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Abstract

Background: In populations of most social insects, gene flow is maintained through mating between reproductive
individuals from different colonies in periodic nuptial flights followed by dispersal of the fertilized foundresses. Some ant
species, however, form large polygynous supercolonies, in which mating takes place within the maternal nest (intranidal
mating) and fertilized queens disperse within or along the boundary of the supercolony, leading to supercolony growth
(colony budding). As a consequence, gene flow is largely confined within supercolonies. Over time, such supercolonies may
diverge genetically and, thus, also in recognition cues (cuticular hydrocarbons, CHC’s) by a combination of genetic drift and
accumulation of colony-specific, neutral mutations.

Methodology/Principal Findings: We tested this hypothesis for six supercolonies of the invasive ant Anoplolepis gracilipes
in north-east Borneo. Within supercolonies, workers from different nests tolerated each other, were closely related and
showed highly similar CHC profiles. Between supercolonies, aggression ranged from tolerance to mortal encounters and
was negatively correlated with relatedness and CHC profile similarity. Supercolonies were genetically and chemically
distinct, with mutually aggressive supercolony pairs sharing only 33.1%617.5% (mean 6 SD) of their alleles across six
microsatellite loci and 73.8%611.6% of the compounds in their CHC profile. Moreover, the proportion of alleles that differed
between supercolony pairs was positively correlated to the proportion of qualitatively different CHC compounds. These
qualitatively differing CHC compounds were found across various substance classes including alkanes, alkenes and mono-,
di- and trimethyl-branched alkanes.

Conclusions: We conclude that positive feedback between genetic, chemical and behavioural traits may further enhance
supercolony differentiation through genetic drift and neutral evolution, and may drive colonies towards different
evolutionary pathways, possibly including speciation.
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Introduction

In most social insect species, a colony is a closed family unit that

contains a queen and her daughter workers [1]. The queen lays

eggs, which are cared for and reared by the workers. As the colony

reaches maturity, males and virgin queens are produced which

mate with reproductives from other colonies in periodic mating

events. Soon after copulation, the males die while the fertilized

queens disperse in an attempt to independently found new

colonies. As a consequence of this strategy, gene flow among

colonies is maintained within the population.

Social insects such as ants, however, show a large variety in social

organization, reproductive systems, mating behaviour and dispersal

modes. Some tramp ant species such as Linepithema humile [2], Pheidole

megacephala [3], Wasmannia auropunctata [4], Lasius neglectus [5] or

Anoplolepis gracilipes [6] share a similar set of strategies: They form

large polydomous, highly polygynous supercolonies, within which

aggression is absent and individuals move freely between nests [7].

Supercolonies differ from other polygynous and polydomous ant

colonies, in that they are usually too large to allow direct cooperative

interactions of individuals from distant nests [8]. In contrast to most

other ant species, nuptial flights of supercolony-forming ant species

are rare or even absent, and mating often takes place within the nest

or the supercolony. After fertilization, queens stay within the

maternal nest, move to other nests within the supercolony or

disperse at the fringe of the supercolony through budding, i.e. the

occupation of a suitable nest by one or several queens that are

accompanied by workers and sometimes brood from the colony the

queens themselves originated from. As a consequence of these

mating and dispersal strategies, gene flow between supercolonies

may be extremely limited or absent, as has been pointed out by

studies on L. humile [2,8,9] and A. gracilipes [10]. The study by
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Thomas et al. [10] strongly suggests that gene flow is absent between

two sympatric and mutually aggressive A. gracilipes supercolonies on

Christmas Island, Indian Ocean. The two supercolonies were

genetically differentiated both in nuclear and mitochondrial loci.

Furthermore, intranidal mating in A. gracilipes can be frequently

observed (in laboratory colonies of A. gracilipes) and workers are

highly aggressive towards virgin queens and males from other

supercolonies (Drescher, Feldhaar, pers. obs.), suggesting that gene

flow among supercolonies may be prevented by behavioural

barriers. As a consequence, lack of gene flow between ant colonies

should lead to genetic differentiation among them.

