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Summary/ Zusammenfassung 

 
English: Type 1 diabetes affects around 0.5% of the population in developed countries 

and the incidence rates have been rising over the years. The destruction of beta cells is 

irreversible and the current therapy available to patients only manages the symptoms and 

does not prevent the associated pathological manifestations. The patients need lifelong 

therapy and intensive research is being carried out to identify ways to eliminate 

autoimmune responses directed against pancreatic beta cells and to replace or regenerate 

beta cells. The work presented herein aimed at analyzing the role of the Th17 T cell 

subset, characterized by secretion of the pro- inflammatory cytokine IL-17A, in 

autoimmune diabetes and also at generating a beta cell reporter mouse line in the NOD 

background, the most widely- used mouse model for type 1 diabetes. We generated IL-

17A knockdown (KD) NOD mice, using RNAi in combination with lentiviral 

transgenesis. We analyzed diabetes frequency in IL-17A deficient mice and found that 

the loss of IL-17A did not protect the transgenic mice from diabetes. Based on these 

observations, we believe that Th17 cells do not play a critical role in type 1 diabetes 

through the IL-17A pathway, though they might still be involved in the disease process 

through alternate pathways.  We also generated NOD and NOD-SCID mice with a 

transgene that drives the beta cell specific expression of a luciferase reporter gene. We 

used a lentiviral construct, which combined a luciferase sequence and a short- hairpin 

RNA (shRNA) expression cassette, allowing gene- knockdown under the beta cell 

specific rat insulin promoter (RIP). These mice will be of use in studying beta cell 

phenotypes resulting from the knockdown of target genes, using non- invasive 

bioimaging. We believe that the generation of these reporter mouse lines for diabetes 

studies will prove valuable in future investigations. Furthermore, the demonstration that 

the loss of IL-17A does not alter susceptibility to type 1 diabetes should help clarify the 

controversial involvement of Th17 cells in this disease.  

 
Deutsch: In Industrieländern erkranken etwa 0,5 % der Bevölkerung an Typ-1-Diabetes 

und die Krankheitsrate ist in den letzten Jahren angestiegen. Die dabei stattfindende 
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Zerstörung der insulinproduzierenden Beta-Zellen ist irreversibel und die derzeitig 

verfügbaren Therapien behandeln lediglich Symptome, verhindern die pathologischen 

Auswirkungen aber nicht. Patienten benötigen daher eine lebenslange Therapie und es 

wird intensiv daran gearbeitet, Wege zu identifizieren, die die autoimmune Antwort 

gegen pankreatische Beta-Zellen unterbinden, oder aber Beta-Zellen ersetzen, 

beziehungsweise regenerieren lassen.  

 

Die vorliegende Arbeit hat zum Ziel, die Rolle der Th17 T-Zellen, welche durch die 

Sekretion des proinflammatorischen Zytokins IL-17A gekennzeichnet sind, in Typ-1-

Diabetes zu analysieren. Zusätzlich wurden Reportermauslinien im NOD Hintergrund, 

dem am weitesten verbreiteten Mausmodell für Typ-1-Diabetes, generiert.  

 

Durch RNAi, in Kombination mit lentiviraler transgener Technologie, wurden IL-17A 

Knockdown (KD) NOD Mäuse generiert. Die Diabeteshäufigkeit in IL-17A defizienten 

Mäusen wurde mit dem Ergebnis untersucht, dass der Verlust von IL-17A die transgenen 

Mäuse nicht vor Diabetes schützt. Von dieser Beobachtung ausgehend wurde gefolgert, 

dass Th17 Zellen zumindest über den IL-17A Signalweg keine entscheidende Rolle bei 

Typ-1-Diabetes spielen, diese allerdings durch alternative Signalwege durchaus im 

Krankheitsprozess beteiligt sein könnten. 

 

Außerdem wurden NOD und NOD-SCID Mäuse mit einem Transgen, das die Beta-Zell 

spezifische Expression eines Luciferasereporters steuert, generiert. Hierbei wurde ein 

lentivirales Konstrukt genutzt, welches sowohl die Luciferase, als auch eine short-hairpin 

RNA (shRNA) Expressionssequenz beinhaltet, um einen Genknockdown unter Kontrolle 

des spezifischen Insulinpromotors der Ratte (RIP) zu erlauben.  Diese Mäuse werden bei 

zukünftigen nicht-invasiven bildgebenden Untersuchungen des Beta-Zell Phänotyps, der 

aus dem Knockdown von Zielgenen resultiert, von großem Nutzen sein. In zukünftigen 

Untersuchungen wird sich die Generierung dieser Reportermauslininien für 

Diabetesstudien sicherlich als wertvoll erweisen. Des Weiteren sollte die Erkenntnis, dass 

der Verlust von IL-17A die Anfälligkeit für Typ-1-Diabetes nicht verändert, zu einem 

besseren Verständnis der kontrovers diskutierten Beteiligung der Th17 Zellen führen. 
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1.1 Immune system 

 

The immune system is a complicated system of structures, which protects an organism 

against diseases. It does this by means of identifying and eliminating pathogens. To 

function properly, the immune system needs to correctly distinguish between harmful 

pathogens and the organism’s own cells and tissues. In higher organisms, the immune 

system is highly evolved and includes a complex and dynamic system made up of 

countless different proteins, enzymes, cells and tissues that interact with each other1, 2.  

 

The pathogens when trying to invade the body first encounter the mechanical, chemical 

and biological barriers. These prevent the pathogens from entering an organism or in 

some cases, eject them from the body upon entry. The uninterrupted skin usually acts as a 

mechanical barrier preventing the entry of pathogens into the organism. Coughing and 

sneezing ejects pathogens from the body while the mucus in the respiratory system traps 

microbes. Examples of chemical barriers include the β-defensins secreted by skin and the 

respiratory system and the lysozymes and phospholipase A2 in the tears and saliva. These 

have antimicrobial properties. Gastric enzymes that protect against ingested pathogens 

are another example of chemical barriers. The commensal flora in the gut competes with 

harmful bacteria for food and space. They modify the gut environment and eliminate the 

pathogenic bacteria thus acting as a biological barrier3.  

 

The immune system is broadly divided into two separate but complementary parts: the 

innate immune system and the adaptive immune system3. Innate immune responses are 

non-specific while adaptive immunity is characterized by antigen specificity. Innate 

immune system is usually the most dominant defense system and the innate immune 

responses are not specific to distinct antigens3. The innate immune cells identify 

pathogens using the pattern recognition receptors (PRRs) that identify pathogen 

associated membrane patterns (PAMPs), which are associated with a broad range of 

microbes. This is turn lead to broad range specificity4, 5. The innate immune cells include 

mast cells, phagocytes, macrophages, dendritic cells, natural killer cells, neutrophils, 
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eosinophils, basophils and γδ T cells4. The pattern recognition receptors are broadly 

classified into secreted, transmembrane and cytosolic. The transmembrane PPRs include 

toll like receptors (TLR), which are able to activate several classes of adaptive immune 

responses including antibody, B and T cell responses5.  

 

The pathogens are eliminated by a variety of mechanisms including phagocytosis, 

respiratory burst and release of toxic molecules. The complement system includes a 

cascade of several plasma proteins and plays an important role in enhancing the removal 

of microbes. The complement system enhances the recruitment of inflammatory cells, 

causes the opsonization of pathogens and eliminates the neutralized antigen antibody 

complexes from the body. It also destroys the pathogen-infected cells by disrupting the 

cell membranes and causing subsequent cell death3, 6. Many pathogenic organisms have 

evolved methods to evade elimination by the innate immune system. These evasion 

mechanisms include intracellular replication, mimicking host cells, receptor 

modifications to avoid phagocytosis and even direct killing of phagocytes. 

 

Innate immune responses are able to fight and clear a large number of infections. In cases 

where innate immunity is insufficient to do so, adaptive immune responses are elicited. 

The innate immune system plays an important role in activating the adaptive immune 

responses through antigen presentation. The adaptive immune responses are pathogen 

specific3, 4. The adaptive immune system is composed of highly specialized cells, which 

can recognize and remember specific pathogens4. The lymphocytes could either be naïve 

cells that have never encountered their antigen; effector cells that have encountered their 

cognate antigen and are involved in an active response or memory cells that retain the 

memory of already encountered antigens for future reference. The memory enables the 

adaptive immune system to mount increasingly efficient responses against previously 

encountered pathogens upon re-encounter3, 4. 

 

The adaptive responses are activated by the innate immune system and the major players 

are the   B and T lymphocytes.  The adaptive immune cells exhibit a wide range of 

specificities. This adaptability arises from the process of somatic recombination that 
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happens during the development of B and T cells in the central lymphoid organs. This 

recombination generates cells with unique antigen receptor specificity leading to a large 

number of cells capable of recognizing a large number of different antigens4. B cells play 

a major role in humoral immune responses owing to the production of antibodies. These 

are proteins that can bind to specific antigens and result in their elimination. T cells on 

the other hand are crucial for cell-mediated immune responses and they are able to cause 

direct cell death7.  

 

1.2 Autoimmune diseases: 

 

Disorders of the immune system can lead to autoimmunity or immunodeficiency. 

Autoimmune diseases are caused by a breakdown of immunologic tolerance that ends up 

with the immune system attacking the body’s own cells. Immune tolerance is the ability 

of the immune system to tolerate or ignore the body’s own cells and non-pathogenic 

organisms and to react only to non- self. It is reported that approximately 3% of the 

populations in developed countries suffer from autoimmune diseases8. Immunologic 

tolerance has two different yet complementary arms, central tolerance and peripheral 

tolerance. 

 

Central tolerance occurs in the thymus where the maturing lymphocytes are exposed to 

self-antigens in these organs either endogenously expressed or made available from 

peripheral sites9. The process includes two stages of lymphocyte selection. Positive 

selection leads to the selection of lymphocytes, which can recognize self-MHC molecules 

and these selected lymphocytes are further whittled down by the process of negative 

selection. During negative selection, the lymphocytes that react with high affinity to the 

self-antigens are deleted before they can mature and leave these organs so as to prevent 

auto immunity9- 11. Peripheral tolerance occurs after the T cells mature and reach the 

periphery. Many tissue specific antigens are not expressed in the thymus and hence some 

of the mature T cells exiting from the thymus could potentially be reactive to these tissue 

specific antigens in the periphery and lead to autoimmunity. Peripheral tolerance 

mechanisms are in place to prevent this possibility. The autoreactive T cells are usually 
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deleted or subjected to a state of unresponsiveness called anergy. Regulatory T cells also 

contribute to peripheral tolerance by suppressing autoreactive T cells9, 12.  

 

A defect in either central or peripheral tolerance mechanisms could lead to the survival of 

autoreactive T cell clones, which could potentially react to self-antigens thus leading to 

autoimmunity. Central tolerance weeds out the autoreactive T cells and prevent their 

entry into periphery. Autoreactive specificities that manage to escape this first line of 

elimination are actively controlled by the peripheral tolerance mechanisms. It is known 

that despite these tolerance mechanisms, autoreactive T cells still persist in the peripheral 

T cell repertoire indicating that the tolerance mechanisms are not absolute. Inefficient 

tolerance in the thymus by means of altered selection of T cell repertoire or impaired 

negative selection could contribute to autoimmunity as this might lead to the presence of 

additional autoreactive specificities in the periphery12.  

 

Once the T cells are in the periphery, several possibilities could contribute to 

autoimmunity. T cells require homeostatic signals for survival in the periphery. Increased 

survival of T cells and increased TCR signaling could lead to preferential stimulation of 

self-reactive T cells. Defects in the removal of self-reactive clones could lead to an 

accumulation of autoreactive cells causing autoimmunity13. There is also some data 

indicating that presentation of self- antigens by activated mature APCs could lead to 

activation of autoreactive T cells and not the induction of tolerance. As mentioned earlier, 

autoreactive specificities are found to be present in the peripheral T cells repertoire. Some 

pathogens have antigens similar to self- antigens and the pathogen activated T cells could 

cross react with self-antigens and cause autoimmunity. Regulatory T cells play a crucial 

role in peripheral tolerance. Any defect in this cell population also contributes to 

autoimmunity12.  

 

The breakage of immune tolerance leads to the immune system mounting a severe 

response against self-antigens and leading to autoimmune diseases. Some people are 

more susceptible to developing autoimmunity. This increased susceptibility is found to 

depend on several genetic and environmental factors. Genetic susceptibility to 

22



 

 

autoimmune diseases is associated with multiple genes7, 14. The three main gene sets 

associated with disease are immunoglobulins, T cell receptors and the major 

histocompatibility complexes15-19. Gender is also thought to be important as more than 

75% of people who suffer from autoimmunity are women8, 20. Pregnancy, hormonal 

changes and imbalanced X chromosome inactivation are some of the factors suggested to 

be responsible for the increased susceptibility of women to autoimmunity21, 22. Higher 

estrogen and lower testosterone levels in females are also believed to contribute to this 

increased incidence23.  

 

Several environmental factors are also found to be associated with autoimmunity. There 

is a lot of evidence suggesting a role for bacterial, viral and parasitic infections in 

autoimmunity. These include the observation of autoimmunity following infections and 

the detection of high titers of antibodies against infectious agents in patients with 

autoimmune diseases7, 24. A number of explanations have been put forward to explain 

how infections might trigger autoimmunity. A possible mechanism is molecular mimicry 

where the infectious agent displays structural similarity to some of the host proteins and 

the antibodies generated end up attacking the host proteins owing to their similarity to the 

pathogen25. It is also possible that the infectious agent could act as a superantigen thereby 

activating a large number of T cells in the absence o f appropriate costimultion26.  The 

infectious agent may also be able to cause polyclonal activation where it acts as an 

adjuvant and exacerbates pre existing autoimmune reactions27. All these could lead to 

breakage of tolerance and result in autoimmunity. Both Klebsiella pneumoniae and 

coxsackievirus B have been found to be associated with Type 1 diabetes28.  

 

Autoimmune diseases are broadly classified into systemic disorders and localized 

disorders. Systemic disorders are the autoimmune disorders in which the immune 

responses are not directed towards tissue specific antigens and examples include systemic 

lupus erythematosus and rheumatoid arthritis. In localized disorders, immune responses 

are directed towards antigens that are tissue or organ specific and examples include type 

1 diabetes, vitiligo and celiac disease1. Autoimmune diseases are usually diagnosed and 

monitored using autoantibody tests, symptoms and measurement of inflammation and 
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organ function. There is currently no cure for these diseases and the treatment usually 

varies from patient to patient. It is usually aimed at relieving the symptoms, minimizing 

the tissue damage and preserving the organ function.  

 

1.3 Type 1 Diabetes:  

 

Type 1 diabetes mellitus (T1D) is an autoimmune disorder, which involves the 

irreversible and selective destruction of the insulin producing β cells of the pancreas29. 

This causes the reduction and eventual loss of insulin production leading to increased 

glucagon secretion by the α- cells. Insulin insufficiency and excessive glucagon secretion 

finally result in hyperglycemia and ketoacidosis30. The disease accounts for about 10% of 

all diabetes cases while Type 2 Diabetes accounts for the remaining 90%. Type 1 

Diabetes incidence varies geographically and it affects 0.5% of the total population in 

developed countries230. Gillespie31 in her review observed that one study of incidence 

rates mentioned a yearly incidence increase of 3%32 while another reported that the 

diabetes incidence was expected to increase by 40% in 2010 as compared to 199833. 

Patterson et al.34 in 2009 reported that the prevalence of cases in individuals younger than 

15 years is expected to rise by 70%, suggesting a shift towards an earlier age 24. 

 

As in the case of other autoimmune diseases, both T- cells and B-cells are believed to be 

responsible for the disease. Though both CD4+ and CD8+ T-cells are found to be 

required for development of T1D35, the initial role is found to be played by CD8+ T cells 
35-37. Several mechanisms have been reported for the process of β- cell destruction by T-

cells. These include direct killing by cytotoxicity, release of factors like proinflammatory 

cytokines (which can result in the production of inducible Nitric oxide synthase, iNOS) 

or by signaling through the programmed cell death (PCD) pathway38-40. CD4 cells mostly 

provide help to CD8+ T cells and B cells by providing cytokines like IL-21 thereby 

enhancing the autoimmune response24. The exact role played by B-cells and their 

autoantibodies is still not clear though most of the autoantigens in diabetes were 

identified from the presence of autoantibodies41-43. It is likely that B cells are active 

participants in the disease process owing to their ability to present antigen to diabetogenic 
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CD4 and CD8 T cells24. Several proinflammatory cytokines including MIF, IFN-γ, IL-1, 

IL-17, TNF-α and IL-21 have been implicated in the development of T1D and these 

cytokines are believed to play a role by the recruitment of effector cells to the pancreas 

and also by enabling the release of reactive oxygen and nitrogen species44-46. 

 

Autoimmune diseases are caused by improper immune responses against self-antigens. In 

case of type 1 diabetes, several autoantigens have been identified so far. The 4 principal 

autoantigens are believed to be glutamic acid decarboxylase (GAD65)47, insulinoma- 

associated antigen- 2(IA-2)48, insulin49 and zinc transporter 8 (ZnT8)50. 90% of the 

people diagnosed with type 1 diabetes have autoantibodies to at least one of these 

antigens31. It has been found that as the disease progresses, the number of islet antigens 

recognized by T-cells and autoantibodies increases and this phenomenon is termed as 

epitope spreading. Recently, Krishnamurthy et al.51 reported that eliminating the immune 

response to insulin in NOD mice can protect from the development of the disease but the 

same effect could not be observed on elimination of the immune response to islet- 

specific glucose-6- phosphatase catalytic subunit related protein (IGRP) indicating that 

there is a hierarchy of antigens and that insulin might be the primary autoantigen and that 

IGRP might be secondary thereby supporting the idea of epitope spreading. 

 

Both genetic and environmental factors are believed to contribute to the development of 

type 1 diabetes. The role played by genetic factors is well supported by experimental 

studies but the environmental role is still not well elucidated. Some studies suggest a role 

for viruses including enteroviruses52, rotavirus53 and rubella54. There is a clear link 

between the bacterial composition of the intestine and type 1 diabetes24. Mycobacterium 

avium subspecies paratuberculosis (MAP) has also been shown to be a risk factor in 

diabetes. Other reported environmental triggers include cow’s milk, wheat proteins and 

vitamin D24. Several genes have been identified to be associated with type 1 diabetes and 

the most important one among these is the HLA locus. Some HLA haplotypes like DR4-

DQ8 and DR3-DQ2 are found to be associated with a high risk of disease55 whereas 

another haplotype, DR15-DQ6 is found to be protective56.  To date, several other 
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candidate genetic loci have been identified including insulin57, CTLA-4 (cytotoxic T 

lymphocyte antigen 4), PTPN2224 and KIAA0350 (Fig. 1 Todd et al.58).  

 

 
 

Fig. 1: Todd et al. Nature Genetics (2007). 39(7): 857-864.58 

 

 

Type 1 Diabetes is divided into two phases. During the first phase called peri- insulitis, 

mononuclear infiltrates surround the islets and this stage is also called non destructive 

insulitis. The second stage is destructive insulitis when the infiltrates invade the islets and 

destroy them leading to overt diabetes when there is no longer sufficient insulin 

production to regulate blood glucose levels230. It is believed that the clinical 

manifestations are observed only after about 80- 90% of the β- cells is destroyed24, 31.   

 

1.4 Background and the relevance of current work: 

 

To date, there is no cure for type 1diabetes and the only long-term therapy option 

available to patients is daily injections of insulin. Even in ideal cases, insulin replacement 

still shortens life expectancy by at least around 10 years24. In addition to being 

cumbersome, this approach is incapable of preventing the long term pathologies 

associated with type 1 diabetes including kidney and heart disease, neuropathy, and 

retinopathy. This has led to an intensive search for potential therapeutic strategies.  
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Current research is focused on 3 main objectives. These include islet cell transplantation, 

modulation of autoreactive immune cells and endogenous β- cell regeneration. Islet cell 

transplantation is an attractive option but the islets are obtained from cadavers and the 

patients have to subjected to life long immune suppressive regimen. If we could enable 

endogenous β- cell regeneration, it would eliminate the need for immune suppression and 

this would offer a better choice for the patients. Even if we could achieve successful islet 

function by transplantation or regeneration, the autoreactive immune cells are still present 

in the patients and they could destroy the new β- cells leaving all therapy fruitless in the 

absence of immune suppression. Hence it is quite critical that the role played by the 

immune system in the disease development be elucidated so that we could eliminate the 

autoreactive cells and the key immune factors and give the β- cells a chance to survive. 

This would be a task of epic proportions as the exact roles played by the various immune 

cells and the immune molecules are largely unknown and new factors are being identified 

with more research. 

 

The promise of islet cell transplantation as a potential therapy was improved on 

significantly when Shapiro et al.59, 60 established the protocol which later came to be 

known as the ‘Edmonton protocol’. Though the transplanted islets can restore the insulin 

production, they are susceptible to the same autoimmune attack, which causes the initial 

destruction of the patient’s β- cells. Hence the approach carries the disadvantage of the 

need for a lifelong immunosuppressive regimen. Even with severe immune suppression, 

long-term transplant survival is rarely achieved. Another major disadvantage is the 

scarcity of available donor islets for transplant. In addition, the current isolation 

procedures are not efficient enough and not all the isolation attempts produce transplant-

ready islets, further complicating the matter. Han et al.61 mention that islets are subjected 

to extreme conditions including mechanical shear, enzyme digestion, inflammatory 

cytokines, free radicals and osmotic shock during isolation and transplantation. They are 

also deprived of their trophic support. Upon transplantation into diabetic patients, the 

islets face additional unfavorable conditions like high serum lipid and glucose levels61. 

Islets have also been shown to become fully vascularised only 1-2 weeks after 
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transplantation and this results in lack of nutrients and oxygen62 in the initial weeks after 

transplantation. All these fact   ors contribute to significant islet loss and dysfunction 

after transplantation, thereby undermining the efficiency and purpose of the procedure.  

 

The difficulties encountered with islet transplantation and the destruction of the 

transplanted islets by the immune system have clarified the need for identifying strategies 

to protect the β - cells from immune destruction or to enable endogenous β - cell 

regeneration. Even if immune tolerance can be induced, it might be critical to enable β- 

cell regeneration in cases where the disease is already apparent. Several studies have 

looked at the potential of generating β - cells. Seaberg et al.63 identified a pancreatic 

precursor which can differentiate into cells which resemble β - cells. Recently Zhou et 

al.64 reported that adult pancreatic exocrine cells can be reprogrammed to β - cells by 

expression of the transcription factors Ngn3, Pdx1 and MafA. Though much work needs 

to be done before the search for a cure can be realized, the greatest promise might lie with 

endogenous beta cell regeneration coupled with tolerance induction.  

 

The two projects encompass these two separate yet complementary fields of research. 

The first project dealt with unraveling the role played by IL-17A, the key cytokine 

produced by one of the T helper subsets in type 1 diabetes. The second project involved 

generation of reporter mice in which the endogenous β- cell mass could be monitored in 

real time. We aimed at coupling the real time monitoring of beta cell mass with tissue 

specific knockdown of target beta cell modulator genes.  

 

1.5 The NOD Mouse Model: 

 

The development of autoimmune diabetes results from a combination of genetic 

susceptibility and environmental factors. A thorough understanding of the disease process 

is required for the development of a successful therapy. The difficulty of studying the 

disease in humans has necessitated the use of animal models, which ideally mimic the 

characteristics of the human disease closely. There are several diabetes models, the use of 

which offers different perspectives for understanding the disease. These include the 
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diabetes prone BB (biobreeding) rat, the NOD (non-obese diabetic) mouse, in silico 

models based on the NOD mouse, humanized mouse models, transgenic pseudo- self 

antigens expressed in the islets (RIP-OVA) and beta cell damage models like 

streptozotocin induced diabetes65.  The NOD mouse is the most widely used model for 

studying autoimmune diabetes in vivo.  

 

The NOD mouse provides a spontaneous model where aggressive insulitis is observed 

around 12 weeks of age and around 80% of the females develop hyperglycemia by 30 

weeks of age66. NOD mice were first described in 198067, 68 and since then they have 

been widely used as an experimental model for type 1 diabetes. The mice develop 

spontaneous diabetes with the incidence rates being 60% - 80% in females and 20%- 30% 

in males68, 69. The pattern of diabetes occurrence is different between females and males 

in that diabetes onset occurs between 12 to 14 weeks of age in the female mice whereas 

in the case of males, it is slightly later. In their review, Anderson and Bluestone70 report 

that the mouse strain is a good model for type 1 diabetes as it develops spontaneous 

autoimmune diabetes that is quite similar to the human T1D. In both cases, the disease is 

primarily mediated by autoreactive T cells (both CD4+ and CD8+), the disease is under 

complex polygenic control and there is an abundance of pancreas specific 

autoantibodies70 . 

 

The NOD mouse has become an invaluable model for unraveling the mystery of type 1 

diabetes. Ever since its inception, the model has been used for a staggering number of 

investigations that have been aimed at improving our understanding of T1D i.e. the whole 

process of disease development, the role played by autoantigens and the immune cells 

and also aimed at developing potential therapeutic strategies. Numerous transgenics and 

knockout strains have been developed in the NOD background. All these efforts have 

helped enormously in the study of the disease pathology.  

 

Though more than 170 approaches have been found to delay or prevent T1D onset in the 

NOD mice71, very few have been found to be effective in human T1D70. In their review, 

Shoda et al.72 analyzed the multitude of successful interventions in NOD mice and the 
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reasons for the difficulty in translating these to treat or cure human type 1 diabetes. They 

noted that out of the 463 agents evaluated, only 23 were initiated in diabetic NOD mice 

though 16 out of the 23 were considered successful. Anti- CD3 treatment has been found 

to be beneficial in both NOD mice and in recently diabetic patients31, 70, 72, 73. Though 

some of the other therapies including oral insulin and nasal insulin administration showed 

success in animal models, most have shown none or very little efficacy in treating human 

T1D. Shoda et al. 72 attribute this lack of success to discrepancies in timing, dosage and 

protocols. Roep73  notes that some of the candidate therapies derived from animal models 

proved unsafe and that most animal studies end their assessments too early.  The animal 

studies were done in prediabetic mice while the human studies included diabetic patients. 

The dosages used in human studies were also significantly lower than the ones found to 

be beneficial in animal studies. They recommend that careful consideration of dosage, 

timing, protocols and species-specific differences might permit better clinical translation.  

 

1.6 Models of induced diabetes in research: 

 

Spontaneous diabetes models like the NOD mouse need 4-5 months to develop the 

disease. This is a long duration, which in some cases is inconvenient. There are some 

models of induced and accelerated diabetes, which help overcome this problem. Diabetes 

can be induced by the injection of several substances including cyclophosphamide, 

streptozotocin and alloxan. Upon injection, the mice develop diabetes within a short 

duration ranging from 2-3 days to 2-3 weeks. This depends on the nature and the dosage 

of the chemical used. These induced models can be used to gain more insight into the 

pathogenic mechanisms involved in T1D and also to test novel therapeutic approaches.  

 

Cyclophosphamide (CY) is a nitrogen mustard compound. It is a widely used 

chemotherapeutic agent and is able to cause DNA alkylation.  High dose CY to pre 

diabetic NOD mice leads to synchronous onset of T1D 1-2 weeks after CY treatment. 

This is attributed to CY being detrimental to B cells and Treg cells. Several studies have 

reported the B cell cytotoxicity of CY74, 75. In their study, Brode et al.76 observed that CY 

treatment could cause rapid changes in the various lymphoid subsets. They observed 
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major reduction in the number of B cells and minor decreases in the CD4+ and CD8+ T 

cell numbers. These changes were found to be transient with the numbers going back to 

pre treatment levels over time. They found a sharp decrease in the number of CD25+ 

Tregs with the reduction being most drastic in the pancreas. The reduced Treg numbers 

failed to go up over time. It was observed that CY treated Tregs had reduced suppressive 

potential and had increased apoptosis. All these data together suggests that in pre diabetic 

mice, CY could cause accelerated diabetes by taking away the regulatory compartment 

and thus enhancing inflammation. 

 

Streptozotocin (STZ) is a cytotoxic glucose analogue. It is also used as a 

chemotherapeutic agent. STZ is transported into the cells via the Glut2 glucose 

transporter and preferentially accumulate in the pancreatic beta cells, which express high 

levels of Glut2. Hence it exhibits pancreas specific toxicity. On uptake, streptozotocin is 

split into glucose and a methylnitrosurea moiety. The methylnitrosurea moiety has 

alkylating properties and upon transfer from STZ to DNA, causes the fragmentation of 

DNA. This in turn destroys the beta cells. It is believed that in addition to DNA 

methylation, protein methylation might also play a small contributing role in the loss of 

beta cell function. Both NO and ROS are also reported to play minor roles in the 

destruction process. Thus streptozotocin can cause a state of insulin dependent diabetes 

via the necrosis of beta cells77.  

 

STZ at high doses causes non-immune toxic form of diabetes as described before. 

Multiple low doses of STZ on the other hand results in the expression of β-cell 

autoantigens (eg. GAD autoantigens)78. This triggers a β-cell specific inflammatory form 

of diabetes in susceptible rodent strains79. STZ is also able to cause damage in other 

organs expressing the Glut2 transporter, mostly kidney and liver80, 81.  STZ is relatively 

stable at room temperature at least for up to an hour. 

 

 

31



 

 

 

 

 

Fig.2: Chemical structures of glucose and streptozotocin respectively. 

 

 

1.7 RNA interference (RNAi) as a tool for elucidation of gene function: 

 

RNA interference or RNAi has emerged as a powerful research tool in functional 

genomics where it being used to analyze gene function and to ablate specific genes for 

therapeutic purposes82, 83.  In RNA interference (RNAi), double stranded RNA introduced 

into cells silences the gene expression of the homologous84. RNA interference occurs in 

mammalian cells in response to small RNAs including small interfering RNAs (siRNAs) 

and microRNAs (miRNAs) and the process results in sequence specific gene silencing. 

These molecules direct sequence specific cleavage of perfectly complementary mRNAs 

and transcript degradation and translational repression of imperfectly complementary 

targets.  

 

The RNAi pathway is initiated by the enzyme Dicer, which cleaves the long double 

stranded RNA molecules into 21-23 base pair (bp) fragments. In the case of siRNAs, the 

passenger strand/ sense strand is then cleaved by a process mediated by the endonuclease 

argonaute 2 (AGO2) and the antisense strand is incorporated into the RNA induced 

silencing complex (RISC). In the case of miRNAs the passenger strand is unwound and 

discarded by helicase activity instead of cleavage and the antisense strand is loaded onto 

RISC. The antisense strand then guides the complex to complementary sequences in 

target mRNAs, which are then cleaved by AGO2 resulting in silencing 82, 84- 86. In cases 
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where there is imperfect matching with 3’ UTRs, cleavage of target mRNA does not 

occur. Instead, translation of the mRNA is prevented leading to translational repression 

and subsequent reduction in protein levels and silencing87.   

 

RNAi with long double stranded RNA is of limited use in mammalian systems owing to 

their ability to elicit strong interferon responses. Both siRNAs and shRNAs are widely 

used to achieve the silencing of target genes in mammalian systems. A major 

disadvantage with siRNA is the lack of stable transfection. siRNAs once inside the cell, 

do not integrate into the host cell DNA and hence every time the transfected cell divides, 

siRNAs are diluted out86. This leads to a gradual loss of gene knockdown making them 

an ideal for transient gene silencing experiments. On the other hand, endogenously 

expressed shRNAs can be used to achieve long term and stable knockdown of their target 

transcripts86. The integration into host genomic DNA allows shRNAs to be expressed for 

long periods of time in a stable manner leading to a long term and stable silencing of 

target gene expression82.  

 

shRNAs could be used to genetically encode siRNAs in an organism and the siRNAs 

generated by cleavage do not activate immune responses due to their small size. Hence 

shRNAs could be used to induce long term stable silencing in mammalian systems. They 

are usually delivered into cells using vector molecules and once transcribed, resemble 

pre-microRNA, the endogenous substrate of Dicer.  shRNA sequences are 21- 29 bp long 

and their expression is usually driven by polymerase III promoters. Once transcribed, 

they form hairpin structures and are then cleaved by the cellular machinery resulting in 

siRNA molecules. These are then loaded onto RISC and can result in gene silencing84, 86. 

