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The hyperfine coupling constants (hfcc's) A iso and A ij are calculated for 
all centres of H2o+ in its two lowest lying electronic states (X2B1, A2A1) at 
various molecular geometries by means of the ab inilio multireference configura
tion method. The vibronically averaged values of the hfcc's for the K = 0 and 
K I Ievels in H~70 in the energy range up to 25000cm-1 are computed. 
The study shows that the reliable hfcc's of higher vibronic states can only be 
obtained if the vibronic coupling between the two electronic states is taken into 
account, while the lowest vibronic states of the X2B1 are nearly unaffected by 
the nuclear motion. Comparisons to the isoelectronic system NH2 are made. 

1. Introduction 

In recent years, the H2o+ cation has been the subject of great research interest 
because of its importance for elementary processes in the earth 's upper atmosphere and 
in interstellar space. The spectrum of H2o+ has been investigated thoroughly by both 
experimental and theoretical methods. In a series of papers [1-8] high-resolution 
emission and absorption experiments, involving the two lowest-Iying electronic states 
X2B1 and A 2 A 1 have been reported. The ground state of H20+ has been investigated 
by infrared absorption spectroscopy [9, 10]. High-resolution photoelectron spectra for 
various isotopomers of H20+ were obtained by Karlsson et al. [11], Dixon et al. [12] 
and Reutt et al. [1 3]. Jungen et a/. [1 4, 1 5] derived effective bending potential curves for 
the two lowest-lying electronic states and applied them in the theoretical treatment of 
the vibronic coupling in this molecule. Kauppi and Halonen (16] derived the equili
brium structure and a complete three-dimensional potential energy surface for the 
ground state of the water cation, using experimental vibrational and rotational data. 

Smith et al. [17], computed the potential surfaces for five electronic states of H2 o+ 
using MCSCF, and Fortune et al. [18] those for the X2B1 and B2B2 states employing 
both self~onsistent field (SCF) and MCSCF/configuration Interaction (Cl) methods. 
Carter and Meyer [19] calculated vibrational energy Ievels of H20+ with a Hamiltonian 
in hyperspherical coordinates. Weis et al. [20] presented an extensive ab initio calcu
lation of the three-dimensional potential energy and electric dipole moment functions 
for the electronic ground state of H2o+ and Reuter et al. [21] reported the results of an 
ab initio investigation of the vibronic structure of H2o+, HDO+ and D20+. 

The hyperfine coupling constants (hfcc's) of the ground state of H20+ have been 
also investigated in several studies. Knight and Steadman [22] reported electron spin 
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resonance investigations of H20+, HDO+, D2o+ and H~ 7 o+ isolated in neon rnatrix 
at 4 K, while Strahan et al. [23] deterrnined twenty four rnolecular constants in the 
ground state of the water cation, including hyperfine pararneters, ernploying Iaser 
rnagnetic resonance (LMR). Theoretical investigations have been perfonned by 
Feiler and Davidson [24], who used full SD-CI followed by a truncated NO
SDTQ-CI procedure. Further studies were perforrned by Nakatsuji et al. [25] and 
Mornose et al. [26] who ernployed the SAC-CI rnethod and Nakano et al. [27] who 
applied ROHF single CI calculation. However, none of the studies rnentioned above 
investigated the hfcc's taking into account effects arising frorn the nuclear motion. 

The theoretical interest in H2o+ concems the fact that this molecule represents a 
classical exarnple of the Renner-Teller effect. Here the degenerate state erru), when 
the rnolecule is linear, splits on bending into a bent ground and a linear exited 
state. The ground electronic state X2B1 possesses a dominant configuration 
(la1)

2(2at)2(lb2)
2(3a1)

2(lbt) 1 with an equilibriurn bondangle ofabout 109°, while 
the upper A2 A1 state with the main configuration (la1)

2 (2a1)
2 (lb2)

2 (3a1)
1 (lbt)2 has 

the minirnurn at a linear geometry. 
The present study reports ab initio investigations of the hyperfi.ne structure in the 

two lowest-lying electronic states of H20+, taking into account the vibronic coupling 
between thern. While such effects are srnall for the lowest vibrationallevel of the ground 
state, the vibronic coupling is expected to affect largely the rnean values for the hfcc's of 
the Ievels in the energy region around the point where both electronic states touch one 
another at the linear molecular geornetry. In the previous papers [28-33] it has been 
shown that a reliable reproduction of the values for the hfcc's derived by experirnent 
can be achieved only if proper averaging of the corresponding ab initio calculated 
quantities over the vibronic states in question is performed. 

