# Ab initio calculation of the vibronically averaged values for the hyperfine coupling constants in $\mathbf{N H}_{\mathbf{2}}, \mathbf{N H D}$, and $\mathbf{N D}_{\mathbf{2}}$ 

M. Peric ${ }^{\mathrm{a})}$ and B. Engels<br>Institut für Physikalische und Theoretische Chemie, Universität Bonn. Wegelerstraße 12, D-5300 Bonn 1, Germany

(Received 24 April 1992; accepted 15 June 1992)
Vibronically averaged values for $K=0$ and $K=1$ bending levels in the energy range between 0 and $25000 \mathrm{~cm}^{-1}$ are computed for the ${ }^{14} \mathrm{~N}, \mathrm{H}$, and D atoms in $\mathrm{NH}_{2}, \mathrm{NHD}$, and $\mathrm{ND}_{2}$. The pure $a b$ initio electronic potentials, as well as those derived by fitting of experimentally observed band positions are employed. Effects of vibronic coupling and local perturbations of close-lying levels belonging to different electronic states are discussed.

## I. INTRODUCTION

In a previous paper ${ }^{1}$ (hereafter referred to as Paper I) we published the results of an $a b$ initio calculation of the hyperfine coupling constants (hfec) for the two lowestlying electronic states $X^{2} B_{1}$ and $A^{2} A_{1}$ of the $\mathrm{NH}_{2}$ radical at various molecular geometries (particularly bond angle values). Mean values of the hfcc's in the ( $K=0$ and 1) vibronic states of $\mathrm{NH}_{2}$ lying in the energy range from $0-$ $20000 \mathrm{~cm}^{-1}$ were also computed. Because one of the aims of Paper I was to investigate with which accuracy the hfcc's can be calculated for a molecule exhibiting the Renner-Teller effect, ${ }^{2}$ we employed in computations of the vibronically averaged values for hfcc's the potential curves obtained by Jungen et al. ${ }^{3}$ (JHM) by fitting the experimentally observed band positions instead of employing the original $a b$ initio potentials. In this way we attempted to eliminate the possible error in the description of local interactions of close-lying states by the ab initio method (the usual calculation error being of roughly 0.1 eV for electronic transition energy, for example). ${ }^{4}$ In the present study we extend our $a b$ initio investigation of the hyperfine structure of the $\mathrm{NH}_{2}$ spectrum in three directions (i) the results for the mean values of the hfcc's for $\mathrm{ND}_{2}$ and NHD are presented (ii) the calculations are performed using both the JHM and $a b$ initio computed ${ }^{5}$ potential curves (iii) an effort is made to extract those quantities which can be compared directly with the data derived from experimental observations, and furthermore predictions are made for several quantities which can be useful for experimentalists.

## II. COMPUTATION OF VIBRONICALLY AVERAGED VALUES FOR HFCC'S

The two sets of the bending potential curves (points refer to purely $a b$ initio data, the solid line denotes the experimentally derived curves ${ }^{3}$ ) for the $X^{2} B_{1}$ and $A^{2} A_{1}$ states of $\mathrm{NH}_{2}$, correlating at the linear geometry with the

[^0]$1^{2} \Pi_{u}$ electronic species are presented in Fig. 1. The energy scale is chosen such that the minima of both the ${ }^{2} B_{1}$ curves correspond to the zero in energy. The bending curves shown in Fig. 1 correspond to the optimized $\mathrm{N}-\mathrm{H}$ distances and in this way the stretch-bend interaction is effectively incorporated in them. Although the overall agreement between the pure $a b$ initio curves and those derived by fitting the experimental data is quite satisfactory, two significant discrepancies can be noted (i) the ab initio calculated barrier to linearity in the ${ }^{2} A_{1}$ state ( $980 \mathrm{~cm}^{-1}$ ) is by $250 \mathrm{~cm}^{-1}$ higher than that derived from the fitting of measured band positions ( $730 \mathrm{~cm}^{-1}$ ), (ii) at strongly bent geometries the $a b$ initio bending curves become steeper than their experimentally derived counterparts. Consequences of these differences are discussed in Sec. III of the present paper.

The electronic mean values of the isotropic hfcc and the Cartesian components of the anisotropic hf tensor are published in Paper I to which the reader is referred to for technical details. Figures 2-5 of the present paper show the bond-angle dependence of the components of the anisotropic tensor along the main inertia tensor axes for both the symmetric ( $\mathrm{NH}_{2}, \mathrm{ND}_{2}$ ) and asymetric (NHD) isotopomers. The molecule is assumed to lie in the $y z$ plane with the $z$ axis ( $\equiv b$ ) coinciding with the symmetry axis in the $C_{2 v}$ point group and $y$ axis ( $\equiv a$ ) becoming the molecular axis at the linear nuclear arrangement. The sign of the $A_{a b}$ component for the hydrogen (deuterium) atom corresponds to its location in the first quadrant of the $y z$ plane. Note a strong geometry dependence of most of the quantities presented in Figs. 2-5 (as discussed in detail in Paper I), the exception representing the hfcc's for the nitrogen atom in the ${ }^{2} B_{1}$ state.

The vibronic energy levels, the corresponding wave functions and the matrix elements of the hfcc's are calculated employing the approach described in detail elsewhere. ${ }^{4,6,7}$ The Hamiltonian of Bunker and Landsberg, ${ }^{8,9}$ allowing for a treatment of the large amplitude bending vibrations and incorporating the leading part of the bendstretch interaction is adjusted to the problem of two electronic states interacting strongly via the Renner-Teller effect. Thereby it is assumed that the stretching vibrations,


FIG. 1. Two sets of the bending potential curves employed in the present work. Full lines: potentials derived by Jungen et al. (Ref. 3) by fitting experimentally observed bond positions; dotted lines: $a b$ initio potentials (Ref. 5).
as well as the rotations around the axes orthogonal to the axis $a$ ( $\equiv y$ axis in the present case) can be separated. The remaining degrees of freedom (electronic, bending, and $a$ axis rotations) are treated simultaneously. The corre-


FIG. 2. Bond angle dependence of the components of the hyperfine tensor for the nitrogen atom in the ${ }^{2} B_{1}$ electronic state of $\mathrm{NH}_{2}$. Full lines: along the principle inertia axes (pia) of $\mathrm{NH}_{2}$; dashed lines: along pia of NHD.


FIG. 3. Bond angle dependence of the anisotropic coupling constants for ${ }^{14} \mathrm{~N}$ atom in the ${ }^{2} A_{1}$ electronic state. Full lines: in pia system of $\mathrm{NH}_{2}$; dashed lines: in pia system of NHD.
sponding part of the Hamiltonian can be written in the form

$$
\begin{equation*}
H=H_{e}-\frac{1}{2}\left[T_{1}(\rho) \frac{\partial^{2}}{\partial \rho^{2}}+T_{2}(\rho) \frac{\partial}{\partial \rho}+T_{3}(\rho) \frac{\partial^{2}}{\partial \phi^{2}}+T_{4}(\rho)\right], \tag{1}
\end{equation*}
$$

where $H_{e}$ represents the electronic part of the Hamiltonian, $\rho$ is the bending coordinate ( $\rho=\pi$-bond angle), and $\phi$ is


FIG. 4. Anisotropic hfcc's for the hydrogen atom in the ${ }^{2} B_{1}$ electronic state of $\mathrm{NH}_{2}$ along the pia of $\mathrm{NH}_{2}$ (full lines) and NHD (dashed and dotted lines). Dashed lines correspond to the ${ }^{\prime} \mathrm{H}$ isotope, dotted line functions (multiplied by the factor 0.153506 ) to deuterium.


FIG. 5. Anisotropic hfcc's for the hydrogen atom in the ${ }^{2} A_{1}$ electronic state along the pia of $\mathrm{NH}_{2}$ (full lines) and NHD (dashed and dotted lines). For key to notation see also Fig. 4.
the angle between the molecular plane and a space fixed plane and defines rotations around the $a$ axis. The $T_{i}$ functions, whose form depends on the choice of the moving coordinate system bound to the molecule and on the internal coordinates employed, are assumed to be dependent on $\rho$ in order to enable a treatment of the large-amplitude vibrations, and in the case when the stretch-bend interaction is taken into account they also vary with the stretching coordinate. The actual form of the coefficients $T_{1}-T_{4}$ employed in the present paper are given in Refs. 8 and 9. Other terms as, e.g., those describing the spin-orbit coupling, are neglected in the present study.

The eigenfunctions of the Hamiltonian (1) for the two electronic state problem in question are assumed to be expanded in a suitable basis

$$
\begin{equation*}
\Psi=\psi^{\alpha} \sum_{i} c_{i}^{\alpha} \Phi_{i}^{\alpha}(\rho, \phi)+\psi^{\beta} \sum_{i} c_{i}^{\beta} \Phi_{i}^{\beta}(\rho, \phi), \tag{2}
\end{equation*}
$$

where $\psi^{\alpha}, \psi^{\beta}$ are the electronic basis functions and $\Phi_{i}^{\alpha}$ ( $\rho, \phi$ ) suitable rovibronic functions describing the bending vibrations and the rotations around the $a$ axis. We assume the latter functions to have the form

$$
\begin{equation*}
\Phi_{i}(\rho, \phi)=e^{i K \phi} \chi_{i}(\rho) \tag{3}
\end{equation*}
$$

where $K$ is the quantum number corresponding to the projection of the total angular momentum (excluding spin) onto the $a$ axis. Thus, like in most studies in which the Renner-Teller effect has been treated (see e.g., Ref. 10), the assumption is made that $K$ is a good quantum number in spite of the fact that the $\mathrm{NH}_{2}$ molecule has (at bent nuclear arrangements) significantly pronounced asymmetric-top characteristics. This approximation has been discussed, e.g., by Carter and Handy. ${ }^{11}$ (Thus we
identify in the present study $K$ with the asymmetric-top quantum number $K_{a}$.)

