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Monte Carlo Tests of the Accuracy of Cluster Analysis
Algorithms: A Comparison of Hierarchical and
Nonhierarchical Methods

Dieter Scheibler and Wolfgang Schneider
University of Heidelberg

Nine hierarchical and four nonhierarchical clustering algorithms were compared on
their ability to resolve 200 multivariate normal mixtures. The effects of coverage,
similarity measures, and cluster overlap were studied by including different levels of
coverage for the hierarchical algorithms, Euclidean distances and Pearson correlation
coefficients, and truncated multivariate normal mixtures in the analysis. The results
confirmed the findings of previous Monte Carlo studies on clustering procedures in that
accuracy was inversely related to coverage, and that algorithms using correlation as the
similarity measure were significantly more accurate than those using Euclidean
distances. No evidence was found for the assumption that the positive effects of the use of
correlation coefficients are confined to unconstrained mixture models.

The generic term cluster analysis describes a large family of
statistical classification procedures. Since the early 1960s, when high-
speed computers made the use of this procedure relatively easy, more
than 100 different clustering algorithms have been developed. Milli-
gan (1981) conducted a computerized search of the literature in 1976
and showed that new or considerably revised algorithms were appear-
ing at a rate of about one per month. Only a few authors (e.g.,
D’Andrade, 1978; von Eye & Wirsing, 1978, 1980) however, have tried
to compare their new procedures with already existing clustering
algorithms.

In view of the diversity of available algorithms, the potential
consumer of cluster analysis faces several problems. First, because of
the development of different terminologies in different fields of applica-
tion, several—in some cases up to seven—Ilabels are often used for the
same clustering algorithm (Blashfield & Aldenderfer, 1978). More
important, few guidelines are available for choosing a clustering
procedure for research applications. This problem is especially perplex-
ing since different algorithms are likely to produce different solutions
when applied to the same data set (Bartko, Strauss, & Carpenter,
1971). Furthermore, there is no guarantee that any of the available
clustering algorithms will recover the true cluster structure either
under error-free or error-perturbated situations (Milligan, 1980). All
these problems have led to considerable confusion about the efficacy of
cluster analysis in general.

Requests for reprints should be sent to Wolfgang Schneider, who is now at the Max-
(P;l(‘eanck-lnstitute for Psychological Research, Leopoldstr. 24, D-8000 Miinchen 40, West
rmany
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Although validation research is essential in order to determine
which clustering algorithms are best suited to specific applications,
very little research has been devoted to this task. During the 1970s, a
few Monte Carlo studies generated artificial data sets with known
cluster structure as an aid in validating clustering algorithms. In
particular, the mixture model (Blashfield, 1976; Wolfe, 1970) has been
proposed as a useful approach for evaluating clustering procedures.
According to this model, any given data set is composed of subsets of
data from different populations. The task of cluster analysis is to
reconstruct the true cluster structure, that is, to resolve the mixture of
populations into its components. While this cannot be done with
empirically derived data sets for which the number of populations and
the distributional parameters of the populations are unknown, the use
of Monte Carlo techniques permits the comparison of cluster analysis
solutions with the known classificatory structure of the data sets. The
degree of agreement between the obtained clusters and the underlying
populations indicates the accuracy of the clustering solution.

Most of the mixture model studies have investigated agglomera-
tive hierarchical methods which produce as many solution partitions
as there are entities in the data set. Only a few studies (Bayne,
Beauchamps, Begovich, & Kane, 1980; Blashfield, 1977; Mezzich,
1978; ‘Milligan, 1980) have additionally evaluated nonhierarchical
methods which produce only a single partition solution (see Ander-
berg, 1973; Cormack, 1971; Everitt, 1974; or Hartigan, 1975, for a
detailed description of these clustering procedures). Since a fairly
extensive review of previous Monte Carlo studies has been given
elsewhere (Milligan, 1981), only the main findings will be summarized
here. According to Milligan (1981), it makes sense to differentiate
three different epochs of Monte Carlo studies. In the early. period
ranging from 1971 to 1975, researchers mainly 'concentrated on
hierarchical methods. There was a tendency towards using only a few
data sets or—in case of a more extensive sampling of the data sets—
only one or two algorithms. No single procedure turned out to domi-
nate the others. On the other hand, the results of several large-scale
experiments published during the second epoch between; 1975 and
1978 (Blashfield, 1976; Kuiper & Fisher, 1975; Mojena, 1977), led to
the conclusion that Ward’s method using Euclidean dlstances seemed
to outperform the other hierarchical procedures with regard to several
types of data structures.

