Notiz / Note

Twofold Deprotonated Citric Acid as a Bidentate Ligand of Pentacoordinate Silicon: Synthesis and Structural Characterization of the Zwitterionic $\lambda^{5} \mathrm{Si}$-Spirosilicate Bis[citrato(2-)- $O^{3}, O^{4} \mid[($ dimethylammonio)methyl]silicate Hydrate

Mathias Mühleisen and Reinhold Tacke*
Institut für Anorganische Chemie, Universität Karlsruhe, Engesserstraße, Geb. 30.45, D-76128 Karlsruhe, Germany

Received March 4, 1994
Key Words: Silicon, pentacoordinate $/ \lambda^{5} \mathrm{Si}$-Spirosilicate, zwitterionic / Citrato(2-)- O^{3}, O^{4} ligand

The zwitterionic $\lambda^{5} \mathrm{Si}$-spirosilicate bis[citrato(2-)- $\left.\mathrm{O}^{3}, \mathrm{O}^{4}\right]$ (dimethylammonio)methyl ${ }^{\text {silicate (4) was synthesized by reac- }}$ tion of $(\mathrm{MeO})_{3} \mathrm{SiCH}_{2} \mathrm{NMe}_{2}$ (3) with citric acid (molar ratio $1: 2$) in acetonitrile at room temperature and isolated, after crystallization from water, as the hydrate $4 \cdot \mathrm{H}_{2} \mathrm{O}$ (yield 81%). The crystal structure of $4 \cdot \mathrm{H}_{2} \mathrm{O}$ was studied by single-crystal X-ray diffraction. The alcoxide oxygen atoms and central
carboxylate oxygen atoms of two citrato(2-) ligands and one carbon atom coordinate to the silicon atom of $4 \cdot \mathrm{H}_{2} \mathrm{O}$. The coordination polyhedron around the pentacoordinate silicon atom ($\mathrm{SiO}_{4} \mathrm{C}$ framework) can be described as a distorted trigonal bipyramid, the two carboxylate oxygen atoms occupying the axial sites. The λ^{5} Si-silicon(IV) complex 4 also exists in solution (DMSO, $\mathrm{H}_{2} \mathrm{O}$).

It has been speculated that the transport of silicon in biological systems might occur via tetra-, penta-, and/or hexacoordinate silicon species containing bidentate diolato(2-) ligands ${ }^{[1]}$. However, up to now there is no clear experimental evidence for this assumption. Based on the working hypothesis that diolato(2-) ligands derived from natural hydroxycarboxylic acids may be potential candidates for the transport of pentacoordinate silicon, we became interested in the coordination chemistry of $\lambda^{5} S i$-silicon complexes containing this particular type of ligands and studied related model compounds with an $\mathrm{Si}\left(\mathrm{OO}^{\prime}\right)_{2} \mathrm{C}$ framework. In previous papers we already reported on the $\lambda^{5} S i$-silicate $1^{[2 c]}$ and on the $\lambda^{5} S i, \lambda^{5} S i^{\prime}$ disilicate $\mathbf{2}^{[27]}$; these zwitterionic compounds contain glycolato(2-) and tartrato(4-) ligands, respectively. This paper is concerned with the synthesis and structural characterization of the $\lambda^{5} S i$-silicon complex 4, the first $\lambda^{5} S i$-silicate containing citrato(2-) ligands ${ }^{[3]}$. The studies presented here were carried out as a part of our systematic investigations on zwitterionic spirocyclic $\lambda^{5} \mathrm{Si}$-silicon(IV) complexes ${ }^{[2]}$ (for reviews on pentacoordinate silicon, see ref. ${ }^{[4]}$).

Results and Discussion

Citric acid was found to react with [(dimethylamino)methyl]trimethoxysilane ${ }^{[2 \mathrm{~d}]}(3)$ in a molar ratio of $2: 1$ in acetonitrile at room temperature to yield chemoselectively the zwitterionic $\lambda^{5} \mathrm{Si}$-silicon complex bis[citrato(2-)- $\left.O^{3}, O^{4}\right][($ dimethylammonio)methyl]silicate (4) (Scheme 1). In this molecule the alcoxide oxygen atoms and central carboxylate oxygen atoms of two citrato(2-) ligands and one carbon atom coordinate to the silicon atom. Obviously, 4 is more stable than the potential isomers 5-7, which would result from alternative types of coordination of twofold deprotonated citric acid.