The expansion coefficients $c_{i}^{\alpha / \beta}$ in Eq. (2) are determined by applying the variation principle. After integrating over the electronic coordinates and $\phi$, and neglecting the derivatives of the electronic wave functions with respect to $\rho$, the matrix elements of the Hamiltonian (1) appearing in the secular equation become

$$
\begin{equation*}
H_{i j}^{\alpha \beta}=\left\langle\chi_{i}^{\alpha}\right| H^{\alpha \beta}\left|\chi_{j}^{\beta}\right\rangle \tag{4}
\end{equation*}
$$

where $H^{\alpha \beta}$ is the effective operator acting still only on the bending basis functions. It has the form

$$
\begin{align*}
H^{\alpha \beta}= & {\left[V^{\alpha \beta}-\frac{1}{2}\left(T_{1}^{\alpha \beta} \frac{\partial^{2}}{\partial \rho^{2}}+T_{2}^{\alpha \beta} \frac{\partial}{\partial \rho}-K^{2} T_{3}^{\alpha \beta}+T_{4}^{\alpha \beta}\right)\right] \delta_{\alpha \beta} } \\
& -\left(i K_{\phi} B^{\alpha \beta}+\frac{1}{2} \phi C^{\alpha \beta}\right) T_{3}^{\alpha \beta} \tag{5}
\end{align*}
$$

where

$$
\begin{align*}
& V^{\alpha \beta}=\left\langle\psi^{\alpha}\right| H\left|\psi^{\beta}\right\rangle \\
& \phi^{B^{\alpha \beta}}=\left\langle\psi^{\alpha} \mid \partial \psi^{\beta} / \partial \phi\right\rangle  \tag{6}\\
& \phi_{\phi} C^{\alpha \beta}=\left\langle\psi^{\alpha} \mid \partial^{2} \psi^{\beta} / \partial \phi^{2}\right\rangle
\end{align*}
$$

and the coefficients $T_{i}$ are generally different for $\alpha$ and $\beta$.
The actual form of expression (5) depends on the choice of the electronic basis functions. Two sets of the electronic functions are used most frequently.
(i) The electronic wave functions for the component electronic states calculated in the Born-Oppenheimer approximation, $\psi^{+}\left({ }^{2} A_{1}\right)$, and $\psi^{-}\left({ }^{2} B_{1}\right)$. In the linear limit $(\rho \rightarrow 0)$ the angular parts of these functions have the form $\psi^{+} \sim \cos \Lambda(\Theta-\phi), \psi^{-} \sim i \sin \Lambda(\Theta-\psi)^{2}$, where $\Theta$ represents the coordinate conjugate to the projection of the electronic angular momentum onto the $a$ axis and $\Lambda(=1$ in the present case) is the corresponding quantum number. From symmetry reasons $B^{++}, B^{--}, C^{+-}$, and $C^{-+}$ then vanish and the remaining $B$ and $C$ terms defined by Eqs. (6) can in a good approximation (because they appear in the secular equation weighted by the factor $T_{3}$ being proportional to $1 / \rho^{2}$ as $\rho \rightarrow 0$ ) be replaced by their $\rho \rightarrow 0$ asymptotic values, $B^{+^{+}}=\Lambda=-B^{+-}, C^{-}$ $=C^{++}=\Lambda$ (see, e.g., Ref. 6). (Note that in contrast to the Refs. 4 and 6, we define now the function $\psi^{-}$to be imaginary in order to obtain the secular equation with only real elements.) Expression (5) reduces then to

$$
\begin{align*}
H^{\alpha \beta}= & \left\{V^{\alpha / \beta}-\frac{1}{2}\left[T_{1}^{\alpha / \beta} \frac{\partial^{2}}{\partial \rho^{2}}+T_{2}^{\alpha / \beta} \frac{\partial}{\partial \rho}-\left(K^{2}+\Lambda^{2}\right) T_{3}^{\alpha / \beta}\right.\right. \\
& \left.\left.+T_{4}^{\alpha / \beta}\right]\right\} \delta_{\alpha \beta}+K \Lambda T_{3}^{\alpha \beta}\left(1-\delta_{\alpha \beta}\right) \tag{7}
\end{align*}
$$

$\left[\alpha, \beta=+\right.$ or $-; \alpha / \beta$ means $\alpha$ or $\left.\beta ; T_{3}^{\alpha \beta}=\left(T_{3}^{\alpha}+T_{3}^{\beta}\right) / 2\right]$, i.e., to the usual form employed by most authors [see Eq. (13) of Ref. 10].
(ii) A new electronic basis $\psi_{1}, \psi_{2}$ can be derived by a unitary transformation

$$
\begin{equation*}
\psi_{1}=1 / \sqrt{2}\left(\psi^{+}+\psi^{-}\right), \quad \psi_{2}=1 / \sqrt{2}\left(\psi^{+}-\psi^{-}\right) \tag{8}
\end{equation*}
$$

In the linear limit $\psi_{1}$ and $\psi_{2}$ become eigenfunctions of the $\Pi$ electronic state, $\lim _{\rho \rightarrow 0} \psi_{1} \sim \exp [i \Lambda(\theta-\phi)]$, $\lim _{\rho \rightarrow 0} \psi_{2} \sim \exp [-i \Lambda(\theta-\phi)]$. Replacing again the corresponding $B$ and $C$ elements with their $\rho \rightarrow 0$ asymtotic values we obtain for the effective Hamiltonian (5) the expression

$$
\begin{align*}
H^{\alpha \beta}= & \left\{\frac{V^{+}+V^{-}}{2}-\frac{1}{2}\left[\frac{T_{1}^{+}+T_{1}^{-}}{2} \frac{\partial^{2}}{\partial \rho^{2}}+\frac{T_{2}^{+}+T_{2}^{+}}{2} \frac{\partial}{\partial \rho}\right.\right. \\
& \left.\left.-\left(K^{\prime} \mp \Lambda\right)^{2} \frac{T_{3}^{+}+T_{3}^{-}}{2}+\frac{T_{4}^{+}+T_{4}^{-}}{2}\right]\right\} \delta_{\alpha \beta} \\
& +\left\{\frac{V^{+}-V^{-}}{2}-\frac{1}{2}\left[\frac{T_{1}^{+}-T_{1}^{-}}{2} \frac{\partial^{2}}{\partial \rho^{2}}+\frac{T_{2}^{+}-T_{2}^{-}}{2} \frac{\partial}{\partial \rho}\right.\right. \\
& \left.\left.-\left(K^{2}+\Lambda^{2}\right) \frac{T_{3}^{+}-T_{3}^{-}}{2}+\frac{T_{4}^{+}-T_{4}^{-}}{2}\right]\right\}\left(1-\delta_{a \beta}\right) . \tag{9}
\end{align*}
$$

$\alpha, \beta=1$ or $2,(K-\Lambda)^{2}$ and $(K+\Lambda)^{2}$ in the first expression on the right-hand side corresponds to $H^{11}$ and $H^{22}$, respectively. Expression (9) is essentially equal to Eq. (15) or Ref. 10 (in the last one the terms $T_{i}^{+}-T_{i}^{-}$vanishing at $\rho \rightarrow 0$ are omitted). The convenience of using this electronic basis consists in the fact that the off-diagonal element of Eq. (7) becoming singular in the linear limit ( $\lim _{\rho \rightarrow 0} T_{3} \sim 1 / \rho^{2}$ ) is now absorbed in the diagonal elements where it is exactly canceled by other singular terms when $\rho \rightarrow 0$.

As the basis functions for representing the bending motion we employ in the present study (i) the eigenfunctions of a two-dimensional harmonic oscillator ${ }^{6}$ or (ii) the trigonometric series in $\rho .{ }^{7}$ The bending potentials as well as the coefficients $T_{i}$ in the kinetic energy expression are fitted by polynomials or trigonometric series in $\rho$.

Note that the secular equation in the basis (i) has off-diagonal elements being proportional to $K$. That means that for $K=0$ there is no coupling between the vibronic states belonging to different electronic states. Furthermore, the levels differing only in the sign of $K$ have the same energy and their wave functions are of the form

$$
\begin{align*}
\Psi_{(+K)} & =e^{i|K| \phi}\left[\psi^{+} \sum_{i} c_{i K}^{+} \chi_{i K}(\rho)+\psi^{-} \sum_{i} c_{i K}^{-} \chi_{i K}(\rho)\right] \\
& \equiv e^{i|K| \phi}\left(\psi^{+} f_{K}^{+}+\psi^{-} f_{K}^{-}\right), \\
\Psi_{(--K)} & =e^{-i|K| \phi}\left[\psi^{+} \sum_{i} c_{i K}^{+} \chi_{i K}(\rho)-\psi^{-} \sum_{i} c_{i K} \chi_{i K}(\rho)\right] \\
& \equiv e^{-i|K| \phi}\left(\psi^{+} f_{K}^{+}-\psi^{-} f_{K}^{-}\right) \tag{10b}
\end{align*}
$$

In Paper I we published the mean values for the Cartesian components of the hyperfine tensor (in its phenomenological from ) in the $K=0$ and 1 vibronic states of $\mathrm{NH}_{2}$. While some of them ( $A_{y y} \equiv A_{a d}$, as well as $A_{x x} \equiv A_{c c}$ and $A_{z z}=A_{b b}$ for $K=1$, calculated from $\langle K=1| A_{a a}|K=1\rangle$ $=-\langle K=1| A_{b b}+A_{c c}|K=1\rangle$ and $\langle K=-1| A_{b b}-A_{c c} \mid K$ $=+1)$ are directly correlated to the corresponding parts of the effective hf Hamiltonians used in the experimental studies, the other $\left(\langle K=0| A_{b b}|K=0\rangle,\langle K=0| A_{c c}|K=0\rangle\right.$ and $\langle K=0,1| A_{a b}|K=0,1\rangle$ see Tables II and III of Paper
I) are hypothetical and serve only to give a picture of variation of the hfcc's from one vibronic level to another as consequence of the geometry dependence of the electronically averaged hfcc's and the change in the composition of the vibronic wave function. In the present paper we are dealing instead with the irreducible components of the anisotropic hf tensor and we present the vibronic matrix elements between the states connected by proper selection rules giving rise to the allowed transitions between the components of the hyperfine manifolds

$$
\begin{align*}
& \langle K| A_{\text {iso }}|K\rangle,  \tag{11a}\\
& \langle K| A_{a a}|K\rangle=-\langle K| A_{b b}+A_{c c}|K\rangle,  \tag{11b}\\
& \langle K| A_{a c} \pm i A_{a b}|K \pm 1\rangle,  \tag{11c}\\
& \langle K| A_{c c}-A_{b b} \pm 2 i A_{b c}|K \pm 2\rangle . \tag{1ld}
\end{align*}
$$

Relation (11b) holds because the anisotropic part of the hf Hamiltonian is represented by a traceless tensor. In the present study we employ the electronic matrix elements for the hfcc's reported in Paper I which are diagonal with respect to two species in question ( ${ }^{2} B_{1},{ }^{2} A_{1}$ ), i.e., we neglect the term $A_{b c}\left(\epsilon B_{1}\right)$ having nonvanishing value between ${ }^{2} B_{1}$ and ${ }^{2} A_{1}$ electronic wave functions for both N and H atoms, as well as $A_{a c}$ ( $\epsilon A^{\prime \prime}$ ) for H atom, connecting the states ${ }^{2} A^{\prime \prime}$ and ${ }^{2} A^{\prime}$ which correlate in the lower $C_{s}$ point group to ${ }^{2} B_{1}$ and ${ }^{2} A_{1}$ of $C_{2 v}$, respectively. These neglected terms connecting vibronic states with energy differences of generally at least some hundreds wave numbers are expected to have nonsignificant effects on the hyperfine structure of spectra. The terms $A_{a c}\left(\epsilon A_{2}\right)$ and $A_{a b}\left(\epsilon B_{2}\right)$ for the nitrogen atom vanish by symmetry reasons.

