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Classroom Differences in the Determination of 
Achievement Changes 

WOLFGANG SCHNEIDER and BERNHARD TREIBER 
University of Heidelberg 

This study addresses three themes that recur in the research on 
student achievement: (a) developmental modeling ofintraindividual 
changes in achievement over time; (b) examination of the differ­
ences among subgroups within a classroom in the determinants of 
achievement; (c) description of the interactions among instructional 
variables in determining achievement differences. Eight classrooms 
were preselected on the basis of their widely differing slopes ob­
tained in a regression analysis of pre- and posttest achievement 
scores. Mathematics achievement differences among sixth graders 
were analyzed in a four-wave design and explained by aptitude 
and instructional variables in a structural equation framework 
provided by LISREL. The results demonstrate the local nature of 
achievement models in that neither their measurement nor struc­
tural components proved generalizable across both groups of classrooms. Mention is also made, however, of technical problems and 
analytical ambiguities in the interpretation of these results. 

Recent models of achievement are faced with a number of descriptive 
and explanatory problems that are rarely solved successively, let alone 
simultaneously (i.e., within one investigation). First, the changes in achieve­
ment over time are inadequately dealt with in conventional pre-post 
designs. They are better handled by more extended longitudinal studies 
with multiple measurements. Appropriate longitudinal studies are still rare, 
however. Where they do exist, they make insufficient use of available 
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descriptive models in analyzing inter- and intraindividual characteristics 
of achievement changes. 

Instructional variables, when introduced into achievement models, tend 
to be treated as a uniform block of concurrent determinants. Mention is 
rarely made, however, of the fact that at least some of these variables may 
be negatively intercorrelated and so conflict with regard to a given criterion 
(e.g., classroom mean achievement). Effective instruction may then more 
resemble a careful balance of partially reconcilable inputs than the con­
certed effort of maximizing their impact for a given educational goal. 
Again, studies that describe these more complicated interdependencies in 
explicit measurement models of instructional practices are rare. 

Achievement processes usually are explained by characteristics of stu­
dents and their learning environments. Studies that compare the relative 
importance of both classes of determinants have a long tradition, for 
example, in the debate of the ascriptive versus achieved nature of educa­
tional (and later occupational) opportunities. It is also in this tradition that 
explicit teaching-learning models attempt to maximize the degree and 
range of instructional control over critical aspects of achievement processes 
and likewise to reduce the impact of dispositional (e.g., ability) and 
structural (e.g., social or ethnic) achievement conditions. Empirical tests 
of these models, however, have frequently been of an illustrative or 
exploratory nature only, overfitting to the idiosyncrasies of a given sample. 
Comparative studies of competing models of achievement across several 
groups of students or confirmatory tests of an a priori preselected and 
prespecified model for a given student group are still rare. This is particu­
larly unfortunate for arriving at an accurate understanding of the kind and 
range of diversity in the causal determination of student achievement 
under traditional teaching-learning conditions. The present study concen­
trates on these research problems by introducing and testing a specific 
structural model of achievement processes under traditional classroom 
conditions in a longitudinal, structural-equation framework. 

The dynamic features of achievement processes are best captured by 
longitudinal data obtained at two or more occasions and analyzed in 
explicit multiwave models that describe interindividual differences in 
achievement change. Despite their apparent analytical advantages (cf. 
Baltes, Cornelius, & Nesselroade, 1979; Bielby & Hauser, 1977; Joreskog 
& Sorbom, 1979), these models should still be viewed with some caution 
(see Rogosa, 1979, p. 287). Critical assumptions (e.g., measurement model 
and error specification) are usually oversimplified and neglect the unique 
difficulties of specifying adequate structural-descriptive models for multi-
wave panel data even for only one variable over time. In analyzing 
achievement processes, the present study therefore assumed a simplex 
structure for the longitudinal achievement data. Such models have been 
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termed simplex models by Guttman (1954) because of the typical pattern 
of intercorrelations they give rise to, showing a consistent decline of 
coefficient values with increasing distance from the matrix diagonal. Sim­
plex models seem particularly appropriate for the study of academic growth 
(cf. Joreskog, 1979; Werts, Linn, & Joreskog, 1977). Its structure can be 
expressed as a path model with paths occurring only between adjacent 
measurement periods. When this model fits the observed data, then relia­
bilities of the observed variables and unattenuated correlations between 
the true variables can be estimated except for the first and last period (cf. 
Werts et al., 1977). These advantages lead us to give a simplex structure to 
the endogenous part of the model introduced here, as depicted in Figure 
1. In this typical LISREL path diagram observed indicators are enclosed 
in squares, whereas the latent factors are represented by circles. The arrows 
between the observed indicators and latent factors signify factor loadings, 
whereas the arrows between the latent factors designate structural or path 
coefficients. As the model permits the distinction between errors in meas­
urement (6) and errors in equation (f), these are included in the path 
diagram, denoted by smaller single-ended arrows. According to the LISREL 
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notation, two-headed arrows indicate correlations or covariances between 
indicators or constructs. 

