groups 13 and 14 but do not yet seem to be fully understood. ${ }^{[2]}$ We herein present ab initio pseudopotential calculations ${ }^{[3]}$ on the structures of fluoro(methyl)plumbanes 1-3 which have the general formula $\left(\mathrm{CH}_{3}\right)_{n} \mathrm{PbF}_{4-n}(n=1-3)$, as well as $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~Pb}$ and PbF_{4}, and compare their stabilities with those of the corresponding divalent species $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~Pb}$, $\mathrm{CH}_{3} \mathrm{PbF}$, and PbF_{2}.

$$
\begin{array}{ccc}
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{PbF} & \left(\mathrm{CH}_{3}\right)_{2} \mathrm{PbF}_{2} & \mathrm{CH}_{3} \mathrm{PbF}_{3} \\
\mathbf{1} & \mathbf{2} & \mathbf{3}
\end{array}
$$

The optimized geometries ${ }^{[3]}$ of $\mathbf{1 - 3}$ are shown in Figure 1. The bond angles in all of these unsymmetrically substituted species deviate significantly from idealized tetrahedral values. ${ }^{[4]}$ While the $\mathrm{F}-\mathrm{Pb}-\mathrm{F}$ angles are smaller than 109.5°, the

 cies.

Fig. 1. SCF-optimized geometries for 1 (C_{3} symmetry), $2\left(C_{2 v}\right)$, and $3\left(C_{3 v}\right)$. All structures have been characterized as minima on the potential energy surface by analysis of the harmonic frequen-
$\mathrm{C}-\mathrm{Pb}-\mathrm{C}$ angles are considerably larger. This is most apparent in 2 with its $\mathrm{C}-\mathrm{Pb}-\mathrm{C}$ angle of approximately 135°. Similarly, the $\mathrm{C}_{3} \mathrm{~Pb}$ unit in 1 approaches planarity. These angle distortions have consequences for the polymeric arrangements found in the solid state: $\mathrm{R}_{3} \mathrm{PbX}$ and $\mathrm{R}_{2} \mathrm{PbX}_{2}$ compounds (R is an alkyl or aryl group, X an electronegative substituent) usually form chain structures of types 4 and 5 , respectively. ${ }^{[1 \mathrm{bl}]}$ Note the almost planar PbR_{3} arrangement in 4 (cf. 1) and the trans orientation of the alkyl groups in 5 (cf. 2). The calculated $\mathrm{Pb}-\mathrm{C}$ and $\mathrm{Pb}-\mathrm{F}$ bonds shorten when the number of fluorine substituents is increased, ${ }^{[5]}$ consistent with the results of calculations on the fluoromethanes and -silanes. ${ }^{[6]}$

Both the distorted bond angles and the contracted bond lengths may be rationalized by hybridization arguments with

[^0]
The Structure and Stability Trends of Fluoro(methyl)plumbanes**

By Martin Kaupp and Paul von R. Schleyer*

The dramatic differences in the stability of inorganic and organometallic $\mathrm{Pb}^{\text {lV }}$ compounds are best exemplified by comparing tetraalkyllead with lead tetrahalides: While $\mathrm{Et}_{4} \mathrm{~Pb}$, for example, is a relatively stable compound with (still) considerable industrial use, PbCl_{4} decomposes even at low temperatures. ${ }^{[1]}$ On the other hand, $\mathrm{Et}_{2} \mathrm{~Pb}$ is unknown but PbCl_{2} is perfectly stable. These remarkable differences between inorganic and organometallic compounds are of general importance in the chemistry of the heavy elements in
nonorthogonal hybrid orbitals. ${ }^{[6 a, 7]}$ Figure 2 displays the partial atomic charges on lead, the $\mathrm{p}: \mathrm{s}$ ratio n of the $\mathrm{Pb}-\mathrm{sp}^{n}$ hybridization of the hybrid orbitals used for $\mathrm{Pb}-\mathrm{C}$ and $\mathrm{Pb}-\mathrm{F}$ bonding, and the $\mathrm{p}: \mathrm{s}$ ratio of the average Pb hybridization (Weinhold et al.'s "natural population/hybridization analysis" (NPA) ${ }^{[8]}$ was employed). With increasing fluorine substitution, the positive charge on lead increases, and to the contributions of the p orbitals to the Pb hybrid orbitals and the bonding decrease. The larger contributions of the s orbitals to the bonds lead to the observed bond length contraction. Since the hybrid orbitals directed towards the electronegative fluorine substituents generally exhibit roughly twice as much p character as the hybrids used for $\mathrm{Pb}-\mathrm{C}$ bonding (Fig. 2), the observed deviations from 109.5° angles follow expectations based on Bent's rule. ${ }^{[9]}$