The results of computation of the vibronic matrix elements for the hfcc are presented in Tables I-VI. The data given in Tables I-IV for $\mathrm{NH}_{2}, \mathrm{NHD}$, and $\mathrm{ND}_{2}$ are generated in calculations in which the potential curves and the dependence on the equilibrium $\mathrm{N}-\mathrm{H}$ bond lengths published by $\mathrm{JHK}^{3}$ are employed. In Table V are presented pure $a b$ initio results for $\mathrm{NH}_{2}$, obtained by employing the bending potential curves and the bond lengths values published in Ref. 5. In Tables I and II are given the results for the isotropic hfcc and the irreducible components of the anisotropic hf tensor in $\mathrm{NH}_{2}$. In Tables III-V are presented only the results for $A_{\text {iso }}$. The other values are placed in the Physics Auxiliary Publication Service (PAPS). ${ }^{12} \mathrm{Fi}-$ nally, the results of both sets of calculations are compared in Table VI with available experimental findings.

## III. DISCUSSION

Two sets of the vibronic energies for $\mathrm{NH}_{2}$ are presented in Table I. The first one consists of the experimentally derived values (Refs. 13-18) employed by JHM for constructing the effective bending potential curves shown in Fig. 1; the second set represents the results calculations in which these curves have been employed. As already shown in a previous study, ${ }^{6}$ if the same input parameters (potentials, $\mathrm{N}-\mathrm{H}$ bond lengths) are used, with our vibronic treatment, briefly described in Sec. II, we are able to reproduce all the vibronic levels published by JHK with

TABLE I. Vibronically averaged values for the hfcc's in the ${ }^{2} \Pi_{\mu}$ electronic state of $\mathrm{NH}_{2}$ computed by employing JHM potential curves (Ref. 3). (a) $K=0$ vibronic leveis. (b) $K=1$ vibronic levels. (The values hfcc's are given in Tables I, III, IV, V, and VI with two decimals places to show their variation from one vibronic level to another (and for the sake of uniformity); actually, only two or three digits are significant.)

| (a) | $\underset{\left(\mathrm{cmpl}^{2}\right)}{E_{1}}$ | $\underset{\left(\mathrm{cm}^{-1}\right)}{E}$ | N |  | H |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} A_{\text {iso }} \\ (\mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \boldsymbol{A}_{o a} \\ (\mathrm{MHz}) \end{gathered}$ | $\stackrel{A_{\text {ieo }}}{(\mathrm{MHz})}$ | $\begin{gathered} \boldsymbol{A}_{a \sigma} \\ (\mathrm{MHz}) \end{gathered}$ |
| $0^{-}$ | 0 | 0 | 22.40 | -42.43 | -62.23 | 19.65 |
| $1^{-}$ | 1497 | 1495 | 22.85 | -42.40 | -62.18 | 19.68 |
| $2{ }^{-}$ | 2961 | 2959 | 23.38 | -42.38 | -62.24 | 19.87 |
| $3{ }^{-}$ | 4391 | 4389 | 23.98 | -42.35 | -62.42 | 20.23 |
| $4^{-}$ |  | 5785 | 24.66 | -42.33 | -62.72 | 20.79 |
| $5{ }^{-}$ |  | 7141 | 25.43 | -42.32 | -63.13 | 21.56 |
| 6 |  | 8453 | 26.28 | -42.30 | -63.65 | 22.57 |
| $7{ }^{-}$ |  | 9717 | 27.15 | -42.29 | -64.22 | 23.60 |
| $8{ }^{-}$ |  | 10946 | 27.74 | -42.28 | -64.61 | 23.98 |
| $0^{+}(1)$ | 11123 | 11126 | 103.77 | $-39.46$ | 11.51 | 60.53 |
| $9-$ |  | 12175 | 27.75 | -42.26 | -64.58 | 22.96 |
| $1^{+}(3)$ | 12281 | 12279 | 110.39 | -39.22 | 14.48 | 59.83 |
| $10^{-}$ |  | 13448 | 27.29 | -42.23 | -64.16 | 20.80 |
| $2^{+}(5)$ | 13619 | 13615 | 123.10 | $-38.70$ | 26.56 | 58.72 |
| $11^{-}$ |  | 14782 | 26.70 | -42.21 | -63.61 | 18.31 |
| $3^{+}(7)$ | 15120 | 15120 | 135.79 | -38.18 | 38.30 | 57.52 |
| 12- |  | 16176 | 26.14 | -42.19 | -63.03 | 15.86 |
| $4^{+}(9)$ | 16742 | 16753 | 147.98 | -37.70 | 48.30 | 56.29 |
| $13^{-}$ |  | 17621 | 25.63 | -42.17 | -62.44 | 13.34 |
| $5^{+}(11)$ | 18480 | 18484 | 159.87 | -37.24 | 56.80 | 55.04 |
| $14^{-}$ |  | 19109 | 25.18 | -42.15 | -61.83 | 11.32 |
| $6^{+}(13)$ | 20285 | 20293 | 171.48 | $-36.80$ | 64.20 | 53.76 |
| $15^{-}$ |  | 20631 | 24.76 | -42.14 | -61.17 | 9.18 |
| $7^{+}(15)$ | 22176 | 22164 | 182.65 | -36.37 | 70.93 | 52.48 |
| $16^{-}$ |  | 22181 | 24.39 | -42.12 | -60.45 | 7.10 |
| $17^{-}$ |  | 23754 | 24.05 | -42.11 | -59.64 | 5.06 |
| $8^{+}(17)$ | 24087 | 24086 | 193.20 | -35.94 | 77.37 | 51.19 |
| $18^{-}$ |  | 25343 | 23.77 | -42.10 | -58.72 | 3.04 |
| $9^{+}(19)$ |  | 26050 | 203.12 | -35.51 | 83.72 | 49.91 |
| $19^{-}$ |  | 26943 | 23.54 | -42.09 | -57.67 | 1.03 |


| (b) |  |  | N |  |  | H |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $v_{2}$ | $\begin{gathered} E_{\text {exp }}^{*} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$ | $\underset{\left(\mathrm{cm}^{-1}\right)}{E}$ | $\begin{gathered} A_{\text {iso }} \\ (\mathrm{MHz}) \end{gathered}$ | $\begin{gathered} A_{a a} \\ (\mathrm{MHz}) \end{gathered}$ | $\begin{gathered} A_{b b}-A_{c c} \\ (\mathrm{MHz}) \end{gathered}$ | $\begin{gathered} \boldsymbol{A}_{\text {iso }} \\ (\mathrm{MHz}) \end{gathered}$ | $\begin{gathered} A_{a d} \\ (\mathrm{MHz}) \end{gathered}$ | $\begin{gathered} A_{b b}-A_{c c} \\ (\mathrm{MHz}) \end{gathered}$ |
| $0{ }^{-}$ | 24 | 24 | 22.38 | -42.43 | 128.31 | -62.22 | 19.59 | 6.25 |
| $1{ }^{-}$ | 1523 | 1521 | 22.83 | -42.40 | 128.19 | -62.16 | 19.61 | 6.49 |
| $2^{-}$ | 2990 | 2987 | 23.35 | -42.37 | 128.08 | -62.22 | 19.78 | 6.88 |
| $3^{-}$ | 4424 | 4422 | 23.95 | -42.35 | 127.95 | -62.39 | 20.11 | 7.41 |
| $4^{-}$ |  | 5822 | 24.62 | -42.33 | 127.83 | -62.66 | 20.61 | 8.11 |
| $5{ }^{-}$ |  | 7185 | 25.40 | -42.31 | 127.69 | -63.01 | 21.34 | 9.00 |
| $6^{-}$ |  | 8504 | 26.36 | -42.29 | 127.51 | -63.42 | 22.41 | 10.21 |
| $7{ }^{-}$ |  | 9761 | 28.08 | -42.26 | 127.21 | -63.66 | 24.58 | 12.48 |
| $8{ }^{-}$ |  | 10859 | 37.95 | -41.97 | 125.49 | - 57.70 | 33.71 | 21.47 |
| $0^{+}(2)$ | 11318 | 11320 | 97.54 | -39.64 | 115.94 | 6.79 | 53.41 | 38.90 |
| $9{ }^{-}$ |  | 11845 | 48.90 | -41.57 | 123.79 | -48.26 | 37.82 | 25.58 |
| $1+(4)$ | 12637 | 12649 | 82.09 | -40.20 | 118.67 | -10.36 | 43.23 | 30.32 |
| $10^{-}$ |  | 12987 | 66.88 | -40.82 | 121.08 | -28.30 | 39.67 | 27.34 |
| $11^{-}$ |  | 14044 | 53.80 | -41.21 | 123.24 | -37.83 | 29.26 | 17.76 |
| $2^{+}(6)$ | 14358 | 14343 | 104.67 | -39.36 | 115.37 | 9.29 | 48.65 | 36.35 |
| $12^{-}$ |  | 15449 | 34.91 | -41.87 | 126.23 | -55.20 | 20.04 | 9.28 |
| $3^{+}(8)$ | 15890 | 15894 | 134.28 | -38.22 | 111.10 | 36.85 | 53.87 | 42.53 |
| $13^{-}$ |  | 16884 | 29.67 | -42.03 | 127.07 | - 59.20 | 16.01 | 5.66 |
| $4^{+}(10)$ | 17580 | 17577 | 150.35 | -37.60 | 109.03 | 49.87 | 54.15 | 44.32 |
| 14- |  | 18358 | 28.17 | -42.05 | 127.33 | -59.63 | 13.39 | 3.40 |
| $5{ }^{+}(12)$ | 19343 | 19350 | 161.98 | -37.16 | 107.69 | 57.70 | 52.96 | 44.83 |
| $15^{-}$ |  | 19868 | 28.53 | -42.01 | 127.31 | -58.40 | 11.48 | 1.84 |
| $6^{+}(14)$ | 21205 | 21184 | 163.92 | -37.07 | 107.75 | 56.78 | 49.00 | 42.48 |
| $16^{\prime \prime}$ |  | 21417 | 37.78 | -41.64 | 126.01 | -49.71 | 12.11 | 3.13 |
| $17^{-}$ |  | 22941 | 42.36 | -41.45 | 125.42 | -45.10 | 11.12 | 2.75 |
| $7^{+}(16)$ |  | 23125 | 169.88 | -36.81 | 107.16 | 59.44 | 46.67 | 41.87 |
| $18^{-}$ |  | 24539 | 26.24 | -42.01 | 127.77 | - 57.29 | 4.71 | -3.67 |
| $8^{+}(18)$ | 25050 | 25054 | 195.83 | -35.81 | 103.67 | 78.78 | 49.78 | 47.35 |
| $19{ }^{-}$ |  | 26139 | 24.83 | -42.05 | 128.01 | -57.26 | 2.39 | -5.62 |
| 9+(20) | 27025 | 27034 | 206.39 | -35.35 | 102.32 | 85.74 | 48.75 | 48.33 |