  

Conventional shRNA vector systems have the shRNAs under the control of pol III 

promoters like U6 or H1. Pol III promoters are expressed in all cell types and hence this 

would lead to a ubiquitous and constitutive gene silencing pattern. The Pol III promoters 

are strong and generate large amounts of transcription products, which sometimes lead to 

toxicity. Hence conventional shRNA systems could be used to achieve systemic silencing 

of target genes in cases where it is desired. Though ubiquitous expression of shRNAs 
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could be used efficiently in a wide variety of experimental setups, some experimental 

setups demand a strict control on the timing, expression levels and sites of shRNA 

expression84. There are some cases where a systemic silencing is not required or is 

deleterious. Some genes are found to be critical for the organism’s development and 

hence systemic silencing of these genes could be embryonically lethal eg. menin. In these 

cases, a tissue or cell specific silencing of the genes might be desirable and might be 

sufficient for the purpose of the study. Some genes are found to be important during the 

early developmental stages of an organism and hence it might be advisable to silence 

them at a later time point83, 84. All these different circumstances require shRNA 

expression systems, which can be regulated in accordance with the needs of the 

experiment setup. Conditional shRNA expression would allow the shRNAs to be 

expressed only when needed and only in the tissues / cells where needed83.  

 

Several recently discovered vector systems allow for spatial and temporal regulation of 

shRNA expression. There are vector systems in existence, which allow conditional 

/inducible knockdown and tissue/ cell specific knockdown. Inducible knockdown systems 

generally use Pol II or Pol III promoters under the control of drug responsive repressors 

or transactivators. In this case, the expression of the shRNA can be turned on or off at 

will by the addition or withdrawal of the corresponding drug83. This technique provides 

an easy and economical way to regulate the timing of gene silencing with the added 

advantage that the knockdown is reversible. The cre/ loxP recombination method can be 

used to generate transgenic animals with conditional shRNA mediated gene knockdown 

for genes whose constitutive silencing could be embryonically lethal. In this method, two 

loxP sites flanking a stop signal that hinders constitutive shRNA expression are inserted 

within the promoter driving the shRNA expression to generate transgenic mice. These 

transgenic mice are then crossed with cell/ tissue specific cre expressing mice in which 

cre mediates the deletion of the stop signal and results in activation of the shRNA 

expression. Thus the cre/ loxP recombination method provides both spatial and temporal 

control over shRNA expression with the disadvantage being that once induced, the 

expression is irreversible83.  
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It is now believed that the best way to induce effective gene silencing in a constitutive 

and tissue/ cell specific manner is by using the endogenous miRNA pathway to generate 

shRNAs83. The miRNA based shRNA system involves substitution of the miRNA stem 

with the desired shRNA to induce specific gene silencing.  In the commonly used miR30-

based vectors, the mature miR30 encoding region is replaced with shRNA sequences 

targeting the transcript of interest84. These artificial miRNAs resemble endogenous RNAi 

substrates and are more amenable to Pol-II transcription leading to tissue- specific 

expression of the shRNAs82. In their review, Sharma and Rao88 suggested that efficient 

delivery is obtained when the hairpins are transcribed by RNA polymerase II. When 

using Pol II promoters, the transcript levels are similar to the low levels of endogenously 

expressed miRNAs. Though the level of shRNA produced with miRNA based system is 

much lower than that produced with overexpression in a conventional system, the shRNA 

works equally well.  It is suggested that adopting a more physiologic way might render 

the shRNA functionally more competent and additionally, less toxic83. Usually molecular 

markers are integrated into these vectors and both the shRNA and the marker are 

transcribed as a bicistronic transcript. Thus only the shRNA expressing cells would 

express the molecular marker84. 

 

 

 
 

Fig.3: Sharma & Rao. Nature Immunology (2009). 10(8): 799-804.88 
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Both siRNAs and shRNA constructs are highly charged and do not cross hydrophobic 

cell membranes by diffusion. Therefore for delivery into in vivo systems, vehicles are 

needed which could help these molecules bypass the biological membranes82. The serum 

RNases degrade naked siRNAs rapidly and hence it is better to have these delivered to 

cells using appropriate carriers. A variety of methods have been used for the delivery of 

these molecules and these include the use of cholesterol, aptamers and nanoparticles for 

siRNAs and viral vectors including adenovirus and lentivirus in case of shRNAs. 

Nanoparticles are found to protect siRNA from vascular degradation and can deliver 

them into cells through endocytosis. Cholesterol formulations like polyelectrolyte 

complex (PEC) form micelles, which can efficiently deliver siRNA without eliciting 

interferon responses. Neutral nanoliposomes are extremely efficient in tissue delivery 

with no identifiable toxicity85. As opposed to siRNAs, shRNAs have to be delivered into 

the nucleus and hence the carriers have to be able to penetrate the nuclear envelope. 

Viruses are their derivatives are widely used as carriers for shRNA delivery82. 

 

1.8 Viral vectors and generation of transgenic animals: 

 

For delivery of transgenes (foreign DNA) into mammalian systems, efficient delivery 

methods are needed. Viral vectors are now being actively researched and used for this 

purpose. These vectors are derived from viruses where the viral genes in the vector 

genome are replaced with foreign sequences. The packaging capacities of the viral 

vectors vary. Adenoviruses are able to infect both dividing and non dividing cells, show 

high levels of transgene expression and grow to very high titers in vitro. All of these 

features make them attractive for use as vectors. They are able to replicate inside the 

nucleus of mammalian cells but do not integrate efficiently into the host genome. Hence 

there is a need for repeated administration, which in turn could trigger strong immune 

responses and liver toxicity. Similar to adenoviral vectors, adeno- associated viral vectors 

can transduce both dividing and non-dividing cells and they are non-integrating with no 

reported toxicity. Being non- integrating, both adenoviral vectors and adeno-associated 

virus vectors are unsuitable for long-term therapy82.  
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Retrovirus vectors on the other hand integrate their genome stably into the host cell DNA 

thereby allowing the long-term expression of the inserted transgene. The viral genome 

usually has several essential genes and at each end of the genome, there are long terminal 

repeats (LTRs), which contain promoter/ enhancer regions and sequences involved in 

integration. Lentiviruses are a subclass of retroviruses and include among others, the 

Human Immunodeficiency Virus (HIV). Since the native viruses can cause fatal disease, 

non- replicating viruses are used for transgene expression82, 83. 

 

Viral vectors containing either ubiquitous or tissue-specific promoters are used to ensure 

ubiquitous or when desired, tissue specific expression of the transgene. Owing to its 

integration into the host genome, the genomic backbone of lentivirus could be used as a 

means for the life long expression of the transgene. A continuous expression of the 

transgene without generation of the infectious virus is required. HIV based vectors are 

primarily used as the biology of HIV replication has been characterized extensively. To 

avoid the generation of replication competent virus particles, a number of precautionary 

steps are taken. These include removing the accessory genes from the viral genome and 

splitting the packaging genes between different expression cassettes83.  

 

In their review, Singer & Verma89 note that third generation lentiviral vectors consists of 

four plasmids; the transfer vector, Gag-pol, Rev and an envelope protein. The transfer 

vector contains the transgene to be delivered in the viral backbone. Gag-pol codes for 

integrase, reverse transcriptase and structural proteins. Rev enhances the nuclear export 

of the viral genomic RNA thereby enhancing viral titers. The envelope protein is usually 

pseudotyped with VSV-G (Vesicular Stomatitis Virus protein G) and this broadens host 

tropism82, 83, 89. A deletion in the 3’ LTR generates replication defective particles and this 

adds a level of safety to the entire process by preventing the replication of viral genomic 

RNA. These four plasmids are transfected into human embryonic kidney cells and the 

viral particles that accumulate in the supernatant can be collected and concentrated by 

ultracentrifugation thus giving high titer viral preparations83, 89, 90. These viral 

preparations are then injected into single celled embryos to generate transgenic animals.  
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One of the major concerns associated with this technique is the unknown integration 

pattern. The virus integrates randomly in the genome and hence could integrate within 

gene sequences and disrupt endogenous gene expression. Though this is an alarming 

concept, a study by Yang et al.91 demonstrated that lentivirus integrated preferentially 

within intragenic regions and especially in the introns. Lentiviral vector mediated 

transgene expression can be maintained for long periods of time and the approach has 

been found to be effective in generating transgenic mice in strains which have been found 

to be difficult to manipulate with the other transgenic approaches. Though lentiviral 

transgenesis has many advantages compared to conventional methods, there are several 

problems that have to be overcome. Some of these include genetic mosaicism, variability 

of transgene expression, the limits on construct size, vector toxicity problems with 

insertional mutagenesis and finally biosafety concerns90.  

 

1.9 Combining RNAi and lentiviral transgenesis for analyzing gene function in 

transgenic mice: 

 

As mentioned before, viral vectors provide a near perfect delivery method for shRNA 

containing plasmids. Lentiviruses are widely used as vectors for shRNA expression 

cassettes as they integrate stably into the host genome and hence are suitable for long-

term gene silencing82, 89. In their review, Sliva and Schnierle give a schematic 

representation of gene knockdown using lentiviral transgenesis (Fig. 4). shRNAs are first 

cloned into plasmids and then these are used to generate high titer lentivirus. The 

lentivirus is then injected into single celled embryos to generate transgenic animals with 

reduced gene expression levels. Since lentiviral vectors integrate into the host genome, 

progeny from the transgenic animal usually inherit the provirus and express the 

transgene89. Hence progeny from the transgenic founder are usually found to inherit 

stable knockdown of gene expression.  
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Fig.4: Sliva K, Schnierle BS. Virol J. (2010) 7:248.82 

 

 

In the search for elucidating the function of over 30,000 genes in the human genome, one 

of the widely used techniques is the generation of gene knockout mice. This involves the 

generation of ES knockout lines and the injection of the knockout cells into a 

blastocyst89. The ES knockout line must first be generated, characterized and finally 

injected into a blastocyst. The resulting chimeric founder has to be then bred back to 

homozygosity82, 89. Hence though it is an extremely useful approach, it is time 

consuming, expensive and labor intensive. Traditional pronuclear injections result in 

multiple transgene copies integrated at a single locus, with not all copies being expressed. 

However this will result in all the copies being transmitted together to the future 

generations89, 92.   

 

Using lentiviral transgenesis and RNAi for generation of transgenics on the other hand, is 

time and cost effective and less labor intensive.  While knockout of a gene ensures a 

complete lack of the target protein and gene function, RNAi results in the expression of 

the gene albeit to a significantly lower degree. However, in vivo inhibition of gene 
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products by RNAi have been found to yield phenotypes quite comparable to classical 

knock out animals82. A reduction in protein levels might better reflect a normal 

physiologic state than a complete lack of it. The technique has the added advantage that it 

allows quite a large degree of regulation and control over gene modulation as opposed to 

classical knockout models.  

 

Lentiviral vectors can be used to generate large and small transgenic animals with high 

efficiencies via transduction of fertilized eggs89, 90. Though other retroviral vectors are 

also able integrate into host genome, they are unsuitable to generate transgenic animals as 

the provirus expression is silenced during embryogenesis89. Embryo viability is found to 

be very high following lentiviral transduction. Also, large number of founder animals can 

be generated with this approach90. Lentiviral transgenesis is found to result in several 

independent copies of integrated provirus that will segregate independently in the future 

generations. Thus though the founder may carry different transgene copies depending 

upon the developmental stage of the manipulated embryo, these copies are found to 

segregate independently in the subsequent generations as each provirus integrates 

independently. In many cases, injection cycles result in mosaic founders (F0) and once 

the transgenic F1 mice are generated and the different copies segregated, the transgene is 

usually transmitted stably into future generations. Once germline transmission is 

achieved, the knockdown phenotype generally stays unaltered89.  
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Analyzing the role of IL-17A in type 1 diabetes 
 

1.10 T cells: 

 

T cells originate from the haematopoietic stem cells in the bone marrow. The early 

progenitors derived from the stem cells migrate to the thymus where they lose their 

potential to develop into B cells and natural killer cells. They then undergo rigorous cell 

division and expand to form a large population of immature thymocytes93. In the thymus, 

T cells develop and mature under the influence of thymic hormones and peptides1. The 

early thymocytes do not express either CD4 or CD8 and hence are referred to as double 

negative (CD4-CD8-). During the process of maturation, these double negative cells 

under TCR rearrangement and develop into a population of double positive cells 

expressing both CD4 and CD81, 93. Finally they lose the expression of one of the 

transmembrane glycoproteins and become single positive cells (either CD4+CD8- or 

CD8+CD4-), which are then released from the thymus into the periphery10, 11. 

 

T cells play the central role in cell-mediated immune responses. The majority of T cells 

have a TCR composed of two glycoprotein chains called α chain and β chain and these T 

cells are referred to as αβ T cells1, 93.There is a minor population of T cells where the 

TCR is composed of two different glycoprotein chains called γ chain and δ chain and 

these T cells called γδ T cells constitute about 2% of the total T cell pool. γδ T cells are 

found in high abundance in the gut mucosa. These cells are non-MHC restricted and they 

seem to be able to recognize whole proteins.  

 

The entire process involves two stages of selection during which around 98% of the 

thymocytes that fail the selection processes are removed. The remaining 2% of 

thymocytes that survive leave the thymus for the periphery as mature albeit naïve T cells. 

Double positive thymocytes undergo positive selection in the thymic cortex where they 

are presented with self-antigens complexed with MHC molecules on the surface of 

thymic epithelial cells. All T cells are required to recognize self-antigens in order to 

41



 

 

mount effective immune responses against foreign antigens. Hence, during the process of 

positive selection, only those thymocytes that can interact with self-antigens with 

optimum affinity are selected and given signals required for survival. Thymocytes with 

no affinity to self-antigens undergo apoptosis (death by neglect) and are removed by 

macrophages10, 11.Thymocytes that are positively selected on MHC class I molecules 

downregulate the expression of CD4 and become CD8 single positive cells. Similarly, 

thymocytes that are selected on MHC class II molecules downregulate CD8 expression 

and become CD4 single positive cells1, 10, 11, 94. 

 

The positively selected single positive thymocytes migrate to the medulla where they are 

again presented with self- antigens complexed with MHC molecules on antigen 

presenting cells. Those cells that interact too strongly with self- antigens are removed by 

negative selection where they undergo TCR mediated apoptosis. The remaining cells 

leave the thymus as mature naïve T cells. The process of negative selection tries to 

prevent potentially autoreactive T cells from reaching the periphery. Together, the 

processes of positive and negative selection play an important role in the generation of 

central tolerance. Autoreactive T cells, which fail to be deleted in the thymus, are usually 

identified and suppressed in the periphery by means of peripheral tolerance mechanisms1, 

10, 11. 

 

Activation of the T cell requires two distinct signals. The first signal is provided by the 

interaction between the TCR and specific antigenic peptide complexed with the MHC 

molecule present on the surface of an antigen-presenting cell. The second signal requires 

the interaction between a co- stimulatory molecule like CD28 present on the T cell and its 

partner protein on the antigen-presenting cell. CD28 is the most important co stimulatory 

receptor present on T cells. Its interaction partner is the B7 protein composed of CD80 

and CD86. This second signal called co-stimulation is critical in T cell activation. In the 

absence of a co- stimulatory signal, the T cell becomes anergic.  

 

Naïve T cells, which have never encountered their cognate antigen, are characterized by 

their surface expression of L-selectin (CD62L). They usually do not express the 
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activation markers like CD25 and CD69.  Upon encountering its cognate antigen, the 

naïve T cell gets activated and downregulates CD62L expression. The various activation 

markers like CD25, CD44 and CD69 are upregulated. Some of these activated cells go on 

to acquire the memory phenotype. Memory T cells are further subdivided into central 

memory T cells (TCM) or effector memory T cells (TEM). Central memory T cells migrate 

to the lymph nodes and facilitate memory responses while effector memory T cells 

migrate to periphery and promote elimination of pathogens3. Central memory T cells 

express CD62L and CCR7 while effector memory T cells do not express these markers. 

Central memory cells secrete IL-2 but do not produce effector cytokines like IL-4 and 

IFNγ while effector memory T cells secrete both IL-4 and IFNγ.  

 

There are several T cell subsets, each with a distinct function. T helper (Th) cells are 

CD4+ cells and they are activated by antigenic peptides complexed with MHC class II 

molecules expressed on the surface of antigen presenting cells. Once activated, Th cells 

undergo major expansion and secrete proteins called cytokines. Cytokines play an 

important role in regulating and assisting immune responses. Th cells also assist in the 

maturation of B cells into plasma cells and also in the activation of cytotoxic T cells and 

macrophages. Cytotoxic T cells or CTLs are CD8+ cells that attack and destroy virally 

infected cells and tumor cells1. They are activated by antigenic peptides complexed with 

class I MHC molecules which are present on the surface of almost all the cells in the 

body. Memory T cells are antigen specific T cells which persist in the body after 

infections. These cells expand rapidly after re- exposure to their cognate antigen and 

thereby provide the immune system with a memory of the infections it has already 

encountered. Regulatory T cells or suppressor T cells are responsible for shutting down T 

cell responses towards the end of an immune response and also for suppressing 

autoreactive T cells which may have escaped from the thymus1. Naturally occurring 

regulatory T cells (nTreg) arise in the thymus while adaptive Tregs are derived in the 

periphery. Tregs can be identified by the expression of their lineage specific transcription 

factor FoxP3.  
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1.11 T helper lineage: 

 

T helper cells play an important role in regulating and enhancing immune responses to 

antigens. They are involved in B cell antibody class switching, activation of cytotoxic T 

cells and enhancement of the bactericidal property of macrophages. Mature T helper cells 

express CD4 and are called CD4+ T cells. They bind to MHC class II molecules and 

hence they interact with antigenic peptides bound to MHC class II molecules expressed 

on the surface of antigen presenting cells. Antigen presenting cells usually take up the 

antigen, processes it and these APCs then travel to the lymph nodes. Once there, the 

antigenic peptides are transported to the APC surface where it is displayed bound to 

MHC class II molecules for recognition by T cells with the specific TCR. Once the T 

helper cell encounters its cognate antigen in the presence of proper co-stimulation, it is 

activated and undergoes rapid proliferation. This is done by the secretion of a potent 

growth stimulatory factor i.e. IL-2. IL-2 can function in an autocrine manner and the 

proliferation is further enhanced by the fact that activated T cells can produce alpha 

subunit of the IL-2 receptor (CD25). The autocrine and paracrine action of IL-2 can lead 

to clonal activation.  

 

1.12 Th1/Th2 Paradigm: 

 

Naïve CD4+ T cells are activated and differentiate into different T helper subsets in the 

presence of their specific antigens. Mossman and Coffman proposed the existence of 2 

different T helper subsets more than 20 years ago. Upon encountering an antigen 

presented by the antigen-presenting cell (APC), naïve CD4+ T cells can differentiate into 

either IFNγ producing Th1 cells or Th2 cells which produce IL-4, IL-5 and IL-13. Proper 

T helper responses play an essential role in the host defense against infections. Th1 

responses enhance cellular responses against viruses and intracellular pathogens while 

Th2 responses enhance humoral immunity and control extracellular pathogens including 

helminthes. On the other hand, uncontrolled and persistent T effector responses can lead 

to deleterious conditions like allergy and autoimmunity. Uncontrolled Th2 responses 

have been found to lead to conditions like asthma95. Abnormal Th1 responses have been 

44



 

 

implicated to play at least a partial role in the development of several autoimmune 

diseases including inflammatory bowel disease (IBD) and psoriasis96, 97. Over the years it 

has been noticed that several pathological conditions could not be simply explained by 

the Th1-Th2 paradigm. Efforts to resolve these questions have recently led to the 

discovery of several new T helper subsets like regulatory T cells (Treg), Th17 cells and 

Th9 cells.  

 

The first clue suggesting the existence of distinct T cell populations mediating humoral 

and cell mediated responses was provided from the work of Parish and Lew98. Around 

mid 1980s, Tim Mossman’s lab identified 2 distinct T cell types able to produce different 

growth factors. Th1 cells were found to produce IL-2 and IFNγ while Th2 cell produced 

something different. Meanwhile Bob Coffman’s lab had developed an assay to test IgE 

production. Mossman and Coffman tested the supernatants from the two T cell subsets in 

the assay and found that supernatant from the Th1 clone containing IL-2 and IFNγ could 

not induce IgE. On the other hand, supernatant from the Th2 clone when added to LPS 

stimulated B cells could induce IgE responses. They also discovered that when both 

supernatants were added together, the IgE production was inhibited suggesting that a Th1 

factor is able to block the Th2 induced IgE response. They were able to identify this Th1 

factor as IFNγ by using neutralizing antibodies. The growth factor released by Th2 clones 

was identified as IL-4. These observations led to the development of what came to be 

later known as the Th1/ Th2 paradigm.  

 

The Th1/Th2 paradigm was suggested on the basis of the observation that each CD4+ Th 

cell subset has distinct cytokine profile and fulfills different effector functions. Th1 cells 

secrete IL-2 and IFNγ and are crucial for cell- mediated immunity while Th2 cells secrete 

IL-4, IL-5 and IL-13 and mediate humoral immunity. Signal transducer and activator of 

transcription (STAT) proteins are essential for the Th subset differentiation. STAT-1 and 

STAT-4 are required for Th1 differentiation while STAT-6 is required for Th2 

differentiation. T-bet is the lineage specific transcription factor for Th1 development 

while for the Th2 cells, it is GATA-3. IL-12 is also found to be important for the 

induction of Th1 cells. Activation of T cells in the presence of IFNg leads to the 
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activation of STAT-1 and the Th1 lineage specific transcription factor T-bet.  Expression 

of T-bet induces IFNg secretion and IL-12Rβ2 expression which makes the cells 

responsive to IL-12. The engagement if IL-12R by IL-12 causes the activation of STAT-4 

resulting in enhanced IFNg secretion by the cells. The increased secretion of IFNg in 

turn, causes a further upregulation of T-bet and strengthens Th1 commitment. Activation 

of T cells in the presence of IL-4 induces the activation of Th2 lineage specific 

transcription factor GATA-3. Upon engagement is IL-4R by IL-4, STAT-6 is activated 

which enhances the production of IL-4. This leads to a positive feedback loop resulting in 

enhanced Th2 differentiation99. The two T helper subsets were found to be able to cross 

regulate each other. 

 

For quite some time after the introduction of the Th1/Th2 paradigm, it was believed that 

Th1 cells are pathogenic and are responsible for organ specific autoimmunity while a Th2 

response is beneficial and non pathogenic. But this assumption was brought into question 

when data emerged from the EAE (Experimental Autoimmune Encephalomyelitis) 

mouse model contradicting it. EAE is the animal model for multiple sclerosis (MS). It 

was found that neutralizing IFNγ increased the disease severity while administration of 

IFNγ reduced the severity100- 102. It was observed that the disruption of genes encoding 

either IFNγ or IFNγR converted EAE resistant strains to susceptible phenotype103, 104. 

These data indicated a protective role for IFNγ in EAE. Also animals, which lack other 

Th1 molecules like STAT1 and IL-12Rβ2 developed more severe disease105, 106. All these 

data raised the possibility that other Th subsets may exist which mediate tissue damage 

and autoimmunity. 

 

1.13 Discovery of IL-23 and Th17 Cells: 

 

The discovery of IL-23 by Robert Kastelein was finally able to shed some light on the 

contradictory data obtained regarding the role of Th1 in autoimmune diseases. Sequence 

database searches with structure based alignment tools in the laboratory of Fernando 

Bazan and Robert Kastelein led to the discovery of a novel sequence, which they named 

p19.  p19 was found to share an overall sequence identity of 40% with the p35 subunit of 
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IL-12 and they were unable to purify p19 from the supernatant of transiently transfected 

cells. Since it was known that IL-12p35 requires IL-12p40 for secretion, further 

experiments in the line revealed that secretion of p19 requires its partnering with IL-

12p40107. This resulting cytokine was named IL-23108. IL-23 is found to be expressed 

mainly by activated dendritic cells and phagocytic cells. 

 

IL-23 belongs to the IL-12 family of cytokines. IL-12 is a heterodimeric cytokine 

composed of 2 subunits p35 and p40. In mice, the transgenic expression of p19 induced 

elevated levels of pro inflammatory cytokines TNFα and IL-1 leading to fatal systemic 

inflammation due to massive T cell and macrophage infiltration109. The exact role of IL-

23 in the development of autoimmunity (especially in EAE) was elucidated in a landmark 

paper by Daniel Cua and his colleagues. They studied the role of IL-12 and IL-23 in EAE 

development by inducing EAE in mice deficient for each of the subunits forming IL-12 

and IL-23 i.e. IL-12p35, IL-12p40 and IL-23p19 deficient mice. They were able to show 

that animals deficient in IL-23 (p19-/-) and both IL-12 and IL-23 (p40-/-) were protected 

from EAE while IL-12 deficiency (p35-/-) did not have any effect on EAE induction. 

They were able to further show that the delivery of IL-23 gene transfer vectors into the 

central nervous system (CNS) could reconstitute EAE in the p19-/- and p40-/- animals 

while the gene transfer of IL-12 into the CNS did not reconstitute the disease in p40-/- 

mice110. Thus it was demonstrated that IL-23 rather than IL-12 might be the more 

important cytokine for autoimmune inflammation in this mouse model.  

 

Daniel Cua’s group did similar experiments in another autoimmune disease model; the 

collagen induced arthritis and discovered that IL-23 deficient mice were protected from 

the disease while the IL-12 deficient mice developed exacerbated disease. They also 

noticed that the disease resistance correlated with the absence of IL-17 producing CD4+ 

cells despite the normal induction of collagen specific Th1 cells111. Aggarwal et al.112  had 

previously reported that IL-23 activated CD4+ T cells show elevated production of IL-17. 

Further studies showed that IL-23 is essential for the expansion of a distinct CD4+T cell 

population with a unique expression pattern of pro inflammatory cytokines. These cells 
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were found to produce IL-17A, IL-17F, IL-6 and tumor necrosis factor. Passive transfer 

studies demonstrated that these IL-23 dependent T cells are highly pathogenic113.  

 

Studies done by Harrington et al.114 and Park et al.115 showed that Th17 differentiation is 

independent of the transcription factors involved in Th1 (T-bet, Stat1 and Stat4) and in 

Th2 (Stat6 and c-Maf) differentiation. They also discovered that addition of anti IFN-γ 

and anti IL-4 to the Th17 cultures could increase IL-17 expression. This led to the 

suggestion that IFNγ and IL-4 negatively regulates Th17 cells and that IL-23 might 

induce the differentiation of naïve T cells into Th17 cells. This suggestion led to a 

conceptual problem as Aggarwal et al.112 had already shown that unlike memory T cells, 

naïve T cells do not express IL-23R. Later studies demonstrated that IL-6 in combination 

with TGF-β was required for the differentiation of naïve T cells into Th17 cells116- 118. 

This was surprising as TGF-β was considered an immunosuppressive cytokine. It was 

also known that naïve T cells in the presence of TGF-β expressed FoxP3, the 

transcription factor that induces their differentiation to regulatory T cells. It was shown 

that IL-6 could suppress the TGF-β induced differentiation of regulatory T cells and 

redirect the differentiation program to the Th17 lineage.   

 

1.14 Characteristics of Th17 cells: 

 

Th17 cells are a sub population of CD4+ effector T cells. They have a high expression of 

the transcription factors RORγt and RORα while they express little T-bet or GATA-3. 

They secrete a variety of cytokines including IL-17 (IL-17A), IL-17F, IL-21, IL-22, IL-9, 

TNF and GM-CSF119. They also express the chemokine receptor CCR6. TH17 population 

is highly heterogeneous. In addition to IL-17A/ IL-17F double producers, populations 

that are only IL-17A or IL-17F positive are also reported120. Lee et al.121 have reported 

that IL-17F is expressed earlier than IL-17A during Th17 development. In mice, these 

cells develop in the presence of TGF-β and IL-6117. Bettelli et al.116 demonstrated that IL-

6 is able to inhibit the FoxP3 expression induced by TGF-b and thus downregulate the 

Treg differentiation and enhance the Th17 pathway. IL-6 is required for IL-21 

production, which then acts in an autocrine manner to induce more IL-21. This in turn 
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leads to IL-23R expression by the cells122. IL-23 signaling is critical for the survival of 

Th17 cells. Both IL-2 and IL-27 are found to suppress Th17 differentiation123.  

 

In humans, the Th17 differentiation happens in the presence of TGF-β and IL-1b along 

with IL-21 or IL-23124- 126. Human Th17 cells are found to develop from CD161+ 

precursors and virtually all of them express CD161 and are CCR4+CCR6+127, 128. They 

express the cytokines IL-17A, IL-17F, IL-22, IL-26 and IFN-γ. They also express RORγt 

and IL-23R just like murine Th17 cells129. Thus, the current view is that at least in murine 

cells, TGFβ along with IL-6 lead to the differentiation of naïve T cells into Th17 cells. 

Th17 cells secrete IL-21, which acts in an autocrine manner to bring about the 

amplification of the Th17 lineage. IL-23 is believed to be an important survival factor 

that is essential for the stabilization and expansion of Th17 cells. The Th17 pathway in 

humans seems to reflect this to an extent. 

 

Murine Th17 cells express high levels of a master transcription factor, RORγt. They are 

also found to express a second orphan receptor, RORα the presence of which is found to 

have an additive effect on Th17 differentiation130, 131. STAT3 is also found to play a 

crucial role in Th17 differentiation132, while STAT5 is found to negatively regulate the 

pathway133. IRF4 plays an important role in this pathway, as it is able to induce IL-21, 

which in turn leads to amplification of Th17 cells134. The presence of natural agonists for 

AHR in the medium is found to enhance the differentiation of Th17 cells in vitro135.  

 

1.15 IL-17 and its functions: 

 

IL-17 was first cloned in 1993 by Rouvier et al.136. IL-17 is the founding member of the 

IL-17 family, which includes IL-17A, IL17-B, IL-17C, IL-17D and IL-17E (also called 

IL-25) and IL-17F. The others members of the family were identified as a result of 

bioinformatics strategies based on the IL-17A sequence137. Genes for IL-17A and IL-17F 

are located on the same chromosome in both mouse and humans. Genes for the other 

family members are located on different chromosomes. IL-17A and IL-17F share the 

highest sequence identity of around 50% while IL-25 is the most divergent (16%)120, 138. 
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Murine IL-17A and human IL-17A share 62% homology. Hymovitz et al.139 

demonstrated that all family members except IL-17B exist as homodimers consisting of 

five highly conserved cystine residues forming a cystine knot structure. IL-17A is also 

able to form heterodimers with IL-17F. IL-17A homodimers are found to be the most 

potent with the heterodimers and IL-17F homodimers having decreasing potencies140- 142.  

 

IL-17 family cytokines signal through IL-17 receptor family members. There are 5 

different IL-17 receptors, IL-17RA to IL-17RE143. Functional receptors are believed to be 

composed of homodimers or heterodimers. IL-17RA is able to associate with IL-17RC 

and transduce signals from both IL-17A and IL-17F as well as IL-17A/ IL-17F 

heterodimers. IL-17RA is expressed primarily in immune cells while IL-17RC is 

expressed mainly in non-immune cells144, 145. IL-17A has a higher affinity for IL-17RA 

while IL-17F has a higher affinity for IL-17RC139. IL-17F is able to signal through IL-

17RA but its affinity is almost 10 fold lower than that of IL-17A. Upon binding of IL-

17A, IL-17RA recruits IL-17RC to form the IL-17RA/ IL-17RC complex.  

 

IL-17A and IL-17F are pro inflammatory cytokines, which act on cells to induce the 

production of a variety of cytokines (IL-6, IL-8, GM-CSF, G-CSF), chemokines 

(CXCL1, CXCL10) and metalloproteinases99, 108. Both IL-17A and IL-17F are produced 

by a variety of cell types including CD4+ cells, CD8+ T cells, NKT cells, γδ T cells and 

neutrophils. NKT cells also found to secrete IL-17 under proper stimulation. During 

airway inflammation, invariant NKT cells that lack NK1.1 marker are found to secrete 

copious amounts of IL-17A146. γδ T cells are found to secrete large amounts of IL-17 

during both Mycobacterium tuberculosis and Escherichia coli infections147, 148.  

 

IL-17 is involved in protective immune responses against bacterial and fungal infections. 

It does so by activating the production of pro-inflammatory cytokines and chemokines 

and by recruiting and activating neutrophils and macrophages. IL-17R deficient mice 

succumb to K. pneumoniae infections due to reduced chemokine production and 

neutrophil recruitment149. On the other hand, Overexpression of IL-17 in the lungs led to 

enhanced production of pro- inflammatory cytokines, increased neutrophils recruitment 
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and clearance of the infection150. This suggests a partial role for IL-17 in protection 

against K. pneumoniae. A complementary role for IL-17 is suggested in the protective 

immunity against M. tuberculosis, B. pertussis, S. aureus and L. monocytogenes151- 154. 

IL-17 deficient mice have increased mortality from C. albicans infections155. IL-17 is 

also found to be protective in other fungal infections including Pneumocystis carinii and 

Aspergillis fumigatus156- 157.   