Student entry abilities and classroom instructional characteristics show 
up in a number of recent teaching-learning models as (specific or joint) 
determinants of student achievement (cf. Cronbach & Snow, 1977). They 
also appear as exogenous constructs of the achievement model in Figure 
1. Researchers have tried to empirically test their models by comparing 
the relative impact of student ability and instructional style on some 
measure of achievement. This was also done in the present study. An 
implicit assumption of these tests has been that all features of a given 
model (i.e., its measurement and structural-relational parts) would be valid 
for all elements within a sample (of classrooms or students). This assump­
tion was not adopted in the present study. Rather, an explicit attempt has 
been made to find out whether the same achievement model can be applied 
to classrooms with widely differing instructional "histories." This is partic­
ularly interesting for understanding the naturally occurring variation of 
structural effects of various student- versus classroom-level conditions on 
achievement. Previous studies have occasionally compared model charac­
teristics (e.g., mean vectors, covariance matrices) between groups under 
the assumption that the distribution of their latent variables is different for 
different groups. The grouping criterion in the present study will be within-
classroom slope differences in their pre- and posttest achievement regres­
sions. 

Following up an idea suggested by Wiley (1970), Burstein (1979), Bur-
stein, Linn, and Capell (1978), and Burstein, Miller, and Linn (1979) 
argued that differences in within-group slopes can reflect the effects of 
substantive differences in instructional processes. Classrooms with greater 
opportunities to learn may have allowed certain students to take fuller 
advantages of their abilities, and may also have caused less able students 
to fall behind their classmates. Hence, when the posttest scores of these 
students are regressed onto their entry achievement scores, a steep slope 
will result. The opposite would be true, of course, for classrooms in which 
an explicit attempt is made to give disproportionate amounts of instruc­
tional support to less able students: Their entry achievement would then 
predict their posttest achievement only minimally. Thus, slope heteroge­
neity across classrooms may be regarded as a function of instructional 
treatment differences between them. It was for this reason that slope 
differences have been used in the present study to identify and select 
exceptional classrooms. The next step was to find out more about the 
instructional characteristics of these classrooms that might serve as explan­
atory variables. As to the achievement model depicted in Figure 1, the 
assumption is that classrooms with widely differing slopes also require 
models that differ in their structural and/or measurement components to 
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describe the determination of achievement processes within them. This 
will be explicated more fully later on. 

The exogenous construct "Instruction" of the achievement model intro­
duced here should, therefore, be sensitive to instructional differences that 
have a two-sided effect. They reflect differences in classroom teaching, 
resulting in within-classroom slope differences, and they also determine to 
what degree student aptitude variables become effective for student 
achievement processes. 

A rather direct implication of current aptitude-treatment interaction 
(ATI) research is an obvious and an often empirically confirmed interaction 
(see Cronbach & Snow, 1977; Snow, 1977b) of ability and instructional 
treatments that differ in the information-processing burdens they place on 
the learner. Accordingly, regression slopes of cognitive outcomes on ability 
greatly depend on teaching conditions that relieve learners from difficult 
reading, analyzing complex concepts and coding new material, that is, that 
compensate particularly for, or circumvent less able learners' weaknesses. 

It is against this theoretical background that the following two process 
variables were chosen to represent the Instruction construct: frequency 
with which new subject matter was introduced; and frequency with which 
already covered subject matter was reviewed, repeated, and practiced. 

The measurement model of the latent variable Instruction shown in 
Figure 1 is assumed to differ between the two groups of classrooms for 
substantive reasons, because the task of organizing the conflicting require­
ments of introducing and reviewing new subject matter has led to different 
instructional treatments in each of the two classroom types. 

The theoretical framework of the present study consists then of the 
following components: 

• an explanatory component that introduces three different hypothetical 
constructs—"Achievement," "Aptitude," and "Instruction"—as ana­
lytic units for describing and explaining achievement processes; 

• a structural component that specifies the causal links between these 
three constructs as indicated in Figure 1; 

• a longitudinal component that describes the statistical properties of a 
multiwave achievement data set in a simplex growth model (see 
above); and 

• a measurement component that defines the relationship among these 
three unmeasured constructs and their observed indicators. 