Fig. 2. p :s Ratio n of the Pb -sp" hybridization (based on "natural population analysis" NPA[7]) and partial atomic charges on lead (NPA [7]) for the homologous series of fluoro(methyl)plumbanes (the average lead NPA hybridization and the p :s ratios of the contributions of the lead hybrid orbitals to the σ-bonding "natural localized MOs" (NLMOs) [7] are given). The differences between the average p:s ratio and the p:s ratio of the lead contributions to the $\sigma \mathrm{Pb}-\mathrm{F}$ bonding NLMOs in PbF_{4} are due to small hyperconjugative interactions.

The energies ΔE for the 1,1 -elimination of F_{2}, methyl fluoride, or ethane from these $\mathrm{Pb}^{\text {IV }}$ compounds (to give $\mathrm{Pb}^{\text {II }}$ derivatives) are shown in Figure 3. In general, these reactions become less endothermic or more exothermic as the number of fluorine substituents increases. For example,

Fig. 3. Calculated energies $\Delta E\left[\mathrm{kcalmol}^{-1}\right]$ for 1,1-elimination reactions (loss of $\mathrm{F}_{2}, \mathrm{C}_{2} \mathrm{H}_{6}$, or $\mathrm{CH}_{3} \mathrm{~F}$, respectively) of substituted $\mathrm{Pb}^{\text {IV }}$ compounds $\left(\mathrm{CH}_{3}\right)_{n} \mathrm{PbF}_{4-n}(n=0-4)$. These reactions convert $\mathrm{Pb}^{\mathbf{1 v}}$ to $\mathrm{Pb}^{\text {II }}$ compounds. The MP4SDTQ single-point calculations at the SCF-optimized geometries [2,4] (cf. Fig. 1) used the same basis sets employed for the geometry optimizations [2] (the reaction $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~Pb} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~Pb}+\mathrm{C}_{2} \mathrm{H}_{6}$ was calculated at the MP4SDQ level).
elimination of $\mathrm{CH}_{3} \mathrm{~F}$ from $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{PbF}$ (1) is endothermic, whereas loss of $\mathrm{CH}_{3} \mathrm{~F}$ is quite exothermic for $\mathrm{CH}_{3} \mathrm{PbF}_{3}$ (3). Obviously, the tetravalent lead compounds are destabilized in this sense by electronegative substituents. As a result, the disproportionation reaction $2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~Pb} \rightarrow \mathrm{~Pb}\left({ }^{3} \mathrm{P}\right)+$ $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~Pb}$ is exothermic, but the reaction $2 \mathrm{PbF}_{2} \rightarrow \mathrm{~Pb}\left({ }^{3} \mathrm{P}\right)+$ PbF_{4} is strongly endothermic. ${ }^{[10]}$.

This destabilization of $\mathrm{Pb}^{\text {IV }}$ compounds by electronegative substituents may also be explained by the hybridization. The increasing metal charge contracts the lead 6 s orbitals more strongly than the 6 p orbitals. ${ }^{[11]}$ Thus, the already significant differences in the radial extension of s and p orbitals in compounds of heavy main-group elements ${ }^{[7]}$ become even larger. Since efficient hybridization requires the size of the orbitals involved to be similar, electronegative substituents increase the hybridization defects ${ }^{[7]}$ (cf. Fig. 2) which leads to less efficient covalent bonding. A possible gain in ionic bonding contributions in the polyhalo compounds most probably is compensated by the increased electrostatic repulsions between the substituents.