 

1.16 Th17/ IL-17A in autoimmune diseases: 

 

There is a plethora of evidence suggesting a role for Th17 cells and the various Th17 

factors in a variety of autoimmune diseases. Despite this, much confusion exists 

regarding the extent to which these cells are pathogenic. Tzartos et al.158 were able to 

identify IL-17+ CD4+ and CD8+ cells in active lesions in the brain from MS patients. 

There is evidence for the presence of IL-17 and IL-22 receptors on inflamed endothelium 

in MS lesions and these cytokines were found to enhance the migration of T cells across 

the blood brain barrier159. In vitro differentiated Th17 cells have been found to transfer 

EAE but the disease is significantly milder in comparison with Th1 cells. In this model, 

the authors were able to detect IFNγ much earlier than IL-17 in the CNS, which led them 

to conclude that Th17 cells could contribute to EAE but need Th1 cells to disrupt the 

blood brain barrier first160. IL-17A knockout and IL-17F knockout mice develop a milder 

form of EAE and only marginal differences in clinical EAE scores are observed 

indicating that neither vitally contributes to the disease161, 162.  

 

 Fossiez et al.163 found that IL-17 could induce the secretion of pro inflammatory 

cytokines including IL-6, IL-8 and G-CSF from stromal cells. Th17 cells found in 

arthritic synovium express RANKL (receptor activator of nuclear factor kappa B ligand), 

which is found to enhance osteoclast formation164. These data suggest a role for Th17 

cells in rheumatoid arthritis. A number of studies point to a role for this Th lineage in 

psoriasis. Increased levels of RORγt, IL-17, IL-22 and IL-23 mRNA are reported in 

psoriatic lesions129, 165- 167.  IL-17 deficient mice develop experimental autoimmune 

uveitis168 thereby precluding a major role for this cytokine in EAU. But anti- IL-17 is 
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found to prevent or at least diminish the disease169 indicating that IL-17 is able to 

contribute to this autoimmune condition.  

 

As mentioned, before the discovery of Th17 cells, autoimmune pathologies were 

attributed solely to Th1 cells. Contradictions in the data led to questions and finally the 

characterization of Th17 subset. The autoimmune diseases were then attributed to Th17 

cells and their effector cytokines. But it has been observed that both Th17 cells and Th1 

cells are able to induce several autoimmune conditions like EAE and EAU with distinct 

disease pathologies. Hence, data to date indicate that though Th17 cells may play a role 

in some autoimmune diseases, this role is not exclusive and Th1 cells might still be 

pathogenic in autoimmune disorders with critical roles in induction or effector phases. 

Thus it seems that both Th17 cells and Th1 cells seem to be involved in the development 

of autoimmune pathologies.  

 

1.17 Th17 / IL-17A in type 1 diabetes: pathogenic or not?  

 

Preliminary evidence has suggested that in the NOD mouse during the course of T1D, IL-

17 is expressed in the pancreas170. Jain et al.171 observed that inhibiting Th17 cells with 

the induction of IFNγ inhibited IL-17 production and it could restore normoglycemia in 

the pre diabetic NOD mice. Two separate studies which used the adoptive transfer effects 

observed that transfer of islet specific Th17 cells could induce diabetes but only after the 

cells converted to IFNγ producing cells172, 173. Bradshaw et al.174 observed that the 

monocytes from T1D patients spontaneously secrete pro inflammatory cytokines like IL-

6 and IL-1β and these monocytes in turn could induce more IL-17 secreting cells from 

memory T cells. This led them to speculate that the activated innate immune system 

might drive the expansion of Th17 cells in T1D patients. Emamaullee et al.175 analyzed 

the role of anti-IL-17 and recombinant IL-25 in type 1 diabetes using the NOD mouse 

model. They reported that these strategies failed to have any benefit in the young mice 

but could prevent diabetes when the mice were treated around 10 weeks of age. They 

found that both strategies reduced the number of peri islet infiltrates and GAD65 

autoantibody levels and led to an increase in the number of T regulatory cells. This led 
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them to conclude that Th17 cells are involved in the development of autoimmune 

diabetes and that therapeutic strategies directed against Th17 cells may be beneficial. 

These data seem to suggest that though IL-17 might play a role in the development of 

insulitis, the progression to overt diabetes might depend on IFNγ176. Arif et al.263 were 

able to observe increased IL-17 reactivity in type 1 diabetes patients in comparison with 

control subjects. They could detect IL-17A, IL-22 and RORC in the islets close to disease 

diagnosis, though the observation was from a single patient. They found that IL-17A on 

its own had no proapoptotic effect on cultured beta cells, but could exacerbate beta cell 

death induced by the combination of IL-1β and IFNγ or TNFα and IFNγ. All these 

observations led them to conclude that IL-17 could be used as a biomarker as well as a 

therapeutic target in autoimmune diabetes. Munegowda et al.264 recently reported that 

both CD4+ Th17 cells and Th17 stimulated CD8+ CTLs play distinct roles in T1D and 

EAE. They found that Th17 stimulated CTLs but not CD4+ Th17 cells themselves were 

critical in type 1 diabetes development whereas CD4+ Th17 cells and not Th17 activated 

CTLs could induce EAE.  

 

1.18 AIM:  
 

As mentioned in the previous section, a lot of evidence point to a role for Th17 cells and 

their signature cytokine IL-17A in the development of type 1 diabetes. But so far, the 

results are conflicting and do not conclusively prove a pathogenic role for IL-17A in 

T1D. Hence, we aimed to identify the role, if any of IL-17A in autoimmune diabetes and 

to conclusively prove a positive or negative role for this cytokine in autoimmune 

diabetes. So far, studies have made use of adoptive transfer experiments of in vitro 

differentiated Th17 cells or anti IL-17 antibodies. Both these strategies do not seem to be 

optimal owing to the widely described plasticity observed with Th17 cells and the 

conflicting results obtained with antibodies. 

 

We felt that the best way to study the role of this cytokine in the context of type 1 

diabetes would be to generate NOD mice in which IL-17 is systemically silenced. As 

mentioned earlier, RNAi is an extremely useful tool to analyze gene functions and 
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lentiviral transgenesis could be used in conjunction with RNAi to generate transgenic 

animals in which desired genes are silenced. Hence we aimed to use lentiviral 

transgenesis and RNAi to generate transgenic NOD mice with reduced IL-17A levels. 

We then aimed to analyze diabetes incidence in the transgenic line to identify whether IL-

17A plays a contributing role in diabetes. Diabetes incidence levels in these mice would 

better reflect the role of IL-17A, as this strategy does not involve or require additional 

manipulations.  
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  Generation of β- cell reporter mouse models and modulation of 

β- cell mass 

 

1.19 Pancreas and β-cells: 

 

Pancreatic β-cells, responsible for the synthesis and secretion of insulin in response to a 

glucose challenge, are located in the islets of Langerhans. Islets are comprised of a 

heterogeneous population of endocrine cells, including insulin-producing β-cells (approx. 

65–90%), glucagon-secreting α -cells (15-20%), somatostatin-secreting δ -cells (3-10%) 

and polypeptide (PP)-secreting cells (1%)177. Recent studies have shown that pancreatic 

β- cells harbor immense powers of self-renewal. Systemic insulin demand is found to 

change and β- cell mass undergoes compensatory changes correspondingly. Some 

physiological and pathological states such as aging, pregnancy, insulin resistance and 

obesity increase the insulin demand and facultative β- cell proliferation is essential to 

meet the increasing demands for insulin178. Some studies have reported an increase of 40-

50 fold179, 180 and the failure to increase beta cell mass according to the demand may 

result in hyperglycemia and subsequent development of diabetes.  

 

Though pancreatic development is first morphologically discernable in mice at 

embryonic day (e) 8.75-9.0, the differentiation of the five endocrine cell types i.e. β, α, δ, 

ε and pancreatic polypeptide (PP) cells starts only by e13.5181. Expression of Ngn3 in the 

pancreatic progenitors is crucial for the commitment to endocrine lineage182. Following 

differentiation, the endocrine cells in mice cluster to form functional islets from e16.5 

onwards. Cell adhesion molecules and matrix metalloproteinases are believed to be 

involved in islet formation. The transcription factors MafA and MafB are crucial for 

terminal β- cell development. β- cells acquire glucose responsiveness during the early 

postnatal period and this requires the expression of Glut2 glucose transporter and PC1/3, 

which cleaves proinsulin to active insulin181. 
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A number of different factors are found to be involved in regulating the β- cell mass 

postnatally and include nutrients, hormones, growth factors and cell cycle regulators 

among others. Several mitogenic factors including glucose, insulin, prolactin, placental 

lactogen, growth hormone, glucagon –like peptide- 1 (GLP-1), platelet derived growth 

factor, insulin like growth factor (IGF)-1 and IGF- 2 stimulate β- cell growth and 

proliferation. Moderate increases in glucose levels can enhance β- cell proliferation and 

survival. It is suggested that glucose can increase the number of cells entering the cell 

cycle and that it has antiapoptotic effects. On the other hand, consistent exposure of β- 

cells to increased glucose levels could lead to oxidative stress and β- cell apoptosis. 

Increased insulin / IGF signaling in β- cells is found to enhance proliferation. The 

increase in β- cell mass is found to be augmented on costimulation with glucose. 

Pregnancy causes an increased insulin demand owing to increased maternal body weight 

and insulin resistance. This facultative β- cell growth during pregnancy is controlled by 

several hormones including prolactin (PRL), placental lactogen (PL), estrogen and 

progesterone. All the pregnancy related adaptations in the maternal pancreas are reversed 

upon parturition and the β- cell mass goes back to pre partum levels. Upon pregnancy in 

rodents, β- cell mass is found to increase by about 150% and it is accompanied by 

increased insulin synthesis and secretion. Insufficient maternal β- cell adaptation could 

lead to gestational diabetes178, 183.  

 

Cell cycle regulators like cyclins, cyclin dependent kinases (CDKs) and cyclin dependent 

kinase inhibitors (CKIs) are found to play a major role in post natal β- cell proliferation. 

Many of the insulinotropic factors induce the expression of cyclins. Cyclin D2 is found to 

be crucial for normal postnatal β- cell expansion. Cyclin D1 is involved in β- cell 

proliferation though it is not required for β- cell development. Though cyclin D3 and E 

are also expressed in the islets, no role for these in β- cell proliferation has been reported 

so far. Both CDK4 and CDK2 are expressed in the islets. CDK4 is the best-characterized 

CDK in the pancreas and is found to be indispensable for β- cell proliferation and for 

maintaining normal β- cell mass in vivo. CKIs including Cip/Kip proteins and INK4 

(inhibitors of CDK4) members are expressed in mature β- cells and play an essential role 
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in regulating β- cell growth. Two of the four INK proteins, p18Ink4c and p15Ink4b inhibit β- 

cell proliferation. There are three Cip/ Kip family members- p21Cip1, p27Kip1 and p57Kip2. 

They are all expressed in islets, and play essential roles in limiting β- cell proliferation. 

All three are found to inhibit facultative β- cell proliferation and growth. Several 

transcription factors including E2F, Rb and p53 also regulate postnatal β- cell mass 178, 

183.  

 

Intracellular proteins and pathways that transduce the β- cell mitogenic signals are 

currently being elucidated and include several transcription factors like FoxO1, Pdx1, 

NFAT and menin. NFAT, STAT5 and Wnt signaling pathways are believed to be 

involved in cyclin and CDK expression in the islets183.  FoxO1 is found to inhibit β- cell 

proliferation and it is partially mediated by enhanced expression of p27Kip1. It is 

suggested that FoxO negatively regulates β- cell proliferation by controlling the 

expression and function of proliferation enhancer, Pdx1. Signaling through the insulin / 

IGF pathway promotes the exclusion of FoxO1 from the nucleus thereby enhancing the 

expression, nuclear localization and activity of Pdx1. β- cell mitogens enhance 

intracellular Ca2+ and Ca2+ signaling mediates β- cell proliferation. Calcineurin/ NFATc 

signaling is suggested to be involved in the regulation of β- cell proliferation and there is 

some evidence that mitogens like glucose and GLP-1 are able to stimulate NFAT activity 

at the insulin promoter.  Menin is a tumor suppressor and loss of menin expression is 

found to be sufficient to trigger β- cell proliferation and subsequent islet hyperplasia. 

Menin regulates the expression of p18Ink4c and p27Kip thereby influencing β- cell 

growth and proliferation178.  

 

Though many of the factors and pathways involved in pancreatic development and β- cell 

growth and proliferation have been identified, most of them are yet to be fully 

characterized. Advances in understanding the factors which govern β- cell growth and 

maintenance would accelerate progress in generating successful therapies for a multitude 

of pathologies including type 1 diabetes. β- cell  mass at any given time is governed by 

neogenesis, cell differentiation, cell proliferation, cell size and cell death183. Improved in 
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vivo imaging would allow the quantification of β- cell mass, growth and death in both 

normal physiological states and in pathological conditions and the data would 

significantly contribute to the search for therapy. As mentioned earlier, an ideal therapy 

for type 1 diabetes would require the ability to achieve β- cell neogenesis and 

regeneration in parallel with immune tolerization approaches and a thorough knowledge 

of the whole process of pancreatic development is crucial for this.  

  

1.20 in vitro models for β-cell studies: 

 

As mentioned before, isolation and purification of β- cells is a tedious process. Once in 

culture, primary β- cells do not proliferate easily and since all cells have a finite life span, 

they soon submit to senescence and die.  It is also extremely hard to maintain the native 

characteristics of primary β- cells (eg. glucose responsiveness) in culture over time. 

Hence diabetes research has involved the use of β- cell tumour lines, which have an 

infinite life span. They are extremely useful in studying the molecular basis of β- cell 

function. They are also ideal tools for testing potential drugs for the development of 

therapeutic options. Cell culture offers research possibilities that are difficult to be 

performed in vivo. During cell culture, various parameters including culture conditions, 

cell growth and cell density can be kept controlled and the various secreted factors can be 

assayed from the culture media. A number of rodent, human and hamster β- cell lines are 

currently in use and most of them have been derived from insulinomas or neoplastic 

islets184, 185.  

 

β- cell lines have been generated using various transformation approaches including 

irradiation, viral infection and targeted expression of recombinant oncogenes. RIN and 

INS cell lines were derived from radiation treated rat cells.  Mouse cell lines including 

NIT-1 and MIN6 were generated from insulinomas of transgenic mice expressing the 

large T antigen of SV40. Though they are exceedingly useful β- cell research tools, they 

do not recapitulate primary β- cell physiology perfectly. A major disadvantage with the 

cell lines is the induction of hexokinase in the cells while in culture. Normal β- cells 

express the high-Km glucokinase isotype and this enables them to secrete insulin only 
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when the glucose concentration exceeds the physiological threshold. But the induction of 

low-Km hexokinase in the cell lines makes them responsive to sub physiological glucose 

levels. Hence compared to normal β- cells, most cell lines usually have a hypersensitivity 

to glucose. They have defective secretory characteristics and do not respond to glucose in 

the physiological range184, 185.  

 

For the purpose of this thesis, I would like to briefly describe the rat insulinoma cell line 

INS-1E and the mouse insulinoma cell line NIT-1. INS-1E cell line is a rat β- cell line 

that was derived from the parental INS- 1 cell line. INS-1 cell line was isolated from a 

radiation induced rat insulinoma186 and the cell line displays many important features of 

β- cells including high insulin content and glucose responsiveness within the 

physiological range185. But these cells were found to be heterogeneous and hence Janjic 

et al.187 improved on the original cell line by generating Ins-1E cell line based on their 

insulin content and also their secretory response to glucose. Later they characterized the 

cell line over a period of 2 years and found that the cells could maintain β- cell phenotype 

over 116 passages and that the glucose-induced response was dose dependent188. Menin 

has been found to inhibit insulin production in INS-1 cells189. 

 

NIT-1 cell line is derived from NOD/ Lt mice which are transgenic for the SV40 large T 

antigen under the control of RIP promoter and which develop β- cell adenomas184, 185. 

SV40 or Simian vacuolating virus 40 is a circular DNA virus, which is a member of the 

polyomavirus family. It is able to infect eukaryotic cells and has the potential to cause 

tumours. It is believed to suppress the transcription of the tumour suppressor p53 and 

hence is able to transform a variety of cell lines185. NIT-1 cell line expresses high levels 

of insulin mRNA but the cells are not responsive to glucose in the physiological range 

and the insulin secretion is responsive to the glucose concentration in the media. The 

cells when cultured shed a mature ecotropic type C virus190.  
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1.21 Relevance of a RIP- luciferase NOD mouse model: 

 

For the development of an effective therapeutic intervention for T1D, it is imperative that 

we have a clear understanding of the disease process as a whole, the main culprits and the 

critical checkpoints that are overridden in disease. Conventionally, the investigations 

have used an approach where representative groups of animals are sacrificed at required 

time points for analyses and data collection. This approach carries some disadvantages in 

that the number of animals which are required for each experiment is high, which might 

put limitations on the scope of experiments as well as the frequency.  

 

Type 1 diabetes is caused by the destruction of β- cells by the immune system and one of 

the most promising therapeutic strategies being intensively pursued is endogenous β- cell 

regeneration. Hence the ability to monitor β- cell mass either in the normal course of 

disease development or in the presence of therapeutic interventions is absolutely critical. 

The project proposes to address this issue by generating transgenic mice in the NOD 

background in which the β- cell mass can be imaged non- invasively using 

bioluminescence. In vivo imaging of luciferase expressing cells is already well 

established191 and luciferase constructs have been used to transduce islets that were then 

monitored non-invasively post- transplantation 192, 193.  Also, transgenic mice which 

express mouse insulin promoter (MIP)/ RIP driven luciferase gene have been reported 

though the work has been done in mouse strains which are not T1D relevant194, 195. We 

propose to build on this concept by generating pancreas specific luciferase transgenic 

mice in the NOD background and combine it with pancreas specific silencing of target 

genes. The mice will express the luciferase gene in the pancreas under the control of rat 

insulin promoter (RIP). We anticipate that during the normal course of the disease 

development, beta cells are destroyed over time and this should lead to reduced 

luminescence intensity with time. This strategy will also be used to generate transgenic 

mice in which target genes are constitutively silenced exclusively in the beta cells using 

RNA interference (RNAi). The approach would facilitate the non-invasive monitoring of 

β- cell mass in NOD mice and simultaneously allow beta cell specific gene silencing.  
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1.22 Bioluminescence Imaging (BLI): 

 

Bioluminescence is the process by which visible light is emitted by living organisms. 

Bioluminescence imaging (BLI) is widely used in the study of biological processes as it 

allows non- invasive imaging eliminating the need for killing the animal and as multiple 

measurements can be obtained from the same animal over time, this reduces the 

biological variations. A number of bioluminescent systems have been identified in nature 

so far and the most widely used luciferase is from the North American firefly (Photinus 

pyralis).  The enzyme is usually expressed as a molecular reporter in vivo and the 

imaging includes the detection of visible light, which is produced when the enzyme 

causes the oxidation of its substrate196. In systems using firefly luciferase as the reporter, 

the substrate D- luciferin has to be injected into the animal before imaging. Lipshutz et 

al.197 reported that firefly luciferase has a half-life of about 3 hours in vivo. The reaction 

has been found to require ATP and magnesium in addition to the substrate198 and the light 

emission is found to peak at around 560 nm199.  In the presence of magnesium and ATP, 

firefly luciferase causes the oxidation of luciferin and the reaction releases photons. In 

their review, Sadikot and Blackwell196 explain that the emitted photons can be detected 

by a charge coupled device (CCD) camera, which can convert the emitted photons into 

electrons and then spatially encode the intensity of the photons into electrical charge 

patterns and thus generate an image. 

 

Bioluminescence imaging is economical, non- invasive and easy to execute196. Also, it is 

completely non- toxic and hence it is an ideal approach for long term studies in living 

cells, tissues and animal models. Another important advantage is the high sensitivity due 

to the low background levels of bioluminescence in mammalian tissues.  But the 

approach has several disadvantages as well. Bioluminescent reporters are dimmer than 

fluorescent reporters and hence the resolution is limited. The limited transmission of light 

through animal tissues and the loss of photon intensity with increasing tissue depth is 

another consideration to be overcome. And the sources which are closer to the surface 

appear brighter compared with sources which are located deeper196, 200.  
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1.23 Menin as a modulator of β- cell growth and proliferation: 

 

As mentioned earlier, menin is a transcriptional regulator, which is highly conserved 

across vertebrates and which is found to regulate β- cell proliferation. It shares little 

homology with other known proteins201, 202. In both mice and rats, the protein is broadly 

expressed and expression is observed in almost all tissues with the highest expression in 

neuroendocrine and haematopoietic cells178, 203. Both human menin and rat menin consist 

of 610 amino acids while mouse menin has 611 amino acids. Mouse menin shows an 

overall identity of 96.5% to the to the human protein while rat menin shows an overall 

identity of 97%. Four distinct conservational domains including domain A, domain B, 

domain C and domain D have been identified. Domains A and C- terminal domain D in 

mouse and are highly identical to their human counterparts while short domain C is quite 

divergent between humans and the two rodent species. Domain B shows a small sequence 

divergence in comparison with domain C. The presence of at least two different menin 

splice variants have been identified in all species and these include the long λ transcript 

(2.4 kb product) and the short σ transcript (2.0 kb product). Both are found to be co 

expressed in a variety of tissues203.  

 

Menin is believed to be critical for haematopoiesis, consistent with its high expression in 

haematopoietic cells. Novotny et al.204 observed that menin deficient embryonic stem cell 

lines were unable to undergo proper differentiation into haematopoietic colonies and that 

the differentiation could be reinstated with the reexpression of menin or Hoxa9 leading 

them to conclude that Hoxa9 mediates menin’s function. Maillard et al.205 recently 

reported that menin has only modest effects on haematopoiesis in steady- state conditions 

and they noted a decrease in neutrophils, lymphocyte and platelet numbers on menin 

ablation. However they observed that despite normal initial homing of menin deficient 

progenitors to the bone marrow, there was a marked functional defect in the long-term 

haematopoietic stem cells (HSC) in the context of bone marrow transplantation. This 

suggested that menin is involved in regulating the molecular pathways, which are 

essential during the adaptive HSC response to stress.  
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 Recent studies have identified a critical role for menin in endocrine pancreas. Yan et 

al.206 reported that menin is able to interact with IQGAP1 (IQ motif containing GTPase 

activating protein 1) and enhance the intracellular adhesion of β- cells. Chen et al.207 

suggests that menin has an essential role in Wnt/ β- catenin signaling and that activation 

of the Wnt/ β- catenin signaling can inhibit islet cell proliferation.  Multiple endocrine 

neoplasia type 1 (MEN1) is a tumor syndrome characterized by tumors in multiple 

endocrine organs including parathyroids, anterior pituitary and endocrine pancreas208 

(OMIM 131100). Thakker et al.209 reported that pancreatic islet tumors occur in 30%- 

80% of MEN1 patients and can be a major cause of death in those patients. The condition 

arises from mutations in the gene Men1 that codes for menin. It has been reported that 

80% of the mutations cause loss of protein function210. The remaining 20% is believed to 

involve missense mutations, which result in the mutant protein degradation211.  

 

Larsson et al.212 reported loss of heterozygosity in germline and somatic Men1 mutations 

which gave the indication that Men1 gene is a tumor suppressor. Lin et al.213 

demonstrated that the loss of menin in primary human fibroblasts, when complemented 

with the expression of SV40 large and small T antigen and oncogenic ras, led to a 

transformed phenotype. They reported that menin acts as a direct repressor of hTERT, the 

protein component of telomerase enzyme. Supporting the role of menin as a tumor 

suppressor, homozygous loss of menin in mice causes the death of embryos between 

embryonic day 11.5 to 13.5 and the embryos exhibit several severe developmental 

defects214. Heterozygote Men1 knockout mice gestate normally but after 9-16 months, 

they develop endocrine tumors, which are similar to the ones observed in MEN1 

disease214, 215. To further analyze the role of menin, conditional knockouts in which Men1 

gene was disrupted specifically in the pancreatic islets were generated and these mice 

were reported to develop multiple insulinomas along with elevated serum insulin levels 

and reduced blood glucose levels216, 217. Scacheri et al.218 generated mice with tissue-

specific homozygous loss of menin in the liver but did not observe any tumor formation 

causing them to conclude that Men1 loss might be critical only in endocrine tissues. 

Scacheri et al.219 recently analyzed the genome wide menin binding patterns and found 
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that menin could occupy the promoter regions of thousands of human genes suggesting a 

role for menin as a global regulator of transcription. They also found that the specific bias 

for endocrine tumour formation upon menin loss might be due to the dysregulation of 

distinct genes including HLXB9, that are targeted by menin only in the endocrine tissues.  

 

Karnik et al.220 showed that though the Men1+/-  islets were phenotypically similar to the 

wild type islets, at around 7 months of age, they showed increased BrdU uptake and there 

was islet hyperplasia and hypoglycemia in the mice. It has been reported that menin 

regulates pancreatic islet growth by promoting the expression of cyclin dependent kinase 

inhibitors p27 and p18220. The ability of menin to bind and enhance the expression of 

caspase 8221 has also been reported as a probable mechanism that prevents the 

transformation process. Menin has been shown to interact with a number of transcription 

factors and co- factors including JunD222, Smad1, Smad3, Smad5 223, 224 and MLL1 and 

MLL2225 thereby suggesting a role for it in transcriptional regulation. Menin is reported 

to form a protein complex with the trithorax group members MLL and MLL2 and the 

complex is able to methylate histone H3 on lysine 4. The methylation is associated with 

transcriptional activation and it is believed that menin stimulates histone 

methyltransferase activity of trithorax group containing complexes and thereby inhibit 

endocrine cell growth178, 220.  

 

Schnepp et al.226 reported that depletion of Men1 accelerates S phase entry and this was 

followed by increased cyclin-dependent kinase 2 (CDK2) activity and decreased 

expression of p27 and p18. They also reported that pancreatic islet cells display increased 

proliferation as early as 7 days following Men1 depletion. Recently menin was 

discovered to play a role in controlling the islet cell mass in pregnant mice. It was 

reported that during pregnancy stimulated proliferation of maternal pancreatic islets, 

menin and its targets are repressed by prolactin via STAT5 signaling. Transgenic 

expression of menin in maternal β-cells prevented the expansion process leading to 

hyperglycemia and gestational diabetes227. Recently Yang et al.228 reported that men1 

excision could prevent STZ induced hyperglycemia in mice by increasing the number of 

functional beta cells. They observed an increase in islet size, beta cell proliferation and 
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circulating insulin levels upon men1 excision. In a related study, they also observed that 

men1 excision could cure mice from pre existing hyperglycemia, whether it is 

spontaneous or induced229.  

 

In view of all this research, Men1 is a potential target gene, the knockdown of which can 

be used to study β- cell proliferation and regeneration in the bioluminescent NOD mouse.  

We hypothesized that reducing Men1 expression during T1D onset may prevent or at 

least delay hyperglycemia. Recently Fontanière et al.208 reported that menin is essential 

for the proper development of pancreatic endocrine cells and that loss of menin led to 

failure of the endocrine cell development and altered pancreatic structure. Hence a 

complete disruption of menin may be deleterious due to the potential to cause islet 

dysfunction or malignancies. But the partial reduction, which can be achieved by RNAi, 

could have the benefit of achieving increased β-cell mass and insulin production while 

minimizing the risk of insulinoma development. The ability to monitor beta cell mass by 

BLI was expected to enable us to effectively study how the loss of this regulatory gene 

affects β-cell survival and regeneration in T1D.  

 

1.24 AIM: 
 

We aimed to generate a transgenic β -cell specific reporter mouse line in the NOD 

background. Several groups had already generated transgenic mouse lines with β -cell 

specific expression of luciferase. But none of these reporter mice have been generated in 

the diabetes susceptible NOD background. Hence we aimed to generate a NOD β -cell 

reporter mouse line using lentiviral transgenesis. In addition, we aimed to couple β-cell 

specific luciferase expression with β -cell specific knockdown of target genes. For this 

purpose, we used a construct that carried the luciferase gene and an shRNA expression 

cassette under the β -cell specific RIP promoter. Hence by using a single construct, we 

could ensure specific knockdown target genes in the pancreas and use bioimaging to look 

at the effects of gene knockdown over time. This strategy would allow us to non- 

invasively study β-cell modulation via RNAi using luciferase bioimaging. We decided to 

use menin as a target gene for RNAi to enhance β-cell proliferation and aimed to verify 
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the enhanced β-cell proliferation on menin knockdown in insulinoma cells in vitro as a 

first step and then aimed to generate menin knockdown mice in the pRLM background.  
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Chapter 2 

 

MATERIALS 
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2.1 Chemicals: 

 
CHEMICAL 

 

SUPPLIER 

30% acrylamide solution BioRad 

Agarose Roth 

Beta mercaptoethanol Roth 

Brefeldin A Sigma 

BSA Sigma 

CaCl2 Roth 

Chloroform Roth 

Cyclophosphamide monohydrate Sigma 

DMSO AppliChem 

D-luciferin Gold Biotech 

Dithizone Sigma-Aldrich 

Ethanol Roth 

Ethidium bromide Roth 

EDTA Roth 

Glycine Roth 

Glycerol Roth 

H2SO2 Roth 

H3-thymidine Hartmann Analytic 

Isofluran cp-pharma 

Isopropanol Roth 

Ionomycin Sigma 

KCl Roth 

Ketamine (Ketanest) Pfizer 

KHCO3 Roth 

Methanol Roth 
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MgCl2 Roth 

NaCl Roth 

Na2-EDTA Roth 

NaHCO3 Sigma 

Na2HPO4x2H2O Roth 

NaH2PO4xH2O Roth 

NaOH Roth 

NH4Cl Roth 

PMA Sigma 

Salmon sperm DNA Sigma 

SDS Roth 

Sodium citrate Sigma 

Streptozotocin Sigma 

TEMED BioRad 

Tris Roth 

Tris-HCl Roth 

Tween20 Roth 

Xylazine (Rompun 2%) Bayer 

 

2.2 Reagents: 
 

2.2.1 Antibiotics and Hormones 

 
REAGENT 

 

SUPPLIER 

Ampicillin Roth 

Penicillin streptomycin solution Invitrogen 

Puromycin Roth 

PMS Sigma 

HCG Sigma 
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2.2.2 Bacterial strains and transfection reagents 

 
REAGENT SUPPLIER 

 

DH5α™ Invitrogen 

MAX Efficiency® DH5α™ Invitrogen 

Novablue Invitrogen/ Merck/ Novagen 

One Shot® TOP10 Invitrogen 

Fugene HD Roche 

Genejammer Agilent (Stratagene) 

Polybrene Sigma 

Polyfect Qiagen 

 

2.2.3 Cell culture reagents 

 
REAGENT SUPPLIER 

 

D-MEM GIBCO 

D-PBS GIBCO 

Enzyme-free Hank’s based cell dissociation 

buffer  

GIBCO 

FCS Invitrogen 

Glutamine Invitrogen 

Ham’s F-12K  Sigma-Aldrich 

HEPES GIBCO 

Histopaque Sigma-Aldrich 

Passive lysis buffer Promega 

RPMI-1640 GIBCO 
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Sodium pyruvate GIBCO 

Trypsin GIBCO 

 

2.2.4 Enzymes and PCR reagents 

 
REAGENT 

 

SUPPLIER 

AgeI, AluI, BamHI, EcoRI, EcoRV, Hpa1, 

NheI, NotI, PmeI, PstI, SalI, XhoI 
Fermentas 

PNK Fermentas 

CIAP Fermentas 

T4 DNA ligase, 10X ligase buffer Fermentas 

Dreamtaq polymerase, Dreamtaq buffer Fermentas 

dNTP Fermentas 

MgCl2 Fermentas 

RNase A Qiagen 

 

2.2.5 General reagents 

 
REAGENT 

 

SUPPLIER 

32P-α-dCTP Amersham GE Healthcare, UK 

Bromophenol blue Roth 

Buffer G, Buffer O Fermentas 

CFA Sigma 

Collagenase P Roche 

Compensation beads BD 

DNA ladder (1Kb plus) Fermentas 

DNA ladder (low range) Fermentas 
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Dual luciferase system Promega 

Dynabeads mouse T activator CD3/CD28 Invitrogen 

ECL Perkin Elmer 

ELISA 96 well plate Nunc 

MicroAmp clear adhesive film Applied Biosystems 

MOG peptide Biotrend 

Pertussis toxin Sigma 

Primer-probe pair Universal probe library, Roche 

Protease inhibitor cocktail Sigma 

Protein ladder BioRad 

Reaction plate (384 well clear optical) Applied Biosystems 

RNAlater Qiagen 

TE buffer Fluka Analytical 

Trans-Blot transfer medium nitrocellulose 

membrane 

BioRad 

HybondTM-N+ membrane Amersham GE Healthcare,UK 

Absolute Blue SYBR Green ROX mix  Thermo Scientific 

Trizol Invitrogen 

Universal probe master mix (ROX) Roche 

Whatman paper VWR 

X-ray film Fujifilm 

 

