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Summary 

 
The acquired immunodeficiency syndrome (AIDS) is currently the most infectious disease 

worldwide. It is caused by the human immunodeficiency virus (HIV). At the moment there 

are ~33.3 million people infected with HIV. Sub-Saharan Africa, with ~22.5 million people 

infected accounts for 68% of the global burden. In most African countries antiretroviral 

therapy (ART) is administered in limited-resource settings with standardised first- and 

second-line ART regimens. During this study I analysed the therapy-naïve population of 

Cape Town, South Africa and Mwanza, Tanzania for any resistance associated mutations 

(RAMs) against protease inhibitors, nucleoside reverse transcriptase inhibitors and non-

nucleoside reverse transcriptase inhibitors. My results indicate that HIV-1 subtype C accounts 

for ~95% of all circulating strains in Cape Town, South Africa. I could show that ~3.6% of 

the patient derived viruses had RAMs, despite patients being therapy-naïve. In Mwanza, 

Tanzania the HIV drug resistance (HIVDR) prevalence in the therapy-naïve population was 

14.8% and significantly higher in the older population, >25 years. Therefore, the current 

WHO transmitted HIVDR (tHIVDR) survey that is solely focused on the transmission of 

HIVDR and that excludes patients over 25 years of age may result in substantial 

underestimation of the prevalence of HIVDR in the therapy-naïve population. Based on the 

prevalence rates of tHIVDR in the study populations it is recommended that all HIV-1 

positive individuals undergo a genotyping resistance test before starting ART. I also 

characterized vif sequences from HIV-1 infected patients from Cape Town, South Africa as 

the Vif protein has been shown to counteract the antiretroviral activity of the cellular 

APOBEC3G/F cytidine deaminases. There is no selective pressure on the HIV-1 Vif protein 

from current ART regimens and vif sequences was used as an evolutionary control. As the 

majority of phenotypic resistance assays are still based on HIV-1 subtype B, I wanted to 

design an infectious HIV-1 subtype C proviral molecular  clone that can be used for in vitro 

assays based on circulating strains in South Africa. Therefore, I characterized an early 

primary HIV-1 subtype C isolate from Cape Town, South Africa and created a new infectious 

subtype C proviral molecular clone (pZAC). The new pZAC virus has a significantly higher 

transient viral titer after transfection and replication rate than the previously published HIV-1 

subtype C virus from Botswana. The optimized proviral molecular clone, pZAC could be 

used in future cell culture and phenotypic HIV resistance assays regarding HIV-1 subtype C. 
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Zusammenfassung 

 

Das erworbene Immundefektsyndrom (“acquired immunodeficiency syndrome”, AIDS), 

verursacht durch das Humane Immundefizienzvirus (HIV), ist derzeit die häufigste 

Infektionskrankheit weltweit. Zirka 33,3 Millionen Menschen sind gegenwärtig mit HIV 

infiziert, wobei hiervon etwa 22,5 Millionen Infizierte (68%) in den Ländern südlich der 

Sahara leben. In den meisten dieser Länder ist die antiretrovirale Therapie (ART) in nur zwei 

standardisierten Medikamentenkombinationen verfügbar. In dieser Arbeit wurden nicht-

therapierte Patienten aus Kapstadt (Südafrika) und Mwanza (Tansania) auf 

resistenzassoziierte Mutationen (RAMs) gegen Protease Inhibitoren, nukleosidische- und 

nichtnukleosidische Reverse Transkriptase Inhibitoren analysiert. Meine Ergebnisse zeigten, 

dass in 3,6 %  der Patienten RAMs gefunden wurden, obwohl diese nicht vortherapiert 

waren. In der Patientengruppe aus Tansania wurden sogar in 14,8 % der Patientenviren 

RAMs gefunden. Dieses Patientenkollektiv war signifikant älter als 25 Jahre und damit 

außerhalb der von der WHO beobachteten Altersgruppe. Meine Studie legt nahe, dass die 

WHO-Kriterien zur Überwachung der Übertragung von resistenten HIVs die Weitergabe von 

resistenten Viren unterschätzt, da Patienten über 25 Jahre ausgeschlossen werden. Weiterhin 

wurden vif Sequenzen von HIV-1 infizierten Patienten aus Kapstadt charakterisiert, da bereits 

gezeigt wurde, dass das HIV Vif Protein die antiretrovirale Aktivität der Cytidin Deaminase 

APOBEC3G/F antagonisieren kann. Da jedoch keine Medikamenten induzierte Selektion auf 

diesen Sequenzen liegt, wurden diese zur Analyse der viralen Evolution verwendet. 

Phenotypische Resistenzanalysen basieren gegenwärtig meist auf dem HIV Subtyp B, jedoch 

sind die meisten Infizierten in Südafrika und sogar weltweit mit Subtyp C infiziert. Deshalb 

war es ein Ziel dieser Arbeit einen proviralen HIV Subtyp C Plasmid zu entwickeln. Dazu 

wurde das Virus aus einem frühen HIV Subtyp C Isolat kloniert. Das hier neu klonierte Virus 

(HIV-ZAC) zeigt sowohl einen höheren viralen Titer nach der Transfektion und auch eine 

höhere Replikationsrate als das zuvor publizierte HIV-1 Suptyp C Virus aus Botswana. 

Deshalb könnte der von mir optimierte und neu charakterisierte provirale molekulare Klon, 

pZAC, zukünftig in der Zellkultur und bei phenotypischen HIV Resistenztests als 

wildtypisches HIV-1 Suptyp C Virus eingesetzt werden. 

 

  



  
 

4 

Statement on individual author contributions and on legal second publication rights. 
 

Publication: Jacobs, G. B., Laten, A., van Rensburg, E. J., Bodem, J., Weissbrich, B., Rethwilm, A., Preiser, W. & 
Engelbrecht S. (2008). Phylogenetic diversity and low level antiretroviral resistance mutations in HIV type 1 
treatment‐naive patients from Cape Town, South Africa. AIDS Res Hum Retroviruses 24, 1009‐1012. 
Participated in  Author‐Initials, Responsibility decreasing from left to right  
Study Design  SE  GBJ  AR  JB  WP 
Data Collection   GBJ  AL  SE  EjvR  AR 
Data‐Analysis and Interpretation  GBJ  SE  WP  AR  JB 

Manuscript Writing  GBJ  AL  EjvR  JB  AR 
 

Publication: Jacobs, G. B., Nistal, M., Laten, A., van Rensburg, E. J., Rethwilm, A., Preiser, W., Bodem, J. & 
Engelbrecht S. (2008). Molecular analysis of HIV type 1 vif sequences from Cape Town, South Africa. AIDS Res Hum 
Retroviruses 24, 991‐994. 
Participated in  Author‐Initials, Responsibility decreasing from left to right  
Study Design  GBJ   SE  JB  MN  AR 
Data Collection   MN  GBJ  AL  SE  EjvR 
Data‐Analysis and Interpretation  GBJ  MN  JB  SE  AL 

Manuscript Writing  GBJ  MN  SE  JB  WP 
 

Publication: Jacobs, G. B., Schuch, A., Schied, T., Preiser, W., Rethwilm, A., Wilkinson, E., Engelbrecht, S. & Bodem, J. 
(2011). Construction of a high titer Infectious and novel HIV‐1 subtype C proviral clone from South Africa, pZAC. 
Submitted to J Gen Virol 29 June 2011. 
Participated in  Author‐Initials, Responsibility decreasing from left to right  
Study Design  GBJ  AR  JB  SE  WP 
Data Collection   SE  GBJ  AS  TS  EW 
Data‐Analysis and Interpretation  GBJ  JB  SE  AS  AR 

Manuscript Writing  GBJ  JB  AR  SE  WP 
 

Publication:  Kasang,  C.,  Kalluvya,  S.,  Majinge,  C.,  Stich,  A.,  Bodem,  J.,  Kongola,  G.,  Jacobs,  G.  B.,  Mllewa,  M., 
Mildner, M.,  Hensel,  I.,  Horn,  A.,  Preiser, W.,  van  Zyl,  G.,  Klinker,  H.,  Koutsillieri,  E.,  Rethwilm,  A.,  Scheller,  C.  & 
Weissbrich, B.  (2011). HIV drug resistance (HIVDR)  in antiretroviral  therapy‐naïve patients  in Tanzania not eligible 
for WHO threshold HIVDR survey is dramatically high. PLoS ONE 6, e23091. 
Participated in  Author‐Initials, Responsibility decreasing from left to right  
Study Design  CS  BW  AR  CK  SK 
Data Collection   CK  SK  CM  GBJ  CS 
Data‐Analysis and Interpretation  CK  CS  BW  SK  CM 

Manuscript Writing  CK  CS  BW  SK  CM 
 

I confirm that I have obtained permission from both the publishers and the co‐authors for legal 
second publication. 

I also confirm my primary supervisor’s acceptance. 

 
Graeme Brendon Jacobs        Würzburg 
__________________________________________________________________________________ 
Doctoral Researcher’s Name    Date    Place      Signature 



  
 

5 

Contents 
           Page 

Affidavit          1 

Summary          2 

Zusammenfassung         3 

Statement on individual author contributions      4 

 
Chapter one: Introduction and literature review     8 

1.1  Introduction         9 

1.2  History of HIV infection        9 

1.3  Origin of HIV         10 

1.4  HIV diversity         11 

1.5  The HIV genome, virus structure and viral life cycle    12 

1.5.1  HIV structure and genome organization     13 

1.5.1.1  The HIV LTR         13 

1.5.1.2  The virus structure and structural genes     14 

1.5.1.3  The accessory genes        16 

1.5.2  The HIV life cycle        18 

1.6  Antiretroviral therapy (ART) and resistance     19 

1.6.1  Natural resistance to HIV       19 

1.6.2  ART          20 

1.6.3  Testing for HIV-1 resistance       22 

1.7  Aim of this study         23 

           
Chapter two: Materials        24 

2.1  Patient samples         25 

2.1.1  Therapy naïve patients used for HIV-1 genotyping    25 

2.1.2  Patient ZAC (R3714)        25 

2.1.3  Therapy naïve patients from Mwanza, Tanzania    26 

2.2  Equipment, commercial assays, enzymes and chemicals   26 

2.3  Primers          29 

2.4  Plasmids and vectors        30 

2.5  Bacterial cells         30 

2.6  Antibiotics         30 



  
 

6 

           Page 

2.7  Culture cell lines         30 

2.8  Antibodies         30 

 

Chapter three:  Methods        31 

3.1  Patient sample preparation       32 

3.2  Polymerase chain reaction (PCR)      32 

3.3  Agarose gel electrophoresis       33 

3.4  Purification of nucleic acids       34 

3.5  DNA concentration determination      34 

3.6  Transformation of DNA into bacterial vectors     34 

3.7  Small scale preparation of plasmid DNA (minipreps)    35 

3.8  Large scale preparation of plasmid DNA (maxipreps)    35 

3.9  Restriction enzyme digestion       35 

3.10  Ligation of DNA vectors       36 

3.11  Preparation of E.coli competent cells      36 

3.12  DNA sequencing        37 

3.13  Sequence and phylogenetic analyses      37 

3.14  Maintenance of cell lines       38 

3.15  Isolation and maintenance of PBMCs      38 

3.16  Transfection of cells        38 

3.17  Western Blot analyses        39 

3.18  Determination of viral infectivity      40 

 

Chapter four: Results        42 

4.1  Phylogenetic diversity and low level antiretroviral resistance mutations 43 

       in HIV type 1 treatment-naïve patients from Cape Town, South Africa. 

4.2  Molecular Analysis of HIV Type 1 vif sequences from Cape Town,   47 

       South Africa. 

4.3  Construction of a high titer infectious and novel HIV-1 subtype C   51 

       proviral clone from South Africa, pZAC. 

4.4  HIV drug resistance (HIVDR) in antiretroviral therapy-naïve patients   63 
       in Tanzania not eligible for WHO threshold HIVDR survey is  
       dramatically high. 
 



  
 

7 

           Page 

Chapter five:  Discussion        74 

5.1  HIV in South Africa        75 

5.2  HIV-1 subtype C         76 

5.3  HIV-1 in Tanzania        77 

5.3  HIV-1 diversity, ART and resistance      77 

5.4  Vif function and diversity       78 

5.5  Development of infectious HIV proviral molecular clones   78 

5.6  Future perspectives        79 

 

Chapter six: References        80 

 

List of publications         98 

List of abbreviations         99 

Acknowledgements         106 

Curriculum Vitae         107 

 

Appendix          111 

Appendix A: Gemeinsam gegen HIV.      112 

Appendix B: Optimismus auch in schwierigen Situationen.     114 

 
  



  
 

8 

Chapter one 
 

           Page 

Chapter one: Introduction and literature review     8 

1.1  Introduction         9 

1.2  History of HIV infection        9 

1.3  Origin of HIV         10 

1.4  HIV diversity         11 

1.5  The HIV genome, virus structure and viral life cycle    12 

1.5.1  HIV structure and genome organization     13 

1.5.1.1  The HIV LTR         13 

1.5.1.2  The virus structure and structural genes     14 

1.5.1.3  The accessory genes        16 

1.5.2  The HIV life cycle        18 

1.6  Antiretroviral therapy (ART) and resistance     19 

1.6.1  Natural resistance to HIV       19 

1.6.2  ART          20 

1.6.3  Testing for HIV-1 resistance       22 

1.7  Aim of this study         23 

  



  
 

9 

Chapter one 
 
1. Introduction and literature review 

 

1.1  Introduction 

Today acquired immunodeficiency syndrome (AIDS) is one of the most important infectious 

disease being the most common cause of death in Africa, above malaria and tuberculosis. 

AIDS is caused by the retrovirus Human Immunodeficiency Virus (HIV). The UNAIDS 

estimates that there are currently 33.3 million people infected with HIV/AIDS worldwide. 

Sub-Saharan Africa remains the heaviest affected region with approximately 22.5 million 

people infected, which accounts for 68% of the global burden. However, globally since 1999 

the number of new infections has fallen by approximately 19%, with antiretroviral therapy 

(ART) currently being provided to more than 5.0 million people (UNAIDS, 2011).  

 

The genetic subtype distribution of HIV-1 group Major (M), currently responsible for the 

majority of the AIDS pandemic has become dynamic and unpredictable. Currently HIV-1 

group M has been divided into 9 subtypes (A-D, F, G-H, J, K), 49 circulating recombinant 

forms (CRFs) and numerous unique recombinant forms (URFs). In 2004-2007, subtype C 

accounted for nearly half (48%) of all global infections, followed by subtypes A (12%), B 

(11%) and CRF02_AG (8%) (Hemelaar et al., 2011).  

