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0. Abstract 

English 

The present work investigated the neural mechanisms underlying cognitive 

inhibition/thought suppression in Anderson’s and Green’s Think/No-Think paradigm (TNT), 

as well as different variables influencing these mechanisms at the cognitive, the 

neurophysiological, the electrophysiological and the molecular level.  

 Neurophysiological data collected with fNIRS and fMRI have added up to the existing 

evidence of a fronto-hippocampal network interacting during the inhibition of unwanted 

thoughts. Some evidence has been presented suggesting that by means of external stimulation 

of the right dlPFC through iTBS thought suppression might be improved, providing further 

evidence for an implication of this region in the TNT. A combination of fNIRS with ERP has 

delivered evidence of a dissociation of early condition-independent attentional and later 

suppression-specific processes within the dlPFC, both contributing to suppression 

performance. 

Due to inconsistencies in the previous literature it was considered how stimulus 

valence would influence thought suppression by manipulating the emotional content of the to-

be-suppressed stimuli. Findings of the current work regarding the ability to suppress negative 

word or picture stimuli have, however, been inconclusive as well. It has been hypothesized 

that performance in the TNT might depend on the combination of valence conditions included 

in the paradigm. Alternatively, it has been suggested that inconsistent findings regarding the 

suppression of negative stimuli or suppression at all might be due to certain personality traits 

and/or genetic variables, found in the present work to contribute to thought inhibition in the 

TNT. Rumination has been shown to be a valid predictor of thought suppression performance. 

Increased ruminative tendencies led to worse suppression performance which, in the present 

work, has been linked to less effective recruitment of the dlPFC and in turn less effective 

down-regulation of hippocampal activity during suppression trials. Trait anxiety has also been 

shown to interrupt thought suppression despite higher, however, inefficient recruitment of the 

dlPFC. Complementing the findings regarding ruminative tendencies and decreased thought 

inhibition a functional polymorphism in the KCNJ6 gene, encompassing a G-to-A transition, 

has been shown to disrupt thought suppression despite increased activation of the dlPFC. 

Through the investigation of thought suppression at different levels, the current work 

adds further evidence to the idea that the TNT reflects an executive control mechanism, which 

is sensitive to alterations in stimulus valence to some extent, neurophysiological functioning 
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as indicated by its sensitivity to iTBS, functional modulations at the molecular level and 

personality traits, such as rumination and trait anxiety. 
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Deutsch 

 Diese Arbeit befasste sich mit der Untersuchung der neuronalen Grundlagen 

kognitiver Inhibition /Gedankenunterdrückung in Anderson’s und Green’s ‘Think/No-Think‘ 

Paradigma (TNT), sowie der Erfassung verschiedener Einflussgrößen auf der kognitiven, der 

neurophysiologischen, der elektrophysiologischen und der molekularen Ebene. 

 Mit fNIRS und fMRT durchgeführte neurophysiologische Studien haben die Annahme 

der Beteiligung eines Fronto-Hippocampalen Netzwerkes an der Unterdrückung 

unerwünschter Gedanken bekräftigt. Hinweise auf eine Verbesserung der 

Unterdrückungsleistung mittels externer Manipulation der neuronalen Aktivität durch iTBS 

unterstützen die Annahme einer Beteiligung des dlPFC an den Mechanismen innerhalb des 

TNT weiter. Durch die Kombination von fNIRS und ERP wurde eine Dissoziation zwischen 

frühen bedingungsunabhängigen Aufmerksamkeits- und späteren unterdrückungsspezifischen 

Prozessen innerhalb des dlPFC aufgezeigt. 

 Vor dem Hintergrund widersprüchlicher Resultate bezüglich des Einflusses der 

Stimulus-Valenz auf die kognitive Inhibition in der vorhandenen Literatur wurde dieser 

Aspekt auch in der vorliegenden Arbeit berücksichtigt. Auch in dieser Arbeit aufgetretene 

widersprüchliche Ergebnisse bezüglich der Unterdrückung negativer Stimuli führten zu der 

Hypothese, dass die Unterdrückungsleistung in dem TNT in Abhängigkeit der Valenz der 

weiteren eingeschlossenen Stimuli erfolgt. Alternativ wurde eine Abhängigkeit von 

Persönlichkeitsmerkmalen und/oder genetischen Variablen vorgeschlagen, welche in der 

vorliegenden Arbeit als Einflussgrößen nachgewiesen wurden. So konnte gezeigt werden, 

dass die Erhebung ruminativer Tendenzen eine zuverlässige Vorhersage der 

Unterdrückungsleistung zulässt. Höhere ruminative Tendenzen führten zu signifikant 

verschlechterter Unterdrückungsleistung. Dies konnte auf eine ineffektive Rekrutierung des 

dlPFC gefolgt von ungenügender Aktivierungsabnahme im Hippocampus während der 

Gedankeninhibition zurückgeführt werden. Darüber hinaus konnte gezeigt werden, dass mit 

der Zunahme ängstlicher Persönlichkeitsmerkmale die Unterdrückungsleistung trotz erhöhter 

Aktivität im dlPFC abnimmt. In Ergänzung zu den Ergebnissen bezüglich ruminativer 

Tendenzen und gestörter kognitiver Inhibition konnte ein störender Einfluss eines 

funktionellen genetischen Polymorphismus im KCNJ6 Gen unter Einbeziehung einer 

Punktmutation (G-A Transition) nachgewiesen werden. 

 Durch die Untersuchung der Gedankenunterdrückung auf unterschiedlichen Ebenen, 

konnte die vorliegende Arbeit weitere Hinweise dafür liefern, dass mit dem TNT exekutive 

Kontrollfunktionen abgegriffen werden, welche durch Stimulusvalenz, neurophysiologische 
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Prozesse (durch eine die iTBS betreffende Sensitivität angezeigt), funktionelle Modulationen 

auf der molekularen Ebene, sowie Persönlichkeitsmerkmale wie ruminative Tendenzen und 

Ängstlichkeit beeinflussbar sind. 
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1. Introduction and Theory 

1.1. Introduction to Cognitive Inhibition and Memory Suppression 

Cognitive inhibition is defined as “the stopping or overriding of a mental process, in 

whole or in part, with or without intention” (MacLeod 2007; p.5), in terms of the suppression 

of previously activated cognitive contents of processes, the clearing of irrelevant actions or 

attention from consciousness, and resistance to interference from potentially attention-

capturing processes or contents (Harnishfeger 1995), or more specific as “reducing the 

activation level for a given response, preventing it from achieving threshold […] and by doing 

so [enabling] weaker but more appropriate responses [to be] expressed” (Anderson 2006; p. 

329). The term cognitive inhibition has been used to explain a variety of phenomena in 

different domains of research, ranging from developmental psychology in explaining 

children’s performance in the false belief task to the inhibition of stereotypical behavior 

investigated in social psychology or the investigation of certain personality traits influencing 

behavior as well as inhibitory processes as an important topic in personality psychology (for a 

brief overview see MacLeod 2007). Most growth in the investigation of cognitive inhibition 

has, however, occurred in the field of memory research. In the past most studies have 

focussed on facilitatory mechanisms that enable or enhance memory and its function (e.g. 

Anderson 1999; Russell 1971; Squire & Zola-Morgan 1991). Inhibition, however, is a vital 

process to its proper functioning as well and has in the last decade increasingly been 

recognized as one of the core concepts in memory research (Dudai, Roediger III & Tulving 

2007). 

In the field of memory research inhibition resulting in forgetting might seem 

undesirable at first, given the negative association of memory impairment with diseases such 

as Alzheimer’s or dementia. However, cognitive control over unwanted thoughts, is adaptive 

in a number of situations ranging from everyday experiences such as the need to ensure that 

the most current knowledge is assessed (e.g. today’s parking spot, not yesterday’s or the 

changed address of a friend) to situations baring more serious implications, such as the need 

to suppress reminders of unpleasant events such as memories of trauma, the loss of a loved 

one, embarrassment or anxiety (Anderson 2007). In the field of motor inhibition, paradigms 

such as the Go/Nogo task, in which subjects are asked to respond for example with a button 

press whenever they see a letter, except when the letter is a ‘B’, which indicates that no 

response is required/wanted, are used to investigate underlying processes warranting the 
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stopping of a response. Since the majority of the trials require a button press, subjects 

experience difficulties withholding a response when it is needed. The problem of being 

presented with a situation triggering a pre-potent response (i.e. in this case a button press) in 

the face of the need for a weaker but contextually more appropriate response (i.e. withholding 

the button press when seeing a ‘B’) requires so-called response-override. Various studies so 

far have shown response-override situations, such as in the Go/Nogo, to trigger executive 

processes exerting control over down-stream motor responses (e.g. Casey, Trainor, Orendi, 

Schubert, Nystrom, Giedd et al 1997; Garavan, Ross & Stein 1999). A decade ago, Anderson 

and Green (2001) hypothesized that parallel executive control mechanisms might be at work 

during the suppression of cognitive processes, such as memories. Analogue to the inhibition 

of motor responses, paradigms, such as the retrieval-induced forgetting, directed forgetting or 

Think/No-Think paradigm (TNT) have been developed making the investigation of 

thought/memory inhibition possible (for a review of the three methods see e.g. Anderson 

2005, 2006). The TNT has been described as best targeting the active control mechanisms 

recruited to stop/inhibit memories and thoughts from occurring and therefore as being best 

suited to investigate processes involved in the suppression of memories and thoughts (e.g. 

Anderson 2007; Depue, Banich & Curran 2006). The paradigm and the current status of 

research are described in the next paragraph. 

1.2. The Think/No-Think Paradigm (TNT) 

1.2.1. Development of the TNT by Anderson and Green 

 The TNT has been developed by Anderson and Green (2001) to investigate executive 

control processes recruited in order to inhibit thoughts from entering awareness. The 

paradigm is derived from the well-established Go/Nogo paradigm, which is used to study top-

down control over motor responses. Analogous to the Go/Nogo task subjects are instructed to 

respond (i.e. ‘think’) when presented with some previously learned stimuli (e.g. words, 

pictures) while asked to withhold the response to others (i.e. ‘no-think’); in other words the 

TNT requires the recall of some stimuli and to stop recall of others when presented with an 

initially learned associated cue. If stopping retrieval of an unwanted stimulus or thought is 

achieved by recruiting inhibitory control mechanisms its later retention should be impaired, 

compared to retrieved items or even baseline items, which are learned but neither suppressed 

nor retrieved, resulting in a pattern of below-baseline recall of suppressed stimuli in a post-

experimental cued-recall test. Figure 1 outlines the procedure of the TNT established by 

Anderson & Green (2001). During the study phase, subjects are trained on the link between 
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previously non-associated word pairs. In the subsequent TNT phase they are presented with 

one of the words (i.e. cue) and instructed to either recall or inhibit recall of the previously 

learned partner word, indicated by the color of the cue (e.g. green for ‘think’ and red for ‘no-

think’). Following the TNT phase, subjects are presented with a list of all cues and asked to 

recall all partner words (same probe recall test).  

 

 

Figure 1: The Think/No-Think paradigm as developed by Anderson and Green (2001). 

Adapted from Anderson, Ochsner, Kuhl, Cooper, Robertson, Gabrieli et al. (2004). 

  

As hypothesized, recall of no-think trials was impaired to a below-baseline level after 

repeated attempts to control awareness of the stimuli (Anderson & Green 2001), suggesting 

the existence of an executive control process that is recruited during voluntary attempts to 

inhibit unwanted thoughts from entering consciousness. It was, however argued, that 

alternative mechanisms such as a newly formed association between the cue and a divisionary 

thought or a simple degradation of the association between cue and partner word could have 

led to impaired recall as well (Anderson & Green 2001). Therefore, in a second experiment 

Anderson and Green (2001) tested recall of no-think words with the independent probe 

method (Anderson & Spellman 1995), in which subjects are cued with a semantic category 

and the initial letter of the partner word (see Figure 1). The same pattern of below-baseline 

recall of no-think words emerged as obtained by cueing subjects with the original cue, ruling 

out interference by a newly formed association or simple unlearning and further supporting 

the idea of the existence of executive control mechanisms, which adapt patterns of thoughts 

internally (Anderson & Green 2001). 

1.2.2. Behavioral Studies: The TNT at the Behavioral Level 

 Since the original work by Anderson and Green (2001), various studies  have been 

conducted trying to replicate their findings of below-baseline suppression in the final recall 

test on a behavioral level. The attempt to fully replicate the original findings has, however, 

been only partially successful (see Table 1). In addition to the attempt to replicate Anderson’s 
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and Green’s (2001) results, investigation of variables potentially influencing TNT 

performance has been the aim of consecutive studies. Most have focussed on the investigation 

of the effect of stimulus valence (Depue et al 2006; Lambert, Good & Kirk 2010; Marx, 

Marshall & Castro 2008) or the effect of mood (dysphoria/depression: Hertel & Gerstle 2003; 

Hertel & Mahan 2008; Joormann, Hertel, Brozovich & Gotlib 2005; anxiety: Waldhauser, 

Johansson, Backstrom & Mecklinger 2010) on the cognitive control process examined in the 

TNT. Other factors investigated were certain psychiatric disorders associated with deficient 

cognitive control such as attention deficit hyperactivity disorder (ADHD;  Depue, Burgess, 

Willcutt, Ruzic & Banich 2010) schizophrenia (Salame & Danion 2007) or Borderline 

Personality Disorder (Sala, Caverzasi, Marraffini, De Vidovich, Lazzaretti, d'Allio et al 

2008). Other studies have focussed on certain personality characteristics such as working 

memory capacity (Waldhauser et al 2010), proneness to dissociative experiences (Wessel, 

Wetzels, Jelicic & Merckelbach 2005), or suppression strategies (Bergström, de Fockert & 

Richardson-Klavehn 2009b; Hertel & Calcaterra 2005).  In the remainder of this paragraph 

these studies will be described in more detail1. 

Bulevich, Roediger, Balota and Butler (2006) conducted three experiments carefully 

following Anderson’s and Green’s (2001) original procedure. None of these experiments 

delivered evidence for impaired recall of no-think stimuli relative to baseline, questioning the 

reliability of the TNT as a measure of cognitive control. 

Depue et al. (2006) replicated the original findings by Anderson and Green (2001) of 

lower final recall of no-think than baseline stimuli. In two experiments using two different 

sets of stimuli (words and pictures), they could furthermore show that negative stimuli were 

recalled better in the think condition and suppressed more effectively in the no-think 

condition relative to neutral stimuli (Depue et al 2006). In a recent study impaired recall of 

negative information in comparison to no suppression of positive information in a same probe 

and independent probe recall test was shown in two experiments performed by Lambert and 

colleagues (2010). The authors suggest that this reflects that negative information might be 

more accessible to cognitive control processes, corresponding partly to findings of a 

neuroimaging study showing that distinct neural systems seem responsible for encoding 

negative and neutral information, reflecting greater salience and therefore better encoding and 

consolidation of emotional material  (Kensinger & Corkin 2004). These findings furthermore 

propose that cognitive control processes are mediated by the emotional content of the   

                                                 
1 Only findings regarding the suppression effect (i.e. lower recall of no-think than baseline items) are discussed, 
unless mentioned otherwise 
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Table 1: Summary of the current literature using the TNT to investigate cognitive inhibition  

 
Study Sample Stimulus 

material 

Cue Target Suppression effect (NT < Base) 

        SP                              IP 

Anderson and 
Green (2001) 

HC nouns neu neu yes (16) yes (16) 

Anderson et 
al. (2004) 

HC nouns neu neu yes (16) yes 

Bergström et 
al. (2007) 

HC words neu neu no n.a. 

Bergström et 
al. (2009a) 

HC words neu neu no n.a. 

Bergström et 
al. (2009b) 

HC (thought 
substitution vs. 
unaided) 

words  neu neu subst: yes (16) 
unaided: yes 

yes  
no 

Bulevich et al. 
(2006) 

HC nouns neu neu no no 

Depue et al. 
(2006) 

HC words & pictures neu neu/neg yes n.a. 

Depue et al. 
(2007) 

HC pictures neu face neg yes (12) n.a. 

Depue et al. 
(2010) 

ADHD 
patients 

pictures neu face neg pat: no 
HC: yes (12) 

n.a. 

Hanslmayr et 
al. (2009) 

HC words neu face neu yes (10) n.a. 

Hanslmayr et 
al. (2010) 

HC nouns neu face neu yes (10) n.a. 

Hertel and 
Gerstle (2003) 

Dysphoric 
students 

nouns pos/neg 
adjectives 

neu pats: no 
HC - pos: yes (16) 

n.a. 
 

Hertel and 
Calcaterra 
(2005) 

HC (thought 
substitution vs. 
unaided) 

nouns neu adjectives neu subst: yes (12) 
unaided: no 

n.a. 

Hertel & 
Mahan  (2008) 

Dysphoric 
students 

words 
(related/unrelated) 

neu neu no n.a. 

Joormann et 
al. (2005) 

Depressed 
patients 

nouns neu pos/neg pat - neg: yes (12) 
              - pos: no 
HC: no 

n.a. 

Lambert et al. 
(2010) 

HC nouns pos/neg neu neg: yes (16) 
pos: no 

neg: yes  
pos: no 

Marx et al. 
(2008) 

HC words neu pos/neg 
(low/high 
arousal) 

n.a. (no baseline 
condition) 

n.a. 

Mecklinger et 
al. (2008) 

HC words neu neu no yes 

Meier et al. 
(2011) 

HC words neu neu no no 

Sala et al. 
(2008) 

Borderline 
patients 

nouns neu neu pat: no 
HC: no 

pat: no 
HC: no 

Salame and 
Danion (2007) 

Schizophrenic 
patients 

   pat: yes 
HC: no 

n.a. 

Waldhauser et 
al. (2010) 

HC nouns neu neu no n.a. 

Wessel et al. 
(2005) 

HC (high/low 
dissociation) 

words neu neu yes (16; no 
difference between 
groups) 

no 
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manipulated stimuli, enhancing or reducing memory traces of items presented during the TNT 

phase, depending on the control condition (i.e. think or no-think). 

Investigation of differences in the suppression of emotional material was extended by 

Marx et al. (2008), who took not only valence, but also the arousal level of the target words 

into account (i.e. resulting in four different conditions: low arousing positive, high arousing 

positive, low arousing negative, high arousing negative words). Unfortunately, the authors did 

not include a baseline condition, so the results only indicated lower recall of no-think than 

think words. In a free recall task the group could show that effective suppression occurred 

only for the positive words, and that the most pronounced suppression effect (in this case no-

think < think) was for the high arousing positive words. No suppression was found for the 

negative words. These findings clearly contradict results obtained by Depue et al. (2006) and 

Lambert et al. (2010). Testing recall with a same probe test they could show suppression of 

negative and positive words, although the effect again was larger for the positive words. No 

interaction with arousal, however, was obtained in the same probe test (Marx et al 2008). 

Contrary to the hypothesis of facilitated cognitive control over emotionally negative 

information supported by Depue et al. (2006) and Lambert et al. (2010) findings by Marx et 

al. (2008) support the hypothesis that negative information is elaborated to a greater extent 

during memory processes (Kensinger & Corkin 2004), resulting in less effective suppression 

when compared to positive material. The effect of greater cognitive control over high 

arousing than low arousing positive words is discussed in the light of studies showing that 

while highly arousing information might facilitate encoding, non-arousing information may 

be less likely to be elaborated upon during encoding, resulting in lowered recall performance 

relative to negative non-arousing information (Kensinger 2004). In other words, highly 

arousing positive information might be most easily intentionally suppressed since they are 

least elaborately encoded in memory. Following this line of thought, it is suggested that 

processes elaborated on during encoding might play a more prominent role in memory 

inhibition than previously assumed by Anderson (2005). 

 In an experiment comparing TNT performance between a group of dysphoric students 

and control subjects using positive and negative words cueing a semantically related neutral 

word, Hertel and Gerstle (2003) found below-baseline suppression only following positive 

cues and only in the control group. Interestingly, recall for no-think words was even found to 

be improved in the dysphoric group regardless of valence, thereby not supporting the well-

established mood-incongruent-forgetting hypothesis (i.e. better memory of negative items and 

worse memory of positive items), often reported in research using thought intrusion 
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paradigms for the investigation of mood-related memory and cognitive control effects (e.g. 

Howell & Conway 1992; Roemer & Borkovec 1994). In an additional correlation analysis 

Hertel and Gerstle (2003) interestingly could show that a ruminative response style, as 

measured by the Ruminative Response Scale of the Response Style Questionnaire measuring 

coping with depressive moods (RSS; Kühner, Huffziger & Nolen-Hoeksema 2007) predicted 

suppression performance regardless of mood status; in other words, subjects with high scores 

on the RSS, regardless of group status, showed impaired suppression, thus higher recall rates 

of no-think words than low scorers, therefore suggesting the presence of a general deficit in 

exerting cognitive control over unwanted thoughts. A later study by the same group compared 

the suppression of neutral words semantically related or unrelated to the cue word, again 

contrasting performance in a dysphoric and non-dysphoric student sample. No suppression 

effect was found in any of the conditions in the dysphoric or the non-dysphoric group. 

Comparing suppression of positive and negative words cued by neutral words in clinically 

diagnosed depressed subjects and healthy control subjects, Joormann and colleagues (2005)1 

could show that compared to healthy control subjects, who showed below-baseline 

suppression2 of no-think words regardless of valence, depressed individuals exhibited better 

suppression of negative than positive words, and better suppression than the healthy controls. 

These results are clearly contradicting previous research investigating cognitive control over 

emotional information in depression for example using the directed forgetting paradigm 

(Power, Dalgleish, Claudio, Tata & Kentish 2000), which has shown better recall of to-be-

forgotten negative than positive and to-be-remembered negative words consistent with the 

mood-incongruent forgetting hypothesis. Results from the Joormann et al. study (2005) 

furthermore are not in line with the study by Hertel and Gerstle (2003), which had found 

improved recall of no-think words in a group of dysphoric students, thereby replicating the 

directed-forgetting findings by Power et al. (2000), using the TNT paradigm. In addition to 

the observation of improved suppression of negative no-think words, Joormann et al. (2005) 

found that depressed subjects in the suppress-negative-respond-positive group exhibited 

poorer recall of unpracticed baseline words, which was neither observed in the suppress-

positive-respond negative subsample of the depressed group nor in the healthy control group. 

This finding is discussed in the light of a study by Hertel and Calcaterra (2005), which has 

                                                 
1 One half of the sample practiced suppression of negative words and recall of positive words (i.e. suppress-
negative-respond positive), while the other half of the depressed subjects performed suppression on positive and 
recall on negative words (i.e. suppress-positive-respond-negative). 
2 After controlling for compliance with the instructions using a Strategies Questionnaire developed by Hertel and 
Calcaterra (2005) 
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shown that suppression performance in the TNT was significantly improved when subjects 

used a thought substitution strategy during the no-think phase. Together with research 

showing that depressed subjects tend to distract themselves from their ruminative thoughts 

about negative events by using other negative thoughts (Wenzlaff, Wegner & Roper 1988), 

the authors suggest that impaired recall of baseline words following suppression of negative 

words might reflect an enhancing effect of thought substitution strategies concerning negative 

relative to positive words in the depressed sample (Joormann et al 2005). Wessel et al. (2005) 

compared memory suppression of neutral words between healthy controls scoring high or low 

on the Dissociative Experience Scale. Dissociative coping styles, which encompass the mental 

disengagement from current events and are assumed to be used as a defense mechanisms 

against trauma (e.g. Gershuny & Thayer 1999), are hypothesized to interfere with successful 

suppression of unwanted thoughts, especially when they are negative in content (Wessel et al 

2005). Although, they were able to replicate below-baseline suppression of no-think words in 

the same probe recall test (but not in the independent probe recall test), contrary to their 

prediction of better suppression performance in individuals displaying a high amount of 

dissociative experiences, they found no difference in memory impairment between the two 

groups. They claimed, however, that the prediction was based on studies showing a larger 

Stroop effect in high dissociators (DePrince & Freyd 1999; Freyd, Martorello, Alvarado, 

Hayes & Christman 1998) and the assumption that the same processes underlie inhibition of a 

pre-potent response in the Stroop Color Naming Test and the TNT. Given, however, recent 

findings that the Stroop and the TNT effect might reflect different concepts of interference, 

the results by Wessel et al. (2005) are not surprising. Friedman and Miyake (2004) have 

shown that Stroop performance relies on a variable reflecting control over response-distractor 

interference1, while pro-active interference2, which is thought to underlie the TNT, was 

unrelated to response-distractor interference. Another, point remarked by the authors is the 

possibility that differences in the ability to suppress might not surface when using neutral 

stimuli, but when using negative material, taking into account the original idea that 

dissociative strategies emerge in traumatic situations (Wessel et al 2005). In a study by 

Salamé and Danion (2007) individuals diagnosed with schizophrenia displayed a solid 

suppression effect in the same probe recall test while in the control group no such effect was 

                                                 
1 The ability to ignore irrelevant pre-potent responses (e.g. to ignore the content of a word in the Stroop Color 
Naming Test) 
2 The extent to which people are able to ignore interference from memory (e.g. the previously learned association 
between the target word when presented with the cue in the no-think condition of the TNT) 
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observed1. Other clinical samples investigated were patients with Borderline Personality 

Disorder and ADHD, both disorders associated with deficient inhibitory control and 

dysfunctions in the neural circuitry associated with memory inhibition, which will be 

discussed in the next paragraph (e.g. Gomez 2003; Schachar, Tannock, Marriott & Logan 

1995; Silbersweig, Clarkin, Goldstein, Kernberg, Tuescher, Levy et al 2007). The group 

around Sala (2008) was not able to show suppression in both the Borderline patients and the 

healthy control group, while in a very recent study Depue and colleagues (2010) showed 

successful memory suppression of negative pictures in the healthy control group but not in 

patients with ADHD in a same probe recall test. Both studies provide further evidence of 

impaired cognitive control processes in patient groups previously being shown to display 

deficient control over certain cognitive and especially control over memory processes. In 

another very recent study a group around Waldhauser (2010), although not able to show an 

overall suppression effect, could show a significant moderation of suppression performance 

by trait anxiety scores in a sample of healthy control subjects; better suppression was 

significantly predicted by lower scores on the trait subscale State Trait Anxiety Inventory 

(STAI; Spielberger, Gorsuch & Lushene 1970). No correlation with working memory span 

was found. The authors discuss this finding in relation to deficient executive functioning 

during states of intense anxiety. Eysenck, Derakshan, Santos and Calvo (2007) claim that 

effective inhibition is disrupted indirectly by decreased processing efficiency in tasks 

involving inhibitory control during the experience of anxiety. Studies have been conducted, 

showing similar task accuracy, but longer processing times in highly anxious individuals 

(Derakshan, Ansari, Hansard, Shoker & Eysenck 2009; Derakshan & Eysenck 1998), as well 

as a correlation between anxiety and the amount of intrusions of unwanted thoughts in 

everyday life (Barnier, Levin & Maher 2004; Erskine, Kvavilashvili & Kornbrot 2007). 

 An important finding was obtained in a study by Hanslmayr, Leipold and Bäuml 

(2010), which could show that memory suppression is significantly improved by presenting 

the think/no-think instruction one second prior to presentation of the cue relative to the 

classical non-anticipatory presentation of the instruction to think or not think about the target 

simultaneously with the cue. This is in line with, among others, neuroimaging studies 

investigating memory formation (e.g. Adcock, Thangavel, Whitfield-Gabrieli, Knutson & 

Gabrieli 2006; Otten, Quayle, Akram, Ditewig & Rugg 2006) or cognitive control processes 

in other domains such as task switching (e.g. Dreisbach, Haider & Kluwe 2002; Lavric, 

                                                 
1 Based on findings of deficient executive control mechanisms in schizophrenia (Fossati, Amar, Raoux, Ergis & 
Allilaire, 1999), the authors predicted effective memory suppression in the control group but not in the patients  
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Mizon & Monsell 2008) showing anticipatory activation of relevant neural networks (see 

paragraph 1.2.3.). The interpretation of these findings, however, appears problematic in the 

light of a study by Lee, Lee, and Tsai (2007) using the directed forgetting paradigm, in which 

evidence was presented that the temporal pattern of cue presentation may be playing a role in 

mediating forgetting. The group varied presentation time of the (Chinese) cue words and 

found that a clear suppression effect was present when cues were presented for a relatively 

brief period (3 seconds) but not when they were presented for a longer period (5 seconds)1. 