In this study, Aptitude is represented by six intelligence subtests (to be 
described later), and Instruction is represented by two observation process 
variables, which have already been introduced above. The longitudinal 
construct Achievement, however, has only a single, observed variable at 
each measurement to define it. 
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The resulting achievement model (see Figure 1) is used to compare the 
dependency of achievement processes over time on student aptitude and 
instruction in two preselected types of classrooms. Their major difference 
is their previous achievement determination as indexed by within-class-
room pre- and posttest achievement regression slopes. It is assumed that 
slope differences between classrooms may also be seen as a result of the 
degree to which student aptitude and instruction can differentially deter­
mine student achievement outcomes. The expectation is, of course, that 
the achievement model depicted in Figure 1 can locate the exact source of 
the slope differences between both groups of classrooms, that is, in one or 
more of the model components listed above. 

METHOD 

Sample 

This study was conducted during the math instruction of eight sixth-
grade classes in four elementary schools in a school district in southwest 
Germany. These classrooms had been preselected out of the total popula­
tion of 113 sixth-grade classes in this school district because of their 
unusually high versus low within-classroom, pre-posttest, standardized 
regression coefficients (slopes): .412 versus .900 were the respective slope 
means for each of the two resulting extreme groups (of 2 x 4 classrooms), 
a difference that proved to be statistically and practically significant (p = 
.001, w2 = .802). Altogether, 195 students and their 8 math teachers 
participated. 

Variables and Instruments 

Achievement. Individual differences in mathematics achievement over 4 
measurement points within a school year represented the dependent or 
endogenous variable block of this study. The achievement measures were 
the composite score on 36 multiple-choice items of a special mathematics 
test. This test was designed to reflect the subject matter taught that year in 
most of the math classes sampled, according to the school district's adopted 
textbooks and curriculum aids. To establish content validity, textbooks 
and teacher ratings of opportunity-to-learn were examined to see how 
closely the material covered matched the content on the achievement test. 
Results of the examination revealed that all the teachers had covered most 
of the mathematics material that was tested. 

Aptitude. This category includes scores on six standardized German 
intelligence tests: 

• "Language comprehension" as subtest 6 of the Kognitiver Fahigkeit-
stest KFT 4-13 by Heller, Gadike, and Weinlader (1976) and as subtest 
2 of the Aufgaben zum Nachdenken AzN 4+ by Hylla (1966); 
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• "Computational skills" as subtest 9 of the Prufsystem fur Schul- und 
Bildungsberatung by Horn (1969); 

• "Induction" as subtest Q 3 of the Kognitiver Fahigkeitstest KFT 4-13 
by Heller etal., 1976); 

• "Rotation" as subtest 7 of the Prufsystem fur Schul- und Bildungsber­
atung by Horn (1969); and 

• "Visual identification" as subtest 10 of the Prufsystem fur Schul- und 
Bildungsberatung 

These tests were administered in classrooms by trained administrators in 
December 1976. 

Instructional process. Observational data of the instructional quantity 
and quality in these classrooms were collected with a complex coding 
system, details of which are found in Treiber (1982). A uniform observation 
length of 200 instructional minutes (5 lessons of 40 min each) was chosen. 
Classroom events were coded once every 2 minutes with this low-inference 
coding instrument (of objective counts of discrete behaviors). The maxi­
mum frequency of any event, if coded at all, would therefore be 100. 
However, only two variables were created from the data collected with this 
system: introduction of new subject matter, and review and practice of 
subject matter already introduced and taught. The frequencies coded in 
each of the eight classrooms were summed for each of the two categories 
considered here for the total of 100 event points. The resulting summed 
scores constituted the basic observational variables used in further analyses. 

Data Collection 

The longitudinal design covered four mathematical achievement tests, 
each administered within a single lesson: at the beginning of December 
1976 (Math Test 1), end of March 1977 (Math Test 2), end of August 1977 
(Math Test 3), and mid November 1977 (Math Test 4). Procedures for 
administering and scoring these tests remained the same over all four time 
points. The six intelligence subtests were administered in December 1976 
within a single lesson. The math instruction of these eight classrooms was 
observed in 5 to 7 lessons over a period of 2 months, before the first 
achievement testing (in December 1976) but shortly after the beginning of 
the school year. 

