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II. Regulation of c-fos and c-myc gene expression* 

Newly isolated lymphocytes from mousespleensexpress the c-fos oncogene even in 
the absence of mitogen with maximal mRNA levels 60 min post preparation of single 
cell suspension, whereas c-myc mRNA Ievels increase only after mitogenic Stimula­
tion with maximal mRNA Ievels 6 h post Stimulation. 
The half-lives of c-fos mRNA are generally very short; they increase from 14 min 
(after 30 min of culture) to 70 min (after 2 h of culture). The half-lives of c-myc 
mRNA decrease from 50 min (at 2 and 6 h post stimulation with concanavalin A) to 
12 min (at 48 h post stimulation). 
The c-fos gene transcription is already tumed on in time-0 lymphocytes 10 min after 
disruption of the organ structure of the spleens and is down-regulated after 2 h and 
later. In nuclear run-on experiments with nonstimulated lymphocytes there is already 
significant transcription of the first exon of c-myc, but almost no elongation of the 
transcript to exon 2 and 3. In concanavalin A-treated lymphocytes elongation is 
stimulated about 5-fold within 6 h and returns to background levels at 48 h post 
Stimulation. · 
The nuclear run-on analyses of nonactivated lymphocytes showed a signal for RNA 
complementary to c-myc mRNA detected with a probe specific for the exon 1/intron 1 
boundary of c-myc, which disappeared with increasing time of concanavalin A Stimu­
lation. This anti-sense transcription may play a role in regulating the elongation of c­
myc transcripts. 

1 Introduction 

It is by now weil established that mRNA Ievels of several 
cellular oncogenes such as c-myc, c-fos and c-myb are 
increased in cell lines and normal cells during transition from 
G0 to S-phase [1-7]. High Ievels of c-fos expression were also 
detected in differentiated macrophages [6, 8, 9], but c-fos 
expression is neither sufficient nor obligatory for differentia­
tion of monomyelocytes to macrophages [10]. The down-regu­
lation of c-fos mRNA Ievels in 3T3, HL-60 and U937 cells was 
observed to be caused by transcriptional shutoff and a rapid 
degradation of the c-fos mRNA [10, 11]. In normal mause 
lymphocytes, c-myc expression is stimulated by various mito­
gens and growth factors [1, 12, 13]; however, the Ievels of c­
myc mRNA in mouse T lymphocytes depend on the type of 
mitogen used and the subpopulation of T cells investigated 
[14]. The down-regulation of c-myc mRNA Ievels in lympho­
cytes and various cell lines is caused by post-transcriptional 
mechanisms influencing the stability of mRNA and treatment 
of cells with cycloheximide (CHI) le.ads to accumulation of c­
myc mRNA [1, 2, '15-18]. We determined the half-lives of c­
fos and c-myc mRNA in normal mause lymphocytes at various 
times after mitogenic stimulation and compared mRNA Ievels 
with those of precursor mRNA and with gene transcription 
rat es. 
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2 Materials and metbods 

2.1 Cell culture and determination of proliferative activity 

Newly preparated single cell suspensions of lyrnphocytes from 
mouse spleens were cultured in RPMI ~640 medium (Gibco, 
Grand Island, NY) supplemented with nonessential amino 
acids, 2-mercaptoethanol (5 X 10-5 M), Streptomycin (100 !Jg/ 
ml), penicillin (100 U/ml) and 5% heat-inactivated fetal calf 
serum (FCS). T cells were polyclonally activated with con­
canavalin A (Con A; 2.5 JJ.g/ml). To determine the rate of 
DNA synthesis 5 X 104 lymphocytes were pulsed for 16 h with 
5 JlCi = 185 kBq [3H]thymidine (2 Ci/mmol). Some of the cul­
tures were treated for 1 h with 10 Jlglml CHI (Sigma, St. 
Louis, MO) after appropriate times of stimulation. RNA syn­
thesis was blocked by 5 J.lg/ml actinomycin D (Act D). 