Scheme 1

The $\lambda^{5} S i$-silicate 4 was formed spontaneously in a precipitation reaction (Scheme 1) and isolated, after crystallization from water, in 81% yield as the hydrate $4 \cdot \mathrm{H}_{2} \mathrm{O}$. Compound $4 \cdot \mathrm{H}_{2} \mathrm{O}$ crystallizes in the space group $P \mathrm{I}$, the unit cell containing two enantiomeric zwitterions 4 and two water molecules. The molecular structure of 4 in the crystal is shown in Figure 1; selected bond distances and angles are listed in the figure legend (for further details, see Experimental).

The coordination polyhedron around the silicon atom is a distorted trigonal bipyramid, each bidentate citrato(2-)- O^{3}, O^{4} ligand spanning one axial $[O(1), O(3)]$ and one equatorial site $[O(2), O(4)]$. The Berry distortion ${ }^{[5]}$ of the coordination polyhedron amounts to 18.7%. Inspection of Figure 1 indicates that the carbonyl oxygen atoms $O(8), O(10)$, and $O(12)$ adopt positions close to the silicon atom. However, the respective intramolecular $\mathrm{Si} \cdots \mathrm{O}$ distances $[3.346(4)-3.538(3) \AA$ A] are not indicative of a significant degree of electronic interaction between these oxygen atoms and the silicon atom. The same holds true for intermolecular $\mathbf{S i} \cdots \mathrm{O}$ interactions [shortest intermolecular $\mathrm{Si} \cdots \mathrm{O}$ distance: $\mathrm{Si} \cdots \mathrm{O}(13)$ 4.762(4) \dot{A}].

As would be expected from the presence of seven potential pro-ton-donating groups (one NH and six OH functions) and fifteen potential acceptor atoms $\left[\mathrm{O}(1)\right.$ to $\mathrm{O}(14)$ in $4 ; \mathrm{O}(15)$ in the $\mathrm{H}_{2} \mathrm{O}$ molecule] in the asymmetric unit, a complex three-dimensional hy-drogen-bonding system in the crystal of $4 \cdot \mathrm{H}_{2} \mathrm{O}$ is observed. Based on the relevant geometric parameters, the existence of six intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and one trifurcated hydrogen bond (with two intra- and one intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interac-