Data Analysis 

Achievement models with the properties described above are adequately 
handled by methods for the analysis of covariance and correlation matrices, 
which were developed by Joreskog (1977,1978; Joreskog & Sorbom, 1979). 
Thus, the appropriate computer program, LISRELIV (Joreskog & Sorbom, 
1978), was used in the present study. The flexibility of this structural 
equation approach has been demonstrated in several studies (cf. Bentler & 
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Woodward, 1978; Cunningham & Birren, 1980; Munck, 1979; Weeks, 
1980;Whitely, 1980). 

Because rather detailed introductions to the LISREL approach are 
available elsewhere (e.g., Bentler, 1980; Maruyama & McGarvey, 1980), 
only a short description will be given here. Although the models testable 
by LISREL still include the traditional structural equation systems (path 
models) with directly observed variables, the computer program is partic­
ularly designed to handle more complex models, including latent variables 
treated as underlying causes of the measured variables. LISREL consists 
of two parts: Whereas the measurement model defines the relationship 
between observed variables and unmeasured hypothetical constructs, the 
structural equation model ("causal" model) is used to specify the causal 
links among the latent variables. Maximum likelihood estimates of meas­
urement and causal parameters are obtained simultaneously; LISREL 
makes use of all information in the data about each parameter in generating 
its estimates. 

The efficiency of a given model is evaluated by a chi-square goodness-
of-fit statistic with degrees of freedom equal to the difference between the 
number of known relationships and unknown parameters; the chi-square 
is a direct function of the discrepancy between the sample correlation 
matrix and that reproduced by the parameter estimates of the model. A 
large chi-square (relative to the degrees of freedom) indicates that the 
model does not provide a plausible representation of the causal process. In 
this case several possibilities exist to modify the model (cf. Bentler, 1980): 
Parameters whose estimates are small compared to their standard errors 
can be omitted and the resulting model reestimated; an inspection of the 
fit function with respect to the fixed (known) parameters can suggest ways 
of relaxing the model by introducing more parameters. If the obtained chi-
square corresponds to a probability level greater than .05, it is concluded 
that the proposed model cannot be rejected. 

Steps of Analysis 

One of the advantages of the LISREL approach is that parts of the model 
can be tested separately. Thus, in case of poor data fit it is possible to 
detect the source of misspecification and reformulate the interrelationships 
in the submodel that has proven to be inadequate. 

In the present investigation a sequential strategy was used to analyze 
specific properties of the exogenous and endogenous parts of the proposed 
model. The plan of the data analyses was as follows: 

In a first step we tested whether the assumed measurement model held 
across the two groups. If the simultaneous model has to be rejected, 
independent (one sample) solutions should be carried out for the measure­
ment and structural model. In a second step we examined whether the 
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multiwave-one-variable longitudinal submodel describing the endogenous 
part possessed the statistical properties of a simplex model. In the last step 
we estimated and tested the full model depicted in Figure 1. 

RESULTS 

Estimation of Math Achievement Parameters 

For each of the four mathematical achievement tests, classical test 
analyses were done first to demonstrate the adequacy of the test items 
employed concerning their mean difficulty, discriminability, skewness, and 
consistency. To ensure that these achievement tests were also comparable 
over the four different measurement points, their Rasch-scalability was 
analyzed by a specially developed computer program (Rasch Item Analysis; 
cf. Wakenhut, 1974, pp. 139-143). Here, the conformity of item parame­
ters as established in independent subject groups (student samples at 
different measurement points) was tested. Ability parameters could thus 
be estimated in these Rasch-analyses for students' summed scores in 
significantly reduced versions of the four math tests, and a person-specific 
parameter could be attributed to each student for each of the four meas­
urement points. Alpha reliabilities of individual scores on the six cognitive 
aptitude measures were obtained also, ranging from .78 to .91. 

Multivariate Analyses 

Subsequent analyses did not use the overall correlation matrix based on 
all students of the total sample, but instead used the two matrices that 
were calculated separately for each of the two classroom (HiSlope vs. 
LoSlope) types. The same structural model, explained above, was used for 
both subgroups, however, to merge those measures that could readily be 
interpreted as multiple indicators of a single theoretical construct. 