This impression, however, had to be revised when the results of
the third epoch, that is, of recent Monte Carlo studies published
between 1978 and 1980, were taken into account. These studies
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particularly differed from those of the second period in that the
problem of outliers (mini-clusters) and the choice of similarity mea-
sures were more carefully analyzed (e.g., Blashfield & Morey, 1980;
Edelbrock, 1979; Edelbrock & McLaughlin, 1980), and in that a
comparison of hierarchical and nonhierarchical methods was attempt-
ed (Bayne et al., 1980; Milligan, 1980). Thus Edelbrock (1979) could
demonstrate that the requirement of 100% coverage of classifications
in the previous Monte Carlo studies (which is actually not relevant in
many applications) leads to an underestimation in those clustering
procedures which are especially vulherable to the effects of outliers. In
his study, most of the hierarchical procedures performed fairly well
when only 80% or 90% of the sample was to be classified. Furthermore,
the studies of Edelbrock (1979) and Edelbrock and McLaughlin (1980)
showed that the average linkage method and the centroid method were
at least as accurate as Ward’s method when correlations were used
instead of Euclidean distances. In addition, comparisons of hierarchi-
cal and nonhierarchical procedures suggested that certain nonhierar-
chical methods were superior to any hierarchical procedure used in
these studies (Bayne et al., 1980; Milligan, 1980). Although many
inconsistencies in the findings make it irnpossible to determine which
specific algorithm will be most accurate under a specified set of
conditions, the results of the more recent studies indicate that a few
hierarchical procedures (i.e., Ward’s method; group average linkage)
and some nonhierarchical methods (k-means algorithms) can be con-
sidered fairly robust and valid statistical tools.

Limitations of Previous Monte Carlo Studies

As has already been pointed out elsewhere (Edelbrock &
McLaughlin, 1980; Milligan, 1981), the different methodologies and
evaluative criteria used in the validation studies have made it difficult
to compare findings from different mixture model experiments direct-
ly. The choice of methods for calculating accuracy of the cluster
solutions (Cohen’s kappa vs. Rand’s statistic) appear to be of minor
importance, since these measures have been shown to be highly
correlated (Edelbrock & McLaughlin, 1980).! On the other hand the
use of a variety of unrelated strategies in constructing the covariance

! It should be noted, however, that more recent work in this area (e.gL, Fowlkes and
Mallows, 1983; Milligan & Schilling, 1985) demonstrated differences among accuracy
criteria and particular problems with the Rand index.
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structures in the mixture model studies appears to be primarily.
responsible for the inconsistent outcomes. Due to different concepts of
cluster structure, several researchers have either used mixtures of
multivariate normal populations (e.g., Blashfield, 1976; Edelbrock,
1979; Edelbrock & McLaughlin, 1980; Kuiper & Fisher, 1975) or the
concept of an ultrametric space (Cunningham & Ogilvie, 1972; Milli-
gan & Isaac, 1980) as the basis for the generation of cluster structures.
In addition, a variety of visual, spatial, and other conceptualizations
was being used (Everitt, 1974; Mezzich, 1978; Mojena, 1977). Although
Milligan (1981) carefully analyzed several possible sources of inconsis-
tency in the results of Monte Carlo studies, the importance of the type
of mixture for the effectiveness of different similarity coefficients has
apparently been underestimated. For example, one of the most impres-
sive findings of the more recent studies concerns the superiority of
hierarchical algorithms when correlation coefficients were used in-
stead of Euclidean distances (Edelbrock, 1979; Edelbrock & McLaugh-
lin, 1980). A closer look at the results, however, reveals that this
finding was only obtained when unconstrained mixtures of multivari-
ate normal populations were analyzed. In particular, both Edelbrock
(1979) and Edelbrock and McLaughlin (1980) reported better results
for correlation coefficients when subsets of the multivariate normal
mixtures developed by Blashfield (1976) were used. In the latter study,
however; Euclidean distances produced more accurate solutions when
multivariate gamma mixtures developed by Mojena (1977) were used.
The same was true for a small Monte Carlo experiment by Milligan
(1981); recovery was uniformly superior for the Euclidean distance
measure. It should be noted that constrained multivariate normal
mixtures were used in the Milligan experiment. That is, the distribu-
tion of the data for each cluster was truncated to prevent overlapping
cluster structures, an undesirable: result which certainly cannot be
avoided in the unconstrained mixture approach: (Milligan & Isaac,
1980). In sum, all these findings indicate that the postulated positive
effects of the use of correlation coefficients seem to- be confined to
unconstrained mixture models.