2. Technical details 

The isotropic and anisotropic hfcc's describe the interaction between a nuclear 
spin I and electron Spin S. They are deterrnined by the net unpaired electron-spin 
density at the nucleus and the spatial distribution for the electron-spin density. The 
former represents a scaler and is defined for a nucleus N as 

N 8 1\ n ) Ai so = 31tgNg 1-'N 1-'B s q, I E o(rNk)Szk I (I ' 
k=l 

where 1-'N, KN are the nuclear magneton and nuclear g factor, respectively. The term g 
is the g value for the electrons in the free radical, while p,8 is the Bohr magneton. In 
the present work, g was set to the value of the free electron ge, equal2·0. \II represents 
generally the total wavefunction of the system. If instead, only averaging over the 
electronic coordinates is meant, \II is replaced by the electronic wavefunction. The 
corresponding hfcc's we shall call electronic hfcc's. The anisotropic part which 
describes the dipole-dipole interaction between the nuclear spin I and the electron 
spin S represents a tensor. lts Cartesian components are defined in a molecule-fixed 
coordinate system as 

A~ = KNKei'Nf.'B~\ 1111 t. eiJ ~{6'1)Nk2Szki>ll ), 
with i, j = x, y, z; Nk indicates that Au is formulated with respect to the centre N. 



Calculations of coupfing constants 1487 

For comparison with experimental gas phase data the anisotropic part has to be 
calculated within the principal axis of the tensor of inertia [31 ]. 

The molecule is assumed to lie in the xz plane, and for the irreducible tensor 
elements of A the I' representation is used [34] (x = b, y = c, z = a). In calculations 
ofthe electronic hfcc's we neglect the matrix element Abc (E B 1) which is off-diagonal 
with respect to the two electronic states in question (X2B1 and A2 A1) for both the 0 
and H atoms, as weil as Aac( E A") for the H atom which connects the states 2 A' and 
2A" correlating (in the lower Cs point group) to 2A1 and 2B1 of C2v symmetry. The 
terms Aac( E A2) and Aab( E B2) for the oxygen atom vanish by symmetry. 

The atomic orbital (AO) basis employed in the present study for the oxygen atom 
consists of the (13s8p) Gaussians in the [8s5p] contraction, proposed by van Dujjne
veldt [35]; it is augmented by two d functions with exponents od = 2·314 and 0·645 [36] 
for a better description of the polarization effects, as weil as by one additional d 
function (od = 8·0) which is known to improve the computation of the isotropic hfcc 
[37, 38]. Finally a diffuses function a 5 = 0·02 is added to the oxygen AO basis set. For 
the hydrogen atom the (8s) basis set ofvan Duijneveldt [35] is used in a [5s] contraction. 
It is supplemented by two additional s functions (a5 = 2·593, 0·01) and three p 
functions (op = 1·848, 0·649, 0·228) [36]. 

The calculations are carried out in the standard multireference configuration 
interaction (MRD-CI) manner, whereas the truncation is made on the basis of the 
energy selection threshold T [39, 40]. In contrast to the CI treatment applied for the 
calculation of the potential curves and the electronic transition moments [21] in 
which the K-shell electrons of the oxygen atom are not correlated and the two 
highest virtual SCF orbitals are discarded, in the present calculations all electrons 
are correlated and no virtual orbitals are discarded because it has been found that 
the correlation effects involving the inner shell electrons are very important for the 
reliable calculation of the isotropic hfcc [24]. To obtain a faster convergence of the 
CI expansions, natural orbitals (NOs) are employed as the one-particle basis. The 
energy threshold of T = 0·15 flEht is used as criterion for selecting the configura
tions within the MRD-CI procedure. The reference space consists of 22-32 configu
rations (51-80 SAF). The nurober of configurations generated by single and double 
excitations with respect to these reference species is about I 300 000 and from 17 000 
to 28 000 of them are selected according to their contribution to the energy. 

