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Summary 

The Nucleotide Excision Repair (NER) pathway is able to remove a vast 

diversity of structurally unrelated DNA lesions and is the only repair mechanism in 

humans responsible for the excision of UV-induced DNA damages. The NER 

mechanism raises two fundamental questions: 1) How is DNA damage recognition 

achieved discriminating damaged from non-damaged DNA? 2) How is DNA 

incision regulated preventing endonucleases to cleave DNA non-specifically but 

induce and ensure dual incision of damaged DNA? Thus, the aim of this work was 

to investigate the mechanisms leading from recognition to incision of damaged 

DNA. 

To decipher the underlying process of damage recognition in a prokaryotic 

model system, the intention of the first part of this work was to co-crystallize the 

helicase UvrB form Bacillus caldotenax together with a DNA substrate comprising 

a fluorescein-adducted thymine as an NER substrate. Incision assays were 

performed to address the question whether UvrB in complex with the 

endonuclease UvrC is able to specifically incise damaged DNA employing DNA 

substrates with unpaired regions at different positions with respect to the DNA 

lesion. The results presented here indicate that the formation of a specific 

pre-incision complex is independent of the damage sensor UvrA. The preference 

for 5’ bubble substrate suggests that UvrB is able to slide along the DNA favorably 

in a 5’ → 3’ direction until it directly encounters a DNA damage on the 

translocating strand to then recruit the endonuclease UvrC. 

In the second part of this work, the novel endonuclease Bax1 from 

Thermoplasma acidophilum was characterized. Due to its close association to 

archaeal XPB, a potential involvement of Bax1 in archaeal NER has been 

postulated. Bax1 was shown to be a Mg2+-dependent, structure-specific 

endonuclease incising 3’ overhang substrates in the single-stranded region close 

to the ssDNA/dsDNA junction. Site directed mutagenesis of conserved amino 

acids was employed to identify putative active site residues of Bax1. In complex 

with the helicase XPB, however, incision activity of Bax1 is altered regarding 

substrate specificity. The presence of two distinct XPB/Bax1 complexes with 

different endonuclease activities indicates that XPB regulates Bax1 incision activity 

providing insights into the physical and functional interactions of XPB and Bax1. 
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Zusammenfassung 

Die Nukleotid-Exzisions-Reparatur (NER) ist in der Lage, eine Vielfalt an 

strukturell unterschiedlichen DNA Schädigungen zu entfernen, und ist überdies 

der einzige DNA-Reparaturmechanismus im Menschen, der UV-induzierte DNA-

Schädigungen entfernen kann. Der NER Mechanismus impliziert zwei 

grundlegende Fragen: 1) Wie wird geschädigte DNA erkannt und worauf gründet 

sich die Unterscheidung zwischen geschädigter und nicht-geschädigter DNA? 

2) Wie wird das Schneiden der DNA reguliert? Wie wird unspezifisches Schneiden 

verhindert und sichergestellt, dass die geschädigte DNA auf beiden Seiten der 

Schädigung herausgeschnitten wird? Das Ziel dieser Arbeit war es daher, die 

Mechanismen zu untersuchen, die vom Erkennen zum Herausschneiden 

geschädigter DNA führen. 

Um im bakteriellen Modelsystem den zugrundeliegenden Prozess der 

Schadenserkennung zu entschlüsseln, sollte im ersten Teil dieser Arbeit die 

Helikase UvrB aus Bacillus caldotenax zusammen mit einem geschädigten DNA 

Substrat kristallisiert werden. Als Schädigung wurde ein Fluorescein-Molekül 

genutzt, das an eine Thymin-Base gekoppelt wurde. Biochemische Experimente 

wurden durchgeführt um herauszufinden, ob UvrB im Komplex mit der 

Endonuklease UvrC spezifisch geschädigte DNA schneiden kann. Dafür wurden 

DNA-Substrate eingesetzt, die ungepaarte Basen an verschiedenen Stellen 

bezüglich der DNA-Schädigung enthielten. Die hier gezeigten Ergebnisse deuten 

darauf hin, dass ein spezifischer Komplex gebildet werden kann, der auch 

unabhängig von dem Schadenssensor UvrA zum Schneiden der DNA befähigt ist. 

Die Schnitt-Präferenz für die 5‘ ungepaarte Region lässt vermuten, dass UvrB 

bevorzugt in 5‘→3‘ Richtung an der DNA entlanggleiten kann. Sobald UvrB auf 

eine Schädigung auf diesem DNA Strang trifft, wird die Endonuklease UvrC 

rekrutiert. 

Im zweiten Teil dieser Arbeit wurde die neuartige Endonuklease Bax1 aus 

Thermoplasma acidophilum charakterisiert. Aufgrund der engen Assoziation zu 

archaischem XPB wurde eine Beteiligung an der archaischen NER postuliert. Es 

konnte gezeigt werden, dass Bax1 eine Mg2+-abhängige, strukturspezifische 

Endonuklease ist, die 3‘-Überhang Substrate im Einzelstrangbereich nahe des 

Einzelstrang/Doppelstrang-Überganges schneidet. Konservierte Aminosäuren 

wurden gezielt verändert, um diejenigen Reste zu identifizieren, die 
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möglicherweise das aktive Zentrum bilden. Im Komplex mit der Helikase XPB 

veränderte sich jedoch das Schneideverhalten im Hinblick auf die 

Substratspezifizität. Die Existenz von zwei verschiedenen XPB/Bax1 Komplexen 

mit unterschiedlicher Aktivität bezüglich des Schnittverhaltens könnte darauf 

hinweisen, dass XPB Bax1 reguliert. Diese Beobachtung erlaubt zugleich 

Einblicke in die Interaktion von XPB und Bax1 auf physikalischer und funktioneller 

Ebene. 
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1. Introduction 

1.1. Nucleotide Excision Repair as a fundamental concept 

DNA repair mechanisms have evolved in all three kingdoms of life to maintain 

their genomic information. These mechanisms are strongly required because DNA 

damages occur about 200,000 times per cell per day caused by endogenous and 

exogenous sources (Lindahl, 2000). Endogenous damaging agents are for 

example reactive oxygen species resulting from cellular reactions involved in 

metabolism and respiration (Sedelnikova et al, 2010). Examples for exogenous 

agents are UV-light and polycyclic aromatic hydrocarbons (PAH). PAHs are found 

in cigarette smoke and exhaust emissions, for example, and their metabolites form 

large DNA adducts such as benzo[α]pyrene-diol-epoxides (BPDEs) (Hecht, 1999). 

The problem of DNA damages caused by UV-light is becoming more and more 

important due to environmental pollution resulting in a further diminishing of the 

global ozone layer (de Gruijl, 1999; Diffey, 2004; van der Leun, 2004). It is 

interesting to note, that a combination of two different damaging agents does not 

only additively induce DNA lesions but also seems to multiply the damaging 

effects on DNA (Routledge et al, 2001). Several specialized DNA repair pathways 

have been identified in mammals which are responsible for the removal of 

numerous and diverse damages: mismatch repair, DNA damage reversal, 

homologous recombination, non-homologous end joining, base excision repair and 

nucleotide excision repair (Friedberg et al, 2006). 

The nucleotide excision repair (NER) pathway is one of the most versatile DNA 

repair pathways as it is responsible for the removal of a vast diversity of 

structurally unrelated DNA lesions (Sancar, 1994; Sancar, 1996). In humans, it is 

the only DNA repair mechanism being able to remove UV lesions such as 

cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone 

photoproducts (6-4PP) (Gillet & Scharer, 2006).  

Mutations in genes encoding NER proteins lead to the disease xeroderma 

pigmentosum (XP) which is characterized by a high sensitivity towards sunlight 

and thus results in an increased skin cancer rate. Other diseases caused by 

defective NER proteins are Cockayne’s Syndrome (CS) and trichothiodystrophy 
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(TTD) (Bergmann & Egly, 2001; de Boer & Hoeijmakers, 2000; van Gool et al, 

1997; Vermeulen et al, 1997). 

 

1.2. Prokaryotic Nucleotide Excision Repair 

The prokaryotic nucleotide excision repair pathway is investigated to decipher 

the mechanism leading to the discrimination of damaged and non-damaged DNA. 

To find a DNA lesion within a plethora of non-damaged DNA is both an essential 

task and a major challenge in DNA repair. 

 

Figure 1.1  The prokaryotic nucleotide excision repair pathway [modified from 
(Theis et al, 2000)]. UvrAB form a DNA damage recognition complex which probes the 
DNA for lesions. Encountering a potential DNA damage, UvrB is loaded onto the DNA by 
UvrA which subsequently dissociates from the UvrB-DNA complex. UvrB verifies the 
presence of a NER substrate and thus establishes a stable pre-incision complex. UvrC is 
recruited to perform the dual incision 3’ and 5’ to the damaged nucleotide. UvrD removes 
the incised oligonucleotide together with UvrC to allow DNA Polymerase I and DNA ligase 
to accomplish the final DNA synthesis and ligation. 
 

The NER pathway, in principal, can be divided into four major steps, namely 

DNA damage detection, verification, excision and replacement. These different 

steps are accomplished by the UvrABC proteins. UvrA is responsible for the 

detection of a helical distortion in the DNA double helix (DellaVecchia et al, 2004; 

Van Houten et al, 2005). Although being discussed controversially in the literature, 
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it is assumed that UvrA together with UvrB forms a heterotetrameric UvrA2UvrB2 

(UvrAB) complex sliding along the DNA to initially detect DNA lesions (Kad et al, 

2010; Orren & Sancar, 1990; Verhoeven et al, 2002; Wang et al, 2006). If the 

UvrAB complex encounters a DNA damage, UvrA loads UvrB onto the DNA and 

subsequently dissociates from the UvrB-DNA complex. UvrB verifies the NER 

substrate and forms a stable pre-incision complex (DellaVecchia et al, 2004). The 

endonuclease UvrC is then recruited and performs both the 3’ and the 5’ incision 

reaction with respect to the DNA lesion (Skorvaga et al, 2002; Verhoeven et al, 

2000). The helicase UvrD releases UvrB, UvrC and the excised oligonucleotide to 

allow DNA polymerase I to carry out repair synthesis (Sancar, 1996). DNA ligase 

is finally responsible to seal the newly synthesized oligonucleotide to the parental 

DNA (Sancar, 1996). This mechanism is schematically depicted in Figure 1.1. 

 

1.2.1. The role of UvrA in prokaryotic NER 

UvrA fulfills a major role in prokaryotic NER probing the DNA for potential DNA 

damages (Truglio et al, 2006a). UvrA is an ATPase comprising two ATP-binding 

domains each containing a Walker A, a Walker B and an ABC signature motif 

(Pakotiprapha et al, 2008; Truglio et al, 2006a) (Figure 1.2). The UvrB-binding 

domain mediates the interactions with domain 2 of UvrB (Pakotiprapha et al, 2008; 

Pakotiprapha et al, 2009; Truglio et al, 2004). The most important contacts to DNA 

seem to be engaged by a patch of conserved residues within the Signature II 

domain close to the C-terminal Zn-finger (Croteau et al, 2008; Jaciuk et al, 2011). 

Two additional Zn-finger motifs have been observed in the Signature I domain, 

however, only the C-terminal Zn-finger was reported to be involved in DNA 

damage detection (Croteau et al, 2006; Jaciuk et al, 2011). The structure of UvrA 

in complex with damaged DNA suggests that UvrA does not directly interact with 

the DNA lesion, but senses helical distortions and the deformability of the DNA 

double helix (Jaciuk et al, 2011). This indirect readout mechanism is accomplished 

by the dimeric form of UvrA thus enabling the protein to probe the DNA substrate 

from both sides (Jaciuk et al, 2011). For DNA damage verification the DNA is then 

subsequently handed off to UvrB. 
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Figure 1.2  Domain architecture of UvrA. (A) UvrA consists of two domains 
separated by a linker region (white). Both domains comprise each a Walker A motif (A1 
and A2), a Walker B motif (B1 and B2), and an ABC-signature sequence (ABC1 and 
ABC2) within the ATP-binding domains (depicted in red and blue). The conserved ATPase 
motifs are depicted in black. One signature domain is inserted in each ATP-binding 
domain (pink and cyan). The UvrB-binding domain (yellow) and the DNA-binding domain 
(green) are integrated in the signature I domain. For the coordination of each Zn2+-ion, 
four residues are involved and are shown in gray (each gray bar representing two 
residues); thus, three Zn-fingers are present in UvrA each with one Zn2+-ion coordinated 
by four residues. (B) Crystal structure of Bacillus stearothermophilus UvrA (PDB entry: 
2R6F) (Pakotiprapha et al, 2008). The color coding is the same as described for panel A. 
(C) Crystal structure of Thermotoga maritima UvrA in complex with damaged DNA 
(PDB: 3PIH) (Jaciuk et al, 2011). The UvrA dimer (one monomer is colored as in panel A 
despite the DNA-binding domain here colored in purple, the second monomer is depicted 
in gray) probes the DNA from both sides for helical distortions indicating an indirect 
readout mechanism. 

 

1.2.2. The structure and function of UvrB in prokaryotic NER 

After having detected a potential DNA lesion, UvrA hands over the DNA to 

UvrB. UvrB plays an essential role in the NER cascade as it guides the DNA from 

the initial damage detection to the subsequent incision reaction.  
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UvrB is a superfamily 2 (SF2) helicase comprising 5 domains, 1a, 1b, 2, 3 and 4 

(Figure 1.3). The two RecA-like helicase domains (domain 1a and 3) consist of 

seven helicase motifs providing an ATP binding site at the domain interface to 

translate energy from ATP hydrolysis into motion. (Theis et al, 1999; Theis et al, 

2000). Domains 1a, 1b together with the protruding β-hairpin, and domain 3 

mediate the interactions with DNA (Theis et al, 2000).  

 

Figure 1.3  Domain architecture and crystal structure of UvrB in complex with 
DNA [modified from: (Truglio et al, 2006b)] (A) Domain architecture of UvrB. Domains 1a, 
1b, 2, 3 and 4 are colored in yellow, blue, green, red and gray, respectively. The β-hairpin 
is shown in cyan. The seven helicase domains are depicted in black with their 
corresponding numbers. (B) The structure of Bacillus caldotenax UvrB was solved in 
complex with partially duplexed DNA (PDB: 2FDC). Please note: domain 4 is flexible and 
therefore not visible in the crystal structure. (C) The DNA binding model derived from the 
crystal structure indicates that the β-hairpin inserts between the two strands of DNA. The 
inner strand (depicted in red) is clamped between the β-hairpin and domain 1b. 

 

The crystal structure of UvrB in complex with DNA (PDB: 2FDC) proposed that 

the β-hairpin inserts between the two strands of DNA supporting the crucial role of 

the β-hairpin in DNA damage recognition as previously suggested by mutagenesis 

studies (Moolenaar et al, 2001; Skorvaga et al, 2002; Truglio et al, 2006b) 

(Figure 1.3). Domain 2 is responsible for UvrA binding, whereas domain 4 

interacts with both UvrA and UvrC (Theis et al, 2000). Intriguingly, truncation of 

domain 4 led to an increase in DNA binding and ATPase activity of the protein, 

suggesting that this part of the protein acts as an auto-inhibitory domain (Hsu et al, 

1995; Wang et al, 2006). 

1a 

1b 

2 

3 
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1.2.3. The functions of UvrC in prokaryotic NER 

The verification of a DNA damage and subsequent formation of a stable 

pre-incision complex consisting of UvrB and damaged DNA leads to the 

recruitment of the endonuclease UvrC. UvrC consists of two domains with different 

function (Figure 1.4).  

 

Figure 1.4  Domain architecture and crystal structure of UvrC. (A) UvrC consists of 
two endonuclease domains, particularly an N-terminal GIY-YIG nuclease domain (blue) 
and a C-terminal RNAse H-like endonuclease domain (purple). UvrC also comprises a 
Cys-rich region (gray), an UvrB-interacting domain (orange) and a C-terminal tandem 
Helix-hairpin-helix motif (green). (B) Crystal structure of the N-terminal GIY-YIG 
endonuclease domain of T. maritima UvrC (PDB: 1YD1) (Truglio et al, 2005). The residue 
E76 coordinating the Mg2+-ion (gray sphere) is shown as stick model. (C) Crystal structure 
of the C-terminal RNAse H-like endonuclease domain (purple) and the (HhH)2-domain 
(green) of T. maritima UvrC (PDB entry: 2NRZ) (Karakas et al, 2007). The catalytic triade 
DDH consisting of residues D367, D429 and H488 which coordinates one Mn2+-ion (gray 
sphere) is represented as stick model. 

 

The N-terminal GIY-YIG nuclease domain is responsible for the 3’ incision 

reaction whereas the C-terminal RNAse H-like endonuclease domain performs the 

5’ incision reaction (Lin & Sancar, 1992; Truglio et al, 2006a; Van Houten et al, 

2005; Verhoeven et al, 2000). The activity of both domains ensures dual incision 

and therefore complete removal of the damaged oligonucleotide. The structures of 

both UvrC nuclease domains were solved separately by X-ray crystallography 

(Karakas et al, 2007; Truglio et al, 2005) but the structure of the full-length protein 

(HhH)2 GIY-YIG 

RNAse H-

like 
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is not known. The structural studies on UvrC in addition to biochemical assays 

provide detailed insights into both incision mechanisms utilizing divalent cations to 

catalyze the cleavage of a phosphodiesterbond.  

In addition to the two nuclease domains and the (HhH)2-domain, a Cys-rich 

region and a UvrB-interacting domain are present in UvrC (Aravind et al, 1999). A 

model for the UvrB-UvrC interaction was derived from the crystal structure of 

UvrB’s C-terminus (Sohi et al, 2000), however, the role of the Cys-rich region 

remains elusive (Truglio et al, 2006a). 

 

1.2.4. From recognition to incision 

The discovery of DNA repair immediately raised the fundamental question how 

proteins are able to discriminate damaged from non-damaged DNA. Since then, 

many puzzle pieces have been assembled to draw a conclusive picture about 

NER and damage recognition.  

UvrA is the first protein in the NER cascade initially detecting distortions in the 

DNA double helix. The crystal structure of a UvrA dimer in complex with damaged 

DNA provides detailed information about the interactions between the two 

molecules which allows UvrA to distinguish damaged from non-damaged DNA 

(Jaciuk et al, 2011). In order to find a potential DNA lesion within a sea of 

non-damaged DNA, UvrA has recently been reported to perform a three-

dimensional search which is characterized by only short-term binding events and 

jumping between different DNA molecules (Kad et al, 2010). In the presence of 

UvrB, however, the UvrAB complex applies a one-dimensional search by sliding 

along the DNA (Kad et al, 2010). The directed motion of UvrAB requires energy 

provided by ATP hydrolysis (Kad et al, 2010). UvrA hydrolyses ATP and GTP 

independent from the presence of DNA. UvrB, however, exerts only limited 

ATPase activity which is highly DNA-dependent and is also stimulated by UvrA 

(Goosen & Moolenaar, 2001; Moolenaar et al, 2000a). In contrast to processive 

helicases, UvrB in complex with UvrA rather translocates or slides on DNA but 

does not unwind large stretches of DNA (Kad et al, 2010; Oh & Grossman, 1989; 

Theis et al, 2000). It is interesting to note that the UvrAB complex moves on DNA 

in a 5’ → 3’ direction whereas UvrB was reported to employ its helicase activity to 
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locally unwind DNA in the opposite direction (Ahn & Grossman, 1996; Goosen, 

2010; Oh & Grossman, 1987; Oh & Grossman, 1989; Truglio et al, 2006b; Van 

Houten, 1990).  

Based on pioneering studies, it was suggested that UvrB is loaded by UvrA 

catalytically but not stoichiometrically onto damaged DNA (Orren & Sancar, 1989). 

Succeeding studies indicated that UvrB is positioned in close proximity to the DNA 

lesion and UvrB only locally separates the DNA for a few bases to verify the 

presence of a DNA damage (DellaVecchia et al, 2004; Orren & Sancar, 1990; 

Theis et al, 2000). Using partially single-stranded DNA such as bubble substrates, 

it has been shown that UvrB can bind to these DNA substrates without the help of 

UvrA (Moolenaar et al, 2000b; Zou & Van Houten, 1999). Subsequent incision 

assays revealed that UvrC can be recruited to perform specific incision reactions 

indicating that UvrB is able to form specific pre-incision complexes on damaged 

DNA independent from UvrA (Moolenaar et al, 2000b; Zou & Van Houten, 1999; 

Zou et al, 1997). 

The β-hairpin in UvrB was demonstrated to be involved in DNA binding and 

DNA damage verification by the analysis of point mutants as well as deletion 

mutants of UvrB in biochemical approaches (Moolenaar et al, 2001; Skorvaga et 

al, 2002). The crystal structure of UvrB in complex with partially duplexed DNA 

suggested that UvrB inserts its protruding β-hairpin between the two strands of the 

DNA supporting the crucial role of the β-hairpin in damage recognition (Truglio et 

al, 2006b) (Figure 1.3). In addition to defects in DNA binding and damage 

verification, an increased ATPase activity of the UvrAB complex on damaged DNA 

was observed using these UvrB variants (Moolenaar et al, 2001; Skorvaga et al, 

2002). This observation might be caused by the defective UvrB protein which 

could not be positioned on DNA by UvrA. Simultaneously, UvrB aimed to verify the 

presence of a DNA damage thereby continuously consuming ATP (Moolenaar et 

al, 2001; Skorvaga et al, 2002).  

The hydrolysis of ATP induces helicase activity of UvrB which is proposed to be 

concomitantly translated into domain motion of the RecA-like domains 1 and 3 

(Theis et al, 1999). During the process leading from recognition to incision of DNA, 

this movement seems to be required for correct positioning of the DNA, including 

base flipping of the base adjacent to the DNA lesion and bending of the DNA 
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(Malta et al, 2006; Skorvaga et al, 2004). In addition to these types of DNA 

deformations, DNA wrapping by UvrB was implicated to facilitate DNA damage 

recognition (Verhoeven et al, 2001; Wang et al, 2009).  

It was suggested that bending of DNA leads to conformational changes in the 

pre-incision complex which then triggers the incision reaction by the endonuclease 

UvrC (Moolenaar et al, 2000a; Skorvaga et al, 2004). Interestingly, the 

Eschericia coli UvrB mutant D478A (corresponding to residue E478 in 

B. caldotenax located in domain 3) failed to bend DNA after damage detection and 

was thus not able to promote incision by UvrC (Lin et al, 1992). The presentation 

of the damaged DNA to UvrC seems to involve a regulatory mechanism to prevent 

UvrC from incising non-damaged DNA (Van Houten et al, 2005). Incision assays 

using pre-nicked DNA substrates suggested that formation of a specific 

UvrBC-DNA complex prior to the 3’ incision is the rate limiting step (Moolenaar et 

al, 2000b; Zou et al, 1997). Moreover, it was demonstrated that the 5’ incision is 

coupled to a preceding 3’ incision (Lin et al, 1992).  

These mechanisms ensure a concerted activity of UvrB and UvrC from 

recognition to incision of DNA in order to avoid unspecific cleavage of DNA by the 

endonuclease UvrC. 

 

1.2.5. Objectives in prokaryotic NER 

The ability of UvrB to verify a huge diversity of DNA lesions and to initiate dual 

incision by the endonuclease UvrC raises the question how this process is 

achieved and regulated on a molecular level. A plethora of biochemical and 

structural studies on the UvrABC proteins have been performed providing detailed 

insights into the prokaryotic NER system (Truglio et al, 2006a; Van Houten et al, 

2005). Additionally, in silico methods such as molecular modeling and molecular 

dynamics simulations have been applied, for example, to model a DNA lesion at 

different positions on the inner and outer strand bound to UvrB (Jia et al, 2009) 

(Figure 1.3, panel C). Despite these comprehensive studies adumbrated in the 

previous paragraphs, the mechanism of DNA damage verification by UvrB remains 

elusive as well as the subsequent steps triggering dual incision by the 

endonuclease UvrC. 
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The term damage recognition includes the mechanism which allows UvrB to 

discriminate between damaged and non-damaged DNA. It also comprises the 

question how UvrB discriminates NER substrates from DNA damages repaired by 

other repair mechanisms such as the mismatch repair or base excision repair 

system. It is interesting to note that NER substrates vary among each other both in 

size and in their chemical properties. The only common denominator seems to be 

that these lesions distort and thus destabilize the DNA double helix 

(Chandrasekhar & Van Houten, 2000; Geacintov et al, 2002; Hoare et al, 2000; 

Truglio et al, 2006a). This huge diversity of different DNA lesions makes it difficult 

to envision how UvrB accomplishes DNA damage recognition.  

To decipher the underlying process which enables UvrB to identify DNA 

damages, the intention of the first part of this work is to co-crystallize UvrB 

together with a hairpin-bubble DNA substrate comprising a fluorescein-adducted 

thymine as a NER substrate within an unpaired region. This substrate allows UvrB 

to bind the DNA in close proximity to the lesion without the help of UvrA. The 

crystal structure is expected to provide a snapshot of UvrB specifically interacting 

with the DNA damage. 

The process of DNA damage verification ultimately raises another crucial 

question in NER: How does the endonuclease UvrC know, when and where to cut 

the DNA? After a DNA lesion has been verified by UvrB, conformational changes 

are postulated to trigger and regulate dual incision by UvrC. Thus, incision assays 

employing DNA substrates with unpaired regions at different positions with respect 

to the location of the DNA lesion will be performed to investigate the formation of a 

specific DNA incision complex of UvrBC on damaged DNA. Moreover, we intent to 

solve the crystal structure of UvrB in complex with UvrC as well as a damaged 

oligonucleotide in order to shed light onto the mechanism leading from recognition 

to incision of damaged DNA. Both the choice of a suitable DNA substrate as well 

as of a non-hydrolysable ATP-analog is supposed to ensure the formation of a 

stable protein-DNA complex prior to the first incision reaction. The structure of the 

quaternary complex consisting of UvrB, UvrC, damaged DNA and an AMPPNP is 

anticipated to reveal essential information on interactions and conformational 

changes crucial for the DNA incision reaction. 
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The second part of this thesis focuses on mechanisms leading from the damage 

recognition to its incision in eukaryotic NER. Archaeal homologs of the eukaryotic 

NER proteins thereby serve as a model to gain insights into their function using 

biochemical and biophysical approaches.  

 

1.3. Eukaryotic Nucleotide Excision Repair 

Similar to the prokaryotic nucleotide excision repair system, the eukaryotic 

pathway comprises basically four major steps. The DNA damage is first detected, 

then verified, removed and finally the excised oligonucleotide is replaced.  

 

 

Figure 1.5  The eukaryotic NER pathway. [modified from: (Gillet & Scharer, 2006)] 
DNA lesions are initially detected by the XPC-HR23B complex. The ten subunit containing 
transcription factor TFIIH is recruited to locally unwind the DNA by the concerted activity 
of XPB and XPD. The two endonucleases XPG and XPF-ERCC1 ensure dual incision to 
remove the damaged oligonucleotide after the CAK complex dissociated from the TFIIH 
core complex. The non-damaged strand is used as a template for error-free DNA 
synthesis performed by DNA polymerases δ or ε in complex with the polymerase 
processivity factor PCNA, the replication factor RFC and ligase I. 
 