2.3 Antibodies: 
 

2.3.1 Western blot 

 
ANTIBODY 

 

SUPPLIER 

Rabbit anti menin Bethyl Laboratories 
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Anti rabbit HRP Santa Cruz Biotechnology 

 

2.3.2 Cell culture and FACS 

 
ANTIBODY 

 

SUPPLIER Concentration/ dilution  

Anti CD3 eBioscience 5µg/ml 

Anti CD28 eBioscience 1µg/ml 

Anti IL-4 eBioscience 1µg/ml 

Anti IFNg eBioscience 1µg/ml 

B220 PE BD 1:300 

B220 APC e780 eBioscience 1:400 

CD4 APC Cy7/ V500 BD 1:800 

CD4 APC eBioscience 1:800 

CD8 PE Cy7 BD 1:800 

CD8 e450 eBioscience 1:1600 

CD25 PerCp Cy5.5 eBioscience 1:300 

CD25 PE Cy7 BD 1:300 

CD44 PE Cy5.5 BD 1:300 

CD45 eFluor450 eBioscience 1:800 

CD62L PE eBioscience 1:300 

FoxP3 PE eBioscience 1:50 

IL-17A PE eBioscience 1:50 

IFNg APC BD 1:50 

TCR APC BD 1:300 

Anti CD16/32 (Fc block) eBioscience 1:100 

Purified anti mouse CD25 eBioscience 1µg/µl 

Purified anti mouse CD62L BioLegend 1µg/µl 
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2.4 Cytokines: 

 
CYTOKINE SUPPLIER 

 

rmIL-1b R&D 

IL-2 R&D 

IL-6 R&D 

IL-12 eBioscience 

IL-23 R&D 

rhTGF-b R&D 

 

2.5 cDNA and cell lines: 

 
REAGENT SUPPLIER 

 

IL-17A cDNA OpenBiosystems 

Mouse menin cDNA OpenBiosystems 

Rat menin cDNA OpenBiosystems 

293F Invitrogen 

INS-1E Kindly provided by Prof. Wollheim CB 

NIT-1 LGC Standards 

 

2.6 Kits: 
 

KIT SUPPLIER 

 

DNeasy blood and tissue kit Qiagen 

FoxP3 staining kit eBioscience 
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QIAquick Gel Extraction kit Qiagen 

Intracellular cytokine staining kit BD 

MACS separation kit (CD62L) Miltenyii Biotech 

QIAfilter Plasmid Maxi kit Qiagen 

QIAquick PCR purification kit Qiagen 

RNeasy kit Qiagen 

Transcriptor first strand DNA synthesis kit Roche 

Rediprime II labeling kit Amersham GE Healthcare UK 

Probe Quant G-50 MicroColumns  Amersham GE Healthcare, UK 
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2.7 PCR primers and probes: 
 

 

GAPDH:  fwd: 5’- agcttgtcatcaacgggaag-3’ 

                rev: 5’-tttgatgttagtggggtctcg-3’ 

                Probe: #9 

 

IL-17A: fwd: 5’-tgtgaaggtcaacctcaaagtct-3’ 

             rev: 5’- gagggatatctatcagggtcttcat-3’ 

             Probe: #50 

 

IL-17F: fwd: 5’- caagaaatcctggtccttcg-3’ 

             rev: 5’-gagcatcttctccaacctgaa-3’ 

             Probe: #45 

 

IL-21: fwd: 5’- tcagctccacaagatgtaaagg-3’ 

          rev: 5’- gccttctgaaaacaggcaaa-3’ 

          Probe: #100 

 

IFNg: fwd: 5’- atctggaggaactggcaaaa-3’ 

             rev: 5’- ttcaagacttcaaagagtctgaggta-3’ 

             Probe: #21 

 

RORgt: fwd: 5’- gcagaactgccccattga-3’ 

             rev: 5’-gacattcggccaaacttga-3’    

             Probe: #21 
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Hluc primers: fwd: 5’-atggccgatgctaagaacat-3’ 

                          rev: 5’- ggatgatctggttgccgaaa-3’ 

 

SCID primers: fwd: 5’- ggaaaagaattggtatccac-3’ 

                           rev: 5’- agttataacagctgggttggc-3’ 

 

 

2.8 shRNA sequences:  
 

IL-17 shRNA oligos (NM_010552) 
 

#176  

target – ccaaggacttcctccagaa 

fwd- tccaaggacttcctccagaattcaagagattctggaggaagtccttggttttttc 

rev- tcgagaaaaaaccaaggacttcctccagaatctcttgaattctggaggaagtccttgga 

 

#188  

target - tccagaatgtgaaggtcaa 

fwd- ttccagaatgtgaaggtcaattcaagagattgaccttcacattctggattttttc 

rev- tcgagaaaaaatccagaatgtgaaggtcaatctcttgaattgaccttcacattctggaa 

 

#203  

target - tcaacctcaaagtctttaa 

fwd- ttcaacctcaaagtctttaattcaagagattaaagactttgaggttgattttttc 

rev- tcgagaaaaaatcaacctcaaagtctttaatctcttgaattaaagactttgaggttgaa 

 

#288  

target - gactctccaccgcaatgaa 

fwd-tgactctccaccgcaatgaattcaagagattcattgcggtggagagtcttttttc 

rev- tcgagaaaaaagactctccaccgcaatgaatctcttgaattcattgcggtggagagtca 
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#303 

target – tgaagaccctgatagatat 

fwd- ttgaagaccctgatagatatttcaagagaatatctatcagggtcttcattttttc 

rev- tcgagaaaaaatgaagaccctgatagatattctcttgaaatatctatcagggtcttcaa 

 

#362 

target - gtgtcaatgcggagggaaa 

fwd- tgtgtcaatgcggagggaaattcaagagatttccctccgcattgacacttttttc 

rev- tcgagaaaaaagtgtcaatgcggagggaaatctcttgaatttccctccgcattgacaca 

 

#497  

target - gcacctgcgtggcctcgat 

fwd- tgcacctgcgtggcctcgatttcaagagaatcgaggccacgcaggtgcttttttc 

rev- tcgagaaaaaagcacctgcgtggcctcgattctcttgaaatcgaggccacgcaggtgca 
 

 

Menin shRNA oligos (NM_008583.1) 
 

Start position: 780  

22_mer: ggtctcggatgtcatatggaac  

tgctgttgacagtgagcgagtctcggatgtcatatggaactagtgaagccacagatgtagttccatatgacatccgagacctgcct

actgcctcgga  

 

Start position: 803  

22_mer: gcctcagccgctcctacttcaa  

tgctgttgacagtgagcgacctcagccgctcctacttcaatagtgaagccacagatgtattgaagtaggagcggctgaggctgcc

tactgcctcgga  
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Start position: 1170 

22_mer: cactgactctttggaactgttg 

tgctgttgacagtgagcgaactgactctttggaactgttgtagtgaagccacagatgtacaacagttccaaagagtcagtgtgcct

actgcctcgga 

 

Start position: 1206 

22_mer: gctgctctggctgctgtatgac 

tgctgttgacagtgagcgactgctctggctgctgtatgactagtgaagccacagatgtagtcatacagcagccagagcagctgcc

tactgcctcgga 

 

Start position: 1447  

22_mer: gacactgccactgttatccaag  

tgctgttgacagtgagcgaacactgccactgttatccaagtagtgaagccacagatgtacttggataacagtggcagtgtctgcct

actgcctcgga  

 

Start position: 1449  

22_mer: cactgccactgttatccaagac  

tgctgttgacagtgagcgaactgccactgttatccaagactagtgaagccacagatgtagtcttggataacagtggcagtgtgcct

actgcctcgga  

 

Start position: 2079 

22_mer: tttccagagtgagaagatgaaa 

tgctgttgacagtgagcgcttccagagtgagaagatgaaatagtgaagccacagatgtatttcatcttctcactctggaaatgccta

ctgcctcgga 

 

Start position: 2213  

22_mer: actacacactctctttcctaaa  

tgctgttgacagtgagcgcctacacactctctttcctaaatagtgaagccacagatgtatttaggaaagagagtgtgtagttgccta

ctgcctcgga 
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Start position: 2760  

22_mer: agctccgactcttatctgtgaa  

tgctgttgacagtgagcgcgctccgactcttatctgtgaatagtgaagccacagatgtattcacagataagagtcggagcttgcct

actgcctcgga  

  

2.9 Linker: 

 
Not1-Xho1 Linker sequence: 

 

5’ GGCCGATCTCGAGATC 3’ 

 
2.10 Buffers: 

 
ELISA: 
 

Wash solution for ELISA (PBS.Tween20) 

 

500 ml of 10X PBS is diluted with 4.5 L of distilled water to obtain 5L of 1X PBS. 2.5 

ml Tween20 is added to PBS to obtain a 0.05% wash solution.  

 

FACS &MACS: 
 

ACK lysis buffer 

 

Dissolve 8.29g ammonium chloride, 1.0g potassium bicarbonate and 37.3 mg Na2EDTA 

to 800ml of distilled water and adjust the pH to 7.2-7.4. Make up the volume to 1L with 

distilled water.  
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Annexin binding buffer 

 

Make 1L binding buffer containing 10mM Hepes (2.38g/L), 150mM NaCl (8.766g/L), 5 

mM KCl (0.372g/L), 1mM MgCl2 (0.203g/L) and 1.8mM CaCl2 (0.199g/L). Make up the 

volume with NaOH pH-7.4.  

 
MACS buffer 

 

Prepare a solution containing PBS pH-7.2, 0.5% FCS and 2mM EDTA.  

0.3722 gm EDTA is added to 500 ml PBS and left on a shaker at 50°C for 4-5 hours.  2.5 

ml FCS is added to the buffer, which is then filtered and stored at 4°C.  

 

PBS. EDTA for blood collection 

 

0.3722 gm EDTA is dissolved in 500 ml PBS to make a 2mM solution and it is then 

stored at 4°C.  

 

Southern Blot:  

 
10XSSC 

 Make a solution of pH 7.6: Sodium citrate 150 mM and NaCl 1.5 M. 

Denaturation buffer 

Make a solution of NaCl 1.5 M, NaOH 0.5 M. 

Neutralization buffer 

 

Make a solution of Tris-HCl 0.5M (pH 7.2), NaCl 1.5M and EDTA 1mM and autoclave. 
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Sodium phosphate buffer 0.5 M, pH7.2 

Make a solution of Na2HPO4x2H2O (1M) 34.2%, NaH2PO4xH2O (1M) 15.8% and adjust 

pH to 7.2.  

Church buffer 

Mix sodium phosphate buffer 0.25M, EDTA 1 mM, Bovine serum albumin (BSA) 1%, 

SDS 7% and salmon sperm DNA 0.1 mg/ml. 

Church wash (5L) 

 

Mix 200 ml 0.5M sodium phosphate buffer pH7.2 and 250 ml 20% SDS. 

 

Western Blot: 

 
SDS PAGE Running buffer 

 

To obtain a 10X solution, dissolve 10g SDS, 30.3g Tris and 144.1g glycine in 800ml 

distilled water. Adjust the volume to 1L with distilled water. Store at 4°C.  

 
Laemmli Buffer 

 
For a 2X solution, mix 10ml 1.5M Tris (pH-6.8), 6 ml 20% SDS, 30 ml glycerol, 15 ml 

β-mercaptoethanol and 1.8 mg bromophenol blue. Adjust the volume to 100ml with 

distilled water. Make 10ml aliquots and store at -20°C. Store the working solution at 4°C. 

 
Transfer buffer for wet blots 

 
For a 1X solution, dissolve 2.9 g glycine, 5.8 g Tris and 0.37 g SDS in 200 ml methanol. 

Adjust the volume to 1L with distilled water.  
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TBS.T 

 
Dissolve 6.05 g Tris (50 mM) and 8.76 g NaCl (150mM) in 800 ml of distilled water and 

adjust the pH to 7.5. To make 0.2% TBST, add 500 µl of Tween 20 to the solution and 

make up the volume to 1L with distilled water. 

 
Blocking solution for western blot 

 
Dissolve 5g of nonfat dried milk powder in 100ml of 0.2% TBST to obtain a 5% milk 

powder blocking solution. 

 

GENERAL BUFFERS: 

 
Na- citrate buffer 

 

Dissolve 1.47 gm of Na- citrate in 50 ml distilled water and adjust the pH to 4.5. Buffer 

should be made fresh with each round of streptozotocin injections. 

 

Cell depletion buffer 

 
Prepare a solution containing PBS pH-7.2, 0.1% FCS and 2mM EDTA.  

0.074 gm EDTA is added to 100 ml PBS and left on a shaker at 50°C for 4-5 hours.  100 

µl FCS is added to the buffer, which is then filtered and stored at 4°C.  
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Chapter 3 

 

METHODS 
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3. Experimental Techniques:  

 
3.1 Bacterial Culture Techniques: 
 

3.1.1Transformation of bacteria 

 

Transformation is done using competent bacterial cells.  The cells are thawed on 

ice and 1 µl of the DNA (ligation) is added to the cell suspension. The suspension 

is left on ice for a minimum of 30 minutes. The cells are then subjected to heat 

shock at 42°C for 60 seconds and immediately cooled on ice.150 µl of LB media 

with ampicillin is added to the suspension and the suspension is plated onto LB- 

ampicillin plates and incubated at 37°C overnight in an incubator. 

 

3.1.2 Miniprep preparation 

 

Nova Blue™ or Top10™ competent cells are transformed with the desired 

construct and cultured overnight to obtain colonies. The colonies are picked 

randomly and cultured in LB-ampicillin media (8 hours in the day or 16 hours in 

the night). The cultures are then spun down and used to make minipreps. 

 

3.1.3 Maxiprep preparation 

 

      For maxipreps, the positive minipreps are diluted 1:100 and used to transform 

either DH5α™ or MAX Efficiency® DH5α™ cells and are plated onto LB-

ampicillin plates and allowed to grow overnight. Colonies are picked and allowed 

to grow in LB- ampicillin media as above, following which 150 µl of the cultures 

are transferred to 2L flasks containing 150 ml of LB- ampicillin media and 

cultured overnight. The cultures are then spun down and used to make maxipreps 

with the Qiaquick maxi kit. The DNA is then resuspended in 200 µl distilled 

water or TE buffer. The concentration is checked using a spectrophotometer.  
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3.2 Molecular Biology Techniques: 
 

3.2.1 Cloning 

 

shRNA sequences targeting the protein of interest are designed using either 

primer3 program or using the RNAi central gateway. Forward and reverse oligos 

are obtained and then phosphorylated using PNK enzyme. The oligos are then 

annealed and cloned into a suitable vector. For this the vector is digested using 

suitable enzyme pairs and gel purified. The annealed oligos are purified using the 

PCR purification kit. The shRNA is then ligated with the digested vector using the 

ligase enzyme. The ligation is used to transform NovaBlue competent bacteria.  

 

3.2.2 Verification of insert- vector ligation 

 

The transformation of competent bacterial cells with the vector- insert ligations 

lead to the growth of bacterial colonies on the LB agar plates. These colonies 

have to be analyzed and the presence of the vector- insert sequence in the 

bacterial colonies verified. Before ligation, the vector sequence is cut with 

appropriate restriction enzymes and the phosphate group from the 5’ terminus is 

removed using alkaline phosphatase. This prevents the digested vector sequence 

from recircularising without taking up the insert. In principle, all bacterial 

colonies that grow should have taken up a vector-insert construct. This is because 

only those cells are able to grow on ampicillin plates owing to the presence of an 

ampicillin resistance gene in the vector. Though the addition of alkaline 

phosphatase prevents the vector sequences from religating, there is a possibility 

that sometimes the vector sequences ligate without taking up the insert. The 

bacterial cells that take up these recircularised vectors do not contain the insert, 

but are still able to grow on ampicillin plates. Hence it is critical to verify the 

presence of the insert in the bacterial cells before starting minipreps.  
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This is done using 2 different methods. The first one is restriction digestion of the 

minipreps. Here, bacterial colonies are randomly selected and minipreps are made 

from them. The DNA is then digested with the same enzyme pair used during 

cloning. The DNA samples are run on a gel after digestion. Only those minipreps 

containing the insert would give 2 bands on the gel, one corresponding to the 

vector backbone and the other a smaller band corresponding to the insert. The 

minipreps containing the recircularised vector would give a single band 

corresponding to the vector backbone. Those minipreps, which give 2 bands, are 

sent for sequencing to further verify that the vector- insert sequences are in the 

correct orientation.  

 

The second method is colony PCR. This method is more time saving and less 

labor intensive than restriction digestion. Here, small amounts of the bacterial 

colonies are used as template for a PCR reaction using primer sequences 

complementary to the appropriate vector. Only those colonies that have taken up 

the vector sequence would give an amplified product. The colonies with the 

vector- insert constructs would give a larger sized band compared to the colonies 

with recircularised vectors, owing to the presence of the insert. These colonies, 

which give the larger sized bands on gel, are then picked and used to make 

minipreps. Hence the additional work making minipreps from incorrect ligations 

can be avoided. The minipreps are then sent to sequencing for further validation.  

 

3.2.3 Luciferase assay 

 

For luciferase assay, 293F cells were plated out at a starting density of 2.5 X 105 

on 24 well plates. The next day, cells were co transfected with psi-check 2 

containing the target cDNA and the shRNA constructs. Psi-check 2 contains two 

luciferase sequences- a firefly luciferase (expressed constitutively and used for 

normalization purposes) and a renilla luciferase. The cDNA is cloned into the 3’ 

UTR of the renilla luciferase gene. 100 ng of the reporter (psi- check 2) along 

with 300 ng of the shRNA construct is used per well along with the transfection 
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reagent polyfect (Qiagen). The plates are left in the incubator for 2 days after 

which the cells are washed once with PBS and lysed with a passive lysis buffer 

(Promega). 5 µl of each sample is then transferred to an opaque 96 well plate and 

the luciferase activity is measured with a Fluostar Optima luminometer. For this, 

the dual luciferase system from Promega is used. The values obtained for firefly 

luciferase are used to normalize the values obtained for renilla luciferase. The 

sequences that give the lowest values for renilla luciferase are selected as they are 

expected to have the highest knockdown efficiencies.  

 

3.2.4 Tail DNA synthesis 

 

Tail DNA synthesis is done using the DNeasy Blood and Tissue kit from Qiagen. 

Tails samples are obtained from mice and they are placed in eppendorf tubes. To 

each tube, 180µl of buffer ATL is added along with 20µl Proteinase K. The tubes 

are vortexed and the samples are digested overnight at 56°C in a water bath.  The 

tubes are then vortexed and to each tube, 200µl buffer AL is added. The tubes are 

mixed thoroughly and 200µl ethanol (96-100%) is added. The mixture is then 

pipetted into a DNeasy mini spin column placed in a 2ml collection tube. 

Centrifuge at ≥8000 rpm for 1 minute. Discard the flow through and the collection 

tube. Place the column in a fresh 2 ml collection tube, add 500µl buffer AW1 and 

centrifuge at ≥ 8000 rpm for 1 minute. Discard flow through and collection tube. 

Place the column in a fresh collection tube, add 500µl buffer AW2 and centrifuge 

at 14000 rpm for 3 minutes. Discard flow through and collection tube. Place the 

column in a clean 1.5 ml eppendorf tube and add 200µl buffer AE directly onto 

the membrane. Incubate at room temperature for 1 minute and then centrifuge for 

1 minute at ≥8000 rpm to elute the DNA. 

 

3.2.5 RNA extraction  

 

Samples are usually resuspended in 1 ml trizol and frozen till needed. For RNA 

extraction, the samples are thawed and incubated at 15-30°C for 5 minutes. 0.2 ml 
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chloroform is added to each tube and the tubes are then shaken vigorously by 

hand for 15 seconds. The tubes are incubated at 15-30°C for 2-3 minutes and then 

centrifuged at 12000 G for 15 minutes at 2-8°C. The solution separates into a 

lower red phenol-chloroform phase, an interphase and an upper colorless aqueous 

phase, which contains the RNA. The aqueous phase is transferred into a fresh 

eppendorf tube. 0.5 ml isopropanol is added to the tubes and then incubated at 15-

30°C for 10 minutes. The samples are then centrifuged at 12000 G for 10 minutes 

at 2-8°C. The supernatant is removed and the pellet is resuspended in 1 ml 75% 

ethanol. The tubes are vortexed and centrifuged at 7500 G for 5 minutes at 2-8°C. 

The supernatant is then removed and the pellet is air-dried. 100µl distilled water 

is added to the tubes and RNA is dissolved by incubating the tubes at 55-60°C on 

a thermal shaker for 10 minutes. 

 

Alternatively, samples are saved frozen in 1ml of RNAlater RNA stabilization 

reagent from Qiagen. RNA is then extracted from these samples using the 

RNAeasy mini kit. The samples are first thawed and appropriate amounts are 

weighed out. 600µl buffer RLT is added to the samples which are then 

homogenized using a homogeniser. The lysates are then centrifuged at full speed 

for 3 minutes. The supernatants are transferred to fresh tubes. Equal volumes of 

70% ethanol are added to the tubes and mixed by pipetting. ≤700µl of the liquid is 

then transferred to an RNAeasy spin column placed in a 2 ml collection tube. The 

column is then centrifuged for 15 seconds at ≥8000 G and the flow through is 

discarded. The column is placed in a new 2 ml collection tube and 700µl buffer 

RW1 is added to the column. The column is centrifuged for 15 seconds at ≥8000 

G and the flow through is discarded.  The column is placed in a new 2 ml 

collection tube and 500µl buffer RPE is added. The column is centrifuged for 15 

seconds at ≥8000 G and the flow through is discarded. The column is placed in a 

new 2 ml collection tube and 500µl buffer RPE is added for a second time. The 

column is again centrifuged for 2 minutes at ≥8000 G and the flow through is 

discarded. The column is again placed in a new 2 ml collection tube and then 
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centrifuged for 1 minute at full speed. The collection tube is then discarded. The 

column is then placed in a fresh 1.5 ml eppendorf tube. 30-50µl RNAse free water 

is pipetted straight onto the membrane. The column is then centrifuged for 1 

minute at ≥8000 G to elute the RNA. 

 

3.2.6 cDNA Synthesis 

 

cDNA is synthesized using the Transcriptor First Strand cDNA Synthesis kit from 

Roche. Up to 1µg of RNA is used per reaction. In each reaction tube, 1µg of RNA 

is mixed with 2.5µM Anchored oligo (dT) primer and 60µM random hexamer 

primer. The volume is made up to 13µl. The RNA is then denatured by heating 

the tube for 10 minutes at 65°C in a thermal block cycler. The tube is then 

immediately cooled on ice. To the tube, a master mix containing 4µl reaction 

buffer, 20 units RNase inhibitor, 2µl of a 1mM dNTP mix and 10 units of reverse 

transcriptase enzyme is added. The final volume of each reaction is 20µl. The 

tubes are then centrifuged and the final reaction is done on a thermal cycler. The 

cycle involves 10 minutes at 25°C, 30 minutes at 55°C followed by 5 minutes at 

85°C. Placing the tubes on ice stops the reaction. The reaction mixture is then 

diluted 1:2 or 1:4. In cases where the mRNA expression levels are quite low, 

undiluted cDNA samples are used for qPCR. 

 

3.2.7 PCR 

 

Genomic PCR 

 

Genomic PCR is done on tail DNA samples obtained from mice. Genomic 

DNA is extracted from tail samples and subjected to PCR. For genotyping 

purposes, PCR is carried out using specific primers for example GFP, 

luciferase, SCID etc.  
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qPCR (Real time quantitative PCR) 

 

cDNA is synthesized using the first strand cDNA synthesis kit from 

Roche. cDNA is usually diluted 1:2 or 1:4 and used for qPCR. The 

reactions are done using the primer-probe pair systems from Roche 

Universal probe library and Universal probe master mix (ROX). PCR 

setup is done using QIAgility from Qiagen. The reactions are set up on a 

384 well plate and real time PCR is carried out using the ABI 7900HT 

sequence detection system from Applied Biosciences. Primers used are 

GAPDH (fwd: 5’- agcttgtcatcaacgggaag-3’, rev: 5’-tttgatgttagtggggtctcg-

3’, probe: #9); IL-17A (fwd: 5’-tgtgaaggtcaacctcaaagtct-3’, rev: 5’- 

gagggatatctatcagggtcttcat, probe: #50); IL-17F (fwd: 5’- 

caagaaatcctggtccttcg-3’, rev: 5’-gagcatcttctccaacctgaa-3’, probe: #45); IL-

21 (fwd: 5’- tcagctccacaagatgtaaagg-3’, rev: 5’- gccttctgaaaacaggcaaa-3’, 

probe- #100); IFNg (fwd: 5’- atctggaggaactggcaaaa-3’, rev: 5’- 

ttcaagacttcaaagagtctgaggta-3’, probe- #21); RORgt (fwd: 5’- 

gcagaactgccccattga-3’, rev: 5’-gacattcggccaaacttga-3’, probe: #21). 

 

For analyzing luciferase expression in mice organs, we use a slightly 

different protocol. Organs are taken out and immediately saved in 1.5 ml 

of RNAlater reagent. The organs are then stored at -20°. RNA is made 

from around 30 mg of dehydrated organs and cDNA is synthesized using 

the first strand cDNA synthesis kit. Undiluted cDNA is then subjected to 

real time PCR using the hluc primers and a SYBR green master mix 

instead of using specific probes. The reactions are set up on a 384 well 

plate and real time PCR is carried out using the ABI 7900HT sequence 

detection system from Applied Biosciences. 
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3.2.8 Western blot 

 

The blot is done using the Protean 3 system from BioRad. Samples are run on a 

12 % running gel. For preparation of the cell lysates, the cells are spun down and 

resuspended in a 1:10 mix of RIPA buffer (Sigma) with protease inhibitor 

cocktail, left on ice for 30 minutes with occasional shaking. The suspensions are 

then spun down; the supernatants are transferred to fresh tubes and frozen. The 

cell lysates are mixed with equal volumes of Laemmli buffer and boiled for 10 

minutes at 95°C. The samples are then loaded onto the gel along with a protein 

marker and the gel is run in the running chamber using the running buffer. Once 

the samples have run enough, the gel is removed from the chamber. The samples 

are then transferred to a nylon membrane in a transfer chamber with the transfer 

buffer and this usually takes an hour and a half. Once the transfer is complete, the 

membrane is cut to size and blocked for 1-2 hours at room temperature with a 5% 

milk powder solution. The primary antibody diluted in 5% milk powder solution 

is added at the end and the membrane is left overnight. The next day, the primary 

antibody solution is removed and the membrane is washed 4 times for 20 minutes 

with a 0.2% TBST solution. The secondary antibody is diluted in the milk powder 

solution and is added to the membrane and incubated for 1.5- 2 hours. The 

membrane is again washed with 0.2% TBST solution. The membrane is then 

incubated in the ECL (enzymatic chemiluminescence) reagent for a minute. The 

membrane is then exposed to a film that is then developed in a developer. 

Alternatively, the membrane is exposed to a camera and the image captured 

directly. 

 

3.2.9 Southern blot 

 

           Around 10µg of genomic DNA are digested overnight at 37°C with 25 U/sample 

of EcoRI restriction enzyme. Next day fragments are separated on a 1.0% agarose 

gel by electrophoresis for several hours and separation of the bands is documented 

together with a ruler on a UV imaging system (Herolab GmbH Laborgeraete, 
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Germany). The gel is left under UV for around 10 minutes to enhance DNA 

fragmentation and is then washed in denaturation solution 2 times for 20 minutes 

and finally in neutralization solution again 2 times for 20 minutes. DNA transfer 

is performed by capillarity in 20x SSC buffer on HybondTM-N+ membranes. 

Membranes are air-dried and the DNA is covalently bound to the membrane using 

a UV-linker (1200 J/m2, UV Stratalinker®1800, Stratagene, California).  

 

            Radioactive labelling of the probe: GFP sequence is cut out from pLBM vector 

using appropriate restriction enzymes and is gel purified. 50-100 ng of GFP is 

used as the probe. It is denatured at 95°C for 5 min and labelled with radioactive 
32P-α-dCTP (50 µCi) using the Rediprime II labelling kit (Amersham GE 

Healthcare, UK) according to the manufacturer’s instructions. To reduce 

unspecific background, unincorporated nucleotides are removed by gel filtration 

with Probe Quant G-50 MicroColumns. The probe is ready for hybridization 

reaction after denaturation at 95°C for 5 minutes. 

 

           Hybridization: Membranes containing the DNA samples are blocked for 2 hours in 

church buffer at 65°C in a water bath shaker and after 2 hours the labelled probe 

is added and hybridized for 16 hours under the same conditions. Next day 

membranes are washed twice for 20 minutes in church washing buffer. Signal is 

detected by exposure of the hybridised membrane to X-ray film for 5-7 days at -

80°C. 

 

3.2.10 ELISA 

 

ELISA kits were obtained from eBioscience and the 96 well plates from nunc. 

The assay was carried out following the manufacturer’s instructions. All the steps 

are followed by thorough wash steps and the incubation is done on a shaker. The 

plates are coated overnight with the capture antibody. For this, the antibody is 

resuspended in coating buffer and added to the wells and the plates are then left 

on a shaker at 4°C. The next day, the wells are washed thrice. Assay diluent is 
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added to the wells and left for an hour on the shaker. Top standard and its 

dilutions (7 dilutions of twofold starting from 1:2) are made with assay diluent 

along with sample dilutions when needed. The standards and the samples are 

added to the wells of the plate in replicates and left on the shaker for 2 hours. The 

plates are then washed. The detection antibody diluted in the assay diluent are 

added to the wells and left for an hour. Following this, the wells ware washed 

thoroughly. Diluted HRP antibody is added to the wells and left for 30 minutes. 

The wells are then thoroughly washed. TMB substrate is added to the wells and 

the plates are left on the shaker for the reaction to proceed. When suitable, the 

reaction is stopped by the addition of 2N sulfuric acid. The plates are then read in 

an ELISA reader.  

 

3.3  RNAi and Lentiviral Transgenesis Techniques: 
 

3.3.1 Lentivirus Production 

 

           The selected sequences are used to generate lentiviral vectors expressing the 

corresponding constructs. 293 F cells are plated on 15 cm plates and transfected 

the next day with the viral components and the shRNA construct. 3 µg pCMV-

VSVg, 3 µg RSV-rev, 4 µg pMDL-gag/pol and 5 µg pAdvantage are added to 1 

ml serum free media along with 20 µg of shRNA construct and 70 µl Fugene HD. 

The mixture is incubated at room temperature (RT) for 30 minutes and then 

pipetted onto the cells. Medium is replaced after 24 hours. Viral supernatant is 

collected, spun down and filtered both after 48 hours and 72 hours. Viral 

preparations are then ultra centrifuged and the supernatant is removed. Viral 

pellets are resuspended in 100 µl PBS by overnight incubation at 4°C. The virus 

samples are then aliquoted into eppendorf tubes, flash-frozen in liquid nitrogen 

and stored at -80°C. 1 µl of each virus sample is used for virus titrations.  
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3.3.2 Virus Titration 

 

                  293 F cells are plated on 6 well plates at a starting density of 4 x 105 cells/ well. 

The plates are left in the incubator overnight. 1 µl of the virus sample is added to 

the first well while 1:10 and 1:100 dilutions of the virus are used to infect the 

second and third wells respectively. The plates are left in the incubator for 2-3 

days after which, the percentage of infected cells is determined by FACS. The 

virus titers are calculated from the percentage of GFP+ cells.  

 

                   Calculation of virus titer:  

 

                   If 4 x 105 cells are plated out per well for infection, it is assumed that by the time 

of infection (addition of virus) next day, there would be around 8 x 105 cells per 

well. It is also assumed that one virus infects one cell and vice versa. 

 

                   If 30% of cells are GFP+ in the sample infected with 1µl of virus suspension, 

 

                   Number of virus particles in 1µl= 30 x 800000= 2.4 x 105 

                   Number of viral particles / ml= (2.4 x 105)  x 1000 

                    

                   Final virus titer= 2.4 x 108/ ml 

                    

3.3.3 Viral infection of cells 

 

For infection with the virus, cells are plated out on 24 well plates at a starting 

density of 2.5 x 105 cells/well. The plates are left overnight in the incubator. Virus 

is added to the cell media with or without polybrene. Due to the really slow 

growth of insulinoma cells, they are cultured for 2-3 days before infection with 

lentivirus. Polybrene seems to be toxic for both Ins-1E and NIT-1 cells and hence 

they are infected just with the virus in the absence of any transfection reagent. 
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The cells are cultured and passaged when needed and are used for various 

analyses. 