 

1.2  History of HIV infection 

AIDS was first recognized in 1981 amongst homosexual men in the United States of America 

(USA) who presented with Pneumocytis carinii pneumonia, a rare disease causing lung 

infections in humans with weakened immune systems (Gottlieb et al., 1981a, b). A few of 

these men developed Kaposi’s sarcoma, a previously rarely seen skin cancer caused by 

Human Herpesvirus 8 (HHV-8) (Friedman-Kien et al., 1981; Hymes et al., 1981). It was 

initially thought that the disease was a form of punishment for people participating in high 

risk behaviour (Shilts, 1987). However, the symptoms and disease was soon recognized in 

other population groups as well. These included female sexual partners of men (Masur et al., 

1982), Haitians (Pape et al., 1983), infants (Oleske et al., 1983), haemophiliacs (Bloom, 

1984) and blood transfusion recipients (Curran et al., 1984). In Africa the first reported 

outbreak occurred in the heterosexual population of the Democratic Republic of Congo 

(DRC), previously Zaire (Piot et al., 1984). AIDS was initially described as the appearance of 
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certain rare, dramatic and life-threatening opportunistic infections and associated cancers,  

which led to a severe depletion of the immune system response (Ammamm et al., 1983). The 

first evidence that AIDS was caused by a retrovirus was discovered in 1983. Barré-Sinoussi 

and colleagues isolated a retrovirus from a homosexual man who had lymphadenopathy 

syndrome (LAS), a disease of the lymph nodes. The virus was initially called 

lymphadenopathy virus (LAV) (Barré-Sinoussi et al., 1983). It was also independently 

isolated in 1984 by Levy and co-workers who called it AIDS-associated retrovirus (ARV) 

(Levy et al., 1984). Later on it was confirmed that LAV and ARV were the same virus and 

responsible for causing AIDS (Ratner et al., 1985a, b). To avoid further confusion the 

International Committee on the Taxonomy of viruses decided to rename the AIDS inducing 

virus HIV, as it is known today (Coffin et al., 1986a, b). 

 

1.3  Origin of HIV 

HIV forms part of the Retroviridae virus family, genera Lentivirus (Sonigo et al., 1985). The 

earliest documented report of a human infection comes from a seropositive patient in 

Kinshasa, DRC from 1959 (Zhu et al., 1998). Molecular clock and phylogenetic analyses 

estimate that HIV was introduced into the human population during the 1930s with a ± 20 

year confidence gap (Hahn et al., 2000; Korber et al., 2000). HIV is closely related to simian 

immunodeficiency viruses (SIVs) found in non-human primates and through zoonosis the 

virus adapted to its human host. SIVs do not usually cause the same dramatic AIDS-defining 

disease in our non-human primate counterparts (Hahn et al., 2000; Silvestri et al., 2003). 

There are more recent reports that indicate that wild chimpanzees can acquire AIDS like 

diseases from SIVs (Keele et al., 2009). Both HIV-1 and HIV-2 are thought to have 

originated in West-Central Africa (Apetrei et al., 2004; Nahmias et al., 1986). HIV-1 was 

transmitted from the common chimpanzee, Pan troglodytes troglodytes (Gao et al., 1999; 

Keele et al., 2006), while HIV-2 was most likely transmitted from the sooty mangabey, 

Cerocebus atys (Gao et al., 1992; Hirsch et al., 1989., Keele et al., 2006). Transmission 

events of SIV strains into the human host still frequently occur and it remains unclear why 

HIV in its current form has become so predominant (Kalish et al., 2005, Weiss and 

Wrangham, 1999). 
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1.4  HIV diversity 

Figure 1.1: HIV-1 Phylogenetic tree derived from nucleotide alignment of genome 
sequences. The different HIV-1 groups are indicated, rooted with SIVcpzANT. The group M 
subtypes (A-D, F-H and J) are shown, while reference sequences for groups N, O and P are 
also marked (Vallari et al., 2011). 
 

 
Figure1.2: Current spread of HIV-1 diversity. HIV-1 subtype C accounts for 48% of all 
currently circulating strains. It is predominantly found in Sub-Saharan Africa and India. HIV-
1 subtype B is more predominant in North America and in Europe (Hemelaar et al., 2011).  
 
HIV has a high genetic diversity. This is caused by the fast replication cycle of the virus 

coupled with the high error prone rate of its RT enzyme. RT also further increases HIV 

diversity by allowing for strains to recombine with each other. There are currently 2 types of 

HIV that have been identified: HIV-1 and HIV-2. HIV-1 has been divided into four distinct 

groups M, non-M, non-O (N), outlier (O) and P with group M responsible for the worldwide 

pandemic we are facing today. HIV-1 groups N, O and P are rare and the degree of their 
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diversity has not yet been completely differentiated through phylogenetic analysis. However, 

group N seems to be phylogenetically equidistant from groups M and O (Spira et al., 2003). 

Group M is currently divided into nine different subtypes (A-D, F-H, J and K) and 49 CRFs. 

Genetic variation within a subtype is usually 8 to 17%, whereas the variations between 

different subtypes are 17 to 35% (Korber et al., 2001). The highest variation within the 

genome is seen within the env gene, wherease the pol gene, encoding for important viral 

enzymes are the most conserved (Gaschen et al., 2002). 

 

HIV-1 group M subtype C (from here on HIV-1 subtype C) is responsible for the majority 

(currently 48%) of all HIV-1 infections worldwide. HIV-1 subtype B is the most widespread 

and is especially prevalent in North America, Europe and Australasia. The majority of HIV-1 

subtypes can be found in West and Central Africa, where it is believed HIV originated 

through zoonosis. HIV-2 is less pathogenic than HIV-1 and has mainly been restricted to 

West Africa. HIV-2 has also been divided into eight subtypes (A-H) based on phylogenetic 

analysis (Damond et al., 2004). 

 
1.5  The HIV genome, virus structure and viral life cycle 
 

HIV-1 proviral DNA 

 

 

 

 

HIV-1 RNA species 
 

 
Figure 1.3A: The HIV-1 proviral DNA genome and 1.3B: HIV-1 RNA species. The virus is 
flanked by the Long terminal repeat (LTR) regions. The group antigen (gag) and envelope (env) 
genes are responsible for the virus structure, while polymerase (pol) encodes for important viral 
enzymes . HIV-1 transcriptional transactivator (tat) and regulator of viral expression (rev) are 
important for viral transcription and regulation. The accessory genes virion infectivity factor (vif), 
viral protein R (vpr), viral protein U (vpu) and negative regulatory factor (nef) play important parts 
during infectivity and maturation (Nielsen et al., 2005). 
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Figure 1.4A: A schematic illustration of the HIV virion and 1.4B: A 3D reconstruction 
of HIV-1 virions. The viral Envelope (Env) consists of the surface glycoproteins (gp120) 
anchored with the transmembrane proteins (gp41). The inner Gag Matrix (MA; p17) and 
Capsid (CA; p24) protein layers are also indicated. The HIV genome consists of two copies 
of unspliced positive single-stranded molecules indicated in the center. The Pol proteins, 
Protease (PR) and Reverse Transcriptase (RT) indicated in the diagram are also packaged in 
the mature virus particle. Source: http://www.asparis.net and 
 http://www.embl.de/research/units/scb/briggs/briggs_1l.jpg. 
 

There are many reviews on the HIV genome, virus structure and viral life cycle. Examples in 

the literature are: Briggs et al., 2003; D'Souza and Summers, 2005; Freed, 2001; Klimas et 

al., 2008; Nisole and Saïb, 2004; Pomerantz and Horn, 2003 and Turner and Summers, 1999. 

The HIV genome (Figure 1.3), virus structure (Figure 1.4) and life cycle (Figure 1.5) are 

briefly described here. 

 

1.5.1  HIV structure and genome organization 

HIV is an enveloped virus and roughly spherically shaped with a diameter of approximately 

120 nm. Its genome consist of two unspliced positive-oriented single-stranded ribonucleic 

acid (RNA) molecules and encodes for nine genes (gag, pol, env, vif, vpr, vpu, tat, rev and 

nef) as described below.  

 

1.5.1.1  The HIV LTR 

The full-length provirus is approximately 9.2 kb long and is flanked by two LTRs. Although 

the LTRs do not directly encode for any gene products, except for the partial Nef coding 

region, they do encode for important structural RNA elements and contain binding sites for 

important transcription factors. Thus the LTRs are important for the regulation of viral gene 

expression (Briggs et al., 2003). Each LTR consist of a unique 3` region (U3), the terminal 

Env 
MA 

CA 
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redundancy region (R) and unique 5` region (U5). The U3 promoter enhancer site contains a 

modulatory negative regulatory element (NRE), an HIV TATA box as well as sequence 

binding sites for cellular transcription factors such as Nuclear factor (NF)-κβ, Specific 

Protein 1 (Sp1) and Transcription Factor IID (TFIID) (D’Soza and Summers, 2005; 

Kashanchi et al., 1996). R is the exact region where viral transcription is initiated by the 

human tRNA and contains the transactivation response (TAR) element sequence. Viral 

transcript starts at the beginning of R, is capped and proceeds through the viral genome. The 

R/U5 border in the 3’LTR defines the region where polyadenylation takes place and the 

polyadenylation signal (AAUAAA) is found within this region. The viral packaging signal, 

primer binding site (PBS) responsible for RNA initiation and major splice donor (SD) signal 

involved in the regulation of transcription are also found downstream of U5. Although the 

LTRs are identical in sequence the 5’LTR acts as the initiation point for transcription and 

capping of messenger RNA (mRNA) transcripts, whereas sequences in the 3’LTR are 

responsible for transcription termination and polyadenylation. The LTRs are also responsible 

for mediating retroviral integration into its host cell genome. The full-length HIV mRNA 

transcript encodes for nine genes. Their protein products are derived from the primary 

transcript by means of alternative splicing, ribosomal frameshifting and leaky scanning of 

initiation codons (Klimas et al., 2008; Turner and Summers, 1999). 

 

1.5.1.2 The virus structure and structural genes 

HIV’s structural genes are encoded by gag (group antigen) and env (envelope), as is common 

in all lentiviral genomes. Recently the secondary structure of HIV-1 RNA genome has also 

been solved by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) 

analysis (Watts et al., 2009). The RNA is bound to the nucleocapsid NC (p7) protein and 

surrounded by enzymes important for viral maturation such as protease (PR), reverse 

transcriptase (RT) and integrase (IN), encoded by the viral pol gene as discussed below. 

Accessory proteins (Nef, Vif, Vpr) can also be found in the viral ribonucleoprotein core 

structure. An abundant number of host molecules have also been found in the virus particle, 

although their importance is still unclear (Maxwell and Frappier, 2007). The RNA molecules 

are enclosed by a conical shaped capsid layer consisting of roughly 2000 gag p24 capsid 

(CA) molecules. The inner viral surface consists of a p17 matrix (MA) protein shell 

surrounding the p24 CA and is responsible for the viral integrity. The MA, CA, NC and p6 

proteins are cleaved from the precursor Gag (Pr55) protein, encoded by the gag gene, as well 

as the p1 and p2 spacer peptide proteins and cleaved by the viral protease (PR) (Briggs et al., 
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2003; de Oliveira et al., 2003). The p6 protein binds to HIV-1 Vpr, thereby promoting the 

incorporation of Vpr proteins into mature virus particles (Paxton et al., 1993).  

 

The virus obtains its enveloped phospholipid membrane when budding from the host cell. 

The lipid bilayer contains several cellular membrane proteins, including major 

histocompatibility (MHC) antigens derived from the host cell (Arthur et al., 1992). The virus 

Env proteins are embedded within the lipid membrane layer. They consist of the trimeric 

exposed surface glycoproteins, encoded by env gp120. The surface proteins are anchored by 

the trimeric transmembrane protein, encoded by env gp41. These proteins are derived from 

the env gp160 precursor molecule. Env gp120, which binds to CD4+ cells, is further divided 

into five constant (C1 to C5) and five variable regions (V1 to V5). The variable regions are 

mostly found within regions encoding disulphide-constrained loops, exposed to the surface 

and to the host immune system (Leonard et al., 1990). The V3 region plays an important role 

in determining cellular tropism, allowing the virus to either use chemokine receptor type 5 

(CCR5) or chemokine receptor type 4 (CXCR4) as its main chemokine co-receptor (Briggs et 

al., 2003). 

 

HIV pol encodes for the viral enzymes protease (PR), reverse transcriptase (RT), RNase H 

and integrase (IN). The enzymes are formed by cleaving of the precursor Gag-Pol (Pr160) 

protein by the viral PR (de Oliveira et al., 2003). The Pr160 polyprotein is formed by 

ribosomal frameshifting, the process whereby ribosomes change the open reading frame to 

allow for alternative translation of mRNA (Hung et al., 1998). The HIV-1 PR is part of the 

aspartyl protease group and responsible for cleavage of the precursor Gag (Pr55) and Gag-Pol 

(Pr160) molecules and thus viral maturation. Each subunit of the PR homodimer protein 

contains 99 amino acids with the active site found in the middle of the dimers. The RT 

enzyme acts as a RNA-DNA-dependant DNA polymerase and is found in all retroviruses. It 

is responsible for reverse transcribing the viral single stranded RNA genome into a double 

stranded DNA molecule and helps fold the DNA molecule into its double helix form. The RT 

protein is a heterodimer and consist of p51 and p66 subunits. (Rodgers et al., 1995; Huang et 

al., 1998). The active and DNA-binding site of RT is found within p66, while the p55 subunit 

merely functions as a support molecule for p66. RNase H helps degrade the HIV RNA once a 

DNA copy has been transcribed and the RNA is no longer needed. IN (p32) catalyzes the 

insertion of the newly sythesized HIV DNA molecule into its host genomic DNA. The Pol 

proein has been an important focus of ART (see below). 
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1.5.1.3  The accessory genes 

Tat is between 86 and 101 amino acids in length, plays a crucial role in both in vivo and in 

vitro activation of viral transcription and is absolutely essential for viral replication. Tat 

promotes HIV-1 elongation via the recognition of the TAR hairpin structure at the 5’-end of 

the viral transcripts (Zhou et al., 1998; Brigati et al., 2003). Tat interacts directly with 

positive transcription elongation factor b (P-TEFb), which is responsible for the regulation of 

eukaryotic mRNA elongation (Marshall and Price, 1995; Zhou et al., 1998). Rev, a 19 kilo-

Dalton (kDa) phosphoprotein is responsible for exporting the HIV mRNA products from the 

nucleus to the cytoplasma, before the mRNA transcripts are spliced by cellular proteins 

(Strebel, 2003). Rev binds to mRNA transcripts containing a Rev responsive element (RRE). 

The RRE, encoded as part of the Env gene has a nuclear export signal, allowing for the 

unspliced export of RNA from the nucleus (Le et al., 2002). Without Rev, RNA is spliced 

into smaller transcripts by the cellular machinery. Rev uses interactions with the host 

chromosomal region maintenance 1 (Crm1) protein and the small nuclear RNA (snRNA) 

pathway to export viral transcripts (Strebel, 2003). 

 

The accessory genes include nef, vif, vpr and vpu.  They are not absolutely essential for viral 

replication in vitro, but play a variety of roles during the life cycle of HIV.  