Introduction 

 

12 

 

The initial detection step in eukaryotic NER is differently achieved in actively 

transcribed DNA in contrast to transcriptionally silent regions (Bohr et al, 1985; 

Madhani et al, 1986). This phenomenon has also been observed and described for 

prokaryotic NER (Selby & Sancar, 1993; Selby & Sancar, 1994). In eukaryotic 

transcription-coupled repair (TCR), DNA damages are initially detected by 

RNA-polymerase II which is stalled during transcription at bulky DNA lesions 

(Brueckner et al, 2007). Cockayne’s Syndrome complementation group A and B 

proteins (CSA and CSB) are then recruited as well as the transcription factor TFIIH 

to promote NER (Laine & Egly, 2006a; Laine & Egly, 2006b; van Hoffen et al, 

1993).  

In global genome repair (GGR), the initial detection of helical distortions is 

achieved by the XPC-HR23B complex (Sugasawa et al, 1998; Sugasawa et al, 

2001). It was speculated that UV-DDB is also involved in sensing DNA lesions and 

in stimulating NER (Wakasugi et al, 2002; Wittschieben et al, 2005). The 

XPC-HR23B DNA detection complex then triggers the assembly of the repair 

complex consisting of TFIIH, both endonucleases XPG and XPF-ERCC1, and the 

DNA-binding proteins RPA and XPA (schematically represented in Figure 1.5) 

(Riedl et al, 2003; Wakasugi & Sancar, 1998; Yokoi et al, 2000). 

The transcription factor TFIIH contains ten subunits. XPB, XPD, p62, p52, p44, 

p34 and p8/TTD-A form the core complex, whereas MAT1, cdk7 and cyclin H build 

the Cdk-activating kinases (CAK) complex (Chang & Kornberg, 2000; Coin et al, 

2006; Giglia-Mari et al, 2004; Schultz et al, 2000). The DNA is locally unwound by 

the concerted activity of the ATPase XPB and the helicase XPD. Subsequently, 

the two endonucleases XPG and XPF-ERCC1 are recruited to perform both the 3’ 

and 5’ incision reactions after dissociation of the CAK complex from the TFIIH core 

complex. Polymerases δ or ε together with the polymerase processivity factor 

PCNA, the replication factor RFC and ligase I employ the non-damaged DNA 

strand as a template to newly synthesize a complementary DNA strand into the 

gap and to ligate the newly synthesized strand to the parental DNA strand (Gillet & 

Scharer, 2006). 
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1.3.1. Between recognition and incision – a central role of XPB in 

eukaryotic NER 

Analogously to the prokaryotic NER system, the eukaryotic NER pathway 

employs a bipartite recognition mechanism using distinct steps for DNA damage 

detection and verification (Maillard et al, 2008). In GGR, the DNA damage is 

detected by UV-DDB or XPC-HR23B (Kulaksiz et al, 2005; Reardon & Sancar, 

2003). The initial damage detection mechanism applied by XPC was investigated 

by structural as well as biochemical approaches (Clement et al, 2010; Min & 

Pavletich, 2007; Sugasawa et al, 2009). These studies provide insights into an 

indirect read-out mechanism to search for helical distortions caused by bulky DNA 

lesions.  

To verify the presence of an NER substrate, the TFIIH complex is recruited by 

XPC-HR23B (Volker et al, 2001). Two central subunits of TFIIH are the helicases 

XPB and XPD. XPB and XPD are SF2-helicases of opposite polarity unwinding 

DNA duplexes in 3’ → 5’ and 5’ → 3’ direction, respectively (Hwang et al, 1996; 

Schaeffer et al, 1994; Schaeffer et al, 1993; Sung et al, 1993). Interestingly, the 

two helicases display different activities within the TFIIH complex depending on 

whether they cooperate in NER or in transcription initiation (Laine et al, 2006; Le 

May et al, 2010). Moreover, the sub-complexes XPB/p52 and XPD/p44 were 

shown to exert distinct roles in NER (Coin et al, 2007; Oksenych & Coin, 2010; 

Winkler et al, 2000). Interestingly, XPB’s helicase activity was dispensable in NER, 

however its ATPase activity was essential for DNA opening in combination with 

the helicase activity of XPD/p44 (Coin et al, 2007; Oksenych et al, 2009). Thus, it 

was concluded that the ATPase XPB and the helicase XPD work together on 

opposite strands but in the same direction on the antiparallel DNA duplex to 

promote unwinding of the DNA (Maillard et al, 2008). 

For the helicase XPD it was suggested that it plays and important role in the 

damage verification process (Naegeli et al, 1992; Oksenych & Coin, 2010). 

Despite the lack of a high overall sequence identity, XPD displays remarkable 

similarity to UvrB regarding the scaffold of the helicase domains providing 

evidence for a potential role of XPD in damage verification (Bienstock et al, 2003). 

Both biochemical and structural approaches were employed to shed light on 

XPD’s contribution to NER (Fan et al, 2008; Liu et al, 2008; Mathieu et al, 2010; 
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Oksenych & Coin, 2010; Wolski et al, 2008; Wolski et al, 2010). Particularly, the 

helicase activity of XPD with regard to the iron sulfur cluster was investigated 

(Honda et al, 2009; Pugh et al, 2008a; Pugh et al, 2008b; Rudolf et al, 2006). 

Although controversially discussed, it was recently reported that XPD is stalled at 

a site of a DNA lesion indicating that XPD is able to verify the presence of a NER 

lesion (Mathieu et al, 2010; Rudolf et al, 2010).  

Additionally, XPB has been investigated for its ability to unwind DNA and thus to 

possibly contribute to DNA damage recognition (Oksenych & Coin, 2010). 

Although the N-terminal domain of XPB was designated to act as a damage 

recognition domain, a potential ability in damage discrimination has not been 

proven by any other study (Fan et al, 2006; Oksenych & Coin, 2010). In contrast, 

XPB seems to exert different roles in NER: XPB was proposed to mainly mediate 

interaction with the XPC-HR23B DNA detection complex thus facilitating the 

recruitment of the TFIIH complex to damaged DNA (Bernardes de Jesus et al, 

2008; Yokoi et al, 2000). Furthermore, XPB’s ATPase activity is necessary to 

anchor the TFIIH complex to the DNA damage (Oksenych et al, 2009). Although 

XPA was suggested to be responsible to load and position XPF-ERCC1 onto the 

DNA 5’ to the lesion (Tsodikov et al, 2007; Volker et al, 2001), there is some 

evidence that the recruitment of the endonuclease XPF-ERCC1 is mediated by 

XPB, likely in a concerted manner with XPA (Coin et al, 2004; Evans et al, 1997; 

Oh et al, 2007). In addition to its role in protein anchoring, XPB also seems to 

regulate XPF-ERCC1 since phosphorylation of XPB’s S751 abolishes 5’ incision 

by XPF-ERCC1 (Coin et al, 2004). This indicates that XPB is not directly involved 

in DNA damage discrimination, but might play an essential role in triggering the 

incision reaction after damage verification by XPD thereby bridging the process 

from recognition to incision (Oksenych & Coin, 2010). 

The crystal structure of an archaeal XPB homolog (Archeoglobus fulgidus XPB) 

was solved providing information about XPB’s architecture and function 

(Figure 1.6) (Fan et al, 2006). XPB consists of two helicase domains (HD1 and 

HD2) comprising seven helicase motifs in total including a Walker A motif as well 

as a conserved DExD/H-box motif (Fan et al, 2006). In the first helicase domain, 

the so-called RED motif is located and was reported to be essential for helicase 



Introduction 

 

15 

 

activity whereas in the second helicase domain a protruding thumb domain is 

supposed to be involved in DNA binding (Fan et al, 2006).  

 

Figure 1.6  The domain architecture and crystal structure of A. fulgidus XPB. 
[modified from (Fan et al, 2006)] (A)  Domain architecture of XPB. Two helicase domains 
HD1 and HD2 depicted in cyan and green, respectively, comprise in total seven helicase 
motifs. HD1 additionally contains the RED motif (depicted in red). The thumb domain 
(ThM; depicted in pink) is inserted in HD2. The damage recognition domain (DRD) is 
located at the N-terminus (blue). (B) The structure of XPB (PDB: 2FWR) reveals a 
4 domain architecture comprising two helicase domains (cyan and green) a damage 
recognition domain (depicted in blue) and a thumb domain (pink). The RED motif within 
the first helicase domain is highlighted in red. (C) The proposed DNA binding and damage 
detection mechanism includes major conformational changes from an open to a closed 
conformation (Fan et al, 2006). 

 

Moreover, an N-terminal damage recognition domain (DRD) was identified and 

suggested to be involved in discrimination of damaged from non-damaged DNA 

(Fan et al, 2006). Superposition of crystal structures of XPB with the helicase from 

hepatitis virus C (HCV NS3 helicase) was used to generate a potential DNA 

binding model (Figure 1.6, panel C) (Fan et al, 2006; Kim et al, 1998). 

The crystal structure, however, provides only limited insights into XPB’s role in 

NER, since XPB seems to undergo major conformational changes necessary for 

mediating DNA binding as well as the protein-protein interactions within the TFIIH 

DRD 

ThM 

HD1 

HD2 
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and XPF-ERCC1 complexes (Oh et al, 2007; Tapias et al, 2004). After assembly 

of all NER factors, XPF-ERCC1 was suggested to perform the 5’ incision reaction. 

Although it has been reported that XPB is responsible for XPF-ERCC1 recruitment 

(Oh et al, 2007), it is not clear which signals are necessary for binding and 

engaging the endonuclease. Phosphorylation of XPB has been shown to inhibit 

XPF’s endonuclease activity (Coin et al, 2004), indicating that dephosphorylation 

of this residue might contribute to the trigger of the first incision reaction. The 

resulting free ssDNA-overhang would then be displaced by DNA polymerase δ/ε 

which simultaneously synthesizes the first part of the missing oligonucleotide 

(Staresincic et al, 2009). XPG subsequently conducts the second incision reaction 

and allows repair synthesis to be completed (Staresincic et al, 2009). It was 

speculated that this concerted mechanism of incision and repair synthesis is not 

only initiated by the TFIIH components but also regulated by the DNA synthesis 

machinery (Staresincic et al, 2009) since it has been reported, that both 

endonucleases XPF-ERCC1 and XPG interact with PCNA (Chapados et al, 2004; 

Gary et al, 1999; Mocquet et al, 2008; Roberts et al, 2003a). Although 

controversially discussed in the literature (Mocquet et al, 2008), the 

“cut-patch-cut-patch” mechanism would avoid the presence of large stretches of 

ssDNA which are particularly prone to DNA strand breaks. The concerted activity 

would ensure both dual incision and complete DNA repair synthesis to take place 

(Staresincic et al, 2009). 

It is a fundamental question in eukaryotic NER how dual incision of DNA is 

regulated. This regulation mechanism includes both the recruitment of the 

endonucleases as well as the induction and triggering of the incision reaction at a 

defined position and a defined time. In order to decipher the molecular mechanism 

from DNA unwinding and damage recognition to dual incision, archaeal homologs 

of the eukaryotic NER proteins are often used in both biochemical in vitro assays 

and in X-ray crystallography experiments. 

 

1.3.2. Archaeal homologs serve as a model for eukaryotic NER 

Besides prokaryotes and eukaryotes, archaea were identified as the third 

kingdom of life (Woese & Fox, 1977). Based on the phylogenetic analysis of 
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ribosomes, archaea are subdivided into two groups, the euryarchaea and the 

crenarchaea (Cox et al, 2008). Especially for hyperthermophilic archaea, the 

question arises which mechanisms are used to maintain genomic stability 

(Grogan, 2000; Grogan, 2004). Analyses of archaeal genomes revealed the 

presence of several conserved eukaryotic homologs, among them the XP-proteins 

responsible for NER in eukaryotes (Aravind et al, 1999; Ogrunc et al, 1998; White, 

2003). The majority of archaea comprise homologs for the helicases XPB and 

XPD. In contrast to their human counterparts, archaeal XPB lacks the N-terminal 

domain and approximately 100 residues at the C-terminus (Fan et al, 2006), 

whereas archaeal XPD is only slightly shorter at the C-terminus compared to 

human XPD (Wolski et al, 2008). The core domains of both helicases, however, 

are conserved between human and archaeal proteins. In addition to the archaeal 

homologs of the helicases XPB and XPD, most archaea contain genes encoding 

FEN-1, a homolog of the eukaryotic endonuclease XPG (Kelman & White, 2005). 

The archaeal homolog of XPF seems to be present in two forms: the euryarchaeal 

long form comprises an N-terminal helicase domain and a C-terminal nuclease 

domain and is also known as Hef endonuclease, whereas the crenarchaeal short 

form only encodes the nuclease domain (Rouillon & White, 2011). In eukaryotic 

NER, the structure-specific endonucleases XPF and XPG perform dual incision 5’ 

and 3’ to the lesion, respectively (O'Donovan et al, 1994; Sijbers et al, 1996). 

Similar incision specificities of the endonucleases towards their substrates have 

been observed for their archaeal counterparts: Hef was shown to incise 3’ flap 

model DNA substrates whereas Fen-1 incised 5’ flap substrates consistent with 

the 5’ and 3’ incision reactions, respectively (Hutton et al, 2008; Newman et al, 

2005; Nishino et al, 2006; Roberts et al, 2003a). So far, it has not been confirmed 

whether XP-proteins are employed in archaea for NER at all or if they exhibit their 

activity in different processes such as DNA replication (Kelman & White, 2005; 

Rouillon & White, 2011).  

Several observations contradict a potential role for the XP-proteins in archaeal 

NER: Firstly, some archaea additionally comprise genes encoding the prokaryotic 

UvrABC system (Rouillon & White, 2011). In vivo studies on 

Halobacterium sp. NRC-1 revealed an elevated sensitivity towards UV-light upon 

depletion of the UvrABC system indicating that this organism primarily employs the 
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prokaryotic NER system rather than the eukaryotic system for the repair of 

UV-induced DNA damages (Crowley et al, 2006). Secondly, it has been published 

recently that knock-out of xpb and xpd genes in the hyperthermophilic 

euryarchaeon Thermococcus kodakaraensis results only in a slight increase in 

sensitivity towards UV-irradiation compared to the wildtype strain supporting that 

this archaeon does not use the XP-homologs for the removal of UV-lesions 

(Fujikane et al, 2010). Thirdly, some of the essential proteins involved in 

eukaryotic NER such as XPA and XPC are not present in any archaeal organism 

(Kelman & White, 2005; White, 2003). Lastly, not all archaeal organisms contain 

the same set of XP-homologs (Kelman & White, 2005; Rouillon & White, 2011). 

Interestingly, the archaeon Methanopyrus kandleri lacking the prokaryotic UvrABC 

system does not contain homologs of XPB or XPD (Rouillon & White, 2011). 

Primarily, these studies reflect a huge diversity within the third kingdom of life 

displaying an almost random distribution of DNA repair homologs in archaea. 

Notably, this does not necessarily imply that none of the archaea utilize 

XP-homologs for NER. A UV-induced up-regulation of homologs for XPB, XPF and 

XPG in the crenarchaeon Sulfolobus solfataricus has been reported but 

contradictory results have been published as well (Frols et al, 2007; Gotz et al, 

2007; Salerno et al, 2003; Wood et al, 1997). These discrepancies might be 

explained by a study where up-regulation of NER proteins in human keratinocytes 

was observed only at a defined UV-dose, whereas at higher doses, NER factors 

were down-regulated and apoptosis was induced (Maeda et al, 2001). 

Although archaeal NER is still not well understood, the archaeal homologs of 

the eukaryotic NER proteins are widely employed for biochemical as well as 

structural studies as a model for the eukaryotic NER proteins since archaeal and 

eukaryotic NER proteins share significant sequence similarity. The core domains 

of human and Thermoplasma acidophilum XPB, for example, share a sequence 

identity of 26 %. Several in vitro studies on archaeal proteins provided detailed 

insights into NER on a molecular level (Fan et al, 2006; Liu et al, 2008; Ma et al, 

2011; Mathieu et al, 2010; Nishino et al, 2003; Richards et al, 2008; Roberts et al, 

2003a; Wolski et al, 2008; Wolski et al, 2010). Notably, the molecular 

consequences of mutations leading to XP, CS and TTD could be explained by the 
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crystal structure of an archaeal XPD homolog from T. acidophilum (Lehmann, 

2008; Wolski et al, 2008). 

Proteins from the euryarchaeon T. acidophilum were chosen as a model to 

investigate eukaryotic NER homologs since this organism does not comprise 

genes encoding for the prokaryotic UvrABC proteins which might be employed for 

NER instead (Rouillon & White, 2011). Besides, the complete genome sequence 

of T. acidophilum is available (Ruepp et al, 2000). Since T. acidophilum grows at a 

temperature of ~60 °C, the proteins are thermophilic and thus more amenable to 

biochemical and structural approaches than their human counterparts. 

 

1.3.3. Bax1 – a novel nuclease in archaeal NER?  

Nucleases are enzymes cleaving phosphodiester bonds in the DNA backbone 

and are basically classified by numerous different properties towards their 

substrates and their cleavage mechanism (Mishra, 2002). Nucleases are, for 

example, characterized as DNases or RNases, they act as exonucleases or 

endonucleases and their substrate is recognized in a sequence-specific or 

structure-specific manner. In DNA repair, structure-specific nucleases play a 

crucial role in DNA processing. However, the nuclease activity has to be tightly 

regulated on the one hand to avoid pre-mature or non-specific incision of DNA but 

on the other hand to ensure incision of verified DNA lesions. 

Recently, genome analysis revealed the presence of a gene locus in close 

proximity to an archaeal XPB (Richards et al, 2008). It has been confirmed that the 

protein encoded by this gene is able to form a stable complex with archaeal XPB 

and was therefore named Bax1 (binds archaeal XPB). The association with XPB 

implied a role in archaeal NER although its function was not known (Richards et al, 

2008). Bax1 does not seem to be present in eukaryotes but exists in many 

archaea and it appears to be abundant in some prokaryotes, particularly in 

cyanobacteria (http://www.expasy.ch/tools/blast/). Interestingly, Bax1 was 

predicted to contain a DUF790-domain and was therefore suggested to act as an 

endonuclease (Kinch et al, 2005). Thus, the question arises if Bax1 is an active 

endonuclease and which role Bax1 might play in archaeal NER. 
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1.3.4. Objectives in archaeal Nucleotide Excision Repair 

In order to address these questions, this work will investigate Bax1’s putative 

endonuclease activity and its biochemical properties both alone and in complex 

with archaeal XPB. Firstly, the physical interaction of XPB and Bax1 will be 

confirmed for T. acidophilum proteins. In the next step, the endonuclease activity 

of Bax1 as well as of the XPB/Bax1 complex will be characterized. Incision assays 

using different DNA substrates will be applied to disclose the specificity of Bax1. 

Since nucleases often employ divalent cations for cleaving phosphodiester bonds 

(Dupureur, 2008), incision assays in the presence and absence of different cations 

will uncover Bax1’s requirement for metal ions in catalysis. To identify Bax1’s 

active site residues mediating DNA cleavage, site-directed mutagenesis of 

conserved amino acids will be performed. The results obtained from these 

experiments might help to assess which role Bax1 plays in archaeal NER. 

In addition, the activity of the XPB/Bax1 complex compared to Bax1 might 

contribute to shed light onto the regulation of nucleases and the processes from 

recognition to incision of damaged DNA. Incision assays as well as biophysical 

approaches such as analytical ultracentrifugation and atomic force microscopy will 

be used to investigate complex formation of XPB and Bax1. Since XPB’s role 

within the TFIIH complex was postulated to include the recruitment of the 

endonuclease XPF-ERCC1 to the repair complex and subsequent initiation of the 

first incision reaction (Oh et al, 2007), these insights might help to understand the 

interactions and conformational changes of XPB within the TFIIH complex 

necessary to promote the primary incision by XPF-ERCC1.  
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2. Materials  

2.1. DNA substrates  

All DNA substrates used in this work were purchased from Biomers, IDT, Sigma 

Genosys or Metabion. 

 

Table 2.1  DNA substrates used in this work 

Name Sequence 

F2650 5‘ GACTACGTACTGTTACGGCTCCATC[FldT]CTACCGCAAT 

CAGGCCAGATCTGC 3’ 

NDT 5‘ GACTACGTACTGTTACGGCTCCATCTCTACCGCAATCAG 

GCCAGATCTGC 3’ 

NDT30 5’ CCATCTCTACCGCAATCAGGCCAGATCTGC 3’ 

NDB 5’ GCAGATCTGGCCTGATTGCGGTAGAGATGGAGCCGTAA 

CAGTACGTAGTC 3’ 

NDB22 5’ GGAGCCGTAACAGTACGTAGTC 3’ 

NDB26 5’ AGATGGAGCCGTAACAGTACGTAGTC 3’ 

NDB30 5’ GTAGAGATGGAGCCGTAACAGTACGTAGTC 3’ 

NDBr15 5’ GCAGATCTGGCCTGA 3` 

NDBr20 5’ GCAGATCTGGCCTGATTGCG 3’ 

NDBr25 5’ GCAGATCTGGCCTGATTGCGGTAGA 3’ 

NDBr30 5’ GCAGATCTGGCCTGATTGCGGTAGAGATGG 3’ 

NDBB16 5’ GCAGATCTGGCCTGATCTTCCGTTTTTACCTTCCGTAA 

CAGTACGTAGTC 3’ 

100mer_bottomF 5’ GGGGGTACGAGACTCGAGGCATGCGGTCGACTCT 

AGAGGATCAGATC[FldT]GGAACCTCTAGACTCGAGG 

CATGCACCTCTAGACTCGAGGCATGCGCATGGG 3’ 

100mer_top_NB 5’ CCCATGCGCATGCCTCGAGTCTAGAGGTGCATGCCTC 

GAGTCTAGAGGTTCCAGATCTGATCCTCTAGAGTCGACC 

GCATGCCTCGAGTCTCGTACCCCC 3’ 

100mer_top_CB 5’ CCCATGCGCATGCCTCGAGTCTAGAGGTGCATGCCTC 

GAGTCTAGAGGTCTTTCTTCTGATCCTCTAGAGTCGACC 

GCATGCCTCGAGTCTCGTACCCCC 3’ 
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100mer_top_5B 5’ CCCATGCGCATGCTCTCCCTCTAGAGGTGCATGCCTC 

GAGTCTAGAGGTTCCAGATCTGATCCTCTAGAGTCGACC 

GCATGCCTCGAGTCTCGTACCCCC 3’ 

100mer_top_3B 5’ CCCATGCGCATGCCTCGAGTCTAGAGGTGCATGCCTC 

GAGTCTAGAGGTTCCAGATCTGATCCTCTAGAGTCGACC 

GCATGCCTCCTCCTCCGTACCCCC 3’ 

A_F24 5’ TACGGCCTCATC[FldT]CTAACGCAATC 3’ 

A_comp24 5’ GATTGCGTCTTTTTTTGAGGCCGTA 3’ 

E 5’ CGACTTTTTTCCTTTGGATC[FldT]CTATCG 3’ 

 

2.2. Bacterial strains and plasmids 

Table 2.2  Bacterial strains used in this work 

Strain Genotype Reference/Supplier 

BL21-CodonPlus®(DE3)-RIL E. coli B F– ompT hsdS(rB
– mB

–) 
dcm+ Tetr gal λ(DE3) endA Hte 
[argU ileYleuW Camr] 

Stratagene 

DH5α F- φ80lacZ∆M15 ∆(lacZYA-
argF)U169 deoR recA1 endA1 
hsdR17(rk

-, mk
+) phoA supE44 

thi-1 gyrA96 relA1 λ- 

Invitrogen 

XL1-blue recA1 endA1 gyrA96 thi-1 
hsdR17 supE44 relA1 lac [F´ 
proAB lacIqZ∆M15 Tn10 (Tetr)] 

Stratagene 

 

 

Table 2.3  Plasmids used in this work 

Plasmid Tag Resistance Reference/Supplier 

pETM-11 N-terminal His6-Tag Kanamycin EMBL 

pBADM-11 N-terminal His6-Tag Kanamycin EMBL 

pTXB1 C-terminal Intein-Tag Ampicillin New England Biolabs 

pTYB1 C-terminal Intein-Tag Ampicillin New England Biolabs 
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2.3. Media and antibiotics 

Table 2.4  Media used in this work 

Medium Reference/Supplier 

LB-Medium Roth, Karlsruhe 

LB-Agar Roth, Karlsruhe 

ZYM-5052 Medium (Studier, 2005) 

 

Table 2.5  Antibiotics used in this work 

Antibiotic Final concentration Supplier 

Ampicillin 100 µg/ml Roth, Karlsruhe 

Chloramphenicol 34 µg/ml Roth, Karlsruhe 

Kanamycin 50 µg/ml Roth, Karlsruhe 

 

2.4. Enzymes 

Table 2.6  Enzymes used in this work 

Enzyme EC number Reference 

HindIII EC 3.1.21.4 New England Biolabs 

NcoI EC 3.1.21.4 New England Biolabs 

PciI EC 3.1.21.4 New England Biolabs 

XhoI EC 3.1.21.4 New England Biolabs 

Nt.AlwI EC 3.1.21.4 New England Biolabs 

Nt.BstNBI EC 3.1.21.4 New England Biolabs 

Trypsin EC 3.4.21.4 Roth, Karlsruhe 

Tobacco Etch Virus (TEV) 
protease  

EC 3.4.22 EMBL Hamburg 

Lysozyme EC 3.2.1.17 Roth, Karlsruhe 

Phusion DNA polymerase EC 2.7.7.7 Finnzymes 

Pfu DNA polymerase EC 2.7.7.7 Fermentas 

T4 DNA Ligase EC 6.5.1.1 Invitrogen 

T4 polynucleotide kinase EC 2.7.1.78 Invitrogen 

Desoxyribonuclease I EC 3.1.21.1 Invitrogen 
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2.5. Chemicals 

If not noted differently, all chemicals and solutions were purchases from Carl 

Roth (Karlsruhe), Sigma Aldrich (Seelze), Fluka (Neu-Ulm), Hampton Research 

(Laguna Hills, USA), or Applichem (Darmstadt). All chemical were of analytical 

grade or better, the chemicals used for crystallization were of the highest available 

purity. 

 

2.6. Relevant buffers and solutions 

All buffers were adjusted to the respective pH value by adding either 32 % (w/v) 

NaOH or 37 % (v/v) HCl. 