2.2 Preparation of RNA and analysis 

Lymphocytes were pelleted by 5 min centrifugation, dissolved 
in guanidinium rhodamid buffer and total cellular RNA was 
pelleted through a caesiurn chloride cushion as described [19]. 
For Northem blot analyses 20 Jlg RNA per slot were elec­
trophoresed on 1.5% agarase gels containing 6.3% formal­
dehyde. The hybridization probes were for fos: pfos (M) 780, 
pUC12 containing the 780-bp Pst I/Sst I fragment of exon 3/4 of 
c-fos (mouse) [6]; for H-2: pH-2d-1 [20]; for myc: the 1.0-kb 
Xba 1/Sst I fragment of the mause c-myc gene [21 J containing 
exon 2; for actin: the 270-bp Eco RI/Hind III fragment of rat ß­
actin clone pactin 72 [22]. 

2.3 M13 construction 

Abbreviations: CID: Cycloheximide Con A: Concanavalin A For S1 mapping the 260-bp Eco RI/Pst I fragment of intron 
FCS: Fetal calf serum 1/exon 2 of the mause c-fos gene and the 165-bp Xba 1/Pst I 
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fragment of intron 1/exon 2 of the mouse c-myc gene were 
cloned into M13mp18. For the nuclear run-on analyses of c­
myc probes a (540 bp Sma I/Bam HI), b ( 450 bp Bam HI/Sst I), 
c (750 bp Ssti/BamHI), d (165 bp Xbai/Psti), e (1500 bp 
Sst 1/Hind III) and f (510 bp Pvu II/Hind III) were cloned into 
M13mp18 and M13mp19. For c-fos the probes were a (950 bp 
Sst 1/Pvu Il), b ( 600 bp Pvu II/Xho II), c (260 bp Eco RI/Pst I), 
d (780 bp Pst I/Sst I) and e (810 bp Sst Iffth III) cloned into 
M13mp18 and M13mp19. The H-2-specific probes were a 300-
bp Psti fragment of pH-2d-1 cloned in M13mp18 and 
M13mp19. The ribosomal probes were the 320-bp Sal I/Sma I 
fragment of mouse ribosomal DNA cloned into M13mp8 and 
M13mp9 (a gift of I. Grummt, Institute' for Biochemistry, 
Würzburg). · ' 

2.4 Nuclear run-on assay 

Preparation of nuclei and elongation of transcription were per­
formed as described elsewhere [23, 24]. Half J.tg of the indi­
cated single-stranded M13 DNA probes was slot blotted in 
20 x SSC (3M NaCI, 0.3 M sodium citrate) on Hybond N fil­
ters (Amersham International, Bucks, GB). The filters were 
prehybridized for 24 h at 42 oc in 50% formamid, 
5 X Denhardt's, 6 X SSPE, 250 ~-tg/ml carrier RNA, 0.5% 
sodium dodecyl sulfate. Hybridization was performed for 
3 days in the same buffer containing 4 x 106 cpm of labeled 
RNA in 10 ml. 
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Figure 1. [3H]Thymidine incorporation. [3H]Thymidine incorporation 
of mouse spienie lymphocytes with (...._.) and without (Q.-0) 
Con A (2.5 JLg/rnl) in RPMI 1640 medium containing 5% FCS. 
Two x 104 lymphocytes were Iabeted for 16 h with 5 JLCi [3H]thy­
midine (2 Cilmmol). 
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2.5 Sl mapping 

For primer extension, 1.5 J.tg ss M13 DNA was hybridized to 
the 15-bp sequencing prirner (Pharmacia, Uppsala, Sweden) 
and the complementary strand was synthesized with 30 JtCi 
a-32P-dATP by polymerase I large fragment. Hybridization 
and nuclease Sl mapping were performed as described else­
where [25, 26]. Single-stranded nucleic acids were digested 
with 700 U/ml nuclease Sl (Pharmacia) at 30°C. The hybrids 
were run on a 8% polyacrylamid gel containing 7 M urea. 

3 Results 

3.1 The kinetics of c-fos and c-myc mRNA expression 

The rates of [3H]thymidine incorporation by spienie mouse 
lymphocytes cultured in RPMI 1640 medium containing 5% 
FCS in the presence and absence of Con A are presented in 
Fig. 1. An increased incorporation of eHJthymidine was only 
apparent in Con A-stimulated, proliferating lymphcoytes. 