 

3.3.4 Generation of transgenic mice 

 

The virus samples with titers above 1x108 viral particles/ ml are used to inject 

embryos and generate transgenic mice. Female mice are injected I.P. with 

pregnant mares serum (PMG) and 48 hours later, with human chorionic 

gonadotropin (HCG). They are then mated with males overnight. The next day, 

oviducts are excised from the female mice and the embryos are collected under a 

microscope.  

 

Viral particles are injected into the perivitelline space of single celled embryos. 

The embryos are then implanted into pseudopregnant female recipients, which 

then carry them to term.  

 

3.4  Immunology Techniques: 

 
3.4.1 Purification of CD4+CD62L+ T cells 

 

Naïve T cells are isolated using the CD4+CD62L+ T cell isolation kit from 

Miltenyi biotech using the kit protocol. A single cell suspension is made from 

pooled lymph node and spleen cells. Up to 108 cells are resuspended in MACS 

buffer to which the 100µl CD4+ T cell biotin-antibody cocktail is added. The 

cells are incubated in the fridge from 10 minutes. To the suspension, 300 µl 

MACS buffer and 200µl anti-biotin micro beads are added. After an incubation of 

15 minutes in the fridge, the cells are washed after the addition of 10 ml MACS 

buffer. The cells are then resuspended in 500 µl MACS buffer. Depletion of non-

CD4+ cells is accomplished using a LS column. The LS column is placed in the 

magnetic filed of a MACS separator and the column is rinsed by the addition of 

3ml of MACS buffer. The cell suspension is then applied onto the column. The 
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unlabeled cells that pass through the column are collected into a tube and the 

column is washed 3 times with 3 ml of buffer. This contains the CD4+ T cell 

fraction. The CD4+ cells collected are spun down and resuspended in 800 µl of 

buffer to which 200 µl of CD62L micro beads are added. The cell suspension is 

then refrigerated for 15 minutes. The cells are then spun down after the addition 

of 10ml of buffer. Positive selection of CD4+CD62L+ cells is achieved through a 

second cycle of magnetic separation using an MS column. The MS column is 

placed in the magnetic filed of a separator and rinsed by the addition of 500 µl of 

buffer. The cell suspension is then applied to the column and the column is then 

washed 3 times with the addition of 500µl of buffer. This contains the non-

CD62L+ fraction. At the end of washing, the column is removed from the 

separator and placed on a falcon tube. 1 ml of buffer is pipetted into the column 

and pushing the plunger into the column flushes out the labeled CD4+CD62L+ T 

cells. The CD4+CD62L+ cells are resuspended in RPMI.  

 

3.4.2 T helper differentiation in vitro 

 

Lymph nodes and spleens are obtained from mice. The tissues are ground and the 

cells are then treated with an RBC lysis buffer to remove the red blood cells. The 

cells are then passed through a cell strainer to obtain a single cell suspension. The 

naïve CD4+CD62L+ cells obtained from MACS are resuspended in RPMI 

supplemented with 10% FCS, penicillin / streptomycin, glutamine, HEPES and 

sodium pyruvate. Differentiation is done on 24 well plates. 0.5-1 X 106 naïve T 

cells are plated out per well. The cells are then stimulated with 5µg/ ml anti CD3 

and 1µg/ ml anti CD28 in the presence of cytokines. The cytokine concentrations 

used for are as follows: Th17: TGFβ- 2ng/ml, IL-6- 30 ng/ ml, IL-23- 15 ng/ ml, 

IL-1β- 10 ng/ml, aIFNg- 1µg/ ml; Th1: IL-2- 2 ng/ ml, IL-12- 10 ng/ml, aIL-4- 

1µg/ ml. The cells are cultured for 5 days. On day 5, the cells are replated in 

restimulation media (RPMI supplemented with 10%FCS, penicillin/streptomycin, 

glutamine) and restimulated with ionomycin (750ng/ml) and phorbol- myristate- 

acetate (50ng/ml) for 4 hours in the presence or absence of Brefeldin-A (5 µg/ 
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ml). The cells restimulated in the presence of Brefeldin-A are used for 

intracellular cytokine staining. The media from the cells restimulated without 

Brefeldin-A are used for ELISA and trizol is added to the cells and RNA 

synthesized from these samples is used for real time PCR. 

 

3.4.3 aCD3/CD28 bead stimulation 

 

A single cell suspension is made from the spleens of mice. Splenocytes are then 

plated out on 24 well plates with aCD3/CD28 beads in the 2:1 bead to cell ratio. 

The cells are cultured for 2 days. The cells are then separated from beads, spun 

down and the supernatants are used for ELISA. 

       

3.4.4 MOG peptide stimulation 

 

Splenocytes from MOG35-55 immunized mice are stimulated with MOG35-55 

peptide (10µg/ ml). The cells are cultured for a period of 2 days. The supernatants 

are collected and used for ELISA. 

 

3.4.5 Cell depletion and NOD-SCID transfer 

 

6-week-old NOD-SCID mice are used for transfer studies. CD25 and CD62Lhi 

depleted splenocytes are transferred from either wt or transgenic mice into the 

recipient NOD-SCID mice. Spleens are first obtained from groups of mice and are 

ground to make single cell suspensions. The cells are then pooled and counted 

after which they are spun down and resuspended in 1 ml depletion buffer. 10 µg 

each of CD25 antibody and CD62L antibody is then added to the cell suspension. 

The cells are then incubated on a roller for 20 minutes at 4°C. The cells are 

washed with 4 ml depletion buffer, spun down and resuspended in 1 ml depletion 

buffer.  
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Antibody bound cells are depleted from the cell suspension using sheep anti- rat 

IgG dynabeads. 50 µl dynabeads is used per 107 cells. Required volume of 

dynabeads is taken out and washed with depletion buffer. The beads are then 

resuspended in the initial volume of depletion buffer and required volume of the 

dynabeads is added to the cell suspension. It is then incubated on a roller for 30 

minutes at 4°C. 1 ml of depletion buffer is added to the cell suspension and the 

tube is then placed in a magnet. The bead bound cells stick to the magnet while 

the unbound cells remain in the suspension and can be decanted. The beads are 

washed thoroughly several times to obtain all unbound cells. The cell suspension 

containing unbound cells is then spun down and this would contain the CD25/ 

CD62Lhi double negative cells. Cells are then resuspended in PBS at the desired 

concentration and injected into the tail veins of NOD- SCID recipients (used 

1x107 cells per mouse).   

 

3.4.6 Islet isolation and in vitro culture 

 

Pancreata are digested using Collagenase P and the islets are isolated according to 

the protocol from Bluestone lab230. The islets are purified using histopaque. The 

purified islets are then resuspended in RPMI-10 and cultured using the basic 

protocol from DiLorezo lab231with modifications. The islets are resuspended in 

RPMI 10 with 50 units of IL-2/ml and cultured on 24 well plates overnight. The 

next day, the cell suspension is passed through a 40µm strainer and the filtrate is 

then spun down. The pelleted cells are resuspended in the restimulation media and 

restimulated for 4 hours with PMA (50ng/ml) and ionomycin (750ng/ml) with or 

without Brefeldin-A. The samples are then used for intracellular cytokine 

staining, ELISA or qPCR. 

 

3.4.7 FACS analyses 

    

       Extracellular Staining: Single cell suspension is prepared from mouse 

organs. The cells are spun down and the cell number is counted. Required 
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numbers of cells are resuspended in PBS. The cells are blocked for 10 

minutes at 4°C with an Fc blocking antibody to prevent excessive antibody 

binding. A mix of the desired antibodies for staining is made and added to the 

cell suspension. The cells are stained for 30 minutes at 4°C. The cells are then 

washed twice with PBS and analyzed using a FACS Canto. 

 

      Intracellular Staining: FoxP3 staining is done using the FoxP3 staining kit 

from eBioscience. The intracellular cytokine staining is done using the 

intracellular cytokine staining kit from BD.  

 

3.5  Bioimaging Techniques: 
 

3.5.1 Preparation of D-luciferin/ Anesthetic mixture 

 

The anesthetic is prepared by mixing 10 ml of PBS with 8 ml Ketamine 

(25mg/ml) and 2 ml Xylazine (2%). It is recommended to use 5 µl of D-luciferin 

(dissolved in PBS at 30mg/ml) along with 10 µl of anesthetic per gram of body 

weight. For a mouse weighing 30 grams, 300 µl of anesthetic is mixed with 150 

µl of luciferin. During our experiments, we found out that the anesthetic 

concentration was mostly high enough to be fatal and hence started using 4µl 

anesthetic instead of 10µl per gram of body weight. The luciferase signal from 

our mouse line was also very high and hence we modified the protocol to use 3µl 

luciferin per gram of body weight. 

  

3.5.2 Imaging of cultured cells 

 

Cells are cultured in 24 well plates and 2 µl of D-luciferin is added to each well 

just prior to imaging. 
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3.5.3 Imaging of whole mouse 

 

The anesthetic/ D-luciferin mix is prepared as above. The appropriate amount of 

the mix to be injected is calculated and injected I.P. prior to imaging. As 

sometimes mice die during imaging, around 70-75% of the recommended dose of 

anesthetic- luciferin mix is injected to avoid unnecessary death. The time of 

injection is noted and the first image is taken at 10 minutes after injection. The 

earlier images were taken using Night Owl Molecular Light Imager from EG&G 

Berthold. With this machine, the images were acquired and processed using the 

WinLight 32 software. The first image was taken with a 20 second exposure time 

and the second image was taken immediately after with a 1-minute exposure time. 

Halfway through the project, we were able to obtain IVIS® Spectrum, a high end 

imaging system from Caliper Lifesciences. In this case, the images were acquired 

and processed using the Living Image® 4.1 software and we used a one second 

exposure time. We were able to pick up a strong signal from the thymi of 

luciferase positive mice with the IVIS system, which we were unable to do with 

the Night Owl imager. 

 

3.6  Cell Culture Techniques: 
 

3.6.1 Preparation of media 

 

293F Media:  

 

25 ml FCS is filtered into 500 ml DMEM. To the bottle, penicillin/streptomycin 

and glutamine are added. The media is stored at 4°C. 
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Ins-1E Media: 

 

RPMI- 1640 media is supplemented with 10% FCS, P/S, glutamine, HEPES 

(5mM), sodium pyruvate (0.5mM) and 2- mercaptoethanol (25µM). The media is 

then stored at 4°C.  

       

NIT-1 Media: 

 

1 vial of nutrient mixture F-12 Ham Kaighn’s modification (Ham’s F-12K) 

powder is resuspended in 500 ml autoclaved water. 1.5 g of sodium bicarbonate is 

added to the solution and it is then filtered and split into 2 bottles each of 250 ml. 

To each bottle 25 ml of filtered FCS, penicillin/streptomycin and glutamine are 

added. The media is stored at 4°C. 

 

3.6.2 Cell culture and passaging 

 

293 F Cell Line: 

 

           The 293 F human embryonic kidney cell line is maintained on advanced DMEM 

supplemented with 5% FCS, penicillin/ streptomycin (P/S) and glutamine in 10 

cm plates. The cells are passaged every 3 days. For this, the media is removed by 

aspiration; the cells are washed with PBS and trypsinized with 1 ml trypsin. 

Trypsin is then inactivated by addition of 9 ml media. 1 ml of cell suspension 

from the plate is transferred to a new plate along with 9 ml fresh media to obtain a 

1:10 ratio. The plates are maintained in the incubator at 37°C and at 5% CO2 

concentration. 
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INS-1E Cell Line: 

 

                  Ins-1E cell line is maintained on RPMI- 1640 media supplemented with 10% FCS, 

P/S, glutamine, HEPES, sodium pyruvate and 2- mercaptoethanol. Media is 

renewed every 3 days. Since the cell line grows slower than HEK cells, the cells 

are passaged every 5-7 days depending on the confluency. Instead of using 1 ml, 2 

ml of the cells are used to plate out fresh plates. The plates are maintained in the 

incubator at 37°C and at 5% CO2 concentration. 

 

NIT-1 Cell Line: 

 

NIT-1 cell line is maintained on Ham's F12K medium with 2 mM L-glutamine 

adjusted to contain 1.5g/L sodium bicarbonate and heat-inactivated dialyzed fetal 

bovine serum, 10%. The cell line grows considerably slow; the cells are passaged 

every 7-8 days depending on confluency. Fresh media is added every 3 days. The 

cells are maintained in 25ml TC flasks in a volume of 5 ml. Cells are found to 

grow better in TC flasks compared to plates. For passaging, the cells are 

dissociated using an enzyme- free Hank’s- based cell dissociation buffer (GIBCO) 

instead of trypsin. The cells are incubated with the buffer for 4-5 minutes; the 

flasks are tapped vigorously to dissociate the cells. The cells are resuspended in 

media, spun down and replated in fresh media. As with INS-1E cells, cells are 

plated out at a 1:5 ratio. 

 

3.6.3 Puromycin selection 

 

The cells are fist cultured on 24 well plates and infected with virus containing the 

puromycin construct. The media containing the virus is removed and the cells are 

maintained on normal media till they are really confluent. Once they are 

confluent, the normal media is replaced with media containing puromycin. The 

cells are maintained in the puromycin media for a while to ensure proper removal 

of puromycin susceptible non-infected cells. The cells are transferred to 6 well 
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plates and then to 10 cm plates or 5 ml TC flasks once they start getting confluent. 

Finally the puromycin media is removed and the selected cells are then 

maintained in normal media.  

 

The puromycin concentrations to be used are determined by puromycin titrations 

of WT cells. The highest concentration where the cells are still surviving is 

selected. For Ins-1E cells, a concentration of 1µg/ ml is used; while for NIT-1 

cells, a concentration of 0.5µg/ ml is used. For 293F cells, a concentration of 5µg/ 

ml is used. 

 

3.7  General assay techniques: 
 

3.7.1 PI/ AnnexinV Staining for apoptosis 

 

The staining is done on serum-starved cells, as cell death is more dramatic 

compared to cells grown in the presence of serum. The cells are cultured in serum 

deficient media, are harvested over time and the apoptosis levels are analyzed by 

staining with PI and annexin. The cells are first manually dissociated and washed 

once with PBS followed by 1 ml of annexin binding buffer. The cells are then 

spun down and resuspended with 1:50 dilution of Annexin-PE antibody and 

stained for 15 minutes in the dark at room temperature. The cells are then washed 

once with PBS and stained with a 1:50 dilution of PI for 30 minutes in the dark at 

room temperature. The cells are then washed once with PBS and analyzed by 

FACS. 

 

3.7.2 PI Staining for cell cycle analyses 

 

The cells are washed with PBS and spun down. To the cells, 3 ml of ice cold 70% 

ethanol is added drop wise while vortexing at a slow speed. The cells are then 

incubated for 30 minutes on ice at the end of which they are washed once with 

PBS. A 1:50 dilution of PI is then added to the cells. 1µl RNase enzyme is also 
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added to ensure the degradation of RNA in the sample. Incubation is done for 30 

minutes in the dark at room temperature. The cells are then washed once with 

PBS and analyzed by FACS.  

 

3.7.3 EFluor670 Staining 

 

0.5µM eFluor670 is resuspended in 1ml of PBS without FCS. 106 cells are then 

resuspended in the eFluor670 solution and stained for 10 minutes in the dark at 

37°C. The cells are then washed twice with PBS containing 1%FCS, resuspended 

in media and plated out. Usually around 2X105 cells are plated out per well of a 

24 well plate.  

 

3.7.4 Cyclophosphamide (CY) Injection 

 

For CY induced diabetes studies, mice older than 6 weeks are used. A solution of 

20mg/ml CY in PBS is prepared. The tube is left on a roller for 1-2 hours to 

ensure complete dissolution of CY in PBS. 2mg of CY per 10 gm of body weight 

has to be injected I.P. The mice are given a second injection of CY 14 days into 

the time course, if desired.  

 

3.7.5 High dose Streptozotocin (STZ) Injection 

 

High dose STZ injections were done according to the AMDCC protocol232. Mice 

are fasted for 4 hours prior to injection. Appropriate amount of STZ is weighed 

out and added immediately before injection to sodium citrate buffer to obtain a 

final concentration of 22.5 mg/ml. This is done as STZ degrades within 15-20 

minutes in the solution. The mice are usually lightly anaesthetized with isoflurane 

and the appropriate amount of the STZ solution is injected I.P. The final dosage 

required is 150mg STZ per kg of body weight. The injection usually leads to a 

peak in insulin release and hence mice are provided with 10% sucrose water 
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overnight to prevent hypoglycemia. The mice are tested 2 days later for 

hyperglycemia.  
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Analyzing the role of IL-17A in autoimmune diabetes 

 
As mentioned in the introduction, Th17 cells are reported to be pathogenic in a variety of 

autoimmune diseases mainly by way of their primary effector cytokine IL-17A. IL-17A 

deficient mice are found to be partially protected from experimental models of MS and 

rheumatoid arthritis242, 261. This has led the scientific community to believe that IL-17A 

might be pathogenic in other autoimmune diseases as well. Though a number of studies 

have already suggested a pathogenic role for this cytokine in type 1 diabetes171- 176, none 

of these results seem to show a direct link between IL-17A and autoimmune diabetes. 

The remarkable plasticity observed in Th17 cells seems to further complicate the 

scenario. Hence, we decided to look at the relationship between Th17 cells and type 1 

diabetes in the context of IL-17A. We used the common model for type 1 diabetes, the 

NOD mouse. We felt that this would be an ideal system as these mice develop 

autoimmune diabetes spontaneously and the disease closely resembles type 1 diabetes in 

humans.  

 

We resorted to RNAi to generate transgenic NOD mice with reduced IL-17A expression, 

as we believe that it resembles the normal physiological state much better than a 

complete knockout of the protein. The idea was to follow diabetes development in the 

transgenic mice to see whether reduction in IL-17A levels by RNAi conferred protection 

from diabetes to these mice. If IL-17A is indeed pathogenic in type 1 diabetes as 

suggested, loss of this protein albeit not complete should be able to at least offer partial 

protection from type 1 diabetes.  

 

We first generated shRNA constructs targeting IL-17A and the knockdown efficiencies 

of these shRNAs were then verified in vitro. The construct that led to the highest 

knockdown was then used to generate lentivirus. The high titer lentivirus carrying the 

shRNA was then used to generate the transgenic mice. All these steps are detailed below. 
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4.1 Generation and validation of shRNA constructs 
 

We decided to opt for a ubiquitous expression of the shRNA.  Since no study has 

reported a role for IL-17A in the haematopoietic system or in lymphocyte development, 

we didn’t see the need to opt for cell specific knockdown or inducible knockdown of IL-

17A. Towards this purpose, shRNA was cloned into the pLBUG vector where it is under 

the control of a ubiquitous promoter leading to systemic expression of the shRNA and 

hence systemic knockdown of the protein.  

 

4.1.1 Generation of IL-17A shRNA construct: 

 

Several shRNA sequences directed against IL-17A coding sequence were designed using 

the algorithm available at RNAi Central244 and ordered from Sigma. The oligos were 

phosphorylated using PNK and then the forward and reverse oligos were annealed to 

obtain double stranded sequence. The shRNAs were then cloned into the pLBUG vector, 

obtained by replacing the CMV promoter upstream of GFP in pLB vector with a 

Ubiquitin promoter (Fig.1A). For cloning in the shRNAs, pLBUG was first digested with 

Hpa1/ Xho1 and the digests were run on a gel and the digested vector band was cut out 

and gel purified. shRNAs were then ligated with the digested vector at a 1:4 vector to 

insert ratio to generate pLBUG constructs containing the desired shRNA sequence. In the 

pLBUG-shRNA construct, the shRNA is under the control of the U6 promoter, which 

leads to systemic expression of the shRNA. The construct also has a GFP sequence under 

the control of another ubiquitous promoter, the ubiquitin promoter and hence GFP 

expression is used as a marker for shRNA expression (Fig.1B). 

  

Once the shRNA constructs are generated, the knockdown efficiencies of the shRNAs 

have to be tested. This is done using an in vitro assay for which the cDNA of interest has 

to be cloned into a reporter construct called psi-check2 (Fig.1C). The setup and the 

principle behind the assay are detailed below. IL-17A cDNA was cloned into the psi-

check2 vector to generate IL-17 psi-check.  
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IL-17 cDNA was obtained from Open Biosystems as a vector construct (pCR4-TOPO). 

The cDNA had to be cloned into the psi-check2 vector between Xho1/ Pme1 restriction 

sites.  Unfortunately, pCR4-TOPO containing IL-17 cDNA did not have an Xho1 

restriction site. To overcome this problem, we decided to cut pCR4-TOPO at the Not1 

site and insert a Not1- Xho1 linker into the construct. Not1-Xho1 linker was designed 

and obtained from Sigma. pCR4-TOPO was then digested with Not1 and ligated with the 

Not1-Xho1 linker. The ligations were used to transform bacteria and minipreps were 

made. pCR4-TOPO containing the linker was then digested with Xho1/Pme1, the 600bp 

IL-17 sequence was cut out and gel purified. Psi-check2 vector was simultaneously cut 

with Xho1/Pme1 and ligated with the IL-17 cDNA to generate the IL-17 psi-check 

(Fig.1D).  

 

Fig.1 

 

A.       B.  

 

 

  

 
C.    D. 

 

 

 

 

 
 

 

Fig1. A & B. Schematic diagram of pLB. pLBUG was generated by replacing the CMV upstream of GFP 

with Ubiquitin promoter. C. Schematic diagram of psi-check2. D. Schematic diagram of IL-17/ psi-check. 
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4.1.2 Verification of shRNA silencing efficiency and specificity in vitro by luciferase 

assay:  

 

To verify the knockdown efficiencies of cloned in shRNAs, luciferase assay is used. Psi-

check2 is a reporter construct having 2 luciferase sequences, a firefly luciferase sequence 

and a renilla luciferase sequence. Once mammalian cells are co- transfected with the 

shRNA construct and the psicheck-2 containing cDNA of interest, renilla luciferase 

expression is used as a marker to calculate the knockdown efficiency of the shRNA.  

 

The cDNA of interest is cloned into the 3’UTR of the renilla luciferase sequence in psi-

check2. 293 cells are then transfected with the psi-check2 reporter along with the 

different shRNA constructs. The cells are allowed to grow in culture over a period of ≥ 

48 hours. During this time, transcription results in the formation of mRNAs. Firefly 

luciferase is constitutively expressed. But since the cDNA is cloned into the 3’ UTR of 

renilla luciferase sequence, a fusion mRNA is formed. The shRNAs that are formed after 

transcription from the shRNA constructs can then bind to this fusion mRNA due to their 

complemetarity with the cDNA sequence. This results in cleavage of the fusion mRNA 

and this depends on the knockdown efficiency of the shRNA. The expression of renilla 

luciferase is inversely proportional to the knockdown efficiency of the shRNA tested. 

Firefly luciferase expression levels are constitutive and are used to compensate for the 

difference in transfection efficiencies.  The sequences that can cause the lowest renilla 

expression levels are selected as these are expected to have the highest knockdown 

efficiencies.   

 

293cells were transfected with the different shRNA constructs along with the IL-17 psi-

check reporter. The cells were lysed after a period of 48 hours and the luminescence 

intensities were analyzed. All the sequences were found to have good knockdown 

efficiencies (Fig. 2A). #176 was found to have the highest knockdown efficiency 

consistently and was used to generate high titer lentivirus. 
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One criticism that is usually directed against RNAi is that the effects of the shRNA could 

be non-specific. To address this, we decided to test the knockdown efficiency of 

sequence #176 against IL-17A psi-check and also against a completely different gene, 

PTPN22. For the experiment, we used #176 and an shRNA already found to be effective 

against PTPN22 cDNA, named P4.  

 

We transfected 293 cells with either #176 or P4 in conjunction with either IL-17 psi-

check or PTPN22 psi-check. Hence we had 4 different experiment conditions.  

 

1. #176 + IL-17 psi-check 

2. #176 + PTPN22 psi-check 

3. P4 + IL-17 psi-check 

4. P4 + PTPN22 psi-check 

 

PTPN22 cDNA had been cloned into psi-check2 to generate the PTPN22 psi-check. 

shRNA directed against PTPN22 (P4) had been cloned into the pLBUG vector. Hence 

only the cDNA and the shRNA differ in the 4 setups and everything else including the 

rest of the parts of the constructs, cells and experiment conditions are identical between 

the 4 different experimental setups. Hence if we see any knockdown, it should be specific 

to the shRNA used. If the #176 shRNA knockdown is specific, we should see a 

significantly reduced luciferase signal only when #176 is transfected in conjunction with 

IL-17 psi-check (option 1) and not when #176 is transfected in conjunction with PTPN22 

psi-check (option 2). 

 

As expected, #176 caused a reduced luciferase signal only against IL-17A psi-check and 

this knockdown effect was not observed against PTPN22. P4 was able to cause a reduced 

signal only against PTPN22 psi-check (Fig. 2B).  The results showed that the knockdown 

observed with #176 was specific to IL-17A and that this shRNA could not knockdown 

the expression of a random gene. These data show that the knockdown efficiency 

measured in this reporter assay reflect the specific targeting of IL-17A cDNA by the 

shRNA#176. 
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Fig.2 

 

A.       B. 

 

 

Fig.2. A. Validation of Il-17a shRNA silencing efficiency by dual luciferase assay. Data are representative 

of several independent experiments. B. Validation of Il-17a shRNA silencing specificity. Knockdown 

efficiencies of #176 and P4 (ctrl) against IL-17/ psi-check (left) and PTPN22/ psi-check (right) are shown. 

Data are representative of two experiments and mean and SEM of triplicate values are shown.  

 

4.2 Generation and lineage of IL-17A KD transgenic mice 
  

Once we identified an shRNA that could significantly reduce IL-17A expression, the next 

step was to generate a NOD mouse line with this vector construct. We used lentiviral 

transgenesis to achieve this. The various steps are detailed below. 

 

4.2.1 Generation of lentivirus and IL-17A KD transgenic line:  

 

To generate transgenic mice, we inject lentivirus carrying the desired transgene into 

single- cell embryos, which then give rise to the transgenic mice. To generate lentivirus, 

293 cells are co- transfected with the shRNA- construct along with the various viral 

components. Inside the cells, the viruses are packaged and the packaged viral particles 

containing the shRNA-construct are released from the cell into the cell media. The viral 
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particles can be isolated by ultra centrifugation of the cell supernatant. The virus is then 

titrated and a high titer virus (≥1 x 108 particles / ml) is used for embryo injections. 

 

shRNA#176 was co- transfected into 293 cells along with the various viral components 

and a transfection reagent that facilitates the uptake of the constructs. The cells were 

allowed to grow in culture. The transfection efficiency could be tracked by GFP 

expression as all infected cells should be GFP + owing to the GFP sequence in #176-

pLBUG construct.  After a period of 48 hours, the cell media was collected, centrifuged 

down to remove cell debris and was saved. The media collection was repeated at 72 hours 

and the infected cells were then terminated. The cell supernatants were subjected to 

ultracentrifugation and the virus pellet was resuspended in PBS. 

 

To check the virus titers, 293 cells were infected with 1.0 µl, 0.1 µl or 0.01 µl of the virus 

suspension. The cells were allowed to grow in culture for 3 days and GFP expression was 

analyzed under the microscope. At the end of the experiment, cells were taken out and 

the % of GFP+ (infected) cells was calculated by FACS. We were able to obtain a virus 

suspension that could infect around 25% of the cells at 1.0 µl concentration and this came 

out to a virus titer of 2x108 virus particles/ml (Fig.3A). Hence we used this virus 

suspension for generating the transgenic mice.   

 

Female NOD mice were super ovulated by injections of PMG and HCG to induce the 

production of multiple eggs. The super- ovulated females were then mated with males 

and the embryos were collected from the oviducts of the fertilized females. These single- 

cell embryos were used for injections. Lentivirus generated with #176 was injected into 

the perivitelline space of single- cell embryos that were then transplanted into pseudo- 

pregnant females. We used CD1 females as recipients since they make excellent mothers. 

The recipient females carried the embryos to term. 6 pups were obtained from the first 

cycle of injection.  

 

We took out blood from these pups and analyzed GFP expression by FACS.  Out of the 6 

pups, 5 were GFP negative as none of their cells expressed GFP. But the 6th pup had 
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almost all cells express high levels of GFP (Fig. 3B). This mouse was used as the founder 

for the transgenic line.  

 

Fig.3 

 

A.        B.  

 

 

 

 
Fig.3. A. Flow cytometry data showing around 25% of virus infected cells. B. GFP expression in blood 

samples from the positive founder in comparison with three negative mice.  

 
 

4.2.2 GFP expression levels and lineage studies: 

 

We observed 2 distinct GFP+ populations in the founder mouse. They were designated as 

‘High’ and ‘Low’ based on their higher and lower mean fluorescence intensities (Fig.4A). 

This difference in expression levels could have been due to several reasons. One could 

have been that some cell subsets expressed GFP much strongly than others. But we found 

the 2 GFP populations in all cell subsets indicating that this might not have been the 

reason. Another possibility was that there might have been 2 different viral integrants in 

our founder mouse, which could have led to the 2 expression patterns observed. A third 

possibility was our founder having been a chimera. To get a clearer picture, we bred the 

founder mouse and analyzed the N1 and N2 generations over time.  

 

We had 3 litters of pups from the founder. We took out blood from all the pups and 

looked at the GFP expression. To our surprise, we found that in all the pups we analyzed, 

we could observe only a single GFP expression pattern. Some of the mice had all their 

cells with the high expression and some had all their cells with the low expression 

(Fig.4B). None of the N1 pups were found to have the 2 cell populations together. This 
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observation precluded the possibility of 2 virus particles having been infected the single- 

cell embryo. This observation strongly pointed to the possibility of a chimera.  

 
Fig.4 

 

A.          B.  

 
Fig.4. A. Differential expression of GFP in the founder mouse as measured by flow cytometry. B. GFP 

expression patterns (MFI) in the N1 litters.   

 

 

4.2.3 High & Low Transgenic lines: 

 

Mice in N1 were found to have either the high population or the low population and 

never a mixture. Next, we mated the high mice and the low mice separately as 2 different 

lines. We named them ‘High line’ and ‘Low line’. It should be noted that ‘high’ and 

‘low’ refer to the mean fluorescence intensities of GFP expression and that it has nothing 

to do with IL-17A knockdown efficiencies. For the purpose of this project, mice from 

‘High line’ were used for most experiments unless stated otherwise. Both lines are still 

being maintained separately.  

 

We took out blood from the N2 mice and analyzed the GFP expression levels. Again to 

our surprise, all the pups from a high parent were found to express only the high GFP 

population and all the pups from a low parent expressed only the low GFP population 

(Fig.5A). This segregation was found to hold true in all future generations (Fig.5B).  
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Fig.5 

 

A.                                             B.      

 

 

 

 

 

 

 
Fig.5. A & B. Segregation of high and low cell subsets in N2 (A) and in later generations (B). MFI of GFP 

expressing cell populations in the mice are shown. 

 

This pattern led us to believe that the founder was a chimera and that it had 2 viral copies. 

It seems that at the time of infection, the embryo was in fact 2 celled instead of being 

single celled and each cell was infected with a distinct lentivirus particle. This made our 

founder mouse a chimera, with some cells expressing one construct and the others the 

other construct. During meiosis, some germ cells carried the high GFP expression copy 

and others carried the low GFP expression copy. This led to segregation of the 2 

expression patterns in the subsequent generations.  

  

4.2.4 Southern blot analysis: 

 

To verify this belief, we decided to look for the viral integrants by Southern blot. Each 

mouse line was believed to carry a distinct viral integrant. The integration site is random 

and should be distinct in each transgenic line. Since the viral particle carried the GFP 

sequence, it could be used as a probe to detect the integration site. Unfortunately we did 

not have DNA from the founder mouse. Hence we had to do the assay with the high and 
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randomly and since we didn’t know where the integration site was, we couldn’t predict 

the size of the fragment we were looking for. But if the high and the low transgenic lines 

have a single distinct viral integrant as we suspected, they should have different 

integration sites and hence we should ideally detect GFP bands at 2 different sites on the 

gel- one site for all the low mice and another site for all the high mice. It would have 

been really rare if the viral integrants integrated at the same site or if they integrated at 

different sites but gave similar sized bands upon restriction digestion with EcoR1.  

 

DNA samples from 3 each of low and high mice were obtained and analyzed by Southern 

blot using a GFP probe. We observed a single band in both groups of mice but at 

different sizes (Fig.6). This showed that there was a single distinct viral integrant in each 

transgenic line and that the viral integration site was distinct in each line.  This further 

validated our belief that the founder embryo was 2 celled at the time of the injection and 

that each cell got infected with a distinct viral copy and each copy integrated at a distinct 

genomic site.    

