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Zusammenfassung

Die Idee der kosmologischen Inflation stellt heute die wichtigste Erweiterung der klassi-
schen Urknalltheorie dar. Seit ihrem Aufkommen in den frühen 80er Jahren sind zahlrei-
che physikalische Mechanismen bekannt und ausgearbeitet geworden, die die inflationäre
Expansion des Raums vor der dem ‘heißen’ Urknall auf eine tragfähige, theoretische Ba-
sis stellen. Zu den Errungenschaften der Inflationstheorie zählen unter Anderem die
Erklärung der nahezu Euklidischen Geometrie des sichtbaren Raums, die bemerkens-
werte Homogenität der kosmischen Hintergrundstrahlung, im Besonderen aber auch die
ihr innewohnenden winzigen Unregelmäßigkeiten mit einer relativen Amplitude der Grö-
ßenordnung 10−5. In vielen Inflationsmodellen endet die Inflation allerdings nur lokal.
Demzufolge besteht die Möglichkeit, dass es außerhalb des von uns sichtbaren Raums
Gebiete geben kann, in denen der inflationäre Prozess weiterhin stattfindet. Dieser Ei-
genschaft wird durch den Begriff ‘Ewige Inflation’ Rechnung getragen.

Ewige Inflation kann sich im Rahmen der Skalarfeld-Inflation in verschiedenen Formen
manifestieren. Zum Einen können die Fluktuationen des Feldes so groß sein, dass sie der
klassischen Trajektorie, und damit dem Ende der Inflation, entgegenwirken wirken. In
Regionen, in denen das geschieht, setzt sich die beschleunigte Expansion des Raums mit
einer höheren Rate weiter fort. In Teilen solcher Regionen mag sich dies wiederholen
und der Vorgang auf diese Weise theoretisch bis ins Unendliche andauern. Raum und
Feld reproduzieren sich selbst. Eine weitere Möglichkeit, die sowohl unabhängig als auch
zusätzlich zur zuvor beschriebenen auftreten kann, ist die des sogenannten Vakuumtun-
nelns. Wenn das Potential des Skalarfelds mehrere lokale Minima aufweist, so legt eine
semi-klassische Rechnung, dass das Feld innerhalb eines sphärischen Gebiets, einer Bla-
se, in einen anderen Zustand tunneln kann. Die zugehörigen Tunnelraten hängen von
der Differenz der beiden Minima und der Gestalt des Potentials zwischen ihnen ab. Ge-
wöhnlich ist diese Rate exponentiell unterdrückt, was bedeutet, dass die Inflation sehr
lange andauert bevor es zu einem Tunnelprozess kommt. Fortwährende Inflation besei-
tigt großräumig, effektiv, jegliche Form der Unregelmäßigkeit, d. h. Raumkrümmung,
Anisotropie und Inhomogenität, sodass dieser Sachverhalt unter dem Ausdruck ‘cosmic
no-hair conjecture’ bekannt ist. Aus diesem Grund waren bisherige Betrachtungen fast
aussschließlich der Entwicklung von Blasen in einem Vakuumhintergrund (der de Sit-
ter Raumzeit) gewidmet. Neue Überlegungen im Rahmen der Stringtheorie erlauben
allerdings auch hohe Tunnelraten, sodass die Möglichkeit der Nukleation von Blasen in
nicht-vakuumdominierten Hintergründen besteht. Die weitere Entwicklung hängt in die-
sem Fall von den Eigenschaften des Hintergrunds ab. Diese Tatsache ist Gegenstand des
ersten Teils dieser Arbeit.

Einer vertiefenden Einführung in Kapitel 4 folgt die Vorstellung der Lemaître-Tolman
Raumzeit in Kapitel 5, die die Hintergrundraumzeit in der Studie von Auswirkungen
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der Inhomogenität auf die Entwicklung von Vakuumblasen bildet. In Kapitel 6 wird der
‘thin-shell’ Formalismus und die sich daraus ergebenden Gleichungen explizit dargelegt.
Dem schließt sich in Kapitel 7 eine detailierte Analyse der Blasenentwicklung in ver-
schiedenen Limites des Lemaître-Tolman Hintergrunds und in einer Robertson-Walker
Raumzeit mit rapidem Phasenübergang an. Nach der Ableitung der Vakuumlösung wird
sukzessive auf die Blasenentwicklung in einem statischen Hintergrund, in einem dynami-
schen, aber homogenenen Hintergrund, in einem flachen, inhomogenen Hintergrund, in
einem gekrümmten, inhomogenen Hintergrund und in einem homogenen Hintegrund mit
Phasenübergang eingangen. Zu den zentralen Beobachtungen gehört, dass die Präsenz
des Staubs, bei fixierter Oberflächendichte, eine Verringerung des Nukleationsvolumens
mit sich bringt und dazu führen kann, dass die Blase einen Kollaps beginnt. Darüber
hinaus zeigt sich, dass in einem expandierenden Hintergrund ein radial inhomogenes
Staubprofil hinreichend schnell verdünnt wird, sodass praktisch kein Effekt auf die Bla-
senwand zu erkennen ist. Das ändert sich in einem radial inhomogenen Krümmungsprofil,
positive Raumkrümmung hat einen abbremsenden Effekt auf die Expansion der Blase.
Weiterhin erkennt man, dass eine Änderung der Zustandsgleichung von w = −1 zu
w = 1/3 in einem homogenen Flüssigkeitshintergrund ebenso zu einer Abbremsung der
Blase führt. Es wird herausgestellt, dass der verwendete Ansatz keine Möglichkeit zur
Behandlung eines, physikalisch zu erwartenden, Materietransfers bietet und die damit
erzielten Ergebnisse unter diesem Vorbehalt zu verstehen sind.

Im zweiten Teil der vorliegenden Arbeit wird potentiell beobachtbaren Konsequenzen
der Kollision zweier Blasen in der kosmischen Hintergrundstrahlung nachgegangen.

Die topologische Natur des Signals in der letzten Streufläche legt die Verwendung von
Statistiken nahe, die es erlauben, die morphologischen Eigenschaften der Temperaturf-
luktuationen zu quantifizieren. Diese Statistiken bieten die Minkowski Funktionale (MF),
die in Kapitel 10 vorgestellt werden. Dem schließt sich in Kapitel 11 die Präsentation
des den Simulationen zu Grunde liegenden Softwarepaketes an. Dieses wird benutzt um
Karten eines Gaussschen Zufallsfeldes zu erzeugen und die entsprechenden MF zu be-
rechnen. Die vorgestellte Fehleranalyse erlaubt eine höhere Präzission der numerischen
MF im Vergleich zu bisherigen Methoden. Im folgenden Kapitel 12 präsentieren wir die
Anwendung des Algorithmus’ auf Gausssche- und Kollisionskarten. Die zu erwartenden
MF werden motiviert, numerisch erfasst und verglichen. Ein Fit der geringsten qua-
dratischen Abweichung reproduziert die tatsächlichen Parameter nur dann, wenn über
eine hohe Anzahl von Realisierungen gemittelt wird, wohingegen die Betrachtung einer
einzigen Karte in WMAP bzw. Planck Auflösung nur für “auffällige” Scheiben mit Tem-
peraturunterschied δT & 2

√
σG und Öffnungswinkel ϑd & 40◦ Übereinstimmung erreicht

wird. Dies bedeutet, das MFe ein schlechtes ‘Signal zu Rausch’Verhältnis besitzen um
heiße oder kalte Scheiben in der kosmischen Hintergrundstrahlung zu erfassen. Diese
Vermutung wird weiter gestärkt durch die Tatsache, dass die Anwendung der Methode
auf die WMAP7 Daten kein konsistentes Resultat liefert.

Den beiden beschriebenen Teilen geht noch eine allgemeine, aber elementare Einfüh-
rung in das Themengebiet voraus. Material, das nicht unmittelbar zum Verständnis der
Arbeit nötig ist, an manchen Stellen aber unterstützend sein könnte, ist in einem Ap-
pendix untergebracht.
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Abstract

At the present day the idea of cosmological inflation constitutes an important extension
of Big Bang theory. Since its appearance in the early 1980’s many physical mechanisms
have been worked out that put the inflationary expansion of space that proceeds the Hot
Big Bang on a sound theoretical basis. Among the achievements of the theory of inflation
are the explanaition of the almost Euclidean geometry of ‘visible’space, the homogeneity
of the cosmic background radiation but, in particular, also the tiny inhomogeneity of a
relative amplitude of 10−5. In many models of inflation the inflationary phase ends only
locally. Hence, there exists the possibility that the inflationary process still goes on in
regions beyond our visual horizon. This property is commonly termed ‘eternal inflation’.

In the framework of a cosmological scalar fields, eternal inflation can manifest itself
in a variety of ways. On the one hand fluctuations of the field, if sufficiently large, can
work against the classical trajectory and therefore counteract the end of inflation. In
regions where this is the case the accelerated expansion of space continues at a higher
rate. In parts of this region the process may replicate itself again and in this way
may continue throughout all of time. Space and field are said to reproduce themselves.
On the other hand, a mechanism that can occur in addition or independent of the
latter, is so called vacuum tunneling. If the potential of the scalar field has several local
minima, a semi-classical calculation suggests that within a spherical region, a bubble,
the field can tunnel to another state. The respective tunneling rates depend on the
potential difference and the shape of the potential between the states. Generally, the
tunneling rate is exponentially suppressed, which means that the inflation lasts for a long
time before tunneling takes place. The ongoing inflationary process effectively reduces
local curvature, anistotropy and inhomogeneity, so that this property is known as the
‘cosmic no-hair conjecture’. For this reason cosmological considerations of the evolution
of bubbles thus far almost entirely involved vacuum (de Sitter) backgrounds. However,
new insights in the framework of string theory suggest high tunneling rates which allow
for the possibility of bubble nucleation in non-vacuum dominated backgrounds. In this
case the evolution of the bubble depends on the properties of the background spacetime.

This phenomenon is the subject of the first part of this thesis. A deeper introduction
in chapter 4 is followed by the presentation of the Lemaître-Tolman spacetime in chap-
ter 5 which constitutes the background spacetime in the study of the effect of matter and
inhomogeneity on the evolution of vacuum bubbles. In chapter 6 we explicitly describe
the application of the ‘thin-shell’ formalism and the resulting system of equations. This
is succeeded in chapter 7 by the detailed analysis of bubble evolution in various limits of
the Lemaître-Tolman spacetime and a Robertson-Walker spacetime with a rapid phase
transition. After a review of the vacuum solution we consider in particular the bubble
evolution in a static background, in a homogeneous dynamic background, in a flat inho-
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mogeneous background and in an homogeneous background with phase transition. The
central observations are that the presence of dust, at a fixed surface energy density, goes
along with a smaller nucleation volume and possibly leads to a a collapse of the bub-
ble. In an expanding background, the radially inhomogeneous dust profile is efficiently
diluted so that there is essentially no effect on the evolution of the domain wall. This
changes in a radially inhomogeneous curvature profile, positive curvature decelerates the
expansion of the bubble. We observe that a change in the equation of state parameter
from w = −1 to w = 1/3 in a homogeneous fluid background also leads to a deceleration
of the bubbles expansion. Moreover, we point out that the adopted approach does not
allow for a treatment of a, physically expected, matter transfer so that the results are
to be understood as preliminary under this caveat.

In the second part of this thesis we consider potential observable consequences of
bubble collisions in the cosmic microwave background radiation.

The topological nature of the signal suggests the use of statistics that are well suited
to quantify the morphological properties of the temperature fluctuations. In chapter 10
we present Minkowski Functionals (MFs) that exactly provide such statistics. This is
followed by chapter 11 where we present the software package that is used for the pro-
duction Gaussian maps and for the extraction of MFs which builds the basis for further
simulations. The presented error analysis allows for a higher precision of numerical MFs
in comparison to earlier methods. In chapter 12 we present the application of our algo-
rithm to a Gaussian and a collision map. We motivate the expected MFs and extract
their numerical counterparts. We find that our least-squares fitting procedure accurately
reproduces an underlying signal only when a large number of realizations of maps are
averaged over, while for a single WMAP and PLANCK resolution map, only when a
highly prominent disk, with |δT | & 2

√
σG and ϑd & 40◦, we are able to recover the

result. This is unfortunate, as it means that MF are intrinsically too noisy to be able
to distinguish cold and hot spots in the CMB for small sizes. In order to confirm our
suspicion, we have applied our prescription to WMAP7 map and found that we did not
recover the latter’s conclusions.

The two described parts are preceeded by a general but elementary introduction to
the field. Material that supplements the text, though not of immediate necessity for
comprehension, is relegated to an appendix.
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1. Outline of standard cosmology

1.1. Friedmann-Lemaître-Robertson-Walker cosmology

Several basic features of modern cosmology are well established today. Together, progress
in theory and precise observations have revealed the huge scale ≈ 3000Mpc of the observ-
able universe as well as the fact that it is evolving and expanding. Physical cosmology
relies on the assumption that the laws of physics are the same in all of spacetime. The
only relevant force on astronomical scales is gravity and consequently standard cosmol-
ogy is based on the classical relativistic theory of gravitation, Einstein’s General Theory
of Relativity. In General Relativity the properties of the matter distribution as ex-
pressed in the stress-energy tensor Tµν are the source of spacetime curvature according
to Einstein’s field equations

Gµν + Λgµν = 8πTµν .

The Einstein tensor Gµν := Rµν − gµνR/2 is related to the Ricci tensor Rµν and Ricci
scalar R which contain second derivatives of the spacetime metric gµν and are non linear.
The constant Λ is called the cosmological constant and could in principle also be included
in the stress-energy tensor.

Standard cosmological theory adopts the Copernican principle which states that we
are not privileged observers. Together with the fact that upon averaging over a large
enough spatial scale (& 100Mpc) observations become statistically isotropic, this as-
sumption implies spatial homogeneity, cf. Stoeger et al. (1995). The spacetime manifolds
that embody spatial homogeneity and isotropy belong to the class of Robertson-Walker
geometries, cf. Robertson (1929); Walker (1935).

In a spacetime with Robertson-Walker geometry comoving coordinates, i.e. uµ = δµ
t ,

can be chosen so that the line element becomes

ds2 = −dt2 + a2(t)
(

dr2 + k−1 sin2
(√

kr
)

dΩ2
)

.

The spatial sections have hyperbolic (k < 0), Euclidean (k = 0), or spherical (k > 0)
geometry. Isotropy implies that the stress-energy tensor Tµν necessarily takes the form
of a perfect fluid relative to the flow of uµ, that is

Tµν = (ρ+ p)uµuν + pgµν . (1.1)

Here ρ and p are energy density and pressure of the matter distribution and are constant
on spatial slices. The flow lines of uµ represent the wordlines of the matter constituents.
The continuity equation ∇µT

µν = 0 turns into

∂tρ+ 3
∂ta

a
(ρ+ p) = 0 , (1.2)
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1. Outline of standard cosmology

The scale factor a obeys the Raychaudhuri equation

∂2
t a

a
= −4π

3
(ρ+ 3p) +

Λ
3
.

Given ∂ta 6= 0, the Raychaudhuri and continuity equation yield the Friedmann equation
(

∂ta

a

)2

+
k

a2
=

8πρ
3

+
Λ
3
. (1.3)

as a first integral. The whole class of solutions to these equations is commonly referred to
as Friedmann-Lemaître-Robertson-Walker (FLRW) models. With a determinate matter
description, given explicitly or implicitly by an equation of state, there exists a unique
solution to the system. In the special case of a linear equation of state p = wρ the
continuity equation (1.2) implies

ρ = ρ0

(

a0

a

)3(1+w)

. (1.4)

The equation of state parameter of non-relativistic matter is w = 0, w = 1/3 for rela-
tivistic matter and radiation, while a fluid with w = −1 is equivalent to a cosmological
constant. Accordingly, the scale factor obeys a ∝ t2/(3+3w) and a ∝ exp(Ht) respectively.

Initial data that specifies a particular solution at a time t0 consists of the Hubble rate
H := ∂ta/a, the energy density parameters of vacuum ΩΛ, and the fluid components
Ωi := 8πρi/

(

3H2
)

together with their equation of state. Their sum equals the total
energy density Ω := ΩΛ +

∑

i Ωi, and its deviation from unity defines the curvature
parameter Ωk := −k/ (aH)2 = 1 − Ω. Accordingly, the critical energy density is defined
as the energy density at which spatial sections are exactly flat, i.e. Ω = 1.

1.2. Present day values of the expansion rate and energy
density parameters

An important role in the determination of the present day Hubbe rate and energy den-
sity parameters have measurements of the cosmic microwave background (CMB) e. g.
Komatsu et al. (2009a), supernovæ 1A (SNe) by Kowalski et al. (2008), baryon acous-
tic oscillations (BAO) Percival et al. (2007) and Big Bang nucleosynthesis Fields and
Sarkar (2006). The remarkable consistency of these measurements builds a pillar in the
so-called concordance model of modern cosmology.

One important cosmological observable is the current expansion rate, or Hubble rate,
H0. First observed by Hubble (1929), several experiments have since confirmed that the
light emitted by distant galaxies is redshifted. This observation is interpreted as a rela-
tivistic ‘Doppler-shift’ due to the recession of galaxies by expansion of space. However,
this interpretation is misleading, as the distance between comoving observers increases
. To account for the uncertainty in the value of the Hubble rate it is customary to use
the dimensionless constant h defined through

H0 = 100h km s−1Mpc−1 .
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1.2. Present day values of the expansion rate and energy density parameters

The Hubble radius H−1
0 ≃ 3000h−1Mpc ≃ 9.26h−11027cm corresponds to the lengthscale

of the presently visible part of the universe, the Hubble time H−1
0 ≃ 9.778h−1109 years

amounts to the order of magnitude of the time that has passed since the energy density
was close to the Planck density, and the critical energy density ρcrit,0 ≃ 1.9h210−29g cm−3.

In the concordance model the value of the Hubble parameter is

h ≃ 0.71 .

Moreover, the currently relevant components of the cosmological fluid and their respec-
tive equation of state within the concordance model are:

Figure 1.1.: Illustration of the
value of present day
energy density pa-
rameters by a union
of different measure-
ments according to
Kowalski et al. (2008).

Radiation: The photons in the universe and any
gas of relativistic particles such as neutrinos
come with an equation of state pr = ρr/3.
This component contributes only a tiny frac-
tion, Ωr,0 ≈ 10−5, to the total energy density.

Baryonic matter: The energy density of
known species of matter such as atoms and
nuclei which are non-relativistic at present
represents a fraction of Ωb,0 ≃ 0.04 of the
total energy density. Being non-relativistic
means that their pressure is negligible, p ≪ ρ,
so that their equation of state is approxi-
mately pb = 0.

Nonbaryonic matter: The existence of an
yet unknown form of matter, commonly re-
ferred to as ‘Cold Dark Matter’ with Ωc,0 ≃
0.23 is required to reconcile several observa-
tional facts concerning structure formation
and galactic rotation curves, among others.
The adjective ‘Cold’ is meant to express that
this matter is also non-relativistic, so that
pc = 0.

