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1 Introduction 

Cells within multicellular organisms communicate via diffusible molecules or by direct cell-cell 

interactions. Hormones, growth factors, neurotransmitters and other external stimuli induce 

various cellular processes such as gene activation, alterations in metabolism, proliferation, 

motility or cell death (Bradshaw 2003). The mechanisms by which extracellular agents 

transmit information via specific receptors to evoke intracellular processes are known as 

‘signal transduction’ or ‘cell signaling’ or ‘transmembrane signaling’ pathways.  

In general, signals are transduced by changes in the activity and/or localization of 

proteins. Such changes can occur in a rapid and often reversible fashion by posttranslational 

modifications of the proteins involved in the respective signaling cascade. Protein 

phosphorylation on serine, threonine and tyrosine residues was the first discovered 

mechanism of posttranslational protein modification (Krebs and Beavo, 1979). Since then, 

numerous human diseases have been attributed to dysregulated protein phosphorylation 

(Hunter 2002). In addition, many other posttranslational modifications that alter protein 

functions have been found, such as protein acetylation, glycosylation, ubiquitination, 

SUMOylation, NEDDylation, methylation, biotinylation or ADP-ribosylation (Hunter 2007).  

1.1 Principles of phosphoregulation 

Protein phosphorylation (that is, the addition of a phosphate [(PO4)
3-] moiety to certain amino 

acid residues) is goverened by the opposing action of protein kinases and protein 

phosphatases (Hunter 1995). The enzymatic activity of a protein kinase results in the 

covalent attachment of a phosphate group [derived from the -phosphate of adenosine 

triphosphate (ATP)], to the side chain of an amino acid that contains free hydroxyl groups 

(Hunter 1998). The discovery of the cyclic AMP (cAMP)-dependent protein kinase A (PKA) 

and its pleiotropic substrate specificity was the basis of the establishment of field called 

signal transduction (Hunter 2000).  

Proteins can be phosphorylated on nine different amino acid residues: tyrosine, 

serine, threonine, cysteine, arginine, lysine, aspartate, glutamate, and histidine (Hunter 

2004). Out of these, serine, threonine and tyrosine play key regulatory roles in eukaryotic 

cells. In humans, the relative phosphorylation on serine, threonine or tyrosine residues is 

approximately 86.4, 11.8, and 1.8% respectively (Olsen et al., 2006). Several recent 

phospho-proteomic studies have established that, along with aspartate and histidine 

residues, bacterial proteins are also phosphorylated on serine, threonine and tyrosine 

residues (Soufi et al., 2008). Thus, it appears that protein phosphorylation is a universal 

mechanism of protein regulation. Genome wide analysis has provided a means to compile 

inventories of protein kinases and phosphatases across a wide selection of organisms. 
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These efforts have supplied insights into the evolution of this group of enzymes and their 

roles in various signaling pathways (Moorhead et al., 2009). 

The reversible phosphorylation or dephosphorylation of one or more amino acid 

residues can alter the protein conformation and hence affect its function (Cohen 1992). 

Posttranslational modifications in general and reversible phosphorylations in particular add 

another level of protein regulation in addition to post transcriptional modifications, such that 

the same gene product can have specific functions under different conditions. Until recently, 

kinases were considered as the active partner of the reversible phosphorylation process and 

phosphatases as a passive housekeeping counterpart, most of the times acting as a 

negative regulator in the process of reversible phosphorylation. But now it is amply clear that 

kinase and phosphatase activities are coordinated in the regulation of signalling processes 

(Tonks 2006). Also, in contrast to initial views of signaling pathways as simple linear 

arrangements of phosphorylation cascades that function in isolation to switch protein 

activities on or off, it is now clear that there are multiple and interacting signaling networks 

that determine the physiological outcome.  

Reversible phosphoregulation can have many additional and subtle effects on the 

function and fate of a protein, such as the modulation of protein enzymatic activity and its 

subcellular localization, the generation of binding sites for interacting protein partners or for 

divalent ions such as calcium, the control of the duration of a given response, or the control 

of protein degradation, to name a few of them. In particular, by creating binding sites for 

interacting proteins and by acting as scaffolds in protein-protein complexes, protein 

(de)phosphorylation can integrate inputs from multiple signaling pathways and regulate 

synergistic responses to agonists (Cohen 2000). 

It is estimated that about thirty percent of all proteins (Hunter 2000), or 2 – 4% of the 

genes (Manning et al., 2002) are phosphorylated at any given time in most cells. In addition, 

the potential of protein regulation by phosphorylation is enhanced many fold due to multisite 

phosphorylation (that is, the phosphorylation of more than one amino acid residue in the 

same protein). This principle was first shown in the epidermal growth factor (EGF) receptor 

(Cohen 2000). The existence of phosphorylation and -dephosphorylation events on protein 

serine/threonine (Ser/Thr)-residues was identified well before the discovery of protein 

tyrosine (Tyr) phosphorylation in 1979 (Eckhart et al., 1979). It appears that the use of 

tyrosine phosphorylation as a signaling mechanism evolved along with multicellularity as a 

signaling mechanism for intercellular communication (Hunter 2002). 

The first eukaryotic protein phosphatase was identified a decade later to that of 

protein kinase (Bradshaw 2003). The initial research on protein phosphorylation was 

therefore focused on kinases. Even after the discovery of protein phosphatases, these 

enzymes were considered as passive partners merely responsible for signal termination. As 
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the field progressed, it became increasingly clear that phosphatases can no longer be 

viewed as passive partners but can play active and often dominant roles in the process of 

reversible protein phosphoregulation (Alonso et al., 2004; Hornberg et al., 2005). Whereas 

kinases appear to control the amplitude of a given signaling response, phosphatases appear 

to control the rate and duration of the response (Tonks 2006). 

1.1.1 Kinome 

The molecular analysis of kinases has revealed that all eukaryotic protein kinases (ePKs) 

contain a conserved, bilobate catalytic domain structure. Eukaryotic protein kinases with no 

apparent sequence homology to the superfamily of ePKs are grouped as atypical protein 

kinases (aPKs). Kinases are divided in 120 families of ePKs and 134 families of aPKs 

(Hanks and Hunter 1995). The human genome has 518 protein kinase genes, of which 478 

belong to the ePK and the others to aPK family. That means over 2% of the genes in the 

human genome belong to protein kinases. This number may vary, e.g. due to the expression 

of splice varients of individual genes. Out of the over 500 kinase genes, 90 are tyrosine 

kinases and the rest are serine/threonine kinases. Based on functional and phylogenetic 

analysis (http://kinase.com/), this vast numbers of kinases can be grouped into a revised 

classification scheme of 9 groups (Morrison et al., 2000) as follows: 1) Tyrosine Kinases: All 

active members phosphorylate tyrosine residues and are related by sequence similarity. 2) 

Tyrosine Kinase-like:  This is the most diverse of all groups. Families in this group are close 

to tyrosine kinases. 3) AGC: Group named after the family members PKA, PKG, PKC. 4) 

CAMK: Calcium/Calmodulin regulated kinases and structurally related kinases. 5) CK1: 

Casein kinase 1 group. 6) Others: Families that do not fit into any of the main groups. 7) 

STE: MAP kinase cascade kinases. 8) RGC: Catalytically inactive kinase family named after 

Receptor Guanylate Cyclases. 9) Atypical: Families of eukaryotic kinases whose kinase 

domains do not have significant sequence similarity to eukaryotic protein kinases. 

The protein kinase catalogue has many implications for the understanding of the 

basis for human diseases and for the development of small molecule drugs that target 

individual disease-causing protein kinases. Importantly, this kinome analysis has also paved 

the way for the analysis of the phosphatome.  

1.1.2 Phosphatome 

Like protein kinases, the study of protein phosphatases initiated in the field of glycogen 

metabolism and through biochemistry, molecular biology and now with the advent of 

genomics we are in the position to catalogue the phosphatase complement of various 

organisms (Moorhead et al., 2009). The evolution of protein kinases and phosphatases has 

been different. Whereas kinases have similar catalytic pockets and conserved ATP binding 

sites and can be traced back to a common ancestor, phosphatases are not derived from a 
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common ancestral molecule and have evolved in structurally and mechanistically distinct 

families (Alonso et al., 2004). Phosphatases are classified into three major families as 

schematically represented in figure 1. 

 

 

Figure 1: Classification of phosphatases 
Based on substrate specificity, phosphatases are classified as either Ser/Thr-phosphatases, cysteine-
based Tyr phosphatases or aspartate-based phosphatases. Numbers in the brackets represent gene 
numbers. For details of each class please refer to the text. Abbreviations used in the figure are as 
follows: PPP, Phospho Protein Phosphatase; PPM, Metallo dependent Protein Phosphatase; PP, 
Protein Phosphatase; PTP, Protein Tyrosine Phosphatase; RPTP, Receptor-like PTP; NRPTP, Non 
Receptor PTP; CDC, Cell Division Control proteins; LMWPTP, Low Molecular Weight PTP; DSP, Dual 
Specificity Phosphatases; MAKP, Mitogen Activated kinase Phosphatase; PRL, Phosphatase of 
Regenerating Liver; PTEN, Phosphatase and Tensin homolog; FCP/SCP, transcription initiation factor 
IIF (TFIIF)- associated component of C-terminal domain (CTD) phosphatase/small CTD phosphatase; 
HAD, Haloacid Dehalogenase; MDP, Magnesium dependent protein phosphatase; HDHD, Haloacid 
dehalogenase like Hydrolase Domain containing protein; PSP, Phospho Serine Phosphatase; CIN, 
Chronophin; Others, proteins that do not belong to major groups of HAD family of phosphatases. 
 

Phosphatases have acquired specificity during the course of evolution through additional 

modular domains or by the ability to dock to novel regulatory subunits (Moorhead et al., 

2009). Most of the PTP family members have evolved through domain fusion on the gene 

level (Alonso et al., 2004), whereas most of the PPP and PPM family members have evolved 

via complex formation at the protein level. The best understood example of this is the 

serine/threonine phosphatase 1 (PP1) that can associate with over 100 regulatory subunits 

(Das et al., 1996; Hendrickx et al., 2009) . 
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The PPP catalytic domain possesses the signature motif –GDxHG-GDx(V/I)DRG 

and GNHE (spread out over a region of 280 amino acids), which is crucial for binding of 

divalent metal ions. Otherwise there is no overall sequence homology among the PPP 

phosphatases. Most members of the PPP family are high molecular weight complexes 

containing one or more regulatory subunits (Bradshaw 2003). The PPM family phosphatases 

are Mn2+/Mg2+-dependent serine/threonine-specific enzymes. All eukaryotic PPM enzymes 

have 11 conserved motifs with nine highly conserved amino acids that coordinate metal ions 

necessary for catalysis (Zhang and Shi 2004).  

The PTP family is defined by the catalytic signature motif CX5R with diverse 

domain structure and substrate preferences. The three subclasses of cysteine based PTPs 

have evolved independently during evolution (Moorhead et al., 2009). Class I cysteine based 

PTP is the largest among three subclasses and the members are strictly tyrosine specific 

and evolved from common ancestor.  Class II cysteine based PTPs is represented by a 

single member in human genome which codes for low molecular weight (18 kDa) 

phosphatase. Third subclass is from rhodanese-derived PTPs comprise three cell cycle 

regulators. The human genome encodes 107 PTP genes. Taking into account inactive PTPs 

and the ones having non-protein substrate specificities, the number of active protein tyrosine 

phosphatases and protein tyrosine kinases is very similar and hence one can assume that 

both tyrosine kinases and tyrosine phosphatases have comparable substrate specificities 

(Alonso 2004). Similar to the existence of pseudokinases (Kannan and Taylor 2008), the 

phosphatome also contains phosphatase-inactive, yet conserved members, as exemplified 

by the STYX-domain proteins (Wishart and Dixon 1998).  

The most recently classified group of phosphatases are aspartate-based 

phosphatases, in which catalysis is driven by an aspartic acid residue in the signature motif 

DXDXT/V (Alonso et al., 2004). While the other families of protein phosphatases have 

been characterized for over two decades now, those utilizing aspartate-based catalysis have 

been noted only very recently (Archambault et al., 1998). This is partially due to the fact that 

aspartate-based phosphatases are insensitive to inhibitors of “classical”, thiol-based 

phosphatases. Even though aspartate-based catalysis group is divided into FCP/SCP-like 

and HAD-family phosphatases, both share the same catalytic core motif and also belong to 

different groups within the HAD superfamily.  

 

1.2 The HAD superfamily of hydrolases 

The haloacid dehalogenase (HAD) superfamily of hydrolases, named after the archetypal 

enzyme haloacid dehalogenase includes enzymes catalyzing carbonyl or phosphoryl group 

transfer reactions on a diverse range of substrates (Koonin and Tatusov 1994). 
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The HAD superfamily is represented in the proteomes of organisms from all three 

superkingdoms of life. The enzymes of this superfamily are involved in numerous disparate 

biological functions such as metabolism, membrane transport, signal transduction and 

nucleic-acid transfer, but have so far primarily been characterized in lower organisms 

(Burroughs et al., 2006). Among the over 2000 different members of this superfamily, 

ATPases (PO-P cleavage) and phosphatases (CO-P cleavage) are most prevalent, whereas 

a diversification of catalytic activities toward phosphonate hydrolysis (P-C bond), or 

dehalogenase hydrolysis (C-Cl bond) occurs less frequently (Allen and Dunaway-Mariano 

2004).  

Sequence comparisons have shown that there is no overall sequence homology 

among HAD enzymes but practically all members contain three highly conserved sequence 

motifs, called HAD domains which correspond to the catalytic pockets and determine the 

substrate specificities (Ridder and Dijkstra 1999) as shown in figure 2A. N-terminal HAD 

motif determines the enzymatic characteristics of HAD domains. Haloacid dehalogenase 

have –DXYGT, p-type ATPases have –DKTGTwhereas HAD phosphatases are 

characterized by the first N-terminal HAD motif with the signature sequence DXDX(V/T). 

All HAD phosphatases are Mg2+-dependent enzymes that share similar mechanism of 

substrate dephosphorylation, by forming a phosphoaspartate intermediate where the first 

aspartate residue in the signature sequence acts as a nucleophile (Allen and Dunaway-

Mariano 2004). A schematic representation of the enzymatic mechanism of HAD 

phosphatases is depicted in figure 1B. 

 

 

Figure 2: Characteristics of HAD phosphatases  
A: Consensus sequence of catalytic motifs. First aspartate residue in motif I act as nucleophile. X 
represents any amino acid. Ψ: represents any hydrophobic amino acid, D: aspartic acid, V: valine, T: 
threonine, K: lysine, G: glycin, E: glutamic acid  
B: Catalytic mechanism of HAD phosphatases: Moieties originating from the substrate or solvent are 
colored in blue, and those originating from the enzyme are colored in red. E: Enzyme with aspartate at 
active site, R: positive charged ion attached to phosphate (modified from Burroughs et al 2006). 
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1.2.1 Structural and functional aspects of HAD enzymes 

Over 40 X-ray crystal structures and an enormous amount of sequence data have made  it 

possible to understand the structure-function relationships of the HAD enzymes (Aravind and 

Koonin 1998). Aspartate (Asp) nucleophile dependent hydrolysis is the basic theme of HAD 

enzymes. The carboxylate group of the first Asp and the backbone C=O of the second Asp in 

motif I coordinate the Mg2+ cofactor (Fig. 1B). Second acidic residue acts as a general acid-

base which binds and protonates the substrate leaving group in the first step and 

deprotonates the nucleophile of the second step (Lahiri et al., 2002). The second motif is 

characterized by a conserved threonine along with hydrophobic amino acids. Motif II along 

with a lysine in motif III contributes to the stability of the phosphoaspartate intermediate of 

the hydrolysis reaction. Terminal acidic residues of motif III along with motif I are required for 

coordinating the Mg2+-ion in the active site (Peisach et al., 2004). Motifs I-III are spatially 

arranged around a single ‘binding cleft’ at the C-terminal end that forms the active site of 

HAD enzymes. Crystal structures of many HAD hydrolases have predicted a variable region 

around the active site, which is termed “cap domain” (Zhang et al., 2002) as shown in figure 

3. Cap domains are thought to provide the necessary ‘substrate space’ for diversification of 

the enzymes of this large family of hydrolases. 

 

Figure 3: Structure-function aspects of the HAD superfamily 
Ribbon diagram highlighting how the common catalytic core domain (cyan) and the divergent cap 
domain (magenta) contribute to the diverse catalytic mechanisms of HAD hydrolases. Letters a, b, c 
represents three classes within HAD superfamily. Class a: enzymes with C-Cl, C-P, PO-P cleavage 
mechanism, class b: enzymes with CO-P cleavage/formation mechanism, class c: CO-P cleavage 
mechanism (from Allen and Mariano 2004).  
 

Very few HAD phosphatases are so far characterized for their function in higher organisms. 

Most prominent among them are the human phosphoserine phosphatase (PSP) involved in 

the L-serine biosynthetic pathway (Collet et al., 1998), the transcription factor Eyes Absent 

(Eya), which is involved in organogenesis and immunity (Okabe et al., 2009), and the cofilin 

phosphatase Chronophin (CIN, (Gohla et al., 2005). On the basis of sequence similarity, 
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UBLCP1 was inferred to have similar functions as EYA proteins (Zheng et al., 2005) and 

TIMM50 to act as an essential regulator of mitochondrial protein translocation (Guo et al., 

2004). These examples emphasize the biological importance of this largely unexplored 

enzyme family, and support the hypothesis that HAD phosphatases are one of the major 

players in the diversification of enzymatic potential of organisms by providing the raw 

evolutionary material for the generation of novel enzymes (Burroughs et al., 2006). Hence it 

appears to be interesting to characterize the biologial roles of HAD phosphatases in higher 

organisms, which is one of the focus areas in our research group. 

 

1.3 Identification of a novel HAD-type phosphatase related to Chronophin 

Our group has identified Chronophin (CIN), an actin cytoskeletal regulatory phosphatase of 

the HAD-familiy. CIN was found to dephosphorylate the actin severing protein cofilin on its 

inhibitory serine residue and thereby activate it (Gohla et al., 2005). Cofilin is a ubiquitously 

expressed and essential protein that accelerates actin filament turnover (Bamburg and 

Bloom 2009). The stimulus-dependent cofilin phosphoregulation is one of the key 

convergence points in cellular signaling networks that regulate actin cytoskeletal dynamics 

under both physiological and pathophysiological conditions such as tumor initiation, 

progression and metastasis (Bamburg and Wiggan 2002). It can thus be expected that CIN 

functions in these processes as well. 

1.3.1 Identification and bioinformatic analysis of AUM, a novel Chronophin-related 

HAD phosphatase 

In order to better understand the biological roles of mammalian HAD-type phosphatases, one 

focus of our group is to characterize CIN-related enzymes. By performing a saturating search 

of the non-redundant database for human phosphatases that contain HAD domains (using a 

datamining approach similar to the one described by (Andersen et al., 2005), we were able to 

identify a previously undescribed, putative CIN homolog (Fig. 4). We initially referred to this 

novel protein as CIN-2, but later renamed it AUM (acronym for actin remodeling, ubiquitously 

expressed, magnesium-dependent HAD phosphatase), because it turned out not to be a 

CIN-isoform, but rather a distinct protein tyrosine phosphatase. The basic characterization of 

this novel enzyme was conducted during my diploma thesis work. The following sections 

summarize as yet unpublished information that provided the basis for my present Ph.D. 

thesis work.  

Human AUM is 46% identical and 59% similar in its amino acid sequence to human CIN; 

mouse AUM and CIN proteins share 45% identity and 61% similarity. A full amino acid 

sequence alignment of mouse CIN and AUM is shown in figure 5. As highlighted, three HAD 

domains (HAD I-III) can be found in AUM. Thus, AUM contains all the invariant residues 
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characteristic of HAD phosphatases, and these residues are almost identical to the 

respective residues contained in the equivalent positions in CIN.  

Mouse AUM has a predicted molecular weight of 34.5 kDa, and its calculated isoelectric 

point (pI) is 5.35 (as compared to mouse CIN with a molecular weight of 31.5 kDa and a pI of 

5.53). Mouse AUM contains seven serine-, as well as three threonine- and three tyrosine 

residues, which may serve as regulatory phosphorylation sites (Fig. 4). No additional 

posttranslational modifications were predicted for AUM, using the scansite database 

(http://scansite.mit.edu/).  

 

Figure 4: Sequence of murine AUM  
Nucleotide and deduced amino acid sequence of a full length cDNA encoding for a hypothetical 
murine CIN homolog, which we refer to as AUM (GenBank accession number NM_025954). Possible 
phosphorylation motifs are underlined. No other posttranslational modification sites were predicted for 
this protein. The numbers on the left refer to nucleotide positions. 
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Figure 5: Amino acid sequence alignment of murine AUM and CIN  
Both sequences share 45% identity (141/312 residues) and 61% similarity (193/312 residues).This 
alignment was performed using the ‘multiple sequence alignment’ tool of the program ClustalW 
(Version 1.83) program. Identical residues are highlighted in black. Most of the essential amino acid 
residues in three HAD motifs are conserved. Numbers given on right refer to amino acid positions. 
 
 
Human and mouse CIN are known to map to chromosome 22q12.3 and 15E1, respectively. 

Using AUM cDNA as a query sequence, a BLAST analysis of the genomic sequence 

available through the NCBI Web site mapped the human AUM gene to chromosome 16. The 

murine AUM gene is located on chromosome 17A3.3. Thus, CIN and AUM are located on 

different chromosomes in humans and mice. The genomic organization of the human and 

murine CIN and AUM genes is very similar, with the open reading frames encoded by two 

exons, as shown in figure 6. 

 

        
 
AUM : MAEAEAGGDEARCVRLSAERAKLLLAEVDTLLFDCDGVLWRGETAVPGAPETLRALRARG99i 
CIN : M---------ARCERLRGAALRDVLGQAQGVLFDCDGVLWNGERIVPGAPELLQRLARAGjkjk 
       
    
AUM : KRLGFITNNSSKTRTAYAEKLRRLGFGGPVGPEAGLEVFGTAYCSALYLRQRLAGVPDPK 
CIN : KNTLFVSNNSRRARPELALRFARLGFAGLRA----EQLFSSALCAARLLRQRLSGPPDAS 
       
 
AUM : --AYVLGSPALAAELEAVGVTSVGVGPDVLHGDGPSDWLAVPLEPDVRAVVVGFDPHFSY 
CIN : GAVFVLGGEGLRAELRAAGLRLAGDPG---------------EDPRVRAVLVGYDEQFSF 
         
 
AUM : MKLTKAVRYLQQPDCLLVGTNMDNRLPLENGRFIAGTGCLVRAVEMAAQRQADIIGKPSR 
CIN : SRLTEACAHLRDPDCLLVATDRDPWHPLSDGSRTPGTGSLAAAVETASGRQALVVGKPSP 
        
 
AUM : FIFDCVSQEYGINPERTVMVGDRLDTDILLGSTCSLKTILTLTGVSSLEDVKSNQESDCM 
CIN : YMFQCITEDFSVDPARTLMVGDRLETDILFGHRCGMTTVLTLTGVSSLEEAQAYLT---A 
            
 
AUM : FKKKMVPDFYVDSIADLLPALQG 
CIN : GQRDLVPHYYVESIADLMEGLED 
        
 

motif I 

motif II 

motif III 

298 
269 

238 
212 

178 
152 

120 
107 

 60 
 51 

321 
292 
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Figure 6: Genomic organization of mouse CIN and AUM genes. 
Mouse CIN and AUM are located on chromosomes 15E1 or 17A3.3, respectively. The open reading 
frames of CIN and AUM are encoded by two exons. AUM has a very small intron as compared to CIN.  
 

The distribution of AUM across species was analyzed in multiple sequence alignments using 

the program ClustalW. Figure 7 demonstrates that orthologs of AUM are present in species 

ranging from bacteria to mammals, as shown here by the presence of three HAD 

phosphatase motifs. In addition, the HAD motifs are similarly distributed in the protein (the 

adjacent motifs I and II are located at the N-terminus and are separated by a relatively large 

insert from the bipartite motif III in the C-terminus). The amino acid sequence 

identities/similarities of mouse AUM to the respective hypothetical proteins from Rattus 

norvegicus, Homo sapiens, Danio rerio, Drosophila melanogaster, Caenorhabditis elegans, 

Arabidopsis thaliana, Saccharomyces cerevisiae, Anopheles gambia, Dictyostelium 

discoideum and Escherichia coli are 99/99.6, 90/94, 57/76, 39/60, 33/55, 39/56, 33/51, 

40/59, 33/53 and 32/43%, respectively. These results suggest that AUM has been highly 

conserved throughout evolution.  

 
                Motif I     Motif II             Motif III 
 
 
M.musculus       30TLLFDCDGVL  60GKRLGFITNN   234DIIGKPS……………… 259VMVGDRLDTD BC040100 
R.norvegicus     30TLLFDCDGVL  60GKRLGFITNN   234DIIGKPS……………… 259VMVGDRLDTD XP_213235   
H.sapiens        30TLLFDCDGVL  60GKRLGFITNN   234DIIGKPS……………… 259VMVGDRLDTD XP_208887.1 
B.taurus         30TLLFDCDGVL  60GKRLAFITNN   234DIIGKPS……………… 259VMVGDRLTDD ENSBTAG00000009951 
X.tropicalis     24TVLFDCDGVL  54NKRVFFLTNN   228QVIGKPS……………… 253VMVGDRLDTD ENSXETG00000016097 
D.rerio          23CVLFDCDGVI  53GKQVFFVTNN   227QVVGKPS……………… 252LMVGDRLDTD AAH45860 
S.cerevisiae     26TFLFDCDGVL  56GKQLIFVTNN   230SYCGKPN……………… 255CMVGDRLNTD YDL236W 
A.gambiae        38TVLTDCDGVI  68GKKLFFVTNN   242IVMGKPN……………… 257LMIGDRCNTD XP_309300   
D.melanogaster   41SVITDCDGVL  71GKSIYFCTNN   245VVIGKPN……………… 270LMIGDRANTD CG5567    
C.elegans        31TFIFDADGVL  61NKQIIVLTNN   235LTVGKPC……………… 260MMIGDRTNTD NP_504509 
D.discoideum     24TFIFDCDGVL  54GKKILFVTNN   228ITIGKPE……………… 253LFVGDRLDTD DDB0186160 
E.coli           05NVICDIDGVL  35GLPLVLLTNY   172FYVGKPS……………… 197VIVGDNLRTD NP_752680 
A.thaliana       28TFIFDCDGVI  58GKRLVFVTNN   204LVVGKPS……………… 229CMVGDRLDTD BAA97552 
 
Consensus             DXDXV            T           K(Xn)…………      GD(Xn) D 

Figure 7: Sequence alignment of putative AUM orthologs  
Sequence alignment of putative AUM orthologs in various species with respect to conserved HAD 
motifs. The numbers preceeding the HAD motifs I-III designate the respective amino acid number. The 
catalytically essential residues of HAD motifs I-III are identical in the aligned proteins, and are 
indicated by a black box. GenBank accession numbers are shown on the right. 
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1.3.2 RT-PCR expression analysis of AUM 

A search in the UniGene EST Profile Viewer (http://www.ncbi.nlm.nih.gov/unigene) indicated 

that AUM may be widely expressed in mammals, but with marked tissue-specific differences 

in transcript abundance. The major AUM expression sites in the mouse were predicted to be 

male genitals, mammary gland, skeletal muscle and brain stem. Interestingly, the AUM and 

CIN expression patterns are predicted to be partially non-overlapping (see also Gohla et al. 

2005). 

In order to examine the expression of AUM experimentally, we first used the cDNA 

preparations provided in a mouse multiple tissue cDNA panel as a template, and PCR-

amplified AUM with gene-specific primers. In this panel, the mRNA expression levels of 

several housekeeping genes such as α-actin, glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH), phospholipase A2 and the ribosomal protein S29 are used to standardize the 

amount of cDNA present in each tissue sample. This normalization procedure accounts for 

tissue specific differences in the levels of transcription, thus allowing estimating the relative 

abundance of a gene of interest. GAPDH is known to be expressed at high levels in skeletal 

muscle and at low levels in testes. As shown in the upper panel of figure 8, the principal 

expression sites of AUM appear to be testes and skeletal muscle. AUM expression during 

embryonic development was maximal at E17. Interestingly, testicular development 

commences at around 18 days post conception (Livera et al., 2006). To investigate AUM 

expression in more detail, total RNA was isolated from various adult mouse tissues, and 

subjected to RT-PCR analysis with AUM gene-specific primers. The lower panel in figure 8 

shows that relative to the housekeeping gene GAPDH, AUM is differentially expressed in a 

tissue-specific manner. Highest transcript levels were found in brain stem, cerebellum, brain 

cortex, and the eye.  
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Figure 8: RT-PCR expression analysis of AUM 
A:  Expression analysis of AUM in cDNA preparations provided in a mouse multiple tissue cDNA panel 
AUM is widely expressed, with highest levels found in testes, skeletal muscle, 17 days-old embryo, 
brain and eye. B: Total RNA was isolated from the indicated mouse tissues and reverse transcribed. 
AUM message is prominently expressed in the eye and in certain brain regions a well as in pancreas. 
Comparable amounts of cDNA were loaded in each lane. The amplicon size for AUM is 780 bp. 30 
cycles of PCR amplification were used for both panels. The expression of the housekeeping gene 
GAPDH is shown as an internal control. Densitometeric quantitation of the AUM expression plotted as 
fold expression relative to GAPDH. 
 

1.3.3 Subcloning of AUM into bacterial and mammalian expression vectors 

As a basis for the initial characterization of AUM, we generated AUM expression constructs. 

A full-length mouse AUM cDNA clone (pCMV-SPORT6 IRAVp968H1184D) was obtained 

from the German Resource Centre for Genome Research (RZPD). AUM was PCR-amplified 

with gene-specific primers, and subcloned into the bacterial expression vector pTrc-His 

(containing an N-terminal His6-tag for the purification of the recombinant enzyme on 

immobilized metal affinity matrices), as well as into the mammalian expression vector 

pcDNA4-myc/His (containing a C-terminal myc-tag for subcellular localization analysis, in 

addition to an adjacent His6-tag inserted for purification purposes). Positive clones were 

verified to be full-length and error-free by sequencing.  

1.3.4 Catalytic properties of recombinant AUM 

Murine AUM was expressed as a His6-tagged protein in bacteria and subsequently affinity-

purified by IMAC. We then tested the enzymatic activity of purified AUM in in vitro 

phosphatase assays. We first employed the broad-spectrum phosphatase substrate para-

nitrophenylphosphate (p-NPP). p-NPP is a colorless compound that can be enzymatically 
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dephosphorylated to the yellow substance p-nitrophenol. This conversion can be 

spectrophotometrically measured over time, and both the kinetics and the endpoint of the 

reaction can be determined. Figure 9 demonstrates that purified AUM dose-dependently 

dephosphorylates p-NPP.  

 

Figure 9: Concentration dependent AUM activity in p-NPP assay  
Purified AUM concentration-dependently dephosphorylates p-NPP (3.5 mM final concentration). The 
absorbance of the product p-nitrophenyl was continuously measured at 405 nm over 30 min at 30°C. 
Samples were measured in duplicates, and the mean values of the end points are plotted. 
 