Figure 1. Molecular structure of 4 in the crystal of $4 \cdot \mathrm{H}_{2} \mathrm{O}$, showing the atomic numbering scheme; selected bond distances $[A]$ and bond angles [${ }^{\circ}$]: $\mathrm{Si}-\mathrm{O}(1) 1.794(2), \mathrm{Si}-\mathrm{O}(2) 1.666(2), \mathrm{Si}-\mathrm{O}(3) 1.802(2)$, $\mathrm{Si}-\mathrm{O}(4) \quad 1.662(2), \mathrm{Si}-\mathrm{C}(1) \quad 1.888(4) ; \mathrm{O}(1)-\mathrm{Si}-\mathrm{O}(2) 89.12(10)$, $\mathrm{O}(1)-\mathrm{Si}-\mathrm{O}(3) 175.07(11), \mathrm{O}(1)-\mathrm{Si}-\mathrm{O}(4) 89.58(10), \mathrm{O}(1)-\mathrm{Si}-\mathrm{C}(1)$ 93.51(12), $\mathrm{O}(2)-\mathrm{Si}-\mathrm{O}(3) \quad 87.65(11), \mathrm{O}(2)-\mathrm{Si}-\mathrm{O}(4) 127.45(12)$, $\mathrm{O}(2)-\mathrm{Si}-\mathrm{C}(1) 117.87(13), \mathrm{O}(3)-\mathrm{Si}-\mathrm{O}(4) 89.43(10), \mathrm{O}(3)-\mathrm{Si}-\mathrm{C}(1)$
91.29(13), $\mathrm{O}(4)-\mathrm{Si}-\mathrm{C}(1)$ 114.64(13)
tions) per asymmetric unit can be assumed. All seven proton-donating groups and the acceptor atoms $O(1), O(5), O(6), O(8)$, $\mathrm{O}(10), \mathrm{O}(12), \mathrm{O}(13)$, and $\mathrm{O}(15)$ are involved in these hydrogen bonds.
In addition, compound $4 \cdot \mathrm{H}_{2} \mathrm{O}$ was structurally characterized by ${ }^{29} \mathrm{Si}-\mathrm{CP} / \mathrm{MAS}-\mathrm{NMR}$ experiments in the solid state and by ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$-, and ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ studies in solution ($\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$) (see Experimental). The isotropic ${ }^{29} \mathrm{Si}$ chemical shift $(\delta=-95.3)$ observed in the CP/MAS-NMR spectrum clearly characterizes this ${ }^{29} \mathrm{Si}$ resonance as arising from pentacoordinate silicon. As this chemical shift is very similar to that observed in $\left[\mathrm{D}_{6}\right] \mathrm{DMSO}(\delta=-97.3)$, it is concluded that pentacoordination is also present in solution. In addition, the signal of the NH group $(\delta=7.1)$ could be detected in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, indicating the existence of an am-monium-type nitrogen atom in solution. As the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum is only compatible with the presence of a tetracarboxylic acid (resonance signal at $\delta=12.2-12.4 ; 4 \mathrm{H}$), the potential isomeric structures 6 and 7 can be ruled out. The presence of two $\mathrm{CCH}_{2} \mathrm{C}(\delta=$ 41.1, 44.2), two $\mathrm{NCH}_{3}(\delta=45.7,48.5)$, and three $\mathrm{C}=\mathrm{O}$ resonances ($\delta=171.4,172.4,175.7$) in the ${ }^{13} \mathrm{C}$-NMR spectrum reflects the chiral nature of 4 and is in accordance with the type of coordination observed in the crystal of $4 \cdot \mathrm{H}_{2} \mathrm{O}$. Thus, the ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$-, and ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ data (see also Experimental) are consistent with the existence of 4 in [$\left.\mathrm{D}_{6}\right]$ DMSO. Although the isomeric species 5 cannot be totally ruled out by these NMR studies, we favor the zwitterion 4, because this species is also present in the crystal of 4 - $\mathrm{H}_{2} \mathrm{O}$. This assumption is further supported by the finding that compound 8 (a derivative of 4) can be easily prepared by reaction of 3 with (S)-lactic acid (molar ratio 1:2; acetonitrile, room temperature), whereas the analogous synthesis of compound 9 (a derivative of 5) by reaction of 3 with (S)-3-hydroxybutyric acid failed ${ }^{[6]}$.

As $4 \cdot \mathrm{H}_{2} \mathrm{O}$ could be crystallized from water, the zwitterion 4 undoubtedly exists in aqueous solution, at least for a certain period of time. From a saturated solution $\left(c \approx 43 \mathrm{mmol} \cdot 1^{-1}, \mathrm{pH} \approx 3\right.$, room temperature), 4 could be recovered as $4 \cdot \mathrm{H}_{2} \mathrm{O}$ in 90% yield by slow evaporation of the water, the crystallization process lasting ca. 7 d . In fact, the ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectrum of a saturated solution of 4 in $\mathrm{D}_{2} \mathrm{O}$ shows a resonance signal at $\delta=-97.5$, which is typical of pentacoordinate silicon and therefore can be assigned to $4[\delta=$ -97.3 ($\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$), -95.3 (solid state, $4 \cdot \mathrm{H}_{2} \mathrm{O}$)]. In addition, a resonance signal at $\delta=-53.1$ (dominating signal) was detected, which has to be assigned to a tetracoordinate silicon species whose identity, however, is unknown. At $\mathrm{pH}>7$ (addition of NaOH) only this $\lambda^{4} \mathrm{Si}$-silicon species could be observed in the ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectrum; however, upon acidification with HCl to $\mathrm{pH}=3$, the resonance signal at $\delta=-97.5$ could be detected again, along with the signal at $\delta=-53.1$. On the other hand, after addition of 40 mol-equiv. of citric acid to a saturated solution of 4 in $\mathrm{D}_{2} \mathrm{O}$ only the $\lambda^{5} \mathrm{Si}$-silicon species could be detected in the ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ spectrum. Thus, in aqueous solution a chemical equilibrium between 4 and an unknown tetracoordinate silicon species can be postulated.
We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support, and the Bayer $A G$ (Leverkusen and Wuppertal-Elberfeld) for support with chemicals. In addition, we would like to thank Priv.-Doz. Dr. A. Sebald (Bay-
erisches Geoinstitut, Universität Bayreuth) for performing the ${ }^{29} \mathrm{Si}$ -CP/MAS-NMR experiments and Mr. G. Matlern (Institut für Kristallographie, Universität Karlsruhe) for collecting the X-ray diffraction data.