Nestmate recognition in ants usually relies on cuticular

hydrocarbons (CHC’s) [11,12,13,14,15] although other substance

classes can also be involved, such as fatty acids [16]. CHC’s are

largely genetically determined [17,18,19,20,21], which implies that

genetic differentiation among sympatric ant colonies may entail the

diversification of genetically based CHC profile compounds

through genetic drift and the accumulation of supercolony-specific

mutations. Thus, in ant species with strict intranidal mating, CHC-

profiles may differ between colonies not only in terms of relative

abundances of epicuticular compounds (quantitative differences, as

is the case in most ant species with intercolonial mating), but also in

the composition of the profile itself (qualitative differences).

As the origin and future of supercoloniality in ants is unclear

[22], studying the degree and nature of differentiation within and

between supercolonies may help in understanding the evolutionary

paths that those species might take [22]. We thus measured

patterns of behavioural, genetic and chemical differentiation

within and between six spatially separated supercolonies in

north-eastern Borneo, and discuss the data with respect to

potential evolutionary trajectories of A. gracilipes. As suggested by

previous studies, NE-Borneo is inhabited by a mosaic of variably

related, ecologically dominant A. gracilipes supercolonies [23,24]

with unusually high intracolonial relatedness estimates compared

to all other supercolonial ant species studied so far [22,24]. Thus,

assuming that the scenario described above applies to A. gracilipes,

we expect that the varying genetic differentiation between

supercolonies corresponds to the degree of CHC-profile differen-

tiation. As intranidal mating may be the dominant, if not

exclusive, reproductive strategy in A. gracilipes, we furthermore

expect that CHC-profiles differ both quantitatively as well as

qualitatively between supercolonies, and that qualitative differ-

ences between the CHC-profiles of supercolonies are independent

of substance classes as would be expected by an accumulation of

random, supercolony-specific mutations.

Materials and Methods

Selection and maintenance of colonies
We localized six Anoplolepis gracilipes supercolonies within the

study area around Poring Hot Springs, Sabah, Malaysia (6u049 N,

116u709 E, colonies are from here on referred to as supercolonies

P1-P6, Figure S1). All supercolonies included in this study were at

least 200 m in diameter, except for one slightly smaller super-

colony (P1), which spanned only 100 m (Figure S1). The

supercolonies were between 150 m (P1-P2) to ca. 15 km (P6-P5)

apart. Workers, brood and queens from a single nest per

supercolony were collected and transferred into plastic containers

(45625625 cm) treated with FluonTM to prevent escape (hence-

forth termed subcolony). All subcolonies were offered newspaper

as nesting material and were fed water, honey and tuna every third

day. Each of the subcolonies contained at least 1500 workers, 200

pupae/larvae and 3–12 queens (except for P1, which contained

about 500 workers, 100 pupae and two queens).

Behavioural assays
Behavioural assays were performed within and between each of

the six subcolonies (15 intercolonial combinations) using two

different indices (Aggression Index AI and Mortality Index MI).

Both indices were measured by placing 5 individuals of each

colony (10 ants per trial per pairwise colony combination) inside a

FluonTM coated plastic cylinder (diameter = 10 cm, height = 5 cm)

on a sheet of paper which was replaced after each trial. The

average maximum level of aggression (henceforth termed

aggression index AI) was obtained as the average of the most

aggressive interaction within 5 minutes across ten replicates

according to the following categories: 1 – ants displayed no

reaction towards each other/no physical contact, 2 – reciprocal

antennation, 3 – ants biting and spread-eagling one another, 4 –

ants protruding gaster/spraying formic acid while biting oppo-

nent. Aggression levels 1 and 2 were considered nonaggressive

while aggression levels 3 and 4 were considered antagonistic/

aggressive. In order to measure the Mortality Index MI (as

described in [23]), encounters between five workers of each

subcolony were observed for a period of 60 minutes. Every minute,

the number of dead individuals was counted. For each trial, the

mortality index MI was obtained as MI = (y/2)/t50, with y being

the total number of individuals killed at the end of the experiment

(60 min) and t50 the time (in steps of 1 min) when half of this

number (y/2) was already killed. Thus, this index allowed us to

describe aggression by combining both the number of dead

individuals as well as the speed at which ants kill each other.