Dark Energy: The major component in to-
day’s cosmic inventory is called ‘Dark En-
ergy’ as its origin also remains to be under-
stood. The term Dark Energy is associated
with any kind of matter whose equation of
state is pde ≃ −ρde. For a cosmological con-
stant this equation holds exactly which makes
it a popular candidate. At present, Dark En-
ergy contributes about Ωde,0 ≃ 0.73 to the
total energy density.

5



1. Outline of standard cosmology

Consequently, the total energy density is very close to the critical density,

Ω0 ≃ 1.02 ± 0.02 ,

which means that spatial geometry is almost Euclidean on large scales. The measurement
of these parameters allows for a reconstruction of the history of space and matter back to
about 13.7 billion years ago as well as for a cautious outlook into their future evolution.

1.3. Current view of the evolution of matter and space

From the Friedmann equation (1.3) and equation (1.4) it follows that the influence of
the different components of the cosmological fluid on the expansion of space varies with
time. This suggests a classification of cosmological epochs in correspondence with the
respective governing source of spatial evolution. The cosmological epochs are:

Present & future: Dark Energy Domination. Today, the evolution of the scale
factor has become dominated by Dark Energy. With matter and radiation diluted
by the spatial expansion, Dark Energy will eventually remain the single relevant
source in the Friedmann equation which will lead to an exponential expansion of
space 1.

Past: Matter dominated era. Roughly six billion years ago, the energy density of
matter Ωm = Ωb + Ωc exceeded the energy density of Dark Energy and was the
dominant cause of cosmological expansion. This epoch is characterized by the for-
mation of stars and galaxies out of small density perturbations in the cosmological
fluid that consists mainly of hydrogen and helium at this time. The era includes
the time at which the CMB was released.

Remote past: Radiation dominated era. Further in the past spatial evolution
was dominated by radiation. As temperature decreased a plasma of quarks and
gluons combined to baryons and electrons and protons did no longer annihilate.
This set the stage for the synthesis of the light elements.

Late in the radiation dominated era temperature and energy density are well beyond
the accessible range of particle accelerators. It is possible that there are more particle
species than are evident today. For example, according to supersymmetry, the number
of particle species must be doubled at least. Moreover, in the classic picture, energy
density inevitably increases to the Planck density as we go backwards in time. Quantum
effects on geometry can no longer be neglected and General Relativity can no longer
be trusted in this case. It is expected that a yet unknown theory of quantum gravity
can address physics beyond this scale. The occurrence of infinite energy density and the
associated initial singularity within the classic framework is known as the ‘Big Bang’.

1Since the nature of Dark Energy is yet unknown, statements concerning the future evolution must be
taken with care.
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1.3. Current view of the evolution of matter and space

Figure 1.2.: Temperature fluctuations in the CMB. The statistical properties of these
fluctuations allow for a determination of cosmological parameters.

1.3.1. The Cosmic Microwave Backround (CMB) radiation

A very important observable in modern cosmology that is relevant in the second part of
this thesis is the cosmic microwave background (CMB) radiation that was first discovered
by Penzias and Wilson (1965). Tracing back the evolution of space and matter to ≈ 13.4
billion years ago, as indicated in the last subsection, it is supposed that the structures
we observe today originated from a plasma which once had tiny density perturbations.
At that time the plasma was optically thick, that is photons continously scattered with
free electrons so that their mean free path was very short. As the plasma cooled down
by spatial expansion nuclei and electrons ‘re-’combined to form neutral atoms and the
photons began to free-stream. The spatial slice at which this ‘re-’combination happended
is called the surface of last scattering. Today, the photons that emanated from the surface
of last scattering reach us almost isotropically with the same temperature distribution
as at t = tdec, that is an almost perfect blackbody spectrum with central temperature
T = 2.725K and small deviations from isotropy of the order 10−5 in relative amplitude.
On their way, the photons have been redshifted by cosmic expansion by a factor of
O
(

103
)

. The density fluctuations in the plasma correspond to a series of maxima and
minima in the inhomogeneities on the last scattering surface. Today we measure the
power spectrum of these anisotropies in the CMB radiation on a two-sphere that is the
intersection of our past lightcone with the surface of last scattering.

As remarked in section 1.1 the remarkable homogeneity of the CMB radiation means a
good justification for the Robertson-Walker approach to cosmic geometry. Moreover, the
spectrum of the density perturbations allows to extract many cosmologically relevant pa-
rameters. Recent measurements of the COBE and WMAP collaborations together with
more data that is expected from the ongoing Planck mission allow for a determination of
these parameters to high accuracy. A detailed presentation of the physics of the cosmic
microwave background is to be found in the textbook by Durrer (2008). Despite its
remarkable achievements, there is also some discomfort with the Big Bang scenario.
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1. Outline of standard cosmology

1.4. Discomfort with the standard Big Bang scenario

Though the standard Big Bang scenario provides a compelling explanation of many
cosmological observations, some properties remain that may cause astonishment. Among
these are:

Spatial flatness. The evolution of the curvature parameter is described by (neglect-
ing Λ)

dΩ
d ln a

= −(1 + 3w) (1 − Ω) Ω . (1.5)

Thus, if the equation of state parameter obeys w > −1/3, |1 − Ω| will grow with
time. The observation that Ω0 ≃ 1.02 ± 0.02 implies

|Ω (tP l)| ≤ O
(

10−61
)

.

Homogeneity across super horizon scales. The distance light travels expressed
in comoving coordinates is

rp =
∫

d ln a
aH

.

and is called the comoving particle horizon. The hubble radius in comoving co-
ordinates is (aH)−1 = a(1+3w)/2H−1

0 so that for w > −1/3 the comoving particle
horizon grows with time. In the the standard big bang scenario the distance light
had travelled between t = tP l and the time of last scattering was released amounts
to ∼ 1◦ on the CMB map. Regions separated larger than 1◦ are not in causal
contact. The fact that the temperature of the CMB is uniform to 10−5 is thus very
surprising.

Origin of structure. The structures in the universe are thought to have grown
from small density perturbations like those that are observed in the CMB. What
is the origin of these perturbations?

Within the standard Big Bang scenario an adequate explanation of these issues cannot
be given so that they must be anchored within initial conditions. However, space being
flat to O

(

10−61
)

, spatial homogeneity on super horizon scales with inhomogeneity of the
order 10−5 might appear as peculiar initial conditions that require further investigation.
Both the flatness and horizon problem appear under the assumption that the equation
of state parameter of the cosmological fluid obeyed w > −1/3 at all times. Any form of
matter with w < −1/3 may thus be an interesting candidate for the solution of these
problems and in fact this equation of state can easily be realized by scalar fields.
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2. The paradigm of cosmological inflation

Inflation is a cosmological epoch that is assumed to have occurred before the temperature
was Treh . 1016GeV, cf. Bassett et al. (2006), in the the standard Big Bang scenario. A
first version of the inflationary theory was presented by Starobinsky (1980) but it became
widely known through the work of Guth (1981), which is now called ‘Old Inflation’. The
idea was further developed by Linde (1982); Albrecht and Steinhardt (1982) and in
particular Linde (1983). Linde (2008) provides a recent overview of the subject, while a
detailed presentation is given by Baumann (2009).

Inflation now has become the prevailing paradigm for the explanation of spatial flat-
ness, large scale homogeneity and the origin of structure. Generally, within RW geom-
etry, inflation is defined as an era in which the comoving hubble radius decreases with
time, which is equivalent to acceleration of the scale factor,

Inflation ⇐⇒ ∂t (aH)−1 < 0 ⇐⇒ ∂2
t a > 0 .

This definition is independent of the underlying theory of Gravity. In General relativity,
these conditions can be translated into a requirement on the equation of state of the
cosmological fluid via Raychaudhuri’s equation (1.1),

Inflation ⇐⇒ ρ+ 3p < 0 . (2.1)

Throughout this chapter we assume Λ = 0. In the forthcoming sections we will review
a standard approach to cosmological inflation.

2.1. Scalar field inflation

The prevailing theories on the cause of inflation rely on scalar fields. In this section we
will give a short introduction to the standard approach via a single, minimally coupled,
scalar field dominated by its potential energy. Thus the action of the scalar field is

S =
∫

d4x
√−gLφ =

∫

d4x
√−g

(

−1
2
gµν∂µφ∂νφ− V (φ)

)

,

for which the Euler-Lagrange equations yield

∂µ
∂Lφ

∂ (∂µφ)
− ∂Lφ

∂φ
= 0 =⇒ −�φ+ V ′ = 0 , � := ∇µ∇µ . (2.2)

From the definition of the stress-energy tensor

Tµν :=
−2√−g

∂

∂gµν

(√−gLmat
)

,

9



2. The paradigm of cosmological inflation

one obtains

Tµν = ∂µφ∂νφ−
(

1
2
gαβ∂αφ∂βφ+ V

)

gµν .

Einstein’s field equations can be derived from the action principle by adding the Einstein-
Hilbert Lagrangian LEH = R/ (16π). A comparison with the stress energy tensor of a
perfect fluid (1.1) shows that one can relate the scalar field to a perfect fluid by the
identification

ρ = −1
2
gµν∂µφ∂νφ+ V , p = −1

2
gµν∂µφ∂νφ− V , uµ =

∂µφ
√

−gµν∂µφ∂νφ
,

cf. Madsen (1988). Furthermore, given that there is a three-dimensional spatial slice on
which the scalar field is constant, there exists a foliation of spacetime with RW geometry.
In this frame the equation of motion (2.2) reduces to

∂2
t φ+ 3H∂tφ+ V ′ = 0 , (2.3)

and the Friedmann equation becomes

H2 +
k

a2
=

8π
3

(

1
2

(∂tφ)2 + V

)

. (2.4)

The energy density, pressure and velocity associated with the scalar field are

ρ =
1
2

(∂tφ)2 + V , p =
1
2

(∂tφ)2 − V , uµ = δµ
t .

Looking at equation (2.1) it is readily seen that inflation occurs when (∂tφ)2 < V (φ). If
the potential energy is sufficiently large the friction term will dominate equation (2.3),
that is ∂2

t φ ≪ H∂tφ, such that the field will change only little on the expansion timescale
H−1. Consequently, the energy density of the scalar field is nearly constant which
effectively acts as a cosmological constant and leads to quasi exponential growth of the
scale factor. This inflationary phase continues for as long as potential energy dominates.
It ends with oscillations of the field around the minimum of the potential and its eventual
decay gives way to the reheating era that is associated with the begin of the standard Big
Bang scenario, cf. Albrecht and Steinhardt (1982); Kofman et al. (1994, 1997); Bassett
et al. (2006).

The latter two inequalities are known as the slow-roll regime of a given potential. In
fact, in practice it is useful to define the slow-roll parameters

ǫ :=
1

16π

(

V ′

V

)2

and η :=
1

8π
V ′′

V
,

in order to quantify whether a given potential allows for an extended inflationary phase.
Given that these parameters are smaller than unity and the energy density is sufficiently
large (but smaller than Planck density) the model provides an inflationary solution.

We can further restrict our qualitative discussion of the solutions to Euclidean spa-
tial sections because curvature quickly becomes negligible due to the quasi exponential
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2.2. Debate on initial conditions

expansion of physical scales. In this case, equations (2.3) and (2.4) can be written as a
single, nonlinear second-order equation for φ(t). Moreover, since the resulting equation
does not contain t explicitly, it can be reduced to a first-order equation for v := ∂tφ,

vv′ + v
√

24π (v2/2 + V ) + V ′ = 0 .

Solutions of this equation approach an attractor solution exponentially quickly for a
large class of potentials V (φ), cf. Helmer and Winitzki (2006). Thus, regardless of the
initial starting point (φ, ∂tφ), the solution essentially evolves along the attractor curve
after a short time and this property coined the phrase that inflation ‘forgets’ its initial
conditions.

These properties make an inflationary phase appear ubiquitous in the theory of cos-
mological scalar fields. However, as we discuss in more detail later on, homogeneity of
the scalar field is a crucial assumption and inhomogeneities might prevent the onset of
inflation.

Moreover, it should be mentioned that instead of specifying a potential V (φ) and
deriving the corresponding inflationary evolution one could also proceed the other way
around. As was worked out by Ellis and Madsen (1991) there exists an algorithm that
allows to exactly construct a potential V (φ) that provides any desired evolution history
of the scale factor a(t).

2.1.1. Explanation for flatness, large scale homogeneity and tiny
inhomogeneities

Notice that during inflation the equation of state parameter associated with the scalar
field obeys −1 ≤ w < −1/3. Consequently, it follows from equation (1.5) that Ω =
1 becomes an attractor which means that spatial curvature is diminished as inflation
proceeds. Moreover, when w < −1/3 the comoving particle horizon decreases. One
can estimate that an expansion of physical scales by a factor of ≃ 60 efolds during the
inflationary phase is sufficient to resolve the flatness and the horizon problem.

Furthermore, density perturbations arise through fluctuations in the scalar field which
lead to a local delay of the end of inflation, δt = δφ/∂tφ. The typical amplitude of
the fluctuation during a time interval t = H−1 is |δφ| ≃ H/(2π), cf. Vilenkin and Ford
(1982); Linde (1982). This allows for an estimate of the amplitude of the relative density
contrast by

δH :=
δρ

ρ
≃ δt

t
≃ H2

2π∂tφ
.

This result was first derived by Mukhanov and Chibisov (1981) and subsequently by
Hawking (1982); Starobinsky (1982); Guth and Pi (1982); Bardeen et al. (1983).

2.2. Debate on initial conditions

In the last section it was pointed out that the inflationary process will inevitably occur
once the potential energy dominates over the kinetic term. This observation was based

11



2. The paradigm of cosmological inflation

on the assumption that spacetime obeys RW geometry and therefore raises the question
whether inflation can occur in anisotropic or inhomogeneous spacetimes. Since in scalar
field inflation the potential energy effectively acts as a cosmological constant the cosmic
‘no hair’ conjecture has frequently been employed to shed some light on the problem.
Roughly speaking, this conjecture states that spacetimes with a positive cosmological
constant and expanding spatial sections approach a de Sitter solution asymptotically.
This is of course not a precise definition but several rigorous theorems have been proven
under this general theme. One of these theorems concerns the evolution of the Bianchi
spacetimes which are homogeneous but anisotropic universes was presented by Wald
(1983): “All initially expanding Bianchi cosmologies (except Bianchi type IX), contain-
ing a positive cosmological constant and matter fields satisfying the dominant and strong
energy conditions evolve toward the de Sitter solution on an exponentially rapid time
scale.” Considering inhomogeneous universes Barrow and Stein-Schabes (1984) found a
solution with cosmological constant and pressureless matter that approaches a de Sitter
solution locally, i.e. inside the horizon of each observer. Subsequent studies, as summa-
rized by Goldwirth and Piran (1992), have indicated that once the cosmological constant
begins to dominate and inflation has started in an anisotropic or inhomogeneous uni-
verse, the deviation from isotropy or homogeneity will decay. Moreover, this statement
is also valid when scalar field matter is considered, though the respective stress-energy
tensor does not obey the strong energy condition during inflation (by definition).

However, these results apply only once inflation is already underway so that they are
not sufficient to answer the question of whether inflation begins in the first place under
general anisotropic or inhomogeneous initial conditions.

For the case of anisotropic initial conditions Rothman and Ellis (1986) show that,
within certain caveats, anisotropy generally does not prevent but possibly enhances in-
flation. Raychaudhuri and Modak (1988) however conclude that: “one cannot reach
any definitive conclusion - all that one can say is that in a universe in which different
regions exhibit all possible behaviour, some regions would indeed undergo inflation.” For
inhomogeneous initial conditions the question was addressed numerically by Goldwirth
and Piran (1990). They find that the scalar field must have a value suitable for inflation
across several horizon lengths in order for inflation to begin. The result was confirmed
with the analytical approach by Calzetta and Sakellariadou (1992). The most general
study by Vachaspati and Trodden (2000) proves and generalizes these findings: “Infla-
tionary models based on the classical Einstein equations, the null energy conditions, and
trivial topology, require initial homogeneity on super-Hubble scales.” Accordingly, ‘local’
inflation is not possible under these assumptions.

12



3. Eternal inflation, vacuum decay and
bubble collisions

3.1. Eternal inflation

The essence of eternal inflation is that inflation may never end in the whole spacetime.
The general idea was developed already in the early works, cf. Guth (1981); Vilenkin
and Ford (1982); Linde (1982), on scalar field inflation when it was realized that the field
fluctuations have a ‘selfreproducing’ regime. The evolution of the scalar field depends
on how the fields random fluctuations compare to its classical background trajectory.
When the fluctuations are dominated by the deterministic change, δφ ≪ ∂tφH

−1, the
evolution proceeds essentially unaltered. However, when the classical change is much
smaller than the fluctuations, δφ ≫ ∂tφH

−1, the field’s evolution resembles a random
walk. Consequently, if the field is approximately homogeneous across several horizon
sizes, cf. the discussion in the preceeding section, this region will continue to inflate
and potentially contains further fluctuation dominated regions, thereby ‘reproducing
itself’. In this picture inflation ends only locally, but proceeds forever globally. Strictly
speaking, the term eternal inflation is associated with inflationary models that continue
indefinitely into the future but not to the past as it has been argued by Borde et al.
(2003) that inflation cannot be ‘past-eternal’.

The phenomenon of eternal inflation also occurs in scalar field inflation if the poten-
tial has multiple local minima. In fact, the very first model of inflation by Guth (1981)
involved a scalar field in a so-called false vacuum, that is a local, but not global min-
imum of the potential. A quantum mechanical consideration of the configuration, cf.
Coleman (1977), shows that there is a non-vanishing probability for the field to tunnel
to another minimum with lower potential energy, thereby spawning regions (bubbles) of
lower potential energy, with energy confined to the domain wall. These bubbles appear
randomly at various places and times, with a fixed rate per unit four-volume. Accord-
ingly, in Guth’s original scenario inflation proceeds for as long as the field is stuck in
a false vacuum. Eventually, the collision of bubbles releases the energy of the domain
walls so that the universe becomes hot and passes over to the standard Hot Big Bang
scenario. However, this model of inflation is somewhat misleading. If the tunneling
probability is large, then bubbles nucleate near to each other and collide immediately so
that the inflationary phase is too short to solve any problems. If, on the other hand, the
probability of bubble formation is low, the bubbles do not collide and each of the bub-
bles resembles a separate empty open universe. Both options are unacceptable, which
has lead to the conclusion that this scenario cannot explain the inflationary process.
Consequently, ‘new inflation’ was abandoned with the advent of the ‘chaotic inflation’
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scenario by Linde (1983).

Spurred by astronomical evidence for Ω < 1 in the mid-1990s the idea of false vacuum
inflation and vacuum decay regained some interest. This originated in the fact that the
spacetime that represents the interior of the bubble can be foliated into homogeneous
spacelike slices on which the scalar field is constant and that these spatial sections have
a hyperbolic geometry. However, interest in these so-called open inflation scenarios, e.g.
Gott (1982); Bucher et al. (1995); Yamamoto et al. (1995); Linde (1999), has weakened
due to the fact that recent observations imply Ω ≃ 1, though the possibility that space
has a hyperbolic geometry is not yet excluded.