1.3.5 AUM phosphatase inhibitor profile 

Further evidence for the HAD-phosphatase nature of AUM was obtained by testing its 

susceptibility profile to various standard phosphatase inhibitors in a p-NPP assay. Figure 10, 

upper panel, shows that AUM was insensitive to inhibitors of classical thiol-based 

serine/threonine phosphatases, such as the PP2A-inhibitor okadaic acid, the PP1-inhibitor 

calyculin A, and the PP2B-inhibitor cypermethrin. These results support the idea that AUM 

utilizes an unconventional catalytic mechanism. In agreement with these findings, AUM was 

insensitive to the commercial phosphatase inhibitor cocktail I (containing the PP2A/PP1-

inhibitor microcystin LR, the PP2A/PP1-inhibitor cantharidin and the alkaline phosphatase 

inhibitor (-)-p-bromotetramisole), but was inhibited by the phosphatase inhibitor cocktail II 

(containing sodium vanadate, an inhibitor of tyrosine and alkaline phosphatases; sodium 

molybdate and sodium tartrate, inhibitors of acid phosphatases, and imidazole, an inhibitor of 

alkaline phosphatases). Figure 10, lower panel, shows that AUM was effectively and 

concentration-dependently blocked by molybdate and orthovanadate, which act as 

phosphate analogs. Furthermore, AUM was strongly inhibited by NaF, which inactivates 

magnesium-dependent phosphatases. In addition, Zn2+, Ca2+ and Mn2+, which may compete 
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with the catalytically essential Mg2+, inhibited AUM activity. The Mg2+-chelator EDTA 

completely abolished AUM activity.  

The inhibitor profile of AUM thus closely resembles CIN (Gohla et al., 2005). Thus, 

the homology between the AUM and CIN phosphatase domains, the high extent of 

conservation of the active-site residues among AUM orthologs across evolution, together 

with the observed AUM inhibitor profile suggest that AUM is a CIN-related, Mg2+-dependent 

HAD-type phosphatase.  

 

Figure 10: Phosphatase inhibitor analysis of AUM 
Eight hundred nanograms of AUM were preincubated with the indicated inhibitors for 30 min at 30°C. 
Subsequently, the kinetics of p-NPP-dephosphorylation was followed at 405 nm for 30 min at 30°C. 
Two independent experiments were performed in duplicate. In the initial, linear phase of the reaction, 
the slopes of mean values were calculated and compared to the appropriate controls. The 
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percentages of the activities as compared to the control are shown. The inhibitor cocktail II (containing 
vanadate, molybdate, tartrate and imidazole), but none of the tested PP1-, PP2A or PP2B-inhibitors 
blocks AUM phosphatase activity. DMSO was included as a solvent control for Calyculin A and the 
inhibitor cocktail I. AUM was inhibited by phosphate analogs like vanadate, molybdate and fluoride. 
Various cations that may compete with Mg2+ during the enzymatic reaction were tested. Calcium dose-
dependently inhibits AUM activity with 30% inhibition at 0.5 mM. Mn2+ leads to 40% inhibition, whereas 
AUM activity is completely inhibited in the presence of Zn2+. 
 
 

Taken together, the basic characterization of AUM identifies an evolutionarily conserved 

novel phosphatase in higher organisms with yet unknown physiological function. AUM is 

found to be a novel HAD-type phosphatase with similarities to CIN, but with a distinct, tissue-

specific expression pattern.  
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2 Aim of the study 

 
The haloacid dehalogenase (HAD) superfamily of hydrolases represents a ubiquitous 

enzyme family with approximately 2000 members, the majority of which are magnesium-

dependent phosphatases. Although the existence of 58 human HAD enzymes has been 

predicted (Allen and Dunaway-Mariano 2004), our understanding of their cellular and 

physiological functions remains rudimentary.  

 

By database mining of human HAD phosphatases, we have recently discovered a previously 

undescribed enzyme with homology to Chronophin, a cytoskeletal regulatory HAD 

phosphatase. The aim of this study was the characterization of this novel enzyme using 

phylogenetic, biochemical and cell biological approaches.  

 

The following questions were addressed:  

 

1) Is AUM an isoform of Chronophin?  

2) What are the substrate preferences of AUM? 

3) What are the cellular functions of AUM? 

 

Answering these questions is expected to enhance our understanding of the biological 

importance of an emerging class of poorly understood human phosphatases. 
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3 Materials 

3.1 List of manufacturers and distributors 

1)  Abgent, San Diego, CA, USA 

2)  Abnova, Taipei, Taiwan 

3)  Addgene Inc. Cambridge, MA, USA 

4)  Amersham Biosciences, Little Chalfont, UK 

5)  AnaSpec Inc. San Jose, CA, USA 

6)  AppliChem, Darmstadt 

7)  Applied Biosystems, Foster city, CA 

8)  ATCC, Manassas, VA, USA 

9)  BD Becton Dickinson GmbH, Heidelberg 

10)  Beckman Coulter, Krefeld 

11)  Biomol Research Lab, Plymouth Meeting, PA, USA 

12)  Bio-Rad, Munich 

13)  BMG Labtech, Offenburg 

14)  Calbiochem, Darmstadt 

15)  Carl Zeiss AG, Jena 

16)  Cell Signaling Technologies, Danvers, CO, USA 

17)  Charles River Laboratories, Kisslegg 

18)  Clontech, Palo Alto, CA, USA 

19)  Cytoskeleton Inc., Denver, CO, USA 

20)  Dako, Glostrup, Denmark  

21)  Dharmacon RNAi Technologies, Schwerte 

22)  Fermentas, St. Leon-Rot  

23)  Fujifilm, Düsseldorf 

24)  GE Healthcare, Munich 

25)  Genaxxon Bioscience, Biberach 

26)  GeneTex, Irvine, CA, USA 

27)  Hartmann Analytic GmbH, Braunschweig 

28)  Invitrogen, Karlsruhe 

29)  JPT Peptide Technologies GmbH, Berlin 

30)  Leica micosystems, Wetzlar 

31)  Medicult, Jylling, Denmark 

32)  Merck, Darmstadt 

33)  Millipore, Billerica, MA, USA 
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34)  MP Biomedicals, Eschwege 

35)  Operon Biotechnologies, Cologne 

36)  PAN Biotech GmbH, Aidenbach 

37)  Pierce, Rockford, USA 

38)  Promega, Heidelberg 

39)  Qiagen, Hilden 

40)  Raytest, Straubenhardt 

41)  Roche Applied Science, Mannheim 

42)  Roth, Karlsruhe 

43)  German Science Center for Genome Research (RZPD), Berlin 

44)  Santa Cruz, Heidelberg 

45)  Serva, Heidelberg 

46)  Sigma Aldrich, Munich 

47)  Stratagene, La Jolla, CA, USA 

48)  Thermo Scientific, Rockford,IL 

49)  TPP, Trasadingen, Switzerland 

50)  Upstate, Lake Placid, NY, USA 

51)  US Biological, Swampscott, MA, USA 

 

3.2 Chemicals 

 
-Mercaptoethanol 6 

2-Propanol  42 

Acetic acid 32 

Acrylamide/bisacrylamide 42 

Ammonium persulfate 46 

Aprotinin 46 

Bovine serum albumin 45 

Bromophenol Blue 46 

Calcium chloride (CaCl2 · 6 H2O) 32 

Calyculin A 15 

Crystal Violet 46 

Cypermethrin 15 

Difco Agar Noble 9 

DMSO 6 

DNase 46 

DTT 46 
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EDTA  46 

EGTA  46 

Ethanol 42 

Ethidium bromide 46 

Gelatin 46 

Glycerol 6  

Glycine 32 

Hepes 46 

Hydrochloric acid (HCl) 42 

Isopropanol 42 

LB agar  6 

LB powder 6 

Leupeptin 42 

Low-melting agarose 46 

Magnesium acetate [Mg(CH3COO)2 · 4 H2O] 46 

Magnesium chloride (MgCl2) 46 

Methanol 42 

Okadaic acid 46 

Paraformaldehyde 32 

Phosphatase Inhibitor Cocktail I 46 

Phosphatase Inhibitor Cocktail II 46 

Pepstatin 46 

PMSF 46 

Polybrene  

(1,5-dimethyl-1,5-diazaundecamethylene polymethobromide) 

46 

Ponceau S 28 

Potassium acetate (CH3COO-K+) 42 

Protease Inhibitor Cocktail Tablets (complete, EDTA-free) 39 

Puromycin 15 

RNase A 38 

SDS 42 

Sodium azide (NaN3) 46 

Sodium chloride (NaCl)  6, 32 

Sodium deoxycholate 32 

Sodium hydroxide (NaOH) 32 

TEMED 42 

Tris base / Tris-HCl 42 
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Triton X-100 46 

Tween 20 46 

Water (PCR quality) 32 

 

3.3 Nucleotides, nucleic acids and primers 

 

 

3.4 Plasmids 

 
pCMV-SPORT6- IRAVp968H1184D  43 

pcDNA4-myc/His6 28 

pTrcHis-A 28 

pECFP-N1 18 

pEYFP-C1 18 

pGEX-4T-1 24 

pGEX-4T1 SHP1 wt 3 

pGEX-4T1 SHP2 wt 

pLKO.1-puro 

psPAX2 (packaging vector) 

 

pCR-VSV-G (envelop vector) 

3 

46 

Trono laboratory 

http://tronolab.epfl

.ch/ 

pcDNA4-myc/His6-mAUM D34N                                   present work 

pcDNA4-myc/His6-mAUM wt present work 

pCR 2.1-TOPO-AUM present work 

pECFP-C1- mAUM wt present work 

pEYFP-C1- mAUM D34N present work 

CoT Human DNA 41 

Custom primers 35 

DIG-labeled dNTP mix 41 

DNA ladder 22 

dNTPs  47 

[ -32P]ATP 27 

On-Target Plus, set of individual siRNA oligonucleotides  

(targeting human or mouse AUM) 

21 

RNA ladder 22 

Salmon testes DNA (sodium salt) 46 
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pEYFP-C1- mAUM wt present work 

pGEX-4T-1-mAUM wt present work 

pTrcHis A-mAUM D34N present work 

pTrcHis A-mAUM wt present work 

 

3.5 Antibodies 

 
AlexaFlour-488-conjugated goat anti-mouse, highly cross absorbed 28

AlexaFlour-488-conjugated goat anti-rabbit, highly cross absorbed 28

AlexaFlour-546-conjugated goat anti-mouse, highly cross absorbed 28

AlexaFlour-546-conjugated goat anti-rabbit, highly cross absorbed 28

AlexaFlour-633-conjugated goat anti-mouse, highly cross absorbed 28

AlexaFlour-633-conjugated goat anti-rabbit, highly cross absorbed 28

Anti-DIG-AP Fab fragments  41

Anti-phosphotyrosine, clone 4G10, mouse monoclonal 50

Anti-phosphotyrosine, pTyr100, mouse monoclonal 16

AUM, rabbit polyclonal  17 

EGF receptor, rabbit polyclonal 16

EGF receptor, rabbit polyclonal 51

EGFR (for immunoprecipitation), mouse monoclonal 16

FAK, rabbit polyclonal 16

FAK (clone 4.47), mouse monoclonal 33

GAPDH, mouse monoclonal 26

Goat anti-mouse IgG (Fc), peroxidase conjugated 48 

Goat anti-rabbit IgG (Fc), peroxidase conjugated 48

HER2/ErbB2 (clone 29D8), rabbit monoclonal 16

HER2/ErbB2, rabbit polyclonal 16

Immobilized phosphotyrosine antibody (pTyr -100) 16

Paxillin, mouse monoclonal 9

Paxillin, rabbit polyclonal 16

Phospho-EGFR (clone 1H12), mouse monoclonal (Tyr 1068) 16

Phospho-EGFR (clone 53A5), rabbit monoclonal (Tyr 1173) 16

Phospho-EGFR, rabbit polyclonal (Tyr 1045) 16

Phospho-EGFR, rabbit polyclonal (Tyr 992) 51

Phospho-EGFR, rabbit polyclonal (Tyr 1045) 51

Phospho-EGFR, rabbit polyclonal (Tyr 1068) 51

Phospho-HER2/ErbB2,  rabbit polyclonal (Tyr 877) 16
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Phospho-HER2/ErbB2, rabbit polyclonal (Tyr 1221/1222) 16

Phospho-FAK, mouse monoclonal (Tyr 397)  9

Phospho-FAK, rabbit polyclonal (Tyr 576/577) 16

Phospho-p130 Cas, rabbit polyclonal (Tyr 165) 16

Phospho-Paxillin, rabbit polyclonal (Tyr 118) 16

Phospho-Src Family, rabbit polyclonal (Tyr 416) 16

Phospho-Src, rabbit polyclonal (Tyr 527) 16

Progesterone receptor, mouse monoclonal 2

Src (clone 36D10), rabbit monoclonal 16

Src (clone 17AT28) mouse monoclonal 1

Tubulin (clone DM1A), mouse monoclonal 46

Vinculin (clone hVIN-1), mouse monoclonal 46

β-Actin (clone C4) mouse monoclonal 33

 

3.6 Animals and cell lines 

 
C57BL/6 mice 17 

E. coli TOP 10 28 

E. coli DH5α  28 

E. coli BL21(DE3) pLysS 32 

HeLa (CCL-2) 8 

HEK 293T/F (CRL-1573) 8 

GC1 (CRL-2053) 8 

A431 (CRL-2592) 8 

 

3.7 Tissue culture reagents and materials 

 
Culture dishes/flasks 49

DMEM 36

Fetal bovine serum 36

L-Glutamine 36

Lipofectamine 2000 28

Opti-MEM 28

Penicillin G, sodium salt 36

Phosphate buffered saline 10X (with/without MgCl2/CaCl2) 36

Streptomycin sulphate 36
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Trypsin/EDTA 36

 

3.8 Other materials 

 
5-Bromo-4-chloro-3-indolyl-phosphate (BCIP) 41 

Abl protein tyrosine kinase, bacterial recombinant protein 15 

Alexa Fluor -488 phalloidin 28 

Alexa Fluor -546 phalloidin 28 

Alexa Fluor -633 phalloidin 

Apyrase 

28 

46 

BD CELL-TAK 9 

Biomol Green reagent 11 

Centricons, 10 MWKO 33 

c-Kit, His6-tagged, recombinant human protein 16 

Consensus phosphopeptide (CAAEQPLY*LNPLDP) 5 

Coomassie Brilliant Blue (G250) 48 

Csk kinase, recombinant human protein 16 

Enterokinase (from calf intestine) 41 

Epidermal growth factor, recombinant protein  15 

Ethidium bromide 46 

FAK, GST-tagged, recombinant human protein 16 

Fibronectin from bovine plasma 46 

FITC-PNA 46 

HER/ErbB2 kinase, recombinant protein 16 

Hybond C nitrocellulose membrane 24 

IPTG 42 

Kanamycin 46 

Latrunculin A 28 

Lysozyme 42 

Nitroblue tetrazolium chloride (NBT) 41 

PageRuler prestained protein ladder 22 

Phospholipase C 1, human recombinant protein 16 

Phospholipase C 2, human recombinant protein 16 

Phospholipase C 2, phosphopeptide (CRDINSLY*DVSRMY) 5 

Phospholipid scramblase 1, human recombinant protein 1 

Phosphopeptide scramblase 4, phosphopeptide (CRYQPGKY*PMPNQS) 5  

PP2 (Src kinase inhibitor) 16 
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Progesterone 46 

Prolong gold, antifade medium 28 

Puromycin 15 

QIAzol 39 

Restriction enzymes 22 

RNase free DNase I 38 

Signal transduction peptide, biotinylated (core sequence EGIY*DVP) 16 

Sodium butyrate 46 

Sperm preparation medium 31 

Src, GST-tagged, recombinant human protein 16 

Streptolysin O 46 

SYBR Green mix 7 

 

3.9 Commercial kits 

 
DIG Wash & block buffer set 41 

JPT phosphopeptide panel 29 

Micro BCA kit 38 

Mouse epididymis cDNA library 44 

Mouse tissue cDNA panel 9 

Omniscript RT kit 39 

PCR purification kit 39 

PiPER phosphate detection kit 28 

Plasmid purification kit 39 

Gel extraction kit 39 

p-NPP assay kit 15 

Src Kinase Assay kit 16 

TOPO cloning kit 

Quickchange XL site directed mutagenesis kit 

28 

47 

 

3.10 Software and Databases 

 
BLAST NCBI;NLM, Bethesda, MD 

ClustalW EMBL, Hinxton, Cambridge, UK 

ClustalX EMBL, Heidelberg, Germany 

ExPASy Server Swiss Institute of Bioinformatics 
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GraphPad Prism version 4.00 GraphPad software, San Diego, CA, USA 

Metamorph version 7.1.3.0 MDS Analytical Technologies, Downingtown, PA, USA 

Primer express 

Proweb.org 

PhyloDraw version 0.8 

Applied Biosystems, Foster City, CA, USA 

http://www.proweb.org/ 

Graphics Application Lab, Pusan National University, 

Pusan, South Korea 

SDS v1.3 Applied Biosystems, Foster City, CA, USA 

 

 

3.11 RNA Interference tools 

All siRNA oligoribonucleotides were purchased from Dharmacon. Four different synthetic 

siRNA oligoribonucleotides for mouse and human AUM were ordered as ON-TARGET plus 

set of four (catalog # LQ-041844-01-0002 or # LQ-022877-00-0002, respectively). ON-

TARGET plus siCONTROL non-targeting siRNA (catalog # D-001810-01-05) was used as a 

control in all siRNA experiments. 

Lentiviral vectors used for establishing stable cell lines expressing shRNA for stable AUM 

depletion were purchased from Sigma-Aldrich as bacterial glycerol stocks from the MISSION 

shRNA Program (catalog # SHCLND-NM_025954). The corresponding control shRNA 

plasmid (catalog # SHC002) was obtained as a DNA stock. 

 

3.12 Solutions & Buffers 

 

(in alphabetical order)   

   

ABC mix  5 ml TBS 

 50 μl Avidin 

 50 μl Biotin 

   

Antibody diluent 10 mM Hepes, pH 7.4 

 0.5 M NaCl 

 1% BSA 

 0.2% Tween-20 

 0.2% NaN3 

   

Blocking buffer 50 mM Tris-HCl , pH 8.0 
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 2 mM CaCl2 

 80 mM NaCl 

 5% (w/v) nonfat milk powder 

 0.2% NP-40 

   

DAB solution 50 ml 0.05 M Tris-HCl, pH 7.6 

 1 tablet DAB (10 mg) 

 50 μl nickel sulfate (13 mg/ml) 

 6.5 μl 30% H2O2 

   

dNTP stock solutions (PCR) 25 mM of dATP, dCTP, dGTP, dTTP (each) 

   

Laemmli buffer 62.5 mM Tris-HCl, pH 6.8 

(SDS-PAGE sample buffer) 10% (v/v) glycerol 

 5% (v/v) -mercaptoethanol 

 2% (w/v) SDS 

 0.02% (w/v) Bromophenol Blue 

   

Lysis buffer I 50 mM Tris-HCl, pH 7.4 

(for lysis of mouse tissues) 150 mM NaCl 

 1% (v/v) Triton X-100 

 0.1% (w/v) SDS 

 1% (w/v) sodium deoxycholate 

 1 mM EDTA 

 0.5 mM sodium orthovanadate 

 1 mM sodium fluoride 

 1x protease inhibitor cocktail 

   

Lysis buffer II 20 mM Tris-HCl, pH 7.5 

(for immunoprecipitation) 150 mM NaCl 

 1% (v/v) Triton X-100 

 1 mM β-glycerophosphate 

 2.5 mM  sodium pyrophosphate 

 1 mM  sodium orthovanadate 

 1x phosphatase inhibitor cocktail 1 

 1x phosphatase inhibitor cocktail 2 

 1x protease inhibitor cocktail 
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RIPA buffer 50 mM Tris-HCl, pH 8.0 

(for cell lysis) 150 mM NaCl 

 1 % (v/v) NP-40  

 0.1% (w/v) SDS 

 0.5% (w/v) sodium deoxycholate 

 1x protease inhibitor cocktail 

   

Running buffer (10x), pH 8.7 250 mM Tris base 

(SDS-PAGE) 2 M glycine 

 10% SDS 

   

Stripping buffer 62.5 mM Tris-HCl, pH 6.7 

(for immunoblotting) 2% SDS 

 100 mM -mercaptoethanol,  

added immediately before use 

   

TAE (50x) 2 M Tris-Acetate, pH 8.0 

(for DNA gels) 100 mM EDTA 

   

TBS (10x) 0.5 M Tris-HCl, pH 7.5 

 1.5 M NaCl 

   

TBS-T 50 mM Tris-HCl, pH 7.5 

 150 mM NaCl 

 0.1% Tween 20 

   

Transfer buffers  

(for semi-dry blotting) 

  

Anode buffer I 0.3 M Tris base 

 40% methanol 

   

Anode buffer II 25 mM Tris base 

 40% methanol 

   

Cathode buffer 25 mM Tris base 

 40 mM glycine 
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 10% methanol 

  For high molecular weight proteins, 

20% methanol was used in Anode 

buffers I and II. Whereas additional 

0.005% SDS was used in cathode 

buffer  

 

All other compounds used in this work were purchased from Roth or Sigma-Aldrich with “pro 

analysi” (pA) grade. 

Confocal images were taken on LSM 510 Meta or Leica TCS SP5 confocal microscopes.  

TIRF images were taken on Leica AM TIRF MC microscope. 

Epifluorescence images were taken on a Nikon TE 2000 Eclipse. 

All oligonucleotides/primers used in this work were synthesized by Operon.  

DNA bands in agarose gels were detected with the DIANA III Camera System (Raytest, 

Straubenhardt). In some cases, protein bands detected by Western blotting were 

semiquantitatively measured on X-ray films using the DIANA III Camera System and 

quantitated using ImageJ software. For the quantitative analysis of Western blot signals, 

membranes were analyzed on Alpha Innotech (San Leandro, CA, USA).  

DNA and RNA photometrical analysis was performed on a DU800 spectrophotometer.  

Measurement of protein concentration and in vitro kinase and phosphatase assays were 

performed on a FLUOstar OPTIMA microplate reader and on a Perkin Elmer Envision 2104 

multilabel reader. 
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4 Methods 

4.1 Identification of a Chronophin-related, hypothetical protein by database 

analysis 

In a search for previously uncharacterized, Chronophin (CIN)-related haloacid dehalogenase 

(HAD)-type phosphatases, an EST database search was performed according to the method 

described by Anderson  (Andersen et al., 2005). A text search was performed in Entrez and 

Swiss-Prot using the terms "haloacid dehalogenase AND phosphatase AND human" to 

retrieve a protein master set. These protein sequences were used to query NCBI's non-

redundant database with TBLASTN searches, using a cut-off value of E<10-4 in addition to a 

manual inspection of the obtained sequences for the presence of HAD motifs. Using the 

Proweb.org server, the obtained sequences were blasted against each other to sort out 

overlapping/redundant sequences. The remaining hits were included in PSI-BLAST 

searches. This approach revealed the presence of a Chronophin (CIN)-related, hypothetical 

protein that we termed AUM, for actin remodeling, ubiquitously expressed, magnesium-

dependent phosphatase. 

The basic physical characteristics, genomic organization, primary structural analysis 

of AUM and its sequence similarities with CIN were determined using the NCBI database 

and bioinformatic tools available on the Expasy Server (http://expasy.org/).  

4.1.1 Phylogenetic analysis of HAD phosphatases  

Based on the presence of the characteristic HAD motif I, HAD phosphatases from model 

organisms across the animal kingdom were retrieved using BLAST searches (Altschul et al., 

1990). The phylogenetic analysis of AUM orthologs as well as of HAD phosphatases in 

species ranging from slime mold to human beings was performed using ClustalX (ftp.embl-

heidelberg.de) and PhyloDraw, version 0.8 ).  

 

4.2 Molecular biology methods  

4.2.1 Transformation of competent E. coli  

For the transformation of chemically competent E. coli TOP10, DH5α, or BL21(DE3)pLysS 

cells, 50 µl of thawed competent cells were mixed with either 50 ng of plasmid DNA or 5 µl of 

ligation reaction and incubated on ice for 30 min. After a heat shock (2 min, 42°C in 

waterbath) and successive incubation on ice (2 min), 250 μl of preheated SOC-medium (2% 

tryptone, 0.5% yeast extract, 10 mM NaCl, 10 mM MgCl2, 10 mM MgSO4 and 20 mM 

glucose, pH 7) was added to the bacteria, and the cells were incubated at 37°C for 30 – 60 
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min. Use of SOC-medium in the final step of E. coli cell transformation was shown to yield 

maximal transformation efficiency (Hanahan 1983). This was followed by incubation for one 

hour at 37°C in a shaker (120 rpm). Cells were then centrifuged (10,000 x g, 1 min, RT) and 

the supernatant was removed. Cells were resuspended in 100 μl of LB medium and plated 

on LB agar plates containing the appropriate antibiotics. Plates were incubated at 37°C 

overnight. Antibiotic resistant colonies were screened for the expression of the respective 

plasmid and positive strains were stored as glycerol stocks (LB medium supplemented with 

25 % (v/v) glycerol) at –70°C or as DNA stock at –20°C. The verification of positive clones 

was carried out by plasmid isolation (see 4.2.2), restriction digestion (see 4.2.4), and, when 

appropriate, by sequencing (GATC, Konstanz). 

4.2.2 Plasmid preparation  

Small scale plasmid isolation  
For the screening of positive colonies and preparation of small amounts of DNA, the Mini-

prep DNA extraction kit (Qiagen) was used. Plasmids were isolated according to the 

manufacturer’s instructions. Briefly, 3 ml LB medium containing the appropriate antibiotic was 

inoculated with a single bacterial colony and was incubated overnight at 37°C with constant 

agitation. Cultures were transferred into 2 ml Eppendorf tubes and cells were pelleted by 

centrifugation (Centrifuge 5415 D, Eppendorf, Hamburg; 12,000 rpm, 1 min, RT). The DNA 

was eluted from the columns by the addition of 50 μl of elution buffer (10 mM Tris-HCl, pH 

8.0) and subsequent centrifugation (12,000 rpm, 2 min, RT). Following the 1:100 dilution of 

DNA in elution buffer, the DNA concentration was determined photometrically (see 4.2.3). 

DNA was stored at –20°C. 

Large scale plasmid isolation 
For preparation of large quantities of DNA, the Maxi-prep DNA extraction kit (Qiagen) was 

used according to the instructions of the manufacturer. A single bacterial colony was 

inoculated in 2 ml LB medium containing appropriate antibiotics, and cells were grown at 

37°C for 6-8 h with constant agitation. Afterwards, this culture was added to 100 ml of LB 

medium with appropriate antibiotics and the culture was incubated at 37°C with constant 

agitation overnight. Cells were pelleted by centrifugation (Avanti J-20 XP Centrifuge, 

Beckman Coulter, Krefeld; 6,000 x g, 15 min, 4°C), and DNA was isolated as described in 

the manufacturer’s protocol. Finally, the DNA pellet was resuspended in 500 μl of Tris-HCl 

(10 mM Tris-HCl, pH 8.0), and the DNA concentration was determined. After that, the DNA 

was diluted 1:100, and the concentration was determined photometrically (see 4.2.3). DNA 

samples were adjusted to a concentration of 0.5 – 1 g/l, aliquoted and stored at –20°C.  
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4.2.3 Quantification of nucleic acids by photometric measurement 

The photometric determination of nucleic acid concentrations was carried out using a DU 800 

spectrophotometer (Beckman Coulter). The absorbance A was measured in quartz cuvettes 

(d = 1 cm) at 260 and 280 nm (A260 and A280) against H2O. The nucleic acid concentration 

was calculated based on of the fact that an absorbance of 1 at 260 nm corresponds to an 

average DNA concentration of 50 µg/ml, and that an absorbance of 1 at 280 nm corresponds 

to an average RNA concentration of 40 µg/ml. The purity of isolated DNA was determined 

using the ratio A260/A280. Ratio of 1.8 to 1.9 is considered to be of optimum purity for most of 

the downstream applications. 

4.2.4 Restriction digests of plasmid DNA 

The enzymatic digestion of DNA with restriction endonucleases was carried out using the 

manufacturer's recommended buffers for single and double digestions (Fermentas, St. Leon-

Rot). 10 U of enzyme was used to digest 1 µg of DNA at 37°C in a ThermoMixer 

(ThermoMixer compact, Eppendorf) for one hour. The efficiency of digestion was checked by 

agarose gel electrophoresis (see 4.2.5). 

4.2.5 DNA gel electrophoresis 

Agarose gels were prepared by heating 1% (w/v) agarose (Sigma or Genaxxon) in 1xTAE 

buffer in a microwave oven, followed by the addition of ethidium bromide (0.5 µg/ml). DNA 

sample buffer (orange DNA loading dye or bromophenol blue) was added to the DNA 

samples, and the gel was run at constant voltage. The separation was evaluated on a UV 

table and documented using the DIANA III Camera System (Raytest, Straubenhardt). 

4.2.6 Elution of DNA from agarose gels 

The extraction of DNA from the agarose gel was carried out with the QIAquick Gel Extraction 

Kit (Qiagen) according to manufacturer's instructions. Briefly, the agarose gels were 

illuminated with UV light and the appropriate DNA bands were excised from the gel with a 

scalpel and transferred into Eppendorf tubes. The gel slices were weighted and three 

volumes of the supplied buffer were added to each gel slice, followed by incubation at 50°C 

for 10 min to solubilize the agarose. Afterwards, one volume of isopropanol was added to the 

samples, and the DNA was separated from the obtained mixture by binding it to the supplied 

columns and subsequently washing it one time with washing buffer. Afterwards, the DNA 

was eluted from the columns by the addition of 20 – 30 μl of elution buffer (10 mM Tris-HCl, 

pH 8.0) and subsequent centrifugation (12,000 rpm, 1 min, RT). DNA was stored until use at 

–20°C. 



Methods                                                                                                                                  33   

 

4.2.7 Isolation of RNA from murine tissues 

Total RNA from HeLa cells or mouse tissues was isolated with the QIAzol reagent according 

to the manufacturer’s protocol. This method is a single-step RNA isolation with slight 

modifications from the original method, described by Chomczynski and Sacchi (Chomczynski 

and Sacchi 1987). Basically, an appropriate amount of QIAzol reagent (one ml of QIAzol per 

50 to 100 mg tissue or per one 3.5 cm dish with adherent cells) was added to samples. 

Tissue samples were uniformly homogenized before proceeding further. After sample 

dissociation, an appropriate amount of chloroform (0.2 ml per 1 ml of QIAzol) was added, 

and samples were centrifuged to separate the organic and the RNA-containing aqueous 

phases. RNA was precipitated from the aqueous phase by mixing it with isopropanol (0.5 

ml of isopropanol per 1 ml of QIAzol reagent that was used for the initial 

homogenization). The resulting RNA pellet was washed once with 1 ml of 75% ethanol, 

was briefly air-dried, and was then redissolved in 20 l of DEPC-treated water. To reduce the 

contamination of the RNA with genomic DNA, the dissolved RNA was subjected to a 

digestion with RNase-free DNase. The reaction was set as follows: 20 l RNA, 2.5 μl 10 x 

DNase buffer and 2.5 l DNase. The reaction was carried out for 30 min at 37°C. After that, 

the enzyme was heat inactivated at 65°C for 15 min. The extracted RNA was subjected to a 

photometric concentration determination (see 4.2.3). The ratio of A260/A280 was used to 

determine the purity of the RNA sample. Ideally, a value of 1.8 to 2 indicates sufficiently pure 

samples for downstream applications. The RNA was stored at –80°C. 

4.2.8 Polymerase Chain Reaction 

The polymerase chain reaction (PCR) was used for the amplification of DNA regions, which 

were defined by specific oligonucleotides (primers). As part of this work, different 

thermostable polymerases were used for PCR. For the reverse transcriptase-PCR (see 

below) the reverse transcriptase of the high fidelity RNA PCR kit (Takara Bio Inc.) was used. 

For synthesizing DNA fragments, where the accuracy of the sequence is of particular 

importance, a proof-reading DNA polymerase from Thermococcus sp. (Platinum Pfx DNA 

polymerase, Invitrogen) was used, which has a 5'3' exonuclease activity. For real-time 

PCR, a commercially available SYBR Green PCR Master Mix was purchased from Applied 

Biosystems. All PCR reactions were performed in the PCR cycler (Eppendorf or Applied 

Biosystems) in a single tube or in a 96-well plate. The analysis of the PCR results was 

carried out on agarose gels (see 4.2.5). 