In contrast to these $\mathrm{Pb}^{\text {iv }}$ compounds, alkanes and silanes are stabilized by geminal fluorine substitution. ${ }^{[6]}$ This was shown to be due to negative hyperconjugation $n(F) \rightarrow$ $\sigma^{*}(\mathrm{AH}, \mathrm{AF})(\mathrm{A}=\mathrm{C}, \mathrm{Si}){ }^{[\text {6a] }}$ Due to less favorable orbital overlap, these hyperconjugative interactions which lead to a delocalization of the electron density do not contribute significantly to the stabilization of multiply fluorosubstituted alkylplumbanes. Preliminary calculations on the corresponding parent compounds (H instead of alkyl) with both quasi-relativistic and nonrelativistic lead pseudopotentials indicate that relativistic effects also contribute to the trends discussed here. We will present more detailed analyses of a larger set of such group 14 derivatives in a the full paper.

Received: April 9, 1992 [Z 5295 IE]
German version: Angew. Chem. 1992, 104, 1240

CAS Registry numbers:
1, 420-54-2; 2, 23890-85-9; 3, 21986-71-0; $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~Pb}, 63588-56-7 ; \mathrm{CH}_{3} \mathrm{PbF}$, 142947-24-8; PbF_{2}, 7783-46-2.
[1] a) F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 5. Ed., Wiley, New York, 1988. b) P. G. Harrison in Comprehensive Coordination Chemistry, Vol. 3, (Ed.: G. Wilkinson), Pergamon, Oxford, 1987, p. 183
[2] Schwerdtfeger et al. have recently studied a) organothallium compounds (P. Schwerdtfeger, P. D. W. Boyd, G. A. Bowmaker, H. G. Mack, H. Oberhammer, J. Am. Chem. Soc. 1989, 111, 15) and b) a series of heavyelement hydrides and halides (P. Schwerdtfeger, G. A. Heath, M. Dolg, M. A. Bennett, J. Am. Chem. Soc., in press.) by pseudopotential calculations.
[3] Full Hartree-Fock gradient geometry optimizations have been carried out with the Gaussian 90 program (Gaussian 90, Revision F, M. J. Frisch, M. Head-Gordon, G. W. Trucks, J. B. Foresman, H. B. Schlegel, K. J. Raghavachari, M. Robb, J. S. Binkley, C. Gonzalez, D. J. DeFrees, D. I. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, L. R. Kahn, J. J. P. Stewart, S. Topiol, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1990). Quasi-relativistic 4-valence-electron pseudopotentials for Pb and C , and a 7 -valence-electron pseudopotential for F have been used with double-zeta valence basis sets augmented by d-polarization functions and, in the case of fluorine, by a diffuse sp set (W. Küchle, M. Dolg, H. Stoh, H. Preuss, Mol. Phys. 1991, 74, 1245. W. Küchle, A. Bergner, M. Dolg, H. Stoll, H. Preuss, to be published. M. Dolg, Ph.D. Thesis, Universität Stuttgart, 1989. Gaussian Basis Set for Molecular Calculations (Ed.: S. Huzinaga), Elsevier, New York, 1984). M. Kaupp, P. von R. Schleyer, H. Stoll, H. Preuss. J. Am. Chem. Soc. 1991, 113, 6012). A [4s1p]/(2s1p) basis set was used for hydrogen (T, H. Dunning, H. Hay in Methods of Electronic Structure Theory (Modern Theoretical Chemistry, Vol. 3), (Ed.: H. F. Schaefer III), Plenum, New York, 1977, p. 1). The main geometry parameters calculated for the divalent species are: $\mathrm{RPb}-\mathrm{C}=2.323 \AA, \Varangle \mathrm{C}-\mathrm{Pb}-\mathrm{C}=93.0^{\circ}$ $\left(\mathrm{Me}_{2} \mathrm{~Pb}\right) ; \quad \mathrm{RPb}-\mathrm{C}=2.300 \AA, \quad \mathrm{RPb}-\mathrm{F}=2.062 \AA, \quad \Varangle \mathrm{C}-\mathrm{Pb}-\mathrm{F}=92.9^{\circ}$ $(\mathrm{MePbF}) ; \mathrm{RPb}-\mathrm{F}=2.027 \AA, \Varangle \mathrm{~F}-\mathrm{Pb}-\mathrm{F}=95.8^{\circ}\left(\mathrm{PbF}_{2}\right)$.
[4] See a) P. von R. Schleyer, Abstract Orgn. 352, Am. Chem. Soc. Meet. San Francisco, CA, April, 1992, b) R. Boese, D. Bläser, N. Niederprüm, M.