Eternal inflation and false vacuum tunneling have then once more returned to the fore
with the emergence of the ‘landscape’ idea in string theory, cf. Bousso and Polchinski
(2000); Susskind (2003); Kachru et al. (2003). A major driving force is the so-called ‘cos-
mological constant problem’, cf. Weinberg (1989); Carroll (2001); Padmanabhan (2003);
Peebles and Ratra (2003); Ellis (2003); Bousso (2008), that the value which is ascribed
to the cosmological constant is tiny, Λ ≈ 10−120. Attempts to calculate the energy den-
sity of the vacuum in quantum field theory ‘naturally’ suggest Λ ≈ 1. String theorists
argue that the problem of the smallness of the cosmological constant can be addressed
within the landscape paradigm. The landscape involves a very large number (& 10500)
of metastable vacua corresponding to the minima of the effective potential in field space
which differ in the geometry of spatial compactification. The value of the potential at
each minimum is the effective value of the cosmological constant in the corresponding
vacuum. Consequently, arbitrarily many bubbles with different values of their interior
vacuum energy density can be created by the tunneling process. It was shown by Garriga
et al. (2006) that vacua with Λ ≤ 0 do not allow any further tunneling, whereas vacua
with Λ > 0 keep up the decay chain as they give rise to many nested successor bubbles.

Unfortunately, string theory does not specify a single ‘preferred’ vacuum state so
that one is forced to determine the probability distribution of vacua as found by a
randomly chosen observer, an intricate task that is known as the ‘measure problem’ in
eternal inflation. The existing proposals for a probability measure fall in two classes,
designated as ‘volume-based’ and ‘worldline-based’. The difference between these classes
of measures is in the approach taken to construct the ensemble of observers. In the
volume-based approach, the ensemble contains every observer appearing in spacetime.
In the worldline-based approach the ensemble consists of observers appearing near a
single, randomly selected timelike geodesic.

More details and a thorough presentation of eternal inflation can be found in the
textbook by Winitzki (2009). Moreover, the collection of articles by Carr (2008) provides
a comprehensive overview on the debate on the uniqueness of the universe. In the next
section we will briefly indicate the field theoretic tunneling mechanism in Minkowski
spacetime.
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3.2. Decay of a metastable vacuum

U (φ)

φ
φ– φ+

Figure 3.1.: Illustration of a scalar field potential U(φ with two minima that allows for
quantum tunneling. The state φ = φ+ is called a false vacuum because it is
not a stable minimum due to decay to φ = φ– by quantum tunneling.

3.2. Decay of a metastable vacuum

A theory of vacuum decay with the neglection of gravitational effects based on instanton
methods was presented by Coleman (1977). In this section we will review the basic
arguments that allow to calculate a nucleation rate for vacuum bubbles in Minkowski
spacetime.

Consider a theory of a single scalar field with action given by equation (2.1). When
the potential U(φ) has two minima, say at φ = φ– and φ = φ+, with ǫ := U(φ+)−U(φ–),
the state φ = φ+ is called a false vacuum because it is not a stable state due to decay
by quantum tunneling, cf. Figure 3.1. The tunneling rate Γ = A exp (SE(φ+) − SE(φ)),
is given by the Euclidean action SE(φ) of the field configuration φ. The prefactor A
is difficult to calculate and is usually estimated to be of the order of unity. It can
be shown that a solution to the corresponding Euler-Lagrange equations must be O(4)
symmetric, so that φ is a function only of r̄2 := −t2 +x

2, the Euclidean distance from an
appropriately chosen center of coordinates. Accordingly, the simplified Euclidean action
takes the form

SE = 2π2
∫

dr̄ r̄3
(

1
2

(∂r̄φ)2 + U

)

,

with the equation of motion

∂2
r̄φ+

3
r̄
∂r̄φ− U ′ = 0 .

subject to the boundary conditions

lim
r̄→0

φ(r̄) = φ– , lim
r̄→∞

φ(r̄) = φ+ , ∂r̄φ
∣

∣

r̄=0
= 0 .
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Formally, a first integral of the equation of motion is

1
2

(∂r̄φ)2 − (U(φ) − U(φ+)) =
∫ ∞

r̄
dr̄′ 3

r̄′ (∂r̄′φ)2 and ǫ =
∫ ∞

0
dr̄′ 3

r̄′ (∂r̄′φ)2 .

To proceed, one makes a thin wall approximation, which means that one requires that
the field is nearly constant and equal to φ– within the bubble of radius r̄0, makes a sharp
step within a thin layer (the bubble wall), and tends to φ+ outside the bubble. This
means (∂r̄φ)2 /2 ≃ U (φ) −U (φ+) within the bubble wall and zero otherwise. Moreover,
it implies ǫ ≃ 3σ/r̄0 where

σ :=
∫ ∞

0
dr̄ (∂r̄φ)2 ≃

∫ φ+

φ–

dφ
√

2 (U(φ) − U(φ+)) ,

defines the surface energy density of the domain wall. Consequently, the action becomes

SE(φ) − SE(φ+) ≃ −π2

2
ǫr̄4

0 + 2π2σr̄3
0 ≃ 27π2σ4

2ǫ3
,

which determines the tunneling rate in the semiclassical approximation. The interpre-
tation is that the bubble ‘materializes’ in Minkowski spacetime, with its wall expanding
into the surrounding space and thereby converting the old vacuum to the new. The
bubble wall quickly accelerates and reaches essentially the speed of light so that it traces
out the hyperboloid r̄2 = −t2 + x

2.
The interior of the hyperboloid may be foliated by ‘infinite’, (though cf. Ellis and

Stoeger (2009)), uniform, hyperbolic spatial sections, which constitute a hyperbolic RW
geometry. Given that the scalar field does not tunnel directly to the minimum of the
potential but slightly uphill, inflation, as it is explained in the last chapter, may occur
within the bubble in which case it is called open inflation, cf. Bucher et al. (1995);
Yamamoto et al. (1995); Linde (1999) and the illustration in Figure 3.2.

3.3. Classical bubble evolution

This approach was extended for the inclusion of gravity by Coleman and de Luccia
(1980). The subsequent classical evolution of bubbles in a vacuum has been studied in
detail by Blau et al. (1987); Berezin et al. (1987); Aurilia et al. (1989); Aguirre and
Johnson (2005). Their analysis of the bubble evolution is based on the Israel junction
method, which is explained in Appendix D. The method allows to join different solutions
of Einstein’s equations such that Einstein’s equations are also valid in the resulting
spacetime. It is thus possible to make a junction of a bubble with vacuum energy density
Λ– and surface energy density σ and a vacuum background with vacuum energy density
Λ+. The involved spacetimes are de Sitter and Schwarzschild – de Sitter respectively.
For convenience we may identify

Λ+ := U(φ+) , Λ– := U(φ–) , k := 4πσ .
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Figure 3.2.: Illustration of how the interior of a bubble, nucleated by quantum tunneling
of the scalar field, may give rise to inflation and the subsequent cosmological
evolution. Figure from Winitzki (2008).

It follows from the junction conditions that the Schwarzschild mass M in the exterior
spacetime is related to the surface energy density σ, the areal radius R and the proper
velocity Ṙ. It turns out to be useful to introduce dimensionless variables z and T for
the areal radius R and the proper time τ on the bubble via

z :=
3

√

L2

2M
R , T :=

L2

2k
τ , L2 :=

1
3

√

∣

∣

∣(Λ+ + Λ– + 3k2)2 − 4Λ+Λ–

∣

∣

∣ .

The evolution equation of the areal radius of the bubble wall can be cast into the form
of the equation of motion of a point particle of unit mass in a one-dimensional potential

(

dz

dT

)2

+ V (z) = Q , V := −
(

z2 +
2Y
z

+
1
z4

)

,

Q := − 4k2

(2M)2/3 L8/3
, Y :=

Λ+ − Λ– + 3k2

3L2
.

(3.1)

The solutions depend solely on the parameters Λ+,Λ–,M and were studied and cataloged
by Blau et al. (1987); Aguirre and Johnson (2006).

The underlying assumption of this picture is that the bubble nucleates in a vacuum
background. The calculation of the probability of bubble nucleation in matter domi-
nated, or inhomogeneous backgrounds is a complicate task and has rarely been addressed
in the literature, cf. Abbott et al. (1987). However, given that bubble nucleation is possi-
ble in such backgrounds it would be interesting to figure out how the presence of matter,
or inhomogeneity, affects the subsequent evolution of the bubble, a question that can
well be addressed within the aforementioned junction approach. The first part of the
present thesis is therefore devoted to the study of the evolution of vacuum bubbles in
non-vacuum backgrounds.
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3.4. Observability of bubble collisions

Another aspect in the evolution of vacuum bubbles is the possibility of bubble collisions
some implications of which were studied already by Hawking (1982); Guth and Weinberg
(1983). Shortly thereafter, Gott and Statler (1984) proposed to constrain inflationary
models by requiring that they do not allow for a bubble collision in our past lightcone as it
was then generally assumed that those were incompatible with cosmological observations.
This preconception was questioned by Garriga et al. (2007) who showed that the expected
number of bubble collisions in the past lightcone of an observer in eternal inflation
depends on the position of the observer within the bubble, thereby defining a ‘center’ of
the bubble and a preferred frame for the overall bubble distribution. This work inspired
a series of papers by Aguirre et al. (2007); Freivogel et al. (2007); Chang et al. (2008);
Aguirre and Johnson (2008); Aguirre et al. (2009); Freivogel et al. (2009) who were the
first to assume that bubble collisions might exist in our past lightcone. An important
conclusion of these works is that, if compatible with observations, there is no reason to
expect that a collision is not causally accessible. However, the signatures of the collision
are stretched during the inflationary epoch so that we must assume that inflation does
not last much longer than required to satisfy the observational bound on Ωk. Though
this might be considered as tuning there is some indication that the landscape scenario
even favors a small number of inflationary e-folds, cf. Freivogel et al. (2006). Under a
variety of approximations, Chang et al. (2009) have indicated how a bubble collision
leads to a shift in the reheating surface, i. e. the spatial slice where slow roll of the scalar
field comes to an end, and how this shift translates to a perturbation in the surface of
last scattering and consequently the CMB. They point out that a bubble collision can
in principle be seen as hot, or cold, spot in the CMB. The spots must obey azimuthal
symmetry as a consequence of the SO(2, 1) symmetry of the spacetime describing the
collision of two vacuum bubbles, cf. Garriga et al. (2007). This raises the remarkable
possibility that the dynamics of false vacuum inflation are accessible to observational
cosmology.

In general, any modulation of the CMB fluctuations may be decomposed as

∆T (n̂)
T0

= (1 + f (n̂)) (1 + δ (n̂)) − 1 ,

cf. Gordon et al. (2005). Here δ (n̂) represents the effect of the fluctuations of the scalar
field in direction n̂ and the signal that is induced by a collision can be incorporated in
f (n̂). In particular, Chang et al. (2009) have derived a signal of the form

f (n̂) = (c0 + c1 cosϑ) · Θ (ϑD − ϑ) . (3.2)

A similar kind of signal is at the heart of the second part of the thesis where we ask
whether such spots can possibly be identified with the help of Minkowski functional
statistics of the CMB temperature map.

A status report on the observability of cosmic bubble collisions that contains many
further references is to be found in Aguirre and Johnson (2009).

18



Part I.

Vacuum Bubbles on Dynamical
Backgrounds
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4. Introduction to Part I

Recently, papers have accumulated which suggest that tunneling rates in the ‘landscape’
of string theory can be high, so that lifetimes of metastable vacua can be smaller than
a Hubble time. In particular Tye (2006) and Tye and Wohns (2009) have argued that
tunneling rates can be enhanced due to resonant tunneling. Moreover, in the context
of Dirac-Born-Infeld inflation, Brown et al. (2007) have found that the decay rate can
become orders of magnitude larger than in the Coleman-De Luccia prediction. Conse-
quently, one may question the effectivity of the cosmic no-hair mechanism in this case
and ask whether bubbles may form in backgrounds which are not vacuum dominated
but contain a dynamically relevant amount of matter. In fact, inhomogeneous initial
states may even further enhance tunneling rates, cf. Saffin et al. (2008). This suggests
to consider tunneling and evolution of vacuum bubbles in non-vacuum and inhomoge-
neous backgrounds which is the subject of this part of the thesis, cf. Figure 4.1. The
machinery to study bubble evolution in inhomogeneous backgrounds was already set up
by Berezin et al. (1987) and in particular by Fischler et al. (2008). Here we will elaborate
on this approach and study the effects of surrounding matter and inhomogeneity.

We consider a spherical bubble with vacuum energy density Λ– moving into a region of
higher vacuum energy density Λ+ and assume that the region that separates the different
vacua is small compared to the physical radius of the bubble, such that it can be treated
as a domain wall. This corresponds to the so-called thin shell approximation. Further,
we assume that the interior of the bubble is represented by de Sitter spacetime, while
the exterior spacetimes should allow for the presence of matter. Thus, as exterior space-
times, we will consider solutions of Friedmann-Robertson-Walker type, or, for radially
inhomogeneous dust or curvature profiles, of Lemaître-Tolman type. It is the inclusion
of matter and curvature in the background that is the new ingredient that is studied
in the present work. As will be shown, already the presence of matter has important
consequences for the evolution of the domain wall. Moreover, it turns out that curvature
inhomogeneities as well as rapid phase transitions in the background affect the motion of
the domain wall. This raises the question whether those perturbations of the bubble wall
will lead to potentially observable effects. In the context of bubble collisions, cf. Aguirre
and Johnson (2009), it has been pointed out that a disturbance in the trajectory of the
bubble wall may lead to a redshift of the reheating surface and therefore is potentially
in the CMB.

This part of the thesis contains an introduction to the basic properties of the Lemaître-
Tolman spacetime in chapter 5. This spacetime is matched to a de Sitter solution along
a common spherically symmetric boundary, the domain wall. We require that this junc-
tion is a valid solution to Einstein’s field equations which means that the Israel junction
conditions are to be fullfilled. These will be discussed for the Lemaître-Tolman and
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non-vacuum

state

φ+ φ–

U(φ)

dS

Figure 4.1.: Illustration of the tunneling process in a not yet vacuum dominated region
of space. The scalar field rests at φ = φ+ and thus effectively acts as a
cosmological constant. We assume that, as a vacuum bubble nucleates,
the background is dominated by another form of matters which alters the
subsequent evolution of the bubble in comparison to the vacuum case.

Friedmann-Robertson-Walker spacetimes in a unified manner in chapter 6. Chapter 7
presents an extensive analysis of the evolution of the domain wall on a variety of different
exterior spacetimes. We start with a brief review of the evolution on a vacuum back-
ground and then proceed with the study of the domain wall’s motion on homogeneous
dust backgrounds, flat backgrounds with a radially increasing dust profile, backgrounds
with radial inhomogeneities in curvature and dust density and in a background with
homogeneous matter that undergoes a rapid phase transition. In the last chapter of this
part we summarize and draw conclusions about the influence of a dynamical background
on the evolution of a domain wall.
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5. The Lemaître-Tolman spacetime

The Lemaître-Tolman spacetime, (Lemaître (1933); Tolman (1934)), is a spherically
symmetric spacetime with a dust source. In the absence of pressure the acceleration
of the dust particles vanishes, i. e. uµ∇µu

ν = 0, which means that the dust particles
move on timelike geodesics. This allows to rescale the time coordinate of the comoving
synchronous coordinate system such that t is the proper time of the dust particles.
Hence, by virtue of Einstein’s equations the line element of a spherically symmetric
spacetime can be simplified to

ds2 = −dt2 +
(∂rR(t, r))2

1 + 2E(r)
dr2 +R2(t, r)dΩ2 . (5.1)

Details of the derivation are provided in Appendix B. Here E is an arbitrary function
constrained to E ≥ −1/2 to avoid a change in the signature of the metric. From
Einstein’s equations the evolution of R is determined by

(∂tR)2 = 2E +
2M
R

+
Λ
3
R2 , (5.2)

where M(r) is another arbitrary function. The meaning of M can be read off from the
other non-trivial Einstein equation which determines the evolution of the energy density
ρ,

8πρ =
2∂rM

R2∂rR
, (5.3)

Thus M(r) can be interpreted as the active gravitational mass contained in the shell
of constant coordinate radius r. Note that, unless E = 0, this is not equal to the
corresponding volume integral of the energy density. In regions where E < 0 the active
gravitational mass is less than the sum of its constituents while it is greater where E > 0.
This vivid illustration of gravitational binding energy was at first pointed out in Bondi
(1947).

The formal solution of equation (5.2) is

∫ R

0

dR̃
√

2E + 2M
R̃

+ Λ
3 R̃

2
= t− tB . (5.4)

Here tB(r), the bang time function, is a third arbitrary function that defines the posi-
tion dependent time of the big bang. Thus, the Lemaître-Tolman spacetime has three
free functions E,M, tB that have to be specified in order to fix the model completely.
However, the form of equation (5.1) is invariant under changes of the radial coordinate
r̃ = f(r), so there is also a degree of freedom in picking coordinates.
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5. The Lemaître-Tolman spacetime

In general, the integral in equation (5.4) involves elliptic functions but a parametric
solution can be given when Λ = 0. The solution depends on the sign of E and is classified
accordingly.

• Elliptic, E < 0:

R =
M

−2E
(1 − cos η) , (5.5a)

t− tB =
M

(−2E)3/2
(η − sin η) . (5.5b)

The crunch time is tC := tB + 2πM/ (−2E)2/3.

• Parabolic, E = 0:

R =
[

9
2
M (t− tB)2

]1/3

. (5.6)

• Hyperbolic, E > 0:

R =
M

2E
(cosh η − 1) , (5.7a)

t− tB =
M

(2E)3/2
(sinh η − η) . (5.7b)

The dimensionless quantity η is defined by η(t, r) :=
√

|2E(r)|
∫ t

tB
dt̃/R(t̃, r). When E

changes sign these equations may still be applicable and the local time evolution is gov-
erned by the local sign of E. For example, it is perfectly possible to have a negatively
curved, expanding space in between two positively curved regions that undergo gravi-
tational collapse, see Figure 5.1. This and other examples of curious properties of the
Lemaître-Tolman spacetime can be found in Plebanski and Krasinski (2006). Further-
more, in the limit of small R, the solutions with E 6= 0 reduce to the parabolic case
(5.6).

In the subcase M = constant the dust source vanishes. Then, depending on the
presence of a cosmological constant, the Lemaître-Tolman spacetime corresponds to the
Kottler (1918), or Szekeres-Kruskal-Schwarzschild spacetime, (Szekeres (1960); Kruskal
(1960); Schwarzschild (1916)), in geodesic coordinates. Here, as was shown by Hellaby
(1996), the choice of the functions E and tB determines which part of the manifold is
covered.