 

Fig.6 

                                                      

 

 

 

 
 

 

 

 

 

 

Fig.6. Southern blot analysis of low and high transgenic mice. W represents the wt sample.  
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4.3 Phenotypic characterization of lymphocyte compartments in 

transgenic mice 
 

We found that the transgenic mice were viable and fertile and they did not present any 

gross phenotypic defects. Though IL-17A has not been reported to play any significant 

role in either the haematopoietic or the lymphoid system, it was still critical to ensure that 

the lymphoid populations in the transgenic mice were normal. Hence we decided to 

characterize the T cell subsets in the transgenic mice and also look at the activation status 

of the transgenic T cells.  

 

Cells were isolated from thymus, spleen and lymph nodes of both WT and transgenic 

mice and stained with a variety of antibodies against T cell markers. Transgenic mice 

showed no defects in any of the lymphoid compartments indicating that loss of IL-17 did 

not compromise lymphoid development.  

 

4.3.1 Characterization of T cell subsets:  

 

T cells undergo maturation in the thymus. There the double positive CD4+CD8+ T cells 

switch off one of the markers and commit themselves to a single lineage, either CD4 or 

CD8. We decided to look at the single and double positive populations in the thymus to 

ensure that the selection processes and overall development of T cells in the thymus is 

not compromised by the transgene. For this, we isolated T cells from the thymi of mice 

and stained them for CD4 and CD8. We then analyzed the results by FACS. The 

percentages of CD4/CD8 double positive cells and CD4+ or CD8+ single positive cells 

were quite similar in the thymi from both WT and transgenic mice (Fig.7A). This 

indicated that the transgene did not alter T cell development in the thymus. 

 

 Once the T cells mature, they migrate out from the thymus into the periphery. To make 

sure that the transgene did not interfere with the T cell populations in the peripheral 

lymphoid organs, we isolated T cells from spleens and lymph nodes and looked at the 

CD4+ and CD8+ populations. We observed similar percentages of CD4+ and CD8+ cells 
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in the lymph nodes and spleens from both groups of mice (Fig. 7B) indicating that 

peripheral T cell subsets were normal in the transgenic mice.  

 
Fig.7 

 

A.                                                           B.  

  

 

 
 

 

 

 

 

 

 

Fig.7. A. CD4/ CD8 expression in the thymi of wt and KD mice as measured by flow cytometry. B. CD4/ 

CD8 expression in the lymph nodes and spleens of wt and KD mice.  

 

 

4.3.2 Characterization of T cell activation status: 

 

Once T cells are mature, they leave the thymus and enter the periphery. These mature 

cells are still to encounter their cognate antigen and hence are referred to as naïve T cells. 

CD62L is commonly used as a marker to identify these cells as naïve T cells express high 

levels of this marker. Once the naïve T cells encounter their antigen, CD62L expression 

is downregulated. CD44 can be used as a marker to identify these cells, which have 

already encountered their antigen and have now become effector memory T cells. Hence, 

CD62L expression and CD44 expression could be used to analyze the activation status of 

T cells. To ensure that the transgene did not affect the activation status of T cells in the 

periphery, we looked at the CD62L and CD44 expression by transgenic T cells.  
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T cells from spleen and lymph nodes were isolated and were stained for T cell receptor 

and the activation markers, CD62L and CD44. We then analyzed the T cell populations 

by FACS. Similar percentages of TCR+, CD4+ and CD8+ cells were observed in the 

organs from both WT and transgenic mice (7A, 7B, 8A). The % of CD62L+ and CD44+ 

cells were also quite similar between the 2 groups of mice indicating that the transgene 

did not have any effect on the activation status of peripheral T cells (Fig. 8B). 

 

Fig.8 

 

A.                                                                     B. 

 

 

 

 

 

 

 

 

 
Fig.8. A. TCR expression in lymph nodes and spleens from mice. B. CD62L / CD44 expression (CD62L: 

PE, CD44: PE Cy5.5) in lymph nodes and spleens from wt and KD mice.  

 

 

4.3.3 Characterization of regulatory T cell compartment:  

 

A number of studies have suggested an inverse relationship between Th17 cells and 

regulatory T cells. The current belief is TGFb regulates Th17 and Treg differentiation 

pathways in a concentration dependent manner. At lower concentrations, TGFb enhances 

Th17 differentiation in synergy with IL-6. But in higher concentrations, TGFb 

downregulates Th17 pathway and instead enhances Treg differentiation233.  
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Since the transgene was expected to downregulate IL-17A expression, this in turn could 

have impaired Th17 differentiation pathway in the transgenic mice. Current reasoning 

then suggested that impairment in Th17 differentiation could have possibly led to an 

enhanced Treg differentiation. To investigate this possibility, we isolated T cells from the 

peripheral lymphoid organs and then looked at the FoxP3+ population. Similar 

percentages of FoxP3+ cells were observed in the spleens and lymph nodes from both 

WT and transgenic mice indicating that the presence of the transgene did not alter 

peripheral Treg compartment in the transgenic mice (Fig.9).  

 

 

Fig.9 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
Fig.9. Treg populations in the lymphoid organs of KD mice in comparison with a wt mouse.  

 

 

 

0 102 103 104 105

<PE-A>: foxP3

0

102

103

104

105

<A
P

C
-A

>:
 T

C
R

2.6

0 102 103 104 105

<PE-A>: foxP3

0

102

103

104

105

<A
P

C
-A

>:
 T

C
R

6.74

0 102 103 104 105

<PE-A>: foxP3

0

102

103

104

105

<A
P

C
-A

>:
 T

C
R

4.68

0 102 103 104 105

<PE-A>: foxP3

0

102

103

104

105

<A
P

C
-A

>:
 T

C
R

2.18

0 102 103 104 105

<PE-A>: foxP3

0

102

103

104

105

<A
P

C
-A

>:
 T

C
R

4.96

0 102 103 104 105

<PE-A>: foxP3

0

102

103

104

105

<A
P

C
-A

>:
 T

C
R

5.66

0 102 103 104 105

<PE-A>: foxP3

0

102

103

104

105

<A
P

C
-A

>:
 T

C
R

5.79

0 102 103 104 105

<PE-A>: foxP3

0

102

103

104

105

<A
P

C
-A

>:
 T

C
R

4.8

0 102 103 104 105

<PE-A>: foxP3

0

102

103

104

105

<A
P

C
-A

>:
 T

C
R

1.55

 

wt IL-17 KD#1 IL-17 KD#2 

Thymus 

LN 

Spleen 

122



 

4.4 Verification of RNAi and reduced IL-17A levels in transgenic mice 
 

We had already verified the knockdown efficiency of the shRNA in vitro by luciferase 

assay. Once we had the transgenic mice, the next step was to verify that the shRNA was 

effective in the transgenic mice and that the IL-17A levels in these mice were reduced. 

IL-17A expression is quite low in vivo under normal conditions and hence it is quite 

difficult to pick up a reduction when the normal levels are already low. Hence we decided 

to differentiate naïve T cells in vitro into Th17 cells and then look at the IL-17A levels. 

Once differentiated, Th17 cells produce significant amounts of IL-17A and reduction in 

the cytokine levels could be picked up much better against the high standard expression 

by differentiated cells. 

 

First we isolated naïve T cells from WT, ‘high’ or ‘low’ mice and differentiated them in 

vitro into Th17 cells. We used several different Th17 polarizing cytokine mixes. 

 

1. aCD3 

2. aCD3+ TGFb 

3. aCD3+ TGFb+ IL-6 

4. aCD3+ TGFb+ IL-6+ IL-23 

5. aCD3+ TGFb+ IL-6+ IL-23+ IL-1b 

 

 

Cells were put in culture along with one of these cytokine mixes and allowed to grow for 

5 days. They were then restimulated with PMA and ionomycin for a period of 5 hours. 

The supernatants were then collected and the amount of IL-17A in the supernatants was 

estimated by ELISA. We found that under minimal activation i.e. aCD3, cells produced 

some IL-17A. This minimal production was abolished in the presence of TGFb. Cells 

started to produce significant amounts of IL-17A when IL-6 was added to the mix and the 

addition of IL-23 and IL-1b was found to have an additive effect on IL-17A production 

as reported previously (10A). 
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But most importantly, we found a significant reduction in the amounts of IL-17A secreted 

by the transgenic cells under all the conditions tested. Th17 cells from both the high and 

low transgenic lines showed similar knockdown of IL-17A (Fig. 10A). The results 

indicated that the shRNA works effectively in cells from transgenic mice and that 

consequently, transgenic cells produce significantly reduced amounts of IL-17A even 

under maximal stimulation. The similar knockdown observed in the cells from the 2 

transgenic lines indicated that both lines show strong IL-17A knockdown regardless of 

their GFP expression pattern and that the knockdown of IL-17A does not seem to be 

related to the strength of the GFP signal.  

 

Since we saw a similar knockdown in both transgenic lines, we used mice from High line 

for all our experiments from now on. Low mice are being bred in our facility and the line 

is being maintained for future use if need arises.  

 

Though we could show a significant KD in vitro in differentiated T cells, it was possible 

that in vivo this was not the case. It has already been suggested that all the requirements 

for full effector Th17 differentiation are not met in vitro and that in addition to the 

cytokine mix, there might be several other requirements, which seem to be satisfied only 

when the differentiation happens in an in vivo environment. Hence it was quite critical to 

show that reduction in IL-17A levels that we observed in vitro could be shown in vivo as 

well. As the % of Th17 cells in the body is quite low and as the IL-17A levels in vivo is 

almost undetectable, this was a really difficult challenge. 

 

To try and overcome this challenge, we decided to use a 2-pronged approach. We 

designated groups of mice either WT or KD and analyzed IL-17A levels in in vitro 

differentiated T cells and in ex vivo pancreatic islets. We took out islets from the mice 

and looked at the IL-17A levels in the islets. We also took out naïve T cells, 

differentiated them in vitro and looked at the IL-17A production by differentiated Th17 

cells. We analyzed IL-17A expression at both the mRNA and protein levels. We hoped to 

show a tight correlation between the knockdown observed in both in vitro differentiated 

cells and diseased islets from the mice. 
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4.4.1 in vitro differentiated cells:  

 

We isolated naïve T cells were from either WT or KD mice. These were then 

differentiated in vitro into Th17 cells by the addition of aCD3, TGF-b, IL-6, IL-23 and 

IL-1b. We also added anti IL-4 and anti IFNg to avoid differentiation of naïve T cells into 

Th2 or Th1 lineages. The cells were grown in culture over a period of 5 days. The cells 

were then restimulated in vitro in the presence of PMA and ionomycin for 4 hours. The 

media was collected and the amount of IL-17A secreted was analyzed by ELISA. mRNA 

was isolated from the differentiated cells and the level of IL-17A mRNA expression was 

determined by qPCR. Compared to the WT mice, KD mice had significantly lower levels 

of IL-17A, both at the mRNA and protein levels (Fig.10B and C). We found similar 

knockdown of IL-17A at both the protein and mRNA levels.  

 

4.4.2 ex vivo pancreatic islets & pancreatic lymph nodes:  

 

We had used mice that were over 5 months old and hence were already suffering from 

insulitis and in some cases, overt diabetes. We assumed that since these mice were 

already in the disease process, we might be able to detect IL-17A in the diseased islets. 

There are data already describing a method to get infiltrating T cells out from the 

pancreatic islets using IL-2231. We decided to modify this method to suit our purposes. 

Pancreatic islets were isolated from WT or KD mice and were put in culture overnight 

with IL-2 to facilitate the emigration of infiltrating T cells. The next day, the cells were 

resuspended in media and were strained through a filter to remove islets. The cell 

suspension containing the T cells was spun down. The cells were then put back in culture 

and restimulated with PMA and ionomycin for 4 hours. Since previous experiments had 

already shown that the islets upon restimulation hardly produce detectable levels of 

cytokines (data not shown), media was not saved for ELISA. 

 

 RNA was extracted from the cells following restimulation and IL-17A levels were 

analyzed by qPCR. IL-17A levels were detectable only in a fraction of the mice tested 
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and was found to be highly variable between mice. To compensate for this variability, IL-

17A levels were compared relative to RORgt expression in mice. This was done as we 

had seen that RORgt levels were quite comparable between WT and KD mice (data 

shown later). Once normalized to RORgt expression levels, KD islets were found to have 

greatly reduced levels of IL-17A mRNA compared to WT mice (Fig.10D). We also 

looked at IL-17A levels in the pancreatic lymph nodes of wt and KD mice and observed 

similarly reduced IL-17A expression in the lymph nodes of KD mice (Fig.10E). Though 

the observations are based on a limited number of data points, we saw a strong similarity 

between the level of knockdown observed in in vitro differentiated cells and in pancreatic 

islets and pancreatic lymph nodes, which seems to strengthen the case.  

 

All these observations seem to confirm that shRNA expression and function are 

extremely efficient in the transgenic mice leading to significant reduction in IL-17A 

levels.  

 

Fig.10 
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Fig.10. A. IL-17A protein expression levels in low and high transgenic mice. Representative of at least two 

independent experiments. B & C. IL-17 mRNA and protein expression levels in in vitro differentiated Th17 

cells from wt and KD mice (P< 0.0001).  Results are representative of three independent experiments. D. 

IL-17 expression in the pancreatic islets normalized to RORgt expression. E. IL-17 expression in the 

pancreatic lymph nodes.  

 

4.5 Characterization of in vitro differentiated Th17 cells from KD mice 

 
Th17 cells secrete a variety of cytokines including IL-17F, IL-21 and IL-22 in addition to 

IL-17A. Although none of these cytokines have been reported to cross regulate each 

other, such a possibility still existed. Since we saw a significant reduction in IL-17A 

levels in the transgenic mice, it was crucial to verify that none of the other Th17 effector 

cytokines were affected by the presence of the transgene. Since IL-22 is believed to be a 
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minor cytokine compared to IL-17F and IL-21, we did not look at IL-22 levels. Th17 

cells are also characterized by their expression of a lineage specific transcription factor, 

RORgt. We analyzed the expression levels of RORgt in the transgenic mice to ensure that 

loss of IL-17A did not interfere with Th17 lineage in these mice. 

 

To rule out any perturbation in the levels of IL-17F and IL-21, we differentiated Th17 

cells in vitro and looked at the levels of these cytokines in parallel with IL-17A. No 

significant difference was observed in the levels of IL-17F and IL-21 in the KD mice 

compared to WT mice, either at the mRNA or protein level (Fig.11A and 11B). RORgt 

expression levels were also found to be comparable between the KD and WT mice 

(Fig.11C). This indicated that the KD was specific to IL-17A and did not affect other 

TH17 effector cytokines. The comparable levels of RORgt suggested that loss of IL-17A 

did not compromise Th17 differentiation pathway in the transgenic mice. 

 

Fig.11 
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Fig.11. A & B.  Protein and mRNA expression levels of IL-17F and IL-21 in in vitro differentiated Th17 

cells from wt and KD mice. Data shown are the combined results from two identical experiments with a 

total of 5 mice in each group C. RORgt expression in in vitro differentiated Th17 cells. Data shown are the 

combined results from two identical experiments with a total of 5 mice in each group.  

 

 

4.6 Characterization of in vitro differentiated Th1 cells from KD mice 
 

As mentioned in the introduction, Th1 and Th17 cells seem to share a complicated 

relationship. Before the discovery of Th17 cells, many of the Th17 dependent diseases 

were solely attributed to Th1 cells and their signature cytokine IFNg. Both Th17 cells and 

Th1 cells are believed to be involved in the diabetes disease process. It was possible that 

a reduction in IL-17A could somehow result in an enhanced Th1 differentiation and 

increased IFNg levels. IL-17A deficiency has already been reported to cause higher 

expression of Th1 associated molecules including IFNg in a model of colitis234. Since we 

were trying to analyze the effect of IL-17A KD on diabetes, it was important to verify 

that the transgene had no effect on Th1 differentiation or IFNg levels in our mice. This 

would have enabled us to further restrict any effects observed, specifically to the IL-17 

KD and not to an alteration in the Th1 pathway.  

 

For this purpose, we looked at IFNg production as a measure of Th1 differentiation. We 

took out naïve T cells from both WT and KD mice. These were then differentiated in 

vitro into Th1 cells by the addition of IL-2, IL-12 and anti IL-4. The cells were cultured 

for a period of 5 days and then were restimulated for 4 hours in the presence of PMA and 

ionomycin. The amount of IFNg secreted by the cells was determined by ELISA. RNA 

was extracted from the cells and used for qPCR. We failed to observe any significant 

difference in IFNg production between the WT and KD cells (Fig.12A&B). This data 

showed that the transgene did not impair the ability of the KD cells to undergo Th1 

differentiation.  
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Fig.12 

 

A.       B. 

 

Fig.12. A. IFNg expression (mRNA) by in vitro differentiated Th1 cells from both wt and IL-17KD mice. 

B. IFNg protein levels in in vitro differentiated T cells from wt and IL-17KD mice. Data is representative 

of three independent experiments.  

 

 

4.7 Cytokine expression profiles in KD pancreatic islets 
 

Though we had looked at the various Th17 and Th1 factors in vitro, we decided to do the 

same with ex vivo pancreatic islets.  This was because in vitro data might not correctly 

reflect the in vivo status and we felt that ex vivo islets from diseased mice might provide 

us with a clearer picture. As mentioned earlier, we wanted to ensure that none of the 

Th17 factors like IL-17F, IL- 21 or RORgt were affected by the transgene and that any 

effect could be traced back only to reduced IL-17A levels. We also decided to look at 

IFNg levels. This in fact was due to 2 reasons. We wanted to ensure that IFNg levels 

were similar between WT and KD islets. Though we could see no difference in vitro, 

reduced IL-17 levels could lead to increased IFNg production by Th1 cells in vivo. Also 

Th17 cells have been described to be extremely plastic and the reduction in IL-17A could 

have made them much more susceptible to Th1 conversion.  

 

Though Th17 and Th1 cells are found to play significant roles in several autoimmune 

diseases, delineating these two cell populations and their individual roles in the disease 
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state has been quite difficult. This is confounded by the fact that Th17 cells exhibit a 

significant degree of plasticity and have been reported to take on a Th1 phenotype over 

time. Th17 cells were able to transfer diabetes but the authors found that adoptively 

transferred Th17 cells had somehow converted to IFNg producing cells172, 173. A number 

of studies have demonstrated the presence of cells that co express both IL-17 and 

IFNg235-237. Annunziato et al.238 observed that both IL-17+IFNg+ cells and IL-17+ IFNg- 

cells express receptors for IL-12 and IL-23 and that stimulation with IL-12 can lead to T-

bet expression and subsequent IFNg secretion. Hirota et al.239 recently showed that in 

vivo, Th17 cells are able to switch to IFNg production and this depends on the disease 

condition. All the data leads to the idea that Th17 cells are able to downregulate Th17 

related factors and upregulate Th1 factors and thus convert to a Th1 phenotype and that 

the process might involve a double producer phenotype. 

 

We took out islets from 5 month old mice and put them in culture overnight with IL-2. 

The cells were then strained through a filter and were restimulated in vitro. RNA was 

isolated from the restimulated cells and we did qPCR for the different targets. mRNA 

was detected for all the targets though at different levels. We were able to detect IFNg at 

higher levels compared to the other cytokines implying a role for this cytokine in the 

disease process. We detected comparable amounts of IL-17F, IL-21 and RORgt in the 

islets from WT and KD mice (Fig.13A). This indicated that all the Th17 factors except 

IL-17A are unaffected. We also saw similar levels of IFNg in the islets from WT and KD 

mice indicating that loss of IL-17 did not enhance Th1 differentiation or Th17 conversion 

(Fig.13B). All the data from ex vivo pancreatic islets concurred with the in vitro data 

indicating that the integration of the transgene didn’t have any off target effect as far as 

TH17/ Th1 pathways were concerned.  
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Fig.13 

 

A.          B.  

 

    

 

 

 

 
Fig.13. A. mRNA expression levels of IL-17F, IL-21 and RORgt in the pancreatic islets of wt and KD 

mice. B. IFNg mRNA levels in the pancreatic islets of wt and KD mice.  

 

4.8 Analysis of diabetes in IL-17A KD mice 

 

Once we had verified efficient knockdown of IL-17A both in vitro and ex vivo, the next 

step was to study diabetes incidence in the transgenic mice. IL-17A deficient mice are 

found to be protected, at least partially from several autoimmune conditions. This shows 

that IL-17A is at least partially responsible for these autoimmune pathologies. These 

observations have led to the idea that this cytokine might be pathogenic in all similar 

diseases including type 1 diabetes. As mentioned in the introduction, several studies also 

suggest a role for IL-17A in type 1 diabetes, though the results are not really conclusive. 

Hence we felt that our transgenic mice might give us a clearer picture as to the role of this 

cytokine in Type 1 diabetes.  

 

Towards this purpose, we used 3 different models of diabetes: spontaneous diabetes, 

cyclophosphamide induced diabetes and adoptive transfer of diabetogenic splenocytes 

into immunodeficient recipients. Each of this is detailed below. 
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 4.8.1 Spontaneous diabetes: 

 

As mentioned earlier, NOD mice develop autoimmune diabetes spontaneously. Females 

are found to be more susceptible to the disease than males with around 70-80% 

developing the disease with time. Hence they form a valuable model for studying this 

disease. We established large cohorts of female KD or WT mice and maintained them in 

the SPF facility. The mice were maintained for a period of over 6 months during which 

time they developed the disease. The mice were tested every 2 weeks and every 1-week 

towards the later half of the observation period. For testing, urine blood sugar levels were 

checked with diastix. We observed no difference in the disease incidence level between 

the 2 groups of mice. Transgenic mice developed diabetes just like their WT counterparts 

and both the frequency and kinetics of the disease were found to be similar (Fig.14A).  

 

4.8.2 Cyclophosphamide induced diabetes: 

 

Spontaneous diabetes studies take a long time, as we have to wait for the mice to get sick 

spontaneously. This leads to time restrictions and induced diabetes models are used to 

overcome this problem. Cyclophosphamide is a chemotherapeutic drug, which has been 

found to induce diabetes in susceptible subjects. Injection of cyclophosphamide 

accelerates the diabetes process leading to the development of synchronous diabetes in all 

the mice within 2-3 weeks. This is believed to be due to depletion of regulatory T cells 

and B cells from the injected mice.  

 

We had failed to observe protection from diabetes in transgenic mice using spontaneous 

diabetes model. To verify the results obtained with spontaneous diabetes, we decided to 

use cyclophosphamide-induced diabetes. We injected small cohorts of WT or KD mice 

with cyclophosphamide on day 0 followed by a second injection on day 14. Mice were 

tested every 2 days for diabetes. We did this experiment twice and both times we failed to 

observe any difference between the 2 groups of mice. The disease kinetic was found to be 

indistinguishable between both groups of mice. The combined data are shown in the fig. 

(Fig.14B).  
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4.8.3 Adoptive transfer of splenocytes into NOD SCID recipients: 

 

Another widely used model is the adoptive transfer of diabetogenic splenocytes78, 240. 

This is also an induced model of diabetes. Here, CD25 depleted or CD25/ CD62L double 

depleted donor T cells are transferred to immunodeficient recipient mice241. These 

recipient mice lack a functional immune system and hence they act as an empty vessel for 

the adoptively transferred cells. When donor T cells are transferred after depletion of 

regulatory T cells, these cells undergo homeostatic proliferation in the recipients and 

autoimmune specificities can undergo unchecked proliferation resulting in the recipients 

developing severe pathologies. This is a useful model as any effect observed can be 

specifically restricted to donor cells as the recipients lack a functional counterpart. 

 

As a third alternative, we used adoptive transfer. We took out T cells from WT and KD 

mice. We then depleted CD25 from these cells and injected them into NOD-SCID 

recipients. WT CD25 depleted cells were injected into a group of NOD SCID recipients 

while transgenic CD25 depleted cells were injected into a separate group of mice. We 

then tested the mice regularly for diabetes. The experiment did not work properly as very 

few mice became sick. None of the WT mice developed diabetes during the entire period 

of the study. But 3 of the NOD SCID mice that had received transgenic cells developed 

the disease (Fig.14C). Though these data are not entirely conclusive, it suggested to us 

that transgenic cells though had reduced IL-17A, could effectively transfer the disease. 

This at the least showed that loss of IL-17A did not seem to protect the mice. 

 

To improve on the model, we isolated CD25/ CD62Lhi double depleted splenocytes from 

groups of wt or KD mice and transferred them into cohorts of NOD SCID recipient mice. 

The recipient mice were then tested for diabetes development by glycosuria 

measurements every 2-3 days.  We found that cells from the transgenic mice were able to 

transfer disease susceptibility similar to wt cells, confirming the diabetogenicity of KD 

splenocytes, despite the reduced IL-17A levels present (Fig.14D).  
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To analyze the role of IL-17A in type 1 diabetes, we used 3 different but equally useful 

models. Data from all the three models failed to show any protection that is associated 

with reduced IL-17A levels. KD mice were as susceptible to developing diabetes as the 

WT mice. All the data conclusively suggested that loss of IL-17A did not offer any 

protection from autoimmune diabetes to the transgenic mice and hence IL-17A might not 

have a crucial role in the development of this autoimmune disease. 

 

Fig.14 
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C.                                                                            D.  

 

 

 

 

 

 

 

 
 

Fig.14. A. Comparison of spontaneous diabetes frequency of wt (n=63) and KD (n=47) mice (P=0.76).  B. 

Comparison of cyclophosphamide induced diabetes frequency of wt (n=23) and KD (n=18) mice (P=0.24). 

Data show the combined results of two similar experiments. C. Comparison of diabetes frequency in NOD 
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SCID mice injected with wt or KD CD25- splenocytes. D. Comparison of diabetes frequency in NOD SCID 

mice injected with either wt (n=9) or KD (n=9) CD62Lhi-CD25- splenocytes (P=0.23).  

 

4.9 Verification of systemic gene silencing in vivo: 

 
We failed to observe any protection from type 1 diabetes despite reduced IL-17A levels, 

in contrast to the expectation. IL-17A KD transgenic mice still retain residual amounts of 

IL-17A as we use RNAi and not a complete knockout of IL-17A. As shown in previous 

experiments, we detected around 70% reduction in IL-17A levels meaning that the 

transgenic mice were still able to retain around 30% of IL-17A. This led us to question 

whether the lack of protection is related to the residual IL-17A present in the transgenic 

mice. There might be a dose effect where, IL-17A when present even at low doses could 

still contribute to the disease. A protection from diabetes might be observed only with a 

complete removal of IL-17A.  

 

To address this question, we decided to test the systemic efficiency of the knockdown in 

the context of a second autoimmune disease, previously shown to be IL-17A dependent. 

IL-17A has already shown to play a significant pathogenic role in EAE, the experimental 

model for human autoimmune disease, multiple sclerosis (MS). IL-17A knockout mice 

are found have reduced frequency as well as severity of the disease242. We postulated that 

if the reduced IL-17A levels in our transgenic mice are sufficient to offer partial 

protection from EAE, they should by reason, be sufficient to deter type 1 diabetes as long 

as the disease is IL-17A dependent and follows the same disease parameters. This means 

that if our transgenic mice showed protection from EAE due to reduced IL-17A levels, 

then it should mean that autoimmune diabetes is not dependent on IL-17A.  

 

For this we decided to induce EAE in transgenic IL-17A KD mice. EAE is a model for 

brain inflammation and can be induced in susceptible strains by the injection of CNS 

antigens including MOG, MBP, PLP etc.  Depending on the antigen and the genetic 

makeup of the strain used, the animals can exhibit a monophasic form of the disease, a 

relapsing-remitting form of the disease or chronic EAE. The disease manifested is 
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mediated by T helper cells and is characterized by central nervous system perivascular 

infiltration of lymphocytes and subsequent destruction of myelin sheath, which results in 

paralysis in mice243. The study that showed partial protection from EAE was done in 

C57BL/6 mice and showed a monophasic form of EAE. C57BL/6 mice are ideal for EAE 

studies as they are more susceptible to the disease while NOD mice are not. The disease 

in NOD mice is less severe. We have previously found the NOD mice in our colony to 

develop a relapsing remitting form of the disease. We find that the relapse is much more 

severe compared to the first acute phase of the disease.  

 

We set up small cohorts of WT and KD mice. These were injected with MOG peptide 

emulsified in CFA along with a shot of pertussis toxin. This was followed by another shot 

of pertussis toxin 2 days later. The mice were checked regularly for signs of the disease. 

At the end of the study, the mice were sacrificed and used for cytokine analyses. This part 

of the study was carried out in collaboration with Prof. Heinz Wiendl’s lab and was done 

by Stefan Bittner.  

 

4.9.1 Incidence and disease severity after EAE induction: 

 

We found that in the first acute phase, transgenic mice showed significant protection 

from the disease. This protection was abolished in the relapsing phase (Fig.15A). When 

we analyzed the cumulative disease burden, we found that the KD mice had significantly 

lower disease burden compared to the WT mice (Fig.15B). These observations indicated 

that the transgenic IL-17A KD mice were partially protected from EAE. This led us to 

believe that systemic IL-17A silencing should have been sufficient to impair autoimmune 

diabetes, had it been IL-17A dependent.  

  

4.9.2 Cytokine analyses of T cells from diseased mice upon recall response: 

 

To further investigate the possible reason for this partial protection, we took out cells 

from the diseased mice and analyzed them. We took out diseased splenocytes and 

restimulated them in vitro with CD3/CD28 dynabeads. The cells were cultured along 
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with the beads for a period of 2 days and the IL-17A levels in the supernatants were 

measured by ELISA. We found that under maximal stimulation, KD cells were able to 

produce IL-17A, though at significantly lower levels than WT cells (Fig.15C). These data 

concurred with previous results.  

 

We also did a MOG recall response where we restimulated the cells in presence of MOG 

peptide and looked at the cytokine levels by ELISA. Upon MOG specific stimulation, 

both WT and KD MOG reactive cells produced comparable amounts of IFNγ (Fig.15D). 

While MOG reactive WT cells produced significant amounts of IL-17A, it was almost 

undetectable in cell supernatants from KD mice (Fig.15E). These data suggested that the 

partial protection from EAE, which we observed, seem to arise from the restricted ability 

of KD cells to produce IL-17A.  

 

Fig.15 
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Fig. 15 .A. Mean EAE scores of wt (n=6) and KD (n=6) mice. P=0.0014 B. Cumulative disease burden 

(individual disease scores were integrated for each mouse, group averages are shown with SEM, 

P<0.0001). C. IL-17 expression by the cells on stimulation with antibody- coated beads (P<0.0001). D. 

IFNg expression on restimulation of splenocytes from diseased mice with MOG35-55 peptide. E. IL-17 

expression on restimulation of splenocytes from diseased mice with MOG35-55 peptide. 

 

 

 

The results from MOG recall response supported the observations from the EAE 

experiment that systemic silencing of IL-17A was sufficient to impair IL-17A dependent 

autoimmunity. Since the KD mice were partially protected from EAE, the residual IL-

17A in the KD mice was not enough to contribute to EAE development. Following the 

same principle, the lack of any protection from diabetes that we observed could not be 

attributed to the residual IL-17A in the mice. All these observations lead to the 

conclusion that autoimmune diabetes is independent of IL-17A in autoimmune diabetes 

in the NOD mouse model. 
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Generation of β- cell reporter mouse models & modulation of 

β- cell mass 

 

 

Generation of RIP-hluc mouse models 

 
Type 1 diabetes is caused by the autoimmune destruction of the beta cells, which produce 

insulin. As mentioned before, the disease is incurable and the symptoms usually manifest 

only after about 80% of the beta cell mass is already destroyed. There are several models 

available for type 1 diabetes including the NOD mouse that we use. The disease is 

usually followed by measuring the glucose in the blood or urine of the animals. Though 

this gives a clear idea of the disease incidence, glucose measurements do not give any 

idea regarding the extent of beta cell destruction. It is impossible to know the extent of 

autoimmunity unless we sacrifice the animal. Also none of this would allow us to 

accurately follow the autoimmune destruction over time relative to the disease symptoms.  

 

All these challenges paved way for beta cell imaging via one of the several imaging 

modalities currently available. There are several studies that have tried using MRI, PET, 

SPECT, CT and ultrasound imaging for non invasively assessing beta cell mass. A more 

relevant approach is bioluminescence imaging of beta cells. Several research groups have 

already generated beta cell specific bioluminescent reporter mice. These reports have 

indicated that this is a valid approach for following the disease in vivo in a non-invasive 

manner. Though there are already reporter mice expressing luciferase specifically in the 

pancreatic beta cells, none have been generated in any of the spontaneously diabetes 

susceptible models of type 1 diabetes. Hence we aimed to generate a beta cell reporter 

mouse model in the NOD background. In addition, we planned to integrate this with beta 

cell specific RNA interference to achieve modulation of beta cell mass. This will allow us 

to generate a NOD mouse model in which beta cell mass could be non-invasively imaged 

over time to study the process of autoimmune destruction. The simultaneous integration 

140



 

of RNAi would also allow us to study changes in beta cell mass resulting from the 

pancreas specific knockdown of candidate genes. 