In the present investigation, a different version of constrained
mixtures of multivariate normal populations was used to test the
assumption that positive effects of the use of correlation coefficients are
restricted to specific mixture characteristics. In particular, the accura-
cy of a variety of hierarchical and nonhierarchical methods was tested
using either correlation coefficients or Euclidean distances. The com-
parison of hierarchical and nonhierarchical methods was considered to
be a major part of the experiment because the lack of empirical
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evidence is especially evident here. As noted earlier, only three studies
(Bayne et al., 1980; Mezzich, 1978; Milligan, 1980) have tried to relate
the results of both types of clustering algorithms. Unfortunately, both
Bayne et al. (1980) and Mezzich (1978) generated only two artificial
data sets when comparing several hierarchical and nonhierarchical
algorithms. Furthermore, Mezzich did not include the two most accu-
rate hierarchical techniques, namely, the average linkage (or group
average) method and Ward's method. The only representative compar-
ison was done by Milligan (1980), who tested eleven hierarchical and
four nonhierarchical methods by using 108 truncated multivariate
normal mixtures. Milligan’s mixture approach prevented the genera-
tion of overlapping cluster structures and thus provided the clustering
algorithms with principally solvable tasks. Apparently, however, the
precautions taken to prevent cluster overlap resulted in a particularly
easy task. With regard to error-free data sets, nearly perfect recovery
was obtained for all clustering algorithms. Although different types of
error perturbation. led to decreases in average recovery, the accuracy
values remained fairly high for most procedures. In view of the high
means and the small range of obtained recovery values, one is led to
conclude that the results of this comparison are valid only for easily
decomposable mixtures.

In the present study, an attempt was made to provide a more
difficult test for the chosen clustering algorithms by using a con-
strained mixture approach that excluded both extremely easy and
extremely difficult data sets (i.e., overlapping cluster structures) from
the analysis. The generation of truncated multivariate normal mix-
tures very similar to those developed by Blashfield (1976) was consid-
ered important for two reasons. First, several recent Monte Carlo
studies (e.g., Blashfield, 1977; Edelbrock, 1979; Edelbrock &
McLaughlin, 1980) have been based on subsets of the Blashfield (1976)
mixtures. This limitation to “benchmark” data sets makes it difficult
to generalize the findings. The mixtures used in the present study
differed from those generated by Blashfield (1976) only in that overlap-
ping cluster structures were excluded and error perturbations were
omitted in the design. In our opinion, these data sets can be regarded
as a “near generalization task” for the clustering algorithms. That is,
they provide an opportunity for evaluating the effects of slight changes
in the data generation process.

Second, the use of nonoverlapping cluster structures in the present
study makes it also possible to test Milligan’s (1981) interesting
hypothesis concerning the effect of cluster overlap on the efficiency of
hierarchical methods. According to this assumption, Ward’s method
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gives the best recovery only when overlap is present in the cluster
structure. On the other hand, the group average or average linkage
method is supposed to give superior recovery with non-overlapping
structures. Thus, the group average method was expected to be the
most efficient hierarchical algorithm in the present study.

In sum, the major purpose of this study was to compare the
accuracies of a variety of hierarchical and nonhierarchical clustering
techniques at different coverage levels. In addition, the impact of
different measures of similarity :(Euclidean distances vs. Pearson
correlation coefficients) on the accuracy of the clustering algorithms
was assessed. To overcome some of the problems (i.e., cluster overlap)
of previous Monte Carlo studies using unconstrained multivariate
normal mixtures, truncated multivariate normal mixtures were gener-
ated in the present study which satisfied the requirements of external
isolation and internal cohesion of the resulting clusters (see Cormack,
1971). That is, entities in one cluster were similar to each' other
(internal cohesion) and did not overlap with entities in other clusters
(external isolation).

Method

Data Sets

Each data set was a mixture of samples drawn from a number of
different populations. As has already been noted by Blashfield (19786),
two kinds of parameters can be distinguished from each data set,
namely, (1) parameters of the populations represented in the mixture,
and (2) the parameters of the mixture itself.

Three different types of population parameters were considered,
namely, the means and the variances of the population of the varia-
bles, and the correlational structure among the variables. The means
of the populations of the variables were chosen randomly from a
uniform distribution ranging from 45.0 to 60.0, while the variance for
each variable was chosen from a uniform distribution which ranged
from 5.0 to 30.0. The correlation structure among the variables was
specified in the same way as in the Blashfield (1976) study. That is, the
number of principal components ranged from 2 to 10 and was always
less than the number of variables. The variables were assumed to have
a multinormal distribution. The number of entities sampled from each
population was determined by randomly choosing an integer from a
uniform distribution which ranged from 5 to 50.
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With regard to the parameters of the mixture, the number of
populations represented ranged from 2 to 6, and the number of
variables ranged from 3 to 25. Both of these parameters were deter-
mined by randomly choosing an integer from a uniform distribution
with the specified ranges. The total number of entities in the mixtures
ranged from 18 to 265.