Additionally, we measured aggression of workers towards

allocolonial sexuals, i.e. virgin alate queens and males (Text S1).

Relatedness and population structure
Workers from each supercolony were sampled in 98.8% EtOH

p.A. 20 workers from each of the six subcolonies were genotyped

using six polymorphic microsatellite loci (Ano1, Ano3, Ano4, Ano6,

Ano8, Ano10) according to the protocol in Feldhaar et al. [25].

Genetic diversity within supercolonies was measured by genotyping

five workers of two to four additional nests per supercolony (two

additional nests for P1 and P5, four nests for P2, P3, P4 and P6).

This resulted in a total number of 220 genotyped individuals.

Relatedness within and between the six supercolonies was

calculated using Relatedness 5.0.8 [26], including all individuals

as reference population. All R values presented in this study arise

from the half-matrix resulting from 2206220 pairwise comparisons

of individual relatedness excluding comparisons of each individual

with itself. Secondly, we conducted a three-level hierarchical

analysis of molecular variance (AMOVA) over the entire data set

to determine how genetic variability was distributed across three

levels (between individuals within nests, among nests within a

supercolony, among supercolonies) in the population using

ARLEQUIN 3.01 [27]. Thirdly, we performed assignment tests

using STRUCTURE 2.2 [28,29,30] to determine to what extent

the patterns obtained with aggression tests correlated with genetic

differentiation between supercolonies. This software infers the

number of clusters (K) that best fits a data set by maximizing Hardy-

Weinberg equilibrium and calculates the assignment probability for

each individual under any assumed K. We performed ten

independent runs for K from one to six. All genotyped individuals

of a supercolony were included in this analysis.

Cuticular Hydrocarbon (CHC) Profiles
Cuticular hydrocarbons were extracted from 20 pooled workers

from the same nests as those sampled for bioassays (subcolonies)

and genetic analysis plus two additional nests for supercolony P2.

Single workers did no yield sufficient amounts of substances to
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allow analysis of the CHC profiles. The individuals were frozen at

220uC for 30 min prior to 8 min extraction in hexane. Extracts

were reduced under a gentle stream of nitrogen to 10 to 15 ml and

immediately used for analysis or stored at 220uC. 1 ml of the

extract was analysed by gas chromatography-mass spectrometry

(GC-MS) using a Hewlett-Packard HP 6890 gas chromatograph

(GC, equipped with a J & W DB-5 fused silica capillary column:

30 m60.25 mm ID; film thickness: 0.25 mm) coupled with a

Hewlett-Packard HP 5973 mass selective detector (Hewlett-

Packard, Waldbronn, Germany). We used a temperature program

starting from 60uC with an increase of 5uC/min until a final

temperature of 300uC, which was kept for 10 min. A split/splitless

injector was set to splitless mode for 60 sec at a temperature of

250uC. Helium was used as carrier gas with a constant flow of

1 ml/min. Electron ionization mass spectra (EI-MS) were

recorded at 70 eV with a source temperature of 230uC.

Only hydrocarbons, which were identified by their typical mass

spectra, were included in our analysis. Furthermore, all molecules

smaller than C19-bodies were discarded, as they only occurred in

traces and were absent in most ant CHC profiles [31]. We

compared differences in cuticular hydrocarbon profiles between

supercolonies by performing permutation tests (adonis, R-package

vegan 1.15, 10000 runs) based on relative peak areas (proportion

of each peak’s integrated peak area to total integrated peak area).

To visualize differences in CHC profiles, we performed non-

metric multidimensional scaling (NMDS) based on Bray-Curtis

dissimilarities (dij) of relative peak areas of CHC profiles.

