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Doktorurkunde ausgehändigt am: ....................



Zusammenfassung

Thematik und Zielsetzung

Grundlegendes Verständnis der physikalischen Zusammenhänge innerhalb multifunktiona-

ler Materialien im Hinblick auf spätere potentielle Anwendungen ist eines der Hauptziele

der heutigen Forschungsbemühungen in der Festkörperphysik. Im Wesentlichen geht es

dabei um das Ausnutzen von intrinsischen Kopplungseffekten, um zusätzliche Funktiona-

lität im Vergleich zur heutigen auf Miniaturisierung von halbleiterbasierten Bauelementen

aufbauenden Informationstechnologie zu erreichen.

Die vorgelegte Dissertation zielt in diesem Themengebiet auf die systematische Unter-

suchung der Kopplungseffekte zwischen Kristallgitterdynamik und Magnetismus in den

multiferroischen Manganaten ab. Konkret geht es um das Modelsystem der multiferroi-

schen Selten–Erd–Manganate RMnO3 mit orthorhombischer Pnma–Struktur. Die zu die-

sem Zweck verwendeten experimentellen Techniken waren Raman und Fourier–Transform

Infrarot (FT–IR) Spektroskopie, mit deren Hilfe alle optisch aktiven Kristallgitterschwin-

gungen dieser Systeme spektroskopiert werden konnten. Zur Untersuchung der Kopp-

lungseffekte wurden die spektroskopischen Experimente polarisationssensitiv und unter

Variation der Probentemperatur durchgeführt, um insbesondere Renormalisierungseffek-

te der Gitterschwingungen im Temperaturbereich magnetischer Phasenübergänge nach-

weisen zu können. In Verbindung mit gitterdynamischen Rechnungen, die auf der Dich-

tefunktionaltheorie (DFT) basieren, wurden zwei Kopplungseffekte systematisch unter-

sucht: Spin–Phonon Kopplung (SPC) sowie Elektromagnon–Phonon Kopplung (EMPC).

Die Ergebnisse sind im Folgenden zusammengefasst.

Ergebnisse: Gitterdynamik der stöchiometrischen und dotierten

Selten–Erd Manganate

Grundlage für weitergehende Analysen der Kopplungseffekte ist die systematische Unter-

suchung der Gitterdynamik der beiden verwendeten einkristallinen Probenserien, also der

stöchiometrischen RMnO3 (R = Eu, Gd, Tb) Serie sowie der dotierten Eu1−xYxMnO3

(0 ≤ x ≤ 0.5) Serie. Um potentielle Beeinflussung durch Korrelationen der Gitterschwin-

gungen mit den magnetischen Eigenschaften in diesem Fall auszuschließen, wurden die
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Experimente bei Raumtemperatur durchgeführt, d.h. weit oberhalb des Temperaturbe-

reichs der magnetisch geordneten Phasen.

Als Vorstufe zu experimentellen Untersuchungen wurden gitterdynamische Rechnungen

basierend auf Dichtefunktionaltheorie (DFT) am System LaMnO3 durchgeführt. Auf diese

Weise konnten theoretische Daten für die Auslenkungsmuster der jeweiligen Phononen-

moden gewonnen werden, die anschließend für eine systematische Auswertung der Kopp-

lungseffekte genutzt wurden.

Der Ausgangspunkt einer Analyse der Gitterdynamik ist die Modenzuordnung aller expe-

rimentell beobachteten Raman und infrarot aktiven Phononen. Zu diesem Zweck wurde

GdMnO3 herangezogen, auf Grund seiner bis zum optischen Grad aufpolierten b–cut Pro-

benoberfläche und damit verbundenen guten Erfüllung der optischen Auswahlregeln sowie

der zumindest für die Raman–Spektren gegebenen Möglichkeit, mit bereits publizierten

Messungen an polykristallinen GdMnO3 zu vergleichen [IAL+06]. Zwischen beiden ergab

sich eine sehr gute Übereinstimmung bezüglich der Phononenfrequenzen und der Erfüllung

der optischen Auswahlregeln. Analog zu den Raman Spektren wurde eine Modenzuord-

nung mit Hilfe der polarisationssensitiven Reflektivität von b–cut GdMnO3 vorgenommen.

Die optischen Auswahlregeln in diesem System erlauben den Zugang zu Phononen mit

B1u sowie B3u Symmetrie. Insgesamt ergab sich für die Zahl der Phononen mit B1u und

B3u Symmetrie genau die Zahl, die von der Gruppentheorie vorhergesagt wird. Zusätzlich

konnten die durch Fits erhaltenen Phononenparameter, wie Resonanzfrequenz, Linien-

breite und ionische Plasmafrequenz, qualitativ verglichen werden mit Werten, die von

Schmidt et al. [SKR+09] durch Messungen an TbMnO3 gewonnen wurden. Zusammen

mit den Raman aktiven Phononen konnte so erstmals eine komplette Analyse der Git-

terdynamik von GdMnO3 durchgeführt werden.

Nach der systematischen Modenzuordnung konnte anschließend (i) sowohl der Einfluss

eines kompletten Ersatzes der R3+ Ionen in der stöchiometrischen RMnO3 (R = Eu, Gd,

Tb) Serie (ii) als auch der Einfluss von Dotierung in der Eu1−xYxMnO3 (0 ≤ x ≤ 0.5)

Serie, in der Eu3+ durch Y3+ ersetzt wird, untersucht werden. Dies geschah in der Form

einer vergleichenden Analyse der Veränderungen der Raman Spektren sowie der Reflekti-

vität beider Probenserien.

Bezüglich der Raman Spektren der RMnO3 Serie konnte folgendes beobachtet werden:

Auf der einen Seite wurden für Phononen, die im wesentlichen aus Verschiebungen der

O2− Ionen senkrecht zur MnO2 (ac) Ebene bestehen, deutliche Frequenzverschiebun-

gen hin zu größeren Frequenzen bei einer Reduzierung des R3+ Radius beobachtet, was

auf die mit der Reduzierung einhergehende Verminderung des Mn–O–Mn Verkippungs-

winkels zurückgeführt wurde. Auf der anderen Seite zeigte beispielsweise die symme-

trische Streckschwingung der MnO6 Oktaeder innerhalb der MnO2 (ac) Ebene nahezu

keine Abhängigkeit bezüglich einer Veränderung dieses Winkels. Insgesamt konnten al-

le beobachteten Frequenzverschiebungen der Raman aktiven Phononen in dieser Wei-

se durch die zuvor theoretisch berechneten Auslenkungsmuster der jeweiligen Phononen

vollständig erklärt werden. Ferner wurden Mischeffekte der Ag(1) und Ag(3) Moden in



guter Übereinstimmung mit der Literatur [IAL+06] nachgewiesen.

Bei Betrachtung der Reflektivität und somit der infrarot aktiven Phononen wurde zur

besseren Übersichtlichkeit eine Klassifizierung entsprechend der Auslenkungsmuster und

der Phononenfrequenzen benutzt, um die beobachteten Trends in Abhängigkeit vom vor-

liegenden R3+ Ion zu erklären. Diese können mit Hilfe des Modells eines einfachen har-

monischen Oszillators verstanden werden. In diesem Modell sind die zwei für die Pho-

nonenfrequenz entscheidenden Faktoren die reduzierte Masse der beteiligten Ionen sowie

die Kraftkonstanten der modulierten Bindungen des jeweiligen Phonons. Mit Hilfe dieses

Modells konnten unter Verwendung von quantitativen aus der Literatur entnommenen

Werten für die Gitterkonstanten und der jeweiligen R3+ Ionenmasse alle beobachteten

Trends innerhalb der RMnO3 Serie konsistent erklärt werden.

Die dotierte Eu1−xYxMnO3 Serie zeigte im Wesentlichen dieselben Trends. Bezüglich der

Raman aktiven Moden wurde ein nahezu identisches Verhalten wie bei der RMnO3 Serie

– diesmal in Abhängigkeit vom Dotiergrad x – beobachtet, d.h. positive Frequenzverschie-

bungen und Mischeffekte der Ag(1) und Ag(3) Moden. Die infrarot aktiven Moden zeigten

Abweichungen vom Verhalten der RMnO3 Serie und zwar bei den Moden mit starker Be-

teiligung der Eu3+ bzw. Y3+ Ionen. Auch diese Effekte konnten mit Hilfe des Modells des

einfachen harmonischen Oszillators erklärt werden. Ein weiterer Unterschied zwischen

dotiertem Eu1−xYxMnO3 und RMnO3 ist die Reduzierung der dipolaren Aktivität der in-

frarotaktiven Moden mit der niedrigsten Frequenz bei steigender Y3+ Dotierung. Da dieser

Effekt jedoch auf die niederfrequentesten infrarotaktiven Moden beschränkt ist, konnte

auch die dotierte Eu1−xYxMnO3 Serie als ebenso geeignet für eine Analyse der Korre-

lationseffekte zwischen Kristallgitterdynamik und Magnetismus wie die stöchiometrische

RMnO3 Serie angesehen werden. Diese Effekte wurden im Anschluss betrachtet.

Ergebnisse: Spin–Phonon Kopplung

Der erste systematisch analysierte Korrelationseffekt war die Spin–Phonon Kopplung

(SPC). Diese äußert sich als eine Renormalisierung der Phononfrequenzen beim Übergang

in die Temperaturregion der magnetisch geordneten Phasen. Der Ursprung der SPC ist die

dynamische Modulation der magnetischen Austauschwechselwirkung durch die entspre-

chende Phononmode. Daher ist die sich ergebende Frequenzrenormalisierung korreliert

mit der zunehmenden Stärke des magnetischen Austauschs bei fallender Temperatur. Ob-

wohl dieser Effekt bereits in RMnO3 Systemen mit relativ großem Selten–Erd–Ionenradius

(R3+ = La3+ . . .Sm3+) nachgewiesen wurde, stand eine systematische Untersuchung der

SPC in den multiferroischen Manganaten noch aus.

Die Analyse der Abhängigkeit der Stärke und der Einsatztemperatur der Renormalisie-

rungseffekte von der jeweiligen betrachteten Phononmode zeigte, dass diese im wesentli-

chen durch den magnetischen Austausch der MnO6 Oktaeder innerhalb der MnO2 (ac)

Ebene verursacht wird. Dies konnte unter Ausnutzung der Modensymmetrie gezeigt wer-

den, da im Fall der Raman aktiven Phononen die Moden mit hauptsächlicher Modulation



der Mn–O–Mn Bindungen innerhalb dieser Ebene wesentlich stärkere SPC Effekte zeigen

als diejenigen mit einer Modulation senkrecht zu dieser Ebene bzw. innerhalb der RO

(ac) Ebene. Die Untersuchung der infrarot aktiven Phononen wiederum ließ die Schluss-

folgerung zu, dass SPC hauptsächlich bei Phononen mit einer ausgeprägten Modulation

der Mn–O–Mn Bindungen beobachtet wird. Moden mit starker Beteiligung der R3+ Ionen

zeigten keine SPC Effekte. Außerdem konnte belegt werden, dass das Mitschwingen von

Mn3+ keinen Einfluss auf das Auftreten von SPC hat, da sowohl für Raman als auch für

infrarot aktive Phononen Renormalisierungseffekte nachweisbar waren.

Bezüglich der Abhängigkeit der SPC von der Probenzusammensetzung, d.h. die Aus-

prägung und Einsatztemperatur der Renormalisierungseffekte in Abhängigkeit vom vor-

liegenden R3+ Ion, wurden die beiden Probenserien untersucht und miteinander vergli-

chen:

Im Fall der stöchiometrischen RMnO3 Serie konnte eine Verminderung der Stärke der Re-

normalisierungseffekte mit abnehmendem R3+ Ionenradius von Eu3+ über Gd3+ zu Tb3+

nachgewiesen werden. Dies wurde zurückgeführt auf eine Schwächung des ferromagne-

tischen Austauschs innerhalb der MnO2 (ac) Ebene durch eine erhöhte Verkippung der

MnO6 Oktaeder, die wiederum durch den kleineren R3+ Ionenradius verursacht wird.

Die dotierte Eu1−xYxMnO3 Probenserie zeigte dieselben Trends einer reduzierten SPC

mit steigender Y3+ Dotierung, die ähnlich zum kompletten Austausch in RMnO3 zu einer

Reduzierung des effektiven R3+ Ionenradius führt. Es konnte also gefolgert werden, dass

die Dotierung von Eu1−xYxMnO3, mit der der effektive Ionenradius quasi–kontinuierlich

eingestellt werden kann, das Auftreten von SPC Effekten nicht verhindert. Dies wurde als

ein weiterer Beleg aufgefasst, dass durch Unordnung bedingte Effekte in Eu1−xYxMnO3

vernachlässigbar sind.

Ein Vergleich der SPC Effekte in beiden Probenserien zeigte deutlich die Korrelation von

orthorhombischer Gitterverzerrung, d.h. die Ungleichheit der kurzen a– und c–Achse in

der Pnma Struktur, die sich durch den Parameter ε ausdrücken lässt, mit den durch SPC

verursachten Renormalisierungseffekten der Gitterschwingungen. Es konnte also gezeigt

werden, dass SPC nicht explizit an die Existenz spezifischer magnetischer Phasen gekop-

pelt ist, sondern an die Stärke des magnetischen Austauschs zwischen den Mn3+ Ionen

in der MnO2 (ac) Ebene. Weiterhin war SPC sowohl für Raman als auch für infrarot

aktive Phononen beobachtbar, die die Mn–O–Mn Bindungen in der MnO2 (ac) Ebene

modulieren. Daher konnten bereits publizierte Schlussfolgerungen bezüglich keramischer

multiferroischer Manganate widerlegt werden, die SPC Effekte direkt mit deren multifer-

roischen Eigenschaften verknüpfen [FMA+09, MAF+10].

Ein Korrelationseffekt zwischen Kristallgitterdynamik und Magnetismus in den Manga-

naten, der explizit mit der Existenz multiferroischer Eigenschaften verbunden ist, wurde

ebenfalls in dieser Dissertation behandelt. Diese Resultate werden im Folgenden zusam-

mengefasst.



Ergebnisse: Elektromagnon–Phonon Kopplung

Der zweite in dieser Dissertation betrachtete Korrelationseffekt zwischen Kristallgitterdy-

namik und Magnetismus war die Elektromagnon–Phonon Kopplung (EMPC). Eine der

Ausprägungen dieses Effekts – die Verlagerung spektralen Gewichts von den infrarot ak-

tiven Phononen mit niedriger Frequenz (ν̃ < 300cm−1) bei Absenken der Temperatur

in Richtung der multiferroischen Phasen hin zum entstehenden Elektromagnon – wur-

de bereits ausführlich in der Literatur behandelt [PRM+06, TYK+09, SKR+09]. Andere

Aspekte von EMPC jedoch, wie z.B. Renormalisierung der Phononenfrequenz beim Ein-

tritt in die Temperaturregion der magnetisch geordneten Phasen, waren bislang nicht

systematisch behandelt. Des Weiteren fehlte eine detaillierte Erklärung des Ursprungs

dieser Kopplung auf mikroskopischer Ebene. Um dies zu korrigieren, wurden in dieser

Arbeit die infrarot aktiven Phononen mit niedriger Frequenz separat untersucht und zwar

unter besonderer Beachtung der optischen Auswahlregeln sowie der Verschiebungsmuster

der jeweiligen Moden.

Temperaturabhängige Reflektivitätsmessungen an RMnO3 (R = Eu, Gd) zusammen mit

bereits veröffentlichten Resultaten von Schmidt el al. [SKR+09] an TbMnO3 zeigten klar

den Transfer spektralen Gewichts von der niederfrequentesten polaren Mode mit B3u Sym-

metrie, d.h. B3u(1), zum entstehenden Elektromagnon innerhalb der stöchiometrischen

RMnO3 Serie. Auch ließ sich ein Trend zu stärkerer Ausprägung des spektralen Trans-

fers bei Reduzierung des R3+ Ionenradius nachweisen, d.h. die Stärke des Transfers steigt

von EuMnO3 monoton bis zu TbMnO3, was als Zunahme der Stärke der EMPC ge-

deutet wird. Der EMPC–Aspekt spektralen Transfers konnte also durch eigene Messun-

gen bestätigt werden. Darüber hinaus wurden auch weitere Manifestationen untersucht,

darunter beispielsweise die Verschiebung der Frequenzen der B3u(1) Moden zu höheren

Werten beim Eintritt in die Temperaturregion der magnetisch geordneten Phasen. Diese

experimentellen Beobachtungen an EuMnO3 und GdMnO3 stimmten gut mit den Da-

ten von [SKR+09] an TbMnO3 überein. Auch hier bestätigte sich der Trend steigender

Ausprägung der EMPC hin zu den RMnO3 Systemen mit multiferroischen Phasen. Diese

experimentellen Daten zeigen klar, dass die Renormalisierung der B3u(1) Mode nicht auf

SPC zurückgeführt werden kann, da sowohl das Schieben zu höheren Frequenzen als auch

die starke Beteiligung des R3+ Ions am Verschiebungsmuster dieser Mode einer solchen

Interpretation widerspricht.

Nach dem Zusammentragen der wesentlichen experimentellen Ergebnisse, wurde eine Er-

klärung bezüglich des mikroskopischen Ursprungs dieser Kopplung zwischen Elektroma-

gnon und B3u(1) Mode gegeben. Diese basiert zum einen auf dem Mechanismus für die

dipolare Aktivität des hochfrequenten Elektromagnons – das Heisenberg–Austausch Mo-

del von Valdés Aguilar [VAMS+09] – und zum anderen auf den Verschiebungsmustern

der B3u(1) Mode, die auf Grund der selbst durchgeführten DFT basierten gitterdynami-

schen Rechnungen vorliegen. Das Einbeziehen beider Faktoren führt schließlich dazu, dass

eine gleichförmige Verschiebung der Mn3+ Ionen entlang der c–Achse, die ein charakte-



ristischer Teil des Auslenkungsmusters von B3u(1) ist, als für diese Kopplung wesentlich

ausgemacht werden kann. Auch im Fall von EMPC bewirkt also die dynamische Modula-

tion des magnetischen Austauschs durch ein Phonon mit einem entsprechend geeigneten

Auslenkungsmuster den Korrelationseffekt.

Bezug nehmend auf dieses mikroskopische Modell wurden beide beobachteten Aspekte

der EMPC noch einmal beleuchtet und es konnte eine zusätzliche Manifestierung durch

genaue Inspektion der Daten von Shuvaev et al. [SML+11] an GdMnO3 nachgewiesen wer-

den. Diese drei Teilaspekte waren: (i) der Transfer spektralen Gewichts, (ii) temperatur-

abhängige Renormalisierungseffekte der B3u(1) Phononenfrequenz, die eindeutig von der

temperaturabhängigen Frequenz des Elektromagnons beeinflusst wird und (iii) eine asym-

metrische Linienform der B3u(1) Mode, die in den Transmissionsspektren von [SML+11]

an GdMnO3 gesehen werden kann. Diese Asymmetrie der spektralen Linienform konnte

mit Hilfe eines Fano–Profils zweier gekoppelter Elementaranregungen in den ε2 Spektren

sehr gut reproduziert werden.

Des Weiteren wurden diese Resultate mit den experimentellen Daten der dotierten

Eu1−xYxMnO3 Serie (x = 0, 0.2, 0.5) verglichen. Bereits bei den zuvor diskutierten Raum-

temperaturspektren war eine Verminderung der dipolaren Aktivität von B1u(1) und B3u(1)

zu sehen, was auf die Dotierung zurückgeführt werden kann. Zusätzlich führten im Fall von

Eu0.8Y0.2MnO3 experimentelle Schwierigkeiten dazu, dass für Eu1−xYxMnO3 mit x > 0

keine verlässlichen Daten bezüglich der Frequenzverschiebungen von B3u(1) aufgenom-

men werden konnten. Die restlichen Moden zeigen jedoch das vom zuvor eingeführten

Modell erwartete Verhalten. Zusätzlich ist auf Grund von Literaturspektren [TYK+09],

die den Transfer von spektralen Gewicht deutlich zeigen, dieser Aspekt von EMPC klar

nachgewiesen und damit in Kombination mit den eigenen experimentellen Ergebnissen

die analoge Existenz von EMPC im dotierten Eu1−xYxMnO3 System erwiesen.

Fazit

Die systematische Untersuchung der temperaturabhängigen Kristallgitterdynamik der

multiferroischen Manganate zeigte zwei markante Kopplungseffekte: SPC und EMPC.

Die verschiedenen Abhängigkeiten der beiden konnten anhand von Modellen erklärt wer-

den, die auf der dynamischen Modulation des magnetischen Austauschs durch die Gitter-

schwingungen beruhen. Beide Effekte lassen sich klar voneinander trennen durch explizites

Einbeziehen der Verschiebungsmuster, der optischen Auswahlregeln und der Frequenzen

der verschiedenen Phononen. Die vorliegende Dissertation kann daher die enge Kopplung

von Kristallgitterdynamik und Magnetismus in den multiferroischen Manganaten auf mi-

kroskopischer Ebene systematisch belegen.
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Chapter 1

Introduction

Understanding and applications of multifunctional materials are one of the main goals

of scientific efforts in solid state physics today. In most cases the existence of intrinsic

coupling effects on mesoscopic or even microscopic scale – ideally within a single material

– is the foundation of this multifunctionality. The latter is one of the key properties re-

quired for information technology, that goes beyond the current state of the art primarily

based on the miniaturisation of integrated semiconductor devices. Slogans for such new

technologies are e.g. ”Spintronics”, i.e. using the spin polarisation of electric current for

information technology [WAB+01], or ”Magnonics”, i.e. the employment of spin waves to

carry and process information [KDG10]. Therefore, one of the ”hot topics”in solid state

physics is the systematic investigation of materials, that incorporate coupling effects be-

tween different degrees of freedom such as electronic or magnetic ones.

Among these material classes are the so–called ”Multiferroics”. These are defined as ma-

terials, in which two or more kinds of fundamental ferroic properties coexist. Generally,

in a crystalline solid ferroic properties are characterised by the occurrence of a sponta-

neous symmetry breaking. Prominent examples for such behaviour are ferromagnetism,

ferroelectricity or ferroelasticity. Further, antiferromagnetism is also included in this def-

inition. It is immediately clear, that the coexistence of these ferroic properties can be

crucial for a lot of different novel applications, e.g. for the storage of information or sen-

sor applications. To illustrate the relevance of multiferroism for the recent investigative

efforts in the field of Spintronics and Magnonics, the control of spin waves by an electric

field in the multiferroic compound BiFeO3 by Rovillain et al. [RdSG+10] is a good exam-

ple. Their results show a very elegant way to store information without dissipation in the

spin waves of such a multiferroic material utilising the multiferroic behaviour of magnetic

and electric degrees of freedom.

The investigative efforts concerning the coupling between ferroelectricity and (anti–)ferro-

magnetism reach back far beyond the recent ”revival”, as it is called by M. Fiebig

[Fie05]. In these older studies, the coupling of these two ferroic properties is known

as the ”Magneto–Electric Effect”. In order to appreciate the current state of knowledge

concerning the multiferroic materials, the historic development of the research activity on

these materials will be presented in very short form in the following.

1
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Multiferroism a.k.a. the Magneto–Electric Effect

First predicted theoretically in the year 1894 by P. Curie [Cur94], it took more than fifty

years until the Magneto–Electric Effect (ME–Effect) could be experimentally confirmed

in Cr2O3 in 1960 [Ast60]. This finding triggered a first research boom in the 1970s. In

1974, V.E. Wood et al. listed several potential applications for materials showing the

ME–Effect [WA74]. However, at this time only very few such materials could be found.

According to N. A. Hill [Hil00], this can be understood by the fact, that conventional fer-

roelectricity occurs in the presence of empty d–shells within the transition metals, while

(anti-)ferromagnetism favours partially filled d–shells. Thus, only materials with uncon-

ventional mechanisms for ferroelectricity can show ME–Effects.

In 2003, Kimura et al. [KGS+03] found the ”Giant Magneto–Electric Effect”in the model

system of the rare earth manganite TbMnO3, where the ferroelectric polarisation could

be switched by applying an external magnetic field. A revival of the ME–Effect followed

and a lot of other materials were found that showed intrinsic ME–Effects, e.g. HoMnO3

[FLF+02] or Ni3V2O8 [LHK+05]. A few years before, the generic term ”Multiferroics” was

given by Schmid et al. for these materials [Sch94]. As already discussed, this term also

includes materials with other ferroic properties (examples are given above) and further

antiferromagnetism, thus broadening the field for potential research activities.

Apart from the coupled static properties, multiferroic materials show new elementary

excitations. In the case of ME–Coupling it was predicted, that magnons, as elementary

excitations of the magnetic ordering, should gain dipolar activity via the ME–Effect and,

thus, should be observable by optical spectroscopy due to their contribution to the di-

electric function. These excitations were then called ”Seignette magnons”. In 2006 their

existence was experimentally proven by Pimenov et al. in the Rare–Earth Manganites

GdMnO3 and TbMnO3 employing optical spectroscopy in the Terahertz range and termed

Electromagnons [PMI+06]. Subsequently, an intimate coupling between Electromagnons

and low–frequency polar phonons in GdMnO3 could be demonstrated by the application

of an external magnetic field [PRM+06] as well as by temperature dependent studies in

the doped rare earth manganite series Eu1−xYxMnO3 [TYK+09]. This coupling was pri-

marily indentified as a shift of spectral weight between these two excitations.

On the other side, due to the intimate coupling between lattice, electronic and spin de-

grees of freedom in this model system, there are other coupling effects observable by

optical and Raman spectroscopy, with the most prominent being the coupling between

high–frequency polar or unpolar phonon modes and the magnetic exchange within the

equatorial MnO2 plane of the perovskite RMnO3 system [GGS+99, LJM+06]. This effect

was termed ”Spin–Phonon Coupling”. The rich field of potential coupling mechanisms led

to various – sometimes even contradicting – interpretations of such effects often relating

them to multiferroic behaviour – with some being questionable, e.g. [SHV+08] contra-

dicting [RCG+10] or [FMA+09] and [MAF+10] compared to [IPI+10a] and [IPI+10b].

However, no systematic investigation of these coupling effects has been carried out on all

experimentally accessible phonon modes. Only a systematic and complete study of the

coupling effects between lattice dynamics and magnetism can provide the ground for a
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clear and unambiguous analysis of these material properties within the Rare–Earth Man-

ganites. Such an investigation would also give the opportunity to pay special attention

to the mode symmetries and their influence on the mentioned coupling effects. Carrying

out a systematic and complete study is therefore the motivation and starting point for

this thesis.

Scope and organization of this thesis

The scope of this thesis is the systematic investigation of coupling effects of lattice dy-

namics and magnetism in the model system of the Multiferroic Manganites RMnO3. The

employed experimental techniques are optical and Raman Spectroscopy. The model sys-

tem, that is chosen for this study, are the Multiferroic Manganites RMnO3, that crystallise

in the Pnma structure with orthorhombic unit cell. Due to crystalline symmetry, both

employed spectroscopical techniques are complementary and together they allow a sys-

tematic investigation of all optically active lattice vibrations. The study of the coupling

effects is carried out by temperature dependent spectroscopic measurements to probe for

renormalisation effects occurring at magnetic phase transitions.

The investigated model system of the Multiferroic Manganites are in fact two series of

Rare–Earth Manganites, whose crystalline properties and with it the magnetic behaviour

can be tuned via decreasing the Rare–Earth ionic radii R3+. For the measurements carried

out within this thesis, the R3+ radii were tuned by two different approaches. The starting

point for both series was the non–multiferroic EuMnO3. While in one sample series the

Eu3+ were completely replaced by Gd3+ or Tb3+, in the other series a doping approach

was followed, i.e. a partial substitution of Eu3+ by Y3+. This gives the additional oppor-

tunity to compare both approaches concerning the impact on the lattice dynamics and

its coupling effects to magnetism.

In consequence to this scope, the thesis is organised as follows: part I deals with all funda-

mental and theoretical parts important for the understanding of the following discussions.

First, the physically relevant basics of the employed spectroscopical techniques, i.e. Ra-

man and Fourier–Transform Infrared (FT–IR) Spectroscopy, will be introduced in section

2. In section 3, this will be followed by a systematic discussion of the static crystalline,

magnetic and multiferroic properties of the Rare–Earth Manganites RMnO3. The lattice

dynamics will be highlighted in section 4 with special emphasising the optical selection

rules and the corresponding specific vibrational properties, that can be selectively probed

by employing polarisation dependent Raman and FT–IR Spectroscopy. Further, in this

section the mode patterns obtained from Density Functional Theory based ab–initio cal-

culations will be presented. The last section of part I presents the current state of the

understanding of the coupling effects between lattice dynamics and magnetism to be ex-

perimentally investigated in part II.

Said part II begins with section 6, where the room temperature Raman and FT–IR mea-

surements are utilised for a complete characterisation of the lattice dynamics of both

sample series. This way, a complete picture of the crystalline properties of the series is
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obtained without coupling effects. It is therefore possible, to compare both R3+ tuning ap-

proaches concerning their impact on the crystalline quality and the lattice vibrations. This

will be followed in section 7 by a systematic investigation of the coupling between polar as

well as unpolar lattice vibrations and the magnetic exchange (Spin–Phonon Coupling). A

second coupling effect between the low–frequency polar phonons and the Electromagnons

(Electromagnon–Phonon Coupling) of the RMnO3 system will be dealt with in section 8.

A conclusion and outlook summarises the gained insights into the correlation effects be-

tween lattice dynamics and magnetism present in the Multiferroic Manganites in section

9.



Part I

Theory
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Chapter 2

Spectroscopical techniques

Spectroscopy as a technique of investigation is a very powerful and non–destructive

method allowing deep insights into the physical properties of solid state materials. For this

thesis two prominent spectroscopical techniques are used to probe the lattice vibrations of

crystalline solid state materials and their coupling to magnetic properties: Raman Spec-

troscopy and Fourier–Transform Infrared (FT–IR) Spectroscopy. In solid state physics

quantised lattice vibrations accessible for optical spectroscopy are called optical phonons.

The term optical phonons is used to distinguish them from acoustic phonons, which will

be not further discussed here. The investigation of phonons can be used to gather infor-

mation about chemical composition, state of order or disorder within a crystal or their

possible coupling to other order parameters (e.g. the magnetic structure).

In solid state crystalline materials optical phonons usually occur in the far infrared region

of the spectrum. Roughly speaking, their energy is in the range from ≈ 1meV to 255meV .

Table 2.1 gives a list of the conversion factors of the most commonly used physical units in

optical spectroscopy. In the following we will deal with two spectroscopical techniques in

which the energy is usually denoted in wave number [ν̃] = cm−1. It is defined as ν̃ = ν/c

where ν is the frequency and c the speed of light. Thus, the spectral range of optical

phonons reaches from ≈ 10 to 2000 cm−1.

In the next two sections the fundamental principles of Raman Spectroscopy and FT–IR

Spectroscopy will be introduced in this order. The techniques are underscored by theoret-

Table 2.1: Conversion factors for the various scales employed for spectroscopy, extracted from
[HW03]

E [meV] f [THz] λ [mm] ν̃ [cm−1]

E [meV] 1 0.24 1.24/E 8.07

f [THz] 4.14 1 0.30/f 33.4

λ [mm] 1.24/λ 0.30/λ 1 10.0/λ

ν̃ [cm−1] 0.12 0.03 10.0/ν̃ 1

7
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ical considerations as far as it is needed for an understanding of the experimental results

within this thesis.

2.1 Raman Spectroscopy

Raman Spectroscopy is based on the analysis of inelastically scattered light, which goes

along with the generation or annihilation of a quasi–particle. Examples for such quasi-

particles are elementary excitations of the lattice (phonons), the spin structure (magnons),

collective oscillations of the free electron density (plasmons) or even electronic excitations

[Kuz98]. In this thesis optical phonons are investigated in the Raman experiments, thus

only these will be regarded further.

In a Raman experiment the spectral distribution of the scattered light is analysed relative

to the position of the elastically scattered light. The interaction of the incident photons

with the investigated material leads to the creation or annihilation of optical phonons

and, thus, to an energy loss or gain of the scattered photons, respectively. It manifests

itself in the appearance of red– (lower energy) or blue–shifted (higher energy) lines with

respect to the Laser line in the spectrum of the scattered light. These shifts are called

Stokes and Anti–Stokes shift, respectively. Figure 2.1 shows a schematic Raman spectrum

comprising both kinds of the aforementioned shifts. The intensity ratio between Stokes

and Anti–Stokes shift is essentially determined by the thermal occupation of the phonon

states. Thus, without going into details, one can state, that at cryogenic temperatures

Figure 2.1: Schematic Raman spectrum obtained with the Laser line of a Helium-Neon Laser
(wavelength λ = 632.8nm) as light source. The scattered intensity is plotted versus the relative
frequency shift with respect to the elastically scattered Laser line at 0 cm−1. The lower x-axis
shows the absolute energy – also in wave number. As indicated in the figure, the intensity of the
elastically scattered Laser light is several orders of magnitude larger than the Raman signals.
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(T � 300K) the intensity of the Anti–Stokes shifted photons tends to be lower than that

of the Stokes–shifted photons (as indicated in figure 2.1) due to the thermal distribu-

tion, which reflects the higher probability for a phonon creation than for an annihilation.

Within this thesis the Raman spectra are investigated in the temperature range from

room temperature down to T = 10K. In the following, we will therefore restrict ourselves

to the Stokes shifted Raman signals.

The information that can be directly extracted from a Raman spectrum are phonon fre-

quency, linewidth and intensity (i.e. the scattering cross section). Depending on the

sample system various physical properties can be deduced from these quantities. Some of

these were listed at the beginning of this chapter.

As can be seen in figure 2.1, the inelastically scattered Raman signals are rather weak.

Thus, the experimental requirements for a Raman setup concerning e.g. stray light rejec-

tion or spectral resolution are rather strict. The configurations of the Raman setups used

for the experiments of this thesis are described in detail in Appendix A.

Fundamentals of Raman scattering

The base for any Raman process in a crystal is the modulation of the dielectric suscep-

tibility χ by the excited quasi–particles. In contrast to Infrared Spectroscopy – which

will be discussed in the next section – the change of the response function χ is impor-

tant for the observability of a lattice vibration within a Raman experiment and not the

dielectric polarisation induced by the vibronic oscillator. The most simple model for an

understanding of the principle of the Raman effect – the picture of a two–atom molecule

– leads to the following considerations, according to [Kuz98]:

In a general case, when applying an electric field E(ω) to a molecule, the polarisability α

would need to be considered. This polarisability α would be determined by the concrete

scattering configuration. It would, thus, be an admixture of the polarisabilities α‖ and

α⊥, i.e. parallel and perpendicular to the molecule’s principal axis, respectively. In our

case, we will consider an exemplary value of α = α0. The mentioned electric field leads to

a dipole moment PD(ω) = α0E(ω) which is the source of an electromagnetic wave in the

scattering process. Now if the molecule oscillates with frequency Ω, the distance between

the atoms changes periodically and the polarisability will be modulated. The total dipole

moment reads:

PD(ω) = (α0 + α1 cos Ωt) E0 cosωt. (2.1)

With the application of trigonometric sum rules this can be expressed as:

PD(ω) = α0E0 cosωt+

(
α1E0

2

)
[cos (ω + Ω) t+ cos (ω − Ω) t] . (2.2)

What can be clearly seen is that, beside the oscillation frequency ω of the incident elec-

tromagnetic wave, there are additional sidebands with frequencies ω ± Ω.
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For crystalline solid state materials this simple model needs to be adapted [Kuz98]. There-

fore a non–isotropic periodic structure is assumed. The scalar polarisability α is replaced

by the second–rank dielectric susceptibility tensor χjl and the simple movements of atoms

within the molecule by the normal coordinates Qk of the lattice vibrations. That way, χjl
can be expanded with respect to Qk:

χjl = (χjl)0 +
∑
k

(
∂χjl
∂Qk

)
0

Qk +
∑
k,m

(
∂2χjl

∂Qk∂Qm

)
0

QkQm + . . . (2.3)

The sums run over all normal coordinates k and m, ∂χjl/∂Qk is a component of the

aforementioned polarisability tensor and is called Raman tensor. It is denoted as χjl,k.

The tensor has three indices: j and l are the indices for the coordinates 1 to 3 and k

runs over all 3N − 3 optical phonon modes. Thus, χjl,k is a tensor of rank three and for

each individual mode given by a 3 × 3 matrix. In analogy to equation (2.1) the Raman

tensor can be expressed with respect to the vibration–induced polarisation by restricting

the Taylor expansion of equation (2.3) to linear order:

χjl = (χjl)0 + (χjl,k)0Qk with Qk = Qk0 cos Ωkt. (2.4)

What we get now, is an expression for the induced dipole moment within a crystal:

P s
Dj(ω ± Ωk) ∝ χjl,kE

i
l0Qk0 cos(ω ± Ωk)t. (2.5)

This equation gives a qualitative understanding how the Stokes and Anti–Stokes shifted

sidebands in the spectrum of the scattered light can occur.

The next step is to choose an explicit scattering geometry, which in this thesis is strongly

influenced by symmetry properties of the investigated sample series and the resulting

selection rules. For a detailed discussion of the symmetry properties of the investigated

samples the reader is referred to section 3.1 for static symmetry aspects and to chapter 4

for symmetry aspects of the lattice vibrations.

For the characterisation of the scattering geometry within a Raman experiment the di-

rections of the incident and scattered light (ki and ks) as well as their polarisations (ei
and es) need to be considered either. In Raman Spectroscopy there is a very convenient

way to describe these directions in a compact way, according to [YC01], as:

ki (ei, es) ks. (2.6)

This notation is known as Porto’s notation and contains all information concerning the

geometry of the Raman scattering experiment.

The quantitative calculation of Raman scattering intensities is a very difficult task and in

most cases it is sufficient to check, which components of the Raman tensor are nonzero. If

we assume that the scattering intensity is proportional to the square of the dipole moment

P s
D, it is – for a given mode k and for specific direction of es – given by the absolute square

of the projection of the P s
D on es [Kuz98, YC01] as:

Is ∝ C |esP s
D|

2 = C

∣∣∣∣∣∑
j

esjP
s
Dj(k)

∣∣∣∣∣
2

, (2.7)
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Figure 2.2: Momentum conservation for a Raman process with the generation of a phonon. ki
and ks are the wave vectors of the incident and scattered photons and q that of the phonon,
respectively.

where P s
Dj and esj are the components of the dipole moment induced by the Raman

effect and the components of the polarisation direction of the scattered light, respectively.

With equation (2.5) the induced dipole moment in the general case for a non–specific

polarisation can be further evaluated, if the polarisation of the incident light ei is also

considered. This is easily done by inserting eil in equation (2.5). Thus, for a general

scattering geometry the scattering intensity is:

Is ∝ C ′

∣∣∣∣∣∑
j,l

esjχjl,keil

∣∣∣∣∣
2

E2
0 . (2.8)

Quantum–Mechanical considerations

The above discussed classical formulation of the scattering process can be transformed in

a quantum–mechanical picture [Kuz98, YC01]. In that case, the scattering geometry is

determined by the quasi–momentum conservation as shown in figure 2.2. It is denoted

as quasi–momentum, because the wavevector of a phonon is determined unambiguously

only within the first Brillouin zone.

The Stokes and Anti–Stokes shifts are explained as an emission or absorption of a phonon

by the light wave together with the simultaneous conservation of energy. The two con-

servation rules (energy and momentum) are expressed as follows within the first Brillouin

zone:

~ωi = ~ωs ± ~Ω (2.9)

~ki = ~ks ± ~q. (2.10)

The indices i and s refer to incident and scattered light, respectively. + corresponds

to phonon generation and − to phonon annihilation. Given the values of ki and ks
(≈ 2 · 104cm−1), which correspond to the wavelength of visible light (λ ≈ 500nm), the

wavevector of the phonon q has a maximum value for 180◦ backscattering geometry of

qmax = ki + ks ≈ 2ki. (2.11)
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Figure 2.3: Energy level diagram for the various types of Raman scattering processes.

Compared with the maximum k–values of the Brillouin zone of ≈ 2 · 107cm−1 for a lat-

tice constant a of ≈ 5Å, which are a factor ≈ 103 larger, one can deduce that Raman

scattering with visible light only occurs for phonons from the centre of the Brillouin zone.

This corresponds to q ≈ 0. Thus, the ambiguity of the quasi–momentum conservation for

larger pseudo wavevectors mentioned before is omitted.

How can the Raman scattering process be understood in a quantum–mechanical picture?

According to [YC01], three systems need to be considered for describing the microscopic

process of inelastic light scattering: (i) incident and scattered photons with energy ~ωi
and ~ωs, respectively, (ii) electrons within the material, and (iii) the phonon with energy

~Ω. The possibilities for realising such a scattering process are depicted in figure 2.3.

In the following, we will restrict ourselves to Stokes scattering. The electronic ground state

acts as initial and final state |i〉 as illustrated in figure 2.3. For the quantum–mechanical

picture of the Raman process the excitation of a ground state electron in |i〉 by a photon

~ωi into the intermediate state |a〉 is anticipated. What follows, is a transition from |a〉
to |b〉, which goes along with the emission of a phonon with energy ~Ω. Since energy and

momentum conservation holds, the transition to the final state |i〉 leads to the emission

of a photon with the energy ~ωs (ωs < ωi).