[^1]TABLE II. Vibronical matrix elements for the $A_{\Delta b}-A_{c}$ irreducible component of the anisotropic hf tensor between the $K=0$ vibronic states $v_{2}^{\prime}$ $=0^{-}$and $\nu_{2}^{\prime}=2^{+}(5)$ and individual $K=2$ states of $\mathrm{NH}_{2}$ calculated by formula (15).

| $H_{2}$ | $K=2$ |  | $\begin{gathered} \left\langle K=0, v_{2}^{\prime}\right\| A_{b b}-A_{c c}\left\|K=2, v_{2}\right\rangle \\ (\mathrm{MHz}) \end{gathered}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} E_{\mathrm{expe}}^{2} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$ | $\begin{gathered} E_{\mathrm{JHM}} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$ | $\begin{gathered} v_{2}^{\prime}=0^{-} \\ E_{\text {expp }}=0.00 \mathrm{~cm}^{-1} \\ E_{\mathrm{JHM}}=0.00 \mathrm{~cm}^{-1} \end{gathered}$ |  | $\begin{gathered} v_{2}^{\prime}=2^{+}(5) \\ E_{\mathrm{cxpt}}=13618.9 \mathrm{~cm}^{-1} \\ E_{\mathrm{JHM}}=13615.36 \mathrm{~cm}^{-1} \end{gathered}$ |  |
|  |  |  | N | H | N | H |
| $0^{-}$ | 94.43 | 94.10 | $-128.2$ | $-6.00$ | -0.30 | -0.13 |
| $1{ }^{-}$ | 1600.59 | 1597.71 | 1.24 | 8.26 | 0.49 | 0.20 |
| $2{ }^{-}$ | 3075.39 | 3072.20 | 0.25 | 0.00 | 0.38 | 0.15 |
| $3{ }^{-}$ | 4519.57 | 4517.39 | -0.15 | 0.11 | 0.13 | 0.05 |
| $4{ }^{-}$ |  | 5932.20 | -0.01 | -0.01 | -0.92 | -0.35 |
| $5{ }^{-}$ |  | 7314.46 | -0.04 | -0.01 | -1.41 | -0.52 |
| $6^{-}$ |  | 8659.72 | -0.00 | $-0.00$ | -0.58 | 0.13 |
| 7- |  | 9955.68 | 0.00 | 0.00 | 0.31 | 1.44 |
| 8- |  | 11154.85 | -0.04 | $-0.01$ | 9.37 | 4.28 |
| $0^{+}(3)$ | 11673.9 | 11671.92 | -0.23 | -0.05 | -4.91 | $-1.58$ |
| $9{ }^{-}$ |  | 12335.48 | 0.12 | 0.02 | 15.28 | 6.77 |
| $1^{+}(5)$ | 13156.5 | 13134.40 | -0.32 | -0.05 | 42.85 | 16.79 |
| $10^{-}$ | 13624.4 | 13608.70 | 0.22 | 0.03 | -66.57 | -27.40 |
| $11^{-}$ | 14641.3 | 14636.49 | 0.28 | 0.03 | -59.98 | -24.84 |
| $2^{+}(7)$ | 15029.5 | 15032.45 | 0.32 | 0.04 | -14.83 | - 5.75 |
| 12- |  | 16116.97 | -0.16 | -0.01 | -29.24 | -12.15 |
| $3^{+}$(9) | 16619.4 | 16635.41 | 0.33 | 0.02 | 20.07 | 7.03 |
| $13^{-}$ |  | 17597.81 | -0.09 | -0.00 | 17.39 | 7.93 |
| $4^{+}$(11) | $18269.7^{\text {b }}$ | 18367.60 | 0.25 | 0.00 | -16.11 | -6.89 |
| $14^{-}$ |  | 19104.87 | -0.06 | 0.00 | -12.08 | -5.50 |
| $5{ }^{+}(13)$ | 20191.9 | 20176.64 | -0.16 | 0.01 | -13.27 | -5.74 |
| 15- |  | 20647.28 | 0.05 | $-0.00$ | -8.48 | -3.92 |
| $6^{+}(15)$ | 22018.6 | 22007.41 | -0.07 | 0.01 | 12.63 | 5.60 |
| $16^{-}$ |  | 22253.63 | -0.05 | -0.00 | 3.08 | 1.51 |
| $17^{-}$ |  | 23706.73 | -0.02 | 0.00 | $-10.52$ | -4.76 |
| $7^{+}(17)$ |  | 24062.13 | 0.04 | -0.01 | 3.82 | 1.63 |

${ }^{2}$ Experimentally observed values (Refs. 13-18) employed by JHM (Ref. 3).
${ }^{6}$ Observed level not included in the fitting because of strong anharmonic resonance effects.
the maximal discrepancies not exceeding $1-2 \mathrm{~cm}^{-1}$ in the energy range as large as up to $30000 \mathrm{~cm}^{-1}$ in spite of quite different computation techniques. While the discrepancies between the calculated term values and their experimental counterparts in $\mathrm{NH}_{2}$ are within maximally $20 \mathrm{~cm}^{-1}$, the agreement is significantly worse for NHD and $\mathrm{ND}_{2}$ (Tables III and IV). This is not surprising because the bending potentials derived by fitting the Bunker-Landsberg Hamiltonian are not quite isotopically invariant ${ }^{8}$ as a consequence of the fact that, e.g., the equilibrium bond lengths involved in the kinetic energy expression represent averages over the stretching vibrational states. On the other hand, the relatively large discrepancies could be an indication that the effectively one-dimensional treatment of the bending motion in the framework of the semirigid bender model of Bunker and Landsberg cannot account satisfactorily for the existing bend-stretch coupling.

If the pure $a b$ initio potential curves are employed instead of those derived by JHM the discrepancies between computed vibronic energies and the corresponding experimental data become significantly worse with the differences

TABLE III. Vibronically averaged values for the isotropic hfcc in the ${ }^{2}{ }^{1} \mathrm{I}_{u}$ electronic states of NHD computed by employing JHM potential curves. (a) $K=0$ vibronic states. (b) $K=1$ vibronic states.

| (a) | $\underset{\left(\mathrm{cm}^{-1}\right)}{E_{\text {exp }}}$ | $\underset{\left(\mathrm{cm}^{-1}\right)}{E}$ | $A_{\text {iso }}$ (MHz) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | H | D |
| $0^{-}$ |  | 0 | 22.37 | -62.24 | -9.55 |
| $1^{-}$ |  | 1312 | 22.75 | -62.17 | -9.54 |
| $2{ }^{-}$ |  | 2601 | 23.19 | -62.20 | -9.55 |
| $3-$ |  | 3865 | 23.69 | -62.32 | -9.57 |
| $4^{-}$ |  | 5103 | 24.25 | -62.53 | -9.60 |
| $5{ }^{-}$ |  | 6313 | 24.87 | -62.83 | -9.64 |
| $6{ }^{-}$ |  | 7491 | 25.57 | -63.21 | -9.70 |
| $7{ }^{-}$ |  | 8632 | 26.35 | -63.70 | -9.78 |
| $8{ }^{-}$ |  | 9735 | 27.17 | -64.24 | -9.86 |
| $9{ }^{-1}$ |  | 10803 | 27.81 | -64.68 | -9.93 |
| $0^{+}(1)$ |  | 11131 | 102.27 | 9.96 | 1.53 |
| $10^{-}$ |  | 11861 | 27.96 | -64.76 | -9.94 |
| $1+(3)$ |  | 12105 | 106.85 | 10.74 | 1.65 |
| $11^{-}$ |  | 12947 | 27.61 | -64.45 | -9.89 |
| $2^{+}(5)$ |  | 13225 | 118.24 | 21.63 | 3.32 |
| $12^{-}$ |  | 14081 | 27.06 | -63.95 | -9.82 |
| $3^{+}(7)$ |  | 14492 | 129.87 | 32.88 | 5.05 |
| $13^{-}$ |  | 15266 | 26.51 | -63.42 | -9.74 |
| $4^{+}(9)$ | 15868 | 15872 | 140.93 | 42.65 | 6.55 |
| 14- |  | 16496 | 26.01 | -62.90 | -9.66 |
| $5^{+}(11)$ | 17313 | 17341 | 151.64 | 51.03 | 7.83 |
| $15^{-}$ |  | 17764 | 25.56 | -62.38 | -9.58 |
| $6^{+}(13)$ |  | 18881 | 162.12 | 58.30 | 8.95 |
| $16^{-}$ |  | 19065 | 25.16 | -61.84 | -9.49 |
| $17^{-}$ |  | 20392 | 24.79 | -61.27 | -9.41 |
| $7^{+}(15)$ |  | 20478 | 172.36 | 64.76 | 9.94 |
| 18- |  | 21742 | 24.45 | -60.65 | -9.31 |
| $8+(17)$ |  | 22122 | 182.23 | 70.72 | 10.86 |
| $19^{-}$ |  | 23110 | 24.14 | -59.97 | -9.21 |
| $9^{+}(19)$ |  | 23805 | 191.61 | 76.44 | 11.73 |