Standard PCR 
The standard PCR reaction was set in 25 µl of reaction volume by a 5 min initial denaturation 

of DNA at 95°C, and followed by 25 reaction cycles of denaturation, annealing of primers and 

elongation. The elongation of the primers for 1 min was carried out at a temperature which is 
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usually calculated 3°C below that of the melting temperature of both oligonucleotides. The 

elongation was carried out for 1 min at a temperature of 68°C. After a terminal elongation of 

1 min the PCR products were analyzed by agarose gel electrophoresis (see 4.2.5). 

Reverse transcriptase-PCR (RT-PCR) 
PCR can be used for the production of cDNA from tissue or cell lysates. For this purpose, the 

RNA is reverse transcribed (RT) using reverse transcriptase and specific primers. In this 

study, RT-PCR was performed for the generation of AUM cDNA from murine tissues. Total 

RNA was isolated as described in Section 4.2.7, and the reaction was set as follows: 1 µg of 

RNA, 0.25 µl RNase inhibitor (40 U/µl), 1.25µl dNTPs (10mM), 1µl random hexamer 

concentration (Roche, Mannheim) 2 l 10x  RT buffer. The total reaction volume was 

adjusted to 20 µl with DEPC-treated water.  RNA was reverse transcribed at 37°C for 1 hr 

followed by 95°C for 5 min.    

One microlitre of cDNA generated in the RT reaction was used as a template in the 

subsequent PCR reaction using Platinum Pfx DNA polymerase with the forward primer  5’-

CTGCTGTTCGACTGCGATGG-3’ and the reverse primer 5’-CTCTTCACATCCTCAAGA 

CTG-3’. The mixture was initially denatured for 5 min at 95°C, followed by 30 amplification 

cycles (95°C for 1 min, 58°C for 1 min, 72°C for 1 min). After the terminal elongation step 

(72°C for 2 min), the PCR product was analyzed by agarose gel electrophoresis. 

Real-time PCR 
Real time PCR allows quantification and analysis of amplified product in real time. In this 

study we quantified the AUM signal in various mouse tissues using SYBR Green chemistry 

(Applied Biosystems). SYBR green dye present in master mix binds to each newly 

synthesized double stranded DNA in the minor groove and the fluorescence can be 

measured in real time during the exponential phase of the amplification. Real Time PCR 

primers for AUM and GAPDH were designed with Primer express software (Applied 

Biosystems). For AUM, forward primer sequence is  

5’-ACCGCCTGGACACAGACATC-3’ and the reverse primer sequence is  

5’-CCGGTGAGGGTCAGGATAGTC-3’, whereas for GAPDH, forward primer sequence is  

5’-CGAGAATGGGAAGCTTGTCATC-3’ and the reverse primer sequence is  

5’-CGGCCTCACCCCATTTG-3’. The PCR cycling conditions were 95°C for 15 s, 62°C for 1 

min. The reaction was set as follows: 12.5 µl of 2x SYBR mix, 1 µl of 10 µM primer mix, 

template 2 µl (100 ng of RNA equivalent cDNA). The reaction volume was adjusted to 25 µl 

with DEPC-treated water. Real-time fluorescence data were captured during the elongation 

(62°C) step of the cycle on 7500 Real Time PCR system (Applied Biosystems). A crossing-

point threshold cycle (CT) value was obtained for each well as the fractional cycle number at 

which the measured fluorescence crossed the threshold, a value chosen by the software 

such that all reactions in all plates were in log phase. The signal was quantified using System 
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Detection Software (SDS v1.3) relative to GAPDH and calibrated against signal in testis. 

Software allows us to calibrate the signal with respect to any sample in the given dataset and 

also to integrate different experiments together. 

4.2.9 Site-directed mutagenesis 

The catalytic aspartate in AUM was point mutated to asparagine (AUM D34N) using site-

directed mutagenesis according to the Quickchange XL site directed mutagenesis kit 

purchased from Stratagene (La Jolla, USA). Briefly, 100 ng of pTrcHis-mAUM plasmid was 

employed as a template in the mutagenesis reaction with the primer 5’-

GTGGACACGCTGCTGTTCAACTGCGATGGCGTGCTGTGG-3’ and its reverse 

complement. The PCR reaction was performed with Platinum Pfx Polymerase (5 min at 

94°C, 12 cycles at 94°C for 30 sec, 58°C for 1 min, and at 68°C for 5 min, followed by 1 min 

at 68°C). One µl of DpnI enzyme was added to the PCR mix for digestion of the methylated 

template. The PCR product was transformed into competent DH5α cells (see 4.2.1), and the 

obtained colonies were screened for the desired mutation by sequencing (see 4.2.11).  

4.2.10 DNA constructs and cloning procedures 

The full length clone (pCMV-SPORT6- IRAVp968H1184D) encoding for mouse AUM 

(1700012G19Rik) was obtained from the German Resource Centre for Genome Research 

(RZPD, Berlin). The full length AUM cDNA was amplified using Platinum Pfx Polymerase 

(PCR conditions 5 min at 95°C, 25 cycles at 95°C for 1 min, 60°C for 1 min, and 68°C for 1 

min followed by 30 sec at 68°C) and the forward primer 5’- 

CTTCCGGATCCATGGCAGAGGCGGAAGCC-3’ and the reverse primer 5’- 

CTTCCGAATTCTTATCTAGAACCTTGAAGGGCAGGCAAG-3’. The PCR product was 

cloned into pCRII-TOPO vector and sequenced. As a part of my diploma work, AUM was 

subcloned into the bacterial expression vector pTrcHis A (Invitrogen) via the BamH1-EcoRI 

sites to allow the expression of N-terminally His6-tagged AUM, and into the eukaryotic 

expression vector pcDNA4-myc/His6 (Invitrogen) via the BamH1-XbaI sites to generate C-

terminally myc/His6-tagged AUM . 

As part of this thesis work, AUM wt and AUM D34N were subcloned into pECFP-N1 to 

generate  AUM-CFP, into pEYFP-C1 to generate YFP-AUM (both vectors from Clontech, 

Palo Alto, CA, USA) and into pGEX-4T-1 (GE Healthcare, Munich) to generate GST-AUM for 

bacterial expression. YFP and CFP-AUM were cloned via BamH1-XbaI sites whereas GST-

AUM was cloned via BamH1-Not1 restriction sites.under the identical PCR conditions as 

described above. All generated plasmids were verified by sequencing (GATC Biotech) and 

stored as glycerol stocks at –80°C and as plasmid DNA at –20°C. 



Methods                                                                                                                                  36   

 

4.2.11 Computer-assisted analysis of DNA sequences 

The analysis of sequences and their graphic representation was carried out with the 

programs ContigExpress and AlignX from the program package VectorNTI Suite 10 

(Invitrogen) as well as with the Chromas program, version 1.43 (C. McCarthy, Brisbane, 

Australia). 

4.2.12 Digoxigenin-labeled riboprobe synthesis 

An AUM RNA probe (riboprobe) was generated for the detection of AUM expression at the 

RNA level in Northern blots. To that end, 300ng of the pCMV-Sport6-AUM plasmid were 

amplified using the forward primer 5’-CTTCCGGATCCATGGCAGAGGCGGAAGCC-3’ and 

the reverse primer with the T7 polymerase promoter sequence 5’-CTAATACGACTCA 

CTATAGGGAGAGAATTCTTATCTAGAACCTTGAAGGGCAGGCAAG-3’ with platinum Pfx 

polymerase (5 min at 94°C, 25 cycles of 94°C for 1 min, 60°C for 1 min, and at 68°C for 1 

min followed by final extension for 1 min at 68°C). After a terminal elongation of 1 min, the 

PCR products were analyzed by agarose gel electrophoresis (see 4.2.5).  

Amplified DNA was purified from the gel as detailed in section 4.2.6. Gel-extracted 

DNA was precipitated in 3 M ammonium acetate, vacuum-dried and resuspended in 5 µl of 

DEPC-treated water. The purified plasmid DNA was used as a template for the synthesis of 

the digoxigenin-labeled riboprobe. The in vitro transcription was carried out with T7 RNA 

polymerase at 37°C for 2 hrs (2 µl of 5x transcription buffer, 2 µl of digoxigenin-labeled dNTP 

mix containing 10 mM of each nucleotide, 2 µl of 0.1 M DTT, 1 µl (40 U/µl)) of RNasin). 

Transcription buffer was provided along with polymerase. DIG labeled dNTP mix was 

purchased from Roche. To remove plasmid DNA, the reaction mix was treated with 2 µl of 

RNase-free Dnase RQ1 (Promega, Madison, WI, USA) at 37°C for 15 min. Unincorporated 

dNTPs were removed by LiCl (4M) purification. The pellet was washed in 70% ethanol, dried 

under vacuum and resuspended in 50 µl of 10mM TE (10 mM Tris-HCl, pH 7.5, 1 mM 

EDTA). 

The purified AUM riboprobe was analyzed in a 1% denaturing agarose gel. The 

sample was prepared in 2x orange DNA loading dye, heated at 70°C for 10 min, chilled on 

ice and loaded on the gel along with an appropriate RNA ladder. The riboprobe was 

visualized under an UV illuminator and documented. 

4.2.13 Northern blot 

A commercial dot blot containing membrane-bound total RNA from various mouse tissues 

(BD Biosciences, San Jose, CA, USA) was used to analyze the AUM tissue expression 

pattern. The array was incubated in 10 ml of prehybridization solution containing 1.5 mg of 

salmon testes DNA at 65°C for 1 hr. The hybridization solution contained the denatured AUM 

riboprobe (10 ng/ml), 30 µg of COT DNA and 150 µg of salmon testes DNA and was 
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prepared in 20x SSC. The array was transferred into the hybridization solution and was 

incubated at 65°C overnight with gentle shaking. Afterwards, the array was washed twice in 

low stringency buffer (1x SSC, 0.5% SDS) and 2x each in low and high stringency buffer (0.1 

x SSC, 0.5% SDS). After washing, the array was blocked in blocking buffer at RT for 1 hr. 

Ready to use blocking, washing and detection buffers were purchased from Roche (Cat. No. 

11585762001). 

Alkaline phosphatase (AP)-labeled anti-digoxigenin antibody (150 U/200µl, Roche) 

was prepared at a dilution of 1:10,000 in blocking buffer, and the array was incubated for 30 

min at RT in the antibody solution. After washing twice in 1x washing buffer for 15 min at RT, 

the array was equilibrated in 1x detection buffer for 10 min at RT. Bound antibodies were 

detected in a chemiluminescent reaction using the CDP-star solution (Roche) for 5 min at 

RT. The array was then exposed to X-ray film for 20 min at RT and developed. For future 

use, the array was stored in 2x SSC at –20°C after stripping in 0.5% SDS for 10 min.    

 

4.3 Cell biology methods 

4.3.1 Cell lines 

All cell lines used in this work (HeLa, GC1-sp, A431, and HEK293T) were purchased from 

ATCC (Manassas, VA, USA), cultured in Dulbecco’s modified Eagle’s medium (DMEM) 

containing 4.5 g/l glucose, supplemented with 10% FCS (PAN Biotech GmbH, Aidenbach), 2 

mM L-glutamine, 100 U/ml penicillin and 100 μg/ml streptomycin at 7% CO2 and 37°C in a 

standard cell culture incubator. All cell lines were grown on standard cell culture dishes (TPP, 

Trasadingen, Switzerland and Nunc, Roskilde, Denmark) and passaged for further cultivation 

every 3-4 days at a ratio of 1:5 to 1:10. To passage cells, the culture medium was removed, 

cells were briefly washed with calcium- and magnesium-free D-PBS (Dulbecco’s phosphate 

buffered saline; PAN Biotech) and incubated with trypsin-EDTA (0.05% trypsin/EDTA) for 5 

min at 37°C. Trypsin was neutralized by the addition of FCS-containing culture medium and 

detached cells were then brought into a single cell suspension by repeated pipetting. Cells 

were counted under the microscope Axiovert 25 (Carl Zeiss, Jena) using a Neubauer 

chamber. The average cell numbers per square were multiplied with 104 in order to 

determine the number of cells per millilitre of cell suspension. 

4.3.2 Transient transfection 

The day preceding the transfection, cells were seeded at the appropriate density in 6-well 

plates or 6 cm dishes. For immunofluorescence experiments, cells were seeded at a density 

of 1 – 1.5 x 105 cells on a round 22 mm glass coverslip. For immunoblotting assays in 

overexpression experiments, cells were seeded at a density of 4 – 4.5 x 105 cells per well of 
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a 6-well plate; for RNAi experiments, 2 – 2.5 x 105 cells were seeded per well of a 6-well 

plate.  

Next day, plasmids or siRNA oligoribonucleotides and the Lipofectamine™ 2000 reagent 

were mixed separately with OptiMEM in polystyrene tubes. In case of 6-well plates, 3 �l of 

Lipofectamine™ 2000 reagent and 0.1 – 0.5 �g of the respective plasmids or 12.5 to 50 nM 

of siRNA oligoribonucleotides were each mixed with 250 µl of OptiMEM medium and were 

incubated for 5 min at room temperature. Afterwards, DNA (or siRNA) and Lipofectamine™ 

2000 solutions were combined and incubated for another 20 min at room temperature to form 

transfection complexes. In the meanwhile, cells were washed 3 times with DMEM without 

any additives and the medium was then replaced with 1 ml of OptiMEM. The transfection mix 

(500 µl in case of 6-well plates) was added, and the cells were incubated in a cell culture 

incubator for 4 hours. After that, the transfection medium was replaced with 2 ml of standard 

growth medium. Eighteen hours (for overexpression experiments) or 48 – 72 h (for RNAi 

experiments) after transfection, cells were either used for further experiments, fixed for 

immunofluorescence or lyzed with RIPA buffer for immunoblotting (see 4.4.6). 

When plates other than 6-well plates were used, the number of cells was adjusted 

proportionally to the effective growth area of the employed plates. The volume of transfected 

solutions was increased (e.g., to 1 ml for a 6 cm plate, to 2 ml for a 10 cm plate), along with 

proportional increase of the transfection mix. 

4.3.3 Immunofluorescence 

To determine the subcellular localization of endogenous or transiently (over)expressed 

proteins, cells were fixed for 20 min at RT in 4% paraformaldehyde, followed by 

permeabilization with 0.5% Triton X-100 for 10 min. The permeabilized cells were blocked for 

one hour in 3% BSA prepared in Ca2+/Mg2+-free D-PBS, and were subsequently incubated 

for 2 h with appropriate primary antibodies (diluted 1:100-1:400 in 1% BSA prepared in 

Ca2+/Mg2+-free D-PBS). The cells were washed twice in 1% BSA, and were incubated for 1 h 

at RT with appropriate secondary, Alexa Fluor-labeled anti-rabbit or anti-mouse IgG (1:400, 

prepared in 1% BSA). To stain filamentous actin, samples were incubated in Alexa Fluor-

labeled phalloidin (1:400) along with the secondary antibodies. Phalloidin is a bicyclic 

heptapeptide isolated from the death cap (Amanita phalloides) that specifically binds to actin 

filaments. After washing the samples three times with Ca2+/Mg2+-free D-PBS, cell nuclei were 

counterstained with DAPI (1 µg/ml in D-PBS) for 5 min and the specimen were embedded in 

ProLong Gold Antifade reagent. When fluorescent proteins were overexpressed (e.g., AUM-

YFP), the cells fixed and were embedded directly in ProLong Gold Antifade reagent. Cells 

were analyzed using confocal microscopy (see 4.3.4). 
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4.3.4 Confocal Laser-Scanning Microscopy 

The subcellular localization of endogenous or exogenous proteins was examined with a 

confocal laser scanning microscope. Confocal microscopy allows the analysis of defined 

optical slices by minimizing scattered fluorescence from out-of-focus cell areas. A laser beam 

passes through a light source aperture which is then focused by an objective lens into a 

small focal volume at optimum depth of the specimen. A beam splitter which divides light into 

two portions separates off fluorescent wavelengths from original excitation wavelength. After 

passing a pinhole, the light intensity is detected by a photodetection device which converts 

the light signal into an electrical signal that is then recorded by a computer. The out of focus 

light is suppressed by a pinhole, which results in sharper images than those of conventional 

epifluorescene microscope. The detector aperture obstructs the light that is not coming from 

the focal point permits one to obtain images of planes at various depths within the sample 

(Taylor and Wang 1980). The live or fixed and antibody-labeled cells were analyzed under 

the confocal laser scanning microscope LSM 510 Meta (Carl Zeiss, Jena) or TCS SP5 

(Leica, Wetzlar) with a Plan-Apochromat 40x/NA1.3 or 63x/NA1.4 objectives. The confocal 

aperture was set so that the optical film thickness was in between 0.5 – 1.0 µm.  Focal 

adhesion structures in fixed cells were imaged under TIRF microscope with 100x objectives. 

4.3.5 RNA interference 

Gene knockdown through RNA interference (RNAi) has developed into a widely used 

method for gene silencing (Elbashir et al., 2001). Two types of small RNA molecules – 

microRNA (miRNA) and small interfering RNA (siRNA) are central to RNA interference. 

These small RNA molecules bind to RNA and regulate its stability. Among various post 

transcriptional modifications of RNA, molecules involved in RNAi shows great potential as 

drug targets in future medicine.    

Double stranded RNA (dsRNA) is RNA with two complementary strands which form 

the genetic material of some viruses. DsRNA can trigger RNA interference in eukaryotes 

(Blevins et al., 2006). When dsRNA whose antisense strand is complementary to the 

transcript of a targeted gene is introduced into cells, it results in the degradation of the 

targeted mRNA and the consequential silencing of the target gene. Two distinct steps are 

involved in this process. In the first step, the enzyme Dicer recognizes and cleaves long 

dsRNA into siRNA molecules, which are between 21 and 23 nucleotides in length. In the 

second step, these oligoribonucleotides become incorporated in a multicomponent RNA-

induced silencing complex (RISC), which uses these siRNAs to guide the sequence-specific 

cleavage of the RNA transcripts of the target gene at sites homologous to siRNA sequences 

(Stewart et al., 2003). As a result, the synthesis of the encoded protein is largely suppressed, 

without its gene being affected (Tuschl and Borkhardt 2002). 
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Synthetic small interfering RNA (siRNA) and retroviral short hairpin RNA (shRNA) 

libraries covering most of the known and predicted human and mouse genes are 

commercially available. To trigger RNA interference-mediated gene silencing, synthetic 

siRNA oligoribonucleotides can be directly introduced into cells, e.g., by transfection. 

Alternatively, siRNA oligoribonucleotides can be generated in cells from short hairpin RNA 

(shRNA). DsRNA molecules consist of a sense and an anti-sense sequence, connected by a 

short loop of several nucleotides. That allows complementary base-pairing and the 

production of a hairpin structure. ShRNA oligoribonucleotides can be introduced into cells 

through transfection or via expression vectors and are processed by cellular enzymes into 

active siRNA oligoribonucleotides through removal of the loop sequence (Fig. 11). 

siRNAs

RISC

Target mRNA

Target mRNA cleavage

AAAA

shRNAs

cellular processing

 

Figure 11: A model for gene inactivation via RNA interference. 
Short hairpin (sh)RNA oligoribonucleotides are processed to 21-23-nt long short interfereing (si)RNA 
duplexes by intracellular enzymes. The siRNA duplexes are incorporated into an siRNA containing 
ribonucleoprotein complex, forming the RNA-induced silencing complex (RISC). The RISC mediates 
sequence-specific target RNA degradation by targeting homologous mRNAs for degradation due to its 
endonuclease activity (modified from Tuschl and Borkhardt, 2002). 
 

4.3.6 Lentiviral transduction of shRNA 

Lentiviruses were generated by transient transfection of human embryonic kidney 293F cells 

(HEK293 cells constitutively expressing the simian virus 40 (SV-40) F antigen). The cells 

were seeded the day prior to the transfection at a density of 4.5 x 106 cells per 10 cm dish. A 

lentiviral shRNA expression vector containing the respective shRNAs of interest (pLKO.1-

puro), a packaging vector (psPAX2) and an envelope vector (pCR-VSV-G) were 

simultaneously transfected (10 µg of each plasmid). For that, DNA at a concentration of 1 

µg/µl was dissolved in 533 µl ddH2O, and 62.5 µl of a 2.5 M calcium chloride solution was 

added. Building of precipitate complexes of calcium and DNA phosphate residues was 

induced by the addition of 625 µl of 2x BES-buffered saline solution (50 mM BES, 280 mM 
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NaCl, 1.5 mM Na2HPO4, pH 7.02). Transfection mixtures were incubated at room 

temperature for 5 min and pipetted into the culture medium of 293F cells. Cells were then 

incubated for approximately 16 hours. Afterwards, the medium was replaced by fresh 

medium supplemented with 10 mM sodium butyrate for 6 hours in order to enhance lentivirus 

production. Sodium butyrate is known to increase protein expression from CMV promoter-

driven vectors by stimulating the enhancer element of the promoter. Furthermore, sodium 

butyrate was shown to increase lentivirus titer even when the transfection conditions were 

not optimal (Kolokoltsov et al., 2005). The medium with sodium butyrate was then replaced 

with fresh growth medium and recombinant lentiviral particles were allowed to form during a 

24 h incubation period in a cell culture incubator. Afterwards, the medium was collected with 

a 20 ml syringe and cellular debris was removed by filtration through sterile 0.45 μm filters. 

Virus-containing supernatants were directly used to transduce target cells, which had been 

seeded the day before transduction. The growth medium of the target cells was changed to 

virus-containing medium and cells were incubated in a cell culture incubator for 24 h. 

(pLKO.1-puro lentiviral plasmids containing AUM shRNA contain the ampicillin and 

puromycin antibiotic resistance genes for selection of inserts in bacterial or mammalian cells, 

respectively.) Afterwards, transduced cells were incubated in selection medium containing 1 

µg/ml puromycin for 2 – 3 days. 

Cryostocks were made from the obtained puromycin-resistant cells by trypsinizing the 

cells and by supplementing the cell suspensions with 10% (v/v) DMSO, followed by a slow 

freeze down to –80°C and subsequent storage in liquid nitrogen. To bring cells back in 

culture, cryostocks were rapidly thawed in a 37°C waterbath, diluted 1:10 with 37°C 

prewarmed medium and centrifuged for 5 min at 1000 x g. Cell pellets were then 

resuspended and seeded in the appropriate medium onto culture dishes. 

4.3.7 Validation of the RNAi tools 

Cellular AUM expression was downregulated using two different methods. First, a transient 

transfection of synthetic siRNA oligoribonucleotides into the host cells was used. The 

corresponding sequences of the employed oligoribonucleotides are presented in Table 1. 

Host cells were seeded at low density on the day before transfection. Next day, the cells 

were transfected (see 4.3.2) with four different individual siRNA oligoribonucleotides or a 

combination of two of them. Forty-eight – 72 h after transfection, cells were lyzed in RIPA 

buffer and lysates were tested for AUM downregulation by immunoblotting with AUM-specific 

antibodies (see 3.5). 
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Table 1: siRNA sequences used to downregulate mAUM expression 
Construct Sense Sequence (5’- 3’) Antisense Sequence (5’- 3’) 

J-041844-09 UCACCAAGGCCGUGCGGUAUU PUACCGCACGGCCUUGGUGAUU 

J-041844-10 CCAAGUUGCUGCUGGCCGAUU PUCGGCCAGCAGCAACUUGGUU 

J-041844-11 AGGCGGACAUCAUCGGGAAUU PUUCCCGAUGAUGUCCGCCUUU 

J-041844-12 GCGGAGAAGCUAAGGCGCUUU PAGCGCCUUAGCUUCUCCGCUU     

 

The second way of AUM knock-down used in this work is the MISSION lentiviral shRNA 

expression system developed by the RNAi consortium (TRC). The lentiviral plasmid pLKO.1-

Puro (Moffat et al., 2006) carries the puromycin-resistance gene and drives shRNA 

expression from a human U6 promoter. This system allows the production of lentiviral 

particles and the delivery of shRNA expression cassettes into the target cells by lentiviral 

transduction. The lentivirus used here is derived from human immunodeficiency virus (HIV). 

The unique infectious capacity of this retrovirus is due to the fact that it can permeate the 

nucleus of the target cell, and is therefore capable of delivering its genetic information even 

to non-dividing or primary cells. Several shRNA sequences of 21 nucleotides in length 

targeting mouse AUM were tested for their ability to downregulate AUM protein expression 

levels in GC1-spg cells, after lentiviral transduction (see 4.3.6). The shRNA sequences 

employed are presented in Table 2. 

 

Table 2: Sequences of shRNA used to specifically down-regulate mAUM expression 

Construct Insert sequence (5’- 3’) 

TRCN0000081473 CCGGCGTGGGCACCAACATGGACAACTCGAGTTGTCCATGTTGGTGCCCACGTTTTTG 

TRCN0000081474 CCGGCGGACATCATCGGGAAGCCTACTCGAGTAGGCTTCCCGATGATGTCCGTTTTTG 

TRCN0000081475 CCGGCCCACACTTCAGCTACATGAACTCGAGTTCATGTAGCTGAAGTGTGGGTTTTTG 

TRCN0000081476 CCGGACGCTGCTGTTCGACTGCGATCTCGAGATCGCAGTCGAACAGCAGCGTTTTTTG 

TRCN0000081477 CCGGCTGTAGCCTGAAGACTATCCTCTCGAGAGGATAGTCTTCAGGCTACAGTTTTTG 

  
As a control, the MISSION non-targeting shRNA control SHC002 was used, which contains a 

shRNA insert that does not target any known human or mouse genes, due to a minimum of 

four base pair mismatches to any known human or mouse gene. Following diagram gives an 

overview of the si/shRNA sequences enlisted above in ORF of mAUM.  
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Figure 12: Localization of the mAUM siRNA/shRNA in open reading frame of mouse AUM. 
Refer to tables 1 and 2 for the designations used in the figure 
 

4.4 Protein biochemical methods 

4.4.1 Bacterial expression and purification of recombinant AUM 

Recombinant AUM was expressed in competent bacterial system BL21 (DE3) pLysS from 

Invitrogen (Carlsbad, CA, USA) as described. Proteins were expressed for 4 hrs at 37°C 

upon induction with 1 mM isopropyl ß-D-thiogalactopyranoside (IPTG), and purified under 

native conditions by standard affinity chromatography on a Talon matrix (Clontech). Purified 

AUM was stored at 4°C in  40 mM triethanolamine, 5 mM MgCl2, 150 mM NaCl, 0.002% 

Triton X-100, 50% glycerol; pH 7.4.  

The purity of the eluted protein was evaluated by 12% SDS-PAGE using Coomassie 

blue staining. Calf intestine Enterokinase (EK) from Roche (Nutley, NJ, USA) was used to 
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cleave fusion protein. EK was dissolved in milipore water to a final concentration of 1 µg/µl. 

His6-tagged protein was digested for 48 hrs at room temperature on a shaker. 30 µg of EK 

was used to digest 200 µg of purified protein as recommended by the manufacturer. Extent 

of cleavage was checked on 12% SDS-PAGE and protein was stored at 4°C.  

Further purification was facilitated by the anion exchanger column (Resource Q) on 

an Äkta purifier (Amersham Pharmacia Biotech AB, Uppsala, Sweden). A gradient of 0-500 

mM NaCl was used for elution of proteins in  fractions of 300 µl. Appropriate fractions were 

pooled and checked for the extent of purification on 12% SDS-PAGE. 

4.4.2 Design of AUM peptide antibody 

An AUM-specific peptide antibody was designed by comparing the amino acid sequences of 

human and mouse CIN and AUM (see Fig. 13). The highlighted amino acid sequence in 

AUM was selected for peptide generation, because a corresponding region in CIN (boxed 

region in Fig. 13) was already known to yield a CIN-specific antibody that does not 

crossreact with AUM. The AUM peptide was synthesized by Squarix biotechnology (Marl, 

Germany) and two female New Zealand White (NZW) rabbits were immunized with this 

peptide by Charles River Laboratories (Kisslegg, Germany). Crude sera were purified by 

Squarix biotechnology using (NH4)2SO4-precipitation and affinity chromatography on 

immobilized AUM peptide, followed by gelfiltration on a Superdex 200, HR 10/30 column. 

The specificity and sensitivity of the antibody was analyzed using Western blotting of purified, 

recombinant as well as of endogenously expressed CIN and AUM (see Figs. 24, 25, 31, 32). 
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CLUSTAL W (1.83) multiple sequence alignment 
 
 
mCIN          ---------MARCERLRGAALRDVLGQAQGVLFDCDGVLWNGERIVPGAP 41 
hCIN          ---------MARCERLRGAALRDVLGRAQGVLFDCDGVLWNGERAVPGAP 41 
mAUM          MAEAEAGGDEARCVRLSAERAKLLLAEVDTLLFDCDGVLWRGETAVPGAP 50 
hAUM          MAAAEAGGDDARCVRLSAERAQALLADVDTLLFDCDGVLWRGETAVPGAP 50 
                        *** ** .   : :*. .: :*********.**  ***** 
 
mCIN          ELLQRLARAGKNTLFVSNNSRRARPELALRFARLGFAGLR----AEQLFS 87 
hCIN          ELLERLARAGKAALFVSNNSRRARPELALRFARLGFGGLR----AEQLFS 87 
mAUM          ETLRALRARGKRLGFITNNSSKTRTAYAEKLRRLGFGGPVGPEAGLEVFG 100 
hAUM          EALRALRARGKRLGFITNNSSKTRAAYAEKLRRLGFGGPAGPGASLEVFG 100 
              * *. *   **   *::*** ::*.  * :: ****.*      . ::*. 
 
mCIN          SALCAARLLRQRLSGPPDASGAVFVLGGEGLRAELRAAGLR-LAGDP--- 133 
hCIN          SALCAARLLRQRLPGPPDAPGAVFVLGGEGLRAELRAAGLR-LAGDPSAG 136 
mAUM          TAYCSALYLRQRLAGVPDPK--AYVLGSPALAAELEAVGVTSVGVGPDVL 148 
hAUM          TAYCTALYLRQRLAGAPAPK--AYVLGSPALAAELEAVGVASVGVGPEPL 148 
              :* *:*  *****.* * .   .:***. .* ***.*.*:  :. .*    
 
mCIN          -GEDPR----------VRAVLVGYDEQFSFSRLTEACAHLRDPDCLLVAT 172 
hCIN          DGAAPR----------VRAVLVGYDEHFSFAKLREACAHLRDPECLLVAT 176 
mAUM          HGDGPSDWLAVPLEPDVRAVVVGFDPHFSYMKLTKAVRYLQQPDCLLVGT 198 
hAUM          QGEGPGDWLHAPLEPDVRAVVVGFDPHFSYMKLTKALRYLQQPGCLLVGT 198 
               *  *           ****:**:* :**: :* :*  :*::* ****.* 
 
mCIN          DRDPWHPLSDGSRTPGTGSLAAAVETASGRQALVVGKPSPYMFQCITEDF 222 
hCIN          DRDPWHPLSDGSRTPGTGSLAAAVETASGRQALVVGKPSPYMFECITENF 226 
mAUM          NMDNRLPLENGRFIAGTGCLVRAVEMAAQRQADIIGKPSRFIFDCVSQEY 248 
hAUM          NMDNRLPLENGRFIAGTGCLVRAVEMAAQRQADIIGKPSRFIFDCVSQEY 248 
              : *   **.:*   .***.*. *** *: *** ::**** ::*:*::::: 
 
mCIN          SVDPARTLMVGDRLETDILFGHRCGMTTVLTLTGVSSLEEAQAYLTAG-- 270 
hCIN          SIDPARTLMVGDRLETDILFGHRCGMTTVLTLTGVSRLEEAQAYLAAG-- 274 
mAUM          GINPERTVMVGDRLDTDILLGSTCSLKTILTLTGVSSLEDVKSNQESDCM 298 
hAUM          GINPERTVMVGDRLDTDILLGATCGLKTILTLTGVSTLGDVKNNQESDCV 298 
              .::* **:******:****:*  *.:.*:******* * :.:    :.   
 
mCIN          -QRDLVPHYYVESIADLMEGLED 292 
hCIN          -QHDLVPHYYVESIADLTEGLED 296 
mAUM          FKKKMVPDFYVDSIADLLPALQG 321 
hAUM          SKKKMVPDFYVDSIADLLPALQG 321 
               ::.:**.:**:*****  .*:. 
 