For a formulation of the scattering probability within a quantum–mechanical perturbation

approach the interactions of the Raman process outlined above have to be collected for

all possible permutations of the time order. A very instructive way to do this, are Feyn-

man diagrams. Figure 2.4 shows one possible realisation of the Stokes Raman scattering

process. The diagram should be read starting from the left: an incident photon creates
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Figure 2.4: Feynman diagram for the Stokes Raman process. There are three possibilities for
the permutation of the time order of the three vertices participating in this three–step process.
Adapted from [YC01].

an electron–hole pair via the electron–radiation interaction described by the Hamiltonian

He−r. An intermediate state is obtained, where a phonon is emitted by the electron–

phonon interaction He−p, and finally the electron–hole pair recombines (again described

by He−r) with a simultaneous emission of a photon with different energy and momentum.

The other possibilities are obtained by permutation of the time order of the three vertices

(He−r, He−p, and again He−r) [YC01].

The next step, after drawing these diagrams, is the formulation of the probability of these

scattering processes. As we are dealing with a three–step process, perturbation theory

of third order is required. This probability is derived from the Feynman diagrams via

Fermi’s Golden Rule. This is carried out in [YC01] for the process depicted in figure 2.4

leading to this expression for the scattering probability:

Pph (ωs) =
2π

~

∣∣∣∣∣∑
a,b

〈i|He−r (ωs) |b〉 〈b|He−p |a〉 〈a|He−r (ωi) |i〉
[~ωi − ~Ω− (Eb − Ei)] [~ωi − (Ea − Ei)]

∣∣∣∣∣
2

δ [~ωi − ~Ω− ~ωs] .

(2.12)

The three terms in the numerator denote the three vertices of interaction shown in figure

2.4. The sum runs over all intermediate states |a〉 and |b〉. One would expect also three

terms in the denominator in analogy to the three terms of the numerator. However, the

last energy term of the denominator would simply represent the energy conservation for

the whole three–step process. Thus, it is converted to the δ–function δ (~ωi − ~Ω− ~ωs).
For a general expression all permutations need to be summed up, as discussed before.

This gives a lengthy expression without new physical aspects. We will avoid it here for

reasons of brevity.

Equation (2.12) suggests that, beside the information about phonon frequency and

phonon linewidth, also information about the scattering cross section can be extracted.

As shown in figure 2.4, the interaction strength between light and electron (He−r) as well

as the interaction between electron and phonon (He−p) also contribute to the scattering
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Figure 2.5: Raman spectra of Eu0.5Y0.5MnO3 recorded with identical integration time and
Laser power, but with different wavelengths of the exciting Laser light .

strength of the Raman process. Thus, information about these quantities, which can give

insights into the electronic structure of the investigated material, could in principle be

deduced from the quantitative scattering cross section. However, this task is almost im-

possible, because of the large number of intermediate states one has to sum up in equation

(2.12). Within this thesis solely information about phonon frequency and linewidth are

therefore considered.

Nevertheless, there is one aspect of the dependence of the transition probability on the

electronic states of the investigated system, which needs a short discussion. In figure 2.3

the excited states are referred as virtual states, which means that they are no Eigenstates

of the system. Now what happens, if the excitation energy ~ωi is tuned, so that one of

the excited electronic states |a〉 or |b〉 coincides with an Eigenstate? In that case the tran-

sition probability in equation (2.12) diverges leading to a resonant enhancement of the

Raman scattering reflecting the larger lifetime of the Eigenstate compared to the virtual

state [Kuz98].

Nice examples for this behaviour are the Raman spectra shown in figure 2.5. These are

recorded with different excitation wavelengths (λ = 514.5 nm and λ = 632.8 nm) on an

arbitrarily chosen sample within the investigated Manganite series. All other experimen-

tal parameters are identical. The spectrum recorded with λ = 632.8 nm shows a resonant

enhancement, which is attributed to an electronic Mn d–d transition characteristic for the

Manganites [KSN+04].

2.2 Fourier–Transform Infrared Spectroscopy

The second spectroscopical technique employed in this thesis is Fourier–Transform In-

frared (FT–IR) Spectroscopy. In clear contrast to Raman Spectroscopy, FT–IR is a

non–dispersive or interferometric method. This means, the signal is not dispersed into its
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Figure 2.6: Schematic drawing of a Michelson interferometer. S is the source of infrared
radiation, BS the beam splitter, M1 the stationary mirror, M2 the mobile mirror, and D the
radiation detector.

spectral components for detection. On the contrary, the whole spectral range (within a

given part of the spectrum) is detected simultaneously and decomposed by the means of

a Fourier transformation yielding a frequency–dependent spectrum. The basic principle

of FT–IR can be illustrated in the most instructive way by discussing it for the case of

the Michelson Interferometer.

The interferometric principle

Figure 2.6 shows a schematic sketch of a Michelson interferometer. Radiation from the

source S is split into two parts by the beam splitter BS. The first part is reflected from

the stationary mirror M1, while the second part is reflected from the mobile mirror M2.

After recombination at the BS an interference of the two partial beams is obtained,

which depends on the position x of M2. Usually only the partial beam propagating to

the detector D is employed for spectroscopic investigations. As stated before, a shift of

the mobile mirror M2 causes a path difference ∆x between the two partial beams and,

thus, interference fringes in the recombined beam recorded with D. The intensity of the

radiation with respect to ∆x of the two mirrors M1 and M2 is called interferogram I(x).

It contains all spectral information of the radiation source.

The simplest example for an interferogram is that of monochromatic light (e.g. Laser–

light). As can be seen in figure 2.7(a) the detected signal has the form

I(x) = I0 [1 + cos (2πν̃∆x)] (2.13)

with I0 as the maximum intensity of the partial beam at the detector. Equation (2.13)

can be understood very easy by analysing the phase shift of the partial beams. For ∆x

= 0 the two paths lengths are equal and constructive interference occurs at D. Now if
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Figure 2.7: Examples for interferograms I(x) and their corresponding spectra I(ν̃) obtained
by a Fourier transformation of I(x). The examples show (a) monochromatic light, (b) light with
two discrete wavelengths, (c) a Lorentzian peak with a relative small linewidth compared to (d)
a Gaussian peak with large linewidth.

M2 is shifted by λ/4, the resulting path difference ∆x = λ/2 and the beams interfere in

a destructive way. Thus, for a motion with constant velocity of M2 a cosine–function for

I(x) is obtained.

The generalisation to arbitrary signals can be carried out by adding discrete wavelengths,

which each contribute a cosine-function to I(x). Figure 2.7(b) shows the example for two

discrete wavelengths leading to a beat in I(x). For broadband signals the intensity decays

rather fast for varying ∆x, examples are shown in figure 2.7(c) and (d). In all discussed

cases the spectrum I(ν̃) can be obtained by a Fourier Transformation of the interferogram

I(x):

I (ν̃) =

∫ ∞

−∞
I (x) cos (2πν̃x) dx, (2.14)

where we have replaced ∆x by dx.

The employed FT–IR setup, which is not as straightforward as the Michelson Interferom-

eter, is shown in detail in Appendix A. Nevertheless it uses the method just introduced to

obtain a spectrum I(ν̃). In an infrared spectroscopic experiment, a sample is introduced

between BS and D. Depending on their optical thickness it is more convenient to measure

the intensity of the reflected (IR) or the transmitted (IR) beam or both. The samples,

that are investigated within this thesis, are opaque crystals with a macroscopic thickness

(d ≥ 1 mm). Thus, only reflectivity measurements are carried out. In the next paragraph

the basics of the measured physical quantity reflectivity will be discussed, according to

[Kit02].
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Reflectivity and index of refraction

The reflection of light with a frequency ω is physically treated by introducing a complex

reflection coefficient r̂ (ω). It can be defined as the ratio between the electric field of the

incident light, E0, and the electric field of the reflected light, ER. As a complex function,

it can be written as

r̂(ω) =
ER
E0

=
√
r(ω)eiφ(ω) (2.15)

where r(ω) is determined by the amplitude and φ(ω) by the phase of the electric field

of the light wave. For perpendicular reflection, r̂(ω) has the following connection to the

complex index of refraction n̂(ω) = n(ω) + iκ(ω):

r̂(ω) =
n̂− 1

n̂+ 1
=
n(ω) + iκ(ω)− 1

n(ω) + iκ(ω) + 1
. (2.16)

n(ω) denotes the real part and κ(ω) the imaginary part of n̂(ω). The index of refraction

is on the other side linked to the complex dielectric function ε(ω) = ε1 + iε2 by:

n̂(ω) =
√
ε(ω). (2.17)

The real and imaginary part of ε(ω) in terms of n(ω) and κ(ω) are therefore:

ε1 = n2 − κ2 (2.18)

ε2 = 2nκ. (2.19)

With these definitions, the quantity measured within a FT–IR experiment – the reflectiv-

ity R – can be expressed as a function of the complex r̂ (ω). R is defined as the intensity

ratio of incident and reflected light:

R =
IR
I0

=
E∗
RER
E∗

0E0

= r̂∗(ω)r̂(ω) = |r(ω)|2 . (2.20)

The reflectivity contains only information about the real part of r̂(ω) and, thus, the

amplitude of the light wave. For a complete determination of the dielectric function

ε(ω), r̂(ω) and φ(ω) are needed. Employing the Kramers–Kronig–Relation, φ(ω) can be

obtained. This will be discussed in the next paragraph.

Kramers–Kronig–Relation

The Kramers–Kronig–Relation (KKR) is connecting the real and imaginary part of a com-

plex response function (e.g. the dielectric function ε(ω)). It can be employed to deduce

one part of such a function, if the other part is measured or reasonably extrapolated over

a wide range of frequencies. Thus, the KKR for the complex reflection coefficient r̂ (ω)

can obtained through its connection with ε(ω) in equation (2.16) and equation (2.17).

For the reflection coefficient it is convenient to rewrite equation (2.15) to ln r̂ (ω) =
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ln
√
r (ω) + iφ(ω). According to [Kuz98], the phase φ(ω) is connected to the amplitude

r(ω) via

φ(ω0) = −ω0

π

∫ ∞

0

ln
√
r(ω)− ln

√
r(ω0)

ω2 − ω2
0

dω. (2.21)

This means, a measurement of R and its connection to r(ω) via equation (2.20) can be

used to determine the phase φ(ω), and, in turn, n̂(ω) and κ(ω) or the dielectric function

ε(ω). But, as can also be seen, R has to be measured for all frequencies ω from 0 to ∞,

which is of course impossible. One relies therefore on extrapolations for the high and low

frequency part of the spectrum.

The complex dielectric function

With the help of the KKR the dielectric function ε(ω) of the investigated system can thus

be obtained. ε(ω) as a response function is determined by the excitations of the investi-

gated solid. These can be – equivalent to the excitations that act as Raman scatterers –

of very different nature depending on the regarded material and frequency range. As in

the case of Raman scattering, we will restrict ourselves to optical phonons. However, it

should be noted again, that for an exact determination of ε(ω) reflectivity measurements

over a wide range of frequencies are necessary. The measurements within this thesis omit

these task by introducing model functions, whose KKR is already known. These are fit-

ted to the experimental data. Thus, the high and low frequency part of the spectra are

extrapolated – for details the reader is referred to Appendix B.

In the case of FT–IR the electric field of the radiation interacts directly with the crystal

lattice to excite vibrational transitions within the solid. Thus, conservation of energy and

momentum is required. For the latter, one can easily conclude that for the spectral range

of FIR the wave vector of the optical phonons q ≈ 0 compared to the maximum k–values

of the Brillouin zone. Thus, FT–IR and Raman both probe the optical phonons in the

centre of the Brillouin zone.

As stated before, all optical quantities measured in FT–IR can be expressed in terms of

the complex ε(ω) of the material under study. Therefore, for a meaningful interpretation

of the spectra the most convenient approach is to model ε(ω). In our case only the opti-

cal phonons will be considered and the frequency ranges below and above those will be

reasonably extrapolated. The most simple case of modelling ε(ω) can be derived from a

set of damped harmonic oscillators [Kuz98].

Within this model, a periodically modulated electric field E(t) = E0e
−iωt excites a har-

monic oscillator with reduced mass µ, charge e, damping Γ, and Eigenfrequency ωT . Now

if there are n of these harmonic oscillators per unit volume, the macroscopic polarisation

P is P = nex and, together with the relation P = χε0E = (ε− 1)ε0E, one can derive an

expression for the dielectric model function:

ε(ω) = ε∞ +
ω2
p

ω2
T − ω2 − iωΓ

with ωp =

√
ne2

ε0µ
. (2.22)
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ε∞ is the contribution from all oscillators located at higher frequencies compared to the

frequency range under consideration. It contains, for example, the contribution of the

electronic transitions to ε(ω). For the case of optical phonons ωp is the ion plasma fre-

quency and is defined as shown in equation (2.22) with e as the effective charge and µ as

the reduced mass of the corresponding oscillator. The value of ωp determines the strength

of the response of the system to the electric field and hence the dipolar strength of the

corresponding oscillator.

It is also convenient to split this complex function into its real (εr or ε1) and imaginary

part (εim or ε2):

εr = ε∞ + ω2
P

ω2
T − ω2

(ω2
T − ω2)

2
+ ω2Γ2

(2.23)

εim = ω2
P

ωΓ

(ω2
T − ω2)

2
+ ω2Γ2

. (2.24)

Equation (2.22) can be further generalised for a set of infrared active phonon modes. In

this case the various contributions to ε(ω) are summed up yielding

ε(ω) = ε∞ +
∑
j

ω2
p,j

ω2
T,j − ω2 − iωΓj

(2.25)

Figure 2.8 shows schematically the discussed quantities R, εr, and εim for a single damped

harmonic oscillator. The connection between R(ω), n̂(ω), and ε(ω) can easily explain the

characteristics of these functions: The Eigenfrequency ωT of the oscillator causes the

resonance behaviour of the real part of the dielectric function and the peak in εim. In the

frequency range above ωT εr is negative and approaches zero at the so–called longitudinal

frequency ωL. Accordingly ωL is defined by setting εr equal zero and one obtains:

ω2
L = ω2

T +
ω2
p

ε∞
. (2.26)

The range between ωT and ωL (where εr < 0) corresponds to an imaginary index of

refraction due to equation (2.17) and, thus, light waves cannot penetrate the material.

The reflectivity approaches 1 in this spectral range (see upper panel of figure 2.8), which is

called Restrahlenbande. Equation (2.26) can be used to rewrite the first term of equation

(2.24) to yield

εr = ε∞
ω2
L − ω2

ω2
T − ω2

. (2.27)

What immediately follows from this expression is the Lydane-Sachs-Teller relation

ε(0)

ε∞
=
ω2
L

ω2
T

. (2.28)

Summing up, a model of damped harmonic oscillators can be used to model the dielectric

function ε(ω). With the help of the KKR and the further expressions discussed before a
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model function for the reflectivity is obtained, whose model parameters are in our case

the phonon frequency ωT , the ion plasma frequency ωp, and the damping Γ. Fitting

this model function to the experimental data gives the corresponding information about

phonon frequency, dipolar strength, and linewidth, respectively.

For a further discussion of the phonon modes observed with these two spectroscopical

techniques one needs to consider their symmetry properties. This is carried out in chapter

4. But before, we will deal with the general properties of the investigated sample systems.

Figure 2.8: Schematic diagram for the reflectivity R, real part of the dielectric function εr,
and imaginary part of the dielectric function εim with a single damped oscillator located at
ω/ωT = 1.0. ωT and ωL denote the Eigenfrequency and longitudinal frequency, whereas ε(0)
and ε∞ are the values of the dielectric function for frequencies below and above ωT .



Chapter 3

The Multiferroic Manganites

RMnO3 (R = Eu1−xYx, Gd, Tb)

The Multiferroic Rare–Earth Manganites RMnO3 belong to the crystal class of the Per-

ovskites with an orthorhombic unit cell. As in this material class crystalline, electronic

and spin degrees of freedom are very intimately coupled, an elaborate introduction into

all these physical properties within this material class is appropriate.

In section 3.1 we will deal with the crystalline structure of the orthorhombic Perovskites

RMnO3 starting from the general point of the ideal cubic Perovskite structure. This will

be followed by a discussion about their magnetic properties in section 3.2. Then an in-

troduction into the multiferroic properties of RMnO3 will be given (section 3.3). In the

last section 3.4 the possibility to tune the crystalline properties (and with it the other

mentioned degrees of freedom) by substituting the Rare-Earth ions via the approaches of

complete or partial substitution will be reasoned. For information about the synthetisa-

tion of the measured sample systems, see Appendix C.

3.1 The Perovskite structure of RMnO3

The material class of Perovskites is a large family of compounds having a crystal structure

related to the mineral Perovskite CaTiO3. Its general chemical formula is ABX3, where

A and B are cations and X is an anion. The Perovskite structure is a very common crys-

talline structure allowing a wide range of possibilities for realisation with different ions

for A, B and X.

In our case, we are dealing with Rare–Earth Manganites, thus the A–site cation is a rare–

earth ion R with the valency 3+, the cations on the B–site cation are Mn3+, and the anion

is O2−. As Rare–Earth ion almost the whole series of Lanthanides can be employed for

synthetisation. The orthorhombic RMnO3 series, therefore, covers the whole range from

LaMnO3 to LuMnO3.

The crystalline structure of the Rare–Earth Manganites can be understood best by start-

ing from the ideal Perovskite structure (space group Pm3m). In this form, the RMnO3

Rare–Earth Manganite Perovskite structure has a cubic unit cell and consists of corner–

21
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Figure 3.1: Schematic sketch of the building blocks of the Perovskite structure. The Rare–
Earth ions R3+ are drawn in purple, the Mn3+ in green, and O2− in red. The left part shows the
octahedral environment of the Mn3+, while the right part illustrates the 12–fold coordination
site of R3+. Drawn with [Mom08]

sharing MnO6 octahedra, while the R–site cation is located on a 12–fold coordination

site within the spaces left out by the octahedra [JL06]. Figure 3.1 shows the schematic

view of these two building blocks of the Perovskite structure. Also table 3.1 lists the

Wyckoff positions and the corresponding relative coordinates within the cubic unit cell.

It is important to point out, that the Perovskite structure can be considered as organized

in two alternating polar layers: the RO (ac) planes with valency +1 and the MnO2 (ac)

planes with valency −1.

As mentioned, the just discussed structure is an ideal structure. Most Perovskites are

distorted and do not show the cubic structure. There are several factors that can lead to

a deviation from this structure causing a wide field of possible realisations of crystalline

Perovskite phases with lowered symmetry. For RMnO3 compounds two factors are dom-

inant: (i) size effects of the A– and B–site cations and (ii) the Jahn–Teller effect.

Size effects of the R–site cation

The size effects can be traced back to geometrical constraints. It can be easily understood

that the lattice constant a of the ideal cubic Perovskite structure is related to the ionic

radii (rR, rMn, and rO) via

a =
2√
2

(rR + rO) = 2 (rMn + rO) . (3.1)

In reality these two expressions do not have to be exactly equal. The ratio of these two

terms is called Goldschmidt’s tolerance factor t [JL06]:

t =
rR + rO√

2 (rMn + rO)
. (3.2)
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Figure 3.2: Transition from the ideal Pm3m structure – projections are shown in the panels
(a) and (b) – to the orthorhombic Pnma structure illustrated in the panels (e) and (f). The
rotations and tilts causing this lowered symmetry are an (c) out–of–phase tilt about the [101]
axis and an (d) in–phase tilt about the [010] axis. The resulting orthorhombic structure is a
fourfold cubic unit cell rotated by 45◦. In (e) the original cubic unit cell is also indicated. Drawn
with [Mom08]
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It allows the estimation of the degree of deviation from the ideal geometric structure. An

ideal cubic Perovskite has t = 1.00. But if the A–site cation is smaller than the ideal

value, the tolerance factor t would be < 1. For low enough values of t the cubic symmetry

is broken by tilts and rotations of the MnO6 octahedra in order to fill space. Thus, for

tolerance factors 0.8 < t < 0.89 an orthorhombic structure with space group Pnma is

obtained [JL06].

The distortion from the ideal cubic Perovskite structure is called GdFeO3–like. It can be

obtained from the ideal structure by two rotations of the MnO6 octahedra: (i) out–of–

phase equal tilts about the [101] direction of the cubic Perovskite and (ii) in–phase tilts

about the [010] direction [IA01]. The transition from cubic to an orthorhombic unit cell

by these two tilts is illustrated in figure 3.2. The resulting orthorhombic structure is a

fourfold cubic unit cell rotated by 45◦. The factor four originates from the doubling of

the b–axis and from the replacement of the cubic a– and c–axis by the corresponding face

diagonals of the MnO2 (ac) plane. This new unit cell contains 20 atoms accordingly.

It is clearly understandable that this distorted orthorhombic structure is highly sensitive

to the ionic radius of R3+. A reduction of R3+ consequently leads to a decrease of the

tolerance factor and, thus, to an increase of the orthorhombic distortion. In this con-

text the reduction of the ionic radii of the Lanthanide series from La to Lu is of special

importance. Due to the complicated shape of the 4f–orbitals the shielding effects of the

4f–electrons are rather weak. Thus, the increasing charge of the nucleus across the Lan-

thanide series causes a pronounced reduction of the ionic radii. This is also known as

Lanthanide contraction [Gol25]. The orthorhombic distortion therefore increases from

LaMnO3 to DyMnO3 which is the last stable orthorhombic Rare–Earth Manganite com-

pound. HoMnO3 – the next compound in the RMnO3 series – crystallises in the hexagonal

P63cm phase, but can be converted to the orthorhombic phase by applying pressure dur-

ing the growth procedure [LWSC04].

One can think of two possible approaches for the reduction of the R3+ ionic radius: (i) a

complete replacement of the Rare–Earth element by another element which has a smaller

ionic radius and (ii) a partial substitution of the R3+ with another ion with smaller ionic

radius. Both approaches are employed for sample series investigated within this thesis,

thus we will discuss them in more detail in the last section of this chapter and also in

the first chapter of the experimental part (chapter 6). This will be done especially in the

light of possible disorder induced effects within the doping approach.

The Jahn–Teller Effect

The other aforementioned mechanism, that lowers the crystalline symmetry, is the Jahn–

Teller Effect. For an explanation of this effect the symmetry properties of the environment

of the Mn3+ ions within the RMnO3 compounds need to be considered. This will be done

according to an empirical approach outlined in [Blu03] using crystal field theory. In this

theory neighbouring orbitals are modelled as point charges. As could already be seen in

figure 3.1 the Mn3+ are each surrounded by six O2− in an octahedral environment. Latter
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cause a crystal field for the Mn3+ originating from the electrostatic repulsion, due to the

negatively charged electrons in the 2p–orbitals of the O2−. Thus, the fivefold degeneracy

of the Mn 3d–orbitals is lifted. From the five degenerate 3d–orbitals the energy of two

orbitals – the eg levels – increases, while for three orbitals – the t2g levels – the energy

decreases. This energy split due to the octahedral environment can be understood best

by considering the dxz and dx2−z2 orbitals shown in figure 3.3. The dxz orbitals belong

to the class of t2g. Thus, they point between the x– and z–axes. In contrast, the dx2−z2

orbitals are eg levels pointing along the x– and z–axes. It is easily understandable that

for dx2−z2 the electrostatic repulsion in an octahedral environment is stronger and, thus,

increases the energy with respect to the spherical situation. For dxz, whose overlap with

the 2p–orbitals of the O2− is lower, the situation is exactly opposite and, therefore, the

energy decreases with respect to the spherical case. Figure 3.4(b) shows the resulting

splitting of the 3d–orbitals within an octahedral environment.

This splitting due to the crystal field can be potentially found in all 3d–transition metals

within such an octahedral surrounding. Now, the partial occupation of the 3d–orbitals

must also be considered. In RMnO3 the manganese is in a threefold positive charge state

and, therefore, it has four electrons in its 3d–orbitals. There are two possibilities for

occupying these orbitals with electrons: the high–spin and low–spin state [Blu03]. In

the first case all 3d–orbitals are singly filled before any of these orbitals becomes doubly

occupied. The second case applies when the lower lying t2g orbitals are completely filled

before the single occupation of the energetically higher eg orbitals starts. The precise

order is determined by the competition between the crystal field energy ∆cf and the

Coulomb energy cost for a double occupation of the 3d–orbitals JH . Latter is equivalent

to the energy scale of Hund’s first rule. For LaMnO3 the literature values for the crystal

Figure 3.3: Schematical projection of two Mn3+ 3d–orbitals in the MnO2 (ac) plane of the
octahedra. In (a) the dxz–orbital of Mn3+ is shown, whose energy is lowered due to the reduced
overlap with the 2p–orbitals of the surrounding O2− and, thus, a reduced electrostatic repulsion,
while in (b) the energy of the dx2−z2 is raised due to an increased overlap. Adapted from [Blu03].
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Figure 3.4: Occupation and splitting of the energy levels of the 3d–orbitals of Mn3+ shown
in the upper left part, (b) due to the lowering of its environmental symmetry from spherical to
octahedral and (c) due to the Jahn–Teller Effect. Parts adapted from [Blu03].

field energy are ∆cf ≈ 1.5eV [ADGF+92] and JH ≈ 2 − 3eV [TT99]. The same holds

for all RMnO3 compounds. Thus, within this thesis we are in the high–spin state for all

investigated systems.

The resulting occupation of the eg and t2g orbitals in Mn3+ is shown figure 3.4(b). This

leads to a degenerated ground state, because only one of the eg–orbitals is occupied.

The degeneracy is lifted, as the crystal distorts itself spontaneously and, thus, lowers

the crystalline symmetry of the MnO6 octahedra further by stretching itself along one

of the crystalline axes – an effect that is named after its discoverers Jahn–Teller Effect

[JT37]. Without loss of generality we define this axis of elongation as y–axis and can,

therefore, appreciate, that the energy of dy2 , dxy, and dyz (see the upper left part of

figure 3.4) is lowered due to the lowering of the orbital overlap along the y–axis and the

resulting less pronounced Coulomb repulsion. On the contrary, the energy for the 3d–

orbitals with components mainly in the xz–plane – dx2−z2 and dxz – is raised due to the

reduced Mn–O distances within this plane and the resulting higher Coulomb repulsion.

The corresponding splitting of the energy levels is shown in figure 3.4(c). It can be clearly

seen, that for Mn3+ the net energy of the occupied orbitals is lowered.

In the case of the orthorhombic RMnO3 system such a distortion within the MnO2 (ac)

plane as that sketched in figure 3.5 is experimentally observed. This Jahn–Teller distortion

is called cooperatively and is distributed throughout the crystal leading to orbital order
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in turn [Goo55]. This point is crucial for the following discussions about the magnetic

properties of the RMnO3 systems.

Figure 3.5: Schematic drawing of the consequences of the cooperative Jahn–Teller distortion
for the MnO2 (ac) plane of the RMnO3 compounds. (a) shows the undistorted and (b) the Jahn–
Teller distorted plane. The green points symbolize Mn3+ ions, the red points O2−. Adapted
from [Nal05].

Space Group Symmetry of orthorhombic RMnO3

In this paragraph the resulting symmetry properties concerning the static lattice struc-

ture of the orthorhombic RMnO3 will be summed up with the help of group theory. This

part is of special importance, because the symmetry of the lattice will be employed in

chapter 4 for a normal mode analysis of the lattice vibrations leading to selection rules

for spectroscopic experiments.

According to [Hal69], group theory allows predictions about certain symmetry dependent

properties of crystalline materials, e.g. the number and optical activity of lattice vibra-

tions. However, predictions about phonon frequencies are not possible within this frame.

The symmetry of an infinite crystal can be described by its space group. This is a set

of symmetry operations, which leave the crystal invariant, fulfilling the mathematical cri-

teria of a group: closure, associativity, identity and invertibility. For a Bravais lattice,

i.e. a lattice with a pattern of spherical symmetry, there are five symmetry operations

(translations will be omitted as this discussion is restricted to a single unit cell): the iden-

tity operation (E), reflections in a plane (σ), proper rotations of 360◦/n (Cn), improper

rotations, i.e. rotations of 360◦/n followed by a reflection in a plane perpendicular to the

axis of rotation, (Sn) and inversion (i). If the criterion of spherical symmetry is dropped,

one has to add two additional symmetry operations: screw axes and glide planes. In total,

this results in 230 possible space groups. For these, there are several methods of notation.

In this thesis the so–called international symbol notation will be employed.

As discussed before, the most instructive way to deal with the Perovskite structure is to

start from the highly symmetric cubic phase with space group Pm3m and then consider
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Table 3.1: Wyckoff positions and relative coordinates of RMnO3 in the ideal cubic Perovskite
structure of space group Pm3m, adapted from [JL06].

Ion Wyckoff position x y z

R3+ 1a 0 0 0

Mn3+ 1b 0.5 0.5 0.5

O2− 3c 0 0.5 0.5

0.5 0 0.5

0.5 0.5 0

the additional effects, that lead to a lowering of the symmetry. Thus, in table 3.1 the

Wyckoff positions (all points of a space group having equivalent atomic site symmetry) of

the different ions within the unit cell are listed together with their relative coordinates.

It can be easily understood, that all ions are located at highly symmetric points. For

example each atom can be considered as a centre of inversion.

The next step is to include the symmetry lowering effects as the size effects of the R–site

cation and the Jahn–Teller Effect. In table 3.2 the Wyckoff positions and relative coor-

dinates of the resulting orthorhombic Pnma structure are given together with additional

information about the atomic site symmetry for each ion. These informations show that

only the Mn3+ remain at a centre of inversion (equivalent to site symmetry Ci), while for

the R3+ and O2−(1) only a reflection on a mirror plane leaves these sites invariant leading

to site symmetry Cs. The C1 site symmetry for O2−(2) indicates that these ions are at

a general position within the crystal, i.e. they have no site symmetry. These properties

are also reflected in the relative coordinates within the unit cell, where only the Mn3+ are

located at distortion–independent positions, while the other ions are shifted depending on

the choice of the R–site cation. Thus, a variation of the latter within the RMnO3 sample

series leads to a shift R3+ ions as well as to tilting and buckling of the MnO6 octahedra

within the unit cell, but not to a change of the symmetry properties of the lattice.

The according change of the relative coordinates leads to an increasing orthorhombic

distortion which is also reflected in the lattice constants. It manifests itself as increas-

ing difference of the a– and c–axis as well as a decrease of the unit cell volume in total

(mainly by a continuous shrinking of the b–axis). The experimental lattice constants for

the investigated systems are listed in table 6.2 and 6.3 and will be discussed in detail in

the corresponding experimental section 6.2.

Summing up, in this section the static lattice properties of the RMnO3 system were dis-

cussed in the light of several effects, which lower the symmetry from cubic to orthorhombic.

The symmetry aspects of the lattice were described with the help of group theory leading

to insights into the local site symmetries of the incorporated ions. The next step would

be a symmetry analysis of the lattice dynamics and its consequences for spectroscopical

investigations, i.e. optical selection rules. This will be done in chapter 4. But first other

important static aspects of the RMnO3 system need to be discussed, due to their resulting
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Table 3.2: Wyckoff positions, site symmetries and relative coordinates of RMnO3 in the or-
thorhombic structure of space group Pnma. The variables u, v, m and n depend on the particular
structure, i.e. the size of the R3+, whereas a, b and c are general positions within the unit cell.
From [Wyc64] adapted to Pnma.

Ion Wyckoff position site symmetry x y z

R3+ 4c Cs ±u ±1/4 ±v
±(u+ 1/2) ±1/4 ±(1/2− v)

Mn3+ 4b Ci 0 0 1/2

1/2 0 0

0 1/2 1/2

1/2 1/2 0

O2−(1) 4c Cs ±m ±1/4 ±n
±(m+ 1/2) ±1/4 ±(1/2− n)

O2−(2) 8d C1 ±a ±b ±c
±(a+ 1/2) ±(1/2− b) ±(1/2− c)

±(−a) ±(b+ 1/2) ±(−c)
±(1/2− a) ±(−b) ±(c+ 1/2)

coupling effects with the lattice dynamics. These coupling effects are the main topic of

this thesis. Thus, our next point will be the magnetic properties of RMnO3.

3.2 Magnetic properties

To understand the magnetic properties, the implications determined by the crystalline

structure discussed in the last section need to be considered in more detail. As can be

seen in figure 3.4, the d–orbitals of the Mn3+ ions are neither completely empty nor com-

pletely occupied. Thus, one would expect delocalised electrons within a partially filled

band scheme and, therefore, metallic behaviour. However, this is not the case due to

electronic correlations within the Manganites [Ram08].

In these systems the effect of electronic correlations, i.e. the repulsive electron–electron

interaction, cannot be neglected as is done in the one–electron picture of band theory

[YC01]. It was argued by Mott and Peierls that, if these interactions are strong enough,

electrons will be localised at their parent atoms, because electron transfer from one atom

to another would lead to large additional electron repulsion due to their Coulomb inter-

action with each other [Mot37]. Such a system, which is an insulator due to electron

correlation effects, is called a Mott insulator [Ram08].
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The Hubbard Model

To quantitatively describe this behaviour, a lattice model, which includes kinetic energy

as well as correlation effects, is usually employed – the Hubbard model [Hub63]. In this

model a system is considered, where an electron occupies a single orbital with two possible

spin orientations (σ = ↑ or ↓) at a given lattice site i. The Hamiltonian can be written

as follows [Ope05]:

Ĥ = −t
∑
〈ij〉,σ

(
c+iσcjσ + c+jσciσ

)
︸ ︷︷ ︸bHt

+U
∑
i

ni↑ni↓︸ ︷︷ ︸bHU

(3.3)

The first term of the right side of equation (3.3), Ĥt, describes the kinetic energy in second

quantisation. c+iσ and cjσ are the annihilation and creation operators of an electron on the

lattice sites i and j with spin σ, respectively. The sum runs over the nearest neighbours

i < j avoiding double counting and the two possible spin orientations. The parameter t

is therefore a measure for the amount of energy, the electrons gain by delocalisation.

The second term, ĤU , describes the Coulomb energy, that has to be brought up to add a

second electron to a singly occupied orbital. The so–called Hubbard energy U has to be

paid, when the two occupation operators ni↑ and ni↓ have both the eigenvalue one.

With these two parameters t and U one can define two regimes:

(i) t/U � 1: The Hamiltonian describes a metallic ground state as the electrons can delo-

calise and form a conduction band. Thus, consequently we obtain a ”tight binding”single

electron model in this case.

(ii) t/U � 1: The term ĤU dominates and, thus, an insulating ground state is obtained

due to the energy cost, that has to be paid for electron hopping from one lattice site to

another.

The Rare–Earth Manganites belong to the latter category, as in these systems partially

filled 3d–orbitals occur, but nevertheless an insulating ground state exists. The sim-

ple Hubbard model discussed above can be applied straightforwardly to the case of the

RMnO3 compounds. For the following discussion, we will include the effects of crystal

field splitting (∆cf ≈ 1.5eV ), the intra–atomic ferromagnetic coupling due to Hund’s

first rule (JH ≈ 2 − 3eV ) as well the Hubbard U (U ≈ 10eV [SPacVac96]), but not the

Jahn–Teller splitting of the eg orbitals due to the relatively small value of δJT ≈ 0.5eV .

Thus, we can regard the eg as partially filled doubly–degenerated orbitals, whose spin

is ferromagnetically coupled via Hund’s rule to the lower lying t2g orbitals [TT99]. The

immediate consequence for the magnetic structure is that we are dealing with localised

magnetic moments. With these considerations the magnetic structure of the Rare–Earth

Manganites can now be discussed.

The A–type antiferromagnetic structure of RMnO3

The mechanism responsible for the magnetic ordering within the RMnO3 system is the

Superexchange. In the large majority of long range magnetic orderings in crystalline
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Figure 3.6: Goodenough–Anderson–Kanamori (GKA) Rules applicable to the virtual hopping
within the frame of Superexchange in the RMnO3 system. On the left side the orbital overlap
and the resulting interaction between the Mn 3d and O 2p spins is shown and on the right side
the energy levels participating in this exchange mechanism. Adapted from [Ope05].

solids due to localised magnetic moments, the exchange interaction is of indirect nature.

In the case of RMnO3 the essential magnetic exchange path is between adjacent 3d–

orbitals of Mn3+ mediated by the 2p–orbitals of O2−. For the Rare–Earth ions within

the investigated RMnO3 series with non–vanishing magnetic moments (i.e. R3+ = Gd3+,

Tb3+) also a magnetic ordering may occur, due to the magnetism of partially filled 4f–

orbitals of R3+. However, their ordering takes place at temperatures T < 10K [KLG+05].

As the experiments within this thesis were all done at higher temperatures, we will not

consider the magnetic exchange of the 4f–orbitals of R3+ further.

The Superexchange can be understood as virtual hopping processes from the ground

state. Depending on the spin orientation of the corresponding 3d–orbitals the resulting

excited state can be lowered or raised in energy. This excited state, in turn, is admixed to

the ground state and, thus, leads to an effective lowering of the total energy in the order of

≈ t2/U . As discussed before, the Superexchange depends strongly on the orbital structure.

A detailed theoretical description can be very complicated. Thus, we will restrict ourselves

to a more qualitative discussion based upon the Goodenough–Kanamori–Anderson (GKA)

Rules [Goo63]. The two GKA Rules applicable to the RMnO3 systems are sketched in

figure 3.6.

The first rule, illustrated for the example of two dy2 orbitals in figure 3.6(a), is applicable

for two singly occupied or two empty eg–orbitals. The core spin of the t2g is indicated by

the three spins below the eg orbital and is ferromagnetically coupled to the single eg spin

corresponding to a strong JH . For the case of two occupied or two empty eg orbitals the

energy gain due to antiparallel alignment of the Mn3+ spins is ∆E = −2t2/U . Thus, an
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Figure 3.7: Schematic drawing of the orbital overlap between Mn 3d– and O 2p–orbitals within
the MnO2 (ac) plane. The orbital overlap between singly occupied 3dx2 or 3dz2 and unoccupied
3dx2−z2 or 3dy2−z2 , respectively, causes a ferromagnetic coupling between the spins of the Mn3+

ions within this plane due to the GKA Rules. The tilting of the eg orbitals with respect to the
cubic Perovskite structure is left out for reasons of simplicity.

antiferromagnetic interaction occurs.

The second situation, depicted in figure 3.6(b), shows the GKA Rule for the overlap

of one singly occupied and one empty eg orbital. The second orthogonal eg orbital is

occupied as indicated. Here the energy gain by a parallel alignment of the Mn3+ spins is

∆E = −2t2/(U − JH) and a ferromagnetic interaction is favoured.

These two rules have to be applied to the orbital and crystalline order within the RMnO3

systems. As indicated in figure 3.5(b), an alternate elongation of the MnO6 octahedra

along the x– and z–axis leads to a stacked orbital order due to the cooperative Jahn–Teller

Effect within the MnO2 (ac) plane. The resulting orbital structure is sketched in figure

3.7. The dy2 orbitals are now alternating within this plane (denoted as dx2 and dz2 in

the figure) and, thus, the magnetic exchange between these can be neglected. Instead

magnetic exchange between the occupied dx2 or dz2 and the empty dx2−z2 or dy2−z2 is

significant leading to a ferromagnetic ordering within the MnO2 (ac) plane, according

to the second GKA Rule. The situation perpendicular to this plane is much clearer, as

there is no stacked orbital order and, thus, the first GKA rule for an overlap between

two singly occupied or two empty orbitals applies. The magnetic structure therefore

consists of a ferromagnetic coupling within the MnO2 (ac) plane and an antiferromagnetic

coupling perpendicular to this plane. The resulting magnetic structure is the A–type

antiferromagnetic ordering shown in figure 3.8.

What is left out in this discussion, are non–isotropic effects of the Superexchange. The

most important non–linear correction is due to spin–orbit coupling. This leads to the

so–called Dzyaloshinskii-Moriya interaction (DMI) [Mor60]. The theoretical treatment of



3.2. Magnetic properties 33

Figure 3.8: A–type antiferromagnetic ordering of the Mn3+ spins within the orthorhombic unit
cell of RMnO3.

this effect is rather complex and, therefore, only a short motivation of the basic form of

the Hamiltonian will be given in Appendix D. The essentials are that there are correction

terms favouring a canted spin arrangement within an antiferromagnet. The corresponding

Hamiltonian is

HDMI = D [Si × Sj] , (3.4)

where D is the phenomenologically defined Dzyaloshinskii vector. It is straightforward to

follow, that this Hamiltonian implies a canted antiferromagnetic spin arrangement. In the

case of RMnO3 compounds a small canting along the b–axis (see figure 3.8) occurs and

leads to a weak ferromagnetic moment and, thus, to a canted A–type antiferromagnetic

(canted A-type AFM) structure.

The incommensurate magnetic structures of RMnO3

The above discussed canted A–type AFM structure occurs for a wide range of RMnO3

with a relatively large R3+ ionic radius (R3+ = La3+, Pr3+, Nd3+, Sm3+, Eu3+). However,

for decreasing R3+ ionic radii the ordering temperature also decreases indicating a weak-

ening of the strength of the magnetic ordering [KIS+03]. In this paragraph we will discuss

the origin of this behaviour in order to gain an understanding of the phase diagram of the

RMnO3 series.