| (b) | $\underset{\left(\mathrm{cm}^{-1}\right)}{E_{\text {exn }}^{\mathrm{b}}}$ | $\begin{gathered} E \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$ | $A_{\text {iso }}(\mathrm{MHz})$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\nu_{2}$ |  |  | N | H | D |
| $0{ }^{-}$ |  | 19 | 22.36 | -62.23 | -9.55 |
| $1^{-}$ |  | 1333 | 22.74 | -62.16 | -9.54 |
| $2{ }^{-}$ |  | 2624 | 23.18 | -62.19 | -9.55 |
| $3^{-}$ |  | 3890 | 23.67 | -62.30 | -9.56 |
| $4^{-}$ |  | 5131 | 24.22 | -62.49 | -9.59 |
| $5{ }^{-}$ |  | 6345 | 24.84 | -62.77 | -9.64 |
| 6- |  | 7528 | 25.54 | -63.12 | -9.69 |
| $7{ }^{-}$ |  | 8676 | 26.38 | -63.51 | -9.75 |
| $8{ }^{-}$ |  | 9777 | 27.69 | -63.86 | -9.80 |
| 9- |  | 10779 | 33.19 | -61.66 | -9.47 |
| $0^{+}(2)$ |  | 11258 | 97.06 | 5.74 | 0.88 |
| $10^{-}$ |  | 11661 | 48.61 | -48.75 | $-7.48$ |
| $1^{+}(4)$ |  | 12336 | 70.02 | -23.04 | -3.54 |
| $11^{-}$ |  | 12642 | 76.80 | -18.95 | -2.91 |
| $12^{-}$ |  | 13478 | 44.70 | -47.37 | -7.27 |
| $2^{+}$(6) |  | 13813 | 109.35 | 13.80 | 2.12 |
| $13^{-}$ |  | 14656 | 33.59 | -57.18 | -8.78 |
| $3^{+}(8)$ |  | 15137 | 129.67 | 33.04 | 5.07 |
| $14^{-}$ |  | 15872 | 30.03 | - 59.63 | -9.15 |
| $4^{+}(10)$ | 16546 | 16566 | 142.56 | 44.00 | 6.75 |
| 15- |  | 17127 | 29.09 | -59.63 | -9.15 |
| $5+(12)$ |  | 18037 | 151.43 | 50.28 | 7.72 |
| $16^{-}$ |  | 18418 | 30.78 | -57.31 | $-8.80$ |
| $6^{+}(14)$ |  | 19624 | 131.47 | 30.93 | 4.75 |
| $17^{-}$ |  | 19755 | 60.80 | $-30.58$ | -4.69 |
| $18^{-}$ |  | 21052 | 32.43 | -54.31 | -8.34 |
| $7^{+}(16)$ |  | 21292 | 169.55 | 61.37 | 9.42 |
| $19^{-}$ |  | 22420 | 26.15 | -58.76 | -9.02 |
| $8^{+}(18)$ |  | 22951 | 185.03 | 72.15 | 11.08 |
| $20^{-}$ |  | 23799 | 25.18 | -58.63 | $-9.00$ |

[^2]TABLE IV. Vibronically averaged values for the isotropic hfcc in the ${ }^{2} \mathrm{~m}_{u}$ electronic state of $\mathrm{ND}_{2}$ computed by employing JHM potential curves. (a) $K=0$ vibronic levels. (b) $K=1$ vibronic states.

| (a) | $\begin{gathered} E_{\text {expt }}^{n} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$ | $\begin{gathered} E \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$ | $A_{\text {iso }}$ (MHz) |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | D |
| $0^{-}$ |  | 0 | 22.30 | -9.55 |
| $1^{-}$ |  | 1098 | 22.64 | -9.54 |
| $2{ }^{-}$ |  | 2181 | 22.98 | -9.54 |
| 3- |  | 3246 | 23.36 | -9.55 |
| $4^{-}$ |  | 4294 | 23.79 | -9.57 |
| $5{ }^{-}$ |  | 5324 | 24.26 | -9.60 |
| $6{ }^{-}$ |  | 6334 | 24.77 | -9.64 |
| $7{ }^{-}$ |  | 7321 | 25.35 | -9.68 |
| $8{ }^{-}$ |  | 8284 | 25.98 | -9.74 |
| $9{ }^{-}$ |  | 9219 | 26.69 | -9.81 |
| $10^{-}$ |  | 10123 | 27.42 | -9.89 |
| $11^{-}$ |  | 11000 | 27.99 | -9.95 |
| $0^{+}(1)$ |  | 11146 | 100.81 | 1.31 |
| 12- |  | 11870 | 28.13 | -9.96 |
| $1+(3)$ |  | 11926 | 102.75 | 0.98 |
| $13^{-}$ |  | 12758 | 27.81 | -9.92 |
| $2^{+}(5)$ |  | 12809 | 112.33 | 2.37 |
| 14- |  | 13684 | 27.29 | -9.85 |
| $3^{+}(7)$ |  | 13811 | 122.76 | 3.99 |
| 15- |  | 14648 | 26.77 | -9.78 |
| $4^{+}(9)$ | 14844 | 14910 | 132.59 | 5.42 |
| $16^{-}$ |  | 15648 | 26.30 | -9.71 |
| $5^{+}(11)$ | 16014 | 16085 | 141.97 | 6.68 |
| $17^{-}$ |  | 16679 | 25.88 | -9.64 |
| $6^{+}(13)$ | 17224 | 17321 | 151.09 | 7.78 |
| $18^{-}$ |  | 17736 | 25.50 | -9.57 |
| $7^{+}(15)$ | 18588 | 18606 | 160.03 | 8.75 |
| $19^{-}$ |  | 18815 | 25.15 | -9.50 |
| $20^{-}$ |  | 19914 | 24.83 | -9.43 |
| $8^{+}(17)$ | 19925 | 19934 | 168.81 | 9.62 |

TABLE V. Vibronically averaged values for the isotropic hfce in the ${ }^{2} \Pi_{u}$ electronic state of $\mathrm{NH}_{2}$ computed by employing the $a b$ initio potential curves. (a) $K=0$ vibronic levels. (b) $K=1$ vibrionic states.

| (a) | $\underset{\left(\mathrm{cm}^{-1}\right)}{E}$ | $A_{\text {iso }}$ (MHz) |  |
| :---: | :---: | :---: | :---: |
|  |  | N | H |
| $0^{-}$ | 0 | 22.53 | -62.30 |
| $1^{-}$ | 1552 | 23.13 | -62.34 |
| $2^{-}$ | 3059 | 23.69 | -62.44 |
| $3{ }^{-}$ | 4539 | 24.27 | -62.63 |
| $4^{-}$ | 5998 | 24.96 | -62.94 |
| 5 | 7432 | 25.77 | -63.40 |
| 6 | 8835 | 26.73 | -64.01 |
| 7- | 10196 | 27.72 | -64.69 |
| $0^{+}(1)$ | 11196 | 106.73 | 14.99 |
| $8{ }^{-}$ | 11528 | 28.38 | -65.16 |
| $1^{+}(3)$ | 12405 | 111.68 | 16.02 |
| $9-$ | 12877 | 28.36 | -65.13 |
| $2^{+}(5)$ | 13778 | 123.49 | 26.85 |
| $10^{-}$ | 14300 | 27.89 | -64.74 |
| $3^{+}(7)$ | 15324 | 135.83 | 38.14 |
| $11^{-}$ | 15812 | 27.34 | -64.26 |
| $4^{+}$(9) | 17010 | 147.60 | 47.75 |
| $12^{-}$ | 17409 | 26.83 | -63.78 |
| 5+(11) | 18810 | 158.93 | 55.83 |
| $13^{-}$ | 19079 | 26.38 | -63.32 |
| $6^{+}(13)$ | 20703 | 169.86 | 62.81 |
| $14^{-}$ | 20813 | 25.95 | -62.80 |
| $15^{-}$ | 22589 | 25.45 | -62.13 |
| $7^{+}(15)$ | 22675 | 180.30 | 69.13 |
| $16^{-}$ | 24368 | 24.58 | -60.26 |
| $8^{+(17)}$ | 24712 | 190.12 | 75.14 |
| $17^{-}$ | 25862 | 22.01 | -52.04 |


| (b) | $\begin{gathered} E_{\text {expt }} \\ \left(\mathrm{cm}^{-1}\right) \end{gathered}$ | $\underset{\left(\mathrm{cm}^{-1}\right)}{E}$ | $A_{\text {iso }}(\mathrm{MHz})$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | D |
| $0^{-}$ |  | 13 | 22.33 | -9.55 |
| $1^{-}$ |  | 1112 | 22.63 | -9.54 |
| $2^{-}$ |  | 2195 | 22.97 | -9.54 |
| $3^{-}$ |  | 3262 | 23.35 | -9.55 |
| $4^{-}$ |  | 4312 | 23.77 | -9.57 |
| $5{ }^{-}$ |  | 5343 | 24.23 | -9.59 |
| $6{ }^{-}$ |  | 6356 | 24.74 | -9.63 |
| $7{ }^{-}$ |  | 7347 | 25.31 | -9.67 |
| $8{ }^{-}$ |  | 8314 | 25.94 | -9.73 |
| $9{ }^{-}$ |  | 9254 | 26.71 | -9.79 |
| $10^{-}$ |  | 10156 | 27.94 | -9.84 |
| $11^{-}$ |  | 10975 | 34.95 | -9.25 |
| $0^{+}(2)$ |  | 11249 | 97.96 | 1.05 |
| 12- |  | 11680 | 45.20 | -8.10 |
| $1^{+}(4)$ |  | 12154 | 86.76 | -0.99 |
| $13^{-}$ |  | 12441 | 54.32 | -6.42 |
| $2^{+}(6)$ |  | 13128 | 72.86 | -3.10 |
| $14^{-}$ |  | 13329 | 74.62 | -3.13 |
| 15- |  | 14127 | 45.42 | -7.09 |
| $3^{+}(8)$ |  | 14342 | 110.41 | 2.26 |
| $16^{-}$ |  | 15130 | 32.55 | -8.86 |
| $4^{+}(10)$ | 15399 | 15470 | 131.77 | 5.33 |
| 17- |  | 16154 | 29.06 | -9.25 |
| $5{ }^{+}$(12) | 16600 | 16676 | 143.55 | 6.88 |
| $18{ }^{-}$ |  | 17202 | 28.08 | -9.27 |
| $6^{+}(14)$ | 17944 | 17937 | 151.98 | 7.83 |
| 19- |  | 18275 | 28.78 | -9.07 |
| $7^{+}(16)$ |  | 19237 | 147.74 | 7.00 |
| $20^{-}$ |  | 19374 | 41.67 | -7.24 |
| $21^{-}$ |  | 20455 | 35.70 | -7.94 |