  

Figure 13: Amino acid sequence alignment of CIN and AUM and sequence used for the 
generation of an AUM-specific peptide antibody. 
This alignment was performed using the ‘multiple sequence alignment’ tool of the program ClustalW 
(Version 1.83) program. The highlighted amino acid sequence was selected for antibody generation. 
Numbers given on the right refer to amino acid positions. (*) means that the residues or nucleotides in 
that column are identical in all sequences in the alignment, (:) indicates conserved substitutions, (.) 
indicates semi-conserved substitutions. 
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4.4.3 Sample preparation for immunoblot analysis 

Preparation of cell lysates  

GC-1 spg cells or HeLa cells were washed with Ca2+/Mg2+-free D-PBS, and then lyzed in ice-

cold lysis buffer (50 mM Tris-HCl, pH 7.2; 150 mM NaCl; 0.1% SDS; 1% NP -40; 1% sodium 

deoxycholate; 1 µg/ml pepstatin; 1 g/ml leupeptin; 10 µg/ml aprotinin; 1 mM PMSF and 1x 

phosphatase inhibitor cocktails I and II). The cells were scraped from the plate on ice and 

were homogenized by repeatedly drawing into a syringe with a 20 gauge needle. Insoluble 

cell components were removed by centrifugation at 15,000 rpm for 10 min at 4°C and the 

lysate was stored in aliquots at –20°C. 

 

Preparation of mouse tissue lysates  

An adult wild type male mouse (C57BL/6) was sacrificed by cervical dislocation and then 

dissected to obtain various tissues. The tissues were immediately snap-frozen in liquid 

nitrogen and stored at –80°C until use. Tissue samples were pulverized in liquid nitrogen by 

grinding with a pistil in a mortar, and were then transferred to pre-cooled Eppendorf tubes on 

ice. Tissue lysates were prepared by homogenizing 100 mg of tissue in 1ml of lysis buffer [50 

mM Tris-HCl, pH 7.2; 150 mM NaCl; 0.1% SDS; 1% Triton X-100; 1 mM EDTA; 0.5 mM 

sodium orthovanadate; 1 mM sodium fluoride; 1% sodium deoxycholate with freshly added 

protease inhibitors: 10 µg/ml aprotinin; 10 µg/ml leupeptin; 1mM pepstatin; 1 mM PMSF and 

phosphatase inhibitor cocktail I (1:1000) and II (1:1000)]. The samples were further 

homogenized by repeatedly drawing them into a syringe through a 20 gauge needle. 

Subsequently, particulate matter was removed by centrifugation at 15,000 rpm for 10 min at 

4°C, and the lysates were stored in aliquots at –20°C. 

4.4.4 Mouse sperm preparation and analysis 

Preparation of sperm suspension 

An adult wild type male mouse (C57BL/6) was sacrificed by cervical dislocation and then 

dissected to obtain mature spermatozoa from different parts of the sperm carrying duct, the 

epididymis. Caput and cauda epididymis were cut by clearing adjoining fatty tissue and were 

immediately put in to a drop of sperm preparation medium (Medicult, Jylling, Denmark) and 

were incubated at 37°C for 15 min. Motile spermatozoa from caput and cauda epididymis 

were collected by the swim-up method (Yamashita et al., 2007) and subsequent 

centrifugation at 1000 rpm for 10 min. Live sperms were counted under the microscope and 

were adjusted to 1x106/ml in sperm preparation medium.  
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Sperm capacitation and permeabilization 

Mature cauda sperms were capacitated in 2x TYH medium (119 mM NaCl, 4.8 mM KCl, 1.7 

mM CaCl2, 1.2 mM KH2PO4, 1 mM MgSO4, 25 mM NaHCO3, 5.6 mM glucose, 0.5 mM sodium 

pyruvate, 4 mg/ml BSA) by incubating at 37°C for 30 min. Capacitated sperms were washed 

in 1X PBS and treated with 10 U of streptolysin O (SLO) prepared in TYH at 37°C for 30 min 

for permeabilization (Yamashita et al., 2007). 

 

Sperm fixation 

Sterile coverslips were coated with BD cell Tak (BD biosciences) as per the manufacturar’s 

instructions. Briefly, a drop of cell Tak was put on sterile coverslip and spread evenly by 

putting another coverslip on it at RT. After 20 min, the coverslip was washed with distilled 

water and allowed to air dry. The sperm suspension was spread evenly on the coated 

coverslip and was allowed to air dry for 1 hr at RT. Coverslip was washed with 1x PBS and 

sperms were fixed in 70% methanol at -20°C for 5 min. After blocking in 10% BSA, sperms 

were stained for microscopic analysis (see 4.3.3). 

 

Sperm lysis 

Sperm suspensions were prepared in sperm preparation medium that was treated either with 

pervanadate (for overlay assay), SLO (for permeabilization) or progesterone (for acrosome 

reaction) before lysing in 2x lysis buffer containing 20 mM Tris-HCl, pH 7.4; 150 mM NaCl; 

1% NP40; 1 mM sodium orthovanadate; 10 µg/ml aprotinin; 10 µg/ml leupeptin; 1 mM 

pepstatin; 1 mM PMSF) and  phosphatase inhibitor cocktails I & II (1:1000 dilutions, Sigma-

Aldrich). Subsequently, the particulate matter was removed by centrifugation at 15,000 rpm 

for 10 min at 4°C and the lysates were stored in aliquots at -20°C. 

4.4.5 Estimation of protein concentration 

The protein concentration of cell or tissue lysates was determined using the Micro BCA 

Protein Assay Kit. This assay allows the colorimetric detection and quantification of the total 

protein content. The assay is based on the reduction of Cu2+ to Cu1+ by the proteins 

contained in the reaction under alkaline conditions (the Biuret reaction) and the colorimetric 

detection of the generated Cu1+ by a reagent containing bicinchoninic acid, BCA (Smith et al., 

1985). Chelation of two molecules of BCA with one cuprous cation (Cu1+) leads to the 

formation of a water-soluble, purple-colored product with maximal absorbance at 562 nm. 

To measure the protein concentration, the BCA solution was prepared by mixing 

together components of the Micro BCA Protein Assay Kit according to manufacturer’s 

instructions. Cell or tissue lysate (5 μl) was diluted in a microtitre plate with water to make a 

volume of 150 μl of protein solution. Then, 150 μl of BCA solution was added to each probe, 

and samples were incubated for 2 hours at 37°C. A BSA standard curve ranging from 2 to 10 
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μg of BSA per well was supplemented with 5 μl of lysis buffer to take into account the 

absorbance of compounds of the lysis buffer. The extinction of the samples was determined 

at 560 nm in a FLUOstar OPTIMA microplate reader. 

4.4.6 SDS-Polyacrylamide Gel Electrophoresis 

SDS-PAGE is a commonly used method for separating proteins according to their molecular 

masses using polyacrylamide gels as a support medium (see Table 3) and sodium dodecyl 

sulfate (SDS) for protein denaturation and charge (Laemmli 1970). The technique of SDS-

PAGE followed by immunoblotting (see 4.4.5) is a commonly used method for protein 

expression and phosphorylation analysis. 

Protein samples were adjusted to equal protein concentrations, mixed with Laemmli 

buffer, denatured at 95°C for 5 min and loaded onto SDS-PAGE gels. The electrophoresis 

was carried out in running buffer at a constant current (25 – 30 mA). Proteins were first run in 

the stacking gel [4.5 % (v/v) acrylamide solution] to concentrate them, and then they were 

separated in the running gel [12% (v/v) acrylamide solution]. To separate low molecular 

weight proteins, running gels with 8% (v/v) acrylamide solution were used. SDS-PAGE was 

performed on the Bio-Rad mini gel apparatus (Bio-Rad, Munich). 

 

Table 3: Polyacrylamide gel recipe  

 Stacking gel Running gel 
   

30% Acrylamid/Bisacrylamid (37,5:1) 4,5% 8 or 12%  

SDS 0,1% 0,1% 

APS 0,1% 0,1% 

TEMED 0,1% 0,1% 

Tris-HCl 125 mM, pH 6.8 375 mM, pH 8.8 

 

4.4.7 Detection of proteins in SDS-polyacrylamide gels 

The proteins in SDS-polyacrylamide gels were stained with Coomassie dye (2.5 g/l 

Coomassie Serva Blue R in 10% acetic acid and 45% methanol) at room temperature 

directly after electrophoresis for a minimum of one hour or overnight. For destaining, the gels 

were incubated in the destainer (10% acetic acid and 20% methanol in H2O) with gentle 

shaking until the background was clear. The gel was stored in 0.1% sodium azide or was 

vacuum-dried. The stained gels were scanned (HP Scanjet 8300, Hewlett-Packard, CA, 

USA) for documentation or further analysis. 
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4.4.8 Immunoblot analysis 

Immunoblotting is an analytical technique commonly used for semiquantitative detection of 

specific proteins in a given sample of cell or tissue homogenates or lysates. A standard 

method for the quantitative transfer of proteins from polyacrylamide gels to nitrocellulose 

membranes, first described in 1979 (Towbin et al., 1979), was used. Briefly, proteins are 

electrophoretically transferred on membranes, and target proteins are specifically detected 

using primary antibodies. Bound primary antibodies can then be detected by using 

secondary antibodies coupled with horseradish peroxidase (HRP).  

Proteins were transferred from the SDS-PAGE gels onto nitrocellulose membranes 

using a TRANSBLOT semidry blotting apparatus (Bio-Rad, Munich). After equilibration of the 

SDS-PAGE gel in cathode buffer for 5 min, the blotting sandwich was assembled. For that, 

two lower sheets of Whatman paper were equilibrated in anode buffer I, one sheet of 

Whatman paper together with the nitrocellulose membrane in anode buffer II and three other 

sheets of Whatman paper in cathode buffer. Proteins were transferred electrophoretically at 

constant current (70 mA for 1 mini-gel) for variable times depending on the molecular mass 

of the proteins of interest. A prestained protein marker was used as a molecular weight 

marker and to monitor electrophoretic transfer. Western blot membranes were stained for 

equal protein loading with Ponceau S (0.2% in 5% acetic acid) and were copied for 

documentation. Afterwards, membranes were blocked in blocking buffer for 30 min at room 

temperature under constant agitation. Primary antibodies (see 3.5) were applied at dilutions 

of 1:500-1:1,000 (or 1:10,000 for -tubulin and -actin) in antibody diluent, and membranes 

were incubated overnight at 4°C under constant agitation in primary antibody solution. 

Afterwards, membranes were washed (3 x 5 min) with TBS-T or rinsing in water and probed 

for 1 – 2 h with horseradish peroxidase (HRP)-labeled secondary antibodies, diluted 

1:10,000 in blocking buffer. After washing (3 x 5 min) with TBS-T or rinsing in water, Western 

blot membranes were treated with the enhanced chemiluminescent (ECL) Western Blotting 

Detection System and exposed to X-ray films.  

 
Reprobing of nitrocellulose membranes 
In some cases, the same membranes were probed for several different antigens. For this 

purpose, nitrocellulose membranes were placed in stripping buffer and incubated at 55°C for 

30 min under constant agitation to remove primary and secondary antibodies. After that, 

membranes were washed three times in a large excess of TBS-T, blocked again with 

blocking buffer for 30 min at room temperature under constant agitation and then reprobed 

with other primary antibodies to detect the other antigen. 
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Densitometric analysis of immunoblot bands 
For semiquantitative Western blot analysis, Western blot signals from the membranes were 

directly detected on the DIANA III Camera System, or exposed films were scanned and 

obtained images were densitometrically evaluated using the ImageJ software (version 1.41, 

National Institutes of Health, MD, USA. http://rsbweb.nih.gov/ij/). Alternatively, digital images 

of membranes were taken on Alpha Innotech (San Leandro, CA, USA) for quantification of 

the signal. 

4.4.9 Immunoprecipitation 

Immunoprecipitation is the antibody-mediated isolation of overexpressed or endogenously 

expressed proteins from cell or tissue lysates for downstream applications. 

AUM overexpressing or stably AUM depleted GC1 cells were washed with Ca2+/Mg2+-

free D-PBS, and then lyzed in ice-cold lysis buffer (see 3.12) supplemented with freshly 

added protease inhibitors [10 µg/ml aprotinin; 10 µg/ml leupeptin; 1 mM pepstatin; 1 mM 

PMSF) and a 1:1,000 dilution of the phosphatase inhibitor cocktails I & II (Sigma)]. The cells 

were scraped from the plate on ice and homogenized by repeatedly drawing into a syringe 

through a 20 gauge needle. Insoluble cell components were removed by centrifugation at 

15,000 rpm for 10 min at 4°C and the lysate was stored in aliquots at –20°C. Total protein 

content of the cell lysate was estimated (see 4.4.3) and lysate containing 250 µg–1 mg of 

protein was incubated with 2-4 µg (or as recommended by manufacturer) of the 

immunoprecitating antibody for 2 hrs at 4°C.   

Protein A/G sepharose beads (GE Healthcare, Munich) were equilibrated in lysis 

buffer and blocked in 5% BSA prepared in lysis buffer for 2 hrs at 4°C. After 2 hrs of 

incubation with antibody, the complex was incubated in the presence of beads (30 µl of 

beads for 1 mg of total protein) for another 2 hrs at 4°C with rotation. After washing beads 

thrice in lysis buffer at 4°C, protein complexes were either released by 5 min of boiling in 

SDS-PAGE sample buffer or the immunoprecipitates were used in in vitro activity assays. 

The efficiency of immunoprecipitation was assessed by immunoblotting (see 4.4.6) with 

appropriate controls. It is necessary to examine the nonspecific binding of protein of interest 

to beads instead of immunoprecipitate complex in an individual experiment. Also, the 

efficiency of immunoprecipitation was assessed by running an aliquot of the total lysate along 

with the beads on SDS-PAGE gels followed by immunoblotting. 

4.4.10 Immunohistochemistry 

Immunohistochemistry refers to the process of localizing proteins in tissue sections exploiting 

the principle of antibody specificity in biological samples. The principle is that a specific 

primary antibody is employed to detect an antigen. A biotinylated secondary antibody is then 

used to detect the bound primary antibody. A horseradish peroxidase (HRP)-coupled 
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avidin/biotin-complex (ABC) is formed upon addition of HRP-labeled avidin, which can be 

detected with a HRP substrate, for example 3, 3’-diaminobenzidine tetrahydrochloride (DAB). 

To perform immunohistochemical analysis, 14 μm sections were cut from paraffin-embedded 

mouse testis tissue or embryos on a cryostat and mounted on poly-L-lysine coated glass 

slides. To block the effect of endogenous peroxidase, sections were incubated for 20 min at 

RT with H2O2 (0.3% in TBS). To prevent unspecific binding of the primary antibodies, 

sections were incubated in the blocking buffer for 30 min at RT. Sections were incubated with 

the primary antibodies in a humidified chamber at 4°C for 48 hrs. All further steps were done 

at RT. Sections were washed 3 x 5 min with TBS to remove unbound primary antibodies and 

then, sections were incubated for 1 h with secondary biotinylated antibodies. Sections were 

washed 3 x 5 min with TBS to remove unbound secondary antibodies and incubated for 1 h 

with freshly prepared ABC mix. After 3 x 5 min washing with TBS, sections were placed for 3 

– 15 min in DAB-solution and the reaction was stopped in water. After that, sections were 

washed again in TBS and dehydrated (2 x 70% EtOH for 2 min, 80% EtOH – 2 min, 90% 

EtOH – 2 min, 100% EtOH – 2 min, Xylene – 2 min, Xylene – 15 min). Dehydrated sections 

were mounted with Entellan and stored at RT. 

4.4.11  Enzymatic activity assays 

The phosphatase activity of CIN and AUM towards the broad-spectrum substrate, para-nitro 

phenylphosphate (p-NPP, Calbiochem) was measured spectrophotometrically in a 96-well 

microtitre plate according to the manufacturer’s instructions. Briefly, 1 µg of AUM and 2 µl of 

substrate (final concentration, 3.5 mM) were incubated in a total reaction volume of 100 µl 

prepared in assay buffer (40 mM TEA, 30 mM NaCl, 0.1% Triton X-100). The release of 

inorganic phosphate converts the colorless p-NPP into the yellow colored para-nitrophenyl, 

which can be measured spectrophotometrically at 405 nm. Thus, the absorbance at 405 nm 

is proportional to the phosphate release due to phosphatase activity in the reaction.The 

kinetics of the reaction were followed for 30 min at 405 nm.  

Pyridoxal 5’-phosphate (PLP) was used as a CIN substrate (Gao and Fonda 1994; 

Jang et al., 2003). To detect free inorganic phosphate (Pi) generated in the reaction of PLP 

dephosphorylation driven by CIN, we employed the PiPer Phosphatase Assay Kit 

(Invitrogen) according to the manufacturer’s instructions.Briefly, the detection of Pi in this 

assay is based on a cascade of coupled enzymatic reactions. In the presence of Pi, maltose 

phosphorylase converts maltose to glucose 1-phosphate and glucose. Afterwards, glucose 

oxidase converts the glucose to gluconolactone and hydrogen peroxide. Finally, received 

H2O2 reacts with the Amplex Red reagent to generate the highly fluorescent product, 

resorufin. Horseradish peroxidase catalyzes the last reaction. Thus, the resulting increase in 

fluorescence is proportional to the amount of Pi in the reaction mix. 
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Michaelis–Menten–Henri kinetics 
Enzymatic parameters (Km & Vmax) of AUM were calculated by fitting data obtained with 

various p-NPP concentrations into the Michaelis-Menten equation where the rate is plotted 

as a function of the concentration of substrate: 
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(v is reaction rate, S is substrate concentration, Km is Michaelis constant and Vmax is 

maximum reaction rate). 

4.4.12 High throughput phosphopeptide screen 

To investigate the peptide substrate preferences of AUM, we performed a high throughput 

peptide screen at the Max Planck Institute for Physiological Chemistry in Dortmund in the 

group of Prof. Herbert Waldmann. Phosphatase substrate sets encompassing peptides from 

720 human proteins phosphorylated on serine (174), threonine (58) or tyrosine (488) were 

purchased from JPT Peptide Technologies, Berlin. These peptides were supplied lyophilized 

in 384-well microtitre plates, each containing 360 phosphopeptides (250 pmol/well) together 

with 10 calibration standards. To determine the appropriate concentration of recombinant 

AUM protein under the conditions of this screen, AUM activity was first assayed against p-

NPP (10 nM): 0.2 mg/ml (5.8 µM) of AUM was diluted 1:60 in assay buffer (40 mM TEA, 30 

mM NaCl, 0.1% Triton X-100), and 25 µl of the diluted protein were pipetted in each well of a 

384-well microtitre plate with the help of a robotic system. The plate was incubated for 45 

min at 37°C with shaking and the reaction was stopped by adding 25 µl malachite green 

solution. Free phosphate released in solution was detected by malachite green. After 

allowing color development for 10 min at RT, absorbance was measured at 620 nm and raw 

data was analyzed. Hits up to 66% of highest optical density (OD) were considered specific. 

4.4.13  In vitro protein phosphatase activity assays 

In vitro phosphatase assay 

Immunoprecipitated or recombinant proteins were phosphorylated in vitro with either [γ-32P] 

ATP (1000 Ci/mmol; for autoradiography) or with unlabeled ATP (for immunoblotting with 

phosphospecific antibodies) in kinase assay buffer (50 mM HEPES, pH 7.6; 10 mM MgCl2; 2 

mM MnCl2; 2 mM DTT) at 30°C for 30 min. To remove the unincorporated ATP, the 

phosphorylated proteins were afterwards either dialyzed against phosphatase assay buffer 

(50 mM HEPES, pH 7.6; 5 mM MgCl2; 1 mM DTT) or they were centrifuged in 10 kDa MWCO 

Centricon tubes (Millipore). For this, the protein was washed 3x in 500 µl of phosphatase 

assay buffer and finally collected in a volume of 50 µl in the Centricon tubes.   
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For in vitro phosphatase assays, the phosphorylated protein was then incubated with 

1 µg of recombinant AUM (active or catalytically dead) at 30°C for 30 min in phosphatase 

assay buffer (50 mM HEPES, pH 7.6; 5 mM MgCl2; 1 mM DTT). The phosphatase reaction 

was stopped by adding sample buffer; samples were boiled for 5 min at 95°C and loaded 

onto SDS-PAGE gels. Proteins were either stained with Coomassie and the dried gel was 

exposed to X-ray films, or the proteins were blotted onto nitrocellulose membrane and the 

dephosphorylation pattern was analyzed by phosphospecific antibodies. 

In vitro kinase activity assay 
Src kinase activity towards commercial biotinylated peptide (cell signling Technologies, 

Danvor) was measured according to manufacturar’s instructions. Briefly, 50 ng of 

recombinant GST-Src was incubated with 1.5 µM substrate peptide in kinase buffer (60 mM 

HEPES pH 7.5, 5 mM MgCl2, 5 mM MnCl2, 3 µM Na3VO4, 1.25 mM DTT, 20 µM ATP) for 40 

min at RT. After terminating reaction by adding 50 mM EDTA, pH 8.0, reaction mix was 

transferred to streptavidin coated plate and binding of biotynilated peptide to streptavidin was 

continued for 60 min at RT. Strepatavidin plate was washed extensively with PBS/T (1x PBS, 

0.05% Tween-20) and then incubated with primary antibody (1:1000, pTyr-100 prepared in 

PBS/T with 1% BSA) for 60 min at RT. After incubation with appropriate HRP-linked 

secondary antibody for 30 min, phosphorylation of biotiylated peptide was measured by 

colorimteric determination as readout of kinase activiy. 

4.4.14  Cell biological assays  

Phosphatase overlay assays 
To determine the effect of the purified AUM phosphatase on the pool of denatured cellular 

tyrosine phosphorylated proteins, cells were treated with pervanadate. Pervanadate is 

plasma membrane permeable, and nonspecifically blocks cellular phosphatases due to its 

structural similarity with phosphate (Gordon 1991). This treatment serves to increase the 

pool of tyrosine phosphorylated proteins in cells, which is typically very small as compared to 

serine or threonine phosphorylated proteins (Alonso et al., 2004).  

Pervanadate was prepared by mixing equal volumes of 100 mM hydrogen peroxide 

and 100 mM sodium orthovanadate (pH 10). Cells were treated with 100 µM freshly prepared 

pervanadate solution for 15 min at 37°C (Selengut 2001). After pervanadate treatment, cells 

were washed with Ca2+/Mg2+-free D-PBS, and then lyzed in ice-cold lysis buffer (see 3.12) 

containing freshly added protease inhibitors (10 µg/ml aprotinin, 10 µg/ml leupeptin, 1 mM 

pepstatin, 1 mM PMSF) and phosphatase inhibitor cocktails I & II (1:1000; Sigma). The cells 

were scraped from the plate on ice and homogenized by repeatedly drawing into a syringe 

with a 20 gauge needle. Insoluble cell components were removed by centrifugation at 15,000 

rpm for 10 min at 4°C and the lysate was stored in aliquots at –20°C. The total protein 

content of the cell lysate was estimated using the BCA assay (4.4.5). 
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The pervanadate-treated cell lysates were separated by SDS-PAGE and transferred 

onto nitrocellulose membranes by electroblotting. Sample was loaded in one coherent well 

produced by taping the comb. This procedure ensures a homogenous protein distribution on 

the gel. Different concentrations of recombinant, purified AUMwt or AUMD34N protein were 

prepared in phosphatase assay buffer (40 mM TEA, 30 mM NaCl, 0.1% Triton X-100) 

supplemented with 0.5% non-fat milk powder and 2 mM MgCl2. The nitrocellulose membrane 

was cut into vertical strips, the strips were placed in sterile polystyrene tubes, containing 

either buffer alone as a control, or the respective concentrations of AUMwt or AUMD34N 

protein. For the phosphatase overlay reaction, the tubes were incubated for 1 hr at 37°C with 

gentle rotation in incubator. The tyrosine phosphorylation pattern was then analyzed by using 

the phosphotyrosine-specific antibodies 4G10 or pTyr100 (see 4.4.8).     

 

Analysis of actin cytoskeletal dynamics 
Cellular actin exists in a tightly regulated equilibrium between monomeric, globular (G)-actin 

and polymeric, filamentous (F)-actin pools. This tight regulation poses an experimental 

hurdle when the effect of a protein on the actin cytoskeleton needs to be visualized. 

Latrunculin A is a toxin produced by various species of sponge (e.g., Negombata magnifica) 

that binds to and sequesters G-actin. Therefore, de novo actin polymerization is inhibited by 

blocking the incorporation of free actin monomers in actin filaments (Pardo and Nurse 2005). 

As a result, the use of latrunculin A can uncover direct or indirect effects of a protein on actin 

dynamics.  

Cell overexpressing AUMwt or AUMD34N (see section 4.3.2 or cells stably depleted of 

endogenous AUM (see section 4.3.6) were treated with 20 nM – 2 µM latrunculin A 

(Hotulainen et al., 2005) prepared in dilution buffer (5 mM Tris, pH 7.8; 2 mM MgCl2; 0.1 mM 

CaCl2; 0.2 mM ATP; 0.2 mM DTT; 0.05% sodium azide) for different time points. The 

treatment was terminated by fixing the cells in 4% PFA (see 4.3.3). As the latrunculin A stock 

solution was prepared in DMSO, control cells were treated with the corresponding 

concentrations of DMSO as a vehicle control. F-actin was stained as described under section 

4.3.3, and the cytoskeleton was analyzed by confocal microscopy (section 4.3.4). 

 

Fibronectin stimulation of cells 
Cell adhesion to extracellular matrix (ECM) proteins such as fibronectin, collagen, or laminin 

triggers signaling cascades involving rapid tyrosine phosphorylation and dephosphorylation 

events (Sieg et al., 1998). To initiate fibronectin mediated signaling cascades, cells were 

starved overnight in DMEM containing 0.5% FBS. Serum starved cells were harvested by 

limited trypsinization (0.05% trypsin/EDTA) for 5 min at 37°C. Trypsin was inactivated by 

soybean trypsin inhibitor (0.5 mg/ml in DMEM containing 0.25% BSA). The cell suspension 

was centrifuged at 1,000 rpm for 5 min, and the pellet was resuspended in DMEM containing 
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0.1% BSA. To avoid sedimentation of cells in tube and to keep them in suspension until 

spreading on fibronectin coated surface, cell suspension was incubated on rotor at 37°C for 1 

hr with gentle rotation. 

In parallel, cell culture dishes or 22 mm coverslips were coated with 10 µg/ml of 

fibronectin (diluted freshly in Ca2+/Mg2+-free D-PBS) for 1 hr at RT. Excess fibronectin 

solution was aspirated, and fibronectin-coated dishes/coverslips were dried at 37°C for 1 hr 

before use. Equal numbers of cells (see 4.3.1) were spread on fibronectin-coated surfaces 

for different time points. Cells were then either lyzed in lysis buffer (see 3.12) containing 

freshly added protease inhibitors (10 µg/ml aprotinin, 10 µg/ml leupeptin, 1 mM pepstatin, 1 

mM PMSF) and phosphatase inhibitor cocktails I & II (1:1000 dilution) for immunoblotting 

(4.4.8), or fixed and processed for microscopic analysis (see 4.3.3). 

 

EGF stimulation of cells 
Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase which upon 

stimulation with epidermal growth factor (EGF) initiates signaling cascades and thereby 

modulates the response of a cell towards its environment (Biscardi et al., 2000). EGFR itself 

and many of its downstream effector proteins are tyrosine phosphorylated and hence after 

pervanadate stimulation (see previous paragraph) we used EGF to understand effect of AUM 

on cells in culture. 

To initiate the EGFR signaling cascade, cells were starved in DMEM containing 0.5% 

FBS either overnight or for a minimum of 6 hrs at 37°C. Upon overnight starvation in DMEM, 

cells were stimulated with 100 ng/ml (85 nM) EGF for various time points ranging from 1 min 

to 20 min at 37°C and then washed with ice cold D-PBS containing Ca2 +/Mg2+ on ice. Cells 

were then lyzed in ice cold RIPA buffer (see 3.12) containing freshly added protease 

inhibitors (10 µg/ml aprotinin, 10 µg/ml leupeptin, 1 mM pepstatin, 1 mM PMSF) and 

phosphatase inhibitor cocktails I & II (1:1000 dilution). Cells were lyzed for 20 min on a rotor 

at 4°C, and were then centrifuged at maximum speed in a table top centrifuge at 4°C. The 

supernatants were collected in fresh precooled tubes, and were stored at –20°C. 

4.4.15 Cell area determination of fixed cells 

For an unbiased and quantitative determination of the cell area of cultured cells, we 

employed software called Metamorph (version 7.1.3.0) from MDS analytical technologies, 

Downingtown, PA, USA. To start with, 20,000 cells with stable knock down of AUM were 

seeded on fibronectin-coated (see 4.4.11) 96-well microtitre plate (15 µ-plate, ibidi, 

Martinsried) for 10, 20 or 40 min at 37°C and then stain for F-actin with phalloidin (1:400)  

and nuclei with DAPI (1 µg/ml in D-PBS) after PFA fixation (see 4.3.3). Cells were scored 

under an epifluorescence microscope with a 10x objective and analyzed with Metamorph. 

Briefly, the software takes four random pictures per well for nuclei and F-actin. By overlaying 
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the nuclei and the cell area (stained for F-actin), a single image was created which was then 

used for segmentation. During segmentation, software recognizes individual cells by nuclei 

as the center and F-actin as the periphery, and calculates the cell area in arbitrary units from 

measuring the circumference of all cells in the image. The final value that can be obtained is 

the average cell area of all cells in a given image.  

For validation, the overlay and segmentation files were correlated to ensure correct software 

operations, especially the correct segmentation of two adjacent cells. The average area of a 

high number of measured cells gives an unbiased quantitation of a heterogeneous 

population of cells with different knock down levels of AUM. The cell area of at least 1000 

cells per condition was measured in two independent experiments, and the effect of AUM 

knock down on cell area was plotted as fold increase with respect to control shRNA 

transduced cells. 
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5 Results  

5.1 Phylogenetic analysis of AUM orthologs and of its evolutionary 

relationship with CIN 

Database searches have predicted the existence of 58 human HAD enzymes (including 

phosphatases, ATPases, phosphonatases, dehalogenases, sugar phosphomutases ) with 

largely unknown functions (Allen and Dunaway-Mariano 2004). 

In order to identify the complement of human HAD phosphatases and to understand 

the evolutionary relationships among them, we performed extensive database searches (see 

4.1.1 section in methods) and constructed phylogenetic trees based on the multiple 

alignment of the identified phosphatases using the program ClustalX 2.0 (Larkin et al., 2007). 

A phylogenetic tree is a way of describing evolutionary relationships between proteins that 

are assumed to have a common ancestor. Thus, the basic assumption behind the tree 

construction is that the respective proteins are evolved over time from a common ancestor.  

There are three basic steps in the phylogenetic analalysis of proteins. 1) Multiple 

alignment of amino acid sequences 2) distance calculations depending upon data set and 3) 

construction of a tree. In the present study we have used the most common program Clustal 

W to generate multiple alignments of CIN and AUM orthologs. The letter ‘W’ in Clustal W 

stands for ‘weighted’, meaning that different weights are given to sequences and parameters 

in different parts of the alignment e.g., by inserting gaps to produce biologically significant 

alignments. The second step towards the tree construction is the calculation of distances 

between the species on the basis of multiple alignments. There are various methods for 

distance calculations, depending upon the overall similarity among the sequences. As a first 

approach we used ‘neighbour joining method’ for calculations using Clustal X 2.0.  The final 

step of analysis is the tree construction and the data display in various formats.  