The relative amounts of c-fos and c-myc-specific mRNA in 
these cells were determined by Northern blot analyses. C-fos­
specific mRNA increased drastically reaching its optimum 
already 1 h after preparation of the single cell suspension from 
mouse spleens and Stimulation with Con A (Fig. 2A). How­
ever, exactly the same results were obtained with lymphocytes 
cultured in the absence of Con A (Fig. 2B) and even in the 
absence of FCS, i.e. in cells showing no proliferative activities 
(compare Fig. 1). Thus, the peculiar kinetics of c-fos gene 
expression were totally independent of whether or not the cells 
are growth activated. Addition of CHI could not prevent the 
down-regulation of c-fos mRNA. In cantrast to c-fos, c-myc 
mRNA Ievels increased about 50-fold only in lyrnphocytes 
stimulated to proliferation with Con A [1, 14) (compare 
Fig. 7B). Nonproliferating lymphocytes expressed c-myc 
mRNA at a low Ievel, about 10% of maximal expression 6 h 
after Con A Stimulation (data not shown). 

3.2 Decay rates of c-fos and c-myc mRNA 

The decay rates of c-fos and c-myc mRNA were assessed in 
activated lymphocytes after blocking further transcription by 
actinomycin D (Act D) and preparation of total cellular RNA 
5, 15, 30, 60 and 120 min thereafter. The densitometric evalu-
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Figure 2. Northern blot of proliferating and 
non-proliferating lymphocytes. Lymphocytes 
were cultured for various times in RPMI 1640 

·medium containing 5% FCS with (A) or with­
out (B) 2.5 JLg/ml Con A. CID was given dur­
ing the last 60 min of cultivation in a concen~ 
tration of 10 JLg/ml. The Northern blots were 
hybridized to the nick-translated plasmid pfos 
{M) 780 containing the 780-bp Pst 1/Sst I frag­
ment of exon 3 and 4 of c-fos (mouse) and 
plasmid pH-2d-1 as a control of intact RNA. 
The RNA of (A), lane 10 was prepared from 
lymphocytes treated with 10 JLg/ml CHI for 
1 h without FCS and Con A in RPMI 1640 at 
37°C. The RNA of (A), lane 11 was prepared 
from lymphocytes treated for 1 h with RPMI 
5% FCS without Con A, the same RNA as in 
(B), lane 3. 
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ations of the corresponding Northern blots are shown in 
Fig. 3. At 30 min post Stimulation the half-life of c-fos mRNA 
was approximately 14 min, 1 h post stimulation the half-life 
was 25 min and 2 h post stimulation it was 70 min (Fig. 3A). 
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Figure 3. Half-lives of c-fos (A) and c-myc (B) mRNA. (A) Lympho­
cytes were cultured in RPMI 5% FCS with 2.5·~-tg/ml Con A. After 
30 min (A-A), 1 h (0--0) and 2 h (0--0) transcription was 
blocked by addition of 5 ~-tglml Act D and cells were harvested S, 15, 
30, 60 and 120 min later. CHI (20 ~-tglml) was added 30 min before 
addition of Act D at 1 h (..__.) and 2 h (e--e) of culture. North­
ern blots of corresponding RNA were hybridized with a c-fos-specific 
probe and scanned by densitometry. The highest absorption at S min 
after addition of Act D each was set to 100% of the mRNA survival 
curves. (B) For determination of the half-lives of c-myc mRNA, lym­
phocytes were cultured in RPMI 5% FCS with 2.5 J.tg/ml Con A. After 
2 h (0--0), 6 h (D--0) and 4S h (.6.-A) transcription was 
blocked by addition of 5 ~-tg/ml Act D. CHI (20 ~-tg/ml) was added 
30 min before addition of Act D at 6 h (a--•) and 48 h (.Ä-.Ä) of 
culture. Northern blots of corresponding RNA were hybridized with a 
c-myc-specific probe and scanned by densitometry. 
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Figure 4. Variation of the natural half-lives of c-fos and c-myc 
mRNA. The natural half-lives of c-fos mRNA were determined tobe 
14 min (at 30 min of culture ), 25 min (at 1 h of culture) and 70 min (at 
2 h of culture). The natural half-lives of c-myc mRNA were SO min (at 
2 and 6 h post Stimulation) and decreased to 12 min (at 48 h post 
Stimulation). 
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At 2 and 6 h post stimulation the half-lives of c-myc mRNA 
were determined to be 50 min and at 48 h post stimulation the 
half-live of c-myc mRNA was reduced to about 12 min 
(Fig. 3B). CHI stabilized both c-fos and c-myc mRNA to half­
lives of about 8 h, independently of the state of activation of 
the cells. The changes of the natural half-lives of c-fos and 
c-myc mRNA are summarized in Fig. 4. 