 

Table 2.7  Buffers for the purification of UvrB and UvrC 

Buffer Components pH 

UvrB-AC/GF 20 mM TrisHCl, 500 mM NaCl 8.0 

UvrB cleavage 20 mM TrisHCl, 500 mM NaCl, 100 mM DTT 8.0 

UvrB dialysis 20 mM TrisHCl, 150 mM NaCl 8.0 

UvrC-AC 20 mM TrisHCl, 500 mM NaCl, 0.1 mM EDTA 9.0 

UvrC cleavage 20 mM TrisHCl, 500 mM NaCl, 0.1 mM EDTA, 100 mM DTT 9.0 

UvrC-GF 20 mM TrisHCl, 500 mM NaCl 9.0 

UvrBC-GF 20 mM TrisHCl, 500 mM NaCl, 0.1 mM EDTA 8.0 

 

 

Table 2.8  Buffers for the purification of XPB, Bax1, XPB/Bax1 

Buffer Components pH 

IMAC-A 50 mM TrisHCl, 500 mM NaCl, 50 mM Imidazole 7.5 

IMAC-B 50 mM TrisHCl, 500 mM NaCl, 500 mM Imidazole 7.5 

IEX-A 50 mM TrisHCl, 50 mM NaCl 7.5 

IEX-B 50 mM TrisHCl, 1 M NaCl 7.5 

GF-1 20 mM TrisHCl, 500 mM NaCl 7.5 

GF-2 20 mM TrisHCl, 200 mM NaCl 7.5 
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Table 2.9  Buffers for biochemical assays 

Buffer Components pH 

ABC 50 mM TrisHCl, 10 mM MgCl2, 50 mM KCl, 1 mM ATP, 
5 mM DTT 

7.5 

Bax1 20 mM MES, 150 mM NaCl, 1 mM DTT, 0.1 mg/ml BSA 6.5 

TE 10 mM TrisHCl, 1 mM EDTA 7.5 

Annealing-buffer 0.1 x TE, 100 mM KCl 7.5 

 

 

Table 2.10  Buffers and solutions for SDS-PAGE, native and urea gels 

Buffer Components 

Staining solution 50 % (v/v) Methanol, 10 % (v/v) Acetic acid, 0.1 % (w/v) Coomassie brilliant 
blue 

Destaining solution 10 % (v/v) Methanol, 5 % (v/v) Acetic acid 

Running buffer 192 mM Glycin, 0.1 % (w/v) SDS, 25 mM Tris 

Loading buffer 50 mM Tris pH 6.8, 100 mM DTT, 2 % (w/v) SDS, 0.1 % (w/v) Bromphenol 
blue, 10 % (w/v) Glycerol 

15 % resolving gel 15 % (v/v) Acrylamide/Bisacrylamide (37.5:1), 375 mM TrisHCl, pH 8.8, 
0.1 % (w/v) SDS, 0.25 % (w/v) APS, 0.05 % TEMED 

5 % stacking gel 5 % (v/v) Acrylamide/Bisacrylamide (37.5:1), 125 mM TrisHCl, pH 6.8, 
0.1 % (w/v) SDS, 0.25 % (w/v) APS, 0.15 % (v/v) TEMED 

TBE-buffer 89 mM Tris Base, 89 mM Boric acid, 2 mM EDTA, pH 8.3 

6 % native gel 6 % (v/v) Acrylamide/Bisacrylamide (29:1), 0.5 x TBE, 0.2 % (v/v) APS, 
0.1 % (v/v) TEMED 

6 x Native sample 
buffer 

60 mM TrisHCl, pH 7,5, 30 mM Na-acetat, 12 mM EDTA, 60 % (w/v) 
Glycerol, 0,36 % (w/v) Orange G  

15 % urea gel 15 % (v/v) Acrylamide/Bisacrylamide (19:1), 1 x TBE, 4 M urea,0.05 % (v/v) 
APS, 0.005 % (v/v) TEMED 

2 x Urea sample 
buffer 

8 M Urea, 5 mM TrisHCl, pH 7.5, 0.5 % (w/v) Orange G 
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2.7. Crystallization Screens 

Table 2.11  Crystallization Screens used in this work 

Screen  Reference/ Supplier 

Crystal Screen 1 and 2 Hampton Research 

Index Screen HT Hampton Research 

Wizard Screen I and II Emerald Biosystems 

OptiMix-1-5 Topaz 

The Nucleix Suite Qiagen 

The Protein Complex Suite Qiagen 

The PEGs Suite Qiagen 

Easy Xtal JCSG Qiagen 

 

2.8. Equipment and instrumentation 

Table 2.12  Important equipment used in this work 

Device Name Company 

Bio Layer Interferometry Octet RED Forté BIO 

Chromatography columns Chitin Beads 

HiLoad™16/60Superdex™200pg 

HiLoad™26/60Superdex™200pg 

HiTrap SP HP (1 ml) 

Ni-MAC (1 ml) 

Superdex™75 10/300 GL 

Superdex™200 10/300 GL 

NEB 

GE Healthcare 

GE Healthcare 

GE Healthcare 

Novagen 

GE Healthcare 

GE Healthcare 

CD-Spectropolarimeter J-810 Jasco  

Dynamic Light Scattering DynaPro Titan Wyatt Technology 
Corporation 

FPLC systems ÄKTA purifier 10 

ÄKTA xpress 

GE Healthcare 

GE Healthcare 

Liquid Handling System Honeybee 963 

Lissy 

Zinsser Analytic 

Zinsser Analytic 

Molecular Imager Molecular Imager Pharos (FX) System  BioRad 

Spectrophotometer NanoDrop ND 1000 Peqlab 

X-ray detector Raxis HTC Rigaku 

X-ray generator MicroMax 007 HF Rigaku 
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2.9. Software and databases 

Table 2.13  List of software and databases used in this work 

 Software/Database Author/ Reference 

3D viewer PyMOL (DeLano, 2003) 

Chromatography Unicorn 5 GE Healthcare 

CD-Spectroscopy Spectra Manager Jasco 

BioLayer Interferometry Octet RED Version 6.3 FortéBIO 

Diverse protein analyses ExPASy Proteomics Server www.expasy.ch 

Dynamic Light Scattering Dynamics Wyatt Technology Corporation 

Molecular Imager Quantity One BioRad 

Protein Data Bank PDB www.pdb.org 

Secondary Structure 
Assigment 

DSSP (Kabsch & Sander, 1983) 

Structure determination and 
refinement 

CNS (Adams et al, 1997) 

COOT (Emsley & Cowtan, 2004) 

The CCP4 suite (1994) 

Deformable elastic network 
(DEN) approach 

(Schroder et al, 2010) 

Matthews (Matthews, 1968) 

MolProbity Server http://molprobity.biochem.duke.edu/

MOSFLM (Leslie, 1990) 

PHASER (McCoy et al, 2007) 

PHENIX (Adams et al, 2002) 

POINTLESS (Evans, 2006; Grosse-Kunstleve et 
al, 2002) 

PROCHECK (Laskowski et al, 1993; Laskowski 
et al, 1996) 

REFMAC5 (Murshudov et al, 1997) 

SCALA (Kabsch, 1988) 

TLSMD server (Painter & Merritt, 2006) 
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3. Methods 

3.1. Molecular Biology techniques 

3.1.1. Polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) was used to amplify DNA sequences 

encoding T. acidophilum XPB and Bax1. DNA polymerases are able to extent 

short DNA stretches, so-called primers, by adding deoxynucleotidetriphosphates 

(dNTPs) complementarily to the single stranded template DNA. Primers were 

designed to include recognition sites for the restriction enzymes PciI and HindIII or 

NcoI and XhoI (Table 3.1; underlined) to enable cloning of the respective genes 

into the multiple cloning sites of the expression vectors. The forward primer in 

addition contains a start codon, the reverse primer comprises a stop codon 

(Table 3.1; both highlighted in bold). The following primer sequences were used 

(Table 3.1) in a PCR reaction containing the following agents (Table 3.2): 

 

Table 3.1  Primer sequences used 

Name Sequence 

XPB_PciI_for 5‘ ATGGTCTCACATGTCCGATATCGTCTATTCTGGA 3‘ 

XPB_HindIII_rev 5‘ ACCGTCCTGAAGCTTACGTACCACCATCAGT 3‘ 

Bax1_NcoI_for 5‘ AGGAGAAACCATGGTCCCGGCAGAACTGAT 3‘ 

Bax1_XhoI_ rev 5‘ ATGGACTCGAGTCAGGTGGAACGGACTATCT 3‘ 

 

Table 3.2  PCR reaction set-up 

 Stock concentration Final concentration amounts for 50 µl set-
up 

10 x Pfu Buffer with 
MgSO4 

10 x 1 x 5 µl 

Template 200 ng/µl 200 ng 1 µl 

Primer for 20 ng/µl 20 ng 1 µl 

Primer rev 20 ng/µl 20 ng 1 µl 

dNTPs 2 mM 60 µM 1.5 µl 

Pfu DNA Pol 2 U/µl 1 U 0.5 µl 

ddH20   40 µl 
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The following PCR program was used (Table 3.3): 

 

Table 3.3  PCR program for gene amplification 

Step Temperature Time Cycles 

Initial Denaturation 95 °C 2 min  

Denaturation 95 °C 1 min 30 cycles 

Annealing 55 °C 1 min 

Extension 72 °C 3 min 

Final Extension 72 °C 15 min  

cooling 4 °C forever  

 

A 5 µl sample of the PCR reactions was analyzed on a 1 % (w/v) agarose gel. 

The PCR product was then purified using the PCR purification kit (Macherey-

Nagel) according to the manufacturer’s protocol. 

 

3.1.2. Restriction digestion 

PCR products for XPB and Bax1 were digested at 37 °C for 3 h with the 

restriction enzymes PciI and HindIII or NcoI and XhoI, respectively, and 

destination vector pETM-11 with the combination of NcoI and HindIII or NcoI and 

XhoI. Restriction enzymes PciI and NcoI produce compatible sticky ends and can 

thus be interchanged. The endonucleases were applied in NEB-buffer #2 

according to the manufacturer’s instructions. The destination vectors were 

additionally treated with alkaline phosphatase for 1 h at 37 °C to prevent 

reannealing of the vector. 

 

3.1.3. Ligation 

Sticky ends produced by the restriction enzymes allow the correct positioning of 

the insert into the destination vector in terms of direction and number. To 

subsequently generate phosphodiester bonds between vector and insert, Quick T4 

DNA Ligase (Fermentas) was used in 2 x Ligase buffer and incubated for 5 min at 

room temperature (RT). Ligation reactions are then transformed into an E. coli 

host keeping strain such as XL1-blue or DH5α.  
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3.1.4. Transformation 

To transform E. coli cells, 50-100 µl chemically competent cells were incubated 

with 1-2 µl plasmid DNA (miniprep scale; generally 50-100 ng/µl), 25 µl ligation 

reaction or 25 µl site-directed mutagenesis reactions for 30 min on ice. A heat 

shock (90 sec, 42 °C) was performed to perforate the cell wall and allow the DNA 

to enter the cytoplasm. 600 µl LB-medium were added and cells were grown for 

45 min (37 °C, 600 rpm). The cells were centrifuged at 1,000 g for 2 min and 

resuspended in 100 µl supernatant. This suspension was then applied to LB-agar 

plates containing the appropriate antibiotics to select for cells which contain the 

plasmid DNA. The agar plates were incubated at 37 °C over night. 

 

3.1.5. Plasmid isolation 

A single colony grown on a LB-agar plate was picked and transferred to a 5 ml 

liquid culture containing LB and the appropriate antibiotics. After the cells were 

grown at 37 °C, 200 rpm over night to form a dense culture, the suspension was 

centrifuged at 4,000 rpm for 10 min to pellet the cells. The cells were then lysed 

and DNA was extracted using the Plasmid Kit (Macherey-Nagel) according to the 

manufacturer’s instructions. 

 

3.1.6. Colony PCR 

In order to screen for positive clones carrying the desired gene, colony PCR 

was applied using the same primer sequences as for cloning. Plasmid DNA from a 

single colony was isolated and transferred into a PCR reaction as described above 

(Table 3.2, Table 3.3).  

 

3.1.7. Site-directed mutagenesis 

To introduce an exchange of amino acids at a specific site, site-directed 

mutagenesis on the DNA level was applied. Two complementary primers were 

designed both carrying the mutated sequence. A two-step protocol was carried out 

with eight PCR cycles containing just one primer each to avoid the formation of 
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primer-dimers (Wang & Malcolm, 1999). The single reactions including forward 

and reverse primers were pooled and 20 additional PCR cycles were performed. 

The reactions were composed of the following reagents (Table 3.4): 

 

Table 3.4  Site-directed mutagenesis reaction 

 Stock concentration Final concentration Amounts for 12.5 µl 
reaction 

Quick change reaction 
buffer 

10 x 1 x 1.25 µl 

Template 40 ng/µl 20 ng 0.5 µl 

Primer 5 µM 0.5 µM 1.25 µl 

dNTPs 10 mM 400 µM 0.5 µl 

Pfu Polymerase 2 U/µl 1 U 0.5 µl 

ddH2O   8.5 µl 

 

The following PCR program was used (Table 3.5): 

 

Table 3.5  PCR program for site-directed mutagenesis 

Step Temperature Time Cycles 

Initial Denaturation 95 °C 30 sec  

Denaturation 95 °C 30 sec 8 cycles for each 
primer reaction, 20 
cycles for combined 
reaction 

Annealing 55 °C 1 min 

Extension 68 °C 6 min 

Final Extension 68 °C 10 min  

cooling 4 °C forever  

 

Parental plasmids were then digested using DpnI specifically recognizing 

methylated DNA. The reaction was then transformed into the E. coli host keeping 

strain DH5α. DNA was extracted from single colonies and checked for the 

introduced mutation using DNA sequence analysis at MWG-Biotech AG 

(Ebersberg) or Seqlab - Sequence Laboratories Göttingen GmbH (Göttingen). 

 

3.1.8. Labeling and duplexing of single-stranded DNA 

For 32P-labeling, ssDNA was 5’ end labeled for 10 min at 37 °C in a 25 µl 

reaction containing 200 nM ssDNA, 1 µCi/µl [γ 32P]-ATP (Hartmann Analytic), 1 x 
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forward buffer and 10 U T4 Polynucleotide Kinase (Invitrogen). Alternatively, 

ssDNA was 3’ end labeled for 1 h at 37 °C in a 50 µl reaction comprising 200 nM 

ssDNA, 25 µCi [α 32P]-ATP (Hartmann Analytic), 5 x TdT buffer and 10 U Terminal 

transferase (Invitrogen). ssDNA was purified using MicroSpin™ G 25 columns (GE 

Healthcare) to remove unincorporated [γ 32P]-ATP or [α 32P]-ATP and 

subsequently annealed in the presence of 0.1 x TE buffer containing 100 mM KCl 

by heating to 80 °C and subsequent cooling slowly to RT. Fluorescently labeled 

ssDNA was purchased from Metabion or IDT and annealed in 0.1 x TE-buffer 

containing 100 mM KCl. 

 

3.1.9. Generation of DNA substrates suitable for Atomic Force 

Microscopy (AFM) 

For AFM, a 522 basepair (bp) DNA fragment (uvrb gene from B. caldotenax) 

was amplified by PCR using the primers UvrB_AFM__for 

(5‘ TCCGGACGATTTTTTGATC 3’) and UvrB_rev5 

(5‘ GACCAATACATCGTATTTGCC 3‘). To generate a 32 nucleotide 3’ overhang, 

the PCR product was incised using the nickase Nt.BstNBI (New England Biolabs) 

according to the manufacturers’ protocol. A 30 nucleotide 5’ overhang was 

produced by cutting the PCR product with the nickase Nt.AlwI (New England 

Biolabs). To remove the incised oligonucleotide from the DNA substrate 5 cycles 

of heating to 65 °C and spinning in a centrifuge concentrator (with a molecular 

weight cutoff of 50 kDa) were performed. 

 

3.2. Protein expression 

E. coli cells were transformed with an expression plasmid comprising the 

desired gene under control of the T7-promotor. Thus, protein expression can be 

induced by adding lactose or the allolactose analogue IPTG. IPTG is not 

consumed by bacterial cells and therefore only small amounts are required to 

induce protein expression. However, in contrast to IPTG, lactose and its 

metabolite allolactose does not stress the cells and thus enhances both bacterial 

growth and protein expression (Studier, 2005). In the so-called auto-induction 
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medium, glucose prevents the uptake of lactose by E. coli cells by catabolite 

repression. This mechanism allows the cells to grow to a certain density by 

consuming glucose. The lack of glucose then leads to the uptake of lactose and 

thereby induction of protein expression.  

Since the different expression protocols are optimized for each protein, the 

detailed procedures are included in the Results section. 

 

3.3. Protein purification 

3.3.1. Cell lysis 

UvrB expressing cells, UvrC expressing cells, and both XPB and Bax1 

expressing cells were resuspended in UvrB-AC/GF, UvrC-AC and IMAC-A buffer 

(5 ml per g cells), respectively, and supplemented with DNaseI (1 µl per 50 ml 

suspension). The suspension was then lysed at 1.8 kbar in a cell disruptor 

(constant cell system). The lysate was centrifuged at 50,000 g, 4 °C, for 30 min. 

The supernatant was then applied to the first chromatography step. 

 

3.3.2. Chromatography  

Proteins were purified using a series of chromatography steps starting with an 

affinity chromatography as a first capture step. Finally, a polishing step is 

performed to not only remove contaminating proteins but also to separate different 

oligomeric states of the protein.  

 

3.3.2.1. Affinity chromatography 

The affinity chromatography is usually employed as a first capture step. 

Naturally occurring or tag-mediated affinities of proteins can be exploited to 

specifically and selectively bind the desired protein to the matrix of 

chromatography columns. Protein elution can be achieved by the addition of 

competitors, ligands, high concentration of salt or by cleaving the tag from the 

protein. 
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Immobilized metal affinity chromatography (IMAC) 

Hexahistidin (His6)-tags exert a strong affinity to Ni2+-ions chelated by 

iminodiacetic acid (IDA) groups. Proteins containing a His6-tag thus can be bound 

to the column and eluted by the addition of the competitor imidazole which is 

chemically and structurally similar to histidine residues. 

The supernatant of the cleared cell lysate was loaded on a pre-equilibrated 

Ni-MAC column (CV = 1 ml; Novagen) with a flow rate of 1 ml/min. Both the 

protein sample and the binding buffer IMAC-A were supplemented with 50 mM 

imidazole to prevent unspecific binding. The column was washed with 

approximately 20 CV binding buffer to remove unbound sample until a stable 

baseline of the UV-absorption was achieved. The desired protein was then eluted 

by a gradient up to 500 mM imidazole. 

 

Chitin-Intein system 

The IMPACTTM system (New England Biolabs) provides expression vectors to 

generate fusion proteins consisting of the desired protein and an intein-tag 

including a chitin binding domain. This chitin binding domain specifically binds to 

chitin beads. Thiols such as DTT induce the autocatalytic activity of inteins to 

cleave themselves from the target protein, which is thereby eluted from the 

chromatography column whereas the intein-chitin-tag stays bound on the chitin 

beads (Chong et al, 1997). 

The supernatant of the cleared cell lysate was loaded onto a pre-equilbrated 

column (CV = 20 ml; New England Biolabs) and incubated for 2 h at 4 °C in order 

to improve binding. The column was then washed extensively with approximately 

50 CV buffer UvrB-AC or UvrC-AC to remove unbound proteins. The cleavage 

buffer containing 100 mM DTT was applied to the chitin beads and incubated for 

48 h at RT to ensure complete cleavage of the intein. The target protein was 

eluted by rinsing the column with buffer UvrB-AC or UvrC-AC.  
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3.3.2.2. Ion exchange chromatography 

The net charge of a protein at certain pHs is exploited in ion exchange 

chromatography. At basic pH, proteins with a positive net charge ionically interact 

with cation exchange chromatography columns. The protein can be eluted by 

changing the pH or by increasing the salt concentration. 

Protein purified by affinity chromatography was diluted with binding buffer to 

achieve a salt concentration of 60 mM NaCl and subsequently loaded onto a 

HiTrap SP HP cation exchange column (CV = 1 ml; GE Healthcare) with a flow 

rate of 1 ml/min. The column was washed with approximately 20 CV binding buffer 

to remove unbound proteins. The target protein was then eluted by a gradient up 

to 1 M NaCl. 

 

3.3.2.3. Size-exclusion chromatography 

As the final purification step, typically size-exclusion chromatography was 

perfomed. The column consists of a spherical composite of cross-linked agarose 

and dextran matrix which allows the separation of molecules with a molecular 

weight of 10-600 kDa. Thus, aggregates as well as higher oligomers can be 

separated from monomeric protein. 

The concentrated protein sample was applied to a pre-equilbrated 

HiLoad™ 16/60 Superdex™ 200 pg or HiLoad™ 26/60 Superdex™ 200 

column pg (CV = 124ml and 330 ml, respectively; GE Healthcare) and isocratically 

eluted with buffer. The presence and purity of the target protein in the elution 

fractions was analyzed by SDS-PAGE. Protein concentrations were determined by 

UV-spectrophotometry at 280 nm. Protein samples were concentrated using 

Centricon® concentrators (Millipore) with suitable molecular cut-offs, split in 

25-50 µl aliquots, frozen in liquid nitrogen and stored at -80 °C until use. 
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3.4. Spectroscopy methods 

3.4.1. Determination of Protein and DNA concentrations by UV-

spectrophotometry 

The concentration of protein and DNA samples was measured using a 

NanoDrop System (Peqlab) exploiting the law of Lambert-Beer (Pfeiffer & 

Liebhafsky, 1951): 

Equation 1 

ܿ = 
A

ε · d
 

 

with A being the Absorption at a wavelength of 280 nm or 260 nm for protein or 

DNA, respectively, c the concentration in mol/l, d the length of the pathway in cm 

and ε being the extinction coefficient in M-1 cm-1. For proteins, ε is calculated 

according to the following equation: 

Equation 2 
ε280= n Tyr · ε Tyr+ n Trp · ε Trp + n Cys · ε Cys 

 

with ε280(Tyr) = 1.490, ε280(Trp) = 5.500, ε280(Cys) = 125 (ProtParam, 

www.ExPASy.org). For DNA, ε was determined by the nearest neighbor method 

(Cantor et al, 1970; Fasman, 1975). 

 

3.4.2. Dynamic Light Scattering 

Dynamic Light Scattering (DLS) was used to determine the particle size in 

solution. The oligomeric state of a protein is often in an equilibrium which is 

reestablished again after size-exclusion chromatography and after concentrating 

the protein. To investigate whether the protein is monomeric or adopts different 

oligomeric states, the distribution of particle size in solution was analyzed by DLS. 

Laser light is scattered from dissolved macromolecules or suspended particles 

undergoing random Brownian motion resulting in fluctuations in light intensity 

(Murphy, 1997). The scattering fluctuations within a period of time are directly 

related to the translational diffusion coefficient of the scattering particles (Philo, 

2006). The direct correlation of diffusion and size of a particle is used to determine 
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the hydrodynamic radius. Assuming that globular proteins are spherical in shape, 

the Stokes-Einstein relation can be applied to deduce the apparent hydrodynamic 

radius Rh(app) (Wilson, 2003): 

Equation 3 

Rh(app)=
kT

6πηD(c)
 

 

with the concentration-dependent translational diffusion coefficient D(c), k is the 

Boltzmann constant, T is the absolute temperature in Kelvin and η the viscosity of 

the solvent. 

Protein samples were extensively centrifuged for 30 min at 16,000 g, 20 °C, 

immediately filled into a quartz cuvette and measured by dynamic light scattering 

(DynaPro, Wyatt Technology) over 10 measurements at 20 °C. For crystallization 

purposes, the protein solution ideally should exert a polydispersity lower than 

20 %. 

 

3.4.3. Circular Dichroism (CD) Spectroscopy 

CD-spectroscopy was applied to study the folding of proteins (Kelly et al, 2005). 

Circular polarized light is absorbed by chiral substances in solution and the 

resulting ellipticity is plotted against the wavelength. Tertiary structure elements 

such as α-helices and β-strands lead to characteristic CD-spectra. CD-spectra can 

thus be deconvoluted to estimate the content of structure elements or unfolded 

parts in a protein. In this study, CD-spectroscopy was utilized to verify that point 

mutations introduced into the Bax1 protein do not affect the overall structure of the 

protein. Moreover, the two identified XPB/Bax1 complexes were compared. 

Measurements were performed at 20 °C in a 0.1 cm quartz cuvette using a 

J-810 CD-spectropolarimeter (Jasco). The protein was diluted in a buffer 

containing 20 mM sodium-phosphate, pH 8.0, to a final concentration of 0.1 mg/ml. 

Spectra were registered at wavelengths from 260 nm to 190 nm and five spectra 

were accumulated to optimize the signal to noise ratio. The band width was 

adjusted to 2.0 nm and a sensitivity of 100 mdeg was used. The scan speed was 

20 nm min-1, the time response 1 s and the data pitch 0.1 nm. 
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3.5. Biochemical Assays 

3.5.1. Electrophoretic mobility shift assays (EMSA) 

Electrophoretic mobility shift assays (EMSAs) were performed to study protein-

DNA interactions. This method employs the different mobility of free DNA in 

comparison to DNA which is bound to a protein in native polyacrylamide gels 

(Figure 3.1). The DNA can be either detected by 32P radio-isotope or fluorescent 

labeling.  

DNA was incubated with protein in an appropriate reaction buffer with a total 

volume of 10 µl. The reaction was supplemented with sample buffer containing 

glycerol and color dyes prior to gel-electrophoresis on native polyacrylamide gels. 

Gels were exposed to a phosphorimager screen over night, visualized by a 

Personal Molecular Imager (PMI) System (BioRad) and quantified employing the 

software Quantity One (BioRad). Using DNA labeled with fluorescein, the 

polyacrylamide gels were directly visualized by the PharosFX™ imager system. 

 

Figure 3.1  Schematic representation of an electrophoretic mobility shift assay. 
Free DNA in comparison to DNA which is bound to a protein (depicted as a filled circle) 
exhibits a higher mobility in native polyacrylamide gels. With increasing protein 
concentration, the percentage of protein-bound DNA will rise if a complex is formed.  
 

3.5.2. Bio-Layer interferometry 

Bio-Layer interferometry was performed with the Octet Red System (Forté Bio) 

using streptavidin coated biosensors. The DNA top strand NDT (Table 2.1) was 
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5’ biotinylated and annealed to form either 3’ overhang or double-stranded DNA 

(dsDNA) substrates. A 3’ biotinylated version of the DNA substrate NDT was used 

to form 5’ overhang substrates. DNA substrates and proteins were diluted in a 

buffer containing 20 mM MES, pH 6.5, 150 mM NaCl, 10 mM DTT, 1 mg/ml BSA 

and 10 mM CaCl2. 

Streptavidin biosensors were coated with the biotinylated DNA substrate by 

incubation for 10 min in a 100 nM DNA solution followed by a 2 min washing step 

in buffer. The biosensors were then transferred into protein solution for 10 min to 

allow association and subsequently conveyed into buffer to detect protein 

dissociation. All steps were performed at 37 °C and 1000 rpm in a 96-well plate 

containing 200 µl solution in each well. From changes in light interference over 

time upon binding and dissociation events, kon, koff, and the equilibrium 

dissociation constant KD were derived using a 1:1 binding model (ForteBio 

OctetRED Evaluation software 6.1).  

 

3.5.3. Incision assays 

 

Figure 3.2  Schematic representation of an incision assay. Endonucleases 
(depicted as a triangle) cleave phosphodiesterbonds within the DNA substrate. A 
denaturing step is necessary to separate the duplex DNA. On the denaturing 
polyacrylamide gel, full length and incised DNA are separated by their different running 
velocity. 
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To investigate DNA endonuclease activity, incision assays were performed by 

incubation of protein and DNA substrates in an appropriate reaction buffer as 

schematically depicted in Figure 3.2. Urea sample buffer was added and samples 

were heated to 90 °C for 10 min prior to electrophoresis at 300 V on a denaturing 

15 % polyacrylamide gel. Gels containing 32P-labeled DNA were exposed to a 

phosphorimager screen over night, fluorescently labeled DNA comprising gels 

were directly visualized by the PharosFXTM Imager System (BioRad) and 

quantified employing the software Quantity One (BioRad). 

 

3.5.4. Helicase assays 

To investigate DNA unwinding activity, helicase assays were performed by 

incubation of protein and DNA substrates in an appropriate reaction buffer as 

shown in Figure 3.3.  

 

 

Figure 3.3  Schematic representation of a helicase assay. Helicases (shown as 
triangle) unwind dsDNA to form ssDNA. The helicase is digested by proteinase K to allow 
analyses of protein-free ssDNA and dsDNA on native polyacrylamide gels. 
 