Due to methodological reasons, Hanslmayr et al. (2010)  used different presentation times of 

the cue (i.e. 4 seconds in the anticipatory condition and 5 seconds in the classical condition), 

somehow limiting the value of the interpretation of the effect in favor of an anticipatory 

facilitation of the cognitive control process exerted when suppressing unwanted thoughts as 

during the no-think instruction. 

 Although it has been argued by some authors that the TNT is at least to some degree a 

laboratory analogue of Freud’s repression mechanism (e.g. Anderson & Green 2001; 

Anderson et al 2004), only one very recent study investigated the longevity of the suppression 

effect elicited by repeated attempts to inhibit thinking about a thought. Meier, König, Parak 

and Henke (2011) not only tested recall of think and no-think items in a same probe and 

independent probe recall test immediately following the TNT phase but repeated both recall 

tests one week later. In their first experiment, they could not show below-baseline suppression 

in any of the recall tests. Interestingly, however, recall of no-think words, one week after the 

initial experiment was significantly improved relative to baseline words in the same probe 

test, suggesting that thought suppression had a reversed long-term effect. In a second 

experiment they manipulated task instructions by providing one half of their subjects with the 

instruction to substitute the target in response to the cue with an alternative word to achieve 

suppression (i.e. Substitution group) while giving the classical TNT instruction to the other 

half (i.e. Suppression group). Within each group half of the subjects performed the recall tests 

immediately after the experiment, while the other half was tested one week later. Again, no 

below-baseline suppression was observed and as in experiment 1 recall of no-think items had 

improved above baseline after one week in the Suppression Group, while they were recalled 

evenly well in the Substitute group. The authors interpret this, in line with Hertel and 

Calcaterra (2005), as indicating a beneficial effect of thought substitution for subsequent 

forgetting of no-think items. This effect, however, is discussed as most likely reflecting 

retroactive interference (Meier et al 2011) and not an actual disruption of the memory trace by 

                                                 
1 Note that presentation time in the classical Anderson and Green (2001) study was 4 seconds 
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voluntary thought suppression as intended by Anderson and Green (2001). The lack of finding 

a long-term suppression effect is arguing against the original claim by Anderson and Green 

(2001) that the TNT represents a laboratory analogue of Freud’s repression mechanisms. 

However, the value of the TNT as a measure of cognitive control is nonetheless undisputable. 

1.2.3. Functional Imaging and Electrophysiological Studies: The Neural 

Representation of the TNT 

 Already in their original work, Anderson and Green (2001), hypothesized on the 

neural representation of thought inhibition in the TNT. They proposed the dorsolateral 

prefrontal cortex (dlPFC) as one important key structure, since it has been shown to be 

reliably activated in the Go/Nogo task during the inhibition of responses (e.g. Casey et al 

1997; de Zubicaray, Andrew, Zelaya, Williams & Dumanoir 2000; Garavan et al 1999), the 

on-line manipulation of information currently stored in working memory (D'Esposito, 

Aguirre, Zarahn, Ballard, Shin & Lease 1998) as well as overcoming interference from 

competing working memory representations (Smith & Jonides 1999) or selection of one 

specific item to guide a certain response (Rowe, Toni, Josephs, Frackowiak & Passingham 

2000). Another structure thought to be implicated is the hippocampus, which has long been 

known to be essentially involved in the formation of memory traces (e.g. see Bliss & 

Collingridge 1993; Squire 1992) and is anatomically connected to the dlPFC via the fornix 

and the retrosplenial cortex (Morris, Pandya & Petrides 1999; Petrides & Pandya 2006). 

 Various functional imaging and electrophysiological studies have been conducted 

since the initial behavioral study by Anderson and Green (2001) investigating the neural basis 

underlying thought suppression in the TNT. The discussion of the results in these studies has 

focussed on processes found to be related to the suppression effect and not so much to 

processes related to memory retrieval. 

 The first functional magnetic resonance imaging (fMRI) study was conducted by 

Anderson et al. himself (2004) and in addition to replicating below-baseline recall of no-think 

words in the same and independent probe recall test, as predicted they found a network of 

brain regions, including the lateral PFC, to be more active during no-think than during think 

trials. In turn, activation in the hippocampus was reduced during the suppression of words, 

indicating successfully stopped attempts to retrieve a memory during the no-think trials. To 

strengthen this claim and to rule out other explanations such as the simple disengagement of 

hippocampal activation due to a termination of the retrieval mode during the no-think 

condition, Anderson et al. (2004) performed further analyses investigating whether signal 
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change in the hippocampus would predict subsequent memory inhibition in the recall tests. 

They found different patterns of right hippocampal recruitment during suppression and simple 

forgetting (i.e. as indicated by activation during non-remembered think items). Additionally, 

they reported that later forgotten no-think words yielded more activation in the right 

hippocampus than no-think items that were subsequently remembered. Furthermore, the 

group could show a significant positive correlation between hippocampal activation during 

forgotten no-think relative to remembered no-think words and the amount of memory 

impairment. In the light of greater hippocampal activation during remembered think words 

than during forgotten think words, Anderson et al. (2004) assumed that greater activation 

during forgotten no-think words may “reflect greater intrusions of forgotten no-think items 

during suppression trials […] which may have triggered greater executive control to override 

retrieval and, in turn, greater memory inhibition” (p. 234). As an alternative explanation, the 

authors suggested that increased hippocampal activation might also reflect retrieval of 

diversionary thoughts that inhibit the to-be-suppressed memory trace. This interpretation 

would be in line with studies showing an enhanced suppression effect in subjects applying 

though substitution strategies as discussed in the previous paragraph (Hertel & Calcaterra 

2005). Finally, the authors could show a positive correlation between greater activation during 

forgotten than during remembered no-think words in the dlPFC and the right hippocampus, 

suggesting an interaction of the two structures in the facilitation of cognitive control over 

unwanted thoughts. Depue, Curran, and Banich (2007), using negative pictures as stimuli, 

also isolated the dlPFC and hippocampus as two key structures involved in exerting cognitive 

control over unwanted thoughts. In addition they found decreased activation of the amygdala 

during no-think relative to think trials. This is not particularly surprising given the negative 

content of their stimulus material and is discussed as reflecting the suppression of processes 

found to be implicated in emotional learning (Hamann 2001; Phelps 2004). In consecutive 

analyses the authors tried to clarify the temporal pattern of the cognitive control processes 

called upon during no-think trials. In behavioral experiments it was shown that memory 

impairment for no-think items decreases as a function of the number of times cognitive 

control is exerted. By means of analysing activation of the previously isolated brain regions 

throughout the time course of the experiment, Depue et al. (2007) could show a complex 

pattern of prefrontal activation early in the experiment, which is accompanied by increased 

activation in the hippocampus and amygdala. Only later, after several no-think attempts 

significantly decreased activation below baseline in the two latter structures was observed. 

This decrease, in turn, was predicted by the amount of activation in the prefrontal cortex early 
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in the experiment. Taking only the  last few no-think trials into account, the authors could 

show a linear decrease in hippocampal recruitment during think-trials that were subsequently 

remembered, to forgotten think trials, remembered no-think trials and forgotten no-think 

trials, while only forgotten no-think trials showed a significant drop of activation below the 

baseline activation level. The lower activity for forgotten no-think trials than for forgotten 

think trials is interpreted as further supporting the idea of the TNT measuring an active 

suppression mechanism (Depue et al 2007). The importance of the prefrontal cortex and the 

hippocampus in this active suppression mechanism is further corroborated by a significant 

correlation between greater memory impairment and heightened prefrontal as well as lower 

hippocampal1 activation obtained in this study. Investigating the TNT at the neural level in a 

sample of patients diagnosed with ADHD, Depue et al. (2010) further investigated the idea 

that suppression of thoughts is achieved by executive control processes recruited in situation 

requiring response-override2. Patients with ADHD have been shown to display deficient 

inhibitory control in paradigms such as the Go/Nogo or the Stop Signal Reaction Time Task 

(SSRT; e.g. Aron & Poldrack 2005; Rubia, Overmeyer, Taylor, Brammer, Williams, 

Simmons et al 1999; Rubia, Smith, Brammer & Taylor 2003) accompanied by altered neural 

responses in areas critically related to performance in these tasks and the TNT (see above; 

Booth, Burman, Meyer, Lei, Trommer, Davenport et al 2005; Rubia et al 2003). Significant 

group-related activation differences in the prefrontal and subcortical structures (i.e. 

hippocampus and amygdala), shown in their previous study (Depue et al 2007), were found 

during no-think attempts relative to baseline (Depue et al 2010). Patients with ADHD did not 

show any increased activation in the dlPFC, however, significantly activated the hippocampus 

and the amygdala during no-think trials relative to baseline, possibly reflecting uncontrolled 

intrusion of the target associated with the cue. Control subjects showed the pattern of 

increased right dlPFC and decreased bilateral hippocampal/amygdaloid activation previously 

observed by the group (Depue et al 2007). As already shown in their earlier study, signal 

changes in these regions correlated significantly with each other in the control group but not 

in patients with ADHD. Furthermore, only the control group exhibited the previously reported 

correlation between the strength of the suppression effect in the behavioral recall test and 

increased activation in the right dlPFC. Finally, correlating brain activation and behavioral 

measures of inattention and hyperactivity as well as performance in a SSRT, the group could 

show that especially inattentive symptomatology was linked with the correlation between 

                                                 
1 When taking only the last few no-think trials into consideration 
2 Behavioral patterns have been described in the previous paragraph (p. 19) 
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prefrontal cortex, hippocampus and amygdala. Moreover, higher levels of both inattentive and 

hyperactive symptomatology and poorer SSRT performance were shown to correlate with 

poorer inhibition over emotional retrieval1. These results show the benefit of studying patients 

with deficits in the domain of inhibitory control over cognitive processes to further outline the 

neural network underlying thought suppression and strengthening the claim that the TNT 

constitutes a well-suited laboratory test of cognitive control processes occurring naturally 

during the exertion of inhibiting unwanted thoughts from entering awareness and resulting in 

impaired memory of these thoughts. In sum, increased activation of prefrontal regions during 

suppression of memory relative to retrieval supports the view that suppression is an active 

process recruiting brain regions known to be important for executive control functions, such 

as the stopping of pre-potent motor responses in situations of response-override (e.g. Garavan 

et al 1999; Menon, Adleman, White, Glover & Reiss 2001). 

 In the first event-related potential (ERP) study investigating the electrophysiological 

correlates of the TNT, Bergström, Velmans, de Fockert and Richardson-Klavehn (2007), 

although not being able to replicate the classical suppression effect, could show a dissociation 

of an early frontally and parietally distributed negative and positive ERP component 

respectively, reflecting task-related strategic processes and a later (around 500 ms) positive 

left parietally distributed ERP component reflecting item-specific conscious recollection 

versus avoidance of recollection. The latter showed a significant reduction in amplitude 

during no-think trials, a fact discussed by the authors as reflecting the physiological correlate 

of the fMRI results by Anderson et al. (2004) and adding up to the evidence for the ability of 

voluntary thought suppression. Additionally, the data indicates, that even in the presence of 

physiological evidence of successful voluntary avoidance of recollection at the neural level in 

the TNT, subsequent forgetting might not occur (Bergström et al 2007). In a follow-up study 

Bergström, de Fockert and Richardson-Klavehn (2009a), addressed the claim that an 

alternative explanation might account for the lower amplitude in the late positivity reported 

earlier as indicating successful suppression of recollection in the TNT. They propose that 

successful avoidance of recollection in the TNT, might simply reflect that “the default state 

[…] is to not recollect, that is, that the cues fail to elicit automatic recollection” and that “the 

memories that participants are asked to recall require the involvement of intentional control 

                                                 
1 Note, however, that brain activation during the SSRT was found to be mainly in the right inferior frontal gyrus  
and pulvinar cortex, indicating the possibility that the SSRT and the TNT might present two different forms of   
inhibition (compare Friedman’s & Miyake’s (2004) distinction between pro-active interference and response-
distractor interference; see p.18) 
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processes to achieve successful retrieval, and that successfully avoiding recall requires no 

voluntary control” (p. 1282; Bergström et al 2009a). By this means, the authors manipulated 

the strength and flexibility of the control processes tested in the TNT by switching the think 

and no-think condition after the first half of the experiment for some of the cue items. They 

could replicate their finding of reduced amplitudes of the late positive component during no-

think relative to think trials in the first half of the experiment, and in addition an even larger 

and more reliable effect in the second half of the experiment for items with altered 

instructions (i.e. think to no-think and no-think to think from the first to the second half). 

Even in the absence of a behavioral suppression effect, this result indicates that practice of 

avoiding recollection is more crucial to the ability to successfully exert control over unwanted 

thoughts than the actual number of times a particular item had been avoided. This partly 

corresponds to findings by Depue et al. (2007), which had shown hippocampal disengagement 

to be largest in the last quartile of the experiment (i.e. after a certain amount of no-think 

trials). In a third experiment Bergström and her colleagues (2009b) investigated the influence 

of suppression strategies on the electrophysiological underpinnings of cognitive control 

processes over unwanted thoughts. They provided half of their subjects with the instruction to 

substitute the target word with another word during no-think trials to accomplish thought 

suppression (i.e. Substitute group), while the other half were given no instruction how to 

accomplish not thinking about the target (i.e. Suppression group). Contrary to findings by 

Hertel and Calcaterra (2005) presented in the previous paragraph only the Suppression group 

showed below-baseline recall  of no-think words in the same and independent probe recall 

test. As in their earlier studies reduced amplitudes were observed in a late positive component 

during no-think trials. This effect, however, was only present in the Suppression group. 

Furthermore, the group isolated an N2-like component, which showed higher amplitudes for 

no-think than think trials in both groups, larger, however, in the Suppression group and which 

predicted subsequent forgetting of no-think words in the behavioral recall test. The N2 has 

consistently been shown to be associated with the stopping of pre-potent motor responses in 

the Go/Nogo paradigm (Kok 1986; Kopp, Mattler, Goertz & Rist 1996; Van Veen & Carter 

2002). In line with hypotheses linking the N2 found in response to Nogo-trials to conflict 

monitoring in the face of the detection of a conflict between a pre-potent response and the 

presentation with a cue to stop this response (Van Veen & Carter 2002), the authors proposed 

that the higher negativity in the N2 during no-think trials reflects the detection of conflict and 

the beginning of a process accomplishing the detected need for cognitive control (Bergström 

et al 2009a). Another group around Mecklinger also isolated an N2 which showed 
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suppression-related modulations in amplitude (Mecklinger, Parra & Waldhauser 2009). In 

addition, in a second experiment the same subjects performed a Stop Signal task using the 

same stimulus material as in the TNT to investigate the relationship between cognitive control 

and motor stopping. A significant positive correlation between amplitudes elicited by no-think 

trials and the successfully inhibited motor response in the Stop Signal task was found for the 

N2, suggesting that similar neural processes are recruited by the two tasks. This claim is 

supported by the finding that higher P3 amplitudes during successful Stop trials were not 

correlated with the N2, therefore, ruling out simple high within-subject covariance of ERP 

components. Furthermore, the authors could show that the two N2 components both exhibit 

the same centro-parietal scalp distribution, which seems to support imaging studies 

concerning the TNT (Anderson et al 2004; Depue et al 2007) and the Stop Signal task 

(Garavan, Ross, Murphy, Roche & Stein 2002) showing that successful stopping of pre-potent 

responses is mediated by medial frontal and temporo-parietal brain regions. In line with 

Bergström et al. (2009a), the authors claim that the N2 reflects early mechanisms of control 

citing a simultaneous fMRI/EEG study by Garavan et al. (2002), showing that the dlPFC and 

other medial frontal regions are recruited differentially depending on Stop Signal task speed 

and difficulty, the dlPFC being more engaged in more difficult task situations. This 

corresponds with findings of a later no-think modulated frontally distributed positivity by all 

aforementioned studies (Bergström et al 2009a; Bergström et al 2009b; Bergström et al 2007; 

Mecklinger et al 2009). Complementing their work on the benefits of anticipatory 

mechanisms on the suppression of thoughts (see previous paragraph), Hanslmayr, Leipold, 

Pastötter and Bäuml (2009) could identify a positive component related to the onset of the 

anticipatory no-think cue after 300 ms and a second later positive component related to the 

onset of the memory cue being most pronounced 1.6 seconds post stimulus presentation. Both 

showed a significant reduction in amplitude in response to the no-think condition and both 

were positively correlated, indicating that the later positive component could be predicted 

from the early component reflecting anticipatory processes. Interestingly, amplitude 

reductions were stronger in the late component, indicating preparatory mechanisms signaling 

the need for suppression elicited by the no-think cue, which then elicit a stronger response 

when the actual memory cue is presented (Hanslmayr et al 2009). In line with the 

aforementioned studies, both components showed a fronto-parietal topography. The timing of 

the positivity, however, and the fact that the late component in the Hanslmayr et al. study 

(2009) predicted forgetting in the behavioral recall test, indicates that “while a reduction in 

the late positive component may well reflect the avoidance of automatic recollection, the later 
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sustained reduction of the positivity seems to reflect item suppression, and to underlie the 

subsequent forgetting” (p. 2747; Hanslmayr et al 2009). 

1.3. The Genetics of Memory 

In the recent years several molecules, among others G protein-activated inwardly 

rectifying potassium (K+) channels (GIRK) and the cyclic AMP (cAMP)-response element 

binding protein CREB (e.g. Chung, Ge, Qian, Wiser, Jan & Jan 2009; Koppel & Goldberg 

2009), have been associated with memory processes, suggesting them as interesting 

candidates in the investigation of the underlying processes mediating cognitive control of 

memories and thoughts. 

1.3.1. Cyclic AMP-Response Element Binding Protein 1: CREB1 

 CREB1 belongs to the leucine zipper family of DNA-binding proteins (Sands & 

Palmer 2008) and is an activator form of CREB which is expressed ubiquitously throughout 

the brain (Alberini 2009; Josselyn & Nguyen 2005; Zhou, Won, Karlsson, Zhou, Rogerson, 

Balaji et al 2009). Activation of the cAMP signal transduction pathway is achieved by ligand 

binding to G-protein coupled receptors terminating in the phosphorylation of the CREB 

protein and thereby potentiating its transcriptional activity (Mamdani, Alda, Grof, Young, 

Rouleau & Turecki 2008; Sands & Palmer 2008). CREB1 has been shown to be crucially 

involved in processes of long-term memory and synaptic plasticity regulated by long-term 

potentiation, e.g. in hippocampal neurons. It has for example been shown that CREB 

knockout mice display significant deficits in a wide range of memory tasks probing for 

spatial, contextual and cued memories. For a detailed review on CREB functioning and its 

implications in the formation of memories see e.g. Alberini (2009) or Josselyn and Nguyen 

(2005). Recently it has been shown that a G-to-A transition alters activity of the CREB 

promoter (Zubenko, Hughes, Maher, Stiffler, Zubenko & Marazita 2002), providing evidence 

for a functional single nucleotide polymorphism (SNP). It has been shown that the A allele 

augments the amplitude of variations in CREB1 promoter activity, thereby enhancing the risk 

of developing a mood disorder, which are known to encompass deficient executive control 

and memory functioning (e.g. Fossati, Amar, Raoux, Ergis & Allilaire 1999; Paelecke-

Habermann, Pohl & Leplow 2005; Watkins & Brown 2002). The CREB1 SNP (rs2253206) 

thus provides an interesting molecular target in the investigation of variables influencing 

thought suppression. 
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1.3.2. Potassium Channel, Inwardly Rectifying, Subfamily J, Member 6: KCNJ6 

 The KCNJ6 gene located on chromosome 21q22, first identified by Tsaur, Menzel, 

Lai, Espinosa, Concannon, Spielman et al. (1995), encodes a putative G protein-coupled 

inwardly rectifying potassium (K+) channel (GIRK), that shows strong homology with 

GIRK2, a previously identified potassium channel gene in mice isolated by Lesage, Duprat, 

Fink, Guillemare, Coppola, Lazdunski et al. (1994). Inherent to their regulative role in K+ 

transmission, GIRK channels play a role in synaptic transmission. Closure of K+ channels, as 

a result of an intracellular increase in adenosine triphosphate (ATP) concentration, causes 

membrane depolarization, which in turn triggers the activation of voltage-sensitive Ca2+ 

channels and the subsequent influx of Ca2+. This, in turn, results in other synaptic processes, 

such as the mediation of G protein-coupled receptors for neurotransmitters, such as GABAB, 

NMDA, serotonin, DRD2 etc. (Siegelbaum, Schwartz & Kandel 2000). Blockage of GIRK 

channels or GIRK null mutations have been demonstrated to abolish membrane depolarization 

in the process of long-term potentiation in cultured hippocampal neurons implying that GIRK 

channels are crucial for excitatory synaptic plasticity which is assumed to be the physiological 

correlate of learning and memory (Chung et al 2009). In a recent linkage study in two 

independent samples performed by Schuur (2010),  KCNJ6 was significantly associated with 

tests measuring executive functions as well as with memory. Furthermore, Lazary, Juhasz, 

Anderson, Jacob, Nguyen, Lesch et al. (2011) recently have shown KCNJ6 to be implicated in 

an increased risk for ruminative response styles, which is regarded a relative stable trait 

mediating the tendency to retrieve memories as either categories or as specific events (Nolen-

Hoeksema 2000; Nolen-Hoeksema & Davis 1999). The group could show that a G-to-A 

transition resulted in significantly higher ruminative tendencies (Lazary et al 2011), 

suggesting this transition as a functional SNP implicated in the development of specific 

personality traits previously associated with altered memory processing as well as with 

disorders encompassing deficits in executive functions such as mood disorders (e.g. Watkins 

& Brown 2002). The KCNJ6 SNP (rs2070995), as the CREB1 SNP, is thus considered a 

potential molecular mediator of thought suppression processes investigated in the current 

work. 
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1.4.  Introduction to the Methods 

1.4.1.  Functional Near-Infrared Spectroscopy (fNIRS) 

1.4.1.1. Fundamentals of fNIRS 

Since its introduction in the late 70’s 

(Jobsis 1977) and the development of 

multichannel apparatuses in the late 80’s and 

early 90’s, functional near-infrared 

spectroscopy (fNIRS) has been increasingly 

used to study human brain function in adults 

(Hoshi & Tamura 1993; Kato, Kamei, 

Takashima & Ozaki 1993; Villringer, Planck, 

Hock, Schleinkofer & Dirnagl 1993) and 

infants (Chance, Leigh, Miyake, Smith, 

Nioka, Greenfeld et al 1988).  

FNIRS employs near-infrared light to 

non-invasively measure changes in the 

concentration of oxygenated (O2Hb), 

deoxygenated (HHb) and total (tHb) 

hemoglobin in the brain, readily penetrating the skull and reaching cortical tissue (Figure 2; 

for a more detailed description see for example Chance et al 1988; Firbank, Okada & Delpy 

1998; Hirth, Villringer, Thiel, Bernarding, Muhlnickl, Obrig et al 1997; Hock, Villringer, 

Muller-Spahn, Wenzel, Heekeren, Schuh-Hofer et al 1997; Minagawa-Kawai, Mori, Hebden 

& Dupoux 2008; Wolf & Greisen 2009). Increase of O2Hb and decrease of HHb (see Figure 

3) as a consequence of neuronal activity in certain brain regions is described as neurovascular 

coupling and is the underlying principle in fMRI measurements investigating the blood 

oxygenation level dependent (BOLD) signal, which will be described in more detail in section 

1.4.2. (Logothetis & Wandell 2004).  

Correlations between measurements acquired with fNIRS and other functional 

imaging methods (Huppert, Hoge, Diamond, Franceschini & Boas 2006; Kennan, Kim, Maki, 

Koizumi & Constable 2002; Ohmae, Ouchi, Oda, Suzuki, Nobesawa, Kanno et al 2006; 

Strangman, Boas & Sutton 2002), moderate to high reliability indices (Plichta, Herrmann, 

Baehne, Ehlis, Richter, Pauli et al 2006a, 2007; Plichta, Herrmann, Ehlis, Baehne, Richter & 

Figure 2: Graphical display of fNIRS.  

Source: 
http://www.medgadget.com/archives/img/NIRS

_FINAL.jpg (retrieved 18-03-2011) 
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Fallgatter 2006b), in addition to its fast, save and easy use (Fallgatter, Ehlis, Wagener, Michel 

& Herrmann 2004; Obrig, Wenzel, Kohl, Horst, Wobst, Steinbrink et al 2000; Strangman et al 

2002) justify the application of this methodology in various areas of research including motor 

activity (Holper, Biallas & Wolf 2009; Morihiro, Tsubone & Wada 2009), mental tasks 

(Ehlis, Herrmann, Wagener & Fallgatter 2005; Hoshi, Huang, Kohri, Iguchi, Naya, Okamoto 

et al 2011; Kubo, Shoshi, Kitawaki, Takemoto, Kinugasa, Yoshida et al 2008), auditory 

stimulation (Ehlis, Ringel, Plichta, Richter, Herrmann & Fallgatter 2009; Kotilahti, Nissila, 

Nasi, Lipiainen, Noponen, Merilainen et al 2009; Sakatani, Chen, Lichty, Zuo & Wang 1999) 

and language (Dieler, Tupak & Fallgatter 2011) in healthy as well as in patient populations.  

Different fNIRS systems have evolved over the years. The most widely used method 

measures the intensity of the reflected near-infrared light via continuously emitting sources 

(i.e. continuous wave systems, CW systems). By measuring light scattering between a light 

emitter and a detector, which are sufficiently separated, the proportion of reflected light can 

be traced back to cortical tissue surrounding the emitter-detector pair (Minagawa-Kawai et al 

2008; Okada, Okamoto, Morinobu, Yamawaki & Yokota 2003). Intensity changes in two or 

even more wavelengths are then converted into concentration changes of O2Hb and HHb by 

use of the modified Lambert-Beer law (for a more thorough description see Minagawa-Kawai 

et al 2008; Obrig & Villringer 2003). 

Because NIR light does not travel through tissue unscattered and therefore the exact 

volume of tissue pervaded by detected light is not known CW systems are unable to derive 

absolute values of O2Hb and HHb concentrations (Minagawa-Kawai et al 2008). Systems 

solving this problem are time-domain and frequency-domain systems, which can determine 

the average path length of the reflected light (for a review see Minagawa-Kawai et al 2008; 

Wolf, Ferrari & Quaresima 2007).  

 

Figure 3: Schematic display of the hemodynamic response function. The development of the 

typical canonical HRF measured in BOLD fMRI imaging and the time course of the HRF of 

oxygenated and deoxygenated hemoglobin measured in fNIRS are shown separately 
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1.4.1.2. Advantages of fNIRS 

Several advantages as compared to other imaging methods make fNIRS an attractive 

tool for researching human brain function in various domains from basic sensorimotor 

mapping (e.g. Xu, Takata, Ge, Hayami, Yamasaki, Tobimatsu et al 2007) to the study of 

higher cognitive functions, such as executive functions (e.g. Fallgatter, Muller & Strik 1998). 

It has been shown to be a reliable tool for studies of higher cognitive functions due to its 

spatial resolution which is sufficient to map cortical processes (e.g. Schecklmann, Ehlis, 

Plichta & Fallgatter 2008). In addition it is easily combinable with other neurophysiological 

methods such as EEG and ERP, which can provide more adequate source localization and 

temporal resolution (Kennan et al 2002). Furthermore it is a cheap, quick and portable 

solution relatively insensitive to body or head movements, providing the researcher with 

freedom in task design and the possibility to study populations such as patients, children or 

elderly, known to be problematic in settings such as fMRI studies requiring the subject to lie 

still in a very narrow and noisy environment. 