 

The 192 amino acid (23 kDa) HIV-1 Vif protein helps to counteract antiretroviral activity and 

is especially active against the apolipoprotein B mRNA editing enzyme, catalytic 

polypeptide-like (APOBEC) 3F/G cellular cytidine deaminase family (Arriaga et al., 2006; 

Soros and Greene, 2006). The APOBEC family of proteins act as editing enzymes and causes 

Cytosine to Uracil editing and leads to the accumulation of Guanine to Adenine mutations in 

the proviral sense cDNA strand (Malim, 2006). Vif interacts in the producer cell with 

APOBEC3F/G and recruits it to an ubiquitin ligase complex via a cullin-dependent ubiquitin 

ligase, Cullin 5 (Cul5). APOBEC3F/G is then ubiquitinated and subsequently degraded by 

cellular proteasomes. Vif binds to viral genomic RNA and forms part of the nucleoprotein 

complex (Khan et al., 2001) and also forms part of the reverse transcriptase complex which 

helps control reverse transcription (Carr et al., 2008). 

 

The 96 amino (14 kDa) Vpr protein enhances viral expression and interacts with a host of 

cellular proteins (Bour and Strebel, 2003). Vpr binds to the Gag p6 domain and is directly 
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incorporated into mature HIV-1 virions (Bachand et al., 1999). The protein is responsible for 

the nuclear transport of the HIV-1 pre-integration complex (PIC) and plays an important role 

in the extracellular release of virus particles (Romani and Engelbrecht, 2009). Other functions 

identified include the induction of cellular apoptosis, induction of the G2 cell cycle arrest, 

modulation of gene expression and the suppression of immune activation (Romani and 

Engelbrecht, 2009).  

 

Although the Vpu protein (16 kDa) is not found in the mature virus particle, it promotes the 

extracellular release of virus particles and downregulates CD4 in the Endoplasmic Reticulum 

(ER) (Schubert et al., 1996). These functions are carried out by the two separate domains 

expressed by the Vpu protein. The N-terminal hydrophobic transmembrane domain functions 

as a membrane anchor and promotes virus release, while the hydrophilic C-terminal domain 

contains two amphipathic α-helical domains of opposite polarity and contains sequence 

motifs critical for CD4 degradation (Schubert et al., 1996). Vpu interacts and antagonizes the 

cellular restriction factor Tetherin [also known as CD317 or bone marrow stromal cell 

antigen 2 (BST-2)]. The cellular function of Tetherin is still unknown. Viruses lacking Vpu 

are partially impaired from budding from their host cell and tend to tether at the cellular 

membrane (Neil et al., 2008). Viruses can also however still spread through direct cell-cell 

interactions (Jolly et al., 2010). 

 

The 27 kDA Nef protein is responsible for the establishment of high viral loads during 

infection, which leads to faster disease progression (Kirchhoff et al., 2008). Nef is a 

multifunctional myristoylated protein which interacts with components of host cell signal 

transduction pathway as well as the endocytic clathrin-dependent protein pathway. Early in 

the HIV life cycle Nef is repsonsible for T cell activation and helps establish a persistant viral 

infection. Nef plays an important role in downregulating CD4, CD28, CXCR4, MHC class I 

and MHC class II on antigen presenting cells and other target cells, thus enabling the virus to 

evade the host immune system and help establish latent infection (Bour and Strebel, 2003; 

Roeth and Collins, 2006). Nef thus helps control responses of HIV-1 infected T cells thereby 

preventing superinfection, protects against cytotoxic T-lymphocyte (CTL) responses and also 

facilitates in the release of fully infectious virions (Arhel and Kirchhoff, 2009; Kirchhoff et 

al., 2008; Roeth and Collins, 2006). 
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1.5.2  The HIV life cycle 

HIV infects cells of the immune system such, as CD4+ T-cells, cytotoxic T-lymphocytes 

(CTLs), CD4+ monocytes and macrophages. The virus can be found in blood plasma, 

peripheral blood mononuclear cells (PBMCs), lymph nodes, the central nervous system and 

various other body fluids and cells after infection (Stebbing et al., 2004). The virus enters the 

host cell via the CD4 receptor molecule and either the CXCR4 or CCR5 chemokine co-

receptor; although in certain cases other host cell co-receptors such as CCR3 can also be 

involved in viral entry (Dash et al., 2008; Regoes and Bonhoeffer, 2005; Rucker et al., 1997). 

Binding of Env gp120 to the CD4 molecule leads to a conformational change at the point of 

attachment, allowing fusion of the membranes and the virological synapses (VS) to form. 

After successful attachment the viral RNA, along with viral enzymes are released into the 

host cytoplasm. In the cytoplasm RT reverse transcribes the RNA into the double stranded 

DNA copy. With the help of IN the newly synthesized viral DNA is imported into the 

nucleus and incorporated into the host cell genome. Once incorporated the DNA may become 

dormant, allowing HIV to form latent infection. 

 

Expression of viral proteins is regulated by both viral and cellular proteins and is initiated 

when Tat binds to the TAR element in the 5’LTR as described above. Both unspliced and 

spliced mRNA transcripts are exported out of the nucleus with the help of Rev. In the 

cytoplasm the cellular machinery translates the mRNA transcripts into viral proteins. Viral 

assembly takes place at the plasma membrane of the host cell. Env gp160 is processed by the 

ER complex, is transported to the Golgi apparatus and cleaved by cellular furine like 

proteases  into its gp120 and gp41 components. Env gp41 acts as an anchor for gp120 at the 

plasma membrane. The Pr55 Gag and Pr160 Gag-Pol polyproteins and viral RNA are 

incorporated into the immature virus particle at the plasma membrane. Gag molecules 

associated with the membrane attracts two copies of viral RNA and together with cellular and 

viral proteins trigger budding from the cell surface (Ganser-Pornillos et al., 2008). 

Maturation occurs when the virus buds from the host cell and viral proteins are cleaved by PR 

into functional proteins and enzymes. The newly formed viruses are free to infect new cells. 

Infection spreads either through cell-cell interaction via a VS, or through cell-free mediated 

interactions. The infected host cell is exhausted through continuous immune activation and 

death of CD4+ T cells paralyses the host immune system (Badley, 2005; Roshal et al., 2001). 
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Figure 1.5: The HIV-1 life cycle. HIV replication consists of viral attachment, entry, reverse 
transcription and integration of the viral DNA into the host DNA / or genome. This is 
followed by export of the viral proteins as well as viral assembly, budding and maturation of 
viral particles. The target sites of the three classes of inhibitors, reverse transcription, 
integration and maturation, are indicated (Pomerantz and Horn, 2003; Turner and Summers, 
1999). 
 

1.6  Antiretroviral therapy and resistance 

Despite the best efforts, there is still no known cure for HIV/AIDS infection. The HIV-1 life 

cycle has been a key target in developing efficient antiretroviral drugs against HIV-1 (Figure 

1.4) and with the aid of antiretroviral therapy (ART) the life expectancy of infected 

individuals has dramatically increased. 

 

1.6.1  Natural resistance to HIV 

Certain rare individuals do not develop AIDS, despite being infected with HIV. They are 

termed slow or long-term nonprogressors (LTNPs) and they seem to have natural immunity 

against the virus. They are able to keep the HIV viral load titer to a minimum (O’connell et 

al., 2009). People carrying the CCR5-Δ32 genetic variant sometimes falls within this 

category. The CCR5-Δ32 allele is found in approximately 10% of the Northern Europe 

population and has been known to show protection not only against HIV, but also smallpox 

(Sabeti et al., 2005). However the mutation also has a negative effect on T-cell function, 

while individuals with this mutation also have a higher brisk contracting West Nile virus 
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(Glass et al., 2006). Individuals with certain HLA (Human leukocyte antigen)-type genes, 

particularly HLA-B*5705 and / or HLA-B*2705 seem also to control HIV infection to a 

certain extent (Migueles et al., 2000). In an Australian cohort individuals were identified 

carrying Nef-deleted variants, leading to the conclusion that defective HIV can also impair 

viral replication in vivo (Rhodes et al., 2000). 

Natural host restriction factors such as APOBEC3F/G active against Vif and Tetherin, active 

against Vpu (discussed above) can also limit HIV-1 viral replication. Other host restriction 

factor against retrovirus include members of the Tripartite Motif (TRIM) protein family such 

as TRIM5α and TRIM22. The TRIM family forms part of the host innate immune system. 

Although TRIM5α is ineffective against HIV-1, it can inhibit murine leukaemia virus (Yap et 

al., 2004). TRIM5α does however successfully block HIV-1 infection in rhesus macaques 

and Old World monkeys (Stremlau et al., 2004). TRIM22 down-regulates HIV-1 

transcription from the LTR and prevents viral assembly by blocking HIV-1 Gag export from 

the nucleus (Barr et al., 2008).  

 

1.6.2  Antiretroviral therapy (ART) 

ART has dramatically led to the reduction of opportunistic infections, an increased life span 

and an improved quality of life in many HIV-1 infected individuals. Current therapeutic 

agents against HIV-1 include viral entry inhibitors, non-nucleoside reverse transcriptase 

inhibitors (NNRTIs), nucleoside reverse transcriptase inhibitors (NRTIs), Integrase inhibitors 

as well as protease inhibitors (PIs) (Johnson et al., 2003). More than 30 drugs have been 

approved for use in HIV-1 treatment, with many more drugs currently undergoing clinical 

trials. A list of the Food and Drug Administration (FDA) (USA bureau) approved drugs for 

use in HIV-1 treatment is available at 

http://www.fda.gov/ForConsumers/ByAudience/ForPatientAdvocates/HIVandAIDSActivitie

s/ucm118915.htm, last accessed 23 August 2011. Most of the current ART drugs attempt to 

stop viral replication by inhibiting the RT gene, stop virus maturation by inhibiting the PR 

gene or attempt to stop the virus from entry into the host cell. ART Mutations often lead to 

the failure of ART in patients infected with HIV-1 (Johnson et al., 2003; Thompson et al., 

2010). Multi-drug resistant viruses usually arise as a result of selective pressure from these 

therapeutic agents. 
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Viral entry inhibitors, also known as fusion inhibitors attempt to stop the virus from entering 

the host cell. However, Env has evolved to evade the host immune response, and therefore is 

highly variable, making it very difficult to produce specific entry inhibitors. The currently 

approved entry inhibitors include Enfuvirtide (Fuzeon), which is active against env gp41 and 

Maraviroc (Celsentri) which acts as a CCR5 antagonist (Pugach et al., 2008). Other small 

molecules and natural ligands targeting the entry receptors CCR5 and CXCR4, such as 

stromal cell-derived factor-1 (SDF-1) could also be used in future vaccine development 

strategies (Seibert and Sakmar, 2004). NNRTIs are a set of drugs, which binds and physically 

interacts with the RT enzyme of HIV-1. Currently available NNRTIs are Delavirdine (DLV), 

Efavirenz (EFV), Etravirine and Nevirapine (NVP). NVP has been widely used to prevent 

mother-to-child-transmission (MTCT) during pregnancy and birth (Guay et al., 1999; 

Lallemant et al., 2004; Johnson et al., 2005). Rilpivirine (Goebel et al., 2006) was the latest 

NNRTI drug approved for HIV-1 therapy by the FDA in May 2011. NRTIs are analogues of 

the body’s own nucleoside or nucleotide molecules and act as alternative substrates for DNA 

polymerases that bind to the RT. Zidovudine (AZT), an NRTI analogue of thymidine and the 

first FDA approved drug against HIV/AIDS, was introduced in 1987 (Fischl et al., 1987). 

Didanosine (ddI), an analogue of adenosine was the second approved FDA drug. Other 

NRTIs include tenofovir (TDF), stavudine (d4T), lamivudine (3TC), abacavir (ABC) and 

emtricitabine (FTC). FTC and 3TC are structurally similar compounds. TDF is an adenosine 

analogue, d4T a thymidine analogue, ABC a guanosine analogue while 3TC and FTC are 

cytidine analogues. Integrase inhibitors actively block retroviral integration into the host 

genome. Raltegravir (RAL) (Steigbigel et al., 2008) is currently the only FDA approved 

Integrase inhibitor available. Elvitegravir (EVG), a second Integrase inhibitor is still in the 

Phase III clinical trial phase and has not been approved by the FDA (Shimura et al., 2008). 

Other second generation Integrase inhibitors still being tested in various phases of clinical 

trials include Dolutegravir (Garrido et al., 2011, Hightower et al., 2011) and MK-2048 (Bar-

Magen et al., 2010). The list of currently available PIs are amprenavir (APV), atazanavir 

(ATV), darunavir (DRV), indinavir (IDV), lopinavir (LPV), nelfinavir (NFV), ritonavir 

(RTV), saquinavir (SQV) and tipranavir (TPV). LPV is only prescribed in combination with 

RTV as Kaletra (Walmsley et al., 2002). PIs disable the enzymatic function of the protein by 

binding to the active site and acting as an alternative substrate. The potency of certain PIs 

allow for their use in monotherapy with certain patients (Cameron et al., 2008).  
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The world health organization (WHO) recommendeds that ART is started when a person has 

a CD4 cell count below 350 cells per mm3 or has progressed to the WHO stage II or III 

disease stage already. People with co-infections are started on therapy immediately. It is 

recommended that people receiving ART be given two NRTIs (either AZT or TDF) and 

either a PI or NNRTI at the start of their treatment (WHO, 2010). When the first line therapy 

fails, second line therapy usually consists of ritonavir-boosted PI and two NRTIs (either AZT 

or TDF depending on the first line therapy regime). Viruses form patients failing ART are 

recommended  to be analysed genotypic testing before changing the therapy regiment. 

Guidelines should be adjusted for each individual, although this is only possible in developed 

countries. To reduce the risk of MTCT pregnant women are given AZT from 28 weeks of 

pregnancy, a single-dose of NVP during labour and given AZT and 3TC for one week 

thereafter. The new born baby is also given a single dose of NVP immediately after delivery 

and AZT for at least a week thereafter. Women who breastfeed should receive a triple ART 

regiment from 14 weeks of gestation after all exposure to breast milk has ended (Thomas et 

al., 2011). The complete updated treatment guidelines can be found at 

(http://www.who.int/hiv/pub/arv/adult2010/en/index.html). 

  

1.6.3  Testing for HIV-1 resistance 

Current assays that test HIV-1 drug resistance include genotypic and phenotypic assays. With 

genotypic resistance testing the viral genome is sequenced and scanned for resistance 

associated mutations. The patient derived viral genome is compared to a database of HIV 

sequences known to be associated with certain resistance patterns (http://hivdb.stanford.edu).  