The data sets differed from those generated by Blashfield (1976) in
that no measurement error was added to the data points. According to
Blashfield, measurement error was included in his study to increase
the difficulty of the mixtures, that is, to insure that obtaining good
recovery values would not be a trivial result. In our view, the addition
of measurement error creates a problem, in that the task for the
clustering algorithms is to guess the “true” values. In the present
study, the mixtures were made adequately difficult by excluding
extremely easy data sets (to be defined below) from the analysis
instead.

Clustering Algorithms

The simulated data sets were clustered by the nine agglomerative
hierarchical algorithms and the four nonhierarchical procedures listed
in Table 1. The hierarchical clustering techniques have been described
and discussed in detail elsewhere (Anderberg, 1973; Cormack, 1971).
In brief, these methods are iterative and generate solutions which can
be graphically represented as hierarchical trees (dendrograms). Each
level of the tree represents a different clustering called a partition. If a
sample consists of N entities, then the first partition will yield V — 1
clusters, the next N — 2 clusters, and so on up to the last partition
which consists of one cluster containing all individuals. According to
Johnson (1967), the only difference between agglomerative hierarchi-
cal clustering algorithms concerns the step in which the distance
between the new cluster and the remaining data points is computed.
According to Lance and Williams (1967) and Wishart (1969), a general
equation (“recurrence formula”) describes how the various hierarchi-
cal algorithms compute this distance:

[1] dhk = aidhi + ajdhj + de + A ldhi - dhjl-

In this equation, d; denotes the Euclidean distance between the
entities { and j which have been combined to form a new cluster &. The
Euclidean distance between remaining entities 2 and the new cluster &
is denoted by dj;. The values of the parameters a;, a;, B, and A depend
on the particular clustering method and are given in Table 1.
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Table 1

Cluster Analysis used in the present Monte Carlo Study and their

Parameter Values in the Recurrence Formula

Parameter Values

Method

ay oy 8 A
a) Hierarchical
(1) Single Linkage 0.5 0.5 0 -0.5
(2) Complete Linkage 0.5 0.5 0 0.5
(3) Average Linkage ni/nk nj/nk 0 0
(4) Median 0.5 0.5 0.25 0
; 2
(5) Centroid ni/nk nj/nk —nfﬁ/nlc 0
' -

(6) Ward's Method) (nh+ni)/(nh+nk) (nh+nj)/(nn+nk) nh/nhmk 0
(7) Beta-Flexible I 0.75 0.75 0.5 0
(8) Beta Flexible II 0.625 0.625 0.25 0
(9) McQuitty's Method 0.5 0.5 0 0

b) Nonhierarchical

(1) CLUSTAN k-means: Every kth element

(2) CLUSTAN k-means: Ward's Centroid
(3) Spaeth's k-means: Every kth element
(4} Spaeth's k-means: Ward's Centroid

= number of entities in cluster i of preceding partition

n, = number of entities in cluster j of preceding partition

ny, = number of entities in cluster i or cluster j of preceding
partition

n, = number of remaining entities for which the distance to

cluster k has to be recomputed

Two different versions of the flexible-beta method (Lance &
Williams, 1967) were included to assess the impact of changes in beta
on average recovery values. That is, in addition to the beta-value
recommended by Lance and Williams (8 = —.25), further analyses
were run for B = —.5. (It should be mentioned that McQuitty’s method
can also be regarded as a version of the flexible-beta method where 8
equals zero.) As an earlier preliminary study (Scheibler & Schneider,
1978) has shown, the recommended B-value may not necessarily lead
to the best recovery values for this procedure.
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The nonhierarchical procedures used in the present study have the
common feature that they produce only a single partition solution.
That is, the researcher usually specifies in advance which number of
clusters should build up the solution (see Anderberg, 1973, for a more
detailed description). As Blashfield (1977) and Milligan (1980} have
emphasized, nonhierarchical procedures seem to be sensitive to the
nature of the starting partition. For the purpose of the present study,
two different starting procedures were selected for two nonhierarchical
(k-means) methods, namely, the CLUSTAN k-means algorithm (Wish-
art, 1975) and the k-means algorithm offered by Spath (1975, 1980).
Both randomly selected data units and the centroids obtained from
Ward’s method were used as starting cluster centreids for these two
iterative partitioning algorithms. Although the CLUSTAN k-means
algorithm and Spéth’s 2-means approach are comparable in that they
rely on MacQueen’s method (Anderberg, 1973), they differ in the
following respect: While in the CLUSTAN procedure each cluster is
represented by its centroid, in Spidth’s algorithm each cluster is
represented by its median.