In section 3.1 it was already discussed, that a reduction of the R3+ ionic radius (e.g. by a

complete substitution with a smaller Rare–Earth ion) has consequences on the crystalline

structure, i.e. an increased tilting and buckling of the MnO6 octahedra. This, in turn,

has consequences for the magnetic structure due to the localised nature of the magnetic



34 3. The Multiferroic Manganites RMnO3

Figure 3.9: Schematic drawing of the orbital ordering and the resulting magnetic exchange
paths between nearest neighbouring (NN) and next nearest neighbouring (NNN) eg orbitals
of the Mn3+. The t2g as well as the unoccupied eg orbitals are omitted for reasons of sim-
plicity. The magnetic exchange paths indicated in the figure are the ferromagnetic Mn–O–Mn
exchange J1, the antiferromagnetic Mn–O–O–Mn exchange J2 along the a–axis and the weaker
antiferromagnetic Mn–O–O–Mn exchange J3 along the c–axis. Adapted from [KIS+03]

moments.

In figure 3.9 the orthorhombic distortion is included in a sketch of the projection of the

occupied Mn3+ eg orbitals and the O2− 2p orbitals on the MnO2 (ac) plane. The mag-

netic exchange discussed in the previous paragraph is responsible for the ferromagnetic

spin arrangement within the MnO2 (ac) plane. It is denoted as J1 and describes the

magnetic exchange between nearest neighbour (NN) Mn3+. For the following discussion

the magnetic exchange between next nearest neighbours (NNN) has to be considered,

either. Due to the stacked orbital order, there are two possible exchange paths in the

MnO2 (ac) plane depending on the orientation of the dx2 or dz2 , respectively. For both

cases the magnetic exchange is between two occupied eg orbitals with the exchange path

Mn–O–O–Mn. Thus, it is antiferromagnetic according to the GKA rules.

A closer inspection of the ordered orbitals sketched in figure 3.9 shows, that an increased

tilting of the MnO6 octahedra causes a tendency for a shortening of some O–O distances

in the MnO2 (ac) plane (e.g. the both O2− ions involved in the J2 exchange). This in turn

leads to an increasing importance of the NNN magnetic exchange causing a weakening of

the overall ferromagnetism within the MnO2 (ac) plane. Thus, a decrease of the transition

temperature (indicated as Néel temperature TN) from the paramagnetic to the A–type

AFM is expected for a decreasing R3+ ionic radius. This trend is clearly visible for TN of

the RMnO3 system shown in figure 3.10.
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Figure 3.10: Spin ordering temperatures of RMnO3 as a function of the Mn–O–Mn bond angle.
A–AF denotes the canted A–type AFM, IC–AF the incommensurate antiferromagnetic phases
(e.g. sinusoidal or spiral spin structures), and E–AF the E–type AFM. From [KIS+03]

For a complete understanding of the phase diagram shown in this figure, the magnetic

interactions of NN and NNN Mn3+ need to be considered on a more systematic base.

The most instructive way to do this, according to [Blu03], is a simple model for a lay-

ered magnetic structure with a ferromagnetic alignment within the layers. The magnetic

exchange between NN layers is denoted as J1 and that between NNN layers as J2. The

angle between the spins of the two adjacent layers is defined as θ. Within this model we

can write the energy of the system as

E = −2NS2 (J1 cos θ + J2 cos 2θ) , (3.5)

where N is the number of atoms in each plane and S their corresponding spin. This energy

is minimized by the condition ∂E/∂θ = 0 leading to

(J1 + 4J2 cos θ) sin θ = 0. (3.6)

One possible solution for this equation is sin θ = 0, which corresponds to θ = 0 or θ = π,

leading to a ferromagnetic or an antiferromagnetic ordering of the layers, respectively.

However, there is a third solution

cos θ = − J1

4J2

, (3.7)

which describes a so–called helical order, where the spins of adjacent layers couple under

a definite angle 0 < θ < π. In this magnetic order the periodicity of lattice and magnetic

order do not have to be commensurate. Thus, such a structure has a wave vector, whose

values with respect to the reciprocal lattice do not necessarily have to be integer numbers.

The situation in the RMnO3 crystal lattice is highly sensitive on lattice properties of this
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Figure 3.11: Illustrations of some types of possibly incommensurate magnetic structures. a)
denotes a sinusoidal, b) a screw (= helical in the text), and c) a cycloidal spin structure. eij
denotes the propagation direction of the spin modulation. The cross product of Si and Sj is also
shown for the three structures. From [Kim07].

structure and, therefore, much more complicated than this simple model. Thus, we will

discuss it qualitatively in the light of the just deduced findings for an incommensurate

magnetic structure.

Figure 3.11 shows three possible realisations of an incommensurate (IC) magnetic struc-

ture. Relevant for the IC–phases of the RMnO3 system are the sinusoidal (a) and cy-

cloidal (c) spin configurations [Kim07]. For TbMnO3, as the most prominent example of

a multiferroic RMnO3 system with incommensurate magnetic ordering, a sinusoidal order

appears upon cooling down from the paramagnetic phase at room temperature. This

phase transition occurs at T ≈ 41K [Kim07]. A model proposed for this structure has

the Mn magnetic moments aligned along the a–axis with a propagation wave vector of

(kMn, 0, 0) [QTRM+77]. kMn is temperature–dependent until the second phase transition

at TC ≈ 28K, where the dependence on T vanishes [KHJ+05]. This temperature is indi-

cated as Tlock in figure 3.10. It symbolises the transition to a cycloidal order in which the

propagation direction of the rotation of the Mn3+ spins is also along the a–axis, but the

rotation is transversely modulated as shown in figure 3.11(c). Thus, there are magnetic

moments along the b–axis causing a non–collinear character of the cycloidal structure.

Furthermore, this spin order is not invariant under a spatial inversion – a fact, that will

be very important for the discussion of the multiferroic properties of the RMnO3 systems

(see section 3.3).

Summing up, the magnetic phase diagram of RMnO3 systems can be understood as

highly sensitive to the crystalline properties, i.e. the tilting and buckling of the MnO6

octahedra, which can be tuned by the ionic radius of the R3+. The consequences are a
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Figure 3.12: Schematics of multiferroic coupling effects. Three possible ferroic properties of a
material are shown with their potential couplings indicated by arrows. Depicted are the order
parameters electric polarisation P , magnetisation M and strain ε, which can order spontaneously
in their corresponding ferroic phase. The green arrows highlight the Magneto–Electric Coupling,
i.e. the induction of an electric polarisation P by an external magnetic field H or vice versa.
[SF05]

decrease of the Néel temperature TN of the A–type AFM. For R3+ with a smaller ionic

radius than Eu3+ the A–type AFM is replaced by IC magnetic orderings reflecting the

increasing importance of the NNN magnetic exchange within the MnO2 (ac) plane.

It should also be mentioned, that for R3+ smaller than Dy3+ the E–type AFM occurs with

a so–called up–up–down–down spin ordering along the Mn–O–Mn bonds in the MnO2 (ac)

plane [KIS+03]. However, this magnetic ordering is not relevant for this thesis and will

be therefore not further discussed.

3.3 Multiferroism in RMnO3

As stated in the introduction, multifunctional materials are one of the most interesting

research areas in solid state physics with the Magneto–Electric Multiferroics being one of

the so–called ”hot topics”[CM07]. Thus, in this section a short overview of the multifer-

roic properties of the RMnO3 system will be given.

Generally the Magneto–Electric Effect is the induction of electric polarisation by a mag-

netic field or the induction of a magnetisation by an electric field [Cur94]. This effect has

been studied extensively in the 1960s and 1970s [O’D70, FS75], but the interest ceased due

to the small coupling strengths. From theoretical considerations it was clear, that only

a material in which ferromagnetic and ferroelectric order coexist, could show a consider-

able Magneto–Electric Effect. This leads to the material class of the (Magneto–Electric)

Multiferroics. Originally, this term denoted materials, in which at least two ferroic orders

exist in the same phase [Sch94]. Figure 3.12 shows schematically the potential couplings

for the three order parameters polarisation P , magnetisation M and stress ε. The green

arrows in the same figure indicate the Magneto–Electric Coupling as one of those multi-

ferroic couplings.
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Figure 3.13: Sketch of the local ferroelectric polarisation due to the spin canting in (a) a
cycloidal incommensurate spin structure and (b) a canted antiferromagnetic spin structure.
The light green spots show the positions of the unshifted O2− ions. The blue arrows symbolise
the induced local electric polarisation. Taken from [Kim07].

In 2003 the Magneto–Electric Effect in TbMnO3 was discovered [KGS+03]. Precisely, a

ferroelectric polarisation was found, that can be switched by an external magnetic field.

This triggered a giant wave of research activity for an understanding of this coupling effect

and is also the motivation for the investigations of this thesis. Despite this success it has

to be noted that the value of the ferroelectric polarisation is ≈ 500µC m−2 and, therefore,

much smaller than that in conventional ferroelectrics (e.g. BaTiO3 with P ≈ 300mC m−2

[CBL+04]) thus making the realisation of technological applications rather difficult. The

relevant aspect for this thesis, however, is the determination of the Magneto–Electric

Coupling by the magnetic structure. This will be discussed shortly in the following.

Due to symmetry arguments, it can be easily understood, that only in a magnetic struc-

ture, that breaks inversion symmetry, the Magneto–Electric Effect can occur [Mos06]. For

RMnO3 this is only possible for the cycloidal spin structure (see figures 3.8 and 3.11),

where a spatial inversion causes a reversal of the direction of rotation of the spins.

This phenomenological treatment allows the search for multiferroic materials based on

symmetry considerations. Moreover, a general relation between the electric polarisation

and magnetic moments in a multiferroic system with incommensurate magnetic structure

could be deduced [MF09]:

P ∝ γeij × (Si × Sj) , (3.8)

where γ is a coupling constant, eij the propagation vector of the spin cycloid and (Si × Sj)

the spin chirality, i.e. a vector parallel to the axis of spin rotation.

However, a complete microscopic theory is still missing. Several possible models were pro-

posed in the last years. The most instructive one considers the Magneto–Electric Coupling
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as an inverse DMI effect, where the noncollinear arrangement of the spins causes a shift

of the O2− ions between the two magnetic moments via magnetostriction [SD06]. In

figure 3.13(a) these shifts are depicted together with the resulting local ferroelectric po-

larisations. One might expect, that this effect could also take place in a commensurate

magnetic phase, e.g. a canted AFM structure as shown in figure 3.13(b). In this case

the spin angle can be regarded as alternating between positive and negative sign but

with the same value, i.e. an alternation of clockwise and counter clockwise spin rotation.

Thus, macroscopically the local ferroelectric polarisation is cancelled out in agreement

with equation (3.8).

Summing up, the presented considerations concerning the Magneto–Electric Coupling in

incommensurate magnetic structures can explain the multiferroic properties of the RMnO3

system, i.e. the appearance of a ferroelectric polarisation in the cycloidal spin phase of

this system. Thus, the ferroelectric order is determined by the magnetic structure and

can be suppressed or rotated by magnetic fields [KLG+05].

There is one further consequence of this intimate coupling between magnetism and di-

electric properties relevant for this thesis: the Magneto–Electric Coupling leads to the

occurrence of a corresponding elementary excitation: the so–called Electromagnon. This

point will be discussed in the light of its coupling to the lattice vibrations in section 5.2.

3.4 Stoichiometric and non–stoichiometric RMnO3

In section 3.1 it was argued that the orthorhombic distortion of the RMnO3 system

is determined by size effects of the R–site cation. This, in turn, affects the magnetic

Figure 3.14: Magnetic phase diagrams of stoichiometric RMnO3 (left side) and substituted
Eu1−xYxMnO3 (right side). The red box in the phase diagram of RMnO3 indicates the region
where the two sample systems show comparable magnetic phases. In the phase diagram of
Eu1−xYxMnO3 AFM–1 denotes a sinusoidally modulated spin structure and AFM–2 a spin
cycloidal. The magnetic phase AFM–3 shows a weak ferromagnetic moment along the b–axis
and simultaneously multiferroic behaviour. Taken from [KIS+03] and [HSP+07].
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structure. A decrease of the effective size of the R–site cation can be achieved in two

ways: (i) a complete replacement of R3+ with another cation with a smaller ion radius

(e.g. substituting Eu3+ by Gd3+ or Tb3+) or (ii) a partial substitution also by a smaller

ion. An example for the latter is the mixed La1−xGdxMnO3 series [HLKvN+04]. This

substitutional approach gives also the opportunity to clarify the question, whether the

multiferroic behaviour in RMnO3 emerges only due to the magnetic moments of the Mn3+

or if the magnetic moments due to the partially filled 4f–orbitals of the Rare–Earths

R3+ are also needed [YMG+07]. This is done by employing the mixed–crystalline series

Eu1−xYxMnO3, where both Eu3+ and Y3+ do not show a long range magnetic ordering

as Eu3+ has a half filled 4f–shell causing a vanishing of the total angular momentum J

and Y3+ is non–magnetic [HSP+07].

The static lattice, magnetic and dielectric properties of Eu1−xYxMnO3 were investigated

systematically and the results showed clearly, that multiferroic behaviour exists in this

substituted system [IMT+06, HSP+07, YMG+07]. Figure 3.14 shows the magnetic phase

diagram of Eu1−xYxMnO3 [HSP+07] in comparison with that of the stoichiometric RMnO3

series from [KIS+03]. Indicated are the magnetic phases as well as the corresponding

ferroelectric polarisation. It can be seen that a similarity between the magnetic phases of

RMnO3 (R = Eu3+, Gd3+ and Tb3+ – indicated by the red box) and that of Eu1−xYxMnO3

(0 ≤ x ≤ 0.5) exists. Thus, it can be concluded that the doped Eu1−xYxMnO3 cover the

magnetic phases from EuMnO3 to TbMnO3.

Naturally, a substitutional approach gives rise to the question of crystalline disorder.

Investigations were carried by the means of measurements concerning the static lattice

properties to exclude the occurrence of secondary phases [HSP+07]. However, a systematic

investigation, which also includes measurements of the lattice dynamics are not carried

out yet. This point will be dealt with in chapter 6 of this thesis.



Chapter 4

Lattice vibrations and selection rules

In the two previous chapters the spectroscopical techniques as well as the static properties

of crystal and magnetic lattice within the RMnO3 system were discussed. Both discussions

showed the importance of symmetry aspects. In this chapter these two topics will be

brought together for an introduction into the lattice dynamics of RMnO3. This discussion

will be based on a group theoretical classification of the lattice vibrations and the resulting

optical selection rules, which determine their observability either with Raman or Infrared–

Spectroscopy.

4.1 Lattice vibrations and group theory

In section 2.1 it was already mentioned, that for a treatment of the Raman process, i.e.

a scattering process generating a lattice vibration, a purely classical description is not

sufficient. The essential of the classical approach is, that lattice vibrations can be written

as a sum of harmonic oscillators with Eigenfrequencies Ω and the wave vectors q. The

Quantum–Mechanical treatment is in close analogy to that of photons [Gro09].

For this task, the quantisation of the vibrational energy has to be taken into account. The

resulting discrete energy niveaus En = (n+ 1/2) ~Ω of the one–dimensional harmonic

oscillator are occupied according to an occupation number n describing the excitation

state of normal vibrations. The wave–particle dualism allows to express a vibration as a

quasi–particle with energy E = ~Ω and momentum p = ~q, the phonon. The particle

picture is especially suitable for the description of interaction processes, e.g. phonon–

phonon interaction or scattering processes (see section 2.1).

According to [Kuz98], the Hamiltonian of the lattice vibrations can be written in mass–

weighted normal coordinates Qk for the 3N oscillators

H =
1

2

3N∑
k=1

(
Q̇2
k + Ω2

kQ
2
k

)
, (4.1)

where Qk are the normal coordinates and Ωk the resonance frequencies of the normal

oscillators of the system. The energy of this ensemble does not change, if a symmetry

41
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Table 4.1: Character table of the Pnma space group. In this table the symmetry classes (first
line) of the group, their irreducible representations (left column) and the resulting characters
of the matrices are listed. Also shown in the column on the right are the corresponding basis
functions. From [Hal69].

E C2(z) C2(y) C2(x) i σxy σxz σyz
Ag 1 1 1 1 1 1 1 1 x2, y2, z2

B1g 1 1 –1 –1 1 1 –1 –1 xy

B2g 1 –1 1 –1 1 –1 1 –1 xz

B3g 1 –1 –1 1 1 –1 –1 1 xy

Au 1 1 1 1 –1 –1 –1 –1

B1u 1 1 –1 –1 –1 –1 1 1 z

B2u 1 –1 1 –1 –1 1 –1 1 y

B3u 1 –1 –1 1 –1 1 1 –1 x

action (see section 3.1) of the corresponding space group is applied. Thus, each normal

coordinate Qk must be transformed into itself or into −Qk. The normal coordinates Qk

can therefore be regarded as a basis for one possible representation of the space group.

In general, this representation can be reduced to an irreducible representation of the

corresponding space group. A representation is called irreducible, if it does not fix any

proper non–trivial subgroup. This means, that their matrix elements are arranged in a way

around the diagonals, that no further decomposition into submatrices (i.e. subgroups) is

possible. All lattice vibrations can be classified into the irreducible representations of the

group and, thus, are assigned with the particular Mulliken symbol of the representation.

For an explanation of the systematics of the Mulliken symbols, the reader is referred to

[Kuz98, HW03]. It should be noted, that in the case of the orthorhombic Pnma group all

representations are one–dimensional.

For a classification of the vibrational normal modes, it is necessary to know the traces

χ(R) of the representation matrices for each symmetry action R. A trace is the sum of

the matrix entries on the main diagonal. A table, in which the characters for each class of

symmetry actions are listed for each irreducible representation, is called character table.

The character table for the space group of the RMnO3 system – Pnma in international

notation, D16
2h in Schoenfliess notation – is shown in table 4.1.

The next step will be the derivation of the optical selection rules.

4.2 Selection rules for Spectroscopy

Selection rules are simple rules stating if the transition probability for a system changing

from one quantum–mechanical state to another is vanishing or not [Kuz98]. This proba-

bility can be expressed as proportional to the square of the corresponding element of the
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transition matrix from the quantum–mechanical state i to the state f

Mfi =

∫
ψ∗
fPψidx, (4.2)

where ψi denotes the wave function of the initial state and ψf the final state, respectively.

P is the operator causing the transition. Since the Hamiltonian introduced in equation

(4.1) and also the corresponding Schrödinger equation are invariant under all symmetry

actions, the wave functions to a particular Eigenvalue of H form a basis, that can be

classified according to the irreducible representations of the space group. The same holds

for the operator P due to the transformation properties of its corresponding basis func-

tions. Thus, we can consider equation (4.2) as a triple product of basis functions each

representing their irreducible representation. Thus, for the integral in equation (4.2) to

be non–vanishing, the triple product of the corresponding representations

Γ(ψf ) × Γ(P) × Γ(ψi) (4.3)

has to contain the trivial representation (i.e. Ag for Pnma) [Kuz98]. In that case, the

matrix element Mfi is non–vanishing and the transition from state i to state f is allowed.

This can be used immediately to derive the selection rules for the infrared active phonons.

4.2.1 FT–IR Spectroscopy

The transition between two vibronic states, induced by the electric field of the infrared

radiation, is between states of different symmetry with respect to a spatial inversion.

This can be easily understood by regarding the quantum–mechanical wave functions of

the harmonic oscillator (see for example [Hal69]). The operator P, responsible for the

transition, is a dipole moment e ·x and, therefore, transforms according to the coordinates

x, y or z.

In the case of FT–IR Spectroscopy, we are exciting phonons at temperatures T ≤ 300K

and, thus, assume the vibrational ground state (i.e. the vacuum state) as initial state ψi.

This state is characterised by the full symmetry of the static lattice, which is equal to the

trivial representation Ag. Now it is clear, that for equation (4.3) to contain Ag, the dipole

operator P and the final state ψf must both belong to the same representation. Thus,

the excited phonon state must also transform according to the coordinates x, y or z and,

thus, belongs to the irreproducible representations B1u, B2u or B3u.

These three phonon symmetry classes can be selectively studied by employing polarised

light with its electric polarisation E parallel to the corresponding crystal axes (i.e. E||x,y,
or z). For the Pnma space group, the x–, y– and z–coordinates in the character table 4.1

are equivalent to the c–, b–, and a–axis of the crystal, respectively [Smi99].

In table 4.2 the possible directions for polarised light are listed together with the resulting

phonon symmetry. It should be mentioned, that there exist two possible notations for the

orthorhombic RMnO3 system in literature: the Pnma notation and the Pbnm notation.

These two can be transformed into each other by a permutation of the crystal axes. To

avoid confusion, both notations will be shown in Table 4.2, but within this thesis the
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Table 4.2: Light polarisations and corresponding phonon symmetry for the infrared–active
phonon modes.

phonon symmetry light polarisation in Pnma light polarisation in Pbnm

B1u E||a E||b
B2u E||b E||c
B3u E||c E||a

Pnma notation will be employed. A good thumb rule to distinguish between these two

notations is, that in Pnma the b–axis is the elongated axis of the orthorhombic unit cell

and in Pbnm the c–axis, respectively.

These group theoretical considerations can be underscored by the simplest model of the

infrared active phonon modes: The A.C. electric field of the photon excites a phonon di-

rectly by changing its electric dipole moment [Kuz98]. Therefore, these phonon modes are

also called polar modes. It is clearly understandable, that these modes have to transform

like a vector due to the vector nature of the electric dipole. One can further conclude

that by changing the polarisation vector of the incident light from one crystalline axis

to another, the phonon symmetry is also changed and, thus, phonon modes of different

symmetry are excited.

The group theoretical considerations further give the number of phonon modes for each

mode symmetry in the RMnO3 system. In summary, we have 25 infrared–active phonon

modes: 9 B1u, 7 B2u and 9 B3u [IAL+98].

4.2.2 Raman Spectroscopy

In contrast to the direct excitation of a phonon in FT–IR Spectroscopy, Raman Spec-

troscopy is based on a scattering process and must, therefore, be described by a quantum–

mechanical process of second order. For an equivalent discussion of the selection rules

resulting from group theoretical considerations, it is most instructive to return to equa-

tion (2.12), where the scattering probability of the Raman process is shown in terms of

electronic transitions and electron–lattice interaction.

In summary, three interaction processes are involved: (i) the excitation of an electron by

an incident photon to an intermediate state, (ii) the interaction between the intermediate

state and the crystalline lattice, i.e. the phonon generation, and (iii) the electron–hole

recombination into the initial electronic state. In this picture the processes (i) and (iii)

can be described as electronic transitions equivalent to the vibrational transition process

described in section 4.2.1 with the exception, that the initial and final electronic state are

not necessarily the ground state. Thus, in general, the representations of ψi and ψs are not

the trivial representation. The phonon excitation occurs in step (ii), where the interaction

is described by the Raman tensor R. Thus, the selection rules for Raman spectroscopy
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Table 4.3: Scattering geometry in Porto’s notation [YC01] for all configurations possible for
the Pnma space group and the resulting phonon symmetry for the Raman–active phonon modes.
An interchange of the polarisation vectors ei and es leads to the same symmetry representation,
thus it is only shown once.

ki (ei, es) ks a (. . .) a b (. . .) b c (. . .) c

. . . (a, a) . . . – Ag Ag

. . . (b, b) . . . Ag – Ag

. . . (c, c) . . . Ag Ag –

. . . (a, b) . . . – – B1g

. . . (a, c) . . . – B2g –

. . . (b, c) . . . B3g – –

can be derived by regarding the possible representations of the Raman tensor.

As a first step, the consequence of an application of the dipole operator on the electronic

wave function of the initial state is considered. Consequently, a transition described by

the dipole operator changes the symmetry character of the electronic wave function in a

crystal structure with inversion symmetry from a g–mode to an u–mode or vice versa.

This is a natural consequence of the spherical harmonic functions of the atomic wave func-

tions and the selection rule ∆L = ±1 (see textbooks about atomic physics, e.g. [MK97]).

Thus, for (i) and (iii) the symmetry of the wave functions is changed and returns to the

initial value, either g or u.

The direct consequence for (ii) is, that the Raman tensor has to project from one in-

termediate state |a〉 of symmetry g or u to another intermediate state |b〉 of the same

symmetry. Thus, the tensor itself has to conserve the inversion symmetry and therefore

has to belong to a g–type representation, i.e. Ag, B1g, B2g, or B3g. This is also reflected

in the transformation properties of the g–type representations. All of these transform like

tensors, i.e. like the product of coordinates (i.e. x2, y2, z2, xy, xz, or yz), as shown in the

character table 4.1.

In summary, 24 Raman–active phonon modes are obtained for the RMnO3 system with

Pnma structure: 7 Ag, 5 B1g, 7 B2g, and 5 B3g modes [IAL+98]. It should be pointed out,

that for the highly symmetric cubic Perovskite (space group Pm3m, see section 3.1), no

Raman–active phonon modes exist [IA01]. Thus, the Raman–active modes are especially

sensitive to the orthorhombic distortion of the Perovskite crystal structure.

The discussion of Raman– and infrared–active phonons also shows a very important gen-

eral aspect of symmetry: in crystals with inversion symmetry, Raman– and infrared–active

phonon modes exclude each other.

For the Raman selection rules, one has to consider the matrix representations of each of

the Raman–active representations of the Pnma space group. These can be obtained from

literature, e.g. from [Kuz98]. For a systematic derivation of the Raman selection rules,

it is most convenient to use Porto’s notation, which was already introduced in equation



46 4. Lattice vibrations and selection rules

(2.6).

A multiplication of the electric polarisation vector with the Raman tensors should lead

to a polarisation vector, which is observable within the chosen scattering geometry. This

means, for example, if ki (and of course also ks) is chosen parallel to the normal vector

(e.g. a or a) of a plane spanned by two of the three crystalline axes (in this case, the

bc–plane), one can probe light polarisations ei parallel to one of the two in–plane axes due

to the transversal nature of the light wave. A multiplication of these possible polarisation

vectors with all Raman tensors of the Pnma space group gives non–vanishing es for two

cases: (i) the Ag representation, if ei||es, that is possible for (b, b) and (c, c) in Porto’s

notation and (ii) the B1g representation, if ei ⊥ es, which can either be (b,c) or (c,b),

respectively. This can be done systematically for all possible scattering configurations,

i.e. different ki directions, ks = ki and the resulting possible ei and es directions. The

result is table 4.3, which lists the selection rules for all possible backscattering geometries.

4.3 Mode patterns of the investigated Raman– and

infrared–active Phonons

As pointed out before, the group theoretical considerations give numbers for the allowed

lattice vibrations of each mode symmetry. These can be selectively studied by the ap-

plication of the just discussed optical selection rules. However, they do not give any

information about the phonon frequencies. For this task, one has to carry out lattice

dynamical calculations. In principle, there exist two possible approaches for a quantita-

tive calculation of the phonon frequencies: (i) an empirical approach or (ii) an ab–initio

calculation.

In the case of (i), the phonon modes are modelled by giving the atomic positions and the

ionic charges of the atoms incorporated in the unit cell as well the displacement vectors

of the lattice vibrations as input parameters. The fitting procedure is carried out by

adjusting the values of the ionic charges and by fitting an appropriate number of force

constants to obtain quantitative phonon frequencies. This was carried out in literature

for various RMnO3 compounds (e.g. for LaMnO3 [Smi99], or for SmMnO3, EuMnO3, and

GdMnO3 [CRC+09]). However, the empirical nature of this approach can be seen by the

fact, that the number and values of the fitting parameters are chosen almost arbitrarily

to match the experimental values of the phonon frequencies. In the case of RMnO3, this

procedure does not lead to a perfect agreement due to the complicated bond structure of

the orthorhombic unit cell with a basis of 20 atoms [IAL+98]. Thus, the physical meaning

of the derived results is limited apart from the possibility to obtain phonon frequencies,

which agree more or less well with experiment.

The second possibility – approach (ii) – which was chosen for the lattice dynamical

calculations within this thesis, is an ab–initio technique. This means, only the atomic

positions and the chemical element of the basis atoms of the crystalline lattice are given

as input parameters and the physical quantities, e.g. phonon frequencies, are computed

within the frame of a Density Functional Theory (DFT) calculation. An appropriate ap-
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Figure 4.1: Main atomic displacement patterns of the experimentally observed Raman–active
phonon modes with Ag symmetry. The mode patterns were calculated for LaMnO3 within
the frame of a Density Functional Theory (DFT) calculation with the ABINIT code [GRV+05,
GAA+09].

proximation for the exchange correlation within this frame has to be chosen. In our case

a Local Density Approximation (LDA) was employed. For detailed information about the

DFT technique the reader is referred to Appendix E, where also the technical details of

this calculation carried out for the LaMnO3 system are explained.

Due to the physically more meaningful results and the availability of an open–source

code for DFT–calculations (the ABINIT–code, see Appendix E), method (ii) is chosen,

as stated before, and the phonon frequencies and their corresponding displacement pat-

terns are calculated. It should be pointed out here that for a calculation with method (i),

the symmetry of the phonon modes patterns would be an input parameter. For a DFT–

calculation carried out with ABINIT on the other side, an algorithm is incorporated, that

deduces the mode patterns from the symmetry properties of the given atomic positions

within the unit cell according to the corresponding space group.

For the computation the system LaMnO3 is chosen, because it is the most simple task

for modelling a Perovskite RMnO3 system due to its empty 4f–shells. The other elements

with partially filled 4f–shells cannot be computed within a simple LDA–approach due to

the small overlap of these orbitals and their resulting nearly localised electronic behaviour

(see, for example, [DSGPS07] and references therein, especially [AZA91]). Thus, a system

is chosen with space group Pnma leading to the phonon mode patterns equivalent to those

of the RMnO3 systems investigated within this thesis. The obtained theoretical phonon

frequencies for LaMnO3 are therefore of minor importance and will only be considered as

determining the order of the IR–active phonon modes.
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Figure 4.2: Main atomic displacement patterns of the experimentally observed Raman–active
phonon modes with B2g symmetry.

In the two figures 4.1 and 4.2, the mode patterns of the Raman–active phonons with Ag

and B2g symmetry are shown, respectively. For reasons of brevity only the patterns of

those Ag and B2g phonon modes are depicted, that have been experimentally observed

within this thesis. The B1g and B3g modes are not shown due to the same reason. Com-

parison with published empirical calculations of [Smi99] and [IAL+98] shows a good agree-

ment concerning the mode patterns and phonon frequencies. The nomenclature of the

phonon modes is adapted from [IAL+98]. It can be seen, that all observed Raman–active

phonon modes consist mainly of motions of the O2− ions. It was pointed out before, that

due to symmetry restrictions the Mn3+ ions cannot participate in g–modes. Further, as

already demonstrated in [IAL+98], the phonon modes with significant R3+ involvement

are only very weakly Raman–active. This is attributed to the smaller polarisability of the

longer R–O bonds in contrast to the shorter Mn–O bonds. The Ag and B2g modes can

further be classified into modes, that have their main movement within the MnO2 (ac)

plane or perpendicular to it.

The mode patterns of the experimentally observed IR–active phonon modes are shown in

figure 4.3 for B1u symmetry and in figure 4.4 for B3u symmetry, respectively. In contrast

to the literature–based nomenclature of the Raman–active modes, the IR–active modes

are numbered according to the magnitude of their phonon frequency. It should be pointed

out here, that some ambiguity remains in the numbering order of these modes due the

small differences of their frequencies. Thus, no perfect agreement with the literature data

of [Smi99] is achieved. Nevertheless, a classification of these modes into groups is possi-

ble. The criterion is the degree of participation of the various elements within the unit

cell. For example, it is easily understandable, that the elements with the highest atomic
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mass will be the main participants of the phonon modes with the lowest frequencies. A

close inspection of the mode patterns shown in figure 4.3 and figure 4.4 shows, that the

IR–active phonon modes can be classified in three main categories corresponding to a

range for the phonon frequency:

1. Motions of R3+ and Mn3+: 100 cm−1 < ν̃ < 300 cm−1

2. Tilting, buckling and rotations of the MnO6–octahedra: 300 cm−1 < ν̃ < 500 cm−1

3. Stretching and internal modes of the MnO6–octahedra: 500 cm−1 < ν̃ < 700 cm−1

Summing up, the symmetry determined by group theoretical considerations can also be

used for a selective study of the various lattice vibrations and their participating elements.

Concretely, three main distinctions can be drawn: (i) According to their frequency and

main participating ions, the IR–active phonons can be classified in the three groups in-

troduced above. (ii) FT–IR and Raman Spectroscopy can be employed to discriminate

phonon modes with (IR) and without (Raman) participation of the Mn3+. (iii) Addition-

ally, the mode patterns of the Raman–active phonon modes allow to distinguish between

modes with their main movement within or perpendicular to the MnO2 (ac) plane, re-

spectively.
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Figure 4.3: Main atomic displacement patterns of all IR–active phonon modes with B1u sym-
metry.
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Figure 4.4: Main atomic displacement patterns of all IR–active phonon modes with B3u sym-
metry.
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Chapter 5

Coupling effects in RMnO3

It was pointed out already in chapter 3, that in the RMnO3 system an intimate coupling

exists between lattice, orbital and spin degrees of freedom. This can be seen in various

ground state properties, e.g. the magnetic structure, which can be tuned by size effects

of the R–site cations (see sections 3.1 and 3.2), or the multiferroic properties determined

by the interplay of lattice properties and magnetic frustration (see section 3.3).

Motivated by these coupled ground state properties, the main topic of this thesis is the

study of dynamical coupling effects within the multiferroic RMnO3 compounds. Con-

cretely the coupling effects involving the interplay between lattice dynamics and the mag-

netic phases are investigated. Their main indication is a renormalisation of the phonon

frequencies at entering the temperature region of the long range magnetic ordering. The

experiments of this thesis will show that two main effects are responsible for this be-

haviour: Spin–Phonon Coupling (SPC) and Electromagnon–Phonon Coupling (EMPC).

In the following two sections the theory of both effects will be introduced as far as they

are already discussed in literature.

5.1 Superexchange and Spin–Phonon Coupling (SPC)

SPC relies on the interplay of the crystalline and the magnetic structure of the RMnO3

system, but can be observed in various other crystalline systems with localised magnetic

moments as well – see e.g. [RKM+07], [HCK+09] or [KMR+10].

The simplest model suitable for gaining a qualitative understanding of this effect is il-

lustrated in figure 5.1. On the upper left, the situation for the paramagnetic phase is

sketched, where the effective restoring force of a given lattice vibration mode is deter-

mined solely by the crystalline potential. In a classical picture, this can be understood

as a spring constant Dpot. The situation changes at the onset of the long range magnetic

ordering, where the spins of the Mn3+ begin to align. In the case of localised magnetic

moments, whose exchange interaction is mediated by non–magnetic ions (see upper right

part of figure 5.1), a lattice vibration can modulate the exchange interaction by displace-

ments of the non–magnetic ions (in our case, the O2− ions). Thus, the restoring force

modelled by the spring constant Dpot is changed to Dpot +Dmagn−ex in the magnetically

53
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Figure 5.1: Simple model picture of SPC: (top left) a Raman–active phonon (e.g. the sym-
metric MnO6 stretching mode B2g(1)) modulates the Mn–O bonds within the MnO2 (ac) plane.
Lowering the temperature leads to the appearance of the ordered magnetic phase (top right) and,
thus, to a modified restoring force due to the mediating role of the O2− ion in the Superexchange
interaction (lower part). Parts adapted from [Ope05].

ordered phases, as shown in the lower part of figure 5.1. This, in turn, also changes the

energy of the corresponding lattice vibration, which can be observed as a frequency shift

in this temperature range.

For a quantitative discussion of SPC, a more elaborated quantum–mechanical model

relying on Superexchange is employed. It was introduced by Baltensperger et al. [BH68]

for a description of EuO and adapted to LaMnO3 by Granado et al. [GGS+99].

For this purpose, according to [GGS+99], the possible origins of a frequency change in

magnetic materials need to be decomposed:

ωα (T )− ωα (T0) ≡ ∆ωα (T ) = (∆ωα)latt + (∆ωα)anh + (∆ωα)ren + (∆ωα)SPC (5.1)

The term (∆ωα)latt denotes contributions to the phonon frequencies due to a change of

the ionic binding energies, because of an expansion or contraction of the crystalline lat-

tice. (∆ωα)anh is the frequency shift at constant volume caused by the anharmonicity of

the vibrational potential. These two terms describe the temperature dependent phonon

frequency shift without any coupling between lattice dynamics and magnetism. The re-

sulting frequency shift can be modelled with a simple phonon–phonon decay model that

will be described later in section 7.1. The expression (∆ωα)ren accounts for the renor-

malisation of the phonon frequency, which can occur, if the electronic states of a system

change near a spin–ordering temperature (for an example, see [ILL+99]). The last term

(∆ωα)SPC is the interesting part, whose origins are discussed in the following.
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SPC in A–type RMnO3

The starting point is the Hamiltonian of the RMnO3 system, which can be decomposed

into a lattice and a spin part, Hl and Hs, respectively. The first and second term on

the right hand side of equation (5.1) are, thus, incorporated in Hl. Hs is based on lo-

calised Heisenberg spins, which couple via Superexchange. According to [GGS+99], in

LaMnO3, where the Mn3+ spins are ferromagnetically coupled within the MnO2 (ac)

plane, only nearest neighbour magnetic ions have to be considered. Effects of higher or-

der (e.g. Dzyaloshinskii–Moriya interaction or magnetic anisotropies) can be neglected.

Hs therefore reads as:

Hs =
∑
i,j>i

Jij 〈Si · Sj〉 , (5.2)

where Jij is the Superexchange coupling constant between the Mn3+ ions i and j with

S as their corresponding spin operator. The sum runs over the four nearest neighbours

of the Mn3+ ion i avoiding double counting. 〈Si · Sj〉 is the scalar spin–spin correlation

function.

Generally, in crystals with two atoms per unit cell, optical phonons at the Γ point are de-

scribed by the relative displacement u(t) of the two sublattices from their equilibrium po-

sition [BH68]. Hl then becomes a linear oscillator for each mode with the inter–sublattice

potential V l and the reduced mass µ of the two sublattices:

V l =
1

2
V l

2u(t)
2 + anharmonic terms, (5.3)

where V l
2 = µω2

0 with ω0 as the frequency of the optical phonon. This is of course only

valid in a harmonic approximation.

In magnetic crystals, this picture needs to be expanded due to the possible perturbation of

the lattice potential by the order dependent spin energy. This leads to another harmonic

term describing the development of the spin energy with respect to the displacement u:

V m =
1

2
V m

2 u(t)2, (5.4)

This additional term modifies the total potential for the phonon to:

V =
1

2
µ

[
(ω0 + ∆1ω)2 +

1

µ
V m

2

]
u(t)2 + anharmonic terms, (5.5)

where ∆1ω accounts for all phonon frequency shifts due to the first two terms on the right

side of equation (5.1). Neglecting the anharmonic terms of equation (5.5) and the terms

of order (∆1ω/ω0)
2, the total frequency shift becomes:

∆ω

ω0

=
∆1ω

ω0

+
V m

2

2µω2
0

. (5.6)

As already pointed out, we are interested in the frequency shifts caused by the last term

on the right side of equation (5.6). Thus, we will have to connect the quantity V m
2 with
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the Hamiltonian Hs and equation (5.2). This can be achieved by remembering the naive

picture, where SPC is described as a modulation of the magnetic exchange by the phonon

mode. It can be modelled as a change ∆Jij of the Heisenberg energy Jij due to the phonon

α. According to [GGS+99], this can be done by a second order Taylor expansion with

respect to the O2− displacements associated with α:

∆Jαij (uα
k (t)) = [uα

k (t) ·∇k] Jij +
1

2
[uα

k (t) ·∇k]
2 Jij, (5.7)

where uα
k (t) is the displacement vector of the kth O2− ion located between the Mn3+ ions

i and j. Applying equation (5.7) to equation (5.2) leads to a phonon–dependent part in

the second derivative of the total potential energy within the RMnO3 system. Taking into

account the symmetry properties and considering only nearest neighbours, the summation

of equation (5.2) can be carried out. Further, the magnetic exchange Jij can be split into

a Jxz–part located in the MnO2 (ac) plane and a Jy–part perpendicular to this plane:

Uα
spin = −4 [ûα

O1(t) ·∇O1]
2 Jxz 〈Si · Sj〉xz + 2 [ûα

O2(t) ·∇O2]
2 Jy 〈Si · Sj〉y , (5.8)

with ûα
k (t) = uα

k (t)/ |uα
k (t)| as the unit vectors of the O2− displacement for k = O1, O2,

respectively. Due to the ferromagnetic coupling within the MnO2 (ac) plane, the first

term has a negative sign. For obtaining a frequency shift ∆ω from equation (5.8), the

total frequency shift derived in equation (5.6) is employed. The term V m
2 describing the

frequency shift due to the magnetic contribution to the total potential is equivalent to

the quantum mechanically obtained Uα
spin. Thus, it can be used to gain the following

expression for (∆ωα)SPC :

(∆ωα)SPC = − 2

µαωα
[ûα

O1(t) ·∇O1]
2 Jxz 〈Si · Sj〉xz+

1

µαωα
[ûα

O2(t) ·∇O2]
2 Jy 〈Si · Sj〉y ,

(5.9)

where µα is the reduced mass of the ions participating in phonon mode α with the corre-

sponding mode frequency ωα.

Of course the strength of SPC depends on the static crystalline properties, e.g. tilting of

the MnO6 octahedra and the mode symmetry. This point will be discussed in detail in

chapter 7.

