlorosilane, ${ }^{[6]}$ even though calculations show that, for the parent compound, structure \mathbf{B} is $51.3 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than 1,2-dilithiocyclopropene (A). ${ }^{[7,8]}$

A

B

Rearrangements of tetrasubstituted cyclopropenes to allenes occur upon irradiation ${ }^{[9]}$ or upon heating at about $150^{\circ} \mathrm{C} .{ }^{[5]}$
The structures of allenylidene derivatives 2 and 6 were established unambiguously by spectroscopy. The IR spectra show strong bands characteristic of both organic ${ }^{[10]}$

[^0]: [*] Prof. Dr. M. Christl, Dr. H. Reuchlein Institut für Organische Chemie der Universität Am Hubland, D-8700 Würzburg (FRG)

[^1]: [*] Prof. Dr. P. Binger, Dr. P. Müller, Dipl.-Chem. R. Wenz, Dr. R. Mynott Max-Planck-Institut für Kohlenforschung
 Kaiser-Wilhelm-Platz 1, D-4330 Mülheim-Ruhr (FRG)