Phenotypic resistance testing, such as the Phenosense GT system (Monogram Biosciences) 

can be performed by measuring the viral activity in the presence and absence of a drug in 

question. The assay compares the concentration, usually 50% inhibitory (IC50), of drug 

needed to inhibit the clinical isolates with that of the wild type reference strain. Although 

phenotypic tests are more time and labour consuming, the assay directly measures viral 

enzyme function and more accurately reflects the sensitivity of the virus to antiretroviral 

compounds. Discordance between genotypic and phenotypic tests have been also been 

identified (Zolopa, 2006). Previously uncharacterised mutations, especially unknown 

resistance mutations which form against novel HIV-1 drugs, cannot be predicted by 

genotypic methods alone. 
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1.7  Aim of thesis 

The primary aim of this thesis was to characterize circulating HIV-1 strains from Cape Town, 

South Africa. This was done through genotypic methods. Through phylogenetic analyses we 

analyzed HIV-1 resistance mutations in the treatment naïve patient population. We also 

characterized HIV-1 Vif sequences from patients derived viruses. Our third aim was to 

construct an infectious HIV-1 subtype C proviral molecular clone from Cape Town, South 

Africa having a high replication capacity, which should be used for in vitro HIV assays, 

including phenotypic HIV-1 resistance testing in the future. We also investigated the HIV 

resistance profile of a treatment naïve cohort in Mwanza, Tanzania. 
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Chapter Two 
2.  Materials 

 

2.1 Patient samples 

 

2.1.1  Therapy naïve patients used for HIV-1 genotyping 

For HIV-1 genotypic tests Ethylene diamine tetra-acetic acid (EDTA) blood from 140 therapy 

naïve patients were received from an academic hospital clinic, private clinics, state clinics, 

the Western Province Blood Transfusion Service (WPBTS) and a sex worker cohort from the 

Cape Metropole area of South Africa, during the period of 2002 to 2004. These include 81 

black females, 34 black males, 5 Caucasian males, 1 Caucasian female as well as 8 males and 

11 females of mixed race. These patient samples were also used to characterize HIV-1 vif 

sequences from Cape Town, South Africa. The cohort samples represent different ethnic 

groups and consist of heterosexuals, homosexuals, bisexuals, and MTCT-infected 

individuals. 

 
2.1.2  Patient ZAC (R3714) 

The retrovirus cohort represents patient samples diagnosed with either HIV or HTLV 

infection of which samples (plasma and serum) were stored from 1984 to 1995 at the 

Tygerberg hospital in Cape Town, South Africa. The patient, a South African coloured 

(mixed race) male born on 22 August 1931 was diagnosed with lymphocyte depleted 

Hodgkin’s lymphoma on 02 March 1989 and diagnosed as HIV-1 positive on 09 March 1989. 

He travelled frequently to Lusaka, Zambia, where he possibly became infected with the virus. 

Subsequently, serum and PBMCs were obtained during November 1989 (harvested on 20 and 

21 November 1989) and the virus was co-cultured with PBMCs and isolated. High molecular 

weight DNA was extracted from the HIV-positive cultures through phenol-chloroform 

extraction and stored. HIV-1 positive cultures were confirmed by RT assay that ranged from 

12495 to 35073 counts per minute per millilitre (cpm/ml). The env gene was amplified by 

PCR, sequenced and identified as subtype C (Engelbrecht et al., 1995). 
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2.1.3  Therapy naïve patients from Mwanza, Tanzania 

Treatment naïve samples were obtained from the ProCort1 (trial name: ‘‘ProCort1’’; registry: 

ClinicalTrials.gov; registration number: NCT01299948) clinical trial at the Bugando Medical 

Centre in Mwanza, Tanzania. The study was approved by the National Institute for Medical 

Research (Tanzania), Bugando Centre Ethical Board and Ministry of Health (Tanzania). 

Plasma and PBMCs were collected for each patient at baseline and at 12 later time points 

over a two year period. 

 

2.2  Equipment, commercial assays, enzymes and chemicals 

The list of equipment, chemicals and assays used during this study are listed in this chapter. 

In Table 2.1 the PCR kits and enzymes used are listed. In Table 2.2 the equipment needed to 

perform the necessary assays and analysis are presented, while the commercial packages used 

are given in Table 2.3. Buffers and additional media are listed in Table 2.4. Chemicals 

needed for buffers were obtained from Merck, Roth and Sigma-Aldrich. Miscellaneous 

products used are listed in Table 2.5. 

 

Table 2.1: PCR kits and enzymes. 

Enzymes Supplier 

Access RT-PCR system Promega 

Antarctic phosphatase NEB 

ExpandTM High Fidelity PCR system Roche Diagnostics 

ExpandTM Long Template PCR system Roche Diagnostics 

GoTaqTM DNA polymerase Promega 

Herculase® II Agliotti 

Moloney Murine Leukemia Virus (M-MLV) RT Promega 

Phusion® High Fidelity DNA polymerase NEB 

Restriction enzymes Fermentas, NEB, Promega 

Shrimp alkaline phosphatase (SAP) Fermentas 

T4 DNA ligase Fermentas, NEB 
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Table 2.2: Equipment used to perform sample assays and analysis. 

Equipment Supplier 

ABI prism® 310 genetic analyzer Applied Biosystems 

Biometra® T-personal thermal cycler Biometra 

Gelair flow cabinet BSB4A Flow Laboratories 

Heating block Peqlab Biotechnologies 

Heraeus® CO2-Auot-Zero incubator Heraues 

Heraeus® Multifuge 1 S-R centrifuge  Heraues 

Intas Gel DocTM system Bio-Rad 

NanoDropTM system NanoDrop Technologies 

Sartorius PB-11 pH meter Sartorius 

Sonicator-Sonifier® 250  Branson 

Sorvall® 90SE ultracentrifuge Thermo fisher scientific 

Sorvall® Evolution RC centrifuge Thermo fisher scientific 

Table top Eppendorf® 5417C centrifuge Eppendorf 

Trans-Blot® SD cell Bio-Rad 

Vortex A. Hartenstein 

Leitz Labovert FS light microscope Leica 

Leitz DM IRE2 fluorescent microscope Leica 
 

Table 2.3: Commercial kits and assays. 

Product Supplier 
BigDyeTM Terminator Cycle Sequencing 
Ready Reaction Kit version 1.1 Applied Biosystems 

Fugene®6 or HD transfection reagent kit Roche Diagnostics 

Cobas®Amplicor HIV-1 Monitor version 1.5 test kit Roche Diagnostics 

GeneEluteTM gel extraction and PCR purification kits Sigma-Aldrich 

GeneRulerTM 1 kb DNA ladder Fermentas 

NucleoBond® PC500 Reagents Macherey-Nagel 

PageRulerTM Prestained Protein Ladder Fermentas 

pcDNA™3.1 Directional TOPO® Expression kit Invitrogen 

Pierce® ECL Western Blot Detection kit Thermo scientific 

PureYieldTM Plasmid Midiprep system Promega 

QIAamp®  DNA Micro kit Qiagen 

QIAprep® Spin Miniprep kit  Qiagen 

RNeasy® Mini extraction kit Qiagen 

TOPO® XL PCR Cloning kit and TA Cloning® kit Invitrogen 

TurboFectTM in vitro transfection reagent kit Fermentas 
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Table 2.4: Buffers, media and recipes. 

Description Recipe 

Alseivers Trypsin Versene (ATV) 
8.0g NaCl, 0.27g KCl, 1.15g NaH2PO4, 0.2g KH2PO4, 0.1g MgSO4 x 7H2O, 1.125g 
Na2-EDTA, 1.25g Trypsin. Add 1 L distilled H2O. 

Competent cell buffer 1 
30 mM Potassium acetate (pH 5.8), 100 mM RbCl, 10 mM CaCl2, 50 mM MnCl2, 
15% Glycerine (v/v). 

Competent cell buffer 2 
10 mM MOPS [3-(N-morpholino) propanesulfonic acid buffer] (pH 7.0), 10 mM 
RbCl,75 mM CaCl2, 15 % Glycerine (v/v). 

Dulbecos Modified Eagle Medium 
(DMEM)* 

10% Fetal calf serum (FCS) (heat-inactivated), 5% L-Glutamine (500 µg/ml), 
0.05% Penicillin (100 µg/ml), 0.05% Streptomycin (100 µg/ml). Add 500 ml H2O. 

DNA loading dye (6 x) 0.125% Bromophenol blue, 40% Sucrose. 
Hepes buffered saline (HBS) (2 x) 280 mM NaCl, 50 mM HEPES, 1.5 mM Na2HPO4, pH 7.1. 
Luria-Bertani (LB) medium (5 x) 100g broth base, 25g NaCl, 5g α-D-Glucose. Add 1 L H2O. 
LB-Agar 20g LB broth base, 20g Agar, 5g NaCl. Add 1 L H2O. 

MEM (Minimal essential media)* 
10% FCS (heat-inactivated), 5% L-Glutamine (50 µg/ml), 0.05% Penicillin (100 
µg/ml), 0.05% Streptomycin (100 µg/ml). 

Miniprep solution 1, resuspension 
buffer 

50 mM Glucose, 10 mM EDTA (pH 8.0), 25 mM Tris HCl (pH 8.0). 

Miniprep solution 2, lysis buffer 0.2 M NaOH, 1%  Sodium dodecyl sulfate (SDS). 
Miniprep solution 3, neutralization 
buffer 

3M Natriumacetate (pH 5.4). 

MOPS (10 x) 83.7g MOPS, 13.6g Sodium acetate, 3.7g EDTA. 

Phosphate buffer saline (PBS) 
137 mM NaCl, 2.07 mM KCl, 4.3 mM Na2HPO4 x 2H2O, 1.4 mM KH2PO4, 1.5 
mM CaCl2 x 4H2O; 1 mM MgCl2 x 6H2O. 

Radio-Immunoprecipitation Assay 
(RIPA) – buffer 

20 mM Tris-HCl (pH 7.4), 300 mM NaCl, 1% sodium deoxycholate, 
1% Triton-X 100, 0.1% SDS. 

Roswell Park Memorial Institute 
(RPMI) – 1640 media* 

10% FCS (heat-inactivated), 10 mM HEPES (pH 10.4), 5% GlutaMax (500 µg/ml), 
0.05 % Penicillin (100 µg/ml), 0.05 % Streptomycin (100 µg/ml). 

SAP reaction buffer 25 mM Tris-HCl (pH 7.6), 1 mM MgCl2, 0.1 mM ZnCl2, 50% Glycerine. 

SDS loading buffer (6 x) 
3 ml Glycerine, 1g SDS, 0.375mg bromophenol blue, 3.75 ml ß-Mercaptoethanol. 
Add 10 ml Tris-HCl with 0.4 % SDS. 

SDS running buffer (5 x) 25 mM Tris, 200 mM Glycine, 0.1 %  SDS (w/v). 
SDS separation gel (4 x) 1.5M Tris HCl (pH 8.8), 0.4% SDS (w/v). 
SDS stacking gel (4 x) 0.5M Tris HCl (pH 6.8), 0.4% SDS (w/v). 
T4 DNA ligase buffer 50 mM Tris-HCl, 10 mM MgCl2, 1 mM ATP, 10 mM Dithiothreitol, pH 7.5. 
Tris-Acetate-EDTA (TAE) buffer 
(50 x) 

2 M Tris, 50 mM EDTA (pH 8.0), 5.71% acetic acid (v/v). 

Tris-EDTA (TE) buffer 10 mM Tris-HCl (pH 8.0), 1 mM EDTA. 
Western Blot buffer 3.04 g Tris, 14.4g Glycine, 100 ml Methanol, Add 1 l ddH2O. 
*DMEM was obtained from Sigma-Aldrich, MEM from Invitrogen and RPMI-1640 from Gibco. 
Salts and antibiotics added to the various cell culture mediums are shown in the recipe list. 
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Table 2.5  Miscellaneous products used. 

Material Supplier 
FCS Gibco 
Glassware Schott 
Nitrocellulose membrane Roth 
Laboratory liquids (Acetone, Ethanol, Isopropanol, 
Methanol, Polyacylamid Terralin) 

Roth 

Laboratory wear A. Hartenstein 
Neubauer counting chamber A. Hartenstein 
Parafilm Roth 
Pipette tips A. Hartenstein 
Pipettes Gilson 

Plastic material 
Costar, Eppendorf, Falcon, 
Greiner, Nunc, Roth 

Sterile filters and filterpaper Schleicher & Schuell 
Fuji medical x-ray film Fujifilm 
 

2.3  Primers 

The primers used for HIV-1 PR and RT genotyping were previously described (Plantier et al., 

2005). The HIV-1 subtype C full-length sequencing primers were also described before 

(Rousseau et al., 2006). The vif genotyping primers are given in Table 2.6. The HIV-1 

subtype C primers are given in Table 2.7. The melting temperature (Tm) for each primer is 

given. 
 
Table 2.6: HIV-1 vif genotyping primers. 

Primer Amplification step Sequence 5’-3’) Tm (oC) 
HIV-int1 1st round PCR WWWYKRGTYWRTWMYRGRRWCAGSAGAG 51.1 – 65.8 
HIV-INT6A 1st round PCR ATNCCTATNCTGCTATGTYGRCAYCCAAT 55.9 – 62.9 
INT3S 2nd Round PCR AGMMAARSYHCTCTGGAACGGTGAAG 56.4 – 64.3 
INT5A 2nd Round PCR CCTATNCTGCTATGTYGACAACCAATKCTGWAAATG 61.0 – 64.4 
 
Table 2.7: HIV-1 subtype C amplification primers. 

Primers Sequence (5'-3') Tm (oC) 
HIV_NgoMIV_F GAATGCCGGCTGGATGGGCTAGTTTACTCCAAGAGAAGGCAAG 71 
CMVstart_NgoMIV GAATGCCGGCTAGTTATTAATAGTAATCAATTACGGGTC 63 

CMF_overlap_F 
CAGAGCTGGTTTAGTAACCGGGTCTCTCTAGGTAGACCAGATCTGAGCC
CGGGAGCTC 77 

CMV_overlap_R 
GTGCTCCCGGGCTCAGATCTGGTCTACCTAGAGAGACCCGGTTACTAAA
CCAGCTCTG 77 

SpeI-R CTATTTGTTCCTGAAGGGTACTAGTGTTCCTGCTATG 64 
SpeI-F CATAGCAGGAACTACTAGTACCCTTCAGGAACAAATAG 64 
PacI-R CTCTAATTCTTTTAATTAACCAGTCTATTTTTC 54 
PacI-F GAAAAATAGACTGGTTAATTAAAAGAATTAGAG 54 
BspEI-R GTCTTTGTAATACTCCGGATGTAGCTCGCG 63 
BspEI-F CGCGAGCTACATCCGGAGTATTACAAAGAC 63 
NotI-R GAGCGGCCGCACTACCAAAAAGGGTCTGAGGGATCTCTAGTTAC 72 
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2.4  Plasmids and vectors 

The HIV-1 plasmids pNL4-3 (Adachi et al., 1986) and pMJ4 (Ndung'u et al., 2001) were 

used during the study. The enhanced Green Fluorescent Protein (eGFP) expression plasmid, 

pEGFP-C1 was obtained from Clontech. The cloning vectors pUC19, TOPO® XL PCR, 

pcDNA3.1TM 3.1D/V5-His/lacZ and PCR® II were obtained from Invitrogen.  

 

2.5  Bacterial cells 

Bacterial cells were otained from Invitrogen.  

E.coli Top10 competent cells: chromosomal genotype: F- mcrA Δ(mrr-hsdRMS-mcrBC) 

Φ80lacZΔM15 ΔlacΧ74 recA1 araD139Δ(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG. 

E.coli DH5α competent cells: chromosomal genotype: F- φ80lacZΔM15 Δ(lacZYA-argF) 

U169 recA1 endA1 hsdR17(rk -, mk +) phoA supE44 thi-1 gyrA96 relA1 tonA.  

 

2.6  Antibiotics 

Ampicillin, Kanamycin, Penicillin, and Streptomycin were obtained from Sigma-Aldrich. 

 

2.7  Culture cell lines 

The maintenance of the various cell lines are described in chapter 3. 