Stop buffer containing 10 mM TrisHCl, pH 8.0, 5 mM EDTA, 0.5 % SDS, 

1 mg/ml Proteinase K and 5 µM competitor DNA was added and incubated for 

15 min at RT to digest the helicase and to prevent the unwound DNA from 
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re-annealing. Then, 6 x sample buffer (Invitrogen) was added and samples were 

separated at 120 V on an 8 % native polyacrylamide gel. Gels containing 
32P-labeled DNA were exposed to a phosphorimager screen over night, 

fluorescently labeled DNA comprising gels were directly visualized by the 

PharosFXTM Imager System (BioRad) and quantified employing the software 

Quantity One (BioRad). 

3.5.5. ATPase assays 

Hydrolysis of ATP provides energy for many molecular processes. Helicases, 

for example, consume ATP to be able to unwind DNA (Singleton et al, 2007). 

ATPase activity was determined using a coupled enzyme assay (Panuska & 

Goldthwait, 1980). Phosphoenolpyruvate is dephosphorylated to pyruvate by 

pyruvate kinase transferring the phosphate group to ADP. Pyruvate is further 

processed to L-Lactate by the L-Lactate dehydrogenase oxidizing NADH to NAD+. 

This step can be monitored in an UV-spectrophotometer as NADH in contrast to 

NAD+ absorbs light at a wavelength of 340 nm. Since no ADP is added to the 

reaction, this process is running only in the presence of an ATPase consuming 

ATP and simultaneously releasing ADP which can then serve as a substrate for 

the pyruvate kinase (schematically depicted in Figure 3.4). In this assay, the 

rate-limiting step needs to be restricted to the ATPase to obtain turn-over rates. 

 

 

Figure 3.4  Schematic reaction scheme of the ATPase assay. Only in the presence 
of an active ATPase, ADP is provided for the reaction mechanism which consumes 
NADH. The oxidation of NADH can be monitored in spectrophotometrically as NADH in 
contrast to NAD+ absorbs light at 340 nm. 
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3.5.6. Limited proteolysis 

Limited proteolysis was used to monitor protein folding since partially unfolded 

proteins are more prone to proteolytic digestion compared to folded proteins 

(Heiring & Muller, 2001) This method also allows identifying stable protein 

fragments, flexible linker regions or even different conformations of a protein. 

To study the stability of Bax1 and to determine conformational differences 

between XPB/Bax1 complexes, protein samples (4 µM) were subjected to limited 

proteolysis using 100 nM trypsin. Experiments were carried out in buffer containing 

20 mM TrisHCl, 500 mM NaCl, pH 7.5 at room temperature for the times indicated. 

Samples were denatured in 5 x SDS sample buffer and subsequently analyzed by 

SDS-PAGE.  

 

3.6. Biophysical approaches 

3.6.1. Analytical gelfitration 

To investigate protein-protein interactions, analytical size exclusion 

chromatography was performed using a SuperdexTM 200 10/300GL or 

SuperdexTM 75 10/300GL column (GE Healthcare).  

Standard proteins were used to calibrate the size-exclusion columns (Gel 

filtration calibration Kit, GE Healthcare). The gel phase distribution coefficient Kav 

was determined for each standard protein using the following equation: 

Equation 4 

Kav = 
Ve - V0

Vt	- V0
 

 

with Ve being the elution volume, V0 was the void volume and Vt the total bed 

volume of the column. Kav was then plotted against the logarithm of the molecular 

weight log(MW) providing a linear calibration curve. For the 

SuperdexTM 200 10/300GL column, the calibration curve is described by the 

following equation: 

Equation 5 
Kav=	-0.319	× logሺMWሻ+ 1.969 
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Calibration of the SuperdexTM 75 10/300GL column results in Equation 6: 

 

Equation 6 
Kav=	-0.352	×	log	(MW)	+ 0.748 

 

The molecular weight could subsequently be determined by linear regression. 

All proteins were eluted isocratically with 20 mM TrisHCl, 500 mM NaCl, pH 7.5 

and collected in 0.5 ml fractions which were then analyzed by SDS PAGE. 

3.6.2. Analytical ultracentrifugation 

Analytical ultracentrifugation (AUC) was employed to analyze protein 

complexes in solution with regard to their molecular size and shape. The particle 

size is reflected by the sedimentation coefficient, whereas the shape of particles is 

indicated by the frictional ratio. Therefore, the stoichiometry and conformation of 

multi-protein complexes can be examined. 

Sedimentation Velocity (SV) Analytical Ultracentrifugation was performed on 

purified Bax1, XPB and XPB/Bax1 complexes at a concentration of 1 μM each. 

Experiments were conducted with a Beckman Optima XL-I analytical 

ultracentrifuge (Beckman Coulter) using an eight-hole An-50 Ti rotor at 40,000 rpm 

and 20 °C, with 400 l samples in standard double-sector charcoal-filled Epon 

centerpieces equipped with sapphire windows. Data were collected in continuous 

mode at a step-size off 0.003 cm using absorption optical detection at a 

wavelength of 280 nm. Data were analyzed using the software SEDFIT to 

determine continuous distributions for solutions to the Lamm equation c(s), as 

described (Schuck, 2000). Analysis was performed with regularization at 

confidence levels of 0.68 and floating frictional ratio (f/fo), time-independent noise, 

baseline, and meniscus position, to RMSD values of 0.0038 to 0.016. 

 

3.6.3. Atomic Force Microscopy 

Atomic Force Microscopy (AFM) was applied to study single molecules such as 

protein-protein and protein-DNA assemblies (Fotiadis et al, 2002; Yang et al, 

2003). In AFM, a biological sample surface is mechanically raster-scanned and 
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translated into a 3D-image. The resulting surface topography reveals qualitative 

and quantitative information about stoichiometry, conformation and structure of 

biomolecular assemblies (Hirano et al, 2008; Yang et al, 2003).  

To study the interaction of proteins and protein complexes on DNA on individual 

molecules, different DNA substrates and different incubation conditions were 

employed. DNA substrates were heated to 65 °C for 10 minutes and slowly cooled 

down to room temperature to remove any salt crystals formed during storage. 

Proteins (0.5 and 1 μM) and DNA (100 nM for linear DNA fragments, 20 nM for 

circular DNA) were incubated in AFM incubation buffer (20 mM TrisHCl pH 7.5, 

150 mM NaCl, 10 mM DTT, 10 mM CaCl2) for 30 minutes at 45 °C. Linear DNA 

samples were diluted 75-fold, circular DNA samples 20-fold in AFM deposition 

buffer (25 mM HEPES pH 7.5, 25 mM Na-acetate, 10 mM Mg-acetate) after 

incubation, immediately deposited onto freshly cleaved mica, rinsed with deionized 

water and dried in a gentle stream of nitrogen. All images were collected on an 

MFP-3D-BIO atomic force microscope (Asylum Research) in oscillating mode 

using Olympus OMCL-AC240 silicon probes with spring constants of ~2 N/m and 

resonance frequencies of ~70 kHz. Images were captured at a scan size of 

2 × 2 μm2, a scan rate of 0.5 Hz and a resolution of 1024 × 1024 pixels. 

For analysis, AFM images were flattened to 1st order. Peak heights and AFM 

volumes were measured and calculated using Gwyddion and ImageSXM software. 

AFM volumes can be translated into protein molecular weights by calibrating the 

instrument with proteins of known molecular weight to derive a standard linear 

relationship. For our set-up, the calibration curve is described by the following 

equation: 

Equation 7 
V	=	1.2	×	MW -	5.9 

 

where V is the AFM volume and MW is the molecular weight. To determine the 

approximate molecular weights of DNA-bound protein complexes, we subtracted 

the DNA volume that is covered by a protein complex from the total complex 

volume. The DNA volume was calculated using the same length as that covered 

by the bound protein complex, the measured DNA height, and a width of 2 nm, 

and was on average (72 ± 6) nm3 for the XPB/Bax1 complexes. Positions of 
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protein peaks on the DNA were measured using the NIH ImageJ software. The 

position distribution histograms are presented as the occurrence probability Pi 

versus position  

Equation 8 

Pi= 
ni

Nbp, bins×∑ ni
 

 

where i is the position on the DNA, ni is the number of complexes observed at 

position i, Σni = n is the total number of binding occurrences observed within the 

position range, and Nbp,bins is the number of DNA base pairs in each position bin. 

From maxima in the distribution of relative occupancies, specificities for particular 

DNA strand internal positions can be determined. The specificity S for different 

DNA fragment end types was calculated from the ratio of relative occupancies of 

DNA ends and DNA strand internal positions (X) by the following equation: 

Equation 9 
S	=	N	×	X	+	1 

 

(Yang et al, 2005), where N is the number of binding sites on the DNA (here 

N = 522 bp for the blunt end DNA substrate and N = 490 bp for the 3’ and 

5’ overhang DNA substrates). For analysis of protein coverage of circular plasmid 

DNA, protein-DNA complexes were visually inspected and counted using the AFM 

software (Asylum Research on Igor Pro). 

 

3.7. Crystallization 

A single crystal is the pre-condition to solve a protein structure with X-ray 

crystallography. In vapor diffusion experiments, highly pure protein is mixed with 

reservoir solution and opposed to a much higher volume of reservoir to allow water 

to diffuse from the protein solution to attempt dilution of the reservoir or vice versa. 

The diffusion events result in a higher concentration of protein and precipitant in 

the crystallization drop thus facilitating nucleation and crystal growth. 

Crystallization screens are used to probe for many different conditions to finally 

identify a suitable condition to grow protein crystals. 
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Crystallization screens were set-up in a 96-well format with the crystallization 

robot (Honeybee, Cartesian Systems). Usually, 300 nl protein were mixed with 

300 nl reservoir solution on a sitting drop next to 40 µl reservoir solution. For 

manual optimization, hanging drop vapor diffusion experiments were conducted by 

mixing 1 µl protein solution with 1 µl reservoir solution on a cover slide which is 

deposited upside down onto a 1 ml reservoir solution containing well. The 

crystallization conditions were checked on a regular basis for crystal growth. 

 

3.8. X-ray crystallography 

3.8.1. Data collection and structure determination 

To determine the structure of a macromolecule by X-ray crystallography, the 

intensities of waves scattered from Bragg planes (referred to as the Miller 

indices hkl) in the crystal are measured. The square root of the detected intensities 

ሾ|ܫሺ݄݈݇ሻ|
భ
మሿ is proportional to the structure factor amplitude |F(hkl)| of the reflection 

(hkl). To determine the electron density ρ at a position (xyz) in the unit cell of a 

crystal, the Fourier transformation is calculated by summation over all hkl planes 

(Taylor, 2003): 

Equation 10  

ሻݖݕݔሺ݌ ൌ
1
ܸ
	෍|ܨሺ݄݈݇ሻ|	݁௜	ఈ೓ೖ೗݁ሾିଶగ௜	ሺ௛௫ା௞௬ା௟௭ሻሿ

௛௞௟

 

 

with V being the volume of the unit cell, i is the imaginary number, and αhkl is the 

phase angle associated with the structure-factor amplitude |F(hkl)|. Although the 

amplitudes can be determined, the phases are lost during the experiment. This 

fact is termed the phase problem in crystallography. To solve the phase problem, 

different approaches are available. Molecular replacement is used if a homologous 

search model is available. The isomorphous replacement method employs the 

additional information derived from heavy-atom scattering introduced by soaking 

or co-crystallization, whereas the anomalous diffraction method uses anomalous 

scattering elements such as selenium with are incorporated in the protein. In this 

study, the molecular replacement approach was applied. 
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The diffraction data set was collected from a single UvrB∆4-DNA co-crystal at 

the synchrotron beamline BL14-1 the Berlin Electron Storage Ring Society for 

Synchrotron Radiation (BESSY). Data were indexed, integrated and scaled using 

the programs MOSFLM, POINTLESS and SCALA (Evans, 2006; Grosse-Kunstleve et 

al, 2002; Kabsch, 1988; Leslie, 1990). The structure was solved by molecular 

replacement with PHASER (McCoy et al, 2007) using a previously solved crystal 

structure of the UvrB-DNA complex (PDB: 2FDC, chain B) as a search model.  

 

3.8.2. Refinement 

Refinement consists of alternating cycles of manual model building and 

automated refinement of coordinates and B-factors according to the maximum 

likelihood approach. Model building in real space was performed employing COOT 

(Emsley & Cowtan, 2004) by fitting the structure model into the electron density 

map. Automated refinement was done in the reciprocal space to optimize the 

correlation of observed |ܨ௢ሺ݄݈݇ሻ| and calculated structure-factor amplitudes 

 ௖ሺ݄݈݇ሻ|. A qualitative measure of this correlation is reflected by the Rwork and Rfreeܨ|

factors.  

Equation 11 

ܴ௪௢௥௞,௙௥௘௘ ൌ 	
∑ ห|ܨ௢ሺ݄݈݇ሻ| െ ௖ሺ݄݈݇ሻ|ห௛௞௟ܨ|

∑ ௢ሺ݄݈݇ሻ|௛௞௟ܨ|
 

 

For the calculation of the Rfree factor, 5-10 % of the data are randomly selected 

and not included in the refinement procedure to avoid bias and over-interpreting 

the structure model (Brunger, 1997; Kleywegt & Jones, 1997). 

For refinement of the UvrB∆4-DNA complex, REFMAC5 (Murshudov et al, 1997), 

a combination of CNS (Adams et al, 1997) and the deformable elastic network 

(DEN) approach (Schroder et al, 2010), and PHENIX (Adams et al, 2002) was 

employed. 

The DEN approach was established to improve the low-resolution data. In 

contrast to rigid body refinement, this method accounts for deformations of a 

high-resolution reference model (Schroder et al, 2010). The DEN potential can be 

optimized by varying the parameters wDEN and γ as defined by following equations: 
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Equation 12 
Etotal= Egeometric+ wa	EML +	wDEN	EDEN(γ) 

 

The total energy function Etotal consists of a weighted sum of a stereochemical 

energy function Egeometric, a maximum likelihood target function EML and the DEN 

potential EDEN with its relative weights wa and wDEN. The elastic network energy 

term EDEN is defined by Equation 13 referring to the sum of distance deviations to 

the power p over all selected atom pairs i,j, 

Equation 13 

EDENሺγ, nሻ= ෍ (dij-dij
0ሺγ, nሻ)

p

N pairs i,j

 

 

where dij is the distance between atom pair i and j in the current atomic model 

and ݀௜௝
଴ (γ,n) is the corresponding equilibrium distance after the DEN update step n 

(Schroder et al, 2010). 

Additionally, the weighting term wxc between X-ray diffraction data and 

stereochemical restraints was optimized for refinement with CNS and used for 

both programs CNS and PHENIX (Adams et al, 2002; Adams et al, 1997). 

Using PHENIX, TLS refinement was additionally applied and the model was split 

into 8 TLS mobility groups (comprising residues 3-119, 120-251, 252-274, 

275-294, 295-415, 416-445, 446-512 and 513-596) as determined by the TLSMD 

server (Painter & Merritt, 2006). 

 

3.8.3. Data evaluation 

To evaluate the quality of the raw crystallographic data, the reliability factors 

Rsym, Rmeas and Rp.i.m. were calculated (Diederichs & Karplus, 1997; Weiss, 2001; 

Weiss & Hilgenfeld, 1997). 

Equation 14 

ܴ௦௬௠ ൌ 	
∑ ∑ หܫ௛௞௟,௝ െ ห௝௛௞௟〈௛௞௟ܫ〉

∑ ∑ ௛௞௟,௝௝௛௞௟ܫ
 

Equation 15 

ܴ௠௘௔௦ ൌ
∑ ට ݊

݊	 െ 1	௛௞௟ ∑ หܫ௛௞௟,௝ െ 	 ห〈௛௞௟ܫ〉
௡
௝ୀଵ

∑ ∑ ௛௞௟,௝௝௛௞௟ܫ
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Equation 16 

ܴ௣.௜.௠ ൌ
∑ ට 1

݊	 െ 1	௛௞௟ ∑ หܫ௛௞௟,௝ െ	 ห〈௛௞௟ܫ〉
௡
௝ୀଵ

∑ ∑ ௛௞௟,௝௝௛௞௟ܫ
 

 

After refining the structure to reasonable R-factors, the structure model was 

analyzed for its geometry by the MolProbity Server and PROCHECK (Chen et al, 

2010; Laskowski et al, 1993; Laskowski et al, 1996). MolProbity and PROCHECK 

involve Ramachandran plot analysis to identify unusual or disallowed 

combinations of the main chain dihedral angles φ and ψ (Lovell et al, 2003). 

Deviations (given as root mean square deviations) from the ideal bond length and 

bond angle are reported as well.  

All figures representing crystal structures were generated with PyMOL (DeLano, 

2003). For correct structure representation, secondary structure elements were 

assigned using DSSP (Kabsch & Sander, 1983). 
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4. Results 

4.1. Prokaryotic Nucleotide Excision Repair – Structural Analysis 

of the Damage Recognition and the Pre-Incision Complex 

4.1.1. Expression and purification of UvrB and UvrB∆4 from 

B. caldotenax 

According to an already established protocol for the wildtype protein as well as 

the UvrB∆4 variant (Skorvaga et al, 2002), E. coli BL21-CodonPlus®(DE3)-RIL 

cells were transformed with the pTYBI::uvrB or pTYBI::uvrB∆4 plasmid providing 

an N-terminal intein-tag (Truglio et al, 2006b). The UvrB∆4 variant corresponds to 

a truncated UvrB protein lacking domain 4 (residues Pro612 to Gly658). A single 

colony was used to inoculate a 100 ml LBAmp/Cam pre-culture. Cells were 

transferred into 2 l LBAmp/Cam and grown at 37 °C and 200 rpm until the optical 

density (oD600) reached 0.5. Expression was induced by the addition of 0.3 mM 

IPTG and continued for 20 h at 15 °C. Cells were harvested by centrifugation and 

lysed in UvrB-AC/GF buffer by the use of a cell disruptor system. The lysate was 

cleared by centrifugation and the supernatant was then incubated with 

pre-equilibrated chitin beads in a batch approach at 4 °C for 2 h to improve 

binding. The beads were washed with buffer to remove unbound protein. UvrB 

(UvrB∆4) was cleaved from its intein-chitin-tag by incubation with DTT for 48 h at 

RT. The protein was then eluted with buffer, concentrated in centrifuge 

concentrators (MW cutoff: 50,000 Da) and subjected to size-exclusion 

chromatography using a HiLoad™ 26/60 Superdex™ 200 pg column with 

UvrB-AC/GF buffer (Figure 4.1). Peak fractions were analyzed by SDS-PAGE for 

the presence and purity of UvrB (UvrB∆4) and concentrated in centrifuge 

concentrators up to 50 mg/ml. The protein concentration was determined 

spectrophotometrically (UvrB: MW = 75.5 kDa, ε280 = 38740 M-1 cm-1; UvrB∆4: 

MW = 70.0 kDa, ε280 = 38740 M-1 cm-1). 50 µl aliquots were flash frozen with liquid 

nitrogen and stored at -80 °C. 

A representative size-exclusion chromatogram and corresponding gels are 

depicted in Figure 4.1. UvrB∆4 elutes in a single peak at an elution volume of 
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~200 ml. On the SDS-gels, peak fractions show pure bands corresponding to 

UvrB∆4 at approximately 70 kDa. 

 

 

Figure 4.1  Chromatogram of the final size-exclusion chromatography of UvrB∆4 
and SDS-PAGE of the elution fractions. (A) UvrB∆4 elutes from the HiLoad™ 26/60 
Superdex™ 200 pg column at an elution volume of ~200 ml forming one defined peak. 
(B) The SDS-gel (left) shows the input, flow through (Fl.) and elution fractions (E1-E3) 
from the chitin beads. The SDS-gel in the right panel represents peak fractions from 
panel A revealing pure bands corresponding to UvrB∆4 at approximately 70 kDa. 
 

4.1.2. Expression and purification of UvrC from B. caldotenax 

The UvrCBca gene has been cloned in the expression vector pTXBI providing a 

C-terminal intein tag (Skorvaga et al, 2002). E. coli BL21-CodonPlus®(DE3)-RIL 

cells were transformed with pTXBI::uvrCBca and grown on LBAmp/Cam-agar plates. A 

2 l ZYM-5052Amp/Cam culture was inoculated and grown at 37 °C and 200 rpm until 

oD600 = 0.3. The temperature was lowered to 15 °C and expression was continued 

for ~20 h. Cells were harvested by centrifugation and subsequently lysed in 

UvrC-AC buffer using the cell disruptor system. The cleared cell lysate was 

incubated with pre-equlibrated chitin beads at 4 °C for 2 h to improve binding of 

the fusion protein to the chitin beads in a batch set-up. The beads were washed 

extensively with approximately 50 CV buffer UvrC-AC prior to the addition of 

cleavage buffer containing 100 mM DTT. The solution was then incubated for 48 h 

at RT to cleave UvrC from the intein-chitin-tag. Protein was eluted, concentrated in 

centrifuge concentrators (MW cutoff: 30,000 Da) and subjected to size-exclusion 
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chromatography using a HiLoad™ 26/60 Superdex™ 200 pg column equilibrated 

in UvrC-GF buffer (Figure 4.2). Peak fractions were analyzed by SDS-PAGE and 

concentrated up to 50 mg/ml. The protein concentration was determined 

spectrophotometrically (UvrC: MW = 67.9 kDa, ε280 = 44240 M-1 cm-1). 50 µl 

aliquots were flash-frozen with liquid nitrogen and stored at -80 °C. 

 

Figure 4.2  Chromatogram of the final size-exclusion chromatography of UvrC 
and SDS-PAGE of the peak fractions. (A) UvrC elutes in the size-exclusion 
chromatography (HiLoad™ 26/60 Superdex™ 200 pg column) in two peaks 
corresponding to monomeric and dimeric UvrC (172 ml and 150 ml, respectively). (B) The 
SDS-gel shows minor impurities eluting with the 68 kDa-band referring to UvrC. In 
addition to the peak fractions from the size-exclusion chromatography, elution fraction E1 
from the chitin beads as well as the gel-filtration input sample is depicted. 
 

The representative chromatogram (Figure 4.2) and the corresponding SDS-gel 

show that UvrC elutes in two peaks corresponding to monomeric and dimeric UvrC 

(172 ml and 150 ml, respectively). In addition to the UvrC band in the SDS-gel 

(~68 kDa) only minor impurities are visible. 

 

4.1.3. Crystallization, data collection and crystal structure determination 

of the UvrB-DNA complex 

To decipher the process of DNA damage recognition, UvrB∆4 was 

co-crystallized with the DNA-substrate E, which contains a fluorescein adduct 

within a hairpin-bubble structure mimicking a NER-substrate to which UvrB is able 

to bind without the help of UvrA (Zou & Van Houten, 1999). UvrB∆4 was used 
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instead of wildtype UvrB because it lacks its auto-inhibitory domain (domain 4; 

consistent with residues 612-658) thus exhibiting a higher affinity towards DNA 

(Wang et al, 2006). Protein (280 µM UvrB∆4) and DNA were mixed in a 1:1.2 

molar ratio and dialyzed against UvrB-dialysis buffer pre-heated to 45 °C. The 

dialysis set-up was slowly cooled to RT to allow the protein to bind its DNA 

substrate. Crystallization was performed immediately by hanging-drop vapor 

diffusion experiments at 20 °C. Diffracting crystals were obtained by mixing 1 µl 

crystallization condition containing 5 mM ZnCl2, 100 mM Bicine pH 9.0, 9.4 % 

PEG 20,000 and 1 µl of UvrB∆4-DNA solution. The drop was then opposed to a 

reservoir comprising 100 mM TrisHCl, pH 8.5, 500 mM NaCl and 20 % PEG 6,000 

(Figure 4.3). 

 

    

Figure 4.3  Crystallization and data collection of UvrB∆4-DNA crystals. 
(A) Crystals of the UvrB∆4-DNA complex. The yellow color indicates that fluorescein 
containing DNA is present in the crystal. (B) Diffraction pattern of the UvrB∆4-DNA crystal. 
 

The UvrB∆4-DNA crystal was fished with a nylon loop, soaked in mother liquor 

supplemented with the cryoprotectant glycerol and flash-frozen in liquid nitrogen. 

Data were collected at the synchrotron beamline BL14.1 at BESSY and diffracted 

to a minimum of 3.2 Å resolution. 

A B
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Figure 4.4  Diffraction spots of the UvrB∆4-DNA crystal. Diffraction spots are 
enlarged and represented in a 3D-view with the spot intensities translated into height 
information. 
 

Diffraction spots were indexed, integrated and scaled with MOSFLM, POINTLESS 

and SCALA (Kabsch, 1988; Leslie, 1990). The H test suggested that the data were 

twinned with a twinning fraction of 5 % described by the twinning operator 

h+k, -k, -l (Yeates, 1988). The data were processed to a resolution of 3.5 Å and the 

crystal structure was solved by molecular replacement with PHASER (McCoy et al, 

2007) using the structure of the UvrB-DNA complex (PDB: 2FDC, chain B) as a 

search model. 

The structure was refined by multiple cycles of model building and automated 

refinement using REFMAC5 (Murshudov et al, 1997), CNS/DEN (Adams et al, 

1997) (Schroder et al, 2010) and PHENIX/TLS (Adams et al, 2002) as described in 

3.8.2 and to reasonable R-factors (Rwork = 25.8 %, Rfree = 29.2 %). Further 

refinement steps in order to fix both bad rotamers and to improve the 

Ramachandran statistics for most favored dihedral φ/ψ angles did result in an 

over-fitting of the model indicated by a deviation between Rwork and Rfree of 

considerably more than 5 %. 

The corresponding crystallographic data and refinement statistics are listed in 

Table 4.1. 
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Table 4.1  Crystallographic data collection and refinement statistics 

Data collection   

X-ray source BESSY-MX, BL14.1 

Detector Marmosaic 225 mm X-ray detector 

Wavelength (Å) 0.95372 

Resolution (Å) 50.89-3.50 (3.69-3.50) a 

Space group P 31 2 1 

Cell parameters a = b = 152.27 Å, c = 80.04 Å 

α = β = 90°, γ = 120° 

Number of molecules per ASU 1 

Solvent content (%) 67.88 

Matthews coefficient 3.3 

Mean I/σ(I) 5.7 (1.9) 

Rsym (%) 14.8 (71.2) 

Rmeas (%) 17.5 (84.3) 

Rpim (%) 9.3 (44.7) 

No. of reflections 47,351 (6,812) 

No. of unique reflections 13,743 (1,966) 

Redundancy 3.4 

Completeness (%) 99.9 (100) 

Average mosaicity 0.75 

Wilson B-value(Å2) 99.59 
 

Refinement statistics (50.89-3.50 Å)  

No. of TLS groups used in refinement 8 

Rwork / Rfree / Rtotal (%) b 25.84 / 29.22 / 26.00 

No. of atoms 4443 

No. of residues 594 

Ligands DNA (73 atoms, 5 residues) 

Overall mean B-value (Å2) 137.01 

mean B-value protein(Å2) 135.01 

mean B-value DNA (Å2) 258.6 
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R.M.S.D from ideal geometry  

       bond length (Å) 0.005 

       bond angles (°) 0.821 

Ramachandran statistics c 77.4 / 22.6 / 0.0 / 0.0 
a Values given in parentheses in this column are for the highest resolution shell 
b R-factors are defined in 3.8. The Rfree was calculated from 4.91 % of the data that were 
randomly removed before the refinement was started. 
c The Ramachandran statistics were obtained with PROCHECK. Reported is the percentage 
of residues in the most favored, additional allowed, generously allowed and disallowed 
areas of the Ramachandran plot. 
 