To improve the truncated wavefunction obtained in the MRD-CI calculation, a 
perturbation-like Bk method is applied [38, 41, 42]. A corrected vector, which con
tains the relaxation of the most important coefficient due to the neglected config
urations, is used to calculate the hfcc's. The contribution of the Bk correction to the 
recovery of the error in the computed isotropic hfcc's is particularly large for the 
electronic states in which the values for Aiso are determined solely by spin-polari
zation effects. In the framework of the Bk treatment all coefficients in the CI 
expansion with the magnitude ~0·01 (about 500SAF) as weil as those of the con
figurations generated by single excitations from the leading reference configuration 
are corrected. 

The approach employed for the calculations of the vibronic wavefunction is 
described elsewhere [43]. The large-amplitude bending vibrations are treated 
employing the semi-rigid-bender Hamiltonian [44, 45]. The vibronic wavefunctions 
are represented by expansions in the eigenfunctions of a two-dimensional harmonic 

t 1 Eh~ 4·35975 x w-18 J. 
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Figure 1. Bond angle dependence of the electronic mean values for the isotroQic hfcc of 170 
in the electronic ground state X2B1 (dashed line) and the first excited A 2 A1 state (full 
line). Dotted line represents the results obtained without Bk correction. 

oscillator. The vibronically-averaged hfcc's are calculated as integrals over these 
basis functions [32]. 

The electronic hfcc's are calculated as a function of the H -0-H bond angle e at 
optimized RoH bond length taken from [21]. In this way the leading part of the 
stretch-bend interaction is incorporated in an effectively one-dimensional large
amplitude bending treatment. The equilibrium geometries assumed in the presented 
study correspond to the RoH= 1·010 A and e = 108·9 at the ground state and 
RoH= 0·9966 A and e = 180° at the excited state. These geometry parameters are 
within the range of values derived from experimental data that have been found [12, 
17, 21, 23] to deviate in the ground state from each other by 0·008 A in RoH and by 
1·2° in the bond angle. 

3. Results and discussion 

The results of the calculations of the electronic isotropic hfcc's of 17 0 and 1 H are 
shown in figure I and figure 2, respectively; the components of the anisotropic hf 
tensor are displayed in figures 3 and 4. 

In figure I the comparison between the values for Aisoe7o) calculated with both 
the truncated MRD-CI wavefunction and the vector corrected by the Bk method is 
also given. lt can be seen that the improvement of the wavefunction shifts the values 
of Ai so in the X2B1 state about 10 MHz downwards. A similar trend, as expected, is 
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Figure 2. Bond angle dependence of the electronic mean values for the isotropic hfcc of 
hydrogen in the X2B1(dashed line) and the A2A1 state (fullline) of the water cation. 

found for AisoeH) in the ground state, the Bk correction amounts in this case to 
approximately 4MHz. For the isotropic hfcc's of the A2A 1 state as weil as the 
anisotropic hfcc's for both states the differences are insignificant except for nearly 
linear geometries. 
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Figure 3. Bond angle dependence of Cartesian components of the anisotropic hf tensor for 
17 0 in the X2B1 (dashed lines) and the A 2 A1 (fulllines) states of H20+ _ The results for 
the ± (bb-cc) irreducible tensor components arealso given. 
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Figure 4. Components of the electronic mean values of the anisotropic hf tensor for 

hydrogen in the X2B1 and the A 2 A1 (full lines) state of H20+. 

From figure 1 it can be seen that the values of Aiso exhibit a very different 
dependence on the bending angle in the ground and the excited state. In the former 
the difference between the Aiso at the linear geometry ( e = 180°) and at the smallest 
angle ofthe computation ( e = 40°) is 93 MHz ( -138 MHz against -45 MHz}, while 
in the latter one the difference is larger than 900 MHz. The different behaviour in 
both states is easily understandable by taking into account the characters of the 
singly-occupied orbitals. The 1 b1 orbital, partially populated in the ground state, 
represents at all values of the bond angle essentially an oxygen 2p orbital with the 
node in the molecular plane. Therefore the isotropic hfcc's of all centres are deter
mined solely by spin-polarization effects. The size of the polarization effects in the 
X2B1 are found to be larger than those in the ground state of the NH2 molecule [30]. 
At a linear geometry the 3a1 orbital which is singly occupied in the A2A1 state 
possesses a pure 1t character so that, as found for the X2B1 state, the direct con
tribution to the isotropic hfcc's of all centres is zero. If the molecule is bent it obtains 
more and more u character from which a strong increase of the direct contribution 
to the isotropic hfcc's results. Because of this feature the difference between the 
values of Ai so at e = 180° and 8 = 160° is relatively small (about 40 MHz); with 
decreasing bond angle the angular dependence of Aisoe

7o) becomes continuously 
stronger. Similar behaviour has been found for Aisoe4N) in the isoelectronic NH2 
[30]. The relatively stronger increase ofthe absolute values of Aiso( 170) in the H20+ 
molecule compared to Aisoct4N) in the NH2 molecule is due to the differences in the 
KN factors of both isotopes. 