[^3]| (b) | $\begin{gathered} E \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$ | $A_{\text {iso }}(\mathrm{MHz})$ |  |
| :---: | :---: | :---: | :---: |
|  |  | N | H |
| $0{ }^{-}$ | 25 | 22.52 | -62.29 |
| $1^{-}$ | 1580 | 23.12 | -62.33 |
| $2^{-}$ | 3090 | 23.66 | -62.41 |
| 3- | 4574 | 24.24 | -62.59 |
| $4{ }^{-}$ | 6038 | 24.92 | -62.88 |
| 5 | 7480 | 25.76 | -63.27 |
| $6{ }^{-}$ | 8890 | 26.89 | -63.73 |
| 7- | 10231 | 29.44 | -63.68 |
| $8{ }^{-}$ | 11238 | 75.05 | -19.24 |
| $0^{+}(2)$ | 11539 | 71.92 | -21.78 |
| $9{ }^{-}$ | 12331 | 51.44 | -45.10 |
| 1+(4) | 12924 | 103.86 | 9.36 |
| $10^{-}$ | 13614 | 40.29 | -53.93 |
| $2^{+}(6)$ | 14439 | 122.13 | 26.46 |
| $11^{-}$ | 15060 | 35.42 | -57.21 |
| $3^{+}(8)$ | 16084 | 135.47 | 37.97 |
| 12- | 16612 | 33.73 | -57.86 |
| $4^{+}(10)$ | 17842 | 145.83 | 45.66 |
| 13- | 18249 | 34.38 | -56.50 |
| $5^{+}$(12) | 19693 | 150.39 | 47.39 |
| 14- | 19959 | 40.45 | -50.43 |
| $6^{+}(14)$ | 21601 | 120.06 | 18.93 |
| $15^{-}$ | 21746 | 81.02 | -14.96 |
| $16^{-}$ | 23469 | 40.63 | -48.67 |
| $7^{+}(16)$ | 23686 | 169.96 | 59.49 |
| $17^{-}$ | 25264 | 27.59 | -57.90 |
| $8^{+}(18)$ | 25742 | 191.80 | 75.81 |

TABLE VI. Comparison of the results of the present study for vibronically averaged hfcc's with the corresponding experimental data, theor. I: Theoretical results obtained by using the JHK potentials (Ref. 3). theor. II: Pure ab initio results. * Denotes the values obtained from the published data using the relation $A_{b b}+A_{c c}=-A_{a c}+$ Obtained indirectly be comparing the values for $A_{a c}$ and $A_{b b}$ in $\mathrm{NH}_{2}$ and NHD. Values in parentheses denote three standard deviations and apply to the last digits of the constants. Exceptions are data from $f$ ( 1 standard deviation) and $c$ ( $95 \%$ confidence limit).

| $\begin{aligned} & X^{2} B_{1} \\ & (000) \end{aligned}$ |  | $\mathrm{NH}_{2}$ |  | NHD |  |  | $\mathrm{ND}_{2}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | N | H | N | H | D | N | D |
| $\begin{aligned} & \boldsymbol{A}_{\mathrm{mo}} \\ & (\mathrm{MHz}) \end{aligned}$ | theor. I | 22.4 | -62.2 | 22.4 | -62.2 | -9.55 | 22.3 | -9.55 |
|  | theor. II | 22.5 | -62.3 |  |  |  |  |  |
|  | expt. | $27.9(0.6)^{*}$ |  | $28.0{ }^{\circ}$ | $-67.2^{\text {c }}$ | $-10.3^{\text {c }}$ |  | $-10.1(3)^{\text {r }}$ |
|  |  | $28.2 \pm 0.4{ }^{\text {b }}$ | $-67.2 \pm 0.4^{\text {b }}$ |  |  |  | 28.055(33) | $-10.241(28)^{8}$ |
|  |  | 27.88(20) ${ }^{\text {d }}$ | $-67.59(28)^{\text {d }}$ |  |  |  |  |  |
|  |  | 28.11(34) ${ }^{\text {d }}$ | -67.22(43) ${ }^{\text {d }}$ |  |  |  |  |  |
| ${ }_{(\mathrm{MHz})}$ | theor. Itheor. II | -42.4 | 19.6 | -42.5 | -23.7 | 8.45 | -42.4 | 3.01 |
|  |  | -42.4 | 20.2 |  |  |  |  |  |
|  |  | -43.3(1.5) ${ }^{\text {a }}$ |  | $-43.0{ }^{\circ}$ | $-25.5{ }^{\text {c }}$ | $8.2^{\text {c }}$ | $-43.136(48)^{8}$ | 3.3(7) ${ }^{\text {r }}$ |
|  | expt. |  |  | $-43.0$ |  |  |  | $2.874(45)^{8}$ |
|  |  | $-43.38(30)^{d}$ | $17.54(63)^{d}$ |  |  |  |  |  |
|  |  | -43.17 (88) ${ }^{\text {d }}$ | 18.61(125) ${ }^{\text {d }}$ |  |  |  |  |  |
| $\begin{aligned} & A_{\Delta b} \\ & (\mathrm{MHz}) \end{aligned}$ | theor. I | -42.9 | -12.9 | -42.8 | 30.3 | -7.43 | -42.9 | -1.99 |
|  | theor. II | -42.9 | -13.4 | -44.4 ${ }^{\text {c }}$ |  | $-7.4^{\text {c }}$ |  |  |
|  | expt. | -44.2(1.6) ${ }^{\text {a }}$ |  |  | $30.5{ }^{\text {c }}$ |  | -44.272(63) ${ }^{8}$ | $\begin{aligned} & -2.3^{m^{*}} \\ & -2.108(69)^{\varepsilon} \end{aligned}$ |
|  |  | $-44.7 \pm 1.0^{b}$ |  |  |  |  |  |  |
|  |  | $-44.7 \mathrm{~s}^{\mathrm{d}^{*}}$ | $-12.7 \mathrm{~s}^{\mathrm{d}^{*}}$ |  |  |  |  |  |
|  |  | $-44.53^{d^{*}}$ | $-13.41^{1^{*}}$ |  |  |  |  |  |
|  | theor. I | 85.4 | -6.67 | 85.3 | -6.63 | -1.02 | 85.4 | -1.03 |
|  | theor. II | 85.4 | -6.68 |  |  |  |  |  |
| $\begin{aligned} & A_{\kappa r} \\ & (\mathrm{MHz}) \end{aligned}$ | expt. | 87.4(0.9) ${ }^{2}$ |  | $87.5{ }^{\text {c }}$ | $-5.2^{\text {c }}$ | $-0.8^{c}$ | 87.413 ${ }^{\text {\% }}$ | $-1.0(4)^{\text {f }}$ |
|  |  | $87.5 \pm 0.5{ }^{\text {b }}$ | $-5.2 \pm 0.6^{\text {b }}$ |  |  |  |  | $-0.766^{8^{*}}$ |
|  |  | 88.13 (18) ${ }^{\text {d }}$ | $-4.79(47)^{\text {d }}$ |  |  |  |  |  |
|  |  | $87.70(47)^{\text {d }}$ | -5.20(58) ${ }^{\text {d }}$ |  |  |  |  |  |
|  | theor. I |  | 55.3 |  |  |  |  |  |
| (MHz) | expt. |  | 58.5(2.5) ${ }^{\text {c+ }}$ |  |  |  |  |  |



| ${ }^{-}$Reference 21. | Reference 25. |
| :---: | :---: |
| ${ }^{6}$ Reference 22. | 'Reference 26. |
| ${ }^{\text {R Reference } 23 .}$ | ${ }^{\text {sReference } 27 .}$ |
| ${ }^{\text {d }}$ Reference 24. |  |

increasing systematically with increasing bending quantum numbers. Although it cannot be excluded that the $a b$ initio bending potentials are simply somewhat too steep at strongly bent geometries, this might be caused by the above
mentioned smaller reliability of the one-dimensional bending model at large amplitude vibrations. The situation with the potentials derived by fitting the observed bond positions is quite different because these are defined so that
they match optimally the experimental data. A good fitting can also be a consequence of cancellation of errors in models for the potentials and the kinetic energy operator.

Variation of the values for the vibronically averaged hfcc's from one level to another reflects generally three effects, connected more or less with each other: (i) geometry dependence of the electronic mean values of the hfcc's; (ii) composition of the vibronic wave functions, particularly the amount of the ${ }^{2} B_{1} /{ }^{2} A_{1}$ electronic wave function in them; (iii) strong local coupling between (accidentally) close-lying vibronic levels belonging (predominantly) to different Born-Oppenheimer potential curves. The last two effects are obviously intimately interacting with one another because a near degeneracy of the levels with $K \neq 0$ has dramatic consequences for the composition of the corresponding wave functions.