Correlations between behaviour, genetic and chemical
properties of workers from different supercolonies

We constructed a matrix of the proportion of alleles that were

not shared by supercolony pairs and, likewise, a matrix of the

proportion of qualitatively differing cuticular hydrocarbon sub-

stances between supercolony pairs. We then tested for correla-

tion between these two matrices and the matrices of pairwise

aggression (AI, MI), relatedness (R) and Bray-Curtis-distances of

CHC profiles (dij) by performing mantel tests (10000 permutations)

between matrix pairs. If not stated otherwise, all statistical analyses

were performed with Statistica 7.1 (StatSoft, 2005) or R 2.9.2 [32].

Results

Behavioural assays
Both types of behavioural assays (AI, MI) yielded consistent

results (R = 0.65, p = 0.002, Mantel test). Aggression differed

among supercolonies: While workers from P1-P2 and P3-P4

tolerated each other, workers from the remaining pairwise

bioassays were aggressive towards each other (Kruskal-Wallis

ANOVA, AI: H = 177.5, p,0.0001, Fig. 1A; MI: H = 144.4,

p,0.0001, Figure S2). Assuming that P1-P2 and P3-P4 belonged

to the same supercolony, despite being separated up to ca. 1.5 km

(P3-P4), we performed the statistical analysis again without colony

pairs P1-P2 and P3-P4. Still, aggression differed among the

remaining pairs (AI: H = 36.1, p = 0.0003, Fig. 1A; MI: H = 60.4,

p,0.0001, Figure S2). Furthermore, we observed high levels of

aggression of workers towards allocolonial sexuals (virgin queens/

males) in at least 50% of all replicates in each pairwise supercolony

combination (Table S1).

Relatedness and population structure
We found 29 alleles in the entire population (215 individuals

from six spatially separated colonies genotyped at six microsatellite

loci). The number of alleles per locus ranged from three to 11,

while the number of alleles per locus per supercolony ranged

between two and four (Table S2). Laboratory subcolonies

contained the same alleles as the other genotyped nests from

their respective supercolony. Mutually aggressive subcolony pairs

shared less than half of their alleles (33.1617.5%, mean 6 SD),

while mutually tolerant subcolonies P1-P2 and P3-P4 shared either

all alleles (P1-P2) or 85.7% (P3-P4, 16 of 18 alleles in common) of

Figure 1. A. Aggression and B. Relatedness between six laboratory colonies collected from six spatially separated Anoplolepis
gracilipes supercolonies. Aggression was measured as AI (mean 6 SD, range: 1–4) and relatedness was calculated as R (mean 6 SE, range: 21–1).
The line widths are equivalent to the degree of aggression and relatedness, respectively, and dotted lines represent absent aggression. Colour codes
correspond to colony affiliation and to the results of a Bayesian clustering algorithm under the assumption of K = 4 genetic clusters (Fig. 2).
doi:10.1371/journal.pone.0013581.g001
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the pairwise allele pool (Table S3). Workers within subcolonies

were closely related (R = 0.8560.09, mean 6 SE, range: 0.74 —

0.98, Fig. 1B), while relatedness between reciprocally aggressive

subcolony pairs was low (R = 20.3160.47, mean 6 SE, range:

20.69–0.51). The mean relatedness between the two tolerant

supercolony pairs P1-P3 and P3-P4 was as high as intracolonial

relatedness (Fig. 1B). Accordingly, the genetic diversity in the

population sample originated from differences between super-

colonies (AMOVA, FSCOLONY-TOTAL = 0.247, Table S4) rather

than differences between individuals in nests (FIND-NEST =

20.925) or nests within supercolonies (FNEST-SCOLONY =

20.002). Without a priori information on the origin of

the sampled individuals, the Bayesian clustering algorithm

implemented in STRUCTURE 2.2 revealed the highest

likelihood of the data (Ln P(D)) between K = 4 and K = 6, with

K = 4 showing the smallest standard deviation (Fig. 2A). When

using a priori information on assumed numbers of K, the

assignment of all genotyped individuals to K = 4 genetic clusters

was clearest, especially for individuals from colonies P3 and P4

(Fig. 2B).