Procedure

All computations were based on a total of 200 constrained random
mixtures. In generating these data sets, all those mixtures for which
discriminant analyses yielded imperfect solutions were eliminated. As
noted by Milligan and Isaac (1980), a nonzero misclassification rate
with a linear discriminant function analysis indicates an overlapping
cluster structure. Similarly, all data sets which could be easily
reconstructed by at least one of the algorithms under investigation
were excluded from further analysis. Because results of a previous
Monte Carlo study (Scheibler & Schneider, 1978) using 766 mixtures
had shown that Ward’s method did always belong to the group of
algorithms that came to perfect solutions whenever those solutions
were obtained, Ward’s method was chosen to minimize bias against
any method. The two-step procedure included in the data generation
process allowed us to eliminate extremely easy and extremely difficult
data sets until a total of 200 constrained random mixtures was
available for analysis.

For each mixture, different parameter values were specified. The
13 clustering algorithms were applied to standardized versions of all
mixtures. The standardization for Spath’s procedure differed from the
others (i.e., z-transformations) in that linear transformations were
done so that equal ranges and equal minimum values and maximum
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values resulted for all variables. According to Spath (1975, 1980), this
standardization method is superior to many others.

Euclidean distances and Pearson correlation coefficients were
used as similarity measures for all algorithms. The same computer
program, CLUSTAN 1C (Wishart, 1975) was used for all hierarchical
methods and also for the first two nonhierarchical procedures. Spith’s
k-means analyses were performed using a FORTRAN IV program
written by Spath.

The statistic kappa (Cohen, 1960) was used to assess the accura-
cies of the cluster solutions. Kappa values range from —1 to 1, with
larger values indicating larger levels of agreement between “the
obtained clusters and the underlying populations. In order to assess
the effects of different levels of coverage on the recovery values of the
clustering algorithms, a procedure slightly different. from that of
Edelbrock and McLaughlin (1980) was chosen. Edelbrock: and
McLaughlin first calculated accuracies at 100% coverage and then
proceeded to successively lower levels in the hierarchical tree (i.e., 99,
95, 90, 80, 70, 60, 50, and 40 percent coverage). In the present study, 10
different solutions were obtained for each clustering algorithm. First, a
solution containing & + 9 clusters (¢ = number of populations
represented in the mixture) was analyzed. The 9 smallest clusters were
excluded from analysis, and only the & largest clusters were compared
with the % populations represented in the mixture. The number of
mini-clusters was successively reduced in the following 9 steps. In the
last step, the number of clusters equalled the number of populations
(i.e., 100% coverage). Thus, successively more, mini-clusters were
included in the computation of the recovery values. At each step,
kappa values were obtained for all algorithms, and the whole proce-
dure was repeated 200 times. Clusters were matched by analyzing all
possible relationships among the given and reconstructed cluster
structures via systematic permutations. Those relationships yielding
the highest kappa values were chosen as optimal, The procedural
details of the Monte Carlo simulations are summarized in Figure 1.

Results

An overview of the results is given in Tables 2 and 3, where the
recovery values of the different clustering algorithms are compared for
Euclidean distances and Pearson correlation coefficients, respectively.

In Table 2 it is easy to see that most clustering algorithms using
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Figure 1.

Program flowchart describing the Monte Carlo test of cluster analysis algorithms.
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Euclidean distance measures performed well when there were more
clusters than underlying populations, that is, when only a certain
percentage of the sample had to be classified. As already noted by
Edelbrock (1979), the largest decrease in accuracy was generally
observed from level 2 + 1 to level k, where all elements had to be
assessed. The drop in accuracy is probably due to the effects of
chaining, since those algorithms known to be highly susceptible to
chaining (i.e., single linkage, median method, centroid method) show
the most impressive decrease in accuracy when outliers have to be
included in the analysis.

Totally different results were obtained when the Pearson correla-
tion coefficient was used as a measure of similarity (cf. Table 3).
Summing across clustering algorithms, recovery values were signifi-
cantly better (p = .0001) for correlation coefficients, compared with
Euclidean distances (cf, the similar findings by Edelbrock, 1979).