 

We aimed to achieve this by using a construct in which the expression of luciferase and 

shRNA are under the control of a single beta cell specific promoter. We used RIP 

promoter as it has already been shown to drive beta cell specific expression of target 

genes. The construct also has a mir30 motif to facilitate the tissue specific expression of 

the shRNA. Hence we end up with beta cell specific luciferase expression coupled with 

the knockdown of the target gene. When we use shRNAs directed against known beta 

cell modulators, these shRNAs could cause the knockdown of modulators and the 

luciferase expression pattern over time could be used to identify the resulting changes in 

beta cell mass. We named the construct pRLM: R stands for the RIP promoter, l for 

luciferase, m for mir30 motif. 
 

4.10 Generation of pRLM construct: 

 
To generate the pRLM construct, we started with the pLBM construct. pLBM has a CMV 

promoter that drives the expression of GFP (Fig.1). To generate pRLM, we switched 

CMV and GFP for RIP and luciferase. RIP was cut out from a vector with Xba1. Hluc 

was cut out using Nhe1/Not1. CMV was cut out from pLBM using Xba1/ Nhe1 and GFP 

was cut out using Nhe1/ Not1. RIP was then cloned into pLBM between Xba1 and Nhe1 

(as Xba1 has compatible ends with Nhe1) while hluc was cloned between Nhe1 and Not1 

(Fig.1). This gave rise to pRLM vector with CMV/GFP replaced with RIP/hluc.  

 

 

 

 

 

 

 

 

141



 

Fig.1 

  

 

 

 

 

 

 

 

 

 
 

Fig.1. A schematic representation of pLBM vector. CMV/ GFP in pLBM was replaced with RIP/ hluc to 

obtain pRLM construct.  

 

4.11 Verification of specificity of pRLM construct in vitro: 

 
Once we generated the construct, the next step was to ensure that it contained the RIP and 

hluc sequences. The presence of the cloned in RIP-hluc sequence in the construct was 

verified by sequencing. The next step was to ensure the tissue specific activity of the 

promoter. We had to make sure that RIP promoter was active only in insulin expressing 

cells, i.e. primarily in the beta cells of the pancreas. For this we decided to use an in vitro 

approach involving rat insulinoma cell line INS-1E. These cells are beta cell tumor cells 

and are used as in vitro models for pancreatic beta cells. 

 

We decided to test the expression of RIP in 2 different cell lines- human embryonic 

kidney cells line 293F and INS-1E. If RIP activity is tissue specific, we should be able to 

see gene expression only in the INS-1E cell line and not in the 293F cell line. We used 

GFP signal or luciferase signal as markers for gene expression. 
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 To verify the tissue specificity of RIP-luciferase expression, virus samples were made 

with both RIP- GFP construct and a mixture of pLBM/ pRLM. RIP-GFP infected cells 

expressed GFP and hence the infected cells could be identified under a microscope or by 

FACS. But pRLM infected cells could not be identified under a microscope or by FACS 

due to their lack of GFP expression. This makes the estimation of infection efficiency 

impossible. To overcome this challenge, we used a mixture of pLBM/ pRLM to infect the 

cells. When using the mixture, half the cells would be infected with pLBM and the other 

half with pRLM. The pLBM-infected cells could be detected under a microscope and by 

FACS, owing to their GFP expression. This in turn could be used to determine the 

infection efficiency of the virus sample.   

 

293 cells and INS-1E cells were infected with either the RIP-GFP virus or the 

pLBM/pRLM virus mixture. Cells were cultured over time and the GFP expression was 

analyzed under the microscope and also by FACS. Luciferase expression by the cells was 

analyzed by luciferase assay at the end of the culture period after cell lysis.  

 

 GFP expression was observed only in the RIP- GFP infected INS-1E cells and not in 

293F cells. No green cells were observed in RIP-GFP infected 293F cells under the 

microscope. Both 293F and INS-1E cells infected with the pLBM-pRLM virus mixture 

were green under the microscope (Data not shown). To verify the GFP expression 

patterns observed under the microscope, infected cells were further analyzed by FACS. 

As before, GFP expression was observed only in the RIP- GFP infected INS-1E cells. But 

both cell lines showed significant GFP expression when infected with the pLBM/ pRLM 

mixture, though INS-1E cells seem to be better infected as more cells are GFP+ (Fig.2A).  

 

Next we analyzed luciferase expression by the virus-infected cells. After passive lysis, 

luciferase activity in the lysates was measured using Fluostar Optima. Only the cells 

infected with the pLBM/pRLM virus mixture showed detectable luciferase activity and 

the infected INS-1E cells showed a significantly higher expression compared to the 293F 

cells (Fig.2B). The difference could not be attributed wholly to a better infection, as it 

was more than a 17-fold increase.  
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Fig.2 
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Fig.2. A. GFP expression levels in virus infected cells. B. Luciferase expression by the virus infected cells. 

 

 

The expression patterns of both GFP and luciferase observed above indicated that RIP 

promoter activity was switched on only in beta cells while it remained inactive in the 

human embryonic kidney cells. The data showed that RIP promoter is tissue specific and 

could drive luciferase expression only in insulin expressing cells. 
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4.12 Generation and genotyping of pRLM mice: 

 
Once we had the appropriate construct, the next step was to generate NOD mice with beta 

cell specific expression of luciferase. We generated lentivirus using the pRLM construct, 

as described before. The high titer pRLM virus was then injected into NOD embryos, 

which were then carried to term by pseudopregnant recipient mice. We were able to 

generate several founders. All of these were found to be viable and fertile and exhibited 

no gross phenotypic defects. 

 

pRLM mice could be genotyped by bioimaging but this was a labor-intensive process. 

Due to technical reasons, genotyping was done mostly by genomic PCR for hluc. We 

used 3 different primer sets and all of these were able to detect luciferase sequences in 

genomic DNA samples from mice. The different primer sets gave different sized products 

and we mainly used primer set 3 for genotyping.  

 

Tails were obtained from pups and tail DNA was isolated. Around 100 ng of tail DNA 

was used for genotyping. The PCR setup and program are detailed below. 

 

PCR setup: 

 

100 ng DNA 

0.5 µl fwd primer 

0.5 µl rev primer 

2.5 µl Dreamtaq buffer 

0.5 µl Dreamtaq polymerase 

1.0 µl dNTP 

Made up to a final volume of 25 µl with distilled water 
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PCR Cycle: 

 

Temperature Time No: of cycles 

94°C  5 minutes 1 

30 seconds 

30 seconds 

94°C 

50°C 

72°C 1 minute 

 

5 

30 seconds 

30 seconds 

94°C 

58°C 

72°C 1 minute 

 

35 

72°C 10 minutes 1 

 

A representative gel from genomic PCR is shown in Fig.3. 

 

Fig.3 

 

 

 

 

 

 

 

 
Fig.3. Representative gel from luciferase genotyping. Positive control is in the far right lane. #20- #28 are 

pRLM+.  

 

4.13 Bioimaging of non-diabetic and diabetic pRLM mice: 

 
Once we had the pRLM mice, we decided to test the luciferase expression via luciferase 

bioimaging. For this we used pRLM+ mice identified from genotyping PCR. We selected 

a random pRLM+ mouse and imaged it along with a negative control. We injected the 
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mice with the anesthetic along with the recommended amount of D-luciferin. The mice 

were then placed inside the machine and images were taken using the CCD camera. We 

found a robust signal from the + mouse while no signal was observed in the negative 

mouse.  

 

To our surprise, the signal we observed did not seem to pancreas specific. It was 

dispersed all over the abdomen especially under high signal intensity setting. At lower 

intensities, it appeared in kidney shapes on both sides though the signal was stronger on 

the pancreas side (Fig.4A). To try to localize the signal, we took out spleen and pancreas 

from the pRLM+ mouse after sacrificing it. We were able to observe luminescence from 

the spleen in addition to the pancreas. But the signal from the spleen was much lower 

than that from the pancreas (Fig.4B).  

 

This pattern of expression was observed in most pRLM+ mice (figures in following 

sections). The signal is not localized to the pancreas but is dispersed over the abdominal 

area and this is more noticeable under the high signal intensity setting. When the mice are 

imaged under low signal intensity setting, the signal is more localized though still not 

restricted to the pancreas. We also observed a signal from the thymus in the pRLM+ 

mice.  

 

All these observations made us question the specificity of luciferase expression. Hence 

we found it convenient when we had pRLM+ mice that had developed diabetes. We 

decided to image these diabetic mice to see if we could detect a signal even after the 

destruction of beta cells. We took the diabetic mice and imaged them alongside a non-

diabetic pRLM+ mouse. We observed very little signal from the diabetic mice even after 

a long exposure time under maximum intensity conditions (Fig. 4C). The difference was 

really significant in comparison with the non-diabetic + mouse. This observation gave us 

the first indication that although the signal we see in pRLM+ mouse did not seem to be 

localized to the pancreas; the signal might still be coming from the beta cells. Since we 

observed only a faint signal in the diabetic mice, it meant that luciferase expression was 

reduced over the course of the disease leading to an absence of signal once the mice were 
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diagnosed as diabetic. Once the beta cells were destroyed, the signal went down 

supporting the notion of beta cell specific expression of luciferase.  

 

Fig.4 

 

A.         B. 
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Fig.4. A. An image from a pRLM+ mouse in comparison with a negative mouse. B. Luciferase signal from 

the pancreas and spleen dissected out of a pRLM+ mouse. C. Images from 2 pRLM+ diabetic mice in 

comparison with a non-diabetic pRLM+ mouse, under different signal intensities.  

 

4.14 Specificity of luciferase expression: 

 

To further investigate the pattern of luciferase expression in the pRLM mice, we made 

RNA from the pancreata, spleens, kidneys, livers and thymi from 2 wt and 2 pRLM+ 

mice. We then did real time PCR to analyze the expression of luciferase in these organs. 

We found high expression of luciferase in the pancreata from the pRLM+ mice. 
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Luciferase expression was also detected albeit at much lower levels in the thymi of the 

pRLM+ mice. No luciferase expression could be picked up from any of the other organs 

from the pRLM+ mice. None of the organs from the wt mice showed luciferase 

expression (Fig.5). The data indicated that in the pRLM+ mice, luciferase expression was 

limited to the pancreas with a limited expression in the thymus. None of the other organs 

situated in the abdominal area expressed luciferase indicating that the broad abdominal 

signal exhibited by the mice comes only from the pancreas and that the diffuse signal 

might be due to the really strong expression of luciferase by the beta cells. 

 

Fig.5 

 

 

 

 

 

 

 

 

 

 
Fig.5.  Luciferase expression in the organs from wt and pRLM+ mice.  

 

4.15 Phenotype of pRLM mice: 

 
pRLM mice were found to be viable and fertile and exhibited no gross phenotypic 

defects. We had used a transgene to generate these mice with pancreas specific 

expression of luciferase. We were able to ensure that they express luciferase in the 

pancreas. Hence it was crucial to ensure that the transgene integration and luciferase 

expression did not interfere with the normal metabolic processes in the transgenic mice. 

Hence we took groups of age matched pRLM+ and negative mice and compared their 

weights. We didn’t observe any difference between the two groups. We also looked at the 
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fasting glucose levels of the mice. Again, the pRLM+ mice were found to have 

comparable fasting blood glucose levels to their WT counterparts (Fig.6 A&B). The data 

indicated that pRLM mice had a normal phenotype.  

 

Fig.6 
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Fig. 6. A. Weight in grams of pRLM+ mice in comparison with wt mice. B. Fasting blood glucose levels of 

pRLM+ mice in comparison with wt mice.  

 

 

4.16 Streptozotocin induced diabetes: 

 
     To further verify the specificity of the luciferase signal, we induced rapid immune 

independent diabetes in pRLM mice with streptozotocin. The mice were injected with 

high dose streptozotocin, which results in non-immune destruction of beta cells and 

development of diabetes within 2 days. The mice were imaged before the injections and 

regularly after the injections.  

 

     We observed robust signals from the mice before the start of the experiment. After 

injection, most mice developed diabetes and the signal went down rapidly over time 

(Fig.7A).  We also observed that a really small percentage of mice gave robust signals 

despite developing severe diabetes (Fig. 7A). The loss of signal in the majority of the 

mice upon development of diabetes further indicated that luciferase expression was beta 
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cell specific. We could not find any reason for the persistence of signal in the minor 

population of mice that were severely diabetic.  

 

     We also looked at the phenotype of the mice during the course of STZ induced diabetes. 

Once the mice get diabetic, they lose significant amount of body weight. The blood 

glucose levels also go up owing to the severe destruction of beta cells leading to the 

reduction of insulin. Hence we decided to look at the weight loss and blood glucose 

levels in the sick mice. We found that both pRLM+ and negative mice lost comparable 

amounts of body weight upon developing the disease. The increase in blood glucose level 

was also comparable between the two groups of mice (Fig.7B). This further demonstrated 

that pRLM+ mice had a normal phenotype.   
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Fig.7. A. Luciferase signal in pRLM+ mice over the course of STZ induced diabetes. B. Weight loss and 

blood glucose levels in pRLM+ and wt mice upon disease development. F denotes female mice while m 

denotes male mice in the experiment.    

 

4.17 Cyclophosphamide induced diabetes: 

 
Since we could see a loss of signal upon STZ induced diabetes, we decided to use another 

model, the cyclophosphamide induced diabetes. We injected both wt and pRLM+ mice 

with cyclophosphamide and imaged them regularly. As mentioned before, 

cyclophosphamide injections cause the mice to develop diabetes over a period of 2-3 

weeks. Since diabetes development after STZ treatment is immediate, CY system could 

be a better alternative to study the kinetics of the disease. We felt that the slower course 

of the disease with CY might help us see a gradual reduction of the signal over a longer 

time period. Data in Fig.8 show luciferase expression in one mouse, which developed 

diabetes 10 days after CY injection. We were testing and imaging the mice once a week 

and the diabetic mouse had shown a robust signal the week before and the signal reduced 

significantly the next week and hence we couldn’t obtain a clearer picture of the disease / 

signal kinetics. However, the experiment provided further evidence for the pancreas 

specific expression of luciferase. 
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Fig.8. Luciferase signal over the course of cyclophosphamide induced diabetes.  
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4.18 Generation and genotyping of NOD-SCID pRLM mice: 

 
Once we had the NOD pRLM line, we felt that it would be useful to generate a NOD-

SCID pRLM line. We regularly do adoptive transfer studies using NOD-SCID recipients 

and felt that a NOD-SCID line expressing luciferase in the pancreas could be a really 

useful model. They could be used as a reporter mouse line to correlate beta cell 

destruction with specific immune cell subsets after adoptive transfer. The loss of 

luciferase expression could give a clearer picture regarding the effect of immune cell 

subsets on diabetes transfer, compared to urine glucose levels.   

 

To generate NOD-SCID pRLM mice, we crossed NOD pRLM mice with NOD- SCID 

mice. The F0 pups were NOD/ NOD-SCID heterozygotes. Brother-sister matings of 

pRLM+ F0 mice gave rise to mice that were NOD homozygotes, NOD-SCID 

homozygotes or NOD/NOD-SCID heterozygotes. pRLM+ NOD-SCID homozygotes 

were identified by genomic PCR and were back crossed into NOD-SCID WT mice to 

generate and maintain the NOD-SCID pRLM+ transgenic line.  

 

To identify NOD-SCID pRLM+ mice, we used two different genotyping PCR 

techniques. The hluc expression was identified using the genomic PCR described before. 

To distinguish between NOD and NOD-SCID strains from the F1 generation, we used a 

second genomic PCR followed by Alu1 digestion of the products. Upon digestion, NOD 

samples give 2 bands; one at 68bp and the other at 11bp while the NOD- SCID 

homozygous samples give 3 bands; at 38bp, 28bp and 11bp. Hence homozygous NOD 

samples gave only 2 bands while homozygous NOD-SCID samples gave 3 bands on the 

gel. Heterozygous samples gave all the 4 bands, making them easy to identify.   

 

We used FACS to verify the results from the genomic PCR.  NOD mice have T and B 

cells while these are absent or present at very low levels in NOD- SCID mice. Hence 

TCR and B220 were used as markers for NOD samples. NOD mice had TCR+ and 

B220+ populations while these were noticeably absent in the NOD-SCID mice samples. 

Representative PAGE gels from NOD-SCID genotyping showing NOD SCID 
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heterozygous mice, NOD homozygous mice and NOD-SCID homozygous mice are given 

below (Fig.9A).  A representative FACS plot showing both NOD pRLM and NOD-SCID 

pRLM mice is also shown below (Fig.9B). 

 

Fig.9 
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Fig.9. A. Representative page gels showing NOD-SCID heterozygous mice (top left panel) and NOD and 

NOD-SCID homozygous mice (top right panel). B. T and B cell poluations in mice, as measured by flow 

cytometry (bottom panel). TCR staining is on X- axis and B220 staining on Y-axis. #22 and #24 are NOD- 

SCID homozygous.   
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Modulation of β- cell mass 
 

Type 1 diabetes is caused by the autoimmune destruction of beta cells. As mentioned in 

the introduction, an efficient therapy would have to combine immune cell modulation 

with beta cell regeneration. There are several genes which have been reported to 

modulate beta cell mass. Some of them are found to enhance beta cell division while 

some others are negative regulators of beta cell proliferation. Knockdown of these 

negative regulators could take away the inhibitory effect and result in increased beta cell 

proliferation. This enhanced proliferation might be able to counter act the destruction of 

beta cells by the immune system. Hence this is a viable area of research in the search for 

a cure for type 1 diabetes.  

 

Following this line of thought, we wanted to be able to induce pancreas specific 

knockdown of negative regulators, the effects of which could then be monitored via 

luciferase expression. Menin is a transcription factor, which is found to act as a negative 

regulator of beta cell proliferation. Menin depletion has been shown to increase 

pancreatic islet cell proliferation226. Disruption of Men1 gene in pancreas has been 

reported to lead to the development of insulinomas along with increased serum insulin 

levels216, 217. Hence we chose menin as a target gene for beta cell mass modulation. We 

felt that the knockdown of menin could prevent or at least delay the development of 

diabetes. A partial reduction of menin, which can be achieved via RNAi, was a favorable 

strategy as a complete loss of menin has already been reported to be deleterious208. We 

could track the changes in beta cell mass resulting from menin KD via the expression of 

luciferase. Hence our plan was to generate menin- pRLM mice. These mice would have a 

pancreas specific expression of menin shRNA leading to a pancreas specific menin KD. 

The knockdown of menin should lead to enhanced beta cell proliferation which in turn 

should lead to enhanced luciferase signals. This increased beta cell proliferation might be 

able to protect the mice from diabetes development. The ideology is described in Fig.10.  
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Fig.10 

 

 

 

 

 

 

 

 

 

 
Fig.10. Schematic representation of the technique. pRLM mice develop diabetes over time and hence the 

luciferase signal goes down relative to the beta cell destruction. However in menin KD/ pRLM mice, 

knockdown of menin results in increased beta cell mass, which might lead to a stable signal over time.  

 

4.19 Generation and validation of Menin constructs: 
 

shRNAs were designed against menin cDNA and were ordered from Sigma. shRNAs 

were first cloned into the pLBM vector to test their knockdown efficiencies. They were 

then subcloned into other vectors for in vitro studies. We decided to validate menin 

knockdown in vitro before generating a menin- pRLM mouse line. For this purpose, we 

used two insulinoma cell lines. These are tumor cell lines that are derived from 

insulinomas. Hence they can be used as in vitro models of pancreatic beta cells. Some of 

the experiments were done in the rat insulinoma cell line INS-1E while others were done 

in the mouse insulinoma cell line NIT-1. 

 

We didn’t have the mouse insulinoma cell line in the beginning of the project and hence 

we did the preliminary experiments in the rat insulinoma cell line. Since we had 2 

different models, i.e. the in vitro INS-1E cell line from rat and the in vivo NOD mouse 

model, we selected shRNAs which were expected to be active against both rat and mouse 

menin cDNA. These shRNAs could ideally knockdown menin in rat insulinoma cells as 

Menin KD/ pRLM Luciferase only (pRLM) 

 1 month 

3 months 
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well as in mouse pancreas. We were later able to obtain mouse insulinoma cell line NIT-1 

and were able to select shRNAs active only against mouse menin cDNA. The generation 

of the constructs is detailed below.  

 

4.19.1 shRNA-pLBM Construct generation: 

 

     shRNA sequences were cloned into the pLBM vector first. The knockdown efficiencies 

of the shRNAs had to be tested and for this shRNA-pLBM constructs were used.  shRNA 

sequences were designed using the algorithm available at 

http://katahdin.cshl.org/siRNA/RNAi.cgi?type=shRNA244 . Most sequences were 

complementary to both rat and mouse menin sequences as in vitro experiments were 

being carried out in a rat and a mouse cell line and the in vivo model was a mouse strain. 

#2760 was not active against rat menin cDNA. The corresponding synthetic DNA 

oligomers were ordered from Sigma-Aldrich. The sequences were amplified by PCR to 

generate complementary strands and purified by agarose gel electrophoresis followed by 

gel extraction. Purified sequences were then digested with Xho I / Eco RI and then 

ligated with pLBM vector (Fig.1), cut with the same enzyme pair, which contains an 

ampicillin resistance gene.  

 
4.19.2 Subcloning: 

 

Menin shRNA sequences were sub cloned from pLBM (expressing GFP) into 2 different 

vectors. For each round of sub cloning, the menin shRNA sequence was cut out from 

pLBM using different enzyme sets and then cloned into the new vector. The constructs 

were then used to transform NovaBlue or DH5 cells and minipreps were made which 

were validated by sequencing. The minipreps were then used to make maxipreps. 

 

shRNA- Puro Subcloning:  

 

As mentioned earlier, our plan was to validate menin knockdown in vitro in insulinoma 

cell lines first. For this we had to infect cells with menin shRNA, select the infected cells 

157



 

and analyze their characteristics. It was important to restrict the analyses to shRNA-

infected cells as they represented the cells with menin KD. We decided to use puromycin 

selection to identify the shRNA-infected cells and use them for further analyses. Hence 

we had to clone in the shRNAs into a construct containing a puromycin resistance gene. 

The cells infected with this shRNA-puro constructs could be selected on puromycin 

ensuring that only menin KD cells survived and were used for in vitro studies.  

 

pLBM-puro contains a puromycin resistance sequence in place of the GFP sequence and 

so the cells containing the construct can be selected using puromycin. Hence the shRNAs 

were cloned into the pLBM-puro construct. The pLBM- menin shRNA constructs were 

digested with Nhe I/ Not I (to cut out GFP) and pLBM-puro construct was digested with 

the same enzyme pair to cut out puro sequence. The digested samples were run on gel, 

the menin backbones and the puro band were cut out from the gel and gel purified. The 

backbones were then ligated with the puro sequence to generate shRNA-puro constructs. 

 

 

shRNA- pRLM (RIP-hluc) Subcloning:  

 

To generate the menin-pRLM mouse line, shRNAs had to be cloned into the pRLM 

construct. Hence shRNAs were cut out from the pLBM vector and cloned into pRLM 

construct. pRLM contains a luciferase sequence in place of the GFP sequence under the 

control of RIP (Rat insulin promoter) promoter. The reporter is expressed only pancreatic 

cell lines and the cells can be imaged under the CCD camera. pRLM vector as well as 

pLBM- menin shRNA constructs were digested with Xba I/ Not I. The digested samples 

were run on gel and the menin shRNA backbones and RIP-hluc sequences were cut out, 

gel purified and ligated to generate shRNA-pRLM constructs. 
 
4.19.3 Luciferase Assay:  

 
The knockdown efficiencies of the different menin shRNA sequences were tested by 

luciferase assay. Since we had to test the menin KD in a rat cell line and a mouse cell 
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line, we had to ensure that the shRNAs could cause the degradation of both rat and mouse 

menin mRNA. Hence we had to test menin shRNA sequences against both rat and mouse 

menin cDNAs and for this both the rat and mouse menin cDNAs had to be cloned into 

psi-check2 construct.  

 

4.19.4 Menin psi-check generation: 

 

    Rat and mouse cDNA for menin were obtained from Openbiosystems. The bacterial 

samples containing the cDNA were streaked onto LB-ampicillin plates; colonies were 

picked and used to make minipreps. Minipreps were pooled and then digested with either 

Sal I / Not I (mouse menin cDNA) or EcoRV / Not I (rat menin cDNA). The digested 

samples were run on gel and the bands corresponding to the cDNA was cut out and gel 

purified. The psi-check 2 vector (Fig.4) was cut with either Xho I/ Not I (for cloning in 

mouse menin cDNA) or Pme I/ Not I (for cloning in rat menin sequence) and PCR 

purified. The cDNA sequences were then ligated with the digested psi-check 2 vector to 

generate mouse menin psi-check and rat menin psi-check. 

 
9 different shRNA sequences were designed and cloned into the pLBM construct. All 

sequences except #2760 were selected based on their complementarity to both rat and 

mouse menin sequences. Hence most of the sequences were tested against both rat and 

mouse psi-check2 constructs. Most of the shRNAs were found to knock down menin 

expression significantly (Fig. 11A). We found that most shRNAs showed similar 

knockdown against both rat and mouse cDNA sequences indicating that they could cause 

similar menin KD in rat and mouse cells (Fig.11B).  
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B. 

 

 

 

 

 

 

 
Fig.11. A. Validation of menin shRNA silencing efficiencies by dual luciferase assay. Assay was done in 

triplicates against mouse menin cDNA. Results are representative of at least three independent experiments. 

B. Validation of menin shRNA silencing efficiencies against mouse (left) and rat (right) menin cDNAs. 

Assay was done in triplicates.    

 

 

4.20 in-vitro analyses using Ins-1E and NIT-1 Cells: 

 
As mentioned earlier, we wanted to validate menin KD in vitro in addition to the 

luciferase assay. For this, first we subcloned shRNAs into pLBM-puro construct. We 

used these shRNA-puro constructs to generate lentivirus. pLBM-puro was used as the 

control. INS-1E or NIT-1 cells were then infected with the different shRNA-puro virus 

samples or pLBM-puro and were selected on puromycin. shRNA infected cells which 

survived were then grown and the knockdown of menin was verified by western blot. 

Once we verified the knockdown of menin in the NIT-1 cells by #2760, we looked at the 

phenotypic features of the menin KD cells. All these are detailed below.  

 

4.20.1 Viral infection of cells:  
 

To investigate menin KD in vitro, we generated lentivirus carrying the either pLBM-puro 

or the different shRNA-puro constructs. INS-1E cells or NIT-1 cells were cultured on 24 

well plates and were infected with the virus. Since the cells had already been found to be 

really sensitive to transfection reagents, we added the virus suspension to the media in the 
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absence of any transfection reagent. The cells were allowed to grow for around 3-4 days 

after which the media was replaced with media containing the optimum concentration of 

puromycin. This was already determined by titration as described in the method section. 

The cells were allowed to grow in puromycin media for 2 days. The media was removed 

and replaced with fresh puromycin media. Only cells, which got infected with the 

shRNA-puro virus, would survive. These cells were then allowed to grow confluent in 

the 24 well plates. The cells were then grown out into 6 well plates and finally to 10 cm 

plates or 25 ml TC flasks.  

 

The potency of the puromycin media was checked regularly by growing WT cells in the 

media and ensuring that they failed to survive in it. After selection of the cells, the 

puromycin media was then replaced with normal media and the cells were allowed to 

grow over time and they were used for the various analyses. Once the cells have been 

grown out into 6 well plates, they were grown in media lacking puromycin. This was to 

facilitate cell growth and division. The cells are then reselected on puromycin once in a 

while. This was done as both the cell lines used grow extremely slowly. INS-1E cells 

take at least 5-6 days to be confluent while NIT-1 cells take almost 9-10 days to become 

confluent.  

 

4.20.2 Analysis of menin knockdown: 
 

To verify the KD of menin in the shRNA-virus infected cells, we used western blot. Cells 

were infected with the various shRNA-puro constructs and were then selected on 

puromycin media. Cells were grown out into 10 cm plates and were grown until 

confluent. Cells were then lysed and resuspended in RIPA lysis buffer. The lysates were 

then subjected to western blot. We used a rabbit anti menin antibody from Bethyl 

laboratories. We found that this antibody could pick up menin signals from both rat and 

mouse cell lines as opposed to the menin antibody from Santa- Cruz Biotech. The blots 

were much clearer when using NIT-1 cells in comparison with INS-1E cells. Although 

most sequences showed good KD in the luciferase assay, they failed to cause any 

reduction in the protein levels as detected by western blot (Fig.12A). The only sequence 
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that seemed to be able to knockdown the protein in NIT-1 cells compared to the control 

(pLBM-puro infected cells) was the 9th sequence tested, #2760 (Fig.12B). We also looked 

at the menin mRNA levels in the KD cells. To our surprise we found that 2760 infected 

cells seemed to have almost double the amount of menin mRNA compared to the control 

cells (Fig.12C). The difference was significant and consistent.  
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Fig.12. A. Menin protein expression levels in shRNA infected NIT-1 cells in comparison with control cells. 

B & C. Menin protein and men1 mRNA expression levels in #2760 infected NIT-1 cells in comparison 

with control cells.  

 

Western blot indicated that none of the sequences except #2760 could knockdown menin 

at the protein level in the insulinoma cells. This was quite surprising as most of them 

were found to be quite efficient in luciferase assay. The fact that menin KD cells had 

significantly higher levels of menin mRNA further complicates the picture.  

 

4.20.3 Analysis of phenotype of menin KD cells: 
 

Once we detected that #2760 could knock down menin in vitro, we looked at the 

phenotype of the KD cells. For this we infected NIT-1 cells either with pLBM-puro or 

2760-puro virus, cultured the puromycin selected cells and used them periodically for the 

various analyses.  

 

Menin KD has already been shown to result in an increased proliferation and reduced 

apoptosis. Hence we decided to look at the proliferation and apoptosis in the 2760-puro 

infected cells in comparison with pLBM-puro infected cells.  

 

4.20.3.1 Analysis of proliferation: 

 
Menin deficiency has been reported to enhance the proliferation of beta cells in mice. 

This enhancement is a really slow and long process that takes 5-6 moths to manifest and 

hence might not be recapitulated in vitro during the short-term study. The short duration 

might not be enough to pick up the slight increases in beta cell proliferation. Hence we 

decided to apply several complementary approaches to look at beta cell proliferation.    
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eFluor-670 Staining:  

 

Equal numbers (1x106) of pLBM-puro (control) or 2760-puro infected cells were stained 

with eFluor670 proliferation dye and were plated out in culture at 1x105 per well. 

Staining of the cells was analyzed by FACS on days 0, 3 and 7. No difference was 

observed between the 2 samples on any of the time points analyzed (Fig. 13A). This 

might be because the increase in proliferation might not have been large enough to be 

picked up by eFluor staining.  

 

PI staining for DNA content: 

 

We felt that a minor difference in proliferation might be picked up better if we look at the 

cell cycles using PI. We plated out equivalent number of pLBM-puro and shRNA-puro 

infected cells in 24 well plates. The cells were grown over time. Cell cycle analysis was 

done using PI on several time points including days 2, 5, 8, 12 and 15. PI intercalates 

with the DNA and the signal is proportional to the amount of DNA in the cells. This 

technique could be used to distinguish between cells in G0/ G1 phase or G2/ M phase. 

The taller curve represents non-dividing cells while the shorter curve represents the 

proliferating cells (Fig.13B). No significant difference was observed between the control 

and shRNA infected cells on any of the time points analyzed. Similar percentages of 

proliferating cells were observed in both sample sets over the course of the study 

(Fig.13B).  Both menin KD and control samples had similar percentages of proliferating 

cells.  

 

Cell Counts: 

 

As an alternative measure, equal number of both control and shRNA infected cells were 

plated out and put in culture. Cell counting was done using FACS just to ensure that 

equal starting numbers were used. The cells were split after a few days and the cell 

numbers were counted again using FACS. There were 9 replicates for each sample. 

#2760-puro infected cells were found have an increased number of cells in comparison 
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with the control (Fig.13C). This indicated that menin KD cells had an increased 

proliferation rate in comparison with the control cells. This is in line with previously 

published results. 
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Fig.13. A. eFluor-670 staining of cells on days 0, 3 and 7 post plating. The blue and violet lines represent 

two control samples while the orange and red lines represent two #2760 infected samples. B. 

Representative data showing PI staining of cells on day 8 (left panel). The taller curve represents resting 

cells in G0/ G1 while the smaller curve on the right represents the proliferating cells in G2/ M. Percentages 

of proliferating cells in the samples over the course of the study (right panel). C. Total cell numbers in 

samples on day 7 post plating. 9 replicates of each sample were plated out and analyzed.  