Cuticular Hydrocarbon (CHC) Profiles
In total, we scored 154 peaks from GC-MS chromatograms of

26 A. gracilipes nest sites in Poring Hot Springs. The chemical

profiles of pooled workers of reciprocally tolerant subcolonies

were much more similar (Bray-Curtis distances dP1-P2 = 0.12 and

dP3-P4 = 0.14, respectively) than those of mutually aggressive

subcolonies (dij = 0.3260.06, mean 6 SD, range: 0.22–0.42,

Figure S3). Likewise, the cuticular hydrocarbon profiles from

additional nests of the six Anoplolepis gracilipes supercolonies in the

field clustered according to supercolony affiliation (ADONIS,

F = 10.78, p,0.0001, Fig. 3) and were highly similar between the

nests of supercolonies of which subcolonies were mutually tolerant

(ADONIS, P1-P2: F = 2.84, p = 0.18; P3-P4: F = 1.80, p = 0.23).

We then limited the array of analyzed peaks to only those,

which constituted at least 1% of relative peak area in at least one

sample, thus reducing the array of cuticular compounds from 154

(all substances) to 30. Nevertheless, ADONIS results and NMDS

arrangements remained largely the same (Figure S4). The

remaining 30 substances comprised a mix of unbranched and

methyl-branched alkanes and alkenes, 16 of which differed

qualitatively between supercolonies (i.e. compounds that were

present in the CHC profiles of one or several supercolonies while

being absent in others, Fig. 4). Qualitative differences between

CHC profiles involved all identified compound-classes, but were

overrepresented in dimethyl-branched alkanes (Fig. 4). Qualita-

tively differing compounds constituted between 1.01% and 8.21%

per compound of the respective CHC profiles (average: 2.59%6

0.5%, mean 6 SE). Moreover mutually aggressive colonies shared

Figure 2. Estimated number of genetic clusters (A) and
assignment to four, five and six clusters (B) in a population
of six A. gracilipes supercolonies. A. Average of the logarithm of the
likelihood (Ln P(D)) of the data to be assigned to K genetic clusters as
calculated with STRUCTURE 2.2. B. Assignment probability of n = 220
Anoplolepis gracilipes workers from colonies P1 - P6 to K = 4, K = 5 and
K = 6 genetic clusters. Identical colours indicate that subgroups belong
to the same genetic cluster. At K = 5 and K = 6, individuals from colonies
P3 and P4 can not be assigned to a specific cluster. At K = 4, individuals
from colonies P1 and P2 are assigned to the red cluster, individuals from
colonies P3 and P4 are assigned to the blue cluster and individuals from
colonies P5 and P6 are each assigned an individual cluster.
doi:10.1371/journal.pone.0013581.g002

Figure 3. NMDS plot of Bray-Curtis dissimilarities of CHC
profiles between six A. gracilipes colonies. Three to seven nest sites
were included in the analysis. All symbols are coloured according to
colony affiliation and the assignment to common genetic clusters
(Fig. 2). Colony profiles differ between the four clusters (ADONIS,
F = 10.78, p = 0.0001), but not between colonies P1-P2 (F = 2.84,
p = 0.11) and P3-P4 (F = 1.80, p = 0.20).
doi:10.1371/journal.pone.0013581.g003

Societies Drifting Apart

PLoS ONE | www.plosone.org 4 October 2010 | Volume 5 | Issue 10 | e13581



only 73.8% of the compounds in their CHC profiles on average,

while mutually tolerant colonies (P1-P2, P3-P4) shared 95.8% of

the compounds (presence/absence of compounds, Table S5).

Correlations between behaviour, genetic and chemical
properties of workers from different supercolonies

The behavioural patterns among subcolonies were in perfect

agreement with intercolonial relatedness and Bray-Curtis similar-

ities of CHC profiles. Intercolonial aggression (in both AI and MI)

was negatively correlated to relatedness (AI,R: r = 20.68,

p = 0.023; MI,R: r = 20.84, p = 0.002, Mantel test, Table 1)

and positively correlated to Bray-Curtis distances of the CHC

profiles (AI,dij: r = 0.72, p = 0.015; MI,R: r = 0.62, p = 0.023).