HEK-293T: Human embryonic kidney (HEK) stem cells expressing a large Simian 

Vacuolating Virus 40 TAg (SV40 T) antigen on their cell surface (Graham et al., 1977; Pear 

et al., 1993). 

TZM-bl: A HeLa derived cell line expressing CD4, CCR5 and CXCR4. It contains HIV Tat-

inducible Luciferase and ß-galactosidase (X-gal) genes (Derdeyn et al., 2000; Wei et al., 2002). 

MT-4: A Human T-cell Lymphotropic Virus-I (HTLV-I) transformed T-cell line (Harada et 

al., 1985; Larder et al., 1989). 

PBMCs were isolated from donor blood samples. 

 

2.8  Antibodies 

Primary western blot detection antibodies against HIV-1 Gag p24 (Hartl et al., 2011), GFP 

(Sigma-Aldrich) and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH, Sigma-Aldrich) 

were used. Secondary antibodies were Goat Anti-Rabbit Immunoglobulin G (IgG) and Goat 

Anti-Mouse IgG and obtained from Jackson Immuno Research. 
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Chapter three 
 
3.  Methods 
 
3.1  Patient sample preparation 

The South African samples were collected at Tygerberg Academic hospital, Cape Town, 

South Africa. Plasma was collected from EDTA blood after centrifugation (Beckman Coulter 

Allegra™ 6R, Beckman Inc.) at 2000 rpm for 10 minutes at 4°C and subsequently stored at -

80°C for future analysis. Viral RNA was extracted using the high throughput M1000 robot 

extractor (Abbott Diagnostics). 

 

Samples from the Tanzania cohort were collected at the Bugando Medical Centre in Mwanza, 

Tanzania. Patient PBMCs were isolated from 8 ml of whole blood were collected in cell 

preparation tubes (Becton Dickenson) with a fixed ficoll gradient. After isolation of PBMCs, 

the cells were immediately frozen at -80°C in RPMI 1640 medium supplemented with 40% 

fetal calf serum (FCS) and 10% Dimethyl sulphoxide (DMSO). The EDTA plasma samples 

were obtained from 6 ml whole blood collected in EDTA Vacutainer (BD) and immediately 

frozen at -80°C. Plasma was collected as for the South African samples. The PBMC and the 

plasma samples were shipped frozen at -70°C with temperature log to Würzburg, Germany. 

DNA was extracted from 1 x 106 PBMC using the QIAamp® DNA Micro Extraction Kit 

(Qiagen). RNA extraction of plasma was performed using the sample preparation kit of the 

Cobas® Amplicor HIV-1 Monitor version 1.5 test kit (Roche). 

 

3.2  Polymerase chain reaction (PCR) 

PCR, developed in 1985 by Kary B. Mullis (Mullis and Faloona, 1987) was used to amplify 

HIV-1 RNA or DNA from selective patient sample and DNA plasmids.  A PCR amplification 

involves concurrent steps of DNA heat denaturation, primer annealing and DNA extension.  

These steps are repeated several times during PCR cycling (Saiki et al., 1988).  The following 

standard protocol was used to amplify all DNA: One cycle of denaturation at 94°C for 2 

minutes, followed by 30 to 35 cycles of denaturing at 94°C for 30 seconds, primer annealing 

for 30 seconds (according to primer pair Tm) and elongation at 72°C for 30 seconds to 1 

minute per kb of target amplified DNA. A final elongation step of 72°C for 3 to 10 minutes 

was performed, after which the samples were cooled and stored at 4°C or -20°C for longer 

periods, until used. The reaction consists of 0.5 µM of each specific target primers (listed in 
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Chapter 2), 200 µM deoxyribonucleoside triphosphates (dNTPs) (Sigma-Aldrich), DNA 

polymerase with specified reaction buffer, usually obtained from the manufacturer and 10 ng 

of patient or plasmid DNA in a total reaction mixture of 50 µl in a 0.2 ml thin-wall PCR tube 

(VWR).  

 

For short fragments, generally less than 1 kb in length, GoTaqTM DNA polymerase 

(Promega) was used. For larger fragments using a high fidelity enzyme was necessary to limit 

PCR error mistakes (Hopfner et al., 1999). For this the ExpandTM High Fidelity PCR system 

(Roche Diagnostics), Herculase® II PCR system (Agliotti) or the Phusion® High Fidelity 

DNA polymerase system (NEB) was used. For larger fragments, bigger than 3 kb the 

Phusion® High Fidelity DNA polymerase system was preferred. 

 

When amplifying RNA, the RNA fragment was first reverse transcribed into complementary 

DNA (cDNA) using the Moloney Murine Leukemia Virus (M-MLV) RT protocol (Promega). 

Briefly, 10 ng to 5 µg of total RNA was added with 1 µl of primer (0.5 µg/µl), 2 µl of 10 mM 

dNTP mix and 1 µl of RevertAIDTM Hminus M-MLV RT (200 U/µl) to in a 20 µl reaction 

volume filled with water in a 0.2 ml thin-wall PCR tube (VWR). The following protocol was 

used: Incubation at 37°C for 5 minutes, followed by reverse transcription at 42°C for 60 

minutes. The reaction was stopped by heating at 70°C for 10 minutes. The Access RT-PCR 

system (Promega) was also used as a one-step amplification system to amplify small DNA 

fragments from RNA. The manufacturer’s instructions were followed. All PCR steps were 

performed in a Biometra® T-personal thermal cycler (Biometra). 

 

3.3  Agarose gel electrophoresis 

Agarose gel electrophoresis allows for the separation of nucleic acids according their 

molecular weight size through electrophoresis in an agarose gel with a current of constant 

strength (Sambrook et al., 1989). All PCR products were verified by agarose gel 

electrophoresis on a 0.8% to 1.5% (w/v) agarose (Roth) gel in 1 x TAE buffer. Samples were 

mixed with 6 x DNA loading dye (0.125% Bromophenol blue, 40% Sucrose) and 

approximately 6 µl were loaded per lane on the agarose gel. Electrophoresis reactions were 

run at 80 V for a 50 ml agarose gel, while 100 V was used for a 150 ml gel. The DNA was 

stained with ethidium bromide (A. Hartenstein) (0.5 µg/ml) and viewed under a UV light 

with a wavelength between 280 and 320 nm, with the INTAS Gel DocTM system (Bio-Rad). 

Ethidium bromide is a powerful mutagen and should be handled carefully (Ausubel et al., 
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2003; Sambrook et al., 1989; Sharp et al., 1973). The GeneRulerTM 1 kb DNA ladder 

(Fermentas) was used as a molecular weight size marker. 

 

3.4  Purification of nucleic acids 

To dispose of excess dNTPs, enzymes and buffers amplified PCR products were purified 

either by agarose gel extraction using the GeneEluteTM gelextraction kit or the GeneEluteTM 

PCR purification kit using the manufacturer’s instructions (Sigma-Aldrich). The purification 

protocols are based on silica membrane spin protocols which allows for binding of nucleic 

acids to a silica membrane inside a spin column (Vogelstein and Gillespie, 1979; Sambrook 

et al., 1989). 

 

3.5  DNA concentration determination 

The NanoDropTM system (NanoDrop technologies) was used to determine the DNA 

concentration spectrophotometrically using a 1 µl input sample. DNA measurements are read 

at a wavelength of 260 nm, while purity is determined by dividing the absorbance at 260 nm 

with the absorbance at 280 nm (Sambrook et al., 1989). Pure DNA has a value between 1.7 

and 1.9. Lower values are indicative of protein contamination, while higher values indicate 

the presence of RNA in the sample. 

 

3.6  Transformation of DNA into bacterial plasmid vectors 

Transformation is the process by which bacteria incorporates exogenic material, such as 

DNA from its surroundings. The standard protocol was followed (Sambrook et al., 1989): 

Competent cells, previously stored at -80°C were allowed to thaw for 5 to 10 minutes on ice 

before use. Approximately 0.01 to 0.1 µg of plasmid DNA or 5 to 10 µl of ligated DNA were 

mixed with 100 µl of competent cells and incubated on ice for 30 minutes. The reaction 

mixture was heat shocked at 42°C for 90 seconds and incubated on ice for a further 2 

minutes. A volume of 900 µl of 1 x LB medium was added to the cells and the reaction was 

allowed to shake for 1 hour at 37°C. The bacterial cells were pelleted by centrifugation at 

3000 rpm for 3 minutes. Approximately 50 to 200 µl of the bacteria were grown on antibiotic 

specific agar plates overnight at 37°C. For direct large scale preparation of bacterial clones 

the transformed bacteria were grown in a 250 ml LB-medium containing specific antibiotics, 

while shaking at 200 rpm overnight. 
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3.7  Small scale preparation of plasmid DNA (minipreps) 

Small scale preparation of plasmid DNA or more commonly referred to as minipreps were 

isolated from bacterial cultures using the following ethanol precipitation protocol: 

Single colonies on agar plates were picked and inoculated in 3 ml of 1 x LB-medium 

containing antibiotics. Ampicillin was used at a concentration of 100 µg/ml while kanamycin 

was used at 50 µg/ml. The culture was transferred to a 1.5 ml microcentrifuge tube 

(Eppendorf) and approximately 1.2 ml of bacteria was pelleted by centrifugation at maximum 

speed (12000 - 14000) rpm in a table top centrifuge. The supernatant was discarded and the 

pellet re-suspended by vortexing in 100 µl of miniprep solution 1. Resuspended cells were 

lysed by adding 200 µl of miniprep solution 2 and incubated at room temperature for 5 

minutes, after which 200 µl of miniprep solution 3, neutralization buffer was added. The 

reaction mixtures were centrifuged at maximum speed for 5 minutes. The supernatant was 

added to 100% ice cold ethanol (3 x volume) and centrifuged again at maximum speed for 5 

minutes. The DNA pellet was washed by adding 500 µl of 70% ethanol to the reaction tube 

and centrifuging at maximum speed for 2 minutes. After carefully discarding the ethanol 

supernatant the pellet was air-dried at 55°C for 10 minutes. The DNA was resuspended in 50 

µl Tris-EDTA (TE) buffer with Ribonuclease A (RNaseA). RNaseA removes RNA from 

DNA preparations. 

 

3.8  Large scale preparation of plasmid DNA (Maxipreps) 

Maxipreps cultures from transformed DNA or miniprep cultures were grown in 250 ml 1 x 

LB medium overnight at 37°C and pelleted by centrifugation at 6000 rpm for 10 minutes. 

The preparations were done with either the PureYieldTM Plasmid Midiprep System (Promega) 

or the NucleoBond® PC500 Reagentkit (Macherey-Nagel) according to the manufacturer’s 

instructions.  

 

3.9  Restriction enzyme digestion 

Restriction endonuclease enzymes are enzymes that cut DNA at a specific recognition 

sequence and are commonly used in laboratories to create recombinant plasmids (Sambrook 

et al., 1989). Restriction enzymes were used to test if recombinant DNA plasmids were 

correct. The following protocol was followed: Approximately 0.5 µg of DNA was added to 

specified restriction enzyme buffer with 1 U/µg of enzyme in a 20 µl reaction filled with 

water. The reaction was incubated for 1 to 2 hours at the specified temperature for each 

enzyme used. For larger reaction volumes when DNA fragments were needed for ligation 
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reactions the following protocol was followed: Approximately 5 to 10 µg of DNA were 

added to specified restriction enzyme buffer with 5 to 10 U/µg of enzyme in a 100 µl reaction 

filled with water and the reaction was incubated for 2 hours or longer, until the DNA was 

completely digested. Restriction digestions were analysed by agarose gel electrophoresis as 

described above. 

 

3.10  Ligation of DNA vectors 

In order to ligate DNA cut with restriction enzymes T4 DNA ligase (NEB) was used. T4 

DNA ligase catalyzes the formation of phosphodiester bonds between the 5’-phosphate and 

3’-hydroxyl termini between double stranded DNA molecules (Sambrook et al., 1989). The 

following protocol was followed: Insert DNA was ligated to vector DNA in a ratio of 1:3, 

with specified reaction buffer and 2 U of T4 DNA ligase enzyme in a total reaction volume of 

20 µl filled with water. The reaction was left for approximately 4 hours at room temperature 

or incubated at 4°C overnight. The ligated DNA vectors were transformed into E.coli TOP10 

competent cells as described above. 

 

Before use in ligation reactions vector DNA was sometimes treated with Shrimp Alkaline 

Phosphatase (SAP, Fermentas) or Antarctic Phosphatase (NEB). Phosphatase is able to 

catalyze the removal of 5´ phosphate groups from DNA and RNA and is commonly used to 

stop vectors from self-ligation. This strategy decreases the chance of vector background in 

cloning strategies. (Sambrook et al., 1989; Rina et al., 2000). In a 10 µl reaction volume 1 µg 

of DNA was incubated with 1 U of enzyme and specified reaction buffer at 37°C for 30 

minutes. The reaction was heat-inactivated at 65°C for 5 to 10 minutes. 

 

3.11  Preparation of E.coli competent cells 

For bacterial transformation E.coli Top10 and DH5α competent cells (Invitrogen) were used. 

New competent cells were generated with the following protocol: 

Competent cells (100 µl) were inoculated with 5 ml LB medium, without antibiotics and 

allowed to shake overnight 200 revolutions per minute (rpm) at 37°C. From the overnight 

culture 1 ml were transferred into a 100 ml LB medium culture, allowed to shake for 2 – 3 

hours at 37°C until an Optical Density of 600 (OD600) value of between 0.2 and 0.3 were 

reached. OD600 value calculates the density of the culture and tells you when the logarithmic 

growth phase is reached. When ready, samples were transferred to sterile 50 ml falcon tubes, 

incubated on ice for 10 minutes after which they were centrifuged at 6000 rpm for 10 minutes 
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in a Heraeus® Multifuge 1 S-R centrifuge (Heraeus). The supernatant was removed and 

pelleted cells were resuspended in 20 ml ice-cold competent cell buffer 1 and left on ice for a 

further 10 minutes. Resuspended cells were centrifuged for a further 10 minutes at 6000 rpm 

and pelleted cells were resuspended in 4 ml ice-cold competent cell buffer 2. After 15 

minutes competent cells were aliquoted in a volume of 200 µl into 1.5 ml microcentrifuge 

tubes (Eppendorf), quickly frozen in liquid nitrogen and stored at -80°C until used.  

 

3.12  DNA sequencing 

Through DNA sequencing the exact base pair sequence of a DNA fragment can be obtained. 

The PCR-based sequencing reaction is based on the enzymatic method of Sanger et al. 

(1977). The reaction incorporates both dNTPs as well as dideoxyribo-nucleoside 

triphosphates (ddNTPs), where the addition of ddNTPs to the DNA strand leads to a chain 

termination reaction. As the dNTPs are fluorescently labelled with different dyes they can be 

read on an automated DNA sequencer. In a 5 µl reaction volume 1 µl of BigDyeTM version 

1.1 terminator enzyme mix (Applied Biosystems), 5 pmol of primer, 500 ng of plasmid DNA 

and water were added together in a 0.2 ml thin-wall sequencing tube (A. Hartenstein). The 

following cycle sequencing reaction was performed: Denaturation at 96°C for 10 seconds, 

primer annealing for 5 seconds at 55°C and an elongation step at 60°C for 4 minutes. 