1.4.1.3. Limitations of fNIRS 

There are some limitations of fNIRS that have to be mentioned. (1) Although quite 

well, the spatial resolution is lower than for fMRI and is limited by its penetration depth of 

only a few centimeters (Chance et al 1988; Lloyd-Fox, Blasi & Elwell 2010; Minagawa-

Kawai et al 2008), as well as by light absorption and scattering depending on the measured 

tissue composition (cerebrospinal fluid, white or gray matter, for a review see Okada, Firbank, 

Schweiger, Arridge, Cope & Delpy 1997). Furthermore, no anatomical images can be 

acquired. There are, however, tools in development allowing for a coregistration between an 

anatomical image acquired by MRI and the fNIRS-derived hemodynamic response (e.g. see 

Aslin & Mehler 2005; Whalen, Maclin, Fabiani & Gratton 2008) (2) Temporal resolution, 

with an acquisition rate of up to hundreds of hertz (Huppert et al 2006) is better than for fMRI 

but is lower than for EEG (Minagawa-Kawai et al 2008), which has a sampling rate of up to a 

thousand hertz (Mauguière 1999). (3) A definite attribution of the fNIRS signal as originating 

from cerebral tissue is sometimes difficult. Hemodynamic responses measured in the probes 

include systemic vascular changes stemming from various sources (e.g. heart rate, skin 

circulation or blood pressure, Minagawa-Kawai et al 2008). (4) Continuous wave fNIRS 

systems cannot measure the exact optical path length and have to rely on mathematical 

models, such as the modified Lambert-Beer law (Delpy, Cope, van der Zee, Arridge, Wray & 

Wyatt 1988) or simulated light propagation in sophisticated models of the brain (Okada et al 
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1997). (5) So far no general standard has been introduced regarding fNIRS instrumentations, 

signal processing, data analysis, as well as first- or second level statistics. (6) Some minor 

concerns are the establishment of a stable contact between skin and optic fiber and potential 

disturbance of the light by dark hair. 

1.4.2. Functional Magnetic Resonance Imaging (fMRI) 

Measurements with fMRI are based on changes in blood oxygenation, which is taken 

as a physiological marker and interpreted as indirectly reflecting changes in neuronal activity. 

The most common technique to measure these changes with fMRI is the blood oxygenation 

level-dependent (BOLD) contrast, which has first been described by Ogawa and colleagues in 

the late 80’s (Ogawa, Lee, Kay & Tank 1990; Ogawa, Lee, Nayak & Glynn 1990) BOLD 

fMRI takes advantage of the fact that changes in neural activation causes regional changes in 

the concentration of O2Hb and HHb through neurovascular coupling: changes in neural firing 

are followed by regional decreases in O2Hb and relative increases in the concentration of HHb 

in the blood. This initial, often very subtle effect is followed by a much larger increase in 

levels of O2Hb due to a massive oversupply of oxygen-rich blood. O2Hb concentration levels 

reach their maximum after about six seconds (Fox, Raichle, Mintun & Dence 1988; Heeger & 

Ress 2002). Finally HHb concentration returns to its baseline level after an initial undershoot 

after approximately 24 seconds (Heeger & Ress 2002). See Figure 3 for a schematic depiction 

of a typical hemodynamic response. 

Signal changes in BOLD fMRI are determined by the paramagnetic properties of HHb 

and diamagnetic properties of O2Hb (Kim & Ugurbil 1997) By means of fNIRS, mechanisms 

of BOLD-related signal changes have been elucidated in more detail (Grinvald, Frostig, 

Siegel & Bartfeld 1991). They described an increase in HHb content peaking approximately 

2.5 seconds after stimulus onset. This has been interpreted as reflecting the local increase in 

oxygen demand by altered neural firing which is not yet compensated by an increase in 

regional cerebral blood flow (rCBF). Subsequently a compensatory increase in rCBF and 

oxygen supply was observed that led to a net decrease in HHb, which has been shown to 

spread out in a much larger area than the initially observed increase in HHB, and which is 

equivalent to the signal increase observed in BOLD fMRI (Bandettini, Wong, Hinks, 

Tikofsky & Hyde 1992; Di Salle, Formisano, Linden, Goebel, Bonavita, Pepino et al 1999; 

Grinvald et al 1991; Kwong, Belliveau, Chesler, Goldberg, Weisskoff, Poncelet et al 1992; 

Ogawa, Tank, Menon, Ellermann, Kim, Merkle et al 1992). For a detailed description of MRI 

and BOLD fMRI physics see e.g. Huettel, Song and McCarthy (2004). 
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It has to be noted that assessing the concentration changes of O2Hb and HHb in the 

brain is an indirect measure of neural activity, as outlined above. This entails that any event 

leading to a vascular response in the brain leads to signal changes in the fMRI BOLD raw 

data. Furthermore, irregularities in neurovascular coupling, which have been described in 

certain disorders influence neurovascular processes (Iadecola 2004) and might also hamper 

interpretation of BOLD signal changes. Through event-locked extraction and modelling 

procedures, however, signal changes specific to the components of a functional task can be 

derived. 

1.4.3. Electroencephalography and Event-Related Potentials (EEG and ERP) 

 ERPs are electrical changes in neuronal activity that can be seen in the routine EEG 

before, during or after sensory, motor, or cognitive events. In other words, ERPs represent the 

discharge distribution of measurable responses of the brain to environmental (exogenous) or 

internally (endogenous) generated stimuli. While exogenous ERPs, occur very early (<100ms) 

and mainly depend on the physical properties of a stimulus, internal ERPs display longer 

latencies (>100ms) and largely depend on psychological variables, such as the relevance of 

the stimulus or the current emotional status of the person (Altenmüller & Gerloff 1999). 

Exogenous ERPs are mainly used as a diagnostic tool, testing, for example the integrity of 

sensory afferences and efferences (Picton, Bentin, Berg, Donchin, Hillyard, Johnson et al 

2000). Endogenous ERPs, seen as neuronal correlates of cognitive and emotional processes 

are used for psychological and neuroscientific research, since they provide insight into early 

aspects of information processing, not possible with other measurement techniques such as 

fNIRS or fMRI (Karmiloff-Smith 2010) or classical neuropsychological methods (Rösler 

1982). 

ERP amplitudes, in relation to ongoing background EEG, show very small amplitudes 

ranging from 2-20µVs (Altenmüller & Gerloff 1999). Therefore, signal averaging to improve 

the signal-to-noise ratio is inevitable in visualizing these responses in contrast to the ongoing 

EEG activity not related to the stimulus (Dawson 1951; Lopes Da Silva 1999). Two basic 

assumptions are stated, which have to be taken into account before ERP analysis: (1) the 

electrical response evoked by the brain is delayed invariably relative to the stimulus and (2) 

the ongoing activity is corrupted by background noise, which can be correlated with the ERP 

components of interest. In other words, ERPs represent a signal corrupted by additive noise in 

which the signal can only be detected by improving the signal-to-noise ratio (Lopes Da Silva 

1999). For the model behind time averaging the reader is referred to Lopes Da Silva (1999). 
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Another possible method is analysis of the frequency domain, which is used to isolate ERPs  

that (1) occur without a fixed phase or time relation to the stimulus, and are therefore difficult 

to detect in the time domain and (2) are caused by continuous stimulation (see Lopes Da Silva 

1999). 

Different endogenous components are classified according to their polarity (i.e. 

“N”=negative and “P”=positive) and their latency (e.g. the N100 is a negative deflection 

occurring approximately 100ms after stimulus presentation). 

Two inherent difficulties in the interpretation of ERP data are: (1) The neuronal 

correlates or structures generating the observed components are not precisely defined and (2) 

the separation of components according to the above mentioned classification is artificial and 

an overlap of components originating in different brain areas can occur (McCallum 1988). 

Newer tools, such as sLORETA (Pascual-Marqui 2002), however, provide the possibility to 

localize the source of electrical activity by multi-channel surface EEG recording. 

Additionally, the combination of EEG with imaging methods such as fMRI or fNIRS provides 

the possibility to couple electrical discharges with the underlying brain structures. 

1.4.4. Transcranial Magnetic Stimulation (TMS) including Theta-Burst 

Stimulation (TBS) 

1.4.4.1. TMS 

 Since its introduction by Barker, Jalinous and Freeston (1985) in the mid 80’s, 

Transcranial Magnetic Stimulation (TMS) has developed as an important tool in investigating 

the brain by providing the possibility to modulate neuronal activity in the cortex. It is a non-

invasive means of stimulating nerve cells and is regarded as a promising investigational and 

therapeutical tool in psychiatric or neurological settings (Fitzgerald, Brown & Daskalakis 

2002; Wagner, Valero-Cabré & Pascual-Leone 2007).  

 Through rapidly changing magnetic fields electric currents are induced perpendicular  

in the brain (see Figure 4), which in turn will cause electrical currents flowing parallel to the 

plane of the coil (Bonato, Miniussi & Rossini 2006; Hallett 2000). In case of round coils, 

which are very powerful, the strongest current is induced near the circumference of the coil 

without any current in the centre (see Figure 4A). Figure-of-eight coils induce the electrical 

current more focally, producing its maximum at the intersection of the two round parts (see 

Figure 4B). 
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Figure 4: Basic principle of Transcranial 

Magnetic Stimulation. (A) Principles of current 

induction in a round coil (adapted from Hallett 

2000) and (B) principles of current induction in 

a figure-of-eight coil (adapted from Wagner et 

al., 2007) 

 TMS can be applied as a single 

pulse, pairing two pulses (ppTMS) or 

repetitively, resulting in various pulses 

per second (rTMS). While stimulation of 

the visual cortex, inducing phosphenes 

or a temporary scotoma (Amassian, 

Cracco, Maccabee, Cracco, Rudell & 

Eberle 1989), or the motor cortex, 

inducing motor evoked potentials 

(MEPs) or temporary disruption of 

motion perception by stimulating area 

V5 (Beckers & Zeki 1995) are usually 

achieved by single pulse TMS, 

application of ppTMS and rTMS has 

been shown to be able to manipulate the 

initiation threshold of these reactions. 

Response to ppTMS and rTMS may 

increase or decrease depending on the 

interstimulus interval (ISI) and the 

relative strength of the first pulse compared to the following (Kujirai, Caramia, Rothwell, 

Day, Thompson, Ferbert et al 1993). Usually ppTMS involves the pairing of a supra-threshold 

stimulus followed by a sub-threshold stimulus.  Inhibition is achieved with brief ISIs of 1-6 

ms or long ISIs of 50-200 ms (Kujirai et al 1993), while facilitation follows an intermediate 

ISI of 8-20ms (Fitzgerald et al 2002). PpTMS has been applied to the research of deficits in 

cortical inhibition in disorders such as schizophrenia (e.g. Fitzgerald, Brown, Marston, Oxley, 

De Castella, Daskalakis et al 2004), Tourette’s syndrome (Ziemann, Paulus & Rothenberger 

1997), obsessive-compulsive disorder (Greenberg, Ziemann, Cora-Locatelli, Harmon, 

Murphy, Keel et al 2000), and epilepsy (Klimpe, Behrang-Nia, Bott & Werhahn 2009; 

Werhahn, Lieber, Classen & Noachtar 2000), as well as the effect of drugs on inhibitory 

parameters (e.g. Fitzgerald et al 2004; Pascual-Leone, Manoach, Birnbaum & Goff 2002; 

Ziemann, Lonnecker, Steinhoff & Paulus 1996). RTMS paradigms are used to study higher 

cognitive functions (e.g. by increasing or disrupting performance on cognitive tasks, such as 

object naming (Wassermann, Grafman, Berry, Hollnagel, Wild, Clark et al 1996) and memory 

(Grafman, Pascual-Leone, Alway, Nichelli, Gomez-Tortosa & Hallett 1994)) or the 
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therapeutical effectivity of TMS for example in the field of depression (Martin, Barbanoj, 

Schlaepfer, Thompson, Perez & Kulisevsky 2003; Pogarell, Koch, Pöpperl, Tatsch, Jakob, 

Zwanzger et al 2006), addiction (e.g. cocaine: Camprodon, Martínez-Raga, Alonso-Alonso, 

Shih & Pascual-Leone 2007; nicotine: Eichhammer, Johann, Kharraz, Binder, Pittrow, 

Wodarz et al 2003; alcohol: Mishra, Nizamie, Das & Praharaj 2010), or even as a potential 

alternative to the WADA test in the determination of language dominance presurgically 

(Epstein, Meador, Loring, Wright, Weissman, Sheppard et al 1999; Jennum, Friberg, 

Fuglsang-Frederiksen & Dam 1994). For an extended description of the applications of TMS 

in psychiatry and neuroscience the reader is referred to Fitzgerald et al. (2002). 

 The above mentioned inhibitory and excitatory effects of rTMS have been compared 

to the concept of long-term depression (LTD) and long-term potentiation (LTP), which are 

used to describe neuromodulatory effects of repeated in vivo or in vitro stimulation of 

neuronal populations, disturbing or improving cell-to-cell communication and are the basics 

of neural plasticity and learning (George, Nahas, Kozol, Li, Yamanaka, Mishory et al 2003; 

Huang, Edwards, Rounis, Bhatia & Rothwell 2005) 

1.4.4.2. TBS 

 A newer rTMS protocol 

is the theta-burst paradigm 

(TBS) in which 3-5 pulses are 

administered at 50Hz, 

repetitively at a frequency of 

5Hz (George et al 2003; Huang 

et al 2005). Two protocols, based 

on the original TBS protocol have 

been developed within the last 

five years, and have been shown 

to effectively induce LTP and LTD in in vitro brain slices respectively: continuous TBS 

(cTBS) and intermittent TBS (iTBS). See Figure 5 for an outline of the two protocols. 

 Huang et al. (2005) applied cTBS and iTBS protocols to the human primary motor 

cortex and observed a suppression of EMG responses and facilitated EMG responses, 

respectively. Depending on the number of pulses in the protocol the group succeeded in 

prolonging the effects up to one hour post-stimulation, which outweighs all effects following 

Figure 5: Outline of the iTBS and cTBS protocol first 

introduced by Huang et al. (2005). 
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other rTMS protocols. Similar results have been published by Franca, Koch, Mochizuki and 

Huang (2006), who reported an increase in phosphene-threshold by 10% following cTBS. 

1.4.4.3. Limitations of TMS and TBS 

Limitations of TMS are that the exact mechanisms of neural activation through TMS 

are not yet well understood (Wagner et al 2007), but the observation that stimulation produces 

a corticospinal volley with indirect waves rather than with an early direct wave indicates that 

activation changes are induced at the synaptic level (Di Lazzaro, Oliviero, Profice, Saturno, 

Pilato, Insola et al 1998). Furthermore, the biological effects of TMS on network activity are 

not clearly defined yet. Only one network model for TMS exists, accounting for over 33.000 

neurons with approximately five million modelled synapses and reproducing experimental 

TMS results (Esser, Hill & Tononi 2005). Autoradiographic measures with 2-DG tracers have 

demonstrated that network effects are not physiologically restricted to the stimulated brain 

site, but spread to neighboring or even distant regions (Valero-Cabré, Payne, Rushmore, 

Lomber & Pascual-Leone 2005). 

 Furthermore, one major issue is safety, since incidents of induced epileptic seizures 

have been reported (Paulus 2005). Following established safety protocols, however, the risk 

of adverse effects is minimal (Wassermann 1998) and especially TBS protocols have been 

described to minimize seizure risk and other side-effects due to their proportionally weaker 

stimulation strengths as compared to classical rTMS protocols (Grossheinrich, Rau, Pogarell, 

Hennig-Fast, Reinl, Karch et al 2009; Huang et al 2005; Paulus 2005). 

1.5. Thesis Outline and Research Questions 

 As becomes apparent from the number of studies using the TNT described in section 

1.2., the topic of cognitive inhibition has gained increasing attention in the research 

community. Various potentially influencing variables, ranging from the emotional content of 

the to-be-inhibited thoughts to personality traits such as for e.g. anxiety, depressed mood 

states, rumination or working memory capacity have been investigated. Although progress has 

been made unravelling the processes underlying thought suppression at a behavioral or neural 

level a number of open questions still exist. Not all studies have been able to replicate 

Anderson and Green’s (2001) original finding of successful disruption of memory traces of 

previously suppressed thoughts to a rate below baseline, which is deemed one of the major 

criteria for proving the existence of an active cognitive mechanism working at the level of 

executive functions (Anderson & Green 2001; Anderson et al 2004). 
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As shown in paragraph 1.2.2. special focus has been set on the influence of stimulus 

valence on the suppression of thoughts. Results of these studies, however, are inconsistent. 

Some have shown better suppression of negative stimuli (Depue et al 2006; Joormann et al 

2005) while others have shown better suppression of positive stimuli (Hertel & Gerstle 2003; 

Marx et al 2008). Two hypotheses have emerged regarding the outcomes of cognitive control 

over negatively valenced thoughts: First, Depue et al.  (2006) and Lambert et al. (2010) have 

claimed better suppression of negative memories due to their heightened salience and better 

accessibility to cognitive control. Second, Marx and colleagues (2008) showed better 

suppression of positive words, supporting the view that negative information is more 

elaborately processed during encoding and therefore less prone to cognitive inhibition. In 

addition to the inconsistency regarding the facilitating or impairing effect of stimulus valence 

on thought inhibition, no study has been found directly comparing neutral, positive and 

negative stimuli in the same group of subjects. The first aim of the present study was thus to 

investigate how the emotional content of the to-be-suppressed stimulus material influences 

cognitive inhibition using a between-subject design. 

 

Research Question 1: How does the valence of the stimulus material influence thought 

inhibition in the Think/No-Think paradigm? 

 

As just mentioned, studies investigating differences in TNT performance regarding the 

valence of the used stimuli have, although inconsistent, found evidence of differential 

inhibition of neutral, positive and negative thoughts. All these studies, however, have been 

performed on a behavioral basis, and thus lack the ability to disentangle whether the 

differences found between the suppression of neutral, positive and negative stimulus material 

are due to a single cognitive control mechanism acting on emotional and neutral information 

to a different degree, or distinct processes inhibiting the intrusion of emotional and neutral 

stimuli. Evidence, however, exists that manipulation of emotional vs. neutral information is 

associated with greater activity of prefrontal cortices (Gray, Braver & Raichle 2002; Hamann 

2001), as well as increased recruitment of subcortical regions (Canli, Zhao, Brewer, Gabrieli 

& Cahill 2000; Maratos & Rugg 2001), hinting at a similarly distributed neural network 

acting differently on emotional and neutral information. 

 

Research Question 2: Does inhibition of neutral or emotional thoughts engage the same 

or distinct neural networks? 
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 The role of the dlPFC as top-down control region in thought inhibition has been 

supported by three fMRI studies (Anderson et al 2004; Depue et al 2010; Depue et al 2007). 

Furthermore, it has repeatedly been shown that the amount of signal change observed in the 

right dlPFC is predictive of the eventual suppression effect observed in the behavioral recall 

test. The third aim of the current work was thus the investigation of the influence of external 

manipulation of dlPFC activation on the performance in the TNT to strengthen the proof of 

the role of dlPFC activation in cognitive control exerted over unwanted thoughts 

 

Research Question 3: Can performance in the Think/No-Think paradigm be improved 

by increasing activation in the right dlPFC by means of intermittent TBS? 

 

 Various fMRI and ERP studies have been conducted in the last few years, 

investigating the neural systems underlying thought inhibition and several attempts have been 

made to link findings from these two methods. These attempts, however, have been only 

speculative since they were based on different studies or based on results obtained in other 

domains of executive control (e.g. the Go/Nogo paradigm). Taking advantage of fNIRS to be 

easily combinable with EEG (see section 1.4.1. and 1.4.3.), another aim was the direct 

correlation of functional activation in the dlPFC as measured by fNIRS and the corresponding 

ERPs as well as their interaction in modulating the subsequently measured behavioral 

suppression effect. 

 

Research Question 4: How do ERPs found to be related to the intentional suppression of 

thoughts in the TNT correlate with activation in the dlPFC and how does this 

correlation relate to the behaviorally measurable suppression effect? 

 

 In addition to the most basic investigation of the neural network implemented in the 

suppression of thoughts, personality traits such as anxiety (Waldhauser et al 2010) or 

depressive symptoms, including ruminative response styles (Hertel & Gerstle 2003; Hertel & 

Mahan 2008; Joormann et al 2005; Wessel et al 2005) have been a topic of interest since it 

was assumed that performance in the TNT is critically influenced by these factors. As 

described in section 1.2.2., results regarding the modulation of suppression performance have 

been inconsistent, ranging from an enhancing effect of anxious and depressive symptoms on 

the ability to successfully inhibit thought intrusions (Joormann et al 2005) to an impairing 
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(Hertel & Gerstle 2003) or no effect (Wessel et al 2005) of these factors. Sample sizes in 

these studies have been quite small and therefore may not be able to detect subtle differences 

in the suppression effect, which has been discussed as presenting with only small to moderate 

effect sizes (Bulevich et al 2006). Furthermore, comparisons have been, at least in some 

studies, performed between patient cohorts and healthy control subjects. Confounding factors, 

implicated in patient studies, such as medication, co-morbidities etc. might thus have led to 

the inconsistent findings. A further aim of this work was thus to investigate the influence of 

these personality traits in a large sample of healthy control subjects. 

 

Research Questions 5: How do personality traits such as anxiety or depressive symptoms 

modulate the ability to exert cognitive control over unwanted thoughts?  

 

 Finally, the contribution of variations in two genetic SNPs, which have recently been 

linked with memory performance and ruminative response styles (CREB1 and KCNJ6), were 

of interest in disentangling the factors contributing to the ability of preventing thought 

intrusions at a behavioral and neurophysiological level. 

 

Research Question 6: Are there genetic factors influencing cognitive control processes in 

the TNT? 
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2. Materials and Methods 

2.1. General Remarks 

 All analyses were performed with SPSS Version 18 (SPSS Inc.). In cases of a 

violation of the assumption of sphericity when performing calculations with the general linear 

model (GLM), indicated by a significant chi2 value in the Mauchly-Test (p < .05), the degrees 

of freedom were adjusted, following Quintana and Maxwell (1994): in case of a Huynh-Feldt 

ε ≥  0.75 according to the Huynh-Feldt correction, and in case of a Huynh-Feldt ε < 0.75 

according to the Greenhouse-Geisser correction. To correct for the accumulation of the alpha 

error during multiple testing, the conventional significance cutoff of p < .05, was adjusted by 

means of Bonferroni correction when performing post-hoc t-tests. 

 For all studies participants were screened for the absence of past and present 

psychiatric axis I disorders with a short questionnaire including items from the SKID-I 

interview (German version of the Structured Clinical Interview for DSM IV, Wittchen, 

Zaudig & Fydich 1997).  

Each study was reviewed and approved by the Ethics Committee of the University of 

Wuerzburg, and all procedures involved were in accordance with the 2008 version of the 

Declaration of Helsinki. All participants gave written informed consent after comprehensive 

explanation of the experimental procedures. 
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2.2. Pilot Study 

2.2.1. Sample 

15 right-handed healthy subjects, recruited from the staff of the University Clinic 

Wuerzburg (4 men, age: 28.2 ± 6.28 years) participated in this study.  

2.2.2. The TNT 

The version of the Think/No-Think paradigm used in this study was adapted from 

Anderson's original design (Anderson & Green 2001, see Figure 1). During the study phase, 

subjects were presented with 45 pairs of unrelated German nouns twice. Afterwards they 

viewed the first word of the pair (cue word) together with two alternative words, from which 

they had to select the previously learned partner word (i.e. target). The second word was also 

taken from the previously learned wordlist to prevent recognition effects. This phase was 

repeated until subjects responded correctly to more than 80% of the words each on two 

consecutive cycles.  

In the subsequent Think/No-Think part of the paradigm, brain activation was 

measured with fNIRS. Subjects were presented with blocks of six cue words, each preceded 

by the instruction (5 seconds) either to suppress the previously learned partner word and to 

prevent thinking about it at all (i.e. no-think), or to recall the partner word and think about it 

(i.e. think) during the following block. Subjects were instructed to focus on each word in the 

block for the entire time it was presented (4 seconds, i.e. each block lasted 24 seconds) to 

prevent perceptual avoidance and to generate a constant threat that the associated memory 

might intrude into consciousness. Each block was presented 5 times, preceded by the 

instruction and separated by the presentation of a fixation cross (24 seconds), resulting in 15 

no-think and 15 think blocks in total.  

In the final recall test, participants were given a list with all cue words and asked to fill 

in all of the partner words they remembered. This served as behavioral control whether 

suppression had really and effectively occurred. Hypothetically, recall should be worse for the 

no-think words than for the think words, since the memory trace should be disturbed when 

suppression of the associated word was successful (e.g. Anderson & Green 2001; Anderson et 

al 2004; Depue et al 2007). The baseline condition (3 words per valence condition), in which 

word pairs are learned during training, but not actively manipulated (i.e. neither appear in the 

think or no-think condition), served as control condition, and has in previous studies been 
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shown to be recalled worse than the think-items, but better than the no-think items (Anderson 

& Green 2001; Depue et al 2006). 

Words were taken from the Berlin Affective Word List (Vo, Conrad, Kuchinke, Urton, 

Hofmann & Jacobs 2009; Vo, Jacobs & Conrad 2006), selecting the 15 most positively and 

15 most negatively, as well as the 60 most neutrally rated words. For characteristics of the 

partner words see Table A - 1. Word pairs were formed coupling a neutral word (e.g. Geruch, 

Visum, Skat; engl: smell, visa, skat) with a positive (e.g. Liebe; love), negative (e.g. Folter; 

torture) or neutral word (e.g. Reihe; row), so that all cue words were neutral. An overview of 

the paradigm is given in Figure 6.  

 

 Study / Training Think/No-Think Recall 

Think GERUCH - REIHE GERUCH GERUCH 

No-Think VISUM - LIEBE VISUM VISUM 

Baseline SKAT - FOLTER  SKAT 

                    Functional Near-Infrared-Spectroscopy 

 

Figure 6: Schema of the Think/No-Think paradigm as used in the pilot study (‘Geruch – 

Reihe’ = Smell –Row; ‘Visum – Liebe’ = Visa – Love; ‘Skat –Folter’ = Skat – Torture) 

2.2.3. FNIRS 

 The theory behind fNIRS has been described in section 1.4.1. in detail. The system 

used in this study was a CW system (ETG-4000 Optical Topography System; Hitachi Medical 

Co., Japan), operating with two different wavelengths (695 ± 20 and 830 ± 20 nm) and a time 

resolution of 10 Hz to measure relative changes of absorbed near-infrared light. These 

changes are transformed into concentration changes of O2Hb, HHb, and tHb as indicators of 

brain activity by means of a modified Lambert–Beer law (Obrig & Villringer 2003). The unit 

is mmol×mm, i.e. changes of O2Hb, HHb, and tHb concentration depend on the path length of 

the near-infrared light, which is unknown in our examination. A 52-channel array of optodes 

was used that covered an area of 30×6 cm at the frontal region of the head (interoptode 

distance = 3 cm). This array consisted of 17 light emitters (semiconductor lasers) and 16 

photo-detectors (Avalanche photodiodes) each of which detected the reflected near-infrared 

light of its surrounding emitters. A measuring point of activation (i.e. channel) was defined as 

the region between one emitter and one detector. The array was fastened to the head by elastic 

straps with regard to the standard positions of Fpz and T3/T4 according to the international 
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10–20 system for EEG electrode placement (Jasper 1958; Okamoto, Dan, Sakamoto, Takeo, 

Shimizu, Kohno et al 2004). See Figure 7 for a depiction of probe set placement. 

2.2.4. Data Analysis and Statistics 

2.2.4.1. Behavioral Data 

Two subjects had to be excluded due to problems with data acquisition, resulting in a 

sample of 13 subjects (3 men). Percentages of recalled words were calculated for no-think 

trials, think trials and baseline trials. Performance was calculated for the three valence 

conditions separately. A 3 x 3 repeated-measures ANOVA with the within-subject factors 

valence (neutral, positive, negative) and condition (baseline, think, no-think) was performed.  