Thus, high aggression occurred at low relatedness and high CHC

profile dissimilarity, while low aggression matched high relatedness

and low dissimilarity of CHC profiles. Accordingly, relatedness

and CHC profile dissimilarity were negatively correlated

(r = 20.77, p = 0.007). Moreover, the proportion of alleles that

differed between supercolonies pairs was positively correlated to

the proportion of CHC compounds that differed between

supercolony profiles (r = 0.26, p = 0.044).

Discussion

The present study revealed a significant positive correlation of

aggression with differentiation of the cuticular hydrocarbon profile

as well as genetic differentiation among sympatric supercolonies of

the Yellow Crazy Ant Anoplolepis gracilipes in a study site in NE-

Borneo. Intercolonial aggression varied among supercolony pairs,

ranging from tolerance to mortal encounters in the bioassays.

Mutually aggressive supercolonies were distantly related and

showed highly differentiated CHC profiles, while two non-

aggressive though spatially separated supercolonies were found

to have highly similar CHC profiles and relatedness values that

were comparable to those found within supercolonies. Similar

patterns have been observed in the Argentine Ant Linepithema

humile, where mutually tolerant supercolonies from different

locations (even from different continents) can be highly similar

in genetic and chemical terms, and are thus thought to have been

introduced from the same source population [33,34,35]. Likewise,

supercolonies that are highly differentiated in genetic and chemical

terms (even if they are close to each other geographically) are

thought to have been introduced from different source populations

[36,37]. Hence, the varying degrees of behaviour as well as genetic

and chemical differentiation that we observed in A. gracilipes in this

study may potentially be explained by the same mechanisms, i.e.

supercolony pairs P1-P2 and P3-P4 may have been introduced

from the same source population whereas supercolonies P5 and P6

may have been introduced from yet another population,

Figure 4. GC-MS chromatogram of a pooled sample of 20 Anoplolepis gracilipes workers from supercolony P3. Thirty cuticular
substances remained after applying a 1% scoring threshold. Green labels indicate cuticular compounds that are present in this sample, whereas red
labels indicate substances that are absent from this sample, but present in cuticular extracts from other supercolonies. Asterisks in the compound list
indicate the 16 substances that differ qualitatively between supercolony CHC-profiles.
doi:10.1371/journal.pone.0013581.g004

Table 1. Correlation coefficients between aggression,
relatedness and chemical and genetic differentiation between
six Anoplolepis gracilipes supercolonies.

AI MI R dij CHC % Alleles

MI 0.65**

R 20.68* 20.84**

dij CHC 0.72* 0.62* 20.77**

% Alleles 0.85** 0.45+ 20.36+ 0.50+

% CHC’s 0.38* 0.05 0.09 0.25 0.26*

Abbreviations represent aggression (AI), relatedness (R), Bray-Curtis distances of
cuticular hydrocarbon profiles (dij CHC), percentage of distinct alleles (% Alleles)
and percentage of distinct CHC compounds (% CHC) between six Anoplolepis
gracilipes supercolonies. Asterisks indicate p-levels:
+p,0.1,
*p,0.05,
**p,0.01.
doi:10.1371/journal.pone.0013581.t001
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respectively. Alternatively, two tolerant supercolonies may belong

to the same supercolony separated by uninhabitable terrain (very

likely for the pair P1-P2 which was separated by only 150 m) or

one supercolony in a tolerant supercolony pair may have

originated from the other through via human-mediated jump-

dispersal within the study site (possibly true for P3-P4).

Cuticular hydrocarbon (CHC) profiles have repeatedly been

shown to enable ants to discriminate between nestmates and non-

nestmates [12,13,15]. Typically, differing CHC profiles lead to

aggression while similar CHC profiles do not. Aggressive responses

towards individuals bearing allocolonial CHC profiles may be

evoked according to a threshold rule (e.g. Cataglyphis iberica) or may

be gradual (e.g. Myrmica rubra) (reviewed in [38]). The positive

correlation between CHC profile dissimilarity and aggression that

we observed between individuals from different supercolonies in A.

gracilipes may suggest the existence of a graded response

mechanism, which has also been found in other invasive ant

species such as Lasius neglectus [5], Wasmannia auropunctata [39] and

Linepithema humile [14,40,41].