Measurement model tests. According to the sequence of analysis pro­
posed above, the first problem to be analyzed concerned the stability of 
factor structure in both groups. It was assumed that a measurement model 
would be reliable if it constrained both factor loadings and factor intercor-
relations to have the same pattern across the two groups. But the result of 
a simultaneous confirmatory factor analysis (COFAMM) indicated that 
the proposed model did not fit the data (x2 = 143.61 with 59 degrees of 
freedom; p < .01). As a consequence, independent solutions were developed 
for each group. There seemed to be no evidence that the same measurement 
model could hold for both samples. 

To arrive at the most parsimonious solution, an exploratory procedure 
suggested by Joreskog (1978) was used to find a so-called "best-fitting 
simple structure" for a given number of factors, that is, a neat simple 
structure with many zero loadings. While the results for the HiSlope classes 
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showed a reasonably good data fit (x2 [17] = 25.04; p = .09), the proposed 
measurement model had to be rejected for the LoSlope classes (x2 [17] = 
40.63; p < .01). The inspection of the first derivatives of the fit function 
indicated that, in particular, the assumption of uncorrected measurement 
errors was questionable for both samples. As Sorbom (1975) pointed out, 
a correlation between errors of measurement within occasions seems 
plausible when similar tests are used to measure the same trait. This could 
certainly be true for the six aptitude tests administered within only a short 
time. Hence, a slightly modified measurement model was formulated for 
both samples, taking into account correlations between measurement 
errors for the parameters with the largest first order derivations in the 
model presented above. An estimation of this modified model resulted in 
a considerably better data fit for each of the two groups. The differences 
in chi-square were 19.5 with seven degrees of freedom for the HiSlope 
classes and 27.87 with five degrees of freedom for the LoSlope classes, 
which are both significant at the 1 percent level. Though the model 
provided an acceptable fit for each of the two samples, a far better solution 
was obtained for the HiSlope classes. As can be seen from Table I, the 
simple structure of factor loadings postulated in Figure 1 did not receive 
total support, but the resulting pattern did not differ too much from the 
expected structure. 

Structural model tests. In the second step of our analysis, the simplex 
assumption was tested for both groups. Because the formulations of the 
quasi-Markov simplex model given by Joreskog (1970) and Joreskog (1979) 
are slightly different, both model specifications were estimated. However, 

TABLE I 
Factor Loadings of the Best-fitting COFAMM Solutions for HiSlope and LoSlope Classes 

HiSlope classes LoSlope classes 

Aptitude Instruction Aptitude Instruction 

IQ-Test 1 .69 (.63) -.34 (-.19) .68 (.62) .00 (.00) 
IQ-Test 2 1.00 (.72) .00 (.00) 1.00 (.67) .00 (.00) 
IQ-Test 3 .64 (.43) .00 (.00) .44 (.36) .00 (.00) 
IQ-Test 4 .63 (.56) -.36 (-.18) .31 (.23) .00 (.00) 
IQ-Test 5 .36 (.33) .00 (.00) .87 (.28) -.89 (-.22) 
IQ-Test 6 .44 (.30) -.23 (-.15) .65 (.43) .00 (.00) 

Process 1 .00 (-.19) .69 (.51) .00 (.00) -.78 (-.33) 
Process 2 .00 (.00) 1.00(1.00) .00 (-.05) 1.00(1.00) 

Goodness-of-fit: Goodness-of-fit: 
X2 (10) = 5.54;/> = .85 x

2 (12) = 12.76;/> = .39 
Note. Numbers in parentheses refer to the estimates given by the full model solution 

(depicted in Figures 2 and 3). To guarantee greater clearness, coefficients less than .20 are 
omitted from these figures. 

204 

2009 
 at Universitatsbibliothek on December 14,http://aerj.aera.netDownloaded from 

http://aer.sagepub.com


CLASSROOM DIFFERENCES 

identical solutions were obtained in both cases. The results indicated that 
the assumed simplex structure had to be rejected for the LoSlope classes 
(x

2 = 4.8I with one degree of freedom; p < .05). An inspection of the first 
derivatives of the fit function yielded large values for the parameters of 
nonadjacent variables that were fixed to zero. Therefore, the simplex 
assumption that implied that the partial correlation between two nonad­
jacent variables xl and x3 was zero, with x2 controlled, could not hold for 
this sample. In contrast, the formulation of the quasi-Markov simplex 
model was acceptable for the HiSlope classes. For these classes, a reasonably 
good fit could be obtained (x2 [1] = .07; p = .78). Thus it is only for the 
HiSlope classes that the simplex structure frequently found in models of 
academic growth could be confirmed. 

As with four repeated measurements, only the two "inner" variables are 
identified (cf. Joreskog, 1979; Werts et al., 1977), and estimated reliabilities 
could be obtained only for these observed variables (.54 and .43, respec­
tively). 