It can be seen that the decrease in accuracy is approximately the
same for both similarity measures when only the first 5 or 6 levels of
coverage are analyzed. Undoubtedly, the most remarkable difference
in results is obtained for level k, where all elements have to be
classified. While the drop in accuracy level from & + 1 to level £ is still
significant (p = .01) when correlation coefficients are used instead of
Euclidean distances, recovery values are now acceptable for most
algorithms. In particular, an enormous improvement can be observed
for the procedures probably susceptible to chaining (i.e., single linkage
method, median method, centroid method) and for the average linkage
algorithm value. Similar to the results obtained by Edelbrock (1979),

‘the average linkage algorithm tended to be more accurate than all
other algorithms when correlation coefficients were used. Although
the recovery values for Ward’s method were slightly lower, this
method ranked second best in the correlation coefficient condition. It
should be emphasized that most algorithms performed nearly almost
equally well with regard to the first 9 levels of coverage (i.e., from & +
9 to £ + 1), and that all algorithms except for the single linkage and
complete linkage method led to acceptable recovery values when all
elements had to be classified (i.e., level k).

Interestingly enough, the solutions for the two versions of the
Lance-Williams method used in this study did not differ significantly
for both Euclidean distances and Pearson correlation coefficients.
Unexpectedly, the beta-value recommended by Lance and Williams
(beta = —.25) did not lead to better results than the arbitrarily chosen
beta-value (beta = —.5). This finding confirms the conclusion of
Scheibler and Schneider (1978) that the range of possible beta values
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should be more carefully explored with regard to its role for algorithm
accuracy.

In order to permit parametric analyses of kappa, the variances of
this proportion measure had to be stabilized and normalized using the
arcsin transformation (Winer, 1971, pp. 399—-400),

K* = 2 ARCSIN VK,

where K* is the transformed kappa value used in the analyses, and K
indicates the empirically derived kappa value.

First, the transformed kappa values were analyzed using a 10 X 2
X 10 (algorithms X similarity measure X level of coverage) ANOVA
with repeated measures. As Pearson correlation coefficients could not
be used for Spath’s k-means method, separate comparisons focussing
on the Euclidean distance measure were made for Spath’s k-means
method and the other hierarchical and nonhierarchical procedures.

As can be seen from Table 4, several significant effects were found
in the 10 x 2 x 10 ANOVA, most of them confirming the results
obtained by Edelbrock (1979; Edelbrock and McLaughlin, 1980).

Table 4

Results of the 10 x 2 x 10 (Algorithms x similarity measure

% level of coverage) ANOVA with repeated measures

Dependent Degrees of F-value
Variables Freedom

Measure (M) 1:199 94.1

Algorithm (A) 9;1791 185.1

Coverage (C) 9;1791 1735.0

Interactions

M x A 9;1791 114.9

M x C 9;1791 170.0

AxC 81516119 59.7

Mx Ax C 81;16119 38.97

Note. All F-values are significant at the .001 level.
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Accuracy was inversely related to coverage across algorithms. Collaps-
ing across similarity measures, significant differences were found
among the 10 hierarchical algorithms, with higher accuracies obtained
for Ward’s method and the Lance-Williams methods. Furthermore, the
effects of the measure of similarity, the measure of similarity by
clustering algorithm interaction, and the measure of similarity by
clustering algorithm by level of coverage interaction all remained
significant.

Additional analyses including Spath’s k-means method and Eu-
clidean distances as measure of similarity confirmed the results
obtained by Blashfield (1977) and Milligan (1980). That is, the two k-
means algorithms (i.e., Clustan’s k-means and Spéth’s k-means) pro-
‘duced recovery values worse than those of the best hierarchical
methods (i.e., Ward’s method, the Lance-Williams methods) when
random starting seeds were used. On the other hand, when the
centroids of the clusters generated by Ward’s method were used as
starting seeds, Clustan’s k-means and Spath’s k-means produced
recovery values that were equivalent to those of the best hierarchical
methods (775 and .773, respectively). This finding underlines Milli-
gan’s (1980) conclusion that the “starting partition must be close to the
final solution if the k-means algorithms are to be expected to give good
recovery” (p. 339). At the same time, it sheds doubt on Spith’s
hypothesis that his clustering algorithm will perform best when
random starting seeds are used.

Post-hoc comparisons using the Newman-Keuls procedure re-
vealed that—at a p-level of .05—the algorithms can be divided into six
and five accuracy groups for Euclidean distances or correlation coeffi-
cients, respectively.