With a constant bang time function and E/M2/3 = constant the Lemaître-Tolman
spacetime reduces to the Friedmann-Robertson-Walker spacetime Friedmann (1924).

Shell-crossing singularities

The dust density defined by equation (5.3) becomes infinite where R = 0 6= ∂rM and
where ∂rR = 0 6= ∂rM . The former corresponds to the big bang singularity at t = tB,
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Figure 5.1.: Diagram of a Lemaître-Tolman spacetime with a sign changing curvature
and Λ = 0. Along the blue lines we have R = constant. At any instant t > tB
there are two centers of symmetry. Regions to the left and to the right of
the vertical red lines have E < 0 and experience gravitational collapse, while
we have E > 0 in between where spatial sections expand at all times. The
contour R = 0 represents the boundary of the spacetime, part of it are the
big bang and big crunch surfaces.

while the latter represents the occurrence of a so called shell-crossing singularity. At a
shell-crossing singularity the physical distance between two adjacent dust shells vanishes
which enforces the divergence of the matter density. Shell crossings are considered as
artifacts in the Lemaître-Tolman solution because it is expected that in real astrophysical
situations, as the matter becomes more dense, pressure gradients arise and prevent the
shells from collision.
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6. Spacetime junction

6.1. General considerations

In this section we will formulate the spacetime junction conditions, as introduced in Ap-
pendix D, that arise in the course of matching the Lemaître-Tolman (LT), or Friedmann-
Lemaître-Robertson-Walker (FLRW) to a de Sitter (dS) spacetime across a timelike,
spherically symmetric hypersurface Σ. This hypersurface shall represent the domain
wall that separates the regions of different vacua and matter content, cf. Berezin et al.
(1987); Fischler et al. (2008). The line element of the hypersurface is

ds2
Σ = −dτ2 + R̄2(τ)dΩ2 . (6.1)

Here τ is the proper time on the shell and R̄(τ) represents the time evolution of the areal
radius. We refrain from introducing Gaussian normal coordinates but instead identify
each τ = constant slice of Σ with a (t = constant, r = constant) hypersurface in M+ and
M−. Hence, with identification of the angular variables, the worldsheet of the bubble
in M± can be parameterized as

(

t̄±, r̄±
)

. Henceforth an overbar shall represent the
evaluation of a quantity on Σ and for clarity the index ± will be omitted when possible.
The basis vectors on Σ are

eµ
τ = ˙̄tδµ

t + ˙̄rδµ
r, eµ

ϑ = δµ
ϑ and eµ

ϕ = δµ
ϕ ,

where a dot refers to a partial derivative with respect to τ . Consequently, the first
junction (D.1) becomes

˙̄t
2

= 1 +

(

∂r̄R̄
)2

1 + 2Ē
˙̄r2
, (6.2)

and we choose the proper time of the bubble such that ˙̄t > 0. The normal vector is

nµ = s
∂r̄R̄

√

1 + 2Ē

(

˙̄tδr
µ − ˙̄rδt

µ

)

, with s = ±1 . (6.3)

It is defined up to a sign only. This determines how M− and M+ are ‘sticked together’.
The respective conditions for the FLRW and the dS part follow from the LT expressions

by setting 2E(r) = −kr2, with k = constant, tB = constant and M(r) ∝ r3.
For the second junction we note that due to spherical symmetry only the two com-

ponents Kτ
τ and Kϑ

ϑ of the extrinsic curvature tensor are independent. Therefore the
stress-energy tensor on the shell has to be of perfect fluid form and this motivates to
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6. Spacetime junction

define Sτ
τ := −σ and Sϑ

ϑ := P . We will take the most conservative choice in the equation
state of the shell by setting

P = −σ ,
Thus, the energy density of the domain wall is of vacuum type and there is no additional
matter present on the surface. Of course, one might consider other equations of state,
for example Fischler et al. (2008) assume a linear equation of state P = wσ and explore
the corresponding bubble evolution for several values of w.

Having fixed the equation of state of the domain wall the conditions (D.2) reduce to

4πσ =
[

Kϑ
ϑ

]

, (6.4a)

−8πσ =
[

Kτ
τ +Kϑ

ϑ

]

. (6.4b)

Similarly, equations (D.4a) and (D.4b) become

σ̇ =
[

Tαβe
α
τ n

β
]

, (6.5)

where T±
αβ are the components of the respective stress-energy tensors. Equation (6.5) is

an integrability condition for (6.4a) and (6.4b), so only two of these three equations are
independent. Therefore, we will only solve the equations (6.4a) and (6.5), with (6.4b)
being fulfilled identically. Hence, we rewrite the ϑϑ-component of equation (D.3) with
the help of the first junction condition (6.2) and (5.2) to arrive at

Kϑϑ = −sR̄
√

˙̄R
2

+ 1 − 2M̄

R̄
− Λ

3
R̄2 ,

Using this in equation (6.4a) gives the equation of motion for R̄

4πσR̄ = s–

√

˙̄R
2

+ 1 − Λ–

3
R̄2 − s+

√

˙̄R
2

+ 1 − 2M̄

R̄
− Λ+

3
R̄2 . (6.6)

Solving for the derivative we obtain the more convenient form

˙̄R
2

+ 2V = −1 , with (6.7)

2V := −
[

Λ–

3
+
(

Λ+ − Λ–

24πσ
+ 2πσ

)2
]

R̄2 −
(

1 +
Λ+ − Λ–

48π2σ2

)

M

R̄
− M2

16π2σ2R̄4
.

As noted earlier one obtains the Schwarzschild-de Sitter spacetime when M = constant,
cf. equation (3.1). In this case all coefficients in the potential are constant and the areal
radius of the bubble behaves as a point particle under the potential V . The possible
spacetime junctions have been cataloged and discussed in detail in Blau et al. (1987);
Aurilia et al. (1989); Aguirre and Johnson (2005).

However, we are going to include matter in the background and therefore M will
not be independent of the radial coordinate r. As the bubble moves it will experience
different values of M , the potential becomes time dependent. In this way its evolution
becomes sensitive to the dynamics of the background.
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6.2. Explicit choice of the junction geometry

Σ
✒

n
µ

q

✐

s– = +1

✒

n
µ

M− ≡ dS

Σ
■

n
µ

✾

✿
s+

= +1

■

n
µ

M+ ≡ LT or FLRW

Σ

dS LT|FLRW

Spacetime junction

✲
n

µ

Figure 6.1.: Geometry of the spacetime junction. The boxes show slices of constant time
of the junction spacetimes (one dimension suppressed). The circles represent
the junction surface Σ. The normal vector is defined to point from M− to
M+. The sign s in the definition (6.3) determines how the spacetimes are
sticked together. For s = 1 the coordinate radius increases in the normal
direction, while it decreases when s = −1. The arrows indicate the choice
in the present work, s– = s+ = 1.

6.2. Explicit choice of the junction geometry

To proceed we will now pick the junction geometry by fixing the sign of the normal
vector. The possible junction geometries depend on the vacuum energy and matter
content in the background and on the shell and are determined by equation (6.6). For
∆ := 2M̄/R̄+ (Λ+ − Λ–) R̄2/3 these are

∆ < −
(

4πσR̄
)2

⇔ s+ = −1 and s– = −1 , (6.8a)

−
(

4πσR̄
)2
< ∆ < +

(

4πσR̄
)2

⇔ s+ = −1 and s– = +1 , (6.8b)

+
(

4πσR̄
)2
< ∆ ⇔ s+ = +1 and s– = +1 . (6.8c)

Though all these geometries are possible in principle, we will pick the physically most
intuitive configuration, that is

s– = s+ = 1 ,

which we have attempted to illustrate in Figure 6.1. Observers in M− are surrounded
by the domain wall and therefore M− can be regarded as the interior of the bubble.
However, observers in M+ can in principle encircle the domain wall, so it seems rea-
sonable to regard M+ as the exterior of the bubble. An immediate consequence of this
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6. Spacetime junction

choice and equation (6.8c) is that the surface energy is restricted to

σ <
1

4π

√

2M̄

R̄3
+

Λ+ − Λ–

3
=: σmax . (6.9)

Furthermore we require
∂rR > 0 and ∂rM > 0 .

The latter allows to choose a coordinate system such that

M(r) ≡ 4π
3
̺r3 ,

where ̺ is a constant. For simplicity we also introduce the ‘scale factor’ a(t, r) :=
R(t, r)/r which renders the potential in (6.7)to

2V = −
[

Λ–

3
+
(

̺

3ā3σ
+

Λ+ − Λ–

24πσ
+ 2πσ

)2
]

R̄2 . (6.10)

This equation completes the simplification of equation (6.7) and together with (6.5) pro-
vides the basis for the further analysis of the bubble evolution in the exterior coordinates.

6.3. System of equations to be solved

The potential in equation (6.10) will in general be time dependent through the evolution
of the background. Therefore we have to establish the background solution before we
can go on studying the evolution of a bubble in matter environments. In the following
we will briefly summarize the necessary ingredients that determine the dynamics of the
background spacetimes.

6.3.1. Specification of the LT spacetime

With the definitions of the preceding section, the equations of motion of the LT space-
time (5.2) and (5.3) become

(

∂ta

a

)2

=
2E(r)
a2r2

+
8π
3
̺

a3
+

Λ+

3
, (6.11a)

ρ =
̺

a2 (r∂ra+ a)
. (6.11b)

To solve the background dynamics (6.11a) we have to specify ̺, Λ+, a curvature profile
E(r) and the ‘scale factor’ a0(r) := a (t0, r). In a non-vacuum background the latter
can be substituted by the dust density ρ0(r) := ρ (t0, r) via equation (6.11b)

a0 =

(

3̺
r3

∫ r

0

r̃2dr̃

ρ0(r̃)

)1/3

. (6.12)

Hence, the LT background is fixed by the choice of {̺, ρ0(r), Λ+, E(r)}.
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6.3. System of equations to be solved

6.3.2. Specification of the FLRW spacetime

For the study of the evolution of the domain wall on a background filled with a per-
fect fluid that undergoes a rapid phase transition a FLRW solution will be used. It is
determined by

(

∂ta

a

)2

=
8π
3
ρ+

Λ+

3
, (6.13a)

∂tρ+
3∂ta

a
(ρ+ p) = 0 , (6.13b)

Here we have to specify the vacuum energy density Λ+ and the matter density ρ0 := ρ (t0)
but we will desist from studying any effects of curvature, so we set E = 0 in this scenario.
The system (6.13a), (6.13a) is closed by an equation of state p = wρ. To implement a
rapid phase transition we will assume that w changes on a time scale much smaller than
the background expansion. Thus, the FLRW spacetime is defined by {w(t), ρ0, Λ+}.

6.3.3. Specification of the bubble interior

The bubble interior is assumed to be dS in all cases. For simplicity we can pick the flat
slicing (k = 0) as the evolution in other foliations can be found by the corresponding
coordinate transformations (see Appendix C). The evolution of the scale factor is

a = exp (H– (t− t0)) , H– :=
√

Λ–/3 ,

so it is completely determined once the vacuum energy density Λ– inside the bubble is
given.

6.3.4. Explicit bubble evolution equations in background coordinates

Once the background solution has been determined we can begin to consider the evolu-
tion of the domain wall. Therefore we rewrite ˙̄R = ˙̄t d

dt̄
(ār̄) = ±

√
−1 − 2V and solve for

∂t̄r̄ to obtain

∂t̄r̄ =
−(1 + 2Ē)r̄∂t̄ā±

√

(

1 + 2Ē
)

(1 + 2V )
(

(r̄∂t̄ā)2 − 2Ē + 2V
)

(r̄∂r̄ā+ ā)
(

2Ē − 2V
) , (6.14)

with V given by equation (6.10). The motion of the domain wall is coupled to the
evolution of the surface energy density

∂t̄σ = (ρ̄+ p̄)
(r̄∂r̄ā+ ā) ∂t̄r̄

√

1 + 2Ē − (r̄∂r̄ā+ ā)2 (∂t̄r̄)
2
. (6.15)

To get a specific solution to these equations we have to provide the areal radius of the
bubble R̄0 and its surface energy density σ0 at some time t̄ = t0. This solution can then
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6. Spacetime junction

be used to get τ
(

t̄
)

and t̄ (τ) upon integration of the matching condition (6.2)

dτ =

√

1 − (r̄∂r̄ā+ ā)2

1 + 2Ē
(∂t̄r̄)

2dt̄ , (6.16)

which in turn provides the evolution of the areal radius in terms of the proper time of
the domain wall via R̄ = ār̄. This will reveal the effects of inhomogeneity, or a rapid
phase transition, in the background on the evolution of R̄(τ).

At the time t̄ = t0, at which we will specify the initial data, the bubble shall be at
rest with respect to the exterior background, that is ∂t̄r̄ = 0 at t̄ = t0. This implies

1 + 2Ē
ā2

0r̄
2
0

=
(

̺

3ā3
0σ0

+
Λ+ − Λ–

24πσ0
− 2πσ0

)2

. (6.17)

Hence, the position and surface energy density of the domain wall at t̄ = t0 are not
independent. It is also possible to impose ˙̄R = 0 at t̄ = t0. However, it is more
reasonable to require that the bubble is comoving in the parent spacetime at nucleation.
This issue does not arise in the pure vacuum case as ∂t̄r̄ = 0 depends upon slicing and

thus ˙̄R = 0 is the convenient choice.
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7. Bubble evolution on dynamical
backgrounds

In this chapter we present the analysis of the evolution of a vacuum bubble on back-
grounds of different matter content. Therefore we will have to solve the system of
equations introduced in the last chapter. We begin with the vacuum case in section 7.1,
introduce homogeneously distributed dust in section 7.2 and inhomogeneous dust and
curvature in section 7.3. Furthermore we will look at the evolution of the domain wall in
a background filled with an homogeneous fluid that undergoes a rapid phase transition
in section 7.4.

7.1. Evolution on vacuum background

In a purely vacuum background we have

p = 0 , ρ0 = 0 ⇒ ̺ = 0 , E = 0 , Λ+ > Λ– > 0 .

Of course, ρ0 = 0 means also ̺ = 0. The junction spacetimes are both dS but with
different vacuum energy densities: M− ≡ dSΛ– and M+ ≡ dSΛ+ . Thus the two of them
can be treated on an equal footing (that is we will omit the indices ±) until we impose
the initial data discussed in section 6.3.4. The evolution of the scale factor is

a = exp (H (t− t0)) , H :=
√

Λ/3 .

It is normalized such that it equals unity at the time when the initial data of the position
and surface energy of the domain wall are specified.

Having established the background dynamics, we can turn to the evolution of the
bubble. From equation (6.15) we immediately see that σ = σ0 is constant, hence the
only dynamical variable is the areal radius. The evolution equation for the position of
the domain wall (6.14) becomes

∂t̄r̄ =
−1 ± u

√

(1 + u2)H2ā2r̄2 − 1

(1 + u2)Hā2r̄
, (7.1)

where we have introduced the dimensionless constant

u± :=

(

H2
+ −H2

−
8πσ0

∓ 2πσ0

)

H−1
± . (7.2)
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7. Evolution on dynamical backgrounds

The geometrical bound (6.8c) implies u > 0. Rewriting equation (7.1) as a differential
equation for ār̄ we can solve it by a separation of variables

H2r̄2 =

(

u±
√

(1 + u2)H2R̄2
0 − 1

)2

1 + u2
−

2u
(

u±
√

(1 + u2)H2R̄2
0 − 1

)

(1 + u2) ā
+

1
ā2
. (7.3)

Equation (6.16) is difficult to solve already in this case. However, we can make use of
the fact that there is no explicit time dependence in the potential

2V = −
(

1 + u2
)

H2R̄2 , (7.4)

to integrate equation (6.7) directly

R̄ =
cosh

(√
1 + u2H (τ − τ0)

)

√
1 + u2H

. (7.5)

This is the well known result for the evolution of a spherical domain wall on a vacuum
background, it has amply been studied in the literature, see citations in chapter 6. Driven
by the pressure difference across the wall the size of the bubble diverges as τ → ±∞.

By equating R̄ = ār̄ this solution immediately yields the map between τ and t̄ and
thus completes the general solution to the problem.

Under the requirement that the bubble wall is comoving in the flat slicing of dSΛ+ at
t̄ = t0, that is

∂t̄r̄ = 0
∣

∣

t̄=t0
,

the areal radius becomes

R̄0 = (u+H+)−1 = r̄0 =

(

H2
+ −H2

−
8πσ0

− 2πσ0

)−1

, (7.6)

in correspondence with equation (6.17). Thus the trajectory of the domain wall in dSΛ+

and dSΛ– is given by

r̄+ =

√

u−2
+ +

(

ā−1
+ − 1

)2
H−1

+ , (7.7a)

r̄− =

√

√

√

√

1 + u2
−

(

1 + u2
+

)

ā2
−

− 2u− (1 + u−u+)
u+
(

1 + u2
+

)

ā−
+

(1 + u−u+)2

u2
+

(

1 + u2
+

)H−1
+ . (7.7b)

The trajectory of the domain wall in dSΛ+ is shown in Figure 7.1 for several different
surface energy densities. We will not show the trajectories of the domain wall within
a causal diagram of dS spacetime, these can be found in Aguirre and Johnson (2005).
The reason is that for more general spacetimes, such as LT, no causal diagram can be
drawn, cf. Ellis et al. (1985), which prohibits a comparison on this basis.

34



7.2. Evolution in homogeneous dust
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Figure 7.1.: The figure shows the trajectories of r̄(t̄) and R̄(τ) for σ0 =
{0.1, 0.3, 0.5, 0.7}σmax . The proper time τ0 has been chosen such that
R̄(0) = r̄0. The domain wall converges to a finite coordinate radius in
the dS spacetime, it becomes comoving. Thus, after a while, the physical
growth of the bubble is entirely due to the expansion of the background.

7.2. Evolution in homogeneous dust

7.2.1. Evolution in the Einstein Static background

This is the simplest extension to the vacuum case. The Einstein Static (ES) background
is a static spacetime. It has constant curvature and dust density and is stabilized by the
energy density of the vacuum. For simplicity we will assume that the bubble interior is
Minkowski, so we have

p = 0 , ρ0 = constant , E < 0 , 4π̺ = Λ+ > 0 , Λ– = 0 .

We can set a = 1 without loss of generality and thus ρ0 = ̺ and R̄ = r̄. The constant
positive curvature k determines E = −kr2 and also 4π̺ = Λ+ = k. Since there is no
dynamics of the background we can start with the evolution of the bubble right away.
The evolution equations of the domain wall are

∂t̄r̄ = ±
√

(1 − kr̄2) (−1 − 2V )
−kr̄2 − 2V

,

where the potential is given by

2V = −
(

̺

3σ
+

Λ+

24πσ
+ 2πσ

)2

r̄2 ,
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7. Evolution on dynamical backgrounds

and the evolution of the surface energy density follows from

∂t̄σ =
̺∂t̄r̄

√

1 − kr̄2 − (∂t̄r̄)
2
.