 

 

Though we used 3 different techniques, we are not sure about the suitability of these to 

study the proliferation rates in beta cells. The techniques might not be appropriate to 

analyze proliferation rates when the differences are minor and occur over a long duration. 

Still the increased number of cells we observed in menin KD samples indicated that 

knockdown of menin could enhance beta cell division and even slight changes that 

accumulate over time could have a large cumulative effect in the end.  

 

4.20.3.2 Analysis of apoptosis: 

 
Overexpression of menin has been reported to increase apoptosis (70). Menin is believed 

to inhibit insulinoma formation by activation of caspase 8 involved in apoptosis (57). 

Hence it was quite interesting to see if menin KD cells showed a reduced level of 

apoptosis.  

 

Annexin/PI staining of serum- starved cells:  

 

Apoptosis was first analyzed in cells cultured in normal media. Cells were plated out at 

equal starting numbers and were allowed to grow in culture. They were taken out at 

different time points and stained with annexin PE. AnnexinV can bind to 

phosphatidylserine (PS) on the surface of cell membranes. PS is usually located on the 

inner surface of the cell membrane. But cells undergoing apoptosis translocate PS to the 

outer surface. This is an early apoptotic event and hence AnnexinV can be used to 

identify the cells, which start to undergo apoptosis. We failed to observe any difference 

between the 2 samples at any of the time points analyzed (Fig.14A).  
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Since we felt that we might be able to pick up minor differences better by analyzing the 

apoptosis in FCS starved cells, we cultured cells in starvation media lacking FCS and 

then analyzed the apoptosis using PI and annexin PE. In contrast to AnnexinV, PI can be 

used to detect late apoptotic events as it stains dead cells. We observed increased 

apoptosis in shRNA-puro infected cells compared to the control cells at all time points 

analyzed. This was in contrast to previous reports (Fig.14B).  
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Fig.14. A. AnnexinV staining of control and #2760 infected cells. The blue and violet lines represent 

control samples while the red and orange lines represent #2760 infected samples. B. AnnexinV/ PI staining 

of control and #2760 infected cells on days 3 and 5 (top panel). The blue and violet lines represent control 

samples while the red and orange lines represent #2760 infected samples. Percentages of AnnexinV+, PI+ 

and double positive cells in control and #2760 infected samples on days 3 and 5 (bottom panel).  

 

   

4.21 Generation of virus for embryo injection: 

 
Our in vitro results indicated that #2760 could induce the knockdown of menin and that 

menin KD cells exhibited slightly increased proliferation. Hence we decided to use this 

sequence to generate menin KD mice in the pRLM background. High titer virus was 

generated using the 2760-pRLM construct and will be used to generate Menin KD mice 

in the pRLM background. 
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IL-17A silencing does not protect NOD mice from autoimmune 

diabetes 
 

 

Ever since their discovery, Th17 cells have been intensely studied. The discovery that IL-

23 and not IL-12 is critical for autoimmunity110 led to the idea that Th17 cells are 

responsible for autoimmune diseases as opposed to Th1 cells. A number of studies 

verified this idea as the cytokines secreted by this group of cells were discovered to be 

pathogenic in several autoimmune diseases. IL-21 is found to be pathogenic in several 

autoimmune disease models including EAE and CIA245. IL-21 is also found to be critical 

for the development of type 1 diabetes246, 247. IL-17A is found to be pathogenic in a 

variety of autoimmune conditions including EAE, CIA and chronic colitis242, 245, 261. The 

role played by the other Th17 effector cytokines is less well established. All these data 

strongly point to Th17 cells being extremely pathogenic. But they are also found to play 

critical roles in defense against extracellular bacteria and fungi. The absence of Th17 

subset seriously compromises the immune system with the organism being severely 

susceptible to bacterial and fungal infections149-157. Th17 cells are mainly characterized 

by their signature cytokine, IL-17A. Currently, most of the effects associated with Th17 

cells can be traced back directly to this effector cytokine.  

 

IL-17A deficient mice are found to be partially protected from both CIA and EAE. This 

has led to the belief that this cytokine might play a pathogenic role in other autoimmune 

diseases including type 1 diabetes. Though several studies have hinted at a pathogenic 

role for IL-17A in autoimmune diabetes171-176, the findings are not really conclusive. We 

felt that an IL-17A KD transgenic line could provide valuable insight into the role played 

by this cytokine in the context of autoimmune diabetes. A partial reduction of the protein 

better reflects a normal physiological state. We used a construct containing GFP along 

with the shRNA and used GFP expression as a marker for the KD.  
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We generated an IL-17A KD transgenic mouse, which was found to express two distinct 

populations of GFP+ cells. One population was found to have a lower MFI than the other. 

They were designated as ‘low’ and ‘high’ respectively. It has already been shown that in 

some transgenic mouse lines, different cell subsets express different levels of GFP248. But 

this didn’t seem to be the case with our founder as all cell lineages had almost 100% of 

the cells expressing GFP but all exhibited the 2 cell populations. Once we bred the 

founder, we saw that the pups had only one GFP population, either the high or the low. 

We further bred the ‘high’ and ‘low’ mice as two separate transgenic lines and found that 

all pups from a ‘high mouse’ had cells with high GFP expression while all pups from a 

‘low mouse’ had cells with low GFP expression. This was found to be true in all future 

generations. When we looked at the integration using Southern blot, we found that both 

the ‘high’ and ‘low’ mice had a single integrant but at different sites in the genome. All 

these data pointed to the possibility that the IL-17A KD founder was a chimera and that 

the 2 virus copies segregated in F0.  

 

Since both the ‘high’ and ‘low’ mice differed in their GFP expression intensity, there was 

a possibility that they had different levels of KD. But the analysis of IL-17A levels in 

differentiated Th17 cells showed that both lines exhibited similar IL-17A reduction, 

despite the difference in the GFP expression. Hence the only difference between the 2 

lines seems to the integration site and the GFP expression pattern. Hence the terms ‘high’ 

and ‘low’ refer only to the GFP expression and not to the level of IL-17A KD in these 

mice.  

 

We were able to see significant KD of IL-17A in vitro and ex vivo. In vitro differentiated 

transgenic Th17 cells produced vastly reduced amounts of IL-17A. Both IL-17A protein 

and mRNA levels were significantly reduced. We were able to see a tight correlation 

between the reduction in both mRNA and protein levels. Though we could find a KD in 

vitro, this might not have been the case in vivo. It has already been suggested that all the 

conditions required for a full effector Th17 differentiation might not be present in vitro. 

This is suggested to the responsible for the incredible plasticity observed with in vitro 

differentiated Th17 cells239. Hence it was possible that though transgenic Th17 cells 
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differentiated in vitro could not produce significant amounts of IL-17A, under in vivo 

conditions, these cells could achieve full effector function with IL-17A secretion to the 

full capacity.  

 

To investigate this possibility, we decided to look at the IL-17A levels in diseased 

pancreas ex vivo. We took out islets from the pancreas of diseased mice and analyzed the 

cytokine levels by qPCR. We could detect IFNg at quite high levels indicating a role for 

this cytokine in the disease process. On the other hand, we could detect IL-17A only at 

very low levels in a minor proportion of the mice and the expression was found to be 

quite variable. We feel that had this cytokine played a critical role in autoimmune 

diabetes, we should have been able to pick up IL-17A at higher levels. We found a high 

and comparable expression of RORgt in both WT and KD mice. Since RORgt expression 

was already found to be unaffected by the integration of the transgene, we looked at the 

islet IL-17A levels relative to the RORgt expression in the islets. We found that 

compared to WT beta cells, we could detect vastly reduced amount of IL-17A in the islets 

from KD mice. The degree of reduction was found to be quite comparable to the 

reduction observed in in vitro differentiated transgenic Th17 cells. This observation led to 

believe that the in vitro KD we observed seemed to reflect the knockdown in vivo.  

 

Th17 cells produce a number of effector cytokines, in addition to IL-17A. These include 

IL-17F, IL-21 and IL-22119. Th17 cells are also characterized by their lineage specific 

transcription factor, RORγt130, 131. For the purpose of the study, it was critical to ensure 

that the transgene did not disrupt the Th17 pathway or the expression of the other 

cytokines. For this we analyzed the levels of RORgt, IL-17F and IL-21 in both in vitro 

differentiated Th17 cells and ex vivo islets. We found comparable amounts of both 

cytokines in both WT and KD mice at both mRNA and protein levels. This was the case 

with both differentiated Th17 cells and the islets. RORgt levels were also quite similar 

between the WT and KD samples. We did not look at IL-22 as this is considered to be a 

minor Th17 cytokine. All these data suggested that the integration of the transgene and 

the knockdown of IL-17A was specific and did not disrupt Th17 pathway in the 

transgenic mice. 
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For the purpose of the study, we had to ensure that Th1 differentiation in the transgenic 

mice was unaffected. Th17 and Th1 pathways are both believed to be involved in 

autoimmune pathology and it has been quite difficult to specify their distinct roles in 

autoimmune diseases. Th17 cells are also found to quite plastic with the ability undergo 

conversion to alternative phenotypes and are reported to acquire Th1 phenotype over 

time. There is some evidence indicating that in vitro differentiated and purified Th17 

cells can undergo conversion into Th1 like cells once they are transferred into 

immunodeficient recipients173. Hirota et al.239 recently showed that Th17 cells are 

characterized by the differentiation origin rather than the production of IL-17A. They 

discovered that Th17 cells can undergo alternative states depending upon the disease 

environment. Most Th17 studies have observed the development of IL-17A/ IFNg double 

positive and IFNg single positive cells in purified Th17 cell populations. Hence for the 

purpose of this study, we had to ensure that loss of IL-17A did not enhance Th1 pathway 

or Th17 conversion. For this we looked at IFNg levels in both in vitro differentiated Th1 

cells and ex vivo pancreatic islets. We found that KD cells had similar levels of IFNg 

compared to WT cells indicating that reduced IL-17A levels did not lead to increased 

IFNg levels. This suggested the absence of Th17 conversion or enhancement of Th1 

pathway.  

 

Once we had mice in which at least 70% of IL-17A is eliminated, we analyzed the 

diabetes incidence in these mice. We used 3 different models of diabetes. This was done 

to foolproof the observations. We observed that KD mice developed spontaneous 

diabetes similarly to WT mice and that the disease frequency and kinetics were quite 

similar. To double-check the results, we used cyclophosphamide-induced diabetes. 

Cyclophosphamide can accelerate diabetes development in insulitic mice and cause a 

synchronous disease around 14 days after the injection. We did the experiment twice and 

both times, we observed that the transgenic mice were as susceptible to disease 

development as WT mice. All these data led us to believe that reduced IL-17A does not 

protect the mice from autoimmune disease. To check whether transgenic splenocytes 

could transfer diabetes, we transferred splenocytes from diabetic NOD mice into NOD-
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SCID recipients. None of the mice that got WT splenocytes got sick while 3 of the mice 

that received transgenic cells developed diabetes. Though the general lack of disease 

development suggested that the experimental setup didn’t work properly, the fact that 3 

of the mice that got transgenic cells developed the disease indicated that transgenic cells 

could transfer diabetes despite reduced IL-17A production. The data from the diabetes 

incidence studies together suggested that reduction of IL-17A does not protect NOD mice 

from autoimmune diabetes. This observation indicated that IL-17A might not be critical 

in the development of type 1 diabetes. 

 

One of the major concerns raised regarding our experimental system is the presence of 

residual amounts of the protein in the transgenic mice. Since we use knockdown mice as 

opposed to knockout mice, the protein is not removed completely. The KD cells are 

capable of IL-17A production, though at reduced levels. As shown before, there is around 

30% of IL-17A still left in the transgenic mice. One of the major questions was whether 

this residual amount is capable of contributing to diabetes development. To investigate 

this possibility, we used another model of IL-17A dependent autoimmune disease, EAE. 

It has already been shown that IL-17A deficient mice are partially protected from EAE 

with the disease being less severe and occurring with less frequency242. We postulated 

that if the KD in the transgenic mice is sufficient to protect them from EAE at least 

partially, then it should also be sufficient to offer at least partial protection from 

autoimmune diabetes. This depended on one assumption that both EAE and T1D are 

controlled by the same parameters.  

 

We induced diabetes in the IL-17A KD mice by the injection of MOG peptide emulsified 

in CFA. We have previously found mice in our colony to develop a relapsing remitting 

form of the disease.  We found that the transgenic mice showed significant protection 

from EAE during the fist phase of the disease but this protection was absent in the 

relapse. The transgenic mice had a significantly lower cumulative disease burden 

compared to the WT NOD mice. In our experimental setup, the overall disease severity in 

the mice was low. In the previous study242, the mice developed a severe form of EAE. 

We believe that this can be attributed to the strain differences. Iwakura et al. had done the 
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EAE study in C57BL/6 mice. These mice develop a monophasic disease and are much 

more susceptible to EAE compared to NOD mice.  

 

Although the disease severity was low, we observed a clear, albeit partial protection in 

the IL-17A KD mice in comparison with the WT mice. This indicated that the KD 

observed in the transgenic mice is sufficient to impair IL-17A dependent autoimmunity. 

Though the mice still retained around 30% of IL-17A they were still partially protected 

from the disease, consistent with results from the IL-17A deficient mice. Hence, had type 

1 diabetes been IL-17A dependent, we would have expected to see at least a partial 

protection from the disease in the transgenic mice. The lack of protection from diabetes 

we observed hence suggested that type 1 diabetes is not dependent on IL-17A and thus 

the removal of it has no effect on the development of the disease. 

 

To investigate the reason for the partial protection from EAE we observed, we took out 

diseased splenocytes from mice and did an in vitro recall response. We stimulated them 

in vitro either non-specifically with beads or specifically with MOG peptide. We found 

that KD cells could produce IL-17A under maximal stimulation though at reduced levels 

compared to WT cells. Upon MOG specific stimulation, both WT and KD cells produced 

comparable amounts of IFNg indicating that the partial protection was not related to 

levels of this cytokine. But KD cells failed to produce any IL-17A in response to MOG 

stimulation while WT cells produced significant amounts of this cytokine. This 

observation suggested that the partial protection seen might have been due to the inability 

of KD cells to produce IL-17A.  

 

We generated a mouse model with vastly reduced amounts of IL-17A. Th17 lineage in 

the mouse was uncompromised. Though the transgenic mice produced significantly lower 

amounts of IL-17A, they were not protected from autoimmune diabetes. The reduction in 

IL-17A was sufficient to protect the mice from EAE, an IL-17A dependent autoimmune 

disorder; indicating that systemic silencing was quantitatively sufficient to impair 

autoimmunity in an IL-17A- dependent context. Our results led us to conclude that 

autoimmune diabetes in the NOD mouse is independent of IL-17A. This does not 
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preclude the possibility that Th17 cells contribute to type 1 diabetes development. Th17 

cells have been found to transfer diabetes into NOD-SCID mice but only after they 

converted into a Th1 like phenotype. anti-IL-17 was found to be unsuccessful in this 

model especially in young mice172, 175. Though Arif et al.263 recently reported a crucial 

role for IL-17 in autoimmune diabetes, the scope of their results in clarifying the role of 

IL-17A in autoimmune diabetes is limited. The observation of Th17 associated factors in 

the islets was obtained from a single case report and they failed to observe any 

proapoptotic effect for IL-17A on its own.  Though they were able to observe increased 

IL-17A reactivity (54% as opposed to 8%) in type 1 diabetes patients, they observed an 

increased IFNγ reactivity (62% as opposed to 13%) as well. The pattern of IL-17 

reactivity was quite similar to the IFNγ response and the number of IL-17+ autoreactive 

cells was found to be fewer than that of IFNγ+ cells.  There is the added problem that 

their assay was unable to distinguish dual secreting cells from single secretors which 

meant the IL-17 reactivity they observed could have been from double producers i.e. cells 

which produce IL-17 and IFNγ.  

 

Munegowda et al.264 on the other hand observed that Th17 cells on their own could not 

cause diabetes and that they stimulated CD8+ CTLs which could then kill beta cells 

through the perforin pathway and lead to diabetes development. This was in contrast to 

EAE where CD4+ Th17 cells induced EAE and Th17 activated CTLs could not.  They 

concluded that T1D is directly mediated by Th17 stimulated CTLs whereas CD4+ Th17 

cells play a crucial role in EAE pathogenesis by Th17 cytokine mediated tissue 

inflammation. The results from this study could be reconciled with ours in that a classical 

Th17 response involving IL-17 does not seem to be crucial for type 1 diabetes 

development. IL-21 has been reported to be indispensable for the development of 

diabetes in the NOD mouse model246, 247. This cytokine is found to play a crucial role in 

Th17 proliferation and is one of the effector cytokines produced by this subset. Hence 

Th17 cells might still play a role in diabetes development through effector mechanisms 

distinct from IL-17A production. But our results demonstrate that a characteristic Th17 

response that involves IL-17A is not critical in all autoimmune diseases, at least not in 

autoimmune diabetes. 
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So far most studies have seen an extremely close relationship between Th17 cells and IL-

17A that all effects observed with Th17 cells have been attributed to this cytokine. IL-

17A has come to define Th17 lineage and its functions. Our study seems to show that an 

IL-17A dependent response seemed to be involved in other autoimmune diseases is not 

important in type 1 diabetes. Recently it was shown that Th17 cells adopt alternate 

expression profiles in different disease states239. Th17 cells were found to switch off IL-

17 production and switch on IFNg production in chronic inflammatory conditions like 

EAE. But in an example of acute infection i.e. C. albicans, Th17 cells failed to take up 

alternate fates although they switched off IL-17 expression. These observations raise the 

idea that the functional fate of Th17 cells is not invariably linked to IL-17 expression by 

these cells. Hence it seems that the role played by IL-17A might be overestimated. Rather 

than concentrating on an anti-IL-17A therapy, we should follow a broader approach, as 

this might be better applicable to a wider range of disease conditions.  

 

Further work needs to be done to determine whether Th17 cells play a contributing role 

in autoimmune diabetes via any of the alternate effector mechanisms. It would be 

interesting to analyze the role of IL-23 in the disease process. This was a line of research 

that we started on but unfortunately could not follow up. IL-23 is found to be pathogenic 

in several autoimmune diseases and this pathogenecity has been linked to Th17 cells. IL-

23 has been found to be critical for the long-term survival and maintenance of Th17 

subset. It is believed to impart pathogenic potential to Th17 cells. Recently two groups249, 

250separately put forward the idea that IL-23 imparts pathogenic potential to Th17 cells 

via GM-CSF. They found that IL-23 could induce the production of GM-CSF in T cells 

and that GM- CSF was critical for the ability of Th17 cells to drive inflammation in the 

CNS in EAE. In vitro activated T cells required GM-CSF to passively transfer disease 

and GM-CSF neutralization upon onset of disease symptoms could block disease 

progression251. Hence it would be interesting to see whether loss of IL-23/ GM-CSF can 

protect mice from diabetes. It would also be interesting to see whether loss of the Th17 

transcription factor RORgt could have an effect on the disease process. These are all 
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several avenues that can be pursued to further unravel the role, if any, of Th17 cells in the 

development of type 1 diabetes.  

 

 

Generation β- cell reporter mouse models and modulation of 

β-cell mass 

 
 

An efficient therapy for type 1 diabetes would have to involve beta cell regeneration. It 

would also have to involve the elimination of autoreactive immune cell specificities to 

ensure the long-term survival of implanted or regenerated beta cells. One of the main 

disadvantages of studying the disease in humans is the non-accessibility to the diseased 

organ, the pancreas. Hence the disease is intensively researched in animal models in 

which the diseased pancreas can be obtained upon sacrificing the animals. Even then, it is 

hard to follow the course of the disease and this challenge has given way to the search for 

non-invasive imaging techniques for analyses of pancreatic beta cell mass. This would 

allow the estimation of beta cell mass and autoreactive destruction in the same animal 

over the course of the disease. This strategy might be able to provide vital clues regarding 

the dynamics of beta cell mass during various stages of the disease. This in turn could 

facilitate the development of a successful cure or therapy option.  

 

A number of studies have tried several beta cell imaging modalities PET, CAT, 

bioimaging etc. Jirák et al.252 labeled beta cells with super paramagnetic iron oxide 

particles (SPIOs) and they found that the labeled islets could be detected and followed in 

vivo in a rodent model using MRI. Specific radiolabeled tracer molecules have been used 

to image transplanted islets by PET and SPECT253. But all these techniques have their 

own advantages and disadvantages. We chose luciferase bioimaging due to several 

reasons. It is non-toxic to the cells making it ideal for long-term studies. Using luciferase 

imaging to follow beta cell death during diabetes is more desirable than using fluorescent 

reporters like GFP. This is because the luciferase reaction requires ATP, which can be 
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present only in living cells and hence the signal better represents the living beta cell mass. 

On the other hand, GFP signal could be observed even after the cells are dead and hence 

the total signal would represent the whole beta cell mass including the dead cells. Hence 

using luciferase imaging to assess and follow beta cell mass presents a valuable research 

tool.  

 

Luciferase imaging has already been used to assess beta cell mass in mouse models. Lu Y 

et al.254 successfully used bioluminescent imaging to monitor islet graft survival over 

time. Several research groups have already generated transgenic mice expressing 

luciferase in the beta cells and these studies show a clear correlation between the signal 

intensity and the beta cell mass255- 257. Park et al.256 generated transgenic mice expressing 

firefly luciferase under the control of mouse insulin 1 promoter in the CD1 background. 

They found that the mice had normal islet architecture and that the luciferase expressing 

beta cells could be readily imaged even after transplantation into NOD-SCID mice. These 

studies suggest that luciferase expression via viral transduction of reporter genes has no 

deleterious effect on beta cell development and maintenance. We felt that it would be 

quite useful to generate beta cell reporter mice in the context of a spontaneous diabetes 

model like the NOD mouse. These reporter mice would enable us to follow beta cell mass 

changes over the course of diabetes development. We also generated luciferase reporter 

mice in the NOD-SCID background for use in adoptive immune cell transfer 

experiments.  

 

We decided to use the RIP promoter as it has been better validated than the mouse insulin 

promoter. We found the RIP-hluc construct to be specific and used this to generate the 

reporter mice. We found our mice to express luciferase, though this expression was 

dispersed around the abdominal area. We found an additional signal in the thymus, which 

could be explained owing to insulin expression in the thymus262. When we took out 

organs from the luciferin injected mice, we observed a signal albeit slight, from the 

spleen in addition to pancreas. The luciferase signal from the spleen was quite puzzling, 

as rat insulin promoter should restrict the expression of hluc to insulin expressing cells. 

We observed this disperse signal pattern in most of our pRLM mice even at the lowest 

179



 

signal intensities and shortest exposure times. The pRLM+ mice exhibited no gross 

defects and behaved similar to wt mice under both normal and experimental conditions. 

 

The first indication that despite its disperse nature, the signal could be specific to beta 

cells came when we imaged severely diabetic pRLM+ mice. Luciferase signals were 

barely detectable in the diabetic mice indicating that the signal was beta cell specific. To 

further clarify the origin of the signal, we used 2 different models of induced diabetes. 

We injected mice with STZ or CY and found that in both cases, mice lost their luciferase 

signal upon developing diabetes. Hence despite the strong abdominal signal before the 

induction of diabetes, the signal was significantly reduced / lost upon the loss of beta 

cells. These data strongly supported the beta cell specific expression pattern of luciferase. 

We could detect significant levels of luciferase mRNA only in the pancreas of the 

pRLM+ mice. Smaller luciferase levels were detected in the thymus while no expression 

was observed in any of the other organs tested. This further proved that luciferase 

expression was pancreas specific. In light of all the data, we believe that in our mice, 

luciferase expression is limited to insulin producing cells in the pancreas and the thymus. 

We believe that the broad abdominal signal we observe is due to a really strong luciferase 

expression. This strong signal even at the lowest signal intensity setting and shortest 

exposure means our imaging machine is severely limited.  

 

Recently, Yong et al.258 reported the generation of MIP-TF transgenic mice in the 

C57BL/6 background that have a MIP driving the expression a trifusion (TF) protein of 

three imaging reporters including a luciferase. They were able to observe a progressive 

reduction in bioluminescence preceding hyperglycemia, upon low dose STZ treatment. In 

their discussion, they reported that they are currently breeding the TF gene into the NOD 

mouse background.  This approach is less ideal compared to our approach as crossing 

back a gene from the C57BL/6 background into the NOD background would always 

introduce linkage associated genes in addition to the desired gene from the C57BL/6 

background into the NOD background. Hence we feel that our mice are better suited as a 

reporter model of spontaneous diabetes. As part of the project, we also generated a NOD-

SCID pRLM mouse line. Towards this purpose, we crossed a NOD pRLM+ mouse with 
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NOD-SCID wt mice. We then mated the heterozygous pups to obtain NOD-SCID 

homozygous pRLM+ mice. We then selectively mated the homozygous pRLM+ mice 

back into NOD-SCID background to obtain and maintain the NOD-SCID pRLM line. We 

believe these mice could prove useful in the field of adoptive transfer research studies.  

 

Originally we had planned to generate menin KD mice in the pRLM background. Menin 

is a tumour suppressor, the inactivation of which has been described to cause 

insulinomas. Hence a pRLM-menin knockdown mouse line would be an ideal model to 

study beta cell modulation using bioimaging. We aimed to generate a pRLM construct 

carrying an efficient menin shRNA and use the construct to generate a transgenic mouse 

line. Towards this purpose, we decided to validate the shRNA sequences in vitro in 

insulinoma cell lines first before proceeding to transgenic mice generation. We cloned in 

a total of 9 different shRNAs, most of them active against both rat and mouse menin. 

This was done intentionally as the in vitro experiments were done in both rat and mouse 

cell lines. During the early days of the project, we didn’t have the mouse cell line NIT-1 

and hence had to choose shRNA sequences which could knockdown menin in the rat 

insulinoma cell line INS-1 and which could also knockdown menin in the NOD mouse 

line, should we generate one.  

 

All the shRNAs showed considerable knockdown efficiency in a luciferase reporter 

assay. These constructs were then used to infect insulinoma cells and the infected cells 

were subjected to western blot to analyze the knockdown of menin. This was a difficult 

premise as menin expression is markedly reduced in insulinoma cells221. However we 

were able to detect a band at around 70KDa, the reported size of menin. To our surprise, 

none of the first 8 shRNAs tested could knockdown menin in vitro. None of the cells 

infected with these shRNAs showed a reduction in menin levels. This was quite 

surprising as most of them showed very good knockdown efficiencies in the luciferase 

assay. Karges et al.203 have reported the existence of 2 different isoforms of menin; the 

long λ transcript (2.4 kb product) and the short σ transcript (2.0 kb product). One of the 

possible reasons for the contradiction we observed might be that the shRNA sequences 

could have led to the degradation of only one of the isoforms and the other one might 
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have compensated for the loss. Still it does not fully explain how 8 different sequences 

could not knockdown menin sufficiently.  

 

We tested #2079, our 9th sequence as Yokoyama et al.259 found it effective in knocking 

down menin. Though our design algorithms had recommended this sequence before, we 

hadn’t tested it, as it is not active against rat menin. As all the shRNA sequences tested, it 

showed good knockdown efficiency in the luciferase assay and was used to infect mouse 

insulinoma cells. #2760 infected cells showed a considerable reduction in menin protein 

expression in western blot. We isolated RNA from the infected cells and analyzed men1 

mRNA levels by qPCR. We were amazed to see that #2760 infected cells had almost 

double the amount of men1 mRNA compared to control cells. This could be explained 

when the shRNA causes translational repression, not mRNA degradation and when the 

target protein is regulated by a feedback loop. In this scenario, the protein at sufficient 

levels prevents translation and transcription of its gene and when the shRNA prevents 

translation of the gene product, the feedback loop leads to increased gene transcription to 

compensate for reduced protein levels and leads to enhanced mRNA levels of the gene. 

Menin has already been reported to be regulated via a feedback loop260 and hence fits the 

system perfectly.  

 

We then looked at the proliferation and apoptosis levels in the menin knockdown cells. 

We couldn’t pick up any difference in the proliferation levels using eFluor 670 staining. 

When we stained for cell cycle using propidium iodide, there was no significant 

difference between menin KD cells and control cells in any of the time points studied. 

However once we started with equal cell numbers, we could see an increased number of 

cells in the menin knockdown sample compared to the control sample, after few days in 

culture. Though we analyzed proliferation rates using 3 different techniques the results 

were contradictory. We believe that this might be due to the limited suitability of the 

techniques in the context of our experiment. Menin knockdown is found to cause 

insulinomas in mice but only over a very long period of time and hence the enhancement 

of proliferation is slight and cumulative over time. The experimental techniques we used 

might not be sensitive enough to pick up minor differences. The outcome is also 
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complicated by the fact that the knockdown cells were analyzed over a maximum period 

of 15 days, which might not be long enough for the differences to be apparent. However 

the difference in cell numbers we observed gives us the indication that there is a trend for 

increased cell numbers upon menin knockdown.  

 

We analyzed the apoptosis levels in the knockdown cells using annexin/ PI double 

staining. Annexin would be able to pick up the early apoptotic cells while PI identifies 

late apoptotic cells. We couldn’t see any difference between the samples when we stained 

them. We then decided to use serum starved cells for further experiments as we felt that 

the increased apoptosis in serum starved cells might better magnify slight differences 

difficult to be noticed. Contrary to previous studies, we observed an increased level of 

apoptosis in our menin knockdown cells. Overexpression of menin in insulinoma cells 

has been reported to lead to an increased rate of apoptosis189. Hence logically, 

knockdown of menin should lead to a decreased rate of apoptosis. However, we observed 

an enhanced apoptosis in menin knockdown cells that were serum starved and this effect 

was not noticeable in cells grown in serum containing media. Similar to proliferation, the 

cells were grown over a period of 12 days and analyzed at regular intervals.  

 

Sayo et al.189 were able to observe significant enhancement of apoptosis and reduction of 

proliferation in insulinoma cells transfected with menin overexpression constructs. 

However the transfection of cells with menin constructs would lead to a stronger effect 

compared to infection with virus containing menin constructs. Transfection of cells 

usually results in the uptake of several constructs by the same cell leading to a magnified 

effect. During infection of cells with virus containing the construct, each cell is infected 

with a single virus and hence a single construct, thereby eliminating the possibility of a 

magnified effect.  This inherent contraction in the methods applied could to some extent 

explain the lack of or minor effects we observed in contrast to Sayo et al.189 The other 

contributing factor as mentioned before could be the lack of sensitivity of the 

experiments employed as well as the inability to pick up minor changes, which could 

have a cumulative effect over time.  
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To summarize, we generated two beta cell reporter mouse lines; one in the NOD 

background and the other in the NOD- SCID background. We believe that these would be 

extremely useful in T1D research.  These mouse lines would allow the beta cell specific 

knockdown of target beta cell modulators and bioimaging would enable the follow- up of 

disease in the transgenic mice in a non- invasive manner.  We also identified an shRNA 

that could knockdown the beta cell modulator menin and hope to generate a menin 

knockdown mouse line in the pRLM background to study the effects of beta cell 

modulation in the development of spontaneous diabetes.  

 

In conclusion, type 1 diabetes affects around 0.5% of the population in developed 

countries and the incidence rates have been going up over the years. The destruction of 

beta cells is irreversible and the current therapy available to patients only manages the 

symptoms and does not prevent the associated pathological manifestations. The patients 

need lifelong therapy and intensive research is being carried out to identify ways to 

eliminate autoimmune responses directed against pancreatic beta cells and to replace or 

regenerate beta cells. Our work aimed at analyzing the role of a pro-inflammatory 

cytokine IL-17A in type 1 diabetes development and also in generating a beta cell 

reporter mouse line in the NOD background. We generated IL-17A KD mice in the NOD 

background using RNAi and lentiviral transgenesis. We analyzed diabetes incidence in 

the IL-17A deficient mice and found that the loss of IL-17A did not protect the transgenic 

mice from diabetes. Based on our observations, we believe that Th17 cells might not play 

a critical role in type 1 diabetes through the IL-17A pathway, though they might still be 

involved in the disease process through alternate pathways.  We also generated NOD and 

NOD-SCID mice, which exhibit beta cell specific luciferase expression combined with 

the ability to knockdown specific genes in beta cells. We used a single construct, which 

combined a luciferase sequence and an shRNA expression cassette under the beta cell 

specific RIP promoter and used lentiviral transgenesis to generate the transgenic mice. 

These mice will be of use in studying beta cell phenotype resulting from the knockdown 

of target genes, non- invasively using bioimaging. We characterized an shRNA active 

against men1 as a model for beta cell regeneration in the context of type 1 diabetes and 

hope to generate and characterize a menin KD mouse line in the pRLM background. We 
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believe our work has contributed to diabetes research in generating two reporter mouse 

lines for diabetes studies and also in demonstrating the lack of a crucial role for IL-17A 

in type 1 diabetes.  
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