For the description of psycholinguistic characteristics and possible differences due to 

valence between the selected words, univariate (i.e. valence) ANOVAs were calculated for 

emotional mean, arousal, imageability, letters, phonemes, syllables, and word frequency using 

the rating material provided by Vo et al. (2009). 

 To investigate differences in brain activation measured with fNIRS between subjects 

being successful in the suppression of words versus those subjects who did not succeed or 

comply with the instruction, a behavioral suppression index (BSI) was calculated according to 

Depue et al. (2007). This index was acquired by subtracting the mean percentage of recalled 

no-think words from the mean percentage of recalled baseline words summed over the three 

valence condition. The greater this index is the better the subject is at suppressing the stimulus 

material during the no-think trials. 

2.2.4.2. FNIRS Data 

Prior to statistical analysis of the functional imaging data using the general linear 

model (GLM), the high frequency portion of the signal was removed by applying the system 

build-in moving average (MA) filter with a time window of 5 seconds which has an 

approximate cut-off frequency of 0.08 Hz. This MA filter removes frequency components 

such as pulse waves (approximately 0.6–1.2 Hz) and respiration oscillations (approximately 

0.1–0.5 Hz). A 7-element discrete cosine transform basis set was used to account for slow 

drifts in the measurement. Consecutively, the GLM was applied using the hemodynamic 

response function (HRF) provided by the SPM 5 software package 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm5/). The HRF was convolved with a boxcar 

function and used for the derivation of O2Hb and HHb parameters, by means of regression 

analysis (so-called beta weights). A time course for each condition was calculated by 
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averaging all blocks of one condition, resulting in 6 by 52 beta values. Significant positive 

beta weights indicate an increase in the concentration of the O2Hb data and negative beta 

weights indicate a decrease in the HHb concentrations. For a more detailed description of 

fNIRS analysis the reader is referred to Plichta et al. (2006a; 2006b). 

Regions of interest were defined a-priori according to the coregistration of fNIRS 

channels to MNI space by Dan (2010). Channels forming the right dlPFC were #3, #4, #14, 

and #25 and those forming the left dlPFC were #7, #8, #18, and #28. See Figure 7 for the 

positioning of the probeset and the location of the channels used for the ROI analyses. 

The ROIs were entered in a 3 x 2 x 2 ANOVA with the factors valence, condition and 

side. Additionally a 3 x 2 ANOVA with the factors valence and condition were calculated 

separately for the right and left dlPFC. To investigate signal changes in the ROIs during think 

and no-think trials relative to baseline (i.e. activation during presentation of the fixation cross) 

paired samples t-tests contrasting activation during the task period (i.e. think or no-think) 

against baseline-activation, were performed consecutively. This additional analysis is 

performed because it is argued that the classical no-think/think contrast does not allow for the 

isolation of effects solely associated with either condition (Depue et al 2007). Lastly, 

directed/one-sided correlation analyses with the BSI summed over the three valences were 

performed for the difference in activation during no-think and think trials in ROIs showing a 

significant or marginally significant condition effect.  

All analyses were performed for O2Hb and HHb. 

Figure 7: Outline of the fNIRS probeset and the ROIs (shaded area) used for the subsequent 

statistical analyses plotted on the MR scan of a single subject. (A) Right hemisphere and (B) 

left hemisphere 
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2.3. Emotion Study 

2.3.1. Sample 

 A total of 20 subjects, recruited via advertisement in the local media, participated in 

the experiment (age 29.50 ± 10.68; 7 men).  

2.3.2. The TNT 

 The measurement took place on two separate days, allowing for the within-subject 

investigation of valence effects (i.e. neutral, positive and negative) and increasing the number 

of TNT repetitions without creating an uncomfortable and unendurably long experimental 

setting. On the first day subjects were trained on 26 face-picture pairs (see Table A - 2 for 

stimulus material) of one of the valence condition, including 8 neutral filler pairs used for 

practice of the TNT instruction prior to the measurement. Each pair was shown twice for 5 

seconds each (i.e. study phase) before subjects were presented with the face cue and 4 of the 

pictures, including three non-target pictures (taken from the studied pictures to prevent 

recognition effects) and the target picture, from which they had to choose the correct one. 

Feedback was provided whether the answer was right or wrong, and the correct face-picture 

pair was presented again for 3 seconds. The training phase was repeated until subjects 

responded correctly to 90% of the trials. Before the actual measurement started, subjects were 

given the TNT instructions (see paragraph 2.2.2.) and completed 5 practice runs on the 8 filler 

pairs. The think condition was indicated by two green bars framing the face stimulus, while 

the no-think condition was indicated by two red bars. On the second day the whole procedure 

was performed for the remaining two valence conditions. The second day differed only in the 

number of face-picture pairs (i.e. 36 in total, thus 18 pairs per missing valence condition) and 

the cancellation of the practice trials. Order of valence was randomized between the 

participants. 

 

 

Figure 8: Depiction of the TNT paradigm used in the three subsequent studies 

  



Materials and Methods                                                                                                              47 

 
 

FNIRS was measured using a rapid event-related design following guidelines by 

Wager and Nichols (2003) for fMRI design optimization. Faces were presented randomly for 

4 seconds, separated by a variable interstimulus interval of 4 to 4.6 seconds, and randomly 

interleaved with a fixation cross presented for 4 seconds serving as a null event (33% of total 

trial number). Each face was presented 12 times, resulting in a total of 72 think and 72 no-

think trials per valence condition. 

 Finally, subjects were given a list with all face cues and were asked to give a short 

description of the associated picture cue. Figure 8 gives an outline of the TNT procedure. 

2.3.3. FNIRS 

 For a description of the fNIRS system used in this study, as well as probeset 

positioning see paragraph 2.2.3. and Figure 7. 

2.3.4. Data Analysis and Statistics 

2.3.4.1. Behavioral Data 

 To control for significant differences in the valence ratings between the neutral, 

positive and negative IAPS pictures, as well as non-significant differences in arousal between 

the positive and negative pictures, two univariate ANOVAs with the factors valence and 

arousal were calculated respectively using the rating material provided by Lang, Bradley and 

Cuthbert (2005). 

 Suppression performance was investigated by means of a repeated-measures ANOVA 

with the factors condition (i.e. think, baseline, and no-think) and valence (i.e. neutral, positive, 

and negative). 

The BSI was calculated as described earlier (see paragraph 2.2.4.1.). 

 

2.3.4.2. FNIRS Data 

 Preprocessing of the data was performed in accordance with the procedures described 

in 2.2.4.2. Since an event-related design was used in this study, the HRF, however, was 

convolved with a stick function. 

 Additionally to analysis of the whole time series, the experiment was divided in halves 

and the time series of each half was analysed separately. The rationale behind this was the 

observation of previous studies that a solid suppression effect (i.e. below-baseline recall of 

no-think items) occurred only after several suppression attempts (e.g. Anderson & Green 
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2001; Depue et al 2006). Furthermore, Depue et al. (2007) reported increased prefrontal 

activation in the first half and a significant drop in percentage signal change in the second half 

of the experimental time series. So the question of interest was whether we could replicate the 

finding of differential activation in the dlPFC with regard to the amount of attempts to control 

unwanted thoughts. 

Regarding the whole time series, the ROIs were entered in a 3 x 2 x 2 ANOVA with 

the factors valence, condition and side.  

Comparing performance throughout the time series of the experiment, a 2 x 3 x 2 x 2 

repeated-measures ANOVA with the factors condition, valence, half and side was calculated. 

Factors showing a significant interaction were entered in follow-up repeated measures 

ANOVAs, with the factors condition, valence and side as well as valence, condition and half. 

Lastly, directed/one-sided correlation analyses were performed for activation-

differences between no-think and think trials with the BSI summed over the three valences 

separately for the first and second half of the experimental time series.  

All analyses were performed for using the same ROIs defined in 2.2.4.2 separately for 

O2Hb and HHb. 
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2.4. FMRI Study 

2.4.1. Sample 

66 healthy individuals (age: 25.26 ± 5.19; 27 men) were recruited via advertisement 

in the local press.  

2.4.2. The TNT 

 The procedure was the same as described in 2.3.2., except for using only neutral and 

negative IAPS pictures (Lang et al 2005; see Table A - 2), in order to limit scanning time to a 

reasonable duration. Additionally, the measurement was completed within one session per 

subject. Subjects learned the association between 44 face-picture pairs (i.e. faces serving as 

cues and pictures serving as target in the later TNT phase), including 8 filler pairs used for 

practice of the TNT instruction, to a criterion of 90%. 

 Event-related settings were chosen according to those already described in 2.3.2. 

2.4.3. FMRI 

 Imaging was performed using a 1.5 T Siemens Magnetom Avanto TIM-system MRI 

scanner (Siemens, Erlangen, Germany) equipped with a standard 12 channel head coil. In a 

single session, 24 4-mm-thick, interleaved axial slices (in-plane resolution: 3.28 x 3.28 mm) 

oriented at the AC-PC transverse plane were acquired with 1 mm interslice gap, using a T2*-

sensitive single-shot echo planar imaging (EPI) sequence with following parameters: 

repetition time (TR; 2000 ms), echo time (TE; 40 ms), flip angle (90°), matrix (64 x 64), and 

field of view (FOV; 210 x 210 mm2). The first 6 volumes were discarded to account for 

magnetization saturation effects. 

2.4.4. Data Analysis and Statistics 

2.4.4.1. Behavioral Data 

 Differences in the recall of the three conditions (i.e. think, baseline, and no-think) and 

the potential modulation by valence (i.e. neutral, negative) were investigated in a 3 x 2 

ANOVA. 

 The BSI was calculated as described earlier (see paragraph 2.2.4.1.). 

2.4.4.2. FMRI Data 

 Data preprocessing was performed using statistical parametric mapping software 

(SPM8, Wellcome Department of Cognitive Neurology, UK), implemented in Matlab 7.6 
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(The MathWorks Inc., Natick, MA). Slice-time correction was applied and images were 

realigned. The computed mean image of the scans was used as the source image for spatial 

normalization of the data. In the next step, data were spatially smoothed, using a 10-mm 

FWHM Gaussian isotropic kernel. Each voxels’ time series was filtered with a high-pass filter 

to 1/128 Hz in order to remove low-frequency noise. Finally, an autoregressive model with a 

lag of 1 was applied to correct for temporal autocorrelation. 

 Due to problems with data acquisition (e.g. inclomplete acquisition due to technical 

problems) and data quality (movement artefacts,) only 46 subjects were included in the 

statistical analyses. 

 ROIs were chosen based on previous findings by (Anderson et al 2004; Depue et al 

2007) and defined using the WFU PickAtlas Tool (Maldjian, Laurienti & Burdette 2004; 

Maldjian, Laurienti, Kraft & Burdette 2003). ROIs encompassed bilateral hippocampus, 

amygdala and dlPFC (BA9/46). Correction for multiple comparisons within these regions was 

realized by utilizing a Monte Carlo simulation approach running in AlphaSim (Ward 2000; 

provided with the AFNI software) with a single voxel p-value of 0.05. The spatial 

intercorrelations between the voxels, as modeled by the FWHM of a Gaussian kernel, were 

obtained from SPM8. With this procedure ROI specific cluster-sizes corresponding to a 

corrected threshold of p < .05 or p < .1 were determined respectively (see Table 2). These 

cluster-sizes were applied in all further image-analyses ensuring a corrected α-level of 5% 

(respective F- or T-statistics of the peak voxel are given in parentheses). 

 A 2 x 2 ANOVA with the factors condition (think, no-think) and valence (neutral, 

negative) was calculated separately for each ROI. To further investigate signal change during 

the two experimental conditions relative to baseline (i.e activation during presentation of the 

fixation cross) paired-samples t-tests were performed. 

 For further statistical analyses data of each ROI was extracted using REX 

(http://www.nitrc.org/projects/rex/), a standalone MATLAB-based tool. 

Table 2: Region-specific cluster sizes ensuring a corrected α-level of p < .05 or p < .1 

Region of Interest Cluster Size 

 p < .05 p < .1 

Right dlPFC 565 422 
Left dlPFC 553 431 
Right Hippocampus 181 123 
Left Hippocampus 159 110 
Right Amygdala 75 37 
Left Amygdala 61 40 
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 To investigate effective control over memory, think and no-think trials were divided 

into successfully inhibited, thus forgotten, no-think (NTf), remembered no-think (NTr), 

successfully remembered think (Tr) and forgotten think trials (Tf). A 2 x 2 x 2 ANOVA with 

the factors condition, success and valence was calculated for bilateral amygdala and 

hippocampus. For signal changes in the dlPFC, a linear trend analysis was performed 

investigating a linear increase from Tf < NTr < Tr < NTf. 

 To investigate the development of signal change in the separate ROIs throughout the 

experiment, the time series was divided into quartiles (i.e. 3 trials per condition and item). 

Paired samples t –tests were performed investigating activation changes during no-think trials 

relative to baseline (i.e. activation during presentation of the fixation cross) within each 

quartile separately for the ROIs. 

  Finally, correlation analyses were performed investigating correlations in signal 

change between the three ROIs and correlations between the difference during no-think and 

think trials with the BSI. 
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2.5. TBS Study 

2.5.1. Sample 

 35 healthy subjects were tested for this study. Two subjects only completed the 

baseline measurement. The remaining 33 were randomly assigned to either the verum iTBS 

(N = 17; age = 24.06 ± 2.70; 5 men) or sham iTBS group (N = 16; age = 24.69 ± 3.59; 8 

men). 

 Differences between the two groups (i.e. verum and sham) in gender, handedness, 

smoking status and graduation were compared by means of chi-square tests. Differences 

between the groups in age, motor threshold, stimulation status and the psychometric 

evaluations were investigated by means of independent samples t-tests. 

In a brief telephone interview participants were screened for a previous treatment with 

TMS, and exclusion criteria for a treatment with TMS following the Wassermann protocol 

(1998).  

The baseline and post-iTBS measurement took place on two separated days (mean 

distance: 1.36 ± 3.24 days). 

2.5.2. The TNT 

 In this study only negative IAPS pictures (Lang et al 2005: for IAPS codes see Table 

A - 2) were paired with neutral faces from the database used by Depue et al. (2007). 

 For the baseline measurement, subjects were trained on 26 face-picture pairs, 

including 8 practice pairs. Following training, the TNT procedure was performed as described 

earlier (see paragraph 2.3.2.).  

For the post iTBS measurement, subjects were trained on 18 face-picture pairs. 

Following training and fixation of the fNIRS optodes and ERP electrodes, the individual 

resting motor threshold (RMT) was determined over the right primary motor cortex, followed 

by the iTBS stimulation (i.e. verum or sham) over the right dlPFC (for a more thorough 

description of the TMS and iTBS protocols see below). The measurement was started right 

after iTBS (mean onset delay in seconds: 2.39 ± 0.83). 

Data was acquired according to the parameters described previously (see paragraph 

2.3.2.) and following guidelines by Wager and Nichols (2003). 
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Figure 9: Schematic display of 

electrode and fNIRS probeset position. 

Open circles = electrode positions, red 

circles = light emitters, blue circles = 

light detectors 

 
 

2.5.3. FNIRS 

The system used in this study was the same continuous wave system (ETG-4000 

Optical Topography System; Hitachi Medical Co., Japan) described in paragraph 2.2.3. 

However, two 3-by-3 probe sets were integrated in a Neuroscan EasyCap (EasyCap GmbH, 

Inning am Ammersee, Germany) covering the right and left prefrontal cortex with 24 

measurement channels (see Figure 9 and 10). 

 

 
Figure 10: Outline of the fNIRS probeset and the ROIs (shaded area) used for the subsequent 

statistical analyses plotted on the MR scan of a single subject. (A) right hemisphere, (B) left 

hemisphere  
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2.5.4. ERPs 

ERPs were recorded from 22 Ag/AgCl scalp electrodes embedded in a Neuroscan 

Easycap (see Figure 9) with three additional linked electrodes measuring the electro-

oculogram (EOG) with a 64-channel QuickAmp amplifier (Brain Products, Munich, 

Germany) and the Vision Recorder data acquisition software (version 2.0, Brain Products, 

Munich, Germany). Data were referenced online to an avergage reference. The vertical EOG 

was measured from an electrode placed below the right eye referenced to Fp2, and the 

horizontal EOG was recorded from an electrode placed right to the right eye (referenced to an 

electrode left to the left eye). Midline electrodes were Fz, FCz, Cz, Cpz, Pz, and Oz. Left and 

right hemisphere sites were Fp1/2, F3/4, F7/8, C3/4, T3/4, T5/6, P3/4, and the mastoids. 

Sampling rate was set to 1000Hz with a sampling interval of 1000µs. All channels 

were amplified with a band-pass from DC to 200Hz. The inter-electrode impedances were 

kept below 5kΩ. 

Data was filtered online with a low-cutoff filter of 1.59 seconds and a high-pass filter 

of 100Hz. Additionally, a 50Hz notch filter was applied. 

2.5.5. TBS 

The iTBS was administered according to the stimulation protocols described by Huang 

and colleagues (2005; see Figure 5 paragraph 1.4.4.2.). Prior to stimulation of the right dlPFC, 

the individual RMT was determined over the right primary motor cortex. RMT is defined as 

the stimulation intensity required to produce a motor response by applying a single TMS 

pulse to primary motor cortex that can be observed visually in 80% of the trials (Fitzgerald et 

al 2002). The verum group was stimulated with a figure-of-eight coil (MC-B70, 80 mm 

diameter, Medtronic MagPro, Duesseldorf, Germany) and the sham group was stimulated 

with a shielded figure-of-eight coil (MC-P70, 80 mm diameter, Medtronic MagPro, 

Duesseldorf, Germany) at 80% of the individual RMT. Stimulation was performed over 

electrode position F4, which, according to the international 10/20 system for electrode 

adjustment (Jasper 1958), is located over the right dlPFC (Herwig, Satrapi & Schonfeldt-

Lecuona 2003). 

Mean RMT and stimulation strength for the verum group were 46.82 ± 6.34 and 37.47 

± 5.05 and 46.63 ± 7.53 and 37.00 ± 6.06 for the sham group. 
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2.5.6. Data Analysis and Statistics  

2.5.6.1. Behavioral Data 

 Percentages of recalled pictures were calculated for no-think, think and baseline trials 

for the two measurements. These percentages were entered into a 3 x 2 x 2 ANOVA with the 

within-subject factors condition (i.e. baseline, think, no-think) and time (i.e. pre and post 

iTBS) and the between-subject factor group (i.e. verum and sham). 

 An additional 3 x 2 x 2 ANOVA with the same factors, however, including only 

successfully learned face-picture pairs was calculated. 

 The BSI was calculated as mentioned above and by means of a median-split the 

sample was divided in a group of good suppressors (> median) and bad suppressors (< 

median) separately per measurement day. Chi-square tests were calculated additionally, 

comparing suppressor type on day 1 and day 2 between the groups. 

 Paired samples t-tests were performed comparing the valence and arousal ratings 

between the two picture sets selected for the two measurements (i.e. baseline and post iTBS) 

to assure non-significant differences between the two sets. 

2.5.6.2. FNIRS Data 

 Preprocessing of the data was performed in accordance with the procedures described 

in 2.2.4.2. The HRF, however, was convolved with a stick function to model the single 

events. 

 ROIs were formed a priori encompassing channel #5 and #10 for the right dlPFC and 

#15 and #20 for the left dlPFC (Figure 10). 

 A repeated-measures ANOVA with the factors condition (i.e. fixation, think, no-

think), time (i.e. baseline, post iTBS measurement), group (i.e. verum, sham), and side (i.e. 

right, left dlPFC) was performed. Again, signal change relative to baseline (i.e. activation 

during presentation of the fixation cross) was investigated by means of paired samples t-tests. 

 Correlation analyses were performed for the difference between think and no-think 

trials and the BSI for the baseline measurement. 

To test the hypothesis of a linear increase in O2Hb (no-think forgotten > think 

remembered > no-think remembered/think forgotten > baseline) and linear decrease in HHb 

(no-think forgotten < think remembered < no-think remembered/think forgotten < baseline), 

depending on condition and success in the right dlPFC linear trend tests were calculated. 

Analyses are performed for O2Hb and HHb.  



Materials and Methods                                                                                                              56 

 
 
2.5.6.3. ERP Data 

 Analyses were performed using the Vision Analyzer software (version 2.0, Brain 

Products, Munich, Germany). Epoch duration for analyses was 2000 ms, plus a 200 ms pre-

stimulus period used for baseline correction. Eye blinks were filtered out prior to averaging by 

means of the implemented ocular correction algorithm by Gratton and Coles (1989).  

Grand average ERPs were formed for the two conditions (think and no-think) in the 

first step of the analysis. For the second step of the analysis average ERPs were calculated for 

successful and unsuccessful recall or suppression (as investigated through the final recall test) 

for the two conditions separately, resulting in four average curves (i.e. recalled think, 

forgotten think, recalled no-think, and forgotten no-think) after controlling for initial learning 

status of the face-picture association. Mean number of remaining trials were: 45.45 ± 11.88 

(recalled think), 11.16 ± 13.09 (forgotten think), 46.42 ± 19.37 (recalled no-think), and 4.32 ± 

18.56 (forgotten no-think). Automatic peak detection was performed for five components 

elicited by think and no-think trials after visual inspection of the grand average ERPs. 

Statistical analyses were based on the following scalp electrodes: frontal (F3/4 and Fz), 

central (C3/4 and Cz) and parietal (P3/4 and Pz). For topographical analyses data (mean 

activation derived from the baseline and post iTBS measurement) from 14 electrodes was 

pooled according to 7 regions (frontopolar: Fp1/2; frontal: Fz, F3/4; frontocentral: FCz; 

central: Cz, C3/4; parietocentral: Cpz; parietal: Pz, P3/4; occipital: Oz), and normalized 

according to the vector scaling method described by McCarthy and Wood (1985) in order to 

eliminate confounding effects of amplitude differences. 

Repeated-measures ANOVAs, with the within-subject factors condition (i.e. think and 

no-think), time (baseline and post iTBS), laterality (i.e. left, central, and right) and the 

between-subject factor group (i.e. verum and sham) were calculated per region and ERP 

component.  

Separate analysis of successful think and no-think trials as measured by suppression 

and retrieval success in the recall test was not performed due to the small number of trials left 

in each condition after artefact correction. 

 Topographical analysis was performed for two components showing enhanced 

amplitudes for think trials with the same central distribution. The vector-scaled difference 

values between the two conditions were entered in a time window-by-region ANOVA 

separately for the two components showing enhanced amplitudes for think trials. 
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Scalp potential maps were generated using the build-in two-dimensional spherical 

spline interpolation and a radial projection from Cz, which respects the length of the median 

arcs. 

For the regression analyses the difference wave between the conditions was calculated 

and analyses were performed for each component and region separately. Afterwards, a 

regression analysis with the BSI as dependent variable was performed separately for each 

component. 

Finally, one-sided correlations between activation during no-think trials in the right 

and left dlPFC in the fNIRS measurement and the difference value of ERP components 

reflecting the no-think < think contrast (i.e. N2, N4, and late negativity) were calculated. 
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2.6. Correlations Between and Interaction of BSI, Psychometric 

Evaluations and Functional Imaging Data 

2.6.1. Sample 

 Behavioral data from the emotion study, the fMRI study and the modulation study 

were merged, resulting in a total sample size of 145. Concerning the different valences, 108 

cases were obtained for neutral pictures, 32 cases existed for positive pictures and 143 for 

negative picture. 

2.6.2. Psychometric Evaluations 

 Questionnaires were filled out in their German version by subjects participating in the 

emotion study (2.3.), the fMRI study (2.4.) and the modulation study (2.5.).  

Multiple Choice Vocabulary Test (Mehrfachwahl-Wortschatz-Test, MWT-B)  

 The MWT-B (Lehrl 2005) measures general intelligence and has been shown to 

correlate well (i.e. r > .72) with other intelligence tests measuring global IQ, such as the 

Hamburg Wechsler Intelligence Scale for  adults (HAWIE, Wechsler 1956), the 

Leistungsprüfsystem (LPS, Horn 1961), or the Analytical Intelligence Test (AIT, Meili 1971). 

Subjects have to mark in row of five strings the one actually existing word. 

Beck Depression Inventory – Revision (BDI-II) 

 The BDI-II (Hautzinger, Keller & Kühner 2006) is an instrument validating the 

severity of depression in adults, and has been developed in accordance with the DSM-IV 

(American Psychiatric Association 1994). It encompasses not only cognitive and affective, 

but also somatic and vegetative symptoms. 21 items are answered item-specific on 4 levels (0 

- 3). 

 Various publications have proven its reliability and validity in patients and healthy 

subjects and are listed in the manual (Hautzinger et al 2006). Cutoff-values are given in the 

manual as follows: 0-8 no depression, 9-13 light depression, 14-19 mild depression, 20-28 

medium depression, 29-63 severe depression. Hautzinger et al. (2006) emphasize, however, 

that it is important to investigate the specific items regarding their content, since the BDI only 

gives a global indication of depressive symptomatology (e.g. special attention is to be given to 

item 9, asking for suicidal ideation). 
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Hospital Anxiety and Depression Scale (HADS) 

 The HADS (Herrmann, Buss & Snaith 1995) is a questionnaire used to screen for 

anxious and depressive symptoms, present in the past week, on two subscales. It is comprised 

of 14 items (i.e. 7 for each subscale, with item-specific response possibilities on 4 levels (0–

3)), adding up to 0-21 points on each subscale. Symptoms screened for in the anxiety subscale 

follow the guidelines of the DSM-III-R (American Psychiatric Association 1987) and ICD-10 

(World Health Organization 2007), regarding generalized anxiety disorder. Items on the 

depression subscale include questions focussing on anhedonic symptoms of depression, 

encompassing the most crucial aspects of the disorder according to the DSM-III-R (American 

Psychiatric Association 1987) and ICD-10 (World Health Organization 2007). Scores below 7 

are interpreted as unobtrusive, values between 7 and 10 reflect the presence of some 

pathology, and scores above 11 are regarded as noticeably pathological. The manual of the 

HADS provides detailed information on the interpretation of these cutoff-scores, ensuring 

high interrater and test-retest reliability (Herrmann et al 1995). The fast application of the 

HADS makes it easily combinable with other screening tools. 

Generalized Depression Scale (Allgemeine Depressions Skala; ADS) 

 The ADS (Hautzinger & Bailer 1993) is a 20-item screening tool focussing on 

emotional, motivational, cognitive, somatic, and motor symptoms observed in depression. The 

relevant time range encompasses the last 7 days including the day of administration. Answers 

are given on 4 levels rated from 0 – 3 (0 = rarely/less than 1 day, 1 = sometimes/1 to 2 days, 2 

= frequently/3 to 4 days, 3 = mostly/5 to 7 days). Before addition of the item scores, four 

items have to be reversed (i.e. item 4, 8, 12, and 16), resulting in a maximum score of 60 with 

a critical score of > 23 found in 94% of acutely depressed patients as diagnosed by the DSM-

III-R (American Psychiatric Association 1987). The ADS has been shown to highly correlate 

with other depression questionnaires such as the BDI (Hautzinger et al 2006) or the 

‘Befindlichkeits-Skala’ (Bf-S: Zerssen 1986).  

Interpretation of the ADS scores is provided threefold: (1) as a screening tool in the 

general population, higher ADS scores indicating an increased possibility to identify subjects 

fulfilling the diagnostic criteria of depression according to the DSM-III-R (American 

Psychiatric Association 1987) or ICD-10 (World Health Organization 2007). (2) Indicating 

the severity of depressive symptoms and their changes over the course of the treatment in 

clinically diagnosed subjects. And (3) screening for depressive symptoms accompanying 

other disorders or diseases and predicting treatment response and coping. This profound 
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description of the interpretation in the manual (Hautzinger & Bailer 1993) provides good 

interrater and test-retest reliability. 

Ruminative Response Scale of the Response Style Questionnaire (RSS)  

 The RSS of the Response Style Questionnaire (Kühner et al 2007) measures coping 

with depressive moods through 21 items, describing specific reactions (e.g. “If I feel sad or 

depressed, I think about how lonely I feel”, “..., I think how weak I am and that I cannot 

motivate myself to do anything”) on a 4-point Likert-scale (1 = almost never, 2 = sometimes, 

3 = frequently, 4 = almost always). 