The initial values are parameterized by

σ0 =
s0

4π

√

8π̺
3

+
Λ+

3
=
s0

√
k

4π
= s0σmax ,

with 0 < s0 < 1. This translates into an initial radius of

kr̄2
0 =

4s2
0

(

1 + s2
0

)2 .

Though the system looks quite involved, an analytical solution can be obtained by
rewriting σ as a function of r̄. Therefore we define a function s (r̄) through σ = sσmax.
This allows to write the evolution equation for σ as

2
(

1 − kr̄2
)

s∂r̄s+ kr̄s2 − kr̄ = 0 .

This equation is readily solved to give

s =
√

1 −
(

1 + s2
0

)

√

1 − kr̄2 .

Hence, we know the surface energy density in terms of r̄ and this can be used to obtain
the solution for r̄

(

t̄
)

. It reads

kr̄2 =

(

1 + s2
0

)2 −
(

2 −
(

1 + s2
0

)

cos
(√

kt̄
))2

(

1 + s2
0

)2 ,

and consequently

σ = σmax

√

(

1 + s2
0

)

cos
(√

kt̄
)

− 1 ,

with t0 = 0. One immediately recognizes that the surface energy density vanishes at

t± = ± 1√
k

arccos
1

1 + s2
0

.

However, the size of the domain wall is finite at this time. This suggests to interpret
these bubbles as fluctuations in the ES background. Though it is possible to convert the
dS solution to a closed coordinate system that has the same spatial geometry as ES, the
result is rather involved and does not allow for an easy comparison.

The integral (6.16) can not be solved analytically. Notwithstanding, we note that the
integrand is finite within t− < t̄ < t+ and thus the proper time will be finite as well.
Therefore the evolution of R̄(τ) and σ(τ) will resemble that of r̄(t̄) and σ(t̄) respectively,
except for the rescaling of the time coordinate.
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Figure 7.2.: The figure shows the evolution of the surface energy density and the size of
the domain wall in the ES spacetime. As this background is static, the time
evolution is symmetric. The classical trajectory ends at t̄ = t± because the
surface energy density vanishes at this time. However, the bubbles have a
finite size at this time. This suggests to regard them as fluctuations in the
ES background.

7.2.2. Evolution in the Friedmann spacetime

In this section we abandon the static background and proceed with a dynamical dust
evolution. In order to obtain an analytical solution of the scale factor, we restrict the
consideration to a flat background. That is

p = 0 , ρ0 = constant , E = 0 , 8π̺ > Λ+ > Λ– > 0 .

The equation of motion of the background (6.11a) is readily integrated to give

a = a⋆ sinh2/3

(√
3Λ+

2
(t− tB)

)

and ρ =
̺

a3
,

where a3
⋆ = 8π̺/Λ+. The time of the Big Bang tB follows from the definition of t0 via

a(t0, r) = 1, and is

tB = t0 − 2√
3Λ+

arcsinh
(

a
−3/2
⋆

)

. (7.8)

This implies ρ0 = ̺ and the fact 8π̺ = 10Λ+ guarantees matter domination at the time
when the bubble wall is comoving with the exterior background. We also define the
landmark t1 implicitly by 8πρ(t1, r) = Λ+ and analogously t2 by 8πρ(t2, r) = 0.1Λ+.
As we study homogeneously distributed dust in this section, these landmarks do not
depend on the radial coordinate. This will change in the subsequent sections when
radial inhomogeneities are introduced.
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7. Evolution on dynamical backgrounds

The background is determined by these equations and we can now have a look at the
evolution equation for the position of the domain wall

∂t̄r̄ =
−r̄∂t̄ā±

√

(1 + 2V )
(

(r̄∂t̄ā)2 + 2V
)

−2āV
, (7.9)

where

2V = −
[

Λ–

3
+
(

̺

3ā3σ
+

Λ+ − Λ–

24πσ
+ 2πσ

)2
]

ā2r̄2 . (7.10)

and the surface energy density is determined by

∂t̄σ =
̺∂t̄r̄

ā2
√

1 − ā2 (∂t̄r̄)
2
. (7.11)

Equation (6.17) provides the position at t̄ = t0 by

r̄0 =
(

̺

3σ0
+

Λ+ − Λ–

24πσ0
− 2πσ0

)−1

. (7.12)

For a fixed surface energy density the additional dust in the background implies a reduced
initial radius of the bubble. This is so, because the energy content of the bubble is
completely determined by the energy density of the interior vacuum, the energy density
on the surface and its size. This energy has to coincide with the energy that is shed from
the exterior background. With the addition of matter to that background the energy
budget of the bubble is already reached at a smaller radius. In this way the size of the
bubble is determined by the amount of matter density in the background.

The presence of matter has another important consequence as can be seen by writing
down the acceleration of the domain wall with respect to the exterior coordinate time.
When ∂t̄r̄ = 0 we have

∂2
t̄ r̄
∣

∣

∂t̄r̄=0
=

1
ā

(

Λ+ − Λ–

24πσ
− 2πσ − 2ρ̄

3σ

)

. (7.13)

The right hand side is always positive for ρ = 0 but it becomes negative when the dust
density satisfies

8πρ̄
Λ+ − Λ–

>
1
2

− 24π2σ2

Λ+ − Λ–
.

This is illustrated in Figure 7.3 which characterizes the behavior of the domain wall after
it was nucleated at rest in the comoving frame of an exterior FLRW spacetime with
dust and vacuum energy. With respect to an exterior comoving observer, the bubble
shows different behavior in different regions of the σ2-ρ-plane, which is drawn in units
of ǫvac := (Λ+ − Λ–) /(8π). The shaded region is forbidden for our choice of junction
because σ violates the bound (6.8c). If the energy density of dust ρ is chosen above
the dashed red line, the bubble starts to contract. This includes all matter dominated
universes 8πρ > Λ+ since we assume Λ+ > Λ– > 0. Below the dashed red line the bubble
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Figure 7.3.: The figure shows the ‘acceleration’ of the domain wall at times at which it
is comoving in the LT spacetime. See text for more exposition.

starts to expand into the ambient spacetime. This includes all de Sitter spacetimes since
they are found on the line ρ = 0. Below the dotted blue line, all universes are vacuum
dominated. As we want to study the evolution of a bubble in a matter dominated
background the inequality should always be true at t̄ = t0. To be specific, we fix the
ratios of the parameters to

8π̺
Λ+

= 10 ,
Λ–

Λ+
= 0.1 ,

throughout this work. For completeness we note that we use Λ+ = 3 · 10−5 and t0 = 0 in
accordance with Fischler et al. (2008), though the actual values are not relevant as the
results are normalized by Λ+. Unfortunately, we can not use any of the simplifications
done in the preceeding sections and we must solve the system numerically.

The first new property in the evolution of the domain wall is that the classical trajec-
tory is limited in the past due to the occurrence of the Big Bang. However, the solution
breaks down as the surface energy density of the bubble vanishes. Larger bubbles live
long enough to experience the rarefaction of the dust and the onset the domination of
vacuum energy density. These bubbles then move on a purely vacuum dominated back-
ground and thus show the same asymptotic behavior as the solutions in the dS case.
The trajectories are shown in Figure 7.4 for several values of the initial surface energy
density. For clarity we have included the contour lines of constant dust density.

We proceed with the conversion to a proper time parameterization via equation (6.16)
to express the surface energy density and the areal radius of the domain wall in physical
time. The result is shown in Figure 7.5. It is seen that the surface energy vanishes
at a finite proper time, beyond which the evolution could not be obtained within our
approach. However, except for the smallest bubble considered, the surface energy density
is well defined in the future of the domain wall’s evolution.
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Figure 7.4.: The trajectories of the domain wall in the LT coordinates for several values of
the initial surface energy density σ0 = {0.3, 0.5, 0.7, 0.9}σmax,0 . The solution
breaks down in the past at a time tB < t̄ < t0 but also in the future as the
surface energy density of the bubble vanishes.
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Figure 7.5.: The Figure shows the evolution of the surface energy density and the areal
radius in dependence of the proper time of the domain wall for several val-
ues of the initial surface energy density σ0 = {0.3, 0.5, 0.7, 0.9}σmax,0 . The
proper time is chosen such that τ = 0 corresponds to t̄ = t0. The solution
breaks down when the surface energy density vanishes.
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7.3. Evolution through inhomogeneous dust

7.3. Evolution through inhomogeneous dust

7.3.1. Evolution without curvature

In this section we will have a look at inhomogeneities in the dust profile in a flat back-
ground, such that

p = 0 , ∂rρ0 6= 0 , E = 0 , 8π̺ > Λ+ > Λ– > 0 .

The background solution can still be found upon analytical integration of equation (6.11a).
It resembles the background solution of the homogeneous case

a = a⋆ sinh2/3

(√
3Λ+

2
(t− tB)

)

and ρ =
̺

a2 (r∂ra+ a)
.

The difference is that the inhomogeneous dust profile ρ0 enforces an inhomogeneous
‘scale factor’ and an inhomogeneous bang time

tB = t0 − 2√
3Λ+

arcsinh

(

a
3/2
0

a
3/2
⋆

)

.

We immediately see that ∂rρ0 > 0 ⇔ ∂rtB > 0, which reflects the fact that the big
bang occurs later where the dust density ρ0 is larger. The landmarks defined in the last
section now also become dependent on the radial coordinate.

As we want to study the evolution of a bubble wall through an ambient matter density
we impose the radially increasing dust profile

ρ0 = ̺ exp
(

√

Λ+/3r − 1
)

. (7.14)

The specification of ρ0 defines a0 via equation (6.12). This dust profile enforces a shell-
crossing singularity at a time tB < t < t0, as indicated in Figure 7.6. Since our approach
is to be understood as toy model of the evolution of a vacuum bubble, beginning with
the nucleation in a matter dominated spacetime, we liberally allow the background not
to be well defined prior to the nucleation event and cautiously proceed with the analysis.

Having established the background solution we can turn to the evolution of the domain
wall. The evolution equation for its position becomes

∂t̄r̄ =
−r̄∂t̄ā±

√

(1 + 2V )
(

(r̄∂t̄ā)2 + 2V
)

−2 (r̄∂r̄ā+ ā)V
,

with

2V = −
[

Λ–

3
+
(

̺

3ā3σ
+

Λ+ − Λ–

24πσ
+ 2πσ

)2
]

ā2r̄2 ,
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Figure 7.6.: The trajectories of the domain wall in the LT coordinates for several values
of the initial surface energy density σ0 = {0.3, 0.5, 0.7, 0.9}σmax,0 . In the
blue region we have t < tB and the gray region indicates a negative dust
density due to the occurrence of a shell-crossing singularity. The trajectories
evolve in the direction of decreasing dust density.

and the evolution of the surface energy density is given by

∂t̄σ =
̺∂t̄r̄

ā2
√

1 − (r̄∂r̄ā+ ā)2 (∂t̄r̄)
2
.

As before, we assume that the domain wall is comoving with respect to the exterior
background at t̄ = t0. Hence, the solution to

ā0r̄0

(

̺

3ā3
0σ0

+
Λ+ − Λ–

24πσ0
− 2πσ0

)

= 1 ,

determines the radius r̄0. For our choice of the parameters ̺,Λ+,Λ–, σ0 the domain wall
is always in a dust dominated environment at t̄ = t0, that is 8πρ0 (r̄0) > Λ+.

In spite of the radially increasing dust profile, the evolution of the domain wall is very
similar to the homogeneous case, as the dust is efficiently diluted by the cosmological
expansion. In fact, as can be inferred from Figure 7.6, the domain wall propagates
into regions of lower dust density. Moreover, it is seen in Figure 7.7 that the surface
energy density sharply decreases as the domain wall comes close to the shell-crossing
singularity. However, the evolution of the areal radius is practically not affected by the
radially increasing dust density.

42



7.3. Evolution through inhomogeneous dust

-0.1 0. 0.1 0.2 0.3

0.

0.1

0.2

0.3

0.4

0.5

-0.1 0. 0.1 0.2 0.3

0.

0.1

0.2

0.3

0.4

0.5

σ
/
√

Λ
+

/
3

√

Λ+/3 τ
-0.1 0. 0.1 0.2 0.3
0

1

2

3

4

5

6
-0.1 0. 0.1 0.2 0.3

0

1

2

3

4

5

6

√

Λ
+

/
3

R̄

√

Λ+/3 τ

Figure 7.7.: The Figure shows the evolution of the surface energy density and the areal
radius in dependence of the proper time of the domain wall for several val-
ues of the initial surface energy density σ0 = {0.3, 0.5, 0.7, 0.9}σmax,0 . The
proper time is chosen such that τ = 0 corresponds to t̄ = t0. In contrast to
the homogeneous case, the surface energy density sharply decreases when
the domain wall is close to the shell-crossing singularity where the dust
density becomes infinite.

7.3.2. Evolution with varying curvature

Thus far, we have considered flat backgrounds only. Now we are going to incorporate
additional (positive) curvature, such that

p = 0 , ∂rρ0 6= 0 , ∂rE 6= 0 , 8π̺ > Λ+ > Λ– > 0 .

New properties have to be taken into account when we consider a curved space. Positive
curvature means that E < 0 and thus possibly leads to a degeneracy of the metric
where 1 + 2E = 0. This will be avoided by a suitable choice of the curvature profile.
Furthermore, for a given amount of dust and vacuum energy density there exists a critical
amount of curvature that determines whether the space is going to collapse or to expand
to infinity. This is familiar from the FLRW spaces, except for the fact that curvature
can now depend on the radial coordinate and thus only some parts of the space may
collapse while others expand. The scale Rcr that is related to the critical curvature is
given by R−3

cr = 4π̺
√

Λ+. Thus, to avoid a collapse of the background space we have to
make sure that

√

−2E/r2Rcr < 1.
In order to solve the dynamics of the ‘scale factor’ we take the dust density pro-

file (7.14) from the last section and a curvature profile, for further convenience defined
through k(r) := −2E(r)/r2, with

k =
1

2 (βRcr)2

(

1 + tanh
(

r − δ

γ

))

.
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Figure 7.8.: Trajectory of the domain wall in the LT coordinates for σ0 = 0.7σmax,0. In
the blue region we have t < tB and the gray region indicates a negative
dust density due to the occurrence of a shell-crossing singularity. There
is a kink in the trajectory as the domain wall runs through the curvature
inhomogeneity.

This, carefully chosen, profile provides a steep curvature gradient but does not lead to
a violation of the energy condition ρ > 0 ⇔ ∂r (ar) > 0. Having determined valid
background dynamics we will now consider the evolution of the domain wall as given by
equations (6.14) and (6.15). The radius at t̄ = t0 is to be obtained from the solution
to equation (6.17). In the last section we have found that the domain wall covers only
a small range in the coordinates of the LT spacetime. Therefore we have to take care
when picking the initial surface energy density, because for most choices the bubble will
not propagate through the curvature inhomogeneity which is confined to a small region.

In Figure 7.8 we show the trajectory of the domain wall for an initial surface energy
density of σ0 = 0.7σmax,0. It is seen that the curvature inhomogeneity has a sizeable
effect on the evolution of the domain wall in the LT coordinates. We will now convert to
the proper time parameterization and have a look whether this effect can also be seen in
the evolution of the physical radius of the bubble. Therefore we compare the evolution of
the domain wall through the LT spacetime with and without curvature inhomogeneities.
At nucleation, the physical size of the domain wall shall be the same in both cases, so
the initial surface energy densities have to be different. From Figure 7.9 it is seen that
the curvature inhomogeneity affects both, the evolution of the surface energy density as
well as the areal radius of the domain wall.
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Figure 7.9.: The Figure shows the evolution of the surface energy density and the areal
radius in dependence of the proper time of the domain wall for a background
with (green) and without curvature inhomogeneity (blue). The proper time
is chosen such that τ = 0 corresponds to t̄ = t0. The surface densities are
chosen such that the domain wall has the same physical radius initially. The
curvature inhomogeneity has a sizeable effect on the evolution of the domain
wall.

7.4. Evolution during a rapid phase transition

In this section the evolution of a vacuum bubble in an homogeneous perfect fluid that
undergoes a rapid phase transition will be studied.

p 6= 0 , ρ0 = constant , E = 0 , 8π̺ > Λ+ > Λ– > 0 .

We assume a linear equation of state in the form p = wρ, where we take a time dependent
equation of state parameter w(t) to implement the phase transition. In particular, we
are interested in the reheating-like transition for which the equation of state parameter
changes from w = −1 to w = 1/3 which motivates to use

w =
2
3

tanh
(

t− tpt

λ

)

− 1
3
.

The timescale λ on which the transition shall occur is taken to be smaller than the
timescale

√

3/Λ+ given by the minimal hubble rate. With this profile we numerically
solve equations (6.13a) and (6.13b). For convenience we use the same parameters as
before and take λ = 0.1

√

3/Λ+ and tpt = 0.3
√

3/Λ+. As the equation of state parameter
obeys w < −1/3 for t < t0 = 0 there is no Big Bang in this model and thus the evolution
of the domain wall is studied for t ≥ t0 only.

After the background dynamics have been obtained we can go on with the study of
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Figure 7.10.: Trajectory of the domain wall in the FLRW coordinates for σ0 = 0.3σmax,0.
The contour line indicates the equality of matter and vacuum energy den-
sity.
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Figure 7.11.: The Figure shows the evolution of the surface energy density and the areal
radius in dependence of the proper time of the domain wall for an homo-
geneous background with (green) and without reheating (blue).

the evolution of the domain wall. The equations to be solved numerically are the same
as in the homogeneous dust case, i.e. (7.9) with the potential given through (7.10).

In the beginning the background is purely vacuum dominated and the trajectory is
therefore very similar to the dS case. As the phase transition occurs the expansion is
stopped and the bubble begins to contract in the FLRW coordinates, in turn similar to
the homogeneous dust case considered before. With the onset of reheating particles are
created in the background the presence of which slows down the physical growth of the
domain wall.
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8. Summary and conclusion of Part I

In Part I of this thesis we have studied the evolution of vacuum bubbles on dynamical
backgrounds such as the Lemaître-Tolman and Friedmann-Lemaître-Robertson-Walker
spacetimes. We have employed a thin shell approach and used the Israel junction method
to embed a de Sitter solution into these spacetimes and to track the evolution of the
domain wall as determined by the Einstein field equations.

Therefore we started with a review of the relevant properties of the LT spacetime
followed by an explicit description of the junction geometry and a derivation of the
evolution equations for the background spacetimes and the classical dynamics of the
vacuum bubble.

For clarity and to make our work easily accessible and comparable, we have presented
the dynamics of vacuum bubbles in a purely vacuum dominated background within our
framework. We have extended the scope to consider the evolution of vacuum bubbles in
the presence of matter in the surrounding space. We have found that the inclusion of
matter allows for several new effects in the evolution of the domain wall.