For a more quantitative modelling, the spin–spin correlation function 〈Si · Sj〉 has to be

approximated. Considering the symmetric MnO6 breathing mode B2g(1) (see figure 4.2),

whose ionic motions are confined to the MnO2 (ac) plane, equation (5.9) can be further

simplified: (i) µ reduces to the mass m of O2−, (ii) the second term on the right side of

equation (5.9) can be neglected, reducing the second derivative of Jij to ∂2Jxz/∂u
2
xz, and

(iii) in a molecular field approximation, we can write 〈Si · Sj〉xz ≈ [Msublatt(T )/4µB]2,

where Msublatt(T ) is the ferromagnetic sublattice magnetisation per Mn3+. These consid-

erations reduce equation (5.9) to:

∆ωB2g(1) ≈ − 2

mωB2g(1)

∂2Jxz
∂u2

B2g(1)

(
Msublatt(T )

4µB

)2

. (5.10)
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This expression enables us to derive a quantitative SPC coupling constant ∂2Jxz/∂u
2
xz

for the B2g(1) mode, if the quantitative sublattice magnetisation Msublatt(T ) is known. It

can be extracted from measurements either by neutron diffraction or of the macroscopic

magnetisation, which for A–type AFM is equivalent to the tilting of the Mn3+ spins out

of the MnO2 (ac) plane and, thus, allows the calculation of Msublatt(T ) within the plane.

Employing the results of the magnetisation experiments carried out in [HSL+97], Granado

et al. [GGS+99] derived a coupling constant for LaMnO3 of ∂2Jxz/∂u
2
B2g(1) ≈ 16 mRy/Å.

As only the next nearest neighbours are considered until now, this model only accounts

for the RMnO3 systems with an A–type AFM structure. For a description of the RMnO3

with incommensurate magnetic structures, e.g. GdMnO3, TbMnO3 or Eu1−xYxMnO3

(x > 0.1) this model needs to be extended as will be outlined below. It will be based on

considerations carried out by Laverdière et al. [LJM+06].

SPC in magnetically incommensurate RMnO3 systems

As already discussed in detail in section 3.2, a decrease of the ionic radius of the R3+ ions

leads to an increasing structural orthorhombic distortion and, in turn, to a weakening of

the A–type AFM. Latter is attributed to a compensation of the ferromagnetic nearest

neighbour (NN) magnetic exchange J1 by the antiferromagnetic next nearest neighbour

(NNN) exchange J2 and J3 within the MnO2 (ac) plane [KIS+03]. The direct consequence

is the above mentioned weakening of the A–type AFM and, beginning at EuMnO3, an

incommensurate magnetic phase (sinusoidal or cycloidal, see phase diagrams in section

3.4) occurs. It is characterised by a propagation vector Q of the periodically modulated

spin structure. For the RMnO3 compounds with such a magnetic structure Q = (Qx, 0, 0)

[KIS+03, GKL+04].

To incorporate the magnetic exchange paths J2 and J3, the geometry depicted in figure 3.9

can be used to include these as additional terms in the sum of equation (5.2). Thus, the

sum is extended from ferromagnetically coupled NN Mn3+ spins (r = ±0.5a± 0.5c with

Ji,i+(±a±c)/2 = J1 < 0) to NNN Mn3+ spins. Latter can be distinguished in two species:

along the spin spiral propagation Q, i.e. r = ±a, where the coupling is antiferromagnetic

Ji,i±a = J2 > 0, and perpendicular to Q, i.e. r = ±c with a weak antiferromagnetic

coupling Ji,i±c = J3 > 0 [KIS+03].

Carrying out the procedure described for the A–type RMnO3 again with the extended

summation leads to the following expression for a phonon frequency shift of the B2g(1)

mode:

∆ωB2g(1) ≈
1

2mωB2g(1)

∑
j,r

∂2Jij
∂u2

B2g(1)

〈Si · Si+r〉 , (5.11)

where the summation now runs up to NNN Mn3+ spins, as discussed above. The spin–spin

correlation function for the case of an incommensurate magnetic phase in RMnO3 with

Q = (Qx, 0, 0) is:

〈Si · Si+r〉 = K(T ) cos (2πQ · r) . (5.12)
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K(T ) is a temperature dependent prefactor, that is approximated by assumption (iii), i.e.

K(T ) ∝ M2
sublatt(T ). Carrying out the summation in equation (5.11), we get a phonon

frequency shift of:

∆ωB2g(1) =
K(T )

mω

[
2D1 cos(2πQx

a

2
) +D2 cos(2πQxa) +D3

]
, (5.13)

where the Dj = ∂2Jj/∂u
2
B2g(1) (j = 1, 2, 3) are the second derivatives of the exchange con-

stants Jj with respect to the displacement pattern uB2g(1) of the O2− ions. In this equation

the case of an A–type AFM ordering is included, as can be seen by setting Q = 0 and

K(T ) ∝M(T )2
sublatt. This leads to an expression equivalent to equation (5.10).

To connect this derived model with experimental data, one has to consider the measurable

quantities in the equations (5.10) and (5.13). The phonon frequency softening ∆ω can

be obtained from temperature–dependent spectroscopic experiments, i.e. Raman spec-

troscopy in the case of the B2g(1) mode. For the calculation of a SPC constant, which is

either the quantity ∂2Jxz/∂u
2
B2g(1) in (5.10) or Deff = 2D1 cos(πQxa)+D2 cos(2πQxa)+D3

in (5.13), also the value of sublattice magnetisationMsublatt(T ) within the MnO2 (ac) plane

has to be known.

Assuming that experimental data about Msublatt(T ) are available, the just introduced

model can be employed for the derivation of coupling constants allowing the comparison

with literature data obtained for other RMnO3 compounds. This will be one of the topics

covered in section 7.

5.2 The Electromagnon and its Coupling to the polar

Phonons

As already implied in section 3.3, the Magneto–Electric Coupling leads to the appearance

of a new elementary excitation: the Electromagnon (EM). Experimentally it was first

observed by Pimenov et al. [PMI+06] and attributed to a magnon, that causes oscilla-

tions of the electric polarisation via the Magneto–Electric Effect. Thus, it can be excited

by an electric field, i.e. by photons with the matching frequency. The frequency range

of the EM in the RMnO3 compounds can be found in the THz–Regime and in the low

FIR–regime (i.e. 10cm−1 < ν̃ < 75cm−1) [SMP11].

The most interesting question arising from this finding is of course that of the micro-

scopic mechanism responsible for the dipolar activity of a magnon. The first attempt

was to model this as a dynamical analogue of the static Magneto–Electric Effect. An

adequate model was introduced by Katsura et al. [KBN07]. However, quantitatively

such a model would lead to a very weak dynamical response. This is due to the fact,

that it is based on an inverse Dzyaloshinskii–Moriya interaction (DMI) (see section 3.3),

which is a second–order correction to Superexchange. The experiments of [PMI+06] and

the following spectroscopic results on various RMnO3 compounds (e.g. Eu1−xYxMnO3

[PLM+08, TYK+09]) showed results contradicting the modelled weak response. Instead

several EM with a strong dipolar activity were observed. An example illustrates this in
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Figure 5.2: Imaginary part Im[ε], i.e. dielectric loss spectra, for E||c of Eu1−xYxMnO3, (a)
x = 0.2 and (b) x = 0.4, for various temperatures. For T < 40K, the emerging EM signature
(A) can be seen together with the two phonon modes with the lowest frequencies denoted as (B)
and (C), respectively. Taken from [TYK+09].

figure 5.2 that is taken from [TYK+09], where Eu1−xYxMnO3 (x = 0.2 and x = 0.4) was

investigated.

These findings lead to the conclusion, that the mechanisms responsible for the static fer-

roelectric polarisation (i.e. the inverse DMI effect) and that for the dynamical response

expressed by the dielectric function are not the same. Thus, a different modelling ap-

proach for the dipolar activity of the EM had to be developed. This was carried out by

Valdés Aguilar et al. [VAMS+09] within the frame of a model based upon the so–called

symmetric Heisenberg–Exchange coupling. It will now be discussed in more detail.

Origin of the dipolar activity of the Electromagnon

The starting point is the same as in the discussion of the SPC, i.e. a Hamiltonian incor-

porating the Superexchange interactions between Mn3+ spins:

Hs−ex =
1

2

∑
i,j

JijSi · Sj. (5.14)

Magnetic anisotropies as well as the DMI are neglected in the following treatment.

The Mn3+ are located at R1 = (0, 0, 0.5), R2 = (0.5, 0, 0), R3 = (0, 0.5, 0.5), and

R4 = (0.5, 0.5, 0) (see table 3.2). The Mn3+ at R1 and R2 as well as the equatorial

O2−
2 mediating the Superexchange within the MnO2 (ac) plane are sketched in figure

5.3(b). As described in section 3.2, the spin spiral in the multiferroic phase results mainly
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from the competition between nearest neighbour ferromagnetic exchange Ji,i+(±a±c)/2 < 0

and the strong next nearest neighbour antiferromagnetic exchange Ji,i±a > 0 also within

this plane. The resulting modulated magnetic structure is shown in figure 5.3(a) together

with the corresponding vector of rotation R ∝ Si × Si+1 and the propagation vector of

Figure 5.3: Sketch (a) of the orthorhombic RMnO3 structure projected perpendicular to the
c–axis and (b) of one MnO2 (ac) layers of the Pnma unit cell. R3+ ions are shown as purple
balls together with Mn3+ (green balls) and O2−(red balls). Also indicated in (a) are the Mn3+

spins (black arrows) and in (a) and (b) the spin rotation axis R ∝ Si × Si+1 as well as the
propagation vector Q of the spin spiral. Partly adapted from [Kim07] and [VAMS+09].
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Figure 5.4: Typical magnon dispersion for a spin spiral confined within the (ab) plane of the
RMnO3 system (Pnma notation) along k = (ka, 0, 0). The dashed blue line corresponds to the
longitudinal magnon branch and the solid red line to the transversal branch (see explanation in
the text). The solid blue circle indicates the position of the EM. Taken from [VAMS+09] and
adapted to Pnma.

the spin spiral Q||a. In this sketch, one can also see, that the antiferromagnetic exchange

along the b–axis with Ji,i+b/2 > 0 leads to a ”double spiral”with antiparallel spins in

adjacent MnO2 (ac) planes shifted by ±b/2. This spin structure can be expressed as:

〈Si〉 = ± (c cos (Q · ri)− b sin (Q · ri)) , (5.15)

where the positive (negative) sign on the right side corresponds to MnO2 (ac) layers with

integer or half–integer y/b ratio.

Until now, only static properties of the RMnO3 system have been regarded. However,

these have direct consequences for the spin dynamics. A sketch of the resulting magnon

spectrum of a double spiral structure with its magnon propagation vector k along the

a–axis is shown in figure 5.4. According to [VAMS+09], two branches in the magnon

dispersion of a double spin spiral occur: a longitudinal branch (dashed blue line in figure

5.4) and a transversal branch (solid red line in figure 5.4). For the longitudinal branch,

the oscillation of the order parameter L = S1 + S2 − S3 − S4, where Si is the spin as-

sociated with the Mn3+ ion located at Ri, is confined within the (ab) plane of the spin

spiral. This can be understood as a modulation of the tilting angle of the spins along the

propagation of the spiral and, thus, as a phason mode. For the transversal branch of the

magnon dispersion, L points out of this plane.

The crucial point for understanding the dipolar activity of the EM will now be il-

lustrated. In agreement with the experimentally derived EM optical selection rules, a

photon–induced electric field along the c–axis, E||c, has to be considered. An inspection

of figure 5.3 (b) shows, that due to the static orthorhombic distortion of the RMnO3 sys-

tem, the O2− ions between Mn3+ within the MnO2 (ac) plane are shifted from the centre

positions of the dashed lines, which indicate their high symmetry positions within the

cubic Pm3m unit cell. An electric field now leads to an additional uniform displacement
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of the O2− along the c–axis and, due to the mediating role of the O2− for the Superex-

change interaction between adjacent Mn3+, all magnetic exchange constants within the

MnO2 (ac) plane will be influenced by this uniform shift. Taking into account the Pnma

symmetry of RMnO3, these changes of the magnetic exchange constants can be written

as follows:

J∗1,2 = J1,2 + ∆J, (5.16)

J∗1+a,2 = J1+a,2 −∆J,

J∗1,2+c = J1,2+c + ∆J,

J∗1+a,2+c = J1+a,2+c −∆J,

where ∆J is the change of Jij proportional to the external electric field. Thus, an ap-

plied uniform electric field along the c–axis is responsible for a modulation of the nearest

neighbour magnetic exchange along the a–axis parallel to the propagation vector Q of the

spin spiral. The resulting magnetic exchange in the presence of an electric field can be

expressed as:

J ∝ J0 + ∆J cos (kEM · r) (5.17)

with kEM = (2π/a, 0, 0). An alternation with period 2π/a of the magnetic exchange along

the a–axis, as described above, is equivalent to a longitudinal magnon at the Brillouin

zone boundary, as indicated by the solid blue point in figure 5.4. Thus, a uniform electric

field along the c–axis can excite a zone–edge longitudinal magnon with kEM = (2π/a, 0, 0)

within the RMnO3 system. This excitation can be understood as a phason mode, i.e. a

periodic modulation of the tilting angle between adjacent Mn3+ and, thus, of S1 and S2

in the (bc) plane, together with a simultaneous modulation of the tilting angle between

S3 and S4 also in the (bc) plane, but shifted by b/2 [VAMS+09].

Similar interactions with E||a or E||b are also possible, but this would cause a modulation

of the magnetic exchange, which is perpendicular to the propagation direction of the spin

spiral, i.e. orthogonal to Q. In these directions the Mn3+ spins order in a collinear way.

Thus, a modulation of J does not lead to a change of the tilting angle between Si and

Sj, as it is the case for E||c, and, therefore, not to the excitation of a magnon. This

model explains the unique excitation condition of E||c, which is not connected to the

relative orientation of the spin spiral in the (ab) plane. An application of an external

magnetic field does not change this condition, as would be expected by a mechanism

based on the dynamical analogue of the inverse DMI describing the static ferroelectric

polarisation [SD06, KBN07]. Therefore, within the Heisenberg–Exchange model, the EM

optical selection rules experimentally observed can be understood.

Having introduced the model describing the microscopic mechanism responsible for the

dipolar activity of the EM, its coupling to the lattice dynamics, i.e. to the phonons, will

now be discussed.
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Coupling Effects of Electromagnons and Phonons

The coupling of EM and Phonons is of special importance, because the EM dipolar ac-

tivity has to be transferred from the polar, i.e. infrared–active, phonons. This is due to

the conservation of the spectral weight within absorption spectra.

Spectral weight in optical spectroscopy is defined as the area under the optical conduc-

tivity [SMP11]. It is directly connected to the total number of electrons within the sample

and must, therefore, be conserved in all magnetic and dielectric phases. The appearance

of an additional elementary excitation, i.e. the EM, at lower temperatures, therefore, goes

along with a transfer of spectral weight to this excitation. Experimentally, it could be

demonstrated, that the gain of spectral weight of the EM goes along with a loss of spectral

weight on the side of the polar phonons, an example is shown in figure 5.5. This aspect of

EMPC was subject of intensive investigative efforts and, thus, data concerning the shift

of spectral weight are available for all multiferroic RMnO3 compounds investigated within

this thesis [PRM+06, TYK+09, SKR+09]. These data showed, that mainly the phonons

with B3u symmetry and frequency ν̃ < 250cm−1 (i.e. the B3u(1) to B3u(3) modes) loose

spectral weight to the emerging EM. This could be verified in the FT–IR experiments

carried out for this thesis (see section 8.1).

Another aspect of EMPC is a renormalisation of the phonon frequencies. In contrast to

the detailed data about the shift of spectral weight, the shift of phonon frequency has

been taken into account, but not systematically investigated for the whole RMnO3 series.

Only for TbMnO3 the temperature dependence for all B3u phonon modes was determined

and discussed phenomenologically [SKR+09].

Figure 5.5: Spectral weight Neff = 2m0V/πe2
∫ ω2

ω1
ω′Im[ε(ω′)]dω′ of the EM and the B3u

phonon mode with the lowest frequency for Eu1−xYxMnO3 (x = 0.2 and x = 0.4) plotted with
respect to temperature. m0, e, and V are the electron mass, the charge, and the unit cell volume,
respectively. Taken from [TYK+09].
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The renormalisation of phonon frequencies was already predicted within the above men-

tioned model of Katsura et al. [KBN07], who modelled the EM as excitations of the spin

spiral. This model could be employed to obtain the right values for the phonon renor-

malisation in GdMnO3 [PRM+06], but it cannot reproduce the experimentally observed

unique excitation condition E||c as well as the spectral weight of the EM. It also fails to

explain, that the onset of the phonon frequency shift is located at temperatures higher

than the transition temperature of the ferroelectric phase. Thus, another model describ-

ing the shift of phonon frequencies due to EMPC has to be developed, which should be

compatible with the Heisenberg–Exchange mechanism. A proposal for such a model will

be presented in section 8.3 with the help of the insights the experimental results of this

thesis provide.

As a last point, a rather subtle aspect will be pointed out to the reader: both discus-

sions of the coupling effects (SPC and EMPC) start with a Heisenberg model of magnetic

exchange. Further, the SPC as well as the dipolar activity of the EM base on the mod-

ulation of the magnetic exchange by a dynamical shifting of the O2− ions mediating the

Superexchange between adjacent Mn3+ ions. This fact again indicates the intimate cou-

pling between lattice and spin degrees of freedom within the RMnO3 system.

With the preparations of the last four chapters the fundamental theoretical concepts are

introduced. Thus, we will now turn to the experimental results of Part II.
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Chapter 6

Lattice dynamics of stoichiometric

RMnO3 and doped Eu1−xYxMnO3

In this first chapter of part II the lattice dynamics of both investigated sample series will

be discussed. This analysis will be the base for a following quantitative discussion of the

coupling effects outlined in chapter 5. To exclude influences of the latter, the whole anal-

ysis presented in this chapter is based on measurements carried out at room temperature

– far above the temperature regime of the magnetically ordered phases.

This chapter is organised as follows: The first section will be dedicated to phonon mode

assignment using the GdMnO3 compound. The experimentally obtained spectra are em-

ployed to connect the observed phonon frequencies to the mode patterns shown in section

4.3. Further, the Raman spectra will be used for a quantitative comparison with liter-

ature. Adding the information the reflectivity spectra provide concerning the IR–active

phonon modes, a first time analysis of the complete lattice dynamics of GdMnO3 can be

presented.

In the second section, a systematic investigation of the impact of the R3+ substitution

on the lattice dynamics of the stoichiometric RMnO3 (R3+ = Eu3+, Gd3+, Tb3+) and

the doped Eu1−xYxMnO3 series (0 ≤ x ≤ 0.5) will be carried out. This section will give

a complete analysis of these dynamics employing Raman and FT–IR Spectroscopy, thus

considerably exceeding the published selective studies carried out on some of the discussed

Manganite compounds. For that purpose, RMnO3 will be discussed first, followed by a

comparative analysis of Eu1−xYxMnO3. This approach will further give the opportunity

to answer the upcoming question of disorder induced effects on the lattice dynamics of

Eu1−xYxMnO3 potentially caused by the doping approach.

6.1 Mode assignment

As already discussed in the chapters 3 and 4, the lattice dynamics of the Multiferroic

Manganites can be understood as resulting from the orthorhombic distortion of the cubic

Perovskite structure. In this section, the Raman and reflectivity spectra obtained at room

temperature will be analysed for the purpose of a mode assignment. The experimental

67
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setups employed were the Raman spectrometer Renishaw 1000 equipped with a Leica Mi-

croscope type DM LM, the FT–IR spectrometer Bruker IFS 113v in Würzburg and the

almost identical setup in Augsburg. A detailed description of these setups can be found

in Appendix A.

For the mode assignment, we will use GdMnO3 as model system for a b–cut sample,

first due to its polished sample surface, which causes a rather low leakage of nominally

symmetry forbidden phonon modes compared to unpolished samples, and second due to

its stoichiometric composition minimising the potential effects of disorder, induced by the

doping approach of Eu1−xYxMnO3. Both arguments will be illustrated in the following.

The expression b–cut implies, that the crystal is cut as a flat platelet (thickness approx-

imately 1 mm, lateral dimension ≈ 3 × 3 mm) in such a way, that the a– and c–axes

are oriented parallel to the sample surface and, thus, the b–axis is perpendicular to this

plane. This narrows the degrees of freedom for the selection rules in both spectroscopical

techniques as discussed in section 4.2.1 for FT–IR and in section 4.2.2 for Raman Spec-

troscopy. For completeness, the only exception from the b–cut sample series, the a–cut

Eu0.9Y0.1MnO3, is discussed and also the consequences of this different orientation for the

Raman- and reflectivity spectra.

6.1.1 Raman Spectroscopy

Figure 6.1: Polarised Raman spectra in b (a, a) b (red) and b (a, c) b (black) scattering geometry
obtained from GdMnO3. These geometries give access to the Ag and B2g phonon modes, respec-
tively. The spectra are vertically shifted for clarity and the low–energy parts (ν̃ < 400cm−1) are
multiplied by a factor of 3. The mode assignment is carried out according to [IAL+98].
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Table 6.1: Main atomic motions and frequencies of the Raman–active phonon modes observed
for GdMnO3 compared to the data of [IAL+06] obtained from polycrystalline GdMnO3. The
corresponding mode patterns obtained from own DFT calculations can be found in section 4.3.

Mode Main atomic motions Exp. Phonon Phonon frequency

frequency [cm−1] of [IAL+06] [cm−1]

Ag(7/2) O1(x) motion → in–phase 274.2 276.1

MnO6 y rotations

Ag(2/7) in–phase MnO6 y rotations 310.2 309.8

→ O1(x) motion

Ag(4) out–of–phase 369.0 370.5

MnO6 x rotations

Ag(1/3) O2 antistretching 484.3 486.4

→ MnO6 bending

Ag(3/1) MnO6 bending 504.3 506.0

→ O2 antistretching

B2g(7) O1(z) 327.3* 329.2

B2g(3) out–of–phase MnO6 bending 468.1 468.9

B2g(2) in–phase O2 ”‘scissorslike”’ 522.6 525.0

B2g(1) in–plane O2 stretching 609.2 611.7

(= ”breathing”mode)

The polarised Raman spectra obtained for GdMnO3 at room temperature are shown in

figure 6.1. The spectra are recorded in b (a, a) b and b (a, c) b scattering geometry, giving

access to the Ag (red) and B2g (black) phonon modes, respectively. As already mentioned

in the caption of table 4.3 (section 4.2.2), the above named scattering geometries are

equivalent to b (c, c) b and b (c, a) b, respectively.

The phonon modes are fitted with appropriate fit functions, i.e. Lorentz– and Fano–

functions (the latter only for the B2g(1) mode). The fit parameters of these functions

are the phonon frequency ω and the phonon linewidth Γ and – in the case of fitting a

Fano line shape – the Fano–parameter q. Technical details about the fit functions and

the argumentation for employing a different line shape for fitting the B2g(1) mode can be

found in Appendix B.

Comparison with literature is carried out for the phonon frequencies of GdMnO3 in table

6.1 yielding a good agreement. Good qualitative agreement can also be found for the

general shape of the Raman spectra for the stoichiometric RMnO3 (R3+ = Eu3+, Gd3+,

Tb3+) series presented in section 6.2.1 with polycrystalline RMnO3 systems investigated

in literature [IAL+98, IAL+06]. Therefore, the observed phonon modes are assigned as

listed in table 6.1. The corresponding mode patterns can be found in section 4.3.

One characteristic feature of the Raman spectra is the very strong Raman–activity

of the higher–frequency (phonon frequency ω > 300cm−1) Raman modes. Their main
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participants are the O2− ions, whose periodic motion modulates the Mn–O bonds. On the

other hand, Raman modes with stronger involvement of the heavy Rare–Earth ions (e.g.

Ag(7/2), Ag(2/7) or B2g(7)) are rather weakly Raman–active. This behaviour is attributed

to the smaller polarisability of the longer R–O bonds in contrast to the shorter Mn–O

bonds. A further common feature of the Rare–Earth Manganites with orthorhombic

Pnma structure is the broad structure centred around 650 cm−1 in the Ag spectra. It

is attributed to a one–phonon mode from the Brillouin zone boundary [IHL+07]. The

Raman activity originates from local disorder within the crystal and occurs for single

crystalline as well as polycrystalline samples and – as can be seen in section 6.2 – for

stoichiometric as well as doped Rare–Earth Manganite compounds.

An important point for the discussions in the following chapters is the influence of the

quality of the crystalline surface on the fulfilment of the selection rules in the Raman

spectra. This is especially relevant, as only three of the investigated samples (GdMnO3,

Eu0.8Y0.2MnO3, and Eu0.5Y0.5MnO3) are polished up to optical degree, while the other

samples have different degrees of residual surface roughness. For an illustration of the

consequences, the Ag and B2g Raman spectra of a polished and an unpolished part of

Eu0.8Y0.2MnO3 are plotted in figure 6.2. For both phonon symmetries the selection rules

are well fulfilled for the polished area, while strong symmetry forbidden peaks are observed

in the rough area. The latter are marked by asterisks in figure 6.2 with the most prominent

representative being the B2g(1) peak at ≈ 610cm−1 in Ag symmetry.

It was mentioned before, that the only exception from the b–cut sample series is the a–cut

Eu0.9Y0.1MnO3. The consequences for the Raman spectra are modified possible scattering

configurations, i.e. a (b, b) a and a (b, c) a, leading to Ag and B3g symmetry, respectively.

Thus, the Ag spectra fit within the scheme of the b–cut sample series. The B3g spectrum,

however, showed no observable phonon modes due to the very weak Raman activity of

the B3g modes – a finding, which is in agreement with data of Iliev et al. obtained from

LaMnO3 and YMnO3 with Pnma structure [IAL+98]. For this reason, the B3g spectra

are not regarded within this thesis. But, nevertheless, the unpolished sample surface of

Eu0.9Y0.1MnO3 allowed the observation and quantitative fitting of the strong B2g(1) mode

due to the previously discussed leakage of symmetry forbidden phonon modes. This can

be seen in the series of Ag spectra in figure 6.9 in section 6.2.

6.1.2 FT–IR Spectroscopy

As discussed in section 4.2.1, the different symmetries of the IR–active phonons can be

distinguished by employing light polarised parallel to the individual crystal axes. Thus,

according to table 4.2, for b–cut samples B1u and B3u symmetry are accessible, when

applying the electric field of the polarised infrared radiation parallel to the a– and c–axis,

respectively. For these two symmetries, the measured reflectivity spectra are shown in

the upper row of figure 6.3 for GdMnO3. The open circles hereby indicate the raw data,

while the solid lines represent the reflectivity fit function. The latter is a model function,

which has the appropriate number of phonon modes (chosen according to number of

allowed modes determined by the IR selection rules). Its fitting parameters are transverse
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Figure 6.2: Polarised Raman spectra of a polished and an unpolished part of Eu0.8Y0.2MnO3.
The spectra were obtained under the same scattering configurations as that shown in figure 6.1.
Nominally symmetry forbidden peaks are marked by asterisks.

optical frequency ωT , ion plasma frequency ωp and linewidth Γ for each phonon mode,

respectively. The fitting procedure was carried out employing the fitting software RefFit

[Kuz09]. More details of the fitting procedure can be found in Appendix B.

In the second row the imaginary part of the dielectric function, i.e. the dielectric loss,

ε2, is shown. For details about the fitting procedure and deriving ε2 the reader is again

referred to Appendix B.

In agreement with literature, see e.g. [SKR+09], the notation of the phonon modes is

chosen as their symmetry character together with a number determined by the order of

phonon frequencies. These numbers are indicated in the plots of ε2 in figure 6.3.

In contrast to the other samples, the already mentioned a–cut Eu0.9Y0.1MnO3 allows light

polarised parallel to b– and c–axis and, therefore, the observation of phonons with B2u

and B3u symmetry, respectively. Thus, for a comparison of Eu0.9Y0.1MnO3 with the b–cut

samples, only the B3u spectrum can be considered. The measured reflectivity raw data,

reflectivity fits and the derived ε2 for both symmetries are shown in figure 6.4 – in the

same arrangement as that employed in figure 6.3 for GdMnO3. This sample is also a

good example for the influence of an unpolished sample surface with moderate residual

roughness on the reflectivity spectra. Especially the plots of ε2 clearly show, that the

phonon modes are stronger damped and less sharp than those obtained from a sample

with a polished sample surface, e.g. from GdMnO3.

As mentioned before, a quantitative comparison of the phonon frequencies with literature

is not straightforward for the infrared–active phonon modes, because only in [PRM+06]
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Figure 6.3: Polarised reflectivity spectra (upper row) and hence derived dielectric loss ε2
(lower row) of GdMnO3 in the FIR range. In the reflectivity spectra the open circles indicate
the raw data, while the solid lines represent the reflectivity fit functions. The orientation of the
electric field of the IR–radiation is indicated with respect to the crystalline axes together with
the resulting phonon symmetry (B1u or B3u for a b–cut sample). The fitted phonon peaks are
denoted within the ε2 spectra.

polarised FT–IR spectra obtained from GdMnO3 are shown. These were carried out on

samples cut from the same macroscopic crystal than the GdMnO3 sample employed for the

measurements presented in this thesis. Also both spectroscopic experiments on GdMnO3

were carried out on the same FT–IR spectrometer (Augsburg). Thus, a quantitative

comparison of phonon frequencies is omitted here. However, polarised FT–IR spectra of

another stoichiometric RMnO3 compound, TbMnO3, published in [SKR+09, SMSL10],

show a good agreement of the spectral shape for the phonon modes with B3u symmetry.

6.2 Impact of R3+ replacement on the lattice dynam-

ics

Having assigned the phonon modes to their corresponding mode patterns employing the

model system GdMnO3, we will now turn to a first time complete analysis of the lattice

dynamics of both samples series with respect to the incorporated R3+ ions.
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Figure 6.4: Polarised reflectivity spectra (upper row) and hence derived ε2 (lower row) of the
a–cut Eu0.9Y0.1MnO3 for B1u and B3u symmetry, respectively. In the reflectivity spectra the
open circles indicate the raw data, while the solid lines represent the reflectivity fit functions.
Due to the a–cut sample surface, B2u and B3u phonon symmetries are accessible.

This section is organised as follows: First, in subsection 6.2.1, we will analyse the conse-

quences of a complete replacement of the R3+ ion, i.e. the stoichiometric RMnO3 (R3+ =

Eu3+, Gd3+, Tb3+) series. After that, a comparative analysis of the doped Eu1−xYxMnO3

(0 ≤ x ≤ 0.5) series will be carried out in subsection 6.2.2. In both sections, first the

Raman spectra will be discussed followed by the reflectivity spectra obtained from FT–IR

measurements.

6.2.1 Stoichiometric RMnO3 (R3+ = Eu3+, Gd3+, Tb3+)

As already discussed in chapter 3, stable RMnO3 compounds can be synthesised in the

Pnma structure for the trivalent Rare–Earth ions R = La3+, Pr3+, Nd3+, Sm3+, Eu3+,

Gd3+, Tb3+, Dy3+. For Ho3+ as well as for Y3+ (which is not a member of the Lanthanide

series) the Pnma structure can be stabilised by applying pressure during the crystal growth

[LWSC04]. This just described RMnO3 series was investigated by Raman Spectroscopy

on a mix of single crystalline and polycrystalline samples at room temperature [IAL+06].

The stoichiometric RMnO3 series investigated within this thesis consists of single crystals

with the trivalent Rare–Earth ions R3+ = Eu3+, Gd3+ and Tb3+. All samples are b–
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cut with different degrees of surface polishing. While GdMnO3 is polished up to optical

degree, EuMnO3 and TbMnO3 have a rather high surface roughness and, thus, a more

pronounced leakage of symmetry forbidden phonon modes can be expected in the Raman

and reflectivity spectra. We will first discuss the Raman spectra of the stoichiometric

RMnO3 series.

Raman Spectroscopy

Figure 6.5: Polarised Raman spectra of the RMnO3 series (R3+ = Eu3+, Gd3+, Tb3+) in Ag

(left panel) and B2g (right panel) symmetry. For clarity, the spectra are vertically shifted and
on their low frequency side the spectra are multiplied by the factors indicated on the left side
of the vertical black bars.

The Raman spectra of the stoichiometric RMnO3 series are shown in figure 6.5 for Ag

(left panel) and B2g symmetry (right panel), respectively. The spectra of all three samples

show the characteristic shape of the Raman spectra obtained from RMnO3 crystals with

Pnma structure, as can be seen by comparison with [IAL+06].

A general trend observed in the Raman spectra is, that the phonon frequencies increase

with decreasing R3+ ion radius. As almost all observed Raman active phonons are mainly

displacements of the O2−, the frequency shifts originate from an indirect effect: As pointed

out in section 3.1, the tilting angle of the MnO6 octahedra depends on the ionic radii of

the R3+. When these are decreased by replacing R3+ with another isovalent Rare–Earth

ion with a smaller ionic radius, the Mn–O–Mn bond angle also further decreases, which is

equivalent to an increase of the MnO6 tilting. This implies a shift of the O2− equilibrium

position away from the Mn–Mn axis. This shift, in turn, influences the phonon frequen-

cies of the Raman–active phonons. The amount of these frequency shifts depends on the
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Figure 6.6: Relative shift of phonon frequencies for the RMnO3 series with respect to EuMnO3

as a function of the incorporated R3+ and the resulting Mn–O–Mn bond angle. (a) shows
the phonons with Ag symmetry and (b) the phonons with B2g symmetry, respectively. The
quantitative values for the Mn–O–Mn bond angle are extracted from [GKL+04].

individual phonon modes.

For illustration, the mode–dependent relative frequency shifts with respect to the phonon

frequencies of EuMnO3 are plotted versus the incorporated R3+ ion in figure 6.6 for the

Ag modes (left panel) as well as the B2g modes (right panel), respectively. These data can

also be found in table form in table B.1 (Appendix B). As the Ag(2/7) mode cannot be

observed in EuMnO3, the relative R3+ dependence of this mode frequency is not shown

in figure 6.6 due to the missing EuMnO3 reference.

The strongest shifts among the Raman–active phonon modes are observed for the Ag(7/2)

(≈ 8.4%) and Ag(4) modes (≈ 4.6%). This can be explained by the mode patterns of these

phonons depicted in figure 4.1, i.e. a displacement of the apical O2− of the MnO6 octahe-

dra along the orthorhombic a–axis and an out–of–phase rotation of the MnO6 octahedra

along the a–axis, respectively. It can easily be understood, that these Eigendisplacements

are sensitive to a change of the Mn–O–Mn tilting angle along the b–axis. For the other

mentioned phonon modes the shift is less pronounced (. 2%).

A closer inspection of the two strong Ag modes at ν̃ ≈ (480 − 500)cm−1 shows, that

these strongly mix and an exchange of spectral weight occurs. This was also observed

on polycrystalline RMnO3 by Iliev et al. [IAL+06]. There it was shown, that for R3+

= Sm3+, Eu3+, Gd3+ and Tb3+ the Ag(1) and Ag(3) modes strongly mix, while for the

other RMnO3 compounds of the Lanthanide series they are separated. This mixing was

attributed to the fact, that one of these modes – Ag(3), which is a MnO6 bending mode
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– is rather sensitive to a change of the Mn–O–Mn tilting angle along the b–axis and,

consequently, its Eigenfrequency increases with decreasing R3+ radius. This is in contrast

to the other mode – Ag(1), which is an antistretching mode of the O2− in the MnO2

(ac) plane of the MnO6 octahedra and, therefore, independent of the R3+ ionic radius.

In [IAL+06] the frequencies of the pure modes would cross in the range of SmMnO3 and

EuMnO3, i.e. an ionic radius of R3+ ≈ (1.12− 1.13)Å. In reality, a strong intermixing oc-

curs, resulting in an anticrossing behaviour in the wide range from PrMnO3 to DyMnO3,

i.e. ionic radii of 1.175Å > R3+ > 1.09Å. The same intermixing behaviour can also be

seen in our RMnO3 spectra with the most noticeable aspect being the interchange of

spectral weight reflected in the area of the phonon peaks. So, while for EuMnO3 the

Ag(3/1) mode has a considerably higher area than Ag(1/3), the situation is reversed in

TbMnO3. Because of the strong mode mixing, we do not denote these two modes with

separate mode indices, but with Ag(1/3) and Ag(3/1). This nomenclature is also used for

Ag(7) and Ag(2) according to [IAL+06], though we do not observe signs of mode mixing

in our Raman spectra.

From this intermixing behaviour it can further be concluded, that a moderate sensitivity

of the phonon modes Ag(1/3) and Ag(3/1) with respect to a change of the Mn–O–Mn

tilting angle caused by a R3+ replacement should be observable. The corresponding rela-

tive frequency shifts in figure 6.6 show exactly this expected behaviour.

In clear contrast to the other phonon modes, a negligible relative change of the phonon

frequency (∆ω/ω < 1%) is observed for the strongest phonon mode B2g(1) – the symmet-

ric stretching (i.e. breathing) mode of the MnO6 octahedra within the MnO2 (ac) plane.

This further confirms the picture of mode–dependent sensitivity, because in this case the

displacement is confined within the MnO2 (ac) plane, whose O2− equilibrium positions

are only slightly affected by a R3+ replacement.

In summary, the Raman spectra of the stoichiometric RMnO3 series show the conse-

quences of the R3+ replacement on the phonon modes with almost exclusive involvement

of the O2−. The induced frequency shifts are mode dependent and originate from the

indirect mechanism of a change of the MnO6 tilting caused by R3+ replacement within

the orthorhombic unit cell.

FT–IR Spectroscopy

With the help of FT–IR spectroscopy, the reflectivity of the RMnO3 (R3+ = Eu3+, Gd3+,

Tb3+) series and, thus, the IR–active phonon modes can be investigated. In contrast to

the Raman–active phonons, the Mn3+ participate in these modes, as can be seen in the

mode patterns of figure 4.3 and 4.4.

The reflectivity spectra as well as the hence derived ε2 spectra obtained from RMnO3 are

shown in figure 6.7 in the same arrangement as in figure 6.3 for GdMnO3. It can be seen

in these spectra obtained from the whole investigated RMnO3 series, that the number

of phonon modes equals that expected by the group theoretical considerations in section

4.2.1. A list of the fit parameters ωT , ωp and Γ can be found in the tables B.2 and B.3 in

Appendix B.
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Figure 6.7: Polarised reflectivity spectra (upper row) and hence derived ε2 for the RMnO3

(R3+ = Eu3+, Gd3+, Tb3+) series at room temperature in B1u and B3u symmetry, respectively.
The open circles in the reflectivity spectra indicate the raw data, while the solid lines are the
reflectivity fit functions. For clarity, the spectra are vertically shifted.

As in the case of the Raman spectra, the sample surface roughness leads to the appear-

ance of nominally symmetry forbidden phonons and, additionally, to an overall reduced

reflectivity. The reason is that for FT–IR measurements the reflectivity of the sample

has to be obtained by comparing the measured reflectivity of the sample to that of a

reference – in our case a gold mirror. Thus, the comparison of a rough sample surface to

the polished mirror surface results in reduced reflectivity, which is especially pronounced

for EuMnO3 and TbMnO3.

The relative shift of the phonon frequencies with respect to EuMnO3 is drawn versus

the incorporated R3+ in figure 6.8 for B1u (upper row) and B3u (lower row) symmetry,

respectively. For better clarity, the phonons are arranged in panels according to the

classification scheme presented in section 4.3. It can be seen, that the relative phonon

frequency shifts of one class show mainly uniform trends. Thus, the following discussion

will be based upon this classification scheme.

Comparing the relative frequency shifts leads to the conclusion, that for stoichiometric

RMnO3 (R3+ = Eu3+, Gd3+, Tb3+) the strongest frequency shifts are observed for group

2 modes (i.e. tilting, buckling and rotation modes of the MnO6 octahedra). These are in
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Figure 6.8: Relative shift of phonon frequencies for the RMnO3 series versus the incorporated
R3+ and the resulting Mn–O–Mn bond angle. The upper row shows the phonons with B1u

symmetry, the lower row phonons with B3u symmetry, respectively. The phonons are arranged
in panels reflecting the classification scheme outlined in section 4.3. The quantitative values for
the Mn–O–Mn bond angle are extracted from [GKL+04].

an interval from 2 % to 4.5 % for B1u and from 1.5 % to 3.5% for B3u modes, respectively.

In comparison, the phonon modes of group 3 (i.e. MnO6 internal and stretching modes)

show relatively moderate shifts (0 – 2 %) with the exception of B3u(8). This might be

related to the fact, that this mode is rather difficult to fit due to its weak dipolar activity

(the B3u(8) ion plasma frequency ωp is in the range of ≈ 250cm−1 in TbMnO3) and the

simultaneous vicinity to the strong B3u(9) mode (ωp ≈ 600cm−1 in TbMnO3). Thus,

the fitting procedure can wrongly identify a symmetry forbidden phonon (e.g. B1u(7) or

B1u(8)) as B3u(8). The otherwise moderate shifts of the group 3 phonons are further evi-

dence for the insensitivity of the MnO6 stretching modes to a change of the incorporated

R3+ in agreement to the shifting trend of the Raman–active symmetric stretching mode

of the MnO6 octahedra, i.e. B2g(1).

While the behaviour of the other classes is roughly identical for B1u and B3u symmetry,

the group 1 modes (i.e. modes with strong R3+ and Mn3+ participation) show frequency

shifts with different signs (−3 to −1% for B1u symmetry and +1 to +2.5% for B3u sym-
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metry).