The results obtained for the hydrogen show a similar dependence on the bond 
angle as those for Aiso( 110} (figure 2). Starting from e = 180° the hfcc value in the 
ground state changes from -76 to -81 MHz at the equilibrium geometry ( e = I 09°) 
and to -79MHz at e = 40°. Tbe minimum is found near the equilibrium geometry. 
The dependence on the bending angle is weaker than for the oxygen centre. For 
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Table I. Comparison of the values for the isotropic hfcc's of 1 H and 17 0 (in MHz) in the 
ground state. X 2B1 obtained in previous theoretical (at assumed equilibrium 
RoH = 0·999 A and e = 110·5°) and experimental studies with the results for the 
lowest lying 112 = 0, K = 0 vibronic Ievel computed in the present work (ETG, even
tempered Gaussians; P, e.g. no contraction) 

Ref. Method 

theor. [24] 

[26] 

SD-CI 
SDTQ-CI 
SAC-CI 

[25] SAC-CI 

present MRDCI/Bk 
work(t) 

expt. [22] 
[23] 

AO Basis 

(10s,5p,ld/8s,lp)/[8s,4p,l d/6s,lp) 

Dunning(9s,5p/4s)/[4s,2p/2s) 
Huzinaga(9s,5p/4s)/P 

ETG(10s,5p,ld/8s,1p)/ 
[8s,4p, ld/6s, I p] 

ETG( 1 Os,5p, 1 d/8s, I p )/P 
ETG(1ls,5p,1d/9s,lp)/P 

STOI 
ST02 
ST03 
ST04 
ST05 
ST06 

(13 + ls,8p,3d/8 + 2s,3p)/ 
[8 + ls,5p,3d/5 + 2s,3p] 

(I) calculated for RoH = 1·0 10 A and e 108·9°. 

Aisoe7o) AisoeH) 

-57·7 -66·7 
-78·5 -78·8 
-64·7 -73·1 
-48·8 -58·8 
-54·4 -56·95 

-53·4 -56·5 
-54·5 -57·3 
-86·4 -72·1 
-81·1 -67·3 
-73·3 -67·5 
-77·5 -67·7 
-73·3 -67·5 
-78·9 -75·6 
-90·4 -81·0 

+/-83·2 +/-73·1 
+/-75·7 

the excited state the value for Aisoe' H) increases from -76 MHz at e 180° to 
648 MHz at the smallest bond angle considered. The sharp rise at very small bond 
angles is Jikely a consequence of the presence of the third electronic state, which 
strongly coupJes with the A2 A1 state [21]. This electronic state is completely ignored 
here, because the small bond angle region does not play an essential role for the 
vibronical averaging. 

The calculated values of A;j( 170) are given in figure 3. The very weak bondangle 
dependence of the anisotropic tensor elements at the X2B1 can be easily explained, as 
for NH2, by the nature of the 1 b1 orbital. The shape of this orbital does not change 
significantly during the bending because it is predominently build by the oxy~en Px 
atomic orbital being perpendicular to the molecular plane. The values of A;~ e 0) in 
the A2A 1 state possess stronger dependences on e than those found for X B1• The 
variations arise from the change in the nature of the 3a 1 orbital. 

The values of the components of the anisotropic hf tensor Aue H) for hydrogen 
(figure 4) show a more complicated functional dependency on the bending angle e 
than those for oxygen. The behaviour with respect to ein the ground state can be 
explained by the relative position between the unpaired electron and the hydrogen 
centre, as for the AijeH) in the NH2 molecule [30]. For the excited state the 
dependence of the components of the anisotropic hf tensor on the bending angle 
is stronger than for the X2B1 which as for the oxygen centre can be attributed to the 
additional effect of the change in character of the singly occupied 3a1 orbital. 