The short half-Jives of the mature mRNA and the changes of 
their decay rates were specific for c-fos and c-myc mRNA. 
Control hybridization of the same Northern blots with H-2- or 
actin-specüic probes showed no variation in the decay rates of 
the mRNA of these genes. 

~.3 Transcription rates of c-myc and c-fos RNA 

Nuclear run-an analyses were then performed to determine 
the transcription rates of the c-myc, c-fos, H-2 and ribosomal 
genes after Stimulation of the lymphocytes. With this tech­
nique RNA polymerase li density or elongationrate without 
initiation was investigated. The probes used in the run-on 
experiment were single-stranded M13 DNAs as indicated in 
Fig. SB, specific for parts of the c-myc and c-fos genes. Probes 
specific for both orientations of RNA were used, ( +) probes 
detecting mRNA sense and (-) probes detecting anti-sense 
RNA transcripts. The H-2 and ribosomal probes were used for 
control and standardization purposes. 

Nonactivated lymphocytes {10 min after preparation of the 
single cell suspension) (Fig. SA, lane 1) showed significant 
transcription of the exon 1 and exon 1/intron 1 boundary of c­
myc (probes band c), but the elongation rates of the second 
and third exon of c-myc (probes d-f) were low. The first exon 
of the c-fos gene (probe b) also appeared to be transcribed 
already at 0 h (Fig. 5A, lane 1) to the same extent as after 
30 min of Con A stimulation (Fig. SA, lane 2). The elongation 
rates of c-fos to exons 3 and 4 were slower at 0 h than 30 min 
later (probes d, e). At subsequent times investigated trans­
cription of c-fos was strongly down-regulated (Fig. SA, lanes 4 
to 7), whereas the elongation rat es of exon 2 and 3 of c-myc 
(probes d-f) increased about 5-fold at 6 h post activation 
(Fig. 5A, lane 4) and were down-regulated thereafter. CHI 
had some effect on the elongation rate of c-fos at 30 min 
(Fig. 5A, lane 3), but no effect could be detected at later 
times. Thus, CHIper se does not lead to c-fos for c-myc trans­
cription. 

The (-) probe c of c-myc, specific for the exon 1/intron 1 
boundary of the c-myc gene, detected transcription of signifi­
cant levels of complementary RNA to c-myc mRNA in nonac­
tivated lymphocytes (Fig. 5A, lane 1). Following activation of 
the lymphocytes, the signal for anti-sense RNA decreased to 
background Ievels. No signal for anti-sense RNA could be 
detected with the (-) c-fos-specific probes. As a control for 
possible cross-hybridization the filter of Fig. SA, lane 1 was 
washed and rehybridized with a radioactively labeled ( +) SP6 
transcript of the c-myc probe c, but no signal for the corre­
sponding (-) probe could be seen. 

3.4 Sl protection analyses 

This technique enables steady state Ievels of mature mRNA 
and corresponding precursor mRNA to be simultaneously 
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Figure 5. Nuclear run-on analyses. (A) The elonga­
tion rates of c-myc, c-fos H-2 and ribosemal {Mr) 
genes in lymphocytes were determined after various 
times of Con A Stimulation without and with 20 l-4-g/ 
ml CHI as indicated lane 1-7). Of single-stranded 
Ml3 DNA specific for both orientations (0.5 J.l-8) 
were slot blotted on Hybond N filter, ( +) indicating 
probes detecting mRNA and (-) detecting anti­
sense RNA. (B) The probes a-f from the mouse c­
myc gene and a-e of the mause c-fos gene were 
subcloned into M13mp18 and M13mp19 as indi­
cated and slot blotted on Hybond N filter used in 
(A). 
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assessed. The results obtained with a c-fos intron 1/exon 2 
specific M13 probe are shown in Fig. 6. Regarding the signal . 
for mature mRNA consisting of a protected sequence of 80 
nucleotides of exon 2, the previous results obtained with 
Northern blot analysis were confirmed. The strongest signal 
was observed 1 h post Stimulation and disappeared thereafter. 
The c-fos-specific precursor mRNA (signal at 260 nucleotides) 
was dernonstrahle already in unstimulated cells (at 0 h) until 
1 h post stimulation (Fig. 6B, lanes 5-8). After that time pre­
cursor mRNA was no Ionger dernonstrahle by this technique. 
As a control for the amount of RN A used in the assay, a probe 
for ribosomal RNA was hybridized simultaneously to each 
RNA sample giving the signal at 155 nucleotides. In the case of 
c-myc the Ievels of mature mRNA (signal at 132 nucleotides) 
were maximal at 6 h post stimulation of lymphocytes with 
Con A (Fig. 7B). Within the first hours post stimulation, pre­
cursor mRNA Ievels (signal at 165 nucleotides) increased 
parallel with mature mRNA Ievels and decreased thereafter. 
CHI bad no effect on precursor mRNA Ievels of c-myc ( data 
not shown). These results confirmed the data of the nuclear 