 Test-retest reliability is reported around rtt = .60 in healthy control subjects (Bürger & 

Kühner 2007) and patients with Major Depressive Disorder (MDD; Bagby, Rector, 

Bacchiochi & McBride 2004). 

State-Trait Anxiety Inventory (STAI) 

 The STAI (Laux, Glanzmann, Schaffner & Spielberger 1981) has been developed on 

the grounds of Spielberger’s Trait-State Anxiety Model (Spielberger 1997). Two concepts are 

measured by the STAI: (1) State anxiety, which is defined as “an emotional state, defined by 

tension, solicitude, nervousness, agitation, fear of future events, as well as increased 

autonomic nervous system activity” (p. 7: Laux et al 1981). And (2) trait anxiety, which is 

defined as “relative stable inter-individual differences in viewing situations as dangerous, 

followed by an increase in state anxiety” (p. 7: Laux et al 1981). Two subscales have been 

developed to measure the two concepts. The State scale encompasses 20 items measuring the 

current status concerning anxiety (e.g. “I am tense”, “I am worried”) and stability (e.g. “I feel 

calm”, “I feel content”). Answers indicate how well the statement applies on 4 levels (i.e. 1 = 

not at all, 2 = somewhat, 3 = moderately, 4 = very much). The Trait scale tests general 

proneness to anxiety (e.g. “I lack self-esteem”) or stability (e.g. “I am happy”). Answers, 

again, indicate on what level the statement applies (i.e. 1: almost never, 2: sometimes, 3: 

often, 4: almost always). 

 Interpreted are the sum scores (after reversal of scores on item 1, 2, 5, 8, 10, 11, 15, 

16, 19, and 20 on the State scale and item 21, 26, 27, 30, 33, 36, and 39 on the Trait scale). 

The minimum of 20 points reflects the absence of any current (i.e. state) or general (i.e. trait), 

while 80 reflects the maximal intensity of current or general anxiety. Test-retest reliability for 

the Trait scale was found satisfactory at about rtt = .80. Low test-retest reliability inherent to 

the State scale (around rtt = .30) is compensated for by satisfactory internal consistency of rc = 
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.90. A more detailed description of reliability issues can be found in the manual (Laux et al 

1981). 

Positive and Negative Affect Schedule (PANAS) 

 The PANAS (Krohne, Egloff, Kohlmann & Tausch 1996) comprises 20 items 

measuring current positive (PA) and negative affect (NA) on two subscales. Each item is rated 

on a 5-point Likert scale, ranging from 1 = very slightly or not at all to 5 = extremely. 

 PA has been defined as the extent to which a person feels enthusiastic, active and alert. 

In other words high scores on the PA subscale characterize a state of concentration, energy 

and interest, while low PA reflects sadness and lethargy (Watson, Clark & Tellegen 1988). 

NA, on the other hand is described as encompassing a state of distress and disengagement. 

High NA is manifesting itself in aversive mood states, such as anger, fear or guilt. Low NA is 

describing a state of calmness and serenity (Watson et al 1988). 

 The two subscales of the English version of the PANAS (Watson et al 1988) have 

been shown to correlate to a certain extent with the BDI (Beck, Ward, Mendelson, Mock & 

Erbaugh 1961) and the STAI State Scale (Spielberger et al 1970). 

 For a description of the validation of the German version, the reader is referred to 

(Krohne et al 1996) 

2.6.3. Data Analysis and Statistics 

2.6.3.1. BSI and Psychometric Data 

 Means were calculated for the PANAS and STAI-State scores when two scores (due to 

two measurement days) existed after controlling for non-significant differences between the 

two measurements (p > .2). Furthermore, the two values from the think, baseline and no-think 

condition derived from the baseline and post-measurement in the TBS study were merged, 

resulting in one score by calculating the mean. Calculations were performed with the BSI for 

negative pictures due to the larges sample size in this valence condition.  

 To test for the facilitating effects of depressive and anxious symptoms, and 

intelligence on thought suppression two different analyses were performed. First, 

directed/one-sided bivariate correlations were calculated between the BSI and the continuous 

scores obtained from administering the MWT-B. Second, psychometric measures were 

clustered according to their objective sensitivity to depression (i.e. rumination, BDI, HADS-

Depression and ADS) or anxiety (i.e. HADS-Anxiety, PANAS and STAI-Trait) and entered 

into separate multiple regressions with the BSI. 
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 Exploratively, univariate ANOVAs were applied to compare differences in the BSI 

due to gender and education. 

2.6.3.2. Correlations with Functional Imaging Data  

 Concerning fNIRS data, as for the correlations and regression analyses, analyses are 

performed only on the imaging data derived from processing of the negative no-think items 

(i.e. no-think > fixation) in the right and left dlPFC.  

One-sided bivariate correlations were calculated between activation levels during 

negative no-think trials in the right and left dlPFC and the above described psychometric 

evaluations. Furthermore, bivariate correlations between the BSI and activation in the right 

and left dlPFC during no-think trials were calculated for the fNIRS data. Analyses are 

performed for O2Hb and HHb.  

Additionally correlations with the psychometric evaluations were calculated for fMRI 

data considering the neutral1 no-think > fixation contrast in the right dlPFC and the neutral 

no-think < fixation contrast in the amygdala and hippocampus. 

2.6.3.3. Interaction of BSI and fNIRS data with Psychometric Data 

 To investigate the interplay between the BSI and activation in the dlPFC during no-

think trials a z-transformed interaction term was calculated for the two variables and 

correlated with the z-transformed scores of the single questionnaires. This interaction term is 

thought to reflect only that amount of dlPFC activation explained by actual inhibitory 

processes; in other words, the higher the interaction between the two factors, the more the 

observed dlPFC activation contributes to the end results of lower recall of no-think items. 

                                                 
1 Only neutral trials were taken into account, since it was shown that suppression of negative pictures was 
unsuccessful in the fMRI study (see paragraph 3.31.) 
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2.7. Genetical Analyses 

 DNA was extracted from EDTA blood using a desalting method. 

 For statistical analyses regarding effects of the two genotypes of interest (i.e. KCNJ6 

and CREB1), data from negative trials (largest sample) was investigated in case of the 

behavioral data and fNIRS data. Both SNPs were in Hardy-Weinberg Equilibrium (p > .1). 

2.7.1. Behavioral Data 

 Separate condition-by-genotype ANOVAs were calculated for KCNJ6 and CREB1, 

using data from the behavioral recall test for negative pictures from the emotion, the fMRI 

and the TBS study (KCNJ6: N = 114, CREB1: N = 113). 

2.7.2. FNIRS Data 

 Based on the interaction yielded in the 3 x 2 ANOVA for KCNJ6 on the behavioral 

level, a 2 x 2 ANOVA, with the factors condition and genotype was calculated for the right 

and left dlPFC separately. 

2.7.3. FMRI Data 

 A 2 x ANOVA, with the factors condition (i.e. think and no-think) and genotype (i.e. 

KCNJ6) was calculated for the right dlPFC, bilateral amygdala, and bilateral hippocampus. 
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3. Results 

3.1. Pilot Study 

3.1.1. Behavioral Data 

 Table 3 contains information on the sample. 
 

Table 3: Sample characteristics pilot study 

 
Total Sample Size 15 
Age 28.20 ± 6.28 
Gender: men 4 
Handedness (right) 15 
Smoking status (yes) 0 
Graduation 

Abitur 
 
15 

Training Cycles 2.00 ± 0.00 
 
 

The ANOVA showed only a trend towards a significant main effect of condition 

(F(2,24) = 2.62; p < .1). Directed/one-sided post-hoc Bonferroni corrected t-tests showed this 

effect as resulting from significantly higher recall of think than no-think (p < .05) and 

marginally significant higher recall of think than baseline-words (p < .1). There was no main 

effect for valence (F(2,24) = 2.05, p > .1) or an interaction between the two factors (F(4,48) = 

1.09, p > .1). Figure 11 is displaying the mean percentages of recalled think, baseline and no-

think words. 

The one-factorial ANOVA considering psycholinguistic aspects of the selected words 

resulted in a significant effect for emotional mean (F(2,42) = 3818.25; p < .001) and arousal 

(F(2,42) = 71.99; p < .001), as well as imageability (F(2,42) = 4.28; p < .05). Bonferroni corrected 

post-hoc t-tests revealed a significant difference between the emotional means between all 

three valence conditions (p < .001) and significant differences in the arousal ratings between 

neutral and negative words and positive and negative words (p < .001), negative words having 

the highest arousal ratings. Imageability ratings differed significantly between neutral and 

negative words (p < .05), negative words showing higher imageability ratings. Concerning 

letter count, phonemes, syllables and word frequency no differences between the three 

valence conditions were found. See Table A -1 for the stimulus material and its characteristics 
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Figure 11: Effect of condition in 

the behavioral recall test. # p < 

.1, * p < .05 (one-sided) 

 

3.1.2. FNIRS Data 

3.1.2.1. Oxygenated Hemoglobin 

 The 2 x 3 x 2 (condition-by-valence-by-side) ANOVA revealed a trend towards a 

significant main effect of condition (F(1,14) = 2.99, p = .1), reflecting higher activation during 

no-think than during think trials. Post hoc paired t-tests showed the condition effect as 

reflecting increased activation during no-think trials as compared to baseline (T(14) = 2.17, p < 

.05), rather than reduced activation of think trials relative to baseline (see Figure 12A). 

 

 

Figure 12: Signal change of (A) O2Hb in bilateral dlPFC and (B) HHb in right dlPFC during 

think and no-think trials relative to baseline. # p =.1, * p < .05, *** p < .001 
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Directed/one-sided correlation analyses showed a marginally significant correlation 

between the BSI and dlPFC activation during no-think trials (r = .43, p < .1; see Figure 13). 

 

 

Right dlPFC 

No effects were found in the ANOVA just considering the right hemisphere. 

Left dlPFC 

No effects were found in the ANOVA just considering the left hemisphere. 

3.1.2.2. Deoxygenated Hemoglobin 

 No significant effects were found in the 3 x 2 x 2 ANOVA. 

Right dlPFC 

The 3 x 2 ANOVA for the right dlPFC showed a significant main effect of condition 

(F(1,14) = 4.95, p < .05), which was caused by the expected higher decreases in HHb during no-

think trials. Post-hoc paired t-tests showed significantly decreased HHb during think than 

during baseline (T(14) = -2.81, p < .05), but even more decreased HHb during no-think than 

during baseline (T(14) = 4.001, p < .001). See Figure 12B. 

No significant correlation between activation in the right dlPFC during no-think trials 

and the BSI was found. 

Left dlPFC 

No effects were found in the left dlPFC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13: Correlation between 

activation in the dlPFC during no-think 

trials and the BSI found in O2Hb 
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3.2. Emotion Study 

3.2.1. Behavioral Data 

A description of the sample characteristics can be found in Table 4. 

 The GLM calculated for the valence ratings of the selected IAPS pictures revealed a 

significant main effect of valence (F(2,34) = 740.13, p < .001), reflecting significant differences 

between all three valences (all p < .001). The GLM calculated for the arousal ratings revealed 

a significant main effect of arousal (F(2,34) = 14.61, p < .001), reflecting a significant 

difference in arousal ratings between the neutral and positive (p < .01) and the neutral and 

negative pictures (p < .001). 

 

Table 4: Sample description Emotion Study 

 
Total Sample Size 20 
Age 29.50 ± 10.68 
Gender: men 7 
Handedness (right) 20 
Smoking status (yes) 5 
Graduation 

Abitur 
Mittlere Reife 

 
16 
4 

MWT (raw score) 30.70 ± 3.84 
Training Cycles 1.45 ± 0.58 

 

 

 The 3 x 3 (condition-by-valence) ANOVA showed a significant main effect of 

condition (F(2,38) = 16.46, p < .001), owing to significantly higher recall of think- than no-

think pictures (p < .01) and baseline picture (p < .001). See Figure 14 (left). No significant 

difference between baseline and no-think pictures was found (p > .1). 

 Considering only the previously learned pictures, the 3 x 2 ANOVA did not yield any 

different results. A main effect of condition was observed (F(2,38) = 16.97, p < .05), owing to 

significantly higher recall of think than baseline (p < .001) or no-think pictures (p < .01). 

Again, no significant difference was found between the recall of no-think and baseline 

pictures (Figure 14 (right)). 
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Figure 14: (A) Main effect of condition for all pictures, irrespective of initial learning status 

(left) and only for the learned pictures (right); * p < .05, ** p < .01, ** p < .001 

 

3.2.2. FNIRS Data 

Oxygenated Hemoglobin 

Whole Time Series 

 The 2 x 3 x 2 (condition by valence by side) ANOVA yielded a significant main effect 

of condition (F(1,19) = 16.00, p < .01), no-think trials activating the dlPFC more than think-

trials, as well as a trend towards a condition-by-side interaction (F(1,19) =  3.86, p < .1). Figure 

15 shows the interaction, which results from a stronger condition effect in the right (p < .001) 

than in the left hemisphere (p < .01). 

 Post-hoc paired t-tests were performed to investigate signal changes during no-think 

and think trials relative to baseline. A significant increase in O2Hb during no-think but not 

think trials relative to baseline was shown in the right (T(19) = -2.49, p < .05) and left dlPFC 

(T(19) = -2.18, p < .05). See Figure 15. 

 No significant correlation between signal changes in right or left dlPFC with the BSI 

was found. 
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Figure 15: Condition-by-side interaction throughout the whole time series resulting from a 

stronger condition effect in the right dlPFC. Furthermore, it is shown that the condition effect 

most likely results from an increase in activation during no-think trials relative to baseline. * 

p < .05, ** p < .01, *** p < .001 

Split in Halves 

 The 2 x 3 x 2 x 2 (condition x valence x side x half) ANOVA yielded a significant 

main effect of condition (F(1,19) = 13.70, p < .01), reflecting higher activation during no-think 

than during think trials. Furthermore, a marginally significant interaction between condition 

and side (F(1,l9) = 3.38, p < .1) was found, resulting from  a stronger NT > T effect in the right  

than in the left dlPFC, as described above. Finally, a significant three-way interaction between 

condition, side, and half (F(1,19) = 6.24, p < .05) was observed.  

The follow-up 2 x 2 ANOVA with the factors condition and side calculated per half, 

resulted in a significant main effect of condition (F(1,19) =21.88, p < .001) and a significant 

interaction between condition and side (F(1,19) = 6.16, p < .05) in the first half and a trend 

towards a condition-effect (F(1,19) = 3.81, p < .1) in the second half. To further investigate the 

origin of the decreased condition effect, post-hoc paired t-tests comparing signal change 

between the first and the second half were calculated separately for the right and left dlPFC. 

As depicted in Figure 16, a significant drop in signal change was observed in the second half 

for the no-think trials, right (T(19) = 3.29, p < .01) stronger than left (T(19) = 2.77, p < .05). No 

difference in activation during think trials over the time series of the experiment was found. 



Results                                                                                                                                       70 

 
 

 

Figure 16: Signal change for think and no-think trials in the first and second half of the time 

series in O2Hb in the right and left dlPFC. * p < .05, ** p < .01 

  

Significant positive correlations were found between the signal changes in the first 

half of the experiment in the right (r = .41, p < .05; Figure 17A) and the left dlPFC (r = .39, p 

< .05; Figure 17B) and the BSI were found.  

 
 

Figure 17: Correlation between signal changes and the BSI in the first half during 

suppression trials in the right (A) and left dlPFC (B) 
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Deoxygenated Hemoglobin 

Whole Time Series 

 No significant results were found in the 3 x 2 x 2 ANOVA. 

Split in Halves 

The 2 x 3 x 2 x 2 (condition x valence x side x half) ANOVA showed no significant 

results. 
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3.3. FMRI Study 

3.3.1. Behavioral Data 

See Table 5 for the sample characteristics.  

 
Table 5: Sample description of fMRI study 

 
Total Sample Size 65 
Age 25.28 ± 5.23 
Gender: men 27 
Handedness (right) 59 
Smoking status (yes) 18 
Graduation 

Abitur 
Mittlere Reife 
Qualifizierter Hauptschulabschluss 

 
60 
4 
1 

MWT (raw score) 31.13 ± 3.33 
Training Cycles 1.92  ± 1.01 

 

  

 For calculations regarding picture characteristics see paragraph 3.2.11.  

A significant main effect of valence was found, reflecting higher overall recall of 

neutral than negative pictures (F(1,64) = 11.27, p < .01). Furthermore, a significant valence-by-

condition interaction was observed (F(2,128) = 3.83, p  < .05). One-sided post-hoc paired t-tests 

were performed to investigate this interaction. A trend towards significantly lower recall of 

neutral no-think than think pictures (T(64) = 1.8, p < .05) as well as marginally significantly 

lower recall of no-think than baseline pictures (T(64) = 1.83, p < .05) was observed. 

Unsuccessful suppression in the negative condition was reflected by marginally significant 

higher recall of no-think than baseline pictures (T(64) = -1.50, p < .1). Significantly higher 

recall of think than baseline pictures, however, could be shown (T(64) = 2.18, p < .05). See 

Figure 18 for the graphical depiction of the results. 

3.3.2. FMRI Data 

A marginally significant main effect of condition, owing to higher activation during 

no-think trials was found in the right dlPFC (T(180) = 4.43, p < .1). Additional paired-samples 

t-tests showed that this effect reflected higher activation during no-think and think than during 

baseline trials (no-think: T(45) = 4.86, p < .001, think: T(45) = 3.44, p < .01), activation during 

                                                 
1 The same neutral and negative IAPS pictures were chosen as in the Emotion Study (see Table A – 2) 
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no-think trials and think trials differing significantly (T(45) = 2.87, p < .01). A significant main 

effect owing to higher activation during think than during no-think trials was found in the 

right (T(180) = 3.18, p < .05) and left amygdala (T(180) = 3.51, p < .05), as well as in the right 

(T(180) = 4.80, p < .001) and left hippocampus (T(180) = 4.39, p < .001). A marginally 

significant condition-by-valence interaction, owing to higher activation during negative than 

neutral think trials was found in the left amygdala (F(1,180) =7.14, p < .1). 

Results from the post-hoc t-tests investigating signal changes during the task 

conditions relative to baseline and each other are summarized in Table 6. See Figure 19 for 

the outcome of the 2 x 2 ANOVA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Behavioral 

data of fMRI study. One-

sided: # p < .1, * p < 

.05 

 

Behavioral Suppression/Recall Status 

 The 2 x 2 x 2 ANOVA with the factors condition, success and valence showed 

significant condition-by-success interactions in the right amygdala (F(1,31) = 5.631, p < .05) 

and the right hippocampus (F(1,31) = 4.86, p < .05). Post-hoc paired t-tests were performed to 

investigate this interaction. Signal change in the right amygdala seems to be modulated 

stronger by successful think trials as compared to successful no-think trials (T(31) = 3.23, p < 

.01) than by unsuccessful think than unsuccessful no-think trials (T(31) = 2.62, p < .05; Figure 

20A). Right hippocampal activation showed the same pattern (successful: T(31) = 3.4, p < 01, 

unsuccessful: T(31) = 2.93, p < .01). In addition, a marginally significant different response 

pattern for successful and unsuccessful no-think trials was found (T(31) = -1.73, p < .1; Figure 

20B). Neither the left amygdala nor the left hippocampus did show any modulation of the 

above described condition effect by success. 
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Table 6: Summary of the post-hoc t-tests investigating signal change during no-think and 

think relative to baseline and each other in each ROI showing a think-no-think difference 

 
Region of Interest Effect T-value p-value df 

right dlPFC no-think > baseline 4.86 < .001 45 
 think > baseline 3.44 < .01 45 
 no-think > think 2.87 < .01 45 
right amygdala no-think < baseline 1.82 < .1 45 
 think > baseline 0.27 n.s. 45 
 think > no-think 3.52 < .001 45 
left amygdala no-think < baseline 1.53 n.s. 45 
 think > baseline 0.64 n.s. 45 
 think > no-think 3.09 < .01 45 
right hippocampus no-think < baseline 2.68 < .01 45 
 think > baseline 0.64 n.s. 45 
 think > no-think 4.10 < .001 45 
left hippocampus no-think < baseline 2.08 < .05 45 
 think > baseline 1.26 < n.s. 45 
 think > no-think 4.90 < .001 45 

 

 

 

 

 

Figure 19: Statistical parametric maps (SPMs) were thresholded at p < .05 with the ROI-

specific cluster size for p < .1 as determined by AlphaSim (Ward 2000; provided with the 

AFNI software. See Table 2). (A) Depiction of the cognitive control processes reflected by the 

no-think > think contrast and (B) depiction of the memory-related processes apparent in the 

think > no-think contrast.  

 



Results                                                                                                                                       75 

 
 
 Linear trend analysis performed on the right dlPFC revealed a marginally significant 

linear increase in the BOLD signal from unsuccessful think and no-think to successful think 

and finally successful no-think trials (F(1,31) = 4.08, p < .1). 

 

 

Figure 20: Signal change in the right amygdala (A) and right hippocampus (B) in response to 

successful think or no-think trials and unsuccessful think or no-think trials, respectively. # p < 

.1, * p < .05, ** p < .01, *** p < .001 

Time Course Analysis 

 BOLD signal change of the no-think trials over the time course of the experiment was 

investigated by comparing activation during no-think trials in the three ROIs against the 

baseline period by means paired samples t-tests (Figure 21). Activation in the right dlPFC was 

increased relative to baseline in the first three quartiles (1st: T(45) = 5.28, p < .001, 2nd: T(45) = 

2.70, p < .05, 3rd: T(45) = 2.53, p < .05), however, decreased during the final quartile (T(45) = -

5.99, p < .001). Activation in the bilateral amygdala was decreased relative to baseline in the 

second half of the experiment (3rd: T(45) = -1.68, p < .1 0.1, 4th: T(45) = -2.33, p < .05). The 

hippocampus followed the exact same pattern (3rd: T(45) = -2.53, p < .05, 4th: T(45) = -2.77, p < 

.01). 

Correlation between the ROIs 

 One-sided bivariate correlations were calculated between signal changes in the ROIs, 

considering the quartile with the maximal think/no-think difference.   

A significant negative correlation emerged for the difference between no-think and 

baseline trials in the first quartile in the right dlPFC and the right hippocampus in the last 

quartile (r = -.271,  p < .05, one-sided). 
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Figure 21: BOLD signal change in the three ROIs outlined over the time course of the 

experiment. Significant differences from baseline for each ROI are shown and indicated by 

color. # p < .1, ** p < .05, **, p < .01, *** p < .001 

 

Correlation with BSI 

Bivariate correlations were calculated between the think/no-think difference for the 

quartile with the strongest think/no-think difference in each ROI separately for the two 

valence conditions. Only correlations with the BSI for neutral pictures were found, probably 

owing to the above described insufficient suppression of negative pictures. Table 7 

summarizes the results of the correlation analyses. 

 

Table 7: Summary of the correlation analyses calculated between the signal change in each 

ROI and the BSI for neutral pictures. 

 
Region of Interest Pearson’s correlation coefficient p-value 

right dlPFC .292 < .05 
right amygdala -.386 < .01 
left amygdala -.281 < .1 
right hippocampus -.322 < .05 
left hippocampus -.299 < .05 
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3.4. TBS Study 

3.4.1. Behavioral Data 

 Group comparisons of the sample characteristics and psychometric evaluations 

showed no significant differences between the verum and the sham group (see Table 8). 

 Paired-samples t-tests performed for the valence and arousal ratings of IAPS pictures 

selected for the baseline and the post-iTBS measurement did not reveal significant 

differences. 

 

Table 8: Sample description and statistical comparison of psychometric data between the two 

groups 

 
 Verum Sham Statistical 

value 

p-value df 

Total sample size 17 16 //   
Age 24.06 ± 2.70 24.69 ± 3.59 T = -0.57 .573 31 
Gender (men) 5 8 χ2 = 1.46 .226 1 
Handedness (right) 16 14 χ2 = 0.44 .509 1 
Smoking status (yes) 6 5 χ2 = 0.06 .805 1 
Graduation 

Abitur 
Mittlere Reife 

 
16 
1 

 
14 
2 

χ2 = 0.44 .509 1 

Motor Threshold 46.82 ± 6.38 46.63 ± 7.54 T = .08 .935 31 
Stimulation Strength 37.47 ± 5.05 37.00 ± 6.05 T = .24 .810 31 
Training Cycles 01.38 ± 0.60 01.13 ± 0.22 T = 1.61 .117 31 
Questionnaires 

MWT (raw score) 
BDI 
PANAS positive mean 
PANAS negative mean 
ADS 
HADS-D-Depression 
HADS-D-Anxiety 
Rumination 
Life Events Count 
Life Events Impact 
STAI-Trait 
STAI-State mean 

 
30.08 ± 2.15 
06.94 ± 7.39 
29.79 ± 5.10 
12.18 ± 1.89 
10.24 ± 7.22 
02.88 ± 2.91 
05.00 ± 3.64 
00.79 ± 0.39 
08.59 ± 3.98 
02.56 ± 0.82 
35.03 ± 4.67 
39.82 ± 9.19 

 
31.19 ± 2.29 
06.94 ± 6.79 
30.97 ±  6.72 
12.19 ±  1.99 
12.25 ± 7.04 
03.62 ±  2.92 
04.69 ±  3.23 
00.81 ± 0.46 
08.25 ± 3.82 
02.66 ± 0.69 
33.31 ±  5.48 
40.06 ±  12.05 

 
T = -.39 
T = .001 
T = -.57 
T = -0.6 
T = .81 
T = -.73 
T = .27 
T = -.14 
T = .25 
T = -.37 
T = -.06 
T = .97 

 
.695 
.999 
.574 
.987 
.423 
.470 
.791 
.890 
.805 
.711 
.949 
.339 

 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 

Suppressor Type (good) 
pre iTBS 
post iTBS 

 
10 
14 

 
13 
7 

 
χ2 = 1.96 
χ2 = 5.31 

 
.161 
.021* 

 
1 
1 

Suppressor Type with learning 
status (good) 

pre iTBS 
post iTBS 

 
 
10 
14 

 
 
13 
7 

 
 
χ2 = 0.03 
χ2 = 5.04 

 
 
.853 
.025* 

 
 
1 
1 
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3.4.1.1. Regardless of Learning Status 

The 3 x 2 x 2 ANOVA for recalled pictures, regardless of learning status yielded a 

significant main effect of condition (F(1.83,56.65) = 10.94, p < .001) and time (F(1,30) = 11.34, p < 

.01), as well as a trend towards a significant interaction between time and group (F(1,31) = 6.68, 

p < .1). Post-hoc Bonferroni corrected t-tests of the main effect for condition showed 

significantly more recalled think-pictures than baseline-picture (p < .01,) and significantly 

less recalled no-think-pictures than think-pictures (p < .001). The main effect of time resulted 

from overall more recalled pictures on day 2. Post-hoc t-tests were performed separately for 

the two groups and showed a significant difference in the overall percentage of recalled 

pictures only in the verum stimulated group (T(16) = -4.75, p < .001). See Figure 22A for a 

depiction of the interaction.  

The chi-square test comparing suppressor type by group revealed a significantly 

higher number of good suppressors in the verum group post iTBS (χ2 = 5.31, p < .05; see 

Table 8). 

 

Figure 22: Time-by-group interaction (A) regardless of learning status, and (B) taking 

learning and status into consideration. *** p < .001 

 

3.4.1.2. Taking Learning Status into Consideration 

 The 3 x 2 x 2 ANOVA for recalled pictures taking the initial learning status of the 

face-picture pairs into consideration showed a significant main effect of condition (F(2,62) = 

8.164, p < .01) and time (F(1,31) = 6.390, p < .05), as well as a significant interaction between 

group and time (F(1,31) = 10.449, p < .05; Figure 22B). Post-hoc t-tests were performed 
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separately for the two groups and showed a significant difference in the overall percentage of 

recalled pictures only in the verum stimulated group (T(16) = -6.67, p < .001) 

 The chi-square test comparing suppressor type by group revealed a significantly 

higher number of good suppressors in the verum group post iTBS (χ2 = 5.038, p < .05; see 

Table 8). 