We used PhyloDraw (version 0.82) for the construction of a tree. Each node of the 

tree is called a taxonomic unit. Dendrogram is the broad term used for diagrammatic 

representation of phylogenetic tree. Phylogram is a tree where the branch length is 

proportional to the character change or to evolutionary distance. In contrast, a cladogram 

does not represent the evolutionary distance and all branches are of equal length. Trees can 

be displayed as either rooted or unrooted. Rooted tree shows root as a common ancestor of 

the given dataset. Root is generally defined as the least related sequence of the given data 

set which is also called an operational taxonomic unit (OUT). Unrooted tree can be displayed 

as either radial or slated or rectangular. We choose to display the data as radial, unrooted 

trees. 
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We employed phylogenetic analysis for two distinct reasons. One, two understand 

evolutionary relationship among known human HAD phosphatases and second, to analyze 

CIN related proteins and their relationship in higher organisms.  Figure 14 shows that we 

could identify a total of 23 human phosphatases (including isoforms) containing HAD motifs. 

The radial tree of human HAD phosphatases represents the relative sequence similarity 

among the members at the amino acid level and grouped them in three hypothetical 

branches. These branches may suggest probable functional similarity between closely 

related members as it is evident from having all isoforms in single branch. CIN and AUM are 

close homologs and are grouped with PSP, the only functionally characterized protein in 

higher organisms (Collet et al., 1998). The green dot represents the root of the tree. As 

discussed above, the branch distance of radial tree does not correspond to evolutionary 

distance but merely represents the branching pattern of the members.  

 

 

 

Figure 14: Phylogenetic analysis of human HAD phosphatases. 
This radial phylogenetic tree comprises the identified human HAD phosphatases and predicts the 
probable path of divergence from common ancestors. The tree was constructed by multiple alignment 
of entire protein sequence and the distance was calculated by neighbour joining (NJ) algorithm. 
Human HAD phosphatases are grouped in evolutionarily three distinct branches probably with similar 
function. AUM is the closest CIN relative when compared to all other human HAD members.The 
following proteins are included (Swiss-Prot identifiers are given in brackets):  
AUM, actin-remodeling, ubiquitously expressed, magnesium-dependent HAD phosphatase (A6NDG6) 
also designated as PGP, phosphoglycolate phosphatase;  
CIN, Chronophin (Q96GD0), also known Pdxp, Pyridoxyl phosphate phosphatase (pdxp); 
PHOSPHO1, phosphatase, orphan 1 (Q8TCD6);  
EYA1, eyes absent 1 (Q99502); 
FCP1a, CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) phosphatase subunit 1 
(Q9Y5B0); 
DEM1, differentially expressed in malignancies protein (no Swiss-Prot Id, AF120499_1); 
UBLCP, ubiquitin-like domain containing CTD phosphatase 1(Q8WVY7); 
MDP1, magnesium-dependent phosphatase 1 (Q86V88); 
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SCP, small C-terminal domain (carboxy-terminal domain, RNA polymerase II, polypeptide A) 
phosphatase 1 (Q9GZU7); 
Dullard, (O95476); 
TIMM50, translocase of inner mitochondrial membrane 50 homolog (Q3ZCQ8); 
HDHD1A, haloacid dehalogenase-like hydrolase domain containing 1A (Q08623); 
PSP, phosphoserine phosphatase (P78330); 
LHPP, phospholysine phosphohistidine inorganic pyrophosphate phosphatase (Q9H008). 
 
AUM was discovered bioinformatically as the closest relative of the cofilin phosphatase 

Chronophin (CIN; Gohla et al., 2005). Murine AUM shares 45% sequence identity and 61% 

sequence similarity on the amino acid level with murine CIN when aligned using PSI BLAST 

(see also Fig. 5). To understand the evolutionary relationship between AUM and CIN, a 

combined phylogenetic tree of AUM and CIN orthologs was constructed (Fig. 15). We used 

the entire protein sequence as input for alignment of CIN and AUM orthologs. These data 

show that both proteins co-evolved closely in lower organisms. Interestingly, the evolution of 

AUM and CIN diverged in vertebrates and was found to be localized in separate 

chromosomes in mice and humans (see section 1.3.1). 

 

 
 

Figure 15: Phylogenetic comparison of primary amino acid sequence of AUM and CIN  
This radial phylogenetic tree comprises the identified AUM and CIN orthologs and predicts the 
probable path of divergence from common ancestors. The tree was constructed by multiple alignment 
of entire protein sequence and the distance was calculated by the neighbour joining (NJ) algorithm. 
AUM and CIN orthologs (shown in blue and red, respectively) are closely related in lower organisms, 
but have evolved independently in vertebrates. The green dot represents the root of the tree. As the 
tree representation is in radial form, root was not considered while drawing the tree. 
The following CIN and AUM orthologs are included (Name of species and accession numbers are 
given in brackets for CIN and AUM): Human (NP_064711, NM_001042371); Mouse (NM_064667, 
NM_025954); Rat (AAL37168, XP_213235); Gallus (XP_001234473, NM_001030638); Danio rerio 
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(NP_848524, AAH45860); Anopheles mosquito (XP_309300; XP_309300.4); Fruitfly (NP_611656, 
CG5567); Yeast (NP_010045, NP_596255.1); Slime mould (XP_638376.1, XP_638376); Worm ( 
NP_504511; NP_504509.1). 
  
Next we investigated phylogenetic relationship of HAD phosphatases in model organisms. 

We constructed phylogenetic trees for individual organisms and analyzed how individual 

isoforms of single protein or two closely related proteins were evolved from prokaryotes to 

humans. Here we only show trees of yeast and human HAD phosphatases (Fig. 16). Such 

phylogenetic studies may be helpful to predict probable functions of novel proteins. This 

analysis can be extended for individual human HAD phosphatases with respect to other 

family members. We have restricted ourselves only to understand evolution of CIN and AUM. 

So far, the initial characterization of AUM shows striking differences with CIN (see section 

1.3). This may be attributed to differences in primary amino acid sequences in higher 

organisms as shown in figure 16. Yeast was chosen for comparison with human HAD 

phosphatases because there no tyrosine kinases were predicted until premetazoans (Pincus 

et al., 2008).  

                        

                                                                   

Figure 16:  Phylogenetic analysis of human and yeast HAD phosphatases 
This radial phylogenetic tree comprises the identified human and yeast HAD phosphatases and 
predicts the probable path of divergence from common ancestors in this two model organisms. The 
tree was constructed by multiple alignment of the entire protein sequences and the distance was 
calculated by neighbour joining (NJ) algorithm. AUM evolved independently of CIN in multicellular 
organisms. For abbreviations used in this figure, please refer (Fig. 14). 
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5.2 AUM is a magnesium-dependent HAD phosphatase 

Phosphatases of the ancient and evolutionarily conserved HAD superfamily constitute an 

emerging, yet poorly understood class of enzymes. As of now, very few HAD phosphatases 

in higher organisms are characterized in terms of their physiological roles (Kim et al., 2007) 

and even their cognate substrates frequently remain unknown. 

Given the sequence similarity between AUM and CIN, we first analyzed the AUM 

phosphatase activity towards a low molecular weight CIN substrate, pyridoxal phosphate 

(PLP; (Gao and Fonda 1994; Jang et al., 2003) in comparison to para-nitrophenylphosphate 

(p-NPP), a non-specific, broad range phosphatase substrate.  

5.2.1 Enzymatic activity assay 

To examine the catalytic properties of AUM, murine AUM was recombinantly expressed in 

bacteria as a His6-tagged protein (see section 4.4.1), and was subsequently purified by 

affinity chromatography.  

We first tested the activity of AUM against the broad-spectrum phosphatase substrate 

p-NPP. p-NPP is a colorless compound that can be enzymatically dephosphorylated to 

generate inorganic phosphate (Pi) and the yellow-colored p-nitrophenol. This conversion can 

be spectrophotometrically measured over time, and both the kinetics and the endpoint of the 

reaction can be determined. Figure 17A shows that AUM dephosphorylates p-NPP much 

more efficiently than CIN. A likely explanation for this result is that the phosphorylated phenyl 

residue of p-NPP is structurally similar to a phosphorylated tyrosine residue. This relatively 

bulky residue may not be easily accommodated in the narrow catalytic pocket of the serine 

phosphatase CIN (Almo et al., 2007).  

As PLP is a known substrate for CIN, we next compared the CIN and AUM activities 

toward PLP. Free inorganic phosphate (Pi) generated in the reaction of PLP 

dephosphorylation was detected fluorimetrically as described in section 4.4.11. As this assay 

is based on coupled enzymatic reactions, picomolar concentrations of released inorganic 

phosphate can be amplified and detected. But due to its high sensitivity the assay is prone to 

amplification of experimental errors as well. Figure 17A suggests that AUM can 

dephosphorylate PLP, but that it is a relatively weak PLP phosphatase as compared to CIN.  

The enzymatic characteristics of AUM were determined for p-NPP as a substrate as 

shown in figure 17B. Various substrate concentrations were used to calculate the reaction 

rate. The data was fitted into a Lineweaver-Burk plot and found to follow Michaelis-Menten 

kinetics. The Km and Vmax values for p-NPP were calculated with GraphPad Prism software, 

version 4.00. Km is the Michaelis-Menten constant. It is defined as the substrate 

concentration that is required to achieve a half-maximal enzyme velocity. Vmax is the 

maximum velocity of the enzyme extrapolated to very high concentrations of substrate. 
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Usually, either Vmax or Kcat is calculated along with Km to describe enzyme efficiency. Enzyme 

kinetics of AUM as shown in figure 17B indicates that AUM efficiently dephosphorylate p-

NPP, as half of the maximal velocity is attained with 370 µM of p-NPP.  

 

 
 

Figure 17: AUM is an efficient p-NPP phosphatase 
A: Comparison of AUM and CIN enzymatic activities. 
Left panel: One microgram of purified, untagged CIN or AUM was incubated with p-NPP (3.5 mM) at 
30°C, and the dephosphorylation of p-NPP was continuously measured for 40 min at 405 nm. Samples 
were in duplicates. AUM shows a higher activity against p-NPP than CIN.  
Right panel: One microgram of purified, untagged CIN or AUM was incubated with PLP (50 µM) at 
37°C, and the production of inorganic phosphate was continuously measured for 120 min at 544 nm, 
using the formation of the fluorescent product resorufin as a readout. Samples were in duplicates. PLP 
is a better substrate for CIN than for AUM. In both the panels, open circles indicate blank reading 
without protein. 
B: Characerization of the AUM enzyme kinetics towards p-NPP.  
One microgram of AUM was incubated with the indicated concentrations of p-NPP for 30 min at 30°C 
and the kinetics of p-NPP-dephosphorylation was followed at 405 nm. Data obtained for the individual 
substrate concentrations were fitted into the Michaelis-Menten equation to calculate Km and Vmax of 
AUM for p-NPP.  
 

5.2.2 AUM is an aspartate-dependent HAD phosphatase 

In contrast to conventional cysteine-based phosphatases, HAD phosphatases employ an 

unusual catalytic mechanism whereby an aspartate in the catalytic pocket acts as a 

nucleophile in a phosphoaspartate transferase reaction (Burroughs et al., 2006). After having 

confirmed that recombinant, purified AUM functions as an active phosphatase in vitro (Fig. 

17), our next step was to examine whether it was an aspartate-based phosphatase, as 

suggested by the primary structure and the presence of three HAD-type phosphatase motifs.  
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To address this question, we generated a point mutant by site-directed mutagenesis as 

detailed in section (4.2.9). The aspartate at position 34 in the HAD motif I of murine AUM, 

which is predicted to act as a nucleophile, was mutated to asparagine (AUMD34N). The mutant 

and the wildtype AUM were then expressed in bacteria and purified by affinity 

chromatography.  

Figure 18A shows a Coomassie Blue-stained SDS-PAGE gel of the purified His6-

tagged AUMD34N and AUMwt proteins. Subsequently, the in vitro phosphatase activities of 

AUMD34N and AUMwt were analyzed against p-NPP. In contrast to AUMwt, which efficiently 

dephosphorylated p-NPP in a concentration-dependent manner, even the highest employed 

AUMD34N concentration of 2 g only demonstrated only 1-2% of residual activity against p-

NPP as compared to the same concentration of AUMwt (Fig. 18B).  

These data clearly show that AUM is an aspartate-dependent phosphatase. Since 

aspartate is also known to be needed for Mg2+-coordination, AUM is a Mg2+-dependent 

phosphatase. AUMD34N is catalytically massively impaired, indicating that the contribution of 

other residues to catalysis is secondary to the contribution of aspartate at position 34 in motif 

I of AUM.  

 

Figure 18: Generation of a catalytically impaired AUM mutant 
A: Bacterially expressed and affinity-purified His6-tagged AUMwt and AUMD34N proteins were run on a 
12% SDS-PAGE gel and were stained with Coomassie Brilliant Blue.  
B: In vitro phosphatase assay using the artificial phosphatase substrate p-nitrophenyl phosphate (p-
NPP). The indicated concentration of the recombinant proteins were incubated with 3.5 mM p-NPP  for 
30 min at 30°C, and the kinetics of the dephosphorylation were followed at 405 nm for 30 min. AUMwt 
dose-dependently dephosphorylates p-NPP, whereas AUMD34N has only residual phosphatase activity 
towards this substrate.  
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5.3 High throughput peptide screen 

As a first step towards understanding the substrate preference of AUM, we decided to 

analyze its phosphatase activity against a panel of peptides derived from human proteins 

experimentally found to be phosphorylated on serine, threonine or tyrosine residues. To that 

end, we screened a total of 720 commercially available serine-, threonine- or tyrosine-

phosphorylated peptides (JPT peptide technologies, Berlin; see section 4.4.12).   

Figure 19 shows that AUM was found to be a specific phosphotyrosine (pTyr) peptide 

phosphatase in this screen, as it dephosphorylated only 17 out of the 488 phosphotyrosine-

containing peptides present in the assay (when applying a cutoff at 66% of the maximal 

reading. The full list of peptides that were dephosphorylated by AUM is given in the 

Appendix, see 10.1). Interestingly, there was not a single hit for the 232 serine (pSer) - and 

threonine (pThr)-phosphorylated peptides present in the assay. Although this peptide-based 

information may not be translated directly to AUM substrate preferences at the protein level, 

the data clearly indicated that AUM prefers tyrosine-phosphorylated residues. Furthermore, 

these results are in accordance with the efficient dephosphorylation of p-NPP (see Fig. 17). 

Figure 19 shows a graphical representation of the AUM peptide substrates identified 

in this peptide screen, together with a list of the putative substrates.  

 

 
 

Figure 19: AUM preferentially dephosphorylates tyrosine phosphorylated peptides 
720 phosphopeptides derived from human phosphorylation sites were screened for putative AUM 
substrates using a malachite green assay. 17 pTyr but no pSer or pThr peptides were 
dephosphorylated by AUM. Putative AUM substrates belong to following signalling pathways: 
Receptor tyrosine kinase signalling, Metabolism, Cell adhesion, Cytoskeleton, Nuclear signalling, 
Vesicular traffic, Second messenger, Differentiation, Apoptosis, Voltage gated channels, Growth 
factors.  
Abbreviations used in the figure: PLC2 (Phospholipase gamma 2); Grb2 (Growth factor receptor 
binding 2); IkB kinase (Inhibitor of nuclear factor kappa B kinase); CAAX (motif of one ‘cysteine, two 
‘aliphatic amino acids’ and one any amino acid at the end); TRAF4 (tumor necrosis factor (TNF) 
receptor associated factor 4); 10FTHFDH (10-formyltetrahydrfolate dehydrogenase); Kv 1.3 
(Potassium voltage-gated channel subfamily A member 3); Met (Hepatocyte growth factor receptor 
precursor); NY-REN-26 (Breakpoint cluster region protein); Dok1 (Docking protein 1); Neu (C-erbB-2 
(epidermal growth factor receptor) precursor) 
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5.4 AUM is a protein tyrosine phosphatase 

So far, we have proved at peptide level that AUM prefers phosphotyrosine residues over 

phosphoserine or phosphothreonine residues. Next step was to show it on protein level and 

in also under physiological settings. We decided to emply phosphatase overlay assay and in 

vitro phosphatase assays to address these questions as described in subsequent sections.  

5.4.1 Phosphatase overlay assay 

In order to investigate whether AUM also acts as a protein tyrosine phosphatase, we 

performed phosphatase overlay assays. In cells, only a very small fraction of proteins is 

tyrosine phosphorylated at any given time as compared to the relative abundance of serine- 

or threonine-phosphorylated proteins (Alonso et al., 2004). Secondly, the dynamic balance 

between kinase and phosphatase activities generally makes it difficult to assess cellular 

tyrosine dephosphorylation. To circumvent these difficulties, HeLa cells were stimulated with 

freshly prepared pervanadate, a nonspecific phosphatase inhibitor that induces an increase 

in the levels of cellular tyrosine phosphorylation (Gordon 1991). To avoid the effects of 

kinases that may obscure phosphatase activities, cells were lyzed, and cell lysates were 

separated by gel electrophoresis and were transferred onto nitrocellulose membranes. 

Finally, the denatured proteins were overlayed with recombinant AUMwt or AUMD34N as 

detailed in Methods (see 4.4.14). As shown in figure 20, catalytically active AUM was able to 

dephosphorylate phosphotyrosine-containing proteins in a concentration-dependent manner, 

whereas the catalytically impaired AUMD34N point mutant did not show detectable 

phosphatase activity even when 100 µg of recombinant protein were used. Even though the 

employed amounts of enzyme appear very high, these concentrations are typically required 

for phosphatase overlay assays, and represent the standard practice in the field 

(Rayapureddi et al., 2003). Taken together, these results indicate that that AUM acts as 

protein tyrosine phosphatase in cells 
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Figure 20: AUM dephosphorylates tyrosine phosphorylated proteins in phosphatase overlay 
assays.  
HeLa cells were stimulated with 100 µM pervanadate to increase the levels of cellular tyrosine 
phosphorylation (see 4.4.14). Unstimulated HeLa cells were used as a control for the efficiency of the 
pervanadate treatment. 20 µg of the cell lysates were subjected to SDS-PAGE with taped combe to 
ensure equal loading across the gel and blotted onto a nitrocellulose membrane. The membrane was 
then cut into vertical strips, and the strips were incubated with the indicated amounts of purified AUMwt 
or AUMD34N or with assay buffer as a control. Protein tyrosine phosphorylation was analyzed by 
Western blotting with the phosphotyrosine specific antibody (4G10 clone). AUMwt concentration-
dependently dephosphorylated tyrosine-phosphorylated proteins. In contrast, even the highest 
employed concentration of the catalytically impaired AUMD34N mutant did not induce a detectable 
protein tyrosine dephosphorylation.  
 

5.4.2 Role of AUM for epidermal growth factor-induced tyrosine phosphorylation in 

cells 

In order to test whether AUM can act as a cellular tyrosine phosphatase, we stimulated cells 

with epidermal growth factor (EGF) as detailed under Methods (see 4.4.14). EGF was used 

as a typical growth factor that is well-known to trigger cellular tyrosine phosphorylation 

cascades (Schlessinger 2002). In addition, the EGF receptor itself and proteins involved in 

EGF-induced signaling were detected as putative AUM phosphatase substrates in the 

peptide substrate screen (see 4.4.12).  

GC1 or HeLa cells transiently overexpressing AUMwt and AUMD34N were stimulated 

with 85 nM of EGF for various time points and were probed for global changes in tyrosine-

phosphorylated proteins as shown in figure 20. These data suggest that AUM seems to 

transiently act on tyrosine-phosphorylated proteins, in particular during the initial phase after 

EGF stimulation. The effect is most prominent around one min of EGF stimulation in GC1 

cells and five min of EGF stimulation in HeLa cells. AUMD34N overexpressing cells did not 

show reversal of the effect, which might be due to the presence of endogenous AUM. In 
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contrast, the depletion of AUM by shRNA clearly showed that AUM affects tyrosyl 

phosphorylation upon EGF induction (see section 5.7). Upon reprobing the blot for total 

EGFR as shown in figure 21B, we observed changes in the total amount of EGFR, 

suggesting a potential role of AUM in EGFR degradation pathways. 

 

 

Figure 21: Effect of AUM on cellular tyrosine phosphorylation in EGF-stimulated cells 
A: GC1 cells transiently transfected with the indicated plasmids were starved overnight in serum-free 
culture medium. Cells were stimulated with 85 nM of EGF for the indicated time points, and were 
subsequently lyzed in lysis buffer. Equal protein amounts (20 μg) of the lysates were separated by 
SDS-PAGE, transferred onto nitrocellulose membranes and tyrosine-phosphorylated levels were 
analyzed by immunoblotting with the phosphotyrosine-specific antibody 4G10.  
B: HeLa cells transiently transfected with the indicated plasmids were starved overnight in serum-free 
culture medium. Total phosphotyrosine content was analyzed as above.Total EGFR levels upon AUM 
overexpression were analyzed by stripping and reprobing the blot. AUM overexpression modulates 
EGFR levels in cells.  
Western blots shown here are representative of 3 independent experiments. The results show that 
AUM can act as a cellular protein tyrosine phosphatase Arrow indicates modulation of 
phosphotyrosine content upon AUM overexpression. 
 

Taken together, these data with pervanandate and EGF stimulations show that AUM can act 

as a protein tyrosine phosphatase in cells.  
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5.5 Ubiquitous expression of AUM in mouse tissues 

We next investigated the expression pattern of AUM at the RNA and protein level by multiple 

approaches. Searches in expressed sequence tag (EST) databases (Unigene) predicted a 

partially non-overlapping AUM and CIN expression pattern. During my diploma work, we 

compared AUM and CIN expression profiles by reverse transcriptase (RT)-PCR (see section 

1.3.2). CIN was found to be broadly expressed with highest levels in brain, whereas AUM 

was broadly expressed with highest levels found in testis. As a continuation of this 

preliminary analysis, we now employed quantitative real-time PCR, Northern blot, 

immunoblot and immunohistochemical analysis with AUM-specific antibodies in the present 

study.                                                                                                                                                                  

5.5.1 Real-time PCR  

In order to quantify the AUM expression in various tissues and to re-evaluate the expression 

pattern obtained in the initial RT-PCR experiments, we performed real-time PCR. We 

analyzed the AUM expression pattern in different mouse tissues and in mouse embryos. The 

relative abundance of the AUM transcript was quantified with GAPDH as an internal control 

and testis as a calibrator. Figure 22 shows a ubiquitous expression pattern of AUM in all 

major mouse tissues. AUM was found to be highly expressed in testis. The crossing point 

threshold cycle (Ct) value is the measure of transcript abundance (see section 4.2.8 in 

Methods). Testis has the lowest Ct value among all investigated tissues, implying an early 

attainment of the threshold cycle due to high transcript abundance. AUM expression can be 

detected as early as in seven days old mouse embryos. Together, these real-time data are in 

accordance with the RT-PCR analysis of AUM expression during preliminary characterization 

(see section 1.3.2 of introduction) 
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Figure 22: Relative quantification of AUM transcript by real-time PCR 
cDNA from the indicated tissues were subjected to real-time PCR with AUM and GAPDH primers. The 
data were normalized against GAPDH and calibrated against the AUM expression in testis. The 
crossing point threshold (Ct) value is an indicator of the relative abundance of the transcript in a given 
tissue. AUM is ubiquitously expressed with highest expression in testis. Values represents results from 
two independent experiments with each sample run in triplicates.    
 

5.5.2 Northern blot  

Along with semi quantitative real-time PCR analysis of AUM transcript, we also designed a 

digoxigenin (DIG)-labeled AUM riboprobe to analyze the expression pattern of AUM at the 

RNA level by Northern blot. We used a commercially available dot blot panel of mouse 

tissues containing total RNA crosslinked on a membrane. Figure 23A shows the validation of 

the AUM riboprobe using total RNA from mouse testis. The AUM riboprobe was found to 

detect a single major band at the expected size of AUM (0.96 Kbp). Thus, the AUM RNA 

probe specifically recognizes AUM. In addition to Northern blot analysis; this probe may also 
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be a useful tool to analyze the AUM expression pattern at the RNA level by methods such as 

in situ hybridization.  

The dot blot was probed with the AUM-specific riboprobe as shown in figure 23B. 

These results clearly confirm the ubiquitous AUM expression pattern as measured by real-

time PCR experiments (Fig. 22). Interestingly, AUM is not only highly expressed in testis, but 

it also shows high expression in other male and female reproductive organs, such as 

epididymis, prostate, uterus and ovary.     

 

Figure 23: AUM expression analysis by Northern blot  
A: AUM RNA probe validation. 
Purified AUM RNA probe was analyzed on an RNA agarose gel to check integrity and extent of purity. 
Total mouse testis RNA cross linked on membrane was probed with DIG labeled AUM riboprobe and 
the signal corresponding to size of AUM cDNA (966 bp) was obtained after exposing to X-ray film.  
B: AUM Northern blot  
DIG-labeled AUM riboprobe was probed against total RNA in various mouse tissues. AUM transcript 
was found to be ubiquitously expressed with highest expression in testis. Controls used were F1: 
Yeast total RNA; F2: Yeast tRNA; F3: E.coli rRNA; F4: E.coli DNA; G1: Poly r (A); G2: Cot DNA; G3: 
Mouse DNA; G4: Mouse DNA. Wells B4, B5 E5, F5, G5 are empty. Abbreviations used in the figure: 
Sk (Skeletal muscle); Sm (Smooth muscle); Sb (Submaxillary gland); Epi (Epididymis); E7-E17 
(mouse embryonal stages) 
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5.5.3 Western blot 

In order to investigate the expression and cellular distribution of AUM at the protein level, we 

next aimed to generate a sensitive and AUM-specific rabbit polyclonal antibody. For this 

purpose, we designed an AUM-specific peptide as as outlined in Methods (see section 

4.4.2).  

Figure 24 demonstrates that the affinity-purified AUM-antibody was able to reliably detect as 

little as 10 ng of recombinant, purified AUM protein. Furthermore, the AUM-directed antibody 

did not cross-react with CIN, its closest known homolog.  The affinity-purified AUM antibody 

has been successfully used for immunoblotting (1:1000), immunohistochemistry (1:250 – 

1:400) and for immunostaining (1:100), as will be shown in the following sections.  

 

 

Figure 24: Characterization of AUM rabbit polyclonal antibody 
Indicated amounts of recombinant AUM and CIN proteins were loaded on 12% SDS-PAGE and 
transferred to nitrocellulose membrane.  
Left panel: Nitrocellulose membrane probed with AUM specific antibody reconganizes 10 ng of 
recombinant protein but does not cross react with CIN. Faint band in the first lane (with CIN protein) is 
due to spill over from the adjacent well. 
Right panel: Nitrocellulose membrane probed with CIN specific antibody does not cross react with 100 
ng of AUM. The AUM antibody can be reliably used for biochemical and cellular assays as there is no 
cross reactivity with CIN. 

 
In order to analyze the AUM expression pattern at the protein level, we generated lysates of 

various mouse tissues as detailed in Methods (see 4.4.3). The lysates were then analyzed by 

immunoblotting using the AUM-directed antibody. In accordance with RT-PCR, real-time 

PCR and Northern blot analysis, AUM was found to be expressed ubiquitously with highest 

expression in testis as shown in figure 25. In all investigated tissues, the AUM antibody 

detected a single predominant band corresponding to the expected AUM size of ~34 kDa. In 



Results                                                                                                                                    72   

 

addition, faint higher molecular weight bands were detected in kidney, liver and skeletal 

muscle suggesting the possible existence of AUM splice variants or isoforms. By Western 

blotting, the relative difference in the AUM expression in testis as compared to other tissues 

was not as big as detected by real-time PCR (see Fig. 22). This may suggest the existence 

of AUM splice variants or isoforms in testis that may not be detected by the AUM antibody.   

 

 

Figure 25: Analysis of AUM expression in mouse tissues 
Mouse tissue lysates (60 g) were separated by SDS-PAGE, transferred onto nitrocellulose 
membrane and then analyzed by immunoblotting for AUM expression. AUM was found to be 
ubiquitously expressed in mouse tissues with highest expression found in testis.  
 
Given the dominant AUM expression in testis, both at the RNA and at the protein level, we 

decided to investigate the AUM expression in testis in different stages of development, as 

well as in the male reproductive system of adult mice. Following schematic drawing 

illustrates the different regions of the male reproductive system and cells present in the 

seminiferous tubule of the testis. 
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Figure 26: Schematic representation of male reproductive system of mouse 
A: Major parts of male reproductive system consist of testis and sperm carrying duct called epididymis. 
Germ cells undergo maturation (spermatogenesis) in testis cords called seminiferous tubules. (Figure 
modified from Nature Reviews. Genetics 2006) 
B: Seminiferous tubules of testis have germinal cells (in different stages of development) and non 
germinal cells called Sertoli cells interspersed between germ cells. Testesteron secreting Leydig cells 
are present interspersed between the seminiferous tubules (not shown in the figure) 

 
Testis lysates were prepared from 1 day to 9 months old male mice. Whereas AUM protein 

expression was detectable at early embryonic stages by real-time PCR, the expression 

peaked at around four weeks of age as found by western blot (Fig. 27A). This time point 

corresponds to the age of puberty in the mouse (Murphy et al., 1994). Afterwards, the AUM 

protein levels reached a plateau, as shown in figure 27A. Spermatogenesis induces germ 

cell arrested in first meiotic division to undergo subsequent multiplication once mouse attains 

puberty. AUM expression corresponds to this process suggesting predominant expression in 

germ cells rather than non germinal cells like Sertoli or Leydig cells.  

    We further analyzed the AUM expression in various regions of the epididymis (the 

sperm carrying duct), as well as in mature mouse spermatozoa. Spermatozoa from the 

different regions of male reproductive system were isolated and lysates were prepared as 

detailed in methods (see section 4.4.4) Immature spermatozoa, formed at end of 

spermiogenesis undergo a maturation process called capacitation while being transported 

through the epididymis (Breitbart et al., 2005) The head of the epididymis is called caput 

whereas the tail is known as cauda epididymis.  Caput sperms are less motile and cannot 

undergo capacitaton whereas cauda epididymis contains mature spermatozoa (Bellve 1993). 

Interestingly, the AUM expression is higher in testis than in the epididymis or in sperm, as 

shown in figure 27B and 27C. Furthermore, the highest AUM abundance was detected in 

isolated seminiferous tubules (Fig. 27C), which contain germ cells at various stages of 

development (Hess et al., 1990), before the spermatozoa mature in the epididymis (Seligman 

et al., 2004). These results indicate that the AUM levels decrease along with process of 
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spermatozoa maturation. We also tested AUM antibody on the two clinical samples of normal 

human sperm as shown in figure 27B. 

 

Figure 27: AUM protein expression analysis in mouse testis 
A: Expression of AUM protein in mouse testis in different developmental stages.   
20 µg of testis lysate from indicated age of mouse were separated by SDS-PAGE, transferred onto 
nitrocellulose membrane and then analyzed by immunoblotting for AUM expression. AUM level was 
found to be peaking up at the age of puberty (4 weeks) in mouse.  
B: AUM expression in different regions of the male reproductive system 
Lysates of indicated tissues prepared in lysis buffer and were separated by SDS-PAGE, transferred 
onto nitrocellulose membrane and then analyzed by immunoblotting for AUM expression. Highest 
AUM expression was found in the seminiferous tubules of testis. The AUM antibody also recognized 
endogenous AUM in human sperm.  
C: AUM expression during sperm maturation. 
Sperm lysates were separated by SDS-PAGE, transferred onto nitrocellulose membrane and then 
analyzed by immunoblotting. AUM expression decreases along with process of spermatozoa 
maturation in the epididymis. Corresponding ponceau staining is shown as a loading control  
 
  
Taken together, we have analyzed AUM expression both at the RNA and protein level in 

various mouse tissues. AUM is found to be expressed in ubiquitously right from early 

developmental stages with highest expression in seminiferous tubules of testis. 