3' 

run-on analyses of c-fos and c-myc transcription rates and 
determination of the decay rates of the corresponding mRNA. 

4 Discussion 

The exact and sensitive regulation of the expression of genes 
required for proliferation and differentiation is a prerequisite 
for lymphocytes in anormal, functioning immune system. As 
shown by Northern blot analyses and Sl mapping [1, 14] the c­
myc gene expression is stimulated transiently about 50-fold 
during the G0 to S-phase transition of lymphocytes. N onstimu­
lated lymphocytes, kept in medium with 5% FCS, did not 
showhigh levels of c-myc mRNA. In cantrast to c-myc, c-fos­
specific mRNA is expressed with maximal Ievels after 1 h also 
in nonproliferating lymphocytes and in the presence or ab­
sence of FCS in the culture media. Thus, expression of the c­
fos gene in these cells is totally independent of whether or not 
the cells are stimulated for subsequent growth. According to 
these findings the c-myc, but not the c-fos gene, would qualify 
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Figure 6. Nuclease S1 mapping. (A) To show the precursor mRNA to 
mRNA ratio of c-fos the 260-bp Eco RUPst I fragment of the first 
intron and the second exon of c-fos (mouse) was cloned into 
M13mp18. The labeled probe has a size of 310 nucleotides (nt, mul­
tiple cloning site). The nuclease Sl protected precursor mRNA gives a 
signal at 260 nt, the mRNA at 80 nt. (B) Total cellular RNA of stimu­
lated lymphocytes was hybridized to the M13 probe and single­
stranded nucleic acids were digested by nuclease Sl (see Sect. 2.5). 
Lane 1: end-labeled marker pBR322 digested with Hpa II. Lane 2: the 
probe for mouse ribosomal RNA in M13mp9. The ribosemal RNA 
gives a signal at 155 nt (Mr) and was used as a control of the amount of 
RNA used in the experiment. Lanes 3 and 4 show the M13 probe for 
c-fos alone and Sl-treated, respectively. Lanes 5-12 contain RNA of 
the Con A-stimulated lymphocytes as indicated. 

for a possible association with growth regulation of lympho­
cytes. 

Both the levels of c-myc and c-fos-specific mRNA are decreas­
ing after having reached maximum values at 6-12 h and 1 h, 
respectively. One mechanism which can strongly influence 
steady state Ievels of mRNA is post-transcriptional regulation, 
in particular the specific degradation of rnature mRNA. This 
has been shown to be the case for both c-myc and c-fos 
mRNAs [2, 10, 11, 15, 16, 27, 28). By determining degradation 
rates of c-myc mRNA in Con A-stimulated cells, we found 
that it increased about 5-fold from 6 h to 48 h post Stimulation 
(Fig. 4). The half-lives were determined to be 50 min at 2 and 
6 h and 12 min at 48 h post stimulation. In contrast, the half­
lives of c-fos mRNAs were 14 min at 30 min post stimulation 
and increased to 70 min at 2 h post stimulation. This initia1 
and extreme instability of the c-fos mRNA could explain the 
Iack of dernonstrahle Ievels prior to 30 min of culture. Our 
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Figure 7. Nuclease S1 mapping. (A) The 165 bp Xbai/Pstl fragment 
of intron 1 and exon 2 of c-myc (mouse) was cloned into M13mp18. 
The labeled probe has a size of 240 nt. The size of nuclease S1 pro­
tected c-myc precursor mRNA is 165 nt, the size of protected mRNA 
132 nt. (B) Total cellular RNA of stimulated lymphocytes was 
hybridized to the M13 probe and single-stranded nucleic acids were 
digested by nuclease Sl (see Sect. 2.5). Lane 1: end-labeled rnarker 
pBR322 digested with Hpa li. Lanes 2 and 3: the c-myc-specific M13 
probe alone and S1 treated, respectively. Lanes 4-10 contain RNAsof 
the Con A-stimulated lymphocytes as indicated. 