3.4.2. FNIRS Data 

Oxygenated Hemoglobin 

The 3 x 2 x 2 x 2 (condition-by-time-side-group) ANOVA yielded a significant main 

effect of condition (F(1.68,46.97)= 4.24, p < .05), resulting from higher activation during no-think 

than during baseline trials (one-sided post-hoc Bonferroni p < .01) and marginally significant 

higher activation during think trials (p < .1). A significant main effect of time (F(1,28) = 6.82, p 

< .05), stemming from overall higher signal changes during the post iTBS measurement was 

also obtained. Furthermore, a significant interaction between side and group (F(1,28) = 4.37, p 

< .05), reflecting higher overall O2Hb changes in the right dlPFC in the verum group only, 

and a marginally significant condition-by-side interaction (F(2,56) = 2.57, p < .1) were found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Signal changes (O2Hb) during think and no-think trials relative to baseline. * p < 

.05, ** p < .01, one-sided 

 

One-sided post hoc Bonferroni corrected t-tests, performed to investigate the 

interactions between condition and side showed significantly higher activation during no-
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think than during think (p < .05) and during baseline trials (p < .01) in the right dlPFC and 

higher activation during no-think than during baseline trials in the left dlPFC (p < .01). See 

Figure 23. 

No significant correlations between signal change in the right or left dlPFC and the 

BSI were found. 

Deoxygenated Hemoglobin 

The 3 x 2 x 2 x 2 (condition-by-time-by-side-by-group) ANOVA yielded only a 

marginally significant condition-by-group interaction (F(2,56) = 2.98, p < .1). One-sided post-

hoc paired t-tests were performed separately for the two groups and showed a significant 

decrease in HHb during no-think relative to think trials only in the verum group (T(15) = 1.87, 

p < .05). The sham group showed higher HHb signal changes relative to baseline irrespective 

of the condition (think: T(15) = -1.89, p < .05, no-think: T(15) = - 2.10, p < .05). The group 

specific activation patterns are shown in Figure 24. 

No significant correlations between signal change in the right or left dlPFC and the 

BSI were found. 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Pattern of HHb signal changes of think and no-think relative to baseline trials 

depicted for the verum and sham group separately. * p < .05 (one-sided) 
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3.4.2.1. Linear Trend Analysis 

Oxygenated Hemoglobin 

  Linear trend analysis performed on the measurement data from the baseline 

measurement yielded a significant result only for the right dlPFC (F(1,22) = 4.14, p = .05), 

showing a linear increase in signal change from unsuccessful think and no-think to successful 

think and finally successful no-think trials (Figure 25). 

 No significant correlations between signal change during successful no-think trials and 

the BSI were found. 

Deoxygenated Hemoglobin 

 A marginally significant linear trend was obtained in right dlPFC concerning signal 

changes in HHb (F(1,22) = 4.23, p < .1; Figure 25). 

No significant correlations between signal change during successful no-think trials and 

the BSI were found. 

 
 

Figure 25: Linear trend lines for O2Hb and HHb. # p < .1, * p < .05 
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3.4.3. ERP Data 

 

Figure 26: Grand Average ERPs of the think and no-think trials for all face-picture pairs 

(regardless of initial learning status and later successful recall or suppression) at the three 

midline electrodes Fz, Cz, and Pz. Shaded areas delineate the time windows used for the 

detection of the peaks, which were used for the statistical analyses 

 

3.4.3.1. Regardless of Learning and Suppression Status  

 Grand average ERPs for the Think and No-Think condition derived from all face-

picture pairs, regardless of learning status and successful recall or suppression, respectively, 

are depicted in Figure 26 at the three midline electrodes. Five components were isolated, 

which were elicited by think and no-think trials: (a) a P2 component, peaking around 208ms 

(b) an N2, peaking around 312ms, (c) an N4, peaking around 476ms, (d) a parietal positivity 

partly overlapping with the N4, peaking at 560ms, and (e) a central negativity, peaking around 

1100ms. Peak time did not differ significantly between the baseline and post iTBS 

measurements in any of the components (p > .1). 

Analyses are performed separately for each component. 
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P2 (180-230ms) 

Frontal 

 A significant main effect of condition (F(1,31) = 13.65, p < .01), reflecting an enhanced 

P2 during think-trials was found. Furthermore, a marginally significant main effect of 

laterality (F(2,62) = 2.47, p < .1), reflecting the highest P2 at Fz and a significant time-by-

laterality interaction was (F(2,62) = 3.66, p < .05) were found. The interaction was due to an 

overall decrease in P2 amplitude from the first to the second measurement in F3 (F(1,31) = 

5.96, p < .05) and Fz (F(1,31) = 3.12, p < .1) as compared to F4, as investigated by a post-hoc 

contrast analysis. 

Central 

Significant main effects of condition (F(1,31) = 13.10, p < .01) and laterality (F(2,62) = 

24.29, p < .001), reflecting the same pattern as in frontal regions as well as a significant 

condition-by-laterality interaction (F(2,62) = 4.73, p < .01), were found. Post-hoc paired t-tests 

showed this interaction as resulting from a stronger condition effect at Cz (T(34) = 3.61, p < 

.01) and C3 (T(34) = 3.59, p < .01) than at C4 (T(34) = 2.44, p < .05). 

Parietal 

 A significant main effect of laterality (F(2,62) = 14.01, p < .001) and a marginally 

significant main effect of time (F(1,31) = 3.88, p < .1) were found. The laterality effect was due 

to higher activation at Pz than at P3 (p < .001) and P4 (p < .05) and the time effect due to 

higher positivity during the second measurement. 

N2 (280-370ms) 

Frontal 

 A significant main effect of laterality (F(2,60) = 5.76, p < .01), reflecting generally 

higher negativity at F3 than at Fz (p < .01) and F4 (p < .05) was found. Furthermore, a 

marginally significant interaction between condition and laterality (F(2,60) = 2.92, p < .1), 

mirroring an enhanced N2 for no-think trials at at Fz than at F3/F4 (one-sided: T(34) = 1.37, p 

< .1) was observed. Lastly, a significant condition-by-laterality-by-group interaction was 

found (F(2,60) = 3.46, p < .05), which reflected a significantly enhanced N2 for no-think trials 

only in the sham group (one-sided: F3: T(15) = 2.50, p < .01; Fz: T(15) = 1.44, p < .1; F4: T(15) = 

1.66, p < .1). 
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 Central 

 Only a marginally significant laterality effect (F(2,60) = 2.60, p < .1) was found, 

reflecting higher negativity at Fz than at F4 (p < .1). 

Parietal 

 A significant main effect of laterality (F(2,60) = 6.31, p < .01) was found, mirroring 

decreased negativity at F4 as compared to Fz (p < .05) or F3 (p < .01). 

N4 (430-540ms) 

Frontal 

 A marginally significant main effect of condition (F(1,30) = 1.84, p = .1) was observed, 

reflecting an enhanced N4 for no-think trials. 

Central 

  A significant main effect of laterality (F(2,60) = 12.79, p < .001), stemming from 

overall more negativity at Cz than at C3 (p < .01) or at C4 (p < .001). Furthermore, a 

significant laterality-by-time-by-group (F(2,60) = 4.46, p < .05), reflecting higher increased 

overall negativity in the verum group at C4 than at Cz (F(1,30) = 10.62, p < .01) or at C3 (F(1,30) 

= 6.52, p < .05) post iTBS as investigated by post-hoc contrast analyses. 

Parietal 

 Only a significant main effect of laterality emerged (F(2,60) = 3.20, p < .05), reflecting 

significantly reduced negativity at Pz as compared to P3 (p < .05).  

Late Positivity (450-640ms)  

Frontal 

 A marginally significant main effect of time was found (F(1,31) = 3.26, p < .1), 

stemming from higher positivity during the baseline measurement. Furthermore, a significant 

time-by-laterality interaction was observed (F(2,62) = 3.54, p < .05), which reflected this lower 

post-iTBS positivity as being present only at Fz (F(1,31) = 3.35, p < .1) and F3 (F(1,31) = 5.88, p 

< .05), as shown by post-hoc contrast analyses.  
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Central 

A significant main effect of condition was obtained (F(1,31) = 4.24, p < .05), reflecting 

higher positivity during think trials. A marginally significant laterality-effect was found 

(F(2,62) = 2.56, p < .1), which was caused by marginally higher overall positivity at C4 than at 

Cz (p < .1). Lastly, a significant condition-by-laterality interaction was revealed (F(2,62) = 3.54, 

p < .05), which was due to a significantly higher positivity during think trials at Cz (T(34) = 

2.78, p < .01) and marginally significantly higher positivity during think trials at C4 (T(34) = 

1.92, p < .1), as shown by post-hoc paired-samples t-tests performed on the mean think and 

no-think trials (baseline and post-iTBS). 

Parietal 

 Only a significant main effect of laterality (F(2,62) = 8.57, p < .01), owing to overall 

higher positivity at Pz (p < .01) and at P4 (p < .1) than at P3. 

Late Negativity (1000-1200ms) 

Frontal 

 No significant results were obtained for the late negativity at frontal electrodes. 

Central 

A significant main effect of condition emerged (F(1,31) = 4.17, p = .05), reflecting more 

negativity during no-think trials. Furthermore, a significant main effect of laterality was found 

(F(2,62) = 36.44, p < .001), resulting from significantly more negativity at Cz than at C3 and C4 

(both p < .001). Additionally, a significant laterality-by-group interaction was observed (F(2,62) 

= 3.93, p < .05), which was due to significantly more negativity in the verum group at Cz than 

at C3, as shown by post-hoc contrast analysis (F(1,31) = 7.04, p < .05). 

Parietal 

A significant main effect of laterality was shown (F(2,62) = 19.25, p < .001), which was 

caused by significantly higher condition-independent negativity at C4 and Cz than at C3 (both 

p < .001). 

Topographical Analyses 

 The ANOVA investigating topographical differences in the distribution of the 

enhanced think trials found in the P2 and late positivity showed no significant component-by-
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region interactions, indicating that the effect reflects a single process which is prolonged in 

time. 

 Scalp distribution maps of the 5 components are shown in Figure 27. 

 

 

Figure 27: Scalp distribution maps derived from the difference wave between the two 

conditions separately for each component. (A) and (B) show the distribution of the two 

components reflecting higher activation during think trials and (C) – (E) show the scalp 

distribution of the three components with higher voltages during no-think trials 

 

3.4.3.2. Regression between ERP and BSI  

The linear regression analysis with the BSI as dependent variable and the difference 

wave of the late negativity reached significance during the baseline measurement, indicating 

that the late negativity component validly predicts the later behavioral outcome (adj R2 = .29, 

F(2,30) = 3.71,p < .05). Investigating the coefficients more closely, however, only negativity at 

central electrodes significantly predicted a linear increase in the BSI (B = -13.71, β = -.58, 

T(31) = -2.66, p < .05), explaining R2 =  .21 of the whole unadjusted R2 = .29 (see Figure 28). 

Post iTBS, the difference wave of the late negativity did not predict the BSI. 

 None of the other components significantly predicted the outcome of the performance 

in the behavioral recall test of the baseline or the measurement post-iTBS. 
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Figure 28: Regression line of 

the late negativity at central 

electrodes and the BSI of the 

baseline measurement 

 

 

 

 

 

 

 

 

 

Figure 29:  Correlation between 

signal changes in the right and 

left dlPFC during no-think trials 

and the difference value of the 

late negativity. # p < .1, * p < 

.05 (one-sided) 

 

 

  

3.4.3.3. Correlations between fNIRS and ERPs 

  One-sided bivariate correlations were calculated between the no-think > think contrast 

derived from the fNIRS measurement and the difference wave of the ERP components 

showing higher peaks during no-think trials (i.e. N2, N4, and the late negativity). 

Oxygenated Hemoglobin 

 No significant correlations emerged. 

Deoxygenated Hemoglobin 

A positive correlation between the late negativity at frontal electrode sites and signal 

change in response to no-think trials in the right (r = .28, p < .1) and left dlPFC (r = .36, p < 

.05) was found (Figure 29). 
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3.5. Regression and Correlation Analyses   

3.5.1. BSI and Psychometric Measures 

 No significant correlations were found between the BSI and the MWT-B. 

 The regression model including psychometric evaluations of depression (i.e. 

rumination, BDI, HADS-Depression and ADS) explained a significant proportion of variance 

in the BSI (adj R2 = .04, F(4,133) = 2.44, p = .05). However, only rumination scores predicted a 

linear decrease in the suppression performance (B = -19.21, β = -.28, T(131) = -2.41, p < .05), 

explaining R2 = .04 of the whole unadjusted R2 = .07 (see Figure 30A). The regression model 

including psychometric evaluations of anxiety (i.e. HADS-Anxiety, PANAS and STAI-Trait 

and -State) did not significantly explain any variance in the BSI (adj R2 = .01, F(5,103)  = 1.28, 

p > .1), however, the STAI-Trait index seems to explain some of the variance in the BSI (B = 

-.78, β = -.26, T(99) = -2.01, p < .05), explaining R2 = .04 of the whole unadjusted R2 = .06 (see 

Figure 30B). 

 Neither the univariate ANOVA including gender, nor the univariate ANOVA 

including graduation yielded significant results (p > .1).  

 

 

 

Figure 30: Regression coefficients of the Rumination and STAI trait score and the Behavioral 

Suppression Index (BSI) 
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3.5.2. Functional Imaging Data and Psychometric Data 

3.5.2.1. FNIRS Data 

Oxygenated Hemoglobin 

 Significant positive correlations between right dlPFC activation during no-think trials 

were found with the BDI (r = .25, p < .05; N = 51), the ADS (r = .27, p < .05; N = 50), and the 

depression subscale of the HADS (r = .26, p < .05; N = 50). Marginally significant positive 

correlations were obtained with the RSS (r = .19, p < .1; N = 50) and the STAI trait scale (r = 

.30, p < .1; N = 30). BDI (r = .22, p < .1) and ADS (r = .18, p < .1) marginally correlated with 

left dlPFC activation during no-think trials. 

 No correlations were found with the BSI. 

Deoxygenated Hemoglobin 

 For HHb marginally significant negative correlations between right dlPFC activation 

and the RSS (r = -.19, p < .1) as well as the STAI trait-scale (r = -.30, p <.1) and a positive 

correlation between signal changes in the left dlPFC and the anxiety subscale of the HADS (r 

= .27, p < .05) emerged. 

 No correlations were found with the BSI. 

3.5.2.2. FMRI Data  

 Only a significant negative correlation between below-baseline activation during no-

think trials in the left hippocampus and the RSS was found (r = -.208, p < .1). 

3.5.3. Interaction Term with Psychometric Data 

3.5.3.1. FNIRS Data 

Oxygenated Hemoglobin 

 Significant negative correlations between the interaction index of the BSI with 

activation in the right dlPFC and the ADS, the HADS depression subscale, the STAI state 

scale, and the negative symptoms subscale of the PANAS were found. Marginally significant 

negative correlations were obtained with the RSS and the BDI. See Table 9 for the correlation 

coefficients. 

 No significant correlations were found in the left dlPFC. 
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Deoxygenated Hemoglobin 

 Significant positive correlations were found between the interaction index in the right 

dlPFC and the ADS, the depression subscale of the HADS, the STAI state and trait scale, the 

RSS, and the BDI. The correlation with the negative subscale of the PANAS was marginally 

significant. 

 In the left dlPFC, significant positive correlations were shown between the ADS, the 

HADS depression scale, the negative symptom scale of the PANAS, the RSS, the STAI Trait 

scale and the BDI. Correlations with the STAI State scale approached significance.  

 See Table 9 for the correlation coefficients. 

3.5.3.2. FMRI Data 

 No significant correlations were found. 

 
 
Table 9: Correlation coefficients resulting from correlation analyses between the interaction 

index of the BSI with activation in the dlPFC and the single scores of the psychometric 

evaluations, * p < .05, ** p < .01, # p < .1 

 
Region of Interest Correlation Pearson’s correlation coefficient p-value N 

Right dlPFC – O2Hb ADS 
HADS- depression 
STAI state 
STAI trait 
PANAS negative 
RSS 
BDI 
 

-.280 
-.303 
-.293 
-.293 
-.375 
-.253 
-.243 

.049 * 

.033 * 

.037 * 

.039 * 

.007 ** 

.077 # 

.086 # 

50 
50 
51 
50 
51 
50 
51 

Left dlPFC - O2Hb //    
 
Right dlPFC - HHb 

 
ADS 
HADS- depression 
STAI state 
STAI trait 
PANAS negative 
RSS 
BDI 
 

 
.311 
.313 
.321 
.354 
.266 
.300 
.287 

 
.028 * 
.027 * 
.022 * 
.012 * 
.059 # 
.035 * 
.041 * 

 
50 
50 
51 
50 
51 
50 
51 

Left dlPFC - HHb ADS 
HADS- depression 
STAI state 
STAI trait 
PANAS negative 
RSS 
BDI 

.412 

.392 

.245 

.297 

.308 

.311 

.337 

.003 ** 

.005 ** 

.083 # 

.036 * 

.028 * 

.028 * 

.016 * 

50 
50 
51 
50 
51 
50 
51 
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3.6. Genetical Analyses 

3.6.1. Behavioral Data 

 The 3 x 2 (condition (only negative items)-by-KCNJ6) ANOVA showed a significant 

main effect of condition (F(2,224) = 8.87, p < .001) and a significant condition-by-KCNJ6 

interaction (F(2,224) = 3.26, p < .05). See Figure 31 for a depiction of the interaction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Condition-by-genotype interaction for the KCNJ6 SNP; * p < .05,*** p < .001 

 

 The 3 x 2 ANOVA for the CREB1 SNP only revealed an overall main effect of 

condition (F(2,222) = 11.75, p < .001), resulting from a significant higher recall of think than 

no-think pictures (p < .001) and baseline pictures (p < .001). No interaction was found. 

3.6.2. Functional Imaging Data 

Functional Near Infrared Spectroscopy  

 No significant modulation of dlPFC activation by KCNJ6 was found. 

Functional Magnetic Resonance Imaging 

 A significant condition-by-genotype interaction, owing to higher activation in carriers 

of at least one A-allele emerged in the right dlPFC for the NT > T contrast (F(1,144) = 12.67, p 
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< .05; Figure 32), indicating the need to exert higher cognitive effort during the attempted 

cognitive control. No significant interactions were found in the amygdala or the hippocampus. 

 

 

Figure 32: More activation in carriers of at least one A-allele of the KCNJ6 SNP (A) than 

homozygous carriers of the G-allele (B) was observed in the right dlPFC during no-think 

trials. SPMs are thresholded at p < .05 (uncorr.) 
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4. Discussion 

 The investigation of processes involved in the cognitive inhibition of thoughts and 

memories has gained considerable attention in the last decade. One of the most commonly 

used paradigms for researching cognitive inhibition is the TNT (Anderson & Green 2001), 

which is derived from the widely used Go/Nogo paradigm, applied to the study of inhibition 

of pre-potent motor responses. The TNT requires the subject to retrieve and activate a 

previously learned associated thought (i.e. target) in one condition (i.e. think), while to inhibit 

the memory from entering awareness in the other condition (i.e. no-think) when presented 

with a cue. Successful inhibition has been shown by Anderson and Green (2001) to result in 

diminished recall of inhibited (i.e. no-think) versus retrieved (i.e. think) or baseline1 stimuli, 

reflecting the disruption of previously established links between two stimuli.  

In addition to the attempt to replicate this initial below-baseline suppression of no-

think items, which has proven difficult (see Table 1), previous studies on this topic have 

investigated various aspects interacting with mechanisms recruited during cognitive 

inhibition. These aspects, among others, included the emotional content of the stimulus 

material, but results on this topic have been inconclusive. While some researchers found 

negative stimuli to be suppressed more effectively than neutral (Depue et al 2006) or positive 

stimuli (Lambert et al 2010), others showed impaired suppression of negative relative to 

positive thoughts (Marx et al 2008). Two hypotheses have emerged explaining the facilitated 

or impaired suppression of negative thoughts respectively, based on findings of differential 

encoding and consolidation of neutral and emotional material at the neural level (Kensinger & 

Corkin 2004): (1) Facilitated cognitive control, and thus better suppression of negative 

thoughts has been explained by the idea that highly salient negative information is more 

accessible due to more elaborated processing already during encoding (Lambert et al 2010). 

(2) The opposite pattern of impaired inhibitory control over negative thoughts has also been 

explained in the light of better encoding of emotionally negative material, however, it is 

claimed that this results in increased demands on processes guiding intentional suppression of 

negative thoughts relative to less well elaborated neutral or positive thoughts in the TNT 

(Marx et al 2008). Considering that investigation of the influence of valence on thought 

inhibition was performed by different studies using different stimulus material, slightly 

differing experimental setups as well as patient and control samples the generalization of 

                                                 
1 Cue-target associations that are established in the study phase, but that are neither inhibited nor retrieved during 
the TNT phase. For a thorough description of the TNT procedure see section 1.2.1. 
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these findings is difficult. One aim of the present work was therefore to establish the relative 

modulatory contributions of these factors to cognitive inhibition measured through the TNT 

paradigm. Meeting the inconsistent findings regarding stimulus valence, two of the presented 

studies (i.e. pilot and emotion study) have for the first time1 compared suppression of neutral, 

positive and negative stimuli directly within one sample. 

 The other line of past research investigating cognitive inhibition has focused on the 

neurophysiological and electrophysiological processes underlying the behaviorally observable 

impaired recall of previously suppressed stimuli. Three fMRI studies have isolated a fronto-

hippocampal network being activated during thought inhibition in the TNT (Anderson et al 

2004; Depue et al 2010; Depue et al 2007). Increased activation of the dlPFC has been 

consistently found during no-think attempts. Its implication in thought suppression has further 

been corroborated by correlation analyses showing that percentage signal change reliably 

predicted subsequent recall impairment of suppressed items. The hippocampus, which has 

been established as being essential for memory formation and consolidation (e.g. Bliss & 

Collingridge 1993; Squire 1992) and which is anatomically connected to the dlPFC through 

the fornix and the retrosplenial cortex (Morris et al 1999; Petrides & Pandya 2006), has been 

found to be reduced in activation during no-think trials. Importantly, Depue et al. (2007) 

could show that the largest decrease in hippocampal activation was found during the 

suppression of items, which were actually forgotten in the post-experimental recall test2. 

Furthermore, they could show lower activation levels during forgotten no-think than during 

forgotten think trials, which has been interpreted as evidence for an active suppression 

mechanism. The interaction of both structures has been suggested by correlation analyses 

indicating that the degree of hippocampal deactivation can be predicted by dlPFC activation 

(Depue et al 2007). ERP studies have further provided evidence of active suppression 

mechanisms in the brain. Several ERP components have been reported, two, however, have 

been prominent in all ERP studies using the TNT so far. A late positive shift around 500 ms, 

which was reduced in amplitude during no-think relative to think trials, was consistently 

shown in all experiments (Bergström et al 2009a; Bergström et al 2009b; Bergström et al 

2007; Hanslmayr et al 2009; Mecklinger et al 2009). A second, N2-like component has been 

shown to be increased during execution of no-think relative to think trials (Bergström et al 

2009b; Mecklinger et al 2009). Bergström et al. (2009b) presented convincing evidence for an 

                                                 
1 To the best knowledge of the author 
2 Hippocampal activation during suppression of subsequently forgotten no-think items was shown to drop below 
baseline activation levels, while activation of later remembered no-think items showed an increase relative to 
baseline, although to a lesser extent than during think trials 
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implication of the N2 in voluntary suppression by showing an even larger increase in 

amplitude in subjects applying suppression versus subjects applying thought substitution 

strategies during no-think trials. Topographical analyses have shown a centro-parietal 

distribution of the N2, which has been interpreted as reflecting the electrophysiological 

correlates of the fronto-temporal network found in the fMRI studies mentioned earlier. 

Although it is likely that the late positivity and the N2 reflect activation in the fronto-

hippocampal network1, no study combining functional neuroimaging and electrophysiological 

methods has been performed so far making direct correlations impossible. Using different 

neuroimaging (i.e. fNIRS and fMRI) and electrophysiological (i.e. ERP) methods, another 

intention of the current work was to extend the knowledge of the neural mechanisms 

underlying the intentional act of suppression in the TNT. Special attention was given to the 

modulation of these processes by stimulus valence. As described above, at the behavioral 

level results regarding the beneficial or impairing effect of valence on successful suppression 

of thoughts have been inconsistent. Regarding, furthermore, the unreliability of the 

suppression effect at the behavioral level (see Table 1), and taking into account the 

consistency of findings derived from neuroimaging and electrophysiological studies, more 

information concerning the modulation of inhibitory processes by valence (even in the 

absence of a behaviorally observable suppression effect), might be derived from the 

investigation of suppression at the neural level. In addition, direct evidence for dlPFC 

activation as a crucial predictor of memory inhibition in the TNT was tested by means of 

iTBS, altering neural activity through external stimulation. Furthermore, taking advantage of 

the easy combinability of fNIRS and ERPs, another question aimed at shedding more light on 

the correlation between certain ERP components and neural processes engaged in thought 

suppression.  

 As already mentioned, replication of Anderson’s and Green’s (2001) initially reported 

below-baseline drop of recall performance for no-think items, has been proven difficult by 

various studies (see Table 1). Some attempts have been made to isolate personality traits (e.g. 

dysphoria, anxiety, ruminative response styles) possibly explaining the interindividual 

differences in the ability to successfully inhibit thoughts in the TNT, which in turn might 

result in the inconsistent findings regarding the suppression effect. Therefore, the final 

rationale of the current work was the investigation of how certain personality traits might 

contribute to the moderate success in replicating Anderson’s and Green’s (2001) original 

findings. In addition, it was investigated whether two genetic polymorphisms (i.e. KCNJ6, 
                                                 
1 For a description of correlating findings in studies in other areas of research on inhibitory mechanisms, e.g. in 
the Stop Signal task, see paragraph 1.2.3. 
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CREB1), which have recently been linked to memory functioning and ruminative response 

styles (e.g. Lazary et al 2011; Schuur 2010), might additionally explain some of the 

interindividual differences in suppression performance. 

 Results obtained at a behavioral level in the post-experimental recall test and those 

obtained at the neurophysiological and electrophysiological level will be discussed separately 

at first. Consequently, the correlation between suppression at the neural and at the behavioral 

level will be considered in an attempt to generate a holistic picture of thought suppression in 

the TNT. In the remainder, the discussion will focus on the results (1) obtained in the 

regression analyses performed on certain personality traits previously found to predict 

suppression performance and (2) on the influence of the two genetic polymorphisms which 

were exploratively investigated in this work. 

4.1. Discussion of Behavioral Results 

 Except for the neutral condition in the fMRI study none of the current studies revealed 

a below-baseline suppression effect of no-think items as found by Anderson and Green in 

their original study in 2001, reflecting the difficulty encountered by other groups (e.g. 

Bergström et al 2007; Bulevich et al 2006). In all three other studies overall (i.e. independent 

of valence) significantly lower recall of no-think relative to think items was, however, found. 

Although no independent probe test was included in the present work, it can be assumed, in 

the light of previous research, as well as considering the neuroimaging and 

electrophysiological evidence (which will be discussed later) that this lowered recall is a 

result of active suppression, at least to some extent, most likely in the form of a weakening of 

the cue-target association, and not mere forgetting or interference (see introduction section for 

this claim). Additional analyses including only those cue-target pairs which were successfully 

learned as indicated by correctly identified associations in the study phase, showed similar 

results, thereby providing a stronger basis for the interpretation of lowered recall of no-think 

stimuli as reflecting suppression and not mere forgetting or not being learned at all. In the 

remainder, this lowered recall of no-think relative to think items will thus be assumed as 

reflecting effective thought inhibition.  