Sequences were performed on an automated ABI prism® 310 Genetic Analyzer system 

(Applied Biosystems). 

 

3.13  Sequence and phylogenetic analyses 

In order to study the relationship between various HIV sequences obtained we used 

phylogenetic analyses. Briefly, molecular phylogenetics is the study of evolutionary 

relationships among organisms based on their DNA and / or protein sequences. Phylogenetic 

analyses has become a useful tool to study HIV origin, epidemiology and diversity because of 

the rapid replication rate and evolution of these viruses (Salemi and Vandamme, 2003). 

Sequence contigs obtained were edited and assembled using the Lasergene Seqman and 

MegAlign version 7.0 software packages (DNASTAR Inc.). DNA sequences were aligned 

using the ClustalW version 2.0 software package (Larkin et al., 2007). Phylogenetic trees 

were generated with the TreeconW for Windows version 1.3b software package (Van de Peer 

and De Wachter, 1994) or the Mega version 5.0 software package (Tamura et al., 2011). The 

PR and RT derived sequences were screened for mutations associated with drug resistance 
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with the HIV database Genotypic Resistance Interpretation Algorithm version 4.6.2 on the 

HIV database maintained by Stanford University, USA  

(http://hivdb.stanford.edu/index.html). Reference sequence for use in sequence analyses were 

obtained from the Los Alamos National Laboratory database (http://www.hiv.lanl.gov). 

Conserved sequences were highlighted with the Bioedit version 7.0.9 (Hall, 1999) and 

Genedoc version 2.6.002 software packages (Nicholas et al., 1997). 

 

3.14  Maintenance of cell lines 

HEK-293T and TZM-bl cells were maintained in minimal essential media (MEM) 

(Invitrogen) at 37°C with a constant (5%) CO2 level in a Heraeus® CO2-Auto-Zero incubator 

(Heraeus). Cells were trypsinised with ATV and diluted (1:10) with fresh media every 2 to 3 

days. Cells were maintained in appropiate culture flask (Nunc). Aliquots of cells were frozen 

away at -80°C with 10% DMSO for future use.  

MT-4 cells were maintained in RPMI-1640 media (Gibco) and replaced with fresh media 

added every 2 to 3 days in a 1:10 dilution. MT-4 cells and maintained in a biosafety level 3 

laboratory. 

 

3.15  Isolation and maintenance of PBMCs for cell culture 

PBMCs were extracted from donor EDTA blood by density gradient centrifugation with 

Histopaque®-1077 (Sigma-Aldrich) to separate them from red blood cells and most 

granulocytes (Janeway et al., 2001). PBMCs were cultivated overnight at 37°C with a 

constant (5%) CO2 level in a Heraeus® CO2-Auot-Zero incubator (Heraeus) with RPMI-1640 

media stimulated with phytohemagglutinin-P, (PHA-P) (Sigma-Aldrich) (0.5 mg/ml) and 

human Interleukin-2 (IL-2) (Sigma-Aldrich) (0.1 mg/ml) before being used for viral kinetics 

assays. IL-2 is a T-cell growth factor cytokine, while PHA-P is a plant mitogen that 

upregulate the expression of IL-2 receptors on T-cells (Johnson and Byington, 1990). In a 6-

well cell culture plate (Nunc) approximately 5 x 105 cells were seeded before using the next 

day. All cell counts were done with the aid of the Neubauer cell counting chamber (A. 

Hartenstein). 

 

3.16  Transfection of cells 

Transfection is the process by which cells incorporate DNA plasmids through the cell 

membrane into their cytoplasm. During this study we used the Calcium-Phosphate 

transfection protocol, Fugene®6 or HD (Roche Diagnostics) or the TurboFectTM in vitro 
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transfection reagent (Fermentas). Calcium phosphate fascilitates the binding of DNA to the 

cell surface. The DNA subsequently enters the cell via endocytosis (Graham and van der Eb, 

1973; Loyter et al., 1982). Briefly: In a 6-well cell culture plate (Nunc) 5 x 105 cells were 

seeded in MEM overnight at 37°C with a constant (5%) CO2 level in a Heraeus® CO2-Auto-

Zero incubator (Heraeus). The next day fresh media was added. For Calcium-Phosphate 

transfection 2.5mM of CacCl2 was added to 2 x HBS solution. Approximately 4 µg of DNA 

was transfected and the culture incubated for 2 to 3 days to allow for the expression of 

proteins. For TurboFectTM 6 µl transfection reagent was added to 4 µg of DNA with Dulbecos 

Modified Eagle Medium (DMEM) (Sigma-Aldrich). With Fugene®6 or HD 3 µl transfection 

reagent was added to 1 µg of DNA with DMEM (Sigma-Aldrich). 

 

3.17  Western Blot analyses 

To detect the expression of proteins specific antibodies were used in western blot detection 

assays as follows: From cell cultures supernatant was removed as described above. Cells 

were lysed with RIPA buffer and sonification (Sonicator-Sonifier® 250, Branson). 

Sonification breaks the cell membranes and releases the proteins into the supernatant 

(Sambrook et al., 1989). SDS loading buffer (6 x) was added to each sample. Samples were 

heated at 95°C for 5 minutes, centrifuged in a table top centrifuge at 8000 rpm for 5 minutes 

and loaded onto a polyacrylamide gel for separation. Polyacrylamide gels separates proteins 

according to seize. The polyacrylamide gel consists of a separation gel, layered on a stacking 

gel for loading of samples. The composition of the gel is given in Table 3.1. The 

Rotiphorese® acrylamid / bis-acrylamid Gel 40 (29:1) solution as the polyacrylamid source 

was obtained from Roth. Ammonium persulfate (APS) was obtained from Merck and 

Tetramethylethylenediamine (TEMED) from Sigma-Aldrich. 

 

Table 3.1: Composition of SDS gel (8.0 cm by 10 cm) 

Reagents Separation gel (12.5%) Stacking gel 

Rotiphorese® 

Gel 40 (29:1) 4.68 ml 0.65 ml 

4 x SDS buffer 3.75 ml 1.25 ml 
dd H20 6.57 ml 3.0 ml 
10% APS 150 µl 100 µl 
TEMED 25 µl 10 µl 
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The proteins are separated according to size by running the gel at a constant voltage (100 V 

for a small scale gel) in SDS-running buffer. The PageRulerTM Prestained Protein Ladder 

(Fermentas) was used as a size marker control. From the polyacrylamide gel proteins were 

transferred to a 0.2 µM Roti® nitrocellulose membrane (Roth) with the Trans-Blot® SD cell 

system (Bio-Rad). To block non-specific proteins from binding to the nitrocellulose 

membrane, the membrane was washed with 5% milk-PBS solution [5g milk powder (Roth) in 

100 ml PBS]. The nitrocellulose membrane was incubated overnight at 4°C in 5% milk-PBS 

solution, while constantly shaking. The following concentrations of antibodies were used. 

GFP (1:6000), anti-p24 (1:4000) and GAPDH (1:4000). The following day the nitrocellulose 

membrane was washed three times with PBS and secondary antibody added (1:10000 in 

PBS). After an hour incubation at room temperature while shaking, a final wash was 

performed (3 x with PBS). Proteins blots were  developed with the Pierce® ECL Western Blot 

Detection Kit (Thermo scientific) in a dark room environment on Fuji medical x-ray film 

(Fujifilm). 

 

3.18  Determination of viral infectivity 

In order to determine the viral titre after transfection supernatant from transfected cells were 

titred onto TZM-bl cells. TZM-bl cells (1 x 104) were seeded the day before use in a 96-well 

cell culture plate (Nunc) and allowed to grow overnight at 37°C with a constant (5%) CO2 

level in a Heraeus® CO2-Auto-Zero incubator (Heraeus). The next day 1 ml of supernatant 

from the transfected HEK 293T cells was centrifuged at 1500 rpm for 5 minutes at room 

temperature in a centrifuge. From the supernatant 100 µl was titrated per well on the TZM-bl 

plate and diluted down (1:10; 1:100 and 1:1000). The rest of the supernatant was stored at -

80°C for future use. Two days later cells were fixed with methanol and acetone (1:1) for 5 

minutes, washed 3 x with PBS and stained with X-gal staining buffer: 

 

X-gal staining buffer 

2.5% X-gal (Sigma-Aldrich) in Dimethylformamide (DMF) (Roth) 

2 mM MgCl2 (Sigma-Aldrich) 

4 mM potassium ferricyanide (K3[Fe(CN)6]) (Sigma-Aldrich) 

4 mM potassium ferrocyanide (K4[Fe(CN)6]) (Sigma-Aldrich) 

Fill to desired volume with PBS. 
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Infectious HIV-1 cells turn blue because of the LacZ promoter is induced by HIV-1 tat. As a 

control GFP containing cells were stained with 4% paraformaldehyde and quantified under 

the fluorescent microscope. The Multiplicity of Infectivity (MOI) was determined for each 

set of transfection reactions to use in growth infectivity assays. To determine virus growth 

kinetics MT-4 cells or PBMCs were infected with an MOI of 0.05 and cells were cultured for 

up to 8 days. Fresh media was added every 4 days.  
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Summary 

Human Immunodeficiency Virus type 1 (HIV-1) subtype C, spread mainly via 

heterosexual transmission is currently the most predominant HIV-1 subtype worldwide. 

Cell culture studies of Sub-Saharan African subtype C proviral clones (pMJ4 and 

pHIV1084i) are hampered by their low replication capacity. We describe here the 

modification of pMJ4, leading to a proviral clone with a higher replication rate in cell 

culture. Furthermore, an early primary HIV-1 subtype C isolate from Cape Town, 

South Africa is characterized and a new infectious subtype C proviral clone (pZAC) is 

created. The new pZAC clone has a higher viral titer than the original pMJ4 clone. 

Characteristics of pZAC Env gp120, such as a shortened compact V1 loop and an 

elongated V4 sequence, favors an enhanced viral replication rate in vitro. The newly 

characterized infectious HIV-1 subtype C clone, pZAC can be useful for future in vitro 

studies. 
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The UNAIDS estimates that there are currently 33.3 million people infected with HIV/AIDS 

worldwide. Since 1999 the number of new infections has fallen by approximately 19%, with 

more than 5.0 million people now receiving antiretroviral therapy. Sub-Saharan Africa 

remains the most severely affected region with approximately 22.5 million people infected, 

which accounts for 68% of the global burden. Although the rate of new infections in Sub-

Saharan Africa has steadily decreased, 1.8 million in 2009 compared to 2.2 million in 2001, 

the total number of people with new diagnosed infections in this region continues to rise 

(UNAIDS, 2011). 
 

The genetic subtype distribution of HIV-1 group M, currently responsible for the majority of 

the AIDS pandemic, has become dynamic. Currently HIV-1 group M has been divided into 9 

subtypes (A-D, F, G-H, J, K), 49 circulating recombinant forms (CRFs) and numerous unique 

recombinant forms (URFs). In 2004-2007, subtype C accounted for nearly half (48%) of all 

global infections, followed by subtypes A (12%), B (11%) and CRF02_AG (8%) (Hemelaar 

et al., 2011). 
 

HIV-1 subtype C is predominant in Eastern and Southern Africa as well as in India. It 

accounts for approximately 95% of all HIV-1 infections in Southern Africa (Jacobs et al., 

2009). It is also increasing in frequency in countries such as China and Brazil (Hemelaar et 

al., 2011). HIV-1 subtype C has unique characteristics, which distinguishes it from other 

subtypes. These include the presence of an extra NF-κß enhancer binding site in the long 

terminal repeat (LTR), a prematurely truncated Rev protein and a 5 amino acid insertion of 

the 5’end of the Vpu open reading frame (McCormick-Davis et al., 2000; Rodenburg et al., 

2001). Curiously, these differences on a molecular level result in a lower replication-fitness 

in primary CD4+ T cells and peripheral blood mononuclear cells (PBMCs), making it more 

difficult to study in vitro (Ariën et al., 2005). Recently Iordanskiy et al., (2010) suggested 

that characteristics of the reverse transcriptase (RT) polymerase domain of HIV-1 subtype C 

strongly affect the replication capacity of these viruses in cell culture, compared to that of 

HIV-1 subtype B. However, these genetic differences do not seem to influence the 

transmission efficiency of subtype C viruses in vivo. In addition, HIV-1 subtype C has a 

relatively high transmission fitness in dendritic cells (Ball et al., 2003).  

 

Almost all in vitro HIV-1 cell culture assays are based on HIV-1 subtype B strains. The 

infectious proviral subtype B strains (for example pNL4-3) have been used in HIV-1 studies 
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for the last 25 years of HIV research (Adachi et al., 1986). Only recently has the focus shifted 

in developing HIV-1 antiretroviral reagents targeting multiple strains of HIV-1 (Hemelaar et 

al., 2011).  

 

There are currently four HIV-1 subtype C proviral infectious clones described, two from Sub-

Saharan Africa (Grisson et al., 2004; Ndung'u et al., 2001) and two from India (Dash et al., 

2008; Mochizuki et al., 1999). During the course of this study we cultured a HIV-1 subtype C 

isolate from Cape Town, South Africa using peripheral blood mononuclear cells (PBMCs). 

We characterized the full-length sequence and used the strain to improve the replication 

capacity of a previously characterized infectious HIV-1 subtype C proviral molecular clone 

pMJ4, originating from Botswana (Ndung'u et al., 2001). 

 

The pMJ4 proviral clone has a low replication rate and grows slowly on PBMCs, although it 

replicates better in CCR5 cell lines (Ndung'u et al., 2001). After transfection of Human 

Embryonic Kidney (HEK) 293 T-cells, with further titration onto the TZM-Bl indicator cell 

line, which is dependent on Tat-activation of the HIV-1 LTR (Wei et al., 2002), pMJ4 has 

significant lower viral titers compared to pNL4-3 (Fig. 1c). To improve the initial gene 

expression the 5’-U3 was replaced with the CMV-IE promoter by PCR, as previously 

described for NL4-3 (Bohne & Kräusslich, 2004), using restriction sites NgoMIV and SpeI. 

The resulting plasmid was abbreviated as pcMJ4. The CMV-IE-promoter has been shown to 

enhance lentiviral expression and is frequently used as a promoter in plasmid expression 

vectors (Bohne & Kräusslich, 2004). Transfection of HEK 293T cells, with further titration 

on TZM-Bl cells showed that pcMJ4 produced a 4-fold higher viral titer than the parental 

MJ4 plasmid (Fig. 1c). In order to compare Gag amounts of pcMJ4 with pMJ4 a p24 Western 

Blot analysis was performed (Hartl et al., 2011) and pcMJ4 clearly showed an increase in 

Gag expression levels (Fig. 1d). Hence, the pcMJ4 clone was used further as a HIV-1 subtype 

C expression control plasmid.  