Full model test. The last step of analysis concentrated on the estimation 
and testing of the full model depicted in Figure 1. For each group the 
modified measurement model resulting from the COFAMM analyses was 
combined with the structural component to identify the most parsimonious 
solution. Preliminary analyses indicated that the theoretically proposed 
model had to be modified in two aspects. First, it proved necessary to give 
up the simplex assumption of the endogenous submodel when the full 
model was estimated for both groups. When the aptitude and instruction 
components were included, the endogenous submodel changed consider­
ably. The direct causal links between the four measurement periods de­
creased in magnitude (compared with the solution for the simplex model 
described above), and it was necessary to introduce additional paths 
connecting the nonadjacent achievement measurements (cf. Figures 2 and 
3). 

Second, only on the first two or three occasions was a significant causal 
influence of the two exogenous constructs detected; so the trivial coeffi­
cients for the last measurement point could be fixed to zero without any 
loss of information. Because modifying a theoretical model poses problems 
insofar as a sample overfit cannot be ruled out (cf. Maruyama & McGarvey, 
1980), only the most obvious misspecifications were corrected when testing 
the model assumptions. 

The solutions for both samples are depicted in Figures 2 and 3. It must 
be pointed out that the model fit the data only for the HiSlope classes (x2 

= 32.31 with 39 degrees of freedom; p = .77), whereas the solution for the 
LoSlope classes yielded a significant x2 = 72.80 with 36 degrees of freedom 
(p < .01), indicating that the model does not provide a plausible represen­
tation of the underlying causal process for this group. 

205 

2009 
 at Universitatsbibliothek on December 14,http://aerj.aera.netDownloaded from 

http://aer.sagepub.com


SCHNEIDER AND TREIBER 

To simplify the graphical representation of these models, measurement 
errors and their correlations are not included in Figures 2 and 3, but are 
depicted separately in Table II. As can be seen from this table, the most 
obvious misspecification of the model for the LoSlope classes concerns the 
relationship between the two process indicators: the negative sign (!) for 
the measurement error in the process variable 2 indicates that the two 
process variables cannot constitute a common factor for this sample. Some 
further evidence for this phenomenon can be found in Table I; here it is 
shown that the patterns of factor loadings for the instruction component 
differ considerably for both groups. 

A comparison of the models depicted in Figures 2 and 3 suggests that 
the most important differences do concern the estimation parameters of 
the measurement model, whereas the structural equation model shows 
some similarities in both groups. Because of the bad data fit of the model 
for the LoSlope classes, there is no reason to discuss the results in detail. 
Instead, some further comments should be made on the comparison of the 
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theoretically assumed model and its empirically confirmed counterpart for 
HiSlope classes. 

There is strong evidence that the proposed model described and ex­
plained educational achievement in mathematics for this sample. The 
simple structure postulated for the measurement model was confirmed for 
this group. In addition, the assumption that the two exogenous constructs 
are uncorrelated was empirically supported. Thus one can argue that 
aptitude and instructional parameters do independently influence math 
achievement for the HiSlope classes. With regard to the magnitude of the 
structural coefficients, aptitude indicators seem to have more predictive 
power for math achievement during the first two measurement periods, 
compared with the causal influence of the instruction component. But in 
contrast to the model assumptions made in Figure 1, the two exogenous 
factors do not contribute to an explanation of the achievement variation 
measured on the last two occasions. This is probably due to the fact that 
aptitude indicators and instruction process variables were obtained only 
during the first measurement period. Because of the different purposes of 
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TABLE II 
Estimates of Measurement Errors and Correlations Between Measurement Errors from 

LISREL Analyses for HiSlope and LoSlope Classes 

the original investigation (cf. Treiber, 1980), no further data were collected 
for these variables. 

DISCUSSION 

The limited empirical research on student achievment, mostly conducted 
within a cross-sectional, one-sample design, suggested the three themes 
that were addressed in the present study: (a) specification of achievement 
growth in developmental models of interindividual differences over time; 
(b) examination of differential patterns of achievement determination for 
subgroups of classrooms; and (c) description of the interplay of instruc­
tional variables in the determination of achievement. 

An attempt was made to provide answers to these research problems by 
selecting two groups of classrooms with widely differing slopes of their pre-
posttest achievement regression, and by observing the resulting differences 
in the determination of achievement by instructional and ability factors. 
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The basic assumption was that achievement in classrooms with a steep 
regression slope may indicate an instructional organization that combines 
two characteristics: first, a focus on introducing new subject matter and 
on maintaining high achievement demands for high-ability students; and 
second, remedial, practice, and review work for low-ability students. 