Interestingly, even in the pilot study, in which suppression and retrieval were 

performed only five times, a suppression effect emerged. Considering, findings by Depue et 

al. (2007), who showed hippocampal deactivation to be consistently present only after several 

no-think trials, this is surprising at first sight. Given, however, the experimental setup of the 

pilot study, the emerging suppression effect might reflect the benefit of anticipatory processes 



Discussion                                                                                                                               97 

(Hanslmayr et al 2010; Hanslmayr et al 2009). Instructions to retrieve or to suppress were 

presented prior to each think or no-think block, thereby enabling the participants to prepare 

for suppression or retrieval in advance. Hanslmayr et al. (2010) have shown that presentation 

of the no-think instruction one second prior to the cue significantly lowered recall of no-think 

items relative to the classical simultaneous presentation of the instruction. The same group 

has additionally isolated a distinctive positive ERP component reflecting these anticipatory 

processes at the neural level (Hanslmayr et al 2009). This early fronto-parietally distributed 

positive deflection was shown to predict the degree of amplitude reductions in a later 

condition-related component (i.e. modulated by think or no-think trials) in response to no-

think trials. Functional MRI studies investigating cognitive control mechanisms by means of a 

task switching paradigm, have shown activation of structures such as the prefrontal cortex to 

be related to the anticipatory cue (e.g. Dreisbach et al 2002; Lavric et al 2008). Lower recall 

of no-think than think words shown in the pilot study, regardless of the relatively small 

number of suppression attempts, might thus reflect the activation of anticipatory neural 

processes, which in turn signal the need for subsequent activation of neural mechanisms 

relevant for exerting inhibitory cognitive control. 

 Another surprising result in the light of existing evidence for more profound 

suppression with practice was obtained in the TBS study. No improvement of the suppression 

effect, regardless of the TBS effect, was found on the second measurement day. Although 

previous studies have shown that recall impairment for no-think items increases with practice 

(Anderson & Green 2001; Depue et al 2006), no study has used a within-subject repeated 

measures design. The lack of improved suppression due to repeated performance of the TNT 

in the modulation study might therefore reflect non-compliance by the subjects, since they 

were prepared to be asked to recall all of the targets after the experiment. This explanation 

seems to be supported by the fact that overall recall performance, regardless of task 

instruction, was better after the second measurement day. 

Overall lowered recall performance of suppressed relative to retrieved stimuli by itself, 

however, is not a new finding. One main interest was the clarification of the inconsistent 

evidence of impaired or improved suppression performance regarding the emotional valence 

of the to-be-suppressed stimuli. 

Modulation by Valence 

 As mentioned above, results regarding the beneficial or disadvantageous effect of 

negative or positive relative to neutral valence on thought suppression have been inconsistent. 

Depue et al. (2006) and Joormann et al. (2005) showed more effective suppression of negative 
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relative to neutral pictures or positive words respectively. Marx et al. (2008) could replicate 

suppression of negative thoughts using word stimuli, although inhibitory control over positive 

words was shown to be more pronounced in this study. All these studies argue for enhanced 

inhibitory cognitive control over emotional material (i.e. positive or negative). Results 

obtained in all three present studies modulating stimulus valence clearly contradict this claim. 

No interaction between condition and valence at all was observed in the pilot and emotion 

study, indicating no difference in the effectivity of suppressing neutral, positive or negative 

words or pictures respectively. The observed interaction with valence in the fMRI study, 

which compared suppression of neutral and negative pictures, reflected successful suppression 

(i.e. even below-baseline suppression) for neutral no-think pictures only, while even better 

recall of suppressed negative no-think relative to baseline pictures was found.  

It has been shown that negative stimuli lead to more effortful processing than neutral 

stimuli in general, resulting in better recall (Clore, Schwarz & Conway 1994; Dolcos, LaBar 

& Cabeza 2004; Kensinger 2004; Kensinger & Corkin 2004). Ineffective suppression of 

negative material found in the fMRI study might thus reflect increased demands posed on 

inhibitory control over negative pictures, which are well elaborated during memory encoding, 

that are not sufficiently met to result in effective disruptions of these memory traces. This 

interpretation is in line with the idea posited by Marx et al. (2008) explaining better inhibitory 

control over positive than over negative words in their own and in the study by Hertel and 

Gerstle (2003), but contradicts other studies having shown better inhibition of negative stimuli 

(see above). A generalization of this claim, however, is difficult in the light of evenly well 

suppressed neutral, positive and negative words and pictures in the pilot and emotion study as 

well as effective suppression of negative pictures in the TBS study. This is especially 

surprising regarding the Emotion and TBS study since the same face-picture pairs as in the 

fMRI study have been used. Word and picture material was selected carefully and shown to 

differ significantly in emotional valence according to the ratings provided with the IAPS and 

BAWL material (IAPS: Lang et al 2005; BAWL: Vo et al 2006). The null finding of 

differences in suppression of emotional stimuli relative to each other or relative to neutral 

material due to ineffective manipulation of stimulus valence can thus be excluded. 

Given that, at least in the emotion study, the same stimulus material was used, except 

for the inclusion of the positive picture set, it might be important to consider the effect of this 

additional valence condition in an attempt to explain the inconsistent outcomes in the three 

present studies. In literature focussing on the processing of emotions in a more general 

context, it has been suggested that positive affect is associated with increased flexibility and 
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creative problem solving, which is assumed to be regulated by increased recruitment of 

frontal brain regions (Ashby, Isen & Turken 1999; Isen, Niedenthal & Cantor 1992). It might 

thus be possible that the inclusion of a positive valence condition in the TNT, as in the pilot 

and Emotion study, generally induces a more positive motivational state, leading to the 

activation of processes more flexibly engaging re-appraisal strategies during the learning and 

encoding phase of the TNT and eliminating the deleterious effects of negative valence on 

cognitive inhibition in healthy control subjects reported in some previous studies (Hertel & 

Gerstle 2003; Marx et al 2008). On the other hand contrasting only negative against neutral 

stimuli, as in the fMRI study, might increase the focus on the negative pictures during 

encoding, leading to the memory enhancement effect described by McGaugh (2000). 

Including only a negative valence condition (i.e. TBS study) in turn lacks a reference against 

neutral material resulting in the observed effective suppression in the present TBS study and 

in Depue et al. (2007), suggesting that subjects might have been focussing less or even 

disregarded the negative content of the pictures. Although only speculative, the idea of 

context dependent performance in the TNT could not only account for the discrepancy in the 

current work, but also explains some of the inconsistent findings obtained in previous TNT 

studies investigating the effect of valence on thought suppression in healthy subjects. None of 

these studies included neutral, positive and negative target stimuli, instead comparison of 

suppression was either varied between positive and negative (Hertel & Gerstle 2003; Marx et 

al 2008) or neutral and negative stimuli (Depue et al 2006). Given, however, that Depue et al. 

(2006) found better suppression of negative than neutral stimuli alternative explanations, such 

as certain sample characteristics, have also to be taken into account. Interindividual 

differences in personality traits and the contribution of the KCNJ6 SNP, which will be 

discussed in section 4.3. and 4.4., might as well contribute to discrepant findings between 

previous studies and within this work.   

Modulation by TBS 

A significant improvement of suppression performance following iTBS applied to the 

right dlPFC could be shown as indicated by a higher number of good suppressors (i.e. BSI 

scores above the median) in the verum group than in the sham group. This effect was, 

however, only present in the additionally performed chi-square tests, weakening its 

interpretation in favor of showing the possibility to improve voluntary thought suppression by 

external stimulation of the dlPFC. Given the small cell distribution of a sample size of 33 in a 

3 x 2 x 2 repeated measures ANOVA and the difficulty to detect small effects on cognitive 

tasks known to be induced by iTBS (Grossheinrich et al 2009), nonetheless warrants this 
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additional analysis, and its outcome favors the idea that increasing activation in the right 

dlPFC improves the ability to voluntarily suppress thoughts in the TNT. The findings could 

thus be viewed as supporting the assumption that activation in the right dlPFC reflects the 

initiation of executive control processes actively controlling thoughts from entering awareness 

and further validate the TNT as a suitable paradigm eliciting these voluntary suppression 

mechanisms. 

4.2. Discussion of imaging and electrophysiological results   

Overall effects of thought suppression will be discussed first, before the influence of 

valence on the TNT at the neural level is mentioned. Finally, the results gathered by 

modulating dlPFC activation by means of TBS will be considered.  

4.2.1. FNIRS and fMRI – The Neural Network Underlying Thought Inhibition 

Successful application of fNIRS to measure the involvement of the dlPFC in thought 

suppression was shown in the pilot, the emotion and the TBS study. The pilot study showed a 

condition-related increase and decrease in O2Hb and HHb, respectively, which was strongly 

driven by higher signal changes during no-think relative to think trials. To interpret this signal 

change as reflecting suppression-related activation, additional analyses were performed 

ensuring that the effect was due to increased activation during no-think and not decreased 

activation during think relative to baseline trials  (i.e. activation during fixation). It was shown 

that only activation during no-think trials differed significantly from baseline activation, 

favoring the idea of the dlPFC as contributing to active voluntary thought suppression. 

Investigation of HHb parameters in the pilot study showed a stronger involvement of the right 

dlPFC, which is in line with other imaging studies investigating the neural basis of the TNT 

(Anderson & Green 2001; Depue et al 2007). Although only represented in O2Hb parameters, 

the same pattern was found in the emotion study. The condition effect reflected increased 

activation during no-think relative to baseline trials as well as greater recruitment of the right 

dlPFC. Furthermore, it was  shown, in line with Depue et al. (2007), that signal changes were 

largest during the first suppression attempts (i.e. the first six no-think trials), probably 

indicating that decreasing cognitive effort is needed with increasing suppression practice as 

reflected by a function of increased forgetting with the number of no-think attempts in the 

post-experimental recall test (e.g. Anderson & Green 2001). Again this effect was stronger in 

the right dlPFC, indicating its special contribution to thought suppression. As in the pilot and 

emotion study, the TBS study showed increased O2Hb and decreased HHb during no-think 

relative to baseline trials becoming apparent in the condition effect of higher signal change 
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during no-think than during think trials. Again contribution of the right dlPFC was shown to 

be larger, as a significant difference between activation during think and no-think was only 

present in the right hemisphere whereas a significant difference between no-think and 

baseline activation could be observed in bilateral dlPFC. Significant linear trends for both 

O2Hb and HHb showing highest right dlPFC activation during eventually forgotten no-think 

items, lower activation during successfully retrieved think items and even lower activation 

during retrieved no-think and forgotten think items support the idea of right dlPFC 

recruitment during an active inhibition process in the TNT. 

The dlPFC, however, is only one of the key structures involved in thought suppression 

in the TNT. Previous studies have shown the hippocampus to be a second contributor to the 

willful disruption of established memory traces (Anderson & Green 2001; Depue et al 2010; 

Depue et al 2007). To further investigate the existing evidence of a fronto-hippocampal 

network working in sync during cognitive control over thoughts, an fMRI study was 

performed. Higher activation during no-think trials was observed in the right dlPFC. Again, 

this effect was shown to be due to stronger increases during suppression than during retrieval 

of pictures when presented with the associated face cue. Activation in bilateral hippocampus 

was shown to be lower during suppression than during retrieval attempts. Additionally, 

showing the same pattern bilateral no-think related deactivation of the amygdala was 

observed, which is most likely due to the exertion of control over the negative stimulus 

material used. This will be discussed in more detail later. Lower hippocampal activation 

during no-think attempts, however, could not only reflect inhibitory control over memory 

contents but also simple disengagement due to the lack of automatic recollection. As already 

posed by Bergström et al. (2009a) the default state in the TNT might be not to retrieve 

memories when presented with the cue but that increased intentional control processes are 

rather activated to achieve successful retrieval than to voluntary avoid recollection. As 

previously discussed, to be able to ascribe this effect as reflecting neural components of active 

thought suppression, additional analyses comparing activation elicited by each condition to 

baseline were performed. It could be shown that activation during no-think trials dropped 

below baseline in the right amygdala and the right and left hippocampus. Even stronger 

evidence that hippocampal disengagement actually reflects an active process of thought 

inhibition and not mere forgetting is provided by the observation that activation was lower 

than for forgotten think items and only dropped below baseline levels for items that were 

actually not remembered anymore post-experimentally, as well as showing a significant 

modulation of hippocampal activation against baseline only by think trials that were later 
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remembered and no-think trials that were later forgotten. Time series analysis showed dlPFC 

activation to be significantly increased relative to baseline during the first half of the 

experiment, as found already in the emotion study, again supporting the idea that fewer 

resources are needed for thought suppression after some practice.  Hippocampal activation 

was observed to increase in activation during the first half of the trials and only to drop 

significantly below baseline in the second half. This might be interpreted as showing the 

activation of still existing memory traces in the beginning of the TNT phase, which are 

declining with suppression practice until they are disrupted eventually in the end. This 

interpretation again fits well with the observation of decreasing memory performance for 

repeatedly suppressed thoughts at the behavioral level.  

It has been proposed that the dlPFC exerts inhibitory top-down control over 

hippocampal activation during the voluntary suppression of thoughts (Depue et al 2007). This 

idea is supported by showing that activation in the right dlPFC early in the experiment 

predicts the amount of decreased activation in the right hippocampus during later no-think 

trials, strengthening the claim that a fronto-hippocampal network is interactively responsible 

for the voluntary suppression of thoughts in the TNT.  

Additional evidence supporting the implication of the dlPFC and the hippocampus in 

thought inhibition is provided by showing a significant correlation between the suppression 

performance as indicated by the BSI and higher activation in the dlPFC in the pilot and the 

emotion study as well as the BSI for neutral pictures and higher activation in the right dlPFC 

along with lower activation in the hippocampus in the fMRI study. The BSI represents 

suppression success as measured by means of final retrieval of no-think relative to baseline 

stimuli post-experimentally. The higher the BSI, the more effective the subject was at 

suppressing the stimulus material during the no-think trials. Especially interesting and further 

indicating the validity of this correlation is the observation that in those studies in which no 

valence effect was found at the behavioral level (i.e. pilot and emotion study) the correlation 

of the summed BSI was significant, while in the fMRI study successful suppression of only 

neutral pictures and not negative pictures was reflected by significant correlations between 

heightened PFC activation and lowered hippocampal and amygdaloid activation only 

regarding the BSI for neutral pictures. 

Modulation by Valence 

 Special interest in this work was attributed to clarifying the contradictory findings 

concerning the dependence of suppression performance in the recall test on the valence of the 

to-be-suppressed stimuli. Findings at the behavioral level have been discussed above, but 
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have been found to be inconsistent regarding the ability to suppress negative stimulus 

material. While the pilot and the emotion study showed no difference in the suppression of 

neutral, positive and negative words or pictures, the fMRI study indicated difficulties in 

suppressing more salient negative pictures while showing successful inhibitory control over 

neutral pictures. This inconsistency is hypothesized to reflect a modulatory effect of including 

positive stimuli which generally leaves subjects in a more positive motivational state, leading 

to the activation of processes more flexibly engaging re-appraisal, thereby blunting the 

valence effect during encoding and in turn eliminating differences in the ability to suppress 

the different stimulus material. Surprisingly, no study using the TNT has investigated the 

neural networks recruited for the suppression of neutral or emotional material, although 

altered underlying neural processes have been suggested but not specified (e.g. Depue et al 

2006; Depue et al 2007).  

Based on results by Ochsner (2000) reporting stronger memory traces for emotional 

than for neutral stimuli and a study by Kensinger and Corkin (2004) showing increased 

prefrontal activation during retrieval of emotional relative to neutral words, increased 

activation during the suppression of emotional stimuli would be expected in order to 

successfully suppress well-encoded emotional material. The amygdala, known to be involved 

in the re-allocation of cognitive resources in order to deal with threatening situations (Wager, 

Phan, Liberzon & Taylor 2003) and to project to the prefrontal cortex (Iversen, Kupfermann 

& Kandel 2000) could be a possible mediator of increased prefrontal activation. It would be 

expected to show increased down-regulation during negative no-think trials to enable 

activation of the extra cognitive resources needed to disrupt the stronger memory traces for 

negative cue-target associations, which in turn then should be reflected by stronger signal 

decreases during negative no-think trials in the hippocampus. 

The current work could show in all three studies modulating stimulus valence that 

prefrontal activation was not mediated by valence, potentially explaining both the context-

dependent encoding idea stated in paragraph 4.1. and the finding of ineffective suppression of 

negative pictures in the fMRI study. As hypothesized above, to achieve effective suppression 

of emotional stimuli increased prefrontal activity would be expected, unless valence effects 

were blunted due to re-appraisal during encoding when including a third valence condition. 

The lack of differential activation in the dlPFC found in the fMRI study in the light of 

ineffective suppression of negative pictures might reflect insufficient activation of the 

prefrontal cortex in order to block well-elaborated negative pictures, which might be due to 

insufficient down-regulation of amygdaloid responses during no-think trials, and 
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consequently insufficient down-regulation of hippocampal activation in order to suppress the 

strong negative cue-target link, a pattern found in the fMRI study. 

As already mentioned in the discussion of the behavioral data, the idea of context-

dependent modulation of encoding processes, however, is only speculative and although 

results at the behavioral and imaging level can be integrated plausibly within this idea, future 

studies would be needed to account for processes activated during the encoding phase. 

Additionally, it has to be taken into account that fNIRS can only measure brain activity at the 

cortical level and that subcortical processes can only be speculated about when using this 

method. Nonetheless, the suggested model provides an interesting framework for future 

research investigating modulation of thought suppression by valence and supports the idea 

that processes during encoding might influence thought suppression more than previously 

assumed. However, as mentioned before an alternative explanation might be found 

considering the influence of certain personality traits and molecular mechanisms on thought 

suppression abilities, which have not been controlled for in previous studies and which will be 

discussed in paragraph 4.3. and 4.4.. 

Modulation by TBS 

 In an attempt to establish the link between dlPFC activation and thought suppression 

from another viewpoint, iTBS was applied to the right dlPFC in order to investigate the 

beneficial effects of stimulating this region on the inhibitory control of thoughts. No direct 

evidence was found for improved thought inhibition by means of iTBS. Changes in O2Hb 

showed stronger activation of the right dlPFC and HHb changes indicated higher activation 

during no-think than during think trials only in the verum-stimulated group, both, however, 

without any evidence of an effect of time. Although this is quite speculative it might be that 

heightened overall activation of the dlPFC during the second measurement, as found in the 

pattern of O2Hb signal change, might have blunted this effect. In favor of this claim is the 

above described higher incidence of good suppressors in the verum than in the sham group 

following iTBS. It seems thus that to some extent suppression performance can be influenced 

through external stimulation of the right dlPFC, thereby delivering more direct evidence of its 

contribution to thought inhibition. 

4.2.2.  ERPs – The Electrophysiological Underpinnings of Thought Inhibition 

 Five ERP components were isolated which were modulated condition-specific by 

either think or no-think trials. Two fronto-centrally distributed positive components peaking 

at about 200 ms and 560 ms were found to reflect suppression-related effects, showing 
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reduced amplitudes during no-think relative to think trials. Topographical analyses were 

performed to investigate whether the two components showing the same think > no-think 

effect and similar scalp distribution, differ in their topographical distribution and, by this, 

reflect qualitatively different processes generated by different neural sources or if they reflect 

activity from one neural generator prolonged in time (Rugg & Coles 1995). Results suggested 

the latter. This is further supported by the same effect of repeated measurement, both 

components showing overall higher amplitudes during the first measurement day. The later 

positive component has already been found in previous ERP studies investigating the 

electrophysiological correlates of thought suppression in the TNT (e.g. Bergström et al 2009a; 

Bergström et al 2009b; Bergström et al 2007). In studies investigating memory recollection 

with the old/new recognition paradigm, the late positive component has been shown to 

increase in amplitude during successful identification of an item as old and even more so 

during correct identification of its source (Wilding 2000; Wilding, Doyle & Rugg 1995). 

Other studies have shown an increase in the late positivity during recollection of an item 

relative to simply indicating it as being familiar (Duzel, Yonelinas, Mangun, Heinze & 

Tulving 1997). A lack of amplitude modulation related to old/new judgments has been found 

in patients with hippocampal lesions (Duzel, Vargha-Khadem, Heinze & Mishkin 2001), 

strengthening the assumption that the late positivity reflects item-specific recollection vs. 

recollection avoidance during intentional thought suppression. Bergström et al. (2009a) 

addressed the critical claim that lower amplitudes in the late positive component during no-

think trials might also reflect increased amplitudes due to the activation of retrieval processes 

and that the inhibition of recollection is the default state which does not necessitate the active 

modulation of neural processes. By switching the task instruction halfway through the 

experiment for some of the target stimuli, they could show manipulation-related amplitude 

modulations. Targets that were suppressed in the second half of the experiment after being 

retrieved during the first half showed even more amplitude reductions than items that were 

suppressed throughout the whole experiment. Considered in total, this suggests that the 

fronto-centrally distributed positive components found in the present study might be the 

electrophysiological correlate of the suppression-related hippocampal reductions observed in 

the present work and previous fMRI studies by Anderson et al. (2001) and Depue et al. (2010; 

2007). Higher overall amplitudes during the first execution of the TNT procedure might 

reflect the need for increased engagement of control mechanisms. This is supported by 

previous findings showing an increase of suppression ability with practice (Anderson & 

Green 2001). The lack of a no-think specific effect as well as no improvement of suppression 
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performance at day 2 might, however, as already hypothesized in paragraph 4.1, might have 

been caused by the within-subject design. Participants knew they would have to recall all of 

the targets in the end, regardless of earlier task instructions. Increased overall amplitudes 

might thus reflect increased effort or compliance to follow the experimental instructions 

during the first encounter with the paradigm. 

 In addition to the suppression-related positive components, three negative components 

peaking around 300 ms, 500 ms and 1100 ms showed higher amplitudes during no-think 

trials. The first left frontally distributed negative component likely reflects an N2-like 

deflection which has been linked to response inhibition in Go/Nogo tasks (Kok 1986; Kopp et 

al 1996; Van Veen & Carter 2002) and has been found in earlier ERP studies using the TNT 

(Bergström et al 2009b; Mecklinger et al 2009). Mecklinger et al. (2009) could show a 

significant correlation between the N2 elicited by no-think and the N2 elicited by inhibition of 

motor responses in a Stop Signal task, supporting the claim that it reflects more general 

electrophysiological processes recruited during the overall stopping of unwanted responses, 

whether cognitive or motor.  

The negative component around 500 ms most likely reflects an N4, which has been 

observed in the time range between 400 to 600 ms during semantic and nonsemantic conflict 

monitoring at fronto-central electrodes (Hofmann, Tamm, Braun, Dambacher, Hahne & 

Jacobs 2008; Holcomb 1993; Kiehl 2000; Yang & Zhang 2011). Hofmann et al. (2008) for 

example showed increased N4 amplitudes during states of high conflict in a lexical decision 

task using non-word strings. Yang and Zhang (2011) performed a gambling game study and 

could show increased negativity in the N4 during high risk situations, which were assumed to 

reflect situations inducing higher conflict between subjects’ motivationally based tendencies 

to receive new cards and the task instruction predicting low chances of success, given the 

value of the already received cards. Increased negative amplitudes during no-think trials 

observed in the present work around 500 ms, might thus reflect attentional processes required 

to control for the conflict between the more natural process of trying to retrieve an association 

when presented with its cue and the instruction to avoid this recollection. Supporting this idea 

are results from LORETA source analyses performed by Hofmann et al. (Hofmann et al 

2008), showing that the most likely source of the N4 is the medial frontal gyrus, which has 

been further established as part of the neural network controlling the suppression of unwanted 

thoughts in the present work. 

The late centrally distributed negative component peaking around 1100 ms showed 

no-think related higher amplitudes as well. Furthermore, it could be shown that this amplitude 
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increase reliably predicted behavioral suppression performance and significantly correlated 

with increased activation during no-think trials in bilateral dlPFC. This suggests that the late 

negativity might most truly reflect suppression related activation in the dlPFC, while the N2, 

as suggested above is related to general executive control and the N4 to the re-allocation of 

attentional resources. 

Modulation by iTBS 

 The only component affected by iTBS was the N4, which showed higher overall 

amplitudes in the actively stimulated group post treatment in the right-lateralized electrode 

positions. Findings by Hofmann et al. (2008) that the medial frontal gyrus is the most likely 

neural generator of the N4 supports the assumption that this effect stems from application of 

iTBS to the right dlPFC. The lack, however, of a specific effect on the no-think related 

amplitude modulation limits an interpretation in terms of reflecting improved cognitive 

control. The finding of a higher number of good suppressors in the verum stimulated group as 

well as the above described increased dlPFC activity during no-think trials found in the fNIRS 

data, however, might indicate some beneficial effect on thought suppression by increasing 

activation in the right dlPFC by means of iTBS. Given that no other component showed 

modulation by iTBS and given that the N4 has been shown to be involved in conflict 

monitoring, a process involving the activation of attentional resources, it might be that 

stimulation of the dlPFC results not so much in the alteration of executive control processes 

per se, but more in the increased allocation of attentional resources to the task at hand, thereby 

resulting in more efficient thought suppression, as measured by the number of good and bad 

suppressors in each group. The N4 in the context of the TNT thus most likely reflects more 

general attention-related, instead of task-specific processes. This idea is supported by the 

finding that only the late negativity significantly correlated with increased activation of the 

dlPFC in the fNIRS data, suggesting a dissociation of task-related strategic late and earlier 

task-independent attentional processes in the dlPFC signalling the need for thought control. 

This highlights the benefits of a combination of the two methods, taking advantage of 

defining the spatial location of neural activation by fNIRS and the more accurate investigation 

of the temporal pattern of activation within this source by ERPs. 

4.3. The Influence of Certain Personality Traits on Thought Inhibition 

To clarify potential inter-individual differences modulating the ability to actively 

suppress thoughts in the TNT, regression analyses were performed including measurements of 

depressive (i.e. RSS, BDI, HADS-D and ADS) and anxious symptoms (i.e. HADS-A, 
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PANAS, and STAI). While the anxiety-scales did not predict suppression performance as 

measured by the BSI, overall higher scores in the depression-scales significantly accounted 

for decreasing success in thought suppression. Replicating findings by Hertel and Gerstle  

(2003), especially ruminative tendencies, indicated by increased scores on the RSS (Kühner et 

al 2007), seemed to interfere with successful control over unwanted thoughts. Rumination is 

described as one of the key features expressed by patients with MDD (Donaldson & Lam 

2004; Donaldson, Lam & Mathews 2007), which have repeatedly been shown to perform 

worse on tasks requiring inhibitory processes (Merriam, Thase, Haas, Keshavan & Sweeney 

1999; Trichard, Martinot, Alagille, Masure, Hardy, Ginestet et al 1995), including the TNT 

(Hertel & Gerstle 2003; Hertel & Mahan 2008; however Joormann et al 2005). This inhibitory 

deficit has been linked to hypofrontal functioning during depressive states (Dolan, Bench, 

Brown, Scott & Frackowiak 1994; Galynker, Cai, Ongseng, Finestone, Dutta & Serseni 

1998), which is supported by studies showing heightened recruitment of prefrontal regions 

during execution of inhibition in patients with MDD in order to perform at the same level as 

healthy control subjects (Harvey, Fossati, Pochon, Levy, Lebastard, Lehericy et al 2005). 

Although the sample in the current work only comprised healthy subjects, it might be that 

lower prefrontal functioning constitutes an endophenotype not of depression itself but of 

ruminative response style, which surfaces in impaired performance on inhibitory tasks and 

depressive symptoms. This hypothesis is supported by higher no-think related right dlPFC 

recruitment with increasing scores on the RSS and other measures of depression observed in 

both O2Hb and HHb.  

As mentioned above, the anxiety-scales used in the current work did not predict 

interindividual differences in TNT performance as a whole. The trait subscale of the STAI 

(Spielberger et al 1970), however, significantly correlated with the BSI. Higher trait anxiety 

significantly interfered with successful thought inhibition, which has been shown previously 

by Waldhauser et al. (2010). As with depression, intense states of anxiety have been found to 

result in lowered executive functioning. Eysenck et al. (2007) discussed this effect as resulting 

from decreased processing efficiency and resources during a state requiring the organism to 

prepare for fight or flight reactions considered from an evolutionary viewpoint. This idea is 

supported by higher right dlPFC activation during no-think trials in subjects displaying higher 

trait anxiety found in both O2Hb and HHb, which might reflect compensatory ‘over-

activation’ of cognitive resources in anxious subjects. 