Supercolonies of A. gracilipes showed both quantitative and

qualitative differences in their CHC profiles across various types of

hydrocarbons (Fig. 4, Table S4). This is remarkable since in most

ant species, CHC profiles tend to differ quantitatively between

conspecific colonies and qualitatively between species [15,42,43].

For instance, 14 out of 41 epicuticular compounds differed

qualitatively between the CHC profiles of six Formica species

(Formica sensu stricto) in a study by Martin et al. [44], if the same

threshold was applied as in our study. In comparison, 16 out of 30

substances differed qualitatively between the profiles of six

different supercolonies of A. gracilipes in our study. On occasion,

high degrees of qualitative differences between CHC profiles of

colonies from non-invasive ant species have been reported, but

analyses either include all substances (including trace substances,

e.g. [43]) or qualitative differences are only detected in one

substance class, e.g. homologous series of (Z)-9-alkenes or

positional isomers of dimethyl-branched C25-bodies [45]. In

invasive ant species, qualitative differences between CHC profiles

of different supercolonies have repeatedly been found, e.g.

between invasive and native populations of Linepithema humile

[35] and Wasmannia auropunctata [39]. CHC profiles were found to

be less complex in introduced areas, with substances having been

lost from the profiles in comparison to colonies in the native range

[39]. However, supercolonies of Linepithema humile also differ in

their CHC profiles in the invasive range [41].

Here, we found unusually high degrees of qualitative differences

between CHC profiles of different supercolonies of A. gracilipes. We

identified 30 major CHC compounds that accounted for at least

1% of the entire CHC profile and found qualitative differences in

compounds that accounted for up to 8.21% of the profiles of

different A. gracilipes supercolonies. The qualitatively differing

substances comprised different compound classes such as alkanes,

alkenes, methyl-branched alkenes as well as mono-, di- and

trimethyl-branched alkanes of varying chain length (Fig. 4), as

would be expected if supercolonies diverge in a drift-like process of

neutral evolution.

In our study, genetic distances corresponded to chemical

distances between colonies, as has been observed in several other

studies on various social insect species [5,46,47,48]. The

correlation between differentiation in CHC profile and differen-

tiation in microsatellite loci in A. gracilipes suggests that cuticular

hydrocarbons are to a large extent genetically determined in this

species as is in many other ant species [17,18,19,20,21], albeit

environmental cues may also be involved [49,50].

Helanterä et al. suggested that unicoloniality (the ability of ant

species to form populations consisting of one or more super-

colonies [8,22]), might be an evolutionary dead-end [22], since

selfish behaviour of distantly related nestmates should lead to

supercolony instability as predicted by kin-selection theory. This

view is supported by the scattered distribution of unicoloniality in

the ant phylogeny as well as the fact that no unicolonial ant species

has a sister species that is also unicolonial [22]. In contrast to other

supercolonial ant species such as L. humile and S. invicta, however,

workers in A. gracilipes supercolonies are closely related [22,23],

and thus selfish behaviour is less likely to evolve.

Despite this potential evolutionary dead-end, the limited or even

absent gene flow between supercolonies of unicolonial ant species

[2,8,9,10] may be conducive to speciation [22]. As speciation occurs

on timescales beyond reach for current research, indirect approaches

are the only way to find clues regarding that question, e.g. by

measuring how much supercolonies have diverged in neutral or

selected traits [22]. As we have shown, A. gracilipes supercolonies are

indeed differentiated in neutral traits, i.e. alleles of microsatellite loci

and several cuticular compounds. Regardless of the origin of this

initial differentiation that we see today, one should expect both the

genetic and chemical differentiation to increase in the prolonged

absence of gene flow between supercolonies. Although we cannot

infer absence of gene flow directly, the sociogenetic structure of the

supercolonies in NE-Borneo resembles that of the supercolonies

found on Christmas Island, where gene flow among the two

supercolonies can be excluded based on mitochondrial and

microsatellite markers [10]. In addition, behavioural characteristics

of A. gracilipes, such as intranidal mating soon after eclosion of female

reproductives (pers. obs.) and aggression towards allocolonial sexuals

by workers (Table S1), suggest that mating is non-random, resulting

in strongly reduced or absent gene flow between supercolonies.