 

Figure 4.5  Ramachandran Plot of dihedral angles φ and ψ. For each residue, the 
corresponding φ and ψ are plotted and depicted as squares (triangles are related to Gly 
residues). Red areas delineate the most favored regions, yellow areas define the allowed 
regions and the light yellow area corresponds to the generously allowed region. 
 

The CCP4 program suite was used to determine B-factors as well as the 

Matthews coefficient, solvent content and the number of molecules per 

asymmetric unit (ASU) (Matthews, 1968). It should be noted that, consistent with 

the high solvent content of 67.9 % and the elevated Wilson B-value of 99.6 Å2, the 

resulting B-values of the model are quite high. Increased B-values are observed 

especially for the DNA bases where only residual density is present, either as a 

measure of high mobility or a very low occupancy in this region. On account of the 
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low resolution of the structure, the structural restraints thus were kept very tight 

during refinement. Consequently, the r.m.s.d. values for bond lengths and bond 

angles finally resulted in 0.005 Å and 0.821°, respectively. In general, r.m.s.d. 

values of ≤ 0.02 Å and ≤ 1.90° are tolerated. 

 

4.1.4. Crystal structure of the UvrB∆4-DNA complex 

The crystal structure of UvrB∆4 shows a 4-domain architecture comprising two 

RecA-like helicase domains (domains 1a and 3; colored in yellow and red in 

Figure 4.6, respectively) and a protruding β-hairpin (highlighted in cyan in 

Figure 4.6) inserted in domain 1a. 

 

Figure 4.6  Crystal structure of the UvrB∆4-DNA complex. The overall structure of 
the UvrB∆4-DNA complex is depicted in colored ribbon and transparent surface 
representation, the DNA (black) is shown as stick model. The colors represent the domain 
architecture of UvrB∆4 (yellow: domain 1a, green: domain 1b, blue: domain 2, red: 
domain 3, cyan: β-hairpin). 
 

Additionally, a short stretch of DNA is bound to UvrB∆4. Although UvrB∆4 was 

co-crystallized with a hairpin-bubble substrate containing a fluorescein-adducted 

thymine as NER substrate, only three complete bases are visible in the crystal 

structure (Figure 4.7). At the 5’ end, electron density can be observed to position 
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one ribose and one phosphate, whereas, at the 3’ end, the electron density is only 

sufficient for one phosphate-group. 

 

Figure 4.7  Electron density map covering the DNA. UvrB∆4 is shown in green, the 
DNA is depicted as stick model, the black mesh represents the 2Fo-Fc electron density 
map covering the DNA contoured at 1σ. The sequence and structure of the DNA substrate 
used for co-crystallization is shown above with F representing a fluorescein-adducted 
thymine. 
 

The 2Fo-Fc electron density map contoured at 1σ is not sufficiently resolved to 

allow the identification of the DNA sequence in the crystal structure, although the 

electron density does not seem to be suitable in size and shape to harbor purines. 

Since the DNA substrate used for co-crystallization contains several pyrimidines in 

a row within the bubble structure, the DNA sequence remains unclear. Moreover, it 

is an open question whether the thymine containing the fluorescein is part of the 

DNA observed in the density or the DNA stretch opposite the DNA adduct. The 

fluorescein seems to be too flexible to be visible in the electron density. 

 

3‘ 
5‘ 
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4.1.5. The UvrBC-complex is able to perform specific incision reactions 

Although the mechanism of damage verification remains to be deciphered, it is 

known that UvrB binds to DNA bubble substrates without the help of UvrA (Zou & 

Van Houten, 1999) and is able to confirm the presence of a NER lesion in DNA 

even in the absence of UvrA (Moolenaar et al, 2000b). Therefore, it is assumed 

that UvrB jumps onto the DNA at the site of the bubble and moves to the DNA 

damage which is recognized and verified. UvrC would then be recruited to 

specifically incise the DNA.  

 

Figure 4.8  Incision assays of different bubble sites with regard to a DNA 
damage. (A) Incision assays were performed with 20 nM UvrA, 100 nM UvrB, 50 nM UvrC 
(+) or alternatively 2 µM UvrB and 2 µM UvrC (++). DNA substrates were generated by 
annealing the DNA substrate 100mer_bottomF containing a central fluorescein with either 
100mer_topNB, 100mer_top_CB, 100mer_top5B or 100mer_top_3B to yield dsDNA, DNA 
with a 6 nts central bubble, DNA with a 6 nt-bubble 3’ to the fluorescein or DNA with a 
6 nt-bubble 5’ to the lesion, respectively. Incision assay with different locations for a 6 nt 
unpaired region leads to an identical incision product consistent with the incision site 8 bp 
5’ to the fluorescein adducted thymine both for UvrABC and for UvrBC. (B) Quantification 
of the incision products reveal that DNA substrates with either central or 5’ bubble are 
preferred over DNA substrates containing no bubble or a bubble located 3’ to the lesion. 
(C) Schematic representation of DNA substrates used for this incision assay. 
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To test this hypothesis, incision assays were performed employing dsDNA as 

well as DNA substrates containing a 6 nts bubble at different positions with regard 

to the central DNA damage (Figure 4.8, panel C). The reaction was carried out in 

1 x ABC-buffer using 20 nM UvrA, 100 nM UvrB, 50 nM UvrC or alternatively 2 µM 

UvrB and 2 µM UvrC. 

Quantification of three independently conducted experiments revealed that the 

substrates containing a central bubble and a 5’ bubble are incised more efficiently 

compared to a dsDNA or a 3’ bubble substrate (Figure 4.8). It was also observed 

that incision by UvrBC is performed even in the absence of a bubble but not as 

effective as in the presence of either UvrA or a bubble. UvrB therefore is able to 

bind to dsDNA but with much lower affinity than to bubble substrates. The 

denaturing gel, however, shows that UvrABC and UvrBC incision leads to the 

same incision product independent from the position of the bubble (Figure 4.8). 

Thus, we conclude that UvrBC forms a specific complex incising DNA specifically 

at the same site as UvrABC. 

 

4.1.6. Towards the crystallization of the UvrBC-DNA complex 

After UvrB has verified the presence of a DNA damage, UvrC is recruited to 

perform the dual incision 3’ and 5’ to the DNA lesion. This crucial step in NER is 

thought to include major conformational changes to hand over the DNA from UvrB 

to UvrC to then enable the endonuclease to incise the DNA. Having demonstrated 

that UvrBC in the absence of UvrA is able to incise DNA specifically, the UvrBC 

complex on damaged DNA was sought to be crystallized prior to incision. The 

non-hydrolysable ATP-analog AMPPNP was used to stall the UvrBC complex on 

the DNA substrate without being able to perform the incision reaction which would 

lead to the dissociation of the proteins from the DNA product. 

A stable UvrBC-DNA complex was obtained by mixing the proteins UvrB, UvrC 

and the fluorescein-adduct containing DNA substrate A_F24/A_comp24 in a 

1:1:1.2 molar ratio together with AMPPNP in 1 x ABC-buffer. The mixture was 

incubated at RT for 30 min and subsequently purified by size-exclusion 

chromatography in buffer UvrBC-GF using a Superdex™ 200 10/300GL column 

(Figure 4.9).  
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Figure 4.9  Chromatogram and SDS-PAGE of the UvrBC-DNA complex applied to 
analytical size-exclusion chromatography. (A) For reference, elution profiles of UvrB 
and UvrC are depicted in blue and green, respectively. The elution profile for the 
UvrBC-DNA complex is shown with the UV-absorption at 280 nm and 260 nm in black and 
gray, respectively. The UvrBC-DNA complex elutes at ~12.8 ml on the 
Superdex™ 200 10/300GL column. The higher elution volume compared to the single 
proteins indicates an increase of molecular weight and the elevated absorption at 260 nm 
indicates the presence of DNA. In addition, peaks are observed for the single proteins 
(~13.9 and 14.5 ml) and for free DNA (16.3 ml and 17.8 ml). (B) The presence of both 
proteins UvrB and UvrC in this peak is confirmed by SDS-PAGE.  
 

The chromatogram resulting from the UvrBC-DNA complex (black and gray 

curves in Figure 4.9) reveals a peak eluting at ~ 12.8 ml. The increased elution 

volume compared to the single proteins indicates a complex of higher molecular 

weight (Figure 4.9). Moreover, the higher absorption at 260 nm in the newly 

formed peak compared to the single proteins suggests that DNA and AMPPNP are 

present in the complex. In the corresponding SDS-gel, the presence of both 

proteins, UvrB and UvrC, was verified. The peak fractions were concentrated 

using centrifuge concentrators (MW cutoff: 50,000 Da) and immediately used for 

crystallization employing vapor diffusion approaches. Table A1 (Appendix) lists all 

conditions in which the UvrBC-DNA complex was set-up for crystallization. 

However, none of these crystallization conditions was suitable to form crystals. 

Possible alternatives for crystallizing the UvrBC-DNA complex would be to try 

different DNA substrates and to exchange AMPPNP to ADP, or to form the 

complex even in the presence of ATP but with an incision deficient UvrC variant. 

Due to time limitations, these experiments could not be pursued.  
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4.2. Functional and structural characterization of the archaeal 

endonuclease Bax1 and its interaction with the helicase XPB 

 

4.2.1. Cloning of T. acidophilum XPB and Bax1  

Genes for T. acidophilum XPB and Bax1 were amplified by PCR as described. 

PCR products were analyzed on a 1 %-agarose gel (Figure 4.10, panel A and B). 

 

 

Figure 4.10  Cloning of T. acidophilum XPB and Bax1. (A) PCR product for the XPB 
gene (expected size: 1362 bp) on a 1 % agarose gel. (B) PCR product for the Bax1 gene 
(expected size: 1224 bp) on a 1 % agarose gel. (C) Colony PCR on a 1 % agarose gel 
with three different clones. Clone #3 carries the XPB gene within the expression vector 
pETM-11. (D) Test digestion on a 1 % agarose gel with three different clones. All three 
tested clones carry the Bax1 gene within the expression vector pETM-11. 
 

The PCR products XPB #2 and Bax1 #2 were purified as described (3.1.1). The 

destination vectors as well as the PCR products were digested to allow for cloning 

via sticky ends. XPB was cloned using the restriction enzymes PciI and HindIII, 

Bax1 was cloned employing NcoI and XhoI. Ligation was performed using a 3-fold 

molar excess of insert over vector DNA. The ligation reaction was then 

transformed into DH5α-cells and selected on LBKan–Agar plates for a circular 

plasmid. The presence of the gene was confirmed via colony-PCR and digestion 

of the plasmid. Figure 4.10, panel C, shows that XPB #3-clone carries the XPB 

gene which was amplified by PCR and runs at the expected size of 1362 bp in the 

agarose gel. Figure 4.10, panel D, depicts the digestion pattern of isolated 



Results 

 

63 

 

plasmids on an agarose gel. In addition to the linearized pETM-11 vector 

(~5400 bp) the Bax1 gene with an expected size of 1224 bp can be observed. 

Plasmids from clones XPB #3 and Bax1 #1 were isolated and the correct 

sequence was determined by DNA sequencing (Seqlab Göttingen). 

 

4.2.2. Expression and purification of T. acidophilum Bax1 

The Bax1 gene cloned into the pETM-11 expression vector (vide supra) was 

transformed into E. coli BL21-CodonPlus®(DE3)-RIL cells. A LBCam/Kan pre-culture 

was inoculated with a single colony and used for inoculation of a 2 l 

ZYM-5052Cam/Kan culture. The cells were grown at 37 °C to an oD600 = 0.3. The 

temperature was lowered to 15 °C and expression was continued for additional 

14 h at 200 rpm. Cells were harvested by centrifugation and lysed in buffer IMAC-

A supplemented with DNaseI using a cell disruptor system. The cleared lysate was 

loaded onto a 1 ml Ni-MAC column. Protein was then eluted using a 2-step 

imidazole gradient up to 500 mM imidazole (Figure 4.11).  

 

 

Figure 4.11  Chromatogram and SDS-PAGE of a representative affinity 
chromatography of Bax1. (A) Bax1 was eluted from 1 ml Ni-MAC column by a 2-step 
gradient (0-10 %, 10-100 % elution buffer IMAC-B) to a final concentration of 500 mM 
imidazole. (B) Input, flow through (Fl.) and elution fractions were analyzed by SDS-PAGE 
for amount and purity of Bax1 (46 kDa). 
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Fractions containing Bax1 were pooled, concentrated and subsequently applied 

to a HiLoad™ 26/60 Superdex™200 pg column (Figure 4.12). Bax1 elutes in two 

peaks at ~180 ml and ~210 ml corresponding to dimeric and monomeric Bax1, 

respectively. Protein samples from both peaks show a prominent band on the 

SDS-gel at ~46 kDa which refers to Bax1. The different oligomeric states were 

pooled, concentrated up to 40 mg/ml and stored separately. The protein 

concentration of Bax1 was determined spectrophotometrically (MW = 46.7 kDa, 

ε280 = 49,975 M-1 cm-1). 

 

 

Figure 4.12  Chromatogram of the final size-exclusion chromatography and 
SDS-PAGE of peak fractions. (A) The elution profile of Bax1 on a HiLoad™ 26/60 
Superdex™200 pg column shows two peaks at ~180 ml and ~218 ml corresponding to 
dimeric and monomeric Bax1, respectively. (B) Peak fractions were analyzed by 
SDS-PAGE with Bax1 running at the expected size of ~46 kDa. 
 

All Bax1 variants were purified by an identical approach. 

 

4.2.3. Expression and purification of T. acidophilum XPB 

XPB was expressed and purified using the same protocol as for Bax1, namely 

an affinity chromatography employing the N-terminal His6-tag (Figure 4.13) and a 

final size-exclusion chromatography using a HiLoad™ 16/60 Superdex™200 pg 

column (Figure 4.14).  
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Figure 4.13  Chromatogram and SDS-PAGE of a representative affinity 
chromatography of XPB. (A) XPB was eluted from the 1 ml Ni-MAC column by a 2-step 
gradient (0-40 %, 40-100 % elution buffer IMAC-B) up to a final concentration of 500 mM 
imidazole. (B) Input and elution fractions were analyzed by SDS-PAGE for the presence 
and purity of XPB (52 kDa). 
 

XPB was eluted in one defined peak by a 2-step imidazole gradient 

(Figure 4.13). The corresponding gel shows XPB running at approximately 55 kDa 

and some impurities of lower size. XPB could be highly enriched on the Ni-MAC 

column as indicated by the poor over-expression (Figure 4.13, panel B, Input) 

compared to the elution fractions (Figure 4.13, panel B). 

 

 

Figure 4.14  Chromatogram of the final size-exclusion chromatography and 
SDS-PAGE of peak fractions (A) The elution profile of XPB on a HiLoad™ 16/60 
Superdex™200 pg column shows one major peak at an elution volume of ~90 ml with a 
shoulder containing XPB. (B) Peak fractions were analyzed by SDS-PAGE. 
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XPB elutes in one major peak at an elution volume of ~90 ml with a shoulder to 

a higher elution volume. Both the peak and the shoulder contain XPB with 

impurities of lower molecular weight as observed from the SDS-gel. The 

contaminating bands could not be removed by additional purification approaches 

such as ion exchange chromatography. The protein concentration of XPB was 

determined spectrophotometrically (MW = 51.6 kDa, ε280 = 58,790 M-1 cm-1). 

 

4.2.4. Expression and purification of the T. acidophilum XPB/Bax1 

complex 

The XPB/Bax1 complex was formed by mixing the cell pellets containing XPB 

and Bax1 prior to cell lysis. Cells were lysed and subjected to affinity 

chromatography as described for the single proteins and eluted by a gradient up to 

500 mM imidazole (Figure 4.15).  

 

Figure 4.15  Chromatogram and SDS-PAGE of a representative affinity 
chromatography of XPB/Bax1. (A) XPB/Bax1 was eluted by a gradient (0-100 % elution 
buffer IMAC-B) up to 500 mM imidazole in one single peak. (B) Input and peak fractions 
were analyzed by SDS-PAGE for the presence and purity of both proteins XPB (52 kDa) 
and Bax1 (46 kDa). 
 

The protein solution was diluted with buffer IEX-A buffer to adjust the 

concentration of NaCl to 50 mM. The diluted protein mixture was then loaded onto 

a cation-exchange chromatography HiTrap SP HP column and eluted by a 

gradient up to 1 M NaCl (Figure 4.16).  
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Figure 4.16  Chromatogram and SDS-PAGE of a representative cation-exchange 
chromatography of XPB/Bax1. (A) XPB/Bax1 was eluted from the 1 ml HiTrap SP HP 
column by a 2-step gradient (0-10 %, 10-100 % elution buffer IEX-B) up to 1 M NaCl in 
one single peak. (B) Peak fractions were analyzed for the presence and purity of the 
XPB/Bax1 complex by SDS-PAGE. 
 

XPB and Bax1 were eluted together in one defined peak employing a steep 

NaCl gradient. Peak fractions were concentrated and subsequently subjected to a 

size-exclusion chromatography using a HiLoad™ 16/60 Superdex™200 pg 

column (Figure 4.17). Peak fractions were analyzed by SDS-PAGE regarding the 

protein content and purity. 

XPB/Bax1 elutes from the size-exclusion chromatography in a peak at ~60 ml 

with a shoulder to higher molecular weight and in a second peak at ~73 ml 

(Figure 4.17). The SDS-gel shows the presence of both proteins XPB and Bax1 in 

the peaks eluting at 60 ml and 73 ml, whereas Bax1 by itself is present in the peak 

eluting at 84 ml. The putative XPB/Bax1 complexes as well as Bax1 are highly 

pure after purification employing the described procedure. Peak fractions 

(XPB/Bax1 (1) 55-65 ml; XPB/Bax1 (2) 70-75 ml) were pooled, concentrated up to 

4 mg/ml, flash-frozen with liquid nitrogen and stored at -80 °C. The concentration 

of the protein XPB/Bax1 was determined spectrophotometrically (MW = 98.3 kDa, 

ε280 = 108,765 M-1 cm-1). 

 



Results 

 

68 

 

 

Figure 4.17  Chromatogram of the final size-exclusion chromatography and 
SDS-PAGE of peak fractions. (A) Elution profile of the XPB/Bax1 complex using a 
HiLoad™ 16/60 Superdex™200 pg column shows several peaks. (B) SDS-PAGE analysis 
revealed that XPB/Bax1 is present in both peaks eluting at ~60 ml with a shoulder to 
higher molecular weight and at ~73 ml. Free Bax1 elutes at ~84 ml. 
 

4.2.5. Towards the crystallization of Bax1 

 

Figure 4.18  CD-spectroscopy and dynamic light scattering (DLS) experiments 
with Bax1 (A) The CD-spectrum of Bax1 indicates a mixed α/β-structure. (B) DLS 
measurements reveal that Bax1 was mono-disperse in solution at a concentration of 
28 mg/ml. The apparent hydrodynamic radius Rh(app) for monomeric Bax1 was 4.8 nm.  
 

For the crystallization of proteins, highly pure protein samples are essential. 

Additional criteria are the degree of aggregation, polydispersity and folding of the 

protein. These parameters were determined using dynamic light scattering and 

CD-spectroscopy (Figure 4.18). Both analyses were performed at 20 °C as 

described above (3.4.2 and 3.4.3). 
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As predicted by the secondary structure prediction server, CD-spectroscopy 

revealed that Bax1 was properly folded in solution adopting a mixed α/β-structure 

(Figure 4.18, panel A) indicated by the two characteristic minima at 208 and 

222 nm. The transition from negative to positive ellipticity values at a wavelength 

of approximately 200 nm is consistent with the absence of disordered regions. 

Since mis-folded proteins are prone to aggregation and precipitation, the 

poly-dispersity of 13.4 % observed in DLS measurements (Figure 4.18, panel B) 

indicates that Bax1 does not tend to aggregate in solution, and thus supports the 

finding derived from CD-spectroscopy that Bax1 is properly folded in solution. 

In addition, a renewed equilibrium between both oligomeric states could not be 

detected after separation of monomeric and dimeric Bax1 in size-exclusion 

chromatography. Proteins should meet these requirements to enhance the 

probability to form protein crystals. 

Bax1 was employed in diverse crystallization set-ups. Table A2 in the appendix 

lists the conditions which were used to screen for crystal growth of Bax1 and 

XPB/Bax1. However, the crystallization set-ups did not yield diffracting crystals 

under these conditions. 

 

4.2.6. Bax1 forms a stable complex with XPB 

Bax1 has been recently identified as a novel binding partner of the helicase 

XPB in S. solfataricus (Richards et al, 2008). Several archaeal genomes, among 

them T. acidophilum, comprise the genes coding for XPB and Bax1 in close 

proximity. To investigate the complex formation of the two T. acidophilum proteins, 

Bax1 was subjected to both analytical ultracentrifugation and analytical size 

exclusion chromatography individually and also in the presence of XPB 

(Figure 4.19). The resulting peak fractions from analytical size exclusion 

chromatography were analyzed by SDS-PAGE to confirm their protein content. 

The peak including both proteins was clearly shifted compared to the peak 

containing Bax1 only, indicating stable complex formation in solution. According to 

the calibration curve obtained for the Superdex™ 200 10/300GL column (3.6.1), 

the elution volume of the complex peak translated into a molecular weight of 
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approximately 105 kDa, suggesting a 1:1 stoichiometry of XPB and Bax1. The 

sedimentation curves derived from analytical ultracentrifugation support this 

finding. Bax1 displayed a monomer-dimer equilibrium with sedimentation 

coefficients of approximately 3 S for the monomer and 5 S for the Bax1 dimer. The 

purified XPB/Bax1 complex showed a sedimentation coefficient of 5 S. Optimized 

fits for the data were obtained with frictional ratios of 1.65 and 1.35 for Bax1 and 

the XPB/Bax1 complex, respectively. The different frictional ratios indicate different 

geometries for the particles in the two samples, while the similar sedimentation 

coefficients confirm similar sizes for the Bax1 dimer and the XPB/Bax1 complex, 

consistent with a heterodimeric XPB/Bax1 complex and hence a 1:1 stoichiometry. 

 

Figure 4.19  T. acidophilum Bax1 forms a complex with XPB. (A) Size exclusion 
chromatography using a Superdex™ 200 10/300GL column was performed to verify the 
presence of a stable XPB/Bax1 complex. Bax1 was first analyzed individually (shown in 
black), followed by a 1:1 stoichiometric mixture of Bax1 and XPB (shown in gray). Peak 
fractions were analyzed by SDS-PAGE to confirm complex formation (see inset). (B) Both 
Bax1 and the purified XPB/Bax1 complex were subjected to analytical ultracentrifugation 
in two separate experiments to support the finding that XPB and Bax1 interact in solution 
(same color coding as in A). 
 

4.2.7. Bax1 is a structure-specific endonuclease 

Despite the finding that Bax1 binds to XPB, there is no known function 

annotated to Bax1 until now. Database research, however, revealed that Bax1 

encloses a DUF790 domain which includes a restriction endonuclease-like fold 

(Kinch et al, 2005). Therefore, incision assays were conducted and a specific 

incision product was formed in a concentration dependent manner (Figure 4.20, 
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panel A). It could be proven that Bax1 acts preferentially as a monomer 

(Figure 4.20, panel B) 

 

Figure 4.20  T. acidophilum Bax1 is an active endonuclease. (A) The DNA substrate 
NDT/NDB22 was labeled at the 5’ end of the upper strand and used at a concentration of 
10 nM. Arrows indicate full-length DNA as well as the incision product. Increasing 
concentrations of Bax1 led to increasing amounts of the incision product. 
(B) Quantification of incision assays performed with both monomeric and dimeric Bax1 
(DNA substrate NDT/NDB22, 10 nM) revealed that the Bax1 monomer is more active than 
the dimer.  
 

To verify that the observed incision activity is not due to contamination but is 

initiated by Bax1, the protein was purified as described above including 

size-exclusion chromatography as a final purification step (Figure 4.21, panel A).  

 

Figure 4.21  The endonuclease activity is specific to Bax1. (A) Bax1 elution profile 
after size exclusion chromatography. Absorptions at 260 nm and 280 nm are shown in 
gray and black, respectively. The SDS-gel indicates the Bax1 content of the different 
fractions. Both peaks contained Bax1 and revealed a monomer-dimer equilibrium 
according to a calibration of the column. (B) Samples from 4 ml fractions of the dimer 
peak (D9, corresponding to an elution volume of 185 ml) and of the monomer peak 
(C3-C8, corresponding to elution volumes from 210 ml to 230 ml) were subjected to both 
SDS-PAGE and incision assays. The incised product was quantified and visualized in a 
bar chart confirming a direct correlation of the amount of Bax1 and the formation of the 
DNA fragment. 
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The peak fractions were analyzed by SDS-PAGE with respect to their protein 

content and were then subjected to incision assays (Figure 4.21, panel B). 

Comparing the resulting incision product to the employed amount of Bax1, a 

strong correlation can be observed confirming that the endonuclease activity is 

specific to Bax1. 

Incision assays employing different DNA substrates with respect to the length of 

the 3’ overhang indicated that Bax1 cuts 4 to 6 nts to the ssDNA/dsDNA junction in 

the scissile 3’ overhang (Figure 4.22, panel A). Moreover, Bax1 only incised DNA 

substrates comprising a free 3’ overhang, whereas it did not cut dsDNA, DNA 

substrates forming a bubble with a maximum of 16 unpaired bases or DNA 

substrates including a 5’ overhang (Figure 4.22, panel B). This finding indicates 

that Bax1 is a structure-specific endonuclease. 

 

 

Figure 4.22  T. acidophilum Bax1 is a structure-specific endonuclease. (A) Bax1 
incised 4 to 6 nts away from a dsDNA/ssDNA junction. Incision assays employing diverse 
DNA substrates, which differed with respect to the length of the 3’ overhang, indicated that 
Bax1 cuts specifically 4 to 6 nts to the dsDNA/ssDNA junction in the ssDNA region. The 
DNA ladder M was generated by mixing each 10 nM of 5’ labeled ssDNAs of known 
length, in this case 50 nts, 40 nts, 32 nts, 30 nts, 26 nts and 19 nts. The different 
substrates used for the incision assays are presented below. Arrows depict where Bax1 
cuts the DNA substrates. (B) Incision assays were performed as described using 10 nM of 
different DNA substrates (depicted below). Bax1 incised DNA containing a 3’ overhang, 
whereas no incision product could be observed employing DNA comprising a 5’ overhang 
or unpaired bases forming a bubble. The asterisks mark the labeling site within the DNA 
substrate with 32P. 
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4.2.8. Bax1 mutants show impaired nuclease activity revealing essential 

residues for DNA incision 

Bax1 mutants were generated to further scrutinize Bax1’s endonuclease 

activity. Since there is no structural information available for Bax1, multiple 

sequence alignments of homologous proteins from diverse archaeal organisms 

were performed and revealed a patch of highly conserved residues (Figure 4.23, 

panel A). Moreover, similarities with the restriction endonuclease TspRI were 

identified in a BLAST search (Figure 4.23, panel B). Although the overall 

sequence identity of Bax1 and TspRI is only 14 %, a small patch of 14 amino acids 

shares 60 % identical residues. Interestingly, the two patches identified by multiple 

sequence alignment and BLAST search overlap, indicating a crucial role for the 

conserved sites with regard to DNA binding or catalysis. To confirm the 

importance of individual residues, site directed mutagenesis was performed. After 

successful expression and purification, the mutants were first analyzed by CD-

spectroscopy. The CD-spectra were almost identical for Bax1 WT and all Bax1 

mutant proteins, indicating that the point mutations do not affect the overall 

structure of the protein (Figure 4.23, panel D). 