 

To further establish a fast replicating HIV-1 subtype C proviral clone, the HIV-1 positive 

sample from patient ZAC (previously named R3714, supplementary data; Engelbrecht et al., 

1995) was obtained from one of the earliest documented cases of heterosexual transmission 

of HIV-1 subtype C in South Africa, during 1989. The primary isolate was cultured in 

PBMCs and HIV-1 positive high molecular weight (HMW) DNA stored for further analysis 

(Engelbrecht et al., 1995). We first replaced the env of MJ4 with that of our primary isolate, 
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ZAC using standard cloning techniques and a proofreading Herculase II polymerase 

(Stratagene) (Fig. 1a). The 3.2 kb PCR product was amplified from the HMW DNA of ZAC 

with primers containing the restriction enzyme recognition sites for PacI and BspEI. This 

corresponds to position 6198 and 9393 relative to the reference HXB2 genome. Clones were 

screened by restriction enzyme digestion and sequenced to confirm the presence of the 

correct insert. Forty-eight hybrid clones were transfected and titrated on TZM-Bl cells as 

described above. However, only 5 (10.4 %) of proviral clones produced significant viral 

titers. The 5 clones are identical in sequence and showed approximately a 10 fold increase in 

viral titer after titration on TZM-Bl, compared to that of pcMJ4 (Fig. 1c), confirmed by Gag 

p24 Western Blot analysis (Fig. 1d). The clone was designated pcMJ4/ZACenv. We decided 

to use pcMJ4/ZACenv to create the new infectious subtype C pZAC proviral clone.  

 

The 5’ fragment of ZAC was amplified in two further parts encompassing the gagpol and 

LTR-gag region (Fig. 1a). The gagpol region was replaced using restriction sites SpeI 

(corresponding to position 1507 of HXB2) and PacI (corresponding to position 6198 of 

HXB2), while the CMV-IE LTR-gag sequence from ZAC was added as for pcMJ4. The new 

proviral clone was designated pcZAC. The 3’-U5 was replaced using BspEI and the vector 

located NotI restriction site and the 5’-U3 CMV-IE was replaced with the ZAC derived 5’-U3 

sequence. The final clone (without the CMV-IE promoter) was named pZAC. The full-length 

pcZAC and pZAC clones have slightly lower viral titers on TZM-Bl cells compared to the 

pcMJ4-ZACenv proviral clone (Fig. 1b). The sequence from pZAC has typical African HIV-

1 subtype C characteristics. These include 3 Nf-κB sites in the LTR, a premature Rev stop 

codon and a 5 amino acid insertion in the Vpu transmembrane domain. The Indian subtype C 

strains lack this 5 amino acid insertion.  

 

The full-length ZAC sequence on nucleotide level was found to be 91.9% similar to 

HIV1084i and 91.4% similar to MJ4; 91.6% compared to Indie_C1 and 89.3% compared to 

D24. To analyse the phylogenetic relationships of the full-length infectious HIV-1 subtype C 

clones a neighbour-joining phylogenetic tree was constructed with Mega version 5.0 using 

the Maximum Composite Likelihood method (Fig. 1b) (Tamura et al., 2011). The Indian and 

Africa HIV-1 subtype C strains exhibited two unique phylogenetic clusters (Fig. 1b). The 

new ZAC sequence had a close phylogenetic relationship with the HIV-1 subtype C 

sequences from Sub-Saharan Africa.  
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An alignment of the Env gp120 is given in Fig. 2. The ZAC Env gp120 sequence were 80.8% 

similar to MJ4, 79.2% to HIV1084i, 78.2% to Indie_C1 and 76.2% to D24. The sequences 

had a two amino acid insert on position 24 and 25 in the hydrophobic core of the signal 

peptide sequence, not seen in the MJ4 and HIV1084i African strains, although the Indian 

infectious sequences have a similar insert. Furthermore, ZAC had a shortened, very compact 

V1 loop similar to HIV1084i and a slightly larger V4 loop compared to MJ4 (3 amino acids) 

and HIV1084i (7 amino acids). Furthermore, ZAC also had more potential N-linked 

glycosylation sites (26), compared to that of MJ4 (23) while NL4-3 had 24 and Indie-C1 had 

27 and D24 had 31. 

 

We cultivated our infectious viruses on PBMCs for the indicated time points, initial 

multiplicity of infection (MOI) of 0.05, for up to 8 days (Fig. 3). pMJ4/ZACenv and pZAC 

grew significantly better in PBMCs than the original MJ4 clone. For virus titer we infected 

TZM-Bl cells as described above. pZAC peaks at days 4-6, similarly as described for the 

Indian HIV-1 subtype C clones (Dash et al., 2008; Mochizuki et al., 1999). However, MJ4 

(as well as HIV1084i, Grisson et al., 2004) only peaks in PBMC cell culture at days 8-12. 

With the ZAC env sequence, the pMJ4 strain also peaks at days 4-6, although the viral titer is 

not as high as NL4-3 (Fig. 3). 

 

HIV-1 subtype C remains the predominate subtype worldwide and is especially prevalent in 

Sub-Saharan Africa, where the HIV/AIDS epidemic is at the highest. However, in vitro 

studies with infectious proviral HIV strains have shown that HIV-1 subtype C generally has a 

lower replication rate compared to that of the infectious HIV-1 subtype B (pNL4-3) strain 

(Grisson et al., 2004; Ndung'u et al., 2001). This is also true for other non-subtype B strains 

and it has been difficult to obtain infectious proviral molecular clones from primary HIV-1 

isolates for non-subtype B strains. It has also been reported that HIV-1 subtype C may have 

lower levels of pathogenic fitness when compared to other HIV-1 group M strains (Abraha et 

al., 2009). 

 

The nucleotide sequence diversity between env genes in the same subtype can range from a 

few percent to as high as 15% (Gaschen et al., 2002). HIV-1 subtype C Env gp120 has unique 

characteristics distinguishing it from other HIV-1 strains. It has the most compact V1-V2 

described sequences of all the HIV-1 strains. It also has a relatively conserved Env gp120 V3 

loop containing the well-preserved GPGQ motif on the tip of the V3 crown, with the 
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corresponding virus showing preference to using CCR5 as its major co-receptor irrespective 

of the stage of disease progression (Ariën et al., 2005). 

 

With the exchange of pZAC env sequence in pMJ4 we could improve the infectivity and 

replication rate of the original subtype C proviral clone. The pZAC env gp120 sequence has a 

shorter V1 sequence than that of the described infectious HIV-1 subtype C clones, 

subsequently making the V1 loop more compact. Walter et al., (2009) previously described 

that the shortening of the V1 loop in HIV-1 strains increases viral interactions with CD4, 

leading to more stable binding of the virus with CD4, which enhances viral entry and 

subsequently improves viral infectivity. Glycosylation patterns of the V2 loop facilitate env 

interactions with CD4 and CCR5 and have been shown to affect viral replication kinetics. 

Thus, the higher number of glycosylation sites in the newly described env gp120 sequence, 

compared to that of MJ4, may also play a role in improving viral infectivity as seen in the in 

vitro cell culture assays (Ly & Stamatatos, 2000).  

 

The ZAC sequence also has a larger V4 region, compared to the other infectious African 

subtype C strains. In this respect it is more similar to the Indian C-type strains. Larger V4 

sequences may play an important role in the ability of infectious viruses to bind more 

efficiently to co-receptor molecules and it has been shown that they probably enhance the 

repertoire of co-receptor usage of HIV-1 subtype C (Walter et al., 2009). The replication 

kinetics of the new infectious pZAC clone is much higher for a Subtype C strain of African 

origin than previously described. 

 

The gold standard to study and to develop antiviral drugs against HIV-1 diversity remains in 

vitro cell culture assays. In Europe and America this has ultimately been based on the HIV-1 

subtype B infectious strains. As HIV-1 subtype C predominate in Sub-Saharan Africa we 

aimed to construct an infectious subtype C molecular clone representative of strains in this 

region and which can be used in in vitro cell culture assays comparable to that of HIV-1 

subtype B. The newly characterized infectious HIV-1 subtype C strain, pZAC should be 

useful in those studies.  
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Sequence data 

The ZAC sequence reported here was submitted to GenBank and is available under the 

following accession number: JN188292. 
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Figure 1A: Modification of pMJ4 with the use of marked restriction enzyme sites. 

 

 

Figure 1B:  A neigbour-joining HIV-1 subtype C phylogenetic tree. Infectious clones are 
indicated with a ♦. 
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Figure 1C: Transient viral titer on TZM-Bl 
 

 

Figure  1D: Transient protein expression of HIV clones. 
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Fig. 1. Molecular characterization of pZAC, an infectious proviral clone from Cape 

Town, South Africa. (a) Cloning strategy used during the study. The U3 promoter of 

pMJ4 was replaced with a CMV-IE promoter, as indicated. The new proviral clone, pcMJ4, 

was used as a backbone for further characterization of pZAC. The enzyme restriction sites 

used for cloning are indicated. (b) Phylogenetic analysis of HIV-1 subtype C infectious 

clones. A Neighbour-Joining tree was drawn from the infectious HIV-1 subtype C clones, 

compared to a HIV-1 subtype C reference set (dataset obtained from BioAfrica.net). 

Evolutionary distances were calculated using the Maximum Composite Likelihood method, 

with a bootstrap test of 10000 replicates. The branch scale, indicating the evolutionary 

distance, is indicated. The Indian and African strains form two unique phylogenetic clusters, 

with the newly described ZAC sequence showing similarity to the Botswana HIV-1 subtype 

C sequences. (c) and (d) Transient virus titer on TZM-Bl and Western Blot analyses of 

infectious proviral clones. After transfection of HEK 293T cells, cultured supernatant were 

titrated on HeLa TZM-Bl indicator cells to determine the transient viral titer of HIV proviral 

clones.  HIV-1 Gag was detected with an anti-p24 specific anti-serum. GAPDH was used as 

loading control while GFP served as indicator of transfection efficiency. The pZAC-derived 

clones have a higher viral titer on TZM-Bl cells, as confirmed by Western Blot analysis, 

compared to that of both pMJ4 and pcMJ4. Titers and standard deviation were derived from 

three independent experiments.  
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                     Signal peptide         x        
        
NL4-3       MRVKEKYQHL WRWGWKWGTM LLGILMICSA TEKLWVTVYY GVPVWKEATT TLFCASDAKA 
ZAC         ---MGITRNC QQ-.-I--IL GFWM----NV MGN------- --------KA P--------- 
MJ4         ----GIPRNW QQ-.-I--SL GFW..I---V MGN------- -----R--K- ---------- 
HIV1084i    ---RGIQRNY PQ-.-I--IL GFL..--YNG MGS------- --------K- ---------- 
IN.D24      ---GGILRNC QH-.-I--IL GFWMF---NV VGN------- -----R--K- ------E--- 
Indie_C1    ---RGTLRNY QQ-.-I--VL GFWM----NG GGN------- --------K- --L-------    60 
                    x 
         

NL4-3       YDTEVHNVWA THACVPTDPN PQEVVLVNVT ENFNMWKNDM VEQMHEDIIS LWDQSLKPCV 
ZAC         -ER------- ---------- ---I--E--- -K-------- -K-------- ---E------ 
MJ4         -EA------- ---------- ---IE-K--- ------E--- -D-------- ---------- 
HIV1084i    -ER----I-- ---------- ---L--E--- ---------- -D-------- ---------- 
IN.D24      -EK------- ---------- ---LD----- ---------- -D-----V-- ---------- 
Indie_C1    -ER------- ---------- ---I--G--- ---------- -D-----V-- ----------   120 
 

  xxx   V1         V2  
 
NL4-3       KLTPLCVSLK CTDLKNDTN. ...TNSSSGR MIMEKGEIKN CSFNISTSIR DKVQKEYAFF 
ZAC         -------T-N --NYI-.... .......... ..DTT--T-D ----MT-EL- --RK--H-L- 
MJ4         -------T-N -KNVTSK... ....DINITS NAEM-A-M-- -----T-EL- --KKQ---L- 
HIV1084i    -------T-N ---V-S.... .......... ANSTSEDMR- ----VT-ERK -RKKL-Q-L- 
IN.D24      -------T-E -NHVNITY-A TIHNATDQAS FNKTREQMR- ----VT-EL- --KKS---L- 
Indie_C1    -------T-E -RNVSR.... ...NV--YNT YNGSVE---- ----ATPEV- -RK-RM--L-   180 
 

     xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
 

NL4-3       YKLDIVPID. ........NT S...YRLISC NTSVITQACP KVSFEPIPIH YCAPAGFAIL 
ZAC         --P----LNE N..FNSSA-Y -..E----N- ---A-R---- ----D----- ------Y--- 
MJ4         -------LTN ...DNASE-A -..E----N- D--T---S-- --T-D----- ------YV-- 
HIV1084i    -R-----LK. ...NSSSS-F -..E----N- ---TVS---- --N-D----- ------Y--- 
IN.D24      --I----LKE EKKNNSSE-N -SGH----N- ---A------ --T-D----- --T------- 
Indie_C1    -G-----LN. ..KKNSSE-S -..E----N- ---A------ --T-D----- ------Y---   240 
 
NL4-3       KCNNKTFNGT GPCTNVSTVQ CTHGIRPVVS TQLLLNGSLA EEDVVIRSAN FTDNAKTIIV 
ZAC         ---------- ---N------ -----K---T ---------- --EII---E- I-N-V----- 
MJ4         ---------- ---N------ -----K---- ---------- -KEII---K- I---V----- 
HIV1084i    ---------S ---N------ -----K---- ---------- ---II---E- L-N-V----- 
IN.D24      --KD-K---- ---S------ -----K---- ---------- --EII---Q- L-N------- 
Indie_C1    ---------- ---N------ -----K---- ---------- -GEII---E- L-N-V-----   300 
 

         V3  xxx 
 

NL4-3       QLNTSVEINC TRPNNNTRKS IRIQRGPGRA FVTIG.KIGN MRQAHCNISR AKWNATLKQI 
ZAC         H--E----V- ---G------ V--..---QT -FAT-EI--K I-E------E DQ--K--HRV 
MJ4         H--E----E- ---G----R- V--..---Q- -YAT-DI--D I-A------E S---KI-YRV 
HIV1084i    H-KDY---V- ---------- M--..---Q- -YAT-EI--- I-E------G S---N--QRV 
IN.D24      H--E----I- ---------- ---..---QT -YAT-DI--- I--------G .---E--YNV 
Indie_C1    H--Q----V- ---------- ---..---QT -YAT-DI--D I--------- D---E—_QRV   360 
 

        x     V4  x 
 

NL4-3       ASKLREQFGN NKTIIFKQSS GGDPEIVTHS FNCGGEFFYC NSTQLFNSTW FNSTWSTEGS 
ZAC         SE--E-H-P- .---K-GPPT ---L--T--- ---R------ -TSS---G-Y MRP.....N- 
MJ4         SE--K-H-P- .---Q-D-PI ---L--T--- ---R------ -TSK---G-Y N........- 
HIV1084i    KK--G-H-P- -T--D--P-- ---L--T--- ---R------ -TSK---G-S E......... 
IN.D24      SR--A-H-P- .---N-TSP- ---L--T--- ---------- -TSV-----Y NHT-KQF.S- 
Indie_C1    GK--A-H-H- .---K-AS-- ---L--T--- ---R------ -TSG---G-Y MPTYMPN.-T   420 
 

    xxxxxxxxxxxxxx    CD4 domain           x__x 
 

NL4-3       NNTEGSDTIT LPCRIKQFIN MWQEVGKAMY APPISGQIRC SSNITGLLLT RDGGNNNN.. 
ZAC         TGNTSNS--- -H-K------ ---G--Q--- ----A-N-T- K------I-- ----QT--.. 
MJ4         TGDTSNS--- -S-----I-- ---G--R--- -S--A-N-T- K--------- -----ETS.. 
HIV1084i    ....SNS--- ---K---I-- ---G--R--- ----A-N-T- K--------- -----G-G.. 
IN.D24      PYNDTNS--- IH-K---I-- ------R-I- ----A-N-T- K--------V -----TES.. 
Indie_C1    ESN.SNS--- I------I-- ------R--- ----A-N-T- T--------V H---IKE-DT   480 
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        V5 xx  
 

NL4-3       ..GSEIFRPG GGDMRDNWRS ELYKYKVVKI EPLGVAPTKA KRRVVQREKR 
ZAC         --TN-T---A ---------- --------EV K---L---T- -----E---- 
MJ4         ---I-----A ---------- --------E- K---L----S -----E---- 
HIV1084i    --.T------ ---------- ---------- ----I----- -----E-G-- 
IN.D24      -NNT------ ---------- --------EV K---I---A- -----E---- 
Indie_C1    ENKT------ ---------- --------E- K-------A- -----E---- 530 

 

Fig. 2. Amino Acid alignment of Env gp120 of the HIV-1 subtype C infectious clones. 