At first, we have included homogeneously distributed dust in the parent spacetime.
The time at which the domain wall is comoving with respect to an observer at rest in
that spacetime is referred to as the time of nucleation of the bubble. Though, within
this classical approach, the evolution of the domain wall can well be extended to the
past of the nucleation event. We have found that the presence of dust affects the size
of the domain wall at the time of nucleation. In particular, considering a domain wall
of fixed surface energy density, the junction conditions imply that the addition of dust
to the background goes along with a decreased areal radius of the bubble at nucleation.
This is understood once one recalls that the energy budget of the bubble is required to
match the energy that is shed from the background. Given a fixed nucleation radius, the
surface energy density of the bubble increases with the amount of dust that is added to
the background. Accordingly, with a fixed surface energy density, the size of the bubble
becomes the smaller the more dust is present. Our second finding is that the acceleration
of the bubble with respect to the LT coordinates becomes negative when sufficient dust
is present. For that to happen, the dust must not even be the dominant source of energy
in the parent spacetime as illustrated in Figure 7.3. A comoving observer in the LT
spacetime, though dominated by vacuum energy density, could see an initial shrinking
of the domain wall. This is in contrast to the pure vacuum background where the bubble
expands at all times after nucleation in terms of the exterior coordinates. Moreover, we
have seen that the junction approach breakes down at a time before to the nucleation
event. As the current approach is understood as a toy model for the classical evolution of
the bubble after it was nucleated in the parent spacetime, this does not mean a problem.
However, for some values of the initial surface energy density of the domain wall, the
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8. Summary and conclusion of Part I

evolution breakes down at a time to the future of the nucleation event when the shrinking
of the domain wall and the expansion of the exterior space causes the surface energy
density to vanish. Those bubbles with a larger initial surface energy density continue to
expand and as the dust in the background is diluted they resemble the dS solution that
was found in the vacuum case.

Furthermore we have studied the evolution of a domain wall in a radially increasing
dust profile. Of course, all properties of the homogeneous solution also apply in this
case. However, we have shown that even for a dust profile that increases exponentially,
the domain wall propagates into regions of lower dust density. This is a vivid illustration
of the effectivity of dust rarefaction due to the expansion of the parent space and thus
supports the cosmological no hair theorem. This changes when inhomogeneities in the
curvature are introduced. The trajectory of the domain wall is significantly affected as
it runs through a sharp curvature kink. This is not a mere coordinate effect in the LT
spacetime but carries over to a an observer that is comoving with the shell.

We also had a look on the effect of a reheating-like phase transition in the parent
spacetime on the evolution of the domain wall. Taking a time dependent equation of
state parameter that changes from w = −1 to w = 1/3 on a timescale much smaller than
a hubble time, we have seen that the matter created in the reheating process immediately
slows down the expansion of the bubble. The effect is more prominent than the effect
due to the varying spatial curvature.
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Part II.

Signatures of Bubble Collisions in
Minkowski Functionals
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9. Introduction to Part II

An inflaton potential with multiple minima allows for the nucleation of bubbles with
smaller vacuum energy density. This might occur due to gravitational tunneling via
the Coleman-DeLuccia mechanism or via the collision of such bubbles, cf. Easther et al.
(2009); Giblin et al. (2010). Pressure difference between the bubble walls force the bubble
to expand, quickly approaching the speed of light. In this picture our observable universe
can be thought of as a bubble residing among a multitude of bubbles in a ‘multiverse’.

However, bubbles may collide and recent work shows that such collisions could leave
observable imprints in the CMB. A generic prediction is that a past collision on our
bubble universe by another bubble leaves a cold or hot disk – regions where the mean
temperature is statistically different - on the CMB sky (Aguirre et al. (2007); Aguirre
and Johnson (2008); Aguirre et al. (2009); Chang et al. (2008); Chang et al. (2009)). In
addition to such shift, in mean temperatures, the CMB may exhibit additional polar-
ization modes in such regions, cf. Czech et al. (2010), and perhaps lead to anisotropic
large scale galaxy flows, see Larjo and Levi (2010). There have been some claims in
the literature, by Cruz et al. (2005, 2006, 2007), regarding the existence of such a spot,
the so-called “cold spot” in the CMB, using wavelet analysis, although such claims have
been challenged by Zhang and Huterer (2010) and Bennett et al. (2010). More recently,
a model independent pipeline was constructed by Feeney et al. (2010a,b) to search for
such signals using causal boundaries and found several possible hints of such features.
In this work we will attempt to search for such a signal using a different statistic –
Minkowski Functionals (MFs).

Since spots in an otherwise Gaussian sky are topological in nature, this suggests the
use of statistical descriptors which are well suited to quantify morphological properties
of the temperature fluctuations. MFs are exactly such tools – they are morphological
statistics on smooth maps. While they are widely used in image processing (e.g. Mantz
et al. (2008)) as such, they were first used by cosmologists to look from deviations from
Gaussianitiy of the perturbations in large scale structure (Schmalzing et al. (1996a,b);
Hikage et al. (2003)) and the CMB (Winitzki and Kosowsky (1998); Schmalzing and
Górski (1998); Novikov et al. (1999); Eriksen et al. (2004); Hikage et al. (2006, 2008,
2009); Komatsu et al. (2009b); Matsubara (2010)).

In this work, we apply MFs to the search for disk-like structures in the CMB – struc-
tures expected if our present “bubble universe” has had the (mis)-fortune of colliding
with another bubble in the distant past. In chapter 10 we introduce MFs for scalar fields
on the sphere. This is followed by an introduction to the HEALPix software package
and our implementation of the MF algorithm in chapter 11. In particular we derive
analytical formulae to remove numerical “residuals” introduced by binning and derive a
general map-independent residual-free estimator. In chapter 12 we present the applica-
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9. Introduction to Part II

Figure 9.1.: Simulated CMB maps containing a disk with angular diameter 40◦ and
temperature difference δT = 2

√
σG (upper panel) and δT =

√
σG (lower

panel).

tion of our algorithm to Gaussian and collision maps. Therefore we review the standard
results for Gaussian random fluctuations, derive the respective residuals and quantify
the remaining error in section 12.1. In Section 12.2 we argue what MFs are expected in
the presence of a bubble collision and analyze their sensitivity. Moreover, we propose
our analytical model for disks in the CMB and apply our estimator to the constraint of
both simulated collisions maps and the WMAP7 data. In chapter 13 we summarize and
conclude.

The content partly follows Lim and Simon (2011) in which the work presented here
has been published.
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10. Minkowski Functionals on the
two-sphere

10.1. Definition

MFs are a tool to characterize the morphological properties of convex, compact sets
in an n dimensional space. A property is considered to be morphological when it is
invariant under rigid motions, i. e. translations and rotations. Hadwinger’s Theorem
in integral geometry states that under simple requirements any morphological property
can be expanded as a linear combination of n + 1 functionals, the so-called Minkowski
Functionals. A comprehensive introduction to the geometry of random fields is provided
by Adler (1981). We will give a definition of the MFs and briefly introduce their use for
characterizing smooth scalar fields on S

2, e. g. temperature anisotropies.
On S

2 there are three MFs which, up to normalization, represent the volume, circum-
ference and integrated geodesic curvature of a given excursion set. The excursion set and
the boundary of the excursion set of a smooth scalar field u at threshold ν are defined
by

Qν :=
{

x ∈ S
2
∣

∣ u(x) > ν
}

,

∂Qν :=
{

x ∈ S
2
∣

∣ u(x) = ν
}

.

The first Minkowski Functional v0(ν) is the area fraction of Qν . It is given by

v0(ν) :=
1

4π

∫

S2
dΩ Θ (u− ν) , (10.2)

where Θ is the Heaviside step function. Strictly speaking we use the surface densities of
the MFs which are the honest MFs divided by 4π. We consistently use the term MFs for
these densities. The second Minkowski Functional is proportional to the total boundary
length of Qν

v1(ν) :=
1

16π

∫

∂Qν

dl =
1

16π

∫

S2
dΩ δ(u− ν) |∇u| . (10.3)

Here δ is the Delta distribution and |∇u| is the norm of the gradient of u. Finally,
the third Minkowski Functional is the integral of the geodesic curvature κ along the
boundary

v2(ν) :=
1

8π2

∫

∂Qν

dl κ =
1

8π2

∫

S2
dΩ δ(u − ν) |∇u|κ . (10.4)
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10. Minkowski Functionals on the two-sphere

Geodesic curvature is the quantitative measure of how much the boundary curve γ
deviates from being geodetic. For a unit speed curve, i.e. |γ̇| = 1, it is defined through

κ := |∇γ̇ γ̇| , (10.5)

where ∇γ̇ represents the covariant derivative along the tangent vector γ̇ of the curve.
Thus κ vanishes if and only if γ is geodetic as follows from the geodesic equation ∇γ̇ γ̇ = 0.

For the actual calculation of v2 we have to express κ in terms of u. To do so, we
use the fact that u does not change along γ and thus du (γ̇) = 0 which implies that
γ̇µ = ǫµν∇νu. We can now choose to either normalize γ̇ and use that in equation (10.5),
or keep γ̇ and rewrite equation (10.5) for a non-unit speed curve. We take the latter
approach and note that for a non-unit speed curve equation (10.5) becomes

κ = |γ̇|−3
√

|∇γ̇ γ̇|2 |γ̇|2 − (γ̇ · ∇γ̇ γ̇)2 .

The individual terms are

|γ̇|2 = sin2 ϑ
(

u2
;ϑ + u2

;ϕ

)

,

γ̇ · ∇γ̇ γ̇ = sin3 ϑ
[

u;ϑu;ϕ (u;ϑϑ − u;ϕϕ) −
(

u2
;ϑ − u2

;ϕ

)

u;ϑϕ

]

,

|∇γ̇ γ̇|2 = sin4 ϑ
[

(u;ϑu;ϕϕ − u;ϕu;ϑϕ)2 + (u;ϕu;ϑϑ − u;ϑu;ϑϕ)2
]

.

The shorthand semicolon notation denotes derivatives of u defined by

u;ϑ := ∂ϑu , u;ϕ :=
1

sin ϑ
∂ϕu , u;ϕϕ :=

1
sin2 ϑ

∂2
ϕu+

cos ϑ
sin ϑ

∂ϑu ,

u;ϑϑ := ∂2
ϑu , u;ϑϕ :=

1
sin ϑ

∂ϑ∂ϕu− cos ϑ
sin2 ϑ

∂ϕu = u;ϕϑ .

(10.7)

Consequently, the geodesic curvature reduces to

κ =
2u;ϑu;ϕu;ϑϕ − u2

;ϑu;ϕϕ − u2
;ϕu;ϑϑ

(

u2
;ϑ + u2

;ϕ

)3/2
. (10.8)

This completes the necessary formulae to compute the MFs for a given field u.
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11. Application of the HEALPix software
package

11.1. Basic introduction to HEALPix

HEALPix is the acronym for Hierarchical Equal Area isoLatitude Pixelization that
was introduced by Górski et al. (2005). The name refers to a tessellation of the two-
dimensional spherical surface with pixels that have identical surface areas, the centers
of which are, by definition, located on rings of constant latitude. At base resolution
HEALPix consists of 12 pixels that are aligned along three circles at the poles and
the equator. The pixels are curvilinear quadrilaterals that can be mapped to the square
[0, 1]×[0, 1] which allows to obtain a straightforward subdivision of each into Nside×Nside

smaller elements. Accordingly, Nside specifies the resolution by the total number of pix-
els Npix = 12N2

side meaning that each pixel has a surface area of Ωpix = π/
(

3N2
side

)

.
The pixel centers are defined on 4Nside − 1 isolatitude rings, equidistant in azimuth on
each individual ring. In the equatorial belt (i.e. |cos ϑ| < 2/3) there are 4Nside pixel
centers distributed on each ring, while on the polar cap regions (|cosϑ| ≥ 2/3) the num-
ber of pixels varies, decreasing from ring to ring as distance to the pole decreases. The
HEALPix tessellation and resolution are illustrated in Figure 11.1.

The HEALPix software package contains a large set of programs. We shall briefly in-
troduce those that were employed in the course of this work. The command input_map

assigns field values to each pixel as provided by an input FITS (Flexible Image Transport
System) file. The FITS data format has become standard for the storage of astronomical
data, in particular the LAMBDA (Legacy Archive Microwave Background Data Anal-
ysis) temperature and polarization maps of the CMB come in this data format. The
further analysis of the map relies on its spectrum in a spherical harmonics expansion.
The corresponding alm’s are computed via map2alm by FFT (Fast Fourier Transforma-
tion) up to a cutoff lmax that is usually related to the resolution by lmax = 3Nside, to
ensure

√

Ωpix ≃ π/lmax. Moreover, HEALPix provides the subroutine create_alm that
allows to generate a set of Gaussian alm’s in accordance with a given power spectrum.
In addition, a Gaussian smoothing kernel may be applied to a set of alm’s through
alter_alm. A given set of alm’s allows for an assignment of a field value to each pixel.

The HEALPix software as well as a complete documentation can be found at the
HEALPix webpage http://healpix.jpl.nasa.gov/.
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11. Application of the HEALPix software

Figure 11.1.: The left panel shows the HEALPix tessellation of the sphere for Nside =
1, 2, 4, 8. The table on the right hand side summarizes the relationship
between Nside and the corresponding total number of pixels and angular
resolution. Taken from Górski et al. (2005).

11.2. Extraction of Minkowski Functionals

Though the HEALPix software provides a large number of programs, it does not contain
a procedure to compute the MFs of a given map and therefore such a procedure had to
implemented. Our approach for the extraction of MFs is a straightforward numerical
calculation of the integrals in equations (10.2)-(10.4) as prescribed in Schmalzing and
Górski (1998). Given a map, the numerical Minkowski Functional Vi is obtained via a
sum of the respective integrand

I0 (ν, xk) := Θ (u− ν) ,

I1 (ν, xk) :=
1
4
δ (u− ν)

√

u2
;ϑ + u2

;ϕ , (11.1a)

I2 (ν, xk) :=
1

2π
δ (u− ν)

2u;ϑu;ϕu;ϑϕ − u2
;ϑu;ϕϕ − u2

;ϕu;ϑϑ

u2
;ϑ + u2

;ϕ

, (11.1b)

over all pixels

Vi(ν) :=
1

Npix

Npix
∑

k=1

Ii(ν, xk) .

The integrands I1 and I2 involve the functions u;µν which represent the shorthand
notation for a combination of partial derivatives of u as defined in equations (10.7).
The partial derivatives of the temperature field are calculated in Fourier space so that
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11.2. Extraction of Minkowski Functionals

∂ϕYlm = imYlm and

∂ϑYlm =







l
tan ϑYlm −

√

2l+1
2l−1

√
l2−m2

sin ϑ Yl−1m , |m| < l ,
l

tan ϑYlm , |m| = l .

The second derivatives can be obtained from these equations in a straightforward way.
Moreover, the delta function that appears in equations (11.1a) and (11.1b) is numer-

ically approximated through a discretization of threshold space in bins of width ∆ν
by

δN (x) := (∆ν)−1 [Θ (x+ ∆ν/2) − Θ (x− ∆ν/2)] .

To quantify the numerical error of this approximation notice that if we replace the delta
function δ(u − ν) in the integral

vi(ν) =
∫ ∞

−∞
du δ(u − ν)vi(u) ,

with the numerical delta function δN (u− ν) we get

Vi(ν) = vi(ν) +R∆ν
i (ν) ,

with residuals defined through

R∆ν
i (ν) :=

[

1
∆ν

∫ ν+∆ν/2

ν−∆ν/2
du vi(u)

]

− vi(ν) ,

As it does not depend on the actual functional form of vi, this is a general result and
represents a generic map-independent (but binsize dependent) MF estimator.

The following example is intended to illustrate our implementation by applying it to
a presumably familiar map: Earth’s topography.

Example: MFs of earth’s topography

The National Geophysical Data Center provides elevation data of the earth’s surface in
the ETOPO5 data set (NOAA (1988)). We have binned the data set into a HEALPix
grid of resolution Nside = 512, smoothed it with a Gaussian filter of 1◦ and computed
the MFs as prescribed above. The results are shown in Figure 11.3. The functionals
reveal a sharp change between 6000m and 5000m below sea-level which means that a
large fraction of the sea-floor is to be found at these depths, cf. the average depth of
the sea-floor ≃ 3790m. The following broad peak in V1 at ≃ −4000m can be associated
with the rise of the oceanic ridges. For larger thresholds, the roughly constant boundary
length between −3000m and slightly positive elevations indicates the appearance of the
continental landmasses. Elevations larger than 1000m make up only a small fraction in
earth’s topography so that the MFs begin to fade for larger thresholds.
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11. Application of the HEALPix software

Figure 11.2.: Mollweide projection of Earth’s topography. This map was constructed
by binning the ETOPO5 data (NOAA (1988)) into a HEALPix grid with
resolution Nside = 512.
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Figure 11.3.: The figure shows the MFs of the ETOPO5 data set of earth’s topography
with 1◦ Gaussian smoothing. Prominent features in the functionals can
be associated with characteristic topographical properties: oceanic ridges,
continents, mountain ranges.
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12. Minkowski Functional statistics of a
collision signal

12.1. Gaussian random field

For a Gaussian random field uG one can compute the expectation values of the integrals
in equations (10.2) – (10.4). The derivation is relegated to appendix E. The results are

v̄G
0 (ν) :=

〈

vG
0 (ν)

〉

=
1
2

(

1 − erf
(

ν − µ√
2σ

))

, (12.1a)

v̄G
1 (ν) :=

〈

vG
1 (ν)

〉

=
1
8

√

τ

σ
exp

(

−(ν − µ)2

2σ

)

, (12.1b)

v̄G
2 (ν) :=

〈

vG
2 (ν)

〉

=
1

(2π)3/2

τ

σ

ν − µ√
σ

exp

(

−(ν − µ)2

2σ

)

, (12.1c)

where erf is the Gaussian error function erf(x) := 2√
π

∫ x
0 dt exp

(

−t2
)

and

µ := 〈uG〉 , σ :=
〈

u2
G

〉

− µ2 , τ :=
1
2

〈

|∇uG|2
〉

. (12.2)

The variance σ and the mean amplitude of the gradient are directly related to the
Gaussian angular power spectrum Cl by

σ =
1

4π

∞
∑

l=1

(2l + 1)Cl , τ =
1

8π

∞
∑

l=1

(2l + 1)(l + 1)lCl .

However, note CMB power spectra are often truncated at large l – hence it is preferable
to compute these quantities directly from the maps according to equation (12.2).

Assuming that the primordial spectrum is completely Gaussian and the power spec-
trum is isotropic, we pose the question: If a “cold” or “hot” spot exists in the CMB
(whatever the origin) – how well can we distinguish such a spot from the complete
Gaussian sky with MF? By “hot” or “cold” spot, we mean a circular region of size A
in the CMB with a uniform temperature shift δT over the actual mean temperature,
µG = µ − A/(4π)δT , and the usual power spectrum of anisotropies, where µ is the
average temperature of the CMB, and we have assumed a sharp cut-off at the boundary.