In table I the experimental values are summarized together with the results of the 
calculation of the isotropic hfcc, taken from the literature. The results of the present 



1492 M. Staikova et al. 

paper for the 1owest-1ying Ievel v2 = 0, K = 0 of the ground electronic state arealso 
given. Although in previous theoretical sturlies vibronic averaging has not been 
carried out, a comparison of the values for hfcc's at the equilibrium geometry with 
the experimental results as weil as with those in the present work is reasonable 
because the effects arising from nuclear motion are not significant for the lowest 
vibrationallevel. As can be seen from table 1 the SD-CI calculations of Feilerand 
Davidson [24] underestimate the values for the isotropic hfcc's for H and 170, 
particularly for the latter nucleus. These results were substantially improved by 
taking into account an estimate of the effect of trip1e (T) and quadruple (Q) sub
stitutions as weil as by correction for the basis set error. Momose et al. [26] inves
tigated the influence of the AO basis, particularly of the various contraction schemes 
employed to calculate the isotropic hfcc's in their symmetry adapted cluster expan
sion configuration interaction (SAC-CI) computations. The results for oxygen are 
again appreciab1y below the experimentally derived value, as weil as those for 
hydrogen with the exception of the value obtained using the Dunning's AO basis. 
The overall error is about 30-40°/o for the oxygen centre and 20-23% for hydrogen. 
The very good results for the [4s2p/2s] Dunning contraction is fortuitous as already 
pointed out by Engels and Peyerimhoff [46] for the nitrogen atom. 

Nakatsuji and Izawa [25] compared the results for the isotropic hfcc's obtained 
employing Gaussian (GTO) and Slater type orbitals (STO). The values generated 
using GTOs are similar to those published in [26], i.e. they underestimate generally 
the experimental findings. An appreciably better agreement with the experiment is 
achieved in calculation with the STO basis sets. However, although the authors claim 
that the variationally better function (i.e. that one corresponding to the 1ower 
energy) gives more reliable hfcc's, this trend cannot be clearly seen from table 1 in 
which the basis sets (STO 1-ST06) are classified according to an improvement of the 
calculated energy. The results of Nakano et al. [27] who employed the ROHF SCI 
method accompanied with the use of various sets of GTOs are similar to those 
published in [26], they are therefore not included in table I. 
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Figure 5. Computed vibronic mean values for the isotropic hfcc's of 17 0 in H 20+. o: K = 0 
vibronic Ievels of the X2B1 state; o: K= 0 Ievels of the A2A1 state; x: K= I Ievels 
betonging predominantly to the X2B1 state; +: K = 1 Ievels of predominantly A2A 1 
state. 
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Figure 6. Vibronic mean values for the isotropic hfcc of hydrogen in H~6o+. For a key to 
notation see figure 5. 

The results of the present study are in a good agreement with the experiment. 
While our results for the hfcc's obtained with the truncated CI vectors underestimate 
the experimental findings, the values computed by applying the Bk correction 
(presented in table 1) slightly overestimate them (6-8%), in cantrast to our experi
ence with similar systems [28, 31, 32]. It should be noted that in the present case the 
vibronic averaging as weil as the averaging over the stretching coordinates has an 
insignificant effect on the values for the isotropic hfcc's in the lowest vibrationallevel 
of H20+ so that the two results given in table I are practically identical to the 
electronic mean values, computed at the equilibrium geometry which we determined 
(Rou = l·OIOA and e = 108·9° [21]). 

From the theoretical side the calculation of the anisotropic tensor is much 
simpler than the treatment of the isotropic interaction. The tensor element Aaa given 
in the present work (v2 = 0, K = 0: Aaa = 40·5MHz) shows an excellent agreement 
with experimental data given by Strahan et al. (Aaa = 39·2 ± 1·6 MHz). A simi1ar 
agreement is found for Abband Ace' where the theoretical values of -24·7 MHz and 
16·2MHz compares excellently to -21·9 ± 1·9MHz and -17·3 ± 1·9MHz given by 
Strahan et al. [23]. (Note that in [23] the Ahb and Ace were interchanged.) 