 

5.6 Immunohistochemical analysis of AUM in mouse testes 

In order to identify the AUM-expressing cells in testis, we next performed 

immunohistochemical analysis on paraffin-embedded mouse testis sections. AUM was 

detected using the AUM-specific antibody (see Figs. 28, 29), together with either DAB 

detection or with fluorescently labeled secondary goat anti-rabbit antibodies as detailed in 

Methods (see 4.4.10). Please refer to the schematic representation of different cell types in 

testis in figure 26. 
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5.6.1 Expression pattern of AUM in mouse seminiferous tubules 

In order to analyze the AUM expression pattern in mouse seminiferous tubules, paraffin-

embedded sections of mouse testis were stained with the AUM-specific antibody. AUM 

expression was found to be restricted inside the seminiferous tubule as shown in figure 28B. 

In the seminiferous tubules, AUM was first detectable in round spermatids (see black star in 

Fig. 28C), and was maximally expressed in elongated spermatids (see red arrow in Fig. 28C) 

and in spermatozoa oriented towards the lumen of the tubules). In contrast, AUM was not 

detectably expressed in spermatogonia or in spermatocytes. These results indicate that the 

expression of AUM peaks only during the later stages of spermatogenesis.  

 

Figure 28: Immunohistochemical analysis of AUM in mouse testis 
A: AUM antibody specificity. Rabbit IgG was used as isotype control.  
B: AUM expression in germinal cells of seminiferous tubules. AUM-specific rabbit polyclonal antibody 
was used to detect the expression of AUM in mouse testis. Brown color represents AUM signal. 
Overiew picture at 16 x magnification indicates that AUM expression is restricted to the inside of the 
seminiferous tubules. 
C: High resolution picture shows that AUM is predominantly expressed in elongated spermatids during 
spermatogenesis as indicated by the red arrow. The black arrow indicates the beginning of AUM 
expression in round spermatids. Earlier stages of spermatogenesis such as spermatocytes present 
beyond black star do not show detectable AUM expression.  
 

5.6.2 Expression pattern of AUM in male reproductive system 

In order to analyze AUM expression pattern in the male reproductive system in more detail, 

sections of mouse testis were compared to mouse epididymis sections. In addition, mouse 

spermatozoa from caput and cauda epididymis were isolated, fixed on coverslips and stained 

with AUM-specific antibody as described in methods (see section 4.4.4). Mouse epididymis 

sections were also co-stained for tubulin as detailed in Methods (see 4.3.3). As shown earlier 

(Fig. 28), the AUM was not detected in germinal cells at the early stages of spermatogenesis. 

AUM expression was maximal in elongated spermatids. No AUM signal was detected in 

Sertoli or Leydig cells as shown in figure 29A and B. Expression of AUM in mature cauda 

sperms was found to be less than in immature caput sperms as shown in figure 29E and 

29F. This was also confirmed by analyzing AUM expression in sections of caput and cauda 

epididymis as shown in figure 29C and 29D. This expression pattern supports the 
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biochemical data of highest AUM expression in seminiferous tubules and reduction of signal 

along with the sperm maturation (see Figs. 27B, C).    

 

Figure 29: Expression pattern of AUM in the male reproductive system 
Male reproductive tissues were stained for AUM expression using an AUM-specific rabbit polyclonal 
antibody. AUM signal was detected with a fluorescently-labeled secondary antibody. Antibody 
specificity was checked by rabbit IgG isotype control (data not shown). 
A, B: Expression of AUM in testis is restricted to the germinal cells inside the seminiferous tubule. 
C, D: Expression of AUM in epididymis:  AUM expression goes down along with maturation from the 
head (caput) towards the tail (cauda). 
E, F: Expression of AUM in sperms isolated from caput and cauda epididymis. Immature caput sperm 
have more AUM expression as compared to mature cauda sperm, suggesting a differential AUM 
expression during maturation process called capacitation. Scale bar represents 25 µm.   
 

5.6.3 Expression of AUM in developing germ cells 

Germinal cells in seminiferous tubules undergo massive nuclear and cytoplasmic 

reorganization to form haploid, motile spermatozoa from diploid, non motile spermatogonia. 

This process is termed as spermatogenesis (Hess 1990). The term spermiogenesis refers to 

a specialized process during spermatogenesis, which is defined by the formation of mature 

spermatozoa from round spermatids. Spermiogenesis can be divided into 16 distinct stages 

in the rat (Hess et al., 1990; Zheng et al., 2007), as shown schematically in the upper panel 

of figure 30. During spermiogenesis, round and nonmotile spermatids (stage number 4-7 in 

Fig. 14) are gradually converted into motile spermatozoa (stage number 16 in Fig. 30). This 

differentiation process involves cell-cell interactions between germ cells and Sertoli cells 
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(Wang et al., 2006). Sertoli cells are the only non-germinal cells inside seminiferous tubules 

and play critical roles in the formation of the blood-testis barrier and for nourishing the germ 

cells during the process of spermatogenesis(Wang et al., 2006). In the final stages of 

spermiogenesis, the cytoplasm of the germ cells is reorganized, and excess cytoplasm is 

removed. Finally, individual spermatozoa are released into the lumen of the seminiferous 

tubule due to a reorganization of cell-cell adhesion junctions by a process referred to as 

individualization in Drosophila (Cagan 2003) or as spermiation in mammals (Mruk et al., 

1997). 

To analyze the AUM expression profile during spermiogenesis in more detail, multiple 

testis sections were stained for AUM and were analyzed to correlate the AUM expression 

with the 16 developmental stages of spermatogenesis. The lower panel of figure 30 shows 

representative cells. The expression of AUM peaks between stage 10 & 15 of 

spermiogenesis when excess cytoplasm is phagocytosed by Sertoli cells 

 

 

Figure 30: Expression pattern of AUM during spermiogenesis 
Upper panel: Schematic prepresentation of the process of rat spermiogenesis, divided in to 16 distinct 
developmental stages, starting from round, non-motile spermatids (stage 4-7) up to elongated, motile 
spermatozoa (stage 16).Schematic representation of spermiogenesis. Numbers represents steps of 
spermatid development.  (modified from Zheng H. et. al., 2007) 
Lower panel: AUM expression pattern was analyzed from at least three separate images of 
seminiferous tubules stained for AUM and nucleus. Based on the nuclear shape and cell morphology, 
individual cells were assigned to respective stages of spermiogenesis. The AUM expression peaks 
between stage 10 and 15 when excess cytoplasm is shed off, giving rise to motile spermatozoa. 
    
 

Taken together, our expression analysis shows that AUM is a ubiquitously expressed protein 

that is highly abundant in the maturing male germ cells. AUM expression peaks between 

stages 10 – 15 of spermiogenesis, suggesting that AUM might have a role in the 

reorganization of cell-cell adherence junctions between germ cells and Sertoli cells. These 
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expression data may be useful in the future to device a strategy to understand the potential 

role of AUM in the molecular mechanism of the poorly understood processes of spermiation 

or capacitation.    

 

5.7 AUM knockdown by RNA interference 

To analyze the functions of AUM in male germ cells, we transiently or stably depleted the 

endogenous protein by RNA interference in the murine spermatogonial cell line GC-1 spg 

(Hofmann et al., 1992). 

5.7.1 Transient AUM depletion  

AUM was transiently depleted in cells by the transfection of short interfering (si)RNAs. To this 

end, four different mouse AUM-directed synthetic siRNA oligoribonucleotides targeting 

different regions of AUM were tested in comparison to a non-targeting control siRNA. 

Different concentrations (12.5 – 75 nM) of each siRNA oligoribonucleotide were tested in 

transfection experiments. The best knockdown efficiency was achieved by using siRNA 

oligoribonucleotides in the concentration range of 12.5 to 50 nM as shown in figure 31. 

An efficient AUM knockdown was achieved with three out of the four tested siRNA 

oligos -041844-10 (AUM siRNA #1), J-041844-11 (AUM siRNA #3) and J-041844-12 (AUM 

siRNA #4). The sequences of these siRNA oligoribonucleotides along with control siRNA are 

shown in table 1 (section 4.3.7).  

 

Figure 31: Transient AUM depletion by siRNA 
GC-1 spermatogonial cells were transfected with 12.5 - 50 nM of control siRNA or AUM siRNAs #1-4 
as described in the Methods (see 4.3.7). Cells were lyzed 48 to 72 hours after transfection. Equal 
protein amounts (20 g) of the lysates were separated by SDS-PAGE, transferred onto nitrocellulose 
membranes and endogenous AUM levels were analyzed by immunoblotting with an AUM-specific 
antibody. Equal loading was controlled by immunoblotting for tubulin. SiRNA #2 and #3 showed 
highest knock down efficiencies.  
       
These results demonstrate that the transient transfection of siRNA oligoribonucleotides leads 

to a robust AUM knock-down efficiency in cells. Nevertheless, this approach only allows the 

transient suppression of AUM protein expression. Furthermore, the efficiency of transfection 

may vary in between experiments. Together, these factors may affect the final outcome of 

the experiment. To solve this problem, and to achieve uniform AUM down regulation over 

extended time periods, we decided to use a vector-based system to express short hairpin 
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(sh)RNA (see 4.3.7) in cells. Such a vector-based system may also allow us to establish 

stable cell lines. 

5.7.2 Stable AUM depletion 

For a long-term and uniform depletion of AUM protein expression in GC1 cells, five different 

AUM-specific shRNA sequences targeting different regions of murine AUM were tested. The 

sequences of these shRNA constructs are shown in table 2 (see section 4.3.7). As detailed 

in Methods (see 4.3.6), lentiviruses harboring five different shRNAs and one established 

control shRNA were generated, and used for the transduction of GC1 cells. Cells stably 

expressing the respective shRNAs were then selected using puromycin.  

Figure 32, upper panel shows that two out of five tested shRNA constructs 

TRCN0000081473 and TRCN0000081477 (#73 & #77), yielded an effective AUM 

knockdown. All further experiments were done using the stably AUM-depleted GC1 cell line 

obtained after the transduction of the shRNA construct #77 (referred to as M77) and with the 

control shRNA GC1 cell line expressing the control shRNA construct SHC002. 

 

Figure 32: Stable AUM depletion by shRNA 
Upper panel: GC1 cells were transduced with lentiviruses encoding for control shRNA (CshRNA) or for 
five different AUM-directed shRNA constructs (#73-77). Cells were lyzed and equal protein amounts 
(20 g) of the lysates were separated by SDS-PAGE and were transferred onto nitrocellulose 
membranes. AUM levels were analyzed by immunoblotting with the AUM-specific antibody. Equal 
loading was assessed by immunoblotting for tubulin. 
Lower panel: Densitometrical evaluation of AUM knock-down efficiency from three different Western 
blots. 
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In order to validate AUM shRNA cell lines and to test the potential function of AUM as a 

protein tyrosine phosphatase as shown before by overexpression studies (see 5.4.2), we 

induced the EGFR signaling cascade with epidermal growth factor (EGF) after overnight 

starvation of shRNA-expressing GC1 cells as detailed under Methods (see 4.4.14). EGF was 

used as a typical growth factor that is well-known to trigger cellular tyrosine phosphorylation 

cascades (Schlessinger 2002). GC1 cells were stimulated with 85 nM of EGF for various 

time points and were probed for global changes in tyrosine-phosphorylated proteins as 

shown in figure 33. These data suggest that AUM seems to transiently act on tyrosine-

phosphorylated proteins, in particular during the initial phase after EGF stimulation. 

Compared to AUM overexpression studies, the depletion of endogenous AUM triggered 

more prominent changes in EGF-induced tyrosine phosphorylation. 

 

 

Figure 33: Effect of AUM on cellular tyrosine phosphorylation in EGF-stimulated cells 
GC1 cells expressing with the indicated shRNAs were starved overnight in serum-free culture medium. 
Cells were stimulated with 85 nM of EGF for the indicated time points, and were subsequently lyzed in 
lysis buffer. Equal protein amounts (20 μg) of the lysates were separated by SDS-PAGE, transferred 
onto nitrocellulose membranes and tyrosine-phosphorylated levels were analyzed by immunoblotting 
with the phosphotyrosine-specific antibody 4G10.  
Western blots shown here are representative of 3 independent experiments. The results show that 
AUM can act as a cellular protein tyrosine phosphatase Arrow indicates modulation of 
phosphotyrosine content upon AUM depletion. 
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5.8 Potential role of AUM in epidermal growth factor signaling 

Since we observed an increased phosphorylation of high-molecular weight proteins 

corresponding to the size of the epidermal growth factor receptor (EGFR) in epidermal 

growth factor (EGF)-stimulated, AUM-depleted cells compared to control shRNA cells (see 

Fig. 33), we tested the hypothesis that the EGFR itself may be an AUM substrate. The EGFR 

is a ~180 kDa receptor tyrosine kinase that is phosphorylated on multiple tyrosine residues 

upon EGF binding (Bazley and Gullick 2005). EGFR phosphorylation triggers the association 

of various adaptors and scaffolding molecules that propagate the growth factor signal to 

affect e.g. cytoskeletal changes, cell adhesion and motility and cell growth (Biscardi et al., 

2000). The EGFR and some of its downstream signaling molecules had already appeared as 

a possible substrate in the phosphopeptide screen (Fig.19).  Cells overexpressing AUMwt or 

AUMD34N or stably AUM-depleted cells were starved overnight and were subsequently 

stimulated with EGF for the indicated time points as detailed in Methods (4.4.14).  

We analyzed the effect of AUM overexpression or depletion on total EGFR levels as 

well as on EGFR phosphorylation, using EGFR phospho-specific antibodies. Total EGFR 

levels were found to be increased in the absence of AUM as shown in figure 34A. Due to 

technical limitations, we could not reprobe the same blot for various phospho-specific EGFR 

antibodies. One of the  tyrosine phosphorylation sites on EGFR (Tyr1045) is of particular 

interest due to its potential role in EGFR ubiquitination and trafficking  (Levkowitz et al., 

1999). Cell lysates from the same experiment were loaded on separate gels and probed with 

the anti-pTyr1045-EGFR antibody. One min after EGF stimulation, AUM-depleted cells 

showed increased pTyr1045 phosphorylation, which had disappeared at 5 min, indicating a 

transient effect of AUM on the EGFR signaling pathway. We used two of our efficiently AUM-

depleted cell lines (#73 and #77), and found similar effects as shown in figure 34B.  

To rule out cell line-restricted effects of AUM on EGFR phosphorylation, we also 

analyzed the EGFR pTyr1045 levels in HeLa cells transiently transfected with AUMwt or 

AUMD34N plasmids. We observed a transient effect on pTyr1045-EGFR levels upon AUM 

overexpression but at different time points as compared to GC1 cells (Fig. 34C). Only 

catalytically active AUM was to found transiently affect pTyr1045 levels at 5 min upon EGF 

stimulation. 
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Figure 34: Effect of AUM on EGFR tyrosine phosphorylation 
A, B: GC1 cells expressing with the indicated shRNA were starved overnight in serum-free culture 
medium. Cells were stimulated with 85 nM of EGF for the indicated time points, and were 
subsequently lyzed in lysis buffer. Equal protein amounts (20 μg) of the lysates were separated by 
SDS-PAGE, transferred onto nitrocellulose membranes and tyrosine-phosphorylated levels were 
analyzed by immunoblotting with the phosphotyrosine-specific antibody 4G10.  
C: GC1 cells transiently transfected with the indicated plasmids were starved overnight in serum-free 
culture medium. Cells were stimulated with 85 nM of EGF for the indicated time points, and were 
subsequently lyzed in lysis buffer. Equal protein amounts (20 μg) of the lysates were separated by 
SDS-PAGE, transferred onto nitrocellulose membranes and tyrosine-phosphorylated levels were 
analyzed by immunoblotting with the phosphotyrosine-specific antibody 4G10. 
Western blots shown here are representative of 3 independent experiments. The results show that 
AUM has role in EGFR stabilization and activation. 
 
Taken together, these biochemical results indicate a role of AUM in EGF-mediated signaling 

pathways, including effects on the EGFR itself.  

 

5.9 Effect of AUM on actin dynamics 

Actin filaments are major components of at least 15 different structures such as stress fibres, 

endocytic pits and peri-organellar ring in multicellular organisms (Chhabra and Higgs 2007). 

These filaments assemble from a common pool of actin monomers depending upon the 

extracellular stimuli. Majority of cellular processes such as cell adhesion, migration, adhesion 

and proliferation involves coordinated and rapid changes in actin cytoskeketon (Mitra et al., 

2005). Because of the high homology between AUM and the cofilin activating (and thus actin 

remodeling) phosphatase Chronophin (CIN), we next investigated the effect of AUM on actin 

dynamics.  

We first examined the effects of AUMwt or AUMD34N  overexpression on the actin 

cytoskeleton of HeLa cells. To this end, HeLa cells were spread on fibronectin (FN) coated 

surfaces. Serum starved cells were spread on FN coated glass coverslips and fixed at 

different time points. Cells were stained for microscopic observations as detailed in Methods 

(section 4.3.3). Figure 35 upper panel shows that AUMwt overexpressing cells were small in 
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size, with less elaborated actin cytoskeleton and hence less adherent on fibronectin at 40 

min as compared to non-transfected or AUMD34N overexpressing cells as shown lower panel 

of figure 35.  

 

Figure 35: Effect of AUM overexpression on actin cytoskeleton in spreading HeLa cells 
HeLa cells were transfected with either AUMwt or AUMD34N and spread on FN coated surface for 40 
min. Cells were fixed in PFA and stained as indicated. AUMwt transfected cells are small in size with 
less prominent actin cytoskeleton where as AUMD34N transfected cells has no such effect as compared 
to non transfected cells.  Scale bar represent 25 µm. 

 
In order to understand the potential effect of AUM overexpression (Fig. 35) on the dynamics 

of actin cytoskeletal reorganization, we used the G-actin sequestering drug called latrunculin 

A. This compound binds to G-actin monomers and thus does not allow new actin 

polymerization. As the actin cytoskeleton is in constant flux between filament polymerization 

and depolymerization (Andrianantoandro and Pollard 2006), latrunculin A treatment allows 

the analysis of the effect of AUM on actin dynamics. AUM overexpressing HeLa cells were 

treated with latrunculin A as described in Methods (see section 4.4.14).  

We found that HeLa cells transfected with AUMwt contain less polymerized F-actin 

(Fig. 36 upper panel vehicle control). Upon treatment with latrunculin A to sequester actin 

monomers, this effect becomes more evident as shown in the lower panel of figure 36. The 

differences between the F-actin structures observed upon latrunculin A treatment between 
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transfected and non transfected cells suggest a probable role of AUM in actin dynamics. 

AUMwt transfected cells are characterized by a dramatic loss of polymerized actin upon 

latrunculin A treatment, as shown in figure 36 lower panel. Interestingly, in the absence of F-

actin, AUM appears to relocalize to fibrous structures of unknown identity, as shown in 

latrunculin A treated cells. This effect was not observed in AUMD34N transfected cells (data 

not shown). 

 

 

Figure 36: Effect of AUM overexpression on actin dynamics in HeLa cells 
Upper panel: HeLa cells transfected with AUMwt were grown in normal growth medium were treated 
with 2 µl of DMSO as a vehicle control (1:1000) fixed and stained as indicated. 
Lower panel: HeLa cells transfected with AUMwt were grown in normal growth medium were treated 
with 2 µM of latrunculin A for 20 min at 37°C. Cells were fixed and stained as indicated. Scale bar 
represents 50 µm. 
Latrunculin A sequesters G-actin. AUMwt transfected cells shows less F-actin structures as compared 
to non transfected cells indicating role of AUM in actin dynamics. In absence of F-actin, AUM 
localization is changed.  
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To investigate the effect of AUM depletion on actin dynamics in GC1 cells, the latrunculin 

concentration and incubation time points had to be optimized, because GC1 cells were found 

to be more sensitive to latrunculin A than HeLa cells. 2 to 10 min incubation at 37°C with 100 

nM of latrunculin was found to be optimal for GC1 cells, because it did not cause cell 

detachment from the substrate or a complete destruction of the cytoskeleton.  

Under basal conditions, AUM depleted cells show alteration of the actin cytoskeleton 

in the form of enhanced stress fibre formation and less cortical actin as compared to control 

shRNA expressing cells, as shown in upper panel of figure 37. The effect is more evident 

upon treatment with 100 nM of latrunculin A. Interestingly, AUM depleted cells show 

lamellopodia formation upon latrunculin A treatment, as shown in lower panel of figure 37. 

Taken together, these data indicate that AUM activity affects actin cytoskeletal turnover.   

 

Figure 37: Effect of stable AUM depletion by shRNA on steady-state actin dynamics  
Upper panel: GC1 cells stably expressing either control shRNA or AUM shRNA were grown in normal 
growth medium were treated with 2 µl of DMSO as a vehicle control (1:1000), fixed and stained as 
indicated. Lower panel: GC1 cells transduced either with control shRNA or AUM shRNA were treated 
with 100 nM of latrunculin A for 10 min at 37°C. Cells were fixed and stained as indicated. Scale bar 
represents 25 µm. AUM depleted cells shows more F-actin filaments as compared to control shRNA 
expressing cells 
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5.10 Role of AUM for cell adhesion 

Actin cytoskeletal dynamics coordinate cell adhesion and migration by regulating the 

turnover  of cellular adhesion complexes (Mitra et al., 2005). While working with AUMD34N-

expressing and AUM-depleted cells, we observed that these cells appeared more spread 

than their corresponding controls, and took longer to detach by trypsinization during standard 

subculturing. These observations suggested a potential role for AUM in cell adhesion.  

5.10.1 Effect of AUM activity on cell adhesion to fibronectin 

To investigate a possible effect of on AUM activity on cell adhesion, we transfected HeLa 

cells with AUMwt and AUMD34N, and tested the adhesion of these cells to fibronectin. 

Fibronectin is a high molecular weight extracellular matrix glycoprotein that is known to be 

essential for cell adhesion, migration, growth and differentiation (Sieg et al., 1998). 

Fibronectin binds to the surface of cells via integrin receptors (Schlaepfer et al., 1998). 

Integrins are clustered in adhesive structures known as focal adhesions (Zaidel-Bar 2009). 

Focal adhesions are composed of multiple structural and signaling molecules (Geiger et al., 

2009) that provide a physical linkage to the actin cytoskeleton (Mitra et al., 2005).  

Serum starved AUMwt and AUMD34N, transfected HeLa cells were spread on FN 

coated surface for 20 and 40 min and then fixed in PFA for microscopic analysis as detailed 

in section (4.3.3). Most of the proteins in focal adhesion complexes are tyrosine 

phosphorylated hence we stained cells with pTyr specific antibody. AUMwt transfected cells 

shows less pTyr proteins and were less adherent to the extracellular matrix (ECM) as 

compared to AUMD34N transfected cells (Fig. 38A). This observation suggests that AUM 

phosphatase activity regulates cell – ECM adhesion and that in the absence of catalytically 

active AUM, cells are strongly adherent to the substratum. As a first approach to quantify this 

effect, we washed cells after spreading on FN for 20 or 40 min and then measured the 

protein content of the cell lysates. Figure 38B shows that more AUMD34N transfected cells 

attached to the substratum as compared to empty vector or AUMwt -transfected cells, as 

reflected by the higher protein content.   
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Figure 38: Effect of AUM activity on cell adhesion 
A: HeLa cells either transfected with AUMwt or AUMD34N were spread on fibronectin coated surface 
upon overnight starvation. After 40 min cells were fixed in 4% PFA and stained as indicated. AUMwt 
transfected cells have less prominent pTyr containing proteins, as compared to AUMD34N transfected 
cells. The arrows indicate AUMwt or AUMD34N myc-His6-transfected cells which were identified by 
staining for the myc-tag (not shown). Scale bar represents 25 µm. 
B: HeLa cells either transfected with AUMwt or AUMD34N were starved overnight and spread on 
fibronectin coated surfaces for 20 or 40 min. The total protein content of the cell lysates in AUMD34N 

transfected cells is higher at both time points as compared to AUMwt or empty vector transfected cells 
at corresponding time point. 
 

5.10.2 Effect of AUM depletion on cell adhesion to fibronectin 

To test whether the depletion of endogenous AUM would also affect cell adhesion on 

fibronectin we performed microtitre plate adhesion assay. We used calcein AM (Invitrogen 

Karlsruhe), a nontoxic, cell permeable compound for quantitative measurement of cell 

adhesion.  Calcein AM gets converted into negatively charged green fluorescent calcein by 
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esterases once entered into live cells and stained cells can be quantified fluorimetrically at 

535 nm. Control shRNA or AUM shRNA expressing cells were treated with 0.1 µM calcein for 

30 min at 37°C and then equal number of cells were spread on FN coated surface for 10, 20 

or 40 min. AUM depleted cells were found to be more adherent at 10 min of spreading on FN 

as compared to control shRNA expressing cells. This effect was less prominent at later time 

points suggesting that AUM has role in early events of spreading on FN (data not shown). In 

absence of AUM, cells appeared to be strongly adhere to the substratum and this 

phenomenon is being investigated in further details at the moment in our lab.    

5.10.3 Effect of AUM depletion on cell area during spreading  

To test the potential effect of AUM depletion on cell spreading, we next analyzed the kinetics 

of cell spreading by cell area measurements using a semiautomated microscopic approach. 

For this, cells were serum-starved, detached by limited trysinization as described in Methods 

(see 4.3.1), seeded on FN-coated surfaces and were finally fixed at various time points. Cells 

were then stained for polymerized actin using phalloidin and nuclei were labeled using DAPI 

(see 4.3.3). As detailed in Methods (see 4.4.15), the cell area was detected using the stained 

actin, and each cell was identified by its nuclear stain. Cells were spread on 96 well plates 

(15 µ ibidi plates, ibidi, Munich) coated with FN. Cells were fixed after 10, 20 and 40 min of 

spreading on FN, and cell areas were quantified by taking four fields of view per well. For 

quantification, 5 replicates of each condition were used. Data shown here are from 3 

independent experiments with a minimum 1000 cells counted per condition. Figure 39A 

shows representative pictures of each condition. AUM depleted GC1 cells at 10 min of 

spreading were found to be 21% larger in size as compared to control shRNA expressing 

cells as shown in figure 39B. The effect on cell size between control shRNA and AUM 

shRNA expressing cells diminishes at later time points, indicating a role of AUM in early 

events of spreading.  

The effect of AUM on cell size could even be observed under basal conditions (that 

is, adherent cells growing under standard conditions). The images indicating the effect of 

AUM on cell size under basal conditions are taken from a separate experiment and are 

included in this panel for comparison.    
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Figure 39: Effect of AUM on area of spreading cells 
A: GC1 cells expressing control shRNA or AUM shRNA were spread on FN-coated microtiter plates 
for 10, 20 and 40 min and fixed. Cells were stained as indicated. Scale bar represents 25 µm. Cells 
with AUM depletion are larger in size from early stage of spreading on, as compared to control cells. 
B: Quantification of cell area of spreading cells. Minimum of 1000 cells were counted per condition. 
Arbitrary units of cell area were obtained and were normalized against control shRNA expressing cells 
at 10 min of spreading and plotted as fold increase of size with respect to it for all conditions. Cells 
expressing AUM shRNA are larger in size at all time points but the only the difference at 10 min is 
statistically significant (P = 0.0241), as calculated by Student’s t-test. These results suggest a role of 
AUM in early events of cell spreading.  
 

5.10.4 AUM localization in spreading cells 

So far we have observed effect of AUM overexpression or depletion on cell spreading. The 

spreading of cells is largely governed by focal adhesion turnover (Geiger et al., 2009). So the 

next question was whether AUM is actually present in these structures. Focal adhesion (FA) 

structures are composed of many constitutively present proteins such as paxillin, vinculin or 

talin (Mitra et al., 2005). GFP-AUMwt expressing HeLa cells were fixed upon spreading on 

fibronectin for 40 min and stained with vinculin as a marker for FA as detailed in section 

(4.3.3). AUM was not found to colocalize with vinculin as shown in figure 40. Interestigly 

there are many focal adhesion associated proteins which are recruited to adhesion sites, 

(Zaidel-Bar et al., 2007) and very few are constitutively present in FA. AUM localization in 

fact was found to be around the structures of FA at 40 min of spreading on FN in HeLa cells.  
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Figure 40: AUM localization in spreading cells 
HeLa cells transfected with GFP-AUMwt were spread on fibronectin coated glass coverslips for 40 min. 
The PFA-fixed cells were then stained for the focal adhesion marker vinculin. The nucleus was stained 
with DAPI. AUM was localized by the fluorescence of its GFP-tag. Part of the merged image is 
magnified in lower right panel and shown AUM localization with respect to vinculin. AUM does not 
colocalize with vinculin in focal adhesions at 40 min of spreading on fibronectin. Scale bar represents 
10 µm. 
 

5.10.5 Effect of AUM depletion on phosphotyrosine content of focal adhesions in 

spreading cells 

Even though we did not find AUM localization in focal adhesion structures, we had consistent 

cell morphological effects in terms of cell area, and a distinct adhesion behavior of AUM 

depleted cells, indicating a role of AUM in these processes. Cell area determination of 

spreading cells at different time points already suggested a probable role for AUM in the 

early events of spreading. Instead of analyzing colocalization of AUM with one of the FA 

markers under various spreading conditions, we decided to analyze the levels of total 
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phosphotyrosine content of cells under spreading conditions. Control or AUM shRNA 

expressing GC1 cells were serum starved and spread on fibronectin coated glass coverslips 

for 10 min and fixed for microscopic observations as described in Methods (see 4.3.3). AUM 

depleted cells showed enhanced levels of phosphotyrosine content of focal adhesion 

structures, as shown in figure 41 when compared to control shRNA expressing cells. Many 

focal adhesion proteins are known to be tyrosyl phosphorylated upon activation, which leads 

to a strong adhesion to the ECM (Bass et al., 2008). Thus along with the experimental 

evidence of role of AUM on adhesion at 10 min of spreading on fibronectin (data not shown), 

this functional read out suggest that AUM is specifically acting in the signaling pathway 

involved in early cell spreading. 

 

 

Figure 41: Effect of AUM depletion on phosphotyrosine content of focal adhesion in spreading 
cells 
GC1 cells with either control shRNA or AUM shRNA were spread on fibronectin coated surface for 10 
min. PFA fixed cells are stained as indicated. AUM depleted cells have increased phosphotyrosine 
content of focal adhesions leading to strong cell-ECM adhesion at 10 min of spreading on fibronectin. 
Scale bar represents 25 µm. 
 

5.10.6 Effect of AUM depletion on focal adhesion maturation in spreading cells 

Focal adhesion structures are at the base of the cell surface anchoring the cell to 

substratum. To image these structures a variety of microscopic methods have been 

developed over the time (Holt et al., 2008) such as interference reflection microscopy (IRM) 

or total internal reflection microscopy (TIRF). We employed TIRF microscopy to visualize 

these structures in order to understand the effect of AUM depletion on focal adhesion 

maturation in spreading cells. TIRF microscopy uses an evanescent wave for the selective 

illumination of a fluorophore in a restricted region of the specimen immediately adjacent to 
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the glass-water interface. The evanescent wave is generated only when the incident light is 

totally reflected at the glass-water surface allowing selective visualization of surface regions. 

Control or AUM shRNA-expressing GC1 cells were spread on fibronectin coated glass 

surfaces for 40 min and fixed in PFA for microscopic anlysis as detailed in Methods (see 

4.3.3). Cells were then stained for polymerized actin using phalloidin, for focal adhesions 

using vinculin and nuclei were labeled using DAPI. As shown in figue 42 below, control 

shRNA expressing cells have predominantly small focal complexes at the cell periphery 

whereas AUM depleted cells show elongated focal adhesions oriented towards the center of 

the cell. Focal adhesion structures at the center are found to be at the base of F-actin stress 

fibres providing mechanical support to the cell during spreading and adhesion (Zaidel-Bar et 

al., 2007), thus allowing strong adhesion of the cells to the substratum.  