Furthermore, the actual variance of the unaffected region of the sky σG is related to
the disk properties by σG = σ − A/(4π) (1 −A/(4π)) δT 2, where σ is the variance of
the whole sky calculated assuming that no such disk exist. In general, the “hot” or
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12. Minkowski Functional statistics of a collision signal
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Figure 12.1.: Average numerical MFs V G
i for a Gaussian random field generated from

the power spectrum derived from the five year WMAP data at Nside = 512
with ϑs = 1◦ smoothing (red dots), compared to the expectation value v̄G

i

(blue line) as given in eqs. (12.1a)-(12.1c).

”cold” spot can be fairly complicated in structure, with gentler boundaries and non-
uniform temperature shift. In this work, we will ignore such complications and consider
a single sharp boundary region with uniform temperature shift. Chang et al. (2009) have
predicted such regions by studies of cosmological bubble collisions.

In addition, we would like to point out some subtleties when using MF to test for the
presence of disk-like structures. First, MF “know nothing” about the structure of the
two-point correlation function, so one in principle can have a completely Gaussian map,
which is yet somehow correlated pixel by pixel – imagine, for example, an omnipotent
hand rearranging all the cold pixels in a Gaussian map into a disk, then we will not pick
up such a feature. Since we are assuming that the underlying power spectrum is isotropic,
such magical rearranging does not occur. This illustrates one of the advantages of using
MF over “local” statistics – we will not mistake fortuitous (but random) correlations as
a true feature.

Second, imposing a Gaussian disk with different mean on the sky effectively ren-
ders our map bi-distributional, i. e. a histogram of the pixels will reveal two different
Gaussian distributions with different means but identical variances, zero skewness and
kurtosis. Hence the sky becomes non-Gaussian. Nevertheless, this is a very specific
form of anisotropic non-Gaussianity, which cannot be described by a regular higher-
point correlation function such as the bispectrum or trispectrum, see Matsubara (2010),
which is isotropic by construction. Thus, in principle we can hope to distinguish such
anisotropic non-Gaussianities from those generated during primordial inflation, cf. Linde
and Mukhanov (1997); Bernardeau and Uzan (2003); Maldacena (2003); Chen (2010).
We will show later that they possess a very distinctive signature.

Figure 12.1 shows a comparison of the numerical MFs with the expectation val-
ues (12.1a-12.1c).
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12.1. Gaussian random field
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Figure 12.2.: The figure shows the average difference
〈

∆G
i

〉

(red) of the numerical and

the analytical MFs and the leading order residual R∆ν
i,G with ∆ν ≃ 0.46

√
σ

(blue) for an average over 256 realizations at Nside = 512 and ϑs = 1◦

normalized to max
∣

∣

∣v̄G
i

∣

∣

∣,
√
σ ≃ 0.065mK.

12.1.1. Removal of residuals

Regarding the residuals we expect that the numerical computation of the MFs to leading
order around ∆ν = 0 yields,

V G
i (ν) ≃ v̄G

i (ν) +
(∆ν)2

24
∂2

ν v̄
G
i (ν) , i ∈ {1, 2} .

For convenience we define

R∆ν
i,G(ν) :=

(∆ν)2

24
∂2

ν v̄
G
i (ν) , R∆ν

0,G := 0 ,

which means that

R∆ν
1,G(ν) =

(∆ν)2

24σ

(

(ν − µ)2

σ
− 1

)

v̄G
1 (ν) , (12.3a)

R∆ν
2,G(ν) =

(∆ν)2

24σ

(

(ν − µ)2

σ
− 3

)

v̄G
2 (ν) . (12.3b)

The average of the difference

∆G
i (ν) := V G

i (ν, µ, σ, τ) − v̄G
i (ν, µ, σ, τ) , i ∈ {1, 2} , (12.4)

between the numerically extracted MFs V G
i and the respective expectation value v̄G

i ,
as shown in Figure 12.2, is in very good agreement with R∆ν

i,G when a sufficiently large
number of realizations is considered. All maps are corrected for the numerical fluctuation
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12. Minkowski Functional statistics of a collision signal

in the mean such that µ = O
(

10−18
)

. The difference ∆G
i is normalized to the maximal

amplitude in the MFs

max
∣

∣

∣v̄G
0

∣

∣

∣ = 1 , max
∣

∣

∣v̄G
1

∣

∣

∣ =
1
8

√

τ

σ
, max

∣

∣

∣v̄G
2

∣

∣

∣ =
1

(2π)3/2

1√
e

τ

σ
.

As we emphasized previously, this calculation can be done for any underlying smooth
map.

An expansion of eqns. (12.3a) and (12.3b) around ∆ν = 0 shows that the leading
order terms are proportional to (∆ν)2/σ. This fact may suggest that a smaller binsize is
always better. However, smaller binsize means that each bin contains fewer pixels and
hence an increase in the inherent noise per bin. In Figure 12.3 we show that, for a single
realization, a binsize of ∆ν = 0.9

√
σ is a good compromise. Another way of beating

down the noise is to increase the number of pixels, either by increasing the resolution of
the map, or average over a large sample of maps. Figure 12.4 shows a comparison of the
residuals R∆ν

i,G with the difference ∆G
i at the prospective Planck resolution Nside = 2048

for a single sample at different binsizes. With the number of pixels per bin increased a
smaller binsize can be used without adding noise.

However, as we would want to apply our prescription to actual data, we ultimately
want to be able to extract accurate MF from a single map. As we shall see, the noise
from a single map will turn out to be a difficult stumbling block in our attempt to
constrain disk-like structures in the sky.

12.1.2. Remaining difference in MFs of Gaussian maps

The residual effects that originate in the numerical implementation of the delta function
have been analyzed in detail in the last subsection. Henceforth, we will use a suitable
binwidth in the calculation of MFs for any given map to obtain well converged residuals.
Their subtraction then allows for an efficient removal of the effects of the discrete delta
function. Consequently we are interested in further effects that may cause a difference
between the numerical MFs and their analytical expectation. Therefore we investigate
the difference

∆G
i (ν) := Vi(ν) −

[

v̄G
i (ν) +R∆ν

i,G(ν)
]

, (12.5)

that remains after the residuals have been removed. Examples of this remaining dif-
ference in the MFs of one realization of the Gaussian field are shown in Figure 12.5,
while the average of the differences are shown in Figure 12.6. The difference in the MFs
of a particular realization differs from sample to sample and therefore has a random
character.

Moreover, for most samples the shape of the difference ∆G
i appears to be dominated by

± (
√
σ∂ν)3

v̄G
i times some random prefactor of the order (O (0.1))3. The averages of the

difference,
〈

∆G
i

〉

, converge to a curve that is approximately given by (O (0.1)
√
σ∂ν)4

v̄G
i

and are thus much smaller than the random fluctuation in the MFs of a single sample.
We point out that this difference in a single sample depends on the resolution (though

only weakly ∝ N
−1/3
side ) and does not depend on the binwidth ∆ν.
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12.1. Gaussian random field
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Figure 12.3.: The figure shows the difference ∆G
i (red) of the numerical and the an-

alytical MFs and the leading order residual R∆ν
i,G (blue) for a single re-

alization taken at Nside = 512 smoothed to ϑs = 1◦ at the binwidths
∆ν ≃ (0.92

√
σ, 0.62

√
σ, 0.46

√
σ) normalized to max

∣

∣

∣v̄G
i

∣

∣

∣. The upper

(lower) panel is ∆G
1 (∆G

2 ).
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Figure 12.4.: Same as above with Nside = 2048 and without smoothing. With increased
number of pixels that comes with higher resolution, we can use smaller
binsizes while keeping the pixel noise tolerances manageable. 63
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Figure 12.5.: The figure shows the difference ∆G
i , eq. (12.5), of the numerical and the

analytical MFs with residuals subtracted for three different realizations
taken at Nside = 512 without smoothing at the binwidth ∆ν/
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∣. Though the differences ∆G
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Figure 12.6.: The figure shows the difference ∆G
i , eq. (12.5), of the numerical and the

analytical MFs with residuals subtracted, averaged over 1000 realizations
taken at Nside = 512 without smoothing at the binwidth ∆ν/

√
σ = 1

and normalized to max
∣

∣

∣v̄G
i

∣

∣

∣. The averages
〈

∆G
i

〉

appear to converge to a

curve that is approximately given by (O (0.1)
√
σ∂ν)4

v̄G
i . However, when

compared with the upper figure, it turns out that the fluctuations for a
single realization are about an order of magnitude larger than the average.
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12.2. Analysis of collision maps

12.2.1. Expected disk signal in MFs

In this section, we describe our method of constructing a sample Gaussian map with a
superimposed disk. For the MFs of a Gaussian map containing a disk, we propose the
decomposition

v̄i(ν) :=
(

1 − A

4π

)

v̄G
i (ν) +

A

4π
v̄G

i (ν − δT ) + ∂Ai(ν, δT, shape) , i ∈ {0, 1, 2} .

The first two terms are area weighted MFs of pure Gaussian fields. The first term
represents the part of the sky which is unaffected by the collision. The second term
corresponds to the MFs of a Gaussian field in A with the mean temperature shifted by
δT .

The third term ∂Ai stands for the “boundary” effects of the transition region where
the temperature drops from δT → 0. Note that, within this decomposition, information
about the shape of the collision region is entirely contained in ∂Ai since the first two
terms solely depend on the constant temperature shift δT and the area of the collision
region A = 2π (1 − cos ϑD) for a disk with opening angle ϑD.

To numerically generate a map that contains a disk we linearly add a signal uD into
a map of Gaussian temperature anisotropies uG with

uD (ϑ) := δT · Θ (ϑD − ϑ) .

The signal defined in this way is similar to the form proposed in equation (3.2). In
practice this is done in spherical harmonic (alm) space via the sum alm = aG

lm + aD
lm,

where aG
lm is the Gaussian spectrum and

aD
lm = δT

√

π

2l + 1
(Pl−1(cos ϑD) − Pl+1(cos ϑD)) δm0 ,

is the disk spectrum. Both spectra are cut off at the some high lmax > 1000, which has
to be high enough to ensure that the steepness of the step function is preserved. While
in principle, there exist a small contribution from the boundary region of the disk, as
the transition region is very small due to the steepness of the step, the signal associated
with the gradient ∂Ai is highly suppressed and hence we neglect it from now on. Thus
we will henceforth consider

v̄i(ν, µ, σ, τ) :=
(

1 − A

4π

)

v̄G
i (ν, µG, σG, τG) +

A

4π
v̄G

i (ν − δT, µG, σG, τG) , (12.6)

as a sufficiently accurate approximation to the expectation values of MFs from a collision
map. Recall that mean and temperature of an underlying Gaussian µG, σG are related
to the mean and variance of a Gaussian field with a superimposed disk µ, σ, by

µG = µ− A

4π
δT , σG = σ − A

4π

(

1 − A

4π

)

δT 2 ,
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Figure 12.7.: Average numerical MFs of a Gaussian random field with a superimposed
disk of ϑD = 60◦, δT = 3

√
σG at Nside = 512 (red dots), compared to v̄i

(blue line) as given in equation (12.6).

and that we set τG = τ . The downside of equation (12.6) is that it implies that we
cannot access information about the shape of the boundary because it is contained in
the boundary terms1. Numerically extracted MFs for a disk of temperature difference
δT = 3

√
σG and opening angle ϑD = 60◦ are shown in Figure 12.7.

Notice that equation (12.6) is invariant under the simultaneous replacement of δT →
δ̃T = −δT and A → Ã = 4π − A. This is a simple reflection of the fact that a “hot”
spot of temperatue δT and size A in a Gaussian field with expected temperature µG may
equally well be regarded as a “cold” spot of temperature −δT and size 4π − A within
a Gaussian field of mean temperature µG + δT . This degeneracy is circumvented by
restricting the consideration to disk sizes A ≤ 2π, keeping in mind the implication.

12.2.2. Relative amplitude of the disk signal

In this subsection we investigate which kind of disks one can hope to detect with the
help of MF statistics. Therefore it turns out to be useful to compare the MFs expected
from a Gaussian field with those expected in the presence of a disk with temperature
difference δT and opening angle ϑD. That is to consider the difference

∆vi(ν, µ, σ, τ, δT,A) := v̄i(ν, µ, σ, τ) − v̄G
i (ν, µ, σ, τ) ,

where µ, σ represent mean and variance of the field and τ is the variance in the gradient
field of a given temperature map which is supposed to contain a disk, as calculated
by equation (12.2). The disk parameters are constrained by σG = σ − A/(4π)(1 −
A/(4π))δT 2 > 0. In Figure 12.8 we have shown the differences ∆vi for a disk with
δT/

√
σ = 0.7 and ϑD = 50◦. Unfortunately, the shape of the difference is very similar

1The smallness of the transition region is a result of the fact that we have chosen to work with disks

with smooth boundaries instead of some more complicated shapes – for example if the cold/hot spot
is bounded by a highly irregular border with very small structures, the boundary term may contribute
a non-negligible signal to the total MF. However, such shapes are not expected from generic bubble
collisions scenarios.
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Figure 12.8.: The Figure shows the normalized difference ∆vi for δT/
√
σ = 0.7 and

ϑD = 50◦ with the µ, σ and τ taken from the realizations presented in
Figure 12.5. Notice that ∆vi is very similar in shape as ∂3

ν v̄
G
i so that the

difference that occurs in ∆G
i may potentially be mistaken as the presence

of a disk of this amplitude.

to ∂3
ν v̄

G
i for a wide range range in the {δT, ϑD}-parameter space. This means that the

difference ∆G
i that occurs in the numerical MFs of a Gaussian field can potentially be

mistaken as the presence of a disk. Only when the temperature difference clearly obeys
δT/

√
σ & 1 and the disk covers a significant fraction of the sky a distinctive signature

manifests itself in MFs. This has important consequences. Firstly, the temperature
difference and size of a disk must be large to be detectable with MFs. Moreover, the
intrinsic variation in a single outcome of numerically generated Gaussian map at WMAP
resolution is large enough to mimic the presence of a prominent hot or cold spot in the
MFs of the map. In other words,MFs are not a very sensitive tool when it comes to the
detection of disks in the CMB.

12.2.3. Null test of Gaussian maps

In this subsection we will elucidate the aforementioned issues. Figures 12.9 and 12.10
show the L2-norm of the difference

∆i(ν) := Vi(ν) −
[

v̄i(ν, µ, σ, τ) +R∆ν
i (ν, µ, σ, τ)

]

, (12.7)

R∆ν
i (ν, µ, σ, τ) :=

(

1 − A

4π

)

RG
i (ν, µG, σG, τG) +

A

4π
RG

i (ν − δT, µG, σG, τG) ,

that is

L2
i :=

n−1
bins

∑

j (∆i(νj))
2

(max |v̄i|)2 ,

for single Gaussian realizations at WMAP and for an average over 1000 realizations.
Figure FIG. 12.11 shows lnL2

i for prospective PLANCK resolution (Nside = 2048).
The minimum is indicated by the green dot and therefore means a best fit of equa-

tion (12.7) to the data. The apparent presence of a disk in the case of single realizations
the fluctuations in the MFs of the Gaussian field, as shown in Figure 12.5, is due to the
fact that their shape is very similar to the shape in the difference ∆vi, Figure 12.8 so that
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Figure 12.9.: The figure shows lnL2
i for a single Gaussian realization and its minimum

(red dot) at WMAP resolution (Nside = 512, without smoothing). The
δT = 0 line is degenerate in ϑD space.
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Figure 12.10.: The figure shows lnL2
i for an average over 1000 Gaussian realizations and

its minimum (red dot) at Nside = 512 without smoothing.
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Figure 12.11.: The figure shows lnL2
i for a single realization and its minimum (red dot)

at Nside = 2048 without smoothing.
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Figure 12.12.: The figure shows lnL2
i for a single realization with δT =

√
σ and ϑD = 50◦

(green dot) at Nside = 512 without smoothing. The corresponding best
fit value is indicated by a red dot.

eqn. (12.6) allows for a good fit for the data. Figure 12.10 shows that upon averaging
over a larger number of samples the fluctuations in the MFs decrease, cf. Figure 12.6,
and the best fit essentially resembles the null result.

In Figure 12.12 and Figure 12.13 we show an example of fake collision data for
δT/

√
σ = 1 and ϑD = 50◦. As in the Gaussian case, the remaining difference in the

MFs has a severe effect on ∆i so that the minimum of its L2-norm (red dot) is not to
be found at the input values (green dot). However, when we average the MFs taken
from many realizations, the remaining difference in the MFs decreases and the minimum
of the L2-norm of ∆i is very close to the actual input parameters. We conclude that
we cannot detect disks with δT/

√
σ . 1, even if they cover a large fraction of the sky.

Only large disks with ϑD = O (10◦) with temperature difference δT/
√
σ & 2 for which

the main contribution to the MFs lies clearly outside of the Gaussian, cf. Figure 12.7,
can be detected with certainty. The main drawback to the use of this MFs algorithm is
the remaining difference ∆i which results in a bad signal to noise ratio for these disks.
As this difference depends only weakly on the resolution we do not expect a significant
improvement from PLANCK data.
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Figure 12.13.: The figure shows lnL2
i for an average over 2048 realizations with δT =√

σ and ϑD = 50◦ (green dot) at Nside = 512 without smoothing. The
corresponding best fit value is indicated by a red dot.

12.2.4. Application to WMAP seven year data

In the recent literature on the CMB cold spot, see e.g. Cruz et al. (2005, 2006, 2007), it
has been argued whether the occurrence of such a spot is a likely feature of a Gaussian
random field and therefore is regarded “generic”, or whether it is a non-Gaussian feature
the origin of which is related to a thus far unknown physical mechanism.

In this context we ask what can be inferred about the presence of spots from the MF
statistics. Therefore we have used the same map making procedure as Bennett et al.
(2003), Vielva et al. (2004) and Zhang and Huterer (2010) in their analysis of the CMB
cold spot. We compute the temperature u of the fiducial map at xi by the sum

u(xi) =
∑

r ur(i)wr(i)
∑

r wr(i)
.

of each individual differential assembly r weighted by wr(i) = Nr(i)/σ2
r , where Nr(i) is

the number of effective observations at pixel number i and σr is the noise dispersion of
the respective receiver. The maps are added at a resolution of Nside = 512 and smoothed
with ϑs = 1◦. The alm’s are extracted before the KQ75 mask is applied. The MFs are
then computed by summing only over the unmasked pixels, i.e.

Vi(ν) :=

∑Npix

j=1 WjIi(ν, xj)
∑Npix

j=1 Wj

,

with Wj = 1 when the pixel is not hidden behind the mask and 0 otherwise.
It is clear that MFs do not have the sensitivity to pick up the small signal as seen

by Vielva et al. (2004), i.e. a δT = −0.016mK at 5 degrees at roughly 3σ, since in this
regime the signal is smaller than remaining noise of a single realization as described in
section (12.2.2). Indeed, fitting the co-added map into our estimator, we obtained a
disk with temperature difference δT ≃ −0.063mK and opening angle ϑD ≃ 35◦, which
is clearly a fit to noise and hence is not physical.
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13. Summary and conclusion of Part II

Motivated by recent work on cosmic bubble collisions and their potentially observable
signatures in the CMB, we studied the utility of Minkowski functionals (MFs) for their
detection. Therefore we have given a short introduction to MFs, the HEALPix software
package and the algorithm we have used to compute MFs numerically from maps in
the HEALPix representation. For illustration, we have applied our code on Earth’s
topographical map.