Quantification of the incision assays revealed three different groups of mutants 

(Figure 4.23, panel C): The first group was only slightly impaired in the incision 

assays as it exerted more than 70 % of WT Bax1 activity, i.e. F116A, E125A and 

N153A. The second group showed impaired incision activity in a range of 25 to 

35 % of WT activity, i.e. E124A/E125A, Y128A, D130A, E134A and L137E. 

Mutants of the third group displayed a dramatically reduced activity of less than 

20 % of the WT activity, i.e. E124A, D132A, Y152A and N153A/E155A. These 

different levels of incision activity strongly indicate varying roles for the mutated 

amino acids either in DNA binding or catalysis. 
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Figure 4.23  Identification of active site residues (A) Conservation of Bax1 among 
archaea. Multiple sequence alignment of Bax1 (T. acidophilum) and related proteins from 
Picrophilus torridus, Pyrococcus furiosus, Pyrococcus abyssi, Haloquadratum walsbyi, 
S. solfataricus and Methanosarcina acetivorans depict the level of sequence conservation 
among different archaea. The arrows point to sites where point mutations were 
introduced, dots correspond to similar residues, colons to conserved residues and 
asterisks to identical residues, respectively. Numbering above the alignment corresponds 
to the T. acidophilum sequence. (B) Conserved residues of Bax1 and TspRI 
endonucleases. The alignment of Bax1 and TspRI endonuclease reveals a high local 
sequence similarity indicating conserved and thus probably important residues for Bax1 
endonuclease activity. (C) Incision activity of Bax1 mutants. Quantification of three 
independently conducted incision assays with DNA substrate NDT/NDB26 (2 nM) 
revealed different cutting efficiencies for diverse Bax1 variants (8 µM each). Error bars 
represent the standard deviation of three independent measurements. (D) Both the 
CD-spectrum depicting the WT protein and the mutant spectra show the same pattern 
thus verifying that all variants adopt the same mixed α/β-fold as observed for the WT 
protein.  
 

Table 4.2  KDs for Bax1 wildtype and Bax1 variants 

Bax1 variant Dissociation constant KD [µM] 

wildtype 1.34 ± 0.57 

E124A 0.92 ± 0.08 

D132A 0.50 ± 0.37 

Y152A 0.54 ± 0.40 

N153A/E155A 0.93 ± 0.34 
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Employing bio-layer interferometry, the affinities of incision deficient Bax1 

variants towards their DNA substrate were determined (Table 4.2).  

Measurements were performed using three different protein concentrations. 

Data were considered for the table below only if the fitting accuracy of observed 

and calculated data was R2 ≥ 0.95. Table 4.2 shows that DNA binding of Bax1 

variants was not reduced compared to wildtype Bax1. Contrarily, they seemed to 

bind to DNA even with slightly higher affinity. 

In order to investigate the stability and to identify defined domains, Bax1 was 

subjected to limited proteolysis experiments using the unspecific protease trypsin. 

Trypsin cleaves peptide bonds preferentially after the basic residues arginine and 

lysine at locally disordered parts of proteins such as loops and flexible linker 

regions. These parts of a protein are more accessible and thus more susceptible 

for proteolytic digest.  

 

Figure 4.24  The C-terminal domain of Bax1 harbors endonuclease activity. 
(A) Limited proteolysis of Bax1 using trypsin protease uncovered a stable fragment at an 
apparent size of 35 kDa. Mass spectrometry analysis verified that this fragment is 
consistent with the C-terminal part of Bax1 comprising amino acids 90 to 403. (B) Both 
Bax1c-term and Bax1 were subjected to an incision assay. (C) Incision products from 3 
independently performed experiments were quantified (5 µM Bax1, 20 nM DNA substrate 
NDT/NDB22). 
 

Limited proteolysis of Bax1 revealed the formation of a stable fragment with a 

molecular weight of about 35 kDa (Figure 4.24, panel A). Mass spectrometry 



Results 

 

76 

 

analysis confirmed that the stable fragment produced by tryptic digest is consistent 

with the C-terminal part of Bax1 comprising amino acids 90 to 403 (referred to 

Bax1c-term). Consistent with the location of the active site residues, incision assays 

verified that Bax1c-term comprising residues 90-403 is still active as an 

endonuclease yielding an incision product of the same size as full-length Bax1 

(Figure 4.24, panel B and C). 

 

So far, this work was focussing on the endonuclease activity of Bax1. Now, the 

activity of Bax1 is investigated mainly with regard to the interaction with its binding 

partner XPB. 

 

4.2.9. XPB and Bax1 form two different complexes with different activity 

Co-purification of XPB and Bax1 using a HiLoadTM 16/60 SuperdexTM 200 

column results in an elution profile displaying three major peaks (Figure 4.17). 

The peak eluting at ~85 ml contained free Bax1, as observed in the SDS-PAGE 

gel shown in the inset. The fractions eluting at ~60 ml and at ~75 ml contained 

both proteins XPB and Bax1. The fractions from the two differently eluting peaks 

containing XPB and Bax1 were re-applied onto an analytical size-exclusion 

chromatography SuperdexTM 75 10/300 GL column. The analytical size-exclusion 

profiles revealed that the two different isolated complex forms did not convert into 

each other. The fractions from peak 1 eluted at 8.5 ml (XPB/Bax1 (1), gray curve) 

and those from peak 2 eluted at 9.5 ml (XPB/Bax1 (2), black curve) (Figure 4.25). 

Both peaks contained XPB as well as Bax1 (SDS-gel inset in Figure 4.25). This 

indicated that XPB and Bax1 can form two different, distinct types of complexes 

which did not seem to convert into each other. 

Surprisingly, incision assays revealed that these two XPB/Bax1 complexes 

exert different DNA incision activities: the XPB/Bax1 (1) complex eluting at 8.5 ml 

is able to incise 5’ and 3’ ssDNA overhangs, whereas the XPB/Bax1 (2) complex 

eluting at 9.5 ml does not cut either of the DNA substrates under these conditions 

(Figure 4.25, panel B). From here on, we will refer to the XPB/Bax1 (1) and the 

XPB/Bax1 (2) complex as the incision-competent (XPB/Bax1comp) and the 

incision-incompetent (XPB/Bax1incomp) complex, respectively. 
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Figure 4.25  XPB and Bax1 form two different complexes with different activity. 
(A) The presence of two different XPB/Bax1 complexes was detected by size-exclusion 
chromatography using a Superdex™ 75 10/300GL column. (B) The XPB/Bax1 complex 1 
(shown in gray in panel A) was able to cut DNA in contrast to the XPB/Bax1 complex 2 
(shown in black in panel A), referring to as XPB/Bax1 incision competent (XPB/Bax1comp) 
and XPB/Bax1 incision incompetent (XPB/Bax1incomp), respectively. Both protein 
complexes were applied at a final concentration of 5 µM, the concentration of the DNA 
substrate NDT/NDB22 was 20 nM. 
 

4.2.10. XPB/Bax1comp and Bax1 exert different incision activities 

To study the effect of XPB binding on Bax1 activity, we directly compared DNA 

incision by Bax1 and by the XPB/Bax1comp complex, both from T. acidophilum. 

Incision assays showed that Bax1 cuts 3’ overhang substrates leading to one 

distinct incision product, while XPB/Bax1comp produces a pattern of different, 

multiple incision products (Figure 4.26, panel A). In the Figure, the different 

positions and intensities of incision for Bax1 and for the XPB/Bax1comp complex are 

indicated by white and gray arrows on the schematic representations of the 

employed DNA substrates, respectively. The different incision behavior of Bax1 

and XPB/Bax1comp was even more pronounced for 5’ overhang DNA substrates: 

Bax1 by itself did not incise any of the 5’ overhang substrates, whereas the 

XPB/Bax1comp complex produced clearly visible incision products with these 

substrates (Figure 4.26, panel B). This suggests that XPB is required to load and 

position Bax1 properly onto the DNA enabling Bax1 to increase its substrate range 

and to achieve exertion of the correct DNA incisions by controlled positioning and 

possibly orientation of Bax1 on the DNA. Furthermore, the presence of the 

XPB/Bax1incomp complex in addition to the XPB/Bax1comp complex suggests a 

regulation mechanism for Bax1. 



Results 

 

78 

 

 

Figure 4.26  XPB/Bax1comp and Bax1 exert different incision activities. (A) Incision 
assays conducted with XPB/Bax1comp and Bax1 show a different pattern of incision 
products for 3’ overhang substrates (schematically represented by gray and white arrows, 
respectively). In contrast, 5’ overhang substrates were only cut by XPB/Bax1comp. A DNA 
ladder (50, 40, 26, 22, 20, 14 nucleotides) was generated to serve as a reference. 
(B) Incision products from 3 independently performed experiments were quantified (5 µM 
Bax1 or XPB/Bax1comp, 20 nM DNA substrate). 
 

The presence of different incision sites within the ssDNA region of an overhang 

substrate suggests that XPB/Bax1comp incised ssDNA non-specifically. Therefore, 

differently structured DNA substrates carrying the fluorophore at either the 5’ or 

the 3’ end were tested (Figure 4.27).  
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Figure 4.27  XPB/Bax1comp cuts ssDNA non-specifically. (A) 5’ fluorescein labeled 
DNA was used as ssDNA or annealed with oligos to form dsDNA, 16 nt bubble substrate 
or a 3’ overhang substrate at a final concentration of 20 nM each. XPB/Bax1 in contrast to 
Bax1 (both 5 µM) also incised ssDNA at different positions. (B) 3’ fluorescein labeled DNA 
was used analogously demonstrating that XPB/Bax1 did not require a distinct free ssDNA 
end. (C) Schematic representation of the DNA substrates used for this study. Sites of 
incision by Bax1 and XPB/Bax1 are indicated by white and gray arrows, respectively.  
 

The incision assays using ssDNA demonstrated that Bax1 in contrast to 

XPB/Bax1comp was not able to incise ssDNA (Figure 4.27). Both Bax1 and 

XPB/Bax1comp incised 3’ overhang DNA substrates but no dsDNA or DNA 

containing a 16 nt-bubble.  

 

4.2.11. Bax1 and XPB/Bax1comp require different divalent cations for 

incision activity 

Several endonucleases require divalent cations. The prokaryotic endonuclease 

involved in NER, UvrC, requires one divalent cation for its N-terminal active site 

and most likely two divalent cations for the C-terminal endonuclease site (Karakas 

et al, 2007; Truglio et al, 2005). To investigate whether divalent cations are also 

essential for the incision activity of Bax1, assays were conducted in the presence 
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of different divalent cations: Mg2+, Ca2+, Mn2+ or the chelating reagent EDTA 

(Figure 4.28, panel A). A specific incision product could only be observed in the 

presence of Mg2+, whereas an unspecific smear could be detected when Mn2+ was 

added. Both Ca2+ and EDTA completely abolished Bax1 incision activity. 

Intriguingly, we observed, that the XPB/Bax1comp complex incised both 3’ and 

5’ ssDNA-overhang substrates in the presence of 10 mM MgCl2, CaCl2, MnCl2 or 

EDTA (Figure 4.28, panel B and C). 

 

 

Figure 4.28  The addition of Mg2+ is crucial for Bax1 incision activity but not for 
XPB/Bax1. (A) Incision assays with different Bax1 concentrations were performed in the 
presence of different divalent cations or the chelating reagent EDTA (10 mM each) using 
the DNA substrate NDT/NDB22 (10 nM). Only in the presence of MgCl2 a specific incision 
product was formed by Bax1. (B) XPB/Bax1 (X/B) incision of 3’ overhang substrate, in 
contrast, was not affected by the addition of MgCl2, CaCl2, MnCl2 or EDTA. (C) XPB/Bax1 
(X/B) additionally incised 5’ overhang substrates independent from divalent cations, 
whereas Bax1 (B) did not incise this DNA substrate. XPB (X) was applied as well to serve 
as control. In panels B and C, both XPB/Bax1 and Bax1 were applied at a concentration 
of 5 µM, the DNA concentration of the substrates F2650/NDB22 and F2650/NDBr25 was 
20 nM, divalent cations and EDTA were used at 10 mM final.  
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4.2.12. XPB’s helicase activity is not required for XPB/Bax1 incision 

Neither Bax1 nor XPB/Bax1 incised bubble substrates comprising a region of 16 

unpaired nucleotides (Figure 4.29, panel A). The addition of nucleotides such as 

ATP, the non-hydrolysable ATP-analog AMPPNP, or ADP which could have 

initiated XPB’s helicase activity, did not induce incision of these DNA substrates.  

 

Figure 4.29  XPB/Bax1 incision occurs independently from nucleotides. 
(A) XPB/Bax1comp (X/B) was able to cut 3’ and 5’ overhang substrates but not bubble 
substrates. DNA substrates are schematically shown and the sites of incision are 
indicated by arrows. Incision of bubble substrates by XPB/Bax1comp could not be induced 
by the addition of nucleotides. (B) XPB/Bax1incomp incision of a 3’ overhang substrate 
(NDT/NDB22) could not be triggered by adding nucleotides (T = ATP, D = ADP, 
M = AMPPNP, 1 mM each). XPB/Bax1 comp incision, however, was not altered by the 
addition of nucleotides. Proteins were applied at a final concentration of 5 µM, DNA 
concentration for each substrate was 20 nM. 
 

Employing the same conditions for helicase and ATPase assays as described 

for incision assays, neither helicase nor ATPase activity could be detected for 

XPB. Since also the incision pattern obtained by XPB/Bax1 on 3’ and 5’ overhang 

substrates did not change with the addition of nucleotides, it is concluded that the 

helicase activity is not required for the loading of Bax1 onto DNA. Moreover, 
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nucleotides are not able to induce incision activity of the XPB/Bax1incomp complex 

(Figure 4.29, panel B). 

 

4.2.13. XPB/Bax1comp and XPB/Bax1incomp have the same stoichiometry but 

different conformations 

Since Bax1 was shown to be a Mg2+-dependent endonuclease (4.2.11), the 

impact of divalent cations on XPB/Bax1 complex formation by the addition of 

divalent cations to the cell lysate was investigated. The effect of depletion of 

divalent cations was tested by extensive dialysis of the XPB/Bax1 complex against 

the chelating agent EDTA prior to size-exclusion chromatography.  

After addition of different cations to the cell lysate, the elution profiles contained 

three major peaks (Figure 4.30, panel A, gray curve), which were consistent with 

the XPB/Bax1comp complex at an elution volume of ~60 ml (gray arrow in 

Figure 4.30, panel A), the XPB/Bax1incomp complex at an elution volume of ~75 ml 

(black arrow in Figure 4.30, panel A) and Bax1 eluting at ~85 ml (white arrow in 

Figure 4.30, panel A). After dialysis against EDTA only two peaks were observed 

in the elution spectrum (Figure 4.30, panel A, black curve), consistent with the 

XPB/Bax1incomp complex and Bax1. EDTA induced Mg2+-depletion thus appears to 

prevent the formation of the XPB/Bax1comp complex. 

Potential structural differences in the two different XPB/Bax1 complexes, 

XPB/Bax1comp and XPB/Bax1incomp, were examined by analytical ultracentrifugation 

(AUC), limited proteolysis, CD-spectroscopy and AFM. The two complex types 

showed similar behavior in all of these experiments. AUC analysis of two to four 

different experiments yielded sedimentation coefficients of 4.8 for both types of 

XPB/Bax1 complexes, with standard deviations of 0.2 and 0.05 for XPB/Bax1comp 

and XPB/Bax1incomp, respectively (Figure 4.30, panel B). The frictional ratios which 

provided the best fit to the data (RMSDs between 0.0038 and 0.016) were 

1.5 ± 0.02 for XPB/Bax1comp and 1.7 ± 0.2 for XPB/Bax1incomp. These parameters 

translated into approximate molecular weights of 100 ± 15 kDa and 115 ± 20 kDa 

for XPB/Bax1comp and XPB/Bax1incomp, respectively. Frictional ratios > 1.4 indicate 

elongated protein structures. Here, especially the incision incompetent complex 

showed frictional ratios consistent with deviation from a globular protein complex 
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structure. However, stronger elongation of the incision-incompetent complex 

compared to the incision-competent form is in contrast to the higher elution volume 

for the incision incompetent complex in analytical size-exclusion chromatography 

(Figure 4.25, panel A). Smaller elution volumes in size-exclusion chromatography 

are suggestive of either a larger molecular weight or stronger structural elongation 

possibly leading to enhanced interactions with the column matrix. The longer 

retention time on the chromatography column and therefore larger elution volume 

of XPB/Bax1incomp together with its larger frictional ratio in AUC sedimentation 

experiments may result from local structural changes in this complex leading to the 

exposure of protein parts with enhanced affinity to the column matrix (Michael 

Fried [University of Kentucky], personal communication). However, both analytical 

size-exclusion chromatography and AUC suggest maximal differences in 

molecular weight for the two complex types that are too low to allow for different 

complex stoichiometries. Calculated from the amino acid sequence, the theoretical 

molecular weight for a heterodimeric XPB/Bax1 complex is 98 kDa. Calibration of 

the size-exclusion chromatography column Superdex75 10/300GL provided 

elution volumes which indicate a molecular weight of 119 ± 13 kDa and 

79 ± 11 kDa for the XPB/Bax1comp and XPB/Bax1incomp complex, respectively.  

In addition, AFM images showed similar AFM volumes for the two different 

complex types, which correspond to 118 kDa for XPB/Bax1comp and 115 kDa for 

XPB/Bax1incomp (Figure 4.30, panel C). The two complex types showed slight 

differences in the amount of dissociated Bax1 and XPB monomers in the samples 

(peaks at approximately 50 nm3 in the distributions in Figure 4.30, panel C), which 

may be interpreted as differences in complex stability (Figure 4.30, panel C). 

Interestingly, a different deposition behavior between the two complex types was 

observed: XPB/Bax1incomp showed consistently higher affinity to the mica substrate 

surface, resulting in higher surface coverage at the same protein concentration 

(Ingrid Tessmer, personal communication). Different affinities to the AFM substrate 

surface for XPB/Bax1comp and XPB/Bax1incomp are consistent with local differences 

in protein surface structure.  

From these data obtained by size-exclusion chromatography, AUC, and AFM, it 

can be concluded that there are no stoichiometric differences between the two 

complex types XPB/Bax1comp and XPB/Bax1incomp. However, differences in elution, 
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sedimentation, and AFM deposition behavior suggest that there are small, local 

conformational differences between the two types of XPB/Bax1 complexes.  

 

Figure 4.30  XPB/Bax1comp and XPB/Bax1incomp share the same stoichiometry. 
(A) The elution profile in size-exlusion chromatography (HiLoad™ 16/60 
Superdex™200 pg column) of XPB/Bax1 could be triggered by the addition of divalent 
cations or their removal by dialysis against the chelating agent EDTA. Gray, black and 
white arrows point to XPB/Bax1comp, XPB/Bax1incomp and Bax1 peaks, respectively. The 
SDS-gel inset represents fractions from the size-exclusion chromatography of XPB/Bax1 
with MgCl2 (B) AUC sedimentation velocity experiments showed comparable 
sedimentation coefficients (4.8 S) for XPB/Bax1comp (gray line) and XPB/Bax1incomp (black 
line). For reference, the sedimentation coefficient profiles of Bax1 (light gray line) and XPB 
(gray dotted line) alone are also shown. (C) AFM volume analysis of XPB/Bax1comp (left, 
n=705) and XPB/Bax1incomp (right, n=994) complexes revealed the existence of a 
heterodimeric state for both complex types. Double-Gaussian fits to the AFM volume 
distributions (with R2 > 0.91) revealed volume states of 135 nm3 for XPB/Bax1comp and 
130 nm3 for XPB/Bax1incomp. These AFM volumes translated into molecular weights of 
118 kDa and 115 kDa, respectively, consistent with a heterodimeric state. Both complex 
types also showed dissociation into the individual protein components at the low 
concentrations of AFM sample deposition (nM-range). XPB and Bax1 individual volumes 
yielded maxima in both distributions at approximately 50 nm3, corresponding to 
50 ± 2 kDa. The insets represent exemplary zooms into AFM images for each of the two 
complex types, with scale bars of 100 nm. White and gray arrows indicate heterodimeric 
and monomeric particles, respectively.  
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In principle, conformational changes with regard to secondary structure 

elements can be detected by CD-spectroscopy. Thus, both XPB/Bax1 complexes 

were employed at identical conditions in order to register CD-spectra. These 

measurements resulted in identical curves (Figure 4.31, panel A), indicating that 

the differences in incision activity observed for the XPB/Bax1comp and 

XPB/Bax1incomp complex are not caused by unfolding or major conformational 

changes in secondary structure elements. 

 

Figure 4.31  XPB/Bax1comp and XPB/Bax1incomp adopt slightly different 
conformations. (A) CD-spectroscopy analysis of both XPB/Bax1 complexes were 
conducted at 20 °C using 5 µM protein each in a buffer containing 20 mM Na phosphate, 
pH 8.0. 5 spectra were accumulated to optimize the signal to noise ratio. Both spectra 
show the same pattern thus indicating that the two different XPB/Bax1 complexes adopt 
the same mixed α/β-fold. Different incision activities observed for XPB/Bax1comp (gray) and 
XPB/Bax1incomp (black) thus do not result from unfolding. (B) Limited proteolysis 
experiments of XPB/Bax1comp and XPB/Bax1incomp using trypsin result in different digestion 
patterns, indicating different conformations for the two complex forms (XPB = 52 kDa, 
Bax1 = 46 kDa). Arrows point to prominently different digestion products and their 
estimated molecular weights are shown. 

 

As different protein conformations result in different digestion patterns (Fontana 

et al, 2004; Heiring & Muller, 2001), potential conformational differences in the 

XPB/Bax1comp and XPB/Bax1incomp complexes may be detectable by limited 

proteolysis. The presence of equal amounts of XPB and Bax1 in both XPB/Bax1 

complexes was confirmed by SDS-gel electrophoresis (Figure 4.31, panel B). 

Upon addition of the protease trypsin both complexes degraded over time. 

Interestingly, for the two different types of complexes, different digestion patterns 

could be observed (indicated by arrows in Figure 4.31). The combination of CD-

spectroscopy and limited proteolysis suggests that there are only slight 

conformational differences or differences caused by domain movement between 
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the two XPB/Bax1 complexes which are sufficient to change the accessibility of 

protease cleavage sites but do not induce different CD-spectra. 

These experiments strongly suggest that the two XPB/Bax1 complexes 

identified via size-exclusion chromatography slightly differ in their conformations 

whereas they still comprise XPB and Bax1 at the same stoichiometry. 

 

4.2.14. Bax1 and XPB/Bax1 are visualized on DNA substrates by AFM 

imaging 

AFM imaging was used to directly visualize binding of the two complex types, 

XPB/Bax1comp and XPB/Bax1incomp, as well as Bax1 alone to different linear DNA 

substrates (Figure 4.32, panel A). AFM analyses revealed that Bax1 binds DNA 

as a monomer, consistent with previous results demonstrating that the monomeric 

form of the protein is functionally more active (4.2.7): a molecular weight of 

53 ± 9 kDa was calculated from the AFM volumes of DNA-bound Bax1 complexes 

(after subtraction of the covered DNA volume, see Material and Methods).  

 

 

Figure 4.32  XPB/Bax1 binds to DNA non-specifically and as a heterodimer. 
(A) AFM image of XPB/Bax1incomp complexes bound to a 3’ ssDNA overhang substrate. 
Volume analyses of representative DNA-bound complexes revealed molecular weights of 
approximately 110 kDa for both XPB/Bax1comp and XPB/Bax1incomp. The scale bar is 
200 nm, the surface area is 1 x 1 µm2. (B) The position distribution of XPB/Bax1 
complexes on DNA shows preferential occupation of DNA fragment ends and no 
specificity for any DNA strand internal sequence or base pair composition. 
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Both XPB/Bax1 complexes bind to DNA as a heterodimer: from the AFM 

volumes of DNA-bound complexes, approximate molecular weights of 

112 ± 31 kDa and 107 ± 35 kDa for XPB/Bax1comp and XPB/Bax1incomp were 

calculated, respectively (after subtraction of the estimated DNA volume). Under 

the applied incubation conditions using 1 μM protein and 100 nM DNA, non-

saturating low coverage of the DNA with protein complexes (0.26 ± 0.15 / DNA 

fragment) was observed. AFM results for XPB/Bax1comp and XPB/Bax1incomp were 

indistinguishable. Distributions of XPB/Bax1 complexes on the DNA fragments 

suggest a specificity of approximately 200-fold (± 40) for DNA fragment ends 

(Figure 4.32, panel B). The position distributions further demonstrate an absence 

of any preference for DNA sequences or base pair composition within the DNA 

fragments (Figure 4.32, panel B).  

 

 

Figure 4.33  AFM imaging of Bax1 and XPB/Bax1 binding to circular DNA. Top row: 
AFM images of pUC19 supercoiled DNA (A) in the absence of protein, (B) in the presence 
of 1 μM Bax1, and (C) in the presence of 1 μM XPB/Bax1. (D) Quantification of the 
percentage of supercoiled DNA structures (versus open relaxed circles such as seen 
in (E)) upon protein binding reflects an effect on DNA superstructure (n = 82 and 116 for 
Bax1 and XPB/Bax1, respectively). We observe that both Bax1 and XPB/Bax1 bind to 
supercoiled DNA conformations, possibly supported by protein-protein interactions on the 
DNA (gray arrow in C). Large variations in the graph reflect ambiguity in DNA 
superstructure. In contrast, protein complexes on relaxed DNA (E-G) are more defined. 
Bottom row: AFM images of nicked pUC19 DNA (E) in the absence of protein, (F) in the 
presence of 0.5 μM Bax1, and (G) in the presence of 0.5 μM XPB/Bax1. (H) Quantitative 
analysis of the number of protein complexes bound to DNA (n = 218 and 389 for Bax1 
and XPB/Bax1, respectively) shows increased binding of XPB/Bax1 to DNA compared to 
Bax1 alone, for protein concentrations of 0.5 -1 μM. 
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To investigate physiologically relevant DNA binding by Bax1 and XPB/Bax1 

complexes, we imaged complex formation with circular plasmid DNA (pUC19) by 

AFM. The images suggest a correlation between protein-DNA complex formation 

and DNA superstructure (Figure 4.33, panel A-D). Because quantification of 

protein-DNA complexes on the plectonemic, supercoiled DNA structures was 

difficult, Bax1 and XPB/Bax1 were compared by binding to relaxed DNA circles 

(instead of negatively supercoiled DNA). Panels E-H in Figure 4.33 show 

enhanced protein complex formation on DNA for the XPB/Bax1 complex 

compared to Bax1 in the absence of XPB (5.1 ± 0.5 versus 1.9 ± 1.1, 

respectively), suggesting that XPB may function in loading Bax1 onto circular 

dsDNA.  

Loading of Bax1 onto DNA by XPB is supported by equilibrium dissociation 

constants, KD, obtained by bio-layer interferometry (Figure 4.34), which revealed 

that Bax1 by itself binds to DNA with much lower affinity than XPB or the 

XPB/Bax1 complexes.  