Experimental

General Procedures: The synthesis of 4 was carried out under dry N_{2}. The organic solvents used were dried and purified according to standard procedures and stored under N_{2}. - Melting points: Leitz Laborlux S microscope, equipped with a heater (Leitz, Model M 350). $-{ }^{29} \mathrm{Si}$ CP/MAS NMR [59.6 MHz; external standard TMS $(\delta=0)$; see also ref. $\left.{ }^{[2 d]}\right]$: Bruker MSL-300 spectrometer. ${ }^{1} \mathrm{H}$ NMR $\left\{250.1 \mathrm{MHz}\right.$; solvent $\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$, internal standard $\left[D_{5}\right]$ DMSO $\left.(\delta=2.49)\right\},{ }^{13} \mathrm{C}$ NMR $\left\{62.9 \mathrm{MHz}\right.$; solvent $\left[\mathrm{D}_{6}\right]$ DMSO, internal standard $\left[\mathrm{D}_{6}\right] \mathrm{DMSO}(\delta=39.9\}$, and ${ }^{29} \mathrm{Si}$ NMR $\{49.7$ MHz ; solvent $\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$, internal standard TMS $(\delta=0)$; solvent $\mathrm{D}_{2} \mathrm{O}$, internal standard $\left.\mathrm{Me}_{3} \mathrm{Si}\left[\mathrm{CH}_{2}\right]_{3} \mathrm{SO}_{3} \mathrm{Na}(\delta=0)\right\}$: Bruker AC250 spectrometer. All NMR experiments were carried out at room temp. Assignment of the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data was supported by DEPT experiments - FD MS ($11 \mathrm{kV} ; \mathrm{H}_{2} \mathrm{O}$ as liquid matrix): Finnigan MAT 711 spectrometer (Varian). The selected m / z values given refer to the isotopes ${ }^{1} \mathrm{H},{ }^{12} \mathrm{C},{ }^{14} \mathrm{~N},{ }^{16} \mathrm{O}$, and ${ }^{28} \mathrm{Si}$.
/(Dimethylamino)methyl]trimethoxysilan (3): Synthesis as described in ref. ${ }^{[2 d]}$.