data show that the degradation rates of düferent mRNA 
species in lymphocytes are regulated specifically and indepen­
dent frorn one another. The strongly stabilizing effect of CHI 
on c-fos and c-myc mRNA suggests that translation may be 
necessary for mRNA degradation [29, 31, 32]. 

The other important mechanism that can influence mRNA 
steady state levels is regulation of gene transcription per se. 
Nuclear run-on experiments with c-fos-specific probes showed 
transcription of exon 1 already 10 min after the single cell sus­
pension had been prepared from mouse spleens (0 h in 
Fig. 5A) and without any additional manipulation or activa­
tion of the lymphcoytes. Exons 3 and 4 were transcribed to a 
lesser extent at that time, but their transcription increased 
after 30 min of culture. This could suggest a block to elonga­
tion within the c-fos gene, which is released after Stimulation 
or, alternatively, the high polymerase II density in exon 1 of c­
fos may reflect the beginning transcription of this gene. The 
data are in keeping with c-fos-specific precursor mRNA being 
dernonstrahle even in nonactivated cells. It remains to be seen 
whether or not the c-fos gyne is already transcribed in spleen 
cells in vivo. Transcription even of exon 1 of c-fos is shut-off 
after 48 h in culture. Transcription of the entire c-myc gene to 
precursor mRNA is increased about 5-fold in lymphocytes 
treated for 6 h with Con Aas compared to unstimulated cells 
(Fig. 5A, lane 4). However, the first exon of c-myc seems to 
be transcribed also in nonactivated cells (Fig. 5A, lane 1). 
This would suggest a block to elongation at the exon 1/intron 
1 boundary which prevents complete c-myc gene transcription 
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in nonactivated lymphocytes. Similar results were obtained 
with HL-60 and 54cl2 {3T3) cells [24, 30, 33, 34] which, how­
ever, possess amplified c-myc genes. Nuclear run-on analyses 
also showed a significant transcription of RNA complemen­
tary to c-myc mRNA, again only in nonactivated cells 
(Fig. 5A, lane 1, probe c). In centrast to the reports by Bent­
ley and Groudine [24] and Nepveu and Marcu [34], we could 
detect anti-sense RNA transcription only with probe c which is 
specific for the exon 1/intron 1 boundary of the c-myc gene. 
Since both abortive transcription of sense and the transcription 
of anti-sense RNA take place in this part of the gene, one may 
speculate that the anti-sense transcription could play a role in 
the regulation of mRNA elongation. Indeed, as transcription 
of the c-myc gene proceeds further downstrearn after Con A 
stimulation, the signal for anti-sense RNA disappears. 

In conclusion, the expression of c-fos and c-myc genes in cul­
tured normal mouse lymphocytes is finely tuned by an inter­
play of transcriptional and post-transcriptional control 
mechanisms which change in predominance at the various 
stages between G0 and S-phase. Of course, it still remains a 
matter of conjecture whether or not these phenomena repre­
sent an important mechanism of lymphocyte activation. For 
reasons discussed above, c-fos gene expression appears tobe 
less important in that respect. Transgenie mice in which c-fos 
gene expression is deregulated show abnormal bone formation 
[35]. Regarding the c-myc gene, however, it is noteworthy that 
most of the reports dealing with its expression are based on 
cells of the lymphoid tissue. Deregulated c-myc expression 
interferes with proliferation and maturation of lymphoid cells 
in transgerne mice [36, 37]. Thus, the fine regulation of c-myc 
expression in normal lymphocytes as described here seems 
indeed tobe instrumental for their normal function. 
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