 

 

Figure 42: Effect of AUM on focal adhesion maturation in spreading cells 
GC1 cells expressing control or AUM shRNA were spread on fibronectin coated surfaces for 40 min. 
PFA fixed cells are stained as indicated. Images are taken on a TIRF microscope for visualization of 
focal adhesion structures stained with vinculin. AUM depleted cells have longer focal adhesion 
structures towards the center of the cell suggesting a role of AUM in focal adhesion maturation during 
spreading. Scale bar represents 25 µm. 
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5.11 AUM-Src phosphocycling  

In order to understand the molecular mechanisms underlying the spreading behavior of AUM 

depleted or overexpressed cells, we decided to investigate the status of downstream effector 

proteins in EGFR and integrin mediated pathways. We had an indication of Src as a probable 

AUM target from the genome-wide peptide screen (see section 5.3). Hence we decided to 

analyze the regulation of Src in further detail. Src is a non-receptor tyrosine kinase that acts 

as a proto-oncogene (Sheiness and Bishop 1979). There are multiple Src family members, 

i.e. c-Src, Fyn, Blk, c-Fgr, Hck, Lck, Lyn, c-Yes and Yrk that are well characterized for their 

role in various signaling pathways (Yeatman 2004). Src is ubiquitously expressed and plays 

key role in cell differentiation, motility, proliferation and survival. As Src is a central molecule 

in multiple signaling pathways, it is under tight regulation  governed by multiple regulatory 

mechanism (Roskoski 2005). 95% of Src in cells is in inactive form and can transiently be 

targeted to the plasma membrane upon activation. A direct role of Src in focal adhesion 

turnover has been well documented. Src initiates the activation of various proteins such as 

focal adhesion kinase (FAK) involved in cell-ECM adhesion (Obergfell et al., 2002). 

We first analyzed the effect of AUM of Src phosphorylation (on the phosphotyrosine 

sites which govern Src activity) upon FN stimulation or EGF stimulation in AUM 

overexpressed or depleted cells. There were no consistent results with this approach. Figure 

43 shows one of the representative blots where the level of phosphorylation of Tyr416 on 

Src, which is important for Src activation, shows minor variations. Due to experimental 

limitations, we were not able to reprobe blots developed with Src-phosphospecific antibodies 

for total Src. Hence the blot probed for pTyr416-Src is of the same cell lysate as the blot for 

total Src, but was loaded on a separate gel.   

 

Figure 43: Effect of AUM on Src phosphorylation upon fibronectin stimulation  
GC1 cells transfected with indicated plasmids or stably AUM depleted were starved overnight in serum 
free culture medium. Cells were spread on FN coated surfaces or stimulated with EGF for the 
indicated time points and lyzed in lysis buffer. Equal protein amounts (20 g) from lysates were 
separated by SDS-PAGE, transferred on nitrocellulose membranes and phosphotyrosine levels were 
analyzed by immunoblotting with 4G10 antibody. Western blots shown here are representative of 3 
independent experiments. There is no robust effect on Src phosphorylation under the given conditions. 

 



Results                                                                                                                                    95   

 

Hence, we decided to investigate whether there is direct effect of purified AUM on activated 

Src as a potential substrate in in vitro assays. To that end, recombinantly expressed, purified 

GST-tagged Src was subjected to in vitro phosphatase assay along with recombinant AUM 

as detailed in Methods. AUM could partially dephosphorylate Src as shown in figure 44A. 

Interestingly, Src in turn was found to phosphorylate AUM. A few other phosphatases such 

as PTPε are known to be regulated by Src-mediated phosphorylation (Berman-Golan and 

Elson 2007). We also analyzed the effect of AUM on two regulatory phosphorylation sites on 

Src (pTyr 416 and pTyr527) in a separate experiment as shown in the lower panel of figure 

44A. Src-Tyr416 was not obviously dephosphorylated by AUM using this experimental 

approach. Also the Src-Tyr527 site was not reproducibly dephosphorylated. These results 

suggest that AUM may dephosphorylate Src on a different tyrosine residue, and/or that the 

chosen experimental approach is not sufficiently sensitive to monitor dynamic changes in the 

phosphorylation pattern.   

 

Figure 44: Cross talk between Src and AUM 
A: One hundred ng of phosphorylated GST-Src was incubated with 1 µg of purified, recombinant 
AUMwt protein for 30 min at 30°C. The reaction was stopped by Laemmli buffer and proteins were 
separated by SDS-PAGE, transferred onto nitrocellulose membranes and phosphotyrosine levels were 
analyzed by immunoblotting with 4G10 (pTyr) antibody. AUM partially dephosphorylates Src, and Src 
phosphorylates AUM on tyrosine residue(s). Src dephosphorylation on pTyr 416 and pTyr 527 sites 
was analyzed on separate gels. No consistent dephosphorylation of Src by AUM on either site was 
observed.  
B: Proposed model of Src-AUM interaction. In presence of ATP, active Src phosphorylates AUM on 
tyrosine residue and AUM in turn dephosphorylates Src at an as yet unidentified residue. 
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We next analyzed the potential effect of AUM on Src kinase activity. To that end we 

employed a biotinylated peptide which acts as Src substrate. Src kinase activity towards this 

substrate peptide was measured colorimetrically in the presence or absence of AUM as 

detailed in Methods (see section 4.4.13) Simultanenously AUM phosphatase activity was 

also measured in presence or absence of Src. Simultaneously, AUM phosphatase activity 

was also measured in presence or absence of Src. We found a strong increase in Src kinase 

activity towards the Src substrate peptide in the presence of AUM (Fig. 45). Unexpectedly, 

both AUMwt and AUMD34N activated Src kinase activity to a comparable extent (Fig. 45). 

These results indicate that AUM activates Src indepent of its phosphatase activity 

 

 

Figure 45: Effect of AUM on Src kinase activity 
Fifty nanograms of purified GST-Src and 250 ng of purified AUMwt or AUMD34N were incubated in the 
presence of a biotinyated Src substrate peptide for 40 min at RT. Src kinase activity towards the 
peptide was measured colorimetrically at 405 nm for 30 min. Samples were tested in duplicates and 
the end point values of three independent experiments are plotted. Src kinase activity is increased 3- 
fold in the presence of catalytically active or inactive AUM  
  

The effect of Src on AUM phosphatase activity was measured using the p-NPP assay as 

detailed in Methods (see section 4.4.11). AUM phosphatase activity towards p-NPP is 

reduced in presence of kinase-active Src, as shown in figure 46. When the Src kinase activity 

is inhibited by using the Src kinase inhibitor PP2, or when the Src kinase reaction is 

incubated with apyrase to degrade the ATP the AUM phosphatase activity towards p-NPP 

remains unaffected. Taken together, these data suggest that although AUM regulates Src 
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kinase activity in vitro in a phosphatase independent manner, Src regulates AUM 

phosphatase activity in kinase dependent manner.  

 

 

Figure 46: Effect of Src on AUM phosphatase activity 
Fifty nanograms of purified GST-Src and 250 ng of purified AUMwt or AUMD34N were incubated for 40 
min at RT. AUM phosphatase activity towards p-NPP was measured at 405 nm for 60 min and end 
point values were plotted. Samples were run in duplicates and values represent the mean of a single 
experiment. Active Src decreases AUM phosphatase activity. In the presence of the Src inhibitor PP2 
(5 M) or the ATPase apyrase (0.02 U/ml), Src does not affect AUM phosphatase activity. These 
results suggest that Src may regulate AUM phosphatase activity in a kinase dependent manner. 
 

 

Taken together, even though we are still far from concluding about the nature of the Src / 

AUM cross talk in cells, our in vitro data strongly suggest that AUM might be yet another 

player in the complex regulation of Src.  
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6 Discussion  

The evolution of enzyme-mediated chemical reactions relies on mutational changes within 

the catalytic domain or core chemistry of the entire catalytic mechanism (Lahiri et al., 2004). 

The HAD superfamily of hydrolases is one such classic example which represents all known 

extant phyla and has undergone extensive diversification to give rise to at least five distinct 

subfamilies: the haloalkanoate dehalogenases (C-Cl bond hydrolysis), 

phosphonoacealdehyde hydrolases (P-C bond hydrolysis), phosphate monoesterases (P-OC 

bond hydrolysis), ATPases (P-OP bond hydrolysis), and phosphomutases (P-OC cleavage 

with intramolecular phosphoryl group transfer (Allen and Dunaway-Mariano 2004). The core 

chemistry of this superfamily is nucleophilic catalysis mediated by an active-site aspartic acid 

carboxylate group. The majority of HAD hydrolases from lower organisms are assumed to be 

involved in nucleotidase activity, sugar and amino acid metabolism (Balakrishnan et al., 

1993; Kuznetsova et al., 2006).  

In addition to their phosphatase activity against sugars etc., HAD family members 

have also acquired protein phosphatase activity during eukaryotic evolution. Members of the 

HAD superfamily are therefore considered to be key players in providing raw material for the 

evolution of novel enzymes, leading to the diversification of enzymatic potential (Burroughs 

et al., 2006). These innovations were transmitted by lateral gene transfer at various time 

points and recruited for new functions as recently realized for many novel HAD 

phosphatases (aspartate-based phosphatases) in higher organisms (Collet et al., 1998; 

Selengut 2001; Rayapureddi et al., 2003; Singh et al., 2004; Gohla et al., 2005).  

The goal of this thesis was the characterization of a previously undescribed, 

Chronophin (CIN)-related HAD phosphatase, which we named AUM (actin remodeling, 

ubiquitously expressed, magnedium-dependent HAD phosphatase). This work shows that 

rather than being a CIN-isoform, AUM is a novel aspartate-based phosphatase with unique 

enzymatic qualities. 

 

6.1 AUM is not a CIN isoform   
HAD phosphatases are typified by a highly conserved, tripartite catalytic domain, composed 

of the HAD motifs I-III (Ridder and Dijkstra 1999). Outside of these small conserved motifs, 

rarely there is an overall homology among HAD phosphatases. In spite of this fact, CIN and 

AUM were found to be 45% identical and 61% similar at the amino acid level (see 1.3.1). 

Hence we started the characterization of AUM as a putative CIN homolog in the beginning. 

Unexpectedly, the results of the enzymatic characterization of AUM clearly showed the 

distinct characteristics of AUM in comparison to CIN. By comparing the results from work on 

the characterization of the serine-directed phosphatase CIN (Gohla et al., 2005) and 
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experimental evidence from the present work on AUM, AUM emerges as a novel tyrosine 

phosphatase in spite of being the closest CIN homolog. These results are listed in table 4.  

 

Table 4: Comparison of the characteristics of AUM and CIN 

AUM is a CIN homolog AUM is a novel tyrosine phosphatase 
high sequence similarity (Fig. 5)  

 

similar gene structure (Fig. 6) 

 

AUM and CIN map to different 

chromosomes in humans and mice (Fig. 6)  

 

evolutionarily conserved  

(Fig. 6 & (Gohla et al., 2005)) 

 

AUM has evolved independently in higher 

organisms (Fig. 15)  

 

HAD-type phosphatase  

(Figs.10,18 & (Gohla et al., 2005) 

 

 

AUM has (weak) activity toward  

the CIN substrate PLP (Fig. 17) 

 

 

AUM dephosphorylates the tyrosine-like 

substrate p-NPP much more efficiently than 

CIN (Fig. 17) 

 

AUM prefers pTyr residues in peptides and 

proteins as substrates (Figs. 19, 20) 

 

ubiquitously expressed  

(Fig. 25 & (Gohla et al., 2005)) 

 

tissue specific AUM expression is distinct 

from that of CIN (Fig. 25 & (Gohla et al., 

2005) 

 

role in actin cytoskeletal dynamics 

(Figs. 36, 37 & (Gohla et al., 2005)) 

 

 

 

AUM has a role in the early events of cell 

spreading that are mediated by tyrosine 

phosphorylation (Figs. 39, 41) 

 

AUM might have a role in signaling 

cascades initiated by transmembrane 

receptors (Fig. 48) 

predominantly cytosolic proteins  

(Fig. 36 & (Gohla et al., 2005) 
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We analyzed the evolutionary relationships between CIN and AUM phosphatase orthologs 

by constructing phylogenetic trees (Fig. 15) and found that both evolved together in lower 

organisms where they might exert similar functions. However, in vertebrates CIN and AUM 

orthologs have evolved independently and may thus have acquired novel functions.  

We then analyzed the pattern of CIN/AUM evolution in the context of other known 

human HAD phosphatases in two model organisms as shown in Fig.16. The availability of 

raw material in the form of novel catalytic characteristics is a prerequisite for the 

diversification of enzymatic potential during the course of evolution as discussed earlier 

(Burroughs et al., 2006). At least eight distinct signaling pathways are known to have evolved 

exclusively in multicellular organisms. These are nuclear hormone receptor pathways, WNT, 

TGF-β, JAK/STAT, Notch/Delta, hedgehog, toll-like receptors and phosphotyrosine (pTyr) 

mediated signaling pathways (Pires-daSilva and Sommer 2003).   

P-Tyr signaling has played a prominent role in the expansion of metazoans by  

creating a versatile three component system in the form of a “writer” (a tyrosine kinases), a 

“reader” [Src homology 2 (SH2) domain containing proteins], and an “eraser” (tyrosine 

phosphatases) (Pincus et al., 2008). Each component of this three component system has 

evolved at different stages of evolution. However, effective pTyr signaling was possible only 

when all three components were present together. Hence even though in yeast, proteins with 

SH2 domains and PTP domains were present, there was no pTyr signaling due to the 

absence of protein tyrosine kinase (PTK)-domain containing proteins. It is only in metazoans 

that all three components are present, which gave rise to efficient pTyr signaling (Pincus et 

al., 2008). Figure 16 and our data showing AUM as an efficient p-NPP phosphatase (Fig. 17) 

clearly suggest that the independent evolution of AUM was a prerequisite for AUM to act as 

novel pTyr phosphatase in metazoans. These results are corroborated by the data showing 

that AUM acts as a protein tyrosine phosphatase (see 6.5).    

 

6.2 AUM expression analysis             
In order to analyze the expression pattern of this novel protein, we generated an AUM 

specific rabbit polyclonal peptide antibody. The sensitivity and specificity of this antibody 

allowed us to analyze the AUM expression pattern in various mouse tissues and cells in 

culture by multiple approaches. AUM peptide antibody is able to detect as little as 10 ng of 

recombinant protein without cross reacting with its closest homolog CIN (Fig. 24). AUM was 

found to be a ubiquitously expressed protein of 34 kDa (Figs. 22, 23, 25, 27). Both at the 

RNA and protein level AUM expression was highest in male germinal cell (Figs. 27, 28, 29). 

AUM expression was maximal around 4 weeks of age in mouse testis (Fig. 27), 

corresponding to the age of puberty (Livera et al., 2006). This information indicated a 

probable physiological role for AUM in spermatogenesis. Immunohistochemical approaches 
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confirmed this assumption (Figs. 27, 28, 29). The AUM expression profile in male germ cells 

coincides with the poorly understood process of individualization or spermiation (Cagan 

2003).  

Nevertheless, this descriptive expression analysis can not be translated into a 

functional understanding of the role of AUM in testis without a primary knowledge of AUM 

biology. Given the ubiquitous expression of AUM, which suggests a broader and 

fundamental role for AUM outside testis, the subsequent functional analysis of AUM was 

conducted by biochemical and cell biological approaches using a mouse spermatogonial cell 

line, GC1-spg. Given the fact that spermiation is essentially an actin-dependent process 

involving massive cytoskeletal reorganization and cell-matrix and cell-cell adhesion 

modulations between germ cells and Sertoli cells (Xiao and Yang 2007), the role of AUM in 

cell adhesion to the extracellular matrix was analyzed in greater detail.  

 

6.3 Role of AUM in actin dynamics 
Actin filaments are polarized structures with fast growing barbed ends and slow growing 

pointed ends. The dynamics of actin filaments is under tight regulation which is necessary for 

cell migration, proliferation and polarity formation (Revenu et al., 2004). As CIN was shown 

to be cofilin phosphatase (Gohla et al., 2005) and AUM found to be at least partially affecting 

the cellular phosphocofilin pool (Duraphe Prashant, Diploma thesis 2006) we decided to 

analyze the effect of AUM on actin dynamics.  

In vitro polymerization or depolymerization assays of pyrene-labeled actin in the 

presence of recombinant, purified AUM did not show any direct effects of AUM on actin 

dynamics (data not shown). However, a preliminary analysis of AUM overexpressing cells by 

scanning electron microscopy suggested an effect of AUM on cell morphology (data not 

shown). AUM overexpressing or AUM depleted cells were consistently found to display 

altered F-actin structures (Fig. 35). Hence we concluded that AUM affected actin remodeling 

indirectly. This hypothesis was tested by employing the G-actin sequestering drug, 

latrunculin A. Cells treated with latrunculin A allowed us to analyze the effect of AUM on actin 

turnover by sequestering newly formed G-actin molecules. We found a stabilization of actin 

stress fibres in cells overexpressing AUMD34N (data not shown) as well as in AUM depleted 

cells (Fig. 37). In contrast, AUMwt overexpressing cells showed fewer F-actin structures than 

control cells (Fig. 36). These data strongly support the hypothesis that AUM is involved in the 

regulation of actin filament turnover in cells. 

Even though the exact role of AUM in these processes remains to be identified, we 

found that the subcellular AUM localization changes in the absence of F-actin structures (Fig. 

36). When we treated AUM depleted cells with latrunculin A, an interesting differential effect 

on cortical actin turnover and the formation of lamellipodia was observed. AUM depleted 
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cells were found to have less cortical actin but more stress fibres as compared to control 

shRNA expressing cells (Fig. 37).  

Another actin dependent process which was found to be modulated by AUM is cell 

adhesion. Actin cytoskeletal dynamics coordinate cell adhesion and migration by regulating 

the turnover of cellular adhesion complexes (Mitra et al., 2005) We found that AUMwt 

overexpressing cells were less adherent to the substratum and smaller in size when spread 

on fibronectin (Fig. 35). In contrast, AUMD34N expressing cells were found to be advanced in 

spreading under similar conditions. Focal adhesion structures formed at the end of actin 

stress fibres regulate cell adhesion and its turnover is an important measure of spreading 

behavior of the cell (Geiger et al. 2009). AUM depleted cells showed matured focal 

adhesions and advanced spreading as compared to control cells (Fig. 42). The majorities of 

the cell adhesion experiments were carried out in an AUM depleted cell line and are 

discussed in next section.       

 

6.4 Consequences of AUM depletion 
To investigate the physiological roles of AUM in cells, we realized that overexpression 

analysis has experimental limitations in terms of inconsistencies in transfection efficiency and 

the possibility of mislocalization of tagged AUM to unusual cellular compartments. We 

therefore depleted endogenous AUM by RNA intereference methods and investigated the 

cellular consequences of AUM depletion.  

We have established effective AUM knockdown both by siRNA as well as shRNA 

(Figs. 31, 32) methods by targeting different mRNA sequences (Fig.12). To avoid 

inconsistencies arising from varying transfection efficiencies in individual experiments, we 

primarily relied on the shRNA clone M77 that showed highest AUM knockdown efficiency 

(Fig. 32). All knockdown studies were done primarily in the mouse spermatogenic cell line 

GC1-spg. This AUM depleted, stable cell line proved to be a key tool for the functional 

characterization of AUM. We could reproducibly observe distinct morphological 

characteristics such as altered spreading behavior, effects on actin turnover and 

morphological differences in terms of cell size with AUM depleted cells. Similarly, the 

biochemical analysis of signaling pathways produced a more consistent picture after 

knocking down of AUM as compared to AUM overexpression studies.   

We analyzed the spreading pattern of AUM depleted cells both by live cell imaging 

and by immunofluorescence studies. Fibronectin (FN) is one of the broadly expressed ECM 

molecules which induce integrin mediated cell adhesion (Sieg et al., 1998). Cells were 

spread on FN and analyzed at different time points for focal adhesion (FA) marker proteins 

and the actin cytoskeleton. Vinculin, the first molecular component identified to be 

constitutively present in FA (Geiger 1979), was chosen as a primary marker for focal 
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adhesions for cellular studies along with other FA markers such as  focal adhesion kinase 

(FAK), Paxillin, Src and antibodies targeted against total tyrosine phosphorylated proteins.   

A wealth of information has been generated about the molecular components of focal 

adhesion plaques. There are more than 150 proteins involved in the formation, stability and 

dynamics of focal adhesions (Zaidel-Bar et al., 2007). Details can be found at 

http://www.adhesome.org/. These proteins are classified as focal adhesion components or as 

focal adhesion associated proteins. AUM was found to be localized around the FA structures 

(Fig. 40), suggesting AUM as a focal adhesion associated protein. Interestingly, AUM is not 

colocalizing with any of the FA proteins that we tested (data not shown for markers other 

than vinculin and pTyr). As FA structures act as anchors of the cells, FAs are present across 

the base of the cell under standard two-dimensional culture conditions and thus can be best 

visualized with specialized imaging techniques such as TIRF or IRM microscopy (Holt et al., 

2008).  

 

We used TIRF microscopy for FA imaging in this study. Focal adhesions are classified 

depending upon their size, location and molecular components (Worth and Parsons 2008). 

These distinct classes are referred to as focal complexes, focal adhesions and fibrillar 

adhesions. Focal complexes are small transient structures seen immediately behind the 

leading edge of a spreading cell. These structures support actin based events such as 

filopodial growth and lamellipodial protrusions (Geiger and Bershadsky 2001). Focal 

adhesions (FAs) are located across the base of an adherent cell and larger than focal 

complexes. FAs contain multiple signaling and actin-binding proteins responsible for 

mechanical stability (Geiger et al., 2009). Fibrillar adhesions have been described in three 

dimensional matrix systems and are thought to be derived from subset of FAs (Cukierman et 

al., 2001). 

We observed that when AUM depleted cells are spread on FN surface for different 

time points, they are always charaterized by extensive F-actin and mature FA structures as 

compared to control shRNA cells. One of the representative cells is shown in figure 42. AUM 

depleted cells contain larger FA structures oriented towards the centre of the cell, whereas 

control shRNA expressing cells contain more small focal complexes at the cell periphery. 

These data indicate a probable role of AUM in FA maturation. The potential involvement of 

AUM in FA turnover is currently under investigation. Here, the kinetics of the recruitment of 

various focal adhesion marker proteins (GFP-actinin, GFP-alpha 5 integrin, GFP-paxillin, 

GFP-vinculin) to focal adhesion structures is compared in AUM-depleted versus control cells. 

 

The cellular spreading behavior was analyzed at three distinct time points (10, 20 and 40 

min), which cover the early as well as the late spreading behaviour of cells (Figs. 39, 41). We 
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combined biochemical analysis, immunofluorescent staining and live cell imaging of AUM 

depleted cells to understand the potential role of AUM in this process. Interestingly, AUM 

depletion has characteristic effects in the early stages of cell spreading and migration. This 

effect was found to be specific for fibronectin, indicating a preferential activation α5β1 integrin 

(Bass et al., 2008) mediated signaling pathways. We consistently observed that after 10 min 

of spreading on FN, more cells were attached to the subtrate in the absence of AUM. The 

effect seemed to be less prominent at later time points (data not shown and Fig. 39). Most of 

the proteins in adhesion complex are tyrosyl phosphorylated (Geiger et al., 2009). Thus, the 

total phosphotyrosine content of FAs can be used as a functional readout for the spreading 

behavior of a cell. We found that AUM depleted cells are characterized by a higher pTyr 

content at 10 min after spreading on FN (Fig. 41). Upon phosphorylation, most of the 

proteins involved in FA signalling generate binding sites for downstream effectors and can 

thus be targeted to the plasma membrane (Parsons 2003).The elevated pTyr content in AUM 

depleted cells indicates an effect of AUM on the phosphorylation status of one or more 

proteins involved in focal adhesion signalling, thus leading to advanced adhesion as 

compared to control shRNA expressing cells.  

AUM depleted cells are characterized by a significantly larger cell area at 10 min after 

seeding on FN, as quantified by a Metamorph-based microscopic analysis (detailed in 

Methods, see section 4.4.15).  Consistent with the effect of AUM on the pTyr content in fixed 

cells at 10 min spreading on FN (Fig. 41), we observed a similar and statistically significant 

effect of AUM on the cell area at early stages of spreading as shown in figure 42. AUM 

depleted cells were larger in size up to 40 min of analysis, likely due to advanced spreading 

(Fig. 42B). 

 

Taken together, our data clearly demonstrate that AUM has a role in spreading and 

adhesion, likely due to a function in FA maturation and actin cytoskeletal dynamics. The 

phenotype of AUM depleted cells (increased stress fiber formation, increased focal adhesion 

formation) are suggestive of an increased activation of the small GTPase Rho (Raftopoulou 

and Hall 2004). Our current experimental efforts are directed at testing the role of AUM in 

Rho-GTPase signaling. 

 

6.5 Ways and means of finding AUM substrates 
Primary efforts of linking a novel enzyme to its biology are typically focused on substrate 

determination. It is widely accepted that disrupting the equilibrium of cellular tyrosine 

phosphorylation can cause a plethora of diseases and that both protein tyrosine kinases 

(PTKs) and protein tyrosine phosphatases (PTPs) have an equal stake in the process 

(Hunter 2002). Our understanding of PTKs is far advanced as compared to PTPs, not only 
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due to historical reasons but also due to existing experimental challenges in the PTP field 

(Tiganis and Bennett 2007). Even after substantial progress in the field of PTP research, 

physiological substrate identification still remains a major task. Particularly the identification 

of substrates for non-transmembrane PTPs is even today primarily governed by a trial and 

error approach.   

 

Although initially viewed as non-specific ‘housekeeping’ enzymes, it is now well established 

that PTPs are selective in their choice of substrates (Garton et al., 1996; Tonks 2003). The 

ability of PTPs to differentiate between individual substrates can be attributed to the 

specificity within the PTP catalytic domain. Traditionally, active-site sequence HC(X5)R has 

defined the PTP family, and a cysteine was known to act as nucleophile in their catalytic 

mechanism. An additional level of substrate specificity was achieved through non-catalytic N- 

and C-terminal residues which govern the spatial and temporal localization of PTPs (Tonks 

2006). Recently, a novel class of PTPs, traditionally known as HAD-type or aspartate-based 

phosphatases, has been reported (Aravind and Koonin 1998). These aspartate-based 

phosphatases are typified by an unconventional catalytic mechanism and are known to 

dephosphorylate both pSer/pThr (Gohla et al., 2005) or pTyr residues (Rayapureddi et al., 

2003). 

The approaches for defining the function of PTPs have heavily relied on a combination of 

biochemical and genetic techniques. The current consensus for assigning a bona fide PTP 

substrate is shown in figure 47 (Tiganis and Bennett 2007). It certainly will help to 

standardize the experimental set up as compared to current ‘best guess’ approach. 

 

We followed a similar approach in trying to identify AUM substrates. In the following section, 

the pros and cons of the tools that were generated in this thesis work and the assays that 

were performed will be discussed. 
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Figure 47: Approach for the characterization of PTP substrates 
Proposed criteria for the assignment of a tyrosine-phosphorylated protein as a PTP substrate. A 
combination of overexpression and knockdown studies of PTP can be employed in order to 
experimentally confirm bona fide PTP substrate (from Tiganis and Bennett 2007).  
 
Generation of a catalytically dead mutant of AUM 

A phosphatase dead mutant of AUM was generated by site directed mutagenesis, whereby 

the nucleophilic aspartate was mutated conservatively to asparagine (see section 4.2.9). The 

catalytical impairment was unequivocally shown by lack of activity towards p-NPP (Fig. 18). 

Plasmid containing AUMD34N was used in overexpression studies along with AUMwt 

constructs with suitable tags. We analyzed the effect of AUM overexpression on actin 

dynamics, cell spreading, and in biochemical studies. AUMD34N expressing cells show 

characteristically altered cell morphology in comparison to AUMwt expressing cells. The 

overexpression of catalytically dead AUM leads to more stabilized F-actin as well as to 

mature focal adhesions (Figs. 35, 38). AUMD34N expressing cells are advanced in spreading 

on FN coated surface. We also tested AUMD34N as a putative substrate trapping mutant in 

biochemical studies focusing on likely target molecules such as Src or EGFR which are 

known to play central role in cell adhesion and migration (Biscardi et al., 2000; Huveneers 

and Danen 2009) and also because we had indication of these molecules as probable AUM 

substrates in phosphopeptide screen (see Fig. 19).  So far we could not successfully show 

stable PTP-substrate complex formation using AUMD34N either indicating its limitations to act 

as efficient substrate trapping mutant. It is possible that additional mutations need to be 

introduced in order to stabilize the association of AUM with is substrates.   

PTP-substrate complexes could be isolated in the case of PTP-PEST or SHP2 (Garton et al., 

1996; Agazie and Hayman 2003). There are certain limitations to this approach owing to the 
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possibility of mislocalization of AUMD34N in cells, granting it access to substrates that might 

not otherwise be encountered under physiological conditions. Along with spatial issues of 

PTP-substrate complex formation in cells, there is another level of complexity in terms of 

temporal regulation of PTP activity in cells. Substrate trapping mutants might interfere with 

the propagation of downstream signaling, resulting in changes in net tyrosyl phosphorylation 

patterns of other PTP substrates and thus preventing their detection by this method. Hence 

this approach needs to be use with caution and complemented by knockdown studies which 

we established using RNA interference.        

 

High throughput peptide screen 

With the advent of genomic and proteomic scale screening technologies, we have yet 

another possibility of searching PTP substrates. Such screens are costly and demand 

dedicated instrumentations. Secondly, information generated at peptide level might not be 

translated directly into the biological context. In spite of these limitations, such screens may 

be a useful starting point for the characterization of novel proteins.  

We employed 720 pTyr, pSer or pThr-phosphorylated 13-mer human peptides and analyzed 

the dephosphorylation pattern in presence of recombinant, purified AUM. The relevance of 

the phosphopeptides contained in these screens has either experimentally confirmed at the 

protein level for about half of the peptides. The remaining phosphopeptides contained in the 

screen were experimentally identified by mass spectrophotometric analysis. Among all of the 

human phosphopeptides analyzed, we found that AUM prefers certain pTyr peptides 

indicating its enzymatic preferences and specificity. There are only 2% of pTyr peptides 

above a cut off limit of 66% as enlisted in figure 19, belonging to receptor tyrosine signaling 

proteins, adhesion proteins, and proteins involved in cytoskeletal dynamics. There are as 

many as ~150 pTyr peptides dephosphorylated by AUM as enlisted in supplementary data 

(10.1). This screening approach helped us to direct our efforts towards certain pathways and 

narrowing down the search for molecules involved therein. Predominantly we focused on 

EGFR signaling pathway and integrin mediated adhesion pathways for future substrate hunt.  

Interestingly, the putative “consensus sequence peptide” designed from this screen 

(see 10.1) could not be dephosphorylated by AUM (data not shown), raising questions about 

extrapolating the information and emphasizing the requirement for a physiological protein 

conformation for PTP catalysis.      
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Modulation of substrate tyrosine phosphorylation  

Demonstrating effect of PTP on endogenous tyrosine phosphorylation can be considered as 

unequivocal assignment of a PTP substrate used as starting point in many novel 

phosphatases such as Eyes absent (Rayapureddi et al., 2003). It is possible to analyze effect 

of overexpression or depletion of PTP by either demonstrating changes in global 

phosphotyrosine levels (Selengut 2001) or by discretely analyzing individual phosphosites on 

proteins (Lee and Chang 2008). We identified AUM as a bona fide phosphotyrosine protein 

phosphatase by overlay assay (Fig. 20) and by in vitro phosphatase assays (Figs. 21, 33) 

both by overexpression and depletion of AUM.  