For an understanding of this behaviour, the different mechanisms, that determine the

phonon frequency shift with respect to a R3+ replacement, need to be considered. These

can be easily summarised within the picture of a harmonic oscillator, whose Eigenfre-

quency ω is obtained by

ω =

√
D

µ
, (6.1)

where D denotes the force constant of the corresponding bond modulated by a phonon

mode. µ is the reduced mass of the ions involved in the displacement pattern of the same

phonon mode. D is determined by the bond strength and the bond length, which can be

influenced by a change of lattice constants. Thus, an increase or a decrease of a lattice

constant should lead to a decrease or an increase of the phonon Eigenfrequency ω, respec-

tively. On the other hand, a replacement of R3+ changes the reduced mass in the group

1 phonon modes. As we are substituting Eu3+ (mEu ≈ 152u, u being the atomic mass

unit) with heavier elements from the Lanthanide series, i.e. Gd3+ (mGd ≈ 157.25u) and

Tb3+ (mTb ≈ 159u), the consequence is a moderate decrease of the phonon frequencies of

the group 1 modes.

Concerning the first factor, it was already discussed in the previous section, that the

increasing orthorhombic distortion leads to an enhancement of the inequivalence of a–

and c–axis. A look at table 6.2, where the lattice constants of the investigated RMnO3

series determined by XRD measurements are listed, shows a change of a from 5.8638 Å for

EuMnO3 to 5.8557 Å for TbMnO3, which equals ∆a/a ≈ −0.14% and a change of c from

5.3451 Å for EuMnO3 to 5.3019 Å for TbMnO3, which equals ∆c/c ≈ −0.81%. Thus,

the relative reduction of the c–axis is almost a factor 6 larger than that of the a–axis.

Combining this with the factor of mass substitution ((mTb − mEu)/mEu ≈ +4.6%) the

symmetry dependent frequency shifts of the group 1 modes within RMnO3 can be ex-

plained. The R3+ replacement results in only a minor change of the a–axis, thus for the

group 1 B1u modes, the mass substitution effect (i.e. an increase of the R3+ mass) is dom-

inant and leads to an average decrease of the phonon frequencies of ∆ω/ω ≈ −2%. On

the other hand, the c–axis decrease is considerably larger and, thus, this effect overcomes

Table 6.2: Lattice constants (Pnma notation) of RMnO3 (R = Eu, Gd, Tb) obtained from
XRD literature data.

sample EuMnO3 GdMnO3 TbMnO3

a (Å) 5.8638a 5.8625b 5.8557c

b (Å) 7.4581a 7.4323b 7.4009c

c (Å) 5.3451a 5.3163b 5.3019c

a from [HSP+07], adapted to Pnma, b from [HLKvN+04], adapted to Pnma,
c from [BRG+00].
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the mass substitution effect leading to an average increase of the phonon frequencies of

∆ω/ω ≈ +1.75% for the group 1 B3u modes.

Summing up, the different features of the phonon spectra of the stoichiometric RMnO3

(R3+ = Eu3+, Gd3+, Tb3+) series can be explained as results of the R3+ substitution either

directly or indirectly via a change of the orthorhombic distortion of the Pnma structure.

This now enables us to carry out a comparative analysis of the doped Eu1−xYxMnO3

(0 ≤ x ≤ 0.5) series.

6.2.2 Doped Eu1−xYxMnO3 (0 ≤ x ≤ 0.5)

As already laid out in section 3.4, the doping approach to obtain Multiferroic Mangan-

ites via Y doping of EuMnO3 has two major advantages over stoichiometric RMnO3:

(i) Doping gives the possibility for a quasi–continuous tuning of the average R3+ ionic

radius and (ii) the magnetic properties of Y3+ and Eu3+ lead to magnetically ordered

phases in Eu1−xYxMnO3, which are solely determined by the magnetism of the Mn3+.

This behaviour is due to the fact, that Y3+ is non–magnetic and Eu3+ has a total angular

momentum of nominally J = 0 and, as is shown in the measurements of the magnetic sus-

ceptibility of [HSP+07], no ordered magnetic phases of the Eu3+ or Y3+ spins occur within

this system. Doped Eu1−xYxMnO3 (0 ≤ x ≤ 0.5) is, therefore, of special importance for

the investigative efforts concerning the nature of the multiferroic properties within the

class of orthorhombic Manganites. The first time analysis of the lattice dynamics of the

Eu1−xYxMnO3 series to be presented here is therefore another important part of a sys-

tematic investigation of the coupling effects between lattice dynamics and magnetism.

An open question of this doping approach is, whether the incorporation of isovalent Y3+ on

the Eu3+–sites leads to any kind of disorder induced effects due to its distinctly smaller

ionic radius (rY 3+ ≈ 1.075Å compared to rEu3+ ≈ 1.12Å). This has been discussed in

[HSP+07], but not systematically studied by the means of a complete investigation of the

lattice dynamics. This task will be carried out in the following. Similar to the last section,

we will start with a discussion of the Raman spectra, followed by the reflectivity spectra

obtained by FT–IR measurements.

Raman Spectroscopy

Figure 6.9 shows an overview of the Raman spectra of the Eu1−xYxMnO3 (0 ≤ x ≤ 0.5)

sample series for Ag (left panel) and B2g (right panel) symmetry, respectively. Compari-

son with the Raman spectra of the stoichiometric RMnO3 series in figure 6.5 shows, that

the characteristics of the spectra and the number of the observed phonon modes are the

same for both series. Also clearly visible is the effect of sample surface roughness, as

the samples with polished surfaces (Eu0.8Y0.2MnO3 and Eu0.5Y0.5MnO3) show only minor

leakage of symmetry forbidden phonon modes.

In the same way as for the stoichiometric RMnO3 series, the mode–dependent relative

frequency shifts with respect to the phonon frequencies of EuMnO3 are depicted in figure

6.10 as a function of the Y doping level x for the Ag modes (left panel) as well as the B2g
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Figure 6.9: Polarised Raman spectra of the Eu1−xYxMnO3 (0 ≤ x ≤ 0.5) sample series in Ag

(left panel) and B2g (right panel) symmetry, respectively. For clarity, the spectra are vertically
shifted and on their low frequency side the spectra are multiplied by the factors indicated on
the left side of the vertical black bars.

modes (right panel). Due to the missing peak in the EuMnO3 reference, the Ag(2/7) mode

is omitted as in the case of RMnO3. Table B.1 in Appendix B lists the same information

in tabular form.

Comparison of the relative phonon frequency shifts with that of the stoichiometric RMnO3

series (see figure 6.6) shows a very similar behaviour for the doped Eu1−xYxMnO3 se-

ries: the strongest frequency shifts of ∆ω/ω ≈ 6.4% and ≈ 4.2% are observed for the

Ag(7/2) and Ag(4) mode, respectively. Further, the negligible shift for the B2g(1) mode

(∆ω/ω < 1%) does also occur in the doped series. This similar behaviour of the two

sample series can be expected due to the almost pure O2− displacement patterns of the

observed Raman–active phonon modes. Therefore, for both series no disorder induced

effects occur for the observed Raman–active phonon modes.

The mixing behaviour of Ag(1) and Ag(3) already discussed for RMnO3 can also be

demonstrated in the doped Eu1−xYxMnO3 series. This is illustrated in figure 6.11, where

the left panel shows a comparison of the Ag(1) and Ag(3) phonon frequencies as a function

of the R3+ ionic radius for the Lanthanide series of orthorhombic RMnO3 (R3+ from La3+

to Ho3+) taken from [IAL+06]) with the doped Eu1−xYxMnO3 (0 ≤ x ≤ 0.5) series inves-

tigated within this thesis. The same comparative depiction displays the relative phonon

area of Ag(1) and Ag(3) for both series in the right panel normalised to the integral peak

area of both modes, which is set to 100.

Especially the phonon frequencies show very clearly, that the intermixing behaviour of

the Ag(1) and Ag(3) modes is almost identical in both systems, giving a further strong



82 6. Lattice dynamics of RMnO3 and Eu1−xYxMnO3

Figure 6.10: Relative shift of phonon frequency for the Eu1−xYxMnO3 series as a function
of Y doping level x. (a) shows the phonons with Ag symmetry and (b) the phonons with B2g

symmetry.

indication, that the Raman–active phonon modes for the stoichiometric RMnO3 series

with R3+ =Eu3+, Gd3+, Tb3+ and the doped Eu1−xYxMnO3 (0 ≤ x ≤ 0.5) series can be

regarded as equivalent.

The relative phonon area shown in the right panel of figure 6.11 also gives evidence of

an interchange of spectral weight, i.e. Ag(1) and Ag(3) change their respective Raman

activity through the whole Lanthanide series RMnO3 with ranging R3+ from La3+ to

Ho3+ [IAL+06]. Similar to the behaviour of the phonon frequencies, the phonon area

shows, that the intermixing behaviour from EuMnO3 to TbMnO3 can also be found in

the doped Eu1−xYxMnO3 series. The stronger deviations, that can be observed when

comparing the phonon area of the measurements carried out within this thesis with that

of [IAL+06], might originate from the different spectral resolution of the employed Raman

setups. While Iliev et al. employ a Labram–800 single stage spectrometer with a spectral

resolution of ≈ 0.5cm−1 [IAL+06, LJM+06], the Raman spectra at room temperature

carried out within this thesis are recorded at a Renishaw 1000 single stage spectrometer

with a spectral resolution of ≈ 4cm−1. Therefore, the relative phonon area of a phonon

mode with a phonon linewidth in the range of the spectral resolution limit – Ag(1/3) in

this case – could be overestimated when comparing this mode to a mode with a higher

linewidth – Ag(3/1) in this case. Nevertheless, the qualitative mixing behaviour of an

interchange of relative spectral weight can be demonstrated within Eu1−xYxMnO3.

Summing up the insights gained from the Raman measurements of the doped
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Figure 6.11: Ag(1) and Ag(3) phonon frequencies (upper panel) and relative phonon area
(lower panel) as a function of the R3+ (average) ionic radius. In the upper panel the filled
squares denote the Ag(1) and Ag(3) phonon frequencies of Eu1−xYxMnO3 shown in figure 6.9;
open squares are data taken from [IAL+06] and the dashed lines symbolise the hypothetical
frequency shift of the two modes without intermixing effects. The lower panel shows the same
arrangement for the integral peak area normalised to the sum of both modes. Values of the R3+

ionic radii are taken from [IAL+06] for the stoichiometric RMnO3 series, whereas the R3+ ionic
radii of Eu1−xYxMnO3 are obtained by an arithmetic average of Eu3+ and Y3+ corresponding
to the percentaged Y–content.

Eu1−xYxMnO3 series, we can conclude, that the Raman–active modes, i.e. the O2− vibra-

tions without involvement of Mn3+, do not show disorder effects induced by Y3+ doping

on the R3+ sites.

FT–IR Spectroscopy

The reflectivity and the hence derived ε2 spectra of the Eu1−xYxMnO3 (0 ≤ x ≤ 0.5)

series are depicted in figure 6.12 in the same arrangement as those of RMnO3 in figure
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Figure 6.12: Polarised reflectivity spectra of the whole investigated Eu1−xYxMnO3 sample
series (0 ≤ x ≤ 0.5) at room temperature in (a) B1u and (c) B3u symmetry, respectively. (b)
and (d): hence derived ε2.

6.7. It has to be pointed out, that due to the a–cut sample surface of Eu0.9Y0.1MnO3 it

is impossible to fulfil the excitation condition E||a for observing phonon modes with B1u

symmetry for this sample. Thus, only its B3u modes are shown.

At large, the shape of the reflectivity spectra of Eu1−xYxMnO3 resembles very close

those of RMnO3. Another similarity is the influence of the sample surface roughness.

For Eu0.8Y0.2MnO3 and Eu0.5Y0.5MnO3, the polished sample surface leads to very sharp

phonon modes, what can be seen especially clear in the ε2 spectra. In comparison, the

unpolished samples show broader phonon modes. This makes it difficult to quantitatively

compare phonon properties determined by the phonon area or linewidth for the whole

Eu1−xYxMnO3 series. Thus, we will concentrate on the phonon frequencies and the rel-

ative spectral weight of the phonon modes. First, the shift of phonon frequencies as a

function of Y doping will be discussed.

Figure 6.13 shows the relative shifts of the phonon frequencies with respect to those of

EuMnO3 as a function of Y doping level x for B1u (upper row) and B3u symmetry (lower

row), respectively. As in the case of RMnO3, the quantitative shifts can be characterised

according to the classification scheme introduced in section 4.3. For the phonon modes

of group 2 (MnO6 tilting, buckling and rotation modes) and group 3 (MnO6 stretching
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Figure 6.13: Relative shift of phonon frequency for the Eu1−xYxMnO3 series with respect to
those of EuMnO3 as a function of Y doping level x. The upper row shows the phonons with B1u

symmetry and the lower row the phonons with B3u symmetry, respectively. The phonons are
arranged in panels reflecting the classification according to their main participants and phonon
frequency according to section 4.3.

and internal modes) a similar behaviour is observed for both sample series. The group

2 modes show a moderate increase of the phonon frequencies (∆ω/ω ≈ 0 to +4.5%) –

with the exception of the B1u(6) and B3u(7) modes, whose shifts are slightly negative.

For the group 3 modes, the trend of negligible frequency shifts found in the RMnO3 is

also confirmed for the doped Eu1−xYxMnO3 series. Both experimental findings are clear

indications, that the Mn–O subsystem within the orthorhombic Pnma structure is almost

unaffected by the doping approach of Eu1−xYxMnO3.

On the other hand, the group 1 modes (i.e. R3+ and Mn3+ displacements) show an en-

tirely different behaviour for both sample series. While in RMnO3 shifts in the range

of ∆ω/ω ≈ −3 to −1% for the B1u modes and ∆ω/ω ≈ +1 to +2.5% for the B3u

modes are observed, the frequency shifts in Eu1−xYxMnO3 are considerably stronger with

∆ω/ω ≈ +2 to +6% for the B1u modes and ∆ω/ω ≈ +4 to +8% for the B3u modes.

As a matter of fact, these shifts are the strongest frequency shifts as a function of the

incorporated R3+ ion observed. Further, it is found, that the shifts of the B1u phonons

are slightly weaker than those of the B3u modes – an observation which is similar in both

series.

This significant difference between both sample series can be understood within the simple
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Table 6.3: Lattice constants (Pnma notation) of Eu1−xYxMnO3 (0 ≤ x ≤ 0.5 with the excep-
tion of Eu0.6Y0.4MnO3) obtained from XRD measurements of Hemberger et al. [HSP+07].

sample EuMnO3 Eu0.9Y0.1MnO3 Eu0.8Y0.2MnO3 Eu0.7Y0.3MnO3 Eu0.5Y0.5MnO3

a (Å) 5.8638 5.8636 5.8681 5.8597 5.8556

b (Å) 7.4581 7.4469 7.4381 7.4276 7.4091

c (Å) 5.3451 5.3368 5.3306 5.3195 5.3042

harmonic oscillator picture introduced in the last section. This picture, which explains

the dependence of the phonon frequencies on the force constant D and, thus, on the lattice

constants, and the reduced mass µ of the participating ions can account for two aspects

of the group 1 frequency shifts in Eu1−xYxMnO3: (i) the symmetry dependence of the

group 1 frequency shifts within the Eu1−xYxMnO3 series. This can be understood in the

same way as the observations for group 1 phonons within the RMnO3 series. In both

sample series, the change of lattice constants with decreasing R3+ ionic radius is more

pronounced on the c–axis than on the a–axis. For Eu1−xYxMnO3 the lattice constants

obtained from XRD measurements by Hemberger et al. [HSP+07] are listed in table 6.3.

From these data it can be calculated, that the change of lattice constants for increasing

the Y–content from 0% to 50% is ∆a/a ≈ −0.14% and ∆c/c ≈ −0.77%, which is in

close analogy to the change within the RMnO3 series. Thus, it can be concluded, that

the phonon frequency shifts of the group 1 modes with B3u symmetry should be more

pronounced than those with B1u symmetry. (ii) The second aspect explainable within

the harmonic oscillator picture is the aforementioned significant difference in the group 1

shifts between RMnO3 and Eu1−xYxMnO3. The explanation relies on the second influ-

encing factor – the reduced mass µ. While for RMnO3 the R3+ ionic mass is changed only

by a minor amount of ≈ +4.6% from Eu3+ to Tb3+, a 50% Y3+ doping of EuMnO3 results

in a change of ≈ −20% for the average R3+ ionic mass. Thus, a more pronounced impact

of the frequency increasing factor of changing the reduced mass µ can be concluded. This

nicely explains the strong positive frequency shifts observed in Eu1−xYxMnO3 for the

group 1 phonon modes.

In the following, a further aspect of the IR–active phonon modes will be discussed: their

dipolar strength. This is a direct measure of the electric dipole moment associated with

the corresponding phonon and its displacement pattern. Usually (see e.g. [RKM+07]) it

is expressed in terms of the dipolar strength of mode j as:

∆εj =
ω2
p,j

ω2
T,j

, (6.2)

with ωT,j as the transversal phonon frequency and ωp,j as the ion plasma frequency defined

in equation (2.22). Unfortunately, the different polishing degree of the sample surfaces of

our two sample series make a direct quantitative comparison of ωp impossible, due the ef-
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Figure 6.14: Relative peak area in the ε2 spectra of B1u(1) (black), and B3u(1) (blue, multiplied
by a factor 10) modes as a function of the (average) R3+ ionic radius. The open circles denote
the peak area for the stoichiometric RMnO3 series, while the closed circles show the relative
peak area of the doped Eu1−xYxMnO3 series. The relative peak area is obtained by dividing the
peak area of the corresponding phonon mode by the integrated peak area of all phonon modes
in the ε2 spectrum with B1u or B3u symmetry, respectively.

fects of the surface roughness on the reflectivity spectra already discussed in section 6.1.2.

This problem can be avoided by considering the relative phonon area in the ε2 spectra for

two reasons: (i) Regarding the peak area takes into account the height and the linewidth

of the phonon modes, thus compensating the effects of broader phonon modes observed

for the unpolished samples and (ii) the differences in the reflectivity obtained with respect

to the reference sample (i.e. a gold mirror) are avoided by considering the relative peak

area within an ε2 spectrum, i.e. the peak area of the corresponding phonon divided by

the integrated peak area of all phonon modes with the same symmetry.

This analysis is carried out for those phonon modes, whose dipolar strength shows

qualitative differences for both sample series (see figures 6.7 and 6.12). These modes

are B1u(1) and B3u(1). The obtained relative phonon area of both modes is drawn as a

function of the average R3+ ionic radius in figure 6.14. For the RMnO3 series, R3+ is

simply the ionic radius of Eu3+, Gd3+ or Tb3+, respectively, while for Eu1−xYxMnO3 it

is obtained by the arithmetic average value of Eu3+ and Y3+ determined by the Y doping

level x. For clarity, the relative phonon area of the weaker B3u(1) mode is multiplied by

a factor 10. It can be clearly seen, that for the doped Eu1−xYxMnO3 series the relative

phonon area and, thus, the dipolar strength is weakened for both modes with increasing

Y doping level x. While for the stronger B1u(1) mode a small dipolar activity remains

in Eu0.5Y0.5MnO3, the B3u(1) mode could not even be fitted. Thus, the dipolar activity
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of the latter can be regarded as approaching zero for a Y doping level of 50 %. In clear

contrast, the relative phonon area for B1u(1) and B3u(1) increases slightly for decreasing

R3+ ionic radius within the RMnO3 series. Due to the very sharp and pronounced B3u(1)

peak in the polished GdMnO3, which eventually cannot be completely compensated by

the approach of considering the relative phonon area in the ε2 spectra, its relative phonon

area would far overreach the chosen scale of the y–axis and is thus omitted in favour of

observability of the average trend within both sample series. Nevertheless the trend of a

stronger dipolar strength of the B3u(1) within the RMnO3 series is confirmed also for this

mode.

The different trend observed for the dipolar strength of B1u(1) and B3u(1) in both se-

ries obviously correlates with the different approaches employed to decrease the (average)

R3+ ionic radius, either by complete replacement (RMnO3) or by doping (Eu1−xYxMnO3).

Both modes showing these opposite trends are assigned to mode patterns with a high de-

gree of R3+ participation (see figures 4.3 and 4.4). Thus, one possible interpretation is

local disorder on the R3+ sites due to Y doping. Another explanation is a splitting of

the phonon modes B1u(1) and B3u(1) into two modes, respectively – one is characteristic

for EuMnO3 and one for YMnO3. An increasing amount of Y3+ would mean a decrease

of spectral weight of the EuMnO3 mode and in turn an increase of the YMnO3 mode.

Although within this thesis, no YMnO3–like B1u(1) and B3u(1) modes are observed nei-

ther at room temperature nor at lower temperatures, Takahashi et al. [TYK+09] report

the appearance of a YMnO3–like phonon mode with B3u symmetry at ≈ 160cm−1 in

Eu1−xYxMnO3, thus confirming the assumption of mode splitting.

Another aspect of the reflectivity spectra giving insight in possible disorder effects are the

linewidths Γ of the observed phonons. Again it has to be pointed out, that due to the

different roughness degree of the sample surfaces a quantitative comparison of the whole

RMnO3 and Eu1−xYxMnO3 series cannot be carried out. What is possible, is a qualita-

tive discussion regarding only the samples, that were polished up to optical degree, i.e.

GdMnO3, Eu0.8Y0.2MnO3 and Eu0.5Y0.5MnO3. The indications are visible in the general

view of the reflectivity spectra in the figures 4.3 and 4.4. They can further be verified by

regarding the quantitative phonon linewidths Γ of the polished samples listed in the tables

B.2 and B.3 in Appendix B. From these, it can be concluded, that increasing Y doping

does not induce mode broadening, because the Γ for all observed IR–active phonon modes

are within the same range for GdMnO3, Eu0.8Y0.2MnO3 and Eu0.5Y0.5MnO3. Otherwise a

systematic increase of Γ for at least the group 1 phonon modes within the Eu1−xYxMnO3

series should be detectable with increasing Y–content. This is not the case. Furthermore,

a qualitative inspection of the reflectivity and ε2 spectra of the whole Eu1−xYxMnO3 se-

ries in figure 6.12 including the unpolished samples substantiates this observation, that

Y incorporation does not lead to systematic mode broadening.

Implications concerning disorder induced effects in Eu1−xYxMnO3

Considering the collected data of IR– and Raman–active phonons, we will discuss the

question of local disorder in the lattice of doped Eu1−xYxMnO3 series compared to the
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stoichiometric RMnO3.

The MnO6 octahedra, which are the main participants of the phonon modes observed at

higher frequencies (i.e. ν̃ > 300cm−1), are almost undisturbed by Y incorporation apart

from mode–dependent frequency shifts. These observed with both spectroscopical tech-

niques show, that both approaches lead to the same behaviour with respect to a reduction

of the (average) R3+ ionic radius. E.g. for the Raman–active phonon modes Ag(1) and

Ag(3) mode mixing in both sample series occurs with almost identical frequency shifts

and a transfer of spectral weight. The trend of mode–dependent frequency shifts can be

verified for the IR–active phonon modes of group 2 and 3, i.e. phonons with mainly MnO6

involvement. Further, the phonon linewidths Γ do not show mode broadening effects for

the doped Eu1−xYxMnO3 series.

An effect of Y doping manifests itself as a reduction of the dipolar strength of the lowest–

frequency IR–active phonon modes, which is – on the basis of [TYK+09] – attributed to

a transfer of spectral weight from the EuMnO3–like B1u(1) and B3u(1) modes to the cor-

responding YMnO3–like phonons, respectively. For the group 1 IR–active phonon modes

no systematic mode broadening could be found either.

All these findings are consistent with results obtained for the static lattice properties by

XRD (lattice constants derived from these data are shown in the tables 6.2 and 6.3) in

[HSP+07].

We can therefore conclude that both investigated sample series show good crystalline

quality and low disorder. Also we can follow, that the doping approach in Eu1−xYxMnO3

can be regarded as a stochastic substitution of Eu3+ with Y3+ in EuMnO3 without the

formation of clusters.

After this systematic analysis, the coupling effects between lattice dynamics and mag-

netism can be studied in detail by temperature dependent Raman– and FT–IR Spec-

troscopy.
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Chapter 7

Spin–Phonon Coupling (SPC)

After considering the consequences for both substitutional approaches, i.e. for stoichio-

metric RMnO3 and for doped Eu1−xYxMnO3, on the lattice dynamics in the previous

chapter, the Spin–Phonon Coupling (SPC) effects in both sample series will be discussed

systematically now. For this purpose, we will employ the results of temperature depen-

dent polarised Raman– and FT–IR measurements.

Figure 7.1 shows exemplarily the Raman spectra of EuMnO3 for several temperatures in

the range from room temperature to T = 10K. An inspection of the phonon frequen-

cies reveals, that especially for the B2g(1) mode a strong frequency shift towards lower

frequencies occurs in the temperature range T < 50K. This is in clear contrast to the

temperature dependent behaviour expected for phonons without coupling effects between

lattice dynamics and magnetism. In that case, an increase of the phonon frequency with

decreasing temperature should be observable. This anomalous behaviour is interpreted

as a manifestation of SPC, whose theoretical basis was presented in section 5.1.

In the following sections, we will systematically discuss the SPC effects and their depen-

dencies on mode symmetry and the composition of the RMnO3 system. First, in section

7.1, the dependence of SPC on the mode symmetry will be covered for the Raman– and

IR–active phonons. This will be followed by an analysis of the compositional dependence

of SPC for the stoichiometric RMnO3 and doped Eu1−xYxMnO3 series in section 7.2. In

the last section, 7.3, the observations of 7.1 and 7.2 will be summed up to a discussion

about the physical origins of the observed dependencies of SPC. Further, quantitative

coupling constants will be derived for the breathing mode B2g(1) in both sample series

and compared to literature.

7.1 Mode dependence

The first dependence of SPC, that will be systematically discussed, is the mode depen-

dence, i.e. the dependence of the strength of SPC on the symmetry properties of the

mode patterns of the Raman– and IR–active phonon modes. This will be carried out

by considering the phonon modes of EuMnO3 due to the most pronounced occurrence

of SPC for all investigated RMnO3 compounds. We will start with the Raman–active

91
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Figure 7.1: Ag (left panel) and B2g (right panel) Raman spectra of EuMnO3 for several
temperatures ranging from room temperature to T = 10K. The spectra are vertically shifted
for clarity and on the low–frequency site multiplied by the factor indicated beside the solid black
lines. The room temperature frequencies of the phonon modes are marked by dotted black lines.
Symmetry forbidden phonons are marked by asterisks.

phonon modes in section 7.1.1 followed by the IR–active phonon modes in section 7.1.2.

7.1.1 Raman–active phonon modes

To obtain a more quantitative picture of the temperature dependent phonon frequency

shifts, the frequencies of all EuMnO3 modes indicated in figure 7.1 are drawn versus a

logarithmic temperature scale in figure 7.2. The solid red lines correspond to the modelling

function

ω (T ) = ω0 − C

(
1 +

2

e~ω0/kT − 1

)
(7.1)

describing the expected temperature dependence of the phonon frequencies solely based

on the decay of optical phonon modes into acoustic ones with phonon–phonon decay pro-

cesses up to third order [BWH83]. This is equivalent to the simple Klemens model [Kle66].

For fitting this function to the experimental data, the parameters ω0 and C are optimized

for matching the data for T � TN , where TN is the onset temperature of the magnetically

ordered phases, i.e. T ≈ 46K in EuMnO3. It is indicated by the dotted black vertical

lines in figure 7.2. The extrapolation of the fit function to T = 0K shows the temperature

behaviour expected without SPC.

Obviously, for the depicted temperature dependence of all phonon modes in the temper-

ature region below T ≈ 100K, a significant deviation from the behaviour predicted by

equation (7.1) occurs. Instead a softening of the phonon frequencies is visible, whose value

depends on the individual phonon mode.
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Figure 7.2: Temperature dependence of the phonon frequencies of all Raman–active phonon
modes indicated in figure 7.1. The red lines are fits corresponding to equation (7.1) for T � TN ,
the onset temperature of the magnetically ordered phases indicated by the dotted black vertical
line.

In literature, similar softening was reported for several other RMnO3 compounds, such as

LaMnO3 [GGS+99], PrMnO3, NdMnO3 and SmMnO3 [LJM+06], but not for EuMnO3.

For the latter, a temperature dependent behaviour of the Ag(1/3), Ag(3/1) and B2g(1)

modes according to equation (7.1) was observed. This discrepancy to the measurements

carried out within this thesis, which show strong SPC effects for the Raman–active phonon

modes, is attributed to the polycrystallinity of the EuMnO3, GdMnO3 and TbMnO3 sam-

ples investigated in [LJM+06]. For the measurements shown in this thesis, only single

crystalline samples are employed.

For a quantitative comparison of the observed phonon softenings, a plot of the rela-

tive shift of the phonon frequencies as a function of temperature is shown in figure 7.3.

The relative shifts are obtained by calculating the deviation to the corresponding fre-

quency at T = 100K. Among the observed phonon modes, the symmetric stretching

mode B2g(1) shows the most pronounced frequency softening (i.e. an asymptotical value

∆ω/ω ≈ −1.1% extrapolated to T = 0K). The relative shifts of the other modes are

about a factor 2–3 weaker. A list of the frequency softenings observed in EuMnO3 can be

found in table 7.1 (section 7.3).

An important aspect is the onset temperature of the frequency renormalisation. In fig-

ure 7.2 it is clearly visible, that already for temperatures T & TN a deviation from the

temperature behaviour described by equation (7.1) occurs. As in the case of the relative

frequency shifts, the B2g(1) mode shows the strongest effect, i.e. an onset of frequency

softening at T ≈ 150K with an inclination point at TN . For the other phonon modes

this onset is located at temperatures closer to TN . The different onset of frequency renor-
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malisation can be explained by considering spin fluctuations, that are already present in

the paramagnetic phase above TN . According to [LJM+06], the ith Mn3+ spin can be

represented as

Si =
M

4µB
+ ∆Si, (7.2)

where M is the average sublattice magnetisation of the MnO2 (ac) plane per Mn3+ and

∆Si is the spin fluctuation due to quantum and thermal effects. As discussed in section

5.1, SPC is most pronounced for RMnO3 systems with A–type antiferromagnetism, where

the Mn3+ spins within the MnO2 (ac) plane are ferromagnetically coupled. This further

implies, that phonon modes with in–plane oxygen displacement should show a stronger

SPC than those modes with out–of–plane or oxygen movement within the RO (ac) plane.

Due to the aforementioned spin fluctuations within the MnO2 (ac) plane, the onset of

the frequency softening should be located at higher temperatures for modes with mainly

in–plane O2− displacement.

For testing this model, the temperature dependent behaviour of the B2g(1), Ag(1/3),

Ag(3/1) and Ag(4) modes is considered. A comparison of the corresponding mode patterns

of the four Raman–active modes (see figures 4.1 and 4.2) leads to the expectance, that

the B2g(1) and Ag(1) phonon modes should have the most pronounced frequency shifts

and should be very sensitive to spin fluctuations in the MnO2 (ac) plane. For B2g(1) this

is nicely verified by the observed behaviour in the figures 7.2 and 7.3, while Ag(1) shows

a behaviour similar to the Ag(3) mode, which only weakly modulates the in–plane Mn–O

Figure 7.3: Relative frequency shift as a function of temperature for all EuMnO3 phonon
modes indicated in figure 7.1 with respect to the corresponding phonon frequency at T=100K.
TN symbolises the onset temperature of the magnetically ordered phases. The coloured lines
act as a guide to the eye.
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bonds. This can be understood by the mode–mixing effect of Ag(1) and Ag(3) already

investigated in section 6.2 for both sample series. Thus, moderate frequency shifts and

sensitivity to spin fluctuations within the MnO2 (ac) plane can be expected for these two

modes. Finally Ag(4), which has mainly components perpendicular to the MnO2 (ac)

plane, has a small frequency shift and almost no fluctuation–induced renormalisation ef-

fects above TN .

Summing up, for the Raman–active phonon modes in EuMnO3 deviations of the temper-

ature dependence of the phonon frequencies from the behaviour expected by the simple

Klemens model are observed and interpreted as a manifestation of SPC. Its mode de-

pendence can be traced back to the symmetry properties of the corresponding phonon

mode patterns. So, the modes with mainly O2− displacements within the ferromagnet-

ically coupled MnO2 (ac) plane show the strongest frequency softening and an onset of

the frequency shift, that is located at temperatures significantly higher than the onset

temperature of the magnetically ordered phases, TN . The latter is attributed to spin

fluctuations induced by quantum and thermal effects, which are already present in the

paramagnetic phase and especially pronounced in the ferromagnetically coupled MnO2

(ac) plane.

7.1.2 IR–active phonon modes

In contrast to the Raman–active modes discussed before, in the IR–active modes the

Mn3+ can participate in the displacement pattern. For group 2 and 3 modes (i.e. MnO6

tilting, buckling, rotations and MnO6 stretching and internal modes, respectively) a rel-

ative displacement of Mn3+ and O2− causes a modulation of the electric dipole moment

of the IR–active lattice vibration, which due to the selection rules resulting from a b–cut

sample surface has to be located either within the MnO2 (ac), within the EuO (ac) plane

or between both planes. Thus, a classification in modes with their main displacement

pattern within the MnO2 (ac) plane or out of this plane is not possible.

Further, it has to be pointed out, that only group 2 and 3 modes are expected to show

SPC induced frequency shifts, because the SPC effect relies on the modulation of the

Mn–O–Mn bonds. Thus, the IR–active modes of group 1 (i.e. mainly motions of Eu3+

and Mn3+) are not considered here. A discussion about their temperature dependent fre-

quency shifts will follow in chapter 8 in the context of Electromagnon–Phonon Coupling

(EMPC).

On the other hand, the temperature dependent phonon frequencies of the IR–active

phonon modes allow a selective study of the sensitivity of the IR–active group 2 and

3 phonon modes. Thus, the differences in SPC effects can be systematically analysed for

bending, buckling and tilting modes, i.e. group 2 modes, and compared to the internal

and stretching modes of the MnO6 octahedra, i.e. group 3 modes.

In figure 7.4 the temperature dependent reflectivity and hence derived ε2 spectra of

EuMnO3 are shown in B1u and B3u symmetry for several temperatures. As in the case

of the Raman spectra, all phonon modes analysed within this section, i.e. B1u(4) to (9)

and B3u(4) to (9) are marked by dotted black lines in the ε2 spectra indicating the corre-
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Figure 7.4: Reflectivity (upper row) and hence derived ε2 (lower row) spectra of EuMnO3

in B1u (left column) and B3u (right column) symmetry for several temperatures, respectively.
The spectra are vertically shifted for clarity. Symmetry forbidden phonon peaks are marked by
asterisks.

sponding phonon frequency at room temperature. An inspection of the phonon structure

shows, that in the B1u spectra the modes B1u(4) to (6) as well as B1u(7) to (9) can be

nicely combined in two pairs of three modes, reflecting their classification in group 2 and

3 modes, respectively. In contrast, the situation is less clear in the B3u spectra due to the

frequencies of the relevant phonon modes. Most prominent is the case of the B3u(6) mode,

which could also be classified as a group 3 mode due to its vicinity to the B3u(7) to (9)

modes. This point will be important, when comparing the relative frequency softenings

of the IR–active modes.

The phonon frequencies of all modes considered in this section are shown as a function of

temperature in figure 7.5 on a semi logarithmic scale. As in the case of the Raman–active

modes (see figure 7.2), the solid red lines are fit functions symbolising the temperature

dependent behaviour expected without SPC. However, for the IR–active phonon modes

phonon–phonon decay processes up to fourth order need to be considered to obtain a

good quantitative agreement with experimental data for T � TN . Thus, according to
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[BWH83], equation (7.1) is expanded to

ω(T ) = ω0 − C

(
1 +

2

ex − 1

)
−D

(
1 +

3

ey − 1
+

3

(ey − 1)2

)
, (7.3)

where ω0, C and D are fit parameters, x = ~ω0/kT and y = ~ω0/3kT .

For temperatures T ≤ TN , a systematic deviation of the phonon frequencies from equation

(7.3) is observed for most of the phonon modes plotted in figure 7.5. Thus, it can be

immediately followed, that for Raman– as well as for IR–active phonon modes SPC effects

occur. Another similarity is, that the onset of the frequency softening is located slightly

above TN though not so pronounced as for the B2g(1) mode.

To quantitatively compare the frequency shifts of the IR–active modes, their relative shifts

with respect to the corresponding frequency value at T = 100K are plotted as a function

of temperature in figure 7.6. The data arrangement is chosen (i) according to the mode

symmetry, i.e. the left panels show modes with B1u symmetry, while the right panels

those with B3u symmetry, and (ii) according to the classification scheme of the IR–active

phonons in group 2 and 3 modes. The comparison shows, that – in general – the group

3 phonon modes have a pronounced frequency softening, i.e. ∆ω/ω ≈ −0.4% to −0.25%

for B1u symmetry and ∆ω/ω ≈ −0.5% to −0.05% for B3u symmetry, respectively. In

contrast, the group 2 modes have slight negative to positive relative shifts with respect

to their corresponding frequency at T = 100K (i.e. ∆ω/ω ≈ −0.05% to +0.25% for

B1u symmetry and ∆ω/ω ≈ +0.05% for B3u symmetry) with the exception of B3u(6).

Figure 7.5: Temperature dependence of the IR–active phonon mode frequencies indicated in
figure 7.4 for B1u (left side) and B3u (right side) symmetry, respectively. The red lines are fits
optimised for T � TN (the onset temperature of the magnetically ordered phases) corresponding
to equation (7.3).
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The behaviour of this mode can be understood by an inspection of the reflectivity and ε2
spectra in figure 7.4. As stated before, the classification in group 2 and 3 modes fails for

the B3u(6) mode due to their vicinity to the B3u(7) to (9) modes. Thus, a more group

3 – like behaviour of this mode can be expected and is clearly visible as a pronounced

relative phonon frequency shift of ∆ω/ω ≈ −0.45%.

Summing up, a considerably higher sensitivity of the MnO6 internal and stretching modes

concerning SPC effects can be followed from the temperature dependent frequency shifts

of the IR–active phonon modes compared to the MnO6 tilting, buckling and rotational

modes. It can also be concluded, that the participation of the Mn3+ in the IR–active

modes has no impact on the observability of the SPC.

With this reasoning the analysis of the mode–dependence of SPC can be closed and the

compositional dependence can be considered next.

Figure 7.6: Relative frequency shifts as a function of temperature of the IR–active phonon
modes indicated in figure 7.4 with respect to the corresponding phonon frequency at T = 100K

for B1u – panels (a) and (c) – and B3u symmetry – panels (b) and (d). While in (a) and (b)
the group 2 modes are shown, (c) and (d) depict the group 3 modes, corresponding to the
classification scheme introduced in section 4.3. The coloured lines act as a guide to the eyes.
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7.2 Compositional dependence

In this section, the compositional dependence of the SPC will be discussed. For that pur-

pose, the strength of the SPC effects will be analysed with respect to the R3+ ionic radius,

which determines the orthorhombic distortion of the perovskite structure as already laid

out in section 3.1. We will first consider the stoichiometric RMnO3 (R3+ = Eu3+, Gd3+,

Tb3+) series followed by a comparative analysis of the doped Eu1−xYxMnO3 (0 ≤ x ≤ 0.5)

series. A detailed discussion of the physical origins of the observed dependencies will be

carried out in the last section of this chapter.

7.2.1 Stoichiometric RMnO3 (R3+ = Eu3+, Gd3+, Tb3+)

First, the stoichiometric RMnO3 series will be regarded. The reason for this approach is

the possibility to put the SPC results obtained from RMnO3 in context with literature.

As mentioned before, temperature dependent Raman measurements were carried out on

polycrystalline RMnO3 (R3+ = Eu3+, Gd3+, Tb3+, among others) in [LJM+06]. There,

no SPC effects were observed for these compounds – an observation that could already be

contradicted by the temperature dependent Raman and FT–IR measurements on single

crystalline EuMnO3 presented in section 7.1. We will now further elaborate this for the

other compounds of the series.

One of the main findings discussed in section 7.1 was, that SPC effects occur for Raman–

as well as for some group 2 and all group 3 IR–active phonons. The crucial factor for

occurrence of SPC is the modulation of the Mn–O–Mn bonds. Thus, for a systematic

discussion, Raman and reflectivity spectra need to be considered. First, the results of the

temperature dependent Raman measurements will be presented.

Figure 7.7 shows the temperature dependence of the Raman–active Ag(1/3), Ag(3/1),

Ag(4) and B2g(1) modes arranged in panels for the whole RMnO3 series, respectively. In

contrast to the temperature dependence of the phonon frequencies obtained from EuMnO3

in figure 7.2, figure 7.7 shows only the temperature region of the magnetically ordered

phases, i.e. from T = 100K towards lower temperatures. The dashed red lines are fits

of the experimental data for T � TN corresponding to equation (7.1) and, therefore,

model the expected temperature behaviour without SPC effects. The blue solid lines

are parabola fits for T ≤ TN acting as a guide to the eye for the temperature depen-

dence of the SPC. This dependence is expressed by the temperature dependent prefactor

K(T ) in equation (5.13) reflecting the temperature dependent magnetisation within the

RMnO3 system. It can be seen, that the parabola fits cross the high temperature fits

corresponding to equation (7.1) in the temperature region of TN . Thus, for temperatures

above and below TN model functions exist, which can give good approximations for the

temperature dependence of the phonon modes either with or without SPC effects. The

deviations from both fits within the intermediate region located at temperatures slightly

above TN are attributed to spin fluctuations persistent in the paramagnetic phase, whose

mode dependencies were already discussed in section 7.1.1. These dependencies can be

verified throughout the whole investigated RMnO3 series. Utilising both fit functions, the
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Figure 7.7: Temperature dependence of the Raman–active Ag(1/3), Ag(3/1), Ag(4) and B2g(1)
modes for the whole RMnO3 series in the temperature region of the magnetically ordered phases.
The dashed red lines refer to the fits for T � TN according to equation (7.1) describing the
temperature dependence of the phonons without SPC. TN is indicated by the vertical dotted
line. The solid blue lines are parabola fits for T ≤ TN acting as a guide to the eye.

quantitative phonon frequency softening ∆ω can now be extracted by expanding both fits

to T = 0K and calculating the difference of the two obtained frequency values. This will

be carried out on a systematic base in section 7.3.