Bis[citrato(2-)- $\left.\mathrm{O}^{3}, \mathrm{O}^{4}\right][$ (dimethylammonio)methyl]silicate Hy drate ($4 \cdot \mathrm{H}_{2} \mathrm{O}$): Citric acid $(2.14 \mathrm{~g}, 11.1 \mathrm{mmol})$ was dissolved in acetonitrile (200 ml). After addition of $3(995 \mathrm{mg}, 5.55 \mathrm{mmol})$ at room temp. (formation of a precipitate), the reaction mixture was stirred for 1 min and then kept at room temp. for 24 h . The precipitate was filtered off, washed with acetonitrile ($2 \times 10 \mathrm{ml}$), recrystallized from water (evaporation of the solvent at room temp.; crystallization time ca. 7 d ; the first crystals formed after 1 d), and then dried in vacuo $\left(0.1\right.$ Torr, $\left.20^{\circ} \mathrm{C}, 6 \mathrm{~h}\right)$; yield $2.19 \mathrm{~g}(81 \%)$ of colorless crystals; dec. at $280^{\circ} \mathrm{C}$ without melting. $-{ }^{29} \mathrm{Si} \mathrm{CP} / \mathrm{MAS}$ NMR ($v_{\text {rot }}$ 2918 Hz , contact time 4 ms , recycle delay time $3 \mathrm{~s}, 190$ transients): $\delta=-95.3$. ${ }^{1} \mathrm{H}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=2.40-3.00(\mathrm{~m}, 16 \mathrm{H}$, overlapped by the internal standard; $\mathrm{CCH}_{2} \mathrm{C}, \mathrm{SiCH}_{2} \mathrm{~N}, \mathrm{NCH}_{3}$), 3.34 (s, $2 \mathrm{H} ; \mathrm{H}_{2} \mathrm{O}$), 7.1 (br. s, $1 \mathrm{H} ; \mathrm{NH}$), 12.2-12.4 (m, $4 \mathrm{H} ; \mathrm{COOH}$). $-{ }^{13} \mathrm{C}$ NMR $\left(\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=41.1\left(\mathrm{CCH}_{2} \mathrm{C}\right), 44.2\left(\mathrm{CCH}_{2} \mathrm{C}\right), 45.7$ $\left(\mathrm{NCH}_{3}\right), 48.5\left(\mathrm{NCH}_{3}\right), 51.0\left(\mathrm{SiCH}_{2} \mathrm{~N}\right), 75.5\left(\mathrm{C}_{3} \mathrm{CO}\right), 171.4(\mathrm{C}=\mathrm{O})$, $172.4(\mathrm{C}=\mathrm{O}), 175.7(\mathrm{C}=\mathrm{O}) .-{ }^{29} \mathrm{Si}$ NMR $\left(\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=-97.3$. $-{ }^{29} \mathrm{Si}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right.$, saturated solution): $\delta=-53.1,-97.5$ (intensity ratio ca. 3:1). - FD MS; $m / 2$ (\%): 468 (100) [$\left(\mathrm{M}_{\mathrm{zwitterion}}+\right.$ $\mathrm{H})^{+}$]. $-\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{15} \mathrm{Si}$ (485.4): calcd. C 37.11, H 4.78, N 2.89; found C 37.18, H 4.70, N 2.93.

Crystal-Structure Determination of $4 \cdot \mathrm{H}_{2} \mathrm{O}^{[7]}$: Crystal data: $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{15} \mathrm{Si}, M=485.4 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, space group $P \mathrm{I}$ (No. 2), $a=$ $10.124(2), b=10.528(3), c=11.544(2) \AA, \alpha=85.55(2), \beta=$ $65.67(1), \gamma=61.82(2)^{\circ}, V=977.7(4) \AA^{3}, Z=2, \rho_{\text {culcd. }}=1.649 \mathrm{~g}$. $\mathrm{cm}^{-3}, \mu\left(\mathrm{Mo}-K_{\mathrm{a}}\right)=2.05 \mathrm{~cm}^{-1}$. Intensities for a colorless crystal
($0.30 \times 0.25 \times 0.20 \mathrm{~mm}$; crystallization from water by evaporation of the solvent at room temp.) were collected on a four-circle diffractometer (Syntex R3) at $-60^{\circ} \mathrm{C}$ for $2 \Theta \leqslant 48^{\circ}$ (Mo- K_{a} radiation, graphite monochromator). 6136 reflections were measured and 2266 unique reflections used for subsequent refinement with $I>$ $2 \sigma(I)$ [opt. ω scan; $R_{\text {int }}=0.066 ; h k l$ range: $-13 / 13,-13 / 13,-14 /$ 14]. The structure was solved by direct methods, and all nonhydrogen atoms were refined anisotropically on F^{2}, using the program SHELXL-93 (G. M. Sheldrick, Universität Göttingen, 1993). All hydrogen atoms were located in difference Fourier syntheses and their positions included in the refinement together with isotropic displacement parameters. Weighting schemes were of the form $w^{-1}=\left[\sigma^{2}\left(F_{0}^{2}\right)+(a P)^{2}+b P\right]$, where $P=\left(F_{\mathrm{o}}^{2}+2 F_{c}^{2}\right) / 3 . R(F)=$ $0.0435, R_{w}\left(F^{2}\right)=0.1016$ for 381 refined parameters $[R(F)=$ $\Sigma\left\|F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| / \Sigma\right| F_{\mathrm{o}}\right| ; R_{w}\left(F^{2}\right)=\left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] \Sigma\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{1 / 2} ;\right.$ residual electron density $+0.428 /-0.444 \mathrm{e} \cdot \dot{\AA}^{-3}$, located near the silicon atom.