We next decided to analyze the effect of AUM overexpression or loss-of-function 

approaches for individual phosphorylated sites on specific proteins for reasons discussed 

above. Epidermal growth factor receptor (EGFR) and Src, well known signaling molecules 

having central role in vital cellular processes are tyrosyl phosphorylated at multiple residues 

(Roskoski 2005; Wolf-Yadlin et al., 2006). We induced specific signaling pathways by ligands 

such as EGF or ECM molecules such as FN, and analyzed the effect on tyrosine 

phosphorylation upon overexpression or depletion of AUM. Unfortunately, we were not 

successful in obtaining consistent results with any of the phosphosites under various 

experimental conditions. We tried to immunoprecipitate either endogenous EGFR or Src at 

various time points after stimulation, but could not see the effect on tyrosine phosphorylation 

biochemically even when the obvious effect on cell adhesion by AUM overexpression or 

depletion was visible in cell biological analyses (Figs. 35-39). This can partly be attributed to 

unknown regulation of AUM in cells and to the transient effect of this phosphatase during cell 

spreading or EGF induced cell proliferation. It was evident in in vitro phosphatase assays 

that the effect of AUM overexpression or depletion can only be observed during the initial 

phases within 5 min (Figs. 21, 33) or within 10 min in FN spreading assays (Fig. 39). In spite 

of these limitations, we could consistently observe a stabilization of signaling molecules in 

absence of AUM such as EGFR (Fig. 34), and α5β1 integrins and Src (data not shown) 

under spreading conditions or upon growth factor stimulation. Tyr1045 is one of the 

phosphosites on EGFR which upon phosphorylation generates a major docking site for c-

Cbl, an adaptor protein and ubiquitin ligase that leads to receptor ubiquitination and 

degradation or trafficking (Biscardi et al., 1999). We found consistent modulation of 

phosphorylation status of Tyr1045 upon AUM depletion (Fig. 34) as compared to control 

shRNA expressing cells. We could not confirm the hyperphosphorylation status of Tyr1045 

with endogenous immunoprecipitated EGFR, and secondly there was concomitant increase 

in total EGFR level in the absence of AUM (Fig. 34) suggesting hyperphosphorylation of 

Tyr1045 as a consequence of increased EGFR levels and not due to depletion of AUM. We 
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have not systematically analyzed yet the reason of stabilization of EGFR in AUM depleted 

cells as early as 1 min after EGF stimulation.  

We now know that majority of signaling molecules are multisite phosphorylated (Cohen 

2000), which often has contrasting effects on the final outcome of protein activation. This 

may be one reason why it is difficult to correlate changes in the phosphorylation status of 

individual sites to certain functions by employing the currently available biochemical 

approaches. 

 

In vitro substrate dephosphorylation 

Probably the most straightforward approach of confirming the PTP substrate is an in vitro 

phosphatase assay where recombinant PTP and substrate are incubated together under 

defined conditions to monitor dephosphorylation of the potential substrate using anti-

phosphotyrosine antibodies or the release of phosphate colorimeterically or by release of 

radiolabelled phosphate.  

On the basis of the results of the phosphopeptide screen, we chose recombinant Src, 

FAK and phospholipids scramblase 1 for in vitro assays. Upon in vitro phosphorylation either 

alone with ATP or along with suitable upstream kinases, the phosphorylated protein was 

subjected to in vitro phosphatase reaction in the presence of recombinant, purified AUM as 

detailed in Methods (see section 4.4.13). There was no conclusive pattern with any of the 

proteins (data not shown), suggesting that either the data obtained on the peptide level many 

not be true at the protein level, or that there might be additional factors such as binding 

partners or phosphorylation status of PTP itself that govern the phosphatase efficiency (Chan 

et al., 2008) 

 

In case of in vitro phosphatase assay with Src, there are some interesting observations even 

though there was no unambiguous AUM mediated dephosphorylation on either of the two 

regulatory sites (Fig. 44A). Our data indicate the existence of AUM / Src cross talk in cells 

due to our observation of Src mediated AUM phosphorylation. Experiments aimed at 

investigating a potential physical interaction of AUM and Src are currently ongoing. 

 

We measured the effect of AUM on Src kinase activity towards a phosphorylated Src 

substrate peptide (for assay details, see section 4.4.13), and reproducibly found that AUM 

enhances Src kinase activity, albeit in a phosphatase-independent manner (Fig. 45). This 

finding may partially explain why we did not obtain consistent results when testing the effect 

of AUM on Src dephosphorylation in biochemical assays, as the AUM phosphatase activity 

might not be required for the regulation of Src kinase activity according to in vitro 

experiments.  
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We also analyzed the effect of Src on AUM phosphatase activity towards p-NPP 

because Src was found to phosphorylate AUM on a thus far unidentified tyrosine residue 

(Fig. 5). We found that Src inhibits AUM phosphatase activity. This effect is dependent on 

Src kinase activity as shown in figure 46.  

 

These results so far indicate a potential role of AUM as a structural component in Src 

regulation. Hence we put forward the hypothesis that AUM is involved in the regulation of Src 

activity by binding with one of its tyrosine residues to the Src SH2 domain as schematically 

shown in figure 48. It is known in the literature that there a few phosphatases such as PTPε 

that act as “competitive” Src activators by competing the intramolecular interaction between 

the pTyr527 residue and the Src SH2 domain, thus releasing the Src autoinhibitory loop 

(Berman-Golan and Elson 2007). This mechanism makes the Src autophosphorylation site 

Tyr416 accessible for phosphorylation and leads to a Src kinase activiation. 

 

 

Figure 48: Suggested mechanism for AUM acting as a novel Src kinase activator 
AUM may bind to the Src SH2 domain and thus release Src from its autoinhibited conformation.  
AUM may thus act as a Src kinase activator in a phosphatase independent manner.  
 
AUM is predicted to be tyrosine phosphorylated on 8 residues (figure 4) as analyzed by one 

of the available post translational modification prediction tools 

(http://www.cbs.dtu.dk/services/NetPhos/). Out of these 8 residues 3 have been 

experimentally confirmed by mass spectrophotometric analysis (http://www.phosida.com/). 

These sites are Tyr108, 178 and 308. Two tyrosine residues at the C-terminal region are 

found to be particularly interesting. Tyr248 is found to be conserved only in vertebrates 

whereas Tyr308 is found to be evolutionarily conserved from bacteria to humans. At present, 
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we are in the process of generating and testing the corresponding AUM mutants. The effect 

of these mutants on Src activity will allow us to experimentally test our proposed hypothesis. 

 

So far, our biochemical and cell biological data suggest that AUM has a role in the early 

spreading events of cells on FN coated surfaces. Src is known to be involved in the process 

of early stages of spreading by regulating the phosphorylation status of p190RhoGAP which 

in turn activates Rho activity of the cell (Huveneers and Danen 2009). If indeed our in vitro 

results indicating that AUM acts as a Src activator hold true under cellular and under in vivo 

conditions, then we should be able to observe an effect on Src kinase activity upon 

overexpression or depletion of AUM in cells. The use of pharmacological inhibitors of Src 

such as PP2 in cellular assays may be helpful to investigate the nature of the AUM / Src 

cross talk under physiological conditions.  

    

To summarize, our identification and characterization of AUM place this molecule as an 

interesting novel player in vital cellular processes such as cell adhesion and migration. A 

conditionally AUM-deficient mouse model has recently been generated by our laboratory. It 

can be expected that this model will hold the key to unlock the mystery of this novel 

aspartate based phosphotyrosine phosphatase. 
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7 Summary 
 

Protein phosphatases can be classified into at least three major families based on amino 

acid sequences at their active sites. A newly emerging phosphatase family contains the 

active site sequence DXDX(T/V), and belongs to the haloacid dehalogenase (HAD) 

superfamily of hydrolases, a ubiquitous and evolutionarily conserved enzyme family. 

Although the existence of 58 human HAD enzymes has been predicted by database 

analysis, our understanding of their biological functions remains rudimentary. 

 

By database mining amd phylogenetic analysis of human HAD phosphatases, we have found 

a previously unidentified enzyme with homology to Chronophin, a cytoskeletal regulatory 

HAD phosphatase. We have cloned and characterized this novel enzyme and named it AUM, 

for actin remodeling, ubiquitously expressed, magnesium-dependent HAD phosphatase. By 

Northern blot, real-time PCR and Western blot analysis, we show that AUM is broadly 

expressed in all major human and mouse tissues with highest levels found in testis. Using 

immunohistochemistry, we can show that AUM is specifically expressed in maturing germ 

cells and that its expression peaks during spermiogenesis. 

To characterize the substrate preference of AUM, we have conducted an in vitro 

phosphatase substrate screen with 720 phosphopeptides derived from human 

phosphorylation sites. AUM exclusively dephosphorylates phosphotyrosine (pTyr)-containing 

peptides. Furthermore, only 17 pTyr peptides (~2% of all pTyr peptides investigated) acted 

as AUM substrates, indicating a high degree of substrate specificity. Putative AUM 

substrates include proteins involved in cytoskeletal dynamics and tyrosine kinase signaling. 

In accordance with the phosphopeptide screen, phosphatase overlay assays employing 

whole-cell extracts of pervanadate-treated HeLa cells show that AUM dephosphorylates only 

a limited number of tyrosyl-phosphorylated proteins.  

The role of AUM for cellular signaling was investigated in response to epidermal growth 

factor (EGF) stimulation in a spermatogonial cell line (GC-1 spg). The overexpression of 

AUM reduces, whereas the RNAi-mediated depletion of endogenous AUM increases EGF-

induced tyrosine phosphorylation, including changes in the phosphorylation of the EGF 

receptor itself. Interestingly, in vitro kinase/phosphatase assays with purified Src and AUM 

indicate that AUM can activate Src, which in turn phosphorylates and inactivates AUM. 

Although it is at present unclear how Src and AUM regulate each other, our initial findings 

suggests that AUM enhances Src kinase activity independently of its phosphatase activity, 

whereas Src diminishes AUM phosphatase activity in a kinase dependent manner. 

On a cellular level, AUM-depleted cells are characterized by altered actin cytoskeletal 

dynamics and adhesion, as indicated by stabilized actin filaments, enlarged focal adhesions, 
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a marked increase in cell area of spreading cells, as well as accelerated cell spreading on 

fibronectin.  

 

Taken together, we have identified and characterized AUM as a novel member of the 

emerging family of aspartate-dependent protein tyrosine phosphatases. Our findings 

implicate AUM as an important regulator of Src-dependent cytoskeletal dynamics during cell 

adhesion and migration. 
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8 Zusammenfassung   

Protein Phosphatasen werden aufgrund der Aminosäuresequenzen ihrer aktiven Zentren in 

drei große Familien unterteilt. In einer neu entdeckten Familie von Phosphatasen ist das 

aktive Zentrum durch die Sequenz DXDX(T/V) charakterisiert. Diese Aspartat-abhängigen 

Phosphatasen gehören zu der Superfamilie der Hydrolasen vom Haloazid Dehalogenase 

(HAD)-Typ, einer evolutionär konservierten und ubiquitär verbreiteten Enzymfamilie. Bislang 

konnten 58 menschliche HAD Enzyme durch Datenbankanalysen identifiziert werden. Ihre 

Funktionen sind jedoch nach wie vor nur rudimentär verstanden.  

 

Im Rahmen dieser Arbeit wurde zunächst das Komplement aller menschlichen HAD 

Phosphatasen durch Datenbank-Recherchen erfasst. Zusammen mit phylogenetischen 

Analysen gelang es, eine zum damaligen Zeitpunkt unbekannte, putative Phosphatase zu 

identifizieren, die eine vergleichsweise hohe Sequenz-Homologie zu der Zytoskelett-

regulierenden HAD Phosphatase Chronophin aufweist. Dieses neuartige Enzym wurde 

kloniert und mit biochemischen und zellbiologischen Methoden charakterisiert. Auf der Basis 

dieser Befunde bezeichnen wir dieses neuartige Protein als AUM (actin remodeling, 

ubiquitously expressed, magnesium-dependent HAD phosphatase). Mittels Northern blot, 

real-time PCR und Western blot Analysen konnte gezeigt werden, dass AUM in allen 

untersuchten menschlichen und murinen Geweben exprimiert wird. Die höchste Expression 

konnte in Hodengewebe nachgewiesen werden. Durch immunohistochemische 

Untersuchungen konnte gezeigt werden, dass AUM spezifisch in reifenden Keimzellen mit 

einem Expressionsmaximum zum Zeitpunkt der Spermiogenese exprimiert wird.  

 

Um die Substratpräferenz von AUM zu charakterisieren, wurde zunächst ein peptidbasierter 

in vitro Phosphatase-Substrat-Screen durchgeführt. Hierbei wurden 720 aus menschlichen 

Phosphoproteinen abgeleitete Phosphopeptide untersucht. Interessanterweise dephos-

phorylierte AUM ausschließlich Phosphotyrosin (pTyr)-enthaltende Peptide. Nur 17 pTyr-

Peptide (~2% aller untersuchten Peptide) fungierten als AUM-Substrate. Diese Daten legen 

eine hohe Substratspezifität von AUM nahe. Zu den putativen AUM Substraten gehören 

Proteine, die in die Dynamik der Zytoskelett-Reorganisation sowie in Tyrosin Kinase-

vermittelte Signalwege eingebunden sind. In Übereinstimmung mit den Ergebnissen dieses 

Phosphopeptid-Screens konnte mittels Phosphatase overlay assays sowie in Zellextrakten 

aus  Pervanadat-behandelten HeLa Zellen demonstriert werden, dass AUM eine begrenzte 

Anzahl  Tyrosin-phosphorylierter Proteinen dephosphorylieren kann. 
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In zellulären Untersuchungen wurde die mögliche Rolle von AUM im Rahmen der durch den 

epidermalen Wachstumsfaktor (EGF) ausgelösten Tyrosin-Phosphorylierung in einer 

Spermatogonien Zelllinie (GC-1 spg-Zellen) analysiert. So konnte nachgewiesen werden, 

dass die Überexpression von AUM zu einer moderaten Abnahme Tyrosin-phosphorylierter 

Proteine nach EGF-Stimulation führte. Im Gegensatz dazu löste jedoch die durch RNA-

Interferenz vermittelte Depletion von endogenem AUM einen robusten Anstieg Tyrosin-

phosphorylierter Proteine aus, zu denen auch der EGF-Rezeptor selbst zählt.  

Zusätzlich zu dem EGF-Rezeptor wurde die Src-Kinase im Zuge des Phosphopeptid-

Screens als mögliches AUM Substrat identifiziert. Daher wurden in vitro 

Kinase/Phosphatase-Assays mit gereinigtem Src und AUM durchgeführt. Mit diesem Ansatz 

konnte erstmals gezeigt werden, dass AUM in der Lage ist, die Src-Kinase zu aktivieren, 

während Src AUM phosphoryliert und die AUM Phosphatase-Aktivität blockiert. Diese 

Ergebnisse deuten auf eine gekoppelte, wechselseitige Regulation von AUM und Src hin. 

Obwohl die Details dieser Regulation derzeit noch unklar sind, zeigen unsere initialen 

Ergebnisse, dass AUM die Src-Aktivität unabhängig von seiner Phosphatase-Aktivität 

steigert, während Src die AUM Phosphatase-Aktivität Kinase-abhängig vermindert.  

Auf zellulärer Ebene sind AUM-depletierte Zellen durch Veränderungen der Aktin-

Zytoskelett-Dynamik und der Zelladhäsion charakterisiert. So weisen AUM-defiziente Zellen 

stabilisierte Aktin-Streßfasern und vergrößerte fokale Adhäsionen auf. Weiterhin sind AUM-

depletierte Zellen durch ein beschleunigtes spreading auf Fibronektin gekennzeichnet.  

 

Wir haben mit AUM ein bisher nicht beschriebenes Mitglied der Familie Aspartat-abhängiger 

Phosphatasen entdeckt. In dieser Arbeit ist es gelungen, AUM phylogenetisch, biochemisch 

und zellbiologisch zu charakterisieren. Unsere Ergebnisse legen nahe, dass AUM einen 

wichtigen, neuartigen Regulator der Src-vermittelten Zytoskelett-Dynamik im Rahmen der 

Zelladhäsion und Migration darstellt. 
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10 Supplementary data 

10.1 JPT phosphopeptide screen analysis 

AUM was analyzed with Ser/Thr or Tyr phosphopeptides as a first approach to identify 

physiological substrates. As per convention, hits above a 66% cut off of the highest OD 

obtained in this assay were considered meaningful and were analyzed as possible AUM 

substrates as discussed in section 5.3. There are around 150 hits below this cut off. These 

hits may still be useful to understand the role of AUM in signaling pathways. 

Below is the complete list of phosphopeptides dephosphorylated by AUM in descending 

order of OD. For each phosphopeptide, the 13-mer sequence, SwissProt ID and the known 

main biological function of the respective proteins are listed. The phosphorylated tyrosine, 

serine or threonine residue is always the central amino acid. Physiologically relevant 

phosphorylation sites for the first 17 peptides (those above the 66% cut off) and for all EGFR 

family proteins were identified by BLAST analysis (Altschul et al., 1990) of the human protein 

data base. A theoretical AUM substrate “consensus peptide” sequence was derived from the 

first 17 hits and from all EGFR hits enlisted. Interesting hits were grouped under well 

characterized protein families. 

 

Table S1: Phosphotyrosine peptides dephosphorylated by AUM 

 

Phosphopetide SwissProt ID Details pTyrosine 
LSEDCLYLNIYTP P23141 Liver carboxylase 1 precursor Y118 
MEGQHNYLCAGRN P06401 Progesterone receptor Y601 
DGFYYLYANICFR O14788 TNF ligand superfamily member 11 Y217 
RDINSLYDVSRMY P16885 PLC-gamma-2 Y753 
ASSQDCYDIPRAF Q13480 GRB2-associated binding protein 1 Y406 
LLEQQKYTVTVDY O14920 Inhibitor of nuclear factor kappa B kinase beta subunit Y199 
RYQPGKYPMPNQS Q9NRQ2 Phospholipid scramblase 4 Y88 
AAFQFSYTAVFGA Q9Y256 CAAX prenyl protease 2 Y236 
NEDYAGYIIPPAP Q9UNH7 Sorting nexin 6 Y89 
LCQSGIYINVLDI O00476 Sodium-dependent phosphate transport protein 4 Y337 
EAALNEYLRVKTV O75891  10-formyltetrahydrofolate dehydrogenase Y892 
VPNQPVYNQPVYN O15162 Phospholipid scramblase 1 Y69 

SEEIRFYQLGEEA P22001 
Potassium voltage-gated channel subfamily A member 
3 Y187 

YCPDPLYEVMLKC P08581 Hepatocyte growth factor receptor precursor (c-met) Y1313 
DAEKPFYVNVEFH P11274 Breakpoint cluster region protein Y177 
DSPPALYAEPLDS Q99704 Docking protein 1 (p62dok) Y296 
AFDNLYYWDQDPP P04626 C-erbB-2 precursor Y1221  
ENPIDLYIYVIDM P55823 Cadherin-4 precursor  Y264 
LSEDCLYLNVWIP P06276 Cholinesterase  Y122 
LYAGDYYRVQGRA Q08345 Epithelial discoidin domain receptor 1 precursor Y797 
ESEEELYSSCRQL P16885 PLC-gamma-2 Y1197 
PSDKFIYATVKQS Q05586 Glutamate (NMDA) receptor subunit zeta 1 precursor  
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PLDSTFYRSLLED P04626 C-erbB-2 precursor Y1005  
LEEILAYQPDILC Q9UK39 Nocturnin (CCR4 protein homolog)  
DAEMTGYVVTRWY O15264 Mitogen -activated protein kinase 13   
IGVRESYVNLCSN Q93034 Cullin homolog 5   
WIRYHRYHGRSAA P11309 Proto-oncogene serine/threoine-protein kinase pim-1  
LKMKEKYLNVSAC O75343 Guanylate cyclase soluble, beta-2 chain  
FLRCINYVFFPSL P17181 Interferon-alpha/beta receptor alpha chain precursor  
AYQNTIYLNLWDH P15144 Aminopeptidase N  
PPERIIYANPCKQ P11926 Ornithine decarboxylase  
LLLANAYIYVVQL P32004 Neural cell adhesion molecule L1 precursor  
GPNNNNYANVELI O00763 Coactosin-like protein  
ALDNPEYHNASNG Q15303 erbB-4 precursor Y1188  
MLNSKGYTKSIDI P28482 Mitogen-activted protein kinase 1 (ERK-2)  
SIKMQQYTEHFMA P29317 Ephrin type-A receptor 2 precursor  
LMEKDSYPRFLKS Q08116 Regulator of G-protein signaling 1   
QLSDPDYINQYVI Q9Y5W8 Sorting nexin 13  
NLYAGDYYRVQGR Q08345 Epithelial discoidin domain receptor 1 precursor  
RSSLKAYGNGYSS P07550 Beta-2 adrenergic receptor  
EVHKSGYLSSERL P15311 Ezrin (Cytovillin)  
TAENAEYLRVAPQ P00533 ErbB-1 precursor Y1197 
TSSSSEYGSVSPD Q99683 Mitogen -activated protein kinase kinase kinse  
EDNVKSYMDMQRR Q13075 Neuronal apoptosis inhibitory protein  
SIESDIYAEIPDE Q14289 Focal adhesion kinase 2  
LNTTTATYAEPYRP Q99569 Plakophilin 4  
KKSLTIYAQVQKP Q13291 Signaling lymphocyte activation molecule precursor  
LSPAFRYQPDPWK P29473 Nitric-oxide synthase,endothelial  
TLPPCIYMAPMNQ P55286 Cadherin-8 precursor  
RLSGELYGRATAW Q99999 Galactosylceramide sulfotransferase  
NCTHDLYMIMREC P22607 Fibroblast growth factor receptor 3 precursor   
RQPFVKYATLISN P48357 Leptin receptor precursor   
EAPTTAYKKTTPI P14317 Hematopoietic lineage cell speific protein  
IHLEKKYVRRDSG P07333 Macrophage colony stimulating factor I receptor   
GVCAERYSQEVFE O15304 Apoptosis regulatoy protein Siva  
LNQSSGYRYGTDP P06241 Proto-oncogene tyrosine-protein kinase FYN  
FRHDSGYEVHHQK P05067 Amyloid beta A4 protei precursor   
SPGMKIYIDPFTY P54762 Ephrin type-B receptor 1 precursor  
ARTGILYVNASLD Q9NYQ8 Multiple epidermal growth factor-like domains 1  
GAFGTVYKGIWIP P04626 C-erbB-2 precursor Y735  
MTCAELYEKLPQG P35590 Tyrosine-protein kinase receptor Tie-1 precursor  
SDTDSSYCIPTAG Q13480 GRB2-associated binding protein 1  
MDLLRQYLRVETQ Q13085 Acetyl-CoA carboxylase 1  
LGTVMRYEEIELR Q9BZQ4 Nicotinamide mononucleotide adenylyltrasnferase 2  
AFDNPDYWHSRLF P21860 c-erbB-3 Y1328 
LASEEIYINQLEA Q12979 Active breakpoint cluster region-related protein  
STSLVGYLRVQGV Q9UKG9 Peroxisomal carnitine O-octanoyltrasferase  
YSTKYFYKQNGRI Q15303 erbB-4 precursor Y1268  
PPDHQYYNDFPGK P29353 SHC transforming protein 1  
SQEELHYATLNFP Q96LC7 Sialic acid binding Ig-like lectin 10 precursor  
CIVENEYGSINHT P11362 Basic fibroblast growth facor receptor 1 precursor  
HRQGHIYMEMNFT P63010 Adapter-related protein complex 2 beta 1 subunit  
EVTFHLYLIPSDC Q9C000 NACHT-. LRR-, and PYD- containing protein 2  
QRLDCIYLNAGIM P56937 Estradiol 17-beta-dehydrogenase 7  
WIEDTLYANVDFF P78363 Retinal-specific ATP-binding cassette trasporter   
AEPYNLYSSLKEL Q92569 PI3-kinase p85-gamma subunit  
EDCGGGYTPDCSS P11274 Breakpoint cluster region protein  
SYEGNSYTFIDPT P07333 Macrophage colony stimulating factor I receptor  
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MEDSTYYKASKGK Q05397 Focal adhesion kinase 1 (pp125FAK)  
NLYSGDYYRIQGR Q16832 Discoidin domain receptor 2 precursor  
TGENPIYKSAVTT P05556 Integrin beta-1 precursor (FN receptor beta subunit)  
YDVSRMYVDPSEI P16885 PLC-gamma-2  
GRNPGFYVEANPM P19174 PLC-gamma-1  
LMSEGLYKALEAA Q15750 Mitogen-activted protein kinase kinase kinase 7 interacting protein 1 
EENWSFYPNAVRT P78509 Reelin precursor  
MPSEEGYQDYEPE P37840 Alpha-synculein (Non-A4 component of amyloid precursor) 
SENFDDYMKEVGV P15090 Adipocyte lipid-binding protein  
SIRMKRYILHFHS P21709 Ephrin type-A receptor 1 precursor  
RSSLKAYGNGYSS P07550 Insulin receptor substrate-1  
TPGMKIYIDPFTY P29323 Ephrin type-B receptor 2 precursor  
YQYMETYMGPALF Q14974 Imortin beta-1 subunit  
LTPSFEYQPDPWN P29475 Nitric-oxide synthase  
ASVMQEYTQSGGV P25787 Proteosome subunit alpha type 2  

FERASEYQLNDSA P11488 
Guanine nucleotide-binding protein G(t) alpha-1 
subunit  

GIIATIYIIPGDI P82251 
Glycoprotein-associated amino acid transporter 
b0,+AT1  

KLSGEAYGFVARI P04275 Von Willebrand factor precursor  
IFPQPNYVDMLIS Q9Y5G6 Protocadherin gamma A7 precursor  
PNEDCLYLNVYVP Q9Z94 Neuroligin 3 precursor  
CFSPNRYWLCAAT P25388 Guanine nucleotide-binding protein beta subunit-like protein 12.3 
LTSNQEYLDLSMP P11362 Basic fibroblast growth facor receptor 1 precursor (FGFR-1) 
GEEDTEYMTPSSR P22681 CBL E3 ubiquitin protein ligase  
DPDNEAYEMPSEE P37840 Alpha-synculein (Non-A4 component of amyloid precursor) 
LEVGAPYLRVDGK Q08174 Protocadherin 1 precursor  
TFPPISYLNAISW P53602 Diphosphomevalonate decarboxylase  
GECSIDYVEMAVN O75891 10-formyltetrahydrofolate dehydrogenase  
TNSITVYASVTLP Q13291 Signaling lymphocyte activation molecule precursor  
AFDNPDYWNHSLP Q15303 erbB-4 precursor Y1242  
PPFKSAYSSFVNL Q9Y2I7 FYVE finger-containing phosphoinositide kinase  
CYLLIRYCSGKSK P29033 Gap junction beta-2 protein (Connexin 26)  
GTAEPDYGALYEG P19174 PLC-gamma-1  
LQMAQIYINALSE Q92858 Atonal protein homolog 1   
SIFFIIYIIIVAF Q01668 Voltage-dependent L-type calcium channel alpha-1D subunit 
IIQAEFYLNPDQS P01903 HLA class II histocompatibility antigen  
EETREAYANIAEL P33076 MHC class II transactivator  
LVIPDLYLNAGGV P49448 Glutamate dehydrogenase 2  
DCAHFHYENVDFG O14559 Sorting nexin 26  
TAENPEYLGLDVP P04626 C-erbB-2 precursor Y1248  
VAENPEYLSEFSL Q15303 erbB-4 precursor Y1268  

MVLKHPYPRKVEE Q9UN19 
Dual adapter for phosphotyrosine and 3 
phosphoinositide  

PAVPSIYATLAIH Q8NHL6 Leucocyte immunoglobulin-like receptor subfamily B member 1  
AAAAETYANISWE Q92823 Neuronal cell adhesion molecule precursor  
KHATGNYIIIMDA O60762 Dolichol-phosphate mannosyltrasferase  
TRICKIYDSPCLP Q06609 DNA repair protein RAD51homolog 1  
TFGAKPYDGIPAR P04626 C-erbB-2 precursor Y923  
DMGDEVYDDVDTS O15117 FYN-binding protein  
FITEEDYQALRTS Q00610 Clathrin heavy chain 1  
SENFDDYMKALGV P02689 Myelin P2 protein  
TSTEPQYQPGENL P12931 Proto-oncogene tyrosine-protein kinase Src (p60-Src)  
DIHVGDYIIPKNT O15528 25-hydroxyvitamin D-1 alpha hydroxylase, mitochondrial precursor 
GIICTFYTAVGGM Q92911 Sodium/iodide cotransporter  
GLARDIYKDPDYV P35968 Vascular endothelial growth factor receptor 2 precursor (VEGFR-2) 
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NLEQEEYEDPDIP P02730 Band 3 anion transport protein (CD233 antigen)  
CSPPPDYNSVVLY P17948 Vascular endothelial growth factor receptor 1 precursor (VEGFR-1) 
SPGMKIYIDPFTY P54762 Ephrin type-B receptor 1 precursor  
DDFDGTYETQGGK P21709 Ephrin type-A receptor 1 precursor  
SIFFIIYIIIIAF Q13936 Voltage-dependent L-type calcium channel alpha-1C subunit 
QGEDQYYLRVTTV P10909 Clusterin precursor  
DKDLRHYLNLRFQ Q86UL8 Atrophin-1 interacting protein 1  
IAANCIYLNIPNK O94760 Dimethylarginine dimethylaminohydrolase 1  
MVIPDLYLNAGGV P00367 Glutamate dehydrogenase 1  
PASEQGYEEMRAF P21860 C-erbB-3 precursor Y1289 
SRGEEVYVKKTMG P35590 Tyrosine-protein kinase receptor Tie-1 precursor  
PTAGALYSGSEGD P11831 Serum response factor  
SQQTNDYMQPEED P12814 Non-muscle alpha-actinin 1 (F-actin cross linking protein) 
RPEDTFYFDPEFT P51812 Ribosomal protein S6 kinase alpha 3  
RRYGDRYINLRGP P12821 Angiotensin-converting enzyme  

TVVIALYDYQTND Q08881 
Tyrosine-protein kinase ITK/TSK (T-cell specific 
kinase)  

YQKLYTYIQSRFY O43781 Dual-specificity tyrosine-phosphorylation regulated kinase 3 
ATTDDFYDDPCFD P15172 Myoblast determination protein 1  
MDEELHYASLNFH P20138 Myeloid cell surface antigen CD33 precursor  
PKAEDEYVNEPLY Q15303 erbB-4 precursor Y1202  
LYEKFTYAGIDCS Q02763 Angiopoietin 1 receptor precursor  
SLDNPDYQQDFFP P00533 ErbB-1precursor  Y1172  
SFLDSGYRILGAV P18206 Vinculin Y822 
TLQHPDYLQEYST Q15303 erbB-4 precursor Y1258  
KIGEGTYGTVFKA Q00535 Cell division protein kinase 5  
SSSIDEYFSEQPL P17181 Interferon-alpha/beta receptor alpha chain precursor  
IMNDSNYIVKGNA P07333 Macrophage colony stimulating factor I receptor precursor 
PAFDNLYYWDQDP P04626 C-erbB-2 precursor Y1221 
EELGYEYMDVGSD P21860 c-erbB-3 precursor Y1222 
GAFGTVYKGLWIP P00533 ErbB-1 precursor Y727 
PSRDPHYQDPHST P00533 ErbB-1 precursor Y1056 
GAFGTVYKGIWVP Q15303 erbB-4 precursor Y733 
DKPKQEYLNPVEE Q15303 erbB-4 precursor Y1162 
    
AAEQPLYLNPLDP Q8N566 Arp8 homolog (Consensus AUM substrate peptide) Y173 
    
A/PADNPEYLGEDLP P04626 Consensus EGFR peptide Y1248 
    
 Total hits Class of proteins  
 16 EGF receptor family  
 12 EGFR downstream proteins  
 4 MAPK/ interacting proteins  
 13 cell adhesion molecules   
 7 Other growth factor receptors  
 3 Voltage gated channels  
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