The results of the calculation of the vibronic mean values for the isotropic hfcc of e70) in Hi7o+ and (' H} in Hfo+ in the K = 0 and K = I rovibronic states are 
graphically presented in figures 5 and 6 and all calculated numbers in the energy 
range up to 25000cm-1 are sumrnarized in tables 2 and 3. Bent notation of the 
vibronic Ievels is employed [32]. A veraging over the stretching coordinates is not 
performed because it has been found that is causes only a small change (i.e. ~I%) of 
the values for hfcc's if the molecule is assumed to be in the zeroth Stretching state. 
The K = 0 vibronic Ievels are unambiguously attributed to one of the two electronic 
states in question and in this case the variation of the vibronically averaged hfcc is 
caused predorninantly by the geometry variation of the corresponding electronic 
mean values. The values of A1soC 70) for K = 0 of the X2B1 state (figure 5) show 
only weak dependence on the vibrational quantum nurnber. For the K 0 states ofthe 
electronically excited state A 2 A 1 the large influence of the bending angle e on A iso { 

17 0) 
is reflected in the sharp increase ofthe absolute value for Aiso( 170) as a function ofthe 
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Table 2. Calculated vibronic mean values for the isotropic hfcc and aa component of the 
anisotropic hf tensor in the K = 0 Ievel. The superscripts - and + correspond to the 
X2B1 and A2A1 electronic states, respective1y. Hfcc's in MHz. 

Hro+ 
170 

H~6o+ 
(E/hc) (E/hc) H 

v2 /cm-1 Aiso Aaa /cm- 1 
Aiso Aaa 

o- 0 -90·4 148 0 -81·4 40·5 
1- 1432 -92·1 148 1435 -81·1 42·4 
2- 2835 -94·1 148 2841 -80·7 44·2 
3- 4204 -96·4 148 4212 -80·3 46·1 
4- 5527 -99·0 148 5539 -80·0 48·0 
5- 6805 -101 148 6820 -79·7 49·6 
6- 8067 -103 148 8085 -79·5 49·6 
o+ 8666 -203 143 8668 -29·6 86·9 
7- 9373 -102 148 9396 -79·5 47·6 
1+ 10188 -233 141 10196 -10·0 85·4 
8- 10770 -100 148 10798 -79·6 44·7 
2+ 11914 -260 139 11929 6·38 83·8 
9- 12264 -98·7 148 12298 -79·6 41·8 
3+ 13777 -285 137 13798 20·1 82·2 

10- 13848 -97·2 148 13887 -79·7 39·2 
11'"' 15513 -95·9 148 15558 -79·7 36·9 
4+ 15741 -309 135 15769 31·9 80·4 

12- 17255 -94·7 148 17305 -79·7 34·8 
5+ 17789 -331 133 17824 42·1 78·7 

n- 19068 -93·5 148 19124 -79·7 33·0 
6+ 19910 -352 132 19952 51·2 77·0 

14- 20950 -92·4 148 21013 -79·7 31·4 
7+ 22098 -372 131 22146 59·4 75·3 

15- 22900 -91·3 148 22969 -79·7 29·9 
8+ 24346 -391 130 24402 67·0 73·7 

16- 24916 -90·3 148 24991 -79·6 28·6 

increasing vibrational quantum nurober v2• The situation is quite different for the 
K :/=- 0 Ievels (particu1arly for K = 1 ). In the vicinity of the barrier to linearity they are 
strongly shared between both upper and lower potential surfaces. The amount of 
mixing found for a given vibronic state is reflected in the average values of Aiso· 
Vibronic states below 7000 cm -I possess practically only X2B1 character because the 
Renner-Teller interaction is negligible in the region below the barrier to linearity. 
Between roughly 7000 and 15 000 cm -I the coupling of the both electronic states with 
one another is significant and the values for the hfcc's in the K = 1 vibronic states 
(figure 5) deviate from the smooth curves connecting the values for hfcc's in the 
K = 0 states. The larger inftuence of the Renner-Teller effect in the vicinity of the 
barrier to linearity is found for v2 = 7- where the K = 0 and the K = 1 value of 
Aisoe10) differ by about 30 MHz (AisoeH),...., 15 MHz). The absolute size of the 
difference is similar to the effects found for the NH2 molecule. 

Above the barrier particularly strong coupling can be found if two K = I vibronic 
Ievels lying accidentally close to one another. In the present work this was found for 
v2 = 11- and v2 3+. It should be stressed, however, that these local interactions 
cannot be described reliably in pure ab initio calculations of the present kind because 
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Table 3. Calculated vibronic mean values for the isotropic hfcc, aa and bb-cc component of 
the anisotro~ic hf tensor in the K = 1 Ievei. The superscripts - and + correspond to the 
X2B1 and A A1 component electronic states, respectively. Hfcc's in MHz. 