Integrating the results of impaired suppression at a behavioral level and increased right 

dlPFC activation in healthy subjects displaying ruminative and anxious tendencies is 
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suggestive of related processes leading to worse thought suppression at different described 

levels. This link, however, is only indirect. An integration of both levels, to gain more direct 

insight into the influence of interindividual differences concerning depression- and anxiety-

related symptoms has been attempted by calculating an interaction term between thought 

suppression at the neural level in the dlPFC and the outcome at the behavioral level measured 

by the BSI. This interaction term is thought to reflect only that amount of dlPFC activation 

explained by actual inhibitory processes; in other words, the higher the interaction between 

the two factors, the more the observed dlPFC activation contributes to the end results of lower 

recall of no-think items. Interestingly, despite simple positive correlations between ruminative 

tendencies, other measures of depressive symptoms and trait anxiety and right dlPFC 

activation, negative correlations between the same psychometric measures and the dlPFC-BSI 

interaction term were found in either O2Hb, HHb or both in the bilateral dlPFC. This suggests 

that, in spite of higher dlPFC activation, possibly due to attempts to compensate for lower 

prefrontal activation, subjects scoring higher on the applied psychometric measures are less 

effective in exerting voluntary thought inhibition. In line with this, an alternative idea is that 

deficient thought suppression, despite increased dlPFC activation is mediated by altered 

hippocampal activation. Studies have shown heightened hippocampal activity during 

rumination (Denson, Pedersen, Ronquillo & Nandy 2009) and in remitted depressed subjects 

scoring high on the RSS (Arnonea, Pegga, Mckiea, Downeya, Elliotta, Deakina et al 2009). It 

might thus be that increased dlPFC activation is not sufficient to compensate for higher 

hippocampal activation in subjects displaying ruminative tendencies, which in turn results in 

the observed diminished suppression success. In favor of this idea is the observed correlation 

between deactivation of the left hippocampus during no-think trials below baseline and RSS 

scores in the fMRI study, reflecting that an increased tendency to display ruminative traits is 

accompanied by less effective down-regulation of the hippocampus during thought 

suppression. The effect of this correlation, however, only approached significance and 

correlations with the dlPFC found in the fNIRS data were not found in the fMRI data. 

Nonetheless, given, that the samples were comprised of only healthy subjects, that variations 

in RSS scores were small and taking into account the above mentioned study linking 

increased hippocampal activation and rumination, data gathered in the current work support 

the hypothesis of ruminative tendencies interfering with thought suppression due to altered 

functioning of structures involved in these inhibitory processes.  
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4.4. Influence of CREB1 and KCNJ6 

 CREB1 has been linked to processes of long-term potentiation, which is known to be 

the neural basis of synaptic plasticity and memory formation (Alberini 2009; Josselyn & 

Nguyen 2005). CREB is expressed throughout the brain, including the hippocampus and it has 

been shown in rodents that poor performance in the Morris water maze was directly correlated 

with decreased levels of hippocampal CREB (Brightwell, Gallagher & Colombo 2004). 

Therefore, the current work was interested in whether a functional polymorphism (i.e. 

rs2253206) in the CREB1 gene might be implicated in interindividual differences in 

suppression performance in the TNT. An A-to-G transition has been shown to diminish 

activity of the CREB promoter, increasing the risk for disorders associated with impaired 

executive functioning such as depression (Zubenko et al 2002). Surprisingly, although thought 

suppression in the TNT is being accomplished by structures known to be involved in 

executive functions, no evidence was found for worse performance of carriers of at least one 

G-allele. This might, since analyses were performed at an explorative level and not in a pre-

stratified sample, be due to an insufficient sample size, considering the very small effect sizes 

of genetical analyses. In favor of this, the interaction, which would indicate better suppression 

performance of homozygous carriers of the A-allele, just did not achieve significance at trend-

level. Given the established role of CREB in the formation of long-term memories, it might, 

however, also be that the lack of an effect found on thought suppression reflects the long-term 

memory independent processes in the TNT. It has long been discussed to what extent the TNT 

measures long-term disruption of memory traces and a very recent study by Meier et al. 

(2011) has shown a rebound effect of no-think items when memory was probed again one 

week later. Considering, the more short-term and non-lasting disruption of cue-target 

associations in the TNT, a lack of an effect of diminished CREB1 functioning through an A-

to-G transition, might reflect this long-term memory independence of the TNT at a molecular 

level. It has furthermore been suggested that the essential mechanism of CREB1 might be 

compensated for by other unknown variables (Alberini 2009; Josselyn & Nguyen 2005). 

 The other SNP the current work was interested in, is a G-to-A transition in the KCNJ6 

gene (i.e. SNP rs2070995), which has recently been linked with an increased risk of 

displaying ruminative tendencies and developing anxiety-related disorders (Lazary et al 

2011). It could be shown that carriers of at least one A-allele performed worse in the TNT, as 

reflected by similar recall of think and no-think items in the recall test. These findings are 

very interesting regarding the strong detrimental influence of ruminative and anxious 

tendencies on thought suppression discussed in paragraph 4.3. Investigation of differences at 
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the neurophysiological level revealed more extensive activation in the right dlPFC during no-

think trials in carriers of at least one A allele. This increased activation in the absence of 

respective suppression performance by A allele carriers, might reflect the negative correlation 

found between the interaction term of dlPFC activation and the BSI with RSS and trait 

anxiety scores, indicating insufficient additional recruitment of prefrontal regions. It has been 

stated that higher rumination scores are linked to increased hippocampal activation (Denson et 

al 2009), which is not sufficiently compensated for even by increased activation of top-down 

control regions. This claim was supported by showing less effective hippocampal down-

regulation below baseline during no-think trials in subjects displaying high ruminative and 

anxious tendencies. Integrating the results obtained at the behavioral, neurophysiological and 

genetical level, it seems very likely that the KCNJ6 G-allele at least partly reflects the 

underlying molecular mechanisms of efficient inhibitory control.
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5. Summary and Outlook 

 The present work was dedicated to the investigation of the neural mechanisms 

underlying cognitive inhibition/thought suppression as well as the different variables 

influencing these mechanisms at the cognitive, the neurophysiological and 

electrophysiological as well as the molecular level. Thought suppression was probed by using 

Anderson’s TNT first introduced in Science in 2001 and its underlying neural mechanisms 

were investigated by means of fNIRS, fMRI, ERP and TBS. 

 Neurophysiological data collected with fNIRS and fMRI have added up to the existing 

evidence of a fronto-hippocampal network working in sync during the voluntary inhibition of 

unwanted thoughts. Some evidence has been presented suggesting that external stimulation of 

right dlPFC activation by means of iTBS might improve thought suppression, strengthening 

the evidence for an implication of this region in the TNT. By combining fNIRS with ERP, a 

fronto-centrally distributed negative component around 1100 ms could be isolated, most 

likely reflecting suppression-related activation of the dlPFC. Suppression-related amplitudes 

showed significant correlations with no-think related activation in the dlPFC and predicted the 

behaviorally measured suppression effect. Suppression-specific increases of amplitudes in the 

actively stimulated iTBS group were shown in the N4. Given that no suppression-related 

iTBS effect was observed in the dlPFC, a dissociation of earlier task-independent attentional 

processes, as measured by ERPs and late task-related strategies in the dlPFC reflected by the 

two negative components has been suggested. Two positive components around 200 and 550 

ms showing no-think related amplitude reductions were hypothesized to most likely reflect 

prolonged hippocampal down-regulation. An N2-like component was identified and 

hypothesized to reflect general top-down control mechanisms exerted during paradigms 

probing executive functions. This dissociation points to the advantage of combining 

functional imaging methods and electrophysiological measures in disentangling activation 

patterns in time, which might at first seem to reflect the same neurophysiological process. 

Given inconsistencies in the previous literature, it was considered how stimulus 

valence would influence thought suppression by manipulating the emotional content of the to-

be-suppressed target. Inconsistent findings of the current work regarding the ability to 

suppress negative word or picture stimuli leave this debate unresolved. It has, however, been 

hypothesized that performance in the TNT might depend on the combination of valence 

conditions included in the paradigm. During the learning/encoding phase, inclusion of a 

positive valence condition might lead to more flexible processing strategies, blunting the 
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valence effect. Just comparing neutral and negative stimuli might, on the contrary, have 

introduced an increased contrast between both valences, increasing the subjects focus on the 

negative stimuli resulting in the inability to suppress negative pictures in the fMRI study. The 

latter has already been shown by Hertel and Gerstle (2003) and Marx et al. (2008) when 

comparing positive and negative words and which has been ascribed to results showing better 

encoding and memory for negative material (Kensinger & Corkin 2004; Ochsner 2000).  

Neurophysiological evidence in the present work suggested insufficient down-

regulation of the amygdala during suppression of negative pictures as leading to the lack of 

cognitive resources required to suppress the well-encoded link between face cues and 

negative pictures. This would require additional activation of the dlPFC relative to the 

suppression of neutral pictures, in turn resulting in insufficient decrease of hippocampal 

activation, where face-picture associations have been stored during the learning phase. 

Alternatively, it has been suggested that inconsistent findings regarding the suppression of 

negative stimuli or suppression at all might be due to certain personality traits and/or genetic 

variables, found in the present work to contribute to thought inhibition in the TNT. 

Rumination, which is a key feature in MDD and describes the extent an individual is coping 

with depressive moods (Nolen-Hoeksema 2000), has been shown to be a valid predictor of 

thought suppression performance. Increased ruminative tendencies led to worse suppression 

performance, which is in line with data by Hertel and Gerstle (2003) and which in the present 

work has been linked to less effective recruitment of the dlPFC and in turn less effective 

down-regulation of hippocampal activity during no-think trials. Trait anxiety has also been 

shown to interrupt effective thought suppression despite higher, however inefficient 

recruitment of the dlPFC. Both, rumination and trait anxiety have been associated with 

disorders known to lead to decreased performance on tests of executive functions, 

strengthening the assumption that the TNT is a measure of an active mechanism exerting 

control over memory processes paralleling the top down executive control over motor 

responses in the Go/Nogo paradigm (Anderson & Green 2001). Complementing the findings 

regarding ruminative tendencies and decreased thought inhibition a functional polymorphism 

in the KCNJ6 gene, encompassing a G-to-A transition, has been shown to disrupt thought 

suppression despite increased activation of the dlPFC. 

Limitations 

While the current studies have added a lot of evidence concerning the existence and 

modulation of an active thought suppression mechanism which can be recruited to adapt the 

mental environment in response to certain cues and which can result in the weakening of pre-
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established cue-target associations, some limitations have to be mentioned. The first and most 

prominent limitation is the lack of evidence for below-baseline suppression, which has been 

regarded as the indicator of effective suppression (Anderson & Green 2001). Lower findings 

of no-think than think stimuli could be described as an effect of simply practiced recall of 

only some of the items (i.e. think). In other words, worse recall of no-think than think items 

might be an effect of memory enhancement for practiced items (i.e. think) and not be viewed 

as reflecting a disruption of an existing memory trace due to voluntarily exerted cognitive 

control. In relation to this issue, it has to be remarked that the present work did not include an 

independent probe recall test due to practical reasons when using picture stimuli. Only the 

pilot study using word stimuli would have provided the opportunity to test recall by means of 

a semantically-related cue and the initial letter of the target word. It has been advocated by 

Anderson and Green (2001) that impaired recall of no-think relative to think or baseline 

targets might also be explained by alternative mechanisms such as the formation of new 

associations between the cue and a divisionary thought or, as already mentioned, simply a 

degradation of the association between cue and target due to the lack of practice. If, however, 

recall would be also shown to be impaired when presented with a semantically-related cue, 

interference by a newly formed association could be ruled out. One could thus argue that, in 

the current work, lower recall of suppressed relative to retrieved items might only reflect a 

practice or interference effect. Given, however, the vast amount of data on the TNT showing 

lower recall of no-think than think stimuli in both same and independent probe recall tests 

(e.g. Anderson & Green 2001; Anderson et al 2004; Bergström et al 2009b; Lambert et al 

2010), the paradigm seems well-established as measuring cognitive control over thoughts by 

means of weakening cue-target associations during suppression and it can be assumed that the 

observed difference in recall of think and no-think items reflects these control processes. 

Furthermore, the current work could replicate findings of previous imaging and 

electrophysiological studies supporting the evidence of a fronto-hippocampal network which 

is activated during voluntary thought suppression and whose activation level is directly 

related to impaired recall at the behavioral level. Considering both, the paradigm being a well-

established measure of cognitive inhibition and replication of the neural pattern previously 

observed by other groups, it can be assumed, even in the absence of testing with an 

independent probe, that results presented in the current work add to the status quo of thought 

suppression mechanisms.  

Another factor to be mentioned is the use of a fixation baseline in the functional 

imaging studies. Contrasting a task to an unconstrained baseline may contain an element of 
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uncertainty due to the lack of knowledge about the cognitive processes the participant is 

engaging in at the time of the fixation. Additional analyses performed in the current work to 

clarify the underlying pattern of the think/no-think contrast in the dlPFC and hippocampus as 

well as to show hippocampal deactivation during no-think trials, have thus to be interpreted 

with caution. Future studies should attempt to include more constrained baseline trials in 

order to be able to non-mistakenly ascribe the causes of relative activation and deactivation in 

the ROIs investigated in the present work. Some certainty, however, that comparisons against 

the fixation baseline in the present studies accurately reflect relative changes during think and 

no-think trials respectively can be assumed given that both conditions would be evenly 

affected by unpredictable fluctuations during fixation. 

Outlook 

Supporting the role of the right dlPFC as the key structure exerting inhibitory control 

on the hippocampus, some beneficial effects of iTBS have been found. As already discussed 

in the according section, the evidence, however, is only indirectly indicative of a causal 

connection between iTBS and improved suppression performance. This has been assumed to 

be due to the within-subject design used in the present work. While normally in the TNT the 

recall test comes as a surprise, in the TBS study the subjects knew that they were to recall all 

pictures irrespective of previous task instructions. It has been orally reported by some subjects 

that, knowing this, they attempted to retrieve also the no-think items during the inter-trial 

interval following the face cue. Given that despite this potential non-compliance during the 

TNT more good suppressors were found in the verum-stimulated group, application of TBS as 

a measure of the contribution of the dlPFC to cognitive control provides an interesting tool in 

future studies using the TNT. It would, however, be important to use a more appropriate 

counter-balanced or between-subject design preventing obscuration of effects due to 

familiarity with the paradigm. Furthermore, it would be interesting to apply a cTBS protocol, 

which has been shown to temporarily disrupt activity in the underlying cortical region (Huang 

et al 2005), in order to investigate suppression performance in a state of diminished prefrontal 

functioning. This would be especially interesting, considering evidence in the current work 

suggesting inefficient activation of the dlPFC in subjects displaying high ruminative and 

anxious tendencies as well as evidence of impaired TNT performance in disorders linked to 

lowered prefrontal activation and dysfunctional executive control such as ADHD (Depue et al 

2010) and depression (Hertel & Gerstle 2003). 

Some success has been presented in the present work linking the electrophysiological 

correlates of thought suppression to the fronto-hippocampal network observed in fNIRS. 
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Source localization analyses1 could provide further insight into the neural structures 

underlying the single ERP components showing suppression-related amplitude modulations 

and are needed to probe the hypothesized dissociation between general attentional and task-

related processes both executed by the dlPFC and contributing to successful thought 

inhibition. 

Future studies are needed to address these points. The current studies, however, 

provide an interesting new starting point for this research by further having outlined 

behavioral, neurophysiological and molecular features of the TNT, contributing to the 

evidence of a neurobiological model of memory control. Although very recently Meier et al. 

(2011) presented a study showing that impaired recall of suppressed items was only 

temporary, this work confirms the existence of a process by which people can actively prevent 

unwanted experiences from entering awareness and further specified the neural system 

underlying these processes.  

By means of investigating thought suppression at different levels, the current work 

supports the idea of the TNT reflecting an executive control mechanism, which has been 

shown to be sensitive to alterations in stimulus valence to some extent, neurophysiological 

functioning as indicated by its sensitivity to iTBS as well as functional modulations at the 

molecular level and most importantly to personality traits, such as rumination and trait anxiety 

which have been linked to deficient executive functioning before. 

                                                 
1 sLORETA was not performed in the current work due to the use of only 22 scalp electrodes. 
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7. Appendix 

Table A - 1: List of word stimuli from the BAWL used in the pilot study. 

  
 

Label 

 

Word 

 

Valence 

 

Arousal 

 

Imageability 

 

L 

 

P 

 

S 

 

Frequency 

 

neutral Nachbar -0.10 ± 0.57 2.38 ± 0.81 5.00 ± 1.50 7 6 2 43.50 
 Reihe 0.00 ± 0.73 1.94 ± 0.87 3.27 ± 1.45 5 3 2 152.67 
 Stelle 0.00 ± 0.55 2.22 ± 1.00 3.38 ± 1.86 6 5 2 265.00 
 Zahl 0.06 ± 0.60 2.22 ± 1.06 5.81 ± 1.88 4 3 1 197.83 
 Arbeit 0.05 ± 1.43 2.83 ± 0.79 3.41 ± 1.56 6 5 2 532.00 
 Gekicher 0.00 ± 1.15 3.11 ± 0.96 5.11 ± 1.36 8 7 3 0.67 
 Kuhle -0.05 ± 0.89 1.80 ± 0.89 3.23 ± 1.57 5 4 2 0.67 
 Magma 0.00 ± 0.94 3.05 ± 1.31 5.67 ± 2.00 5 5 2 1.33 
 Organ 0.00 ± 0.92 2.74 ± 0.99 4.68 ± 1.81 5 5 2 55.00 
 Ruecklage 0.03 ± 1.57 2.11 ± 0.96 1.96 ± 1.22 8 7 3 39.50 
 Tatsache 0.00 ± 0.92 2.50 ± 0.70 1.88 ± 1.40 8 7 3 159,33 
 Zeugin 0.00 ± 0.94 3.35 ± 1.17 4.11 ± 1.90 6 5 2 1.67 
 Aussage 0.00 ± 0.47 2.22 ± 0.94 2.33 ± 1.22 7 6 3 53.33 
 Gelenk 0.05 ± 0.60 2.32 ± 1.00 4.18 ± 1.79 6 6 2 2.00 
 Kuppe 0.05 ± 0.83 2.22 ± 1.11 3.50 ± 1.92 5 4 2 2.17 
positive Harmonie 2.50 ± 0.71 1.76 ± 1.20 3.44 ± 1.13 8 7 3 9.50 
 Urlaub 2.45 ± 0.51 2.56 ± 1.09 5.09 ± 1.82 6 5 2 45.67 
 Idylle 2.50 ± 0.71 1.82 ± 1.07 5.33 ± 0.71 6 5 3 1.50 
 Sommer 2.50 ± 0.69 2.22 ± 1.31 5.64 ± 1.40 6 5 2 68.33 
 Wahrheit 2.50 ± 0.85 3.00 ± 1.27 2.22 ± 1.39 8 6 2 125.50 
 Zuhause 2.50 ± 0.71 1.88 ± 1.11 5.33 ± 1.32 7 6 3 2.83 
 Frieden 2.53 ± 0.71 1.61 ± 1.20 4.73 ± 1 85 7 6 2 186.00 
 Freund 2.56 ± 0.61 2.05 ± 1.13 6.04 ± 1.18 6 5 1 206.17 
 Natur 2.35  ± 0.75 1.89 ± 1.08 4.91 ± 1.57 5 5 2 118.33 
 Heilung 2.60 ± 0.52 2.35 ± 1.27 3.22 ± 1 39 7 5 2 8.33 
 Sonne 2.60 ± 0.060 2.89 ± 1.18 6.41 ± 1.10 5 4 2 90.33 
 Glück 2.62 ± 0.65 2.93 ± 1.53 3.81 ± 1.92 5 4 1 94.50 
 Freude 2.70 ± 0.57 3.41 ± 1.33 4.27 ± 1.55 6 5 2 86.33 
 Paradies 2.80 ± 0.42 2.29 ± 1.65 5.33 ± 1.22 8 7 3 12.00 
 Liebe 2.90 ± 0.31 3.63 ± 1.61 3.73 ± 2.14 5 4 2 113.50 
negative Giftgas -3.00 ± 0.00 4.22 ± 1.00 3.78 ± 2.17 7 7 2 1.00 
 Krieg -2.90 ± 0.32 4.57 ± 0.60 5.44 ± 1.74 5 4 1 315.33 
 Attentat -2.40 ± 0.70 4.71 ± 0.59 4.67 ± 2.00 8 7 3 6.83 
 Nazi -2.90 ± 0.32 4.67 ± 0.69 4.89 ± 1.76 4 4 2 16.50 
 Unfall -2.35 ± 0.67 4.24 ± 0.70 4.32 ± 1.81 6 5 2 51.83 
 Alptraum -2.80 ± 0.63 4.53 ± 0.62 4.67 ± 1.94 8 7 2 2.67 
 Folter -2.80 ± 0.52 4.68 ± 0.58 4.23 ± 1.60 6 6 2 2.50 
 Gefängnis -2.26 ± 0.79 3.05 ± 1.39 6.58 ± 0.76 9 8 3 52.67 
 Mord -2.80 ± 0.42 4.44 ± 0.92 5.33 ± 1.12 4 4 1 42.00 
 Pest -2.80 ± 0.42 4.00 ± 1.08 4.67 ± 1.12 4 4 1 2.67 
 Tod -2.80 ±0.63 4.06 ±1.21 4.44 ± 1.94 3 3 1 169.83 
 Atombombe -2.79 ± 0.48 4.42 ± 1.12 6.15 ± 1.19 9 9 4 48.17 
 Tyrann -2.60 ± 0.84 3.81 ± 1.12 4.78 ± 0.97 6 5 2 1.67 
 Leiche -2.45 ± 0.76 4.14 ± 0.85 5.32 ± 1.49 6 4 2 24.67 
 Sucht -2.30 ± 0.48 4.00 ± 0.97 4.00 ± 1.58 5 4 1 2.00 
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Table A - 2: List of IAPS pictures used as target pictures in the emotion study, the fMRI and 
the TBS study 
 
 

Label 

 

IAPS picture no. 

 

Description 

 

Valence  

 

Arousal  

 

 

Study 

 

neutral 
 
 
 
 
 
 
 
 

2597 Market 5.61 ± 1.26 4.09 ± 2.10 Emotion; fMRI 
1935 Hermit crab 4.88 ± 1.44 4.29 ± 1.95  
7041 Baskets 4.99 ± 1.12 2.60 ± 1.78  
7640 Skyscraper 5.00 ± 1.31 6.03 ± 2.46  
7546 Bridge 5.40 ± 1.13 3.72 ± 2.16  
2570 Man 4.78 ± 1.24 2.76 ± 1.92  
4000 Artist 4.82 ± 1.66 3.97 ± 2.15  
2840 Chess 4.91 ± 1.52 2.43 ± 1.82  
7207 Beads 5.15 ± 1.46 3.57 ± 2.25  
2487 Musician 5.20 ± 1.80 4.05 ± 1.92  
1675 Buffalo 5.24 ± 1.48 4.37 ± 2.15  
2890 Twins 4.95 ± 1.09 2.95 ± 1.87  
7036 Shipyard 4.88 ± 1.08 3.32 ± 2.04  
2514 Woman 5.19 ± 1.09 3.50 ± 1.81  
2191 Farmer 5.30 ± 1.62 3.61 ± 2.14  
2518 Quilting 5.67 ± 1.66 3.31 ± 1.88  
1121 Lizard 5.79 ± 1.61 4.83 ± 1.98  
1670 Cow 5.82 ± 1.63 3.33 ± 1.98  

positive 
 
 
 
 
 
 
 
 
 

1710 Puppies 8.34 ± 1.12 5.41 ± 2.34 Emotion 
2070 Baby 8.17 ± 1.46 4.51 ± 2.74  
2091 Girls 7.68 ± 1.43 4.51 ± 2.28  
2165 Father 7.63 ± 1.48 4.55 ± 2.55  
2340 Family 8.03 ± 1.26 4.90 ± 2.20  
2530 Couple 7.80 ± 1.55 3.99 ± 2.11  
4626 Wedding 7.60 ± 1.66 5.78 ± 2.42  
4660 Erotic Couple 7.40 ± 1.36 6.58 ± 1.88  
5200 Flowers 7.36 ± 1.52 3.20 ± 2.16  
5830 Sunset 8.00 ± 1.48 4.92 ± 2.65  
5831 Seagulls 7.63 ± 1.15 4.43 ± 2.49  
5833 Beach 8.22 ± 1.08 5.71 ± 2.66  
7502 Castle 7.75 ± 1.40 5.91 ± 2.31  
8170 Sailboat 7.63 ± 1.34 6.12 ± 2.30  
8496 Water-Slide 7.58 ± 1.63 5.79 ± 2.26  
1604 Butterfly 7.11 ± 1.41 3.30 ± 2.17  
1750 Bunnies 8.28 ± 1.07 4.10 ± 2.31  
2311 Mother 7.54 ± 1.37 4.42 ± 2.28  

negative 
 
 
 
 
 
 

6415 Dead Tiger 2.21 ± 1.51 6.20 ± 2.31 Emotion; fMRI; 
9561 Sick Kitty 2.68 ± 1.92 4.79 ± 2.29 Modulation 
2799 Funeral 2.42 ± 1.41 5.02 ± 1.99  
2683 War 2.62 ± 1.78 6.21 ± 2.15  
9910 Car Accident 2.06 ± 1.26 6.20 ± 2.16  
3181 Battered Female 2.30 ± 1.43 5.06 ± 2.11  
6243 Aimed Gun 2.33 ± 1.49 5.99 ± 2.23  
9340 Garbage 2.41 ± 1.48 5.16 ± 2.35  
9320 Vomit 2.65 ± 1.92 4.93 ± 2.70  
6940 Tank 3.53 ± 2.07 5.35 ± 2.02  
9390 Dishes 3.67 ± 1.58 4.14 ± 2.52  
9440 Skulls 3.67 ± 1.86 4.55 ± 2.02  
9041 Scared Child 2.98 ± 1.58 4.64 ± 2.26  
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9265 Hung Man 2.60 ± 1.52 4.34 ± 2.09  
2750 Bum 2.56 ± 1.32 4.31 ± 1.81  
9921 Fire 2.04 ± 1.47 6.52 ± 1.94  
1274 Roaches 3.17 ± 1.53 5.39 ± 2.39  
9560 Duck In Oil 2.12 ± 1.93 5.50 ± 2.52  
3230 Dying Man 2.02 ± 1.30 5.41 ± 2.21 Modulation 
9220 Cemetery 2.06 ± 1.54 4.00 ± 2.09  
6831 Police 2.59 ± 1.50 5.55 ± 2.16  
9611 Plane Crash 2.71 ± 1.95 5.75 ± 2.44  
9620 Shipwreck 2.70 ± 1.64 6.11 ± 2.10  
2688 Hunters 2.73 ± 2.07 5.98 ± 2.22  
2981 Deer Head 2.76 ± 1.94 5.97 ± 2.12  
9415 Handicapped 2.82 ± 2.00 4.91 ± 2.35  
7380 Roach On Pizza 2.46 ± 1.42 5.88 ± 2.44  
9040 Starving Child 1.67 ± 1.07 5.82 ± 2.15  
9102 Heroin 3.34 ± 1.76 4.84 ± 2.50  
2718 Drug Addict 3.65 ± 1.58 4.46 ± 2.03  
2692 Bomb 3.36 ± 1.61 5.35 ± 2.19  
9181 Dead Cows 2.26 ± 1.85 5.39 ± 2.41  
9290 Garbage 2.88 ± 1.52 4.4 ± 2.11  
1050 Snake 3.46 ± 2.15 6.87 ± 1.68  
9230 Oil Fire 3.89 ± 1.58 5.77 ± 2.36  
9926 Flood 3.85  ± 1.59 4.83 ± 1.95  
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