When Euclidean distances were used as similarity measure, the
most accurate algorithms included the Lance-Williams method (beta =
—.5), Ward’s method and the k-means procedures using nonrandom
starting seeds. The next subset was comprised of the Lance-Williams
method (beta = —.5) and the k-means procedures using random
starting seeds. The third group consisted of McQuitty’s method and the
complete linkage method. The three groups with lowest accuracy
included the average linkage method (subset 4), centroid method
(subset 5), and the single-linkage and median method (subset 6).

Post-hoc comparisons for correlation coefficients yielded a differ-
ent pattern of results. There was only one algorithm-—the average-
linkage method—located in the highest accuracy subset. The next
group included McQuitty’s method, the Lance-Williams methods (beta
= —.5 and beta = —.25), Ward’s method, and the median method and
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Clustan’s £-means using random starting seeds. Finally, the two low-
accuracy subsets 4 and 5 consisted of the complete-linkage and single-
linkage method, respectively.

From these results, it appears that Ward’s method, the Lance-
Williams method (beta = —.5), and Clustan’s k-means using nonran-
dom starting seeds yielded accurate solutions regardless of type of
similarity and can be recommended for application. In addition, the
average linkage method seems particularly appropriate when correla-
tion coefficients are used as similarity measure. On the other hand, the
single-linkage method performed poorly regardless of type of similar-
ity measure, followed by the centroid method that also yielded low
accuracy values in both conditions. Thus these two methods cannot be
recommended for application.

Discussion

One of the most interesting aspects of the present study concerned
the question of whether the main results of previous Monte Carlo
studies evaluating clustering algorithms could be confirmed when a
different data generation process was used. Taken together, the results
of our simulation study appear to be encouraging. In accordance with
previous investigations using either multivariate normal mixtures
(Blashfield, 1977) bivariate normal mixtures (Bayne et al., 1980), or
the concept of an ultrametric space (Milligan, 1980), the non-hierarchi-
cal (k-means) algorithms used in the present study were found to
produce excellent recovery of cluster structure provided that the
starting seeds were obtained from a robust hierarchical clustering
algorithm (i.e., Ward’s method). It should not be overlooked, however,
that both nonhierarchical algorithms recovered true structure worse,
on average, than the initial partition given to them (i.e., the solution of
Ward’s method). For Clustan’s k-means, this was true regardless of the
type of similarity/dissimilarity measure used, although the absolute
differences between Ward’s and k-means’ solutions were small. On the
other hand, the k-means algorithms yielded recovery values signifi-
cantly worse than those of the two most robust hierarchical methods
(i.e., Ward’s method and the Lance-Williams method) when random
starting seeds were used. Thus, in spite of recommendations given by
some authors (e.g., Spiath, 1980), evidence from different Monte Carlo
simulations leads to the conclusion that the use of random starting
points will generally result in suboptimal classifications.

With regard to the effect of level of coverage, the results of the
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present study validate the findings by Edelbrock (1979) and Edelbrock
and McLaughlin (1980). Regardless of the type of Monte Carlo data
sets (i.e., constrained or unconstrained multivariate normal mixtures
or multivariate gamma mixtures), the general finding was that
accuracy values increased as coverage decreased, and that the largest
decrease in recovery occurred when all elements had to be classified.
The latter is particularly true when Euclidean distances are used as
similarity measure, thus confirming the results by Edelbrock (1979).

Contrary to expectations, most hierarchical algorithms performed
significantly better when correlation was used as a measure of similar-
ity. According to our hypothesis, the positive effects of the use of
correlation coefficients should be confined to unconstrained multivari-
ate normal mixtures of the type used by Blashfield (1976), Edelbrock
(1979; Edelbrock & McLaughlin, 1980), and Milligan (1981). However,
the use of constrained multivariate normal mixtures in our study did
not yield a different pattern of results. Obviously, simply excluding
cluster overlap does not necessarily change the effects of the similarity
measure. The superiority of correlation coefficients to Euclidean dis-
tances may be due to the different treatment of outliers in the data
sets. As Edelbrock (1979) has pointed out, correlation has a limited
range of similarity/dissimilarity not sensitive to elevation. Conse-
quently, here outliers are probably more similar to other elements
than in analyses using Euclidean distances, and thus are combined
into clusters at lower levels in the hierarchy. The hypothetical exam-
ple in Figure 2 may be helpful in understanding why most clustering
algorithms were more accurate when correlations were used as simi-
larity measure. In Figure 2, d;s; denotes the Euclidean distance
between data points x; and x,, whereas the correlation between these
data points is defined by the cosine of the angle between them (i.e., 12
= cos 0;5). Similarly, d3, denotes the Euclidean distance between data
points x5 and x,, and cos 03, defines the correlation between these data
points. ‘

Consider that the single linkage method and Euclidean distances
were used in the example, and that the elements of K = 3 populations
had to be reconstructed. Due to the chaining tendency of the single
linkage procedure (see Anderberg, 1973), there is a high probability
that samples A and B would be agglomerated at an early hierarchical
level. Further, data point x; would be treated as an outlier and build
up a cluster of its own. As a consequence, only sample C would be
correctly reconstructed and low kappa values would result.