 

 

Figure 4.34  DNA binding of Bax1, XPB/Bax1 complexes and XPB towards different 
DNA substrates. DNA substrates NDT/NDB (dsDNA), NDT/NDB22 (3’ overhang) and 
NDT/NDBr25 (5’ overhang) were used in bio-layer interferometry measurements to obtain 
KD-values for Bax1, both XPB/Bax1 complexes and XPB. 
 

For Bax1, equilibrium dissociation constants in the low µM-range were obtained, 

almost independent of the nature of the DNA substrate. For the XPB/Bax1 

complexes, however, a binding preference of about one order of magnitude were 

observed for substrates containing ssDNA-overhangs, as compared to dsDNA 

(Figure 4.34). For example, XPB/Bax1incomp showed equilibrium dissociation 
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constants of 8.0 ± 0.9 nM and 54 ± 5 nM for ssDNA overhang and dsDNA 

substrates, respectively. These results are consistent with the AFM data 

(Figure 4.33) and indicate that XPB mediates Bax1-binding onto DNA. 
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5. Discussion 

5.1. Insights into the prokaryotic nucleotide excision repair 

Nucleotide excision repair in prokaryotes is achieved by the UvrABC machinery 

(Truglio et al, 2006a; Van Houten et al, 2005). UvrA detects helical distortions in 

the DNA and loads UvrB onto the DNA which then verifies the presence of a NER 

lesion forming a tight UvrB-DNA pre-incision complex. Finally, UvrC is recruited to 

conduct both the 3’ and 5’ incision reaction to excise the damaged oligonucleotide. 

It has been demonstrated previously that UvrB is able to bind to DNA bubble 

substrates and also is able to detect DNA damages even in the absence of UvrA 

(Moolenaar et al, 2000b; Zou & Van Houten, 1999). Although many biochemical 

studies have been published unraveling the mysteries of the NER pathway, the 

mechanism of DNA damage verification, however, still remains unclear 

(Moolenaar et al, 2001; Truglio et al, 2006b). In addition, structural insights into the 

recruitment and positioning of UvrC to the pre-incision complex as well as the 

mechanism leading to the dual incision reactions are elusive. Therefore, the first 

part of this work seeked to investigate the DNA damage recognition and incision 

mechanism conducted by the proteins UvrB and UvrC. 

 

5.1.1. UvrBC forms specific complexes on damaged DNA 

In the present work, the question whether the UvrBC complex is able to 

specifically incise damaged DNA even in the absence of UvrA was addressed by 

incision assays employing double-stranded DNA and DNA substrates with 6 nt 

bubbles at different positions with regard to a DNA lesion (4.1.5). Both set-ups 

containing either UvrABC or UvrBC yielded an incision product of the same size 

on a denaturing polyacrylamide gel independent of the position of the bubble. This 

finding shows that UvrA does not seem to be essential for DNA damage 

verification and also indicates that the formation of a specific pre-incision complex 

is independent of UvrA as already suggested by previous studies (Zou & Van 

Houten, 1999). In the present study, additional DNA substrates were employed 

which contain a 6 nts unpaired region at different positions which do not correlate 
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with the position of the DNA lesion. Quantification of the incision assays showed 

that UvrB preferentially bound to a bubble, but, with lower affinity, is also able to 

bind to dsDNA. From the observation that the 5’ bubble substrate is preferred over 

the 3’ bubble substrate, we deduced that UvrB is able to slide along the DNA 

favorably in a 5’ → 3’ direction until it encounters a DNA damage to be detected 

and verified. UvrC is then recruited to the pre-incision complex to perform the 

incision reaction. This observation also suggests that UvrB binds to the damaged 

oligonucleotide to verify the presence of the damage. DNA damages on the 

opposite strand are ignored and UvrB does not seem to transfer from the leading 

strand to the lagging strand or vice versa. Thus, UvrB would directly interact with 

the DNA lesion in contrast to XPC which employs three β-hairpins to probe the 

non-damaged DNA-strand for locally unpaired nucleotides (Min & Pavletich, 2007). 

Recently, also UvrA was reported to employ an indirect readout mechanism to 

detect DNA lesions through the deformability of the DNA helix (Jaciuk et al, 2011). 

 

Figure 5.1  Schematic presentation of the sliding properties of UvrB prior to 
incision by UvrC. UvrB binds to DNA at the site of a bubble to then slide along the DNA 
preferentially in 5’ → 3’ direction. Encountering a damage, UvrB recruits UvrC which 
incises DNA 3’ and 5’ to the DNA lesion. 
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It has been shown recently, that UvrB in complex with UvrA is able to slide 

along DNA, whereas UvrA by itself only binds transiently to DNA (Kad et al, 2010). 

UvrB thus would reduce UvrA’s three-dimensional search for damaged DNA to a 

one-dimensional search (Kad et al, 2010). Our data provide a first hint that UvrB is 

able to slide on DNA either alone or in complex with UvrC. The proposed sliding 

mechanism based on the incision assays presented in this work is schematically 

illustrated in Figure 5.1. 

 

5.1.2. Structural analysis of the UvrB-DNA complex 

The biochemical data presented here suggest that UvrB directly binds and 

sticks to the DNA lesion but does not probe the non-damaged DNA for unpaired 

regions as it has been shown for the XPC homolog Rad4 (Min & Pavletich, 2007). 

However, the molecular interactions leading to the discrimination of damaged from 

non-damaged DNA remain elusive. Therefore, we sought to solve the crystal 

structure of UvrB in complex with damaged DNA to decipher the process of 

damage verification. In 2006, a crystal structure of UvrB in complex with a ssDNA 

containing a fluorescein-adduced thymine has been published (PDB: 2FDC) 

(Truglio et al, 2006b). Since the DNA lesion was only partially ordered in the 

crystal structure, no information about the damage recognition process could be 

deduced. However, part of the ssDNA was clamped behind the protruding 

β-hairpin, which was previously shown to be important for DNA damage detection 

(Moolenaar et al, 2001; Skorvaga et al, 2002). Originating from the position and 

orientation of the DNA bound to UvrB, a model was generated suggesting that the 

β-hairpin inserts between the two strands of the DNA (Truglio et al, 2006b). Based 

on this model, DNA substrates containing a fluorescein-adducted thymine within 

an unpaired region in dsDNA were created to allow specific binding of UvrB in the 

absence of UvrA (Hong Wang and Bennett Van Houten, personal communication). 

To stabilize the DNA bubble structure, a self-complementary DNA substrate 

including a 3 nts turn and thus adopting a secondary structure referred to as 

hairpin bubble was chosen to obtain the UvrB-DNA complex.  

In the present study, a hairpin bubble substrate comprising 27 nucleotides was 

used for co-crystallization with UvrB∆4 (see also Figure 4.7). UvrB∆4 was thought 
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to bind to the DNA substrate by inserting its β-hairpin into the 6 nts bubble. In the 

crystal structure of the UvrB∆4-DNA complex (present work; Figure 4.6; 

Figure 4.7; Figure 5.4, depicted in green), however, only a small single-stranded 

part of the DNA is visible.  

The crystal structure of the UvrB∆4-DNA complex was superimposed in COOT 

(Krissinel & Henrick, 2004) with two previously published crystal structures of 

UvrB, namely apo-UvrB (PDB: 1D9X) and the UvrB-ATP complex (PDB: 1D9Z) 

depicted in blue and gray, respectively (Figure 5.2). The structures presented in 

Figure 5.2 superimpose precisely with an overall r.m.s.d. of 0.99 Å and 0.95 Å, 

respectively. 

 

Figure 5.2  Superposition of apo-UvrB, the UvrB-ATP complex and the 
UvrB∆4-DNA complex. The structures of apo-UvrB (PDB: 1D9X, blue), the UvrB-ATP 
complex (PDB: 1D9Z, gray) and the UvrB∆4-DNA complex (green) are superposed. The 
DNA as well as the ATP is represented as a colored stick model. The domain architecture 
is highlighted by dotted circles. The numbers are related to the domains nomenclature 1a, 
1b, 2 and 3. 
 

The most striking difference between apo-UvrB (PDB: 1D9X) and the 

UvrB∆4-DNA complex is observed with regard to the DNA binding site at the 

β-hairpin. In the apo-UvrB structure, a short α-helix is located at the base of the 

β-hairpin which points into the DNA binding site (Figure 5.3, highlighted by a black 

arrow). Upon DNA binding, the α-helix undergoes a conformational change. In the 

1a

1b 

2 

3 
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UvrB∆4-DNA structure, this part appears as random coil (Figure 5.3, depicted in 

green). 

 

Figure 5.3  Stereo view of the UvrB∆4-DNA complex superposed with apo-UvrB. 
The UvrB∆4 structure (green ribbon) with bound DNA (colored stick model) is 
superimposed with the apo-UvrB structure (blue ribbon). The black arrow highlights a 
short α-helix in the apo-UvrB structure which undergoes a conformational change upon 
DNA binding. 
 

Contrarily, a 2-stranded β-sheet is formed at the bottom of the β-hairpin in the 

UvrB-DNA structure (PDB: 2FDC) (Truglio et al, 2006b). Superposition of the 

UvrB∆4-DNA complex with the published UvrB-DNA complex (Figure 5.4, 

PDB: 2FDC, depicted in gray) visualizes the differences of the β-hairpin 

conformations. Despite the observed discrepancies, the superposition reveals that 

the protein adopts almost the same overall conformation with an r.m.s.d of 1.28 Å. 

Also the partially visible DNA is bound at the same binding site in the same 

orientation.  

The random coiled structure of the β-hairpin in the UvrB∆4-DNA structure might 

be an artifact caused by the poor electron density. Several side chains are only 

partially defined by the electron density map, whereas the main chain is 

discernable as a rather bulky tube but not clearly defined. The poor electron 

density does not allow the discrimination of the actual conformation from other 

possible conformations. Therefore, the current model represents only one potential 
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topology slightly differing with regard to their atom position, bond lengths, bond 

angles as well as dihedral angles. To assign a particular secondary structure 

element, the values for the main chain torsion angles φ, ψ must not deviate from a 

defined range given for ideal β-sheets or α-helices. Otherwise, these parts are 

recognized as random coils. 

 

 

Figure 5.4  DNA binding site in the UvrB∆4-DNA complex and the UvrB-DNA 
complex (stereo view). UvrB∆4 (green) and UvrB (PDB: 2FDC, gray) adopt almost the 
same conformation. The DNA substrates bound to the proteins (represented as colored 
stick model and as gray ribbon, respectively) are located at the same binding site in the 
same orientation. The β-hairpins in UvrB∆4-DNA (green) and UvrB-DNA (gray) adopt a 
different secondary structure. Black arrows point to the β-sheet in the UvrB-DNA complex 
which changes into a random coil structure in the UvrB∆4-DNA complex. 
 

However, the observed difference of the UvrB-DNA and the UvrB∆4-DNA 

complex might be caused by the different DNA molecules bound in the UvrB 

structures (Figure 5.4). Binding of duplex DNA in contrast to single-stranded DNA 

might result in additional conformational changes and might also stabilize 

secondary structure elements in the DNA binding site by protein-DNA interactions. 

Furthermore, it needs to be considered that although domain 4 is not visible in 

any B. caldotenax UvrB structure, the UvrB∆4-DNA complex structure presented 

in this work contains a truncation of domain 4 by introducing a pre-mature 

stop-codon. Since the auto-inhibitory effect of domain 4 might be allosteric, as 
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suggested for UvrB’s ATPase activity (Wang et al, 2006), the increased affinity of 

UvrB∆4 for DNA could be explained by a more flexible β-hairpin. 

 

 

Figure 5.5  B-values of the UvrB∆4-DNA and UvrB-DNA structure. (A) The 
UvrB∆4-DNA crystal structure and (B) the UvrB-DNA structure (PDB: 2FDC) are colored 
with regard to the relative B-factors. Red is related to high B-values whereas blue 
corresponds to low B-values. The DNA is depicted as black stick model. The absolute 
B-values observed for the UvrB∆4-DNA structure (C) and the UvrB-DNA structure (D) 
(PDB: 2FDC) are plotted against the corresponding residue number. Please note that the 
3D-representations in (A) and (B) show relative B-values, whereas the plots in (C) and (D) 
provides absolute B-values. 
 

The crystal structure of B. subtilis UvrB (PDB: 2D7D) (Eryilmaz et al, 2006; 

Waters et al, 2006) is assumed to comprise a C-terminally truncated protein 

corresponding to the UvrB∆4 variant described in the present work. The B. subtilis 

UvrB was co-crystallized with ADP and with either a tri-nucleotide (Eryilmaz et al, 

2006) or in complex with a penta-nucleotide containing a fluorescein moiety 

attached via a flexible linker (Waters et al, 2006). Both structures (PDB: 2D7D and 

PDB: 2NMV) exhibit the 2-stranded β-sheet at the bottom of the hairpin as also 

observed for UvrB in complex with the duplexed DNA. Thus, β-sheet formation 

1a 

1b 

2 

3 

1a 

1b 

2 

3 



Discussion 

 

97 

 

seems to be linked to DNA binding to either single-stranded or double-stranded 

DNA. The absence of this β-sheet in the UvrB∆4-DNA structure (present work) 

therefore is maybe due to an artifact caused by the low resolution. As outlined 

above, the poorly defined electron density map facilitates slight deviations from the 

ideal φ, ψ angles defined for a β-strand conformation. Previously published UvrB 

structures were solved at a similar resolution in the range of 2.1 Å to 3.3 Å, 

however, the Wilson B-values and the overall B-values were lower indicating a 

more defined crystal structure. The UvrB-DNA structure (PDB: 2FDC), for 

example, displays an overall B-factor of 74.2 Å2 in contrast to 137.0 Å2 for the 

UvrB∆4-DNA structure presented here despite a very similar solvent content of 

62 % and 68 %, respectively. The distribution of B-values within the crystal 

structures is visualized in Figure 5.5. The 3D-representation of the UvrB∆4-DNA 

structure (present work) and the UvrB-DNA structure (PDB: 2FDC) compares 

relative B-values, whereas the plot provides absolute B-values (Figure 5.5). 

Interestingly, the B-values for domain 2 (residues 151-251), one part of domain 3 

(residues 450-510) and for the C-terminus are elevated in both UvrB structures, 

indicating a high flexibility for these regions. 

 

 
Figure 5.6  Different conformations of a loop within domain 3. The black arrow 
points to a disordered loop in the UvrB-DNA structure (the last and first residue visible are 
His476 and Ile485, respectively). In the UvrB∆4-DNA structure, this loop was ordered 
possibly by a stabilization and elongation of the successive α-helix. 
 

The increased B-values in domain 3 and the correlated flexibility becomes 

apparent in the structural discrepancy between the UvrB∆4-DNA structure 
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(present work) and the previously published UvrB structure (PDB: 2FDC) as 

depicted in Figure 5.6.  

The loop region in domain 3 comprised by residues His476 to Ile485, which is 

disordered in the UvrB-DNA structure, became visible in the UvrB∆4-DNA 

structure (see black arrow in Figure 5.6). The subsequent helix could also be 

extended and starts already at residue Glu483 instead of Ile488 in the UvrB-DNA 

structure. This loop segment seems to be very flexible which is also indicated by 

the increased B-values (see also Figure 5.5) and is thus not detectable in the 

UvrB-DNA structure (Figure 5.6). 

 

Figure 5.7  Superposition of B. subtilis and B. caldotenax UvrB structures. The 
UvrB∆4-DNA structure (shown in green) is superimposed with UvrB structures (PDB 
codes: 2FDC, 1D9X, 19DZ, 2D7D and 2NMV are depicted in dark blue, blue, light blue, 
orange and yellow, respectively; the DNA substrates bound are depicted in the 
corresponding faint color). Different conformations of domain 3 and of the β-hairpin 
suggest flexibility for these parts of the protein. 
 

Superposition of UvrB crystal structures reveals that the β-hairpin as well as 

domain 2 and domain 3 are rather flexible whereas domain 1a seems to adopt the 

same conformation among the six superimposed structures (Figure 5.7). This is 

also reflected by the corresponding B-values and the function of these domains: 

the β-hairpin binds to DNA and was shown to be crucial for DNA damage 

1a

1b

2 
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detection (Moolenaar et al, 2001; Skorvaga et al, 2002; Truglio et al, 2006b); 

domain 2 is mainly responsible for the interaction with UvrA (Truglio et al, 2004) 

whereas domain 3 is one of the two RecA-like helicase domains translating 

ATP-hydrolysis into motion against the second helicase domain (domain 1a) 

(Theis et al, 2000).  

The crystal structure of the UvrB∆4-DNA complex did not lead to additional 

insights into the DNA damage verification step. However, incision assays in the 

absence of UvrA indicate that UvrB is able to translocate on DNA preferably in 

5’ → 3’ direction to recognize and verify the presence of a NER substrate. Our 

data also suggest that UvrB in contrast to UvrA directly probes the DNA and 

interacts with the damaged nucleotide. The DNA is then specifically incised by the 

endonuclease UvrC to remove DNA lesions from damaged DNA. 
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5.2. Characterization of the novel endonuclease Bax1 in context 

of archaeal nucleotide excision repair 

In the first part of this thesis, insights into the DNA damage verification and 

incision mechanism in prokaryotic NER were discussed. From here on, in vitro 

studies on archaeal proteins are summarized and implications for eukaryotic NER 

are deduced. Although no eukaryotic homolog for Bax1 has been identified so far, 

analyses of archaeal NER proteins shed light onto the NER mechanism in general 

and also with regard to the evolution of DNA repair pathways. 

Bax1 was initially identified as a novel binding partner for the archaeal helicase 

XPB (Richards et al, 2008). Analysis of the genomic context of S. solfataricus 

revealed that one of two adjacent xpb genes is closely associated with a gene 

encoding an unknown protein, later on named Bax1. The protein was expressed 

recombinantly and used for interaction studies confirming that Bax1 binds to XPB 

as proposed by the genomic proximity (Richards et al, 2008).  

This work provides the first biochemical and biophysical characterization of 

Bax1. Additionally, the activity of Bax1 was investigated in the presence of XPB to 

shed light onto Bax1’s role in archaeal NER. 

 

5.2.1. Bax1 is a novel, Mg2+-dependent, structure-specific endonuclease 

Bax1 was predicted to possess a DUF790 endonuclease-like domain. The 

DUF790 family, which comprises hypothetical proteins from archaea and 

cyanobacteria, was identified recently using a combination of diverse bioinformatic 

tools since the family members share very low sequence similarity with previously 

characterized nucleases (Kinch et al, 2005). A potential nuclease activity was also 

indicated by a probable membership (p = 0.96) within the PD-(D/E)XK-nuclease 

superfamily (Laganeckas et al, 2010). 

We identified Bax1 as an active Mg2+-dependent endonuclease which acts 

preferentially as a monomer (see 4.2.7). Incision studies provided initial insights to 

a possible mechanism how Bax1 incises DNA and how it may play an important 

role in NER. Bax1 is a structure-specific endonuclease cutting DNA in the 
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single-stranded region 4 to 6 nts next to the dsDNA/ssDNA junction. Other 

substrates such as dsDNA, a 5’ overhang or a substrate containing mismatches 

are not recognized. The endonuclease activity of Bax1 requires at least one 

divalent cation, preferably Mg2+. 

 

5.2.2. Structural insights into the endonuclease Bax1 

Although Bax1’s endonuclease activity has been characterized by biochemical 

approaches, no structural information on Bax1 or other DUF790 endonucleases is 

available. Proteins, of which crystal structures are deposited in the PDB databank, 

do not share more than 14 % sequence identity. Proteins with less than 20 % 

sequence identity usually display large structural differences (Chothia & Lesk, 

1986). Thus, the resulting structures from diverse homology modeling approaches 

such as provided by 3D JIGSAW or PHYRE are not reliable (Bates et al, 2001; Kelley 

& Sternberg, 2009). Moreover, no similarity to other single-strand-specific 

nucleases (Desai & Shankar, 2003) or structure-specific nucleases (Nishino et al, 

2006) was observed although the activity of Bax1 indicates a functional 

relationship. The functional relationship, however, provides information about the 

potential active site of Bax1. 

The crystal structure of UvrC’s C-terminal endonuclease domain from 

T. maritima, visualizes how a metal ion is coordinated by the catalytic triad, 

consisting of residues D367, D429 and H488, either directly or indirectly through 

water molecules (Karakas et al, 2007). Similar catalytic triads, i.e. DDH, DDD and 

DDE, are present in Pyrococcus furiosus Argonaute (Song et al, 2004), Bacillus 

halodurans RNase H (Nowotny et al, 2005) and E. coli Tn5 transposase (Lovell et 

al, 2002), respectively. The latter two were shown to bind two divalent cations in 

their active site. The first metal ion facilitates the formation of a hydroxide ion 

which in turn performs a nucleophilic attack of the scissile phosphate. The second 

metal ion fulfills the role of a Lewis acid stabilizing the reaction intermediate via 

interaction with the 3’ oxygen (Karakas et al, 2007; Steitz & Steitz, 1993). UvrC 

and Argonaute most likely also conduct a two-metal-ion mechanism as suggested 

by the strong homology in the active site (Karakas et al, 2007; Song et al, 2004; 

Steitz & Steitz, 1993). Analyzing the crystal structure of UvrC’s N-terminal domain 
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reveals how the residue E76 directly coordinates one Mg2+ ion, whereas residues 

Y29 and N88 indirectly coordinate the metal ion through water molecules (Truglio 

et al, 2005). In this case, the Mg2+ ion acts as a Lewis acid, and it was speculated 

that Y29 facilitates the formation of a nucleophilic hydroxide catalyzing the 

cleavage of the phosphodiester bond. 

In stark contrast to the structure-specific endonucleases, restriction 

endonucleases are known to be sequence-specific. Nevertheless, a BLAST 

search revealed a small patch of 14 amino acids in Bax1, which shares 60 % 

sequence identity between the type II restriction enzyme TspRI (Roberts et al, 

2003b) and Bax1. The residues within this patch might be part of the putative 

active site of Bax1 where one or two divalent cations could be coordinated to 

catalyze the cleavage of a phosphodiester bond. This finding together with a 

multiple sequence alignment of Bax1 homologs from other archaea uncovered 

conserved residues which might play an essential role in DNA binding as well as in 

catalysis. To verify the importance of a residue, point mutants were generated and 

analyzed in incision assays.  

The residues E124, D132, Y152 and E155 are highly conserved among 

archaea and provide the putative functional groups required for binding metal ions. 

Mutation of these amino acids to alanine strongly reduced incision efficiency. A 

reduced incision activity compared to WT Bax1 indicates that these residues are 

crucial for Bax1 to act effectively on its DNA substrate either resulting from a 

decreased DNA binding affinity, from the inability to coordinate Mg2+ or from a 

lower capability to stabilize reaction intermediates. We tested the Bax1 variants 

E124A, D132A, Y152A and N153A/E155A with regard to their DNA binding 

properties employing bio-layer interferometry. Since the mutants bound DNA in the 

same affinity range, the residues do not seem to be essential for binding the DNA 

but for mediating incision. Therefore, it is hypothesized that the above mentioned 

residues contribute to the active site and could also be involved in coordinating 

Mg2+ ions thus catalyzing the incision reaction. 

Interestingly, Bax1 from S. solfataricus lacks the residue which corresponds to 

E124 in T. acidophilum Bax1 (Figure 4.23). To ensure a functional S. solfataricus 

Bax1, another acidic residue would have to take over the role of E124 in 

T. acidophilum Bax1. Indeed, Malcolm White’s group postulated that residue D301 
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is crucial for incision activity of S. solfataricus Bax1 (Rouillon & White, 2010). 

Interestingly, this residue is located in a patch of conserved residues consistent 

with the sequence motif for DUF790 domains. This sequence motif, however, is 

only poorly conserved in the archaeal order of Thermoplasmatales suggesting that 

different active sites might have evolved in T. acidophilum and S. solfataricus 

Bax1. 

Residues Y128, D130, E134 are also suitable for binding metal ions regarding 

their functional groups, but mutation to alanine had a milder effect on their incision 

activity. Thus amino acids Y128, D130, E134 might support coordination of the 

Mg2+ ion or play an important role with respect to the formation of a stable active 

site but are not essential for catalysis. H488 in the C-terminal domain of UvrC 

seems to fulfill a similar role (Karakas et al, 2007).  

Moreover, we performed limited proteolysis experiments using the protease 

trypsin, which revealed the formation of a stable fragment with a molecular weight 

of about 35 kDa (Figure 4.24). Mass spectrometry analysis confirmed that the 

stable fragment is consistent with the C-terminal part of Bax1 comprising amino 

acids 90 to 403 (referred to Bax1c-term). Incision assays showed that both full length 

Bax1 and Bax1c-term, incised the DNA substrate and led to an incision product of 

the same size. Moreover, the activity seemed not to be changed as reflected by 

the bar chart diagram presented in Figure 4.24. The C-terminal domain of Bax1 

therefore corresponds to the catalytically active endonuclease domain. These 

findings are consistent with the localization of the active site residues E124, D132, 

Y152 and E155 in the Bax1c-term protein. 

 

Figure 5.8  Domain architecture of Bax1. Bax1 consists of two domains, an 
N-terminal domain and a C-terminal endonuclease domain. 
 

From these experiments, it was deduced that Bax1 probably consists of two 

domains connected by a protease-sensitive linker, an N-terminal domain and a 

catalytically active C-terminal endonuclease domain (Figure 5.8). Interaction 

studies using analytical size-exclusion chromatography hint to a potential 
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involvement in binding XPB (Grundler, 2010), however, the role of the N-terminal 

domain has not been fully assessed so far. 

 

5.2.3.  XPB regulates Bax1 in the absence of helicase activity 

In this work, it was possible to locate Bax1’s endonuclease activity in its 

C-terminal domain and specifically assigned to the active site residues E124, 

D132, Y152 and E155. Moreover, Bax1 was shown to act as an endonuclease 

without being supported by any other protein. However, the physical interaction of 

Bax1 with XPB raises the question how the two proteins affect or regulate each 

other. 

Malcolm White’s group postulated that S. solfataricus XPB and Bax1 work 

together as a helicase-nuclease machine (Rouillon & White, 2010). In contrast to 

that study, T. acidophilum Bax1 and XPB were shown to form two different 

XPB/Bax1 complexes which were identified by size-exclusion chromatography 

(Figure 4.25). Interestingly, only one of the two complexes possesses DNA 

incision activity (XPB/Bax1comp) while the other is completely inactive in terms of 

DNA incision (XPB/Bax1incomp). The two XPB/Bax1 complex forms were found to 

be indistinguishable in their stoichiometry as well as DNA binding properties, using 

a series of biochemical and biophysical characterization methods (Figure 4.30). 

Both complex types bind to DNA as a heterodimer with preference for ssDNA 

overhang structures and similar dissociation constants in the nM-range 

(Figure 4.34). Loss of incision by XPB/Bax1incomp does therefore not originate from 

a decrease in DNA affinity. However, protease digestion patterns indicated 

differences in local conformation for the two XPB/Bax1 complexes (Figure 4.30). 

A small conformational change in the protein complex may be responsible for the 

different incision activities of XPB/Bax1comp and XPB/Bax1incomp. 

While Bax1 required Mg2+ for catalysis, the XPB/Bax1comp complex incised DNA 

in the presence of MgCl2, CaCl2, MnCl2, or EDTA (Figure 4.28). These 

observations suggest that a pre-bound Mg2+-ion in the incision competent complex 

XPB/Bax1comp (but not in XPB/Bax1incomp) may be responsible for its incision 

ability. Subsequently, the Mg2+-binding site would be inaccessible to the 

surrounding solution once the protein complex is formed. Extensive dialysis 
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against the chelating agent EDTA prior to size-exclusion chromatography favors 

the formation of the XPB/Bax1incomp complex suggesting that the presence or 

absence of divalent cations might play a role in XPB/Bax1 complex formation. 