Similar patterns (intranidal mating, limited or absent intercolonial

gene flow) have been reported for the likewise invasive ant Linepithema

humile both in its native [8,48] and invasive range [2,9,51].

The initial differences that would be necessary in order for

subsequent differentiation between neighbouring supercolonies to

occur are likely to accumulate in allopatry, e.g. if supercolonies stem

from different source populations or if supercolonies are divided into

two or more fragments through human-mediated jump dispersal. In

the latter scenario, lack of contact zones (and thus mating) between

the resulting allopatric fragments is likely to lead to accumulation of

colony (or fragment-) specific mutations and CHC compounds. If

both fragments come into secondary contact again, genetic and

chemical differentiation may have advanced enough to result in

mutual aggression and lack of gene flow. This pattern was very

recently described for Linepithema humile supercolonies from Corsica

and the European mainland, where the introduction of one or

several L. humile propagules from the mainland to Corsica likely

entailed an interruption of gene flow between Corsican and

European supercolonies, resulting in the pronounced chemical

and behavioural differentiation observable today [52]. This scenario

may also explain parts of our data, as supercolonies P3 and P4 are

likely to be established fragments of the same supercolony which

have already accumulated supercolony-specific alleles and cuticular

compounds despite still tolerating each other (Tables S3 and S5).

Over time, the spatial separation (allopatry) of the two supercolonies

P3 and P4 should facilitate increasing genetic and chemical

differentiation, which in turn should lead to mutual aggression as

soon as CHC profiles are sufficiently different. Furthermore, genetic

and chemical differentiation should also entail behavioural

suppression of intercolonial gene flow through worker aggression

against allocolonial sexuals even if they came into contact again (e.g.

as a result of range expansion).
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Thus, we suggest that the combination of exclusive intranidal

mating and budding on the one hand and positive feedback

between genetic, chemical and behavioural traits on the other

hand may drive supercolonies towards ever increasing differenti-

ation, possibly even involving reproductive isolation and thus,

speciation. In contrast to the majority of ant species, A. gracilipes

supercolonies are characterized by a combination of traits

(polygyny, intranidal mating, and lack of active dispersal other

than budding) that ensure the continuous production of generation

upon generation of reproductives that all stay within the super-

colony. Coupled with an unusual reproductive system that may

potentially avoid the negative effects of inbreeding depression [23],

the extreme polygyny and polydomy of A. gracilipes immensely

reduces the risk of a breakdown of the entire supercolony, resulting

in virtual immortality of the supercolony superorganism. Further-

more, in eusocial species with strict intranidal mating, a colony-

specific signal should be sufficient for recognition between the

sexes and thus, selection towards a species-specific signal that

allows recognition between sexes from different supercolonies

should be relaxed [53]. In concert with the virtual immortality of

A. gracilipes supercolonies, relaxed selection towards a species-

specific signal may even lead to a complete breakdown of

intraspecific recognition between sexuals from different colonies,

potentially leading to prezygotic, reproductive isolation. This, in

turn, implies that different A. gracilipes supercolonies would no

longer belong to the same species according to the biological

concept of species, which states that species are groups of

interbreeding natural populations that are reproductively isolated

from other such groups [54]. Currently it is unclear whether

different A. gracilipes supercolonies should be perceived as

belonging to the same species, as apparent lack of random mating

between sexuals from different supercolonies, intranidal mating

and aggression of workers towards allocolonial sexuals may

already pose a sufficient barrier preventing intercolonial gene

flow. Thus, we argue that intercolonial differentiation may

potentially result in reproductive barriers between colonies,

ultimately leading to independent units on different evolutionary

trajectories, and thus possibly speciation between neighbouring A.

gracilipes supercolonies.
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