[^0][84/94]

[^0]: ${ }^{11}$ C. W. Sullivan in Silicon Biochemistry (Eds: D. Evered, M. O'Connor), John Wiley \& Sons, Chichester, 1986, pp. 59-89; and literature cited therein.
 ${ }^{[2]}$ Selected publications on zwitterionic spirocyclic $\lambda^{5} \mathrm{Si}$-silicon(IV) complexes: ${ }^{[2 a]}$ C. Strohmann, R. Tacke, G. Mattern, W. F. Kuhs, J. Organomet. Chem. 1991, 403, 63-71. - ${ }^{[2 b 1}$ R. Tacke, F. Wiesenberger, A. Lopez-Mras, J. Sperlich, G. Mattern. Z. Naturforsch., B: Chem. Sci. 1992, 47, 1370-1376. - [2c] R. Tacke, A. Lopez-Mras, W. S. Sheldrick, A. Sebald, Z. Anorg. Allg. Chem. 1993, 619, 347-358. - ${ }^{[2 d]}$ R. Tacke, A. LopezMras, J. Sperlich, C. Strohmann, W. F. Kuhs, G. Mattern, A. Sebald, Chem. Ber. 1993, 126, 851-861. - [2c] R. Tacke, A. Lopez-Mras, P. G. Jones, Organometallics, 1994, 13, 1617-1623. - ${ }^{[27]}$ R. Tacke, M. Mühleisen, P. G. Jones, Angew. Chem., 1994, 106, 1250-1252; Angew. Chem. Int. Ed. Engl. 1994, 33, 1186-1188.
 ${ }^{\text {[3] }}$ To the best of our knowledge, $\lambda^{4} \mathrm{Si}$ - and $\lambda^{6} \mathrm{Si}$-silicon(IV) complexes containing citrato($2-$) ligands have also not been described in the literature.
 ${ }^{[4]}{ }^{[4 a l}$ S. N. Tandura, M. G. Voronkov, N. V. Alekseev, Top. Curr. Chem. 1986, 131, 99-189. - ${ }^{44 \mathrm{~b}]} \mathrm{W}$. S. Sheldrick, in The Chemistry of Organic Silicon Compounds, Part 1 (Eds.: S. Patai, Z. Rappoport), John Wiley \& Sons, Chichester, 1989, pp. 227-303. ${ }^{4 \mathrm{cej}}$ R. R. Holmes, Chem. Rev. 1990, 90, 17-31. - ${ }^{[4 \mathrm{dd}]}$ C. Chuit, R. J. P. Corriu, C. Reye, J. C. Young, Chem. Rev: 1993, 93, 1371-1448.
 [5] [5a] E. L. Muetterties, L. J. Guggenberger, J. Am. Chem. Soc. 1974, 96, 1748-1756. - ${ }^{[5 b]}$ R. R. Holmes, J. A. Deiters, J. Am. Chem. Soc. 1977, 99, 3318-3326. - ${ }^{[5 \mathrm{cc}]}$ The degree of distortion was calculated by using the dihedral-angle method described in refs. ${ }^{[5 a, b]}$. All nine dihedral angles and the values for the reference geometry of the ideal square pyramid given in ref. ${ }^{[5 b]}$ were considered for this calculation.
 ${ }^{[6]}$ O. Dannappel, R. Tacke, unpublished results.
 [7] Further details of the crystal structure investigation are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH , D-76344 Eggenstein-Leopoldshafen, on quoting the depository number CSD-400904, the names of the authors, and the journal citation.