Considering the compositional dependence of the SPC effects throughout the RMnO3

series, all observed phonon modes show a monotonous weakening of the frequency soft-

ening with decreasing R3+ ionic radius, i.e. from EuMnO3 to TbMnO3. E.g. for the

B2g(1) modes, where the phonon renormalisation effects are most pronounced in EuMnO3

(see section 7.1.1), the relative phonon frequency shift is reduced from ∆ω/ω ≈ −1.1%

in EuMnO3 to ∆ω/ω ≈ −0.2% in TbMnO3. These weakening effects originate from the

increasing orthorhombic distortion caused by the replacement of Eu3+ by Gd3+ or Tb3+.

This distortion leads to a partial compensation of the NN Mn3+ ferromagnetic interac-

tion responsible for the strong SPC effects within the MnO2 (ac) plane by an increasing

importance of the NNN Mn3+ antiferromagnetic exchange. A systematic discussion will

follow in section 7.3 together with the results of the doped Eu1−xYxMnO3 series.

Nevertheless, SPC effects are observed for the Ag(3/1), Ag(4) and B2g(1) modes even in

TbMnO3, where no A–type AFM phase exists, but the spin spiral phases discussed in

section 3.2. This observation is in clear contrast to the previous results of [LJM+06] on

polycrystalline RMnO3 (R3+ = Eu3+, Gd3+, Tb3+). Thus, it is concluded, that SPC is

not only observable in RMnO3 compounds with A–type AFM.
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Figure 7.8: Temperature dependence of B1u(7) to (9) (left panels) and B3u(7) to (9) (right
panels) for EuMnO3 and GdMnO3. The dashed red lines refer to the fits for T � TN (TN is
indicated by the vertical dotted line) according to equation (7.3) describing the temperature
dependence of the phonons without SPC. The solid blue lines are parabola fits for T ≤ TN
acting as a guide to the eye. Temperature dependent reflectivity measurements of TbMnO3 can
be found in [SKR+09].

The second step in our analysis of the compositional dependence of SPC for the RMnO3

series will be the consideration of the IR–active phonon modes. Thus, we will now turn to

the temperature dependent reflectivity measurements. Due to brevity, only the IR–active

modes of group 3, which all show considerable SPC in EuMnO3 (see section 7.1.2), are

shown in figure 7.8, i.e. B1u(7) to (9) and B3u(7) to (9), respectively. It has to be pointed

out, that for the RMnO3 series no temperature dependent reflectivity data of TbMnO3 are

needed, because in [SKR+09] these are already obtained from an a–cut TbMnO3 sample

– giving access to the B2u and B3u modes. This a–cut sample was cut from the same

macroscopic crystal as that employed for the Raman and room temperature reflectivity
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measurements carried out within this thesis.

For the IR–active phonon modes depicted in figure 7.8 with B1u and B3u symmetry the

same general trend concerning the compositional dependence as for the Raman–active

modes can be observed, i.e. a weakening of the phonon softening for decreasing R3+ ionic

radius. This is likewise attributed to the increasing orthorhombic distortion and the si-

multaneously increasing importance of the NNN Mn3+ antiferromagnetic exchange (see

the upcoming discussion in section 7.3).

It should be pointed out again, that a different fit function has to be employed for fit-

ting the experimental data of figure 7.8 for T � TN . In contrast to the Raman–active

modes, where fit functions according to equation (7.1) are utilised, for the IR–active

modes the Klemens model has to be expanded up to phonon decay processes of fourth

order [BWH83] to gain reasonable agreement between experimental data and the fits.

Thus, in figure 7.8 fit functions according to equation (7.3) are employed. The phys-

ical reason for this behaviour might be related to different relaxation channels for the

Raman–active and IR–active optical phonons, which according to the Klemens model can

decay in two or more acoustic phonons. A different relaxation behaviour of Raman– and

IR–active modes would thus manifest itself in different temperature dependence of the

phonon frequencies. Nevertheless, the SPC effects can be clearly separated, because both

approaches employing the simple Klemens model cannot explain a frequency softening for

decreasing temperature.

Summing up, the results presented in this subsection, SPC coupling effects are observ-

able throughout the whole investigated stoichiometric RMnO3 (R3+ = Eu3+, Gd3+, Tb3+)

series in A–type antiferromagnetic as well as incommensurate magnetic phases. For de-

creasing the R3+ ionic radius, the orthorhombic distortion increases and the NN Mn3+

ferromagnetic exchange is partially compensated by NNN Mn3+ antiferromagnetic ex-

change. This, in turn, causes a weakening of the SPC coupling effects, whose strength

is determined by the magnetic exchange – and is strongest for ferromagnetic exchange

within the MnO2 (ac) plane.

7.2.2 Doped Eu1−xYxMnO3 (0 ≤ x ≤ 0.5)

Having carried out the analysis of stoichiometric RMnO3 with the main result of clearly

observable SPC effects throughout the whole sample series, a comparative investigation

of the doped Eu1−xYxMnO3 series with Y–contents of 0 ≤ x ≤ 0.5 will follow in this

section. The most important question is: Does the doping approach pursued to quasi–

continuously tune the R3+ ionic radius in Eu1−xYxMnO3 have any impact on the SPC?

It should also be mentioned here, that in contrast to the stoichiometric RMnO3 system no

temperature dependent Raman and only FT–IR measurements on selected samples (e.g.

TbMnO3, see [SKR+09]) carried out in the FIR spectral region are reported in literature.

An identical approach to the discussion covering the RMnO3 series in the previous section

is followed here. Thus, first the Raman–active phonon modes are analysed, followed by

the IR–active phonon modes of the groups 2 and 3.
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Figure 7.9: Temperature dependence of Ag(1/3), Ag(3/1), Ag(4) and B2g(1) for the whole
Eu1−xYxMnO3 series in the temperature region of the magnetically ordered phases. The data
arrangement and the employed fit functions are the same as in figure 7.7 for the RMnO3 series.

For the Raman spectra presented in the following, the whole Eu1−xYxMnO3 series was

employed, yielding experimental data for samples with Y–contents of 0, 10, 20, 30, 40

and 50%. Figure 7.9 shows the temperature dependence of the Raman–active Ag(1/3),

Ag(3/1), Ag(4) and B2g(1) modes in the same arrangement and with the same fit functions

as figure 7.7 for the RMnO3 series.

It is immediately clear, that SPC effects are observable throughout the whole

Eu1−xYxMnO3 series. An inspection of the strength of the phonon frequency softening

throughout the series shows a general trend for all depicted phonon modes: a monotonous

weakening of the frequency shifts with increasing Y doping and, thus, decreasing average

Eu1−xYx ionic radius. This compositional dependence is equivalent to that observed in

the stoichiometric RMnO3 series. A natural interpretation of this behaviour is, that the

doping induced possible disorder effects are restricted to the Eu1−xYx sites and do not

affect the MnO6 subsystem responsible for the SPC effects – as already concluded from

the results of the room temperature measurements presented in section 6.2.2. As in the

case of the RMnO3 series, the employed parabola fits for the temperature dependent fre-
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quencies including SPC cross those functions according to equation (7.3) in the vicinity

of TN . Again the reader is referred to section 7.3 for a more detailed discussion.

Another important aspect is the mode dependence of the SPC effects, that were system-

atically discussed in section 7.1.1 for EuMnO3. It can be clearly observed, that the SPC

strength ratio found in EuMnO3 is valid throughout the whole investigated Eu1−xYxMnO3

series. Thus, the mode symmetry determining the SPC strength of the phonon modes is

clearly conserved for doped Eu1−xYxMnO3. Further, the deviations from the temperature

behaviour modelled by the above mentioned fit functions are visible with the same mode

and temperature dependence as in the RMnO3 series. This is a clear indication, that the

magnetic fluctuations persistent in the paramagnetic phase are essentially the same for

both sample series.

Now, the SPC effects of the IR–active phonon modes of the Eu1−xYxMnO3 series derived

from temperature dependent reflectivity spectra will be considered. In contrast to the

above discussed Raman spectra, only selected Eu1−xYxMnO3 samples could be measured

due to the very different degree of surface quality with the Eu1−xYxMnO3 sample series.

Thus, only the Eu1−xYxMnO3 samples with Y–contents of 0, 20 and 50 % are regarded

in the following.

The temperature dependence of the group 3 IR–active phonon modes obtained from the

above mentioned Eu1−xYxMnO3 samples are shown in figure 7.10 in the same arrangement

as the IR–active group 3 modes obtained from RMnO3 in figure 7.8. The fit functions

employed for modelling the temperature dependent phonon frequencies are also the same.

As in the case of the Raman–active modes, the trend of weakened SPC effects for reduced

average Eu1−xYx ionic radii is confirmed, although the weakening is less pronounced than

observed for the Raman–active B2g(1) mode. This can be traced back to an effect of the

fitting procedure: in contrast to the Raman spectra, the reflectivity spectra have to be

fitted over the complete investigated frequency range. This is due to the fitting procedure

when employing the Drude–Lorentz model for modelling the complex dielectric function

ε(ω), which can be easily understood when considering equation (2.25). Thus, especially

for the IR–active phonons of group 3, that have a large linewidth Γ and frequencies ωT
very close to each other, a more intermixed behaviour concerning the SPC effects should

be expected. An intermixed SPC behaviour for all IR–active modes of group 3 would

mean, that for all phonon modes of this group an average SPC strength should be ob-

servable. This is obviously the case in comparison to the Raman–active modes, where

strongly pronounced (e.g. B2g(1)) as well as rather weak SPC effects (e.g. Ag(4)) occur.

Further, it should be noted, that the deviations in the temperature region slightly above

TN from the behaviour predicted by the two employed fit functions are less pronounced

than those of the Raman–active modes, especially the B2g(1) mode. This is could be a

sign of a less pronounced sensitivity of the IR–active phonon modes to magnetic fluctu-

ations within the paramagnetic phase and can be also interpreted as a sign for a more

intermixed behaviour of these modes.

The experimental results presented in this subsection for the doped Eu1−xYxMnO3 (0 ≤
x ≤ 0.5) series clearly demonstrate, that SPC effects can be observed in this sample sys-

tem, either. This is a clear indication, that SPC is an effect of the MnO6 subsystem of
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Figure 7.10: Temperature dependence of B1u(7) to (9) and B3u(7) to (9) for EuMnO3,
Eu0.8Y0.2MnO3 and Eu0.5Y0.5MnO3, respectively. The fit functions indicated are the same
as in figure 7.7 for the temperature dependent Raman spectra.

the Pnma structure and, therefore, is not affected by the doping approach. A systematic

discussion about the underlying physics responsible for the observed dependences will fol-

low now in the next section taking into account the experimental results for both sample

series.

7.3 Discussion

As stated before, the physical origins of the SPC effects and their dependency on the mode

symmetry and the occupation of the R3+–site will now be considered. The importance

of this discussion is underscored by recently published temperature dependent Raman

measurements of ceramic Eu1−xYxMnO3 [MAF+10] and a comparative study of SPC in

ceramic EuMnO3 and GdMnO3 [FMA+09]. The experimental results of these studies lead

to the conclusion of a correlation between SPC and the Electromagnons [MAF+10] and

also to the finding, that SPC effects in GdMnO3 should be more pronounced than those
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Table 7.1: Relative phonon frequency softening ∆ω/ω in % extrapolated to T = 0K with
respect to the occupation of the R3+ site for all investigated Raman– and IR–active phonon
modes. The softening values for the B3u modes of TbMnO3 are approximated from the temper-
ature dependent phonon frequencies drawn in [Sch09].

Mode Tb Gd Eu Eu0.8Y0.2 Eu0.5Y0.5

Ag(1/3) 0 -0.13 -0.33 -0.18 0

Ag(3/1) -0.17 -0.25 -0.52 -0.28 0

Ag(4) -0.23 -0.25 -0.49 -0.44 0

B2g(1) -0.17 -0.39 -1.1 -0.71 -0.17

B1u(7) – -0.29 -0.42 -0.22 -0.21

B1u(8) – -0.26 -0.31 -0.17 -0.23

B1u(9) – -0.30 -0.35 -0.24 -0.13

B3u(7) ≈-0.3 -0.53 -0.54 -0.38 -0.13

B3u(8) ≈-0.05 -0.31 -0.40 -0.41 -0.09

B3u(9) 0 -0.13 -0.19 -0.34 -0.13

in EuMnO3 [FMA+09]. Both deductions must be objected considering the experimental

findings of this thesis, which are obtained from single crystalline sample series. Instead,

an alternative consistent explanation of the SPC and its dependencies will be presented.

For the purpose of a quantitative discussion, the relative phonon frequency softening

∆ω/ω is listed in table 7.1 for each investigated phonon mode (arranged in columns)

and R3+ occupation (arranged in rows), respectively. The row arrangement, i.e. the R3+

occupation, is chosen such, that the ”mother compound”EuMnO3 is located in the centre

row with the stoichiometric RMnO3 series on the left and the doped Eu1−xYxMnO3 series

on the right hand. Further, the Raman– and IR–active modes are grouped in blocks

separated by horizontal lines. For all observed modes the general trend of a moderate

weakening with decreasing R3+ ionic radius is confirmed for both series, thus immediately

contradicting the observation of Ferreira et al. of stronger SPC effects in GdMnO3 com-

pared to those in EuMnO3 [FMA+09]. Deviations from the general trend occur in two

cases for the IR–active modes: (i) B1u(8) of Eu0.8Y0.2MnO3 and Eu0.5Y0.5MnO3 and (ii)

B3u(8) of EuMnO3 and Eu0.8Y0.2MnO3, where a group of phonon modes has to be fitted

in the reflectivity spectra. As already laid out in section 7.1.2, minor uncertainties in the

fitting procedure can occur especially for the weak modes in a group of phonons with the

same symmetry, that have frequencies very close to each other – e.g. the B3u(8) mode in

the group of B3u(6) to (9). However, these uncertainties do not alter the general trend

and are limited to the IR–active modes.

The most important finding in the two previous sections is, that SPC effects occur for

stoichiometric RMnO3 as well as for doped Eu1−xYxMnO3. Further in both series a mod-

erate weakening of SPC with decreasing R3+ or average Eu1−xYx ionic radius is observed.

Now the question arises, how the latter approach of Y doping in EuMnO3 can lead to



7.3. Discussion 107

almost the same results as a complete replacement of Eu3+ by Gd3+ or Tb3+. From the

previous discussions it was already concluded, that the SPC effects should depend on the

respective R3+ ionic radius, which determines the orthorhombic distortion. For a consis-

tent microscopic picture, in principle, two scenarios are possible:

(i) Phase separation in Eu1−xYxMnO3 for x > 0 and, thus, local canted A–type anti-

ferromagnetic domains are assumed. These could still be possible though a macroscopic

magnetic moment would not be detectable due to the random distribution of the domains.

This scenario can be ruled out for two reasons: as shown in [HSP+07] the magnetisation

measurements should show a weak ferromagnetic moment along the b–axis. In the case of

domains, these should have been aligned in the B field, resulting in a finite value for the

macroscopic magnetisation – which is not the case according to the results of [HSP+07].

Additionally a phase separation should lead to clustering of the incorporated Y3+ ions,

thus causing YMnO3–like domains in EuMnO3. The Raman–active phonon modes, which

are sensitive to a change in the Mn–O–Mn bending angle (e.g. the Ag(4), Ag(1/3), or the

B2g(3) mode), should therefore show a two–mode behaviour, or at least an inhomogeneous

broadening in this scenario. This is not observed in the Raman spectra for all investigated

samples.

(ii) The second scenario is the base of the model introduced in section 5.1 for the RMnO3

systems with an incommensurate magnetic (ICM) structure: even in an ICM phase there

still is a significant SPC because the latter is an effect caused by locally correlated spins.

Thus, it is persistent in the ICM phase although the macroscopic magnetic moment con-

nected with the canted A–type AFM phase vanishes. The reduction in the strength of the

phonon softening and, thus, the SPC is originating from the increased MnO6 octahedra

tilting and in turn the compensation of the ferromagnetic NN Mn3+ exchange with the

antiferromagnetic NNN Mn3+ exchange. The finite remaining value is therefore not con-

nected to the existence of an A–type AFM but to a local correlation of the Mn3+ spins.

However, the main difference between the stoichiometric and doped single crystals should

be stressed here. Due to Y doping a random distribution of Y3+ ions is incorporated in

EuMnO3 leading to an inherent distribution of the lattice distortion of the MnO6 octa-

hedra, e.g. the Mn–O–Mn tilting angle. Though in the measurements presented in this

thesis no effects on the Raman–active phonons (e.g. inhomogeneous broadening) are de-

tected, one has to consider that for explaining the phonon softening a model is employed,

which sums up not only NN Mn3+ spins, but also NNN. This leads to a correlation length

of SPC, which is clearly larger than one single unit cell. Thus, phonons are a local probe

for SPC, but on a correlation length scale larger than a single unit cell. This allows adopt-

ing an ”effective medium approximation”on the scale of a few unit cells without having

to average over the whole crystal. This is also in agreement with the theoretical model of

SPC presented in section 5.1.

The next step in the analysis of the SPC dependencies and its origins is a comparison

with literature data that were also obtained from single crystals. Thus, in the follow-

ing the results of Granado et al. [GGS+99] from LaMnO3 and those of Laverdière et

al. [LJM+06] from single crystalline PrMnO3, NdMnO3 and SmMnO3 will be considered.

Equation (5.13) can be used to derive SPC coupling constants Deff = 2D1 cos(πQxa) +
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Table 7.2: : Quantitative phonon frequency softening ∆ω extrapolated to T = 0K, the sublat-
tice magnetisation µunit cell within the MnO2 (ac) plane, as well as Deff hence derived from equa-
tion (5.13). The values of both sample series are compared with literature. For Eu1−xYxMnO3

with x > 0.2 and TbMnO3 no data of µunit cell could be obtained. Thus, only ∆ω is shown.

sample ∆ω [cm−1] µunit cell [µB] Deff [mRy/Å2]

LaMnO3 8.05 3.651 165

PrMnO3 6.52 3.52 15.52

NdMnO3 6.02 3.223 13.52

SmMnO3 5.52 3.54 12.92

EuMnO3 6.5 46 13.4

GdMnO3 2.3 47 4.8

TbMnO3 1.0 – –

Eu0.9Y0.1MnO3 5.6 46 11.6

Eu0.8Y0.2MnO3 4.2 46 8.6

Eu0.7Y0.3MnO3 3.2 – –

Eu0.6Y0.4MnO3 2.0 – –

Eu0.5Y0.5MnO3 1.2 – –

1 values taken from [HSL+97], 2 values taken from [LJM+06],
3 values taken from [MAML+00], 4 values taken from [IMPB03],
5 values taken from [GGS+99], 6 values taken from [HSP+07],
7 values taken from [HLKvN+04].

D2 cos(2πQxa) +D3 for the B2g(1) modes of all investigated compounds, where values of

the sublattice magnetisation can be found, and be compared to literature either.

Unfortunately, values of the sublattice magnetisation needed for a quantitative derivation

of these constants are available only for RMnO3 systems – stoichiometric or doped – with

A–type AFM ordering, i.e. EuMnO3, GdMnO3 and Eu1−xYxMnO3 with x ≤ 0.2. These

values can be extracted either from neutron diffraction or magnetisation measurements.

Thus, only for the mentioned samples a quantitative Deff can be calculated from the ex-

perimental data.

In table 7.2 the SPC coupling constant Deff for RMnO3 crystals from literature (R3+

= La3+, Pr3+, Nd3+ and Sm3+) and both sample series investigated within this thesis

are listed together. Also indicated is the value of the sublattice magnetisation µunit cell,

that was employed for the calculation of Deff . In order to maintain comparability for the

whole sample series experimentally investigated within this thesis, the absolute phonon

softening ∆ω is listed for all samples.

An inspection of table 7.2 shows a good agreement of the experimentally obtained phonon

softening and hence derived Deff with literature apart from a small step of ≈ 1cm−1 in

∆ω from the literature data of SmMnO3 to the experimentally obtained data of EuMnO3.
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Table 7.3: Comparison of the (average) ionic radii Eu1−xYx calculated from the ionic radii of
Eu3+ and Y3+ to the stoichiometric ionic radii of Eu3+, Gd3+, Tb3+ and Y3+. Values of the
R3+ are taken from [Kor55]. Further, the orthorhombic parameters ε = a−c

a+c calculated from the
lattice parameters listed in tables 6.2 and 6.3 are shown for the corresponding R3+ occupation.

R = Eu Gd Tb Y

R3+ [Å] 1.13 1.11 1.09 1.06

ε = a−c
a+c

0.04628 0.04886 0.04963 –

Eu1−xYx = Eu Eu0.9Y0.1 Eu0.8Y0.2 Eu0.7Y0.3 Eu0.5Y0.5

(average) R3+ [Å] 1.13 1.123 1.116 1.109 1.095

ε = a−c
a+c

0.04628 0.04703 0.04800 0.04832 0.04941

This can be attributed either to the different Raman setups or differences in the sample

quality. However, the general trend is confirmed for literature as well as for experimental

data. In particular, the results of this thesis fit better in the scheme expected by the dis-

cussion of the physical origins above than the results published for polycrystalline RMnO3

(R3+ = Eu3+, Gd3+, Tb3+) [LJM+06] or ceramic EuMnO3, GdMnO3 and Eu1−xYxMnO3

[FMA+09, MAF+10].

Now, we want to go even further and compare both investigated sample series with each

other in the light of their compositional dependence. Naively, for comparing stoichiomet-

ric and doped sample series one would calculate an average R3+ ionic radius of Eu1−xYx

and search for a stoichiometric RMnO3 sample with corresponding R3+ ionic radius. The

average Eu1−xYx ionic radii derived from the stoichiometric ionic radii of Eu3+ and Y3+

are listed in table 7.3 and compared to those of Eu3+, Gd3+, Tb3+ and Y3+. All sto-

ichiometric values are taken from [Kor55]. According to this tabled values, one would

expect, that SPC effects in GdMnO3 should be roughly comparable to Eu0.7Y0.3MnO3

and the same should be true for the sample pair TbMnO3 and Eu0.5Y0.5MnO3. How-

ever, when comparing quantitative values of the phonon frequency softening ∆ω shown

in table 7.2 one has to note, that ∆ω = 2.3cm−1 in GdMnO3 is significantly smaller than

∆ω = 3.2cm−1 in Eu0.7Y0.3MnO3. The naive picture of an average Eu1−xYx ionic radius

is therefore not sufficient for a quantitative comparison of SPC in both sample series.

Another possibility would be considering the similarity of the magnetic phases by em-

ploying the magnetic phase diagrams of figure 3.14 in section 3.4. This approach would

resemble the picture of a direct correlation of SPC and the Electromagnons and, thus,

its link to the existence of specific magnetic phases. It would lead to the expectance,

that GdMnO3 should be comparable to Eu0.8Y0.2MnO3, because in both compounds A–

type AFM is observable at temperatures T . 25K. For Eu0.7Y0.3MnO3 no A–type AFM

exists but an incommensurate magnetic structure. Consequently, when considering the

similarity in the magnetic structure as the crucial factor for a comparison of RMnO3
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Figure 7.11: Phonon frequency softening ∆ω of the B2g(1) mode as a function of the R3+ or
average Eu1−xYx ionic radius, respectively. ∆ω is extracted from the Raman measurements by
extrapolating both fit functions to T = 0K. The dashed red line is a guide to the eye indicating
a linear dependence.

and Eu1−xYxMnO3, the sample pairs GdMnO3 and Eu0.8Y0.2MnO3 as well as TbMnO3

and Eu0.5Y0.5MnO3 would have to be chosen. However, in this case, the difference in

SPC strength between the sample pair GdMnO3 (∆ω = 2.3cm−1) and Eu0.8Y0.2MnO3

(∆ω = 4.2cm−1) is almost a factor 2 and therefore even larger than in the naive picture

of averaged Eu1−xYx radii.

Both approaches and the corresponding dependencies are also visualised in figure 7.11,

where the phonon frequency softening ∆ω is plotted as a function of the (average) R3+

ionic radius in Å. The second approach of similar magnetic phases is indicated by the

shaded area, which marks RMnO3 or Eu1−xYxMnO3 with A–type AFM. The shortcom-

ings of both pictures can be clearly seen by the deviation of the GdMnO3 phonon softening

from the general trend indicated by linear fit (dashed red line) and to a lesser amount by

the deviation between the second sample pair TbMnO3 and Eu0.5Y0.5MnO3.

To overcome this complication, a third approach will be introduced now. It is based on

the direct consideration of the MnO6 octahedra tilting, which is reflected in the lattice

properties of the orthorhombic unit cell. For an in–depth evaluation in terms of the MnO6

tilting, the orthorhombic distortions of the doped and the corresponding stoichiometric

samples have to be compared in detail. The XRD–derived lattice constants for all inves-

tigated samples are listed in the table 6.2 for RMnO3 and in table 6.3 for Eu1−xYxMnO3.

From these data the parameter for the orthorhombic distortion ε is calculated and shown

below the R3+ and average Eu1−xYx ionic radius in table 7.3. It is defined as follows:

ε ≡ (c− a) / (c+ a) and reflects the inequality of a– and c–axis in the orthorhombic

Pnma perovskite structure and, thus, the tilting of the MnO6 octahedra within the MnO2

(ac) plane [HSP+07].

The dependence of the phonon softening ∆ω on the orthorhombic distortion ε is shown
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Figure 7.12: Phonon frequency softening ∆ω of the B2g(1) mode as a function of the or-
thorhombic distortion ε. ∆ω is extracted from the Raman measurements by extrapolating the
fit functions to T = 0K. ε is calculated from the XRD–derived lattice constants listed in the
tables 6.2 and 6.3. The dashed red line is a guide to the eye reflecting a linear dependence
between ∆ω and ε.

graphically in figure 7.12. The distortion-dependence of the phonon softening shows a

linear decrease of SPC with increasing ε. In contrast to the previously introduced models,

here all investigated compounds fit excellently within the linear trend indicated by the

dashed red line within figure 7.12. Thus, an intimate connection between orthorhombic

distortion ε and the SPC strength expressed by the phonon frequency softening ∆ω can

be concluded. It can further be followed, that the SPC of GdMnO3 (∆ω = 2.3cm−1)

should be best comparable to Eu0.6Y0.4MnO3 (∆ω = 2.0cm−1), whose lattice parameters

and, thus, ε are not known unfortunately. Nevertheless the value of the parameter ε

of Eu0.6Y0.4MnO3 should be in the region between Eu0.7Y0.3MnO3 and Eu0.5Y0.5MnO3,

which would be in excellent agreement with GdMnO3.

Summing up, one can deduce, that the difference in ε determines the difference in the

strength of phonon softening. This result is explained consistently by the consideration,

that the observed SPC is primarily related with the tilting of adjacent MnO6 octahedra

due to the orthorhombic lattice distortion (reflected in the parameter ε) and, thus, the lo-

cal magnetic correlations, rather than relating it to specific macroscopic magnetic phases.

Thus, the conclusions of [FMA+09] and [MAF+10] have to be objected, as they draw a

picture of a correlation between SPC and the Electromagnons.

However, the concept of an intimate coupling between phonons and Electromangnons

should not be abandoned completely. Instead a closer look at the symmetry properties

and the possible coupling mechanisms leads to a more detailed understanding, which

phonon modes can couple directly to the Electromagnons. The theoretical ground was

already laid out in section 5.2 and in the next chapter experimental results concerning

the Electromagnon–Phonon Coupling (EMPC) will be regarded.
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Chapter 8

Electromagnon-Phonon Coupling

(EMPC)

For an understanding of possible coupling effects in the dynamical response of the Multi-

ferroic Manganites it is crucial to take symmetry aspects into account. As it was already

discussed for SPC, the Raman– and IR–active phonon modes can couple to the magnetic

order via the modulation of the magnetic exchange. SPC effects manifest themselves as

phonon frequency shifts of those Raman– and those IR–active phonon modes, that mainly

involve O2− displacements, i.e. tilting, buckling and rotations of the MnO6–octahedra,

termed group 2 modes in section 4.3, as well as stretching and internal modes of the

MnO6–octahedra, termed group 3 modes. In this chapter, the IR–active phonon modes

of group 1 shall be considered, i.e. the polar phonon modes with mainly R3+ and Mn3+

displacements. The discussion of the systematics of SPC clearly showed that for the group

1 modes no SPC effects are expected. However, a possible coupling of these modes with

the elementary excitations of the Magneto–Electric Coupling, i.e. the Electromagnons

(EM), is expected, due to the magnon–phonon hybrid nature of the latter.

Concerning the coupling effects of phonons and EM – in the following termed Electro-

magnon–Phonon Coupling (EMPC) – several studies have been carried out on Rare–Earth

Manganites (e.g. GdMnO3 [PRM+06], TbMnO3 [SKR+09] and doped Eu1−xYxMnO3

[TYK+09]), whose main observation was the transfer of spectral weight between these

two elementary excitations. According to Shuvaev et al. [SMP11], this aspect can be gen-

erally understood as a consequence of the conservation of the total number of electrons

within the sample. It will be discussed in detail later in this chapter.

However, the transfer of spectral weight is only one of the possible EMPC manifestations.

Other aspects, e.g. the shift of resonance frequencies, are mentioned in literature, but not

systematically studied or understood with the help of a microscopic model, which is explic-

itly based on the ”Heisenberg–Exchange model”[VAMS+09] (see also section 5.2). Only

this model can consistently explain both the strong dipolar activity of the high–frequency

EM and its optical selection rules [SMP11]. Thus, with the help of the experimental data

obtained from temperature–dependent polarised reflectivity measurements presented in

the following, a microscopic model will be introduced, which can cover these EMPC ef-

113
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fects. Special attention will be paid to the frequency shifts observed for the low–frequency

phonon modes, due to the clearness of the experimental data concerning this parameter.

For the following discussion covering the observed EMPC effects, the stoichiometric

RMnO3 (R = Eu, Gd and Tb) series will be considered in detail. The doped Eu1−xYxMnO3

series will be discussed at the end of the chapter for completeness. This chapter will be

organised as follows: First, in 8.1, the transfer of spectral weight between phonons and

EMs will be covered. The main purpose of this section is comparison with literature

data, where this aspect was extensively studied in the recent years. Second, in 8.2, one

of the main findings of this thesis will be presented: phonon frequency shifts attributed

to hybridisation effects of phonons and EMs. This aspect has been presented in litera-

ture for selected compounds (e.g. in [LKY+09] for Gd1−xTbxMnO3 (x = 0.3 and 0.5)

or in [SKR+09] for TbMnO3), but not systematically discussed in terms of introducing

a model, that explains these frequency shifts on a microscopic scale. Therefore, in 8.3 a

microscopic model will be developed, that is based on considerations in close analogy to

the previously discussed SPC effects, i.e. the dynamical modulation of magnetic exchange

by lattice vibrations. Finally, in the last section of this chapter, the experimental data

Figure 8.1: Reflectivity spectra in the range from 75 to 300 cm−1 obtained from EuMnO3

and GdMnO3 in B1u (upper row) and B3u (lower row) for several temperatures. The spectra
are vertically shifted for clarity. The thickness oscillations caused by the cryostat window are
indicated by the red arrows within the GdMnO3 spectra.
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of the doped Eu1−xYxMnO3 will be covered in the light of the previous observations and

conclusions.

Thus, for a first qualitative overview, we consider the temperature dependent polarised

reflectivity spectra of the RMnO3 sample series shown in figure 8.1 for selected temper-

atures. These give access to the B1u (upper row) and B3u (lower row) phonon modes,

respectively. As already discussed in section 7.2.1, temperature dependent reflectivity

measurements on TbMnO3 were already presented in [SKR+09], thus, only EuMnO3

and GdMnO3 need to be investigated to obtain a complete picture of the stoichiometric

RMnO3 sample series. For clarity, the reflectivity spectra are plotted in the range of

75cm−1 ≤ ν̃ ≤ 300cm−1, thus showing the group 1 IR–active phonon modes according to

the classification introduced in section 4.3. As will be argued in the following, only for

these modes a significant EMPC can be expected.

It can be seen in figure 8.1, that for the reflectivity spectra of GdMnO3 in B1u and also

in B3u symmetry interference fringes with three maxima and a spacing of ∆ν̃ ≈ 50cm−1

occur for ν̃ < 200cm−1 at T ≤ 100K. These patterns in both spectra of GdMnO3 can

be identified as thickness oscillations caused by the cryostat window. A spacing between

interference maxima of ∆ν̃ ≈ 50cm−1 corresponds to a layer thickness in the range of

≈ 600µm, which equals the thickness of the PE windows of the cryostat. Depending on

the sample position within the cryostat, which must be optimised for each investigated

sample and temperature, these can appear for certain samples and temperature regions

and cause problems by obscuring possible resonance signatures of low–frequency phonons

or EMs. For GdMnO3, all phonon modes can be unambiguously identified in agreement

with the room temperature reflectivity spectra shown in chapter 6. However, a possible

observation of weaker EM signatures is not possible in these spectra. Further, this point

should be kept in mind, especially when comparing dipolar strengths of the low–frequency

phonon modes (i.e. ν̃ < 200cm−1) with literature as will be done in the following section.

Having considered these experimental aspects, we now move on to the discussion of the

EMPC effects outlined above. The first point in the discussion will be the transfer of

spectral weight between phonons and EMs.

8.1 Transfer of spectral weight

One of the main aspects of EMPC already intensively investigated in literature is the

transfer of spectral weight between low–frequency IR–active phonons and EMs. According

to Shuvaev et al. [SMP11], phonons need to be included in a systematic description of

EMs. This can be understood by the conservation of spectral weight in the absorption or

reflectivity spectra, respectively. Spectral weight in optical spectroscopy is defined as the

area under the real part of the conductivity curve σ1 (ω), which can also be expressed by

the imaginary part of the dielectric function, ε2 (ω), as:

S =

∫ ∞

0

σ1 (ω) dω = ε0

∫ ∞

0

ε2 (ω)ωdω (8.1)
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with ε0 as the dielectric constant of vacuum. The spectral weight is further proportional

to the number of electrons in the sample and, thus, must be conserved for all temperatures

and magnetic phases. Therefore, if the EM gains spectral weight, a transfer from other

elementary excitations must take place. Due to the hybrid nature of the EM – which

is of mixed magnon and phonon character – it is obvious to identify phonon modes as

the transfer partners. This effect has been investigated for stoichiometric RMnO3 sys-

tems, e.g. for GdMnO3 by Pimenov et al. [PRM+06] and for TbMnO3 by Schmidt et

al. [SKR+09] as well as for doped Eu1−xYxMnO3 by Takahashi et al. [TYK+09]. Within

this thesis we will concentrate on manifestations of the coupling effects observable for the

phonon frequencies and on developing a model describing the microscopic mechanism,

but nevertheless the spectral weight transfer will be regarded by the means of comparing

our results with literature.

Due to the previously mentioned differences concerning the polishing degree of the sample

surface (see section 6.2), a quantitative comparison of dipolar strengths of the IR–active

phonon modes of EuMnO3 and GdMnO3 with literature is not straightforward. Ad-

ditionally, the above mentioned potential thickness oscillations in the low–temperature

reflectivity spectra of GdMnO3 do further complicate this task. Thus, to compensate

these influences, the relative phonon areas in the ε2 spectra are considered, as was already

done in section 6.2, when regarding the room temperature reflectivity. Figure 8.2 shows

the relative peak area of the B3u(1) modes obtained from EuMnO3 and GdMnO3 as a

function of temperature as solid blue and red balls, respectively, and compares them to

the corresponding B3u(5) modes (blue and red empty circles, respectively) as examples

Figure 8.2: Relative peak area in the ε2 spectra of the B3u(1) modes of EuMnO3 (solid red
balls) and GdMnO3 (solid blue balls) as well as the B3u(5) modes of EuMnO3 (empty blue
circles) and GdMnO3 (empty red circles), respectively. For reasons of clarity, the latter are
divided by the factors indicated in the legend.
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for IR–active modes without EMPC or SPC effects (see also figure 7.5). For T < 100K

a clear decrease of relative peak area of B3u(1) is observable in both compounds. It is

especially pronounced in GdMnO3, where the relative peak area is reduced almost by a

factor of 2. Comparison with data of [SKR+09] obtained from a–cut TbMnO3 shows, that

the dipolar contribution ∆ε = ω2
P/ω

2
T of the B3u(1) mode to the dielectric function is also

reduced by a factor of ≈ 2, which is in good qualitative agreement with the behaviour

of the relative peak area of B3u(1) in GdMnO3. These findings do also match published

results of Pimenov et al. [PRM+06] obtained from GdMnO3, where the suppression of

the EM was reached via the application of an external magnetic field: the dielectric con-

tribution of the B3u(1) mode in GdMnO3 is ∆ε ≈ 0.2 at T ≈ 15K in zero magnetic field.

From the reflectivity measurements presented in this thesis a dielectric contribution of

∆ε ≈ 0.15 of B3u(1) at T = 15K in GdMnO3 can be extracted from experiment, i.e. from

the fit parameters ωp and ωT .

Considering the onset temperature of the reduction of the B3u(1) spectral weight in

GdMnO3 (see figure 8.2), one can see, that it is located at T ≈ 75 − 100K and, thus,

above TN indicated by the dashed black line. For comparison, data of M. Schmidt [Sch09]

for ∆ε as a function of temperature of the B3u(1), (2) and (5) modes in TbMnO3 are

plotted in figure 8.3 and show, that the decrease of ∆ε of B3u(1) sets in very close to

TN = 42K. Thus, the temperature dependencies of the B3u(1) modes in GdMnO3 and

TbMnO3 show clear differences. However, when considering the B3u(2) mode (see also

figure 8.3) a very similar temperature dependence compared to the relative phonon area

in ε2 of B3u(1) in GdMnO3, presented in this thesis, can be extracted. Thus, a qualitative

similarity of the temperature dependence can be concluded. On the other hand, modes

with higher phonon frequency, e.g. B3u(4), show a temperature dependent behaviour con-

cerning ∆ε, that closely resembles that of the relative peak area in the ε2 spectra observed

for the B3u(5) modes of EuMnO3 and GdMnO3 (see figure 8.2).

Another possible comparison could be drawn with the data of Lee et al. [LKY+09], whose

data of the mixed system Gd1−xTbxMnO3 show the same qualitative trends concerning

the shift of spectral weight. Unfortunately, only relative shifts with respect to the spectral

weight obtained at a reference temperature of T = 50K are shown. Thus, a quantitative

Figure 8.3: Dielectric contribution ∆ε of B3u(1), (2) and (5) modes obtained from temperature
dependent reflectivity measurements of a–cut TbMnO3 extracted from [Sch09].
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comparison cannot be carried out.

Surprisingly, no investigations concerning the transfer of spectral weight between phonons

and EMs have been carried out on the ”mother compound”EuMnO3. This could have

been a very important check for potential spectral weight transfer effects already present

in the non–multiferroic EuMnO3. The relative peak area of the B3u(1) mode in EuMnO3

plotted in figure 8.2 demonstrates, that a reduction of the relative phonon area in the range

of ≈ 20% is observed upon lowering the temperature to T < 100K. Comparison with the

B3u(5) mode of EuMnO3, for which neither SPC nor EMPC effects are observed (see figure

7.5 in section 7.1.2), shows that this reduction of spectral weight is not present for other

modes with higher mode frequency. One possible explanation could be magneto–electric

fluctuations already present in the non–multiferroic compound EuMnO3. An additional

evidence for this assumption is the observation of EM signatures already present in the

non–multiferroic Eu0.9Y0.1MnO3 compound [PLM+08, TYK+09].

Summing up, a qualitative agreement between the measurements carried out within this

thesis and literature data can be concluded concerning the reduction of spectral weight of

the low–frequency phonons, when lowering the temperature and approaching the multi-

ferroic phases. However, no quantitative comparison could be carried out, due to different

degrees of surface polishing and – in the case of GdMnO3 – thickness oscillations of the

cryostat window.

The next point in the systematic discussion of EMPC are the phonon frequency shifts of

the low–frequency IR–active modes. In contrast to the transfer of spectral weight, this

aspect is not systematically investigated in literature. It is even more relevant in our

case, because the frequency determination cannot be hampered by thickness oscillations,

as long as they are clearly observable. Thus, in the next section frequency shifts ob-

served for the group 1 IR–active phonon modes of the stoichiometric RMnO3 series will

be systematically considered.

8.2 Hybridisation–caused frequency shifts

In contrast to the previously discussed transfer of spectral weight, which relies on the ion

plasma frequency ωp and the transverse optical resonance frequency ωT , the frequency

shifts can be determined directly from the fit parameter ωT . Thus, the frequency shifts

are not sensitive to the degree of surface polishing or the appearance of thickness oscil-

lations, as long as the corresponding phonon signatures can be clearly observed in the

reflectivity spectra. For EuMnO3 and GdMnO3 this is clearly the case (see figure 8.1).

