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The dramatic differences in the stability of inorganic and 
organometallic Pb'" compounds are best exemplified by 
comparing tetraalkyllead with lead tetrahalides: While 
Et4Pb, for example, is a relatively stable compound with 
(still) considerable industrial use, PbCl, decomposes even at 
low ternperatures.I'l On the other hand, Et,Pb is unknown 
but PbCI, is perfectly stable. These remarkable differences 
between inorganic and organometallic compounds are of 
general importance in the chemistry of the heavy elements in 
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groups 13 and 14 but do not yet seem to be fully under- 
stood.['] We herein present ab initio pseudopotential calcula- 
t i o n ~ [ ~ ]  on the structures of fluoro(methy1)plumbanes 1-3 
which have the general formula (CH3),PbF4-, (n = 1 -3), as 
well as (CH,),Pb and PbF,, and compare their stabilities 
with those of the corresponding divalent species (CH,),Pb, 
CH,PbF, and PbF,. 
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The optimized geometries[31 of 1-3 are shown in Figure 1 .  
The bond angles in all of these unsymmetrically substituted 
species deviate significantly from idealized tetrahedral val- 
u e ~ . [ ~ ]  While the F-Pb-F angles are smaller than 109.5 ', the 
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Fig. 1. SCF-optimized geometries for 1 
( C ,  symmetry), 2 (C2J, and 3 (C3J All 
structures have been characterized as 
minima on the potential energy surface 
by analysis of the harmonic frequen- 
cies. 

C-Pb-C angles are considerably larger. This is most apparent 
in 2 with its C-Pb-C angle of approximately 135". Similarly, 
the C,Pb unit in 1 approaches planarity. These angle distor- 
tions have consequences for the polymeric arrangements 
found in the solid state: R,PbX and R,PbX, compounds (R 
is an alkyl or aryl group, X an electronegative substituent) 
usually form chain structures of types 4 and 5,  respective- 
I Y . [ ' ~ ]  Note the almost planar PbR, arrangement in 4 (cf. 1) 
and the trans orientation of the alkyl groups in 5 (cf. 2). The 
calculated P b C  and Pb-F bonds shorten when the number 
of fluorine substituents is increased,15] consistent with the 
results of calculations on the fluoromethanes and -silanes.161 

Both the distorted bond angles and the contracted bond 
lengths may be rationalized by hybridization arguments with 
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nonorthogonal hybrid orbitals.[6a* 71 Figure 2 displays the 
partial atomic charges on lead, the p:s ratio n of the Pb-sp" 
hybridization of the hybrid orbitals used for P b C  and P b F  
bonding, and the p:  s ratio of the average Pb hybridization 
(Weinhold et al.'s "natural population/hybridization analy- 
sis" (NPA)['l was employed). With increasing fluorine sub- 
stitution, the positive charge on lead increases, and to the 
contributions of the p orbitals to the Pb hybrid orbitals and 
the bonding decrease. The larger contributions of the s or- 
bitals to the bonds lead to the observed bond length contrac- 
tion. Since the hybrid orbitals directed towards the elec- 
tronegative fluorine substituents generally exhibit roughly 
twice as much p character as the hybrids used for P b C  
bonding (Fig. 2), the observed deviations from 109.5" angles 
follow expectations based on Bent's rule.[g1 
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Fig. 2. p:s Ratio n of the Pb-sp" hybridization (based on "natural population 
analysis" NPA[7]) and partial atomic charges on lead (NPA[7]) for the 
homologous series of fluoro(methy1)plumbanes (the average lead NPA hy- 
bridization and the p: s ratios of the contributions of the lead hybrid orbitals to 
the u-bonding "natural localized MOs" (NLMOs) 171 are given). The differ- 
ences between the average p:s ratio and the p:s ratio of the lead contributions 
to the oPb-F bonding NLMOs in PbF, are due to small hyperconjugative 
interactions. 

The energies AEfor the 1,l-elimination of F,, methyl fluo- 
ride, or ethane from these PbIV compounds (to give Pb" 
derivatives) are shown in Figure 3. In general, these reac- 
tions become less endothermic or more exothermic as the 
number of fluorine substituents increases. For example, 

elimination of CH,F from (CH,),PbF (1) is endothermic, 
whereas loss of CH,F is quite exothermic for CH,PbF, 
(3). Obviously, the tetravalent lead compounds are destabi- 
lized in this sense by electronegative substituents. As a result, 
the disproportionation reaction 2 (CH,),Pb -+ Pb(3P) + 
(CH,),Pb is exothermic, but the reaction 2 PbF, -+ Pb(3P) + 
PbF, is strongly endothermic.['". 

This destabilization of Pb" compounds by electronegative 
substituents may also be explained by the hybridization. The 
increasing metal charge contracts the lead 6s orbitals more 
strongly than the 6p orbitals.[' *I  Thus, the already signifi- 
cant differences in the radial extension of s and p orbitals in 
compounds of heavy main-group elements"] become even 
larger. Since efficient hybridization requires the size of the 
orbitals involved to be similar, electronegative substituents 
increase the hybridization defects['] (cf. Fig. 2) which leads 
to less efficient covalent bonding. A possible gain in ionic 
bonding contributions in the polyhalo compounds most 
probably is compensated by the increased electrostatic repul- 
sions between the substituents. 

In contrast to these PbIV compounds, alkanes and silanes 
are stabilized by geminal fluorine substitution.[6] This was 
shown to be due to negative hyperconjugation n(F) + 

a*(AH, AF) (A = C, Si).16"] Due to less favorable orbital 
overlap, these hyperconjugative interactions which lead to a 
delocalization of the electron density do not contribute sig- 
nificantly to the stabilization of multiply fluorosubstituted 
alkylplumbanes. Preliminary calculations on the corre- 
sponding parent compounds (H instead of alkyl) with both 
quasi-relativistic and nonrelativistic lead pseudopotentials 
indicate that relativistic effects also contribute to the trends 
discussed here. We will present more detailed analyses of a 
larger set of such group 14 derivatives in a the full paper. 
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