Further structural analyses of the two different complexes will be necessary to 

decipher the underlying mechanism which leads to an incision-competent and an 

incision-incompetent XPB/Bax1 complex. X-ray crystallography as well as NMR 

spectroscopy are suitable techniques to address these questions. The presence of 

the XPB/Bax1incomp complex in addition to the XPB/Bax1comp complex may point 

towards a regulation mechanism for Bax1. This notion is also consistent with the 

presence of two different XPB forms in the organism S. solfatarius and S. tokodaii, 

only one of which is able to promote DNA incisions in complex with Bax1 (Ma et al, 

2011; Richards et al, 2008). 

 

 

Figure 5.9  XPB and Bax1 are able to form two conformationally different 
complexes. One conformation promotes the incision activity of Bax1 whereas the other 
conformation prevents Bax1 from incising the DNA substrate. It is speculated that the 
XPB/Bax1comp complex might use a pre-bound Mg2+ ion for catalysis.  
 

Comparing incision activities of Bax1 and of the XPB/Bax1comp complex, 

surprising differences were observed: First, Bax1 and the XPB/Bax1comp complex 

displayed different incision patterns for substrates with 3’ overhang ends. 

Furthermore, while Bax1 alone did not cut 5’ overhang substrates, the 

XPB/Bax1comp complex was able to incise both types of ssDNA overhang 
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substrates (Figure 4.26). These data support a role of XPB in loading and 

positioning Bax1 on the DNA to increase its substrate range. The DNA binding 

studies provided further support for a possible loading mechanism of Bax1 by 

XPB. Specifically, the XPB/Bax1 complexes bound DNA with a lower KD compared 

to Bax1 (Figure 4.34), consistent with an increased number of DNA bound 

complexes on circular plasmid DNA for XPB/Bax1 complexes compared to Bax1 in 

the absence of XPB (Figure 4.33). Interestingly, neither DNA dissociation 

constants nor incision properties of the XPB/Bax1 complexes were affected by the 

presence or absence of nucleotides such as ATP, the non-hydrolysable 

ATP-analogue AMPPNP or ADP (Figure 4.29). This independency of nucleotide 

binding and/or hydrolysis suggests that XPB’s helicase activity was not essential 

for loading and positioning Bax1 onto the DNA.  

Incubation of 3’ and 5’ overhang DNA substrates with XPB/Bax1comp resulted in 

the occurrence of multiple incision sites. Bax1, in contrast, produced one specific 

incision product with 3’ overhangs but did not cut 5’ overhang substrates at all. 

XPB/Bax1comp also was able to cut ssDNA, whereas Bax1 alone did not incise this 

substrate (Figure 4.27). Taken together, these findings support a mechanism of 

non-specific ssDNA incisions for the XPB/Bax1comp complex.  

Lack of specificity of Bax1 within the XPB/Bax1comp complex raises the question, 

if additional proteins may be required to regulate correct DNA incisions by 

controlled positioning and orientation of Bax1 on the DNA. Notably, discrimination 

between damaged and non-damaged DNA by the archaeal NER helicase XPD 

has been reported (Mathieu et al, 2010). Studies on eukaryotic cells suggest a 

concerted activity of the ATPase XPB and the helicase XPD to unwind DNA and to 

verify the presence of an NER substrate (Coin et al, 2007). 

 

5.2.4. Bax1 is loaded and positioned onto DNA by XPB 

The interaction of XPB and Bax1 was not only investigated with regard to DNA 

incision activity but also in terms of DNA binding. In a single-molecule approach, 

AFM was applied to obtain qualitative information in addition to the quantitative 

data attained by bio-layer interferometry. Employing AFM imaging, considerable 

amounts of XPB/Bax1 complexes were not only bound to the single-stranded part 
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of the DNA substrate, which provided a model target for both Bax1 and XPB 

proteins (Biswas et al, 2009; Fan et al, 2006; Rouillon & White, 2010), but 

surprisingly also in the double-stranded DNA regions (Figure 4.32). The position 

distributions of protein complexes on non-damaged DNA substrates revealed no 

specific, DNA strand-internal target site for the XPB/Bax1 complexes such as 

more flexible AT-rich regions. These experiments were carried out in the absence 

of ATP to prevent helicase activity of XPB and to support observation of the 

complexes in the original DNA-binding state. In the images, more than 50 % of the 

protein-DNA complexes were bound at DNA strand internal sites. Considering the 

vast excess of non-specific strand-internal binding sites over binding sites at DNA 

fragment ends, the data were nevertheless consistent with an approximately 

200-fold specificity for DNA fragment ends. Preferential location of protein 

complexes at DNA fragment ends can be interpreted as a consequence of either 

of two scenarios: Firstly, the protein complexes preferentially bind to DNA ends 

which might also locally melt to appear partially single-stranded or secondly, the 

fragment ends provide “road blocks” to a sliding movement of the complexes on 

the DNA.  

To distinguish between preferential DNA end binding and a blocking of sliding 

protein complexes at DNA fragment ends, AFM was used to visualize complexes 

of Bax1 and XPB/Bax1 with relaxed circular plasmid DNA (B-form DNA containing 

no ends). The presence of more XPB/Bax1 complexes per DNA base pair (bp) for 

the circular DNA compared to the linear DNA fragments (5.1 ± 0.5 complexes per 

DNA molecule for the circular plasmid, 2729 bp, versus 0.26 ± 0.15 complexes per 

linear DNA fragment, 500 bp) argued against a preferential binding to fragment 

ends and supported a DNA sliding mechanism for XPB/Bax1. Recently, evidence 

has amounted that sliding could be a common mechanism for DNA repair proteins 

to locate their target sites (Friedman & Stivers, 2010; Kad et al, 2010; Szczelkun et 

al, 2010). Sliding leads to a reduction of a three-dimensional to a one-dimensional 

target site search on the DNA substrate, therefore speeding up the search 

process. Since these experiments were carried out in the absence of ATP, it was 

concluded that, if sliding was employed here, then it was independent of ATP 

binding and/or hydrolysis by XPB.  
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In summary, the direct comparison of Bax1 with the XPB/Bax1comp complex 

from T. acidophilum suggests that XPB, even in the absence of helicase activity, is 

able to load and to position Bax1 onto the scissile DNA substrate.  

 

5.2.5. Implications for other endonucleases in archaeal NER 

In this study, the novel endonuclease Bax1 has been characterized. The 

physical and functional interaction with XPB suggests a role for Bax1 in archaeal 

NER. However, the question arises why another nuclease, Bax1, is present in the 

archaeal organism T. acidophilum. In eukaryotes, the presence of XPF and XPG, 

two endonucleases of opposite polarity, ensures the complete removal of the 

damaged oligonucleotide (Araujo et al, 2000).The archaeal homologs of XPG and 

XPF were confirmed to act as structure-specific endonucleases as well (Chapados 

et al, 2004; de Laat et al, 1998; Harrington & Lieber, 1994). In contrast to Bax1, 

which cuts DNA in the single-stranded region, both XPG and XPF incise DNA in 

the double-stranded region of a DNA substrate close to the dsDNA/ssDNA 

junction. XPG has been shown to incise 3’ to a damaged site and remove a 

5’ overhang (O'Donovan et al, 1994), whereas XPF-ERCC1 makes the 5’ incision 

and also cleaves 3’ overhangs (de Laat et al, 1998). Interestingly, T. acidophilum 

seems to lack an XPF homolog in contrast to many other archaeal organisms 

(Kelman & White, 2005). Moreover, genome analysis of T. acidophilum did not 

uncover an additional NER mechanism, for example the UvrABC system, which is 

present not only in prokaryotes, but also in several archaea (Ogrunc et al, 1998). 

However, a database search revealed that T. acidophilum contains a Hef protein 

(helicase-associated endonuclease for fork-structured DNA). Hef usually consists 

of two domains, an N-terminal helicase domain and a C-terminal nuclease domain, 

which exhibits high similarity to the XPF/Rad1/Mus81 nuclease family (Nishino et 

al, 2003) with respect to their sequences and to their incision properties. 

Intriguingly, T. acidophilum Hef comprises only the helicase domain but no 

nuclease domain (Uniprot entry: Q9HI46). Thus, Bax1 would be a suitable 

candidate to replace the missing XPF protein in T. acidophilum as this 

endonuclease is able to remove 3’ overhangs and thus could mediate the 5‘ 

incision (Figure 5.10). 
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Figure 5.10  Proposed mechanism for Bax1 incision in archaeal NER. Due to their 
close genomic proximity it is likely that XPB and Bax1 are transcribed and translated 
concomitantly (Richards et al, 2008). XPB and Bax1 are proposed to form a complex 
which subsequently binds to a DNA substrate. Unwinding of the DNA would be 
accomplished by the concerted activity of XPB and the 5’ - 3’ helicase XPD. XPD was 
suggested to perform the DNA damage verification step (Coin et al, 2007), although 
recent studies on archaeal XPD controversially discuss whether XPD is stalled at a DNA 
damage (Mathieu et al, 2010; Rudolf et al, 2010). However, after the presence of an NER 
substrate has been confirmed, the damage has to be removed by a structure-specific 
endonuclease, which specifically recognizes the 3’ overhang produced by XPG’s 
endonuclease activity. The incision properties such as the polarity are suggestive for the 
endonuclease Bax1 to be a suitable candidate to perform the second incision reaction 
instead of the missing XPF in T. acidophilum. 
 

However, in consideration of several other archaea, the question arises why in 

addition to XPF another endonuclease seems to be involved in archaeal NER as 

Bax1 is associated to the helicase XPB. This situation resembles the prokaryotic 

NER system in E. coli, which contains the UvrC homolog Cho in addition to UvrC 

performing both 3’ and 5’ incisions (Moolenaar et al, 2002). Cho conducts the 

3’ incision at DNA lesions which are poorly incised by UvrC and thus leads to a 

broader substrate range for NER (Moolenaar et al, 2002). A similar mechanism 

could have evolved also in archaea employing Bax1 as a complementary 

endonuclease.  

To scrutinize the role of Bax1 in archaeal NER, in vivo studies employing 

bax1-knockout strains would be necessary. Genetic tools as well as expertise and 

equipment for growing archaea in laboratories were not available to perform these 

studies in this present work. However, in vivo studies would provide detailed 
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insights into archaeal DNA repair mechanisms complementing many studies on 

recombinant NER homologs (Fan et al, 2006; Fan et al, 2008; Mathieu et al, 2010; 

Nishino et al, 2003; Richards et al, 2008; Rouillon & White, 2010; Wolski et al, 

2008).  

 

5.2.6. Nucleotide Excision Repair among diverse archaeal species – 

discrepancies between T. acidophilum and S. solfataricus Bax1 

In vivo studies would also be required to shed light onto the genetic diversity 

among archaea which is reflected by the evolutionary subdivision into two 

separate groups within the archaeal kingdom: the euryarchaea and the 

crenarchaea (Cox et al, 2008). The point of separation in evolution is still under 

discussion (Cox et al, 2008). Focusing on DNA repair, it is interesting to note that 

the presence and number of different NER homologs seems to be almost 

randomly distributed among different archaeal species (Grogan, 2004; Kelman & 

White, 2005). Some archaea also contain the prokaryotic UvrABC proteins in 

addition to eukaryotic NER homologs probably introduced by lateral gene transfer 

(Grogan, 2004; Kelman & White, 2005).  

Another important point contributing to the archaeal diversity is the DNA 

superstructure: in all three domains of life, eukaryotes, prokaryotes and archaea, 

mechanisms have evolved to pack and compact DNA (White & Bell, 2002). 

Hyperthermophilic archaea, such as S. solfataricus, contain a reverse gyrase 

which positively supercoils DNA to protect DNA from denaturation at high growth 

temperatures (Collin, 1988; Lopez-Garcia & Forterre, 1997; Musgrave et al, 1991; 

Perugino et al, 2009). The genome of T. acidophilum, however, comprises one 

circular negatively supercoiled chromosome (Collin, 1988; Kawashima et al, 

2000). Using AFM, we were able to visualize T. acidophilum XPB/Bax1 binding to 

negatively supercoiled plasmid DNA, mimicking physiological conditions. We 

speculate that DNA binding proteins may have adapted to the superstructure of 

the DNA present in the organism. The different sign of supercoiling in 

T. acidophilum and S. solfataricus (negative and positive, respectively) is only one 

example underlining the evolutionary divergence between the two organisms. 

Moreover, XPB proteins from the two organisms share in total 39 % sequence 
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identity. In comparison, the helicase core domains of T. acidophilum and 

S. solfataricus share 26 % and 27 % sequence identity to human XPB, 

respectively (Biswas et al, 2009; Huang, 1991). T. acidophilum and S. solfataricus 

Bax1 are only 22 % identical in sequence. Thus, the diversity within the archaeal 

kingdom has to be considered when comparing the activity of archaeal proteins 

from different species.  

To decipher DNA repair mechanisms in a specific organism, in vivo studies 

would be necessary. To date, only very few in vivo studies on archaeal organisms 

are published (Crowley et al, 2006; Fujikane et al, 2010; Salerno et al, 2003), in 

contrast to several studies on recombinant archaeal NER homologs (Fan et al, 

2006; Fan et al, 2008; Mathieu et al, 2010; Nishino et al, 2003; Richards et al, 

2008; Rouillon & White, 2010; Wolski et al, 2008). It is even not known if the NER 

homologs in archaea are involved in NER at all or if a different DNA repair 

mechanism has evolved. So far, NER homologs have been identified through 

sequence conservation to their human counterparts but it has yet not been shown 

that these proteins exhibit a role in DNA repair. This reflects the urgent need for 

these studies to gain insights into archaeal NER especially considering the huge 

genetic diversity among archaea.  

The presence of the prokaryotic UvrABC system as well as photolyases in 

some archaea might suggest that these organisms do not employ the eukaryotic 

XP homologs to remove UV-lesions. This has been supported by a study revealing 

that a uvrabc knock-out strain responded more sensitively to UV-light than the 

wildtype archaeon (Crowley et al, 2006). This finding, however, raises the question 

how archaea lacking the prokaryotic UvrABC system remove UV-lesions from their 

genome. The hypothesis that archaea could have established unique DNA repair 

mechanisms different from prokaryotic and eukaryotic pathways was discussed 

previously (Grogan, 2004). 

A recent publication presents the knock-out of xpb, xpd and hef genes in 

T. kodakaraensis and concludes that XPB and XPD seem not to be involved in 

NER in this organism whereas Hef is proposed to be involved in several different 

DNA repair pathways (Fujikane et al, 2010). These results were obtained from 

sensitivity tests of the knock-out strains towards various damaging agents such as 

UV-light and mitomycin C which are responsible for the formation of pyrimidine 
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dimers and interstrand crosslinks, respectively. However, considering that even 

the wildtype strain of T. kodakaraensis displays a higher sensitivity towards 

UV-light than other archaea and prokaryotes, the presented study might not be 

directly transferable to other archaea (Fujikane et al, 2010).  

Despite the fragmentary knowledge of archaeal DNA repair, archaeal proteins 

are often used to gain insights into their eukaryotic homologs (Fan et al, 2006; Fan 

et al, 2008; Liu et al, 2008; Mathieu et al, 2010; Nishino et al, 2003; Richards et al, 

2008; Wolski et al, 2008). The conserved sequence of archaeal and human 

proteins proposes a similar 3D-structure and thus comparable properties with 

regard to their function (Aravind et al, 1999; Grogan, 2000; Kelman & White, 2005; 

Ogrunc et al, 1998; White, 2003). The structure of archaeal XPD, for example, 

could actually explain in part the phenotype of xpd-patients suffering from XP, 

XP/CS or TTD (Fan et al, 2008; Lehmann, 2008; Liu et al, 2008; Wolski et al, 

2008). Moreover, it has been demonstrated that archaeal XPD is able to 

distinguish between damaged and non-damaged DNA in in vitro assays (Mathieu 

et al, 2010). Thus, archaeal homologs nevertheless seem to be a valid model, at 

least to a certain extent, to gain insights of their human counterparts.  

 

5.3. Final conclusion 

The present studies provided insights into the DNA damage recognition and 

incision reaction in NER obtained by structural and biochemical approaches on 

recombinant prokaryotic and archaeal proteins. 

In the first part of this thesis, the prokaryotic mechanisms of DNA damage 

verification and subsequent incision reactions were addressed. Although the 

co-crystal structure of UvrB∆4 and damaged DNA could not decipher the damage 

verification process, incision assays in the absence of UvrA proposed that UvrB 

translocates on DNA predominantly in 5’ → 3’ direction. Encountering a potential 

DNA damage, UvrB verifies the NER lesion to subsequently recruit the 

endonuclease UvrC. UvrC then specifically incises the DNA to remove the 

damaged oligonucleotide. 

The second part of this thesis focused on archaeal NER, especially on the 

characterization of the novel endonuclease Bax1. Incision studies provided initial 
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insights to a possible mechanism how Bax1 incises DNA and how it may play an 

important role in NER. Bax1 was shown to act as a Mg2+ dependent, structure 

specific endonuclease incising DNA in the single-stranded region 4 to 6 nts next to 

the dsDNA/ssDNA junction. Other substrates such as dsDNA, a 5’ overhang or a 

substrate containing mismatches are not incised.  

The presence of two conformationally different XPB/Bax1 complexes with 

diverse incision activity points towards a regulation mechanism for Bax1. The 

direct comparison of Bax1 with the XPB/Bax1comp complex from T. acidophilum 

suggests that XPB, even in the absence of helicase activity, is able to load and to 

position Bax1 onto the scissile DNA substrate. Thus, XPB might hand over the 

DNA to Bax1 within the XPB/Bax1 complex and thereby adopt a different 

conformation to enable Bax1 to incise the DNA. This proposed mechanism would 

ensure that the sequential process of damage recognition, followed by verification, 

is completed prior to incision. Therefore, XPB and Bax1 would not only interact 

physically but also functionally.  

Insights into archaeal NER provided by the in vitro studies presented here 

require further complemented by continuative in vivo studies in order to 

understand the underlying mechanisms of DNA repair.  
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Tables 

 

Table A1: Crystallization conditions for UvrBC-DNA complex 

 

Protein 
concentration 
(A280) 

Drop Size 
(Protein:Reservoir) 

Hanging/sitting 
drop 

Temperature Screen 

4.0 0.25 µl + 0.25 µl sitting drop 20 °C  Crystal Screen I+II 
 Nextal PEGs 
 Easy Xtal JCSG 
 The Nucleix Suite 

6.3 0.4 µl + 0.2 µl sitting drop 20 °C  Crystal Screen I+II 
 Easy Xtal JCSG 
 The Nucleix Suite 

9.4 1 µl + 1 µl 
1.5 µl + 0.75 µl 
1.5 µl + 0.75 µl 
0.75 µl + 1.5 µl 

hanging drop 20 °C 
20 °C 
4 °C 
20 °C 

sub-screen: 
50 mM Na-cacodylate pH 6.5, 
2-2.5 mM Spermine, 
30 mM MgCl2,  
0-1 mM CoCl2,  
3-10 % PEG400 

15.1 1.5 µl + 0.75 µl hanging drop + 
streak seeding 

20 °C sub-screen: 
50 mM Na-cacodylate 
pH 5.5-pH 7.0, 
2-2.5 mM Spermine,  
10-30 mM MgCl2, 
2-7 % PEG400 

8.4 0.3 µl + 0.3 µl sitting drop 4 °C, 10 °C, 
20 °C, 37 °C 

 Crystal Screen I+II 
 Index Screen HT 
 The Nucleix Suite 
 OptiMix-1-5 
 Wizard Screen I+II 

8.4 1.5 µl + 0.75 µl hanging drop 10 °C sub-screen: 
50 mM Na-cacodylate 
pH 5.5-pH 7.0, 
2-2.5 mM Spermine,  
10-30 mM MgCl2, 
2.5-15 % PEG400 or 
5-20 % tert-Butanol or 
2-12 % MPD or 
5-20 % Isopropanol 

6.4 1 µl + 1 µl hanging drop 20 °C sub-screen: 
0.4-1 M K-thiocyanate 
0.1 mM Na citrate 

9.4 0.3 µl + 0.3 µl 
0.4 µl + 0.2 µl 
0.6 µl + 0.3 µl 
0.4 µl + 0.3 µl 
0.6 µl + 0.2 µl 
 

sitting drop 20 °C sub-screen: 
50 mM HEPES pH 7.5, 
1-2 mM Spermine,  
10-30 mM MgCl2, 
0-15 % PEG400 or 
0-20 % PEG8000 or 
0-2.5 M (NH4)2SO4 or 
0-20 % Isopropanol 
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Table A2: Crystallization of Bax1, XPB and the XPB/Bax1 complex 
 
Protein type and 
concentration  

Buffer 
composition 

Drop Size 
(Protein:Reservoir) 

Hanging/sitting 
drop 

Temperature Screen DNA Additives 

Bax1 monomer 
28 mg/ml 

IMAC-A (20 mM 
Imidazole) 

0.3µl + 0.3µl sitting 20 °C  Crystal Screen I+II 
 Wizard I+II 
 Protein Complex 

Suite 
 OptiMix 1 
 Nextal pH 
 Nextal PEG 

  

Bax1 dimer  
9.3 mg/ml 

IMAC-A (20 mM 
Imidazole) 

0.3µl + 0.3µl sitting 20 °C  Crystal Screen I+II 
 Wizard I+II 
 Protein Complex 

Suite 
 OptiMix 1 
 Nextal pH 
 Nextal PEG 

  

Bax1 
12 mg/ml 

20mM MES 
pH6.5, 500mM 
NaCl 

0.3µl + 0.3µl sitting 20 °C  Crystal Screen I+II 
 Wizard I+II 
 OptiMix 1 
 Nextal pH 
 Nextal PEG 

  

XPB/Bax1incomp 

2.7 mg/ml 
20mM MES 
pH6.5, 500mM 
NaCl 

0.3µl + 0.3µl sitting 20 °C  Crystal Screen I+II 
 Protein Complex 

Suite 

  

Bax1 
12 mg/ml 

20mM MES 
pH6.5, 500mM 
NaCl 

0.3µl + 0.3µl sitting 20 °C  Index Screen 
 OptiMix 3 
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Bax1 
10 mg/ml 

20mM MES 
pH6.5, 500mM 
NaCl 

0.3µl + 0.3µl sitting 20 °C  Crystal Screen I+II 
 Index Screen 
 Wizard II+III 
 OptiMix 1 
 Nextal pH 
 Nextal PEG 

  

Bax1 
28 mg/ml 

20mM MES 
pH6.5, 500mM 
NaCl 

0.3µl + 0.3µl sitting 20 °C  Crystal Screen I+II 
 Index Screen 
 Wizard II+III 
 OptiMix 1 
 Nextal pH 
 Nextal PEG 

  

Bax1 
250 µM 

20mM MES 
pH6.5, 150mM 
NaCl, 10mM 
MgCl2 

0.3µl + 0.3µl sitting 20 °C  Crystal Screen I+II 
 Index Screen 
 Wizard I+II 
 OptiMix 1 
 OptiMix 3 
 Nextal PEG 

F1526GAA11 
(hairpin 
bubble) 

 

Bax1 
250 µM 

20mM MES 
pH6.5, 150mM 
NaCl, 10mM 
MgCl2 

0.3µl + 0.3µl 
0.6µl + 0.3µl 
0.3µl + 0.6µl 

sitting 20 °C  OptiMix 1 
 OptiMix 3 

F1526GAA11 
(hairpin 
bubble) 
HB47asF 
(hairpin 
bubble) 

 

Bax1 
20 mg/ml 

GF buffer 0.3µl + 0.3µl 
0.6µl + 0.3µl 

sitting 20 °C  Crystal Screen I+II 
 Index Screen 
 Nucleix Suite 
 Protein Complex 

Suite 
 OptiMix 1 

 seeds from 
amorphous 
non-
diffracting 
quasi-
crystals 
 
 
 
 
 



Appendix 

 

 

XX 

 

Bax1  
178 µM 

GF buffer + 
10 mM CaCl2 

0.4µl + 0.4µl 
 

sitting 20 °C  Crystal Screen I+II 
 Index Screen 
 Nucleix Suite 
 Protein Complex 

Suite 
 OptiMix 1 
 OptiMix 3 
 Wizard I+II 

NDB22 
(214 µM) 

 

Bax1 
31 mg/ml 

GF buffer 0.6µl + 0.3µl sitting 20 °C  Crystal Screen I+II 
 Index Screen 
 Nucleix Suite 
 Protein Complex 

Suite 
 OptiMix 1 
 Wizard I+II 

 Zeolith 

XPB/Bax1comp 

8.5 µM 
GF buffer 
(250 mM NaCl) 
+ 10 mM MgCl2 

0.3µl + 0.3µl 
0.6µl + 0.3µl 

sitting 20 °C  Crystal Screen I+II 
 Protein Complex 

Suite 

  

XPB/Bax1comp 

21 µM 
GF buffer 
(500 mM NaCl) 
+ 10 mM MgCl2 

0.6µl + 0.3µl sitting 20 °C  Crystal Screen I+II 
 Protein Complex 

Suite 
 OptiMix 1 
 OptiMix 3 
 Wizard I+II 
 Nextal PEG 

  

XPB/Bax1comp 

15 µM 
GF buffer 
(500 mM NaCl) 
+ 10 mM CaCl2 

0.3µl + 0.3µl 
 

sitting 20 °C  Crystal Screen I+II 
 Protein Complex 

Suite 
 Wizard I+II 

  

XPB/Bax1comp 

12 µM 
GF buffer 
(500 mM NaCl) 
+ 10 mM CaCl2 

0.3µl + 0.3µl 
 

sitting 20 °C  Crystal Screen I+II 
 Protein Complex 

Suite 
 Wizard I+II 

DNA  
NDB30/NDBr
15 (14.4 µM) 

5 mM EDTA 
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XPB/Bax1comp 

12 µM 
GF buffer 
(500 mM NaCl) 
+ 10 mM CaCl2 

0.3µl + 0.3µl 
 

sitting 20 °C  Crystal Screen I+II 
 Index Screen 
 Nucleix Suite 
 Protein Complex 

Suite 
 Wizard I+II 
 OptiMix 1 

DNA  
NDB30/NDBr
15 (14.4 µM) 

5 mM 
EDTA, 
crystal 
seeds 

methylated 
Bax1 
57 µM 
(2.6 mg/ml) 

GF buffer 
(200 mM NaCl) 

0.3µl + 0.3µl 
 

sitting 20 °C  Crystal Screen I+II 
 Index Screen 
 Nucleix Suite 
 Protein Complex 

Suite 
 Wizard I+II 
 OptiMix 1 
 Nextal PEG 

  

methylated 
Bax1 
500 µM 

GF buffer 
(200 mM NaCl) 

0.3µl + 0.3µl 
 

sitting 20 °C  Crystal Screen I+II 
 

  

methylated 
Bax1 
250 µM 

GF buffer 
(100 mM NaCl) 

0.3µl + 0.3µl 
 

sitting 20 °C 
10 °C 
4 °C 

 Crystal Screen I+II 
 Index Screen 
 Nucleix Suite 
 Protein Complex 

Suite 
 Wizard I+II 
 OptiMix 1 
 Nextal PEG 
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