Further, as already discussed before, the temperature dependent B3u phonon frequencies

of TbMnO3 are available from [SKR+09].

Figure 8.4 shows an overview of the temperature dependence of the phonon frequencies

for the group 1 IR–active modes within the stoichiometric RMnO3 series. The upper row

shows the temperature dependencies of the B1u(1) to (3) modes obtained from EuMnO3

and GdMnO3 and the lower row those of B3u(1) to (3) obtained from EuMnO3, GdMnO3

and TbMnO3. It can be immediately seen, that only for B3u(1) obtained from GdMnO3
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Figure 8.4: Temperature dependence of the B1u(1) to (3) (upper row) and B3u(1) to (3) (lower
row) phonon modes obtained from EuMnO3 and GdMnO3. Also displayed (in the right column)
are the temperature dependent B3u phonon frequencies of Schmidt et al. [SKR+09] obtained
from a–cut TbMnO3. The red lines are fits according to equation (7.3) for T > TN reflecting
the temperature dependence of the phonon frequencies without EMPC.

and TbMnO3 significant deviations from the fit functions according to equation (7.3) do

occur. In contrast to the previously investigated phonon frequency shifts of the Raman–

active modes as well as those of the group 2 and 3 IR–active modes, for the B3u(1) modes

of both compounds a pronounced shift to higher frequencies is observed. The relative

difference between the expected phonon frequency of the B3u(1) mode according to equa-

tion (7.3) extrapolated to T = 5K and the actually observed phonon frequency at this

temperature is ∆ω ≈ +1.2% in GdMnO3 and ∆ω ≈ +2.6% in TbMnO3.

The opposite sign of the frequency shifts of the B3u(1) modes in GdMnO3 and TbMnO3

compared to the sign of the shifts observed for the Raman– and group 2 and 3 IR–active
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modes lead to the conclusion, that these should originate from another coupling effect and

not from SPC. Also, in the discussion of the systematics of the SPC mechanism (see sec-

tion 7.1.2), it could already be reasoned, that for group 1 IR–active modes, which mainly

consist of Mn3+ and R3+ displacements, no SPC effects should be observable. Addition-

ally, the compositional dependence of the observed B3u(1) shifts is exactly opposite to

that of the shifts explained by SPC, i.e. a phonon frequency shift of ∆ω = 0 for EuMnO3

with a monotonous increase towards TbMnO3, where ∆ω = +2.6cm−1. This increase of

∆ω appears simultaneously with the onset of multiferroicity (i.e. magneto–electric be-

haviour in our case) and, thus, is interpreted as a coupling effect of the low–frequency

polar phonons and the EMs as the elementary excitations of magneto–electrically coupled

systems. Strictly speaking, EuMnO3 is non–magneto–electric, GdMnO3 is on the bor-

der of magneto–electric behaviour [SML+11], because its ferroelectric moment can only

be stabilised by the application of external magnetic fields (B > 0.1T at temperatures

T < 20K) and, finally TbMnO3 is clearly magneto–electric with the appearance of a fer-

roelectric polarisation for temperatures T < 28K [PMI+06]. This trend is nicely reflected

in the phonon frequency shifts of the B3u(1) mode. Similar positive frequency shifts are

also observed in mixed multiferroic Gd1−xTbxMnO3 (x = 0.3 and 0.5) compounds for the

low–frequency modes with B3u symmetry upon entering the temperature region of the

magnetically ordered phases [LKY+09]. It can therefore be assumed, that these shifts to

higher frequencies are intimately connected to the occurrence of the EM. These, in turn,

are tied to the existence of Magneto–Electric Coupling in these compounds.

Another important aspect are the onset temperatures of the frequency shifts of B3u(1)

in GdMnO3 and TbMnO3. For both compounds, these are located in the close vicinity

of the onset temperature of the magnetic phases, TN , as can be seen in figure 8.4. This

is seemingly contradicting the conclusion of an intimate coupling between the frequency

shifts of the B3u(1) modes and the magneto–electric behaviour connected with the EMs,

that is not present in GdMnO3 at zero field cooling at all [SML+11] and has its onset

not until T = 28K in TbMnO3 [SKR+09]. However, as is evident especially from the

transmittance measurements of GdMnO3 published by Shuvaev et al. [SML+11], the

high–frequency EM persists at temperatures clearly above the phase transition into the

paraelectric phase (i.e. up to T ≈ 75K). This was attributed to magneto–electric fluc-

tuations persistent in the paraelectric phase. Thus, it can consistently be reasoned, that

the positive phonon frequency shifts of the B3u(1) modes are directly connected to the

high–frequency EM.

The next logical step will be developing an understanding, how both elementary excita-

tions can couple. Thus, the Heisenberg–Exchange model employed by Valdés Aguilar et

al. [VAMS+09] to explain the dipolar activity of the high–frequency EM will be considered

with the additional inclusion of the low–frequency polar phonon mode B3u(1).



8.3. EMPC – origin and manifestations 121

8.3 EMPC – origin and manifestations

As already laid out in section 5.2, the Heisenberg–Exchange model can explain the origin

of the dipolar activity of a zone–edge magnon and the experimentally observed selection

rules of the EM consistently. This model is based on the modulation of the magnetic

exchange by the electric field of incoming radiation. Due to the crystalline properties

of the Pnma structure, a polarised light wave with E||c can cause a modulation of the

magnetic exchange J ∝ J0+∆J cos (k0 · r) along the a–axis and, in turn, a modulation of

the angle between adjacent Mn3+ spins along the spin spiral with Q||a. This is equivalent

to a zone edge magnon because of k0 = (2π/a, 0, 0).

For incorporating an explanation of the coupling effect between phonons and EM this

model provides the base considerations concerning the EM. On the other side, a close in-

spection of the mode patterns of the lowest–frequency IR–active phonon modes with B1u

and B3u symmetry, i.e. B1u(1) and B3u(1) is necessary. From experimental results and

literature it is clear, that coupling effects only occur between B3u(1) and EM, while for

B1u(1) no EMPC is observable and, therefore, should be excluded by symmetry reasons.

The displacement pattern of the B1u(1) mode can be found in figure 4.3 and that of the

B3u(1) mode in figure 4.4 and figure 8.5(a). For this discussion considering EMPC only

the MnO2 (ac) plane has to be considered, as the EM excitation is confined within this

plane. Thus, in figure 8.5(b) the projection of the B3u(1) displacement pattern on this

plane is drawn. The main displacement associated with B3u(1) is an anti–phase Mn3+

displacement parallel to the a–axis (indicated by the black arrows) with a small in–phase

component parallel to the c–axis (green arrows). This small component is responsible for

the modulation of the electric dipole within the MnO2 (ac) plane and is in anti–phase

with an equivalent displacement pattern of the R3+ ions within the RO (ac) plane. The

mode patterns are obtained by DFT–calculations on LaMnO3 with Pnma structure, as

already discussed in section 4.3 – and can be verified by comparison with the patterns

of Smirnova et al. [Smi99] employed for empirical shell model calculations of the same

compound and also with those of Kovaleva et al. [KBC+09] employed for empirical shell

model calculations of YTiO3, which also crystallises in the Pnma structure.

The displacement pattern of B1u(1) is not plotted here, but from figure 4.3 it can easily be

seen, that it is equivalent to that of B3u(1) but rotated by 90◦, thus having the anti–phase

modulation of the Mn3+ parallel to the c–axis and the small in–phase component parallel

to the a–axis.

It is therefore obvious, to identify the in–phase modulation of the Mn3+ as the key com-

ponent responsible for EMPC. Due to the positive charge of the Mn ions, it is exactly

anti–phase to the O2− displacement causing the excitation of the EM (indicated by the red

arrows in figure 8.5(b)). These two displacements parallel to the c–axis lead to a modula-

tion of the Mn–O–Mn bond angle along the a–axis with a corresponding k0 = (2π/a, 0, 0).

This in turn causes a modulation of the magnetic exchange with the same k0. Thus, a

hybridisation of high–frequency EM and B3u(1) can be concluded, because the in–phase

component of Mn3+ or O2− displacement in the mode patterns for both excitations are

equivalent on a microscopic scale.
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Figure 8.5: Proposed microscopic coupling mechanism for EMPC. (a) Displacement pattern of
the B3u(1) mode (see also figure 4.4). The blue balls indicate the Mn3+, the yellow balls the O2−

and the red balls the R3+, respectively. (b) Projection of this displacement pattern on the MnO2

(ac) plane. The red arrows indicate the uniform O2− shift parallel to the c–axis responsible for
the excitation of the high–frequency EM, according to [VAMS+09]. The green arrows indicate
the uniform Mn3+ shift in the opposite direction due to the displacement pattern of the B3u(1)
mode. Both shifts lead to a modulation of the magnetic exchange ∆J cos (k0 · r) parallel to the
a–axis.

On the other side, the B1u(1) mode cannot couple to the EM, because the small in–phase

component is parallel to the c–axis and, therefore, the modulation of the magnetic ex-
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change ∆J parallel to the a–axis. A hybridisation would require, that both in–phase

displacements are parallel, which is not the case for B1u(1).

Having established a microscopic explanation for EMPC, now its manifestations can be

considered and explained in the light of this picture:

1. Transfer of spectral weight:

This effect can be understood as already outlined by Shuvaev et al. [SMP11] (see

section 8.1): Due to charge conservation the sum of spectral weight of all excitations

remains constant for all temperatures and phases. Thus, the appearance of the EM

leads to the reduction of the spectral weight of other excitations. With the help

of the microscopic picture just introduced it can be immediately understood, that

the low–frequency IR–active phonon mode with B3u symmetry can transfer spectral

weight, as the dipole moment associated with the in–phase displacement patterns

of the Mn3+ for the B3u(1) phonon and the O2− for the EM, respectively, can eas-

ily shift from one excitation to the other. A suppression of the EM by increasing

temperature or applying external magnetic fields (as was done in [PRM+06]) shifts

spectral weight back to the B3u(1) phonon. The microscopic picture therefore deliv-

ers an explanation for the strong transfer of spectral weight between EM and B3u(1)

and its symmetry dependence.

Figure 8.6: Temperature dependent frequency of the B3u(1) mode also plotted in figure 8.4
and that of the high–frequency EM extracted from [SML+11]. The blue line is the fit function to
B3u(1) according to equation (7.3) reflecting the temperature dependence of this mode without
EMPC. The red line is a guide to the eye.
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2. Temperature dependent frequency shifts:

Concerning the temperature dependent positive frequency shifts of the B3u(1) mode

obtained from GdMnO3, a comparison to those of the high–frequency EM taken from

[SML+11] is shown in figure 8.7. For both excitations a frequency hardening with

the same qualitative temperature dependence is observed. This manifestation of

EMPC can be understood in the following way: the hybridisation of EM and B3u(1)

leads to admixture of EM–characteristics to B3u(1) and vice versa. Thus, one can

expect that also the temperature dependence of the frequency of the corresponding

excitation is included in this hybridisation. The appearance of the EM at ≈ TN and

its frequency hardening with decreasing temperature would lead to an additional

energy term for B3u(1) and, thus, beginning at the onset temperature a shift of the

phonon frequency to higher values should be observable. Figure 8.6 shows exactly

this expected behaviour. For the B1u(1) mode frequency shifts are not expected,

what is nicely verified for the data plotted in figure 8.4. Thus, the temperature

dependence of B3u(1) can be explained consistently as a manifestation of EMPC.

However, it should be stressed here, that due to the overdamped nature of the EM

(according to [SML+11], the linewidth is Γ ≈ 125± 5cm−1) this trend can only be

very qualitatively and not further quantified, because of the resulting high error in

determining the EM frequency.

3. Signatures of EMPC on the spectral line shape of B3u(1):

Generally speaking, the imaginary part ε2 (or εim) – also called dielectric loss – of

the complex dielectric function ε (ω) accounts for the absorption associated with an

excitation. An inspection of equation (2.24) describing the real and imaginary part

of ε (ω) shows, that in contrast to ε1 (or εr) in ε2 excitation processes only contribute

in the corresponding frequency range. Usually these are fitted by a sum of Lorentz

functions, as was done before in this thesis on several occasions (see e.g. section

6.2.2).

The transmittance data of Shuvaev et al. [SML+11] obtained from a very thin

GdMnO3 (thickness ≈ 220µm) single crystal are shown in figure 8.7 in the range

of 7cm−1 ≤ ν̃ ≤ 150cm−1 and also the dielectric function of GdMnO3 derived from

transmittance, reflectivity and THz measurements, respectively. A close inspec-

tion of the spectral shape of the B3u(1) mode reveals an asymmetric line shape for

T < 300K. The most prominent feature, i.e. a characteristic increase of transmit-

tance and a characteristic decrease of ε2 on the high–energy side of B3u(1), respec-

tively, are marked by black arrows in the corresponding spectra. In the light of the

just discussed EMPC effects, this can be interpreted as a characteristic effect of a

coupling between the B3u(1) mode and the high–frequency EM.

Including coupling effects between different excitations – in our case between phonons

and EM – leads to characteristic spectral line shapes, e.g. in the ε2 spectrum. These

can be described as Fano resonance, where the coupling of a very broad excitation

(here the high–frequency EM with ω ≈ 80cm−1 and Γ ≈ 125 ± 5cm−1 [SML+11])
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Figure 8.7: Transmittance spectra (left panel) as well as real (ε1) and imaginary (ε2) part
of the dielectric function (right panels) for selected temperatures derived from transmittance,
reflectivity and THz measurements of GdMnO3 [SML+11]. The solid lines indicate the corre-
sponding model function based on a sum of Drude–Lorentz oscillators. The black arrows mark
the spectral region, where the appearance of an anti–resonance of a Fano line shape [Fan61] is
clearly observable for T < 300K.

and a sharp excitation (here the B3u(1) mode with ωT ≈ 119cm−1 and Γ ≈ 4cm−1 –

see table B.3) located on the shoulder of the broad one, causes a characteristic asym-

metric line shape of the latter. This asymmetric shape is a very general phenomenon

in optical and also Raman Spectroscopy. It was described by U. Fano [Fan61] in

the 1960s. Qualitatively this line shape can be easily understood: While the phase

of the broad excitation remains constant, that of the sharp excitation changes sign,

when crossing its resonance frequency. Thus, for one shoulder of the sharp excita-

tion constructive interference with the broad excitation and for the other shoulder

destructive interference must occur. This is reflected in the line shape of the sharp

resonance by asymmetry. The corresponding line shape in ε2 can be modelled by

the Fano–function:

ε2(ω) = A
[1 + q(ω − ωT )/Γ]2

1 + [(ω − ωT )/Γ]2
+ y0, (8.2)

where A, ωT , Γ are a scaling factor, the resonance frequency, the line width of the

sharp resonance and y0 is an offset term, respectively. The asymmetry of the Fano

function is expressed by the so–called Fano parameter q. The observed spectral
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Figure 8.8: Theoretical curves for ε2 modelling the dielectric loss for ν̃ < 150cm−1 of GdMnO3

in B3u symmetry. These curves are obtained by summing up the dielectric loss associated with
the three indicated excitations. The first two peaks located at 25cm−1 and 80cm−1, respectively,
are the EM structures observed in [SML+11]. The third peak at 118cm−1 is modelled by a
Fano–function (with the Fano parameter q = −2) for the blue line and by a Lorentz–function
for the black line. The red arrow marks the region of interest, where the two curves differ most
significantly.

shape of ε2 in the range of 7cm−1 ≤ ν̃ ≤ 150cm−1 of Shuvaev et al. [SML+11]

plotted in figure 8.7 is modelled by theoretical curves in figure 8.8, where a sum of

Lorentzian peaks is employed for modelling the EMs and a Lorentz (black line) or a

Fano (blue line) line shape for the B3u(1) mode. Comparison with the ε2 spectra of

figure 8.7 shows, that for T < 300K the blue curve incorporating the Fano function

for B3u(1) (with an arbitrarily chosen Fano parameter q = −2) agrees well with

the experimentally obtained ε2 – especially in the spectral region of 120cm−1 ≤
ν̃ ≤ 150cm−1 marked by the red arrow, where the anti–resonance between both

excitations is visible. On the other side, the black curve (i.e. the model curve

without EMPC) gives a good description of the room temperature ε2. From these

findings, it can be concluded, that the spectral asymmetry appears simultaneously

with the other manifestations of EMPC, i.e. transfer of spectral weight and shift of

phonon frequencies, and can be interpreted as another sign of the intimate coupling

between the high–frequency EM and B3u(1).

These three points illustrate manifestations of the coupling between the high–frequency

EM and the B3u(1) mode. They could be obtained by own measurements of the RMnO3

(R = Eu, Gd) series together with literature data of [SKR+09] obtained from TbMnO3.

Specifically, these manifestations are transfer of spectral weight and positive shift of

phonon frequencies. Further, literature data of transmittance and THz measurements
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of the same systems are inspected and an additional feature – the asymmetric line shape

of the B3u(1) mode in GdMnO3 – was found and interpreted as an EMPC effect.

All these observations are consistent with the proposed microscopic coupling mechanism

responsible for the EMPC, thus providing a complete picture of the coupling mechanism

and its manifestations in the Multiferroic Manganites. The next and final step of the

discussion of EMPC will be the consideration of the doped Eu1−xYxMnO3 series, which

will be presented in the next section.

8.4 EMPC in the doped Eu1−xYxMnO3 series

To complete the EMPC analysis carried out on the stoichiometric RMnO3 series and

the SPC investigations on Eu1−xYxMnO3 carried out in chapter 7, here the group 1 IR–

active modes of Eu1−xYxMnO3 will be considered. As already discussed in section 6.2,

the lowest–frequency IR–active phonons are affected by the doping approach, due to the

strong participation of the Rare–Earth ions. In the Eu1−xYxMnO3 series the Eu3+ ions

are partially substituted by Y3+ causing a decrease of the dipolar activity of the B1u(1)

and B3u(1) modes with increasing Y doping level x (see figure 6.14). Thus, for increasing

Y–content the corresponding resonance structures in the reflectivity spectra tend to be

weakened.

This trend can be inspected in the polarised reflectivity spectra of in Eu1−xYxMnO3 (x

= 0, 0.2 and 0.5) for selected temperatures drawn in figure 8.9. The phonon structures

Figure 8.9: Reflectivity spectra from 75 to 300 cm−1 obtained from EuMnO3, Eu0.8Y0.2MnO3

and Eu0.5Y0.5MnO3 in B1u and B3u symmetry for several temperatures. The thickness oscil-
lations are indicated within the Eu0.8Y0.2MnO3 spectra. In B3u symmetry they obscure the
B3u(1) phonon mode for T < 100K.
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are marked by arrows and the number corresponding to the phonon notation. The room

temperature reflectivity (black line) already verifies the trend of a reduction of the dipo-

lar strength nicely. The phonon signatures of B1u(1) and B3u(1) (marked by asterisks) in

Eu0.5Y0.5MnO3 are so weak, that a quantitative fitting procedure does not lead to reliable

results.

Additionally, the experimental difficulties already mentioned for the stoichiometric RMnO3

series (see begin of chapter 8) – i.e. the thickness oscillations caused by the cryostat win-

dow – are also present in the reflectivity spectra of Eu0.8Y0.2MnO3 for T < 295K. In

contrast to the relatively strong dipolar contribution ∆ε of B3u(1) in GdMnO3, ∆ε of the

same mode in Eu0.8Y0.2MnO3 is less pronounced. Therefore, the detection of this mode

is seriously hampered by the thickness oscillations, as can be seen in the middle panels

of figure 8.9 (marked by the red arrows). Thus, a quantitative fitting of this mode for

T < 295K is not possible. Therefore, for the Eu1−xYxMnO3 series investigated within

this thesis reliable fitting data of B3u(1) for x > 0 cannot be extracted, due to the just

discussed reasons. On the other side, when considering the B1u reflectivity spectra, the

stronger ∆ε of B1u(1) compared to B3u(1) allows a quantitative fit of this mode for all

temperatures.

It should be pointed out here, that these difficulties do not obscure other modes. Thus,

a systematic investigation of the stronger group 1 IR–active modes is still possible and is

carried out in the following for completing the EMPC investigations of this thesis.

Figure 8.10 shows the temperature dependence of all observable group 1 IR–active

phonon modes of the Eu1−xYxMnO3 (x = 0, 0.2 and 0.5) series. The arrangement is

chosen equivalent to that of figure 8.4 for the stoichiometric RMnO3 series. The red

lines are fits to the experimental data optimised for T � TN , according to equation

(7.3), thus referring to the temperature dependence expected without EMPC. It can be

immediately seen, that for all displayed group 1 IR–active phonon modes a behaviour

in accordance with equation (7.3) occurs. Thus, it can be followed, that these phonon

modes, i.e. all group 1 phonon modes with the exception of B1u(1) in Eu0.5Y0.5MnO3 and

B3u(1) in Eu0.8Y0.2MnO3 and Eu0.5Y0.5MnO3, do not show EMPC. This observation is

actually expected with the knowledge of the conclusions of the previous sections, where

phonon frequency shifts only occurred for the B3u(1) mode, due to its close coupling to

the high–frequency EM.

On the other hand, EMPC effects concerning the transfer of spectral weight or the shift of

phonon frequencies could not be confirmed within own reflectivity measurements, due to

the aforementioned experimental difficulties obscuring the unambiguous investigation of

the B3u(1) mode. However, there is strong evidence, that these should be observable given

that the experimental difficulties could be overcome. The main evidence is – as in the

case of EMPC manifestations for the RMnO3 series – a close inspection of literature data.

In the case of Eu1−xYxMnO3, Takahashi et al. [TYK+09] have published a systematic

investigation of the low–frequency IR–active phonons and EMs of this series with x =

0.1, 0.2, 0.3, 0.4 and 0.45 in the FIR and THz regime – i.e. for ν̃ < 200cm−1. Their data

show a strong coupling between the B3u(1) mode and the high–frequency EM manifesting

itself as a transfer of spectral weight (see figure 5.5). For Eu0.6Y0.4MnO3 a decrease of the
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Figure 8.10: Temperature dependence of the B1u(1) to (3) and B3u(1) to (3) phonon modes
obtained from EuMnO3, Eu0.8Y0.2MnO3 and Eu0.5Y0.5MnO3. The red lines are fits according
to equation (7.3) optimised for T � TN (indicated by the vertical line).

spectral weight by a factor of ≈ 2 occurs with its onset temperature located well above

TN , which is in close similarity to the data concerning the transfer of spectral weight of

RMnO3 presented in section 8.1. In contrast to the systematic investigation of this trans-

fer, the phonon frequencies have not been analysed further. Thus, a confirmation of the

expected EMPC induced frequency shifts cannot be given by inspection of the literature

data published in [TYK+09].

Summing up, the polarised temperature dependent reflectivity measurements of doped

Eu1−xYxMnO3 give a complete picture of the phonon frequencies as a function of tem-

perature with the exception of the B3u(1) mode. For all other modes, the expected

temperature dependence, i.e. no observable EMPC effects, could be verified. Inspection

of literature data of Eu1−xYxMnO3 published in [TYK+09] gives strong evidence for the

existence of EMPC between the high–frequency EM and the B3u(1) mode manifesting it-
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self as a transfer of spectral weight. Further evidence, e.g. frequency shifts upon entering

the magnetically ordered phases could not be extracted from the data of Takahashi et al.

Nevertheless, EMPC effects in the doped Eu1−xYxMnO3 series are tentatively assigned

employing own measurements in combination with the close inspection of literature data.



Chapter 9

Summary

In this thesis a systematic analysis of the correlation effects between lattice dynamics and

magnetism in the Multiferroic Manganites RMnO3 with Pnma structure was conducted.

For this task, Raman and FT–IR Spectroscopy were employed for an investigation of all

optically accessible lattice vibrations, i.e. phonons. To study the correlation effects as well

as their specific connections to symmetry and compositional properties of the Multiferroic

Manganites, the polarisation and temperature dependence of the phonons were consid-

ered explicitly. In combination with lattice dynamical calculations based on Density

Functional Theory, two coupling effects – Spin–Phonon Coupling and Electromagnon–

Phonon Coupling – were systematically analysed. In the following, the results obtained

by the described efforts will be summarised.

Lattice dynamics of stoichiometric and doped Rare–Earth Man-

ganites (Chapter 6)

As a base for a further analysis, the lattice dynamics of both studied sample series, i.e.

stoichiometric RMnO3 (R = Eu, Gd, Tb) and doped Eu1−xYxMnO3 (0 ≤ x ≤ 0.5), were

investigated. In order to exclude possibly interfering correlation effects, these Raman and

FT–IR measurements were carried out at room temperature – far above the temperature

regime of the magnetically ordered phases.

As a preliminary step, ab–initio calculations of the lattice dynamics of the LaMnO3 sys-

tem based on Density Functional Theory (DFT) were carried out. These yielded the

mode displacement patterns of the corresponding phonon mode, which were employed for

a detailed analysis of the coupling effects later on.

The first step of this analysis was a mode assignment for all experimentally observed

Raman– and IR–active phonon modes. For this purpose, the GdMnO3 system was em-

ployed, due to its polished b–cut sample surface leading to a good fulfilment of the optical

selection rules and – at least for the Raman spectra – the possibility to compare with lit-

erature data published by Iliev et al. [IAL+06]. A very good agreement between these

data and those obtained experimentally within this thesis was confirmed by comparing

frequencies and polarisation dependencies of the Raman modes.

131
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In contrast to the Raman–active modes, the IR–active phonon modes of the stoichiomet-

ric RMnO3 (R = Eu, Gd, Tb) had not been systematically studied at room temperature

until now. As in the case of the Raman spectra, in this thesis a mode assignment was car-

ried out by employing reflectivity spectra obtained from the b–cut GdMnO3 giving access

to B1u and B3u symmetries. The phonon numbers expected from group theory could be

well reproduced. Further, the obtained phonon frequencies, linewidths and ionic plasma

frequencies were qualitatively compared to measurements of Schmidt et al. [SKR+09] car-

ried out on TbMnO3. Thus, the FT–IR measurements in combination with the Raman

data carried out on both sample series give a complete first time analysis of the lattice

dynamics of this system.

Having carried out this systematic mode assignment, in the next step the influence of (i)

the complete replacement of the R3+ ion in the stoichiometric RMnO3 (R = Eu, Gd, Tb)

series and (ii) the doping approach of partially substituting Eu3+ by Y3+ in Eu1−xYxMnO3

(0 ≤ x ≤ 0.5) was investigated. This was done in the form of a comparative analysis of

the changes in the Raman and reflectivity spectra obtained from both series.

Considering the Raman–active phonon modes of RMnO3 a clear trend was observed:

Phonon modes, that mainly comprise O2− displacements perpendicular to the MnO2 (ac)

plane, show significant frequency shifts towards higher values, when reducing the R3+

ionic radii. This was attributed to the simultaneous reduction of the Mn–O–Mn tilting

angle. On the other side, the breathing mode of the MnO6 octahedra with its displace-

ment pattern located within the MnO2 (ac) plane, as a prominent example, is almost

completely insensitive to a change of this angle. This mode and composition dependent

sensitivity could be systematically explained by considering the calculated mode displace-

ment patterns. Further, mode mixing effects of Ag(1) and Ag(3) modes were observed in

excellent agreement with literature [IAL+06].

Turning to the reflectivity spectra and, thus, the IR–active phonon modes, a classifi-

cation according to the mode displacement patterns and the phonon frequencies of the

polar phonon modes was employed to explain the trends observed with respect to R3+

replacement. It was found, that in the case of the IR–active modes, their compositional

dependence can be explained by a simple model picture of a harmonic oscillator. In

this picture, the two factors determining the frequency shifts are (i) the reduced mass

of the participating ions and (ii) the force constants of the bonds modulated by the cor-

responding phonon. Considering quantitative literature values for the lattice constants

with respect to the incorporated R3+ as well as the corresponding ion masses, all observed

trends could be explained consistently.

The doped Eu1−xYxMnO3 series revealed very similar results. Concerning the Raman–

active modes, an identical behaviour with respect to Y doping, i.e. mode–dependent

frequency shifts and mode mixing effects, was found. The IR–active modes showed dif-

ferences concerning the frequency shifts of phonons with strong involvement of the Rare–

Earth ions. This was also explained within the picture of a simple harmonic oscillator.

Further, the dipolar activity of the IR–active modes with the lowest frequency was reduced

by Y doping. However, as this reduction is restricted to the lowest frequency polar phonon

mode, the doped Eu1−xYxMnO3 system is considered equally suitable for an investigation
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of the correlation effects between lattice dynamics and magnetism as the stoichiometric

RMnO3. These effects were analysed in the following.

Spin–Phonon Coupling (Chapter 7)

The first correlation effect to be investigated systematically was Spin–Phonon Coupling

(SPC). It manifests itself as a renormalisation of the phonon frequencies when approach-

ing the temperature region of the magnetically ordered phases. The origin of SPC is the

modulation of the magnetic exchange interaction by the corresponding phonon modes.

Thus, the resulting phonon frequency renormalisation is correlated with the increasing

strength of the magnetic exchange with decreasing temperature. Observed on RMnO3

with relatively large R3+ ionic radius (R3+ = La3+ . . . Sm3+) by Raman spectroscopy

[GGS+99, LJM+06] and on TbMnO3 by FT–IR spectroscopy [SKR+09], until now, no

systematic investigation of the SPC effect was carried out in the Multiferroic Manganites.

An analysis of the mode dependence of the strength and onset temperature of these renor-

malisation effects revealed, that it is mainly determined by the magnetic exchange within

the MnO2 (ac) plane. This could be demonstrated by considering the mode symmetry,

where for the Raman–active phonon modes it was clearly visible, that modes with a main

displacement pattern within this plane show stronger renormalisation effects and higher

onset temperatures than those with displacement patterns perpendicular to this plane or

within the RO (ac) plane, respectively. The investigation of the IR–active phonon modes,

in turn, led to the conclusion, that SPC is primarily observed for phonon modes with a

rather strong modulation of the Mn–O–Mn bonds. Phonon modes with strong R3+ in-

volvement showed no SPC. Additionally, the minor impact of Mn3+ participation for the

occurrence of SPC could be demonstrated, as for both Raman– and IR–active phonons

renormalisation effects were observed.

Considering the compositional dependence of SPC, i.e. the strength and onset of SPC with

respect to the incorporated R3+ ion, the two sample series were analysed comparatively.

(i) For the stoichiometric RMnO3 series a decrease of the strength of the renormalisation

effects with decreasing R3+ ionic radius from Eu3+ to Gd3+ and Tb3+ was demonstrated.

This could be traced back to the weakening of the ferromagnetic exchange within the

MnO2 (ac) plane by an increased octahedra tilting caused by the R3+ replacement and

the resulting increasing importance of the next nearest neighbour antiferromagnetic ex-

change. (ii) The doped Eu1−xYxMnO3 series showed the same trend of a reduced SPC

strength with increasing Y3+ doping, which reduced the average R3+ ionic radius similar

to the complete replacement in RMnO3. Thus, it could be concluded, that the doping

approach followed in Eu1−xYxMnO3 to quasi–continuously tune the average R3+ radius

had no impact on SPC – another clear sign, that disorder induced effects are negligible

in this system. (iii) A quantitative comparison of the two sample series revealed the clear

correlation between the orthorhombic lattice distortion, i.e. the inequivalence of the short

a– and c–axis in the Pnma structure, expressed by the distortion parameter ε and the

SPC induced phonon renormalisation. It could therefore be shown that SPC is not ex-

plicitly coupled to the existence of certain magnetic phases, but to the magnetic exchange
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between Mn3+ ions within the MnO2 (ac) plane. Further, it is observable for Raman–

as well as for IR–active phonon modes modulating the Mn–O bonds within the MnO2

(ac) plane. Thus, conclusions published in literature on ceramic Multiferroic Manganites

[FMA+09, MAF+10], that related SPC to the multiferroic properties of the Manganites,

could be disproven.

A correlation effect between lattice dynamics and magnetism in the Manganites that is

explicitly linked to the existence of multiferroic phases was likewise regarded in this thesis

and its results will be summarised in the following.

Electromagnon–Phonon Coupling (Chapter 8)

The second correlation effect between lattice dynamics and magnetism investigated in this

thesis was Electromagnon–Phonon Coupling (EMPC). One of its manifestations – the shift

of spectral weight from the IR–active phonon modes with low frequency (ν̃ < 300cm−1)

to the emerging EM upon entering the temperature region of the multiferroic phases –

was extensively studied in literature [PRM+06, TYK+09, SKR+09]. However, for other

manifestations, as phonon frequency renormalisation upon entering the temperature re-

gion of the magnetically ordered phases, no systematic analysis was carried out. Further,

a detailed explanation of its microscopic origin was still missing. To correct this vacancy,

the low frequency IR–active phonon modes were selectively studied with special attention

to their optical selection rules and displacement patterns.

Temperature dependent reflectivity measurements on RMnO3 (R = Eu, Gd) together with

the results of Schmidt et al. [SKR+09] obtained from TbMnO3 showed a clear transfer

of spectral weight from the lowest frequency polar phonon mode with B3u symmetry, i.e.

B3u(1), to the emerging EM in the stoichiometric RMnO3 series, as expected. Further,

a compositional dependence of the strength of spectral transfer was proven. It increased

monotonically from EuMnO3 to TbMnO3, which was interpreted as increasing strength

of EMPC. Thus, this manifestation of EMPC could be verified with own measurements.

In addition to this verification, positive frequency shifts of the polar B3u(1) phonon upon

entering the magnetically ordered phases were observed in EuMnO3 and GdMnO3. These

were in good agreement with the data of [SKR+09] obtained from TbMnO3. Again the

trend of increasing EMPC strength upon approaching those RMnO3 systems with multi-

ferroic phases was demonstrated. These data clearly showed, that the B3u(1) renormali-

sation can not originate from SPC, due to the positive sign of the frequency shift and the

strong R3+ involvement in this mode.

Having collected the main experimental findings, a microscopic explanation for the ex-

clusive coupling between EM and B3u(1) was given. It is based on the close inspection

of the mechanism responsible for the dipolar activity of the high–frequency EM – the

Heisenberg–Exchange Model of Valdés Aguilar [VAMS+09] – as well as the mode dis-

placement patterns of the B3u(1) mode obtained from own DFT calculations. Consid-

ering both aspects, a uniform Mn3+ displacement parallel to the c–axis characteristic to

the B3u(1) mode was identified as being responsible for this coupling. Thus, also in the

case of EMPC, a dynamic modulation of the magnetic exchange by a phonon mode with
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suitable displacement pattern causes the correlation effect.

In the light of this microscopic model, the observed manifestations of EMPC were dis-

cussed and an additional manifestation was found by a close inspection of the GdMnO3

data of Shuveav et al. [SML+11]. The three discussed manifestations are: (i) the trans-

fer of spectral weight, (ii) the temperature dependent frequency shifts of B3u(1), whose

shift was shown to be explicitly linked to the temperature dependent EM frequency, and

(iii) an asymmetric line shape of the B3u(1) mode observable in the transmission spectra

obtained from literature measurements of GdMnO3 [SML+11]. The asymmetric spectral

shape could be well reproduced by employing a Fano–type spectral function for modelling

the ε2 spectrum.

Further, these results were compared to experimental data obtained from the doped

Eu1−xYxMnO3 series. The obtained reflectivity spectra showed the decreasing dipolar

activity of B1u(1) and B3u(1) caused by the doping approach, as expected from the re-

flectivity spectra obtained at room temperature, and, due to additional experimental

difficulties in the case of Eu0.8Y0.2MnO3, no reliable frequency shifts of B3u(1) could be

detected for x > 0. However, all other IR–active phonon modes showed the behaviour

expected within the microscopic model picture introduced before. Additional literature

data [TYK+09] covering the transfer of spectral weight further confirmed the expected

EMPC trends. Thus, based on the combination of own data and literature, the similar

occurrence of EMPC effects in the doped Eu1−xYxMnO3 series was concluded.

Conclusion

The systematic investigation of the temperature dependent lattice dynamics of the Mul-

tiferroic Manganites showed two prominent coupling effects with the magnetic properties

of these systems: SPC and EMPC. The various dependencies of both were explained

based on model pictures that rely on the dynamic modulation of the magnetic exchange

by the phonons. Both effects could be well separated by employing explicitly the mode

displacement patterns, the optical selection rules and the phonon frequencies. This thesis

therefore provides systematic evidence for the intimate correlation of lattice dynamics and

magnetism in the Multiferroic Manganites on a microscopic scale.
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Appendix A

Experimental setups

The employed spectroscopical setups will now be introduced briefly. Among the four

utilised setups, there are two Raman and two FT–IR setups.

First, both Raman setups will be discussed. The main components of the experimental

Raman setups are (i) a Laser as light source, (ii) optical components to guide the light to

the sample, (iii) a dispersive spectrometer (single or triple stage in our case) and (iv) a

multichannel detector, i.e. a CCD. Additionally, both employed Raman setups are micro–

Raman setups. Thus, the Laser light is coupled into an optical microscope via a beam

splitter, where the beam is focused onto the sample. This way, a spatial resolution in the

range of a few microns and a drastic increase of the beam power density can be achieved.

In the following, the Renishaw 1000 setup employed for the Raman measurements at

room temperature (presented in chapter 6) will be discussed, followed by the Dilor XY

120 setup, that was used for the temperature dependent Raman experiments of chapter

7:

• Renishaw RM 1000 Setup

The Renishaw RM 1000 Raman setup equipped with a Leica DM LM microscope

was used for the room temperature Raman measurements presented in chapter 6.

Figure A.1 shows a front sight of the system with open cover. It offers two possible

Laser excitation lines, i.e. λ = 514.5nm of an Argon ion Laser or λ = 632.8nm of a

Helium–Neon Laser. Only the latter was used for the Raman experiments carried

out within this thesis. The light is guided from the laser to the beam splitter. The

latter couples the light into the optical axis of the Leica microscope. There, the

Laser beam is focused by a 50x ULWD (ultra large working distance) objective

onto the sample. The backscattered light is then collected by the same objective,

guided back to the beam splitter and then transmitted to the notch filter, where

the elastically scattered Laser light is suppressed. The single–stage monochromator

decomposes the scattered light into its spectral components that are finally analysed

by a Peltier–cooled CCD detector.

The whole setup is optimised for maximum light throughput and high sensitivity

due to the usage of a single monochromator. On the other side, this limits the

spectral resolution to ≈ 4cm−1 and the detectability to Raman signals with an

i
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Figure A.1: Renishaw RM 1000 Raman setup with Leica Microscope DM LM. Taken from
[Sch08]

energy of ν̃ ≥ 200cm−1. Further, a low temperature option, i.e. the integration of

a cryostat in this setup, is not possible. Thus, the temperature dependent Raman

measurements are carried out on the second Raman setup, the Dilor XY 120 setup.

• Dilor XY 120 Setup

In contrast to the compact Renishaw RM 1000 setup, the Dilor XY 120 setup consists

of separated components, i.e. Laser, optical components for guiding the beam to

the microscope and for manipulating the polarisation of the Laser light, microscope

(Olympus BHT equipped with 10x, 50x ULWD, 80x ULWD and 100x objectives)

and a triple stage monochromator (Dilor XY 120) in multichannel mode, where the

split up scattered light is detected by a liquid–nitrogen cooled CCD detector. In

contrast to the Renishaw setup introduced before, the Dilor setup is designed for

maximum variability and spectral resolution. The latter is ≈ 1cm−1 in the low

dispersion mode employed for all Raman measurements carried out for this thesis.

Additionally, this setup allows the incorporation of a continuous–flow liquid–helium

cryostat (CryoVac) in the microscope. This way, the sample can be cooled down

from room temperature to T = 10K. A clear disadvantage of the triple stage Dilor

setup is its reduced throughput compared to the single stage Renishaw setup. Thus,

longer integration times had to be chosen to obtain a comparable signal–to–noise

ratio.

For the experiments carried out at the Dilor setup, the 632.8 nm line of a Helium–
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Neon Laser with P = 17mW was used. To keep the irradiance power density low

and to avoid strong local heating at the Laser spot, a 50x ULWD objective was

used, thus yielding a Laser power density of ≈ 2mW/µm2.

A schematic sketch of the optical beam path is depicted in figure A.2. This picture

shows, that the basic principle of both Raman setups, i.e. employing a beam splitter

to couple the Laser light in the microscope and guiding the scattered light to the

spectrometer entrance, is essentially the same.

Figure A.2: Schematics of the Dilor XY 120 setup

Having covered the Raman setups, the FT–IR setups employed for obtaining the reflectiv-

ity spectra presented in this thesis will be briefly discussed now. Both setups are Bruker

IFS113v FT–IR spectrometer optimised for a wide frequency range from FIR to NIR.

However, for the reflectivity measurements carried out in this thesis almost exclusively

the FIR regime was considered. Only for the room temperature measurements also MIR

data were included in the reflectivity. An important difference between Raman and FT–

IR setups is that the spectral resolution in the Raman setup is mainly determined by the

grating of the spectrometer, while the same in a FT–IR setup is set by the movement

length of the mobile mirror. The employed Bruker IFS113v setups can achieve spectral

resolutions up to 0.3cm−1, however, due to comparability of Raman and reflectivity spec-

tra, a resolution of 1cm−1 was chosen. Further, both FT–IR setups could be evacuated

to low vacuum to suppress spectroscopic signals of the ambient atmosphere.