As well known $n^{2,10} K=0$ vibronic levels are unambiguously attributed to one particular of the two electronic states in question and in this case the variation of the vibronically averaged hfcc's is caused predominantly by the geometry variation of the corresponding electronic mean values. As a consequence of that the agreement between the results obtained by employing the JHM and $a b$ initio potential curves (Tables I and V) is quite satisfactory, the small differences being caused by systematic overestimation of the vibrational energy values in the pure $a b$ initio calculations. The same holds for the $K \neq 0$ (particularly $K=1$ ) vibronic levels below the barrier to linearity. The agreement between two sets of results is significantly worse in the vicinity of the barrier in which the vibronic coupling is very strong. (The off-diagonal matrix elements in the vibronic secular equation coupling two BornOppenheimer electronic states with one another are weighted with the factor $\sim 1 / \rho^{2}$ at $\rho \rightarrow 0$.) So, e.g., the mean values of the isotropic hfcc in the $v_{2}=8$ level belonging predominantly to the ${ }^{2} B_{1}$ electronic state (denoted in tables by $8^{-}$) and the lowest $K=1$ vibronic level of the ${ }^{2} A_{1}$ electronic species corresponding to the quantum number $v_{2}=0$ in the "bent," i.e., $v_{2}=2$ in the "linear" notation ( $v_{2}^{\text {lin }}=2 \times v_{2}^{\text {bent }}+\Lambda+K^{10}$ ) and denoted by $0^{+}(2)$ are calculated to be 75 and 72 MHz , respectively, when the ab initio potentials are employed [Table V(b)], and 38 and 97 MHz by using the JHM potentials [Table I(b)]. This can be explained by the fact that these levels are computed to lie much closer to one another ( $300 \mathrm{~cm}^{-1}$ ) in the pure $a b$ initio calculation than in the case when the JHM potentials are used ( $420 \mathrm{~cm}^{-1}$ ), with the consequence that the mixing of the electronic character is much stronger in the former case. $K \neq 0$ levels lying far enough above the barrier to linearity have predominantly ${ }^{2} B_{1}$ or ${ }^{2} A_{1}$ electronic character and the agreement between the results for vibronically averaged mean values of the hfcc's generated by employing the two sets of potential curves is again satisfactory. The only exception represent the cases of the above mentioned local interactions which cannot be described quite reliably by pure $a b$ initio calculations (see, e.g., discussion in Refs. 28 and 29). So, e.g., the mean values of the isotropic hfec for nitrogen (JHM potentials) in the $K=1$ levels $16^{-}$and $17^{-}, 38$ and 42 MHz , respec-
tively, [Table I(b)] are significantly larger than for the $K=0$ levels lying in the same energy region [ $\approx 24 \mathrm{MHz}$, Table I(a)] because of the presence of relatively close-lying levels ( $\Delta E \simeq 200 \mathrm{~cm}^{-1}$ ) belonging predominantly to the ${ }^{2} A_{1}$ electronic state, $6^{+}(14)$ and $7^{+}(16)$, respectively. In the calculation with the $a b$ initio potentials [Table $V(b)$ ], the $K=1$ level $16^{-}$lies close ( $\simeq 220 \mathrm{~cm}^{-1}$ ) to the $7^{+}$level of predominantly ${ }^{2} A_{1}$ electronic character and the mean value for $A_{\text {iso }}$ of the nitrogen is computed to be 41 MHz ; on the other hand, the energy difference between the level $17^{-}$ and the next level of the ${ }^{2} A_{1}$ character $8^{+}(18)$ is significantly larger ( $\approx 480 \mathrm{~cm}^{-1}$ ) and this is reflected in rather "normal" value for the $A_{\text {iso }}$ in $17^{-}$( 28 MHz ). Because of the above mentioned lack of exact isotopical invariance of the JHM potentials (and/or of the bending dependence of the optimized bond lengths) we cannot expect that the local perturbations are described reliably in NHD and $\mathrm{ND}_{2}$ even if the calculations in which the empirical potentials are employed instead of their ab initio counterparts.

The results for the mean values of the combination $A_{b b}-A_{c c}$ presented in Table I(b), deserve some additional comment. They appear with the same sign for both the component electronic states (except in a few very high levels in $\mathrm{NH}_{2}$ for the hydrogen atom) in spite of the fact that the electronic mean values for $A_{b b}-A_{c c}$ have different signs in ${ }^{2} B_{1}$ and ${ }^{2} A_{1}$ species in large range of the bond angle values, particularly at the linear geometry at which $A_{b b}^{B_{1}}$ $=A_{c c}^{A_{1}}$ and $A_{b b}^{A_{1}}=A_{c c}^{B_{1}}$ and thus $\left(A_{b b}-A_{c c}\right)^{B_{1}}=-\left(A_{b b}\right.$ $\left.-A_{c c}\right)^{A_{1}}=\left(A_{c c}-A_{b b}\right)^{A_{1}}$. This is a consequence of the fact that the values given in the tables while corresponding to the same vibronic energy level [in the framework of the calculation model (no $K$ doubling)] represent actually offdiagonal matrix elements between the vibronic wave functions for the $K=+1$ and $K=-1$ component states corresponding to the proper selection rule ( $\Delta K= \pm 2$ ). These functions have the respective forms (10)

$$
\begin{align*}
& \Psi_{(K=+1)}=\left(f^{A_{1}} \psi^{A_{1}}+f^{B_{1}} \psi^{B_{1}}\right) e^{i \phi},  \tag{12a}\\
& \Psi_{(K=-1)}=\left(f^{A_{1}} \psi^{A_{1}}-f^{B_{1}} \psi^{B_{1}}\right) e^{-i \phi}, \tag{12b}
\end{align*}
$$

where $\psi^{A_{1}}$ and $\psi^{B_{1}}$ are the electronic basis functions calculated in the Born-Oppenheimer approximation, and the coefficients $f^{A_{1}}$ and $f^{B_{1}}$ represent actually linear combinations of the bending basis functions determined by solving of the vibronic secular equation. Thus the matrix elements

$$
\begin{equation*}
\langle\Psi(K=-1)| A_{b b}-A_{c c}|\Psi(K=+1)\rangle \tag{13}
\end{equation*}
$$

reduce due to orthogonality of $\psi^{A_{1}}$ and $\psi^{B_{1}}$ to

$$
\begin{align*}
& \left\langle f^{A_{1}}\right|\left\langle\psi^{A_{1}}\right| A_{b b}-A_{c c}\left|\psi^{A_{1}}\right\rangle\left|f^{A_{1}}\right\rangle \\
& \quad-\left\langle f^{B_{1}}\right|\left\langle\psi^{B_{1}}\right| A_{b b}-A_{c c}\left|\psi^{B_{1}}\right\rangle\left|f^{B_{1}}\right\rangle . \tag{14}
\end{align*}
$$

Thus the computation of the $\langle K=-1 \| K=+1\rangle$ matrix elements is equivalent to that for the diagonal elements $\langle K=+1||K=+1\rangle$ (or $\langle K=-1||K=-1\rangle$ ) in which the sign of the electronic mean values for $A_{b b}-A_{c c}$ in the ${ }^{2} B_{1}$ state is changed.

A consequence of the fact that the magnitude of the electronically averaged quantities $A_{b b}-A_{c c}$ in ${ }^{2} A_{1}$ and $A_{c c}$
$-A_{b s}$ in ${ }^{2} B_{1}$ state is similar in the large range of the bond angle values is that the variation of the values for the matrix elements $\langle K=-1| A_{b b}-A_{c c}|K=+1\rangle$ with the bending quantum number is rather regular, even if the vibronic states are of apprediably mixed $B_{1} / A_{1}$ electronic character. If a particular vibronic level is of predominantly ${ }^{2} B_{1}$ electronic character, i.e., if $f^{A_{1}}=0$, expression (14) reduces to $-\left\langle f^{B_{1}}\right|\left\langle\psi^{B_{1}}\right| A_{b b}-A_{c c}\left|\psi^{B_{1}}\right\rangle\left|f^{B_{1}}\right\rangle$ and thus represents the vibrationally averaged mean value of the $A_{c c}-A_{b b}$ combination; for the levels belonging predominantly to the ${ }^{2} A_{1}$ electronic state (14) reduces to the mean value of $A_{b b}$ $-A_{c c}$ In both cases it is possible in a good approximation to obtain the mean values of the individual $A_{b b}$ and $A_{c c}$ elements by adding and subtracting from one another the values for $\langle K=1| A_{a a}|K=1\rangle=-\langle K=1| A_{b b}+A_{c c}|K=1\rangle$ and $\langle K=1| A_{b b}-A_{c c}|K=-1\rangle$ derived from experiment. The situation is more complicated in the case of vibronic levels strongly shared between two electronic species. Correct vibronic mean values for $A_{b b}$ and $A_{c c}$ would be obtained if it were possible to measure the diagonal matrix elements $\langle K=+1| A_{b b}-A_{c c}|K=+1\rangle$ and then combine them with $\langle K=+1| A_{a a}|K=+1\rangle$. In the case of a $50 \% /$ $50 \%$ mixture and for $\left(A_{b b}-A_{c c}\right)_{B_{1}}=\left(A_{c c}-A_{b b}\right)_{A_{1}}$ (this happens approximately, e.g., in "unique" level ${ }^{10}$ of a molecule which both component electronic states have linear equilibrium geometry) the vibronically averaged value for $\langle K=+1| A_{b b}-A_{c c}|K=+1\rangle$ would be close to zero with the consequence that $\left\langle A_{b b}\right\rangle \simeq\left\langle A_{c c}\right\rangle \simeq-\left\langle A_{a a}\right\rangle / 2$. Instead the matrix element $\langle K=-1| A_{b b}-A_{c c}|K=+1\rangle$ is under the same conditions close to the electronically mean value of $\left(A_{b b}-A_{c c}\right)_{A_{1}} \simeq\left(A_{c c}-A_{b b}\right)_{B_{1}}$ so that the combination of the elements $\langle K=-1| A_{b b}-A_{c c}|K=+1\rangle$ with $\langle K$ $\left.=1\left|A_{a a}\right| K=1\right\rangle$ reproduces roughly the electronic rather than vibronic mean values for $A_{b b}$ and $A_{c c}$