The results of the present study showed that the two classroom subgroups 
differed in all three aspects: First, the assumed simplex structure of the 
longitudinal achievement measures was valid only for classes with a high 
regression slope coefficient (HiSlope). Second, the measurement compo­
nents of the explanatory model used here did not generalize across both 
groups of classrooms. Only in HiSlope classes could the observed variables 
be tied to their respective latent constructs, as expected in the original 
measurement model. The two instructional process variables seem to be 
structured differently in the two types of classrooms observed. In HiSlope 
classes, the introduction of new subject matter seemed to be integrated 
with extensive review and practice of the material. However, in LoSlope 
classes, a common Instruction factor could not be constructed. Finally, 
though the structural components of the explanatory model developed 
here received empirical support, various modifications had to be made 
before an adequate model fit was achieved. These modifications stem from 
the simplex submodel for the four-wave achievement measures and their 
time-related dependency on ability and instructional determinants. 
Whereas the latter seem to influence student achievement differences most 
at occasions 1 and 2, achievement at measurement points 3 and 4 is 
insufficiently explained, by both the exogenous determinants of aptitude 
and instruction and the endogenous simplex structure of previous to 
subsequent achievement. 

The present study leaves two problems to future research. First, describ­
ing and explaining achievement change over time may require more 
elaborate structural and measurement models than the apparently all-too-
simple type adopted here. Both a more complex multiwave data collection 
for exogenous and endogenous model variables and a more complicated 
(i.e., nonlinear, nonadditive, and nonrecursive) specification of their inter­
relationship may be necessary. Second, conventional explanations are 
particularly weak for classrooms with flat slopes of their pre-posttest 
achievement regression. Alternative models are not yet available for class­
rooms with this type of achievement structure. 

The results of this study underline the "local" applicability of achieve­
ment models (see Snow, 1977a) and shed doubts on historical attempts to 
develop general or universal explanations of school learning. Rather, the 
time- and context-bound nature of achievement processes under given 
teaching-learning conditions should be the focus of future classroom 
research. 

209 

2009 
 at Universitatsbibliothek on December 14,http://aerj.aera.netDownloaded from 

http://aer.sagepub.com


SCHNEIDER AND TREIBER 

REFERENCES 

BALTES, P. B., CORNELIUS, S. W., & NESSELROADE, J. R. (1979). Cohort effects in 
developmental psychology. In J. R. Nesselroade & P. B. Baltes (Eds.), Longitu­
dinal research in the study of behavior and development. New York: Academic 
Press. 

BENTLER, P. M. (1980). Multivariate analysis with latent variables: Causal modeling. 
Annual Review of Psychology, 31, 419-456. 

BENTLER, P. M., & WOODWARD, J . A. (1978). A Head Start re-evaluation: Positive 
effects are not yet demonstrable. Evaluation Quarterly, 2, 493-510. 

BIELBY, W. T., & HAUSER, R. M. (1977). Structural equation models. Annual 
Review of Sociology, 3, 137-161. 

BURSTEIN, L. (1979). Issues in the aggregation of data. In D. C. Berliner (Ed.), 
Review of research in education (Vol. 8). Washington, DC: American Educational 
Research Association. 

BURSTEIN, L., LINN, R. L., & CAPELL, F. J . (1978). Analyzing multilevel data in 
the presence of heterogeneous within-class regressions. Journal of Educational 
Statistics, 3, 347-383. 

BURSTEIN, L., MILLER, M. D., & LINN, R. L. (1979). The use of within-group slopes 
as indices of group outcomes (CSE Report Series). Los Angeles: Center for the 
Study of Evaluation, University of California. 

CRONBACH, L. J . , & SNOW, R. E. (1977). Aptitudes and instructional methods: A 
handbook for research on interactions. New York: Irvington. 

CUNNINGHAM, W. R., & BIRREN, J . E. (1980). Age changes in the factor structure 
of intellectual abilities in adulthood and old age. Educational and Psychological 
Measurement, 40, 271-290. 

GUTTMAN, L. A. (1954). A new approach to factor analysis: The radex. In P. F. 
Lazarsfeld (Ed.), Mathematical thinking in the social sciences. New York: Colum­
bia University Press. 