In the following, the Augsburg setup, employed for the temperature dependent reflectivity

measurements presented in the chapters 7 and 8, will be discussed. Then the Würzburg

setup, where the room temperature results of chapter 6 were obtained, will be covered

briefly to explain the main differences.
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Figure A.3: Schematic sketch of the Bruker IFS113v setup in Augsburg. FW denotes the
filter wheel and BS the automatically interchangeable beam splitters. The inset above shows
the sample chamber in the Würzburg setup. The other parts of both spectrometers are mainly
identical. The Augsburg part is adapted from [May02].

• Bruker IFS113v Setup in Augsburg

The basic layout of the Bruker setup in Augsburg is drawn in figure A.3. It shows

the typical construction of a Michelson interferometer in Genzel geometry. The IR–

radiation sources (for FIR a Hg lamp, for MIR a globar and for NIR a tungsten lamp

can be chosen) are guided through an aperture wheel to the interferometer chamber,

where the beam – after passing a filter wheel (FW) – is focused via mirrors on the

automatically interchangeable beam splitters (BS). The light is then split into two

parts, that are further guided to a mobile mirror (maximum shift is 2∆x), where

both partial beams are reflected back to the beam splitter. There one part of the

two beams is reflected (or transmitted) and then directed into the sample chamber.

There a reflection unit focuses the beam onto the sample that is mounted into a

continuous–flow cryostat (CryoVac), and collects the reflected radiation. The latter

is then passed through a polariser – thus giving the possibility for polarised FT–

IR Spectroscopy – and then into the detector chamber (not plotted in detail). The
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detector chamber contains a total of six detectors. For the reflectivity measurements

carried out in this thesis, only the 4.2 K Bolometer (Bolometer 1) optimised for FIR

measurements, i.e. for 50cm−1 ≤ ν̃ ≤ 650cm−1 was used.

• Bruker IFS113v Setup in Würzburg

As already mentioned before, the Bruker FT–IR setup in Würzburg was employed

for the room temperature measurements presented in chapter 6. The inset in figure

A.3 shows the different sample chamber, which also explains the better suitability

of the Augsburg setup for temperature dependent reflectivity measurements: in the

Würzburg setup, the reflection unit is in the same part chamber as the sample itself.

Thus, very little space for adjusting the optical path would be left, when introducing

a cryostat into this setup. Another difference is the design of the detector chamber,

which incorporates five detectors in Würzburg. For the room temperature mea-

surements carried out in the FIR regime also a 4.2 K Bolometer was employed and

for those carried out in the MIR regime (i.e. 600cm−1 ≤ ν̃ ≤ 4000cm−1) a MCT

(mercury–cadmium–telluride) detector. Otherwise both setups are identical.
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Appendix B

Fitting procedure and fitting

parameters

In this Appendix, the procedure of fitting appropriate functions to the raw data of the

Raman and reflectivity spectra is described in more detail. It is applied for obtaining

parameters as phonon frequencies, linewidths etc. of the corresponding phonon modes.

This Appendix is organised as follows: first the fitting procedure of the Raman spectra

will be discussed, followed by the reflectivity spectra obtained by FT–IR measurements.

Raman spectra

Figure B.1: Illustration of single (red) and multi-peak (red line composed of the green lines)
fits of the Ag spectrum obtained from GdMnO3 with the Lorentz–function. The black arrows
mark the fitted phonon peak structures, here Ag(4) at 369.0cm−1 and the double peak structure
of Ag(1/3) and Ag(3/1) at 484.3cm−1 and 504.3cm−1, respectively.

vii
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The Raman spectra obtained either at the Renishaw or Dilor setup (see Appendix A)

are analysed with the help of the fitting software Origin. Within this software various

fit functions are available for fitting the raw data. From these, two functions are chosen:

Lorentz– and Fano–functions. The first function is usually used for fitting phonon modes

observed in Raman spectra. Its spectral shape is modelled by the Lorentz–function IL(ω):

IL(ω) =
2A

π

Γ

4(ω − ω0)2 + Γ2
+ y0, (B.1)

where A is a scaling factor, ω0 the centre and Γ the FWHM (full width at half maximum

and, thus, the linewidth) of the fitted curve. Additionally y0 is used as offset to subtract

a uniform background. The resulting fit functions are plotted with the raw data, e.g. in

figure B.1 for the Ag spectrum obtained from GdMnO3 at room temperature. This figure

also shows the treatment of two or more phonon modes, which are very close to each other.

This can be done by a so–called Multi-Peak Lorentzian fit. There two or more Lorentz–

functions can be used to model a multi–peak structure with very close frequencies, as is

illustrated in figure B.1 in the range of 460cm−1 < ν̃ < 540cm−1.

All phonon modes observed in the Raman spectra are fitted with Lorentz–functions

(either single or multi–peak), except the B2g(1) mode. Figure B.2(a) shows the fit of a

Lorentz function to this mode. Obviously the Lorentz fit does not account the asymmetric

shape, which is most clearly visible at the flanks. Instead a Fano–function IF (ω) is

Figure B.2: Fits of the B2g(1) phonon of GdMnO3 with a Lorentz (a) and Fano (b) function.
The insets below the spectra show the difference between raw data and the fit functions.
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employed. It reads as:

IF (ω) = A
[1 + q(ω − ω0)/Γ]2

1 + [(ω − ω0)/Γ]2
+ y0, (B.2)

with identical nomenclature as for the Lorentz–function and, additionally, the Fano pa-

rameter q as a measure of the asymmetry of the phonon mode. A fit of the B2g(1) mode

with a Fano–function is shown in figure B.2(b). It is clearly visible, that the fitting of

the experimental data is improved by employing a Fano fit. Thus, it is used to model all

observed B2g(1) modes.

The Fano parameter q is composition and temperature independent for all Raman mea-

surements carried out within this thesis. Its value is in the range of ≈ 1.5. Thus, it

is assigned as inherent to the B2g(1) mode in a Pnma crystal structure. One possible

origin might be, that for the high– and low–frequency side of the B2g(1) mode the phonon

density of states is rather different. One indication is the broad structure centred at

≈ 650cm−1 in the Ag spectra observed for all samples. Being assigned to a disorder–

induced one–phonon mode from the Brillouin zone boundary [IHL+07], it can also be

interpreted as a rather high phonon density of states, thus increasing the decay proba-

bility on the high–frequency site of B2g(1) in comparison to the low–frequency site. This

effect was also observed for other materials, e.g. ZnO, where the Ehigh
2 mode at 438cm−1

exhibits a similar behaviour with a very prominent low–frequency tail [CALIn+07]. There,

this asymmetry was attributed to a resonant interaction of the Ehigh
2 mode with a phonon

density band of second–order contributions (so–called Fermi resonance). However, a sys-

tematic investigation is beyond the scope of this thesis and, thus, will not be regarded

further.

For a systematic analysis of the Raman spectra, the fit parameters with physical meaning,

i.e. phonon frequency ω and linewidth Γ, are extracted for all observed phonon modes.

These parameters are listed in table B.1. As discussed in chapter 6, the residual rough-

ness of the sample surface has a distinct influence on the phonon linewidth Γ. Thus,

for reasons of comparability, only the phonon linewidths obtained from samples with a

surface polished up to optical degree (i.e. GdMnO3, Eu0.8Y0.2MnO3 and Eu0.5Y0.5MnO3)

are included in this table.

Reflectivity spectra

The reflectivity spectra were obtained by FT–IR measurements that were carried out at

the Bruker IFS 113v setups in Würzburg and Augsburg. Both are described in Appendix

A. The obtained reflectivity data were analysed with the fitting software RefFIT [Kuz09].

In our case, the reflectivity data are measured only in a very limited frequency range, i.e.

in FIR (80cm−1 ≤ ν̃ ≤ 800cm−1). For the room temperature measurements, these data

could be supported by additional measurements in the MIR range, i.e. ν̃ ≤ 4000cm−1. A

fitting of these data relies therefore strongly on approximations of the reflectivity in the

low– and high–frequency limit.



x

Table B.1: Phonon frequencies ω and linewidths Γ of the Raman–active phonons assigned in
the figures 6.5 and 6.9 for the RMnO3 and the Eu1−xYxMnO3 series, respectively. Asterisks
mark very weak phonon signals. Because of the different degree of sample surface roughness
only the phonon linewidths of the polished (and thus comparable) samples are shown.

ω [cm−1]

RMnO3

R Ag(7/2) Ag(2/7) Ag(4) Ag(1/3) Ag(3/1) B2g(7) B2g(3) B2g(2) B2g(1)

Eu 260.9 — 362.4 478.2 501.3 325.1 462.9 516.4 609.3

Gd 274.2 310.2* 369.0 484.3 504.3 327.3* 468.1 522.6 609.2

Tb 282.7 — 379.1 488.7 509.2 333.8 474.0 529.0 612.0

ω [cm−1]

Eu1−xYxMnO3

x Ag(7/2) Ag(2/7) Ag(4) Ag(1/3) Ag(3/1) B2g(7) B2g(3) B2g(2) B2g(1)

0 260.9 — 362.4 478.2 501.3 325.1 462.9 516.4 609.3

0.1 263.3 303.6 363.4 478.1 500.4 329.7 462.4 517.9* 606.9

0.2 268.3 307.6* 366.8 480.4 500.9 325.9 466.0* 520.1 607.2

0.3 268.0 309.5* 370.3 481.4 503.0 326.2* 470.6 520.7 610.7

0.4 274.4 307.9* 376.4 484.4 507.4 329.9 469.8 525.4 610.4

0.5 277.5 314.8 377.7 485.5 506.9 331.0* 472.4 526.3 609.7

Γ [cm−1]

RMnO3

R Ag(7/2) Ag(2/7) Ag(4) Ag(1/3) Ag(3/1) B2g(7) B2g(3) B2g(2) B2g(1)

Gd 16.5 33.0* 14.0 11.0 17.0 16.2* 20.5 16.7 22.3

Γ [cm−1]

Eu1−xYxMnO3

x Ag(7/2) Ag(2/7) Ag(4) Ag(1/3) Ag(3/1) B2g(7) B2g(3) B2g(2) B2g(1)

0.2 21.6 33.5* 18.8 22.1 13.6 14.4 26.5* 18.6 23.5

0.5 24.9 21.3 20.0 19.2 14.5 32.5* 27.4 19.3 22.3

In RefFIT the issue of fitting can be carried out in several ways. For the measurements

carried out in this thesis, the approach of employing a so–called formula–defined dielectric

function is chosen as the most convenient way. As described in detail in the manual of

RefFIT [Kuz09], this approach is based on the Drude–Lorentz (DL) model, where the

frequency dependent dielectric function ε(ω) is written as:

ε (ω) = ε∞ +
∑
i

ω2
p,i

ω2
T,i − ω2 − iΓiω

, (B.3)

where ε∞ describes the high–frequency response of the material, i.e. the contribution of

all oscillators i at frequencies far above the investigated frequency range. ωT,i, ωp,i and
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Γi are the fit parameters for each oscillator i representing the transverse (i.e. resonance)

frequency, the ion plasma frequency and the linewidth, respectively. This model describes

the optical response of harmonic oscillators equivalent to equation (2.22).

With equation (B.3) the reflectivity R can be fitted within the DL model according to

the Fresnel formula:

R =

∣∣∣∣1−√ε1 +
√
ε

∣∣∣∣2 . (B.4)

Choosing an appropriate number of oscillators (in our case the number of phonon modes

expected by group theory) gives a reflectivity fit function with fit parameters ωT,i, ωp,i
and Γi for each phonon mode i. Due to the fact that an appropriate dielectric function is

already chosen, the Kramers–Kronig–Transformation (KKR) can be carried out immedi-

ately – as it is already known.

The obtained parameters by fitting the reflectivity within the DL model are listed for all

samples in table B.2 for B1u and in table B.3 for B3u symmetry, respectively. As already

discussed in chapter 6, the polishing degree of the sample surfaces has direct influence on

the reflectivity spectra and, thus, on ωp and Γ. Therefore, ωp and Γ are only listed for

comparable samples, whose surface was polished up to optical degree.
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Table B.2: Phonon frequencies ωT , ion plasma frequencies ωp and linewidths Γ of the infrared–
active phonons with B1u symmetry assigned in the figures 6.7 and 6.12 for the RMnO3 and the
Eu1−xYxMnO3 series, respectively. Asterisks mark phonon signals that are not comparable to
the other samples because of too strong influence from phonons with forbidden symmetry (see
explanation in the text). Due to the different degree of sample surface roughness the ion plasma
frequencies and linewidths are listed only for the polished (and thus comparable) samples (i.e.
GdMnO3, Eu0.8Y0.2MnO3 and Eu0.5Y0.5MnO3).

ωT [cm−1]

RMnO3

R B1u(1) B1u(2) B1u(3) B1u(4) B1u(5) B1u(6) B1u(7) B1u(8) B1u(9)

Eu 195.5 254.3 277.4 312.8 351.3 379.3 477.2 517.7 573.1

Gd 196.2 251.8 280.7* 320.9 350.6 375.7 485.9 517.0 565.7

Tb 192.2 247.3 274.5 327.4 358.6 394.6 489.4 523.0 572.8

ωT [cm−1]

Eu1−xYxMnO3

x B1u(1) B1u(2) B1u(3) B1u(4) B1u(5) B1u(6) B1u(7) B1u(8) B1u(9)

0 195.5 254.3 277.4 312.8 351.3 379.3 477.2 517.7 573.1

0.2 196.8 251.0 282.5 319.8 356.4 374.3 476.7 518.1 563.6

0.3 203.5 249.0 265.1* 320.7 355.1 373.8 484.9 519.2 570.8

0.4 202.3 257.4 283.6 323.9 361.1 378.9 488.2 522.1 572.8

0.5 207.5 260.1 282.9 326.2 357.9 369.8 487.6 516.9 567.9

ωp [cm−1]

RMnO3

R B1u(1) B1u(2) B1u(3) B1u(4) B1u(5) B1u(6) B1u(7) B1u(8) B1u(9)

Gd 357.6 723.8 74.6* 226.3 620.7 125.5 273.5 347.5 299.4

ωp [cm−1]

Eu1−xYxMnO3

x B1u(1) B1u(2) B1u(3) B1u(4) B1u(5) B1u(6) B1u(7) B1u(8) B1u(9)

0.2 255.0 611.0 118.9 188.7 469.6 426.4 317.3 304.2 254.9

0.5 107.7 671.0 78.8 215.5 567.1 397.4 301.2 347.3 256.2

Γ [cm−1]

RMnO3

R B1u(1) B1u(2) B1u(3) B1u(4) B1u(5) B1u(6) B1u(7) B1u(8) B1u(9)

Gd 16.3 11.8 3.2* 9.9 9.3 10.3 27.7 18.9 14.5

Γ [cm−1]

Eu1−xYxMnO3

x B1u(1) B1u(2) B1u(3) B1u(4) B1u(5) B1u(6) B1u(7) B1u(8) B1u(9)

0.2 14.8 22.6 9.2 11.5 14.6 29.3 42.9 33.1 12.7

0.5 9.2 12.1 7.1 8.9 7.3 20.4 31.3 26.3 9.2
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Table B.3: Phonon frequencies ωT , ion plasma frequencies ωp and linewidths Γ of the infrared–
active phonons with B3u symmetry assigned in the figures 6.7 and 6.12 for the RMnO3 and the
Eu1−xYxMnO3 series, respectively. Asterisks mark phonon signals that are not comparable to
the other samples because of too strong influence from phonons with forbidden symmetry (see
explanation in the text). Due to the different degree of sample surface roughness the ion plasma
frequencies and linewidths are listed only for the polished (and thus comparable) samples (i.e.
GdMnO3, Eu0.8Y0.2MnO3 and Eu0.5Y0.5MnO3).

ωT [cm−1]

RMnO3

R B3u(1) B3u(2) B3u(3) B3u(4) B3u(5) B3u(6) B3u(7) B3u(8) B3u(9)

Eu 112,2 184,0 229,8 299,4 318,5 391,7 446,0 470,5 576,0

Gd 114,5 182,8 220,4* 304,0 322,5 396,6 459,1 506,3* 563,0

Tb 114,8 185,9 233,7 302,9 326,4 399,8 428,4* 489,7 576,2

ωT [cm−1]

Eu1−xYxMnO3

x B3u(1) B3u(2) B3u(3) B3u(4) B3u(5) B3u(6) B3u(7) B3u(8) B3u(9)

0 112.2 184.0 229.8 299.4 318.5 391.7 446.0 470.5 576.0

0.1 112.8 187.1 234.4 301.5 320.8 377.9* 396.1* 449.9* 563.3

0.2 115.6 191.5 233.2 305.9 323.3 399.8 459.6 477.0* 566.0

0.3 128.4* 191.1 234.6 310.1 325.0 375.3* 460.2 488.9 564.7

0.4 118.6 195.2 241.8 312.8 326.1 399.3 450.5 479.9 575.0

0.5 – 200.6 239.4 311.4* 327.5 392.3 440.7* 468.9 563.9

ωp [cm−1]

RMnO3

R B3u(1) B3u(2) B3u(3) B3u(4) B3u(5) B3u(6) B3u(7) B3u(8) B3u(9)

Gd 357.6 723.8 74.6* 226.3 620.7 125.5 273.5 347.5* 299.4

ωp [cm−1]

Eu1−xYxMnO3

x B3u(1) B3u(2) B3u(3) B3u(4) B3u(5) B3u(6) B3u(7) B3u(8) B3u(9)

0.2 62.8 309.8 510.4 110.8 212.1 488.8 612.3 36.4* 531.7

0.5 – 276.3 568.8 185.0* 178.5 601.0 21.2* 541.5 420.8

Γ [cm−1]

RMnO3

R B3u(1) B3u(2) B3u(3) B3u(4) B3u(5) B3u(6) B3u(7) B3u(8) B3u(9)

Gd 16.3 11.8 3.2* 9.9 9.3 10.3 27.7 18.9* 14.5

Γ [cm−1]

Eu1−xYxMnO3

x B3u(1) B3u(2) B3u(3) B3u(4) B3u(5) B3u(6) B3u(7) B3u(8) B3u(9)

0.2 6.5 7.9 14.0 14.4 9.7 8.0 39.0 2.4* 21.1

0.5 – 7.9 15.9 39.5* 8.3 17.1 5.2* 50.0 18.6
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Sample synthetisation

The sample synthetisation and the principles of the underlying technique, i.e. the float-

ing zone method with radiation heating, will be described in very brief form in this

Appendix. For further information about Perovskites and possible synthetisation tech-

niques, the reader is referred to literature (e.g. [JL06, BGR00] and references therein).

The two sample series investigated within this thesis are single crystalline stoichiomet-

ric or mixed manganite compounds RMnO3 (R = Eu1−xYx, Gd, Tb) crystallising in the

orthorhombic Perovskite structure (space group Pnma). The crystalline properties of

these compounds could be verified by various investigations, e.g. with X–Ray diffrac-

tion (XRD) [HSP+07], magnetic and dielectric susceptibility [HSP+07, HLKvN+04] or

Figure C.1: Schematic sketch of a floating zone mirror furnace, where the single crystal is
grown by moving polycrystalline powder rods through an optically heated zone. Taken from
[JL06].

xv
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Terahertz Spectroscopy [PMI+06, PLM+08]. Additionally, the fulfilment of the optical

selection rules derived in chapter 4 for Raman and FT–IR Spectroscopy also confirmed

the single crystallinity very clearly.

All crystals were synthesised with the same floating zone method mentioned above.

The first step is the preparation of polycrystalline samples from a solid state reaction,

where oxides acting as precursors are thoroughly mixed and heated at temperatures of

≈ 600−1000K for periods up to ten hours [BGR00]. The obtained polycrystalline samples

are then put into a mirror furnace, whose basic principle is illustrated in figure C.1. In

this furnace strong local heating is achieved via focusing the light of halogen lamps on a

small spot. Further, the oxygen content can be carefully controlled. Within this furnace,

a zone melting procedure of the polycrystalline samples is performed, thus leading to the

growth of large single crystals (> 10cm long, according to [JL06]), that can be cut into

thin plates oriented along the specific crystallographic axes.

A common problem, when synthesising RMnO3 single crystals should also be mentioned:

the so–called twinning of crystalline axes. When twinning occurs, the single crystallinity

is lifted and the short a– and c–axes within the Pnma structure are mixed on a mesoscopic

scale and cannot be distinguished anymore. This problem is especially pronounced for

RMnO3 compounds with large R3+ ionic radii, e.g. LaMnO3, due to the close similarity

of the lattice constants of a– and c–axis. However, as can be seen in the optical spectra

as well as in the literature data twinning does not occur for RMnO3 compounds with

smaller R3+ ionic radii as Eu3+, Gd3+ or Tb3+, respectively. This is attributed to the

more pronounced orthorhombic distortion and the resulting increased difference between

the lattice constants of a– and c–axis (for quantitative lattice constants of RMnO3 or

Eu1−xYxMnO3, see tables 6.2 and 6.3, respectively).
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Superexchange and

Dzyaloshinskii–Moriya interaction

In this Appendix a theoretical motivation of the anisotropic corrections to the Superex-

change – the Dzyaloshinskii–Moriya interaction – will be given. The Hamiltonian for this

interaction favouring a canted spin alignment is of the form shown in equation (3.4). A

short but instructive derivation according to [Mor60] starts from the localized electron

orbitals considered for Superexchange (in our case the eg orbitals of the Mn3+ ions). The

unperturbed situation would thus be that of Superexchange without considering spin–

orbit interaction. The unperturbed ground states of the ions i and j are denoted as ni
and nj, respectively, while the virtual excited states are mi and mj, respectively. The

energy corrections are obtained by perturbation theory in second order with respect to

the spin–orbit coupling and the exchange interaction by

Ei,j =
∑
mi

{
〈ni|λliSi |mi〉 2Ji,jSi · Sj

εni
− εmi

+
2Ji,jSi · Sj 〈mi|λliSi |ni〉

εni
− εmi

}
+ . . . ,

(D.1)

where Ji,j is the coupling constant for the Superexchange between ion i and j, λ the

spin–orbit coupling constant, and li the angular momentum of ion i. The dots on the

right side indicate that a term similar to the first one on the right side has to be added

corresponding to a summation over mj. In the case of a non–degeneracy of the orbital

states, the matrix elements of l are purely imaginary and (D.1) can be rewritten as

Ei,j = 2λ
∑
mi

Ji,j
εni
− εmi

〈ni| li |mi〉 [Si, (Si · Sj)] + . . . , (D.2)

where the square brackets denote the anti–commutator of Si and Si ·Sj. With the relation

[Si, (Si · Sj)] = iSi × Sj this leads to

Ei,j = 2iλ

(∑
mi

Ji,j 〈ni| li |mi〉
εni
− εmi

+ · · ·

)
(Si × Sj) . (D.3)
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This equation includes the vector product of the spins S1 and S2. The other terms

on the right side can be combined to the Dzyaloshinskii–vector D specified in equation

(3.4). Thus, we have formally deduced, how an inclusion of spin–orbit interaction in

the Superexchange mechanism can lead to an energy term which favours non–collinear

alignment of the magnetic moments. This effect leads to a canted antiferromagnetic

arrangement where the resulting weak ferromagnetism can be experimentally verified e.g.

by measurements of the macroscopic magnetic moment [HLKvN+04].
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DFT–Calculations of the LaMnO3

lattice dynamics

For the derivation of the displacement patterns associated with the corresponding phonon

modes ab–initio calculations based on Density Functional Theory (DFT) in the Local Den-

sity Approximation (LDA) were employed. For the calculation of the linear response, Den-

sity Functional Perturbation Theory (DFPT) was used, thus yielding phonon frequencies

and mode patterns calculated from first principles. The numerical calculations were car-

ried out employing the open–source code ABINIT [GRV+05, GAA+09]. In the following,

the underlying theoretical background will be motivated very briefly for understanding the

advantages and the limits of the DFT–approach. The hence derived results are presented

graphically as mode displacement patterns in section 4.3. It should be stressed, that the

main purpose of these calculations was not to obtain quantitative phonon frequencies that

could be compared to experiment, but displacement patterns from first principle calcu-

lations. Obtaining such mode patterns ab–initio is very important, as all results for the

phonon mode patterns of Pnma Perovskite systems published in literature are based on

the empirical shell model [Smi99, KBC+09].

This Appendix is organised as follows: First, the basic principle of DFT and DFPT will be

explained in compact form. Second, the ABINIT code employed for the DFT calculations

will be described and, third, the technical details, i.e. the input files, of the calculations

will be given. Especially for the first section, we will rely mostly on [BdGDCG01] and

[Wag03].

DFT and DFPT – Basics

DFT is a quantum–mechanical modelling method commonly used in solid state physics

to investigate the electronic structure of many–body systems. With the help of DFT,

the properties of a many–electron system can be theoretically studied by calculating the

spatially dependent electron density within a functional approach. It is based on the two

theorems of Hohenberg and Kohn from 1964 [HK64], where it was shown, that the ground

state wave functions of a complex self–interacting many–body system, such as a crystalline

xix
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solid, can be bijectively described by its electronic ground state density. Precisely, the

first Hohenberg–Kohn theorem states, that every ground state wave function Ψ of a

system with N electrons (and, thus, 3N coordinates) can be bijectively mapped onto a

functional of the electron density n (with only 3 coordinates). Thus, every ground state

wave function |ψ0〉 can be written as a functional of the ground state electron density n0:

|ψ0〉 = |ψ0 [n0]〉 . (E.1)

Every quantum–mechanical expectation value of the electronic ground state can now be

expressed via this functional approach. An example is the single–particle potential v0(r),

which can be derived from the external potential V̂ and written as a functional of the

corresponding ground state electron density n0:

v0 [n0] = 〈ψ0 [n0]| V̂ |ψ0 [n0]〉 =

∫
v0(r)n0(r)d3r. (E.2)

Thus, taking into account the other energy terms in the time–dependent Schrödinger

equation, for a single–particle potential the energy functional Ev0 [n0] can be written as:

Ev0 [n0] = 〈ψ0 [n0]| T̂ + Ŵ |ψ0 [n0]〉+

∫
v0(r)n0(r)d3r, (E.3)

with T̂ and Ŵ being the kinetic energy and the electron–electron Coulomb interaction,

respectively. This expression describes the energy via its ground state electron density

n0. The second Hohenberg–Kohn theorem now states, that minimising the energy with

a variational approach, gives the ground state density n0 and with it all other ground

state expectation values. These can be expressed similar to the expression of the external

potential V̂ in equation (E.2).

The Hohenberg–Kohn theorems, however, do not give any possibility to obtain results

from real systems, e.g. the electronic ground state of crystalline solids. This is done by

the Kohn–Sham formalism [KS65], which will be introduced in the following:

The basic idea of this formalism is to describe a many–particle system by a set of single–

particle Schrödinger equations within an effective potential veffs :

(
− ~2

2m
∇2 + veffs (r)

)
ϕj(r) = εjϕj(r), (E.4)

where ϕj(r) are the single–particle wave functions solving these Schrödinger equations.

The electronic ground state density is then obtained by:

n0(r) =
N∑
i=1

|ϕi(r)|2 , (E.5)

with the sum running over the first N Eigenenergies εj. A variational approach of min-

imising the energy functional E[n0] with respect to n0(r) as outlined above for the second
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Hohenberg–Kohn theorem gives the effective potential:

veffs (r) = v0(r) + e2
∫
d3r′

1

4πε0

n0(r
′)

|r − r′|
+
δEXC [n0]

δn0(r′)
, (E.6)

where v(r) is the external potential, 1
4πε0

n0(r′)
|r−r′| the Coulomb interaction between electrons

and EXC [n0] is the Exchange–Correlation potential. The latter is introduced to describe

all quantum–mechanical effects due to exchange or correlation effects of the many–body

system. It is the only unknown variable within this formalism and has to be approxi-

mated.

veffs depends on n0(r) (see equation (E.6)) and n0(r), in turn, is determined by veffs via

the solution of the Schrödinger equations (E.4). Thus, the solutions need to be computed

iteratively to find self consistent n0(r) and veffs .

The Kohn–Sham formalism gives a good calculational starting point, if a reasonable ap-

proximation for the Exchange–Correlation potential EXC [n0] can be found. In our case,

the Local Density Approximation (LDA) is employed. The basic idea of the LDA is to ap-

proximate the charge density of an inhomogeneous system with that of a uniform electron

gas with the same charge density. Thus, the Exchange–Correlation potential EXC [n0] can

be rewritten as a functional depending solely on the electron density:

EXC [n0] =

∫
dr n0(r)εXC(n0)|n0=n0(r), (E.7)

with εXC being the Exchange–Correlation potential of the homogeneous electron gas.

Various approximate forms – some even in analytical form – of εXC are known (see e.g.

[PZ81]). Thus, with the LDA, the Kohn–Sham Formalism can be employed to calculate

ground state electronic properties of solid state systems. For the most common systems

studied in solid state physics DFT calculations employing the LDA approximation lead

to a remarkably good agreement between ab–initio calculations and experiment [JG89].

Major drawbacks of the LDA are a large overestimate (≈ 20%) of the crystal binding

energies, the systematic underestimation of the optical gap in insulators and the inability

to describe strongly correlated systems such as transition–metal oxides. However, due to

its relatively moderate need of computational resources and the still qualitatively correct

results, it can nevertheless be applied for calculations of ground state properties even of

correlated systems.

The previous treatment explains the procedure to obtain ground state properties of a

many–body system within the frame of DFT. The next step would be the consideration

of a linear response of such systems to a perturbation, which can be expressed as a

derivative of the total energy. In our case, we will deal with the perturbation of atomic

displacements causing lattice vibrations. According to [Gon08], the total energy of a

periodic crystal with small deviations of atomic positions from its equilibrium can be

written as:

Etot (∆R) = E
(0)
tot +

∑
akα

∑
a′k′α′

1

2

(
∂2Etot

∂Ra
kα∂R

a′
k′α′

)
∆Ra

kα∆R
a′

k′α′ , (E.8)
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where ∆Ra
kα is the displacement of the atom k in the unit cell α from its equilibrium

position along direction a. The matrix of the interatomic force constants is now defined

as:

Ckα,k′α′ (a, a′) =
∂2Etot

∂Ra
kα∂R

a′
k′α′

. (E.9)

The Fourier transform of this matrix is called the dynamical matrix and incorporates the

phonon frequencies and the mode displacement patters as a solution of an Eigenvalue

problem. Thus, one has to compute the dynamical matrix for obtaining quantitative

results about the lattice dynamics. This procedure is referred as Density Functional

Perturbation Theory (DFPT) and relies on the connection of the linear response of the

electron density of a system to the above introduced matrix of the interatomic force

constants.

The crucial point of DFPT is therefore to obtain the derivatives of the total energy with

respect to atomic displacements. Without going into details, one can state, that by the

use of the Hellmann–Feynman theorem these derivatives can be calculated. This theorem

states, that the first derivative of the Eigenvalues ∂Eλ/∂λ of a Hamiltonian Hλ depending

on the parameter λ is given by the expectation value of the derivative of Hλ:

∂Eλ
∂λ

= 〈ψλ|
∂Hλ

∂λ
|ψλ〉 , (E.10)

where ψλ is the unperturbed wave function corresponding to Hλψλ = Eλψλ. For the

calculation of phonon energies, the first and second derivatives of Hλ with respect to

atomic displacements as parameter λ need to be computed as well as the first derivative

of the wave function. Having obtained these, the dynamical matrix can be calculated by

a Fourier transformation of the matrix of the interatomic force constants.

It should further be mentioned, that due to the polar nature of the studied crystal also the

linear response to a homogeneous electric field needs to be computed and incorporated

in the phonon dynamical matrix. This can be also carried out in the frame of DFPT by

calculating the first derivative with respect to such an electric field.

Having covered the general procedure of obtaining phonon frequencies and the corre-

sponding displacement patterns from first principles, in the next section the employed

ABINIT code will be introduced.

The ABINIT code

ABINIT is an open–source software package for the ab–initio study of material properties

[GRV+05]. The free availability of ABINIT under the GNU General Public License [GNU]

led to a large developer and user group compared to other scientific or commercial soft-

ware packages. Thus, the capability of ABINIT is very rich and covers a wide spectrum

of computationally available material properties. The most interesting in our case are (i)

the computation of ground state equilibrium cell parameters and atomic positions and
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(ii) the vibrational properties, i.e. phonon frequencies and mode patterns.

The underlying theoretical framework of ABINIT are the previously discussed DFT and

DFPT approaches. The implementation is based on a plane wave expansion of the elec-

tronic wave functions with periodic boundary conditions, which is therefore ideal for

studies of crystalline solids. To reach acceptable computational resource consumption,

pseudopotentials for the atoms incorporated in the unit cell to be studied allow avoiding

an explicit treatment of the fast oscillating wave functions of the core electrons. ABINIT

is able to incorporate a large number of different pseudopotential schemes for the whole

periodic table.

The most important ground state aspect for the DFT calculations within this thesis is

the atomic geometry. For a given geometry, the software is able to calculate analytically

the forces on the atoms within the unit cell. Minimising these forces allows therefore the

optimisation of atomic positions and unit cell parameters. The typical accuracy of such

geometry parameters compared to experiment is a few percent. Further, the symmetries

of the corresponding crystal can be used to reduce the computational effort, e.g. when

calculating the forces on the atoms within the unit cell. The symmetries are incorporated

as a database including all 230 space and all 1191 magnetic groups.

It should also be mentioned, that the electronic properties are subject to the well known

shortcomings of DFT. Thus, a prediction of the band structure especially of materials

with strong electronic correlations is questionable within the LDA frame and will not be

pursued in this thesis.

Concerning the properties of the excited states, the DFPT outlined before enables ABINIT

to compute the linear response to three types of perturbations: electric fields, internal

atomic displacements and strain. In the case of phonons in a partially polar material,

as the RMnO3 system with Pnma structure, the first and the second perturbation are

needed. Thus, as outlined before, the derivatives of the electronic density with respect

to these two perturbations are computed within the DFPT frame and listed in a density

derivative database (DDB). This DDB can be post processed to obtain the phonon fre-

quencies, the displacement patterns and symmetries of the corresponding phonon modes.

An additional feature of ABINIT is its implementation of parallel computing via the Mes-

sage Passing Interface (MPI), which enables a significant speed up of the computational

procedure by dividing the calculation task over several processors. This aspect is very

important, as the orthorhombic Perovskite systems with Pnma structure have 20 atoms

within a single unit cell. Without parallel computing, this would cause inacceptable long

calculation times. Nevertheless, such parallel computing requires the usage of a compu-

tational cluster with a significant number of cpus. Thus, for the calculations presented

within this thesis, the parallel version of ABINIT was used on the supercomputer HLRB–

II of the Leibniz-Rechenzentrum in Garching (project h0142, see [Iss]).

Having covered the general introduction of the ABINIT software package and its capabil-

ities, the technical details of the calculation of the lattice dynamics will be presented.
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Input files for the calculation of the LaMnO3 lattice

dynamics

As already discussed in section 4.3, the system LaMnO3 was chosen for the computation

of phonon mode patterns in a Pnma system due to its empty 4f–orbitals. This minimises

the impact of electronic correlations on the stability of the lattice parameters, which are

crucial for the computation of reliable phonon frequencies and mode patterns. Trial cal-

culations with those RMnO3 systems studied experimentally within this thesis did not

lead to stable results for the crystalline geometry and, thus, were not further considered.

The technical details will be presented in the order, they were needed to obtain first the

ground state and then the linear response of the LaMnO3 system. Thus, the first ABINIT

input file covers the computation of the ground state properties. The main purpose of this

file is the computation of the ground state electronic density and the resulting lattice con-

stants and atomic positions within the unit cell. To gain information about the reliability

of the ground state properties, the following procedure is suited most appropriate: (i) The

interatomic forces are minimised within the unit cell by relaxing the lattice parameters

and the relative atomic positions and (ii) then the hence calculated lattice parameters are

compared with the experimental ones. In the following, this input file and the resulting

output of ABINIT will be presented. Explaining comments have a leading asterisk.

———————————————

* LaMnO3: cell optimization to minimise static interatomic forces in the ground state

ecut 70

*cut–off energy for the plane waves in Hartree (= 2 · 13.6 eV)

ngkpt 4 4 4

kptopt 1

nshiftk 1

shiftk 0.5 0.5 0.5

*k–point grid used for the Fourier Transformation of the plane waves

acell 1.0394627523E+01 1.4691486786E+01 1.0440736841E+01 Bohr

*lattice constants in Bohr

rprim

1 0 0

0 1 0

0 0 1

*vectors spanning the primitive cell

spgroup 62

spgaxor 1
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spgorig 1

brvltt 1

*definition of the space group 62 = Pnma

natrd 4

ntypat 3

znucl 57 25 8

natom 20

typat 1 2 3 3

xred

0.5246 0.2500 0.0093

0.0000 0.0000 0.0000

-0.0057 0.2500 -0.0621

0.2787 0.0349 0.2292

*type, number and reduced coordinates of atoms on non–equivalent Wyckoff–sites within

the unit cell

nband 70

*number of bands to be computed

toldff 1.0d-5

nstep 50

*stop criteria for the self–consistent calculation loop

diemac 1

*start value of the dielectric constant

*optimization of lattice parameters:

optcell 1

ionmov 3

ntime 20

dilatmx 1.20

ecutsm 0.5

tolmxf 1.0d-3

nline 12

nnsclo 3

*parameters for the optimisation of the unit cell to minimise the interatomic forces

ixc 1

* chosen parameterisation for the Exchange–Correlation Potential, here: LDA HGH

parameterisation

———————————————

For details about specific meanings of input parameters, the reader is referred to the
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documentation on the ABINIT website [ABI]. It should also be mentioned, that the

employed pseudopotentials are declared in a separate file (not shown here). These were

pseudopotentials of Troullier–Martins type [TM91] and can be downloaded from [ABI].

The obtained optimised lattice parameters are part of a very long output file. Due to

brevity, only the optimised lattice constants are listed in the following:

———————————————

——–outvars: echo values of variables after computation ——–

acell 1.1282524240E+01 1.5946416110E+01 1.1332572161E+01 Bohr

———————————————

These lattice constants can be compared to the experimental ones (which are actually iden-

tical to the input lattice constants) and show a difference of ≈ +7.5%. This is a rather bad

agreement and, therefore, the phonon frequencies obtained via the DFPT calculation in

the following should not be taken as benchmark values for theoretically obtained phonon

frequencies. Employing different types of pseudopotentials (e.g. pseudopotentials accord-

ing to [HGH98]) improved this agreement, but caused even more serious problems in the

DFPT part of the calculations, precisely in the symmetry properties of the displacement

patterns of the phonon modes. As we are mainly interested in the mode patterns, the

shortcomings of the Troullier–Martins type pseudopotentials can be tolerated in our case.

The next step is the computation of the density derivative database (DDB) with these

optimised lattice parameters. The corresponding input file is shown in the following:

———————————————

* Crystalline LaMnO3: computation of the response to homogeneous electric field and

atomic displacements, at the Gamma point q=0

ndtset 3

*3 step calculation

* Ground state calculation

kptopt1 1

* Automatic generation of k points, taking into account the symmetry

tolvrs1 1.0d-8

* SCF stopping criterion

iscf1 7

* Self-consistent calculation, using algorithm 7

nstep1 100

* Response Function calculation: d/dk

rfelfd2 2

* Activate the calculation of the d/dk perturbation

rfdir2 1 1 1

* Need to consider the perturbation in all directions (orthorhombic crystal)

nqpt2 1
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qpt2 0.0 0.0 0.0

* This is a calculation at the Gamma point

getwfk2 -1

* Uses as input the output wave functions of the previous dataset

kptopt2 2

* Automatic generation of k points, using only the time–reversal symmetry to decrease

the size of the k point set.

iscf2 -3

* The d/dk perturbation must be treated in a non-self-consistent way

tolwfr2 1.0d-3

* Must use tolwfr for non-self-consistent calculations. Here, the value of tolwfr is very

low.

nstep2 100

* Response Function calculation: phonons

rfphon3 1

* Activate the calculation of the atomic displacement perturbations

rfatpol3 1 20

* All the atoms will be displaced

rfdir3 1 1 1

Need to calculate perturbations in all directions (orthorhombic lattice)

nqpt3 1

qpt3 0.0 0.0 0.0

* This is a calculation at the Gamma point

getwfk3 -2

* Uses as input wfs the output wfs of the dataset 1

getddk3 -1

* Uses as input ddk wfs the output of the dataset 2

kptopt3 2

* Automatic generation of k points, using only the time-reversal symmetry to decrease the

size of the k point set.

tolvrs3 1.0d-2

iscf3 7

nstep3 75

*Common input variables same as in the case of cell optimization
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———————————————

These calculations led to the computation of the DDB incorporating the first derivative

with respect to an electric field and the first and second derivative with respect to atomic

displacements within the unit cell. This database needs to be analysed to obtain the

phonon frequencies and the Eigendisplacements. This is done subsequently with the cor-

responding ABINIT subroutine, which is called anaddb. The input file reads as:

———————————————

*Input file for the anaddb code. Analysis of the LaMnO3 DDB (pseudopotential: Troullier–

Martins type)

*Wavevector grid number 1 (coarse grid, from DDB)

ngqpt 4 4 4

nqshft 1

* number of q-points in repeated basic q-cell

q1shft 3*0.5

*Wave vector at gamma point:

nph1l 1

qph1l 0.000 0.000 0.000 1.0

*Output of phonon eigenvectors and Eigen displacements:

eivec 1

* This line added when defaults were changed (v5.3) to keep the previous, old behaviour

symdynmat 0

———————————————

With these input files the mode patterns of section 4.3 can be easily reproduced.
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