Hro+ H~6o+ 
(E/hc) 170 (E/hc) H 

112 /cm-' Aiso Aao Abb-Acc /cm-• Aiso Aaa Abb-Au 

o- 29 -90·4 148 -455 29 -81·4 40·4 -9·21 
1- 1465 -92·0 148 -454 1469 -81·1 42·3 -6·98 
2- 2876 -93·7 148 -454 2882 -80·7 44·0 -4·92 
3- 4253 -96·2 148 -454 4262 -80·3 45·8 -2·84 
4- 5586 -99·1 148 -453 5598 -79·8 47·9 -0·404 
5- 6844 -105 148 -453 6857 -78·6 51·9 3·97 
6- 7894 -119 148 -450 7907 -74·0 61·1 13·6 
7- 8773 -130 147 -447 8788 -65·6 60·3 12·5 
o+ 9282 -199 143 -433 9290 -29·3 79·0 31·2 
8- 10085 -113 147 -451 10109 -73·3 50·1 2·41 
t+ 10949 -236 140 -424 10962 -6·87 81·1 34·5 
9- 11527 -110 147 -451 11557 -74·2 46·0 -1·65 
2+ 12757 -252 139 -420 12777 3·36 78·0 32·8 

10- 13078 -119 147 -449 13112 -69·1 45·3 -2·09 
u- 14604 -170 144 -438 14640 -36·0 55·6 9·93 
3+ 14783 -224 140 -426 14815 -17·1 63·6 18·9 

12- 16359 -105 147 -451 16407 -73·9 37·9 -9·34 
4+ 16747 -310 135 -407 16780 31·6 77·5 36·8 
n- 18147 -97·7 148 -453 18200 -77·6 34·5 12·8 
5+ 18828 -338 133 -401 18867 44·9 77·) 39·2 

14- 19999 -95·3 148 -453 20058 -78·4 32·5 -14·7 
6+ 20983 -360 132 -396 21028 54·1 75·7 40·4 

15- 21917 -94·0 148 -453 21983 -78·5 30·9 -16·2 
7+ 23201 -379 130 -392 23258 61·9 74·0 41·3 

16- 23902 -93·5 148 -453 23973 -78·3 29·6 -17·4 

the amount of mixing of two vibronic Ievels with one another is extremely dependent 
on the position of the theoretically unperturbed vibrational species, betonging to 
different electronic states and coupled via the Renner-Teller effect. Since the error in 
computing the high vibrationallevels may exceed some hundred wave-numbers, it is 
clear that values for the vibronically averaged hfcc's in the states assigned to 11- and 
3+ should be looked upon only as an illustration of what happens when two K =1- 0 
Ievels lie as close as 180cm-1 to one another. 

Far above the barrier the behaviour of the vibronically-averaged values for hfcc's 
becomes again regular (practically the same as that of their K = 0 counterparts), the 
only exceptions being caused by possible local interactions mentioned above. Similar 
trends as found for Aiso( 110) can be seen in the bending quantum number depen
dence of the isotopic hfcc's of hydrogen (tables I and 2, figure 6). 

In tables 2 and 3 the elements ofthe dipolar tensors for both 110 and 1H centres 
are summarized. We present the results for vibronically averaged values of the 
irreducible components of the anisotropic hf tensor which can be extract from 
experiments (see [32] ). We have also computed the vibronic mean values for the 
hfcc's in other isotopomers of the water cation (Hi6o+, HD160+ and Di60+). The 
tables with these results can be obtained upon request. 
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4. Conclusions 

In the present study electronic mean values for the hfcc's in the X2B1 and the 
A2A1 states of H20+ are calculated as a function of the bondangle 8. The vibro
nically-averaged hfcc's are then computed for K = 0 and K = 1 vibronic states 
employing the ab initio bending potential curves. The study shows that considera
tion of the Renner-Teller effect plays an important role for a quantitative descrip
tion of the hfcc's. 

The services and computertime made available by the Computer Centre of the 
University of Bonn and the Computer Centre of the RWTH Aachen have been 
essential for the present study. Part of this work was financially supported by the 
Deutsche Forschungsgemeinschaft (DFG) in the framework of the project En 197/2-
2 and by the Leibniz Prize. 
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