HELLER, M. S., GADIKE, A.-K., & WEINLADER, H. (1976). Kognitiver Fahigkeitstest 
fur 4. bis 13. Klassen (KFT 4-13). Weinheim: Beltz. 

HORN, W. (1969). Prufsystem fur Schul- und Bildungsberatung (PSB). G&ouml;ttingen: 
Hogrefe. 

HYLLA, E. (1966). Aufgaben zum Nachdenken AzN4+. Weinheim: Beltz. 
JORESKOG, K. G. (1970). Estimation and testing of simplex models. British Journal 

of Mathematical and Statistical Psychology, 23, 121-145. 
JORESKOG, K. G. (1977). Structural equation models in the social sciences: Speci­

fication, estimation, and testing. In P. R. Krishnaiah (Ed.), Applications of 
statistics. Amsterdam: North Holland. 

JORESKOG, K. G. (1978). Structural analysis of covariance and correlation matrices. 
Psychometrika, 43, 443-477. 

JORESKOG, K. G. (1979). Statistical estimation of structural models in longitudinal-
developmental investigations. In J . R. Nesselroade & P. B. Baltes (Eds.), Longitudinal research in the study of behavior and development. New York: Academic 
Press. 

JORESKOG, K. G., & SORBOM, D. (1978). LISREL IV: Analysis of linear structural 
relationships by the method of maximum likelihood. Chicago: International 
Educational Services. 

210 

2009 
 at Universitatsbibliothek on December 14,http://aerj.aera.netDownloaded from 

http://aer.sagepub.com


CLASSROOM DIFFERENCES 

JORESKOG, K. G., & S&OUML;RBOM, D. (1979). Advances in factor analysis and structural 
equation models. Cambridge, MA: Abt Books. 

MARUYAMA, G., & MCGARVEY, B. (1980). Evaluating causal models: An applica­
tion of maximum-likelihood analysis of structural equations. Psychological Bul­
letin, 87, 502-512. 

MUNCK, I. M. (1979). Model building in comparative education. Stockholm: 
Almquist & Wiksell. 

ROGOSA, D. (1979). Causal models in longitudinal research: Rationale, formulation, 
and interpretation. In J . R. Nesselroade & P. B. Baltes (Eds.), Longitudinal 
research in the study of behavior and development. New York: Academic Press. 

SNOW, R. E. (1977a). Individual differences and instructional theory. Educational 
Researcher, 6(10), 11-15. 

SNOW, R. E. (1977b). Research on aptitudes: A progress report. In L. S. Shulman 
(Ed.), Review of research in education (Vol. 4). Itasca, IL: Peacock. 

S&OUML;RBOM, D. (1975). Detection of correlated errors in longitudinal data. British 
Journal of Mathematical and Statistical Psychology, 28, 138-151. 

TREIBER, B. (1980). Qualifizierung und Chancenausgleich in Schulklassen (Bde. 1 
u. 2). Frankfurt: Lang. 

TREIBER, B. (1982). Modeling achievement changes in classrooms. Evaluation in 
education. Manuscript in preparation. 

WAKENHUT, R. (1974). Messung gesellschaftlich-politischer Einstellungen mitHilfe 
der Rasch-Skalierung. Bern: Huber. 

WEEKS, D. G. (1980). A second-order longitudinal model of ability structure. 
Multivariate Behavioral Research, 15, 353-365. 

WERTS, C. E., LINN, R. C , & J&OUML;RESKOG, K. G. (1977). A simplex model for 
analyzing academic growth. Educational and Psychological Measurement, 37, 
745-756. 

WHITELY, S. E. (1980). Modeling aptitude test validity from cognitive components. 
Journal of Educational Psychology, 72, 750-769. 

WILEY, D. E. (1970). Design and analysis of evaluation studies. In M. C. Wittrock 
& D. E. Wiley (Eds.), The evaluation of instruction: Issues and problems. New 
York: Holt, Rinehart and Winston. 

AUTHORS 

WOLFGANG SCHNEIDER, Research Associate, Max Planck Institute 
for Psychological Research, Leopoldstr. 24, D-8000 M&uuml;nchen 40, West 
Germany. Specializations: Educational measurement and data analysis; 
cognitive development. 

BERNHARD R. TREIBER, Senior Researcher, International Survey Re­
search Corp., Degenfeldstrasse 5, D-8000 M&uuml;nchen 40, West Germany. 
Specializations: Schooling and cognitive development. 

211 

2009 
 at Universitatsbibliothek on December 14,http://aerj.aera.netDownloaded from 

http://aer.sagepub.com