The remaining (irreducible) components of the isotropic hf tensor, connecting the vibronic levels differing in $K$ by $\pm 1$ and $\pm 2$ can generally not be measured with the current experimental methods except in some convenient cases, indirectly. So, e.g., the $A_{a b}$ hfcc in the ground vibrational state of $\mathrm{NH}_{2}$ has been determined by comparing the actually measured values for $A_{a a}$ and $A_{b b}$ [more precisely for $A_{a a}\left(=-A_{b b}-A_{c c}\right)$ and $A_{b b}-A_{c c}$ ] in $\mathrm{NH}_{2}$ and NHD along their respective principal inertial axes. ${ }^{23}$ (In this case the Born-Oppenheimer approximation is valid and reliable $a b$ initio computation of the same quantities is possible without taking into account the vibronic interaction. ${ }^{30}$ ) The reason is that the energy differences between the vibronic levels differing in $K$ are generally too large [in $\mathrm{NH}_{2}$, e.g., between $\sim 25 \mathrm{~cm}^{-1}$ ( $K=1-K=0$ in the ground vibrational state) and as much as $1000 \mathrm{~cm}^{-1}$ for the levels above the barrier to linearity]. This matter of fact is illustrated in Table I in PAPS. In it we present hypotetical mean values of the quantities $A_{b b}-A_{c c}$ and $A_{a b}$ in $K=0$ and $K=1$ vibronic levels of $\mathrm{NH}_{2}$ (JHM potentials employed) and an estimation of the effect of interaction of all the vibronic states with the proper symmetry on (i.e., connected by proper $\Delta K$ selection rules) with particular $K=0$ and $K=1$ states, according to the perturbative-type formula

$$
\begin{equation*}
\left\langle A_{b b}-A_{c c}\right\rangle_{v, K=0}=\sum_{v^{\prime}} \frac{\left|\left\langle\Psi_{v K=0 \mid A_{b b}-A_{c c}} \Psi_{v^{\prime} K=2}\right\rangle\right|^{2}}{E_{v K=0}-E_{v^{\prime} K=2}} \tag{15}
\end{equation*}
$$

and analogously for other quantities. [Numerical constants consisting of combinations of quantum numbers are omitted in expression (15).] These quantities, denoted in Table I in PAPS ${ }^{12}$ by $\langle 0 \| \Sigma 2\rangle$, etc., are of magnitude order between Hz and kHz . In the energy region above the barrier to linearity the dependence on the bending quantum number is irregular with particularly large values where the $K=0$ levels of the ${ }^{2} B_{1}$ potential curve are accidently nearly degenerate with $K=2$ levels belonging predominantly to the ${ }^{2} A_{1}$ state (and vice versa, $K=0$ of ${ }^{2} A_{1}$ with $K=2$ of ${ }^{2} B_{1}$ ). Such a situation is illustrated by Table II where the matrix elements of $A_{b b}-A_{c c}$ between the $K=0$ vibronic state $v_{2}^{\prime}=2^{+}(5)$ and individual $K=2$ states are presented. It can be noted that the largest matrix element connects the $K=0, v_{2}=2^{+}(5)$ state with its nearly degenerate (energy difference $6-7 \mathrm{~cm}^{-1}$ ) $K=2$ counterpart ( $\nu_{2}=10^{-}$), but that there are several other matrix elements of comparable magnitude; the contribution of the latter to the quantity defined by Eq. (15) is, however, due to infavorable energy nominators negligible. In Table II are presented also the matrix elements between the lowest vibronic $K=0$ level with individual $K=2$ states. In this case the matrix element diagonal in $v_{2}\left(=0^{-}\right)$is clearly dominating all others.

The results obtained in the present study are compared in Table VI with the corresponding experimental findings. The values denoted by th. I represent the results of calculations in which the JHM potentials are employed, those denoted by th. II are obtained by using the $a b$ initio potential curves. The theoretical results for $A_{b b}$ and $A_{c c}$ are derived from the values for $A_{a q}$ and $A_{b b}-A_{c c}$ given in Table I and Tables II-IV in PAPS, ${ }^{12}$ i.e., via the same procedure as their experimental counterparts. The theoretical results, particularly for the isotropic hfcc, generally underestimate slightly their experimental counterparts, in accordance with our experience with similar systems. ${ }^{31,32}$ Relatively large difference in $A_{b b}$ for the hydrogen atom in the ( 010 0 ) level of $A^{2} A_{1}$ reflects the sensitivity of the computation of this quantity in that energy region where the magnitude of the corresponding electronic matrix elements in both ${ }^{2} B_{1}$ and ${ }^{2} A_{1}$ states is small and their bending dependence is very strong. However, we find the overall agreement quite satisfactory, especially by taking into account relatively large experimental uncertainties.

## IV. CONCLUSION

In the present study we demonstrate the ability of the $a b$ initio method to reproduce, explain, and predict the experimental findings concerning the hyperfine structure of the spectrum of a molecule $\left(\mathrm{NH}_{2}\right)$ with the two electronic states strongly coupled via the Renner-Teller effect. The influence of various parameters (particularly the reliability of the potential surfaces, the effects of local perturbations between the close-lying vibronic states belonging predominantly to different electronic species) is discussed.

## ACKNOWLEDGMENTS

The authors thank Professor Peyerimhoff for her interest and fruitful discussions during the progress of this work. Part of this work was financially supported by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the project En 197/2-2 and by the Leibniz-Prize. Services and computer time made available by the University of Bonn Computing Center are gratefully acknowledged.
${ }^{\prime}$ B. Engels, M. Perić, W. Reuter, S. D. Peyerimhoff, and F. Grein, J. Chem. Phys. 96, 4526 (1992).
${ }^{2}$ R. Renner, Z. Phys. 92, 172 (1934).
${ }^{3}$ Ch. Jungen, K.-E. J. Hallin, and A. J. Merer, Mol. Phys. 40, 25 (1980).
${ }^{4}$ M. Perić, S. D. Peyerimhoff, and R. J. Buenker, Int. Rev. Phys. Chem. 4, 85 (1985).
${ }^{5}$ R. J. Buenker, M. Perić, S. D. Peyerimhoff, and R. Marian, Mol. Phys. 43, 987 (1981).
${ }^{6}$ M. Perić, S. D. Peyerimhoff, and R. J. Buenker, Mol. Phys. 49, 379 (1983).
${ }^{7}$ M. Perić, R. J. Buenker, and S. D. Peyerimhoff, Mol. Phys. 59, 1283 (1986).
${ }^{8}$ P. R. Bunker and B. M. Landsberg. J. Mol. Spectrosc. 67, 374 (1977).
${ }^{9}$ J. T. Hougen, P. R. Bunker, and J. W. C. Johns, J. Mol. Spectrosc. 34, 136 (1972).
${ }^{10}$ Ch. Jungen and A. J. Merer, Mol. Phys. 40, 1 (1980).
${ }^{11}$ S. Carter and N. C. Handy, Mol. Phys. 52, 1367 (1984).
${ }^{12}$ See AIP document no. PAPS JCPSA-97-4996-7 for 7 pages of tables. Order by PAPS number and journal reference from American Institute of Physics, Physics Auxiliary Publication Service, 335 East 45th Street, New York, NY 10017. The price is $\$ 1.50$ for each microfiche ( 60 pages) or $\$ 5.00$ for photocopies of up to 30 pages, and $\$ 0.15$ for each
additional page over 30 pages. Airmail additional. Make checks payable to the American Institute of Physics.
${ }^{13}$ J. W. C. Johns, D. A. Ramsay, and S. C. Ross, Can. J. Phys. 54, 1804 (1976).
${ }^{14}$ M. Kroll, J. Chem. Phys. 63, 319 (1975).
${ }^{15}$ M. Vervolet, M. F. Merienne-Lafore, and D. A. Ramsay, Chem. Phys. Lett. 57, 5 (1978).
${ }^{16}$ M. Vervolet, Ph. D. thesis, Reims, 1978.
${ }^{17}$ P. B. Davies, D. K. Russell, B. A. Thrush, and H. E. Radford, Proc. R. Soc. London, Ser. A 353, 299 (1977).
${ }^{18}$ C. Yamada, K. Kavaguchi, and E. Hirota, Thirty-third Symposium on Molecular Spectroscopy, Ohio, Paper FB9, 1978.
${ }^{19}$ D. A. Ramsay and F. D. Wayne, Can. J. Phys. 57, 761 (1979).
${ }^{20}$ K. Dressler and D. A. Ramsay, Philos. Trans. R. Soc. London, Ser. A 251, 553 (1959).
${ }^{21}$ G. W. Hills, J. M. Cook, R. F. Curl, Jr., and F. K. Tittel, J. Chem. Phys. 65, 823 (1976).
${ }^{22}$ J. M. Cook, G. W. Hills, and R. F. Curl, Jr., J. Chem. Phys. 67, 1450 (1977).
${ }^{23}$ T. C. Steimie, J. M. Brown, and R. F. Curl, Jr., J. Chem. Phys. 73, 2552 (1980).
${ }^{24}$ J. M. Cook and G. W. Hills, J. Mol. Spectrosc. 94, 456 (1982).
${ }^{25}$ G. W. Hills, C. R. Brazier, J. M. Brown, J. M. Cook, and R. F. Curl, Jr., J. Chem. Phys. 76, 240 (1982).
${ }^{26}$ J. M. Cook and G. W. Hills, J. Chem. Phys. 78, 2144 (1983).
${ }^{27}$ M. Kanada, S. Jamamoto, and S. Saito, J. Chem. Phys. 94, 3423 (1991).
${ }^{28}$ M. Peric, S. D. Peyerimhoff, and R. J. Buenker, Mol. Phys. 71, 693 (1990).
${ }^{29}$ M. Perić, B. Engels, and S. D. Peyerimhoff, J. Mol. Spectrosc. 150, 70 (1991).
${ }^{30}$ K. Funken, B. Engels, and S. D. Peyerimhoff, Chem. Phys. Lett. 172, 180 (1990).
${ }^{31}$ S. P. Karna, F. Grein, B. Engels, and S. D. Peyerimhoff, Int. J. Quant. Chem. 36, 255 (1986).
${ }^{32}$ B. Engels, S. D. Peyerimhoff, S. P. Karna, and F. Grein, Chem. Phys. Lett. 152, 397 (1988).


[^0]:    ${ }^{2}$ )Permanent address: University of Belgrade, Faculty of Science, Institute of Physical Chemistry, Studentski trg 16, P.O. Box 550, 11001 Beograd, Yugoslavia.

[^1]:    ${ }^{2}$ Experimentally derived values (Refs. 13-18 employed by JHM) (Ref. 3). Notation for $v_{2}: v_{2}^{+-b e n t}$ ( $v_{2}^{\text {din }}$ ).

[^2]:    ${ }^{2}$ Reference 19, $\mathrm{N}_{\text {KaKc }}=0_{00}$.
    ${ }^{b}$ Reference 19, $\mathrm{N}_{\text {KaKc }}=1_{10}$.

[^3]:    Reference 20