The variable regions (V1-V5) are marked as well as the CD4 binding domain. pZAC has a 

shortened V1 loop and a slightly enlarged V4 loop, compared to that of pMJ4 and 

pHIV1084i. 

 

 

Fig. 3. Growth kinetics on PBMCs. Infectious viruses (MOI: 0.05) were cultured for 8 days 

and supernatant were titrated on TZM-Bl HeLa cells to determine the viral titer as indicated. 

Experiments were done in triplicate. NL4-3 had the highest replication capacity, whereas 

MJ4/ZACenv and ZAC replicated better.  
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Chapter five 
 
5.  Discussion 
 
5.1  HIV in South Africa 
There are currently 5.7 million people infected with HIV in South Africa, making it the 

country with the highest number of infections in the world. This accounts for almost 12% of 

the total population (UNAIDS, 2011). The annual antenatal survey estimates that 

approximately 29.3% of women between 15 and 49 are infected. High variations are also 

seen between the provinces of South Africa, with the Western Cape having the lowest 

prevalence (16.1%) and Kwazulu-Natal the highest (38.7%) (South Africam Department of 

Health, 2010). The early South African HIV-1 epidemic was dominated by HIV-1 subtypes B 

and D, associated with the homosexual population (Engelbrecht et al., 1995). This has been 

replaced by the fast spreading subtype C epidemic which is more commonly found in the 

heterosexual population (Jacobs et al., 2009; Van Harmelen et al., 2003). Recently more and 

more non-B, non-C HIV and other recombinant strains have also been identified in the South 

African population (Wilkinson and Engelbrecht, 2009). 

 

By May 2011 there were an estimated 1.4 million people receiving ART in South Africa, 

with the number still increasing. Current therapy guidelines state that therapy be initiated at a 

CD4+ cell count of 350 cells per mm3 or below. Treatment should be given to all infants 

under the age of one, regardless of their CD4 count and all infected pregnant women should 

participate in a PMTCT prevention program. In the Western world it is recommended that a 

resistance profile be done on all HIV-1 infected individuals before the start of ART, as 

approximately 10% of patients have primary drug resistant strains (Arasteh et al., 2005). 

However, because of the high number of people infected in South Africa and the financial 

burden of treating everyone, such genetic test for everyone is currently impossible. During 

this study we investigated the genetic diversity of HIV-1 in Cape Town, South Africa for the 

period 2002 to 2004. We found that 95% of circulating strains belong to HIV-1 subtype C, 

3.6% belong to subtype B with a subtype G and CRF02_AG strain also being identified. 

RAMs were also identified in five sequences (3.6%). These include three (2.1%) NNRTI 

mutations, one NRTI (0.7%) mutation and one PI (0.7%) leading to resistance against to 3TC, 

NVP, EFV, and DLV. Bessong et al., (2006) also identified resistance to NVP (5.7%) and 

3TC (8.5%) in rural settings in South Africa. People starting therapy with pre-existing HIV 

resistant strains often have a higher chance for failing ART (Shafer et al., 2007). With the 
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progression of the national ART program, it is important to monitor the resistance profile of 

naïve and treatment-experienced patients. 

 

5.2  HIV-1 subtype C 

HIV-1 subtype C is currently the most prevalent HIV-1 subtype worldwide and therefore 

there has been much focus on the development of a subtype C candidate vaccine (Van 

Harmelen et al., 2003). HIV-1 subtype C was first discovered in North East Africa, 

particularly Malawi and Ethiopia in the early 1980s (McCormack et al., 2002; Salminen et 

al., 1996). The oldest documented case, confirmed by DNA sequencing comes from a 

Malawian patient infected in 1983 (McCormack et al., 2002). The most common ancestor of 

HIV-1 subtype C dates back to the 1960’s, which is consistent with data that HIV-1 group M 

originated in the 1930’s (Travers et al., 2004). It has since spread throughout the world and 

has become the most dominant subtype in Sub-Saharan Africa (Gordon et al., 2003) as well 

as East and Central Africa (Vidal et al., 2000). There have been reports of subtype C in 

numerous countries, such as Brazil, China, India and Russia (Osmanov et al., 2002). In many 

of these countries subtype C variants with intersubtype recombination have also been 

characterized (Pollakis et al., 2003).   

 

HIV-1 subtype C has very unique genetic characteristics which distinguishes it from other 

HIV-1 subtypes. These include the presence of extra NF-κβ enhancer copies in the LTR, Tat 

and Rev prematurely truncated proteins and a 15 bp insertion at the 5` end of the vpu reading 

frame. Subtype C also has a relatively conserved env gp120 V3 loop, with the virus showing 

preference to using CCR5 as its major co-receptor irrespective of the stage of disease 

progression (Ariën et al., 2005), compared to subtype B which switches to CXCR4 and 

syncytia inducing during late stage of infection. It has been hypothesised that differences seen 

in the LTR promoter may be responsible for this rapid expansion of subtype C. The 

efficiency by which subtype C is transmitted from one person to another has been suggested 

as a contributing factor to subtype C predominance. However, subtype C does not have a 

higher fitness level compared to the other HIV-1 subtypes (Ariën et al., 2005) and it is still 

exactly unclear why HIV-1 subtype C has become so predominant. Improved tourism and 

migration to and from countries with a high HIV-1 subtype C prevalence rate are probably 

also contributing to the spread of subtype C variants worldwide (de Oliveira et al., 2010). 
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5.3  HIV-1 in Tanzania 

The HIV prevalence in adults (15 – 49) in Tanzania is currently 5.7% (UNAIDS, 2011). By 

the end of 2010 approximately 200 000 patients in the country were receiving ART through 

CTCs. HIV-1 subtypes A, C and D, and recombinants thereof are frequently being detected 

(Herbinger et al., 2006; Ndembi et al., 2008), as with our own observations. During this 

study we analysed viral strains from treatment naïve patients from Mwanza, Tanzania. 

HIVDR was determined in 88 sequentially enrolled ART-naïve patients (mean age 35.4 

years). The frequency of HIVDR in the study population was 14.8% (95%; CI 0.072–0.223) 

and independent of NVP-resistance induced by PMTCT programs. Patients > 25 years had a 

significantly higher HIVDR frequency than younger patients (19.1%; 95% CI 0.095–0.28) 

versus 0%, P = 0.0344). This alarmingly high frequency of HIVDR could have been 

generated either by direct transmission of drug resistant viruses from sexual partners or 

through the natural pool of quasispecies in each individual patient following undisclosed 

ART. Both factors probably contributed to the observed high frequency of RAM in our 

Tanzanian study group. 

5.4  HIV-1 diversity, ART and HIV-1 resistance 

An ideal HIV vaccine should be active against all currently circulating strains. However, this 

is highly unlikely as HIV has an extremely high genetic diversity and easily mutates to 

escape the immune system (Nickle et al., 2007). ART has achieved success by keeping the 

viral titer under control. The life expectancy of individuals on ART has dramatically 

increased over the last few years, with therapy regimes continually improving. However, as a 

result of selective pressure from therapeutic drugs, HIV develops mutations which causes 

resistance to ART drugs (Johnson et al., 2003; Thompson et al., 2010). Most of what we 

know about HIV-1 resistance is based on observations with HIV-1 subtype B, as this is the 

most common subtype found in Europe and North America (Hemelaar et al., 2011). Only 

recently has Nauwelaers et al., (2011) developed a synthetic HIV-1 subtype C phenotypic 

assay, comparable to that of subtype B. It has been shown that genotypic resistance profiles 

may differ between HIV-1 subtype B and non-B subtypes. An example is the K65R RT 

protein change, which accumulates more easily in treatment failure patients of HIV-1 subtype 

C. HIV-1 subtype C isolates have a higher IC50 baseline value for the PI ATV, compared to 

the NL4-3 HIV-1 subtype B laboratory strain. Other RAMs not typical of subtype B include 

the RT change V106M and the PI changes I93L and M89I/V (Martinez-Cajas et al., 2008). It 

has also been found that some HIV-1 strains have lower pathogenic fitness levels than other 
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strains (Abraha et al., 2009). Therefore, it is still unclear to what extent HIV-1 genetic 

diversity will play a role in the ultimate successful treatment of HIV/AIDS patients. We 

should keep monitoring the HIV-1 genetic strains worldwide, as well as be aware of the 

RAMs which HIV strains may develop while patients are on treatment. During this study the 

HIV prevalence in the treatment naïve populations from Cape Town, South Africa and 

Mwanza, Tanzania were carefully investigated.  

 

5.5  Vif function and diversity 

Little is known about the influence of Vif diversity in HIV-1 pathogenesis. Vif is an accesory 

HIV-1 protein that blocks the antiretroviral activty of the APOBEC3F/G protein family 

(Conticello et al., 2003). Thus by helping degrade APOBEC3F/G, HIV infectivty in the 

producer cell is significantly enhanced. Vif also prohibits APOBEC3F/G being packaged into 

viral particles, although the exact mechanism is still unknown (Argyris and Pomerantz, 

2004). Viruses lacking Vif are susceptible to being hypermutated, leading to non-infectious 

virions being produced (Simon et al., 2005). Some reports also suggest that long-term 

nonprogressors have a higher number of mutated or defective Vif proteins (Hassaïne et al., 

2000; Yamada and Iwamoto, 2000). Therefore, during this study we also investigated HIV-1 

vif sequence diversity in Cape Town, South Africa. As Vif-host interactions might be 

considered for future vaccine strategies, it is important to investigate the diversity of these 

genes (Miller et al., 2007). 

 

5.6  Development of infectious HIV proviral molecular clones 

Much of what we have learned about HIV biology has been with the use of studying 

infectious HIV proviral molecular clones in in vitro assays. Initially infectious clones were 

generated through lambda phage cloning, however this was a laborious and time consuming 

process (Adachi et al., 1986; Gao et al., 1998). New infectious molecular clones are known 

being created through long range Polymerase Chain Reaction (PCR) methods, as the fidelity 

of polymerase enzymes has been improved dramatically over the last few years (Cheng et al., 

1995; Hogrefe and Borns, 2011; Michael and Kim, 1999). With PCR cloning techniques 

however, HIV genome errors often have to be fixed first before the proviral molecular clone 

is infectious, as a large number of primary HIV isolates circulating are often non-infectious 

(Ariën et al., 2005). Chimeric hybrid clones or simian human immunodeficiency viruses 

(SHIVs) have also been widely used to study HIV and SIV, especially in animal studies 

(Song et al., 2006; Smith et al., 2010). 
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During the course of this study we used a cultured South African HIV-1 subtype C strain to 

improve the replication capacity of a previously described proviral molecular clone MJ4 

(Ndung'u et al., 2001). We added a CMV-driven promoter to pMJ4 to improve expression 

levels of virion proteins, which led to an approximate fourfold transient increase / production 

of infectious virus. The newly developed pcMJ4 clone was subsequently used to characterise 

the patient derived sequence of ZAC and to develop the more pathogenic pZAC infectious 

molecular clone from Cape Town, South Africa. The new infectious clone should be used in 

in vitro assays concerning HIV-1 subtype C. 

 

5.7  Future perspectives 

The high level diversity of HIV-1 has made it very difficult to obtain a vaccine against an 

epidemic that has plagued us for the last twenty years, although antiretroviral therapy 

continues to improve. The gold standard to study HIV-1diversity remains in vitro cell culture 

assays. In Europe and America this has ultimately been based on the HIV-1 subtype B 

infectious strains. As HIV-1 subtype C predominates in Sub-Saharan Africa we aimed to 

construct an infectious subtype C proviral molecular clone representative of strains in this 

region and which can be used in in vitro cell culture assays comparable to that of HIV-1 

subtype B. The newly characterized infectious HIV-1 subtype C strain, pZAC can be used in 

pathogenesis studies and help to characterise currently circulating as well as drug resistance 

mutations of HIV-1 subtype C.  

Although the HIVDR in the treatment naïve population in Cape Town, South Africa, at the 

time of this study was below 5%, in rural South Africa the levels were reported as high as 

8.5%. In Tanzania we found that the HIVDR in the total population was 14.8%, much higher 

than has been previously reported. Therefore we recommend that all HIV-1 patients should 

undergo a HIV-1 genotyping test before the start of ART, although this is not always possible 

in resource-limited settings. 
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Poster presentation: Development of HIV-1 phenotypic resistance assay for a South African 
environment  
 
4th International student symposium: Revolution Research. 26 – 27 March 2009: Würzburg, 
Germany. Poster presentation: Development of HIV-1 phenotypic resistance assay for a 
South African environment  
 
SFB479 International Symposium: Living with pathogens. 16 – 18 July 2009. Würzburg, 
Germany. Just attendance. 



  
 

110 

2nd International Symposium of the IRTG 1522. 14th – 15th May 2010. Kloster Banz, Bad 
Staffelstein, Germany. Oral presentation. Generation of a HIV-1 subtype C proviral clone. 
 
5th International student symposium: Chiasma. 13 – 14 October 2010: Würzburg, Germany. 
Poster presentation: Development of HIV-1 phenotypic resistance assay for a South African 
environment.  
 
EMBO HIV/AIDS Global Exchange Lecture Course. 30 January – 05 February 2011. 
Stellenbosch University, Cape Town, South Africa. Oral and poster presentation. Generation 
of a HIV-1 subtype C proviral clone. 
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Appendix A: Gemeinsam gegen HIV by Robert Emmerich. Published online on the 
University of Würzburg news page (www.idw-online.de/pages/de/news267754). 
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Appendix A continue: 
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Appendix B: Optimismus auch in schwierigen Situationen.  

 

Studierende aus Südafrika in Deutschland by Sabine Hellman, Lemmens Medien GmbH, 
Bonn (http://laenderprofile.gate-germany.de/de/). 

 