Nüsse, W. Brett, P. von R. Schleyer, M. Bühl, N. J. R. van E. Hommes, Angew. Chemie 1992, 104, 356; Angew. Chem. Int. Ed. Engl. 1992, 31, 314.
[5] Our calculated $\mathrm{Pb}-\mathrm{F}$ separation in PbF_{4} is $1.924 \AA$; the $\mathrm{Pb}-\mathrm{C}$ bond length in $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~Pb}$ is $2.248 \AA$ (in good agreement with relativistic all-electron calculations and experiment, cf.: J. Almlöf, K. Faegri, Jr., Theor. Chim. Acta 1986, 69, 438).
[6] a) A. E. Reed, P. von R. Schleyer, J. Am. Chem. Soc. 1987, 109, 7362; b) D. A. Dixon, J. Phys. Chem. 1988, 92, 86
[7] W. Kutzelnigg, Angew. Chem. 1984, 96, 262; Angew. Chem. Int. Ed. Engl. 1984, 23, 272; W. Kutzelnigg, Theochem 1988, 169, 403.
[8] A. E. Reed, R. B. Weinstock, F. Weinhold. J. Chem. Phys. 1985, 83, 735. [9] H. A. Bent, Chem. Rev. 1961, 61, 275.
[10] The MP 4 energy for the first reaction is $-18.3 \mathrm{kcalmol}^{-1}$, that for the second $+90.0 \mathrm{kcalmol}^{-1}$, when corrected for zero-point vibrational energy and for atomic spin-orbit coupling of $\mathrm{Pb}\left({ }^{3} \mathrm{P}\right.$) (cf. ref. [11b]). See ref. [2b] for $\operatorname{QCISD}(\mathrm{T})$ results on the lead hydrides and fluorides.
[11] a) For a given principal quantum number, orbitals with higher angular momentum quantum number generally are affected less strongly by an increase of the nuclear charge. This is obvious from the spin-orbit-averaged experimental $\mathrm{s} \rightarrow \mathrm{p}$ excitation energies (ref. [11b]) for Pb^{+1} ($176 \mathrm{kcalmol}^{-1}$), Pb^{+2} ($206 \mathrm{kcalmol}^{-1}$), and Pb^{+3} ($258 \mathrm{kcalmol}^{-1}$). b) C. E. Moore, Atomic Energy Levels, Circular Nat. Bur. Standards 467, Washington, 1958.

[^0]: [*] Prof. Dr. P. von R. Schleyer, M. Kaupp
 Institut für Organische Chemie I der Universität Erlangen-Nürnberg Henkestrasse 42, D-W-8520 Erlangen (FRG).
 [**] This work was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the Volkswagen-Stiftung, and Convex Computer Corporation. M. K. acknowledges a Kékulé grant from the Fonds der Chemischen Industrie. We thank Prof. H. Stoll (Stuttgart) for stimulating discussions and for providing unpublished pseudopotentials and basis sets.