On the other hand, when the single linkage method and correla-
tion coefficients were used in the example given in Figure 2, a correct
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Figure 2.

Hypothetical example of a sample mixture out of three populations in a two-dimensional (orthogonal) data
space illustrating different results for clustering algorithms using either Euclidean distances or correlation
coefficients.

solution was obtained. This is due to the fact that the angles between
the elements within samples A, B, and C are relatively small (and the
corresponding correlations relatively high), but large between ele-
ments from different samples (e.g., angle 03,).

The choice of non-overlapping mixtures is probably of importance
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here, because, for overlapping mixtures, it is possible to obtain large
angles (up to 180°) between two elements within a sample. But given
the superior performance of correlation coefficients in earlier studies
using unconstrained mixtures (e.g., Edelbrock, 1979), the mixture
generation process cannot solely account for the effects of the type of
similarity measure.

The results of the present study and that of Edelbrock (1979)
suggest that correlation may be more appropriate as a measure of
similarity than Euclidean distances. This does not mean, however,
that the use of correlations should be recommended for all applica-
tions; rational considerations are always important, and the choice of
the similarity measure should best be dictated by the nature of the
data. Thus, for example, since it may be true that our simulation
created data where level is relatively unimportant relative to shape
and scatter, the simulation results may not be generalizable to data
where level is a central feature.

Finally, the results of the present study may be used to evaluate
the validity of Milligan’s (1981) conclusions regarding the factors
determining accuracy of Ward’s method and the average linkage
algorithm (i.e., the two best hierarchical methods). Based on his review
of Monte Carlo tests of cluster analysis, Milligan inferred that three
alternative factors appear to determine when Ward’s method or the
group average technique provide best recovery:

(1) the selection of similarity measure; Ward’s method is expected to
give better recovery for Euclidean distances while group average
procedures provide equivalent accuracy when Pearson correlation
coefficients are used;

(2) the treatment of outliers—Ward’s method is supposed to be superi-
or when total coverage is required, while the group average
procedure gives at least equivalent results when not all elements
have to be classified;

(3) the influence of cluster overlap—Ward’s method works better
when cluster overlap is provided, while the group average method
gives superior recovery when data do not possess overlapping
structure.

Undoubtedly, conclusion (3) was not confirmed in the present
study, that is, Ward’s method ranked first in the Euclidean distances
condition although nonoverlapping data structures were used. On the
other hand, conclusion (1) could be completely verified, as the interac-
tion between similarity measures and algorithm performance proved
to be significant. With regard to conclusion (2), a more differentiated
formulation seems to be necessary; the conclusion was confirmed when
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Euclidean distances were used as the measure of similarity but was
not correct for correlation coefficients. Here, the group average method
proved at least equivalent regardless of level of coverage.

In sum, the comparison of a broad range of hierarchical and
nonhierarchical clustering algorithms using truncated multivariate
normal mixtures led to two main conclusions. First, most results
obtained for hierarchical algorithms with unconstrained multivariate
normal mixtures could be generalized to truncated multivariate nor-
mal data sets. That is, most algorithms found to be fairly accurate in
previous studies (e.g., Ward’s method, group average procedure, the
Lance-Williams method) also ranked high in the present evaluation
analysis, and vice versa. In addition, the effects of measure of similar-
ity and level of coverage were comparable to those found in previous
studies.

Second, the comparison of hierarchical and nonhierarchical clus-
tering algorithms showed that the latter were equally effective as the
most robust hierarchical ones provided that nonrandom starting seeds
were used. Thus, by and large, a small group of hierarchical as well as
nonhierarchical cluster algorithms could be identified that proved to
be fairly accurate. Nonetheless, caution must be exercised when
attempting to generalize these findings. Future mixture model studies
should include mixtures whose multivariate distributions are a long
way from normality in order to systematically explore possible effects
due to type of mixture. Although no single algorithm appears best for
all applications, a more extended analysis of mixture characteristics
should help to identify a core group of algorithms preferable for a broad
variety of clustering problems.
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