Further on, we have presented the expectation values for Minkowski Functionals of
Gaussian random fields on the two-sphere. We then resolved the long-standing issue
with the MF “residuals” – systematic differences between analytically and numerically
computed MF which are independent of map resolution and sample sizes. We show
that these residuals are in fact a result of finite bin-sizes, and not caused by pixelation,
masking or other intangible effects as originally suspected. We derive a map-independent
analytical formula to characterize these residuals at all orders, allowing one to convolve
the effects of bin-size into the MF estimators.

After removal of these residuals, we find that the remaining descrepancies between the
analytic estimates and the numerical MF are of order O

(

10−3
)

. This descrepancies is
proportional to the number of pixels of the map and the number of sample sizes, indicat-
ing that we are approaching the limit expected from random noise alone. Unfortunately,
as we demonstrated in the text, this noise has a characteristic that is roughly similar
to the expected disk signal, and hence severely limits our ability to probe small disk
signals.

We apply our residual-free MF estimator to the investigation of Gaussian temperature
fluctuations containing a superimposed collision signal. To characterize the signal-to-
noise of our estimators, we generated collision maps by modeling the signal as a uniform
shift of mean temperature within a circular spot (a disk) in an otherwise Gaussian field.
We find that our least-squares fitting procedure accurately reproduces the underlying
signal only when a large number of realizations of maps are averaged over. For a single
WMAP and PLANCK resolution map we are able to recover the result only when a
highly prominent disk, with |δT | & 2

√
σG and ϑD & 40◦ is present. This is unfortunate,

as it means that MF are intrinsically too noisy to be able to distinguish cold and hot
spots in the CMB for small sizes as suggested by Vielva et al. (2004). In order to confirm
our suspicion, we apply our prescription to WMAP7 map and find that we do not recover
the latter’s conclusions.
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Appendix





A. Spherically symmetric spacetime

Under a coordinate transformation f from a manifold onto itself, the components of the
metric tensor change as

gµν(p) = g̃αβ(f(p))
∂yα

∂xµ

∂yβ

∂xν
,

where x and y are the coordinates of p and f(p) respectively. If g̃αβ(f(p)) = gαβ(f(p)) the
coordinate transformation is called an isometry. Accordingly, the infinitesimal coordinate
transformation xµ 7→ xµ + ǫξµ is an isometry if

ξα∂αgµν + gαν∂µξ
α + gαµ∂νξ

α = 0 ,

or, in an explicitly covariant form

∇µξν + ∇νξµ = 0 .

This is Killing’s equation and a vector field satisfying it is called a Killing vector field.
It means that the geometry does not change as one moves along the flow lines of ξµ. In
this sense, a Killing vector field represents the direction of a symmetry in a spacetime.

The isometries generated by the Killing vector fields form a group, the group of mo-
tions of the spacetime. Since the Killing equation is linear and homogeneous, linear
combinations of Killing vector fields are again Killing vector fields and the general so-
lution can be expressed as a linear combination of basis solutions. In addition, the
commutator of two Killing vector fields is also a Killing vector field: [ξA, ξB] = CD

ABξD.
The constants CD

AB are the structure constants characterizing the group of motions.
They are independant of the choice of coordinates, but do depend upon the choice of
basis of Killing vector fields.

In an n-dimensional spacetime there may exist up to n(n+ 1)/2 Killing vector fields.
Those spacetimes which admit the maximum number of Killing vectors are called max-
imally symmetric spacetimes. The Killing equation can be used to solve two kinds of
problems: Derive the symmetries of a given metric, or derive a metric with given sym-
metries.

The general line element for spherically symmetric spacetimes follows from the solution
of Killings equation with Killing vector fields obeying the Lie algebra of the rotation
group O(3). The structure constants equal the Levi-Cevita symbol CD

AB = ǫABD and in
spherical coordinates the Killing vector fields can be written as

Lx = − cosϕ∂ϑ + sinϕ cot ϑ∂ϕ ,

Ly = sinϕ∂ϑ + cosϕ cot ϑ∂ϕ ,

Lz = ∂ϕ .
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A. Spherically symmetric spacetime

Killing’s equations for a metric gµν(t, r, ϑ, ϕ) imply

−∂ϑgµν + cot ϑ
(

gϕνδ
ϕ
µ + gϕµδ

ϕ
ν

)

= 0 . (A.2a)

gϑνδ
ϕ
µ + gϑµδ

ϕ
ν − 1

sin2 ϑ

(

gϕνδ
ϑ
µ + gϕµδ

ϑ
ν

)

= 0 . (A.2b)

By inspection of equation (A.2a) for µ 6= ϕ 6= ν it follows that ∂ϑgµν = 0. Whereas from
equation (A.2b) we have

• for µ = ϑ and ν 6= ϑ,ϕ ⇒ gϕν = gνϕ = 0 ,

• for µ = ϕ and ν 6= ϑ,ϕ ⇒ gϑν = gνϑ = 0 ,

• for µ = ϑ = ν ⇒ gϑϕ = gϕϑ = 0 ,

• for µ = ϕ = ν ⇒ gϕϕ = sin2 ϑgϑϑ .

Hence, the general spherically symmetric line element may be written as

ds2 = −N2dt2 + 2βdtdr + α2dr2 +R2dΩ2 , (A.3)

The metric functions N,α, β,R depend solely on t and r. The Killing vector fields act
on the t = constant, r = constant hypersurfaces. The centers of symmetry are where
R = 0, but such points must not necessarily exist.

Additionally, we can switch to a comoving, synchronos frame by a coordinate trans-
formation in the (t, r) subspace if there exists a rotationless, timelike vector field, like
the velocity field of a perfect fluid. This eliminates the off-diagonal term in the metric

ds2 = −N2dt2 + α2dr2 +R2dΩ2 . (A.4)

Given that R is not a constant one could further simplify this metric. In regions where
the gradient of R is timelike R may be used as the new time coordinate, and in regions
where the gradient of R is spacelike it can be used as the new radial coordinate.
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B. Derivation of the Lemaître-Tolman
spacetime

Starting from the comoving line element of a spherically symmetric spacetime with a
dust source (A.4) we note that the property uµ∇µu

ν = 0 implies ∂rN = 0. Thus, with
rescaling of the time coordinate we can set N = 1 without loss of generality. A careful
look at the tr-component of Einstein’s equations reveals the implication

∂t

(

α−1∂rR
)

= 0 ,

and thus one may write

α =
∂rR√
1 + 2E

,

where E(r) depends on the radial coordinate only. This establishes the line element for
the Lemaître-Tolman spacetime

ds2 = −dt2 +
(∂rR(t, r))2

1 + 2E(r)
dr2 +R2(t, r)dΩ2 .

For completenes we will write down the relevant geometrical quantities for this spacetime.
Using the Levi-Civitá connection in a coordinate basis the Christoffel symbols follow from

Γλ
µν =

1
2
gλα (∂µgνα + ∂νgµα − ∂αgµν) .

Those that do not vanish are

Γt
rr =

R′Ṙ′

1 + 2E
, Γt

ϑϑ = RṘ , Γt
ϕϕ = sin2 ϑΓt

ϑϑ ,

Γr
tr = Γr

rt =
Ṙ′

R′ , Γr
rr =

R′′

R′ − E′

1 + 2E
, Γr

ϑϑ = − R

R′ (1 + 2E) ,

Γr
ϕϕ = sin2 ϑΓr

ϑϑ , Γϑ
ϕϕ = − cosϑ sin ϑ , Γϕ

ϑϕ = Γϕ
ϕϑ = cot ϑ ,

Γϑ
tϑ = Γϑ

ϑt = Γϕ
tϕ = Γϕ

ϕt =
Ṙ

R
, Γϑ

rϑ = Γϑ
ϑr = Γϕ

rϕ = Γϕ
ϕr =

R′

R
.

An overdot and prime represent a partial derivative with respect to t and r respectively.
We will skip writing down the Riemann tensor and give the Ricci tensor Rµν := Rα

βαν

Rtt = −2R̈
R

− 2R̈′

R′ , Rrr =
R′
(

RR̈′ + 2ṘṘ′ − 2E′
)

R (1 + 2E)
,

Rϑϑ = Ṙ2 +R

(

R̈+
ṘṘ′ − E′

R′

)

− 2E , Rϕϕ = sin2 ϑRϑϑ .
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B. Lemaître-Tolman spacetime

and the curvature scalar R := gαβRαβ .

R =
2
R

(

2R̈ +
Ṙ2 − 2E

R
+

2ṘṘ′ +RR̈′ − 2E′

R′

)

.

Collecting terms we get the non-vanishing components of the Einstein Tensor Gµν :=
Rµν − gµνR/2

Gtt =
Ṙ2 − 2E
R2

+
2ṘṘ′ − 2E′

RR′ , Grr =
R′2

(

2E − Ṙ2 − 2RR̈
)

R2 (1 + 2E)
,

Gϑϑ =
R

R′

(

E′ − ṘṘ′ −R′R̈−RR̈′
)

, Gϕϕ = sin2 ϑGϑϑ .

Together with the Stress-energy tensor of dust in the comoving coordinates Tµν = ρδt
µδ

t
ν

the Einstein equations Gµν + Λgµν = 8πTµν reduce to

Ṙ2 − 2E
R2

+
2ṘṘ′ − 2E′

RR′ − Λ = 8πρ , (B.1a)

2E − Ṙ2 − 2RR̈+ ΛR2 = 0 . (B.1b)

The latter has the first integral

Ṙ2 = 2E +
2M
R

+
Λ
3
R2 ,

where M is an arbitrary function of r. Equation (B.1a) simplifies to

8πρ =
2M ′

R2R′ .

These are the governing equations of the Lemaître-Tolman spacetime.
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C. Foliations of de Sitter spacetime

De Sitter spacetime can be embedded in five dimensional Minkowski spacetime as the hy-
perboloid gµνX

µXν = H−2, where H :=
√

Λ/3 is a constant. Due to its high symmetry
de Sitter spacetime admits many convenient foliations. We will illustrate the embedding
coordinates and induced metrics of the so called static, open, flat and closed slicings.

• Static slicing:

X0 = H−1
√

1 −H2r2 sinh (Ht) ,

X4 = H−1
√

1 −H2r2 cosh (Ht) ,

Xi = rωi , ωi = (cosϕ sin ϑ, sinϕ sin ϑ, cos ϑ) ,

ds2 = −
(

1 −H2r2
)

dt2 +
(

1 −H2r2
)−1

dr2 + r2dΩ2 .

• Open slicing:

X0 = H−1 sinh (Ht) cosh (χ) ,

X4 = H−1 cosh (Ht) ,

Xi = H−1 sinh (Ht) sinh (χ)ωi ,

ds2 = −dt2 +H−2 sinh2(Ht)
(

dχ2 + sinh2(χ) dΩ2
)

.

• Flat slicing:

X0 = H−1 sinh (Ht) +Hr2 exp (Ht) /2 ,

X4 = H−1 cosh (Ht) −Hr2 exp (Ht) /2 ,

Xi = r exp (Ht)ωi ,

ds2 = −dt2 + exp (2Ht)
(

dr2 + r2dΩ2
)

.

• Closed slicing:

X0 = H−1 sinh (Ht) ,

X4 = H−1 cosh (Ht) cos (ψ) ,

Xi = H−1 sinh (Ht) sin (ψ)ωi ,

ds2 = −dt2 +H−2 cosh2(Ht)
(

dψ2 + sin2(ψ) dΩ2
)

.

The open, flat and closed slicings have Robertson-Walker symmetry with k < 0, k =
0 and k > 0. The closed slicing is geodesically complete and thus covers the whole
spacetime, whereas the other slicings cover only a part of the spacetime as can be seen
in Figure C.1.1.
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C. Foliations of de Sitter spacetime
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Figure C.1.: Illustration of the different slicings of de Sitter spacetime. The closed folia-
tion covers the entire spacetime, whereas the other slicings cover only part
of it. It is shown how the coordinates of these slicings relate to those of
the conformal closed slicing given by ψ and η =

∫

dt/a. Upper left: Static
slicing. Upper right: Flat slicing. Lower: Open slicing.
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D. General Relativistic Junction Conditions

Let
(

M±, g±
µν , x

µ
±

)

represent two spacetimes that are valid solutions to Einstein’s field

equations with metric g±
µν and coordinates xµ

±. Define a hypersurface Σ that separates
each spacetime into two parts such that

M± = M±
1 ∪ M±

2 and Σ± = ∂M±
1 ∩ ∂M±

2 .

Now, one may ask: What are the conditions under which a spacetime given by some
union of M−

1/2 ∪ M+
1/2 with the identification Σ+ = Σ− := Σ is a valid solution to the

field equations. This task is solved and well established since the work of Israel (1966).
We will give a brief introduction to the subject.

Let
(

M±, g±
µν , x

µ
±

)

be the parts of two spacetimes that we want to join along a hyper-
surface Σ. Assume that we can introduce continuous coordinates xµ in a region around
Σ as well as coordinates ya on Σ. Imagine a congruence of geodesics which intersect
the hypersurface orthogonally. The geodesics define a scalar field l(xµ) that assigns the
postive (negative) proper distance from xµ to Σ when xµ ∈ M+ (xµ ∈ M−). Thus, an
infinitesimal displacement away from Σ can be decomposed into

dxµ =
∂xµ

∂ya
dya +

∂xµ

∂l
dl .

We define the basis vectors along the coordinates ya: eµ
a := ∂xµ/∂ya and the unit normal

nµ ≡ ∂xµ/∂l orthogonal to Σ. It obeys

nαn
α := ǫ =

{

1, if Σ is timelike ,

−1, if Σ is spacelike .

Junction conditions for lightlike hypersurfaces, i.e. ǫ = 0, are discussed in Barrabés and
Israel (1991); Poisson (2002). More details can be found in the textbook by Poisson
(2004). Without loss of generality we can define nµ to point from M− to M+. By
construction we have nαe

α
a = 0. For clarity we define for any tensorial quantity T

[T ] := T+
∣

∣

Σ
− T− ∣

∣

Σ
and {T} :=

1
2

(

T+
∣

∣

Σ
+ T− ∣

∣

Σ

)

.

The first condition for a valid junction is continuity of the induced metric on the hyper-
surface, which is clearly necessary if Σ is to have a well-defined geometry. Hence, the
first junction condition reads

[

gαβe
α
ae

β
b

]

= [hab] = 0 . (D.1)
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D. Relativistic Junction Conditions

Moreover, to obtain a completely smooth junction, we also require that the embedding
of the hypersurface is continuous. This means that the extrinsic curvature tensors match
on Σ: [Kab] = 0. However, if this condition is violated it can be given a sound physical
interpretation. In presence of a jump discontinuity in Kab the hypersurface can be
associated with a thin surface layer that has a stress-energy tensor given by

8πǫSab := [Kab] − hab [K] . (D.2)

This represents the second junction condition. The components of the extrinsic curvature
tensor Kab are the projection of the covariant derivative of the vector eα

a along eβ
b onto

the normal nλ

Kab := nλΓλ
αβe

α
ae

β
b . (D.3)

Thus, for Einstein’s equations to be fulfilled on the hypersurface, the full stress-energy
tensor has to be

Tµν := Θ(l)T+
µν + Θ(−l)T−

µν + δ(l)Sµν ,

where Sµν = Sabeµ
ae

ν
b . The other projections of Einstein’s equations then imply

(3)∇bS
b
a +

[

Tαβe
α
an

β
]

= 0 , (D.4a)

Sab

{

Kab
}

+
[

Tαβn
αnβ

]

= 0 . (D.4b)

Together these equations determine the evolution of Σ in M±.
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E. Derivation of Minkowski functionals of a
Gaussian and an axially symmetric field
on the sphere

E.1. Transformation to surface integrals

In this section we will show how the boundary integral that appears in the second and
third Minkowski functional as

∫

∂Qν

dl =
∫

S2
dΩ δ(u− ν) |∇u| , (E.1)

can be expresssed as integrals over the sphere. We show that the identity (E.1) is true
in two-dimensional Euclidean space. Assume that we have local coordinate chart {x, y}
in which ∂yu 6= 0. This implicitly defines a function f through u (x, f(x)) = ν so that

∂xu (x, f(x)) + ∂yu (x, f(x))
df(x)
dx

= 0 .

The right hand side of equation (E.1) can be transformed by

∫

dx

∫

dy δ (u− ν) |∇u| =
∫

dx

∫

dy
δ (y − f(x))

|∂yu|

√

(∂xu)2 + (∂yu)2 ,

=
∫

dx

√

√

√

√1 +

(

∂xu (x, f(x))
∂yu (x, f(x))

)2

,

=
∫

dx

√

1 +
(

df

dx

)2

=
∫

dl .

The generalization to a curved space is straightforward.
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E. Minkowski functionals on the sphere

E.2. Gaussian Random fields

Let u be a Gaussian random field with vanishing mean and correlation function

ξ(ϑ) := 〈u(x)u(y)〉 =
1

4π

∞
∑

l=1

(2l + 1)ClPl (cos ϑ) ,

where ϑ is the geodetic distance between x and y. Following the approach of Tomita
(1986) we note that the six variables U := {u, u;ϑ, u;ϕ, u;ϑϑ, u;ϕϕ, u;ϑϕ} are jointly Gaus-
sian distributed. The respective covariance matrix is

σij =



















σ 0 0 −τ −τ 0
0 τ 0 0 0 0
0 0 τ 0 0 0

−τ 0 0 v v/3 0
−τ 0 0 v/3 v 0
0 0 0 0 0 v/3



















,

with σ := ξ(0), τ := |ξ′′(0)| and v := ξ(4)(0) are given by the correlation function.
The average Minkowski functionals of the field u, cf. equations (10.2) – (10.4), can be
calculated with the help of the probability distribution of U

P (U) =
1

√

(2π)6 det σij

exp
(

−1
2
σ−1

ij UiUj

)

,

by

〈

vG
0 (ν)

〉

=
∫

dUP (U)Θ(u − ν) ,
〈

vG
1 (ν)

〉

=
∫

dUP (U)δ(u − ν) |∇u| ,
〈

vG
2 (ν)

〉

=
∫

dUP (U)δ(u − ν) |∇u|κ .

Explicitly, the norm of the gradient of u is |∇u| =
√

u2
;ϑ + u2

;ϕ and the geodesic curvature

is given by equation (10.8). The integrals yield

〈

vG
0 (ν)

〉

=
1
2

(

1 − erf
(

ν√
2σ

))

,

〈

vG
1 (ν)

〉

=
1
8

√

τ

σ
exp

(

− ν2

2σ

)

,

〈

vG
2 (ν)

〉

=
τ

2π3/2σ

ν√
2σ

exp

(

− ν2

2σ

)

,

where erf is the Gaussian error function erf(x) = 2√
π

∫ x
0 dt exp

(

−t2
)

.
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